xref: /titanic_52/usr/src/uts/common/vm/seg_spt.c (revision cb04b8739c50e3e6d12e89b790fa7b8d0d899865)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 #include <sys/param.h>
26 #include <sys/user.h>
27 #include <sys/mman.h>
28 #include <sys/kmem.h>
29 #include <sys/sysmacros.h>
30 #include <sys/cmn_err.h>
31 #include <sys/systm.h>
32 #include <sys/tuneable.h>
33 #include <vm/hat.h>
34 #include <vm/seg.h>
35 #include <vm/as.h>
36 #include <vm/anon.h>
37 #include <vm/page.h>
38 #include <sys/buf.h>
39 #include <sys/swap.h>
40 #include <sys/atomic.h>
41 #include <vm/seg_spt.h>
42 #include <sys/debug.h>
43 #include <sys/vtrace.h>
44 #include <sys/shm.h>
45 #include <sys/shm_impl.h>
46 #include <sys/lgrp.h>
47 #include <sys/vmsystm.h>
48 #include <sys/policy.h>
49 #include <sys/project.h>
50 #include <sys/tnf_probe.h>
51 #include <sys/zone.h>
52 
53 #define	SEGSPTADDR	(caddr_t)0x0
54 
55 /*
56  * # pages used for spt
57  */
58 size_t	spt_used;
59 
60 /*
61  * segspt_minfree is the memory left for system after ISM
62  * locked its pages; it is set up to 5% of availrmem in
63  * sptcreate when ISM is created.  ISM should not use more
64  * than ~90% of availrmem; if it does, then the performance
65  * of the system may decrease. Machines with large memories may
66  * be able to use up more memory for ISM so we set the default
67  * segspt_minfree to 5% (which gives ISM max 95% of availrmem.
68  * If somebody wants even more memory for ISM (risking hanging
69  * the system) they can patch the segspt_minfree to smaller number.
70  */
71 pgcnt_t segspt_minfree = 0;
72 
73 static int segspt_create(struct seg *seg, caddr_t argsp);
74 static int segspt_unmap(struct seg *seg, caddr_t raddr, size_t ssize);
75 static void segspt_free(struct seg *seg);
76 static void segspt_free_pages(struct seg *seg, caddr_t addr, size_t len);
77 static lgrp_mem_policy_info_t *segspt_getpolicy(struct seg *seg, caddr_t addr);
78 
79 static void
80 segspt_badop()
81 {
82 	panic("segspt_badop called");
83 	/*NOTREACHED*/
84 }
85 
86 #define	SEGSPT_BADOP(t)	(t(*)())segspt_badop
87 
88 struct seg_ops segspt_ops = {
89 	SEGSPT_BADOP(int),		/* dup */
90 	segspt_unmap,
91 	segspt_free,
92 	SEGSPT_BADOP(int),		/* fault */
93 	SEGSPT_BADOP(faultcode_t),	/* faulta */
94 	SEGSPT_BADOP(int),		/* setprot */
95 	SEGSPT_BADOP(int),		/* checkprot */
96 	SEGSPT_BADOP(int),		/* kluster */
97 	SEGSPT_BADOP(size_t),		/* swapout */
98 	SEGSPT_BADOP(int),		/* sync */
99 	SEGSPT_BADOP(size_t),		/* incore */
100 	SEGSPT_BADOP(int),		/* lockop */
101 	SEGSPT_BADOP(int),		/* getprot */
102 	SEGSPT_BADOP(u_offset_t), 	/* getoffset */
103 	SEGSPT_BADOP(int),		/* gettype */
104 	SEGSPT_BADOP(int),		/* getvp */
105 	SEGSPT_BADOP(int),		/* advise */
106 	SEGSPT_BADOP(void),		/* dump */
107 	SEGSPT_BADOP(int),		/* pagelock */
108 	SEGSPT_BADOP(int),		/* setpgsz */
109 	SEGSPT_BADOP(int),		/* getmemid */
110 	segspt_getpolicy,		/* getpolicy */
111 	SEGSPT_BADOP(int),		/* capable */
112 };
113 
114 static int segspt_shmdup(struct seg *seg, struct seg *newseg);
115 static int segspt_shmunmap(struct seg *seg, caddr_t raddr, size_t ssize);
116 static void segspt_shmfree(struct seg *seg);
117 static faultcode_t segspt_shmfault(struct hat *hat, struct seg *seg,
118 		caddr_t addr, size_t len, enum fault_type type, enum seg_rw rw);
119 static faultcode_t segspt_shmfaulta(struct seg *seg, caddr_t addr);
120 static int segspt_shmsetprot(register struct seg *seg, register caddr_t addr,
121 			register size_t len, register uint_t prot);
122 static int segspt_shmcheckprot(struct seg *seg, caddr_t addr, size_t size,
123 			uint_t prot);
124 static int	segspt_shmkluster(struct seg *seg, caddr_t addr, ssize_t delta);
125 static size_t	segspt_shmswapout(struct seg *seg);
126 static size_t segspt_shmincore(struct seg *seg, caddr_t addr, size_t len,
127 			register char *vec);
128 static int segspt_shmsync(struct seg *seg, register caddr_t addr, size_t len,
129 			int attr, uint_t flags);
130 static int segspt_shmlockop(struct seg *seg, caddr_t addr, size_t len,
131 			int attr, int op, ulong_t *lockmap, size_t pos);
132 static int segspt_shmgetprot(struct seg *seg, caddr_t addr, size_t len,
133 			uint_t *protv);
134 static u_offset_t segspt_shmgetoffset(struct seg *seg, caddr_t addr);
135 static int segspt_shmgettype(struct seg *seg, caddr_t addr);
136 static int segspt_shmgetvp(struct seg *seg, caddr_t addr, struct vnode **vpp);
137 static int segspt_shmadvise(struct seg *seg, caddr_t addr, size_t len,
138 			uint_t behav);
139 static void segspt_shmdump(struct seg *seg);
140 static int segspt_shmpagelock(struct seg *, caddr_t, size_t,
141 			struct page ***, enum lock_type, enum seg_rw);
142 static int segspt_shmsetpgsz(struct seg *, caddr_t, size_t, uint_t);
143 static int segspt_shmgetmemid(struct seg *, caddr_t, memid_t *);
144 static lgrp_mem_policy_info_t *segspt_shmgetpolicy(struct seg *, caddr_t);
145 static int segspt_shmcapable(struct seg *, segcapability_t);
146 
147 struct seg_ops segspt_shmops = {
148 	segspt_shmdup,
149 	segspt_shmunmap,
150 	segspt_shmfree,
151 	segspt_shmfault,
152 	segspt_shmfaulta,
153 	segspt_shmsetprot,
154 	segspt_shmcheckprot,
155 	segspt_shmkluster,
156 	segspt_shmswapout,
157 	segspt_shmsync,
158 	segspt_shmincore,
159 	segspt_shmlockop,
160 	segspt_shmgetprot,
161 	segspt_shmgetoffset,
162 	segspt_shmgettype,
163 	segspt_shmgetvp,
164 	segspt_shmadvise,	/* advise */
165 	segspt_shmdump,
166 	segspt_shmpagelock,
167 	segspt_shmsetpgsz,
168 	segspt_shmgetmemid,
169 	segspt_shmgetpolicy,
170 	segspt_shmcapable,
171 };
172 
173 static void segspt_purge(struct seg *seg);
174 static int segspt_reclaim(void *, caddr_t, size_t, struct page **,
175 		enum seg_rw, int);
176 static int spt_anon_getpages(struct seg *seg, caddr_t addr, size_t len,
177 		page_t **ppa);
178 
179 
180 
181 /*ARGSUSED*/
182 int
183 sptcreate(size_t size, struct seg **sptseg, struct anon_map *amp,
184 	uint_t prot, uint_t flags, uint_t share_szc)
185 {
186 	int 	err;
187 	struct  as	*newas;
188 	struct	segspt_crargs sptcargs;
189 
190 #ifdef DEBUG
191 	TNF_PROBE_1(sptcreate, "spt", /* CSTYLED */,
192 			tnf_ulong, size, size );
193 #endif
194 	if (segspt_minfree == 0)	/* leave min 5% of availrmem for */
195 		segspt_minfree = availrmem/20;	/* for the system */
196 
197 	if (!hat_supported(HAT_SHARED_PT, (void *)0))
198 		return (EINVAL);
199 
200 	/*
201 	 * get a new as for this shared memory segment
202 	 */
203 	newas = as_alloc();
204 	newas->a_proc = NULL;
205 	sptcargs.amp = amp;
206 	sptcargs.prot = prot;
207 	sptcargs.flags = flags;
208 	sptcargs.szc = share_szc;
209 	/*
210 	 * create a shared page table (spt) segment
211 	 */
212 
213 	if (err = as_map(newas, SEGSPTADDR, size, segspt_create, &sptcargs)) {
214 		as_free(newas);
215 		return (err);
216 	}
217 	*sptseg = sptcargs.seg_spt;
218 	return (0);
219 }
220 
221 void
222 sptdestroy(struct as *as, struct anon_map *amp)
223 {
224 
225 #ifdef DEBUG
226 	TNF_PROBE_0(sptdestroy, "spt", /* CSTYLED */);
227 #endif
228 	(void) as_unmap(as, SEGSPTADDR, amp->size);
229 	as_free(as);
230 }
231 
232 /*
233  * called from seg_free().
234  * free (i.e., unlock, unmap, return to free list)
235  *  all the pages in the given seg.
236  */
237 void
238 segspt_free(struct seg	*seg)
239 {
240 	struct spt_data *sptd = (struct spt_data *)seg->s_data;
241 
242 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
243 
244 	if (sptd != NULL) {
245 		if (sptd->spt_realsize)
246 			segspt_free_pages(seg, seg->s_base, sptd->spt_realsize);
247 
248 	if (sptd->spt_ppa_lckcnt)
249 		kmem_free(sptd->spt_ppa_lckcnt,
250 		    sizeof (*sptd->spt_ppa_lckcnt)
251 		    * btopr(sptd->spt_amp->size));
252 		kmem_free(sptd->spt_vp, sizeof (*sptd->spt_vp));
253 		cv_destroy(&sptd->spt_cv);
254 		mutex_destroy(&sptd->spt_lock);
255 		kmem_free(sptd, sizeof (*sptd));
256 	}
257 }
258 
259 /*ARGSUSED*/
260 static int
261 segspt_shmsync(struct seg *seg, caddr_t addr, size_t len, int attr,
262 	uint_t flags)
263 {
264 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
265 
266 	return (0);
267 }
268 
269 /*ARGSUSED*/
270 static size_t
271 segspt_shmincore(struct seg *seg, caddr_t addr, size_t len, char *vec)
272 {
273 	caddr_t	eo_seg;
274 	pgcnt_t	npages;
275 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
276 	struct seg	*sptseg;
277 	struct spt_data *sptd;
278 
279 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
280 #ifdef lint
281 	seg = seg;
282 #endif
283 	sptseg = shmd->shm_sptseg;
284 	sptd = sptseg->s_data;
285 
286 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
287 		eo_seg = addr + len;
288 		while (addr < eo_seg) {
289 			/* page exists, and it's locked. */
290 			*vec++ = SEG_PAGE_INCORE | SEG_PAGE_LOCKED |
291 			    SEG_PAGE_ANON;
292 			addr += PAGESIZE;
293 		}
294 		return (len);
295 	} else {
296 		struct  anon_map *amp = shmd->shm_amp;
297 		struct  anon	*ap;
298 		page_t		*pp;
299 		pgcnt_t 	anon_index;
300 		struct vnode 	*vp;
301 		u_offset_t 	off;
302 		ulong_t		i;
303 		int		ret;
304 		anon_sync_obj_t	cookie;
305 
306 		addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
307 		anon_index = seg_page(seg, addr);
308 		npages = btopr(len);
309 		if (anon_index + npages > btopr(shmd->shm_amp->size)) {
310 			return (EINVAL);
311 		}
312 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
313 		for (i = 0; i < npages; i++, anon_index++) {
314 			ret = 0;
315 			anon_array_enter(amp, anon_index, &cookie);
316 			ap = anon_get_ptr(amp->ahp, anon_index);
317 			if (ap != NULL) {
318 				swap_xlate(ap, &vp, &off);
319 				anon_array_exit(&cookie);
320 				pp = page_lookup_nowait(vp, off, SE_SHARED);
321 				if (pp != NULL) {
322 					ret |= SEG_PAGE_INCORE | SEG_PAGE_ANON;
323 					page_unlock(pp);
324 				}
325 			} else {
326 				anon_array_exit(&cookie);
327 			}
328 			if (shmd->shm_vpage[anon_index] & DISM_PG_LOCKED) {
329 				ret |= SEG_PAGE_LOCKED;
330 			}
331 			*vec++ = (char)ret;
332 		}
333 		ANON_LOCK_EXIT(&amp->a_rwlock);
334 		return (len);
335 	}
336 }
337 
338 static int
339 segspt_unmap(struct seg *seg, caddr_t raddr, size_t ssize)
340 {
341 	size_t share_size;
342 
343 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
344 
345 	/*
346 	 * seg.s_size may have been rounded up to the largest page size
347 	 * in shmat().
348 	 * XXX This should be cleanedup. sptdestroy should take a length
349 	 * argument which should be the same as sptcreate. Then
350 	 * this rounding would not be needed (or is done in shm.c)
351 	 * Only the check for full segment will be needed.
352 	 *
353 	 * XXX -- shouldn't raddr == 0 always? These tests don't seem
354 	 * to be useful at all.
355 	 */
356 	share_size = page_get_pagesize(seg->s_szc);
357 	ssize = P2ROUNDUP(ssize, share_size);
358 
359 	if (raddr == seg->s_base && ssize == seg->s_size) {
360 		seg_free(seg);
361 		return (0);
362 	} else
363 		return (EINVAL);
364 }
365 
366 int
367 segspt_create(struct seg *seg, caddr_t argsp)
368 {
369 	int		err;
370 	caddr_t		addr = seg->s_base;
371 	struct spt_data *sptd;
372 	struct 	segspt_crargs *sptcargs = (struct segspt_crargs *)argsp;
373 	struct anon_map *amp = sptcargs->amp;
374 	struct kshmid	*sp = amp->a_sp;
375 	struct	cred	*cred = CRED();
376 	ulong_t		i, j, anon_index = 0;
377 	pgcnt_t		npages = btopr(amp->size);
378 	struct vnode	*vp;
379 	page_t		**ppa;
380 	uint_t		hat_flags;
381 	size_t		pgsz;
382 	pgcnt_t		pgcnt;
383 	caddr_t		a;
384 	pgcnt_t		pidx;
385 	size_t		sz;
386 	proc_t		*procp = curproc;
387 	rctl_qty_t	lockedbytes = 0;
388 	kproject_t	*proj;
389 
390 	/*
391 	 * We are holding the a_lock on the underlying dummy as,
392 	 * so we can make calls to the HAT layer.
393 	 */
394 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
395 	ASSERT(sp != NULL);
396 
397 #ifdef DEBUG
398 	TNF_PROBE_2(segspt_create, "spt", /* CSTYLED */,
399 	    tnf_opaque, addr, addr, tnf_ulong, len, seg->s_size);
400 #endif
401 	if ((sptcargs->flags & SHM_PAGEABLE) == 0) {
402 		if (err = anon_swap_adjust(npages))
403 			return (err);
404 	}
405 	err = ENOMEM;
406 
407 	if ((sptd = kmem_zalloc(sizeof (*sptd), KM_NOSLEEP)) == NULL)
408 		goto out1;
409 
410 	if ((sptcargs->flags & SHM_PAGEABLE) == 0) {
411 		if ((ppa = kmem_zalloc(((sizeof (page_t *)) * npages),
412 		    KM_NOSLEEP)) == NULL)
413 			goto out2;
414 	}
415 
416 	mutex_init(&sptd->spt_lock, NULL, MUTEX_DEFAULT, NULL);
417 
418 	if ((vp = kmem_zalloc(sizeof (*vp), KM_NOSLEEP)) == NULL)
419 		goto out3;
420 
421 	seg->s_ops = &segspt_ops;
422 	sptd->spt_vp = vp;
423 	sptd->spt_amp = amp;
424 	sptd->spt_prot = sptcargs->prot;
425 	sptd->spt_flags = sptcargs->flags;
426 	seg->s_data = (caddr_t)sptd;
427 	sptd->spt_ppa = NULL;
428 	sptd->spt_ppa_lckcnt = NULL;
429 	seg->s_szc = sptcargs->szc;
430 	cv_init(&sptd->spt_cv, NULL, CV_DEFAULT, NULL);
431 	sptd->spt_gen = 0;
432 
433 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
434 	if (seg->s_szc > amp->a_szc) {
435 		amp->a_szc = seg->s_szc;
436 	}
437 	ANON_LOCK_EXIT(&amp->a_rwlock);
438 
439 	/*
440 	 * Set policy to affect initial allocation of pages in
441 	 * anon_map_createpages()
442 	 */
443 	(void) lgrp_shm_policy_set(LGRP_MEM_POLICY_DEFAULT, amp, anon_index,
444 	    NULL, 0, ptob(npages));
445 
446 	if (sptcargs->flags & SHM_PAGEABLE) {
447 		size_t  share_sz;
448 		pgcnt_t new_npgs, more_pgs;
449 		struct anon_hdr *nahp;
450 		zone_t *zone;
451 
452 		share_sz = page_get_pagesize(seg->s_szc);
453 		if (!IS_P2ALIGNED(amp->size, share_sz)) {
454 			/*
455 			 * We are rounding up the size of the anon array
456 			 * on 4 M boundary because we always create 4 M
457 			 * of page(s) when locking, faulting pages and we
458 			 * don't have to check for all corner cases e.g.
459 			 * if there is enough space to allocate 4 M
460 			 * page.
461 			 */
462 			new_npgs = btop(P2ROUNDUP(amp->size, share_sz));
463 			more_pgs = new_npgs - npages;
464 
465 			/*
466 			 * The zone will never be NULL, as a fully created
467 			 * shm always has an owning zone.
468 			 */
469 			zone = sp->shm_perm.ipc_zone;
470 			ASSERT(zone != NULL);
471 			if (anon_resv_zone(ptob(more_pgs), zone) == 0) {
472 				err = ENOMEM;
473 				goto out4;
474 			}
475 
476 			nahp = anon_create(new_npgs, ANON_SLEEP);
477 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
478 			(void) anon_copy_ptr(amp->ahp, 0, nahp, 0, npages,
479 			    ANON_SLEEP);
480 			anon_release(amp->ahp, npages);
481 			amp->ahp = nahp;
482 			ASSERT(amp->swresv == ptob(npages));
483 			amp->swresv = amp->size = ptob(new_npgs);
484 			ANON_LOCK_EXIT(&amp->a_rwlock);
485 			npages = new_npgs;
486 		}
487 
488 		sptd->spt_ppa_lckcnt = kmem_zalloc(npages *
489 		    sizeof (*sptd->spt_ppa_lckcnt), KM_SLEEP);
490 		sptd->spt_pcachecnt = 0;
491 		sptd->spt_realsize = ptob(npages);
492 		sptcargs->seg_spt = seg;
493 		return (0);
494 	}
495 
496 	/*
497 	 * get array of pages for each anon slot in amp
498 	 */
499 	if ((err = anon_map_createpages(amp, anon_index, ptob(npages), ppa,
500 	    seg, addr, S_CREATE, cred)) != 0)
501 		goto out4;
502 
503 	mutex_enter(&sp->shm_mlock);
504 
505 	/* May be partially locked, so, count bytes to charge for locking */
506 	for (i = 0; i < npages; i++)
507 		if (ppa[i]->p_lckcnt == 0)
508 			lockedbytes += PAGESIZE;
509 
510 	proj = sp->shm_perm.ipc_proj;
511 
512 	if (lockedbytes > 0) {
513 		mutex_enter(&procp->p_lock);
514 		if (rctl_incr_locked_mem(procp, proj, lockedbytes, 0)) {
515 			mutex_exit(&procp->p_lock);
516 			mutex_exit(&sp->shm_mlock);
517 			for (i = 0; i < npages; i++)
518 				page_unlock(ppa[i]);
519 			err = ENOMEM;
520 			goto out4;
521 		}
522 		mutex_exit(&procp->p_lock);
523 	}
524 
525 	/*
526 	 * addr is initial address corresponding to the first page on ppa list
527 	 */
528 	for (i = 0; i < npages; i++) {
529 		/* attempt to lock all pages */
530 		if (page_pp_lock(ppa[i], 0, 1) == 0) {
531 			/*
532 			 * if unable to lock any page, unlock all
533 			 * of them and return error
534 			 */
535 			for (j = 0; j < i; j++)
536 				page_pp_unlock(ppa[j], 0, 1);
537 			for (i = 0; i < npages; i++)
538 				page_unlock(ppa[i]);
539 			rctl_decr_locked_mem(NULL, proj, lockedbytes, 0);
540 			mutex_exit(&sp->shm_mlock);
541 			err = ENOMEM;
542 			goto out4;
543 		}
544 	}
545 	mutex_exit(&sp->shm_mlock);
546 
547 	/*
548 	 * Some platforms assume that ISM mappings are HAT_LOAD_LOCK
549 	 * for the entire life of the segment. For example platforms
550 	 * that do not support Dynamic Reconfiguration.
551 	 */
552 	hat_flags = HAT_LOAD_SHARE;
553 	if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP, NULL))
554 		hat_flags |= HAT_LOAD_LOCK;
555 
556 	/*
557 	 * Load translations one lare page at a time
558 	 * to make sure we don't create mappings bigger than
559 	 * segment's size code in case underlying pages
560 	 * are shared with segvn's segment that uses bigger
561 	 * size code than we do.
562 	 */
563 	pgsz = page_get_pagesize(seg->s_szc);
564 	pgcnt = page_get_pagecnt(seg->s_szc);
565 	for (a = addr, pidx = 0; pidx < npages; a += pgsz, pidx += pgcnt) {
566 		sz = MIN(pgsz, ptob(npages - pidx));
567 		hat_memload_array(seg->s_as->a_hat, a, sz,
568 		    &ppa[pidx], sptd->spt_prot, hat_flags);
569 	}
570 
571 	/*
572 	 * On platforms that do not support HAT_DYNAMIC_ISM_UNMAP,
573 	 * we will leave the pages locked SE_SHARED for the life
574 	 * of the ISM segment. This will prevent any calls to
575 	 * hat_pageunload() on this ISM segment for those platforms.
576 	 */
577 	if (!(hat_flags & HAT_LOAD_LOCK)) {
578 		/*
579 		 * On platforms that support HAT_DYNAMIC_ISM_UNMAP,
580 		 * we no longer need to hold the SE_SHARED lock on the pages,
581 		 * since L_PAGELOCK and F_SOFTLOCK calls will grab the
582 		 * SE_SHARED lock on the pages as necessary.
583 		 */
584 		for (i = 0; i < npages; i++)
585 			page_unlock(ppa[i]);
586 	}
587 	sptd->spt_pcachecnt = 0;
588 	kmem_free(ppa, ((sizeof (page_t *)) * npages));
589 	sptd->spt_realsize = ptob(npages);
590 	atomic_add_long(&spt_used, npages);
591 	sptcargs->seg_spt = seg;
592 	return (0);
593 
594 out4:
595 	seg->s_data = NULL;
596 	kmem_free(vp, sizeof (*vp));
597 	cv_destroy(&sptd->spt_cv);
598 out3:
599 	mutex_destroy(&sptd->spt_lock);
600 	if ((sptcargs->flags & SHM_PAGEABLE) == 0)
601 		kmem_free(ppa, (sizeof (*ppa) * npages));
602 out2:
603 	kmem_free(sptd, sizeof (*sptd));
604 out1:
605 	if ((sptcargs->flags & SHM_PAGEABLE) == 0)
606 		anon_swap_restore(npages);
607 	return (err);
608 }
609 
610 /*ARGSUSED*/
611 void
612 segspt_free_pages(struct seg *seg, caddr_t addr, size_t len)
613 {
614 	struct page 	*pp;
615 	struct spt_data *sptd = (struct spt_data *)seg->s_data;
616 	pgcnt_t		npages;
617 	ulong_t		anon_idx;
618 	struct anon_map *amp;
619 	struct anon 	*ap;
620 	struct vnode 	*vp;
621 	u_offset_t 	off;
622 	uint_t		hat_flags;
623 	int		root = 0;
624 	pgcnt_t		pgs, curnpgs = 0;
625 	page_t		*rootpp;
626 	rctl_qty_t	unlocked_bytes = 0;
627 	kproject_t	*proj;
628 	kshmid_t	*sp;
629 
630 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
631 
632 	len = P2ROUNDUP(len, PAGESIZE);
633 
634 	npages = btop(len);
635 
636 	hat_flags = HAT_UNLOAD_UNLOCK | HAT_UNLOAD_UNMAP;
637 	if ((hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) ||
638 	    (sptd->spt_flags & SHM_PAGEABLE)) {
639 		hat_flags = HAT_UNLOAD_UNMAP;
640 	}
641 
642 	hat_unload(seg->s_as->a_hat, addr, len, hat_flags);
643 
644 	amp = sptd->spt_amp;
645 	if (sptd->spt_flags & SHM_PAGEABLE)
646 		npages = btop(amp->size);
647 
648 	ASSERT(amp != NULL);
649 
650 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
651 		sp = amp->a_sp;
652 		proj = sp->shm_perm.ipc_proj;
653 		mutex_enter(&sp->shm_mlock);
654 	}
655 	for (anon_idx = 0; anon_idx < npages; anon_idx++) {
656 		if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
657 			if ((ap = anon_get_ptr(amp->ahp, anon_idx)) == NULL) {
658 				panic("segspt_free_pages: null app");
659 				/*NOTREACHED*/
660 			}
661 		} else {
662 			if ((ap = anon_get_next_ptr(amp->ahp, &anon_idx))
663 			    == NULL)
664 				continue;
665 		}
666 		ASSERT(ANON_ISBUSY(anon_get_slot(amp->ahp, anon_idx)) == 0);
667 		swap_xlate(ap, &vp, &off);
668 
669 		/*
670 		 * If this platform supports HAT_DYNAMIC_ISM_UNMAP,
671 		 * the pages won't be having SE_SHARED lock at this
672 		 * point.
673 		 *
674 		 * On platforms that do not support HAT_DYNAMIC_ISM_UNMAP,
675 		 * the pages are still held SE_SHARED locked from the
676 		 * original segspt_create()
677 		 *
678 		 * Our goal is to get SE_EXCL lock on each page, remove
679 		 * permanent lock on it and invalidate the page.
680 		 */
681 		if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
682 			if (hat_flags == HAT_UNLOAD_UNMAP)
683 				pp = page_lookup(vp, off, SE_EXCL);
684 			else {
685 				if ((pp = page_find(vp, off)) == NULL) {
686 					panic("segspt_free_pages: "
687 					    "page not locked");
688 					/*NOTREACHED*/
689 				}
690 				if (!page_tryupgrade(pp)) {
691 					page_unlock(pp);
692 					pp = page_lookup(vp, off, SE_EXCL);
693 				}
694 			}
695 			if (pp == NULL) {
696 				panic("segspt_free_pages: "
697 				    "page not in the system");
698 				/*NOTREACHED*/
699 			}
700 			ASSERT(pp->p_lckcnt > 0);
701 			page_pp_unlock(pp, 0, 1);
702 			if (pp->p_lckcnt == 0)
703 				unlocked_bytes += PAGESIZE;
704 		} else {
705 			if ((pp = page_lookup(vp, off, SE_EXCL)) == NULL)
706 				continue;
707 		}
708 		/*
709 		 * It's logical to invalidate the pages here as in most cases
710 		 * these were created by segspt.
711 		 */
712 		if (pp->p_szc != 0) {
713 			if (root == 0) {
714 				ASSERT(curnpgs == 0);
715 				root = 1;
716 				rootpp = pp;
717 				pgs = curnpgs = page_get_pagecnt(pp->p_szc);
718 				ASSERT(pgs > 1);
719 				ASSERT(IS_P2ALIGNED(pgs, pgs));
720 				ASSERT(!(page_pptonum(pp) & (pgs - 1)));
721 				curnpgs--;
722 			} else if ((page_pptonum(pp) & (pgs - 1)) == pgs - 1) {
723 				ASSERT(curnpgs == 1);
724 				ASSERT(page_pptonum(pp) ==
725 				    page_pptonum(rootpp) + (pgs - 1));
726 				page_destroy_pages(rootpp);
727 				root = 0;
728 				curnpgs = 0;
729 			} else {
730 				ASSERT(curnpgs > 1);
731 				ASSERT(page_pptonum(pp) ==
732 				    page_pptonum(rootpp) + (pgs - curnpgs));
733 				curnpgs--;
734 			}
735 		} else {
736 			if (root != 0 || curnpgs != 0) {
737 				panic("segspt_free_pages: bad large page");
738 				/*NOTREACHED*/
739 			}
740 			/*
741 			 * Before destroying the pages, we need to take care
742 			 * of the rctl locked memory accounting. For that
743 			 * we need to calculte the unlocked_bytes.
744 			 */
745 			if (pp->p_lckcnt > 0)
746 				unlocked_bytes += PAGESIZE;
747 			/*LINTED: constant in conditional context */
748 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
749 		}
750 	}
751 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
752 		if (unlocked_bytes > 0)
753 			rctl_decr_locked_mem(NULL, proj, unlocked_bytes, 0);
754 		mutex_exit(&sp->shm_mlock);
755 	}
756 	if (root != 0 || curnpgs != 0) {
757 		panic("segspt_free_pages: bad large page");
758 		/*NOTREACHED*/
759 	}
760 
761 	/*
762 	 * mark that pages have been released
763 	 */
764 	sptd->spt_realsize = 0;
765 
766 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
767 		atomic_add_long(&spt_used, -npages);
768 		anon_swap_restore(npages);
769 	}
770 }
771 
772 /*
773  * Get memory allocation policy info for specified address in given segment
774  */
775 static lgrp_mem_policy_info_t *
776 segspt_getpolicy(struct seg *seg, caddr_t addr)
777 {
778 	struct anon_map		*amp;
779 	ulong_t			anon_index;
780 	lgrp_mem_policy_info_t	*policy_info;
781 	struct spt_data		*spt_data;
782 
783 	ASSERT(seg != NULL);
784 
785 	/*
786 	 * Get anon_map from segspt
787 	 *
788 	 * Assume that no lock needs to be held on anon_map, since
789 	 * it should be protected by its reference count which must be
790 	 * nonzero for an existing segment
791 	 * Need to grab readers lock on policy tree though
792 	 */
793 	spt_data = (struct spt_data *)seg->s_data;
794 	if (spt_data == NULL)
795 		return (NULL);
796 	amp = spt_data->spt_amp;
797 	ASSERT(amp->refcnt != 0);
798 
799 	/*
800 	 * Get policy info
801 	 *
802 	 * Assume starting anon index of 0
803 	 */
804 	anon_index = seg_page(seg, addr);
805 	policy_info = lgrp_shm_policy_get(amp, anon_index, NULL, 0);
806 
807 	return (policy_info);
808 }
809 
810 /*
811  * DISM only.
812  * Return locked pages over a given range.
813  *
814  * We will cache all DISM locked pages and save the pplist for the
815  * entire segment in the ppa field of the underlying DISM segment structure.
816  * Later, during a call to segspt_reclaim() we will use this ppa array
817  * to page_unlock() all of the pages and then we will free this ppa list.
818  */
819 /*ARGSUSED*/
820 static int
821 segspt_dismpagelock(struct seg *seg, caddr_t addr, size_t len,
822     struct page ***ppp, enum lock_type type, enum seg_rw rw)
823 {
824 	struct  shm_data *shmd = (struct shm_data *)seg->s_data;
825 	struct  seg	*sptseg = shmd->shm_sptseg;
826 	struct  spt_data *sptd = sptseg->s_data;
827 	pgcnt_t pg_idx, npages, tot_npages, npgs;
828 	struct  page **pplist, **pl, **ppa, *pp;
829 	struct  anon_map *amp;
830 	spgcnt_t	an_idx;
831 	int 	ret = ENOTSUP;
832 	uint_t	pl_built = 0;
833 	struct  anon *ap;
834 	struct  vnode *vp;
835 	u_offset_t off;
836 	pgcnt_t claim_availrmem = 0;
837 	uint_t	szc;
838 
839 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
840 	ASSERT(type == L_PAGELOCK || type == L_PAGEUNLOCK);
841 
842 	/*
843 	 * We want to lock/unlock the entire ISM segment. Therefore,
844 	 * we will be using the underlying sptseg and it's base address
845 	 * and length for the caching arguments.
846 	 */
847 	ASSERT(sptseg);
848 	ASSERT(sptd);
849 
850 	pg_idx = seg_page(seg, addr);
851 	npages = btopr(len);
852 
853 	/*
854 	 * check if the request is larger than number of pages covered
855 	 * by amp
856 	 */
857 	if (pg_idx + npages > btopr(sptd->spt_amp->size)) {
858 		*ppp = NULL;
859 		return (ENOTSUP);
860 	}
861 
862 	if (type == L_PAGEUNLOCK) {
863 		ASSERT(sptd->spt_ppa != NULL);
864 
865 		seg_pinactive(seg, NULL, seg->s_base, sptd->spt_amp->size,
866 		    sptd->spt_ppa, S_WRITE, SEGP_FORCE_WIRED, segspt_reclaim);
867 
868 		/*
869 		 * If someone is blocked while unmapping, we purge
870 		 * segment page cache and thus reclaim pplist synchronously
871 		 * without waiting for seg_pasync_thread. This speeds up
872 		 * unmapping in cases where munmap(2) is called, while
873 		 * raw async i/o is still in progress or where a thread
874 		 * exits on data fault in a multithreaded application.
875 		 */
876 		if ((sptd->spt_flags & DISM_PPA_CHANGED) ||
877 		    (AS_ISUNMAPWAIT(seg->s_as) &&
878 		    shmd->shm_softlockcnt > 0)) {
879 			segspt_purge(seg);
880 		}
881 		return (0);
882 	}
883 
884 	/* The L_PAGELOCK case ... */
885 
886 	if (sptd->spt_flags & DISM_PPA_CHANGED) {
887 		segspt_purge(seg);
888 		/*
889 		 * for DISM ppa needs to be rebuild since
890 		 * number of locked pages could be changed
891 		 */
892 		*ppp = NULL;
893 		return (ENOTSUP);
894 	}
895 
896 	/*
897 	 * First try to find pages in segment page cache, without
898 	 * holding the segment lock.
899 	 */
900 	pplist = seg_plookup(seg, NULL, seg->s_base, sptd->spt_amp->size,
901 	    S_WRITE, SEGP_FORCE_WIRED);
902 	if (pplist != NULL) {
903 		ASSERT(sptd->spt_ppa != NULL);
904 		ASSERT(sptd->spt_ppa == pplist);
905 		ppa = sptd->spt_ppa;
906 		for (an_idx = pg_idx; an_idx < pg_idx + npages; ) {
907 			if (ppa[an_idx] == NULL) {
908 				seg_pinactive(seg, NULL, seg->s_base,
909 				    sptd->spt_amp->size, ppa,
910 				    S_WRITE, SEGP_FORCE_WIRED, segspt_reclaim);
911 				*ppp = NULL;
912 				return (ENOTSUP);
913 			}
914 			if ((szc = ppa[an_idx]->p_szc) != 0) {
915 				npgs = page_get_pagecnt(szc);
916 				an_idx = P2ROUNDUP(an_idx + 1, npgs);
917 			} else {
918 				an_idx++;
919 			}
920 		}
921 		/*
922 		 * Since we cache the entire DISM segment, we want to
923 		 * set ppp to point to the first slot that corresponds
924 		 * to the requested addr, i.e. pg_idx.
925 		 */
926 		*ppp = &(sptd->spt_ppa[pg_idx]);
927 		return (0);
928 	}
929 
930 	mutex_enter(&sptd->spt_lock);
931 	/*
932 	 * try to find pages in segment page cache with mutex
933 	 */
934 	pplist = seg_plookup(seg, NULL, seg->s_base, sptd->spt_amp->size,
935 	    S_WRITE, SEGP_FORCE_WIRED);
936 	if (pplist != NULL) {
937 		ASSERT(sptd->spt_ppa != NULL);
938 		ASSERT(sptd->spt_ppa == pplist);
939 		ppa = sptd->spt_ppa;
940 		for (an_idx = pg_idx; an_idx < pg_idx + npages; ) {
941 			if (ppa[an_idx] == NULL) {
942 				mutex_exit(&sptd->spt_lock);
943 				seg_pinactive(seg, NULL, seg->s_base,
944 				    sptd->spt_amp->size, ppa,
945 				    S_WRITE, SEGP_FORCE_WIRED, segspt_reclaim);
946 				*ppp = NULL;
947 				return (ENOTSUP);
948 			}
949 			if ((szc = ppa[an_idx]->p_szc) != 0) {
950 				npgs = page_get_pagecnt(szc);
951 				an_idx = P2ROUNDUP(an_idx + 1, npgs);
952 			} else {
953 				an_idx++;
954 			}
955 		}
956 		/*
957 		 * Since we cache the entire DISM segment, we want to
958 		 * set ppp to point to the first slot that corresponds
959 		 * to the requested addr, i.e. pg_idx.
960 		 */
961 		mutex_exit(&sptd->spt_lock);
962 		*ppp = &(sptd->spt_ppa[pg_idx]);
963 		return (0);
964 	}
965 	if (seg_pinsert_check(seg, NULL, seg->s_base, sptd->spt_amp->size,
966 	    SEGP_FORCE_WIRED) == SEGP_FAIL) {
967 		mutex_exit(&sptd->spt_lock);
968 		*ppp = NULL;
969 		return (ENOTSUP);
970 	}
971 
972 	/*
973 	 * No need to worry about protections because DISM pages are always rw.
974 	 */
975 	pl = pplist = NULL;
976 	amp = sptd->spt_amp;
977 
978 	/*
979 	 * Do we need to build the ppa array?
980 	 */
981 	if (sptd->spt_ppa == NULL) {
982 		pgcnt_t lpg_cnt = 0;
983 
984 		pl_built = 1;
985 		tot_npages = btopr(sptd->spt_amp->size);
986 
987 		ASSERT(sptd->spt_pcachecnt == 0);
988 		pplist = kmem_zalloc(sizeof (page_t *) * tot_npages, KM_SLEEP);
989 		pl = pplist;
990 
991 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
992 		for (an_idx = 0; an_idx < tot_npages; ) {
993 			ap = anon_get_ptr(amp->ahp, an_idx);
994 			/*
995 			 * Cache only mlocked pages. For large pages
996 			 * if one (constituent) page is mlocked
997 			 * all pages for that large page
998 			 * are cached also. This is for quick
999 			 * lookups of ppa array;
1000 			 */
1001 			if ((ap != NULL) && (lpg_cnt != 0 ||
1002 			    (sptd->spt_ppa_lckcnt[an_idx] != 0))) {
1003 
1004 				swap_xlate(ap, &vp, &off);
1005 				pp = page_lookup(vp, off, SE_SHARED);
1006 				ASSERT(pp != NULL);
1007 				if (lpg_cnt == 0) {
1008 					lpg_cnt++;
1009 					/*
1010 					 * For a small page, we are done --
1011 					 * lpg_count is reset to 0 below.
1012 					 *
1013 					 * For a large page, we are guaranteed
1014 					 * to find the anon structures of all
1015 					 * constituent pages and a non-zero
1016 					 * lpg_cnt ensures that we don't test
1017 					 * for mlock for these. We are done
1018 					 * when lpg_count reaches (npgs + 1).
1019 					 * If we are not the first constituent
1020 					 * page, restart at the first one.
1021 					 */
1022 					npgs = page_get_pagecnt(pp->p_szc);
1023 					if (!IS_P2ALIGNED(an_idx, npgs)) {
1024 						an_idx = P2ALIGN(an_idx, npgs);
1025 						page_unlock(pp);
1026 						continue;
1027 					}
1028 				}
1029 				if (++lpg_cnt > npgs)
1030 					lpg_cnt = 0;
1031 
1032 				/*
1033 				 * availrmem is decremented only
1034 				 * for unlocked pages
1035 				 */
1036 				if (sptd->spt_ppa_lckcnt[an_idx] == 0)
1037 					claim_availrmem++;
1038 				pplist[an_idx] = pp;
1039 			}
1040 			an_idx++;
1041 		}
1042 		ANON_LOCK_EXIT(&amp->a_rwlock);
1043 
1044 		if (claim_availrmem) {
1045 			mutex_enter(&freemem_lock);
1046 			if (availrmem < tune.t_minarmem + claim_availrmem) {
1047 				mutex_exit(&freemem_lock);
1048 				ret = ENOTSUP;
1049 				claim_availrmem = 0;
1050 				goto insert_fail;
1051 			} else {
1052 				availrmem -= claim_availrmem;
1053 			}
1054 			mutex_exit(&freemem_lock);
1055 		}
1056 
1057 		sptd->spt_ppa = pl;
1058 	} else {
1059 		/*
1060 		 * We already have a valid ppa[].
1061 		 */
1062 		pl = sptd->spt_ppa;
1063 	}
1064 
1065 	ASSERT(pl != NULL);
1066 
1067 	ret = seg_pinsert(seg, NULL, seg->s_base, sptd->spt_amp->size,
1068 	    sptd->spt_amp->size, pl, S_WRITE, SEGP_FORCE_WIRED,
1069 	    segspt_reclaim);
1070 	if (ret == SEGP_FAIL) {
1071 		/*
1072 		 * seg_pinsert failed. We return
1073 		 * ENOTSUP, so that the as_pagelock() code will
1074 		 * then try the slower F_SOFTLOCK path.
1075 		 */
1076 		if (pl_built) {
1077 			/*
1078 			 * No one else has referenced the ppa[].
1079 			 * We created it and we need to destroy it.
1080 			 */
1081 			sptd->spt_ppa = NULL;
1082 		}
1083 		ret = ENOTSUP;
1084 		goto insert_fail;
1085 	}
1086 
1087 	/*
1088 	 * In either case, we increment softlockcnt on the 'real' segment.
1089 	 */
1090 	sptd->spt_pcachecnt++;
1091 	atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), 1);
1092 
1093 	ppa = sptd->spt_ppa;
1094 	for (an_idx = pg_idx; an_idx < pg_idx + npages; ) {
1095 		if (ppa[an_idx] == NULL) {
1096 			mutex_exit(&sptd->spt_lock);
1097 			seg_pinactive(seg, NULL, seg->s_base,
1098 			    sptd->spt_amp->size,
1099 			    pl, S_WRITE, SEGP_FORCE_WIRED, segspt_reclaim);
1100 			*ppp = NULL;
1101 			return (ENOTSUP);
1102 		}
1103 		if ((szc = ppa[an_idx]->p_szc) != 0) {
1104 			npgs = page_get_pagecnt(szc);
1105 			an_idx = P2ROUNDUP(an_idx + 1, npgs);
1106 		} else {
1107 			an_idx++;
1108 		}
1109 	}
1110 	/*
1111 	 * We can now drop the sptd->spt_lock since the ppa[]
1112 	 * exists and he have incremented pacachecnt.
1113 	 */
1114 	mutex_exit(&sptd->spt_lock);
1115 
1116 	/*
1117 	 * Since we cache the entire segment, we want to
1118 	 * set ppp to point to the first slot that corresponds
1119 	 * to the requested addr, i.e. pg_idx.
1120 	 */
1121 	*ppp = &(sptd->spt_ppa[pg_idx]);
1122 	return (0);
1123 
1124 insert_fail:
1125 	/*
1126 	 * We will only reach this code if we tried and failed.
1127 	 *
1128 	 * And we can drop the lock on the dummy seg, once we've failed
1129 	 * to set up a new ppa[].
1130 	 */
1131 	mutex_exit(&sptd->spt_lock);
1132 
1133 	if (pl_built) {
1134 		if (claim_availrmem) {
1135 			mutex_enter(&freemem_lock);
1136 			availrmem += claim_availrmem;
1137 			mutex_exit(&freemem_lock);
1138 		}
1139 
1140 		/*
1141 		 * We created pl and we need to destroy it.
1142 		 */
1143 		pplist = pl;
1144 		for (an_idx = 0; an_idx < tot_npages; an_idx++) {
1145 			if (pplist[an_idx] != NULL)
1146 				page_unlock(pplist[an_idx]);
1147 		}
1148 		kmem_free(pl, sizeof (page_t *) * tot_npages);
1149 	}
1150 
1151 	if (shmd->shm_softlockcnt <= 0) {
1152 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1153 			mutex_enter(&seg->s_as->a_contents);
1154 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1155 				AS_CLRUNMAPWAIT(seg->s_as);
1156 				cv_broadcast(&seg->s_as->a_cv);
1157 			}
1158 			mutex_exit(&seg->s_as->a_contents);
1159 		}
1160 	}
1161 	*ppp = NULL;
1162 	return (ret);
1163 }
1164 
1165 
1166 
1167 /*
1168  * return locked pages over a given range.
1169  *
1170  * We will cache the entire ISM segment and save the pplist for the
1171  * entire segment in the ppa field of the underlying ISM segment structure.
1172  * Later, during a call to segspt_reclaim() we will use this ppa array
1173  * to page_unlock() all of the pages and then we will free this ppa list.
1174  */
1175 /*ARGSUSED*/
1176 static int
1177 segspt_shmpagelock(struct seg *seg, caddr_t addr, size_t len,
1178     struct page ***ppp, enum lock_type type, enum seg_rw rw)
1179 {
1180 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
1181 	struct seg	*sptseg = shmd->shm_sptseg;
1182 	struct spt_data *sptd = sptseg->s_data;
1183 	pgcnt_t np, page_index, npages;
1184 	caddr_t a, spt_base;
1185 	struct page **pplist, **pl, *pp;
1186 	struct anon_map *amp;
1187 	ulong_t anon_index;
1188 	int ret = ENOTSUP;
1189 	uint_t	pl_built = 0;
1190 	struct anon *ap;
1191 	struct vnode *vp;
1192 	u_offset_t off;
1193 
1194 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1195 	ASSERT(type == L_PAGELOCK || type == L_PAGEUNLOCK);
1196 
1197 
1198 	/*
1199 	 * We want to lock/unlock the entire ISM segment. Therefore,
1200 	 * we will be using the underlying sptseg and it's base address
1201 	 * and length for the caching arguments.
1202 	 */
1203 	ASSERT(sptseg);
1204 	ASSERT(sptd);
1205 
1206 	if (sptd->spt_flags & SHM_PAGEABLE) {
1207 		return (segspt_dismpagelock(seg, addr, len, ppp, type, rw));
1208 	}
1209 
1210 	page_index = seg_page(seg, addr);
1211 	npages = btopr(len);
1212 
1213 	/*
1214 	 * check if the request is larger than number of pages covered
1215 	 * by amp
1216 	 */
1217 	if (page_index + npages > btopr(sptd->spt_amp->size)) {
1218 		*ppp = NULL;
1219 		return (ENOTSUP);
1220 	}
1221 
1222 	if (type == L_PAGEUNLOCK) {
1223 
1224 		ASSERT(sptd->spt_ppa != NULL);
1225 
1226 		seg_pinactive(seg, NULL, seg->s_base, sptd->spt_amp->size,
1227 		    sptd->spt_ppa, S_WRITE, SEGP_FORCE_WIRED, segspt_reclaim);
1228 
1229 		/*
1230 		 * If someone is blocked while unmapping, we purge
1231 		 * segment page cache and thus reclaim pplist synchronously
1232 		 * without waiting for seg_pasync_thread. This speeds up
1233 		 * unmapping in cases where munmap(2) is called, while
1234 		 * raw async i/o is still in progress or where a thread
1235 		 * exits on data fault in a multithreaded application.
1236 		 */
1237 		if (AS_ISUNMAPWAIT(seg->s_as) && (shmd->shm_softlockcnt > 0)) {
1238 			segspt_purge(seg);
1239 		}
1240 		return (0);
1241 	}
1242 
1243 	/* The L_PAGELOCK case... */
1244 
1245 	/*
1246 	 * First try to find pages in segment page cache, without
1247 	 * holding the segment lock.
1248 	 */
1249 	pplist = seg_plookup(seg, NULL, seg->s_base, sptd->spt_amp->size,
1250 	    S_WRITE, SEGP_FORCE_WIRED);
1251 	if (pplist != NULL) {
1252 		ASSERT(sptd->spt_ppa == pplist);
1253 		ASSERT(sptd->spt_ppa[page_index]);
1254 		/*
1255 		 * Since we cache the entire ISM segment, we want to
1256 		 * set ppp to point to the first slot that corresponds
1257 		 * to the requested addr, i.e. page_index.
1258 		 */
1259 		*ppp = &(sptd->spt_ppa[page_index]);
1260 		return (0);
1261 	}
1262 
1263 	mutex_enter(&sptd->spt_lock);
1264 
1265 	/*
1266 	 * try to find pages in segment page cache
1267 	 */
1268 	pplist = seg_plookup(seg, NULL, seg->s_base, sptd->spt_amp->size,
1269 	    S_WRITE, SEGP_FORCE_WIRED);
1270 	if (pplist != NULL) {
1271 		ASSERT(sptd->spt_ppa == pplist);
1272 		/*
1273 		 * Since we cache the entire segment, we want to
1274 		 * set ppp to point to the first slot that corresponds
1275 		 * to the requested addr, i.e. page_index.
1276 		 */
1277 		mutex_exit(&sptd->spt_lock);
1278 		*ppp = &(sptd->spt_ppa[page_index]);
1279 		return (0);
1280 	}
1281 
1282 	if (seg_pinsert_check(seg, NULL, seg->s_base, sptd->spt_amp->size,
1283 	    SEGP_FORCE_WIRED) == SEGP_FAIL) {
1284 		mutex_exit(&sptd->spt_lock);
1285 		*ppp = NULL;
1286 		return (ENOTSUP);
1287 	}
1288 
1289 	/*
1290 	 * No need to worry about protections because ISM pages
1291 	 * are always rw.
1292 	 */
1293 	pl = pplist = NULL;
1294 
1295 	/*
1296 	 * Do we need to build the ppa array?
1297 	 */
1298 	if (sptd->spt_ppa == NULL) {
1299 		ASSERT(sptd->spt_ppa == pplist);
1300 
1301 		spt_base = sptseg->s_base;
1302 		pl_built = 1;
1303 
1304 		/*
1305 		 * availrmem is decremented once during anon_swap_adjust()
1306 		 * and is incremented during the anon_unresv(), which is
1307 		 * called from shm_rm_amp() when the segment is destroyed.
1308 		 */
1309 		amp = sptd->spt_amp;
1310 		ASSERT(amp != NULL);
1311 
1312 		/* pcachecnt is protected by sptd->spt_lock */
1313 		ASSERT(sptd->spt_pcachecnt == 0);
1314 		pplist = kmem_zalloc(sizeof (page_t *)
1315 		    * btopr(sptd->spt_amp->size), KM_SLEEP);
1316 		pl = pplist;
1317 
1318 		anon_index = seg_page(sptseg, spt_base);
1319 
1320 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1321 		for (a = spt_base; a < (spt_base + sptd->spt_amp->size);
1322 		    a += PAGESIZE, anon_index++, pplist++) {
1323 			ap = anon_get_ptr(amp->ahp, anon_index);
1324 			ASSERT(ap != NULL);
1325 			swap_xlate(ap, &vp, &off);
1326 			pp = page_lookup(vp, off, SE_SHARED);
1327 			ASSERT(pp != NULL);
1328 			*pplist = pp;
1329 		}
1330 		ANON_LOCK_EXIT(&amp->a_rwlock);
1331 
1332 		if (a < (spt_base + sptd->spt_amp->size)) {
1333 			ret = ENOTSUP;
1334 			goto insert_fail;
1335 		}
1336 		sptd->spt_ppa = pl;
1337 	} else {
1338 		/*
1339 		 * We already have a valid ppa[].
1340 		 */
1341 		pl = sptd->spt_ppa;
1342 	}
1343 
1344 	ASSERT(pl != NULL);
1345 
1346 	ret = seg_pinsert(seg, NULL, seg->s_base, sptd->spt_amp->size,
1347 	    sptd->spt_amp->size, pl, S_WRITE, SEGP_FORCE_WIRED,
1348 	    segspt_reclaim);
1349 	if (ret == SEGP_FAIL) {
1350 		/*
1351 		 * seg_pinsert failed. We return
1352 		 * ENOTSUP, so that the as_pagelock() code will
1353 		 * then try the slower F_SOFTLOCK path.
1354 		 */
1355 		if (pl_built) {
1356 			/*
1357 			 * No one else has referenced the ppa[].
1358 			 * We created it and we need to destroy it.
1359 			 */
1360 			sptd->spt_ppa = NULL;
1361 		}
1362 		ret = ENOTSUP;
1363 		goto insert_fail;
1364 	}
1365 
1366 	/*
1367 	 * In either case, we increment softlockcnt on the 'real' segment.
1368 	 */
1369 	sptd->spt_pcachecnt++;
1370 	atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), 1);
1371 
1372 	/*
1373 	 * We can now drop the sptd->spt_lock since the ppa[]
1374 	 * exists and he have incremented pacachecnt.
1375 	 */
1376 	mutex_exit(&sptd->spt_lock);
1377 
1378 	/*
1379 	 * Since we cache the entire segment, we want to
1380 	 * set ppp to point to the first slot that corresponds
1381 	 * to the requested addr, i.e. page_index.
1382 	 */
1383 	*ppp = &(sptd->spt_ppa[page_index]);
1384 	return (0);
1385 
1386 insert_fail:
1387 	/*
1388 	 * We will only reach this code if we tried and failed.
1389 	 *
1390 	 * And we can drop the lock on the dummy seg, once we've failed
1391 	 * to set up a new ppa[].
1392 	 */
1393 	mutex_exit(&sptd->spt_lock);
1394 
1395 	if (pl_built) {
1396 		/*
1397 		 * We created pl and we need to destroy it.
1398 		 */
1399 		pplist = pl;
1400 		np = (((uintptr_t)(a - spt_base)) >> PAGESHIFT);
1401 		while (np) {
1402 			page_unlock(*pplist);
1403 			np--;
1404 			pplist++;
1405 		}
1406 		kmem_free(pl, sizeof (page_t *) * btopr(sptd->spt_amp->size));
1407 	}
1408 	if (shmd->shm_softlockcnt <= 0) {
1409 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1410 			mutex_enter(&seg->s_as->a_contents);
1411 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1412 				AS_CLRUNMAPWAIT(seg->s_as);
1413 				cv_broadcast(&seg->s_as->a_cv);
1414 			}
1415 			mutex_exit(&seg->s_as->a_contents);
1416 		}
1417 	}
1418 	*ppp = NULL;
1419 	return (ret);
1420 }
1421 
1422 /*
1423  * purge any cached pages in the I/O page cache
1424  */
1425 static void
1426 segspt_purge(struct seg *seg)
1427 {
1428 	seg_ppurge(seg, NULL, SEGP_FORCE_WIRED);
1429 }
1430 
1431 static int
1432 segspt_reclaim(void *ptag, caddr_t addr, size_t len, struct page **pplist,
1433 	enum seg_rw rw, int async)
1434 {
1435 	struct seg *seg = (struct seg *)ptag;
1436 	struct	shm_data *shmd = (struct shm_data *)seg->s_data;
1437 	struct	seg	*sptseg;
1438 	struct	spt_data *sptd;
1439 	pgcnt_t npages, i, free_availrmem = 0;
1440 	int	done = 0;
1441 
1442 #ifdef lint
1443 	addr = addr;
1444 #endif
1445 	sptseg = shmd->shm_sptseg;
1446 	sptd = sptseg->s_data;
1447 	npages = (len >> PAGESHIFT);
1448 	ASSERT(npages);
1449 	ASSERT(sptd->spt_pcachecnt != 0);
1450 	ASSERT(sptd->spt_ppa == pplist);
1451 	ASSERT(npages == btopr(sptd->spt_amp->size));
1452 	ASSERT(async || AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1453 
1454 	/*
1455 	 * Acquire the lock on the dummy seg and destroy the
1456 	 * ppa array IF this is the last pcachecnt.
1457 	 */
1458 	mutex_enter(&sptd->spt_lock);
1459 	if (--sptd->spt_pcachecnt == 0) {
1460 		for (i = 0; i < npages; i++) {
1461 			if (pplist[i] == NULL) {
1462 				continue;
1463 			}
1464 			if (rw == S_WRITE) {
1465 				hat_setrefmod(pplist[i]);
1466 			} else {
1467 				hat_setref(pplist[i]);
1468 			}
1469 			if ((sptd->spt_flags & SHM_PAGEABLE) &&
1470 			    (sptd->spt_ppa_lckcnt[i] == 0))
1471 				free_availrmem++;
1472 			page_unlock(pplist[i]);
1473 		}
1474 		if ((sptd->spt_flags & SHM_PAGEABLE) && free_availrmem) {
1475 			mutex_enter(&freemem_lock);
1476 			availrmem += free_availrmem;
1477 			mutex_exit(&freemem_lock);
1478 		}
1479 		/*
1480 		 * Since we want to cach/uncache the entire ISM segment,
1481 		 * we will track the pplist in a segspt specific field
1482 		 * ppa, that is initialized at the time we add an entry to
1483 		 * the cache.
1484 		 */
1485 		ASSERT(sptd->spt_pcachecnt == 0);
1486 		kmem_free(pplist, sizeof (page_t *) * npages);
1487 		sptd->spt_ppa = NULL;
1488 		sptd->spt_flags &= ~DISM_PPA_CHANGED;
1489 		sptd->spt_gen++;
1490 		cv_broadcast(&sptd->spt_cv);
1491 		done = 1;
1492 	}
1493 	mutex_exit(&sptd->spt_lock);
1494 
1495 	/*
1496 	 * If we are pcache async thread or called via seg_ppurge_wiredpp() we
1497 	 * may not hold AS lock (in this case async argument is not 0). This
1498 	 * means if softlockcnt drops to 0 after the decrement below address
1499 	 * space may get freed. We can't allow it since after softlock
1500 	 * derement to 0 we still need to access as structure for possible
1501 	 * wakeup of unmap waiters. To prevent the disappearance of as we take
1502 	 * this segment's shm_segfree_syncmtx. segspt_shmfree() also takes
1503 	 * this mutex as a barrier to make sure this routine completes before
1504 	 * segment is freed.
1505 	 *
1506 	 * The second complication we have to deal with in async case is a
1507 	 * possibility of missed wake up of unmap wait thread. When we don't
1508 	 * hold as lock here we may take a_contents lock before unmap wait
1509 	 * thread that was first to see softlockcnt was still not 0. As a
1510 	 * result we'll fail to wake up an unmap wait thread. To avoid this
1511 	 * race we set nounmapwait flag in as structure if we drop softlockcnt
1512 	 * to 0 if async is not 0.  unmapwait thread
1513 	 * will not block if this flag is set.
1514 	 */
1515 	if (async)
1516 		mutex_enter(&shmd->shm_segfree_syncmtx);
1517 
1518 	/*
1519 	 * Now decrement softlockcnt.
1520 	 */
1521 	ASSERT(shmd->shm_softlockcnt > 0);
1522 	atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), -1);
1523 
1524 	if (shmd->shm_softlockcnt <= 0) {
1525 		if (async || AS_ISUNMAPWAIT(seg->s_as)) {
1526 			mutex_enter(&seg->s_as->a_contents);
1527 			if (async)
1528 				AS_SETNOUNMAPWAIT(seg->s_as);
1529 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1530 				AS_CLRUNMAPWAIT(seg->s_as);
1531 				cv_broadcast(&seg->s_as->a_cv);
1532 			}
1533 			mutex_exit(&seg->s_as->a_contents);
1534 		}
1535 	}
1536 
1537 	if (async)
1538 		mutex_exit(&shmd->shm_segfree_syncmtx);
1539 
1540 	return (done);
1541 }
1542 
1543 /*
1544  * Do a F_SOFTUNLOCK call over the range requested.
1545  * The range must have already been F_SOFTLOCK'ed.
1546  *
1547  * The calls to acquire and release the anon map lock mutex were
1548  * removed in order to avoid a deadly embrace during a DR
1549  * memory delete operation.  (Eg. DR blocks while waiting for a
1550  * exclusive lock on a page that is being used for kaio; the
1551  * thread that will complete the kaio and call segspt_softunlock
1552  * blocks on the anon map lock; another thread holding the anon
1553  * map lock blocks on another page lock via the segspt_shmfault
1554  * -> page_lookup -> page_lookup_create -> page_lock_es code flow.)
1555  *
1556  * The appropriateness of the removal is based upon the following:
1557  * 1. If we are holding a segment's reader lock and the page is held
1558  * shared, then the corresponding element in anonmap which points to
1559  * anon struct cannot change and there is no need to acquire the
1560  * anonymous map lock.
1561  * 2. Threads in segspt_softunlock have a reader lock on the segment
1562  * and already have the shared page lock, so we are guaranteed that
1563  * the anon map slot cannot change and therefore can call anon_get_ptr()
1564  * without grabbing the anonymous map lock.
1565  * 3. Threads that softlock a shared page break copy-on-write, even if
1566  * its a read.  Thus cow faults can be ignored with respect to soft
1567  * unlocking, since the breaking of cow means that the anon slot(s) will
1568  * not be shared.
1569  */
1570 static void
1571 segspt_softunlock(struct seg *seg, caddr_t sptseg_addr,
1572 	size_t len, enum seg_rw rw)
1573 {
1574 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
1575 	struct seg	*sptseg;
1576 	struct spt_data *sptd;
1577 	page_t *pp;
1578 	caddr_t adr;
1579 	struct vnode *vp;
1580 	u_offset_t offset;
1581 	ulong_t anon_index;
1582 	struct anon_map *amp;		/* XXX - for locknest */
1583 	struct anon *ap = NULL;
1584 	pgcnt_t npages;
1585 
1586 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1587 
1588 	sptseg = shmd->shm_sptseg;
1589 	sptd = sptseg->s_data;
1590 
1591 	/*
1592 	 * Some platforms assume that ISM mappings are HAT_LOAD_LOCK
1593 	 * and therefore their pages are SE_SHARED locked
1594 	 * for the entire life of the segment.
1595 	 */
1596 	if ((!hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) &&
1597 	    ((sptd->spt_flags & SHM_PAGEABLE) == 0)) {
1598 		goto softlock_decrement;
1599 	}
1600 
1601 	/*
1602 	 * Any thread is free to do a page_find and
1603 	 * page_unlock() on the pages within this seg.
1604 	 *
1605 	 * We are already holding the as->a_lock on the user's
1606 	 * real segment, but we need to hold the a_lock on the
1607 	 * underlying dummy as. This is mostly to satisfy the
1608 	 * underlying HAT layer.
1609 	 */
1610 	AS_LOCK_ENTER(sptseg->s_as, &sptseg->s_as->a_lock, RW_READER);
1611 	hat_unlock(sptseg->s_as->a_hat, sptseg_addr, len);
1612 	AS_LOCK_EXIT(sptseg->s_as, &sptseg->s_as->a_lock);
1613 
1614 	amp = sptd->spt_amp;
1615 	ASSERT(amp != NULL);
1616 	anon_index = seg_page(sptseg, sptseg_addr);
1617 
1618 	for (adr = sptseg_addr; adr < sptseg_addr + len; adr += PAGESIZE) {
1619 		ap = anon_get_ptr(amp->ahp, anon_index++);
1620 		ASSERT(ap != NULL);
1621 		swap_xlate(ap, &vp, &offset);
1622 
1623 		/*
1624 		 * Use page_find() instead of page_lookup() to
1625 		 * find the page since we know that it has a
1626 		 * "shared" lock.
1627 		 */
1628 		pp = page_find(vp, offset);
1629 		ASSERT(ap == anon_get_ptr(amp->ahp, anon_index - 1));
1630 		if (pp == NULL) {
1631 			panic("segspt_softunlock: "
1632 			    "addr %p, ap %p, vp %p, off %llx",
1633 			    (void *)adr, (void *)ap, (void *)vp, offset);
1634 			/*NOTREACHED*/
1635 		}
1636 
1637 		if (rw == S_WRITE) {
1638 			hat_setrefmod(pp);
1639 		} else if (rw != S_OTHER) {
1640 			hat_setref(pp);
1641 		}
1642 		page_unlock(pp);
1643 	}
1644 
1645 softlock_decrement:
1646 	npages = btopr(len);
1647 	ASSERT(shmd->shm_softlockcnt >= npages);
1648 	atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), -npages);
1649 	if (shmd->shm_softlockcnt == 0) {
1650 		/*
1651 		 * All SOFTLOCKS are gone. Wakeup any waiting
1652 		 * unmappers so they can try again to unmap.
1653 		 * Check for waiters first without the mutex
1654 		 * held so we don't always grab the mutex on
1655 		 * softunlocks.
1656 		 */
1657 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1658 			mutex_enter(&seg->s_as->a_contents);
1659 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1660 				AS_CLRUNMAPWAIT(seg->s_as);
1661 				cv_broadcast(&seg->s_as->a_cv);
1662 			}
1663 			mutex_exit(&seg->s_as->a_contents);
1664 		}
1665 	}
1666 }
1667 
1668 int
1669 segspt_shmattach(struct seg *seg, caddr_t *argsp)
1670 {
1671 	struct shm_data *shmd_arg = (struct shm_data *)argsp;
1672 	struct shm_data *shmd;
1673 	struct anon_map *shm_amp = shmd_arg->shm_amp;
1674 	struct spt_data *sptd;
1675 	int error = 0;
1676 
1677 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1678 
1679 	shmd = kmem_zalloc((sizeof (*shmd)), KM_NOSLEEP);
1680 	if (shmd == NULL)
1681 		return (ENOMEM);
1682 
1683 	shmd->shm_sptas = shmd_arg->shm_sptas;
1684 	shmd->shm_amp = shm_amp;
1685 	shmd->shm_sptseg = shmd_arg->shm_sptseg;
1686 
1687 	(void) lgrp_shm_policy_set(LGRP_MEM_POLICY_DEFAULT, shm_amp, 0,
1688 	    NULL, 0, seg->s_size);
1689 
1690 	mutex_init(&shmd->shm_segfree_syncmtx, NULL, MUTEX_DEFAULT, NULL);
1691 
1692 	seg->s_data = (void *)shmd;
1693 	seg->s_ops = &segspt_shmops;
1694 	seg->s_szc = shmd->shm_sptseg->s_szc;
1695 	sptd = shmd->shm_sptseg->s_data;
1696 
1697 	if (sptd->spt_flags & SHM_PAGEABLE) {
1698 		if ((shmd->shm_vpage = kmem_zalloc(btopr(shm_amp->size),
1699 		    KM_NOSLEEP)) == NULL) {
1700 			seg->s_data = (void *)NULL;
1701 			kmem_free(shmd, (sizeof (*shmd)));
1702 			return (ENOMEM);
1703 		}
1704 		shmd->shm_lckpgs = 0;
1705 		if (hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
1706 			if ((error = hat_share(seg->s_as->a_hat, seg->s_base,
1707 			    shmd_arg->shm_sptas->a_hat, SEGSPTADDR,
1708 			    seg->s_size, seg->s_szc)) != 0) {
1709 				kmem_free(shmd->shm_vpage,
1710 				    btopr(shm_amp->size));
1711 			}
1712 		}
1713 	} else {
1714 		error = hat_share(seg->s_as->a_hat, seg->s_base,
1715 		    shmd_arg->shm_sptas->a_hat, SEGSPTADDR,
1716 		    seg->s_size, seg->s_szc);
1717 	}
1718 	if (error) {
1719 		seg->s_szc = 0;
1720 		seg->s_data = (void *)NULL;
1721 		kmem_free(shmd, (sizeof (*shmd)));
1722 	} else {
1723 		ANON_LOCK_ENTER(&shm_amp->a_rwlock, RW_WRITER);
1724 		shm_amp->refcnt++;
1725 		ANON_LOCK_EXIT(&shm_amp->a_rwlock);
1726 	}
1727 	return (error);
1728 }
1729 
1730 int
1731 segspt_shmunmap(struct seg *seg, caddr_t raddr, size_t ssize)
1732 {
1733 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
1734 	int reclaim = 1;
1735 
1736 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1737 retry:
1738 	if (shmd->shm_softlockcnt > 0) {
1739 		if (reclaim == 1) {
1740 			segspt_purge(seg);
1741 			reclaim = 0;
1742 			goto retry;
1743 		}
1744 		return (EAGAIN);
1745 	}
1746 
1747 	if (ssize != seg->s_size) {
1748 #ifdef DEBUG
1749 		cmn_err(CE_WARN, "Incompatible ssize %lx s_size %lx\n",
1750 		    ssize, seg->s_size);
1751 #endif
1752 		return (EINVAL);
1753 	}
1754 
1755 	(void) segspt_shmlockop(seg, raddr, shmd->shm_amp->size, 0, MC_UNLOCK,
1756 	    NULL, 0);
1757 	hat_unshare(seg->s_as->a_hat, raddr, ssize, seg->s_szc);
1758 
1759 	seg_free(seg);
1760 
1761 	return (0);
1762 }
1763 
1764 void
1765 segspt_shmfree(struct seg *seg)
1766 {
1767 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
1768 	struct anon_map *shm_amp = shmd->shm_amp;
1769 
1770 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1771 
1772 	(void) segspt_shmlockop(seg, seg->s_base, shm_amp->size, 0,
1773 	    MC_UNLOCK, NULL, 0);
1774 
1775 	/*
1776 	 * Need to increment refcnt when attaching
1777 	 * and decrement when detaching because of dup().
1778 	 */
1779 	ANON_LOCK_ENTER(&shm_amp->a_rwlock, RW_WRITER);
1780 	shm_amp->refcnt--;
1781 	ANON_LOCK_EXIT(&shm_amp->a_rwlock);
1782 
1783 	if (shmd->shm_vpage) {	/* only for DISM */
1784 		kmem_free(shmd->shm_vpage, btopr(shm_amp->size));
1785 		shmd->shm_vpage = NULL;
1786 	}
1787 
1788 	/*
1789 	 * Take shm_segfree_syncmtx lock to let segspt_reclaim() finish if it's
1790 	 * still working with this segment without holding as lock.
1791 	 */
1792 	ASSERT(shmd->shm_softlockcnt == 0);
1793 	mutex_enter(&shmd->shm_segfree_syncmtx);
1794 	mutex_destroy(&shmd->shm_segfree_syncmtx);
1795 
1796 	kmem_free(shmd, sizeof (*shmd));
1797 }
1798 
1799 /*ARGSUSED*/
1800 int
1801 segspt_shmsetprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
1802 {
1803 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1804 
1805 	/*
1806 	 * Shared page table is more than shared mapping.
1807 	 *  Individual process sharing page tables can't change prot
1808 	 *  because there is only one set of page tables.
1809 	 *  This will be allowed after private page table is
1810 	 *  supported.
1811 	 */
1812 /* need to return correct status error? */
1813 	return (0);
1814 }
1815 
1816 
1817 faultcode_t
1818 segspt_dismfault(struct hat *hat, struct seg *seg, caddr_t addr,
1819     size_t len, enum fault_type type, enum seg_rw rw)
1820 {
1821 	struct  shm_data 	*shmd = (struct shm_data *)seg->s_data;
1822 	struct  seg		*sptseg = shmd->shm_sptseg;
1823 	struct  as		*curspt = shmd->shm_sptas;
1824 	struct  spt_data 	*sptd = sptseg->s_data;
1825 	pgcnt_t npages;
1826 	size_t  size;
1827 	caddr_t segspt_addr, shm_addr;
1828 	page_t  **ppa;
1829 	int	i;
1830 	ulong_t an_idx = 0;
1831 	int	err = 0;
1832 	int	dyn_ism_unmap = hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0);
1833 	size_t	pgsz;
1834 	pgcnt_t	pgcnt;
1835 	caddr_t	a;
1836 	pgcnt_t	pidx;
1837 
1838 #ifdef lint
1839 	hat = hat;
1840 #endif
1841 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1842 
1843 	/*
1844 	 * Because of the way spt is implemented
1845 	 * the realsize of the segment does not have to be
1846 	 * equal to the segment size itself. The segment size is
1847 	 * often in multiples of a page size larger than PAGESIZE.
1848 	 * The realsize is rounded up to the nearest PAGESIZE
1849 	 * based on what the user requested. This is a bit of
1850 	 * ungliness that is historical but not easily fixed
1851 	 * without re-designing the higher levels of ISM.
1852 	 */
1853 	ASSERT(addr >= seg->s_base);
1854 	if (((addr + len) - seg->s_base) > sptd->spt_realsize)
1855 		return (FC_NOMAP);
1856 	/*
1857 	 * For all of the following cases except F_PROT, we need to
1858 	 * make any necessary adjustments to addr and len
1859 	 * and get all of the necessary page_t's into an array called ppa[].
1860 	 *
1861 	 * The code in shmat() forces base addr and len of ISM segment
1862 	 * to be aligned to largest page size supported. Therefore,
1863 	 * we are able to handle F_SOFTLOCK and F_INVAL calls in "large
1864 	 * pagesize" chunks. We want to make sure that we HAT_LOAD_LOCK
1865 	 * in large pagesize chunks, or else we will screw up the HAT
1866 	 * layer by calling hat_memload_array() with differing page sizes
1867 	 * over a given virtual range.
1868 	 */
1869 	pgsz = page_get_pagesize(sptseg->s_szc);
1870 	pgcnt = page_get_pagecnt(sptseg->s_szc);
1871 	shm_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), pgsz);
1872 	size = P2ROUNDUP((uintptr_t)(((addr + len) - shm_addr)), pgsz);
1873 	npages = btopr(size);
1874 
1875 	/*
1876 	 * Now we need to convert from addr in segshm to addr in segspt.
1877 	 */
1878 	an_idx = seg_page(seg, shm_addr);
1879 	segspt_addr = sptseg->s_base + ptob(an_idx);
1880 
1881 	ASSERT((segspt_addr + ptob(npages)) <=
1882 	    (sptseg->s_base + sptd->spt_realsize));
1883 	ASSERT(segspt_addr < (sptseg->s_base + sptseg->s_size));
1884 
1885 	switch (type) {
1886 
1887 	case F_SOFTLOCK:
1888 
1889 		atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), npages);
1890 		/*
1891 		 * Fall through to the F_INVAL case to load up the hat layer
1892 		 * entries with the HAT_LOAD_LOCK flag.
1893 		 */
1894 		/* FALLTHRU */
1895 	case F_INVAL:
1896 
1897 		if ((rw == S_EXEC) && !(sptd->spt_prot & PROT_EXEC))
1898 			return (FC_NOMAP);
1899 
1900 		ppa = kmem_zalloc(npages * sizeof (page_t *), KM_SLEEP);
1901 
1902 		err = spt_anon_getpages(sptseg, segspt_addr, size, ppa);
1903 		if (err != 0) {
1904 			if (type == F_SOFTLOCK) {
1905 				atomic_add_long((ulong_t *)(
1906 				    &(shmd->shm_softlockcnt)), -npages);
1907 			}
1908 			goto dism_err;
1909 		}
1910 		AS_LOCK_ENTER(sptseg->s_as, &sptseg->s_as->a_lock, RW_READER);
1911 		a = segspt_addr;
1912 		pidx = 0;
1913 		if (type == F_SOFTLOCK) {
1914 
1915 			/*
1916 			 * Load up the translation keeping it
1917 			 * locked and don't unlock the page.
1918 			 */
1919 			for (; pidx < npages; a += pgsz, pidx += pgcnt) {
1920 				hat_memload_array(sptseg->s_as->a_hat,
1921 				    a, pgsz, &ppa[pidx], sptd->spt_prot,
1922 				    HAT_LOAD_LOCK | HAT_LOAD_SHARE);
1923 			}
1924 		} else {
1925 			if (hat == seg->s_as->a_hat) {
1926 
1927 				/*
1928 				 * Migrate pages marked for migration
1929 				 */
1930 				if (lgrp_optimizations())
1931 					page_migrate(seg, shm_addr, ppa,
1932 					    npages);
1933 
1934 				/* CPU HAT */
1935 				for (; pidx < npages;
1936 				    a += pgsz, pidx += pgcnt) {
1937 					hat_memload_array(sptseg->s_as->a_hat,
1938 					    a, pgsz, &ppa[pidx],
1939 					    sptd->spt_prot,
1940 					    HAT_LOAD_SHARE);
1941 				}
1942 			} else {
1943 				/* XHAT. Pass real address */
1944 				hat_memload_array(hat, shm_addr,
1945 				    size, ppa, sptd->spt_prot, HAT_LOAD_SHARE);
1946 			}
1947 
1948 			/*
1949 			 * And now drop the SE_SHARED lock(s).
1950 			 */
1951 			if (dyn_ism_unmap) {
1952 				for (i = 0; i < npages; i++) {
1953 					page_unlock(ppa[i]);
1954 				}
1955 			}
1956 		}
1957 
1958 		if (!dyn_ism_unmap) {
1959 			if (hat_share(seg->s_as->a_hat, shm_addr,
1960 			    curspt->a_hat, segspt_addr, ptob(npages),
1961 			    seg->s_szc) != 0) {
1962 				panic("hat_share err in DISM fault");
1963 				/* NOTREACHED */
1964 			}
1965 			if (type == F_INVAL) {
1966 				for (i = 0; i < npages; i++) {
1967 					page_unlock(ppa[i]);
1968 				}
1969 			}
1970 		}
1971 		AS_LOCK_EXIT(sptseg->s_as, &sptseg->s_as->a_lock);
1972 dism_err:
1973 		kmem_free(ppa, npages * sizeof (page_t *));
1974 		return (err);
1975 
1976 	case F_SOFTUNLOCK:
1977 
1978 		/*
1979 		 * This is a bit ugly, we pass in the real seg pointer,
1980 		 * but the segspt_addr is the virtual address within the
1981 		 * dummy seg.
1982 		 */
1983 		segspt_softunlock(seg, segspt_addr, size, rw);
1984 		return (0);
1985 
1986 	case F_PROT:
1987 
1988 		/*
1989 		 * This takes care of the unusual case where a user
1990 		 * allocates a stack in shared memory and a register
1991 		 * window overflow is written to that stack page before
1992 		 * it is otherwise modified.
1993 		 *
1994 		 * We can get away with this because ISM segments are
1995 		 * always rw. Other than this unusual case, there
1996 		 * should be no instances of protection violations.
1997 		 */
1998 		return (0);
1999 
2000 	default:
2001 #ifdef DEBUG
2002 		panic("segspt_dismfault default type?");
2003 #else
2004 		return (FC_NOMAP);
2005 #endif
2006 	}
2007 }
2008 
2009 
2010 faultcode_t
2011 segspt_shmfault(struct hat *hat, struct seg *seg, caddr_t addr,
2012     size_t len, enum fault_type type, enum seg_rw rw)
2013 {
2014 	struct shm_data 	*shmd = (struct shm_data *)seg->s_data;
2015 	struct seg		*sptseg = shmd->shm_sptseg;
2016 	struct as		*curspt = shmd->shm_sptas;
2017 	struct spt_data 	*sptd   = sptseg->s_data;
2018 	pgcnt_t npages;
2019 	size_t size;
2020 	caddr_t sptseg_addr, shm_addr;
2021 	page_t *pp, **ppa;
2022 	int	i;
2023 	u_offset_t offset;
2024 	ulong_t anon_index = 0;
2025 	struct vnode *vp;
2026 	struct anon_map *amp;		/* XXX - for locknest */
2027 	struct anon *ap = NULL;
2028 	size_t		pgsz;
2029 	pgcnt_t		pgcnt;
2030 	caddr_t		a;
2031 	pgcnt_t		pidx;
2032 	size_t		sz;
2033 
2034 #ifdef lint
2035 	hat = hat;
2036 #endif
2037 
2038 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2039 
2040 	if (sptd->spt_flags & SHM_PAGEABLE) {
2041 		return (segspt_dismfault(hat, seg, addr, len, type, rw));
2042 	}
2043 
2044 	/*
2045 	 * Because of the way spt is implemented
2046 	 * the realsize of the segment does not have to be
2047 	 * equal to the segment size itself. The segment size is
2048 	 * often in multiples of a page size larger than PAGESIZE.
2049 	 * The realsize is rounded up to the nearest PAGESIZE
2050 	 * based on what the user requested. This is a bit of
2051 	 * ungliness that is historical but not easily fixed
2052 	 * without re-designing the higher levels of ISM.
2053 	 */
2054 	ASSERT(addr >= seg->s_base);
2055 	if (((addr + len) - seg->s_base) > sptd->spt_realsize)
2056 		return (FC_NOMAP);
2057 	/*
2058 	 * For all of the following cases except F_PROT, we need to
2059 	 * make any necessary adjustments to addr and len
2060 	 * and get all of the necessary page_t's into an array called ppa[].
2061 	 *
2062 	 * The code in shmat() forces base addr and len of ISM segment
2063 	 * to be aligned to largest page size supported. Therefore,
2064 	 * we are able to handle F_SOFTLOCK and F_INVAL calls in "large
2065 	 * pagesize" chunks. We want to make sure that we HAT_LOAD_LOCK
2066 	 * in large pagesize chunks, or else we will screw up the HAT
2067 	 * layer by calling hat_memload_array() with differing page sizes
2068 	 * over a given virtual range.
2069 	 */
2070 	pgsz = page_get_pagesize(sptseg->s_szc);
2071 	pgcnt = page_get_pagecnt(sptseg->s_szc);
2072 	shm_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), pgsz);
2073 	size = P2ROUNDUP((uintptr_t)(((addr + len) - shm_addr)), pgsz);
2074 	npages = btopr(size);
2075 
2076 	/*
2077 	 * Now we need to convert from addr in segshm to addr in segspt.
2078 	 */
2079 	anon_index = seg_page(seg, shm_addr);
2080 	sptseg_addr = sptseg->s_base + ptob(anon_index);
2081 
2082 	/*
2083 	 * And now we may have to adjust npages downward if we have
2084 	 * exceeded the realsize of the segment or initial anon
2085 	 * allocations.
2086 	 */
2087 	if ((sptseg_addr + ptob(npages)) >
2088 	    (sptseg->s_base + sptd->spt_realsize))
2089 		size = (sptseg->s_base + sptd->spt_realsize) - sptseg_addr;
2090 
2091 	npages = btopr(size);
2092 
2093 	ASSERT(sptseg_addr < (sptseg->s_base + sptseg->s_size));
2094 	ASSERT((sptd->spt_flags & SHM_PAGEABLE) == 0);
2095 
2096 	switch (type) {
2097 
2098 	case F_SOFTLOCK:
2099 
2100 		/*
2101 		 * availrmem is decremented once during anon_swap_adjust()
2102 		 * and is incremented during the anon_unresv(), which is
2103 		 * called from shm_rm_amp() when the segment is destroyed.
2104 		 */
2105 		atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), npages);
2106 		/*
2107 		 * Some platforms assume that ISM pages are SE_SHARED
2108 		 * locked for the entire life of the segment.
2109 		 */
2110 		if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0))
2111 			return (0);
2112 		/*
2113 		 * Fall through to the F_INVAL case to load up the hat layer
2114 		 * entries with the HAT_LOAD_LOCK flag.
2115 		 */
2116 
2117 		/* FALLTHRU */
2118 	case F_INVAL:
2119 
2120 		if ((rw == S_EXEC) && !(sptd->spt_prot & PROT_EXEC))
2121 			return (FC_NOMAP);
2122 
2123 		/*
2124 		 * Some platforms that do NOT support DYNAMIC_ISM_UNMAP
2125 		 * may still rely on this call to hat_share(). That
2126 		 * would imply that those hat's can fault on a
2127 		 * HAT_LOAD_LOCK translation, which would seem
2128 		 * contradictory.
2129 		 */
2130 		if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
2131 			if (hat_share(seg->s_as->a_hat, seg->s_base,
2132 			    curspt->a_hat, sptseg->s_base,
2133 			    sptseg->s_size, sptseg->s_szc) != 0) {
2134 				panic("hat_share error in ISM fault");
2135 				/*NOTREACHED*/
2136 			}
2137 			return (0);
2138 		}
2139 		ppa = kmem_zalloc(sizeof (page_t *) * npages, KM_SLEEP);
2140 
2141 		/*
2142 		 * I see no need to lock the real seg,
2143 		 * here, because all of our work will be on the underlying
2144 		 * dummy seg.
2145 		 *
2146 		 * sptseg_addr and npages now account for large pages.
2147 		 */
2148 		amp = sptd->spt_amp;
2149 		ASSERT(amp != NULL);
2150 		anon_index = seg_page(sptseg, sptseg_addr);
2151 
2152 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2153 		for (i = 0; i < npages; i++) {
2154 			ap = anon_get_ptr(amp->ahp, anon_index++);
2155 			ASSERT(ap != NULL);
2156 			swap_xlate(ap, &vp, &offset);
2157 			pp = page_lookup(vp, offset, SE_SHARED);
2158 			ASSERT(pp != NULL);
2159 			ppa[i] = pp;
2160 		}
2161 		ANON_LOCK_EXIT(&amp->a_rwlock);
2162 		ASSERT(i == npages);
2163 
2164 		/*
2165 		 * We are already holding the as->a_lock on the user's
2166 		 * real segment, but we need to hold the a_lock on the
2167 		 * underlying dummy as. This is mostly to satisfy the
2168 		 * underlying HAT layer.
2169 		 */
2170 		AS_LOCK_ENTER(sptseg->s_as, &sptseg->s_as->a_lock, RW_READER);
2171 		a = sptseg_addr;
2172 		pidx = 0;
2173 		if (type == F_SOFTLOCK) {
2174 			/*
2175 			 * Load up the translation keeping it
2176 			 * locked and don't unlock the page.
2177 			 */
2178 			for (; pidx < npages; a += pgsz, pidx += pgcnt) {
2179 				sz = MIN(pgsz, ptob(npages - pidx));
2180 				hat_memload_array(sptseg->s_as->a_hat, a,
2181 				    sz, &ppa[pidx], sptd->spt_prot,
2182 				    HAT_LOAD_LOCK | HAT_LOAD_SHARE);
2183 			}
2184 		} else {
2185 			if (hat == seg->s_as->a_hat) {
2186 
2187 				/*
2188 				 * Migrate pages marked for migration.
2189 				 */
2190 				if (lgrp_optimizations())
2191 					page_migrate(seg, shm_addr, ppa,
2192 					    npages);
2193 
2194 				/* CPU HAT */
2195 				for (; pidx < npages;
2196 				    a += pgsz, pidx += pgcnt) {
2197 					sz = MIN(pgsz, ptob(npages - pidx));
2198 					hat_memload_array(sptseg->s_as->a_hat,
2199 					    a, sz, &ppa[pidx],
2200 					    sptd->spt_prot, HAT_LOAD_SHARE);
2201 				}
2202 			} else {
2203 				/* XHAT. Pass real address */
2204 				hat_memload_array(hat, shm_addr,
2205 				    ptob(npages), ppa, sptd->spt_prot,
2206 				    HAT_LOAD_SHARE);
2207 			}
2208 
2209 			/*
2210 			 * And now drop the SE_SHARED lock(s).
2211 			 */
2212 			for (i = 0; i < npages; i++)
2213 				page_unlock(ppa[i]);
2214 		}
2215 		AS_LOCK_EXIT(sptseg->s_as, &sptseg->s_as->a_lock);
2216 
2217 		kmem_free(ppa, sizeof (page_t *) * npages);
2218 		return (0);
2219 	case F_SOFTUNLOCK:
2220 
2221 		/*
2222 		 * This is a bit ugly, we pass in the real seg pointer,
2223 		 * but the sptseg_addr is the virtual address within the
2224 		 * dummy seg.
2225 		 */
2226 		segspt_softunlock(seg, sptseg_addr, ptob(npages), rw);
2227 		return (0);
2228 
2229 	case F_PROT:
2230 
2231 		/*
2232 		 * This takes care of the unusual case where a user
2233 		 * allocates a stack in shared memory and a register
2234 		 * window overflow is written to that stack page before
2235 		 * it is otherwise modified.
2236 		 *
2237 		 * We can get away with this because ISM segments are
2238 		 * always rw. Other than this unusual case, there
2239 		 * should be no instances of protection violations.
2240 		 */
2241 		return (0);
2242 
2243 	default:
2244 #ifdef DEBUG
2245 		cmn_err(CE_WARN, "segspt_shmfault default type?");
2246 #endif
2247 		return (FC_NOMAP);
2248 	}
2249 }
2250 
2251 /*ARGSUSED*/
2252 static faultcode_t
2253 segspt_shmfaulta(struct seg *seg, caddr_t addr)
2254 {
2255 	return (0);
2256 }
2257 
2258 /*ARGSUSED*/
2259 static int
2260 segspt_shmkluster(struct seg *seg, caddr_t addr, ssize_t delta)
2261 {
2262 	return (0);
2263 }
2264 
2265 /*ARGSUSED*/
2266 static size_t
2267 segspt_shmswapout(struct seg *seg)
2268 {
2269 	return (0);
2270 }
2271 
2272 /*
2273  * duplicate the shared page tables
2274  */
2275 int
2276 segspt_shmdup(struct seg *seg, struct seg *newseg)
2277 {
2278 	struct shm_data		*shmd = (struct shm_data *)seg->s_data;
2279 	struct anon_map 	*amp = shmd->shm_amp;
2280 	struct shm_data 	*shmd_new;
2281 	struct seg		*spt_seg = shmd->shm_sptseg;
2282 	struct spt_data		*sptd = spt_seg->s_data;
2283 	int			error = 0;
2284 
2285 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
2286 
2287 	shmd_new = kmem_zalloc((sizeof (*shmd_new)), KM_SLEEP);
2288 	newseg->s_data = (void *)shmd_new;
2289 	shmd_new->shm_sptas = shmd->shm_sptas;
2290 	shmd_new->shm_amp = amp;
2291 	shmd_new->shm_sptseg = shmd->shm_sptseg;
2292 	newseg->s_ops = &segspt_shmops;
2293 	newseg->s_szc = seg->s_szc;
2294 	ASSERT(seg->s_szc == shmd->shm_sptseg->s_szc);
2295 
2296 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2297 	amp->refcnt++;
2298 	ANON_LOCK_EXIT(&amp->a_rwlock);
2299 
2300 	if (sptd->spt_flags & SHM_PAGEABLE) {
2301 		shmd_new->shm_vpage = kmem_zalloc(btopr(amp->size), KM_SLEEP);
2302 		shmd_new->shm_lckpgs = 0;
2303 		if (hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
2304 			if ((error = hat_share(newseg->s_as->a_hat,
2305 			    newseg->s_base, shmd->shm_sptas->a_hat, SEGSPTADDR,
2306 			    seg->s_size, seg->s_szc)) != 0) {
2307 				kmem_free(shmd_new->shm_vpage,
2308 				    btopr(amp->size));
2309 			}
2310 		}
2311 		return (error);
2312 	} else {
2313 		return (hat_share(newseg->s_as->a_hat, newseg->s_base,
2314 		    shmd->shm_sptas->a_hat, SEGSPTADDR, seg->s_size,
2315 		    seg->s_szc));
2316 
2317 	}
2318 }
2319 
2320 /*ARGSUSED*/
2321 int
2322 segspt_shmcheckprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot)
2323 {
2324 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2325 	struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2326 
2327 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2328 
2329 	/*
2330 	 * ISM segment is always rw.
2331 	 */
2332 	return (((sptd->spt_prot & prot) != prot) ? EACCES : 0);
2333 }
2334 
2335 /*
2336  * Return an array of locked large pages, for empty slots allocate
2337  * private zero-filled anon pages.
2338  */
2339 static int
2340 spt_anon_getpages(
2341 	struct seg *sptseg,
2342 	caddr_t sptaddr,
2343 	size_t len,
2344 	page_t *ppa[])
2345 {
2346 	struct  spt_data *sptd = sptseg->s_data;
2347 	struct  anon_map *amp = sptd->spt_amp;
2348 	enum 	seg_rw rw = sptd->spt_prot;
2349 	uint_t	szc = sptseg->s_szc;
2350 	size_t	pg_sz, share_sz = page_get_pagesize(szc);
2351 	pgcnt_t	lp_npgs;
2352 	caddr_t	lp_addr, e_sptaddr;
2353 	uint_t	vpprot, ppa_szc = 0;
2354 	struct  vpage *vpage = NULL;
2355 	ulong_t	j, ppa_idx;
2356 	int	err, ierr = 0;
2357 	pgcnt_t	an_idx;
2358 	anon_sync_obj_t cookie;
2359 	int anon_locked = 0;
2360 	pgcnt_t amp_pgs;
2361 
2362 
2363 	ASSERT(IS_P2ALIGNED(sptaddr, share_sz) && IS_P2ALIGNED(len, share_sz));
2364 	ASSERT(len != 0);
2365 
2366 	pg_sz = share_sz;
2367 	lp_npgs = btop(pg_sz);
2368 	lp_addr = sptaddr;
2369 	e_sptaddr = sptaddr + len;
2370 	an_idx = seg_page(sptseg, sptaddr);
2371 	ppa_idx = 0;
2372 
2373 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2374 
2375 	amp_pgs = page_get_pagecnt(amp->a_szc);
2376 
2377 	/*CONSTCOND*/
2378 	while (1) {
2379 		for (; lp_addr < e_sptaddr;
2380 		    an_idx += lp_npgs, lp_addr += pg_sz, ppa_idx += lp_npgs) {
2381 
2382 			/*
2383 			 * If we're currently locked, and we get to a new
2384 			 * page, unlock our current anon chunk.
2385 			 */
2386 			if (anon_locked && P2PHASE(an_idx, amp_pgs) == 0) {
2387 				anon_array_exit(&cookie);
2388 				anon_locked = 0;
2389 			}
2390 			if (!anon_locked) {
2391 				anon_array_enter(amp, an_idx, &cookie);
2392 				anon_locked = 1;
2393 			}
2394 			ppa_szc = (uint_t)-1;
2395 			ierr = anon_map_getpages(amp, an_idx, szc, sptseg,
2396 			    lp_addr, sptd->spt_prot, &vpprot, &ppa[ppa_idx],
2397 			    &ppa_szc, vpage, rw, 0, segvn_anypgsz, 0, kcred);
2398 
2399 			if (ierr != 0) {
2400 				if (ierr > 0) {
2401 					err = FC_MAKE_ERR(ierr);
2402 					goto lpgs_err;
2403 				}
2404 				break;
2405 			}
2406 		}
2407 		if (lp_addr == e_sptaddr) {
2408 			break;
2409 		}
2410 		ASSERT(lp_addr < e_sptaddr);
2411 
2412 		/*
2413 		 * ierr == -1 means we failed to allocate a large page.
2414 		 * so do a size down operation.
2415 		 *
2416 		 * ierr == -2 means some other process that privately shares
2417 		 * pages with this process has allocated a larger page and we
2418 		 * need to retry with larger pages. So do a size up
2419 		 * operation. This relies on the fact that large pages are
2420 		 * never partially shared i.e. if we share any constituent
2421 		 * page of a large page with another process we must share the
2422 		 * entire large page. Note this cannot happen for SOFTLOCK
2423 		 * case, unless current address (lpaddr) is at the beginning
2424 		 * of the next page size boundary because the other process
2425 		 * couldn't have relocated locked pages.
2426 		 */
2427 		ASSERT(ierr == -1 || ierr == -2);
2428 		if (segvn_anypgsz) {
2429 			ASSERT(ierr == -2 || szc != 0);
2430 			ASSERT(ierr == -1 || szc < sptseg->s_szc);
2431 			szc = (ierr == -1) ? szc - 1 : szc + 1;
2432 		} else {
2433 			/*
2434 			 * For faults and segvn_anypgsz == 0
2435 			 * we need to be careful not to loop forever
2436 			 * if existing page is found with szc other
2437 			 * than 0 or seg->s_szc. This could be due
2438 			 * to page relocations on behalf of DR or
2439 			 * more likely large page creation. For this
2440 			 * case simply re-size to existing page's szc
2441 			 * if returned by anon_map_getpages().
2442 			 */
2443 			if (ppa_szc == (uint_t)-1) {
2444 				szc = (ierr == -1) ? 0 : sptseg->s_szc;
2445 			} else {
2446 				ASSERT(ppa_szc <= sptseg->s_szc);
2447 				ASSERT(ierr == -2 || ppa_szc < szc);
2448 				ASSERT(ierr == -1 || ppa_szc > szc);
2449 				szc = ppa_szc;
2450 			}
2451 		}
2452 		pg_sz = page_get_pagesize(szc);
2453 		lp_npgs = btop(pg_sz);
2454 		ASSERT(IS_P2ALIGNED(lp_addr, pg_sz));
2455 	}
2456 	if (anon_locked) {
2457 		anon_array_exit(&cookie);
2458 	}
2459 	ANON_LOCK_EXIT(&amp->a_rwlock);
2460 	return (0);
2461 
2462 lpgs_err:
2463 	if (anon_locked) {
2464 		anon_array_exit(&cookie);
2465 	}
2466 	ANON_LOCK_EXIT(&amp->a_rwlock);
2467 	for (j = 0; j < ppa_idx; j++)
2468 		page_unlock(ppa[j]);
2469 	return (err);
2470 }
2471 
2472 /*
2473  * count the number of bytes in a set of spt pages that are currently not
2474  * locked
2475  */
2476 static rctl_qty_t
2477 spt_unlockedbytes(pgcnt_t npages, page_t **ppa)
2478 {
2479 	ulong_t	i;
2480 	rctl_qty_t unlocked = 0;
2481 
2482 	for (i = 0; i < npages; i++) {
2483 		if (ppa[i]->p_lckcnt == 0)
2484 			unlocked += PAGESIZE;
2485 	}
2486 	return (unlocked);
2487 }
2488 
2489 extern	u_longlong_t randtick(void);
2490 /* number of locks to reserve/skip by spt_lockpages() and spt_unlockpages() */
2491 #define	NLCK	(NCPU_P2)
2492 /* Random number with a range [0, n-1], n must be power of two */
2493 #define	RAND_P2(n)	\
2494 	((((long)curthread >> PTR24_LSB) ^ (long)randtick()) & ((n) - 1))
2495 
2496 int
2497 spt_lockpages(struct seg *seg, pgcnt_t anon_index, pgcnt_t npages,
2498     page_t **ppa, ulong_t *lockmap, size_t pos,
2499     rctl_qty_t *locked)
2500 {
2501 	struct	shm_data *shmd = seg->s_data;
2502 	struct	spt_data *sptd = shmd->shm_sptseg->s_data;
2503 	ulong_t	i;
2504 	int	kernel;
2505 	pgcnt_t	nlck = 0;
2506 	int	rv = 0;
2507 	int	use_reserved = 1;
2508 
2509 	/* return the number of bytes actually locked */
2510 	*locked = 0;
2511 
2512 	/*
2513 	 * To avoid contention on freemem_lock, availrmem and pages_locked
2514 	 * global counters are updated only every nlck locked pages instead of
2515 	 * every time.  Reserve nlck locks up front and deduct from this
2516 	 * reservation for each page that requires a lock.  When the reservation
2517 	 * is consumed, reserve again.  nlck is randomized, so the competing
2518 	 * threads do not fall into a cyclic lock contention pattern. When
2519 	 * memory is low, the lock ahead is disabled, and instead page_pp_lock()
2520 	 * is used to lock pages.
2521 	 */
2522 	for (i = 0; i < npages; anon_index++, pos++, i++) {
2523 		if (nlck == 0 && use_reserved == 1) {
2524 			nlck = NLCK + RAND_P2(NLCK);
2525 			/* if fewer loops left, decrease nlck */
2526 			nlck = MIN(nlck, npages - i);
2527 			/*
2528 			 * Reserve nlck locks up front and deduct from this
2529 			 * reservation for each page that requires a lock.  When
2530 			 * the reservation is consumed, reserve again.
2531 			 */
2532 			mutex_enter(&freemem_lock);
2533 			if ((availrmem - nlck) < pages_pp_maximum) {
2534 				/* Do not do advance memory reserves */
2535 				use_reserved = 0;
2536 			} else {
2537 				availrmem	-= nlck;
2538 				pages_locked	+= nlck;
2539 			}
2540 			mutex_exit(&freemem_lock);
2541 		}
2542 		if (!(shmd->shm_vpage[anon_index] & DISM_PG_LOCKED)) {
2543 			if (sptd->spt_ppa_lckcnt[anon_index] <
2544 			    (ushort_t)DISM_LOCK_MAX) {
2545 				if (++sptd->spt_ppa_lckcnt[anon_index] ==
2546 				    (ushort_t)DISM_LOCK_MAX) {
2547 					cmn_err(CE_WARN,
2548 					    "DISM page lock limit "
2549 					    "reached on DISM offset 0x%lx\n",
2550 					    anon_index << PAGESHIFT);
2551 				}
2552 				kernel = (sptd->spt_ppa &&
2553 				    sptd->spt_ppa[anon_index]);
2554 				if (!page_pp_lock(ppa[i], 0, kernel ||
2555 				    use_reserved)) {
2556 					sptd->spt_ppa_lckcnt[anon_index]--;
2557 					rv = EAGAIN;
2558 					break;
2559 				}
2560 				/* if this is a newly locked page, count it */
2561 				if (ppa[i]->p_lckcnt == 1) {
2562 					if (kernel == 0 && use_reserved == 1)
2563 						nlck--;
2564 					*locked += PAGESIZE;
2565 				}
2566 				shmd->shm_lckpgs++;
2567 				shmd->shm_vpage[anon_index] |= DISM_PG_LOCKED;
2568 				if (lockmap != NULL)
2569 					BT_SET(lockmap, pos);
2570 			}
2571 		}
2572 	}
2573 	/* Return unused lock reservation */
2574 	if (nlck != 0 && use_reserved == 1) {
2575 		mutex_enter(&freemem_lock);
2576 		availrmem	+= nlck;
2577 		pages_locked	-= nlck;
2578 		mutex_exit(&freemem_lock);
2579 	}
2580 
2581 	return (rv);
2582 }
2583 
2584 int
2585 spt_unlockpages(struct seg *seg, pgcnt_t anon_index, pgcnt_t npages,
2586     rctl_qty_t *unlocked)
2587 {
2588 	struct shm_data	*shmd = seg->s_data;
2589 	struct spt_data	*sptd = shmd->shm_sptseg->s_data;
2590 	struct anon_map	*amp = sptd->spt_amp;
2591 	struct anon 	*ap;
2592 	struct vnode 	*vp;
2593 	u_offset_t 	off;
2594 	struct page	*pp;
2595 	int		kernel;
2596 	anon_sync_obj_t	cookie;
2597 	ulong_t		i;
2598 	pgcnt_t		nlck = 0;
2599 	pgcnt_t		nlck_limit = NLCK;
2600 
2601 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2602 	for (i = 0; i < npages; i++, anon_index++) {
2603 		if (shmd->shm_vpage[anon_index] & DISM_PG_LOCKED) {
2604 			anon_array_enter(amp, anon_index, &cookie);
2605 			ap = anon_get_ptr(amp->ahp, anon_index);
2606 			ASSERT(ap);
2607 
2608 			swap_xlate(ap, &vp, &off);
2609 			anon_array_exit(&cookie);
2610 			pp = page_lookup(vp, off, SE_SHARED);
2611 			ASSERT(pp);
2612 			/*
2613 			 * availrmem is decremented only for pages which are not
2614 			 * in seg pcache, for pages in seg pcache availrmem was
2615 			 * decremented in _dismpagelock()
2616 			 */
2617 			kernel = (sptd->spt_ppa && sptd->spt_ppa[anon_index]);
2618 			ASSERT(pp->p_lckcnt > 0);
2619 
2620 			/*
2621 			 * lock page but do not change availrmem, we do it
2622 			 * ourselves every nlck loops.
2623 			 */
2624 			page_pp_unlock(pp, 0, 1);
2625 			if (pp->p_lckcnt == 0) {
2626 				if (kernel == 0)
2627 					nlck++;
2628 				*unlocked += PAGESIZE;
2629 			}
2630 			page_unlock(pp);
2631 			shmd->shm_vpage[anon_index] &= ~DISM_PG_LOCKED;
2632 			sptd->spt_ppa_lckcnt[anon_index]--;
2633 			shmd->shm_lckpgs--;
2634 		}
2635 
2636 		/*
2637 		 * To reduce freemem_lock contention, do not update availrmem
2638 		 * until at least NLCK pages have been unlocked.
2639 		 * 1. No need to update if nlck is zero
2640 		 * 2. Always update if the last iteration
2641 		 */
2642 		if (nlck > 0 && (nlck == nlck_limit || i == npages - 1)) {
2643 			mutex_enter(&freemem_lock);
2644 			availrmem	+= nlck;
2645 			pages_locked	-= nlck;
2646 			mutex_exit(&freemem_lock);
2647 			nlck = 0;
2648 			nlck_limit = NLCK + RAND_P2(NLCK);
2649 		}
2650 	}
2651 	ANON_LOCK_EXIT(&amp->a_rwlock);
2652 
2653 	return (0);
2654 }
2655 
2656 /*ARGSUSED*/
2657 static int
2658 segspt_shmlockop(struct seg *seg, caddr_t addr, size_t len,
2659     int attr, int op, ulong_t *lockmap, size_t pos)
2660 {
2661 	struct shm_data *shmd = seg->s_data;
2662 	struct seg	*sptseg = shmd->shm_sptseg;
2663 	struct spt_data *sptd = sptseg->s_data;
2664 	struct kshmid	*sp = sptd->spt_amp->a_sp;
2665 	pgcnt_t		npages, a_npages;
2666 	page_t		**ppa;
2667 	pgcnt_t 	an_idx, a_an_idx, ppa_idx;
2668 	caddr_t		spt_addr, a_addr;	/* spt and aligned address */
2669 	size_t		a_len;			/* aligned len */
2670 	size_t		share_sz;
2671 	ulong_t		i;
2672 	int		sts = 0;
2673 	rctl_qty_t	unlocked = 0;
2674 	rctl_qty_t	locked = 0;
2675 	struct proc	*p = curproc;
2676 	kproject_t	*proj;
2677 
2678 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2679 	ASSERT(sp != NULL);
2680 
2681 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
2682 		return (0);
2683 	}
2684 
2685 	addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2686 	an_idx = seg_page(seg, addr);
2687 	npages = btopr(len);
2688 
2689 	if (an_idx + npages > btopr(shmd->shm_amp->size)) {
2690 		return (ENOMEM);
2691 	}
2692 
2693 	/*
2694 	 * A shm's project never changes, so no lock needed.
2695 	 * The shm has a hold on the project, so it will not go away.
2696 	 * Since we have a mapping to shm within this zone, we know
2697 	 * that the zone will not go away.
2698 	 */
2699 	proj = sp->shm_perm.ipc_proj;
2700 
2701 	if (op == MC_LOCK) {
2702 
2703 		/*
2704 		 * Need to align addr and size request if they are not
2705 		 * aligned so we can always allocate large page(s) however
2706 		 * we only lock what was requested in initial request.
2707 		 */
2708 		share_sz = page_get_pagesize(sptseg->s_szc);
2709 		a_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), share_sz);
2710 		a_len = P2ROUNDUP((uintptr_t)(((addr + len) - a_addr)),
2711 		    share_sz);
2712 		a_npages = btop(a_len);
2713 		a_an_idx = seg_page(seg, a_addr);
2714 		spt_addr = sptseg->s_base + ptob(a_an_idx);
2715 		ppa_idx = an_idx - a_an_idx;
2716 
2717 		if ((ppa = kmem_zalloc(((sizeof (page_t *)) * a_npages),
2718 		    KM_NOSLEEP)) == NULL) {
2719 			return (ENOMEM);
2720 		}
2721 
2722 		/*
2723 		 * Don't cache any new pages for IO and
2724 		 * flush any cached pages.
2725 		 */
2726 		mutex_enter(&sptd->spt_lock);
2727 		if (sptd->spt_ppa != NULL)
2728 			sptd->spt_flags |= DISM_PPA_CHANGED;
2729 
2730 		sts = spt_anon_getpages(sptseg, spt_addr, a_len, ppa);
2731 		if (sts != 0) {
2732 			mutex_exit(&sptd->spt_lock);
2733 			kmem_free(ppa, ((sizeof (page_t *)) * a_npages));
2734 			return (sts);
2735 		}
2736 
2737 		mutex_enter(&sp->shm_mlock);
2738 		/* enforce locked memory rctl */
2739 		unlocked = spt_unlockedbytes(npages, &ppa[ppa_idx]);
2740 
2741 		mutex_enter(&p->p_lock);
2742 		if (rctl_incr_locked_mem(p, proj, unlocked, 0)) {
2743 			mutex_exit(&p->p_lock);
2744 			sts = EAGAIN;
2745 		} else {
2746 			mutex_exit(&p->p_lock);
2747 			sts = spt_lockpages(seg, an_idx, npages,
2748 			    &ppa[ppa_idx], lockmap, pos, &locked);
2749 
2750 			/*
2751 			 * correct locked count if not all pages could be
2752 			 * locked
2753 			 */
2754 			if ((unlocked - locked) > 0) {
2755 				rctl_decr_locked_mem(NULL, proj,
2756 				    (unlocked - locked), 0);
2757 			}
2758 		}
2759 		/*
2760 		 * unlock pages
2761 		 */
2762 		for (i = 0; i < a_npages; i++)
2763 			page_unlock(ppa[i]);
2764 		if (sptd->spt_ppa != NULL)
2765 			sptd->spt_flags |= DISM_PPA_CHANGED;
2766 		mutex_exit(&sp->shm_mlock);
2767 		mutex_exit(&sptd->spt_lock);
2768 
2769 		kmem_free(ppa, ((sizeof (page_t *)) * a_npages));
2770 
2771 	} else if (op == MC_UNLOCK) { /* unlock */
2772 		page_t		**ppa;
2773 
2774 		mutex_enter(&sptd->spt_lock);
2775 		if (shmd->shm_lckpgs == 0) {
2776 			mutex_exit(&sptd->spt_lock);
2777 			return (0);
2778 		}
2779 		/*
2780 		 * Don't cache new IO pages.
2781 		 */
2782 		if (sptd->spt_ppa != NULL)
2783 			sptd->spt_flags |= DISM_PPA_CHANGED;
2784 
2785 		mutex_enter(&sp->shm_mlock);
2786 		sts = spt_unlockpages(seg, an_idx, npages, &unlocked);
2787 		if ((ppa = sptd->spt_ppa) != NULL)
2788 			sptd->spt_flags |= DISM_PPA_CHANGED;
2789 		mutex_exit(&sptd->spt_lock);
2790 
2791 		rctl_decr_locked_mem(NULL, proj, unlocked, 0);
2792 		mutex_exit(&sp->shm_mlock);
2793 
2794 		if (ppa != NULL)
2795 			seg_ppurge_wiredpp(ppa);
2796 	}
2797 	return (sts);
2798 }
2799 
2800 /*ARGSUSED*/
2801 int
2802 segspt_shmgetprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv)
2803 {
2804 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2805 	struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2806 	spgcnt_t pgno = seg_page(seg, addr+len) - seg_page(seg, addr) + 1;
2807 
2808 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2809 
2810 	/*
2811 	 * ISM segment is always rw.
2812 	 */
2813 	while (--pgno >= 0)
2814 		*protv++ = sptd->spt_prot;
2815 	return (0);
2816 }
2817 
2818 /*ARGSUSED*/
2819 u_offset_t
2820 segspt_shmgetoffset(struct seg *seg, caddr_t addr)
2821 {
2822 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2823 
2824 	/* Offset does not matter in ISM memory */
2825 
2826 	return ((u_offset_t)0);
2827 }
2828 
2829 /* ARGSUSED */
2830 int
2831 segspt_shmgettype(struct seg *seg, caddr_t addr)
2832 {
2833 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2834 	struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2835 
2836 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2837 
2838 	/*
2839 	 * The shared memory mapping is always MAP_SHARED, SWAP is only
2840 	 * reserved for DISM
2841 	 */
2842 	return (MAP_SHARED |
2843 	    ((sptd->spt_flags & SHM_PAGEABLE) ? 0 : MAP_NORESERVE));
2844 }
2845 
2846 /*ARGSUSED*/
2847 int
2848 segspt_shmgetvp(struct seg *seg, caddr_t addr, struct vnode **vpp)
2849 {
2850 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2851 	struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2852 
2853 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2854 
2855 	*vpp = sptd->spt_vp;
2856 	return (0);
2857 }
2858 
2859 /*
2860  * We need to wait for pending IO to complete to a DISM segment in order for
2861  * pages to get kicked out of the seg_pcache.  120 seconds should be more
2862  * than enough time to wait.
2863  */
2864 static clock_t spt_pcache_wait = 120;
2865 
2866 /*ARGSUSED*/
2867 static int
2868 segspt_shmadvise(struct seg *seg, caddr_t addr, size_t len, uint_t behav)
2869 {
2870 	struct shm_data	*shmd = (struct shm_data *)seg->s_data;
2871 	struct spt_data	*sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2872 	struct anon_map	*amp;
2873 	pgcnt_t pg_idx;
2874 	ushort_t gen;
2875 	clock_t	end_lbolt;
2876 	int writer;
2877 	page_t **ppa;
2878 
2879 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2880 
2881 	if (behav == MADV_FREE) {
2882 		if ((sptd->spt_flags & SHM_PAGEABLE) == 0)
2883 			return (0);
2884 
2885 		amp = sptd->spt_amp;
2886 		pg_idx = seg_page(seg, addr);
2887 
2888 		mutex_enter(&sptd->spt_lock);
2889 		if ((ppa = sptd->spt_ppa) == NULL) {
2890 			mutex_exit(&sptd->spt_lock);
2891 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2892 			anon_disclaim(amp, pg_idx, len);
2893 			ANON_LOCK_EXIT(&amp->a_rwlock);
2894 			return (0);
2895 		}
2896 
2897 		sptd->spt_flags |= DISM_PPA_CHANGED;
2898 		gen = sptd->spt_gen;
2899 
2900 		mutex_exit(&sptd->spt_lock);
2901 
2902 		/*
2903 		 * Purge all DISM cached pages
2904 		 */
2905 		seg_ppurge_wiredpp(ppa);
2906 
2907 		/*
2908 		 * Drop the AS_LOCK so that other threads can grab it
2909 		 * in the as_pageunlock path and hopefully get the segment
2910 		 * kicked out of the seg_pcache.  We bump the shm_softlockcnt
2911 		 * to keep this segment resident.
2912 		 */
2913 		writer = AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock);
2914 		atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), 1);
2915 		AS_LOCK_EXIT(seg->s_as, &seg->s_as->a_lock);
2916 
2917 		mutex_enter(&sptd->spt_lock);
2918 
2919 		end_lbolt = ddi_get_lbolt() + (hz * spt_pcache_wait);
2920 
2921 		/*
2922 		 * Try to wait for pages to get kicked out of the seg_pcache.
2923 		 */
2924 		while (sptd->spt_gen == gen &&
2925 		    (sptd->spt_flags & DISM_PPA_CHANGED) &&
2926 		    ddi_get_lbolt() < end_lbolt) {
2927 			if (!cv_timedwait_sig(&sptd->spt_cv,
2928 			    &sptd->spt_lock, end_lbolt)) {
2929 				break;
2930 			}
2931 		}
2932 
2933 		mutex_exit(&sptd->spt_lock);
2934 
2935 		/* Regrab the AS_LOCK and release our hold on the segment */
2936 		AS_LOCK_ENTER(seg->s_as, &seg->s_as->a_lock,
2937 		    writer ? RW_WRITER : RW_READER);
2938 		atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), -1);
2939 		if (shmd->shm_softlockcnt <= 0) {
2940 			if (AS_ISUNMAPWAIT(seg->s_as)) {
2941 				mutex_enter(&seg->s_as->a_contents);
2942 				if (AS_ISUNMAPWAIT(seg->s_as)) {
2943 					AS_CLRUNMAPWAIT(seg->s_as);
2944 					cv_broadcast(&seg->s_as->a_cv);
2945 				}
2946 				mutex_exit(&seg->s_as->a_contents);
2947 			}
2948 		}
2949 
2950 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2951 		anon_disclaim(amp, pg_idx, len);
2952 		ANON_LOCK_EXIT(&amp->a_rwlock);
2953 	} else if (lgrp_optimizations() && (behav == MADV_ACCESS_LWP ||
2954 	    behav == MADV_ACCESS_MANY || behav == MADV_ACCESS_DEFAULT)) {
2955 		int			already_set;
2956 		ulong_t			anon_index;
2957 		lgrp_mem_policy_t	policy;
2958 		caddr_t			shm_addr;
2959 		size_t			share_size;
2960 		size_t			size;
2961 		struct seg		*sptseg = shmd->shm_sptseg;
2962 		caddr_t			sptseg_addr;
2963 
2964 		/*
2965 		 * Align address and length to page size of underlying segment
2966 		 */
2967 		share_size = page_get_pagesize(shmd->shm_sptseg->s_szc);
2968 		shm_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), share_size);
2969 		size = P2ROUNDUP((uintptr_t)(((addr + len) - shm_addr)),
2970 		    share_size);
2971 
2972 		amp = shmd->shm_amp;
2973 		anon_index = seg_page(seg, shm_addr);
2974 
2975 		/*
2976 		 * And now we may have to adjust size downward if we have
2977 		 * exceeded the realsize of the segment or initial anon
2978 		 * allocations.
2979 		 */
2980 		sptseg_addr = sptseg->s_base + ptob(anon_index);
2981 		if ((sptseg_addr + size) >
2982 		    (sptseg->s_base + sptd->spt_realsize))
2983 			size = (sptseg->s_base + sptd->spt_realsize) -
2984 			    sptseg_addr;
2985 
2986 		/*
2987 		 * Set memory allocation policy for this segment
2988 		 */
2989 		policy = lgrp_madv_to_policy(behav, len, MAP_SHARED);
2990 		already_set = lgrp_shm_policy_set(policy, amp, anon_index,
2991 		    NULL, 0, len);
2992 
2993 		/*
2994 		 * If random memory allocation policy set already,
2995 		 * don't bother reapplying it.
2996 		 */
2997 		if (already_set && !LGRP_MEM_POLICY_REAPPLICABLE(policy))
2998 			return (0);
2999 
3000 		/*
3001 		 * Mark any existing pages in the given range for
3002 		 * migration, flushing the I/O page cache, and using
3003 		 * underlying segment to calculate anon index and get
3004 		 * anonmap and vnode pointer from
3005 		 */
3006 		if (shmd->shm_softlockcnt > 0)
3007 			segspt_purge(seg);
3008 
3009 		page_mark_migrate(seg, shm_addr, size, amp, 0, NULL, 0, 0);
3010 	}
3011 
3012 	return (0);
3013 }
3014 
3015 /*ARGSUSED*/
3016 void
3017 segspt_shmdump(struct seg *seg)
3018 {
3019 	/* no-op for ISM segment */
3020 }
3021 
3022 /*ARGSUSED*/
3023 static faultcode_t
3024 segspt_shmsetpgsz(struct seg *seg, caddr_t addr, size_t len, uint_t szc)
3025 {
3026 	return (ENOTSUP);
3027 }
3028 
3029 /*
3030  * get a memory ID for an addr in a given segment
3031  */
3032 static int
3033 segspt_shmgetmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
3034 {
3035 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
3036 	struct anon 	*ap;
3037 	size_t		anon_index;
3038 	struct anon_map	*amp = shmd->shm_amp;
3039 	struct spt_data	*sptd = shmd->shm_sptseg->s_data;
3040 	struct seg	*sptseg = shmd->shm_sptseg;
3041 	anon_sync_obj_t	cookie;
3042 
3043 	anon_index = seg_page(seg, addr);
3044 
3045 	if (addr > (seg->s_base + sptd->spt_realsize)) {
3046 		return (EFAULT);
3047 	}
3048 
3049 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
3050 	anon_array_enter(amp, anon_index, &cookie);
3051 	ap = anon_get_ptr(amp->ahp, anon_index);
3052 	if (ap == NULL) {
3053 		struct page *pp;
3054 		caddr_t spt_addr = sptseg->s_base + ptob(anon_index);
3055 
3056 		pp = anon_zero(sptseg, spt_addr, &ap, kcred);
3057 		if (pp == NULL) {
3058 			anon_array_exit(&cookie);
3059 			ANON_LOCK_EXIT(&amp->a_rwlock);
3060 			return (ENOMEM);
3061 		}
3062 		(void) anon_set_ptr(amp->ahp, anon_index, ap, ANON_SLEEP);
3063 		page_unlock(pp);
3064 	}
3065 	anon_array_exit(&cookie);
3066 	ANON_LOCK_EXIT(&amp->a_rwlock);
3067 	memidp->val[0] = (uintptr_t)ap;
3068 	memidp->val[1] = (uintptr_t)addr & PAGEOFFSET;
3069 	return (0);
3070 }
3071 
3072 /*
3073  * Get memory allocation policy info for specified address in given segment
3074  */
3075 static lgrp_mem_policy_info_t *
3076 segspt_shmgetpolicy(struct seg *seg, caddr_t addr)
3077 {
3078 	struct anon_map		*amp;
3079 	ulong_t			anon_index;
3080 	lgrp_mem_policy_info_t	*policy_info;
3081 	struct shm_data		*shm_data;
3082 
3083 	ASSERT(seg != NULL);
3084 
3085 	/*
3086 	 * Get anon_map from segshm
3087 	 *
3088 	 * Assume that no lock needs to be held on anon_map, since
3089 	 * it should be protected by its reference count which must be
3090 	 * nonzero for an existing segment
3091 	 * Need to grab readers lock on policy tree though
3092 	 */
3093 	shm_data = (struct shm_data *)seg->s_data;
3094 	if (shm_data == NULL)
3095 		return (NULL);
3096 	amp = shm_data->shm_amp;
3097 	ASSERT(amp->refcnt != 0);
3098 
3099 	/*
3100 	 * Get policy info
3101 	 *
3102 	 * Assume starting anon index of 0
3103 	 */
3104 	anon_index = seg_page(seg, addr);
3105 	policy_info = lgrp_shm_policy_get(amp, anon_index, NULL, 0);
3106 
3107 	return (policy_info);
3108 }
3109 
3110 /*ARGSUSED*/
3111 static int
3112 segspt_shmcapable(struct seg *seg, segcapability_t capability)
3113 {
3114 	return (0);
3115 }
3116