xref: /titanic_52/usr/src/uts/common/vm/vm_anon.c (revision 4e5fbfeda6c7dee3dd62538723087263e6de8e18)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 #pragma ident	"%Z%%M%	%I%	%E% SMI"
40 
41 /*
42  * VM - anonymous pages.
43  *
44  * This layer sits immediately above the vm_swap layer.  It manages
45  * physical pages that have no permanent identity in the file system
46  * name space, using the services of the vm_swap layer to allocate
47  * backing storage for these pages.  Since these pages have no external
48  * identity, they are discarded when the last reference is removed.
49  *
50  * An important function of this layer is to manage low-level sharing
51  * of pages that are logically distinct but that happen to be
52  * physically identical (e.g., the corresponding pages of the processes
53  * resulting from a fork before one process or the other changes their
54  * contents).  This pseudo-sharing is present only as an optimization
55  * and is not to be confused with true sharing in which multiple
56  * address spaces deliberately contain references to the same object;
57  * such sharing is managed at a higher level.
58  *
59  * The key data structure here is the anon struct, which contains a
60  * reference count for its associated physical page and a hint about
61  * the identity of that page.  Anon structs typically live in arrays,
62  * with an instance's position in its array determining where the
63  * corresponding backing storage is allocated; however, the swap_xlate()
64  * routine abstracts away this representation information so that the
65  * rest of the anon layer need not know it.  (See the swap layer for
66  * more details on anon struct layout.)
67  *
68  * In the future versions of the system, the association between an
69  * anon struct and its position on backing store will change so that
70  * we don't require backing store all anonymous pages in the system.
71  * This is important for consideration for large memory systems.
72  * We can also use this technique to delay binding physical locations
73  * to anonymous pages until pageout/swapout time where we can make
74  * smarter allocation decisions to improve anonymous klustering.
75  *
76  * Many of the routines defined here take a (struct anon **) argument,
77  * which allows the code at this level to manage anon pages directly,
78  * so that callers can regard anon structs as opaque objects and not be
79  * concerned with assigning or inspecting their contents.
80  *
81  * Clients of this layer refer to anon pages indirectly.  That is, they
82  * maintain arrays of pointers to anon structs rather than maintaining
83  * anon structs themselves.  The (struct anon **) arguments mentioned
84  * above are pointers to entries in these arrays.  It is these arrays
85  * that capture the mapping between offsets within a given segment and
86  * the corresponding anonymous backing storage address.
87  */
88 
89 #ifdef DEBUG
90 #define	ANON_DEBUG
91 #endif
92 
93 #include <sys/types.h>
94 #include <sys/t_lock.h>
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/mman.h>
98 #include <sys/cred.h>
99 #include <sys/thread.h>
100 #include <sys/vnode.h>
101 #include <sys/cpuvar.h>
102 #include <sys/swap.h>
103 #include <sys/cmn_err.h>
104 #include <sys/vtrace.h>
105 #include <sys/kmem.h>
106 #include <sys/sysmacros.h>
107 #include <sys/bitmap.h>
108 #include <sys/vmsystm.h>
109 #include <sys/debug.h>
110 #include <sys/fs/swapnode.h>
111 #include <sys/tnf_probe.h>
112 #include <sys/lgrp.h>
113 #include <sys/policy.h>
114 #include <sys/condvar_impl.h>
115 #include <sys/mutex_impl.h>
116 #include <sys/rctl.h>
117 
118 #include <vm/as.h>
119 #include <vm/hat.h>
120 #include <vm/anon.h>
121 #include <vm/page.h>
122 #include <vm/vpage.h>
123 #include <vm/seg.h>
124 #include <vm/rm.h>
125 
126 #include <fs/fs_subr.h>
127 
128 struct vnode *anon_vp;
129 
130 int anon_debug;
131 
132 kmutex_t	anoninfo_lock;
133 struct		k_anoninfo k_anoninfo;
134 ani_free_t	ani_free_pool[ANI_MAX_POOL];
135 pad_mutex_t	anon_array_lock[ANON_LOCKSIZE];
136 kcondvar_t	anon_array_cv[ANON_LOCKSIZE];
137 
138 /*
139  * Global hash table for (vp, off) -> anon slot
140  */
141 extern	int swap_maxcontig;
142 size_t	anon_hash_size;
143 struct anon **anon_hash;
144 
145 static struct kmem_cache *anon_cache;
146 static struct kmem_cache *anonmap_cache;
147 
148 #ifdef VM_STATS
149 static struct anonvmstats_str {
150 	ulong_t getpages[30];
151 	ulong_t privatepages[10];
152 	ulong_t demotepages[9];
153 	ulong_t decrefpages[9];
154 	ulong_t	dupfillholes[4];
155 	ulong_t freepages[1];
156 } anonvmstats;
157 #endif /* VM_STATS */
158 
159 
160 /*ARGSUSED*/
161 static int
162 anonmap_cache_constructor(void *buf, void *cdrarg, int kmflags)
163 {
164 	struct anon_map *amp = buf;
165 
166 	rw_init(&amp->a_rwlock, NULL, RW_DEFAULT, NULL);
167 	return (0);
168 }
169 
170 /*ARGSUSED1*/
171 static void
172 anonmap_cache_destructor(void *buf, void *cdrarg)
173 {
174 	struct anon_map *amp = buf;
175 
176 	rw_destroy(&amp->a_rwlock);
177 }
178 
179 kmutex_t	anonhash_lock[AH_LOCK_SIZE];
180 kmutex_t	anonpages_hash_lock[AH_LOCK_SIZE];
181 
182 void
183 anon_init(void)
184 {
185 	int i;
186 
187 	anon_hash_size = 1L << highbit(physmem / ANON_HASHAVELEN);
188 
189 	for (i = 0; i < AH_LOCK_SIZE; i++) {
190 		mutex_init(&anonhash_lock[i], NULL, MUTEX_DEFAULT, NULL);
191 		mutex_init(&anonpages_hash_lock[i], NULL, MUTEX_DEFAULT, NULL);
192 	}
193 
194 	for (i = 0; i < ANON_LOCKSIZE; i++) {
195 		mutex_init(&anon_array_lock[i].pad_mutex, NULL,
196 			MUTEX_DEFAULT, NULL);
197 		cv_init(&anon_array_cv[i], NULL, CV_DEFAULT, NULL);
198 	}
199 
200 	anon_hash = (struct anon **)
201 		kmem_zalloc(sizeof (struct anon *) * anon_hash_size, KM_SLEEP);
202 	anon_cache = kmem_cache_create("anon_cache", sizeof (struct anon),
203 		AN_CACHE_ALIGN, NULL, NULL, NULL, NULL, NULL, 0);
204 	anonmap_cache = kmem_cache_create("anonmap_cache",
205 		sizeof (struct anon_map), 0,
206 		anonmap_cache_constructor, anonmap_cache_destructor, NULL,
207 		NULL, NULL, 0);
208 	swap_maxcontig = (1024 * 1024) >> PAGESHIFT;	/* 1MB of pages */
209 
210 	anon_vp = vn_alloc(KM_SLEEP);
211 	vn_setops(anon_vp, swap_vnodeops);
212 	anon_vp->v_type = VREG;
213 	anon_vp->v_flag |= (VISSWAP|VISSWAPFS);
214 }
215 
216 /*
217  * Global anon slot hash table manipulation.
218  */
219 
220 static void
221 anon_addhash(struct anon *ap)
222 {
223 	int index;
224 
225 	ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]));
226 	index = ANON_HASH(ap->an_vp, ap->an_off);
227 	ap->an_hash = anon_hash[index];
228 	anon_hash[index] = ap;
229 }
230 
231 static void
232 anon_rmhash(struct anon *ap)
233 {
234 	struct anon **app;
235 
236 	ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]));
237 
238 	for (app = &anon_hash[ANON_HASH(ap->an_vp, ap->an_off)];
239 	    *app; app = &((*app)->an_hash)) {
240 		if (*app == ap) {
241 			*app = ap->an_hash;
242 			break;
243 		}
244 	}
245 }
246 
247 /*
248  * The anon array interfaces. Functions allocating,
249  * freeing array of pointers, and returning/setting
250  * entries in the array of pointers for a given offset.
251  *
252  * Create the list of pointers
253  */
254 struct anon_hdr *
255 anon_create(pgcnt_t npages, int flags)
256 {
257 	struct anon_hdr *ahp;
258 	ulong_t nchunks;
259 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
260 
261 	if ((ahp = kmem_zalloc(sizeof (struct anon_hdr), kmemflags)) == NULL) {
262 		return (NULL);
263 	}
264 
265 	mutex_init(&ahp->serial_lock, NULL, MUTEX_DEFAULT, NULL);
266 	/*
267 	 * Single level case.
268 	 */
269 	ahp->size = npages;
270 	if (npages <= ANON_CHUNK_SIZE || (flags & ANON_ALLOC_FORCE)) {
271 
272 		if (flags & ANON_ALLOC_FORCE)
273 			ahp->flags |= ANON_ALLOC_FORCE;
274 
275 		ahp->array_chunk = kmem_zalloc(
276 		    ahp->size * sizeof (struct anon *), kmemflags);
277 
278 		if (ahp->array_chunk == NULL) {
279 			kmem_free(ahp, sizeof (struct anon_hdr));
280 			return (NULL);
281 		}
282 	} else {
283 		/*
284 		 * 2 Level case.
285 		 * anon hdr size needs to be rounded off  to be a multiple
286 		 * of ANON_CHUNK_SIZE. This is important as various anon
287 		 * related functions depend on this.
288 		 * NOTE -
289 		 * anon_grow()  makes anon hdr size a multiple of
290 		 * ANON_CHUNK_SIZE.
291 		 * amp size is <= anon hdr size.
292 		 * anon_index + seg_pgs <= anon hdr size.
293 		 */
294 		ahp->size = P2ROUNDUP(npages, ANON_CHUNK_SIZE);
295 		nchunks = ahp->size >> ANON_CHUNK_SHIFT;
296 
297 		ahp->array_chunk = kmem_zalloc(nchunks * sizeof (ulong_t *),
298 		    kmemflags);
299 
300 		if (ahp->array_chunk == NULL) {
301 			kmem_free(ahp, sizeof (struct anon_hdr));
302 			return (NULL);
303 		}
304 	}
305 	return (ahp);
306 }
307 
308 /*
309  * Free the array of pointers
310  */
311 void
312 anon_release(struct anon_hdr *ahp, pgcnt_t npages)
313 {
314 	ulong_t i;
315 	void **ppp;
316 	ulong_t nchunks;
317 
318 	ASSERT(npages <= ahp->size);
319 
320 	/*
321 	 * Single level case.
322 	 */
323 	if (npages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
324 		kmem_free(ahp->array_chunk, ahp->size * sizeof (struct anon *));
325 	} else {
326 		/*
327 		 * 2 level case.
328 		 */
329 		nchunks = ahp->size >> ANON_CHUNK_SHIFT;
330 		for (i = 0; i < nchunks; i++) {
331 			ppp = &ahp->array_chunk[i];
332 			if (*ppp != NULL)
333 				kmem_free(*ppp, PAGESIZE);
334 		}
335 		kmem_free(ahp->array_chunk, nchunks * sizeof (ulong_t *));
336 	}
337 	mutex_destroy(&ahp->serial_lock);
338 	kmem_free(ahp, sizeof (struct anon_hdr));
339 }
340 
341 /*
342  * Return the pointer from the list for a
343  * specified anon index.
344  */
345 struct anon *
346 anon_get_ptr(struct anon_hdr *ahp, ulong_t an_idx)
347 {
348 	struct anon **app;
349 
350 	ASSERT(an_idx < ahp->size);
351 
352 	/*
353 	 * Single level case.
354 	 */
355 	if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
356 		return ((struct anon *)
357 			((uintptr_t)ahp->array_chunk[an_idx] & ANON_PTRMASK));
358 	} else {
359 
360 		/*
361 		 * 2 level case.
362 		 */
363 		app = ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
364 		if (app) {
365 			return ((struct anon *)
366 				((uintptr_t)app[an_idx & ANON_CHUNK_OFF] &
367 					ANON_PTRMASK));
368 		} else {
369 			return (NULL);
370 		}
371 	}
372 }
373 
374 /*
375  * Return the anon pointer for the first valid entry in the anon list,
376  * starting from the given index.
377  */
378 struct anon *
379 anon_get_next_ptr(struct anon_hdr *ahp, ulong_t *index)
380 {
381 	struct anon *ap;
382 	struct anon **app;
383 	ulong_t chunkoff;
384 	ulong_t i;
385 	ulong_t j;
386 	pgcnt_t size;
387 
388 	i = *index;
389 	size = ahp->size;
390 
391 	ASSERT(i < size);
392 
393 	if ((size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
394 		/*
395 		 * 1 level case
396 		 */
397 		while (i < size) {
398 			ap = (struct anon *)
399 				((uintptr_t)ahp->array_chunk[i] & ANON_PTRMASK);
400 			if (ap) {
401 				*index = i;
402 				return (ap);
403 			}
404 			i++;
405 		}
406 	} else {
407 		/*
408 		 * 2 level case
409 		 */
410 		chunkoff = i & ANON_CHUNK_OFF;
411 		while (i < size) {
412 			app = ahp->array_chunk[i >> ANON_CHUNK_SHIFT];
413 			if (app)
414 				for (j = chunkoff; j < ANON_CHUNK_SIZE; j++) {
415 					ap = (struct anon *)
416 						((uintptr_t)app[j] &
417 							ANON_PTRMASK);
418 					if (ap) {
419 						*index = i + (j - chunkoff);
420 						return (ap);
421 					}
422 				}
423 			chunkoff = 0;
424 			i = (i + ANON_CHUNK_SIZE) & ~ANON_CHUNK_OFF;
425 		}
426 	}
427 	*index = size;
428 	return (NULL);
429 }
430 
431 /*
432  * Set list entry with a given pointer for a specified offset
433  */
434 int
435 anon_set_ptr(struct anon_hdr *ahp, ulong_t an_idx, struct anon *ap, int flags)
436 {
437 	void		**ppp;
438 	struct anon	**app;
439 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
440 	uintptr_t	*ap_addr;
441 
442 	ASSERT(an_idx < ahp->size);
443 
444 	/*
445 	 * Single level case.
446 	 */
447 	if (ahp->size <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
448 		ap_addr = (uintptr_t *)&ahp->array_chunk[an_idx];
449 	} else {
450 
451 		/*
452 		 * 2 level case.
453 		 */
454 		ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
455 
456 		ASSERT(ppp != NULL);
457 		if (*ppp == NULL) {
458 			mutex_enter(&ahp->serial_lock);
459 			ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
460 			if (*ppp == NULL) {
461 				*ppp = kmem_zalloc(PAGESIZE, kmemflags);
462 				if (*ppp == NULL) {
463 					mutex_exit(&ahp->serial_lock);
464 					return (ENOMEM);
465 				}
466 			}
467 			mutex_exit(&ahp->serial_lock);
468 		}
469 		app = *ppp;
470 		ap_addr = (uintptr_t *)&app[an_idx & ANON_CHUNK_OFF];
471 	}
472 	*ap_addr = (*ap_addr & ~ANON_PTRMASK) | (uintptr_t)ap;
473 	return (0);
474 }
475 
476 /*
477  * Copy anon array into a given new anon array
478  */
479 int
480 anon_copy_ptr(struct anon_hdr *sahp, ulong_t s_idx,
481 	struct anon_hdr *dahp, ulong_t d_idx,
482 	pgcnt_t npages, int flags)
483 {
484 	void **sapp, **dapp;
485 	void *ap;
486 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
487 
488 	ASSERT((s_idx < sahp->size) && (d_idx < dahp->size));
489 	ASSERT((npages <= sahp->size) && (npages <= dahp->size));
490 
491 	/*
492 	 * Both arrays are 1 level.
493 	 */
494 	if (((sahp->size <= ANON_CHUNK_SIZE) &&
495 	    (dahp->size <= ANON_CHUNK_SIZE)) ||
496 	    ((sahp->flags & ANON_ALLOC_FORCE) &&
497 	    (dahp->flags & ANON_ALLOC_FORCE))) {
498 
499 		bcopy(&sahp->array_chunk[s_idx], &dahp->array_chunk[d_idx],
500 		    npages * sizeof (struct anon *));
501 		return (0);
502 	}
503 
504 	/*
505 	 * Both arrays are 2 levels.
506 	 */
507 	if (sahp->size > ANON_CHUNK_SIZE &&
508 	    dahp->size > ANON_CHUNK_SIZE &&
509 	    ((sahp->flags & ANON_ALLOC_FORCE) == 0) &&
510 	    ((dahp->flags & ANON_ALLOC_FORCE) == 0)) {
511 
512 		ulong_t sapidx, dapidx;
513 		ulong_t *sap, *dap;
514 		ulong_t chknp;
515 
516 		while (npages != 0) {
517 
518 			sapidx = s_idx & ANON_CHUNK_OFF;
519 			dapidx = d_idx & ANON_CHUNK_OFF;
520 			chknp = ANON_CHUNK_SIZE - MAX(sapidx, dapidx);
521 			if (chknp > npages)
522 				chknp = npages;
523 
524 			sapp = &sahp->array_chunk[s_idx >> ANON_CHUNK_SHIFT];
525 			if ((sap = *sapp) != NULL) {
526 				dapp = &dahp->array_chunk[d_idx
527 							>> ANON_CHUNK_SHIFT];
528 				if ((dap = *dapp) == NULL) {
529 					*dapp = kmem_zalloc(PAGESIZE,
530 					    kmemflags);
531 					if ((dap = *dapp) == NULL)
532 						return (ENOMEM);
533 				}
534 				bcopy((sap + sapidx), (dap + dapidx),
535 				    chknp << ANON_PTRSHIFT);
536 			}
537 			s_idx += chknp;
538 			d_idx += chknp;
539 			npages -= chknp;
540 		}
541 		return (0);
542 	}
543 
544 	/*
545 	 * At least one of the arrays is 2 level.
546 	 */
547 	while (npages--) {
548 		if ((ap = anon_get_ptr(sahp, s_idx)) != NULL) {
549 			ASSERT(!ANON_ISBUSY(anon_get_slot(sahp, s_idx)));
550 			if (anon_set_ptr(dahp, d_idx, ap, flags) == ENOMEM)
551 					return (ENOMEM);
552 		}
553 		s_idx++;
554 		d_idx++;
555 	}
556 	return (0);
557 }
558 
559 
560 /*
561  * ANON_INITBUF is a convenience macro for anon_grow() below. It
562  * takes a buffer dst, which is at least as large as buffer src. It
563  * does a bcopy from src into dst, and then bzeros the extra bytes
564  * of dst. If tail is set, the data in src is tail aligned within
565  * dst instead of head aligned.
566  */
567 
568 #define	ANON_INITBUF(src, srclen, dst, dstsize, tail)			      \
569 	if (tail) {							      \
570 		bzero((dst), (dstsize) - (srclen));			      \
571 		bcopy((src), (char *)(dst) + (dstsize) - (srclen), (srclen)); \
572 	} else {							      \
573 		bcopy((src), (dst), (srclen));				      \
574 		bzero((char *)(dst) + (srclen), (dstsize) - (srclen));	      \
575 	}
576 
577 #define	ANON_1_LEVEL_INC	(ANON_CHUNK_SIZE / 8)
578 #define	ANON_2_LEVEL_INC	(ANON_1_LEVEL_INC * ANON_CHUNK_SIZE)
579 
580 /*
581  * anon_grow() is used to efficiently extend an existing anon array.
582  * startidx_p points to the index into the anon array of the first page
583  * that is in use. oldseg_pgs is the number of pages in use, starting at
584  * *startidx_p. newpages is the number of additional pages desired.
585  *
586  * If startidx_p == NULL, startidx is taken to be 0 and cannot be changed.
587  *
588  * The growth is done by creating a new top level of the anon array,
589  * and (if the array is 2-level) reusing the existing second level arrays.
590  *
591  * flags can be used to specify ANON_NOSLEEP and ANON_GROWDOWN.
592  *
593  * Returns the new number of pages in the anon array.
594  */
595 pgcnt_t
596 anon_grow(struct anon_hdr *ahp, ulong_t *startidx_p, pgcnt_t oldseg_pgs,
597     pgcnt_t newseg_pgs, int flags)
598 {
599 	ulong_t startidx = startidx_p ? *startidx_p : 0;
600 	pgcnt_t oldamp_pgs = ahp->size, newamp_pgs;
601 	pgcnt_t oelems, nelems, totpages;
602 	void **level1;
603 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
604 	int growdown = (flags & ANON_GROWDOWN);
605 	size_t newarrsz, oldarrsz;
606 	void *level2;
607 
608 	ASSERT(!(startidx_p == NULL && growdown));
609 	ASSERT(startidx + oldseg_pgs <= ahp->size);
610 
611 	/*
612 	 * Determine the total number of pages needed in the new
613 	 * anon array. If growing down, totpages is all pages from
614 	 * startidx through the end of the array, plus <newseg_pgs>
615 	 * pages. If growing up, keep all pages from page 0 through
616 	 * the last page currently in use, plus <newseg_pgs> pages.
617 	 */
618 	if (growdown)
619 		totpages = oldamp_pgs - startidx + newseg_pgs;
620 	else
621 		totpages = startidx + oldseg_pgs + newseg_pgs;
622 
623 	/* If the array is already large enough, just return. */
624 
625 	if (oldamp_pgs >= totpages) {
626 		if (growdown)
627 			*startidx_p = oldamp_pgs - totpages;
628 		return (oldamp_pgs);
629 	}
630 
631 	/*
632 	 * oldamp_pgs/newamp_pgs are the total numbers of pages represented
633 	 * by the corresponding arrays.
634 	 * oelems/nelems are the number of pointers in the top level arrays
635 	 * which may be either level 1 or level 2.
636 	 * Will the new anon array be one level or two levels?
637 	 */
638 	if (totpages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
639 		newamp_pgs = P2ROUNDUP(totpages, ANON_1_LEVEL_INC);
640 		oelems = oldamp_pgs;
641 		nelems = newamp_pgs;
642 	} else {
643 		newamp_pgs = P2ROUNDUP(totpages, ANON_2_LEVEL_INC);
644 		oelems = (oldamp_pgs + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
645 		nelems = newamp_pgs >> ANON_CHUNK_SHIFT;
646 	}
647 
648 	newarrsz = nelems * sizeof (void *);
649 	level1 = kmem_alloc(newarrsz, kmemflags);
650 	if (level1 == NULL)
651 		return (0);
652 
653 	/* Are we converting from a one level to a two level anon array? */
654 
655 	if (newamp_pgs > ANON_CHUNK_SIZE && oldamp_pgs <= ANON_CHUNK_SIZE &&
656 	    !(ahp->flags & ANON_ALLOC_FORCE)) {
657 
658 		/*
659 		 * Yes, we're converting to a two level. Reuse old level 1
660 		 * as new level 2 if it is exactly PAGESIZE. Otherwise
661 		 * alloc a new level 2 and copy the old level 1 data into it.
662 		 */
663 		if (oldamp_pgs == ANON_CHUNK_SIZE) {
664 			level2 = (void *)ahp->array_chunk;
665 		} else {
666 			level2 = kmem_alloc(PAGESIZE, kmemflags);
667 			if (level2 == NULL) {
668 				kmem_free(level1, newarrsz);
669 				return (0);
670 			}
671 			oldarrsz = oldamp_pgs * sizeof (void *);
672 
673 			ANON_INITBUF(ahp->array_chunk, oldarrsz,
674 			    level2, PAGESIZE, growdown);
675 			kmem_free(ahp->array_chunk, oldarrsz);
676 		}
677 		bzero(level1, newarrsz);
678 		if (growdown)
679 			level1[nelems - 1] = level2;
680 		else
681 			level1[0] = level2;
682 	} else {
683 		oldarrsz = oelems * sizeof (void *);
684 
685 		ANON_INITBUF(ahp->array_chunk, oldarrsz,
686 		    level1, newarrsz, growdown);
687 		kmem_free(ahp->array_chunk, oldarrsz);
688 	}
689 
690 	ahp->array_chunk = level1;
691 	ahp->size = newamp_pgs;
692 	if (growdown)
693 		*startidx_p = newamp_pgs - totpages;
694 
695 	return (newamp_pgs);
696 }
697 
698 
699 /*
700  * Called from clock handler to sync ani_free value.
701  */
702 
703 void
704 set_anoninfo(void)
705 {
706 	int	ix;
707 	pgcnt_t	total = 0;
708 
709 	for (ix = 0; ix < ANI_MAX_POOL; ix++) {
710 		total += ani_free_pool[ix].ani_count;
711 	}
712 	k_anoninfo.ani_free = total;
713 }
714 
715 /*
716  * Reserve anon space.
717  *
718  * It's no longer simply a matter of incrementing ani_resv to
719  * reserve swap space, we need to check memory-based as well
720  * as disk-backed (physical) swap.  The following algorithm
721  * is used:
722  * 	Check the space on physical swap
723  * 		i.e. amount needed < ani_max - ani_phys_resv
724  * 	If we are swapping on swapfs check
725  *		amount needed < (availrmem - swapfs_minfree)
726  * Since the algorithm to check for the quantity of swap space is
727  * almost the same as that for reserving it, we'll just use anon_resvmem
728  * with a flag to decrement availrmem.
729  *
730  * Return non-zero on success.
731  */
732 int
733 anon_resvmem(size_t size, boolean_t takemem, zone_t *zone)
734 {
735 	pgcnt_t npages = btopr(size);
736 	pgcnt_t mswap_pages = 0;
737 	pgcnt_t pswap_pages = 0;
738 	proc_t *p = curproc;
739 
740 	if (zone != NULL && takemem) {
741 		/* test zone.max-swap resource control */
742 		mutex_enter(&p->p_lock);
743 		if (rctl_incr_swap(p, zone, ptob(npages)) != 0) {
744 			mutex_exit(&p->p_lock);
745 			return (0);
746 		}
747 		mutex_exit(&p->p_lock);
748 	}
749 	mutex_enter(&anoninfo_lock);
750 
751 	/*
752 	 * pswap_pages is the number of pages we can take from
753 	 * physical (i.e. disk-backed) swap.
754 	 */
755 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
756 	pswap_pages = k_anoninfo.ani_max - k_anoninfo.ani_phys_resv;
757 
758 	ANON_PRINT(A_RESV,
759 	    ("anon_resvmem: npages %lu takemem %u pswap %lu caller %p\n",
760 	    npages, takemem, pswap_pages, (void *)caller()));
761 
762 	if (npages <= pswap_pages) {
763 		/*
764 		 * we have enough space on a physical swap
765 		 */
766 		if (takemem)
767 			k_anoninfo.ani_phys_resv += npages;
768 		mutex_exit(&anoninfo_lock);
769 		return (1);
770 	} else if (pswap_pages != 0) {
771 		/*
772 		 * we have some space on a physical swap
773 		 */
774 		if (takemem) {
775 			/*
776 			 * use up remainder of phys swap
777 			 */
778 			k_anoninfo.ani_phys_resv += pswap_pages;
779 			ASSERT(k_anoninfo.ani_phys_resv == k_anoninfo.ani_max);
780 		}
781 	}
782 	/*
783 	 * since (npages > pswap_pages) we need mem swap
784 	 * mswap_pages is the number of pages needed from availrmem
785 	 */
786 	ASSERT(npages > pswap_pages);
787 	mswap_pages = npages - pswap_pages;
788 
789 	ANON_PRINT(A_RESV, ("anon_resvmem: need %ld pages from memory\n",
790 	    mswap_pages));
791 
792 	/*
793 	 * priv processes can reserve memory as swap as long as availrmem
794 	 * remains greater than swapfs_minfree; in the case of non-priv
795 	 * processes, memory can be reserved as swap only if availrmem
796 	 * doesn't fall below (swapfs_minfree + swapfs_reserve). Thus,
797 	 * swapfs_reserve amount of memswap is not available to non-priv
798 	 * processes. This protects daemons such as automounter dying
799 	 * as a result of application processes eating away almost entire
800 	 * membased swap. This safeguard becomes useless if apps are run
801 	 * with root access.
802 	 *
803 	 * swapfs_reserve is minimum of 4Mb or 1/16 of physmem.
804 	 *
805 	 */
806 	mutex_exit(&anoninfo_lock);
807 	(void) page_reclaim_mem(mswap_pages,
808 	    swapfs_minfree + swapfs_reserve, 0);
809 	mutex_enter(&anoninfo_lock);
810 
811 	mutex_enter(&freemem_lock);
812 	if (availrmem > (swapfs_minfree + swapfs_reserve + mswap_pages) ||
813 		(availrmem > (swapfs_minfree + mswap_pages) &&
814 		secpolicy_resource(CRED()) == 0)) {
815 
816 		if (takemem) {
817 			/*
818 			 * Take the memory from the rest of the system.
819 			 */
820 			availrmem -= mswap_pages;
821 			mutex_exit(&freemem_lock);
822 			k_anoninfo.ani_mem_resv += mswap_pages;
823 			ANI_ADD(mswap_pages);
824 			ANON_PRINT((A_RESV | A_MRESV),
825 				("anon_resvmem: took %ld pages of availrmem\n",
826 				mswap_pages));
827 		} else {
828 			mutex_exit(&freemem_lock);
829 		}
830 
831 		ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
832 		mutex_exit(&anoninfo_lock);
833 		return (1);
834 
835 	} else {
836 		/*
837 		 * Fail if not enough memory
838 		 */
839 
840 		if (takemem) {
841 			k_anoninfo.ani_phys_resv -= pswap_pages;
842 		}
843 
844 		mutex_exit(&freemem_lock);
845 		mutex_exit(&anoninfo_lock);
846 		ANON_PRINT(A_RESV,
847 			("anon_resvmem: not enough space from swapfs\n"));
848 		if (zone != NULL && takemem)
849 			rctl_decr_swap(zone, ptob(npages));
850 		return (0);
851 	}
852 }
853 
854 /*
855  * Give back an anon reservation.
856  */
857 void
858 anon_unresvmem(size_t size, zone_t *zone)
859 {
860 	pgcnt_t npages = btopr(size);
861 	spgcnt_t mem_free_pages = 0;
862 	pgcnt_t phys_free_slots;
863 #ifdef	ANON_DEBUG
864 	pgcnt_t mem_resv;
865 #endif
866 	if (zone != NULL)
867 		rctl_decr_swap(zone, ptob(npages));
868 
869 	mutex_enter(&anoninfo_lock);
870 
871 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
872 	/*
873 	 * If some of this reservation belonged to swapfs
874 	 * give it back to availrmem.
875 	 * ani_mem_resv is the amount of availrmem swapfs has reserved.
876 	 * but some of that memory could be locked by segspt so we can only
877 	 * return non locked ani_mem_resv back to availrmem
878 	 */
879 	if (k_anoninfo.ani_mem_resv > k_anoninfo.ani_locked_swap) {
880 		ANON_PRINT((A_RESV | A_MRESV),
881 		    ("anon_unresv: growing availrmem by %ld pages\n",
882 		    MIN(k_anoninfo.ani_mem_resv, npages)));
883 
884 		mem_free_pages = MIN((spgcnt_t)(k_anoninfo.ani_mem_resv -
885 		    k_anoninfo.ani_locked_swap), npages);
886 		mutex_enter(&freemem_lock);
887 		availrmem += mem_free_pages;
888 		mutex_exit(&freemem_lock);
889 		k_anoninfo.ani_mem_resv -= mem_free_pages;
890 
891 		ANI_ADD(-mem_free_pages);
892 	}
893 	/*
894 	 * The remainder of the pages is returned to phys swap
895 	 */
896 	ASSERT(npages >= mem_free_pages);
897 	phys_free_slots = npages - mem_free_pages;
898 
899 	if (phys_free_slots) {
900 	    k_anoninfo.ani_phys_resv -= phys_free_slots;
901 	}
902 
903 #ifdef	ANON_DEBUG
904 	mem_resv = k_anoninfo.ani_mem_resv;
905 #endif
906 
907 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
908 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
909 
910 	mutex_exit(&anoninfo_lock);
911 
912 	ANON_PRINT(A_RESV, ("anon_unresv: %lu, tot %lu, caller %p\n",
913 	    npages, mem_resv, (void *)caller()));
914 }
915 
916 /*
917  * Allocate an anon slot and return it with the lock held.
918  */
919 struct anon *
920 anon_alloc(struct vnode *vp, anoff_t off)
921 {
922 	struct anon	*ap;
923 	kmutex_t	*ahm;
924 
925 	ap = kmem_cache_alloc(anon_cache, KM_SLEEP);
926 	if (vp == NULL) {
927 		swap_alloc(ap);
928 	} else {
929 		ap->an_vp = vp;
930 		ap->an_off = off;
931 	}
932 	ap->an_refcnt = 1;
933 	ap->an_pvp = NULL;
934 	ap->an_poff = 0;
935 	ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
936 	mutex_enter(ahm);
937 	anon_addhash(ap);
938 	mutex_exit(ahm);
939 	ANI_ADD(-1);
940 	ANON_PRINT(A_ANON, ("anon_alloc: returning ap %p, vp %p\n",
941 	    (void *)ap, (ap ? (void *)ap->an_vp : NULL)));
942 	return (ap);
943 }
944 
945 /*
946  * Decrement the reference count of an anon page.
947  * If reference count goes to zero, free it and
948  * its associated page (if any).
949  */
950 void
951 anon_decref(struct anon *ap)
952 {
953 	page_t *pp;
954 	struct vnode *vp;
955 	anoff_t off;
956 	kmutex_t *ahm;
957 
958 	ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
959 	mutex_enter(ahm);
960 	ASSERT(ap->an_refcnt != 0);
961 	if (ap->an_refcnt == 0)
962 		panic("anon_decref: slot count 0");
963 	if (--ap->an_refcnt == 0) {
964 		swap_xlate(ap, &vp, &off);
965 		mutex_exit(ahm);
966 
967 		/*
968 		 * If there is a page for this anon slot we will need to
969 		 * call VN_DISPOSE to get rid of the vp association and
970 		 * put the page back on the free list as really free.
971 		 * Acquire the "exclusive" lock to ensure that any
972 		 * pending i/o always completes before the swap slot
973 		 * is freed.
974 		 */
975 		pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
976 
977 		/*
978 		 * If there was a page, we've synchronized on it (getting
979 		 * the exclusive lock is as good as gettting the iolock)
980 		 * so now we can free the physical backing store. Also, this
981 		 * is where we would free the name of the anonymous page
982 		 * (swap_free(ap)), a no-op in the current implementation.
983 		 */
984 		mutex_enter(ahm);
985 		ASSERT(ap->an_refcnt == 0);
986 		anon_rmhash(ap);
987 		if (ap->an_pvp)
988 			swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE);
989 		mutex_exit(ahm);
990 
991 		if (pp != NULL) {
992 			/*LINTED: constant in conditional context */
993 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
994 		}
995 		ANON_PRINT(A_ANON, ("anon_decref: free ap %p, vp %p\n",
996 		    (void *)ap, (void *)ap->an_vp));
997 		kmem_cache_free(anon_cache, ap);
998 
999 		ANI_ADD(1);
1000 	} else {
1001 		mutex_exit(ahm);
1002 	}
1003 }
1004 
1005 static int
1006 anon_share(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
1007 {
1008 	struct anon *ap;
1009 
1010 	while (nslots-- > 0) {
1011 		if ((ap = anon_get_ptr(ahp, anon_index)) != NULL &&
1012 		    ap->an_refcnt > 1)
1013 			return (1);
1014 		anon_index++;
1015 	}
1016 
1017 	return (0);
1018 }
1019 
1020 static void
1021 anon_decref_pages(
1022 	struct anon_hdr *ahp,
1023 	ulong_t an_idx,
1024 	uint_t szc)
1025 {
1026 	struct anon *ap = anon_get_ptr(ahp, an_idx);
1027 	kmutex_t *ahmpages = NULL;
1028 	page_t *pp;
1029 	pgcnt_t pgcnt = page_get_pagecnt(szc);
1030 	pgcnt_t i;
1031 	struct vnode *vp;
1032 	anoff_t   off;
1033 	kmutex_t *ahm;
1034 #ifdef DEBUG
1035 	int refcnt = 1;
1036 #endif
1037 
1038 	ASSERT(szc != 0);
1039 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1040 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1041 	ASSERT(an_idx < ahp->size);
1042 
1043 	if (ahp->size - an_idx < pgcnt) {
1044 		/*
1045 		 * In case of shared mappings total anon map size may not be
1046 		 * the largest page size aligned.
1047 		 */
1048 		pgcnt = ahp->size - an_idx;
1049 	}
1050 
1051 	VM_STAT_ADD(anonvmstats.decrefpages[0]);
1052 
1053 	if (ap != NULL) {
1054 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1055 		mutex_enter(ahmpages);
1056 		ASSERT((refcnt = ap->an_refcnt) != 0);
1057 		VM_STAT_ADD(anonvmstats.decrefpages[1]);
1058 		if (ap->an_refcnt == 1) {
1059 			VM_STAT_ADD(anonvmstats.decrefpages[2]);
1060 			ASSERT(!anon_share(ahp, an_idx, pgcnt));
1061 			mutex_exit(ahmpages);
1062 			ahmpages = NULL;
1063 		}
1064 	}
1065 
1066 	i = 0;
1067 	while (i < pgcnt) {
1068 		if ((ap = anon_get_ptr(ahp, an_idx + i)) == NULL) {
1069 			ASSERT(refcnt == 1 && ahmpages == NULL);
1070 			i++;
1071 			continue;
1072 		}
1073 		ASSERT(ap->an_refcnt == refcnt);
1074 		ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
1075 		ASSERT(ahmpages == NULL || ap->an_refcnt > 1);
1076 
1077 		if (ahmpages == NULL) {
1078 			swap_xlate(ap, &vp, &off);
1079 			pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
1080 			if (pp == NULL || pp->p_szc == 0) {
1081 				VM_STAT_ADD(anonvmstats.decrefpages[3]);
1082 				ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
1083 				    ap->an_off)];
1084 				(void) anon_set_ptr(ahp, an_idx + i, NULL,
1085 				    ANON_SLEEP);
1086 				mutex_enter(ahm);
1087 				ap->an_refcnt--;
1088 				ASSERT(ap->an_refcnt == 0);
1089 				anon_rmhash(ap);
1090 				if (ap->an_pvp)
1091 					swap_phys_free(ap->an_pvp, ap->an_poff,
1092 					    PAGESIZE);
1093 				mutex_exit(ahm);
1094 				if (pp != NULL) {
1095 					VM_STAT_ADD(anonvmstats.decrefpages[4]);
1096 					/*LINTED*/
1097 					VN_DISPOSE(pp, B_INVAL, 0, kcred);
1098 				}
1099 				kmem_cache_free(anon_cache, ap);
1100 				ANI_ADD(1);
1101 				i++;
1102 			} else {
1103 				pgcnt_t j;
1104 				pgcnt_t curpgcnt =
1105 				    page_get_pagecnt(pp->p_szc);
1106 				size_t ppasize = curpgcnt * sizeof (page_t *);
1107 				page_t **ppa = kmem_alloc(ppasize, KM_SLEEP);
1108 				int dispose = 0;
1109 
1110 				VM_STAT_ADD(anonvmstats.decrefpages[5]);
1111 
1112 				ASSERT(pp->p_szc <= szc);
1113 				ASSERT(IS_P2ALIGNED(curpgcnt, curpgcnt));
1114 				ASSERT(IS_P2ALIGNED(i, curpgcnt));
1115 				ASSERT(i + curpgcnt <= pgcnt);
1116 				ASSERT(!(page_pptonum(pp) & (curpgcnt - 1)));
1117 				ppa[0] = pp;
1118 				for (j = i + 1; j < i + curpgcnt; j++) {
1119 					ap = anon_get_ptr(ahp, an_idx + j);
1120 					ASSERT(ap != NULL &&
1121 					    ap->an_refcnt == 1);
1122 					swap_xlate(ap, &vp, &off);
1123 					pp = page_lookup(vp, (u_offset_t)off,
1124 					    SE_EXCL);
1125 					if (pp == NULL)
1126 						panic("anon_decref_pages: "
1127 						    "no page");
1128 
1129 					(void) hat_pageunload(pp,
1130 					    HAT_FORCE_PGUNLOAD);
1131 					ASSERT(pp->p_szc == ppa[0]->p_szc);
1132 					ASSERT(page_pptonum(pp) - 1 ==
1133 					    page_pptonum(ppa[j - i - 1]));
1134 					ppa[j - i] = pp;
1135 					if (ap->an_pvp != NULL &&
1136 					    !vn_matchopval(ap->an_pvp,
1137 						VOPNAME_DISPOSE,
1138 						(fs_generic_func_p)fs_dispose))
1139 						dispose = 1;
1140 				}
1141 				if (!dispose) {
1142 					VM_STAT_ADD(anonvmstats.decrefpages[6]);
1143 					page_destroy_pages(ppa[0]);
1144 				} else {
1145 					VM_STAT_ADD(anonvmstats.decrefpages[7]);
1146 					for (j = 0; j < curpgcnt; j++) {
1147 						ASSERT(PAGE_EXCL(ppa[j]));
1148 						ppa[j]->p_szc = 0;
1149 					}
1150 					for (j = 0; j < curpgcnt; j++) {
1151 						ASSERT(!hat_page_is_mapped(
1152 						    ppa[j]));
1153 						/*LINTED*/
1154 						VN_DISPOSE(ppa[j], B_INVAL, 0,
1155 						    kcred);
1156 					}
1157 				}
1158 				kmem_free(ppa, ppasize);
1159 				for (j = i; j < i + curpgcnt; j++) {
1160 					ap = anon_get_ptr(ahp, an_idx + j);
1161 					ASSERT(ap != NULL &&
1162 					    ap->an_refcnt == 1);
1163 					ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
1164 					    ap->an_off)];
1165 					(void) anon_set_ptr(ahp, an_idx + j,
1166 					    NULL, ANON_SLEEP);
1167 					mutex_enter(ahm);
1168 					ap->an_refcnt--;
1169 					ASSERT(ap->an_refcnt == 0);
1170 					anon_rmhash(ap);
1171 					if (ap->an_pvp)
1172 						swap_phys_free(ap->an_pvp,
1173 							ap->an_poff, PAGESIZE);
1174 					mutex_exit(ahm);
1175 					kmem_cache_free(anon_cache, ap);
1176 					ANI_ADD(1);
1177 				}
1178 				i += curpgcnt;
1179 			}
1180 		} else {
1181 			VM_STAT_ADD(anonvmstats.decrefpages[8]);
1182 			(void) anon_set_ptr(ahp, an_idx + i, NULL, ANON_SLEEP);
1183 			ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1184 			mutex_enter(ahm);
1185 			ap->an_refcnt--;
1186 			mutex_exit(ahm);
1187 			i++;
1188 		}
1189 	}
1190 
1191 	if (ahmpages != NULL) {
1192 		mutex_exit(ahmpages);
1193 	}
1194 }
1195 
1196 /*
1197  * Duplicate references to size bytes worth of anon pages.
1198  * Used when duplicating a segment that contains private anon pages.
1199  * This code assumes that procedure calling this one has already used
1200  * hat_chgprot() to disable write access to the range of addresses that
1201  * that *old actually refers to.
1202  */
1203 void
1204 anon_dup(struct anon_hdr *old, ulong_t old_idx, struct anon_hdr *new,
1205 			ulong_t new_idx, size_t size)
1206 {
1207 	spgcnt_t npages;
1208 	kmutex_t *ahm;
1209 	struct anon *ap;
1210 	ulong_t off;
1211 	ulong_t index;
1212 
1213 	npages = btopr(size);
1214 	while (npages > 0) {
1215 		index = old_idx;
1216 		if ((ap = anon_get_next_ptr(old, &index)) == NULL)
1217 			break;
1218 
1219 		ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
1220 		off = index - old_idx;
1221 		npages -= off;
1222 		if (npages <= 0)
1223 			break;
1224 
1225 		(void) anon_set_ptr(new, new_idx + off, ap, ANON_SLEEP);
1226 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1227 
1228 		mutex_enter(ahm);
1229 		ap->an_refcnt++;
1230 		mutex_exit(ahm);
1231 
1232 		off++;
1233 		new_idx += off;
1234 		old_idx += off;
1235 		npages--;
1236 	}
1237 }
1238 
1239 /*
1240  * Just like anon_dup but also guarantees there are no holes (unallocated anon
1241  * slots) within any large page region. That means if a large page region is
1242  * empty in the old array it will skip it. If there are 1 or more valid slots
1243  * in the large page region of the old array it will make sure to fill in any
1244  * unallocated ones and also copy them to the new array. If noalloc is 1 large
1245  * page region should either have no valid anon slots or all slots should be
1246  * valid.
1247  */
1248 void
1249 anon_dup_fill_holes(
1250 	struct anon_hdr *old,
1251 	ulong_t old_idx,
1252 	struct anon_hdr *new,
1253 	ulong_t new_idx,
1254 	size_t size,
1255 	uint_t szc,
1256 	int noalloc)
1257 {
1258 	struct anon	*ap;
1259 	spgcnt_t	npages;
1260 	kmutex_t	*ahm, *ahmpages = NULL;
1261 	pgcnt_t		pgcnt, i;
1262 	ulong_t		index, off;
1263 #ifdef DEBUG
1264 	int		refcnt;
1265 #endif
1266 
1267 	ASSERT(szc != 0);
1268 	pgcnt = page_get_pagecnt(szc);
1269 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1270 	npages = btopr(size);
1271 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1272 	ASSERT(IS_P2ALIGNED(old_idx, pgcnt));
1273 
1274 	VM_STAT_ADD(anonvmstats.dupfillholes[0]);
1275 
1276 	while (npages > 0) {
1277 		index = old_idx;
1278 
1279 		/*
1280 		 * Find the next valid slot.
1281 		 */
1282 		if (anon_get_next_ptr(old, &index) == NULL)
1283 			break;
1284 
1285 		ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
1286 		/*
1287 		 * Now backup index to the beginning of the
1288 		 * current large page region of the old array.
1289 		 */
1290 		index = P2ALIGN(index, pgcnt);
1291 		off = index - old_idx;
1292 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1293 		npages -= off;
1294 		if (npages <= 0)
1295 			break;
1296 
1297 		/*
1298 		 * Fill and copy a large page regions worth
1299 		 * of anon slots.
1300 		 */
1301 		for (i = 0; i < pgcnt; i++) {
1302 			if ((ap = anon_get_ptr(old, index + i)) == NULL) {
1303 				if (noalloc) {
1304 					panic("anon_dup_fill_holes: "
1305 					    "empty anon slot\n");
1306 				}
1307 				VM_STAT_ADD(anonvmstats.dupfillholes[1]);
1308 				ap = anon_alloc(NULL, 0);
1309 				(void) anon_set_ptr(old, index + i, ap,
1310 				    ANON_SLEEP);
1311 			} else if (i == 0) {
1312 				/*
1313 				 * make the increment of all refcnts of all
1314 				 * anon slots of a large page appear atomic by
1315 				 * getting an anonpages_hash_lock for the
1316 				 * first anon slot of a large page.
1317 				 */
1318 				int hash = AH_LOCK(ap->an_vp, ap->an_off);
1319 
1320 				VM_STAT_ADD(anonvmstats.dupfillholes[2]);
1321 
1322 				ahmpages = &anonpages_hash_lock[hash];
1323 				mutex_enter(ahmpages);
1324 				/*LINTED*/
1325 				ASSERT(refcnt = ap->an_refcnt);
1326 
1327 				VM_STAT_COND_ADD(ap->an_refcnt > 1,
1328 				    anonvmstats.dupfillholes[3]);
1329 			}
1330 			(void) anon_set_ptr(new, new_idx + off + i, ap,
1331 			    ANON_SLEEP);
1332 			ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1333 			mutex_enter(ahm);
1334 			ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
1335 			ASSERT(i == 0 || ahmpages == NULL ||
1336 			    refcnt == ap->an_refcnt);
1337 			ap->an_refcnt++;
1338 			mutex_exit(ahm);
1339 		}
1340 		if (ahmpages != NULL) {
1341 			mutex_exit(ahmpages);
1342 			ahmpages = NULL;
1343 		}
1344 		off += pgcnt;
1345 		new_idx += off;
1346 		old_idx += off;
1347 		npages -= pgcnt;
1348 	}
1349 }
1350 
1351 /*
1352  * Used when a segment with a vnode changes szc. similarly to
1353  * anon_dup_fill_holes() makes sure each large page region either has no anon
1354  * slots or all of them. but new slots are created by COWing the file
1355  * pages. on entrance no anon slots should be shared.
1356  */
1357 int
1358 anon_fill_cow_holes(
1359 	struct seg *seg,
1360 	caddr_t addr,
1361 	struct anon_hdr *ahp,
1362 	ulong_t an_idx,
1363 	struct vnode *vp,
1364 	u_offset_t vp_off,
1365 	size_t size,
1366 	uint_t szc,
1367 	uint_t prot,
1368 	struct vpage vpage[],
1369 	struct cred *cred)
1370 {
1371 	struct anon	*ap;
1372 	spgcnt_t	npages;
1373 	pgcnt_t		pgcnt, i;
1374 	ulong_t		index, off;
1375 	int		err = 0;
1376 	int		pageflags = 0;
1377 
1378 	ASSERT(szc != 0);
1379 	pgcnt = page_get_pagecnt(szc);
1380 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1381 	npages = btopr(size);
1382 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1383 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1384 
1385 	while (npages > 0) {
1386 		index = an_idx;
1387 
1388 		/*
1389 		 * Find the next valid slot.
1390 		 */
1391 		if (anon_get_next_ptr(ahp, &index) == NULL) {
1392 			break;
1393 		}
1394 
1395 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1396 		/*
1397 		 * Now backup index to the beginning of the
1398 		 * current large page region of the anon array.
1399 		 */
1400 		index = P2ALIGN(index, pgcnt);
1401 		off = index - an_idx;
1402 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1403 		npages -= off;
1404 		if (npages <= 0)
1405 			break;
1406 		an_idx += off;
1407 		vp_off += ptob(off);
1408 		addr += ptob(off);
1409 		if (vpage != NULL) {
1410 			vpage += off;
1411 		}
1412 
1413 		for (i = 0; i < pgcnt; i++, an_idx++, vp_off += PAGESIZE) {
1414 			if ((ap = anon_get_ptr(ahp, an_idx)) == NULL) {
1415 				page_t *pl[1 + 1];
1416 				page_t *pp;
1417 
1418 				err = VOP_GETPAGE(vp, vp_off, PAGESIZE, NULL,
1419 				    pl, PAGESIZE, seg, addr, S_READ, cred);
1420 				if (err) {
1421 					break;
1422 				}
1423 				if (vpage != NULL) {
1424 					prot = VPP_PROT(vpage);
1425 					pageflags = VPP_ISPPLOCK(vpage) ?
1426 					    LOCK_PAGE : 0;
1427 				}
1428 				pp = anon_private(&ap, seg, addr, prot, pl[0],
1429 					pageflags, cred);
1430 				if (pp == NULL) {
1431 					err = ENOMEM;
1432 					break;
1433 				}
1434 				(void) anon_set_ptr(ahp, an_idx, ap,
1435 				    ANON_SLEEP);
1436 				page_unlock(pp);
1437 			}
1438 			ASSERT(ap->an_refcnt == 1);
1439 			addr += PAGESIZE;
1440 			if (vpage != NULL) {
1441 				vpage++;
1442 			}
1443 		}
1444 		npages -= pgcnt;
1445 	}
1446 
1447 	return (err);
1448 }
1449 
1450 /*
1451  * Free a group of "size" anon pages, size in bytes,
1452  * and clear out the pointers to the anon entries.
1453  */
1454 void
1455 anon_free(struct anon_hdr *ahp, ulong_t index, size_t size)
1456 {
1457 	spgcnt_t npages;
1458 	struct anon *ap;
1459 	ulong_t old;
1460 
1461 	npages = btopr(size);
1462 
1463 	while (npages > 0) {
1464 		old = index;
1465 		if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
1466 			break;
1467 
1468 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1469 		npages -= index - old;
1470 		if (npages <= 0)
1471 			break;
1472 
1473 		(void) anon_set_ptr(ahp, index, NULL, ANON_SLEEP);
1474 		anon_decref(ap);
1475 		/*
1476 		 * Bump index and decrement page count
1477 		 */
1478 		index++;
1479 		npages--;
1480 	}
1481 }
1482 
1483 void
1484 anon_free_pages(
1485 	struct anon_hdr *ahp,
1486 	ulong_t an_idx,
1487 	size_t size,
1488 	uint_t szc)
1489 {
1490 	spgcnt_t	npages;
1491 	pgcnt_t		pgcnt;
1492 	ulong_t		index, off;
1493 
1494 	ASSERT(szc != 0);
1495 	pgcnt = page_get_pagecnt(szc);
1496 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1497 	npages = btopr(size);
1498 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1499 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1500 	ASSERT(an_idx < ahp->size);
1501 
1502 	VM_STAT_ADD(anonvmstats.freepages[0]);
1503 
1504 	while (npages > 0) {
1505 		index = an_idx;
1506 
1507 		/*
1508 		 * Find the next valid slot.
1509 		 */
1510 		if (anon_get_next_ptr(ahp, &index) == NULL)
1511 			break;
1512 
1513 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1514 		/*
1515 		 * Now backup index to the beginning of the
1516 		 * current large page region of the old array.
1517 		 */
1518 		index = P2ALIGN(index, pgcnt);
1519 		off = index - an_idx;
1520 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1521 		npages -= off;
1522 		if (npages <= 0)
1523 			break;
1524 
1525 		anon_decref_pages(ahp, index, szc);
1526 
1527 		off += pgcnt;
1528 		an_idx += off;
1529 		npages -= pgcnt;
1530 	}
1531 }
1532 
1533 /*
1534  * Make anonymous pages discardable
1535  */
1536 void
1537 anon_disclaim(struct anon_map *amp, ulong_t index, size_t size, int flags)
1538 {
1539 	spgcnt_t npages = btopr(size);
1540 	struct anon *ap;
1541 	struct vnode *vp;
1542 	anoff_t off;
1543 	page_t *pp, *root_pp;
1544 	kmutex_t *ahm;
1545 	pgcnt_t pgcnt;
1546 	ulong_t old_idx, idx, i;
1547 	struct anon_hdr *ahp = amp->ahp;
1548 	anon_sync_obj_t cookie;
1549 
1550 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
1551 	pgcnt = 1;
1552 	for (; npages > 0; index = (pgcnt == 1) ? index + 1:
1553 		P2ROUNDUP(index + 1, pgcnt), npages -= pgcnt) {
1554 
1555 		/*
1556 		 * get anon pointer and index for the first valid entry
1557 		 * in the anon list, starting from "index"
1558 		 */
1559 		old_idx = index;
1560 		if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
1561 			break;
1562 
1563 		/*
1564 		 * decrement npages by number of NULL anon slots we skipped
1565 		 */
1566 		npages -= index - old_idx;
1567 		if (npages <= 0)
1568 			break;
1569 
1570 		anon_array_enter(amp, index, &cookie);
1571 		ap = anon_get_ptr(ahp, index);
1572 		ASSERT(ap != NULL);
1573 
1574 		/*
1575 		 * Get anonymous page and try to lock it SE_EXCL;
1576 		 * For non blocking case if we couldn't grab the lock
1577 		 * we skip to next page.
1578 		 * For blocking case (ANON_PGLOOKUP_BLK) block
1579 		 * until we grab SE_EXCL lock.
1580 		 */
1581 		swap_xlate(ap, &vp, &off);
1582 		if (flags & ANON_PGLOOKUP_BLK)
1583 			pp = page_lookup_create(vp, (u_offset_t)off,
1584 			    SE_EXCL, NULL, NULL, SE_EXCL_WANTED);
1585 		else
1586 			pp = page_lookup_nowait(vp, (u_offset_t)off, SE_EXCL);
1587 		if (pp == NULL) {
1588 			segadvstat.MADV_FREE_miss.value.ul++;
1589 			pgcnt = 1;
1590 			anon_array_exit(&cookie);
1591 			continue;
1592 		}
1593 		pgcnt = page_get_pagecnt(pp->p_szc);
1594 
1595 		/*
1596 		 * we cannot free a page which is permanently locked.
1597 		 * The page_struct_lock need not be acquired to examine
1598 		 * these fields since the page has an "exclusive" lock.
1599 		 */
1600 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1601 			page_unlock(pp);
1602 			segadvstat.MADV_FREE_miss.value.ul++;
1603 			anon_array_exit(&cookie);
1604 			continue;
1605 		}
1606 
1607 		ahm = &anonhash_lock[AH_LOCK(vp, off)];
1608 		mutex_enter(ahm);
1609 		ASSERT(ap->an_refcnt != 0);
1610 		/*
1611 		 * skip this one if copy-on-write is not yet broken.
1612 		 */
1613 		if (ap->an_refcnt > 1) {
1614 			mutex_exit(ahm);
1615 			page_unlock(pp);
1616 			segadvstat.MADV_FREE_miss.value.ul++;
1617 			anon_array_exit(&cookie);
1618 			continue;
1619 		}
1620 
1621 		if (pp->p_szc == 0) {
1622 			pgcnt = 1;
1623 
1624 			/*
1625 			 * free swap slot;
1626 			 */
1627 			if (ap->an_pvp) {
1628 				swap_phys_free(ap->an_pvp, ap->an_poff,
1629 				    PAGESIZE);
1630 				ap->an_pvp = NULL;
1631 				ap->an_poff = 0;
1632 			}
1633 			mutex_exit(ahm);
1634 			segadvstat.MADV_FREE_hit.value.ul++;
1635 
1636 			/*
1637 			 * while we are at it, unload all the translations
1638 			 * and attempt to free the page.
1639 			 */
1640 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1641 			/*LINTED: constant in conditional context */
1642 			VN_DISPOSE(pp, B_FREE, 0, kcred);
1643 			anon_array_exit(&cookie);
1644 			continue;
1645 		}
1646 
1647 		pgcnt = page_get_pagecnt(pp->p_szc);
1648 		if (!IS_P2ALIGNED(index, pgcnt) || npages < pgcnt) {
1649 			if (!page_try_demote_pages(pp)) {
1650 				mutex_exit(ahm);
1651 				page_unlock(pp);
1652 				segadvstat.MADV_FREE_miss.value.ul++;
1653 				anon_array_exit(&cookie);
1654 				continue;
1655 			} else {
1656 				pgcnt = 1;
1657 				if (ap->an_pvp) {
1658 					swap_phys_free(ap->an_pvp,
1659 					    ap->an_poff, PAGESIZE);
1660 					    ap->an_pvp = NULL;
1661 					    ap->an_poff = 0;
1662 				}
1663 				mutex_exit(ahm);
1664 				(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1665 				/*LINTED*/
1666 				VN_DISPOSE(pp, B_FREE, 0, kcred);
1667 				segadvstat.MADV_FREE_hit.value.ul++;
1668 				anon_array_exit(&cookie);
1669 				continue;
1670 			}
1671 		}
1672 		mutex_exit(ahm);
1673 		root_pp = pp;
1674 
1675 		/*
1676 		 * try to lock remaining pages
1677 		 */
1678 		for (idx = 1; idx < pgcnt; idx++) {
1679 			pp++;
1680 			if (!page_trylock(pp, SE_EXCL))
1681 				break;
1682 			if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1683 				page_unlock(pp);
1684 				break;
1685 			}
1686 		}
1687 
1688 		if (idx == pgcnt) {
1689 			for (i = 0; i < pgcnt; i++) {
1690 				ap = anon_get_ptr(ahp, index + i);
1691 				if (ap == NULL)
1692 					break;
1693 				swap_xlate(ap, &vp, &off);
1694 				ahm = &anonhash_lock[AH_LOCK(vp, off)];
1695 				mutex_enter(ahm);
1696 				ASSERT(ap->an_refcnt != 0);
1697 
1698 				/*
1699 				 * skip this one if copy-on-write
1700 				 * is not yet broken.
1701 				 */
1702 				if (ap->an_refcnt > 1) {
1703 					mutex_exit(ahm);
1704 					goto skiplp;
1705 				}
1706 				if (ap->an_pvp) {
1707 					swap_phys_free(ap->an_pvp,
1708 					    ap->an_poff, PAGESIZE);
1709 					    ap->an_pvp = NULL;
1710 					    ap->an_poff = 0;
1711 				}
1712 				mutex_exit(ahm);
1713 			}
1714 			page_destroy_pages(root_pp);
1715 			segadvstat.MADV_FREE_hit.value.ul += pgcnt;
1716 			anon_array_exit(&cookie);
1717 			continue;
1718 		}
1719 skiplp:
1720 		segadvstat.MADV_FREE_miss.value.ul += pgcnt;
1721 		for (i = 0, pp = root_pp; i < idx; pp++, i++)
1722 			page_unlock(pp);
1723 		anon_array_exit(&cookie);
1724 	}
1725 }
1726 
1727 /*
1728  * Return the kept page(s) and protections back to the segment driver.
1729  */
1730 int
1731 anon_getpage(
1732 	struct anon **app,
1733 	uint_t *protp,
1734 	page_t *pl[],
1735 	size_t plsz,
1736 	struct seg *seg,
1737 	caddr_t addr,
1738 	enum seg_rw rw,
1739 	struct cred *cred)
1740 {
1741 	page_t *pp;
1742 	struct anon *ap = *app;
1743 	struct vnode *vp;
1744 	anoff_t off;
1745 	int err;
1746 	kmutex_t *ahm;
1747 
1748 	swap_xlate(ap, &vp, &off);
1749 
1750 	/*
1751 	 * Lookup the page. If page is being paged in,
1752 	 * wait for it to finish as we must return a list of
1753 	 * pages since this routine acts like the VOP_GETPAGE
1754 	 * routine does.
1755 	 */
1756 	if (pl != NULL && (pp = page_lookup(vp, (u_offset_t)off, SE_SHARED))) {
1757 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1758 		mutex_enter(ahm);
1759 		if (ap->an_refcnt == 1)
1760 			*protp = PROT_ALL;
1761 		else
1762 			*protp = PROT_ALL & ~PROT_WRITE;
1763 		mutex_exit(ahm);
1764 		pl[0] = pp;
1765 		pl[1] = NULL;
1766 		return (0);
1767 	}
1768 
1769 	/*
1770 	 * Simply treat it as a vnode fault on the anon vp.
1771 	 */
1772 
1773 	TRACE_3(TR_FAC_VM, TR_ANON_GETPAGE,
1774 		"anon_getpage:seg %x addr %x vp %x",
1775 		seg, addr, vp);
1776 
1777 	err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, protp, pl, plsz,
1778 	    seg, addr, rw, cred);
1779 
1780 	if (err == 0 && pl != NULL) {
1781 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1782 		mutex_enter(ahm);
1783 		if (ap->an_refcnt != 1)
1784 			*protp &= ~PROT_WRITE;	/* make read-only */
1785 		mutex_exit(ahm);
1786 	}
1787 	return (err);
1788 }
1789 
1790 /*
1791  * Creates or returns kept pages to the segment driver.  returns -1 if a large
1792  * page cannot be allocated. returns -2 if some other process has allocated a
1793  * larger page.
1794  *
1795  * For cowfault it will alocate any size pages to fill the requested area to
1796  * avoid partially overwritting anon slots (i.e. sharing only some of the anon
1797  * slots within a large page with other processes). This policy greatly
1798  * simplifies large page freeing (which is only freed when all anon slot
1799  * refcnts are 0).
1800  */
1801 int
1802 anon_map_getpages(
1803 	struct anon_map *amp,
1804 	ulong_t	start_idx,
1805 	uint_t	szc,
1806 	struct seg *seg,
1807 	caddr_t	addr,
1808 	uint_t prot,
1809 	uint_t *protp,
1810 	page_t	*ppa[],
1811 	uint_t	*ppa_szc,
1812 	struct vpage vpage[],
1813 	enum seg_rw rw,
1814 	int brkcow,
1815 	int anypgsz,
1816 	struct cred *cred)
1817 {
1818 	pgcnt_t		pgcnt;
1819 	struct anon	*ap;
1820 	struct vnode	*vp;
1821 	anoff_t		off;
1822 	page_t		*pp, *pl[2], *conpp = NULL;
1823 	caddr_t		vaddr;
1824 	ulong_t		pg_idx, an_idx, i;
1825 	spgcnt_t	nreloc = 0;
1826 	int		prealloc = 1;
1827 	int		err, slotcreate;
1828 	uint_t		vpprot;
1829 	int		upsize = (szc < seg->s_szc);
1830 
1831 #if !defined(__i386) && !defined(__amd64)
1832 	ASSERT(seg->s_szc != 0);
1833 #endif
1834 	ASSERT(szc <= seg->s_szc);
1835 	ASSERT(ppa_szc != NULL);
1836 	ASSERT(rw != S_CREATE);
1837 
1838 	*protp = PROT_ALL;
1839 
1840 	VM_STAT_ADD(anonvmstats.getpages[0]);
1841 
1842 	if (szc == 0) {
1843 		VM_STAT_ADD(anonvmstats.getpages[1]);
1844 		if ((ap = anon_get_ptr(amp->ahp, start_idx)) != NULL) {
1845 			err = anon_getpage(&ap, protp, pl, PAGESIZE, seg,
1846 			    addr, rw, cred);
1847 			if (err)
1848 				return (err);
1849 			ppa[0] = pl[0];
1850 			if (brkcow == 0 || (*protp & PROT_WRITE)) {
1851 				VM_STAT_ADD(anonvmstats.getpages[2]);
1852 				if (ppa[0]->p_szc != 0 && upsize) {
1853 					VM_STAT_ADD(anonvmstats.getpages[3]);
1854 					*ppa_szc = MIN(ppa[0]->p_szc,
1855 					    seg->s_szc);
1856 					page_unlock(ppa[0]);
1857 					return (-2);
1858 				}
1859 				return (0);
1860 			}
1861 			panic("anon_map_getpages: cowfault for szc 0");
1862 		} else {
1863 			VM_STAT_ADD(anonvmstats.getpages[4]);
1864 			ppa[0] = anon_zero(seg, addr, &ap, cred);
1865 			if (ppa[0] == NULL)
1866 				return (ENOMEM);
1867 			(void) anon_set_ptr(amp->ahp, start_idx, ap,
1868 			    ANON_SLEEP);
1869 			return (0);
1870 		}
1871 	}
1872 
1873 	pgcnt = page_get_pagecnt(szc);
1874 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1875 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
1876 
1877 	/*
1878 	 * First we check for the case that the requtested large
1879 	 * page or larger page already exists in the system.
1880 	 * Actually we only check if the first constituent page
1881 	 * exists and only preallocate if it's not found.
1882 	 */
1883 	ap = anon_get_ptr(amp->ahp, start_idx);
1884 	if (ap) {
1885 		uint_t pszc;
1886 		swap_xlate(ap, &vp, &off);
1887 		if (page_exists_forreal(vp, (u_offset_t)off, &pszc)) {
1888 			if (pszc > szc && upsize) {
1889 				*ppa_szc = MIN(pszc, seg->s_szc);
1890 				return (-2);
1891 			}
1892 			if (pszc >= szc) {
1893 				prealloc = 0;
1894 			}
1895 		}
1896 	}
1897 
1898 	VM_STAT_COND_ADD(prealloc == 0, anonvmstats.getpages[5]);
1899 	VM_STAT_COND_ADD(prealloc != 0, anonvmstats.getpages[6]);
1900 
1901 top:
1902 	/*
1903 	 * If a smaller page or no page at all was found,
1904 	 * grab a large page off the freelist.
1905 	 */
1906 	if (prealloc) {
1907 		ASSERT(conpp == NULL);
1908 		if (page_alloc_pages(anon_vp, seg, addr, NULL, ppa,
1909 		    szc, 0) != 0) {
1910 			VM_STAT_ADD(anonvmstats.getpages[7]);
1911 			if (brkcow == 0 ||
1912 			    !anon_share(amp->ahp, start_idx, pgcnt)) {
1913 				/*
1914 				 * If the refcnt's of all anon slots are <= 1
1915 				 * they can't increase since we are holding
1916 				 * the address space's lock. So segvn can
1917 				 * safely decrease szc without risking to
1918 				 * generate a cow fault for the region smaller
1919 				 * than the segment's largest page size.
1920 				 */
1921 				VM_STAT_ADD(anonvmstats.getpages[8]);
1922 				return (-1);
1923 			}
1924 		docow:
1925 			/*
1926 			 * This is a cow fault. Copy away the entire 1 large
1927 			 * page region of this segment.
1928 			 */
1929 			if (szc != seg->s_szc)
1930 				panic("anon_map_getpages: cowfault for szc %d",
1931 				    szc);
1932 			vaddr = addr;
1933 			for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
1934 			    pg_idx++, an_idx++, vaddr += PAGESIZE) {
1935 				if ((ap = anon_get_ptr(amp->ahp, an_idx)) !=
1936 				    NULL) {
1937 					err = anon_getpage(&ap, &vpprot, pl,
1938 					    PAGESIZE, seg, vaddr, rw, cred);
1939 					if (err) {
1940 						for (i = 0; i < pg_idx; i++) {
1941 							if ((pp = ppa[i]) !=
1942 							    NULL)
1943 								page_unlock(pp);
1944 						}
1945 						return (err);
1946 					}
1947 					ppa[pg_idx] = pl[0];
1948 				} else {
1949 					/*
1950 					 * Since this is a cowfault we know
1951 					 * that this address space has a
1952 					 * parent or children which means
1953 					 * anon_dup_fill_holes() has initialized
1954 					 * all anon slots within a large page
1955 					 * region that had at least one anon
1956 					 * slot at the time of fork().
1957 					 */
1958 					panic("anon_map_getpages: "
1959 					    "cowfault but anon slot is empty");
1960 				}
1961 			}
1962 			VM_STAT_ADD(anonvmstats.getpages[9]);
1963 			*protp = PROT_ALL;
1964 			return (anon_map_privatepages(amp, start_idx, szc, seg,
1965 			    addr, prot, ppa, vpage, anypgsz, cred));
1966 		}
1967 	}
1968 
1969 	VM_STAT_ADD(anonvmstats.getpages[10]);
1970 
1971 	an_idx = start_idx;
1972 	pg_idx = 0;
1973 	vaddr = addr;
1974 	while (pg_idx < pgcnt) {
1975 		slotcreate = 0;
1976 		if ((ap = anon_get_ptr(amp->ahp, an_idx)) == NULL) {
1977 			VM_STAT_ADD(anonvmstats.getpages[11]);
1978 			/*
1979 			 * For us to have decided not to preallocate
1980 			 * would have meant that a large page
1981 			 * was found. Which also means that all of the
1982 			 * anon slots for that page would have been
1983 			 * already created for us.
1984 			 */
1985 			if (prealloc == 0)
1986 				panic("anon_map_getpages: prealloc = 0");
1987 
1988 			slotcreate = 1;
1989 			ap = anon_alloc(NULL, 0);
1990 		}
1991 		swap_xlate(ap, &vp, &off);
1992 
1993 		/*
1994 		 * Now setup our preallocated page to pass down
1995 		 * to swap_getpage().
1996 		 */
1997 		if (prealloc) {
1998 			ASSERT(ppa[pg_idx]->p_szc == szc);
1999 			conpp = ppa[pg_idx];
2000 		}
2001 		ASSERT(prealloc || conpp == NULL);
2002 
2003 		/*
2004 		 * If we just created this anon slot then call
2005 		 * with S_CREATE to prevent doing IO on the page.
2006 		 * Similar to the anon_zero case.
2007 		 */
2008 		err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE,
2009 		    NULL, pl, PAGESIZE, conpp, ppa_szc, &nreloc, seg, vaddr,
2010 		    slotcreate == 1 ? S_CREATE : rw, cred);
2011 
2012 		if (err) {
2013 			ASSERT(err != -2 || upsize);
2014 			VM_STAT_ADD(anonvmstats.getpages[12]);
2015 			ASSERT(slotcreate == 0);
2016 			goto io_err;
2017 		}
2018 
2019 		pp = pl[0];
2020 
2021 		if (pp->p_szc < szc || (pp->p_szc > szc && upsize)) {
2022 			VM_STAT_ADD(anonvmstats.getpages[13]);
2023 			ASSERT(slotcreate == 0);
2024 			ASSERT(prealloc == 0);
2025 			ASSERT(pg_idx == 0);
2026 			if (pp->p_szc > szc) {
2027 				ASSERT(upsize);
2028 				*ppa_szc = MIN(pp->p_szc, seg->s_szc);
2029 				page_unlock(pp);
2030 				VM_STAT_ADD(anonvmstats.getpages[14]);
2031 				return (-2);
2032 			}
2033 			page_unlock(pp);
2034 			prealloc = 1;
2035 			goto top;
2036 		}
2037 
2038 		/*
2039 		 * If we decided to preallocate but VOP_GETPAGE
2040 		 * found a page in the system that satisfies our
2041 		 * request then free up our preallocated large page
2042 		 * and continue looping accross the existing large
2043 		 * page via VOP_GETPAGE.
2044 		 */
2045 		if (prealloc && pp != ppa[pg_idx]) {
2046 			VM_STAT_ADD(anonvmstats.getpages[15]);
2047 			ASSERT(slotcreate == 0);
2048 			ASSERT(pg_idx == 0);
2049 			conpp = NULL;
2050 			prealloc = 0;
2051 			page_free_pages(ppa[0]);
2052 		}
2053 
2054 		if (prealloc && nreloc > 1) {
2055 			/*
2056 			 * we have relocated out of a smaller large page.
2057 			 * skip npgs - 1 iterations and continue which will
2058 			 * increment by one the loop indices.
2059 			 */
2060 			spgcnt_t npgs = nreloc;
2061 
2062 			VM_STAT_ADD(anonvmstats.getpages[16]);
2063 
2064 			ASSERT(pp == ppa[pg_idx]);
2065 			ASSERT(slotcreate == 0);
2066 			ASSERT(pg_idx + npgs <= pgcnt);
2067 			if ((*protp & PROT_WRITE) &&
2068 			    anon_share(amp->ahp, an_idx, npgs)) {
2069 			    *protp &= ~PROT_WRITE;
2070 			}
2071 			pg_idx += npgs;
2072 			an_idx += npgs;
2073 			vaddr += PAGESIZE * npgs;
2074 			continue;
2075 		}
2076 
2077 		VM_STAT_ADD(anonvmstats.getpages[17]);
2078 
2079 		/*
2080 		 * Anon_zero case.
2081 		 */
2082 		if (slotcreate) {
2083 			ASSERT(prealloc);
2084 			pagezero(pp, 0, PAGESIZE);
2085 			CPU_STATS_ADD_K(vm, zfod, 1);
2086 			hat_setrefmod(pp);
2087 		}
2088 
2089 		ASSERT(prealloc == 0 || ppa[pg_idx] == pp);
2090 		ASSERT(prealloc != 0 || PAGE_SHARED(pp));
2091 		ASSERT(prealloc == 0 || PAGE_EXCL(pp));
2092 
2093 		if (pg_idx > 0 &&
2094 		    ((page_pptonum(pp) != page_pptonum(ppa[pg_idx - 1]) + 1) ||
2095 		    (pp->p_szc != ppa[pg_idx - 1]->p_szc))) {
2096 			panic("anon_map_getpages: unexpected page");
2097 		} else if (pg_idx == 0 && (page_pptonum(pp) & (pgcnt - 1))) {
2098 			panic("anon_map_getpages: unaligned page");
2099 		}
2100 
2101 		if (prealloc == 0) {
2102 			ppa[pg_idx] = pp;
2103 		}
2104 
2105 		if (ap->an_refcnt > 1) {
2106 			VM_STAT_ADD(anonvmstats.getpages[18]);
2107 			*protp &= ~PROT_WRITE;
2108 		}
2109 
2110 		/*
2111 		 * If this is a new anon slot then initialize
2112 		 * the anon array entry.
2113 		 */
2114 		if (slotcreate) {
2115 			(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
2116 		}
2117 		pg_idx++;
2118 		an_idx++;
2119 		vaddr += PAGESIZE;
2120 	}
2121 
2122 	/*
2123 	 * Since preallocated pages come off the freelist
2124 	 * they are locked SE_EXCL. Simply downgrade and return.
2125 	 */
2126 	if (prealloc) {
2127 		VM_STAT_ADD(anonvmstats.getpages[19]);
2128 		conpp = NULL;
2129 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2130 			page_downgrade(ppa[pg_idx]);
2131 		}
2132 	}
2133 	ASSERT(conpp == NULL);
2134 
2135 	if (brkcow == 0 || (*protp & PROT_WRITE)) {
2136 		VM_STAT_ADD(anonvmstats.getpages[20]);
2137 		return (0);
2138 	}
2139 
2140 	if (szc < seg->s_szc)
2141 		panic("anon_map_getpages: cowfault for szc %d", szc);
2142 
2143 	VM_STAT_ADD(anonvmstats.getpages[21]);
2144 
2145 	*protp = PROT_ALL;
2146 	return (anon_map_privatepages(amp, start_idx, szc, seg, addr, prot,
2147 	    ppa, vpage, anypgsz, cred));
2148 io_err:
2149 	/*
2150 	 * We got an IO error somewhere in our large page.
2151 	 * If we were using a preallocated page then just demote
2152 	 * all the constituent pages that we've succeeded with sofar
2153 	 * to PAGESIZE pages and leave them in the system
2154 	 * unlocked.
2155 	 */
2156 
2157 	ASSERT(err != -2 || ((pg_idx == 0) && upsize));
2158 
2159 	VM_STAT_COND_ADD(err > 0, anonvmstats.getpages[22]);
2160 	VM_STAT_COND_ADD(err == -1, anonvmstats.getpages[23]);
2161 	VM_STAT_COND_ADD(err == -2, anonvmstats.getpages[24]);
2162 
2163 	if (prealloc) {
2164 		conpp = NULL;
2165 		if (pg_idx > 0) {
2166 			VM_STAT_ADD(anonvmstats.getpages[25]);
2167 			for (i = 0; i < pgcnt; i++) {
2168 				pp = ppa[i];
2169 				ASSERT(PAGE_EXCL(pp));
2170 				ASSERT(pp->p_szc == szc);
2171 				pp->p_szc = 0;
2172 			}
2173 			for (i = 0; i < pg_idx; i++) {
2174 				ASSERT(!hat_page_is_mapped(ppa[i]));
2175 				page_unlock(ppa[i]);
2176 			}
2177 			/*
2178 			 * Now free up the remaining unused constituent
2179 			 * pages.
2180 			 */
2181 			while (pg_idx < pgcnt) {
2182 				ASSERT(!hat_page_is_mapped(ppa[pg_idx]));
2183 				page_free(ppa[pg_idx], 0);
2184 				pg_idx++;
2185 			}
2186 		} else {
2187 			VM_STAT_ADD(anonvmstats.getpages[26]);
2188 			page_free_pages(ppa[0]);
2189 		}
2190 	} else {
2191 		VM_STAT_ADD(anonvmstats.getpages[27]);
2192 		ASSERT(err > 0);
2193 		for (i = 0; i < pg_idx; i++)
2194 			page_unlock(ppa[i]);
2195 	}
2196 	ASSERT(conpp == NULL);
2197 	if (err != -1)
2198 		return (err);
2199 	/*
2200 	 * we are here because we failed to relocate.
2201 	 */
2202 	ASSERT(prealloc);
2203 	if (brkcow == 0 || !anon_share(amp->ahp, start_idx, pgcnt)) {
2204 		VM_STAT_ADD(anonvmstats.getpages[28]);
2205 		return (-1);
2206 	}
2207 	VM_STAT_ADD(anonvmstats.getpages[29]);
2208 	goto docow;
2209 }
2210 
2211 
2212 /*
2213  * Turn a reference to an object or shared anon page
2214  * into a private page with a copy of the data from the
2215  * original page which is always locked by the caller.
2216  * This routine unloads the translation and unlocks the
2217  * original page, if it isn't being stolen, before returning
2218  * to the caller.
2219  *
2220  * NOTE:  The original anon slot is not freed by this routine
2221  *	  It must be freed by the caller while holding the
2222  *	  "anon_map" lock to prevent races which can occur if
2223  *	  a process has multiple lwps in its address space.
2224  */
2225 page_t *
2226 anon_private(
2227 	struct anon **app,
2228 	struct seg *seg,
2229 	caddr_t addr,
2230 	uint_t	prot,
2231 	page_t *opp,
2232 	int oppflags,
2233 	struct cred *cred)
2234 {
2235 	struct anon *old = *app;
2236 	struct anon *new;
2237 	page_t *pp = NULL;
2238 	struct vnode *vp;
2239 	anoff_t off;
2240 	page_t *anon_pl[1 + 1];
2241 	int err;
2242 
2243 	if (oppflags & STEAL_PAGE)
2244 		ASSERT(PAGE_EXCL(opp));
2245 	else
2246 		ASSERT(PAGE_LOCKED(opp));
2247 
2248 	CPU_STATS_ADD_K(vm, cow_fault, 1);
2249 
2250 	/* Kernel probe */
2251 	TNF_PROBE_1(anon_private, "vm pagefault", /* CSTYLED */,
2252 		tnf_opaque,	address,	addr);
2253 
2254 	*app = new = anon_alloc(NULL, 0);
2255 	swap_xlate(new, &vp, &off);
2256 
2257 	if (oppflags & STEAL_PAGE) {
2258 		page_rename(opp, vp, (u_offset_t)off);
2259 		pp = opp;
2260 		TRACE_5(TR_FAC_VM, TR_ANON_PRIVATE,
2261 			"anon_private:seg %p addr %x pp %p vp %p off %lx",
2262 			seg, addr, pp, vp, off);
2263 		hat_setmod(pp);
2264 
2265 		/* bug 4026339 */
2266 		page_downgrade(pp);
2267 		return (pp);
2268 	}
2269 
2270 	/*
2271 	 * Call the VOP_GETPAGE routine to create the page, thereby
2272 	 * enabling the vnode driver to allocate any filesystem
2273 	 * space (e.g., disk block allocation for UFS).  This also
2274 	 * prevents more than one page from being added to the
2275 	 * vnode at the same time.
2276 	 */
2277 	err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, NULL,
2278 	    anon_pl, PAGESIZE, seg, addr, S_CREATE, cred);
2279 	if (err)
2280 		goto out;
2281 
2282 	pp = anon_pl[0];
2283 
2284 	/*
2285 	 * If the original page was locked, we need to move the lock
2286 	 * to the new page by transfering 'cowcnt/lckcnt' of the original
2287 	 * page to 'cowcnt/lckcnt' of the new page.
2288 	 *
2289 	 * See Statement at the beginning of segvn_lockop() and
2290 	 * comments in page_pp_useclaim() regarding the way
2291 	 * cowcnts/lckcnts are handled.
2292 	 *
2293 	 * Also availrmem must be decremented up front for read only mapping
2294 	 * before calling page_pp_useclaim. page_pp_useclaim will bump it back
2295 	 * if availrmem did not need to be decremented after all.
2296 	 */
2297 	if (oppflags & LOCK_PAGE) {
2298 		if ((prot & PROT_WRITE) == 0) {
2299 			mutex_enter(&freemem_lock);
2300 			if (availrmem > pages_pp_maximum) {
2301 				availrmem--;
2302 				pages_useclaim++;
2303 			} else {
2304 				mutex_exit(&freemem_lock);
2305 				goto out;
2306 			}
2307 			mutex_exit(&freemem_lock);
2308 		}
2309 		page_pp_useclaim(opp, pp, prot & PROT_WRITE);
2310 	}
2311 
2312 	/*
2313 	 * Now copy the contents from the original page,
2314 	 * which is locked and loaded in the MMU by
2315 	 * the caller to prevent yet another page fault.
2316 	 */
2317 	/* XXX - should set mod bit in here */
2318 	if (ppcopy(opp, pp) == 0) {
2319 		/*
2320 		 * Before ppcopy could hanlde UE or other faults, we
2321 		 * would have panicked here, and still have no option
2322 		 * but to do so now.
2323 		 */
2324 		panic("anon_private, ppcopy failed, opp = 0x%p, pp = 0x%p",
2325 		    opp, pp);
2326 	}
2327 
2328 	hat_setrefmod(pp);		/* mark as modified */
2329 
2330 	/*
2331 	 * Unload the old translation.
2332 	 */
2333 	hat_unload(seg->s_as->a_hat, addr, PAGESIZE, HAT_UNLOAD);
2334 
2335 	/*
2336 	 * Free unmapped, unmodified original page.
2337 	 * or release the lock on the original page,
2338 	 * otherwise the process will sleep forever in
2339 	 * anon_decref() waiting for the "exclusive" lock
2340 	 * on the page.
2341 	 */
2342 	(void) page_release(opp, 1);
2343 
2344 	/*
2345 	 * we are done with page creation so downgrade the new
2346 	 * page's selock to shared, this helps when multiple
2347 	 * as_fault(...SOFTLOCK...) are done to the same
2348 	 * page(aio)
2349 	 */
2350 	page_downgrade(pp);
2351 
2352 	/*
2353 	 * NOTE:  The original anon slot must be freed by the
2354 	 * caller while holding the "anon_map" lock, if we
2355 	 * copied away from an anonymous page.
2356 	 */
2357 	return (pp);
2358 
2359 out:
2360 	*app = old;
2361 	if (pp)
2362 		page_unlock(pp);
2363 	anon_decref(new);
2364 	page_unlock(opp);
2365 	return ((page_t *)NULL);
2366 }
2367 
2368 int
2369 anon_map_privatepages(
2370 	struct anon_map *amp,
2371 	ulong_t	start_idx,
2372 	uint_t	szc,
2373 	struct seg *seg,
2374 	caddr_t addr,
2375 	uint_t	prot,
2376 	page_t	*ppa[],
2377 	struct vpage vpage[],
2378 	int anypgsz,
2379 	struct cred *cred)
2380 {
2381 	pgcnt_t		pgcnt;
2382 	struct vnode	*vp;
2383 	anoff_t		off;
2384 	page_t		*pl[2], *conpp = NULL;
2385 	int		err;
2386 	int		prealloc = 1;
2387 	struct anon	*ap, *oldap;
2388 	caddr_t		vaddr;
2389 	page_t		*pplist, *pp;
2390 	ulong_t		pg_idx, an_idx;
2391 	spgcnt_t	nreloc = 0;
2392 	int		pagelock = 0;
2393 	kmutex_t	*ahmpages = NULL;
2394 #ifdef DEBUG
2395 	int		refcnt;
2396 #endif
2397 
2398 	ASSERT(szc != 0);
2399 	ASSERT(szc == seg->s_szc);
2400 
2401 	VM_STAT_ADD(anonvmstats.privatepages[0]);
2402 
2403 	pgcnt = page_get_pagecnt(szc);
2404 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
2405 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
2406 
2407 	ASSERT(amp != NULL);
2408 	ap = anon_get_ptr(amp->ahp, start_idx);
2409 	ASSERT(ap == NULL || ap->an_refcnt >= 1);
2410 
2411 	VM_STAT_COND_ADD(ap == NULL, anonvmstats.privatepages[1]);
2412 
2413 	/*
2414 	 * Now try and allocate the large page. If we fail then just
2415 	 * let VOP_GETPAGE give us PAGESIZE pages. Normally we let
2416 	 * the caller make this decision but to avoid added complexity
2417 	 * it's simplier to handle that case here.
2418 	 */
2419 	if (anypgsz == -1) {
2420 		VM_STAT_ADD(anonvmstats.privatepages[2]);
2421 		prealloc = 0;
2422 	} else if (page_alloc_pages(anon_vp, seg, addr, &pplist, NULL, szc,
2423 	    anypgsz) != 0) {
2424 		VM_STAT_ADD(anonvmstats.privatepages[3]);
2425 		prealloc = 0;
2426 	}
2427 
2428 	/*
2429 	 * make the decrement of all refcnts of all
2430 	 * anon slots of a large page appear atomic by
2431 	 * getting an anonpages_hash_lock for the
2432 	 * first anon slot of a large page.
2433 	 */
2434 	if (ap != NULL) {
2435 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp,
2436 		    ap->an_off)];
2437 		mutex_enter(ahmpages);
2438 		if (ap->an_refcnt == 1) {
2439 			VM_STAT_ADD(anonvmstats.privatepages[4]);
2440 			ASSERT(!anon_share(amp->ahp, start_idx, pgcnt));
2441 			mutex_exit(ahmpages);
2442 
2443 			if (prealloc) {
2444 				page_free_replacement_page(pplist);
2445 				page_create_putback(pgcnt);
2446 			}
2447 			ASSERT(ppa[0]->p_szc <= szc);
2448 			if (ppa[0]->p_szc == szc) {
2449 				VM_STAT_ADD(anonvmstats.privatepages[5]);
2450 				return (0);
2451 			}
2452 			for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2453 				ASSERT(ppa[pg_idx] != NULL);
2454 				page_unlock(ppa[pg_idx]);
2455 			}
2456 			return (-1);
2457 		}
2458 	}
2459 
2460 	/*
2461 	 * If we are passed in the vpage array and this is
2462 	 * not PROT_WRITE then we need to decrement availrmem
2463 	 * up front before we try anything. If we need to and
2464 	 * can't decrement availrmem then its better to fail now
2465 	 * than in the middle of processing the new large page.
2466 	 * page_pp_usclaim() on behalf of each constituent page
2467 	 * below will adjust availrmem back for the cases not needed.
2468 	 */
2469 	if (vpage != NULL && (prot & PROT_WRITE) == 0) {
2470 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2471 			if (VPP_ISPPLOCK(&vpage[pg_idx])) {
2472 				pagelock = 1;
2473 				break;
2474 			}
2475 		}
2476 		if (pagelock) {
2477 			VM_STAT_ADD(anonvmstats.privatepages[6]);
2478 			mutex_enter(&freemem_lock);
2479 			if (availrmem >= pages_pp_maximum + pgcnt) {
2480 				availrmem -= pgcnt;
2481 				pages_useclaim += pgcnt;
2482 			} else {
2483 				VM_STAT_ADD(anonvmstats.privatepages[7]);
2484 				mutex_exit(&freemem_lock);
2485 				if (ahmpages != NULL) {
2486 					mutex_exit(ahmpages);
2487 				}
2488 				if (prealloc) {
2489 					page_free_replacement_page(pplist);
2490 					page_create_putback(pgcnt);
2491 				}
2492 				for (pg_idx = 0; pg_idx < pgcnt; pg_idx++)
2493 					if (ppa[pg_idx] != NULL)
2494 						page_unlock(ppa[pg_idx]);
2495 				return (ENOMEM);
2496 			}
2497 			mutex_exit(&freemem_lock);
2498 		}
2499 	}
2500 
2501 	CPU_STATS_ADD_K(vm, cow_fault, pgcnt);
2502 
2503 	VM_STAT_ADD(anonvmstats.privatepages[8]);
2504 
2505 	an_idx = start_idx;
2506 	pg_idx = 0;
2507 	vaddr = addr;
2508 	for (; pg_idx < pgcnt; pg_idx++, an_idx++, vaddr += PAGESIZE) {
2509 		ASSERT(ppa[pg_idx] != NULL);
2510 		oldap = anon_get_ptr(amp->ahp, an_idx);
2511 		ASSERT(ahmpages != NULL || oldap == NULL);
2512 		ASSERT(ahmpages == NULL || oldap != NULL);
2513 		ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
2514 		ASSERT(ahmpages == NULL || pg_idx != 0 ||
2515 		    (refcnt = oldap->an_refcnt));
2516 		ASSERT(ahmpages == NULL || pg_idx == 0 ||
2517 		    refcnt == oldap->an_refcnt);
2518 
2519 		ap = anon_alloc(NULL, 0);
2520 
2521 		swap_xlate(ap, &vp, &off);
2522 
2523 		/*
2524 		 * Now setup our preallocated page to pass down to
2525 		 * swap_getpage().
2526 		 */
2527 		if (prealloc) {
2528 			pp = pplist;
2529 			page_sub(&pplist, pp);
2530 			conpp = pp;
2531 		}
2532 
2533 		err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE, NULL, pl,
2534 			PAGESIZE, conpp, NULL, &nreloc, seg, vaddr,
2535 			S_CREATE, cred);
2536 
2537 		/*
2538 		 * Impossible to fail this is S_CREATE.
2539 		 */
2540 		if (err)
2541 			panic("anon_map_privatepages: VOP_GETPAGE failed");
2542 
2543 		ASSERT(prealloc ? pp == pl[0] : pl[0]->p_szc == 0);
2544 		ASSERT(prealloc == 0 || nreloc == 1);
2545 
2546 		pp = pl[0];
2547 
2548 		/*
2549 		 * If the original page was locked, we need to move
2550 		 * the lock to the new page by transfering
2551 		 * 'cowcnt/lckcnt' of the original page to 'cowcnt/lckcnt'
2552 		 * of the new page. pg_idx can be used to index
2553 		 * into the vpage array since the caller will guarentee
2554 		 * that vpage struct passed in corresponds to addr
2555 		 * and forward.
2556 		 */
2557 		if (vpage != NULL && VPP_ISPPLOCK(&vpage[pg_idx])) {
2558 			page_pp_useclaim(ppa[pg_idx], pp, prot & PROT_WRITE);
2559 		} else if (pagelock) {
2560 			mutex_enter(&freemem_lock);
2561 			availrmem++;
2562 			pages_useclaim--;
2563 			mutex_exit(&freemem_lock);
2564 		}
2565 
2566 		/*
2567 		 * Now copy the contents from the original page.
2568 		 */
2569 		if (ppcopy(ppa[pg_idx], pp) == 0) {
2570 			/*
2571 			 * Before ppcopy could hanlde UE or other faults, we
2572 			 * would have panicked here, and still have no option
2573 			 * but to do so now.
2574 			 */
2575 			panic("anon_map_privatepages, ppcopy failed");
2576 		}
2577 
2578 		hat_setrefmod(pp);		/* mark as modified */
2579 
2580 		/*
2581 		 * Release the lock on the original page,
2582 		 * derement the old slot, and down grade the lock
2583 		 * on the new copy.
2584 		 */
2585 		page_unlock(ppa[pg_idx]);
2586 
2587 		if (!prealloc)
2588 			page_downgrade(pp);
2589 
2590 		ppa[pg_idx] = pp;
2591 
2592 		/*
2593 		 * Now reflect the copy in the new anon array.
2594 		 */
2595 		ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
2596 		if (oldap != NULL)
2597 			anon_decref(oldap);
2598 		(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
2599 	}
2600 	if (ahmpages != NULL) {
2601 		mutex_exit(ahmpages);
2602 	}
2603 	ASSERT(prealloc == 0 || pplist == NULL);
2604 	if (prealloc) {
2605 		VM_STAT_ADD(anonvmstats.privatepages[9]);
2606 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2607 			page_downgrade(ppa[pg_idx]);
2608 		}
2609 	}
2610 
2611 	/*
2612 	 * Unload the old large page translation.
2613 	 */
2614 	hat_unload(seg->s_as->a_hat, addr, pgcnt << PAGESHIFT, HAT_UNLOAD);
2615 	return (0);
2616 }
2617 
2618 /*
2619  * Allocate a private zero-filled anon page.
2620  */
2621 page_t *
2622 anon_zero(struct seg *seg, caddr_t addr, struct anon **app, struct cred *cred)
2623 {
2624 	struct anon *ap;
2625 	page_t *pp;
2626 	struct vnode *vp;
2627 	anoff_t off;
2628 	page_t *anon_pl[1 + 1];
2629 	int err;
2630 
2631 	/* Kernel probe */
2632 	TNF_PROBE_1(anon_zero, "vm pagefault", /* CSTYLED */,
2633 		tnf_opaque,	address,	addr);
2634 
2635 	*app = ap = anon_alloc(NULL, 0);
2636 	swap_xlate(ap, &vp, &off);
2637 
2638 	/*
2639 	 * Call the VOP_GETPAGE routine to create the page, thereby
2640 	 * enabling the vnode driver to allocate any filesystem
2641 	 * dependent structures (e.g., disk block allocation for UFS).
2642 	 * This also prevents more than on page from being added to
2643 	 * the vnode at the same time since it is locked.
2644 	 */
2645 	err = VOP_GETPAGE(vp, off, PAGESIZE, NULL,
2646 	    anon_pl, PAGESIZE, seg, addr, S_CREATE, cred);
2647 	if (err) {
2648 		*app = NULL;
2649 		anon_decref(ap);
2650 		return (NULL);
2651 	}
2652 	pp = anon_pl[0];
2653 
2654 	pagezero(pp, 0, PAGESIZE);	/* XXX - should set mod bit */
2655 	page_downgrade(pp);
2656 	CPU_STATS_ADD_K(vm, zfod, 1);
2657 	hat_setrefmod(pp);	/* mark as modified so pageout writes back */
2658 	return (pp);
2659 }
2660 
2661 
2662 /*
2663  * Allocate array of private zero-filled anon pages for empty slots
2664  * and kept pages for non empty slots within given range.
2665  *
2666  * NOTE: This rontine will try and use large pages
2667  *	if available and supported by underlying platform.
2668  */
2669 int
2670 anon_map_createpages(
2671 	struct anon_map *amp,
2672 	ulong_t start_index,
2673 	size_t len,
2674 	page_t *ppa[],
2675 	struct seg *seg,
2676 	caddr_t addr,
2677 	enum seg_rw rw,
2678 	struct cred *cred)
2679 {
2680 
2681 	struct anon	*ap;
2682 	struct vnode	*ap_vp;
2683 	page_t		*pp, *pplist, *anon_pl[1 + 1], *conpp = NULL;
2684 	int		err = 0;
2685 	ulong_t		p_index, index;
2686 	pgcnt_t		npgs, pg_cnt;
2687 	spgcnt_t	nreloc = 0;
2688 	uint_t		l_szc, szc, prot;
2689 	anoff_t		ap_off;
2690 	size_t		pgsz;
2691 	lgrp_t		*lgrp;
2692 
2693 	/*
2694 	 * XXX For now only handle S_CREATE.
2695 	 */
2696 	ASSERT(rw == S_CREATE);
2697 
2698 	index	= start_index;
2699 	p_index	= 0;
2700 	npgs = btopr(len);
2701 
2702 	/*
2703 	 * If this platform supports multiple page sizes
2704 	 * then try and allocate directly from the free
2705 	 * list for pages larger than PAGESIZE.
2706 	 *
2707 	 * NOTE:When we have page_create_ru we can stop
2708 	 *	directly allocating from the freelist.
2709 	 */
2710 	l_szc  = seg->s_szc;
2711 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2712 	while (npgs) {
2713 
2714 		/*
2715 		 * if anon slot already exists
2716 		 *   (means page has been created)
2717 		 * so 1) look up the page
2718 		 *    2) if the page is still in memory, get it.
2719 		 *    3) if not, create a page and
2720 		 *	  page in from physical swap device.
2721 		 * These are done in anon_getpage().
2722 		 */
2723 		ap = anon_get_ptr(amp->ahp, index);
2724 		if (ap) {
2725 			err = anon_getpage(&ap, &prot, anon_pl, PAGESIZE,
2726 			    seg, addr, S_READ, cred);
2727 			if (err) {
2728 				ANON_LOCK_EXIT(&amp->a_rwlock);
2729 				panic("anon_map_createpages: anon_getpage");
2730 			}
2731 			pp = anon_pl[0];
2732 			ppa[p_index++] = pp;
2733 
2734 			addr += PAGESIZE;
2735 			index++;
2736 			npgs--;
2737 			continue;
2738 		}
2739 		/*
2740 		 * Now try and allocate the largest page possible
2741 		 * for the current address and range.
2742 		 * Keep dropping down in page size until:
2743 		 *
2744 		 *	1) Properly aligned
2745 		 *	2) Does not overlap existing anon pages
2746 		 *	3) Fits in remaining range.
2747 		 *	4) able to allocate one.
2748 		 *
2749 		 * NOTE: XXX When page_create_ru is completed this code
2750 		 *	 will change.
2751 		 */
2752 		szc    = l_szc;
2753 		pplist = NULL;
2754 		pg_cnt = 0;
2755 		while (szc) {
2756 			pgsz	= page_get_pagesize(szc);
2757 			pg_cnt	= pgsz >> PAGESHIFT;
2758 			if (IS_P2ALIGNED(addr, pgsz) && pg_cnt <= npgs &&
2759 				anon_pages(amp->ahp, index, pg_cnt) == 0) {
2760 				/*
2761 				 * XXX
2762 				 * Since we are faking page_create()
2763 				 * we also need to do the freemem and
2764 				 * pcf accounting.
2765 				 */
2766 				(void) page_create_wait(pg_cnt, PG_WAIT);
2767 
2768 				/*
2769 				 * Get lgroup to allocate next page of shared
2770 				 * memory from and use it to specify where to
2771 				 * allocate the physical memory
2772 				 */
2773 				lgrp = lgrp_mem_choose(seg, addr, pgsz);
2774 
2775 				pplist = page_get_freelist(
2776 				    anon_vp, (u_offset_t)0, seg,
2777 				    addr, pgsz, 0, lgrp);
2778 
2779 				if (pplist == NULL) {
2780 					page_create_putback(pg_cnt);
2781 				}
2782 
2783 				/*
2784 				 * If a request for a page of size
2785 				 * larger than PAGESIZE failed
2786 				 * then don't try that size anymore.
2787 				 */
2788 				if (pplist == NULL) {
2789 					l_szc = szc - 1;
2790 				} else {
2791 					break;
2792 				}
2793 			}
2794 			szc--;
2795 		}
2796 
2797 		/*
2798 		 * If just using PAGESIZE pages then don't
2799 		 * directly allocate from the free list.
2800 		 */
2801 		if (pplist == NULL) {
2802 			ASSERT(szc == 0);
2803 			pp = anon_zero(seg, addr, &ap, cred);
2804 			if (pp == NULL) {
2805 				ANON_LOCK_EXIT(&amp->a_rwlock);
2806 				panic("anon_map_createpages: anon_zero");
2807 			}
2808 			ppa[p_index++] = pp;
2809 
2810 			ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
2811 			(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
2812 
2813 			addr += PAGESIZE;
2814 			index++;
2815 			npgs--;
2816 			continue;
2817 		}
2818 
2819 		/*
2820 		 * pplist is a list of pg_cnt PAGESIZE pages.
2821 		 * These pages are locked SE_EXCL since they
2822 		 * came directly off the free list.
2823 		 */
2824 		ASSERT(IS_P2ALIGNED(pg_cnt, pg_cnt));
2825 		ASSERT(IS_P2ALIGNED(index, pg_cnt));
2826 		ASSERT(conpp == NULL);
2827 		while (pg_cnt--) {
2828 
2829 			ap = anon_alloc(NULL, 0);
2830 			swap_xlate(ap, &ap_vp, &ap_off);
2831 
2832 			ASSERT(pplist != NULL);
2833 			pp = pplist;
2834 			page_sub(&pplist, pp);
2835 			PP_CLRFREE(pp);
2836 			PP_CLRAGED(pp);
2837 			conpp = pp;
2838 
2839 			err = swap_getconpage(ap_vp, ap_off, PAGESIZE,
2840 			    (uint_t *)NULL, anon_pl, PAGESIZE, conpp, NULL,
2841 			    &nreloc, seg, addr, S_CREATE, cred);
2842 
2843 			if (err) {
2844 				ANON_LOCK_EXIT(&amp->a_rwlock);
2845 				panic("anon_map_createpages: S_CREATE");
2846 			}
2847 
2848 			ASSERT(anon_pl[0] == pp);
2849 			ASSERT(nreloc == 1);
2850 			pagezero(pp, 0, PAGESIZE);
2851 			CPU_STATS_ADD_K(vm, zfod, 1);
2852 			hat_setrefmod(pp);
2853 
2854 			ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
2855 			(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
2856 
2857 			ppa[p_index++] = pp;
2858 
2859 			addr += PAGESIZE;
2860 			index++;
2861 			npgs--;
2862 		}
2863 		conpp = NULL;
2864 		pg_cnt	= pgsz >> PAGESHIFT;
2865 		p_index = p_index - pg_cnt;
2866 		while (pg_cnt--) {
2867 			page_downgrade(ppa[p_index++]);
2868 		}
2869 	}
2870 	ANON_LOCK_EXIT(&amp->a_rwlock);
2871 	return (0);
2872 }
2873 
2874 static int
2875 anon_try_demote_pages(
2876 	struct anon_hdr *ahp,
2877 	ulong_t sidx,
2878 	uint_t szc,
2879 	page_t **ppa,
2880 	int private)
2881 {
2882 	struct anon	*ap;
2883 	pgcnt_t		pgcnt = page_get_pagecnt(szc);
2884 	page_t		*pp;
2885 	pgcnt_t		i;
2886 	kmutex_t	*ahmpages = NULL;
2887 	int		root = 0;
2888 	pgcnt_t		npgs;
2889 	pgcnt_t		curnpgs = 0;
2890 	size_t		ppasize = 0;
2891 
2892 	ASSERT(szc != 0);
2893 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
2894 	ASSERT(IS_P2ALIGNED(sidx, pgcnt));
2895 	ASSERT(sidx < ahp->size);
2896 
2897 	if (ppa == NULL) {
2898 		ppasize = pgcnt * sizeof (page_t *);
2899 		ppa = kmem_alloc(ppasize, KM_SLEEP);
2900 	}
2901 
2902 	ap = anon_get_ptr(ahp, sidx);
2903 	if (ap != NULL && private) {
2904 		VM_STAT_ADD(anonvmstats.demotepages[1]);
2905 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
2906 		mutex_enter(ahmpages);
2907 	}
2908 
2909 	if (ap != NULL && ap->an_refcnt > 1) {
2910 		if (ahmpages != NULL) {
2911 			VM_STAT_ADD(anonvmstats.demotepages[2]);
2912 			mutex_exit(ahmpages);
2913 		}
2914 		if (ppasize != 0) {
2915 			kmem_free(ppa, ppasize);
2916 		}
2917 		return (0);
2918 	}
2919 	if (ahmpages != NULL) {
2920 		mutex_exit(ahmpages);
2921 	}
2922 	if (ahp->size - sidx < pgcnt) {
2923 		ASSERT(private == 0);
2924 		pgcnt = ahp->size - sidx;
2925 	}
2926 	for (i = 0; i < pgcnt; i++, sidx++) {
2927 		ap = anon_get_ptr(ahp, sidx);
2928 		if (ap != NULL) {
2929 			if (ap->an_refcnt != 1) {
2930 				panic("anon_try_demote_pages: an_refcnt != 1");
2931 			}
2932 			pp = ppa[i] = page_lookup(ap->an_vp, ap->an_off,
2933 				SE_EXCL);
2934 			if (pp != NULL) {
2935 				(void) hat_pageunload(pp,
2936 					HAT_FORCE_PGUNLOAD);
2937 			}
2938 		} else {
2939 			ppa[i] = NULL;
2940 		}
2941 	}
2942 	for (i = 0; i < pgcnt; i++) {
2943 		if ((pp = ppa[i]) != NULL && pp->p_szc != 0) {
2944 			ASSERT(pp->p_szc <= szc);
2945 			if (!root) {
2946 				VM_STAT_ADD(anonvmstats.demotepages[3]);
2947 				if (curnpgs != 0)
2948 					panic("anon_try_demote_pages: "
2949 						"bad large page");
2950 
2951 				root = 1;
2952 				curnpgs = npgs =
2953 					page_get_pagecnt(pp->p_szc);
2954 
2955 				ASSERT(npgs <= pgcnt);
2956 				ASSERT(IS_P2ALIGNED(npgs, npgs));
2957 				ASSERT(!(page_pptonum(pp) &
2958 					(npgs - 1)));
2959 			} else {
2960 				ASSERT(i > 0);
2961 				ASSERT(page_pptonum(pp) - 1 ==
2962 					page_pptonum(ppa[i - 1]));
2963 				if ((page_pptonum(pp) & (npgs - 1)) ==
2964 					npgs - 1)
2965 					root = 0;
2966 			}
2967 			ASSERT(PAGE_EXCL(pp));
2968 			pp->p_szc = 0;
2969 			ASSERT(curnpgs > 0);
2970 			curnpgs--;
2971 		}
2972 	}
2973 	if (root != 0 || curnpgs != 0)
2974 		panic("anon_try_demote_pages: bad large page");
2975 
2976 	for (i = 0; i < pgcnt; i++) {
2977 		if ((pp = ppa[i]) != NULL) {
2978 			ASSERT(!hat_page_is_mapped(pp));
2979 			ASSERT(pp->p_szc == 0);
2980 			page_unlock(pp);
2981 		}
2982 	}
2983 	if (ppasize != 0) {
2984 		kmem_free(ppa, ppasize);
2985 	}
2986 	return (1);
2987 }
2988 
2989 /*
2990  * anon_map_demotepages() can only be called by MAP_PRIVATE segments.
2991  */
2992 int
2993 anon_map_demotepages(
2994 	struct anon_map *amp,
2995 	ulong_t	start_idx,
2996 	struct seg *seg,
2997 	caddr_t addr,
2998 	uint_t prot,
2999 	struct vpage vpage[],
3000 	struct cred *cred)
3001 {
3002 	struct anon	*ap;
3003 	uint_t		szc = seg->s_szc;
3004 	pgcnt_t		pgcnt = page_get_pagecnt(szc);
3005 	size_t		ppasize = pgcnt * sizeof (page_t *);
3006 	page_t		**ppa = kmem_alloc(ppasize, KM_SLEEP);
3007 	page_t		*pp;
3008 	page_t		*pl[2];
3009 	pgcnt_t		i, pg_idx;
3010 	ulong_t		an_idx;
3011 	caddr_t		vaddr;
3012 	int 		err;
3013 	int		retry = 0;
3014 	uint_t		vpprot;
3015 
3016 	ASSERT(RW_WRITE_HELD(&amp->a_rwlock));
3017 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
3018 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
3019 	ASSERT(ppa != NULL);
3020 	ASSERT(szc != 0);
3021 	ASSERT(szc == amp->a_szc);
3022 
3023 	VM_STAT_ADD(anonvmstats.demotepages[0]);
3024 
3025 top:
3026 	if (anon_try_demote_pages(amp->ahp, start_idx, szc, ppa, 1)) {
3027 		kmem_free(ppa, ppasize);
3028 		return (0);
3029 	}
3030 
3031 	VM_STAT_ADD(anonvmstats.demotepages[4]);
3032 
3033 	ASSERT(retry == 0); /* we can be here only once */
3034 
3035 	vaddr = addr;
3036 	for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
3037 	    pg_idx++, an_idx++, vaddr += PAGESIZE) {
3038 		ap = anon_get_ptr(amp->ahp, an_idx);
3039 		if (ap == NULL)
3040 			panic("anon_map_demotepages: no anon slot");
3041 		err = anon_getpage(&ap, &vpprot, pl, PAGESIZE, seg, vaddr,
3042 		    S_READ, cred);
3043 		if (err) {
3044 			for (i = 0; i < pg_idx; i++) {
3045 				if ((pp = ppa[i]) != NULL)
3046 					page_unlock(pp);
3047 			}
3048 			kmem_free(ppa, ppasize);
3049 			return (err);
3050 		}
3051 		ppa[pg_idx] = pl[0];
3052 	}
3053 
3054 	err = anon_map_privatepages(amp, start_idx, szc, seg, addr, prot, ppa,
3055 	    vpage, -1, cred);
3056 	if (err > 0) {
3057 		VM_STAT_ADD(anonvmstats.demotepages[5]);
3058 		kmem_free(ppa, ppasize);
3059 		return (err);
3060 	}
3061 	ASSERT(err == 0 || err == -1);
3062 	if (err == -1) {
3063 		VM_STAT_ADD(anonvmstats.demotepages[6]);
3064 		retry = 1;
3065 		goto top;
3066 	}
3067 	for (i = 0; i < pgcnt; i++) {
3068 		ASSERT(ppa[i] != NULL);
3069 		if (ppa[i]->p_szc != 0)
3070 			retry = 1;
3071 		page_unlock(ppa[i]);
3072 	}
3073 	if (retry) {
3074 		VM_STAT_ADD(anonvmstats.demotepages[7]);
3075 		goto top;
3076 	}
3077 
3078 	VM_STAT_ADD(anonvmstats.demotepages[8]);
3079 
3080 	kmem_free(ppa, ppasize);
3081 
3082 	return (0);
3083 }
3084 
3085 /*
3086  * Free pages of shared anon map. It's assumed that anon maps don't share anon
3087  * structures with private anon maps. Therefore all anon structures should
3088  * have at most one reference at this point. This means underlying pages can
3089  * be exclusively locked and demoted or freed.  If not freeing the entire
3090  * large pages demote the ends of the region we free to be able to free
3091  * subpages. Page roots correspend to aligned index positions in anon map.
3092  */
3093 void
3094 anon_shmap_free_pages(struct anon_map *amp, ulong_t sidx, size_t len)
3095 {
3096 	ulong_t eidx = sidx + btopr(len);
3097 	pgcnt_t pages = page_get_pagecnt(amp->a_szc);
3098 	struct anon_hdr *ahp = amp->ahp;
3099 	ulong_t tidx;
3100 	size_t size;
3101 	ulong_t sidx_aligned;
3102 	ulong_t eidx_aligned;
3103 
3104 	ASSERT(RW_WRITE_HELD(&amp->a_rwlock));
3105 	ASSERT(amp->refcnt <= 1);
3106 	ASSERT(amp->a_szc > 0);
3107 	ASSERT(eidx <= ahp->size);
3108 	ASSERT(!anon_share(ahp, sidx, btopr(len)));
3109 
3110 	if (len == 0) {	/* XXX */
3111 		return;
3112 	}
3113 
3114 	sidx_aligned = P2ALIGN(sidx, pages);
3115 	if (sidx_aligned != sidx ||
3116 	    (eidx < sidx_aligned + pages && eidx < ahp->size)) {
3117 		if (!anon_try_demote_pages(ahp, sidx_aligned,
3118 		    amp->a_szc, NULL, 0)) {
3119 			panic("anon_shmap_free_pages: demote failed");
3120 		}
3121 		size = (eidx <= sidx_aligned + pages) ? (eidx - sidx) :
3122 		    P2NPHASE(sidx, pages);
3123 		size <<= PAGESHIFT;
3124 		anon_free(ahp, sidx, size);
3125 		sidx = sidx_aligned + pages;
3126 		if (eidx <= sidx) {
3127 			return;
3128 		}
3129 	}
3130 	eidx_aligned = P2ALIGN(eidx, pages);
3131 	if (sidx < eidx_aligned) {
3132 		anon_free_pages(ahp, sidx,
3133 		    (eidx_aligned - sidx) << PAGESHIFT,
3134 		    amp->a_szc);
3135 		sidx = eidx_aligned;
3136 	}
3137 	ASSERT(sidx == eidx_aligned);
3138 	if (eidx == eidx_aligned) {
3139 		return;
3140 	}
3141 	tidx = eidx;
3142 	if (eidx != ahp->size && anon_get_next_ptr(ahp, &tidx) != NULL &&
3143 	    tidx - sidx < pages) {
3144 		if (!anon_try_demote_pages(ahp, sidx, amp->a_szc, NULL, 0)) {
3145 			panic("anon_shmap_free_pages: demote failed");
3146 		}
3147 		size = (eidx - sidx) << PAGESHIFT;
3148 		anon_free(ahp, sidx, size);
3149 	} else {
3150 		anon_free_pages(ahp, sidx, pages << PAGESHIFT, amp->a_szc);
3151 	}
3152 }
3153 
3154 /*
3155  * Allocate and initialize an anon_map structure for seg
3156  * associating the given swap reservation with the new anon_map.
3157  */
3158 struct anon_map *
3159 anonmap_alloc(size_t size, size_t swresv)
3160 {
3161 	struct anon_map *amp;
3162 
3163 	amp = kmem_cache_alloc(anonmap_cache, KM_SLEEP);
3164 
3165 	amp->refcnt = 1;
3166 	amp->size = size;
3167 
3168 	amp->ahp = anon_create(btopr(size), ANON_SLEEP);
3169 	amp->swresv = swresv;
3170 	amp->locality = 0;
3171 	amp->a_szc = 0;
3172 	amp->a_sp = NULL;
3173 	return (amp);
3174 }
3175 
3176 void
3177 anonmap_free(struct anon_map *amp)
3178 {
3179 	ASSERT(amp->ahp);
3180 	ASSERT(amp->refcnt == 0);
3181 
3182 	lgrp_shm_policy_fini(amp, NULL);
3183 	anon_release(amp->ahp, btopr(amp->size));
3184 	kmem_cache_free(anonmap_cache, amp);
3185 }
3186 
3187 /*
3188  * Returns true if the app array has some empty slots.
3189  * The offp and lenp paramters are in/out paramters.  On entry
3190  * these values represent the starting offset and length of the
3191  * mapping.  When true is returned, these values may be modified
3192  * to be the largest range which includes empty slots.
3193  */
3194 int
3195 non_anon(struct anon_hdr *ahp, ulong_t anon_idx, u_offset_t *offp,
3196 				size_t *lenp)
3197 {
3198 	ulong_t i, el;
3199 	ssize_t low, high;
3200 	struct anon *ap;
3201 
3202 	low = -1;
3203 	for (i = 0, el = *lenp; i < el; i += PAGESIZE, anon_idx++) {
3204 		ap = anon_get_ptr(ahp, anon_idx);
3205 		if (ap == NULL) {
3206 			if (low == -1)
3207 				low = i;
3208 			high = i;
3209 		}
3210 	}
3211 	if (low != -1) {
3212 		/*
3213 		 * Found at least one non-anon page.
3214 		 * Set up the off and len return values.
3215 		 */
3216 		if (low != 0)
3217 			*offp += low;
3218 		*lenp = high - low + PAGESIZE;
3219 		return (1);
3220 	}
3221 	return (0);
3222 }
3223 
3224 /*
3225  * Return a count of the number of existing anon pages in the anon array
3226  * app in the range (off, off+len). The array and slots must be guaranteed
3227  * stable by the caller.
3228  */
3229 pgcnt_t
3230 anon_pages(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
3231 {
3232 	pgcnt_t cnt = 0;
3233 
3234 	while (nslots-- > 0) {
3235 		if ((anon_get_ptr(ahp, anon_index)) != NULL)
3236 			cnt++;
3237 		anon_index++;
3238 	}
3239 	return (cnt);
3240 }
3241 
3242 /*
3243  * Move reserved phys swap into memory swap (unreserve phys swap
3244  * and reserve mem swap by the same amount).
3245  * Used by segspt when it needs to lock resrved swap npages in memory
3246  */
3247 int
3248 anon_swap_adjust(pgcnt_t npages)
3249 {
3250 	pgcnt_t unlocked_mem_swap;
3251 
3252 	mutex_enter(&anoninfo_lock);
3253 
3254 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
3255 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
3256 
3257 	unlocked_mem_swap = k_anoninfo.ani_mem_resv
3258 					- k_anoninfo.ani_locked_swap;
3259 	if (npages > unlocked_mem_swap) {
3260 		spgcnt_t adjusted_swap = npages - unlocked_mem_swap;
3261 
3262 		/*
3263 		 * if there is not enough unlocked mem swap we take missing
3264 		 * amount from phys swap and give it to mem swap
3265 		 */
3266 		if (!page_reclaim_mem(adjusted_swap, segspt_minfree, 1)) {
3267 			mutex_exit(&anoninfo_lock);
3268 			return (ENOMEM);
3269 		}
3270 
3271 		k_anoninfo.ani_mem_resv += adjusted_swap;
3272 		ASSERT(k_anoninfo.ani_phys_resv >= adjusted_swap);
3273 		k_anoninfo.ani_phys_resv -= adjusted_swap;
3274 
3275 		ANI_ADD(adjusted_swap);
3276 	}
3277 	k_anoninfo.ani_locked_swap += npages;
3278 
3279 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
3280 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
3281 
3282 	mutex_exit(&anoninfo_lock);
3283 
3284 	return (0);
3285 }
3286 
3287 /*
3288  * 'unlocked' reserved mem swap so when it is unreserved it
3289  * can be moved back phys (disk) swap
3290  */
3291 void
3292 anon_swap_restore(pgcnt_t npages)
3293 {
3294 	mutex_enter(&anoninfo_lock);
3295 
3296 	ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
3297 
3298 	ASSERT(k_anoninfo.ani_locked_swap >= npages);
3299 	k_anoninfo.ani_locked_swap -= npages;
3300 
3301 	ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
3302 
3303 	mutex_exit(&anoninfo_lock);
3304 }
3305 
3306 /*
3307  * Return the pointer from the list for a
3308  * specified anon index.
3309  */
3310 ulong_t *
3311 anon_get_slot(struct anon_hdr *ahp, ulong_t an_idx)
3312 {
3313 	struct anon	**app;
3314 	void 		**ppp;
3315 
3316 	ASSERT(an_idx < ahp->size);
3317 
3318 	/*
3319 	 * Single level case.
3320 	 */
3321 	if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
3322 		return ((ulong_t *)&ahp->array_chunk[an_idx]);
3323 	} else {
3324 
3325 		/*
3326 		 * 2 level case.
3327 		 */
3328 		ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
3329 		if (*ppp == NULL) {
3330 			mutex_enter(&ahp->serial_lock);
3331 			ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
3332 			if (*ppp == NULL)
3333 				*ppp = kmem_zalloc(PAGESIZE, KM_SLEEP);
3334 			mutex_exit(&ahp->serial_lock);
3335 		}
3336 		app = *ppp;
3337 		return ((ulong_t *)&app[an_idx & ANON_CHUNK_OFF]);
3338 	}
3339 }
3340 
3341 void
3342 anon_array_enter(struct anon_map *amp, ulong_t an_idx, anon_sync_obj_t *sobj)
3343 {
3344 	ulong_t		*ap_slot;
3345 	kmutex_t	*mtx;
3346 	kcondvar_t	*cv;
3347 	int		hash;
3348 
3349 	/*
3350 	 * Use szc to determine anon slot(s) to appear atomic.
3351 	 * If szc = 0, then lock the anon slot and mark it busy.
3352 	 * If szc > 0, then lock the range of slots by getting the
3353 	 * anon_array_lock for the first anon slot, and mark only the
3354 	 * first anon slot busy to represent whole range being busy.
3355 	 */
3356 
3357 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
3358 	an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc));
3359 	hash = ANON_ARRAY_HASH(amp, an_idx);
3360 	sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex;
3361 	sobj->sync_cv = cv = &anon_array_cv[hash];
3362 	mutex_enter(mtx);
3363 	ap_slot = anon_get_slot(amp->ahp, an_idx);
3364 	while (ANON_ISBUSY(ap_slot))
3365 		cv_wait(cv, mtx);
3366 	ANON_SETBUSY(ap_slot);
3367 	sobj->sync_data = ap_slot;
3368 	mutex_exit(mtx);
3369 }
3370 
3371 int
3372 anon_array_try_enter(struct anon_map *amp, ulong_t an_idx,
3373 			anon_sync_obj_t *sobj)
3374 {
3375 	ulong_t		*ap_slot;
3376 	kmutex_t	*mtx;
3377 	int		hash;
3378 
3379 	/*
3380 	 * Try to lock a range of anon slots.
3381 	 * Use szc to determine anon slot(s) to appear atomic.
3382 	 * If szc = 0, then lock the anon slot and mark it busy.
3383 	 * If szc > 0, then lock the range of slots by getting the
3384 	 * anon_array_lock for the first anon slot, and mark only the
3385 	 * first anon slot busy to represent whole range being busy.
3386 	 * Fail if the mutex or the anon_array are busy.
3387 	 */
3388 
3389 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
3390 	an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc));
3391 	hash = ANON_ARRAY_HASH(amp, an_idx);
3392 	sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex;
3393 	sobj->sync_cv = &anon_array_cv[hash];
3394 	if (!mutex_tryenter(mtx)) {
3395 		return (EWOULDBLOCK);
3396 	}
3397 	ap_slot = anon_get_slot(amp->ahp, an_idx);
3398 	if (ANON_ISBUSY(ap_slot)) {
3399 		mutex_exit(mtx);
3400 		return (EWOULDBLOCK);
3401 	}
3402 	ANON_SETBUSY(ap_slot);
3403 	sobj->sync_data = ap_slot;
3404 	mutex_exit(mtx);
3405 	return (0);
3406 }
3407 
3408 void
3409 anon_array_exit(anon_sync_obj_t *sobj)
3410 {
3411 	mutex_enter(sobj->sync_mutex);
3412 	ASSERT(ANON_ISBUSY(sobj->sync_data));
3413 	ANON_CLRBUSY(sobj->sync_data);
3414 	if (CV_HAS_WAITERS(sobj->sync_cv))
3415 		cv_broadcast(sobj->sync_cv);
3416 	mutex_exit(sobj->sync_mutex);
3417 }
3418