xref: /titanic_52/usr/src/uts/common/sys/crypto/sched_impl.h (revision 55f5292c612446ce6f93ddd248c0019b5974618b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #ifndef _SYS_CRYPTO_SCHED_IMPL_H
27 #define	_SYS_CRYPTO_SCHED_IMPL_H
28 
29 /*
30  * Scheduler internal structures.
31  */
32 
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36 
37 #include <sys/types.h>
38 #include <sys/mutex.h>
39 #include <sys/condvar.h>
40 #include <sys/door.h>
41 #include <sys/crypto/api.h>
42 #include <sys/crypto/spi.h>
43 #include <sys/crypto/impl.h>
44 #include <sys/crypto/common.h>
45 #include <sys/crypto/ops_impl.h>
46 
47 typedef void (kcf_func_t)(void *, int);
48 
49 typedef enum kcf_req_status {
50 	REQ_ALLOCATED = 1,
51 	REQ_WAITING,		/* At the framework level */
52 	REQ_INPROGRESS,		/* At the provider level */
53 	REQ_DONE,
54 	REQ_CANCELED
55 } kcf_req_status_t;
56 
57 typedef enum kcf_call_type {
58 	CRYPTO_SYNCH = 1,
59 	CRYPTO_ASYNCH
60 } kcf_call_type_t;
61 
62 #define	CHECK_RESTRICT(crq) (crq != NULL &&	\
63 	((crq)->cr_flag & CRYPTO_RESTRICTED))
64 
65 #define	CHECK_RESTRICT_FALSE	B_FALSE
66 
67 #define	CHECK_FASTPATH(crq, pd) ((crq) == NULL ||	\
68 	!((crq)->cr_flag & CRYPTO_ALWAYS_QUEUE)) &&	\
69 	(pd)->pd_prov_type == CRYPTO_SW_PROVIDER
70 
71 #define	KCF_KMFLAG(crq)	(((crq) == NULL) ? KM_SLEEP : KM_NOSLEEP)
72 
73 /*
74  * The framework keeps an internal handle to use in the adaptive
75  * asynchronous case. This is the case when a client has the
76  * CRYPTO_ALWAYS_QUEUE bit clear and a software provider is used for
77  * the request. The request is completed in the context of the calling
78  * thread and kernel memory must be allocated with KM_NOSLEEP.
79  *
80  * The framework passes a pointer to the handle in crypto_req_handle_t
81  * argument when it calls the SPI of the software provider. The macros
82  * KCF_RHNDL() and KCF_SWFP_RHNDL() are used to do this.
83  *
84  * When a provider asks the framework for kmflag value via
85  * crypto_kmflag(9S) we use REQHNDL2_KMFLAG() macro.
86  */
87 extern ulong_t kcf_swprov_hndl;
88 #define	KCF_RHNDL(kmflag) (((kmflag) == KM_SLEEP) ? NULL : &kcf_swprov_hndl)
89 #define	KCF_SWFP_RHNDL(crq) (((crq) == NULL) ? NULL : &kcf_swprov_hndl)
90 #define	REQHNDL2_KMFLAG(rhndl) \
91 	((rhndl == &kcf_swprov_hndl) ? KM_NOSLEEP : KM_SLEEP)
92 
93 /* Internal call_req flags. They start after the public ones in api.h */
94 
95 #define	CRYPTO_SETDUAL	0x00001000	/* Set the 'cont' boolean before */
96 					/* submitting the request */
97 #define	KCF_ISDUALREQ(crq)	\
98 	(((crq) == NULL) ? B_FALSE : (crq->cr_flag & CRYPTO_SETDUAL))
99 
100 typedef struct kcf_prov_tried {
101 	kcf_provider_desc_t	*pt_pd;
102 	struct kcf_prov_tried	*pt_next;
103 } kcf_prov_tried_t;
104 
105 /* Must be different from KM_SLEEP and KM_NOSLEEP */
106 #define	KCF_HOLD_PROV	0x1000
107 
108 #define	IS_FG_SUPPORTED(mdesc, fg)		\
109 	(((mdesc)->pm_mech_info.cm_func_group_mask & (fg)) != 0)
110 
111 #define	IS_PROVIDER_TRIED(pd, tlist)		\
112 	(tlist != NULL && is_in_triedlist(pd, tlist))
113 
114 #define	IS_RECOVERABLE(error)			\
115 	(error == CRYPTO_BUFFER_TOO_BIG ||	\
116 	error == CRYPTO_BUSY ||			\
117 	error == CRYPTO_DEVICE_ERROR ||		\
118 	error == CRYPTO_DEVICE_MEMORY ||	\
119 	error == CRYPTO_KEY_SIZE_RANGE ||	\
120 	error == CRYPTO_NO_PERMISSION)
121 
122 #define	KCF_ATOMIC_INCR(x)	atomic_add_32(&(x), 1)
123 #define	KCF_ATOMIC_DECR(x)	atomic_add_32(&(x), -1)
124 
125 /*
126  * Node structure for synchronous requests.
127  */
128 typedef struct kcf_sreq_node {
129 	/* Should always be the first field in this structure */
130 	kcf_call_type_t		sn_type;
131 	/*
132 	 * sn_cv and sr_lock are used to wait for the
133 	 * operation to complete. sn_lock also protects
134 	 * the sn_state field.
135 	 */
136 	kcondvar_t		sn_cv;
137 	kmutex_t		sn_lock;
138 	kcf_req_status_t	sn_state;
139 
140 	/*
141 	 * Return value from the operation. This will be
142 	 * one of the CRYPTO_* errors defined in common.h.
143 	 */
144 	int			sn_rv;
145 
146 	/*
147 	 * parameters to call the SPI with. This can be
148 	 * a pointer as we know the caller context/stack stays.
149 	 */
150 	struct kcf_req_params	*sn_params;
151 
152 	/* Internal context for this request */
153 	struct kcf_context	*sn_context;
154 
155 	/* Provider handling this request */
156 	kcf_provider_desc_t	*sn_provider;
157 
158 	kcf_prov_cpu_t		*sn_mp;
159 } kcf_sreq_node_t;
160 
161 /*
162  * Node structure for asynchronous requests. A node can be on
163  * on a chain of requests hanging of the internal context
164  * structure and can be in the global software provider queue.
165  */
166 typedef struct kcf_areq_node {
167 	/* Should always be the first field in this structure */
168 	kcf_call_type_t		an_type;
169 
170 	/* an_lock protects the field an_state  */
171 	kmutex_t		an_lock;
172 	kcf_req_status_t	an_state;
173 	crypto_call_req_t	an_reqarg;
174 
175 	/*
176 	 * parameters to call the SPI with. We need to
177 	 * save the params since the caller stack can go away.
178 	 */
179 	struct kcf_req_params	an_params;
180 
181 	/*
182 	 * The next two fields should be NULL for operations that
183 	 * don't need a context.
184 	 */
185 	/* Internal context for this request */
186 	struct kcf_context	*an_context;
187 
188 	/* next in chain of requests for context */
189 	struct kcf_areq_node	*an_ctxchain_next;
190 
191 	kcondvar_t		an_turn_cv;
192 	boolean_t		an_is_my_turn;
193 	boolean_t		an_isdual;	/* for internal reuse */
194 
195 	/*
196 	 * Next and previous nodes in the global software
197 	 * queue. These fields are NULL for a hardware
198 	 * provider since we use a taskq there.
199 	 */
200 	struct kcf_areq_node	*an_next;
201 	struct kcf_areq_node	*an_prev;
202 
203 	/* Provider handling this request */
204 	kcf_provider_desc_t	*an_provider;
205 	kcf_prov_cpu_t		*an_mp;
206 	kcf_prov_tried_t	*an_tried_plist;
207 
208 	struct kcf_areq_node	*an_idnext;	/* Next in ID hash */
209 	struct kcf_areq_node	*an_idprev;	/* Prev in ID hash */
210 	kcondvar_t		an_done;	/* Signal request completion */
211 	uint_t			an_refcnt;
212 } kcf_areq_node_t;
213 
214 #define	KCF_AREQ_REFHOLD(areq) {		\
215 	atomic_add_32(&(areq)->an_refcnt, 1);	\
216 	ASSERT((areq)->an_refcnt != 0);		\
217 }
218 
219 #define	KCF_AREQ_REFRELE(areq) {				\
220 	ASSERT((areq)->an_refcnt != 0);				\
221 	membar_exit();						\
222 	if (atomic_add_32_nv(&(areq)->an_refcnt, -1) == 0)	\
223 		kcf_free_req(areq);				\
224 }
225 
226 #define	GET_REQ_TYPE(arg) *((kcf_call_type_t *)(arg))
227 
228 #define	NOTIFY_CLIENT(areq, err) (*(areq)->an_reqarg.cr_callback_func)(\
229 	(areq)->an_reqarg.cr_callback_arg, err);
230 
231 /* For internally generated call requests for dual operations */
232 typedef	struct kcf_call_req {
233 	crypto_call_req_t	kr_callreq;	/* external client call req */
234 	kcf_req_params_t	kr_params;	/* Params saved for next call */
235 	kcf_areq_node_t		*kr_areq;	/* Use this areq */
236 	off_t			kr_saveoffset;
237 	size_t			kr_savelen;
238 } kcf_dual_req_t;
239 
240 /*
241  * The following are some what similar to macros in callo.h, which implement
242  * callout tables.
243  *
244  * The lower four bits of the ID are used to encode the table ID to
245  * index in to. The REQID_COUNTER_HIGH bit is used to avoid any check for
246  * wrap around when generating ID. We assume that there won't be a request
247  * which takes more time than 2^^(sizeof (long) - 5) other requests submitted
248  * after it. This ensures there won't be any ID collision.
249  */
250 #define	REQID_COUNTER_HIGH	(1UL << (8 * sizeof (long) - 1))
251 #define	REQID_COUNTER_SHIFT	4
252 #define	REQID_COUNTER_LOW	(1 << REQID_COUNTER_SHIFT)
253 #define	REQID_TABLES		16
254 #define	REQID_TABLE_MASK	(REQID_TABLES - 1)
255 
256 #define	REQID_BUCKETS		512
257 #define	REQID_BUCKET_MASK	(REQID_BUCKETS - 1)
258 #define	REQID_HASH(id)	(((id) >> REQID_COUNTER_SHIFT) & REQID_BUCKET_MASK)
259 
260 #define	GET_REQID(areq) (areq)->an_reqarg.cr_reqid
261 #define	SET_REQID(areq, val)	GET_REQID(areq) = val
262 
263 /*
264  * Hash table for async requests.
265  */
266 typedef struct kcf_reqid_table {
267 	kmutex_t		rt_lock;
268 	crypto_req_id_t		rt_curid;
269 	kcf_areq_node_t		*rt_idhash[REQID_BUCKETS];
270 } kcf_reqid_table_t;
271 
272 /*
273  * Global software provider queue structure. Requests to be
274  * handled by a SW provider and have the ALWAYS_QUEUE flag set
275  * get queued here.
276  */
277 typedef struct kcf_global_swq {
278 	/*
279 	 * gs_cv and gs_lock are used to wait for new requests.
280 	 * gs_lock protects the changes to the queue.
281 	 */
282 	kcondvar_t		gs_cv;
283 	kmutex_t		gs_lock;
284 	uint_t			gs_njobs;
285 	uint_t			gs_maxjobs;
286 	kcf_areq_node_t		*gs_first;
287 	kcf_areq_node_t		*gs_last;
288 } kcf_global_swq_t;
289 
290 
291 /*
292  * Internal representation of a canonical context. We contain crypto_ctx_t
293  * structure in order to have just one memory allocation. The SPI
294  * ((crypto_ctx_t *)ctx)->cc_framework_private maps to this structure.
295  */
296 typedef struct kcf_context {
297 	crypto_ctx_t		kc_glbl_ctx;
298 	uint_t			kc_refcnt;
299 	kmutex_t		kc_in_use_lock;
300 	/*
301 	 * kc_req_chain_first and kc_req_chain_last are used to chain
302 	 * multiple async requests using the same context. They should be
303 	 * NULL for sync requests.
304 	 */
305 	kcf_areq_node_t		*kc_req_chain_first;
306 	kcf_areq_node_t		*kc_req_chain_last;
307 	kcf_provider_desc_t	*kc_prov_desc;	/* Prov. descriptor */
308 	kcf_provider_desc_t	*kc_sw_prov_desc;	/* Prov. descriptor */
309 	kcf_mech_entry_t	*kc_mech;
310 	struct kcf_context	*kc_secondctx;	/* for dual contexts */
311 } kcf_context_t;
312 
313 /*
314  * Bump up the reference count on the framework private context. A
315  * global context or a request that references this structure should
316  * do a hold.
317  */
318 #define	KCF_CONTEXT_REFHOLD(ictx) {		\
319 	atomic_add_32(&(ictx)->kc_refcnt, 1);	\
320 	ASSERT((ictx)->kc_refcnt != 0);		\
321 }
322 
323 /*
324  * Decrement the reference count on the framework private context.
325  * When the last reference is released, the framework private
326  * context structure is freed along with the global context.
327  */
328 #define	KCF_CONTEXT_REFRELE(ictx) {				\
329 	ASSERT((ictx)->kc_refcnt != 0);				\
330 	membar_exit();						\
331 	if (atomic_add_32_nv(&(ictx)->kc_refcnt, -1) == 0)	\
332 		kcf_free_context(ictx);				\
333 }
334 
335 /*
336  * Check if we can release the context now. In case of CRYPTO_QUEUED
337  * we do not release it as we can do it only after the provider notified
338  * us. In case of CRYPTO_BUSY, the client can retry the request using
339  * the context, so we do not release the context.
340  *
341  * This macro should be called only from the final routine in
342  * an init/update/final sequence. We do not release the context in case
343  * of update operations. We require the consumer to free it
344  * explicitly, in case it wants to abandon the operation. This is done
345  * as there may be mechanisms in ECB mode that can continue even if
346  * an operation on a block fails.
347  */
348 #define	KCF_CONTEXT_COND_RELEASE(rv, kcf_ctx) {			\
349 	if (KCF_CONTEXT_DONE(rv))				\
350 		KCF_CONTEXT_REFRELE(kcf_ctx);			\
351 }
352 
353 /*
354  * This macro determines whether we're done with a context.
355  */
356 #define	KCF_CONTEXT_DONE(rv)					\
357 	((rv) != CRYPTO_QUEUED && (rv) != CRYPTO_BUSY &&	\
358 	    (rv) != CRYPTO_BUFFER_TOO_SMALL)
359 
360 /*
361  * A crypto_ctx_template_t is internally a pointer to this struct
362  */
363 typedef	struct kcf_ctx_template {
364 	crypto_kcf_provider_handle_t	ct_prov_handle;	/* provider handle */
365 	uint_t				ct_generation;	/* generation # */
366 	size_t				ct_size;	/* for freeing */
367 	crypto_spi_ctx_template_t	ct_prov_tmpl;	/* context template */
368 							/* from the SW prov */
369 } kcf_ctx_template_t;
370 
371 /*
372  * Structure for pool of threads working on global software queue.
373  */
374 typedef struct kcf_pool {
375 	uint32_t	kp_threads;		/* Number of threads in pool */
376 	uint32_t	kp_idlethreads;		/* Idle threads in pool */
377 	uint32_t	kp_blockedthreads;	/* Blocked threads in pool */
378 
379 	/*
380 	 * cv & lock to monitor the condition when no threads
381 	 * are around. In this case the failover thread kicks in.
382 	 */
383 	kcondvar_t	kp_nothr_cv;
384 	kmutex_t	kp_thread_lock;
385 
386 	/* Userspace thread creator variables. */
387 	boolean_t	kp_signal_create_thread; /* Create requested flag  */
388 	int		kp_nthrs;		/* # of threads to create */
389 	boolean_t	kp_user_waiting;	/* Thread waiting for work */
390 
391 	/*
392 	 * cv & lock for the condition where more threads need to be
393 	 * created. kp_user_lock also protects the three fileds above.
394 	 */
395 	kcondvar_t	kp_user_cv;		/* Creator cond. variable */
396 	kmutex_t	kp_user_lock;		/* Creator lock */
397 } kcf_pool_t;
398 
399 
400 /*
401  * State of a crypto bufcall element.
402  */
403 typedef enum cbuf_state {
404 	CBUF_FREE = 1,
405 	CBUF_WAITING,
406 	CBUF_RUNNING
407 } cbuf_state_t;
408 
409 /*
410  * Structure of a crypto bufcall element.
411  */
412 typedef struct kcf_cbuf_elem {
413 	/*
414 	 * lock and cv to wait for CBUF_RUNNING to be done
415 	 * kc_lock also protects kc_state.
416 	 */
417 	kmutex_t		kc_lock;
418 	kcondvar_t		kc_cv;
419 	cbuf_state_t		kc_state;
420 
421 	struct kcf_cbuf_elem	*kc_next;
422 	struct kcf_cbuf_elem	*kc_prev;
423 
424 	void			(*kc_func)(void *arg);
425 	void			*kc_arg;
426 } kcf_cbuf_elem_t;
427 
428 /*
429  * State of a notify element.
430  */
431 typedef enum ntfy_elem_state {
432 	NTFY_WAITING = 1,
433 	NTFY_RUNNING
434 } ntfy_elem_state_t;
435 
436 /*
437  * Structure of a notify list element.
438  */
439 typedef struct kcf_ntfy_elem {
440 	/*
441 	 * lock and cv to wait for NTFY_RUNNING to be done.
442 	 * kn_lock also protects kn_state.
443 	 */
444 	kmutex_t			kn_lock;
445 	kcondvar_t			kn_cv;
446 	ntfy_elem_state_t		kn_state;
447 
448 	struct kcf_ntfy_elem		*kn_next;
449 	struct kcf_ntfy_elem		*kn_prev;
450 
451 	crypto_notify_callback_t	kn_func;
452 	uint32_t			kn_event_mask;
453 } kcf_ntfy_elem_t;
454 
455 
456 /*
457  * The following values are based on the assumption that it would
458  * take around eight cpus to load a hardware provider (This is true for
459  * at least one product) and a kernel client may come from different
460  * low-priority interrupt levels. We will have CYRPTO_TASKQ_MIN number
461  * of cached taskq entries. The CRYPTO_TASKQ_MAX number is based on
462  * a throughput of 1GB/s using 512-byte buffers. These are just
463  * reasonable estimates and might need to change in future.
464  */
465 #define	CRYPTO_TASKQ_THREADS	8
466 #define	CYRPTO_TASKQ_MIN	64
467 #define	CRYPTO_TASKQ_MAX	2 * 1024 * 1024
468 
469 extern int crypto_taskq_threads;
470 extern int crypto_taskq_minalloc;
471 extern int crypto_taskq_maxalloc;
472 extern kcf_global_swq_t *gswq;
473 extern int kcf_maxthreads;
474 extern int kcf_minthreads;
475 
476 /* Door handle for talking to kcfd */
477 extern door_handle_t kcf_dh;
478 extern kmutex_t	 kcf_dh_lock;
479 
480 /*
481  * All pending crypto bufcalls are put on a list. cbuf_list_lock
482  * protects changes to this list.
483  */
484 extern kmutex_t cbuf_list_lock;
485 extern kcondvar_t cbuf_list_cv;
486 
487 /*
488  * All event subscribers are put on a list. kcf_notify_list_lock
489  * protects changes to this list.
490  */
491 extern kmutex_t ntfy_list_lock;
492 extern kcondvar_t ntfy_list_cv;
493 
494 boolean_t kcf_get_next_logical_provider_member(kcf_provider_desc_t *,
495     kcf_provider_desc_t *, kcf_provider_desc_t **);
496 extern int kcf_get_hardware_provider(crypto_mech_type_t, crypto_key_t *,
497     crypto_mech_type_t, crypto_key_t *,
498     boolean_t, kcf_provider_desc_t *, kcf_provider_desc_t **,
499     crypto_func_group_t);
500 extern int kcf_get_hardware_provider_nomech(offset_t, offset_t,
501     boolean_t, kcf_provider_desc_t *, kcf_provider_desc_t **);
502 extern void kcf_free_triedlist(kcf_prov_tried_t *);
503 extern kcf_prov_tried_t *kcf_insert_triedlist(kcf_prov_tried_t **,
504     kcf_provider_desc_t *, int);
505 extern kcf_provider_desc_t *kcf_get_mech_provider(crypto_mech_type_t,
506     crypto_key_t *, kcf_mech_entry_t **, int *, kcf_prov_tried_t *,
507     crypto_func_group_t, boolean_t, size_t);
508 extern kcf_provider_desc_t *kcf_get_dual_provider(crypto_mechanism_t *,
509     crypto_key_t *, crypto_mechanism_t *, crypto_key_t *,
510     kcf_mech_entry_t **, crypto_mech_type_t *,
511     crypto_mech_type_t *, int *, kcf_prov_tried_t *,
512     crypto_func_group_t, crypto_func_group_t, boolean_t, size_t);
513 extern crypto_ctx_t *kcf_new_ctx(crypto_call_req_t  *, kcf_provider_desc_t *,
514     crypto_session_id_t);
515 extern int kcf_submit_request(kcf_provider_desc_t *, crypto_ctx_t *,
516     crypto_call_req_t *, kcf_req_params_t *, boolean_t);
517 extern void kcf_sched_init(void);
518 extern void kcf_sched_start(void);
519 extern void kcf_sop_done(kcf_sreq_node_t *, int);
520 extern void kcf_aop_done(kcf_areq_node_t *, int);
521 extern int common_submit_request(kcf_provider_desc_t *,
522     crypto_ctx_t *, kcf_req_params_t *, crypto_req_handle_t);
523 extern void kcf_free_context(kcf_context_t *);
524 
525 extern int kcf_svc_wait(int *);
526 extern int kcf_svc_do_run(void);
527 extern int kcf_need_fips140_verification(kcf_provider_desc_t *);
528 extern int kcf_need_signature_verification(kcf_provider_desc_t *);
529 extern void kcf_verify_signature(void *);
530 extern struct modctl *kcf_get_modctl(crypto_provider_info_t *);
531 extern void verify_unverified_providers();
532 extern void kcf_free_req(kcf_areq_node_t *areq);
533 extern void crypto_bufcall_service(void);
534 
535 extern void kcf_walk_ntfylist(uint32_t, void *);
536 extern void kcf_do_notify(kcf_provider_desc_t *, boolean_t);
537 
538 extern kcf_dual_req_t *kcf_alloc_req(crypto_call_req_t *);
539 extern void kcf_next_req(void *, int);
540 extern void kcf_last_req(void *, int);
541 
542 #ifdef __cplusplus
543 }
544 #endif
545 
546 #endif /* _SYS_CRYPTO_SCHED_IMPL_H */
547