1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * Page Retire - Big Theory Statement. 31 * 32 * This file handles removing sections of faulty memory from use when the 33 * user land FMA Diagnosis Engine requests that a page be removed or when 34 * a CE or UE is detected by the hardware. 35 * 36 * In the bad old days, the kernel side of Page Retire did a lot of the work 37 * on its own. Now, with the DE keeping track of errors, the kernel side is 38 * rather simple minded on most platforms. 39 * 40 * Errors are all reflected to the DE, and after digesting the error and 41 * looking at all previously reported errors, the DE decides what should 42 * be done about the current error. If the DE wants a particular page to 43 * be retired, then the kernel page retire code is invoked via an ioctl. 44 * On non-FMA platforms, the ue_drain and ce_drain paths ends up calling 45 * page retire to handle the error. Since page retire is just a simple 46 * mechanism it doesn't need to differentiate between the different callers. 47 * 48 * The p_toxic field in the page_t is used to indicate which errors have 49 * occurred and what action has been taken on a given page. Because errors are 50 * reported without regard to the locked state of a page, no locks are used 51 * to SET the error bits in p_toxic. However, in order to clear the error 52 * bits, the page_t must be held exclusively locked. 53 * 54 * When page_retire() is called, it must be able to acquire locks, sleep, etc. 55 * It must not be called from high-level interrupt context. 56 * 57 * Depending on how the requested page is being used at the time of the retire 58 * request (and on the availability of sufficient system resources), the page 59 * may be retired immediately, or just marked for retirement later. For 60 * example, locked pages are marked, while free pages are retired. Multiple 61 * requests may be made to retire the same page, although there is no need 62 * to: once the p_toxic flags are set, the page will be retired as soon as it 63 * can be exclusively locked. 64 * 65 * The retire mechanism is driven centrally out of page_unlock(). To expedite 66 * the retirement of pages, further requests for SE_SHARED locks are denied 67 * as long as a page retirement is pending. In addition, as long as pages are 68 * pending retirement a background thread runs periodically trying to retire 69 * those pages. Pages which could not be retired while the system is running 70 * are scrubbed prior to rebooting to avoid latent errors on the next boot. 71 * 72 * Single CE pages and UE pages without persistent errors are scrubbed and 73 * returned to service. Recidivist pages, as well as FMA-directed requests 74 * for retirement, result in the page being taken out of service. Once the 75 * decision is made to take a page out of service, the page is cleared, hashed 76 * onto the retired_pages vnode, marked as retired, and it is unlocked. No 77 * other requesters (except for unretire) are allowed to lock retired pages. 78 * 79 * The public routines return (sadly) 0 if they worked and a non-zero error 80 * value if something went wrong. This is done for the ioctl side of the 81 * world to allow errors to be reflected all the way out to user land. The 82 * non-zero values are explained in comments atop each function. 83 */ 84 85 /* 86 * Things to fix: 87 * 88 * 1. Cleanup SE_EWANTED. Since we're aggressive about trying to retire 89 * pages, we can use page_retire_pp() to replace SE_EWANTED and all 90 * the special delete_memory_thread() code just goes away. 91 * 92 * 2. Trying to retire non-relocatable kvp pages may result in a 93 * quagmire. This is because seg_kmem() no longer keeps its pages locked, 94 * and calls page_lookup() in the free path; since kvp pages are modified 95 * and don't have a usable backing store, page_retire() can't do anything 96 * with them, and we'll keep denying the lock to seg_kmem_free() in a 97 * vicious cycle. To prevent that, we don't deny locks to kvp pages, and 98 * hence only call page_retire_pp() from page_unlock() in the free path. 99 * Since most kernel pages are indefinitely held anyway, and don't 100 * participate in I/O, this is of little consequence. 101 * 102 * 3. Low memory situations will be interesting. If we don't have 103 * enough memory for page_relocate() to succeed, we won't be able to 104 * retire dirty pages; nobody will be able to push them out to disk 105 * either, since we aggressively deny the page lock. We could change 106 * fsflush so it can recognize this situation, grab the lock, and push 107 * the page out, where we'll catch it in the free path and retire it. 108 * 109 * 4. Beware of places that have code like this in them: 110 * 111 * if (! page_tryupgrade(pp)) { 112 * page_unlock(pp); 113 * while (! page_lock(pp, SE_EXCL, NULL, P_RECLAIM)) { 114 * / *NOTHING* / 115 * } 116 * } 117 * page_free(pp); 118 * 119 * The problem is that pp can change identity right after the 120 * page_unlock() call. In particular, page_retire() can step in 121 * there, change pp's identity, and hash pp onto the retired_vnode. 122 * 123 * Of course, other functions besides page_retire() can have the 124 * same effect. A kmem reader can waltz by, set up a mapping to the 125 * page, and then unlock the page. Page_free() will then go castors 126 * up. So if anybody is doing this, it's already a bug. 127 * 128 * 5. mdboot()'s call into page_retire_hunt() should probably be 129 * moved lower. Where the call is made now, we can get into trouble 130 * by scrubbing a kernel page that is then accessed later. 131 */ 132 133 #include <sys/types.h> 134 #include <sys/param.h> 135 #include <sys/systm.h> 136 #include <sys/mman.h> 137 #include <sys/vnode.h> 138 #include <sys/cmn_err.h> 139 #include <sys/ksynch.h> 140 #include <sys/thread.h> 141 #include <sys/disp.h> 142 #include <sys/ontrap.h> 143 #include <sys/vmsystm.h> 144 #include <sys/mem_config.h> 145 #include <sys/atomic.h> 146 #include <sys/callb.h> 147 #include <vm/page.h> 148 #include <vm/vm_dep.h> 149 #include <vm/as.h> 150 #include <vm/hat.h> 151 152 /* 153 * vnode for all pages which are retired from the VM system; 154 */ 155 vnode_t *retired_pages; 156 157 /* 158 * Background thread that wakes up periodically to try to retire pending 159 * pages. This prevents threads from becoming blocked indefinitely in 160 * page_lookup() or some other routine should the page(s) they are waiting 161 * on become eligible for social security. 162 */ 163 static void page_retire_thread(void); 164 static kthread_t *pr_thread_id; 165 static kcondvar_t pr_cv; 166 static kmutex_t pr_thread_mutex; 167 static clock_t pr_thread_shortwait; 168 static clock_t pr_thread_longwait; 169 170 /* 171 * Make a list of all of the pages that have been marked for retirement 172 * but are not yet retired. At system shutdown, we will scrub all of the 173 * pages in the list in case there are outstanding UEs. Then, we 174 * cross-check this list against the number of pages that are yet to be 175 * retired, and if we find inconsistencies, we scan every page_t in the 176 * whole system looking for any pages that need to be scrubbed for UEs. 177 * The background thread also uses this queue to determine which pages 178 * it should keep trying to retire. 179 */ 180 #ifdef DEBUG 181 #define PR_PENDING_QMAX 32 182 #else /* DEBUG */ 183 #define PR_PENDING_QMAX 256 184 #endif /* DEBUG */ 185 page_t *pr_pending_q[PR_PENDING_QMAX]; 186 kmutex_t pr_q_mutex; 187 188 /* 189 * Page retire global kstats 190 */ 191 struct page_retire_kstat { 192 kstat_named_t pr_retired; 193 kstat_named_t pr_requested; 194 kstat_named_t pr_requested_free; 195 kstat_named_t pr_enqueue_fail; 196 kstat_named_t pr_dequeue_fail; 197 kstat_named_t pr_pending; 198 kstat_named_t pr_failed; 199 kstat_named_t pr_failed_kernel; 200 kstat_named_t pr_limit; 201 kstat_named_t pr_limit_exceeded; 202 kstat_named_t pr_fma; 203 kstat_named_t pr_mce; 204 kstat_named_t pr_ue; 205 kstat_named_t pr_ue_cleared_retire; 206 kstat_named_t pr_ue_cleared_free; 207 kstat_named_t pr_ue_persistent; 208 kstat_named_t pr_unretired; 209 }; 210 211 static struct page_retire_kstat page_retire_kstat = { 212 { "pages_retired", KSTAT_DATA_UINT64}, 213 { "pages_retire_request", KSTAT_DATA_UINT64}, 214 { "pages_retire_request_free", KSTAT_DATA_UINT64}, 215 { "pages_notenqueued", KSTAT_DATA_UINT64}, 216 { "pages_notdequeued", KSTAT_DATA_UINT64}, 217 { "pages_pending", KSTAT_DATA_UINT64}, 218 { "pages_deferred", KSTAT_DATA_UINT64}, 219 { "pages_deferred_kernel", KSTAT_DATA_UINT64}, 220 { "pages_limit", KSTAT_DATA_UINT64}, 221 { "pages_limit_exceeded", KSTAT_DATA_UINT64}, 222 { "pages_fma", KSTAT_DATA_UINT64}, 223 { "pages_multiple_ce", KSTAT_DATA_UINT64}, 224 { "pages_ue", KSTAT_DATA_UINT64}, 225 { "pages_ue_cleared_retired", KSTAT_DATA_UINT64}, 226 { "pages_ue_cleared_freed", KSTAT_DATA_UINT64}, 227 { "pages_ue_persistent", KSTAT_DATA_UINT64}, 228 { "pages_unretired", KSTAT_DATA_UINT64}, 229 }; 230 231 static kstat_t *page_retire_ksp = NULL; 232 233 #define PR_INCR_KSTAT(stat) \ 234 atomic_add_64(&(page_retire_kstat.stat.value.ui64), 1) 235 #define PR_DECR_KSTAT(stat) \ 236 atomic_add_64(&(page_retire_kstat.stat.value.ui64), -1) 237 238 #define PR_KSTAT_RETIRED_CE (page_retire_kstat.pr_mce.value.ui64) 239 #define PR_KSTAT_RETIRED_FMA (page_retire_kstat.pr_fma.value.ui64) 240 #define PR_KSTAT_RETIRED_NOTUE (PR_KSTAT_RETIRED_CE + PR_KSTAT_RETIRED_FMA) 241 #define PR_KSTAT_PENDING (page_retire_kstat.pr_pending.value.ui64) 242 #define PR_KSTAT_EQFAIL (page_retire_kstat.pr_enqueue_fail.value.ui64) 243 #define PR_KSTAT_DQFAIL (page_retire_kstat.pr_dequeue_fail.value.ui64) 244 245 /* 246 * Limit the number of multiple CE page retires. 247 * The default is 0.1% of physmem, or 1 in 1000 pages. This is set in 248 * basis points, where 100 basis points equals one percent. 249 */ 250 #define MCE_BPT 10 251 uint64_t max_pages_retired_bps = MCE_BPT; 252 #define PAGE_RETIRE_LIMIT ((physmem * max_pages_retired_bps) / 10000) 253 254 /* 255 * Control over the verbosity of page retirement. 256 * 257 * When set to zero (the default), no messages will be printed. 258 * When set to one, summary messages will be printed. 259 * When set > one, all messages will be printed. 260 * 261 * A value of one will trigger detailed messages for retirement operations, 262 * and is intended as a platform tunable for processors where FMA's DE does 263 * not run (e.g., spitfire). Values > one are intended for debugging only. 264 */ 265 int page_retire_messages = 0; 266 267 /* 268 * Control whether or not we retire dirty UE pages. By default we do 269 * since we assume the data is corrupt and the process(es) using it will 270 * be killed. This is platform tunable only, and should probably not be 271 * changed, ever. 272 */ 273 int page_retire_modified = 1; 274 275 /* 276 * Control whether or not we return scrubbed UE pages to service. 277 * By default we do not since FMA wants to run its diagnostics first 278 * and then ask us to unretire the page if it passes. Non-FMA platforms 279 * may set this to zero so we will only retire recidivist pages. It should 280 * not be changed by the user. 281 */ 282 int page_retire_first_ue = 1; 283 284 /* 285 * Master enable for page retire. This prevents a CE or UE early in boot 286 * from trying to retire a page before page_retire_init() has finished 287 * setting things up. This is internal only and is not a tunable! 288 */ 289 static int pr_enable = 0; 290 291 extern struct vnode kvp; 292 293 #ifdef DEBUG 294 struct page_retire_debug { 295 int prd_dup; 296 int prd_noaction; 297 int prd_queued; 298 int prd_notqueued; 299 int prd_dequeue; 300 int prd_top; 301 int prd_locked; 302 int prd_reloc; 303 int prd_modce; 304 int prd_modue_fail; 305 int prd_modue_retire; 306 int prd_kern; 307 int prd_free; 308 int prd_noreclaim; 309 int prd_hashout; 310 int prd_fma; 311 int prd_uescrubbed; 312 int prd_uenotscrubbed; 313 int prd_mce; 314 int prd_prlocked; 315 int prd_prnotlocked; 316 int prd_prretired; 317 int prd_ulocked; 318 int prd_unotretired; 319 int prd_udestroy; 320 int prd_uhashout; 321 int prd_uunretired; 322 int prd_unotlocked; 323 int prd_checkhit; 324 int prd_checkmiss; 325 int prd_tctop; 326 int prd_tclocked; 327 int prd_hunt; 328 int prd_dohunt; 329 int prd_earlyhunt; 330 int prd_latehunt; 331 int prd_nofreedemote; 332 int prd_nodemote; 333 int prd_demoted; 334 } pr_debug; 335 336 #define PR_DEBUG(foo) ((pr_debug.foo)++) 337 338 /* 339 * A type histogram. We record the incidence of the various toxic 340 * flag combinations along with the interesting page attributes. The 341 * goal is to get as many combinations as we can while driving all 342 * pr_debug values nonzero (indicating we've exercised all possible 343 * code paths across all possible page types). Not all combinations 344 * will make sense -- e.g. PRT_MOD|PRT_KERNEL. 345 * 346 * pr_type offset bit encoding (when examining with a debugger): 347 * 348 * PRT_NAMED - 0x4 349 * PRT_KERNEL - 0x8 350 * PRT_FREE - 0x10 351 * PRT_MOD - 0x20 352 * PRT_FMA - 0x0 353 * PRT_MCE - 0x40 354 * PRT_UE - 0x80 355 */ 356 357 #define PRT_NAMED 0x01 358 #define PRT_KERNEL 0x02 359 #define PRT_FREE 0x04 360 #define PRT_MOD 0x08 361 #define PRT_FMA 0x00 /* yes, this is not a mistake */ 362 #define PRT_MCE 0x10 363 #define PRT_UE 0x20 364 #define PRT_ALL 0x3F 365 366 int pr_types[PRT_ALL+1]; 367 368 #define PR_TYPES(pp) { \ 369 int whichtype = 0; \ 370 if (pp->p_vnode) \ 371 whichtype |= PRT_NAMED; \ 372 if (pp->p_vnode == &kvp) \ 373 whichtype |= PRT_KERNEL; \ 374 if (PP_ISFREE(pp)) \ 375 whichtype |= PRT_FREE; \ 376 if (hat_ismod(pp)) \ 377 whichtype |= PRT_MOD; \ 378 if (pp->p_toxic & PR_UE) \ 379 whichtype |= PRT_UE; \ 380 if (pp->p_toxic & PR_MCE) \ 381 whichtype |= PRT_MCE; \ 382 pr_types[whichtype]++; \ 383 } 384 385 int recl_calls; 386 int recl_mtbf = 3; 387 int reloc_calls; 388 int reloc_mtbf = 7; 389 int pr_calls; 390 int pr_mtbf = 15; 391 392 #define MTBF(v, f) (((++(v)) & (f)) != (f)) 393 394 #else /* DEBUG */ 395 396 #define PR_DEBUG(foo) /* nothing */ 397 #define PR_TYPES(foo) /* nothing */ 398 #define MTBF(v, f) (1) 399 400 #endif /* DEBUG */ 401 402 /* 403 * page_retire_done() - completion processing 404 * 405 * Used by the page_retire code for common completion processing. 406 * It keeps track of how many times a given result has happened, 407 * and writes out an occasional message. 408 * 409 * May be called with a NULL pp (PRD_INVALID_PA case). 410 */ 411 #define PRD_INVALID_KEY -1 412 #define PRD_SUCCESS 0 413 #define PRD_PENDING 1 414 #define PRD_FAILED 2 415 #define PRD_DUPLICATE 3 416 #define PRD_INVALID_PA 4 417 #define PRD_LIMIT 5 418 #define PRD_UE_SCRUBBED 6 419 #define PRD_UNR_SUCCESS 7 420 #define PRD_UNR_CANTLOCK 8 421 #define PRD_UNR_NOT 9 422 423 typedef struct page_retire_op { 424 int pr_key; /* one of the PRD_* defines from above */ 425 int pr_count; /* How many times this has happened */ 426 int pr_retval; /* return value */ 427 int pr_msglvl; /* message level - when to print */ 428 char *pr_message; /* Cryptic message for field service */ 429 } page_retire_op_t; 430 431 static page_retire_op_t page_retire_ops[] = { 432 /* key count retval msglvl message */ 433 {PRD_SUCCESS, 0, 0, 1, 434 "Page 0x%08x.%08x removed from service"}, 435 {PRD_PENDING, 0, EAGAIN, 2, 436 "Page 0x%08x.%08x will be retired on free"}, 437 {PRD_FAILED, 0, EAGAIN, 0, NULL}, 438 {PRD_DUPLICATE, 0, EBUSY, 2, 439 "Page 0x%08x.%08x already retired"}, 440 {PRD_INVALID_PA, 0, EINVAL, 2, 441 "PA 0x%08x.%08x is not a relocatable page"}, 442 {PRD_LIMIT, 0, 0, 1, 443 "Page 0x%08x.%08x not retired due to limit exceeded"}, 444 {PRD_UE_SCRUBBED, 0, 0, 1, 445 "Previously reported error on page 0x%08x.%08x cleared"}, 446 {PRD_UNR_SUCCESS, 0, 0, 1, 447 "Page 0x%08x.%08x returned to service"}, 448 {PRD_UNR_CANTLOCK, 0, EAGAIN, 2, 449 "Page 0x%08x.%08x could not be unretired"}, 450 {PRD_UNR_NOT, 0, EBADF, 2, 451 "Page 0x%08x.%08x is not retired"}, 452 {PRD_INVALID_KEY, 0, 0, 0, NULL} /* MUST BE LAST! */ 453 }; 454 455 /* 456 * print a message if page_retire_messages is true. 457 */ 458 #define PR_MESSAGE(debuglvl, msglvl, msg, pa) \ 459 { \ 460 uint64_t p = (uint64_t)pa; \ 461 if (page_retire_messages >= msglvl && msg != NULL) { \ 462 cmn_err(debuglvl, msg, \ 463 (uint32_t)(p >> 32), (uint32_t)p); \ 464 } \ 465 } 466 467 /* 468 * Note that multiple bits may be set in a single settoxic operation. 469 * May be called without the page locked. 470 */ 471 void 472 page_settoxic(page_t *pp, uchar_t bits) 473 { 474 atomic_or_8(&pp->p_toxic, bits); 475 } 476 477 /* 478 * Note that multiple bits may cleared in a single clrtoxic operation. 479 * Must be called with the page exclusively locked. 480 */ 481 void 482 page_clrtoxic(page_t *pp, uchar_t bits) 483 { 484 ASSERT(PAGE_EXCL(pp)); 485 atomic_and_8(&pp->p_toxic, ~bits); 486 } 487 488 /* 489 * Prints any page retire messages to the user, and decides what 490 * error code is appropriate for the condition reported. 491 */ 492 static int 493 page_retire_done(page_t *pp, int code) 494 { 495 page_retire_op_t *prop; 496 uint64_t pa = 0; 497 int i; 498 499 if (pp != NULL) { 500 pa = mmu_ptob(pp->p_pagenum); 501 } 502 503 prop = NULL; 504 for (i = 0; page_retire_ops[i].pr_key != PRD_INVALID_KEY; i++) { 505 if (page_retire_ops[i].pr_key == code) { 506 prop = &page_retire_ops[i]; 507 break; 508 } 509 } 510 511 #ifdef DEBUG 512 if (page_retire_ops[i].pr_key == PRD_INVALID_KEY) { 513 cmn_err(CE_PANIC, "page_retire_done: Invalid opcode %d", code); 514 } 515 #endif 516 517 ASSERT(prop->pr_key == code); 518 519 prop->pr_count++; 520 521 PR_MESSAGE(CE_NOTE, prop->pr_msglvl, prop->pr_message, pa); 522 if (pp != NULL) { 523 page_settoxic(pp, PR_MSG); 524 } 525 526 return (prop->pr_retval); 527 } 528 529 /* 530 * On a reboot, our friend mdboot() wants to clear up any PP_PR_REQ() pages 531 * that we were not able to retire. On large machines, walking the complete 532 * page_t array and looking at every page_t takes too long. So, as a page is 533 * marked toxic, we track it using a list that can be processed at reboot 534 * time. page_retire_enqueue() will do its best to try to avoid duplicate 535 * entries, but if we get too many errors at once the queue can overflow, 536 * in which case we will end up walking every page_t as a last resort. 537 * The background thread also makes use of this queue to find which pages 538 * are pending retirement. 539 */ 540 static void 541 page_retire_enqueue(page_t *pp) 542 { 543 int nslot = -1; 544 int i; 545 546 mutex_enter(&pr_q_mutex); 547 548 /* 549 * Check to make sure retire hasn't already dequeued it. 550 * In the meantime if the page was cleaned up, no need 551 * to enqueue it. 552 */ 553 if (PP_RETIRED(pp) || pp->p_toxic == 0) { 554 mutex_exit(&pr_q_mutex); 555 PR_DEBUG(prd_noaction); 556 return; 557 } 558 559 for (i = 0; i < PR_PENDING_QMAX; i++) { 560 if (pr_pending_q[i] == pp) { 561 mutex_exit(&pr_q_mutex); 562 PR_DEBUG(prd_dup); 563 return; 564 } else if (nslot == -1 && pr_pending_q[i] == NULL) { 565 nslot = i; 566 } 567 } 568 569 PR_INCR_KSTAT(pr_pending); 570 571 if (nslot != -1) { 572 pr_pending_q[nslot] = pp; 573 PR_DEBUG(prd_queued); 574 } else { 575 PR_INCR_KSTAT(pr_enqueue_fail); 576 PR_DEBUG(prd_notqueued); 577 } 578 mutex_exit(&pr_q_mutex); 579 } 580 581 static void 582 page_retire_dequeue(page_t *pp) 583 { 584 int i; 585 586 mutex_enter(&pr_q_mutex); 587 588 for (i = 0; i < PR_PENDING_QMAX; i++) { 589 if (pr_pending_q[i] == pp) { 590 pr_pending_q[i] = NULL; 591 break; 592 } 593 } 594 595 if (i == PR_PENDING_QMAX) { 596 PR_INCR_KSTAT(pr_dequeue_fail); 597 } 598 599 PR_DECR_KSTAT(pr_pending); 600 PR_DEBUG(prd_dequeue); 601 602 mutex_exit(&pr_q_mutex); 603 } 604 605 /* 606 * Act like page_destroy(), but instead of freeing the page, hash it onto 607 * the retired_pages vnode, and mark it retired. 608 * 609 * For fun, we try to scrub the page until it's squeaky clean. 610 * availrmem is adjusted here. 611 */ 612 static void 613 page_retire_destroy(page_t *pp) 614 { 615 ASSERT(PAGE_EXCL(pp)); 616 ASSERT(!PP_ISFREE(pp)); 617 ASSERT(pp->p_szc == 0); 618 ASSERT(!hat_page_is_mapped(pp)); 619 ASSERT(!pp->p_vnode); 620 621 page_clr_all_props(pp); 622 pagescrub(pp, 0, MMU_PAGESIZE); 623 624 pp->p_next = NULL; 625 pp->p_prev = NULL; 626 if (page_hashin(pp, retired_pages, (u_offset_t)pp, NULL) == 0) { 627 cmn_err(CE_PANIC, "retired page %p hashin failed", (void *)pp); 628 } 629 630 page_settoxic(pp, PR_RETIRED); 631 page_clrtoxic(pp, PR_BUSY); 632 page_retire_dequeue(pp); 633 PR_INCR_KSTAT(pr_retired); 634 635 if (pp->p_toxic & PR_FMA) { 636 PR_INCR_KSTAT(pr_fma); 637 } else if (pp->p_toxic & PR_UE) { 638 PR_INCR_KSTAT(pr_ue); 639 } else { 640 PR_INCR_KSTAT(pr_mce); 641 } 642 643 mutex_enter(&freemem_lock); 644 availrmem--; 645 mutex_exit(&freemem_lock); 646 647 page_unlock(pp); 648 } 649 650 /* 651 * Check whether the number of pages which have been retired already exceeds 652 * the maximum allowable percentage of memory which may be retired. 653 * 654 * Returns 1 if the limit has been exceeded. 655 */ 656 static int 657 page_retire_limit(void) 658 { 659 if (PR_KSTAT_RETIRED_NOTUE >= (uint64_t)PAGE_RETIRE_LIMIT) { 660 PR_INCR_KSTAT(pr_limit_exceeded); 661 return (1); 662 } 663 664 return (0); 665 } 666 667 #define MSG_DM "Data Mismatch occurred at PA 0x%08x.%08x" \ 668 "[ 0x%x != 0x%x ] while attempting to clear previously " \ 669 "reported error; page removed from service" 670 671 #define MSG_UE "Uncorrectable Error occurred at PA 0x%08x.%08x while " \ 672 "attempting to clear previously reported error; page removed " \ 673 "from service" 674 675 /* 676 * Attempt to clear a UE from a page. 677 * Returns 1 if the error has been successfully cleared. 678 */ 679 static int 680 page_clear_transient_ue(page_t *pp) 681 { 682 caddr_t kaddr; 683 uint8_t rb, wb; 684 uint64_t pa; 685 uint32_t pa_hi, pa_lo; 686 on_trap_data_t otd; 687 int errors = 0; 688 int i; 689 690 ASSERT(PAGE_EXCL(pp)); 691 ASSERT(PP_PR_REQ(pp)); 692 ASSERT(pp->p_szc == 0); 693 ASSERT(!hat_page_is_mapped(pp)); 694 695 /* 696 * Clear the page and attempt to clear the UE. If we trap 697 * on the next access to the page, we know the UE has recurred. 698 */ 699 pagescrub(pp, 0, PAGESIZE); 700 701 /* 702 * Map the page and write a bunch of bit patterns to compare 703 * what we wrote with what we read back. This isn't a perfect 704 * test but it should be good enough to catch most of the 705 * recurring UEs. If this fails to catch a recurrent UE, we'll 706 * retire the page the next time we see a UE on the page. 707 */ 708 kaddr = ppmapin(pp, PROT_READ|PROT_WRITE, (caddr_t)-1); 709 710 pa = ptob((uint64_t)page_pptonum(pp)); 711 pa_hi = (uint32_t)(pa >> 32); 712 pa_lo = (uint32_t)pa; 713 714 /* 715 * Fill the page with each (0x00 - 0xFF] bit pattern, flushing 716 * the cache in between reading and writing. We do this under 717 * on_trap() protection to avoid recursion. 718 */ 719 if (on_trap(&otd, OT_DATA_EC)) { 720 PR_MESSAGE(CE_WARN, 1, MSG_UE, pa); 721 errors = 1; 722 } else { 723 for (wb = 0xff; wb > 0; wb--) { 724 for (i = 0; i < PAGESIZE; i++) { 725 kaddr[i] = wb; 726 } 727 728 sync_data_memory(kaddr, PAGESIZE); 729 730 for (i = 0; i < PAGESIZE; i++) { 731 rb = kaddr[i]; 732 if (rb != wb) { 733 /* 734 * We had a mismatch without a trap. 735 * Uh-oh. Something is really wrong 736 * with this system. 737 */ 738 if (page_retire_messages) { 739 cmn_err(CE_WARN, MSG_DM, 740 pa_hi, pa_lo, rb, wb); 741 } 742 errors = 1; 743 goto out; /* double break */ 744 } 745 } 746 } 747 } 748 out: 749 no_trap(); 750 ppmapout(kaddr); 751 752 return (errors ? 0 : 1); 753 } 754 755 /* 756 * Try to clear a page_t with a single UE. If the UE was transient, it is 757 * returned to service, and we return 1. Otherwise we return 0 meaning 758 * that further processing is required to retire the page. 759 */ 760 static int 761 page_retire_transient_ue(page_t *pp) 762 { 763 ASSERT(PAGE_EXCL(pp)); 764 ASSERT(!hat_page_is_mapped(pp)); 765 766 /* 767 * If this page is a repeat offender, retire him under the 768 * "two strikes and you're out" rule. The caller is responsible 769 * for scrubbing the page to try to clear the error. 770 */ 771 if (pp->p_toxic & PR_UE_SCRUBBED) { 772 PR_INCR_KSTAT(pr_ue_persistent); 773 return (0); 774 } 775 776 if (page_clear_transient_ue(pp)) { 777 /* 778 * We set the PR_SCRUBBED_UE bit; if we ever see this 779 * page again, we will retire it, no questions asked. 780 */ 781 page_settoxic(pp, PR_UE_SCRUBBED); 782 783 if (page_retire_first_ue) { 784 PR_INCR_KSTAT(pr_ue_cleared_retire); 785 return (0); 786 } else { 787 PR_INCR_KSTAT(pr_ue_cleared_free); 788 789 page_clrtoxic(pp, PR_UE | PR_MCE | PR_MSG | PR_BUSY); 790 page_retire_dequeue(pp); 791 792 /* 793 * Clear the free bit if it's set, since the 794 * page free code will get cranky if we don't. 795 */ 796 PP_CLRFREE(pp); 797 798 /* LINTED: CONSTCOND */ 799 VN_DISPOSE(pp, B_FREE, 1, kcred); 800 return (1); 801 } 802 } 803 804 PR_INCR_KSTAT(pr_ue_persistent); 805 return (0); 806 } 807 808 /* 809 * Update the statistics dynamically when our kstat is read. 810 */ 811 static int 812 page_retire_kstat_update(kstat_t *ksp, int rw) 813 { 814 struct page_retire_kstat *pr; 815 816 if (ksp == NULL) 817 return (EINVAL); 818 819 switch (rw) { 820 821 case KSTAT_READ: 822 pr = (struct page_retire_kstat *)ksp->ks_data; 823 ASSERT(pr == &page_retire_kstat); 824 pr->pr_limit.value.ui64 = PAGE_RETIRE_LIMIT; 825 return (0); 826 827 case KSTAT_WRITE: 828 return (EACCES); 829 830 default: 831 return (EINVAL); 832 } 833 /*NOTREACHED*/ 834 } 835 836 /* 837 * Initialize the page retire mechanism: 838 * 839 * - Establish the correctable error retire limit. 840 * - Initialize locks. 841 * - Build the retired_pages vnode. 842 * - Set up the kstats. 843 * - Fire off the background thread. 844 * - Tell page_tryretire() it's OK to start retiring pages. 845 */ 846 void 847 page_retire_init(void) 848 { 849 const fs_operation_def_t retired_vnodeops_template[] = {NULL, NULL}; 850 struct vnodeops *vops; 851 852 const uint_t page_retire_ndata = 853 sizeof (page_retire_kstat) / sizeof (kstat_named_t); 854 855 ASSERT(page_retire_ksp == NULL); 856 857 if (max_pages_retired_bps <= 0) { 858 max_pages_retired_bps = MCE_BPT; 859 } 860 861 mutex_init(&pr_q_mutex, NULL, MUTEX_DEFAULT, NULL); 862 863 retired_pages = vn_alloc(KM_SLEEP); 864 if (vn_make_ops("retired_pages", retired_vnodeops_template, &vops)) { 865 cmn_err(CE_PANIC, 866 "page_retired_init: can't make retired vnodeops"); 867 } 868 vn_setops(retired_pages, vops); 869 870 if ((page_retire_ksp = kstat_create("unix", 0, "page_retire", 871 "misc", KSTAT_TYPE_NAMED, page_retire_ndata, 872 KSTAT_FLAG_VIRTUAL)) == NULL) { 873 cmn_err(CE_WARN, "kstat_create for page_retire failed"); 874 } else { 875 page_retire_ksp->ks_data = (void *)&page_retire_kstat; 876 page_retire_ksp->ks_update = page_retire_kstat_update; 877 kstat_install(page_retire_ksp); 878 } 879 880 pr_thread_shortwait = 23 * hz; 881 pr_thread_longwait = 1201 * hz; 882 mutex_init(&pr_thread_mutex, NULL, MUTEX_DEFAULT, NULL); 883 cv_init(&pr_cv, NULL, CV_DEFAULT, NULL); 884 pr_thread_id = thread_create(NULL, 0, page_retire_thread, NULL, 0, &p0, 885 TS_RUN, minclsyspri); 886 887 pr_enable = 1; 888 } 889 890 /* 891 * page_retire_hunt() callback for the retire thread. 892 */ 893 static void 894 page_retire_thread_cb(page_t *pp) 895 { 896 PR_DEBUG(prd_tctop); 897 if (pp->p_vnode != &kvp && page_trylock(pp, SE_EXCL)) { 898 PR_DEBUG(prd_tclocked); 899 page_unlock(pp); 900 } 901 } 902 903 /* 904 * page_retire_hunt() callback for mdboot(). 905 * 906 * It is necessary to scrub any failing pages prior to reboot in order to 907 * prevent a latent error trap from occurring on the next boot. 908 */ 909 void 910 page_retire_mdboot_cb(page_t *pp) 911 { 912 /* 913 * Don't scrub the kernel, since we might still need it, unless 914 * we have UEs on the page, in which case we have nothing to lose. 915 */ 916 if (pp->p_vnode != &kvp || PP_TOXIC(pp)) { 917 pp->p_selock = -1; /* pacify ASSERTs */ 918 pagescrub(pp, 0, PAGESIZE); 919 pp->p_selock = 0; 920 } 921 pp->p_toxic = 0; 922 } 923 924 /* 925 * Hunt down any pages in the system that have not yet been retired, invoking 926 * the provided callback function on each of them. 927 */ 928 void 929 page_retire_hunt(void (*callback)(page_t *)) 930 { 931 page_t *pp; 932 page_t *first; 933 int i, found; 934 935 PR_DEBUG(prd_hunt); 936 937 if (PR_KSTAT_PENDING == 0) { 938 return; 939 } 940 941 PR_DEBUG(prd_dohunt); 942 943 found = 0; 944 mutex_enter(&pr_q_mutex); 945 946 for (i = 0; i < PR_PENDING_QMAX; i++) { 947 if ((pp = pr_pending_q[i]) != NULL) { 948 mutex_exit(&pr_q_mutex); 949 callback(pp); 950 mutex_enter(&pr_q_mutex); 951 found++; 952 } 953 } 954 955 if (PR_KSTAT_EQFAIL == PR_KSTAT_DQFAIL && found == PR_KSTAT_PENDING) { 956 mutex_exit(&pr_q_mutex); 957 PR_DEBUG(prd_earlyhunt); 958 return; 959 } 960 mutex_exit(&pr_q_mutex); 961 962 PR_DEBUG(prd_latehunt); 963 964 /* 965 * We've lost track of a page somewhere. Hunt it down. 966 */ 967 memsegs_lock(0); 968 pp = first = page_first(); 969 do { 970 if (PP_PR_REQ(pp)) { 971 callback(pp); 972 if (++found == PR_KSTAT_PENDING) { 973 break; /* got 'em all */ 974 } 975 } 976 } while ((pp = page_next(pp)) != first); 977 memsegs_unlock(0); 978 } 979 980 /* 981 * The page_retire_thread loops forever, looking to see if there are 982 * pages still waiting to be retired. 983 */ 984 static void 985 page_retire_thread(void) 986 { 987 callb_cpr_t c; 988 989 CALLB_CPR_INIT(&c, &pr_thread_mutex, callb_generic_cpr, "page_retire"); 990 991 mutex_enter(&pr_thread_mutex); 992 for (;;) { 993 if (pr_enable && PR_KSTAT_PENDING) { 994 kmem_reap(); 995 seg_preap(); 996 page_retire_hunt(page_retire_thread_cb); 997 CALLB_CPR_SAFE_BEGIN(&c); 998 (void) cv_timedwait(&pr_cv, &pr_thread_mutex, 999 lbolt + pr_thread_shortwait); 1000 CALLB_CPR_SAFE_END(&c, &pr_thread_mutex); 1001 } else { 1002 CALLB_CPR_SAFE_BEGIN(&c); 1003 (void) cv_timedwait(&pr_cv, &pr_thread_mutex, 1004 lbolt + pr_thread_longwait); 1005 CALLB_CPR_SAFE_END(&c, &pr_thread_mutex); 1006 } 1007 } 1008 /*NOTREACHED*/ 1009 } 1010 1011 /* 1012 * page_retire_pp() decides what to do with a failing page. 1013 * 1014 * When we get a free page (e.g. the scrubber or in the free path) life is 1015 * nice because the page is clean and marked free -- those always retire 1016 * nicely. From there we go by order of difficulty. If the page has data, 1017 * we attempt to relocate its contents to a suitable replacement page. If 1018 * that does not succeed, we look to see if it is clean. If after all of 1019 * this we have a clean, unmapped page (which we usually do!), we retire it. 1020 * If the page is not clean, we still process it regardless on a UE; for 1021 * CEs or FMA requests, we fail leaving the page in service. The page will 1022 * eventually be tried again later. We always return with the page unlocked 1023 * since we are called from page_unlock(). 1024 * 1025 * We don't call panic or do anything fancy down in here. Our boss the DE 1026 * gets paid handsomely to do his job of figuring out what to do when errors 1027 * occur. We just do what he tells us to do. 1028 */ 1029 static int 1030 page_retire_pp(page_t *pp) 1031 { 1032 int toxic; 1033 1034 ASSERT(PAGE_EXCL(pp)); 1035 ASSERT(pp->p_iolock_state == 0); 1036 ASSERT(pp->p_szc == 0); 1037 1038 PR_DEBUG(prd_top); 1039 PR_TYPES(pp); 1040 1041 toxic = pp->p_toxic; 1042 ASSERT(toxic & PR_REASONS); 1043 1044 if ((toxic & (PR_FMA | PR_MCE)) && !(toxic & PR_UE) && 1045 page_retire_limit()) { 1046 page_clrtoxic(pp, PR_FMA | PR_MCE | PR_MSG | PR_BUSY); 1047 page_retire_dequeue(pp); 1048 page_unlock(pp); 1049 return (page_retire_done(pp, PRD_LIMIT)); 1050 } 1051 1052 if (PP_ISFREE(pp)) { 1053 PR_DEBUG(prd_free); 1054 if (!MTBF(recl_calls, recl_mtbf) || !page_reclaim(pp, NULL)) { 1055 PR_DEBUG(prd_noreclaim); 1056 PR_INCR_KSTAT(pr_failed); 1057 page_unlock(pp); 1058 return (page_retire_done(pp, PRD_FAILED)); 1059 } 1060 } 1061 1062 if ((toxic & PR_UE) == 0 && pp->p_vnode && !PP_ISFREE(pp) && 1063 !PP_ISNORELOC(pp) && MTBF(reloc_calls, reloc_mtbf)) { 1064 page_t *newpp; 1065 spgcnt_t count; 1066 1067 /* 1068 * If we can relocate the page, great! newpp will go 1069 * on without us, and everything is fine. Regardless 1070 * of whether the relocation succeeds, we are still 1071 * going to take `pp' around back and shoot it. 1072 */ 1073 PR_DEBUG(prd_reloc); 1074 newpp = NULL; 1075 if (page_relocate(&pp, &newpp, 0, 0, &count, NULL) == 0) { 1076 page_unlock(newpp); 1077 ASSERT(hat_page_getattr(pp, P_MOD) == 0); 1078 } 1079 } 1080 1081 if (pp->p_vnode == &kvp) { 1082 PR_DEBUG(prd_kern); 1083 PR_INCR_KSTAT(pr_failed_kernel); 1084 page_unlock(pp); 1085 return (page_retire_done(pp, PRD_FAILED)); 1086 } 1087 1088 if (pp->p_lckcnt || pp->p_cowcnt) { 1089 if (toxic & PR_UE) { 1090 (void) page_clear_lck_cow(pp, 1); 1091 } else { 1092 PR_DEBUG(prd_locked); 1093 PR_INCR_KSTAT(pr_failed); 1094 page_unlock(pp); 1095 return (page_retire_done(pp, PRD_FAILED)); 1096 } 1097 } 1098 1099 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 1100 ASSERT(!PP_ISFREE(pp)); 1101 ASSERT(!hat_page_is_mapped(pp)); 1102 1103 /* 1104 * If the page is modified, was not relocated, and not toxic, 1105 * we can't retire it without dropping data on the floor. 1106 * 1107 * RFE: we could change fsflush so that it (and only it) will 1108 * be allowed to lock this page and push it out. Once it cleans 1109 * the page, we'd then be able to retire it on the free path. 1110 * In practice, this should be exceedingly rare. 1111 */ 1112 if (hat_ismod(pp)) { 1113 if ((toxic & PR_UE) == 0) { 1114 PR_DEBUG(prd_modce); 1115 PR_INCR_KSTAT(pr_failed); 1116 page_unlock(pp); 1117 return (page_retire_done(pp, PRD_FAILED)); 1118 } else if (page_retire_modified == 0) { 1119 PR_DEBUG(prd_modue_fail); 1120 PR_INCR_KSTAT(pr_failed); 1121 page_unlock(pp); 1122 return (page_retire_done(pp, PRD_FAILED)); 1123 } 1124 PR_DEBUG(prd_modue_retire); 1125 } 1126 1127 if (pp->p_vnode) { 1128 PR_DEBUG(prd_hashout); 1129 page_hashout(pp, NULL); 1130 } 1131 ASSERT(!pp->p_vnode); 1132 1133 /* 1134 * The problem page is locked, demoted, unmapped, not free, 1135 * hashed out, and not COW or mlocked (whew!). 1136 * 1137 * Now we select our ammunition, take it around back, and shoot it. 1138 */ 1139 if (toxic & PR_UE) { 1140 if (hat_ismod(pp)) { 1141 /* 1142 * Let the user know we are dropping their data 1143 * on the floor. 1144 */ 1145 PR_MESSAGE(CE_WARN, 1, "Removing modified page " 1146 "0x%08x.%08x from service", 1147 mmu_ptob(pp->p_pagenum)); 1148 } 1149 if (page_retire_transient_ue(pp)) { 1150 PR_DEBUG(prd_uescrubbed); 1151 return (page_retire_done(pp, PRD_UE_SCRUBBED)); 1152 } else { 1153 PR_DEBUG(prd_uenotscrubbed); 1154 page_retire_destroy(pp); 1155 return (page_retire_done(pp, PRD_SUCCESS)); 1156 } 1157 } else if (toxic & PR_FMA) { 1158 PR_DEBUG(prd_fma); 1159 page_retire_destroy(pp); 1160 return (page_retire_done(pp, PRD_SUCCESS)); 1161 } else if (toxic & PR_MCE) { 1162 PR_DEBUG(prd_mce); 1163 page_retire_destroy(pp); 1164 return (page_retire_done(pp, PRD_SUCCESS)); 1165 } 1166 panic("page_retire_pp: bad toxic flags %d", toxic); 1167 /*NOTREACHED*/ 1168 } 1169 1170 /* 1171 * Try to retire a page when we stumble onto it in the page lock routines. 1172 */ 1173 void 1174 page_tryretire(page_t *pp) 1175 { 1176 ASSERT(PAGE_EXCL(pp)); 1177 1178 if (!pr_enable) { 1179 page_unlock(pp); 1180 return; 1181 } 1182 1183 /* 1184 * If the page is a big page, try to break it up. 1185 * 1186 * If there are other bad pages besides `pp', they will be 1187 * recursively retired for us thanks to a bit of magic. 1188 * If the page is a small page with errors, try to retire it. 1189 */ 1190 if (pp->p_szc > 0) { 1191 if (PP_ISFREE(pp) && !page_try_demote_free_pages(pp)) { 1192 page_unlock(pp); 1193 PR_DEBUG(prd_nofreedemote); 1194 return; 1195 } else if (!page_try_demote_pages(pp)) { 1196 page_unlock(pp); 1197 PR_DEBUG(prd_nodemote); 1198 return; 1199 } 1200 PR_DEBUG(prd_demoted); 1201 page_unlock(pp); 1202 } else { 1203 (void) page_retire_pp(pp); 1204 } 1205 } 1206 1207 /* 1208 * page_retire() - the front door in to retire a page. 1209 * 1210 * Ideally, page_retire() would instantly retire the requested page. 1211 * Unfortunately, some pages are locked or otherwise tied up and cannot be 1212 * retired right away. To deal with that, bits are set in p_toxic of the 1213 * page_t. An attempt is made to lock the page; if the attempt is successful, 1214 * we instantly unlock the page counting on page_unlock() to notice p_toxic 1215 * is nonzero and to call back into page_retire_pp(). Success is determined 1216 * by looking to see whether the page has been retired once it has been 1217 * unlocked. 1218 * 1219 * Returns: 1220 * 1221 * - 0 on success, 1222 * - EINVAL when the PA is whacko, 1223 * - EBUSY if the page is already retired, or 1224 * - EAGAIN if the page could not be _immediately_ retired. 1225 */ 1226 int 1227 page_retire(uint64_t pa, uchar_t reason) 1228 { 1229 page_t *pp; 1230 1231 ASSERT(reason & PR_REASONS); /* there must be a reason */ 1232 ASSERT(!(reason & ~PR_REASONS)); /* but no other bits */ 1233 1234 pp = page_numtopp_nolock(mmu_btop(pa)); 1235 if (pp == NULL) { 1236 PR_MESSAGE(CE_WARN, 1, "Cannot schedule clearing of error on" 1237 " page 0x%08x.%08x; page is not relocatable memory", pa); 1238 return (page_retire_done(pp, PRD_INVALID_PA)); 1239 } 1240 if (PP_RETIRED(pp)) { 1241 return (page_retire_done(pp, PRD_DUPLICATE)); 1242 } 1243 1244 if (reason & PR_UE) { 1245 PR_MESSAGE(CE_NOTE, 1, "Scheduling clearing of error on" 1246 " page 0x%08x.%08x", pa); 1247 } else { 1248 PR_MESSAGE(CE_NOTE, 1, "Scheduling removal of" 1249 " page 0x%08x.%08x", pa); 1250 } 1251 page_settoxic(pp, reason); 1252 page_retire_enqueue(pp); 1253 1254 /* 1255 * And now for some magic. 1256 * 1257 * We marked this page toxic up above. All there is left to do is 1258 * to try to lock the page and then unlock it. The page lock routines 1259 * will intercept the page and retire it if they can. If the page 1260 * cannot be locked, 's okay -- page_unlock() will eventually get it, 1261 * or the background thread, until then the lock routines will deny 1262 * further locks on it. 1263 */ 1264 if (MTBF(pr_calls, pr_mtbf) && page_trylock(pp, SE_EXCL)) { 1265 PR_DEBUG(prd_prlocked); 1266 page_unlock(pp); 1267 } else { 1268 PR_DEBUG(prd_prnotlocked); 1269 } 1270 1271 if (PP_RETIRED(pp)) { 1272 PR_DEBUG(prd_prretired); 1273 return (0); 1274 } else { 1275 cv_signal(&pr_cv); 1276 PR_INCR_KSTAT(pr_failed); 1277 1278 if (pp->p_toxic & PR_MSG) { 1279 return (page_retire_done(pp, PRD_FAILED)); 1280 } else { 1281 return (page_retire_done(pp, PRD_PENDING)); 1282 } 1283 } 1284 } 1285 1286 /* 1287 * Take a retired page off the retired-pages vnode and clear the toxic flags. 1288 * If "free" is nonzero, lock it and put it back on the freelist. If "free" 1289 * is zero, the caller already holds SE_EXCL lock so we simply unretire it 1290 * and don't do anything else with it. 1291 * 1292 * Any unretire messages are printed from this routine. 1293 * 1294 * Returns 0 if page pp was unretired; else an error code. 1295 */ 1296 int 1297 page_unretire_pp(page_t *pp, int free) 1298 { 1299 /* 1300 * To be retired, a page has to be hashed onto the retired_pages vnode 1301 * and have PR_RETIRED set in p_toxic. 1302 */ 1303 if (free == 0 || page_try_reclaim_lock(pp, SE_EXCL, SE_RETIRED)) { 1304 ASSERT(PAGE_EXCL(pp)); 1305 PR_DEBUG(prd_ulocked); 1306 if (!PP_RETIRED(pp)) { 1307 PR_DEBUG(prd_unotretired); 1308 page_unlock(pp); 1309 return (page_retire_done(pp, PRD_UNR_NOT)); 1310 } 1311 1312 PR_MESSAGE(CE_NOTE, 1, "unretiring retired" 1313 " page 0x%08x.%08x", mmu_ptob(pp->p_pagenum)); 1314 if (pp->p_toxic & PR_FMA) { 1315 PR_DECR_KSTAT(pr_fma); 1316 } else if (pp->p_toxic & PR_UE) { 1317 PR_DECR_KSTAT(pr_ue); 1318 } else { 1319 PR_DECR_KSTAT(pr_mce); 1320 } 1321 page_clrtoxic(pp, PR_ALLFLAGS); 1322 1323 if (free) { 1324 PR_DEBUG(prd_udestroy); 1325 page_destroy(pp, 0); 1326 } else { 1327 PR_DEBUG(prd_uhashout); 1328 page_hashout(pp, NULL); 1329 } 1330 1331 mutex_enter(&freemem_lock); 1332 availrmem++; 1333 mutex_exit(&freemem_lock); 1334 1335 PR_DEBUG(prd_uunretired); 1336 PR_DECR_KSTAT(pr_retired); 1337 PR_INCR_KSTAT(pr_unretired); 1338 return (page_retire_done(pp, PRD_UNR_SUCCESS)); 1339 } 1340 PR_DEBUG(prd_unotlocked); 1341 return (page_retire_done(pp, PRD_UNR_CANTLOCK)); 1342 } 1343 1344 /* 1345 * Return a page to service by moving it from the retired_pages vnode 1346 * onto the freelist. 1347 * 1348 * Called from mmioctl_page_retire() on behalf of the FMA DE. 1349 * 1350 * Returns: 1351 * 1352 * - 0 if the page is unretired, 1353 * - EAGAIN if the pp can not be locked, 1354 * - EINVAL if the PA is whacko, and 1355 * - EBADF if the pp is not retired. 1356 */ 1357 int 1358 page_unretire(uint64_t pa) 1359 { 1360 page_t *pp; 1361 1362 pp = page_numtopp_nolock(mmu_btop(pa)); 1363 if (pp == NULL) { 1364 return (page_retire_done(pp, PRD_INVALID_PA)); 1365 } 1366 1367 return (page_unretire_pp(pp, 1)); 1368 } 1369 1370 /* 1371 * Test a page to see if it is retired. If errors is non-NULL, the toxic 1372 * bits of the page are returned. Returns 0 on success, error code on failure. 1373 */ 1374 int 1375 page_retire_check_pp(page_t *pp, uint64_t *errors) 1376 { 1377 int rc; 1378 1379 if (PP_RETIRED(pp)) { 1380 PR_DEBUG(prd_checkhit); 1381 rc = 0; 1382 } else { 1383 PR_DEBUG(prd_checkmiss); 1384 rc = EAGAIN; 1385 } 1386 1387 /* 1388 * We have magically arranged the bit values returned to fmd(1M) 1389 * to line up with the FMA, MCE, and UE bits of the page_t. 1390 */ 1391 if (errors) { 1392 uint64_t toxic = (uint64_t)(pp->p_toxic & PR_ERRMASK); 1393 if (toxic & PR_UE_SCRUBBED) { 1394 toxic &= ~PR_UE_SCRUBBED; 1395 toxic |= PR_UE; 1396 } 1397 *errors = toxic; 1398 } 1399 1400 return (rc); 1401 } 1402 1403 /* 1404 * Test to see if the page_t for a given PA is retired, and return the 1405 * hardware errors we have seen on the page if requested. 1406 * 1407 * Called from mmioctl_page_retire on behalf of the FMA DE. 1408 * 1409 * Returns: 1410 * 1411 * - 0 if the page is retired, 1412 * - EAGAIN if it is not, and 1413 * - EINVAL if the PA is whacko. 1414 */ 1415 int 1416 page_retire_check(uint64_t pa, uint64_t *errors) 1417 { 1418 page_t *pp; 1419 1420 if (errors) { 1421 *errors = 0; 1422 } 1423 1424 pp = page_numtopp_nolock(mmu_btop(pa)); 1425 if (pp == NULL) { 1426 return (page_retire_done(pp, PRD_INVALID_PA)); 1427 } 1428 1429 return (page_retire_check_pp(pp, errors)); 1430 } 1431 1432 /* 1433 * Page retire self-test. For now, it always returns 0. 1434 */ 1435 int 1436 page_retire_test(void) 1437 { 1438 page_t *first, *pp, *cpp, *cpp2, *lpp; 1439 1440 /* 1441 * Tests the corner case where a large page can't be retired 1442 * because one of the constituent pages is locked. We mark 1443 * one page to be retired and try to retire it, and mark the 1444 * other page to be retired but don't try to retire it, so 1445 * that page_unlock() in the failure path will recurse and try 1446 * to retire THAT page. This is the worst possible situation 1447 * we can get ourselves into. 1448 */ 1449 memsegs_lock(0); 1450 pp = first = page_first(); 1451 do { 1452 if (pp->p_szc && PP_PAGEROOT(pp) == pp) { 1453 cpp = pp + 1; 1454 lpp = PP_ISFREE(pp)? pp : pp + 2; 1455 cpp2 = pp + 3; 1456 if (!page_trylock(lpp, pp == lpp? SE_EXCL : SE_SHARED)) 1457 continue; 1458 if (!page_trylock(cpp, SE_EXCL)) { 1459 page_unlock(lpp); 1460 continue; 1461 } 1462 page_settoxic(cpp, PR_FMA | PR_BUSY); 1463 page_settoxic(cpp2, PR_FMA); 1464 page_tryretire(cpp); /* will fail */ 1465 page_unlock(lpp); 1466 (void) page_retire(cpp->p_pagenum, PR_FMA); 1467 (void) page_retire(cpp2->p_pagenum, PR_FMA); 1468 } 1469 } while ((pp = page_next(pp)) != first); 1470 memsegs_unlock(0); 1471 1472 return (0); 1473 } 1474