xref: /titanic_52/usr/src/uts/common/sys/sunddi.h (revision d1a180b0452ce86577a43be3245d2eacdeec1a34)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #ifndef	_SYS_SUNDDI_H
28 #define	_SYS_SUNDDI_H
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 /*
33  * Sun Specific DDI definitions
34  */
35 
36 #include <sys/isa_defs.h>
37 #include <sys/dditypes.h>
38 #include <sys/ddipropdefs.h>
39 #include <sys/devops.h>
40 #include <sys/time.h>
41 #include <sys/cmn_err.h>
42 #include <sys/ddidevmap.h>
43 #include <sys/ddi_impldefs.h>
44 #include <sys/ddi_implfuncs.h>
45 #include <sys/ddi_isa.h>
46 #include <sys/model.h>
47 #include <sys/devctl.h>
48 #if defined(__i386) || defined(__amd64)
49 #include <sys/dma_engine.h>
50 #endif
51 #include <sys/sunpm.h>
52 #include <sys/nvpair.h>
53 #include <sys/sysevent.h>
54 #include <sys/thread.h>
55 #include <sys/stream.h>
56 #if defined(__GNUC__) && defined(_ASM_INLINES) && defined(_KERNEL)
57 #include <asm/sunddi.h>
58 #endif
59 
60 #ifdef	__cplusplus
61 extern "C" {
62 #endif
63 
64 /*
65  * Generic Sun DDI definitions.
66  */
67 
68 #define	DDI_SUCCESS	(0)	/* successful return */
69 #define	DDI_FAILURE	(-1)	/* unsuccessful return */
70 #define	DDI_NOT_WELL_FORMED (-2)  /* A dev_info node is not valid */
71 #define	DDI_EAGAIN	(-3)	/* not enough interrupt resources */
72 #define	DDI_EINVAL	(-4)	/* invalid request or arguments */
73 #define	DDI_ENOTSUP	(-5)	/* operation is not supported */
74 #define	DDI_EPENDING	(-6)	/* operation or an event is pending */
75 
76 /*
77  * General-purpose DDI error return value definitions
78  */
79 #define	DDI_ENOMEM		1	/* memory not available */
80 #define	DDI_EBUSY		2	/* busy */
81 #define	DDI_ETRANSPORT		3	/* transport down */
82 #define	DDI_ECONTEXT		4	/* context error */
83 
84 
85 /*
86  * General DDI sleep/nosleep allocation flags
87  */
88 #define	DDI_SLEEP	0
89 #define	DDI_NOSLEEP	1
90 
91 /*
92  * The following special nodeid values are reserved for use when creating
93  * nodes ONLY.  They specify the attributes of the DDI_NC_PSEUDO class node
94  * being created:
95  *
96  *  o	DEVI_PSEUDO_NODEID specifics a node without persistence.
97  *  o	DEVI_SID_NODEID specifies a node with persistence.
98  *
99  * A node with the 'persistent' attribute will not be automatically removed by
100  * the framework in the current implementation - driver.conf nodes are without
101  * persistence.
102  *
103  * The actual nodeid value may be assigned by the framework and may be
104  * different than these special values. Drivers may not make assumptions
105  * about the nodeid value that is actually assigned to the node.
106  */
107 
108 #define	DEVI_PSEUDO_NODEID	((int)-1)
109 #define	DEVI_SID_NODEID		((int)-2)
110 
111 #define	DEVI_PSEUDO_NEXNAME	"pseudo"
112 #define	DEVI_ISA_NEXNAME	"isa"
113 #define	DEVI_EISA_NEXNAME	"eisa"
114 
115 /*
116  * ddi_create_minor_node flags
117  */
118 #define	CLONE_DEV		1	/* device is a clone device */
119 #define	PRIVONLY_DEV		0x10	/* policy-based permissions only */
120 
121 /*
122  * Historical values used for the flag field in ddi_create_minor_node.
123  * Future use of flag bits should avoid these fields to keep binary
124  * compatibility
125  * #define	GLOBAL_DEV		0x2
126  * #define	NODEBOUND_DEV		0x4
127  * #define	NODESPECIFIC_DEV	0x6
128  * #define	ENUMERATED_DEV		0x8
129  */
130 
131 /*
132  * Device type defines which are used by the 'node_type' element of the
133  * ddi_minor_data structure
134  */
135 #define	DDI_NT_SERIAL	"ddi_serial"		/* Serial port */
136 #define	DDI_NT_SERIAL_MB "ddi_serial:mb"	/* the 'built-in' serial */
137 						/* ports (the old ttya, b */
138 						/* (,c ,d)) */
139 #define	DDI_NT_SERIAL_DO "ddi_serial:dialout"	/* dialout ports */
140 #define	DDI_NT_SERIAL_MB_DO "ddi_serial:dialout,mb" /* dialout for onboard */
141 						/* ports */
142 #define	DDI_NT_SERIAL_LOMCON "ddi_serial:lomcon" /* LOMlite2 console port */
143 
144 /*
145  * *_CHAN disk type devices have channel numbers or target numbers.
146  * (i.e. ipi and scsi devices)
147  */
148 #define	DDI_NT_BLOCK	"ddi_block"		/* hard disks */
149 /*
150  * The next define is for block type devices that can possible exist on
151  * a sub-bus like the scsi bus or the ipi channel.  The 'disks' program
152  * will pick up on this and create logical names like c0t0d0s0 instead of
153  * c0d0s0
154  */
155 #define	DDI_NT_BLOCK_CHAN	"ddi_block:channel"
156 #define	DDI_NT_BLOCK_WWN	"ddi_block:wwn"
157 #define	DDI_NT_CD	"ddi_block:cdrom"	/* rom drives (cd-rom) */
158 #define	DDI_NT_CD_CHAN	"ddi_block:cdrom:channel" /* rom drives (scsi type) */
159 #define	DDI_NT_FD	"ddi_block:diskette"	/* floppy disks */
160 
161 #define	DDI_NT_ENCLOSURE	"ddi_enclosure"
162 #define	DDI_NT_SCSI_ENCLOSURE	"ddi_enclosure:scsi"
163 
164 
165 #define	DDI_NT_TAPE	"ddi_byte:tape"		/* tape drives */
166 
167 #define	DDI_NT_NET	"ddi_network"		/* DLPI network devices */
168 
169 #define	DDI_NT_NET_WIFI	"ddi_network:wifi"	/* wifi devices */
170 
171 #define	DDI_NT_MAC	"ddi_mac"		/* MAC devices */
172 
173 #define	DDI_NT_DISPLAY	"ddi_display"		/* display devices */
174 
175 #define	DDI_PSEUDO	"ddi_pseudo"		/* general pseudo devices */
176 
177 #define	DDI_NT_AUDIO	"ddi_audio"		/* audio device */
178 
179 #define	DDI_NT_MOUSE	"ddi_mouse"		/* mouse device */
180 
181 #define	DDI_NT_KEYBOARD	"ddi_keyboard"		/* keyboard device */
182 
183 #define	DDI_NT_PARALLEL "ddi_parallel"		/* parallel port */
184 
185 #define	DDI_NT_PRINTER	"ddi_printer"		/* printer device */
186 
187 #define	DDI_NT_UGEN	"ddi_generic:usb"	/* USB generic drv */
188 
189 #define	DDI_NT_NEXUS	"ddi_ctl:devctl"	/* nexus drivers */
190 
191 #define	DDI_NT_SCSI_NEXUS	"ddi_ctl:devctl:scsi"	/* nexus drivers */
192 
193 #define	DDI_NT_ATTACHMENT_POINT	"ddi_ctl:attachment_point" /* attachment pt */
194 
195 #define	DDI_NT_SCSI_ATTACHMENT_POINT	"ddi_ctl:attachment_point:scsi"
196 						/* scsi attachment pt */
197 #define	DDI_NT_PCI_ATTACHMENT_POINT	"ddi_ctl:attachment_point:pci"
198 						/* PCI attachment pt */
199 #define	DDI_NT_SBD_ATTACHMENT_POINT	"ddi_ctl:attachment_point:sbd"
200 						/* generic bd attachment pt */
201 #define	DDI_NT_FC_ATTACHMENT_POINT	"ddi_ctl:attachment_point:fc"
202 						/* FC attachment pt */
203 #define	DDI_NT_USB_ATTACHMENT_POINT	"ddi_ctl:attachment_point:usb"
204 						/* USB devices */
205 #define	DDI_NT_BLOCK_FABRIC		"ddi_block:fabric"
206 						/* Fabric Devices */
207 #define	DDI_NT_IB_ATTACHMENT_POINT	"ddi_ctl:attachment_point:ib"
208 						/* IB devices */
209 #define	DDI_NT_SMARTCARD_READER	"ddi_smartcard_reader" /* Smartcard reader */
210 
211 #define	DDI_NT_AV_ASYNC "ddi_av:async"		/* asynchronous AV device */
212 #define	DDI_NT_AV_ISOCH "ddi_av:isoch"		/* isochronous AV device */
213 
214 /* Device types used for agpgart driver related devices */
215 #define	DDI_NT_AGP_PSEUDO	"ddi_agp:pseudo" /* agpgart pseudo device */
216 #define	DDI_NT_AGP_MASTER	"ddi_agp:master" /* agp master device */
217 #define	DDI_NT_AGP_TARGET	"ddi_agp:target" /* agp target device */
218 #define	DDI_NT_AGP_CPUGART	"ddi_agp:cpugart" /* amd64 on-cpu gart device */
219 
220 #define	DDI_NT_REGACC		"ddi_tool_reg"	/* tool register access */
221 #define	DDI_NT_INTRCTL		"ddi_tool_intr"	/* tool intr access */
222 
223 /*
224  * DDI event definitions
225  */
226 #define	EC_DEVFS	"EC_devfs"	/* Event class devfs */
227 #define	EC_DDI		"EC_ddi"	/* Event class ddi */
228 
229 /* Class devfs subclasses */
230 #define	ESC_DEVFS_MINOR_CREATE	"ESC_devfs_minor_create"
231 #define	ESC_DEVFS_MINOR_REMOVE	"ESC_devfs_minor_remove"
232 #define	ESC_DEVFS_DEVI_ADD	"ESC_devfs_devi_add"
233 #define	ESC_DEVFS_DEVI_REMOVE	"ESC_devfs_devi_remove"
234 #define	ESC_DEVFS_INSTANCE_MOD	"ESC_devfs_instance_mod"
235 #define	ESC_DEVFS_BRANCH_ADD	"ESC_devfs_branch_add"
236 #define	ESC_DEVFS_BRANCH_REMOVE	"ESC_devfs_branch_remove"
237 
238 /* Class ddi subclasses */
239 #define	ESC_DDI_INITIATOR_REGISTER	"ESC_ddi_initiator_register"
240 #define	ESC_DDI_INITIATOR_UNREGISTER	"ESC_ddi_initiator_unregister"
241 
242 /* DDI/NDI event publisher */
243 #define	EP_DDI	SUNW_KERN_PUB"ddi"
244 
245 /*
246  * devfs event class attributes
247  *
248  * The following attributes are private to EC_DEVFS event data.
249  */
250 #define	DEVFS_DRIVER_NAME	"di.driver"
251 #define	DEVFS_INSTANCE		"di.instance"
252 #define	DEVFS_PATHNAME		"di.path"
253 #define	DEVFS_DEVI_CLASS	"di.devi_class"
254 #define	DEVFS_BRANCH_EVENT	"di.branch_event"
255 #define	DEVFS_MINOR_NAME	"mi.name"
256 #define	DEVFS_MINOR_NODETYPE	"mi.nodetype"
257 #define	DEVFS_MINOR_ISCLONE	"mi.isclone"
258 #define	DEVFS_MINOR_MAJNUM	"mi.majorno"
259 #define	DEVFS_MINOR_MINORNUM	"mi.minorno"
260 
261 /*
262  * ddi event class payload
263  *
264  * The following attributes are private to EC_DDI event data.
265  */
266 #define	DDI_DRIVER_NAME		"ddi.driver"
267 #define	DDI_DRIVER_MAJOR	"ddi.major"
268 #define	DDI_INSTANCE		"ddi.instance"
269 #define	DDI_PATHNAME		"ddi.path"
270 #define	DDI_CLASS		"ddi.class"
271 
272 /*
273  * Fault-related definitions
274  *
275  * The specific numeric values have been chosen to be ordered, but
276  * not consecutive, to allow for future interpolation if required.
277  */
278 typedef enum {
279     DDI_SERVICE_LOST = -32,
280     DDI_SERVICE_DEGRADED = -16,
281     DDI_SERVICE_UNAFFECTED = 0,
282     DDI_SERVICE_RESTORED = 16
283 } ddi_fault_impact_t;
284 
285 typedef enum {
286     DDI_DATAPATH_FAULT = -32,
287     DDI_DEVICE_FAULT = -16,
288     DDI_EXTERNAL_FAULT = 0
289 } ddi_fault_location_t;
290 
291 typedef enum {
292     DDI_DEVSTATE_OFFLINE = -32,
293     DDI_DEVSTATE_DOWN = -16,
294     DDI_DEVSTATE_QUIESCED = 0,
295     DDI_DEVSTATE_DEGRADED = 16,
296     DDI_DEVSTATE_UP = 32
297 } ddi_devstate_t;
298 
299 #ifdef	_KERNEL
300 
301 /*
302  * Common property definitions
303  */
304 #define	DDI_FORCEATTACH		"ddi-forceattach"
305 #define	DDI_NO_AUTODETACH	"ddi-no-autodetach"
306 
307 /*
308  * Values that the function supplied to the dev_info
309  * tree traversal functions defined below must return.
310  */
311 
312 /*
313  * Continue search, if appropriate.
314  */
315 #define	DDI_WALK_CONTINUE	0
316 
317 /*
318  * Terminate current depth of traversal. That is, terminate
319  * the current traversal of children nodes, but continue
320  * traversing sibling nodes and their children (if any).
321  */
322 
323 #define	DDI_WALK_PRUNECHILD	-1
324 
325 /*
326  * Terminate current width of traversal. That is, terminate
327  * the current traversal of sibling nodes, but continue with
328  * traversing children nodes and their siblings (if appropriate).
329  */
330 
331 #define	DDI_WALK_PRUNESIB	-2
332 
333 /*
334  * Terminate the entire search.
335  */
336 
337 #define	DDI_WALK_TERMINATE	-3
338 
339 /*
340  * Terminate the entire search because an error occurred in function
341  */
342 #define	DDI_WALK_ERROR		-4
343 
344 /*
345  * Drivers that are prepared to support full driver layering
346  * should create and export a null-valued property of the following
347  * name.
348  *
349  * Such drivers should be prepared to be called with FKLYR in
350  * the 'flag' argument of their open(9E), close(9E) routines, and
351  * with FKIOCTL in the 'mode' argument of their ioctl(9E) routines.
352  *
353  * See ioctl(9E) and ddi_copyin(9F) for details.
354  */
355 #define	DDI_KERNEL_IOCTL	"ddi-kernel-ioctl"
356 
357 /*
358  * Model definitions for ddi_mmap_get_model(9F) and ddi_model_convert_from(9F).
359  */
360 #define	DDI_MODEL_MASK		DATAMODEL_MASK	/* Note: 0x0FF00000 */
361 #define	DDI_MODEL_ILP32		DATAMODEL_ILP32
362 #define	DDI_MODEL_LP64		DATAMODEL_LP64
363 #define	DDI_MODEL_NATIVE	DATAMODEL_NATIVE
364 #define	DDI_MODEL_NONE		DATAMODEL_NONE
365 
366 /*
367  * Functions and data references which really should be in <sys/ddi.h>
368  */
369 
370 extern int maxphys;
371 extern void minphys(struct buf *);
372 extern int physio(int (*)(struct buf *), struct buf *, dev_t,
373 	int, void (*)(struct buf *), struct uio *);
374 extern void disksort(struct diskhd *, struct buf *);
375 
376 extern long strtol(const char *, char **, int);
377 extern unsigned long strtoul(const char *, char **, int);
378 extern size_t strlen(const char *) __PURE;
379 extern char *strcpy(char *, const char *);
380 extern char *strncpy(char *, const char *, size_t);
381 /* Need to be consistent with <string.h> C++ definition for strchr() */
382 #if __cplusplus >= 199711L
383 extern const char *strchr(const char *, int);
384 #ifndef	_STRCHR_INLINE
385 #define	_STRCHR_INLINE
386 extern	"C++" {
387 	inline char *strchr(char *__s, int __c) {
388 		return (char *)strchr((const char *)__s, __c);
389 	}
390 }
391 #endif	/* _STRCHR_INLINE */
392 #else
393 extern char *strchr(const char *, int);
394 #endif	/* __cplusplus >= 199711L */
395 #define	DDI_STRSAME(s1, s2)	((*(s1) == *(s2)) && (strcmp((s1), (s2)) == 0))
396 extern int strcmp(const char *, const char *) __PURE;
397 extern int strncmp(const char *, const char *, size_t) __PURE;
398 extern char *strncat(char *, const char *, size_t);
399 extern size_t strlcat(char *, const char *, size_t);
400 extern size_t strlcpy(char *, const char *, size_t);
401 extern size_t strspn(const char *, const char *);
402 extern int bcmp(const void *, const void *, size_t) __PURE;
403 extern int stoi(char **);
404 extern void numtos(ulong_t, char *);
405 extern void bcopy(const void *, void *, size_t);
406 extern void bzero(void *, size_t);
407 
408 extern void *memcpy(void *, const  void  *, size_t);
409 extern void *memset(void *, int, size_t);
410 extern void *memmove(void *, const void *, size_t);
411 extern int memcmp(const void *, const void *, size_t) __PURE;
412 /* Need to be consistent with <string.h> C++ definition for memchr() */
413 #if __cplusplus >= 199711L
414 extern const void *memchr(const void *, int, size_t);
415 #ifndef	_MEMCHR_INLINE
416 #define	_MEMCHR_INLINE
417 extern "C++" {
418 	inline void *memchr(void * __s, int __c, size_t __n) {
419 		return (void *)memchr((const void *)__s, __c, __n);
420 	}
421 }
422 #endif  /* _MEMCHR_INLINE */
423 #else
424 extern void *memchr(const void *, int, size_t);
425 #endif /* __cplusplus >= 199711L */
426 
427 extern int ddi_strtol(const char *, char **, int, long *);
428 extern int ddi_strtoul(const char *, char **, int, unsigned long *);
429 
430 /*
431  * ddi_map_regs
432  *
433  *	Map in the register set given by rnumber.
434  *	The register number determine which register
435  *	set will be mapped if more than one exists.
436  *	The parent driver gets the information
437  *	from parent private data and sets up the
438  *	appropriate mappings and returns the kernel
439  *	virtual address of the register set in *kaddrp.
440  *	The offset specifies an offset into the register
441  *	space to start from and len indicates the size
442  *	of the area to map. If len and offset are 0 then
443  *	the entire space is mapped.  It returns DDI_SUCCESS on
444  *	success or DDI_FAILURE otherwise.
445  *
446  */
447 int
448 ddi_map_regs(dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp,
449 	off_t offset, off_t len);
450 
451 /*
452  * ddi_unmap_regs
453  *
454  *	Undo mappings set up by ddi_map_regs.
455  *	The register number determines which register
456  *	set will be unmapped if more than one exists.
457  *	This is provided for drivers preparing
458  *	to detach themselves from the system to
459  *	allow them to release allocated mappings.
460  *
461  *	The kaddrp and len specify the area to be
462  *	unmapped. *kaddrp was returned from ddi_map_regs
463  *	and len should match what ddi_map_regs was called
464  *	with.
465  */
466 
467 void
468 ddi_unmap_regs(dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp,
469 	off_t offset, off_t len);
470 
471 int
472 ddi_map(dev_info_t *dp, ddi_map_req_t *mp, off_t offset, off_t len,
473 	caddr_t *addrp);
474 
475 int
476 ddi_apply_range(dev_info_t *dip, dev_info_t *rdip, struct regspec *rp);
477 
478 /*
479  * ddi_rnumber_to_regspec: Not for use by leaf drivers.
480  */
481 struct regspec *
482 ddi_rnumber_to_regspec(dev_info_t *dip, int rnumber);
483 
484 int
485 ddi_bus_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, off_t offset,
486 	off_t len, caddr_t *vaddrp);
487 
488 int
489 nullbusmap(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, off_t offset,
490 	off_t len, caddr_t *vaddrp);
491 
492 #ifdef _LP64
493 
494 int ddi_peek8(dev_info_t *dip, int8_t *addr, int8_t *val_p);
495 int ddi_peek16(dev_info_t *dip, int16_t *addr, int16_t *val_p);
496 int ddi_peek32(dev_info_t *dip, int32_t *addr, int32_t *val_p);
497 int ddi_peek64(dev_info_t *dip, int64_t *addr, int64_t *val_p);
498 
499 int ddi_poke8(dev_info_t *dip, int8_t *addr, int8_t val);
500 int ddi_poke16(dev_info_t *dip, int16_t *addr, int16_t val);
501 int ddi_poke32(dev_info_t *dip, int32_t *addr, int32_t val);
502 int ddi_poke64(dev_info_t *dip, int64_t *addr, int64_t val);
503 
504 #else /* _ILP32 */
505 
506 int ddi_peekc(dev_info_t *dip, int8_t *addr, int8_t *val_p);
507 #define	ddi_peek8	ddi_peekc
508 
509 int ddi_peeks(dev_info_t *dip, int16_t *addr, int16_t *val_p);
510 #define	ddi_peek16	ddi_peeks
511 
512 int ddi_peekl(dev_info_t *dip, int32_t *addr, int32_t *val_p);
513 #define	ddi_peek32	ddi_peekl
514 
515 int ddi_peekd(dev_info_t *dip, int64_t *addr, int64_t *val_p);
516 #define	ddi_peek64	ddi_peekd
517 
518 int ddi_pokec(dev_info_t *dip, int8_t *addr, int8_t val);
519 #define	ddi_poke8	ddi_pokec
520 
521 int ddi_pokes(dev_info_t *dip, int16_t *addr, int16_t val);
522 #define	ddi_poke16	ddi_pokes
523 
524 int ddi_pokel(dev_info_t *dip, int32_t *addr, int32_t val);
525 #define	ddi_poke32	ddi_pokel
526 
527 int ddi_poked(dev_info_t *dip, int64_t *addr, int64_t val);
528 #define	ddi_poke64	ddi_poked
529 
530 #endif /* _LP64 */
531 
532 /*
533  * Peek and poke to and from a uio structure in xfersize pieces,
534  * using the parent nexi.
535  */
536 int ddi_peekpokeio(dev_info_t *devi, struct uio *uio, enum uio_rw rw,
537 	caddr_t addr, size_t len, uint_t xfersize);
538 
539 /*
540  * Pagesize conversions using the parent nexi
541  */
542 unsigned long ddi_btop(dev_info_t *dip, unsigned long bytes);
543 unsigned long ddi_btopr(dev_info_t *dip, unsigned long bytes);
544 unsigned long ddi_ptob(dev_info_t *dip, unsigned long pages);
545 
546 /*
547  * There are no more "block" interrupt functions, per se.
548  * All thread of control should be done with MP/MT lockings.
549  *
550  * However, there are certain times in which a driver needs
551  * absolutely a critical guaranteed non-preemptable time
552  * in which to execute a few instructions.
553  *
554  * The following pair of functions attempt to guarantee this,
555  * but they are dangerous to use. That is, use them with
556  * extreme care. They do not guarantee to stop other processors
557  * from executing, but they do guarantee that the caller
558  * of ddi_enter_critical will continue to run until the
559  * caller calls ddi_exit_critical. No intervening DDI functions
560  * may be called between an entry and an exit from a critical
561  * region.
562  *
563  * ddi_enter_critical returns an integer identifier which must
564  * be passed to ddi_exit_critical.
565  *
566  * Be very sparing in the use of these functions since it is
567  * likely that absolutely nothing else can occur in the system
568  * whilst in the critical region.
569  */
570 
571 unsigned int
572 ddi_enter_critical(void);
573 
574 void
575 ddi_exit_critical(unsigned int);
576 
577 /*
578  * devmap functions
579  */
580 int
581 devmap_setup(dev_t dev, offset_t off, ddi_as_handle_t as, caddr_t *addrp,
582 	size_t len, uint_t prot, uint_t maxprot, uint_t flags,
583 	struct cred *cred);
584 
585 int
586 ddi_devmap_segmap(dev_t dev, off_t off, ddi_as_handle_t as, caddr_t *addrp,
587 	off_t len, uint_t prot, uint_t maxprot, uint_t flags,
588 	struct cred *cred);
589 
590 int
591 devmap_load(devmap_cookie_t dhp, offset_t offset, size_t len, uint_t type,
592 	uint_t rw);
593 
594 int
595 devmap_unload(devmap_cookie_t dhp, offset_t offset, size_t len);
596 
597 int
598 devmap_devmem_setup(devmap_cookie_t dhp, dev_info_t *dip,
599 	struct devmap_callback_ctl *callback_ops,
600 	uint_t rnumber, offset_t roff, size_t len, uint_t maxprot,
601 	uint_t flags, ddi_device_acc_attr_t *accattrp);
602 
603 int
604 devmap_umem_setup(devmap_cookie_t dhp, dev_info_t *dip,
605 	struct devmap_callback_ctl *callback_ops,
606 	ddi_umem_cookie_t cookie, offset_t off, size_t len, uint_t maxprot,
607 	uint_t flags, ddi_device_acc_attr_t *accattrp);
608 
609 int
610 devmap_devmem_remap(devmap_cookie_t dhp, dev_info_t *dip,
611 	uint_t rnumber, offset_t roff, size_t len, uint_t maxprot,
612 	uint_t flags, ddi_device_acc_attr_t *accattrp);
613 
614 int
615 devmap_umem_remap(devmap_cookie_t dhp, dev_info_t *dip,
616 	ddi_umem_cookie_t cookie, offset_t off, size_t len, uint_t maxprot,
617 	uint_t flags, ddi_device_acc_attr_t *accattrp);
618 
619 void
620 devmap_set_ctx_timeout(devmap_cookie_t dhp, clock_t ticks);
621 
622 int
623 devmap_default_access(devmap_cookie_t dhp, void *pvtp, offset_t off,
624 	size_t len, uint_t type, uint_t rw);
625 
626 int
627 devmap_do_ctxmgt(devmap_cookie_t dhp, void *pvtp, offset_t off, size_t len,
628 	uint_t type, uint_t rw, int (*ctxmgt)(devmap_cookie_t, void *, offset_t,
629 	size_t, uint_t, uint_t));
630 
631 
632 void *ddi_umem_alloc(size_t size, int flag, ddi_umem_cookie_t *cookiep);
633 
634 void ddi_umem_free(ddi_umem_cookie_t cookie);
635 
636 /*
637  * Functions to lock user memory and do repeated I/O or do devmap_umem_setup
638  */
639 int
640 ddi_umem_lock(caddr_t addr, size_t size, int flags, ddi_umem_cookie_t *cookie);
641 
642 void
643 ddi_umem_unlock(ddi_umem_cookie_t cookie);
644 
645 struct buf *
646 ddi_umem_iosetup(ddi_umem_cookie_t cookie, off_t off, size_t len, int direction,
647     dev_t dev, daddr_t blkno, int (*iodone)(struct buf *), int sleepflag);
648 
649 /*
650  * Mapping functions
651  */
652 int
653 ddi_segmap(dev_t dev, off_t offset, struct as *asp, caddr_t *addrp, off_t len,
654 	uint_t prot, uint_t maxprot, uint_t flags, cred_t *credp);
655 
656 int
657 ddi_segmap_setup(dev_t dev, off_t offset, struct as *as, caddr_t *addrp,
658 	off_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cred,
659 	ddi_device_acc_attr_t *accattrp, uint_t rnumber);
660 
661 int
662 ddi_map_fault(dev_info_t *dip, struct hat *hat, struct seg *seg, caddr_t addr,
663 	struct devpage *dp, pfn_t pfn, uint_t prot, uint_t lock);
664 
665 int
666 ddi_device_mapping_check(dev_t dev, ddi_device_acc_attr_t *accattrp,
667 	uint_t rnumber, uint_t *hat_flags);
668 
669 /*
670  * Property functions:   See also, ddipropdefs.h.
671  *			In general, the underlying driver MUST be held
672  *			to call it's property functions.
673  */
674 
675 /*
676  * Used to create, modify, and lookup integer properties
677  */
678 int ddi_prop_get_int(dev_t match_dev, dev_info_t *dip, uint_t flags,
679     char *name, int defvalue);
680 int64_t ddi_prop_get_int64(dev_t match_dev, dev_info_t *dip, uint_t flags,
681     char *name, int64_t defvalue);
682 int ddi_prop_lookup_int_array(dev_t match_dev, dev_info_t *dip, uint_t flags,
683     char *name, int **data, uint_t *nelements);
684 int ddi_prop_lookup_int64_array(dev_t match_dev, dev_info_t *dip, uint_t flags,
685     char *name, int64_t **data, uint_t *nelements);
686 int ddi_prop_update_int(dev_t match_dev, dev_info_t *dip,
687     char *name, int data);
688 int ddi_prop_update_int64(dev_t match_dev, dev_info_t *dip,
689     char *name, int64_t data);
690 int ddi_prop_update_int_array(dev_t match_dev, dev_info_t *dip,
691     char *name, int *data, uint_t nelements);
692 int ddi_prop_update_int64_array(dev_t match_dev, dev_info_t *dip,
693     char *name, int64_t *data, uint_t nelements);
694 /*
695  * Used to create, modify, and lookup string properties
696  */
697 int ddi_prop_lookup_string(dev_t match_dev, dev_info_t *dip, uint_t flags,
698     char *name, char **data);
699 int ddi_prop_lookup_string_array(dev_t match_dev, dev_info_t *dip, uint_t flags,
700     char *name, char ***data, uint_t *nelements);
701 int ddi_prop_update_string(dev_t match_dev, dev_info_t *dip,
702     char *name, char *data);
703 int ddi_prop_update_string_array(dev_t match_dev, dev_info_t *dip,
704     char *name, char **data, uint_t nelements);
705 
706 /*
707  * Used to create, modify, and lookup byte properties
708  */
709 int ddi_prop_lookup_byte_array(dev_t match_dev, dev_info_t *dip, uint_t flags,
710     char *name, uchar_t **data, uint_t *nelements);
711 int ddi_prop_update_byte_array(dev_t match_dev, dev_info_t *dip,
712     char *name, uchar_t *data, uint_t nelements);
713 
714 /*
715  * Used to verify the existence of a property or to see if a boolean
716  * property exists.
717  */
718 int ddi_prop_exists(dev_t match_dev, dev_info_t *dip, uint_t flags, char *name);
719 
720 /*
721  * Used to free the data returned by the above property routines.
722  */
723 void ddi_prop_free(void *data);
724 
725 /*
726  * nopropop: For internal use in `dummy' cb_prop_op functions only
727  */
728 
729 int
730 nopropop(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
731 	char *name, caddr_t valuep, int *lengthp);
732 
733 /*
734  * ddi_prop_op: The basic property operator for drivers.
735  *
736  * In ddi_prop_op, the type of valuep is interpreted based on prop_op:
737  *
738  *	prop_op			valuep
739  *	------			------
740  *
741  *	PROP_LEN		<unused>
742  *
743  *	PROP_LEN_AND_VAL_BUF	Pointer to callers buffer
744  *
745  *	PROP_LEN_AND_VAL_ALLOC	Address of callers pointer (will be set to
746  *				address of allocated buffer, if successful)
747  */
748 
749 int
750 ddi_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
751 	char *name, caddr_t valuep, int *lengthp);
752 
753 /* ddi_prop_op_size: for drivers that implement size in bytes */
754 int
755 ddi_prop_op_size(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
756 	int mod_flags, char *name, caddr_t valuep, int *lengthp,
757 	uint64_t size64);
758 
759 /* ddi_prop_op_nblocks: for drivers that implement size in DEV_BSIZE blocks */
760 int
761 ddi_prop_op_nblocks(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
762 	int mod_flags, char *name, caddr_t valuep, int *lengthp,
763 	uint64_t nblocks64);
764 
765 /*
766  * Variable length props...
767  */
768 
769 /*
770  * ddi_getlongprop:	Get variable length property len+val into a buffer
771  *		allocated by property provider via kmem_alloc. Requester
772  *		is responsible for freeing returned property via kmem_free.
773  *
774  * 	Arguments:
775  *
776  *	dev:	Input:	dev_t of property.
777  *	dip:	Input:	dev_info_t pointer of child.
778  *	flags:	Input:	Possible flag modifiers are:
779  *		DDI_PROP_DONTPASS:	Don't pass to parent if prop not found.
780  *		DDI_PROP_CANSLEEP:	Memory allocation may sleep.
781  *	name:	Input:	name of property.
782  *	valuep:	Output:	Addr of callers buffer pointer.
783  *	lengthp:Output:	*lengthp will contain prop length on exit.
784  *
785  * 	Possible Returns:
786  *
787  *		DDI_PROP_SUCCESS:	Prop found and returned.
788  *		DDI_PROP_NOT_FOUND:	Prop not found
789  *		DDI_PROP_UNDEFINED:	Prop explicitly undefined.
790  *		DDI_PROP_NO_MEMORY:	Prop found, but unable to alloc mem.
791  */
792 
793 int
794 ddi_getlongprop(dev_t dev, dev_info_t *dip, int flags,
795 	char *name, caddr_t valuep, int *lengthp);
796 
797 /*
798  *
799  * ddi_getlongprop_buf:		Get long prop into pre-allocated callers
800  *				buffer. (no memory allocation by provider).
801  *
802  *	dev:	Input:	dev_t of property.
803  *	dip:	Input:	dev_info_t pointer of child.
804  *	flags:	Input:	DDI_PROP_DONTPASS or NULL
805  *	name:	Input:	name of property
806  *	valuep:	Input:	ptr to callers buffer.
807  *	lengthp:I/O:	ptr to length of callers buffer on entry,
808  *			actual length of property on exit.
809  *
810  *	Possible returns:
811  *
812  *		DDI_PROP_SUCCESS	Prop found and returned
813  *		DDI_PROP_NOT_FOUND	Prop not found
814  *		DDI_PROP_UNDEFINED	Prop explicitly undefined.
815  *		DDI_PROP_BUF_TOO_SMALL	Prop found, callers buf too small,
816  *					no value returned, but actual prop
817  *					length returned in *lengthp
818  *
819  */
820 
821 int
822 ddi_getlongprop_buf(dev_t dev, dev_info_t *dip, int flags,
823 	char *name, caddr_t valuep, int *lengthp);
824 
825 /*
826  * Integer/boolean sized props.
827  *
828  * Call is value only... returns found boolean or int sized prop value or
829  * defvalue if prop not found or is wrong length or is explicitly undefined.
830  * Only flag is DDI_PROP_DONTPASS...
831  *
832  * By convention, this interface returns boolean (0) sized properties
833  * as value (int)1.
834  */
835 
836 int
837 ddi_getprop(dev_t dev, dev_info_t *dip, int flags, char *name, int defvalue);
838 
839 /*
840  * Get prop length interface: flags are 0 or DDI_PROP_DONTPASS
841  * if returns DDI_PROP_SUCCESS, length returned in *lengthp.
842  */
843 
844 int
845 ddi_getproplen(dev_t dev, dev_info_t *dip, int flags, char *name, int *lengthp);
846 
847 
848 /*
849  * Interface to create/modify a managed property on child's behalf...
850  * Only flag is DDI_PROP_CANSLEEP to allow memory allocation to sleep
851  * if no memory available for internal prop structure.  Long property
852  * (non integer sized) value references are not copied.
853  *
854  * Define property with DDI_DEV_T_NONE dev_t for properties not associated
855  * with any particular dev_t. Use the same dev_t when modifying or undefining
856  * a property.
857  *
858  * No guarantee on order of property search, so don't mix the same
859  * property name with wildcard and non-wildcard dev_t's.
860  */
861 
862 /*
863  * ddi_prop_create:	Define a managed property:
864  */
865 
866 int
867 ddi_prop_create(dev_t dev, dev_info_t *dip, int flag,
868 	char *name, caddr_t value, int length);
869 
870 /*
871  * ddi_prop_modify:	Modify a managed property value
872  */
873 
874 int
875 ddi_prop_modify(dev_t dev, dev_info_t *dip, int flag,
876 	char *name, caddr_t value, int length);
877 
878 /*
879  * ddi_prop_remove:	Undefine a managed property:
880  */
881 
882 int
883 ddi_prop_remove(dev_t dev, dev_info_t *dip, char *name);
884 
885 /*
886  * ddi_prop_remove_all:		Used before unloading a driver to remove
887  *				all properties. (undefines all dev_t's props.)
888  *				Also removes `undefined' prop defs.
889  */
890 
891 void
892 ddi_prop_remove_all(dev_info_t *dip);
893 
894 
895 /*
896  * ddi_prop_undefine:	Explicitly undefine a property.  Property
897  *			searches which match this property return
898  *			the error code DDI_PROP_UNDEFINED.
899  *
900  *			Use ddi_prop_remove to negate effect of
901  *			ddi_prop_undefine
902  */
903 
904 int
905 ddi_prop_undefine(dev_t dev, dev_info_t *dip, int flag, char *name);
906 
907 
908 /*
909  * The default ddi_bus_prop_op wrapper...
910  */
911 
912 int
913 ddi_bus_prop_op(dev_t dev, dev_info_t *dip, dev_info_t *ch_dip,
914 	ddi_prop_op_t prop_op, int mod_flags,
915 	char *name, caddr_t valuep, int *lengthp);
916 
917 
918 /*
919  * Routines to traverse the tree of dev_info nodes.
920  * The general idea of these functions is to provide
921  * various tree traversal utilities. For each node
922  * that the tree traversal function finds, a caller
923  * supplied function is called with arguments of
924  * the current node and a caller supplied argument.
925  * The caller supplied function should return one
926  * of the integer values defined below which will
927  * indicate to the tree traversal function whether
928  * the traversal should be continued, and if so, how,
929  * or whether the traversal should terminate.
930  */
931 
932 /*
933  * This general-purpose routine traverses the tree of dev_info nodes,
934  * starting from the given node, and calls the given function for each
935  * node that it finds with the current node and the pointer arg (which
936  * can point to a structure of information that the function
937  * needs) as arguments.
938  *
939  * It does the walk a layer at a time, not depth-first.
940  *
941  * The given function must return one of the values defined above.
942  *
943  */
944 
945 void
946 ddi_walk_devs(dev_info_t *, int (*)(dev_info_t *, void *), void *);
947 
948 /*
949  * Routines to get at elements of the dev_info structure
950  */
951 
952 /*
953  * ddi_node_name gets the device's 'name' from the device node.
954  *
955  * ddi_binding_name gets the string the OS used to bind the node to a driver,
956  * in certain cases, the binding name may be different from the node name,
957  * if the node name does not name a specific device driver.
958  *
959  * ddi_get_name is a synonym for ddi_binding_name().
960  */
961 char *
962 ddi_get_name(dev_info_t *dip);
963 
964 char *
965 ddi_binding_name(dev_info_t *dip);
966 
967 const char *
968 ddi_driver_name(dev_info_t *dip);
969 
970 major_t
971 ddi_driver_major(dev_info_t *dip);
972 
973 major_t
974 ddi_compatible_driver_major(dev_info_t *dip, char **formp);
975 
976 char *
977 ddi_node_name(dev_info_t *dip);
978 
979 int
980 ddi_get_nodeid(dev_info_t *dip);
981 
982 int
983 ddi_get_instance(dev_info_t *dip);
984 
985 struct dev_ops *
986 ddi_get_driver(dev_info_t *dip);
987 
988 void
989 ddi_set_driver(dev_info_t *dip, struct dev_ops *devo);
990 
991 void
992 ddi_set_driver_private(dev_info_t *dip, void *data);
993 
994 void *
995 ddi_get_driver_private(dev_info_t *dip);
996 
997 /*
998  * ddi_dev_is_needed tells system that a device is about to use a
999  * component. Returns when component is ready.
1000  */
1001 int
1002 ddi_dev_is_needed(dev_info_t *dip, int cmpt, int level);
1003 
1004 /*
1005  * check if DDI_SUSPEND may result in power being removed from a device.
1006  */
1007 int
1008 ddi_removing_power(dev_info_t *dip);
1009 
1010 /*
1011  *  (Obsolete) power entry point
1012  */
1013 int
1014 ddi_power(dev_info_t *dip, int cmpt, int level);
1015 
1016 /*
1017  * ddi_get_parent requires that the branch of the tree with the
1018  * node be held (ddi_hold_installed_driver) or that the devinfo tree
1019  * lock be held
1020  */
1021 dev_info_t *
1022 ddi_get_parent(dev_info_t *dip);
1023 
1024 /*
1025  * ddi_get_child and ddi_get_next_sibling require that the devinfo
1026  * tree lock be held
1027  */
1028 dev_info_t *
1029 ddi_get_child(dev_info_t *dip);
1030 
1031 dev_info_t *
1032 ddi_get_next_sibling(dev_info_t *dip);
1033 
1034 dev_info_t *
1035 ddi_get_next(dev_info_t *dip);
1036 
1037 void
1038 ddi_set_next(dev_info_t *dip, dev_info_t *nextdip);
1039 
1040 /*
1041  * dev_info manipulation functions
1042  */
1043 
1044 /*
1045  * Add and remove child devices. These are part of the system framework.
1046  *
1047  * ddi_add_child creates a dev_info structure with the passed name,
1048  * nodeid and instance arguments and makes it a child of pdip. Devices
1049  * that are known directly by the hardware have real nodeids; devices
1050  * that are software constructs use the defined DEVI_PSEUDO_NODEID
1051  * for the node id.
1052  *
1053  * ddi_remove_node removes the node from the tree. This fails if this
1054  * child has children. Parent and driver private data should already
1055  * be released (freed) prior to calling this function.  If flag is
1056  * non-zero, the child is removed from it's linked list of instances.
1057  */
1058 dev_info_t *
1059 ddi_add_child(dev_info_t *pdip, char *name, uint_t nodeid, uint_t instance);
1060 
1061 int
1062 ddi_remove_child(dev_info_t *dip, int flag);
1063 
1064 /*
1065  * Given the major number for a driver, make sure that dev_info nodes
1066  * are created form the driver's hwconf file, the driver for the named
1067  * device is loaded and attached, as well as any drivers for parent devices.
1068  * Return a pointer to the driver's dev_ops struct with the dev_ops held.
1069  * Note - Callers must release the dev_ops with ddi_rele_driver.
1070  *
1071  * When a driver is held, the branch of the devinfo tree from any of the
1072  * drivers devinfos to the root node are automatically held.  This only
1073  * applies to tree traversals up (and back down) the tree following the
1074  * parent pointers.
1075  *
1076  * Use of this interface is discouraged, it may be removed in a future release.
1077  */
1078 struct dev_ops *
1079 ddi_hold_installed_driver(major_t major);
1080 
1081 void
1082 ddi_rele_driver(major_t major);
1083 
1084 /*
1085  * Attach and hold the specified instance of a driver.  The flags argument
1086  * should be zero.
1087  */
1088 dev_info_t *
1089 ddi_hold_devi_by_instance(major_t major, int instance, int flags);
1090 
1091 void
1092 ddi_release_devi(dev_info_t *);
1093 
1094 /*
1095  * Associate a streams queue with a devinfo node
1096  */
1097 void
1098 ddi_assoc_queue_with_devi(queue_t *, dev_info_t *);
1099 
1100 /*
1101  * Given the identifier string passed, make sure that dev_info nodes
1102  * are created form the driver's hwconf file, the driver for the named
1103  * device is loaded and attached, as well as any drivers for parent devices.
1104  *
1105  * Note that the driver is not held and is subject to being removed the instant
1106  * this call completes.  You probably really want ddi_hold_installed_driver.
1107  */
1108 int
1109 ddi_install_driver(char *idstring);
1110 
1111 /*
1112  * Routines that return specific nodes
1113  */
1114 
1115 dev_info_t *
1116 ddi_root_node(void);
1117 
1118 /*
1119  * Given a name and an instance number, find and return the
1120  * dev_info from the current state of the device tree.
1121  *
1122  * If instance number is -1, return the first named instance.
1123  *
1124  * If attached is 1, exclude all nodes that are < DS_ATTACHED
1125  *
1126  * Requires that the devinfo tree be locked.
1127  * If attached is 1, the driver must be held.
1128  */
1129 dev_info_t *
1130 ddi_find_devinfo(char *name, int instance, int attached);
1131 
1132 /*
1133  * DMA Mapping Setup
1134  *
1135  * The basic interface function is ddi_dma_setup(). This function
1136  * is to designed to allow a DMA mapping to be established to a
1137  * memory object. This function returns DDI_DMA_MAPPED if the
1138  * request was successfully filled. If this occurs, then the
1139  * argument handlep is filled in. This value is the DMA handle
1140  * for the mapping, and is used in a variety of other functions.
1141  * The handle is an opaque handle on the mapping, and no further
1142  * information may be inferred from it by the caller.
1143  *
1144  * Specifics of arguments to ddi_dma_setup:
1145  *
1146  * dip - devinfo pointer, which identifies the base device that wishes
1147  * to establish a dma mapping. The device may either be a leaf device,
1148  * or a device which is both a leaf and a nexus (e.g., a device which
1149  * has a dma engine but no children devices).
1150  *
1151  * dmareqp - pointer to a dma request structure. This structure contains
1152  * all the info necessary to establish the mapping (see <sys/ddidmareq.h>).
1153  * This structure may be impermanent, as its information is copied and
1154  * saved, if necessary, by implementation specific functions. The caller
1155  * is responsible for filling in the dmar_flags, dmar_length, dmar_type,
1156  * dmar_addr_un, dmar_fp and dmar_arg fields. Any other elements of the
1157  * ddi_dma_req structure should neither be examined or modified by the
1158  * caller.
1159  *
1160  * handlep - this is a pointer to a ddi_dma_handle_t. It is the callers
1161  * responsibility to hang on to this handle, because it becomes the token
1162  * used in all other DDI dma functions. If the handle pointer is NULL,
1163  * then no mapping is made, and the call is being used by the caller
1164  * to simply determine whether such a mapping *could* be made.
1165  *
1166  * Discussion of DMA resource callback functions:
1167  *
1168  * If a request could not be filled, it was because either there were
1169  * not enough mapping resources available to satisfy the request, and the
1170  * dmar_fp field was not set to DDI_DMA_SLEEP, or the mapping could not
1171  * be established at all (DDI_DMA_NOMAPPING) due to a basic inability of
1172  * available hardware to map the object. Callers should be prepared to deal
1173  * with all possible returns. It is suggested that the appropriate system
1174  * error number for the DDI_DMA_NOMAPPING returns is EFAULT.
1175  *
1176  * If the caller does not care whether a DMA mapping can be set up now,
1177  * the caller should set the field dmar_fp to DDI_DMA_DONTWAIT. This
1178  * implies that the caller will appropriately deal with resource
1179  * exhaustion.
1180  *
1181  * If the caller either cannot or does not wish to sleep awaiting mapping
1182  * resources, the caller may specify, via the field dmar_fp, a function to
1183  * call with the argument specified in dmar_arg, when resources might have
1184  * become available. The callback function will be called from interrupt
1185  * context, but in such a fashion to guarantee that spl blocking (in systems
1186  * that use this method of data protection) by the caller will not be
1187  * bypassed.
1188  *
1189  *
1190  * When function specified via dmar_fp is called, it may attempt to try and get
1191  * the mapping again. If it succeeds in getting the mapping, or does not need
1192  * to get the mapping any more, it must return 1. If it tries to get the
1193  * mapping but fails to do so, and it wants to be called back later, it
1194  * must return 0.
1195  *
1196  * Failure to observe this protocol will have unpredictable results.
1197  *
1198  * The callback function must provide its own data structure integrity
1199  * when it is invoked.
1200  */
1201 
1202 int
1203 ddi_dma_setup(dev_info_t *dip, struct ddi_dma_req *dmareqp,
1204 	ddi_dma_handle_t *handlep);
1205 
1206 /*
1207  * The following three functions are convenience wrappers for ddi_dma_setup().
1208  */
1209 
1210 int
1211 ddi_dma_addr_setup(dev_info_t *dip, struct as *as, caddr_t addr, size_t len,
1212 	uint_t flags, int (*waitfp)(), caddr_t arg,
1213 	ddi_dma_lim_t *limits, ddi_dma_handle_t *handlep);
1214 
1215 int
1216 ddi_dma_buf_setup(dev_info_t *dip, struct buf *bp, uint_t flags,
1217 	int (*waitfp)(), caddr_t arg, ddi_dma_lim_t *limits,
1218 	ddi_dma_handle_t *handlep);
1219 
1220 /*
1221  * Kernel addressability of the DMA object
1222  *
1223  * It might often be very useful to be able to get an IU mapping
1224  * to the object which has DMA active to/from it. In fact, it might
1225  * even really be a requirement.
1226  *
1227  * The cacheability of the object with respect to I/O and I/U caches
1228  * is affected by this function as follows:
1229  *
1230  *	If a kernel virtual mapping to the object owned by the handle
1231  *	existed already, and is IU cacheable, then the extant mapping
1232  *	is locked and returned in kaddrp. By inference, kaddrp will
1233  *	be an IU cacheable reference.
1234  *
1235  *	If a kernel virtual mapping to the object owned by the handle
1236  *	existed already, and is not IU cacheable, then the extant mapping
1237  *	is locked and returned in kaddrp. By inference, kaddrp will
1238  *	*not* be an IU cacheable reference.
1239  *
1240  *	If a kernel virtual mapping to the object owned by the handle
1241  *	does not exist already, a mapping will be created that will
1242  *	*not* be an IU cacheable reference.
1243  *
1244  *	The IO cacheability of the object owned by the handle is ignored
1245  *	and unaffected.
1246  *
1247  * This function returns the mapping values as describe above.
1248  *
1249  * When the DMA object owned by handle is freed (by ddi_dma_free()- see
1250  * below), any mappings created by ddi_dma_kvaddrp() cease to be valid.
1251  * This will be the convention that drivers must follow, as it will be
1252  * impossible to enforce this programmatically.
1253  */
1254 
1255 int
1256 ddi_dma_kvaddrp(ddi_dma_handle_t, off_t, size_t, caddr_t *);
1257 
1258 
1259 /*
1260  * Device addressability of the DMA object
1261  *
1262  * The handle that identifies an object mapped for DMA is an opaque entity.
1263  * When a device driver wishes to load its dma engine with the appropriate
1264  * values for transferring data to the mapped object, it has to get the
1265  * value. Since the exact shape and form of this address is device specific,
1266  * the value returned is a 'cookie' that each device may then interpret
1267  * as it needs to. See <sys/dditypes.h> for the form of what the DMA cookie
1268  * looks like.
1269  *
1270  * Returns DDI_SUCCESS for successful cookie generation,
1271  * or DDI_FAILURE if it cannot generate the DMA cookie.
1272  */
1273 
1274 int
1275 ddi_dma_htoc(ddi_dma_handle_t handle, off_t off, ddi_dma_cookie_t *cookiep);
1276 
1277 /*
1278  * Given a DMA cookie, return its offset within the object referred to
1279  * by the DMA handle. This is so at the end of a dma transfer, the device
1280  * may take its specific ending address and find out how far into the
1281  * memory object described by the handle the device got.
1282  */
1283 
1284 int
1285 ddi_dma_coff(ddi_dma_handle_t handle, ddi_dma_cookie_t *cookiep, off_t *offp);
1286 
1287 /*
1288  * DMA mapping manipulation
1289  *
1290  * It may be desirable or convenient for some devices to allow partial
1291  * mapping of an object for dma. This allows the mapping for DMA of
1292  * arbitrarily large objects since only a portion of the object may
1293  * be mapped for DMA at any point in time.
1294  *
1295  * In order to support this as well as other operations, the paradigm
1296  * of a 'mapping window' is defined here. The object to be mapped has
1297  * attributes of location and length. A window can be established upon
1298  * this object. The window has attributes of offset (from the base mapping
1299  * of the object) and length. It is assumed that length and offset are
1300  * positive with respect to the base of the mapped object.
1301  *
1302  * In order to get support for such a window, the flag DDI_DMA_PARTIAL
1303  * must be set in the request flags when the object is mapped for DMA.
1304  * Each implementation may elect whether or not to support such an
1305  * operation. Each implementation may also choose to ignore the request
1306  * for a PARTIAL mapping and either reject the mapping of the object
1307  * for being too big (DDI_DMA_TOOBIG) or may map the entire object.
1308  * The caller who asks the object to be mapped for DMA will know
1309  * whether a partial mapping has been made by receiving the qualified
1310  * return value of DDI_DMA_PARTIAL_MAP instead of DDI_DMA_MAPPED.
1311  * All dma window functions will return DDI_FAILURE if the object
1312  * is not mapped partially.
1313  *
1314  * All other DDI dma functions (except ddi_dma_Free) operate *only* on
1315  * the mapped portion of the object. That is, functions such as ddi_dma_sync,
1316  * ddi_dma_segtocookie, and so on, only operate on the currently mapped
1317  * window.
1318  */
1319 
1320 #if defined(__sparc)
1321 
1322 /*
1323  * ddi_dma_movwin - Move window from current offset/length to new
1324  * offset/length. Returns DDI_SUCCESS if able to do so, else returns
1325  * DDI_FAILURE if unable to do so, or the new window would be out of bounds
1326  * or the object isn't set up for windows. If length is (off_t) -1, the
1327  * If the optional cp argument is specified, an implicit ddi_dma_htoc
1328  * is done to fill that in. The new offset and length will be returned
1329  * in the arguments *offp and *lenp (resp).
1330  *
1331  * In this implementation, only fixed width windows are used. It is
1332  * recommended that the windowsize should be retrieved via the function
1333  * ddi_dma_curwin (below) and that used to specify new offsets and lengths
1334  * since the window will be fixed at that size and will only move modulo
1335  * winsize.
1336  *
1337  * The caller must guarantee that their device's dma engine is quiescent
1338  * with respect to the current DMA window.
1339  *
1340  * The implementation will try to be rapid with respect to moving a window,
1341  * but since an appropriate ddi_dma_sync() is likely to be done, there
1342  * will be no guaranteed latency. In practice this should not be too
1343  * horrible, but don't depend upon any particular latency.
1344  */
1345 
1346 int
1347 ddi_dma_movwin(ddi_dma_handle_t, off_t *offp, size_t *lenp, ddi_dma_cookie_t *);
1348 
1349 #endif
1350 
1351 /*
1352  * ddi_dma_curwin - report the current offset/length of the window.
1353  *
1354  * Returns DDI_SUCCESS if offset and length
1355  * successfully established, else DDI_FAILURE.
1356  */
1357 
1358 int
1359 ddi_dma_curwin(ddi_dma_handle_t handle, off_t *offp, size_t *lenp);
1360 
1361 /*
1362  * Get next dma window
1363  *
1364  * ddi_dma_nextwin takes a handle and a window, and fills in a pointer to
1365  * the next window within the object. If win is "NULL", a pointer to the
1366  * first window within the object is filled in.
1367  *
1368  * Returns	DDI_SUCCESS if successfully filled in the window pointer,
1369  *		DDI_DMA_STALE if win does not refer to the currently active
1370  *				 window,
1371  *		DDI_DMA_DONE else there is no next window.
1372  */
1373 
1374 int
1375 ddi_dma_nextwin(ddi_dma_handle_t, ddi_dma_win_t, ddi_dma_win_t *);
1376 
1377 /*
1378  * Get next segment
1379  *
1380  * ddi_dma_nextseg takes a window and a segment and fills in a pointer to
1381  * the next segment within the window. If seg is "NULL", a pointer to the
1382  * first segment within the window is filled in.
1383  *
1384  * Returns	DDI_SUCCESS if successfully filled in the segment pointer,
1385  *		DDI_DMA_STALE if win does not refer to the currently active
1386  *				 window.
1387  *		DDI_DMA_DONE else there is no next segment.
1388  */
1389 
1390 int
1391 ddi_dma_nextseg(ddi_dma_win_t, ddi_dma_seg_t, ddi_dma_seg_t *);
1392 
1393 /*
1394  * Segment to cookie
1395  *
1396  * ddi_dma_segtocookie takes a segment and fills in the cookie pointed
1397  * to by cookiep with the appropriate address, length and bus type to be
1398  * used to program the DMA engine. ddi_dma_segtocookie also fills in the
1399  * range within the object (specified by <off, len>) this particular
1400  * segment is mapping. <off, len> are filled in to give some control
1401  * where in the object the current dma transfer is active.
1402  *
1403  * Returns	DDI_SUCCESS if successfully filled in all values,
1404  * else		DDI_FAILURE
1405  *
1406  * This function is documented as Obsolete and is replaced by
1407  * ddi_dma_nextcookie(9F)
1408  */
1409 
1410 int
1411 ddi_dma_segtocookie(ddi_dma_seg_t, off_t *, off_t *, ddi_dma_cookie_t *);
1412 
1413 /*
1414  * Synchronization of I/O with respect to various
1415  * caches and system write buffers.
1416  *
1417  * Done at varying points during an I/O transfer (including at the
1418  * removal of an I/O mapping).
1419  *
1420  * Due to the support of systems with write buffers which may
1421  * not be able to be turned off, this function *must* used at
1422  * any point in which data consistency might be required.
1423  *
1424  * Generally this means that if a memory object has multiple mappings
1425  * (both for I/O, as described by the handle, and the IU, via, e.g.
1426  * a call to ddi_dma_kvaddrp), and one mapping may have been
1427  * used to modify the memory object, this function must be called
1428  * to ensure that the modification of the memory object is
1429  * complete, as well as possibly to inform other mappings of
1430  * the object that any cached references to the object are
1431  * now stale (and flush or invalidate these stale cache references
1432  * as necessary).
1433  *
1434  * The function ddi_dma_sync() provides the general interface with
1435  * respect to this capability. Generally, ddi_dma_free() (below) may
1436  * be used in preference to ddi_dma_sync() as ddi_dma_free() calls
1437  * ddi_dma_sync().
1438  *
1439  * Returns 0 if all caches that exist and are specified by cache_flags
1440  * are successfully operated on, else -1.
1441  *
1442  * The argument offset specifies an offset into the mapping of the mapped
1443  * object in which to perform the synchronization. It will be silently
1444  * truncated to the granularity of underlying cache line sizes as
1445  * appropriate.
1446  *
1447  * The argument len specifies a length starting from offset in which to
1448  * perform the synchronization. A value of (uint_t) -1 means that the length
1449  * proceeds from offset to the end of the mapping. The length argument
1450  * will silently rounded up to the granularity of underlying cache line
1451  * sizes  as appropriate.
1452  *
1453  * The argument flags specifies what to synchronize (the device's view of
1454  * the object or the cpu's view of the object).
1455  *
1456  * Inquiring minds want to know when ddi_dma_sync should be used:
1457  *
1458  * +	When an object is mapped for dma, assume that an
1459  *	implicit ddi_dma_sync() is done for you.
1460  *
1461  * +	When an object is unmapped (ddi_dma_free()), assume
1462  *	that an implicit ddi_dma_sync() is done for you.
1463  *
1464  * +	At any time between the two times above that the
1465  *	memory object may have been modified by either
1466  *	the DMA device or a processor and you wish that
1467  *	the change be noticed by the master that didn't
1468  *	do the modifying.
1469  *
1470  * Clearly, only the third case above requires the use of ddi_dma_sync.
1471  *
1472  * Inquiring minds also want to know which flag to use:
1473  *
1474  * +	If you *modify* with a cpu the object, you use
1475  *	ddi_dma_sync(...DDI_DMA_SYNC_FORDEV) (you are making sure
1476  *	that the DMA device sees the changes you made).
1477  *
1478  * +	If you are checking, with the processor, an area
1479  *	of the object that the DMA device *may* have modified,
1480  *	you use ddi_dma_sync(....DDI_DMA_SYNC_FORCPU) (you are
1481  *	making sure that the processor(s) will see the changes
1482  *	that the DMA device may have made).
1483  */
1484 
1485 int
1486 ddi_dma_sync(ddi_dma_handle_t handle, off_t offset, size_t len, uint_t flags);
1487 
1488 /*
1489  * DMA mapping de-allocation
1490  *
1491  * When an I/O transfer completes, the resources required to map the
1492  * object for DMA should be completely released. As a side effect,
1493  * various cache synchronization might need to occur (see above).
1494  *
1495  * Returns DDI_SUCCESS if the all underlying caches are successfully
1496  * flushed, else DDI_FAILURE.
1497  *
1498  */
1499 
1500 int
1501 ddi_dma_free(ddi_dma_handle_t handle);
1502 
1503 /*
1504  * Device constraint cognizant kernel memory allocation- consistent access.
1505  *
1506  * IOPB allocation and de-allocation
1507  *
1508  * An IOPB allocation allocates some primary memory such that both
1509  * the kernel and the specified DMA device might be able to access it in a
1510  * non-cacheable (otherwise known as byte-consistent or non-streaming mode)
1511  * fashion. The allocation will obey the beginning alignment and padding
1512  * constraints as specified in the initial limits argument and as subsequently
1513  * modified by intervening parents. The limits argument may be NULL, in
1514  * which case the system picks a reasonable beginning limits.
1515  *
1516  * A kernel virtual address to the allocated primary memory is returned,
1517  * but no DMA mapping to the object is established (drivers must use the
1518  * ddi_dma_map() routines for that).
1519  *
1520  * If no iopb space can be allocated, DDI_FAILURE is returned.
1521  */
1522 
1523 int
1524 ddi_iopb_alloc(dev_info_t *dip, ddi_dma_lim_t *limits, uint_t length,
1525 	caddr_t *iopbp);
1526 
1527 /*
1528  * Deallocate an IOPB kernel virtual mapping.
1529  */
1530 
1531 void
1532 ddi_iopb_free(caddr_t iopb);
1533 
1534 /*
1535  * Device constraint cognizant kernel memory allocation- streaming access.
1536  *
1537  * Similar to ddi_iopb_alloc, but for primary memory that is intended
1538  * to be accessed in a streaming fashion. The allocation will obey the
1539  * beginning alignment and padding constraints as specified in the initial
1540  * limits argument and as subsequently modified by intervening parents.
1541  * The limits argument may be NULL, in which case the system picks a
1542  * reasonable beginning limits.
1543  *
1544  * A flags value of 0x1 indicates whether the caller can wait for
1545  * memory to become available. Other bits in the flags argument
1546  * are reserved for future use and must be zero.
1547  *
1548  * Upon return from a successful call, the new real length of
1549  * the allocation is returned (for use in mapping the memory
1550  * later).
1551  */
1552 
1553 int
1554 ddi_mem_alloc(dev_info_t *dip, ddi_dma_lim_t *limits, uint_t length,
1555 	uint_t flags, caddr_t *kaddrp, uint_t *real_length);
1556 
1557 /*
1558  * Free the memory allocated via ddi_mem_alloc().
1559  *
1560  * Note that passing an address not allocated via ddi_mem_alloc()
1561  * will panic the system.
1562  */
1563 
1564 void
1565 ddi_mem_free(caddr_t kaddr);
1566 
1567 /*
1568  * Dma alignment, minimum transfers sizes, and burst sizes allowed.
1569  * Some with tears, some without.
1570  */
1571 
1572 /*
1573  * Return a copy of the DMA attributes for the given handle.
1574  */
1575 
1576 int
1577 ddi_dma_get_attr(ddi_dma_handle_t handle, ddi_dma_attr_t *attrp);
1578 
1579 /*
1580  * Return the allowable DMA burst size for the object mapped by handle.
1581  * The burst sizes will returned in an integer that encodes power
1582  * of two burst sizes that are allowed in bit encoded format. For
1583  * example, a transfer that could allow 1, 2, 4, 8 and 32 byte bursts
1584  * would be encoded as 0x2f. A transfer that could be allowed as solely
1585  * a halfword (2 byte) transfers would be returned as 0x2.
1586  */
1587 
1588 int
1589 ddi_dma_burstsizes(ddi_dma_handle_t handle);
1590 
1591 /*
1592  * Return the required beginning alignment for a transfer and
1593  * the minimum sized effect a transfer would have. The beginning
1594  * alignment will be some power of two. The minimum sized effect
1595  * indicates, for writes, how much of the mapped object will be
1596  * affected by the minimum access and for reads how much of the
1597  * mapped object will accessed.
1598  */
1599 
1600 int
1601 ddi_dma_devalign(ddi_dma_handle_t handle, uint_t *alignment, uint_t *mineffect);
1602 
1603 /*
1604  * Like ddi_dma_devalign, but without having to map the object.
1605  * The object is assumed to be primary memory, and it is assumed
1606  * a minimum effective transfer is also the appropriate alignment
1607  * to be using. The streaming flag, if non-zero, indicates that the
1608  * returned value should be modified to account for streaming mode
1609  * accesses (e.g., with I/O caches enabled). The initial value
1610  * is passed by the requester if it has a dma engine that has
1611  * a minimum cycle constraint (or, for streaming mode, the most
1612  * efficient size).
1613  */
1614 
1615 int
1616 ddi_iomin(dev_info_t *dip, int initial, int streaming);
1617 
1618 /*
1619  * Given two DMA limit structures, apply the limitations
1620  * of one to the other, following the rules of limits
1621  * and the wishes of the caller.
1622  *
1623  * The rules of dma limit structures are that you cannot
1624  * make things *less* restrictive as you apply one set
1625  * of limits to another.
1626  *
1627  */
1628 
1629 void
1630 ddi_dmalim_merge(ddi_dma_lim_t *limit, ddi_dma_lim_t *modifier);
1631 
1632 /*
1633  * Merge DMA attributes
1634  */
1635 
1636 void
1637 ddi_dma_attr_merge(ddi_dma_attr_t *attr, ddi_dma_attr_t *mod);
1638 
1639 /*
1640  * Allocate a DMA handle
1641  */
1642 
1643 int
1644 ddi_dma_alloc_handle(dev_info_t *dip, ddi_dma_attr_t *attr,
1645 	int (*waitfp)(caddr_t), caddr_t arg,
1646 	ddi_dma_handle_t *handlep);
1647 
1648 /*
1649  * Free DMA handle
1650  */
1651 
1652 void
1653 ddi_dma_free_handle(ddi_dma_handle_t *handlep);
1654 
1655 /*
1656  * Allocate memory for DMA transfers
1657  */
1658 
1659 int
1660 ddi_dma_mem_alloc(ddi_dma_handle_t handle, size_t length,
1661 	ddi_device_acc_attr_t *accattrp, uint_t xfermodes,
1662 	int (*waitfp)(caddr_t), caddr_t arg, caddr_t *kaddrp,
1663 	size_t *real_length, ddi_acc_handle_t *handlep);
1664 
1665 /*
1666  * Free DMA memory
1667  */
1668 
1669 void
1670 ddi_dma_mem_free(ddi_acc_handle_t *hp);
1671 
1672 /*
1673  * bind address to a DMA handle
1674  */
1675 
1676 int
1677 ddi_dma_addr_bind_handle(ddi_dma_handle_t handle, struct as *as,
1678 	caddr_t addr, size_t len, uint_t flags,
1679 	int (*waitfp)(caddr_t), caddr_t arg,
1680 	ddi_dma_cookie_t *cookiep, uint_t *ccountp);
1681 
1682 /*
1683  * bind buffer to DMA handle
1684  */
1685 
1686 int
1687 ddi_dma_buf_bind_handle(ddi_dma_handle_t handle, struct buf *bp,
1688 	uint_t flags, int (*waitfp)(caddr_t), caddr_t arg,
1689 	ddi_dma_cookie_t *cookiep, uint_t *ccountp);
1690 
1691 /*
1692  * unbind mapping object to handle
1693  */
1694 
1695 int
1696 ddi_dma_unbind_handle(ddi_dma_handle_t handle);
1697 
1698 /*
1699  * get next DMA cookie
1700  */
1701 
1702 void
1703 ddi_dma_nextcookie(ddi_dma_handle_t handle, ddi_dma_cookie_t *cookiep);
1704 
1705 /*
1706  * get number of DMA windows
1707  */
1708 
1709 int
1710 ddi_dma_numwin(ddi_dma_handle_t handle, uint_t *nwinp);
1711 
1712 /*
1713  * get specific DMA window
1714  */
1715 
1716 int
1717 ddi_dma_getwin(ddi_dma_handle_t handle, uint_t win, off_t *offp,
1718 	size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp);
1719 
1720 /*
1721  * activate 64 bit SBus support
1722  */
1723 
1724 int
1725 ddi_dma_set_sbus64(ddi_dma_handle_t handle, ulong_t burstsizes);
1726 
1727 /*
1728  * Miscellaneous functions
1729  */
1730 
1731 /*
1732  * ddi_report_dev:	Report a successful attach.
1733  */
1734 
1735 void
1736 ddi_report_dev(dev_info_t *dev);
1737 
1738 /*
1739  * ddi_dev_regsize
1740  *
1741  *	If the device has h/w register(s), report
1742  *	the size, in bytes, of the specified one into *resultp.
1743  *
1744  *	Returns DDI_FAILURE if there are not registers,
1745  *	or the specified register doesn't exist.
1746  */
1747 
1748 int
1749 ddi_dev_regsize(dev_info_t *dev, uint_t rnumber, off_t *resultp);
1750 
1751 /*
1752  * ddi_dev_nregs
1753  *
1754  *	If the device has h/w register(s), report
1755  *	how many of them that there are into resultp.
1756  *	Return DDI_FAILURE if the device has no registers.
1757  */
1758 
1759 int
1760 ddi_dev_nregs(dev_info_t *dev, int *resultp);
1761 
1762 /*
1763  * ddi_dev_is_sid
1764  *
1765  *	If the device is self-identifying, i.e.,
1766  *	has already been probed by a smart PROM
1767  *	(and thus registers are known to be valid)
1768  *	return DDI_SUCCESS, else DDI_FAILURE.
1769  */
1770 
1771 
1772 int
1773 ddi_dev_is_sid(dev_info_t *dev);
1774 
1775 /*
1776  * ddi_slaveonly
1777  *
1778  *	If the device is on a bus that precludes
1779  *	the device from being either a dma master or
1780  *	a dma slave, return DDI_SUCCESS.
1781  */
1782 
1783 int
1784 ddi_slaveonly(dev_info_t *);
1785 
1786 
1787 /*
1788  * ddi_dev_affinity
1789  *
1790  *	Report, via DDI_SUCCESS, whether there exists
1791  *	an 'affinity' between two dev_info_t's. An
1792  *	affinity is defined to be either a parent-child,
1793  *	or a sibling relationship such that the siblings
1794  *	or in the same part of the bus they happen to be
1795  *	on.
1796  */
1797 
1798 int
1799 ddi_dev_affinity(dev_info_t *deva, dev_info_t *devb);
1800 
1801 
1802 /*
1803  * ddi_set_callback
1804  *
1805  *	Set a function/arg pair into the callback list identified
1806  *	by listid. *listid must always initially start out as zero.
1807  */
1808 
1809 void
1810 ddi_set_callback(int (*funcp)(caddr_t), caddr_t arg, uintptr_t *listid);
1811 
1812 /*
1813  * ddi_run_callback
1814  *
1815  *	Run the callback list identified by listid.
1816  */
1817 
1818 void
1819 ddi_run_callback(uintptr_t *listid);
1820 
1821 /*
1822  * More miscellaneous
1823  */
1824 
1825 int
1826 nochpoll(dev_t dev, short events, int anyyet, short *reventsp,
1827 	struct pollhead **phpp);
1828 
1829 dev_info_t *
1830 nodevinfo(dev_t dev, int otyp);
1831 
1832 int
1833 ddi_no_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result);
1834 
1835 int
1836 ddi_getinfo_1to1(dev_info_t *dip, ddi_info_cmd_t infocmd,
1837     void *arg, void **result);
1838 
1839 int
1840 ddifail(dev_info_t *devi, ddi_attach_cmd_t cmd);
1841 
1842 int
1843 ddi_no_dma_map(dev_info_t *dip, dev_info_t *rdip,
1844     struct ddi_dma_req *dmareqp, ddi_dma_handle_t *handlep);
1845 
1846 int
1847 ddi_no_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr,
1848     int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep);
1849 
1850 int
1851 ddi_no_dma_freehdl(dev_info_t *dip, dev_info_t *rdip,
1852     ddi_dma_handle_t handle);
1853 
1854 int
1855 ddi_no_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
1856     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
1857     ddi_dma_cookie_t *cp, uint_t *ccountp);
1858 
1859 int
1860 ddi_no_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
1861     ddi_dma_handle_t handle);
1862 
1863 int
1864 ddi_no_dma_flush(dev_info_t *dip, dev_info_t *rdip,
1865     ddi_dma_handle_t handle, off_t off, size_t len,
1866     uint_t cache_flags);
1867 
1868 int
1869 ddi_no_dma_win(dev_info_t *dip, dev_info_t *rdip,
1870     ddi_dma_handle_t handle, uint_t win, off_t *offp,
1871     size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp);
1872 
1873 int
1874 ddi_no_dma_mctl(register dev_info_t *dip, dev_info_t *rdip,
1875     ddi_dma_handle_t handle, enum ddi_dma_ctlops request,
1876     off_t *offp, size_t *lenp, caddr_t *objp, uint_t flags);
1877 
1878 void
1879 ddivoid();
1880 
1881 cred_t *
1882 ddi_get_cred(void);
1883 
1884 clock_t
1885 ddi_get_lbolt(void);
1886 
1887 time_t
1888 ddi_get_time(void);
1889 
1890 pid_t
1891 ddi_get_pid(void);
1892 
1893 kt_did_t
1894 ddi_get_kt_did(void);
1895 
1896 boolean_t
1897 ddi_can_receive_sig(void);
1898 
1899 void
1900 swab(void *src, void *dst, size_t nbytes);
1901 
1902 int
1903 ddi_create_minor_node(dev_info_t *dip, char *name, int spec_type,
1904     minor_t minor_num, char *node_type, int flag);
1905 
1906 int
1907 ddi_create_priv_minor_node(dev_info_t *dip, char *name, int spec_type,
1908     minor_t minor_num, char *node_type, int flag,
1909     const char *rdpriv, const char *wrpriv, mode_t priv_mode);
1910 
1911 void
1912 ddi_remove_minor_node(dev_info_t *dip, char *name);
1913 
1914 int
1915 ddi_in_panic(void);
1916 
1917 int
1918 ddi_streams_driver(dev_info_t *dip);
1919 
1920 /*
1921  * DDI wrappers for ffs and fls
1922  */
1923 int
1924 ddi_ffs(long mask);
1925 
1926 int
1927 ddi_fls(long mask);
1928 
1929 /*
1930  * The next five routines comprise generic storage management utilities
1931  * for driver soft state structures.
1932  */
1933 
1934 /*
1935  * Allocate a set of pointers to 'n_items' objects of size 'size'
1936  * bytes.  Each pointer is initialized to nil. 'n_items' is a hint i.e.
1937  * zero is allowed.
1938  */
1939 int
1940 ddi_soft_state_init(void **state_p, size_t size, size_t n_items);
1941 
1942 /*
1943  * Allocate a state structure of size 'size' to be associated
1944  * with item 'item'.
1945  */
1946 int
1947 ddi_soft_state_zalloc(void *state, int item);
1948 
1949 /*
1950  * Fetch a pointer to the allocated soft state structure
1951  * corresponding to 'item.'
1952  */
1953 void *
1954 ddi_get_soft_state(void *state, int item);
1955 
1956 /*
1957  * Free the state structure corresponding to 'item.'
1958  */
1959 void
1960 ddi_soft_state_free(void *state, int item);
1961 
1962 /*
1963  * Free the handle, and any associated soft state structures.
1964  */
1965 void
1966 ddi_soft_state_fini(void **state_p);
1967 
1968 /*
1969  * Set the addr field of the name in dip to name
1970  */
1971 void
1972 ddi_set_name_addr(dev_info_t *dip, char *name);
1973 
1974 /*
1975  * Get the address part of the name.
1976  */
1977 char *
1978 ddi_get_name_addr(dev_info_t *dip);
1979 
1980 void
1981 ddi_set_parent_data(dev_info_t *dip, void *pd);
1982 
1983 void *
1984 ddi_get_parent_data(dev_info_t *dip);
1985 
1986 int
1987 ddi_initchild(dev_info_t *parent, dev_info_t *proto);
1988 
1989 int
1990 ddi_uninitchild(dev_info_t *dip);
1991 
1992 major_t
1993 ddi_name_to_major(char *name);
1994 
1995 char *
1996 ddi_major_to_name(major_t major);
1997 
1998 char *
1999 ddi_deviname(dev_info_t *dip, char *name);
2000 
2001 char *
2002 ddi_pathname(dev_info_t *dip, char *path);
2003 
2004 int
2005 ddi_dev_pathname(dev_t devt, int spec_type, char *name);
2006 
2007 dev_t
2008 ddi_pathname_to_dev_t(char *pathname);
2009 
2010 /*
2011  * High resolution system timer functions.
2012  *
2013  * These functions are already in the kernel (see sys/time.h).
2014  * The ddi supports the notion of a hrtime_t type and the
2015  * functions gethrtime, hrtadd, hrtsub and hrtcmp.
2016  */
2017 
2018 
2019 /*
2020  * Nexus wrapper functions
2021  *
2022  * These functions are for entries in a bus nexus driver's bus_ops
2023  * structure for when the driver doesn't have such a function and
2024  * doesn't wish to prohibit such a function from existing. They
2025  * may also be called to start passing a request up the dev_info
2026  * tree.
2027  */
2028 
2029 /*
2030  * bus_ctl wrapper
2031  */
2032 
2033 int
2034 ddi_ctlops(dev_info_t *d, dev_info_t *r, ddi_ctl_enum_t o, void *a, void *v);
2035 
2036 /*
2037  * bus_dma_map wrapper
2038  */
2039 
2040 int
2041 ddi_dma_map(dev_info_t *dip, dev_info_t *rdip,
2042 	struct ddi_dma_req *dmareqp, ddi_dma_handle_t *handlep);
2043 
2044 int
2045 ddi_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr,
2046 	int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep);
2047 
2048 int
2049 ddi_dma_freehdl(dev_info_t *dip, dev_info_t *rdip,
2050 	ddi_dma_handle_t handle);
2051 
2052 int
2053 ddi_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
2054 	ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
2055 	ddi_dma_cookie_t *cp, uint_t *ccountp);
2056 
2057 int
2058 ddi_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
2059 	ddi_dma_handle_t handle);
2060 
2061 int
2062 ddi_dma_flush(dev_info_t *dip, dev_info_t *rdip,
2063 	ddi_dma_handle_t handle, off_t off, size_t len,
2064 	uint_t cache_flags);
2065 
2066 int
2067 ddi_dma_win(dev_info_t *dip, dev_info_t *rdip,
2068 	ddi_dma_handle_t handle, uint_t win, off_t *offp,
2069 	size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp);
2070 
2071 /*
2072  * bus_dma_ctl wrapper
2073  */
2074 
2075 int
2076 ddi_dma_mctl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
2077 	enum ddi_dma_ctlops request, off_t *offp, size_t *lenp,
2078 	caddr_t *objp, uint_t flags);
2079 
2080 /*
2081  * dvma support for networking drivers
2082  */
2083 
2084 unsigned long
2085 dvma_pagesize(dev_info_t *dip);
2086 
2087 int
2088 dvma_reserve(dev_info_t *dip,  ddi_dma_lim_t *limp, uint_t pages,
2089 	ddi_dma_handle_t *handlep);
2090 
2091 void
2092 dvma_release(ddi_dma_handle_t h);
2093 
2094 void
2095 dvma_kaddr_load(ddi_dma_handle_t h, caddr_t a, uint_t len, uint_t index,
2096 	ddi_dma_cookie_t *cp);
2097 
2098 void
2099 dvma_unload(ddi_dma_handle_t h, uint_t objindex, uint_t type);
2100 
2101 void
2102 dvma_sync(ddi_dma_handle_t h, uint_t objindex, uint_t type);
2103 
2104 /*
2105  * Layered driver support
2106  */
2107 
2108 extern int ddi_copyin(const void *, void *, size_t, int);
2109 extern int ddi_copyout(const void *, void *, size_t, int);
2110 
2111 /*
2112  * Send signals to processes
2113  */
2114 extern void *proc_ref(void);
2115 extern void proc_unref(void *pref);
2116 extern int proc_signal(void *pref, int sig);
2117 
2118 /* I/O port access routines */
2119 extern uint8_t inb(int port);
2120 extern uint16_t inw(int port);
2121 extern uint32_t inl(int port);
2122 extern void repinsb(int port, uint8_t *addr, int count);
2123 extern void repinsw(int port, uint16_t *addr, int count);
2124 extern void repinsd(int port, uint32_t *addr, int count);
2125 extern void outb(int port, uint8_t value);
2126 extern void outw(int port, uint16_t value);
2127 extern void outl(int port, uint32_t value);
2128 extern void repoutsb(int port, uint8_t *addr, int count);
2129 extern void repoutsw(int port, uint16_t *addr, int count);
2130 extern void repoutsd(int port, uint32_t *addr, int count);
2131 
2132 /*
2133  * Console bell routines
2134  */
2135 extern void ddi_ring_console_bell(clock_t duration);
2136 extern void ddi_set_console_bell(void (*bellfunc)(clock_t duration));
2137 
2138 /*
2139  * Fault-related functions
2140  */
2141 extern int ddi_check_acc_handle(ddi_acc_handle_t);
2142 extern int ddi_check_dma_handle(ddi_dma_handle_t);
2143 extern void ddi_dev_report_fault(dev_info_t *, ddi_fault_impact_t,
2144 	ddi_fault_location_t, const char *);
2145 extern ddi_devstate_t ddi_get_devstate(dev_info_t *);
2146 
2147 /*
2148  * Miscellaneous redefines
2149  */
2150 #define	uiophysio	physio
2151 
2152 /*
2153  * utilities - "reg" mapping and all common portable data access functions
2154  */
2155 
2156 /*
2157  * error code from ddi_regs_map_setup
2158  */
2159 
2160 #define	DDI_REGS_ACC_CONFLICT	(-10)
2161 
2162 /*
2163  * Device address advance flags
2164  */
2165 
2166 #define	 DDI_DEV_NO_AUTOINCR	0x0000
2167 #define	 DDI_DEV_AUTOINCR	0x0001
2168 
2169 int
2170 ddi_regs_map_setup(dev_info_t *dip, uint_t rnumber, caddr_t *addrp,
2171 	offset_t offset, offset_t len, ddi_device_acc_attr_t *accattrp,
2172 	ddi_acc_handle_t *handle);
2173 
2174 void
2175 ddi_regs_map_free(ddi_acc_handle_t *handle);
2176 
2177 /*
2178  * these are the prototypes for the common portable data access functions
2179  */
2180 
2181 #ifdef _LP64
2182 
2183 uint8_t
2184 ddi_get8(ddi_acc_handle_t handle, uint8_t *addr);
2185 
2186 uint16_t
2187 ddi_get16(ddi_acc_handle_t handle, uint16_t *addr);
2188 
2189 uint32_t
2190 ddi_get32(ddi_acc_handle_t handle, uint32_t *addr);
2191 
2192 uint64_t
2193 ddi_get64(ddi_acc_handle_t handle, uint64_t *addr);
2194 
2195 void
2196 ddi_rep_get8(ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr,
2197 	size_t repcount, uint_t flags);
2198 
2199 void
2200 ddi_rep_get16(ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t *dev_addr,
2201 	size_t repcount, uint_t flags);
2202 
2203 void
2204 ddi_rep_get32(ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t *dev_addr,
2205 	size_t repcount, uint_t flags);
2206 
2207 void
2208 ddi_rep_get64(ddi_acc_handle_t handle, uint64_t *host_addr, uint64_t *dev_addr,
2209 	size_t repcount, uint_t flags);
2210 
2211 void
2212 ddi_put8(ddi_acc_handle_t handle, uint8_t *addr, uint8_t value);
2213 
2214 void
2215 ddi_put16(ddi_acc_handle_t handle, uint16_t *addr, uint16_t value);
2216 
2217 void
2218 ddi_put32(ddi_acc_handle_t handle, uint32_t *addr, uint32_t value);
2219 
2220 void
2221 ddi_put64(ddi_acc_handle_t handle, uint64_t *addr, uint64_t value);
2222 
2223 void
2224 ddi_rep_put8(ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr,
2225 	size_t repcount, uint_t flags);
2226 void
2227 ddi_rep_put16(ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t *dev_addr,
2228 	size_t repcount, uint_t flags);
2229 void
2230 ddi_rep_put32(ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t *dev_addr,
2231 	size_t repcount, uint_t flags);
2232 
2233 void
2234 ddi_rep_put64(ddi_acc_handle_t handle, uint64_t *host_addr, uint64_t *dev_addr,
2235 	size_t repcount, uint_t flags);
2236 
2237 #else /* _ILP32 */
2238 
2239 uint8_t
2240 ddi_getb(ddi_acc_handle_t handle, uint8_t *addr);
2241 #define	ddi_get8	ddi_getb
2242 
2243 uint16_t
2244 ddi_getw(ddi_acc_handle_t handle, uint16_t *addr);
2245 #define	ddi_get16	ddi_getw
2246 
2247 uint32_t
2248 ddi_getl(ddi_acc_handle_t handle, uint32_t *addr);
2249 #define	ddi_get32	ddi_getl
2250 
2251 uint64_t
2252 ddi_getll(ddi_acc_handle_t handle, uint64_t *addr);
2253 #define	ddi_get64	ddi_getll
2254 
2255 void
2256 ddi_rep_getb(ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr,
2257 	size_t repcount, uint_t flags);
2258 #define	ddi_rep_get8	ddi_rep_getb
2259 
2260 void
2261 ddi_rep_getw(ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t *dev_addr,
2262 	size_t repcount, uint_t flags);
2263 #define	ddi_rep_get16	ddi_rep_getw
2264 
2265 void
2266 ddi_rep_getl(ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t *dev_addr,
2267 	size_t repcount, uint_t flags);
2268 #define	ddi_rep_get32	ddi_rep_getl
2269 
2270 void
2271 ddi_rep_getll(ddi_acc_handle_t handle, uint64_t *host_addr, uint64_t *dev_addr,
2272 	size_t repcount, uint_t flags);
2273 #define	ddi_rep_get64	ddi_rep_getll
2274 
2275 void
2276 ddi_putb(ddi_acc_handle_t handle, uint8_t *addr, uint8_t value);
2277 #define	ddi_put8	ddi_putb
2278 
2279 void
2280 ddi_putw(ddi_acc_handle_t handle, uint16_t *addr, uint16_t value);
2281 #define	ddi_put16	ddi_putw
2282 
2283 void
2284 ddi_putl(ddi_acc_handle_t handle, uint32_t *addr, uint32_t value);
2285 #define	ddi_put32	ddi_putl
2286 
2287 void
2288 ddi_putll(ddi_acc_handle_t handle, uint64_t *addr, uint64_t value);
2289 #define	ddi_put64	ddi_putll
2290 
2291 void
2292 ddi_rep_putb(ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr,
2293 	size_t repcount, uint_t flags);
2294 #define	ddi_rep_put8	ddi_rep_putb
2295 
2296 void
2297 ddi_rep_putw(ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t *dev_addr,
2298 	size_t repcount, uint_t flags);
2299 #define	ddi_rep_put16	ddi_rep_putw
2300 
2301 void
2302 ddi_rep_putl(ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t *dev_addr,
2303 	size_t repcount, uint_t flags);
2304 #define	ddi_rep_put32	ddi_rep_putl
2305 
2306 void
2307 ddi_rep_putll(ddi_acc_handle_t handle, uint64_t *host_addr, uint64_t *dev_addr,
2308 	size_t repcount, uint_t flags);
2309 #define	ddi_rep_put64	ddi_rep_putll
2310 
2311 #endif /* _LP64 */
2312 
2313 /*
2314  * these are special device handling functions
2315  */
2316 int
2317 ddi_device_zero(ddi_acc_handle_t handle, caddr_t dev_addr,
2318 	size_t bytecount, ssize_t dev_advcnt, uint_t dev_datasz);
2319 
2320 int
2321 ddi_device_copy(
2322 	ddi_acc_handle_t src_handle, caddr_t src_addr, ssize_t src_advcnt,
2323 	ddi_acc_handle_t dest_handle, caddr_t dest_addr, ssize_t dest_advcnt,
2324 	size_t bytecount, uint_t dev_datasz);
2325 
2326 /*
2327  * these are software byte swapping functions
2328  */
2329 uint16_t
2330 ddi_swap16(uint16_t value);
2331 
2332 uint32_t
2333 ddi_swap32(uint32_t value);
2334 
2335 uint64_t
2336 ddi_swap64(uint64_t value);
2337 
2338 /*
2339  * these are the prototypes for PCI local bus functions
2340  */
2341 /*
2342  * PCI power management capabilities reporting in addition to those
2343  * provided by the PCI Power Management Specification.
2344  */
2345 #define	PCI_PM_IDLESPEED	0x1		/* clock for idle dev - cap  */
2346 #define	PCI_PM_IDLESPEED_ANY	(void *)-1	/* any clock for idle dev */
2347 #define	PCI_PM_IDLESPEED_NONE	(void *)-2	/* regular clock for idle dev */
2348 
2349 int
2350 pci_config_setup(dev_info_t *dip, ddi_acc_handle_t *handle);
2351 
2352 void
2353 pci_config_teardown(ddi_acc_handle_t *handle);
2354 
2355 #ifdef _LP64
2356 
2357 uint8_t
2358 pci_config_get8(ddi_acc_handle_t handle, off_t offset);
2359 
2360 uint16_t
2361 pci_config_get16(ddi_acc_handle_t handle, off_t offset);
2362 
2363 uint32_t
2364 pci_config_get32(ddi_acc_handle_t handle, off_t offset);
2365 
2366 uint64_t
2367 pci_config_get64(ddi_acc_handle_t handle, off_t offset);
2368 
2369 void
2370 pci_config_put8(ddi_acc_handle_t handle, off_t offset, uint8_t value);
2371 
2372 void
2373 pci_config_put16(ddi_acc_handle_t handle, off_t offset, uint16_t value);
2374 
2375 void
2376 pci_config_put32(ddi_acc_handle_t handle, off_t offset, uint32_t value);
2377 
2378 void
2379 pci_config_put64(ddi_acc_handle_t handle, off_t offset, uint64_t value);
2380 
2381 #else /* _ILP32 */
2382 
2383 uint8_t
2384 pci_config_getb(ddi_acc_handle_t handle, off_t offset);
2385 #define	pci_config_get8		pci_config_getb
2386 
2387 uint16_t
2388 pci_config_getw(ddi_acc_handle_t handle, off_t offset);
2389 #define	pci_config_get16	pci_config_getw
2390 
2391 uint32_t
2392 pci_config_getl(ddi_acc_handle_t handle, off_t offset);
2393 #define	pci_config_get32	pci_config_getl
2394 
2395 uint64_t
2396 pci_config_getll(ddi_acc_handle_t handle, off_t offset);
2397 #define	pci_config_get64	pci_config_getll
2398 
2399 void
2400 pci_config_putb(ddi_acc_handle_t handle, off_t offset, uint8_t value);
2401 #define	pci_config_put8		pci_config_putb
2402 
2403 void
2404 pci_config_putw(ddi_acc_handle_t handle, off_t offset, uint16_t value);
2405 #define	pci_config_put16	pci_config_putw
2406 
2407 void
2408 pci_config_putl(ddi_acc_handle_t handle, off_t offset, uint32_t value);
2409 #define	pci_config_put32	pci_config_putl
2410 
2411 void
2412 pci_config_putll(ddi_acc_handle_t handle, off_t offset, uint64_t value);
2413 #define	pci_config_put64	pci_config_putll
2414 
2415 #endif /* _LP64 */
2416 
2417 int
2418 pci_report_pmcap(dev_info_t *dip, int cap, void *arg);
2419 
2420 int
2421 pci_restore_config_regs(dev_info_t *dip);
2422 
2423 int
2424 pci_save_config_regs(dev_info_t *dip);
2425 
2426 void
2427 pci_ereport_setup(dev_info_t *dip);
2428 
2429 void
2430 pci_ereport_teardown(dev_info_t *dip);
2431 
2432 void
2433 pci_ereport_post(dev_info_t *dip, ddi_fm_error_t *derr, uint16_t *status);
2434 
2435 void
2436 pci_bdg_ereport_post(dev_info_t *dip, ddi_fm_error_t *derr, uint16_t *status);
2437 
2438 int
2439 pci_bdg_check_status(dev_info_t *dip, ddi_fm_error_t *derr,
2440     uint16_t pci_cfg_stat, uint16_t pci_cfg_sec_stat);
2441 
2442 /*
2443  * the prototype for the C Language Type Model inquiry.
2444  */
2445 model_t	ddi_mmap_get_model(void);
2446 model_t	ddi_model_convert_from(model_t);
2447 
2448 /*
2449  * these are the prototypes for device id functions.
2450  */
2451 int
2452 ddi_devid_valid(ddi_devid_t devid);
2453 
2454 int
2455 ddi_devid_register(dev_info_t *dip, ddi_devid_t devid);
2456 
2457 void
2458 ddi_devid_unregister(dev_info_t *dip);
2459 
2460 int
2461 ddi_devid_init(dev_info_t *dip, ushort_t devid_type, ushort_t nbytes,
2462     void *id, ddi_devid_t *ret_devid);
2463 
2464 size_t
2465 ddi_devid_sizeof(ddi_devid_t devid);
2466 
2467 void
2468 ddi_devid_free(ddi_devid_t devid);
2469 
2470 int
2471 ddi_devid_compare(ddi_devid_t id1, ddi_devid_t id2);
2472 
2473 int
2474 ddi_devid_scsi_encode(int version, char *driver_name,
2475     uchar_t *inq, size_t inq_len, uchar_t *inq80, size_t inq80_len,
2476     uchar_t *inq83, size_t inq83_len, ddi_devid_t *ret_devid);
2477 
2478 char
2479 *ddi_devid_to_guid(ddi_devid_t devid);
2480 
2481 void
2482 ddi_devid_free_guid(char *guid);
2483 
2484 int
2485 ddi_lyr_get_devid(dev_t dev, ddi_devid_t *ret_devid);
2486 
2487 int
2488 ddi_lyr_get_minor_name(dev_t dev, int spec_type, char **minor_name);
2489 
2490 int
2491 ddi_lyr_devid_to_devlist(ddi_devid_t devid, char *minor_name, int *retndevs,
2492     dev_t **retdevs);
2493 
2494 void
2495 ddi_lyr_free_devlist(dev_t *devlist, int ndevs);
2496 
2497 char *
2498 ddi_devid_str_encode(ddi_devid_t devid, char *minor_name);
2499 
2500 int
2501 ddi_devid_str_decode(char *devidstr, ddi_devid_t *devidp, char **minor_namep);
2502 
2503 void
2504 ddi_devid_str_free(char *devidstr);
2505 
2506 int
2507 ddi_devid_str_compare(char *id1_str, char *id2_str);
2508 
2509 /*
2510  * Event to post to when a devinfo node is removed.
2511  */
2512 #define	DDI_DEVI_REMOVE_EVENT		"DDI:DEVI_REMOVE"
2513 #define	DDI_DEVI_INSERT_EVENT		"DDI:DEVI_INSERT"
2514 #define	DDI_DEVI_BUS_RESET_EVENT	"DDI:DEVI_BUS_RESET"
2515 #define	DDI_DEVI_DEVICE_RESET_EVENT	"DDI:DEVI_DEVICE_RESET"
2516 
2517 /*
2518  * Invoke bus nexus driver's implementation of the
2519  * (*bus_remove_eventcall)() interface to remove a registered
2520  * callback handler for "event".
2521  */
2522 int
2523 ddi_remove_event_handler(ddi_callback_id_t id);
2524 
2525 /*
2526  * Invoke bus nexus driver's implementation of the
2527  * (*bus_add_eventcall)() interface to register a callback handler
2528  * for "event".
2529  */
2530 int
2531 ddi_add_event_handler(dev_info_t *dip, ddi_eventcookie_t event,
2532 	void (*handler)(dev_info_t *, ddi_eventcookie_t, void *, void *),
2533 	void *arg, ddi_callback_id_t *id);
2534 
2535 /*
2536  * Return a handle for event "name" by calling up the device tree
2537  * hierarchy via  (*bus_get_eventcookie)() interface until claimed
2538  * by a bus nexus or top of dev_info tree is reached.
2539  */
2540 int
2541 ddi_get_eventcookie(dev_info_t *dip, char *name,
2542 	ddi_eventcookie_t *event_cookiep);
2543 
2544 /*
2545  * log a system event
2546  */
2547 int
2548 ddi_log_sysevent(dev_info_t *dip, char *vendor, char *class_name,
2549 	char *subclass_name, nvlist_t *attr_list, sysevent_id_t *eidp,
2550 	int sleep_flag);
2551 
2552 /*
2553  * ddi_log_sysevent() vendors
2554  */
2555 #define	DDI_VENDOR_SUNW		"SUNW"
2556 
2557 /*
2558  * Opaque task queue handle.
2559  */
2560 typedef struct ddi_taskq ddi_taskq_t;
2561 
2562 /*
2563  * Use default system priority.
2564  */
2565 #define	TASKQ_DEFAULTPRI -1
2566 
2567 /*
2568  * Create a task queue
2569  */
2570 ddi_taskq_t *ddi_taskq_create(dev_info_t *dip, const char *name,
2571 	int nthreads, pri_t pri, uint_t cflags);
2572 
2573 /*
2574  * destroy a task queue
2575  */
2576 void ddi_taskq_destroy(ddi_taskq_t *tq);
2577 
2578 /*
2579  * Dispatch a task to a task queue
2580  */
2581 int ddi_taskq_dispatch(ddi_taskq_t *tq, void (* func)(void *),
2582 	void *arg, uint_t dflags);
2583 
2584 /*
2585  * Wait for all previously scheduled tasks to complete.
2586  */
2587 void ddi_taskq_wait(ddi_taskq_t *tq);
2588 
2589 /*
2590  * Suspend all task execution.
2591  */
2592 void ddi_taskq_suspend(ddi_taskq_t *tq);
2593 
2594 /*
2595  * Resume task execution.
2596  */
2597 void ddi_taskq_resume(ddi_taskq_t *tq);
2598 
2599 /*
2600  * Is task queue suspended?
2601  */
2602 boolean_t ddi_taskq_suspended(ddi_taskq_t *tq);
2603 
2604 /*
2605  * Parse an interface name of the form <alphanumeric>##<numeric> where
2606  * <numeric> is maximal.
2607  */
2608 int ddi_parse(const char *, char *, uint_t *);
2609 
2610 #endif	/* _KERNEL */
2611 
2612 #ifdef	__cplusplus
2613 }
2614 #endif
2615 
2616 #endif	/* _SYS_SUNDDI_H */
2617