xref: /titanic_52/usr/src/uts/common/vm/page_retire.c (revision 275c9da86e89f8abf71135cf63d9fc23671b2e60)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Page Retire - Big Theory Statement.
30  *
31  * This file handles removing sections of faulty memory from use when the
32  * user land FMA Diagnosis Engine requests that a page be removed or when
33  * a CE or UE is detected by the hardware.
34  *
35  * In the bad old days, the kernel side of Page Retire did a lot of the work
36  * on its own. Now, with the DE keeping track of errors, the kernel side is
37  * rather simple minded on most platforms.
38  *
39  * Errors are all reflected to the DE, and after digesting the error and
40  * looking at all previously reported errors, the DE decides what should
41  * be done about the current error. If the DE wants a particular page to
42  * be retired, then the kernel page retire code is invoked via an ioctl.
43  * On non-FMA platforms, the ue_drain and ce_drain paths ends up calling
44  * page retire to handle the error. Since page retire is just a simple
45  * mechanism it doesn't need to differentiate between the different callers.
46  *
47  * The p_toxic field in the page_t is used to indicate which errors have
48  * occurred and what action has been taken on a given page. Because errors are
49  * reported without regard to the locked state of a page, no locks are used
50  * to SET the error bits in p_toxic. However, in order to clear the error
51  * bits, the page_t must be held exclusively locked.
52  *
53  * When page_retire() is called, it must be able to acquire locks, sleep, etc.
54  * It must not be called from high-level interrupt context.
55  *
56  * Depending on how the requested page is being used at the time of the retire
57  * request (and on the availability of sufficient system resources), the page
58  * may be retired immediately, or just marked for retirement later. For
59  * example, locked pages are marked, while free pages are retired. Multiple
60  * requests may be made to retire the same page, although there is no need
61  * to: once the p_toxic flags are set, the page will be retired as soon as it
62  * can be exclusively locked.
63  *
64  * The retire mechanism is driven centrally out of page_unlock(). To expedite
65  * the retirement of pages, further requests for SE_SHARED locks are denied
66  * as long as a page retirement is pending. In addition, as long as pages are
67  * pending retirement a background thread runs periodically trying to retire
68  * those pages. Pages which could not be retired while the system is running
69  * are scrubbed prior to rebooting to avoid latent errors on the next boot.
70  *
71  * UE pages without persistent errors are scrubbed and returned to service.
72  * Recidivist pages, as well as FMA-directed requests for retirement, result
73  * in the page being taken out of service. Once the decision is made to take
74  * a page out of service, the page is cleared, hashed onto the retired_pages
75  * vnode, marked as retired, and it is unlocked.  No other requesters (except
76  * for unretire) are allowed to lock retired pages.
77  *
78  * The public routines return (sadly) 0 if they worked and a non-zero error
79  * value if something went wrong. This is done for the ioctl side of the
80  * world to allow errors to be reflected all the way out to user land. The
81  * non-zero values are explained in comments atop each function.
82  */
83 
84 /*
85  * Things to fix:
86  *
87  * 	1. Trying to retire non-relocatable kvp pages may result in a
88  *      quagmire. This is because seg_kmem() no longer keeps its pages locked,
89  *      and calls page_lookup() in the free path; since kvp pages are modified
90  *      and don't have a usable backing store, page_retire() can't do anything
91  *      with them, and we'll keep denying the lock to seg_kmem_free() in a
92  *      vicious cycle. To prevent that, we don't deny locks to kvp pages, and
93  *      hence only try to retire a page from page_unlock() in the free path.
94  *      Since most kernel pages are indefinitely held anyway, and don't
95  *      participate in I/O, this is of little consequence.
96  *
97  *      2. Low memory situations will be interesting. If we don't have
98  *      enough memory for page_relocate() to succeed, we won't be able to
99  *      retire dirty pages; nobody will be able to push them out to disk
100  *      either, since we aggressively deny the page lock. We could change
101  *      fsflush so it can recognize this situation, grab the lock, and push
102  *      the page out, where we'll catch it in the free path and retire it.
103  *
104  *	3. Beware of places that have code like this in them:
105  *
106  *		if (! page_tryupgrade(pp)) {
107  *			page_unlock(pp);
108  *			while (! page_lock(pp, SE_EXCL, NULL, P_RECLAIM)) {
109  *				/ *NOTHING* /
110  *			}
111  *		}
112  *		page_free(pp);
113  *
114  *	The problem is that pp can change identity right after the
115  *	page_unlock() call.  In particular, page_retire() can step in
116  *	there, change pp's identity, and hash pp onto the retired_vnode.
117  *
118  *	Of course, other functions besides page_retire() can have the
119  *	same effect. A kmem reader can waltz by, set up a mapping to the
120  *	page, and then unlock the page. Page_free() will then go castors
121  *	up. So if anybody is doing this, it's already a bug.
122  *
123  *      4. mdboot()'s call into page_retire_mdboot() should probably be
124  *      moved lower. Where the call is made now, we can get into trouble
125  *      by scrubbing a kernel page that is then accessed later.
126  */
127 
128 #include <sys/types.h>
129 #include <sys/param.h>
130 #include <sys/systm.h>
131 #include <sys/mman.h>
132 #include <sys/vnode.h>
133 #include <sys/vfs_opreg.h>
134 #include <sys/cmn_err.h>
135 #include <sys/ksynch.h>
136 #include <sys/thread.h>
137 #include <sys/disp.h>
138 #include <sys/ontrap.h>
139 #include <sys/vmsystm.h>
140 #include <sys/mem_config.h>
141 #include <sys/atomic.h>
142 #include <sys/callb.h>
143 #include <vm/page.h>
144 #include <vm/vm_dep.h>
145 #include <vm/as.h>
146 #include <vm/hat.h>
147 
148 /*
149  * vnode for all pages which are retired from the VM system;
150  */
151 vnode_t *retired_pages;
152 
153 static int page_retire_pp_finish(page_t *, void *, uint_t);
154 
155 /*
156  * Make a list of all of the pages that have been marked for retirement
157  * but are not yet retired.  At system shutdown, we will scrub all of the
158  * pages in the list in case there are outstanding UEs.  Then, we
159  * cross-check this list against the number of pages that are yet to be
160  * retired, and if we find inconsistencies, we scan every page_t in the
161  * whole system looking for any pages that need to be scrubbed for UEs.
162  * The background thread also uses this queue to determine which pages
163  * it should keep trying to retire.
164  */
165 #ifdef	DEBUG
166 #define	PR_PENDING_QMAX	32
167 #else	/* DEBUG */
168 #define	PR_PENDING_QMAX	256
169 #endif	/* DEBUG */
170 page_t		*pr_pending_q[PR_PENDING_QMAX];
171 kmutex_t	pr_q_mutex;
172 
173 /*
174  * Page retire global kstats
175  */
176 struct page_retire_kstat {
177 	kstat_named_t	pr_retired;
178 	kstat_named_t	pr_requested;
179 	kstat_named_t	pr_requested_free;
180 	kstat_named_t	pr_enqueue_fail;
181 	kstat_named_t	pr_dequeue_fail;
182 	kstat_named_t	pr_pending;
183 	kstat_named_t	pr_failed;
184 	kstat_named_t	pr_failed_kernel;
185 	kstat_named_t	pr_limit;
186 	kstat_named_t	pr_limit_exceeded;
187 	kstat_named_t	pr_fma;
188 	kstat_named_t	pr_mce;
189 	kstat_named_t	pr_ue;
190 	kstat_named_t	pr_ue_cleared_retire;
191 	kstat_named_t	pr_ue_cleared_free;
192 	kstat_named_t	pr_ue_persistent;
193 	kstat_named_t	pr_unretired;
194 };
195 
196 static struct page_retire_kstat page_retire_kstat = {
197 	{ "pages_retired",		KSTAT_DATA_UINT64},
198 	{ "pages_retire_request",	KSTAT_DATA_UINT64},
199 	{ "pages_retire_request_free",	KSTAT_DATA_UINT64},
200 	{ "pages_notenqueued", 		KSTAT_DATA_UINT64},
201 	{ "pages_notdequeued", 		KSTAT_DATA_UINT64},
202 	{ "pages_pending", 		KSTAT_DATA_UINT64},
203 	{ "pages_deferred",		KSTAT_DATA_UINT64},
204 	{ "pages_deferred_kernel",	KSTAT_DATA_UINT64},
205 	{ "pages_limit",		KSTAT_DATA_UINT64},
206 	{ "pages_limit_exceeded",	KSTAT_DATA_UINT64},
207 	{ "pages_fma",			KSTAT_DATA_UINT64},
208 	{ "pages_multiple_ce",		KSTAT_DATA_UINT64},
209 	{ "pages_ue",			KSTAT_DATA_UINT64},
210 	{ "pages_ue_cleared_retired",	KSTAT_DATA_UINT64},
211 	{ "pages_ue_cleared_freed",	KSTAT_DATA_UINT64},
212 	{ "pages_ue_persistent",	KSTAT_DATA_UINT64},
213 	{ "pages_unretired",		KSTAT_DATA_UINT64},
214 };
215 
216 static kstat_t  *page_retire_ksp = NULL;
217 
218 #define	PR_INCR_KSTAT(stat)	\
219 	atomic_add_64(&(page_retire_kstat.stat.value.ui64), 1)
220 #define	PR_DECR_KSTAT(stat)	\
221 	atomic_add_64(&(page_retire_kstat.stat.value.ui64), -1)
222 
223 #define	PR_KSTAT_RETIRED_CE	(page_retire_kstat.pr_mce.value.ui64)
224 #define	PR_KSTAT_RETIRED_FMA	(page_retire_kstat.pr_fma.value.ui64)
225 #define	PR_KSTAT_RETIRED_NOTUE	(PR_KSTAT_RETIRED_CE + PR_KSTAT_RETIRED_FMA)
226 #define	PR_KSTAT_PENDING	(page_retire_kstat.pr_pending.value.ui64)
227 #define	PR_KSTAT_EQFAIL		(page_retire_kstat.pr_enqueue_fail.value.ui64)
228 #define	PR_KSTAT_DQFAIL		(page_retire_kstat.pr_dequeue_fail.value.ui64)
229 
230 /*
231  * page retire kstats to list all retired pages
232  */
233 static int pr_list_kstat_update(kstat_t *ksp, int rw);
234 static int pr_list_kstat_snapshot(kstat_t *ksp, void *buf, int rw);
235 kmutex_t pr_list_kstat_mutex;
236 
237 /*
238  * Limit the number of multiple CE page retires.
239  * The default is 0.1% of physmem, or 1 in 1000 pages. This is set in
240  * basis points, where 100 basis points equals one percent.
241  */
242 #define	MCE_BPT	10
243 uint64_t	max_pages_retired_bps = MCE_BPT;
244 #define	PAGE_RETIRE_LIMIT	((physmem * max_pages_retired_bps) / 10000)
245 
246 /*
247  * Control over the verbosity of page retirement.
248  *
249  * When set to zero (the default), no messages will be printed.
250  * When set to one, summary messages will be printed.
251  * When set > one, all messages will be printed.
252  *
253  * A value of one will trigger detailed messages for retirement operations,
254  * and is intended as a platform tunable for processors where FMA's DE does
255  * not run (e.g., spitfire). Values > one are intended for debugging only.
256  */
257 int page_retire_messages = 0;
258 
259 /*
260  * Control whether or not we return scrubbed UE pages to service.
261  * By default we do not since FMA wants to run its diagnostics first
262  * and then ask us to unretire the page if it passes. Non-FMA platforms
263  * may set this to zero so we will only retire recidivist pages. It should
264  * not be changed by the user.
265  */
266 int page_retire_first_ue = 1;
267 
268 /*
269  * Master enable for page retire. This prevents a CE or UE early in boot
270  * from trying to retire a page before page_retire_init() has finished
271  * setting things up. This is internal only and is not a tunable!
272  */
273 static int pr_enable = 0;
274 
275 extern struct vnode kvp;
276 
277 #ifdef	DEBUG
278 struct page_retire_debug {
279 	int prd_dup1;
280 	int prd_dup2;
281 	int prd_qdup;
282 	int prd_noaction;
283 	int prd_queued;
284 	int prd_notqueued;
285 	int prd_dequeue;
286 	int prd_top;
287 	int prd_locked;
288 	int prd_reloc;
289 	int prd_relocfail;
290 	int prd_mod;
291 	int prd_mod_late;
292 	int prd_kern;
293 	int prd_free;
294 	int prd_noreclaim;
295 	int prd_hashout;
296 	int prd_fma;
297 	int prd_uescrubbed;
298 	int prd_uenotscrubbed;
299 	int prd_mce;
300 	int prd_prlocked;
301 	int prd_prnotlocked;
302 	int prd_prretired;
303 	int prd_ulocked;
304 	int prd_unotretired;
305 	int prd_udestroy;
306 	int prd_uhashout;
307 	int prd_uunretired;
308 	int prd_unotlocked;
309 	int prd_checkhit;
310 	int prd_checkmiss_pend;
311 	int prd_checkmiss_noerr;
312 	int prd_tctop;
313 	int prd_tclocked;
314 	int prd_hunt;
315 	int prd_dohunt;
316 	int prd_earlyhunt;
317 	int prd_latehunt;
318 	int prd_nofreedemote;
319 	int prd_nodemote;
320 	int prd_demoted;
321 } pr_debug;
322 
323 #define	PR_DEBUG(foo)	((pr_debug.foo)++)
324 
325 /*
326  * A type histogram. We record the incidence of the various toxic
327  * flag combinations along with the interesting page attributes. The
328  * goal is to get as many combinations as we can while driving all
329  * pr_debug values nonzero (indicating we've exercised all possible
330  * code paths across all possible page types). Not all combinations
331  * will make sense -- e.g. PRT_MOD|PRT_KERNEL.
332  *
333  * pr_type offset bit encoding (when examining with a debugger):
334  *
335  *    PRT_NAMED  - 0x4
336  *    PRT_KERNEL - 0x8
337  *    PRT_FREE   - 0x10
338  *    PRT_MOD    - 0x20
339  *    PRT_FMA    - 0x0
340  *    PRT_MCE    - 0x40
341  *    PRT_UE     - 0x80
342  */
343 
344 #define	PRT_NAMED	0x01
345 #define	PRT_KERNEL	0x02
346 #define	PRT_FREE	0x04
347 #define	PRT_MOD		0x08
348 #define	PRT_FMA		0x00	/* yes, this is not a mistake */
349 #define	PRT_MCE		0x10
350 #define	PRT_UE		0x20
351 #define	PRT_ALL		0x3F
352 
353 int pr_types[PRT_ALL+1];
354 
355 #define	PR_TYPES(pp)	{			\
356 	int whichtype = 0;			\
357 	if (pp->p_vnode)			\
358 		whichtype |= PRT_NAMED;		\
359 	if (PP_ISKAS(pp))			\
360 		whichtype |= PRT_KERNEL;	\
361 	if (PP_ISFREE(pp))			\
362 		whichtype |= PRT_FREE;		\
363 	if (hat_ismod(pp))			\
364 		whichtype |= PRT_MOD;		\
365 	if (pp->p_toxic & PR_UE)		\
366 		whichtype |= PRT_UE;		\
367 	if (pp->p_toxic & PR_MCE)		\
368 		whichtype |= PRT_MCE;		\
369 	pr_types[whichtype]++;			\
370 }
371 
372 int recl_calls;
373 int recl_mtbf = 3;
374 int reloc_calls;
375 int reloc_mtbf = 7;
376 int pr_calls;
377 int pr_mtbf = 15;
378 
379 #define	MTBF(v, f)	(((++(v)) & (f)) != (f))
380 
381 #else	/* DEBUG */
382 
383 #define	PR_DEBUG(foo)	/* nothing */
384 #define	PR_TYPES(foo)	/* nothing */
385 #define	MTBF(v, f)	(1)
386 
387 #endif	/* DEBUG */
388 
389 /*
390  * page_retire_done() - completion processing
391  *
392  * Used by the page_retire code for common completion processing.
393  * It keeps track of how many times a given result has happened,
394  * and writes out an occasional message.
395  *
396  * May be called with a NULL pp (PRD_INVALID_PA case).
397  */
398 #define	PRD_INVALID_KEY		-1
399 #define	PRD_SUCCESS		0
400 #define	PRD_PENDING		1
401 #define	PRD_FAILED		2
402 #define	PRD_DUPLICATE		3
403 #define	PRD_INVALID_PA		4
404 #define	PRD_LIMIT		5
405 #define	PRD_UE_SCRUBBED		6
406 #define	PRD_UNR_SUCCESS		7
407 #define	PRD_UNR_CANTLOCK	8
408 #define	PRD_UNR_NOT		9
409 
410 typedef struct page_retire_op {
411 	int	pr_key;		/* one of the PRD_* defines from above */
412 	int	pr_count;	/* How many times this has happened */
413 	int	pr_retval;	/* return value */
414 	int	pr_msglvl;	/* message level - when to print */
415 	char	*pr_message;	/* Cryptic message for field service */
416 } page_retire_op_t;
417 
418 static page_retire_op_t page_retire_ops[] = {
419 	/* key			count	retval	msglvl	message */
420 	{PRD_SUCCESS,		0,	0,	1,
421 		"Page 0x%08x.%08x removed from service"},
422 	{PRD_PENDING,		0,	EAGAIN,	2,
423 		"Page 0x%08x.%08x will be retired on free"},
424 	{PRD_FAILED,		0,	EAGAIN,	0, NULL},
425 	{PRD_DUPLICATE,		0,	EIO,	2,
426 		"Page 0x%08x.%08x already retired or pending"},
427 	{PRD_INVALID_PA,	0,	EINVAL, 2,
428 		"PA 0x%08x.%08x is not a relocatable page"},
429 	{PRD_LIMIT,		0,	0,	1,
430 		"Page 0x%08x.%08x not retired due to limit exceeded"},
431 	{PRD_UE_SCRUBBED,	0,	0,	1,
432 		"Previously reported error on page 0x%08x.%08x cleared"},
433 	{PRD_UNR_SUCCESS,	0,	0,	1,
434 		"Page 0x%08x.%08x returned to service"},
435 	{PRD_UNR_CANTLOCK,	0,	EAGAIN,	2,
436 		"Page 0x%08x.%08x could not be unretired"},
437 	{PRD_UNR_NOT,		0,	EIO,	2,
438 		"Page 0x%08x.%08x is not retired"},
439 	{PRD_INVALID_KEY,	0,	0,	0, NULL} /* MUST BE LAST! */
440 };
441 
442 /*
443  * print a message if page_retire_messages is true.
444  */
445 #define	PR_MESSAGE(debuglvl, msglvl, msg, pa)				\
446 {									\
447 	uint64_t p = (uint64_t)pa;					\
448 	if (page_retire_messages >= msglvl && msg != NULL) {		\
449 		cmn_err(debuglvl, msg,					\
450 		    (uint32_t)(p >> 32), (uint32_t)p);			\
451 	}								\
452 }
453 
454 /*
455  * Note that multiple bits may be set in a single settoxic operation.
456  * May be called without the page locked.
457  */
458 void
459 page_settoxic(page_t *pp, uchar_t bits)
460 {
461 	atomic_or_8(&pp->p_toxic, bits);
462 }
463 
464 /*
465  * Note that multiple bits may cleared in a single clrtoxic operation.
466  * Must be called with the page exclusively locked to prevent races which
467  * may attempt to retire a page without any toxic bits set.
468  * Note that the PR_CAPTURE bit can be cleared without the exclusive lock
469  * being held as there is a separate mutex which protects that bit.
470  */
471 void
472 page_clrtoxic(page_t *pp, uchar_t bits)
473 {
474 	ASSERT((bits & PR_CAPTURE) || PAGE_EXCL(pp));
475 	atomic_and_8(&pp->p_toxic, ~bits);
476 }
477 
478 /*
479  * Prints any page retire messages to the user, and decides what
480  * error code is appropriate for the condition reported.
481  */
482 static int
483 page_retire_done(page_t *pp, int code)
484 {
485 	page_retire_op_t *prop;
486 	uint64_t	pa = 0;
487 	int		i;
488 
489 	if (pp != NULL) {
490 		pa = mmu_ptob((uint64_t)pp->p_pagenum);
491 	}
492 
493 	prop = NULL;
494 	for (i = 0; page_retire_ops[i].pr_key != PRD_INVALID_KEY; i++) {
495 		if (page_retire_ops[i].pr_key == code) {
496 			prop = &page_retire_ops[i];
497 			break;
498 		}
499 	}
500 
501 #ifdef	DEBUG
502 	if (page_retire_ops[i].pr_key == PRD_INVALID_KEY) {
503 		cmn_err(CE_PANIC, "page_retire_done: Invalid opcode %d", code);
504 	}
505 #endif
506 
507 	ASSERT(prop->pr_key == code);
508 
509 	prop->pr_count++;
510 
511 	PR_MESSAGE(CE_NOTE, prop->pr_msglvl, prop->pr_message, pa);
512 	if (pp != NULL) {
513 		page_settoxic(pp, PR_MSG);
514 	}
515 
516 	return (prop->pr_retval);
517 }
518 
519 /*
520  * Act like page_destroy(), but instead of freeing the page, hash it onto
521  * the retired_pages vnode, and mark it retired.
522  *
523  * For fun, we try to scrub the page until it's squeaky clean.
524  * availrmem is adjusted here.
525  */
526 static void
527 page_retire_destroy(page_t *pp)
528 {
529 	u_offset_t off = (u_offset_t)((uintptr_t)pp);
530 
531 	ASSERT(PAGE_EXCL(pp));
532 	ASSERT(!PP_ISFREE(pp));
533 	ASSERT(pp->p_szc == 0);
534 	ASSERT(!hat_page_is_mapped(pp));
535 	ASSERT(!pp->p_vnode);
536 
537 	page_clr_all_props(pp);
538 	pagescrub(pp, 0, MMU_PAGESIZE);
539 
540 	pp->p_next = NULL;
541 	pp->p_prev = NULL;
542 	if (page_hashin(pp, retired_pages, off, NULL) == 0) {
543 		cmn_err(CE_PANIC, "retired page %p hashin failed", (void *)pp);
544 	}
545 
546 	page_settoxic(pp, PR_RETIRED);
547 	PR_INCR_KSTAT(pr_retired);
548 
549 	if (pp->p_toxic & PR_FMA) {
550 		PR_INCR_KSTAT(pr_fma);
551 	} else if (pp->p_toxic & PR_UE) {
552 		PR_INCR_KSTAT(pr_ue);
553 	} else {
554 		PR_INCR_KSTAT(pr_mce);
555 	}
556 
557 	mutex_enter(&freemem_lock);
558 	availrmem--;
559 	mutex_exit(&freemem_lock);
560 
561 	page_unlock(pp);
562 }
563 
564 /*
565  * Check whether the number of pages which have been retired already exceeds
566  * the maximum allowable percentage of memory which may be retired.
567  *
568  * Returns 1 if the limit has been exceeded.
569  */
570 static int
571 page_retire_limit(void)
572 {
573 	if (PR_KSTAT_RETIRED_NOTUE >= (uint64_t)PAGE_RETIRE_LIMIT) {
574 		PR_INCR_KSTAT(pr_limit_exceeded);
575 		return (1);
576 	}
577 
578 	return (0);
579 }
580 
581 #define	MSG_DM	"Data Mismatch occurred at PA 0x%08x.%08x"		\
582 	"[ 0x%x != 0x%x ] while attempting to clear previously "	\
583 	"reported error; page removed from service"
584 
585 #define	MSG_UE	"Uncorrectable Error occurred at PA 0x%08x.%08x while "	\
586 	"attempting to clear previously reported error; page removed "	\
587 	"from service"
588 
589 /*
590  * Attempt to clear a UE from a page.
591  * Returns 1 if the error has been successfully cleared.
592  */
593 static int
594 page_clear_transient_ue(page_t *pp)
595 {
596 	caddr_t		kaddr;
597 	uint8_t		rb, wb;
598 	uint64_t	pa;
599 	uint32_t	pa_hi, pa_lo;
600 	on_trap_data_t	otd;
601 	int		errors = 0;
602 	int		i;
603 
604 	ASSERT(PAGE_EXCL(pp));
605 	ASSERT(PP_PR_REQ(pp));
606 	ASSERT(pp->p_szc == 0);
607 	ASSERT(!hat_page_is_mapped(pp));
608 
609 	/*
610 	 * Clear the page and attempt to clear the UE.  If we trap
611 	 * on the next access to the page, we know the UE has recurred.
612 	 */
613 	pagescrub(pp, 0, PAGESIZE);
614 
615 	/*
616 	 * Map the page and write a bunch of bit patterns to compare
617 	 * what we wrote with what we read back.  This isn't a perfect
618 	 * test but it should be good enough to catch most of the
619 	 * recurring UEs. If this fails to catch a recurrent UE, we'll
620 	 * retire the page the next time we see a UE on the page.
621 	 */
622 	kaddr = ppmapin(pp, PROT_READ|PROT_WRITE, (caddr_t)-1);
623 
624 	pa = ptob((uint64_t)page_pptonum(pp));
625 	pa_hi = (uint32_t)(pa >> 32);
626 	pa_lo = (uint32_t)pa;
627 
628 	/*
629 	 * Fill the page with each (0x00 - 0xFF] bit pattern, flushing
630 	 * the cache in between reading and writing.  We do this under
631 	 * on_trap() protection to avoid recursion.
632 	 */
633 	if (on_trap(&otd, OT_DATA_EC)) {
634 		PR_MESSAGE(CE_WARN, 1, MSG_UE, pa);
635 		errors = 1;
636 	} else {
637 		for (wb = 0xff; wb > 0; wb--) {
638 			for (i = 0; i < PAGESIZE; i++) {
639 				kaddr[i] = wb;
640 			}
641 
642 			sync_data_memory(kaddr, PAGESIZE);
643 
644 			for (i = 0; i < PAGESIZE; i++) {
645 				rb = kaddr[i];
646 				if (rb != wb) {
647 					/*
648 					 * We had a mismatch without a trap.
649 					 * Uh-oh. Something is really wrong
650 					 * with this system.
651 					 */
652 					if (page_retire_messages) {
653 						cmn_err(CE_WARN, MSG_DM,
654 						    pa_hi, pa_lo, rb, wb);
655 					}
656 					errors = 1;
657 					goto out;	/* double break */
658 				}
659 			}
660 		}
661 	}
662 out:
663 	no_trap();
664 	ppmapout(kaddr);
665 
666 	return (errors ? 0 : 1);
667 }
668 
669 /*
670  * Try to clear a page_t with a single UE. If the UE was transient, it is
671  * returned to service, and we return 1. Otherwise we return 0 meaning
672  * that further processing is required to retire the page.
673  */
674 static int
675 page_retire_transient_ue(page_t *pp)
676 {
677 	ASSERT(PAGE_EXCL(pp));
678 	ASSERT(!hat_page_is_mapped(pp));
679 
680 	/*
681 	 * If this page is a repeat offender, retire him under the
682 	 * "two strikes and you're out" rule. The caller is responsible
683 	 * for scrubbing the page to try to clear the error.
684 	 */
685 	if (pp->p_toxic & PR_UE_SCRUBBED) {
686 		PR_INCR_KSTAT(pr_ue_persistent);
687 		return (0);
688 	}
689 
690 	if (page_clear_transient_ue(pp)) {
691 		/*
692 		 * We set the PR_SCRUBBED_UE bit; if we ever see this
693 		 * page again, we will retire it, no questions asked.
694 		 */
695 		page_settoxic(pp, PR_UE_SCRUBBED);
696 
697 		if (page_retire_first_ue) {
698 			PR_INCR_KSTAT(pr_ue_cleared_retire);
699 			return (0);
700 		} else {
701 			PR_INCR_KSTAT(pr_ue_cleared_free);
702 
703 			page_clrtoxic(pp, PR_UE | PR_MCE | PR_MSG);
704 
705 			/* LINTED: CONSTCOND */
706 			VN_DISPOSE(pp, B_FREE, 1, kcred);
707 			return (1);
708 		}
709 	}
710 
711 	PR_INCR_KSTAT(pr_ue_persistent);
712 	return (0);
713 }
714 
715 /*
716  * Update the statistics dynamically when our kstat is read.
717  */
718 static int
719 page_retire_kstat_update(kstat_t *ksp, int rw)
720 {
721 	struct page_retire_kstat *pr;
722 
723 	if (ksp == NULL)
724 	    return (EINVAL);
725 
726 	switch (rw) {
727 
728 	case KSTAT_READ:
729 		pr = (struct page_retire_kstat *)ksp->ks_data;
730 		ASSERT(pr == &page_retire_kstat);
731 		pr->pr_limit.value.ui64 = PAGE_RETIRE_LIMIT;
732 		return (0);
733 
734 	case KSTAT_WRITE:
735 		return (EACCES);
736 
737 	default:
738 		return (EINVAL);
739 	}
740 	/*NOTREACHED*/
741 }
742 
743 static int
744 pr_list_kstat_update(kstat_t *ksp, int rw)
745 {
746 	uint_t count;
747 	page_t *pp;
748 	kmutex_t *vphm;
749 
750 	if (rw == KSTAT_WRITE)
751 		return (EACCES);
752 
753 	vphm = page_vnode_mutex(retired_pages);
754 	mutex_enter(vphm);
755 	/* Needs to be under a lock so that for loop will work right */
756 	if (retired_pages->v_pages == NULL) {
757 		mutex_exit(vphm);
758 		ksp->ks_ndata = 0;
759 		ksp->ks_data_size = 0;
760 		return (0);
761 	}
762 
763 	count = 1;
764 	for (pp = retired_pages->v_pages->p_vpnext;
765 	    pp != retired_pages->v_pages; pp = pp->p_vpnext) {
766 		count++;
767 	}
768 	mutex_exit(vphm);
769 
770 	ksp->ks_ndata = count;
771 	ksp->ks_data_size = count * 2 * sizeof (uint64_t);
772 
773 	return (0);
774 }
775 
776 /*
777  * all spans will be pagesize and no coalescing will be done with the
778  * list produced.
779  */
780 static int
781 pr_list_kstat_snapshot(kstat_t *ksp, void *buf, int rw)
782 {
783 	kmutex_t *vphm;
784 	page_t *pp;
785 	struct memunit {
786 		uint64_t address;
787 		uint64_t size;
788 	} *kspmem;
789 
790 	if (rw == KSTAT_WRITE)
791 		return (EACCES);
792 
793 	ksp->ks_snaptime = gethrtime();
794 
795 	kspmem = (struct memunit *)buf;
796 
797 	vphm = page_vnode_mutex(retired_pages);
798 	mutex_enter(vphm);
799 	pp = retired_pages->v_pages;
800 	if (((caddr_t)kspmem >= (caddr_t)buf + ksp->ks_data_size) ||
801 	    (pp == NULL)) {
802 		mutex_exit(vphm);
803 		return (0);
804 	}
805 	kspmem->address = ptob(pp->p_pagenum);
806 	kspmem->size = PAGESIZE;
807 	kspmem++;
808 	for (pp = pp->p_vpnext; pp != retired_pages->v_pages;
809 	    pp = pp->p_vpnext, kspmem++) {
810 		if ((caddr_t)kspmem >= (caddr_t)buf + ksp->ks_data_size)
811 			break;
812 		kspmem->address = ptob(pp->p_pagenum);
813 		kspmem->size = PAGESIZE;
814 	}
815 	mutex_exit(vphm);
816 
817 	return (0);
818 }
819 
820 /*
821  * page_retire_pend_count -- helper function for page_capture_thread,
822  * returns the number of pages pending retirement.
823  */
824 uint64_t
825 page_retire_pend_count(void)
826 {
827 	return (PR_KSTAT_PENDING);
828 }
829 
830 void
831 page_retire_incr_pend_count(void)
832 {
833 	PR_INCR_KSTAT(pr_pending);
834 }
835 
836 void
837 page_retire_decr_pend_count(void)
838 {
839 	PR_DECR_KSTAT(pr_pending);
840 }
841 
842 /*
843  * Initialize the page retire mechanism:
844  *
845  *   - Establish the correctable error retire limit.
846  *   - Initialize locks.
847  *   - Build the retired_pages vnode.
848  *   - Set up the kstats.
849  *   - Fire off the background thread.
850  *   - Tell page_retire() it's OK to start retiring pages.
851  */
852 void
853 page_retire_init(void)
854 {
855 	const fs_operation_def_t retired_vnodeops_template[] = {
856 		{ NULL, NULL }
857 	};
858 	struct vnodeops *vops;
859 	kstat_t *ksp;
860 
861 	const uint_t page_retire_ndata =
862 	    sizeof (page_retire_kstat) / sizeof (kstat_named_t);
863 
864 	ASSERT(page_retire_ksp == NULL);
865 
866 	if (max_pages_retired_bps <= 0) {
867 		max_pages_retired_bps = MCE_BPT;
868 	}
869 
870 	mutex_init(&pr_q_mutex, NULL, MUTEX_DEFAULT, NULL);
871 
872 	retired_pages = vn_alloc(KM_SLEEP);
873 	if (vn_make_ops("retired_pages", retired_vnodeops_template, &vops)) {
874 		cmn_err(CE_PANIC,
875 		    "page_retired_init: can't make retired vnodeops");
876 	}
877 	vn_setops(retired_pages, vops);
878 
879 	if ((page_retire_ksp = kstat_create("unix", 0, "page_retire",
880 	    "misc", KSTAT_TYPE_NAMED, page_retire_ndata,
881 	    KSTAT_FLAG_VIRTUAL)) == NULL) {
882 		cmn_err(CE_WARN, "kstat_create for page_retire failed");
883 	} else {
884 		page_retire_ksp->ks_data = (void *)&page_retire_kstat;
885 		page_retire_ksp->ks_update = page_retire_kstat_update;
886 		kstat_install(page_retire_ksp);
887 	}
888 
889 	mutex_init(&pr_list_kstat_mutex, NULL, MUTEX_DEFAULT, NULL);
890 	ksp = kstat_create("unix", 0, "page_retire_list", "misc",
891 	    KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE | KSTAT_FLAG_VIRTUAL);
892 	if (ksp != NULL) {
893 		ksp->ks_update = pr_list_kstat_update;
894 		ksp->ks_snapshot = pr_list_kstat_snapshot;
895 		ksp->ks_lock = &pr_list_kstat_mutex;
896 		kstat_install(ksp);
897 	}
898 
899 	page_capture_register_callback(PC_RETIRE, -1, page_retire_pp_finish);
900 	pr_enable = 1;
901 }
902 
903 /*
904  * page_retire_hunt() callback for the retire thread.
905  */
906 static void
907 page_retire_thread_cb(page_t *pp)
908 {
909 	PR_DEBUG(prd_tctop);
910 	if (!PP_ISKAS(pp) && page_trylock(pp, SE_EXCL)) {
911 		PR_DEBUG(prd_tclocked);
912 		page_unlock(pp);
913 	}
914 }
915 
916 /*
917  * page_retire_hunt() callback for mdboot().
918  *
919  * It is necessary to scrub any failing pages prior to reboot in order to
920  * prevent a latent error trap from occurring on the next boot.
921  */
922 void
923 page_retire_mdboot_cb(page_t *pp)
924 {
925 	/*
926 	 * Don't scrub the kernel, since we might still need it, unless
927 	 * we have UEs on the page, in which case we have nothing to lose.
928 	 */
929 	if (!PP_ISKAS(pp) || PP_TOXIC(pp)) {
930 		pp->p_selock = -1;	/* pacify ASSERTs */
931 		PP_CLRFREE(pp);
932 		pagescrub(pp, 0, PAGESIZE);
933 		pp->p_selock = 0;
934 	}
935 	pp->p_toxic = 0;
936 }
937 
938 
939 /*
940  * Callback used by page_trycapture() to finish off retiring a page.
941  * The page has already been cleaned and we've been given sole access to
942  * it.
943  * Always returns 0 to indicate that callback succeded as the callback never
944  * fails to finish retiring the given page.
945  */
946 /*ARGSUSED*/
947 static int
948 page_retire_pp_finish(page_t *pp, void *notused, uint_t flags)
949 {
950 	int		toxic;
951 
952 	ASSERT(PAGE_EXCL(pp));
953 	ASSERT(pp->p_iolock_state == 0);
954 	ASSERT(pp->p_szc == 0);
955 
956 	toxic = pp->p_toxic;
957 
958 	/*
959 	 * The problem page is locked, demoted, unmapped, not free,
960 	 * hashed out, and not COW or mlocked (whew!).
961 	 *
962 	 * Now we select our ammunition, take it around back, and shoot it.
963 	 */
964 	if (toxic & PR_UE) {
965 ue_error:
966 		if (page_retire_transient_ue(pp)) {
967 			PR_DEBUG(prd_uescrubbed);
968 			(void) page_retire_done(pp, PRD_UE_SCRUBBED);
969 		} else {
970 			PR_DEBUG(prd_uenotscrubbed);
971 			page_retire_destroy(pp);
972 			(void) page_retire_done(pp, PRD_SUCCESS);
973 		}
974 		return (0);
975 	} else if (toxic & PR_FMA) {
976 		PR_DEBUG(prd_fma);
977 		page_retire_destroy(pp);
978 		(void) page_retire_done(pp, PRD_SUCCESS);
979 		return (0);
980 	} else if (toxic & PR_MCE) {
981 		PR_DEBUG(prd_mce);
982 		page_retire_destroy(pp);
983 		(void) page_retire_done(pp, PRD_SUCCESS);
984 		return (0);
985 	}
986 
987 	/*
988 	 * When page_retire_first_ue is set to zero and a UE occurs which is
989 	 * transient, it's possible that we clear some flags set by a second
990 	 * UE error on the page which occurs while the first is currently being
991 	 * handled and thus we need to handle the case where none of the above
992 	 * are set.  In this instance, PR_UE_SCRUBBED should be set and thus
993 	 * we should execute the UE code above.
994 	 */
995 	if (toxic & PR_UE_SCRUBBED) {
996 		goto ue_error;
997 	}
998 
999 	/*
1000 	 * It's impossible to get here.
1001 	 */
1002 	panic("bad toxic flags 0x%x in page_retire_pp_finish\n", toxic);
1003 	return (0);
1004 }
1005 
1006 /*
1007  * page_retire() - the front door in to retire a page.
1008  *
1009  * Ideally, page_retire() would instantly retire the requested page.
1010  * Unfortunately, some pages are locked or otherwise tied up and cannot be
1011  * retired right away.  We use the page capture logic to deal with this
1012  * situation as it will continuously try to retire the page in the background
1013  * if the first attempt fails.  Success is determined by looking to see whether
1014  * the page has been retired after the page_trycapture() attempt.
1015  *
1016  * Returns:
1017  *
1018  *   - 0 on success,
1019  *   - EINVAL when the PA is whacko,
1020  *   - EIO if the page is already retired or already pending retirement, or
1021  *   - EAGAIN if the page could not be _immediately_ retired but is pending.
1022  */
1023 int
1024 page_retire(uint64_t pa, uchar_t reason)
1025 {
1026 	page_t	*pp;
1027 
1028 	ASSERT(reason & PR_REASONS);		/* there must be a reason */
1029 	ASSERT(!(reason & ~PR_REASONS));	/* but no other bits */
1030 
1031 	pp = page_numtopp_nolock(mmu_btop(pa));
1032 	if (pp == NULL) {
1033 		PR_MESSAGE(CE_WARN, 1, "Cannot schedule clearing of error on"
1034 		    " page 0x%08x.%08x; page is not relocatable memory", pa);
1035 		return (page_retire_done(pp, PRD_INVALID_PA));
1036 	}
1037 	if (PP_RETIRED(pp)) {
1038 		PR_DEBUG(prd_dup1);
1039 		return (page_retire_done(pp, PRD_DUPLICATE));
1040 	}
1041 
1042 	if ((reason & PR_UE) && !PP_TOXIC(pp)) {
1043 		PR_MESSAGE(CE_NOTE, 1, "Scheduling clearing of error on"
1044 		    " page 0x%08x.%08x", pa);
1045 	} else if (PP_PR_REQ(pp)) {
1046 		PR_DEBUG(prd_dup2);
1047 		return (page_retire_done(pp, PRD_DUPLICATE));
1048 	} else {
1049 		PR_MESSAGE(CE_NOTE, 1, "Scheduling removal of"
1050 		    " page 0x%08x.%08x", pa);
1051 	}
1052 
1053 	/* Avoid setting toxic bits in the first place */
1054 	if ((reason & (PR_FMA | PR_MCE)) && !(reason & PR_UE) &&
1055 	    page_retire_limit()) {
1056 		return (page_retire_done(pp, PRD_LIMIT));
1057 	}
1058 
1059 	if (MTBF(pr_calls, pr_mtbf)) {
1060 		page_settoxic(pp, reason);
1061 		if (page_trycapture(pp, 0, CAPTURE_RETIRE, NULL) == 0) {
1062 			PR_DEBUG(prd_prlocked);
1063 		} else {
1064 			PR_DEBUG(prd_prnotlocked);
1065 		}
1066 	} else {
1067 		PR_DEBUG(prd_prnotlocked);
1068 	}
1069 
1070 	if (PP_RETIRED(pp)) {
1071 		PR_DEBUG(prd_prretired);
1072 		return (0);
1073 	} else {
1074 		cv_signal(&pc_cv);
1075 		PR_INCR_KSTAT(pr_failed);
1076 
1077 		if (pp->p_toxic & PR_MSG) {
1078 			return (page_retire_done(pp, PRD_FAILED));
1079 		} else {
1080 			return (page_retire_done(pp, PRD_PENDING));
1081 		}
1082 	}
1083 }
1084 
1085 /*
1086  * Take a retired page off the retired-pages vnode and clear the toxic flags.
1087  * If "free" is nonzero, lock it and put it back on the freelist. If "free"
1088  * is zero, the caller already holds SE_EXCL lock so we simply unretire it
1089  * and don't do anything else with it.
1090  *
1091  * Any unretire messages are printed from this routine.
1092  *
1093  * Returns 0 if page pp was unretired; else an error code.
1094  *
1095  * If flags is:
1096  *	PR_UNR_FREE - lock the page, clear the toxic flags and free it
1097  *	    to the freelist.
1098  *	PR_UNR_TEMP - lock the page, unretire it, leave the toxic
1099  *	    bits set as is and return it to the caller.
1100  *	PR_UNR_CLEAN - page is SE_EXCL locked, unretire it, clear the
1101  *	    toxic flags and return it to caller as is.
1102  */
1103 int
1104 page_unretire_pp(page_t *pp, int flags)
1105 {
1106 	/*
1107 	 * To be retired, a page has to be hashed onto the retired_pages vnode
1108 	 * and have PR_RETIRED set in p_toxic.
1109 	 */
1110 	if (flags == PR_UNR_CLEAN ||
1111 	    page_try_reclaim_lock(pp, SE_EXCL, SE_RETIRED)) {
1112 		ASSERT(PAGE_EXCL(pp));
1113 		PR_DEBUG(prd_ulocked);
1114 		if (!PP_RETIRED(pp)) {
1115 			PR_DEBUG(prd_unotretired);
1116 			page_unlock(pp);
1117 			return (page_retire_done(pp, PRD_UNR_NOT));
1118 		}
1119 
1120 		PR_MESSAGE(CE_NOTE, 1, "unretiring retired"
1121 		    " page 0x%08x.%08x", mmu_ptob((uint64_t)pp->p_pagenum));
1122 		if (pp->p_toxic & PR_FMA) {
1123 			PR_DECR_KSTAT(pr_fma);
1124 		} else if (pp->p_toxic & PR_UE) {
1125 			PR_DECR_KSTAT(pr_ue);
1126 		} else {
1127 			PR_DECR_KSTAT(pr_mce);
1128 		}
1129 
1130 		if (flags == PR_UNR_TEMP)
1131 			page_clrtoxic(pp, PR_RETIRED);
1132 		else
1133 			page_clrtoxic(pp, PR_TOXICFLAGS);
1134 
1135 		if (flags == PR_UNR_FREE) {
1136 			PR_DEBUG(prd_udestroy);
1137 			page_destroy(pp, 0);
1138 		} else {
1139 			PR_DEBUG(prd_uhashout);
1140 			page_hashout(pp, NULL);
1141 		}
1142 
1143 		mutex_enter(&freemem_lock);
1144 		availrmem++;
1145 		mutex_exit(&freemem_lock);
1146 
1147 		PR_DEBUG(prd_uunretired);
1148 		PR_DECR_KSTAT(pr_retired);
1149 		PR_INCR_KSTAT(pr_unretired);
1150 		return (page_retire_done(pp, PRD_UNR_SUCCESS));
1151 	}
1152 	PR_DEBUG(prd_unotlocked);
1153 	return (page_retire_done(pp, PRD_UNR_CANTLOCK));
1154 }
1155 
1156 /*
1157  * Return a page to service by moving it from the retired_pages vnode
1158  * onto the freelist.
1159  *
1160  * Called from mmioctl_page_retire() on behalf of the FMA DE.
1161  *
1162  * Returns:
1163  *
1164  *   - 0 if the page is unretired,
1165  *   - EAGAIN if the pp can not be locked,
1166  *   - EINVAL if the PA is whacko, and
1167  *   - EIO if the pp is not retired.
1168  */
1169 int
1170 page_unretire(uint64_t pa)
1171 {
1172 	page_t	*pp;
1173 
1174 	pp = page_numtopp_nolock(mmu_btop(pa));
1175 	if (pp == NULL) {
1176 		return (page_retire_done(pp, PRD_INVALID_PA));
1177 	}
1178 
1179 	return (page_unretire_pp(pp, PR_UNR_FREE));
1180 }
1181 
1182 /*
1183  * Test a page to see if it is retired. If errors is non-NULL, the toxic
1184  * bits of the page are returned. Returns 0 on success, error code on failure.
1185  */
1186 int
1187 page_retire_check_pp(page_t *pp, uint64_t *errors)
1188 {
1189 	int rc;
1190 
1191 	if (PP_RETIRED(pp)) {
1192 		PR_DEBUG(prd_checkhit);
1193 		rc = 0;
1194 	} else if (PP_PR_REQ(pp)) {
1195 		PR_DEBUG(prd_checkmiss_pend);
1196 		rc = EAGAIN;
1197 	} else {
1198 		PR_DEBUG(prd_checkmiss_noerr);
1199 		rc = EIO;
1200 	}
1201 
1202 	/*
1203 	 * We have magically arranged the bit values returned to fmd(1M)
1204 	 * to line up with the FMA, MCE, and UE bits of the page_t.
1205 	 */
1206 	if (errors) {
1207 		uint64_t toxic = (uint64_t)(pp->p_toxic & PR_ERRMASK);
1208 		if (toxic & PR_UE_SCRUBBED) {
1209 			toxic &= ~PR_UE_SCRUBBED;
1210 			toxic |= PR_UE;
1211 		}
1212 		*errors = toxic;
1213 	}
1214 
1215 	return (rc);
1216 }
1217 
1218 /*
1219  * Test to see if the page_t for a given PA is retired, and return the
1220  * hardware errors we have seen on the page if requested.
1221  *
1222  * Called from mmioctl_page_retire on behalf of the FMA DE.
1223  *
1224  * Returns:
1225  *
1226  *   - 0 if the page is retired,
1227  *   - EIO if the page is not retired and has no errors,
1228  *   - EAGAIN if the page is not retired but is pending; and
1229  *   - EINVAL if the PA is whacko.
1230  */
1231 int
1232 page_retire_check(uint64_t pa, uint64_t *errors)
1233 {
1234 	page_t	*pp;
1235 
1236 	if (errors) {
1237 		*errors = 0;
1238 	}
1239 
1240 	pp = page_numtopp_nolock(mmu_btop(pa));
1241 	if (pp == NULL) {
1242 		return (page_retire_done(pp, PRD_INVALID_PA));
1243 	}
1244 
1245 	return (page_retire_check_pp(pp, errors));
1246 }
1247 
1248 /*
1249  * Page retire self-test. For now, it always returns 0.
1250  */
1251 int
1252 page_retire_test(void)
1253 {
1254 	page_t *first, *pp, *cpp, *cpp2, *lpp;
1255 
1256 	/*
1257 	 * Tests the corner case where a large page can't be retired
1258 	 * because one of the constituent pages is locked. We mark
1259 	 * one page to be retired and try to retire it, and mark the
1260 	 * other page to be retired but don't try to retire it, so
1261 	 * that page_unlock() in the failure path will recurse and try
1262 	 * to retire THAT page. This is the worst possible situation
1263 	 * we can get ourselves into.
1264 	 */
1265 	memsegs_lock(0);
1266 	pp = first = page_first();
1267 	do {
1268 		if (pp->p_szc && PP_PAGEROOT(pp) == pp) {
1269 			cpp = pp + 1;
1270 			lpp = PP_ISFREE(pp)? pp : pp + 2;
1271 			cpp2 = pp + 3;
1272 			if (!page_trylock(lpp, pp == lpp? SE_EXCL : SE_SHARED))
1273 				continue;
1274 			if (!page_trylock(cpp, SE_EXCL)) {
1275 				page_unlock(lpp);
1276 				continue;
1277 			}
1278 
1279 			/* fails */
1280 			(void) page_retire(ptob(cpp->p_pagenum), PR_FMA);
1281 
1282 			page_unlock(lpp);
1283 			page_unlock(cpp);
1284 			(void) page_retire(ptob(cpp->p_pagenum), PR_FMA);
1285 			(void) page_retire(ptob(cpp2->p_pagenum), PR_FMA);
1286 		}
1287 	} while ((pp = page_next(pp)) != first);
1288 	memsegs_unlock(0);
1289 
1290 	return (0);
1291 }
1292