xref: /titanic_52/usr/src/uts/common/rpc/svc.c (revision 4b56a00321e0ce508e55cc5e43e3ad7b00005a39)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Copyright 1993 OpenVision Technologies, Inc., All Rights Reserved.
29  */
30 
31 /*	Copyright (c) 1983, 1984, 1985,  1986, 1987, 1988, 1989 AT&T	*/
32 /*	  All Rights Reserved  	*/
33 
34 /*
35  * Portions of this source code were derived from Berkeley 4.3 BSD
36  * under license from the Regents of the University of California.
37  */
38 
39 #pragma ident	"%Z%%M%	%I%	%E% SMI"
40 
41 /*
42  * Server-side remote procedure call interface.
43  *
44  * Master transport handle (SVCMASTERXPRT).
45  *   The master transport handle structure is shared among service
46  *   threads processing events on the transport. Some fields in the
47  *   master structure are protected by locks
48  *   - xp_req_lock protects the request queue:
49  *	xp_req_head, xp_req_tail
50  *   - xp_thread_lock protects the thread (clone) counts
51  *	xp_threads, xp_detached_threads, xp_wq
52  *   Each master transport is registered to exactly one thread pool.
53  *
54  * Clone transport handle (SVCXPRT)
55  *   The clone transport handle structure is a per-service-thread handle
56  *   to the transport. The structure carries all the fields/buffers used
57  *   for request processing. A service thread or, in other words, a clone
58  *   structure, can be linked to an arbitrary master structure to process
59  *   requests on this transport. The master handle keeps track of reference
60  *   counts of threads (clones) linked to it. A service thread can switch
61  *   to another transport by unlinking its clone handle from the current
62  *   transport and linking to a new one. Switching is relatively inexpensive
63  *   but it involves locking (master's xprt->xp_thread_lock).
64  *
65  * Pools.
66  *   A pool represents a kernel RPC service (NFS, Lock Manager, etc.).
67  *   Transports related to the service are registered to the service pool.
68  *   Service threads can switch between different transports in the pool.
69  *   Thus, each service has its own pool of service threads. The maximum
70  *   number of threads in a pool is pool->p_maxthreads. This limit allows
71  *   to restrict resource usage by the service. Some fields are protected
72  *   by locks:
73  *   - p_req_lock protects several counts and flags:
74  *	p_reqs, p_walkers, p_asleep, p_drowsy, p_req_cv
75  *   - p_thread_lock governs other thread counts:
76  *	p_threads, p_detached_threads, p_reserved_threads, p_closing
77  *
78  *   In addition, each pool contains a doubly-linked list of transports,
79  *   an `xprt-ready' queue and a creator thread (see below). Threads in
80  *   the pool share some other parameters such as stack size and
81  *   polling timeout.
82  *
83  *   Pools are initialized through the svc_pool_create() function called from
84  *   the nfssys() system call. However, thread creation must be done by
85  *   the userland agent. This is done by using SVCPOOL_WAIT and
86  *   SVCPOOL_RUN arguments to nfssys(), which call svc_wait() and
87  *   svc_do_run(), respectively. Once the pool has been initialized,
88  *   the userland process must set up a 'creator' thread. This thread
89  *   should park itself in the kernel by calling svc_wait(). If
90  *   svc_wait() returns successfully, it should fork off a new worker
91  *   thread, which then calls svc_do_run() in order to get work. When
92  *   that thread is complete, svc_do_run() will return, and the user
93  *   program should call thr_exit().
94  *
95  *   When we try to register a new pool and there is an old pool with
96  *   the same id in the doubly linked pool list (this happens when we kill
97  *   and restart nfsd or lockd), then we unlink the old pool from the list
98  *   and mark its state as `closing'. After that the transports can still
99  *   process requests but new transports won't be registered. When all the
100  *   transports and service threads associated with the pool are gone the
101  *   creator thread (see below) will clean up the pool structure and exit.
102  *
103  * svc_queuereq() and svc_run().
104  *   The kernel RPC server is interrupt driven. The svc_queuereq() interrupt
105  *   routine is called to deliver an RPC request. The service threads
106  *   loop in svc_run(). The interrupt function queues a request on the
107  *   transport's queue and it makes sure that the request is serviced.
108  *   It may either wake up one of sleeping threads, or ask for a new thread
109  *   to be created, or, if the previous request is just being picked up, do
110  *   nothing. In the last case the service thread that is picking up the
111  *   previous request will wake up or create the next thread. After a service
112  *   thread processes a request and sends a reply it returns to svc_run()
113  *   and svc_run() calls svc_poll() to find new input.
114  *
115  *   There is no longer an "inconsistent" but "safe" optimization in the
116  *   svc_queuereq() code. This "inconsistent" state was leading to
117  *   inconsistencies between the actual number of requests and the value
118  *   of p_reqs (the total number of requests). Because of this, hangs were
119  *   occurring in svc_poll() where p_reqs was greater than one and no
120  *   requests were found on the request queues.
121  *
122  * svc_poll().
123  *   In order to avoid unnecessary locking, which causes performance
124  *   problems, we always look for a pending request on the current transport.
125  *   If there is none we take a hint from the pool's `xprt-ready' queue.
126  *   If the queue had an overflow we switch to the `drain' mode checking
127  *   each transport  in the pool's transport list. Once we find a
128  *   master transport handle with a pending request we latch the request
129  *   lock on this transport and return to svc_run(). If the request
130  *   belongs to a transport different than the one the service thread is
131  *   linked to we need to unlink and link again.
132  *
133  *   A service thread goes asleep when there are no pending
134  *   requests on the transports registered on the pool's transports.
135  *   All the pool's threads sleep on the same condition variable.
136  *   If a thread has been sleeping for too long period of time
137  *   (by default 5 seconds) it wakes up and exits.  Also when a transport
138  *   is closing sleeping threads wake up to unlink from this transport.
139  *
140  * The `xprt-ready' queue.
141  *   If a service thread finds no request on a transport it is currently linked
142  *   to it will find another transport with a pending request. To make
143  *   this search more efficient each pool has an `xprt-ready' queue.
144  *   The queue is a FIFO. When the interrupt routine queues a request it also
145  *   inserts a pointer to the transport into the `xprt-ready' queue. A
146  *   thread looking for a transport with a pending request can pop up a
147  *   transport and check for a request. The request can be already gone
148  *   since it could be taken by a thread linked to that transport. In such a
149  *   case we try the next hint. The `xprt-ready' queue has fixed size (by
150  *   default 256 nodes). If it overflows svc_poll() has to switch to the
151  *   less efficient but safe `drain' mode and walk through the pool's
152  *   transport list.
153  *
154  *   Both the svc_poll() loop and the `xprt-ready' queue are optimized
155  *   for the peak load case that is for the situation when the queue is not
156  *   empty, there are all the time few pending requests, and a service
157  *   thread which has just processed a request does not go asleep but picks
158  *   up immediately the next request.
159  *
160  * Thread creator.
161  *   Each pool has a thread creator associated with it. The creator thread
162  *   sleeps on a condition variable and waits for a signal to create a
163  *   service thread. The actual thread creation is done in userland by
164  *   the method described in "Pools" above.
165  *
166  *   Signaling threads should turn on the `creator signaled' flag, and
167  *   can avoid sending signals when the flag is on. The flag is cleared
168  *   when the thread is created.
169  *
170  *   When the pool is in closing state (ie it has been already unregistered
171  *   from the pool list) the last thread on the last transport in the pool
172  *   should turn the p_creator_exit flag on. The creator thread will
173  *   clean up the pool structure and exit.
174  *
175  * Thread reservation; Detaching service threads.
176  *   A service thread can detach itself to block for an extended amount
177  *   of time. However, to keep the service active we need to guarantee
178  *   at least pool->p_redline non-detached threads that can process incoming
179  *   requests. This, the maximum number of detached and reserved threads is
180  *   p->p_maxthreads - p->p_redline. A service thread should first acquire
181  *   a reservation, and if the reservation was granted it can detach itself.
182  *   If a reservation was granted but the thread does not detach itself
183  *   it should cancel the reservation before it returns to svc_run().
184  */
185 
186 #include <sys/param.h>
187 #include <sys/types.h>
188 #include <rpc/types.h>
189 #include <sys/socket.h>
190 #include <sys/time.h>
191 #include <sys/tiuser.h>
192 #include <sys/t_kuser.h>
193 #include <netinet/in.h>
194 #include <rpc/xdr.h>
195 #include <rpc/auth.h>
196 #include <rpc/clnt.h>
197 #include <rpc/rpc_msg.h>
198 #include <rpc/svc.h>
199 #include <sys/proc.h>
200 #include <sys/user.h>
201 #include <sys/stream.h>
202 #include <sys/strsubr.h>
203 #include <sys/tihdr.h>
204 #include <sys/debug.h>
205 #include <sys/cmn_err.h>
206 #include <sys/file.h>
207 #include <sys/systm.h>
208 #include <sys/callb.h>
209 #include <sys/vtrace.h>
210 #include <sys/zone.h>
211 #include <nfs/nfs.h>
212 #include <sys/tsol/label_macro.h>
213 
214 #define	RQCRED_SIZE	400	/* this size is excessive */
215 
216 /*
217  * Defines for svc_poll()
218  */
219 #define	SVC_EXPRTGONE ((SVCMASTERXPRT *)1)	/* Transport is closing */
220 #define	SVC_ETIMEDOUT ((SVCMASTERXPRT *)2)	/* Timeout */
221 #define	SVC_EINTR ((SVCMASTERXPRT *)3)		/* Interrupted by signal */
222 
223 /*
224  * Default stack size for service threads.
225  */
226 #define	DEFAULT_SVC_RUN_STKSIZE		(0)	/* default kernel stack */
227 
228 int    svc_default_stksize = DEFAULT_SVC_RUN_STKSIZE;
229 
230 /*
231  * Default polling timeout for service threads.
232  * Multiplied by hz when used.
233  */
234 #define	DEFAULT_SVC_POLL_TIMEOUT	(5)	/* seconds */
235 
236 clock_t svc_default_timeout = DEFAULT_SVC_POLL_TIMEOUT;
237 
238 /*
239  * Size of the `xprt-ready' queue.
240  */
241 #define	DEFAULT_SVC_QSIZE		(256)	/* qnodes */
242 
243 size_t svc_default_qsize = DEFAULT_SVC_QSIZE;
244 
245 /*
246  * Default limit for the number of service threads.
247  */
248 #define	DEFAULT_SVC_MAXTHREADS		(INT16_MAX)
249 
250 int    svc_default_maxthreads = DEFAULT_SVC_MAXTHREADS;
251 
252 /*
253  * Maximum number of requests from the same transport (in `drain' mode).
254  */
255 #define	DEFAULT_SVC_MAX_SAME_XPRT	(8)
256 
257 int    svc_default_max_same_xprt = DEFAULT_SVC_MAX_SAME_XPRT;
258 
259 
260 /*
261  * Default `Redline' of non-detached threads.
262  * Total number of detached and reserved threads in an RPC server
263  * thread pool is limited to pool->p_maxthreads - svc_redline.
264  */
265 #define	DEFAULT_SVC_REDLINE		(1)
266 
267 int    svc_default_redline = DEFAULT_SVC_REDLINE;
268 
269 /*
270  * A node for the `xprt-ready' queue.
271  * See below.
272  */
273 struct __svcxprt_qnode {
274 	__SVCXPRT_QNODE	*q_next;
275 	SVCMASTERXPRT	*q_xprt;
276 };
277 
278 /*
279  * Global SVC variables (private).
280  */
281 struct svc_globals {
282 	SVCPOOL		*svc_pools;
283 	kmutex_t	svc_plock;
284 };
285 
286 /*
287  * Debug variable to check for rdma based
288  * transport startup and cleanup. Contorlled
289  * through /etc/system. Off by default.
290  */
291 int rdma_check = 0;
292 
293 /*
294  * Authentication parameters list.
295  */
296 static caddr_t rqcred_head;
297 static kmutex_t rqcred_lock;
298 
299 /*
300  * Pointers to transport specific `rele' routines in rpcmod (set from rpcmod).
301  */
302 void	(*rpc_rele)(queue_t *, mblk_t *) = NULL;
303 void	(*mir_rele)(queue_t *, mblk_t *) = NULL;
304 
305 /* ARGSUSED */
306 void
307 rpc_rdma_rele(queue_t *q, mblk_t *mp)
308 {
309 }
310 void    (*rdma_rele)(queue_t *, mblk_t *) = rpc_rdma_rele;
311 
312 
313 /*
314  * This macro picks which `rele' routine to use, based on the transport type.
315  */
316 #define	RELE_PROC(xprt) \
317 	((xprt)->xp_type == T_RDMA ? rdma_rele : \
318 	(((xprt)->xp_type == T_CLTS) ? rpc_rele : mir_rele))
319 
320 /*
321  * If true, then keep quiet about version mismatch.
322  * This macro is for broadcast RPC only. We have no broadcast RPC in
323  * kernel now but one may define a flag in the transport structure
324  * and redefine this macro.
325  */
326 #define	version_keepquiet(xprt)	(FALSE)
327 
328 /*
329  * ZSD key used to retrieve zone-specific svc globals
330  */
331 static zone_key_t svc_zone_key;
332 
333 static void svc_callout_free(SVCMASTERXPRT *);
334 static void svc_xprt_qinit(SVCPOOL *, size_t);
335 static void svc_xprt_qdestroy(SVCPOOL *);
336 static void svc_thread_creator(SVCPOOL *);
337 static void svc_creator_signal(SVCPOOL *);
338 static void svc_creator_signalexit(SVCPOOL *);
339 static void svc_pool_unregister(struct svc_globals *, SVCPOOL *);
340 static int svc_run(SVCPOOL *);
341 
342 /* ARGSUSED */
343 static void *
344 svc_zoneinit(zoneid_t zoneid)
345 {
346 	struct svc_globals *svc;
347 
348 	svc = kmem_alloc(sizeof (*svc), KM_SLEEP);
349 	mutex_init(&svc->svc_plock, NULL, MUTEX_DEFAULT, NULL);
350 	svc->svc_pools = NULL;
351 	return (svc);
352 }
353 
354 /* ARGSUSED */
355 static void
356 svc_zoneshutdown(zoneid_t zoneid, void *arg)
357 {
358 	struct svc_globals *svc = arg;
359 	SVCPOOL *pool;
360 
361 	mutex_enter(&svc->svc_plock);
362 	while ((pool = svc->svc_pools) != NULL) {
363 		svc_pool_unregister(svc, pool);
364 	}
365 	mutex_exit(&svc->svc_plock);
366 }
367 
368 /* ARGSUSED */
369 static void
370 svc_zonefini(zoneid_t zoneid, void *arg)
371 {
372 	struct svc_globals *svc = arg;
373 
374 	ASSERT(svc->svc_pools == NULL);
375 	mutex_destroy(&svc->svc_plock);
376 	kmem_free(svc, sizeof (*svc));
377 }
378 
379 /*
380  * Global SVC init routine.
381  * Initialize global generic and transport type specific structures
382  * used by the kernel RPC server side. This routine is called only
383  * once when the module is being loaded.
384  */
385 void
386 svc_init()
387 {
388 	zone_key_create(&svc_zone_key, svc_zoneinit, svc_zoneshutdown,
389 	    svc_zonefini);
390 	svc_cots_init();
391 	svc_clts_init();
392 }
393 
394 /*
395  * Destroy the SVCPOOL structure.
396  */
397 static void
398 svc_pool_cleanup(SVCPOOL *pool)
399 {
400 	ASSERT(pool->p_threads + pool->p_detached_threads == 0);
401 	ASSERT(pool->p_lcount == 0);
402 	ASSERT(pool->p_closing);
403 
404 	/*
405 	 * Call the user supplied shutdown function.  This is done
406 	 * here so the user of the pool will be able to cleanup
407 	 * service related resources.
408 	 */
409 	if (pool->p_shutdown != NULL)
410 		(pool->p_shutdown)();
411 
412 	/* Destroy `xprt-ready' queue */
413 	svc_xprt_qdestroy(pool);
414 
415 	/* Destroy transport list */
416 	rw_destroy(&pool->p_lrwlock);
417 
418 	/* Destroy locks and condition variables */
419 	mutex_destroy(&pool->p_thread_lock);
420 	mutex_destroy(&pool->p_req_lock);
421 	cv_destroy(&pool->p_req_cv);
422 
423 	/* Destroy creator's locks and condition variables */
424 	mutex_destroy(&pool->p_creator_lock);
425 	cv_destroy(&pool->p_creator_cv);
426 	mutex_destroy(&pool->p_user_lock);
427 	cv_destroy(&pool->p_user_cv);
428 
429 	/* Free pool structure */
430 	kmem_free(pool, sizeof (SVCPOOL));
431 }
432 
433 /*
434  * If all the transports and service threads are already gone
435  * signal the creator thread to clean up and exit.
436  */
437 static bool_t
438 svc_pool_tryexit(SVCPOOL *pool)
439 {
440 	ASSERT(MUTEX_HELD(&pool->p_thread_lock));
441 	ASSERT(pool->p_closing);
442 
443 	if (pool->p_threads + pool->p_detached_threads == 0) {
444 		rw_enter(&pool->p_lrwlock, RW_READER);
445 		if (pool->p_lcount == 0) {
446 			/*
447 			 * Release the locks before sending a signal.
448 			 */
449 			rw_exit(&pool->p_lrwlock);
450 			mutex_exit(&pool->p_thread_lock);
451 
452 			/*
453 			 * Notify the creator thread to clean up and exit
454 			 *
455 			 * NOTICE: No references to the pool beyond this point!
456 			 *		   The pool is being destroyed.
457 			 */
458 			ASSERT(!MUTEX_HELD(&pool->p_thread_lock));
459 			svc_creator_signalexit(pool);
460 
461 			return (TRUE);
462 		}
463 		rw_exit(&pool->p_lrwlock);
464 	}
465 
466 	ASSERT(MUTEX_HELD(&pool->p_thread_lock));
467 	return (FALSE);
468 }
469 
470 /*
471  * Find a pool with a given id.
472  */
473 static SVCPOOL *
474 svc_pool_find(struct svc_globals *svc, int id)
475 {
476 	SVCPOOL *pool;
477 
478 	ASSERT(MUTEX_HELD(&svc->svc_plock));
479 
480 	/*
481 	 * Search the list for a pool with a matching id
482 	 * and register the transport handle with that pool.
483 	 */
484 	for (pool = svc->svc_pools; pool; pool = pool->p_next)
485 		if (pool->p_id == id)
486 			return (pool);
487 
488 	return (NULL);
489 }
490 
491 /*
492  * PSARC 2003/523 Contract Private Interface
493  * svc_do_run
494  * Changes must be reviewed by Solaris File Sharing
495  * Changes must be communicated to contract-2003-523@sun.com
496  */
497 int
498 svc_do_run(int id)
499 {
500 	SVCPOOL *pool;
501 	int err = 0;
502 	struct svc_globals *svc;
503 
504 	svc = zone_getspecific(svc_zone_key, curproc->p_zone);
505 	mutex_enter(&svc->svc_plock);
506 
507 	pool = svc_pool_find(svc, id);
508 
509 	mutex_exit(&svc->svc_plock);
510 
511 	if (pool == NULL)
512 		return (ENOENT);
513 
514 	/*
515 	 * Increment counter of pool threads now
516 	 * that a thread has been created.
517 	 */
518 	mutex_enter(&pool->p_thread_lock);
519 	pool->p_threads++;
520 	mutex_exit(&pool->p_thread_lock);
521 
522 	/* Give work to the new thread. */
523 	err = svc_run(pool);
524 
525 	return (err);
526 }
527 
528 /*
529  * Unregister a pool from the pool list.
530  * Set the closing state. If all the transports and service threads
531  * are already gone signal the creator thread to clean up and exit.
532  */
533 static void
534 svc_pool_unregister(struct svc_globals *svc, SVCPOOL *pool)
535 {
536 	SVCPOOL *next = pool->p_next;
537 	SVCPOOL *prev = pool->p_prev;
538 
539 	ASSERT(MUTEX_HELD(&svc->svc_plock));
540 
541 	/* Remove from the list */
542 	if (pool == svc->svc_pools)
543 		svc->svc_pools = next;
544 	if (next)
545 		next->p_prev = prev;
546 	if (prev)
547 		prev->p_next = next;
548 	pool->p_next = pool->p_prev = NULL;
549 
550 	/*
551 	 * Offline the pool. Mark the pool as closing.
552 	 * If there are no transports in this pool notify
553 	 * the creator thread to clean it up and exit.
554 	 */
555 	mutex_enter(&pool->p_thread_lock);
556 	if (pool->p_offline != NULL)
557 		(pool->p_offline)();
558 	pool->p_closing = TRUE;
559 	if (svc_pool_tryexit(pool))
560 		return;
561 	mutex_exit(&pool->p_thread_lock);
562 }
563 
564 /*
565  * Register a pool with a given id in the global doubly linked pool list.
566  * - if there is a pool with the same id in the list then unregister it
567  * - insert the new pool into the list.
568  */
569 static void
570 svc_pool_register(struct svc_globals *svc, SVCPOOL *pool, int id)
571 {
572 	SVCPOOL *old_pool;
573 
574 	/*
575 	 * If there is a pool with the same id then remove it from
576 	 * the list and mark the pool as closing.
577 	 */
578 	mutex_enter(&svc->svc_plock);
579 
580 	if (old_pool = svc_pool_find(svc, id))
581 		svc_pool_unregister(svc, old_pool);
582 
583 	/* Insert into the doubly linked list */
584 	pool->p_id = id;
585 	pool->p_next = svc->svc_pools;
586 	pool->p_prev = NULL;
587 	if (svc->svc_pools)
588 		svc->svc_pools->p_prev = pool;
589 	svc->svc_pools = pool;
590 
591 	mutex_exit(&svc->svc_plock);
592 }
593 
594 /*
595  * Initialize a newly created pool structure
596  */
597 static int
598 svc_pool_init(SVCPOOL *pool, uint_t maxthreads, uint_t redline,
599 	uint_t qsize, uint_t timeout, uint_t stksize, uint_t max_same_xprt)
600 {
601 	klwp_t *lwp = ttolwp(curthread);
602 
603 	ASSERT(pool);
604 
605 	if (maxthreads == 0)
606 		maxthreads = svc_default_maxthreads;
607 	if (redline == 0)
608 		redline = svc_default_redline;
609 	if (qsize == 0)
610 		qsize = svc_default_qsize;
611 	if (timeout == 0)
612 		timeout = svc_default_timeout;
613 	if (stksize == 0)
614 		stksize = svc_default_stksize;
615 	if (max_same_xprt == 0)
616 		max_same_xprt = svc_default_max_same_xprt;
617 
618 	if (maxthreads < redline)
619 		return (EINVAL);
620 
621 	/* Allocate and initialize the `xprt-ready' queue */
622 	svc_xprt_qinit(pool, qsize);
623 
624 	/* Initialize doubly-linked xprt list */
625 	rw_init(&pool->p_lrwlock, NULL, RW_DEFAULT, NULL);
626 
627 	/*
628 	 * Setting lwp_childstksz on the current lwp so that
629 	 * descendants of this lwp get the modified stacksize, if
630 	 * it is defined. It is important that either this lwp or
631 	 * one of its descendants do the actual servicepool thread
632 	 * creation to maintain the stacksize inheritance.
633 	 */
634 	if (lwp != NULL)
635 		lwp->lwp_childstksz = stksize;
636 
637 	/* Initialize thread limits, locks and condition variables */
638 	pool->p_maxthreads = maxthreads;
639 	pool->p_redline = redline;
640 	pool->p_timeout = timeout * hz;
641 	pool->p_stksize = stksize;
642 	pool->p_max_same_xprt = max_same_xprt;
643 	mutex_init(&pool->p_thread_lock, NULL, MUTEX_DEFAULT, NULL);
644 	mutex_init(&pool->p_req_lock, NULL, MUTEX_DEFAULT, NULL);
645 	cv_init(&pool->p_req_cv, NULL, CV_DEFAULT, NULL);
646 
647 	/* Initialize userland creator */
648 	pool->p_user_exit = FALSE;
649 	pool->p_signal_create_thread = FALSE;
650 	pool->p_user_waiting = FALSE;
651 	mutex_init(&pool->p_user_lock, NULL, MUTEX_DEFAULT, NULL);
652 	cv_init(&pool->p_user_cv, NULL, CV_DEFAULT, NULL);
653 
654 	/* Initialize the creator and start the creator thread */
655 	pool->p_creator_exit = FALSE;
656 	mutex_init(&pool->p_creator_lock, NULL, MUTEX_DEFAULT, NULL);
657 	cv_init(&pool->p_creator_cv, NULL, CV_DEFAULT, NULL);
658 
659 	(void) zthread_create(NULL, pool->p_stksize, svc_thread_creator,
660 	    pool, 0, minclsyspri);
661 
662 	return (0);
663 }
664 
665 /*
666  * PSARC 2003/523 Contract Private Interface
667  * svc_pool_create
668  * Changes must be reviewed by Solaris File Sharing
669  * Changes must be communicated to contract-2003-523@sun.com
670  *
671  * Create an kernel RPC server-side thread/transport pool.
672  *
673  * This is public interface for creation of a server RPC thread pool
674  * for a given service provider. Transports registered with the pool's id
675  * will be served by a pool's threads. This function is called from the
676  * nfssys() system call.
677  */
678 int
679 svc_pool_create(struct svcpool_args *args)
680 {
681 	SVCPOOL *pool;
682 	int error;
683 	struct svc_globals *svc;
684 
685 	/*
686 	 * Caller should check credentials in a way appropriate
687 	 * in the context of the call.
688 	 */
689 
690 	svc = zone_getspecific(svc_zone_key, curproc->p_zone);
691 	/* Allocate a new pool */
692 	pool = kmem_zalloc(sizeof (SVCPOOL), KM_SLEEP);
693 
694 	/*
695 	 * Initialize the pool structure and create a creator thread.
696 	 */
697 	error = svc_pool_init(pool, args->maxthreads, args->redline,
698 	    args->qsize, args->timeout, args->stksize, args->max_same_xprt);
699 
700 	if (error) {
701 		kmem_free(pool, sizeof (SVCPOOL));
702 		return (error);
703 	}
704 
705 	/* Register the pool with the global pool list */
706 	svc_pool_register(svc, pool, args->id);
707 
708 	return (0);
709 }
710 
711 int
712 svc_pool_control(int id, int cmd, void *arg)
713 {
714 	SVCPOOL *pool;
715 	struct svc_globals *svc;
716 
717 	svc = zone_getspecific(svc_zone_key, curproc->p_zone);
718 
719 	switch (cmd) {
720 	case SVCPSET_SHUTDOWN_PROC:
721 		/*
722 		 * Search the list for a pool with a matching id
723 		 * and register the transport handle with that pool.
724 		 */
725 		mutex_enter(&svc->svc_plock);
726 
727 		if ((pool = svc_pool_find(svc, id)) == NULL) {
728 			mutex_exit(&svc->svc_plock);
729 			return (ENOENT);
730 		}
731 		/*
732 		 * Grab the transport list lock before releasing the
733 		 * pool list lock
734 		 */
735 		rw_enter(&pool->p_lrwlock, RW_WRITER);
736 		mutex_exit(&svc->svc_plock);
737 
738 		pool->p_shutdown = *((void (*)())arg);
739 
740 		rw_exit(&pool->p_lrwlock);
741 
742 		return (0);
743 	case SVCPSET_UNREGISTER_PROC:
744 		/*
745 		 * Search the list for a pool with a matching id
746 		 * and register the unregister callback handle with that pool.
747 		 */
748 		mutex_enter(&svc->svc_plock);
749 
750 		if ((pool = svc_pool_find(svc, id)) == NULL) {
751 			mutex_exit(&svc->svc_plock);
752 			return (ENOENT);
753 		}
754 		/*
755 		 * Grab the transport list lock before releasing the
756 		 * pool list lock
757 		 */
758 		rw_enter(&pool->p_lrwlock, RW_WRITER);
759 		mutex_exit(&svc->svc_plock);
760 
761 		pool->p_offline = *((void (*)())arg);
762 
763 		rw_exit(&pool->p_lrwlock);
764 
765 		return (0);
766 	default:
767 		return (EINVAL);
768 	}
769 }
770 
771 /*
772  * Pool's transport list manipulation routines.
773  * - svc_xprt_register()
774  * - svc_xprt_unregister()
775  *
776  * svc_xprt_register() is called from svc_tli_kcreate() to
777  * insert a new master transport handle into the doubly linked
778  * list of server transport handles (one list per pool).
779  *
780  * The list is used by svc_poll(), when it operates in `drain'
781  * mode, to search for a next transport with a pending request.
782  */
783 
784 int
785 svc_xprt_register(SVCMASTERXPRT *xprt, int id)
786 {
787 	SVCMASTERXPRT *prev, *next;
788 	SVCPOOL *pool;
789 	struct svc_globals *svc;
790 
791 	svc = zone_getspecific(svc_zone_key, curproc->p_zone);
792 	/*
793 	 * Search the list for a pool with a matching id
794 	 * and register the transport handle with that pool.
795 	 */
796 	mutex_enter(&svc->svc_plock);
797 
798 	if ((pool = svc_pool_find(svc, id)) == NULL) {
799 		mutex_exit(&svc->svc_plock);
800 		return (ENOENT);
801 	}
802 
803 	/* Grab the transport list lock before releasing the pool list lock */
804 	rw_enter(&pool->p_lrwlock, RW_WRITER);
805 	mutex_exit(&svc->svc_plock);
806 
807 	/* Don't register new transports when the pool is in closing state */
808 	if (pool->p_closing) {
809 		rw_exit(&pool->p_lrwlock);
810 		return (EBUSY);
811 	}
812 
813 	/*
814 	 * Initialize xp_pool to point to the pool.
815 	 * We don't want to go through the pool list every time.
816 	 */
817 	xprt->xp_pool = pool;
818 
819 	/*
820 	 * Insert a transport handle into the list.
821 	 * The list head points to the most recently inserted transport.
822 	 */
823 	if (pool->p_lhead == NULL)
824 		pool->p_lhead = xprt->xp_prev = xprt->xp_next = xprt;
825 	else {
826 		next = pool->p_lhead;
827 		prev = pool->p_lhead->xp_prev;
828 
829 		xprt->xp_next = next;
830 		xprt->xp_prev = prev;
831 
832 		pool->p_lhead = prev->xp_next = next->xp_prev = xprt;
833 	}
834 
835 	/* Increment the transports count */
836 	pool->p_lcount++;
837 
838 	rw_exit(&pool->p_lrwlock);
839 	return (0);
840 }
841 
842 /*
843  * Called from svc_xprt_cleanup() to remove a master transport handle
844  * from the pool's list of server transports (when a transport is
845  * being destroyed).
846  */
847 void
848 svc_xprt_unregister(SVCMASTERXPRT *xprt)
849 {
850 	SVCPOOL *pool = xprt->xp_pool;
851 
852 	/*
853 	 * Unlink xprt from the list.
854 	 * If the list head points to this xprt then move it
855 	 * to the next xprt or reset to NULL if this is the last
856 	 * xprt in the list.
857 	 */
858 	rw_enter(&pool->p_lrwlock, RW_WRITER);
859 
860 	if (xprt == xprt->xp_next)
861 		pool->p_lhead = NULL;
862 	else {
863 		SVCMASTERXPRT *next = xprt->xp_next;
864 		SVCMASTERXPRT *prev = xprt->xp_prev;
865 
866 		next->xp_prev = prev;
867 		prev->xp_next = next;
868 
869 		if (pool->p_lhead == xprt)
870 			pool->p_lhead = next;
871 	}
872 
873 	xprt->xp_next = xprt->xp_prev = NULL;
874 
875 	/* Decrement list count */
876 	pool->p_lcount--;
877 
878 	rw_exit(&pool->p_lrwlock);
879 }
880 
881 static void
882 svc_xprt_qdestroy(SVCPOOL *pool)
883 {
884 	mutex_destroy(&pool->p_qend_lock);
885 	kmem_free(pool->p_qbody, pool->p_qsize * sizeof (__SVCXPRT_QNODE));
886 }
887 
888 /*
889  * Initialize an `xprt-ready' queue for a given pool.
890  */
891 static void
892 svc_xprt_qinit(SVCPOOL *pool, size_t qsize)
893 {
894 	int i;
895 
896 	pool->p_qsize = qsize;
897 	pool->p_qbody = kmem_zalloc(pool->p_qsize * sizeof (__SVCXPRT_QNODE),
898 	    KM_SLEEP);
899 
900 	for (i = 0; i < pool->p_qsize - 1; i++)
901 		pool->p_qbody[i].q_next = &(pool->p_qbody[i+1]);
902 
903 	pool->p_qbody[pool->p_qsize-1].q_next = &(pool->p_qbody[0]);
904 	pool->p_qtop = &(pool->p_qbody[0]);
905 	pool->p_qend = &(pool->p_qbody[0]);
906 
907 	mutex_init(&pool->p_qend_lock, NULL, MUTEX_DEFAULT, NULL);
908 }
909 
910 /*
911  * Called from the svc_queuereq() interrupt routine to queue
912  * a hint for svc_poll() which transport has a pending request.
913  * - insert a pointer to xprt into the xprt-ready queue (FIFO)
914  * - if the xprt-ready queue is full turn the overflow flag on.
915  *
916  * NOTICE: pool->p_qtop is protected by the the pool's request lock
917  * and the caller (svc_queuereq()) must hold the lock.
918  */
919 static void
920 svc_xprt_qput(SVCPOOL *pool, SVCMASTERXPRT *xprt)
921 {
922 	ASSERT(MUTEX_HELD(&pool->p_req_lock));
923 
924 	/* If the overflow flag is there is nothing we can do */
925 	if (pool->p_qoverflow)
926 		return;
927 
928 	/* If the queue is full turn the overflow flag on and exit */
929 	if (pool->p_qtop->q_next == pool->p_qend) {
930 		mutex_enter(&pool->p_qend_lock);
931 		if (pool->p_qtop->q_next == pool->p_qend) {
932 			pool->p_qoverflow = TRUE;
933 			mutex_exit(&pool->p_qend_lock);
934 			return;
935 		}
936 		mutex_exit(&pool->p_qend_lock);
937 	}
938 
939 	/* Insert a hint and move pool->p_qtop */
940 	pool->p_qtop->q_xprt = xprt;
941 	pool->p_qtop = pool->p_qtop->q_next;
942 }
943 
944 /*
945  * Called from svc_poll() to get a hint which transport has a
946  * pending request. Returns a pointer to a transport or NULL if the
947  * `xprt-ready' queue is empty.
948  *
949  * Since we do not acquire the pool's request lock while checking if
950  * the queue is empty we may miss a request that is just being delivered.
951  * However this is ok since svc_poll() will retry again until the
952  * count indicates that there are pending requests for this pool.
953  */
954 static SVCMASTERXPRT *
955 svc_xprt_qget(SVCPOOL *pool)
956 {
957 	SVCMASTERXPRT *xprt;
958 
959 	mutex_enter(&pool->p_qend_lock);
960 	do {
961 		/*
962 		 * If the queue is empty return NULL.
963 		 * Since we do not acquire the pool's request lock which
964 		 * protects pool->p_qtop this is not exact check. However,
965 		 * this is safe - if we miss a request here svc_poll()
966 		 * will retry again.
967 		 */
968 		if (pool->p_qend == pool->p_qtop) {
969 			mutex_exit(&pool->p_qend_lock);
970 			return (NULL);
971 		}
972 
973 		/* Get a hint and move pool->p_qend */
974 		xprt = pool->p_qend->q_xprt;
975 		pool->p_qend = pool->p_qend->q_next;
976 
977 		/* Skip fields deleted by svc_xprt_qdelete()	 */
978 	} while (xprt == NULL);
979 	mutex_exit(&pool->p_qend_lock);
980 
981 	return (xprt);
982 }
983 
984 /*
985  * Delete all the references to a transport handle that
986  * is being destroyed from the xprt-ready queue.
987  * Deleted pointers are replaced with NULLs.
988  */
989 static void
990 svc_xprt_qdelete(SVCPOOL *pool, SVCMASTERXPRT *xprt)
991 {
992 	__SVCXPRT_QNODE *q = pool->p_qend;
993 	__SVCXPRT_QNODE *qtop = pool->p_qtop;
994 
995 	/*
996 	 * Delete all the references to xprt between the current
997 	 * position of pool->p_qend and current pool->p_qtop.
998 	 */
999 	for (;;) {
1000 		if (q->q_xprt == xprt)
1001 			q->q_xprt = NULL;
1002 		if (q == qtop)
1003 			return;
1004 		q = q->q_next;
1005 	}
1006 }
1007 
1008 /*
1009  * Destructor for a master server transport handle.
1010  * - if there are no more non-detached threads linked to this transport
1011  *   then, if requested, call xp_closeproc (we don't wait for detached
1012  *   threads linked to this transport to complete).
1013  * - if there are no more threads linked to this
1014  *   transport then
1015  *   a) remove references to this transport from the xprt-ready queue
1016  *   b) remove a reference to this transport from the pool's transport list
1017  *   c) call a transport specific `destroy' function
1018  *   d) cancel remaining thread reservations.
1019  *
1020  * NOTICE: Caller must hold the transport's thread lock.
1021  */
1022 static void
1023 svc_xprt_cleanup(SVCMASTERXPRT *xprt, bool_t detached)
1024 {
1025 	ASSERT(MUTEX_HELD(&xprt->xp_thread_lock));
1026 	ASSERT(xprt->xp_wq == NULL);
1027 
1028 	/*
1029 	 * If called from the last non-detached thread
1030 	 * it should call the closeproc on this transport.
1031 	 */
1032 	if (!detached && xprt->xp_threads == 0 && xprt->xp_closeproc) {
1033 		(*(xprt->xp_closeproc)) (xprt);
1034 	}
1035 
1036 	if (xprt->xp_threads + xprt->xp_detached_threads > 0)
1037 		mutex_exit(&xprt->xp_thread_lock);
1038 	else {
1039 		/* Remove references to xprt from the `xprt-ready' queue */
1040 		svc_xprt_qdelete(xprt->xp_pool, xprt);
1041 
1042 		/* Unregister xprt from the pool's transport list */
1043 		svc_xprt_unregister(xprt);
1044 		svc_callout_free(xprt);
1045 		SVC_DESTROY(xprt);
1046 	}
1047 }
1048 
1049 /*
1050  * Find a dispatch routine for a given prog/vers pair.
1051  * This function is called from svc_getreq() to search the callout
1052  * table for an entry with a matching RPC program number `prog'
1053  * and a version range that covers `vers'.
1054  * - if it finds a matching entry it returns pointer to the dispatch routine
1055  * - otherwise it returns NULL and, if `minp' or `maxp' are not NULL,
1056  *   fills them with, respectively, lowest version and highest version
1057  *   supported for the program `prog'
1058  */
1059 static SVC_DISPATCH *
1060 svc_callout_find(SVCXPRT *xprt, rpcprog_t prog, rpcvers_t vers,
1061     rpcvers_t *vers_min, rpcvers_t *vers_max)
1062 {
1063 	SVC_CALLOUT_TABLE *sct = xprt->xp_sct;
1064 	int i;
1065 
1066 	*vers_min = ~(rpcvers_t)0;
1067 	*vers_max = 0;
1068 
1069 	for (i = 0; i < sct->sct_size; i++) {
1070 		SVC_CALLOUT *sc = &sct->sct_sc[i];
1071 
1072 		if (prog == sc->sc_prog) {
1073 			if (vers >= sc->sc_versmin && vers <= sc->sc_versmax)
1074 				return (sc->sc_dispatch);
1075 
1076 			if (*vers_max < sc->sc_versmax)
1077 				*vers_max = sc->sc_versmax;
1078 			if (*vers_min > sc->sc_versmin)
1079 				*vers_min = sc->sc_versmin;
1080 		}
1081 	}
1082 
1083 	return (NULL);
1084 }
1085 
1086 /*
1087  * Optionally free callout table allocated for this transport by
1088  * the service provider.
1089  */
1090 static void
1091 svc_callout_free(SVCMASTERXPRT *xprt)
1092 {
1093 	SVC_CALLOUT_TABLE *sct = xprt->xp_sct;
1094 
1095 	if (sct->sct_free) {
1096 		kmem_free(sct->sct_sc, sct->sct_size * sizeof (SVC_CALLOUT));
1097 		kmem_free(sct, sizeof (SVC_CALLOUT_TABLE));
1098 	}
1099 }
1100 
1101 /*
1102  * Send a reply to an RPC request
1103  *
1104  * PSARC 2003/523 Contract Private Interface
1105  * svc_sendreply
1106  * Changes must be reviewed by Solaris File Sharing
1107  * Changes must be communicated to contract-2003-523@sun.com
1108  */
1109 bool_t
1110 svc_sendreply(const SVCXPRT *clone_xprt, const xdrproc_t xdr_results,
1111     const caddr_t xdr_location)
1112 {
1113 	struct rpc_msg rply;
1114 
1115 	rply.rm_direction = REPLY;
1116 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1117 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1118 	rply.acpted_rply.ar_stat = SUCCESS;
1119 	rply.acpted_rply.ar_results.where = xdr_location;
1120 	rply.acpted_rply.ar_results.proc = xdr_results;
1121 
1122 	return (SVC_REPLY((SVCXPRT *)clone_xprt, &rply));
1123 }
1124 
1125 /*
1126  * No procedure error reply
1127  *
1128  * PSARC 2003/523 Contract Private Interface
1129  * svcerr_noproc
1130  * Changes must be reviewed by Solaris File Sharing
1131  * Changes must be communicated to contract-2003-523@sun.com
1132  */
1133 void
1134 svcerr_noproc(const SVCXPRT *clone_xprt)
1135 {
1136 	struct rpc_msg rply;
1137 
1138 	rply.rm_direction = REPLY;
1139 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1140 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1141 	rply.acpted_rply.ar_stat = PROC_UNAVAIL;
1142 	SVC_FREERES((SVCXPRT *)clone_xprt);
1143 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1144 }
1145 
1146 /*
1147  * Can't decode arguments error reply
1148  *
1149  * PSARC 2003/523 Contract Private Interface
1150  * svcerr_decode
1151  * Changes must be reviewed by Solaris File Sharing
1152  * Changes must be communicated to contract-2003-523@sun.com
1153  */
1154 void
1155 svcerr_decode(const SVCXPRT *clone_xprt)
1156 {
1157 	struct rpc_msg rply;
1158 
1159 	rply.rm_direction = REPLY;
1160 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1161 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1162 	rply.acpted_rply.ar_stat = GARBAGE_ARGS;
1163 	SVC_FREERES((SVCXPRT *)clone_xprt);
1164 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1165 }
1166 
1167 /*
1168  * Some system error
1169  */
1170 void
1171 svcerr_systemerr(const SVCXPRT *clone_xprt)
1172 {
1173 	struct rpc_msg rply;
1174 
1175 	rply.rm_direction = REPLY;
1176 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1177 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1178 	rply.acpted_rply.ar_stat = SYSTEM_ERR;
1179 	SVC_FREERES((SVCXPRT *)clone_xprt);
1180 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1181 }
1182 
1183 /*
1184  * Authentication error reply
1185  */
1186 void
1187 svcerr_auth(const SVCXPRT *clone_xprt, const enum auth_stat why)
1188 {
1189 	struct rpc_msg rply;
1190 
1191 	rply.rm_direction = REPLY;
1192 	rply.rm_reply.rp_stat = MSG_DENIED;
1193 	rply.rjcted_rply.rj_stat = AUTH_ERROR;
1194 	rply.rjcted_rply.rj_why = why;
1195 	SVC_FREERES((SVCXPRT *)clone_xprt);
1196 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1197 }
1198 
1199 /*
1200  * Authentication too weak error reply
1201  */
1202 void
1203 svcerr_weakauth(const SVCXPRT *clone_xprt)
1204 {
1205 	svcerr_auth((SVCXPRT *)clone_xprt, AUTH_TOOWEAK);
1206 }
1207 
1208 /*
1209  * Authentication error; bad credentials
1210  */
1211 void
1212 svcerr_badcred(const SVCXPRT *clone_xprt)
1213 {
1214 	struct rpc_msg rply;
1215 
1216 	rply.rm_direction = REPLY;
1217 	rply.rm_reply.rp_stat = MSG_DENIED;
1218 	rply.rjcted_rply.rj_stat = AUTH_ERROR;
1219 	rply.rjcted_rply.rj_why = AUTH_BADCRED;
1220 	SVC_FREERES((SVCXPRT *)clone_xprt);
1221 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1222 }
1223 
1224 /*
1225  * Program unavailable error reply
1226  *
1227  * PSARC 2003/523 Contract Private Interface
1228  * svcerr_noprog
1229  * Changes must be reviewed by Solaris File Sharing
1230  * Changes must be communicated to contract-2003-523@sun.com
1231  */
1232 void
1233 svcerr_noprog(const SVCXPRT *clone_xprt)
1234 {
1235 	struct rpc_msg rply;
1236 
1237 	rply.rm_direction = REPLY;
1238 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1239 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1240 	rply.acpted_rply.ar_stat = PROG_UNAVAIL;
1241 	SVC_FREERES((SVCXPRT *)clone_xprt);
1242 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1243 }
1244 
1245 /*
1246  * Program version mismatch error reply
1247  *
1248  * PSARC 2003/523 Contract Private Interface
1249  * svcerr_progvers
1250  * Changes must be reviewed by Solaris File Sharing
1251  * Changes must be communicated to contract-2003-523@sun.com
1252  */
1253 void
1254 svcerr_progvers(const SVCXPRT *clone_xprt,
1255     const rpcvers_t low_vers, const rpcvers_t high_vers)
1256 {
1257 	struct rpc_msg rply;
1258 
1259 	rply.rm_direction = REPLY;
1260 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1261 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1262 	rply.acpted_rply.ar_stat = PROG_MISMATCH;
1263 	rply.acpted_rply.ar_vers.low = low_vers;
1264 	rply.acpted_rply.ar_vers.high = high_vers;
1265 	SVC_FREERES((SVCXPRT *)clone_xprt);
1266 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1267 }
1268 
1269 /*
1270  * Get server side input from some transport.
1271  *
1272  * Statement of authentication parameters management:
1273  * This function owns and manages all authentication parameters, specifically
1274  * the "raw" parameters (msg.rm_call.cb_cred and msg.rm_call.cb_verf) and
1275  * the "cooked" credentials (rqst->rq_clntcred).
1276  * However, this function does not know the structure of the cooked
1277  * credentials, so it make the following assumptions:
1278  *   a) the structure is contiguous (no pointers), and
1279  *   b) the cred structure size does not exceed RQCRED_SIZE bytes.
1280  * In all events, all three parameters are freed upon exit from this routine.
1281  * The storage is trivially managed on the call stack in user land, but
1282  * is malloced in kernel land.
1283  *
1284  * Note: the xprt's xp_svc_lock is not held while the service's dispatch
1285  * routine is running.	If we decide to implement svc_unregister(), we'll
1286  * need to decide whether it's okay for a thread to unregister a service
1287  * while a request is being processed.	If we decide that this is a
1288  * problem, we can probably use some sort of reference counting scheme to
1289  * keep the callout entry from going away until the request has completed.
1290  */
1291 static void
1292 svc_getreq(
1293 	SVCXPRT *clone_xprt,	/* clone transport handle */
1294 	mblk_t *mp)
1295 {
1296 	struct rpc_msg msg;
1297 	struct svc_req r;
1298 	char  *cred_area;	/* too big to allocate on call stack */
1299 
1300 	TRACE_0(TR_FAC_KRPC, TR_SVC_GETREQ_START,
1301 	    "svc_getreq_start:");
1302 
1303 	ASSERT(clone_xprt->xp_master != NULL);
1304 	ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL ||
1305 	    mp->b_datap->db_type != M_DATA);
1306 
1307 	/*
1308 	 * Firstly, allocate the authentication parameters' storage
1309 	 */
1310 	mutex_enter(&rqcred_lock);
1311 	if (rqcred_head) {
1312 		cred_area = rqcred_head;
1313 
1314 		/* LINTED pointer alignment */
1315 		rqcred_head = *(caddr_t *)rqcred_head;
1316 		mutex_exit(&rqcred_lock);
1317 	} else {
1318 		mutex_exit(&rqcred_lock);
1319 		cred_area = kmem_alloc(2 * MAX_AUTH_BYTES + RQCRED_SIZE,
1320 		    KM_SLEEP);
1321 	}
1322 	msg.rm_call.cb_cred.oa_base = cred_area;
1323 	msg.rm_call.cb_verf.oa_base = &(cred_area[MAX_AUTH_BYTES]);
1324 	r.rq_clntcred = &(cred_area[2 * MAX_AUTH_BYTES]);
1325 
1326 	/*
1327 	 * underlying transport recv routine may modify mblk data
1328 	 * and make it difficult to extract label afterwards. So
1329 	 * get the label from the raw mblk data now.
1330 	 */
1331 	if (is_system_labeled()) {
1332 		mblk_t *lmp;
1333 
1334 		r.rq_label = kmem_alloc(sizeof (bslabel_t), KM_SLEEP);
1335 		if (DB_CRED(mp) != NULL)
1336 			lmp = mp;
1337 		else {
1338 			ASSERT(mp->b_cont != NULL);
1339 			lmp = mp->b_cont;
1340 			ASSERT(DB_CRED(lmp) != NULL);
1341 		}
1342 		bcopy(label2bslabel(crgetlabel(DB_CRED(lmp))), r.rq_label,
1343 		    sizeof (bslabel_t));
1344 	} else {
1345 		r.rq_label = NULL;
1346 	}
1347 
1348 	/*
1349 	 * Now receive a message from the transport.
1350 	 */
1351 	if (SVC_RECV(clone_xprt, mp, &msg)) {
1352 		void (*dispatchroutine) (struct svc_req *, SVCXPRT *);
1353 		rpcvers_t vers_min;
1354 		rpcvers_t vers_max;
1355 		bool_t no_dispatch;
1356 		enum auth_stat why;
1357 
1358 		/*
1359 		 * Find the registered program and call its
1360 		 * dispatch routine.
1361 		 */
1362 		r.rq_xprt = clone_xprt;
1363 		r.rq_prog = msg.rm_call.cb_prog;
1364 		r.rq_vers = msg.rm_call.cb_vers;
1365 		r.rq_proc = msg.rm_call.cb_proc;
1366 		r.rq_cred = msg.rm_call.cb_cred;
1367 
1368 		/*
1369 		 * First authenticate the message.
1370 		 */
1371 		TRACE_0(TR_FAC_KRPC, TR_SVC_GETREQ_AUTH_START,
1372 		    "svc_getreq_auth_start:");
1373 		if ((why = sec_svc_msg(&r, &msg, &no_dispatch)) != AUTH_OK) {
1374 			TRACE_1(TR_FAC_KRPC, TR_SVC_GETREQ_AUTH_END,
1375 			    "svc_getreq_auth_end:(%S)", "failed");
1376 			svcerr_auth(clone_xprt, why);
1377 			/*
1378 			 * Free the arguments.
1379 			 */
1380 			(void) SVC_FREEARGS(clone_xprt, NULL, NULL);
1381 		} else if (no_dispatch) {
1382 			/*
1383 			 * XXX - when bug id 4053736 is done, remove
1384 			 * the SVC_FREEARGS() call.
1385 			 */
1386 			(void) SVC_FREEARGS(clone_xprt, NULL, NULL);
1387 		} else {
1388 			TRACE_1(TR_FAC_KRPC, TR_SVC_GETREQ_AUTH_END,
1389 			    "svc_getreq_auth_end:(%S)", "good");
1390 
1391 			dispatchroutine = svc_callout_find(clone_xprt,
1392 			    r.rq_prog, r.rq_vers, &vers_min, &vers_max);
1393 
1394 			if (dispatchroutine) {
1395 				(*dispatchroutine) (&r, clone_xprt);
1396 			} else {
1397 				/*
1398 				 * If we got here, the program or version
1399 				 * is not served ...
1400 				 */
1401 				if (vers_max == 0 ||
1402 				    version_keepquiet(clone_xprt))
1403 					svcerr_noprog(clone_xprt);
1404 				else
1405 					svcerr_progvers(clone_xprt, vers_min,
1406 					    vers_max);
1407 
1408 				/*
1409 				 * Free the arguments. For successful calls
1410 				 * this is done by the dispatch routine.
1411 				 */
1412 				(void) SVC_FREEARGS(clone_xprt, NULL, NULL);
1413 				/* Fall through to ... */
1414 			}
1415 			/*
1416 			 * Call cleanup procedure for RPCSEC_GSS.
1417 			 * This is a hack since there is currently no
1418 			 * op, such as SVC_CLEANAUTH. rpc_gss_cleanup
1419 			 * should only be called for a non null proc.
1420 			 * Null procs in RPC GSS are overloaded to
1421 			 * provide context setup and control. The main
1422 			 * purpose of rpc_gss_cleanup is to decrement the
1423 			 * reference count associated with the cached
1424 			 * GSS security context. We should never get here
1425 			 * for an RPCSEC_GSS null proc since *no_dispatch
1426 			 * would have been set to true from sec_svc_msg above.
1427 			 */
1428 			if (r.rq_cred.oa_flavor == RPCSEC_GSS)
1429 				rpc_gss_cleanup(clone_xprt);
1430 		}
1431 	}
1432 
1433 	if (r.rq_label != NULL)
1434 		kmem_free(r.rq_label, sizeof (bslabel_t));
1435 
1436 	/*
1437 	 * Free authentication parameters' storage
1438 	 */
1439 	mutex_enter(&rqcred_lock);
1440 	/* LINTED pointer alignment */
1441 	*(caddr_t *)cred_area = rqcred_head;
1442 	rqcred_head = cred_area;
1443 	mutex_exit(&rqcred_lock);
1444 }
1445 
1446 /*
1447  * Allocate new clone transport handle.
1448  */
1449 static SVCXPRT *
1450 svc_clone_init(void)
1451 {
1452 	SVCXPRT *clone_xprt;
1453 
1454 	clone_xprt = kmem_zalloc(sizeof (SVCXPRT), KM_SLEEP);
1455 	clone_xprt->xp_cred = crget();
1456 	return (clone_xprt);
1457 }
1458 
1459 /*
1460  * Free memory allocated by svc_clone_init.
1461  */
1462 static void
1463 svc_clone_free(SVCXPRT *clone_xprt)
1464 {
1465 	/* Fre credentials from crget() */
1466 	if (clone_xprt->xp_cred)
1467 		crfree(clone_xprt->xp_cred);
1468 	kmem_free(clone_xprt, sizeof (SVCXPRT));
1469 }
1470 
1471 /*
1472  * Link a per-thread clone transport handle to a master
1473  * - increment a thread reference count on the master
1474  * - copy some of the master's fields to the clone
1475  * - call a transport specific clone routine.
1476  */
1477 static void
1478 svc_clone_link(SVCMASTERXPRT *xprt, SVCXPRT *clone_xprt)
1479 {
1480 	cred_t *cred = clone_xprt->xp_cred;
1481 
1482 	ASSERT(cred);
1483 
1484 	/*
1485 	 * Bump up master's thread count.
1486 	 * Linking a per-thread clone transport handle to a master
1487 	 * associates a service thread with the master.
1488 	 */
1489 	mutex_enter(&xprt->xp_thread_lock);
1490 	xprt->xp_threads++;
1491 	mutex_exit(&xprt->xp_thread_lock);
1492 
1493 	/* Clear everything */
1494 	bzero(clone_xprt, sizeof (SVCXPRT));
1495 
1496 	/* Set pointer to the master transport stucture */
1497 	clone_xprt->xp_master = xprt;
1498 
1499 	/* Structure copy of all the common fields */
1500 	clone_xprt->xp_xpc = xprt->xp_xpc;
1501 
1502 	/* Restore per-thread fields (xp_cred) */
1503 	clone_xprt->xp_cred = cred;
1504 
1505 
1506 	/*
1507 	 * NOTICE: There is no transport-type specific code now.
1508 	 *	   If you want to add a transport-type specific cloning code
1509 	 *	   add one more operation (e.g. xp_clone()) to svc_ops,
1510 	 *	   implement it for each transport type, and call it here
1511 	 *	   through an appropriate macro (e.g. SVC_CLONE()).
1512 	 */
1513 }
1514 
1515 /*
1516  * Unlink a non-detached clone transport handle from a master
1517  * - decrement a thread reference count on the master
1518  * - if the transport is closing (xp_wq is NULL) call svc_xprt_cleanup();
1519  *   if this is the last non-detached/absolute thread on this transport
1520  *   then it will close/destroy the transport
1521  * - call transport specific function to destroy the clone handle
1522  * - clear xp_master to avoid recursion.
1523  */
1524 static void
1525 svc_clone_unlink(SVCXPRT *clone_xprt)
1526 {
1527 	SVCMASTERXPRT *xprt = clone_xprt->xp_master;
1528 
1529 	/* This cannot be a detached thread */
1530 	ASSERT(!clone_xprt->xp_detached);
1531 	ASSERT(xprt->xp_threads > 0);
1532 
1533 	/* Decrement a reference count on the transport */
1534 	mutex_enter(&xprt->xp_thread_lock);
1535 	xprt->xp_threads--;
1536 
1537 	/* svc_xprt_cleanup() unlocks xp_thread_lock or destroys xprt */
1538 	if (xprt->xp_wq)
1539 		mutex_exit(&xprt->xp_thread_lock);
1540 	else
1541 		svc_xprt_cleanup(xprt, FALSE);
1542 
1543 	/* Call a transport specific clone `destroy' function */
1544 	SVC_CLONE_DESTROY(clone_xprt);
1545 
1546 	/* Clear xp_master */
1547 	clone_xprt->xp_master = NULL;
1548 }
1549 
1550 /*
1551  * Unlink a detached clone transport handle from a master
1552  * - decrement the thread count on the master
1553  * - if the transport is closing (xp_wq is NULL) call svc_xprt_cleanup();
1554  *   if this is the last thread on this transport then it will destroy
1555  *   the transport.
1556  * - call a transport specific function to destroy the clone handle
1557  * - clear xp_master to avoid recursion.
1558  */
1559 static void
1560 svc_clone_unlinkdetached(SVCXPRT *clone_xprt)
1561 {
1562 	SVCMASTERXPRT *xprt = clone_xprt->xp_master;
1563 
1564 	/* This must be a detached thread */
1565 	ASSERT(clone_xprt->xp_detached);
1566 	ASSERT(xprt->xp_detached_threads > 0);
1567 	ASSERT(xprt->xp_threads + xprt->xp_detached_threads > 0);
1568 
1569 	/* Grab xprt->xp_thread_lock and decrement link counts */
1570 	mutex_enter(&xprt->xp_thread_lock);
1571 	xprt->xp_detached_threads--;
1572 
1573 	/* svc_xprt_cleanup() unlocks xp_thread_lock or destroys xprt */
1574 	if (xprt->xp_wq)
1575 		mutex_exit(&xprt->xp_thread_lock);
1576 	else
1577 		svc_xprt_cleanup(xprt, TRUE);
1578 
1579 	/* Call transport specific clone `destroy' function */
1580 	SVC_CLONE_DESTROY(clone_xprt);
1581 
1582 	/* Clear xp_master */
1583 	clone_xprt->xp_master = NULL;
1584 }
1585 
1586 /*
1587  * Try to exit a non-detached service thread
1588  * - check if there are enough threads left
1589  * - if this thread (ie its clone transport handle) are linked
1590  *   to a master transport then unlink it
1591  * - free the clone structure
1592  * - return to userland for thread exit
1593  *
1594  * If this is the last non-detached or the last thread on this
1595  * transport then the call to svc_clone_unlink() will, respectively,
1596  * close and/or destroy the transport.
1597  */
1598 static void
1599 svc_thread_exit(SVCPOOL *pool, SVCXPRT *clone_xprt)
1600 {
1601 	if (clone_xprt->xp_master)
1602 		svc_clone_unlink(clone_xprt);
1603 	svc_clone_free(clone_xprt);
1604 
1605 	mutex_enter(&pool->p_thread_lock);
1606 	pool->p_threads--;
1607 	if (pool->p_closing && svc_pool_tryexit(pool))
1608 		/* return -  thread exit will be handled at user level */
1609 		return;
1610 	mutex_exit(&pool->p_thread_lock);
1611 
1612 	/* return -  thread exit will be handled at user level */
1613 }
1614 
1615 /*
1616  * Exit a detached service thread that returned to svc_run
1617  * - decrement the `detached thread' count for the pool
1618  * - unlink the detached clone transport handle from the master
1619  * - free the clone structure
1620  * - return to userland for thread exit
1621  *
1622  * If this is the last thread on this transport then the call
1623  * to svc_clone_unlinkdetached() will destroy the transport.
1624  */
1625 static void
1626 svc_thread_exitdetached(SVCPOOL *pool, SVCXPRT *clone_xprt)
1627 {
1628 	/* This must be a detached thread */
1629 	ASSERT(clone_xprt->xp_master);
1630 	ASSERT(clone_xprt->xp_detached);
1631 	ASSERT(!MUTEX_HELD(&pool->p_thread_lock));
1632 
1633 	svc_clone_unlinkdetached(clone_xprt);
1634 	svc_clone_free(clone_xprt);
1635 
1636 	mutex_enter(&pool->p_thread_lock);
1637 
1638 	ASSERT(pool->p_reserved_threads >= 0);
1639 	ASSERT(pool->p_detached_threads > 0);
1640 
1641 	pool->p_detached_threads--;
1642 	if (pool->p_closing && svc_pool_tryexit(pool))
1643 		/* return -  thread exit will be handled at user level */
1644 		return;
1645 	mutex_exit(&pool->p_thread_lock);
1646 
1647 	/* return -  thread exit will be handled at user level */
1648 }
1649 
1650 /*
1651  * PSARC 2003/523 Contract Private Interface
1652  * svc_wait
1653  * Changes must be reviewed by Solaris File Sharing
1654  * Changes must be communicated to contract-2003-523@sun.com
1655  */
1656 int
1657 svc_wait(int id)
1658 {
1659 	SVCPOOL *pool;
1660 	int	err = 0;
1661 	struct svc_globals *svc;
1662 
1663 	svc = zone_getspecific(svc_zone_key, curproc->p_zone);
1664 	mutex_enter(&svc->svc_plock);
1665 	pool = svc_pool_find(svc, id);
1666 	mutex_exit(&svc->svc_plock);
1667 
1668 	if (pool == NULL)
1669 		return (ENOENT);
1670 
1671 	mutex_enter(&pool->p_user_lock);
1672 
1673 	/* Check if there's already a user thread waiting on this pool */
1674 	if (pool->p_user_waiting) {
1675 		mutex_exit(&pool->p_user_lock);
1676 		return (EBUSY);
1677 	}
1678 
1679 	pool->p_user_waiting = TRUE;
1680 
1681 	/* Go to sleep, waiting for the signaled flag. */
1682 	while (!pool->p_signal_create_thread && !pool->p_user_exit) {
1683 		if (cv_wait_sig(&pool->p_user_cv, &pool->p_user_lock) == 0) {
1684 			/* Interrupted, return to handle exit or signal */
1685 			pool->p_user_waiting = FALSE;
1686 			pool->p_signal_create_thread = FALSE;
1687 			mutex_exit(&pool->p_user_lock);
1688 
1689 			/*
1690 			 * Thread has been interrupted and therefore
1691 			 * the service daemon is leaving as well so
1692 			 * let's go ahead and remove the service
1693 			 * pool at this time.
1694 			 */
1695 			mutex_enter(&svc->svc_plock);
1696 			svc_pool_unregister(svc, pool);
1697 			mutex_exit(&svc->svc_plock);
1698 
1699 			return (EINTR);
1700 		}
1701 	}
1702 
1703 	pool->p_signal_create_thread = FALSE;
1704 	pool->p_user_waiting = FALSE;
1705 
1706 	/*
1707 	 * About to exit the service pool. Set return value
1708 	 * to let the userland code know our intent. Signal
1709 	 * svc_thread_creator() so that it can clean up the
1710 	 * pool structure.
1711 	 */
1712 	if (pool->p_user_exit) {
1713 		err = ECANCELED;
1714 		cv_signal(&pool->p_user_cv);
1715 	}
1716 
1717 	mutex_exit(&pool->p_user_lock);
1718 
1719 	/* Return to userland with error code, for possible thread creation. */
1720 	return (err);
1721 }
1722 
1723 /*
1724  * `Service threads' creator thread.
1725  * The creator thread waits for a signal to create new thread.
1726  */
1727 static void
1728 svc_thread_creator(SVCPOOL *pool)
1729 {
1730 	callb_cpr_t cpr_info;	/* CPR info for the creator thread */
1731 
1732 	CALLB_CPR_INIT(&cpr_info, &pool->p_creator_lock, callb_generic_cpr,
1733 	    "svc_thread_creator");
1734 
1735 	for (;;) {
1736 		mutex_enter(&pool->p_creator_lock);
1737 
1738 		/* Check if someone set the exit flag */
1739 		if (pool->p_creator_exit)
1740 			break;
1741 
1742 		/* Clear the `signaled' flag and go asleep */
1743 		pool->p_creator_signaled = FALSE;
1744 
1745 		CALLB_CPR_SAFE_BEGIN(&cpr_info);
1746 		cv_wait(&pool->p_creator_cv, &pool->p_creator_lock);
1747 		CALLB_CPR_SAFE_END(&cpr_info, &pool->p_creator_lock);
1748 
1749 		/* Check if someone signaled to exit */
1750 		if (pool->p_creator_exit)
1751 			break;
1752 
1753 		mutex_exit(&pool->p_creator_lock);
1754 
1755 		mutex_enter(&pool->p_thread_lock);
1756 
1757 		/*
1758 		 * When the pool is in closing state and all the transports
1759 		 * are gone the creator should not create any new threads.
1760 		 */
1761 		if (pool->p_closing) {
1762 			rw_enter(&pool->p_lrwlock, RW_READER);
1763 			if (pool->p_lcount == 0) {
1764 				rw_exit(&pool->p_lrwlock);
1765 				mutex_exit(&pool->p_thread_lock);
1766 				continue;
1767 			}
1768 			rw_exit(&pool->p_lrwlock);
1769 		}
1770 
1771 		/*
1772 		 * Create a new service thread now.
1773 		 */
1774 		ASSERT(pool->p_reserved_threads >= 0);
1775 		ASSERT(pool->p_detached_threads >= 0);
1776 
1777 		if (pool->p_threads + pool->p_detached_threads <
1778 		    pool->p_maxthreads) {
1779 			/*
1780 			 * Signal the service pool wait thread
1781 			 * only if it hasn't already been signaled.
1782 			 */
1783 			mutex_enter(&pool->p_user_lock);
1784 			if (pool->p_signal_create_thread == FALSE) {
1785 				pool->p_signal_create_thread = TRUE;
1786 				cv_signal(&pool->p_user_cv);
1787 			}
1788 			mutex_exit(&pool->p_user_lock);
1789 
1790 		}
1791 
1792 		mutex_exit(&pool->p_thread_lock);
1793 	}
1794 
1795 	/*
1796 	 * Pool is closed. Cleanup and exit.
1797 	 */
1798 
1799 	/* Signal userland creator thread that it can stop now. */
1800 	mutex_enter(&pool->p_user_lock);
1801 	pool->p_user_exit = TRUE;
1802 	cv_broadcast(&pool->p_user_cv);
1803 	mutex_exit(&pool->p_user_lock);
1804 
1805 	/* Wait for svc_wait() to be done with the pool */
1806 	mutex_enter(&pool->p_user_lock);
1807 	while (pool->p_user_waiting) {
1808 		CALLB_CPR_SAFE_BEGIN(&cpr_info);
1809 		cv_wait(&pool->p_user_cv, &pool->p_user_lock);
1810 		CALLB_CPR_SAFE_END(&cpr_info, &pool->p_creator_lock);
1811 	}
1812 	mutex_exit(&pool->p_user_lock);
1813 
1814 	CALLB_CPR_EXIT(&cpr_info);
1815 	svc_pool_cleanup(pool);
1816 	zthread_exit();
1817 }
1818 
1819 /*
1820  * If the creator thread  is idle signal it to create
1821  * a new service thread.
1822  */
1823 static void
1824 svc_creator_signal(SVCPOOL *pool)
1825 {
1826 	mutex_enter(&pool->p_creator_lock);
1827 	if (pool->p_creator_signaled == FALSE) {
1828 		pool->p_creator_signaled = TRUE;
1829 		cv_signal(&pool->p_creator_cv);
1830 	}
1831 	mutex_exit(&pool->p_creator_lock);
1832 }
1833 
1834 /*
1835  * Notify the creator thread to clean up and exit.
1836  */
1837 static void
1838 svc_creator_signalexit(SVCPOOL *pool)
1839 {
1840 	mutex_enter(&pool->p_creator_lock);
1841 	pool->p_creator_exit = TRUE;
1842 	cv_signal(&pool->p_creator_cv);
1843 	mutex_exit(&pool->p_creator_lock);
1844 }
1845 
1846 /*
1847  * Polling part of the svc_run().
1848  * - search for a transport with a pending request
1849  * - when one is found then latch the request lock and return to svc_run()
1850  * - if there is no request go asleep and wait for a signal
1851  * - handle two exceptions:
1852  *   a) current transport is closing
1853  *   b) timeout waiting for a new request
1854  *   in both cases return to svc_run()
1855  */
1856 static SVCMASTERXPRT *
1857 svc_poll(SVCPOOL *pool, SVCMASTERXPRT *xprt, SVCXPRT *clone_xprt)
1858 {
1859 	/*
1860 	 * Main loop iterates until
1861 	 * a) we find a pending request,
1862 	 * b) detect that the current transport is closing
1863 	 * c) time out waiting for a new request.
1864 	 */
1865 	for (;;) {
1866 		SVCMASTERXPRT *next;
1867 		clock_t timeleft;
1868 
1869 		/*
1870 		 * Step 1.
1871 		 * Check if there is a pending request on the current
1872 		 * transport handle so that we can avoid cloning.
1873 		 * If so then decrement the `pending-request' count for
1874 		 * the pool and return to svc_run().
1875 		 *
1876 		 * We need to prevent a potential starvation. When
1877 		 * a selected transport has all pending requests coming in
1878 		 * all the time then the service threads will never switch to
1879 		 * another transport. With a limited number of service
1880 		 * threads some transports may be never serviced.
1881 		 * To prevent such a scenario we pick up at most
1882 		 * pool->p_max_same_xprt requests from the same transport
1883 		 * and then take a hint from the xprt-ready queue or walk
1884 		 * the transport list.
1885 		 */
1886 		if (xprt && xprt->xp_req_head && (!pool->p_qoverflow ||
1887 		    clone_xprt->xp_same_xprt++ < pool->p_max_same_xprt)) {
1888 			mutex_enter(&xprt->xp_req_lock);
1889 			if (xprt->xp_req_head) {
1890 				mutex_enter(&pool->p_req_lock);
1891 				pool->p_reqs--;
1892 				if (pool->p_reqs == 0)
1893 					pool->p_qoverflow = FALSE;
1894 				mutex_exit(&pool->p_req_lock);
1895 
1896 				return (xprt);
1897 			}
1898 			mutex_exit(&xprt->xp_req_lock);
1899 		}
1900 		clone_xprt->xp_same_xprt = 0;
1901 
1902 		/*
1903 		 * Step 2.
1904 		 * If there is no request on the current transport try to
1905 		 * find another transport with a pending request.
1906 		 */
1907 		mutex_enter(&pool->p_req_lock);
1908 		pool->p_walkers++;
1909 		mutex_exit(&pool->p_req_lock);
1910 
1911 		/*
1912 		 * Make sure that transports will not be destroyed just
1913 		 * while we are checking them.
1914 		 */
1915 		rw_enter(&pool->p_lrwlock, RW_READER);
1916 
1917 		for (;;) {
1918 			SVCMASTERXPRT *hint;
1919 
1920 			/*
1921 			 * Get the next transport from the xprt-ready queue.
1922 			 * This is a hint. There is no guarantee that the
1923 			 * transport still has a pending request since it
1924 			 * could be picked up by another thread in step 1.
1925 			 *
1926 			 * If the transport has a pending request then keep
1927 			 * it locked. Decrement the `pending-requests' for
1928 			 * the pool and `walking-threads' counts, and return
1929 			 * to svc_run().
1930 			 */
1931 			hint = svc_xprt_qget(pool);
1932 
1933 			if (hint && hint->xp_req_head) {
1934 				mutex_enter(&hint->xp_req_lock);
1935 				if (hint->xp_req_head) {
1936 					rw_exit(&pool->p_lrwlock);
1937 
1938 					mutex_enter(&pool->p_req_lock);
1939 					pool->p_reqs--;
1940 					if (pool->p_reqs == 0)
1941 						pool->p_qoverflow = FALSE;
1942 					pool->p_walkers--;
1943 					mutex_exit(&pool->p_req_lock);
1944 
1945 					return (hint);
1946 				}
1947 				mutex_exit(&hint->xp_req_lock);
1948 			}
1949 
1950 			/*
1951 			 * If there was no hint in the xprt-ready queue then
1952 			 * - if there is less pending requests than polling
1953 			 *   threads go asleep
1954 			 * - otherwise check if there was an overflow in the
1955 			 *   xprt-ready queue; if so, then we need to break
1956 			 *   the `drain' mode
1957 			 */
1958 			if (hint == NULL) {
1959 				if (pool->p_reqs < pool->p_walkers) {
1960 					mutex_enter(&pool->p_req_lock);
1961 					if (pool->p_reqs < pool->p_walkers)
1962 						goto sleep;
1963 					mutex_exit(&pool->p_req_lock);
1964 				}
1965 				if (pool->p_qoverflow) {
1966 					break;
1967 				}
1968 			}
1969 		}
1970 
1971 		/*
1972 		 * If there was an overflow in the xprt-ready queue then we
1973 		 * need to switch to the `drain' mode, i.e. walk through the
1974 		 * pool's transport list and search for a transport with a
1975 		 * pending request. If we manage to drain all the pending
1976 		 * requests then we can clear the overflow flag. This will
1977 		 * switch svc_poll() back to taking hints from the xprt-ready
1978 		 * queue (which is generally more efficient).
1979 		 *
1980 		 * If there are no registered transports simply go asleep.
1981 		 */
1982 		if (xprt == NULL && pool->p_lhead == NULL) {
1983 			mutex_enter(&pool->p_req_lock);
1984 			goto sleep;
1985 		}
1986 
1987 		/*
1988 		 * `Walk' through the pool's list of master server
1989 		 * transport handles. Continue to loop until there are less
1990 		 * looping threads then pending requests.
1991 		 */
1992 		next = xprt ? xprt->xp_next : pool->p_lhead;
1993 
1994 		for (;;) {
1995 			/*
1996 			 * Check if there is a request on this transport.
1997 			 *
1998 			 * Since blocking on a locked mutex is very expensive
1999 			 * check for a request without a lock first. If we miss
2000 			 * a request that is just being delivered but this will
2001 			 * cost at most one full walk through the list.
2002 			 */
2003 			if (next->xp_req_head) {
2004 				/*
2005 				 * Check again, now with a lock.
2006 				 */
2007 				mutex_enter(&next->xp_req_lock);
2008 				if (next->xp_req_head) {
2009 					rw_exit(&pool->p_lrwlock);
2010 
2011 					mutex_enter(&pool->p_req_lock);
2012 					pool->p_reqs--;
2013 					if (pool->p_reqs == 0)
2014 						pool->p_qoverflow = FALSE;
2015 					pool->p_walkers--;
2016 					mutex_exit(&pool->p_req_lock);
2017 
2018 					return (next);
2019 				}
2020 				mutex_exit(&next->xp_req_lock);
2021 			}
2022 
2023 			/*
2024 			 * Continue to `walk' through the pool's
2025 			 * transport list until there is less requests
2026 			 * than walkers. Check this condition without
2027 			 * a lock first to avoid contention on a mutex.
2028 			 */
2029 			if (pool->p_reqs < pool->p_walkers) {
2030 				/* Check again, now with the lock. */
2031 				mutex_enter(&pool->p_req_lock);
2032 				if (pool->p_reqs < pool->p_walkers)
2033 					break;	/* goto sleep */
2034 				mutex_exit(&pool->p_req_lock);
2035 			}
2036 
2037 			next = next->xp_next;
2038 		}
2039 
2040 	sleep:
2041 		/*
2042 		 * No work to do. Stop the `walk' and go asleep.
2043 		 * Decrement the `walking-threads' count for the pool.
2044 		 */
2045 		pool->p_walkers--;
2046 		rw_exit(&pool->p_lrwlock);
2047 
2048 		/*
2049 		 * Count us as asleep, mark this thread as safe
2050 		 * for suspend and wait for a request.
2051 		 */
2052 		pool->p_asleep++;
2053 		timeleft = cv_timedwait_sig(&pool->p_req_cv, &pool->p_req_lock,
2054 		    pool->p_timeout + lbolt);
2055 
2056 		/*
2057 		 * If the drowsy flag is on this means that
2058 		 * someone has signaled a wakeup. In such a case
2059 		 * the `asleep-threads' count has already updated
2060 		 * so just clear the flag.
2061 		 *
2062 		 * If the drowsy flag is off then we need to update
2063 		 * the `asleep-threads' count.
2064 		 */
2065 		if (pool->p_drowsy) {
2066 			pool->p_drowsy = FALSE;
2067 			/*
2068 			 * If the thread is here because it timedout,
2069 			 * instead of returning SVC_ETIMEDOUT, it is
2070 			 * time to do some more work.
2071 			 */
2072 			if (timeleft == -1)
2073 				timeleft = 1;
2074 		} else {
2075 			pool->p_asleep--;
2076 		}
2077 		mutex_exit(&pool->p_req_lock);
2078 
2079 		/*
2080 		 * If we received a signal while waiting for a
2081 		 * request, inform svc_run(), so that we can return
2082 		 * to user level and restart the call.
2083 		 */
2084 		if (timeleft == 0)
2085 			return (SVC_EINTR);
2086 
2087 		/*
2088 		 * If the current transport is gone then notify
2089 		 * svc_run() to unlink from it.
2090 		 */
2091 		if (xprt && xprt->xp_wq == NULL)
2092 			return (SVC_EXPRTGONE);
2093 
2094 		/*
2095 		 * If we have timed out waiting for a request inform
2096 		 * svc_run() that we probably don't need this thread.
2097 		 */
2098 		if (timeleft == -1)
2099 			return (SVC_ETIMEDOUT);
2100 	}
2101 }
2102 
2103 /*
2104  * Main loop of the kernel RPC server
2105  * - wait for input (find a transport with a pending request).
2106  * - dequeue the request
2107  * - call a registered server routine to process the requests
2108  *
2109  * There can many threads running concurrently in this loop
2110  * on the same or on different transports.
2111  */
2112 static int
2113 svc_run(SVCPOOL *pool)
2114 {
2115 	SVCMASTERXPRT *xprt = NULL;	/* master transport handle  */
2116 	SVCXPRT *clone_xprt;	/* clone for this thread    */
2117 	struct svc_globals *svc;
2118 	proc_t *p = ttoproc(curthread);
2119 
2120 	/* Allocate a clone transport handle for this thread */
2121 	clone_xprt = svc_clone_init();
2122 
2123 	/*
2124 	 * The loop iterates until the thread becomes
2125 	 * idle too long or the transport is gone.
2126 	 */
2127 	for (;;) {
2128 		SVCMASTERXPRT *next;
2129 		mblk_t *mp;
2130 
2131 		TRACE_0(TR_FAC_KRPC, TR_SVC_RUN, "svc_run");
2132 
2133 		/*
2134 		 * If the process is exiting/killed, return
2135 		 * immediately without processing any more
2136 		 * requests.
2137 		 */
2138 		if (p->p_flag & (SEXITING | SKILLED)) {
2139 			svc_thread_exit(pool, clone_xprt);
2140 
2141 			/*
2142 			 * Thread has been interrupted and therefore
2143 			 * the service daemon is leaving as well so
2144 			 * let's go ahead and remove the service
2145 			 * pool at this time.
2146 			 */
2147 			svc = zone_getspecific(svc_zone_key, curproc->p_zone);
2148 			mutex_enter(&svc->svc_plock);
2149 			svc_pool_unregister(svc, pool);
2150 			mutex_exit(&svc->svc_plock);
2151 
2152 			return (0);
2153 		}
2154 
2155 		/* Find a transport with a pending request */
2156 		next = svc_poll(pool, xprt, clone_xprt);
2157 
2158 		/*
2159 		 * If svc_poll() finds a transport with a request
2160 		 * it latches xp_req_lock on it. Therefore we need
2161 		 * to dequeue the request and release the lock as
2162 		 * soon as possible.
2163 		 */
2164 		ASSERT(next != NULL &&
2165 		    (next == SVC_EXPRTGONE ||
2166 		    next == SVC_ETIMEDOUT ||
2167 		    next == SVC_EINTR ||
2168 		    MUTEX_HELD(&next->xp_req_lock)));
2169 
2170 		/* Ooops! Current transport is closing. Unlink now */
2171 		if (next == SVC_EXPRTGONE) {
2172 			svc_clone_unlink(clone_xprt);
2173 			xprt = NULL;
2174 			continue;
2175 		}
2176 
2177 		/* Ooops! Timeout while waiting for a request. Exit */
2178 		if (next == SVC_ETIMEDOUT) {
2179 			svc_thread_exit(pool, clone_xprt);
2180 			return (0);
2181 		}
2182 
2183 		/*
2184 		 * Interrupted by a signal while waiting for a
2185 		 * request. Return to userspace and restart.
2186 		 */
2187 		if (next == SVC_EINTR) {
2188 			svc_thread_exit(pool, clone_xprt);
2189 
2190 			/*
2191 			 * Thread has been interrupted and therefore
2192 			 * the service daemon is leaving as well so
2193 			 * let's go ahead and remove the service
2194 			 * pool at this time.
2195 			 */
2196 			svc = zone_getspecific(svc_zone_key, curproc->p_zone);
2197 			mutex_enter(&svc->svc_plock);
2198 			svc_pool_unregister(svc, pool);
2199 			mutex_exit(&svc->svc_plock);
2200 
2201 			return (EINTR);
2202 		}
2203 
2204 		/*
2205 		 * De-queue the request and release the request lock
2206 		 * on this transport (latched by svc_poll()).
2207 		 */
2208 		mp = next->xp_req_head;
2209 		next->xp_req_head = mp->b_next;
2210 		mp->b_next = (mblk_t *)0;
2211 
2212 		TRACE_2(TR_FAC_KRPC, TR_NFSFP_QUE_REQ_DEQ,
2213 		    "rpc_que_req_deq:pool %p mp %p", pool, mp);
2214 		mutex_exit(&next->xp_req_lock);
2215 
2216 		/*
2217 		 * If this is a new request on a current transport then
2218 		 * the clone structure is already properly initialized.
2219 		 * Otherwise, if the request is on a different transport,
2220 		 * unlink from the current master and link to
2221 		 * the one we got a request on.
2222 		 */
2223 		if (next != xprt) {
2224 			if (xprt)
2225 				svc_clone_unlink(clone_xprt);
2226 			svc_clone_link(next, clone_xprt);
2227 			xprt = next;
2228 		}
2229 
2230 		/*
2231 		 * If there are more requests and req_cv hasn't
2232 		 * been signaled yet then wake up one more thread now.
2233 		 *
2234 		 * We avoid signaling req_cv until the most recently
2235 		 * signaled thread wakes up and gets CPU to clear
2236 		 * the `drowsy' flag.
2237 		 */
2238 		if (!(pool->p_drowsy || pool->p_reqs <= pool->p_walkers ||
2239 		    pool->p_asleep == 0)) {
2240 			mutex_enter(&pool->p_req_lock);
2241 
2242 			if (pool->p_drowsy || pool->p_reqs <= pool->p_walkers ||
2243 			    pool->p_asleep == 0)
2244 				mutex_exit(&pool->p_req_lock);
2245 			else {
2246 				pool->p_asleep--;
2247 				pool->p_drowsy = TRUE;
2248 
2249 				cv_signal(&pool->p_req_cv);
2250 				mutex_exit(&pool->p_req_lock);
2251 			}
2252 		}
2253 
2254 		/*
2255 		 * If there are no asleep/signaled threads, we are
2256 		 * still below pool->p_maxthreads limit, and no thread is
2257 		 * currently being created then signal the creator
2258 		 * for one more service thread.
2259 		 *
2260 		 * The asleep and drowsy checks are not protected
2261 		 * by a lock since it hurts performance and a wrong
2262 		 * decision is not essential.
2263 		 */
2264 		if (pool->p_asleep == 0 && !pool->p_drowsy &&
2265 		    pool->p_threads + pool->p_detached_threads <
2266 		    pool->p_maxthreads)
2267 			svc_creator_signal(pool);
2268 
2269 		/*
2270 		 * Process the request.
2271 		 */
2272 		svc_getreq(clone_xprt, mp);
2273 
2274 		/* If thread had a reservation it should have been canceled */
2275 		ASSERT(!clone_xprt->xp_reserved);
2276 
2277 		/*
2278 		 * If the clone is marked detached then exit.
2279 		 * The rpcmod slot has already been released
2280 		 * when we detached this thread.
2281 		 */
2282 		if (clone_xprt->xp_detached) {
2283 			svc_thread_exitdetached(pool, clone_xprt);
2284 			return (0);
2285 		}
2286 
2287 		/*
2288 		 * Release our reference on the rpcmod
2289 		 * slot attached to xp_wq->q_ptr.
2290 		 */
2291 		(*RELE_PROC(xprt)) (clone_xprt->xp_wq, NULL);
2292 	}
2293 	/* NOTREACHED */
2294 }
2295 
2296 /*
2297  * Flush any pending requests for the queue and
2298  * and free the associated mblks.
2299  */
2300 void
2301 svc_queueclean(queue_t *q)
2302 {
2303 	SVCMASTERXPRT *xprt = ((void **) q->q_ptr)[0];
2304 	mblk_t *mp;
2305 	SVCPOOL *pool;
2306 
2307 	/*
2308 	 * clean up the requests
2309 	 */
2310 	mutex_enter(&xprt->xp_req_lock);
2311 	pool = xprt->xp_pool;
2312 	while ((mp = xprt->xp_req_head) != NULL) {
2313 		/* remove the request from the list and decrement p_reqs */
2314 		xprt->xp_req_head = mp->b_next;
2315 		mutex_enter(&pool->p_req_lock);
2316 		mp->b_next = (mblk_t *)0;
2317 		pool->p_reqs--;
2318 		mutex_exit(&pool->p_req_lock);
2319 		(*RELE_PROC(xprt)) (xprt->xp_wq, mp);
2320 	}
2321 	mutex_exit(&xprt->xp_req_lock);
2322 }
2323 
2324 /*
2325  * This routine is called by rpcmod to inform kernel RPC that a
2326  * queue is closing. It is called after all the requests have been
2327  * picked up (that is after all the slots on the queue have
2328  * been released by kernel RPC). It is also guaranteed that no more
2329  * request will be delivered on this transport.
2330  *
2331  * - clear xp_wq to mark the master server transport handle as closing
2332  * - if there are no more threads on this transport close/destroy it
2333  * - otherwise, broadcast threads sleeping in svc_poll(); the last
2334  *   thread will close/destroy the transport.
2335  */
2336 void
2337 svc_queueclose(queue_t *q)
2338 {
2339 	SVCMASTERXPRT *xprt = ((void **) q->q_ptr)[0];
2340 
2341 	if (xprt == NULL) {
2342 		/*
2343 		 * If there is no master xprt associated with this stream,
2344 		 * then there is nothing to do.  This happens regularly
2345 		 * with connection-oriented listening streams created by
2346 		 * nfsd.
2347 		 */
2348 		return;
2349 	}
2350 
2351 	mutex_enter(&xprt->xp_thread_lock);
2352 
2353 	ASSERT(xprt->xp_req_head == NULL);
2354 	ASSERT(xprt->xp_wq != NULL);
2355 
2356 	xprt->xp_wq = NULL;
2357 
2358 	if (xprt->xp_threads == 0) {
2359 		SVCPOOL *pool = xprt->xp_pool;
2360 
2361 		/*
2362 		 * svc_xprt_cleanup() destroys the transport
2363 		 * or releases the transport thread lock
2364 		 */
2365 		svc_xprt_cleanup(xprt, FALSE);
2366 
2367 		mutex_enter(&pool->p_thread_lock);
2368 
2369 		/*
2370 		 * If the pool is in closing state and this was
2371 		 * the last transport in the pool then signal the creator
2372 		 * thread to clean up and exit.
2373 		 */
2374 		if (pool->p_closing && svc_pool_tryexit(pool)) {
2375 			return;
2376 		}
2377 		mutex_exit(&pool->p_thread_lock);
2378 	} else {
2379 		/*
2380 		 * Wakeup threads sleeping in svc_poll() so that they
2381 		 * unlink from the transport
2382 		 */
2383 		mutex_enter(&xprt->xp_pool->p_req_lock);
2384 		cv_broadcast(&xprt->xp_pool->p_req_cv);
2385 		mutex_exit(&xprt->xp_pool->p_req_lock);
2386 
2387 		/*
2388 		 *  NOTICE: No references to the master transport structure
2389 		 *	    beyond this point!
2390 		 */
2391 		mutex_exit(&xprt->xp_thread_lock);
2392 	}
2393 }
2394 
2395 /*
2396  * Interrupt `request delivery' routine called from rpcmod
2397  * - put a request at the tail of the transport request queue
2398  * - insert a hint for svc_poll() into the xprt-ready queue
2399  * - increment the `pending-requests' count for the pool
2400  * - wake up a thread sleeping in svc_poll() if necessary
2401  * - if all the threads are running ask the creator for a new one.
2402  */
2403 void
2404 svc_queuereq(queue_t *q, mblk_t *mp)
2405 {
2406 	SVCMASTERXPRT *xprt = ((void **) q->q_ptr)[0];
2407 	SVCPOOL *pool = xprt->xp_pool;
2408 
2409 	TRACE_0(TR_FAC_KRPC, TR_SVC_QUEUEREQ_START, "svc_queuereq_start");
2410 
2411 	ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL ||
2412 	    mp->b_datap->db_type != M_DATA);
2413 
2414 	/*
2415 	 * Step 1.
2416 	 * Grab the transport's request lock and the
2417 	 * pool's request lock so that when we put
2418 	 * the request at the tail of the transport's
2419 	 * request queue, possibly put the request on
2420 	 * the xprt ready queue and increment the
2421 	 * pending request count it looks atomic.
2422 	 */
2423 	mutex_enter(&xprt->xp_req_lock);
2424 	mutex_enter(&pool->p_req_lock);
2425 	if (xprt->xp_req_head == NULL)
2426 		xprt->xp_req_head = mp;
2427 	else
2428 		xprt->xp_req_tail->b_next = mp;
2429 	xprt->xp_req_tail = mp;
2430 
2431 	/*
2432 	 * Step 2.
2433 	 * Insert a hint into the xprt-ready queue, increment
2434 	 * `pending-requests' count for the pool, and wake up
2435 	 * a thread sleeping in svc_poll() if necessary.
2436 	 */
2437 
2438 	/* Insert pointer to this transport into the xprt-ready queue */
2439 	svc_xprt_qput(pool, xprt);
2440 
2441 	/* Increment the `pending-requests' count for the pool */
2442 	pool->p_reqs++;
2443 
2444 	TRACE_2(TR_FAC_KRPC, TR_NFSFP_QUE_REQ_ENQ,
2445 	    "rpc_que_req_enq:pool %p mp %p", pool, mp);
2446 
2447 	/*
2448 	 * If there are more requests and req_cv hasn't
2449 	 * been signaled yet then wake up one more thread now.
2450 	 *
2451 	 * We avoid signaling req_cv until the most recently
2452 	 * signaled thread wakes up and gets CPU to clear
2453 	 * the `drowsy' flag.
2454 	 */
2455 	if (pool->p_drowsy || pool->p_reqs <= pool->p_walkers ||
2456 	    pool->p_asleep == 0) {
2457 		mutex_exit(&pool->p_req_lock);
2458 	} else {
2459 		pool->p_drowsy = TRUE;
2460 		pool->p_asleep--;
2461 
2462 		/*
2463 		 * Signal wakeup and drop the request lock.
2464 		 */
2465 		cv_signal(&pool->p_req_cv);
2466 		mutex_exit(&pool->p_req_lock);
2467 	}
2468 	mutex_exit(&xprt->xp_req_lock);
2469 
2470 	/*
2471 	 * Step 3.
2472 	 * If there are no asleep/signaled threads, we are
2473 	 * still below pool->p_maxthreads limit, and no thread is
2474 	 * currently being created then signal the creator
2475 	 * for one more service thread.
2476 	 *
2477 	 * The asleep and drowsy checks are not not protected
2478 	 * by a lock since it hurts performance and a wrong
2479 	 * decision is not essential.
2480 	 */
2481 	if (pool->p_asleep == 0 && !pool->p_drowsy &&
2482 	    pool->p_threads + pool->p_detached_threads < pool->p_maxthreads)
2483 		svc_creator_signal(pool);
2484 
2485 	TRACE_1(TR_FAC_KRPC, TR_SVC_QUEUEREQ_END,
2486 	    "svc_queuereq_end:(%S)", "end");
2487 }
2488 
2489 /*
2490  * Reserve a service thread so that it can be detached later.
2491  * This reservation is required to make sure that when it tries to
2492  * detach itself the total number of detached threads does not exceed
2493  * pool->p_maxthreads - pool->p_redline (i.e. that we can have
2494  * up to pool->p_redline non-detached threads).
2495  *
2496  * If the thread does not detach itself later, it should cancel the
2497  * reservation before returning to svc_run().
2498  *
2499  * - check if there is room for more reserved/detached threads
2500  * - if so, then increment the `reserved threads' count for the pool
2501  * - mark the thread as reserved (setting the flag in the clone transport
2502  *   handle for this thread
2503  * - returns 1 if the reservation succeeded, 0 if it failed.
2504  */
2505 int
2506 svc_reserve_thread(SVCXPRT *clone_xprt)
2507 {
2508 	SVCPOOL *pool = clone_xprt->xp_master->xp_pool;
2509 
2510 	/* Recursive reservations are not allowed */
2511 	ASSERT(!clone_xprt->xp_reserved);
2512 	ASSERT(!clone_xprt->xp_detached);
2513 
2514 	/* Check pool counts if there is room for reservation */
2515 	mutex_enter(&pool->p_thread_lock);
2516 	if (pool->p_reserved_threads + pool->p_detached_threads >=
2517 	    pool->p_maxthreads - pool->p_redline) {
2518 		mutex_exit(&pool->p_thread_lock);
2519 		return (0);
2520 	}
2521 	pool->p_reserved_threads++;
2522 	mutex_exit(&pool->p_thread_lock);
2523 
2524 	/* Mark the thread (clone handle) as reserved */
2525 	clone_xprt->xp_reserved = TRUE;
2526 
2527 	return (1);
2528 }
2529 
2530 /*
2531  * Cancel a reservation for a thread.
2532  * - decrement the `reserved threads' count for the pool
2533  * - clear the flag in the clone transport handle for this thread.
2534  */
2535 void
2536 svc_unreserve_thread(SVCXPRT *clone_xprt)
2537 {
2538 	SVCPOOL *pool = clone_xprt->xp_master->xp_pool;
2539 
2540 	/* Thread must have a reservation */
2541 	ASSERT(clone_xprt->xp_reserved);
2542 	ASSERT(!clone_xprt->xp_detached);
2543 
2544 	/* Decrement global count */
2545 	mutex_enter(&pool->p_thread_lock);
2546 	pool->p_reserved_threads--;
2547 	mutex_exit(&pool->p_thread_lock);
2548 
2549 	/* Clear reservation flag */
2550 	clone_xprt->xp_reserved = FALSE;
2551 }
2552 
2553 /*
2554  * Detach a thread from its transport, so that it can block for an
2555  * extended time.  Because the transport can be closed after the thread is
2556  * detached, the thread should have already sent off a reply if it was
2557  * going to send one.
2558  *
2559  * - decrement `non-detached threads' count and increment `detached threads'
2560  *   counts for the transport
2561  * - decrement the  `non-detached threads' and `reserved threads'
2562  *   counts and increment the `detached threads' count for the pool
2563  * - release the rpcmod slot
2564  * - mark the clone (thread) as detached.
2565  *
2566  * No need to return a pointer to the thread's CPR information, since
2567  * the thread has a userland identity.
2568  *
2569  * NOTICE: a thread must not detach itself without making a prior reservation
2570  *	   through svc_thread_reserve().
2571  */
2572 callb_cpr_t *
2573 svc_detach_thread(SVCXPRT *clone_xprt)
2574 {
2575 	SVCMASTERXPRT *xprt = clone_xprt->xp_master;
2576 	SVCPOOL *pool = xprt->xp_pool;
2577 
2578 	/* Thread must have a reservation */
2579 	ASSERT(clone_xprt->xp_reserved);
2580 	ASSERT(!clone_xprt->xp_detached);
2581 
2582 	/* Bookkeeping for this transport */
2583 	mutex_enter(&xprt->xp_thread_lock);
2584 	xprt->xp_threads--;
2585 	xprt->xp_detached_threads++;
2586 	mutex_exit(&xprt->xp_thread_lock);
2587 
2588 	/* Bookkeeping for the pool */
2589 	mutex_enter(&pool->p_thread_lock);
2590 	pool->p_threads--;
2591 	pool->p_reserved_threads--;
2592 	pool->p_detached_threads++;
2593 	mutex_exit(&pool->p_thread_lock);
2594 
2595 	/* Release an rpcmod slot for this request */
2596 	(*RELE_PROC(xprt)) (clone_xprt->xp_wq, NULL);
2597 
2598 	/* Mark the clone (thread) as detached */
2599 	clone_xprt->xp_reserved = FALSE;
2600 	clone_xprt->xp_detached = TRUE;
2601 
2602 	return (NULL);
2603 }
2604 
2605 /*
2606  * This routine is responsible for extracting RDMA plugin master XPRT,
2607  * unregister from the SVCPOOL and initiate plugin specific cleanup.
2608  * It is passed a list/group of rdma transports as records which are
2609  * active in a given registered or unregistered kRPC thread pool. Its shuts
2610  * all active rdma transports in that pool. If the thread active on the trasport
2611  * happens to be last thread for that pool, it will signal the creater thread
2612  * to cleanup the pool and destroy the xprt in svc_queueclose()
2613  */
2614 void
2615 rdma_stop(rdma_xprt_group_t rdma_xprts)
2616 {
2617 	SVCMASTERXPRT *xprt;
2618 	rdma_xprt_record_t *curr_rec;
2619 	queue_t *q;
2620 	mblk_t *mp;
2621 	int i;
2622 	SVCPOOL *pool;
2623 
2624 	if (rdma_xprts.rtg_count == 0)
2625 		return;
2626 
2627 	for (i = 0; i < rdma_xprts.rtg_count; i++) {
2628 		curr_rec = rdma_xprts.rtg_listhead;
2629 		rdma_xprts.rtg_listhead = curr_rec->rtr_next;
2630 		curr_rec->rtr_next = NULL;
2631 		xprt = curr_rec->rtr_xprt_ptr;
2632 		q = xprt->xp_wq;
2633 		svc_rdma_kstop(xprt);
2634 
2635 		mutex_enter(&xprt->xp_req_lock);
2636 		pool = xprt->xp_pool;
2637 		while ((mp = xprt->xp_req_head) != NULL) {
2638 			/*
2639 			 * remove the request from the list and
2640 			 * decrement p_reqs
2641 			 */
2642 			xprt->xp_req_head = mp->b_next;
2643 			mutex_enter(&pool->p_req_lock);
2644 			mp->b_next = (mblk_t *)0;
2645 			pool->p_reqs--;
2646 			mutex_exit(&pool->p_req_lock);
2647 			if (mp)
2648 				freemsg(mp);
2649 		}
2650 		mutex_exit(&xprt->xp_req_lock);
2651 		svc_queueclose(q);
2652 #ifdef	DEBUG
2653 		if (rdma_check)
2654 			cmn_err(CE_NOTE, "rdma_stop: Exited svc_queueclose\n");
2655 #endif
2656 		/*
2657 		 * Free the rdma transport record for the expunged rdma
2658 		 * based master transport handle.
2659 		 */
2660 		kmem_free(curr_rec, sizeof (rdma_xprt_record_t));
2661 		if (!rdma_xprts.rtg_listhead)
2662 			break;
2663 	}
2664 }
2665