xref: /titanic_52/usr/src/uts/common/rpc/clnt_clts.c (revision d5862a2559fc326793dc3e6823d449fc4c5c4fda)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T
28  * All Rights Reserved
29  */
30 
31 /*
32  * Portions of this source code were derived from Berkeley 4.3 BSD
33  * under license from the Regents of the University of California.
34  */
35 
36 
37 /*
38  * Implements a kernel based, client side RPC.
39  */
40 
41 #include <sys/param.h>
42 #include <sys/types.h>
43 #include <sys/systm.h>
44 #include <sys/sysmacros.h>
45 #include <sys/stream.h>
46 #include <sys/strsubr.h>
47 #include <sys/ddi.h>
48 #include <sys/tiuser.h>
49 #include <sys/tihdr.h>
50 #include <sys/t_kuser.h>
51 #include <sys/errno.h>
52 #include <sys/kmem.h>
53 #include <sys/debug.h>
54 #include <sys/kstat.h>
55 #include <sys/t_lock.h>
56 #include <sys/cmn_err.h>
57 #include <sys/conf.h>
58 #include <sys/disp.h>
59 #include <sys/taskq.h>
60 #include <sys/list.h>
61 #include <sys/atomic.h>
62 #include <sys/zone.h>
63 #include <netinet/in.h>
64 #include <rpc/types.h>
65 #include <rpc/xdr.h>
66 #include <rpc/auth.h>
67 #include <rpc/clnt.h>
68 #include <rpc/rpc_msg.h>
69 
70 static enum clnt_stat clnt_clts_kcallit(CLIENT *, rpcproc_t, xdrproc_t,
71 		    caddr_t, xdrproc_t, caddr_t, struct timeval);
72 static void	clnt_clts_kabort(CLIENT *);
73 static void	clnt_clts_kerror(CLIENT *, struct rpc_err *);
74 static bool_t	clnt_clts_kfreeres(CLIENT *, xdrproc_t, caddr_t);
75 static bool_t	clnt_clts_kcontrol(CLIENT *, int, char *);
76 static void	clnt_clts_kdestroy(CLIENT *);
77 static int	clnt_clts_ksettimers(CLIENT *, struct rpc_timers *,
78 		    struct rpc_timers *, int, void (*)(), caddr_t, uint32_t);
79 
80 /*
81  * Operations vector for CLTS based RPC
82  */
83 static struct clnt_ops clts_ops = {
84 	clnt_clts_kcallit,	/* do rpc call */
85 	clnt_clts_kabort,	/* abort call */
86 	clnt_clts_kerror,	/* return error status */
87 	clnt_clts_kfreeres,	/* free results */
88 	clnt_clts_kdestroy,	/* destroy rpc handle */
89 	clnt_clts_kcontrol,	/* the ioctl() of rpc */
90 	clnt_clts_ksettimers	/* set retry timers */
91 };
92 
93 /*
94  * Endpoint for CLTS (INET, INET6, loopback, etc.)
95  */
96 typedef struct endpnt_type {
97 	struct endpnt_type *e_next;	/* pointer to next endpoint type */
98 	list_t		e_pool;		/* list of available endpoints */
99 	list_t		e_ilist;	/* list of idle endpints */
100 	struct endpnt	*e_pcurr;	/* pointer to current endpoint */
101 	char		e_protofmly[KNC_STRSIZE];	/* protocol family */
102 	dev_t		e_rdev;		/* device */
103 	kmutex_t	e_plock;	/* pool lock */
104 	kmutex_t	e_ilock;	/* idle list lock */
105 	timeout_id_t	e_itimer;	/* timer to dispatch the taskq */
106 	uint_t		e_cnt;		/* number of endpoints in the pool */
107 	zoneid_t	e_zoneid;	/* zoneid of endpoint type */
108 	kcondvar_t	e_async_cv;	/* cv for asynchronous reap threads */
109 	uint_t		e_async_count;	/* count of asynchronous reap threads */
110 } endpnt_type_t;
111 
112 typedef struct endpnt {
113 	list_node_t	e_node;		/* link to the pool */
114 	list_node_t	e_idle;		/* link to the idle list */
115 	endpnt_type_t	*e_type;	/* back pointer to endpoint type */
116 	TIUSER		*e_tiptr;	/* pointer to transport endpoint */
117 	queue_t		*e_wq;		/* write queue */
118 	uint_t		e_flags;	/* endpoint flags */
119 	uint_t		e_ref;		/* ref count on endpoint */
120 	kcondvar_t	e_cv;		/* condition variable */
121 	kmutex_t	e_lock;		/* protects cv and flags */
122 	time_t		e_itime;	/* time when rele'd */
123 } endpnt_t;
124 
125 #define	ENDPNT_ESTABLISHED	0x1	/* endpoint is established */
126 #define	ENDPNT_WAITING		0x2	/* thread waiting for endpoint */
127 #define	ENDPNT_BOUND		0x4	/* endpoint is bound */
128 #define	ENDPNT_STALE		0x8	/* endpoint is dead */
129 #define	ENDPNT_ONIDLE		0x10	/* endpoint is on the idle list */
130 
131 static krwlock_t	endpnt_type_lock; /* protects endpnt_type_list */
132 static endpnt_type_t	*endpnt_type_list = NULL; /* list of CLTS endpoints */
133 static struct kmem_cache	*endpnt_cache; /* cache of endpnt_t's */
134 static taskq_t			*endpnt_taskq; /* endpnt_t reaper thread */
135 static bool_t			taskq_created; /* flag for endpnt_taskq */
136 static kmutex_t			endpnt_taskq_lock; /* taskq lock */
137 static zone_key_t		endpnt_destructor_key;
138 
139 #define	DEFAULT_ENDPOINT_REAP_INTERVAL 60 /* 1 minute */
140 #define	DEFAULT_INTERVAL_SHIFT 30 /* 30 seconds */
141 
142 /*
143  * Endpoint tunables
144  */
145 static int	clnt_clts_max_endpoints = -1;
146 static int	clnt_clts_hash_size = DEFAULT_HASH_SIZE;
147 static time_t	clnt_clts_endpoint_reap_interval = -1;
148 static clock_t	clnt_clts_taskq_dispatch_interval;
149 
150 /*
151  * Response completion hash queue
152  */
153 static call_table_t *clts_call_ht;
154 
155 /*
156  * Routines for the endpoint manager
157  */
158 static struct endpnt_type *endpnt_type_create(struct knetconfig *);
159 static void endpnt_type_free(struct endpnt_type *);
160 static int check_endpnt(struct endpnt *, struct endpnt **);
161 static struct endpnt *endpnt_get(struct knetconfig *, int);
162 static void endpnt_rele(struct endpnt *);
163 static void endpnt_reap_settimer(endpnt_type_t *);
164 static void endpnt_reap(endpnt_type_t *);
165 static void endpnt_reap_dispatch(void *);
166 static void endpnt_reclaim(zoneid_t);
167 
168 
169 /*
170  * Request dipatching function.
171  */
172 static int clnt_clts_dispatch_send(queue_t *q, mblk_t *, struct netbuf *addr,
173 					calllist_t *, uint_t);
174 
175 /*
176  * The size of the preserialized RPC header information.
177  */
178 #define	CKU_HDRSIZE	20
179 /*
180  * The initial allocation size.  It is small to reduce space requirements.
181  */
182 #define	CKU_INITSIZE	2048
183 /*
184  * The size of additional allocations, if required.  It is larger to
185  * reduce the number of actual allocations.
186  */
187 #define	CKU_ALLOCSIZE	8192
188 
189 /*
190  * Private data per rpc handle.  This structure is allocated by
191  * clnt_clts_kcreate, and freed by clnt_clts_kdestroy.
192  */
193 struct cku_private {
194 	CLIENT			 cku_client;	/* client handle */
195 	int			 cku_retrys;	/* request retrys */
196 	calllist_t		 cku_call;
197 	struct endpnt		*cku_endpnt;	/* open end point */
198 	struct knetconfig	 cku_config;
199 	struct netbuf		 cku_addr;	/* remote address */
200 	struct rpc_err		 cku_err;	/* error status */
201 	XDR			 cku_outxdr;	/* xdr stream for output */
202 	XDR			 cku_inxdr;	/* xdr stream for input */
203 	char			 cku_rpchdr[CKU_HDRSIZE + 4]; /* rpc header */
204 	struct cred		*cku_cred;	/* credentials */
205 	struct rpc_timers	*cku_timers;	/* for estimating RTT */
206 	struct rpc_timers	*cku_timeall;	/* for estimating RTT */
207 	void			 (*cku_feedback)(int, int, caddr_t);
208 						/* ptr to feedback rtn */
209 	caddr_t			 cku_feedarg;	/* argument for feedback func */
210 	uint32_t		 cku_xid;	/* current XID */
211 	bool_t			 cku_bcast;	/* RPC broadcast hint */
212 	int			cku_useresvport; /* Use reserved port */
213 	struct rpc_clts_client	*cku_stats;	/* counters for the zone */
214 };
215 
216 static const struct rpc_clts_client {
217 	kstat_named_t	rccalls;
218 	kstat_named_t	rcbadcalls;
219 	kstat_named_t	rcretrans;
220 	kstat_named_t	rcbadxids;
221 	kstat_named_t	rctimeouts;
222 	kstat_named_t	rcnewcreds;
223 	kstat_named_t	rcbadverfs;
224 	kstat_named_t	rctimers;
225 	kstat_named_t	rcnomem;
226 	kstat_named_t	rccantsend;
227 } clts_rcstat_tmpl = {
228 	{ "calls",	KSTAT_DATA_UINT64 },
229 	{ "badcalls",	KSTAT_DATA_UINT64 },
230 	{ "retrans",	KSTAT_DATA_UINT64 },
231 	{ "badxids",	KSTAT_DATA_UINT64 },
232 	{ "timeouts",	KSTAT_DATA_UINT64 },
233 	{ "newcreds",	KSTAT_DATA_UINT64 },
234 	{ "badverfs",	KSTAT_DATA_UINT64 },
235 	{ "timers",	KSTAT_DATA_UINT64 },
236 	{ "nomem",	KSTAT_DATA_UINT64 },
237 	{ "cantsend",	KSTAT_DATA_UINT64 },
238 };
239 
240 static uint_t clts_rcstat_ndata =
241 	sizeof (clts_rcstat_tmpl) / sizeof (kstat_named_t);
242 
243 #define	RCSTAT_INCR(s, x)			\
244 	atomic_add_64(&(s)->x.value.ui64, 1)
245 
246 #define	ptoh(p)		(&((p)->cku_client))
247 #define	htop(h)		((struct cku_private *)((h)->cl_private))
248 
249 /*
250  * Times to retry
251  */
252 #define	SNDTRIES	4
253 #define	REFRESHES	2	/* authentication refreshes */
254 
255 /*
256  * The following is used to determine the global default behavior for
257  * CLTS when binding to a local port.
258  *
259  * If the value is set to 1 the default will be to select a reserved
260  * (aka privileged) port, if the value is zero the default will be to
261  * use non-reserved ports.  Users of kRPC may override this by using
262  * CLNT_CONTROL() and CLSET_BINDRESVPORT.
263  */
264 static int clnt_clts_do_bindresvport = 1;
265 
266 #define	BINDRESVPORT_RETRIES 5
267 
268 void
269 clnt_clts_stats_init(zoneid_t zoneid, struct rpc_clts_client **statsp)
270 {
271 	kstat_t *ksp;
272 	kstat_named_t *knp;
273 
274 	knp = rpcstat_zone_init_common(zoneid, "unix", "rpc_clts_client",
275 	    (const kstat_named_t *)&clts_rcstat_tmpl,
276 	    sizeof (clts_rcstat_tmpl));
277 	/*
278 	 * Backwards compatibility for old kstat clients
279 	 */
280 	ksp = kstat_create_zone("unix", 0, "rpc_client", "rpc",
281 	    KSTAT_TYPE_NAMED, clts_rcstat_ndata,
282 	    KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_WRITABLE, zoneid);
283 	if (ksp) {
284 		ksp->ks_data = knp;
285 		kstat_install(ksp);
286 	}
287 	*statsp = (struct rpc_clts_client *)knp;
288 }
289 
290 void
291 clnt_clts_stats_fini(zoneid_t zoneid, struct rpc_clts_client **statsp)
292 {
293 	rpcstat_zone_fini_common(zoneid, "unix", "rpc_clts_client");
294 	kstat_delete_byname_zone("unix", 0, "rpc_client", zoneid);
295 	kmem_free(*statsp, sizeof (clts_rcstat_tmpl));
296 }
297 
298 /*
299  * Create an rpc handle for a clts rpc connection.
300  * Allocates space for the handle structure and the private data.
301  */
302 /* ARGSUSED */
303 int
304 clnt_clts_kcreate(struct knetconfig *config, struct netbuf *addr,
305 	rpcprog_t pgm, rpcvers_t vers, int retrys, struct cred *cred,
306 	CLIENT **cl)
307 {
308 	CLIENT *h;
309 	struct cku_private *p;
310 	struct rpc_msg call_msg;
311 	int error;
312 	int plen;
313 
314 	if (cl == NULL)
315 		return (EINVAL);
316 
317 	*cl = NULL;
318 	error = 0;
319 
320 	p = kmem_zalloc(sizeof (*p), KM_SLEEP);
321 
322 	h = ptoh(p);
323 
324 	/* handle */
325 	h->cl_ops = &clts_ops;
326 	h->cl_private = (caddr_t)p;
327 	h->cl_auth = authkern_create();
328 
329 	/* call message, just used to pre-serialize below */
330 	call_msg.rm_xid = 0;
331 	call_msg.rm_direction = CALL;
332 	call_msg.rm_call.cb_rpcvers = RPC_MSG_VERSION;
333 	call_msg.rm_call.cb_prog = pgm;
334 	call_msg.rm_call.cb_vers = vers;
335 
336 	/* private */
337 	clnt_clts_kinit(h, addr, retrys, cred);
338 
339 	xdrmem_create(&p->cku_outxdr, p->cku_rpchdr, CKU_HDRSIZE, XDR_ENCODE);
340 
341 	/* pre-serialize call message header */
342 	if (!xdr_callhdr(&p->cku_outxdr, &call_msg)) {
343 		error = EINVAL;		/* XXX */
344 		goto bad;
345 	}
346 
347 	p->cku_config.knc_rdev = config->knc_rdev;
348 	p->cku_config.knc_semantics = config->knc_semantics;
349 	plen = strlen(config->knc_protofmly) + 1;
350 	p->cku_config.knc_protofmly = kmem_alloc(plen, KM_SLEEP);
351 	bcopy(config->knc_protofmly, p->cku_config.knc_protofmly, plen);
352 	p->cku_useresvport = -1; /* value is has not been set */
353 
354 	cv_init(&p->cku_call.call_cv, NULL, CV_DEFAULT, NULL);
355 	mutex_init(&p->cku_call.call_lock, NULL, MUTEX_DEFAULT, NULL);
356 
357 	*cl = h;
358 	return (0);
359 
360 bad:
361 	auth_destroy(h->cl_auth);
362 	kmem_free(p->cku_addr.buf, addr->maxlen);
363 	kmem_free(p, sizeof (struct cku_private));
364 
365 	return (error);
366 }
367 
368 void
369 clnt_clts_kinit(CLIENT *h, struct netbuf *addr, int retrys, cred_t *cred)
370 {
371 	/* LINTED pointer alignment */
372 	struct cku_private *p = htop(h);
373 	struct rpcstat *rsp;
374 
375 	rsp = zone_getspecific(rpcstat_zone_key, rpc_zone());
376 	ASSERT(rsp != NULL);
377 
378 	p->cku_retrys = retrys;
379 
380 	if (p->cku_addr.maxlen < addr->len) {
381 		if (p->cku_addr.maxlen != 0 && p->cku_addr.buf != NULL)
382 			kmem_free(p->cku_addr.buf, p->cku_addr.maxlen);
383 
384 		p->cku_addr.buf = kmem_zalloc(addr->maxlen, KM_SLEEP);
385 		p->cku_addr.maxlen = addr->maxlen;
386 	}
387 
388 	p->cku_addr.len = addr->len;
389 	bcopy(addr->buf, p->cku_addr.buf, addr->len);
390 
391 	p->cku_cred = cred;
392 	p->cku_xid = 0;
393 	p->cku_timers = NULL;
394 	p->cku_timeall = NULL;
395 	p->cku_feedback = NULL;
396 	p->cku_bcast = FALSE;
397 	p->cku_call.call_xid = 0;
398 	p->cku_call.call_hash = 0;
399 	p->cku_call.call_notified = FALSE;
400 	p->cku_call.call_next = NULL;
401 	p->cku_call.call_prev = NULL;
402 	p->cku_call.call_reply = NULL;
403 	p->cku_call.call_wq = NULL;
404 	p->cku_stats = rsp->rpc_clts_client;
405 }
406 
407 /*
408  * set the timers.  Return current retransmission timeout.
409  */
410 static int
411 clnt_clts_ksettimers(CLIENT *h, struct rpc_timers *t, struct rpc_timers *all,
412 	int minimum, void (*feedback)(int, int, caddr_t), caddr_t arg,
413 	uint32_t xid)
414 {
415 	/* LINTED pointer alignment */
416 	struct cku_private *p = htop(h);
417 	int value;
418 
419 	p->cku_feedback = feedback;
420 	p->cku_feedarg = arg;
421 	p->cku_timers = t;
422 	p->cku_timeall = all;
423 	if (xid)
424 		p->cku_xid = xid;
425 	value = all->rt_rtxcur;
426 	value += t->rt_rtxcur;
427 	if (value < minimum)
428 		return (minimum);
429 	RCSTAT_INCR(p->cku_stats, rctimers);
430 	return (value);
431 }
432 
433 /*
434  * Time out back off function. tim is in HZ
435  */
436 #define	MAXTIMO	(20 * hz)
437 #define	backoff(tim)	(((tim) < MAXTIMO) ? dobackoff(tim) : (tim))
438 #define	dobackoff(tim)	((((tim) << 1) > MAXTIMO) ? MAXTIMO : ((tim) << 1))
439 
440 #define	RETRY_POLL_TIMO	30
441 
442 /*
443  * Call remote procedure.
444  * Most of the work of rpc is done here.  We serialize what is left
445  * of the header (some was pre-serialized in the handle), serialize
446  * the arguments, and send it off.  We wait for a reply or a time out.
447  * Timeout causes an immediate return, other packet problems may cause
448  * a retry on the receive.  When a good packet is received we deserialize
449  * it, and check verification.  A bad reply code will cause one retry
450  * with full (longhand) credentials.
451  */
452 enum clnt_stat
453 clnt_clts_kcallit_addr(CLIENT *h, rpcproc_t procnum, xdrproc_t xdr_args,
454 	caddr_t argsp, xdrproc_t xdr_results, caddr_t resultsp,
455 	struct timeval wait, struct netbuf *sin)
456 {
457 	/* LINTED pointer alignment */
458 	struct cku_private *p = htop(h);
459 	XDR *xdrs;
460 	int stries = p->cku_retrys;
461 	int refreshes = REFRESHES;	/* number of times to refresh cred */
462 	int round_trip;			/* time the RPC */
463 	int error;
464 	int hdrsz;
465 	mblk_t *mp;
466 	mblk_t *mpdup;
467 	mblk_t *resp = NULL;
468 	mblk_t *tmp;
469 	calllist_t *call = &p->cku_call;
470 	clock_t timout = 0;
471 	bool_t interrupted;
472 	enum clnt_stat status;
473 	struct rpc_msg reply_msg;
474 	enum clnt_stat re_status;
475 	endpnt_t *endpt;
476 
477 	RCSTAT_INCR(p->cku_stats, rccalls);
478 
479 	RPCLOG(2, "clnt_clts_kcallit_addr: wait.tv_sec: %ld\n", wait.tv_sec);
480 	RPCLOG(2, "clnt_clts_kcallit_addr: wait.tv_usec: %ld\n", wait.tv_usec);
481 
482 	timout = TIMEVAL_TO_TICK(&wait);
483 
484 	if (p->cku_xid == 0) {
485 		p->cku_xid = alloc_xid();
486 		if (p->cku_endpnt != NULL)
487 			endpnt_rele(p->cku_endpnt);
488 		p->cku_endpnt = NULL;
489 	}
490 	call->call_zoneid = rpc_zoneid();
491 
492 	mpdup = NULL;
493 call_again:
494 
495 	if (mpdup == NULL) {
496 
497 		while ((mp = allocb(CKU_INITSIZE, BPRI_LO)) == NULL) {
498 			if (strwaitbuf(CKU_INITSIZE, BPRI_LO)) {
499 				p->cku_err.re_status = RPC_SYSTEMERROR;
500 				p->cku_err.re_errno = ENOSR;
501 				goto done;
502 			}
503 		}
504 
505 		xdrs = &p->cku_outxdr;
506 		xdrmblk_init(xdrs, mp, XDR_ENCODE, CKU_ALLOCSIZE);
507 
508 		if (h->cl_auth->ah_cred.oa_flavor != RPCSEC_GSS) {
509 			/*
510 			 * Copy in the preserialized RPC header
511 			 * information.
512 			 */
513 			bcopy(p->cku_rpchdr, mp->b_rptr, CKU_HDRSIZE);
514 
515 			/*
516 			 * transaction id is the 1st thing in the output
517 			 * buffer.
518 			 */
519 			/* LINTED pointer alignment */
520 			(*(uint32_t *)(mp->b_rptr)) = p->cku_xid;
521 
522 			/* Skip the preserialized stuff. */
523 			XDR_SETPOS(xdrs, CKU_HDRSIZE);
524 
525 			/* Serialize dynamic stuff into the output buffer. */
526 			if ((!XDR_PUTINT32(xdrs, (int32_t *)&procnum)) ||
527 			    (!AUTH_MARSHALL(h->cl_auth, xdrs, p->cku_cred)) ||
528 			    (!(*xdr_args)(xdrs, argsp))) {
529 				freemsg(mp);
530 				p->cku_err.re_status = RPC_CANTENCODEARGS;
531 				p->cku_err.re_errno = EIO;
532 				goto done;
533 			}
534 		} else {
535 			uint32_t *uproc = (uint32_t *)
536 			    &p->cku_rpchdr[CKU_HDRSIZE];
537 			IXDR_PUT_U_INT32(uproc, procnum);
538 
539 			(*(uint32_t *)(&p->cku_rpchdr[0])) = p->cku_xid;
540 			XDR_SETPOS(xdrs, 0);
541 
542 			/* Serialize the procedure number and the arguments. */
543 			if (!AUTH_WRAP(h->cl_auth, (caddr_t)p->cku_rpchdr,
544 			    CKU_HDRSIZE+4, xdrs, xdr_args, argsp)) {
545 				freemsg(mp);
546 				p->cku_err.re_status = RPC_CANTENCODEARGS;
547 				p->cku_err.re_errno = EIO;
548 				goto done;
549 			}
550 		}
551 	} else
552 		mp = mpdup;
553 
554 	mpdup = dupmsg(mp);
555 	if (mpdup == NULL) {
556 		freemsg(mp);
557 		p->cku_err.re_status = RPC_SYSTEMERROR;
558 		p->cku_err.re_errno = ENOSR;
559 		goto done;
560 	}
561 
562 	/*
563 	 * Grab an endpnt only if the endpoint is NULL.  We could be retrying
564 	 * the request and in this case we want to go through the same
565 	 * source port, so that the duplicate request cache may detect a
566 	 * retry.
567 	 */
568 
569 	if (p->cku_endpnt == NULL)
570 		p->cku_endpnt = endpnt_get(&p->cku_config, p->cku_useresvport);
571 
572 	if (p->cku_endpnt == NULL) {
573 		freemsg(mp);
574 		p->cku_err.re_status = RPC_SYSTEMERROR;
575 		p->cku_err.re_errno = ENOSR;
576 		goto done;
577 	}
578 
579 	round_trip = lbolt;
580 
581 	error = clnt_clts_dispatch_send(p->cku_endpnt->e_wq, mp,
582 	    &p->cku_addr, call, p->cku_xid);
583 
584 	if (error != 0) {
585 		freemsg(mp);
586 		p->cku_err.re_status = RPC_CANTSEND;
587 		p->cku_err.re_errno = error;
588 		RCSTAT_INCR(p->cku_stats, rccantsend);
589 		goto done1;
590 	}
591 
592 	RPCLOG(64, "clnt_clts_kcallit_addr: sent call for xid 0x%x\n",
593 	    p->cku_xid);
594 
595 	/*
596 	 * There are two reasons for which we go back to to tryread.
597 	 *
598 	 * a) In case the status is RPC_PROCUNAVAIL and we sent out a
599 	 *    broadcast we should not get any invalid messages with the
600 	 *    RPC_PROCUNAVAIL error back. Some broken RPC implementations
601 	 *    send them and for this we have to ignore them ( as we would
602 	 *    have never received them ) and look for another message
603 	 *    which might contain the valid response because we don't know
604 	 *    how many broken implementations are in the network. So we are
605 	 *    going to loop until
606 	 *    - we received a valid response
607 	 *    - we have processed all invalid responses and
608 	 *	got a time out when we try to receive again a
609 	 *	message.
610 	 *
611 	 * b) We will jump back to tryread also in case we failed
612 	 *    within the AUTH_VALIDATE. In this case we should move
613 	 *    on and loop until we received a valid response or we
614 	 *    have processed all responses with broken authentication
615 	 *    and we got a time out when we try to receive a message.
616 	 */
617 tryread:
618 	mutex_enter(&call->call_lock);
619 	interrupted = FALSE;
620 	if (call->call_notified == FALSE) {
621 		klwp_t *lwp = ttolwp(curthread);
622 		clock_t cv_wait_ret = 1; /* init to > 0 */
623 		clock_t cv_timout = timout;
624 
625 		if (lwp != NULL)
626 			lwp->lwp_nostop++;
627 
628 		cv_timout += lbolt;
629 
630 		if (h->cl_nosignal)
631 			while ((cv_wait_ret =
632 			    cv_timedwait(&call->call_cv,
633 			    &call->call_lock, cv_timout)) > 0 &&
634 			    call->call_notified == FALSE)
635 				;
636 		else
637 			while ((cv_wait_ret =
638 			    cv_timedwait_sig(&call->call_cv,
639 			    &call->call_lock, cv_timout)) > 0 &&
640 			    call->call_notified == FALSE)
641 				;
642 
643 		if (cv_wait_ret == 0)
644 			interrupted = TRUE;
645 
646 		if (lwp != NULL)
647 			lwp->lwp_nostop--;
648 	}
649 	resp = call->call_reply;
650 	call->call_reply = NULL;
651 	status = call->call_status;
652 	/*
653 	 * We have to reset the call_notified here. In case we have
654 	 * to do a retry ( e.g. in case we got a RPC_PROCUNAVAIL
655 	 * error ) we need to set this to false to ensure that
656 	 * we will wait for the next message. When the next message
657 	 * is going to arrive the function clnt_clts_dispatch_notify
658 	 * will set this to true again.
659 	 */
660 	call->call_notified = FALSE;
661 	mutex_exit(&call->call_lock);
662 
663 	if (status == RPC_TIMEDOUT) {
664 		if (interrupted) {
665 			/*
666 			 * We got interrupted, bail out
667 			 */
668 			p->cku_err.re_status = RPC_INTR;
669 			p->cku_err.re_errno = EINTR;
670 			goto done1;
671 		} else {
672 			/*
673 			 * It's possible that our response arrived
674 			 * right after we timed out.  Check to see
675 			 * if it has arrived before we remove the
676 			 * calllist from the dispatch queue.
677 			 */
678 			mutex_enter(&call->call_lock);
679 			if (call->call_notified == TRUE) {
680 				resp = call->call_reply;
681 				call->call_reply = NULL;
682 				mutex_exit(&call->call_lock);
683 				RPCLOG(8, "clnt_clts_kcallit_addr: "
684 				    "response received for request "
685 				    "w/xid 0x%x after timeout\n",
686 				    p->cku_xid);
687 				goto getresponse;
688 			}
689 			mutex_exit(&call->call_lock);
690 
691 			RPCLOG(8, "clnt_clts_kcallit_addr: "
692 			    "request w/xid 0x%x timedout "
693 			    "waiting for reply\n", p->cku_xid);
694 #if 0 /* XXX not yet */
695 			/*
696 			 * Timeout may be due to a dead gateway. Send
697 			 * an ioctl downstream advising deletion of
698 			 * route when we reach the half-way point to
699 			 * timing out.
700 			 */
701 			if (stries == p->cku_retrys/2) {
702 				t_kadvise(p->cku_endpnt->e_tiptr,
703 				    (uchar_t *)p->cku_addr.buf,
704 				    p->cku_addr.len);
705 			}
706 #endif /* not yet */
707 			p->cku_err.re_status = RPC_TIMEDOUT;
708 			p->cku_err.re_errno = ETIMEDOUT;
709 			RCSTAT_INCR(p->cku_stats, rctimeouts);
710 			goto done1;
711 		}
712 	}
713 
714 getresponse:
715 	/*
716 	 * Check to see if a response arrived.  If it one is
717 	 * present then proceed to process the reponse.  Otherwise
718 	 * fall through to retry or retransmit the request.  This
719 	 * is probably not the optimal thing to do, but since we
720 	 * are most likely dealing with a unrealiable transport it
721 	 * is the safe thing to so.
722 	 */
723 	if (resp == NULL) {
724 		p->cku_err.re_status = RPC_CANTRECV;
725 		p->cku_err.re_errno = EIO;
726 		goto done1;
727 	}
728 
729 	/*
730 	 * Prepare the message for further processing.  We need to remove
731 	 * the datagram header and copy the source address if necessary.  No
732 	 * need to verify the header since rpcmod took care of that.
733 	 */
734 	/*
735 	 * Copy the source address if the caller has supplied a netbuf.
736 	 */
737 	if (sin != NULL) {
738 		union T_primitives *pptr;
739 
740 		pptr = (union T_primitives *)resp->b_rptr;
741 		bcopy(resp->b_rptr + pptr->unitdata_ind.SRC_offset, sin->buf,
742 		    pptr->unitdata_ind.SRC_length);
743 		sin->len = pptr->unitdata_ind.SRC_length;
744 	}
745 
746 	/*
747 	 * Pop off the datagram header.
748 	 */
749 	hdrsz = resp->b_wptr - resp->b_rptr;
750 	if ((resp->b_wptr - (resp->b_rptr + hdrsz)) == 0) {
751 		tmp = resp;
752 		resp = resp->b_cont;
753 		tmp->b_cont = NULL;
754 		freeb(tmp);
755 	} else {
756 		unsigned char *ud_off = resp->b_rptr;
757 		resp->b_rptr += hdrsz;
758 		tmp = dupb(resp);
759 		if (tmp == NULL) {
760 			p->cku_err.re_status = RPC_SYSTEMERROR;
761 			p->cku_err.re_errno = ENOSR;
762 			freemsg(resp);
763 			goto done1;
764 		}
765 		tmp->b_cont = resp->b_cont;
766 		resp->b_rptr = ud_off;
767 		freeb(resp);
768 		resp = tmp;
769 	}
770 
771 	round_trip = lbolt - round_trip;
772 	/*
773 	 * Van Jacobson timer algorithm here, only if NOT a retransmission.
774 	 */
775 	if (p->cku_timers != NULL && stries == p->cku_retrys) {
776 		int rt;
777 
778 		rt = round_trip;
779 		rt -= (p->cku_timers->rt_srtt >> 3);
780 		p->cku_timers->rt_srtt += rt;
781 		if (rt < 0)
782 			rt = - rt;
783 		rt -= (p->cku_timers->rt_deviate >> 2);
784 		p->cku_timers->rt_deviate += rt;
785 		p->cku_timers->rt_rtxcur =
786 		    (clock_t)((p->cku_timers->rt_srtt >> 2) +
787 		    p->cku_timers->rt_deviate) >> 1;
788 
789 		rt = round_trip;
790 		rt -= (p->cku_timeall->rt_srtt >> 3);
791 		p->cku_timeall->rt_srtt += rt;
792 		if (rt < 0)
793 			rt = - rt;
794 		rt -= (p->cku_timeall->rt_deviate >> 2);
795 		p->cku_timeall->rt_deviate += rt;
796 		p->cku_timeall->rt_rtxcur =
797 		    (clock_t)((p->cku_timeall->rt_srtt >> 2) +
798 		    p->cku_timeall->rt_deviate) >> 1;
799 		if (p->cku_feedback != NULL) {
800 			(*p->cku_feedback)(FEEDBACK_OK, procnum,
801 			    p->cku_feedarg);
802 		}
803 	}
804 
805 	/*
806 	 * Process reply
807 	 */
808 	xdrs = &(p->cku_inxdr);
809 	xdrmblk_init(xdrs, resp, XDR_DECODE, 0);
810 
811 	reply_msg.rm_direction = REPLY;
812 	reply_msg.rm_reply.rp_stat = MSG_ACCEPTED;
813 	reply_msg.acpted_rply.ar_stat = SUCCESS;
814 	reply_msg.acpted_rply.ar_verf = _null_auth;
815 	/*
816 	 *  xdr_results will be done in AUTH_UNWRAP.
817 	 */
818 	reply_msg.acpted_rply.ar_results.where = NULL;
819 	reply_msg.acpted_rply.ar_results.proc = xdr_void;
820 
821 	/*
822 	 * Decode and validate the response.
823 	 */
824 	if (!xdr_replymsg(xdrs, &reply_msg)) {
825 		p->cku_err.re_status = RPC_CANTDECODERES;
826 		p->cku_err.re_errno = EIO;
827 		(void) xdr_rpc_free_verifier(xdrs, &reply_msg);
828 		goto done1;
829 	}
830 
831 	_seterr_reply(&reply_msg, &(p->cku_err));
832 
833 	re_status = p->cku_err.re_status;
834 	if (re_status == RPC_SUCCESS) {
835 		/*
836 		 * Reply is good, check auth.
837 		 */
838 		if (!AUTH_VALIDATE(h->cl_auth,
839 		    &reply_msg.acpted_rply.ar_verf)) {
840 			p->cku_err.re_status = RPC_AUTHERROR;
841 			p->cku_err.re_why = AUTH_INVALIDRESP;
842 			RCSTAT_INCR(p->cku_stats, rcbadverfs);
843 			(void) xdr_rpc_free_verifier(xdrs, &reply_msg);
844 			goto tryread;
845 		}
846 		if (!AUTH_UNWRAP(h->cl_auth, xdrs, xdr_results, resultsp)) {
847 			p->cku_err.re_status = RPC_CANTDECODERES;
848 			p->cku_err.re_errno = EIO;
849 		}
850 		(void) xdr_rpc_free_verifier(xdrs, &reply_msg);
851 		goto done1;
852 	}
853 	/* set errno in case we can't recover */
854 	if (re_status != RPC_VERSMISMATCH &&
855 	    re_status != RPC_AUTHERROR && re_status != RPC_PROGVERSMISMATCH)
856 		p->cku_err.re_errno = EIO;
857 	/*
858 	 * Determine whether or not we're doing an RPC
859 	 * broadcast. Some server implementations don't
860 	 * follow RFC 1050, section 7.4.2 in that they
861 	 * don't remain silent when they see a proc
862 	 * they don't support. Therefore we keep trying
863 	 * to receive on RPC_PROCUNAVAIL, hoping to get
864 	 * a valid response from a compliant server.
865 	 */
866 	if (re_status == RPC_PROCUNAVAIL && p->cku_bcast) {
867 		(void) xdr_rpc_free_verifier(xdrs, &reply_msg);
868 		goto tryread;
869 	}
870 	if (re_status == RPC_AUTHERROR) {
871 		/*
872 		 * Maybe our credential need to be refreshed
873 		 */
874 		if (refreshes > 0 &&
875 		    AUTH_REFRESH(h->cl_auth, &reply_msg, p->cku_cred)) {
876 			/*
877 			 * The credential is refreshed. Try the request again.
878 			 * Even if stries == 0, we still retry as long as
879 			 * refreshes > 0. This prevents a soft authentication
880 			 * error turning into a hard one at an upper level.
881 			 */
882 			refreshes--;
883 			RCSTAT_INCR(p->cku_stats, rcbadcalls);
884 			RCSTAT_INCR(p->cku_stats, rcnewcreds);
885 
886 			(void) xdr_rpc_free_verifier(xdrs, &reply_msg);
887 			freemsg(mpdup);
888 			call_table_remove(call);
889 			mutex_enter(&call->call_lock);
890 			if (call->call_reply != NULL) {
891 				freemsg(call->call_reply);
892 				call->call_reply = NULL;
893 			}
894 			mutex_exit(&call->call_lock);
895 
896 			freemsg(resp);
897 			mpdup = NULL;
898 			goto call_again;
899 		}
900 		/*
901 		 * We have used the client handle to do an AUTH_REFRESH
902 		 * and the RPC status may be set to RPC_SUCCESS;
903 		 * Let's make sure to set it to RPC_AUTHERROR.
904 		 */
905 		p->cku_err.re_status = RPC_CANTDECODERES;
906 
907 		/*
908 		 * Map recoverable and unrecoverable
909 		 * authentication errors to appropriate errno
910 		 */
911 		switch (p->cku_err.re_why) {
912 		case AUTH_TOOWEAK:
913 			/*
914 			 * Could be an nfsportmon failure, set
915 			 * useresvport and try again.
916 			 */
917 			if (p->cku_useresvport != 1) {
918 				p->cku_useresvport = 1;
919 				(void) xdr_rpc_free_verifier(xdrs, &reply_msg);
920 				freemsg(mpdup);
921 
922 				call_table_remove(call);
923 				mutex_enter(&call->call_lock);
924 				if (call->call_reply != NULL) {
925 					freemsg(call->call_reply);
926 					call->call_reply = NULL;
927 				}
928 				mutex_exit(&call->call_lock);
929 
930 				freemsg(resp);
931 				mpdup = NULL;
932 				endpt = p->cku_endpnt;
933 				if (endpt->e_tiptr != NULL) {
934 					mutex_enter(&endpt->e_lock);
935 					endpt->e_flags &= ~ENDPNT_BOUND;
936 					(void) t_kclose(endpt->e_tiptr, 1);
937 					endpt->e_tiptr = NULL;
938 					mutex_exit(&endpt->e_lock);
939 
940 				}
941 
942 				p->cku_xid = alloc_xid();
943 				endpnt_rele(p->cku_endpnt);
944 				p->cku_endpnt = NULL;
945 				goto call_again;
946 			}
947 			/* FALLTHRU */
948 		case AUTH_BADCRED:
949 		case AUTH_BADVERF:
950 		case AUTH_INVALIDRESP:
951 		case AUTH_FAILED:
952 		case RPCSEC_GSS_NOCRED:
953 		case RPCSEC_GSS_FAILED:
954 			p->cku_err.re_errno = EACCES;
955 			break;
956 		case AUTH_REJECTEDCRED:
957 		case AUTH_REJECTEDVERF:
958 		default:
959 			p->cku_err.re_errno = EIO;
960 			break;
961 		}
962 		RPCLOG(1, "clnt_clts_kcallit : authentication failed "
963 		    "with RPC_AUTHERROR of type %d\n",
964 		    p->cku_err.re_why);
965 	}
966 
967 	(void) xdr_rpc_free_verifier(xdrs, &reply_msg);
968 
969 done1:
970 	call_table_remove(call);
971 	mutex_enter(&call->call_lock);
972 	if (call->call_reply != NULL) {
973 		freemsg(call->call_reply);
974 		call->call_reply = NULL;
975 	}
976 	mutex_exit(&call->call_lock);
977 	RPCLOG(64, "clnt_clts_kcallit_addr: xid 0x%x taken off dispatch list",
978 	    p->cku_xid);
979 
980 done:
981 	if (resp != NULL) {
982 		freemsg(resp);
983 		resp = NULL;
984 	}
985 
986 	if ((p->cku_err.re_status != RPC_SUCCESS) &&
987 	    (p->cku_err.re_status != RPC_INTR) &&
988 	    (p->cku_err.re_status != RPC_UDERROR) &&
989 	    !IS_UNRECOVERABLE_RPC(p->cku_err.re_status)) {
990 		if (p->cku_feedback != NULL && stries == p->cku_retrys) {
991 			(*p->cku_feedback)(FEEDBACK_REXMIT1, procnum,
992 			    p->cku_feedarg);
993 		}
994 
995 		timout = backoff(timout);
996 		if (p->cku_timeall != (struct rpc_timers *)0)
997 			p->cku_timeall->rt_rtxcur = timout;
998 
999 		if (p->cku_err.re_status == RPC_SYSTEMERROR ||
1000 		    p->cku_err.re_status == RPC_CANTSEND) {
1001 			/*
1002 			 * Errors due to lack of resources, wait a bit
1003 			 * and try again.
1004 			 */
1005 			(void) delay(hz/10);
1006 			/* (void) sleep((caddr_t)&lbolt, PZERO-4); */
1007 		}
1008 		if (stries-- > 0) {
1009 			RCSTAT_INCR(p->cku_stats, rcretrans);
1010 			goto call_again;
1011 		}
1012 	}
1013 
1014 	if (mpdup != NULL)
1015 		freemsg(mpdup);
1016 
1017 	if (p->cku_err.re_status != RPC_SUCCESS) {
1018 		RCSTAT_INCR(p->cku_stats, rcbadcalls);
1019 	}
1020 
1021 	/*
1022 	 * Allow the endpoint to be held by the client handle in case this
1023 	 * RPC was not successful.  A retry may occur at a higher level and
1024 	 * in this case we may want to send the request over the same
1025 	 * source port.
1026 	 */
1027 	if (p->cku_err.re_status == RPC_SUCCESS && p->cku_endpnt != NULL) {
1028 		endpnt_rele(p->cku_endpnt);
1029 		p->cku_endpnt = NULL;
1030 	}
1031 
1032 	return (p->cku_err.re_status);
1033 }
1034 
1035 static enum clnt_stat
1036 clnt_clts_kcallit(CLIENT *h, rpcproc_t procnum, xdrproc_t xdr_args,
1037 	caddr_t argsp, xdrproc_t xdr_results, caddr_t resultsp,
1038 	struct timeval wait)
1039 {
1040 	return (clnt_clts_kcallit_addr(h, procnum, xdr_args, argsp,
1041 	    xdr_results, resultsp, wait, NULL));
1042 }
1043 
1044 /*
1045  * Return error info on this handle.
1046  */
1047 static void
1048 clnt_clts_kerror(CLIENT *h, struct rpc_err *err)
1049 {
1050 	/* LINTED pointer alignment */
1051 	struct cku_private *p = htop(h);
1052 
1053 	*err = p->cku_err;
1054 }
1055 
1056 static bool_t
1057 clnt_clts_kfreeres(CLIENT *h, xdrproc_t xdr_res, caddr_t res_ptr)
1058 {
1059 	/* LINTED pointer alignment */
1060 	struct cku_private *p = htop(h);
1061 	XDR *xdrs;
1062 
1063 	xdrs = &(p->cku_outxdr);
1064 	xdrs->x_op = XDR_FREE;
1065 	return ((*xdr_res)(xdrs, res_ptr));
1066 }
1067 
1068 /*ARGSUSED*/
1069 static void
1070 clnt_clts_kabort(CLIENT *h)
1071 {
1072 }
1073 
1074 static bool_t
1075 clnt_clts_kcontrol(CLIENT *h, int cmd, char *arg)
1076 {
1077 	/* LINTED pointer alignment */
1078 	struct cku_private *p = htop(h);
1079 
1080 	switch (cmd) {
1081 	case CLSET_XID:
1082 		p->cku_xid = *((uint32_t *)arg);
1083 		return (TRUE);
1084 
1085 	case CLGET_XID:
1086 		*((uint32_t *)arg) = p->cku_xid;
1087 		return (TRUE);
1088 
1089 	case CLSET_BCAST:
1090 		p->cku_bcast = *((uint32_t *)arg);
1091 		return (TRUE);
1092 
1093 	case CLGET_BCAST:
1094 		*((uint32_t *)arg) = p->cku_bcast;
1095 		return (TRUE);
1096 	case CLSET_BINDRESVPORT:
1097 		if (arg == NULL)
1098 			return (FALSE);
1099 
1100 		if (*(int *)arg != 1 && *(int *)arg != 0)
1101 			return (FALSE);
1102 
1103 		p->cku_useresvport = *(int *)arg;
1104 
1105 		return (TRUE);
1106 
1107 	case CLGET_BINDRESVPORT:
1108 		if (arg == NULL)
1109 			return (FALSE);
1110 
1111 		*(int *)arg = p->cku_useresvport;
1112 
1113 		return (TRUE);
1114 
1115 	default:
1116 		return (FALSE);
1117 	}
1118 }
1119 
1120 /*
1121  * Destroy rpc handle.
1122  * Frees the space used for output buffer, private data, and handle
1123  * structure, and the file pointer/TLI data on last reference.
1124  */
1125 static void
1126 clnt_clts_kdestroy(CLIENT *h)
1127 {
1128 	/* LINTED pointer alignment */
1129 	struct cku_private *p = htop(h);
1130 	calllist_t *call = &p->cku_call;
1131 
1132 	int plen;
1133 
1134 	RPCLOG(8, "clnt_clts_kdestroy h: %p\n", (void *)h);
1135 	RPCLOG(8, "clnt_clts_kdestroy h: xid=0x%x\n", p->cku_xid);
1136 
1137 	if (p->cku_endpnt != NULL)
1138 		endpnt_rele(p->cku_endpnt);
1139 
1140 	cv_destroy(&call->call_cv);
1141 	mutex_destroy(&call->call_lock);
1142 
1143 	plen = strlen(p->cku_config.knc_protofmly) + 1;
1144 	kmem_free(p->cku_config.knc_protofmly, plen);
1145 	kmem_free(p->cku_addr.buf, p->cku_addr.maxlen);
1146 	kmem_free(p, sizeof (*p));
1147 }
1148 
1149 /*
1150  * The connectionless (CLTS) kRPC endpoint management subsystem.
1151  *
1152  * Because endpoints are potentially shared among threads making RPC calls,
1153  * they are managed in a pool according to type (endpnt_type_t).  Each
1154  * endpnt_type_t points to a list of usable endpoints through the e_pool
1155  * field, which is of type list_t.  list_t is a doubly-linked list.
1156  * The number of endpoints in the pool is stored in the e_cnt field of
1157  * endpnt_type_t and the endpoints are reference counted using the e_ref field
1158  * in the endpnt_t structure.
1159  *
1160  * As an optimization, endpoints that have no references are also linked
1161  * to an idle list via e_ilist which is also of type list_t.  When a thread
1162  * calls endpnt_get() to obtain a transport endpoint, the idle list is first
1163  * consulted and if such an endpoint exists, it is removed from the idle list
1164  * and returned to the caller.
1165  *
1166  * If the idle list is empty, then a check is made to see if more endpoints
1167  * can be created.  If so, we proceed and create a new endpoint which is added
1168  * to the pool and returned to the caller.  If we have reached the limit and
1169  * cannot make a new endpoint then one is returned to the caller via round-
1170  * robin policy.
1171  *
1172  * When an endpoint is placed on the idle list by a thread calling
1173  * endpnt_rele(), it is timestamped and then a reaper taskq is scheduled to
1174  * be dispatched if one hasn't already been.  When the timer fires, the
1175  * taskq traverses the idle list and checks to see which endpoints are
1176  * eligible to be closed.  It determines this by checking if the timestamp
1177  * when the endpoint was released has exceeded the the threshold for how long
1178  * it should stay alive.
1179  *
1180  * endpnt_t structures remain persistent until the memory reclaim callback,
1181  * endpnt_reclaim(), is invoked.
1182  *
1183  * Here is an example of how the data structures would be laid out by the
1184  * subsystem:
1185  *
1186  *       endpnt_type_t
1187  *
1188  *	 loopback		                  inet
1189  *	 _______________	                  ______________
1190  *	| e_next        |----------------------->| e_next       |---->>
1191  *	| e_pool        |<---+                   | e_pool       |<----+
1192  *	| e_ilist       |<---+--+                | e_ilist      |<----+--+
1193  *   +->| e_pcurr       |----+--+--+	      +->| e_pcurr      |-----+--+--+
1194  *   |	| ...           |    |  |  |	      |	 | ...	        |     |  |  |
1195  *   |	| e_itimer (90) |    |  |  |	      |	 | e_itimer (0) |     |  |  |
1196  *   |	| e_cnt (1)     |    |  |  |	      |	 | e_cnt (3)    |     |  |  |
1197  *   |	+---------------+    |  |  |	      |	 +--------------+     |  |  |
1198  *   |			     |  |  |	      |			      |  |  |
1199  *   |   endpnt_t            |  |  |          |	                      |  |  |
1200  *   |	 ____________        |  |  |	      |	  ____________        |  |  |
1201  *   |	| e_node     |<------+  |  |	      |	 | e_node     |<------+  |  |
1202  *   |	| e_idle     |<---------+  |	      |	 | e_idle     |       |  |  |
1203  *   +--| e_type     |<------------+	      +--| e_type     |       |  |  |
1204  *	| e_tiptr    |                        |  | e_tiptr    |       |  |  |
1205  *      | ...	     |		              |	 | ...	      |       |  |  |
1206  *	| e_lock     |		              |	 | e_lock     |       |  |  |
1207  *	| ...        |		              |	 | ...	      |       |  |  |
1208  *      | e_ref (0)  |		              |	 | e_ref (2)  |       |  |  |
1209  *	| e_itime    |	                      |	 | e_itime    |       |  |  |
1210  *	+------------+		              |	 +------------+       |  |  |
1211  *					      |			      |  |  |
1212  *					      |			      |  |  |
1213  *					      |	  ____________        |  |  |
1214  *					      |	 | e_node     |<------+  |  |
1215  *					      |	 | e_idle     |<------+--+  |
1216  *					      +--| e_type     |       |     |
1217  *					      |	 | e_tiptr    |       |     |
1218  *					      |	 | ...	      |       |     |
1219  *					      |	 | e_lock     |       |     |
1220  *					      |	 | ...	      |       |     |
1221  *					      |	 | e_ref (0)  |       |     |
1222  *					      |	 | e_itime    |       |     |
1223  *					      |	 +------------+       |     |
1224  *					      |			      |     |
1225  *					      |			      |     |
1226  *					      |	  ____________        |     |
1227  *					      |	 | e_node     |<------+     |
1228  *					      |	 | e_idle     |             |
1229  *					      +--| e_type     |<------------+
1230  *						 | e_tiptr    |
1231  *						 | ...	      |
1232  *						 | e_lock     |
1233  *						 | ...	      |
1234  *						 | e_ref (1)  |
1235  *						 | e_itime    |
1236  *						 +------------+
1237  *
1238  * Endpoint locking strategy:
1239  *
1240  * The following functions manipulate lists which hold the endpoint and the
1241  * endpoints themselves:
1242  *
1243  * endpnt_get()/check_endpnt()/endpnt_rele()/endpnt_reap()/do_endpnt_reclaim()
1244  *
1245  * Lock description follows:
1246  *
1247  * endpnt_type_lock: Global reader/writer lock which protects accesses to the
1248  *		     endpnt_type_list.
1249  *
1250  * e_plock: Lock defined in the endpnt_type_t.  It is intended to
1251  *	    protect accesses to the pool of endopints (e_pool) for a given
1252  *	    endpnt_type_t.
1253  *
1254  * e_ilock: Lock defined in endpnt_type_t.  It is intended to protect accesses
1255  *	    to the idle list (e_ilist) of available endpoints for a given
1256  *	    endpnt_type_t.  It also protects access to the e_itimer, e_async_cv,
1257  *	    and e_async_count fields in endpnt_type_t.
1258  *
1259  * e_lock: Lock defined in the endpnt structure.  It is intended to protect
1260  *	   flags, cv, and ref count.
1261  *
1262  * The order goes as follows so as not to induce deadlock.
1263  *
1264  * endpnt_type_lock -> e_plock -> e_ilock -> e_lock
1265  *
1266  * Interaction with Zones and shutting down:
1267  *
1268  * endpnt_type_ts are uniquely identified by the (e_zoneid, e_rdev, e_protofmly)
1269  * tuple, which means that a zone may not reuse another zone's idle endpoints
1270  * without first doing a t_kclose().
1271  *
1272  * A zone's endpnt_type_ts are destroyed when a zone is shut down; e_async_cv
1273  * and e_async_count are used to keep track of the threads in endpnt_taskq
1274  * trying to reap endpnt_ts in the endpnt_type_t.
1275  */
1276 
1277 /*
1278  * Allocate and initialize an endpnt_type_t
1279  */
1280 static struct endpnt_type *
1281 endpnt_type_create(struct knetconfig *config)
1282 {
1283 	struct endpnt_type	*etype;
1284 
1285 	/*
1286 	 * Allocate a new endpoint type to hang a list of
1287 	 * endpoints off of it.
1288 	 */
1289 	etype = kmem_alloc(sizeof (struct endpnt_type), KM_SLEEP);
1290 	etype->e_next = NULL;
1291 	etype->e_pcurr = NULL;
1292 	etype->e_itimer = 0;
1293 	etype->e_cnt = 0;
1294 
1295 	(void) strncpy(etype->e_protofmly, config->knc_protofmly, KNC_STRSIZE);
1296 	mutex_init(&etype->e_plock, NULL, MUTEX_DEFAULT, NULL);
1297 	mutex_init(&etype->e_ilock, NULL, MUTEX_DEFAULT, NULL);
1298 	etype->e_rdev = config->knc_rdev;
1299 	etype->e_zoneid = rpc_zoneid();
1300 	etype->e_async_count = 0;
1301 	cv_init(&etype->e_async_cv, NULL, CV_DEFAULT, NULL);
1302 
1303 	list_create(&etype->e_pool, sizeof (endpnt_t),
1304 	    offsetof(endpnt_t, e_node));
1305 	list_create(&etype->e_ilist, sizeof (endpnt_t),
1306 	    offsetof(endpnt_t, e_idle));
1307 
1308 	/*
1309 	 * Check to see if we need to create a taskq for endpoint
1310 	 * reaping
1311 	 */
1312 	mutex_enter(&endpnt_taskq_lock);
1313 	if (taskq_created == FALSE) {
1314 		taskq_created = TRUE;
1315 		mutex_exit(&endpnt_taskq_lock);
1316 		ASSERT(endpnt_taskq == NULL);
1317 		endpnt_taskq = taskq_create("clts_endpnt_taskq", 1,
1318 		    minclsyspri, 200, INT_MAX, 0);
1319 	} else
1320 		mutex_exit(&endpnt_taskq_lock);
1321 
1322 	return (etype);
1323 }
1324 
1325 /*
1326  * Free an endpnt_type_t
1327  */
1328 static void
1329 endpnt_type_free(struct endpnt_type *etype)
1330 {
1331 	mutex_destroy(&etype->e_plock);
1332 	mutex_destroy(&etype->e_ilock);
1333 	list_destroy(&etype->e_pool);
1334 	list_destroy(&etype->e_ilist);
1335 	kmem_free(etype, sizeof (endpnt_type_t));
1336 }
1337 
1338 /*
1339  * Check the endpoint to ensure that it is suitable for use.
1340  *
1341  * Possible return values:
1342  *
1343  * return (1) - Endpoint is established, but needs to be re-opened.
1344  * return (0) && *newp == NULL - Endpoint is established, but unusable.
1345  * return (0) && *newp != NULL - Endpoint is established and usable.
1346  */
1347 static int
1348 check_endpnt(struct endpnt *endp, struct endpnt **newp)
1349 {
1350 	*newp = endp;
1351 
1352 	mutex_enter(&endp->e_lock);
1353 	ASSERT(endp->e_ref >= 1);
1354 
1355 	/*
1356 	 * The first condition we check for is if the endpoint has been
1357 	 * allocated, but is unusable either because it has been closed or
1358 	 * has been marked stale.  Only *one* thread will be allowed to
1359 	 * execute the then clause.  This is enforced becuase the first thread
1360 	 * to check this condition will clear the flags, so that subsequent
1361 	 * thread(s) checking this endpoint will move on.
1362 	 */
1363 	if ((endp->e_flags & ENDPNT_ESTABLISHED) &&
1364 	    (!(endp->e_flags & ENDPNT_BOUND) ||
1365 	    (endp->e_flags & ENDPNT_STALE))) {
1366 		/*
1367 		 * Clear the flags here since they will be
1368 		 * set again by this thread.  They need to be
1369 		 * individually cleared because we want to maintain
1370 		 * the state for ENDPNT_ONIDLE.
1371 		 */
1372 		endp->e_flags &= ~(ENDPNT_ESTABLISHED |
1373 		    ENDPNT_WAITING | ENDPNT_BOUND | ENDPNT_STALE);
1374 		mutex_exit(&endp->e_lock);
1375 		return (1);
1376 	}
1377 
1378 	/*
1379 	 * The second condition is meant for any thread that is waiting for
1380 	 * an endpoint to become established.  It will cv_wait() until
1381 	 * the condition for the endpoint has been changed to ENDPNT_BOUND or
1382 	 * ENDPNT_STALE.
1383 	 */
1384 	while (!(endp->e_flags & ENDPNT_BOUND) &&
1385 	    !(endp->e_flags & ENDPNT_STALE)) {
1386 		endp->e_flags |= ENDPNT_WAITING;
1387 		cv_wait(&endp->e_cv, &endp->e_lock);
1388 	}
1389 
1390 	ASSERT(endp->e_flags & ENDPNT_ESTABLISHED);
1391 
1392 	/*
1393 	 * The last case we check for is if the endpoint has been marked stale.
1394 	 * If this is the case then set *newp to NULL and return, so that the
1395 	 * caller is notified of the error and can take appropriate action.
1396 	 */
1397 	if (endp->e_flags & ENDPNT_STALE) {
1398 		endp->e_ref--;
1399 		*newp = NULL;
1400 	}
1401 	mutex_exit(&endp->e_lock);
1402 	return (0);
1403 }
1404 
1405 #ifdef DEBUG
1406 /*
1407  * Provide a fault injection setting to test error conditions.
1408  */
1409 static int endpnt_get_return_null = 0;
1410 #endif
1411 
1412 /*
1413  * Returns a handle (struct endpnt *) to an open and bound endpoint
1414  * specified by the knetconfig passed in.  Returns NULL if no valid endpoint
1415  * can be obtained.
1416  */
1417 static struct endpnt *
1418 endpnt_get(struct knetconfig *config, int useresvport)
1419 {
1420 	struct endpnt_type	*n_etype = NULL;
1421 	struct endpnt_type	*np = NULL;
1422 	struct endpnt		*new = NULL;
1423 	struct endpnt		*endp = NULL;
1424 	struct endpnt		*next = NULL;
1425 	TIUSER			*tiptr = NULL;
1426 	int			rtries = BINDRESVPORT_RETRIES;
1427 	int			i = 0;
1428 	int			error;
1429 	int			retval;
1430 	zoneid_t		zoneid = rpc_zoneid();
1431 	cred_t			*cr;
1432 
1433 	RPCLOG(1, "endpnt_get: protofmly %s, ", config->knc_protofmly);
1434 	RPCLOG(1, "rdev %ld\n", config->knc_rdev);
1435 
1436 #ifdef DEBUG
1437 	/*
1438 	 * Inject fault if desired.  Pretend we have a stale endpoint
1439 	 * and return NULL.
1440 	 */
1441 	if (endpnt_get_return_null > 0) {
1442 		endpnt_get_return_null--;
1443 		return (NULL);
1444 	}
1445 #endif
1446 	rw_enter(&endpnt_type_lock, RW_READER);
1447 
1448 top:
1449 	for (np = endpnt_type_list; np != NULL; np = np->e_next)
1450 		if ((np->e_zoneid == zoneid) &&
1451 		    (np->e_rdev == config->knc_rdev) &&
1452 		    (strcmp(np->e_protofmly,
1453 		    config->knc_protofmly) == 0))
1454 			break;
1455 
1456 	if (np == NULL && n_etype != NULL) {
1457 		ASSERT(rw_write_held(&endpnt_type_lock));
1458 
1459 		/*
1460 		 * Link the endpoint type onto the list
1461 		 */
1462 		n_etype->e_next = endpnt_type_list;
1463 		endpnt_type_list = n_etype;
1464 		np = n_etype;
1465 		n_etype = NULL;
1466 	}
1467 
1468 	if (np == NULL) {
1469 		/*
1470 		 * The logic here is that we were unable to find an
1471 		 * endpnt_type_t that matched our criteria, so we allocate a
1472 		 * new one.  Because kmem_alloc() needs to be called with
1473 		 * KM_SLEEP, we drop our locks so that we don't induce
1474 		 * deadlock.  After allocating and initializing the
1475 		 * endpnt_type_t, we reaquire the lock and go back to check
1476 		 * if this entry needs to be added to the list.  Since we do
1477 		 * some operations without any locking other threads may
1478 		 * have been looking for the same endpnt_type_t and gone
1479 		 * through this code path.  We check for this case and allow
1480 		 * one thread to link its endpnt_type_t to the list and the
1481 		 * other threads will simply free theirs.
1482 		 */
1483 		rw_exit(&endpnt_type_lock);
1484 		n_etype = endpnt_type_create(config);
1485 
1486 		/*
1487 		 * We need to reaquire the lock with RW_WRITER here so that
1488 		 * we can safely link the new endpoint type onto the list.
1489 		 */
1490 		rw_enter(&endpnt_type_lock, RW_WRITER);
1491 		goto top;
1492 	}
1493 
1494 	rw_exit(&endpnt_type_lock);
1495 	/*
1496 	 * If n_etype is not NULL, then another thread was able to
1497 	 * insert an endpnt_type_t of this type  onto the list before
1498 	 * we did.  Go ahead and free ours.
1499 	 */
1500 	if (n_etype != NULL)
1501 		endpnt_type_free(n_etype);
1502 
1503 	mutex_enter(&np->e_ilock);
1504 	/*
1505 	 * The algorithm to hand out endpoints is to first
1506 	 * give out those that are idle if such endpoints
1507 	 * exist.  Otherwise, create a new one if we haven't
1508 	 * reached the max threshold.  Finally, we give out
1509 	 * endpoints in a pseudo LRU fashion (round-robin).
1510 	 *
1511 	 * Note:  The idle list is merely a hint of those endpoints
1512 	 * that should be idle.  There exists a window after the
1513 	 * endpoint is released and before it is linked back onto the
1514 	 * idle list where a thread could get a reference to it and
1515 	 * use it.  This is okay, since the reference counts will
1516 	 * still be consistent.
1517 	 */
1518 	if ((endp = (endpnt_t *)list_head(&np->e_ilist)) != NULL) {
1519 		timeout_id_t t_id = 0;
1520 
1521 		mutex_enter(&endp->e_lock);
1522 		endp->e_ref++;
1523 		endp->e_itime = 0;
1524 		endp->e_flags &= ~ENDPNT_ONIDLE;
1525 		mutex_exit(&endp->e_lock);
1526 
1527 		/*
1528 		 * Pop the endpoint off the idle list and hand it off
1529 		 */
1530 		list_remove(&np->e_ilist, endp);
1531 
1532 		if (np->e_itimer != 0) {
1533 			t_id = np->e_itimer;
1534 			np->e_itimer = 0;
1535 		}
1536 		mutex_exit(&np->e_ilock);
1537 		/*
1538 		 * Reset the idle timer if it has been set
1539 		 */
1540 		if (t_id != (timeout_id_t)0)
1541 			(void) untimeout(t_id);
1542 
1543 		if (check_endpnt(endp, &new) == 0)
1544 			return (new);
1545 	} else if (np->e_cnt >= clnt_clts_max_endpoints) {
1546 		/*
1547 		 * There are no idle endpoints currently, so
1548 		 * create a new one if we have not reached the maximum or
1549 		 * hand one out in round-robin.
1550 		 */
1551 		mutex_exit(&np->e_ilock);
1552 		mutex_enter(&np->e_plock);
1553 		endp = np->e_pcurr;
1554 		mutex_enter(&endp->e_lock);
1555 		endp->e_ref++;
1556 		mutex_exit(&endp->e_lock);
1557 
1558 		ASSERT(endp != NULL);
1559 		/*
1560 		 * Advance the pointer to the next eligible endpoint, if
1561 		 * necessary.
1562 		 */
1563 		if (np->e_cnt > 1) {
1564 			next = (endpnt_t *)list_next(&np->e_pool, np->e_pcurr);
1565 			if (next == NULL)
1566 				next = (endpnt_t *)list_head(&np->e_pool);
1567 			np->e_pcurr = next;
1568 		}
1569 
1570 		mutex_exit(&np->e_plock);
1571 
1572 		/*
1573 		 * We need to check to see if this endpoint is bound or
1574 		 * not.  If it is in progress then just wait until
1575 		 * the set up is complete
1576 		 */
1577 		if (check_endpnt(endp, &new) == 0)
1578 			return (new);
1579 	} else {
1580 		mutex_exit(&np->e_ilock);
1581 		mutex_enter(&np->e_plock);
1582 
1583 		/*
1584 		 * Allocate a new endpoint to use.  If we can't allocate any
1585 		 * more memory then use one that is already established if any
1586 		 * such endpoints exist.
1587 		 */
1588 		new = kmem_cache_alloc(endpnt_cache, KM_NOSLEEP);
1589 		if (new == NULL) {
1590 			RPCLOG0(1, "endpnt_get: kmem_cache_alloc failed\n");
1591 			/*
1592 			 * Try to recover by using an existing endpoint.
1593 			 */
1594 			if (np->e_cnt <= 0) {
1595 				mutex_exit(&np->e_plock);
1596 				return (NULL);
1597 			}
1598 			endp = np->e_pcurr;
1599 			if ((next = list_next(&np->e_pool, np->e_pcurr)) !=
1600 			    NULL)
1601 				np->e_pcurr = next;
1602 			ASSERT(endp != NULL);
1603 			mutex_enter(&endp->e_lock);
1604 			endp->e_ref++;
1605 			mutex_exit(&endp->e_lock);
1606 			mutex_exit(&np->e_plock);
1607 
1608 			if (check_endpnt(endp, &new) == 0)
1609 				return (new);
1610 		} else {
1611 			/*
1612 			 * Partially init an endpoint structure and put
1613 			 * it on the list, so that other interested threads
1614 			 * know that one is being created
1615 			 */
1616 			bzero(new, sizeof (struct endpnt));
1617 
1618 			cv_init(&new->e_cv, NULL, CV_DEFAULT, NULL);
1619 			mutex_init(&new->e_lock, NULL, MUTEX_DEFAULT, NULL);
1620 			new->e_ref = 1;
1621 			new->e_type = np;
1622 
1623 			/*
1624 			 * Link the endpoint into the pool.
1625 			 */
1626 			list_insert_head(&np->e_pool, new);
1627 			np->e_cnt++;
1628 			if (np->e_pcurr == NULL)
1629 				np->e_pcurr = new;
1630 			mutex_exit(&np->e_plock);
1631 		}
1632 	}
1633 
1634 	/*
1635 	 * The transport should be opened with sufficient privs
1636 	 */
1637 	cr = zone_kcred();
1638 	error = t_kopen(NULL, config->knc_rdev, FREAD|FWRITE|FNDELAY, &tiptr,
1639 	    cr);
1640 	if (error) {
1641 		RPCLOG(1, "endpnt_get: t_kopen: %d\n", error);
1642 		goto bad;
1643 	}
1644 
1645 	new->e_tiptr = tiptr;
1646 	rpc_poptimod(tiptr->fp->f_vnode);
1647 
1648 	/*
1649 	 * Allow the kernel to push the module on behalf of the user.
1650 	 */
1651 	error = strioctl(tiptr->fp->f_vnode, I_PUSH, (intptr_t)"rpcmod", 0,
1652 	    K_TO_K, cr, &retval);
1653 	if (error) {
1654 		RPCLOG(1, "endpnt_get: kstr_push on rpcmod failed %d\n", error);
1655 		goto bad;
1656 	}
1657 
1658 	error = strioctl(tiptr->fp->f_vnode, RPC_CLIENT, 0, 0, K_TO_K,
1659 	    cr, &retval);
1660 	if (error) {
1661 		RPCLOG(1, "endpnt_get: strioctl failed %d\n", error);
1662 		goto bad;
1663 	}
1664 
1665 	/*
1666 	 * Connectionless data flow should bypass the stream head.
1667 	 */
1668 	new->e_wq = tiptr->fp->f_vnode->v_stream->sd_wrq->q_next;
1669 
1670 	error = strioctl(tiptr->fp->f_vnode, I_PUSH, (intptr_t)"timod", 0,
1671 	    K_TO_K, cr, &retval);
1672 	if (error) {
1673 		RPCLOG(1, "endpnt_get: kstr_push on timod failed %d\n", error);
1674 		goto bad;
1675 	}
1676 
1677 	/*
1678 	 * Attempt to bind the endpoint.  If we fail then propogate
1679 	 * error back to calling subsystem, so that it can be handled
1680 	 * appropriately.
1681 	 * If the caller has not specified reserved port usage then
1682 	 * take the system default.
1683 	 */
1684 	if (useresvport == -1)
1685 		useresvport = clnt_clts_do_bindresvport;
1686 
1687 	if (useresvport &&
1688 	    (strcmp(config->knc_protofmly, NC_INET) == 0 ||
1689 	    strcmp(config->knc_protofmly, NC_INET6) == 0)) {
1690 
1691 		while ((error =
1692 		    bindresvport(new->e_tiptr, NULL, NULL, FALSE)) != 0) {
1693 			RPCLOG(1,
1694 			    "endpnt_get: bindresvport error %d\n", error);
1695 			if (error != EPROTO) {
1696 				if (rtries-- <= 0)
1697 					goto bad;
1698 
1699 				delay(hz << i++);
1700 				continue;
1701 			}
1702 
1703 			(void) t_kclose(new->e_tiptr, 1);
1704 			/*
1705 			 * reopen with all privileges
1706 			 */
1707 			error = t_kopen(NULL, config->knc_rdev,
1708 			    FREAD|FWRITE|FNDELAY,
1709 			    &new->e_tiptr, cr);
1710 			if (error) {
1711 				RPCLOG(1, "endpnt_get: t_kopen: %d\n", error);
1712 					new->e_tiptr = NULL;
1713 					goto bad;
1714 			}
1715 		}
1716 	} else if ((error = t_kbind(new->e_tiptr, NULL, NULL)) != 0) {
1717 		RPCLOG(1, "endpnt_get: t_kbind failed: %d\n", error);
1718 		goto bad;
1719 	}
1720 
1721 	/*
1722 	 * Set the flags and notify and waiters that we have an established
1723 	 * endpoint.
1724 	 */
1725 	mutex_enter(&new->e_lock);
1726 	new->e_flags |= ENDPNT_ESTABLISHED;
1727 	new->e_flags |= ENDPNT_BOUND;
1728 	if (new->e_flags & ENDPNT_WAITING) {
1729 		cv_broadcast(&new->e_cv);
1730 		new->e_flags &= ~ENDPNT_WAITING;
1731 	}
1732 	mutex_exit(&new->e_lock);
1733 
1734 	return (new);
1735 
1736 bad:
1737 	ASSERT(new != NULL);
1738 	/*
1739 	 * mark this endpoint as stale and notify any threads waiting
1740 	 * on this endpoint that it will be going away.
1741 	 */
1742 	mutex_enter(&new->e_lock);
1743 	if (new->e_ref > 0) {
1744 		new->e_flags |= ENDPNT_ESTABLISHED;
1745 		new->e_flags |= ENDPNT_STALE;
1746 		if (new->e_flags & ENDPNT_WAITING) {
1747 			cv_broadcast(&new->e_cv);
1748 			new->e_flags &= ~ENDPNT_WAITING;
1749 		}
1750 	}
1751 	new->e_ref--;
1752 	new->e_tiptr = NULL;
1753 	mutex_exit(&new->e_lock);
1754 
1755 	/*
1756 	 * If there was a transport endopoint opened, then close it.
1757 	 */
1758 	if (tiptr != NULL)
1759 		(void) t_kclose(tiptr, 1);
1760 
1761 	return (NULL);
1762 }
1763 
1764 /*
1765  * Release a referece to the endpoint
1766  */
1767 static void
1768 endpnt_rele(struct endpnt *sp)
1769 {
1770 	mutex_enter(&sp->e_lock);
1771 	ASSERT(sp->e_ref > 0);
1772 	sp->e_ref--;
1773 	/*
1774 	 * If the ref count is zero, then start the idle timer and link
1775 	 * the endpoint onto the idle list.
1776 	 */
1777 	if (sp->e_ref == 0) {
1778 		sp->e_itime = gethrestime_sec();
1779 
1780 		/*
1781 		 * Check to see if the endpoint is already linked to the idle
1782 		 * list, so that we don't try to reinsert it.
1783 		 */
1784 		if (sp->e_flags & ENDPNT_ONIDLE) {
1785 			mutex_exit(&sp->e_lock);
1786 			mutex_enter(&sp->e_type->e_ilock);
1787 			endpnt_reap_settimer(sp->e_type);
1788 			mutex_exit(&sp->e_type->e_ilock);
1789 			return;
1790 		}
1791 
1792 		sp->e_flags |= ENDPNT_ONIDLE;
1793 		mutex_exit(&sp->e_lock);
1794 		mutex_enter(&sp->e_type->e_ilock);
1795 		list_insert_tail(&sp->e_type->e_ilist, sp);
1796 		endpnt_reap_settimer(sp->e_type);
1797 		mutex_exit(&sp->e_type->e_ilock);
1798 	} else
1799 		mutex_exit(&sp->e_lock);
1800 }
1801 
1802 static void
1803 endpnt_reap_settimer(endpnt_type_t *etp)
1804 {
1805 	if (etp->e_itimer == (timeout_id_t)0)
1806 		etp->e_itimer = timeout(endpnt_reap_dispatch, (void *)etp,
1807 		    clnt_clts_taskq_dispatch_interval);
1808 }
1809 
1810 static void
1811 endpnt_reap_dispatch(void *a)
1812 {
1813 	endpnt_type_t *etp = a;
1814 
1815 	/*
1816 	 * The idle timer has fired, so dispatch the taskq to close the
1817 	 * endpoint.
1818 	 */
1819 	if (taskq_dispatch(endpnt_taskq, (task_func_t *)endpnt_reap, etp,
1820 	    TQ_NOSLEEP) == NULL)
1821 		return;
1822 	mutex_enter(&etp->e_ilock);
1823 	etp->e_async_count++;
1824 	mutex_exit(&etp->e_ilock);
1825 }
1826 
1827 /*
1828  * Traverse the idle list and close those endpoints that have reached their
1829  * timeout interval.
1830  */
1831 static void
1832 endpnt_reap(endpnt_type_t *etp)
1833 {
1834 	struct endpnt *e;
1835 	struct endpnt *next_node = NULL;
1836 
1837 	mutex_enter(&etp->e_ilock);
1838 	e = list_head(&etp->e_ilist);
1839 	while (e != NULL) {
1840 		next_node = list_next(&etp->e_ilist, e);
1841 
1842 		mutex_enter(&e->e_lock);
1843 		if (e->e_ref > 0) {
1844 			mutex_exit(&e->e_lock);
1845 			e = next_node;
1846 			continue;
1847 		}
1848 
1849 		ASSERT(e->e_ref == 0);
1850 		if (e->e_itime > 0 &&
1851 		    (e->e_itime + clnt_clts_endpoint_reap_interval) <
1852 		    gethrestime_sec()) {
1853 			e->e_flags &= ~ENDPNT_BOUND;
1854 			(void) t_kclose(e->e_tiptr, 1);
1855 			e->e_tiptr = NULL;
1856 			e->e_itime = 0;
1857 		}
1858 		mutex_exit(&e->e_lock);
1859 		e = next_node;
1860 	}
1861 	etp->e_itimer = 0;
1862 	if (--etp->e_async_count == 0)
1863 		cv_signal(&etp->e_async_cv);
1864 	mutex_exit(&etp->e_ilock);
1865 }
1866 
1867 static void
1868 endpnt_reclaim(zoneid_t zoneid)
1869 {
1870 	struct endpnt_type *np;
1871 	struct endpnt *e;
1872 	struct endpnt *next_node = NULL;
1873 	list_t free_list;
1874 	int rcnt = 0;
1875 
1876 	list_create(&free_list, sizeof (endpnt_t), offsetof(endpnt_t, e_node));
1877 
1878 	RPCLOG0(1, "endpnt_reclaim: reclaim callback started\n");
1879 	rw_enter(&endpnt_type_lock, RW_READER);
1880 	for (np = endpnt_type_list; np != NULL; np = np->e_next) {
1881 		if (zoneid != ALL_ZONES && zoneid != np->e_zoneid)
1882 			continue;
1883 
1884 		mutex_enter(&np->e_plock);
1885 		RPCLOG(1, "endpnt_reclaim: protofmly %s, ",
1886 		    np->e_protofmly);
1887 		RPCLOG(1, "rdev %ld\n", np->e_rdev);
1888 		RPCLOG(1, "endpnt_reclaim: found %d endpoint(s)\n",
1889 		    np->e_cnt);
1890 
1891 		if (np->e_cnt == 0) {
1892 			mutex_exit(&np->e_plock);
1893 			continue;
1894 		}
1895 
1896 		/*
1897 		 * The nice thing about maintaining an idle list is that if
1898 		 * there are any endpoints to reclaim, they are going to be
1899 		 * on this list.  Just go through and reap the one's that
1900 		 * have ref counts of zero.
1901 		 */
1902 		mutex_enter(&np->e_ilock);
1903 		e = list_head(&np->e_ilist);
1904 		while (e != NULL) {
1905 			next_node = list_next(&np->e_ilist, e);
1906 			mutex_enter(&e->e_lock);
1907 			if (e->e_ref > 0) {
1908 				mutex_exit(&e->e_lock);
1909 				e = next_node;
1910 				continue;
1911 			}
1912 			ASSERT(e->e_ref == 0);
1913 			mutex_exit(&e->e_lock);
1914 
1915 			list_remove(&np->e_ilist, e);
1916 			list_remove(&np->e_pool, e);
1917 			list_insert_head(&free_list, e);
1918 
1919 			rcnt++;
1920 			np->e_cnt--;
1921 			e = next_node;
1922 		}
1923 		mutex_exit(&np->e_ilock);
1924 		/*
1925 		 * Reset the current pointer to be safe
1926 		 */
1927 		if ((e = (struct endpnt *)list_head(&np->e_pool)) != NULL)
1928 			np->e_pcurr = e;
1929 		else {
1930 			ASSERT(np->e_cnt == 0);
1931 			np->e_pcurr = NULL;
1932 		}
1933 
1934 		mutex_exit(&np->e_plock);
1935 	}
1936 	rw_exit(&endpnt_type_lock);
1937 
1938 	while ((e = list_head(&free_list)) != NULL) {
1939 		list_remove(&free_list, e);
1940 		if (e->e_tiptr != NULL)
1941 			(void) t_kclose(e->e_tiptr, 1);
1942 
1943 		cv_destroy(&e->e_cv);
1944 		mutex_destroy(&e->e_lock);
1945 		kmem_cache_free(endpnt_cache, e);
1946 	}
1947 	list_destroy(&free_list);
1948 	RPCLOG(1, "endpnt_reclaim: reclaimed %d endpoint(s)\n", rcnt);
1949 }
1950 
1951 /*
1952  * Endpoint reclaim zones destructor callback routine.
1953  *
1954  * After reclaiming any cached entries, we basically go through the endpnt_type
1955  * list, canceling outstanding timeouts and free'ing data structures.
1956  */
1957 /* ARGSUSED */
1958 static void
1959 endpnt_destructor(zoneid_t zoneid, void *a)
1960 {
1961 	struct endpnt_type **npp;
1962 	struct endpnt_type *np;
1963 	struct endpnt_type *free_list = NULL;
1964 	timeout_id_t t_id = 0;
1965 	extern void clcleanup_zone(zoneid_t);
1966 	extern void clcleanup4_zone(zoneid_t);
1967 
1968 	/* Make sure NFS client handles are released. */
1969 	clcleanup_zone(zoneid);
1970 	clcleanup4_zone(zoneid);
1971 
1972 	endpnt_reclaim(zoneid);
1973 	/*
1974 	 * We don't need to be holding on to any locks across the call to
1975 	 * endpnt_reclaim() and the code below; we know that no-one can
1976 	 * be holding open connections for this zone (all processes and kernel
1977 	 * threads are gone), so nothing could be adding anything to the list.
1978 	 */
1979 	rw_enter(&endpnt_type_lock, RW_WRITER);
1980 	npp = &endpnt_type_list;
1981 	while ((np = *npp) != NULL) {
1982 		if (np->e_zoneid != zoneid) {
1983 			npp = &np->e_next;
1984 			continue;
1985 		}
1986 		mutex_enter(&np->e_plock);
1987 		mutex_enter(&np->e_ilock);
1988 		if (np->e_itimer != 0) {
1989 			t_id = np->e_itimer;
1990 			np->e_itimer = 0;
1991 		}
1992 		ASSERT(np->e_cnt == 0);
1993 		ASSERT(list_head(&np->e_pool) == NULL);
1994 		ASSERT(list_head(&np->e_ilist) == NULL);
1995 
1996 		mutex_exit(&np->e_ilock);
1997 		mutex_exit(&np->e_plock);
1998 
1999 		/*
2000 		 * untimeout() any outstanding timers that have not yet fired.
2001 		 */
2002 		if (t_id != (timeout_id_t)0)
2003 			(void) untimeout(t_id);
2004 		*npp = np->e_next;
2005 		np->e_next = free_list;
2006 		free_list = np;
2007 	}
2008 	rw_exit(&endpnt_type_lock);
2009 
2010 	while (free_list != NULL) {
2011 		np = free_list;
2012 		free_list = free_list->e_next;
2013 		/*
2014 		 * Wait for threads in endpnt_taskq trying to reap endpnt_ts in
2015 		 * the endpnt_type_t.
2016 		 */
2017 		mutex_enter(&np->e_ilock);
2018 		while (np->e_async_count > 0)
2019 			cv_wait(&np->e_async_cv, &np->e_ilock);
2020 		cv_destroy(&np->e_async_cv);
2021 		mutex_destroy(&np->e_plock);
2022 		mutex_destroy(&np->e_ilock);
2023 		list_destroy(&np->e_pool);
2024 		list_destroy(&np->e_ilist);
2025 		kmem_free(np, sizeof (endpnt_type_t));
2026 	}
2027 }
2028 
2029 /*
2030  * Endpoint reclaim kmem callback routine.
2031  */
2032 /* ARGSUSED */
2033 static void
2034 endpnt_repossess(void *a)
2035 {
2036 	/*
2037 	 * Reclaim idle endpnt's from all zones.
2038 	 */
2039 	if (endpnt_taskq != NULL)
2040 		(void) taskq_dispatch(endpnt_taskq,
2041 		    (task_func_t *)endpnt_reclaim, (void *)ALL_ZONES,
2042 		    TQ_NOSLEEP);
2043 }
2044 
2045 /*
2046  * RPC request dispatch routine.  Constructs a datagram message and wraps it
2047  * around the RPC request to pass downstream.
2048  */
2049 static int
2050 clnt_clts_dispatch_send(queue_t *q, mblk_t *mp, struct netbuf *addr,
2051 			calllist_t *cp,	uint_t xid)
2052 {
2053 	mblk_t *bp;
2054 	int msgsz;
2055 	struct T_unitdata_req *udreq;
2056 
2057 	/*
2058 	 * Set up the call record.
2059 	 */
2060 	cp->call_wq = q;
2061 	cp->call_xid = xid;
2062 	cp->call_status = RPC_TIMEDOUT;
2063 	cp->call_notified = FALSE;
2064 	RPCLOG(64,
2065 	    "clnt_clts_dispatch_send: putting xid 0x%x on "
2066 	    "dispatch list\n", xid);
2067 	cp->call_hash = call_hash(xid, clnt_clts_hash_size);
2068 	cp->call_bucket = &clts_call_ht[cp->call_hash];
2069 	call_table_enter(cp);
2070 
2071 	/*
2072 	 * Construct the datagram
2073 	 */
2074 	msgsz = (int)TUNITDATAREQSZ;
2075 	while (!(bp = allocb(msgsz + addr->len, BPRI_LO))) {
2076 		if (strwaitbuf(msgsz + addr->len, BPRI_LO))
2077 			return (ENOSR);
2078 	}
2079 
2080 	udreq = (struct T_unitdata_req *)bp->b_wptr;
2081 	udreq->PRIM_type = T_UNITDATA_REQ;
2082 	udreq->DEST_length = addr->len;
2083 
2084 	if (addr->len) {
2085 		bcopy(addr->buf, bp->b_wptr + msgsz, addr->len);
2086 		udreq->DEST_offset = (t_scalar_t)msgsz;
2087 		msgsz += addr->len;
2088 	} else
2089 		udreq->DEST_offset = 0;
2090 	udreq->OPT_length = 0;
2091 	udreq->OPT_offset = 0;
2092 
2093 	bp->b_datap->db_type = M_PROTO;
2094 	bp->b_wptr += msgsz;
2095 
2096 	/*
2097 	 * Link the datagram header with the actual data
2098 	 */
2099 	linkb(bp, mp);
2100 
2101 	/*
2102 	 * Send downstream.
2103 	 */
2104 	if (canput(cp->call_wq)) {
2105 		put(cp->call_wq, bp);
2106 		return (0);
2107 	}
2108 
2109 	return (EIO);
2110 }
2111 
2112 /*
2113  * RPC response delivery routine.  Deliver the response to the waiting
2114  * thread by matching the xid.
2115  */
2116 void
2117 clnt_clts_dispatch_notify(mblk_t *mp, int resp_off, zoneid_t zoneid)
2118 {
2119 	calllist_t *e = NULL;
2120 	call_table_t *chtp;
2121 	uint32_t xid;
2122 	uint_t hash;
2123 	unsigned char *hdr_offset;
2124 	mblk_t *resp;
2125 
2126 	/*
2127 	 * If the RPC response is not contained in the same mblk as the
2128 	 * datagram header, then move to the next mblk.
2129 	 */
2130 	hdr_offset = mp->b_rptr;
2131 	resp = mp;
2132 	if ((mp->b_wptr - (mp->b_rptr + resp_off)) == 0)
2133 		resp = mp->b_cont;
2134 	else
2135 		resp->b_rptr += resp_off;
2136 
2137 	ASSERT(resp != NULL);
2138 
2139 	if ((IS_P2ALIGNED(resp->b_rptr, sizeof (uint32_t))) &&
2140 	    (resp->b_wptr - resp->b_rptr) >= sizeof (xid))
2141 		xid = *((uint32_t *)resp->b_rptr);
2142 	else {
2143 		int i = 0;
2144 		unsigned char *p = (unsigned char *)&xid;
2145 		unsigned char *rptr;
2146 		mblk_t *tmp = resp;
2147 
2148 		/*
2149 		 * Copy the xid, byte-by-byte into xid.
2150 		 */
2151 		while (tmp) {
2152 			rptr = tmp->b_rptr;
2153 			while (rptr < tmp->b_wptr) {
2154 				*p++ = *rptr++;
2155 				if (++i >= sizeof (xid))
2156 					goto done_xid_copy;
2157 			}
2158 			tmp = tmp->b_cont;
2159 		}
2160 
2161 		/*
2162 		 * If we got here, we ran out of mblk space before the
2163 		 * xid could be copied.
2164 		 */
2165 		ASSERT(tmp == NULL && i < sizeof (xid));
2166 
2167 		RPCLOG0(1,
2168 		    "clnt_dispatch_notify(clts): message less than "
2169 		    "size of xid\n");
2170 
2171 		freemsg(mp);
2172 		return;
2173 	}
2174 
2175 done_xid_copy:
2176 
2177 	/*
2178 	 * Reset the read pointer back to the beginning of the protocol
2179 	 * header if we moved it.
2180 	 */
2181 	if (mp->b_rptr != hdr_offset)
2182 		mp->b_rptr = hdr_offset;
2183 
2184 	hash = call_hash(xid, clnt_clts_hash_size);
2185 	chtp = &clts_call_ht[hash];
2186 	/* call_table_find returns with the hash bucket locked */
2187 	call_table_find(chtp, xid, e);
2188 
2189 	if (e != NULL) {
2190 		mutex_enter(&e->call_lock);
2191 
2192 		/*
2193 		 * verify that the reply is coming in on
2194 		 * the same zone that it was sent from.
2195 		 */
2196 		if (e->call_zoneid != zoneid) {
2197 			mutex_exit(&e->call_lock);
2198 			mutex_exit(&chtp->ct_lock);
2199 			freemsg(mp);
2200 			return;
2201 		}
2202 
2203 		/*
2204 		 * found thread waiting for this reply.
2205 		 */
2206 		if (e->call_reply) {
2207 			RPCLOG(8,
2208 			    "clnt_dispatch_notify (clts): discarding old "
2209 			    "reply for xid 0x%x\n",
2210 			    xid);
2211 			freemsg(e->call_reply);
2212 		}
2213 		e->call_notified = TRUE;
2214 		e->call_reply = mp;
2215 		e->call_status = RPC_SUCCESS;
2216 		cv_signal(&e->call_cv);
2217 		mutex_exit(&e->call_lock);
2218 		mutex_exit(&chtp->ct_lock);
2219 	} else {
2220 		zone_t *zone;
2221 		struct rpcstat *rpcstat;
2222 
2223 		mutex_exit(&chtp->ct_lock);
2224 		RPCLOG(8, "clnt_dispatch_notify (clts): no caller for reply "
2225 		    "0x%x\n", xid);
2226 		freemsg(mp);
2227 		/*
2228 		 * This is unfortunate, but we need to lookup the zone so we
2229 		 * can increment its "rcbadxids" counter.
2230 		 */
2231 		zone = zone_find_by_id(zoneid);
2232 		if (zone == NULL) {
2233 			/*
2234 			 * The zone went away...
2235 			 */
2236 			return;
2237 		}
2238 		rpcstat = zone_getspecific(rpcstat_zone_key, zone);
2239 		if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
2240 			/*
2241 			 * Not interested
2242 			 */
2243 			zone_rele(zone);
2244 			return;
2245 		}
2246 		RCSTAT_INCR(rpcstat->rpc_clts_client, rcbadxids);
2247 		zone_rele(zone);
2248 	}
2249 }
2250 
2251 /*
2252  * Init routine.  Called when rpcmod is loaded.
2253  */
2254 void
2255 clnt_clts_init(void)
2256 {
2257 	endpnt_cache = kmem_cache_create("clnt_clts_endpnt_cache",
2258 	    sizeof (struct endpnt), 0, NULL, NULL, endpnt_repossess, NULL,
2259 	    NULL, 0);
2260 
2261 	rw_init(&endpnt_type_lock, NULL, RW_DEFAULT, NULL);
2262 
2263 	/*
2264 	 * Perform simple bounds checking to make sure that the setting is
2265 	 * reasonable
2266 	 */
2267 	if (clnt_clts_max_endpoints <= 0) {
2268 		if (clnt_clts_do_bindresvport)
2269 			clnt_clts_max_endpoints = RESERVED_PORTSPACE;
2270 		else
2271 			clnt_clts_max_endpoints = NONRESERVED_PORTSPACE;
2272 	}
2273 
2274 	if (clnt_clts_do_bindresvport &&
2275 	    clnt_clts_max_endpoints > RESERVED_PORTSPACE)
2276 		clnt_clts_max_endpoints = RESERVED_PORTSPACE;
2277 	else if (clnt_clts_max_endpoints > NONRESERVED_PORTSPACE)
2278 		clnt_clts_max_endpoints = NONRESERVED_PORTSPACE;
2279 
2280 	if (clnt_clts_hash_size < DEFAULT_MIN_HASH_SIZE)
2281 		clnt_clts_hash_size = DEFAULT_MIN_HASH_SIZE;
2282 
2283 	/*
2284 	 * Defer creating the taskq until rpcmod gets pushed.  If we are
2285 	 * in diskless boot mode, rpcmod will get loaded early even before
2286 	 * thread_create() is available.
2287 	 */
2288 	endpnt_taskq = NULL;
2289 	taskq_created = FALSE;
2290 	mutex_init(&endpnt_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
2291 
2292 	if (clnt_clts_endpoint_reap_interval < DEFAULT_ENDPOINT_REAP_INTERVAL)
2293 		clnt_clts_endpoint_reap_interval =
2294 		    DEFAULT_ENDPOINT_REAP_INTERVAL;
2295 
2296 	/*
2297 	 * Dispatch the taskq at an interval which is offset from the
2298 	 * interval that the endpoints should be reaped.
2299 	 */
2300 	clnt_clts_taskq_dispatch_interval =
2301 	    (clnt_clts_endpoint_reap_interval + DEFAULT_INTERVAL_SHIFT) * hz;
2302 
2303 	/*
2304 	 * Initialize the completion queue
2305 	 */
2306 	clts_call_ht = call_table_init(clnt_clts_hash_size);
2307 	/*
2308 	 * Initialize the zone destructor callback.
2309 	 */
2310 	zone_key_create(&endpnt_destructor_key, NULL, NULL, endpnt_destructor);
2311 }
2312 
2313 void
2314 clnt_clts_fini(void)
2315 {
2316 	(void) zone_key_delete(endpnt_destructor_key);
2317 }
2318