xref: /titanic_52/usr/src/uts/common/rpc/rpcmod.c (revision bb1fad37c75defa7a6ae25f00c1d4b356713b734)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 /*
31  * Kernel RPC filtering module
32  */
33 
34 #include <sys/param.h>
35 #include <sys/types.h>
36 #include <sys/stream.h>
37 #include <sys/stropts.h>
38 #include <sys/strsubr.h>
39 #include <sys/tihdr.h>
40 #include <sys/timod.h>
41 #include <sys/tiuser.h>
42 #include <sys/debug.h>
43 #include <sys/signal.h>
44 #include <sys/pcb.h>
45 #include <sys/user.h>
46 #include <sys/errno.h>
47 #include <sys/cred.h>
48 #include <sys/policy.h>
49 #include <sys/inline.h>
50 #include <sys/cmn_err.h>
51 #include <sys/kmem.h>
52 #include <sys/file.h>
53 #include <sys/sysmacros.h>
54 #include <sys/systm.h>
55 #include <sys/t_lock.h>
56 #include <sys/ddi.h>
57 #include <sys/vtrace.h>
58 #include <sys/callb.h>
59 #include <sys/strsun.h>
60 
61 #include <sys/strlog.h>
62 #include <rpc/rpc_com.h>
63 #include <inet/common.h>
64 #include <rpc/types.h>
65 #include <sys/time.h>
66 #include <rpc/xdr.h>
67 #include <rpc/auth.h>
68 #include <rpc/clnt.h>
69 #include <rpc/rpc_msg.h>
70 #include <rpc/clnt.h>
71 #include <rpc/svc.h>
72 #include <rpc/rpcsys.h>
73 #include <rpc/rpc_rdma.h>
74 
75 /*
76  * This is the loadable module wrapper.
77  */
78 #include <sys/conf.h>
79 #include <sys/modctl.h>
80 #include <sys/syscall.h>
81 
82 extern struct streamtab rpcinfo;
83 
84 static struct fmodsw fsw = {
85 	"rpcmod",
86 	&rpcinfo,
87 	D_NEW|D_MP,
88 };
89 
90 /*
91  * Module linkage information for the kernel.
92  */
93 
94 static struct modlstrmod modlstrmod = {
95 	&mod_strmodops, "rpc interface str mod", &fsw
96 };
97 
98 /*
99  * For the RPC system call.
100  */
101 static struct sysent rpcsysent = {
102 	2,
103 	SE_32RVAL1 | SE_ARGC | SE_NOUNLOAD,
104 	rpcsys
105 };
106 
107 static struct modlsys modlsys = {
108 	&mod_syscallops,
109 	"RPC syscall",
110 	&rpcsysent
111 };
112 
113 #ifdef _SYSCALL32_IMPL
114 static struct modlsys modlsys32 = {
115 	&mod_syscallops32,
116 	"32-bit RPC syscall",
117 	&rpcsysent
118 };
119 #endif /* _SYSCALL32_IMPL */
120 
121 static struct modlinkage modlinkage = {
122 	MODREV_1,
123 	{
124 		&modlsys,
125 #ifdef _SYSCALL32_IMPL
126 		&modlsys32,
127 #endif
128 		&modlstrmod,
129 		NULL
130 	}
131 };
132 
133 int
134 _init(void)
135 {
136 	int error = 0;
137 	callb_id_t cid;
138 	int status;
139 
140 	svc_init();
141 	clnt_init();
142 	cid = callb_add(connmgr_cpr_reset, 0, CB_CL_CPR_RPC, "rpc");
143 
144 	if (error = mod_install(&modlinkage)) {
145 		/*
146 		 * Could not install module, cleanup previous
147 		 * initialization work.
148 		 */
149 		clnt_fini();
150 		if (cid != NULL)
151 			(void) callb_delete(cid);
152 
153 		return (error);
154 	}
155 
156 	/*
157 	 * Load up the RDMA plugins and initialize the stats. Even if the
158 	 * plugins loadup fails, but rpcmod was successfully installed the
159 	 * counters still get initialized.
160 	 */
161 	rw_init(&rdma_lock, NULL, RW_DEFAULT, NULL);
162 	mutex_init(&rdma_modload_lock, NULL, MUTEX_DEFAULT, NULL);
163 
164 	cv_init(&rdma_wait.svc_cv, NULL, CV_DEFAULT, NULL);
165 	mutex_init(&rdma_wait.svc_lock, NULL, MUTEX_DEFAULT, NULL);
166 
167 	mt_kstat_init();
168 
169 	/*
170 	 * Get our identification into ldi.  This is used for loading
171 	 * other modules, e.g. rpcib.
172 	 */
173 	status = ldi_ident_from_mod(&modlinkage, &rpcmod_li);
174 	if (status != 0) {
175 		cmn_err(CE_WARN, "ldi_ident_from_mod fails with %d", status);
176 		rpcmod_li = NULL;
177 	}
178 
179 	return (error);
180 }
181 
182 /*
183  * The unload entry point fails, because we advertise entry points into
184  * rpcmod from the rest of kRPC: rpcmod_release().
185  */
186 int
187 _fini(void)
188 {
189 	return (EBUSY);
190 }
191 
192 int
193 _info(struct modinfo *modinfop)
194 {
195 	return (mod_info(&modlinkage, modinfop));
196 }
197 
198 extern int nulldev();
199 
200 #define	RPCMOD_ID	2049
201 
202 int rmm_open(), rmm_close();
203 
204 /*
205  * To save instructions, since STREAMS ignores the return value
206  * from these functions, they are defined as void here. Kind of icky, but...
207  */
208 void rmm_rput(queue_t *, mblk_t *);
209 void rmm_wput(queue_t *, mblk_t *);
210 void rmm_rsrv(queue_t *);
211 void rmm_wsrv(queue_t *);
212 
213 int rpcmodopen(), rpcmodclose();
214 void rpcmodrput(), rpcmodwput();
215 void rpcmodrsrv(), rpcmodwsrv();
216 
217 static	void	rpcmodwput_other(queue_t *, mblk_t *);
218 static	int	mir_close(queue_t *q);
219 static	int	mir_open(queue_t *q, dev_t *devp, int flag, int sflag,
220 		    cred_t *credp);
221 static	void	mir_rput(queue_t *q, mblk_t *mp);
222 static	void	mir_rsrv(queue_t *q);
223 static	void	mir_wput(queue_t *q, mblk_t *mp);
224 static	void	mir_wsrv(queue_t *q);
225 
226 static struct module_info rpcmod_info =
227 	{RPCMOD_ID, "rpcmod", 0, INFPSZ, 256*1024, 1024};
228 
229 /*
230  * Read side has no service procedure.
231  */
232 static struct qinit rpcmodrinit = {
233 	(int (*)())rmm_rput,
234 	(int (*)())rmm_rsrv,
235 	rmm_open,
236 	rmm_close,
237 	nulldev,
238 	&rpcmod_info,
239 	NULL
240 };
241 
242 /*
243  * The write put procedure is simply putnext to conserve stack space.
244  * The write service procedure is not used to queue data, but instead to
245  * synchronize with flow control.
246  */
247 static struct qinit rpcmodwinit = {
248 	(int (*)())rmm_wput,
249 	(int (*)())rmm_wsrv,
250 	rmm_open,
251 	rmm_close,
252 	nulldev,
253 	&rpcmod_info,
254 	NULL
255 };
256 struct streamtab rpcinfo = { &rpcmodrinit, &rpcmodwinit, NULL, NULL };
257 
258 struct xprt_style_ops {
259 	int (*xo_open)();
260 	int (*xo_close)();
261 	void (*xo_wput)();
262 	void (*xo_wsrv)();
263 	void (*xo_rput)();
264 	void (*xo_rsrv)();
265 };
266 
267 static struct xprt_style_ops xprt_clts_ops = {
268 	rpcmodopen,
269 	rpcmodclose,
270 	rpcmodwput,
271 	rpcmodwsrv,
272 	rpcmodrput,
273 	NULL
274 };
275 
276 static struct xprt_style_ops xprt_cots_ops = {
277 	mir_open,
278 	mir_close,
279 	mir_wput,
280 	mir_wsrv,
281 	mir_rput,
282 	mir_rsrv
283 };
284 
285 /*
286  * Per rpcmod "slot" data structure. q->q_ptr points to one of these.
287  */
288 struct rpcm {
289 	void		*rm_krpc_cell;	/* Reserved for use by KRPC */
290 	struct		xprt_style_ops	*rm_ops;
291 	int		rm_type;	/* Client or server side stream */
292 #define	RM_CLOSING	0x1		/* somebody is trying to close slot */
293 	uint_t		rm_state;	/* state of the slot. see above */
294 	uint_t		rm_ref;		/* cnt of external references to slot */
295 	kmutex_t	rm_lock;	/* mutex protecting above fields */
296 	kcondvar_t	rm_cwait;	/* condition for closing */
297 	zoneid_t	rm_zoneid;	/* zone which pushed rpcmod */
298 };
299 
300 struct temp_slot {
301 	void *cell;
302 	struct xprt_style_ops *ops;
303 	int type;
304 	mblk_t *info_ack;
305 	kmutex_t lock;
306 	kcondvar_t wait;
307 };
308 
309 typedef struct mir_s {
310 	void	*mir_krpc_cell;	/* Reserved for KRPC use. This field */
311 					/* must be first in the structure. */
312 	struct xprt_style_ops	*rm_ops;
313 	int	mir_type;		/* Client or server side stream */
314 
315 	mblk_t	*mir_head_mp;		/* RPC msg in progress */
316 		/*
317 		 * mir_head_mp points the first mblk being collected in
318 		 * the current RPC message.  Record headers are removed
319 		 * before data is linked into mir_head_mp.
320 		 */
321 	mblk_t	*mir_tail_mp;		/* Last mblk in mir_head_mp */
322 		/*
323 		 * mir_tail_mp points to the last mblk in the message
324 		 * chain starting at mir_head_mp.  It is only valid
325 		 * if mir_head_mp is non-NULL and is used to add new
326 		 * data blocks to the end of chain quickly.
327 		 */
328 
329 	int32_t	mir_frag_len;		/* Bytes seen in the current frag */
330 		/*
331 		 * mir_frag_len starts at -4 for beginning of each fragment.
332 		 * When this length is negative, it indicates the number of
333 		 * bytes that rpcmod needs to complete the record marker
334 		 * header.  When it is positive or zero, it holds the number
335 		 * of bytes that have arrived for the current fragment and
336 		 * are held in mir_header_mp.
337 		 */
338 
339 	int32_t	mir_frag_header;
340 		/*
341 		 * Fragment header as collected for the current fragment.
342 		 * It holds the last-fragment indicator and the number
343 		 * of bytes in the fragment.
344 		 */
345 
346 	unsigned int
347 		mir_ordrel_pending : 1,	/* Sent T_ORDREL_REQ */
348 		mir_hold_inbound : 1,	/* Hold inbound messages on server */
349 					/* side until outbound flow control */
350 					/* is relieved. */
351 		mir_closing : 1,	/* The stream is being closed */
352 		mir_inrservice : 1,	/* data queued or rd srv proc running */
353 		mir_inwservice : 1,	/* data queued or wr srv proc running */
354 		mir_inwflushdata : 1,	/* flush M_DATAs when srv runs */
355 		/*
356 		 * On client streams, mir_clntreq is 0 or 1; it is set
357 		 * to 1 whenever a new request is sent out (mir_wput)
358 		 * and cleared when the timer fires (mir_timer).  If
359 		 * the timer fires with this value equal to 0, then the
360 		 * stream is considered idle and KRPC is notified.
361 		 */
362 		mir_clntreq : 1,
363 		/*
364 		 * On server streams, stop accepting messages
365 		 */
366 		mir_svc_no_more_msgs : 1,
367 		mir_listen_stream : 1,	/* listen end point */
368 		mir_unused : 1,	/* no longer used */
369 		mir_timer_call : 1,
370 		mir_junk_fill_thru_bit_31 : 21;
371 
372 	int	mir_setup_complete;	/* server has initialized everything */
373 	timeout_id_t mir_timer_id;	/* Timer for idle checks */
374 	clock_t	mir_idle_timeout;	/* Allowed idle time before shutdown */
375 		/*
376 		 * This value is copied from clnt_idle_timeout or
377 		 * svc_idle_timeout during the appropriate ioctl.
378 		 * Kept in milliseconds
379 		 */
380 	clock_t	mir_use_timestamp;	/* updated on client with each use */
381 		/*
382 		 * This value is set to lbolt
383 		 * every time a client stream sends or receives data.
384 		 * Even if the timer message arrives, we don't shutdown
385 		 * client unless:
386 		 *    lbolt >= MSEC_TO_TICK(mir_idle_timeout)+mir_use_timestamp.
387 		 * This value is kept in HZ.
388 		 */
389 
390 	uint_t	*mir_max_msg_sizep;	/* Reference to sanity check size */
391 		/*
392 		 * This pointer is set to &clnt_max_msg_size or
393 		 * &svc_max_msg_size during the appropriate ioctl.
394 		 */
395 	zoneid_t mir_zoneid;	/* zone which pushed rpcmod */
396 	/* Server-side fields. */
397 	int	mir_ref_cnt;		/* Reference count: server side only */
398 					/* counts the number of references */
399 					/* that a kernel RPC server thread */
400 					/* (see svc_run()) has on this rpcmod */
401 					/* slot. Effectively, it is the */
402 					/* number * of unprocessed messages */
403 					/* that have been passed up to the */
404 					/* KRPC layer */
405 
406 	mblk_t	*mir_svc_pend_mp;	/* Pending T_ORDREL_IND or */
407 					/* T_DISCON_IND */
408 
409 	/*
410 	 * these fields are for both client and server, but for debugging,
411 	 * it is easier to have these last in the structure.
412 	 */
413 	kmutex_t	mir_mutex;	/* Mutex and condvar for close */
414 	kcondvar_t	mir_condvar;	/* synchronization. */
415 	kcondvar_t	mir_timer_cv;	/* Timer routine sync. */
416 } mir_t;
417 
418 void tmp_rput(queue_t *q, mblk_t *mp);
419 
420 struct xprt_style_ops tmpops = {
421 	NULL,
422 	NULL,
423 	putnext,
424 	NULL,
425 	tmp_rput,
426 	NULL
427 };
428 
429 void
430 tmp_rput(queue_t *q, mblk_t *mp)
431 {
432 	struct temp_slot *t = (struct temp_slot *)(q->q_ptr);
433 	struct T_info_ack *pptr;
434 
435 	switch (mp->b_datap->db_type) {
436 	case M_PCPROTO:
437 		pptr = (struct T_info_ack *)mp->b_rptr;
438 		switch (pptr->PRIM_type) {
439 		case T_INFO_ACK:
440 			mutex_enter(&t->lock);
441 			t->info_ack = mp;
442 			cv_signal(&t->wait);
443 			mutex_exit(&t->lock);
444 			return;
445 		default:
446 			break;
447 		}
448 	default:
449 		break;
450 	}
451 
452 	/*
453 	 * Not an info-ack, so free it. This is ok because we should
454 	 * not be receiving data until the open finishes: rpcmod
455 	 * is pushed well before the end-point is bound to an address.
456 	 */
457 	freemsg(mp);
458 }
459 
460 int
461 rmm_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *crp)
462 {
463 	mblk_t *bp;
464 	struct temp_slot ts, *t;
465 	struct T_info_ack *pptr;
466 	int error = 0;
467 
468 	ASSERT(q != NULL);
469 	/*
470 	 * Check for re-opens.
471 	 */
472 	if (q->q_ptr) {
473 		TRACE_1(TR_FAC_KRPC, TR_RPCMODOPEN_END,
474 		    "rpcmodopen_end:(%s)", "q->qptr");
475 		return (0);
476 	}
477 
478 	t = &ts;
479 	bzero(t, sizeof (*t));
480 	q->q_ptr = (void *)t;
481 	WR(q)->q_ptr = (void *)t;
482 
483 	/*
484 	 * Allocate the required messages upfront.
485 	 */
486 	if ((bp = allocb_cred(sizeof (struct T_info_req) +
487 	    sizeof (struct T_info_ack), crp, curproc->p_pid)) == NULL) {
488 		return (ENOBUFS);
489 	}
490 
491 	mutex_init(&t->lock, NULL, MUTEX_DEFAULT, NULL);
492 	cv_init(&t->wait, NULL, CV_DEFAULT, NULL);
493 
494 	t->ops = &tmpops;
495 
496 	qprocson(q);
497 	bp->b_datap->db_type = M_PCPROTO;
498 	*(int32_t *)bp->b_wptr = (int32_t)T_INFO_REQ;
499 	bp->b_wptr += sizeof (struct T_info_req);
500 	putnext(WR(q), bp);
501 
502 	mutex_enter(&t->lock);
503 	while (t->info_ack == NULL) {
504 		if (cv_wait_sig(&t->wait, &t->lock) == 0) {
505 			error = EINTR;
506 			break;
507 		}
508 	}
509 	mutex_exit(&t->lock);
510 
511 	if (error)
512 		goto out;
513 
514 	pptr = (struct T_info_ack *)t->info_ack->b_rptr;
515 
516 	if (pptr->SERV_type == T_CLTS) {
517 		if ((error = rpcmodopen(q, devp, flag, sflag, crp)) == 0)
518 			((struct rpcm *)q->q_ptr)->rm_ops = &xprt_clts_ops;
519 	} else {
520 		if ((error = mir_open(q, devp, flag, sflag, crp)) == 0)
521 			((mir_t *)q->q_ptr)->rm_ops = &xprt_cots_ops;
522 	}
523 
524 out:
525 	if (error)
526 		qprocsoff(q);
527 
528 	freemsg(t->info_ack);
529 	mutex_destroy(&t->lock);
530 	cv_destroy(&t->wait);
531 
532 	return (error);
533 }
534 
535 void
536 rmm_rput(queue_t *q, mblk_t  *mp)
537 {
538 	(*((struct temp_slot *)q->q_ptr)->ops->xo_rput)(q, mp);
539 }
540 
541 void
542 rmm_rsrv(queue_t *q)
543 {
544 	(*((struct temp_slot *)q->q_ptr)->ops->xo_rsrv)(q);
545 }
546 
547 void
548 rmm_wput(queue_t *q, mblk_t *mp)
549 {
550 	(*((struct temp_slot *)q->q_ptr)->ops->xo_wput)(q, mp);
551 }
552 
553 void
554 rmm_wsrv(queue_t *q)
555 {
556 	(*((struct temp_slot *)q->q_ptr)->ops->xo_wsrv)(q);
557 }
558 
559 int
560 rmm_close(queue_t *q, int flag, cred_t *crp)
561 {
562 	return ((*((struct temp_slot *)q->q_ptr)->ops->xo_close)(q, flag, crp));
563 }
564 
565 static void rpcmod_release(queue_t *, mblk_t *);
566 /*
567  * rpcmodopen -	open routine gets called when the module gets pushed
568  *		onto the stream.
569  */
570 /*ARGSUSED*/
571 int
572 rpcmodopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *crp)
573 {
574 	struct rpcm *rmp;
575 
576 	extern void (*rpc_rele)(queue_t *, mblk_t *);
577 
578 	TRACE_0(TR_FAC_KRPC, TR_RPCMODOPEN_START, "rpcmodopen_start:");
579 
580 	/*
581 	 * Initialize entry points to release a rpcmod slot (and an input
582 	 * message if supplied) and to send an output message to the module
583 	 * below rpcmod.
584 	 */
585 	if (rpc_rele == NULL)
586 		rpc_rele = rpcmod_release;
587 
588 	/*
589 	 * Only sufficiently privileged users can use this module, and it
590 	 * is assumed that they will use this module properly, and NOT send
591 	 * bulk data from downstream.
592 	 */
593 	if (secpolicy_rpcmod_open(crp) != 0)
594 		return (EPERM);
595 
596 	/*
597 	 * Allocate slot data structure.
598 	 */
599 	rmp = kmem_zalloc(sizeof (*rmp), KM_SLEEP);
600 
601 	mutex_init(&rmp->rm_lock, NULL, MUTEX_DEFAULT, NULL);
602 	cv_init(&rmp->rm_cwait, NULL, CV_DEFAULT, NULL);
603 	rmp->rm_zoneid = rpc_zoneid();
604 	/*
605 	 * slot type will be set by kRPC client and server ioctl's
606 	 */
607 	rmp->rm_type = 0;
608 
609 	q->q_ptr = (void *)rmp;
610 	WR(q)->q_ptr = (void *)rmp;
611 
612 	TRACE_1(TR_FAC_KRPC, TR_RPCMODOPEN_END, "rpcmodopen_end:(%s)", "end");
613 	return (0);
614 }
615 
616 /*
617  * rpcmodclose - This routine gets called when the module gets popped
618  * off of the stream.
619  */
620 /*ARGSUSED*/
621 int
622 rpcmodclose(queue_t *q, int flag, cred_t *crp)
623 {
624 	struct rpcm *rmp;
625 
626 	ASSERT(q != NULL);
627 	rmp = (struct rpcm *)q->q_ptr;
628 
629 	/*
630 	 * Mark our state as closing.
631 	 */
632 	mutex_enter(&rmp->rm_lock);
633 	rmp->rm_state |= RM_CLOSING;
634 
635 	/*
636 	 * Check and see if there are any messages on the queue.  If so, send
637 	 * the messages, regardless whether the downstream module is ready to
638 	 * accept data.
639 	 */
640 	if (rmp->rm_type == RPC_SERVER) {
641 		flushq(q, FLUSHDATA);
642 
643 		qenable(WR(q));
644 
645 		if (rmp->rm_ref) {
646 			mutex_exit(&rmp->rm_lock);
647 			/*
648 			 * call into SVC to clean the queue
649 			 */
650 			svc_queueclean(q);
651 			mutex_enter(&rmp->rm_lock);
652 
653 			/*
654 			 * Block while there are kRPC threads with a reference
655 			 * to this message.
656 			 */
657 			while (rmp->rm_ref)
658 				cv_wait(&rmp->rm_cwait, &rmp->rm_lock);
659 		}
660 
661 		mutex_exit(&rmp->rm_lock);
662 
663 		/*
664 		 * It is now safe to remove this queue from the stream. No kRPC
665 		 * threads have a reference to the stream, and none ever will,
666 		 * because RM_CLOSING is set.
667 		 */
668 		qprocsoff(q);
669 
670 		/* Notify kRPC that this stream is going away. */
671 		svc_queueclose(q);
672 	} else {
673 		mutex_exit(&rmp->rm_lock);
674 		qprocsoff(q);
675 	}
676 
677 	q->q_ptr = NULL;
678 	WR(q)->q_ptr = NULL;
679 	mutex_destroy(&rmp->rm_lock);
680 	cv_destroy(&rmp->rm_cwait);
681 	kmem_free(rmp, sizeof (*rmp));
682 	return (0);
683 }
684 
685 #ifdef	DEBUG
686 int	rpcmod_send_msg_up = 0;
687 int	rpcmod_send_uderr = 0;
688 int	rpcmod_send_dup = 0;
689 int	rpcmod_send_dup_cnt = 0;
690 #endif
691 
692 /*
693  * rpcmodrput -	Module read put procedure.  This is called from
694  *		the module, driver, or stream head downstream.
695  */
696 void
697 rpcmodrput(queue_t *q, mblk_t *mp)
698 {
699 	struct rpcm *rmp;
700 	union T_primitives *pptr;
701 	int hdrsz;
702 
703 	TRACE_0(TR_FAC_KRPC, TR_RPCMODRPUT_START, "rpcmodrput_start:");
704 
705 	ASSERT(q != NULL);
706 	rmp = (struct rpcm *)q->q_ptr;
707 
708 	if (rmp->rm_type == 0) {
709 		freemsg(mp);
710 		return;
711 	}
712 
713 #ifdef DEBUG
714 	if (rpcmod_send_msg_up > 0) {
715 		mblk_t *nmp = copymsg(mp);
716 		if (nmp) {
717 			putnext(q, nmp);
718 			rpcmod_send_msg_up--;
719 		}
720 	}
721 	if ((rpcmod_send_uderr > 0) && mp->b_datap->db_type == M_PROTO) {
722 		mblk_t *nmp;
723 		struct T_unitdata_ind *data;
724 		struct T_uderror_ind *ud;
725 		int d;
726 		data = (struct T_unitdata_ind *)mp->b_rptr;
727 		if (data->PRIM_type == T_UNITDATA_IND) {
728 			d = sizeof (*ud) - sizeof (*data);
729 			nmp = allocb(mp->b_wptr - mp->b_rptr + d, BPRI_HI);
730 			if (nmp) {
731 				ud = (struct T_uderror_ind *)nmp->b_rptr;
732 				ud->PRIM_type = T_UDERROR_IND;
733 				ud->DEST_length = data->SRC_length;
734 				ud->DEST_offset = data->SRC_offset + d;
735 				ud->OPT_length = data->OPT_length;
736 				ud->OPT_offset = data->OPT_offset + d;
737 				ud->ERROR_type = ENETDOWN;
738 				if (data->SRC_length) {
739 					bcopy(mp->b_rptr +
740 					    data->SRC_offset,
741 					    nmp->b_rptr +
742 					    ud->DEST_offset,
743 					    data->SRC_length);
744 				}
745 				if (data->OPT_length) {
746 					bcopy(mp->b_rptr +
747 					    data->OPT_offset,
748 					    nmp->b_rptr +
749 					    ud->OPT_offset,
750 					    data->OPT_length);
751 				}
752 				nmp->b_wptr += d;
753 				nmp->b_wptr += (mp->b_wptr - mp->b_rptr);
754 				nmp->b_datap->db_type = M_PROTO;
755 				putnext(q, nmp);
756 				rpcmod_send_uderr--;
757 			}
758 		}
759 	}
760 #endif
761 	switch (mp->b_datap->db_type) {
762 	default:
763 		putnext(q, mp);
764 		break;
765 
766 	case M_PROTO:
767 	case M_PCPROTO:
768 		ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (int32_t));
769 		pptr = (union T_primitives *)mp->b_rptr;
770 
771 		/*
772 		 * Forward this message to krpc if it is data.
773 		 */
774 		if (pptr->type == T_UNITDATA_IND) {
775 			mblk_t *nmp;
776 
777 		/*
778 		 * Check if the module is being popped.
779 		 */
780 			mutex_enter(&rmp->rm_lock);
781 			if (rmp->rm_state & RM_CLOSING) {
782 				mutex_exit(&rmp->rm_lock);
783 				putnext(q, mp);
784 				break;
785 			}
786 
787 			switch (rmp->rm_type) {
788 			case RPC_CLIENT:
789 				mutex_exit(&rmp->rm_lock);
790 				hdrsz = mp->b_wptr - mp->b_rptr;
791 
792 				/*
793 				 * Make sure the header is sane.
794 				 */
795 				if (hdrsz < TUNITDATAINDSZ ||
796 				    hdrsz < (pptr->unitdata_ind.OPT_length +
797 				    pptr->unitdata_ind.OPT_offset) ||
798 				    hdrsz < (pptr->unitdata_ind.SRC_length +
799 				    pptr->unitdata_ind.SRC_offset)) {
800 					freemsg(mp);
801 					return;
802 				}
803 
804 				/*
805 				 * Call clnt_clts_dispatch_notify, so that it
806 				 * can pass the message to the proper caller.
807 				 * Don't discard the header just yet since the
808 				 * client may need the sender's address.
809 				 */
810 				clnt_clts_dispatch_notify(mp, hdrsz,
811 				    rmp->rm_zoneid);
812 				return;
813 			case RPC_SERVER:
814 				/*
815 				 * rm_krpc_cell is exclusively used by the kRPC
816 				 * CLTS server
817 				 */
818 				if (rmp->rm_krpc_cell) {
819 #ifdef DEBUG
820 					/*
821 					 * Test duplicate request cache and
822 					 * rm_ref count handling by sending a
823 					 * duplicate every so often, if
824 					 * desired.
825 					 */
826 					if (rpcmod_send_dup &&
827 					    rpcmod_send_dup_cnt++ %
828 					    rpcmod_send_dup)
829 						nmp = copymsg(mp);
830 					else
831 						nmp = NULL;
832 #endif
833 					/*
834 					 * Raise the reference count on this
835 					 * module to prevent it from being
836 					 * popped before krpc generates the
837 					 * reply.
838 					 */
839 					rmp->rm_ref++;
840 					mutex_exit(&rmp->rm_lock);
841 
842 					/*
843 					 * Submit the message to krpc.
844 					 */
845 					svc_queuereq(q, mp);
846 #ifdef DEBUG
847 					/*
848 					 * Send duplicate if we created one.
849 					 */
850 					if (nmp) {
851 						mutex_enter(&rmp->rm_lock);
852 						rmp->rm_ref++;
853 						mutex_exit(&rmp->rm_lock);
854 						svc_queuereq(q, nmp);
855 					}
856 #endif
857 				} else {
858 					mutex_exit(&rmp->rm_lock);
859 					freemsg(mp);
860 				}
861 				return;
862 			default:
863 				mutex_exit(&rmp->rm_lock);
864 				freemsg(mp);
865 				return;
866 			} /* end switch(rmp->rm_type) */
867 		} else if (pptr->type == T_UDERROR_IND) {
868 			mutex_enter(&rmp->rm_lock);
869 			hdrsz = mp->b_wptr - mp->b_rptr;
870 
871 			/*
872 			 * Make sure the header is sane
873 			 */
874 			if (hdrsz < TUDERRORINDSZ ||
875 			    hdrsz < (pptr->uderror_ind.OPT_length +
876 			    pptr->uderror_ind.OPT_offset) ||
877 			    hdrsz < (pptr->uderror_ind.DEST_length +
878 			    pptr->uderror_ind.DEST_offset)) {
879 				mutex_exit(&rmp->rm_lock);
880 				freemsg(mp);
881 				return;
882 			}
883 
884 			/*
885 			 * In the case where a unit data error has been
886 			 * received, all we need to do is clear the message from
887 			 * the queue.
888 			 */
889 			mutex_exit(&rmp->rm_lock);
890 			freemsg(mp);
891 			RPCLOG(32, "rpcmodrput: unitdata error received at "
892 			    "%ld\n", gethrestime_sec());
893 			return;
894 		} /* end else if (pptr->type == T_UDERROR_IND) */
895 
896 		putnext(q, mp);
897 		break;
898 	} /* end switch (mp->b_datap->db_type) */
899 
900 	TRACE_0(TR_FAC_KRPC, TR_RPCMODRPUT_END,
901 	    "rpcmodrput_end:");
902 	/*
903 	 * Return codes are not looked at by the STREAMS framework.
904 	 */
905 }
906 
907 /*
908  * write put procedure
909  */
910 void
911 rpcmodwput(queue_t *q, mblk_t *mp)
912 {
913 	struct rpcm	*rmp;
914 
915 	ASSERT(q != NULL);
916 
917 	switch (mp->b_datap->db_type) {
918 		case M_PROTO:
919 		case M_PCPROTO:
920 			break;
921 		default:
922 			rpcmodwput_other(q, mp);
923 			return;
924 	}
925 
926 	/*
927 	 * Check to see if we can send the message downstream.
928 	 */
929 	if (canputnext(q)) {
930 		putnext(q, mp);
931 		return;
932 	}
933 
934 	rmp = (struct rpcm *)q->q_ptr;
935 	ASSERT(rmp != NULL);
936 
937 	/*
938 	 * The first canputnext failed.  Try again except this time with the
939 	 * lock held, so that we can check the state of the stream to see if
940 	 * it is closing.  If either of these conditions evaluate to true
941 	 * then send the meesage.
942 	 */
943 	mutex_enter(&rmp->rm_lock);
944 	if (canputnext(q) || (rmp->rm_state & RM_CLOSING)) {
945 		mutex_exit(&rmp->rm_lock);
946 		putnext(q, mp);
947 	} else {
948 		/*
949 		 * canputnext failed again and the stream is not closing.
950 		 * Place the message on the queue and let the service
951 		 * procedure handle the message.
952 		 */
953 		mutex_exit(&rmp->rm_lock);
954 		(void) putq(q, mp);
955 	}
956 }
957 
958 static void
959 rpcmodwput_other(queue_t *q, mblk_t *mp)
960 {
961 	struct rpcm	*rmp;
962 	struct iocblk	*iocp;
963 
964 	rmp = (struct rpcm *)q->q_ptr;
965 	ASSERT(rmp != NULL);
966 
967 	switch (mp->b_datap->db_type) {
968 		case M_IOCTL:
969 			iocp = (struct iocblk *)mp->b_rptr;
970 			ASSERT(iocp != NULL);
971 			switch (iocp->ioc_cmd) {
972 				case RPC_CLIENT:
973 				case RPC_SERVER:
974 					mutex_enter(&rmp->rm_lock);
975 					rmp->rm_type = iocp->ioc_cmd;
976 					mutex_exit(&rmp->rm_lock);
977 					mp->b_datap->db_type = M_IOCACK;
978 					qreply(q, mp);
979 					return;
980 				default:
981 				/*
982 				 * pass the ioctl downstream and hope someone
983 				 * down there knows how to handle it.
984 				 */
985 					putnext(q, mp);
986 					return;
987 			}
988 		default:
989 			break;
990 	}
991 	/*
992 	 * This is something we definitely do not know how to handle, just
993 	 * pass the message downstream
994 	 */
995 	putnext(q, mp);
996 }
997 
998 /*
999  * Module write service procedure. This is called by downstream modules
1000  * for back enabling during flow control.
1001  */
1002 void
1003 rpcmodwsrv(queue_t *q)
1004 {
1005 	struct rpcm	*rmp;
1006 	mblk_t		*mp = NULL;
1007 
1008 	rmp = (struct rpcm *)q->q_ptr;
1009 	ASSERT(rmp != NULL);
1010 
1011 	/*
1012 	 * Get messages that may be queued and send them down stream
1013 	 */
1014 	while ((mp = getq(q)) != NULL) {
1015 		/*
1016 		 * Optimize the service procedure for the server-side, by
1017 		 * avoiding a call to canputnext().
1018 		 */
1019 		if (rmp->rm_type == RPC_SERVER || canputnext(q)) {
1020 			putnext(q, mp);
1021 			continue;
1022 		}
1023 		(void) putbq(q, mp);
1024 		return;
1025 	}
1026 }
1027 
1028 static void
1029 rpcmod_release(queue_t *q, mblk_t *bp)
1030 {
1031 	struct rpcm *rmp;
1032 
1033 	/*
1034 	 * For now, just free the message.
1035 	 */
1036 	if (bp)
1037 		freemsg(bp);
1038 	rmp = (struct rpcm *)q->q_ptr;
1039 
1040 	mutex_enter(&rmp->rm_lock);
1041 	rmp->rm_ref--;
1042 
1043 	if (rmp->rm_ref == 0 && (rmp->rm_state & RM_CLOSING)) {
1044 		cv_broadcast(&rmp->rm_cwait);
1045 	}
1046 
1047 	mutex_exit(&rmp->rm_lock);
1048 }
1049 
1050 /*
1051  * This part of rpcmod is pushed on a connection-oriented transport for use
1052  * by RPC.  It serves to bypass the Stream head, implements
1053  * the record marking protocol, and dispatches incoming RPC messages.
1054  */
1055 
1056 /* Default idle timer values */
1057 #define	MIR_CLNT_IDLE_TIMEOUT	(5 * (60 * 1000L))	/* 5 minutes */
1058 #define	MIR_SVC_IDLE_TIMEOUT	(6 * (60 * 1000L))	/* 6 minutes */
1059 #define	MIR_SVC_ORDREL_TIMEOUT	(10 * (60 * 1000L))	/* 10 minutes */
1060 #define	MIR_LASTFRAG	0x80000000	/* Record marker */
1061 
1062 #define	MIR_SVC_QUIESCED(mir)	\
1063 	(mir->mir_ref_cnt == 0 && mir->mir_inrservice == 0)
1064 
1065 #define	MIR_CLEAR_INRSRV(mir_ptr)	{	\
1066 	(mir_ptr)->mir_inrservice = 0;	\
1067 	if ((mir_ptr)->mir_type == RPC_SERVER &&	\
1068 		(mir_ptr)->mir_closing)	\
1069 		cv_signal(&(mir_ptr)->mir_condvar);	\
1070 }
1071 
1072 /*
1073  * Don't block service procedure (and mir_close) if
1074  * we are in the process of closing.
1075  */
1076 #define	MIR_WCANPUTNEXT(mir_ptr, write_q)	\
1077 	(canputnext(write_q) || ((mir_ptr)->mir_svc_no_more_msgs == 1))
1078 
1079 static int	mir_clnt_dup_request(queue_t *q, mblk_t *mp);
1080 static void	mir_rput_proto(queue_t *q, mblk_t *mp);
1081 static int	mir_svc_policy_notify(queue_t *q, int event);
1082 static void	mir_svc_release(queue_t *wq, mblk_t *mp);
1083 static void	mir_svc_start(queue_t *wq);
1084 static void	mir_svc_idle_start(queue_t *, mir_t *);
1085 static void	mir_svc_idle_stop(queue_t *, mir_t *);
1086 static void	mir_svc_start_close(queue_t *, mir_t *);
1087 static void	mir_clnt_idle_do_stop(queue_t *);
1088 static void	mir_clnt_idle_stop(queue_t *, mir_t *);
1089 static void	mir_clnt_idle_start(queue_t *, mir_t *);
1090 static void	mir_wput(queue_t *q, mblk_t *mp);
1091 static void	mir_wput_other(queue_t *q, mblk_t *mp);
1092 static void	mir_wsrv(queue_t *q);
1093 static	void	mir_disconnect(queue_t *, mir_t *ir);
1094 static	int	mir_check_len(queue_t *, int32_t, mblk_t *);
1095 static	void	mir_timer(void *);
1096 
1097 extern void	(*mir_rele)(queue_t *, mblk_t *);
1098 extern void	(*mir_start)(queue_t *);
1099 extern void	(*clnt_stop_idle)(queue_t *);
1100 
1101 clock_t	clnt_idle_timeout = MIR_CLNT_IDLE_TIMEOUT;
1102 clock_t	svc_idle_timeout = MIR_SVC_IDLE_TIMEOUT;
1103 
1104 /*
1105  * Timeout for subsequent notifications of idle connection.  This is
1106  * typically used to clean up after a wedged orderly release.
1107  */
1108 clock_t	svc_ordrel_timeout = MIR_SVC_ORDREL_TIMEOUT; /* milliseconds */
1109 
1110 extern	uint_t	*clnt_max_msg_sizep;
1111 extern	uint_t	*svc_max_msg_sizep;
1112 uint_t	clnt_max_msg_size = RPC_MAXDATASIZE;
1113 uint_t	svc_max_msg_size = RPC_MAXDATASIZE;
1114 uint_t	mir_krpc_cell_null;
1115 
1116 static void
1117 mir_timer_stop(mir_t *mir)
1118 {
1119 	timeout_id_t tid;
1120 
1121 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
1122 
1123 	/*
1124 	 * Since the mir_mutex lock needs to be released to call
1125 	 * untimeout(), we need to make sure that no other thread
1126 	 * can start/stop the timer (changing mir_timer_id) during
1127 	 * that time.  The mir_timer_call bit and the mir_timer_cv
1128 	 * condition variable are used to synchronize this.  Setting
1129 	 * mir_timer_call also tells mir_timer() (refer to the comments
1130 	 * in mir_timer()) that it does not need to do anything.
1131 	 */
1132 	while (mir->mir_timer_call)
1133 		cv_wait(&mir->mir_timer_cv, &mir->mir_mutex);
1134 	mir->mir_timer_call = B_TRUE;
1135 
1136 	if ((tid = mir->mir_timer_id) != 0) {
1137 		mir->mir_timer_id = 0;
1138 		mutex_exit(&mir->mir_mutex);
1139 		(void) untimeout(tid);
1140 		mutex_enter(&mir->mir_mutex);
1141 	}
1142 	mir->mir_timer_call = B_FALSE;
1143 	cv_broadcast(&mir->mir_timer_cv);
1144 }
1145 
1146 static void
1147 mir_timer_start(queue_t *q, mir_t *mir, clock_t intrvl)
1148 {
1149 	timeout_id_t tid;
1150 
1151 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
1152 
1153 	while (mir->mir_timer_call)
1154 		cv_wait(&mir->mir_timer_cv, &mir->mir_mutex);
1155 	mir->mir_timer_call = B_TRUE;
1156 
1157 	if ((tid = mir->mir_timer_id) != 0) {
1158 		mutex_exit(&mir->mir_mutex);
1159 		(void) untimeout(tid);
1160 		mutex_enter(&mir->mir_mutex);
1161 	}
1162 	/* Only start the timer when it is not closing. */
1163 	if (!mir->mir_closing) {
1164 		mir->mir_timer_id = timeout(mir_timer, q,
1165 		    MSEC_TO_TICK(intrvl));
1166 	}
1167 	mir->mir_timer_call = B_FALSE;
1168 	cv_broadcast(&mir->mir_timer_cv);
1169 }
1170 
1171 static int
1172 mir_clnt_dup_request(queue_t *q, mblk_t *mp)
1173 {
1174 	mblk_t  *mp1;
1175 	uint32_t  new_xid;
1176 	uint32_t  old_xid;
1177 
1178 	ASSERT(MUTEX_HELD(&((mir_t *)q->q_ptr)->mir_mutex));
1179 	new_xid = BE32_TO_U32(&mp->b_rptr[4]);
1180 	/*
1181 	 * This loop is a bit tacky -- it walks the STREAMS list of
1182 	 * flow-controlled messages.
1183 	 */
1184 	if ((mp1 = q->q_first) != NULL) {
1185 		do {
1186 			old_xid = BE32_TO_U32(&mp1->b_rptr[4]);
1187 			if (new_xid == old_xid)
1188 				return (1);
1189 		} while ((mp1 = mp1->b_next) != NULL);
1190 	}
1191 	return (0);
1192 }
1193 
1194 static int
1195 mir_close(queue_t *q)
1196 {
1197 	mir_t	*mir = q->q_ptr;
1198 	mblk_t	*mp;
1199 	bool_t queue_cleaned = FALSE;
1200 
1201 	RPCLOG(32, "rpcmod: mir_close of q 0x%p\n", (void *)q);
1202 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
1203 	mutex_enter(&mir->mir_mutex);
1204 	if ((mp = mir->mir_head_mp) != NULL) {
1205 		mir->mir_head_mp = NULL;
1206 		mir->mir_tail_mp = NULL;
1207 		freemsg(mp);
1208 	}
1209 	/*
1210 	 * Set mir_closing so we get notified when MIR_SVC_QUIESCED()
1211 	 * is TRUE.  And mir_timer_start() won't start the timer again.
1212 	 */
1213 	mir->mir_closing = B_TRUE;
1214 	mir_timer_stop(mir);
1215 
1216 	if (mir->mir_type == RPC_SERVER) {
1217 		flushq(q, FLUSHDATA);	/* Ditch anything waiting on read q */
1218 
1219 		/*
1220 		 * This will prevent more requests from arriving and
1221 		 * will force rpcmod to ignore flow control.
1222 		 */
1223 		mir_svc_start_close(WR(q), mir);
1224 
1225 		while ((!MIR_SVC_QUIESCED(mir)) || mir->mir_inwservice == 1) {
1226 
1227 			if (mir->mir_ref_cnt && !mir->mir_inrservice &&
1228 			    (queue_cleaned == FALSE)) {
1229 				/*
1230 				 * call into SVC to clean the queue
1231 				 */
1232 				mutex_exit(&mir->mir_mutex);
1233 				svc_queueclean(q);
1234 				queue_cleaned = TRUE;
1235 				mutex_enter(&mir->mir_mutex);
1236 				continue;
1237 			}
1238 
1239 			/*
1240 			 * Bugid 1253810 - Force the write service
1241 			 * procedure to send its messages, regardless
1242 			 * whether the downstream  module is ready
1243 			 * to accept data.
1244 			 */
1245 			if (mir->mir_inwservice == 1)
1246 				qenable(WR(q));
1247 
1248 			cv_wait(&mir->mir_condvar, &mir->mir_mutex);
1249 		}
1250 
1251 		mutex_exit(&mir->mir_mutex);
1252 		qprocsoff(q);
1253 
1254 		/* Notify KRPC that this stream is going away. */
1255 		svc_queueclose(q);
1256 	} else {
1257 		mutex_exit(&mir->mir_mutex);
1258 		qprocsoff(q);
1259 	}
1260 
1261 	mutex_destroy(&mir->mir_mutex);
1262 	cv_destroy(&mir->mir_condvar);
1263 	cv_destroy(&mir->mir_timer_cv);
1264 	kmem_free(mir, sizeof (mir_t));
1265 	return (0);
1266 }
1267 
1268 /*
1269  * This is server side only (RPC_SERVER).
1270  *
1271  * Exit idle mode.
1272  */
1273 static void
1274 mir_svc_idle_stop(queue_t *q, mir_t *mir)
1275 {
1276 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
1277 	ASSERT((q->q_flag & QREADR) == 0);
1278 	ASSERT(mir->mir_type == RPC_SERVER);
1279 	RPCLOG(16, "rpcmod: mir_svc_idle_stop of q 0x%p\n", (void *)q);
1280 
1281 	mir_timer_stop(mir);
1282 }
1283 
1284 /*
1285  * This is server side only (RPC_SERVER).
1286  *
1287  * Start idle processing, which will include setting idle timer if the
1288  * stream is not being closed.
1289  */
1290 static void
1291 mir_svc_idle_start(queue_t *q, mir_t *mir)
1292 {
1293 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
1294 	ASSERT((q->q_flag & QREADR) == 0);
1295 	ASSERT(mir->mir_type == RPC_SERVER);
1296 	RPCLOG(16, "rpcmod: mir_svc_idle_start q 0x%p\n", (void *)q);
1297 
1298 	/*
1299 	 * Don't re-start idle timer if we are closing queues.
1300 	 */
1301 	if (mir->mir_closing) {
1302 		RPCLOG(16, "mir_svc_idle_start - closing: 0x%p\n",
1303 		    (void *)q);
1304 
1305 		/*
1306 		 * We will call mir_svc_idle_start() whenever MIR_SVC_QUIESCED()
1307 		 * is true.  When it is true, and we are in the process of
1308 		 * closing the stream, signal any thread waiting in
1309 		 * mir_close().
1310 		 */
1311 		if (mir->mir_inwservice == 0)
1312 			cv_signal(&mir->mir_condvar);
1313 
1314 	} else {
1315 		RPCLOG(16, "mir_svc_idle_start - reset %s timer\n",
1316 		    mir->mir_ordrel_pending ? "ordrel" : "normal");
1317 		/*
1318 		 * Normal condition, start the idle timer.  If an orderly
1319 		 * release has been sent, set the timeout to wait for the
1320 		 * client to close its side of the connection.  Otherwise,
1321 		 * use the normal idle timeout.
1322 		 */
1323 		mir_timer_start(q, mir, mir->mir_ordrel_pending ?
1324 		    svc_ordrel_timeout : mir->mir_idle_timeout);
1325 	}
1326 }
1327 
1328 /* ARGSUSED */
1329 static int
1330 mir_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
1331 {
1332 	mir_t	*mir;
1333 
1334 	RPCLOG(32, "rpcmod: mir_open of q 0x%p\n", (void *)q);
1335 	/* Set variables used directly by KRPC. */
1336 	if (!mir_rele)
1337 		mir_rele = mir_svc_release;
1338 	if (!mir_start)
1339 		mir_start = mir_svc_start;
1340 	if (!clnt_stop_idle)
1341 		clnt_stop_idle = mir_clnt_idle_do_stop;
1342 	if (!clnt_max_msg_sizep)
1343 		clnt_max_msg_sizep = &clnt_max_msg_size;
1344 	if (!svc_max_msg_sizep)
1345 		svc_max_msg_sizep = &svc_max_msg_size;
1346 
1347 	/* Allocate a zero'ed out mir structure for this stream. */
1348 	mir = kmem_zalloc(sizeof (mir_t), KM_SLEEP);
1349 
1350 	/*
1351 	 * We set hold inbound here so that incoming messages will
1352 	 * be held on the read-side queue until the stream is completely
1353 	 * initialized with a RPC_CLIENT or RPC_SERVER ioctl.  During
1354 	 * the ioctl processing, the flag is cleared and any messages that
1355 	 * arrived between the open and the ioctl are delivered to KRPC.
1356 	 *
1357 	 * Early data should never arrive on a client stream since
1358 	 * servers only respond to our requests and we do not send any.
1359 	 * until after the stream is initialized.  Early data is
1360 	 * very common on a server stream where the client will start
1361 	 * sending data as soon as the connection is made (and this
1362 	 * is especially true with TCP where the protocol accepts the
1363 	 * connection before nfsd or KRPC is notified about it).
1364 	 */
1365 
1366 	mir->mir_hold_inbound = 1;
1367 
1368 	/*
1369 	 * Start the record marker looking for a 4-byte header.  When
1370 	 * this length is negative, it indicates that rpcmod is looking
1371 	 * for bytes to consume for the record marker header.  When it
1372 	 * is positive, it holds the number of bytes that have arrived
1373 	 * for the current fragment and are being held in mir_header_mp.
1374 	 */
1375 
1376 	mir->mir_frag_len = -(int32_t)sizeof (uint32_t);
1377 
1378 	mir->mir_zoneid = rpc_zoneid();
1379 	mutex_init(&mir->mir_mutex, NULL, MUTEX_DEFAULT, NULL);
1380 	cv_init(&mir->mir_condvar, NULL, CV_DRIVER, NULL);
1381 	cv_init(&mir->mir_timer_cv, NULL, CV_DRIVER, NULL);
1382 
1383 	q->q_ptr = (char *)mir;
1384 	WR(q)->q_ptr = (char *)mir;
1385 
1386 	/*
1387 	 * We noenable the read-side queue because we don't want it
1388 	 * automatically enabled by putq.  We enable it explicitly
1389 	 * in mir_wsrv when appropriate. (See additional comments on
1390 	 * flow control at the beginning of mir_rsrv.)
1391 	 */
1392 	noenable(q);
1393 
1394 	qprocson(q);
1395 	return (0);
1396 }
1397 
1398 /*
1399  * Read-side put routine for both the client and server side.  Does the
1400  * record marking for incoming RPC messages, and when complete, dispatches
1401  * the message to either the client or server.
1402  */
1403 static void
1404 mir_rput(queue_t *q, mblk_t *mp)
1405 {
1406 	int	excess;
1407 	int32_t	frag_len, frag_header;
1408 	mblk_t	*cont_mp, *head_mp, *tail_mp, *mp1;
1409 	mir_t	*mir = q->q_ptr;
1410 	boolean_t stop_timer = B_FALSE;
1411 
1412 	ASSERT(mir != NULL);
1413 
1414 	/*
1415 	 * If the stream has not been set up as a RPC_CLIENT or RPC_SERVER
1416 	 * with the corresponding ioctl, then don't accept
1417 	 * any inbound data.  This should never happen for streams
1418 	 * created by nfsd or client-side KRPC because they are careful
1419 	 * to set the mode of the stream before doing anything else.
1420 	 */
1421 	if (mir->mir_type == 0) {
1422 		freemsg(mp);
1423 		return;
1424 	}
1425 
1426 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
1427 
1428 	switch (mp->b_datap->db_type) {
1429 	case M_DATA:
1430 		break;
1431 	case M_PROTO:
1432 	case M_PCPROTO:
1433 		if (MBLKL(mp) < sizeof (t_scalar_t)) {
1434 			RPCLOG(1, "mir_rput: runt TPI message (%d bytes)\n",
1435 			    (int)MBLKL(mp));
1436 			freemsg(mp);
1437 			return;
1438 		}
1439 		if (((union T_primitives *)mp->b_rptr)->type != T_DATA_IND) {
1440 			mir_rput_proto(q, mp);
1441 			return;
1442 		}
1443 
1444 		/* Throw away the T_DATA_IND block and continue with data. */
1445 		mp1 = mp;
1446 		mp = mp->b_cont;
1447 		freeb(mp1);
1448 		break;
1449 	case M_SETOPTS:
1450 		/*
1451 		 * If a module on the stream is trying set the Stream head's
1452 		 * high water mark, then set our hiwater to the requested
1453 		 * value.  We are the "stream head" for all inbound
1454 		 * data messages since messages are passed directly to KRPC.
1455 		 */
1456 		if (MBLKL(mp) >= sizeof (struct stroptions)) {
1457 			struct stroptions	*stropts;
1458 
1459 			stropts = (struct stroptions *)mp->b_rptr;
1460 			if ((stropts->so_flags & SO_HIWAT) &&
1461 			    !(stropts->so_flags & SO_BAND)) {
1462 				(void) strqset(q, QHIWAT, 0, stropts->so_hiwat);
1463 			}
1464 		}
1465 		putnext(q, mp);
1466 		return;
1467 	case M_FLUSH:
1468 		RPCLOG(32, "mir_rput: ignoring M_FLUSH %x ", *mp->b_rptr);
1469 		RPCLOG(32, "on q 0x%p\n", (void *)q);
1470 		putnext(q, mp);
1471 		return;
1472 	default:
1473 		putnext(q, mp);
1474 		return;
1475 	}
1476 
1477 	mutex_enter(&mir->mir_mutex);
1478 
1479 	/*
1480 	 * If this connection is closing, don't accept any new messages.
1481 	 */
1482 	if (mir->mir_svc_no_more_msgs) {
1483 		ASSERT(mir->mir_type == RPC_SERVER);
1484 		mutex_exit(&mir->mir_mutex);
1485 		freemsg(mp);
1486 		return;
1487 	}
1488 
1489 	/* Get local copies for quicker access. */
1490 	frag_len = mir->mir_frag_len;
1491 	frag_header = mir->mir_frag_header;
1492 	head_mp = mir->mir_head_mp;
1493 	tail_mp = mir->mir_tail_mp;
1494 
1495 	/* Loop, processing each message block in the mp chain separately. */
1496 	do {
1497 		cont_mp = mp->b_cont;
1498 		mp->b_cont = NULL;
1499 
1500 		/*
1501 		 * Drop zero-length mblks to prevent unbounded kernel memory
1502 		 * consumption.
1503 		 */
1504 		if (MBLKL(mp) == 0) {
1505 			freeb(mp);
1506 			continue;
1507 		}
1508 
1509 		/*
1510 		 * If frag_len is negative, we're still in the process of
1511 		 * building frag_header -- try to complete it with this mblk.
1512 		 */
1513 		while (frag_len < 0 && mp->b_rptr < mp->b_wptr) {
1514 			frag_len++;
1515 			frag_header <<= 8;
1516 			frag_header += *mp->b_rptr++;
1517 		}
1518 
1519 		if (MBLKL(mp) == 0 && frag_len < 0) {
1520 			/*
1521 			 * We consumed this mblk while trying to complete the
1522 			 * fragment header.  Free it and move on.
1523 			 */
1524 			freeb(mp);
1525 			continue;
1526 		}
1527 
1528 		ASSERT(frag_len >= 0);
1529 
1530 		/*
1531 		 * Now frag_header has the number of bytes in this fragment
1532 		 * and we're just waiting to collect them all.  Chain our
1533 		 * latest mblk onto the list and see if we now have enough
1534 		 * bytes to complete the fragment.
1535 		 */
1536 		if (head_mp == NULL) {
1537 			ASSERT(tail_mp == NULL);
1538 			head_mp = tail_mp = mp;
1539 		} else {
1540 			tail_mp->b_cont = mp;
1541 			tail_mp = mp;
1542 		}
1543 
1544 		frag_len += MBLKL(mp);
1545 		excess = frag_len - (frag_header & ~MIR_LASTFRAG);
1546 		if (excess < 0) {
1547 			/*
1548 			 * We still haven't received enough data to complete
1549 			 * the fragment, so continue on to the next mblk.
1550 			 */
1551 			continue;
1552 		}
1553 
1554 		/*
1555 		 * We've got a complete fragment.  If there are excess bytes,
1556 		 * then they're part of the next fragment's header (of either
1557 		 * this RPC message or the next RPC message).  Split that part
1558 		 * into its own mblk so that we can safely freeb() it when
1559 		 * building frag_header above.
1560 		 */
1561 		if (excess > 0) {
1562 			if ((mp1 = dupb(mp)) == NULL &&
1563 			    (mp1 = copyb(mp)) == NULL) {
1564 				freemsg(head_mp);
1565 				freemsg(cont_mp);
1566 				RPCLOG0(1, "mir_rput: dupb/copyb failed\n");
1567 				mir->mir_frag_header = 0;
1568 				mir->mir_frag_len = -(int32_t)sizeof (uint32_t);
1569 				mir->mir_head_mp = NULL;
1570 				mir->mir_tail_mp = NULL;
1571 				mir_disconnect(q, mir);	/* drops mir_mutex */
1572 				return;
1573 			}
1574 
1575 			/*
1576 			 * Relink the message chain so that the next mblk is
1577 			 * the next fragment header, followed by the rest of
1578 			 * the message chain.
1579 			 */
1580 			mp1->b_cont = cont_mp;
1581 			cont_mp = mp1;
1582 
1583 			/*
1584 			 * Data in the new mblk begins at the next fragment,
1585 			 * and data in the old mblk ends at the next fragment.
1586 			 */
1587 			mp1->b_rptr = mp1->b_wptr - excess;
1588 			mp->b_wptr -= excess;
1589 		}
1590 
1591 		/*
1592 		 * Reset frag_len and frag_header for the next fragment.
1593 		 */
1594 		frag_len = -(int32_t)sizeof (uint32_t);
1595 		if (!(frag_header & MIR_LASTFRAG)) {
1596 			/*
1597 			 * The current fragment is complete, but more
1598 			 * fragments need to be processed before we can
1599 			 * pass along the RPC message headed at head_mp.
1600 			 */
1601 			frag_header = 0;
1602 			continue;
1603 		}
1604 		frag_header = 0;
1605 
1606 		/*
1607 		 * We've got a complete RPC message; pass it to the
1608 		 * appropriate consumer.
1609 		 */
1610 		switch (mir->mir_type) {
1611 		case RPC_CLIENT:
1612 			if (clnt_dispatch_notify(head_mp, mir->mir_zoneid)) {
1613 				/*
1614 				 * Mark this stream as active.  This marker
1615 				 * is used in mir_timer().
1616 				 */
1617 				mir->mir_clntreq = 1;
1618 				mir->mir_use_timestamp = ddi_get_lbolt();
1619 			} else {
1620 				freemsg(head_mp);
1621 			}
1622 			break;
1623 
1624 		case RPC_SERVER:
1625 			/*
1626 			 * Check for flow control before passing the
1627 			 * message to KRPC.
1628 			 */
1629 			if (!mir->mir_hold_inbound) {
1630 				if (mir->mir_krpc_cell) {
1631 					/*
1632 					 * If the reference count is 0
1633 					 * (not including this request),
1634 					 * then the stream is transitioning
1635 					 * from idle to non-idle.  In this case,
1636 					 * we cancel the idle timer.
1637 					 */
1638 					if (mir->mir_ref_cnt++ == 0)
1639 						stop_timer = B_TRUE;
1640 					if (mir_check_len(q,
1641 					    (int32_t)msgdsize(mp), mp))
1642 						return;
1643 					svc_queuereq(q, head_mp); /* to KRPC */
1644 				} else {
1645 					/*
1646 					 * Count # of times this happens. Should
1647 					 * be never, but experience shows
1648 					 * otherwise.
1649 					 */
1650 					mir_krpc_cell_null++;
1651 					freemsg(head_mp);
1652 				}
1653 			} else {
1654 				/*
1655 				 * If the outbound side of the stream is
1656 				 * flow controlled, then hold this message
1657 				 * until client catches up. mir_hold_inbound
1658 				 * is set in mir_wput and cleared in mir_wsrv.
1659 				 */
1660 				(void) putq(q, head_mp);
1661 				mir->mir_inrservice = B_TRUE;
1662 			}
1663 			break;
1664 		default:
1665 			RPCLOG(1, "mir_rput: unknown mir_type %d\n",
1666 			    mir->mir_type);
1667 			freemsg(head_mp);
1668 			break;
1669 		}
1670 
1671 		/*
1672 		 * Reset the chain since we're starting on a new RPC message.
1673 		 */
1674 		head_mp = tail_mp = NULL;
1675 	} while ((mp = cont_mp) != NULL);
1676 
1677 	/*
1678 	 * Sanity check the message length; if it's too large mir_check_len()
1679 	 * will shutdown the connection, drop mir_mutex, and return non-zero.
1680 	 */
1681 	if (head_mp != NULL && mir->mir_setup_complete &&
1682 	    mir_check_len(q, frag_len, head_mp))
1683 		return;
1684 
1685 	/* Save our local copies back in the mir structure. */
1686 	mir->mir_frag_header = frag_header;
1687 	mir->mir_frag_len = frag_len;
1688 	mir->mir_head_mp = head_mp;
1689 	mir->mir_tail_mp = tail_mp;
1690 
1691 	/*
1692 	 * The timer is stopped after the whole message chain is processed.
1693 	 * The reason is that stopping the timer releases the mir_mutex
1694 	 * lock temporarily.  This means that the request can be serviced
1695 	 * while we are still processing the message chain.  This is not
1696 	 * good.  So we stop the timer here instead.
1697 	 *
1698 	 * Note that if the timer fires before we stop it, it will not
1699 	 * do any harm as MIR_SVC_QUIESCED() is false and mir_timer()
1700 	 * will just return.
1701 	 */
1702 	if (stop_timer) {
1703 		RPCLOG(16, "mir_rput: stopping idle timer on 0x%p because "
1704 		    "ref cnt going to non zero\n", (void *)WR(q));
1705 		mir_svc_idle_stop(WR(q), mir);
1706 	}
1707 	mutex_exit(&mir->mir_mutex);
1708 }
1709 
1710 static void
1711 mir_rput_proto(queue_t *q, mblk_t *mp)
1712 {
1713 	mir_t	*mir = (mir_t *)q->q_ptr;
1714 	uint32_t	type;
1715 	uint32_t reason = 0;
1716 
1717 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
1718 
1719 	type = ((union T_primitives *)mp->b_rptr)->type;
1720 	switch (mir->mir_type) {
1721 	case RPC_CLIENT:
1722 		switch (type) {
1723 		case T_DISCON_IND:
1724 			reason = ((struct T_discon_ind *)
1725 			    (mp->b_rptr))->DISCON_reason;
1726 			/*FALLTHROUGH*/
1727 		case T_ORDREL_IND:
1728 			mutex_enter(&mir->mir_mutex);
1729 			if (mir->mir_head_mp) {
1730 				freemsg(mir->mir_head_mp);
1731 				mir->mir_head_mp = (mblk_t *)0;
1732 				mir->mir_tail_mp = (mblk_t *)0;
1733 			}
1734 			/*
1735 			 * We are disconnecting, but not necessarily
1736 			 * closing. By not closing, we will fail to
1737 			 * pick up a possibly changed global timeout value,
1738 			 * unless we store it now.
1739 			 */
1740 			mir->mir_idle_timeout = clnt_idle_timeout;
1741 			mir_clnt_idle_stop(WR(q), mir);
1742 
1743 			/*
1744 			 * Even though we are unconnected, we still
1745 			 * leave the idle timer going on the client. The
1746 			 * reason for is that if we've disconnected due
1747 			 * to a server-side disconnect, reset, or connection
1748 			 * timeout, there is a possibility the client may
1749 			 * retry the RPC request. This retry needs to done on
1750 			 * the same bound address for the server to interpret
1751 			 * it as such. However, we don't want
1752 			 * to wait forever for that possibility. If the
1753 			 * end-point stays unconnected for mir_idle_timeout
1754 			 * units of time, then that is a signal to the
1755 			 * connection manager to give up waiting for the
1756 			 * application (eg. NFS) to send a retry.
1757 			 */
1758 			mir_clnt_idle_start(WR(q), mir);
1759 			mutex_exit(&mir->mir_mutex);
1760 			clnt_dispatch_notifyall(WR(q), type, reason);
1761 			freemsg(mp);
1762 			return;
1763 		case T_ERROR_ACK:
1764 		{
1765 			struct T_error_ack	*terror;
1766 
1767 			terror = (struct T_error_ack *)mp->b_rptr;
1768 			RPCLOG(1, "mir_rput_proto T_ERROR_ACK for queue 0x%p",
1769 			    (void *)q);
1770 			RPCLOG(1, " ERROR_prim: %s,",
1771 			    rpc_tpiprim2name(terror->ERROR_prim));
1772 			RPCLOG(1, " TLI_error: %s,",
1773 			    rpc_tpierr2name(terror->TLI_error));
1774 			RPCLOG(1, " UNIX_error: %d\n", terror->UNIX_error);
1775 			if (terror->ERROR_prim == T_DISCON_REQ)  {
1776 				clnt_dispatch_notifyall(WR(q), type, reason);
1777 				freemsg(mp);
1778 				return;
1779 			} else {
1780 				if (clnt_dispatch_notifyconn(WR(q), mp))
1781 					return;
1782 			}
1783 			break;
1784 		}
1785 		case T_OK_ACK:
1786 		{
1787 			struct T_ok_ack	*tok = (struct T_ok_ack *)mp->b_rptr;
1788 
1789 			if (tok->CORRECT_prim == T_DISCON_REQ) {
1790 				clnt_dispatch_notifyall(WR(q), type, reason);
1791 				freemsg(mp);
1792 				return;
1793 			} else {
1794 				if (clnt_dispatch_notifyconn(WR(q), mp))
1795 					return;
1796 			}
1797 			break;
1798 		}
1799 		case T_CONN_CON:
1800 		case T_INFO_ACK:
1801 		case T_OPTMGMT_ACK:
1802 			if (clnt_dispatch_notifyconn(WR(q), mp))
1803 				return;
1804 			break;
1805 		case T_BIND_ACK:
1806 			break;
1807 		default:
1808 			RPCLOG(1, "mir_rput: unexpected message %d "
1809 			    "for KRPC client\n",
1810 			    ((union T_primitives *)mp->b_rptr)->type);
1811 			break;
1812 		}
1813 		break;
1814 
1815 	case RPC_SERVER:
1816 		switch (type) {
1817 		case T_BIND_ACK:
1818 		{
1819 			struct T_bind_ack	*tbind;
1820 
1821 			/*
1822 			 * If this is a listening stream, then shut
1823 			 * off the idle timer.
1824 			 */
1825 			tbind = (struct T_bind_ack *)mp->b_rptr;
1826 			if (tbind->CONIND_number > 0) {
1827 				mutex_enter(&mir->mir_mutex);
1828 				mir_svc_idle_stop(WR(q), mir);
1829 
1830 				/*
1831 				 * mark this as a listen endpoint
1832 				 * for special handling.
1833 				 */
1834 
1835 				mir->mir_listen_stream = 1;
1836 				mutex_exit(&mir->mir_mutex);
1837 			}
1838 			break;
1839 		}
1840 		case T_DISCON_IND:
1841 		case T_ORDREL_IND:
1842 			RPCLOG(16, "mir_rput_proto: got %s indication\n",
1843 			    type == T_DISCON_IND ? "disconnect"
1844 			    : "orderly release");
1845 
1846 			/*
1847 			 * For listen endpoint just pass
1848 			 * on the message.
1849 			 */
1850 
1851 			if (mir->mir_listen_stream)
1852 				break;
1853 
1854 			mutex_enter(&mir->mir_mutex);
1855 
1856 			/*
1857 			 * If client wants to break off connection, record
1858 			 * that fact.
1859 			 */
1860 			mir_svc_start_close(WR(q), mir);
1861 
1862 			/*
1863 			 * If we are idle, then send the orderly release
1864 			 * or disconnect indication to nfsd.
1865 			 */
1866 			if (MIR_SVC_QUIESCED(mir)) {
1867 				mutex_exit(&mir->mir_mutex);
1868 				break;
1869 			}
1870 
1871 			RPCLOG(16, "mir_rput_proto: not idle, so "
1872 			    "disconnect/ord rel indication not passed "
1873 			    "upstream on 0x%p\n", (void *)q);
1874 
1875 			/*
1876 			 * Hold the indication until we get idle
1877 			 * If there already is an indication stored,
1878 			 * replace it if the new one is a disconnect. The
1879 			 * reasoning is that disconnection takes less time
1880 			 * to process, and once a client decides to
1881 			 * disconnect, we should do that.
1882 			 */
1883 			if (mir->mir_svc_pend_mp) {
1884 				if (type == T_DISCON_IND) {
1885 					RPCLOG(16, "mir_rput_proto: replacing"
1886 					    " held disconnect/ord rel"
1887 					    " indication with disconnect on"
1888 					    " 0x%p\n", (void *)q);
1889 
1890 					freemsg(mir->mir_svc_pend_mp);
1891 					mir->mir_svc_pend_mp = mp;
1892 				} else {
1893 					RPCLOG(16, "mir_rput_proto: already "
1894 					    "held a disconnect/ord rel "
1895 					    "indication. freeing ord rel "
1896 					    "ind on 0x%p\n", (void *)q);
1897 					freemsg(mp);
1898 				}
1899 			} else
1900 				mir->mir_svc_pend_mp = mp;
1901 
1902 			mutex_exit(&mir->mir_mutex);
1903 			return;
1904 
1905 		default:
1906 			/* nfsd handles server-side non-data messages. */
1907 			break;
1908 		}
1909 		break;
1910 
1911 	default:
1912 		break;
1913 	}
1914 
1915 	putnext(q, mp);
1916 }
1917 
1918 /*
1919  * The server-side read queues are used to hold inbound messages while
1920  * outbound flow control is exerted.  When outbound flow control is
1921  * relieved, mir_wsrv qenables the read-side queue.  Read-side queues
1922  * are not enabled by STREAMS and are explicitly noenable'ed in mir_open.
1923  *
1924  * For the server side,  we have two types of messages queued. The first type
1925  * are messages that are ready to be XDR decoded and and then sent to the
1926  * RPC program's dispatch routine. The second type are "raw" messages that
1927  * haven't been processed, i.e. assembled from rpc record fragements into
1928  * full requests. The only time we will see the second type of message
1929  * queued is if we have a memory allocation failure while processing a
1930  * a raw message. The field mir_first_non_processed_mblk will mark the
1931  * first such raw message. So the flow for server side is:
1932  *
1933  *	- send processed queued messages to kRPC until we run out or find
1934  *	  one that needs additional processing because we were short on memory
1935  *	  earlier
1936  *	- process a message that was deferred because of lack of
1937  *	  memory
1938  *	- continue processing messages until the queue empties or we
1939  *	  have to stop because of lack of memory
1940  *	- during each of the above phase, if the queue is empty and
1941  *	  there are no pending messages that were passed to the RPC
1942  *	  layer, send upstream the pending disconnect/ordrel indication if
1943  *	  there is one
1944  *
1945  * The read-side queue is also enabled by a bufcall callback if dupmsg
1946  * fails in mir_rput.
1947  */
1948 static void
1949 mir_rsrv(queue_t *q)
1950 {
1951 	mir_t	*mir;
1952 	mblk_t	*mp;
1953 	mblk_t	*cmp = NULL;
1954 	boolean_t stop_timer = B_FALSE;
1955 
1956 	mir = (mir_t *)q->q_ptr;
1957 	mutex_enter(&mir->mir_mutex);
1958 
1959 	mp = NULL;
1960 	switch (mir->mir_type) {
1961 	case RPC_SERVER:
1962 		if (mir->mir_ref_cnt == 0)
1963 			mir->mir_hold_inbound = 0;
1964 		if (mir->mir_hold_inbound) {
1965 
1966 			ASSERT(cmp == NULL);
1967 			if (q->q_first == NULL) {
1968 
1969 				MIR_CLEAR_INRSRV(mir);
1970 
1971 				if (MIR_SVC_QUIESCED(mir)) {
1972 					cmp = mir->mir_svc_pend_mp;
1973 					mir->mir_svc_pend_mp = NULL;
1974 				}
1975 			}
1976 
1977 			mutex_exit(&mir->mir_mutex);
1978 
1979 			if (cmp != NULL) {
1980 				RPCLOG(16, "mir_rsrv: line %d: sending a held "
1981 				    "disconnect/ord rel indication upstream\n",
1982 				    __LINE__);
1983 				putnext(q, cmp);
1984 			}
1985 
1986 			return;
1987 		}
1988 		while (mp = getq(q)) {
1989 			if (mir->mir_krpc_cell &&
1990 			    (mir->mir_svc_no_more_msgs == 0)) {
1991 				/*
1992 				 * If we were idle, turn off idle timer since
1993 				 * we aren't idle any more.
1994 				 */
1995 				if (mir->mir_ref_cnt++ == 0)
1996 					stop_timer = B_TRUE;
1997 				if (mir_check_len(q,
1998 				    (int32_t)msgdsize(mp), mp))
1999 					return;
2000 				svc_queuereq(q, mp);
2001 			} else {
2002 				/*
2003 				 * Count # of times this happens. Should be
2004 				 * never, but experience shows otherwise.
2005 				 */
2006 				if (mir->mir_krpc_cell == NULL)
2007 					mir_krpc_cell_null++;
2008 				freemsg(mp);
2009 			}
2010 		}
2011 		break;
2012 	case RPC_CLIENT:
2013 		break;
2014 	default:
2015 		RPCLOG(1, "mir_rsrv: unexpected mir_type %d\n", mir->mir_type);
2016 
2017 		if (q->q_first == NULL)
2018 			MIR_CLEAR_INRSRV(mir);
2019 
2020 		mutex_exit(&mir->mir_mutex);
2021 
2022 		return;
2023 	}
2024 
2025 	/*
2026 	 * The timer is stopped after all the messages are processed.
2027 	 * The reason is that stopping the timer releases the mir_mutex
2028 	 * lock temporarily.  This means that the request can be serviced
2029 	 * while we are still processing the message queue.  This is not
2030 	 * good.  So we stop the timer here instead.
2031 	 */
2032 	if (stop_timer)  {
2033 		RPCLOG(16, "mir_rsrv stopping idle timer on 0x%p because ref "
2034 		    "cnt going to non zero\n", (void *)WR(q));
2035 		mir_svc_idle_stop(WR(q), mir);
2036 	}
2037 
2038 	if (q->q_first == NULL) {
2039 
2040 		MIR_CLEAR_INRSRV(mir);
2041 
2042 		ASSERT(cmp == NULL);
2043 		if (mir->mir_type == RPC_SERVER && MIR_SVC_QUIESCED(mir)) {
2044 			cmp = mir->mir_svc_pend_mp;
2045 			mir->mir_svc_pend_mp = NULL;
2046 		}
2047 
2048 		mutex_exit(&mir->mir_mutex);
2049 
2050 		if (cmp != NULL) {
2051 			RPCLOG(16, "mir_rsrv: line %d: sending a held "
2052 			    "disconnect/ord rel indication upstream\n",
2053 			    __LINE__);
2054 			putnext(q, cmp);
2055 		}
2056 
2057 		return;
2058 	}
2059 	mutex_exit(&mir->mir_mutex);
2060 }
2061 
2062 static int mir_svc_policy_fails;
2063 
2064 /*
2065  * Called to send an event code to nfsd/lockd so that it initiates
2066  * connection close.
2067  */
2068 static int
2069 mir_svc_policy_notify(queue_t *q, int event)
2070 {
2071 	mblk_t	*mp;
2072 #ifdef DEBUG
2073 	mir_t *mir = (mir_t *)q->q_ptr;
2074 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
2075 #endif
2076 	ASSERT(q->q_flag & QREADR);
2077 
2078 	/*
2079 	 * Create an M_DATA message with the event code and pass it to the
2080 	 * Stream head (nfsd or whoever created the stream will consume it).
2081 	 */
2082 	mp = allocb(sizeof (int), BPRI_HI);
2083 
2084 	if (!mp) {
2085 
2086 		mir_svc_policy_fails++;
2087 		RPCLOG(16, "mir_svc_policy_notify: could not allocate event "
2088 		    "%d\n", event);
2089 		return (ENOMEM);
2090 	}
2091 
2092 	U32_TO_BE32(event, mp->b_rptr);
2093 	mp->b_wptr = mp->b_rptr + sizeof (int);
2094 	putnext(q, mp);
2095 	return (0);
2096 }
2097 
2098 /*
2099  * Server side: start the close phase. We want to get this rpcmod slot in an
2100  * idle state before mir_close() is called.
2101  */
2102 static void
2103 mir_svc_start_close(queue_t *wq, mir_t *mir)
2104 {
2105 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
2106 	ASSERT((wq->q_flag & QREADR) == 0);
2107 	ASSERT(mir->mir_type == RPC_SERVER);
2108 
2109 
2110 	/*
2111 	 * Do not accept any more messages.
2112 	 */
2113 	mir->mir_svc_no_more_msgs = 1;
2114 
2115 	/*
2116 	 * Next two statements will make the read service procedure invoke
2117 	 * svc_queuereq() on everything stuck in the streams read queue.
2118 	 * It's not necessary because enabling the write queue will
2119 	 * have the same effect, but why not speed the process along?
2120 	 */
2121 	mir->mir_hold_inbound = 0;
2122 	qenable(RD(wq));
2123 
2124 	/*
2125 	 * Meanwhile force the write service procedure to send the
2126 	 * responses downstream, regardless of flow control.
2127 	 */
2128 	qenable(wq);
2129 }
2130 
2131 /*
2132  * This routine is called directly by KRPC after a request is completed,
2133  * whether a reply was sent or the request was dropped.
2134  */
2135 static void
2136 mir_svc_release(queue_t *wq, mblk_t *mp)
2137 {
2138 	mir_t   *mir = (mir_t *)wq->q_ptr;
2139 	mblk_t	*cmp = NULL;
2140 
2141 	ASSERT((wq->q_flag & QREADR) == 0);
2142 	if (mp)
2143 		freemsg(mp);
2144 
2145 	mutex_enter(&mir->mir_mutex);
2146 
2147 	/*
2148 	 * Start idle processing if this is the last reference.
2149 	 */
2150 	if ((mir->mir_ref_cnt == 1) && (mir->mir_inrservice == 0)) {
2151 		cmp = mir->mir_svc_pend_mp;
2152 		mir->mir_svc_pend_mp = NULL;
2153 	}
2154 
2155 	if (cmp) {
2156 		RPCLOG(16, "mir_svc_release: sending a held "
2157 		    "disconnect/ord rel indication upstream on queue 0x%p\n",
2158 		    (void *)RD(wq));
2159 
2160 		mutex_exit(&mir->mir_mutex);
2161 
2162 		putnext(RD(wq), cmp);
2163 
2164 		mutex_enter(&mir->mir_mutex);
2165 	}
2166 
2167 	/*
2168 	 * Start idle processing if this is the last reference.
2169 	 */
2170 	if (mir->mir_ref_cnt == 1 && mir->mir_inrservice == 0) {
2171 
2172 		RPCLOG(16, "mir_svc_release starting idle timer on 0x%p "
2173 		    "because ref cnt is zero\n", (void *) wq);
2174 
2175 		mir_svc_idle_start(wq, mir);
2176 	}
2177 
2178 	mir->mir_ref_cnt--;
2179 	ASSERT(mir->mir_ref_cnt >= 0);
2180 
2181 	/*
2182 	 * Wake up the thread waiting to close.
2183 	 */
2184 
2185 	if ((mir->mir_ref_cnt == 0) && mir->mir_closing)
2186 		cv_signal(&mir->mir_condvar);
2187 
2188 	mutex_exit(&mir->mir_mutex);
2189 }
2190 
2191 /*
2192  * This routine is called by server-side KRPC when it is ready to
2193  * handle inbound messages on the stream.
2194  */
2195 static void
2196 mir_svc_start(queue_t *wq)
2197 {
2198 	mir_t   *mir = (mir_t *)wq->q_ptr;
2199 
2200 	/*
2201 	 * no longer need to take the mir_mutex because the
2202 	 * mir_setup_complete field has been moved out of
2203 	 * the binary field protected by the mir_mutex.
2204 	 */
2205 
2206 	mir->mir_setup_complete = 1;
2207 	qenable(RD(wq));
2208 }
2209 
2210 /*
2211  * client side wrapper for stopping timer with normal idle timeout.
2212  */
2213 static void
2214 mir_clnt_idle_stop(queue_t *wq, mir_t *mir)
2215 {
2216 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
2217 	ASSERT((wq->q_flag & QREADR) == 0);
2218 	ASSERT(mir->mir_type == RPC_CLIENT);
2219 
2220 	mir_timer_stop(mir);
2221 }
2222 
2223 /*
2224  * client side wrapper for stopping timer with normal idle timeout.
2225  */
2226 static void
2227 mir_clnt_idle_start(queue_t *wq, mir_t *mir)
2228 {
2229 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
2230 	ASSERT((wq->q_flag & QREADR) == 0);
2231 	ASSERT(mir->mir_type == RPC_CLIENT);
2232 
2233 	mir_timer_start(wq, mir, mir->mir_idle_timeout);
2234 }
2235 
2236 /*
2237  * client side only. Forces rpcmod to stop sending T_ORDREL_REQs on
2238  * end-points that aren't connected.
2239  */
2240 static void
2241 mir_clnt_idle_do_stop(queue_t *wq)
2242 {
2243 	mir_t   *mir = (mir_t *)wq->q_ptr;
2244 
2245 	RPCLOG(1, "mir_clnt_idle_do_stop: wq 0x%p\n", (void *)wq);
2246 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
2247 	mutex_enter(&mir->mir_mutex);
2248 	mir_clnt_idle_stop(wq, mir);
2249 	mutex_exit(&mir->mir_mutex);
2250 }
2251 
2252 /*
2253  * Timer handler.  It handles idle timeout and memory shortage problem.
2254  */
2255 static void
2256 mir_timer(void *arg)
2257 {
2258 	queue_t *wq = (queue_t *)arg;
2259 	mir_t *mir = (mir_t *)wq->q_ptr;
2260 	boolean_t notify;
2261 	clock_t now;
2262 
2263 	mutex_enter(&mir->mir_mutex);
2264 
2265 	/*
2266 	 * mir_timer_call is set only when either mir_timer_[start|stop]
2267 	 * is progressing.  And mir_timer() can only be run while they
2268 	 * are progressing if the timer is being stopped.  So just
2269 	 * return.
2270 	 */
2271 	if (mir->mir_timer_call) {
2272 		mutex_exit(&mir->mir_mutex);
2273 		return;
2274 	}
2275 	mir->mir_timer_id = 0;
2276 
2277 	switch (mir->mir_type) {
2278 	case RPC_CLIENT:
2279 
2280 		/*
2281 		 * For clients, the timer fires at clnt_idle_timeout
2282 		 * intervals.  If the activity marker (mir_clntreq) is
2283 		 * zero, then the stream has been idle since the last
2284 		 * timer event and we notify KRPC.  If mir_clntreq is
2285 		 * non-zero, then the stream is active and we just
2286 		 * restart the timer for another interval.  mir_clntreq
2287 		 * is set to 1 in mir_wput for every request passed
2288 		 * downstream.
2289 		 *
2290 		 * If this was a memory shortage timer reset the idle
2291 		 * timeout regardless; the mir_clntreq will not be a
2292 		 * valid indicator.
2293 		 *
2294 		 * The timer is initially started in mir_wput during
2295 		 * RPC_CLIENT ioctl processing.
2296 		 *
2297 		 * The timer interval can be changed for individual
2298 		 * streams with the ND variable "mir_idle_timeout".
2299 		 */
2300 		now = ddi_get_lbolt();
2301 		if (mir->mir_clntreq > 0 && mir->mir_use_timestamp +
2302 		    MSEC_TO_TICK(mir->mir_idle_timeout) - now >= 0) {
2303 			clock_t tout;
2304 
2305 			tout = mir->mir_idle_timeout -
2306 			    TICK_TO_MSEC(now - mir->mir_use_timestamp);
2307 			if (tout < 0)
2308 				tout = 1000;
2309 #if 0
2310 			printf("mir_timer[%d < %d + %d]: reset client timer "
2311 			    "to %d (ms)\n", TICK_TO_MSEC(now),
2312 			    TICK_TO_MSEC(mir->mir_use_timestamp),
2313 			    mir->mir_idle_timeout, tout);
2314 #endif
2315 			mir->mir_clntreq = 0;
2316 			mir_timer_start(wq, mir, tout);
2317 			mutex_exit(&mir->mir_mutex);
2318 			return;
2319 		}
2320 #if 0
2321 printf("mir_timer[%d]: doing client timeout\n", now / hz);
2322 #endif
2323 		/*
2324 		 * We are disconnecting, but not necessarily
2325 		 * closing. By not closing, we will fail to
2326 		 * pick up a possibly changed global timeout value,
2327 		 * unless we store it now.
2328 		 */
2329 		mir->mir_idle_timeout = clnt_idle_timeout;
2330 		mir_clnt_idle_start(wq, mir);
2331 
2332 		mutex_exit(&mir->mir_mutex);
2333 		/*
2334 		 * We pass T_ORDREL_REQ as an integer value
2335 		 * to KRPC as the indication that the stream
2336 		 * is idle.  This is not a T_ORDREL_REQ message,
2337 		 * it is just a convenient value since we call
2338 		 * the same KRPC routine for T_ORDREL_INDs and
2339 		 * T_DISCON_INDs.
2340 		 */
2341 		clnt_dispatch_notifyall(wq, T_ORDREL_REQ, 0);
2342 		return;
2343 
2344 	case RPC_SERVER:
2345 
2346 		/*
2347 		 * For servers, the timer is only running when the stream
2348 		 * is really idle or memory is short.  The timer is started
2349 		 * by mir_wput when mir_type is set to RPC_SERVER and
2350 		 * by mir_svc_idle_start whenever the stream goes idle
2351 		 * (mir_ref_cnt == 0).  The timer is cancelled in
2352 		 * mir_rput whenever a new inbound request is passed to KRPC
2353 		 * and the stream was previously idle.
2354 		 *
2355 		 * The timer interval can be changed for individual
2356 		 * streams with the ND variable "mir_idle_timeout".
2357 		 *
2358 		 * If the stream is not idle do nothing.
2359 		 */
2360 		if (!MIR_SVC_QUIESCED(mir)) {
2361 			mutex_exit(&mir->mir_mutex);
2362 			return;
2363 		}
2364 
2365 		notify = !mir->mir_inrservice;
2366 		mutex_exit(&mir->mir_mutex);
2367 
2368 		/*
2369 		 * If there is no packet queued up in read queue, the stream
2370 		 * is really idle so notify nfsd to close it.
2371 		 */
2372 		if (notify) {
2373 			RPCLOG(16, "mir_timer: telling stream head listener "
2374 			    "to close stream (0x%p)\n", (void *) RD(wq));
2375 			(void) mir_svc_policy_notify(RD(wq), 1);
2376 		}
2377 		return;
2378 	default:
2379 		RPCLOG(1, "mir_timer: unexpected mir_type %d\n",
2380 		    mir->mir_type);
2381 		mutex_exit(&mir->mir_mutex);
2382 		return;
2383 	}
2384 }
2385 
2386 /*
2387  * Called by the RPC package to send either a call or a return, or a
2388  * transport connection request.  Adds the record marking header.
2389  */
2390 static void
2391 mir_wput(queue_t *q, mblk_t *mp)
2392 {
2393 	uint_t	frag_header;
2394 	mir_t	*mir = (mir_t *)q->q_ptr;
2395 	uchar_t	*rptr = mp->b_rptr;
2396 
2397 	if (!mir) {
2398 		freemsg(mp);
2399 		return;
2400 	}
2401 
2402 	if (mp->b_datap->db_type != M_DATA) {
2403 		mir_wput_other(q, mp);
2404 		return;
2405 	}
2406 
2407 	if (mir->mir_ordrel_pending == 1) {
2408 		freemsg(mp);
2409 		RPCLOG(16, "mir_wput wq 0x%p: got data after T_ORDREL_REQ\n",
2410 		    (void *)q);
2411 		return;
2412 	}
2413 
2414 	frag_header = (uint_t)DLEN(mp);
2415 	frag_header |= MIR_LASTFRAG;
2416 
2417 	/* Stick in the 4 byte record marking header. */
2418 	if ((rptr - mp->b_datap->db_base) < sizeof (uint32_t) ||
2419 	    !IS_P2ALIGNED(mp->b_rptr, sizeof (uint32_t))) {
2420 		/*
2421 		 * Since we know that M_DATA messages are created exclusively
2422 		 * by KRPC, we expect that KRPC will leave room for our header
2423 		 * and 4 byte align which is normal for XDR.
2424 		 * If KRPC (or someone else) does not cooperate, then we
2425 		 * just throw away the message.
2426 		 */
2427 		RPCLOG(1, "mir_wput: KRPC did not leave space for record "
2428 		    "fragment header (%d bytes left)\n",
2429 		    (int)(rptr - mp->b_datap->db_base));
2430 		freemsg(mp);
2431 		return;
2432 	}
2433 	rptr -= sizeof (uint32_t);
2434 	*(uint32_t *)rptr = htonl(frag_header);
2435 	mp->b_rptr = rptr;
2436 
2437 	mutex_enter(&mir->mir_mutex);
2438 	if (mir->mir_type == RPC_CLIENT) {
2439 		/*
2440 		 * For the client, set mir_clntreq to indicate that the
2441 		 * connection is active.
2442 		 */
2443 		mir->mir_clntreq = 1;
2444 		mir->mir_use_timestamp = ddi_get_lbolt();
2445 	}
2446 
2447 	/*
2448 	 * If we haven't already queued some data and the downstream module
2449 	 * can accept more data, send it on, otherwise we queue the message
2450 	 * and take other actions depending on mir_type.
2451 	 */
2452 	if (!mir->mir_inwservice && MIR_WCANPUTNEXT(mir, q)) {
2453 		mutex_exit(&mir->mir_mutex);
2454 
2455 		/*
2456 		 * Now we pass the RPC message downstream.
2457 		 */
2458 		putnext(q, mp);
2459 		return;
2460 	}
2461 
2462 	switch (mir->mir_type) {
2463 	case RPC_CLIENT:
2464 		/*
2465 		 * Check for a previous duplicate request on the
2466 		 * queue.  If there is one, then we throw away
2467 		 * the current message and let the previous one
2468 		 * go through.  If we can't find a duplicate, then
2469 		 * send this one.  This tap dance is an effort
2470 		 * to reduce traffic and processing requirements
2471 		 * under load conditions.
2472 		 */
2473 		if (mir_clnt_dup_request(q, mp)) {
2474 			mutex_exit(&mir->mir_mutex);
2475 			freemsg(mp);
2476 			return;
2477 		}
2478 		break;
2479 	case RPC_SERVER:
2480 		/*
2481 		 * Set mir_hold_inbound so that new inbound RPC
2482 		 * messages will be held until the client catches
2483 		 * up on the earlier replies.  This flag is cleared
2484 		 * in mir_wsrv after flow control is relieved;
2485 		 * the read-side queue is also enabled at that time.
2486 		 */
2487 		mir->mir_hold_inbound = 1;
2488 		break;
2489 	default:
2490 		RPCLOG(1, "mir_wput: unexpected mir_type %d\n", mir->mir_type);
2491 		break;
2492 	}
2493 	mir->mir_inwservice = 1;
2494 	(void) putq(q, mp);
2495 	mutex_exit(&mir->mir_mutex);
2496 }
2497 
2498 static void
2499 mir_wput_other(queue_t *q, mblk_t *mp)
2500 {
2501 	mir_t	*mir = (mir_t *)q->q_ptr;
2502 	struct iocblk	*iocp;
2503 	uchar_t	*rptr = mp->b_rptr;
2504 	bool_t	flush_in_svc = FALSE;
2505 
2506 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
2507 	switch (mp->b_datap->db_type) {
2508 	case M_IOCTL:
2509 		iocp = (struct iocblk *)rptr;
2510 		switch (iocp->ioc_cmd) {
2511 		case RPC_CLIENT:
2512 			mutex_enter(&mir->mir_mutex);
2513 			if (mir->mir_type != 0 &&
2514 			    mir->mir_type != iocp->ioc_cmd) {
2515 ioc_eperm:
2516 				mutex_exit(&mir->mir_mutex);
2517 				iocp->ioc_error = EPERM;
2518 				iocp->ioc_count = 0;
2519 				mp->b_datap->db_type = M_IOCACK;
2520 				qreply(q, mp);
2521 				return;
2522 			}
2523 
2524 			mir->mir_type = iocp->ioc_cmd;
2525 
2526 			/*
2527 			 * Clear mir_hold_inbound which was set to 1 by
2528 			 * mir_open.  This flag is not used on client
2529 			 * streams.
2530 			 */
2531 			mir->mir_hold_inbound = 0;
2532 			mir->mir_max_msg_sizep = &clnt_max_msg_size;
2533 
2534 			/*
2535 			 * Start the idle timer.  See mir_timer() for more
2536 			 * information on how client timers work.
2537 			 */
2538 			mir->mir_idle_timeout = clnt_idle_timeout;
2539 			mir_clnt_idle_start(q, mir);
2540 			mutex_exit(&mir->mir_mutex);
2541 
2542 			mp->b_datap->db_type = M_IOCACK;
2543 			qreply(q, mp);
2544 			return;
2545 		case RPC_SERVER:
2546 			mutex_enter(&mir->mir_mutex);
2547 			if (mir->mir_type != 0 &&
2548 			    mir->mir_type != iocp->ioc_cmd)
2549 				goto ioc_eperm;
2550 
2551 			/*
2552 			 * We don't clear mir_hold_inbound here because
2553 			 * mir_hold_inbound is used in the flow control
2554 			 * model. If we cleared it here, then we'd commit
2555 			 * a small violation to the model where the transport
2556 			 * might immediately block downstream flow.
2557 			 */
2558 
2559 			mir->mir_type = iocp->ioc_cmd;
2560 			mir->mir_max_msg_sizep = &svc_max_msg_size;
2561 
2562 			/*
2563 			 * Start the idle timer.  See mir_timer() for more
2564 			 * information on how server timers work.
2565 			 *
2566 			 * Note that it is important to start the idle timer
2567 			 * here so that connections time out even if we
2568 			 * never receive any data on them.
2569 			 */
2570 			mir->mir_idle_timeout = svc_idle_timeout;
2571 			RPCLOG(16, "mir_wput_other starting idle timer on 0x%p "
2572 			    "because we got RPC_SERVER ioctl\n", (void *)q);
2573 			mir_svc_idle_start(q, mir);
2574 			mutex_exit(&mir->mir_mutex);
2575 
2576 			mp->b_datap->db_type = M_IOCACK;
2577 			qreply(q, mp);
2578 			return;
2579 		default:
2580 			break;
2581 		}
2582 		break;
2583 
2584 	case M_PROTO:
2585 		if (mir->mir_type == RPC_CLIENT) {
2586 			/*
2587 			 * We are likely being called from the context of a
2588 			 * service procedure. So we need to enqueue. However
2589 			 * enqueing may put our message behind data messages.
2590 			 * So flush the data first.
2591 			 */
2592 			flush_in_svc = TRUE;
2593 		}
2594 		if ((mp->b_wptr - rptr) < sizeof (uint32_t) ||
2595 		    !IS_P2ALIGNED(rptr, sizeof (uint32_t)))
2596 			break;
2597 
2598 		switch (((union T_primitives *)rptr)->type) {
2599 		case T_DATA_REQ:
2600 			/* Don't pass T_DATA_REQ messages downstream. */
2601 			freemsg(mp);
2602 			return;
2603 		case T_ORDREL_REQ:
2604 			RPCLOG(8, "mir_wput_other wq 0x%p: got T_ORDREL_REQ\n",
2605 			    (void *)q);
2606 			mutex_enter(&mir->mir_mutex);
2607 			if (mir->mir_type != RPC_SERVER) {
2608 				/*
2609 				 * We are likely being called from
2610 				 * clnt_dispatch_notifyall(). Sending
2611 				 * a T_ORDREL_REQ will result in
2612 				 * a some kind of _IND message being sent,
2613 				 * will be another call to
2614 				 * clnt_dispatch_notifyall(). To keep the stack
2615 				 * lean, queue this message.
2616 				 */
2617 				mir->mir_inwservice = 1;
2618 				(void) putq(q, mp);
2619 				mutex_exit(&mir->mir_mutex);
2620 				return;
2621 			}
2622 
2623 			/*
2624 			 * Mark the structure such that we don't accept any
2625 			 * more requests from client. We could defer this
2626 			 * until we actually send the orderly release
2627 			 * request downstream, but all that does is delay
2628 			 * the closing of this stream.
2629 			 */
2630 			RPCLOG(16, "mir_wput_other wq 0x%p: got T_ORDREL_REQ "
2631 			    " so calling mir_svc_start_close\n", (void *)q);
2632 
2633 			mir_svc_start_close(q, mir);
2634 
2635 			/*
2636 			 * If we have sent down a T_ORDREL_REQ, don't send
2637 			 * any more.
2638 			 */
2639 			if (mir->mir_ordrel_pending) {
2640 				freemsg(mp);
2641 				mutex_exit(&mir->mir_mutex);
2642 				return;
2643 			}
2644 
2645 			/*
2646 			 * If the stream is not idle, then we hold the
2647 			 * orderly release until it becomes idle.  This
2648 			 * ensures that KRPC will be able to reply to
2649 			 * all requests that we have passed to it.
2650 			 *
2651 			 * We also queue the request if there is data already
2652 			 * queued, because we cannot allow the T_ORDREL_REQ
2653 			 * to go before data. When we had a separate reply
2654 			 * count, this was not a problem, because the
2655 			 * reply count was reconciled when mir_wsrv()
2656 			 * completed.
2657 			 */
2658 			if (!MIR_SVC_QUIESCED(mir) ||
2659 			    mir->mir_inwservice == 1) {
2660 				mir->mir_inwservice = 1;
2661 				(void) putq(q, mp);
2662 
2663 				RPCLOG(16, "mir_wput_other: queuing "
2664 				    "T_ORDREL_REQ on 0x%p\n", (void *)q);
2665 
2666 				mutex_exit(&mir->mir_mutex);
2667 				return;
2668 			}
2669 
2670 			/*
2671 			 * Mark the structure so that we know we sent
2672 			 * an orderly release request, and reset the idle timer.
2673 			 */
2674 			mir->mir_ordrel_pending = 1;
2675 
2676 			RPCLOG(16, "mir_wput_other: calling mir_svc_idle_start"
2677 			    " on 0x%p because we got T_ORDREL_REQ\n",
2678 			    (void *)q);
2679 
2680 			mir_svc_idle_start(q, mir);
2681 			mutex_exit(&mir->mir_mutex);
2682 
2683 			/*
2684 			 * When we break, we will putnext the T_ORDREL_REQ.
2685 			 */
2686 			break;
2687 
2688 		case T_CONN_REQ:
2689 			mutex_enter(&mir->mir_mutex);
2690 			if (mir->mir_head_mp != NULL) {
2691 				freemsg(mir->mir_head_mp);
2692 				mir->mir_head_mp = NULL;
2693 				mir->mir_tail_mp = NULL;
2694 			}
2695 			mir->mir_frag_len = -(int32_t)sizeof (uint32_t);
2696 			/*
2697 			 * Restart timer in case mir_clnt_idle_do_stop() was
2698 			 * called.
2699 			 */
2700 			mir->mir_idle_timeout = clnt_idle_timeout;
2701 			mir_clnt_idle_stop(q, mir);
2702 			mir_clnt_idle_start(q, mir);
2703 			mutex_exit(&mir->mir_mutex);
2704 			break;
2705 
2706 		default:
2707 			/*
2708 			 * T_DISCON_REQ is one of the interesting default
2709 			 * cases here. Ideally, an M_FLUSH is done before
2710 			 * T_DISCON_REQ is done. However, that is somewhat
2711 			 * cumbersome for clnt_cots.c to do. So we queue
2712 			 * T_DISCON_REQ, and let the service procedure
2713 			 * flush all M_DATA.
2714 			 */
2715 			break;
2716 		}
2717 		/* fallthru */;
2718 	default:
2719 		if (mp->b_datap->db_type >= QPCTL) {
2720 			if (mp->b_datap->db_type == M_FLUSH) {
2721 				if (mir->mir_type == RPC_CLIENT &&
2722 				    *mp->b_rptr & FLUSHW) {
2723 					RPCLOG(32, "mir_wput_other: flushing "
2724 					    "wq 0x%p\n", (void *)q);
2725 					if (*mp->b_rptr & FLUSHBAND) {
2726 						flushband(q, *(mp->b_rptr + 1),
2727 						    FLUSHDATA);
2728 					} else {
2729 						flushq(q, FLUSHDATA);
2730 					}
2731 				} else {
2732 					RPCLOG(32, "mir_wput_other: ignoring "
2733 					    "M_FLUSH on wq 0x%p\n", (void *)q);
2734 				}
2735 			}
2736 			break;
2737 		}
2738 
2739 		mutex_enter(&mir->mir_mutex);
2740 		if (mir->mir_inwservice == 0 && MIR_WCANPUTNEXT(mir, q)) {
2741 			mutex_exit(&mir->mir_mutex);
2742 			break;
2743 		}
2744 		mir->mir_inwservice = 1;
2745 		mir->mir_inwflushdata = flush_in_svc;
2746 		(void) putq(q, mp);
2747 		mutex_exit(&mir->mir_mutex);
2748 		qenable(q);
2749 
2750 		return;
2751 	}
2752 	putnext(q, mp);
2753 }
2754 
2755 static void
2756 mir_wsrv(queue_t *q)
2757 {
2758 	mblk_t	*mp;
2759 	mir_t	*mir;
2760 	bool_t flushdata;
2761 
2762 	mir = (mir_t *)q->q_ptr;
2763 	mutex_enter(&mir->mir_mutex);
2764 
2765 	flushdata = mir->mir_inwflushdata;
2766 	mir->mir_inwflushdata = 0;
2767 
2768 	while (mp = getq(q)) {
2769 		if (mp->b_datap->db_type == M_DATA) {
2770 			/*
2771 			 * Do not send any more data if we have sent
2772 			 * a T_ORDREL_REQ.
2773 			 */
2774 			if (flushdata || mir->mir_ordrel_pending == 1) {
2775 				freemsg(mp);
2776 				continue;
2777 			}
2778 
2779 			/*
2780 			 * Make sure that the stream can really handle more
2781 			 * data.
2782 			 */
2783 			if (!MIR_WCANPUTNEXT(mir, q)) {
2784 				(void) putbq(q, mp);
2785 				mutex_exit(&mir->mir_mutex);
2786 				return;
2787 			}
2788 
2789 			/*
2790 			 * Now we pass the RPC message downstream.
2791 			 */
2792 			mutex_exit(&mir->mir_mutex);
2793 			putnext(q, mp);
2794 			mutex_enter(&mir->mir_mutex);
2795 			continue;
2796 		}
2797 
2798 		/*
2799 		 * This is not an RPC message, pass it downstream
2800 		 * (ignoring flow control) if the server side is not sending a
2801 		 * T_ORDREL_REQ downstream.
2802 		 */
2803 		if (mir->mir_type != RPC_SERVER ||
2804 		    ((union T_primitives *)mp->b_rptr)->type !=
2805 		    T_ORDREL_REQ) {
2806 			mutex_exit(&mir->mir_mutex);
2807 			putnext(q, mp);
2808 			mutex_enter(&mir->mir_mutex);
2809 			continue;
2810 		}
2811 
2812 		if (mir->mir_ordrel_pending == 1) {
2813 			/*
2814 			 * Don't send two T_ORDRELs
2815 			 */
2816 			freemsg(mp);
2817 			continue;
2818 		}
2819 
2820 		/*
2821 		 * Mark the structure so that we know we sent an orderly
2822 		 * release request.  We will check to see slot is idle at the
2823 		 * end of this routine, and if so, reset the idle timer to
2824 		 * handle orderly release timeouts.
2825 		 */
2826 		mir->mir_ordrel_pending = 1;
2827 		RPCLOG(16, "mir_wsrv: sending ordrel req on q 0x%p\n",
2828 		    (void *)q);
2829 		/*
2830 		 * Send the orderly release downstream. If there are other
2831 		 * pending replies we won't be able to send them.  However,
2832 		 * the only reason we should send the orderly release is if
2833 		 * we were idle, or if an unusual event occurred.
2834 		 */
2835 		mutex_exit(&mir->mir_mutex);
2836 		putnext(q, mp);
2837 		mutex_enter(&mir->mir_mutex);
2838 	}
2839 
2840 	if (q->q_first == NULL)
2841 		/*
2842 		 * If we call mir_svc_idle_start() below, then
2843 		 * clearing mir_inwservice here will also result in
2844 		 * any thread waiting in mir_close() to be signaled.
2845 		 */
2846 		mir->mir_inwservice = 0;
2847 
2848 	if (mir->mir_type != RPC_SERVER) {
2849 		mutex_exit(&mir->mir_mutex);
2850 		return;
2851 	}
2852 
2853 	/*
2854 	 * If idle we call mir_svc_idle_start to start the timer (or wakeup
2855 	 * a close). Also make sure not to start the idle timer on the
2856 	 * listener stream. This can cause nfsd to send an orderly release
2857 	 * command on the listener stream.
2858 	 */
2859 	if (MIR_SVC_QUIESCED(mir) && !(mir->mir_listen_stream)) {
2860 		RPCLOG(16, "mir_wsrv: calling mir_svc_idle_start on 0x%p "
2861 		    "because mir slot is idle\n", (void *)q);
2862 		mir_svc_idle_start(q, mir);
2863 	}
2864 
2865 	/*
2866 	 * If outbound flow control has been relieved, then allow new
2867 	 * inbound requests to be processed.
2868 	 */
2869 	if (mir->mir_hold_inbound) {
2870 		mir->mir_hold_inbound = 0;
2871 		qenable(RD(q));
2872 	}
2873 	mutex_exit(&mir->mir_mutex);
2874 }
2875 
2876 static void
2877 mir_disconnect(queue_t *q, mir_t *mir)
2878 {
2879 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
2880 
2881 	switch (mir->mir_type) {
2882 	case RPC_CLIENT:
2883 		/*
2884 		 * We are disconnecting, but not necessarily
2885 		 * closing. By not closing, we will fail to
2886 		 * pick up a possibly changed global timeout value,
2887 		 * unless we store it now.
2888 		 */
2889 		mir->mir_idle_timeout = clnt_idle_timeout;
2890 		mir_clnt_idle_start(WR(q), mir);
2891 		mutex_exit(&mir->mir_mutex);
2892 
2893 		/*
2894 		 * T_DISCON_REQ is passed to KRPC as an integer value
2895 		 * (this is not a TPI message).  It is used as a
2896 		 * convenient value to indicate a sanity check
2897 		 * failure -- the same KRPC routine is also called
2898 		 * for T_DISCON_INDs and T_ORDREL_INDs.
2899 		 */
2900 		clnt_dispatch_notifyall(WR(q), T_DISCON_REQ, 0);
2901 		break;
2902 
2903 	case RPC_SERVER:
2904 		mir->mir_svc_no_more_msgs = 1;
2905 		mir_svc_idle_stop(WR(q), mir);
2906 		mutex_exit(&mir->mir_mutex);
2907 		RPCLOG(16, "mir_disconnect: telling "
2908 		    "stream head listener to disconnect stream "
2909 		    "(0x%p)\n", (void *) q);
2910 		(void) mir_svc_policy_notify(q, 2);
2911 		break;
2912 
2913 	default:
2914 		mutex_exit(&mir->mir_mutex);
2915 		break;
2916 	}
2917 }
2918 
2919 /*
2920  * Sanity check the message length, and if it's too large, shutdown the
2921  * connection.  Returns 1 if the connection is shutdown; 0 otherwise.
2922  */
2923 static int
2924 mir_check_len(queue_t *q, int32_t frag_len, mblk_t *head_mp)
2925 {
2926 	mir_t *mir = q->q_ptr;
2927 	uint_t maxsize = 0;
2928 
2929 	if (mir->mir_max_msg_sizep != NULL)
2930 		maxsize = *mir->mir_max_msg_sizep;
2931 
2932 	if (maxsize == 0 || frag_len <= (int)maxsize)
2933 		return (0);
2934 
2935 	freemsg(head_mp);
2936 	mir->mir_head_mp = NULL;
2937 	mir->mir_tail_mp = NULL;
2938 	mir->mir_frag_header = 0;
2939 	mir->mir_frag_len = -(int32_t)sizeof (uint32_t);
2940 	if (mir->mir_type != RPC_SERVER || mir->mir_setup_complete) {
2941 		cmn_err(CE_NOTE,
2942 		    "KRPC: record fragment from %s of size(%d) exceeds "
2943 		    "maximum (%u). Disconnecting",
2944 		    (mir->mir_type == RPC_CLIENT) ? "server" :
2945 		    (mir->mir_type == RPC_SERVER) ? "client" :
2946 		    "test tool", frag_len, maxsize);
2947 	}
2948 
2949 	mir_disconnect(q, mir);
2950 	return (1);
2951 }
2952