xref: /titanic_52/usr/src/uts/common/os/zone.c (revision 188eaed9d5f14c73dfba1cd0dabaa430bdfd4a9a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*
27  * Zones
28  *
29  *   A zone is a named collection of processes, namespace constraints,
30  *   and other system resources which comprise a secure and manageable
31  *   application containment facility.
32  *
33  *   Zones (represented by the reference counted zone_t) are tracked in
34  *   the kernel in the zonehash.  Elsewhere in the kernel, Zone IDs
35  *   (zoneid_t) are used to track zone association.  Zone IDs are
36  *   dynamically generated when the zone is created; if a persistent
37  *   identifier is needed (core files, accounting logs, audit trail,
38  *   etc.), the zone name should be used.
39  *
40  *
41  *   Global Zone:
42  *
43  *   The global zone (zoneid 0) is automatically associated with all
44  *   system resources that have not been bound to a user-created zone.
45  *   This means that even systems where zones are not in active use
46  *   have a global zone, and all processes, mounts, etc. are
47  *   associated with that zone.  The global zone is generally
48  *   unconstrained in terms of privileges and access, though the usual
49  *   credential and privilege based restrictions apply.
50  *
51  *
52  *   Zone States:
53  *
54  *   The states in which a zone may be in and the transitions are as
55  *   follows:
56  *
57  *   ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially
58  *   initialized zone is added to the list of active zones on the system but
59  *   isn't accessible.
60  *
61  *   ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are
62  *   not yet completed. Not possible to enter the zone, but attributes can
63  *   be retrieved.
64  *
65  *   ZONE_IS_READY: zsched (the kernel dummy process for a zone) is
66  *   ready.  The zone is made visible after the ZSD constructor callbacks are
67  *   executed.  A zone remains in this state until it transitions into
68  *   the ZONE_IS_BOOTING state as a result of a call to zone_boot().
69  *
70  *   ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start
71  *   init.  Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN
72  *   state.
73  *
74  *   ZONE_IS_RUNNING: The zone is open for business: zsched has
75  *   successfully started init.   A zone remains in this state until
76  *   zone_shutdown() is called.
77  *
78  *   ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is
79  *   killing all processes running in the zone. The zone remains
80  *   in this state until there are no more user processes running in the zone.
81  *   zone_create(), zone_enter(), and zone_destroy() on this zone will fail.
82  *   Since zone_shutdown() is restartable, it may be called successfully
83  *   multiple times for the same zone_t.  Setting of the zone's state to
84  *   ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check
85  *   the zone's status without worrying about it being a moving target.
86  *
87  *   ZONE_IS_EMPTY: zone_shutdown() has been called, and there
88  *   are no more user processes in the zone.  The zone remains in this
89  *   state until there are no more kernel threads associated with the
90  *   zone.  zone_create(), zone_enter(), and zone_destroy() on this zone will
91  *   fail.
92  *
93  *   ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone
94  *   have exited.  zone_shutdown() returns.  Henceforth it is not possible to
95  *   join the zone or create kernel threads therein.
96  *
97  *   ZONE_IS_DYING: zone_destroy() has been called on the zone; zone
98  *   remains in this state until zsched exits.  Calls to zone_find_by_*()
99  *   return NULL from now on.
100  *
101  *   ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0).  There are no
102  *   processes or threads doing work on behalf of the zone.  The zone is
103  *   removed from the list of active zones.  zone_destroy() returns, and
104  *   the zone can be recreated.
105  *
106  *   ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor
107  *   callbacks are executed, and all memory associated with the zone is
108  *   freed.
109  *
110  *   Threads can wait for the zone to enter a requested state by using
111  *   zone_status_wait() or zone_status_timedwait() with the desired
112  *   state passed in as an argument.  Zone state transitions are
113  *   uni-directional; it is not possible to move back to an earlier state.
114  *
115  *
116  *   Zone-Specific Data:
117  *
118  *   Subsystems needing to maintain zone-specific data can store that
119  *   data using the ZSD mechanism.  This provides a zone-specific data
120  *   store, similar to thread-specific data (see pthread_getspecific(3C)
121  *   or the TSD code in uts/common/disp/thread.c.  Also, ZSD can be used
122  *   to register callbacks to be invoked when a zone is created, shut
123  *   down, or destroyed.  This can be used to initialize zone-specific
124  *   data for new zones and to clean up when zones go away.
125  *
126  *
127  *   Data Structures:
128  *
129  *   The per-zone structure (zone_t) is reference counted, and freed
130  *   when all references are released.  zone_hold and zone_rele can be
131  *   used to adjust the reference count.  In addition, reference counts
132  *   associated with the cred_t structure are tracked separately using
133  *   zone_cred_hold and zone_cred_rele.
134  *
135  *   Pointers to active zone_t's are stored in two hash tables; one
136  *   for searching by id, the other for searching by name.  Lookups
137  *   can be performed on either basis, using zone_find_by_id and
138  *   zone_find_by_name.  Both return zone_t pointers with the zone
139  *   held, so zone_rele should be called when the pointer is no longer
140  *   needed.  Zones can also be searched by path; zone_find_by_path
141  *   returns the zone with which a path name is associated (global
142  *   zone if the path is not within some other zone's file system
143  *   hierarchy).  This currently requires iterating through each zone,
144  *   so it is slower than an id or name search via a hash table.
145  *
146  *
147  *   Locking:
148  *
149  *   zonehash_lock: This is a top-level global lock used to protect the
150  *       zone hash tables and lists.  Zones cannot be created or destroyed
151  *       while this lock is held.
152  *   zone_status_lock: This is a global lock protecting zone state.
153  *       Zones cannot change state while this lock is held.  It also
154  *       protects the list of kernel threads associated with a zone.
155  *   zone_lock: This is a per-zone lock used to protect several fields of
156  *       the zone_t (see <sys/zone.h> for details).  In addition, holding
157  *       this lock means that the zone cannot go away.
158  *   zone_nlwps_lock: This is a per-zone lock used to protect the fields
159  *	 related to the zone.max-lwps rctl.
160  *   zone_mem_lock: This is a per-zone lock used to protect the fields
161  *	 related to the zone.max-locked-memory and zone.max-swap rctls.
162  *   zone_rctl_lock: This is a per-zone lock used to protect other rctls,
163  *       currently just max_lofi
164  *   zsd_key_lock: This is a global lock protecting the key state for ZSD.
165  *   zone_deathrow_lock: This is a global lock protecting the "deathrow"
166  *       list (a list of zones in the ZONE_IS_DEAD state).
167  *
168  *   Ordering requirements:
169  *       pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock -->
170  *       	zone_lock --> zsd_key_lock --> pidlock --> p_lock
171  *
172  *   When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is:
173  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
174  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
175  *
176  *   Blocking memory allocations are permitted while holding any of the
177  *   zone locks.
178  *
179  *
180  *   System Call Interface:
181  *
182  *   The zone subsystem can be managed and queried from user level with
183  *   the following system calls (all subcodes of the primary "zone"
184  *   system call):
185  *   - zone_create: creates a zone with selected attributes (name,
186  *     root path, privileges, resource controls, ZFS datasets)
187  *   - zone_enter: allows the current process to enter a zone
188  *   - zone_getattr: reports attributes of a zone
189  *   - zone_setattr: set attributes of a zone
190  *   - zone_boot: set 'init' running for the zone
191  *   - zone_list: lists all zones active in the system
192  *   - zone_lookup: looks up zone id based on name
193  *   - zone_shutdown: initiates shutdown process (see states above)
194  *   - zone_destroy: completes shutdown process (see states above)
195  *
196  */
197 
198 #include <sys/priv_impl.h>
199 #include <sys/cred.h>
200 #include <c2/audit.h>
201 #include <sys/debug.h>
202 #include <sys/file.h>
203 #include <sys/kmem.h>
204 #include <sys/kstat.h>
205 #include <sys/mutex.h>
206 #include <sys/note.h>
207 #include <sys/pathname.h>
208 #include <sys/proc.h>
209 #include <sys/project.h>
210 #include <sys/sysevent.h>
211 #include <sys/task.h>
212 #include <sys/systm.h>
213 #include <sys/types.h>
214 #include <sys/utsname.h>
215 #include <sys/vnode.h>
216 #include <sys/vfs.h>
217 #include <sys/systeminfo.h>
218 #include <sys/policy.h>
219 #include <sys/cred_impl.h>
220 #include <sys/contract_impl.h>
221 #include <sys/contract/process_impl.h>
222 #include <sys/class.h>
223 #include <sys/pool.h>
224 #include <sys/pool_pset.h>
225 #include <sys/pset.h>
226 #include <sys/sysmacros.h>
227 #include <sys/callb.h>
228 #include <sys/vmparam.h>
229 #include <sys/corectl.h>
230 #include <sys/ipc_impl.h>
231 #include <sys/klpd.h>
232 
233 #include <sys/door.h>
234 #include <sys/cpuvar.h>
235 #include <sys/sdt.h>
236 
237 #include <sys/uadmin.h>
238 #include <sys/session.h>
239 #include <sys/cmn_err.h>
240 #include <sys/modhash.h>
241 #include <sys/sunddi.h>
242 #include <sys/nvpair.h>
243 #include <sys/rctl.h>
244 #include <sys/fss.h>
245 #include <sys/brand.h>
246 #include <sys/zone.h>
247 #include <net/if.h>
248 #include <sys/cpucaps.h>
249 #include <vm/seg.h>
250 #include <sys/mac.h>
251 
252 /* List of data link IDs which are accessible from the zone */
253 typedef struct zone_dl {
254 	datalink_id_t	zdl_id;
255 	list_node_t	zdl_linkage;
256 } zone_dl_t;
257 
258 /*
259  * cv used to signal that all references to the zone have been released.  This
260  * needs to be global since there may be multiple waiters, and the first to
261  * wake up will free the zone_t, hence we cannot use zone->zone_cv.
262  */
263 static kcondvar_t zone_destroy_cv;
264 /*
265  * Lock used to serialize access to zone_cv.  This could have been per-zone,
266  * but then we'd need another lock for zone_destroy_cv, and why bother?
267  */
268 static kmutex_t zone_status_lock;
269 
270 /*
271  * ZSD-related global variables.
272  */
273 static kmutex_t zsd_key_lock;	/* protects the following two */
274 /*
275  * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval.
276  */
277 static zone_key_t zsd_keyval = 0;
278 /*
279  * Global list of registered keys.  We use this when a new zone is created.
280  */
281 static list_t zsd_registered_keys;
282 
283 int zone_hash_size = 256;
284 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel;
285 static kmutex_t zonehash_lock;
286 static uint_t zonecount;
287 static id_space_t *zoneid_space;
288 
289 /*
290  * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the
291  * kernel proper runs, and which manages all other zones.
292  *
293  * Although not declared as static, the variable "zone0" should not be used
294  * except for by code that needs to reference the global zone early on in boot,
295  * before it is fully initialized.  All other consumers should use
296  * 'global_zone'.
297  */
298 zone_t zone0;
299 zone_t *global_zone = NULL;	/* Set when the global zone is initialized */
300 
301 /*
302  * List of active zones, protected by zonehash_lock.
303  */
304 static list_t zone_active;
305 
306 /*
307  * List of destroyed zones that still have outstanding cred references.
308  * Used for debugging.  Uses a separate lock to avoid lock ordering
309  * problems in zone_free.
310  */
311 static list_t zone_deathrow;
312 static kmutex_t zone_deathrow_lock;
313 
314 /* number of zones is limited by virtual interface limit in IP */
315 uint_t maxzones = 8192;
316 
317 /* Event channel to sent zone state change notifications */
318 evchan_t *zone_event_chan;
319 
320 /*
321  * This table holds the mapping from kernel zone states to
322  * states visible in the state notification API.
323  * The idea is that we only expose "obvious" states and
324  * do not expose states which are just implementation details.
325  */
326 const char  *zone_status_table[] = {
327 	ZONE_EVENT_UNINITIALIZED,	/* uninitialized */
328 	ZONE_EVENT_INITIALIZED,		/* initialized */
329 	ZONE_EVENT_READY,		/* ready */
330 	ZONE_EVENT_READY,		/* booting */
331 	ZONE_EVENT_RUNNING,		/* running */
332 	ZONE_EVENT_SHUTTING_DOWN,	/* shutting_down */
333 	ZONE_EVENT_SHUTTING_DOWN,	/* empty */
334 	ZONE_EVENT_SHUTTING_DOWN,	/* down */
335 	ZONE_EVENT_SHUTTING_DOWN,	/* dying */
336 	ZONE_EVENT_UNINITIALIZED,	/* dead */
337 };
338 
339 /*
340  * This isn't static so lint doesn't complain.
341  */
342 rctl_hndl_t rc_zone_cpu_shares;
343 rctl_hndl_t rc_zone_locked_mem;
344 rctl_hndl_t rc_zone_max_swap;
345 rctl_hndl_t rc_zone_max_lofi;
346 rctl_hndl_t rc_zone_cpu_cap;
347 rctl_hndl_t rc_zone_nlwps;
348 rctl_hndl_t rc_zone_shmmax;
349 rctl_hndl_t rc_zone_shmmni;
350 rctl_hndl_t rc_zone_semmni;
351 rctl_hndl_t rc_zone_msgmni;
352 /*
353  * Synchronization primitives used to synchronize between mounts and zone
354  * creation/destruction.
355  */
356 static int mounts_in_progress;
357 static kcondvar_t mount_cv;
358 static kmutex_t mount_lock;
359 
360 const char * const zone_default_initname = "/sbin/init";
361 static char * const zone_prefix = "/zone/";
362 static int zone_shutdown(zoneid_t zoneid);
363 static int zone_add_datalink(zoneid_t, datalink_id_t);
364 static int zone_remove_datalink(zoneid_t, datalink_id_t);
365 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *);
366 
367 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t);
368 
369 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t);
370 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *);
371 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t);
372 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *,
373     zone_key_t);
374 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t);
375 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *,
376     kmutex_t *);
377 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *,
378     kmutex_t *);
379 
380 /*
381  * Bump this number when you alter the zone syscall interfaces; this is
382  * because we need to have support for previous API versions in libc
383  * to support patching; libc calls into the kernel to determine this number.
384  *
385  * Version 1 of the API is the version originally shipped with Solaris 10
386  * Version 2 alters the zone_create system call in order to support more
387  *     arguments by moving the args into a structure; and to do better
388  *     error reporting when zone_create() fails.
389  * Version 3 alters the zone_create system call in order to support the
390  *     import of ZFS datasets to zones.
391  * Version 4 alters the zone_create system call in order to support
392  *     Trusted Extensions.
393  * Version 5 alters the zone_boot system call, and converts its old
394  *     bootargs parameter to be set by the zone_setattr API instead.
395  * Version 6 adds the flag argument to zone_create.
396  */
397 static const int ZONE_SYSCALL_API_VERSION = 6;
398 
399 /*
400  * Certain filesystems (such as NFS and autofs) need to know which zone
401  * the mount is being placed in.  Because of this, we need to be able to
402  * ensure that a zone isn't in the process of being created such that
403  * nfs_mount() thinks it is in the global zone, while by the time it
404  * gets added the list of mounted zones, it ends up on zoneA's mount
405  * list.
406  *
407  * The following functions: block_mounts()/resume_mounts() and
408  * mount_in_progress()/mount_completed() are used by zones and the VFS
409  * layer (respectively) to synchronize zone creation and new mounts.
410  *
411  * The semantics are like a reader-reader lock such that there may
412  * either be multiple mounts (or zone creations, if that weren't
413  * serialized by zonehash_lock) in progress at the same time, but not
414  * both.
415  *
416  * We use cv's so the user can ctrl-C out of the operation if it's
417  * taking too long.
418  *
419  * The semantics are such that there is unfair bias towards the
420  * "current" operation.  This means that zone creations may starve if
421  * there is a rapid succession of new mounts coming in to the system, or
422  * there is a remote possibility that zones will be created at such a
423  * rate that new mounts will not be able to proceed.
424  */
425 /*
426  * Prevent new mounts from progressing to the point of calling
427  * VFS_MOUNT().  If there are already mounts in this "region", wait for
428  * them to complete.
429  */
430 static int
431 block_mounts(void)
432 {
433 	int retval = 0;
434 
435 	/*
436 	 * Since it may block for a long time, block_mounts() shouldn't be
437 	 * called with zonehash_lock held.
438 	 */
439 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
440 	mutex_enter(&mount_lock);
441 	while (mounts_in_progress > 0) {
442 		if (cv_wait_sig(&mount_cv, &mount_lock) == 0)
443 			goto signaled;
444 	}
445 	/*
446 	 * A negative value of mounts_in_progress indicates that mounts
447 	 * have been blocked by (-mounts_in_progress) different callers.
448 	 */
449 	mounts_in_progress--;
450 	retval = 1;
451 signaled:
452 	mutex_exit(&mount_lock);
453 	return (retval);
454 }
455 
456 /*
457  * The VFS layer may progress with new mounts as far as we're concerned.
458  * Allow them to progress if we were the last obstacle.
459  */
460 static void
461 resume_mounts(void)
462 {
463 	mutex_enter(&mount_lock);
464 	if (++mounts_in_progress == 0)
465 		cv_broadcast(&mount_cv);
466 	mutex_exit(&mount_lock);
467 }
468 
469 /*
470  * The VFS layer is busy with a mount; zones should wait until all
471  * mounts are completed to progress.
472  */
473 void
474 mount_in_progress(void)
475 {
476 	mutex_enter(&mount_lock);
477 	while (mounts_in_progress < 0)
478 		cv_wait(&mount_cv, &mount_lock);
479 	mounts_in_progress++;
480 	mutex_exit(&mount_lock);
481 }
482 
483 /*
484  * VFS is done with one mount; wake up any waiting block_mounts()
485  * callers if this is the last mount.
486  */
487 void
488 mount_completed(void)
489 {
490 	mutex_enter(&mount_lock);
491 	if (--mounts_in_progress == 0)
492 		cv_broadcast(&mount_cv);
493 	mutex_exit(&mount_lock);
494 }
495 
496 /*
497  * ZSD routines.
498  *
499  * Zone Specific Data (ZSD) is modeled after Thread Specific Data as
500  * defined by the pthread_key_create() and related interfaces.
501  *
502  * Kernel subsystems may register one or more data items and/or
503  * callbacks to be executed when a zone is created, shutdown, or
504  * destroyed.
505  *
506  * Unlike the thread counterpart, destructor callbacks will be executed
507  * even if the data pointer is NULL and/or there are no constructor
508  * callbacks, so it is the responsibility of such callbacks to check for
509  * NULL data values if necessary.
510  *
511  * The locking strategy and overall picture is as follows:
512  *
513  * When someone calls zone_key_create(), a template ZSD entry is added to the
514  * global list "zsd_registered_keys", protected by zsd_key_lock.  While
515  * holding that lock all the existing zones are marked as
516  * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone
517  * zone_zsd list (protected by zone_lock). The global list is updated first
518  * (under zone_key_lock) to make sure that newly created zones use the
519  * most recent list of keys. Then under zonehash_lock we walk the zones
520  * and mark them.  Similar locking is used in zone_key_delete().
521  *
522  * The actual create, shutdown, and destroy callbacks are done without
523  * holding any lock. And zsd_flags are used to ensure that the operations
524  * completed so that when zone_key_create (and zone_create) is done, as well as
525  * zone_key_delete (and zone_destroy) is done, all the necessary callbacks
526  * are completed.
527  *
528  * When new zones are created constructor callbacks for all registered ZSD
529  * entries will be called. That also uses the above two phases of marking
530  * what needs to be done, and then running the callbacks without holding
531  * any locks.
532  *
533  * The framework does not provide any locking around zone_getspecific() and
534  * zone_setspecific() apart from that needed for internal consistency, so
535  * callers interested in atomic "test-and-set" semantics will need to provide
536  * their own locking.
537  */
538 
539 /*
540  * Helper function to find the zsd_entry associated with the key in the
541  * given list.
542  */
543 static struct zsd_entry *
544 zsd_find(list_t *l, zone_key_t key)
545 {
546 	struct zsd_entry *zsd;
547 
548 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
549 		if (zsd->zsd_key == key) {
550 			return (zsd);
551 		}
552 	}
553 	return (NULL);
554 }
555 
556 /*
557  * Helper function to find the zsd_entry associated with the key in the
558  * given list. Move it to the front of the list.
559  */
560 static struct zsd_entry *
561 zsd_find_mru(list_t *l, zone_key_t key)
562 {
563 	struct zsd_entry *zsd;
564 
565 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
566 		if (zsd->zsd_key == key) {
567 			/*
568 			 * Move to head of list to keep list in MRU order.
569 			 */
570 			if (zsd != list_head(l)) {
571 				list_remove(l, zsd);
572 				list_insert_head(l, zsd);
573 			}
574 			return (zsd);
575 		}
576 	}
577 	return (NULL);
578 }
579 
580 void
581 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t),
582     void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *))
583 {
584 	struct zsd_entry *zsdp;
585 	struct zsd_entry *t;
586 	struct zone *zone;
587 	zone_key_t  key;
588 
589 	zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP);
590 	zsdp->zsd_data = NULL;
591 	zsdp->zsd_create = create;
592 	zsdp->zsd_shutdown = shutdown;
593 	zsdp->zsd_destroy = destroy;
594 
595 	/*
596 	 * Insert in global list of callbacks. Makes future zone creations
597 	 * see it.
598 	 */
599 	mutex_enter(&zsd_key_lock);
600 	key = zsdp->zsd_key = ++zsd_keyval;
601 	ASSERT(zsd_keyval != 0);
602 	list_insert_tail(&zsd_registered_keys, zsdp);
603 	mutex_exit(&zsd_key_lock);
604 
605 	/*
606 	 * Insert for all existing zones and mark them as needing
607 	 * a create callback.
608 	 */
609 	mutex_enter(&zonehash_lock);	/* stop the world */
610 	for (zone = list_head(&zone_active); zone != NULL;
611 	    zone = list_next(&zone_active, zone)) {
612 		zone_status_t status;
613 
614 		mutex_enter(&zone->zone_lock);
615 
616 		/* Skip zones that are on the way down or not yet up */
617 		status = zone_status_get(zone);
618 		if (status >= ZONE_IS_DOWN ||
619 		    status == ZONE_IS_UNINITIALIZED) {
620 			mutex_exit(&zone->zone_lock);
621 			continue;
622 		}
623 
624 		t = zsd_find_mru(&zone->zone_zsd, key);
625 		if (t != NULL) {
626 			/*
627 			 * A zsd_configure already inserted it after
628 			 * we dropped zsd_key_lock above.
629 			 */
630 			mutex_exit(&zone->zone_lock);
631 			continue;
632 		}
633 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
634 		t->zsd_key = key;
635 		t->zsd_create = create;
636 		t->zsd_shutdown = shutdown;
637 		t->zsd_destroy = destroy;
638 		if (create != NULL) {
639 			t->zsd_flags = ZSD_CREATE_NEEDED;
640 			DTRACE_PROBE2(zsd__create__needed,
641 			    zone_t *, zone, zone_key_t, key);
642 		}
643 		list_insert_tail(&zone->zone_zsd, t);
644 		mutex_exit(&zone->zone_lock);
645 	}
646 	mutex_exit(&zonehash_lock);
647 
648 	if (create != NULL) {
649 		/* Now call the create callback for this key */
650 		zsd_apply_all_zones(zsd_apply_create, key);
651 	}
652 	/*
653 	 * It is safe for consumers to use the key now, make it
654 	 * globally visible. Specifically zone_getspecific() will
655 	 * always successfully return the zone specific data associated
656 	 * with the key.
657 	 */
658 	*keyp = key;
659 
660 }
661 
662 /*
663  * Function called when a module is being unloaded, or otherwise wishes
664  * to unregister its ZSD key and callbacks.
665  *
666  * Remove from the global list and determine the functions that need to
667  * be called under a global lock. Then call the functions without
668  * holding any locks. Finally free up the zone_zsd entries. (The apply
669  * functions need to access the zone_zsd entries to find zsd_data etc.)
670  */
671 int
672 zone_key_delete(zone_key_t key)
673 {
674 	struct zsd_entry *zsdp = NULL;
675 	zone_t *zone;
676 
677 	mutex_enter(&zsd_key_lock);
678 	zsdp = zsd_find_mru(&zsd_registered_keys, key);
679 	if (zsdp == NULL) {
680 		mutex_exit(&zsd_key_lock);
681 		return (-1);
682 	}
683 	list_remove(&zsd_registered_keys, zsdp);
684 	mutex_exit(&zsd_key_lock);
685 
686 	mutex_enter(&zonehash_lock);
687 	for (zone = list_head(&zone_active); zone != NULL;
688 	    zone = list_next(&zone_active, zone)) {
689 		struct zsd_entry *del;
690 
691 		mutex_enter(&zone->zone_lock);
692 		del = zsd_find_mru(&zone->zone_zsd, key);
693 		if (del == NULL) {
694 			/*
695 			 * Somebody else got here first e.g the zone going
696 			 * away.
697 			 */
698 			mutex_exit(&zone->zone_lock);
699 			continue;
700 		}
701 		ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown);
702 		ASSERT(del->zsd_destroy == zsdp->zsd_destroy);
703 		if (del->zsd_shutdown != NULL &&
704 		    (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
705 			del->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
706 			DTRACE_PROBE2(zsd__shutdown__needed,
707 			    zone_t *, zone, zone_key_t, key);
708 		}
709 		if (del->zsd_destroy != NULL &&
710 		    (del->zsd_flags & ZSD_DESTROY_ALL) == 0) {
711 			del->zsd_flags |= ZSD_DESTROY_NEEDED;
712 			DTRACE_PROBE2(zsd__destroy__needed,
713 			    zone_t *, zone, zone_key_t, key);
714 		}
715 		mutex_exit(&zone->zone_lock);
716 	}
717 	mutex_exit(&zonehash_lock);
718 	kmem_free(zsdp, sizeof (*zsdp));
719 
720 	/* Now call the shutdown and destroy callback for this key */
721 	zsd_apply_all_zones(zsd_apply_shutdown, key);
722 	zsd_apply_all_zones(zsd_apply_destroy, key);
723 
724 	/* Now we can free up the zsdp structures in each zone */
725 	mutex_enter(&zonehash_lock);
726 	for (zone = list_head(&zone_active); zone != NULL;
727 	    zone = list_next(&zone_active, zone)) {
728 		struct zsd_entry *del;
729 
730 		mutex_enter(&zone->zone_lock);
731 		del = zsd_find(&zone->zone_zsd, key);
732 		if (del != NULL) {
733 			list_remove(&zone->zone_zsd, del);
734 			ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS));
735 			kmem_free(del, sizeof (*del));
736 		}
737 		mutex_exit(&zone->zone_lock);
738 	}
739 	mutex_exit(&zonehash_lock);
740 
741 	return (0);
742 }
743 
744 /*
745  * ZSD counterpart of pthread_setspecific().
746  *
747  * Since all zsd callbacks, including those with no create function,
748  * have an entry in zone_zsd, if the key is registered it is part of
749  * the zone_zsd list.
750  * Return an error if the key wasn't registerd.
751  */
752 int
753 zone_setspecific(zone_key_t key, zone_t *zone, const void *data)
754 {
755 	struct zsd_entry *t;
756 
757 	mutex_enter(&zone->zone_lock);
758 	t = zsd_find_mru(&zone->zone_zsd, key);
759 	if (t != NULL) {
760 		/*
761 		 * Replace old value with new
762 		 */
763 		t->zsd_data = (void *)data;
764 		mutex_exit(&zone->zone_lock);
765 		return (0);
766 	}
767 	mutex_exit(&zone->zone_lock);
768 	return (-1);
769 }
770 
771 /*
772  * ZSD counterpart of pthread_getspecific().
773  */
774 void *
775 zone_getspecific(zone_key_t key, zone_t *zone)
776 {
777 	struct zsd_entry *t;
778 	void *data;
779 
780 	mutex_enter(&zone->zone_lock);
781 	t = zsd_find_mru(&zone->zone_zsd, key);
782 	data = (t == NULL ? NULL : t->zsd_data);
783 	mutex_exit(&zone->zone_lock);
784 	return (data);
785 }
786 
787 /*
788  * Function used to initialize a zone's list of ZSD callbacks and data
789  * when the zone is being created.  The callbacks are initialized from
790  * the template list (zsd_registered_keys). The constructor callback is
791  * executed later (once the zone exists and with locks dropped).
792  */
793 static void
794 zone_zsd_configure(zone_t *zone)
795 {
796 	struct zsd_entry *zsdp;
797 	struct zsd_entry *t;
798 
799 	ASSERT(MUTEX_HELD(&zonehash_lock));
800 	ASSERT(list_head(&zone->zone_zsd) == NULL);
801 	mutex_enter(&zone->zone_lock);
802 	mutex_enter(&zsd_key_lock);
803 	for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL;
804 	    zsdp = list_next(&zsd_registered_keys, zsdp)) {
805 		/*
806 		 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create
807 		 * should not have added anything to it.
808 		 */
809 		ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL);
810 
811 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
812 		t->zsd_key = zsdp->zsd_key;
813 		t->zsd_create = zsdp->zsd_create;
814 		t->zsd_shutdown = zsdp->zsd_shutdown;
815 		t->zsd_destroy = zsdp->zsd_destroy;
816 		if (zsdp->zsd_create != NULL) {
817 			t->zsd_flags = ZSD_CREATE_NEEDED;
818 			DTRACE_PROBE2(zsd__create__needed,
819 			    zone_t *, zone, zone_key_t, zsdp->zsd_key);
820 		}
821 		list_insert_tail(&zone->zone_zsd, t);
822 	}
823 	mutex_exit(&zsd_key_lock);
824 	mutex_exit(&zone->zone_lock);
825 }
826 
827 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY };
828 
829 /*
830  * Helper function to execute shutdown or destructor callbacks.
831  */
832 static void
833 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct)
834 {
835 	struct zsd_entry *t;
836 
837 	ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY);
838 	ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY);
839 	ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN);
840 
841 	/*
842 	 * Run the callback solely based on what is registered for the zone
843 	 * in zone_zsd. The global list can change independently of this
844 	 * as keys are registered and unregistered and we don't register new
845 	 * callbacks for a zone that is in the process of going away.
846 	 */
847 	mutex_enter(&zone->zone_lock);
848 	for (t = list_head(&zone->zone_zsd); t != NULL;
849 	    t = list_next(&zone->zone_zsd, t)) {
850 		zone_key_t key = t->zsd_key;
851 
852 		/* Skip if no callbacks registered */
853 
854 		if (ct == ZSD_SHUTDOWN) {
855 			if (t->zsd_shutdown != NULL &&
856 			    (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
857 				t->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
858 				DTRACE_PROBE2(zsd__shutdown__needed,
859 				    zone_t *, zone, zone_key_t, key);
860 			}
861 		} else {
862 			if (t->zsd_destroy != NULL &&
863 			    (t->zsd_flags & ZSD_DESTROY_ALL) == 0) {
864 				t->zsd_flags |= ZSD_DESTROY_NEEDED;
865 				DTRACE_PROBE2(zsd__destroy__needed,
866 				    zone_t *, zone, zone_key_t, key);
867 			}
868 		}
869 	}
870 	mutex_exit(&zone->zone_lock);
871 
872 	/* Now call the shutdown and destroy callback for this key */
873 	zsd_apply_all_keys(zsd_apply_shutdown, zone);
874 	zsd_apply_all_keys(zsd_apply_destroy, zone);
875 
876 }
877 
878 /*
879  * Called when the zone is going away; free ZSD-related memory, and
880  * destroy the zone_zsd list.
881  */
882 static void
883 zone_free_zsd(zone_t *zone)
884 {
885 	struct zsd_entry *t, *next;
886 
887 	/*
888 	 * Free all the zsd_entry's we had on this zone.
889 	 */
890 	mutex_enter(&zone->zone_lock);
891 	for (t = list_head(&zone->zone_zsd); t != NULL; t = next) {
892 		next = list_next(&zone->zone_zsd, t);
893 		list_remove(&zone->zone_zsd, t);
894 		ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS));
895 		kmem_free(t, sizeof (*t));
896 	}
897 	list_destroy(&zone->zone_zsd);
898 	mutex_exit(&zone->zone_lock);
899 
900 }
901 
902 /*
903  * Apply a function to all zones for particular key value.
904  *
905  * The applyfn has to drop zonehash_lock if it does some work, and
906  * then reacquire it before it returns.
907  * When the lock is dropped we don't follow list_next even
908  * if it is possible to do so without any hazards. This is
909  * because we want the design to allow for the list of zones
910  * to change in any arbitrary way during the time the
911  * lock was dropped.
912  *
913  * It is safe to restart the loop at list_head since the applyfn
914  * changes the zsd_flags as it does work, so a subsequent
915  * pass through will have no effect in applyfn, hence the loop will terminate
916  * in at worst O(N^2).
917  */
918 static void
919 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key)
920 {
921 	zone_t *zone;
922 
923 	mutex_enter(&zonehash_lock);
924 	zone = list_head(&zone_active);
925 	while (zone != NULL) {
926 		if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) {
927 			/* Lock dropped - restart at head */
928 			zone = list_head(&zone_active);
929 		} else {
930 			zone = list_next(&zone_active, zone);
931 		}
932 	}
933 	mutex_exit(&zonehash_lock);
934 }
935 
936 /*
937  * Apply a function to all keys for a particular zone.
938  *
939  * The applyfn has to drop zonehash_lock if it does some work, and
940  * then reacquire it before it returns.
941  * When the lock is dropped we don't follow list_next even
942  * if it is possible to do so without any hazards. This is
943  * because we want the design to allow for the list of zsd callbacks
944  * to change in any arbitrary way during the time the
945  * lock was dropped.
946  *
947  * It is safe to restart the loop at list_head since the applyfn
948  * changes the zsd_flags as it does work, so a subsequent
949  * pass through will have no effect in applyfn, hence the loop will terminate
950  * in at worst O(N^2).
951  */
952 static void
953 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone)
954 {
955 	struct zsd_entry *t;
956 
957 	mutex_enter(&zone->zone_lock);
958 	t = list_head(&zone->zone_zsd);
959 	while (t != NULL) {
960 		if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) {
961 			/* Lock dropped - restart at head */
962 			t = list_head(&zone->zone_zsd);
963 		} else {
964 			t = list_next(&zone->zone_zsd, t);
965 		}
966 	}
967 	mutex_exit(&zone->zone_lock);
968 }
969 
970 /*
971  * Call the create function for the zone and key if CREATE_NEEDED
972  * is set.
973  * If some other thread gets here first and sets CREATE_INPROGRESS, then
974  * we wait for that thread to complete so that we can ensure that
975  * all the callbacks are done when we've looped over all zones/keys.
976  *
977  * When we call the create function, we drop the global held by the
978  * caller, and return true to tell the caller it needs to re-evalute the
979  * state.
980  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
981  * remains held on exit.
982  */
983 static boolean_t
984 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held,
985     zone_t *zone, zone_key_t key)
986 {
987 	void *result;
988 	struct zsd_entry *t;
989 	boolean_t dropped;
990 
991 	if (lockp != NULL) {
992 		ASSERT(MUTEX_HELD(lockp));
993 	}
994 	if (zone_lock_held) {
995 		ASSERT(MUTEX_HELD(&zone->zone_lock));
996 	} else {
997 		mutex_enter(&zone->zone_lock);
998 	}
999 
1000 	t = zsd_find(&zone->zone_zsd, key);
1001 	if (t == NULL) {
1002 		/*
1003 		 * Somebody else got here first e.g the zone going
1004 		 * away.
1005 		 */
1006 		if (!zone_lock_held)
1007 			mutex_exit(&zone->zone_lock);
1008 		return (B_FALSE);
1009 	}
1010 	dropped = B_FALSE;
1011 	if (zsd_wait_for_inprogress(zone, t, lockp))
1012 		dropped = B_TRUE;
1013 
1014 	if (t->zsd_flags & ZSD_CREATE_NEEDED) {
1015 		t->zsd_flags &= ~ZSD_CREATE_NEEDED;
1016 		t->zsd_flags |= ZSD_CREATE_INPROGRESS;
1017 		DTRACE_PROBE2(zsd__create__inprogress,
1018 		    zone_t *, zone, zone_key_t, key);
1019 		mutex_exit(&zone->zone_lock);
1020 		if (lockp != NULL)
1021 			mutex_exit(lockp);
1022 
1023 		dropped = B_TRUE;
1024 		ASSERT(t->zsd_create != NULL);
1025 		DTRACE_PROBE2(zsd__create__start,
1026 		    zone_t *, zone, zone_key_t, key);
1027 
1028 		result = (*t->zsd_create)(zone->zone_id);
1029 
1030 		DTRACE_PROBE2(zsd__create__end,
1031 		    zone_t *, zone, voidn *, result);
1032 
1033 		ASSERT(result != NULL);
1034 		if (lockp != NULL)
1035 			mutex_enter(lockp);
1036 		mutex_enter(&zone->zone_lock);
1037 		t->zsd_data = result;
1038 		t->zsd_flags &= ~ZSD_CREATE_INPROGRESS;
1039 		t->zsd_flags |= ZSD_CREATE_COMPLETED;
1040 		cv_broadcast(&t->zsd_cv);
1041 		DTRACE_PROBE2(zsd__create__completed,
1042 		    zone_t *, zone, zone_key_t, key);
1043 	}
1044 	if (!zone_lock_held)
1045 		mutex_exit(&zone->zone_lock);
1046 	return (dropped);
1047 }
1048 
1049 /*
1050  * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED
1051  * is set.
1052  * If some other thread gets here first and sets *_INPROGRESS, then
1053  * we wait for that thread to complete so that we can ensure that
1054  * all the callbacks are done when we've looped over all zones/keys.
1055  *
1056  * When we call the shutdown function, we drop the global held by the
1057  * caller, and return true to tell the caller it needs to re-evalute the
1058  * state.
1059  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1060  * remains held on exit.
1061  */
1062 static boolean_t
1063 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held,
1064     zone_t *zone, zone_key_t key)
1065 {
1066 	struct zsd_entry *t;
1067 	void *data;
1068 	boolean_t dropped;
1069 
1070 	if (lockp != NULL) {
1071 		ASSERT(MUTEX_HELD(lockp));
1072 	}
1073 	if (zone_lock_held) {
1074 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1075 	} else {
1076 		mutex_enter(&zone->zone_lock);
1077 	}
1078 
1079 	t = zsd_find(&zone->zone_zsd, key);
1080 	if (t == NULL) {
1081 		/*
1082 		 * Somebody else got here first e.g the zone going
1083 		 * away.
1084 		 */
1085 		if (!zone_lock_held)
1086 			mutex_exit(&zone->zone_lock);
1087 		return (B_FALSE);
1088 	}
1089 	dropped = B_FALSE;
1090 	if (zsd_wait_for_creator(zone, t, lockp))
1091 		dropped = B_TRUE;
1092 
1093 	if (zsd_wait_for_inprogress(zone, t, lockp))
1094 		dropped = B_TRUE;
1095 
1096 	if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) {
1097 		t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED;
1098 		t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS;
1099 		DTRACE_PROBE2(zsd__shutdown__inprogress,
1100 		    zone_t *, zone, zone_key_t, key);
1101 		mutex_exit(&zone->zone_lock);
1102 		if (lockp != NULL)
1103 			mutex_exit(lockp);
1104 		dropped = B_TRUE;
1105 
1106 		ASSERT(t->zsd_shutdown != NULL);
1107 		data = t->zsd_data;
1108 
1109 		DTRACE_PROBE2(zsd__shutdown__start,
1110 		    zone_t *, zone, zone_key_t, key);
1111 
1112 		(t->zsd_shutdown)(zone->zone_id, data);
1113 		DTRACE_PROBE2(zsd__shutdown__end,
1114 		    zone_t *, zone, zone_key_t, key);
1115 
1116 		if (lockp != NULL)
1117 			mutex_enter(lockp);
1118 		mutex_enter(&zone->zone_lock);
1119 		t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS;
1120 		t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED;
1121 		cv_broadcast(&t->zsd_cv);
1122 		DTRACE_PROBE2(zsd__shutdown__completed,
1123 		    zone_t *, zone, zone_key_t, key);
1124 	}
1125 	if (!zone_lock_held)
1126 		mutex_exit(&zone->zone_lock);
1127 	return (dropped);
1128 }
1129 
1130 /*
1131  * Call the destroy function for the zone and key if DESTROY_NEEDED
1132  * is set.
1133  * If some other thread gets here first and sets *_INPROGRESS, then
1134  * we wait for that thread to complete so that we can ensure that
1135  * all the callbacks are done when we've looped over all zones/keys.
1136  *
1137  * When we call the destroy function, we drop the global held by the
1138  * caller, and return true to tell the caller it needs to re-evalute the
1139  * state.
1140  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1141  * remains held on exit.
1142  */
1143 static boolean_t
1144 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held,
1145     zone_t *zone, zone_key_t key)
1146 {
1147 	struct zsd_entry *t;
1148 	void *data;
1149 	boolean_t dropped;
1150 
1151 	if (lockp != NULL) {
1152 		ASSERT(MUTEX_HELD(lockp));
1153 	}
1154 	if (zone_lock_held) {
1155 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1156 	} else {
1157 		mutex_enter(&zone->zone_lock);
1158 	}
1159 
1160 	t = zsd_find(&zone->zone_zsd, key);
1161 	if (t == NULL) {
1162 		/*
1163 		 * Somebody else got here first e.g the zone going
1164 		 * away.
1165 		 */
1166 		if (!zone_lock_held)
1167 			mutex_exit(&zone->zone_lock);
1168 		return (B_FALSE);
1169 	}
1170 	dropped = B_FALSE;
1171 	if (zsd_wait_for_creator(zone, t, lockp))
1172 		dropped = B_TRUE;
1173 
1174 	if (zsd_wait_for_inprogress(zone, t, lockp))
1175 		dropped = B_TRUE;
1176 
1177 	if (t->zsd_flags & ZSD_DESTROY_NEEDED) {
1178 		t->zsd_flags &= ~ZSD_DESTROY_NEEDED;
1179 		t->zsd_flags |= ZSD_DESTROY_INPROGRESS;
1180 		DTRACE_PROBE2(zsd__destroy__inprogress,
1181 		    zone_t *, zone, zone_key_t, key);
1182 		mutex_exit(&zone->zone_lock);
1183 		if (lockp != NULL)
1184 			mutex_exit(lockp);
1185 		dropped = B_TRUE;
1186 
1187 		ASSERT(t->zsd_destroy != NULL);
1188 		data = t->zsd_data;
1189 		DTRACE_PROBE2(zsd__destroy__start,
1190 		    zone_t *, zone, zone_key_t, key);
1191 
1192 		(t->zsd_destroy)(zone->zone_id, data);
1193 		DTRACE_PROBE2(zsd__destroy__end,
1194 		    zone_t *, zone, zone_key_t, key);
1195 
1196 		if (lockp != NULL)
1197 			mutex_enter(lockp);
1198 		mutex_enter(&zone->zone_lock);
1199 		t->zsd_data = NULL;
1200 		t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS;
1201 		t->zsd_flags |= ZSD_DESTROY_COMPLETED;
1202 		cv_broadcast(&t->zsd_cv);
1203 		DTRACE_PROBE2(zsd__destroy__completed,
1204 		    zone_t *, zone, zone_key_t, key);
1205 	}
1206 	if (!zone_lock_held)
1207 		mutex_exit(&zone->zone_lock);
1208 	return (dropped);
1209 }
1210 
1211 /*
1212  * Wait for any CREATE_NEEDED flag to be cleared.
1213  * Returns true if lockp was temporarily dropped while waiting.
1214  */
1215 static boolean_t
1216 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1217 {
1218 	boolean_t dropped = B_FALSE;
1219 
1220 	while (t->zsd_flags & ZSD_CREATE_NEEDED) {
1221 		DTRACE_PROBE2(zsd__wait__for__creator,
1222 		    zone_t *, zone, struct zsd_entry *, t);
1223 		if (lockp != NULL) {
1224 			dropped = B_TRUE;
1225 			mutex_exit(lockp);
1226 		}
1227 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1228 		if (lockp != NULL) {
1229 			/* First drop zone_lock to preserve order */
1230 			mutex_exit(&zone->zone_lock);
1231 			mutex_enter(lockp);
1232 			mutex_enter(&zone->zone_lock);
1233 		}
1234 	}
1235 	return (dropped);
1236 }
1237 
1238 /*
1239  * Wait for any INPROGRESS flag to be cleared.
1240  * Returns true if lockp was temporarily dropped while waiting.
1241  */
1242 static boolean_t
1243 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1244 {
1245 	boolean_t dropped = B_FALSE;
1246 
1247 	while (t->zsd_flags & ZSD_ALL_INPROGRESS) {
1248 		DTRACE_PROBE2(zsd__wait__for__inprogress,
1249 		    zone_t *, zone, struct zsd_entry *, t);
1250 		if (lockp != NULL) {
1251 			dropped = B_TRUE;
1252 			mutex_exit(lockp);
1253 		}
1254 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1255 		if (lockp != NULL) {
1256 			/* First drop zone_lock to preserve order */
1257 			mutex_exit(&zone->zone_lock);
1258 			mutex_enter(lockp);
1259 			mutex_enter(&zone->zone_lock);
1260 		}
1261 	}
1262 	return (dropped);
1263 }
1264 
1265 /*
1266  * Frees memory associated with the zone dataset list.
1267  */
1268 static void
1269 zone_free_datasets(zone_t *zone)
1270 {
1271 	zone_dataset_t *t, *next;
1272 
1273 	for (t = list_head(&zone->zone_datasets); t != NULL; t = next) {
1274 		next = list_next(&zone->zone_datasets, t);
1275 		list_remove(&zone->zone_datasets, t);
1276 		kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1);
1277 		kmem_free(t, sizeof (*t));
1278 	}
1279 	list_destroy(&zone->zone_datasets);
1280 }
1281 
1282 /*
1283  * zone.cpu-shares resource control support.
1284  */
1285 /*ARGSUSED*/
1286 static rctl_qty_t
1287 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p)
1288 {
1289 	ASSERT(MUTEX_HELD(&p->p_lock));
1290 	return (p->p_zone->zone_shares);
1291 }
1292 
1293 /*ARGSUSED*/
1294 static int
1295 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1296     rctl_qty_t nv)
1297 {
1298 	ASSERT(MUTEX_HELD(&p->p_lock));
1299 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1300 	if (e->rcep_p.zone == NULL)
1301 		return (0);
1302 
1303 	e->rcep_p.zone->zone_shares = nv;
1304 	return (0);
1305 }
1306 
1307 static rctl_ops_t zone_cpu_shares_ops = {
1308 	rcop_no_action,
1309 	zone_cpu_shares_usage,
1310 	zone_cpu_shares_set,
1311 	rcop_no_test
1312 };
1313 
1314 /*
1315  * zone.cpu-cap resource control support.
1316  */
1317 /*ARGSUSED*/
1318 static rctl_qty_t
1319 zone_cpu_cap_get(rctl_t *rctl, struct proc *p)
1320 {
1321 	ASSERT(MUTEX_HELD(&p->p_lock));
1322 	return (cpucaps_zone_get(p->p_zone));
1323 }
1324 
1325 /*ARGSUSED*/
1326 static int
1327 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1328     rctl_qty_t nv)
1329 {
1330 	zone_t *zone = e->rcep_p.zone;
1331 
1332 	ASSERT(MUTEX_HELD(&p->p_lock));
1333 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1334 
1335 	if (zone == NULL)
1336 		return (0);
1337 
1338 	/*
1339 	 * set cap to the new value.
1340 	 */
1341 	return (cpucaps_zone_set(zone, nv));
1342 }
1343 
1344 static rctl_ops_t zone_cpu_cap_ops = {
1345 	rcop_no_action,
1346 	zone_cpu_cap_get,
1347 	zone_cpu_cap_set,
1348 	rcop_no_test
1349 };
1350 
1351 /*ARGSUSED*/
1352 static rctl_qty_t
1353 zone_lwps_usage(rctl_t *r, proc_t *p)
1354 {
1355 	rctl_qty_t nlwps;
1356 	zone_t *zone = p->p_zone;
1357 
1358 	ASSERT(MUTEX_HELD(&p->p_lock));
1359 
1360 	mutex_enter(&zone->zone_nlwps_lock);
1361 	nlwps = zone->zone_nlwps;
1362 	mutex_exit(&zone->zone_nlwps_lock);
1363 
1364 	return (nlwps);
1365 }
1366 
1367 /*ARGSUSED*/
1368 static int
1369 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1370     rctl_qty_t incr, uint_t flags)
1371 {
1372 	rctl_qty_t nlwps;
1373 
1374 	ASSERT(MUTEX_HELD(&p->p_lock));
1375 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1376 	if (e->rcep_p.zone == NULL)
1377 		return (0);
1378 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1379 	nlwps = e->rcep_p.zone->zone_nlwps;
1380 
1381 	if (nlwps + incr > rcntl->rcv_value)
1382 		return (1);
1383 
1384 	return (0);
1385 }
1386 
1387 /*ARGSUSED*/
1388 static int
1389 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1390 {
1391 	ASSERT(MUTEX_HELD(&p->p_lock));
1392 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1393 	if (e->rcep_p.zone == NULL)
1394 		return (0);
1395 	e->rcep_p.zone->zone_nlwps_ctl = nv;
1396 	return (0);
1397 }
1398 
1399 static rctl_ops_t zone_lwps_ops = {
1400 	rcop_no_action,
1401 	zone_lwps_usage,
1402 	zone_lwps_set,
1403 	zone_lwps_test,
1404 };
1405 
1406 /*ARGSUSED*/
1407 static int
1408 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1409     rctl_qty_t incr, uint_t flags)
1410 {
1411 	rctl_qty_t v;
1412 	ASSERT(MUTEX_HELD(&p->p_lock));
1413 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1414 	v = e->rcep_p.zone->zone_shmmax + incr;
1415 	if (v > rval->rcv_value)
1416 		return (1);
1417 	return (0);
1418 }
1419 
1420 static rctl_ops_t zone_shmmax_ops = {
1421 	rcop_no_action,
1422 	rcop_no_usage,
1423 	rcop_no_set,
1424 	zone_shmmax_test
1425 };
1426 
1427 /*ARGSUSED*/
1428 static int
1429 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1430     rctl_qty_t incr, uint_t flags)
1431 {
1432 	rctl_qty_t v;
1433 	ASSERT(MUTEX_HELD(&p->p_lock));
1434 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1435 	v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr;
1436 	if (v > rval->rcv_value)
1437 		return (1);
1438 	return (0);
1439 }
1440 
1441 static rctl_ops_t zone_shmmni_ops = {
1442 	rcop_no_action,
1443 	rcop_no_usage,
1444 	rcop_no_set,
1445 	zone_shmmni_test
1446 };
1447 
1448 /*ARGSUSED*/
1449 static int
1450 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1451     rctl_qty_t incr, uint_t flags)
1452 {
1453 	rctl_qty_t v;
1454 	ASSERT(MUTEX_HELD(&p->p_lock));
1455 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1456 	v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr;
1457 	if (v > rval->rcv_value)
1458 		return (1);
1459 	return (0);
1460 }
1461 
1462 static rctl_ops_t zone_semmni_ops = {
1463 	rcop_no_action,
1464 	rcop_no_usage,
1465 	rcop_no_set,
1466 	zone_semmni_test
1467 };
1468 
1469 /*ARGSUSED*/
1470 static int
1471 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1472     rctl_qty_t incr, uint_t flags)
1473 {
1474 	rctl_qty_t v;
1475 	ASSERT(MUTEX_HELD(&p->p_lock));
1476 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1477 	v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr;
1478 	if (v > rval->rcv_value)
1479 		return (1);
1480 	return (0);
1481 }
1482 
1483 static rctl_ops_t zone_msgmni_ops = {
1484 	rcop_no_action,
1485 	rcop_no_usage,
1486 	rcop_no_set,
1487 	zone_msgmni_test
1488 };
1489 
1490 /*ARGSUSED*/
1491 static rctl_qty_t
1492 zone_locked_mem_usage(rctl_t *rctl, struct proc *p)
1493 {
1494 	rctl_qty_t q;
1495 	ASSERT(MUTEX_HELD(&p->p_lock));
1496 	mutex_enter(&p->p_zone->zone_mem_lock);
1497 	q = p->p_zone->zone_locked_mem;
1498 	mutex_exit(&p->p_zone->zone_mem_lock);
1499 	return (q);
1500 }
1501 
1502 /*ARGSUSED*/
1503 static int
1504 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1505     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1506 {
1507 	rctl_qty_t q;
1508 	zone_t *z;
1509 
1510 	z = e->rcep_p.zone;
1511 	ASSERT(MUTEX_HELD(&p->p_lock));
1512 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1513 	q = z->zone_locked_mem;
1514 	if (q + incr > rcntl->rcv_value)
1515 		return (1);
1516 	return (0);
1517 }
1518 
1519 /*ARGSUSED*/
1520 static int
1521 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1522     rctl_qty_t nv)
1523 {
1524 	ASSERT(MUTEX_HELD(&p->p_lock));
1525 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1526 	if (e->rcep_p.zone == NULL)
1527 		return (0);
1528 	e->rcep_p.zone->zone_locked_mem_ctl = nv;
1529 	return (0);
1530 }
1531 
1532 static rctl_ops_t zone_locked_mem_ops = {
1533 	rcop_no_action,
1534 	zone_locked_mem_usage,
1535 	zone_locked_mem_set,
1536 	zone_locked_mem_test
1537 };
1538 
1539 /*ARGSUSED*/
1540 static rctl_qty_t
1541 zone_max_swap_usage(rctl_t *rctl, struct proc *p)
1542 {
1543 	rctl_qty_t q;
1544 	zone_t *z = p->p_zone;
1545 
1546 	ASSERT(MUTEX_HELD(&p->p_lock));
1547 	mutex_enter(&z->zone_mem_lock);
1548 	q = z->zone_max_swap;
1549 	mutex_exit(&z->zone_mem_lock);
1550 	return (q);
1551 }
1552 
1553 /*ARGSUSED*/
1554 static int
1555 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1556     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1557 {
1558 	rctl_qty_t q;
1559 	zone_t *z;
1560 
1561 	z = e->rcep_p.zone;
1562 	ASSERT(MUTEX_HELD(&p->p_lock));
1563 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1564 	q = z->zone_max_swap;
1565 	if (q + incr > rcntl->rcv_value)
1566 		return (1);
1567 	return (0);
1568 }
1569 
1570 /*ARGSUSED*/
1571 static int
1572 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1573     rctl_qty_t nv)
1574 {
1575 	ASSERT(MUTEX_HELD(&p->p_lock));
1576 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1577 	if (e->rcep_p.zone == NULL)
1578 		return (0);
1579 	e->rcep_p.zone->zone_max_swap_ctl = nv;
1580 	return (0);
1581 }
1582 
1583 static rctl_ops_t zone_max_swap_ops = {
1584 	rcop_no_action,
1585 	zone_max_swap_usage,
1586 	zone_max_swap_set,
1587 	zone_max_swap_test
1588 };
1589 
1590 /*ARGSUSED*/
1591 static rctl_qty_t
1592 zone_max_lofi_usage(rctl_t *rctl, struct proc *p)
1593 {
1594 	rctl_qty_t q;
1595 	zone_t *z = p->p_zone;
1596 
1597 	ASSERT(MUTEX_HELD(&p->p_lock));
1598 	mutex_enter(&z->zone_rctl_lock);
1599 	q = z->zone_max_lofi;
1600 	mutex_exit(&z->zone_rctl_lock);
1601 	return (q);
1602 }
1603 
1604 /*ARGSUSED*/
1605 static int
1606 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1607     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1608 {
1609 	rctl_qty_t q;
1610 	zone_t *z;
1611 
1612 	z = e->rcep_p.zone;
1613 	ASSERT(MUTEX_HELD(&p->p_lock));
1614 	ASSERT(MUTEX_HELD(&z->zone_rctl_lock));
1615 	q = z->zone_max_lofi;
1616 	if (q + incr > rcntl->rcv_value)
1617 		return (1);
1618 	return (0);
1619 }
1620 
1621 /*ARGSUSED*/
1622 static int
1623 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1624     rctl_qty_t nv)
1625 {
1626 	ASSERT(MUTEX_HELD(&p->p_lock));
1627 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1628 	if (e->rcep_p.zone == NULL)
1629 		return (0);
1630 	e->rcep_p.zone->zone_max_lofi_ctl = nv;
1631 	return (0);
1632 }
1633 
1634 static rctl_ops_t zone_max_lofi_ops = {
1635 	rcop_no_action,
1636 	zone_max_lofi_usage,
1637 	zone_max_lofi_set,
1638 	zone_max_lofi_test
1639 };
1640 
1641 /*
1642  * Helper function to brand the zone with a unique ID.
1643  */
1644 static void
1645 zone_uniqid(zone_t *zone)
1646 {
1647 	static uint64_t uniqid = 0;
1648 
1649 	ASSERT(MUTEX_HELD(&zonehash_lock));
1650 	zone->zone_uniqid = uniqid++;
1651 }
1652 
1653 /*
1654  * Returns a held pointer to the "kcred" for the specified zone.
1655  */
1656 struct cred *
1657 zone_get_kcred(zoneid_t zoneid)
1658 {
1659 	zone_t *zone;
1660 	cred_t *cr;
1661 
1662 	if ((zone = zone_find_by_id(zoneid)) == NULL)
1663 		return (NULL);
1664 	cr = zone->zone_kcred;
1665 	crhold(cr);
1666 	zone_rele(zone);
1667 	return (cr);
1668 }
1669 
1670 static int
1671 zone_lockedmem_kstat_update(kstat_t *ksp, int rw)
1672 {
1673 	zone_t *zone = ksp->ks_private;
1674 	zone_kstat_t *zk = ksp->ks_data;
1675 
1676 	if (rw == KSTAT_WRITE)
1677 		return (EACCES);
1678 
1679 	zk->zk_usage.value.ui64 = zone->zone_locked_mem;
1680 	zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl;
1681 	return (0);
1682 }
1683 
1684 static int
1685 zone_swapresv_kstat_update(kstat_t *ksp, int rw)
1686 {
1687 	zone_t *zone = ksp->ks_private;
1688 	zone_kstat_t *zk = ksp->ks_data;
1689 
1690 	if (rw == KSTAT_WRITE)
1691 		return (EACCES);
1692 
1693 	zk->zk_usage.value.ui64 = zone->zone_max_swap;
1694 	zk->zk_value.value.ui64 = zone->zone_max_swap_ctl;
1695 	return (0);
1696 }
1697 
1698 static void
1699 zone_kstat_create(zone_t *zone)
1700 {
1701 	kstat_t *ksp;
1702 	zone_kstat_t *zk;
1703 
1704 	ksp = rctl_kstat_create_zone(zone, "lockedmem", KSTAT_TYPE_NAMED,
1705 	    sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1706 	    KSTAT_FLAG_VIRTUAL);
1707 
1708 	if (ksp == NULL)
1709 		return;
1710 
1711 	zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1712 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1713 	kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1714 	kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1715 	kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1716 	kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1717 	ksp->ks_update = zone_lockedmem_kstat_update;
1718 	ksp->ks_private = zone;
1719 	kstat_install(ksp);
1720 
1721 	zone->zone_lockedmem_kstat = ksp;
1722 
1723 	ksp = rctl_kstat_create_zone(zone, "swapresv", KSTAT_TYPE_NAMED,
1724 	    sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1725 	    KSTAT_FLAG_VIRTUAL);
1726 
1727 	if (ksp == NULL)
1728 		return;
1729 
1730 	zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1731 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1732 	kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1733 	kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1734 	kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1735 	kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1736 	ksp->ks_update = zone_swapresv_kstat_update;
1737 	ksp->ks_private = zone;
1738 	kstat_install(ksp);
1739 
1740 	zone->zone_swapresv_kstat = ksp;
1741 }
1742 
1743 static void
1744 zone_kstat_delete(zone_t *zone)
1745 {
1746 	void *data;
1747 
1748 	if (zone->zone_lockedmem_kstat != NULL) {
1749 		data = zone->zone_lockedmem_kstat->ks_data;
1750 		kstat_delete(zone->zone_lockedmem_kstat);
1751 		kmem_free(data, sizeof (zone_kstat_t));
1752 	}
1753 	if (zone->zone_swapresv_kstat != NULL) {
1754 		data = zone->zone_swapresv_kstat->ks_data;
1755 		kstat_delete(zone->zone_swapresv_kstat);
1756 		kmem_free(data, sizeof (zone_kstat_t));
1757 	}
1758 }
1759 
1760 /*
1761  * Called very early on in boot to initialize the ZSD list so that
1762  * zone_key_create() can be called before zone_init().  It also initializes
1763  * portions of zone0 which may be used before zone_init() is called.  The
1764  * variable "global_zone" will be set when zone0 is fully initialized by
1765  * zone_init().
1766  */
1767 void
1768 zone_zsd_init(void)
1769 {
1770 	mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL);
1771 	mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL);
1772 	list_create(&zsd_registered_keys, sizeof (struct zsd_entry),
1773 	    offsetof(struct zsd_entry, zsd_linkage));
1774 	list_create(&zone_active, sizeof (zone_t),
1775 	    offsetof(zone_t, zone_linkage));
1776 	list_create(&zone_deathrow, sizeof (zone_t),
1777 	    offsetof(zone_t, zone_linkage));
1778 
1779 	mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL);
1780 	mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
1781 	mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
1782 	zone0.zone_shares = 1;
1783 	zone0.zone_nlwps = 0;
1784 	zone0.zone_nlwps_ctl = INT_MAX;
1785 	zone0.zone_locked_mem = 0;
1786 	zone0.zone_locked_mem_ctl = UINT64_MAX;
1787 	ASSERT(zone0.zone_max_swap == 0);
1788 	zone0.zone_max_swap_ctl = UINT64_MAX;
1789 	zone0.zone_max_lofi = 0;
1790 	zone0.zone_max_lofi_ctl = UINT64_MAX;
1791 	zone0.zone_shmmax = 0;
1792 	zone0.zone_ipc.ipcq_shmmni = 0;
1793 	zone0.zone_ipc.ipcq_semmni = 0;
1794 	zone0.zone_ipc.ipcq_msgmni = 0;
1795 	zone0.zone_name = GLOBAL_ZONENAME;
1796 	zone0.zone_nodename = utsname.nodename;
1797 	zone0.zone_domain = srpc_domain;
1798 	zone0.zone_hostid = HW_INVALID_HOSTID;
1799 	zone0.zone_fs_allowed = NULL;
1800 	zone0.zone_ref = 1;
1801 	zone0.zone_id = GLOBAL_ZONEID;
1802 	zone0.zone_status = ZONE_IS_RUNNING;
1803 	zone0.zone_rootpath = "/";
1804 	zone0.zone_rootpathlen = 2;
1805 	zone0.zone_psetid = ZONE_PS_INVAL;
1806 	zone0.zone_ncpus = 0;
1807 	zone0.zone_ncpus_online = 0;
1808 	zone0.zone_proc_initpid = 1;
1809 	zone0.zone_initname = initname;
1810 	zone0.zone_lockedmem_kstat = NULL;
1811 	zone0.zone_swapresv_kstat = NULL;
1812 	list_create(&zone0.zone_zsd, sizeof (struct zsd_entry),
1813 	    offsetof(struct zsd_entry, zsd_linkage));
1814 	list_insert_head(&zone_active, &zone0);
1815 
1816 	/*
1817 	 * The root filesystem is not mounted yet, so zone_rootvp cannot be set
1818 	 * to anything meaningful.  It is assigned to be 'rootdir' in
1819 	 * vfs_mountroot().
1820 	 */
1821 	zone0.zone_rootvp = NULL;
1822 	zone0.zone_vfslist = NULL;
1823 	zone0.zone_bootargs = initargs;
1824 	zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
1825 	/*
1826 	 * The global zone has all privileges
1827 	 */
1828 	priv_fillset(zone0.zone_privset);
1829 	/*
1830 	 * Add p0 to the global zone
1831 	 */
1832 	zone0.zone_zsched = &p0;
1833 	p0.p_zone = &zone0;
1834 }
1835 
1836 /*
1837  * Compute a hash value based on the contents of the label and the DOI.  The
1838  * hash algorithm is somewhat arbitrary, but is based on the observation that
1839  * humans will likely pick labels that differ by amounts that work out to be
1840  * multiples of the number of hash chains, and thus stirring in some primes
1841  * should help.
1842  */
1843 static uint_t
1844 hash_bylabel(void *hdata, mod_hash_key_t key)
1845 {
1846 	const ts_label_t *lab = (ts_label_t *)key;
1847 	const uint32_t *up, *ue;
1848 	uint_t hash;
1849 	int i;
1850 
1851 	_NOTE(ARGUNUSED(hdata));
1852 
1853 	hash = lab->tsl_doi + (lab->tsl_doi << 1);
1854 	/* we depend on alignment of label, but not representation */
1855 	up = (const uint32_t *)&lab->tsl_label;
1856 	ue = up + sizeof (lab->tsl_label) / sizeof (*up);
1857 	i = 1;
1858 	while (up < ue) {
1859 		/* using 2^n + 1, 1 <= n <= 16 as source of many primes */
1860 		hash += *up + (*up << ((i % 16) + 1));
1861 		up++;
1862 		i++;
1863 	}
1864 	return (hash);
1865 }
1866 
1867 /*
1868  * All that mod_hash cares about here is zero (equal) versus non-zero (not
1869  * equal).  This may need to be changed if less than / greater than is ever
1870  * needed.
1871  */
1872 static int
1873 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
1874 {
1875 	ts_label_t *lab1 = (ts_label_t *)key1;
1876 	ts_label_t *lab2 = (ts_label_t *)key2;
1877 
1878 	return (label_equal(lab1, lab2) ? 0 : 1);
1879 }
1880 
1881 /*
1882  * Called by main() to initialize the zones framework.
1883  */
1884 void
1885 zone_init(void)
1886 {
1887 	rctl_dict_entry_t *rde;
1888 	rctl_val_t *dval;
1889 	rctl_set_t *set;
1890 	rctl_alloc_gp_t *gp;
1891 	rctl_entity_p_t e;
1892 	int res;
1893 
1894 	ASSERT(curproc == &p0);
1895 
1896 	/*
1897 	 * Create ID space for zone IDs.  ID 0 is reserved for the
1898 	 * global zone.
1899 	 */
1900 	zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID);
1901 
1902 	/*
1903 	 * Initialize generic zone resource controls, if any.
1904 	 */
1905 	rc_zone_cpu_shares = rctl_register("zone.cpu-shares",
1906 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
1907 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
1908 	    FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops);
1909 
1910 	rc_zone_cpu_cap = rctl_register("zone.cpu-cap",
1911 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS |
1912 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER |
1913 	    RCTL_GLOBAL_INFINITE,
1914 	    MAXCAP, MAXCAP, &zone_cpu_cap_ops);
1915 
1916 	rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE,
1917 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
1918 	    INT_MAX, INT_MAX, &zone_lwps_ops);
1919 	/*
1920 	 * System V IPC resource controls
1921 	 */
1922 	rc_zone_msgmni = rctl_register("zone.max-msg-ids",
1923 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
1924 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops);
1925 
1926 	rc_zone_semmni = rctl_register("zone.max-sem-ids",
1927 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
1928 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops);
1929 
1930 	rc_zone_shmmni = rctl_register("zone.max-shm-ids",
1931 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
1932 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops);
1933 
1934 	rc_zone_shmmax = rctl_register("zone.max-shm-memory",
1935 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
1936 	    RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops);
1937 
1938 	/*
1939 	 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1.  Then attach
1940 	 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''.
1941 	 */
1942 	dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
1943 	bzero(dval, sizeof (rctl_val_t));
1944 	dval->rcv_value = 1;
1945 	dval->rcv_privilege = RCPRIV_PRIVILEGED;
1946 	dval->rcv_flagaction = RCTL_LOCAL_NOACTION;
1947 	dval->rcv_action_recip_pid = -1;
1948 
1949 	rde = rctl_dict_lookup("zone.cpu-shares");
1950 	(void) rctl_val_list_insert(&rde->rcd_default_value, dval);
1951 
1952 	rc_zone_locked_mem = rctl_register("zone.max-locked-memory",
1953 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
1954 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
1955 	    &zone_locked_mem_ops);
1956 
1957 	rc_zone_max_swap = rctl_register("zone.max-swap",
1958 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
1959 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
1960 	    &zone_max_swap_ops);
1961 
1962 	rc_zone_max_lofi = rctl_register("zone.max-lofi",
1963 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |
1964 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
1965 	    &zone_max_lofi_ops);
1966 
1967 	/*
1968 	 * Initialize the ``global zone''.
1969 	 */
1970 	set = rctl_set_create();
1971 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
1972 	mutex_enter(&p0.p_lock);
1973 	e.rcep_p.zone = &zone0;
1974 	e.rcep_t = RCENTITY_ZONE;
1975 	zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set,
1976 	    gp);
1977 
1978 	zone0.zone_nlwps = p0.p_lwpcnt;
1979 	zone0.zone_ntasks = 1;
1980 	mutex_exit(&p0.p_lock);
1981 	zone0.zone_restart_init = B_TRUE;
1982 	zone0.zone_brand = &native_brand;
1983 	rctl_prealloc_destroy(gp);
1984 	/*
1985 	 * pool_default hasn't been initialized yet, so we let pool_init()
1986 	 * take care of making sure the global zone is in the default pool.
1987 	 */
1988 
1989 	/*
1990 	 * Initialize global zone kstats
1991 	 */
1992 	zone_kstat_create(&zone0);
1993 
1994 	/*
1995 	 * Initialize zone label.
1996 	 * mlp are initialized when tnzonecfg is loaded.
1997 	 */
1998 	zone0.zone_slabel = l_admin_low;
1999 	rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
2000 	label_hold(l_admin_low);
2001 
2002 	/*
2003 	 * Initialise the lock for the database structure used by mntfs.
2004 	 */
2005 	rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
2006 
2007 	mutex_enter(&zonehash_lock);
2008 	zone_uniqid(&zone0);
2009 	ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID);
2010 
2011 	zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size,
2012 	    mod_hash_null_valdtor);
2013 	zonehashbyname = mod_hash_create_strhash("zone_by_name",
2014 	    zone_hash_size, mod_hash_null_valdtor);
2015 	/*
2016 	 * maintain zonehashbylabel only for labeled systems
2017 	 */
2018 	if (is_system_labeled())
2019 		zonehashbylabel = mod_hash_create_extended("zone_by_label",
2020 		    zone_hash_size, mod_hash_null_keydtor,
2021 		    mod_hash_null_valdtor, hash_bylabel, NULL,
2022 		    hash_labelkey_cmp, KM_SLEEP);
2023 	zonecount = 1;
2024 
2025 	(void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID,
2026 	    (mod_hash_val_t)&zone0);
2027 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name,
2028 	    (mod_hash_val_t)&zone0);
2029 	if (is_system_labeled()) {
2030 		zone0.zone_flags |= ZF_HASHED_LABEL;
2031 		(void) mod_hash_insert(zonehashbylabel,
2032 		    (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0);
2033 	}
2034 	mutex_exit(&zonehash_lock);
2035 
2036 	/*
2037 	 * We avoid setting zone_kcred until now, since kcred is initialized
2038 	 * sometime after zone_zsd_init() and before zone_init().
2039 	 */
2040 	zone0.zone_kcred = kcred;
2041 	/*
2042 	 * The global zone is fully initialized (except for zone_rootvp which
2043 	 * will be set when the root filesystem is mounted).
2044 	 */
2045 	global_zone = &zone0;
2046 
2047 	/*
2048 	 * Setup an event channel to send zone status change notifications on
2049 	 */
2050 	res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan,
2051 	    EVCH_CREAT);
2052 
2053 	if (res)
2054 		panic("Sysevent_evc_bind failed during zone setup.\n");
2055 
2056 }
2057 
2058 static void
2059 zone_free(zone_t *zone)
2060 {
2061 	ASSERT(zone != global_zone);
2062 	ASSERT(zone->zone_ntasks == 0);
2063 	ASSERT(zone->zone_nlwps == 0);
2064 	ASSERT(zone->zone_cred_ref == 0);
2065 	ASSERT(zone->zone_kcred == NULL);
2066 	ASSERT(zone_status_get(zone) == ZONE_IS_DEAD ||
2067 	    zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
2068 
2069 	/*
2070 	 * Remove any zone caps.
2071 	 */
2072 	cpucaps_zone_remove(zone);
2073 
2074 	ASSERT(zone->zone_cpucap == NULL);
2075 
2076 	/* remove from deathrow list */
2077 	if (zone_status_get(zone) == ZONE_IS_DEAD) {
2078 		ASSERT(zone->zone_ref == 0);
2079 		mutex_enter(&zone_deathrow_lock);
2080 		list_remove(&zone_deathrow, zone);
2081 		mutex_exit(&zone_deathrow_lock);
2082 	}
2083 
2084 	zone_free_zsd(zone);
2085 	zone_free_datasets(zone);
2086 	list_destroy(&zone->zone_dl_list);
2087 
2088 	if (zone->zone_rootvp != NULL)
2089 		VN_RELE(zone->zone_rootvp);
2090 	if (zone->zone_rootpath)
2091 		kmem_free(zone->zone_rootpath, zone->zone_rootpathlen);
2092 	if (zone->zone_name != NULL)
2093 		kmem_free(zone->zone_name, ZONENAME_MAX);
2094 	if (zone->zone_slabel != NULL)
2095 		label_rele(zone->zone_slabel);
2096 	if (zone->zone_nodename != NULL)
2097 		kmem_free(zone->zone_nodename, _SYS_NMLN);
2098 	if (zone->zone_domain != NULL)
2099 		kmem_free(zone->zone_domain, _SYS_NMLN);
2100 	if (zone->zone_privset != NULL)
2101 		kmem_free(zone->zone_privset, sizeof (priv_set_t));
2102 	if (zone->zone_rctls != NULL)
2103 		rctl_set_free(zone->zone_rctls);
2104 	if (zone->zone_bootargs != NULL)
2105 		strfree(zone->zone_bootargs);
2106 	if (zone->zone_initname != NULL)
2107 		strfree(zone->zone_initname);
2108 	if (zone->zone_fs_allowed != NULL)
2109 		strfree(zone->zone_fs_allowed);
2110 	if (zone->zone_pfexecd != NULL)
2111 		klpd_freelist(&zone->zone_pfexecd);
2112 	id_free(zoneid_space, zone->zone_id);
2113 	mutex_destroy(&zone->zone_lock);
2114 	cv_destroy(&zone->zone_cv);
2115 	rw_destroy(&zone->zone_mlps.mlpl_rwlock);
2116 	rw_destroy(&zone->zone_mntfs_db_lock);
2117 	kmem_free(zone, sizeof (zone_t));
2118 }
2119 
2120 /*
2121  * See block comment at the top of this file for information about zone
2122  * status values.
2123  */
2124 /*
2125  * Convenience function for setting zone status.
2126  */
2127 static void
2128 zone_status_set(zone_t *zone, zone_status_t status)
2129 {
2130 
2131 	nvlist_t *nvl = NULL;
2132 	ASSERT(MUTEX_HELD(&zone_status_lock));
2133 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE &&
2134 	    status >= zone_status_get(zone));
2135 
2136 	if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) ||
2137 	    nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) ||
2138 	    nvlist_add_string(nvl, ZONE_CB_NEWSTATE,
2139 	    zone_status_table[status]) ||
2140 	    nvlist_add_string(nvl, ZONE_CB_OLDSTATE,
2141 	    zone_status_table[zone->zone_status]) ||
2142 	    nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) ||
2143 	    nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) ||
2144 	    sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS,
2145 	    ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) {
2146 #ifdef DEBUG
2147 		(void) printf(
2148 		    "Failed to allocate and send zone state change event.\n");
2149 #endif
2150 	}
2151 	nvlist_free(nvl);
2152 
2153 	zone->zone_status = status;
2154 
2155 	cv_broadcast(&zone->zone_cv);
2156 }
2157 
2158 /*
2159  * Public function to retrieve the zone status.  The zone status may
2160  * change after it is retrieved.
2161  */
2162 zone_status_t
2163 zone_status_get(zone_t *zone)
2164 {
2165 	return (zone->zone_status);
2166 }
2167 
2168 static int
2169 zone_set_bootargs(zone_t *zone, const char *zone_bootargs)
2170 {
2171 	char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP);
2172 	int err = 0;
2173 
2174 	ASSERT(zone != global_zone);
2175 	if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0)
2176 		goto done;	/* EFAULT or ENAMETOOLONG */
2177 
2178 	if (zone->zone_bootargs != NULL)
2179 		strfree(zone->zone_bootargs);
2180 
2181 	zone->zone_bootargs = strdup(buf);
2182 
2183 done:
2184 	kmem_free(buf, BOOTARGS_MAX);
2185 	return (err);
2186 }
2187 
2188 static int
2189 zone_set_brand(zone_t *zone, const char *brand)
2190 {
2191 	struct brand_attr *attrp;
2192 	brand_t *bp;
2193 
2194 	attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP);
2195 	if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) {
2196 		kmem_free(attrp, sizeof (struct brand_attr));
2197 		return (EFAULT);
2198 	}
2199 
2200 	bp = brand_register_zone(attrp);
2201 	kmem_free(attrp, sizeof (struct brand_attr));
2202 	if (bp == NULL)
2203 		return (EINVAL);
2204 
2205 	/*
2206 	 * This is the only place where a zone can change it's brand.
2207 	 * We already need to hold zone_status_lock to check the zone
2208 	 * status, so we'll just use that lock to serialize zone
2209 	 * branding requests as well.
2210 	 */
2211 	mutex_enter(&zone_status_lock);
2212 
2213 	/* Re-Branding is not allowed and the zone can't be booted yet */
2214 	if ((ZONE_IS_BRANDED(zone)) ||
2215 	    (zone_status_get(zone) >= ZONE_IS_BOOTING)) {
2216 		mutex_exit(&zone_status_lock);
2217 		brand_unregister_zone(bp);
2218 		return (EINVAL);
2219 	}
2220 
2221 	/* set up the brand specific data */
2222 	zone->zone_brand = bp;
2223 	ZBROP(zone)->b_init_brand_data(zone);
2224 
2225 	mutex_exit(&zone_status_lock);
2226 	return (0);
2227 }
2228 
2229 static int
2230 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed)
2231 {
2232 	char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP);
2233 	int err = 0;
2234 
2235 	ASSERT(zone != global_zone);
2236 	if ((err = copyinstr(zone_fs_allowed, buf,
2237 	    ZONE_FS_ALLOWED_MAX, NULL)) != 0)
2238 		goto done;
2239 
2240 	if (zone->zone_fs_allowed != NULL)
2241 		strfree(zone->zone_fs_allowed);
2242 
2243 	zone->zone_fs_allowed = strdup(buf);
2244 
2245 done:
2246 	kmem_free(buf, ZONE_FS_ALLOWED_MAX);
2247 	return (err);
2248 }
2249 
2250 static int
2251 zone_set_initname(zone_t *zone, const char *zone_initname)
2252 {
2253 	char initname[INITNAME_SZ];
2254 	size_t len;
2255 	int err = 0;
2256 
2257 	ASSERT(zone != global_zone);
2258 	if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0)
2259 		return (err);	/* EFAULT or ENAMETOOLONG */
2260 
2261 	if (zone->zone_initname != NULL)
2262 		strfree(zone->zone_initname);
2263 
2264 	zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP);
2265 	(void) strcpy(zone->zone_initname, initname);
2266 	return (0);
2267 }
2268 
2269 static int
2270 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap)
2271 {
2272 	uint64_t mcap;
2273 	int err = 0;
2274 
2275 	if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0)
2276 		zone->zone_phys_mcap = mcap;
2277 
2278 	return (err);
2279 }
2280 
2281 static int
2282 zone_set_sched_class(zone_t *zone, const char *new_class)
2283 {
2284 	char sched_class[PC_CLNMSZ];
2285 	id_t classid;
2286 	int err;
2287 
2288 	ASSERT(zone != global_zone);
2289 	if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0)
2290 		return (err);	/* EFAULT or ENAMETOOLONG */
2291 
2292 	if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid))
2293 		return (set_errno(EINVAL));
2294 	zone->zone_defaultcid = classid;
2295 	ASSERT(zone->zone_defaultcid > 0 &&
2296 	    zone->zone_defaultcid < loaded_classes);
2297 
2298 	return (0);
2299 }
2300 
2301 /*
2302  * Block indefinitely waiting for (zone_status >= status)
2303  */
2304 void
2305 zone_status_wait(zone_t *zone, zone_status_t status)
2306 {
2307 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2308 
2309 	mutex_enter(&zone_status_lock);
2310 	while (zone->zone_status < status) {
2311 		cv_wait(&zone->zone_cv, &zone_status_lock);
2312 	}
2313 	mutex_exit(&zone_status_lock);
2314 }
2315 
2316 /*
2317  * Private CPR-safe version of zone_status_wait().
2318  */
2319 static void
2320 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str)
2321 {
2322 	callb_cpr_t cprinfo;
2323 
2324 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2325 
2326 	CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr,
2327 	    str);
2328 	mutex_enter(&zone_status_lock);
2329 	while (zone->zone_status < status) {
2330 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2331 		cv_wait(&zone->zone_cv, &zone_status_lock);
2332 		CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock);
2333 	}
2334 	/*
2335 	 * zone_status_lock is implicitly released by the following.
2336 	 */
2337 	CALLB_CPR_EXIT(&cprinfo);
2338 }
2339 
2340 /*
2341  * Block until zone enters requested state or signal is received.  Return (0)
2342  * if signaled, non-zero otherwise.
2343  */
2344 int
2345 zone_status_wait_sig(zone_t *zone, zone_status_t status)
2346 {
2347 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2348 
2349 	mutex_enter(&zone_status_lock);
2350 	while (zone->zone_status < status) {
2351 		if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) {
2352 			mutex_exit(&zone_status_lock);
2353 			return (0);
2354 		}
2355 	}
2356 	mutex_exit(&zone_status_lock);
2357 	return (1);
2358 }
2359 
2360 /*
2361  * Block until the zone enters the requested state or the timeout expires,
2362  * whichever happens first.  Return (-1) if operation timed out, time remaining
2363  * otherwise.
2364  */
2365 clock_t
2366 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status)
2367 {
2368 	clock_t timeleft = 0;
2369 
2370 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2371 
2372 	mutex_enter(&zone_status_lock);
2373 	while (zone->zone_status < status && timeleft != -1) {
2374 		timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim);
2375 	}
2376 	mutex_exit(&zone_status_lock);
2377 	return (timeleft);
2378 }
2379 
2380 /*
2381  * Block until the zone enters the requested state, the current process is
2382  * signaled,  or the timeout expires, whichever happens first.  Return (-1) if
2383  * operation timed out, 0 if signaled, time remaining otherwise.
2384  */
2385 clock_t
2386 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status)
2387 {
2388 	clock_t timeleft = tim - ddi_get_lbolt();
2389 
2390 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2391 
2392 	mutex_enter(&zone_status_lock);
2393 	while (zone->zone_status < status) {
2394 		timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock,
2395 		    tim);
2396 		if (timeleft <= 0)
2397 			break;
2398 	}
2399 	mutex_exit(&zone_status_lock);
2400 	return (timeleft);
2401 }
2402 
2403 /*
2404  * Zones have two reference counts: one for references from credential
2405  * structures (zone_cred_ref), and one (zone_ref) for everything else.
2406  * This is so we can allow a zone to be rebooted while there are still
2407  * outstanding cred references, since certain drivers cache dblks (which
2408  * implicitly results in cached creds).  We wait for zone_ref to drop to
2409  * 0 (actually 1), but not zone_cred_ref.  The zone structure itself is
2410  * later freed when the zone_cred_ref drops to 0, though nothing other
2411  * than the zone id and privilege set should be accessed once the zone
2412  * is "dead".
2413  *
2414  * A debugging flag, zone_wait_for_cred, can be set to a non-zero value
2415  * to force halt/reboot to block waiting for the zone_cred_ref to drop
2416  * to 0.  This can be useful to flush out other sources of cached creds
2417  * that may be less innocuous than the driver case.
2418  */
2419 
2420 int zone_wait_for_cred = 0;
2421 
2422 static void
2423 zone_hold_locked(zone_t *z)
2424 {
2425 	ASSERT(MUTEX_HELD(&z->zone_lock));
2426 	z->zone_ref++;
2427 	ASSERT(z->zone_ref != 0);
2428 }
2429 
2430 void
2431 zone_hold(zone_t *z)
2432 {
2433 	mutex_enter(&z->zone_lock);
2434 	zone_hold_locked(z);
2435 	mutex_exit(&z->zone_lock);
2436 }
2437 
2438 /*
2439  * If the non-cred ref count drops to 1 and either the cred ref count
2440  * is 0 or we aren't waiting for cred references, the zone is ready to
2441  * be destroyed.
2442  */
2443 #define	ZONE_IS_UNREF(zone)	((zone)->zone_ref == 1 && \
2444 	    (!zone_wait_for_cred || (zone)->zone_cred_ref == 0))
2445 
2446 void
2447 zone_rele(zone_t *z)
2448 {
2449 	boolean_t wakeup;
2450 
2451 	mutex_enter(&z->zone_lock);
2452 	ASSERT(z->zone_ref != 0);
2453 	z->zone_ref--;
2454 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2455 		/* no more refs, free the structure */
2456 		mutex_exit(&z->zone_lock);
2457 		zone_free(z);
2458 		return;
2459 	}
2460 	/* signal zone_destroy so the zone can finish halting */
2461 	wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD);
2462 	mutex_exit(&z->zone_lock);
2463 
2464 	if (wakeup) {
2465 		/*
2466 		 * Grabbing zonehash_lock here effectively synchronizes with
2467 		 * zone_destroy() to avoid missed signals.
2468 		 */
2469 		mutex_enter(&zonehash_lock);
2470 		cv_broadcast(&zone_destroy_cv);
2471 		mutex_exit(&zonehash_lock);
2472 	}
2473 }
2474 
2475 void
2476 zone_cred_hold(zone_t *z)
2477 {
2478 	mutex_enter(&z->zone_lock);
2479 	z->zone_cred_ref++;
2480 	ASSERT(z->zone_cred_ref != 0);
2481 	mutex_exit(&z->zone_lock);
2482 }
2483 
2484 void
2485 zone_cred_rele(zone_t *z)
2486 {
2487 	boolean_t wakeup;
2488 
2489 	mutex_enter(&z->zone_lock);
2490 	ASSERT(z->zone_cred_ref != 0);
2491 	z->zone_cred_ref--;
2492 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2493 		/* no more refs, free the structure */
2494 		mutex_exit(&z->zone_lock);
2495 		zone_free(z);
2496 		return;
2497 	}
2498 	/*
2499 	 * If zone_destroy is waiting for the cred references to drain
2500 	 * out, and they have, signal it.
2501 	 */
2502 	wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) &&
2503 	    zone_status_get(z) >= ZONE_IS_DEAD);
2504 	mutex_exit(&z->zone_lock);
2505 
2506 	if (wakeup) {
2507 		/*
2508 		 * Grabbing zonehash_lock here effectively synchronizes with
2509 		 * zone_destroy() to avoid missed signals.
2510 		 */
2511 		mutex_enter(&zonehash_lock);
2512 		cv_broadcast(&zone_destroy_cv);
2513 		mutex_exit(&zonehash_lock);
2514 	}
2515 }
2516 
2517 void
2518 zone_task_hold(zone_t *z)
2519 {
2520 	mutex_enter(&z->zone_lock);
2521 	z->zone_ntasks++;
2522 	ASSERT(z->zone_ntasks != 0);
2523 	mutex_exit(&z->zone_lock);
2524 }
2525 
2526 void
2527 zone_task_rele(zone_t *zone)
2528 {
2529 	uint_t refcnt;
2530 
2531 	mutex_enter(&zone->zone_lock);
2532 	ASSERT(zone->zone_ntasks != 0);
2533 	refcnt = --zone->zone_ntasks;
2534 	if (refcnt > 1)	{	/* Common case */
2535 		mutex_exit(&zone->zone_lock);
2536 		return;
2537 	}
2538 	zone_hold_locked(zone);	/* so we can use the zone_t later */
2539 	mutex_exit(&zone->zone_lock);
2540 	if (refcnt == 1) {
2541 		/*
2542 		 * See if the zone is shutting down.
2543 		 */
2544 		mutex_enter(&zone_status_lock);
2545 		if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) {
2546 			goto out;
2547 		}
2548 
2549 		/*
2550 		 * Make sure the ntasks didn't change since we
2551 		 * dropped zone_lock.
2552 		 */
2553 		mutex_enter(&zone->zone_lock);
2554 		if (refcnt != zone->zone_ntasks) {
2555 			mutex_exit(&zone->zone_lock);
2556 			goto out;
2557 		}
2558 		mutex_exit(&zone->zone_lock);
2559 
2560 		/*
2561 		 * No more user processes in the zone.  The zone is empty.
2562 		 */
2563 		zone_status_set(zone, ZONE_IS_EMPTY);
2564 		goto out;
2565 	}
2566 
2567 	ASSERT(refcnt == 0);
2568 	/*
2569 	 * zsched has exited; the zone is dead.
2570 	 */
2571 	zone->zone_zsched = NULL;		/* paranoia */
2572 	mutex_enter(&zone_status_lock);
2573 	zone_status_set(zone, ZONE_IS_DEAD);
2574 out:
2575 	mutex_exit(&zone_status_lock);
2576 	zone_rele(zone);
2577 }
2578 
2579 zoneid_t
2580 getzoneid(void)
2581 {
2582 	return (curproc->p_zone->zone_id);
2583 }
2584 
2585 /*
2586  * Internal versions of zone_find_by_*().  These don't zone_hold() or
2587  * check the validity of a zone's state.
2588  */
2589 static zone_t *
2590 zone_find_all_by_id(zoneid_t zoneid)
2591 {
2592 	mod_hash_val_t hv;
2593 	zone_t *zone = NULL;
2594 
2595 	ASSERT(MUTEX_HELD(&zonehash_lock));
2596 
2597 	if (mod_hash_find(zonehashbyid,
2598 	    (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0)
2599 		zone = (zone_t *)hv;
2600 	return (zone);
2601 }
2602 
2603 static zone_t *
2604 zone_find_all_by_label(const ts_label_t *label)
2605 {
2606 	mod_hash_val_t hv;
2607 	zone_t *zone = NULL;
2608 
2609 	ASSERT(MUTEX_HELD(&zonehash_lock));
2610 
2611 	/*
2612 	 * zonehashbylabel is not maintained for unlabeled systems
2613 	 */
2614 	if (!is_system_labeled())
2615 		return (NULL);
2616 	if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0)
2617 		zone = (zone_t *)hv;
2618 	return (zone);
2619 }
2620 
2621 static zone_t *
2622 zone_find_all_by_name(char *name)
2623 {
2624 	mod_hash_val_t hv;
2625 	zone_t *zone = NULL;
2626 
2627 	ASSERT(MUTEX_HELD(&zonehash_lock));
2628 
2629 	if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0)
2630 		zone = (zone_t *)hv;
2631 	return (zone);
2632 }
2633 
2634 /*
2635  * Public interface for looking up a zone by zoneid.  Only returns the zone if
2636  * it is fully initialized, and has not yet begun the zone_destroy() sequence.
2637  * Caller must call zone_rele() once it is done with the zone.
2638  *
2639  * The zone may begin the zone_destroy() sequence immediately after this
2640  * function returns, but may be safely used until zone_rele() is called.
2641  */
2642 zone_t *
2643 zone_find_by_id(zoneid_t zoneid)
2644 {
2645 	zone_t *zone;
2646 	zone_status_t status;
2647 
2648 	mutex_enter(&zonehash_lock);
2649 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
2650 		mutex_exit(&zonehash_lock);
2651 		return (NULL);
2652 	}
2653 	status = zone_status_get(zone);
2654 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
2655 		/*
2656 		 * For all practical purposes the zone doesn't exist.
2657 		 */
2658 		mutex_exit(&zonehash_lock);
2659 		return (NULL);
2660 	}
2661 	zone_hold(zone);
2662 	mutex_exit(&zonehash_lock);
2663 	return (zone);
2664 }
2665 
2666 /*
2667  * Similar to zone_find_by_id, but using zone label as the key.
2668  */
2669 zone_t *
2670 zone_find_by_label(const ts_label_t *label)
2671 {
2672 	zone_t *zone;
2673 	zone_status_t status;
2674 
2675 	mutex_enter(&zonehash_lock);
2676 	if ((zone = zone_find_all_by_label(label)) == NULL) {
2677 		mutex_exit(&zonehash_lock);
2678 		return (NULL);
2679 	}
2680 
2681 	status = zone_status_get(zone);
2682 	if (status > ZONE_IS_DOWN) {
2683 		/*
2684 		 * For all practical purposes the zone doesn't exist.
2685 		 */
2686 		mutex_exit(&zonehash_lock);
2687 		return (NULL);
2688 	}
2689 	zone_hold(zone);
2690 	mutex_exit(&zonehash_lock);
2691 	return (zone);
2692 }
2693 
2694 /*
2695  * Similar to zone_find_by_id, but using zone name as the key.
2696  */
2697 zone_t *
2698 zone_find_by_name(char *name)
2699 {
2700 	zone_t *zone;
2701 	zone_status_t status;
2702 
2703 	mutex_enter(&zonehash_lock);
2704 	if ((zone = zone_find_all_by_name(name)) == NULL) {
2705 		mutex_exit(&zonehash_lock);
2706 		return (NULL);
2707 	}
2708 	status = zone_status_get(zone);
2709 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
2710 		/*
2711 		 * For all practical purposes the zone doesn't exist.
2712 		 */
2713 		mutex_exit(&zonehash_lock);
2714 		return (NULL);
2715 	}
2716 	zone_hold(zone);
2717 	mutex_exit(&zonehash_lock);
2718 	return (zone);
2719 }
2720 
2721 /*
2722  * Similar to zone_find_by_id(), using the path as a key.  For instance,
2723  * if there is a zone "foo" rooted at /foo/root, and the path argument
2724  * is "/foo/root/proc", it will return the held zone_t corresponding to
2725  * zone "foo".
2726  *
2727  * zone_find_by_path() always returns a non-NULL value, since at the
2728  * very least every path will be contained in the global zone.
2729  *
2730  * As with the other zone_find_by_*() functions, the caller is
2731  * responsible for zone_rele()ing the return value of this function.
2732  */
2733 zone_t *
2734 zone_find_by_path(const char *path)
2735 {
2736 	zone_t *zone;
2737 	zone_t *zret = NULL;
2738 	zone_status_t status;
2739 
2740 	if (path == NULL) {
2741 		/*
2742 		 * Call from rootconf().
2743 		 */
2744 		zone_hold(global_zone);
2745 		return (global_zone);
2746 	}
2747 	ASSERT(*path == '/');
2748 	mutex_enter(&zonehash_lock);
2749 	for (zone = list_head(&zone_active); zone != NULL;
2750 	    zone = list_next(&zone_active, zone)) {
2751 		if (ZONE_PATH_VISIBLE(path, zone))
2752 			zret = zone;
2753 	}
2754 	ASSERT(zret != NULL);
2755 	status = zone_status_get(zret);
2756 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
2757 		/*
2758 		 * Zone practically doesn't exist.
2759 		 */
2760 		zret = global_zone;
2761 	}
2762 	zone_hold(zret);
2763 	mutex_exit(&zonehash_lock);
2764 	return (zret);
2765 }
2766 
2767 /*
2768  * Get the number of cpus visible to this zone.  The system-wide global
2769  * 'ncpus' is returned if pools are disabled, the caller is in the
2770  * global zone, or a NULL zone argument is passed in.
2771  */
2772 int
2773 zone_ncpus_get(zone_t *zone)
2774 {
2775 	int myncpus = zone == NULL ? 0 : zone->zone_ncpus;
2776 
2777 	return (myncpus != 0 ? myncpus : ncpus);
2778 }
2779 
2780 /*
2781  * Get the number of online cpus visible to this zone.  The system-wide
2782  * global 'ncpus_online' is returned if pools are disabled, the caller
2783  * is in the global zone, or a NULL zone argument is passed in.
2784  */
2785 int
2786 zone_ncpus_online_get(zone_t *zone)
2787 {
2788 	int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online;
2789 
2790 	return (myncpus_online != 0 ? myncpus_online : ncpus_online);
2791 }
2792 
2793 /*
2794  * Return the pool to which the zone is currently bound.
2795  */
2796 pool_t *
2797 zone_pool_get(zone_t *zone)
2798 {
2799 	ASSERT(pool_lock_held());
2800 
2801 	return (zone->zone_pool);
2802 }
2803 
2804 /*
2805  * Set the zone's pool pointer and update the zone's visibility to match
2806  * the resources in the new pool.
2807  */
2808 void
2809 zone_pool_set(zone_t *zone, pool_t *pool)
2810 {
2811 	ASSERT(pool_lock_held());
2812 	ASSERT(MUTEX_HELD(&cpu_lock));
2813 
2814 	zone->zone_pool = pool;
2815 	zone_pset_set(zone, pool->pool_pset->pset_id);
2816 }
2817 
2818 /*
2819  * Return the cached value of the id of the processor set to which the
2820  * zone is currently bound.  The value will be ZONE_PS_INVAL if the pools
2821  * facility is disabled.
2822  */
2823 psetid_t
2824 zone_pset_get(zone_t *zone)
2825 {
2826 	ASSERT(MUTEX_HELD(&cpu_lock));
2827 
2828 	return (zone->zone_psetid);
2829 }
2830 
2831 /*
2832  * Set the cached value of the id of the processor set to which the zone
2833  * is currently bound.  Also update the zone's visibility to match the
2834  * resources in the new processor set.
2835  */
2836 void
2837 zone_pset_set(zone_t *zone, psetid_t newpsetid)
2838 {
2839 	psetid_t oldpsetid;
2840 
2841 	ASSERT(MUTEX_HELD(&cpu_lock));
2842 	oldpsetid = zone_pset_get(zone);
2843 
2844 	if (oldpsetid == newpsetid)
2845 		return;
2846 	/*
2847 	 * Global zone sees all.
2848 	 */
2849 	if (zone != global_zone) {
2850 		zone->zone_psetid = newpsetid;
2851 		if (newpsetid != ZONE_PS_INVAL)
2852 			pool_pset_visibility_add(newpsetid, zone);
2853 		if (oldpsetid != ZONE_PS_INVAL)
2854 			pool_pset_visibility_remove(oldpsetid, zone);
2855 	}
2856 	/*
2857 	 * Disabling pools, so we should start using the global values
2858 	 * for ncpus and ncpus_online.
2859 	 */
2860 	if (newpsetid == ZONE_PS_INVAL) {
2861 		zone->zone_ncpus = 0;
2862 		zone->zone_ncpus_online = 0;
2863 	}
2864 }
2865 
2866 /*
2867  * Walk the list of active zones and issue the provided callback for
2868  * each of them.
2869  *
2870  * Caller must not be holding any locks that may be acquired under
2871  * zonehash_lock.  See comment at the beginning of the file for a list of
2872  * common locks and their interactions with zones.
2873  */
2874 int
2875 zone_walk(int (*cb)(zone_t *, void *), void *data)
2876 {
2877 	zone_t *zone;
2878 	int ret = 0;
2879 	zone_status_t status;
2880 
2881 	mutex_enter(&zonehash_lock);
2882 	for (zone = list_head(&zone_active); zone != NULL;
2883 	    zone = list_next(&zone_active, zone)) {
2884 		/*
2885 		 * Skip zones that shouldn't be externally visible.
2886 		 */
2887 		status = zone_status_get(zone);
2888 		if (status < ZONE_IS_READY || status > ZONE_IS_DOWN)
2889 			continue;
2890 		/*
2891 		 * Bail immediately if any callback invocation returns a
2892 		 * non-zero value.
2893 		 */
2894 		ret = (*cb)(zone, data);
2895 		if (ret != 0)
2896 			break;
2897 	}
2898 	mutex_exit(&zonehash_lock);
2899 	return (ret);
2900 }
2901 
2902 static int
2903 zone_set_root(zone_t *zone, const char *upath)
2904 {
2905 	vnode_t *vp;
2906 	int trycount;
2907 	int error = 0;
2908 	char *path;
2909 	struct pathname upn, pn;
2910 	size_t pathlen;
2911 
2912 	if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0)
2913 		return (error);
2914 
2915 	pn_alloc(&pn);
2916 
2917 	/* prevent infinite loop */
2918 	trycount = 10;
2919 	for (;;) {
2920 		if (--trycount <= 0) {
2921 			error = ESTALE;
2922 			goto out;
2923 		}
2924 
2925 		if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) {
2926 			/*
2927 			 * VOP_ACCESS() may cover 'vp' with a new
2928 			 * filesystem, if 'vp' is an autoFS vnode.
2929 			 * Get the new 'vp' if so.
2930 			 */
2931 			if ((error =
2932 			    VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 &&
2933 			    (!vn_ismntpt(vp) ||
2934 			    (error = traverse(&vp)) == 0)) {
2935 				pathlen = pn.pn_pathlen + 2;
2936 				path = kmem_alloc(pathlen, KM_SLEEP);
2937 				(void) strncpy(path, pn.pn_path,
2938 				    pn.pn_pathlen + 1);
2939 				path[pathlen - 2] = '/';
2940 				path[pathlen - 1] = '\0';
2941 				pn_free(&pn);
2942 				pn_free(&upn);
2943 
2944 				/* Success! */
2945 				break;
2946 			}
2947 			VN_RELE(vp);
2948 		}
2949 		if (error != ESTALE)
2950 			goto out;
2951 	}
2952 
2953 	ASSERT(error == 0);
2954 	zone->zone_rootvp = vp;		/* we hold a reference to vp */
2955 	zone->zone_rootpath = path;
2956 	zone->zone_rootpathlen = pathlen;
2957 	if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0)
2958 		zone->zone_flags |= ZF_IS_SCRATCH;
2959 	return (0);
2960 
2961 out:
2962 	pn_free(&pn);
2963 	pn_free(&upn);
2964 	return (error);
2965 }
2966 
2967 #define	isalnum(c)	(((c) >= '0' && (c) <= '9') || \
2968 			((c) >= 'a' && (c) <= 'z') || \
2969 			((c) >= 'A' && (c) <= 'Z'))
2970 
2971 static int
2972 zone_set_name(zone_t *zone, const char *uname)
2973 {
2974 	char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
2975 	size_t len;
2976 	int i, err;
2977 
2978 	if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) {
2979 		kmem_free(kname, ZONENAME_MAX);
2980 		return (err);	/* EFAULT or ENAMETOOLONG */
2981 	}
2982 
2983 	/* must be less than ZONENAME_MAX */
2984 	if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') {
2985 		kmem_free(kname, ZONENAME_MAX);
2986 		return (EINVAL);
2987 	}
2988 
2989 	/*
2990 	 * Name must start with an alphanumeric and must contain only
2991 	 * alphanumerics, '-', '_' and '.'.
2992 	 */
2993 	if (!isalnum(kname[0])) {
2994 		kmem_free(kname, ZONENAME_MAX);
2995 		return (EINVAL);
2996 	}
2997 	for (i = 1; i < len - 1; i++) {
2998 		if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' &&
2999 		    kname[i] != '.') {
3000 			kmem_free(kname, ZONENAME_MAX);
3001 			return (EINVAL);
3002 		}
3003 	}
3004 
3005 	zone->zone_name = kname;
3006 	return (0);
3007 }
3008 
3009 /*
3010  * Gets the 32-bit hostid of the specified zone as an unsigned int.  If 'zonep'
3011  * is NULL or it points to a zone with no hostid emulation, then the machine's
3012  * hostid (i.e., the global zone's hostid) is returned.  This function returns
3013  * zero if neither the zone nor the host machine (global zone) have hostids.  It
3014  * returns HW_INVALID_HOSTID if the function attempts to return the machine's
3015  * hostid and the machine's hostid is invalid.
3016  */
3017 uint32_t
3018 zone_get_hostid(zone_t *zonep)
3019 {
3020 	unsigned long machine_hostid;
3021 
3022 	if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) {
3023 		if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0)
3024 			return (HW_INVALID_HOSTID);
3025 		return ((uint32_t)machine_hostid);
3026 	}
3027 	return (zonep->zone_hostid);
3028 }
3029 
3030 /*
3031  * Similar to thread_create(), but makes sure the thread is in the appropriate
3032  * zone's zsched process (curproc->p_zone->zone_zsched) before returning.
3033  */
3034 /*ARGSUSED*/
3035 kthread_t *
3036 zthread_create(
3037     caddr_t stk,
3038     size_t stksize,
3039     void (*proc)(),
3040     void *arg,
3041     size_t len,
3042     pri_t pri)
3043 {
3044 	kthread_t *t;
3045 	zone_t *zone = curproc->p_zone;
3046 	proc_t *pp = zone->zone_zsched;
3047 
3048 	zone_hold(zone);	/* Reference to be dropped when thread exits */
3049 
3050 	/*
3051 	 * No-one should be trying to create threads if the zone is shutting
3052 	 * down and there aren't any kernel threads around.  See comment
3053 	 * in zthread_exit().
3054 	 */
3055 	ASSERT(!(zone->zone_kthreads == NULL &&
3056 	    zone_status_get(zone) >= ZONE_IS_EMPTY));
3057 	/*
3058 	 * Create a thread, but don't let it run until we've finished setting
3059 	 * things up.
3060 	 */
3061 	t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri);
3062 	ASSERT(t->t_forw == NULL);
3063 	mutex_enter(&zone_status_lock);
3064 	if (zone->zone_kthreads == NULL) {
3065 		t->t_forw = t->t_back = t;
3066 	} else {
3067 		kthread_t *tx = zone->zone_kthreads;
3068 
3069 		t->t_forw = tx;
3070 		t->t_back = tx->t_back;
3071 		tx->t_back->t_forw = t;
3072 		tx->t_back = t;
3073 	}
3074 	zone->zone_kthreads = t;
3075 	mutex_exit(&zone_status_lock);
3076 
3077 	mutex_enter(&pp->p_lock);
3078 	t->t_proc_flag |= TP_ZTHREAD;
3079 	project_rele(t->t_proj);
3080 	t->t_proj = project_hold(pp->p_task->tk_proj);
3081 
3082 	/*
3083 	 * Setup complete, let it run.
3084 	 */
3085 	thread_lock(t);
3086 	t->t_schedflag |= TS_ALLSTART;
3087 	setrun_locked(t);
3088 	thread_unlock(t);
3089 
3090 	mutex_exit(&pp->p_lock);
3091 
3092 	return (t);
3093 }
3094 
3095 /*
3096  * Similar to thread_exit().  Must be called by threads created via
3097  * zthread_exit().
3098  */
3099 void
3100 zthread_exit(void)
3101 {
3102 	kthread_t *t = curthread;
3103 	proc_t *pp = curproc;
3104 	zone_t *zone = pp->p_zone;
3105 
3106 	mutex_enter(&zone_status_lock);
3107 
3108 	/*
3109 	 * Reparent to p0
3110 	 */
3111 	kpreempt_disable();
3112 	mutex_enter(&pp->p_lock);
3113 	t->t_proc_flag &= ~TP_ZTHREAD;
3114 	t->t_procp = &p0;
3115 	hat_thread_exit(t);
3116 	mutex_exit(&pp->p_lock);
3117 	kpreempt_enable();
3118 
3119 	if (t->t_back == t) {
3120 		ASSERT(t->t_forw == t);
3121 		/*
3122 		 * If the zone is empty, once the thread count
3123 		 * goes to zero no further kernel threads can be
3124 		 * created.  This is because if the creator is a process
3125 		 * in the zone, then it must have exited before the zone
3126 		 * state could be set to ZONE_IS_EMPTY.
3127 		 * Otherwise, if the creator is a kernel thread in the
3128 		 * zone, the thread count is non-zero.
3129 		 *
3130 		 * This really means that non-zone kernel threads should
3131 		 * not create zone kernel threads.
3132 		 */
3133 		zone->zone_kthreads = NULL;
3134 		if (zone_status_get(zone) == ZONE_IS_EMPTY) {
3135 			zone_status_set(zone, ZONE_IS_DOWN);
3136 			/*
3137 			 * Remove any CPU caps on this zone.
3138 			 */
3139 			cpucaps_zone_remove(zone);
3140 		}
3141 	} else {
3142 		t->t_forw->t_back = t->t_back;
3143 		t->t_back->t_forw = t->t_forw;
3144 		if (zone->zone_kthreads == t)
3145 			zone->zone_kthreads = t->t_forw;
3146 	}
3147 	mutex_exit(&zone_status_lock);
3148 	zone_rele(zone);
3149 	thread_exit();
3150 	/* NOTREACHED */
3151 }
3152 
3153 static void
3154 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp)
3155 {
3156 	vnode_t *oldvp;
3157 
3158 	/* we're going to hold a reference here to the directory */
3159 	VN_HOLD(vp);
3160 
3161 	/* update abs cwd/root path see c2/audit.c */
3162 	if (AU_AUDITING())
3163 		audit_chdirec(vp, vpp);
3164 
3165 	mutex_enter(&pp->p_lock);
3166 	oldvp = *vpp;
3167 	*vpp = vp;
3168 	mutex_exit(&pp->p_lock);
3169 	if (oldvp != NULL)
3170 		VN_RELE(oldvp);
3171 }
3172 
3173 /*
3174  * Convert an rctl value represented by an nvlist_t into an rctl_val_t.
3175  */
3176 static int
3177 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv)
3178 {
3179 	nvpair_t *nvp = NULL;
3180 	boolean_t priv_set = B_FALSE;
3181 	boolean_t limit_set = B_FALSE;
3182 	boolean_t action_set = B_FALSE;
3183 
3184 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3185 		const char *name;
3186 		uint64_t ui64;
3187 
3188 		name = nvpair_name(nvp);
3189 		if (nvpair_type(nvp) != DATA_TYPE_UINT64)
3190 			return (EINVAL);
3191 		(void) nvpair_value_uint64(nvp, &ui64);
3192 		if (strcmp(name, "privilege") == 0) {
3193 			/*
3194 			 * Currently only privileged values are allowed, but
3195 			 * this may change in the future.
3196 			 */
3197 			if (ui64 != RCPRIV_PRIVILEGED)
3198 				return (EINVAL);
3199 			rv->rcv_privilege = ui64;
3200 			priv_set = B_TRUE;
3201 		} else if (strcmp(name, "limit") == 0) {
3202 			rv->rcv_value = ui64;
3203 			limit_set = B_TRUE;
3204 		} else if (strcmp(name, "action") == 0) {
3205 			if (ui64 != RCTL_LOCAL_NOACTION &&
3206 			    ui64 != RCTL_LOCAL_DENY)
3207 				return (EINVAL);
3208 			rv->rcv_flagaction = ui64;
3209 			action_set = B_TRUE;
3210 		} else {
3211 			return (EINVAL);
3212 		}
3213 	}
3214 
3215 	if (!(priv_set && limit_set && action_set))
3216 		return (EINVAL);
3217 	rv->rcv_action_signal = 0;
3218 	rv->rcv_action_recipient = NULL;
3219 	rv->rcv_action_recip_pid = -1;
3220 	rv->rcv_firing_time = 0;
3221 
3222 	return (0);
3223 }
3224 
3225 /*
3226  * Non-global zone version of start_init.
3227  */
3228 void
3229 zone_start_init(void)
3230 {
3231 	proc_t *p = ttoproc(curthread);
3232 	zone_t *z = p->p_zone;
3233 
3234 	ASSERT(!INGLOBALZONE(curproc));
3235 
3236 	/*
3237 	 * For all purposes (ZONE_ATTR_INITPID and restart_init),
3238 	 * storing just the pid of init is sufficient.
3239 	 */
3240 	z->zone_proc_initpid = p->p_pid;
3241 
3242 	/*
3243 	 * We maintain zone_boot_err so that we can return the cause of the
3244 	 * failure back to the caller of the zone_boot syscall.
3245 	 */
3246 	p->p_zone->zone_boot_err = start_init_common();
3247 
3248 	/*
3249 	 * We will prevent booting zones from becoming running zones if the
3250 	 * global zone is shutting down.
3251 	 */
3252 	mutex_enter(&zone_status_lock);
3253 	if (z->zone_boot_err != 0 || zone_status_get(global_zone) >=
3254 	    ZONE_IS_SHUTTING_DOWN) {
3255 		/*
3256 		 * Make sure we are still in the booting state-- we could have
3257 		 * raced and already be shutting down, or even further along.
3258 		 */
3259 		if (zone_status_get(z) == ZONE_IS_BOOTING) {
3260 			zone_status_set(z, ZONE_IS_SHUTTING_DOWN);
3261 		}
3262 		mutex_exit(&zone_status_lock);
3263 		/* It's gone bad, dispose of the process */
3264 		if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) {
3265 			mutex_enter(&p->p_lock);
3266 			ASSERT(p->p_flag & SEXITLWPS);
3267 			lwp_exit();
3268 		}
3269 	} else {
3270 		if (zone_status_get(z) == ZONE_IS_BOOTING)
3271 			zone_status_set(z, ZONE_IS_RUNNING);
3272 		mutex_exit(&zone_status_lock);
3273 		/* cause the process to return to userland. */
3274 		lwp_rtt();
3275 	}
3276 }
3277 
3278 struct zsched_arg {
3279 	zone_t *zone;
3280 	nvlist_t *nvlist;
3281 };
3282 
3283 /*
3284  * Per-zone "sched" workalike.  The similarity to "sched" doesn't have
3285  * anything to do with scheduling, but rather with the fact that
3286  * per-zone kernel threads are parented to zsched, just like regular
3287  * kernel threads are parented to sched (p0).
3288  *
3289  * zsched is also responsible for launching init for the zone.
3290  */
3291 static void
3292 zsched(void *arg)
3293 {
3294 	struct zsched_arg *za = arg;
3295 	proc_t *pp = curproc;
3296 	proc_t *initp = proc_init;
3297 	zone_t *zone = za->zone;
3298 	cred_t *cr, *oldcred;
3299 	rctl_set_t *set;
3300 	rctl_alloc_gp_t *gp;
3301 	contract_t *ct = NULL;
3302 	task_t *tk, *oldtk;
3303 	rctl_entity_p_t e;
3304 	kproject_t *pj;
3305 
3306 	nvlist_t *nvl = za->nvlist;
3307 	nvpair_t *nvp = NULL;
3308 
3309 	bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched"));
3310 	bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched"));
3311 	PTOU(pp)->u_argc = 0;
3312 	PTOU(pp)->u_argv = NULL;
3313 	PTOU(pp)->u_envp = NULL;
3314 	closeall(P_FINFO(pp));
3315 
3316 	/*
3317 	 * We are this zone's "zsched" process.  As the zone isn't generally
3318 	 * visible yet we don't need to grab any locks before initializing its
3319 	 * zone_proc pointer.
3320 	 */
3321 	zone_hold(zone);  /* this hold is released by zone_destroy() */
3322 	zone->zone_zsched = pp;
3323 	mutex_enter(&pp->p_lock);
3324 	pp->p_zone = zone;
3325 	mutex_exit(&pp->p_lock);
3326 
3327 	/*
3328 	 * Disassociate process from its 'parent'; parent ourselves to init
3329 	 * (pid 1) and change other values as needed.
3330 	 */
3331 	sess_create();
3332 
3333 	mutex_enter(&pidlock);
3334 	proc_detach(pp);
3335 	pp->p_ppid = 1;
3336 	pp->p_flag |= SZONETOP;
3337 	pp->p_ancpid = 1;
3338 	pp->p_parent = initp;
3339 	pp->p_psibling = NULL;
3340 	if (initp->p_child)
3341 		initp->p_child->p_psibling = pp;
3342 	pp->p_sibling = initp->p_child;
3343 	initp->p_child = pp;
3344 
3345 	/* Decrement what newproc() incremented. */
3346 	upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID);
3347 	/*
3348 	 * Our credentials are about to become kcred-like, so we don't care
3349 	 * about the caller's ruid.
3350 	 */
3351 	upcount_inc(crgetruid(kcred), zone->zone_id);
3352 	mutex_exit(&pidlock);
3353 
3354 	/*
3355 	 * getting out of global zone, so decrement lwp counts
3356 	 */
3357 	pj = pp->p_task->tk_proj;
3358 	mutex_enter(&global_zone->zone_nlwps_lock);
3359 	pj->kpj_nlwps -= pp->p_lwpcnt;
3360 	global_zone->zone_nlwps -= pp->p_lwpcnt;
3361 	mutex_exit(&global_zone->zone_nlwps_lock);
3362 
3363 	/*
3364 	 * Decrement locked memory counts on old zone and project.
3365 	 */
3366 	mutex_enter(&global_zone->zone_mem_lock);
3367 	global_zone->zone_locked_mem -= pp->p_locked_mem;
3368 	pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
3369 	mutex_exit(&global_zone->zone_mem_lock);
3370 
3371 	/*
3372 	 * Create and join a new task in project '0' of this zone.
3373 	 *
3374 	 * We don't need to call holdlwps() since we know we're the only lwp in
3375 	 * this process.
3376 	 *
3377 	 * task_join() returns with p_lock held.
3378 	 */
3379 	tk = task_create(0, zone);
3380 	mutex_enter(&cpu_lock);
3381 	oldtk = task_join(tk, 0);
3382 
3383 	pj = pp->p_task->tk_proj;
3384 
3385 	mutex_enter(&zone->zone_mem_lock);
3386 	zone->zone_locked_mem += pp->p_locked_mem;
3387 	pj->kpj_data.kpd_locked_mem += pp->p_locked_mem;
3388 	mutex_exit(&zone->zone_mem_lock);
3389 
3390 	/*
3391 	 * add lwp counts to zsched's zone, and increment project's task count
3392 	 * due to the task created in the above tasksys_settaskid
3393 	 */
3394 
3395 	mutex_enter(&zone->zone_nlwps_lock);
3396 	pj->kpj_nlwps += pp->p_lwpcnt;
3397 	pj->kpj_ntasks += 1;
3398 	zone->zone_nlwps += pp->p_lwpcnt;
3399 	mutex_exit(&zone->zone_nlwps_lock);
3400 
3401 	mutex_exit(&curproc->p_lock);
3402 	mutex_exit(&cpu_lock);
3403 	task_rele(oldtk);
3404 
3405 	/*
3406 	 * The process was created by a process in the global zone, hence the
3407 	 * credentials are wrong.  We might as well have kcred-ish credentials.
3408 	 */
3409 	cr = zone->zone_kcred;
3410 	crhold(cr);
3411 	mutex_enter(&pp->p_crlock);
3412 	oldcred = pp->p_cred;
3413 	pp->p_cred = cr;
3414 	mutex_exit(&pp->p_crlock);
3415 	crfree(oldcred);
3416 
3417 	/*
3418 	 * Hold credentials again (for thread)
3419 	 */
3420 	crhold(cr);
3421 
3422 	/*
3423 	 * p_lwpcnt can't change since this is a kernel process.
3424 	 */
3425 	crset(pp, cr);
3426 
3427 	/*
3428 	 * Chroot
3429 	 */
3430 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp);
3431 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp);
3432 
3433 	/*
3434 	 * Initialize zone's rctl set.
3435 	 */
3436 	set = rctl_set_create();
3437 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
3438 	mutex_enter(&pp->p_lock);
3439 	e.rcep_p.zone = zone;
3440 	e.rcep_t = RCENTITY_ZONE;
3441 	zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp);
3442 	mutex_exit(&pp->p_lock);
3443 	rctl_prealloc_destroy(gp);
3444 
3445 	/*
3446 	 * Apply the rctls passed in to zone_create().  This is basically a list
3447 	 * assignment: all of the old values are removed and the new ones
3448 	 * inserted.  That is, if an empty list is passed in, all values are
3449 	 * removed.
3450 	 */
3451 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3452 		rctl_dict_entry_t *rde;
3453 		rctl_hndl_t hndl;
3454 		char *name;
3455 		nvlist_t **nvlarray;
3456 		uint_t i, nelem;
3457 		int error;	/* For ASSERT()s */
3458 
3459 		name = nvpair_name(nvp);
3460 		hndl = rctl_hndl_lookup(name);
3461 		ASSERT(hndl != -1);
3462 		rde = rctl_dict_lookup_hndl(hndl);
3463 		ASSERT(rde != NULL);
3464 
3465 		for (; /* ever */; ) {
3466 			rctl_val_t oval;
3467 
3468 			mutex_enter(&pp->p_lock);
3469 			error = rctl_local_get(hndl, NULL, &oval, pp);
3470 			mutex_exit(&pp->p_lock);
3471 			ASSERT(error == 0);	/* Can't fail for RCTL_FIRST */
3472 			ASSERT(oval.rcv_privilege != RCPRIV_BASIC);
3473 			if (oval.rcv_privilege == RCPRIV_SYSTEM)
3474 				break;
3475 			mutex_enter(&pp->p_lock);
3476 			error = rctl_local_delete(hndl, &oval, pp);
3477 			mutex_exit(&pp->p_lock);
3478 			ASSERT(error == 0);
3479 		}
3480 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
3481 		ASSERT(error == 0);
3482 		for (i = 0; i < nelem; i++) {
3483 			rctl_val_t *nvalp;
3484 
3485 			nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
3486 			error = nvlist2rctlval(nvlarray[i], nvalp);
3487 			ASSERT(error == 0);
3488 			/*
3489 			 * rctl_local_insert can fail if the value being
3490 			 * inserted is a duplicate; this is OK.
3491 			 */
3492 			mutex_enter(&pp->p_lock);
3493 			if (rctl_local_insert(hndl, nvalp, pp) != 0)
3494 				kmem_cache_free(rctl_val_cache, nvalp);
3495 			mutex_exit(&pp->p_lock);
3496 		}
3497 	}
3498 	/*
3499 	 * Tell the world that we're done setting up.
3500 	 *
3501 	 * At this point we want to set the zone status to ZONE_IS_INITIALIZED
3502 	 * and atomically set the zone's processor set visibility.  Once
3503 	 * we drop pool_lock() this zone will automatically get updated
3504 	 * to reflect any future changes to the pools configuration.
3505 	 *
3506 	 * Note that after we drop the locks below (zonehash_lock in
3507 	 * particular) other operations such as a zone_getattr call can
3508 	 * now proceed and observe the zone. That is the reason for doing a
3509 	 * state transition to the INITIALIZED state.
3510 	 */
3511 	pool_lock();
3512 	mutex_enter(&cpu_lock);
3513 	mutex_enter(&zonehash_lock);
3514 	zone_uniqid(zone);
3515 	zone_zsd_configure(zone);
3516 	if (pool_state == POOL_ENABLED)
3517 		zone_pset_set(zone, pool_default->pool_pset->pset_id);
3518 	mutex_enter(&zone_status_lock);
3519 	ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
3520 	zone_status_set(zone, ZONE_IS_INITIALIZED);
3521 	mutex_exit(&zone_status_lock);
3522 	mutex_exit(&zonehash_lock);
3523 	mutex_exit(&cpu_lock);
3524 	pool_unlock();
3525 
3526 	/* Now call the create callback for this key */
3527 	zsd_apply_all_keys(zsd_apply_create, zone);
3528 
3529 	/* The callbacks are complete. Mark ZONE_IS_READY */
3530 	mutex_enter(&zone_status_lock);
3531 	ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED);
3532 	zone_status_set(zone, ZONE_IS_READY);
3533 	mutex_exit(&zone_status_lock);
3534 
3535 	/*
3536 	 * Once we see the zone transition to the ZONE_IS_BOOTING state,
3537 	 * we launch init, and set the state to running.
3538 	 */
3539 	zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched");
3540 
3541 	if (zone_status_get(zone) == ZONE_IS_BOOTING) {
3542 		id_t cid;
3543 
3544 		/*
3545 		 * Ok, this is a little complicated.  We need to grab the
3546 		 * zone's pool's scheduling class ID; note that by now, we
3547 		 * are already bound to a pool if we need to be (zoneadmd
3548 		 * will have done that to us while we're in the READY
3549 		 * state).  *But* the scheduling class for the zone's 'init'
3550 		 * must be explicitly passed to newproc, which doesn't
3551 		 * respect pool bindings.
3552 		 *
3553 		 * We hold the pool_lock across the call to newproc() to
3554 		 * close the obvious race: the pool's scheduling class
3555 		 * could change before we manage to create the LWP with
3556 		 * classid 'cid'.
3557 		 */
3558 		pool_lock();
3559 		if (zone->zone_defaultcid > 0)
3560 			cid = zone->zone_defaultcid;
3561 		else
3562 			cid = pool_get_class(zone->zone_pool);
3563 		if (cid == -1)
3564 			cid = defaultcid;
3565 
3566 		/*
3567 		 * If this fails, zone_boot will ultimately fail.  The
3568 		 * state of the zone will be set to SHUTTING_DOWN-- userland
3569 		 * will have to tear down the zone, and fail, or try again.
3570 		 */
3571 		if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid,
3572 		    minclsyspri - 1, &ct, 0)) != 0) {
3573 			mutex_enter(&zone_status_lock);
3574 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
3575 			mutex_exit(&zone_status_lock);
3576 		}
3577 		pool_unlock();
3578 	}
3579 
3580 	/*
3581 	 * Wait for zone_destroy() to be called.  This is what we spend
3582 	 * most of our life doing.
3583 	 */
3584 	zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched");
3585 
3586 	if (ct)
3587 		/*
3588 		 * At this point the process contract should be empty.
3589 		 * (Though if it isn't, it's not the end of the world.)
3590 		 */
3591 		VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0);
3592 
3593 	/*
3594 	 * Allow kcred to be freed when all referring processes
3595 	 * (including this one) go away.  We can't just do this in
3596 	 * zone_free because we need to wait for the zone_cred_ref to
3597 	 * drop to 0 before calling zone_free, and the existence of
3598 	 * zone_kcred will prevent that.  Thus, we call crfree here to
3599 	 * balance the crdup in zone_create.  The crhold calls earlier
3600 	 * in zsched will be dropped when the thread and process exit.
3601 	 */
3602 	crfree(zone->zone_kcred);
3603 	zone->zone_kcred = NULL;
3604 
3605 	exit(CLD_EXITED, 0);
3606 }
3607 
3608 /*
3609  * Helper function to determine if there are any submounts of the
3610  * provided path.  Used to make sure the zone doesn't "inherit" any
3611  * mounts from before it is created.
3612  */
3613 static uint_t
3614 zone_mount_count(const char *rootpath)
3615 {
3616 	vfs_t *vfsp;
3617 	uint_t count = 0;
3618 	size_t rootpathlen = strlen(rootpath);
3619 
3620 	/*
3621 	 * Holding zonehash_lock prevents race conditions with
3622 	 * vfs_list_add()/vfs_list_remove() since we serialize with
3623 	 * zone_find_by_path().
3624 	 */
3625 	ASSERT(MUTEX_HELD(&zonehash_lock));
3626 	/*
3627 	 * The rootpath must end with a '/'
3628 	 */
3629 	ASSERT(rootpath[rootpathlen - 1] == '/');
3630 
3631 	/*
3632 	 * This intentionally does not count the rootpath itself if that
3633 	 * happens to be a mount point.
3634 	 */
3635 	vfs_list_read_lock();
3636 	vfsp = rootvfs;
3637 	do {
3638 		if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt),
3639 		    rootpathlen) == 0)
3640 			count++;
3641 		vfsp = vfsp->vfs_next;
3642 	} while (vfsp != rootvfs);
3643 	vfs_list_unlock();
3644 	return (count);
3645 }
3646 
3647 /*
3648  * Helper function to make sure that a zone created on 'rootpath'
3649  * wouldn't end up containing other zones' rootpaths.
3650  */
3651 static boolean_t
3652 zone_is_nested(const char *rootpath)
3653 {
3654 	zone_t *zone;
3655 	size_t rootpathlen = strlen(rootpath);
3656 	size_t len;
3657 
3658 	ASSERT(MUTEX_HELD(&zonehash_lock));
3659 
3660 	/*
3661 	 * zone_set_root() appended '/' and '\0' at the end of rootpath
3662 	 */
3663 	if ((rootpathlen <= 3) && (rootpath[0] == '/') &&
3664 	    (rootpath[1] == '/') && (rootpath[2] == '\0'))
3665 		return (B_TRUE);
3666 
3667 	for (zone = list_head(&zone_active); zone != NULL;
3668 	    zone = list_next(&zone_active, zone)) {
3669 		if (zone == global_zone)
3670 			continue;
3671 		len = strlen(zone->zone_rootpath);
3672 		if (strncmp(rootpath, zone->zone_rootpath,
3673 		    MIN(rootpathlen, len)) == 0)
3674 			return (B_TRUE);
3675 	}
3676 	return (B_FALSE);
3677 }
3678 
3679 static int
3680 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs,
3681     size_t zone_privssz)
3682 {
3683 	priv_set_t *privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
3684 
3685 	if (zone_privssz < sizeof (priv_set_t))
3686 		return (set_errno(ENOMEM));
3687 
3688 	if (copyin(zone_privs, privs, sizeof (priv_set_t))) {
3689 		kmem_free(privs, sizeof (priv_set_t));
3690 		return (EFAULT);
3691 	}
3692 
3693 	zone->zone_privset = privs;
3694 	return (0);
3695 }
3696 
3697 /*
3698  * We make creative use of nvlists to pass in rctls from userland.  The list is
3699  * a list of the following structures:
3700  *
3701  * (name = rctl_name, value = nvpair_list_array)
3702  *
3703  * Where each element of the nvpair_list_array is of the form:
3704  *
3705  * [(name = "privilege", value = RCPRIV_PRIVILEGED),
3706  * 	(name = "limit", value = uint64_t),
3707  * 	(name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))]
3708  */
3709 static int
3710 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp)
3711 {
3712 	nvpair_t *nvp = NULL;
3713 	nvlist_t *nvl = NULL;
3714 	char *kbuf;
3715 	int error;
3716 	rctl_val_t rv;
3717 
3718 	*nvlp = NULL;
3719 
3720 	if (buflen == 0)
3721 		return (0);
3722 
3723 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
3724 		return (ENOMEM);
3725 	if (copyin(ubuf, kbuf, buflen)) {
3726 		error = EFAULT;
3727 		goto out;
3728 	}
3729 	if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) {
3730 		/*
3731 		 * nvl may have been allocated/free'd, but the value set to
3732 		 * non-NULL, so we reset it here.
3733 		 */
3734 		nvl = NULL;
3735 		error = EINVAL;
3736 		goto out;
3737 	}
3738 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3739 		rctl_dict_entry_t *rde;
3740 		rctl_hndl_t hndl;
3741 		nvlist_t **nvlarray;
3742 		uint_t i, nelem;
3743 		char *name;
3744 
3745 		error = EINVAL;
3746 		name = nvpair_name(nvp);
3747 		if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1)
3748 		    != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) {
3749 			goto out;
3750 		}
3751 		if ((hndl = rctl_hndl_lookup(name)) == -1) {
3752 			goto out;
3753 		}
3754 		rde = rctl_dict_lookup_hndl(hndl);
3755 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
3756 		ASSERT(error == 0);
3757 		for (i = 0; i < nelem; i++) {
3758 			if (error = nvlist2rctlval(nvlarray[i], &rv))
3759 				goto out;
3760 		}
3761 		if (rctl_invalid_value(rde, &rv)) {
3762 			error = EINVAL;
3763 			goto out;
3764 		}
3765 	}
3766 	error = 0;
3767 	*nvlp = nvl;
3768 out:
3769 	kmem_free(kbuf, buflen);
3770 	if (error && nvl != NULL)
3771 		nvlist_free(nvl);
3772 	return (error);
3773 }
3774 
3775 int
3776 zone_create_error(int er_error, int er_ext, int *er_out) {
3777 	if (er_out != NULL) {
3778 		if (copyout(&er_ext, er_out, sizeof (int))) {
3779 			return (set_errno(EFAULT));
3780 		}
3781 	}
3782 	return (set_errno(er_error));
3783 }
3784 
3785 static int
3786 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi)
3787 {
3788 	ts_label_t *tsl;
3789 	bslabel_t blab;
3790 
3791 	/* Get label from user */
3792 	if (copyin(lab, &blab, sizeof (blab)) != 0)
3793 		return (EFAULT);
3794 	tsl = labelalloc(&blab, doi, KM_NOSLEEP);
3795 	if (tsl == NULL)
3796 		return (ENOMEM);
3797 
3798 	zone->zone_slabel = tsl;
3799 	return (0);
3800 }
3801 
3802 /*
3803  * Parses a comma-separated list of ZFS datasets into a per-zone dictionary.
3804  */
3805 static int
3806 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen)
3807 {
3808 	char *kbuf;
3809 	char *dataset, *next;
3810 	zone_dataset_t *zd;
3811 	size_t len;
3812 
3813 	if (ubuf == NULL || buflen == 0)
3814 		return (0);
3815 
3816 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
3817 		return (ENOMEM);
3818 
3819 	if (copyin(ubuf, kbuf, buflen) != 0) {
3820 		kmem_free(kbuf, buflen);
3821 		return (EFAULT);
3822 	}
3823 
3824 	dataset = next = kbuf;
3825 	for (;;) {
3826 		zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP);
3827 
3828 		next = strchr(dataset, ',');
3829 
3830 		if (next == NULL)
3831 			len = strlen(dataset);
3832 		else
3833 			len = next - dataset;
3834 
3835 		zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP);
3836 		bcopy(dataset, zd->zd_dataset, len);
3837 		zd->zd_dataset[len] = '\0';
3838 
3839 		list_insert_head(&zone->zone_datasets, zd);
3840 
3841 		if (next == NULL)
3842 			break;
3843 
3844 		dataset = next + 1;
3845 	}
3846 
3847 	kmem_free(kbuf, buflen);
3848 	return (0);
3849 }
3850 
3851 /*
3852  * System call to create/initialize a new zone named 'zone_name', rooted
3853  * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs',
3854  * and initialized with the zone-wide rctls described in 'rctlbuf', and
3855  * with labeling set by 'match', 'doi', and 'label'.
3856  *
3857  * If extended error is non-null, we may use it to return more detailed
3858  * error information.
3859  */
3860 static zoneid_t
3861 zone_create(const char *zone_name, const char *zone_root,
3862     const priv_set_t *zone_privs, size_t zone_privssz,
3863     caddr_t rctlbuf, size_t rctlbufsz,
3864     caddr_t zfsbuf, size_t zfsbufsz, int *extended_error,
3865     int match, uint32_t doi, const bslabel_t *label,
3866     int flags)
3867 {
3868 	struct zsched_arg zarg;
3869 	nvlist_t *rctls = NULL;
3870 	proc_t *pp = curproc;
3871 	zone_t *zone, *ztmp;
3872 	zoneid_t zoneid;
3873 	int error;
3874 	int error2 = 0;
3875 	char *str;
3876 	cred_t *zkcr;
3877 	boolean_t insert_label_hash;
3878 
3879 	if (secpolicy_zone_config(CRED()) != 0)
3880 		return (set_errno(EPERM));
3881 
3882 	/* can't boot zone from within chroot environment */
3883 	if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir)
3884 		return (zone_create_error(ENOTSUP, ZE_CHROOTED,
3885 		    extended_error));
3886 
3887 	zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP);
3888 	zoneid = zone->zone_id = id_alloc(zoneid_space);
3889 	zone->zone_status = ZONE_IS_UNINITIALIZED;
3890 	zone->zone_pool = pool_default;
3891 	zone->zone_pool_mod = gethrtime();
3892 	zone->zone_psetid = ZONE_PS_INVAL;
3893 	zone->zone_ncpus = 0;
3894 	zone->zone_ncpus_online = 0;
3895 	zone->zone_restart_init = B_TRUE;
3896 	zone->zone_brand = &native_brand;
3897 	zone->zone_initname = NULL;
3898 	mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL);
3899 	mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
3900 	mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
3901 	cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL);
3902 	list_create(&zone->zone_zsd, sizeof (struct zsd_entry),
3903 	    offsetof(struct zsd_entry, zsd_linkage));
3904 	list_create(&zone->zone_datasets, sizeof (zone_dataset_t),
3905 	    offsetof(zone_dataset_t, zd_linkage));
3906 	list_create(&zone->zone_dl_list, sizeof (zone_dl_t),
3907 	    offsetof(zone_dl_t, zdl_linkage));
3908 	rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
3909 	rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
3910 
3911 	if (flags & ZCF_NET_EXCL) {
3912 		zone->zone_flags |= ZF_NET_EXCL;
3913 	}
3914 
3915 	if ((error = zone_set_name(zone, zone_name)) != 0) {
3916 		zone_free(zone);
3917 		return (zone_create_error(error, 0, extended_error));
3918 	}
3919 
3920 	if ((error = zone_set_root(zone, zone_root)) != 0) {
3921 		zone_free(zone);
3922 		return (zone_create_error(error, 0, extended_error));
3923 	}
3924 	if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) {
3925 		zone_free(zone);
3926 		return (zone_create_error(error, 0, extended_error));
3927 	}
3928 
3929 	/* initialize node name to be the same as zone name */
3930 	zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP);
3931 	(void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN);
3932 	zone->zone_nodename[_SYS_NMLN - 1] = '\0';
3933 
3934 	zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP);
3935 	zone->zone_domain[0] = '\0';
3936 	zone->zone_hostid = HW_INVALID_HOSTID;
3937 	zone->zone_shares = 1;
3938 	zone->zone_shmmax = 0;
3939 	zone->zone_ipc.ipcq_shmmni = 0;
3940 	zone->zone_ipc.ipcq_semmni = 0;
3941 	zone->zone_ipc.ipcq_msgmni = 0;
3942 	zone->zone_bootargs = NULL;
3943 	zone->zone_fs_allowed = NULL;
3944 	zone->zone_initname =
3945 	    kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP);
3946 	(void) strcpy(zone->zone_initname, zone_default_initname);
3947 	zone->zone_nlwps = 0;
3948 	zone->zone_nlwps_ctl = INT_MAX;
3949 	zone->zone_locked_mem = 0;
3950 	zone->zone_locked_mem_ctl = UINT64_MAX;
3951 	zone->zone_max_swap = 0;
3952 	zone->zone_max_swap_ctl = UINT64_MAX;
3953 	zone->zone_max_lofi = 0;
3954 	zone->zone_max_lofi_ctl = UINT64_MAX;
3955 	zone0.zone_lockedmem_kstat = NULL;
3956 	zone0.zone_swapresv_kstat = NULL;
3957 
3958 	/*
3959 	 * Zsched initializes the rctls.
3960 	 */
3961 	zone->zone_rctls = NULL;
3962 
3963 	if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) {
3964 		zone_free(zone);
3965 		return (zone_create_error(error, 0, extended_error));
3966 	}
3967 
3968 	if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) {
3969 		zone_free(zone);
3970 		return (set_errno(error));
3971 	}
3972 
3973 	/*
3974 	 * Read in the trusted system parameters:
3975 	 * match flag and sensitivity label.
3976 	 */
3977 	zone->zone_match = match;
3978 	if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
3979 		/* Fail if requested to set doi to anything but system's doi */
3980 		if (doi != 0 && doi != default_doi) {
3981 			zone_free(zone);
3982 			return (set_errno(EINVAL));
3983 		}
3984 		/* Always apply system's doi to the zone */
3985 		error = zone_set_label(zone, label, default_doi);
3986 		if (error != 0) {
3987 			zone_free(zone);
3988 			return (set_errno(error));
3989 		}
3990 		insert_label_hash = B_TRUE;
3991 	} else {
3992 		/* all zones get an admin_low label if system is not labeled */
3993 		zone->zone_slabel = l_admin_low;
3994 		label_hold(l_admin_low);
3995 		insert_label_hash = B_FALSE;
3996 	}
3997 
3998 	/*
3999 	 * Stop all lwps since that's what normally happens as part of fork().
4000 	 * This needs to happen before we grab any locks to avoid deadlock
4001 	 * (another lwp in the process could be waiting for the held lock).
4002 	 */
4003 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) {
4004 		zone_free(zone);
4005 		if (rctls)
4006 			nvlist_free(rctls);
4007 		return (zone_create_error(error, 0, extended_error));
4008 	}
4009 
4010 	if (block_mounts() == 0) {
4011 		mutex_enter(&pp->p_lock);
4012 		if (curthread != pp->p_agenttp)
4013 			continuelwps(pp);
4014 		mutex_exit(&pp->p_lock);
4015 		zone_free(zone);
4016 		if (rctls)
4017 			nvlist_free(rctls);
4018 		return (zone_create_error(error, 0, extended_error));
4019 	}
4020 
4021 	/*
4022 	 * Set up credential for kernel access.  After this, any errors
4023 	 * should go through the dance in errout rather than calling
4024 	 * zone_free directly.
4025 	 */
4026 	zone->zone_kcred = crdup(kcred);
4027 	crsetzone(zone->zone_kcred, zone);
4028 	priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred));
4029 	priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred));
4030 	priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred));
4031 	priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred));
4032 
4033 	mutex_enter(&zonehash_lock);
4034 	/*
4035 	 * Make sure zone doesn't already exist.
4036 	 *
4037 	 * If the system and zone are labeled,
4038 	 * make sure no other zone exists that has the same label.
4039 	 */
4040 	if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL ||
4041 	    (insert_label_hash &&
4042 	    (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) {
4043 		zone_status_t status;
4044 
4045 		status = zone_status_get(ztmp);
4046 		if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING)
4047 			error = EEXIST;
4048 		else
4049 			error = EBUSY;
4050 
4051 		if (insert_label_hash)
4052 			error2 = ZE_LABELINUSE;
4053 
4054 		goto errout;
4055 	}
4056 
4057 	/*
4058 	 * Don't allow zone creations which would cause one zone's rootpath to
4059 	 * be accessible from that of another (non-global) zone.
4060 	 */
4061 	if (zone_is_nested(zone->zone_rootpath)) {
4062 		error = EBUSY;
4063 		goto errout;
4064 	}
4065 
4066 	ASSERT(zonecount != 0);		/* check for leaks */
4067 	if (zonecount + 1 > maxzones) {
4068 		error = ENOMEM;
4069 		goto errout;
4070 	}
4071 
4072 	if (zone_mount_count(zone->zone_rootpath) != 0) {
4073 		error = EBUSY;
4074 		error2 = ZE_AREMOUNTS;
4075 		goto errout;
4076 	}
4077 
4078 	/*
4079 	 * Zone is still incomplete, but we need to drop all locks while
4080 	 * zsched() initializes this zone's kernel process.  We
4081 	 * optimistically add the zone to the hashtable and associated
4082 	 * lists so a parallel zone_create() doesn't try to create the
4083 	 * same zone.
4084 	 */
4085 	zonecount++;
4086 	(void) mod_hash_insert(zonehashbyid,
4087 	    (mod_hash_key_t)(uintptr_t)zone->zone_id,
4088 	    (mod_hash_val_t)(uintptr_t)zone);
4089 	str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP);
4090 	(void) strcpy(str, zone->zone_name);
4091 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str,
4092 	    (mod_hash_val_t)(uintptr_t)zone);
4093 	if (insert_label_hash) {
4094 		(void) mod_hash_insert(zonehashbylabel,
4095 		    (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone);
4096 		zone->zone_flags |= ZF_HASHED_LABEL;
4097 	}
4098 
4099 	/*
4100 	 * Insert into active list.  At this point there are no 'hold's
4101 	 * on the zone, but everyone else knows not to use it, so we can
4102 	 * continue to use it.  zsched() will do a zone_hold() if the
4103 	 * newproc() is successful.
4104 	 */
4105 	list_insert_tail(&zone_active, zone);
4106 	mutex_exit(&zonehash_lock);
4107 
4108 	zarg.zone = zone;
4109 	zarg.nvlist = rctls;
4110 	/*
4111 	 * The process, task, and project rctls are probably wrong;
4112 	 * we need an interface to get the default values of all rctls,
4113 	 * and initialize zsched appropriately.  I'm not sure that that
4114 	 * makes much of a difference, though.
4115 	 */
4116 	error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0);
4117 	if (error != 0) {
4118 		/*
4119 		 * We need to undo all globally visible state.
4120 		 */
4121 		mutex_enter(&zonehash_lock);
4122 		list_remove(&zone_active, zone);
4123 		if (zone->zone_flags & ZF_HASHED_LABEL) {
4124 			ASSERT(zone->zone_slabel != NULL);
4125 			(void) mod_hash_destroy(zonehashbylabel,
4126 			    (mod_hash_key_t)zone->zone_slabel);
4127 		}
4128 		(void) mod_hash_destroy(zonehashbyname,
4129 		    (mod_hash_key_t)(uintptr_t)zone->zone_name);
4130 		(void) mod_hash_destroy(zonehashbyid,
4131 		    (mod_hash_key_t)(uintptr_t)zone->zone_id);
4132 		ASSERT(zonecount > 1);
4133 		zonecount--;
4134 		goto errout;
4135 	}
4136 
4137 	/*
4138 	 * Zone creation can't fail from now on.
4139 	 */
4140 
4141 	/*
4142 	 * Create zone kstats
4143 	 */
4144 	zone_kstat_create(zone);
4145 
4146 	/*
4147 	 * Let the other lwps continue.
4148 	 */
4149 	mutex_enter(&pp->p_lock);
4150 	if (curthread != pp->p_agenttp)
4151 		continuelwps(pp);
4152 	mutex_exit(&pp->p_lock);
4153 
4154 	/*
4155 	 * Wait for zsched to finish initializing the zone.
4156 	 */
4157 	zone_status_wait(zone, ZONE_IS_READY);
4158 	/*
4159 	 * The zone is fully visible, so we can let mounts progress.
4160 	 */
4161 	resume_mounts();
4162 	if (rctls)
4163 		nvlist_free(rctls);
4164 
4165 	return (zoneid);
4166 
4167 errout:
4168 	mutex_exit(&zonehash_lock);
4169 	/*
4170 	 * Let the other lwps continue.
4171 	 */
4172 	mutex_enter(&pp->p_lock);
4173 	if (curthread != pp->p_agenttp)
4174 		continuelwps(pp);
4175 	mutex_exit(&pp->p_lock);
4176 
4177 	resume_mounts();
4178 	if (rctls)
4179 		nvlist_free(rctls);
4180 	/*
4181 	 * There is currently one reference to the zone, a cred_ref from
4182 	 * zone_kcred.  To free the zone, we call crfree, which will call
4183 	 * zone_cred_rele, which will call zone_free.
4184 	 */
4185 	ASSERT(zone->zone_cred_ref == 1);	/* for zone_kcred */
4186 	ASSERT(zone->zone_kcred->cr_ref == 1);
4187 	ASSERT(zone->zone_ref == 0);
4188 	zkcr = zone->zone_kcred;
4189 	zone->zone_kcred = NULL;
4190 	crfree(zkcr);				/* triggers call to zone_free */
4191 	return (zone_create_error(error, error2, extended_error));
4192 }
4193 
4194 /*
4195  * Cause the zone to boot.  This is pretty simple, since we let zoneadmd do
4196  * the heavy lifting.  initname is the path to the program to launch
4197  * at the "top" of the zone; if this is NULL, we use the system default,
4198  * which is stored at zone_default_initname.
4199  */
4200 static int
4201 zone_boot(zoneid_t zoneid)
4202 {
4203 	int err;
4204 	zone_t *zone;
4205 
4206 	if (secpolicy_zone_config(CRED()) != 0)
4207 		return (set_errno(EPERM));
4208 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4209 		return (set_errno(EINVAL));
4210 
4211 	mutex_enter(&zonehash_lock);
4212 	/*
4213 	 * Look for zone under hash lock to prevent races with calls to
4214 	 * zone_shutdown, zone_destroy, etc.
4215 	 */
4216 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4217 		mutex_exit(&zonehash_lock);
4218 		return (set_errno(EINVAL));
4219 	}
4220 
4221 	mutex_enter(&zone_status_lock);
4222 	if (zone_status_get(zone) != ZONE_IS_READY) {
4223 		mutex_exit(&zone_status_lock);
4224 		mutex_exit(&zonehash_lock);
4225 		return (set_errno(EINVAL));
4226 	}
4227 	zone_status_set(zone, ZONE_IS_BOOTING);
4228 	mutex_exit(&zone_status_lock);
4229 
4230 	zone_hold(zone);	/* so we can use the zone_t later */
4231 	mutex_exit(&zonehash_lock);
4232 
4233 	if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) {
4234 		zone_rele(zone);
4235 		return (set_errno(EINTR));
4236 	}
4237 
4238 	/*
4239 	 * Boot (starting init) might have failed, in which case the zone
4240 	 * will go to the SHUTTING_DOWN state; an appropriate errno will
4241 	 * be placed in zone->zone_boot_err, and so we return that.
4242 	 */
4243 	err = zone->zone_boot_err;
4244 	zone_rele(zone);
4245 	return (err ? set_errno(err) : 0);
4246 }
4247 
4248 /*
4249  * Kills all user processes in the zone, waiting for them all to exit
4250  * before returning.
4251  */
4252 static int
4253 zone_empty(zone_t *zone)
4254 {
4255 	int waitstatus;
4256 
4257 	/*
4258 	 * We need to drop zonehash_lock before killing all
4259 	 * processes, otherwise we'll deadlock with zone_find_*
4260 	 * which can be called from the exit path.
4261 	 */
4262 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
4263 	while ((waitstatus = zone_status_timedwait_sig(zone,
4264 	    ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) {
4265 		killall(zone->zone_id);
4266 	}
4267 	/*
4268 	 * return EINTR if we were signaled
4269 	 */
4270 	if (waitstatus == 0)
4271 		return (EINTR);
4272 	return (0);
4273 }
4274 
4275 /*
4276  * This function implements the policy for zone visibility.
4277  *
4278  * In standard Solaris, a non-global zone can only see itself.
4279  *
4280  * In Trusted Extensions, a labeled zone can lookup any zone whose label
4281  * it dominates. For this test, the label of the global zone is treated as
4282  * admin_high so it is special-cased instead of being checked for dominance.
4283  *
4284  * Returns true if zone attributes are viewable, false otherwise.
4285  */
4286 static boolean_t
4287 zone_list_access(zone_t *zone)
4288 {
4289 
4290 	if (curproc->p_zone == global_zone ||
4291 	    curproc->p_zone == zone) {
4292 		return (B_TRUE);
4293 	} else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4294 		bslabel_t *curproc_label;
4295 		bslabel_t *zone_label;
4296 
4297 		curproc_label = label2bslabel(curproc->p_zone->zone_slabel);
4298 		zone_label = label2bslabel(zone->zone_slabel);
4299 
4300 		if (zone->zone_id != GLOBAL_ZONEID &&
4301 		    bldominates(curproc_label, zone_label)) {
4302 			return (B_TRUE);
4303 		} else {
4304 			return (B_FALSE);
4305 		}
4306 	} else {
4307 		return (B_FALSE);
4308 	}
4309 }
4310 
4311 /*
4312  * Systemcall to start the zone's halt sequence.  By the time this
4313  * function successfully returns, all user processes and kernel threads
4314  * executing in it will have exited, ZSD shutdown callbacks executed,
4315  * and the zone status set to ZONE_IS_DOWN.
4316  *
4317  * It is possible that the call will interrupt itself if the caller is the
4318  * parent of any process running in the zone, and doesn't have SIGCHLD blocked.
4319  */
4320 static int
4321 zone_shutdown(zoneid_t zoneid)
4322 {
4323 	int error;
4324 	zone_t *zone;
4325 	zone_status_t status;
4326 
4327 	if (secpolicy_zone_config(CRED()) != 0)
4328 		return (set_errno(EPERM));
4329 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4330 		return (set_errno(EINVAL));
4331 
4332 	/*
4333 	 * Block mounts so that VFS_MOUNT() can get an accurate view of
4334 	 * the zone's status with regards to ZONE_IS_SHUTTING down.
4335 	 *
4336 	 * e.g. NFS can fail the mount if it determines that the zone
4337 	 * has already begun the shutdown sequence.
4338 	 */
4339 	if (block_mounts() == 0)
4340 		return (set_errno(EINTR));
4341 	mutex_enter(&zonehash_lock);
4342 	/*
4343 	 * Look for zone under hash lock to prevent races with other
4344 	 * calls to zone_shutdown and zone_destroy.
4345 	 */
4346 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4347 		mutex_exit(&zonehash_lock);
4348 		resume_mounts();
4349 		return (set_errno(EINVAL));
4350 	}
4351 	mutex_enter(&zone_status_lock);
4352 	status = zone_status_get(zone);
4353 	/*
4354 	 * Fail if the zone isn't fully initialized yet.
4355 	 */
4356 	if (status < ZONE_IS_READY) {
4357 		mutex_exit(&zone_status_lock);
4358 		mutex_exit(&zonehash_lock);
4359 		resume_mounts();
4360 		return (set_errno(EINVAL));
4361 	}
4362 	/*
4363 	 * If conditions required for zone_shutdown() to return have been met,
4364 	 * return success.
4365 	 */
4366 	if (status >= ZONE_IS_DOWN) {
4367 		mutex_exit(&zone_status_lock);
4368 		mutex_exit(&zonehash_lock);
4369 		resume_mounts();
4370 		return (0);
4371 	}
4372 	/*
4373 	 * If zone_shutdown() hasn't been called before, go through the motions.
4374 	 * If it has, there's nothing to do but wait for the kernel threads to
4375 	 * drain.
4376 	 */
4377 	if (status < ZONE_IS_EMPTY) {
4378 		uint_t ntasks;
4379 
4380 		mutex_enter(&zone->zone_lock);
4381 		if ((ntasks = zone->zone_ntasks) != 1) {
4382 			/*
4383 			 * There's still stuff running.
4384 			 */
4385 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4386 		}
4387 		mutex_exit(&zone->zone_lock);
4388 		if (ntasks == 1) {
4389 			/*
4390 			 * The only way to create another task is through
4391 			 * zone_enter(), which will block until we drop
4392 			 * zonehash_lock.  The zone is empty.
4393 			 */
4394 			if (zone->zone_kthreads == NULL) {
4395 				/*
4396 				 * Skip ahead to ZONE_IS_DOWN
4397 				 */
4398 				zone_status_set(zone, ZONE_IS_DOWN);
4399 			} else {
4400 				zone_status_set(zone, ZONE_IS_EMPTY);
4401 			}
4402 		}
4403 	}
4404 	zone_hold(zone);	/* so we can use the zone_t later */
4405 	mutex_exit(&zone_status_lock);
4406 	mutex_exit(&zonehash_lock);
4407 	resume_mounts();
4408 
4409 	if (error = zone_empty(zone)) {
4410 		zone_rele(zone);
4411 		return (set_errno(error));
4412 	}
4413 	/*
4414 	 * After the zone status goes to ZONE_IS_DOWN this zone will no
4415 	 * longer be notified of changes to the pools configuration, so
4416 	 * in order to not end up with a stale pool pointer, we point
4417 	 * ourselves at the default pool and remove all resource
4418 	 * visibility.  This is especially important as the zone_t may
4419 	 * languish on the deathrow for a very long time waiting for
4420 	 * cred's to drain out.
4421 	 *
4422 	 * This rebinding of the zone can happen multiple times
4423 	 * (presumably due to interrupted or parallel systemcalls)
4424 	 * without any adverse effects.
4425 	 */
4426 	if (pool_lock_intr() != 0) {
4427 		zone_rele(zone);
4428 		return (set_errno(EINTR));
4429 	}
4430 	if (pool_state == POOL_ENABLED) {
4431 		mutex_enter(&cpu_lock);
4432 		zone_pool_set(zone, pool_default);
4433 		/*
4434 		 * The zone no longer needs to be able to see any cpus.
4435 		 */
4436 		zone_pset_set(zone, ZONE_PS_INVAL);
4437 		mutex_exit(&cpu_lock);
4438 	}
4439 	pool_unlock();
4440 
4441 	/*
4442 	 * ZSD shutdown callbacks can be executed multiple times, hence
4443 	 * it is safe to not be holding any locks across this call.
4444 	 */
4445 	zone_zsd_callbacks(zone, ZSD_SHUTDOWN);
4446 
4447 	mutex_enter(&zone_status_lock);
4448 	if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN)
4449 		zone_status_set(zone, ZONE_IS_DOWN);
4450 	mutex_exit(&zone_status_lock);
4451 
4452 	/*
4453 	 * Wait for kernel threads to drain.
4454 	 */
4455 	if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) {
4456 		zone_rele(zone);
4457 		return (set_errno(EINTR));
4458 	}
4459 
4460 	/*
4461 	 * Zone can be become down/destroyable even if the above wait
4462 	 * returns EINTR, so any code added here may never execute.
4463 	 * (i.e. don't add code here)
4464 	 */
4465 
4466 	zone_rele(zone);
4467 	return (0);
4468 }
4469 
4470 /*
4471  * Systemcall entry point to finalize the zone halt process.  The caller
4472  * must have already successfully called zone_shutdown().
4473  *
4474  * Upon successful completion, the zone will have been fully destroyed:
4475  * zsched will have exited, destructor callbacks executed, and the zone
4476  * removed from the list of active zones.
4477  */
4478 static int
4479 zone_destroy(zoneid_t zoneid)
4480 {
4481 	uint64_t uniqid;
4482 	zone_t *zone;
4483 	zone_status_t status;
4484 
4485 	if (secpolicy_zone_config(CRED()) != 0)
4486 		return (set_errno(EPERM));
4487 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4488 		return (set_errno(EINVAL));
4489 
4490 	mutex_enter(&zonehash_lock);
4491 	/*
4492 	 * Look for zone under hash lock to prevent races with other
4493 	 * calls to zone_destroy.
4494 	 */
4495 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4496 		mutex_exit(&zonehash_lock);
4497 		return (set_errno(EINVAL));
4498 	}
4499 
4500 	if (zone_mount_count(zone->zone_rootpath) != 0) {
4501 		mutex_exit(&zonehash_lock);
4502 		return (set_errno(EBUSY));
4503 	}
4504 	mutex_enter(&zone_status_lock);
4505 	status = zone_status_get(zone);
4506 	if (status < ZONE_IS_DOWN) {
4507 		mutex_exit(&zone_status_lock);
4508 		mutex_exit(&zonehash_lock);
4509 		return (set_errno(EBUSY));
4510 	} else if (status == ZONE_IS_DOWN) {
4511 		zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */
4512 	}
4513 	mutex_exit(&zone_status_lock);
4514 	zone_hold(zone);
4515 	mutex_exit(&zonehash_lock);
4516 
4517 	/*
4518 	 * wait for zsched to exit
4519 	 */
4520 	zone_status_wait(zone, ZONE_IS_DEAD);
4521 	zone_zsd_callbacks(zone, ZSD_DESTROY);
4522 	zone->zone_netstack = NULL;
4523 	uniqid = zone->zone_uniqid;
4524 	zone_rele(zone);
4525 	zone = NULL;	/* potentially free'd */
4526 
4527 	mutex_enter(&zonehash_lock);
4528 	for (; /* ever */; ) {
4529 		boolean_t unref;
4530 
4531 		if ((zone = zone_find_all_by_id(zoneid)) == NULL ||
4532 		    zone->zone_uniqid != uniqid) {
4533 			/*
4534 			 * The zone has gone away.  Necessary conditions
4535 			 * are met, so we return success.
4536 			 */
4537 			mutex_exit(&zonehash_lock);
4538 			return (0);
4539 		}
4540 		mutex_enter(&zone->zone_lock);
4541 		unref = ZONE_IS_UNREF(zone);
4542 		mutex_exit(&zone->zone_lock);
4543 		if (unref) {
4544 			/*
4545 			 * There is only one reference to the zone -- that
4546 			 * added when the zone was added to the hashtables --
4547 			 * and things will remain this way until we drop
4548 			 * zonehash_lock... we can go ahead and cleanup the
4549 			 * zone.
4550 			 */
4551 			break;
4552 		}
4553 
4554 		if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) {
4555 			/* Signaled */
4556 			mutex_exit(&zonehash_lock);
4557 			return (set_errno(EINTR));
4558 		}
4559 
4560 	}
4561 
4562 	/*
4563 	 * Remove CPU cap for this zone now since we're not going to
4564 	 * fail below this point.
4565 	 */
4566 	cpucaps_zone_remove(zone);
4567 
4568 	/* Get rid of the zone's kstats */
4569 	zone_kstat_delete(zone);
4570 
4571 	/* remove the pfexecd doors */
4572 	if (zone->zone_pfexecd != NULL) {
4573 		klpd_freelist(&zone->zone_pfexecd);
4574 		zone->zone_pfexecd = NULL;
4575 	}
4576 
4577 	/* free brand specific data */
4578 	if (ZONE_IS_BRANDED(zone))
4579 		ZBROP(zone)->b_free_brand_data(zone);
4580 
4581 	/* Say goodbye to brand framework. */
4582 	brand_unregister_zone(zone->zone_brand);
4583 
4584 	/*
4585 	 * It is now safe to let the zone be recreated; remove it from the
4586 	 * lists.  The memory will not be freed until the last cred
4587 	 * reference goes away.
4588 	 */
4589 	ASSERT(zonecount > 1);	/* must be > 1; can't destroy global zone */
4590 	zonecount--;
4591 	/* remove from active list and hash tables */
4592 	list_remove(&zone_active, zone);
4593 	(void) mod_hash_destroy(zonehashbyname,
4594 	    (mod_hash_key_t)zone->zone_name);
4595 	(void) mod_hash_destroy(zonehashbyid,
4596 	    (mod_hash_key_t)(uintptr_t)zone->zone_id);
4597 	if (zone->zone_flags & ZF_HASHED_LABEL)
4598 		(void) mod_hash_destroy(zonehashbylabel,
4599 		    (mod_hash_key_t)zone->zone_slabel);
4600 	mutex_exit(&zonehash_lock);
4601 
4602 	/*
4603 	 * Release the root vnode; we're not using it anymore.  Nor should any
4604 	 * other thread that might access it exist.
4605 	 */
4606 	if (zone->zone_rootvp != NULL) {
4607 		VN_RELE(zone->zone_rootvp);
4608 		zone->zone_rootvp = NULL;
4609 	}
4610 
4611 	/* add to deathrow list */
4612 	mutex_enter(&zone_deathrow_lock);
4613 	list_insert_tail(&zone_deathrow, zone);
4614 	mutex_exit(&zone_deathrow_lock);
4615 
4616 	/*
4617 	 * Drop last reference (which was added by zsched()), this will
4618 	 * free the zone unless there are outstanding cred references.
4619 	 */
4620 	zone_rele(zone);
4621 	return (0);
4622 }
4623 
4624 /*
4625  * Systemcall entry point for zone_getattr(2).
4626  */
4627 static ssize_t
4628 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
4629 {
4630 	size_t size;
4631 	int error = 0, err;
4632 	zone_t *zone;
4633 	char *zonepath;
4634 	char *outstr;
4635 	zone_status_t zone_status;
4636 	pid_t initpid;
4637 	boolean_t global = (curzone == global_zone);
4638 	boolean_t inzone = (curzone->zone_id == zoneid);
4639 	ushort_t flags;
4640 
4641 	mutex_enter(&zonehash_lock);
4642 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4643 		mutex_exit(&zonehash_lock);
4644 		return (set_errno(EINVAL));
4645 	}
4646 	zone_status = zone_status_get(zone);
4647 	if (zone_status < ZONE_IS_INITIALIZED) {
4648 		mutex_exit(&zonehash_lock);
4649 		return (set_errno(EINVAL));
4650 	}
4651 	zone_hold(zone);
4652 	mutex_exit(&zonehash_lock);
4653 
4654 	/*
4655 	 * If not in the global zone, don't show information about other zones,
4656 	 * unless the system is labeled and the local zone's label dominates
4657 	 * the other zone.
4658 	 */
4659 	if (!zone_list_access(zone)) {
4660 		zone_rele(zone);
4661 		return (set_errno(EINVAL));
4662 	}
4663 
4664 	switch (attr) {
4665 	case ZONE_ATTR_ROOT:
4666 		if (global) {
4667 			/*
4668 			 * Copy the path to trim the trailing "/" (except for
4669 			 * the global zone).
4670 			 */
4671 			if (zone != global_zone)
4672 				size = zone->zone_rootpathlen - 1;
4673 			else
4674 				size = zone->zone_rootpathlen;
4675 			zonepath = kmem_alloc(size, KM_SLEEP);
4676 			bcopy(zone->zone_rootpath, zonepath, size);
4677 			zonepath[size - 1] = '\0';
4678 		} else {
4679 			if (inzone || !is_system_labeled()) {
4680 				/*
4681 				 * Caller is not in the global zone.
4682 				 * if the query is on the current zone
4683 				 * or the system is not labeled,
4684 				 * just return faked-up path for current zone.
4685 				 */
4686 				zonepath = "/";
4687 				size = 2;
4688 			} else {
4689 				/*
4690 				 * Return related path for current zone.
4691 				 */
4692 				int prefix_len = strlen(zone_prefix);
4693 				int zname_len = strlen(zone->zone_name);
4694 
4695 				size = prefix_len + zname_len + 1;
4696 				zonepath = kmem_alloc(size, KM_SLEEP);
4697 				bcopy(zone_prefix, zonepath, prefix_len);
4698 				bcopy(zone->zone_name, zonepath +
4699 				    prefix_len, zname_len);
4700 				zonepath[size - 1] = '\0';
4701 			}
4702 		}
4703 		if (bufsize > size)
4704 			bufsize = size;
4705 		if (buf != NULL) {
4706 			err = copyoutstr(zonepath, buf, bufsize, NULL);
4707 			if (err != 0 && err != ENAMETOOLONG)
4708 				error = EFAULT;
4709 		}
4710 		if (global || (is_system_labeled() && !inzone))
4711 			kmem_free(zonepath, size);
4712 		break;
4713 
4714 	case ZONE_ATTR_NAME:
4715 		size = strlen(zone->zone_name) + 1;
4716 		if (bufsize > size)
4717 			bufsize = size;
4718 		if (buf != NULL) {
4719 			err = copyoutstr(zone->zone_name, buf, bufsize, NULL);
4720 			if (err != 0 && err != ENAMETOOLONG)
4721 				error = EFAULT;
4722 		}
4723 		break;
4724 
4725 	case ZONE_ATTR_STATUS:
4726 		/*
4727 		 * Since we're not holding zonehash_lock, the zone status
4728 		 * may be anything; leave it up to userland to sort it out.
4729 		 */
4730 		size = sizeof (zone_status);
4731 		if (bufsize > size)
4732 			bufsize = size;
4733 		zone_status = zone_status_get(zone);
4734 		if (buf != NULL &&
4735 		    copyout(&zone_status, buf, bufsize) != 0)
4736 			error = EFAULT;
4737 		break;
4738 	case ZONE_ATTR_FLAGS:
4739 		size = sizeof (zone->zone_flags);
4740 		if (bufsize > size)
4741 			bufsize = size;
4742 		flags = zone->zone_flags;
4743 		if (buf != NULL &&
4744 		    copyout(&flags, buf, bufsize) != 0)
4745 			error = EFAULT;
4746 		break;
4747 	case ZONE_ATTR_PRIVSET:
4748 		size = sizeof (priv_set_t);
4749 		if (bufsize > size)
4750 			bufsize = size;
4751 		if (buf != NULL &&
4752 		    copyout(zone->zone_privset, buf, bufsize) != 0)
4753 			error = EFAULT;
4754 		break;
4755 	case ZONE_ATTR_UNIQID:
4756 		size = sizeof (zone->zone_uniqid);
4757 		if (bufsize > size)
4758 			bufsize = size;
4759 		if (buf != NULL &&
4760 		    copyout(&zone->zone_uniqid, buf, bufsize) != 0)
4761 			error = EFAULT;
4762 		break;
4763 	case ZONE_ATTR_POOLID:
4764 		{
4765 			pool_t *pool;
4766 			poolid_t poolid;
4767 
4768 			if (pool_lock_intr() != 0) {
4769 				error = EINTR;
4770 				break;
4771 			}
4772 			pool = zone_pool_get(zone);
4773 			poolid = pool->pool_id;
4774 			pool_unlock();
4775 			size = sizeof (poolid);
4776 			if (bufsize > size)
4777 				bufsize = size;
4778 			if (buf != NULL && copyout(&poolid, buf, size) != 0)
4779 				error = EFAULT;
4780 		}
4781 		break;
4782 	case ZONE_ATTR_SLBL:
4783 		size = sizeof (bslabel_t);
4784 		if (bufsize > size)
4785 			bufsize = size;
4786 		if (zone->zone_slabel == NULL)
4787 			error = EINVAL;
4788 		else if (buf != NULL &&
4789 		    copyout(label2bslabel(zone->zone_slabel), buf,
4790 		    bufsize) != 0)
4791 			error = EFAULT;
4792 		break;
4793 	case ZONE_ATTR_INITPID:
4794 		size = sizeof (initpid);
4795 		if (bufsize > size)
4796 			bufsize = size;
4797 		initpid = zone->zone_proc_initpid;
4798 		if (initpid == -1) {
4799 			error = ESRCH;
4800 			break;
4801 		}
4802 		if (buf != NULL &&
4803 		    copyout(&initpid, buf, bufsize) != 0)
4804 			error = EFAULT;
4805 		break;
4806 	case ZONE_ATTR_BRAND:
4807 		size = strlen(zone->zone_brand->b_name) + 1;
4808 
4809 		if (bufsize > size)
4810 			bufsize = size;
4811 		if (buf != NULL) {
4812 			err = copyoutstr(zone->zone_brand->b_name, buf,
4813 			    bufsize, NULL);
4814 			if (err != 0 && err != ENAMETOOLONG)
4815 				error = EFAULT;
4816 		}
4817 		break;
4818 	case ZONE_ATTR_INITNAME:
4819 		size = strlen(zone->zone_initname) + 1;
4820 		if (bufsize > size)
4821 			bufsize = size;
4822 		if (buf != NULL) {
4823 			err = copyoutstr(zone->zone_initname, buf, bufsize,
4824 			    NULL);
4825 			if (err != 0 && err != ENAMETOOLONG)
4826 				error = EFAULT;
4827 		}
4828 		break;
4829 	case ZONE_ATTR_BOOTARGS:
4830 		if (zone->zone_bootargs == NULL)
4831 			outstr = "";
4832 		else
4833 			outstr = zone->zone_bootargs;
4834 		size = strlen(outstr) + 1;
4835 		if (bufsize > size)
4836 			bufsize = size;
4837 		if (buf != NULL) {
4838 			err = copyoutstr(outstr, buf, bufsize, NULL);
4839 			if (err != 0 && err != ENAMETOOLONG)
4840 				error = EFAULT;
4841 		}
4842 		break;
4843 	case ZONE_ATTR_PHYS_MCAP:
4844 		size = sizeof (zone->zone_phys_mcap);
4845 		if (bufsize > size)
4846 			bufsize = size;
4847 		if (buf != NULL &&
4848 		    copyout(&zone->zone_phys_mcap, buf, bufsize) != 0)
4849 			error = EFAULT;
4850 		break;
4851 	case ZONE_ATTR_SCHED_CLASS:
4852 		mutex_enter(&class_lock);
4853 
4854 		if (zone->zone_defaultcid >= loaded_classes)
4855 			outstr = "";
4856 		else
4857 			outstr = sclass[zone->zone_defaultcid].cl_name;
4858 		size = strlen(outstr) + 1;
4859 		if (bufsize > size)
4860 			bufsize = size;
4861 		if (buf != NULL) {
4862 			err = copyoutstr(outstr, buf, bufsize, NULL);
4863 			if (err != 0 && err != ENAMETOOLONG)
4864 				error = EFAULT;
4865 		}
4866 
4867 		mutex_exit(&class_lock);
4868 		break;
4869 	case ZONE_ATTR_HOSTID:
4870 		if (zone->zone_hostid != HW_INVALID_HOSTID &&
4871 		    bufsize == sizeof (zone->zone_hostid)) {
4872 			size = sizeof (zone->zone_hostid);
4873 			if (buf != NULL && copyout(&zone->zone_hostid, buf,
4874 			    bufsize) != 0)
4875 				error = EFAULT;
4876 		} else {
4877 			error = EINVAL;
4878 		}
4879 		break;
4880 	case ZONE_ATTR_FS_ALLOWED:
4881 		if (zone->zone_fs_allowed == NULL)
4882 			outstr = "";
4883 		else
4884 			outstr = zone->zone_fs_allowed;
4885 		size = strlen(outstr) + 1;
4886 		if (bufsize > size)
4887 			bufsize = size;
4888 		if (buf != NULL) {
4889 			err = copyoutstr(outstr, buf, bufsize, NULL);
4890 			if (err != 0 && err != ENAMETOOLONG)
4891 				error = EFAULT;
4892 		}
4893 		break;
4894 	default:
4895 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) {
4896 			size = bufsize;
4897 			error = ZBROP(zone)->b_getattr(zone, attr, buf, &size);
4898 		} else {
4899 			error = EINVAL;
4900 		}
4901 	}
4902 	zone_rele(zone);
4903 
4904 	if (error)
4905 		return (set_errno(error));
4906 	return ((ssize_t)size);
4907 }
4908 
4909 /*
4910  * Systemcall entry point for zone_setattr(2).
4911  */
4912 /*ARGSUSED*/
4913 static int
4914 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
4915 {
4916 	zone_t *zone;
4917 	zone_status_t zone_status;
4918 	int err;
4919 
4920 	if (secpolicy_zone_config(CRED()) != 0)
4921 		return (set_errno(EPERM));
4922 
4923 	/*
4924 	 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the
4925 	 * global zone.
4926 	 */
4927 	if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) {
4928 		return (set_errno(EINVAL));
4929 	}
4930 
4931 	mutex_enter(&zonehash_lock);
4932 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4933 		mutex_exit(&zonehash_lock);
4934 		return (set_errno(EINVAL));
4935 	}
4936 	zone_hold(zone);
4937 	mutex_exit(&zonehash_lock);
4938 
4939 	/*
4940 	 * At present most attributes can only be set on non-running,
4941 	 * non-global zones.
4942 	 */
4943 	zone_status = zone_status_get(zone);
4944 	if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY)
4945 		goto done;
4946 
4947 	switch (attr) {
4948 	case ZONE_ATTR_INITNAME:
4949 		err = zone_set_initname(zone, (const char *)buf);
4950 		break;
4951 	case ZONE_ATTR_BOOTARGS:
4952 		err = zone_set_bootargs(zone, (const char *)buf);
4953 		break;
4954 	case ZONE_ATTR_BRAND:
4955 		err = zone_set_brand(zone, (const char *)buf);
4956 		break;
4957 	case ZONE_ATTR_FS_ALLOWED:
4958 		err = zone_set_fs_allowed(zone, (const char *)buf);
4959 		break;
4960 	case ZONE_ATTR_PHYS_MCAP:
4961 		err = zone_set_phys_mcap(zone, (const uint64_t *)buf);
4962 		break;
4963 	case ZONE_ATTR_SCHED_CLASS:
4964 		err = zone_set_sched_class(zone, (const char *)buf);
4965 		break;
4966 	case ZONE_ATTR_HOSTID:
4967 		if (bufsize == sizeof (zone->zone_hostid)) {
4968 			if (copyin(buf, &zone->zone_hostid, bufsize) == 0)
4969 				err = 0;
4970 			else
4971 				err = EFAULT;
4972 		} else {
4973 			err = EINVAL;
4974 		}
4975 		break;
4976 	default:
4977 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone))
4978 			err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize);
4979 		else
4980 			err = EINVAL;
4981 	}
4982 
4983 done:
4984 	zone_rele(zone);
4985 	return (err != 0 ? set_errno(err) : 0);
4986 }
4987 
4988 /*
4989  * Return zero if the process has at least one vnode mapped in to its
4990  * address space which shouldn't be allowed to change zones.
4991  *
4992  * Also return zero if the process has any shared mappings which reserve
4993  * swap.  This is because the counting for zone.max-swap does not allow swap
4994  * reservation to be shared between zones.  zone swap reservation is counted
4995  * on zone->zone_max_swap.
4996  */
4997 static int
4998 as_can_change_zones(void)
4999 {
5000 	proc_t *pp = curproc;
5001 	struct seg *seg;
5002 	struct as *as = pp->p_as;
5003 	vnode_t *vp;
5004 	int allow = 1;
5005 
5006 	ASSERT(pp->p_as != &kas);
5007 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
5008 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
5009 
5010 		/*
5011 		 * Cannot enter zone with shared anon memory which
5012 		 * reserves swap.  See comment above.
5013 		 */
5014 		if (seg_can_change_zones(seg) == B_FALSE) {
5015 			allow = 0;
5016 			break;
5017 		}
5018 		/*
5019 		 * if we can't get a backing vnode for this segment then skip
5020 		 * it.
5021 		 */
5022 		vp = NULL;
5023 		if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL)
5024 			continue;
5025 		if (!vn_can_change_zones(vp)) { /* bail on first match */
5026 			allow = 0;
5027 			break;
5028 		}
5029 	}
5030 	AS_LOCK_EXIT(as, &as->a_lock);
5031 	return (allow);
5032 }
5033 
5034 /*
5035  * Count swap reserved by curproc's address space
5036  */
5037 static size_t
5038 as_swresv(void)
5039 {
5040 	proc_t *pp = curproc;
5041 	struct seg *seg;
5042 	struct as *as = pp->p_as;
5043 	size_t swap = 0;
5044 
5045 	ASSERT(pp->p_as != &kas);
5046 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
5047 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg))
5048 		swap += seg_swresv(seg);
5049 
5050 	return (swap);
5051 }
5052 
5053 /*
5054  * Systemcall entry point for zone_enter().
5055  *
5056  * The current process is injected into said zone.  In the process
5057  * it will change its project membership, privileges, rootdir/cwd,
5058  * zone-wide rctls, and pool association to match those of the zone.
5059  *
5060  * The first zone_enter() called while the zone is in the ZONE_IS_READY
5061  * state will transition it to ZONE_IS_RUNNING.  Processes may only
5062  * enter a zone that is "ready" or "running".
5063  */
5064 static int
5065 zone_enter(zoneid_t zoneid)
5066 {
5067 	zone_t *zone;
5068 	vnode_t *vp;
5069 	proc_t *pp = curproc;
5070 	contract_t *ct;
5071 	cont_process_t *ctp;
5072 	task_t *tk, *oldtk;
5073 	kproject_t *zone_proj0;
5074 	cred_t *cr, *newcr;
5075 	pool_t *oldpool, *newpool;
5076 	sess_t *sp;
5077 	uid_t uid;
5078 	zone_status_t status;
5079 	int err = 0;
5080 	rctl_entity_p_t e;
5081 	size_t swap;
5082 	kthread_id_t t;
5083 
5084 	if (secpolicy_zone_config(CRED()) != 0)
5085 		return (set_errno(EPERM));
5086 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5087 		return (set_errno(EINVAL));
5088 
5089 	/*
5090 	 * Stop all lwps so we don't need to hold a lock to look at
5091 	 * curproc->p_zone.  This needs to happen before we grab any
5092 	 * locks to avoid deadlock (another lwp in the process could
5093 	 * be waiting for the held lock).
5094 	 */
5095 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK))
5096 		return (set_errno(EINTR));
5097 
5098 	/*
5099 	 * Make sure we're not changing zones with files open or mapped in
5100 	 * to our address space which shouldn't be changing zones.
5101 	 */
5102 	if (!files_can_change_zones()) {
5103 		err = EBADF;
5104 		goto out;
5105 	}
5106 	if (!as_can_change_zones()) {
5107 		err = EFAULT;
5108 		goto out;
5109 	}
5110 
5111 	mutex_enter(&zonehash_lock);
5112 	if (pp->p_zone != global_zone) {
5113 		mutex_exit(&zonehash_lock);
5114 		err = EINVAL;
5115 		goto out;
5116 	}
5117 
5118 	zone = zone_find_all_by_id(zoneid);
5119 	if (zone == NULL) {
5120 		mutex_exit(&zonehash_lock);
5121 		err = EINVAL;
5122 		goto out;
5123 	}
5124 
5125 	/*
5126 	 * To prevent processes in a zone from holding contracts on
5127 	 * extrazonal resources, and to avoid process contract
5128 	 * memberships which span zones, contract holders and processes
5129 	 * which aren't the sole members of their encapsulating process
5130 	 * contracts are not allowed to zone_enter.
5131 	 */
5132 	ctp = pp->p_ct_process;
5133 	ct = &ctp->conp_contract;
5134 	mutex_enter(&ct->ct_lock);
5135 	mutex_enter(&pp->p_lock);
5136 	if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) {
5137 		mutex_exit(&pp->p_lock);
5138 		mutex_exit(&ct->ct_lock);
5139 		mutex_exit(&zonehash_lock);
5140 		err = EINVAL;
5141 		goto out;
5142 	}
5143 
5144 	/*
5145 	 * Moreover, we don't allow processes whose encapsulating
5146 	 * process contracts have inherited extrazonal contracts.
5147 	 * While it would be easier to eliminate all process contracts
5148 	 * with inherited contracts, we need to be able to give a
5149 	 * restarted init (or other zone-penetrating process) its
5150 	 * predecessor's contracts.
5151 	 */
5152 	if (ctp->conp_ninherited != 0) {
5153 		contract_t *next;
5154 		for (next = list_head(&ctp->conp_inherited); next;
5155 		    next = list_next(&ctp->conp_inherited, next)) {
5156 			if (contract_getzuniqid(next) != zone->zone_uniqid) {
5157 				mutex_exit(&pp->p_lock);
5158 				mutex_exit(&ct->ct_lock);
5159 				mutex_exit(&zonehash_lock);
5160 				err = EINVAL;
5161 				goto out;
5162 			}
5163 		}
5164 	}
5165 
5166 	mutex_exit(&pp->p_lock);
5167 	mutex_exit(&ct->ct_lock);
5168 
5169 	status = zone_status_get(zone);
5170 	if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) {
5171 		/*
5172 		 * Can't join
5173 		 */
5174 		mutex_exit(&zonehash_lock);
5175 		err = EINVAL;
5176 		goto out;
5177 	}
5178 
5179 	/*
5180 	 * Make sure new priv set is within the permitted set for caller
5181 	 */
5182 	if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) {
5183 		mutex_exit(&zonehash_lock);
5184 		err = EPERM;
5185 		goto out;
5186 	}
5187 	/*
5188 	 * We want to momentarily drop zonehash_lock while we optimistically
5189 	 * bind curproc to the pool it should be running in.  This is safe
5190 	 * since the zone can't disappear (we have a hold on it).
5191 	 */
5192 	zone_hold(zone);
5193 	mutex_exit(&zonehash_lock);
5194 
5195 	/*
5196 	 * Grab pool_lock to keep the pools configuration from changing
5197 	 * and to stop ourselves from getting rebound to another pool
5198 	 * until we join the zone.
5199 	 */
5200 	if (pool_lock_intr() != 0) {
5201 		zone_rele(zone);
5202 		err = EINTR;
5203 		goto out;
5204 	}
5205 	ASSERT(secpolicy_pool(CRED()) == 0);
5206 	/*
5207 	 * Bind ourselves to the pool currently associated with the zone.
5208 	 */
5209 	oldpool = curproc->p_pool;
5210 	newpool = zone_pool_get(zone);
5211 	if (pool_state == POOL_ENABLED && newpool != oldpool &&
5212 	    (err = pool_do_bind(newpool, P_PID, P_MYID,
5213 	    POOL_BIND_ALL)) != 0) {
5214 		pool_unlock();
5215 		zone_rele(zone);
5216 		goto out;
5217 	}
5218 
5219 	/*
5220 	 * Grab cpu_lock now; we'll need it later when we call
5221 	 * task_join().
5222 	 */
5223 	mutex_enter(&cpu_lock);
5224 	mutex_enter(&zonehash_lock);
5225 	/*
5226 	 * Make sure the zone hasn't moved on since we dropped zonehash_lock.
5227 	 */
5228 	if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
5229 		/*
5230 		 * Can't join anymore.
5231 		 */
5232 		mutex_exit(&zonehash_lock);
5233 		mutex_exit(&cpu_lock);
5234 		if (pool_state == POOL_ENABLED &&
5235 		    newpool != oldpool)
5236 			(void) pool_do_bind(oldpool, P_PID, P_MYID,
5237 			    POOL_BIND_ALL);
5238 		pool_unlock();
5239 		zone_rele(zone);
5240 		err = EINVAL;
5241 		goto out;
5242 	}
5243 
5244 	/*
5245 	 * a_lock must be held while transfering locked memory and swap
5246 	 * reservation from the global zone to the non global zone because
5247 	 * asynchronous faults on the processes' address space can lock
5248 	 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE
5249 	 * segments respectively.
5250 	 */
5251 	AS_LOCK_ENTER(pp->as, &pp->p_as->a_lock, RW_WRITER);
5252 	swap = as_swresv();
5253 	mutex_enter(&pp->p_lock);
5254 	zone_proj0 = zone->zone_zsched->p_task->tk_proj;
5255 	/* verify that we do not exceed and task or lwp limits */
5256 	mutex_enter(&zone->zone_nlwps_lock);
5257 	/* add new lwps to zone and zone's proj0 */
5258 	zone_proj0->kpj_nlwps += pp->p_lwpcnt;
5259 	zone->zone_nlwps += pp->p_lwpcnt;
5260 	/* add 1 task to zone's proj0 */
5261 	zone_proj0->kpj_ntasks += 1;
5262 	mutex_exit(&zone->zone_nlwps_lock);
5263 
5264 	mutex_enter(&zone->zone_mem_lock);
5265 	zone->zone_locked_mem += pp->p_locked_mem;
5266 	zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem;
5267 	zone->zone_max_swap += swap;
5268 	mutex_exit(&zone->zone_mem_lock);
5269 
5270 	mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock));
5271 	zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem;
5272 	mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock));
5273 
5274 	/* remove lwps from proc's old zone and old project */
5275 	mutex_enter(&pp->p_zone->zone_nlwps_lock);
5276 	pp->p_zone->zone_nlwps -= pp->p_lwpcnt;
5277 	pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt;
5278 	mutex_exit(&pp->p_zone->zone_nlwps_lock);
5279 
5280 	mutex_enter(&pp->p_zone->zone_mem_lock);
5281 	pp->p_zone->zone_locked_mem -= pp->p_locked_mem;
5282 	pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
5283 	pp->p_zone->zone_max_swap -= swap;
5284 	mutex_exit(&pp->p_zone->zone_mem_lock);
5285 
5286 	mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5287 	pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem;
5288 	mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5289 
5290 	pp->p_flag |= SZONETOP;
5291 	pp->p_zone = zone;
5292 	mutex_exit(&pp->p_lock);
5293 	AS_LOCK_EXIT(pp->p_as, &pp->p_as->a_lock);
5294 
5295 	/*
5296 	 * Joining the zone cannot fail from now on.
5297 	 *
5298 	 * This means that a lot of the following code can be commonized and
5299 	 * shared with zsched().
5300 	 */
5301 
5302 	/*
5303 	 * If the process contract fmri was inherited, we need to
5304 	 * flag this so that any contract status will not leak
5305 	 * extra zone information, svc_fmri in this case
5306 	 */
5307 	if (ctp->conp_svc_ctid != ct->ct_id) {
5308 		mutex_enter(&ct->ct_lock);
5309 		ctp->conp_svc_zone_enter = ct->ct_id;
5310 		mutex_exit(&ct->ct_lock);
5311 	}
5312 
5313 	/*
5314 	 * Reset the encapsulating process contract's zone.
5315 	 */
5316 	ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID);
5317 	contract_setzuniqid(ct, zone->zone_uniqid);
5318 
5319 	/*
5320 	 * Create a new task and associate the process with the project keyed
5321 	 * by (projid,zoneid).
5322 	 *
5323 	 * We might as well be in project 0; the global zone's projid doesn't
5324 	 * make much sense in a zone anyhow.
5325 	 *
5326 	 * This also increments zone_ntasks, and returns with p_lock held.
5327 	 */
5328 	tk = task_create(0, zone);
5329 	oldtk = task_join(tk, 0);
5330 	mutex_exit(&cpu_lock);
5331 
5332 	/*
5333 	 * call RCTLOP_SET functions on this proc
5334 	 */
5335 	e.rcep_p.zone = zone;
5336 	e.rcep_t = RCENTITY_ZONE;
5337 	(void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL,
5338 	    RCD_CALLBACK);
5339 	mutex_exit(&pp->p_lock);
5340 
5341 	/*
5342 	 * We don't need to hold any of zsched's locks here; not only do we know
5343 	 * the process and zone aren't going away, we know its session isn't
5344 	 * changing either.
5345 	 *
5346 	 * By joining zsched's session here, we mimic the behavior in the
5347 	 * global zone of init's sid being the pid of sched.  We extend this
5348 	 * to all zlogin-like zone_enter()'ing processes as well.
5349 	 */
5350 	mutex_enter(&pidlock);
5351 	sp = zone->zone_zsched->p_sessp;
5352 	sess_hold(zone->zone_zsched);
5353 	mutex_enter(&pp->p_lock);
5354 	pgexit(pp);
5355 	sess_rele(pp->p_sessp, B_TRUE);
5356 	pp->p_sessp = sp;
5357 	pgjoin(pp, zone->zone_zsched->p_pidp);
5358 
5359 	/*
5360 	 * If any threads are scheduled to be placed on zone wait queue they
5361 	 * should abandon the idea since the wait queue is changing.
5362 	 * We need to be holding pidlock & p_lock to do this.
5363 	 */
5364 	if ((t = pp->p_tlist) != NULL) {
5365 		do {
5366 			thread_lock(t);
5367 			/*
5368 			 * Kick this thread so that he doesn't sit
5369 			 * on a wrong wait queue.
5370 			 */
5371 			if (ISWAITING(t))
5372 				setrun_locked(t);
5373 
5374 			if (t->t_schedflag & TS_ANYWAITQ)
5375 				t->t_schedflag &= ~ TS_ANYWAITQ;
5376 
5377 			thread_unlock(t);
5378 		} while ((t = t->t_forw) != pp->p_tlist);
5379 	}
5380 
5381 	/*
5382 	 * If there is a default scheduling class for the zone and it is not
5383 	 * the class we are currently in, change all of the threads in the
5384 	 * process to the new class.  We need to be holding pidlock & p_lock
5385 	 * when we call parmsset so this is a good place to do it.
5386 	 */
5387 	if (zone->zone_defaultcid > 0 &&
5388 	    zone->zone_defaultcid != curthread->t_cid) {
5389 		pcparms_t pcparms;
5390 
5391 		pcparms.pc_cid = zone->zone_defaultcid;
5392 		pcparms.pc_clparms[0] = 0;
5393 
5394 		/*
5395 		 * If setting the class fails, we still want to enter the zone.
5396 		 */
5397 		if ((t = pp->p_tlist) != NULL) {
5398 			do {
5399 				(void) parmsset(&pcparms, t);
5400 			} while ((t = t->t_forw) != pp->p_tlist);
5401 		}
5402 	}
5403 
5404 	mutex_exit(&pp->p_lock);
5405 	mutex_exit(&pidlock);
5406 
5407 	mutex_exit(&zonehash_lock);
5408 	/*
5409 	 * We're firmly in the zone; let pools progress.
5410 	 */
5411 	pool_unlock();
5412 	task_rele(oldtk);
5413 	/*
5414 	 * We don't need to retain a hold on the zone since we already
5415 	 * incremented zone_ntasks, so the zone isn't going anywhere.
5416 	 */
5417 	zone_rele(zone);
5418 
5419 	/*
5420 	 * Chroot
5421 	 */
5422 	vp = zone->zone_rootvp;
5423 	zone_chdir(vp, &PTOU(pp)->u_cdir, pp);
5424 	zone_chdir(vp, &PTOU(pp)->u_rdir, pp);
5425 
5426 	/*
5427 	 * Change process credentials
5428 	 */
5429 	newcr = cralloc();
5430 	mutex_enter(&pp->p_crlock);
5431 	cr = pp->p_cred;
5432 	crcopy_to(cr, newcr);
5433 	crsetzone(newcr, zone);
5434 	pp->p_cred = newcr;
5435 
5436 	/*
5437 	 * Restrict all process privilege sets to zone limit
5438 	 */
5439 	priv_intersect(zone->zone_privset, &CR_PPRIV(newcr));
5440 	priv_intersect(zone->zone_privset, &CR_EPRIV(newcr));
5441 	priv_intersect(zone->zone_privset, &CR_IPRIV(newcr));
5442 	priv_intersect(zone->zone_privset, &CR_LPRIV(newcr));
5443 	mutex_exit(&pp->p_crlock);
5444 	crset(pp, newcr);
5445 
5446 	/*
5447 	 * Adjust upcount to reflect zone entry.
5448 	 */
5449 	uid = crgetruid(newcr);
5450 	mutex_enter(&pidlock);
5451 	upcount_dec(uid, GLOBAL_ZONEID);
5452 	upcount_inc(uid, zoneid);
5453 	mutex_exit(&pidlock);
5454 
5455 	/*
5456 	 * Set up core file path and content.
5457 	 */
5458 	set_core_defaults();
5459 
5460 out:
5461 	/*
5462 	 * Let the other lwps continue.
5463 	 */
5464 	mutex_enter(&pp->p_lock);
5465 	if (curthread != pp->p_agenttp)
5466 		continuelwps(pp);
5467 	mutex_exit(&pp->p_lock);
5468 
5469 	return (err != 0 ? set_errno(err) : 0);
5470 }
5471 
5472 /*
5473  * Systemcall entry point for zone_list(2).
5474  *
5475  * Processes running in a (non-global) zone only see themselves.
5476  * On labeled systems, they see all zones whose label they dominate.
5477  */
5478 static int
5479 zone_list(zoneid_t *zoneidlist, uint_t *numzones)
5480 {
5481 	zoneid_t *zoneids;
5482 	zone_t *zone, *myzone;
5483 	uint_t user_nzones, real_nzones;
5484 	uint_t domi_nzones;
5485 	int error;
5486 
5487 	if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0)
5488 		return (set_errno(EFAULT));
5489 
5490 	myzone = curproc->p_zone;
5491 	if (myzone != global_zone) {
5492 		bslabel_t *mybslab;
5493 
5494 		if (!is_system_labeled()) {
5495 			/* just return current zone */
5496 			real_nzones = domi_nzones = 1;
5497 			zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP);
5498 			zoneids[0] = myzone->zone_id;
5499 		} else {
5500 			/* return all zones that are dominated */
5501 			mutex_enter(&zonehash_lock);
5502 			real_nzones = zonecount;
5503 			domi_nzones = 0;
5504 			if (real_nzones > 0) {
5505 				zoneids = kmem_alloc(real_nzones *
5506 				    sizeof (zoneid_t), KM_SLEEP);
5507 				mybslab = label2bslabel(myzone->zone_slabel);
5508 				for (zone = list_head(&zone_active);
5509 				    zone != NULL;
5510 				    zone = list_next(&zone_active, zone)) {
5511 					if (zone->zone_id == GLOBAL_ZONEID)
5512 						continue;
5513 					if (zone != myzone &&
5514 					    (zone->zone_flags & ZF_IS_SCRATCH))
5515 						continue;
5516 					/*
5517 					 * Note that a label always dominates
5518 					 * itself, so myzone is always included
5519 					 * in the list.
5520 					 */
5521 					if (bldominates(mybslab,
5522 					    label2bslabel(zone->zone_slabel))) {
5523 						zoneids[domi_nzones++] =
5524 						    zone->zone_id;
5525 					}
5526 				}
5527 			}
5528 			mutex_exit(&zonehash_lock);
5529 		}
5530 	} else {
5531 		mutex_enter(&zonehash_lock);
5532 		real_nzones = zonecount;
5533 		domi_nzones = 0;
5534 		if (real_nzones > 0) {
5535 			zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t),
5536 			    KM_SLEEP);
5537 			for (zone = list_head(&zone_active); zone != NULL;
5538 			    zone = list_next(&zone_active, zone))
5539 				zoneids[domi_nzones++] = zone->zone_id;
5540 			ASSERT(domi_nzones == real_nzones);
5541 		}
5542 		mutex_exit(&zonehash_lock);
5543 	}
5544 
5545 	/*
5546 	 * If user has allocated space for fewer entries than we found, then
5547 	 * return only up to his limit.  Either way, tell him exactly how many
5548 	 * we found.
5549 	 */
5550 	if (domi_nzones < user_nzones)
5551 		user_nzones = domi_nzones;
5552 	error = 0;
5553 	if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) {
5554 		error = EFAULT;
5555 	} else if (zoneidlist != NULL && user_nzones != 0) {
5556 		if (copyout(zoneids, zoneidlist,
5557 		    user_nzones * sizeof (zoneid_t)) != 0)
5558 			error = EFAULT;
5559 	}
5560 
5561 	if (real_nzones > 0)
5562 		kmem_free(zoneids, real_nzones * sizeof (zoneid_t));
5563 
5564 	if (error != 0)
5565 		return (set_errno(error));
5566 	else
5567 		return (0);
5568 }
5569 
5570 /*
5571  * Systemcall entry point for zone_lookup(2).
5572  *
5573  * Non-global zones are only able to see themselves and (on labeled systems)
5574  * the zones they dominate.
5575  */
5576 static zoneid_t
5577 zone_lookup(const char *zone_name)
5578 {
5579 	char *kname;
5580 	zone_t *zone;
5581 	zoneid_t zoneid;
5582 	int err;
5583 
5584 	if (zone_name == NULL) {
5585 		/* return caller's zone id */
5586 		return (getzoneid());
5587 	}
5588 
5589 	kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
5590 	if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) {
5591 		kmem_free(kname, ZONENAME_MAX);
5592 		return (set_errno(err));
5593 	}
5594 
5595 	mutex_enter(&zonehash_lock);
5596 	zone = zone_find_all_by_name(kname);
5597 	kmem_free(kname, ZONENAME_MAX);
5598 	/*
5599 	 * In a non-global zone, can only lookup global and own name.
5600 	 * In Trusted Extensions zone label dominance rules apply.
5601 	 */
5602 	if (zone == NULL ||
5603 	    zone_status_get(zone) < ZONE_IS_READY ||
5604 	    !zone_list_access(zone)) {
5605 		mutex_exit(&zonehash_lock);
5606 		return (set_errno(EINVAL));
5607 	} else {
5608 		zoneid = zone->zone_id;
5609 		mutex_exit(&zonehash_lock);
5610 		return (zoneid);
5611 	}
5612 }
5613 
5614 static int
5615 zone_version(int *version_arg)
5616 {
5617 	int version = ZONE_SYSCALL_API_VERSION;
5618 
5619 	if (copyout(&version, version_arg, sizeof (int)) != 0)
5620 		return (set_errno(EFAULT));
5621 	return (0);
5622 }
5623 
5624 /* ARGSUSED */
5625 long
5626 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
5627 {
5628 	zone_def zs;
5629 	int err;
5630 
5631 	switch (cmd) {
5632 	case ZONE_CREATE:
5633 		if (get_udatamodel() == DATAMODEL_NATIVE) {
5634 			if (copyin(arg1, &zs, sizeof (zone_def))) {
5635 				return (set_errno(EFAULT));
5636 			}
5637 		} else {
5638 #ifdef _SYSCALL32_IMPL
5639 			zone_def32 zs32;
5640 
5641 			if (copyin(arg1, &zs32, sizeof (zone_def32))) {
5642 				return (set_errno(EFAULT));
5643 			}
5644 			zs.zone_name =
5645 			    (const char *)(unsigned long)zs32.zone_name;
5646 			zs.zone_root =
5647 			    (const char *)(unsigned long)zs32.zone_root;
5648 			zs.zone_privs =
5649 			    (const struct priv_set *)
5650 			    (unsigned long)zs32.zone_privs;
5651 			zs.zone_privssz = zs32.zone_privssz;
5652 			zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf;
5653 			zs.rctlbufsz = zs32.rctlbufsz;
5654 			zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf;
5655 			zs.zfsbufsz = zs32.zfsbufsz;
5656 			zs.extended_error =
5657 			    (int *)(unsigned long)zs32.extended_error;
5658 			zs.match = zs32.match;
5659 			zs.doi = zs32.doi;
5660 			zs.label = (const bslabel_t *)(uintptr_t)zs32.label;
5661 			zs.flags = zs32.flags;
5662 #else
5663 			panic("get_udatamodel() returned bogus result\n");
5664 #endif
5665 		}
5666 
5667 		return (zone_create(zs.zone_name, zs.zone_root,
5668 		    zs.zone_privs, zs.zone_privssz,
5669 		    (caddr_t)zs.rctlbuf, zs.rctlbufsz,
5670 		    (caddr_t)zs.zfsbuf, zs.zfsbufsz,
5671 		    zs.extended_error, zs.match, zs.doi,
5672 		    zs.label, zs.flags));
5673 	case ZONE_BOOT:
5674 		return (zone_boot((zoneid_t)(uintptr_t)arg1));
5675 	case ZONE_DESTROY:
5676 		return (zone_destroy((zoneid_t)(uintptr_t)arg1));
5677 	case ZONE_GETATTR:
5678 		return (zone_getattr((zoneid_t)(uintptr_t)arg1,
5679 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
5680 	case ZONE_SETATTR:
5681 		return (zone_setattr((zoneid_t)(uintptr_t)arg1,
5682 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
5683 	case ZONE_ENTER:
5684 		return (zone_enter((zoneid_t)(uintptr_t)arg1));
5685 	case ZONE_LIST:
5686 		return (zone_list((zoneid_t *)arg1, (uint_t *)arg2));
5687 	case ZONE_SHUTDOWN:
5688 		return (zone_shutdown((zoneid_t)(uintptr_t)arg1));
5689 	case ZONE_LOOKUP:
5690 		return (zone_lookup((const char *)arg1));
5691 	case ZONE_VERSION:
5692 		return (zone_version((int *)arg1));
5693 	case ZONE_ADD_DATALINK:
5694 		return (zone_add_datalink((zoneid_t)(uintptr_t)arg1,
5695 		    (datalink_id_t)(uintptr_t)arg2));
5696 	case ZONE_DEL_DATALINK:
5697 		return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1,
5698 		    (datalink_id_t)(uintptr_t)arg2));
5699 	case ZONE_CHECK_DATALINK: {
5700 		zoneid_t	zoneid;
5701 		boolean_t	need_copyout;
5702 
5703 		if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0)
5704 			return (EFAULT);
5705 		need_copyout = (zoneid == ALL_ZONES);
5706 		err = zone_check_datalink(&zoneid,
5707 		    (datalink_id_t)(uintptr_t)arg2);
5708 		if (err == 0 && need_copyout) {
5709 			if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0)
5710 				err = EFAULT;
5711 		}
5712 		return (err == 0 ? 0 : set_errno(err));
5713 	}
5714 	case ZONE_LIST_DATALINK:
5715 		return (zone_list_datalink((zoneid_t)(uintptr_t)arg1,
5716 		    (int *)arg2, (datalink_id_t *)(uintptr_t)arg3));
5717 	default:
5718 		return (set_errno(EINVAL));
5719 	}
5720 }
5721 
5722 struct zarg {
5723 	zone_t *zone;
5724 	zone_cmd_arg_t arg;
5725 };
5726 
5727 static int
5728 zone_lookup_door(const char *zone_name, door_handle_t *doorp)
5729 {
5730 	char *buf;
5731 	size_t buflen;
5732 	int error;
5733 
5734 	buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name);
5735 	buf = kmem_alloc(buflen, KM_SLEEP);
5736 	(void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name);
5737 	error = door_ki_open(buf, doorp);
5738 	kmem_free(buf, buflen);
5739 	return (error);
5740 }
5741 
5742 static void
5743 zone_release_door(door_handle_t *doorp)
5744 {
5745 	door_ki_rele(*doorp);
5746 	*doorp = NULL;
5747 }
5748 
5749 static void
5750 zone_ki_call_zoneadmd(struct zarg *zargp)
5751 {
5752 	door_handle_t door = NULL;
5753 	door_arg_t darg, save_arg;
5754 	char *zone_name;
5755 	size_t zone_namelen;
5756 	zoneid_t zoneid;
5757 	zone_t *zone;
5758 	zone_cmd_arg_t arg;
5759 	uint64_t uniqid;
5760 	size_t size;
5761 	int error;
5762 	int retry;
5763 
5764 	zone = zargp->zone;
5765 	arg = zargp->arg;
5766 	kmem_free(zargp, sizeof (*zargp));
5767 
5768 	zone_namelen = strlen(zone->zone_name) + 1;
5769 	zone_name = kmem_alloc(zone_namelen, KM_SLEEP);
5770 	bcopy(zone->zone_name, zone_name, zone_namelen);
5771 	zoneid = zone->zone_id;
5772 	uniqid = zone->zone_uniqid;
5773 	/*
5774 	 * zoneadmd may be down, but at least we can empty out the zone.
5775 	 * We can ignore the return value of zone_empty() since we're called
5776 	 * from a kernel thread and know we won't be delivered any signals.
5777 	 */
5778 	ASSERT(curproc == &p0);
5779 	(void) zone_empty(zone);
5780 	ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY);
5781 	zone_rele(zone);
5782 
5783 	size = sizeof (arg);
5784 	darg.rbuf = (char *)&arg;
5785 	darg.data_ptr = (char *)&arg;
5786 	darg.rsize = size;
5787 	darg.data_size = size;
5788 	darg.desc_ptr = NULL;
5789 	darg.desc_num = 0;
5790 
5791 	save_arg = darg;
5792 	/*
5793 	 * Since we're not holding a reference to the zone, any number of
5794 	 * things can go wrong, including the zone disappearing before we get a
5795 	 * chance to talk to zoneadmd.
5796 	 */
5797 	for (retry = 0; /* forever */; retry++) {
5798 		if (door == NULL &&
5799 		    (error = zone_lookup_door(zone_name, &door)) != 0) {
5800 			goto next;
5801 		}
5802 		ASSERT(door != NULL);
5803 
5804 		if ((error = door_ki_upcall_limited(door, &darg, NULL,
5805 		    SIZE_MAX, 0)) == 0) {
5806 			break;
5807 		}
5808 		switch (error) {
5809 		case EINTR:
5810 			/* FALLTHROUGH */
5811 		case EAGAIN:	/* process may be forking */
5812 			/*
5813 			 * Back off for a bit
5814 			 */
5815 			break;
5816 		case EBADF:
5817 			zone_release_door(&door);
5818 			if (zone_lookup_door(zone_name, &door) != 0) {
5819 				/*
5820 				 * zoneadmd may be dead, but it may come back to
5821 				 * life later.
5822 				 */
5823 				break;
5824 			}
5825 			break;
5826 		default:
5827 			cmn_err(CE_WARN,
5828 			    "zone_ki_call_zoneadmd: door_ki_upcall error %d\n",
5829 			    error);
5830 			goto out;
5831 		}
5832 next:
5833 		/*
5834 		 * If this isn't the same zone_t that we originally had in mind,
5835 		 * then this is the same as if two kadmin requests come in at
5836 		 * the same time: the first one wins.  This means we lose, so we
5837 		 * bail.
5838 		 */
5839 		if ((zone = zone_find_by_id(zoneid)) == NULL) {
5840 			/*
5841 			 * Problem is solved.
5842 			 */
5843 			break;
5844 		}
5845 		if (zone->zone_uniqid != uniqid) {
5846 			/*
5847 			 * zoneid recycled
5848 			 */
5849 			zone_rele(zone);
5850 			break;
5851 		}
5852 		/*
5853 		 * We could zone_status_timedwait(), but there doesn't seem to
5854 		 * be much point in doing that (plus, it would mean that
5855 		 * zone_free() isn't called until this thread exits).
5856 		 */
5857 		zone_rele(zone);
5858 		delay(hz);
5859 		darg = save_arg;
5860 	}
5861 out:
5862 	if (door != NULL) {
5863 		zone_release_door(&door);
5864 	}
5865 	kmem_free(zone_name, zone_namelen);
5866 	thread_exit();
5867 }
5868 
5869 /*
5870  * Entry point for uadmin() to tell the zone to go away or reboot.  Analog to
5871  * kadmin().  The caller is a process in the zone.
5872  *
5873  * In order to shutdown the zone, we will hand off control to zoneadmd
5874  * (running in the global zone) via a door.  We do a half-hearted job at
5875  * killing all processes in the zone, create a kernel thread to contact
5876  * zoneadmd, and make note of the "uniqid" of the zone.  The uniqid is
5877  * a form of generation number used to let zoneadmd (as well as
5878  * zone_destroy()) know exactly which zone they're re talking about.
5879  */
5880 int
5881 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp)
5882 {
5883 	struct zarg *zargp;
5884 	zone_cmd_t zcmd;
5885 	zone_t *zone;
5886 
5887 	zone = curproc->p_zone;
5888 	ASSERT(getzoneid() != GLOBAL_ZONEID);
5889 
5890 	switch (cmd) {
5891 	case A_SHUTDOWN:
5892 		switch (fcn) {
5893 		case AD_HALT:
5894 		case AD_POWEROFF:
5895 			zcmd = Z_HALT;
5896 			break;
5897 		case AD_BOOT:
5898 			zcmd = Z_REBOOT;
5899 			break;
5900 		case AD_IBOOT:
5901 		case AD_SBOOT:
5902 		case AD_SIBOOT:
5903 		case AD_NOSYNC:
5904 			return (ENOTSUP);
5905 		default:
5906 			return (EINVAL);
5907 		}
5908 		break;
5909 	case A_REBOOT:
5910 		zcmd = Z_REBOOT;
5911 		break;
5912 	case A_FTRACE:
5913 	case A_REMOUNT:
5914 	case A_FREEZE:
5915 	case A_DUMP:
5916 	case A_CONFIG:
5917 		return (ENOTSUP);
5918 	default:
5919 		ASSERT(cmd != A_SWAPCTL);	/* handled by uadmin() */
5920 		return (EINVAL);
5921 	}
5922 
5923 	if (secpolicy_zone_admin(credp, B_FALSE))
5924 		return (EPERM);
5925 	mutex_enter(&zone_status_lock);
5926 
5927 	/*
5928 	 * zone_status can't be ZONE_IS_EMPTY or higher since curproc
5929 	 * is in the zone.
5930 	 */
5931 	ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY);
5932 	if (zone_status_get(zone) > ZONE_IS_RUNNING) {
5933 		/*
5934 		 * This zone is already on its way down.
5935 		 */
5936 		mutex_exit(&zone_status_lock);
5937 		return (0);
5938 	}
5939 	/*
5940 	 * Prevent future zone_enter()s
5941 	 */
5942 	zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
5943 	mutex_exit(&zone_status_lock);
5944 
5945 	/*
5946 	 * Kill everyone now and call zoneadmd later.
5947 	 * zone_ki_call_zoneadmd() will do a more thorough job of this
5948 	 * later.
5949 	 */
5950 	killall(zone->zone_id);
5951 	/*
5952 	 * Now, create the thread to contact zoneadmd and do the rest of the
5953 	 * work.  This thread can't be created in our zone otherwise
5954 	 * zone_destroy() would deadlock.
5955 	 */
5956 	zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP);
5957 	zargp->arg.cmd = zcmd;
5958 	zargp->arg.uniqid = zone->zone_uniqid;
5959 	zargp->zone = zone;
5960 	(void) strcpy(zargp->arg.locale, "C");
5961 	/* mdep was already copied in for us by uadmin */
5962 	if (mdep != NULL)
5963 		(void) strlcpy(zargp->arg.bootbuf, mdep,
5964 		    sizeof (zargp->arg.bootbuf));
5965 	zone_hold(zone);
5966 
5967 	(void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0,
5968 	    TS_RUN, minclsyspri);
5969 	exit(CLD_EXITED, 0);
5970 
5971 	return (EINVAL);
5972 }
5973 
5974 /*
5975  * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's
5976  * status to ZONE_IS_SHUTTING_DOWN.
5977  *
5978  * This function also shuts down all running zones to ensure that they won't
5979  * fork new processes.
5980  */
5981 void
5982 zone_shutdown_global(void)
5983 {
5984 	zone_t *current_zonep;
5985 
5986 	ASSERT(INGLOBALZONE(curproc));
5987 	mutex_enter(&zonehash_lock);
5988 	mutex_enter(&zone_status_lock);
5989 
5990 	/* Modify the global zone's status first. */
5991 	ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING);
5992 	zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN);
5993 
5994 	/*
5995 	 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN.
5996 	 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so
5997 	 * could cause assertions to fail (e.g., assertions about a zone's
5998 	 * state during initialization, readying, or booting) or produce races.
5999 	 * We'll let threads continue to initialize and ready new zones: they'll
6000 	 * fail to boot the new zones when they see that the global zone is
6001 	 * shutting down.
6002 	 */
6003 	for (current_zonep = list_head(&zone_active); current_zonep != NULL;
6004 	    current_zonep = list_next(&zone_active, current_zonep)) {
6005 		if (zone_status_get(current_zonep) == ZONE_IS_RUNNING)
6006 			zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN);
6007 	}
6008 	mutex_exit(&zone_status_lock);
6009 	mutex_exit(&zonehash_lock);
6010 }
6011 
6012 /*
6013  * Returns true if the named dataset is visible in the current zone.
6014  * The 'write' parameter is set to 1 if the dataset is also writable.
6015  */
6016 int
6017 zone_dataset_visible(const char *dataset, int *write)
6018 {
6019 	static int zfstype = -1;
6020 	zone_dataset_t *zd;
6021 	size_t len;
6022 	zone_t *zone = curproc->p_zone;
6023 	const char *name = NULL;
6024 	vfs_t *vfsp = NULL;
6025 
6026 	if (dataset[0] == '\0')
6027 		return (0);
6028 
6029 	/*
6030 	 * Walk the list once, looking for datasets which match exactly, or
6031 	 * specify a dataset underneath an exported dataset.  If found, return
6032 	 * true and note that it is writable.
6033 	 */
6034 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
6035 	    zd = list_next(&zone->zone_datasets, zd)) {
6036 
6037 		len = strlen(zd->zd_dataset);
6038 		if (strlen(dataset) >= len &&
6039 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
6040 		    (dataset[len] == '\0' || dataset[len] == '/' ||
6041 		    dataset[len] == '@')) {
6042 			if (write)
6043 				*write = 1;
6044 			return (1);
6045 		}
6046 	}
6047 
6048 	/*
6049 	 * Walk the list a second time, searching for datasets which are parents
6050 	 * of exported datasets.  These should be visible, but read-only.
6051 	 *
6052 	 * Note that we also have to support forms such as 'pool/dataset/', with
6053 	 * a trailing slash.
6054 	 */
6055 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
6056 	    zd = list_next(&zone->zone_datasets, zd)) {
6057 
6058 		len = strlen(dataset);
6059 		if (dataset[len - 1] == '/')
6060 			len--;	/* Ignore trailing slash */
6061 		if (len < strlen(zd->zd_dataset) &&
6062 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
6063 		    zd->zd_dataset[len] == '/') {
6064 			if (write)
6065 				*write = 0;
6066 			return (1);
6067 		}
6068 	}
6069 
6070 	/*
6071 	 * We reach here if the given dataset is not found in the zone_dataset
6072 	 * list. Check if this dataset was added as a filesystem (ie. "add fs")
6073 	 * instead of delegation. For this we search for the dataset in the
6074 	 * zone_vfslist of this zone. If found, return true and note that it is
6075 	 * not writable.
6076 	 */
6077 
6078 	/*
6079 	 * Initialize zfstype if it is not initialized yet.
6080 	 */
6081 	if (zfstype == -1) {
6082 		struct vfssw *vswp = vfs_getvfssw("zfs");
6083 		zfstype = vswp - vfssw;
6084 		vfs_unrefvfssw(vswp);
6085 	}
6086 
6087 	vfs_list_read_lock();
6088 	vfsp = zone->zone_vfslist;
6089 	do {
6090 		ASSERT(vfsp);
6091 		if (vfsp->vfs_fstype == zfstype) {
6092 			name = refstr_value(vfsp->vfs_resource);
6093 
6094 			/*
6095 			 * Check if we have an exact match.
6096 			 */
6097 			if (strcmp(dataset, name) == 0) {
6098 				vfs_list_unlock();
6099 				if (write)
6100 					*write = 0;
6101 				return (1);
6102 			}
6103 			/*
6104 			 * We need to check if we are looking for parents of
6105 			 * a dataset. These should be visible, but read-only.
6106 			 */
6107 			len = strlen(dataset);
6108 			if (dataset[len - 1] == '/')
6109 				len--;
6110 
6111 			if (len < strlen(name) &&
6112 			    bcmp(dataset, name, len) == 0 && name[len] == '/') {
6113 				vfs_list_unlock();
6114 				if (write)
6115 					*write = 0;
6116 				return (1);
6117 			}
6118 		}
6119 		vfsp = vfsp->vfs_zone_next;
6120 	} while (vfsp != zone->zone_vfslist);
6121 
6122 	vfs_list_unlock();
6123 	return (0);
6124 }
6125 
6126 /*
6127  * zone_find_by_any_path() -
6128  *
6129  * kernel-private routine similar to zone_find_by_path(), but which
6130  * effectively compares against zone paths rather than zonerootpath
6131  * (i.e., the last component of zonerootpaths, which should be "root/",
6132  * are not compared.)  This is done in order to accurately identify all
6133  * paths, whether zone-visible or not, including those which are parallel
6134  * to /root/, such as /dev/, /home/, etc...
6135  *
6136  * If the specified path does not fall under any zone path then global
6137  * zone is returned.
6138  *
6139  * The treat_abs parameter indicates whether the path should be treated as
6140  * an absolute path although it does not begin with "/".  (This supports
6141  * nfs mount syntax such as host:any/path.)
6142  *
6143  * The caller is responsible for zone_rele of the returned zone.
6144  */
6145 zone_t *
6146 zone_find_by_any_path(const char *path, boolean_t treat_abs)
6147 {
6148 	zone_t *zone;
6149 	int path_offset = 0;
6150 
6151 	if (path == NULL) {
6152 		zone_hold(global_zone);
6153 		return (global_zone);
6154 	}
6155 
6156 	if (*path != '/') {
6157 		ASSERT(treat_abs);
6158 		path_offset = 1;
6159 	}
6160 
6161 	mutex_enter(&zonehash_lock);
6162 	for (zone = list_head(&zone_active); zone != NULL;
6163 	    zone = list_next(&zone_active, zone)) {
6164 		char	*c;
6165 		size_t	pathlen;
6166 		char *rootpath_start;
6167 
6168 		if (zone == global_zone)	/* skip global zone */
6169 			continue;
6170 
6171 		/* scan backwards to find start of last component */
6172 		c = zone->zone_rootpath + zone->zone_rootpathlen - 2;
6173 		do {
6174 			c--;
6175 		} while (*c != '/');
6176 
6177 		pathlen = c - zone->zone_rootpath + 1 - path_offset;
6178 		rootpath_start = (zone->zone_rootpath + path_offset);
6179 		if (strncmp(path, rootpath_start, pathlen) == 0)
6180 			break;
6181 	}
6182 	if (zone == NULL)
6183 		zone = global_zone;
6184 	zone_hold(zone);
6185 	mutex_exit(&zonehash_lock);
6186 	return (zone);
6187 }
6188 
6189 /*
6190  * Finds a zone_dl_t with the given linkid in the given zone.  Returns the
6191  * zone_dl_t pointer if found, and NULL otherwise.
6192  */
6193 static zone_dl_t *
6194 zone_find_dl(zone_t *zone, datalink_id_t linkid)
6195 {
6196 	zone_dl_t *zdl;
6197 
6198 	ASSERT(mutex_owned(&zone->zone_lock));
6199 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6200 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
6201 		if (zdl->zdl_id == linkid)
6202 			break;
6203 	}
6204 	return (zdl);
6205 }
6206 
6207 static boolean_t
6208 zone_dl_exists(zone_t *zone, datalink_id_t linkid)
6209 {
6210 	boolean_t exists;
6211 
6212 	mutex_enter(&zone->zone_lock);
6213 	exists = (zone_find_dl(zone, linkid) != NULL);
6214 	mutex_exit(&zone->zone_lock);
6215 	return (exists);
6216 }
6217 
6218 /*
6219  * Add an data link name for the zone.
6220  */
6221 static int
6222 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid)
6223 {
6224 	zone_dl_t *zdl;
6225 	zone_t *zone;
6226 	zone_t *thiszone;
6227 
6228 	if ((thiszone = zone_find_by_id(zoneid)) == NULL)
6229 		return (set_errno(ENXIO));
6230 
6231 	/* Verify that the datalink ID doesn't already belong to a zone. */
6232 	mutex_enter(&zonehash_lock);
6233 	for (zone = list_head(&zone_active); zone != NULL;
6234 	    zone = list_next(&zone_active, zone)) {
6235 		if (zone_dl_exists(zone, linkid)) {
6236 			mutex_exit(&zonehash_lock);
6237 			zone_rele(thiszone);
6238 			return (set_errno((zone == thiszone) ? EEXIST : EPERM));
6239 		}
6240 	}
6241 
6242 	zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP);
6243 	zdl->zdl_id = linkid;
6244 	mutex_enter(&thiszone->zone_lock);
6245 	list_insert_head(&thiszone->zone_dl_list, zdl);
6246 	mutex_exit(&thiszone->zone_lock);
6247 	mutex_exit(&zonehash_lock);
6248 	zone_rele(thiszone);
6249 	return (0);
6250 }
6251 
6252 static int
6253 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid)
6254 {
6255 	zone_dl_t *zdl;
6256 	zone_t *zone;
6257 	int err = 0;
6258 
6259 	if ((zone = zone_find_by_id(zoneid)) == NULL)
6260 		return (set_errno(EINVAL));
6261 
6262 	mutex_enter(&zone->zone_lock);
6263 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
6264 		err = ENXIO;
6265 	} else {
6266 		list_remove(&zone->zone_dl_list, zdl);
6267 		kmem_free(zdl, sizeof (zone_dl_t));
6268 	}
6269 	mutex_exit(&zone->zone_lock);
6270 	zone_rele(zone);
6271 	return (err == 0 ? 0 : set_errno(err));
6272 }
6273 
6274 /*
6275  * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned
6276  * the linkid.  Otherwise we just check if the specified zoneidp has been
6277  * assigned the supplied linkid.
6278  */
6279 int
6280 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid)
6281 {
6282 	zone_t *zone;
6283 	int err = ENXIO;
6284 
6285 	if (*zoneidp != ALL_ZONES) {
6286 		if ((zone = zone_find_by_id(*zoneidp)) != NULL) {
6287 			if (zone_dl_exists(zone, linkid))
6288 				err = 0;
6289 			zone_rele(zone);
6290 		}
6291 		return (err);
6292 	}
6293 
6294 	mutex_enter(&zonehash_lock);
6295 	for (zone = list_head(&zone_active); zone != NULL;
6296 	    zone = list_next(&zone_active, zone)) {
6297 		if (zone_dl_exists(zone, linkid)) {
6298 			*zoneidp = zone->zone_id;
6299 			err = 0;
6300 			break;
6301 		}
6302 	}
6303 	mutex_exit(&zonehash_lock);
6304 	return (err);
6305 }
6306 
6307 /*
6308  * Get the list of datalink IDs assigned to a zone.
6309  *
6310  * On input, *nump is the number of datalink IDs that can fit in the supplied
6311  * idarray.  Upon return, *nump is either set to the number of datalink IDs
6312  * that were placed in the array if the array was large enough, or to the
6313  * number of datalink IDs that the function needs to place in the array if the
6314  * array is too small.
6315  */
6316 static int
6317 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray)
6318 {
6319 	uint_t num, dlcount;
6320 	zone_t *zone;
6321 	zone_dl_t *zdl;
6322 	datalink_id_t *idptr = idarray;
6323 
6324 	if (copyin(nump, &dlcount, sizeof (dlcount)) != 0)
6325 		return (set_errno(EFAULT));
6326 	if ((zone = zone_find_by_id(zoneid)) == NULL)
6327 		return (set_errno(ENXIO));
6328 
6329 	num = 0;
6330 	mutex_enter(&zone->zone_lock);
6331 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6332 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
6333 		/*
6334 		 * If the list is bigger than what the caller supplied, just
6335 		 * count, don't do copyout.
6336 		 */
6337 		if (++num > dlcount)
6338 			continue;
6339 		if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) {
6340 			mutex_exit(&zone->zone_lock);
6341 			zone_rele(zone);
6342 			return (set_errno(EFAULT));
6343 		}
6344 		idptr++;
6345 	}
6346 	mutex_exit(&zone->zone_lock);
6347 	zone_rele(zone);
6348 
6349 	/* Increased or decreased, caller should be notified. */
6350 	if (num != dlcount) {
6351 		if (copyout(&num, nump, sizeof (num)) != 0)
6352 			return (set_errno(EFAULT));
6353 	}
6354 	return (0);
6355 }
6356 
6357 /*
6358  * Public interface for looking up a zone by zoneid. It's a customized version
6359  * for netstack_zone_create(). It can only be called from the zsd create
6360  * callbacks, since it doesn't have reference on the zone structure hence if
6361  * it is called elsewhere the zone could disappear after the zonehash_lock
6362  * is dropped.
6363  *
6364  * Furthermore it
6365  * 1. Doesn't check the status of the zone.
6366  * 2. It will be called even before zone_init is called, in that case the
6367  *    address of zone0 is returned directly, and netstack_zone_create()
6368  *    will only assign a value to zone0.zone_netstack, won't break anything.
6369  * 3. Returns without the zone being held.
6370  */
6371 zone_t *
6372 zone_find_by_id_nolock(zoneid_t zoneid)
6373 {
6374 	zone_t *zone;
6375 
6376 	mutex_enter(&zonehash_lock);
6377 	if (zonehashbyid == NULL)
6378 		zone = &zone0;
6379 	else
6380 		zone = zone_find_all_by_id(zoneid);
6381 	mutex_exit(&zonehash_lock);
6382 	return (zone);
6383 }
6384 
6385 /*
6386  * Walk the datalinks for a given zone
6387  */
6388 int
6389 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *),
6390     void *data)
6391 {
6392 	zone_t		*zone;
6393 	zone_dl_t	*zdl;
6394 	datalink_id_t	*idarray;
6395 	uint_t		idcount = 0;
6396 	int		i, ret = 0;
6397 
6398 	if ((zone = zone_find_by_id(zoneid)) == NULL)
6399 		return (ENOENT);
6400 
6401 	/*
6402 	 * We first build an array of linkid's so that we can walk these and
6403 	 * execute the callback with the zone_lock dropped.
6404 	 */
6405 	mutex_enter(&zone->zone_lock);
6406 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6407 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
6408 		idcount++;
6409 	}
6410 
6411 	if (idcount == 0) {
6412 		mutex_exit(&zone->zone_lock);
6413 		zone_rele(zone);
6414 		return (0);
6415 	}
6416 
6417 	idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP);
6418 	if (idarray == NULL) {
6419 		mutex_exit(&zone->zone_lock);
6420 		zone_rele(zone);
6421 		return (ENOMEM);
6422 	}
6423 
6424 	for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6425 	    i++, zdl = list_next(&zone->zone_dl_list, zdl)) {
6426 		idarray[i] = zdl->zdl_id;
6427 	}
6428 
6429 	mutex_exit(&zone->zone_lock);
6430 
6431 	for (i = 0; i < idcount && ret == 0; i++) {
6432 		if ((ret = (*cb)(idarray[i], data)) != 0)
6433 			break;
6434 	}
6435 
6436 	zone_rele(zone);
6437 	kmem_free(idarray, sizeof (datalink_id_t) * idcount);
6438 	return (ret);
6439 }
6440