1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #ifndef _SYS_STRSUBR_H 31 #define _SYS_STRSUBR_H 32 33 #pragma ident "%Z%%M% %I% %E% SMI" /* SVr4.0 1.17 */ 34 35 /* 36 * WARNING: 37 * Everything in this file is private, belonging to the 38 * STREAMS subsystem. The only guarantee made about the 39 * contents of this file is that if you include it, your 40 * code will not port to the next release. 41 */ 42 #include <sys/stream.h> 43 #include <sys/stropts.h> 44 #include <sys/kstat.h> 45 #include <sys/uio.h> 46 #include <sys/proc.h> 47 #include <sys/netstack.h> 48 #include <sys/modhash.h> 49 50 #ifdef __cplusplus 51 extern "C" { 52 #endif 53 54 /* 55 * In general, the STREAMS locks are disjoint; they are only held 56 * locally, and not simultaneously by a thread. However, module 57 * code, including at the stream head, requires some locks to be 58 * acquired in order for its safety. 59 * 1. Stream level claim. This prevents the value of q_next 60 * from changing while module code is executing. 61 * 2. Queue level claim. This prevents the value of q_ptr 62 * from changing while put or service code is executing. 63 * In addition, it provides for queue single-threading 64 * for QPAIR and PERQ MT-safe modules. 65 * 3. Stream head lock. May be held by the stream head module 66 * to implement a read/write/open/close monitor. 67 * Note: that the only types of twisted stream supported are 68 * the pipe and transports which have read and write service 69 * procedures on both sides of the twist. 70 * 4. Queue lock. May be acquired by utility routines on 71 * behalf of a module. 72 */ 73 74 /* 75 * In general, sd_lock protects the consistency of the stdata 76 * structure. Additionally, it is used with sd_monitor 77 * to implement an open/close monitor. In particular, it protects 78 * the following fields: 79 * sd_iocblk 80 * sd_flag 81 * sd_copyflag 82 * sd_iocid 83 * sd_iocwait 84 * sd_sidp 85 * sd_pgidp 86 * sd_wroff 87 * sd_tail 88 * sd_rerror 89 * sd_werror 90 * sd_pushcnt 91 * sd_sigflags 92 * sd_siglist 93 * sd_pollist 94 * sd_mark 95 * sd_closetime 96 * sd_wakeq 97 * sd_uiordq 98 * sd_uiowrq 99 * sd_maxblk 100 * 101 * The following fields are modified only by the allocator, which 102 * has exclusive access to them at that time: 103 * sd_wrq 104 * sd_strtab 105 * 106 * The following field is protected by the overlying file system 107 * code, guaranteeing single-threading of opens: 108 * sd_vnode 109 * 110 * Stream-level locks should be acquired before any queue-level locks 111 * are acquired. 112 * 113 * The stream head write queue lock(sd_wrq) is used to protect the 114 * fields qn_maxpsz and qn_minpsz because freezestr() which is 115 * necessary for strqset() only gets the queue lock. 116 */ 117 118 /* 119 * Function types for the parameterized stream head. 120 * The msgfunc_t takes the parameters: 121 * msgfunc(vnode_t *vp, mblk_t *mp, strwakeup_t *wakeups, 122 * strsigset_t *firstmsgsigs, strsigset_t *allmsgsigs, 123 * strpollset_t *pollwakeups); 124 * It returns an optional message to be processed by the stream head. 125 * 126 * The parameters for errfunc_t are: 127 * errfunc(vnode *vp, int ispeek, int *clearerr); 128 * It returns an errno and zero if there was no pending error. 129 */ 130 typedef uint_t strwakeup_t; 131 typedef uint_t strsigset_t; 132 typedef short strpollset_t; 133 typedef uintptr_t callbparams_id_t; 134 typedef mblk_t *(*msgfunc_t)(vnode_t *, mblk_t *, strwakeup_t *, 135 strsigset_t *, strsigset_t *, strpollset_t *); 136 typedef int (*errfunc_t)(vnode_t *, int, int *); 137 138 /* 139 * Per stream sd_lock in putnext may be replaced by per cpu stream_putlocks 140 * each living in a separate cache line. putnext/canputnext grabs only one of 141 * stream_putlocks while strlock() (called on behalf of insertq()/removeq()) 142 * acquires all stream_putlocks. Normally stream_putlocks are only employed 143 * for highly contended streams that have SQ_CIPUT queues in the critical path 144 * (e.g. NFS/UDP stream). 145 * 146 * stream_putlocks are dynamically assigned to stdata structure through 147 * sd_ciputctrl pointer possibly when a stream is already in use. Since 148 * strlock() uses stream_putlocks only under sd_lock acquiring sd_lock when 149 * assigning stream_putlocks to the stream ensures synchronization with 150 * strlock(). 151 * 152 * For lock ordering purposes stream_putlocks are treated as the extension of 153 * sd_lock and are always grabbed right after grabbing sd_lock and released 154 * right before releasing sd_lock except putnext/canputnext where only one of 155 * stream_putlocks locks is used and where it is the first lock to grab. 156 */ 157 158 typedef struct ciputctrl_str { 159 union _ciput_un { 160 uchar_t pad[64]; 161 struct _ciput_str { 162 kmutex_t ciput_lck; 163 ushort_t ciput_cnt; 164 } ciput_str; 165 } ciput_un; 166 } ciputctrl_t; 167 168 #define ciputctrl_lock ciput_un.ciput_str.ciput_lck 169 #define ciputctrl_count ciput_un.ciput_str.ciput_cnt 170 171 /* 172 * Header for a stream: interface to rest of system. 173 * 174 * NOTE: While this is a consolidation-private structure, some unbundled and 175 * third-party products inappropriately make use of some of the fields. 176 * As such, please take care to not gratuitously change any offsets of 177 * existing members. 178 */ 179 typedef struct stdata { 180 struct queue *sd_wrq; /* write queue */ 181 struct msgb *sd_iocblk; /* return block for ioctl */ 182 struct vnode *sd_vnode; /* pointer to associated vnode */ 183 struct streamtab *sd_strtab; /* pointer to streamtab for stream */ 184 uint_t sd_flag; /* state/flags */ 185 uint_t sd_iocid; /* ioctl id */ 186 struct pid *sd_sidp; /* controlling session info */ 187 struct pid *sd_pgidp; /* controlling process group info */ 188 ushort_t sd_tail; /* reserved space in written mblks */ 189 ushort_t sd_wroff; /* write offset */ 190 int sd_rerror; /* error to return on read ops */ 191 int sd_werror; /* error to return on write ops */ 192 int sd_pushcnt; /* number of pushes done on stream */ 193 int sd_sigflags; /* logical OR of all siglist events */ 194 struct strsig *sd_siglist; /* pid linked list to rcv SIGPOLL sig */ 195 struct pollhead sd_pollist; /* list of all pollers to wake up */ 196 struct msgb *sd_mark; /* "marked" message on read queue */ 197 clock_t sd_closetime; /* time to wait to drain q in close */ 198 kmutex_t sd_lock; /* protect head consistency */ 199 kcondvar_t sd_monitor; /* open/close/push/pop monitor */ 200 kcondvar_t sd_iocmonitor; /* ioctl single-threading */ 201 kcondvar_t sd_refmonitor; /* sd_refcnt monitor */ 202 ssize_t sd_qn_minpsz; /* These two fields are a performance */ 203 ssize_t sd_qn_maxpsz; /* enhancements, cache the values in */ 204 /* the stream head so we don't have */ 205 /* to ask the module below the stream */ 206 /* head to get this information. */ 207 struct stdata *sd_mate; /* pointer to twisted stream mate */ 208 kthread_id_t sd_freezer; /* thread that froze stream */ 209 kmutex_t sd_reflock; /* Protects sd_refcnt */ 210 int sd_refcnt; /* number of claimstr */ 211 uint_t sd_wakeq; /* strwakeq()'s copy of sd_flag */ 212 struct queue *sd_struiordq; /* sync barrier struio() read queue */ 213 struct queue *sd_struiowrq; /* sync barrier struio() write queue */ 214 char sd_struiodnak; /* defer NAK of M_IOCTL by rput() */ 215 struct msgb *sd_struionak; /* pointer M_IOCTL mblk(s) to NAK */ 216 caddr_t sd_t_audit_data; /* For audit purposes only */ 217 ssize_t sd_maxblk; /* maximum message block size */ 218 uint_t sd_rput_opt; /* options/flags for strrput */ 219 uint_t sd_wput_opt; /* options/flags for write/putmsg */ 220 uint_t sd_read_opt; /* options/flags for strread */ 221 msgfunc_t sd_rprotofunc; /* rput M_*PROTO routine */ 222 msgfunc_t sd_rputdatafunc; /* read M_DATA routine */ 223 msgfunc_t sd_rmiscfunc; /* rput routine (non-data/proto) */ 224 msgfunc_t sd_wputdatafunc; /* wput M_DATA routine */ 225 errfunc_t sd_rderrfunc; /* read side error callback */ 226 errfunc_t sd_wrerrfunc; /* write side error callback */ 227 /* 228 * support for low contention concurrent putnext. 229 */ 230 ciputctrl_t *sd_ciputctrl; 231 uint_t sd_nciputctrl; 232 233 int sd_anchor; /* position of anchor in stream */ 234 /* 235 * Service scheduling at the stream head. 236 */ 237 kmutex_t sd_qlock; 238 struct queue *sd_qhead; /* Head of queues to be serviced. */ 239 struct queue *sd_qtail; /* Tail of queues to be serviced. */ 240 void *sd_servid; /* Service ID for bckgrnd schedule */ 241 ushort_t sd_svcflags; /* Servicing flags */ 242 short sd_nqueues; /* Number of queues in the list */ 243 kcondvar_t sd_qcv; /* Waiters for qhead to become empty */ 244 kcondvar_t sd_zcopy_wait; 245 uint_t sd_copyflag; /* copy-related flags */ 246 zoneid_t sd_anchorzone; /* Allow removal from same zone only */ 247 } stdata_t; 248 249 /* 250 * stdata servicing flags. 251 */ 252 #define STRS_WILLSERVICE 0x01 253 #define STRS_SCHEDULED 0x02 254 255 #define STREAM_NEEDSERVICE(stp) ((stp)->sd_qhead != NULL) 256 257 /* 258 * stdata flag field defines 259 */ 260 #define IOCWAIT 0x00000001 /* Someone is doing an ioctl */ 261 #define RSLEEP 0x00000002 /* Someone wants to read/recv msg */ 262 #define WSLEEP 0x00000004 /* Someone wants to write */ 263 #define STRPRI 0x00000008 /* An M_PCPROTO is at stream head */ 264 #define STRHUP 0x00000010 /* Device has vanished */ 265 #define STWOPEN 0x00000020 /* waiting for 1st open */ 266 #define STPLEX 0x00000040 /* stream is being multiplexed */ 267 #define STRISTTY 0x00000080 /* stream is a terminal */ 268 #define STRGETINPROG 0x00000100 /* (k)strgetmsg is running */ 269 #define IOCWAITNE 0x00000200 /* STR_NOERROR ioctl running */ 270 #define STRDERR 0x00000400 /* fatal read error from M_ERROR */ 271 #define STWRERR 0x00000800 /* fatal write error from M_ERROR */ 272 #define STRDERRNONPERSIST 0x00001000 /* nonpersistent read errors */ 273 #define STWRERRNONPERSIST 0x00002000 /* nonpersistent write errors */ 274 #define STRCLOSE 0x00004000 /* wait for a close to complete */ 275 #define SNDMREAD 0x00008000 /* used for read notification */ 276 #define OLDNDELAY 0x00010000 /* use old TTY semantics for */ 277 /* NDELAY reads and writes */ 278 /* 0x00020000 unused */ 279 /* 0x00040000 unused */ 280 #define STRTOSTOP 0x00080000 /* block background writes */ 281 /* 0x00100000 unused */ 282 /* 0x00200000 unused */ 283 #define STRMOUNT 0x00400000 /* stream is mounted */ 284 #define STRNOTATMARK 0x00800000 /* Not at mark (when empty read q) */ 285 #define STRDELIM 0x01000000 /* generate delimited messages */ 286 #define STRATMARK 0x02000000 /* At mark (due to MSGMARKNEXT) */ 287 #define STZCNOTIFY 0x04000000 /* wait for zerocopy mblk to be acked */ 288 #define STRPLUMB 0x08000000 /* push/pop pending */ 289 #define STREOF 0x10000000 /* End-of-file indication */ 290 #define STREOPENFAIL 0x20000000 /* indicates if re-open has failed */ 291 #define STRMATE 0x40000000 /* this stream is a mate */ 292 #define STRHASLINKS 0x80000000 /* I_LINKs under this stream */ 293 294 /* 295 * Copy-related flags (sd_copyflag), set by SO_COPYOPT. 296 */ 297 #define STZCVMSAFE 0x00000001 /* safe to borrow file (segmapped) */ 298 /* pages instead of bcopy */ 299 #define STZCVMUNSAFE 0x00000002 /* unsafe to borrow file pages */ 300 #define STRCOPYCACHED 0x00000004 /* copy should NOT bypass cache */ 301 302 /* 303 * Options and flags for strrput (sd_rput_opt) 304 */ 305 #define SR_POLLIN 0x00000001 /* pollwakeup needed for band0 data */ 306 #define SR_SIGALLDATA 0x00000002 /* Send SIGPOLL for all M_DATA */ 307 #define SR_CONSOL_DATA 0x00000004 /* Consolidate M_DATA onto q_last */ 308 #define SR_IGN_ZEROLEN 0x00000008 /* Ignore zero-length M_DATA */ 309 310 /* 311 * Options and flags for strwrite/strputmsg (sd_wput_opt) 312 */ 313 #define SW_SIGPIPE 0x00000001 /* Send SIGPIPE for write error */ 314 #define SW_RECHECK_ERR 0x00000002 /* Recheck errors in strwrite loop */ 315 #define SW_SNDZERO 0x00000004 /* send 0-length msg down pipe/FIFO */ 316 317 /* 318 * Options and flags for strread (sd_read_opt) 319 */ 320 #define RD_MSGDIS 0x00000001 /* read msg discard */ 321 #define RD_MSGNODIS 0x00000002 /* read msg no discard */ 322 #define RD_PROTDAT 0x00000004 /* read M_[PC]PROTO contents as data */ 323 #define RD_PROTDIS 0x00000008 /* discard M_[PC]PROTO blocks and */ 324 /* retain data blocks */ 325 /* 326 * Flags parameter for strsetrputhooks() and strsetwputhooks(). 327 * These flags define the interface for setting the above internal 328 * flags in sd_rput_opt and sd_wput_opt. 329 */ 330 #define SH_CONSOL_DATA 0x00000001 /* Consolidate M_DATA onto q_last */ 331 #define SH_SIGALLDATA 0x00000002 /* Send SIGPOLL for all M_DATA */ 332 #define SH_IGN_ZEROLEN 0x00000004 /* Drop zero-length M_DATA */ 333 334 #define SH_SIGPIPE 0x00000100 /* Send SIGPIPE for write error */ 335 #define SH_RECHECK_ERR 0x00000200 /* Recheck errors in strwrite loop */ 336 337 /* 338 * Each queue points to a sync queue (the inner perimeter) which keeps 339 * track of the number of threads that are inside a given queue (sq_count) 340 * and also is used to implement the asynchronous putnext 341 * (by queuing messages if the queue can not be entered.) 342 * 343 * Messages are queued on sq_head/sq_tail including deferred qwriter(INNER) 344 * messages. The sq_head/sq_tail list is a singly-linked list with 345 * b_queue recording the queue and b_prev recording the function to 346 * be called (either the put procedure or a qwriter callback function.) 347 * 348 * The sq_count counter tracks the number of threads that are 349 * executing inside the perimeter or (in the case of outer perimeters) 350 * have some work queued for them relating to the perimeter. The sq_rmqcount 351 * counter tracks the subset which are in removeq() (usually invoked from 352 * qprocsoff(9F)). 353 * 354 * In addition a module writer can declare that the module has an outer 355 * perimeter (by setting D_MTOUTPERIM) in which case all inner perimeter 356 * syncq's for the module point (through sq_outer) to an outer perimeter 357 * syncq. The outer perimeter consists of the doubly linked list (sq_onext and 358 * sq_oprev) linking all the inner perimeter syncq's with out outer perimeter 359 * syncq. This is used to implement qwriter(OUTER) (an asynchronous way of 360 * getting exclusive access at the outer perimeter) and outer_enter/exit 361 * which are used by the framework to acquire exclusive access to the outer 362 * perimeter during open and close of modules that have set D_MTOUTPERIM. 363 * 364 * In the inner perimeter case sq_save is available for use by machine 365 * dependent code. sq_head/sq_tail are used to queue deferred messages on 366 * the inner perimeter syncqs and to queue become_writer requests on the 367 * outer perimeter syncqs. 368 * 369 * Note: machine dependent optimized versions of putnext may depend 370 * on the order of sq_flags and sq_count (so that they can e.g. 371 * read these two fields in a single load instruction.) 372 * 373 * Per perimeter SQLOCK/sq_count in putnext/put may be replaced by per cpu 374 * sq_putlocks/sq_putcounts each living in a separate cache line. Obviously 375 * sq_putlock[x] protects sq_putcount[x]. putnext/put routine will grab only 1 376 * of sq_putlocks and update only 1 of sq_putcounts. strlock() and many 377 * other routines in strsubr.c and ddi.c will grab all sq_putlocks (as well as 378 * SQLOCK) and figure out the count value as the sum of sq_count and all of 379 * sq_putcounts. The idea is to make critical fast path -- putnext -- much 380 * faster at the expense of much less often used slower path like 381 * strlock(). One known case where entersq/strlock is executed pretty often is 382 * SpecWeb but since IP is SQ_CIOC and socket TCP/IP stream is nextless 383 * there's no need to grab multiple sq_putlocks and look at sq_putcounts. See 384 * strsubr.c for more comments. 385 * 386 * Note regular SQLOCK and sq_count are still used in many routines 387 * (e.g. entersq(), rwnext()) in the same way as before sq_putlocks were 388 * introduced. 389 * 390 * To understand when all sq_putlocks need to be held and all sq_putcounts 391 * need to be added up one needs to look closely at putnext code. Basically if 392 * a routine like e.g. wait_syncq() needs to be sure that perimeter is empty 393 * all sq_putlocks/sq_putcounts need to be held/added up. On the other hand 394 * there's no need to hold all sq_putlocks and count all sq_putcounts in 395 * routines like leavesq()/dropsq() and etc. since the are usually exit 396 * counterparts of entersq/outer_enter() and etc. which have already either 397 * prevented put entry poins from executing or did not care about put 398 * entrypoints. entersq() doesn't need to care about sq_putlocks/sq_putcounts 399 * if the entry point has a shared access since put has the highest degree of 400 * concurrency and such entersq() does not intend to block out put 401 * entrypoints. 402 * 403 * Before sq_putcounts were introduced the standard way to wait for perimeter 404 * to become empty was: 405 * 406 * mutex_enter(SQLOCK(sq)); 407 * while (sq->sq_count > 0) { 408 * sq->sq_flags |= SQ_WANTWAKEUP; 409 * cv_wait(&sq->sq_wait, SQLOCK(sq)); 410 * } 411 * mutex_exit(SQLOCK(sq)); 412 * 413 * The new way is: 414 * 415 * mutex_enter(SQLOCK(sq)); 416 * count = sq->sq_count; 417 * SQ_PUTLOCKS_ENTER(sq); 418 * SUM_SQ_PUTCOUNTS(sq, count); 419 * while (count != 0) { 420 * sq->sq_flags |= SQ_WANTWAKEUP; 421 * SQ_PUTLOCKS_EXIT(sq); 422 * cv_wait(&sq->sq_wait, SQLOCK(sq)); 423 * count = sq->sq_count; 424 * SQ_PUTLOCKS_ENTER(sq); 425 * SUM_SQ_PUTCOUNTS(sq, count); 426 * } 427 * SQ_PUTLOCKS_EXIT(sq); 428 * mutex_exit(SQLOCK(sq)); 429 * 430 * Note that SQ_WANTWAKEUP is set before dropping SQ_PUTLOCKS. This makes sure 431 * putnext won't skip a wakeup. 432 * 433 * sq_putlocks are treated as the extension of SQLOCK for lock ordering 434 * purposes and are always grabbed right after grabbing SQLOCK and released 435 * right before releasing SQLOCK. This also allows dynamic creation of 436 * sq_putlocks while holding SQLOCK (by making sq_ciputctrl non null even when 437 * the stream is already in use). Only in putnext one of sq_putlocks 438 * is grabbed instead of SQLOCK. putnext return path remembers what counter it 439 * incremented and decrements the right counter on its way out. 440 */ 441 442 struct syncq { 443 kmutex_t sq_lock; /* atomic access to syncq */ 444 uint16_t sq_count; /* # threads inside */ 445 uint16_t sq_flags; /* state and some type info */ 446 /* 447 * Distributed syncq scheduling 448 * The list of queue's is handled by sq_head and 449 * sq_tail fields. 450 * 451 * The list of events is handled by the sq_evhead and sq_evtail 452 * fields. 453 */ 454 queue_t *sq_head; /* queue of deferred messages */ 455 queue_t *sq_tail; /* queue of deferred messages */ 456 mblk_t *sq_evhead; /* Event message on the syncq */ 457 mblk_t *sq_evtail; 458 uint_t sq_nqueues; /* # of queues on this sq */ 459 /* 460 * Concurrency and condition variables 461 */ 462 uint16_t sq_type; /* type (concurrency) of syncq */ 463 uint16_t sq_rmqcount; /* # threads inside removeq() */ 464 kcondvar_t sq_wait; /* block on this sync queue */ 465 kcondvar_t sq_exitwait; /* waiting for thread to leave the */ 466 /* inner perimeter */ 467 /* 468 * Handling synchronous callbacks such as qtimeout and qbufcall 469 */ 470 ushort_t sq_callbflags; /* flags for callback synchronization */ 471 callbparams_id_t sq_cancelid; /* id of callback being cancelled */ 472 struct callbparams *sq_callbpend; /* Pending callbacks */ 473 474 /* 475 * Links forming an outer perimeter from one outer syncq and 476 * a set of inner sync queues. 477 */ 478 struct syncq *sq_outer; /* Pointer to outer perimeter */ 479 struct syncq *sq_onext; /* Linked list of syncq's making */ 480 struct syncq *sq_oprev; /* up the outer perimeter. */ 481 /* 482 * support for low contention concurrent putnext. 483 */ 484 ciputctrl_t *sq_ciputctrl; 485 uint_t sq_nciputctrl; 486 /* 487 * Counter for the number of threads wanting to become exclusive. 488 */ 489 uint_t sq_needexcl; 490 /* 491 * These two fields are used for scheduling a syncq for 492 * background processing. The sq_svcflag is protected by 493 * SQLOCK lock. 494 */ 495 struct syncq *sq_next; /* for syncq scheduling */ 496 void * sq_servid; 497 uint_t sq_servcount; /* # pending background threads */ 498 uint_t sq_svcflags; /* Scheduling flags */ 499 clock_t sq_tstamp; /* Time when was enabled */ 500 /* 501 * Maximum priority of the queues on this syncq. 502 */ 503 pri_t sq_pri; 504 }; 505 typedef struct syncq syncq_t; 506 507 /* 508 * sync queue scheduling flags (for sq_svcflags). 509 */ 510 #define SQ_SERVICE 0x1 /* being serviced */ 511 #define SQ_BGTHREAD 0x2 /* awaiting service by bg thread */ 512 #define SQ_DISABLED 0x4 /* don't put syncq in service list */ 513 514 /* 515 * FASTPUT bit in sd_count/putcount. 516 */ 517 #define SQ_FASTPUT 0x8000 518 #define SQ_FASTMASK 0x7FFF 519 520 /* 521 * sync queue state flags 522 */ 523 #define SQ_EXCL 0x0001 /* exclusive access to inner */ 524 /* perimeter */ 525 #define SQ_BLOCKED 0x0002 /* qprocsoff */ 526 #define SQ_FROZEN 0x0004 /* freezestr */ 527 #define SQ_WRITER 0x0008 /* qwriter(OUTER) pending or running */ 528 #define SQ_MESSAGES 0x0010 /* messages on syncq */ 529 #define SQ_WANTWAKEUP 0x0020 /* do cv_broadcast on sq_wait */ 530 #define SQ_WANTEXWAKEUP 0x0040 /* do cv_broadcast on sq_exitwait */ 531 #define SQ_EVENTS 0x0080 /* Events pending */ 532 #define SQ_QUEUED (SQ_MESSAGES | SQ_EVENTS) 533 #define SQ_FLAGMASK 0x00FF 534 535 /* 536 * Test a queue to see if inner perimeter is exclusive. 537 */ 538 #define PERIM_EXCL(q) ((q)->q_syncq->sq_flags & SQ_EXCL) 539 540 /* 541 * If any of these flags are set it is not possible for a thread to 542 * enter a put or service procedure. Instead it must either block 543 * or put the message on the syncq. 544 */ 545 #define SQ_GOAWAY (SQ_EXCL|SQ_BLOCKED|SQ_FROZEN|SQ_WRITER|\ 546 SQ_QUEUED) 547 /* 548 * If any of these flags are set it not possible to drain the syncq 549 */ 550 #define SQ_STAYAWAY (SQ_BLOCKED|SQ_FROZEN|SQ_WRITER) 551 552 /* 553 * Flags to trigger syncq tail processing. 554 */ 555 #define SQ_TAIL (SQ_QUEUED|SQ_WANTWAKEUP|SQ_WANTEXWAKEUP) 556 557 /* 558 * Syncq types (stored in sq_type) 559 * The SQ_TYPES_IN_FLAGS (ciput) are also stored in sq_flags 560 * for performance reasons. Thus these type values have to be in the low 561 * 16 bits and not conflict with the sq_flags values above. 562 * 563 * Notes: 564 * - putnext() and put() assume that the put procedures have the highest 565 * degree of concurrency. Thus if any of the SQ_CI* are set then SQ_CIPUT 566 * has to be set. This restriction can be lifted by adding code to putnext 567 * and put that check that sq_count == 0 like entersq does. 568 * - putnext() and put() does currently not handle !SQ_COPUT 569 * - In order to implement !SQ_COCB outer_enter has to be fixed so that 570 * the callback can be cancelled while cv_waiting in outer_enter. 571 * - If SQ_CISVC needs to be implemented, qprocsoff() needs to wait 572 * for the currently running services to stop (wait for QINSERVICE 573 * to go off). disable_svc called from qprcosoff disables only 574 * services that will be run in future. 575 * 576 * All the SQ_CO flags are set when there is no outer perimeter. 577 */ 578 #define SQ_CIPUT 0x0100 /* Concurrent inner put proc */ 579 #define SQ_CISVC 0x0200 /* Concurrent inner svc proc */ 580 #define SQ_CIOC 0x0400 /* Concurrent inner open/close */ 581 #define SQ_CICB 0x0800 /* Concurrent inner callback */ 582 #define SQ_COPUT 0x1000 /* Concurrent outer put proc */ 583 #define SQ_COSVC 0x2000 /* Concurrent outer svc proc */ 584 #define SQ_COOC 0x4000 /* Concurrent outer open/close */ 585 #define SQ_COCB 0x8000 /* Concurrent outer callback */ 586 587 /* Types also kept in sq_flags for performance */ 588 #define SQ_TYPES_IN_FLAGS (SQ_CIPUT) 589 590 #define SQ_CI (SQ_CIPUT|SQ_CISVC|SQ_CIOC|SQ_CICB) 591 #define SQ_CO (SQ_COPUT|SQ_COSVC|SQ_COOC|SQ_COCB) 592 #define SQ_TYPEMASK (SQ_CI|SQ_CO) 593 594 /* 595 * Flag combinations passed to entersq and leavesq to specify the type 596 * of entry point. 597 */ 598 #define SQ_PUT (SQ_CIPUT|SQ_COPUT) 599 #define SQ_SVC (SQ_CISVC|SQ_COSVC) 600 #define SQ_OPENCLOSE (SQ_CIOC|SQ_COOC) 601 #define SQ_CALLBACK (SQ_CICB|SQ_COCB) 602 603 /* 604 * Other syncq types which are not copied into flags. 605 */ 606 #define SQ_PERMOD 0x01 /* Syncq is PERMOD */ 607 608 /* 609 * Asynchronous callback qun*** flag. 610 * The mechanism these flags are used in is one where callbacks enter 611 * the perimeter thanks to framework support. To use this mechanism 612 * the q* and qun* flavors of the callback routines must be used. 613 * e.g. qtimeout and quntimeout. The synchronization provided by the flags 614 * avoids deadlocks between blocking qun* routines and the perimeter 615 * lock. 616 */ 617 #define SQ_CALLB_BYPASSED 0x01 /* bypassed callback fn */ 618 619 /* 620 * Cancel callback mask. 621 * The mask expands as the number of cancelable callback types grows 622 * Note - separate callback flag because different callbacks have 623 * overlapping id space. 624 */ 625 #define SQ_CALLB_CANCEL_MASK (SQ_CANCEL_TOUT|SQ_CANCEL_BUFCALL) 626 627 #define SQ_CANCEL_TOUT 0x02 /* cancel timeout request */ 628 #define SQ_CANCEL_BUFCALL 0x04 /* cancel bufcall request */ 629 630 typedef struct callbparams { 631 syncq_t *cbp_sq; 632 void (*cbp_func)(void *); 633 void *cbp_arg; 634 callbparams_id_t cbp_id; 635 uint_t cbp_flags; 636 struct callbparams *cbp_next; 637 size_t cbp_size; 638 } callbparams_t; 639 640 typedef struct strbufcall { 641 void (*bc_func)(void *); 642 void *bc_arg; 643 size_t bc_size; 644 bufcall_id_t bc_id; 645 struct strbufcall *bc_next; 646 kthread_id_t bc_executor; 647 } strbufcall_t; 648 649 /* 650 * Structure of list of processes to be sent SIGPOLL/SIGURG signal 651 * on request. The valid S_* events are defined in stropts.h. 652 */ 653 typedef struct strsig { 654 struct pid *ss_pidp; /* pid/pgrp pointer */ 655 pid_t ss_pid; /* positive pid, negative pgrp */ 656 int ss_events; /* S_* events */ 657 struct strsig *ss_next; 658 } strsig_t; 659 660 /* 661 * bufcall list 662 */ 663 struct bclist { 664 strbufcall_t *bc_head; 665 strbufcall_t *bc_tail; 666 }; 667 668 /* 669 * Structure used to track mux links and unlinks. 670 */ 671 struct mux_node { 672 major_t mn_imaj; /* internal major device number */ 673 uint16_t mn_indegree; /* number of incoming edges */ 674 struct mux_node *mn_originp; /* where we came from during search */ 675 struct mux_edge *mn_startp; /* where search left off in mn_outp */ 676 struct mux_edge *mn_outp; /* list of outgoing edges */ 677 uint_t mn_flags; /* see below */ 678 }; 679 680 /* 681 * Flags for mux_nodes. 682 */ 683 #define VISITED 1 684 685 /* 686 * Edge structure - a list of these is hung off the 687 * mux_node to represent the outgoing edges. 688 */ 689 struct mux_edge { 690 struct mux_node *me_nodep; /* edge leads to this node */ 691 struct mux_edge *me_nextp; /* next edge */ 692 int me_muxid; /* id of link */ 693 dev_t me_dev; /* dev_t - used for kernel PUNLINK */ 694 }; 695 696 /* 697 * Queue info 698 * 699 * The syncq is included here to reduce memory fragmentation 700 * for kernel memory allocators that only allocate in sizes that are 701 * powers of two. If the kernel memory allocator changes this should 702 * be revisited. 703 */ 704 typedef struct queinfo { 705 struct queue qu_rqueue; /* read queue - must be first */ 706 struct queue qu_wqueue; /* write queue - must be second */ 707 struct syncq qu_syncq; /* syncq - must be third */ 708 } queinfo_t; 709 710 /* 711 * Multiplexed streams info 712 */ 713 typedef struct linkinfo { 714 struct linkblk li_lblk; /* must be first */ 715 struct file *li_fpdown; /* file pointer for lower stream */ 716 struct linkinfo *li_next; /* next in list */ 717 struct linkinfo *li_prev; /* previous in list */ 718 } linkinfo_t; 719 720 /* 721 * List of syncq's used by freeezestr/unfreezestr 722 */ 723 typedef struct syncql { 724 struct syncql *sql_next; 725 syncq_t *sql_sq; 726 } syncql_t; 727 728 typedef struct sqlist { 729 syncql_t *sqlist_head; 730 size_t sqlist_size; /* structure size in bytes */ 731 size_t sqlist_index; /* next free entry in array */ 732 syncql_t sqlist_array[4]; /* 4 or more entries */ 733 } sqlist_t; 734 735 typedef struct perdm { 736 struct perdm *dm_next; 737 syncq_t *dm_sq; 738 struct streamtab *dm_str; 739 uint_t dm_ref; 740 } perdm_t; 741 742 #define NEED_DM(dmp, qflag) \ 743 (dmp == NULL && (qflag & (QPERMOD | QMTOUTPERIM))) 744 745 /* 746 * fmodsw_impl_t is used within the kernel. fmodsw is used by 747 * the modules/drivers. The information is copied from fmodsw 748 * defined in the module/driver into the fmodsw_impl_t structure 749 * during the module/driver initialization. 750 */ 751 typedef struct fmodsw_impl fmodsw_impl_t; 752 753 struct fmodsw_impl { 754 fmodsw_impl_t *f_next; 755 char f_name[FMNAMESZ + 1]; 756 struct streamtab *f_str; 757 uint32_t f_qflag; 758 uint32_t f_sqtype; 759 perdm_t *f_dmp; 760 uint32_t f_ref; 761 uint32_t f_hits; 762 }; 763 764 typedef enum { 765 FMODSW_HOLD = 0x00000001, 766 FMODSW_LOAD = 0x00000002 767 } fmodsw_flags_t; 768 769 typedef struct cdevsw_impl { 770 struct streamtab *d_str; 771 uint32_t d_qflag; 772 uint32_t d_sqtype; 773 perdm_t *d_dmp; 774 } cdevsw_impl_t; 775 776 /* 777 * Enumeration of the types of access that can be requested for a 778 * controlling terminal under job control. 779 */ 780 enum jcaccess { 781 JCREAD, /* read data on a ctty */ 782 JCWRITE, /* write data to a ctty */ 783 JCSETP, /* set ctty parameters */ 784 JCGETP /* get ctty parameters */ 785 }; 786 787 struct str_stack { 788 netstack_t *ss_netstack; /* Common netstack */ 789 790 kmutex_t ss_sad_lock; /* autopush lock */ 791 mod_hash_t *ss_sad_hash; 792 size_t ss_sad_hash_nchains; 793 struct saddev *ss_saddev; /* sad device array */ 794 int ss_sadcnt; /* number of sad devices */ 795 796 int ss_devcnt; /* number of mux_nodes */ 797 struct mux_node *ss_mux_nodes; /* mux info for cycle checking */ 798 }; 799 typedef struct str_stack str_stack_t; 800 801 /* 802 * Finding related queues 803 */ 804 #define STREAM(q) ((q)->q_stream) 805 #define SQ(rq) ((syncq_t *)((rq) + 2)) 806 807 /* 808 * Locking macros 809 */ 810 #define QLOCK(q) (&(q)->q_lock) 811 #define SQLOCK(sq) (&(sq)->sq_lock) 812 813 #define STREAM_PUTLOCKS_ENTER(stp) { \ 814 ASSERT(MUTEX_HELD(&(stp)->sd_lock)); \ 815 if ((stp)->sd_ciputctrl != NULL) { \ 816 int i; \ 817 int nlocks = (stp)->sd_nciputctrl; \ 818 ciputctrl_t *cip = (stp)->sd_ciputctrl; \ 819 for (i = 0; i <= nlocks; i++) { \ 820 mutex_enter(&cip[i].ciputctrl_lock); \ 821 } \ 822 } \ 823 } 824 825 #define STREAM_PUTLOCKS_EXIT(stp) { \ 826 ASSERT(MUTEX_HELD(&(stp)->sd_lock)); \ 827 if ((stp)->sd_ciputctrl != NULL) { \ 828 int i; \ 829 int nlocks = (stp)->sd_nciputctrl; \ 830 ciputctrl_t *cip = (stp)->sd_ciputctrl; \ 831 for (i = 0; i <= nlocks; i++) { \ 832 mutex_exit(&cip[i].ciputctrl_lock); \ 833 } \ 834 } \ 835 } 836 837 #define SQ_PUTLOCKS_ENTER(sq) { \ 838 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 839 if ((sq)->sq_ciputctrl != NULL) { \ 840 int i; \ 841 int nlocks = (sq)->sq_nciputctrl; \ 842 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 843 ASSERT((sq)->sq_type & SQ_CIPUT); \ 844 for (i = 0; i <= nlocks; i++) { \ 845 mutex_enter(&cip[i].ciputctrl_lock); \ 846 } \ 847 } \ 848 } 849 850 #define SQ_PUTLOCKS_EXIT(sq) { \ 851 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 852 if ((sq)->sq_ciputctrl != NULL) { \ 853 int i; \ 854 int nlocks = (sq)->sq_nciputctrl; \ 855 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 856 ASSERT((sq)->sq_type & SQ_CIPUT); \ 857 for (i = 0; i <= nlocks; i++) { \ 858 mutex_exit(&cip[i].ciputctrl_lock); \ 859 } \ 860 } \ 861 } 862 863 #define SQ_PUTCOUNT_SETFAST(sq) { \ 864 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 865 if ((sq)->sq_ciputctrl != NULL) { \ 866 int i; \ 867 int nlocks = (sq)->sq_nciputctrl; \ 868 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 869 ASSERT((sq)->sq_type & SQ_CIPUT); \ 870 for (i = 0; i <= nlocks; i++) { \ 871 mutex_enter(&cip[i].ciputctrl_lock); \ 872 cip[i].ciputctrl_count |= SQ_FASTPUT; \ 873 mutex_exit(&cip[i].ciputctrl_lock); \ 874 } \ 875 } \ 876 } 877 878 #define SQ_PUTCOUNT_CLRFAST(sq) { \ 879 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 880 if ((sq)->sq_ciputctrl != NULL) { \ 881 int i; \ 882 int nlocks = (sq)->sq_nciputctrl; \ 883 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 884 ASSERT((sq)->sq_type & SQ_CIPUT); \ 885 for (i = 0; i <= nlocks; i++) { \ 886 mutex_enter(&cip[i].ciputctrl_lock); \ 887 cip[i].ciputctrl_count &= ~SQ_FASTPUT; \ 888 mutex_exit(&cip[i].ciputctrl_lock); \ 889 } \ 890 } \ 891 } 892 893 894 #ifdef DEBUG 895 896 #define SQ_PUTLOCKS_HELD(sq) { \ 897 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 898 if ((sq)->sq_ciputctrl != NULL) { \ 899 int i; \ 900 int nlocks = (sq)->sq_nciputctrl; \ 901 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 902 ASSERT((sq)->sq_type & SQ_CIPUT); \ 903 for (i = 0; i <= nlocks; i++) { \ 904 ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \ 905 } \ 906 } \ 907 } 908 909 #define SUMCHECK_SQ_PUTCOUNTS(sq, countcheck) { \ 910 if ((sq)->sq_ciputctrl != NULL) { \ 911 int i; \ 912 uint_t count = 0; \ 913 int ncounts = (sq)->sq_nciputctrl; \ 914 ASSERT((sq)->sq_type & SQ_CIPUT); \ 915 for (i = 0; i <= ncounts; i++) { \ 916 count += \ 917 (((sq)->sq_ciputctrl[i].ciputctrl_count) & \ 918 SQ_FASTMASK); \ 919 } \ 920 ASSERT(count == (countcheck)); \ 921 } \ 922 } 923 924 #define SUMCHECK_CIPUTCTRL_COUNTS(ciput, nciput, countcheck) { \ 925 int i; \ 926 uint_t count = 0; \ 927 ASSERT((ciput) != NULL); \ 928 for (i = 0; i <= (nciput); i++) { \ 929 count += (((ciput)[i].ciputctrl_count) & \ 930 SQ_FASTMASK); \ 931 } \ 932 ASSERT(count == (countcheck)); \ 933 } 934 935 #else /* DEBUG */ 936 937 #define SQ_PUTLOCKS_HELD(sq) 938 #define SUMCHECK_SQ_PUTCOUNTS(sq, countcheck) 939 #define SUMCHECK_CIPUTCTRL_COUNTS(sq, nciput, countcheck) 940 941 #endif /* DEBUG */ 942 943 #define SUM_SQ_PUTCOUNTS(sq, count) { \ 944 if ((sq)->sq_ciputctrl != NULL) { \ 945 int i; \ 946 int ncounts = (sq)->sq_nciputctrl; \ 947 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 948 ASSERT((sq)->sq_type & SQ_CIPUT); \ 949 for (i = 0; i <= ncounts; i++) { \ 950 (count) += ((cip[i].ciputctrl_count) & \ 951 SQ_FASTMASK); \ 952 } \ 953 } \ 954 } 955 956 #define CLAIM_QNEXT_LOCK(stp) mutex_enter(&(stp)->sd_lock) 957 #define RELEASE_QNEXT_LOCK(stp) mutex_exit(&(stp)->sd_lock) 958 959 /* 960 * syncq message manipulation macros. 961 */ 962 /* 963 * Put a message on the queue syncq. 964 * Assumes QLOCK held. 965 */ 966 #define SQPUT_MP(qp, mp) \ 967 { \ 968 qp->q_syncqmsgs++; \ 969 if (qp->q_sqhead == NULL) { \ 970 qp->q_sqhead = qp->q_sqtail = mp; \ 971 } else { \ 972 qp->q_sqtail->b_next = mp; \ 973 qp->q_sqtail = mp; \ 974 } \ 975 set_qfull(qp); \ 976 } 977 978 /* 979 * Miscellaneous parameters and flags. 980 */ 981 982 /* 983 * Default timeout in milliseconds for ioctls and close 984 */ 985 #define STRTIMOUT 15000 986 987 /* 988 * Flag values for stream io 989 */ 990 #define WRITEWAIT 0x1 /* waiting for write event */ 991 #define READWAIT 0x2 /* waiting for read event */ 992 #define NOINTR 0x4 /* error is not to be set for signal */ 993 #define GETWAIT 0x8 /* waiting for getmsg event */ 994 995 /* 996 * These flags need to be unique for stream io name space 997 * and copy modes name space. These flags allow strwaitq 998 * and strdoioctl to proceed as if signals or errors on the stream 999 * head have not occurred; i.e. they will be detected by some other 1000 * means. 1001 * STR_NOSIG does not allow signals to interrupt the call 1002 * STR_NOERROR does not allow stream head read, write or hup errors to 1003 * affect the call. When used with strdoioctl(), if a previous ioctl 1004 * is pending and times out, STR_NOERROR will cause strdoioctl() to not 1005 * return ETIME. If, however, the requested ioctl times out, ETIME 1006 * will be returned (use ic_timout instead) 1007 * STR_PEEK is used to inform strwaitq that the reader is peeking at data 1008 * and that a non-persistent error should not be cleared. 1009 * STR_DELAYERR is used to inform strwaitq that it should not check errors 1010 * after being awoken since, in addition to an error, there might also be 1011 * data queued on the stream head read queue. 1012 */ 1013 #define STR_NOSIG 0x10 /* Ignore signals during strdoioctl/strwaitq */ 1014 #define STR_NOERROR 0x20 /* Ignore errors during strdoioctl/strwaitq */ 1015 #define STR_PEEK 0x40 /* Peeking behavior on non-persistent errors */ 1016 #define STR_DELAYERR 0x80 /* Do not check errors on return */ 1017 1018 /* 1019 * Copy modes for tty and I_STR ioctls 1020 */ 1021 #define U_TO_K 01 /* User to Kernel */ 1022 #define K_TO_K 02 /* Kernel to Kernel */ 1023 1024 /* 1025 * Mux defines. 1026 */ 1027 #define LINKNORMAL 0x01 /* normal mux link */ 1028 #define LINKPERSIST 0x02 /* persistent mux link */ 1029 #define LINKTYPEMASK 0x03 /* bitmask of all link types */ 1030 #define LINKCLOSE 0x04 /* unlink from strclose */ 1031 1032 /* 1033 * Definitions of Streams macros and function interfaces. 1034 */ 1035 1036 /* 1037 * Obsolete queue scheduling macros. They are not used anymore, but still kept 1038 * here for 3-d party modules and drivers who might still use them. 1039 */ 1040 #define setqsched() 1041 #define qready() 1 1042 1043 #ifdef _KERNEL 1044 #define runqueues() 1045 #define queuerun() 1046 #endif 1047 1048 /* compatibility module for style 2 drivers with DR race condition */ 1049 #define DRMODNAME "drcompat" 1050 1051 /* 1052 * Macros dealing with mux_nodes. 1053 */ 1054 #define MUX_VISIT(X) ((X)->mn_flags |= VISITED) 1055 #define MUX_CLEAR(X) ((X)->mn_flags &= (~VISITED)); \ 1056 ((X)->mn_originp = NULL) 1057 #define MUX_DIDVISIT(X) ((X)->mn_flags & VISITED) 1058 1059 1060 /* 1061 * Twisted stream macros 1062 */ 1063 #define STRMATED(X) ((X)->sd_flag & STRMATE) 1064 #define STRLOCKMATES(X) if (&((X)->sd_lock) > &(((X)->sd_mate)->sd_lock)) { \ 1065 mutex_enter(&((X)->sd_lock)); \ 1066 mutex_enter(&(((X)->sd_mate)->sd_lock)); \ 1067 } else { \ 1068 mutex_enter(&(((X)->sd_mate)->sd_lock)); \ 1069 mutex_enter(&((X)->sd_lock)); \ 1070 } 1071 #define STRUNLOCKMATES(X) mutex_exit(&((X)->sd_lock)); \ 1072 mutex_exit(&(((X)->sd_mate)->sd_lock)) 1073 1074 #ifdef _KERNEL 1075 1076 extern void strinit(void); 1077 extern int strdoioctl(struct stdata *, struct strioctl *, int, int, 1078 cred_t *, int *); 1079 extern void strsendsig(struct strsig *, int, uchar_t, int); 1080 extern void str_sendsig(vnode_t *, int, uchar_t, int); 1081 extern void strhup(struct stdata *); 1082 extern int qattach(queue_t *, dev_t *, int, cred_t *, fmodsw_impl_t *, 1083 boolean_t); 1084 extern int qreopen(queue_t *, dev_t *, int, cred_t *); 1085 extern void qdetach(queue_t *, int, int, cred_t *, boolean_t); 1086 extern void enterq(queue_t *); 1087 extern void leaveq(queue_t *); 1088 extern int putiocd(mblk_t *, caddr_t, int, cred_t *); 1089 extern int getiocd(mblk_t *, caddr_t, int); 1090 extern struct linkinfo *alloclink(queue_t *, queue_t *, struct file *); 1091 extern void lbfree(struct linkinfo *); 1092 extern int linkcycle(stdata_t *, stdata_t *, str_stack_t *); 1093 extern struct linkinfo *findlinks(stdata_t *, int, int, str_stack_t *); 1094 extern queue_t *getendq(queue_t *); 1095 extern int mlink(vnode_t *, int, int, cred_t *, int *, int); 1096 extern int mlink_file(vnode_t *, int, struct file *, cred_t *, int *, int); 1097 extern int munlink(struct stdata *, struct linkinfo *, int, cred_t *, int *, 1098 str_stack_t *); 1099 extern int munlinkall(struct stdata *, int, cred_t *, int *, str_stack_t *); 1100 extern void mux_addedge(stdata_t *, stdata_t *, int, str_stack_t *); 1101 extern void mux_rmvedge(stdata_t *, int, str_stack_t *); 1102 extern int devflg_to_qflag(struct streamtab *, uint32_t, uint32_t *, 1103 uint32_t *); 1104 extern void setq(queue_t *, struct qinit *, struct qinit *, perdm_t *, 1105 uint32_t, uint32_t, boolean_t); 1106 extern perdm_t *hold_dm(struct streamtab *, uint32_t, uint32_t); 1107 extern void rele_dm(perdm_t *); 1108 extern int strmakectl(struct strbuf *, int32_t, int32_t, mblk_t **); 1109 extern int strmakedata(ssize_t *, struct uio *, stdata_t *, int32_t, mblk_t **); 1110 extern int strmakemsg(struct strbuf *, ssize_t *, struct uio *, 1111 struct stdata *, int32_t, mblk_t **); 1112 extern int strgetmsg(vnode_t *, struct strbuf *, struct strbuf *, uchar_t *, 1113 int *, int, rval_t *); 1114 extern int strputmsg(vnode_t *, struct strbuf *, struct strbuf *, uchar_t, 1115 int flag, int fmode); 1116 extern int strstartplumb(struct stdata *, int, int); 1117 extern void strendplumb(struct stdata *); 1118 extern int stropen(struct vnode *, dev_t *, int, cred_t *); 1119 extern int strclose(struct vnode *, int, cred_t *); 1120 extern int strpoll(register struct stdata *, short, int, short *, 1121 struct pollhead **); 1122 extern void strclean(struct vnode *); 1123 extern void str_cn_clean(); /* XXX hook for consoles signal cleanup */ 1124 extern int strwrite(struct vnode *, struct uio *, cred_t *); 1125 extern int strwrite_common(struct vnode *, struct uio *, cred_t *, int); 1126 extern int kstrwritemp(struct vnode *, mblk_t *, ushort_t); 1127 extern int strread(struct vnode *, struct uio *, cred_t *); 1128 extern int strioctl(struct vnode *, int, intptr_t, int, int, cred_t *, int *); 1129 extern int strrput(queue_t *, mblk_t *); 1130 extern int strrput_nondata(queue_t *, mblk_t *); 1131 extern mblk_t *strrput_proto(vnode_t *, mblk_t *, 1132 strwakeup_t *, strsigset_t *, strsigset_t *, strpollset_t *); 1133 extern mblk_t *strrput_misc(vnode_t *, mblk_t *, 1134 strwakeup_t *, strsigset_t *, strsigset_t *, strpollset_t *); 1135 extern int getiocseqno(void); 1136 extern int strwaitbuf(size_t, int); 1137 extern int strwaitq(stdata_t *, int, ssize_t, int, clock_t, int *); 1138 extern struct stdata *shalloc(queue_t *); 1139 extern void shfree(struct stdata *s); 1140 extern queue_t *allocq(void); 1141 extern void freeq(queue_t *); 1142 extern qband_t *allocband(void); 1143 extern void freeband(qband_t *); 1144 extern void freebs_enqueue(mblk_t *, dblk_t *); 1145 extern void setqback(queue_t *, unsigned char); 1146 extern int strcopyin(void *, void *, size_t, int); 1147 extern int strcopyout(void *, void *, size_t, int); 1148 extern void strsignal(struct stdata *, int, int32_t); 1149 extern clock_t str_cv_wait(kcondvar_t *, kmutex_t *, clock_t, int); 1150 extern void disable_svc(queue_t *); 1151 extern void remove_runlist(queue_t *); 1152 extern void wait_svc(queue_t *); 1153 extern void backenable(queue_t *, uchar_t); 1154 extern void set_qend(queue_t *); 1155 extern int strgeterr(stdata_t *, int32_t, int); 1156 extern void qenable_locked(queue_t *); 1157 extern mblk_t *getq_noenab(queue_t *); 1158 extern void rmvq_noenab(queue_t *, mblk_t *); 1159 extern void qbackenable(queue_t *, uchar_t); 1160 extern void set_qfull(queue_t *); 1161 1162 extern void strblock(queue_t *); 1163 extern void strunblock(queue_t *); 1164 extern int qclaimed(queue_t *); 1165 extern int straccess(struct stdata *, enum jcaccess); 1166 1167 extern void entersq(syncq_t *, int); 1168 extern void leavesq(syncq_t *, int); 1169 extern void claimq(queue_t *); 1170 extern void releaseq(queue_t *); 1171 extern void claimstr(queue_t *); 1172 extern void releasestr(queue_t *); 1173 extern void removeq(queue_t *); 1174 extern void insertq(struct stdata *, queue_t *); 1175 extern void drain_syncq(syncq_t *); 1176 extern void qfill_syncq(syncq_t *, queue_t *, mblk_t *); 1177 extern void qdrain_syncq(syncq_t *, queue_t *); 1178 extern int flush_syncq(syncq_t *, queue_t *); 1179 extern void wait_sq_svc(syncq_t *); 1180 1181 extern void outer_enter(syncq_t *, uint16_t); 1182 extern void outer_exit(syncq_t *); 1183 extern void qwriter_inner(queue_t *, mblk_t *, void (*)()); 1184 extern void qwriter_outer(queue_t *, mblk_t *, void (*)()); 1185 1186 extern callbparams_t *callbparams_alloc(syncq_t *, void (*)(void *), 1187 void *, int); 1188 extern void callbparams_free(syncq_t *, callbparams_t *); 1189 extern void callbparams_free_id(syncq_t *, callbparams_id_t, int32_t); 1190 extern void qcallbwrapper(void *); 1191 1192 extern mblk_t *esballoc_wait(unsigned char *, size_t, uint_t, frtn_t *); 1193 extern mblk_t *esballoca(unsigned char *, size_t, uint_t, frtn_t *); 1194 extern mblk_t *desballoca(unsigned char *, size_t, uint_t, frtn_t *); 1195 extern int do_sendfp(struct stdata *, struct file *, struct cred *); 1196 extern int frozenstr(queue_t *); 1197 extern size_t xmsgsize(mblk_t *); 1198 1199 extern void putnext_tail(syncq_t *, queue_t *, uint32_t); 1200 extern void stream_willservice(stdata_t *); 1201 extern void stream_runservice(stdata_t *); 1202 1203 extern void strmate(vnode_t *, vnode_t *); 1204 extern queue_t *strvp2wq(vnode_t *); 1205 extern vnode_t *strq2vp(queue_t *); 1206 extern mblk_t *allocb_wait(size_t, uint_t, uint_t, int *); 1207 extern mblk_t *allocb_cred(size_t, cred_t *); 1208 extern mblk_t *allocb_cred_wait(size_t, uint_t, int *, cred_t *); 1209 extern mblk_t *allocb_tmpl(size_t, const mblk_t *); 1210 extern mblk_t *allocb_tryhard(size_t); 1211 extern void mblk_setcred(mblk_t *, cred_t *); 1212 extern void strpollwakeup(vnode_t *, short); 1213 extern int putnextctl_wait(queue_t *, int); 1214 1215 extern int kstrputmsg(struct vnode *, mblk_t *, struct uio *, ssize_t, 1216 unsigned char, int, int); 1217 extern int kstrgetmsg(struct vnode *, mblk_t **, struct uio *, 1218 unsigned char *, int *, clock_t, rval_t *); 1219 1220 extern void strsetrerror(vnode_t *, int, int, errfunc_t); 1221 extern void strsetwerror(vnode_t *, int, int, errfunc_t); 1222 extern void strseteof(vnode_t *, int); 1223 extern void strflushrq(vnode_t *, int); 1224 extern void strsetrputhooks(vnode_t *, uint_t, msgfunc_t, msgfunc_t); 1225 extern void strsetwputhooks(vnode_t *, uint_t, clock_t); 1226 extern void strsetrwputdatahooks(vnode_t *, msgfunc_t, msgfunc_t); 1227 extern int strwaitmark(vnode_t *); 1228 extern void strsignal_nolock(stdata_t *, int, int32_t); 1229 1230 struct multidata_s; 1231 struct pdesc_s; 1232 extern int hcksum_assoc(mblk_t *, struct multidata_s *, struct pdesc_s *, 1233 uint32_t, uint32_t, uint32_t, uint32_t, uint32_t, int); 1234 extern void hcksum_retrieve(mblk_t *, struct multidata_s *, struct pdesc_s *, 1235 uint32_t *, uint32_t *, uint32_t *, uint32_t *, uint32_t *); 1236 extern unsigned int bcksum(uchar_t *, int, unsigned int); 1237 extern boolean_t is_vmloaned_mblk(mblk_t *, struct multidata_s *, 1238 struct pdesc_s *); 1239 1240 extern int fmodsw_register(const char *, struct streamtab *, int); 1241 extern int fmodsw_unregister(const char *); 1242 extern fmodsw_impl_t *fmodsw_find(const char *, fmodsw_flags_t); 1243 extern void fmodsw_rele(fmodsw_impl_t *); 1244 1245 extern void freemsgchain(mblk_t *); 1246 extern mblk_t *copymsgchain(mblk_t *); 1247 1248 extern mblk_t *mcopyinuio(struct stdata *, uio_t *, ssize_t, ssize_t, int *); 1249 1250 /* 1251 * shared or externally configured data structures 1252 */ 1253 extern ssize_t strmsgsz; /* maximum stream message size */ 1254 extern ssize_t strctlsz; /* maximum size of ctl message */ 1255 extern int nstrpush; /* maximum number of pushes allowed */ 1256 1257 /* 1258 * Bufcalls related variables. 1259 */ 1260 extern struct bclist strbcalls; /* List of bufcalls */ 1261 extern kmutex_t strbcall_lock; /* Protects the list of bufcalls */ 1262 extern kcondvar_t strbcall_cv; /* Signaling when a bufcall is added */ 1263 extern kcondvar_t bcall_cv; /* wait of executing bufcall completes */ 1264 1265 extern frtn_t frnop; 1266 1267 extern struct kmem_cache *ciputctrl_cache; 1268 extern int n_ciputctrl; 1269 extern int max_n_ciputctrl; 1270 extern int min_n_ciputctrl; 1271 1272 extern cdevsw_impl_t *devimpl; 1273 1274 /* 1275 * esballoc queue for throttling 1276 */ 1277 typedef struct esb_queue { 1278 kmutex_t eq_lock; 1279 uint_t eq_len; /* number of queued messages */ 1280 mblk_t *eq_head; /* head of queue */ 1281 mblk_t *eq_tail; /* tail of queue */ 1282 uint_t eq_flags; /* esballoc queue flags */ 1283 } esb_queue_t; 1284 1285 /* 1286 * esballoc flags for queue processing. 1287 */ 1288 #define ESBQ_PROCESSING 0x01 /* queue is being processed */ 1289 #define ESBQ_TIMER 0x02 /* timer is active */ 1290 1291 extern void esballoc_queue_init(void); 1292 1293 #endif /* _KERNEL */ 1294 1295 /* 1296 * Note: Use of these macros are restricted to kernel/unix and 1297 * intended for the STREAMS framework. 1298 * All modules/drivers should include sys/ddi.h. 1299 * 1300 * Finding related queues 1301 */ 1302 #define _OTHERQ(q) ((q)->q_flag&QREADR? (q)+1: (q)-1) 1303 #define _WR(q) ((q)->q_flag&QREADR? (q)+1: (q)) 1304 #define _RD(q) ((q)->q_flag&QREADR? (q): (q)-1) 1305 #define _SAMESTR(q) (!((q)->q_flag & QEND)) 1306 1307 /* 1308 * These are also declared here for modules/drivers that erroneously 1309 * include strsubr.h after ddi.h or fail to include ddi.h at all. 1310 */ 1311 extern struct queue *OTHERQ(queue_t *); /* stream.h */ 1312 extern struct queue *RD(queue_t *); 1313 extern struct queue *WR(queue_t *); 1314 extern int SAMESTR(queue_t *); 1315 1316 /* 1317 * The following hardware checksum related macros are private 1318 * interfaces that are subject to change without notice. 1319 */ 1320 #ifdef _KERNEL 1321 #define DB_CKSUMSTART(mp) ((mp)->b_datap->db_cksumstart) 1322 #define DB_CKSUMEND(mp) ((mp)->b_datap->db_cksumend) 1323 #define DB_CKSUMSTUFF(mp) ((mp)->b_datap->db_cksumstuff) 1324 #define DB_CKSUMFLAGS(mp) ((mp)->b_datap->db_struioun.cksum.flags) 1325 #define DB_CKSUM16(mp) ((mp)->b_datap->db_cksum16) 1326 #define DB_CKSUM32(mp) ((mp)->b_datap->db_cksum32) 1327 #define DB_LSOFLAGS(mp) ((mp)->b_datap->db_struioun.cksum.flags) 1328 #define DB_LSOMSS(mp) ((mp)->b_datap->db_struioun.cksum.pad) 1329 #endif /* _KERNEL */ 1330 1331 #ifdef __cplusplus 1332 } 1333 #endif 1334 1335 1336 #endif /* _SYS_STRSUBR_H */ 1337