xref: /titanic_52/usr/src/uts/common/vm/seg_kp.c (revision d1419d5a02eaedd520f925cd465fd62f3950ae43)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
27 /*	All Rights Reserved   */
28 
29 /*
30  * Portions of this source code were derived from Berkeley 4.3 BSD
31  * under license from the Regents of the University of California.
32  */
33 
34 /*
35  * segkp is a segment driver that administers the allocation and deallocation
36  * of pageable variable size chunks of kernel virtual address space. Each
37  * allocated resource is page-aligned.
38  *
39  * The user may specify whether the resource should be initialized to 0,
40  * include a redzone, or locked in memory.
41  */
42 
43 #include <sys/types.h>
44 #include <sys/t_lock.h>
45 #include <sys/thread.h>
46 #include <sys/param.h>
47 #include <sys/errno.h>
48 #include <sys/sysmacros.h>
49 #include <sys/systm.h>
50 #include <sys/buf.h>
51 #include <sys/mman.h>
52 #include <sys/vnode.h>
53 #include <sys/cmn_err.h>
54 #include <sys/swap.h>
55 #include <sys/tuneable.h>
56 #include <sys/kmem.h>
57 #include <sys/vmem.h>
58 #include <sys/cred.h>
59 #include <sys/dumphdr.h>
60 #include <sys/debug.h>
61 #include <sys/vtrace.h>
62 #include <sys/stack.h>
63 #include <sys/atomic.h>
64 #include <sys/archsystm.h>
65 #include <sys/lgrp.h>
66 
67 #include <vm/as.h>
68 #include <vm/seg.h>
69 #include <vm/seg_kp.h>
70 #include <vm/seg_kmem.h>
71 #include <vm/anon.h>
72 #include <vm/page.h>
73 #include <vm/hat.h>
74 #include <sys/bitmap.h>
75 
76 /*
77  * Private seg op routines
78  */
79 static void	segkp_badop(void);
80 static void	segkp_dump(struct seg *seg);
81 static int	segkp_checkprot(struct seg *seg, caddr_t addr, size_t len,
82 			uint_t prot);
83 static int	segkp_kluster(struct seg *seg, caddr_t addr, ssize_t delta);
84 static int	segkp_pagelock(struct seg *seg, caddr_t addr, size_t len,
85 			struct page ***page, enum lock_type type,
86 			enum seg_rw rw);
87 static void	segkp_insert(struct seg *seg, struct segkp_data *kpd);
88 static void	segkp_delete(struct seg *seg, struct segkp_data *kpd);
89 static caddr_t	segkp_get_internal(struct seg *seg, size_t len, uint_t flags,
90 			struct segkp_data **tkpd, struct anon_map *amp);
91 static void	segkp_release_internal(struct seg *seg,
92 			struct segkp_data *kpd, size_t len);
93 static int	segkp_unlock(struct hat *hat, struct seg *seg, caddr_t vaddr,
94 			size_t len, struct segkp_data *kpd, uint_t flags);
95 static int	segkp_load(struct hat *hat, struct seg *seg, caddr_t vaddr,
96 			size_t len, struct segkp_data *kpd, uint_t flags);
97 static struct	segkp_data *segkp_find(struct seg *seg, caddr_t vaddr);
98 static int	segkp_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp);
99 static lgrp_mem_policy_info_t	*segkp_getpolicy(struct seg *seg,
100     caddr_t addr);
101 static int	segkp_capable(struct seg *seg, segcapability_t capability);
102 
103 /*
104  * Lock used to protect the hash table(s) and caches.
105  */
106 static kmutex_t	segkp_lock;
107 
108 /*
109  * The segkp caches
110  */
111 static struct segkp_cache segkp_cache[SEGKP_MAX_CACHE];
112 
113 #define	SEGKP_BADOP(t)	(t(*)())segkp_badop
114 
115 /*
116  * When there are fewer than red_minavail bytes left on the stack,
117  * segkp_map_red() will map in the redzone (if called).  5000 seems
118  * to work reasonably well...
119  */
120 long		red_minavail = 5000;
121 
122 /*
123  * will be set to 1 for 32 bit x86 systems only, in startup.c
124  */
125 int	segkp_fromheap = 0;
126 ulong_t *segkp_bitmap;
127 
128 /*
129  * If segkp_map_red() is called with the redzone already mapped and
130  * with less than RED_DEEP_THRESHOLD bytes available on the stack,
131  * then the stack situation has become quite serious;  if much more stack
132  * is consumed, we have the potential of scrogging the next thread/LWP
133  * structure.  To help debug the "can't happen" panics which may
134  * result from this condition, we record hrestime and the calling thread
135  * in red_deep_hires and red_deep_thread respectively.
136  */
137 #define	RED_DEEP_THRESHOLD	2000
138 
139 hrtime_t	red_deep_hires;
140 kthread_t	*red_deep_thread;
141 
142 uint32_t	red_nmapped;
143 uint32_t	red_closest = UINT_MAX;
144 uint32_t	red_ndoubles;
145 
146 pgcnt_t anon_segkp_pages_locked;	/* See vm/anon.h */
147 pgcnt_t anon_segkp_pages_resv;		/* anon reserved by seg_kp */
148 
149 static struct	seg_ops segkp_ops = {
150 	SEGKP_BADOP(int),		/* dup */
151 	SEGKP_BADOP(int),		/* unmap */
152 	SEGKP_BADOP(void),		/* free */
153 	segkp_fault,
154 	SEGKP_BADOP(faultcode_t),	/* faulta */
155 	SEGKP_BADOP(int),		/* setprot */
156 	segkp_checkprot,
157 	segkp_kluster,
158 	SEGKP_BADOP(size_t),		/* swapout */
159 	SEGKP_BADOP(int),		/* sync */
160 	SEGKP_BADOP(size_t),		/* incore */
161 	SEGKP_BADOP(int),		/* lockop */
162 	SEGKP_BADOP(int),		/* getprot */
163 	SEGKP_BADOP(u_offset_t),		/* getoffset */
164 	SEGKP_BADOP(int),		/* gettype */
165 	SEGKP_BADOP(int),		/* getvp */
166 	SEGKP_BADOP(int),		/* advise */
167 	segkp_dump,			/* dump */
168 	segkp_pagelock,			/* pagelock */
169 	SEGKP_BADOP(int),		/* setpgsz */
170 	segkp_getmemid,			/* getmemid */
171 	segkp_getpolicy,		/* getpolicy */
172 	segkp_capable,			/* capable */
173 };
174 
175 
176 static void
177 segkp_badop(void)
178 {
179 	panic("segkp_badop");
180 	/*NOTREACHED*/
181 }
182 
183 static void segkpinit_mem_config(struct seg *);
184 
185 static uint32_t segkp_indel;
186 
187 /*
188  * Allocate the segment specific private data struct and fill it in
189  * with the per kp segment mutex, anon ptr. array and hash table.
190  */
191 int
192 segkp_create(struct seg *seg)
193 {
194 	struct segkp_segdata *kpsd;
195 	size_t	np;
196 
197 	ASSERT(seg != NULL && seg->s_as == &kas);
198 	ASSERT(RW_WRITE_HELD(&seg->s_as->a_lock));
199 
200 	if (seg->s_size & PAGEOFFSET) {
201 		panic("Bad segkp size");
202 		/*NOTREACHED*/
203 	}
204 
205 	kpsd = kmem_zalloc(sizeof (struct segkp_segdata), KM_SLEEP);
206 
207 	/*
208 	 * Allocate the virtual memory for segkp and initialize it
209 	 */
210 	if (segkp_fromheap) {
211 		np = btop(kvseg.s_size);
212 		segkp_bitmap = kmem_zalloc(BT_SIZEOFMAP(np), KM_SLEEP);
213 		kpsd->kpsd_arena = vmem_create("segkp", NULL, 0, PAGESIZE,
214 		    vmem_alloc, vmem_free, heap_arena, 5 * PAGESIZE, VM_SLEEP);
215 	} else {
216 		segkp_bitmap = NULL;
217 		np = btop(seg->s_size);
218 		kpsd->kpsd_arena = vmem_create("segkp", seg->s_base,
219 		    seg->s_size, PAGESIZE, NULL, NULL, NULL, 5 * PAGESIZE,
220 		    VM_SLEEP);
221 	}
222 
223 	kpsd->kpsd_anon = anon_create(np, ANON_SLEEP | ANON_ALLOC_FORCE);
224 
225 	kpsd->kpsd_hash = kmem_zalloc(SEGKP_HASHSZ * sizeof (struct segkp *),
226 	    KM_SLEEP);
227 	seg->s_data = (void *)kpsd;
228 	seg->s_ops = &segkp_ops;
229 	segkpinit_mem_config(seg);
230 	return (0);
231 }
232 
233 
234 /*
235  * Find a free 'freelist' and initialize it with the appropriate attributes
236  */
237 void *
238 segkp_cache_init(struct seg *seg, int maxsize, size_t len, uint_t flags)
239 {
240 	int i;
241 
242 	if ((flags & KPD_NO_ANON) && !(flags & KPD_LOCKED))
243 		return ((void *)-1);
244 
245 	mutex_enter(&segkp_lock);
246 	for (i = 0; i < SEGKP_MAX_CACHE; i++) {
247 		if (segkp_cache[i].kpf_inuse)
248 			continue;
249 		segkp_cache[i].kpf_inuse = 1;
250 		segkp_cache[i].kpf_max = maxsize;
251 		segkp_cache[i].kpf_flags = flags;
252 		segkp_cache[i].kpf_seg = seg;
253 		segkp_cache[i].kpf_len = len;
254 		mutex_exit(&segkp_lock);
255 		return ((void *)(uintptr_t)i);
256 	}
257 	mutex_exit(&segkp_lock);
258 	return ((void *)-1);
259 }
260 
261 /*
262  * Free all the cache resources.
263  */
264 void
265 segkp_cache_free(void)
266 {
267 	struct segkp_data *kpd;
268 	struct seg *seg;
269 	int i;
270 
271 	mutex_enter(&segkp_lock);
272 	for (i = 0; i < SEGKP_MAX_CACHE; i++) {
273 		if (!segkp_cache[i].kpf_inuse)
274 			continue;
275 		/*
276 		 * Disconnect the freelist and process each element
277 		 */
278 		kpd = segkp_cache[i].kpf_list;
279 		seg = segkp_cache[i].kpf_seg;
280 		segkp_cache[i].kpf_list = NULL;
281 		segkp_cache[i].kpf_count = 0;
282 		mutex_exit(&segkp_lock);
283 
284 		while (kpd != NULL) {
285 			struct segkp_data *next;
286 
287 			next = kpd->kp_next;
288 			segkp_release_internal(seg, kpd, kpd->kp_len);
289 			kpd = next;
290 		}
291 		mutex_enter(&segkp_lock);
292 	}
293 	mutex_exit(&segkp_lock);
294 }
295 
296 /*
297  * There are 2 entries into segkp_get_internal. The first includes a cookie
298  * used to access a pool of cached segkp resources. The second does not
299  * use the cache.
300  */
301 caddr_t
302 segkp_get(struct seg *seg, size_t len, uint_t flags)
303 {
304 	struct segkp_data *kpd = NULL;
305 
306 	if (segkp_get_internal(seg, len, flags, &kpd, NULL) != NULL) {
307 		kpd->kp_cookie = -1;
308 		return (stom(kpd->kp_base, flags));
309 	}
310 	return (NULL);
311 }
312 
313 /*
314  * Return a 'cached' segkp address
315  */
316 caddr_t
317 segkp_cache_get(void *cookie)
318 {
319 	struct segkp_cache *freelist = NULL;
320 	struct segkp_data *kpd = NULL;
321 	int index = (int)(uintptr_t)cookie;
322 	struct seg *seg;
323 	size_t len;
324 	uint_t flags;
325 
326 	if (index < 0 || index >= SEGKP_MAX_CACHE)
327 		return (NULL);
328 	freelist = &segkp_cache[index];
329 
330 	mutex_enter(&segkp_lock);
331 	seg = freelist->kpf_seg;
332 	flags = freelist->kpf_flags;
333 	if (freelist->kpf_list != NULL) {
334 		kpd = freelist->kpf_list;
335 		freelist->kpf_list = kpd->kp_next;
336 		freelist->kpf_count--;
337 		mutex_exit(&segkp_lock);
338 		kpd->kp_next = NULL;
339 		segkp_insert(seg, kpd);
340 		return (stom(kpd->kp_base, flags));
341 	}
342 	len = freelist->kpf_len;
343 	mutex_exit(&segkp_lock);
344 	if (segkp_get_internal(seg, len, flags, &kpd, NULL) != NULL) {
345 		kpd->kp_cookie = index;
346 		return (stom(kpd->kp_base, flags));
347 	}
348 	return (NULL);
349 }
350 
351 caddr_t
352 segkp_get_withanonmap(
353 	struct seg *seg,
354 	size_t len,
355 	uint_t flags,
356 	struct anon_map *amp)
357 {
358 	struct segkp_data *kpd = NULL;
359 
360 	ASSERT(amp != NULL);
361 	flags |= KPD_HASAMP;
362 	if (segkp_get_internal(seg, len, flags, &kpd, amp) != NULL) {
363 		kpd->kp_cookie = -1;
364 		return (stom(kpd->kp_base, flags));
365 	}
366 	return (NULL);
367 }
368 
369 /*
370  * This does the real work of segkp allocation.
371  * Return to client base addr. len must be page-aligned. A null value is
372  * returned if there are no more vm resources (e.g. pages, swap). The len
373  * and base recorded in the private data structure include the redzone
374  * and the redzone length (if applicable). If the user requests a redzone
375  * either the first or last page is left unmapped depending whether stacks
376  * grow to low or high memory.
377  *
378  * The client may also specify a no-wait flag. If that is set then the
379  * request will choose a non-blocking path when requesting resources.
380  * The default is make the client wait.
381  */
382 static caddr_t
383 segkp_get_internal(
384 	struct seg *seg,
385 	size_t len,
386 	uint_t flags,
387 	struct segkp_data **tkpd,
388 	struct anon_map *amp)
389 {
390 	struct segkp_segdata	*kpsd = (struct segkp_segdata *)seg->s_data;
391 	struct segkp_data	*kpd;
392 	caddr_t vbase = NULL;	/* always first virtual, may not be mapped */
393 	pgcnt_t np = 0;		/* number of pages in the resource */
394 	pgcnt_t segkpindex;
395 	long i;
396 	caddr_t va;
397 	pgcnt_t pages = 0;
398 	ulong_t anon_idx = 0;
399 	int kmflag = (flags & KPD_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
400 	caddr_t s_base = (segkp_fromheap) ? kvseg.s_base : seg->s_base;
401 
402 	if (len & PAGEOFFSET) {
403 		panic("segkp_get: len is not page-aligned");
404 		/*NOTREACHED*/
405 	}
406 
407 	ASSERT(((flags & KPD_HASAMP) == 0) == (amp == NULL));
408 
409 	/* Only allow KPD_NO_ANON if we are going to lock it down */
410 	if ((flags & (KPD_LOCKED|KPD_NO_ANON)) == KPD_NO_ANON)
411 		return (NULL);
412 
413 	if ((kpd = kmem_zalloc(sizeof (struct segkp_data), kmflag)) == NULL)
414 		return (NULL);
415 	/*
416 	 * Fix up the len to reflect the REDZONE if applicable
417 	 */
418 	if (flags & KPD_HASREDZONE)
419 		len += PAGESIZE;
420 	np = btop(len);
421 
422 	vbase = vmem_alloc(SEGKP_VMEM(seg), len, kmflag | VM_BESTFIT);
423 	if (vbase == NULL) {
424 		kmem_free(kpd, sizeof (struct segkp_data));
425 		return (NULL);
426 	}
427 
428 	/* If locking, reserve physical memory */
429 	if (flags & KPD_LOCKED) {
430 		pages = btop(SEGKP_MAPLEN(len, flags));
431 		if (page_resv(pages, kmflag) == 0) {
432 			vmem_free(SEGKP_VMEM(seg), vbase, len);
433 			kmem_free(kpd, sizeof (struct segkp_data));
434 			return (NULL);
435 		}
436 		if ((flags & KPD_NO_ANON) == 0)
437 			atomic_add_long(&anon_segkp_pages_locked, pages);
438 	}
439 
440 	/*
441 	 * Reserve sufficient swap space for this vm resource.  We'll
442 	 * actually allocate it in the loop below, but reserving it
443 	 * here allows us to back out more gracefully than if we
444 	 * had an allocation failure in the body of the loop.
445 	 *
446 	 * Note that we don't need swap space for the red zone page.
447 	 */
448 	if (amp != NULL) {
449 		/*
450 		 * The swap reservation has been done, if required, and the
451 		 * anon_hdr is separate.
452 		 */
453 		anon_idx = 0;
454 		kpd->kp_anon_idx = anon_idx;
455 		kpd->kp_anon = amp->ahp;
456 
457 		TRACE_5(TR_FAC_VM, TR_ANON_SEGKP, "anon segkp:%p %p %lu %u %u",
458 		    kpd, vbase, len, flags, 1);
459 
460 	} else if ((flags & KPD_NO_ANON) == 0) {
461 		if (anon_resv_zone(SEGKP_MAPLEN(len, flags), NULL) == 0) {
462 			if (flags & KPD_LOCKED) {
463 				atomic_add_long(&anon_segkp_pages_locked,
464 				    -pages);
465 				page_unresv(pages);
466 			}
467 			vmem_free(SEGKP_VMEM(seg), vbase, len);
468 			kmem_free(kpd, sizeof (struct segkp_data));
469 			return (NULL);
470 		}
471 		atomic_add_long(&anon_segkp_pages_resv,
472 		    btop(SEGKP_MAPLEN(len, flags)));
473 		anon_idx = ((uintptr_t)(vbase - s_base)) >> PAGESHIFT;
474 		kpd->kp_anon_idx = anon_idx;
475 		kpd->kp_anon = kpsd->kpsd_anon;
476 
477 		TRACE_5(TR_FAC_VM, TR_ANON_SEGKP, "anon segkp:%p %p %lu %u %u",
478 		    kpd, vbase, len, flags, 1);
479 	} else {
480 		kpd->kp_anon = NULL;
481 		kpd->kp_anon_idx = 0;
482 	}
483 
484 	/*
485 	 * Allocate page and anon resources for the virtual address range
486 	 * except the redzone
487 	 */
488 	if (segkp_fromheap)
489 		segkpindex = btop((uintptr_t)(vbase - kvseg.s_base));
490 	for (i = 0, va = vbase; i < np; i++, va += PAGESIZE) {
491 		page_t		*pl[2];
492 		struct vnode	*vp;
493 		anoff_t		off;
494 		int		err;
495 		page_t		*pp = NULL;
496 
497 		/*
498 		 * Mark this page to be a segkp page in the bitmap.
499 		 */
500 		if (segkp_fromheap) {
501 			BT_ATOMIC_SET(segkp_bitmap, segkpindex);
502 			segkpindex++;
503 		}
504 
505 		/*
506 		 * If this page is the red zone page, we don't need swap
507 		 * space for it.  Note that we skip over the code that
508 		 * establishes MMU mappings, so that the page remains
509 		 * invalid.
510 		 */
511 		if ((flags & KPD_HASREDZONE) && KPD_REDZONE(kpd) == i)
512 			continue;
513 
514 		if (kpd->kp_anon != NULL) {
515 			struct anon *ap;
516 
517 			ASSERT(anon_get_ptr(kpd->kp_anon, anon_idx + i)
518 			    == NULL);
519 			/*
520 			 * Determine the "vp" and "off" of the anon slot.
521 			 */
522 			ap = anon_alloc(NULL, 0);
523 			if (amp != NULL)
524 				ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
525 			(void) anon_set_ptr(kpd->kp_anon, anon_idx + i,
526 			    ap, ANON_SLEEP);
527 			if (amp != NULL)
528 				ANON_LOCK_EXIT(&amp->a_rwlock);
529 			swap_xlate(ap, &vp, &off);
530 
531 			/*
532 			 * Create a page with the specified identity.  The
533 			 * page is returned with the "shared" lock held.
534 			 */
535 			err = VOP_GETPAGE(vp, (offset_t)off, PAGESIZE,
536 			    NULL, pl, PAGESIZE, seg, va, S_CREATE,
537 			    kcred, NULL);
538 			if (err) {
539 				/*
540 				 * XXX - This should not fail.
541 				 */
542 				panic("segkp_get: no pages");
543 				/*NOTREACHED*/
544 			}
545 			pp = pl[0];
546 		} else {
547 			ASSERT(page_exists(&kvp,
548 			    (u_offset_t)(uintptr_t)va) == NULL);
549 
550 			if ((pp = page_create_va(&kvp,
551 			    (u_offset_t)(uintptr_t)va, PAGESIZE,
552 			    (flags & KPD_NOWAIT ? 0 : PG_WAIT) | PG_EXCL |
553 			    PG_NORELOC, seg, va)) == NULL) {
554 				/*
555 				 * Legitimize resource; then destroy it.
556 				 * Easier than trying to unwind here.
557 				 */
558 				kpd->kp_flags = flags;
559 				kpd->kp_base = vbase;
560 				kpd->kp_len = len;
561 				segkp_release_internal(seg, kpd, va - vbase);
562 				return (NULL);
563 			}
564 			page_io_unlock(pp);
565 		}
566 
567 		if (flags & KPD_ZERO)
568 			pagezero(pp, 0, PAGESIZE);
569 
570 		/*
571 		 * Load and lock an MMU translation for the page.
572 		 */
573 		hat_memload(seg->s_as->a_hat, va, pp, (PROT_READ|PROT_WRITE),
574 		    ((flags & KPD_LOCKED) ? HAT_LOAD_LOCK : HAT_LOAD));
575 
576 		/*
577 		 * Now, release lock on the page.
578 		 */
579 		if (flags & KPD_LOCKED)
580 			page_downgrade(pp);
581 		else
582 			page_unlock(pp);
583 	}
584 
585 	kpd->kp_flags = flags;
586 	kpd->kp_base = vbase;
587 	kpd->kp_len = len;
588 	segkp_insert(seg, kpd);
589 	*tkpd = kpd;
590 	return (stom(kpd->kp_base, flags));
591 }
592 
593 /*
594  * Release the resource to cache if the pool(designate by the cookie)
595  * has less than the maximum allowable. If inserted in cache,
596  * segkp_delete insures element is taken off of active list.
597  */
598 void
599 segkp_release(struct seg *seg, caddr_t vaddr)
600 {
601 	struct segkp_cache *freelist;
602 	struct segkp_data *kpd = NULL;
603 
604 	if ((kpd = segkp_find(seg, vaddr)) == NULL) {
605 		panic("segkp_release: null kpd");
606 		/*NOTREACHED*/
607 	}
608 
609 	if (kpd->kp_cookie != -1) {
610 		freelist = &segkp_cache[kpd->kp_cookie];
611 		mutex_enter(&segkp_lock);
612 		if (!segkp_indel && freelist->kpf_count < freelist->kpf_max) {
613 			segkp_delete(seg, kpd);
614 			kpd->kp_next = freelist->kpf_list;
615 			freelist->kpf_list = kpd;
616 			freelist->kpf_count++;
617 			mutex_exit(&segkp_lock);
618 			return;
619 		} else {
620 			mutex_exit(&segkp_lock);
621 			kpd->kp_cookie = -1;
622 		}
623 	}
624 	segkp_release_internal(seg, kpd, kpd->kp_len);
625 }
626 
627 /*
628  * Free the entire resource. segkp_unlock gets called with the start of the
629  * mapped portion of the resource. The length is the size of the mapped
630  * portion
631  */
632 static void
633 segkp_release_internal(struct seg *seg, struct segkp_data *kpd, size_t len)
634 {
635 	caddr_t		va;
636 	long		i;
637 	long		redzone;
638 	size_t		np;
639 	page_t		*pp;
640 	struct vnode 	*vp;
641 	anoff_t		off;
642 	struct anon	*ap;
643 	pgcnt_t		segkpindex;
644 
645 	ASSERT(kpd != NULL);
646 	ASSERT((kpd->kp_flags & KPD_HASAMP) == 0 || kpd->kp_cookie == -1);
647 	np = btop(len);
648 
649 	/* Remove from active hash list */
650 	if (kpd->kp_cookie == -1) {
651 		mutex_enter(&segkp_lock);
652 		segkp_delete(seg, kpd);
653 		mutex_exit(&segkp_lock);
654 	}
655 
656 	/*
657 	 * Precompute redzone page index.
658 	 */
659 	redzone = -1;
660 	if (kpd->kp_flags & KPD_HASREDZONE)
661 		redzone = KPD_REDZONE(kpd);
662 
663 
664 	va = kpd->kp_base;
665 
666 	hat_unload(seg->s_as->a_hat, va, (np << PAGESHIFT),
667 	    ((kpd->kp_flags & KPD_LOCKED) ? HAT_UNLOAD_UNLOCK : HAT_UNLOAD));
668 	/*
669 	 * Free up those anon resources that are quiescent.
670 	 */
671 	if (segkp_fromheap)
672 		segkpindex = btop((uintptr_t)(va - kvseg.s_base));
673 	for (i = 0; i < np; i++, va += PAGESIZE) {
674 
675 		/*
676 		 * Clear the bit for this page from the bitmap.
677 		 */
678 		if (segkp_fromheap) {
679 			BT_ATOMIC_CLEAR(segkp_bitmap, segkpindex);
680 			segkpindex++;
681 		}
682 
683 		if (i == redzone)
684 			continue;
685 		if (kpd->kp_anon) {
686 			/*
687 			 * Free up anon resources and destroy the
688 			 * associated pages.
689 			 *
690 			 * Release the lock if there is one. Have to get the
691 			 * page to do this, unfortunately.
692 			 */
693 			if (kpd->kp_flags & KPD_LOCKED) {
694 				ap = anon_get_ptr(kpd->kp_anon,
695 				    kpd->kp_anon_idx + i);
696 				swap_xlate(ap, &vp, &off);
697 				/* Find the shared-locked page. */
698 				pp = page_find(vp, (u_offset_t)off);
699 				if (pp == NULL) {
700 					panic("segkp_release: "
701 					    "kp_anon: no page to unlock ");
702 					/*NOTREACHED*/
703 				}
704 				page_unlock(pp);
705 			}
706 			if ((kpd->kp_flags & KPD_HASAMP) == 0) {
707 				anon_free(kpd->kp_anon, kpd->kp_anon_idx + i,
708 				    PAGESIZE);
709 				anon_unresv_zone(PAGESIZE, NULL);
710 				atomic_add_long(&anon_segkp_pages_resv,
711 				    -1);
712 			}
713 			TRACE_5(TR_FAC_VM,
714 			    TR_ANON_SEGKP, "anon segkp:%p %p %lu %u %u",
715 			    kpd, va, PAGESIZE, 0, 0);
716 		} else {
717 			if (kpd->kp_flags & KPD_LOCKED) {
718 				pp = page_find(&kvp, (u_offset_t)(uintptr_t)va);
719 				if (pp == NULL) {
720 					panic("segkp_release: "
721 					    "no page to unlock");
722 					/*NOTREACHED*/
723 				}
724 				/*
725 				 * We should just upgrade the lock here
726 				 * but there is no upgrade that waits.
727 				 */
728 				page_unlock(pp);
729 			}
730 			pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)va,
731 			    SE_EXCL);
732 			if (pp != NULL)
733 				page_destroy(pp, 0);
734 		}
735 	}
736 
737 	/* If locked, release physical memory reservation */
738 	if (kpd->kp_flags & KPD_LOCKED) {
739 		pgcnt_t pages = btop(SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags));
740 		if ((kpd->kp_flags & KPD_NO_ANON) == 0)
741 			atomic_add_long(&anon_segkp_pages_locked, -pages);
742 		page_unresv(pages);
743 	}
744 
745 	vmem_free(SEGKP_VMEM(seg), kpd->kp_base, kpd->kp_len);
746 	kmem_free(kpd, sizeof (struct segkp_data));
747 }
748 
749 /*
750  * segkp_map_red() will check the current frame pointer against the
751  * stack base.  If the amount of stack remaining is questionable
752  * (less than red_minavail), then segkp_map_red() will map in the redzone
753  * and return 1.  Otherwise, it will return 0.  segkp_map_red() can
754  * _only_ be called when:
755  *
756  *   - it is safe to sleep on page_create_va().
757  *   - the caller is non-swappable.
758  *
759  * It is up to the caller to remember whether segkp_map_red() successfully
760  * mapped the redzone, and, if so, to call segkp_unmap_red() at a later
761  * time.  Note that the caller must _remain_ non-swappable until after
762  * calling segkp_unmap_red().
763  *
764  * Currently, this routine is only called from pagefault() (which necessarily
765  * satisfies the above conditions).
766  */
767 #if defined(STACK_GROWTH_DOWN)
768 int
769 segkp_map_red(void)
770 {
771 	uintptr_t fp = STACK_BIAS + (uintptr_t)getfp();
772 #ifndef _LP64
773 	caddr_t stkbase;
774 #endif
775 
776 	ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
777 
778 	/*
779 	 * Optimize for the common case where we simply return.
780 	 */
781 	if ((curthread->t_red_pp == NULL) &&
782 	    (fp - (uintptr_t)curthread->t_stkbase >= red_minavail))
783 		return (0);
784 
785 #if defined(_LP64)
786 	/*
787 	 * XXX	We probably need something better than this.
788 	 */
789 	panic("kernel stack overflow");
790 	/*NOTREACHED*/
791 #else /* _LP64 */
792 	if (curthread->t_red_pp == NULL) {
793 		page_t *red_pp;
794 		struct seg kseg;
795 
796 		caddr_t red_va = (caddr_t)
797 		    (((uintptr_t)curthread->t_stkbase & (uintptr_t)PAGEMASK) -
798 		    PAGESIZE);
799 
800 		ASSERT(page_exists(&kvp, (u_offset_t)(uintptr_t)red_va) ==
801 		    NULL);
802 
803 		/*
804 		 * Allocate the physical for the red page.
805 		 */
806 		/*
807 		 * No PG_NORELOC here to avoid waits. Unlikely to get
808 		 * a relocate happening in the short time the page exists
809 		 * and it will be OK anyway.
810 		 */
811 
812 		kseg.s_as = &kas;
813 		red_pp = page_create_va(&kvp, (u_offset_t)(uintptr_t)red_va,
814 		    PAGESIZE, PG_WAIT | PG_EXCL, &kseg, red_va);
815 		ASSERT(red_pp != NULL);
816 
817 		/*
818 		 * So we now have a page to jam into the redzone...
819 		 */
820 		page_io_unlock(red_pp);
821 
822 		hat_memload(kas.a_hat, red_va, red_pp,
823 		    (PROT_READ|PROT_WRITE), HAT_LOAD_LOCK);
824 		page_downgrade(red_pp);
825 
826 		/*
827 		 * The page is left SE_SHARED locked so we can hold on to
828 		 * the page_t pointer.
829 		 */
830 		curthread->t_red_pp = red_pp;
831 
832 		atomic_add_32(&red_nmapped, 1);
833 		while (fp - (uintptr_t)curthread->t_stkbase < red_closest) {
834 			(void) cas32(&red_closest, red_closest,
835 			    (uint32_t)(fp - (uintptr_t)curthread->t_stkbase));
836 		}
837 		return (1);
838 	}
839 
840 	stkbase = (caddr_t)(((uintptr_t)curthread->t_stkbase &
841 	    (uintptr_t)PAGEMASK) - PAGESIZE);
842 
843 	atomic_add_32(&red_ndoubles, 1);
844 
845 	if (fp - (uintptr_t)stkbase < RED_DEEP_THRESHOLD) {
846 		/*
847 		 * Oh boy.  We're already deep within the mapped-in
848 		 * redzone page, and the caller is trying to prepare
849 		 * for a deep stack run.  We're running without a
850 		 * redzone right now:  if the caller plows off the
851 		 * end of the stack, it'll plow another thread or
852 		 * LWP structure.  That situation could result in
853 		 * a very hard-to-debug panic, so, in the spirit of
854 		 * recording the name of one's killer in one's own
855 		 * blood, we're going to record hrestime and the calling
856 		 * thread.
857 		 */
858 		red_deep_hires = hrestime.tv_nsec;
859 		red_deep_thread = curthread;
860 	}
861 
862 	/*
863 	 * If this is a DEBUG kernel, and we've run too deep for comfort, toss.
864 	 */
865 	ASSERT(fp - (uintptr_t)stkbase >= RED_DEEP_THRESHOLD);
866 	return (0);
867 #endif /* _LP64 */
868 }
869 
870 void
871 segkp_unmap_red(void)
872 {
873 	page_t *pp;
874 	caddr_t red_va = (caddr_t)(((uintptr_t)curthread->t_stkbase &
875 	    (uintptr_t)PAGEMASK) - PAGESIZE);
876 
877 	ASSERT(curthread->t_red_pp != NULL);
878 	ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
879 
880 	/*
881 	 * Because we locked the mapping down, we can't simply rely
882 	 * on page_destroy() to clean everything up;  we need to call
883 	 * hat_unload() to explicitly unlock the mapping resources.
884 	 */
885 	hat_unload(kas.a_hat, red_va, PAGESIZE, HAT_UNLOAD_UNLOCK);
886 
887 	pp = curthread->t_red_pp;
888 
889 	ASSERT(pp == page_find(&kvp, (u_offset_t)(uintptr_t)red_va));
890 
891 	/*
892 	 * Need to upgrade the SE_SHARED lock to SE_EXCL.
893 	 */
894 	if (!page_tryupgrade(pp)) {
895 		/*
896 		 * As there is now wait for upgrade, release the
897 		 * SE_SHARED lock and wait for SE_EXCL.
898 		 */
899 		page_unlock(pp);
900 		pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)red_va, SE_EXCL);
901 		/* pp may be NULL here, hence the test below */
902 	}
903 
904 	/*
905 	 * Destroy the page, with dontfree set to zero (i.e. free it).
906 	 */
907 	if (pp != NULL)
908 		page_destroy(pp, 0);
909 	curthread->t_red_pp = NULL;
910 }
911 #else
912 #error Red stacks only supported with downwards stack growth.
913 #endif
914 
915 /*
916  * Handle a fault on an address corresponding to one of the
917  * resources in the segkp segment.
918  */
919 faultcode_t
920 segkp_fault(
921 	struct hat	*hat,
922 	struct seg	*seg,
923 	caddr_t		vaddr,
924 	size_t		len,
925 	enum fault_type	type,
926 	enum seg_rw rw)
927 {
928 	struct segkp_data	*kpd = NULL;
929 	int			err;
930 
931 	ASSERT(seg->s_as == &kas && RW_READ_HELD(&seg->s_as->a_lock));
932 
933 	/*
934 	 * Sanity checks.
935 	 */
936 	if (type == F_PROT) {
937 		panic("segkp_fault: unexpected F_PROT fault");
938 		/*NOTREACHED*/
939 	}
940 
941 	if ((kpd = segkp_find(seg, vaddr)) == NULL)
942 		return (FC_NOMAP);
943 
944 	mutex_enter(&kpd->kp_lock);
945 
946 	if (type == F_SOFTLOCK) {
947 		ASSERT(!(kpd->kp_flags & KPD_LOCKED));
948 		/*
949 		 * The F_SOFTLOCK case has more stringent
950 		 * range requirements: the given range must exactly coincide
951 		 * with the resource's mapped portion. Note reference to
952 		 * redzone is handled since vaddr would not equal base
953 		 */
954 		if (vaddr != stom(kpd->kp_base, kpd->kp_flags) ||
955 		    len != SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags)) {
956 			mutex_exit(&kpd->kp_lock);
957 			return (FC_MAKE_ERR(EFAULT));
958 		}
959 
960 		if ((err = segkp_load(hat, seg, vaddr, len, kpd, KPD_LOCKED))) {
961 			mutex_exit(&kpd->kp_lock);
962 			return (FC_MAKE_ERR(err));
963 		}
964 		kpd->kp_flags |= KPD_LOCKED;
965 		mutex_exit(&kpd->kp_lock);
966 		return (0);
967 	}
968 
969 	if (type == F_INVAL) {
970 		ASSERT(!(kpd->kp_flags & KPD_NO_ANON));
971 
972 		/*
973 		 * Check if we touched the redzone. Somewhat optimistic
974 		 * here if we are touching the redzone of our own stack
975 		 * since we wouldn't have a stack to get this far...
976 		 */
977 		if ((kpd->kp_flags & KPD_HASREDZONE) &&
978 		    btop((uintptr_t)(vaddr - kpd->kp_base)) == KPD_REDZONE(kpd))
979 			panic("segkp_fault: accessing redzone");
980 
981 		/*
982 		 * This fault may occur while the page is being F_SOFTLOCK'ed.
983 		 * Return since a 2nd segkp_load is unnecessary and also would
984 		 * result in the page being locked twice and eventually
985 		 * hang the thread_reaper thread.
986 		 */
987 		if (kpd->kp_flags & KPD_LOCKED) {
988 			mutex_exit(&kpd->kp_lock);
989 			return (0);
990 		}
991 
992 		err = segkp_load(hat, seg, vaddr, len, kpd, kpd->kp_flags);
993 		mutex_exit(&kpd->kp_lock);
994 		return (err ? FC_MAKE_ERR(err) : 0);
995 	}
996 
997 	if (type == F_SOFTUNLOCK) {
998 		uint_t	flags;
999 
1000 		/*
1001 		 * Make sure the addr is LOCKED and it has anon backing
1002 		 * before unlocking
1003 		 */
1004 		if ((kpd->kp_flags & (KPD_LOCKED|KPD_NO_ANON)) == KPD_NO_ANON) {
1005 			panic("segkp_fault: bad unlock");
1006 			/*NOTREACHED*/
1007 		}
1008 
1009 		if (vaddr != stom(kpd->kp_base, kpd->kp_flags) ||
1010 		    len != SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags)) {
1011 			panic("segkp_fault: bad range");
1012 			/*NOTREACHED*/
1013 		}
1014 
1015 		if (rw == S_WRITE)
1016 			flags = kpd->kp_flags | KPD_WRITEDIRTY;
1017 		else
1018 			flags = kpd->kp_flags;
1019 		err = segkp_unlock(hat, seg, vaddr, len, kpd, flags);
1020 		kpd->kp_flags &= ~KPD_LOCKED;
1021 		mutex_exit(&kpd->kp_lock);
1022 		return (err ? FC_MAKE_ERR(err) : 0);
1023 	}
1024 	mutex_exit(&kpd->kp_lock);
1025 	panic("segkp_fault: bogus fault type: %d\n", type);
1026 	/*NOTREACHED*/
1027 }
1028 
1029 /*
1030  * Check that the given protections suffice over the range specified by
1031  * vaddr and len.  For this segment type, the only issue is whether or
1032  * not the range lies completely within the mapped part of an allocated
1033  * resource.
1034  */
1035 /* ARGSUSED */
1036 static int
1037 segkp_checkprot(struct seg *seg, caddr_t vaddr, size_t len, uint_t prot)
1038 {
1039 	struct segkp_data *kpd = NULL;
1040 	caddr_t mbase;
1041 	size_t mlen;
1042 
1043 	if ((kpd = segkp_find(seg, vaddr)) == NULL)
1044 		return (EACCES);
1045 
1046 	mutex_enter(&kpd->kp_lock);
1047 	mbase = stom(kpd->kp_base, kpd->kp_flags);
1048 	mlen = SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags);
1049 	if (len > mlen || vaddr < mbase ||
1050 	    ((vaddr + len) > (mbase + mlen))) {
1051 		mutex_exit(&kpd->kp_lock);
1052 		return (EACCES);
1053 	}
1054 	mutex_exit(&kpd->kp_lock);
1055 	return (0);
1056 }
1057 
1058 
1059 /*
1060  * Check to see if it makes sense to do kluster/read ahead to
1061  * addr + delta relative to the mapping at addr.  We assume here
1062  * that delta is a signed PAGESIZE'd multiple (which can be negative).
1063  *
1064  * For seg_u we always "approve" of this action from our standpoint.
1065  */
1066 /*ARGSUSED*/
1067 static int
1068 segkp_kluster(struct seg *seg, caddr_t addr, ssize_t delta)
1069 {
1070 	return (0);
1071 }
1072 
1073 /*
1074  * Load and possibly lock intra-slot resources in the range given by
1075  * vaddr and len.
1076  */
1077 static int
1078 segkp_load(
1079 	struct hat *hat,
1080 	struct seg *seg,
1081 	caddr_t vaddr,
1082 	size_t len,
1083 	struct segkp_data *kpd,
1084 	uint_t flags)
1085 {
1086 	caddr_t va;
1087 	caddr_t vlim;
1088 	ulong_t i;
1089 	uint_t lock;
1090 
1091 	ASSERT(MUTEX_HELD(&kpd->kp_lock));
1092 
1093 	len = P2ROUNDUP(len, PAGESIZE);
1094 
1095 	/* If locking, reserve physical memory */
1096 	if (flags & KPD_LOCKED) {
1097 		pgcnt_t pages = btop(len);
1098 		if ((kpd->kp_flags & KPD_NO_ANON) == 0)
1099 			atomic_add_long(&anon_segkp_pages_locked, pages);
1100 		(void) page_resv(pages, KM_SLEEP);
1101 	}
1102 
1103 	/*
1104 	 * Loop through the pages in the given range.
1105 	 */
1106 	va = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK);
1107 	vaddr = va;
1108 	vlim = va + len;
1109 	lock = flags & KPD_LOCKED;
1110 	i = ((uintptr_t)(va - kpd->kp_base)) >> PAGESHIFT;
1111 	for (; va < vlim; va += PAGESIZE, i++) {
1112 		page_t		*pl[2];	/* second element NULL terminator */
1113 		struct vnode    *vp;
1114 		anoff_t		off;
1115 		int		err;
1116 		struct anon	*ap;
1117 
1118 		/*
1119 		 * Summon the page.  If it's not resident, arrange
1120 		 * for synchronous i/o to pull it in.
1121 		 */
1122 		ap = anon_get_ptr(kpd->kp_anon, kpd->kp_anon_idx + i);
1123 		swap_xlate(ap, &vp, &off);
1124 
1125 		/*
1126 		 * The returned page list will have exactly one entry,
1127 		 * which is returned to us already kept.
1128 		 */
1129 		err = VOP_GETPAGE(vp, (offset_t)off, PAGESIZE, NULL,
1130 		    pl, PAGESIZE, seg, va, S_READ, kcred, NULL);
1131 
1132 		if (err) {
1133 			/*
1134 			 * Back out of what we've done so far.
1135 			 */
1136 			(void) segkp_unlock(hat, seg, vaddr,
1137 			    (va - vaddr), kpd, flags);
1138 			return (err);
1139 		}
1140 
1141 		/*
1142 		 * Load an MMU translation for the page.
1143 		 */
1144 		hat_memload(hat, va, pl[0], (PROT_READ|PROT_WRITE),
1145 		    lock ? HAT_LOAD_LOCK : HAT_LOAD);
1146 
1147 		if (!lock) {
1148 			/*
1149 			 * Now, release "shared" lock on the page.
1150 			 */
1151 			page_unlock(pl[0]);
1152 		}
1153 	}
1154 	return (0);
1155 }
1156 
1157 /*
1158  * At the very least unload the mmu-translations and unlock the range if locked
1159  * Can be called with the following flag value KPD_WRITEDIRTY which specifies
1160  * any dirty pages should be written to disk.
1161  */
1162 static int
1163 segkp_unlock(
1164 	struct hat *hat,
1165 	struct seg *seg,
1166 	caddr_t vaddr,
1167 	size_t len,
1168 	struct segkp_data *kpd,
1169 	uint_t flags)
1170 {
1171 	caddr_t va;
1172 	caddr_t vlim;
1173 	ulong_t i;
1174 	struct page *pp;
1175 	struct vnode *vp;
1176 	anoff_t off;
1177 	struct anon *ap;
1178 
1179 #ifdef lint
1180 	seg = seg;
1181 #endif /* lint */
1182 
1183 	ASSERT(MUTEX_HELD(&kpd->kp_lock));
1184 
1185 	/*
1186 	 * Loop through the pages in the given range. It is assumed
1187 	 * segkp_unlock is called with page aligned base
1188 	 */
1189 	va = vaddr;
1190 	vlim = va + len;
1191 	i = ((uintptr_t)(va - kpd->kp_base)) >> PAGESHIFT;
1192 	hat_unload(hat, va, len,
1193 	    ((flags & KPD_LOCKED) ? HAT_UNLOAD_UNLOCK : HAT_UNLOAD));
1194 	for (; va < vlim; va += PAGESIZE, i++) {
1195 		/*
1196 		 * Find the page associated with this part of the
1197 		 * slot, tracking it down through its associated swap
1198 		 * space.
1199 		 */
1200 		ap = anon_get_ptr(kpd->kp_anon, kpd->kp_anon_idx + i);
1201 		swap_xlate(ap, &vp, &off);
1202 
1203 		if (flags & KPD_LOCKED) {
1204 			if ((pp = page_find(vp, off)) == NULL) {
1205 				if (flags & KPD_LOCKED) {
1206 					panic("segkp_softunlock: missing page");
1207 					/*NOTREACHED*/
1208 				}
1209 			}
1210 		} else {
1211 			/*
1212 			 * Nothing to do if the slot is not locked and the
1213 			 * page doesn't exist.
1214 			 */
1215 			if ((pp = page_lookup(vp, off, SE_SHARED)) == NULL)
1216 				continue;
1217 		}
1218 
1219 		/*
1220 		 * If the page doesn't have any translations, is
1221 		 * dirty and not being shared, then push it out
1222 		 * asynchronously and avoid waiting for the
1223 		 * pageout daemon to do it for us.
1224 		 *
1225 		 * XXX - Do we really need to get the "exclusive"
1226 		 * lock via an upgrade?
1227 		 */
1228 		if ((flags & KPD_WRITEDIRTY) && !hat_page_is_mapped(pp) &&
1229 		    hat_ismod(pp) && page_tryupgrade(pp)) {
1230 			/*
1231 			 * Hold the vnode before releasing the page lock to
1232 			 * prevent it from being freed and re-used by some
1233 			 * other thread.
1234 			 */
1235 			VN_HOLD(vp);
1236 			page_unlock(pp);
1237 
1238 			/*
1239 			 * Want most powerful credentials we can get so
1240 			 * use kcred.
1241 			 */
1242 			(void) VOP_PUTPAGE(vp, (offset_t)off, PAGESIZE,
1243 			    B_ASYNC | B_FREE, kcred, NULL);
1244 			VN_RELE(vp);
1245 		} else {
1246 			page_unlock(pp);
1247 		}
1248 	}
1249 
1250 	/* If unlocking, release physical memory */
1251 	if (flags & KPD_LOCKED) {
1252 		pgcnt_t pages = btopr(len);
1253 		if ((kpd->kp_flags & KPD_NO_ANON) == 0)
1254 			atomic_add_long(&anon_segkp_pages_locked, -pages);
1255 		page_unresv(pages);
1256 	}
1257 	return (0);
1258 }
1259 
1260 /*
1261  * Insert the kpd in the hash table.
1262  */
1263 static void
1264 segkp_insert(struct seg *seg, struct segkp_data *kpd)
1265 {
1266 	struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data;
1267 	int index;
1268 
1269 	/*
1270 	 * Insert the kpd based on the address that will be returned
1271 	 * via segkp_release.
1272 	 */
1273 	index = SEGKP_HASH(stom(kpd->kp_base, kpd->kp_flags));
1274 	mutex_enter(&segkp_lock);
1275 	kpd->kp_next = kpsd->kpsd_hash[index];
1276 	kpsd->kpsd_hash[index] = kpd;
1277 	mutex_exit(&segkp_lock);
1278 }
1279 
1280 /*
1281  * Remove kpd from the hash table.
1282  */
1283 static void
1284 segkp_delete(struct seg *seg, struct segkp_data *kpd)
1285 {
1286 	struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data;
1287 	struct segkp_data **kpp;
1288 	int index;
1289 
1290 	ASSERT(MUTEX_HELD(&segkp_lock));
1291 
1292 	index = SEGKP_HASH(stom(kpd->kp_base, kpd->kp_flags));
1293 	for (kpp = &kpsd->kpsd_hash[index];
1294 	    *kpp != NULL; kpp = &((*kpp)->kp_next)) {
1295 		if (*kpp == kpd) {
1296 			*kpp = kpd->kp_next;
1297 			return;
1298 		}
1299 	}
1300 	panic("segkp_delete: unable to find element to delete");
1301 	/*NOTREACHED*/
1302 }
1303 
1304 /*
1305  * Find the kpd associated with a vaddr.
1306  *
1307  * Most of the callers of segkp_find will pass the vaddr that
1308  * hashes to the desired index, but there are cases where
1309  * this is not true in which case we have to (potentially) scan
1310  * the whole table looking for it. This should be very rare
1311  * (e.g. a segkp_fault(F_INVAL) on an address somewhere in the
1312  * middle of the segkp_data region).
1313  */
1314 static struct segkp_data *
1315 segkp_find(struct seg *seg, caddr_t vaddr)
1316 {
1317 	struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data;
1318 	struct segkp_data *kpd;
1319 	int	i;
1320 	int	stop;
1321 
1322 	i = stop = SEGKP_HASH(vaddr);
1323 	mutex_enter(&segkp_lock);
1324 	do {
1325 		for (kpd = kpsd->kpsd_hash[i]; kpd != NULL;
1326 		    kpd = kpd->kp_next) {
1327 			if (vaddr >= kpd->kp_base &&
1328 			    vaddr < kpd->kp_base + kpd->kp_len) {
1329 				mutex_exit(&segkp_lock);
1330 				return (kpd);
1331 			}
1332 		}
1333 		if (--i < 0)
1334 			i = SEGKP_HASHSZ - 1;	/* Wrap */
1335 	} while (i != stop);
1336 	mutex_exit(&segkp_lock);
1337 	return (NULL);		/* Not found */
1338 }
1339 
1340 /*
1341  * returns size of swappable area.
1342  */
1343 size_t
1344 swapsize(caddr_t v)
1345 {
1346 	struct segkp_data *kpd;
1347 
1348 	if ((kpd = segkp_find(segkp, v)) != NULL)
1349 		return (SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags));
1350 	else
1351 		return (NULL);
1352 }
1353 
1354 /*
1355  * Dump out all the active segkp pages
1356  */
1357 static void
1358 segkp_dump(struct seg *seg)
1359 {
1360 	int i;
1361 	struct segkp_data *kpd;
1362 	struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data;
1363 
1364 	for (i = 0; i < SEGKP_HASHSZ; i++) {
1365 		for (kpd = kpsd->kpsd_hash[i];
1366 		    kpd != NULL; kpd = kpd->kp_next) {
1367 			pfn_t pfn;
1368 			caddr_t addr;
1369 			caddr_t eaddr;
1370 
1371 			addr = kpd->kp_base;
1372 			eaddr = addr + kpd->kp_len;
1373 			while (addr < eaddr) {
1374 				ASSERT(seg->s_as == &kas);
1375 				pfn = hat_getpfnum(seg->s_as->a_hat, addr);
1376 				if (pfn != PFN_INVALID)
1377 					dump_addpage(seg->s_as, addr, pfn);
1378 				addr += PAGESIZE;
1379 				dump_timeleft = dump_timeout;
1380 			}
1381 		}
1382 	}
1383 }
1384 
1385 /*ARGSUSED*/
1386 static int
1387 segkp_pagelock(struct seg *seg, caddr_t addr, size_t len,
1388     struct page ***ppp, enum lock_type type, enum seg_rw rw)
1389 {
1390 	return (ENOTSUP);
1391 }
1392 
1393 /*ARGSUSED*/
1394 static int
1395 segkp_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
1396 {
1397 	return (ENODEV);
1398 }
1399 
1400 /*ARGSUSED*/
1401 static lgrp_mem_policy_info_t	*
1402 segkp_getpolicy(struct seg *seg, caddr_t addr)
1403 {
1404 	return (NULL);
1405 }
1406 
1407 /*ARGSUSED*/
1408 static int
1409 segkp_capable(struct seg *seg, segcapability_t capability)
1410 {
1411 	return (0);
1412 }
1413 
1414 #include <sys/mem_config.h>
1415 
1416 /*ARGSUSED*/
1417 static void
1418 segkp_mem_config_post_add(void *arg, pgcnt_t delta_pages)
1419 {}
1420 
1421 /*
1422  * During memory delete, turn off caches so that pages are not held.
1423  * A better solution may be to unlock the pages while they are
1424  * in the cache so that they may be collected naturally.
1425  */
1426 
1427 /*ARGSUSED*/
1428 static int
1429 segkp_mem_config_pre_del(void *arg, pgcnt_t delta_pages)
1430 {
1431 	atomic_add_32(&segkp_indel, 1);
1432 	segkp_cache_free();
1433 	return (0);
1434 }
1435 
1436 /*ARGSUSED*/
1437 static void
1438 segkp_mem_config_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
1439 {
1440 	atomic_add_32(&segkp_indel, -1);
1441 }
1442 
1443 static kphysm_setup_vector_t segkp_mem_config_vec = {
1444 	KPHYSM_SETUP_VECTOR_VERSION,
1445 	segkp_mem_config_post_add,
1446 	segkp_mem_config_pre_del,
1447 	segkp_mem_config_post_del,
1448 };
1449 
1450 static void
1451 segkpinit_mem_config(struct seg *seg)
1452 {
1453 	int ret;
1454 
1455 	ret = kphysm_setup_func_register(&segkp_mem_config_vec, (void *)seg);
1456 	ASSERT(ret == 0);
1457 }
1458