xref: /titanic_52/usr/src/uts/common/vm/seg_vn.c (revision b35c6776bcf599e80d0bcf7e248313c3e5b4847a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 #pragma ident	"%Z%%M%	%I%	%E% SMI"
40 
41 /*
42  * VM - shared or copy-on-write from a vnode/anonymous memory.
43  */
44 
45 #include <sys/types.h>
46 #include <sys/param.h>
47 #include <sys/t_lock.h>
48 #include <sys/errno.h>
49 #include <sys/systm.h>
50 #include <sys/mman.h>
51 #include <sys/debug.h>
52 #include <sys/cred.h>
53 #include <sys/vmsystm.h>
54 #include <sys/tuneable.h>
55 #include <sys/bitmap.h>
56 #include <sys/swap.h>
57 #include <sys/kmem.h>
58 #include <sys/sysmacros.h>
59 #include <sys/vtrace.h>
60 #include <sys/cmn_err.h>
61 #include <sys/callb.h>
62 #include <sys/vm.h>
63 #include <sys/dumphdr.h>
64 #include <sys/lgrp.h>
65 
66 #include <vm/hat.h>
67 #include <vm/as.h>
68 #include <vm/seg.h>
69 #include <vm/seg_vn.h>
70 #include <vm/pvn.h>
71 #include <vm/anon.h>
72 #include <vm/page.h>
73 #include <vm/vpage.h>
74 #include <sys/proc.h>
75 #include <sys/task.h>
76 #include <sys/project.h>
77 #include <sys/zone.h>
78 #include <sys/shm_impl.h>
79 /*
80  * Private seg op routines.
81  */
82 static int	segvn_dup(struct seg *seg, struct seg *newseg);
83 static int	segvn_unmap(struct seg *seg, caddr_t addr, size_t len);
84 static void	segvn_free(struct seg *seg);
85 static faultcode_t segvn_fault(struct hat *hat, struct seg *seg,
86 		    caddr_t addr, size_t len, enum fault_type type,
87 		    enum seg_rw rw);
88 static faultcode_t segvn_faulta(struct seg *seg, caddr_t addr);
89 static int	segvn_setprot(struct seg *seg, caddr_t addr,
90 		    size_t len, uint_t prot);
91 static int	segvn_checkprot(struct seg *seg, caddr_t addr,
92 		    size_t len, uint_t prot);
93 static int	segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta);
94 static size_t	segvn_swapout(struct seg *seg);
95 static int	segvn_sync(struct seg *seg, caddr_t addr, size_t len,
96 		    int attr, uint_t flags);
97 static size_t	segvn_incore(struct seg *seg, caddr_t addr, size_t len,
98 		    char *vec);
99 static int	segvn_lockop(struct seg *seg, caddr_t addr, size_t len,
100 		    int attr, int op, ulong_t *lockmap, size_t pos);
101 static int	segvn_getprot(struct seg *seg, caddr_t addr, size_t len,
102 		    uint_t *protv);
103 static u_offset_t	segvn_getoffset(struct seg *seg, caddr_t addr);
104 static int	segvn_gettype(struct seg *seg, caddr_t addr);
105 static int	segvn_getvp(struct seg *seg, caddr_t addr,
106 		    struct vnode **vpp);
107 static int	segvn_advise(struct seg *seg, caddr_t addr, size_t len,
108 		    uint_t behav);
109 static void	segvn_dump(struct seg *seg);
110 static int	segvn_pagelock(struct seg *seg, caddr_t addr, size_t len,
111 		    struct page ***ppp, enum lock_type type, enum seg_rw rw);
112 static int	segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len,
113 		    uint_t szc);
114 static int	segvn_getmemid(struct seg *seg, caddr_t addr,
115 		    memid_t *memidp);
116 static lgrp_mem_policy_info_t	*segvn_getpolicy(struct seg *, caddr_t);
117 static int	segvn_capable(struct seg *seg, segcapability_t capable);
118 
119 struct	seg_ops segvn_ops = {
120 	segvn_dup,
121 	segvn_unmap,
122 	segvn_free,
123 	segvn_fault,
124 	segvn_faulta,
125 	segvn_setprot,
126 	segvn_checkprot,
127 	segvn_kluster,
128 	segvn_swapout,
129 	segvn_sync,
130 	segvn_incore,
131 	segvn_lockop,
132 	segvn_getprot,
133 	segvn_getoffset,
134 	segvn_gettype,
135 	segvn_getvp,
136 	segvn_advise,
137 	segvn_dump,
138 	segvn_pagelock,
139 	segvn_setpagesize,
140 	segvn_getmemid,
141 	segvn_getpolicy,
142 	segvn_capable,
143 };
144 
145 /*
146  * Common zfod structures, provided as a shorthand for others to use.
147  */
148 static segvn_crargs_t zfod_segvn_crargs =
149 	SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
150 static segvn_crargs_t kzfod_segvn_crargs =
151 	SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_USER,
152 	PROT_ALL & ~PROT_USER);
153 static segvn_crargs_t stack_noexec_crargs =
154 	SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_EXEC, PROT_ALL);
155 
156 caddr_t	zfod_argsp = (caddr_t)&zfod_segvn_crargs;	/* user zfod argsp */
157 caddr_t	kzfod_argsp = (caddr_t)&kzfod_segvn_crargs;	/* kernel zfod argsp */
158 caddr_t	stack_exec_argsp = (caddr_t)&zfod_segvn_crargs;	/* executable stack */
159 caddr_t	stack_noexec_argsp = (caddr_t)&stack_noexec_crargs; /* noexec stack */
160 
161 #define	vpgtob(n)	((n) * sizeof (struct vpage))	/* For brevity */
162 
163 size_t	segvn_comb_thrshld = UINT_MAX;	/* patchable -- see 1196681 */
164 
165 static int	segvn_concat(struct seg *, struct seg *, int);
166 static int	segvn_extend_prev(struct seg *, struct seg *,
167 		    struct segvn_crargs *, size_t);
168 static int	segvn_extend_next(struct seg *, struct seg *,
169 		    struct segvn_crargs *, size_t);
170 static void	segvn_softunlock(struct seg *, caddr_t, size_t, enum seg_rw);
171 static void	segvn_pagelist_rele(page_t **);
172 static void	segvn_setvnode_mpss(vnode_t *);
173 static void	segvn_relocate_pages(page_t **, page_t *);
174 static int	segvn_full_szcpages(page_t **, uint_t, int *, uint_t *);
175 static int	segvn_fill_vp_pages(struct segvn_data *, vnode_t *, u_offset_t,
176     uint_t, page_t **, page_t **, uint_t *, int *);
177 static faultcode_t segvn_fault_vnodepages(struct hat *, struct seg *, caddr_t,
178     caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int);
179 static faultcode_t segvn_fault_anonpages(struct hat *, struct seg *, caddr_t,
180     caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int);
181 static faultcode_t segvn_faultpage(struct hat *, struct seg *, caddr_t,
182     u_offset_t, struct vpage *, page_t **, uint_t,
183     enum fault_type, enum seg_rw, int, int);
184 static void	segvn_vpage(struct seg *);
185 static size_t	segvn_count_swap_by_vpages(struct seg *);
186 
187 static void segvn_purge(struct seg *seg);
188 static int segvn_reclaim(struct seg *, caddr_t, size_t, struct page **,
189     enum seg_rw);
190 
191 static int sameprot(struct seg *, caddr_t, size_t);
192 
193 static int segvn_demote_range(struct seg *, caddr_t, size_t, int, uint_t);
194 static int segvn_clrszc(struct seg *);
195 static struct seg *segvn_split_seg(struct seg *, caddr_t);
196 static int segvn_claim_pages(struct seg *, struct vpage *, u_offset_t,
197     ulong_t, uint_t);
198 
199 static void segvn_hat_rgn_unload_callback(caddr_t, caddr_t, caddr_t,
200     size_t, void *, u_offset_t);
201 
202 static int segvn_slock_anonpages(page_t *, int);
203 static void segvn_sunlock_anonpages(page_t *, int);
204 
205 static struct kmem_cache *segvn_cache;
206 static struct kmem_cache **segvn_szc_cache;
207 
208 #ifdef VM_STATS
209 static struct segvnvmstats_str {
210 	ulong_t	fill_vp_pages[31];
211 	ulong_t fltvnpages[49];
212 	ulong_t	fullszcpages[10];
213 	ulong_t	relocatepages[3];
214 	ulong_t	fltanpages[17];
215 	ulong_t pagelock[3];
216 	ulong_t	demoterange[3];
217 } segvnvmstats;
218 #endif /* VM_STATS */
219 
220 #define	SDR_RANGE	1		/* demote entire range */
221 #define	SDR_END		2		/* demote non aligned ends only */
222 
223 #define	CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr) {	    \
224 		if ((len) != 0) { 		      	      		      \
225 			lpgaddr = (caddr_t)P2ALIGN((uintptr_t)(addr), pgsz);  \
226 			ASSERT(lpgaddr >= (seg)->s_base);	      	      \
227 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)((addr) +    \
228 			    (len)), pgsz);				      \
229 			ASSERT(lpgeaddr > lpgaddr);		      	      \
230 			ASSERT(lpgeaddr <= (seg)->s_base + (seg)->s_size);    \
231 		} else {					      	      \
232 			lpgeaddr = lpgaddr = (addr);	      		      \
233 		}							      \
234 	}
235 
236 /*ARGSUSED*/
237 static int
238 segvn_cache_constructor(void *buf, void *cdrarg, int kmflags)
239 {
240 	struct segvn_data *svd = buf;
241 
242 	rw_init(&svd->lock, NULL, RW_DEFAULT, NULL);
243 	mutex_init(&svd->segp_slock, NULL, MUTEX_DEFAULT, NULL);
244 	svd->svn_trnext = svd->svn_trprev = NULL;
245 	return (0);
246 }
247 
248 /*ARGSUSED1*/
249 static void
250 segvn_cache_destructor(void *buf, void *cdrarg)
251 {
252 	struct segvn_data *svd = buf;
253 
254 	rw_destroy(&svd->lock);
255 	mutex_destroy(&svd->segp_slock);
256 }
257 
258 /*ARGSUSED*/
259 static int
260 svntr_cache_constructor(void *buf, void *cdrarg, int kmflags)
261 {
262 	bzero(buf, sizeof (svntr_t));
263 	return (0);
264 }
265 
266 /*
267  * Patching this variable to non-zero allows the system to run with
268  * stacks marked as "not executable".  It's a bit of a kludge, but is
269  * provided as a tweakable for platforms that export those ABIs
270  * (e.g. sparc V8) that have executable stacks enabled by default.
271  * There are also some restrictions for platforms that don't actually
272  * implement 'noexec' protections.
273  *
274  * Once enabled, the system is (therefore) unable to provide a fully
275  * ABI-compliant execution environment, though practically speaking,
276  * most everything works.  The exceptions are generally some interpreters
277  * and debuggers that create executable code on the stack and jump
278  * into it (without explicitly mprotecting the address range to include
279  * PROT_EXEC).
280  *
281  * One important class of applications that are disabled are those
282  * that have been transformed into malicious agents using one of the
283  * numerous "buffer overflow" attacks.  See 4007890.
284  */
285 int noexec_user_stack = 0;
286 int noexec_user_stack_log = 1;
287 
288 int segvn_lpg_disable = 0;
289 uint_t segvn_maxpgszc = 0;
290 
291 ulong_t segvn_vmpss_clrszc_cnt;
292 ulong_t segvn_vmpss_clrszc_err;
293 ulong_t segvn_fltvnpages_clrszc_cnt;
294 ulong_t segvn_fltvnpages_clrszc_err;
295 ulong_t segvn_setpgsz_align_err;
296 ulong_t segvn_setpgsz_anon_align_err;
297 ulong_t segvn_setpgsz_getattr_err;
298 ulong_t segvn_setpgsz_eof_err;
299 ulong_t segvn_faultvnmpss_align_err1;
300 ulong_t segvn_faultvnmpss_align_err2;
301 ulong_t segvn_faultvnmpss_align_err3;
302 ulong_t segvn_faultvnmpss_align_err4;
303 ulong_t segvn_faultvnmpss_align_err5;
304 ulong_t	segvn_vmpss_pageio_deadlk_err;
305 
306 int segvn_use_regions = 1;
307 
308 /*
309  * Segvn supports text replication optimization for NUMA platforms. Text
310  * replica's are represented by anon maps (amp). There's one amp per text file
311  * region per lgroup. A process chooses the amp for each of its text mappings
312  * based on the lgroup assignment of its main thread (t_tid = 1). All
313  * processes that want a replica on a particular lgroup for the same text file
314  * mapping share the same amp. amp's are looked up in svntr_hashtab hash table
315  * with vp,off,size,szc used as a key. Text replication segments are read only
316  * MAP_PRIVATE|MAP_TEXT segments that map vnode. Replication is achieved by
317  * forcing COW faults from vnode to amp and mapping amp pages instead of vnode
318  * pages. Replication amp is assigned to a segment when it gets its first
319  * pagefault. To handle main thread lgroup rehoming segvn_trasync_thread
320  * rechecks periodically if the process still maps an amp local to the main
321  * thread. If not async thread forces process to remap to an amp in the new
322  * home lgroup of the main thread. Current text replication implementation
323  * only provides the benefit to workloads that do most of their work in the
324  * main thread of a process or all the threads of a process run in the same
325  * lgroup. To extend text replication benefit to different types of
326  * multithreaded workloads further work would be needed in the hat layer to
327  * allow the same virtual address in the same hat to simultaneously map
328  * different physical addresses (i.e. page table replication would be needed
329  * for x86).
330  *
331  * amp pages are used instead of vnode pages as long as segment has a very
332  * simple life cycle.  It's created via segvn_create(), handles S_EXEC
333  * (S_READ) pagefaults and is fully unmapped.  If anything more complicated
334  * happens such as protection is changed, real COW fault happens, pagesize is
335  * changed, MC_LOCK is requested or segment is partially unmapped we turn off
336  * text replication by converting the segment back to vnode only segment
337  * (unmap segment's address range and set svd->amp to NULL).
338  *
339  * The original file can be changed after amp is inserted into
340  * svntr_hashtab. Processes that are launched after the file is already
341  * changed can't use the replica's created prior to the file change. To
342  * implement this functionality hash entries are timestamped. Replica's can
343  * only be used if current file modification time is the same as the timestamp
344  * saved when hash entry was created. However just timestamps alone are not
345  * sufficient to detect file modification via mmap(MAP_SHARED) mappings. We
346  * deal with file changes via MAP_SHARED mappings differently. When writable
347  * MAP_SHARED mappings are created to vnodes marked as executable we mark all
348  * existing replica's for this vnode as not usable for future text
349  * mappings. And we don't create new replica's for files that currently have
350  * potentially writable MAP_SHARED mappings (i.e. vn_is_mapped(V_WRITE) is
351  * true).
352  */
353 
354 #define	SEGVN_TEXTREPL_MAXBYTES_FACTOR	(20)
355 size_t	segvn_textrepl_max_bytes_factor = SEGVN_TEXTREPL_MAXBYTES_FACTOR;
356 
357 static ulong_t			svntr_hashtab_sz = 512;
358 static svntr_bucket_t		*svntr_hashtab = NULL;
359 static struct kmem_cache	*svntr_cache;
360 static svntr_stats_t		*segvn_textrepl_stats;
361 static ksema_t 			segvn_trasync_sem;
362 
363 int				segvn_disable_textrepl = 1;
364 size_t				textrepl_size_thresh = (size_t)-1;
365 size_t				segvn_textrepl_bytes = 0;
366 size_t				segvn_textrepl_max_bytes = 0;
367 clock_t				segvn_update_textrepl_interval = 0;
368 int				segvn_update_tr_time = 10;
369 int				segvn_disable_textrepl_update = 0;
370 
371 static void segvn_textrepl(struct seg *);
372 static void segvn_textunrepl(struct seg *, int);
373 static void segvn_inval_trcache(vnode_t *);
374 static void segvn_trasync_thread(void);
375 static void segvn_trupdate_wakeup(void *);
376 static void segvn_trupdate(void);
377 static void segvn_trupdate_seg(struct seg *, segvn_data_t *, svntr_t *,
378     ulong_t);
379 
380 /*
381  * Initialize segvn data structures
382  */
383 void
384 segvn_init(void)
385 {
386 	uint_t maxszc;
387 	uint_t szc;
388 	size_t pgsz;
389 
390 	segvn_cache = kmem_cache_create("segvn_cache",
391 	    sizeof (struct segvn_data), 0,
392 	    segvn_cache_constructor, segvn_cache_destructor, NULL,
393 	    NULL, NULL, 0);
394 
395 	if (segvn_lpg_disable == 0) {
396 		szc = maxszc = page_num_pagesizes() - 1;
397 		if (szc == 0) {
398 			segvn_lpg_disable = 1;
399 		}
400 		if (page_get_pagesize(0) != PAGESIZE) {
401 			panic("segvn_init: bad szc 0");
402 			/*NOTREACHED*/
403 		}
404 		while (szc != 0) {
405 			pgsz = page_get_pagesize(szc);
406 			if (pgsz <= PAGESIZE || !IS_P2ALIGNED(pgsz, pgsz)) {
407 				panic("segvn_init: bad szc %d", szc);
408 				/*NOTREACHED*/
409 			}
410 			szc--;
411 		}
412 		if (segvn_maxpgszc == 0 || segvn_maxpgszc > maxszc)
413 			segvn_maxpgszc = maxszc;
414 	}
415 
416 	if (segvn_maxpgszc) {
417 		segvn_szc_cache = (struct kmem_cache **)kmem_alloc(
418 		    (segvn_maxpgszc + 1) * sizeof (struct kmem_cache *),
419 		    KM_SLEEP);
420 	}
421 
422 	for (szc = 1; szc <= segvn_maxpgszc; szc++) {
423 		char	str[32];
424 
425 		(void) sprintf(str, "segvn_szc_cache%d", szc);
426 		segvn_szc_cache[szc] = kmem_cache_create(str,
427 		    page_get_pagecnt(szc) * sizeof (page_t *), 0,
428 		    NULL, NULL, NULL, NULL, NULL, KMC_NODEBUG);
429 	}
430 
431 
432 	if (segvn_use_regions && !hat_supported(HAT_SHARED_REGIONS, NULL))
433 		segvn_use_regions = 0;
434 
435 	/*
436 	 * For now shared regions and text replication segvn support
437 	 * are mutually exclusive. This is acceptable because
438 	 * currently significant benefit from text replication was
439 	 * only observed on AMD64 NUMA platforms (due to relatively
440 	 * small L2$ size) and currently we don't support shared
441 	 * regions on x86.
442 	 */
443 	if (segvn_use_regions && !segvn_disable_textrepl) {
444 		segvn_disable_textrepl = 1;
445 	}
446 
447 #if defined(_LP64)
448 	if (lgrp_optimizations() && textrepl_size_thresh != (size_t)-1 &&
449 	    !segvn_disable_textrepl) {
450 		ulong_t i;
451 		size_t hsz = svntr_hashtab_sz * sizeof (svntr_bucket_t);
452 
453 		svntr_cache = kmem_cache_create("svntr_cache",
454 		    sizeof (svntr_t), 0, svntr_cache_constructor, NULL,
455 		    NULL, NULL, NULL, 0);
456 		svntr_hashtab = kmem_zalloc(hsz, KM_SLEEP);
457 		for (i = 0; i < svntr_hashtab_sz; i++) {
458 			mutex_init(&svntr_hashtab[i].tr_lock,  NULL,
459 			    MUTEX_DEFAULT, NULL);
460 		}
461 		segvn_textrepl_max_bytes = ptob(physmem) /
462 		    segvn_textrepl_max_bytes_factor;
463 		segvn_textrepl_stats = kmem_zalloc(NCPU *
464 		    sizeof (svntr_stats_t), KM_SLEEP);
465 		sema_init(&segvn_trasync_sem, 0, NULL, SEMA_DEFAULT, NULL);
466 		(void) thread_create(NULL, 0, segvn_trasync_thread,
467 		    NULL, 0, &p0, TS_RUN, minclsyspri);
468 	}
469 #endif
470 }
471 
472 #define	SEGVN_PAGEIO	((void *)0x1)
473 #define	SEGVN_NOPAGEIO	((void *)0x2)
474 
475 static void
476 segvn_setvnode_mpss(vnode_t *vp)
477 {
478 	int err;
479 
480 	ASSERT(vp->v_mpssdata == NULL ||
481 	    vp->v_mpssdata == SEGVN_PAGEIO ||
482 	    vp->v_mpssdata == SEGVN_NOPAGEIO);
483 
484 	if (vp->v_mpssdata == NULL) {
485 		if (vn_vmpss_usepageio(vp)) {
486 			err = VOP_PAGEIO(vp, (page_t *)NULL,
487 			    (u_offset_t)0, 0, 0, CRED(), NULL);
488 		} else {
489 			err = ENOSYS;
490 		}
491 		/*
492 		 * set v_mpssdata just once per vnode life
493 		 * so that it never changes.
494 		 */
495 		mutex_enter(&vp->v_lock);
496 		if (vp->v_mpssdata == NULL) {
497 			if (err == EINVAL) {
498 				vp->v_mpssdata = SEGVN_PAGEIO;
499 			} else {
500 				vp->v_mpssdata = SEGVN_NOPAGEIO;
501 			}
502 		}
503 		mutex_exit(&vp->v_lock);
504 	}
505 }
506 
507 int
508 segvn_create(struct seg *seg, void *argsp)
509 {
510 	struct segvn_crargs *a = (struct segvn_crargs *)argsp;
511 	struct segvn_data *svd;
512 	size_t swresv = 0;
513 	struct cred *cred;
514 	struct anon_map *amp;
515 	int error = 0;
516 	size_t pgsz;
517 	lgrp_mem_policy_t mpolicy = LGRP_MEM_POLICY_DEFAULT;
518 	int use_rgn = 0;
519 	int trok = 0;
520 
521 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
522 
523 	if (a->type != MAP_PRIVATE && a->type != MAP_SHARED) {
524 		panic("segvn_create type");
525 		/*NOTREACHED*/
526 	}
527 
528 	/*
529 	 * Check arguments.  If a shared anon structure is given then
530 	 * it is illegal to also specify a vp.
531 	 */
532 	if (a->amp != NULL && a->vp != NULL) {
533 		panic("segvn_create anon_map");
534 		/*NOTREACHED*/
535 	}
536 
537 	if (a->type == MAP_PRIVATE && (a->flags & MAP_TEXT) &&
538 	    a->vp != NULL && a->prot == (PROT_USER | PROT_READ | PROT_EXEC) &&
539 	    segvn_use_regions) {
540 		use_rgn = 1;
541 	}
542 
543 	/* MAP_NORESERVE on a MAP_SHARED segment is meaningless. */
544 	if (a->type == MAP_SHARED)
545 		a->flags &= ~MAP_NORESERVE;
546 
547 	if (a->szc != 0) {
548 		if (segvn_lpg_disable != 0 || (a->szc == AS_MAP_NO_LPOOB) ||
549 		    (a->amp != NULL && a->type == MAP_PRIVATE) ||
550 		    (a->flags & MAP_NORESERVE) || seg->s_as == &kas) {
551 			a->szc = 0;
552 		} else {
553 			if (a->szc > segvn_maxpgszc)
554 				a->szc = segvn_maxpgszc;
555 			pgsz = page_get_pagesize(a->szc);
556 			if (!IS_P2ALIGNED(seg->s_base, pgsz) ||
557 			    !IS_P2ALIGNED(seg->s_size, pgsz)) {
558 				a->szc = 0;
559 			} else if (a->vp != NULL) {
560 				extern struct vnode kvp;
561 				if (IS_SWAPFSVP(a->vp) || VN_ISKAS(a->vp)) {
562 					/*
563 					 * paranoid check.
564 					 * hat_page_demote() is not supported
565 					 * on swapfs pages.
566 					 */
567 					a->szc = 0;
568 				} else if (map_addr_vacalign_check(seg->s_base,
569 				    a->offset & PAGEMASK)) {
570 					a->szc = 0;
571 				}
572 			} else if (a->amp != NULL) {
573 				pgcnt_t anum = btopr(a->offset);
574 				pgcnt_t pgcnt = page_get_pagecnt(a->szc);
575 				if (!IS_P2ALIGNED(anum, pgcnt)) {
576 					a->szc = 0;
577 				}
578 			}
579 		}
580 	}
581 
582 	/*
583 	 * If segment may need private pages, reserve them now.
584 	 */
585 	if (!(a->flags & MAP_NORESERVE) && ((a->vp == NULL && a->amp == NULL) ||
586 	    (a->type == MAP_PRIVATE && (a->prot & PROT_WRITE)))) {
587 		if (anon_resv(seg->s_size) == 0)
588 			return (EAGAIN);
589 		swresv = seg->s_size;
590 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
591 		    seg, swresv, 1);
592 	}
593 
594 	/*
595 	 * Reserve any mapping structures that may be required.
596 	 *
597 	 * Don't do it for segments that may use regions. It's currently a
598 	 * noop in the hat implementations anyway.
599 	 */
600 	if (!use_rgn) {
601 		hat_map(seg->s_as->a_hat, seg->s_base, seg->s_size, HAT_MAP);
602 	}
603 
604 	if (a->cred) {
605 		cred = a->cred;
606 		crhold(cred);
607 	} else {
608 		crhold(cred = CRED());
609 	}
610 
611 	/* Inform the vnode of the new mapping */
612 	if (a->vp != NULL) {
613 		error = VOP_ADDMAP(a->vp, a->offset & PAGEMASK,
614 		    seg->s_as, seg->s_base, seg->s_size, a->prot,
615 		    a->maxprot, a->type, cred, NULL);
616 		if (error) {
617 			if (swresv != 0) {
618 				anon_unresv(swresv);
619 				TRACE_3(TR_FAC_VM, TR_ANON_PROC,
620 				    "anon proc:%p %lu %u", seg, swresv, 0);
621 			}
622 			crfree(cred);
623 			if (!use_rgn) {
624 				hat_unload(seg->s_as->a_hat, seg->s_base,
625 				    seg->s_size, HAT_UNLOAD_UNMAP);
626 			}
627 			return (error);
628 		}
629 		/*
630 		 * svntr_hashtab will be NULL if we support shared regions.
631 		 */
632 		trok = ((a->flags & MAP_TEXT) &&
633 		    (seg->s_size > textrepl_size_thresh ||
634 		    (a->flags & _MAP_TEXTREPL)) &&
635 		    lgrp_optimizations() && svntr_hashtab != NULL &&
636 		    a->type == MAP_PRIVATE && swresv == 0 &&
637 		    !(a->flags & MAP_NORESERVE) &&
638 		    seg->s_as != &kas && a->vp->v_type == VREG);
639 
640 		ASSERT(!trok || !use_rgn);
641 	}
642 
643 	/*
644 	 * If more than one segment in the address space, and they're adjacent
645 	 * virtually, try to concatenate them.  Don't concatenate if an
646 	 * explicit anon_map structure was supplied (e.g., SystemV shared
647 	 * memory) or if we'll use text replication for this segment.
648 	 */
649 	if (a->amp == NULL && !use_rgn && !trok) {
650 		struct seg *pseg, *nseg;
651 		struct segvn_data *psvd, *nsvd;
652 		lgrp_mem_policy_t ppolicy, npolicy;
653 		uint_t	lgrp_mem_policy_flags = 0;
654 		extern lgrp_mem_policy_t lgrp_mem_default_policy;
655 
656 		/*
657 		 * Memory policy flags (lgrp_mem_policy_flags) is valid when
658 		 * extending stack/heap segments.
659 		 */
660 		if ((a->vp == NULL) && (a->type == MAP_PRIVATE) &&
661 		    !(a->flags & MAP_NORESERVE) && (seg->s_as != &kas)) {
662 			lgrp_mem_policy_flags = a->lgrp_mem_policy_flags;
663 		} else {
664 			/*
665 			 * Get policy when not extending it from another segment
666 			 */
667 			mpolicy = lgrp_mem_policy_default(seg->s_size, a->type);
668 		}
669 
670 		/*
671 		 * First, try to concatenate the previous and new segments
672 		 */
673 		pseg = AS_SEGPREV(seg->s_as, seg);
674 		if (pseg != NULL &&
675 		    pseg->s_base + pseg->s_size == seg->s_base &&
676 		    pseg->s_ops == &segvn_ops) {
677 			/*
678 			 * Get memory allocation policy from previous segment.
679 			 * When extension is specified (e.g. for heap) apply
680 			 * this policy to the new segment regardless of the
681 			 * outcome of segment concatenation.  Extension occurs
682 			 * for non-default policy otherwise default policy is
683 			 * used and is based on extended segment size.
684 			 */
685 			psvd = (struct segvn_data *)pseg->s_data;
686 			ppolicy = psvd->policy_info.mem_policy;
687 			if (lgrp_mem_policy_flags ==
688 			    LGRP_MP_FLAG_EXTEND_UP) {
689 				if (ppolicy != lgrp_mem_default_policy) {
690 					mpolicy = ppolicy;
691 				} else {
692 					mpolicy = lgrp_mem_policy_default(
693 					    pseg->s_size + seg->s_size,
694 					    a->type);
695 				}
696 			}
697 
698 			if (mpolicy == ppolicy &&
699 			    (pseg->s_size + seg->s_size <=
700 			    segvn_comb_thrshld || psvd->amp == NULL) &&
701 			    segvn_extend_prev(pseg, seg, a, swresv) == 0) {
702 				/*
703 				 * success! now try to concatenate
704 				 * with following seg
705 				 */
706 				crfree(cred);
707 				nseg = AS_SEGNEXT(pseg->s_as, pseg);
708 				if (nseg != NULL &&
709 				    nseg != pseg &&
710 				    nseg->s_ops == &segvn_ops &&
711 				    pseg->s_base + pseg->s_size ==
712 				    nseg->s_base)
713 					(void) segvn_concat(pseg, nseg, 0);
714 				ASSERT(pseg->s_szc == 0 ||
715 				    (a->szc == pseg->s_szc &&
716 				    IS_P2ALIGNED(pseg->s_base, pgsz) &&
717 				    IS_P2ALIGNED(pseg->s_size, pgsz)));
718 				return (0);
719 			}
720 		}
721 
722 		/*
723 		 * Failed, so try to concatenate with following seg
724 		 */
725 		nseg = AS_SEGNEXT(seg->s_as, seg);
726 		if (nseg != NULL &&
727 		    seg->s_base + seg->s_size == nseg->s_base &&
728 		    nseg->s_ops == &segvn_ops) {
729 			/*
730 			 * Get memory allocation policy from next segment.
731 			 * When extension is specified (e.g. for stack) apply
732 			 * this policy to the new segment regardless of the
733 			 * outcome of segment concatenation.  Extension occurs
734 			 * for non-default policy otherwise default policy is
735 			 * used and is based on extended segment size.
736 			 */
737 			nsvd = (struct segvn_data *)nseg->s_data;
738 			npolicy = nsvd->policy_info.mem_policy;
739 			if (lgrp_mem_policy_flags ==
740 			    LGRP_MP_FLAG_EXTEND_DOWN) {
741 				if (npolicy != lgrp_mem_default_policy) {
742 					mpolicy = npolicy;
743 				} else {
744 					mpolicy = lgrp_mem_policy_default(
745 					    nseg->s_size + seg->s_size,
746 					    a->type);
747 				}
748 			}
749 
750 			if (mpolicy == npolicy &&
751 			    segvn_extend_next(seg, nseg, a, swresv) == 0) {
752 				crfree(cred);
753 				ASSERT(nseg->s_szc == 0 ||
754 				    (a->szc == nseg->s_szc &&
755 				    IS_P2ALIGNED(nseg->s_base, pgsz) &&
756 				    IS_P2ALIGNED(nseg->s_size, pgsz)));
757 				return (0);
758 			}
759 		}
760 	}
761 
762 	if (a->vp != NULL) {
763 		VN_HOLD(a->vp);
764 		if (a->type == MAP_SHARED)
765 			lgrp_shm_policy_init(NULL, a->vp);
766 	}
767 	svd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
768 
769 	seg->s_ops = &segvn_ops;
770 	seg->s_data = (void *)svd;
771 	seg->s_szc = a->szc;
772 
773 	svd->seg = seg;
774 	svd->vp = a->vp;
775 	/*
776 	 * Anonymous mappings have no backing file so the offset is meaningless.
777 	 */
778 	svd->offset = a->vp ? (a->offset & PAGEMASK) : 0;
779 	svd->prot = a->prot;
780 	svd->maxprot = a->maxprot;
781 	svd->pageprot = 0;
782 	svd->type = a->type;
783 	svd->vpage = NULL;
784 	svd->cred = cred;
785 	svd->advice = MADV_NORMAL;
786 	svd->pageadvice = 0;
787 	svd->flags = (ushort_t)a->flags;
788 	svd->softlockcnt = 0;
789 	svd->rcookie = HAT_INVALID_REGION_COOKIE;
790 	svd->pageswap = 0;
791 
792 	if (a->szc != 0 && a->vp != NULL) {
793 		segvn_setvnode_mpss(a->vp);
794 	}
795 	if (svd->type == MAP_SHARED && svd->vp != NULL &&
796 	    (svd->vp->v_flag & VVMEXEC) && (svd->prot & PROT_WRITE)) {
797 		ASSERT(vn_is_mapped(svd->vp, V_WRITE));
798 		segvn_inval_trcache(svd->vp);
799 	}
800 
801 	amp = a->amp;
802 	if ((svd->amp = amp) == NULL) {
803 		svd->anon_index = 0;
804 		if (svd->type == MAP_SHARED) {
805 			svd->swresv = 0;
806 			/*
807 			 * Shared mappings to a vp need no other setup.
808 			 * If we have a shared mapping to an anon_map object
809 			 * which hasn't been allocated yet,  allocate the
810 			 * struct now so that it will be properly shared
811 			 * by remembering the swap reservation there.
812 			 */
813 			if (a->vp == NULL) {
814 				svd->amp = anonmap_alloc(seg->s_size, swresv,
815 				    ANON_SLEEP);
816 				svd->amp->a_szc = seg->s_szc;
817 			}
818 		} else {
819 			/*
820 			 * Private mapping (with or without a vp).
821 			 * Allocate anon_map when needed.
822 			 */
823 			svd->swresv = swresv;
824 		}
825 	} else {
826 		pgcnt_t anon_num;
827 
828 		/*
829 		 * Mapping to an existing anon_map structure without a vp.
830 		 * For now we will insure that the segment size isn't larger
831 		 * than the size - offset gives us.  Later on we may wish to
832 		 * have the anon array dynamically allocated itself so that
833 		 * we don't always have to allocate all the anon pointer slots.
834 		 * This of course involves adding extra code to check that we
835 		 * aren't trying to use an anon pointer slot beyond the end
836 		 * of the currently allocated anon array.
837 		 */
838 		if ((amp->size - a->offset) < seg->s_size) {
839 			panic("segvn_create anon_map size");
840 			/*NOTREACHED*/
841 		}
842 
843 		anon_num = btopr(a->offset);
844 
845 		if (a->type == MAP_SHARED) {
846 			/*
847 			 * SHARED mapping to a given anon_map.
848 			 */
849 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
850 			amp->refcnt++;
851 			if (a->szc > amp->a_szc) {
852 				amp->a_szc = a->szc;
853 			}
854 			ANON_LOCK_EXIT(&amp->a_rwlock);
855 			svd->anon_index = anon_num;
856 			svd->swresv = 0;
857 		} else {
858 			/*
859 			 * PRIVATE mapping to a given anon_map.
860 			 * Make sure that all the needed anon
861 			 * structures are created (so that we will
862 			 * share the underlying pages if nothing
863 			 * is written by this mapping) and then
864 			 * duplicate the anon array as is done
865 			 * when a privately mapped segment is dup'ed.
866 			 */
867 			struct anon *ap;
868 			caddr_t addr;
869 			caddr_t eaddr;
870 			ulong_t	anon_idx;
871 			int hat_flag = HAT_LOAD;
872 
873 			if (svd->flags & MAP_TEXT) {
874 				hat_flag |= HAT_LOAD_TEXT;
875 			}
876 
877 			svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP);
878 			svd->amp->a_szc = seg->s_szc;
879 			svd->anon_index = 0;
880 			svd->swresv = swresv;
881 
882 			/*
883 			 * Prevent 2 threads from allocating anon
884 			 * slots simultaneously.
885 			 */
886 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
887 			eaddr = seg->s_base + seg->s_size;
888 
889 			for (anon_idx = anon_num, addr = seg->s_base;
890 			    addr < eaddr; addr += PAGESIZE, anon_idx++) {
891 				page_t *pp;
892 
893 				if ((ap = anon_get_ptr(amp->ahp,
894 				    anon_idx)) != NULL)
895 					continue;
896 
897 				/*
898 				 * Allocate the anon struct now.
899 				 * Might as well load up translation
900 				 * to the page while we're at it...
901 				 */
902 				pp = anon_zero(seg, addr, &ap, cred);
903 				if (ap == NULL || pp == NULL) {
904 					panic("segvn_create anon_zero");
905 					/*NOTREACHED*/
906 				}
907 
908 				/*
909 				 * Re-acquire the anon_map lock and
910 				 * initialize the anon array entry.
911 				 */
912 				ASSERT(anon_get_ptr(amp->ahp,
913 				    anon_idx) == NULL);
914 				(void) anon_set_ptr(amp->ahp, anon_idx, ap,
915 				    ANON_SLEEP);
916 
917 				ASSERT(seg->s_szc == 0);
918 				ASSERT(!IS_VMODSORT(pp->p_vnode));
919 
920 				ASSERT(use_rgn == 0);
921 				hat_memload(seg->s_as->a_hat, addr, pp,
922 				    svd->prot & ~PROT_WRITE, hat_flag);
923 
924 				page_unlock(pp);
925 			}
926 			ASSERT(seg->s_szc == 0);
927 			anon_dup(amp->ahp, anon_num, svd->amp->ahp,
928 			    0, seg->s_size);
929 			ANON_LOCK_EXIT(&amp->a_rwlock);
930 		}
931 	}
932 
933 	/*
934 	 * Set default memory allocation policy for segment
935 	 *
936 	 * Always set policy for private memory at least for initialization
937 	 * even if this is a shared memory segment
938 	 */
939 	(void) lgrp_privm_policy_set(mpolicy, &svd->policy_info, seg->s_size);
940 
941 	if (svd->type == MAP_SHARED)
942 		(void) lgrp_shm_policy_set(mpolicy, svd->amp, svd->anon_index,
943 		    svd->vp, svd->offset, seg->s_size);
944 
945 	if (use_rgn) {
946 		ASSERT(!trok);
947 		ASSERT(svd->amp == NULL);
948 		svd->rcookie = hat_join_region(seg->s_as->a_hat, seg->s_base,
949 		    seg->s_size, (void *)svd->vp, svd->offset, svd->prot,
950 		    (uchar_t)seg->s_szc, segvn_hat_rgn_unload_callback,
951 		    HAT_REGION_TEXT);
952 	}
953 
954 	ASSERT(!trok || !(svd->prot & PROT_WRITE));
955 	svd->tr_state = trok ? SEGVN_TR_INIT : SEGVN_TR_OFF;
956 
957 	return (0);
958 }
959 
960 /*
961  * Concatenate two existing segments, if possible.
962  * Return 0 on success, -1 if two segments are not compatible
963  * or -2 on memory allocation failure.
964  * If amp_cat == 1 then try and concat segments with anon maps
965  */
966 static int
967 segvn_concat(struct seg *seg1, struct seg *seg2, int amp_cat)
968 {
969 	struct segvn_data *svd1 = seg1->s_data;
970 	struct segvn_data *svd2 = seg2->s_data;
971 	struct anon_map *amp1 = svd1->amp;
972 	struct anon_map *amp2 = svd2->amp;
973 	struct vpage *vpage1 = svd1->vpage;
974 	struct vpage *vpage2 = svd2->vpage, *nvpage = NULL;
975 	size_t size, nvpsize;
976 	pgcnt_t npages1, npages2;
977 
978 	ASSERT(seg1->s_as && seg2->s_as && seg1->s_as == seg2->s_as);
979 	ASSERT(AS_WRITE_HELD(seg1->s_as, &seg1->s_as->a_lock));
980 	ASSERT(seg1->s_ops == seg2->s_ops);
981 
982 	if (HAT_IS_REGION_COOKIE_VALID(svd1->rcookie) ||
983 	    HAT_IS_REGION_COOKIE_VALID(svd2->rcookie)) {
984 		return (-1);
985 	}
986 
987 	/* both segments exist, try to merge them */
988 #define	incompat(x)	(svd1->x != svd2->x)
989 	if (incompat(vp) || incompat(maxprot) ||
990 	    (!svd1->pageadvice && !svd2->pageadvice && incompat(advice)) ||
991 	    (!svd1->pageprot && !svd2->pageprot && incompat(prot)) ||
992 	    incompat(type) || incompat(cred) || incompat(flags) ||
993 	    seg1->s_szc != seg2->s_szc || incompat(policy_info.mem_policy) ||
994 	    (svd2->softlockcnt > 0))
995 		return (-1);
996 #undef incompat
997 
998 	/*
999 	 * vp == NULL implies zfod, offset doesn't matter
1000 	 */
1001 	if (svd1->vp != NULL &&
1002 	    svd1->offset + seg1->s_size != svd2->offset) {
1003 		return (-1);
1004 	}
1005 
1006 	/*
1007 	 * Don't concatenate if either segment uses text replication.
1008 	 */
1009 	if (svd1->tr_state != SEGVN_TR_OFF || svd2->tr_state != SEGVN_TR_OFF) {
1010 		return (-1);
1011 	}
1012 
1013 	/*
1014 	 * Fail early if we're not supposed to concatenate
1015 	 * segments with non NULL amp.
1016 	 */
1017 	if (amp_cat == 0 && (amp1 != NULL || amp2 != NULL)) {
1018 		return (-1);
1019 	}
1020 
1021 	if (svd1->vp == NULL && svd1->type == MAP_SHARED) {
1022 		if (amp1 != amp2) {
1023 			return (-1);
1024 		}
1025 		if (amp1 != NULL && svd1->anon_index + btop(seg1->s_size) !=
1026 		    svd2->anon_index) {
1027 			return (-1);
1028 		}
1029 		ASSERT(amp1 == NULL || amp1->refcnt >= 2);
1030 	}
1031 
1032 	/*
1033 	 * If either seg has vpages, create a new merged vpage array.
1034 	 */
1035 	if (vpage1 != NULL || vpage2 != NULL) {
1036 		struct vpage *vp, *evp;
1037 
1038 		npages1 = seg_pages(seg1);
1039 		npages2 = seg_pages(seg2);
1040 		nvpsize = vpgtob(npages1 + npages2);
1041 
1042 		if ((nvpage = kmem_zalloc(nvpsize, KM_NOSLEEP)) == NULL) {
1043 			return (-2);
1044 		}
1045 
1046 		if (vpage1 != NULL) {
1047 			bcopy(vpage1, nvpage, vpgtob(npages1));
1048 		} else {
1049 			evp = nvpage + npages1;
1050 			for (vp = nvpage; vp < evp; vp++) {
1051 				VPP_SETPROT(vp, svd1->prot);
1052 				VPP_SETADVICE(vp, svd1->advice);
1053 			}
1054 		}
1055 
1056 		if (vpage2 != NULL) {
1057 			bcopy(vpage2, nvpage + npages1, vpgtob(npages2));
1058 		} else {
1059 			evp = nvpage + npages1 + npages2;
1060 			for (vp = nvpage + npages1; vp < evp; vp++) {
1061 				VPP_SETPROT(vp, svd2->prot);
1062 				VPP_SETADVICE(vp, svd2->advice);
1063 			}
1064 		}
1065 
1066 		if (svd2->pageswap && (!svd1->pageswap && svd1->swresv)) {
1067 			ASSERT(svd1->swresv == seg1->s_size);
1068 			ASSERT(!(svd1->flags & MAP_NORESERVE));
1069 			ASSERT(!(svd2->flags & MAP_NORESERVE));
1070 			evp = nvpage + npages1;
1071 			for (vp = nvpage; vp < evp; vp++) {
1072 				VPP_SETSWAPRES(vp);
1073 			}
1074 		}
1075 
1076 		if (svd1->pageswap && (!svd2->pageswap && svd2->swresv)) {
1077 			ASSERT(svd2->swresv == seg2->s_size);
1078 			ASSERT(!(svd1->flags & MAP_NORESERVE));
1079 			ASSERT(!(svd2->flags & MAP_NORESERVE));
1080 			vp = nvpage + npages1;
1081 			evp = vp + npages2;
1082 			for (; vp < evp; vp++) {
1083 				VPP_SETSWAPRES(vp);
1084 			}
1085 		}
1086 	}
1087 	ASSERT((vpage1 != NULL || vpage2 != NULL) ||
1088 	    (svd1->pageswap == 0 && svd2->pageswap == 0));
1089 
1090 	/*
1091 	 * If either segment has private pages, create a new merged anon
1092 	 * array. If mergeing shared anon segments just decrement anon map's
1093 	 * refcnt.
1094 	 */
1095 	if (amp1 != NULL && svd1->type == MAP_SHARED) {
1096 		ASSERT(amp1 == amp2 && svd1->vp == NULL);
1097 		ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
1098 		ASSERT(amp1->refcnt >= 2);
1099 		amp1->refcnt--;
1100 		ANON_LOCK_EXIT(&amp1->a_rwlock);
1101 		svd2->amp = NULL;
1102 	} else if (amp1 != NULL || amp2 != NULL) {
1103 		struct anon_hdr *nahp;
1104 		struct anon_map *namp = NULL;
1105 		size_t asize;
1106 
1107 		ASSERT(svd1->type == MAP_PRIVATE);
1108 
1109 		asize = seg1->s_size + seg2->s_size;
1110 		if ((nahp = anon_create(btop(asize), ANON_NOSLEEP)) == NULL) {
1111 			if (nvpage != NULL) {
1112 				kmem_free(nvpage, nvpsize);
1113 			}
1114 			return (-2);
1115 		}
1116 		if (amp1 != NULL) {
1117 			/*
1118 			 * XXX anon rwlock is not really needed because
1119 			 * this is a private segment and we are writers.
1120 			 */
1121 			ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
1122 			ASSERT(amp1->refcnt == 1);
1123 			if (anon_copy_ptr(amp1->ahp, svd1->anon_index,
1124 			    nahp, 0, btop(seg1->s_size), ANON_NOSLEEP)) {
1125 				anon_release(nahp, btop(asize));
1126 				ANON_LOCK_EXIT(&amp1->a_rwlock);
1127 				if (nvpage != NULL) {
1128 					kmem_free(nvpage, nvpsize);
1129 				}
1130 				return (-2);
1131 			}
1132 		}
1133 		if (amp2 != NULL) {
1134 			ANON_LOCK_ENTER(&amp2->a_rwlock, RW_WRITER);
1135 			ASSERT(amp2->refcnt == 1);
1136 			if (anon_copy_ptr(amp2->ahp, svd2->anon_index,
1137 			    nahp, btop(seg1->s_size), btop(seg2->s_size),
1138 			    ANON_NOSLEEP)) {
1139 				anon_release(nahp, btop(asize));
1140 				ANON_LOCK_EXIT(&amp2->a_rwlock);
1141 				if (amp1 != NULL) {
1142 					ANON_LOCK_EXIT(&amp1->a_rwlock);
1143 				}
1144 				if (nvpage != NULL) {
1145 					kmem_free(nvpage, nvpsize);
1146 				}
1147 				return (-2);
1148 			}
1149 		}
1150 		if (amp1 != NULL) {
1151 			namp = amp1;
1152 			anon_release(amp1->ahp, btop(amp1->size));
1153 		}
1154 		if (amp2 != NULL) {
1155 			if (namp == NULL) {
1156 				ASSERT(amp1 == NULL);
1157 				namp = amp2;
1158 				anon_release(amp2->ahp, btop(amp2->size));
1159 			} else {
1160 				amp2->refcnt--;
1161 				ANON_LOCK_EXIT(&amp2->a_rwlock);
1162 				anonmap_free(amp2);
1163 			}
1164 			svd2->amp = NULL; /* needed for seg_free */
1165 		}
1166 		namp->ahp = nahp;
1167 		namp->size = asize;
1168 		svd1->amp = namp;
1169 		svd1->anon_index = 0;
1170 		ANON_LOCK_EXIT(&namp->a_rwlock);
1171 	}
1172 	/*
1173 	 * Now free the old vpage structures.
1174 	 */
1175 	if (nvpage != NULL) {
1176 		if (vpage1 != NULL) {
1177 			kmem_free(vpage1, vpgtob(npages1));
1178 		}
1179 		if (vpage2 != NULL) {
1180 			svd2->vpage = NULL;
1181 			kmem_free(vpage2, vpgtob(npages2));
1182 		}
1183 		if (svd2->pageprot) {
1184 			svd1->pageprot = 1;
1185 		}
1186 		if (svd2->pageadvice) {
1187 			svd1->pageadvice = 1;
1188 		}
1189 		if (svd2->pageswap) {
1190 			svd1->pageswap = 1;
1191 		}
1192 		svd1->vpage = nvpage;
1193 	}
1194 
1195 	/* all looks ok, merge segments */
1196 	svd1->swresv += svd2->swresv;
1197 	svd2->swresv = 0;  /* so seg_free doesn't release swap space */
1198 	size = seg2->s_size;
1199 	seg_free(seg2);
1200 	seg1->s_size += size;
1201 	return (0);
1202 }
1203 
1204 /*
1205  * Extend the previous segment (seg1) to include the
1206  * new segment (seg2 + a), if possible.
1207  * Return 0 on success.
1208  */
1209 static int
1210 segvn_extend_prev(seg1, seg2, a, swresv)
1211 	struct seg *seg1, *seg2;
1212 	struct segvn_crargs *a;
1213 	size_t swresv;
1214 {
1215 	struct segvn_data *svd1 = (struct segvn_data *)seg1->s_data;
1216 	size_t size;
1217 	struct anon_map *amp1;
1218 	struct vpage *new_vpage;
1219 
1220 	/*
1221 	 * We don't need any segment level locks for "segvn" data
1222 	 * since the address space is "write" locked.
1223 	 */
1224 	ASSERT(seg1->s_as && AS_WRITE_HELD(seg1->s_as, &seg1->s_as->a_lock));
1225 
1226 	if (HAT_IS_REGION_COOKIE_VALID(svd1->rcookie)) {
1227 		return (-1);
1228 	}
1229 
1230 	/* second segment is new, try to extend first */
1231 	/* XXX - should also check cred */
1232 	if (svd1->vp != a->vp || svd1->maxprot != a->maxprot ||
1233 	    (!svd1->pageprot && (svd1->prot != a->prot)) ||
1234 	    svd1->type != a->type || svd1->flags != a->flags ||
1235 	    seg1->s_szc != a->szc)
1236 		return (-1);
1237 
1238 	/* vp == NULL implies zfod, offset doesn't matter */
1239 	if (svd1->vp != NULL &&
1240 	    svd1->offset + seg1->s_size != (a->offset & PAGEMASK))
1241 		return (-1);
1242 
1243 	if (svd1->tr_state != SEGVN_TR_OFF) {
1244 		return (-1);
1245 	}
1246 
1247 	amp1 = svd1->amp;
1248 	if (amp1) {
1249 		pgcnt_t newpgs;
1250 
1251 		/*
1252 		 * Segment has private pages, can data structures
1253 		 * be expanded?
1254 		 *
1255 		 * Acquire the anon_map lock to prevent it from changing,
1256 		 * if it is shared.  This ensures that the anon_map
1257 		 * will not change while a thread which has a read/write
1258 		 * lock on an address space references it.
1259 		 * XXX - Don't need the anon_map lock at all if "refcnt"
1260 		 * is 1.
1261 		 *
1262 		 * Can't grow a MAP_SHARED segment with an anonmap because
1263 		 * there may be existing anon slots where we want to extend
1264 		 * the segment and we wouldn't know what to do with them
1265 		 * (e.g., for tmpfs right thing is to just leave them there,
1266 		 * for /dev/zero they should be cleared out).
1267 		 */
1268 		if (svd1->type == MAP_SHARED)
1269 			return (-1);
1270 
1271 		ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
1272 		if (amp1->refcnt > 1) {
1273 			ANON_LOCK_EXIT(&amp1->a_rwlock);
1274 			return (-1);
1275 		}
1276 		newpgs = anon_grow(amp1->ahp, &svd1->anon_index,
1277 		    btop(seg1->s_size), btop(seg2->s_size), ANON_NOSLEEP);
1278 
1279 		if (newpgs == 0) {
1280 			ANON_LOCK_EXIT(&amp1->a_rwlock);
1281 			return (-1);
1282 		}
1283 		amp1->size = ptob(newpgs);
1284 		ANON_LOCK_EXIT(&amp1->a_rwlock);
1285 	}
1286 	if (svd1->vpage != NULL) {
1287 		struct vpage *vp, *evp;
1288 		new_vpage =
1289 		    kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)),
1290 			KM_NOSLEEP);
1291 		if (new_vpage == NULL)
1292 			return (-1);
1293 		bcopy(svd1->vpage, new_vpage, vpgtob(seg_pages(seg1)));
1294 		kmem_free(svd1->vpage, vpgtob(seg_pages(seg1)));
1295 		svd1->vpage = new_vpage;
1296 
1297 		vp = new_vpage + seg_pages(seg1);
1298 		evp = vp + seg_pages(seg2);
1299 		for (; vp < evp; vp++)
1300 			VPP_SETPROT(vp, a->prot);
1301 		if (svd1->pageswap && swresv) {
1302 			ASSERT(!(svd1->flags & MAP_NORESERVE));
1303 			ASSERT(swresv == seg2->s_size);
1304 			vp = new_vpage + seg_pages(seg1);
1305 			for (; vp < evp; vp++) {
1306 				VPP_SETSWAPRES(vp);
1307 			}
1308 		}
1309 	}
1310 	ASSERT(svd1->vpage != NULL || svd1->pageswap == 0);
1311 	size = seg2->s_size;
1312 	seg_free(seg2);
1313 	seg1->s_size += size;
1314 	svd1->swresv += swresv;
1315 	if (svd1->pageprot && (a->prot & PROT_WRITE) &&
1316 	    svd1->type == MAP_SHARED && svd1->vp != NULL &&
1317 	    (svd1->vp->v_flag & VVMEXEC)) {
1318 		ASSERT(vn_is_mapped(svd1->vp, V_WRITE));
1319 		segvn_inval_trcache(svd1->vp);
1320 	}
1321 	return (0);
1322 }
1323 
1324 /*
1325  * Extend the next segment (seg2) to include the
1326  * new segment (seg1 + a), if possible.
1327  * Return 0 on success.
1328  */
1329 static int
1330 segvn_extend_next(
1331 	struct seg *seg1,
1332 	struct seg *seg2,
1333 	struct segvn_crargs *a,
1334 	size_t swresv)
1335 {
1336 	struct segvn_data *svd2 = (struct segvn_data *)seg2->s_data;
1337 	size_t size;
1338 	struct anon_map *amp2;
1339 	struct vpage *new_vpage;
1340 
1341 	/*
1342 	 * We don't need any segment level locks for "segvn" data
1343 	 * since the address space is "write" locked.
1344 	 */
1345 	ASSERT(seg2->s_as && AS_WRITE_HELD(seg2->s_as, &seg2->s_as->a_lock));
1346 
1347 	if (HAT_IS_REGION_COOKIE_VALID(svd2->rcookie)) {
1348 		return (-1);
1349 	}
1350 
1351 	/* first segment is new, try to extend second */
1352 	/* XXX - should also check cred */
1353 	if (svd2->vp != a->vp || svd2->maxprot != a->maxprot ||
1354 	    (!svd2->pageprot && (svd2->prot != a->prot)) ||
1355 	    svd2->type != a->type || svd2->flags != a->flags ||
1356 	    seg2->s_szc != a->szc)
1357 		return (-1);
1358 	/* vp == NULL implies zfod, offset doesn't matter */
1359 	if (svd2->vp != NULL &&
1360 	    (a->offset & PAGEMASK) + seg1->s_size != svd2->offset)
1361 		return (-1);
1362 
1363 	if (svd2->tr_state != SEGVN_TR_OFF) {
1364 		return (-1);
1365 	}
1366 
1367 	amp2 = svd2->amp;
1368 	if (amp2) {
1369 		pgcnt_t newpgs;
1370 
1371 		/*
1372 		 * Segment has private pages, can data structures
1373 		 * be expanded?
1374 		 *
1375 		 * Acquire the anon_map lock to prevent it from changing,
1376 		 * if it is shared.  This ensures that the anon_map
1377 		 * will not change while a thread which has a read/write
1378 		 * lock on an address space references it.
1379 		 *
1380 		 * XXX - Don't need the anon_map lock at all if "refcnt"
1381 		 * is 1.
1382 		 */
1383 		if (svd2->type == MAP_SHARED)
1384 			return (-1);
1385 
1386 		ANON_LOCK_ENTER(&amp2->a_rwlock, RW_WRITER);
1387 		if (amp2->refcnt > 1) {
1388 			ANON_LOCK_EXIT(&amp2->a_rwlock);
1389 			return (-1);
1390 		}
1391 		newpgs = anon_grow(amp2->ahp, &svd2->anon_index,
1392 		    btop(seg2->s_size), btop(seg1->s_size),
1393 		    ANON_NOSLEEP | ANON_GROWDOWN);
1394 
1395 		if (newpgs == 0) {
1396 			ANON_LOCK_EXIT(&amp2->a_rwlock);
1397 			return (-1);
1398 		}
1399 		amp2->size = ptob(newpgs);
1400 		ANON_LOCK_EXIT(&amp2->a_rwlock);
1401 	}
1402 	if (svd2->vpage != NULL) {
1403 		struct vpage *vp, *evp;
1404 		new_vpage =
1405 		    kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)),
1406 		    KM_NOSLEEP);
1407 		if (new_vpage == NULL) {
1408 			/* Not merging segments so adjust anon_index back */
1409 			if (amp2)
1410 				svd2->anon_index += seg_pages(seg1);
1411 			return (-1);
1412 		}
1413 		bcopy(svd2->vpage, new_vpage + seg_pages(seg1),
1414 		    vpgtob(seg_pages(seg2)));
1415 		kmem_free(svd2->vpage, vpgtob(seg_pages(seg2)));
1416 		svd2->vpage = new_vpage;
1417 
1418 		vp = new_vpage;
1419 		evp = vp + seg_pages(seg1);
1420 		for (; vp < evp; vp++)
1421 			VPP_SETPROT(vp, a->prot);
1422 		if (svd2->pageswap && swresv) {
1423 			ASSERT(!(svd2->flags & MAP_NORESERVE));
1424 			ASSERT(swresv == seg1->s_size);
1425 			vp = new_vpage;
1426 			for (; vp < evp; vp++) {
1427 				VPP_SETSWAPRES(vp);
1428 			}
1429 		}
1430 	}
1431 	ASSERT(svd2->vpage != NULL || svd2->pageswap == 0);
1432 	size = seg1->s_size;
1433 	seg_free(seg1);
1434 	seg2->s_size += size;
1435 	seg2->s_base -= size;
1436 	svd2->offset -= size;
1437 	svd2->swresv += swresv;
1438 	if (svd2->pageprot && (a->prot & PROT_WRITE) &&
1439 	    svd2->type == MAP_SHARED && svd2->vp != NULL &&
1440 	    (svd2->vp->v_flag & VVMEXEC)) {
1441 		ASSERT(vn_is_mapped(svd2->vp, V_WRITE));
1442 		segvn_inval_trcache(svd2->vp);
1443 	}
1444 	return (0);
1445 }
1446 
1447 static int
1448 segvn_dup(struct seg *seg, struct seg *newseg)
1449 {
1450 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1451 	struct segvn_data *newsvd;
1452 	pgcnt_t npages = seg_pages(seg);
1453 	int error = 0;
1454 	uint_t prot;
1455 	size_t len;
1456 	struct anon_map *amp;
1457 
1458 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1459 
1460 	/*
1461 	 * If segment has anon reserved, reserve more for the new seg.
1462 	 * For a MAP_NORESERVE segment swresv will be a count of all the
1463 	 * allocated anon slots; thus we reserve for the child as many slots
1464 	 * as the parent has allocated. This semantic prevents the child or
1465 	 * parent from dieing during a copy-on-write fault caused by trying
1466 	 * to write a shared pre-existing anon page.
1467 	 */
1468 	if ((len = svd->swresv) != 0) {
1469 		if (anon_resv(svd->swresv) == 0)
1470 			return (ENOMEM);
1471 
1472 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
1473 		    seg, len, 0);
1474 	}
1475 
1476 	newsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
1477 
1478 	newseg->s_ops = &segvn_ops;
1479 	newseg->s_data = (void *)newsvd;
1480 	newseg->s_szc = seg->s_szc;
1481 
1482 	newsvd->seg = newseg;
1483 	if ((newsvd->vp = svd->vp) != NULL) {
1484 		VN_HOLD(svd->vp);
1485 		if (svd->type == MAP_SHARED)
1486 			lgrp_shm_policy_init(NULL, svd->vp);
1487 	}
1488 	newsvd->offset = svd->offset;
1489 	newsvd->prot = svd->prot;
1490 	newsvd->maxprot = svd->maxprot;
1491 	newsvd->pageprot = svd->pageprot;
1492 	newsvd->type = svd->type;
1493 	newsvd->cred = svd->cred;
1494 	crhold(newsvd->cred);
1495 	newsvd->advice = svd->advice;
1496 	newsvd->pageadvice = svd->pageadvice;
1497 	newsvd->swresv = svd->swresv;
1498 	newsvd->pageswap = svd->pageswap;
1499 	newsvd->flags = svd->flags;
1500 	newsvd->softlockcnt = 0;
1501 	newsvd->policy_info = svd->policy_info;
1502 	newsvd->rcookie = HAT_INVALID_REGION_COOKIE;
1503 
1504 	if ((amp = svd->amp) == NULL || svd->tr_state == SEGVN_TR_ON) {
1505 		/*
1506 		 * Not attaching to a shared anon object.
1507 		 */
1508 		ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie) ||
1509 		    svd->tr_state == SEGVN_TR_OFF);
1510 		if (svd->tr_state == SEGVN_TR_ON) {
1511 			ASSERT(newsvd->vp != NULL && amp != NULL);
1512 			newsvd->tr_state = SEGVN_TR_INIT;
1513 		} else {
1514 			newsvd->tr_state = svd->tr_state;
1515 		}
1516 		newsvd->amp = NULL;
1517 		newsvd->anon_index = 0;
1518 	} else {
1519 		/* regions for now are only used on pure vnode segments */
1520 		ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
1521 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
1522 		newsvd->tr_state = SEGVN_TR_OFF;
1523 		if (svd->type == MAP_SHARED) {
1524 			newsvd->amp = amp;
1525 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1526 			amp->refcnt++;
1527 			ANON_LOCK_EXIT(&amp->a_rwlock);
1528 			newsvd->anon_index = svd->anon_index;
1529 		} else {
1530 			int reclaim = 1;
1531 
1532 			/*
1533 			 * Allocate and initialize new anon_map structure.
1534 			 */
1535 			newsvd->amp = anonmap_alloc(newseg->s_size, 0,
1536 			    ANON_SLEEP);
1537 			newsvd->amp->a_szc = newseg->s_szc;
1538 			newsvd->anon_index = 0;
1539 
1540 			/*
1541 			 * We don't have to acquire the anon_map lock
1542 			 * for the new segment (since it belongs to an
1543 			 * address space that is still not associated
1544 			 * with any process), or the segment in the old
1545 			 * address space (since all threads in it
1546 			 * are stopped while duplicating the address space).
1547 			 */
1548 
1549 			/*
1550 			 * The goal of the following code is to make sure that
1551 			 * softlocked pages do not end up as copy on write
1552 			 * pages.  This would cause problems where one
1553 			 * thread writes to a page that is COW and a different
1554 			 * thread in the same process has softlocked it.  The
1555 			 * softlock lock would move away from this process
1556 			 * because the write would cause this process to get
1557 			 * a copy (without the softlock).
1558 			 *
1559 			 * The strategy here is to just break the
1560 			 * sharing on pages that could possibly be
1561 			 * softlocked.
1562 			 */
1563 retry:
1564 			if (svd->softlockcnt) {
1565 				struct anon *ap, *newap;
1566 				size_t i;
1567 				uint_t vpprot;
1568 				page_t *anon_pl[1+1], *pp;
1569 				caddr_t addr;
1570 				ulong_t old_idx = svd->anon_index;
1571 				ulong_t new_idx = 0;
1572 
1573 				/*
1574 				 * The softlock count might be non zero
1575 				 * because some pages are still stuck in the
1576 				 * cache for lazy reclaim. Flush the cache
1577 				 * now. This should drop the count to zero.
1578 				 * [or there is really I/O going on to these
1579 				 * pages]. Note, we have the writers lock so
1580 				 * nothing gets inserted during the flush.
1581 				 */
1582 				if (reclaim == 1) {
1583 					segvn_purge(seg);
1584 					reclaim = 0;
1585 					goto retry;
1586 				}
1587 				i = btopr(seg->s_size);
1588 				addr = seg->s_base;
1589 				/*
1590 				 * XXX break cow sharing using PAGESIZE
1591 				 * pages. They will be relocated into larger
1592 				 * pages at fault time.
1593 				 */
1594 				while (i-- > 0) {
1595 					if (ap = anon_get_ptr(amp->ahp,
1596 					    old_idx)) {
1597 						error = anon_getpage(&ap,
1598 						    &vpprot, anon_pl, PAGESIZE,
1599 						    seg, addr, S_READ,
1600 						    svd->cred);
1601 						if (error) {
1602 							newsvd->vpage = NULL;
1603 							goto out;
1604 						}
1605 						/*
1606 						 * prot need not be computed
1607 						 * below 'cause anon_private is
1608 						 * going to ignore it anyway
1609 						 * as child doesn't inherit
1610 						 * pagelock from parent.
1611 						 */
1612 						prot = svd->pageprot ?
1613 						    VPP_PROT(
1614 						    &svd->vpage[
1615 						    seg_page(seg, addr)])
1616 						    : svd->prot;
1617 						pp = anon_private(&newap,
1618 						    newseg, addr, prot,
1619 						    anon_pl[0],	0,
1620 						    newsvd->cred);
1621 						if (pp == NULL) {
1622 							/* no mem abort */
1623 							newsvd->vpage = NULL;
1624 							error = ENOMEM;
1625 							goto out;
1626 						}
1627 						(void) anon_set_ptr(
1628 						    newsvd->amp->ahp, new_idx,
1629 						    newap, ANON_SLEEP);
1630 						page_unlock(pp);
1631 					}
1632 					addr += PAGESIZE;
1633 					old_idx++;
1634 					new_idx++;
1635 				}
1636 			} else {	/* common case */
1637 				if (seg->s_szc != 0) {
1638 					/*
1639 					 * If at least one of anon slots of a
1640 					 * large page exists then make sure
1641 					 * all anon slots of a large page
1642 					 * exist to avoid partial cow sharing
1643 					 * of a large page in the future.
1644 					 */
1645 					anon_dup_fill_holes(amp->ahp,
1646 					    svd->anon_index, newsvd->amp->ahp,
1647 					    0, seg->s_size, seg->s_szc,
1648 					    svd->vp != NULL);
1649 				} else {
1650 					anon_dup(amp->ahp, svd->anon_index,
1651 					    newsvd->amp->ahp, 0, seg->s_size);
1652 				}
1653 
1654 				hat_clrattr(seg->s_as->a_hat, seg->s_base,
1655 				    seg->s_size, PROT_WRITE);
1656 			}
1657 		}
1658 	}
1659 	/*
1660 	 * If necessary, create a vpage structure for the new segment.
1661 	 * Do not copy any page lock indications.
1662 	 */
1663 	if (svd->vpage != NULL) {
1664 		uint_t i;
1665 		struct vpage *ovp = svd->vpage;
1666 		struct vpage *nvp;
1667 
1668 		nvp = newsvd->vpage =
1669 		    kmem_alloc(vpgtob(npages), KM_SLEEP);
1670 		for (i = 0; i < npages; i++) {
1671 			*nvp = *ovp++;
1672 			VPP_CLRPPLOCK(nvp++);
1673 		}
1674 	} else
1675 		newsvd->vpage = NULL;
1676 
1677 	/* Inform the vnode of the new mapping */
1678 	if (newsvd->vp != NULL) {
1679 		error = VOP_ADDMAP(newsvd->vp, (offset_t)newsvd->offset,
1680 		    newseg->s_as, newseg->s_base, newseg->s_size, newsvd->prot,
1681 		    newsvd->maxprot, newsvd->type, newsvd->cred, NULL);
1682 	}
1683 out:
1684 	if (error == 0 && HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
1685 		ASSERT(newsvd->amp == NULL);
1686 		ASSERT(newsvd->tr_state == SEGVN_TR_OFF);
1687 		newsvd->rcookie = svd->rcookie;
1688 		hat_dup_region(newseg->s_as->a_hat, newsvd->rcookie);
1689 	}
1690 	return (error);
1691 }
1692 
1693 
1694 /*
1695  * callback function to invoke free_vp_pages() for only those pages actually
1696  * processed by the HAT when a shared region is destroyed.
1697  */
1698 extern int free_pages;
1699 
1700 static void
1701 segvn_hat_rgn_unload_callback(caddr_t saddr, caddr_t eaddr, caddr_t r_saddr,
1702     size_t r_size, void *r_obj, u_offset_t r_objoff)
1703 {
1704 	u_offset_t off;
1705 	size_t len;
1706 	vnode_t *vp = (vnode_t *)r_obj;
1707 
1708 	ASSERT(eaddr > saddr);
1709 	ASSERT(saddr >= r_saddr);
1710 	ASSERT(saddr < r_saddr + r_size);
1711 	ASSERT(eaddr > r_saddr);
1712 	ASSERT(eaddr <= r_saddr + r_size);
1713 	ASSERT(vp != NULL);
1714 
1715 	if (!free_pages) {
1716 		return;
1717 	}
1718 
1719 	len = eaddr - saddr;
1720 	off = (saddr - r_saddr) + r_objoff;
1721 	free_vp_pages(vp, off, len);
1722 }
1723 
1724 /*
1725  * callback function used by segvn_unmap to invoke free_vp_pages() for only
1726  * those pages actually processed by the HAT
1727  */
1728 static void
1729 segvn_hat_unload_callback(hat_callback_t *cb)
1730 {
1731 	struct seg		*seg = cb->hcb_data;
1732 	struct segvn_data	*svd = (struct segvn_data *)seg->s_data;
1733 	size_t			len;
1734 	u_offset_t		off;
1735 
1736 	ASSERT(svd->vp != NULL);
1737 	ASSERT(cb->hcb_end_addr > cb->hcb_start_addr);
1738 	ASSERT(cb->hcb_start_addr >= seg->s_base);
1739 
1740 	len = cb->hcb_end_addr - cb->hcb_start_addr;
1741 	off = cb->hcb_start_addr - seg->s_base;
1742 	free_vp_pages(svd->vp, svd->offset + off, len);
1743 }
1744 
1745 /*
1746  * This function determines the number of bytes of swap reserved by
1747  * a segment for which per-page accounting is present. It is used to
1748  * calculate the correct value of a segvn_data's swresv.
1749  */
1750 static size_t
1751 segvn_count_swap_by_vpages(struct seg *seg)
1752 {
1753 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1754 	struct vpage *vp, *evp;
1755 	size_t nswappages = 0;
1756 
1757 	ASSERT(svd->pageswap);
1758 	ASSERT(svd->vpage != NULL);
1759 
1760 	evp = &svd->vpage[seg_page(seg, seg->s_base + seg->s_size)];
1761 
1762 	for (vp = svd->vpage; vp < evp; vp++) {
1763 		if (VPP_ISSWAPRES(vp))
1764 			nswappages++;
1765 	}
1766 
1767 	return (nswappages << PAGESHIFT);
1768 }
1769 
1770 static int
1771 segvn_unmap(struct seg *seg, caddr_t addr, size_t len)
1772 {
1773 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1774 	struct segvn_data *nsvd;
1775 	struct seg *nseg;
1776 	struct anon_map *amp;
1777 	pgcnt_t	opages;		/* old segment size in pages */
1778 	pgcnt_t	npages;		/* new segment size in pages */
1779 	pgcnt_t	dpages;		/* pages being deleted (unmapped) */
1780 	hat_callback_t callback;	/* used for free_vp_pages() */
1781 	hat_callback_t *cbp = NULL;
1782 	caddr_t nbase;
1783 	size_t nsize;
1784 	size_t oswresv;
1785 	int reclaim = 1;
1786 
1787 	/*
1788 	 * We don't need any segment level locks for "segvn" data
1789 	 * since the address space is "write" locked.
1790 	 */
1791 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1792 
1793 	/*
1794 	 * Fail the unmap if pages are SOFTLOCKed through this mapping.
1795 	 * softlockcnt is protected from change by the as write lock.
1796 	 */
1797 retry:
1798 	if (svd->softlockcnt > 0) {
1799 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
1800 		/*
1801 		 * since we do have the writers lock nobody can fill
1802 		 * the cache during the purge. The flush either succeeds
1803 		 * or we still have pending I/Os.
1804 		 */
1805 		if (reclaim == 1) {
1806 			segvn_purge(seg);
1807 			reclaim = 0;
1808 			goto retry;
1809 		}
1810 		return (EAGAIN);
1811 	}
1812 
1813 	/*
1814 	 * Check for bad sizes
1815 	 */
1816 	if (addr < seg->s_base || addr + len > seg->s_base + seg->s_size ||
1817 	    (len & PAGEOFFSET) || ((uintptr_t)addr & PAGEOFFSET)) {
1818 		panic("segvn_unmap");
1819 		/*NOTREACHED*/
1820 	}
1821 
1822 	if (seg->s_szc != 0) {
1823 		size_t pgsz = page_get_pagesize(seg->s_szc);
1824 		int err;
1825 		if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
1826 			ASSERT(seg->s_base != addr || seg->s_size != len);
1827 			if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
1828 				ASSERT(svd->amp == NULL);
1829 				ASSERT(svd->tr_state == SEGVN_TR_OFF);
1830 				hat_leave_region(seg->s_as->a_hat,
1831 				    svd->rcookie, HAT_REGION_TEXT);
1832 				svd->rcookie = HAT_INVALID_REGION_COOKIE;
1833 				/*
1834 				 * could pass a flag to segvn_demote_range()
1835 				 * below to tell it not to do any unloads but
1836 				 * this case is rare enough to not bother for
1837 				 * now.
1838 				 */
1839 			} else if (svd->tr_state == SEGVN_TR_INIT) {
1840 				svd->tr_state = SEGVN_TR_OFF;
1841 			} else if (svd->tr_state == SEGVN_TR_ON) {
1842 				ASSERT(svd->amp != NULL);
1843 				segvn_textunrepl(seg, 1);
1844 				ASSERT(svd->amp == NULL);
1845 				ASSERT(svd->tr_state == SEGVN_TR_OFF);
1846 			}
1847 			VM_STAT_ADD(segvnvmstats.demoterange[0]);
1848 			err = segvn_demote_range(seg, addr, len, SDR_END, 0);
1849 			if (err == 0) {
1850 				return (IE_RETRY);
1851 			}
1852 			return (err);
1853 		}
1854 	}
1855 
1856 	/* Inform the vnode of the unmapping. */
1857 	if (svd->vp) {
1858 		int error;
1859 
1860 		error = VOP_DELMAP(svd->vp,
1861 		    (offset_t)svd->offset + (uintptr_t)(addr - seg->s_base),
1862 		    seg->s_as, addr, len, svd->prot, svd->maxprot,
1863 		    svd->type, svd->cred, NULL);
1864 
1865 		if (error == EAGAIN)
1866 			return (error);
1867 	}
1868 
1869 	/*
1870 	 * Remove any page locks set through this mapping.
1871 	 * If text replication is not off no page locks could have been
1872 	 * established via this mapping.
1873 	 */
1874 	if (svd->tr_state == SEGVN_TR_OFF) {
1875 		(void) segvn_lockop(seg, addr, len, 0, MC_UNLOCK, NULL, 0);
1876 	}
1877 
1878 	if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
1879 		ASSERT(svd->amp == NULL);
1880 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
1881 		ASSERT(svd->type == MAP_PRIVATE);
1882 		hat_leave_region(seg->s_as->a_hat, svd->rcookie,
1883 		    HAT_REGION_TEXT);
1884 		svd->rcookie = HAT_INVALID_REGION_COOKIE;
1885 	} else if (svd->tr_state == SEGVN_TR_ON) {
1886 		ASSERT(svd->amp != NULL);
1887 		ASSERT(svd->pageprot == 0 && !(svd->prot & PROT_WRITE));
1888 		segvn_textunrepl(seg, 1);
1889 		ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
1890 	} else {
1891 		if (svd->tr_state != SEGVN_TR_OFF) {
1892 			ASSERT(svd->tr_state == SEGVN_TR_INIT);
1893 			svd->tr_state = SEGVN_TR_OFF;
1894 		}
1895 		/*
1896 		 * Unload any hardware translations in the range to be taken
1897 		 * out. Use a callback to invoke free_vp_pages() effectively.
1898 		 */
1899 		if (svd->vp != NULL && free_pages != 0) {
1900 			callback.hcb_data = seg;
1901 			callback.hcb_function = segvn_hat_unload_callback;
1902 			cbp = &callback;
1903 		}
1904 		hat_unload_callback(seg->s_as->a_hat, addr, len,
1905 		    HAT_UNLOAD_UNMAP, cbp);
1906 
1907 		if (svd->type == MAP_SHARED && svd->vp != NULL &&
1908 		    (svd->vp->v_flag & VVMEXEC) &&
1909 		    ((svd->prot & PROT_WRITE) || svd->pageprot)) {
1910 			segvn_inval_trcache(svd->vp);
1911 		}
1912 	}
1913 
1914 	/*
1915 	 * Check for entire segment
1916 	 */
1917 	if (addr == seg->s_base && len == seg->s_size) {
1918 		seg_free(seg);
1919 		return (0);
1920 	}
1921 
1922 	opages = seg_pages(seg);
1923 	dpages = btop(len);
1924 	npages = opages - dpages;
1925 	amp = svd->amp;
1926 	ASSERT(amp == NULL || amp->a_szc >= seg->s_szc);
1927 
1928 	/*
1929 	 * Check for beginning of segment
1930 	 */
1931 	if (addr == seg->s_base) {
1932 		if (svd->vpage != NULL) {
1933 			size_t nbytes;
1934 			struct vpage *ovpage;
1935 
1936 			ovpage = svd->vpage;	/* keep pointer to vpage */
1937 
1938 			nbytes = vpgtob(npages);
1939 			svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
1940 			bcopy(&ovpage[dpages], svd->vpage, nbytes);
1941 
1942 			/* free up old vpage */
1943 			kmem_free(ovpage, vpgtob(opages));
1944 		}
1945 		if (amp != NULL) {
1946 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1947 			if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
1948 				/*
1949 				 * Free up now unused parts of anon_map array.
1950 				 */
1951 				if (amp->a_szc == seg->s_szc) {
1952 					if (seg->s_szc != 0) {
1953 						anon_free_pages(amp->ahp,
1954 						    svd->anon_index, len,
1955 						    seg->s_szc);
1956 					} else {
1957 						anon_free(amp->ahp,
1958 						    svd->anon_index,
1959 						    len);
1960 					}
1961 				} else {
1962 					ASSERT(svd->type == MAP_SHARED);
1963 					ASSERT(amp->a_szc > seg->s_szc);
1964 					anon_shmap_free_pages(amp,
1965 					    svd->anon_index, len);
1966 				}
1967 
1968 				/*
1969 				 * Unreserve swap space for the
1970 				 * unmapped chunk of this segment in
1971 				 * case it's MAP_SHARED
1972 				 */
1973 				if (svd->type == MAP_SHARED) {
1974 					anon_unresv(len);
1975 					amp->swresv -= len;
1976 				}
1977 			}
1978 			ANON_LOCK_EXIT(&amp->a_rwlock);
1979 			svd->anon_index += dpages;
1980 		}
1981 		if (svd->vp != NULL)
1982 			svd->offset += len;
1983 
1984 		seg->s_base += len;
1985 		seg->s_size -= len;
1986 
1987 		if (svd->swresv) {
1988 			if (svd->flags & MAP_NORESERVE) {
1989 				ASSERT(amp);
1990 				oswresv = svd->swresv;
1991 
1992 				svd->swresv = ptob(anon_pages(amp->ahp,
1993 				    svd->anon_index, npages));
1994 				anon_unresv(oswresv - svd->swresv);
1995 			} else {
1996 				size_t unlen;
1997 
1998 				if (svd->pageswap) {
1999 					oswresv = svd->swresv;
2000 					svd->swresv =
2001 					    segvn_count_swap_by_vpages(seg);
2002 					ASSERT(oswresv >= svd->swresv);
2003 					unlen = oswresv - svd->swresv;
2004 				} else {
2005 					svd->swresv -= len;
2006 					ASSERT(svd->swresv == seg->s_size);
2007 					unlen = len;
2008 				}
2009 				anon_unresv(unlen);
2010 			}
2011 			TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
2012 			    seg, len, 0);
2013 		}
2014 
2015 		return (0);
2016 	}
2017 
2018 	/*
2019 	 * Check for end of segment
2020 	 */
2021 	if (addr + len == seg->s_base + seg->s_size) {
2022 		if (svd->vpage != NULL) {
2023 			size_t nbytes;
2024 			struct vpage *ovpage;
2025 
2026 			ovpage = svd->vpage;	/* keep pointer to vpage */
2027 
2028 			nbytes = vpgtob(npages);
2029 			svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
2030 			bcopy(ovpage, svd->vpage, nbytes);
2031 
2032 			/* free up old vpage */
2033 			kmem_free(ovpage, vpgtob(opages));
2034 
2035 		}
2036 		if (amp != NULL) {
2037 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2038 			if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
2039 				/*
2040 				 * Free up now unused parts of anon_map array.
2041 				 */
2042 				ulong_t an_idx = svd->anon_index + npages;
2043 				if (amp->a_szc == seg->s_szc) {
2044 					if (seg->s_szc != 0) {
2045 						anon_free_pages(amp->ahp,
2046 						    an_idx, len,
2047 						    seg->s_szc);
2048 					} else {
2049 						anon_free(amp->ahp, an_idx,
2050 						    len);
2051 					}
2052 				} else {
2053 					ASSERT(svd->type == MAP_SHARED);
2054 					ASSERT(amp->a_szc > seg->s_szc);
2055 					anon_shmap_free_pages(amp,
2056 					    an_idx, len);
2057 				}
2058 
2059 				/*
2060 				 * Unreserve swap space for the
2061 				 * unmapped chunk of this segment in
2062 				 * case it's MAP_SHARED
2063 				 */
2064 				if (svd->type == MAP_SHARED) {
2065 					anon_unresv(len);
2066 					amp->swresv -= len;
2067 				}
2068 			}
2069 			ANON_LOCK_EXIT(&amp->a_rwlock);
2070 		}
2071 
2072 		seg->s_size -= len;
2073 
2074 		if (svd->swresv) {
2075 			if (svd->flags & MAP_NORESERVE) {
2076 				ASSERT(amp);
2077 				oswresv = svd->swresv;
2078 				svd->swresv = ptob(anon_pages(amp->ahp,
2079 				    svd->anon_index, npages));
2080 				anon_unresv(oswresv - svd->swresv);
2081 			} else {
2082 				size_t unlen;
2083 
2084 				if (svd->pageswap) {
2085 					oswresv = svd->swresv;
2086 					svd->swresv =
2087 					    segvn_count_swap_by_vpages(seg);
2088 					ASSERT(oswresv >= svd->swresv);
2089 					unlen = oswresv - svd->swresv;
2090 				} else {
2091 					svd->swresv -= len;
2092 					ASSERT(svd->swresv == seg->s_size);
2093 					unlen = len;
2094 				}
2095 				anon_unresv(unlen);
2096 			}
2097 			TRACE_3(TR_FAC_VM, TR_ANON_PROC,
2098 			    "anon proc:%p %lu %u", seg, len, 0);
2099 		}
2100 
2101 		return (0);
2102 	}
2103 
2104 	/*
2105 	 * The section to go is in the middle of the segment,
2106 	 * have to make it into two segments.  nseg is made for
2107 	 * the high end while seg is cut down at the low end.
2108 	 */
2109 	nbase = addr + len;				/* new seg base */
2110 	nsize = (seg->s_base + seg->s_size) - nbase;	/* new seg size */
2111 	seg->s_size = addr - seg->s_base;		/* shrink old seg */
2112 	nseg = seg_alloc(seg->s_as, nbase, nsize);
2113 	if (nseg == NULL) {
2114 		panic("segvn_unmap seg_alloc");
2115 		/*NOTREACHED*/
2116 	}
2117 	nseg->s_ops = seg->s_ops;
2118 	nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
2119 	nseg->s_data = (void *)nsvd;
2120 	nseg->s_szc = seg->s_szc;
2121 	*nsvd = *svd;
2122 	nsvd->seg = nseg;
2123 	nsvd->offset = svd->offset + (uintptr_t)(nseg->s_base - seg->s_base);
2124 	nsvd->swresv = 0;
2125 	nsvd->softlockcnt = 0;
2126 	ASSERT(nsvd->rcookie == HAT_INVALID_REGION_COOKIE);
2127 
2128 	if (svd->vp != NULL) {
2129 		VN_HOLD(nsvd->vp);
2130 		if (nsvd->type == MAP_SHARED)
2131 			lgrp_shm_policy_init(NULL, nsvd->vp);
2132 	}
2133 	crhold(svd->cred);
2134 
2135 	if (svd->vpage == NULL) {
2136 		nsvd->vpage = NULL;
2137 	} else {
2138 		/* need to split vpage into two arrays */
2139 		size_t nbytes;
2140 		struct vpage *ovpage;
2141 
2142 		ovpage = svd->vpage;		/* keep pointer to vpage */
2143 
2144 		npages = seg_pages(seg);	/* seg has shrunk */
2145 		nbytes = vpgtob(npages);
2146 		svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
2147 
2148 		bcopy(ovpage, svd->vpage, nbytes);
2149 
2150 		npages = seg_pages(nseg);
2151 		nbytes = vpgtob(npages);
2152 		nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP);
2153 
2154 		bcopy(&ovpage[opages - npages], nsvd->vpage, nbytes);
2155 
2156 		/* free up old vpage */
2157 		kmem_free(ovpage, vpgtob(opages));
2158 	}
2159 
2160 	if (amp == NULL) {
2161 		nsvd->amp = NULL;
2162 		nsvd->anon_index = 0;
2163 	} else {
2164 		/*
2165 		 * Need to create a new anon map for the new segment.
2166 		 * We'll also allocate a new smaller array for the old
2167 		 * smaller segment to save space.
2168 		 */
2169 		opages = btop((uintptr_t)(addr - seg->s_base));
2170 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2171 		if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
2172 			/*
2173 			 * Free up now unused parts of anon_map array.
2174 			 */
2175 			ulong_t an_idx = svd->anon_index + opages;
2176 			if (amp->a_szc == seg->s_szc) {
2177 				if (seg->s_szc != 0) {
2178 					anon_free_pages(amp->ahp, an_idx, len,
2179 					    seg->s_szc);
2180 				} else {
2181 					anon_free(amp->ahp, an_idx,
2182 					    len);
2183 				}
2184 			} else {
2185 				ASSERT(svd->type == MAP_SHARED);
2186 				ASSERT(amp->a_szc > seg->s_szc);
2187 				anon_shmap_free_pages(amp, an_idx, len);
2188 			}
2189 
2190 			/*
2191 			 * Unreserve swap space for the
2192 			 * unmapped chunk of this segment in
2193 			 * case it's MAP_SHARED
2194 			 */
2195 			if (svd->type == MAP_SHARED) {
2196 				anon_unresv(len);
2197 				amp->swresv -= len;
2198 			}
2199 		}
2200 		nsvd->anon_index = svd->anon_index +
2201 		    btop((uintptr_t)(nseg->s_base - seg->s_base));
2202 		if (svd->type == MAP_SHARED) {
2203 			amp->refcnt++;
2204 			nsvd->amp = amp;
2205 		} else {
2206 			struct anon_map *namp;
2207 			struct anon_hdr *nahp;
2208 
2209 			ASSERT(svd->type == MAP_PRIVATE);
2210 			nahp = anon_create(btop(seg->s_size), ANON_SLEEP);
2211 			namp = anonmap_alloc(nseg->s_size, 0, ANON_SLEEP);
2212 			namp->a_szc = seg->s_szc;
2213 			(void) anon_copy_ptr(amp->ahp, svd->anon_index, nahp,
2214 			    0, btop(seg->s_size), ANON_SLEEP);
2215 			(void) anon_copy_ptr(amp->ahp, nsvd->anon_index,
2216 			    namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP);
2217 			anon_release(amp->ahp, btop(amp->size));
2218 			svd->anon_index = 0;
2219 			nsvd->anon_index = 0;
2220 			amp->ahp = nahp;
2221 			amp->size = seg->s_size;
2222 			nsvd->amp = namp;
2223 		}
2224 		ANON_LOCK_EXIT(&amp->a_rwlock);
2225 	}
2226 	if (svd->swresv) {
2227 		if (svd->flags & MAP_NORESERVE) {
2228 			ASSERT(amp);
2229 			oswresv = svd->swresv;
2230 			svd->swresv = ptob(anon_pages(amp->ahp,
2231 			    svd->anon_index, btop(seg->s_size)));
2232 			nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp,
2233 			    nsvd->anon_index, btop(nseg->s_size)));
2234 			ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
2235 			anon_unresv(oswresv - (svd->swresv + nsvd->swresv));
2236 		} else {
2237 			size_t unlen;
2238 
2239 			if (svd->pageswap) {
2240 				oswresv = svd->swresv;
2241 				svd->swresv = segvn_count_swap_by_vpages(seg);
2242 				nsvd->swresv = segvn_count_swap_by_vpages(nseg);
2243 				ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
2244 				unlen = oswresv - (svd->swresv + nsvd->swresv);
2245 			} else {
2246 				if (seg->s_size + nseg->s_size + len !=
2247 				    svd->swresv) {
2248 					panic("segvn_unmap: cannot split "
2249 					    "swap reservation");
2250 					/*NOTREACHED*/
2251 				}
2252 				svd->swresv = seg->s_size;
2253 				nsvd->swresv = nseg->s_size;
2254 				unlen = len;
2255 			}
2256 			anon_unresv(unlen);
2257 		}
2258 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
2259 		    seg, len, 0);
2260 	}
2261 
2262 	return (0);			/* I'm glad that's all over with! */
2263 }
2264 
2265 static void
2266 segvn_free(struct seg *seg)
2267 {
2268 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2269 	pgcnt_t npages = seg_pages(seg);
2270 	struct anon_map *amp;
2271 	size_t len;
2272 
2273 	/*
2274 	 * We don't need any segment level locks for "segvn" data
2275 	 * since the address space is "write" locked.
2276 	 */
2277 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
2278 	ASSERT(svd->tr_state == SEGVN_TR_OFF);
2279 
2280 	ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
2281 
2282 	/*
2283 	 * Be sure to unlock pages. XXX Why do things get free'ed instead
2284 	 * of unmapped? XXX
2285 	 */
2286 	(void) segvn_lockop(seg, seg->s_base, seg->s_size,
2287 	    0, MC_UNLOCK, NULL, 0);
2288 
2289 	/*
2290 	 * Deallocate the vpage and anon pointers if necessary and possible.
2291 	 */
2292 	if (svd->vpage != NULL) {
2293 		kmem_free(svd->vpage, vpgtob(npages));
2294 		svd->vpage = NULL;
2295 	}
2296 	if ((amp = svd->amp) != NULL) {
2297 		/*
2298 		 * If there are no more references to this anon_map
2299 		 * structure, then deallocate the structure after freeing
2300 		 * up all the anon slot pointers that we can.
2301 		 */
2302 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2303 		ASSERT(amp->a_szc >= seg->s_szc);
2304 		if (--amp->refcnt == 0) {
2305 			if (svd->type == MAP_PRIVATE) {
2306 				/*
2307 				 * Private - we only need to anon_free
2308 				 * the part that this segment refers to.
2309 				 */
2310 				if (seg->s_szc != 0) {
2311 					anon_free_pages(amp->ahp,
2312 					    svd->anon_index, seg->s_size,
2313 					    seg->s_szc);
2314 				} else {
2315 					anon_free(amp->ahp, svd->anon_index,
2316 					    seg->s_size);
2317 				}
2318 			} else {
2319 				/*
2320 				 * Shared - anon_free the entire
2321 				 * anon_map's worth of stuff and
2322 				 * release any swap reservation.
2323 				 */
2324 				if (amp->a_szc != 0) {
2325 					anon_shmap_free_pages(amp, 0,
2326 					    amp->size);
2327 				} else {
2328 					anon_free(amp->ahp, 0, amp->size);
2329 				}
2330 				if ((len = amp->swresv) != 0) {
2331 					anon_unresv(len);
2332 					TRACE_3(TR_FAC_VM, TR_ANON_PROC,
2333 					    "anon proc:%p %lu %u", seg, len, 0);
2334 				}
2335 			}
2336 			svd->amp = NULL;
2337 			ANON_LOCK_EXIT(&amp->a_rwlock);
2338 			anonmap_free(amp);
2339 		} else if (svd->type == MAP_PRIVATE) {
2340 			/*
2341 			 * We had a private mapping which still has
2342 			 * a held anon_map so just free up all the
2343 			 * anon slot pointers that we were using.
2344 			 */
2345 			if (seg->s_szc != 0) {
2346 				anon_free_pages(amp->ahp, svd->anon_index,
2347 				    seg->s_size, seg->s_szc);
2348 			} else {
2349 				anon_free(amp->ahp, svd->anon_index,
2350 				    seg->s_size);
2351 			}
2352 			ANON_LOCK_EXIT(&amp->a_rwlock);
2353 		} else {
2354 			ANON_LOCK_EXIT(&amp->a_rwlock);
2355 		}
2356 	}
2357 
2358 	/*
2359 	 * Release swap reservation.
2360 	 */
2361 	if ((len = svd->swresv) != 0) {
2362 		anon_unresv(svd->swresv);
2363 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
2364 		    seg, len, 0);
2365 		svd->swresv = 0;
2366 	}
2367 	/*
2368 	 * Release claim on vnode, credentials, and finally free the
2369 	 * private data.
2370 	 */
2371 	if (svd->vp != NULL) {
2372 		if (svd->type == MAP_SHARED)
2373 			lgrp_shm_policy_fini(NULL, svd->vp);
2374 		VN_RELE(svd->vp);
2375 		svd->vp = NULL;
2376 	}
2377 	crfree(svd->cred);
2378 	svd->pageprot = 0;
2379 	svd->pageadvice = 0;
2380 	svd->pageswap = 0;
2381 	svd->cred = NULL;
2382 
2383 	seg->s_data = NULL;
2384 	kmem_cache_free(segvn_cache, svd);
2385 }
2386 
2387 #ifdef DEBUG
2388 uint32_t segvn_slock_mtbf = 0;
2389 #endif
2390 
2391 ulong_t segvn_lpglck_limit = 0;
2392 
2393 /*
2394  * Support routines used by segvn_pagelock() and softlock faults for anonymous
2395  * pages to implement availrmem accounting in a way that makes sure the
2396  * same memory is accounted just once for all softlock/pagelock purposes.
2397  * This prevents a bug when availrmem is quickly incorrectly exhausted from
2398  * several pagelocks to different parts of the same large page since each
2399  * pagelock has to decrement availrmem by the size of the entire large
2400  * page. Note those pages are not COW shared until softunlock/pageunlock so
2401  * we don't need to use cow style accounting here.  We also need to make sure
2402  * the entire large page is accounted even if softlock range is less than the
2403  * entire large page because large anon pages can't be demoted when any of
2404  * constituent pages is locked. The caller calls this routine for every page_t
2405  * it locks. The very first page in the range may not be the root page of a
2406  * large page. For all other pages it's guaranteed we are going to visit the
2407  * root of a particular large page before any other constituent page as we are
2408  * locking sequential pages belonging to the same anon map. So we do all the
2409  * locking when the root is encountered except for the very first page.  Since
2410  * softlocking is not supported (except S_READ_NOCOW special case) for vmpss
2411  * segments and since vnode pages can be demoted without locking all
2412  * constituent pages vnode pages don't come here.  Unlocking relies on the
2413  * fact that pagesize can't change whenever any of constituent large pages is
2414  * locked at least SE_SHARED. This allows unlocking code to find the right
2415  * root and decrement availrmem by the same amount it was incremented when the
2416  * page was locked.
2417  */
2418 static int
2419 segvn_slock_anonpages(page_t *pp, int first)
2420 {
2421 	pgcnt_t		pages;
2422 	pfn_t		pfn;
2423 	uchar_t		szc = pp->p_szc;
2424 
2425 	ASSERT(PAGE_LOCKED(pp));
2426 	ASSERT(pp->p_vnode != NULL);
2427 	ASSERT(IS_SWAPFSVP(pp->p_vnode));
2428 
2429 	/*
2430 	 * pagesize won't change as long as any constituent page is locked.
2431 	 */
2432 	pages = page_get_pagecnt(pp->p_szc);
2433 	pfn = page_pptonum(pp);
2434 
2435 	if (!first) {
2436 		if (!IS_P2ALIGNED(pfn, pages)) {
2437 #ifdef DEBUG
2438 			pp = &pp[-(spgcnt_t)(pfn & (pages - 1))];
2439 			pfn = page_pptonum(pp);
2440 			ASSERT(IS_P2ALIGNED(pfn, pages));
2441 			ASSERT(pp->p_szc == szc);
2442 			ASSERT(pp->p_vnode != NULL);
2443 			ASSERT(IS_SWAPFSVP(pp->p_vnode));
2444 			ASSERT(pp->p_slckcnt != 0);
2445 #endif /* DEBUG */
2446 			return (1);
2447 		}
2448 	} else if (!IS_P2ALIGNED(pfn, pages)) {
2449 		pp = &pp[-(spgcnt_t)(pfn & (pages - 1))];
2450 #ifdef DEBUG
2451 		pfn = page_pptonum(pp);
2452 		ASSERT(IS_P2ALIGNED(pfn, pages));
2453 		ASSERT(pp->p_szc == szc);
2454 		ASSERT(pp->p_vnode != NULL);
2455 		ASSERT(IS_SWAPFSVP(pp->p_vnode));
2456 #endif /* DEBUG */
2457 	}
2458 
2459 #ifdef DEBUG
2460 	if (segvn_slock_mtbf && !(gethrtime() % segvn_slock_mtbf)) {
2461 		return (0);
2462 	}
2463 #endif /* DEBUG */
2464 
2465 	/*
2466 	 * pp is a root page.
2467 	 * We haven't locked this large page yet.
2468 	 */
2469 	page_struct_lock(pp);
2470 	if (pp->p_slckcnt != 0) {
2471 		if (pp->p_slckcnt < PAGE_SLOCK_MAXIMUM) {
2472 			pp->p_slckcnt++;
2473 			page_struct_unlock(pp);
2474 			return (1);
2475 		}
2476 		page_struct_unlock(pp);
2477 		segvn_lpglck_limit++;
2478 		return (0);
2479 	}
2480 	mutex_enter(&freemem_lock);
2481 	if (availrmem < tune.t_minarmem + pages) {
2482 		mutex_exit(&freemem_lock);
2483 		page_struct_unlock(pp);
2484 		return (0);
2485 	}
2486 	pp->p_slckcnt++;
2487 	availrmem -= pages;
2488 	mutex_exit(&freemem_lock);
2489 	page_struct_unlock(pp);
2490 	return (1);
2491 }
2492 
2493 static void
2494 segvn_sunlock_anonpages(page_t *pp, int first)
2495 {
2496 	pgcnt_t		pages;
2497 	pfn_t		pfn;
2498 
2499 	ASSERT(PAGE_LOCKED(pp));
2500 	ASSERT(pp->p_vnode != NULL);
2501 	ASSERT(IS_SWAPFSVP(pp->p_vnode));
2502 
2503 	/*
2504 	 * pagesize won't change as long as any constituent page is locked.
2505 	 */
2506 	pages = page_get_pagecnt(pp->p_szc);
2507 	pfn = page_pptonum(pp);
2508 
2509 	if (!first) {
2510 		if (!IS_P2ALIGNED(pfn, pages)) {
2511 			return;
2512 		}
2513 	} else if (!IS_P2ALIGNED(pfn, pages)) {
2514 		pp = &pp[-(spgcnt_t)(pfn & (pages - 1))];
2515 #ifdef DEBUG
2516 		pfn = page_pptonum(pp);
2517 		ASSERT(IS_P2ALIGNED(pfn, pages));
2518 #endif /* DEBUG */
2519 	}
2520 	ASSERT(pp->p_vnode != NULL);
2521 	ASSERT(IS_SWAPFSVP(pp->p_vnode));
2522 	ASSERT(pp->p_slckcnt != 0);
2523 	page_struct_lock(pp);
2524 	if (--pp->p_slckcnt == 0) {
2525 		mutex_enter(&freemem_lock);
2526 		availrmem += pages;
2527 		mutex_exit(&freemem_lock);
2528 	}
2529 	page_struct_unlock(pp);
2530 }
2531 
2532 /*
2533  * Do a F_SOFTUNLOCK call over the range requested.  The range must have
2534  * already been F_SOFTLOCK'ed.
2535  * Caller must always match addr and len of a softunlock with a previous
2536  * softlock with exactly the same addr and len.
2537  */
2538 static void
2539 segvn_softunlock(struct seg *seg, caddr_t addr, size_t len, enum seg_rw rw)
2540 {
2541 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2542 	page_t *pp;
2543 	caddr_t adr;
2544 	struct vnode *vp;
2545 	u_offset_t offset;
2546 	ulong_t anon_index;
2547 	struct anon_map *amp;
2548 	struct anon *ap = NULL;
2549 
2550 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2551 	ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
2552 
2553 	if ((amp = svd->amp) != NULL)
2554 		anon_index = svd->anon_index + seg_page(seg, addr);
2555 
2556 	if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
2557 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
2558 		hat_unlock_region(seg->s_as->a_hat, addr, len, svd->rcookie);
2559 	} else {
2560 		hat_unlock(seg->s_as->a_hat, addr, len);
2561 	}
2562 	for (adr = addr; adr < addr + len; adr += PAGESIZE) {
2563 		if (amp != NULL) {
2564 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2565 			if ((ap = anon_get_ptr(amp->ahp, anon_index++))
2566 			    != NULL) {
2567 				swap_xlate(ap, &vp, &offset);
2568 			} else {
2569 				vp = svd->vp;
2570 				offset = svd->offset +
2571 				    (uintptr_t)(adr - seg->s_base);
2572 			}
2573 			ANON_LOCK_EXIT(&amp->a_rwlock);
2574 		} else {
2575 			vp = svd->vp;
2576 			offset = svd->offset +
2577 			    (uintptr_t)(adr - seg->s_base);
2578 		}
2579 
2580 		/*
2581 		 * Use page_find() instead of page_lookup() to
2582 		 * find the page since we know that it is locked.
2583 		 */
2584 		pp = page_find(vp, offset);
2585 		if (pp == NULL) {
2586 			panic(
2587 			    "segvn_softunlock: addr %p, ap %p, vp %p, off %llx",
2588 			    (void *)adr, (void *)ap, (void *)vp, offset);
2589 			/*NOTREACHED*/
2590 		}
2591 
2592 		if (rw == S_WRITE) {
2593 			hat_setrefmod(pp);
2594 			if (seg->s_as->a_vbits)
2595 				hat_setstat(seg->s_as, adr, PAGESIZE,
2596 				    P_REF | P_MOD);
2597 		} else if (rw != S_OTHER) {
2598 			hat_setref(pp);
2599 			if (seg->s_as->a_vbits)
2600 				hat_setstat(seg->s_as, adr, PAGESIZE, P_REF);
2601 		}
2602 		TRACE_3(TR_FAC_VM, TR_SEGVN_FAULT,
2603 		    "segvn_fault:pp %p vp %p offset %llx", pp, vp, offset);
2604 		if (svd->vp == NULL) {
2605 			segvn_sunlock_anonpages(pp, adr == addr);
2606 		}
2607 		page_unlock(pp);
2608 	}
2609 	mutex_enter(&freemem_lock); /* for availrmem */
2610 	if (svd->vp != NULL) {
2611 		availrmem += btop(len);
2612 	}
2613 	segvn_pages_locked -= btop(len);
2614 	svd->softlockcnt -= btop(len);
2615 	mutex_exit(&freemem_lock);
2616 	if (svd->softlockcnt == 0) {
2617 		/*
2618 		 * All SOFTLOCKS are gone. Wakeup any waiting
2619 		 * unmappers so they can try again to unmap.
2620 		 * Check for waiters first without the mutex
2621 		 * held so we don't always grab the mutex on
2622 		 * softunlocks.
2623 		 */
2624 		if (AS_ISUNMAPWAIT(seg->s_as)) {
2625 			mutex_enter(&seg->s_as->a_contents);
2626 			if (AS_ISUNMAPWAIT(seg->s_as)) {
2627 				AS_CLRUNMAPWAIT(seg->s_as);
2628 				cv_broadcast(&seg->s_as->a_cv);
2629 			}
2630 			mutex_exit(&seg->s_as->a_contents);
2631 		}
2632 	}
2633 }
2634 
2635 #define	PAGE_HANDLED	((page_t *)-1)
2636 
2637 /*
2638  * Release all the pages in the NULL terminated ppp list
2639  * which haven't already been converted to PAGE_HANDLED.
2640  */
2641 static void
2642 segvn_pagelist_rele(page_t **ppp)
2643 {
2644 	for (; *ppp != NULL; ppp++) {
2645 		if (*ppp != PAGE_HANDLED)
2646 			page_unlock(*ppp);
2647 	}
2648 }
2649 
2650 static int stealcow = 1;
2651 
2652 /*
2653  * Workaround for viking chip bug.  See bug id 1220902.
2654  * To fix this down in pagefault() would require importing so
2655  * much as and segvn code as to be unmaintainable.
2656  */
2657 int enable_mbit_wa = 0;
2658 
2659 /*
2660  * Handles all the dirty work of getting the right
2661  * anonymous pages and loading up the translations.
2662  * This routine is called only from segvn_fault()
2663  * when looping over the range of addresses requested.
2664  *
2665  * The basic algorithm here is:
2666  * 	If this is an anon_zero case
2667  *		Call anon_zero to allocate page
2668  *		Load up translation
2669  *		Return
2670  *	endif
2671  *	If this is an anon page
2672  *		Use anon_getpage to get the page
2673  *	else
2674  *		Find page in pl[] list passed in
2675  *	endif
2676  *	If not a cow
2677  *		Load up the translation to the page
2678  *		return
2679  *	endif
2680  *	Call anon_private to handle cow
2681  *	Load up (writable) translation to new page
2682  */
2683 static faultcode_t
2684 segvn_faultpage(
2685 	struct hat *hat,		/* the hat to use for mapping */
2686 	struct seg *seg,		/* seg_vn of interest */
2687 	caddr_t addr,			/* address in as */
2688 	u_offset_t off,			/* offset in vp */
2689 	struct vpage *vpage,		/* pointer to vpage for vp, off */
2690 	page_t *pl[],			/* object source page pointer */
2691 	uint_t vpprot,			/* access allowed to object pages */
2692 	enum fault_type type,		/* type of fault */
2693 	enum seg_rw rw,			/* type of access at fault */
2694 	int brkcow,			/* we may need to break cow */
2695 	int first)			/* first page for this fault if 1 */
2696 {
2697 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2698 	page_t *pp, **ppp;
2699 	uint_t pageflags = 0;
2700 	page_t *anon_pl[1 + 1];
2701 	page_t *opp = NULL;		/* original page */
2702 	uint_t prot;
2703 	int err;
2704 	int cow;
2705 	int claim;
2706 	int steal = 0;
2707 	ulong_t anon_index;
2708 	struct anon *ap, *oldap;
2709 	struct anon_map *amp;
2710 	int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
2711 	int anon_lock = 0;
2712 	anon_sync_obj_t cookie;
2713 
2714 	if (svd->flags & MAP_TEXT) {
2715 		hat_flag |= HAT_LOAD_TEXT;
2716 	}
2717 
2718 	ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock));
2719 	ASSERT(seg->s_szc == 0);
2720 	ASSERT(svd->tr_state != SEGVN_TR_INIT);
2721 
2722 	/*
2723 	 * Initialize protection value for this page.
2724 	 * If we have per page protection values check it now.
2725 	 */
2726 	if (svd->pageprot) {
2727 		uint_t protchk;
2728 
2729 		switch (rw) {
2730 		case S_READ:
2731 			protchk = PROT_READ;
2732 			break;
2733 		case S_WRITE:
2734 			protchk = PROT_WRITE;
2735 			break;
2736 		case S_EXEC:
2737 			protchk = PROT_EXEC;
2738 			break;
2739 		case S_OTHER:
2740 		default:
2741 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
2742 			break;
2743 		}
2744 
2745 		prot = VPP_PROT(vpage);
2746 		if ((prot & protchk) == 0)
2747 			return (FC_PROT);	/* illegal access type */
2748 	} else {
2749 		prot = svd->prot;
2750 	}
2751 
2752 	if (type == F_SOFTLOCK && svd->vp != NULL) {
2753 		mutex_enter(&freemem_lock);
2754 		if (availrmem <= tune.t_minarmem) {
2755 			mutex_exit(&freemem_lock);
2756 			return (FC_MAKE_ERR(ENOMEM));	/* out of real memory */
2757 		} else {
2758 			availrmem--;
2759 			svd->softlockcnt++;
2760 			segvn_pages_locked++;
2761 		}
2762 		mutex_exit(&freemem_lock);
2763 	}
2764 
2765 	/*
2766 	 * Always acquire the anon array lock to prevent 2 threads from
2767 	 * allocating separate anon slots for the same "addr".
2768 	 */
2769 
2770 	if ((amp = svd->amp) != NULL) {
2771 		ASSERT(RW_READ_HELD(&amp->a_rwlock));
2772 		anon_index = svd->anon_index + seg_page(seg, addr);
2773 		anon_array_enter(amp, anon_index, &cookie);
2774 		anon_lock = 1;
2775 	}
2776 
2777 	if (svd->vp == NULL && amp != NULL) {
2778 		if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL) {
2779 			/*
2780 			 * Allocate a (normally) writable anonymous page of
2781 			 * zeroes. If no advance reservations, reserve now.
2782 			 */
2783 			if (svd->flags & MAP_NORESERVE) {
2784 				if (anon_resv_zone(ptob(1),
2785 				    seg->s_as->a_proc->p_zone)) {
2786 					atomic_add_long(&svd->swresv, ptob(1));
2787 				} else {
2788 					err = ENOMEM;
2789 					goto out;
2790 				}
2791 			}
2792 			if ((pp = anon_zero(seg, addr, &ap,
2793 			    svd->cred)) == NULL) {
2794 				err = ENOMEM;
2795 				goto out;	/* out of swap space */
2796 			}
2797 			/*
2798 			 * Re-acquire the anon_map lock and
2799 			 * initialize the anon array entry.
2800 			 */
2801 			(void) anon_set_ptr(amp->ahp, anon_index, ap,
2802 			    ANON_SLEEP);
2803 
2804 			ASSERT(pp->p_szc == 0);
2805 
2806 			/*
2807 			 * Handle pages that have been marked for migration
2808 			 */
2809 			if (lgrp_optimizations())
2810 				page_migrate(seg, addr, &pp, 1);
2811 
2812 			if (type == F_SOFTLOCK) {
2813 				if (!segvn_slock_anonpages(pp, first)) {
2814 					page_unlock(pp);
2815 					err = ENOMEM;
2816 					goto out;
2817 				} else {
2818 					mutex_enter(&freemem_lock);
2819 					svd->softlockcnt++;
2820 					segvn_pages_locked++;
2821 					mutex_exit(&freemem_lock);
2822 				}
2823 			}
2824 
2825 			if (enable_mbit_wa) {
2826 				if (rw == S_WRITE)
2827 					hat_setmod(pp);
2828 				else if (!hat_ismod(pp))
2829 					prot &= ~PROT_WRITE;
2830 			}
2831 			/*
2832 			 * If AS_PAGLCK is set in a_flags (via memcntl(2)
2833 			 * with MC_LOCKAS, MCL_FUTURE) and this is a
2834 			 * MAP_NORESERVE segment, we may need to
2835 			 * permanently lock the page as it is being faulted
2836 			 * for the first time. The following text applies
2837 			 * only to MAP_NORESERVE segments:
2838 			 *
2839 			 * As per memcntl(2), if this segment was created
2840 			 * after MCL_FUTURE was applied (a "future"
2841 			 * segment), its pages must be locked.  If this
2842 			 * segment existed at MCL_FUTURE application (a
2843 			 * "past" segment), the interface is unclear.
2844 			 *
2845 			 * We decide to lock only if vpage is present:
2846 			 *
2847 			 * - "future" segments will have a vpage array (see
2848 			 *    as_map), and so will be locked as required
2849 			 *
2850 			 * - "past" segments may not have a vpage array,
2851 			 *    depending on whether events (such as
2852 			 *    mprotect) have occurred. Locking if vpage
2853 			 *    exists will preserve legacy behavior.  Not
2854 			 *    locking if vpage is absent, will not break
2855 			 *    the interface or legacy behavior.  Note that
2856 			 *    allocating vpage here if it's absent requires
2857 			 *    upgrading the segvn reader lock, the cost of
2858 			 *    which does not seem worthwhile.
2859 			 *
2860 			 * Usually testing and setting VPP_ISPPLOCK and
2861 			 * VPP_SETPPLOCK requires holding the segvn lock as
2862 			 * writer, but in this case all readers are
2863 			 * serializing on the anon array lock.
2864 			 */
2865 			if (AS_ISPGLCK(seg->s_as) && vpage != NULL &&
2866 			    (svd->flags & MAP_NORESERVE) &&
2867 			    !VPP_ISPPLOCK(vpage)) {
2868 				proc_t *p = seg->s_as->a_proc;
2869 				ASSERT(svd->type == MAP_PRIVATE);
2870 				mutex_enter(&p->p_lock);
2871 				if (rctl_incr_locked_mem(p, NULL, PAGESIZE,
2872 				    1) == 0) {
2873 					claim = VPP_PROT(vpage) & PROT_WRITE;
2874 					if (page_pp_lock(pp, claim, 0)) {
2875 						VPP_SETPPLOCK(vpage);
2876 					} else {
2877 						rctl_decr_locked_mem(p, NULL,
2878 						    PAGESIZE, 1);
2879 					}
2880 				}
2881 				mutex_exit(&p->p_lock);
2882 			}
2883 
2884 			ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
2885 			hat_memload(hat, addr, pp, prot, hat_flag);
2886 
2887 			if (!(hat_flag & HAT_LOAD_LOCK))
2888 				page_unlock(pp);
2889 
2890 			anon_array_exit(&cookie);
2891 			return (0);
2892 		}
2893 	}
2894 
2895 	/*
2896 	 * Obtain the page structure via anon_getpage() if it is
2897 	 * a private copy of an object (the result of a previous
2898 	 * copy-on-write).
2899 	 */
2900 	if (amp != NULL) {
2901 		if ((ap = anon_get_ptr(amp->ahp, anon_index)) != NULL) {
2902 			err = anon_getpage(&ap, &vpprot, anon_pl, PAGESIZE,
2903 			    seg, addr, rw, svd->cred);
2904 			if (err)
2905 				goto out;
2906 
2907 			if (svd->type == MAP_SHARED) {
2908 				/*
2909 				 * If this is a shared mapping to an
2910 				 * anon_map, then ignore the write
2911 				 * permissions returned by anon_getpage().
2912 				 * They apply to the private mappings
2913 				 * of this anon_map.
2914 				 */
2915 				vpprot |= PROT_WRITE;
2916 			}
2917 			opp = anon_pl[0];
2918 		}
2919 	}
2920 
2921 	/*
2922 	 * Search the pl[] list passed in if it is from the
2923 	 * original object (i.e., not a private copy).
2924 	 */
2925 	if (opp == NULL) {
2926 		/*
2927 		 * Find original page.  We must be bringing it in
2928 		 * from the list in pl[].
2929 		 */
2930 		for (ppp = pl; (opp = *ppp) != NULL; ppp++) {
2931 			if (opp == PAGE_HANDLED)
2932 				continue;
2933 			ASSERT(opp->p_vnode == svd->vp); /* XXX */
2934 			if (opp->p_offset == off)
2935 				break;
2936 		}
2937 		if (opp == NULL) {
2938 			panic("segvn_faultpage not found");
2939 			/*NOTREACHED*/
2940 		}
2941 		*ppp = PAGE_HANDLED;
2942 
2943 	}
2944 
2945 	ASSERT(PAGE_LOCKED(opp));
2946 
2947 	TRACE_3(TR_FAC_VM, TR_SEGVN_FAULT,
2948 	    "segvn_fault:pp %p vp %p offset %llx", opp, NULL, 0);
2949 
2950 	/*
2951 	 * The fault is treated as a copy-on-write fault if a
2952 	 * write occurs on a private segment and the object
2953 	 * page (i.e., mapping) is write protected.  We assume
2954 	 * that fatal protection checks have already been made.
2955 	 */
2956 
2957 	if (brkcow) {
2958 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
2959 		cow = !(vpprot & PROT_WRITE);
2960 	} else if (svd->tr_state == SEGVN_TR_ON) {
2961 		/*
2962 		 * If we are doing text replication COW on first touch.
2963 		 */
2964 		ASSERT(amp != NULL);
2965 		ASSERT(svd->vp != NULL);
2966 		ASSERT(rw != S_WRITE);
2967 		cow = (ap == NULL);
2968 	} else {
2969 		cow = 0;
2970 	}
2971 
2972 	/*
2973 	 * If not a copy-on-write case load the translation
2974 	 * and return.
2975 	 */
2976 	if (cow == 0) {
2977 
2978 		/*
2979 		 * Handle pages that have been marked for migration
2980 		 */
2981 		if (lgrp_optimizations())
2982 			page_migrate(seg, addr, &opp, 1);
2983 
2984 		if (type == F_SOFTLOCK && svd->vp == NULL) {
2985 
2986 			ASSERT(opp->p_szc == 0 ||
2987 			    (svd->type == MAP_SHARED &&
2988 			    amp != NULL && amp->a_szc != 0));
2989 
2990 			if (!segvn_slock_anonpages(opp, first)) {
2991 				page_unlock(opp);
2992 				err = ENOMEM;
2993 				goto out;
2994 			} else {
2995 				mutex_enter(&freemem_lock);
2996 				svd->softlockcnt++;
2997 				segvn_pages_locked++;
2998 				mutex_exit(&freemem_lock);
2999 			}
3000 		}
3001 		if (IS_VMODSORT(opp->p_vnode) || enable_mbit_wa) {
3002 			if (rw == S_WRITE)
3003 				hat_setmod(opp);
3004 			else if (rw != S_OTHER && !hat_ismod(opp))
3005 				prot &= ~PROT_WRITE;
3006 		}
3007 
3008 		ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE ||
3009 		    (!svd->pageprot && svd->prot == (prot & vpprot)));
3010 		ASSERT(amp == NULL ||
3011 		    svd->rcookie == HAT_INVALID_REGION_COOKIE);
3012 		hat_memload_region(hat, addr, opp, prot & vpprot, hat_flag,
3013 		    svd->rcookie);
3014 
3015 		if (!(hat_flag & HAT_LOAD_LOCK))
3016 			page_unlock(opp);
3017 
3018 		if (anon_lock) {
3019 			anon_array_exit(&cookie);
3020 		}
3021 		return (0);
3022 	}
3023 
3024 	ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
3025 
3026 	hat_setref(opp);
3027 
3028 	ASSERT(amp != NULL && anon_lock);
3029 
3030 	/*
3031 	 * Steal the page only if it isn't a private page
3032 	 * since stealing a private page is not worth the effort.
3033 	 */
3034 	if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL)
3035 		steal = 1;
3036 
3037 	/*
3038 	 * Steal the original page if the following conditions are true:
3039 	 *
3040 	 * We are low on memory, the page is not private, page is not large,
3041 	 * not shared, not modified, not `locked' or if we have it `locked'
3042 	 * (i.e., p_cowcnt == 1 and p_lckcnt == 0, which also implies
3043 	 * that the page is not shared) and if it doesn't have any
3044 	 * translations. page_struct_lock isn't needed to look at p_cowcnt
3045 	 * and p_lckcnt because we first get exclusive lock on page.
3046 	 */
3047 	(void) hat_pagesync(opp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD);
3048 
3049 	if (stealcow && freemem < minfree && steal && opp->p_szc == 0 &&
3050 	    page_tryupgrade(opp) && !hat_ismod(opp) &&
3051 	    ((opp->p_lckcnt == 0 && opp->p_cowcnt == 0) ||
3052 	    (opp->p_lckcnt == 0 && opp->p_cowcnt == 1 &&
3053 	    vpage != NULL && VPP_ISPPLOCK(vpage)))) {
3054 		/*
3055 		 * Check if this page has other translations
3056 		 * after unloading our translation.
3057 		 */
3058 		if (hat_page_is_mapped(opp)) {
3059 			ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
3060 			hat_unload(seg->s_as->a_hat, addr, PAGESIZE,
3061 			    HAT_UNLOAD);
3062 		}
3063 
3064 		/*
3065 		 * hat_unload() might sync back someone else's recent
3066 		 * modification, so check again.
3067 		 */
3068 		if (!hat_ismod(opp) && !hat_page_is_mapped(opp))
3069 			pageflags |= STEAL_PAGE;
3070 	}
3071 
3072 	/*
3073 	 * If we have a vpage pointer, see if it indicates that we have
3074 	 * ``locked'' the page we map -- if so, tell anon_private to
3075 	 * transfer the locking resource to the new page.
3076 	 *
3077 	 * See Statement at the beginning of segvn_lockop regarding
3078 	 * the way lockcnts/cowcnts are handled during COW.
3079 	 *
3080 	 */
3081 	if (vpage != NULL && VPP_ISPPLOCK(vpage))
3082 		pageflags |= LOCK_PAGE;
3083 
3084 	/*
3085 	 * Allocate a private page and perform the copy.
3086 	 * For MAP_NORESERVE reserve swap space now, unless this
3087 	 * is a cow fault on an existing anon page in which case
3088 	 * MAP_NORESERVE will have made advance reservations.
3089 	 */
3090 	if ((svd->flags & MAP_NORESERVE) && (ap == NULL)) {
3091 		if (anon_resv_zone(ptob(1), seg->s_as->a_proc->p_zone)) {
3092 			atomic_add_long(&svd->swresv, ptob(1));
3093 		} else {
3094 			page_unlock(opp);
3095 			err = ENOMEM;
3096 			goto out;
3097 		}
3098 	}
3099 	oldap = ap;
3100 	pp = anon_private(&ap, seg, addr, prot, opp, pageflags, svd->cred);
3101 	if (pp == NULL) {
3102 		err = ENOMEM;	/* out of swap space */
3103 		goto out;
3104 	}
3105 
3106 	/*
3107 	 * If we copied away from an anonymous page, then
3108 	 * we are one step closer to freeing up an anon slot.
3109 	 *
3110 	 * NOTE:  The original anon slot must be released while
3111 	 * holding the "anon_map" lock.  This is necessary to prevent
3112 	 * other threads from obtaining a pointer to the anon slot
3113 	 * which may be freed if its "refcnt" is 1.
3114 	 */
3115 	if (oldap != NULL)
3116 		anon_decref(oldap);
3117 
3118 	(void) anon_set_ptr(amp->ahp, anon_index, ap, ANON_SLEEP);
3119 
3120 	/*
3121 	 * Handle pages that have been marked for migration
3122 	 */
3123 	if (lgrp_optimizations())
3124 		page_migrate(seg, addr, &pp, 1);
3125 
3126 	ASSERT(pp->p_szc == 0);
3127 	if (type == F_SOFTLOCK && svd->vp == NULL) {
3128 		if (!segvn_slock_anonpages(pp, first)) {
3129 			page_unlock(pp);
3130 			err = ENOMEM;
3131 			goto out;
3132 		} else {
3133 			mutex_enter(&freemem_lock);
3134 			svd->softlockcnt++;
3135 			segvn_pages_locked++;
3136 			mutex_exit(&freemem_lock);
3137 		}
3138 	}
3139 
3140 	ASSERT(!IS_VMODSORT(pp->p_vnode));
3141 	if (enable_mbit_wa) {
3142 		if (rw == S_WRITE)
3143 			hat_setmod(pp);
3144 		else if (!hat_ismod(pp))
3145 			prot &= ~PROT_WRITE;
3146 	}
3147 
3148 	ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
3149 	hat_memload(hat, addr, pp, prot, hat_flag);
3150 
3151 	if (!(hat_flag & HAT_LOAD_LOCK))
3152 		page_unlock(pp);
3153 
3154 	ASSERT(anon_lock);
3155 	anon_array_exit(&cookie);
3156 	return (0);
3157 out:
3158 	if (anon_lock)
3159 		anon_array_exit(&cookie);
3160 
3161 	if (type == F_SOFTLOCK && svd->vp != NULL) {
3162 		mutex_enter(&freemem_lock);
3163 		availrmem++;
3164 		segvn_pages_locked--;
3165 		svd->softlockcnt--;
3166 		mutex_exit(&freemem_lock);
3167 	}
3168 	return (FC_MAKE_ERR(err));
3169 }
3170 
3171 /*
3172  * relocate a bunch of smaller targ pages into one large repl page. all targ
3173  * pages must be complete pages smaller than replacement pages.
3174  * it's assumed that no page's szc can change since they are all PAGESIZE or
3175  * complete large pages locked SHARED.
3176  */
3177 static void
3178 segvn_relocate_pages(page_t **targ, page_t *replacement)
3179 {
3180 	page_t *pp;
3181 	pgcnt_t repl_npgs, curnpgs;
3182 	pgcnt_t i;
3183 	uint_t repl_szc = replacement->p_szc;
3184 	page_t *first_repl = replacement;
3185 	page_t *repl;
3186 	spgcnt_t npgs;
3187 
3188 	VM_STAT_ADD(segvnvmstats.relocatepages[0]);
3189 
3190 	ASSERT(repl_szc != 0);
3191 	npgs = repl_npgs = page_get_pagecnt(repl_szc);
3192 
3193 	i = 0;
3194 	while (repl_npgs) {
3195 		spgcnt_t nreloc;
3196 		int err;
3197 		ASSERT(replacement != NULL);
3198 		pp = targ[i];
3199 		ASSERT(pp->p_szc < repl_szc);
3200 		ASSERT(PAGE_EXCL(pp));
3201 		ASSERT(!PP_ISFREE(pp));
3202 		curnpgs = page_get_pagecnt(pp->p_szc);
3203 		if (curnpgs == 1) {
3204 			VM_STAT_ADD(segvnvmstats.relocatepages[1]);
3205 			repl = replacement;
3206 			page_sub(&replacement, repl);
3207 			ASSERT(PAGE_EXCL(repl));
3208 			ASSERT(!PP_ISFREE(repl));
3209 			ASSERT(repl->p_szc == repl_szc);
3210 		} else {
3211 			page_t *repl_savepp;
3212 			int j;
3213 			VM_STAT_ADD(segvnvmstats.relocatepages[2]);
3214 			repl_savepp = replacement;
3215 			for (j = 0; j < curnpgs; j++) {
3216 				repl = replacement;
3217 				page_sub(&replacement, repl);
3218 				ASSERT(PAGE_EXCL(repl));
3219 				ASSERT(!PP_ISFREE(repl));
3220 				ASSERT(repl->p_szc == repl_szc);
3221 				ASSERT(page_pptonum(targ[i + j]) ==
3222 				    page_pptonum(targ[i]) + j);
3223 			}
3224 			repl = repl_savepp;
3225 			ASSERT(IS_P2ALIGNED(page_pptonum(repl), curnpgs));
3226 		}
3227 		err = page_relocate(&pp, &repl, 0, 1, &nreloc, NULL);
3228 		if (err || nreloc != curnpgs) {
3229 			panic("segvn_relocate_pages: "
3230 			    "page_relocate failed err=%d curnpgs=%ld "
3231 			    "nreloc=%ld", err, curnpgs, nreloc);
3232 		}
3233 		ASSERT(curnpgs <= repl_npgs);
3234 		repl_npgs -= curnpgs;
3235 		i += curnpgs;
3236 	}
3237 	ASSERT(replacement == NULL);
3238 
3239 	repl = first_repl;
3240 	repl_npgs = npgs;
3241 	for (i = 0; i < repl_npgs; i++) {
3242 		ASSERT(PAGE_EXCL(repl));
3243 		ASSERT(!PP_ISFREE(repl));
3244 		targ[i] = repl;
3245 		page_downgrade(targ[i]);
3246 		repl++;
3247 	}
3248 }
3249 
3250 /*
3251  * Check if all pages in ppa array are complete smaller than szc pages and
3252  * their roots will still be aligned relative to their current size if the
3253  * entire ppa array is relocated into one szc page. If these conditions are
3254  * not met return 0.
3255  *
3256  * If all pages are properly aligned attempt to upgrade their locks
3257  * to exclusive mode. If it fails set *upgrdfail to 1 and return 0.
3258  * upgrdfail was set to 0 by caller.
3259  *
3260  * Return 1 if all pages are aligned and locked exclusively.
3261  *
3262  * If all pages in ppa array happen to be physically contiguous to make one
3263  * szc page and all exclusive locks are successfully obtained promote the page
3264  * size to szc and set *pszc to szc. Return 1 with pages locked shared.
3265  */
3266 static int
3267 segvn_full_szcpages(page_t **ppa, uint_t szc, int *upgrdfail, uint_t *pszc)
3268 {
3269 	page_t *pp;
3270 	pfn_t pfn;
3271 	pgcnt_t totnpgs = page_get_pagecnt(szc);
3272 	pfn_t first_pfn;
3273 	int contig = 1;
3274 	pgcnt_t i;
3275 	pgcnt_t j;
3276 	uint_t curszc;
3277 	pgcnt_t curnpgs;
3278 	int root = 0;
3279 
3280 	ASSERT(szc > 0);
3281 
3282 	VM_STAT_ADD(segvnvmstats.fullszcpages[0]);
3283 
3284 	for (i = 0; i < totnpgs; i++) {
3285 		pp = ppa[i];
3286 		ASSERT(PAGE_SHARED(pp));
3287 		ASSERT(!PP_ISFREE(pp));
3288 		pfn = page_pptonum(pp);
3289 		if (i == 0) {
3290 			if (!IS_P2ALIGNED(pfn, totnpgs)) {
3291 				contig = 0;
3292 			} else {
3293 				first_pfn = pfn;
3294 			}
3295 		} else if (contig && pfn != first_pfn + i) {
3296 			contig = 0;
3297 		}
3298 		if (pp->p_szc == 0) {
3299 			if (root) {
3300 				VM_STAT_ADD(segvnvmstats.fullszcpages[1]);
3301 				return (0);
3302 			}
3303 		} else if (!root) {
3304 			if ((curszc = pp->p_szc) >= szc) {
3305 				VM_STAT_ADD(segvnvmstats.fullszcpages[2]);
3306 				return (0);
3307 			}
3308 			if (curszc == 0) {
3309 				/*
3310 				 * p_szc changed means we don't have all pages
3311 				 * locked. return failure.
3312 				 */
3313 				VM_STAT_ADD(segvnvmstats.fullszcpages[3]);
3314 				return (0);
3315 			}
3316 			curnpgs = page_get_pagecnt(curszc);
3317 			if (!IS_P2ALIGNED(pfn, curnpgs) ||
3318 			    !IS_P2ALIGNED(i, curnpgs)) {
3319 				VM_STAT_ADD(segvnvmstats.fullszcpages[4]);
3320 				return (0);
3321 			}
3322 			root = 1;
3323 		} else {
3324 			ASSERT(i > 0);
3325 			VM_STAT_ADD(segvnvmstats.fullszcpages[5]);
3326 			if (pp->p_szc != curszc) {
3327 				VM_STAT_ADD(segvnvmstats.fullszcpages[6]);
3328 				return (0);
3329 			}
3330 			if (pfn - 1 != page_pptonum(ppa[i - 1])) {
3331 				panic("segvn_full_szcpages: "
3332 				    "large page not physically contiguous");
3333 			}
3334 			if (P2PHASE(pfn, curnpgs) == curnpgs - 1) {
3335 				root = 0;
3336 			}
3337 		}
3338 	}
3339 
3340 	for (i = 0; i < totnpgs; i++) {
3341 		ASSERT(ppa[i]->p_szc < szc);
3342 		if (!page_tryupgrade(ppa[i])) {
3343 			for (j = 0; j < i; j++) {
3344 				page_downgrade(ppa[j]);
3345 			}
3346 			*pszc = ppa[i]->p_szc;
3347 			*upgrdfail = 1;
3348 			VM_STAT_ADD(segvnvmstats.fullszcpages[7]);
3349 			return (0);
3350 		}
3351 	}
3352 
3353 	/*
3354 	 * When a page is put a free cachelist its szc is set to 0.  if file
3355 	 * system reclaimed pages from cachelist targ pages will be physically
3356 	 * contiguous with 0 p_szc.  in this case just upgrade szc of targ
3357 	 * pages without any relocations.
3358 	 * To avoid any hat issues with previous small mappings
3359 	 * hat_pageunload() the target pages first.
3360 	 */
3361 	if (contig) {
3362 		VM_STAT_ADD(segvnvmstats.fullszcpages[8]);
3363 		for (i = 0; i < totnpgs; i++) {
3364 			(void) hat_pageunload(ppa[i], HAT_FORCE_PGUNLOAD);
3365 		}
3366 		for (i = 0; i < totnpgs; i++) {
3367 			ppa[i]->p_szc = szc;
3368 		}
3369 		for (i = 0; i < totnpgs; i++) {
3370 			ASSERT(PAGE_EXCL(ppa[i]));
3371 			page_downgrade(ppa[i]);
3372 		}
3373 		if (pszc != NULL) {
3374 			*pszc = szc;
3375 		}
3376 	}
3377 	VM_STAT_ADD(segvnvmstats.fullszcpages[9]);
3378 	return (1);
3379 }
3380 
3381 /*
3382  * Create physically contiguous pages for [vp, off] - [vp, off +
3383  * page_size(szc)) range and for private segment return them in ppa array.
3384  * Pages are created either via IO or relocations.
3385  *
3386  * Return 1 on success and 0 on failure.
3387  *
3388  * If physically contiguous pages already exist for this range return 1 without
3389  * filling ppa array. Caller initializes ppa[0] as NULL to detect that ppa
3390  * array wasn't filled. In this case caller fills ppa array via VOP_GETPAGE().
3391  */
3392 
3393 static int
3394 segvn_fill_vp_pages(struct segvn_data *svd, vnode_t *vp, u_offset_t off,
3395     uint_t szc, page_t **ppa, page_t **ppplist, uint_t *ret_pszc,
3396     int *downsize)
3397 
3398 {
3399 	page_t *pplist = *ppplist;
3400 	size_t pgsz = page_get_pagesize(szc);
3401 	pgcnt_t pages = btop(pgsz);
3402 	ulong_t start_off = off;
3403 	u_offset_t eoff = off + pgsz;
3404 	spgcnt_t nreloc;
3405 	u_offset_t io_off = off;
3406 	size_t io_len;
3407 	page_t *io_pplist = NULL;
3408 	page_t *done_pplist = NULL;
3409 	pgcnt_t pgidx = 0;
3410 	page_t *pp;
3411 	page_t *newpp;
3412 	page_t *targpp;
3413 	int io_err = 0;
3414 	int i;
3415 	pfn_t pfn;
3416 	ulong_t ppages;
3417 	page_t *targ_pplist = NULL;
3418 	page_t *repl_pplist = NULL;
3419 	page_t *tmp_pplist;
3420 	int nios = 0;
3421 	uint_t pszc;
3422 	struct vattr va;
3423 
3424 	VM_STAT_ADD(segvnvmstats.fill_vp_pages[0]);
3425 
3426 	ASSERT(szc != 0);
3427 	ASSERT(pplist->p_szc == szc);
3428 
3429 	/*
3430 	 * downsize will be set to 1 only if we fail to lock pages. this will
3431 	 * allow subsequent faults to try to relocate the page again. If we
3432 	 * fail due to misalignment don't downsize and let the caller map the
3433 	 * whole region with small mappings to avoid more faults into the area
3434 	 * where we can't get large pages anyway.
3435 	 */
3436 	*downsize = 0;
3437 
3438 	while (off < eoff) {
3439 		newpp = pplist;
3440 		ASSERT(newpp != NULL);
3441 		ASSERT(PAGE_EXCL(newpp));
3442 		ASSERT(!PP_ISFREE(newpp));
3443 		/*
3444 		 * we pass NULL for nrelocp to page_lookup_create()
3445 		 * so that it doesn't relocate. We relocate here
3446 		 * later only after we make sure we can lock all
3447 		 * pages in the range we handle and they are all
3448 		 * aligned.
3449 		 */
3450 		pp = page_lookup_create(vp, off, SE_SHARED, newpp, NULL, 0);
3451 		ASSERT(pp != NULL);
3452 		ASSERT(!PP_ISFREE(pp));
3453 		ASSERT(pp->p_vnode == vp);
3454 		ASSERT(pp->p_offset == off);
3455 		if (pp == newpp) {
3456 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[1]);
3457 			page_sub(&pplist, pp);
3458 			ASSERT(PAGE_EXCL(pp));
3459 			ASSERT(page_iolock_assert(pp));
3460 			page_list_concat(&io_pplist, &pp);
3461 			off += PAGESIZE;
3462 			continue;
3463 		}
3464 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[2]);
3465 		pfn = page_pptonum(pp);
3466 		pszc = pp->p_szc;
3467 		if (pszc >= szc && targ_pplist == NULL && io_pplist == NULL &&
3468 		    IS_P2ALIGNED(pfn, pages)) {
3469 			ASSERT(repl_pplist == NULL);
3470 			ASSERT(done_pplist == NULL);
3471 			ASSERT(pplist == *ppplist);
3472 			page_unlock(pp);
3473 			page_free_replacement_page(pplist);
3474 			page_create_putback(pages);
3475 			*ppplist = NULL;
3476 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[3]);
3477 			return (1);
3478 		}
3479 		if (pszc >= szc) {
3480 			page_unlock(pp);
3481 			segvn_faultvnmpss_align_err1++;
3482 			goto out;
3483 		}
3484 		ppages = page_get_pagecnt(pszc);
3485 		if (!IS_P2ALIGNED(pfn, ppages)) {
3486 			ASSERT(pszc > 0);
3487 			/*
3488 			 * sizing down to pszc won't help.
3489 			 */
3490 			page_unlock(pp);
3491 			segvn_faultvnmpss_align_err2++;
3492 			goto out;
3493 		}
3494 		pfn = page_pptonum(newpp);
3495 		if (!IS_P2ALIGNED(pfn, ppages)) {
3496 			ASSERT(pszc > 0);
3497 			/*
3498 			 * sizing down to pszc won't help.
3499 			 */
3500 			page_unlock(pp);
3501 			segvn_faultvnmpss_align_err3++;
3502 			goto out;
3503 		}
3504 		if (!PAGE_EXCL(pp)) {
3505 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[4]);
3506 			page_unlock(pp);
3507 			*downsize = 1;
3508 			*ret_pszc = pp->p_szc;
3509 			goto out;
3510 		}
3511 		targpp = pp;
3512 		if (io_pplist != NULL) {
3513 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[5]);
3514 			io_len = off - io_off;
3515 			/*
3516 			 * Some file systems like NFS don't check EOF
3517 			 * conditions in VOP_PAGEIO(). Check it here
3518 			 * now that pages are locked SE_EXCL. Any file
3519 			 * truncation will wait until the pages are
3520 			 * unlocked so no need to worry that file will
3521 			 * be truncated after we check its size here.
3522 			 * XXX fix NFS to remove this check.
3523 			 */
3524 			va.va_mask = AT_SIZE;
3525 			if (VOP_GETATTR(vp, &va, ATTR_HINT, svd->cred, NULL)) {
3526 				VM_STAT_ADD(segvnvmstats.fill_vp_pages[6]);
3527 				page_unlock(targpp);
3528 				goto out;
3529 			}
3530 			if (btopr(va.va_size) < btopr(io_off + io_len)) {
3531 				VM_STAT_ADD(segvnvmstats.fill_vp_pages[7]);
3532 				*downsize = 1;
3533 				*ret_pszc = 0;
3534 				page_unlock(targpp);
3535 				goto out;
3536 			}
3537 			io_err = VOP_PAGEIO(vp, io_pplist, io_off, io_len,
3538 				B_READ, svd->cred, NULL);
3539 			if (io_err) {
3540 				VM_STAT_ADD(segvnvmstats.fill_vp_pages[8]);
3541 				page_unlock(targpp);
3542 				if (io_err == EDEADLK) {
3543 					segvn_vmpss_pageio_deadlk_err++;
3544 				}
3545 				goto out;
3546 			}
3547 			nios++;
3548 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[9]);
3549 			while (io_pplist != NULL) {
3550 				pp = io_pplist;
3551 				page_sub(&io_pplist, pp);
3552 				ASSERT(page_iolock_assert(pp));
3553 				page_io_unlock(pp);
3554 				pgidx = (pp->p_offset - start_off) >>
3555 				    PAGESHIFT;
3556 				ASSERT(pgidx < pages);
3557 				ppa[pgidx] = pp;
3558 				page_list_concat(&done_pplist, &pp);
3559 			}
3560 		}
3561 		pp = targpp;
3562 		ASSERT(PAGE_EXCL(pp));
3563 		ASSERT(pp->p_szc <= pszc);
3564 		if (pszc != 0 && !group_page_trylock(pp, SE_EXCL)) {
3565 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[10]);
3566 			page_unlock(pp);
3567 			*downsize = 1;
3568 			*ret_pszc = pp->p_szc;
3569 			goto out;
3570 		}
3571 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[11]);
3572 		/*
3573 		 * page szc chould have changed before the entire group was
3574 		 * locked. reread page szc.
3575 		 */
3576 		pszc = pp->p_szc;
3577 		ppages = page_get_pagecnt(pszc);
3578 
3579 		/* link just the roots */
3580 		page_list_concat(&targ_pplist, &pp);
3581 		page_sub(&pplist, newpp);
3582 		page_list_concat(&repl_pplist, &newpp);
3583 		off += PAGESIZE;
3584 		while (--ppages != 0) {
3585 			newpp = pplist;
3586 			page_sub(&pplist, newpp);
3587 			off += PAGESIZE;
3588 		}
3589 		io_off = off;
3590 	}
3591 	if (io_pplist != NULL) {
3592 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[12]);
3593 		io_len = eoff - io_off;
3594 		va.va_mask = AT_SIZE;
3595 		if (VOP_GETATTR(vp, &va, ATTR_HINT, svd->cred, NULL) != 0) {
3596 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[13]);
3597 			goto out;
3598 		}
3599 		if (btopr(va.va_size) < btopr(io_off + io_len)) {
3600 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[14]);
3601 			*downsize = 1;
3602 			*ret_pszc = 0;
3603 			goto out;
3604 		}
3605 		io_err = VOP_PAGEIO(vp, io_pplist, io_off, io_len,
3606 		    B_READ, svd->cred, NULL);
3607 		if (io_err) {
3608 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[15]);
3609 			if (io_err == EDEADLK) {
3610 				segvn_vmpss_pageio_deadlk_err++;
3611 			}
3612 			goto out;
3613 		}
3614 		nios++;
3615 		while (io_pplist != NULL) {
3616 			pp = io_pplist;
3617 			page_sub(&io_pplist, pp);
3618 			ASSERT(page_iolock_assert(pp));
3619 			page_io_unlock(pp);
3620 			pgidx = (pp->p_offset - start_off) >> PAGESHIFT;
3621 			ASSERT(pgidx < pages);
3622 			ppa[pgidx] = pp;
3623 		}
3624 	}
3625 	/*
3626 	 * we're now bound to succeed or panic.
3627 	 * remove pages from done_pplist. it's not needed anymore.
3628 	 */
3629 	while (done_pplist != NULL) {
3630 		pp = done_pplist;
3631 		page_sub(&done_pplist, pp);
3632 	}
3633 	VM_STAT_ADD(segvnvmstats.fill_vp_pages[16]);
3634 	ASSERT(pplist == NULL);
3635 	*ppplist = NULL;
3636 	while (targ_pplist != NULL) {
3637 		int ret;
3638 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[17]);
3639 		ASSERT(repl_pplist);
3640 		pp = targ_pplist;
3641 		page_sub(&targ_pplist, pp);
3642 		pgidx = (pp->p_offset - start_off) >> PAGESHIFT;
3643 		newpp = repl_pplist;
3644 		page_sub(&repl_pplist, newpp);
3645 #ifdef DEBUG
3646 		pfn = page_pptonum(pp);
3647 		pszc = pp->p_szc;
3648 		ppages = page_get_pagecnt(pszc);
3649 		ASSERT(IS_P2ALIGNED(pfn, ppages));
3650 		pfn = page_pptonum(newpp);
3651 		ASSERT(IS_P2ALIGNED(pfn, ppages));
3652 		ASSERT(P2PHASE(pfn, pages) == pgidx);
3653 #endif
3654 		nreloc = 0;
3655 		ret = page_relocate(&pp, &newpp, 0, 1, &nreloc, NULL);
3656 		if (ret != 0 || nreloc == 0) {
3657 			panic("segvn_fill_vp_pages: "
3658 			    "page_relocate failed");
3659 		}
3660 		pp = newpp;
3661 		while (nreloc-- != 0) {
3662 			ASSERT(PAGE_EXCL(pp));
3663 			ASSERT(pp->p_vnode == vp);
3664 			ASSERT(pgidx ==
3665 			    ((pp->p_offset - start_off) >> PAGESHIFT));
3666 			ppa[pgidx++] = pp;
3667 			pp++;
3668 		}
3669 	}
3670 
3671 	if (svd->type == MAP_PRIVATE) {
3672 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[18]);
3673 		for (i = 0; i < pages; i++) {
3674 			ASSERT(ppa[i] != NULL);
3675 			ASSERT(PAGE_EXCL(ppa[i]));
3676 			ASSERT(ppa[i]->p_vnode == vp);
3677 			ASSERT(ppa[i]->p_offset ==
3678 			    start_off + (i << PAGESHIFT));
3679 			page_downgrade(ppa[i]);
3680 		}
3681 		ppa[pages] = NULL;
3682 	} else {
3683 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[19]);
3684 		/*
3685 		 * the caller will still call VOP_GETPAGE() for shared segments
3686 		 * to check FS write permissions. For private segments we map
3687 		 * file read only anyway.  so no VOP_GETPAGE is needed.
3688 		 */
3689 		for (i = 0; i < pages; i++) {
3690 			ASSERT(ppa[i] != NULL);
3691 			ASSERT(PAGE_EXCL(ppa[i]));
3692 			ASSERT(ppa[i]->p_vnode == vp);
3693 			ASSERT(ppa[i]->p_offset ==
3694 			    start_off + (i << PAGESHIFT));
3695 			page_unlock(ppa[i]);
3696 		}
3697 		ppa[0] = NULL;
3698 	}
3699 
3700 	return (1);
3701 out:
3702 	/*
3703 	 * Do the cleanup. Unlock target pages we didn't relocate. They are
3704 	 * linked on targ_pplist by root pages. reassemble unused replacement
3705 	 * and io pages back to pplist.
3706 	 */
3707 	if (io_pplist != NULL) {
3708 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[20]);
3709 		pp = io_pplist;
3710 		do {
3711 			ASSERT(pp->p_vnode == vp);
3712 			ASSERT(pp->p_offset == io_off);
3713 			ASSERT(page_iolock_assert(pp));
3714 			page_io_unlock(pp);
3715 			page_hashout(pp, NULL);
3716 			io_off += PAGESIZE;
3717 		} while ((pp = pp->p_next) != io_pplist);
3718 		page_list_concat(&io_pplist, &pplist);
3719 		pplist = io_pplist;
3720 	}
3721 	tmp_pplist = NULL;
3722 	while (targ_pplist != NULL) {
3723 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[21]);
3724 		pp = targ_pplist;
3725 		ASSERT(PAGE_EXCL(pp));
3726 		page_sub(&targ_pplist, pp);
3727 
3728 		pszc = pp->p_szc;
3729 		ppages = page_get_pagecnt(pszc);
3730 		ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages));
3731 
3732 		if (pszc != 0) {
3733 			group_page_unlock(pp);
3734 		}
3735 		page_unlock(pp);
3736 
3737 		pp = repl_pplist;
3738 		ASSERT(pp != NULL);
3739 		ASSERT(PAGE_EXCL(pp));
3740 		ASSERT(pp->p_szc == szc);
3741 		page_sub(&repl_pplist, pp);
3742 
3743 		ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages));
3744 
3745 		/* relink replacement page */
3746 		page_list_concat(&tmp_pplist, &pp);
3747 		while (--ppages != 0) {
3748 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[22]);
3749 			pp++;
3750 			ASSERT(PAGE_EXCL(pp));
3751 			ASSERT(pp->p_szc == szc);
3752 			page_list_concat(&tmp_pplist, &pp);
3753 		}
3754 	}
3755 	if (tmp_pplist != NULL) {
3756 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[23]);
3757 		page_list_concat(&tmp_pplist, &pplist);
3758 		pplist = tmp_pplist;
3759 	}
3760 	/*
3761 	 * at this point all pages are either on done_pplist or
3762 	 * pplist. They can't be all on done_pplist otherwise
3763 	 * we'd've been done.
3764 	 */
3765 	ASSERT(pplist != NULL);
3766 	if (nios != 0) {
3767 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[24]);
3768 		pp = pplist;
3769 		do {
3770 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[25]);
3771 			ASSERT(pp->p_szc == szc);
3772 			ASSERT(PAGE_EXCL(pp));
3773 			ASSERT(pp->p_vnode != vp);
3774 			pp->p_szc = 0;
3775 		} while ((pp = pp->p_next) != pplist);
3776 
3777 		pp = done_pplist;
3778 		do {
3779 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[26]);
3780 			ASSERT(pp->p_szc == szc);
3781 			ASSERT(PAGE_EXCL(pp));
3782 			ASSERT(pp->p_vnode == vp);
3783 			pp->p_szc = 0;
3784 		} while ((pp = pp->p_next) != done_pplist);
3785 
3786 		while (pplist != NULL) {
3787 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[27]);
3788 			pp = pplist;
3789 			page_sub(&pplist, pp);
3790 			page_free(pp, 0);
3791 		}
3792 
3793 		while (done_pplist != NULL) {
3794 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[28]);
3795 			pp = done_pplist;
3796 			page_sub(&done_pplist, pp);
3797 			page_unlock(pp);
3798 		}
3799 		*ppplist = NULL;
3800 		return (0);
3801 	}
3802 	ASSERT(pplist == *ppplist);
3803 	if (io_err) {
3804 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[29]);
3805 		/*
3806 		 * don't downsize on io error.
3807 		 * see if vop_getpage succeeds.
3808 		 * pplist may still be used in this case
3809 		 * for relocations.
3810 		 */
3811 		return (0);
3812 	}
3813 	VM_STAT_ADD(segvnvmstats.fill_vp_pages[30]);
3814 	page_free_replacement_page(pplist);
3815 	page_create_putback(pages);
3816 	*ppplist = NULL;
3817 	return (0);
3818 }
3819 
3820 int segvn_anypgsz = 0;
3821 
3822 #define	SEGVN_RESTORE_SOFTLOCK(type, pages) 		\
3823 		if ((type) == F_SOFTLOCK) {		\
3824 			mutex_enter(&freemem_lock);	\
3825 			availrmem += (pages);		\
3826 			segvn_pages_locked -= (pages);	\
3827 			svd->softlockcnt -= (pages);	\
3828 			mutex_exit(&freemem_lock);	\
3829 		}
3830 
3831 #define	SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot)		\
3832 		if (IS_VMODSORT((ppa)[0]->p_vnode)) {			\
3833 			if ((rw) == S_WRITE) {				\
3834 				for (i = 0; i < (pages); i++) {		\
3835 					ASSERT((ppa)[i]->p_vnode ==	\
3836 					    (ppa)[0]->p_vnode);		\
3837 					hat_setmod((ppa)[i]);		\
3838 				}					\
3839 			} else if ((rw) != S_OTHER &&			\
3840 			    ((prot) & (vpprot) & PROT_WRITE)) {		\
3841 				for (i = 0; i < (pages); i++) {		\
3842 					ASSERT((ppa)[i]->p_vnode ==	\
3843 					    (ppa)[0]->p_vnode);		\
3844 					if (!hat_ismod((ppa)[i])) {	\
3845 						prot &= ~PROT_WRITE;	\
3846 						break;			\
3847 					}				\
3848 				}					\
3849 			}						\
3850 		}
3851 
3852 #ifdef  VM_STATS
3853 
3854 #define	SEGVN_VMSTAT_FLTVNPAGES(idx)					\
3855 		VM_STAT_ADD(segvnvmstats.fltvnpages[(idx)]);
3856 
3857 #else /* VM_STATS */
3858 
3859 #define	SEGVN_VMSTAT_FLTVNPAGES(idx)
3860 
3861 #endif
3862 
3863 static faultcode_t
3864 segvn_fault_vnodepages(struct hat *hat, struct seg *seg, caddr_t lpgaddr,
3865     caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr,
3866     caddr_t eaddr, int brkcow)
3867 {
3868 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
3869 	struct anon_map *amp = svd->amp;
3870 	uchar_t segtype = svd->type;
3871 	uint_t szc = seg->s_szc;
3872 	size_t pgsz = page_get_pagesize(szc);
3873 	size_t maxpgsz = pgsz;
3874 	pgcnt_t pages = btop(pgsz);
3875 	pgcnt_t maxpages = pages;
3876 	size_t ppasize = (pages + 1) * sizeof (page_t *);
3877 	caddr_t a = lpgaddr;
3878 	caddr_t	maxlpgeaddr = lpgeaddr;
3879 	u_offset_t off = svd->offset + (uintptr_t)(a - seg->s_base);
3880 	ulong_t aindx = svd->anon_index + seg_page(seg, a);
3881 	struct vpage *vpage = (svd->vpage != NULL) ?
3882 	    &svd->vpage[seg_page(seg, a)] : NULL;
3883 	vnode_t *vp = svd->vp;
3884 	page_t **ppa;
3885 	uint_t	pszc;
3886 	size_t	ppgsz;
3887 	pgcnt_t	ppages;
3888 	faultcode_t err = 0;
3889 	int ierr;
3890 	int vop_size_err = 0;
3891 	uint_t protchk, prot, vpprot;
3892 	ulong_t i;
3893 	int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
3894 	anon_sync_obj_t an_cookie;
3895 	enum seg_rw arw;
3896 	int alloc_failed = 0;
3897 	int adjszc_chk;
3898 	struct vattr va;
3899 	int xhat = 0;
3900 	page_t *pplist;
3901 	pfn_t pfn;
3902 	int physcontig;
3903 	int upgrdfail;
3904 	int segvn_anypgsz_vnode = 0; /* for now map vnode with 2 page sizes */
3905 	int tron = (svd->tr_state == SEGVN_TR_ON);
3906 
3907 	ASSERT(szc != 0);
3908 	ASSERT(vp != NULL);
3909 	ASSERT(brkcow == 0 || amp != NULL);
3910 	ASSERT(tron == 0 || amp != NULL);
3911 	ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */
3912 	ASSERT(!(svd->flags & MAP_NORESERVE));
3913 	ASSERT(type != F_SOFTUNLOCK);
3914 	ASSERT(IS_P2ALIGNED(a, maxpgsz));
3915 	ASSERT(amp == NULL || IS_P2ALIGNED(aindx, maxpages));
3916 	ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
3917 	ASSERT(seg->s_szc < NBBY * sizeof (int));
3918 	ASSERT(type != F_SOFTLOCK || lpgeaddr - a == maxpgsz);
3919 	ASSERT(svd->tr_state != SEGVN_TR_INIT);
3920 
3921 	VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltvnpages[0]);
3922 	VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltvnpages[1]);
3923 
3924 	if (svd->flags & MAP_TEXT) {
3925 		hat_flag |= HAT_LOAD_TEXT;
3926 	}
3927 
3928 	if (svd->pageprot) {
3929 		switch (rw) {
3930 		case S_READ:
3931 			protchk = PROT_READ;
3932 			break;
3933 		case S_WRITE:
3934 			protchk = PROT_WRITE;
3935 			break;
3936 		case S_EXEC:
3937 			protchk = PROT_EXEC;
3938 			break;
3939 		case S_OTHER:
3940 		default:
3941 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
3942 			break;
3943 		}
3944 	} else {
3945 		prot = svd->prot;
3946 		/* caller has already done segment level protection check. */
3947 	}
3948 
3949 	if (seg->s_as->a_hat != hat) {
3950 		xhat = 1;
3951 	}
3952 
3953 	if (rw == S_WRITE && segtype == MAP_PRIVATE) {
3954 		SEGVN_VMSTAT_FLTVNPAGES(2);
3955 		arw = S_READ;
3956 	} else {
3957 		arw = rw;
3958 	}
3959 
3960 	ppa = kmem_alloc(ppasize, KM_SLEEP);
3961 
3962 	VM_STAT_COND_ADD(amp != NULL, segvnvmstats.fltvnpages[3]);
3963 
3964 	for (;;) {
3965 		adjszc_chk = 0;
3966 		for (; a < lpgeaddr; a += pgsz, off += pgsz, aindx += pages) {
3967 			if (adjszc_chk) {
3968 				while (szc < seg->s_szc) {
3969 					uintptr_t e;
3970 					uint_t tszc;
3971 					tszc = segvn_anypgsz_vnode ? szc + 1 :
3972 					    seg->s_szc;
3973 					ppgsz = page_get_pagesize(tszc);
3974 					if (!IS_P2ALIGNED(a, ppgsz) ||
3975 					    ((alloc_failed >> tszc) & 0x1)) {
3976 						break;
3977 					}
3978 					SEGVN_VMSTAT_FLTVNPAGES(4);
3979 					szc = tszc;
3980 					pgsz = ppgsz;
3981 					pages = btop(pgsz);
3982 					e = P2ROUNDUP((uintptr_t)eaddr, pgsz);
3983 					lpgeaddr = (caddr_t)e;
3984 				}
3985 			}
3986 
3987 		again:
3988 			if (IS_P2ALIGNED(a, maxpgsz) && amp != NULL) {
3989 				ASSERT(IS_P2ALIGNED(aindx, maxpages));
3990 				ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
3991 				anon_array_enter(amp, aindx, &an_cookie);
3992 				if (anon_get_ptr(amp->ahp, aindx) != NULL) {
3993 					SEGVN_VMSTAT_FLTVNPAGES(5);
3994 					ASSERT(anon_pages(amp->ahp, aindx,
3995 					    maxpages) == maxpages);
3996 					anon_array_exit(&an_cookie);
3997 					ANON_LOCK_EXIT(&amp->a_rwlock);
3998 					err = segvn_fault_anonpages(hat, seg,
3999 					    a, a + maxpgsz, type, rw,
4000 					    MAX(a, addr),
4001 					    MIN(a + maxpgsz, eaddr), brkcow);
4002 					if (err != 0) {
4003 						SEGVN_VMSTAT_FLTVNPAGES(6);
4004 						goto out;
4005 					}
4006 					if (szc < seg->s_szc) {
4007 						szc = seg->s_szc;
4008 						pgsz = maxpgsz;
4009 						pages = maxpages;
4010 						lpgeaddr = maxlpgeaddr;
4011 					}
4012 					goto next;
4013 				} else {
4014 					ASSERT(anon_pages(amp->ahp, aindx,
4015 					    maxpages) == 0);
4016 					SEGVN_VMSTAT_FLTVNPAGES(7);
4017 					anon_array_exit(&an_cookie);
4018 					ANON_LOCK_EXIT(&amp->a_rwlock);
4019 				}
4020 			}
4021 			ASSERT(!brkcow || IS_P2ALIGNED(a, maxpgsz));
4022 			ASSERT(!tron || IS_P2ALIGNED(a, maxpgsz));
4023 
4024 			if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) {
4025 				ASSERT(vpage != NULL);
4026 				prot = VPP_PROT(vpage);
4027 				ASSERT(sameprot(seg, a, maxpgsz));
4028 				if ((prot & protchk) == 0) {
4029 					SEGVN_VMSTAT_FLTVNPAGES(8);
4030 					err = FC_PROT;
4031 					goto out;
4032 				}
4033 			}
4034 			if (type == F_SOFTLOCK) {
4035 				mutex_enter(&freemem_lock);
4036 				if (availrmem < tune.t_minarmem + pages) {
4037 					mutex_exit(&freemem_lock);
4038 					err = FC_MAKE_ERR(ENOMEM);
4039 					goto out;
4040 				} else {
4041 					availrmem -= pages;
4042 					segvn_pages_locked += pages;
4043 					svd->softlockcnt += pages;
4044 				}
4045 				mutex_exit(&freemem_lock);
4046 			}
4047 
4048 			pplist = NULL;
4049 			physcontig = 0;
4050 			ppa[0] = NULL;
4051 			if (!brkcow && !tron && szc &&
4052 			    !page_exists_physcontig(vp, off, szc,
4053 			    segtype == MAP_PRIVATE ? ppa : NULL)) {
4054 				SEGVN_VMSTAT_FLTVNPAGES(9);
4055 				if (page_alloc_pages(vp, seg, a, &pplist, NULL,
4056 				    szc, 0, 0) && type != F_SOFTLOCK) {
4057 					SEGVN_VMSTAT_FLTVNPAGES(10);
4058 					pszc = 0;
4059 					ierr = -1;
4060 					alloc_failed |= (1 << szc);
4061 					break;
4062 				}
4063 				if (pplist != NULL &&
4064 				    vp->v_mpssdata == SEGVN_PAGEIO) {
4065 					int downsize;
4066 					SEGVN_VMSTAT_FLTVNPAGES(11);
4067 					physcontig = segvn_fill_vp_pages(svd,
4068 					    vp, off, szc, ppa, &pplist,
4069 					    &pszc, &downsize);
4070 					ASSERT(!physcontig || pplist == NULL);
4071 					if (!physcontig && downsize &&
4072 					    type != F_SOFTLOCK) {
4073 						ASSERT(pplist == NULL);
4074 						SEGVN_VMSTAT_FLTVNPAGES(12);
4075 						ierr = -1;
4076 						break;
4077 					}
4078 					ASSERT(!physcontig ||
4079 					    segtype == MAP_PRIVATE ||
4080 					    ppa[0] == NULL);
4081 					if (physcontig && ppa[0] == NULL) {
4082 						physcontig = 0;
4083 					}
4084 				}
4085 			} else if (!brkcow && !tron && szc && ppa[0] != NULL) {
4086 				SEGVN_VMSTAT_FLTVNPAGES(13);
4087 				ASSERT(segtype == MAP_PRIVATE);
4088 				physcontig = 1;
4089 			}
4090 
4091 			if (!physcontig) {
4092 				SEGVN_VMSTAT_FLTVNPAGES(14);
4093 				ppa[0] = NULL;
4094 				ierr = VOP_GETPAGE(vp, (offset_t)off, pgsz,
4095 				    &vpprot, ppa, pgsz, seg, a, arw,
4096 				    svd->cred, NULL);
4097 #ifdef DEBUG
4098 				if (ierr == 0) {
4099 					for (i = 0; i < pages; i++) {
4100 						ASSERT(PAGE_LOCKED(ppa[i]));
4101 						ASSERT(!PP_ISFREE(ppa[i]));
4102 						ASSERT(ppa[i]->p_vnode == vp);
4103 						ASSERT(ppa[i]->p_offset ==
4104 						    off + (i << PAGESHIFT));
4105 					}
4106 				}
4107 #endif /* DEBUG */
4108 				if (segtype == MAP_PRIVATE) {
4109 					SEGVN_VMSTAT_FLTVNPAGES(15);
4110 					vpprot &= ~PROT_WRITE;
4111 				}
4112 			} else {
4113 				ASSERT(segtype == MAP_PRIVATE);
4114 				SEGVN_VMSTAT_FLTVNPAGES(16);
4115 				vpprot = PROT_ALL & ~PROT_WRITE;
4116 				ierr = 0;
4117 			}
4118 
4119 			if (ierr != 0) {
4120 				SEGVN_VMSTAT_FLTVNPAGES(17);
4121 				if (pplist != NULL) {
4122 					SEGVN_VMSTAT_FLTVNPAGES(18);
4123 					page_free_replacement_page(pplist);
4124 					page_create_putback(pages);
4125 				}
4126 				SEGVN_RESTORE_SOFTLOCK(type, pages);
4127 				if (a + pgsz <= eaddr) {
4128 					SEGVN_VMSTAT_FLTVNPAGES(19);
4129 					err = FC_MAKE_ERR(ierr);
4130 					goto out;
4131 				}
4132 				va.va_mask = AT_SIZE;
4133 				if (VOP_GETATTR(vp, &va, 0, svd->cred, NULL)) {
4134 					SEGVN_VMSTAT_FLTVNPAGES(20);
4135 					err = FC_MAKE_ERR(EIO);
4136 					goto out;
4137 				}
4138 				if (btopr(va.va_size) >= btopr(off + pgsz)) {
4139 					SEGVN_VMSTAT_FLTVNPAGES(21);
4140 					err = FC_MAKE_ERR(ierr);
4141 					goto out;
4142 				}
4143 				if (btopr(va.va_size) <
4144 				    btopr(off + (eaddr - a))) {
4145 					SEGVN_VMSTAT_FLTVNPAGES(22);
4146 					err = FC_MAKE_ERR(ierr);
4147 					goto out;
4148 				}
4149 				if (brkcow || tron || type == F_SOFTLOCK) {
4150 					/* can't reduce map area */
4151 					SEGVN_VMSTAT_FLTVNPAGES(23);
4152 					vop_size_err = 1;
4153 					goto out;
4154 				}
4155 				SEGVN_VMSTAT_FLTVNPAGES(24);
4156 				ASSERT(szc != 0);
4157 				pszc = 0;
4158 				ierr = -1;
4159 				break;
4160 			}
4161 
4162 			if (amp != NULL) {
4163 				ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
4164 				anon_array_enter(amp, aindx, &an_cookie);
4165 			}
4166 			if (amp != NULL &&
4167 			    anon_get_ptr(amp->ahp, aindx) != NULL) {
4168 				ulong_t taindx = P2ALIGN(aindx, maxpages);
4169 
4170 				SEGVN_VMSTAT_FLTVNPAGES(25);
4171 				ASSERT(anon_pages(amp->ahp, taindx,
4172 				    maxpages) == maxpages);
4173 				for (i = 0; i < pages; i++) {
4174 					page_unlock(ppa[i]);
4175 				}
4176 				anon_array_exit(&an_cookie);
4177 				ANON_LOCK_EXIT(&amp->a_rwlock);
4178 				if (pplist != NULL) {
4179 					page_free_replacement_page(pplist);
4180 					page_create_putback(pages);
4181 				}
4182 				SEGVN_RESTORE_SOFTLOCK(type, pages);
4183 				if (szc < seg->s_szc) {
4184 					SEGVN_VMSTAT_FLTVNPAGES(26);
4185 					/*
4186 					 * For private segments SOFTLOCK
4187 					 * either always breaks cow (any rw
4188 					 * type except S_READ_NOCOW) or
4189 					 * address space is locked as writer
4190 					 * (S_READ_NOCOW case) and anon slots
4191 					 * can't show up on second check.
4192 					 * Therefore if we are here for
4193 					 * SOFTLOCK case it must be a cow
4194 					 * break but cow break never reduces
4195 					 * szc. text replication (tron) in
4196 					 * this case works as cow break.
4197 					 * Thus the assert below.
4198 					 */
4199 					ASSERT(!brkcow && !tron &&
4200 					    type != F_SOFTLOCK);
4201 					pszc = seg->s_szc;
4202 					ierr = -2;
4203 					break;
4204 				}
4205 				ASSERT(IS_P2ALIGNED(a, maxpgsz));
4206 				goto again;
4207 			}
4208 #ifdef DEBUG
4209 			if (amp != NULL) {
4210 				ulong_t taindx = P2ALIGN(aindx, maxpages);
4211 				ASSERT(!anon_pages(amp->ahp, taindx, maxpages));
4212 			}
4213 #endif /* DEBUG */
4214 
4215 			if (brkcow || tron) {
4216 				ASSERT(amp != NULL);
4217 				ASSERT(pplist == NULL);
4218 				ASSERT(szc == seg->s_szc);
4219 				ASSERT(IS_P2ALIGNED(a, maxpgsz));
4220 				ASSERT(IS_P2ALIGNED(aindx, maxpages));
4221 				SEGVN_VMSTAT_FLTVNPAGES(27);
4222 				ierr = anon_map_privatepages(amp, aindx, szc,
4223 				    seg, a, prot, ppa, vpage, segvn_anypgsz,
4224 				    tron ? PG_LOCAL : 0, svd->cred);
4225 				if (ierr != 0) {
4226 					SEGVN_VMSTAT_FLTVNPAGES(28);
4227 					anon_array_exit(&an_cookie);
4228 					ANON_LOCK_EXIT(&amp->a_rwlock);
4229 					SEGVN_RESTORE_SOFTLOCK(type, pages);
4230 					err = FC_MAKE_ERR(ierr);
4231 					goto out;
4232 				}
4233 
4234 				ASSERT(!IS_VMODSORT(ppa[0]->p_vnode));
4235 				/*
4236 				 * p_szc can't be changed for locked
4237 				 * swapfs pages.
4238 				 */
4239 				ASSERT(svd->rcookie ==
4240 				    HAT_INVALID_REGION_COOKIE);
4241 				hat_memload_array(hat, a, pgsz, ppa, prot,
4242 				    hat_flag);
4243 
4244 				if (!(hat_flag & HAT_LOAD_LOCK)) {
4245 					SEGVN_VMSTAT_FLTVNPAGES(29);
4246 					for (i = 0; i < pages; i++) {
4247 						page_unlock(ppa[i]);
4248 					}
4249 				}
4250 				anon_array_exit(&an_cookie);
4251 				ANON_LOCK_EXIT(&amp->a_rwlock);
4252 				goto next;
4253 			}
4254 
4255 			ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE ||
4256 			    (!svd->pageprot && svd->prot == (prot & vpprot)));
4257 
4258 			pfn = page_pptonum(ppa[0]);
4259 			/*
4260 			 * hat_page_demote() needs an SE_EXCL lock on one of
4261 			 * constituent page_t's and it decreases root's p_szc
4262 			 * last. This means if root's p_szc is equal szc and
4263 			 * all its constituent pages are locked
4264 			 * hat_page_demote() that could have changed p_szc to
4265 			 * szc is already done and no new have page_demote()
4266 			 * can start for this large page.
4267 			 */
4268 
4269 			/*
4270 			 * we need to make sure same mapping size is used for
4271 			 * the same address range if there's a possibility the
4272 			 * adddress is already mapped because hat layer panics
4273 			 * when translation is loaded for the range already
4274 			 * mapped with a different page size.  We achieve it
4275 			 * by always using largest page size possible subject
4276 			 * to the constraints of page size, segment page size
4277 			 * and page alignment.  Since mappings are invalidated
4278 			 * when those constraints change and make it
4279 			 * impossible to use previously used mapping size no
4280 			 * mapping size conflicts should happen.
4281 			 */
4282 
4283 		chkszc:
4284 			if ((pszc = ppa[0]->p_szc) == szc &&
4285 			    IS_P2ALIGNED(pfn, pages)) {
4286 
4287 				SEGVN_VMSTAT_FLTVNPAGES(30);
4288 #ifdef DEBUG
4289 				for (i = 0; i < pages; i++) {
4290 					ASSERT(PAGE_LOCKED(ppa[i]));
4291 					ASSERT(!PP_ISFREE(ppa[i]));
4292 					ASSERT(page_pptonum(ppa[i]) ==
4293 					    pfn + i);
4294 					ASSERT(ppa[i]->p_szc == szc);
4295 					ASSERT(ppa[i]->p_vnode == vp);
4296 					ASSERT(ppa[i]->p_offset ==
4297 					    off + (i << PAGESHIFT));
4298 				}
4299 #endif /* DEBUG */
4300 				/*
4301 				 * All pages are of szc we need and they are
4302 				 * all locked so they can't change szc. load
4303 				 * translations.
4304 				 *
4305 				 * if page got promoted since last check
4306 				 * we don't need pplist.
4307 				 */
4308 				if (pplist != NULL) {
4309 					page_free_replacement_page(pplist);
4310 					page_create_putback(pages);
4311 				}
4312 				if (PP_ISMIGRATE(ppa[0])) {
4313 					page_migrate(seg, a, ppa, pages);
4314 				}
4315 				SEGVN_UPDATE_MODBITS(ppa, pages, rw,
4316 				    prot, vpprot);
4317 				if (!xhat) {
4318 					hat_memload_array_region(hat, a, pgsz,
4319 					    ppa, prot & vpprot, hat_flag,
4320 					    svd->rcookie);
4321 				} else {
4322 					/*
4323 					 * avoid large xhat mappings to FS
4324 					 * pages so that hat_page_demote()
4325 					 * doesn't need to check for xhat
4326 					 * large mappings.
4327 					 * Don't use regions with xhats.
4328 					 */
4329 					for (i = 0; i < pages; i++) {
4330 						hat_memload(hat,
4331 						    a + (i << PAGESHIFT),
4332 						    ppa[i], prot & vpprot,
4333 						    hat_flag);
4334 					}
4335 				}
4336 
4337 				if (!(hat_flag & HAT_LOAD_LOCK)) {
4338 					for (i = 0; i < pages; i++) {
4339 						page_unlock(ppa[i]);
4340 					}
4341 				}
4342 				if (amp != NULL) {
4343 					anon_array_exit(&an_cookie);
4344 					ANON_LOCK_EXIT(&amp->a_rwlock);
4345 				}
4346 				goto next;
4347 			}
4348 
4349 			/*
4350 			 * See if upsize is possible.
4351 			 */
4352 			if (pszc > szc && szc < seg->s_szc &&
4353 			    (segvn_anypgsz_vnode || pszc >= seg->s_szc)) {
4354 				pgcnt_t aphase;
4355 				uint_t pszc1 = MIN(pszc, seg->s_szc);
4356 				ppgsz = page_get_pagesize(pszc1);
4357 				ppages = btop(ppgsz);
4358 				aphase = btop(P2PHASE((uintptr_t)a, ppgsz));
4359 
4360 				ASSERT(type != F_SOFTLOCK);
4361 
4362 				SEGVN_VMSTAT_FLTVNPAGES(31);
4363 				if (aphase != P2PHASE(pfn, ppages)) {
4364 					segvn_faultvnmpss_align_err4++;
4365 				} else {
4366 					SEGVN_VMSTAT_FLTVNPAGES(32);
4367 					if (pplist != NULL) {
4368 						page_t *pl = pplist;
4369 						page_free_replacement_page(pl);
4370 						page_create_putback(pages);
4371 					}
4372 					for (i = 0; i < pages; i++) {
4373 						page_unlock(ppa[i]);
4374 					}
4375 					if (amp != NULL) {
4376 						anon_array_exit(&an_cookie);
4377 						ANON_LOCK_EXIT(&amp->a_rwlock);
4378 					}
4379 					pszc = pszc1;
4380 					ierr = -2;
4381 					break;
4382 				}
4383 			}
4384 
4385 			/*
4386 			 * check if we should use smallest mapping size.
4387 			 */
4388 			upgrdfail = 0;
4389 			if (szc == 0 || xhat ||
4390 			    (pszc >= szc &&
4391 			    !IS_P2ALIGNED(pfn, pages)) ||
4392 			    (pszc < szc &&
4393 			    !segvn_full_szcpages(ppa, szc, &upgrdfail,
4394 			    &pszc))) {
4395 
4396 				if (upgrdfail && type != F_SOFTLOCK) {
4397 					/*
4398 					 * segvn_full_szcpages failed to lock
4399 					 * all pages EXCL. Size down.
4400 					 */
4401 					ASSERT(pszc < szc);
4402 
4403 					SEGVN_VMSTAT_FLTVNPAGES(33);
4404 
4405 					if (pplist != NULL) {
4406 						page_t *pl = pplist;
4407 						page_free_replacement_page(pl);
4408 						page_create_putback(pages);
4409 					}
4410 
4411 					for (i = 0; i < pages; i++) {
4412 						page_unlock(ppa[i]);
4413 					}
4414 					if (amp != NULL) {
4415 						anon_array_exit(&an_cookie);
4416 						ANON_LOCK_EXIT(&amp->a_rwlock);
4417 					}
4418 					ierr = -1;
4419 					break;
4420 				}
4421 				if (szc != 0 && !xhat && !upgrdfail) {
4422 					segvn_faultvnmpss_align_err5++;
4423 				}
4424 				SEGVN_VMSTAT_FLTVNPAGES(34);
4425 				if (pplist != NULL) {
4426 					page_free_replacement_page(pplist);
4427 					page_create_putback(pages);
4428 				}
4429 				SEGVN_UPDATE_MODBITS(ppa, pages, rw,
4430 				    prot, vpprot);
4431 				if (upgrdfail && segvn_anypgsz_vnode) {
4432 					/* SOFTLOCK case */
4433 					hat_memload_array_region(hat, a, pgsz,
4434 					    ppa, prot & vpprot, hat_flag,
4435 					    svd->rcookie);
4436 				} else {
4437 					for (i = 0; i < pages; i++) {
4438 						hat_memload_region(hat,
4439 						    a + (i << PAGESHIFT),
4440 						    ppa[i], prot & vpprot,
4441 						    hat_flag, svd->rcookie);
4442 					}
4443 				}
4444 				if (!(hat_flag & HAT_LOAD_LOCK)) {
4445 					for (i = 0; i < pages; i++) {
4446 						page_unlock(ppa[i]);
4447 					}
4448 				}
4449 				if (amp != NULL) {
4450 					anon_array_exit(&an_cookie);
4451 					ANON_LOCK_EXIT(&amp->a_rwlock);
4452 				}
4453 				goto next;
4454 			}
4455 
4456 			if (pszc == szc) {
4457 				/*
4458 				 * segvn_full_szcpages() upgraded pages szc.
4459 				 */
4460 				ASSERT(pszc == ppa[0]->p_szc);
4461 				ASSERT(IS_P2ALIGNED(pfn, pages));
4462 				goto chkszc;
4463 			}
4464 
4465 			if (pszc > szc) {
4466 				kmutex_t *szcmtx;
4467 				SEGVN_VMSTAT_FLTVNPAGES(35);
4468 				/*
4469 				 * p_szc of ppa[0] can change since we haven't
4470 				 * locked all constituent pages. Call
4471 				 * page_lock_szc() to prevent szc changes.
4472 				 * This should be a rare case that happens when
4473 				 * multiple segments use a different page size
4474 				 * to map the same file offsets.
4475 				 */
4476 				szcmtx = page_szc_lock(ppa[0]);
4477 				pszc = ppa[0]->p_szc;
4478 				ASSERT(szcmtx != NULL || pszc == 0);
4479 				ASSERT(ppa[0]->p_szc <= pszc);
4480 				if (pszc <= szc) {
4481 					SEGVN_VMSTAT_FLTVNPAGES(36);
4482 					if (szcmtx != NULL) {
4483 						mutex_exit(szcmtx);
4484 					}
4485 					goto chkszc;
4486 				}
4487 				if (pplist != NULL) {
4488 					/*
4489 					 * page got promoted since last check.
4490 					 * we don't need preaalocated large
4491 					 * page.
4492 					 */
4493 					SEGVN_VMSTAT_FLTVNPAGES(37);
4494 					page_free_replacement_page(pplist);
4495 					page_create_putback(pages);
4496 				}
4497 				SEGVN_UPDATE_MODBITS(ppa, pages, rw,
4498 				    prot, vpprot);
4499 				hat_memload_array_region(hat, a, pgsz, ppa,
4500 				    prot & vpprot, hat_flag, svd->rcookie);
4501 				mutex_exit(szcmtx);
4502 				if (!(hat_flag & HAT_LOAD_LOCK)) {
4503 					for (i = 0; i < pages; i++) {
4504 						page_unlock(ppa[i]);
4505 					}
4506 				}
4507 				if (amp != NULL) {
4508 					anon_array_exit(&an_cookie);
4509 					ANON_LOCK_EXIT(&amp->a_rwlock);
4510 				}
4511 				goto next;
4512 			}
4513 
4514 			/*
4515 			 * if page got demoted since last check
4516 			 * we could have not allocated larger page.
4517 			 * allocate now.
4518 			 */
4519 			if (pplist == NULL &&
4520 			    page_alloc_pages(vp, seg, a, &pplist, NULL,
4521 			    szc, 0, 0) && type != F_SOFTLOCK) {
4522 				SEGVN_VMSTAT_FLTVNPAGES(38);
4523 				for (i = 0; i < pages; i++) {
4524 					page_unlock(ppa[i]);
4525 				}
4526 				if (amp != NULL) {
4527 					anon_array_exit(&an_cookie);
4528 					ANON_LOCK_EXIT(&amp->a_rwlock);
4529 				}
4530 				ierr = -1;
4531 				alloc_failed |= (1 << szc);
4532 				break;
4533 			}
4534 
4535 			SEGVN_VMSTAT_FLTVNPAGES(39);
4536 
4537 			if (pplist != NULL) {
4538 				segvn_relocate_pages(ppa, pplist);
4539 #ifdef DEBUG
4540 			} else {
4541 				ASSERT(type == F_SOFTLOCK);
4542 				SEGVN_VMSTAT_FLTVNPAGES(40);
4543 #endif /* DEBUG */
4544 			}
4545 
4546 			SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot);
4547 
4548 			if (pplist == NULL && segvn_anypgsz_vnode == 0) {
4549 				ASSERT(type == F_SOFTLOCK);
4550 				for (i = 0; i < pages; i++) {
4551 					ASSERT(ppa[i]->p_szc < szc);
4552 					hat_memload_region(hat,
4553 					    a + (i << PAGESHIFT),
4554 					    ppa[i], prot & vpprot, hat_flag,
4555 					    svd->rcookie);
4556 				}
4557 			} else {
4558 				ASSERT(pplist != NULL || type == F_SOFTLOCK);
4559 				hat_memload_array_region(hat, a, pgsz, ppa,
4560 				    prot & vpprot, hat_flag, svd->rcookie);
4561 			}
4562 			if (!(hat_flag & HAT_LOAD_LOCK)) {
4563 				for (i = 0; i < pages; i++) {
4564 					ASSERT(PAGE_SHARED(ppa[i]));
4565 					page_unlock(ppa[i]);
4566 				}
4567 			}
4568 			if (amp != NULL) {
4569 				anon_array_exit(&an_cookie);
4570 				ANON_LOCK_EXIT(&amp->a_rwlock);
4571 			}
4572 
4573 		next:
4574 			if (vpage != NULL) {
4575 				vpage += pages;
4576 			}
4577 			adjszc_chk = 1;
4578 		}
4579 		if (a == lpgeaddr)
4580 			break;
4581 		ASSERT(a < lpgeaddr);
4582 
4583 		ASSERT(!brkcow && !tron && type != F_SOFTLOCK);
4584 
4585 		/*
4586 		 * ierr == -1 means we failed to map with a large page.
4587 		 * (either due to allocation/relocation failures or
4588 		 * misalignment with other mappings to this file.
4589 		 *
4590 		 * ierr == -2 means some other thread allocated a large page
4591 		 * after we gave up tp map with a large page.  retry with
4592 		 * larger mapping.
4593 		 */
4594 		ASSERT(ierr == -1 || ierr == -2);
4595 		ASSERT(ierr == -2 || szc != 0);
4596 		ASSERT(ierr == -1 || szc < seg->s_szc);
4597 		if (ierr == -2) {
4598 			SEGVN_VMSTAT_FLTVNPAGES(41);
4599 			ASSERT(pszc > szc && pszc <= seg->s_szc);
4600 			szc = pszc;
4601 		} else if (segvn_anypgsz_vnode) {
4602 			SEGVN_VMSTAT_FLTVNPAGES(42);
4603 			szc--;
4604 		} else {
4605 			SEGVN_VMSTAT_FLTVNPAGES(43);
4606 			ASSERT(pszc < szc);
4607 			/*
4608 			 * other process created pszc large page.
4609 			 * but we still have to drop to 0 szc.
4610 			 */
4611 			szc = 0;
4612 		}
4613 
4614 		pgsz = page_get_pagesize(szc);
4615 		pages = btop(pgsz);
4616 		if (ierr == -2) {
4617 			/*
4618 			 * Size up case. Note lpgaddr may only be needed for
4619 			 * softlock case so we don't adjust it here.
4620 			 */
4621 			a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz);
4622 			ASSERT(a >= lpgaddr);
4623 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4624 			off = svd->offset + (uintptr_t)(a - seg->s_base);
4625 			aindx = svd->anon_index + seg_page(seg, a);
4626 			vpage = (svd->vpage != NULL) ?
4627 			    &svd->vpage[seg_page(seg, a)] : NULL;
4628 		} else {
4629 			/*
4630 			 * Size down case. Note lpgaddr may only be needed for
4631 			 * softlock case so we don't adjust it here.
4632 			 */
4633 			ASSERT(IS_P2ALIGNED(a, pgsz));
4634 			ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz));
4635 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4636 			ASSERT(a < lpgeaddr);
4637 			if (a < addr) {
4638 				SEGVN_VMSTAT_FLTVNPAGES(44);
4639 				/*
4640 				 * The beginning of the large page region can
4641 				 * be pulled to the right to make a smaller
4642 				 * region. We haven't yet faulted a single
4643 				 * page.
4644 				 */
4645 				a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
4646 				ASSERT(a >= lpgaddr);
4647 				off = svd->offset +
4648 				    (uintptr_t)(a - seg->s_base);
4649 				aindx = svd->anon_index + seg_page(seg, a);
4650 				vpage = (svd->vpage != NULL) ?
4651 				    &svd->vpage[seg_page(seg, a)] : NULL;
4652 			}
4653 		}
4654 	}
4655 out:
4656 	kmem_free(ppa, ppasize);
4657 	if (!err && !vop_size_err) {
4658 		SEGVN_VMSTAT_FLTVNPAGES(45);
4659 		return (0);
4660 	}
4661 	if (type == F_SOFTLOCK && a > lpgaddr) {
4662 		SEGVN_VMSTAT_FLTVNPAGES(46);
4663 		segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER);
4664 	}
4665 	if (!vop_size_err) {
4666 		SEGVN_VMSTAT_FLTVNPAGES(47);
4667 		return (err);
4668 	}
4669 	ASSERT(brkcow || tron || type == F_SOFTLOCK);
4670 	/*
4671 	 * Large page end is mapped beyond the end of file and it's a cow
4672 	 * fault (can be a text replication induced cow) or softlock so we can't
4673 	 * reduce the map area.  For now just demote the segment. This should
4674 	 * really only happen if the end of the file changed after the mapping
4675 	 * was established since when large page segments are created we make
4676 	 * sure they don't extend beyond the end of the file.
4677 	 */
4678 	SEGVN_VMSTAT_FLTVNPAGES(48);
4679 
4680 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4681 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4682 	err = 0;
4683 	if (seg->s_szc != 0) {
4684 		segvn_fltvnpages_clrszc_cnt++;
4685 		ASSERT(svd->softlockcnt == 0);
4686 		err = segvn_clrszc(seg);
4687 		if (err != 0) {
4688 			segvn_fltvnpages_clrszc_err++;
4689 		}
4690 	}
4691 	ASSERT(err || seg->s_szc == 0);
4692 	SEGVN_LOCK_DOWNGRADE(seg->s_as, &svd->lock);
4693 	/* segvn_fault will do its job as if szc had been zero to begin with */
4694 	return (err == 0 ? IE_RETRY : FC_MAKE_ERR(err));
4695 }
4696 
4697 /*
4698  * This routine will attempt to fault in one large page.
4699  * it will use smaller pages if that fails.
4700  * It should only be called for pure anonymous segments.
4701  */
4702 static faultcode_t
4703 segvn_fault_anonpages(struct hat *hat, struct seg *seg, caddr_t lpgaddr,
4704     caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr,
4705     caddr_t eaddr, int brkcow)
4706 {
4707 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
4708 	struct anon_map *amp = svd->amp;
4709 	uchar_t segtype = svd->type;
4710 	uint_t szc = seg->s_szc;
4711 	size_t pgsz = page_get_pagesize(szc);
4712 	size_t maxpgsz = pgsz;
4713 	pgcnt_t pages = btop(pgsz);
4714 	uint_t ppaszc = szc;
4715 	caddr_t a = lpgaddr;
4716 	ulong_t aindx = svd->anon_index + seg_page(seg, a);
4717 	struct vpage *vpage = (svd->vpage != NULL) ?
4718 	    &svd->vpage[seg_page(seg, a)] : NULL;
4719 	page_t **ppa;
4720 	uint_t	ppa_szc;
4721 	faultcode_t err;
4722 	int ierr;
4723 	uint_t protchk, prot, vpprot;
4724 	ulong_t i;
4725 	int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
4726 	anon_sync_obj_t cookie;
4727 	int first = 1;
4728 	int adjszc_chk;
4729 	int purged = 0;
4730 	int pgflags = (svd->tr_state == SEGVN_TR_ON) ? PG_LOCAL : 0;
4731 
4732 	ASSERT(szc != 0);
4733 	ASSERT(amp != NULL);
4734 	ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */
4735 	ASSERT(!(svd->flags & MAP_NORESERVE));
4736 	ASSERT(type != F_SOFTUNLOCK);
4737 	ASSERT(IS_P2ALIGNED(a, maxpgsz));
4738 	ASSERT(!brkcow || svd->tr_state == SEGVN_TR_OFF);
4739 	ASSERT(svd->tr_state != SEGVN_TR_INIT);
4740 
4741 	ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
4742 
4743 	VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltanpages[0]);
4744 	VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltanpages[1]);
4745 
4746 	if (svd->flags & MAP_TEXT) {
4747 		hat_flag |= HAT_LOAD_TEXT;
4748 	}
4749 
4750 	if (svd->pageprot) {
4751 		switch (rw) {
4752 		case S_READ:
4753 			protchk = PROT_READ;
4754 			break;
4755 		case S_WRITE:
4756 			protchk = PROT_WRITE;
4757 			break;
4758 		case S_EXEC:
4759 			protchk = PROT_EXEC;
4760 			break;
4761 		case S_OTHER:
4762 		default:
4763 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
4764 			break;
4765 		}
4766 		VM_STAT_ADD(segvnvmstats.fltanpages[2]);
4767 	} else {
4768 		prot = svd->prot;
4769 		/* caller has already done segment level protection check. */
4770 	}
4771 
4772 	ppa = kmem_cache_alloc(segvn_szc_cache[ppaszc], KM_SLEEP);
4773 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
4774 	for (;;) {
4775 		adjszc_chk = 0;
4776 		for (; a < lpgeaddr; a += pgsz, aindx += pages) {
4777 			if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) {
4778 				VM_STAT_ADD(segvnvmstats.fltanpages[3]);
4779 				ASSERT(vpage != NULL);
4780 				prot = VPP_PROT(vpage);
4781 				ASSERT(sameprot(seg, a, maxpgsz));
4782 				if ((prot & protchk) == 0) {
4783 					err = FC_PROT;
4784 					goto error;
4785 				}
4786 			}
4787 			if (adjszc_chk && IS_P2ALIGNED(a, maxpgsz) &&
4788 			    pgsz < maxpgsz) {
4789 				ASSERT(a > lpgaddr);
4790 				szc = seg->s_szc;
4791 				pgsz = maxpgsz;
4792 				pages = btop(pgsz);
4793 				ASSERT(IS_P2ALIGNED(aindx, pages));
4794 				lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr,
4795 				    pgsz);
4796 			}
4797 			if (type == F_SOFTLOCK && svd->vp != NULL) {
4798 				mutex_enter(&freemem_lock);
4799 				if (availrmem < tune.t_minarmem + pages) {
4800 					mutex_exit(&freemem_lock);
4801 					err = FC_MAKE_ERR(ENOMEM);
4802 					goto error;
4803 				} else {
4804 					availrmem -= pages;
4805 					segvn_pages_locked += pages;
4806 					svd->softlockcnt += pages;
4807 				}
4808 				mutex_exit(&freemem_lock);
4809 			}
4810 			anon_array_enter(amp, aindx, &cookie);
4811 			ppa_szc = (uint_t)-1;
4812 			ierr = anon_map_getpages(amp, aindx, szc, seg, a,
4813 			    prot, &vpprot, ppa, &ppa_szc, vpage, rw, brkcow,
4814 			    segvn_anypgsz, pgflags, svd->cred);
4815 			if (ierr != 0) {
4816 				anon_array_exit(&cookie);
4817 				VM_STAT_ADD(segvnvmstats.fltanpages[4]);
4818 				if (type == F_SOFTLOCK && svd->vp != NULL) {
4819 					VM_STAT_ADD(segvnvmstats.fltanpages[5]);
4820 					mutex_enter(&freemem_lock);
4821 					availrmem += pages;
4822 					segvn_pages_locked -= pages;
4823 					svd->softlockcnt -= pages;
4824 					mutex_exit(&freemem_lock);
4825 				}
4826 				if (ierr > 0) {
4827 					VM_STAT_ADD(segvnvmstats.fltanpages[6]);
4828 					err = FC_MAKE_ERR(ierr);
4829 					goto error;
4830 				}
4831 				break;
4832 			}
4833 
4834 			ASSERT(!IS_VMODSORT(ppa[0]->p_vnode));
4835 
4836 			ASSERT(segtype == MAP_SHARED ||
4837 			    ppa[0]->p_szc <= szc);
4838 			ASSERT(segtype == MAP_PRIVATE ||
4839 			    ppa[0]->p_szc >= szc);
4840 
4841 			/*
4842 			 * Handle pages that have been marked for migration
4843 			 */
4844 			if (lgrp_optimizations())
4845 				page_migrate(seg, a, ppa, pages);
4846 
4847 			ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
4848 			if (type == F_SOFTLOCK && svd->vp == NULL) {
4849 				/*
4850 				 * If all pages in ppa array belong to the same
4851 				 * large page call segvn_slock_anonpages()
4852 				 * just for ppa[0].
4853 				 */
4854 				for (i = 0; i < pages; i++) {
4855 					if (!segvn_slock_anonpages(ppa[i],
4856 					    i == 0 && first)) {
4857 						ulong_t j;
4858 						for (j = 0; j < i; j++) {
4859 							segvn_sunlock_anonpages(
4860 							    ppa[j], j == 0 &&
4861 							    first);
4862 							page_unlock(ppa[j]);
4863 						}
4864 						for (j = i; j < pages; j++) {
4865 							page_unlock(ppa[j]);
4866 						}
4867 						anon_array_exit(&cookie);
4868 						err = FC_MAKE_ERR(ENOMEM);
4869 						goto error;
4870 					}
4871 					if (i == 0 && ppa[0]->p_szc >= szc) {
4872 						ASSERT(!(page_pptonum(ppa[0]) &
4873 						    (pages - 1)));
4874 						break;
4875 					}
4876 				}
4877 				first = 0;
4878 				mutex_enter(&freemem_lock);
4879 				svd->softlockcnt += pages;
4880 				segvn_pages_locked += pages;
4881 				mutex_exit(&freemem_lock);
4882 			}
4883 
4884 			if (segtype == MAP_SHARED) {
4885 				vpprot |= PROT_WRITE;
4886 			}
4887 
4888 			hat_memload_array(hat, a, pgsz, ppa,
4889 			    prot & vpprot, hat_flag);
4890 
4891 			if (hat_flag & HAT_LOAD_LOCK) {
4892 				VM_STAT_ADD(segvnvmstats.fltanpages[7]);
4893 			} else {
4894 				VM_STAT_ADD(segvnvmstats.fltanpages[8]);
4895 				for (i = 0; i < pages; i++)
4896 					page_unlock(ppa[i]);
4897 			}
4898 			if (vpage != NULL)
4899 				vpage += pages;
4900 
4901 			anon_array_exit(&cookie);
4902 			adjszc_chk = 1;
4903 		}
4904 		if (a == lpgeaddr)
4905 			break;
4906 		ASSERT(a < lpgeaddr);
4907 		/*
4908 		 * ierr == -1 means we failed to allocate a large page.
4909 		 * so do a size down operation.
4910 		 *
4911 		 * ierr == -2 means some other process that privately shares
4912 		 * pages with this process has allocated a larger page and we
4913 		 * need to retry with larger pages. So do a size up
4914 		 * operation. This relies on the fact that large pages are
4915 		 * never partially shared i.e. if we share any constituent
4916 		 * page of a large page with another process we must share the
4917 		 * entire large page. Note this cannot happen for SOFTLOCK
4918 		 * case, unless current address (a) is at the beginning of the
4919 		 * next page size boundary because the other process couldn't
4920 		 * have relocated locked pages.
4921 		 */
4922 		ASSERT(ierr == -1 || ierr == -2);
4923 		/*
4924 		 * For the very first relocation failure try to purge this
4925 		 * segment's cache so that the relocator can obtain an
4926 		 * exclusive lock on pages we want to relocate.
4927 		 */
4928 		if (!purged && ierr == -1 && ppa_szc != (uint_t)-1 &&
4929 		    svd->softlockcnt != 0) {
4930 			purged = 1;
4931 			segvn_purge(seg);
4932 			continue;
4933 		}
4934 
4935 		if (segvn_anypgsz) {
4936 			ASSERT(ierr == -2 || szc != 0);
4937 			ASSERT(ierr == -1 || szc < seg->s_szc);
4938 			szc = (ierr == -1) ? szc - 1 : szc + 1;
4939 		} else {
4940 			/*
4941 			 * For non COW faults and segvn_anypgsz == 0
4942 			 * we need to be careful not to loop forever
4943 			 * if existing page is found with szc other
4944 			 * than 0 or seg->s_szc. This could be due
4945 			 * to page relocations on behalf of DR or
4946 			 * more likely large page creation. For this
4947 			 * case simply re-size to existing page's szc
4948 			 * if returned by anon_map_getpages().
4949 			 */
4950 			if (ppa_szc == (uint_t)-1) {
4951 				szc = (ierr == -1) ? 0 : seg->s_szc;
4952 			} else {
4953 				ASSERT(ppa_szc <= seg->s_szc);
4954 				ASSERT(ierr == -2 || ppa_szc < szc);
4955 				ASSERT(ierr == -1 || ppa_szc > szc);
4956 				szc = ppa_szc;
4957 			}
4958 		}
4959 
4960 		pgsz = page_get_pagesize(szc);
4961 		pages = btop(pgsz);
4962 		ASSERT(type != F_SOFTLOCK || ierr == -1 ||
4963 		    (IS_P2ALIGNED(a, pgsz) && IS_P2ALIGNED(lpgeaddr, pgsz)));
4964 		if (type == F_SOFTLOCK) {
4965 			/*
4966 			 * For softlocks we cannot reduce the fault area
4967 			 * (calculated based on the largest page size for this
4968 			 * segment) for size down and a is already next
4969 			 * page size aligned as assertted above for size
4970 			 * ups. Therefore just continue in case of softlock.
4971 			 */
4972 			VM_STAT_ADD(segvnvmstats.fltanpages[9]);
4973 			continue; /* keep lint happy */
4974 		} else if (ierr == -2) {
4975 
4976 			/*
4977 			 * Size up case. Note lpgaddr may only be needed for
4978 			 * softlock case so we don't adjust it here.
4979 			 */
4980 			VM_STAT_ADD(segvnvmstats.fltanpages[10]);
4981 			a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz);
4982 			ASSERT(a >= lpgaddr);
4983 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4984 			aindx = svd->anon_index + seg_page(seg, a);
4985 			vpage = (svd->vpage != NULL) ?
4986 			    &svd->vpage[seg_page(seg, a)] : NULL;
4987 		} else {
4988 			/*
4989 			 * Size down case. Note lpgaddr may only be needed for
4990 			 * softlock case so we don't adjust it here.
4991 			 */
4992 			VM_STAT_ADD(segvnvmstats.fltanpages[11]);
4993 			ASSERT(IS_P2ALIGNED(a, pgsz));
4994 			ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz));
4995 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4996 			ASSERT(a < lpgeaddr);
4997 			if (a < addr) {
4998 				/*
4999 				 * The beginning of the large page region can
5000 				 * be pulled to the right to make a smaller
5001 				 * region. We haven't yet faulted a single
5002 				 * page.
5003 				 */
5004 				VM_STAT_ADD(segvnvmstats.fltanpages[12]);
5005 				a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
5006 				ASSERT(a >= lpgaddr);
5007 				aindx = svd->anon_index + seg_page(seg, a);
5008 				vpage = (svd->vpage != NULL) ?
5009 				    &svd->vpage[seg_page(seg, a)] : NULL;
5010 			}
5011 		}
5012 	}
5013 	VM_STAT_ADD(segvnvmstats.fltanpages[13]);
5014 	ANON_LOCK_EXIT(&amp->a_rwlock);
5015 	kmem_cache_free(segvn_szc_cache[ppaszc], ppa);
5016 	return (0);
5017 error:
5018 	VM_STAT_ADD(segvnvmstats.fltanpages[14]);
5019 	ANON_LOCK_EXIT(&amp->a_rwlock);
5020 	kmem_cache_free(segvn_szc_cache[ppaszc], ppa);
5021 	if (type == F_SOFTLOCK && a > lpgaddr) {
5022 		VM_STAT_ADD(segvnvmstats.fltanpages[15]);
5023 		segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER);
5024 	}
5025 	return (err);
5026 }
5027 
5028 int fltadvice = 1;	/* set to free behind pages for sequential access */
5029 
5030 /*
5031  * This routine is called via a machine specific fault handling routine.
5032  * It is also called by software routines wishing to lock or unlock
5033  * a range of addresses.
5034  *
5035  * Here is the basic algorithm:
5036  *	If unlocking
5037  *		Call segvn_softunlock
5038  *		Return
5039  *	endif
5040  *	Checking and set up work
5041  *	If we will need some non-anonymous pages
5042  *		Call VOP_GETPAGE over the range of non-anonymous pages
5043  *	endif
5044  *	Loop over all addresses requested
5045  *		Call segvn_faultpage passing in page list
5046  *		    to load up translations and handle anonymous pages
5047  *	endloop
5048  *	Load up translation to any additional pages in page list not
5049  *	    already handled that fit into this segment
5050  */
5051 static faultcode_t
5052 segvn_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t len,
5053     enum fault_type type, enum seg_rw rw)
5054 {
5055 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5056 	page_t **plp, **ppp, *pp;
5057 	u_offset_t off;
5058 	caddr_t a;
5059 	struct vpage *vpage;
5060 	uint_t vpprot, prot;
5061 	int err;
5062 	page_t *pl[PVN_GETPAGE_NUM + 1];
5063 	size_t plsz, pl_alloc_sz;
5064 	size_t page;
5065 	ulong_t anon_index;
5066 	struct anon_map *amp;
5067 	int dogetpage = 0;
5068 	caddr_t	lpgaddr, lpgeaddr;
5069 	size_t pgsz;
5070 	anon_sync_obj_t cookie;
5071 	int brkcow = BREAK_COW_SHARE(rw, type, svd->type);
5072 
5073 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5074 	ASSERT(svd->amp == NULL || svd->rcookie == HAT_INVALID_REGION_COOKIE);
5075 
5076 	/*
5077 	 * First handle the easy stuff
5078 	 */
5079 	if (type == F_SOFTUNLOCK) {
5080 		if (rw == S_READ_NOCOW) {
5081 			rw = S_READ;
5082 			ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
5083 		}
5084 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
5085 		pgsz = (seg->s_szc == 0) ? PAGESIZE :
5086 		    page_get_pagesize(seg->s_szc);
5087 		VM_STAT_COND_ADD(pgsz > PAGESIZE, segvnvmstats.fltanpages[16]);
5088 		CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
5089 		segvn_softunlock(seg, lpgaddr, lpgeaddr - lpgaddr, rw);
5090 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5091 		return (0);
5092 	}
5093 
5094 	ASSERT(svd->tr_state == SEGVN_TR_OFF ||
5095 	    !HAT_IS_REGION_COOKIE_VALID(svd->rcookie));
5096 	if (brkcow == 0) {
5097 		if (svd->tr_state == SEGVN_TR_INIT) {
5098 			SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5099 			if (svd->tr_state == SEGVN_TR_INIT) {
5100 				ASSERT(svd->vp != NULL && svd->amp == NULL);
5101 				ASSERT(svd->flags & MAP_TEXT);
5102 				ASSERT(svd->type == MAP_PRIVATE);
5103 				segvn_textrepl(seg);
5104 				ASSERT(svd->tr_state != SEGVN_TR_INIT);
5105 				ASSERT(svd->tr_state != SEGVN_TR_ON ||
5106 				    svd->amp != NULL);
5107 			}
5108 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5109 		}
5110 	} else if (svd->tr_state != SEGVN_TR_OFF) {
5111 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5112 
5113 		if (rw == S_WRITE && svd->tr_state != SEGVN_TR_OFF) {
5114 			ASSERT(!svd->pageprot && !(svd->prot & PROT_WRITE));
5115 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5116 			return (FC_PROT);
5117 		}
5118 
5119 		if (svd->tr_state == SEGVN_TR_ON) {
5120 			ASSERT(svd->vp != NULL && svd->amp != NULL);
5121 			segvn_textunrepl(seg, 0);
5122 			ASSERT(svd->amp == NULL &&
5123 			    svd->tr_state == SEGVN_TR_OFF);
5124 		} else if (svd->tr_state != SEGVN_TR_OFF) {
5125 			svd->tr_state = SEGVN_TR_OFF;
5126 		}
5127 		ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
5128 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5129 	}
5130 
5131 top:
5132 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
5133 
5134 	/*
5135 	 * If we have the same protections for the entire segment,
5136 	 * insure that the access being attempted is legitimate.
5137 	 */
5138 
5139 	if (svd->pageprot == 0) {
5140 		uint_t protchk;
5141 
5142 		switch (rw) {
5143 		case S_READ:
5144 		case S_READ_NOCOW:
5145 			protchk = PROT_READ;
5146 			break;
5147 		case S_WRITE:
5148 			protchk = PROT_WRITE;
5149 			break;
5150 		case S_EXEC:
5151 			protchk = PROT_EXEC;
5152 			break;
5153 		case S_OTHER:
5154 		default:
5155 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
5156 			break;
5157 		}
5158 
5159 		if ((svd->prot & protchk) == 0) {
5160 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5161 			return (FC_PROT);	/* illegal access type */
5162 		}
5163 	}
5164 
5165 	if (brkcow && HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
5166 		/* this must be SOFTLOCK S_READ fault */
5167 		ASSERT(svd->amp == NULL);
5168 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
5169 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5170 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5171 		if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
5172 			/*
5173 			 * this must be the first ever non S_READ_NOCOW
5174 			 * softlock for this segment.
5175 			 */
5176 			ASSERT(svd->softlockcnt == 0);
5177 			hat_leave_region(seg->s_as->a_hat, svd->rcookie,
5178 			    HAT_REGION_TEXT);
5179 			svd->rcookie = HAT_INVALID_REGION_COOKIE;
5180 		}
5181 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5182 		goto top;
5183 	}
5184 
5185 	/*
5186 	 * We can't allow the long term use of softlocks for vmpss segments,
5187 	 * because in some file truncation cases we should be able to demote
5188 	 * the segment, which requires that there are no softlocks.  The
5189 	 * only case where it's ok to allow a SOFTLOCK fault against a vmpss
5190 	 * segment is S_READ_NOCOW, where the caller holds the address space
5191 	 * locked as writer and calls softunlock before dropping the as lock.
5192 	 * S_READ_NOCOW is used by /proc to read memory from another user.
5193 	 *
5194 	 * Another deadlock between SOFTLOCK and file truncation can happen
5195 	 * because segvn_fault_vnodepages() calls the FS one pagesize at
5196 	 * a time. A second VOP_GETPAGE() call by segvn_fault_vnodepages()
5197 	 * can cause a deadlock because the first set of page_t's remain
5198 	 * locked SE_SHARED.  To avoid this, we demote segments on a first
5199 	 * SOFTLOCK if they have a length greater than the segment's
5200 	 * page size.
5201 	 *
5202 	 * So for now, we only avoid demoting a segment on a SOFTLOCK when
5203 	 * the access type is S_READ_NOCOW and the fault length is less than
5204 	 * or equal to the segment's page size. While this is quite restrictive,
5205 	 * it should be the most common case of SOFTLOCK against a vmpss
5206 	 * segment.
5207 	 *
5208 	 * For S_READ_NOCOW, it's safe not to do a copy on write because the
5209 	 * caller makes sure no COW will be caused by another thread for a
5210 	 * softlocked page.
5211 	 */
5212 	if (type == F_SOFTLOCK && svd->vp != NULL && seg->s_szc != 0) {
5213 		int demote = 0;
5214 
5215 		if (rw != S_READ_NOCOW) {
5216 			demote = 1;
5217 		}
5218 		if (!demote && len > PAGESIZE) {
5219 			pgsz = page_get_pagesize(seg->s_szc);
5220 			CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr,
5221 			    lpgeaddr);
5222 			if (lpgeaddr - lpgaddr > pgsz) {
5223 				demote = 1;
5224 			}
5225 		}
5226 
5227 		ASSERT(demote || AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
5228 
5229 		if (demote) {
5230 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5231 			SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5232 			if (seg->s_szc != 0) {
5233 				segvn_vmpss_clrszc_cnt++;
5234 				ASSERT(svd->softlockcnt == 0);
5235 				err = segvn_clrszc(seg);
5236 				if (err) {
5237 					segvn_vmpss_clrszc_err++;
5238 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5239 					return (FC_MAKE_ERR(err));
5240 				}
5241 			}
5242 			ASSERT(seg->s_szc == 0);
5243 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5244 			goto top;
5245 		}
5246 	}
5247 
5248 	/*
5249 	 * Check to see if we need to allocate an anon_map structure.
5250 	 */
5251 	if (svd->amp == NULL && (svd->vp == NULL || brkcow)) {
5252 		ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
5253 		/*
5254 		 * Drop the "read" lock on the segment and acquire
5255 		 * the "write" version since we have to allocate the
5256 		 * anon_map.
5257 		 */
5258 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5259 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5260 
5261 		if (svd->amp == NULL) {
5262 			svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP);
5263 			svd->amp->a_szc = seg->s_szc;
5264 		}
5265 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5266 
5267 		/*
5268 		 * Start all over again since segment protections
5269 		 * may have changed after we dropped the "read" lock.
5270 		 */
5271 		goto top;
5272 	}
5273 
5274 	/*
5275 	 * S_READ_NOCOW vs S_READ distinction was
5276 	 * only needed for the code above. After
5277 	 * that we treat it as S_READ.
5278 	 */
5279 	if (rw == S_READ_NOCOW) {
5280 		ASSERT(type == F_SOFTLOCK);
5281 		ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
5282 		rw = S_READ;
5283 	}
5284 
5285 	amp = svd->amp;
5286 
5287 	/*
5288 	 * MADV_SEQUENTIAL work is ignored for large page segments.
5289 	 */
5290 	if (seg->s_szc != 0) {
5291 		pgsz = page_get_pagesize(seg->s_szc);
5292 		ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
5293 		CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
5294 		if (svd->vp == NULL) {
5295 			err = segvn_fault_anonpages(hat, seg, lpgaddr,
5296 			    lpgeaddr, type, rw, addr, addr + len, brkcow);
5297 		} else {
5298 			err = segvn_fault_vnodepages(hat, seg, lpgaddr,
5299 			    lpgeaddr, type, rw, addr, addr + len, brkcow);
5300 			if (err == IE_RETRY) {
5301 				ASSERT(seg->s_szc == 0);
5302 				ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock));
5303 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5304 				goto top;
5305 			}
5306 		}
5307 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5308 		return (err);
5309 	}
5310 
5311 	page = seg_page(seg, addr);
5312 	if (amp != NULL) {
5313 		ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
5314 		anon_index = svd->anon_index + page;
5315 
5316 		if (type == F_PROT && rw == S_READ &&
5317 		    svd->tr_state == SEGVN_TR_OFF &&
5318 		    svd->type == MAP_PRIVATE && svd->pageprot == 0) {
5319 			size_t index = anon_index;
5320 			struct anon *ap;
5321 
5322 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5323 			/*
5324 			 * The fast path could apply to S_WRITE also, except
5325 			 * that the protection fault could be caused by lazy
5326 			 * tlb flush when ro->rw. In this case, the pte is
5327 			 * RW already. But RO in the other cpu's tlb causes
5328 			 * the fault. Since hat_chgprot won't do anything if
5329 			 * pte doesn't change, we may end up faulting
5330 			 * indefinitely until the RO tlb entry gets replaced.
5331 			 */
5332 			for (a = addr; a < addr + len; a += PAGESIZE, index++) {
5333 				anon_array_enter(amp, index, &cookie);
5334 				ap = anon_get_ptr(amp->ahp, index);
5335 				anon_array_exit(&cookie);
5336 				if ((ap == NULL) || (ap->an_refcnt != 1)) {
5337 					ANON_LOCK_EXIT(&amp->a_rwlock);
5338 					goto slow;
5339 				}
5340 			}
5341 			hat_chgprot(seg->s_as->a_hat, addr, len, svd->prot);
5342 			ANON_LOCK_EXIT(&amp->a_rwlock);
5343 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5344 			return (0);
5345 		}
5346 	}
5347 slow:
5348 
5349 	if (svd->vpage == NULL)
5350 		vpage = NULL;
5351 	else
5352 		vpage = &svd->vpage[page];
5353 
5354 	off = svd->offset + (uintptr_t)(addr - seg->s_base);
5355 
5356 	/*
5357 	 * If MADV_SEQUENTIAL has been set for the particular page we
5358 	 * are faulting on, free behind all pages in the segment and put
5359 	 * them on the free list.
5360 	 */
5361 
5362 	if ((page != 0) && fltadvice && svd->tr_state != SEGVN_TR_ON) {
5363 		struct vpage *vpp;
5364 		ulong_t fanon_index;
5365 		size_t fpage;
5366 		u_offset_t pgoff, fpgoff;
5367 		struct vnode *fvp;
5368 		struct anon *fap = NULL;
5369 
5370 		if (svd->advice == MADV_SEQUENTIAL ||
5371 		    (svd->pageadvice &&
5372 		    VPP_ADVICE(vpage) == MADV_SEQUENTIAL)) {
5373 			pgoff = off - PAGESIZE;
5374 			fpage = page - 1;
5375 			if (vpage != NULL)
5376 				vpp = &svd->vpage[fpage];
5377 			if (amp != NULL)
5378 				fanon_index = svd->anon_index + fpage;
5379 
5380 			while (pgoff > svd->offset) {
5381 				if (svd->advice != MADV_SEQUENTIAL &&
5382 				    (!svd->pageadvice || (vpage &&
5383 				    VPP_ADVICE(vpp) != MADV_SEQUENTIAL)))
5384 					break;
5385 
5386 				/*
5387 				 * If this is an anon page, we must find the
5388 				 * correct <vp, offset> for it
5389 				 */
5390 				fap = NULL;
5391 				if (amp != NULL) {
5392 					ANON_LOCK_ENTER(&amp->a_rwlock,
5393 					    RW_READER);
5394 					anon_array_enter(amp, fanon_index,
5395 					    &cookie);
5396 					fap = anon_get_ptr(amp->ahp,
5397 					    fanon_index);
5398 					if (fap != NULL) {
5399 						swap_xlate(fap, &fvp, &fpgoff);
5400 					} else {
5401 						fpgoff = pgoff;
5402 						fvp = svd->vp;
5403 					}
5404 					anon_array_exit(&cookie);
5405 					ANON_LOCK_EXIT(&amp->a_rwlock);
5406 				} else {
5407 					fpgoff = pgoff;
5408 					fvp = svd->vp;
5409 				}
5410 				if (fvp == NULL)
5411 					break;	/* XXX */
5412 				/*
5413 				 * Skip pages that are free or have an
5414 				 * "exclusive" lock.
5415 				 */
5416 				pp = page_lookup_nowait(fvp, fpgoff, SE_SHARED);
5417 				if (pp == NULL)
5418 					break;
5419 				/*
5420 				 * We don't need the page_struct_lock to test
5421 				 * as this is only advisory; even if we
5422 				 * acquire it someone might race in and lock
5423 				 * the page after we unlock and before the
5424 				 * PUTPAGE, then VOP_PUTPAGE will do nothing.
5425 				 */
5426 				if (pp->p_lckcnt == 0 && pp->p_cowcnt == 0) {
5427 					/*
5428 					 * Hold the vnode before releasing
5429 					 * the page lock to prevent it from
5430 					 * being freed and re-used by some
5431 					 * other thread.
5432 					 */
5433 					VN_HOLD(fvp);
5434 					page_unlock(pp);
5435 					/*
5436 					 * We should build a page list
5437 					 * to kluster putpages XXX
5438 					 */
5439 					(void) VOP_PUTPAGE(fvp,
5440 					    (offset_t)fpgoff, PAGESIZE,
5441 					    (B_DONTNEED|B_FREE|B_ASYNC),
5442 					    svd->cred, NULL);
5443 					VN_RELE(fvp);
5444 				} else {
5445 					/*
5446 					 * XXX - Should the loop terminate if
5447 					 * the page is `locked'?
5448 					 */
5449 					page_unlock(pp);
5450 				}
5451 				--vpp;
5452 				--fanon_index;
5453 				pgoff -= PAGESIZE;
5454 			}
5455 		}
5456 	}
5457 
5458 	plp = pl;
5459 	*plp = NULL;
5460 	pl_alloc_sz = 0;
5461 
5462 	/*
5463 	 * See if we need to call VOP_GETPAGE for
5464 	 * *any* of the range being faulted on.
5465 	 * We can skip all of this work if there
5466 	 * was no original vnode.
5467 	 */
5468 	if (svd->vp != NULL) {
5469 		u_offset_t vp_off;
5470 		size_t vp_len;
5471 		struct anon *ap;
5472 		vnode_t *vp;
5473 
5474 		vp_off = off;
5475 		vp_len = len;
5476 
5477 		if (amp == NULL)
5478 			dogetpage = 1;
5479 		else {
5480 			/*
5481 			 * Only acquire reader lock to prevent amp->ahp
5482 			 * from being changed.  It's ok to miss pages,
5483 			 * hence we don't do anon_array_enter
5484 			 */
5485 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5486 			ap = anon_get_ptr(amp->ahp, anon_index);
5487 
5488 			if (len <= PAGESIZE)
5489 				/* inline non_anon() */
5490 				dogetpage = (ap == NULL);
5491 			else
5492 				dogetpage = non_anon(amp->ahp, anon_index,
5493 				    &vp_off, &vp_len);
5494 			ANON_LOCK_EXIT(&amp->a_rwlock);
5495 		}
5496 
5497 		if (dogetpage) {
5498 			enum seg_rw arw;
5499 			struct as *as = seg->s_as;
5500 
5501 			if (len > ptob((sizeof (pl) / sizeof (pl[0])) - 1)) {
5502 				/*
5503 				 * Page list won't fit in local array,
5504 				 * allocate one of the needed size.
5505 				 */
5506 				pl_alloc_sz =
5507 				    (btop(len) + 1) * sizeof (page_t *);
5508 				plp = kmem_alloc(pl_alloc_sz, KM_SLEEP);
5509 				plp[0] = NULL;
5510 				plsz = len;
5511 			} else if (rw == S_WRITE && svd->type == MAP_PRIVATE ||
5512 			    svd->tr_state == SEGVN_TR_ON || rw == S_OTHER ||
5513 			    (((size_t)(addr + PAGESIZE) <
5514 			    (size_t)(seg->s_base + seg->s_size)) &&
5515 			    hat_probe(as->a_hat, addr + PAGESIZE))) {
5516 				/*
5517 				 * Ask VOP_GETPAGE to return the exact number
5518 				 * of pages if
5519 				 * (a) this is a COW fault, or
5520 				 * (b) this is a software fault, or
5521 				 * (c) next page is already mapped.
5522 				 */
5523 				plsz = len;
5524 			} else {
5525 				/*
5526 				 * Ask VOP_GETPAGE to return adjacent pages
5527 				 * within the segment.
5528 				 */
5529 				plsz = MIN((size_t)PVN_GETPAGE_SZ, (size_t)
5530 				    ((seg->s_base + seg->s_size) - addr));
5531 				ASSERT((addr + plsz) <=
5532 				    (seg->s_base + seg->s_size));
5533 			}
5534 
5535 			/*
5536 			 * Need to get some non-anonymous pages.
5537 			 * We need to make only one call to GETPAGE to do
5538 			 * this to prevent certain deadlocking conditions
5539 			 * when we are doing locking.  In this case
5540 			 * non_anon() should have picked up the smallest
5541 			 * range which includes all the non-anonymous
5542 			 * pages in the requested range.  We have to
5543 			 * be careful regarding which rw flag to pass in
5544 			 * because on a private mapping, the underlying
5545 			 * object is never allowed to be written.
5546 			 */
5547 			if (rw == S_WRITE && svd->type == MAP_PRIVATE) {
5548 				arw = S_READ;
5549 			} else {
5550 				arw = rw;
5551 			}
5552 			vp = svd->vp;
5553 			TRACE_3(TR_FAC_VM, TR_SEGVN_GETPAGE,
5554 			    "segvn_getpage:seg %p addr %p vp %p",
5555 			    seg, addr, vp);
5556 			err = VOP_GETPAGE(vp, (offset_t)vp_off, vp_len,
5557 			    &vpprot, plp, plsz, seg, addr + (vp_off - off), arw,
5558 			    svd->cred, NULL);
5559 			if (err) {
5560 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5561 				segvn_pagelist_rele(plp);
5562 				if (pl_alloc_sz)
5563 					kmem_free(plp, pl_alloc_sz);
5564 				return (FC_MAKE_ERR(err));
5565 			}
5566 			if (svd->type == MAP_PRIVATE)
5567 				vpprot &= ~PROT_WRITE;
5568 		}
5569 	}
5570 
5571 	/*
5572 	 * N.B. at this time the plp array has all the needed non-anon
5573 	 * pages in addition to (possibly) having some adjacent pages.
5574 	 */
5575 
5576 	/*
5577 	 * Always acquire the anon_array_lock to prevent
5578 	 * 2 threads from allocating separate anon slots for
5579 	 * the same "addr".
5580 	 *
5581 	 * If this is a copy-on-write fault and we don't already
5582 	 * have the anon_array_lock, acquire it to prevent the
5583 	 * fault routine from handling multiple copy-on-write faults
5584 	 * on the same "addr" in the same address space.
5585 	 *
5586 	 * Only one thread should deal with the fault since after
5587 	 * it is handled, the other threads can acquire a translation
5588 	 * to the newly created private page.  This prevents two or
5589 	 * more threads from creating different private pages for the
5590 	 * same fault.
5591 	 *
5592 	 * We grab "serialization" lock here if this is a MAP_PRIVATE segment
5593 	 * to prevent deadlock between this thread and another thread
5594 	 * which has soft-locked this page and wants to acquire serial_lock.
5595 	 * ( bug 4026339 )
5596 	 *
5597 	 * The fix for bug 4026339 becomes unnecessary when using the
5598 	 * locking scheme with per amp rwlock and a global set of hash
5599 	 * lock, anon_array_lock.  If we steal a vnode page when low
5600 	 * on memory and upgrad the page lock through page_rename,
5601 	 * then the page is PAGE_HANDLED, nothing needs to be done
5602 	 * for this page after returning from segvn_faultpage.
5603 	 *
5604 	 * But really, the page lock should be downgraded after
5605 	 * the stolen page is page_rename'd.
5606 	 */
5607 
5608 	if (amp != NULL)
5609 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5610 
5611 	/*
5612 	 * Ok, now loop over the address range and handle faults
5613 	 */
5614 	for (a = addr; a < addr + len; a += PAGESIZE, off += PAGESIZE) {
5615 		err = segvn_faultpage(hat, seg, a, off, vpage, plp, vpprot,
5616 		    type, rw, brkcow, a == addr);
5617 		if (err) {
5618 			if (amp != NULL)
5619 				ANON_LOCK_EXIT(&amp->a_rwlock);
5620 			if (type == F_SOFTLOCK && a > addr) {
5621 				segvn_softunlock(seg, addr, (a - addr),
5622 				    S_OTHER);
5623 			}
5624 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5625 			segvn_pagelist_rele(plp);
5626 			if (pl_alloc_sz)
5627 				kmem_free(plp, pl_alloc_sz);
5628 			return (err);
5629 		}
5630 		if (vpage) {
5631 			vpage++;
5632 		} else if (svd->vpage) {
5633 			page = seg_page(seg, addr);
5634 			vpage = &svd->vpage[++page];
5635 		}
5636 	}
5637 
5638 	/* Didn't get pages from the underlying fs so we're done */
5639 	if (!dogetpage)
5640 		goto done;
5641 
5642 	/*
5643 	 * Now handle any other pages in the list returned.
5644 	 * If the page can be used, load up the translations now.
5645 	 * Note that the for loop will only be entered if "plp"
5646 	 * is pointing to a non-NULL page pointer which means that
5647 	 * VOP_GETPAGE() was called and vpprot has been initialized.
5648 	 */
5649 	if (svd->pageprot == 0)
5650 		prot = svd->prot & vpprot;
5651 
5652 
5653 	/*
5654 	 * Large Files: diff should be unsigned value because we started
5655 	 * supporting > 2GB segment sizes from 2.5.1 and when a
5656 	 * large file of size > 2GB gets mapped to address space
5657 	 * the diff value can be > 2GB.
5658 	 */
5659 
5660 	for (ppp = plp; (pp = *ppp) != NULL; ppp++) {
5661 		size_t diff;
5662 		struct anon *ap;
5663 		int anon_index;
5664 		anon_sync_obj_t cookie;
5665 		int hat_flag = HAT_LOAD_ADV;
5666 
5667 		if (svd->flags & MAP_TEXT) {
5668 			hat_flag |= HAT_LOAD_TEXT;
5669 		}
5670 
5671 		if (pp == PAGE_HANDLED)
5672 			continue;
5673 
5674 		if (svd->tr_state != SEGVN_TR_ON &&
5675 		    pp->p_offset >=  svd->offset &&
5676 		    pp->p_offset < svd->offset + seg->s_size) {
5677 
5678 			diff = pp->p_offset - svd->offset;
5679 
5680 			/*
5681 			 * Large Files: Following is the assertion
5682 			 * validating the above cast.
5683 			 */
5684 			ASSERT(svd->vp == pp->p_vnode);
5685 
5686 			page = btop(diff);
5687 			if (svd->pageprot)
5688 				prot = VPP_PROT(&svd->vpage[page]) & vpprot;
5689 
5690 			/*
5691 			 * Prevent other threads in the address space from
5692 			 * creating private pages (i.e., allocating anon slots)
5693 			 * while we are in the process of loading translations
5694 			 * to additional pages returned by the underlying
5695 			 * object.
5696 			 */
5697 			if (amp != NULL) {
5698 				anon_index = svd->anon_index + page;
5699 				anon_array_enter(amp, anon_index, &cookie);
5700 				ap = anon_get_ptr(amp->ahp, anon_index);
5701 			}
5702 			if ((amp == NULL) || (ap == NULL)) {
5703 				if (IS_VMODSORT(pp->p_vnode) ||
5704 				    enable_mbit_wa) {
5705 					if (rw == S_WRITE)
5706 						hat_setmod(pp);
5707 					else if (rw != S_OTHER &&
5708 					    !hat_ismod(pp))
5709 						prot &= ~PROT_WRITE;
5710 				}
5711 				/*
5712 				 * Skip mapping read ahead pages marked
5713 				 * for migration, so they will get migrated
5714 				 * properly on fault
5715 				 */
5716 				ASSERT(amp == NULL ||
5717 				    svd->rcookie == HAT_INVALID_REGION_COOKIE);
5718 				if ((prot & PROT_READ) && !PP_ISMIGRATE(pp)) {
5719 					hat_memload_region(hat,
5720 					    seg->s_base + diff,
5721 					    pp, prot, hat_flag,
5722 					    svd->rcookie);
5723 				}
5724 			}
5725 			if (amp != NULL)
5726 				anon_array_exit(&cookie);
5727 		}
5728 		page_unlock(pp);
5729 	}
5730 done:
5731 	if (amp != NULL)
5732 		ANON_LOCK_EXIT(&amp->a_rwlock);
5733 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5734 	if (pl_alloc_sz)
5735 		kmem_free(plp, pl_alloc_sz);
5736 	return (0);
5737 }
5738 
5739 /*
5740  * This routine is used to start I/O on pages asynchronously.  XXX it will
5741  * only create PAGESIZE pages. At fault time they will be relocated into
5742  * larger pages.
5743  */
5744 static faultcode_t
5745 segvn_faulta(struct seg *seg, caddr_t addr)
5746 {
5747 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5748 	int err;
5749 	struct anon_map *amp;
5750 	vnode_t *vp;
5751 
5752 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5753 
5754 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
5755 	if ((amp = svd->amp) != NULL) {
5756 		struct anon *ap;
5757 
5758 		/*
5759 		 * Reader lock to prevent amp->ahp from being changed.
5760 		 * This is advisory, it's ok to miss a page, so
5761 		 * we don't do anon_array_enter lock.
5762 		 */
5763 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5764 		if ((ap = anon_get_ptr(amp->ahp,
5765 		    svd->anon_index + seg_page(seg, addr))) != NULL) {
5766 
5767 			err = anon_getpage(&ap, NULL, NULL,
5768 			    0, seg, addr, S_READ, svd->cred);
5769 
5770 			ANON_LOCK_EXIT(&amp->a_rwlock);
5771 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5772 			if (err)
5773 				return (FC_MAKE_ERR(err));
5774 			return (0);
5775 		}
5776 		ANON_LOCK_EXIT(&amp->a_rwlock);
5777 	}
5778 
5779 	if (svd->vp == NULL) {
5780 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5781 		return (0);			/* zfod page - do nothing now */
5782 	}
5783 
5784 	vp = svd->vp;
5785 	TRACE_3(TR_FAC_VM, TR_SEGVN_GETPAGE,
5786 	    "segvn_getpage:seg %p addr %p vp %p", seg, addr, vp);
5787 	err = VOP_GETPAGE(vp,
5788 	    (offset_t)(svd->offset + (uintptr_t)(addr - seg->s_base)),
5789 	    PAGESIZE, NULL, NULL, 0, seg, addr,
5790 	    S_OTHER, svd->cred, NULL);
5791 
5792 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5793 	if (err)
5794 		return (FC_MAKE_ERR(err));
5795 	return (0);
5796 }
5797 
5798 static int
5799 segvn_setprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
5800 {
5801 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5802 	struct vpage *cvp, *svp, *evp;
5803 	struct vnode *vp;
5804 	size_t pgsz;
5805 	pgcnt_t pgcnt;
5806 	anon_sync_obj_t cookie;
5807 	int unload_done = 0;
5808 
5809 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5810 
5811 	if ((svd->maxprot & prot) != prot)
5812 		return (EACCES);			/* violated maxprot */
5813 
5814 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5815 
5816 	/* return if prot is the same */
5817 	if (!svd->pageprot && svd->prot == prot) {
5818 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5819 		return (0);
5820 	}
5821 
5822 	/*
5823 	 * Since we change protections we first have to flush the cache.
5824 	 * This makes sure all the pagelock calls have to recheck
5825 	 * protections.
5826 	 */
5827 	if (svd->softlockcnt > 0) {
5828 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
5829 		/*
5830 		 * Since we do have the segvn writers lock nobody can fill
5831 		 * the cache with entries belonging to this seg during
5832 		 * the purge. The flush either succeeds or we still have
5833 		 * pending I/Os.
5834 		 */
5835 		segvn_purge(seg);
5836 		if (svd->softlockcnt > 0) {
5837 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5838 			return (EAGAIN);
5839 		}
5840 	}
5841 
5842 	if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
5843 		ASSERT(svd->amp == NULL);
5844 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
5845 		hat_leave_region(seg->s_as->a_hat, svd->rcookie,
5846 		    HAT_REGION_TEXT);
5847 		svd->rcookie = HAT_INVALID_REGION_COOKIE;
5848 		unload_done = 1;
5849 	} else if (svd->tr_state == SEGVN_TR_INIT) {
5850 		svd->tr_state = SEGVN_TR_OFF;
5851 	} else if (svd->tr_state == SEGVN_TR_ON) {
5852 		ASSERT(svd->amp != NULL);
5853 		segvn_textunrepl(seg, 0);
5854 		ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
5855 		unload_done = 1;
5856 	}
5857 
5858 	if ((prot & PROT_WRITE) && svd->type == MAP_SHARED &&
5859 	    svd->vp != NULL && (svd->vp->v_flag & VVMEXEC)) {
5860 		ASSERT(vn_is_mapped(svd->vp, V_WRITE));
5861 		segvn_inval_trcache(svd->vp);
5862 	}
5863 	if (seg->s_szc != 0) {
5864 		int err;
5865 		pgsz = page_get_pagesize(seg->s_szc);
5866 		pgcnt = pgsz >> PAGESHIFT;
5867 		ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
5868 		if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
5869 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5870 			ASSERT(seg->s_base != addr || seg->s_size != len);
5871 			/*
5872 			 * If we are holding the as lock as a reader then
5873 			 * we need to return IE_RETRY and let the as
5874 			 * layer drop and re-acquire the lock as a writer.
5875 			 */
5876 			if (AS_READ_HELD(seg->s_as, &seg->s_as->a_lock))
5877 				return (IE_RETRY);
5878 			VM_STAT_ADD(segvnvmstats.demoterange[1]);
5879 			if (svd->type == MAP_PRIVATE || svd->vp != NULL) {
5880 				err = segvn_demote_range(seg, addr, len,
5881 				    SDR_END, 0);
5882 			} else {
5883 				uint_t szcvec = map_pgszcvec(seg->s_base,
5884 				    pgsz, (uintptr_t)seg->s_base,
5885 				    (svd->flags & MAP_TEXT), MAPPGSZC_SHM, 0);
5886 				err = segvn_demote_range(seg, addr, len,
5887 				    SDR_END, szcvec);
5888 			}
5889 			if (err == 0)
5890 				return (IE_RETRY);
5891 			if (err == ENOMEM)
5892 				return (IE_NOMEM);
5893 			return (err);
5894 		}
5895 	}
5896 
5897 
5898 	/*
5899 	 * If it's a private mapping and we're making it writable then we
5900 	 * may have to reserve the additional swap space now. If we are
5901 	 * making writable only a part of the segment then we use its vpage
5902 	 * array to keep a record of the pages for which we have reserved
5903 	 * swap. In this case we set the pageswap field in the segment's
5904 	 * segvn structure to record this.
5905 	 *
5906 	 * If it's a private mapping to a file (i.e., vp != NULL) and we're
5907 	 * removing write permission on the entire segment and we haven't
5908 	 * modified any pages, we can release the swap space.
5909 	 */
5910 	if (svd->type == MAP_PRIVATE) {
5911 		if (prot & PROT_WRITE) {
5912 			if (!(svd->flags & MAP_NORESERVE) &&
5913 			    !(svd->swresv && svd->pageswap == 0)) {
5914 				size_t sz = 0;
5915 
5916 				/*
5917 				 * Start by determining how much swap
5918 				 * space is required.
5919 				 */
5920 				if (addr == seg->s_base &&
5921 				    len == seg->s_size &&
5922 				    svd->pageswap == 0) {
5923 					/* The whole segment */
5924 					sz = seg->s_size;
5925 				} else {
5926 					/*
5927 					 * Make sure that the vpage array
5928 					 * exists, and make a note of the
5929 					 * range of elements corresponding
5930 					 * to len.
5931 					 */
5932 					segvn_vpage(seg);
5933 					svp = &svd->vpage[seg_page(seg, addr)];
5934 					evp = &svd->vpage[seg_page(seg,
5935 					    addr + len)];
5936 
5937 					if (svd->pageswap == 0) {
5938 						/*
5939 						 * This is the first time we've
5940 						 * asked for a part of this
5941 						 * segment, so we need to
5942 						 * reserve everything we've
5943 						 * been asked for.
5944 						 */
5945 						sz = len;
5946 					} else {
5947 						/*
5948 						 * We have to count the number
5949 						 * of pages required.
5950 						 */
5951 						for (cvp = svp;  cvp < evp;
5952 						    cvp++) {
5953 							if (!VPP_ISSWAPRES(cvp))
5954 								sz++;
5955 						}
5956 						sz <<= PAGESHIFT;
5957 					}
5958 				}
5959 
5960 				/* Try to reserve the necessary swap. */
5961 				if (anon_resv_zone(sz,
5962 				    seg->s_as->a_proc->p_zone) == 0) {
5963 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5964 					return (IE_NOMEM);
5965 				}
5966 
5967 				/*
5968 				 * Make a note of how much swap space
5969 				 * we've reserved.
5970 				 */
5971 				if (svd->pageswap == 0 && sz == seg->s_size) {
5972 					svd->swresv = sz;
5973 				} else {
5974 					ASSERT(svd->vpage != NULL);
5975 					svd->swresv += sz;
5976 					svd->pageswap = 1;
5977 					for (cvp = svp; cvp < evp; cvp++) {
5978 						if (!VPP_ISSWAPRES(cvp))
5979 							VPP_SETSWAPRES(cvp);
5980 					}
5981 				}
5982 			}
5983 		} else {
5984 			/*
5985 			 * Swap space is released only if this segment
5986 			 * does not map anonymous memory, since read faults
5987 			 * on such segments still need an anon slot to read
5988 			 * in the data.
5989 			 */
5990 			if (svd->swresv != 0 && svd->vp != NULL &&
5991 			    svd->amp == NULL && addr == seg->s_base &&
5992 			    len == seg->s_size && svd->pageprot == 0) {
5993 				ASSERT(svd->pageswap == 0);
5994 				anon_unresv_zone(svd->swresv,
5995 				    seg->s_as->a_proc->p_zone);
5996 				svd->swresv = 0;
5997 				TRACE_3(TR_FAC_VM, TR_ANON_PROC,
5998 				    "anon proc:%p %lu %u", seg, 0, 0);
5999 			}
6000 		}
6001 	}
6002 
6003 	if (addr == seg->s_base && len == seg->s_size && svd->vpage == NULL) {
6004 		if (svd->prot == prot) {
6005 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6006 			return (0);			/* all done */
6007 		}
6008 		svd->prot = (uchar_t)prot;
6009 	} else if (svd->type == MAP_PRIVATE) {
6010 		struct anon *ap = NULL;
6011 		page_t *pp;
6012 		u_offset_t offset, off;
6013 		struct anon_map *amp;
6014 		ulong_t anon_idx = 0;
6015 
6016 		/*
6017 		 * A vpage structure exists or else the change does not
6018 		 * involve the entire segment.  Establish a vpage structure
6019 		 * if none is there.  Then, for each page in the range,
6020 		 * adjust its individual permissions.  Note that write-
6021 		 * enabling a MAP_PRIVATE page can affect the claims for
6022 		 * locked down memory.  Overcommitting memory terminates
6023 		 * the operation.
6024 		 */
6025 		segvn_vpage(seg);
6026 		svd->pageprot = 1;
6027 		if ((amp = svd->amp) != NULL) {
6028 			anon_idx = svd->anon_index + seg_page(seg, addr);
6029 			ASSERT(seg->s_szc == 0 ||
6030 			    IS_P2ALIGNED(anon_idx, pgcnt));
6031 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
6032 		}
6033 
6034 		offset = svd->offset + (uintptr_t)(addr - seg->s_base);
6035 		evp = &svd->vpage[seg_page(seg, addr + len)];
6036 
6037 		/*
6038 		 * See Statement at the beginning of segvn_lockop regarding
6039 		 * the way cowcnts and lckcnts are handled.
6040 		 */
6041 		for (svp = &svd->vpage[seg_page(seg, addr)]; svp < evp; svp++) {
6042 
6043 			if (seg->s_szc != 0) {
6044 				if (amp != NULL) {
6045 					anon_array_enter(amp, anon_idx,
6046 					    &cookie);
6047 				}
6048 				if (IS_P2ALIGNED(anon_idx, pgcnt) &&
6049 				    !segvn_claim_pages(seg, svp, offset,
6050 				    anon_idx, prot)) {
6051 					if (amp != NULL) {
6052 						anon_array_exit(&cookie);
6053 					}
6054 					break;
6055 				}
6056 				if (amp != NULL) {
6057 					anon_array_exit(&cookie);
6058 				}
6059 				anon_idx++;
6060 			} else {
6061 				if (amp != NULL) {
6062 					anon_array_enter(amp, anon_idx,
6063 					    &cookie);
6064 					ap = anon_get_ptr(amp->ahp, anon_idx++);
6065 				}
6066 
6067 				if (VPP_ISPPLOCK(svp) &&
6068 				    VPP_PROT(svp) != prot) {
6069 
6070 					if (amp == NULL || ap == NULL) {
6071 						vp = svd->vp;
6072 						off = offset;
6073 					} else
6074 						swap_xlate(ap, &vp, &off);
6075 					if (amp != NULL)
6076 						anon_array_exit(&cookie);
6077 
6078 					if ((pp = page_lookup(vp, off,
6079 					    SE_SHARED)) == NULL) {
6080 						panic("segvn_setprot: no page");
6081 						/*NOTREACHED*/
6082 					}
6083 					ASSERT(seg->s_szc == 0);
6084 					if ((VPP_PROT(svp) ^ prot) &
6085 					    PROT_WRITE) {
6086 						if (prot & PROT_WRITE) {
6087 						    if (!page_addclaim(pp)) {
6088 							page_unlock(pp);
6089 							break;
6090 						    }
6091 						} else {
6092 						    if (!page_subclaim(pp)) {
6093 							page_unlock(pp);
6094 							break;
6095 						    }
6096 						}
6097 					}
6098 					page_unlock(pp);
6099 				} else if (amp != NULL)
6100 					anon_array_exit(&cookie);
6101 			}
6102 			VPP_SETPROT(svp, prot);
6103 			offset += PAGESIZE;
6104 		}
6105 		if (amp != NULL)
6106 			ANON_LOCK_EXIT(&amp->a_rwlock);
6107 
6108 		/*
6109 		 * Did we terminate prematurely?  If so, simply unload
6110 		 * the translations to the things we've updated so far.
6111 		 */
6112 		if (svp != evp) {
6113 			if (unload_done) {
6114 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6115 				return (IE_NOMEM);
6116 			}
6117 			len = (svp - &svd->vpage[seg_page(seg, addr)]) *
6118 			    PAGESIZE;
6119 			ASSERT(seg->s_szc == 0 || IS_P2ALIGNED(len, pgsz));
6120 			if (len != 0)
6121 				hat_unload(seg->s_as->a_hat, addr,
6122 				    len, HAT_UNLOAD);
6123 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6124 			return (IE_NOMEM);
6125 		}
6126 	} else {
6127 		segvn_vpage(seg);
6128 		svd->pageprot = 1;
6129 		evp = &svd->vpage[seg_page(seg, addr + len)];
6130 		for (svp = &svd->vpage[seg_page(seg, addr)]; svp < evp; svp++) {
6131 			VPP_SETPROT(svp, prot);
6132 		}
6133 	}
6134 
6135 	if (unload_done) {
6136 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6137 		return (0);
6138 	}
6139 
6140 	if (((prot & PROT_WRITE) != 0 &&
6141 	    (svd->vp != NULL || svd->type == MAP_PRIVATE)) ||
6142 	    (prot & ~PROT_USER) == PROT_NONE) {
6143 		/*
6144 		 * Either private or shared data with write access (in
6145 		 * which case we need to throw out all former translations
6146 		 * so that we get the right translations set up on fault
6147 		 * and we don't allow write access to any copy-on-write pages
6148 		 * that might be around or to prevent write access to pages
6149 		 * representing holes in a file), or we don't have permission
6150 		 * to access the memory at all (in which case we have to
6151 		 * unload any current translations that might exist).
6152 		 */
6153 		hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD);
6154 	} else {
6155 		/*
6156 		 * A shared mapping or a private mapping in which write
6157 		 * protection is going to be denied - just change all the
6158 		 * protections over the range of addresses in question.
6159 		 * segvn does not support any other attributes other
6160 		 * than prot so we can use hat_chgattr.
6161 		 */
6162 		hat_chgattr(seg->s_as->a_hat, addr, len, prot);
6163 	}
6164 
6165 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6166 
6167 	return (0);
6168 }
6169 
6170 /*
6171  * segvn_setpagesize is called via SEGOP_SETPAGESIZE from as_setpagesize,
6172  * to determine if the seg is capable of mapping the requested szc.
6173  */
6174 static int
6175 segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len, uint_t szc)
6176 {
6177 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6178 	struct segvn_data *nsvd;
6179 	struct anon_map *amp = svd->amp;
6180 	struct seg *nseg;
6181 	caddr_t eaddr = addr + len, a;
6182 	size_t pgsz = page_get_pagesize(szc);
6183 	pgcnt_t pgcnt = page_get_pagecnt(szc);
6184 	int err;
6185 	u_offset_t off = svd->offset + (uintptr_t)(addr - seg->s_base);
6186 	extern struct vnode kvp;
6187 
6188 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
6189 	ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size);
6190 
6191 	if (seg->s_szc == szc || segvn_lpg_disable != 0) {
6192 		return (0);
6193 	}
6194 
6195 	/*
6196 	 * addr should always be pgsz aligned but eaddr may be misaligned if
6197 	 * it's at the end of the segment.
6198 	 *
6199 	 * XXX we should assert this condition since as_setpagesize() logic
6200 	 * guarantees it.
6201 	 */
6202 	if (!IS_P2ALIGNED(addr, pgsz) ||
6203 	    (!IS_P2ALIGNED(eaddr, pgsz) &&
6204 	    eaddr != seg->s_base + seg->s_size)) {
6205 
6206 		segvn_setpgsz_align_err++;
6207 		return (EINVAL);
6208 	}
6209 
6210 	if (amp != NULL && svd->type == MAP_SHARED) {
6211 		ulong_t an_idx = svd->anon_index + seg_page(seg, addr);
6212 		if (!IS_P2ALIGNED(an_idx, pgcnt)) {
6213 
6214 			segvn_setpgsz_anon_align_err++;
6215 			return (EINVAL);
6216 		}
6217 	}
6218 
6219 	if ((svd->flags & MAP_NORESERVE) || seg->s_as == &kas ||
6220 	    szc > segvn_maxpgszc) {
6221 		return (EINVAL);
6222 	}
6223 
6224 	/* paranoid check */
6225 	if (svd->vp != NULL &&
6226 	    (IS_SWAPFSVP(svd->vp) || VN_ISKAS(svd->vp))) {
6227 		return (EINVAL);
6228 	}
6229 
6230 	if (seg->s_szc == 0 && svd->vp != NULL &&
6231 	    map_addr_vacalign_check(addr, off)) {
6232 		return (EINVAL);
6233 	}
6234 
6235 	/*
6236 	 * Check that protections are the same within new page
6237 	 * size boundaries.
6238 	 */
6239 	if (svd->pageprot) {
6240 		for (a = addr; a < eaddr; a += pgsz) {
6241 			if ((a + pgsz) > eaddr) {
6242 				if (!sameprot(seg, a, eaddr - a)) {
6243 					return (EINVAL);
6244 				}
6245 			} else {
6246 				if (!sameprot(seg, a, pgsz)) {
6247 					return (EINVAL);
6248 				}
6249 			}
6250 		}
6251 	}
6252 
6253 	/*
6254 	 * Since we are changing page size we first have to flush
6255 	 * the cache. This makes sure all the pagelock calls have
6256 	 * to recheck protections.
6257 	 */
6258 	if (svd->softlockcnt > 0) {
6259 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
6260 		/*
6261 		 * Since we do have the segvn writers lock nobody can fill
6262 		 * the cache with entries belonging to this seg during
6263 		 * the purge. The flush either succeeds or we still have
6264 		 * pending I/Os.
6265 		 */
6266 		segvn_purge(seg);
6267 		if (svd->softlockcnt > 0) {
6268 			return (EAGAIN);
6269 		}
6270 	}
6271 
6272 	if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
6273 		ASSERT(svd->amp == NULL);
6274 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
6275 		hat_leave_region(seg->s_as->a_hat, svd->rcookie,
6276 		    HAT_REGION_TEXT);
6277 		svd->rcookie = HAT_INVALID_REGION_COOKIE;
6278 	} else if (svd->tr_state == SEGVN_TR_INIT) {
6279 		svd->tr_state = SEGVN_TR_OFF;
6280 	} else if (svd->tr_state == SEGVN_TR_ON) {
6281 		ASSERT(svd->amp != NULL);
6282 		segvn_textunrepl(seg, 1);
6283 		ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
6284 		amp = NULL;
6285 	}
6286 
6287 	/*
6288 	 * Operation for sub range of existing segment.
6289 	 */
6290 	if (addr != seg->s_base || eaddr != (seg->s_base + seg->s_size)) {
6291 		if (szc < seg->s_szc) {
6292 			VM_STAT_ADD(segvnvmstats.demoterange[2]);
6293 			err = segvn_demote_range(seg, addr, len, SDR_RANGE, 0);
6294 			if (err == 0) {
6295 				return (IE_RETRY);
6296 			}
6297 			if (err == ENOMEM) {
6298 				return (IE_NOMEM);
6299 			}
6300 			return (err);
6301 		}
6302 		if (addr != seg->s_base) {
6303 			nseg = segvn_split_seg(seg, addr);
6304 			if (eaddr != (nseg->s_base + nseg->s_size)) {
6305 				/* eaddr is szc aligned */
6306 				(void) segvn_split_seg(nseg, eaddr);
6307 			}
6308 			return (IE_RETRY);
6309 		}
6310 		if (eaddr != (seg->s_base + seg->s_size)) {
6311 			/* eaddr is szc aligned */
6312 			(void) segvn_split_seg(seg, eaddr);
6313 		}
6314 		return (IE_RETRY);
6315 	}
6316 
6317 	/*
6318 	 * Break any low level sharing and reset seg->s_szc to 0.
6319 	 */
6320 	if ((err = segvn_clrszc(seg)) != 0) {
6321 		if (err == ENOMEM) {
6322 			err = IE_NOMEM;
6323 		}
6324 		return (err);
6325 	}
6326 	ASSERT(seg->s_szc == 0);
6327 
6328 	/*
6329 	 * If the end of the current segment is not pgsz aligned
6330 	 * then attempt to concatenate with the next segment.
6331 	 */
6332 	if (!IS_P2ALIGNED(eaddr, pgsz)) {
6333 		nseg = AS_SEGNEXT(seg->s_as, seg);
6334 		if (nseg == NULL || nseg == seg || eaddr != nseg->s_base) {
6335 			return (ENOMEM);
6336 		}
6337 		if (nseg->s_ops != &segvn_ops) {
6338 			return (EINVAL);
6339 		}
6340 		nsvd = (struct segvn_data *)nseg->s_data;
6341 		if (nsvd->softlockcnt > 0) {
6342 			segvn_purge(nseg);
6343 			if (nsvd->softlockcnt > 0) {
6344 				return (EAGAIN);
6345 			}
6346 		}
6347 		err = segvn_clrszc(nseg);
6348 		if (err == ENOMEM) {
6349 			err = IE_NOMEM;
6350 		}
6351 		if (err != 0) {
6352 			return (err);
6353 		}
6354 		ASSERT(nsvd->rcookie == HAT_INVALID_REGION_COOKIE);
6355 		err = segvn_concat(seg, nseg, 1);
6356 		if (err == -1) {
6357 			return (EINVAL);
6358 		}
6359 		if (err == -2) {
6360 			return (IE_NOMEM);
6361 		}
6362 		return (IE_RETRY);
6363 	}
6364 
6365 	/*
6366 	 * May need to re-align anon array to
6367 	 * new szc.
6368 	 */
6369 	if (amp != NULL) {
6370 		if (!IS_P2ALIGNED(svd->anon_index, pgcnt)) {
6371 			struct anon_hdr *nahp;
6372 
6373 			ASSERT(svd->type == MAP_PRIVATE);
6374 
6375 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
6376 			ASSERT(amp->refcnt == 1);
6377 			nahp = anon_create(btop(amp->size), ANON_NOSLEEP);
6378 			if (nahp == NULL) {
6379 				ANON_LOCK_EXIT(&amp->a_rwlock);
6380 				return (IE_NOMEM);
6381 			}
6382 			if (anon_copy_ptr(amp->ahp, svd->anon_index,
6383 			    nahp, 0, btop(seg->s_size), ANON_NOSLEEP)) {
6384 				anon_release(nahp, btop(amp->size));
6385 				ANON_LOCK_EXIT(&amp->a_rwlock);
6386 				return (IE_NOMEM);
6387 			}
6388 			anon_release(amp->ahp, btop(amp->size));
6389 			amp->ahp = nahp;
6390 			svd->anon_index = 0;
6391 			ANON_LOCK_EXIT(&amp->a_rwlock);
6392 		}
6393 	}
6394 	if (svd->vp != NULL && szc != 0) {
6395 		struct vattr va;
6396 		u_offset_t eoffpage = svd->offset;
6397 		va.va_mask = AT_SIZE;
6398 		eoffpage += seg->s_size;
6399 		eoffpage = btopr(eoffpage);
6400 		if (VOP_GETATTR(svd->vp, &va, 0, svd->cred, NULL) != 0) {
6401 			segvn_setpgsz_getattr_err++;
6402 			return (EINVAL);
6403 		}
6404 		if (btopr(va.va_size) < eoffpage) {
6405 			segvn_setpgsz_eof_err++;
6406 			return (EINVAL);
6407 		}
6408 		if (amp != NULL) {
6409 			/*
6410 			 * anon_fill_cow_holes() may call VOP_GETPAGE().
6411 			 * don't take anon map lock here to avoid holding it
6412 			 * across VOP_GETPAGE() calls that may call back into
6413 			 * segvn for klsutering checks. We don't really need
6414 			 * anon map lock here since it's a private segment and
6415 			 * we hold as level lock as writers.
6416 			 */
6417 			if ((err = anon_fill_cow_holes(seg, seg->s_base,
6418 			    amp->ahp, svd->anon_index, svd->vp, svd->offset,
6419 			    seg->s_size, szc, svd->prot, svd->vpage,
6420 			    svd->cred)) != 0) {
6421 				return (EINVAL);
6422 			}
6423 		}
6424 		segvn_setvnode_mpss(svd->vp);
6425 	}
6426 
6427 	if (amp != NULL) {
6428 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
6429 		if (svd->type == MAP_PRIVATE) {
6430 			amp->a_szc = szc;
6431 		} else if (szc > amp->a_szc) {
6432 			amp->a_szc = szc;
6433 		}
6434 		ANON_LOCK_EXIT(&amp->a_rwlock);
6435 	}
6436 
6437 	seg->s_szc = szc;
6438 
6439 	return (0);
6440 }
6441 
6442 static int
6443 segvn_clrszc(struct seg *seg)
6444 {
6445 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6446 	struct anon_map *amp = svd->amp;
6447 	size_t pgsz;
6448 	pgcnt_t pages;
6449 	int err = 0;
6450 	caddr_t a = seg->s_base;
6451 	caddr_t ea = a + seg->s_size;
6452 	ulong_t an_idx = svd->anon_index;
6453 	vnode_t *vp = svd->vp;
6454 	struct vpage *vpage = svd->vpage;
6455 	page_t *anon_pl[1 + 1], *pp;
6456 	struct anon *ap, *oldap;
6457 	uint_t prot = svd->prot, vpprot;
6458 	int pageflag = 0;
6459 
6460 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock) ||
6461 	    SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
6462 	ASSERT(svd->softlockcnt == 0);
6463 
6464 	if (vp == NULL && amp == NULL) {
6465 		ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
6466 		seg->s_szc = 0;
6467 		return (0);
6468 	}
6469 
6470 	if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
6471 		ASSERT(svd->amp == NULL);
6472 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
6473 		hat_leave_region(seg->s_as->a_hat, svd->rcookie,
6474 		    HAT_REGION_TEXT);
6475 		svd->rcookie = HAT_INVALID_REGION_COOKIE;
6476 	} else if (svd->tr_state == SEGVN_TR_ON) {
6477 		ASSERT(svd->amp != NULL);
6478 		segvn_textunrepl(seg, 1);
6479 		ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
6480 		amp = NULL;
6481 	} else {
6482 		if (svd->tr_state != SEGVN_TR_OFF) {
6483 			ASSERT(svd->tr_state == SEGVN_TR_INIT);
6484 			svd->tr_state = SEGVN_TR_OFF;
6485 		}
6486 
6487 		/*
6488 		 * do HAT_UNLOAD_UNMAP since we are changing the pagesize.
6489 		 * unload argument is 0 when we are freeing the segment
6490 		 * and unload was already done.
6491 		 */
6492 		hat_unload(seg->s_as->a_hat, seg->s_base, seg->s_size,
6493 		    HAT_UNLOAD_UNMAP);
6494 	}
6495 
6496 	if (amp == NULL || svd->type == MAP_SHARED) {
6497 		seg->s_szc = 0;
6498 		return (0);
6499 	}
6500 
6501 	pgsz = page_get_pagesize(seg->s_szc);
6502 	pages = btop(pgsz);
6503 
6504 	/*
6505 	 * XXX anon rwlock is not really needed because this is a
6506 	 * private segment and we are writers.
6507 	 */
6508 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
6509 
6510 	for (; a < ea; a += pgsz, an_idx += pages) {
6511 		if ((oldap = anon_get_ptr(amp->ahp, an_idx)) != NULL) {
6512 			ASSERT(vpage != NULL || svd->pageprot == 0);
6513 			if (vpage != NULL) {
6514 				ASSERT(sameprot(seg, a, pgsz));
6515 				prot = VPP_PROT(vpage);
6516 				pageflag = VPP_ISPPLOCK(vpage) ? LOCK_PAGE : 0;
6517 			}
6518 			if (seg->s_szc != 0) {
6519 				ASSERT(vp == NULL || anon_pages(amp->ahp,
6520 				    an_idx, pages) == pages);
6521 				if ((err = anon_map_demotepages(amp, an_idx,
6522 				    seg, a, prot, vpage, svd->cred)) != 0) {
6523 					goto out;
6524 				}
6525 			} else {
6526 				if (oldap->an_refcnt == 1) {
6527 					continue;
6528 				}
6529 				if ((err = anon_getpage(&oldap, &vpprot,
6530 				    anon_pl, PAGESIZE, seg, a, S_READ,
6531 				    svd->cred))) {
6532 					goto out;
6533 				}
6534 				if ((pp = anon_private(&ap, seg, a, prot,
6535 				    anon_pl[0], pageflag, svd->cred)) == NULL) {
6536 					err = ENOMEM;
6537 					goto out;
6538 				}
6539 				anon_decref(oldap);
6540 				(void) anon_set_ptr(amp->ahp, an_idx, ap,
6541 				    ANON_SLEEP);
6542 				page_unlock(pp);
6543 			}
6544 		}
6545 		vpage = (vpage == NULL) ? NULL : vpage + pages;
6546 	}
6547 
6548 	amp->a_szc = 0;
6549 	seg->s_szc = 0;
6550 out:
6551 	ANON_LOCK_EXIT(&amp->a_rwlock);
6552 	return (err);
6553 }
6554 
6555 static int
6556 segvn_claim_pages(
6557 	struct seg *seg,
6558 	struct vpage *svp,
6559 	u_offset_t off,
6560 	ulong_t anon_idx,
6561 	uint_t prot)
6562 {
6563 	pgcnt_t	pgcnt = page_get_pagecnt(seg->s_szc);
6564 	size_t ppasize = (pgcnt + 1) * sizeof (page_t *);
6565 	page_t	**ppa;
6566 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6567 	struct anon_map *amp = svd->amp;
6568 	struct vpage *evp = svp + pgcnt;
6569 	caddr_t addr = ((uintptr_t)(svp - svd->vpage) << PAGESHIFT)
6570 	    + seg->s_base;
6571 	struct anon *ap;
6572 	struct vnode *vp = svd->vp;
6573 	page_t *pp;
6574 	pgcnt_t pg_idx, i;
6575 	int err = 0;
6576 	anoff_t aoff;
6577 	int anon = (amp != NULL) ? 1 : 0;
6578 
6579 	ASSERT(svd->type == MAP_PRIVATE);
6580 	ASSERT(svd->vpage != NULL);
6581 	ASSERT(seg->s_szc != 0);
6582 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
6583 	ASSERT(amp == NULL || IS_P2ALIGNED(anon_idx, pgcnt));
6584 	ASSERT(sameprot(seg, addr, pgcnt << PAGESHIFT));
6585 
6586 	if (VPP_PROT(svp) == prot)
6587 		return (1);
6588 	if (!((VPP_PROT(svp) ^ prot) & PROT_WRITE))
6589 		return (1);
6590 
6591 	ppa = kmem_alloc(ppasize, KM_SLEEP);
6592 	if (anon && vp != NULL) {
6593 		if (anon_get_ptr(amp->ahp, anon_idx) == NULL) {
6594 			anon = 0;
6595 			ASSERT(!anon_pages(amp->ahp, anon_idx, pgcnt));
6596 		}
6597 		ASSERT(!anon ||
6598 		    anon_pages(amp->ahp, anon_idx, pgcnt) == pgcnt);
6599 	}
6600 
6601 	for (*ppa = NULL, pg_idx = 0; svp < evp; svp++, anon_idx++) {
6602 		if (!VPP_ISPPLOCK(svp))
6603 			continue;
6604 		if (anon) {
6605 			ap = anon_get_ptr(amp->ahp, anon_idx);
6606 			if (ap == NULL) {
6607 				panic("segvn_claim_pages: no anon slot");
6608 			}
6609 			swap_xlate(ap, &vp, &aoff);
6610 			off = (u_offset_t)aoff;
6611 		}
6612 		ASSERT(vp != NULL);
6613 		if ((pp = page_lookup(vp,
6614 		    (u_offset_t)off, SE_SHARED)) == NULL) {
6615 			panic("segvn_claim_pages: no page");
6616 		}
6617 		ppa[pg_idx++] = pp;
6618 		off += PAGESIZE;
6619 	}
6620 
6621 	if (ppa[0] == NULL) {
6622 		kmem_free(ppa, ppasize);
6623 		return (1);
6624 	}
6625 
6626 	ASSERT(pg_idx <= pgcnt);
6627 	ppa[pg_idx] = NULL;
6628 
6629 	if (prot & PROT_WRITE)
6630 		err = page_addclaim_pages(ppa);
6631 	else
6632 		err = page_subclaim_pages(ppa);
6633 
6634 	for (i = 0; i < pg_idx; i++) {
6635 		ASSERT(ppa[i] != NULL);
6636 		page_unlock(ppa[i]);
6637 	}
6638 
6639 	kmem_free(ppa, ppasize);
6640 	return (err);
6641 }
6642 
6643 /*
6644  * Returns right (upper address) segment if split occurred.
6645  * If the address is equal to the beginning or end of its segment it returns
6646  * the current segment.
6647  */
6648 static struct seg *
6649 segvn_split_seg(struct seg *seg, caddr_t addr)
6650 {
6651 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6652 	struct seg *nseg;
6653 	size_t nsize;
6654 	struct segvn_data *nsvd;
6655 
6656 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
6657 	ASSERT(svd->tr_state == SEGVN_TR_OFF);
6658 
6659 	ASSERT(addr >= seg->s_base);
6660 	ASSERT(addr <= seg->s_base + seg->s_size);
6661 	ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
6662 
6663 	if (addr == seg->s_base || addr == seg->s_base + seg->s_size)
6664 		return (seg);
6665 
6666 	nsize = seg->s_base + seg->s_size - addr;
6667 	seg->s_size = addr - seg->s_base;
6668 	nseg = seg_alloc(seg->s_as, addr, nsize);
6669 	ASSERT(nseg != NULL);
6670 	nseg->s_ops = seg->s_ops;
6671 	nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
6672 	nseg->s_data = (void *)nsvd;
6673 	nseg->s_szc = seg->s_szc;
6674 	*nsvd = *svd;
6675 	ASSERT(nsvd->rcookie == HAT_INVALID_REGION_COOKIE);
6676 	nsvd->seg = nseg;
6677 	rw_init(&nsvd->lock, NULL, RW_DEFAULT, NULL);
6678 
6679 	if (nsvd->vp != NULL) {
6680 		VN_HOLD(nsvd->vp);
6681 		nsvd->offset = svd->offset +
6682 		    (uintptr_t)(nseg->s_base - seg->s_base);
6683 		if (nsvd->type == MAP_SHARED)
6684 			lgrp_shm_policy_init(NULL, nsvd->vp);
6685 	} else {
6686 		/*
6687 		 * The offset for an anonymous segment has no signifigance in
6688 		 * terms of an offset into a file. If we were to use the above
6689 		 * calculation instead, the structures read out of
6690 		 * /proc/<pid>/xmap would be more difficult to decipher since
6691 		 * it would be unclear whether two seemingly contiguous
6692 		 * prxmap_t structures represented different segments or a
6693 		 * single segment that had been split up into multiple prxmap_t
6694 		 * structures (e.g. if some part of the segment had not yet
6695 		 * been faulted in).
6696 		 */
6697 		nsvd->offset = 0;
6698 	}
6699 
6700 	ASSERT(svd->softlockcnt == 0);
6701 	crhold(svd->cred);
6702 
6703 	if (svd->vpage != NULL) {
6704 		size_t bytes = vpgtob(seg_pages(seg));
6705 		size_t nbytes = vpgtob(seg_pages(nseg));
6706 		struct vpage *ovpage = svd->vpage;
6707 
6708 		svd->vpage = kmem_alloc(bytes, KM_SLEEP);
6709 		bcopy(ovpage, svd->vpage, bytes);
6710 		nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP);
6711 		bcopy(ovpage + seg_pages(seg), nsvd->vpage, nbytes);
6712 		kmem_free(ovpage, bytes + nbytes);
6713 	}
6714 	if (svd->amp != NULL && svd->type == MAP_PRIVATE) {
6715 		struct anon_map *oamp = svd->amp, *namp;
6716 		struct anon_hdr *nahp;
6717 
6718 		ANON_LOCK_ENTER(&oamp->a_rwlock, RW_WRITER);
6719 		ASSERT(oamp->refcnt == 1);
6720 		nahp = anon_create(btop(seg->s_size), ANON_SLEEP);
6721 		(void) anon_copy_ptr(oamp->ahp, svd->anon_index,
6722 		    nahp, 0, btop(seg->s_size), ANON_SLEEP);
6723 
6724 		namp = anonmap_alloc(nseg->s_size, 0, ANON_SLEEP);
6725 		namp->a_szc = nseg->s_szc;
6726 		(void) anon_copy_ptr(oamp->ahp,
6727 		    svd->anon_index + btop(seg->s_size),
6728 		    namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP);
6729 		anon_release(oamp->ahp, btop(oamp->size));
6730 		oamp->ahp = nahp;
6731 		oamp->size = seg->s_size;
6732 		svd->anon_index = 0;
6733 		nsvd->amp = namp;
6734 		nsvd->anon_index = 0;
6735 		ANON_LOCK_EXIT(&oamp->a_rwlock);
6736 	} else if (svd->amp != NULL) {
6737 		pgcnt_t pgcnt = page_get_pagecnt(seg->s_szc);
6738 		ASSERT(svd->amp == nsvd->amp);
6739 		ASSERT(seg->s_szc <= svd->amp->a_szc);
6740 		nsvd->anon_index = svd->anon_index + seg_pages(seg);
6741 		ASSERT(IS_P2ALIGNED(nsvd->anon_index, pgcnt));
6742 		ANON_LOCK_ENTER(&svd->amp->a_rwlock, RW_WRITER);
6743 		svd->amp->refcnt++;
6744 		ANON_LOCK_EXIT(&svd->amp->a_rwlock);
6745 	}
6746 
6747 	/*
6748 	 * Split the amount of swap reserved.
6749 	 */
6750 	if (svd->swresv) {
6751 		/*
6752 		 * For MAP_NORESERVE, only allocate swap reserve for pages
6753 		 * being used.  Other segments get enough to cover whole
6754 		 * segment.
6755 		 */
6756 		if (svd->flags & MAP_NORESERVE) {
6757 			size_t	oswresv;
6758 
6759 			ASSERT(svd->amp);
6760 			oswresv = svd->swresv;
6761 			svd->swresv = ptob(anon_pages(svd->amp->ahp,
6762 			    svd->anon_index, btop(seg->s_size)));
6763 			nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp,
6764 			    nsvd->anon_index, btop(nseg->s_size)));
6765 			ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
6766 		} else {
6767 			if (svd->pageswap) {
6768 				svd->swresv = segvn_count_swap_by_vpages(seg);
6769 				ASSERT(nsvd->swresv >= svd->swresv);
6770 				nsvd->swresv -= svd->swresv;
6771 			} else {
6772 				ASSERT(svd->swresv == seg->s_size +
6773 				    nseg->s_size);
6774 				svd->swresv = seg->s_size;
6775 				nsvd->swresv = nseg->s_size;
6776 			}
6777 		}
6778 	}
6779 
6780 	return (nseg);
6781 }
6782 
6783 /*
6784  * called on memory operations (unmap, setprot, setpagesize) for a subset
6785  * of a large page segment to either demote the memory range (SDR_RANGE)
6786  * or the ends (SDR_END) by addr/len.
6787  *
6788  * returns 0 on success. returns errno, including ENOMEM, on failure.
6789  */
6790 static int
6791 segvn_demote_range(
6792 	struct seg *seg,
6793 	caddr_t addr,
6794 	size_t len,
6795 	int flag,
6796 	uint_t szcvec)
6797 {
6798 	caddr_t eaddr = addr + len;
6799 	caddr_t lpgaddr, lpgeaddr;
6800 	struct seg *nseg;
6801 	struct seg *badseg1 = NULL;
6802 	struct seg *badseg2 = NULL;
6803 	size_t pgsz;
6804 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6805 	int err;
6806 	uint_t szc = seg->s_szc;
6807 	uint_t tszcvec;
6808 
6809 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
6810 	ASSERT(svd->tr_state == SEGVN_TR_OFF);
6811 	ASSERT(szc != 0);
6812 	pgsz = page_get_pagesize(szc);
6813 	ASSERT(seg->s_base != addr || seg->s_size != len);
6814 	ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size);
6815 	ASSERT(svd->softlockcnt == 0);
6816 	ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
6817 	ASSERT(szcvec == 0 || (flag == SDR_END && svd->type == MAP_SHARED));
6818 
6819 	CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
6820 	ASSERT(flag == SDR_RANGE || eaddr < lpgeaddr || addr > lpgaddr);
6821 	if (flag == SDR_RANGE) {
6822 		/* demote entire range */
6823 		badseg1 = nseg = segvn_split_seg(seg, lpgaddr);
6824 		(void) segvn_split_seg(nseg, lpgeaddr);
6825 		ASSERT(badseg1->s_base == lpgaddr);
6826 		ASSERT(badseg1->s_size == lpgeaddr - lpgaddr);
6827 	} else if (addr != lpgaddr) {
6828 		ASSERT(flag == SDR_END);
6829 		badseg1 = nseg = segvn_split_seg(seg, lpgaddr);
6830 		if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz &&
6831 		    eaddr < lpgaddr + 2 * pgsz) {
6832 			(void) segvn_split_seg(nseg, lpgeaddr);
6833 			ASSERT(badseg1->s_base == lpgaddr);
6834 			ASSERT(badseg1->s_size == 2 * pgsz);
6835 		} else {
6836 			nseg = segvn_split_seg(nseg, lpgaddr + pgsz);
6837 			ASSERT(badseg1->s_base == lpgaddr);
6838 			ASSERT(badseg1->s_size == pgsz);
6839 			if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz) {
6840 				ASSERT(lpgeaddr - lpgaddr > 2 * pgsz);
6841 				nseg = segvn_split_seg(nseg, lpgeaddr - pgsz);
6842 				badseg2 = nseg;
6843 				(void) segvn_split_seg(nseg, lpgeaddr);
6844 				ASSERT(badseg2->s_base == lpgeaddr - pgsz);
6845 				ASSERT(badseg2->s_size == pgsz);
6846 			}
6847 		}
6848 	} else {
6849 		ASSERT(flag == SDR_END);
6850 		ASSERT(eaddr < lpgeaddr);
6851 		badseg1 = nseg = segvn_split_seg(seg, lpgeaddr - pgsz);
6852 		(void) segvn_split_seg(nseg, lpgeaddr);
6853 		ASSERT(badseg1->s_base == lpgeaddr - pgsz);
6854 		ASSERT(badseg1->s_size == pgsz);
6855 	}
6856 
6857 	ASSERT(badseg1 != NULL);
6858 	ASSERT(badseg1->s_szc == szc);
6859 	ASSERT(flag == SDR_RANGE || badseg1->s_size == pgsz ||
6860 	    badseg1->s_size == 2 * pgsz);
6861 	ASSERT(sameprot(badseg1, badseg1->s_base, pgsz));
6862 	ASSERT(badseg1->s_size == pgsz ||
6863 	    sameprot(badseg1, badseg1->s_base + pgsz, pgsz));
6864 	if (err = segvn_clrszc(badseg1)) {
6865 		return (err);
6866 	}
6867 	ASSERT(badseg1->s_szc == 0);
6868 
6869 	if (szc > 1 && (tszcvec = P2PHASE(szcvec, 1 << szc)) > 1) {
6870 		uint_t tszc = highbit(tszcvec) - 1;
6871 		caddr_t ta = MAX(addr, badseg1->s_base);
6872 		caddr_t te;
6873 		size_t tpgsz = page_get_pagesize(tszc);
6874 
6875 		ASSERT(svd->type == MAP_SHARED);
6876 		ASSERT(flag == SDR_END);
6877 		ASSERT(tszc < szc && tszc > 0);
6878 
6879 		if (eaddr > badseg1->s_base + badseg1->s_size) {
6880 			te = badseg1->s_base + badseg1->s_size;
6881 		} else {
6882 			te = eaddr;
6883 		}
6884 
6885 		ASSERT(ta <= te);
6886 		badseg1->s_szc = tszc;
6887 		if (!IS_P2ALIGNED(ta, tpgsz) || !IS_P2ALIGNED(te, tpgsz)) {
6888 			if (badseg2 != NULL) {
6889 				err = segvn_demote_range(badseg1, ta, te - ta,
6890 				    SDR_END, tszcvec);
6891 				if (err != 0) {
6892 					return (err);
6893 				}
6894 			} else {
6895 				return (segvn_demote_range(badseg1, ta,
6896 				    te - ta, SDR_END, tszcvec));
6897 			}
6898 		}
6899 	}
6900 
6901 	if (badseg2 == NULL)
6902 		return (0);
6903 	ASSERT(badseg2->s_szc == szc);
6904 	ASSERT(badseg2->s_size == pgsz);
6905 	ASSERT(sameprot(badseg2, badseg2->s_base, badseg2->s_size));
6906 	if (err = segvn_clrszc(badseg2)) {
6907 		return (err);
6908 	}
6909 	ASSERT(badseg2->s_szc == 0);
6910 
6911 	if (szc > 1 && (tszcvec = P2PHASE(szcvec, 1 << szc)) > 1) {
6912 		uint_t tszc = highbit(tszcvec) - 1;
6913 		size_t tpgsz = page_get_pagesize(tszc);
6914 
6915 		ASSERT(svd->type == MAP_SHARED);
6916 		ASSERT(flag == SDR_END);
6917 		ASSERT(tszc < szc && tszc > 0);
6918 		ASSERT(badseg2->s_base > addr);
6919 		ASSERT(eaddr > badseg2->s_base);
6920 		ASSERT(eaddr < badseg2->s_base + badseg2->s_size);
6921 
6922 		badseg2->s_szc = tszc;
6923 		if (!IS_P2ALIGNED(eaddr, tpgsz)) {
6924 			return (segvn_demote_range(badseg2, badseg2->s_base,
6925 			    eaddr - badseg2->s_base, SDR_END, tszcvec));
6926 		}
6927 	}
6928 
6929 	return (0);
6930 }
6931 
6932 static int
6933 segvn_checkprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
6934 {
6935 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6936 	struct vpage *vp, *evp;
6937 
6938 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6939 
6940 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6941 	/*
6942 	 * If segment protection can be used, simply check against them.
6943 	 */
6944 	if (svd->pageprot == 0) {
6945 		int err;
6946 
6947 		err = ((svd->prot & prot) != prot) ? EACCES : 0;
6948 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6949 		return (err);
6950 	}
6951 
6952 	/*
6953 	 * Have to check down to the vpage level.
6954 	 */
6955 	evp = &svd->vpage[seg_page(seg, addr + len)];
6956 	for (vp = &svd->vpage[seg_page(seg, addr)]; vp < evp; vp++) {
6957 		if ((VPP_PROT(vp) & prot) != prot) {
6958 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6959 			return (EACCES);
6960 		}
6961 	}
6962 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6963 	return (0);
6964 }
6965 
6966 static int
6967 segvn_getprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv)
6968 {
6969 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6970 	size_t pgno = seg_page(seg, addr + len) - seg_page(seg, addr) + 1;
6971 
6972 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6973 
6974 	if (pgno != 0) {
6975 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6976 		if (svd->pageprot == 0) {
6977 			do {
6978 				protv[--pgno] = svd->prot;
6979 			} while (pgno != 0);
6980 		} else {
6981 			size_t pgoff = seg_page(seg, addr);
6982 
6983 			do {
6984 				pgno--;
6985 				protv[pgno] = VPP_PROT(&svd->vpage[pgno+pgoff]);
6986 			} while (pgno != 0);
6987 		}
6988 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6989 	}
6990 	return (0);
6991 }
6992 
6993 static u_offset_t
6994 segvn_getoffset(struct seg *seg, caddr_t addr)
6995 {
6996 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6997 
6998 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6999 
7000 	return (svd->offset + (uintptr_t)(addr - seg->s_base));
7001 }
7002 
7003 /*ARGSUSED*/
7004 static int
7005 segvn_gettype(struct seg *seg, caddr_t addr)
7006 {
7007 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7008 
7009 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
7010 
7011 	return (svd->type | (svd->flags & (MAP_NORESERVE | MAP_TEXT |
7012 	    MAP_INITDATA)));
7013 }
7014 
7015 /*ARGSUSED*/
7016 static int
7017 segvn_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp)
7018 {
7019 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7020 
7021 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
7022 
7023 	*vpp = svd->vp;
7024 	return (0);
7025 }
7026 
7027 /*
7028  * Check to see if it makes sense to do kluster/read ahead to
7029  * addr + delta relative to the mapping at addr.  We assume here
7030  * that delta is a signed PAGESIZE'd multiple (which can be negative).
7031  *
7032  * For segvn, we currently "approve" of the action if we are
7033  * still in the segment and it maps from the same vp/off,
7034  * or if the advice stored in segvn_data or vpages allows it.
7035  * Currently, klustering is not allowed only if MADV_RANDOM is set.
7036  */
7037 static int
7038 segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta)
7039 {
7040 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7041 	struct anon *oap, *ap;
7042 	ssize_t pd;
7043 	size_t page;
7044 	struct vnode *vp1, *vp2;
7045 	u_offset_t off1, off2;
7046 	struct anon_map *amp;
7047 
7048 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
7049 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock) ||
7050 	    SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
7051 
7052 	if (addr + delta < seg->s_base ||
7053 	    addr + delta >= (seg->s_base + seg->s_size))
7054 		return (-1);		/* exceeded segment bounds */
7055 
7056 	pd = delta / (ssize_t)PAGESIZE;	/* divide to preserve sign bit */
7057 	page = seg_page(seg, addr);
7058 
7059 	/*
7060 	 * Check to see if either of the pages addr or addr + delta
7061 	 * have advice set that prevents klustering (if MADV_RANDOM advice
7062 	 * is set for entire segment, or MADV_SEQUENTIAL is set and delta
7063 	 * is negative).
7064 	 */
7065 	if (svd->advice == MADV_RANDOM ||
7066 	    svd->advice == MADV_SEQUENTIAL && delta < 0)
7067 		return (-1);
7068 	else if (svd->pageadvice && svd->vpage) {
7069 		struct vpage *bvpp, *evpp;
7070 
7071 		bvpp = &svd->vpage[page];
7072 		evpp = &svd->vpage[page + pd];
7073 		if (VPP_ADVICE(bvpp) == MADV_RANDOM ||
7074 		    VPP_ADVICE(evpp) == MADV_SEQUENTIAL && delta < 0)
7075 			return (-1);
7076 		if (VPP_ADVICE(bvpp) != VPP_ADVICE(evpp) &&
7077 		    VPP_ADVICE(evpp) == MADV_RANDOM)
7078 			return (-1);
7079 	}
7080 
7081 	if (svd->type == MAP_SHARED)
7082 		return (0);		/* shared mapping - all ok */
7083 
7084 	if ((amp = svd->amp) == NULL)
7085 		return (0);		/* off original vnode */
7086 
7087 	page += svd->anon_index;
7088 
7089 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7090 
7091 	oap = anon_get_ptr(amp->ahp, page);
7092 	ap = anon_get_ptr(amp->ahp, page + pd);
7093 
7094 	ANON_LOCK_EXIT(&amp->a_rwlock);
7095 
7096 	if ((oap == NULL && ap != NULL) || (oap != NULL && ap == NULL)) {
7097 		return (-1);		/* one with and one without an anon */
7098 	}
7099 
7100 	if (oap == NULL) {		/* implies that ap == NULL */
7101 		return (0);		/* off original vnode */
7102 	}
7103 
7104 	/*
7105 	 * Now we know we have two anon pointers - check to
7106 	 * see if they happen to be properly allocated.
7107 	 */
7108 
7109 	/*
7110 	 * XXX We cheat here and don't lock the anon slots. We can't because
7111 	 * we may have been called from the anon layer which might already
7112 	 * have locked them. We are holding a refcnt on the slots so they
7113 	 * can't disappear. The worst that will happen is we'll get the wrong
7114 	 * names (vp, off) for the slots and make a poor klustering decision.
7115 	 */
7116 	swap_xlate(ap, &vp1, &off1);
7117 	swap_xlate(oap, &vp2, &off2);
7118 
7119 
7120 	if (!VOP_CMP(vp1, vp2, NULL) || off1 - off2 != delta)
7121 		return (-1);
7122 	return (0);
7123 }
7124 
7125 /*
7126  * Swap the pages of seg out to secondary storage, returning the
7127  * number of bytes of storage freed.
7128  *
7129  * The basic idea is first to unload all translations and then to call
7130  * VOP_PUTPAGE() for all newly-unmapped pages, to push them out to the
7131  * swap device.  Pages to which other segments have mappings will remain
7132  * mapped and won't be swapped.  Our caller (as_swapout) has already
7133  * performed the unloading step.
7134  *
7135  * The value returned is intended to correlate well with the process's
7136  * memory requirements.  However, there are some caveats:
7137  * 1)	When given a shared segment as argument, this routine will
7138  *	only succeed in swapping out pages for the last sharer of the
7139  *	segment.  (Previous callers will only have decremented mapping
7140  *	reference counts.)
7141  * 2)	We assume that the hat layer maintains a large enough translation
7142  *	cache to capture process reference patterns.
7143  */
7144 static size_t
7145 segvn_swapout(struct seg *seg)
7146 {
7147 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7148 	struct anon_map *amp;
7149 	pgcnt_t pgcnt = 0;
7150 	pgcnt_t npages;
7151 	pgcnt_t page;
7152 	ulong_t anon_index;
7153 
7154 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
7155 
7156 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7157 	/*
7158 	 * Find pages unmapped by our caller and force them
7159 	 * out to the virtual swap device.
7160 	 */
7161 	if ((amp = svd->amp) != NULL)
7162 		anon_index = svd->anon_index;
7163 	npages = seg->s_size >> PAGESHIFT;
7164 	for (page = 0; page < npages; page++) {
7165 		page_t *pp;
7166 		struct anon *ap;
7167 		struct vnode *vp;
7168 		u_offset_t off;
7169 		anon_sync_obj_t cookie;
7170 
7171 		/*
7172 		 * Obtain <vp, off> pair for the page, then look it up.
7173 		 *
7174 		 * Note that this code is willing to consider regular
7175 		 * pages as well as anon pages.  Is this appropriate here?
7176 		 */
7177 		ap = NULL;
7178 		if (amp != NULL) {
7179 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7180 			if (anon_array_try_enter(amp, anon_index + page,
7181 			    &cookie)) {
7182 				ANON_LOCK_EXIT(&amp->a_rwlock);
7183 				continue;
7184 			}
7185 			ap = anon_get_ptr(amp->ahp, anon_index + page);
7186 			if (ap != NULL) {
7187 				swap_xlate(ap, &vp, &off);
7188 			} else {
7189 				vp = svd->vp;
7190 				off = svd->offset + ptob(page);
7191 			}
7192 			anon_array_exit(&cookie);
7193 			ANON_LOCK_EXIT(&amp->a_rwlock);
7194 		} else {
7195 			vp = svd->vp;
7196 			off = svd->offset + ptob(page);
7197 		}
7198 		if (vp == NULL) {		/* untouched zfod page */
7199 			ASSERT(ap == NULL);
7200 			continue;
7201 		}
7202 
7203 		pp = page_lookup_nowait(vp, off, SE_SHARED);
7204 		if (pp == NULL)
7205 			continue;
7206 
7207 
7208 		/*
7209 		 * Examine the page to see whether it can be tossed out,
7210 		 * keeping track of how many we've found.
7211 		 */
7212 		if (!page_tryupgrade(pp)) {
7213 			/*
7214 			 * If the page has an i/o lock and no mappings,
7215 			 * it's very likely that the page is being
7216 			 * written out as a result of klustering.
7217 			 * Assume this is so and take credit for it here.
7218 			 */
7219 			if (!page_io_trylock(pp)) {
7220 				if (!hat_page_is_mapped(pp))
7221 					pgcnt++;
7222 			} else {
7223 				page_io_unlock(pp);
7224 			}
7225 			page_unlock(pp);
7226 			continue;
7227 		}
7228 		ASSERT(!page_iolock_assert(pp));
7229 
7230 
7231 		/*
7232 		 * Skip if page is locked or has mappings.
7233 		 * We don't need the page_struct_lock to look at lckcnt
7234 		 * and cowcnt because the page is exclusive locked.
7235 		 */
7236 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
7237 		    hat_page_is_mapped(pp)) {
7238 			page_unlock(pp);
7239 			continue;
7240 		}
7241 
7242 		/*
7243 		 * dispose skips large pages so try to demote first.
7244 		 */
7245 		if (pp->p_szc != 0 && !page_try_demote_pages(pp)) {
7246 			page_unlock(pp);
7247 			/*
7248 			 * XXX should skip the remaining page_t's of this
7249 			 * large page.
7250 			 */
7251 			continue;
7252 		}
7253 
7254 		ASSERT(pp->p_szc == 0);
7255 
7256 		/*
7257 		 * No longer mapped -- we can toss it out.  How
7258 		 * we do so depends on whether or not it's dirty.
7259 		 */
7260 		if (hat_ismod(pp) && pp->p_vnode) {
7261 			/*
7262 			 * We must clean the page before it can be
7263 			 * freed.  Setting B_FREE will cause pvn_done
7264 			 * to free the page when the i/o completes.
7265 			 * XXX:	This also causes it to be accounted
7266 			 *	as a pageout instead of a swap: need
7267 			 *	B_SWAPOUT bit to use instead of B_FREE.
7268 			 *
7269 			 * Hold the vnode before releasing the page lock
7270 			 * to prevent it from being freed and re-used by
7271 			 * some other thread.
7272 			 */
7273 			VN_HOLD(vp);
7274 			page_unlock(pp);
7275 
7276 			/*
7277 			 * Queue all i/o requests for the pageout thread
7278 			 * to avoid saturating the pageout devices.
7279 			 */
7280 			if (!queue_io_request(vp, off))
7281 				VN_RELE(vp);
7282 		} else {
7283 			/*
7284 			 * The page was clean, free it.
7285 			 *
7286 			 * XXX:	Can we ever encounter modified pages
7287 			 *	with no associated vnode here?
7288 			 */
7289 			ASSERT(pp->p_vnode != NULL);
7290 			/*LINTED: constant in conditional context*/
7291 			VN_DISPOSE(pp, B_FREE, 0, kcred);
7292 		}
7293 
7294 		/*
7295 		 * Credit now even if i/o is in progress.
7296 		 */
7297 		pgcnt++;
7298 	}
7299 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7300 
7301 	/*
7302 	 * Wakeup pageout to initiate i/o on all queued requests.
7303 	 */
7304 	cv_signal_pageout();
7305 	return (ptob(pgcnt));
7306 }
7307 
7308 /*
7309  * Synchronize primary storage cache with real object in virtual memory.
7310  *
7311  * XXX - Anonymous pages should not be sync'ed out at all.
7312  */
7313 static int
7314 segvn_sync(struct seg *seg, caddr_t addr, size_t len, int attr, uint_t flags)
7315 {
7316 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7317 	struct vpage *vpp;
7318 	page_t *pp;
7319 	u_offset_t offset;
7320 	struct vnode *vp;
7321 	u_offset_t off;
7322 	caddr_t eaddr;
7323 	int bflags;
7324 	int err = 0;
7325 	int segtype;
7326 	int pageprot;
7327 	int prot;
7328 	ulong_t anon_index;
7329 	struct anon_map *amp;
7330 	struct anon *ap;
7331 	anon_sync_obj_t cookie;
7332 
7333 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
7334 
7335 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7336 
7337 	if (svd->softlockcnt > 0) {
7338 		/*
7339 		 * flush all pages from seg cache
7340 		 * otherwise we may deadlock in swap_putpage
7341 		 * for B_INVAL page (4175402).
7342 		 *
7343 		 * Even if we grab segvn WRITER's lock or segp_slock
7344 		 * here, there might be another thread which could've
7345 		 * successfully performed lookup/insert just before
7346 		 * we acquired the lock here.  So, grabbing either
7347 		 * lock here is of not much use.  Until we devise
7348 		 * a strategy at upper layers to solve the
7349 		 * synchronization issues completely, we expect
7350 		 * applications to handle this appropriately.
7351 		 */
7352 		segvn_purge(seg);
7353 		if (svd->softlockcnt > 0) {
7354 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7355 			return (EAGAIN);
7356 		}
7357 	}
7358 
7359 	vpp = svd->vpage;
7360 	offset = svd->offset + (uintptr_t)(addr - seg->s_base);
7361 	bflags = ((flags & MS_ASYNC) ? B_ASYNC : 0) |
7362 	    ((flags & MS_INVALIDATE) ? B_INVAL : 0);
7363 
7364 	if (attr) {
7365 		pageprot = attr & ~(SHARED|PRIVATE);
7366 		segtype = (attr & SHARED) ? MAP_SHARED : MAP_PRIVATE;
7367 
7368 		/*
7369 		 * We are done if the segment types don't match
7370 		 * or if we have segment level protections and
7371 		 * they don't match.
7372 		 */
7373 		if (svd->type != segtype) {
7374 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7375 			return (0);
7376 		}
7377 		if (vpp == NULL) {
7378 			if (svd->prot != pageprot) {
7379 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7380 				return (0);
7381 			}
7382 			prot = svd->prot;
7383 		} else
7384 			vpp = &svd->vpage[seg_page(seg, addr)];
7385 
7386 	} else if (svd->vp && svd->amp == NULL &&
7387 	    (flags & MS_INVALIDATE) == 0) {
7388 
7389 		/*
7390 		 * No attributes, no anonymous pages and MS_INVALIDATE flag
7391 		 * is not on, just use one big request.
7392 		 */
7393 		err = VOP_PUTPAGE(svd->vp, (offset_t)offset, len,
7394 		    bflags, svd->cred, NULL);
7395 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7396 		return (err);
7397 	}
7398 
7399 	if ((amp = svd->amp) != NULL)
7400 		anon_index = svd->anon_index + seg_page(seg, addr);
7401 
7402 	for (eaddr = addr + len; addr < eaddr; addr += PAGESIZE) {
7403 		ap = NULL;
7404 		if (amp != NULL) {
7405 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7406 			anon_array_enter(amp, anon_index, &cookie);
7407 			ap = anon_get_ptr(amp->ahp, anon_index++);
7408 			if (ap != NULL) {
7409 				swap_xlate(ap, &vp, &off);
7410 			} else {
7411 				vp = svd->vp;
7412 				off = offset;
7413 			}
7414 			anon_array_exit(&cookie);
7415 			ANON_LOCK_EXIT(&amp->a_rwlock);
7416 		} else {
7417 			vp = svd->vp;
7418 			off = offset;
7419 		}
7420 		offset += PAGESIZE;
7421 
7422 		if (vp == NULL)		/* untouched zfod page */
7423 			continue;
7424 
7425 		if (attr) {
7426 			if (vpp) {
7427 				prot = VPP_PROT(vpp);
7428 				vpp++;
7429 			}
7430 			if (prot != pageprot) {
7431 				continue;
7432 			}
7433 		}
7434 
7435 		/*
7436 		 * See if any of these pages are locked --  if so, then we
7437 		 * will have to truncate an invalidate request at the first
7438 		 * locked one. We don't need the page_struct_lock to test
7439 		 * as this is only advisory; even if we acquire it someone
7440 		 * might race in and lock the page after we unlock and before
7441 		 * we do the PUTPAGE, then PUTPAGE simply does nothing.
7442 		 */
7443 		if (flags & MS_INVALIDATE) {
7444 			if ((pp = page_lookup(vp, off, SE_SHARED)) != NULL) {
7445 				if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
7446 					page_unlock(pp);
7447 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7448 					return (EBUSY);
7449 				}
7450 				if (ap != NULL && pp->p_szc != 0 &&
7451 				    page_tryupgrade(pp)) {
7452 					if (pp->p_lckcnt == 0 &&
7453 					    pp->p_cowcnt == 0) {
7454 						/*
7455 						 * swapfs VN_DISPOSE() won't
7456 						 * invalidate large pages.
7457 						 * Attempt to demote.
7458 						 * XXX can't help it if it
7459 						 * fails. But for swapfs
7460 						 * pages it is no big deal.
7461 						 */
7462 						(void) page_try_demote_pages(
7463 						    pp);
7464 					}
7465 				}
7466 				page_unlock(pp);
7467 			}
7468 		} else if (svd->type == MAP_SHARED && amp != NULL) {
7469 			/*
7470 			 * Avoid writing out to disk ISM's large pages
7471 			 * because segspt_free_pages() relies on NULL an_pvp
7472 			 * of anon slots of such pages.
7473 			 */
7474 
7475 			ASSERT(svd->vp == NULL);
7476 			/*
7477 			 * swapfs uses page_lookup_nowait if not freeing or
7478 			 * invalidating and skips a page if
7479 			 * page_lookup_nowait returns NULL.
7480 			 */
7481 			pp = page_lookup_nowait(vp, off, SE_SHARED);
7482 			if (pp == NULL) {
7483 				continue;
7484 			}
7485 			if (pp->p_szc != 0) {
7486 				page_unlock(pp);
7487 				continue;
7488 			}
7489 
7490 			/*
7491 			 * Note ISM pages are created large so (vp, off)'s
7492 			 * page cannot suddenly become large after we unlock
7493 			 * pp.
7494 			 */
7495 			page_unlock(pp);
7496 		}
7497 		/*
7498 		 * XXX - Should ultimately try to kluster
7499 		 * calls to VOP_PUTPAGE() for performance.
7500 		 */
7501 		VN_HOLD(vp);
7502 		err = VOP_PUTPAGE(vp, (offset_t)off, PAGESIZE,
7503 		    bflags, svd->cred, NULL);
7504 		VN_RELE(vp);
7505 		if (err)
7506 			break;
7507 	}
7508 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7509 	return (err);
7510 }
7511 
7512 /*
7513  * Determine if we have data corresponding to pages in the
7514  * primary storage virtual memory cache (i.e., "in core").
7515  */
7516 static size_t
7517 segvn_incore(struct seg *seg, caddr_t addr, size_t len, char *vec)
7518 {
7519 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7520 	struct vnode *vp, *avp;
7521 	u_offset_t offset, aoffset;
7522 	size_t p, ep;
7523 	int ret;
7524 	struct vpage *vpp;
7525 	page_t *pp;
7526 	uint_t start;
7527 	struct anon_map *amp;		/* XXX - for locknest */
7528 	struct anon *ap;
7529 	uint_t attr;
7530 	anon_sync_obj_t cookie;
7531 
7532 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
7533 
7534 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7535 	if (svd->amp == NULL && svd->vp == NULL) {
7536 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7537 		bzero(vec, btopr(len));
7538 		return (len);	/* no anonymous pages created yet */
7539 	}
7540 
7541 	p = seg_page(seg, addr);
7542 	ep = seg_page(seg, addr + len);
7543 	start = svd->vp ? SEG_PAGE_VNODEBACKED : 0;
7544 
7545 	amp = svd->amp;
7546 	for (; p < ep; p++, addr += PAGESIZE) {
7547 		vpp = (svd->vpage) ? &svd->vpage[p]: NULL;
7548 		ret = start;
7549 		ap = NULL;
7550 		avp = NULL;
7551 		/* Grab the vnode/offset for the anon slot */
7552 		if (amp != NULL) {
7553 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7554 			anon_array_enter(amp, svd->anon_index + p, &cookie);
7555 			ap = anon_get_ptr(amp->ahp, svd->anon_index + p);
7556 			if (ap != NULL) {
7557 				swap_xlate(ap, &avp, &aoffset);
7558 			}
7559 			anon_array_exit(&cookie);
7560 			ANON_LOCK_EXIT(&amp->a_rwlock);
7561 		}
7562 		if ((avp != NULL) && page_exists(avp, aoffset)) {
7563 			/* A page exists for the anon slot */
7564 			ret |= SEG_PAGE_INCORE;
7565 
7566 			/*
7567 			 * If page is mapped and writable
7568 			 */
7569 			attr = (uint_t)0;
7570 			if ((hat_getattr(seg->s_as->a_hat, addr,
7571 			    &attr) != -1) && (attr & PROT_WRITE)) {
7572 				ret |= SEG_PAGE_ANON;
7573 			}
7574 			/*
7575 			 * Don't get page_struct lock for lckcnt and cowcnt,
7576 			 * since this is purely advisory.
7577 			 */
7578 			if ((pp = page_lookup_nowait(avp, aoffset,
7579 			    SE_SHARED)) != NULL) {
7580 				if (pp->p_lckcnt)
7581 					ret |= SEG_PAGE_SOFTLOCK;
7582 				if (pp->p_cowcnt)
7583 					ret |= SEG_PAGE_HASCOW;
7584 				page_unlock(pp);
7585 			}
7586 		}
7587 
7588 		/* Gather vnode statistics */
7589 		vp = svd->vp;
7590 		offset = svd->offset + (uintptr_t)(addr - seg->s_base);
7591 
7592 		if (vp != NULL) {
7593 			/*
7594 			 * Try to obtain a "shared" lock on the page
7595 			 * without blocking.  If this fails, determine
7596 			 * if the page is in memory.
7597 			 */
7598 			pp = page_lookup_nowait(vp, offset, SE_SHARED);
7599 			if ((pp == NULL) && (page_exists(vp, offset))) {
7600 				/* Page is incore, and is named */
7601 				ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE);
7602 			}
7603 			/*
7604 			 * Don't get page_struct lock for lckcnt and cowcnt,
7605 			 * since this is purely advisory.
7606 			 */
7607 			if (pp != NULL) {
7608 				ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE);
7609 				if (pp->p_lckcnt)
7610 					ret |= SEG_PAGE_SOFTLOCK;
7611 				if (pp->p_cowcnt)
7612 					ret |= SEG_PAGE_HASCOW;
7613 				page_unlock(pp);
7614 			}
7615 		}
7616 
7617 		/* Gather virtual page information */
7618 		if (vpp) {
7619 			if (VPP_ISPPLOCK(vpp))
7620 				ret |= SEG_PAGE_LOCKED;
7621 			vpp++;
7622 		}
7623 
7624 		*vec++ = (char)ret;
7625 	}
7626 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7627 	return (len);
7628 }
7629 
7630 /*
7631  * Statement for p_cowcnts/p_lckcnts.
7632  *
7633  * p_cowcnt is updated while mlock/munlocking MAP_PRIVATE and PROT_WRITE region
7634  * irrespective of the following factors or anything else:
7635  *
7636  *	(1) anon slots are populated or not
7637  *	(2) cow is broken or not
7638  *	(3) refcnt on ap is 1 or greater than 1
7639  *
7640  * If it's not MAP_PRIVATE and PROT_WRITE, p_lckcnt is updated during mlock
7641  * and munlock.
7642  *
7643  *
7644  * Handling p_cowcnts/p_lckcnts during copy-on-write fault:
7645  *
7646  *	if vpage has PROT_WRITE
7647  *		transfer cowcnt on the oldpage -> cowcnt on the newpage
7648  *	else
7649  *		transfer lckcnt on the oldpage -> lckcnt on the newpage
7650  *
7651  *	During copy-on-write, decrement p_cowcnt on the oldpage and increment
7652  *	p_cowcnt on the newpage *if* the corresponding vpage has PROT_WRITE.
7653  *
7654  *	We may also break COW if softlocking on read access in the physio case.
7655  *	In this case, vpage may not have PROT_WRITE. So, we need to decrement
7656  *	p_lckcnt on the oldpage and increment p_lckcnt on the newpage *if* the
7657  *	vpage doesn't have PROT_WRITE.
7658  *
7659  *
7660  * Handling p_cowcnts/p_lckcnts during mprotect on mlocked region:
7661  *
7662  * 	If a MAP_PRIVATE region loses PROT_WRITE, we decrement p_cowcnt and
7663  *	increment p_lckcnt by calling page_subclaim() which takes care of
7664  * 	availrmem accounting and p_lckcnt overflow.
7665  *
7666  *	If a MAP_PRIVATE region gains PROT_WRITE, we decrement p_lckcnt and
7667  *	increment p_cowcnt by calling page_addclaim() which takes care of
7668  *	availrmem availability and p_cowcnt overflow.
7669  */
7670 
7671 /*
7672  * Lock down (or unlock) pages mapped by this segment.
7673  *
7674  * XXX only creates PAGESIZE pages if anon slots are not initialized.
7675  * At fault time they will be relocated into larger pages.
7676  */
7677 static int
7678 segvn_lockop(struct seg *seg, caddr_t addr, size_t len,
7679     int attr, int op, ulong_t *lockmap, size_t pos)
7680 {
7681 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7682 	struct vpage *vpp;
7683 	struct vpage *evp;
7684 	page_t *pp;
7685 	u_offset_t offset;
7686 	u_offset_t off;
7687 	int segtype;
7688 	int pageprot;
7689 	int claim;
7690 	struct vnode *vp;
7691 	ulong_t anon_index;
7692 	struct anon_map *amp;
7693 	struct anon *ap;
7694 	struct vattr va;
7695 	anon_sync_obj_t cookie;
7696 	struct kshmid *sp = NULL;
7697 	struct proc	*p = curproc;
7698 	kproject_t	*proj = NULL;
7699 	int chargeproc = 1;
7700 	size_t locked_bytes = 0;
7701 	size_t unlocked_bytes = 0;
7702 	int err = 0;
7703 
7704 	/*
7705 	 * Hold write lock on address space because may split or concatenate
7706 	 * segments
7707 	 */
7708 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
7709 
7710 	/*
7711 	 * If this is a shm, use shm's project and zone, else use
7712 	 * project and zone of calling process
7713 	 */
7714 
7715 	/* Determine if this segment backs a sysV shm */
7716 	if (svd->amp != NULL && svd->amp->a_sp != NULL) {
7717 		ASSERT(svd->type == MAP_SHARED);
7718 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
7719 		sp = svd->amp->a_sp;
7720 		proj = sp->shm_perm.ipc_proj;
7721 		chargeproc = 0;
7722 	}
7723 
7724 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
7725 	if (attr) {
7726 		pageprot = attr & ~(SHARED|PRIVATE);
7727 		segtype = attr & SHARED ? MAP_SHARED : MAP_PRIVATE;
7728 
7729 		/*
7730 		 * We are done if the segment types don't match
7731 		 * or if we have segment level protections and
7732 		 * they don't match.
7733 		 */
7734 		if (svd->type != segtype) {
7735 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7736 			return (0);
7737 		}
7738 		if (svd->pageprot == 0 && svd->prot != pageprot) {
7739 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7740 			return (0);
7741 		}
7742 	}
7743 
7744 	if (op == MC_LOCK) {
7745 		if (svd->tr_state == SEGVN_TR_INIT) {
7746 			svd->tr_state = SEGVN_TR_OFF;
7747 		} else if (svd->tr_state == SEGVN_TR_ON) {
7748 			ASSERT(svd->amp != NULL);
7749 			segvn_textunrepl(seg, 0);
7750 			ASSERT(svd->amp == NULL &&
7751 			    svd->tr_state == SEGVN_TR_OFF);
7752 		}
7753 	}
7754 
7755 	/*
7756 	 * If we're locking, then we must create a vpage structure if
7757 	 * none exists.  If we're unlocking, then check to see if there
7758 	 * is a vpage --  if not, then we could not have locked anything.
7759 	 */
7760 
7761 	if ((vpp = svd->vpage) == NULL) {
7762 		if (op == MC_LOCK)
7763 			segvn_vpage(seg);
7764 		else {
7765 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7766 			return (0);
7767 		}
7768 	}
7769 
7770 	/*
7771 	 * The anonymous data vector (i.e., previously
7772 	 * unreferenced mapping to swap space) can be allocated
7773 	 * by lazily testing for its existence.
7774 	 */
7775 	if (op == MC_LOCK && svd->amp == NULL && svd->vp == NULL) {
7776 		ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
7777 		svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP);
7778 		svd->amp->a_szc = seg->s_szc;
7779 	}
7780 
7781 	if ((amp = svd->amp) != NULL) {
7782 		anon_index = svd->anon_index + seg_page(seg, addr);
7783 	}
7784 
7785 	offset = svd->offset + (uintptr_t)(addr - seg->s_base);
7786 	evp = &svd->vpage[seg_page(seg, addr + len)];
7787 
7788 	if (sp != NULL)
7789 		mutex_enter(&sp->shm_mlock);
7790 
7791 	/* determine number of unlocked bytes in range for lock operation */
7792 	if (op == MC_LOCK) {
7793 
7794 		if (sp == NULL) {
7795 			for (vpp = &svd->vpage[seg_page(seg, addr)]; vpp < evp;
7796 			    vpp++) {
7797 				if (!VPP_ISPPLOCK(vpp))
7798 					unlocked_bytes += PAGESIZE;
7799 			}
7800 		} else {
7801 			ulong_t		i_idx, i_edx;
7802 			anon_sync_obj_t	i_cookie;
7803 			struct anon	*i_ap;
7804 			struct vnode	*i_vp;
7805 			u_offset_t	i_off;
7806 
7807 			/* Only count sysV pages once for locked memory */
7808 			i_edx = svd->anon_index + seg_page(seg, addr + len);
7809 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7810 			for (i_idx = anon_index; i_idx < i_edx; i_idx++) {
7811 				anon_array_enter(amp, i_idx, &i_cookie);
7812 				i_ap = anon_get_ptr(amp->ahp, i_idx);
7813 				if (i_ap == NULL) {
7814 					unlocked_bytes += PAGESIZE;
7815 					anon_array_exit(&i_cookie);
7816 					continue;
7817 				}
7818 				swap_xlate(i_ap, &i_vp, &i_off);
7819 				anon_array_exit(&i_cookie);
7820 				pp = page_lookup(i_vp, i_off, SE_SHARED);
7821 				if (pp == NULL) {
7822 					unlocked_bytes += PAGESIZE;
7823 					continue;
7824 				} else if (pp->p_lckcnt == 0)
7825 					unlocked_bytes += PAGESIZE;
7826 				page_unlock(pp);
7827 			}
7828 			ANON_LOCK_EXIT(&amp->a_rwlock);
7829 		}
7830 
7831 		mutex_enter(&p->p_lock);
7832 		err = rctl_incr_locked_mem(p, proj, unlocked_bytes,
7833 		    chargeproc);
7834 		mutex_exit(&p->p_lock);
7835 
7836 		if (err) {
7837 			if (sp != NULL)
7838 				mutex_exit(&sp->shm_mlock);
7839 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7840 			return (err);
7841 		}
7842 	}
7843 	/*
7844 	 * Loop over all pages in the range.  Process if we're locking and
7845 	 * page has not already been locked in this mapping; or if we're
7846 	 * unlocking and the page has been locked.
7847 	 */
7848 	for (vpp = &svd->vpage[seg_page(seg, addr)]; vpp < evp;
7849 	    vpp++, pos++, addr += PAGESIZE, offset += PAGESIZE, anon_index++) {
7850 		if ((attr == 0 || VPP_PROT(vpp) == pageprot) &&
7851 		    ((op == MC_LOCK && !VPP_ISPPLOCK(vpp)) ||
7852 		    (op == MC_UNLOCK && VPP_ISPPLOCK(vpp)))) {
7853 
7854 			if (amp != NULL)
7855 				ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7856 			/*
7857 			 * If this isn't a MAP_NORESERVE segment and
7858 			 * we're locking, allocate anon slots if they
7859 			 * don't exist.  The page is brought in later on.
7860 			 */
7861 			if (op == MC_LOCK && svd->vp == NULL &&
7862 			    ((svd->flags & MAP_NORESERVE) == 0) &&
7863 			    amp != NULL &&
7864 			    ((ap = anon_get_ptr(amp->ahp, anon_index))
7865 			    == NULL)) {
7866 				anon_array_enter(amp, anon_index, &cookie);
7867 
7868 				if ((ap = anon_get_ptr(amp->ahp,
7869 				    anon_index)) == NULL) {
7870 					pp = anon_zero(seg, addr, &ap,
7871 					    svd->cred);
7872 					if (pp == NULL) {
7873 						anon_array_exit(&cookie);
7874 						ANON_LOCK_EXIT(&amp->a_rwlock);
7875 						err = ENOMEM;
7876 						goto out;
7877 					}
7878 					ASSERT(anon_get_ptr(amp->ahp,
7879 					    anon_index) == NULL);
7880 					(void) anon_set_ptr(amp->ahp,
7881 					    anon_index, ap, ANON_SLEEP);
7882 					page_unlock(pp);
7883 				}
7884 				anon_array_exit(&cookie);
7885 			}
7886 
7887 			/*
7888 			 * Get name for page, accounting for
7889 			 * existence of private copy.
7890 			 */
7891 			ap = NULL;
7892 			if (amp != NULL) {
7893 				anon_array_enter(amp, anon_index, &cookie);
7894 				ap = anon_get_ptr(amp->ahp, anon_index);
7895 				if (ap != NULL) {
7896 					swap_xlate(ap, &vp, &off);
7897 				} else {
7898 					if (svd->vp == NULL &&
7899 					    (svd->flags & MAP_NORESERVE)) {
7900 						anon_array_exit(&cookie);
7901 						ANON_LOCK_EXIT(&amp->a_rwlock);
7902 						continue;
7903 					}
7904 					vp = svd->vp;
7905 					off = offset;
7906 				}
7907 				anon_array_exit(&cookie);
7908 				ANON_LOCK_EXIT(&amp->a_rwlock);
7909 			} else {
7910 				vp = svd->vp;
7911 				off = offset;
7912 			}
7913 
7914 			/*
7915 			 * Get page frame.  It's ok if the page is
7916 			 * not available when we're unlocking, as this
7917 			 * may simply mean that a page we locked got
7918 			 * truncated out of existence after we locked it.
7919 			 *
7920 			 * Invoke VOP_GETPAGE() to obtain the page struct
7921 			 * since we may need to read it from disk if its
7922 			 * been paged out.
7923 			 */
7924 			if (op != MC_LOCK)
7925 				pp = page_lookup(vp, off, SE_SHARED);
7926 			else {
7927 				page_t *pl[1 + 1];
7928 				int error;
7929 
7930 				ASSERT(vp != NULL);
7931 
7932 				error = VOP_GETPAGE(vp, (offset_t)off, PAGESIZE,
7933 				    (uint_t *)NULL, pl, PAGESIZE, seg, addr,
7934 				    S_OTHER, svd->cred, NULL);
7935 
7936 				/*
7937 				 * If the error is EDEADLK then we must bounce
7938 				 * up and drop all vm subsystem locks and then
7939 				 * retry the operation later
7940 				 * This behavior is a temporary measure because
7941 				 * ufs/sds logging is badly designed and will
7942 				 * deadlock if we don't allow this bounce to
7943 				 * happen.  The real solution is to re-design
7944 				 * the logging code to work properly.  See bug
7945 				 * 4125102 for details of the problem.
7946 				 */
7947 				if (error == EDEADLK) {
7948 					err = error;
7949 					goto out;
7950 				}
7951 				/*
7952 				 * Quit if we fail to fault in the page.  Treat
7953 				 * the failure as an error, unless the addr
7954 				 * is mapped beyond the end of a file.
7955 				 */
7956 				if (error && svd->vp) {
7957 					va.va_mask = AT_SIZE;
7958 					if (VOP_GETATTR(svd->vp, &va, 0,
7959 					    svd->cred, NULL) != 0) {
7960 						err = EIO;
7961 						goto out;
7962 					}
7963 					if (btopr(va.va_size) >=
7964 					    btopr(off + 1)) {
7965 						err = EIO;
7966 						goto out;
7967 					}
7968 					goto out;
7969 
7970 				} else if (error) {
7971 					err = EIO;
7972 					goto out;
7973 				}
7974 				pp = pl[0];
7975 				ASSERT(pp != NULL);
7976 			}
7977 
7978 			/*
7979 			 * See Statement at the beginning of this routine.
7980 			 *
7981 			 * claim is always set if MAP_PRIVATE and PROT_WRITE
7982 			 * irrespective of following factors:
7983 			 *
7984 			 * (1) anon slots are populated or not
7985 			 * (2) cow is broken or not
7986 			 * (3) refcnt on ap is 1 or greater than 1
7987 			 *
7988 			 * See 4140683 for details
7989 			 */
7990 			claim = ((VPP_PROT(vpp) & PROT_WRITE) &&
7991 			    (svd->type == MAP_PRIVATE));
7992 
7993 			/*
7994 			 * Perform page-level operation appropriate to
7995 			 * operation.  If locking, undo the SOFTLOCK
7996 			 * performed to bring the page into memory
7997 			 * after setting the lock.  If unlocking,
7998 			 * and no page was found, account for the claim
7999 			 * separately.
8000 			 */
8001 			if (op == MC_LOCK) {
8002 				int ret = 1;	/* Assume success */
8003 
8004 				ASSERT(!VPP_ISPPLOCK(vpp));
8005 
8006 				ret = page_pp_lock(pp, claim, 0);
8007 				if (ret == 0) {
8008 					/* locking page failed */
8009 					page_unlock(pp);
8010 					err = EAGAIN;
8011 					goto out;
8012 				}
8013 				VPP_SETPPLOCK(vpp);
8014 				if (sp != NULL) {
8015 					if (pp->p_lckcnt == 1)
8016 						locked_bytes += PAGESIZE;
8017 				} else
8018 					locked_bytes += PAGESIZE;
8019 
8020 				if (lockmap != (ulong_t *)NULL)
8021 					BT_SET(lockmap, pos);
8022 
8023 				page_unlock(pp);
8024 			} else {
8025 				ASSERT(VPP_ISPPLOCK(vpp));
8026 				if (pp != NULL) {
8027 					/* sysV pages should be locked */
8028 					ASSERT(sp == NULL || pp->p_lckcnt > 0);
8029 					page_pp_unlock(pp, claim, 0);
8030 					if (sp != NULL) {
8031 						if (pp->p_lckcnt == 0)
8032 							unlocked_bytes
8033 							    += PAGESIZE;
8034 					} else
8035 						unlocked_bytes += PAGESIZE;
8036 					page_unlock(pp);
8037 				} else {
8038 					ASSERT(sp == NULL);
8039 					unlocked_bytes += PAGESIZE;
8040 				}
8041 				VPP_CLRPPLOCK(vpp);
8042 			}
8043 		}
8044 	}
8045 out:
8046 	if (op == MC_LOCK) {
8047 		/* Credit back bytes that did not get locked */
8048 		if ((unlocked_bytes - locked_bytes) > 0) {
8049 			if (proj == NULL)
8050 				mutex_enter(&p->p_lock);
8051 			rctl_decr_locked_mem(p, proj,
8052 			    (unlocked_bytes - locked_bytes), chargeproc);
8053 			if (proj == NULL)
8054 				mutex_exit(&p->p_lock);
8055 		}
8056 
8057 	} else {
8058 		/* Account bytes that were unlocked */
8059 		if (unlocked_bytes > 0) {
8060 			if (proj == NULL)
8061 				mutex_enter(&p->p_lock);
8062 			rctl_decr_locked_mem(p, proj, unlocked_bytes,
8063 			    chargeproc);
8064 			if (proj == NULL)
8065 				mutex_exit(&p->p_lock);
8066 		}
8067 	}
8068 	if (sp != NULL)
8069 		mutex_exit(&sp->shm_mlock);
8070 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8071 
8072 	return (err);
8073 }
8074 
8075 /*
8076  * Set advice from user for specified pages
8077  * There are 5 types of advice:
8078  *	MADV_NORMAL	- Normal (default) behavior (whatever that is)
8079  *	MADV_RANDOM	- Random page references
8080  *				do not allow readahead or 'klustering'
8081  *	MADV_SEQUENTIAL	- Sequential page references
8082  *				Pages previous to the one currently being
8083  *				accessed (determined by fault) are 'not needed'
8084  *				and are freed immediately
8085  *	MADV_WILLNEED	- Pages are likely to be used (fault ahead in mctl)
8086  *	MADV_DONTNEED	- Pages are not needed (synced out in mctl)
8087  *	MADV_FREE	- Contents can be discarded
8088  *	MADV_ACCESS_DEFAULT- Default access
8089  *	MADV_ACCESS_LWP	- Next LWP will access heavily
8090  *	MADV_ACCESS_MANY- Many LWPs or processes will access heavily
8091  */
8092 static int
8093 segvn_advise(struct seg *seg, caddr_t addr, size_t len, uint_t behav)
8094 {
8095 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8096 	size_t page;
8097 	int err = 0;
8098 	int already_set;
8099 	struct anon_map *amp;
8100 	ulong_t anon_index;
8101 	struct seg *next;
8102 	lgrp_mem_policy_t policy;
8103 	struct seg *prev;
8104 	struct vnode *vp;
8105 
8106 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
8107 
8108 	/*
8109 	 * In case of MADV_FREE, we won't be modifying any segment private
8110 	 * data structures; so, we only need to grab READER's lock
8111 	 */
8112 	if (behav != MADV_FREE) {
8113 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
8114 		if (svd->tr_state != SEGVN_TR_OFF) {
8115 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8116 			return (0);
8117 		}
8118 	} else {
8119 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
8120 	}
8121 
8122 	/*
8123 	 * Large pages are assumed to be only turned on when accesses to the
8124 	 * segment's address range have spatial and temporal locality. That
8125 	 * justifies ignoring MADV_SEQUENTIAL for large page segments.
8126 	 * Also, ignore advice affecting lgroup memory allocation
8127 	 * if don't need to do lgroup optimizations on this system
8128 	 */
8129 
8130 	if ((behav == MADV_SEQUENTIAL &&
8131 	    (seg->s_szc != 0 || HAT_IS_REGION_COOKIE_VALID(svd->rcookie))) ||
8132 	    (!lgrp_optimizations() && (behav == MADV_ACCESS_DEFAULT ||
8133 	    behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY))) {
8134 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8135 		return (0);
8136 	}
8137 
8138 	if (behav == MADV_SEQUENTIAL || behav == MADV_ACCESS_DEFAULT ||
8139 	    behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY) {
8140 		/*
8141 		 * Since we are going to unload hat mappings
8142 		 * we first have to flush the cache. Otherwise
8143 		 * this might lead to system panic if another
8144 		 * thread is doing physio on the range whose
8145 		 * mappings are unloaded by madvise(3C).
8146 		 */
8147 		if (svd->softlockcnt > 0) {
8148 			/*
8149 			 * Since we do have the segvn writers lock
8150 			 * nobody can fill the cache with entries
8151 			 * belonging to this seg during the purge.
8152 			 * The flush either succeeds or we still
8153 			 * have pending I/Os. In the later case,
8154 			 * madvise(3C) fails.
8155 			 */
8156 			segvn_purge(seg);
8157 			if (svd->softlockcnt > 0) {
8158 				/*
8159 				 * Since madvise(3C) is advisory and
8160 				 * it's not part of UNIX98, madvise(3C)
8161 				 * failure here doesn't cause any hardship.
8162 				 * Note that we don't block in "as" layer.
8163 				 */
8164 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8165 				return (EAGAIN);
8166 			}
8167 		}
8168 	}
8169 
8170 	amp = svd->amp;
8171 	vp = svd->vp;
8172 	if (behav == MADV_FREE) {
8173 		/*
8174 		 * MADV_FREE is not supported for segments with
8175 		 * underlying object; if anonmap is NULL, anon slots
8176 		 * are not yet populated and there is nothing for
8177 		 * us to do. As MADV_FREE is advisory, we don't
8178 		 * return error in either case.
8179 		 */
8180 		if (vp != NULL || amp == NULL) {
8181 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8182 			return (0);
8183 		}
8184 
8185 		page = seg_page(seg, addr);
8186 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
8187 		anon_disclaim(amp, svd->anon_index + page, len);
8188 		ANON_LOCK_EXIT(&amp->a_rwlock);
8189 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8190 		return (0);
8191 	}
8192 
8193 	/*
8194 	 * If advice is to be applied to entire segment,
8195 	 * use advice field in seg_data structure
8196 	 * otherwise use appropriate vpage entry.
8197 	 */
8198 	if ((addr == seg->s_base) && (len == seg->s_size)) {
8199 		switch (behav) {
8200 		case MADV_ACCESS_LWP:
8201 		case MADV_ACCESS_MANY:
8202 		case MADV_ACCESS_DEFAULT:
8203 			/*
8204 			 * Set memory allocation policy for this segment
8205 			 */
8206 			policy = lgrp_madv_to_policy(behav, len, svd->type);
8207 			if (svd->type == MAP_SHARED)
8208 				already_set = lgrp_shm_policy_set(policy, amp,
8209 				    svd->anon_index, vp, svd->offset, len);
8210 			else {
8211 				/*
8212 				 * For private memory, need writers lock on
8213 				 * address space because the segment may be
8214 				 * split or concatenated when changing policy
8215 				 */
8216 				if (AS_READ_HELD(seg->s_as,
8217 				    &seg->s_as->a_lock)) {
8218 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8219 					return (IE_RETRY);
8220 				}
8221 
8222 				already_set = lgrp_privm_policy_set(policy,
8223 				    &svd->policy_info, len);
8224 			}
8225 
8226 			/*
8227 			 * If policy set already and it shouldn't be reapplied,
8228 			 * don't do anything.
8229 			 */
8230 			if (already_set &&
8231 			    !LGRP_MEM_POLICY_REAPPLICABLE(policy))
8232 				break;
8233 
8234 			/*
8235 			 * Mark any existing pages in given range for
8236 			 * migration
8237 			 */
8238 			page_mark_migrate(seg, addr, len, amp, svd->anon_index,
8239 			    vp, svd->offset, 1);
8240 
8241 			/*
8242 			 * If same policy set already or this is a shared
8243 			 * memory segment, don't need to try to concatenate
8244 			 * segment with adjacent ones.
8245 			 */
8246 			if (already_set || svd->type == MAP_SHARED)
8247 				break;
8248 
8249 			/*
8250 			 * Try to concatenate this segment with previous
8251 			 * one and next one, since we changed policy for
8252 			 * this one and it may be compatible with adjacent
8253 			 * ones now.
8254 			 */
8255 			prev = AS_SEGPREV(seg->s_as, seg);
8256 			next = AS_SEGNEXT(seg->s_as, seg);
8257 
8258 			if (next && next->s_ops == &segvn_ops &&
8259 			    addr + len == next->s_base)
8260 				(void) segvn_concat(seg, next, 1);
8261 
8262 			if (prev && prev->s_ops == &segvn_ops &&
8263 			    addr == prev->s_base + prev->s_size) {
8264 				/*
8265 				 * Drop lock for private data of current
8266 				 * segment before concatenating (deleting) it
8267 				 * and return IE_REATTACH to tell as_ctl() that
8268 				 * current segment has changed
8269 				 */
8270 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8271 				if (!segvn_concat(prev, seg, 1))
8272 					err = IE_REATTACH;
8273 
8274 				return (err);
8275 			}
8276 			break;
8277 
8278 		case MADV_SEQUENTIAL:
8279 			/*
8280 			 * unloading mapping guarantees
8281 			 * detection in segvn_fault
8282 			 */
8283 			ASSERT(seg->s_szc == 0);
8284 			ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
8285 			hat_unload(seg->s_as->a_hat, addr, len,
8286 			    HAT_UNLOAD);
8287 			/* FALLTHROUGH */
8288 		case MADV_NORMAL:
8289 		case MADV_RANDOM:
8290 			svd->advice = (uchar_t)behav;
8291 			svd->pageadvice = 0;
8292 			break;
8293 		case MADV_WILLNEED:	/* handled in memcntl */
8294 		case MADV_DONTNEED:	/* handled in memcntl */
8295 		case MADV_FREE:		/* handled above */
8296 			break;
8297 		default:
8298 			err = EINVAL;
8299 		}
8300 	} else {
8301 		caddr_t			eaddr;
8302 		struct seg		*new_seg;
8303 		struct segvn_data	*new_svd;
8304 		u_offset_t		off;
8305 		caddr_t			oldeaddr;
8306 
8307 		page = seg_page(seg, addr);
8308 
8309 		segvn_vpage(seg);
8310 
8311 		switch (behav) {
8312 			struct vpage *bvpp, *evpp;
8313 
8314 		case MADV_ACCESS_LWP:
8315 		case MADV_ACCESS_MANY:
8316 		case MADV_ACCESS_DEFAULT:
8317 			/*
8318 			 * Set memory allocation policy for portion of this
8319 			 * segment
8320 			 */
8321 
8322 			/*
8323 			 * Align address and length of advice to page
8324 			 * boundaries for large pages
8325 			 */
8326 			if (seg->s_szc != 0) {
8327 				size_t	pgsz;
8328 
8329 				pgsz = page_get_pagesize(seg->s_szc);
8330 				addr = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
8331 				len = P2ROUNDUP(len, pgsz);
8332 			}
8333 
8334 			/*
8335 			 * Check to see whether policy is set already
8336 			 */
8337 			policy = lgrp_madv_to_policy(behav, len, svd->type);
8338 
8339 			anon_index = svd->anon_index + page;
8340 			off = svd->offset + (uintptr_t)(addr - seg->s_base);
8341 
8342 			if (svd->type == MAP_SHARED)
8343 				already_set = lgrp_shm_policy_set(policy, amp,
8344 				    anon_index, vp, off, len);
8345 			else
8346 				already_set =
8347 				    (policy == svd->policy_info.mem_policy);
8348 
8349 			/*
8350 			 * If policy set already and it shouldn't be reapplied,
8351 			 * don't do anything.
8352 			 */
8353 			if (already_set &&
8354 			    !LGRP_MEM_POLICY_REAPPLICABLE(policy))
8355 				break;
8356 
8357 			/*
8358 			 * For private memory, need writers lock on
8359 			 * address space because the segment may be
8360 			 * split or concatenated when changing policy
8361 			 */
8362 			if (svd->type == MAP_PRIVATE &&
8363 			    AS_READ_HELD(seg->s_as, &seg->s_as->a_lock)) {
8364 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8365 				return (IE_RETRY);
8366 			}
8367 
8368 			/*
8369 			 * Mark any existing pages in given range for
8370 			 * migration
8371 			 */
8372 			page_mark_migrate(seg, addr, len, amp, svd->anon_index,
8373 			    vp, svd->offset, 1);
8374 
8375 			/*
8376 			 * Don't need to try to split or concatenate
8377 			 * segments, since policy is same or this is a shared
8378 			 * memory segment
8379 			 */
8380 			if (already_set || svd->type == MAP_SHARED)
8381 				break;
8382 
8383 			if (HAT_IS_REGION_COOKIE_VALID(svd->rcookie)) {
8384 				ASSERT(svd->amp == NULL);
8385 				ASSERT(svd->tr_state == SEGVN_TR_OFF);
8386 				ASSERT(svd->softlockcnt == 0);
8387 				hat_leave_region(seg->s_as->a_hat, svd->rcookie,
8388 				    HAT_REGION_TEXT);
8389 				svd->rcookie = HAT_INVALID_REGION_COOKIE;
8390 			}
8391 
8392 			/*
8393 			 * Split off new segment if advice only applies to a
8394 			 * portion of existing segment starting in middle
8395 			 */
8396 			new_seg = NULL;
8397 			eaddr = addr + len;
8398 			oldeaddr = seg->s_base + seg->s_size;
8399 			if (addr > seg->s_base) {
8400 				/*
8401 				 * Must flush I/O page cache
8402 				 * before splitting segment
8403 				 */
8404 				if (svd->softlockcnt > 0)
8405 					segvn_purge(seg);
8406 
8407 				/*
8408 				 * Split segment and return IE_REATTACH to tell
8409 				 * as_ctl() that current segment changed
8410 				 */
8411 				new_seg = segvn_split_seg(seg, addr);
8412 				new_svd = (struct segvn_data *)new_seg->s_data;
8413 				err = IE_REATTACH;
8414 
8415 				/*
8416 				 * If new segment ends where old one
8417 				 * did, try to concatenate the new
8418 				 * segment with next one.
8419 				 */
8420 				if (eaddr == oldeaddr) {
8421 					/*
8422 					 * Set policy for new segment
8423 					 */
8424 					(void) lgrp_privm_policy_set(policy,
8425 					    &new_svd->policy_info,
8426 					    new_seg->s_size);
8427 
8428 					next = AS_SEGNEXT(new_seg->s_as,
8429 					    new_seg);
8430 
8431 					if (next &&
8432 					    next->s_ops == &segvn_ops &&
8433 					    eaddr == next->s_base)
8434 						(void) segvn_concat(new_seg,
8435 						    next, 1);
8436 				}
8437 			}
8438 
8439 			/*
8440 			 * Split off end of existing segment if advice only
8441 			 * applies to a portion of segment ending before
8442 			 * end of the existing segment
8443 			 */
8444 			if (eaddr < oldeaddr) {
8445 				/*
8446 				 * Must flush I/O page cache
8447 				 * before splitting segment
8448 				 */
8449 				if (svd->softlockcnt > 0)
8450 					segvn_purge(seg);
8451 
8452 				/*
8453 				 * If beginning of old segment was already
8454 				 * split off, use new segment to split end off
8455 				 * from.
8456 				 */
8457 				if (new_seg != NULL && new_seg != seg) {
8458 					/*
8459 					 * Split segment
8460 					 */
8461 					(void) segvn_split_seg(new_seg, eaddr);
8462 
8463 					/*
8464 					 * Set policy for new segment
8465 					 */
8466 					(void) lgrp_privm_policy_set(policy,
8467 					    &new_svd->policy_info,
8468 					    new_seg->s_size);
8469 				} else {
8470 					/*
8471 					 * Split segment and return IE_REATTACH
8472 					 * to tell as_ctl() that current
8473 					 * segment changed
8474 					 */
8475 					(void) segvn_split_seg(seg, eaddr);
8476 					err = IE_REATTACH;
8477 
8478 					(void) lgrp_privm_policy_set(policy,
8479 					    &svd->policy_info, seg->s_size);
8480 
8481 					/*
8482 					 * If new segment starts where old one
8483 					 * did, try to concatenate it with
8484 					 * previous segment.
8485 					 */
8486 					if (addr == seg->s_base) {
8487 						prev = AS_SEGPREV(seg->s_as,
8488 						    seg);
8489 
8490 						/*
8491 						 * Drop lock for private data
8492 						 * of current segment before
8493 						 * concatenating (deleting) it
8494 						 */
8495 						if (prev &&
8496 						    prev->s_ops ==
8497 						    &segvn_ops &&
8498 						    addr == prev->s_base +
8499 						    prev->s_size) {
8500 							SEGVN_LOCK_EXIT(
8501 							    seg->s_as,
8502 							    &svd->lock);
8503 							(void) segvn_concat(
8504 							    prev, seg, 1);
8505 							return (err);
8506 						}
8507 					}
8508 				}
8509 			}
8510 			break;
8511 		case MADV_SEQUENTIAL:
8512 			ASSERT(seg->s_szc == 0);
8513 			ASSERT(svd->rcookie == HAT_INVALID_REGION_COOKIE);
8514 			hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD);
8515 			/* FALLTHROUGH */
8516 		case MADV_NORMAL:
8517 		case MADV_RANDOM:
8518 			bvpp = &svd->vpage[page];
8519 			evpp = &svd->vpage[page + (len >> PAGESHIFT)];
8520 			for (; bvpp < evpp; bvpp++)
8521 				VPP_SETADVICE(bvpp, behav);
8522 			svd->advice = MADV_NORMAL;
8523 			break;
8524 		case MADV_WILLNEED:	/* handled in memcntl */
8525 		case MADV_DONTNEED:	/* handled in memcntl */
8526 		case MADV_FREE:		/* handled above */
8527 			break;
8528 		default:
8529 			err = EINVAL;
8530 		}
8531 	}
8532 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8533 	return (err);
8534 }
8535 
8536 /*
8537  * Create a vpage structure for this seg.
8538  */
8539 static void
8540 segvn_vpage(struct seg *seg)
8541 {
8542 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8543 	struct vpage *vp, *evp;
8544 
8545 	ASSERT(SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
8546 
8547 	/*
8548 	 * If no vpage structure exists, allocate one.  Copy the protections
8549 	 * and the advice from the segment itself to the individual pages.
8550 	 */
8551 	if (svd->vpage == NULL) {
8552 		svd->pageadvice = 1;
8553 		svd->vpage = kmem_zalloc(seg_pages(seg) * sizeof (struct vpage),
8554 		    KM_SLEEP);
8555 		evp = &svd->vpage[seg_page(seg, seg->s_base + seg->s_size)];
8556 		for (vp = svd->vpage; vp < evp; vp++) {
8557 			VPP_SETPROT(vp, svd->prot);
8558 			VPP_SETADVICE(vp, svd->advice);
8559 		}
8560 	}
8561 }
8562 
8563 /*
8564  * Dump the pages belonging to this segvn segment.
8565  */
8566 static void
8567 segvn_dump(struct seg *seg)
8568 {
8569 	struct segvn_data *svd;
8570 	page_t *pp;
8571 	struct anon_map *amp;
8572 	ulong_t	anon_index;
8573 	struct vnode *vp;
8574 	u_offset_t off, offset;
8575 	pfn_t pfn;
8576 	pgcnt_t page, npages;
8577 	caddr_t addr;
8578 
8579 	npages = seg_pages(seg);
8580 	svd = (struct segvn_data *)seg->s_data;
8581 	vp = svd->vp;
8582 	off = offset = svd->offset;
8583 	addr = seg->s_base;
8584 
8585 	if ((amp = svd->amp) != NULL) {
8586 		anon_index = svd->anon_index;
8587 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
8588 	}
8589 
8590 	for (page = 0; page < npages; page++, offset += PAGESIZE) {
8591 		struct anon *ap;
8592 		int we_own_it = 0;
8593 
8594 		if (amp && (ap = anon_get_ptr(svd->amp->ahp, anon_index++))) {
8595 			swap_xlate_nopanic(ap, &vp, &off);
8596 		} else {
8597 			vp = svd->vp;
8598 			off = offset;
8599 		}
8600 
8601 		/*
8602 		 * If pp == NULL, the page either does not exist
8603 		 * or is exclusively locked.  So determine if it
8604 		 * exists before searching for it.
8605 		 */
8606 
8607 		if ((pp = page_lookup_nowait(vp, off, SE_SHARED)))
8608 			we_own_it = 1;
8609 		else
8610 			pp = page_exists(vp, off);
8611 
8612 		if (pp) {
8613 			pfn = page_pptonum(pp);
8614 			dump_addpage(seg->s_as, addr, pfn);
8615 			if (we_own_it)
8616 				page_unlock(pp);
8617 		}
8618 		addr += PAGESIZE;
8619 		dump_timeleft = dump_timeout;
8620 	}
8621 
8622 	if (amp != NULL)
8623 		ANON_LOCK_EXIT(&amp->a_rwlock);
8624 }
8625 
8626 /*
8627  * lock/unlock anon pages over a given range. Return shadow list
8628  */
8629 static int
8630 segvn_pagelock(struct seg *seg, caddr_t addr, size_t len, struct page ***ppp,
8631     enum lock_type type, enum seg_rw rw)
8632 {
8633 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8634 	size_t np, adjustpages = 0, npages = (len >> PAGESHIFT);
8635 	ulong_t anon_index;
8636 	uint_t protchk;
8637 	uint_t error;
8638 	struct anon_map *amp;
8639 	struct page **pplist, **pl, *pp;
8640 	caddr_t a;
8641 	size_t page;
8642 	caddr_t lpgaddr, lpgeaddr;
8643 	pgcnt_t szc0_npages = 0;
8644 
8645 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_START,
8646 	    "segvn_pagelock: start seg %p addr %p", seg, addr);
8647 
8648 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
8649 	if (seg->s_szc != 0 && (type == L_PAGELOCK || type == L_PAGEUNLOCK)) {
8650 		/*
8651 		 * We are adjusting the pagelock region to the large page size
8652 		 * boundary because the unlocked part of a large page cannot
8653 		 * be freed anyway unless all constituent pages of a large
8654 		 * page are locked. Therefore this adjustment allows us to
8655 		 * decrement availrmem by the right value (note we don't want
8656 		 * to just decrement availrem by the large page size without
8657 		 * adjusting addr and len because then we may end up
8658 		 * decrementing availrmem by large page size for every
8659 		 * constituent page locked by a new as_pagelock call).
8660 		 * as_pageunlock caller must always match as_pagelock call's
8661 		 * addr and len.
8662 		 *
8663 		 * Note segment's page size cannot change while we are holding
8664 		 * as lock.  And then it cannot change while softlockcnt is
8665 		 * not 0. This will allow us to correctly recalculate large
8666 		 * page size region for the matching pageunlock/reclaim call.
8667 		 *
8668 		 * for pageunlock *ppp points to the pointer of page_t that
8669 		 * corresponds to the real unadjusted start address. Similar
8670 		 * for pagelock *ppp must point to the pointer of page_t that
8671 		 * corresponds to the real unadjusted start address.
8672 		 */
8673 		size_t pgsz = page_get_pagesize(seg->s_szc);
8674 		CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
8675 		adjustpages = ((uintptr_t)(addr - lpgaddr)) >> PAGESHIFT;
8676 	}
8677 
8678 	if (type == L_PAGEUNLOCK) {
8679 
8680 		/*
8681 		 * update hat ref bits for /proc. We need to make sure
8682 		 * that threads tracing the ref and mod bits of the
8683 		 * address space get the right data.
8684 		 * Note: page ref and mod bits are updated at reclaim time
8685 		 */
8686 		if (seg->s_as->a_vbits) {
8687 			for (a = addr; a < addr + len; a += PAGESIZE) {
8688 				if (rw == S_WRITE) {
8689 					hat_setstat(seg->s_as, a,
8690 					    PAGESIZE, P_REF | P_MOD);
8691 				} else {
8692 					hat_setstat(seg->s_as, a,
8693 					    PAGESIZE, P_REF);
8694 				}
8695 			}
8696 		}
8697 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
8698 		if (seg->s_szc != 0) {
8699 			VM_STAT_ADD(segvnvmstats.pagelock[0]);
8700 			seg_pinactive(seg, lpgaddr, lpgeaddr - lpgaddr,
8701 			    *ppp - adjustpages, rw, segvn_reclaim);
8702 		} else {
8703 			seg_pinactive(seg, addr, len, *ppp, rw, segvn_reclaim);
8704 		}
8705 
8706 		/*
8707 		 * If someone is blocked while unmapping, we purge
8708 		 * segment page cache and thus reclaim pplist synchronously
8709 		 * without waiting for seg_pasync_thread. This speeds up
8710 		 * unmapping in cases where munmap(2) is called, while
8711 		 * raw async i/o is still in progress or where a thread
8712 		 * exits on data fault in a multithreaded application.
8713 		 */
8714 		if (AS_ISUNMAPWAIT(seg->s_as) && (svd->softlockcnt > 0)) {
8715 			/*
8716 			 * Even if we grab segvn WRITER's lock or segp_slock
8717 			 * here, there might be another thread which could've
8718 			 * successfully performed lookup/insert just before
8719 			 * we acquired the lock here.  So, grabbing either
8720 			 * lock here is of not much use.  Until we devise
8721 			 * a strategy at upper layers to solve the
8722 			 * synchronization issues completely, we expect
8723 			 * applications to handle this appropriately.
8724 			 */
8725 			segvn_purge(seg);
8726 		}
8727 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8728 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_UNLOCK_END,
8729 		    "segvn_pagelock: unlock seg %p addr %p", seg, addr);
8730 		return (0);
8731 	} else if (type == L_PAGERECLAIM) {
8732 		VM_STAT_COND_ADD(seg->s_szc != 0, segvnvmstats.pagelock[1]);
8733 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
8734 		(void) segvn_reclaim(seg, addr, len, *ppp, rw);
8735 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8736 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_UNLOCK_END,
8737 		    "segvn_pagelock: reclaim seg %p addr %p", seg, addr);
8738 		return (0);
8739 	}
8740 
8741 	if (seg->s_szc != 0) {
8742 		VM_STAT_ADD(segvnvmstats.pagelock[2]);
8743 		addr = lpgaddr;
8744 		len = lpgeaddr - lpgaddr;
8745 		npages = (len >> PAGESHIFT);
8746 	}
8747 
8748 	/*
8749 	 * for now we only support pagelock to anon memory. We've to check
8750 	 * protections for vnode objects and call into the vnode driver.
8751 	 * That's too much for a fast path. Let the fault entry point handle it.
8752 	 */
8753 	if (svd->vp != NULL) {
8754 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END,
8755 		    "segvn_pagelock: mapped vnode seg %p addr %p", seg, addr);
8756 		*ppp = NULL;
8757 		return (ENOTSUP);
8758 	}
8759 
8760 	/*
8761 	 * if anonmap is not yet created, let the fault entry point populate it
8762 	 * with anon ptrs.
8763 	 */
8764 	if ((amp = svd->amp) == NULL) {
8765 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END,
8766 		    "segvn_pagelock: anonmap null seg %p addr %p", seg, addr);
8767 		*ppp = NULL;
8768 		return (EFAULT);
8769 	}
8770 
8771 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
8772 
8773 	/*
8774 	 * we acquire segp_slock to prevent duplicate entries
8775 	 * in seg_pcache
8776 	 */
8777 	mutex_enter(&svd->segp_slock);
8778 
8779 	/*
8780 	 * try to find pages in segment page cache
8781 	 */
8782 	pplist = seg_plookup(seg, addr, len, rw);
8783 	if (pplist != NULL) {
8784 		mutex_exit(&svd->segp_slock);
8785 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8786 		*ppp = pplist + adjustpages;
8787 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_HIT_END,
8788 		    "segvn_pagelock: cache hit seg %p addr %p", seg, addr);
8789 		return (0);
8790 	}
8791 
8792 	if (rw == S_READ) {
8793 		protchk = PROT_READ;
8794 	} else {
8795 		protchk = PROT_WRITE;
8796 	}
8797 
8798 	if (svd->pageprot == 0) {
8799 		if ((svd->prot & protchk) == 0) {
8800 			mutex_exit(&svd->segp_slock);
8801 			error = EFAULT;
8802 			goto out;
8803 		}
8804 	} else {
8805 		/*
8806 		 * check page protections
8807 		 */
8808 		for (a = addr; a < addr + len; a += PAGESIZE) {
8809 			struct vpage *vp;
8810 
8811 			vp = &svd->vpage[seg_page(seg, a)];
8812 			if ((VPP_PROT(vp) & protchk) == 0) {
8813 				mutex_exit(&svd->segp_slock);
8814 				error = EFAULT;
8815 				goto out;
8816 			}
8817 		}
8818 	}
8819 
8820 	/*
8821 	 * Avoid per page overhead of segvn_slock_anonpages() for small
8822 	 * pages. For large pages segvn_slock_anonpages() only does real
8823 	 * work once per large page.  The tradeoff is that we may decrement
8824 	 * availrmem more than once for the same page but this is ok
8825 	 * for small pages.
8826 	 */
8827 	if (seg->s_szc == 0) {
8828 		mutex_enter(&freemem_lock);
8829 		if (availrmem < tune.t_minarmem + npages) {
8830 			mutex_exit(&freemem_lock);
8831 			mutex_exit(&svd->segp_slock);
8832 			error = ENOMEM;
8833 			goto out;
8834 		}
8835 		availrmem -= npages;
8836 		mutex_exit(&freemem_lock);
8837 	}
8838 
8839 	pplist = kmem_alloc(sizeof (page_t *) * npages, KM_SLEEP);
8840 	pl = pplist;
8841 	*ppp = pplist + adjustpages;
8842 
8843 	page = seg_page(seg, addr);
8844 	anon_index = svd->anon_index + page;
8845 
8846 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
8847 	for (a = addr; a < addr + len; a += PAGESIZE, anon_index++) {
8848 		struct anon *ap;
8849 		struct vnode *vp;
8850 		u_offset_t off;
8851 		anon_sync_obj_t cookie;
8852 
8853 		anon_array_enter(amp, anon_index, &cookie);
8854 		ap = anon_get_ptr(amp->ahp, anon_index);
8855 		if (ap == NULL) {
8856 			anon_array_exit(&cookie);
8857 			break;
8858 		} else {
8859 			/*
8860 			 * We must never use seg_pcache for COW pages
8861 			 * because we might end up with original page still
8862 			 * lying in seg_pcache even after private page is
8863 			 * created. This leads to data corruption as
8864 			 * aio_write refers to the page still in cache
8865 			 * while all other accesses refer to the private
8866 			 * page.
8867 			 */
8868 			if (ap->an_refcnt != 1) {
8869 				anon_array_exit(&cookie);
8870 				break;
8871 			}
8872 		}
8873 		swap_xlate(ap, &vp, &off);
8874 		anon_array_exit(&cookie);
8875 
8876 		pp = page_lookup_nowait(vp, off, SE_SHARED);
8877 		if (pp == NULL) {
8878 			break;
8879 		}
8880 		if (seg->s_szc != 0 || pp->p_szc != 0) {
8881 			if (!segvn_slock_anonpages(pp, a == addr)) {
8882 				page_unlock(pp);
8883 				break;
8884 			}
8885 		} else {
8886 			szc0_npages++;
8887 		}
8888 		*pplist++ = pp;
8889 	}
8890 	ANON_LOCK_EXIT(&amp->a_rwlock);
8891 
8892 	ASSERT(npages >= szc0_npages);
8893 
8894 	if (a >= addr + len) {
8895 		mutex_enter(&freemem_lock);
8896 		if (seg->s_szc == 0 && npages != szc0_npages) {
8897 			ASSERT(svd->type == MAP_SHARED && amp->a_szc > 0);
8898 			availrmem += (npages - szc0_npages);
8899 		}
8900 		svd->softlockcnt += npages;
8901 		segvn_pages_locked += npages;
8902 		mutex_exit(&freemem_lock);
8903 		(void) seg_pinsert(seg, addr, len, pl, rw, SEGP_ASYNC_FLUSH,
8904 		    segvn_reclaim);
8905 		mutex_exit(&svd->segp_slock);
8906 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8907 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_FILL_END,
8908 		    "segvn_pagelock: cache fill seg %p addr %p", seg, addr);
8909 		return (0);
8910 	}
8911 
8912 	mutex_exit(&svd->segp_slock);
8913 	if (seg->s_szc == 0) {
8914 		mutex_enter(&freemem_lock);
8915 		availrmem += npages;
8916 		mutex_exit(&freemem_lock);
8917 	}
8918 	error = EFAULT;
8919 	pplist = pl;
8920 	np = ((uintptr_t)(a - addr)) >> PAGESHIFT;
8921 	while (np > (uint_t)0) {
8922 		ASSERT(PAGE_LOCKED(*pplist));
8923 		if (seg->s_szc != 0 || (*pplist)->p_szc != 0) {
8924 			segvn_sunlock_anonpages(*pplist, pplist == pl);
8925 		}
8926 		page_unlock(*pplist);
8927 		np--;
8928 		pplist++;
8929 	}
8930 	kmem_free(pl, sizeof (page_t *) * npages);
8931 out:
8932 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8933 	*ppp = NULL;
8934 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END,
8935 	    "segvn_pagelock: cache miss seg %p addr %p", seg, addr);
8936 	return (error);
8937 }
8938 
8939 /*
8940  * purge any cached pages in the I/O page cache
8941  */
8942 static void
8943 segvn_purge(struct seg *seg)
8944 {
8945 	seg_ppurge(seg);
8946 }
8947 
8948 static int
8949 segvn_reclaim(struct seg *seg, caddr_t addr, size_t len, struct page **pplist,
8950 	enum seg_rw rw)
8951 {
8952 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8953 	pgcnt_t np, npages;
8954 	struct page **pl;
8955 	pgcnt_t szc0_npages = 0;
8956 
8957 #ifdef lint
8958 	addr = addr;
8959 #endif
8960 
8961 	npages = np = (len >> PAGESHIFT);
8962 	ASSERT(npages);
8963 	pl = pplist;
8964 	if (seg->s_szc != 0) {
8965 		size_t pgsz = page_get_pagesize(seg->s_szc);
8966 		if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
8967 			panic("segvn_reclaim: unaligned addr or len");
8968 			/*NOTREACHED*/
8969 		}
8970 	}
8971 
8972 	ASSERT(svd->vp == NULL && svd->amp != NULL);
8973 
8974 	while (np > (uint_t)0) {
8975 		if (rw == S_WRITE) {
8976 			hat_setrefmod(*pplist);
8977 		} else {
8978 			hat_setref(*pplist);
8979 		}
8980 		if (seg->s_szc != 0 || (*pplist)->p_szc != 0) {
8981 			segvn_sunlock_anonpages(*pplist, pplist == pl);
8982 		} else {
8983 			szc0_npages++;
8984 		}
8985 		page_unlock(*pplist);
8986 		np--;
8987 		pplist++;
8988 	}
8989 	kmem_free(pl, sizeof (page_t *) * npages);
8990 
8991 	mutex_enter(&freemem_lock);
8992 	segvn_pages_locked -= npages;
8993 	svd->softlockcnt -= npages;
8994 	if (szc0_npages != 0) {
8995 		availrmem += szc0_npages;
8996 	}
8997 	mutex_exit(&freemem_lock);
8998 	if (svd->softlockcnt <= 0) {
8999 		if (AS_ISUNMAPWAIT(seg->s_as)) {
9000 			mutex_enter(&seg->s_as->a_contents);
9001 			if (AS_ISUNMAPWAIT(seg->s_as)) {
9002 				AS_CLRUNMAPWAIT(seg->s_as);
9003 				cv_broadcast(&seg->s_as->a_cv);
9004 			}
9005 			mutex_exit(&seg->s_as->a_contents);
9006 		}
9007 	}
9008 	return (0);
9009 }
9010 /*
9011  * get a memory ID for an addr in a given segment
9012  *
9013  * XXX only creates PAGESIZE pages if anon slots are not initialized.
9014  * At fault time they will be relocated into larger pages.
9015  */
9016 static int
9017 segvn_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
9018 {
9019 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
9020 	struct anon 	*ap = NULL;
9021 	ulong_t		anon_index;
9022 	struct anon_map	*amp;
9023 	anon_sync_obj_t cookie;
9024 
9025 	if (svd->type == MAP_PRIVATE) {
9026 		memidp->val[0] = (uintptr_t)seg->s_as;
9027 		memidp->val[1] = (uintptr_t)addr;
9028 		return (0);
9029 	}
9030 
9031 	if (svd->type == MAP_SHARED) {
9032 		if (svd->vp) {
9033 			memidp->val[0] = (uintptr_t)svd->vp;
9034 			memidp->val[1] = (u_longlong_t)svd->offset +
9035 			    (uintptr_t)(addr - seg->s_base);
9036 			return (0);
9037 		} else {
9038 
9039 			SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
9040 			if ((amp = svd->amp) != NULL) {
9041 				anon_index = svd->anon_index +
9042 				    seg_page(seg, addr);
9043 			}
9044 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9045 
9046 			ASSERT(amp != NULL);
9047 
9048 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
9049 			anon_array_enter(amp, anon_index, &cookie);
9050 			ap = anon_get_ptr(amp->ahp, anon_index);
9051 			if (ap == NULL) {
9052 				page_t		*pp;
9053 
9054 				pp = anon_zero(seg, addr, &ap, svd->cred);
9055 				if (pp == NULL) {
9056 					anon_array_exit(&cookie);
9057 					ANON_LOCK_EXIT(&amp->a_rwlock);
9058 					return (ENOMEM);
9059 				}
9060 				ASSERT(anon_get_ptr(amp->ahp, anon_index)
9061 				    == NULL);
9062 				(void) anon_set_ptr(amp->ahp, anon_index,
9063 				    ap, ANON_SLEEP);
9064 				page_unlock(pp);
9065 			}
9066 
9067 			anon_array_exit(&cookie);
9068 			ANON_LOCK_EXIT(&amp->a_rwlock);
9069 
9070 			memidp->val[0] = (uintptr_t)ap;
9071 			memidp->val[1] = (uintptr_t)addr & PAGEOFFSET;
9072 			return (0);
9073 		}
9074 	}
9075 	return (EINVAL);
9076 }
9077 
9078 static int
9079 sameprot(struct seg *seg, caddr_t a, size_t len)
9080 {
9081 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
9082 	struct vpage *vpage;
9083 	spgcnt_t pages = btop(len);
9084 	uint_t prot;
9085 
9086 	if (svd->pageprot == 0)
9087 		return (1);
9088 
9089 	ASSERT(svd->vpage != NULL);
9090 
9091 	vpage = &svd->vpage[seg_page(seg, a)];
9092 	prot = VPP_PROT(vpage);
9093 	vpage++;
9094 	pages--;
9095 	while (pages-- > 0) {
9096 		if (prot != VPP_PROT(vpage))
9097 			return (0);
9098 		vpage++;
9099 	}
9100 	return (1);
9101 }
9102 
9103 /*
9104  * Get memory allocation policy info for specified address in given segment
9105  */
9106 static lgrp_mem_policy_info_t *
9107 segvn_getpolicy(struct seg *seg, caddr_t addr)
9108 {
9109 	struct anon_map		*amp;
9110 	ulong_t			anon_index;
9111 	lgrp_mem_policy_info_t	*policy_info;
9112 	struct segvn_data	*svn_data;
9113 	u_offset_t		vn_off;
9114 	vnode_t			*vp;
9115 
9116 	ASSERT(seg != NULL);
9117 
9118 	svn_data = (struct segvn_data *)seg->s_data;
9119 	if (svn_data == NULL)
9120 		return (NULL);
9121 
9122 	/*
9123 	 * Get policy info for private or shared memory
9124 	 */
9125 	if (svn_data->type != MAP_SHARED) {
9126 		if (svn_data->tr_state != SEGVN_TR_ON) {
9127 			policy_info = &svn_data->policy_info;
9128 		} else {
9129 			policy_info = &svn_data->tr_policy_info;
9130 			ASSERT(policy_info->mem_policy ==
9131 			    LGRP_MEM_POLICY_NEXT_SEG);
9132 		}
9133 	} else {
9134 		amp = svn_data->amp;
9135 		anon_index = svn_data->anon_index + seg_page(seg, addr);
9136 		vp = svn_data->vp;
9137 		vn_off = svn_data->offset + (uintptr_t)(addr - seg->s_base);
9138 		policy_info = lgrp_shm_policy_get(amp, anon_index, vp, vn_off);
9139 	}
9140 
9141 	return (policy_info);
9142 }
9143 
9144 /*ARGSUSED*/
9145 static int
9146 segvn_capable(struct seg *seg, segcapability_t capability)
9147 {
9148 	return (0);
9149 }
9150 
9151 /*
9152  * Bind text vnode segment to an amp. If we bind successfully mappings will be
9153  * established to per vnode mapping per lgroup amp pages instead of to vnode
9154  * pages. There's one amp per vnode text mapping per lgroup. Many processes
9155  * may share the same text replication amp. If a suitable amp doesn't already
9156  * exist in svntr hash table create a new one.  We may fail to bind to amp if
9157  * segment is not eligible for text replication.  Code below first checks for
9158  * these conditions. If binding is successful segment tr_state is set to on
9159  * and svd->amp points to the amp to use. Otherwise tr_state is set to off and
9160  * svd->amp remains as NULL.
9161  */
9162 static void
9163 segvn_textrepl(struct seg *seg)
9164 {
9165 	struct segvn_data	*svd = (struct segvn_data *)seg->s_data;
9166 	vnode_t			*vp = svd->vp;
9167 	u_offset_t		off = svd->offset;
9168 	size_t			size = seg->s_size;
9169 	u_offset_t		eoff = off + size;
9170 	uint_t			szc = seg->s_szc;
9171 	ulong_t			hash = SVNTR_HASH_FUNC(vp);
9172 	svntr_t			*svntrp;
9173 	struct vattr		va;
9174 	proc_t			*p = seg->s_as->a_proc;
9175 	lgrp_id_t		lgrp_id;
9176 	lgrp_id_t		olid;
9177 	int			first;
9178 	struct anon_map		*amp;
9179 
9180 	ASSERT(AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
9181 	ASSERT(SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
9182 	ASSERT(p != NULL);
9183 	ASSERT(svd->tr_state == SEGVN_TR_INIT);
9184 	ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie));
9185 	ASSERT(svd->flags & MAP_TEXT);
9186 	ASSERT(svd->type == MAP_PRIVATE);
9187 	ASSERT(vp != NULL && svd->amp == NULL);
9188 	ASSERT(!svd->pageprot && !(svd->prot & PROT_WRITE));
9189 	ASSERT(!(svd->flags & MAP_NORESERVE) && svd->swresv == 0);
9190 	ASSERT(seg->s_as != &kas);
9191 	ASSERT(off < eoff);
9192 	ASSERT(svntr_hashtab != NULL);
9193 
9194 	/*
9195 	 * If numa optimizations are no longer desired bail out.
9196 	 */
9197 	if (!lgrp_optimizations()) {
9198 		svd->tr_state = SEGVN_TR_OFF;
9199 		return;
9200 	}
9201 
9202 	/*
9203 	 * Avoid creating anon maps with size bigger than the file size.
9204 	 * If VOP_GETATTR() call fails bail out.
9205 	 */
9206 	va.va_mask = AT_SIZE | AT_MTIME | AT_CTIME;
9207 	if (VOP_GETATTR(vp, &va, 0, svd->cred, NULL) != 0) {
9208 		svd->tr_state = SEGVN_TR_OFF;
9209 		SEGVN_TR_ADDSTAT(gaerr);
9210 		return;
9211 	}
9212 	if (btopr(va.va_size) < btopr(eoff)) {
9213 		svd->tr_state = SEGVN_TR_OFF;
9214 		SEGVN_TR_ADDSTAT(overmap);
9215 		return;
9216 	}
9217 
9218 	/*
9219 	 * VVMEXEC may not be set yet if exec() prefaults text segment. Set
9220 	 * this flag now before vn_is_mapped(V_WRITE) so that MAP_SHARED
9221 	 * mapping that checks if trcache for this vnode needs to be
9222 	 * invalidated can't miss us.
9223 	 */
9224 	if (!(vp->v_flag & VVMEXEC)) {
9225 		mutex_enter(&vp->v_lock);
9226 		vp->v_flag |= VVMEXEC;
9227 		mutex_exit(&vp->v_lock);
9228 	}
9229 	mutex_enter(&svntr_hashtab[hash].tr_lock);
9230 	/*
9231 	 * Bail out if potentially MAP_SHARED writable mappings exist to this
9232 	 * vnode.  We don't want to use old file contents from existing
9233 	 * replicas if this mapping was established after the original file
9234 	 * was changed.
9235 	 */
9236 	if (vn_is_mapped(vp, V_WRITE)) {
9237 		mutex_exit(&svntr_hashtab[hash].tr_lock);
9238 		svd->tr_state = SEGVN_TR_OFF;
9239 		SEGVN_TR_ADDSTAT(wrcnt);
9240 		return;
9241 	}
9242 	svntrp = svntr_hashtab[hash].tr_head;
9243 	for (; svntrp != NULL; svntrp = svntrp->tr_next) {
9244 		ASSERT(svntrp->tr_refcnt != 0);
9245 		if (svntrp->tr_vp != vp) {
9246 			continue;
9247 		}
9248 
9249 		/*
9250 		 * Bail out if the file or its attributes were changed after
9251 		 * this replication entry was created since we need to use the
9252 		 * latest file contents. Note that mtime test alone is not
9253 		 * sufficient because a user can explicitly change mtime via
9254 		 * utimes(2) interfaces back to the old value after modifiying
9255 		 * the file contents. To detect this case we also have to test
9256 		 * ctime which among other things records the time of the last
9257 		 * mtime change by utimes(2). ctime is not changed when the file
9258 		 * is only read or executed so we expect that typically existing
9259 		 * replication amp's can be used most of the time.
9260 		 */
9261 		if (!svntrp->tr_valid ||
9262 		    svntrp->tr_mtime.tv_sec != va.va_mtime.tv_sec ||
9263 		    svntrp->tr_mtime.tv_nsec != va.va_mtime.tv_nsec ||
9264 		    svntrp->tr_ctime.tv_sec != va.va_ctime.tv_sec ||
9265 		    svntrp->tr_ctime.tv_nsec != va.va_ctime.tv_nsec) {
9266 			mutex_exit(&svntr_hashtab[hash].tr_lock);
9267 			svd->tr_state = SEGVN_TR_OFF;
9268 			SEGVN_TR_ADDSTAT(stale);
9269 			return;
9270 		}
9271 		/*
9272 		 * if off, eoff and szc match current segment we found the
9273 		 * existing entry we can use.
9274 		 */
9275 		if (svntrp->tr_off == off && svntrp->tr_eoff == eoff &&
9276 		    svntrp->tr_szc == szc) {
9277 			break;
9278 		}
9279 		/*
9280 		 * Don't create different but overlapping in file offsets
9281 		 * entries to avoid replication of the same file pages more
9282 		 * than once per lgroup.
9283 		 */
9284 		if ((off >= svntrp->tr_off && off < svntrp->tr_eoff) ||
9285 		    (eoff > svntrp->tr_off && eoff <= svntrp->tr_eoff)) {
9286 			mutex_exit(&svntr_hashtab[hash].tr_lock);
9287 			svd->tr_state = SEGVN_TR_OFF;
9288 			SEGVN_TR_ADDSTAT(overlap);
9289 			return;
9290 		}
9291 	}
9292 	/*
9293 	 * If we didn't find existing entry create a new one.
9294 	 */
9295 	if (svntrp == NULL) {
9296 		svntrp = kmem_cache_alloc(svntr_cache, KM_NOSLEEP);
9297 		if (svntrp == NULL) {
9298 			mutex_exit(&svntr_hashtab[hash].tr_lock);
9299 			svd->tr_state = SEGVN_TR_OFF;
9300 			SEGVN_TR_ADDSTAT(nokmem);
9301 			return;
9302 		}
9303 #ifdef DEBUG
9304 		{
9305 			lgrp_id_t i;
9306 			for (i = 0; i < NLGRPS_MAX; i++) {
9307 				ASSERT(svntrp->tr_amp[i] == NULL);
9308 			}
9309 		}
9310 #endif /* DEBUG */
9311 		svntrp->tr_vp = vp;
9312 		svntrp->tr_off = off;
9313 		svntrp->tr_eoff = eoff;
9314 		svntrp->tr_szc = szc;
9315 		svntrp->tr_valid = 1;
9316 		svntrp->tr_mtime = va.va_mtime;
9317 		svntrp->tr_ctime = va.va_ctime;
9318 		svntrp->tr_refcnt = 0;
9319 		svntrp->tr_next = svntr_hashtab[hash].tr_head;
9320 		svntr_hashtab[hash].tr_head = svntrp;
9321 	}
9322 	first = 1;
9323 again:
9324 	/*
9325 	 * We want to pick a replica with pages on main thread's (t_tid = 1,
9326 	 * aka T1) lgrp. Currently text replication is only optimized for
9327 	 * workloads that either have all threads of a process on the same
9328 	 * lgrp or execute their large text primarily on main thread.
9329 	 */
9330 	lgrp_id = p->p_t1_lgrpid;
9331 	if (lgrp_id == LGRP_NONE) {
9332 		/*
9333 		 * In case exec() prefaults text on non main thread use
9334 		 * current thread lgrpid.  It will become main thread anyway
9335 		 * soon.
9336 		 */
9337 		lgrp_id = lgrp_home_id(curthread);
9338 	}
9339 	/*
9340 	 * Set p_tr_lgrpid to lgrpid if it hasn't been set yet.  Otherwise
9341 	 * just set it to NLGRPS_MAX if it's different from current process T1
9342 	 * home lgrp.  p_tr_lgrpid is used to detect if process uses text
9343 	 * replication and T1 new home is different from lgrp used for text
9344 	 * replication. When this happens asyncronous segvn thread rechecks if
9345 	 * segments should change lgrps used for text replication.  If we fail
9346 	 * to set p_tr_lgrpid with cas32 then set it to NLGRPS_MAX without cas
9347 	 * if it's not already NLGRPS_MAX and not equal lgrp_id we want to
9348 	 * use.  We don't need to use cas in this case because another thread
9349 	 * that races in between our non atomic check and set may only change
9350 	 * p_tr_lgrpid to NLGRPS_MAX at this point.
9351 	 */
9352 	ASSERT(lgrp_id != LGRP_NONE && lgrp_id < NLGRPS_MAX);
9353 	olid = p->p_tr_lgrpid;
9354 	if (lgrp_id != olid && olid != NLGRPS_MAX) {
9355 		lgrp_id_t nlid = (olid == LGRP_NONE) ? lgrp_id : NLGRPS_MAX;
9356 		if (cas32((uint32_t *)&p->p_tr_lgrpid, olid, nlid) != olid) {
9357 			olid = p->p_tr_lgrpid;
9358 			ASSERT(olid != LGRP_NONE);
9359 			if (olid != lgrp_id && olid != NLGRPS_MAX) {
9360 				p->p_tr_lgrpid = NLGRPS_MAX;
9361 			}
9362 		}
9363 		ASSERT(p->p_tr_lgrpid != LGRP_NONE);
9364 		membar_producer();
9365 		/*
9366 		 * lgrp_move_thread() won't schedule async recheck after
9367 		 * p->p_t1_lgrpid update unless p->p_tr_lgrpid is not
9368 		 * LGRP_NONE. Recheck p_t1_lgrpid once now that p->p_tr_lgrpid
9369 		 * is not LGRP_NONE.
9370 		 */
9371 		if (first && p->p_t1_lgrpid != LGRP_NONE &&
9372 		    p->p_t1_lgrpid != lgrp_id) {
9373 			first = 0;
9374 			goto again;
9375 		}
9376 	}
9377 	/*
9378 	 * If no amp was created yet for lgrp_id create a new one as long as
9379 	 * we have enough memory to afford it.
9380 	 */
9381 	if ((amp = svntrp->tr_amp[lgrp_id]) == NULL) {
9382 		size_t trmem = atomic_add_long_nv(&segvn_textrepl_bytes, size);
9383 		if (trmem > segvn_textrepl_max_bytes) {
9384 			SEGVN_TR_ADDSTAT(normem);
9385 			goto fail;
9386 		}
9387 		if (anon_try_resv_zone(size, NULL) == 0) {
9388 			SEGVN_TR_ADDSTAT(noanon);
9389 			goto fail;
9390 		}
9391 		amp = anonmap_alloc(size, size, ANON_NOSLEEP);
9392 		if (amp == NULL) {
9393 			anon_unresv_zone(size, NULL);
9394 			SEGVN_TR_ADDSTAT(nokmem);
9395 			goto fail;
9396 		}
9397 		ASSERT(amp->refcnt == 1);
9398 		amp->a_szc = szc;
9399 		svntrp->tr_amp[lgrp_id] = amp;
9400 		SEGVN_TR_ADDSTAT(newamp);
9401 	}
9402 	svntrp->tr_refcnt++;
9403 	ASSERT(svd->svn_trnext == NULL);
9404 	ASSERT(svd->svn_trprev == NULL);
9405 	svd->svn_trnext = svntrp->tr_svnhead;
9406 	svd->svn_trprev = NULL;
9407 	if (svntrp->tr_svnhead != NULL) {
9408 		svntrp->tr_svnhead->svn_trprev = svd;
9409 	}
9410 	svntrp->tr_svnhead = svd;
9411 	ASSERT(amp->a_szc == szc && amp->size == size && amp->swresv == size);
9412 	ASSERT(amp->refcnt >= 1);
9413 	svd->amp = amp;
9414 	svd->anon_index = 0;
9415 	svd->tr_policy_info.mem_policy = LGRP_MEM_POLICY_NEXT_SEG;
9416 	svd->tr_policy_info.mem_lgrpid = lgrp_id;
9417 	svd->tr_state = SEGVN_TR_ON;
9418 	mutex_exit(&svntr_hashtab[hash].tr_lock);
9419 	SEGVN_TR_ADDSTAT(repl);
9420 	return;
9421 fail:
9422 	ASSERT(segvn_textrepl_bytes >= size);
9423 	atomic_add_long(&segvn_textrepl_bytes, -size);
9424 	ASSERT(svntrp != NULL);
9425 	ASSERT(svntrp->tr_amp[lgrp_id] == NULL);
9426 	if (svntrp->tr_refcnt == 0) {
9427 		ASSERT(svntrp == svntr_hashtab[hash].tr_head);
9428 		svntr_hashtab[hash].tr_head = svntrp->tr_next;
9429 		mutex_exit(&svntr_hashtab[hash].tr_lock);
9430 		kmem_cache_free(svntr_cache, svntrp);
9431 	} else {
9432 		mutex_exit(&svntr_hashtab[hash].tr_lock);
9433 	}
9434 	svd->tr_state = SEGVN_TR_OFF;
9435 }
9436 
9437 /*
9438  * Convert seg back to regular vnode mapping seg by unbinding it from its text
9439  * replication amp.  This routine is most typically called when segment is
9440  * unmapped but can also be called when segment no longer qualifies for text
9441  * replication (e.g. due to protection changes). If unload_unmap is set use
9442  * HAT_UNLOAD_UNMAP flag in hat_unload_callback().  If we are the last user of
9443  * svntr free all its anon maps and remove it from the hash table.
9444  */
9445 static void
9446 segvn_textunrepl(struct seg *seg, int unload_unmap)
9447 {
9448 	struct segvn_data	*svd = (struct segvn_data *)seg->s_data;
9449 	vnode_t			*vp = svd->vp;
9450 	u_offset_t		off = svd->offset;
9451 	size_t			size = seg->s_size;
9452 	u_offset_t		eoff = off + size;
9453 	uint_t			szc = seg->s_szc;
9454 	ulong_t			hash = SVNTR_HASH_FUNC(vp);
9455 	svntr_t			*svntrp;
9456 	svntr_t			**prv_svntrp;
9457 	lgrp_id_t		lgrp_id = svd->tr_policy_info.mem_lgrpid;
9458 	lgrp_id_t		i;
9459 
9460 	ASSERT(AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
9461 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock) ||
9462 	    SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
9463 	ASSERT(svd->tr_state == SEGVN_TR_ON);
9464 	ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie));
9465 	ASSERT(svd->amp != NULL);
9466 	ASSERT(svd->amp->refcnt >= 1);
9467 	ASSERT(svd->anon_index == 0);
9468 	ASSERT(lgrp_id != LGRP_NONE && lgrp_id < NLGRPS_MAX);
9469 	ASSERT(svntr_hashtab != NULL);
9470 
9471 	mutex_enter(&svntr_hashtab[hash].tr_lock);
9472 	prv_svntrp = &svntr_hashtab[hash].tr_head;
9473 	for (; (svntrp = *prv_svntrp) != NULL; prv_svntrp = &svntrp->tr_next) {
9474 		ASSERT(svntrp->tr_refcnt != 0);
9475 		if (svntrp->tr_vp == vp && svntrp->tr_off == off &&
9476 		    svntrp->tr_eoff == eoff && svntrp->tr_szc == szc) {
9477 			break;
9478 		}
9479 	}
9480 	if (svntrp == NULL) {
9481 		panic("segvn_textunrepl: svntr record not found");
9482 	}
9483 	if (svntrp->tr_amp[lgrp_id] != svd->amp) {
9484 		panic("segvn_textunrepl: amp mismatch");
9485 	}
9486 	svd->tr_state = SEGVN_TR_OFF;
9487 	svd->amp = NULL;
9488 	if (svd->svn_trprev == NULL) {
9489 		ASSERT(svntrp->tr_svnhead == svd);
9490 		svntrp->tr_svnhead = svd->svn_trnext;
9491 		if (svntrp->tr_svnhead != NULL) {
9492 			svntrp->tr_svnhead->svn_trprev = NULL;
9493 		}
9494 		svd->svn_trnext = NULL;
9495 	} else {
9496 		svd->svn_trprev->svn_trnext = svd->svn_trnext;
9497 		if (svd->svn_trnext != NULL) {
9498 			svd->svn_trnext->svn_trprev = svd->svn_trprev;
9499 			svd->svn_trnext = NULL;
9500 		}
9501 		svd->svn_trprev = NULL;
9502 	}
9503 	if (--svntrp->tr_refcnt) {
9504 		mutex_exit(&svntr_hashtab[hash].tr_lock);
9505 		goto done;
9506 	}
9507 	*prv_svntrp = svntrp->tr_next;
9508 	mutex_exit(&svntr_hashtab[hash].tr_lock);
9509 	for (i = 0; i < NLGRPS_MAX; i++) {
9510 		struct anon_map *amp = svntrp->tr_amp[i];
9511 		if (amp == NULL) {
9512 			continue;
9513 		}
9514 		ASSERT(amp->refcnt == 1);
9515 		ASSERT(amp->swresv == size);
9516 		ASSERT(amp->size == size);
9517 		ASSERT(amp->a_szc == szc);
9518 		if (amp->a_szc != 0) {
9519 			anon_free_pages(amp->ahp, 0, size, szc);
9520 		} else {
9521 			anon_free(amp->ahp, 0, size);
9522 		}
9523 		svntrp->tr_amp[i] = NULL;
9524 		ASSERT(segvn_textrepl_bytes >= size);
9525 		atomic_add_long(&segvn_textrepl_bytes, -size);
9526 		anon_unresv_zone(amp->swresv, NULL);
9527 		amp->refcnt = 0;
9528 		anonmap_free(amp);
9529 	}
9530 	kmem_cache_free(svntr_cache, svntrp);
9531 done:
9532 	hat_unload_callback(seg->s_as->a_hat, seg->s_base, size,
9533 	    unload_unmap ? HAT_UNLOAD_UNMAP : 0, NULL);
9534 }
9535 
9536 /*
9537  * This is called when a MAP_SHARED writable mapping is created to a vnode
9538  * that is currently used for execution (VVMEXEC flag is set). In this case we
9539  * need to prevent further use of existing replicas.
9540  */
9541 static void
9542 segvn_inval_trcache(vnode_t *vp)
9543 {
9544 	ulong_t			hash = SVNTR_HASH_FUNC(vp);
9545 	svntr_t			*svntrp;
9546 
9547 	ASSERT(vp->v_flag & VVMEXEC);
9548 
9549 	if (svntr_hashtab == NULL) {
9550 		return;
9551 	}
9552 
9553 	mutex_enter(&svntr_hashtab[hash].tr_lock);
9554 	svntrp = svntr_hashtab[hash].tr_head;
9555 	for (; svntrp != NULL; svntrp = svntrp->tr_next) {
9556 		ASSERT(svntrp->tr_refcnt != 0);
9557 		if (svntrp->tr_vp == vp && svntrp->tr_valid) {
9558 			svntrp->tr_valid = 0;
9559 		}
9560 	}
9561 	mutex_exit(&svntr_hashtab[hash].tr_lock);
9562 }
9563 
9564 static void
9565 segvn_trasync_thread(void)
9566 {
9567 	callb_cpr_t cpr_info;
9568 	kmutex_t cpr_lock;	/* just for CPR stuff */
9569 
9570 	mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL);
9571 
9572 	CALLB_CPR_INIT(&cpr_info, &cpr_lock,
9573 	    callb_generic_cpr, "segvn_async");
9574 
9575 	if (segvn_update_textrepl_interval == 0) {
9576 		segvn_update_textrepl_interval = segvn_update_tr_time * hz;
9577 	} else {
9578 		segvn_update_textrepl_interval *= hz;
9579 	}
9580 	(void) timeout(segvn_trupdate_wakeup, NULL,
9581 	    segvn_update_textrepl_interval);
9582 
9583 	for (;;) {
9584 		mutex_enter(&cpr_lock);
9585 		CALLB_CPR_SAFE_BEGIN(&cpr_info);
9586 		mutex_exit(&cpr_lock);
9587 		sema_p(&segvn_trasync_sem);
9588 		mutex_enter(&cpr_lock);
9589 		CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
9590 		mutex_exit(&cpr_lock);
9591 		segvn_trupdate();
9592 	}
9593 }
9594 
9595 static uint64_t segvn_lgrp_trthr_migrs_snpsht = 0;
9596 
9597 static void
9598 segvn_trupdate_wakeup(void *dummy)
9599 {
9600 	uint64_t cur_lgrp_trthr_migrs = lgrp_get_trthr_migrations();
9601 
9602 	if (cur_lgrp_trthr_migrs != segvn_lgrp_trthr_migrs_snpsht) {
9603 		segvn_lgrp_trthr_migrs_snpsht = cur_lgrp_trthr_migrs;
9604 		sema_v(&segvn_trasync_sem);
9605 	}
9606 
9607 	if (!segvn_disable_textrepl_update &&
9608 	    segvn_update_textrepl_interval != 0) {
9609 		(void) timeout(segvn_trupdate_wakeup, dummy,
9610 		    segvn_update_textrepl_interval);
9611 	}
9612 }
9613 
9614 static void
9615 segvn_trupdate(void)
9616 {
9617 	ulong_t		hash;
9618 	svntr_t		*svntrp;
9619 	segvn_data_t	*svd;
9620 
9621 	ASSERT(svntr_hashtab != NULL);
9622 
9623 	for (hash = 0; hash < svntr_hashtab_sz; hash++) {
9624 		mutex_enter(&svntr_hashtab[hash].tr_lock);
9625 		svntrp = svntr_hashtab[hash].tr_head;
9626 		for (; svntrp != NULL; svntrp = svntrp->tr_next) {
9627 			ASSERT(svntrp->tr_refcnt != 0);
9628 			svd = svntrp->tr_svnhead;
9629 			for (; svd != NULL; svd = svd->svn_trnext) {
9630 				segvn_trupdate_seg(svd->seg, svd, svntrp,
9631 				    hash);
9632 			}
9633 		}
9634 		mutex_exit(&svntr_hashtab[hash].tr_lock);
9635 	}
9636 }
9637 
9638 static void
9639 segvn_trupdate_seg(struct seg *seg,
9640 	segvn_data_t *svd,
9641 	svntr_t *svntrp,
9642 	ulong_t hash)
9643 {
9644 	proc_t			*p;
9645 	lgrp_id_t		lgrp_id;
9646 	struct as		*as;
9647 	size_t			size;
9648 	struct anon_map		*amp;
9649 
9650 	ASSERT(svd->vp != NULL);
9651 	ASSERT(svd->vp == svntrp->tr_vp);
9652 	ASSERT(svd->offset == svntrp->tr_off);
9653 	ASSERT(svd->offset + seg->s_size == svntrp->tr_eoff);
9654 	ASSERT(seg != NULL);
9655 	ASSERT(svd->seg == seg);
9656 	ASSERT(seg->s_data == (void *)svd);
9657 	ASSERT(seg->s_szc == svntrp->tr_szc);
9658 	ASSERT(svd->tr_state == SEGVN_TR_ON);
9659 	ASSERT(!HAT_IS_REGION_COOKIE_VALID(svd->rcookie));
9660 	ASSERT(svd->amp != NULL);
9661 	ASSERT(svd->tr_policy_info.mem_policy == LGRP_MEM_POLICY_NEXT_SEG);
9662 	ASSERT(svd->tr_policy_info.mem_lgrpid != LGRP_NONE);
9663 	ASSERT(svd->tr_policy_info.mem_lgrpid < NLGRPS_MAX);
9664 	ASSERT(svntrp->tr_amp[svd->tr_policy_info.mem_lgrpid] == svd->amp);
9665 	ASSERT(svntrp->tr_refcnt != 0);
9666 	ASSERT(mutex_owned(&svntr_hashtab[hash].tr_lock));
9667 
9668 	as = seg->s_as;
9669 	ASSERT(as != NULL && as != &kas);
9670 	p = as->a_proc;
9671 	ASSERT(p != NULL);
9672 	ASSERT(p->p_tr_lgrpid != LGRP_NONE);
9673 	lgrp_id = p->p_t1_lgrpid;
9674 	if (lgrp_id == LGRP_NONE) {
9675 		return;
9676 	}
9677 	ASSERT(lgrp_id < NLGRPS_MAX);
9678 	if (svd->tr_policy_info.mem_lgrpid == lgrp_id) {
9679 		return;
9680 	}
9681 
9682 	/*
9683 	 * Use tryenter locking since we are locking as/seg and svntr hash
9684 	 * lock in reverse from syncrounous thread order.
9685 	 */
9686 	if (!AS_LOCK_TRYENTER(as, &as->a_lock, RW_READER)) {
9687 		SEGVN_TR_ADDSTAT(nolock);
9688 		if (segvn_lgrp_trthr_migrs_snpsht) {
9689 			segvn_lgrp_trthr_migrs_snpsht = 0;
9690 		}
9691 		return;
9692 	}
9693 	if (!SEGVN_LOCK_TRYENTER(seg->s_as, &svd->lock, RW_WRITER)) {
9694 		AS_LOCK_EXIT(as, &as->a_lock);
9695 		SEGVN_TR_ADDSTAT(nolock);
9696 		if (segvn_lgrp_trthr_migrs_snpsht) {
9697 			segvn_lgrp_trthr_migrs_snpsht = 0;
9698 		}
9699 		return;
9700 	}
9701 	size = seg->s_size;
9702 	if (svntrp->tr_amp[lgrp_id] == NULL) {
9703 		size_t trmem = atomic_add_long_nv(&segvn_textrepl_bytes, size);
9704 		if (trmem > segvn_textrepl_max_bytes) {
9705 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9706 			AS_LOCK_EXIT(as, &as->a_lock);
9707 			atomic_add_long(&segvn_textrepl_bytes, -size);
9708 			SEGVN_TR_ADDSTAT(normem);
9709 			return;
9710 		}
9711 		if (anon_try_resv_zone(size, NULL) == 0) {
9712 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9713 			AS_LOCK_EXIT(as, &as->a_lock);
9714 			atomic_add_long(&segvn_textrepl_bytes, -size);
9715 			SEGVN_TR_ADDSTAT(noanon);
9716 			return;
9717 		}
9718 		amp = anonmap_alloc(size, size, KM_NOSLEEP);
9719 		if (amp == NULL) {
9720 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9721 			AS_LOCK_EXIT(as, &as->a_lock);
9722 			atomic_add_long(&segvn_textrepl_bytes, -size);
9723 			anon_unresv_zone(size, NULL);
9724 			SEGVN_TR_ADDSTAT(nokmem);
9725 			return;
9726 		}
9727 		ASSERT(amp->refcnt == 1);
9728 		amp->a_szc = seg->s_szc;
9729 		svntrp->tr_amp[lgrp_id] = amp;
9730 	}
9731 	/*
9732 	 * We don't need to drop the bucket lock but here we give other
9733 	 * threads a chance.  svntr and svd can't be unlinked as long as
9734 	 * segment lock is held as a writer and AS held as well.  After we
9735 	 * retake bucket lock we'll continue from where we left. We'll be able
9736 	 * to reach the end of either list since new entries are always added
9737 	 * to the beginning of the lists.
9738 	 */
9739 	mutex_exit(&svntr_hashtab[hash].tr_lock);
9740 	hat_unload_callback(as->a_hat, seg->s_base, size, 0, NULL);
9741 	mutex_enter(&svntr_hashtab[hash].tr_lock);
9742 
9743 	ASSERT(svd->tr_state == SEGVN_TR_ON);
9744 	ASSERT(svd->amp != NULL);
9745 	ASSERT(svd->tr_policy_info.mem_policy == LGRP_MEM_POLICY_NEXT_SEG);
9746 	ASSERT(svd->tr_policy_info.mem_lgrpid != lgrp_id);
9747 	ASSERT(svd->amp != svntrp->tr_amp[lgrp_id]);
9748 
9749 	svd->tr_policy_info.mem_lgrpid = lgrp_id;
9750 	svd->amp = svntrp->tr_amp[lgrp_id];
9751 	p->p_tr_lgrpid = NLGRPS_MAX;
9752 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9753 	AS_LOCK_EXIT(as, &as->a_lock);
9754 
9755 	ASSERT(svntrp->tr_refcnt != 0);
9756 	ASSERT(svd->vp == svntrp->tr_vp);
9757 	ASSERT(svd->tr_policy_info.mem_lgrpid == lgrp_id);
9758 	ASSERT(svd->amp != NULL && svd->amp == svntrp->tr_amp[lgrp_id]);
9759 	ASSERT(svd->seg == seg);
9760 	ASSERT(svd->tr_state == SEGVN_TR_ON);
9761 
9762 	SEGVN_TR_ADDSTAT(asyncrepl);
9763 }
9764