1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/t_lock.h> 30 #include <sys/param.h> 31 #include <sys/sysmacros.h> 32 #include <sys/tuneable.h> 33 #include <sys/systm.h> 34 #include <sys/vm.h> 35 #include <sys/kmem.h> 36 #include <sys/vmem.h> 37 #include <sys/mman.h> 38 #include <sys/cmn_err.h> 39 #include <sys/debug.h> 40 #include <sys/dumphdr.h> 41 #include <sys/bootconf.h> 42 #include <sys/lgrp.h> 43 #include <vm/seg_kmem.h> 44 #include <vm/hat.h> 45 #include <vm/page.h> 46 #include <vm/vm_dep.h> 47 #include <vm/faultcode.h> 48 #include <sys/promif.h> 49 #include <vm/seg_kp.h> 50 #include <sys/bitmap.h> 51 #include <sys/mem_cage.h> 52 53 /* 54 * seg_kmem is the primary kernel memory segment driver. It 55 * maps the kernel heap [kernelheap, ekernelheap), module text, 56 * and all memory which was allocated before the VM was initialized 57 * into kas. 58 * 59 * Pages which belong to seg_kmem are hashed into &kvp vnode at 60 * an offset equal to (u_offset_t)virt_addr, and have p_lckcnt >= 1. 61 * They must never be paged out since segkmem_fault() is a no-op to 62 * prevent recursive faults. 63 * 64 * Currently, seg_kmem pages are sharelocked (p_sharelock == 1) on 65 * __x86 and are unlocked (p_sharelock == 0) on __sparc. Once __x86 66 * supports relocation the #ifdef kludges can be removed. 67 * 68 * seg_kmem pages may be subject to relocation by page_relocate(), 69 * provided that the HAT supports it; if this is so, segkmem_reloc 70 * will be set to a nonzero value. All boot time allocated memory as 71 * well as static memory is considered off limits to relocation. 72 * Pages are "relocatable" if p_state does not have P_NORELOC set, so 73 * we request P_NORELOC pages for memory that isn't safe to relocate. 74 * 75 * The kernel heap is logically divided up into four pieces: 76 * 77 * heap32_arena is for allocations that require 32-bit absolute 78 * virtual addresses (e.g. code that uses 32-bit pointers/offsets). 79 * 80 * heap_core is for allocations that require 2GB *relative* 81 * offsets; in other words all memory from heap_core is within 82 * 2GB of all other memory from the same arena. This is a requirement 83 * of the addressing modes of some processors in supervisor code. 84 * 85 * heap_arena is the general heap arena. 86 * 87 * static_arena is the static memory arena. Allocations from it 88 * are not subject to relocation so it is safe to use the memory 89 * physical address as well as the virtual address (e.g. the VA to 90 * PA translations are static). Caches may import from static_arena; 91 * all other static memory allocations should use static_alloc_arena. 92 * 93 * On some platforms which have limited virtual address space, seg_kmem 94 * may share [kernelheap, ekernelheap) with seg_kp; if this is so, 95 * segkp_bitmap is non-NULL, and each bit represents a page of virtual 96 * address space which is actually seg_kp mapped. 97 */ 98 99 extern ulong_t *segkp_bitmap; /* Is set if segkp is from the kernel heap */ 100 101 char *kernelheap; /* start of primary kernel heap */ 102 char *ekernelheap; /* end of primary kernel heap */ 103 struct seg kvseg; /* primary kernel heap segment */ 104 struct seg kvseg_core; /* "core" kernel heap segment */ 105 struct seg kzioseg; /* Segment for zio mappings */ 106 vmem_t *heap_arena; /* primary kernel heap arena */ 107 vmem_t *heap_core_arena; /* core kernel heap arena */ 108 char *heap_core_base; /* start of core kernel heap arena */ 109 char *heap_lp_base; /* start of kernel large page heap arena */ 110 char *heap_lp_end; /* end of kernel large page heap arena */ 111 vmem_t *hat_memload_arena; /* HAT translation data */ 112 struct seg kvseg32; /* 32-bit kernel heap segment */ 113 vmem_t *heap32_arena; /* 32-bit kernel heap arena */ 114 vmem_t *heaptext_arena; /* heaptext arena */ 115 struct as kas; /* kernel address space */ 116 struct vnode kvp; /* vnode for all segkmem pages */ 117 struct vnode zvp; /* vnode for zfs pages */ 118 int segkmem_reloc; /* enable/disable relocatable segkmem pages */ 119 vmem_t *static_arena; /* arena for caches to import static memory */ 120 vmem_t *static_alloc_arena; /* arena for allocating static memory */ 121 vmem_t *zio_arena = NULL; /* arena for allocating zio memory */ 122 vmem_t *zio_alloc_arena = NULL; /* arena for allocating zio memory */ 123 124 /* 125 * seg_kmem driver can map part of the kernel heap with large pages. 126 * Currently this functionality is implemented for sparc platforms only. 127 * 128 * The large page size "segkmem_lpsize" for kernel heap is selected in the 129 * platform specific code. It can also be modified via /etc/system file. 130 * Setting segkmem_lpsize to PAGESIZE in /etc/system disables usage of large 131 * pages for kernel heap. "segkmem_lpshift" is adjusted appropriately to 132 * match segkmem_lpsize. 133 * 134 * At boot time we carve from kernel heap arena a range of virtual addresses 135 * that will be used for large page mappings. This range [heap_lp_base, 136 * heap_lp_end) is set up as a separate vmem arena - "heap_lp_arena". We also 137 * create "kmem_lp_arena" that caches memory already backed up by large 138 * pages. kmem_lp_arena imports virtual segments from heap_lp_arena. 139 */ 140 141 size_t segkmem_lpsize; 142 static uint_t segkmem_lpshift = PAGESHIFT; 143 int segkmem_lpszc = 0; 144 145 size_t segkmem_kmemlp_quantum = 0x400000; /* 4MB */ 146 size_t segkmem_heaplp_quantum; 147 vmem_t *heap_lp_arena; 148 static vmem_t *kmem_lp_arena; 149 static vmem_t *segkmem_ppa_arena; 150 static segkmem_lpcb_t segkmem_lpcb; 151 152 /* 153 * We use "segkmem_kmemlp_max" to limit the total amount of physical memory 154 * consumed by the large page heap. By default this parameter is set to 1/8 of 155 * physmem but can be adjusted through /etc/system either directly or 156 * indirectly by setting "segkmem_kmemlp_pcnt" to the percent of physmem 157 * we allow for large page heap. 158 */ 159 size_t segkmem_kmemlp_max; 160 static uint_t segkmem_kmemlp_pcnt; 161 162 /* 163 * Getting large pages for kernel heap could be problematic due to 164 * physical memory fragmentation. That's why we allow to preallocate 165 * "segkmem_kmemlp_min" bytes at boot time. 166 */ 167 static size_t segkmem_kmemlp_min; 168 169 /* 170 * Throttling is used to avoid expensive tries to allocate large pages 171 * for kernel heap when a lot of succesive attempts to do so fail. 172 */ 173 static ulong_t segkmem_lpthrottle_max = 0x400000; 174 static ulong_t segkmem_lpthrottle_start = 0x40; 175 static ulong_t segkmem_use_lpthrottle = 1; 176 177 /* 178 * Freed pages accumulate on a garbage list until segkmem is ready, 179 * at which point we call segkmem_gc() to free it all. 180 */ 181 typedef struct segkmem_gc_list { 182 struct segkmem_gc_list *gc_next; 183 vmem_t *gc_arena; 184 size_t gc_size; 185 } segkmem_gc_list_t; 186 187 static segkmem_gc_list_t *segkmem_gc_list; 188 189 /* 190 * Allocations from the hat_memload arena add VM_MEMLOAD to their 191 * vmflags so that segkmem_xalloc() can inform the hat layer that it needs 192 * to take steps to prevent infinite recursion. HAT allocations also 193 * must be non-relocatable to prevent recursive page faults. 194 */ 195 static void * 196 hat_memload_alloc(vmem_t *vmp, size_t size, int flags) 197 { 198 flags |= (VM_MEMLOAD | VM_NORELOC); 199 return (segkmem_alloc(vmp, size, flags)); 200 } 201 202 /* 203 * Allocations from static_arena arena (or any other arena that uses 204 * segkmem_alloc_permanent()) require non-relocatable (permanently 205 * wired) memory pages, since these pages are referenced by physical 206 * as well as virtual address. 207 */ 208 void * 209 segkmem_alloc_permanent(vmem_t *vmp, size_t size, int flags) 210 { 211 return (segkmem_alloc(vmp, size, flags | VM_NORELOC)); 212 } 213 214 /* 215 * Initialize kernel heap boundaries. 216 */ 217 void 218 kernelheap_init( 219 void *heap_start, 220 void *heap_end, 221 char *first_avail, 222 void *core_start, 223 void *core_end) 224 { 225 uintptr_t textbase; 226 size_t core_size; 227 size_t heap_size; 228 vmem_t *heaptext_parent; 229 size_t heap_lp_size = 0; 230 #ifdef __sparc 231 size_t kmem64_sz = kmem64_aligned_end - kmem64_base; 232 #endif /* __sparc */ 233 234 kernelheap = heap_start; 235 ekernelheap = heap_end; 236 237 #ifdef __sparc 238 heap_lp_size = (((uintptr_t)heap_end - (uintptr_t)heap_start) / 4); 239 /* 240 * Bias heap_lp start address by kmem64_sz to reduce collisions 241 * in 4M kernel TSB between kmem64 area and heap_lp 242 */ 243 kmem64_sz = P2ROUNDUP(kmem64_sz, MMU_PAGESIZE256M); 244 if (kmem64_sz <= heap_lp_size / 2) 245 heap_lp_size -= kmem64_sz; 246 heap_lp_base = ekernelheap - heap_lp_size; 247 heap_lp_end = heap_lp_base + heap_lp_size; 248 #endif /* __sparc */ 249 250 /* 251 * If this platform has a 'core' heap area, then the space for 252 * overflow module text should be carved out of the end of that 253 * heap. Otherwise, it gets carved out of the general purpose 254 * heap. 255 */ 256 core_size = (uintptr_t)core_end - (uintptr_t)core_start; 257 if (core_size > 0) { 258 ASSERT(core_size >= HEAPTEXT_SIZE); 259 textbase = (uintptr_t)core_end - HEAPTEXT_SIZE; 260 core_size -= HEAPTEXT_SIZE; 261 } 262 #ifndef __sparc 263 else { 264 ekernelheap -= HEAPTEXT_SIZE; 265 textbase = (uintptr_t)ekernelheap; 266 } 267 #endif 268 269 heap_size = (uintptr_t)ekernelheap - (uintptr_t)kernelheap; 270 heap_arena = vmem_init("heap", kernelheap, heap_size, PAGESIZE, 271 segkmem_alloc, segkmem_free); 272 273 if (core_size > 0) { 274 heap_core_arena = vmem_create("heap_core", core_start, 275 core_size, PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 276 heap_core_base = core_start; 277 } else { 278 heap_core_arena = heap_arena; 279 heap_core_base = kernelheap; 280 } 281 282 /* 283 * reserve space for the large page heap. If large pages for kernel 284 * heap is enabled large page heap arean will be created later in the 285 * boot sequence in segkmem_heap_lp_init(). Otherwise the allocated 286 * range will be returned back to the heap_arena. 287 */ 288 if (heap_lp_size) { 289 (void) vmem_xalloc(heap_arena, heap_lp_size, PAGESIZE, 0, 0, 290 heap_lp_base, heap_lp_end, 291 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 292 } 293 294 /* 295 * Remove the already-spoken-for memory range [kernelheap, first_avail). 296 */ 297 (void) vmem_xalloc(heap_arena, first_avail - kernelheap, PAGESIZE, 298 0, 0, kernelheap, first_avail, VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 299 300 #ifdef __sparc 301 heap32_arena = vmem_create("heap32", (void *)SYSBASE32, 302 SYSLIMIT32 - SYSBASE32 - HEAPTEXT_SIZE, PAGESIZE, NULL, 303 NULL, NULL, 0, VM_SLEEP); 304 305 textbase = SYSLIMIT32 - HEAPTEXT_SIZE; 306 heaptext_parent = NULL; 307 #else /* __sparc */ 308 heap32_arena = heap_core_arena; 309 heaptext_parent = heap_core_arena; 310 #endif /* __sparc */ 311 312 heaptext_arena = vmem_create("heaptext", (void *)textbase, 313 HEAPTEXT_SIZE, PAGESIZE, NULL, NULL, heaptext_parent, 0, VM_SLEEP); 314 315 /* 316 * Create a set of arenas for memory with static translations 317 * (e.g. VA -> PA translations cannot change). Since using 318 * kernel pages by physical address implies it isn't safe to 319 * walk across page boundaries, the static_arena quantum must 320 * be PAGESIZE. Any kmem caches that require static memory 321 * should source from static_arena, while direct allocations 322 * should only use static_alloc_arena. 323 */ 324 static_arena = vmem_create("static", NULL, 0, PAGESIZE, 325 segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP); 326 static_alloc_arena = vmem_create("static_alloc", NULL, 0, 327 sizeof (uint64_t), vmem_alloc, vmem_free, static_arena, 328 0, VM_SLEEP); 329 330 /* 331 * Create an arena for translation data (ptes, hmes, or hblks). 332 * We need an arena for this because hat_memload() is essential 333 * to vmem_populate() (see comments in common/os/vmem.c). 334 * 335 * Note: any kmem cache that allocates from hat_memload_arena 336 * must be created as a KMC_NOHASH cache (i.e. no external slab 337 * and bufctl structures to allocate) so that slab creation doesn't 338 * require anything more than a single vmem_alloc(). 339 */ 340 hat_memload_arena = vmem_create("hat_memload", NULL, 0, PAGESIZE, 341 hat_memload_alloc, segkmem_free, heap_arena, 0, 342 VM_SLEEP | VMC_POPULATOR); 343 } 344 345 /* 346 * Grow kernel heap downward. 347 */ 348 void 349 kernelheap_extend(void *range_start, void *range_end) 350 { 351 size_t len = (uintptr_t)range_end - (uintptr_t)range_start; 352 353 ASSERT(range_start < range_end && range_end == kernelheap); 354 355 if (vmem_add(heap_arena, range_start, len, VM_NOSLEEP) == NULL) { 356 cmn_err(CE_WARN, "Could not grow kernel heap below 0x%p", 357 (void *)kernelheap); 358 } else { 359 kernelheap = range_start; 360 } 361 } 362 363 void 364 boot_mapin(caddr_t addr, size_t size) 365 { 366 caddr_t eaddr; 367 page_t *pp; 368 pfn_t pfnum; 369 370 if (page_resv(btop(size), KM_NOSLEEP) == 0) 371 panic("boot_mapin: page_resv failed"); 372 373 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 374 pfnum = va_to_pfn(addr); 375 if ((pp = page_numtopp_nolock(pfnum)) == NULL) 376 panic("boot_mapin(): No pp for pfnum = %lx", pfnum); 377 378 /* 379 * must break up any large pages that may have constituent 380 * pages being utilized for BOP_ALLOC()'s before calling 381 * page_numtopp().The locking code (ie. page_reclaim()) 382 * can't handle them 383 */ 384 if (pp->p_szc != 0) 385 page_boot_demote(pp); 386 387 pp = page_numtopp(pfnum, SE_EXCL); 388 if (pp == NULL || PP_ISFREE(pp)) 389 panic("boot_alloc: pp is NULL or free"); 390 391 /* 392 * If the cage is on but doesn't yet contain this page, 393 * mark it as non-relocatable. 394 */ 395 if (kcage_on && !PP_ISNORELOC(pp)) 396 PP_SETNORELOC(pp); 397 398 (void) page_hashin(pp, &kvp, (u_offset_t)(uintptr_t)addr, NULL); 399 pp->p_lckcnt = 1; 400 #if defined(__x86) 401 page_downgrade(pp); 402 #else 403 page_unlock(pp); 404 #endif 405 } 406 } 407 408 /* 409 * Get pages from boot and hash them into the kernel's vp. 410 * Used after page structs have been allocated, but before segkmem is ready. 411 */ 412 void * 413 boot_alloc(void *inaddr, size_t size, uint_t align) 414 { 415 caddr_t addr = inaddr; 416 417 if (bootops == NULL) 418 prom_panic("boot_alloc: attempt to allocate memory after " 419 "BOP_GONE"); 420 421 size = ptob(btopr(size)); 422 if (BOP_ALLOC(bootops, addr, size, align) != addr) 423 panic("boot_alloc: BOP_ALLOC failed"); 424 boot_mapin((caddr_t)addr, size); 425 return (addr); 426 } 427 428 static void 429 segkmem_badop() 430 { 431 panic("segkmem_badop"); 432 } 433 434 #define SEGKMEM_BADOP(t) (t(*)())segkmem_badop 435 436 /*ARGSUSED*/ 437 static faultcode_t 438 segkmem_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t size, 439 enum fault_type type, enum seg_rw rw) 440 { 441 pgcnt_t npages; 442 spgcnt_t pg; 443 page_t *pp; 444 struct vnode *vp = seg->s_data; 445 446 ASSERT(RW_READ_HELD(&seg->s_as->a_lock)); 447 448 if (seg->s_as != &kas || size > seg->s_size || 449 addr < seg->s_base || addr + size > seg->s_base + seg->s_size) 450 panic("segkmem_fault: bad args"); 451 452 if (segkp_bitmap && seg == &kvseg) { 453 /* 454 * If it is one of segkp pages, call segkp_fault. 455 */ 456 if (BT_TEST(segkp_bitmap, 457 btop((uintptr_t)(addr - seg->s_base)))) 458 return (SEGOP_FAULT(hat, segkp, addr, size, type, rw)); 459 } 460 461 if (rw != S_READ && rw != S_WRITE && rw != S_OTHER) 462 return (FC_NOSUPPORT); 463 464 npages = btopr(size); 465 466 switch (type) { 467 case F_SOFTLOCK: /* lock down already-loaded translations */ 468 for (pg = 0; pg < npages; pg++) { 469 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, 470 SE_SHARED); 471 if (pp == NULL) { 472 /* 473 * Hmm, no page. Does a kernel mapping 474 * exist for it? 475 */ 476 if (!hat_probe(kas.a_hat, addr)) { 477 addr -= PAGESIZE; 478 while (--pg >= 0) { 479 pp = page_find(vp, 480 (u_offset_t)(uintptr_t)addr); 481 if (pp) 482 page_unlock(pp); 483 addr -= PAGESIZE; 484 } 485 return (FC_NOMAP); 486 } 487 } 488 addr += PAGESIZE; 489 } 490 if (rw == S_OTHER) 491 hat_reserve(seg->s_as, addr, size); 492 return (0); 493 case F_SOFTUNLOCK: 494 while (npages--) { 495 pp = page_find(vp, (u_offset_t)(uintptr_t)addr); 496 if (pp) 497 page_unlock(pp); 498 addr += PAGESIZE; 499 } 500 return (0); 501 default: 502 return (FC_NOSUPPORT); 503 } 504 /*NOTREACHED*/ 505 } 506 507 static int 508 segkmem_setprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot) 509 { 510 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 511 512 if (seg->s_as != &kas || size > seg->s_size || 513 addr < seg->s_base || addr + size > seg->s_base + seg->s_size) 514 panic("segkmem_setprot: bad args"); 515 516 if (segkp_bitmap && seg == &kvseg) { 517 518 /* 519 * If it is one of segkp pages, call segkp. 520 */ 521 if (BT_TEST(segkp_bitmap, 522 btop((uintptr_t)(addr - seg->s_base)))) 523 return (SEGOP_SETPROT(segkp, addr, size, prot)); 524 } 525 526 if (prot == 0) 527 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD); 528 else 529 hat_chgprot(kas.a_hat, addr, size, prot); 530 return (0); 531 } 532 533 /* 534 * This is a dummy segkmem function overloaded to call segkp 535 * when segkp is under the heap. 536 */ 537 /* ARGSUSED */ 538 static int 539 segkmem_checkprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot) 540 { 541 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 542 543 if (seg->s_as != &kas) 544 segkmem_badop(); 545 546 if (segkp_bitmap && seg == &kvseg) { 547 548 /* 549 * If it is one of segkp pages, call into segkp. 550 */ 551 if (BT_TEST(segkp_bitmap, 552 btop((uintptr_t)(addr - seg->s_base)))) 553 return (SEGOP_CHECKPROT(segkp, addr, size, prot)); 554 } 555 segkmem_badop(); 556 return (0); 557 } 558 559 /* 560 * This is a dummy segkmem function overloaded to call segkp 561 * when segkp is under the heap. 562 */ 563 /* ARGSUSED */ 564 static int 565 segkmem_kluster(struct seg *seg, caddr_t addr, ssize_t delta) 566 { 567 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 568 569 if (seg->s_as != &kas) 570 segkmem_badop(); 571 572 if (segkp_bitmap && seg == &kvseg) { 573 574 /* 575 * If it is one of segkp pages, call into segkp. 576 */ 577 if (BT_TEST(segkp_bitmap, 578 btop((uintptr_t)(addr - seg->s_base)))) 579 return (SEGOP_KLUSTER(segkp, addr, delta)); 580 } 581 segkmem_badop(); 582 return (0); 583 } 584 585 static void 586 segkmem_xdump_range(void *arg, void *start, size_t size) 587 { 588 struct as *as = arg; 589 caddr_t addr = start; 590 caddr_t addr_end = addr + size; 591 592 while (addr < addr_end) { 593 pfn_t pfn = hat_getpfnum(kas.a_hat, addr); 594 if (pfn != PFN_INVALID && pfn <= physmax && pf_is_memory(pfn)) 595 dump_addpage(as, addr, pfn); 596 addr += PAGESIZE; 597 dump_timeleft = dump_timeout; 598 } 599 } 600 601 static void 602 segkmem_dump_range(void *arg, void *start, size_t size) 603 { 604 caddr_t addr = start; 605 caddr_t addr_end = addr + size; 606 607 /* 608 * If we are about to start dumping the range of addresses we 609 * carved out of the kernel heap for the large page heap walk 610 * heap_lp_arena to find what segments are actually populated 611 */ 612 if (SEGKMEM_USE_LARGEPAGES && 613 addr == heap_lp_base && addr_end == heap_lp_end && 614 vmem_size(heap_lp_arena, VMEM_ALLOC) < size) { 615 vmem_walk(heap_lp_arena, VMEM_ALLOC | VMEM_REENTRANT, 616 segkmem_xdump_range, arg); 617 } else { 618 segkmem_xdump_range(arg, start, size); 619 } 620 } 621 622 static void 623 segkmem_dump(struct seg *seg) 624 { 625 /* 626 * The kernel's heap_arena (represented by kvseg) is a very large 627 * VA space, most of which is typically unused. To speed up dumping 628 * we use vmem_walk() to quickly find the pieces of heap_arena that 629 * are actually in use. We do the same for heap32_arena and 630 * heap_core. 631 * 632 * We specify VMEM_REENTRANT to vmem_walk() because dump_addpage() 633 * may ultimately need to allocate memory. Reentrant walks are 634 * necessarily imperfect snapshots. The kernel heap continues 635 * to change during a live crash dump, for example. For a normal 636 * crash dump, however, we know that there won't be any other threads 637 * messing with the heap. Therefore, at worst, we may fail to dump 638 * the pages that get allocated by the act of dumping; but we will 639 * always dump every page that was allocated when the walk began. 640 * 641 * The other segkmem segments are dense (fully populated), so there's 642 * no need to use this technique when dumping them. 643 * 644 * Note: when adding special dump handling for any new sparsely- 645 * populated segments, be sure to add similar handling to the ::kgrep 646 * code in mdb. 647 */ 648 if (seg == &kvseg) { 649 vmem_walk(heap_arena, VMEM_ALLOC | VMEM_REENTRANT, 650 segkmem_dump_range, seg->s_as); 651 #ifndef __sparc 652 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT, 653 segkmem_dump_range, seg->s_as); 654 #endif 655 } else if (seg == &kvseg_core) { 656 vmem_walk(heap_core_arena, VMEM_ALLOC | VMEM_REENTRANT, 657 segkmem_dump_range, seg->s_as); 658 } else if (seg == &kvseg32) { 659 vmem_walk(heap32_arena, VMEM_ALLOC | VMEM_REENTRANT, 660 segkmem_dump_range, seg->s_as); 661 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT, 662 segkmem_dump_range, seg->s_as); 663 } else if (seg == &kzioseg) { 664 /* 665 * We don't want to dump pages attached to kzioseg since they 666 * contain file data from ZFS. If this page's segment is 667 * kzioseg return instead of writing it to the dump device. 668 */ 669 return; 670 } else { 671 segkmem_dump_range(seg->s_as, seg->s_base, seg->s_size); 672 } 673 } 674 675 /* 676 * lock/unlock kmem pages over a given range [addr, addr+len). 677 * Returns a shadow list of pages in ppp. If there are holes 678 * in the range (e.g. some of the kernel mappings do not have 679 * underlying page_ts) returns ENOTSUP so that as_pagelock() 680 * will handle the range via as_fault(F_SOFTLOCK). 681 */ 682 /*ARGSUSED*/ 683 static int 684 segkmem_pagelock(struct seg *seg, caddr_t addr, size_t len, 685 page_t ***ppp, enum lock_type type, enum seg_rw rw) 686 { 687 page_t **pplist, *pp; 688 pgcnt_t npages; 689 spgcnt_t pg; 690 size_t nb; 691 struct vnode *vp = seg->s_data; 692 693 ASSERT(ppp != NULL); 694 695 if (segkp_bitmap && seg == &kvseg) { 696 /* 697 * If it is one of segkp pages, call into segkp. 698 */ 699 if (BT_TEST(segkp_bitmap, 700 btop((uintptr_t)(addr - seg->s_base)))) 701 return (SEGOP_PAGELOCK(segkp, addr, len, ppp, 702 type, rw)); 703 } 704 705 if (type == L_PAGERECLAIM) 706 return (ENOTSUP); 707 708 npages = btopr(len); 709 nb = sizeof (page_t *) * npages; 710 711 if (type == L_PAGEUNLOCK) { 712 pplist = *ppp; 713 ASSERT(pplist != NULL); 714 715 for (pg = 0; pg < npages; pg++) { 716 pp = pplist[pg]; 717 page_unlock(pp); 718 } 719 kmem_free(pplist, nb); 720 return (0); 721 } 722 723 ASSERT(type == L_PAGELOCK); 724 725 pplist = kmem_alloc(nb, KM_NOSLEEP); 726 if (pplist == NULL) { 727 *ppp = NULL; 728 return (ENOTSUP); /* take the slow path */ 729 } 730 731 for (pg = 0; pg < npages; pg++) { 732 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_SHARED); 733 if (pp == NULL) { 734 while (--pg >= 0) 735 page_unlock(pplist[pg]); 736 kmem_free(pplist, nb); 737 *ppp = NULL; 738 return (ENOTSUP); 739 } 740 pplist[pg] = pp; 741 addr += PAGESIZE; 742 } 743 744 *ppp = pplist; 745 return (0); 746 } 747 748 /* 749 * This is a dummy segkmem function overloaded to call segkp 750 * when segkp is under the heap. 751 */ 752 /* ARGSUSED */ 753 static int 754 segkmem_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp) 755 { 756 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 757 758 if (seg->s_as != &kas) 759 segkmem_badop(); 760 761 if (segkp_bitmap && seg == &kvseg) { 762 763 /* 764 * If it is one of segkp pages, call into segkp. 765 */ 766 if (BT_TEST(segkp_bitmap, 767 btop((uintptr_t)(addr - seg->s_base)))) 768 return (SEGOP_GETMEMID(segkp, addr, memidp)); 769 } 770 segkmem_badop(); 771 return (0); 772 } 773 774 /*ARGSUSED*/ 775 static lgrp_mem_policy_info_t * 776 segkmem_getpolicy(struct seg *seg, caddr_t addr) 777 { 778 return (NULL); 779 } 780 781 /*ARGSUSED*/ 782 static int 783 segkmem_capable(struct seg *seg, segcapability_t capability) 784 { 785 if (capability == S_CAPABILITY_NOMINFLT) 786 return (1); 787 return (0); 788 } 789 790 static struct seg_ops segkmem_ops = { 791 SEGKMEM_BADOP(int), /* dup */ 792 SEGKMEM_BADOP(int), /* unmap */ 793 SEGKMEM_BADOP(void), /* free */ 794 segkmem_fault, 795 SEGKMEM_BADOP(faultcode_t), /* faulta */ 796 segkmem_setprot, 797 segkmem_checkprot, 798 segkmem_kluster, 799 SEGKMEM_BADOP(size_t), /* swapout */ 800 SEGKMEM_BADOP(int), /* sync */ 801 SEGKMEM_BADOP(size_t), /* incore */ 802 SEGKMEM_BADOP(int), /* lockop */ 803 SEGKMEM_BADOP(int), /* getprot */ 804 SEGKMEM_BADOP(u_offset_t), /* getoffset */ 805 SEGKMEM_BADOP(int), /* gettype */ 806 SEGKMEM_BADOP(int), /* getvp */ 807 SEGKMEM_BADOP(int), /* advise */ 808 segkmem_dump, 809 segkmem_pagelock, 810 SEGKMEM_BADOP(int), /* setpgsz */ 811 segkmem_getmemid, 812 segkmem_getpolicy, /* getpolicy */ 813 segkmem_capable, /* capable */ 814 }; 815 816 int 817 segkmem_zio_create(struct seg *seg) 818 { 819 ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock)); 820 seg->s_ops = &segkmem_ops; 821 seg->s_data = &zvp; 822 kas.a_size += seg->s_size; 823 return (0); 824 } 825 826 int 827 segkmem_create(struct seg *seg) 828 { 829 ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock)); 830 seg->s_ops = &segkmem_ops; 831 seg->s_data = &kvp; 832 kas.a_size += seg->s_size; 833 return (0); 834 } 835 836 /*ARGSUSED*/ 837 page_t * 838 segkmem_page_create(void *addr, size_t size, int vmflag, void *arg) 839 { 840 struct seg kseg; 841 int pgflags; 842 struct vnode *vp = arg; 843 844 if (vp == NULL) 845 vp = &kvp; 846 847 kseg.s_as = &kas; 848 pgflags = PG_EXCL; 849 850 if (segkmem_reloc == 0 || (vmflag & VM_NORELOC)) 851 pgflags |= PG_NORELOC; 852 if ((vmflag & VM_NOSLEEP) == 0) 853 pgflags |= PG_WAIT; 854 if (vmflag & VM_PANIC) 855 pgflags |= PG_PANIC; 856 if (vmflag & VM_PUSHPAGE) 857 pgflags |= PG_PUSHPAGE; 858 859 return (page_create_va(vp, (u_offset_t)(uintptr_t)addr, size, 860 pgflags, &kseg, addr)); 861 } 862 863 /* 864 * Allocate pages to back the virtual address range [addr, addr + size). 865 * If addr is NULL, allocate the virtual address space as well. 866 */ 867 void * 868 segkmem_xalloc(vmem_t *vmp, void *inaddr, size_t size, int vmflag, uint_t attr, 869 page_t *(*page_create_func)(void *, size_t, int, void *), void *pcarg) 870 { 871 page_t *ppl; 872 caddr_t addr = inaddr; 873 pgcnt_t npages = btopr(size); 874 int allocflag; 875 876 if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL) 877 return (NULL); 878 879 ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0); 880 881 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 882 if (inaddr == NULL) 883 vmem_free(vmp, addr, size); 884 return (NULL); 885 } 886 887 ppl = page_create_func(addr, size, vmflag, pcarg); 888 if (ppl == NULL) { 889 if (inaddr == NULL) 890 vmem_free(vmp, addr, size); 891 page_unresv(npages); 892 return (NULL); 893 } 894 895 /* 896 * Under certain conditions, we need to let the HAT layer know 897 * that it cannot safely allocate memory. Allocations from 898 * the hat_memload vmem arena always need this, to prevent 899 * infinite recursion. 900 * 901 * In addition, the x86 hat cannot safely do memory 902 * allocations while in vmem_populate(), because there 903 * is no simple bound on its usage. 904 */ 905 if (vmflag & VM_MEMLOAD) 906 allocflag = HAT_NO_KALLOC; 907 #if defined(__x86) 908 else if (vmem_is_populator()) 909 allocflag = HAT_NO_KALLOC; 910 #endif 911 else 912 allocflag = 0; 913 914 while (ppl != NULL) { 915 page_t *pp = ppl; 916 page_sub(&ppl, pp); 917 ASSERT(page_iolock_assert(pp)); 918 ASSERT(PAGE_EXCL(pp)); 919 page_io_unlock(pp); 920 hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset, pp, 921 (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, 922 HAT_LOAD_LOCK | allocflag); 923 pp->p_lckcnt = 1; 924 #if defined(__x86) 925 page_downgrade(pp); 926 #else 927 if (vmflag & SEGKMEM_SHARELOCKED) 928 page_downgrade(pp); 929 else 930 page_unlock(pp); 931 #endif 932 } 933 934 return (addr); 935 } 936 937 static void * 938 segkmem_alloc_vn(vmem_t *vmp, size_t size, int vmflag, struct vnode *vp) 939 { 940 void *addr; 941 segkmem_gc_list_t *gcp, **prev_gcpp; 942 943 ASSERT(vp != NULL); 944 945 if (kvseg.s_base == NULL) { 946 #ifndef __sparc 947 if (bootops->bsys_alloc == NULL) 948 halt("Memory allocation between bop_alloc() and " 949 "kmem_alloc().\n"); 950 #endif 951 952 /* 953 * There's not a lot of memory to go around during boot, 954 * so recycle it if we can. 955 */ 956 for (prev_gcpp = &segkmem_gc_list; (gcp = *prev_gcpp) != NULL; 957 prev_gcpp = &gcp->gc_next) { 958 if (gcp->gc_arena == vmp && gcp->gc_size == size) { 959 *prev_gcpp = gcp->gc_next; 960 return (gcp); 961 } 962 } 963 964 addr = vmem_alloc(vmp, size, vmflag | VM_PANIC); 965 if (boot_alloc(addr, size, BO_NO_ALIGN) != addr) 966 panic("segkmem_alloc: boot_alloc failed"); 967 return (addr); 968 } 969 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 970 segkmem_page_create, vp)); 971 } 972 973 void * 974 segkmem_alloc(vmem_t *vmp, size_t size, int vmflag) 975 { 976 return (segkmem_alloc_vn(vmp, size, vmflag, &kvp)); 977 } 978 979 void * 980 segkmem_zio_alloc(vmem_t *vmp, size_t size, int vmflag) 981 { 982 return (segkmem_alloc_vn(vmp, size, vmflag, &zvp)); 983 } 984 985 /* 986 * Any changes to this routine must also be carried over to 987 * devmap_free_pages() in the seg_dev driver. This is because 988 * we currently don't have a special kernel segment for non-paged 989 * kernel memory that is exported by drivers to user space. 990 */ 991 static void 992 segkmem_free_vn(vmem_t *vmp, void *inaddr, size_t size, struct vnode *vp) 993 { 994 page_t *pp; 995 caddr_t addr = inaddr; 996 caddr_t eaddr; 997 pgcnt_t npages = btopr(size); 998 999 ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0); 1000 ASSERT(vp != NULL); 1001 1002 if (kvseg.s_base == NULL) { 1003 segkmem_gc_list_t *gc = inaddr; 1004 gc->gc_arena = vmp; 1005 gc->gc_size = size; 1006 gc->gc_next = segkmem_gc_list; 1007 segkmem_gc_list = gc; 1008 return; 1009 } 1010 1011 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1012 1013 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 1014 #if defined(__x86) 1015 pp = page_find(vp, (u_offset_t)(uintptr_t)addr); 1016 if (pp == NULL) 1017 panic("segkmem_free: page not found"); 1018 if (!page_tryupgrade(pp)) { 1019 /* 1020 * Some other thread has a sharelock. Wait for 1021 * it to drop the lock so we can free this page. 1022 */ 1023 page_unlock(pp); 1024 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, 1025 SE_EXCL); 1026 } 1027 #else 1028 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_EXCL); 1029 #endif 1030 if (pp == NULL) 1031 panic("segkmem_free: page not found"); 1032 /* Clear p_lckcnt so page_destroy() doesn't update availrmem */ 1033 pp->p_lckcnt = 0; 1034 page_destroy(pp, 0); 1035 } 1036 page_unresv(npages); 1037 1038 if (vmp != NULL) 1039 vmem_free(vmp, inaddr, size); 1040 1041 } 1042 1043 void 1044 segkmem_free(vmem_t *vmp, void *inaddr, size_t size) 1045 { 1046 segkmem_free_vn(vmp, inaddr, size, &kvp); 1047 } 1048 1049 void 1050 segkmem_zio_free(vmem_t *vmp, void *inaddr, size_t size) 1051 { 1052 segkmem_free_vn(vmp, inaddr, size, &zvp); 1053 } 1054 1055 void 1056 segkmem_gc(void) 1057 { 1058 ASSERT(kvseg.s_base != NULL); 1059 while (segkmem_gc_list != NULL) { 1060 segkmem_gc_list_t *gc = segkmem_gc_list; 1061 segkmem_gc_list = gc->gc_next; 1062 segkmem_free(gc->gc_arena, gc, gc->gc_size); 1063 } 1064 } 1065 1066 /* 1067 * Legacy entry points from here to end of file. 1068 */ 1069 void 1070 segkmem_mapin(struct seg *seg, void *addr, size_t size, uint_t vprot, 1071 pfn_t pfn, uint_t flags) 1072 { 1073 hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1074 hat_devload(seg->s_as->a_hat, addr, size, pfn, vprot, 1075 flags | HAT_LOAD_LOCK); 1076 } 1077 1078 void 1079 segkmem_mapout(struct seg *seg, void *addr, size_t size) 1080 { 1081 hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1082 } 1083 1084 void * 1085 kmem_getpages(pgcnt_t npages, int kmflag) 1086 { 1087 return (kmem_alloc(ptob(npages), kmflag)); 1088 } 1089 1090 void 1091 kmem_freepages(void *addr, pgcnt_t npages) 1092 { 1093 kmem_free(addr, ptob(npages)); 1094 } 1095 1096 /* 1097 * segkmem_page_create_large() allocates a large page to be used for the kmem 1098 * caches. If kpr is enabled we ask for a relocatable page unless requested 1099 * otherwise. If kpr is disabled we have to ask for a non-reloc page 1100 */ 1101 static page_t * 1102 segkmem_page_create_large(void *addr, size_t size, int vmflag, void *arg) 1103 { 1104 int pgflags; 1105 1106 pgflags = PG_EXCL; 1107 1108 if (segkmem_reloc == 0 || (vmflag & VM_NORELOC)) 1109 pgflags |= PG_NORELOC; 1110 if (!(vmflag & VM_NOSLEEP)) 1111 pgflags |= PG_WAIT; 1112 if (vmflag & VM_PUSHPAGE) 1113 pgflags |= PG_PUSHPAGE; 1114 1115 return (page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size, 1116 pgflags, &kvseg, addr, arg)); 1117 } 1118 1119 /* 1120 * Allocate a large page to back the virtual address range 1121 * [addr, addr + size). If addr is NULL, allocate the virtual address 1122 * space as well. 1123 */ 1124 static void * 1125 segkmem_xalloc_lp(vmem_t *vmp, void *inaddr, size_t size, int vmflag, 1126 uint_t attr, page_t *(*page_create_func)(void *, size_t, int, void *), 1127 void *pcarg) 1128 { 1129 caddr_t addr = inaddr, pa; 1130 size_t lpsize = segkmem_lpsize; 1131 pgcnt_t npages = btopr(size); 1132 pgcnt_t nbpages = btop(lpsize); 1133 pgcnt_t nlpages = size >> segkmem_lpshift; 1134 size_t ppasize = nbpages * sizeof (page_t *); 1135 page_t *pp, *rootpp, **ppa, *pplist = NULL; 1136 int i; 1137 1138 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 1139 return (NULL); 1140 } 1141 1142 /* 1143 * allocate an array we need for hat_memload_array. 1144 * we use a separate arena to avoid recursion. 1145 * we will not need this array when hat_memload_array learns pp++ 1146 */ 1147 if ((ppa = vmem_alloc(segkmem_ppa_arena, ppasize, vmflag)) == NULL) { 1148 goto fail_array_alloc; 1149 } 1150 1151 if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL) 1152 goto fail_vmem_alloc; 1153 1154 ASSERT(((uintptr_t)addr & (lpsize - 1)) == 0); 1155 1156 /* create all the pages */ 1157 for (pa = addr, i = 0; i < nlpages; i++, pa += lpsize) { 1158 if ((pp = page_create_func(pa, lpsize, vmflag, pcarg)) == NULL) 1159 goto fail_page_create; 1160 page_list_concat(&pplist, &pp); 1161 } 1162 1163 /* at this point we have all the resource to complete the request */ 1164 while ((rootpp = pplist) != NULL) { 1165 for (i = 0; i < nbpages; i++) { 1166 ASSERT(pplist != NULL); 1167 pp = pplist; 1168 page_sub(&pplist, pp); 1169 ASSERT(page_iolock_assert(pp)); 1170 page_io_unlock(pp); 1171 ppa[i] = pp; 1172 } 1173 /* 1174 * Load the locked entry. It's OK to preload the entry into the 1175 * TSB since we now support large mappings in the kernel TSB. 1176 */ 1177 hat_memload_array(kas.a_hat, 1178 (caddr_t)(uintptr_t)rootpp->p_offset, lpsize, 1179 ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, 1180 HAT_LOAD_LOCK); 1181 1182 for (--i; i >= 0; --i) { 1183 ppa[i]->p_lckcnt = 1; 1184 page_unlock(ppa[i]); 1185 } 1186 } 1187 1188 vmem_free(segkmem_ppa_arena, ppa, ppasize); 1189 return (addr); 1190 1191 fail_page_create: 1192 while ((rootpp = pplist) != NULL) { 1193 for (i = 0, pp = pplist; i < nbpages; i++, pp = pplist) { 1194 ASSERT(pp != NULL); 1195 page_sub(&pplist, pp); 1196 ASSERT(page_iolock_assert(pp)); 1197 page_io_unlock(pp); 1198 } 1199 page_destroy_pages(rootpp); 1200 } 1201 1202 if (inaddr == NULL) 1203 vmem_free(vmp, addr, size); 1204 1205 fail_vmem_alloc: 1206 vmem_free(segkmem_ppa_arena, ppa, ppasize); 1207 1208 fail_array_alloc: 1209 page_unresv(npages); 1210 1211 return (NULL); 1212 } 1213 1214 static void 1215 segkmem_free_one_lp(caddr_t addr, size_t size) 1216 { 1217 page_t *pp, *rootpp = NULL; 1218 pgcnt_t pgs_left = btopr(size); 1219 1220 ASSERT(size == segkmem_lpsize); 1221 1222 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1223 1224 for (; pgs_left > 0; addr += PAGESIZE, pgs_left--) { 1225 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL); 1226 if (pp == NULL) 1227 panic("segkmem_free_one_lp: page not found"); 1228 ASSERT(PAGE_EXCL(pp)); 1229 pp->p_lckcnt = 0; 1230 if (rootpp == NULL) 1231 rootpp = pp; 1232 } 1233 ASSERT(rootpp != NULL); 1234 page_destroy_pages(rootpp); 1235 1236 /* page_unresv() is done by the caller */ 1237 } 1238 1239 /* 1240 * This function is called to import new spans into the vmem arenas like 1241 * kmem_default_arena and kmem_oversize_arena. It first tries to import 1242 * spans from large page arena - kmem_lp_arena. In order to do this it might 1243 * have to "upgrade the requested size" to kmem_lp_arena quantum. If 1244 * it was not able to satisfy the upgraded request it then calls regular 1245 * segkmem_alloc() that satisfies the request by importing from "*vmp" arena 1246 */ 1247 /*ARGSUSED*/ 1248 void * 1249 segkmem_alloc_lp(vmem_t *vmp, size_t *sizep, size_t align, int vmflag) 1250 { 1251 size_t size; 1252 kthread_t *t = curthread; 1253 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1254 1255 ASSERT(sizep != NULL); 1256 1257 size = *sizep; 1258 1259 if (lpcb->lp_uselp && !(t->t_flag & T_PANIC) && 1260 !(vmflag & SEGKMEM_SHARELOCKED)) { 1261 1262 size_t kmemlp_qnt = segkmem_kmemlp_quantum; 1263 size_t asize = P2ROUNDUP(size, kmemlp_qnt); 1264 void *addr = NULL; 1265 ulong_t *lpthrtp = &lpcb->lp_throttle; 1266 ulong_t lpthrt = *lpthrtp; 1267 int dowakeup = 0; 1268 int doalloc = 1; 1269 1270 ASSERT(kmem_lp_arena != NULL); 1271 ASSERT(asize >= size); 1272 1273 if (lpthrt != 0) { 1274 /* try to update the throttle value */ 1275 lpthrt = atomic_add_long_nv(lpthrtp, 1); 1276 if (lpthrt >= segkmem_lpthrottle_max) { 1277 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1278 segkmem_lpthrottle_max / 4); 1279 } 1280 1281 /* 1282 * when we get above throttle start do an exponential 1283 * backoff at trying large pages and reaping 1284 */ 1285 if (lpthrt > segkmem_lpthrottle_start && 1286 (lpthrt & (lpthrt - 1))) { 1287 lpcb->allocs_throttled++; 1288 lpthrt--; 1289 if ((lpthrt & (lpthrt - 1)) == 0) 1290 kmem_reap(); 1291 return (segkmem_alloc(vmp, size, vmflag)); 1292 } 1293 } 1294 1295 if (!(vmflag & VM_NOSLEEP) && 1296 segkmem_heaplp_quantum >= (8 * kmemlp_qnt) && 1297 vmem_size(kmem_lp_arena, VMEM_FREE) <= kmemlp_qnt && 1298 asize < (segkmem_heaplp_quantum - kmemlp_qnt)) { 1299 1300 /* 1301 * we are low on free memory in kmem_lp_arena 1302 * we let only one guy to allocate heap_lp 1303 * quantum size chunk that everybody is going to 1304 * share 1305 */ 1306 mutex_enter(&lpcb->lp_lock); 1307 1308 if (lpcb->lp_wait) { 1309 1310 /* we are not the first one - wait */ 1311 cv_wait(&lpcb->lp_cv, &lpcb->lp_lock); 1312 if (vmem_size(kmem_lp_arena, VMEM_FREE) < 1313 kmemlp_qnt) { 1314 doalloc = 0; 1315 } 1316 } else if (vmem_size(kmem_lp_arena, VMEM_FREE) <= 1317 kmemlp_qnt) { 1318 1319 /* 1320 * we are the first one, make sure we import 1321 * a large page 1322 */ 1323 if (asize == kmemlp_qnt) 1324 asize += kmemlp_qnt; 1325 dowakeup = 1; 1326 lpcb->lp_wait = 1; 1327 } 1328 1329 mutex_exit(&lpcb->lp_lock); 1330 } 1331 1332 /* 1333 * VM_ABORT flag prevents sleeps in vmem_xalloc when 1334 * large pages are not available. In that case this allocation 1335 * attempt will fail and we will retry allocation with small 1336 * pages. We also do not want to panic if this allocation fails 1337 * because we are going to retry. 1338 */ 1339 if (doalloc) { 1340 addr = vmem_alloc(kmem_lp_arena, asize, 1341 (vmflag | VM_ABORT) & ~VM_PANIC); 1342 1343 if (dowakeup) { 1344 mutex_enter(&lpcb->lp_lock); 1345 ASSERT(lpcb->lp_wait != 0); 1346 lpcb->lp_wait = 0; 1347 cv_broadcast(&lpcb->lp_cv); 1348 mutex_exit(&lpcb->lp_lock); 1349 } 1350 } 1351 1352 if (addr != NULL) { 1353 *sizep = asize; 1354 *lpthrtp = 0; 1355 return (addr); 1356 } 1357 1358 if (vmflag & VM_NOSLEEP) 1359 lpcb->nosleep_allocs_failed++; 1360 else 1361 lpcb->sleep_allocs_failed++; 1362 lpcb->alloc_bytes_failed += size; 1363 1364 /* if large page throttling is not started yet do it */ 1365 if (segkmem_use_lpthrottle && lpthrt == 0) { 1366 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1); 1367 } 1368 } 1369 return (segkmem_alloc(vmp, size, vmflag)); 1370 } 1371 1372 void 1373 segkmem_free_lp(vmem_t *vmp, void *inaddr, size_t size) 1374 { 1375 if (kmem_lp_arena == NULL || !IS_KMEM_VA_LARGEPAGE((caddr_t)inaddr)) { 1376 segkmem_free(vmp, inaddr, size); 1377 } else { 1378 vmem_free(kmem_lp_arena, inaddr, size); 1379 } 1380 } 1381 1382 /* 1383 * segkmem_alloc_lpi() imports virtual memory from large page heap arena 1384 * into kmem_lp arena. In the process it maps the imported segment with 1385 * large pages 1386 */ 1387 static void * 1388 segkmem_alloc_lpi(vmem_t *vmp, size_t size, int vmflag) 1389 { 1390 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1391 void *addr; 1392 1393 ASSERT(size != 0); 1394 ASSERT(vmp == heap_lp_arena); 1395 1396 /* do not allow large page heap grow beyound limits */ 1397 if (vmem_size(vmp, VMEM_ALLOC) >= segkmem_kmemlp_max) { 1398 lpcb->allocs_limited++; 1399 return (NULL); 1400 } 1401 1402 addr = segkmem_xalloc_lp(vmp, NULL, size, vmflag, 0, 1403 segkmem_page_create_large, NULL); 1404 return (addr); 1405 } 1406 1407 /* 1408 * segkmem_free_lpi() returns virtual memory back into large page heap arena 1409 * from kmem_lp arena. Beore doing this it unmaps the segment and frees 1410 * large pages used to map it. 1411 */ 1412 static void 1413 segkmem_free_lpi(vmem_t *vmp, void *inaddr, size_t size) 1414 { 1415 pgcnt_t nlpages = size >> segkmem_lpshift; 1416 size_t lpsize = segkmem_lpsize; 1417 caddr_t addr = inaddr; 1418 pgcnt_t npages = btopr(size); 1419 int i; 1420 1421 ASSERT(vmp == heap_lp_arena); 1422 ASSERT(IS_KMEM_VA_LARGEPAGE(addr)); 1423 ASSERT(((uintptr_t)inaddr & (lpsize - 1)) == 0); 1424 1425 for (i = 0; i < nlpages; i++) { 1426 segkmem_free_one_lp(addr, lpsize); 1427 addr += lpsize; 1428 } 1429 1430 page_unresv(npages); 1431 1432 vmem_free(vmp, inaddr, size); 1433 } 1434 1435 /* 1436 * This function is called at system boot time by kmem_init right after 1437 * /etc/system file has been read. It checks based on hardware configuration 1438 * and /etc/system settings if system is going to use large pages. The 1439 * initialiazation necessary to actually start using large pages 1440 * happens later in the process after segkmem_heap_lp_init() is called. 1441 */ 1442 int 1443 segkmem_lpsetup() 1444 { 1445 int use_large_pages = 0; 1446 1447 #ifdef __sparc 1448 1449 size_t memtotal = physmem * PAGESIZE; 1450 1451 if (heap_lp_base == NULL) { 1452 segkmem_lpsize = PAGESIZE; 1453 return (0); 1454 } 1455 1456 /* get a platform dependent value of large page size for kernel heap */ 1457 segkmem_lpsize = get_segkmem_lpsize(segkmem_lpsize); 1458 1459 if (segkmem_lpsize <= PAGESIZE) { 1460 /* 1461 * put virtual space reserved for the large page kernel 1462 * back to the regular heap 1463 */ 1464 vmem_xfree(heap_arena, heap_lp_base, 1465 heap_lp_end - heap_lp_base); 1466 heap_lp_base = NULL; 1467 heap_lp_end = NULL; 1468 segkmem_lpsize = PAGESIZE; 1469 return (0); 1470 } 1471 1472 /* set heap_lp quantum if necessary */ 1473 if (segkmem_heaplp_quantum == 0 || 1474 (segkmem_heaplp_quantum & (segkmem_heaplp_quantum - 1)) || 1475 P2PHASE(segkmem_heaplp_quantum, segkmem_lpsize)) { 1476 segkmem_heaplp_quantum = segkmem_lpsize; 1477 } 1478 1479 /* set kmem_lp quantum if necessary */ 1480 if (segkmem_kmemlp_quantum == 0 || 1481 (segkmem_kmemlp_quantum & (segkmem_kmemlp_quantum - 1)) || 1482 segkmem_kmemlp_quantum > segkmem_heaplp_quantum) { 1483 segkmem_kmemlp_quantum = segkmem_heaplp_quantum; 1484 } 1485 1486 /* set total amount of memory allowed for large page kernel heap */ 1487 if (segkmem_kmemlp_max == 0) { 1488 if (segkmem_kmemlp_pcnt == 0 || segkmem_kmemlp_pcnt > 100) 1489 segkmem_kmemlp_pcnt = 12; 1490 segkmem_kmemlp_max = (memtotal * segkmem_kmemlp_pcnt) / 100; 1491 } 1492 segkmem_kmemlp_max = P2ROUNDUP(segkmem_kmemlp_max, 1493 segkmem_heaplp_quantum); 1494 1495 /* fix lp kmem preallocation request if necesssary */ 1496 if (segkmem_kmemlp_min) { 1497 segkmem_kmemlp_min = P2ROUNDUP(segkmem_kmemlp_min, 1498 segkmem_heaplp_quantum); 1499 if (segkmem_kmemlp_min > segkmem_kmemlp_max) 1500 segkmem_kmemlp_min = segkmem_kmemlp_max; 1501 } 1502 1503 use_large_pages = 1; 1504 segkmem_lpszc = page_szc(segkmem_lpsize); 1505 segkmem_lpshift = page_get_shift(segkmem_lpszc); 1506 1507 #endif 1508 return (use_large_pages); 1509 } 1510 1511 void 1512 segkmem_zio_init(void *zio_mem_base, size_t zio_mem_size) 1513 { 1514 ASSERT(zio_mem_base != NULL); 1515 ASSERT(zio_mem_size != 0); 1516 1517 zio_arena = vmem_create("zio", zio_mem_base, zio_mem_size, PAGESIZE, 1518 NULL, NULL, NULL, 0, VM_SLEEP); 1519 1520 zio_alloc_arena = vmem_create("zio_buf", NULL, 0, PAGESIZE, 1521 segkmem_zio_alloc, segkmem_zio_free, zio_arena, 0, VM_SLEEP); 1522 1523 ASSERT(zio_arena != NULL); 1524 ASSERT(zio_alloc_arena != NULL); 1525 } 1526 1527 #ifdef __sparc 1528 1529 1530 static void * 1531 segkmem_alloc_ppa(vmem_t *vmp, size_t size, int vmflag) 1532 { 1533 size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *); 1534 void *addr; 1535 1536 if (ppaquantum <= PAGESIZE) 1537 return (segkmem_alloc(vmp, size, vmflag)); 1538 1539 ASSERT((size & (ppaquantum - 1)) == 0); 1540 1541 addr = vmem_xalloc(vmp, size, ppaquantum, 0, 0, NULL, NULL, vmflag); 1542 if (addr != NULL && segkmem_xalloc(vmp, addr, size, vmflag, 0, 1543 segkmem_page_create, NULL) == NULL) { 1544 vmem_xfree(vmp, addr, size); 1545 addr = NULL; 1546 } 1547 1548 return (addr); 1549 } 1550 1551 static void 1552 segkmem_free_ppa(vmem_t *vmp, void *addr, size_t size) 1553 { 1554 size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *); 1555 1556 ASSERT(addr != NULL); 1557 1558 if (ppaquantum <= PAGESIZE) { 1559 segkmem_free(vmp, addr, size); 1560 } else { 1561 segkmem_free(NULL, addr, size); 1562 vmem_xfree(vmp, addr, size); 1563 } 1564 } 1565 1566 void 1567 segkmem_heap_lp_init() 1568 { 1569 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1570 size_t heap_lp_size = heap_lp_end - heap_lp_base; 1571 size_t lpsize = segkmem_lpsize; 1572 size_t ppaquantum; 1573 void *addr; 1574 1575 if (segkmem_lpsize <= PAGESIZE) { 1576 ASSERT(heap_lp_base == NULL); 1577 ASSERT(heap_lp_end == NULL); 1578 return; 1579 } 1580 1581 ASSERT(segkmem_heaplp_quantum >= lpsize); 1582 ASSERT((segkmem_heaplp_quantum & (lpsize - 1)) == 0); 1583 ASSERT(lpcb->lp_uselp == 0); 1584 ASSERT(heap_lp_base != NULL); 1585 ASSERT(heap_lp_end != NULL); 1586 ASSERT(heap_lp_base < heap_lp_end); 1587 ASSERT(heap_lp_arena == NULL); 1588 ASSERT(((uintptr_t)heap_lp_base & (lpsize - 1)) == 0); 1589 ASSERT(((uintptr_t)heap_lp_end & (lpsize - 1)) == 0); 1590 1591 /* create large page heap arena */ 1592 heap_lp_arena = vmem_create("heap_lp", heap_lp_base, heap_lp_size, 1593 segkmem_heaplp_quantum, NULL, NULL, NULL, 0, VM_SLEEP); 1594 1595 ASSERT(heap_lp_arena != NULL); 1596 1597 /* This arena caches memory already mapped by large pages */ 1598 kmem_lp_arena = vmem_create("kmem_lp", NULL, 0, segkmem_kmemlp_quantum, 1599 segkmem_alloc_lpi, segkmem_free_lpi, heap_lp_arena, 0, VM_SLEEP); 1600 1601 ASSERT(kmem_lp_arena != NULL); 1602 1603 mutex_init(&lpcb->lp_lock, NULL, MUTEX_DEFAULT, NULL); 1604 cv_init(&lpcb->lp_cv, NULL, CV_DEFAULT, NULL); 1605 1606 /* 1607 * this arena is used for the array of page_t pointers necessary 1608 * to call hat_mem_load_array 1609 */ 1610 ppaquantum = btopr(lpsize) * sizeof (page_t *); 1611 segkmem_ppa_arena = vmem_create("segkmem_ppa", NULL, 0, ppaquantum, 1612 segkmem_alloc_ppa, segkmem_free_ppa, heap_arena, ppaquantum, 1613 VM_SLEEP); 1614 1615 ASSERT(segkmem_ppa_arena != NULL); 1616 1617 /* prealloacate some memory for the lp kernel heap */ 1618 if (segkmem_kmemlp_min) { 1619 1620 ASSERT(P2PHASE(segkmem_kmemlp_min, 1621 segkmem_heaplp_quantum) == 0); 1622 1623 if ((addr = segkmem_alloc_lpi(heap_lp_arena, 1624 segkmem_kmemlp_min, VM_SLEEP)) != NULL) { 1625 1626 addr = vmem_add(kmem_lp_arena, addr, 1627 segkmem_kmemlp_min, VM_SLEEP); 1628 ASSERT(addr != NULL); 1629 } 1630 } 1631 1632 lpcb->lp_uselp = 1; 1633 } 1634 1635 #endif 1636