1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2004 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #ifndef _SYS_KSTAT_H 28 #define _SYS_KSTAT_H 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 /* 33 * Definition of general kernel statistics structures and /dev/kstat ioctls 34 */ 35 36 #include <sys/types.h> 37 #include <sys/time.h> 38 39 #ifdef __cplusplus 40 extern "C" { 41 #endif 42 43 typedef int kid_t; /* unique kstat id */ 44 45 /* 46 * Kernel statistics driver (/dev/kstat) ioctls 47 */ 48 49 #define KSTAT_IOC_BASE ('K' << 8) 50 51 #define KSTAT_IOC_CHAIN_ID KSTAT_IOC_BASE | 0x01 52 #define KSTAT_IOC_READ KSTAT_IOC_BASE | 0x02 53 #define KSTAT_IOC_WRITE KSTAT_IOC_BASE | 0x03 54 55 /* 56 * /dev/kstat ioctl usage (kd denotes /dev/kstat descriptor): 57 * 58 * kcid = ioctl(kd, KSTAT_IOC_CHAIN_ID, NULL); 59 * kcid = ioctl(kd, KSTAT_IOC_READ, kstat_t *); 60 * kcid = ioctl(kd, KSTAT_IOC_WRITE, kstat_t *); 61 */ 62 63 #define KSTAT_STRLEN 31 /* 30 chars + NULL; must be 16 * n - 1 */ 64 65 /* 66 * The generic kstat header 67 */ 68 69 typedef struct kstat { 70 /* 71 * Fields relevant to both kernel and user 72 */ 73 hrtime_t ks_crtime; /* creation time (from gethrtime()) */ 74 struct kstat *ks_next; /* kstat chain linkage */ 75 kid_t ks_kid; /* unique kstat ID */ 76 char ks_module[KSTAT_STRLEN]; /* provider module name */ 77 uchar_t ks_resv; /* reserved, currently just padding */ 78 int ks_instance; /* provider module's instance */ 79 char ks_name[KSTAT_STRLEN]; /* kstat name */ 80 uchar_t ks_type; /* kstat data type */ 81 char ks_class[KSTAT_STRLEN]; /* kstat class */ 82 uchar_t ks_flags; /* kstat flags */ 83 void *ks_data; /* kstat type-specific data */ 84 uint_t ks_ndata; /* # of type-specific data records */ 85 size_t ks_data_size; /* total size of kstat data section */ 86 hrtime_t ks_snaptime; /* time of last data shapshot */ 87 /* 88 * Fields relevant to kernel only 89 */ 90 int (*ks_update)(struct kstat *, int); /* dynamic update */ 91 void *ks_private; /* arbitrary provider-private data */ 92 int (*ks_snapshot)(struct kstat *, void *, int); 93 void *ks_lock; /* protects this kstat's data */ 94 } kstat_t; 95 96 #ifdef _SYSCALL32 97 98 typedef int32_t kid32_t; 99 100 typedef struct kstat32 { 101 /* 102 * Fields relevant to both kernel and user 103 */ 104 hrtime_t ks_crtime; 105 caddr32_t ks_next; /* struct kstat pointer */ 106 kid32_t ks_kid; 107 char ks_module[KSTAT_STRLEN]; 108 uint8_t ks_resv; 109 int32_t ks_instance; 110 char ks_name[KSTAT_STRLEN]; 111 uint8_t ks_type; 112 char ks_class[KSTAT_STRLEN]; 113 uint8_t ks_flags; 114 caddr32_t ks_data; /* type-specific data */ 115 uint32_t ks_ndata; 116 size32_t ks_data_size; 117 hrtime_t ks_snaptime; 118 /* 119 * Fields relevant to kernel only (only needed here for padding) 120 */ 121 int32_t _ks_update; 122 caddr32_t _ks_private; 123 int32_t _ks_snapshot; 124 caddr32_t _ks_lock; 125 } kstat32_t; 126 127 #endif /* _SYSCALL32 */ 128 129 /* 130 * kstat structure and locking strategy 131 * 132 * Each kstat consists of a header section (a kstat_t) and a data section. 133 * The system maintains a set of kstats, protected by kstat_chain_lock. 134 * kstat_chain_lock protects all additions to/deletions from this set, 135 * as well as all changes to kstat headers. kstat data sections are 136 * *optionally* protected by the per-kstat ks_lock. If ks_lock is non-NULL, 137 * kstat clients (e.g. /dev/kstat) will acquire this lock for all of their 138 * operations on that kstat. It is up to the kstat provider to decide whether 139 * guaranteeing consistent data to kstat clients is sufficiently important 140 * to justify the locking cost. Note, however, that most statistic updates 141 * already occur under one of the provider's mutexes, so if the provider sets 142 * ks_lock to point to that mutex, then kstat data locking is free. 143 * 144 * NOTE: variable-size kstats MUST employ kstat data locking, to prevent 145 * data-size races with kstat clients. 146 * 147 * NOTE: ks_lock is really of type (kmutex_t *); it is declared as (void *) 148 * in the kstat header so that users don't have to be exposed to all of the 149 * kernel's lock-related data structures. 150 */ 151 152 #if defined(_KERNEL) 153 154 #define KSTAT_ENTER(k) \ 155 { kmutex_t *lp = (k)->ks_lock; if (lp) mutex_enter(lp); } 156 157 #define KSTAT_EXIT(k) \ 158 { kmutex_t *lp = (k)->ks_lock; if (lp) mutex_exit(lp); } 159 160 #define KSTAT_UPDATE(k, rw) (*(k)->ks_update)((k), (rw)) 161 162 #define KSTAT_SNAPSHOT(k, buf, rw) (*(k)->ks_snapshot)((k), (buf), (rw)) 163 164 #endif /* defined(_KERNEL) */ 165 166 /* 167 * kstat time 168 * 169 * All times associated with kstats (e.g. creation time, snapshot time, 170 * kstat_timer_t and kstat_io_t timestamps, etc.) are 64-bit nanosecond values, 171 * as returned by gethrtime(). The accuracy of these timestamps is machine 172 * dependent, but the precision (units) is the same across all platforms. 173 */ 174 175 /* 176 * kstat identity (KID) 177 * 178 * Each kstat is assigned a unique KID (kstat ID) when it is added to the 179 * global kstat chain. The KID is used as a cookie by /dev/kstat to 180 * request information about the corresponding kstat. There is also 181 * an identity associated with the entire kstat chain, kstat_chain_id, 182 * which is bumped each time a kstat is added or deleted. /dev/kstat uses 183 * the chain ID to detect changes in the kstat chain (e.g., a new disk 184 * coming online) between ioctl()s. 185 */ 186 187 /* 188 * kstat module, kstat instance 189 * 190 * ks_module and ks_instance contain the name and instance of the module 191 * that created the kstat. In cases where there can only be one instance, 192 * ks_instance is 0. The kernel proper (/kernel/unix) uses "unix" as its 193 * module name. 194 */ 195 196 /* 197 * kstat name 198 * 199 * ks_name gives a meaningful name to a kstat. The full kstat namespace 200 * is module.instance.name, so the name only need be unique within a 201 * module. kstat_create() will fail if you try to create a kstat with 202 * an already-used (ks_module, ks_instance, ks_name) triplet. Spaces are 203 * allowed in kstat names, but strongly discouraged, since they hinder 204 * awk-style processing at user level. 205 */ 206 207 /* 208 * kstat type 209 * 210 * The kstat mechanism provides several flavors of kstat data, defined 211 * below. The "raw" kstat type is just treated as an array of bytes; you 212 * can use this to export any kind of data you want. 213 * 214 * Some kstat types allow multiple data structures per kstat, e.g. 215 * KSTAT_TYPE_NAMED; others do not. This is part of the spec for each 216 * kstat data type. 217 * 218 * User-level tools should *not* rely on the #define KSTAT_NUM_TYPES. To 219 * get this information, read out the standard system kstat "kstat_types". 220 */ 221 222 #define KSTAT_TYPE_RAW 0 /* can be anything */ 223 /* ks_ndata >= 1 */ 224 #define KSTAT_TYPE_NAMED 1 /* name/value pair */ 225 /* ks_ndata >= 1 */ 226 #define KSTAT_TYPE_INTR 2 /* interrupt statistics */ 227 /* ks_ndata == 1 */ 228 #define KSTAT_TYPE_IO 3 /* I/O statistics */ 229 /* ks_ndata == 1 */ 230 #define KSTAT_TYPE_TIMER 4 /* event timer */ 231 /* ks_ndata >= 1 */ 232 233 #define KSTAT_NUM_TYPES 5 234 235 /* 236 * kstat class 237 * 238 * Each kstat can be characterized as belonging to some broad class 239 * of statistics, e.g. disk, tape, net, vm, streams, etc. This field 240 * can be used as a filter to extract related kstats. The following 241 * values are currently in use: disk, tape, net, controller, vm, kvm, 242 * hat, streams, kstat, and misc. (The kstat class encompasses things 243 * like kstat_types.) 244 */ 245 246 /* 247 * kstat flags 248 * 249 * Any of the following flags may be passed to kstat_create(). They are 250 * all zero by default. 251 * 252 * KSTAT_FLAG_VIRTUAL: 253 * 254 * Tells kstat_create() not to allocate memory for the 255 * kstat data section; instead, you will set the ks_data 256 * field to point to the data you wish to export. This 257 * provides a convenient way to export existing data 258 * structures. 259 * 260 * KSTAT_FLAG_VAR_SIZE: 261 * 262 * The size of the kstat you are creating will vary over time. 263 * For example, you may want to use the kstat mechanism to 264 * export a linked list. NOTE: The kstat framework does not 265 * manage the data section, so all variable-size kstats must be 266 * virtual kstats. Moreover, variable-size kstats MUST employ 267 * kstat data locking to prevent data-size races with kstat 268 * clients. See the section on "kstat snapshot" for details. 269 * 270 * KSTAT_FLAG_WRITABLE: 271 * 272 * Makes the kstat's data section writable by root. 273 * The ks_snapshot routine (see below) does not need to check for 274 * this; permission checking is handled in the kstat driver. 275 * 276 * KSTAT_FLAG_PERSISTENT: 277 * 278 * Indicates that this kstat is to be persistent over time. 279 * For persistent kstats, kstat_delete() simply marks the 280 * kstat as dormant; a subsequent kstat_create() reactivates 281 * the kstat. This feature is provided so that statistics 282 * are not lost across driver close/open (e.g., raw disk I/O 283 * on a disk with no mounted partitions.) 284 * NOTE: Persistent kstats cannot be virtual, since ks_data 285 * points to garbage as soon as the driver goes away. 286 * 287 * The following flags are maintained by the kstat framework: 288 * 289 * KSTAT_FLAG_DORMANT: 290 * 291 * For persistent kstats, indicates that the kstat is in the 292 * dormant state (e.g., the corresponding device is closed). 293 * 294 * KSTAT_FLAG_INVALID: 295 * 296 * This flag is set when a kstat is in a transitional state, 297 * e.g. between kstat_create() and kstat_install(). 298 * kstat clients must not attempt to access the kstat's data 299 * if this flag is set. 300 */ 301 302 #define KSTAT_FLAG_VIRTUAL 0x01 303 #define KSTAT_FLAG_VAR_SIZE 0x02 304 #define KSTAT_FLAG_WRITABLE 0x04 305 #define KSTAT_FLAG_PERSISTENT 0x08 306 #define KSTAT_FLAG_DORMANT 0x10 307 #define KSTAT_FLAG_INVALID 0x20 308 309 /* 310 * Dynamic update support 311 * 312 * The kstat mechanism allows for an optional ks_update function to update 313 * kstat data. This is useful for drivers where the underlying device 314 * keeps cheap hardware stats, but extraction is expensive. Instead of 315 * constantly keeping the kstat data section up to date, you can supply a 316 * ks_update function which updates the kstat's data section on demand. 317 * To take advantage of this feature, simply set the ks_update field before 318 * calling kstat_install(). 319 * 320 * The ks_update function, if supplied, must have the following structure: 321 * 322 * int 323 * foo_kstat_update(kstat_t *ksp, int rw) 324 * { 325 * if (rw == KSTAT_WRITE) { 326 * ... update the native stats from ksp->ks_data; 327 * return EACCES if you don't support this 328 * } else { 329 * ... update ksp->ks_data from the native stats 330 * } 331 * } 332 * 333 * The ks_update return codes are: 0 for success, EACCES if you don't allow 334 * KSTAT_WRITE, and EIO for any other type of error. 335 * 336 * In general, the ks_update function may need to refer to provider-private 337 * data; for example, it may need a pointer to the provider's raw statistics. 338 * The ks_private field is available for this purpose. Its use is entirely 339 * at the provider's discretion. 340 * 341 * All variable-size kstats MUST supply a ks_update routine, which computes 342 * and sets ks_data_size (and ks_ndata if that is meaningful), since these 343 * are needed to perform kstat snapshots (see below). 344 * 345 * No kstat locking should be done inside the ks_update routine. The caller 346 * will already be holding the kstat's ks_lock (to ensure consistent data). 347 */ 348 349 #define KSTAT_READ 0 350 #define KSTAT_WRITE 1 351 352 /* 353 * Kstat snapshot 354 * 355 * In order to get a consistent view of a kstat's data, clients must obey 356 * the kstat's locking strategy. However, these clients may need to perform 357 * operations on the data which could cause a fault (e.g. copyout()), or 358 * operations which are simply expensive. Doing so could cause deadlock 359 * (e.g. if you're holding a disk's kstat lock which is ultimately required 360 * to resolve a copyout() fault), performance degradation (since the providers' 361 * activity is serialized at the kstat lock), device timing problems, etc. 362 * 363 * To avoid these problems, kstat data is provided via snapshots. Taking 364 * a snapshot is a simple process: allocate a wired-down kernel buffer, 365 * acquire the kstat's data lock, copy the data into the buffer ("take the 366 * snapshot"), and release the lock. This ensures that the kstat's data lock 367 * will be held as briefly as possible, and that no faults will occur while 368 * the lock is held. 369 * 370 * Normally, the snapshot is taken by default_kstat_snapshot(), which 371 * timestamps the data (sets ks_snaptime), copies it, and does a little 372 * massaging to deal with incomplete transactions on i/o kstats. However, 373 * this routine only works for kstats with contiguous data (the typical case). 374 * If you create a kstat whose data is, say, a linked list, you must provide 375 * your own ks_snapshot routine. The routine you supply must have the 376 * following prototype (replace "foo" with something appropriate): 377 * 378 * int foo_kstat_snapshot(kstat_t *ksp, void *buf, int rw); 379 * 380 * The minimal snapshot routine -- one which copies contiguous data that 381 * doesn't need any massaging -- would be this: 382 * 383 * ksp->ks_snaptime = gethrtime(); 384 * if (rw == KSTAT_WRITE) 385 * bcopy(buf, ksp->ks_data, ksp->ks_data_size); 386 * else 387 * bcopy(ksp->ks_data, buf, ksp->ks_data_size); 388 * return (0); 389 * 390 * A more illuminating example is taking a snapshot of a linked list: 391 * 392 * ksp->ks_snaptime = gethrtime(); 393 * if (rw == KSTAT_WRITE) 394 * return (EACCES); ... See below ... 395 * for (foo = first_foo; foo; foo = foo->next) { 396 * bcopy((char *) foo, (char *) buf, sizeof (struct foo)); 397 * buf = ((struct foo *) buf) + 1; 398 * } 399 * return (0); 400 * 401 * In the example above, we have decided that we don't want to allow 402 * KSTAT_WRITE access, so we return EACCES if this is attempted. 403 * 404 * The key points are: 405 * 406 * (1) ks_snaptime must be set (via gethrtime()) to timestamp the data. 407 * (2) Data gets copied from the kstat to the buffer on KSTAT_READ, 408 * and from the buffer to the kstat on KSTAT_WRITE. 409 * (3) ks_snapshot return values are: 0 for success, EACCES if you 410 * don't allow KSTAT_WRITE, and EIO for any other type of error. 411 * 412 * Named kstats (see section on "Named statistics" below) containing long 413 * strings (KSTAT_DATA_STRING) need special handling. The kstat driver 414 * assumes that all strings are copied into the buffer after the array of 415 * named kstats, and the pointers (KSTAT_NAMED_STR_PTR()) are updated to point 416 * into the copy within the buffer. The default snapshot routine does this, 417 * but overriding routines should contain at least the following: 418 * 419 * if (rw == KSTAT_READ) { 420 * kstat_named_t *knp = buf; 421 * char *end = knp + ksp->ks_ndata; 422 * uint_t i; 423 * 424 * ... Do the regular copy ... 425 * bcopy(ksp->ks_data, buf, sizeof (kstat_named_t) * ksp->ks_ndata); 426 * 427 * for (i = 0; i < ksp->ks_ndata; i++, knp++) { 428 * if (knp[i].data_type == KSTAT_DATA_STRING && 429 * KSTAT_NAMED_STR_PTR(knp) != NULL) { 430 * bcopy(KSTAT_NAMED_STR_PTR(knp), end, 431 * KSTAT_NAMED_STR_BUFLEN(knp)); 432 * KSTAT_NAMED_STR_PTR(knp) = end; 433 * end += KSTAT_NAMED_STR_BUFLEN(knp); 434 * } 435 * } 436 */ 437 438 /* 439 * Named statistics. 440 * 441 * List of arbitrary name=value statistics. 442 */ 443 444 typedef struct kstat_named { 445 char name[KSTAT_STRLEN]; /* name of counter */ 446 uchar_t data_type; /* data type */ 447 union { 448 char c[16]; /* enough for 128-bit ints */ 449 int32_t i32; 450 uint32_t ui32; 451 struct { 452 union { 453 char *ptr; /* NULL-term string */ 454 #if defined(_KERNEL) && defined(_MULTI_DATAMODEL) 455 caddr32_t ptr32; 456 #endif 457 char __pad[8]; /* 64-bit padding */ 458 } addr; 459 uint32_t len; /* # bytes for strlen + '\0' */ 460 } string; 461 /* 462 * The int64_t and uint64_t types are not valid for a maximally conformant 463 * 32-bit compilation environment (cc -Xc) using compilers prior to the 464 * introduction of C99 conforming compiler (reference ISO/IEC 9899:1990). 465 * In these cases, the visibility of i64 and ui64 is only permitted for 466 * 64-bit compilation environments or 32-bit non-maximally conformant 467 * C89 or C90 ANSI C compilation environments (cc -Xt and cc -Xa). In the 468 * C99 ANSI C compilation environment, the long long type is supported. 469 * The _INT64_TYPE is defined by the implementation (see sys/int_types.h). 470 */ 471 #if defined(_INT64_TYPE) 472 int64_t i64; 473 uint64_t ui64; 474 #endif 475 long l; 476 ulong_t ul; 477 478 /* These structure members are obsolete */ 479 480 longlong_t ll; 481 u_longlong_t ull; 482 float f; 483 double d; 484 } value; /* value of counter */ 485 } kstat_named_t; 486 487 #define KSTAT_DATA_CHAR 0 488 #define KSTAT_DATA_INT32 1 489 #define KSTAT_DATA_UINT32 2 490 #define KSTAT_DATA_INT64 3 491 #define KSTAT_DATA_UINT64 4 492 493 #if !defined(_LP64) 494 #define KSTAT_DATA_LONG KSTAT_DATA_INT32 495 #define KSTAT_DATA_ULONG KSTAT_DATA_UINT32 496 #else 497 #if !defined(_KERNEL) 498 #define KSTAT_DATA_LONG KSTAT_DATA_INT64 499 #define KSTAT_DATA_ULONG KSTAT_DATA_UINT64 500 #else 501 #define KSTAT_DATA_LONG 7 /* only visible to the kernel */ 502 #define KSTAT_DATA_ULONG 8 /* only visible to the kernel */ 503 #endif /* !_KERNEL */ 504 #endif /* !_LP64 */ 505 506 /* 507 * Statistics exporting named kstats with long strings (KSTAT_DATA_STRING) 508 * may not make the assumption that ks_data_size is equal to (ks_ndata * sizeof 509 * (kstat_named_t)). ks_data_size in these cases is equal to the sum of the 510 * amount of space required to store the strings (ie, the sum of 511 * KSTAT_NAMED_STR_BUFLEN() for all KSTAT_DATA_STRING statistics) plus the 512 * space required to store the kstat_named_t's. 513 * 514 * The default update routine will update ks_data_size automatically for 515 * variable-length kstats containing long strings (using the default update 516 * routine only makes sense if the string is the only thing that is changing 517 * in size, and ks_ndata is constant). Fixed-length kstats containing long 518 * strings must explicitly change ks_data_size (after creation but before 519 * initialization) to reflect the correct amount of space required for the 520 * long strings and the kstat_named_t's. 521 */ 522 #define KSTAT_DATA_STRING 9 523 524 /* These types are obsolete */ 525 526 #define KSTAT_DATA_LONGLONG KSTAT_DATA_INT64 527 #define KSTAT_DATA_ULONGLONG KSTAT_DATA_UINT64 528 #define KSTAT_DATA_FLOAT 5 529 #define KSTAT_DATA_DOUBLE 6 530 531 #define KSTAT_NAMED_PTR(kptr) ((kstat_named_t *)(kptr)->ks_data) 532 533 /* 534 * Retrieve the pointer of the string contained in the given named kstat. 535 */ 536 #define KSTAT_NAMED_STR_PTR(knptr) ((knptr)->value.string.addr.ptr) 537 538 /* 539 * Retrieve the length of the buffer required to store the string in the given 540 * named kstat. 541 */ 542 #define KSTAT_NAMED_STR_BUFLEN(knptr) ((knptr)->value.string.len) 543 544 /* 545 * Interrupt statistics. 546 * 547 * An interrupt is a hard interrupt (sourced from the hardware device 548 * itself), a soft interrupt (induced by the system via the use of 549 * some system interrupt source), a watchdog interrupt (induced by 550 * a periodic timer call), spurious (an interrupt entry point was 551 * entered but there was no interrupt condition to service), 552 * or multiple service (an interrupt condition was detected and 553 * serviced just prior to returning from any of the other types). 554 * 555 * Measurement of the spurious class of interrupts is useful for 556 * autovectored devices in order to pinpoint any interrupt latency 557 * problems in a particular system configuration. 558 * 559 * Devices that have more than one interrupt of the same 560 * type should use multiple structures. 561 */ 562 563 #define KSTAT_INTR_HARD 0 564 #define KSTAT_INTR_SOFT 1 565 #define KSTAT_INTR_WATCHDOG 2 566 #define KSTAT_INTR_SPURIOUS 3 567 #define KSTAT_INTR_MULTSVC 4 568 569 #define KSTAT_NUM_INTRS 5 570 571 typedef struct kstat_intr { 572 uint_t intrs[KSTAT_NUM_INTRS]; /* interrupt counters */ 573 } kstat_intr_t; 574 575 #define KSTAT_INTR_PTR(kptr) ((kstat_intr_t *)(kptr)->ks_data) 576 577 /* 578 * I/O statistics. 579 */ 580 581 typedef struct kstat_io { 582 583 /* 584 * Basic counters. 585 * 586 * The counters should be updated at the end of service 587 * (e.g., just prior to calling biodone()). 588 */ 589 590 u_longlong_t nread; /* number of bytes read */ 591 u_longlong_t nwritten; /* number of bytes written */ 592 uint_t reads; /* number of read operations */ 593 uint_t writes; /* number of write operations */ 594 595 /* 596 * Accumulated time and queue length statistics. 597 * 598 * Accumulated time statistics are kept as a running sum 599 * of "active" time. Queue length statistics are kept as a 600 * running sum of the product of queue length and elapsed time 601 * at that length -- i.e., a Riemann sum for queue length 602 * integrated against time. (You can also think of the active time 603 * as a Riemann sum, for the boolean function (queue_length > 0) 604 * integrated against time, or you can think of it as the 605 * Lebesgue measure of the set on which queue_length > 0.) 606 * 607 * ^ 608 * | _________ 609 * 8 | i4 | 610 * | | | 611 * Queue 6 | | 612 * Length | _________ | | 613 * 4 | i2 |_______| | 614 * | | i3 | 615 * 2_______| | 616 * | i1 | 617 * |_______________________________| 618 * Time-> t1 t2 t3 t4 619 * 620 * At each change of state (entry or exit from the queue), 621 * we add the elapsed time (since the previous state change) 622 * to the active time if the queue length was non-zero during 623 * that interval; and we add the product of the elapsed time 624 * times the queue length to the running length*time sum. 625 * 626 * This method is generalizable to measuring residency 627 * in any defined system: instead of queue lengths, think 628 * of "outstanding RPC calls to server X". 629 * 630 * A large number of I/O subsystems have at least two basic 631 * "lists" of transactions they manage: one for transactions 632 * that have been accepted for processing but for which processing 633 * has yet to begin, and one for transactions which are actively 634 * being processed (but not done). For this reason, two cumulative 635 * time statistics are defined here: wait (pre-service) time, 636 * and run (service) time. 637 * 638 * All times are 64-bit nanoseconds (hrtime_t), as returned by 639 * gethrtime(). 640 * 641 * The units of cumulative busy time are accumulated nanoseconds. 642 * The units of cumulative length*time products are elapsed time 643 * times queue length. 644 * 645 * Updates to the fields below are performed implicitly by calls to 646 * these five functions: 647 * 648 * kstat_waitq_enter() 649 * kstat_waitq_exit() 650 * kstat_runq_enter() 651 * kstat_runq_exit() 652 * 653 * kstat_waitq_to_runq() (see below) 654 * kstat_runq_back_to_waitq() (see below) 655 * 656 * Since kstat_waitq_exit() is typically followed immediately 657 * by kstat_runq_enter(), there is a single kstat_waitq_to_runq() 658 * function which performs both operations. This is a performance 659 * win since only one timestamp is required. 660 * 661 * In some instances, it may be necessary to move a request from 662 * the run queue back to the wait queue, e.g. for write throttling. 663 * For these situations, call kstat_runq_back_to_waitq(). 664 * 665 * These fields should never be updated by any other means. 666 */ 667 668 hrtime_t wtime; /* cumulative wait (pre-service) time */ 669 hrtime_t wlentime; /* cumulative wait length*time product */ 670 hrtime_t wlastupdate; /* last time wait queue changed */ 671 hrtime_t rtime; /* cumulative run (service) time */ 672 hrtime_t rlentime; /* cumulative run length*time product */ 673 hrtime_t rlastupdate; /* last time run queue changed */ 674 675 uint_t wcnt; /* count of elements in wait state */ 676 uint_t rcnt; /* count of elements in run state */ 677 678 } kstat_io_t; 679 680 #define KSTAT_IO_PTR(kptr) ((kstat_io_t *)(kptr)->ks_data) 681 682 /* 683 * Event timer statistics - cumulative elapsed time and number of events. 684 * 685 * Updates to these fields are performed implicitly by calls to 686 * kstat_timer_start() and kstat_timer_stop(). 687 */ 688 689 typedef struct kstat_timer { 690 char name[KSTAT_STRLEN]; /* event name */ 691 uchar_t resv; /* reserved */ 692 u_longlong_t num_events; /* number of events */ 693 hrtime_t elapsed_time; /* cumulative elapsed time */ 694 hrtime_t min_time; /* shortest event duration */ 695 hrtime_t max_time; /* longest event duration */ 696 hrtime_t start_time; /* previous event start time */ 697 hrtime_t stop_time; /* previous event stop time */ 698 } kstat_timer_t; 699 700 #define KSTAT_TIMER_PTR(kptr) ((kstat_timer_t *)(kptr)->ks_data) 701 702 #if defined(_KERNEL) 703 704 #include <sys/t_lock.h> 705 706 extern kid_t kstat_chain_id; /* bumped at each state change */ 707 extern void kstat_init(void); /* initialize kstat framework */ 708 709 /* 710 * Adding and deleting kstats. 711 * 712 * The typical sequence to add a kstat is: 713 * 714 * ksp = kstat_create(module, instance, name, class, type, ndata, flags); 715 * if (ksp) { 716 * ... provider initialization, if necessary 717 * kstat_install(ksp); 718 * } 719 * 720 * There are three logically distinct steps here: 721 * 722 * Step 1: System Initialization (kstat_create) 723 * 724 * kstat_create() performs system initialization. kstat_create() 725 * allocates memory for the entire kstat (header plus data), initializes 726 * all header fields, initializes the data section to all zeroes, assigns 727 * a unique KID, and puts the kstat onto the system's kstat chain. 728 * The returned kstat is marked invalid (KSTAT_FLAG_INVALID is set), 729 * because the provider (caller) has not yet had a chance to initialize 730 * the data section. 731 * 732 * By default, kstats are exported to all zones on the system. A kstat may be 733 * created via kstat_create_zone() to specify a zone to which the statistics 734 * should be exported. kstat_zone_add() may be used to specify additional 735 * zones to which the statistics are to be exported. 736 * 737 * Step 2: Provider Initialization 738 * 739 * The provider performs any necessary initialization of the data section, 740 * e.g. setting the name fields in a KSTAT_TYPE_NAMED. Virtual kstats set 741 * the ks_data field at this time. The provider may also set the ks_update, 742 * ks_snapshot, ks_private, and ks_lock fields if necessary. 743 * 744 * Step 3: Installation (kstat_install) 745 * 746 * Once the kstat is completely initialized, kstat_install() clears the 747 * INVALID flag, thus making the kstat accessible to the outside world. 748 * kstat_install() also clears the DORMANT flag for persistent kstats. 749 * 750 * Removing a kstat from the system 751 * 752 * kstat_delete(ksp) removes ksp from the kstat chain and frees all 753 * associated system resources. NOTE: When you call kstat_delete(), 754 * you must NOT be holding that kstat's ks_lock. Otherwise, you may 755 * deadlock with a kstat reader. 756 * 757 * Persistent kstats 758 * 759 * From the provider's point of view, persistence is transparent. The only 760 * difference between ephemeral (normal) kstats and persistent kstats 761 * is that you pass KSTAT_FLAG_PERSISTENT to kstat_create(). Magically, 762 * this has the effect of making your data visible even when you're 763 * not home. Persistence is important to tools like iostat, which want 764 * to get a meaningful picture of disk activity. Without persistence, 765 * raw disk i/o statistics could never accumulate: they would come and 766 * go with each open/close of the raw device. 767 * 768 * The magic of persistence works by slightly altering the behavior of 769 * kstat_create() and kstat_delete(). The first call to kstat_create() 770 * creates a new kstat, as usual. However, kstat_delete() does not 771 * actually delete the kstat: it performs one final update of the data 772 * (i.e., calls the ks_update routine), marks the kstat as dormant, and 773 * sets the ks_lock, ks_update, ks_private, and ks_snapshot fields back 774 * to their default values (since they might otherwise point to garbage, 775 * e.g. if the provider is going away). kstat clients can still access 776 * the dormant kstat just like a live kstat; they just continue to see 777 * the final data values as long as the kstat remains dormant. 778 * All subsequent kstat_create() calls simply find the already-existing, 779 * dormant kstat and return a pointer to it, without altering any fields. 780 * The provider then performs its usual initialization sequence, and 781 * calls kstat_install(). kstat_install() uses the old data values to 782 * initialize the native data (i.e., ks_update is called with KSTAT_WRITE), 783 * thus making it seem like you were never gone. 784 */ 785 786 extern kstat_t *kstat_create(char *, int, char *, char *, uchar_t, 787 uint_t, uchar_t); 788 extern kstat_t *kstat_create_zone(char *, int, char *, char *, uchar_t, 789 uint_t, uchar_t, zoneid_t); 790 extern void kstat_install(kstat_t *); 791 extern void kstat_delete(kstat_t *); 792 extern void kstat_named_setstr(kstat_named_t *knp, const char *src); 793 extern void kstat_set_string(char *, char *); 794 extern void kstat_delete_byname(char *, int, char *); 795 extern void kstat_delete_byname_zone(char *, int, char *, zoneid_t); 796 extern void kstat_named_init(kstat_named_t *, char *, uchar_t); 797 extern void kstat_timer_init(kstat_timer_t *, char *); 798 extern void kstat_waitq_enter(kstat_io_t *); 799 extern void kstat_waitq_exit(kstat_io_t *); 800 extern void kstat_runq_enter(kstat_io_t *); 801 extern void kstat_runq_exit(kstat_io_t *); 802 extern void kstat_waitq_to_runq(kstat_io_t *); 803 extern void kstat_runq_back_to_waitq(kstat_io_t *); 804 extern void kstat_timer_start(kstat_timer_t *); 805 extern void kstat_timer_stop(kstat_timer_t *); 806 807 extern void kstat_zone_add(kstat_t *, zoneid_t); 808 extern void kstat_zone_remove(kstat_t *, zoneid_t); 809 extern int kstat_zone_find(kstat_t *, zoneid_t); 810 811 extern kstat_t *kstat_hold_bykid(kid_t kid, zoneid_t); 812 extern kstat_t *kstat_hold_byname(char *, int, char *, zoneid_t); 813 extern void kstat_rele(kstat_t *); 814 815 #endif /* defined(_KERNEL) */ 816 817 #ifdef __cplusplus 818 } 819 #endif 820 821 #endif /* _SYS_KSTAT_H */ 822