xref: /titanic_52/usr/src/uts/common/vm/page_lock.c (revision 21b926adb26b0bf23fe75045ed308af582303bd0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2019 Joyent, Inc.
24  */
25 
26 
27 /*
28  * VM - page locking primitives
29  */
30 #include <sys/param.h>
31 #include <sys/t_lock.h>
32 #include <sys/vtrace.h>
33 #include <sys/debug.h>
34 #include <sys/cmn_err.h>
35 #include <sys/bitmap.h>
36 #include <sys/lockstat.h>
37 #include <sys/sysmacros.h>
38 #include <sys/condvar_impl.h>
39 #include <vm/page.h>
40 #include <vm/seg_enum.h>
41 #include <vm/vm_dep.h>
42 #include <vm/seg_kmem.h>
43 
44 /*
45  * This global mutex array is for logical page locking.
46  * The following fields in the page structure are protected
47  * by this lock:
48  *
49  *	p_lckcnt
50  *	p_cowcnt
51  */
52 pad_mutex_t page_llocks[8 * NCPU_P2];
53 
54 /*
55  * This is a global lock for the logical page free list.  The
56  * logical free list, in this implementation, is maintained as two
57  * separate physical lists - the cache list and the free list.
58  */
59 kmutex_t  page_freelock;
60 
61 /*
62  * The hash table, page_hash[], the p_selock fields, and the
63  * list of pages associated with vnodes are protected by arrays of mutexes.
64  *
65  * Unless the hashes are changed radically, the table sizes must be
66  * a power of two.  Also, we typically need more mutexes for the
67  * vnodes since these locks are occasionally held for long periods.
68  * And since there seem to be two special vnodes (kvp and swapvp),
69  * we make room for private mutexes for them.
70  *
71  * The pse_mutex[] array holds the mutexes to protect the p_selock
72  * fields of all page_t structures.
73  *
74  * PAGE_SE_MUTEX(pp) returns the address of the appropriate mutex
75  * when given a pointer to a page_t.
76  *
77  * PIO_TABLE_SIZE must be a power of two.  One could argue that we
78  * should go to the trouble of setting it up at run time and base it
79  * on memory size rather than the number of compile time CPUs.
80  *
81  * XX64	We should be using physmem size to calculate PIO_SHIFT.
82  *
83  *	These might break in 64 bit world.
84  */
85 #define	PIO_SHIFT	7	/* log2(sizeof(page_t)) */
86 #define	PIO_TABLE_SIZE	128	/* number of io mutexes to have */
87 
88 pad_mutex_t	ph_mutex[PH_TABLE_SIZE];
89 kmutex_t	pio_mutex[PIO_TABLE_SIZE];
90 
91 #define	PAGE_IO_MUTEX(pp) \
92 	    &pio_mutex[(((uintptr_t)pp) >> PIO_SHIFT) & (PIO_TABLE_SIZE - 1)]
93 
94 /*
95  * The pse_mutex[] array is allocated in the platform startup code
96  * based on the size of the machine at startup.
97  */
98 extern pad_mutex_t *pse_mutex;		/* Locks protecting pp->p_selock */
99 extern size_t pse_table_size;		/* Number of mutexes in pse_mutex[] */
100 extern int pse_shift;			/* log2(pse_table_size) */
101 #define	PAGE_SE_MUTEX(pp)	&pse_mutex[				\
102 	((((uintptr_t)(pp) >> pse_shift) ^ ((uintptr_t)(pp))) >> 7) &	\
103 	(pse_table_size - 1)].pad_mutex
104 
105 #define	PSZC_MTX_TABLE_SIZE	128
106 #define	PSZC_MTX_TABLE_SHIFT	7
107 
108 static pad_mutex_t	pszc_mutex[PSZC_MTX_TABLE_SIZE];
109 
110 #define	PAGE_SZC_MUTEX(_pp) \
111 	    &pszc_mutex[((((uintptr_t)(_pp) >> PSZC_MTX_TABLE_SHIFT) ^ \
112 		((uintptr_t)(_pp) >> (PSZC_MTX_TABLE_SHIFT << 1)) ^ \
113 		((uintptr_t)(_pp) >> (3 * PSZC_MTX_TABLE_SHIFT))) & \
114 		(PSZC_MTX_TABLE_SIZE - 1))].pad_mutex
115 
116 /*
117  * The vph_mutex[] array  holds the mutexes to protect the vnode chains,
118  * (i.e., the list of pages anchored by v_pages and connected via p_vpprev
119  * and p_vpnext).
120  *
121  * The page_vnode_mutex(vp) function returns the address of the appropriate
122  * mutex from this array given a pointer to a vnode.  It is complicated
123  * by the fact that the kernel's vnode and the swapfs vnode are referenced
124  * frequently enough to warrent their own mutexes.
125  *
126  * The VP_HASH_FUNC returns the index into the vph_mutex array given
127  * an address of a vnode.
128  */
129 
130 #if defined(_LP64)
131 #define	VPH_TABLE_SIZE  (8 * NCPU_P2)
132 #else	/* 32 bits */
133 #define	VPH_TABLE_SIZE	(2 * NCPU_P2)
134 #endif
135 
136 #define	VP_HASH_FUNC(vp) \
137 	((((uintptr_t)(vp) >> 6) + \
138 	    ((uintptr_t)(vp) >> 8) + \
139 	    ((uintptr_t)(vp) >> 10) + \
140 	    ((uintptr_t)(vp) >> 12)) \
141 	    & (VPH_TABLE_SIZE - 1))
142 
143 /*
144  * Two slots after VPH_TABLE_SIZE are reserved in vph_mutex for kernel vnodes.
145  * The lock for kvp is VPH_TABLE_SIZE + 0, and the lock for zvp is
146  * VPH_TABLE_SIZE + 1.
147  */
148 
149 kmutex_t	vph_mutex[VPH_TABLE_SIZE + 2];
150 
151 /*
152  * Initialize the locks used by the Virtual Memory Management system.
153  */
154 void
155 page_lock_init()
156 {
157 }
158 
159 /*
160  * Return a value for pse_shift based on npg (the number of physical pages)
161  * and ncpu (the maximum number of CPUs).  This is called by platform startup
162  * code.
163  *
164  * Lockstat data from TPC-H runs showed that contention on the pse_mutex[]
165  * locks grew approximately as the square of the number of threads executing.
166  * So the primary scaling factor used is NCPU^2.  The size of the machine in
167  * megabytes is used as an upper bound, particularly for sun4v machines which
168  * all claim to have 256 CPUs maximum, and the old value of PSE_TABLE_SIZE
169  * (128) is used as a minimum.  Since the size of the table has to be a power
170  * of two, the calculated size is rounded up to the next power of two.
171  */
172 /*ARGSUSED*/
173 int
174 size_pse_array(pgcnt_t npg, int ncpu)
175 {
176 	size_t size;
177 	pgcnt_t pp_per_mb = (1024 * 1024) / PAGESIZE;
178 
179 	size = MAX(128, MIN(npg / pp_per_mb, 2 * ncpu * ncpu));
180 	size += (1 << (highbit(size) - 1)) - 1;
181 	return (highbit(size) - 1);
182 }
183 
184 /*
185  * At present we only use page ownership to aid debugging, so it's
186  * OK if the owner field isn't exact.  In the 32-bit world two thread ids
187  * can map to the same owner because we just 'or' in 0x80000000 and
188  * then clear the second highest bit, so that (for example) 0x2faced00
189  * and 0xafaced00 both map to 0xafaced00.
190  * In the 64-bit world, p_selock may not be large enough to hold a full
191  * thread pointer.  If we ever need precise ownership (e.g. if we implement
192  * priority inheritance for page locks) then p_selock should become a
193  * uintptr_t and SE_WRITER should be -((uintptr_t)curthread >> 2).
194  */
195 #define	SE_WRITER	(((selock_t)(ulong_t)curthread | INT_MIN) & ~SE_EWANTED)
196 #define	SE_READER	1
197 
198 /*
199  * A page that is deleted must be marked as such using the
200  * page_lock_delete() function. The page must be exclusively locked.
201  * The SE_DELETED marker is put in p_selock when this function is called.
202  * SE_DELETED must be distinct from any SE_WRITER value.
203  */
204 #define	SE_DELETED	(1 | INT_MIN)
205 
206 #ifdef VM_STATS
207 uint_t	vph_kvp_count;
208 uint_t	vph_swapfsvp_count;
209 uint_t	vph_other;
210 #endif /* VM_STATS */
211 
212 #ifdef VM_STATS
213 uint_t	page_lock_count;
214 uint_t	page_lock_miss;
215 uint_t	page_lock_miss_lock;
216 uint_t	page_lock_reclaim;
217 uint_t	page_lock_bad_reclaim;
218 uint_t	page_lock_same_page;
219 uint_t	page_lock_upgrade;
220 uint_t	page_lock_retired;
221 uint_t	page_lock_upgrade_failed;
222 uint_t	page_lock_deleted;
223 
224 uint_t	page_trylock_locked;
225 uint_t	page_trylock_failed;
226 uint_t	page_trylock_missed;
227 
228 uint_t	page_try_reclaim_upgrade;
229 #endif /* VM_STATS */
230 
231 /*
232  * Acquire the "shared/exclusive" lock on a page.
233  *
234  * Returns 1 on success and locks the page appropriately.
235  *	   0 on failure and does not lock the page.
236  *
237  * If `lock' is non-NULL, it will be dropped and reacquired in the
238  * failure case.  This routine can block, and if it does
239  * it will always return a failure since the page identity [vp, off]
240  * or state may have changed.
241  */
242 
243 int
244 page_lock(page_t *pp, se_t se, kmutex_t *lock, reclaim_t reclaim)
245 {
246 	return (page_lock_es(pp, se, lock, reclaim, 0));
247 }
248 
249 /*
250  * With the addition of reader-writer lock semantics to page_lock_es,
251  * callers wanting an exclusive (writer) lock may prevent shared-lock
252  * (reader) starvation by setting the es parameter to SE_EXCL_WANTED.
253  * In this case, when an exclusive lock cannot be acquired, p_selock's
254  * SE_EWANTED bit is set. Shared-lock (reader) requests are also denied
255  * if the page is slated for retirement.
256  *
257  * The se and es parameters determine if the lock should be granted
258  * based on the following decision table:
259  *
260  * Lock wanted   es flags     p_selock/SE_EWANTED  Action
261  * ----------- -------------- -------------------  ---------
262  * SE_EXCL        any [1][2]   unlocked/any        grant lock, clear SE_EWANTED
263  * SE_EXCL        SE_EWANTED   any lock/any        deny, set SE_EWANTED
264  * SE_EXCL        none         any lock/any        deny
265  * SE_SHARED      n/a [2]        shared/0          grant
266  * SE_SHARED      n/a [2]      unlocked/0          grant
267  * SE_SHARED      n/a            shared/1          deny
268  * SE_SHARED      n/a          unlocked/1          deny
269  * SE_SHARED      n/a              excl/any        deny
270  *
271  * Notes:
272  * [1] The code grants an exclusive lock to the caller and clears the bit
273  *   SE_EWANTED whenever p_selock is unlocked, regardless of the SE_EWANTED
274  *   bit's value.  This was deemed acceptable as we are not concerned about
275  *   exclusive-lock starvation. If this ever becomes an issue, a priority or
276  *   fifo mechanism should also be implemented. Meantime, the thread that
277  *   set SE_EWANTED should be prepared to catch this condition and reset it
278  *
279  * [2] Retired pages may not be locked at any time, regardless of the
280  *   dispostion of se, unless the es parameter has SE_RETIRED flag set.
281  *
282  * Notes on values of "es":
283  *
284  *   es & 1: page_lookup_create will attempt page relocation
285  *   es & SE_EXCL_WANTED: caller wants SE_EWANTED set (eg. delete
286  *       memory thread); this prevents reader-starvation of waiting
287  *       writer thread(s) by giving priority to writers over readers.
288  *   es & SE_RETIRED: caller wants to lock pages even if they are
289  *       retired.  Default is to deny the lock if the page is retired.
290  *
291  * And yes, we know, the semantics of this function are too complicated.
292  * It's on the list to be cleaned up.
293  */
294 int
295 page_lock_es(page_t *pp, se_t se, kmutex_t *lock, reclaim_t reclaim, int es)
296 {
297 	int		retval;
298 	kmutex_t	*pse = PAGE_SE_MUTEX(pp);
299 	int		upgraded;
300 	int		reclaim_it;
301 
302 	ASSERT(lock != NULL ? MUTEX_HELD(lock) : 1);
303 
304 	VM_STAT_ADD(page_lock_count);
305 
306 	upgraded = 0;
307 	reclaim_it = 0;
308 
309 	mutex_enter(pse);
310 
311 	ASSERT(((es & SE_EXCL_WANTED) == 0) ||
312 	    ((es & SE_EXCL_WANTED) && (se == SE_EXCL)));
313 
314 	if (PP_RETIRED(pp) && !(es & SE_RETIRED)) {
315 		mutex_exit(pse);
316 		VM_STAT_ADD(page_lock_retired);
317 		return (0);
318 	}
319 
320 	if (se == SE_SHARED && es == 1 && pp->p_selock == 0) {
321 		se = SE_EXCL;
322 	}
323 
324 	if ((reclaim == P_RECLAIM) && (PP_ISFREE(pp))) {
325 
326 		reclaim_it = 1;
327 		if (se == SE_SHARED) {
328 			/*
329 			 * This is an interesting situation.
330 			 *
331 			 * Remember that p_free can only change if
332 			 * p_selock < 0.
333 			 * p_free does not depend on our holding `pse'.
334 			 * And, since we hold `pse', p_selock can not change.
335 			 * So, if p_free changes on us, the page is already
336 			 * exclusively held, and we would fail to get p_selock
337 			 * regardless.
338 			 *
339 			 * We want to avoid getting the share
340 			 * lock on a free page that needs to be reclaimed.
341 			 * It is possible that some other thread has the share
342 			 * lock and has left the free page on the cache list.
343 			 * pvn_vplist_dirty() does this for brief periods.
344 			 * If the se_share is currently SE_EXCL, we will fail
345 			 * to acquire p_selock anyway.  Blocking is the
346 			 * right thing to do.
347 			 * If we need to reclaim this page, we must get
348 			 * exclusive access to it, force the upgrade now.
349 			 * Again, we will fail to acquire p_selock if the
350 			 * page is not free and block.
351 			 */
352 			upgraded = 1;
353 			se = SE_EXCL;
354 			VM_STAT_ADD(page_lock_upgrade);
355 		}
356 	}
357 
358 	if (se == SE_EXCL) {
359 		if (!(es & SE_EXCL_WANTED) && (pp->p_selock & SE_EWANTED)) {
360 			/*
361 			 * if the caller wants a writer lock (but did not
362 			 * specify exclusive access), and there is a pending
363 			 * writer that wants exclusive access, return failure
364 			 */
365 			retval = 0;
366 		} else if ((pp->p_selock & ~SE_EWANTED) == 0) {
367 			/* no reader/writer lock held */
368 			/* this clears our setting of the SE_EWANTED bit */
369 			pp->p_selock = SE_WRITER;
370 			retval = 1;
371 		} else {
372 			/* page is locked */
373 			if (es & SE_EXCL_WANTED) {
374 				/* set the SE_EWANTED bit */
375 				pp->p_selock |= SE_EWANTED;
376 			}
377 			retval = 0;
378 		}
379 	} else {
380 		retval = 0;
381 		if (pp->p_selock >= 0) {
382 			if ((pp->p_selock & SE_EWANTED) == 0) {
383 				pp->p_selock += SE_READER;
384 				retval = 1;
385 			}
386 		}
387 	}
388 
389 	if (retval == 0) {
390 		if ((pp->p_selock & ~SE_EWANTED) == SE_DELETED) {
391 			VM_STAT_ADD(page_lock_deleted);
392 			mutex_exit(pse);
393 			return (retval);
394 		}
395 
396 #ifdef VM_STATS
397 		VM_STAT_ADD(page_lock_miss);
398 		if (upgraded) {
399 			VM_STAT_ADD(page_lock_upgrade_failed);
400 		}
401 #endif
402 		if (lock) {
403 			VM_STAT_ADD(page_lock_miss_lock);
404 			mutex_exit(lock);
405 		}
406 
407 		/*
408 		 * Now, wait for the page to be unlocked and
409 		 * release the lock protecting p_cv and p_selock.
410 		 */
411 		cv_wait(&pp->p_cv, pse);
412 		mutex_exit(pse);
413 
414 		/*
415 		 * The page identity may have changed while we were
416 		 * blocked.  If we are willing to depend on "pp"
417 		 * still pointing to a valid page structure (i.e.,
418 		 * assuming page structures are not dynamically allocated
419 		 * or freed), we could try to lock the page if its
420 		 * identity hasn't changed.
421 		 *
422 		 * This needs to be measured, since we come back from
423 		 * cv_wait holding pse (the expensive part of this
424 		 * operation) we might as well try the cheap part.
425 		 * Though we would also have to confirm that dropping
426 		 * `lock' did not cause any grief to the callers.
427 		 */
428 		if (lock) {
429 			mutex_enter(lock);
430 		}
431 	} else {
432 		/*
433 		 * We have the page lock.
434 		 * If we needed to reclaim the page, and the page
435 		 * needed reclaiming (ie, it was free), then we
436 		 * have the page exclusively locked.  We may need
437 		 * to downgrade the page.
438 		 */
439 		ASSERT((upgraded) ?
440 		    ((PP_ISFREE(pp)) && PAGE_EXCL(pp)) : 1);
441 		mutex_exit(pse);
442 
443 		/*
444 		 * We now hold this page's lock, either shared or
445 		 * exclusive.  This will prevent its identity from changing.
446 		 * The page, however, may or may not be free.  If the caller
447 		 * requested, and it is free, go reclaim it from the
448 		 * free list.  If the page can't be reclaimed, return failure
449 		 * so that the caller can start all over again.
450 		 *
451 		 * NOTE:page_reclaim() releases the page lock (p_selock)
452 		 *	if it can't be reclaimed.
453 		 */
454 		if (reclaim_it) {
455 			if (!page_reclaim(pp, lock)) {
456 				VM_STAT_ADD(page_lock_bad_reclaim);
457 				retval = 0;
458 			} else {
459 				VM_STAT_ADD(page_lock_reclaim);
460 				if (upgraded) {
461 					page_downgrade(pp);
462 				}
463 			}
464 		}
465 	}
466 	return (retval);
467 }
468 
469 /*
470  * Clear the SE_EWANTED bit from p_selock.  This function allows
471  * callers of page_lock_es and page_try_reclaim_lock to clear
472  * their setting of this bit if they decide they no longer wish
473  * to gain exclusive access to the page.  Currently only
474  * delete_memory_thread uses this when the delete memory
475  * operation is cancelled.
476  */
477 void
478 page_lock_clr_exclwanted(page_t *pp)
479 {
480 	kmutex_t *pse = PAGE_SE_MUTEX(pp);
481 
482 	mutex_enter(pse);
483 	pp->p_selock &= ~SE_EWANTED;
484 	if (CV_HAS_WAITERS(&pp->p_cv))
485 		cv_broadcast(&pp->p_cv);
486 	mutex_exit(pse);
487 }
488 
489 /*
490  * Read the comments inside of page_lock_es() carefully.
491  *
492  * SE_EXCL callers specifying es == SE_EXCL_WANTED will cause the
493  * SE_EWANTED bit of p_selock to be set when the lock cannot be obtained.
494  * This is used by threads subject to reader-starvation (eg. memory delete).
495  *
496  * When a thread using SE_EXCL_WANTED does not obtain the SE_EXCL lock,
497  * it is expected that it will retry at a later time.  Threads that will
498  * not retry the lock *must* call page_lock_clr_exclwanted to clear the
499  * SE_EWANTED bit.  (When a thread using SE_EXCL_WANTED obtains the lock,
500  * the bit is cleared.)
501  */
502 int
503 page_try_reclaim_lock(page_t *pp, se_t se, int es)
504 {
505 	kmutex_t *pse = PAGE_SE_MUTEX(pp);
506 	selock_t old;
507 
508 	mutex_enter(pse);
509 
510 	old = pp->p_selock;
511 
512 	ASSERT(((es & SE_EXCL_WANTED) == 0) ||
513 	    ((es & SE_EXCL_WANTED) && (se == SE_EXCL)));
514 
515 	if (PP_RETIRED(pp) && !(es & SE_RETIRED)) {
516 		mutex_exit(pse);
517 		VM_STAT_ADD(page_trylock_failed);
518 		return (0);
519 	}
520 
521 	if (se == SE_SHARED && es == 1 && old == 0) {
522 		se = SE_EXCL;
523 	}
524 
525 	if (se == SE_SHARED) {
526 		if (!PP_ISFREE(pp)) {
527 			if (old >= 0) {
528 				/*
529 				 * Readers are not allowed when excl wanted
530 				 */
531 				if ((old & SE_EWANTED) == 0) {
532 					pp->p_selock = old + SE_READER;
533 					mutex_exit(pse);
534 					return (1);
535 				}
536 			}
537 			mutex_exit(pse);
538 			return (0);
539 		}
540 		/*
541 		 * The page is free, so we really want SE_EXCL (below)
542 		 */
543 		VM_STAT_ADD(page_try_reclaim_upgrade);
544 	}
545 
546 	/*
547 	 * The caller wants a writer lock.  We try for it only if
548 	 * SE_EWANTED is not set, or if the caller specified
549 	 * SE_EXCL_WANTED.
550 	 */
551 	if (!(old & SE_EWANTED) || (es & SE_EXCL_WANTED)) {
552 		if ((old & ~SE_EWANTED) == 0) {
553 			/* no reader/writer lock held */
554 			/* this clears out our setting of the SE_EWANTED bit */
555 			pp->p_selock = SE_WRITER;
556 			mutex_exit(pse);
557 			return (1);
558 		}
559 	}
560 	if (es & SE_EXCL_WANTED) {
561 		/* page is locked, set the SE_EWANTED bit */
562 		pp->p_selock |= SE_EWANTED;
563 	}
564 	mutex_exit(pse);
565 	return (0);
566 }
567 
568 /*
569  * Acquire a page's "shared/exclusive" lock, but never block.
570  * Returns 1 on success, 0 on failure.
571  */
572 int
573 page_trylock(page_t *pp, se_t se)
574 {
575 	kmutex_t *pse = PAGE_SE_MUTEX(pp);
576 
577 	mutex_enter(pse);
578 	if (pp->p_selock & SE_EWANTED || PP_RETIRED(pp) ||
579 	    (se == SE_SHARED && PP_PR_NOSHARE(pp))) {
580 		/*
581 		 * Fail if a thread wants exclusive access and page is
582 		 * retired, if the page is slated for retirement, or a
583 		 * share lock is requested.
584 		 */
585 		mutex_exit(pse);
586 		VM_STAT_ADD(page_trylock_failed);
587 		return (0);
588 	}
589 
590 	if (se == SE_EXCL) {
591 		if (pp->p_selock == 0) {
592 			pp->p_selock = SE_WRITER;
593 			mutex_exit(pse);
594 			return (1);
595 		}
596 	} else {
597 		if (pp->p_selock >= 0) {
598 			pp->p_selock += SE_READER;
599 			mutex_exit(pse);
600 			return (1);
601 		}
602 	}
603 	mutex_exit(pse);
604 	return (0);
605 }
606 
607 /*
608  * Variant of page_unlock() specifically for the page freelist
609  * code. The mere existence of this code is a vile hack that
610  * has resulted due to the backwards locking order of the page
611  * freelist manager; please don't call it.
612  */
613 void
614 page_unlock_nocapture(page_t *pp)
615 {
616 	kmutex_t *pse = PAGE_SE_MUTEX(pp);
617 	selock_t old;
618 
619 	mutex_enter(pse);
620 
621 	old = pp->p_selock;
622 	if ((old & ~SE_EWANTED) == SE_READER) {
623 		pp->p_selock = old & ~SE_READER;
624 		if (CV_HAS_WAITERS(&pp->p_cv))
625 			cv_broadcast(&pp->p_cv);
626 	} else if ((old & ~SE_EWANTED) == SE_DELETED) {
627 		panic("page_unlock_nocapture: page %p is deleted", (void *)pp);
628 	} else if (old < 0) {
629 		pp->p_selock &= SE_EWANTED;
630 		if (CV_HAS_WAITERS(&pp->p_cv))
631 			cv_broadcast(&pp->p_cv);
632 	} else if ((old & ~SE_EWANTED) > SE_READER) {
633 		pp->p_selock = old - SE_READER;
634 	} else {
635 		panic("page_unlock_nocapture: page %p is not locked",
636 		    (void *)pp);
637 	}
638 
639 	mutex_exit(pse);
640 }
641 
642 /*
643  * Release the page's "shared/exclusive" lock and wake up anyone
644  * who might be waiting for it.
645  */
646 void
647 page_unlock(page_t *pp)
648 {
649 	kmutex_t *pse = PAGE_SE_MUTEX(pp);
650 	selock_t old;
651 
652 	mutex_enter(pse);
653 
654 	old = pp->p_selock;
655 	if ((old & ~SE_EWANTED) == SE_READER) {
656 		pp->p_selock = old & ~SE_READER;
657 		if (CV_HAS_WAITERS(&pp->p_cv))
658 			cv_broadcast(&pp->p_cv);
659 	} else if ((old & ~SE_EWANTED) == SE_DELETED) {
660 		panic("page_unlock: page %p is deleted", (void *)pp);
661 	} else if (old < 0) {
662 		pp->p_selock &= SE_EWANTED;
663 		if (CV_HAS_WAITERS(&pp->p_cv))
664 			cv_broadcast(&pp->p_cv);
665 	} else if ((old & ~SE_EWANTED) > SE_READER) {
666 		pp->p_selock = old - SE_READER;
667 	} else {
668 		panic("page_unlock: page %p is not locked", (void *)pp);
669 	}
670 
671 	if (pp->p_selock == 0) {
672 		/*
673 		 * If the T_CAPTURING bit is set, that means that we should
674 		 * not try and capture the page again as we could recurse
675 		 * which could lead to a stack overflow panic or spending a
676 		 * relatively long time in the kernel making no progress.
677 		 */
678 		if ((pp->p_toxic & PR_CAPTURE) &&
679 		    !(curthread->t_flag & T_CAPTURING) &&
680 		    !PP_RETIRED(pp)) {
681 			pp->p_selock = SE_WRITER;
682 			mutex_exit(pse);
683 			page_unlock_capture(pp);
684 		} else {
685 			mutex_exit(pse);
686 		}
687 	} else {
688 		mutex_exit(pse);
689 	}
690 }
691 
692 /*
693  * Try to upgrade the lock on the page from a "shared" to an
694  * "exclusive" lock.  Since this upgrade operation is done while
695  * holding the mutex protecting this page, no one else can acquire this page's
696  * lock and change the page. Thus, it is safe to drop the "shared"
697  * lock and attempt to acquire the "exclusive" lock.
698  *
699  * Returns 1 on success, 0 on failure.
700  */
701 int
702 page_tryupgrade(page_t *pp)
703 {
704 	kmutex_t *pse = PAGE_SE_MUTEX(pp);
705 
706 	mutex_enter(pse);
707 	if (!(pp->p_selock & SE_EWANTED)) {
708 		/* no threads want exclusive access, try upgrade */
709 		if (pp->p_selock == SE_READER) {
710 			/* convert to exclusive lock */
711 			pp->p_selock = SE_WRITER;
712 			mutex_exit(pse);
713 			return (1);
714 		}
715 	}
716 	mutex_exit(pse);
717 	return (0);
718 }
719 
720 /*
721  * Downgrade the "exclusive" lock on the page to a "shared" lock
722  * while holding the mutex protecting this page's p_selock field.
723  */
724 void
725 page_downgrade(page_t *pp)
726 {
727 	kmutex_t *pse = PAGE_SE_MUTEX(pp);
728 	int excl_waiting;
729 
730 	ASSERT((pp->p_selock & ~SE_EWANTED) != SE_DELETED);
731 	ASSERT(PAGE_EXCL(pp));
732 
733 	mutex_enter(pse);
734 	excl_waiting =  pp->p_selock & SE_EWANTED;
735 	pp->p_selock = SE_READER | excl_waiting;
736 	if (CV_HAS_WAITERS(&pp->p_cv))
737 		cv_broadcast(&pp->p_cv);
738 	mutex_exit(pse);
739 }
740 
741 void
742 page_lock_delete(page_t *pp)
743 {
744 	kmutex_t *pse = PAGE_SE_MUTEX(pp);
745 
746 	ASSERT(PAGE_EXCL(pp));
747 	ASSERT(pp->p_vnode == NULL);
748 	ASSERT(pp->p_offset == (u_offset_t)-1);
749 	ASSERT(!PP_ISFREE(pp));
750 
751 	mutex_enter(pse);
752 	pp->p_selock = SE_DELETED;
753 	if (CV_HAS_WAITERS(&pp->p_cv))
754 		cv_broadcast(&pp->p_cv);
755 	mutex_exit(pse);
756 }
757 
758 int
759 page_deleted(page_t *pp)
760 {
761 	return (pp->p_selock == SE_DELETED);
762 }
763 
764 /*
765  * Implement the io lock for pages
766  */
767 void
768 page_iolock_init(page_t *pp)
769 {
770 	pp->p_iolock_state = 0;
771 	cv_init(&pp->p_io_cv, NULL, CV_DEFAULT, NULL);
772 }
773 
774 /*
775  * Acquire the i/o lock on a page.
776  */
777 void
778 page_io_lock(page_t *pp)
779 {
780 	kmutex_t *pio;
781 
782 	pio = PAGE_IO_MUTEX(pp);
783 	mutex_enter(pio);
784 	while (pp->p_iolock_state & PAGE_IO_INUSE) {
785 		cv_wait(&(pp->p_io_cv), pio);
786 	}
787 	pp->p_iolock_state |= PAGE_IO_INUSE;
788 	mutex_exit(pio);
789 }
790 
791 /*
792  * Release the i/o lock on a page.
793  */
794 void
795 page_io_unlock(page_t *pp)
796 {
797 	kmutex_t *pio;
798 
799 	pio = PAGE_IO_MUTEX(pp);
800 	mutex_enter(pio);
801 	cv_broadcast(&pp->p_io_cv);
802 	pp->p_iolock_state &= ~PAGE_IO_INUSE;
803 	mutex_exit(pio);
804 }
805 
806 /*
807  * Try to acquire the i/o lock on a page without blocking.
808  * Returns 1 on success, 0 on failure.
809  */
810 int
811 page_io_trylock(page_t *pp)
812 {
813 	kmutex_t *pio;
814 
815 	if (pp->p_iolock_state & PAGE_IO_INUSE)
816 		return (0);
817 
818 	pio = PAGE_IO_MUTEX(pp);
819 	mutex_enter(pio);
820 
821 	if (pp->p_iolock_state & PAGE_IO_INUSE) {
822 		mutex_exit(pio);
823 		return (0);
824 	}
825 	pp->p_iolock_state |= PAGE_IO_INUSE;
826 	mutex_exit(pio);
827 
828 	return (1);
829 }
830 
831 /*
832  * Wait until the i/o lock is not held.
833  */
834 void
835 page_io_wait(page_t *pp)
836 {
837 	kmutex_t *pio;
838 
839 	pio = PAGE_IO_MUTEX(pp);
840 	mutex_enter(pio);
841 	while (pp->p_iolock_state & PAGE_IO_INUSE) {
842 		cv_wait(&(pp->p_io_cv), pio);
843 	}
844 	mutex_exit(pio);
845 }
846 
847 /*
848  * Returns 1 on success, 0 on failure.
849  */
850 int
851 page_io_locked(page_t *pp)
852 {
853 	return (pp->p_iolock_state & PAGE_IO_INUSE);
854 }
855 
856 /*
857  * Assert that the i/o lock on a page is held.
858  * Returns 1 on success, 0 on failure.
859  */
860 int
861 page_iolock_assert(page_t *pp)
862 {
863 	return (page_io_locked(pp));
864 }
865 
866 /*
867  * Wrapper exported to kernel routines that are built
868  * platform-independent (the macro is platform-dependent;
869  * the size of vph_mutex[] is based on NCPU).
870  *
871  * Note that you can do stress testing on this by setting the
872  * variable page_vnode_mutex_stress to something other than
873  * zero in a DEBUG kernel in a debugger after loading the kernel.
874  * Setting it after the kernel is running may not work correctly.
875  */
876 #ifdef DEBUG
877 static int page_vnode_mutex_stress = 0;
878 #endif
879 
880 kmutex_t *
881 page_vnode_mutex(vnode_t *vp)
882 {
883 	if (vp == &kvp)
884 		return (&vph_mutex[VPH_TABLE_SIZE + 0]);
885 
886 	if (vp == &zvp)
887 		return (&vph_mutex[VPH_TABLE_SIZE + 1]);
888 #ifdef DEBUG
889 	if (page_vnode_mutex_stress != 0)
890 		return (&vph_mutex[0]);
891 #endif
892 
893 	return (&vph_mutex[VP_HASH_FUNC(vp)]);
894 }
895 
896 kmutex_t *
897 page_se_mutex(page_t *pp)
898 {
899 	return (PAGE_SE_MUTEX(pp));
900 }
901 
902 #ifdef VM_STATS
903 uint_t pszclck_stat[4];
904 #endif
905 /*
906  * Find, take and return a mutex held by hat_page_demote().
907  * Called by page_demote_vp_pages() before hat_page_demote() call and by
908  * routines that want to block hat_page_demote() but can't do it
909  * via locking all constituent pages.
910  *
911  * Return NULL if p_szc is 0.
912  *
913  * It should only be used for pages that can be demoted by hat_page_demote()
914  * i.e. non swapfs file system pages.  The logic here is lifted from
915  * sfmmu_mlspl_enter() except there's no need to worry about p_szc increase
916  * since the page is locked and not free.
917  *
918  * Hash of the root page is used to find the lock.
919  * To find the root in the presense of hat_page_demote() chageing the location
920  * of the root this routine relies on the fact that hat_page_demote() changes
921  * root last.
922  *
923  * If NULL is returned pp's p_szc is guaranteed to be 0. If non NULL is
924  * returned pp's p_szc may be any value.
925  */
926 kmutex_t *
927 page_szc_lock(page_t *pp)
928 {
929 	kmutex_t	*mtx;
930 	page_t		*rootpp;
931 	uint_t		szc;
932 	uint_t		rszc;
933 	uint_t		pszc = pp->p_szc;
934 
935 	ASSERT(pp != NULL);
936 	ASSERT(PAGE_LOCKED(pp));
937 	ASSERT(!PP_ISFREE(pp));
938 	ASSERT(pp->p_vnode != NULL);
939 	ASSERT(!IS_SWAPFSVP(pp->p_vnode));
940 	ASSERT(!PP_ISKAS(pp));
941 
942 again:
943 	if (pszc == 0) {
944 		VM_STAT_ADD(pszclck_stat[0]);
945 		return (NULL);
946 	}
947 
948 	/* The lock lives in the root page */
949 
950 	rootpp = PP_GROUPLEADER(pp, pszc);
951 	mtx = PAGE_SZC_MUTEX(rootpp);
952 	mutex_enter(mtx);
953 
954 	/*
955 	 * since p_szc can only decrease if pp == rootpp
956 	 * rootpp will be always the same i.e we have the right root
957 	 * regardless of rootpp->p_szc.
958 	 * If location of pp's root didn't change after we took
959 	 * the lock we have the right root. return mutex hashed off it.
960 	 */
961 	if (pp == rootpp || (rszc = rootpp->p_szc) == pszc) {
962 		VM_STAT_ADD(pszclck_stat[1]);
963 		return (mtx);
964 	}
965 
966 	/*
967 	 * root location changed because page got demoted.
968 	 * locate the new root.
969 	 */
970 	if (rszc < pszc) {
971 		szc = pp->p_szc;
972 		ASSERT(szc < pszc);
973 		mutex_exit(mtx);
974 		pszc = szc;
975 		VM_STAT_ADD(pszclck_stat[2]);
976 		goto again;
977 	}
978 
979 	VM_STAT_ADD(pszclck_stat[3]);
980 	/*
981 	 * current hat_page_demote not done yet.
982 	 * wait for it to finish.
983 	 */
984 	mutex_exit(mtx);
985 	rootpp = PP_GROUPLEADER(rootpp, rszc);
986 	mtx = PAGE_SZC_MUTEX(rootpp);
987 	mutex_enter(mtx);
988 	mutex_exit(mtx);
989 	ASSERT(rootpp->p_szc < rszc);
990 	goto again;
991 }
992 
993 int
994 page_szc_lock_assert(page_t *pp)
995 {
996 	page_t *rootpp = PP_PAGEROOT(pp);
997 	kmutex_t *mtx = PAGE_SZC_MUTEX(rootpp);
998 
999 	return (MUTEX_HELD(mtx));
1000 }
1001 
1002 /*
1003  * memseg locking
1004  */
1005 static krwlock_t memsegslock;
1006 
1007 /*
1008  * memlist (phys_install, phys_avail) locking.
1009  */
1010 static krwlock_t memlists_lock;
1011 
1012 int
1013 memsegs_trylock(int writer)
1014 {
1015 	return (rw_tryenter(&memsegslock, writer ? RW_WRITER : RW_READER));
1016 }
1017 
1018 void
1019 memsegs_lock(int writer)
1020 {
1021 	rw_enter(&memsegslock, writer ? RW_WRITER : RW_READER);
1022 }
1023 
1024 /*ARGSUSED*/
1025 void
1026 memsegs_unlock(int writer)
1027 {
1028 	rw_exit(&memsegslock);
1029 }
1030 
1031 int
1032 memsegs_lock_held(void)
1033 {
1034 	return (RW_LOCK_HELD(&memsegslock));
1035 }
1036 
1037 void
1038 memlist_read_lock(void)
1039 {
1040 	rw_enter(&memlists_lock, RW_READER);
1041 }
1042 
1043 void
1044 memlist_read_unlock(void)
1045 {
1046 	rw_exit(&memlists_lock);
1047 }
1048 
1049 void
1050 memlist_write_lock(void)
1051 {
1052 	rw_enter(&memlists_lock, RW_WRITER);
1053 }
1054 
1055 void
1056 memlist_write_unlock(void)
1057 {
1058 	rw_exit(&memlists_lock);
1059 }
1060