1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #ifndef _SYS_DTRACE_H 28 #define _SYS_DTRACE_H 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #ifdef __cplusplus 33 extern "C" { 34 #endif 35 36 /* 37 * DTrace Dynamic Tracing Software: Kernel Interfaces 38 * 39 * Note: The contents of this file are private to the implementation of the 40 * Solaris system and DTrace subsystem and are subject to change at any time 41 * without notice. Applications and drivers using these interfaces will fail 42 * to run on future releases. These interfaces should not be used for any 43 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB). 44 * Please refer to the "Solaris Dynamic Tracing Guide" for more information. 45 */ 46 47 #ifndef _ASM 48 49 #include <sys/types.h> 50 #include <sys/modctl.h> 51 #include <sys/processor.h> 52 #include <sys/systm.h> 53 #include <sys/ctf_api.h> 54 #include <sys/cyclic.h> 55 #include <sys/int_limits.h> 56 57 /* 58 * DTrace Universal Constants and Typedefs 59 */ 60 #define DTRACE_CPUALL -1 /* all CPUs */ 61 #define DTRACE_IDNONE 0 /* invalid probe identifier */ 62 #define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */ 63 #define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */ 64 #define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */ 65 #define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */ 66 #define DTRACE_PROVNONE 0 /* invalid provider identifier */ 67 #define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */ 68 #define DTRACE_ARGNONE -1 /* invalid argument index */ 69 70 #define DTRACE_PROVNAMELEN 64 71 #define DTRACE_MODNAMELEN 64 72 #define DTRACE_FUNCNAMELEN 128 73 #define DTRACE_NAMELEN 64 74 #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \ 75 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4) 76 #define DTRACE_ARGTYPELEN 128 77 78 typedef uint32_t dtrace_id_t; /* probe identifier */ 79 typedef uint32_t dtrace_epid_t; /* enabled probe identifier */ 80 typedef uint32_t dtrace_aggid_t; /* aggregation identifier */ 81 typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */ 82 typedef uint16_t dtrace_actkind_t; /* action kind */ 83 typedef int64_t dtrace_optval_t; /* option value */ 84 typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */ 85 86 typedef enum dtrace_probespec { 87 DTRACE_PROBESPEC_NONE = -1, 88 DTRACE_PROBESPEC_PROVIDER = 0, 89 DTRACE_PROBESPEC_MOD, 90 DTRACE_PROBESPEC_FUNC, 91 DTRACE_PROBESPEC_NAME 92 } dtrace_probespec_t; 93 94 /* 95 * DTrace Intermediate Format (DIF) 96 * 97 * The following definitions describe the DTrace Intermediate Format (DIF), a 98 * a RISC-like instruction set and program encoding used to represent 99 * predicates and actions that can be bound to DTrace probes. The constants 100 * below defining the number of available registers are suggested minimums; the 101 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of 102 * registers provided by the current DTrace implementation. 103 */ 104 #define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */ 105 #define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */ 106 #define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */ 107 #define DIF_DIR_NREGS 8 /* number of DIF integer registers */ 108 #define DIF_DTR_NREGS 8 /* number of DIF tuple registers */ 109 110 #define DIF_OP_OR 1 /* or r1, r2, rd */ 111 #define DIF_OP_XOR 2 /* xor r1, r2, rd */ 112 #define DIF_OP_AND 3 /* and r1, r2, rd */ 113 #define DIF_OP_SLL 4 /* sll r1, r2, rd */ 114 #define DIF_OP_SRL 5 /* srl r1, r2, rd */ 115 #define DIF_OP_SUB 6 /* sub r1, r2, rd */ 116 #define DIF_OP_ADD 7 /* add r1, r2, rd */ 117 #define DIF_OP_MUL 8 /* mul r1, r2, rd */ 118 #define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */ 119 #define DIF_OP_UDIV 10 /* udiv r1, r2, rd */ 120 #define DIF_OP_SREM 11 /* srem r1, r2, rd */ 121 #define DIF_OP_UREM 12 /* urem r1, r2, rd */ 122 #define DIF_OP_NOT 13 /* not r1, rd */ 123 #define DIF_OP_MOV 14 /* mov r1, rd */ 124 #define DIF_OP_CMP 15 /* cmp r1, r2 */ 125 #define DIF_OP_TST 16 /* tst r1 */ 126 #define DIF_OP_BA 17 /* ba label */ 127 #define DIF_OP_BE 18 /* be label */ 128 #define DIF_OP_BNE 19 /* bne label */ 129 #define DIF_OP_BG 20 /* bg label */ 130 #define DIF_OP_BGU 21 /* bgu label */ 131 #define DIF_OP_BGE 22 /* bge label */ 132 #define DIF_OP_BGEU 23 /* bgeu label */ 133 #define DIF_OP_BL 24 /* bl label */ 134 #define DIF_OP_BLU 25 /* blu label */ 135 #define DIF_OP_BLE 26 /* ble label */ 136 #define DIF_OP_BLEU 27 /* bleu label */ 137 #define DIF_OP_LDSB 28 /* ldsb [r1], rd */ 138 #define DIF_OP_LDSH 29 /* ldsh [r1], rd */ 139 #define DIF_OP_LDSW 30 /* ldsw [r1], rd */ 140 #define DIF_OP_LDUB 31 /* ldub [r1], rd */ 141 #define DIF_OP_LDUH 32 /* lduh [r1], rd */ 142 #define DIF_OP_LDUW 33 /* lduw [r1], rd */ 143 #define DIF_OP_LDX 34 /* ldx [r1], rd */ 144 #define DIF_OP_RET 35 /* ret rd */ 145 #define DIF_OP_NOP 36 /* nop */ 146 #define DIF_OP_SETX 37 /* setx intindex, rd */ 147 #define DIF_OP_SETS 38 /* sets strindex, rd */ 148 #define DIF_OP_SCMP 39 /* scmp r1, r2 */ 149 #define DIF_OP_LDGA 40 /* ldga var, ri, rd */ 150 #define DIF_OP_LDGS 41 /* ldgs var, rd */ 151 #define DIF_OP_STGS 42 /* stgs var, rs */ 152 #define DIF_OP_LDTA 43 /* ldta var, ri, rd */ 153 #define DIF_OP_LDTS 44 /* ldts var, rd */ 154 #define DIF_OP_STTS 45 /* stts var, rs */ 155 #define DIF_OP_SRA 46 /* sra r1, r2, rd */ 156 #define DIF_OP_CALL 47 /* call subr, rd */ 157 #define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */ 158 #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */ 159 #define DIF_OP_POPTS 50 /* popts */ 160 #define DIF_OP_FLUSHTS 51 /* flushts */ 161 #define DIF_OP_LDGAA 52 /* ldgaa var, rd */ 162 #define DIF_OP_LDTAA 53 /* ldtaa var, rd */ 163 #define DIF_OP_STGAA 54 /* stgaa var, rs */ 164 #define DIF_OP_STTAA 55 /* sttaa var, rs */ 165 #define DIF_OP_LDLS 56 /* ldls var, rd */ 166 #define DIF_OP_STLS 57 /* stls var, rs */ 167 #define DIF_OP_ALLOCS 58 /* allocs r1, rd */ 168 #define DIF_OP_COPYS 59 /* copys r1, r2, rd */ 169 #define DIF_OP_STB 60 /* stb r1, [rd] */ 170 #define DIF_OP_STH 61 /* sth r1, [rd] */ 171 #define DIF_OP_STW 62 /* stw r1, [rd] */ 172 #define DIF_OP_STX 63 /* stx r1, [rd] */ 173 #define DIF_OP_ULDSB 64 /* uldsb [r1], rd */ 174 #define DIF_OP_ULDSH 65 /* uldsh [r1], rd */ 175 #define DIF_OP_ULDSW 66 /* uldsw [r1], rd */ 176 #define DIF_OP_ULDUB 67 /* uldub [r1], rd */ 177 #define DIF_OP_ULDUH 68 /* ulduh [r1], rd */ 178 #define DIF_OP_ULDUW 69 /* ulduw [r1], rd */ 179 #define DIF_OP_ULDX 70 /* uldx [r1], rd */ 180 #define DIF_OP_RLDSB 71 /* rldsb [r1], rd */ 181 #define DIF_OP_RLDSH 72 /* rldsh [r1], rd */ 182 #define DIF_OP_RLDSW 73 /* rldsw [r1], rd */ 183 #define DIF_OP_RLDUB 74 /* rldub [r1], rd */ 184 #define DIF_OP_RLDUH 75 /* rlduh [r1], rd */ 185 #define DIF_OP_RLDUW 76 /* rlduw [r1], rd */ 186 #define DIF_OP_RLDX 77 /* rldx [r1], rd */ 187 #define DIF_OP_XLATE 78 /* xlate xlrindex, rd */ 188 #define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */ 189 190 #define DIF_INTOFF_MAX 0xffff /* highest integer table offset */ 191 #define DIF_STROFF_MAX 0xffff /* highest string table offset */ 192 #define DIF_REGISTER_MAX 0xff /* highest register number */ 193 #define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */ 194 #define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */ 195 196 #define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */ 197 #define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */ 198 #define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */ 199 200 #define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */ 201 #define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */ 202 #define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */ 203 204 #define DIF_VAR_ARGS 0x0000 /* arguments array */ 205 #define DIF_VAR_REGS 0x0001 /* registers array */ 206 #define DIF_VAR_UREGS 0x0002 /* user registers array */ 207 #define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */ 208 #define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */ 209 #define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */ 210 #define DIF_VAR_IPL 0x0103 /* interrupt priority level */ 211 #define DIF_VAR_EPID 0x0104 /* enabled probe ID */ 212 #define DIF_VAR_ID 0x0105 /* probe ID */ 213 #define DIF_VAR_ARG0 0x0106 /* first argument */ 214 #define DIF_VAR_ARG1 0x0107 /* second argument */ 215 #define DIF_VAR_ARG2 0x0108 /* third argument */ 216 #define DIF_VAR_ARG3 0x0109 /* fourth argument */ 217 #define DIF_VAR_ARG4 0x010a /* fifth argument */ 218 #define DIF_VAR_ARG5 0x010b /* sixth argument */ 219 #define DIF_VAR_ARG6 0x010c /* seventh argument */ 220 #define DIF_VAR_ARG7 0x010d /* eighth argument */ 221 #define DIF_VAR_ARG8 0x010e /* ninth argument */ 222 #define DIF_VAR_ARG9 0x010f /* tenth argument */ 223 #define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */ 224 #define DIF_VAR_CALLER 0x0111 /* caller */ 225 #define DIF_VAR_PROBEPROV 0x0112 /* probe provider */ 226 #define DIF_VAR_PROBEMOD 0x0113 /* probe module */ 227 #define DIF_VAR_PROBEFUNC 0x0114 /* probe function */ 228 #define DIF_VAR_PROBENAME 0x0115 /* probe name */ 229 #define DIF_VAR_PID 0x0116 /* process ID */ 230 #define DIF_VAR_TID 0x0117 /* (per-process) thread ID */ 231 #define DIF_VAR_EXECNAME 0x0118 /* name of executable */ 232 #define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */ 233 #define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */ 234 #define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */ 235 #define DIF_VAR_UCALLER 0x011c /* user-level caller */ 236 #define DIF_VAR_PPID 0x011d /* parent process ID */ 237 #define DIF_VAR_UID 0x011e /* process user ID */ 238 #define DIF_VAR_GID 0x011f /* process group ID */ 239 #define DIF_VAR_ERRNO 0x0120 /* thread errno */ 240 241 #define DIF_SUBR_RAND 0 242 #define DIF_SUBR_MUTEX_OWNED 1 243 #define DIF_SUBR_MUTEX_OWNER 2 244 #define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3 245 #define DIF_SUBR_MUTEX_TYPE_SPIN 4 246 #define DIF_SUBR_RW_READ_HELD 5 247 #define DIF_SUBR_RW_WRITE_HELD 6 248 #define DIF_SUBR_RW_ISWRITER 7 249 #define DIF_SUBR_COPYIN 8 250 #define DIF_SUBR_COPYINSTR 9 251 #define DIF_SUBR_SPECULATION 10 252 #define DIF_SUBR_PROGENYOF 11 253 #define DIF_SUBR_STRLEN 12 254 #define DIF_SUBR_COPYOUT 13 255 #define DIF_SUBR_COPYOUTSTR 14 256 #define DIF_SUBR_ALLOCA 15 257 #define DIF_SUBR_BCOPY 16 258 #define DIF_SUBR_COPYINTO 17 259 #define DIF_SUBR_MSGDSIZE 18 260 #define DIF_SUBR_MSGSIZE 19 261 #define DIF_SUBR_GETMAJOR 20 262 #define DIF_SUBR_GETMINOR 21 263 #define DIF_SUBR_DDI_PATHNAME 22 264 #define DIF_SUBR_STRJOIN 23 265 #define DIF_SUBR_LLTOSTR 24 266 #define DIF_SUBR_BASENAME 25 267 #define DIF_SUBR_DIRNAME 26 268 #define DIF_SUBR_CLEANPATH 27 269 #define DIF_SUBR_STRCHR 28 270 #define DIF_SUBR_STRRCHR 29 271 #define DIF_SUBR_STRSTR 30 272 #define DIF_SUBR_STRTOK 31 273 #define DIF_SUBR_SUBSTR 32 274 #define DIF_SUBR_INDEX 33 275 #define DIF_SUBR_RINDEX 34 276 277 #define DIF_SUBR_MAX 34 /* max subroutine value */ 278 279 typedef uint32_t dif_instr_t; 280 281 #define DIF_INSTR_OP(i) (((i) >> 24) & 0xff) 282 #define DIF_INSTR_R1(i) (((i) >> 16) & 0xff) 283 #define DIF_INSTR_R2(i) (((i) >> 8) & 0xff) 284 #define DIF_INSTR_RD(i) ((i) & 0xff) 285 #define DIF_INSTR_RS(i) ((i) & 0xff) 286 #define DIF_INSTR_LABEL(i) ((i) & 0xffffff) 287 #define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff) 288 #define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff) 289 #define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff) 290 #define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff) 291 #define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff) 292 #define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff) 293 294 #define DIF_INSTR_FMT(op, r1, r2, d) \ 295 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d)) 296 297 #define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d)) 298 #define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d)) 299 #define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0)) 300 #define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0)) 301 #define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label)) 302 #define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) 303 #define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) 304 #define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d)) 305 #define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d)) 306 #define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d)) 307 #define DIF_INSTR_NOP (DIF_OP_NOP << 24) 308 #define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d)) 309 #define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d)) 310 #define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs)) 311 #define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d)) 312 #define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs)) 313 #define DIF_INSTR_POPTS (DIF_OP_POPTS << 24) 314 #define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24) 315 #define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d)) 316 #define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d)) 317 #define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d)) 318 319 #define DIF_REG_R0 0 /* %r0 is always set to zero */ 320 321 /* 322 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types 323 * of variables, function and associative array arguments, and the return type 324 * for each DIF object (shown below). It contains a description of the type, 325 * its size in bytes, and a module identifier. 326 */ 327 typedef struct dtrace_diftype { 328 uint8_t dtdt_kind; /* type kind (see below) */ 329 uint8_t dtdt_ckind; /* type kind in CTF */ 330 uint8_t dtdt_flags; /* type flags (see below) */ 331 uint8_t dtdt_pad; /* reserved for future use */ 332 uint32_t dtdt_size; /* type size in bytes (unless string) */ 333 } dtrace_diftype_t; 334 335 #define DIF_TYPE_CTF 0 /* type is a CTF type */ 336 #define DIF_TYPE_STRING 1 /* type is a D string */ 337 338 #define DIF_TF_BYREF 0x1 /* type is passed by reference */ 339 340 /* 341 * A DTrace Intermediate Format variable record is used to describe each of the 342 * variables referenced by a given DIF object. It contains an integer variable 343 * identifier along with variable scope and properties, as shown below. The 344 * size of this structure must be sizeof (int) aligned. 345 */ 346 typedef struct dtrace_difv { 347 uint32_t dtdv_name; /* variable name index in dtdo_strtab */ 348 uint32_t dtdv_id; /* variable reference identifier */ 349 uint8_t dtdv_kind; /* variable kind (see below) */ 350 uint8_t dtdv_scope; /* variable scope (see below) */ 351 uint16_t dtdv_flags; /* variable flags (see below) */ 352 dtrace_diftype_t dtdv_type; /* variable type (see above) */ 353 } dtrace_difv_t; 354 355 #define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */ 356 #define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */ 357 358 #define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */ 359 #define DIFV_SCOPE_THREAD 1 /* variable has thread scope */ 360 #define DIFV_SCOPE_LOCAL 2 /* variable has local scope */ 361 362 #define DIFV_F_REF 0x1 /* variable is referenced by DIFO */ 363 #define DIFV_F_MOD 0x2 /* variable is written by DIFO */ 364 365 /* 366 * DTrace Actions 367 * 368 * The upper byte determines the class of the action; the low bytes determines 369 * the specific action within that class. The classes of actions are as 370 * follows: 371 * 372 * [ no class ] <= May record process- or kernel-related data 373 * DTRACEACT_PROC <= Only records process-related data 374 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes 375 * DTRACEACT_KERNEL <= Only records kernel-related data 376 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel 377 * DTRACEACT_SPECULATIVE <= Speculation-related action 378 * DTRACEACT_AGGREGATION <= Aggregating action 379 */ 380 #define DTRACEACT_NONE 0 /* no action */ 381 #define DTRACEACT_DIFEXPR 1 /* action is DIF expression */ 382 #define DTRACEACT_EXIT 2 /* exit() action */ 383 #define DTRACEACT_PRINTF 3 /* printf() action */ 384 #define DTRACEACT_PRINTA 4 /* printa() action */ 385 #define DTRACEACT_LIBACT 5 /* library-controlled action */ 386 387 #define DTRACEACT_PROC 0x0100 388 #define DTRACEACT_USTACK (DTRACEACT_PROC + 1) 389 #define DTRACEACT_JSTACK (DTRACEACT_PROC + 2) 390 #define DTRACEACT_USYM (DTRACEACT_PROC + 3) 391 #define DTRACEACT_UMOD (DTRACEACT_PROC + 4) 392 #define DTRACEACT_UADDR (DTRACEACT_PROC + 5) 393 394 #define DTRACEACT_PROC_DESTRUCTIVE 0x0200 395 #define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1) 396 #define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2) 397 #define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3) 398 #define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4) 399 400 #define DTRACEACT_PROC_CONTROL 0x0300 401 402 #define DTRACEACT_KERNEL 0x0400 403 #define DTRACEACT_STACK (DTRACEACT_KERNEL + 1) 404 #define DTRACEACT_SYM (DTRACEACT_KERNEL + 2) 405 #define DTRACEACT_MOD (DTRACEACT_KERNEL + 3) 406 407 #define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500 408 #define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1) 409 #define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2) 410 #define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3) 411 412 #define DTRACEACT_SPECULATIVE 0x0600 413 #define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1) 414 #define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2) 415 #define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3) 416 417 #define DTRACEACT_CLASS(x) ((x) & 0xff00) 418 419 #define DTRACEACT_ISDESTRUCTIVE(x) \ 420 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \ 421 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE) 422 423 #define DTRACEACT_ISSPECULATIVE(x) \ 424 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE) 425 426 #define DTRACEACT_ISPRINTFLIKE(x) \ 427 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \ 428 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN) 429 430 /* 431 * DTrace Aggregating Actions 432 * 433 * These are functions f(x) for which the following is true: 434 * 435 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n) 436 * 437 * where x_n is a set of arbitrary data. Aggregating actions are in their own 438 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow 439 * for easier processing of the aggregation argument and data payload for a few 440 * aggregating actions (notably: quantize(), lquantize(), and ustack()). 441 */ 442 #define DTRACEACT_AGGREGATION 0x0700 443 #define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1) 444 #define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2) 445 #define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3) 446 #define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4) 447 #define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5) 448 #define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6) 449 #define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7) 450 #define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8) 451 452 #define DTRACEACT_ISAGG(x) \ 453 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION) 454 455 #define DTRACE_QUANTIZE_NBUCKETS \ 456 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) 457 458 #define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1) 459 460 #define DTRACE_QUANTIZE_BUCKETVAL(buck) \ 461 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \ 462 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \ 463 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \ 464 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1)) 465 466 #define DTRACE_LQUANTIZE_STEPSHIFT 48 467 #define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48) 468 #define DTRACE_LQUANTIZE_LEVELSHIFT 32 469 #define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32) 470 #define DTRACE_LQUANTIZE_BASESHIFT 0 471 #define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX 472 473 #define DTRACE_LQUANTIZE_STEP(x) \ 474 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \ 475 DTRACE_LQUANTIZE_STEPSHIFT) 476 477 #define DTRACE_LQUANTIZE_LEVELS(x) \ 478 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \ 479 DTRACE_LQUANTIZE_LEVELSHIFT) 480 481 #define DTRACE_LQUANTIZE_BASE(x) \ 482 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \ 483 DTRACE_LQUANTIZE_BASESHIFT) 484 485 #define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX) 486 #define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32) 487 #define DTRACE_USTACK_ARG(x, y) \ 488 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX)) 489 490 #ifndef _LP64 491 #ifndef _LITTLE_ENDIAN 492 #define DTRACE_PTR(type, name) uint32_t name##pad; type *name 493 #else 494 #define DTRACE_PTR(type, name) type *name; uint32_t name##pad 495 #endif 496 #else 497 #define DTRACE_PTR(type, name) type *name 498 #endif 499 500 /* 501 * DTrace Object Format (DOF) 502 * 503 * DTrace programs can be persistently encoded in the DOF format so that they 504 * may be embedded in other programs (for example, in an ELF file) or in the 505 * dtrace driver configuration file for use in anonymous tracing. The DOF 506 * format is versioned and extensible so that it can be revised and so that 507 * internal data structures can be modified or extended compatibly. All DOF 508 * structures use fixed-size types, so the 32-bit and 64-bit representations 509 * are identical and consumers can use either data model transparently. 510 * 511 * The file layout is structured as follows: 512 * 513 * +---------------+-------------------+----- ... ----+---- ... ------+ 514 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable | 515 * | (file header) | (section headers) | section data | section data | 516 * +---------------+-------------------+----- ... ----+---- ... ------+ 517 * |<------------ dof_hdr.dofh_loadsz --------------->| | 518 * |<------------ dof_hdr.dofh_filesz ------------------------------->| 519 * 520 * The file header stores meta-data including a magic number, data model for 521 * the instrumentation, data encoding, and properties of the DIF code within. 522 * The header describes its own size and the size of the section headers. By 523 * convention, an array of section headers follows the file header, and then 524 * the data for all loadable sections and unloadable sections. This permits 525 * consumer code to easily download the headers and all loadable data into the 526 * DTrace driver in one contiguous chunk, omitting other extraneous sections. 527 * 528 * The section headers describe the size, offset, alignment, and section type 529 * for each section. Sections are described using a set of #defines that tell 530 * the consumer what kind of data is expected. Sections can contain links to 531 * other sections by storing a dof_secidx_t, an index into the section header 532 * array, inside of the section data structures. The section header includes 533 * an entry size so that sections with data arrays can grow their structures. 534 * 535 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which 536 * are represented themselves as a collection of related DOF sections. This 537 * permits us to change the set of sections associated with a DIFO over time, 538 * and also permits us to encode DIFOs that contain different sets of sections. 539 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a 540 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of 541 * dof_secidx_t's which in turn denote the sections associated with this DIFO. 542 * 543 * This loose coupling of the file structure (header and sections) to the 544 * structure of the DTrace program itself (ECB descriptions, action 545 * descriptions, and DIFOs) permits activities such as relocation processing 546 * to occur in a single pass without having to understand D program structure. 547 * 548 * Finally, strings are always stored in ELF-style string tables along with a 549 * string table section index and string table offset. Therefore strings in 550 * DOF are always arbitrary-length and not bound to the current implementation. 551 */ 552 553 #define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */ 554 555 typedef struct dof_hdr { 556 uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */ 557 uint32_t dofh_flags; /* file attribute flags (if any) */ 558 uint32_t dofh_hdrsize; /* size of file header in bytes */ 559 uint32_t dofh_secsize; /* size of section header in bytes */ 560 uint32_t dofh_secnum; /* number of section headers */ 561 uint64_t dofh_secoff; /* file offset of section headers */ 562 uint64_t dofh_loadsz; /* file size of loadable portion */ 563 uint64_t dofh_filesz; /* file size of entire DOF file */ 564 uint64_t dofh_pad; /* reserved for future use */ 565 } dof_hdr_t; 566 567 #define DOF_ID_MAG0 0 /* first byte of magic number */ 568 #define DOF_ID_MAG1 1 /* second byte of magic number */ 569 #define DOF_ID_MAG2 2 /* third byte of magic number */ 570 #define DOF_ID_MAG3 3 /* fourth byte of magic number */ 571 #define DOF_ID_MODEL 4 /* DOF data model (see below) */ 572 #define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */ 573 #define DOF_ID_VERSION 6 /* DOF file format major version (see below) */ 574 #define DOF_ID_DIFVERS 7 /* DIF instruction set version */ 575 #define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */ 576 #define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */ 577 #define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */ 578 579 #define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */ 580 #define DOF_MAG_MAG1 'D' 581 #define DOF_MAG_MAG2 'O' 582 #define DOF_MAG_MAG3 'F' 583 584 #define DOF_MAG_STRING "\177DOF" 585 #define DOF_MAG_STRLEN 4 586 587 #define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */ 588 #define DOF_MODEL_ILP32 1 589 #define DOF_MODEL_LP64 2 590 591 #ifdef _LP64 592 #define DOF_MODEL_NATIVE DOF_MODEL_LP64 593 #else 594 #define DOF_MODEL_NATIVE DOF_MODEL_ILP32 595 #endif 596 597 #define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */ 598 #define DOF_ENCODE_LSB 1 599 #define DOF_ENCODE_MSB 2 600 601 #ifdef _BIG_ENDIAN 602 #define DOF_ENCODE_NATIVE DOF_ENCODE_MSB 603 #else 604 #define DOF_ENCODE_NATIVE DOF_ENCODE_LSB 605 #endif 606 607 #define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */ 608 #define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */ 609 #define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */ 610 611 #define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */ 612 613 typedef uint32_t dof_secidx_t; /* section header table index type */ 614 typedef uint32_t dof_stridx_t; /* string table index type */ 615 616 #define DOF_SECIDX_NONE (-1U) /* null value for section indices */ 617 #define DOF_STRIDX_NONE (-1U) /* null value for string indices */ 618 619 typedef struct dof_sec { 620 uint32_t dofs_type; /* section type (see below) */ 621 uint32_t dofs_align; /* section data memory alignment */ 622 uint32_t dofs_flags; /* section flags (if any) */ 623 uint32_t dofs_entsize; /* size of section entry (if table) */ 624 uint64_t dofs_offset; /* offset of section data within file */ 625 uint64_t dofs_size; /* size of section data in bytes */ 626 } dof_sec_t; 627 628 #define DOF_SECT_NONE 0 /* null section */ 629 #define DOF_SECT_COMMENTS 1 /* compiler comments */ 630 #define DOF_SECT_SOURCE 2 /* D program source code */ 631 #define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */ 632 #define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */ 633 #define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */ 634 #define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */ 635 #define DOF_SECT_DIF 7 /* uint32_t array of byte code */ 636 #define DOF_SECT_STRTAB 8 /* string table */ 637 #define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */ 638 #define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */ 639 #define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */ 640 #define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */ 641 #define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */ 642 #define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */ 643 #define DOF_SECT_PROVIDER 15 /* dof_provider_t */ 644 #define DOF_SECT_PROBES 16 /* dof_probe_t array */ 645 #define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */ 646 #define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */ 647 #define DOF_SECT_INTTAB 19 /* uint64_t array */ 648 #define DOF_SECT_UTSNAME 20 /* struct utsname */ 649 #define DOF_SECT_XLTAB 21 /* dof_xlref_t array */ 650 #define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */ 651 #define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */ 652 #define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */ 653 #define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */ 654 #define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */ 655 656 #define DOF_SECF_LOAD 1 /* section should be loaded */ 657 658 typedef struct dof_ecbdesc { 659 dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */ 660 dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */ 661 dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */ 662 uint32_t dofe_pad; /* reserved for future use */ 663 uint64_t dofe_uarg; /* user-supplied library argument */ 664 } dof_ecbdesc_t; 665 666 typedef struct dof_probedesc { 667 dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */ 668 dof_stridx_t dofp_provider; /* provider string */ 669 dof_stridx_t dofp_mod; /* module string */ 670 dof_stridx_t dofp_func; /* function string */ 671 dof_stridx_t dofp_name; /* name string */ 672 uint32_t dofp_id; /* probe identifier (or zero) */ 673 } dof_probedesc_t; 674 675 typedef struct dof_actdesc { 676 dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */ 677 dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */ 678 uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */ 679 uint32_t dofa_ntuple; /* number of subsequent tuple actions */ 680 uint64_t dofa_arg; /* kind-specific argument */ 681 uint64_t dofa_uarg; /* user-supplied argument */ 682 } dof_actdesc_t; 683 684 typedef struct dof_difohdr { 685 dtrace_diftype_t dofd_rtype; /* return type for this fragment */ 686 dof_secidx_t dofd_links[1]; /* variable length array of indices */ 687 } dof_difohdr_t; 688 689 typedef struct dof_relohdr { 690 dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */ 691 dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */ 692 dof_secidx_t dofr_tgtsec; /* link to section we are relocating */ 693 } dof_relohdr_t; 694 695 typedef struct dof_relodesc { 696 dof_stridx_t dofr_name; /* string name of relocation symbol */ 697 uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */ 698 uint64_t dofr_offset; /* byte offset for relocation */ 699 uint64_t dofr_data; /* additional type-specific data */ 700 } dof_relodesc_t; 701 702 #define DOF_RELO_NONE 0 /* empty relocation entry */ 703 #define DOF_RELO_SETX 1 /* relocate setx value */ 704 705 typedef struct dof_optdesc { 706 uint32_t dofo_option; /* option identifier */ 707 dof_secidx_t dofo_strtab; /* string table, if string option */ 708 uint64_t dofo_value; /* option value or string index */ 709 } dof_optdesc_t; 710 711 typedef uint32_t dof_attr_t; /* encoded stability attributes */ 712 713 #define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8)) 714 #define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff) 715 #define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff) 716 #define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff) 717 718 typedef struct dof_provider { 719 dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */ 720 dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */ 721 dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */ 722 dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */ 723 dof_stridx_t dofpv_name; /* provider name string */ 724 dof_attr_t dofpv_provattr; /* provider attributes */ 725 dof_attr_t dofpv_modattr; /* module attributes */ 726 dof_attr_t dofpv_funcattr; /* function attributes */ 727 dof_attr_t dofpv_nameattr; /* name attributes */ 728 dof_attr_t dofpv_argsattr; /* args attributes */ 729 dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */ 730 } dof_provider_t; 731 732 typedef struct dof_probe { 733 uint64_t dofpr_addr; /* probe base address or offset */ 734 dof_stridx_t dofpr_func; /* probe function string */ 735 dof_stridx_t dofpr_name; /* probe name string */ 736 dof_stridx_t dofpr_nargv; /* native argument type strings */ 737 dof_stridx_t dofpr_xargv; /* translated argument type strings */ 738 uint32_t dofpr_argidx; /* index of first argument mapping */ 739 uint32_t dofpr_offidx; /* index of first offset entry */ 740 uint8_t dofpr_nargc; /* native argument count */ 741 uint8_t dofpr_xargc; /* translated argument count */ 742 uint16_t dofpr_noffs; /* number of offset entries for probe */ 743 uint32_t dofpr_enoffidx; /* index of first is-enabled offset */ 744 uint16_t dofpr_nenoffs; /* number of is-enabled offsets */ 745 uint16_t dofpr_pad1; /* reserved for future use */ 746 uint32_t dofpr_pad2; /* reserved for future use */ 747 } dof_probe_t; 748 749 typedef struct dof_xlator { 750 dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */ 751 dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */ 752 dof_stridx_t dofxl_argv; /* input parameter type strings */ 753 uint32_t dofxl_argc; /* input parameter list length */ 754 dof_stridx_t dofxl_type; /* output type string name */ 755 dof_attr_t dofxl_attr; /* output stability attributes */ 756 } dof_xlator_t; 757 758 typedef struct dof_xlmember { 759 dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */ 760 dof_stridx_t dofxm_name; /* member name */ 761 dtrace_diftype_t dofxm_type; /* member type */ 762 } dof_xlmember_t; 763 764 typedef struct dof_xlref { 765 dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */ 766 uint32_t dofxr_member; /* index of referenced dof_xlmember */ 767 uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */ 768 } dof_xlref_t; 769 770 /* 771 * DTrace Intermediate Format Object (DIFO) 772 * 773 * A DIFO is used to store the compiled DIF for a D expression, its return 774 * type, and its string and variable tables. The string table is a single 775 * buffer of character data into which sets instructions and variable 776 * references can reference strings using a byte offset. The variable table 777 * is an array of dtrace_difv_t structures that describe the name and type of 778 * each variable and the id used in the DIF code. This structure is described 779 * above in the DIF section of this header file. The DIFO is used at both 780 * user-level (in the library) and in the kernel, but the structure is never 781 * passed between the two: the DOF structures form the only interface. As a 782 * result, the definition can change depending on the presence of _KERNEL. 783 */ 784 typedef struct dtrace_difo { 785 dif_instr_t *dtdo_buf; /* instruction buffer */ 786 uint64_t *dtdo_inttab; /* integer table (optional) */ 787 char *dtdo_strtab; /* string table (optional) */ 788 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */ 789 uint_t dtdo_len; /* length of instruction buffer */ 790 uint_t dtdo_intlen; /* length of integer table */ 791 uint_t dtdo_strlen; /* length of string table */ 792 uint_t dtdo_varlen; /* length of variable table */ 793 dtrace_diftype_t dtdo_rtype; /* return type */ 794 uint_t dtdo_refcnt; /* owner reference count */ 795 uint_t dtdo_destructive; /* invokes destructive subroutines */ 796 #ifndef _KERNEL 797 dof_relodesc_t *dtdo_kreltab; /* kernel relocations */ 798 dof_relodesc_t *dtdo_ureltab; /* user relocations */ 799 struct dt_node **dtdo_xlmtab; /* translator references */ 800 uint_t dtdo_krelen; /* length of krelo table */ 801 uint_t dtdo_urelen; /* length of urelo table */ 802 uint_t dtdo_xlmlen; /* length of translator table */ 803 #endif 804 } dtrace_difo_t; 805 806 /* 807 * DTrace Enabling Description Structures 808 * 809 * When DTrace is tracking the description of a DTrace enabling entity (probe, 810 * predicate, action, ECB, record, etc.), it does so in a description 811 * structure. These structures all end in "desc", and are used at both 812 * user-level and in the kernel -- but (with the exception of 813 * dtrace_probedesc_t) they are never passed between them. Typically, 814 * user-level will use the description structures when assembling an enabling. 815 * It will then distill those description structures into a DOF object (see 816 * above), and send it into the kernel. The kernel will again use the 817 * description structures to create a description of the enabling as it reads 818 * the DOF. When the description is complete, the enabling will be actually 819 * created -- turning it into the structures that represent the enabling 820 * instead of merely describing it. Not surprisingly, the description 821 * structures bear a strong resemblance to the DOF structures that act as their 822 * conduit. 823 */ 824 struct dtrace_predicate; 825 826 typedef struct dtrace_probedesc { 827 dtrace_id_t dtpd_id; /* probe identifier */ 828 char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */ 829 char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */ 830 char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */ 831 char dtpd_name[DTRACE_NAMELEN]; /* probe name */ 832 } dtrace_probedesc_t; 833 834 typedef struct dtrace_repldesc { 835 dtrace_probedesc_t dtrpd_match; /* probe descr. to match */ 836 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */ 837 } dtrace_repldesc_t; 838 839 typedef struct dtrace_preddesc { 840 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */ 841 struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */ 842 } dtrace_preddesc_t; 843 844 typedef struct dtrace_actdesc { 845 dtrace_difo_t *dtad_difo; /* pointer to DIF object */ 846 struct dtrace_actdesc *dtad_next; /* next action */ 847 dtrace_actkind_t dtad_kind; /* kind of action */ 848 uint32_t dtad_ntuple; /* number in tuple */ 849 uint64_t dtad_arg; /* action argument */ 850 uint64_t dtad_uarg; /* user argument */ 851 int dtad_refcnt; /* reference count */ 852 } dtrace_actdesc_t; 853 854 typedef struct dtrace_ecbdesc { 855 dtrace_actdesc_t *dted_action; /* action description(s) */ 856 dtrace_preddesc_t dted_pred; /* predicate description */ 857 dtrace_probedesc_t dted_probe; /* probe description */ 858 uint64_t dted_uarg; /* library argument */ 859 int dted_refcnt; /* reference count */ 860 } dtrace_ecbdesc_t; 861 862 /* 863 * DTrace Metadata Description Structures 864 * 865 * DTrace separates the trace data stream from the metadata stream. The only 866 * metadata tokens placed in the data stream are enabled probe identifiers 867 * (EPIDs) or (in the case of aggregations) aggregation identifiers. In order 868 * to determine the structure of the data, DTrace consumers pass the token to 869 * the kernel, and receive in return a corresponding description of the enabled 870 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the 871 * dtrace_aggdesc structure). Both of these structures are expressed in terms 872 * of record descriptions (via the dtrace_recdesc structure) that describe the 873 * exact structure of the data. Some record descriptions may also contain a 874 * format identifier; this additional bit of metadata can be retrieved from the 875 * kernel, for which a format description is returned via the dtrace_fmtdesc 876 * structure. Note that all four of these structures must be bitness-neutral 877 * to allow for a 32-bit DTrace consumer on a 64-bit kernel. 878 */ 879 typedef struct dtrace_recdesc { 880 dtrace_actkind_t dtrd_action; /* kind of action */ 881 uint32_t dtrd_size; /* size of record */ 882 uint32_t dtrd_offset; /* offset in ECB's data */ 883 uint16_t dtrd_alignment; /* required alignment */ 884 uint16_t dtrd_format; /* format, if any */ 885 uint64_t dtrd_arg; /* action argument */ 886 uint64_t dtrd_uarg; /* user argument */ 887 } dtrace_recdesc_t; 888 889 typedef struct dtrace_eprobedesc { 890 dtrace_epid_t dtepd_epid; /* enabled probe ID */ 891 dtrace_id_t dtepd_probeid; /* probe ID */ 892 uint64_t dtepd_uarg; /* library argument */ 893 uint32_t dtepd_size; /* total size */ 894 int dtepd_nrecs; /* number of records */ 895 dtrace_recdesc_t dtepd_rec[1]; /* records themselves */ 896 } dtrace_eprobedesc_t; 897 898 typedef struct dtrace_aggdesc { 899 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */ 900 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */ 901 int dtagd_flags; /* not filled in by kernel */ 902 dtrace_aggid_t dtagd_id; /* aggregation ID */ 903 dtrace_epid_t dtagd_epid; /* enabled probe ID */ 904 uint32_t dtagd_size; /* size in bytes */ 905 int dtagd_nrecs; /* number of records */ 906 uint32_t dtagd_pad; /* explicit padding */ 907 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */ 908 } dtrace_aggdesc_t; 909 910 typedef struct dtrace_fmtdesc { 911 DTRACE_PTR(char, dtfd_string); /* format string */ 912 int dtfd_length; /* length of format string */ 913 uint16_t dtfd_format; /* format identifier */ 914 } dtrace_fmtdesc_t; 915 916 #define DTRACE_SIZEOF_EPROBEDESC(desc) \ 917 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \ 918 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) 919 920 #define DTRACE_SIZEOF_AGGDESC(desc) \ 921 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \ 922 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) 923 924 /* 925 * DTrace Option Interface 926 * 927 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections 928 * in a DOF image. The dof_optdesc structure contains an option identifier and 929 * an option value. The valid option identifiers are found below; the mapping 930 * between option identifiers and option identifying strings is maintained at 931 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the 932 * following are potentially valid option values: all positive integers, zero 933 * and negative one. Some options (notably "bufpolicy" and "bufresize") take 934 * predefined tokens as their values; these are defined with 935 * DTRACEOPT_{option}_{token}. 936 */ 937 #define DTRACEOPT_BUFSIZE 0 /* buffer size */ 938 #define DTRACEOPT_BUFPOLICY 1 /* buffer policy */ 939 #define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */ 940 #define DTRACEOPT_AGGSIZE 3 /* aggregation size */ 941 #define DTRACEOPT_SPECSIZE 4 /* speculation size */ 942 #define DTRACEOPT_NSPEC 5 /* number of speculations */ 943 #define DTRACEOPT_STRSIZE 6 /* string size */ 944 #define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */ 945 #define DTRACEOPT_CPU 8 /* CPU to trace */ 946 #define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */ 947 #define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */ 948 #define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */ 949 #define DTRACEOPT_QUIET 12 /* only output explicitly traced data */ 950 #define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */ 951 #define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */ 952 #define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */ 953 #define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */ 954 #define DTRACEOPT_STATUSRATE 17 /* status rate */ 955 #define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */ 956 #define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */ 957 #define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */ 958 #define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */ 959 #define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */ 960 #define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */ 961 #define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */ 962 #define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */ 963 #define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */ 964 #define DTRACEOPT_MAX 27 /* number of options */ 965 966 #define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */ 967 968 #define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */ 969 #define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */ 970 #define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */ 971 972 #define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */ 973 #define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */ 974 975 /* 976 * DTrace Buffer Interface 977 * 978 * In order to get a snapshot of the principal or aggregation buffer, 979 * user-level passes a buffer description to the kernel with the dtrace_bufdesc 980 * structure. This describes which CPU user-level is interested in, and 981 * where user-level wishes the kernel to snapshot the buffer to (the 982 * dtbd_data field). The kernel uses the same structure to pass back some 983 * information regarding the buffer: the size of data actually copied out, the 984 * number of drops, the number of errors, and the offset of the oldest record. 985 * If the buffer policy is a "switch" policy, taking a snapshot of the 986 * principal buffer has the additional effect of switching the active and 987 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has 988 * the additional effect of switching the active and inactive buffers. 989 */ 990 typedef struct dtrace_bufdesc { 991 uint64_t dtbd_size; /* size of buffer */ 992 uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */ 993 uint32_t dtbd_errors; /* number of errors */ 994 uint64_t dtbd_drops; /* number of drops */ 995 DTRACE_PTR(char, dtbd_data); /* data */ 996 uint64_t dtbd_oldest; /* offset of oldest record */ 997 } dtrace_bufdesc_t; 998 999 /* 1000 * DTrace Status 1001 * 1002 * The status of DTrace is relayed via the dtrace_status structure. This 1003 * structure contains members to count drops other than the capacity drops 1004 * available via the buffer interface (see above). This consists of dynamic 1005 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and 1006 * speculative drops (including capacity speculative drops, drops due to busy 1007 * speculative buffers and drops due to unavailable speculative buffers). 1008 * Additionally, the status structure contains a field to indicate the number 1009 * of "fill"-policy buffers have been filled and a boolean field to indicate 1010 * that exit() has been called. If the dtst_exiting field is non-zero, no 1011 * further data will be generated until tracing is stopped (at which time any 1012 * enablings of the END action will be processed); if user-level sees that 1013 * this field is non-zero, tracing should be stopped as soon as possible. 1014 */ 1015 typedef struct dtrace_status { 1016 uint64_t dtst_dyndrops; /* dynamic drops */ 1017 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */ 1018 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */ 1019 uint64_t dtst_specdrops; /* speculative drops */ 1020 uint64_t dtst_specdrops_busy; /* spec drops due to busy */ 1021 uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */ 1022 uint64_t dtst_errors; /* total errors */ 1023 uint64_t dtst_filled; /* number of filled bufs */ 1024 uint64_t dtst_stkstroverflows; /* stack string tab overflows */ 1025 uint64_t dtst_dblerrors; /* errors in ERROR probes */ 1026 char dtst_killed; /* non-zero if killed */ 1027 char dtst_exiting; /* non-zero if exit() called */ 1028 char dtst_pad[6]; /* pad out to 64-bit align */ 1029 } dtrace_status_t; 1030 1031 /* 1032 * DTrace Configuration 1033 * 1034 * User-level may need to understand some elements of the kernel DTrace 1035 * configuration in order to generate correct DIF. This information is 1036 * conveyed via the dtrace_conf structure. 1037 */ 1038 typedef struct dtrace_conf { 1039 uint_t dtc_difversion; /* supported DIF version */ 1040 uint_t dtc_difintregs; /* # of DIF integer registers */ 1041 uint_t dtc_diftupregs; /* # of DIF tuple registers */ 1042 uint_t dtc_ctfmodel; /* CTF data model */ 1043 uint_t dtc_pad[8]; /* reserved for future use */ 1044 } dtrace_conf_t; 1045 1046 /* 1047 * DTrace Faults 1048 * 1049 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults; 1050 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe 1051 * postprocessing at user-level. Probe processing faults induce an ERROR 1052 * probe and are replicated in unistd.d to allow users' ERROR probes to decode 1053 * the error condition using thse symbolic labels. 1054 */ 1055 #define DTRACEFLT_UNKNOWN 0 /* Unknown fault */ 1056 #define DTRACEFLT_BADADDR 1 /* Bad address */ 1057 #define DTRACEFLT_BADALIGN 2 /* Bad alignment */ 1058 #define DTRACEFLT_ILLOP 3 /* Illegal operation */ 1059 #define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */ 1060 #define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */ 1061 #define DTRACEFLT_KPRIV 6 /* Illegal kernel access */ 1062 #define DTRACEFLT_UPRIV 7 /* Illegal user access */ 1063 #define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */ 1064 1065 #define DTRACEFLT_LIBRARY 1000 /* Library-level fault */ 1066 1067 /* 1068 * DTrace Argument Types 1069 * 1070 * Because it would waste both space and time, argument types do not reside 1071 * with the probe. In order to determine argument types for args[X] 1072 * variables, the D compiler queries for argument types on a probe-by-probe 1073 * basis. (This optimizes for the common case that arguments are either not 1074 * used or used in an untyped fashion.) Typed arguments are specified with a 1075 * string of the type name in the dtragd_native member of the argument 1076 * description structure. Typed arguments may be further translated to types 1077 * of greater stability; the provider indicates such a translated argument by 1078 * filling in the dtargd_xlate member with the string of the translated type. 1079 * Finally, the provider may indicate which argument value a given argument 1080 * maps to by setting the dtargd_mapping member -- allowing a single argument 1081 * to map to multiple args[X] variables. 1082 */ 1083 typedef struct dtrace_argdesc { 1084 dtrace_id_t dtargd_id; /* probe identifier */ 1085 int dtargd_ndx; /* arg number (-1 iff none) */ 1086 int dtargd_mapping; /* value mapping */ 1087 char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */ 1088 char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */ 1089 } dtrace_argdesc_t; 1090 1091 /* 1092 * DTrace Stability Attributes 1093 * 1094 * Each DTrace provider advertises the name and data stability of each of its 1095 * probe description components, as well as its architectural dependencies. 1096 * The D compiler can query the provider attributes (dtrace_pattr_t below) in 1097 * order to compute the properties of an input program and report them. 1098 */ 1099 typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */ 1100 typedef uint8_t dtrace_class_t; /* architectural dependency class */ 1101 1102 #define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */ 1103 #define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */ 1104 #define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */ 1105 #define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */ 1106 #define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */ 1107 #define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */ 1108 #define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */ 1109 #define DTRACE_STABILITY_STANDARD 7 /* industry standard */ 1110 #define DTRACE_STABILITY_MAX 7 /* maximum valid stability */ 1111 1112 #define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */ 1113 #define DTRACE_CLASS_CPU 1 /* CPU-module-specific */ 1114 #define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */ 1115 #define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */ 1116 #define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */ 1117 #define DTRACE_CLASS_COMMON 5 /* common to all systems */ 1118 #define DTRACE_CLASS_MAX 5 /* maximum valid class */ 1119 1120 #define DTRACE_PRIV_NONE 0x0000 1121 #define DTRACE_PRIV_KERNEL 0x0001 1122 #define DTRACE_PRIV_USER 0x0002 1123 #define DTRACE_PRIV_PROC 0x0004 1124 #define DTRACE_PRIV_OWNER 0x0008 1125 #define DTRACE_PRIV_ZONEOWNER 0x0010 1126 1127 #define DTRACE_PRIV_ALL \ 1128 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \ 1129 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER) 1130 1131 typedef struct dtrace_ppriv { 1132 uint32_t dtpp_flags; /* privilege flags */ 1133 uid_t dtpp_uid; /* user ID */ 1134 zoneid_t dtpp_zoneid; /* zone ID */ 1135 } dtrace_ppriv_t; 1136 1137 typedef struct dtrace_attribute { 1138 dtrace_stability_t dtat_name; /* entity name stability */ 1139 dtrace_stability_t dtat_data; /* entity data stability */ 1140 dtrace_class_t dtat_class; /* entity data dependency */ 1141 } dtrace_attribute_t; 1142 1143 typedef struct dtrace_pattr { 1144 dtrace_attribute_t dtpa_provider; /* provider attributes */ 1145 dtrace_attribute_t dtpa_mod; /* module attributes */ 1146 dtrace_attribute_t dtpa_func; /* function attributes */ 1147 dtrace_attribute_t dtpa_name; /* name attributes */ 1148 dtrace_attribute_t dtpa_args; /* args[] attributes */ 1149 } dtrace_pattr_t; 1150 1151 typedef struct dtrace_providerdesc { 1152 char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */ 1153 dtrace_pattr_t dtvd_attr; /* stability attributes */ 1154 dtrace_ppriv_t dtvd_priv; /* privileges required */ 1155 } dtrace_providerdesc_t; 1156 1157 /* 1158 * DTrace Pseudodevice Interface 1159 * 1160 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace 1161 * pseudodevice driver. These ioctls comprise the user-kernel interface to 1162 * DTrace. 1163 */ 1164 #define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8)) 1165 #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */ 1166 #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */ 1167 #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */ 1168 #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */ 1169 #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */ 1170 #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */ 1171 #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */ 1172 #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */ 1173 #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */ 1174 #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */ 1175 #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */ 1176 #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */ 1177 #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */ 1178 #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */ 1179 #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */ 1180 #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */ 1181 1182 /* 1183 * DTrace Helpers 1184 * 1185 * In general, DTrace establishes probes in processes and takes actions on 1186 * processes without knowing their specific user-level structures. Instead of 1187 * existing in the framework, process-specific knowledge is contained by the 1188 * enabling D program -- which can apply process-specific knowledge by making 1189 * appropriate use of DTrace primitives like copyin() and copyinstr() to 1190 * operate on user-level data. However, there may exist some specific probes 1191 * of particular semantic relevance that the application developer may wish to 1192 * explicitly export. For example, an application may wish to export a probe 1193 * at the point that it begins and ends certain well-defined transactions. In 1194 * addition to providing probes, programs may wish to offer assistance for 1195 * certain actions. For example, in highly dynamic environments (e.g., Java), 1196 * it may be difficult to obtain a stack trace in terms of meaningful symbol 1197 * names (the translation from instruction addresses to corresponding symbol 1198 * names may only be possible in situ); these environments may wish to define 1199 * a series of actions to be applied in situ to obtain a meaningful stack 1200 * trace. 1201 * 1202 * These two mechanisms -- user-level statically defined tracing and assisting 1203 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified 1204 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of 1205 * providers, probes and their arguments. If a helper wishes to provide 1206 * action assistance, probe descriptions and corresponding DIF actions may be 1207 * specified in the helper DOF. For such helper actions, however, the probe 1208 * description describes the specific helper: all DTrace helpers have the 1209 * provider name "dtrace" and the module name "helper", and the name of the 1210 * helper is contained in the function name (for example, the ustack() helper 1211 * is named "ustack"). Any helper-specific name may be contained in the name 1212 * (for example, if a helper were to have a constructor, it might be named 1213 * "dtrace:helper:<helper>:init"). Helper actions are only called when the 1214 * action that they are helping is taken. Helper actions may only return DIF 1215 * expressions, and may only call the following subroutines: 1216 * 1217 * alloca() <= Allocates memory out of the consumer's scratch space 1218 * bcopy() <= Copies memory to scratch space 1219 * copyin() <= Copies memory from user-level into consumer's scratch 1220 * copyinto() <= Copies memory into a specific location in scratch 1221 * copyinstr() <= Copies a string into a specific location in scratch 1222 * 1223 * Helper actions may only access the following built-in variables: 1224 * 1225 * curthread <= Current kthread_t pointer 1226 * tid <= Current thread identifier 1227 * pid <= Current process identifier 1228 * ppid <= Parent process identifier 1229 * uid <= Current user ID 1230 * gid <= Current group ID 1231 * execname <= Current executable name 1232 * zonename <= Current zone name 1233 * 1234 * Helper actions may not manipulate or allocate dynamic variables, but they 1235 * may have clause-local and statically-allocated global variables. The 1236 * helper action variable state is specific to the helper action -- variables 1237 * used by the helper action may not be accessed outside of the helper 1238 * action, and the helper action may not access variables that like outside 1239 * of it. Helper actions may not load from kernel memory at-large; they are 1240 * restricting to loading current user state (via copyin() and variants) and 1241 * scratch space. As with probe enablings, helper actions are executed in 1242 * program order. The result of the helper action is the result of the last 1243 * executing helper expression. 1244 * 1245 * Helpers -- composed of either providers/probes or probes/actions (or both) 1246 * -- are added by opening the "helper" minor node, and issuing an ioctl(2) 1247 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This 1248 * encapsulates the name and base address of the user-level library or 1249 * executable publishing the helpers and probes as well as the DOF that 1250 * contains the definitions of those helpers and probes. 1251 * 1252 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy 1253 * helpers and should no longer be used. No other ioctls are valid on the 1254 * helper minor node. 1255 */ 1256 #define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8)) 1257 #define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */ 1258 #define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */ 1259 #define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */ 1260 1261 typedef struct dof_helper { 1262 char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */ 1263 uint64_t dofhp_addr; /* base address of object */ 1264 uint64_t dofhp_dof; /* address of helper DOF */ 1265 } dof_helper_t; 1266 1267 #define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */ 1268 #define DTRACEMNR_HELPER "helper" /* node for helpers */ 1269 #define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */ 1270 #define DTRACEMNRN_HELPER 1 /* minor for helpers */ 1271 #define DTRACEMNRN_CLONE 2 /* first clone minor */ 1272 1273 #ifdef _KERNEL 1274 1275 /* 1276 * DTrace Provider API 1277 * 1278 * The following functions are implemented by the DTrace framework and are 1279 * used to implement separate in-kernel DTrace providers. Common functions 1280 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are 1281 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c. 1282 * 1283 * The provider API has two halves: the API that the providers consume from 1284 * DTrace, and the API that providers make available to DTrace. 1285 * 1286 * 1 Framework-to-Provider API 1287 * 1288 * 1.1 Overview 1289 * 1290 * The Framework-to-Provider API is represented by the dtrace_pops structure 1291 * that the provider passes to the framework when registering itself. This 1292 * structure consists of the following members: 1293 * 1294 * dtps_provide() <-- Provide all probes, all modules 1295 * dtps_provide_module() <-- Provide all probes in specified module 1296 * dtps_enable() <-- Enable specified probe 1297 * dtps_disable() <-- Disable specified probe 1298 * dtps_suspend() <-- Suspend specified probe 1299 * dtps_resume() <-- Resume specified probe 1300 * dtps_getargdesc() <-- Get the argument description for args[X] 1301 * dtps_getargval() <-- Get the value for an argX or args[X] variable 1302 * dtps_usermode() <-- Find out if the probe was fired in user mode 1303 * dtps_destroy() <-- Destroy all state associated with this probe 1304 * 1305 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec) 1306 * 1307 * 1.2.1 Overview 1308 * 1309 * Called to indicate that the provider should provide all probes. If the 1310 * specified description is non-NULL, dtps_provide() is being called because 1311 * no probe matched a specified probe -- if the provider has the ability to 1312 * create custom probes, it may wish to create a probe that matches the 1313 * specified description. 1314 * 1315 * 1.2.2 Arguments and notes 1316 * 1317 * The first argument is the cookie as passed to dtrace_register(). The 1318 * second argument is a pointer to a probe description that the provider may 1319 * wish to consider when creating custom probes. The provider is expected to 1320 * call back into the DTrace framework via dtrace_probe_create() to create 1321 * any necessary probes. dtps_provide() may be called even if the provider 1322 * has made available all probes; the provider should check the return value 1323 * of dtrace_probe_create() to handle this case. Note that the provider need 1324 * not implement both dtps_provide() and dtps_provide_module(); see 1325 * "Arguments and Notes" for dtrace_register(), below. 1326 * 1327 * 1.2.3 Return value 1328 * 1329 * None. 1330 * 1331 * 1.2.4 Caller's context 1332 * 1333 * dtps_provide() is typically called from open() or ioctl() context, but may 1334 * be called from other contexts as well. The DTrace framework is locked in 1335 * such a way that providers may not register or unregister. This means that 1336 * the provider may not call any DTrace API that affects its registration with 1337 * the framework, including dtrace_register(), dtrace_unregister(), 1338 * dtrace_invalidate(), and dtrace_condense(). However, the context is such 1339 * that the provider may (and indeed, is expected to) call probe-related 1340 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(), 1341 * and dtrace_probe_arg(). 1342 * 1343 * 1.3 void dtps_provide_module(void *arg, struct modctl *mp) 1344 * 1345 * 1.3.1 Overview 1346 * 1347 * Called to indicate that the provider should provide all probes in the 1348 * specified module. 1349 * 1350 * 1.3.2 Arguments and notes 1351 * 1352 * The first argument is the cookie as passed to dtrace_register(). The 1353 * second argument is a pointer to a modctl structure that indicates the 1354 * module for which probes should be created. 1355 * 1356 * 1.3.3 Return value 1357 * 1358 * None. 1359 * 1360 * 1.3.4 Caller's context 1361 * 1362 * dtps_provide_module() may be called from open() or ioctl() context, but 1363 * may also be called from a module loading context. mod_lock is held, and 1364 * the DTrace framework is locked in such a way that providers may not 1365 * register or unregister. This means that the provider may not call any 1366 * DTrace API that affects its registration with the framework, including 1367 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and 1368 * dtrace_condense(). However, the context is such that the provider may (and 1369 * indeed, is expected to) call probe-related DTrace routines, including 1370 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note 1371 * that the provider need not implement both dtps_provide() and 1372 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(), 1373 * below. 1374 * 1375 * 1.4 void dtps_enable(void *arg, dtrace_id_t id, void *parg) 1376 * 1377 * 1.4.1 Overview 1378 * 1379 * Called to enable the specified probe. 1380 * 1381 * 1.4.2 Arguments and notes 1382 * 1383 * The first argument is the cookie as passed to dtrace_register(). The 1384 * second argument is the identifier of the probe to be enabled. The third 1385 * argument is the probe argument as passed to dtrace_probe_create(). 1386 * dtps_enable() will be called when a probe transitions from not being 1387 * enabled at all to having one or more ECB. The number of ECBs associated 1388 * with the probe may change without subsequent calls into the provider. 1389 * When the number of ECBs drops to zero, the provider will be explicitly 1390 * told to disable the probe via dtps_disable(). dtrace_probe() should never 1391 * be called for a probe identifier that hasn't been explicitly enabled via 1392 * dtps_enable(). 1393 * 1394 * 1.4.3 Return value 1395 * 1396 * None. 1397 * 1398 * 1.4.4 Caller's context 1399 * 1400 * The DTrace framework is locked in such a way that it may not be called 1401 * back into at all. cpu_lock is held. mod_lock is not held and may not 1402 * be acquired. 1403 * 1404 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg) 1405 * 1406 * 1.5.1 Overview 1407 * 1408 * Called to disable the specified probe. 1409 * 1410 * 1.5.2 Arguments and notes 1411 * 1412 * The first argument is the cookie as passed to dtrace_register(). The 1413 * second argument is the identifier of the probe to be disabled. The third 1414 * argument is the probe argument as passed to dtrace_probe_create(). 1415 * dtps_disable() will be called when a probe transitions from being enabled 1416 * to having zero ECBs. dtrace_probe() should never be called for a probe 1417 * identifier that has been explicitly enabled via dtps_disable(). 1418 * 1419 * 1.5.3 Return value 1420 * 1421 * None. 1422 * 1423 * 1.5.4 Caller's context 1424 * 1425 * The DTrace framework is locked in such a way that it may not be called 1426 * back into at all. cpu_lock is held. mod_lock is not held and may not 1427 * be acquired. 1428 * 1429 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg) 1430 * 1431 * 1.6.1 Overview 1432 * 1433 * Called to suspend the specified enabled probe. This entry point is for 1434 * providers that may need to suspend some or all of their probes when CPUs 1435 * are being powered on or when the boot monitor is being entered for a 1436 * prolonged period of time. 1437 * 1438 * 1.6.2 Arguments and notes 1439 * 1440 * The first argument is the cookie as passed to dtrace_register(). The 1441 * second argument is the identifier of the probe to be suspended. The 1442 * third argument is the probe argument as passed to dtrace_probe_create(). 1443 * dtps_suspend will only be called on an enabled probe. Providers that 1444 * provide a dtps_suspend entry point will want to take roughly the action 1445 * that it takes for dtps_disable. 1446 * 1447 * 1.6.3 Return value 1448 * 1449 * None. 1450 * 1451 * 1.6.4 Caller's context 1452 * 1453 * Interrupts are disabled. The DTrace framework is in a state such that the 1454 * specified probe cannot be disabled or destroyed for the duration of 1455 * dtps_suspend(). As interrupts are disabled, the provider is afforded 1456 * little latitude; the provider is expected to do no more than a store to 1457 * memory. 1458 * 1459 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg) 1460 * 1461 * 1.7.1 Overview 1462 * 1463 * Called to resume the specified enabled probe. This entry point is for 1464 * providers that may need to resume some or all of their probes after the 1465 * completion of an event that induced a call to dtps_suspend(). 1466 * 1467 * 1.7.2 Arguments and notes 1468 * 1469 * The first argument is the cookie as passed to dtrace_register(). The 1470 * second argument is the identifier of the probe to be resumed. The 1471 * third argument is the probe argument as passed to dtrace_probe_create(). 1472 * dtps_resume will only be called on an enabled probe. Providers that 1473 * provide a dtps_resume entry point will want to take roughly the action 1474 * that it takes for dtps_enable. 1475 * 1476 * 1.7.3 Return value 1477 * 1478 * None. 1479 * 1480 * 1.7.4 Caller's context 1481 * 1482 * Interrupts are disabled. The DTrace framework is in a state such that the 1483 * specified probe cannot be disabled or destroyed for the duration of 1484 * dtps_resume(). As interrupts are disabled, the provider is afforded 1485 * little latitude; the provider is expected to do no more than a store to 1486 * memory. 1487 * 1488 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg, 1489 * dtrace_argdesc_t *desc) 1490 * 1491 * 1.8.1 Overview 1492 * 1493 * Called to retrieve the argument description for an args[X] variable. 1494 * 1495 * 1.8.2 Arguments and notes 1496 * 1497 * The first argument is the cookie as passed to dtrace_register(). The 1498 * second argument is the identifier of the current probe. The third 1499 * argument is the probe argument as passed to dtrace_probe_create(). The 1500 * fourth argument is a pointer to the argument description. This 1501 * description is both an input and output parameter: it contains the 1502 * index of the desired argument in the dtargd_ndx field, and expects 1503 * the other fields to be filled in upon return. If there is no argument 1504 * corresponding to the specified index, the dtargd_ndx field should be set 1505 * to DTRACE_ARGNONE. 1506 * 1507 * 1.8.3 Return value 1508 * 1509 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping 1510 * members of the dtrace_argdesc_t structure are all output values. 1511 * 1512 * 1.8.4 Caller's context 1513 * 1514 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and 1515 * the DTrace framework is locked in such a way that providers may not 1516 * register or unregister. This means that the provider may not call any 1517 * DTrace API that affects its registration with the framework, including 1518 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and 1519 * dtrace_condense(). 1520 * 1521 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg, 1522 * int argno, int aframes) 1523 * 1524 * 1.9.1 Overview 1525 * 1526 * Called to retrieve a value for an argX or args[X] variable. 1527 * 1528 * 1.9.2 Arguments and notes 1529 * 1530 * The first argument is the cookie as passed to dtrace_register(). The 1531 * second argument is the identifier of the current probe. The third 1532 * argument is the probe argument as passed to dtrace_probe_create(). The 1533 * fourth argument is the number of the argument (the X in the example in 1534 * 1.9.1). The fifth argument is the number of stack frames that were used 1535 * to get from the actual place in the code that fired the probe to 1536 * dtrace_probe() itself, the so-called artificial frames. This argument may 1537 * be used to descend an appropriate number of frames to find the correct 1538 * values. If this entry point is left NULL, the dtrace_getarg() built-in 1539 * function is used. 1540 * 1541 * 1.9.3 Return value 1542 * 1543 * The value of the argument. 1544 * 1545 * 1.9.4 Caller's context 1546 * 1547 * This is called from within dtrace_probe() meaning that interrupts 1548 * are disabled. No locks should be taken within this entry point. 1549 * 1550 * 1.10 int dtps_usermode(void *arg, dtrace_id_t id, void *parg) 1551 * 1552 * 1.10.1 Overview 1553 * 1554 * Called to determine if the probe was fired in a user context. 1555 * 1556 * 1.10.2 Arguments and notes 1557 * 1558 * The first argument is the cookie as passed to dtrace_register(). The 1559 * second argument is the identifier of the current probe. The third 1560 * argument is the probe argument as passed to dtrace_probe_create(). This 1561 * entry point must not be left NULL for providers whose probes allow for 1562 * mixed mode tracing, that is to say those probes that can fire during 1563 * kernel- _or_ user-mode execution 1564 * 1565 * 1.10.3 Return value 1566 * 1567 * A boolean value. 1568 * 1569 * 1.10.4 Caller's context 1570 * 1571 * This is called from within dtrace_probe() meaning that interrupts 1572 * are disabled. No locks should be taken within this entry point. 1573 * 1574 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg) 1575 * 1576 * 1.11.1 Overview 1577 * 1578 * Called to destroy the specified probe. 1579 * 1580 * 1.11.2 Arguments and notes 1581 * 1582 * The first argument is the cookie as passed to dtrace_register(). The 1583 * second argument is the identifier of the probe to be destroyed. The third 1584 * argument is the probe argument as passed to dtrace_probe_create(). The 1585 * provider should free all state associated with the probe. The framework 1586 * guarantees that dtps_destroy() is only called for probes that have either 1587 * been disabled via dtps_disable() or were never enabled via dtps_enable(). 1588 * Once dtps_disable() has been called for a probe, no further call will be 1589 * made specifying the probe. 1590 * 1591 * 1.11.3 Return value 1592 * 1593 * None. 1594 * 1595 * 1.11.4 Caller's context 1596 * 1597 * The DTrace framework is locked in such a way that it may not be called 1598 * back into at all. mod_lock is held. cpu_lock is not held, and may not be 1599 * acquired. 1600 * 1601 * 1602 * 2 Provider-to-Framework API 1603 * 1604 * 2.1 Overview 1605 * 1606 * The Provider-to-Framework API provides the mechanism for the provider to 1607 * register itself with the DTrace framework, to create probes, to lookup 1608 * probes and (most importantly) to fire probes. The Provider-to-Framework 1609 * consists of: 1610 * 1611 * dtrace_register() <-- Register a provider with the DTrace framework 1612 * dtrace_unregister() <-- Remove a provider's DTrace registration 1613 * dtrace_invalidate() <-- Invalidate the specified provider 1614 * dtrace_condense() <-- Remove a provider's unenabled probes 1615 * dtrace_attached() <-- Indicates whether or not DTrace has attached 1616 * dtrace_probe_create() <-- Create a DTrace probe 1617 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name 1618 * dtrace_probe_arg() <-- Return the probe argument for a specific probe 1619 * dtrace_probe() <-- Fire the specified probe 1620 * 1621 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap, 1622 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg, 1623 * dtrace_provider_id_t *idp) 1624 * 1625 * 2.2.1 Overview 1626 * 1627 * dtrace_register() registers the calling provider with the DTrace 1628 * framework. It should generally be called by DTrace providers in their 1629 * attach(9E) entry point. 1630 * 1631 * 2.2.2 Arguments and Notes 1632 * 1633 * The first argument is the name of the provider. The second argument is a 1634 * pointer to the stability attributes for the provider. The third argument 1635 * is the privilege flags for the provider, and must be some combination of: 1636 * 1637 * DTRACE_PRIV_NONE <= All users may enable probes from this provider 1638 * 1639 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may 1640 * enable probes from this provider 1641 * 1642 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may 1643 * enable probes from this provider 1644 * 1645 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL 1646 * may enable probes from this provider 1647 * 1648 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on 1649 * the privilege requirements above. These probes 1650 * require either (a) a user ID matching the user 1651 * ID of the cred passed in the fourth argument 1652 * or (b) the PRIV_PROC_OWNER privilege. 1653 * 1654 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on 1655 * the privilege requirements above. These probes 1656 * require either (a) a zone ID matching the zone 1657 * ID of the cred passed in the fourth argument 1658 * or (b) the PRIV_PROC_ZONE privilege. 1659 * 1660 * Note that these flags designate the _visibility_ of the probes, not 1661 * the conditions under which they may or may not fire. 1662 * 1663 * The fourth argument is the credential that is associated with the 1664 * provider. This argument should be NULL if the privilege flags don't 1665 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the 1666 * framework stashes the uid and zoneid represented by this credential 1667 * for use at probe-time, in implicit predicates. These limit visibility 1668 * of the probes to users and/or zones which have sufficient privilege to 1669 * access them. 1670 * 1671 * The fifth argument is a DTrace provider operations vector, which provides 1672 * the implementation for the Framework-to-Provider API. (See Section 1, 1673 * above.) This must be non-NULL, and each member must be non-NULL. The 1674 * exceptions to this are (1) the dtps_provide() and dtps_provide_module() 1675 * members (if the provider so desires, _one_ of these members may be left 1676 * NULL -- denoting that the provider only implements the other) and (2) 1677 * the dtps_suspend() and dtps_resume() members, which must either both be 1678 * NULL or both be non-NULL. 1679 * 1680 * The sixth argument is a cookie to be specified as the first argument for 1681 * each function in the Framework-to-Provider API. This argument may have 1682 * any value. 1683 * 1684 * The final argument is a pointer to dtrace_provider_id_t. If 1685 * dtrace_register() successfully completes, the provider identifier will be 1686 * stored in the memory pointed to be this argument. This argument must be 1687 * non-NULL. 1688 * 1689 * 2.2.3 Return value 1690 * 1691 * On success, dtrace_register() returns 0 and stores the new provider's 1692 * identifier into the memory pointed to by the idp argument. On failure, 1693 * dtrace_register() returns an errno: 1694 * 1695 * EINVAL The arguments passed to dtrace_register() were somehow invalid. 1696 * This may because a parameter that must be non-NULL was NULL, 1697 * because the name was invalid (either empty or an illegal 1698 * provider name) or because the attributes were invalid. 1699 * 1700 * No other failure code is returned. 1701 * 1702 * 2.2.4 Caller's context 1703 * 1704 * dtrace_register() may induce calls to dtrace_provide(); the provider must 1705 * hold no locks across dtrace_register() that may also be acquired by 1706 * dtrace_provide(). cpu_lock and mod_lock must not be held. 1707 * 1708 * 2.3 int dtrace_unregister(dtrace_provider_t id) 1709 * 1710 * 2.3.1 Overview 1711 * 1712 * Unregisters the specified provider from the DTrace framework. It should 1713 * generally be called by DTrace providers in their detach(9E) entry point. 1714 * 1715 * 2.3.2 Arguments and Notes 1716 * 1717 * The only argument is the provider identifier, as returned from a 1718 * successful call to dtrace_register(). As a result of calling 1719 * dtrace_unregister(), the DTrace framework will call back into the provider 1720 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully 1721 * completes, however, the DTrace framework will no longer make calls through 1722 * the Framework-to-Provider API. 1723 * 1724 * 2.3.3 Return value 1725 * 1726 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister() 1727 * returns an errno: 1728 * 1729 * EBUSY There are currently processes that have the DTrace pseudodevice 1730 * open, or there exists an anonymous enabling that hasn't yet 1731 * been claimed. 1732 * 1733 * No other failure code is returned. 1734 * 1735 * 2.3.4 Caller's context 1736 * 1737 * Because a call to dtrace_unregister() may induce calls through the 1738 * Framework-to-Provider API, the caller may not hold any lock across 1739 * dtrace_register() that is also acquired in any of the Framework-to- 1740 * Provider API functions. Additionally, mod_lock may not be held. 1741 * 1742 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id) 1743 * 1744 * 2.4.1 Overview 1745 * 1746 * Invalidates the specified provider. All subsequent probe lookups for the 1747 * specified provider will fail, but its probes will not be removed. 1748 * 1749 * 2.4.2 Arguments and note 1750 * 1751 * The only argument is the provider identifier, as returned from a 1752 * successful call to dtrace_register(). In general, a provider's probes 1753 * always remain valid; dtrace_invalidate() is a mechanism for invalidating 1754 * an entire provider, regardless of whether or not probes are enabled or 1755 * not. Note that dtrace_invalidate() will _not_ prevent already enabled 1756 * probes from firing -- it will merely prevent any new enablings of the 1757 * provider's probes. 1758 * 1759 * 2.5 int dtrace_condense(dtrace_provider_id_t id) 1760 * 1761 * 2.5.1 Overview 1762 * 1763 * Removes all the unenabled probes for the given provider. This function is 1764 * not unlike dtrace_unregister(), except that it doesn't remove the 1765 * provider just as many of its associated probes as it can. 1766 * 1767 * 2.5.2 Arguments and Notes 1768 * 1769 * As with dtrace_unregister(), the sole argument is the provider identifier 1770 * as returned from a successful call to dtrace_register(). As a result of 1771 * calling dtrace_condense(), the DTrace framework will call back into the 1772 * given provider's dtps_destroy() entry point for each of the provider's 1773 * unenabled probes. 1774 * 1775 * 2.5.3 Return value 1776 * 1777 * Currently, dtrace_condense() always returns 0. However, consumers of this 1778 * function should check the return value as appropriate; its behavior may 1779 * change in the future. 1780 * 1781 * 2.5.4 Caller's context 1782 * 1783 * As with dtrace_unregister(), the caller may not hold any lock across 1784 * dtrace_condense() that is also acquired in the provider's entry points. 1785 * Also, mod_lock may not be held. 1786 * 1787 * 2.6 int dtrace_attached() 1788 * 1789 * 2.6.1 Overview 1790 * 1791 * Indicates whether or not DTrace has attached. 1792 * 1793 * 2.6.2 Arguments and Notes 1794 * 1795 * For most providers, DTrace makes initial contact beyond registration. 1796 * That is, once a provider has registered with DTrace, it waits to hear 1797 * from DTrace to create probes. However, some providers may wish to 1798 * proactively create probes without first being told by DTrace to do so. 1799 * If providers wish to do this, they must first call dtrace_attached() to 1800 * determine if DTrace itself has attached. If dtrace_attached() returns 0, 1801 * the provider must not make any other Provider-to-Framework API call. 1802 * 1803 * 2.6.3 Return value 1804 * 1805 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise. 1806 * 1807 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod, 1808 * const char *func, const char *name, int aframes, void *arg) 1809 * 1810 * 2.7.1 Overview 1811 * 1812 * Creates a probe with specified module name, function name, and name. 1813 * 1814 * 2.7.2 Arguments and Notes 1815 * 1816 * The first argument is the provider identifier, as returned from a 1817 * successful call to dtrace_register(). The second, third, and fourth 1818 * arguments are the module name, function name, and probe name, 1819 * respectively. Of these, module name and function name may both be NULL 1820 * (in which case the probe is considered to be unanchored), or they may both 1821 * be non-NULL. The name must be non-NULL, and must point to a non-empty 1822 * string. 1823 * 1824 * The fifth argument is the number of artificial stack frames that will be 1825 * found on the stack when dtrace_probe() is called for the new probe. These 1826 * artificial frames will be automatically be pruned should the stack() or 1827 * stackdepth() functions be called as part of one of the probe's ECBs. If 1828 * the parameter doesn't add an artificial frame, this parameter should be 1829 * zero. 1830 * 1831 * The final argument is a probe argument that will be passed back to the 1832 * provider when a probe-specific operation is called. (e.g., via 1833 * dtps_enable(), dtps_disable(), etc.) 1834 * 1835 * Note that it is up to the provider to be sure that the probe that it 1836 * creates does not already exist -- if the provider is unsure of the probe's 1837 * existence, it should assure its absence with dtrace_probe_lookup() before 1838 * calling dtrace_probe_create(). 1839 * 1840 * 2.7.3 Return value 1841 * 1842 * dtrace_probe_create() always succeeds, and always returns the identifier 1843 * of the newly-created probe. 1844 * 1845 * 2.7.4 Caller's context 1846 * 1847 * While dtrace_probe_create() is generally expected to be called from 1848 * dtps_provide() and/or dtps_provide_module(), it may be called from other 1849 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 1850 * 1851 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod, 1852 * const char *func, const char *name) 1853 * 1854 * 2.8.1 Overview 1855 * 1856 * Looks up a probe based on provdider and one or more of module name, 1857 * function name and probe name. 1858 * 1859 * 2.8.2 Arguments and Notes 1860 * 1861 * The first argument is the provider identifier, as returned from a 1862 * successful call to dtrace_register(). The second, third, and fourth 1863 * arguments are the module name, function name, and probe name, 1864 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return 1865 * the identifier of the first probe that is provided by the specified 1866 * provider and matches all of the non-NULL matching criteria. 1867 * dtrace_probe_lookup() is generally used by a provider to be check the 1868 * existence of a probe before creating it with dtrace_probe_create(). 1869 * 1870 * 2.8.3 Return value 1871 * 1872 * If the probe exists, returns its identifier. If the probe does not exist, 1873 * return DTRACE_IDNONE. 1874 * 1875 * 2.8.4 Caller's context 1876 * 1877 * While dtrace_probe_lookup() is generally expected to be called from 1878 * dtps_provide() and/or dtps_provide_module(), it may also be called from 1879 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 1880 * 1881 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe) 1882 * 1883 * 2.9.1 Overview 1884 * 1885 * Returns the probe argument associated with the specified probe. 1886 * 1887 * 2.9.2 Arguments and Notes 1888 * 1889 * The first argument is the provider identifier, as returned from a 1890 * successful call to dtrace_register(). The second argument is a probe 1891 * identifier, as returned from dtrace_probe_lookup() or 1892 * dtrace_probe_create(). This is useful if a probe has multiple 1893 * provider-specific components to it: the provider can create the probe 1894 * once with provider-specific state, and then add to the state by looking 1895 * up the probe based on probe identifier. 1896 * 1897 * 2.9.3 Return value 1898 * 1899 * Returns the argument associated with the specified probe. If the 1900 * specified probe does not exist, or if the specified probe is not provided 1901 * by the specified provider, NULL is returned. 1902 * 1903 * 2.9.4 Caller's context 1904 * 1905 * While dtrace_probe_arg() is generally expected to be called from 1906 * dtps_provide() and/or dtps_provide_module(), it may also be called from 1907 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 1908 * 1909 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1, 1910 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 1911 * 1912 * 2.10.1 Overview 1913 * 1914 * The epicenter of DTrace: fires the specified probes with the specified 1915 * arguments. 1916 * 1917 * 2.10.2 Arguments and Notes 1918 * 1919 * The first argument is a probe identifier as returned by 1920 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth 1921 * arguments are the values to which the D variables "arg0" through "arg4" 1922 * will be mapped. 1923 * 1924 * dtrace_probe() should be called whenever the specified probe has fired -- 1925 * however the provider defines it. 1926 * 1927 * 2.10.3 Return value 1928 * 1929 * None. 1930 * 1931 * 2.10.4 Caller's context 1932 * 1933 * dtrace_probe() may be called in virtually any context: kernel, user, 1934 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with 1935 * dispatcher locks held, with interrupts disabled, etc. The only latitude 1936 * that must be afforded to DTrace is the ability to make calls within 1937 * itself (and to its in-kernel subroutines) and the ability to access 1938 * arbitrary (but mapped) memory. On some platforms, this constrains 1939 * context. For example, on UltraSPARC, dtrace_probe() cannot be called 1940 * from any context in which TL is greater than zero. dtrace_probe() may 1941 * also not be called from any routine which may be called by dtrace_probe() 1942 * -- which includes functions in the DTrace framework and some in-kernel 1943 * DTrace subroutines. All such functions "dtrace_"; providers that 1944 * instrument the kernel arbitrarily should be sure to not instrument these 1945 * routines. 1946 */ 1947 typedef struct dtrace_pops { 1948 void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec); 1949 void (*dtps_provide_module)(void *arg, struct modctl *mp); 1950 void (*dtps_enable)(void *arg, dtrace_id_t id, void *parg); 1951 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg); 1952 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg); 1953 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg); 1954 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg, 1955 dtrace_argdesc_t *desc); 1956 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg, 1957 int argno, int aframes); 1958 int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg); 1959 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg); 1960 } dtrace_pops_t; 1961 1962 typedef uintptr_t dtrace_provider_id_t; 1963 1964 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t, 1965 cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *); 1966 extern int dtrace_unregister(dtrace_provider_id_t); 1967 extern int dtrace_condense(dtrace_provider_id_t); 1968 extern void dtrace_invalidate(dtrace_provider_id_t); 1969 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *, 1970 const char *, const char *); 1971 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *, 1972 const char *, const char *, int, void *); 1973 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t); 1974 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1, 1975 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4); 1976 1977 /* 1978 * DTrace Meta Provider API 1979 * 1980 * The following functions are implemented by the DTrace framework and are 1981 * used to implement meta providers. Meta providers plug into the DTrace 1982 * framework and are used to instantiate new providers on the fly. At 1983 * present, there is only one type of meta provider and only one meta 1984 * provider may be registered with the DTrace framework at a time. The 1985 * sole meta provider type provides user-land static tracing facilities 1986 * by taking meta probe descriptions and adding a corresponding provider 1987 * into the DTrace framework. 1988 * 1989 * 1 Framework-to-Provider 1990 * 1991 * 1.1 Overview 1992 * 1993 * The Framework-to-Provider API is represented by the dtrace_mops structure 1994 * that the meta provider passes to the framework when registering itself as 1995 * a meta provider. This structure consists of the following members: 1996 * 1997 * dtms_create_probe() <-- Add a new probe to a created provider 1998 * dtms_provide_pid() <-- Create a new provider for a given process 1999 * dtms_remove_pid() <-- Remove a previously created provider 2000 * 2001 * 1.2 void dtms_create_probe(void *arg, void *parg, 2002 * dtrace_helper_probedesc_t *probedesc); 2003 * 2004 * 1.2.1 Overview 2005 * 2006 * Called by the DTrace framework to create a new probe in a provider 2007 * created by this meta provider. 2008 * 2009 * 1.2.2 Arguments and notes 2010 * 2011 * The first argument is the cookie as passed to dtrace_meta_register(). 2012 * The second argument is the provider cookie for the associated provider; 2013 * this is obtained from the return value of dtms_provide_pid(). The third 2014 * argument is the helper probe description. 2015 * 2016 * 1.2.3 Return value 2017 * 2018 * None 2019 * 2020 * 1.2.4 Caller's context 2021 * 2022 * dtms_create_probe() is called from either ioctl() or module load context. 2023 * The DTrace framework is locked in such a way that meta providers may not 2024 * register or unregister. This means that the meta provider cannot call 2025 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is 2026 * such that the provider may (and is expected to) call provider-related 2027 * DTrace provider APIs including dtrace_probe_create(). 2028 * 2029 * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov, 2030 * pid_t pid) 2031 * 2032 * 1.3.1 Overview 2033 * 2034 * Called by the DTrace framework to instantiate a new provider given the 2035 * description of the provider and probes in the mprov argument. The 2036 * meta provider should call dtrace_register() to insert the new provider 2037 * into the DTrace framework. 2038 * 2039 * 1.3.2 Arguments and notes 2040 * 2041 * The first argument is the cookie as passed to dtrace_meta_register(). 2042 * The second argument is a pointer to a structure describing the new 2043 * helper provider. The third argument is the process identifier for 2044 * process associated with this new provider. Note that the name of the 2045 * provider as passed to dtrace_register() should be the contatenation of 2046 * the dtmpb_provname member of the mprov argument and the processs 2047 * identifier as a string. 2048 * 2049 * 1.3.3 Return value 2050 * 2051 * The cookie for the provider that the meta provider creates. This is 2052 * the same value that it passed to dtrace_register(). 2053 * 2054 * 1.3.4 Caller's context 2055 * 2056 * dtms_provide_pid() is called from either ioctl() or module load context. 2057 * The DTrace framework is locked in such a way that meta providers may not 2058 * register or unregister. This means that the meta provider cannot call 2059 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context 2060 * is such that the provider may -- and is expected to -- call 2061 * provider-related DTrace provider APIs including dtrace_register(). 2062 * 2063 * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov, 2064 * pid_t pid) 2065 * 2066 * 1.4.1 Overview 2067 * 2068 * Called by the DTrace framework to remove a provider that had previously 2069 * been instantiated via the dtms_provide_pid() entry point. The meta 2070 * provider need not remove the provider immediately, but this entry 2071 * point indicates that the provider should be removed as soon as possible 2072 * using the dtrace_unregister() API. 2073 * 2074 * 1.4.2 Arguments and notes 2075 * 2076 * The first argument is the cookie as passed to dtrace_meta_register(). 2077 * The second argument is a pointer to a structure describing the helper 2078 * provider. The third argument is the process identifier for process 2079 * associated with this new provider. 2080 * 2081 * 1.4.3 Return value 2082 * 2083 * None 2084 * 2085 * 1.4.4 Caller's context 2086 * 2087 * dtms_remove_pid() is called from either ioctl() or exit() context. 2088 * The DTrace framework is locked in such a way that meta providers may not 2089 * register or unregister. This means that the meta provider cannot call 2090 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context 2091 * is such that the provider may -- and is expected to -- call 2092 * provider-related DTrace provider APIs including dtrace_unregister(). 2093 */ 2094 typedef struct dtrace_helper_probedesc { 2095 char *dthpb_mod; /* probe module */ 2096 char *dthpb_func; /* probe function */ 2097 char *dthpb_name; /* probe name */ 2098 uint64_t dthpb_base; /* base address */ 2099 uint32_t *dthpb_offs; /* offsets array */ 2100 uint32_t *dthpb_enoffs; /* is-enabled offsets array */ 2101 uint32_t dthpb_noffs; /* offsets count */ 2102 uint32_t dthpb_nenoffs; /* is-enabled offsets count */ 2103 uint8_t *dthpb_args; /* argument mapping array */ 2104 uint8_t dthpb_xargc; /* translated argument count */ 2105 uint8_t dthpb_nargc; /* native argument count */ 2106 char *dthpb_xtypes; /* translated types strings */ 2107 char *dthpb_ntypes; /* native types strings */ 2108 } dtrace_helper_probedesc_t; 2109 2110 typedef struct dtrace_helper_provdesc { 2111 char *dthpv_provname; /* provider name */ 2112 dtrace_pattr_t dthpv_pattr; /* stability attributes */ 2113 } dtrace_helper_provdesc_t; 2114 2115 typedef struct dtrace_mops { 2116 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *); 2117 void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t); 2118 void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t); 2119 } dtrace_mops_t; 2120 2121 typedef uintptr_t dtrace_meta_provider_id_t; 2122 2123 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *, 2124 dtrace_meta_provider_id_t *); 2125 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t); 2126 2127 /* 2128 * DTrace Kernel Hooks 2129 * 2130 * The following functions are implemented by the base kernel and form a set of 2131 * hooks used by the DTrace framework. DTrace hooks are implemented in either 2132 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a 2133 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform. 2134 */ 2135 2136 typedef enum dtrace_vtime_state { 2137 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */ 2138 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */ 2139 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */ 2140 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */ 2141 } dtrace_vtime_state_t; 2142 2143 extern dtrace_vtime_state_t dtrace_vtime_active; 2144 extern void dtrace_vtime_switch(kthread_t *next); 2145 extern void dtrace_vtime_enable_tnf(void); 2146 extern void dtrace_vtime_disable_tnf(void); 2147 extern void dtrace_vtime_enable(void); 2148 extern void dtrace_vtime_disable(void); 2149 2150 struct regs; 2151 2152 extern int (*dtrace_pid_probe_ptr)(struct regs *); 2153 extern int (*dtrace_return_probe_ptr)(struct regs *); 2154 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *); 2155 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *); 2156 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *); 2157 extern void dtrace_fasttrap_fork(proc_t *, proc_t *); 2158 2159 typedef uintptr_t dtrace_icookie_t; 2160 typedef void (*dtrace_xcall_t)(void *); 2161 2162 extern dtrace_icookie_t dtrace_interrupt_disable(void); 2163 extern void dtrace_interrupt_enable(dtrace_icookie_t); 2164 2165 extern void dtrace_membar_producer(void); 2166 extern void dtrace_membar_consumer(void); 2167 2168 extern void (*dtrace_cpu_init)(processorid_t); 2169 extern void (*dtrace_modload)(struct modctl *); 2170 extern void (*dtrace_modunload)(struct modctl *); 2171 extern void (*dtrace_helpers_cleanup)(); 2172 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child); 2173 extern void (*dtrace_cpustart_init)(); 2174 extern void (*dtrace_cpustart_fini)(); 2175 2176 extern void (*dtrace_kreloc_init)(); 2177 extern void (*dtrace_kreloc_fini)(); 2178 2179 extern void (*dtrace_debugger_init)(); 2180 extern void (*dtrace_debugger_fini)(); 2181 extern dtrace_cacheid_t dtrace_predcache_id; 2182 2183 extern hrtime_t dtrace_gethrtime(void); 2184 extern void dtrace_sync(void); 2185 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t)); 2186 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *); 2187 extern void dtrace_vpanic(const char *, __va_list); 2188 extern void dtrace_panic(const char *, ...); 2189 2190 extern int dtrace_safe_defer_signal(void); 2191 extern void dtrace_safe_synchronous_signal(void); 2192 2193 #if defined(__i386) || defined(__amd64) 2194 extern int dtrace_instr_size(uchar_t *instr); 2195 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *); 2196 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t)); 2197 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t)); 2198 extern void dtrace_invop_callsite(void); 2199 #endif 2200 2201 #ifdef __sparc 2202 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int); 2203 extern void dtrace_getfsr(uint64_t *); 2204 #endif 2205 2206 #define DTRACE_CPUFLAG_ISSET(flag) \ 2207 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag)) 2208 2209 #define DTRACE_CPUFLAG_SET(flag) \ 2210 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag)) 2211 2212 #define DTRACE_CPUFLAG_CLEAR(flag) \ 2213 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag)) 2214 2215 #endif /* _KERNEL */ 2216 2217 #endif /* _ASM */ 2218 2219 #if defined(__i386) || defined(__amd64) 2220 2221 #define DTRACE_INVOP_PUSHL_EBP 1 2222 #define DTRACE_INVOP_POPL_EBP 2 2223 #define DTRACE_INVOP_LEAVE 3 2224 #define DTRACE_INVOP_NOP 4 2225 #define DTRACE_INVOP_RET 5 2226 2227 #endif 2228 2229 #ifdef __cplusplus 2230 } 2231 #endif 2232 2233 #endif /* _SYS_DTRACE_H */ 2234