xref: /titanic_52/usr/src/uts/common/os/vm_pageout.c (revision 4e5fbfeda6c7dee3dd62538723087263e6de8e18)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 #pragma ident	"%Z%%M%	%I%	%E% SMI"
40 
41 #include <sys/types.h>
42 #include <sys/t_lock.h>
43 #include <sys/param.h>
44 #include <sys/buf.h>
45 #include <sys/uio.h>
46 #include <sys/proc.h>
47 #include <sys/systm.h>
48 #include <sys/mman.h>
49 #include <sys/cred.h>
50 #include <sys/vnode.h>
51 #include <sys/vm.h>
52 #include <sys/vmparam.h>
53 #include <sys/vtrace.h>
54 #include <sys/cmn_err.h>
55 #include <sys/cpuvar.h>
56 #include <sys/user.h>
57 #include <sys/kmem.h>
58 #include <sys/debug.h>
59 #include <sys/callb.h>
60 #include <sys/tnf_probe.h>
61 #include <sys/mem_cage.h>
62 #include <sys/time.h>
63 
64 #include <vm/hat.h>
65 #include <vm/as.h>
66 #include <vm/seg.h>
67 #include <vm/page.h>
68 #include <vm/pvn.h>
69 #include <vm/seg_kmem.h>
70 
71 static int checkpage(page_t *, int);
72 
73 /*
74  * The following parameters control operation of the page replacement
75  * algorithm.  They are initialized to 0, and then computed at boot time
76  * based on the size of the system.  If they are patched non-zero in
77  * a loaded vmunix they are left alone and may thus be changed per system
78  * using adb on the loaded system.
79  */
80 pgcnt_t		slowscan = 0;
81 pgcnt_t		fastscan = 0;
82 
83 static pgcnt_t	handspreadpages = 0;
84 static int	loopfraction = 2;
85 static pgcnt_t	looppages;
86 static int	min_percent_cpu = 4;
87 static int	max_percent_cpu = 80;
88 static pgcnt_t	maxfastscan = 0;
89 static pgcnt_t	maxslowscan = 100;
90 
91 pgcnt_t	maxpgio = 0;
92 pgcnt_t	minfree = 0;
93 pgcnt_t	desfree = 0;
94 pgcnt_t	lotsfree = 0;
95 pgcnt_t	needfree = 0;
96 pgcnt_t	throttlefree = 0;
97 pgcnt_t	pageout_reserve = 0;
98 
99 pgcnt_t	deficit;
100 pgcnt_t	nscan;
101 pgcnt_t	desscan;
102 
103 /*
104  * Values for min_pageout_ticks, max_pageout_ticks and pageout_ticks
105  * are the number of ticks in each wakeup cycle that gives the
106  * equivalent of some underlying %CPU duty cycle.
107  * When RATETOSCHEDPAGING is 4,  and hz is 100, pageout_scanner is
108  * awakened every 25 clock ticks.  So, converting from %CPU to ticks
109  * per wakeup cycle would be x% of 25, that is (x * 100) / 25.
110  * So, for example, 4% == 1 tick and 80% == 20 ticks.
111  *
112  * min_pageout_ticks:
113  *     ticks/wakeup equivalent of min_percent_cpu.
114  *
115  * max_pageout_ticks:
116  *     ticks/wakeup equivalent of max_percent_cpu.
117  *
118  * pageout_ticks:
119  *     Number of clock ticks budgeted for each wakeup cycle.
120  *     Computed each time around by schedpaging().
121  *     Varies between min_pageout_ticks .. max_pageout_ticks,
122  *     depending on memory pressure.
123  *
124  * pageout_lbolt:
125  *     Timestamp of the last time pageout_scanner woke up and started
126  *     (or resumed) scanning for not recently referenced pages.
127  */
128 
129 static clock_t	min_pageout_ticks;
130 static clock_t	max_pageout_ticks;
131 static clock_t	pageout_ticks;
132 static clock_t	pageout_lbolt;
133 
134 static uint_t	reset_hands;
135 
136 #define	PAGES_POLL_MASK	1023
137 
138 /*
139  * pageout_sample_lim:
140  *     The limit on the number of samples needed to establish a value
141  *     for new pageout parameters, fastscan, slowscan, and handspreadpages.
142  *
143  * pageout_sample_cnt:
144  *     Current sample number.  Once the sample gets large enough,
145  *     set new values for handspreadpages, fastscan and slowscan.
146  *
147  * pageout_sample_pages:
148  *     The accumulated number of pages scanned during sampling.
149  *
150  * pageout_sample_ticks:
151  *     The accumulated clock ticks for the sample.
152  *
153  * pageout_rate:
154  *     Rate in pages/nanosecond, computed at the end of sampling.
155  *
156  * pageout_new_spread:
157  *     The new value to use for fastscan and handspreadpages.
158  *     Calculated after enough samples have been taken.
159  */
160 
161 typedef hrtime_t hrrate_t;
162 
163 static uint64_t	pageout_sample_lim = 4;
164 static uint64_t	pageout_sample_cnt = 0;
165 static pgcnt_t	pageout_sample_pages = 0;
166 static hrrate_t	pageout_rate = 0;
167 static pgcnt_t	pageout_new_spread = 0;
168 
169 static clock_t	pageout_cycle_ticks;
170 static hrtime_t	sample_start, sample_end;
171 static hrtime_t	pageout_sample_etime = 0;
172 
173 /*
174  * Record number of times a pageout_scanner wakeup cycle finished because it
175  * timed out (exceeded its CPU budget), rather than because it visited
176  * its budgeted number of pages.
177  */
178 uint64_t pageout_timeouts = 0;
179 
180 #ifdef VM_STATS
181 static struct pageoutvmstats_str {
182 	ulong_t	checkpage[3];
183 } pageoutvmstats;
184 #endif /* VM_STATS */
185 
186 /*
187  * Threads waiting for free memory use this condition variable and lock until
188  * memory becomes available.
189  */
190 kmutex_t	memavail_lock;
191 kcondvar_t	memavail_cv;
192 
193 /*
194  * The size of the clock loop.
195  */
196 #define	LOOPPAGES	total_pages
197 
198 /*
199  * Set up the paging constants for the clock algorithm.
200  * Called after the system is initialized and the amount of memory
201  * and number of paging devices is known.
202  *
203  * lotsfree is 1/64 of memory, but at least 512K.
204  * desfree is 1/2 of lotsfree.
205  * minfree is 1/2 of desfree.
206  *
207  * Note: to revert to the paging algorithm of Solaris 2.4/2.5, set:
208  *
209  *	lotsfree = btop(512K)
210  *	desfree = btop(200K)
211  *	minfree = btop(100K)
212  *	throttlefree = INT_MIN
213  *	max_percent_cpu = 4
214  */
215 void
216 setupclock(int recalc)
217 {
218 
219 	static spgcnt_t init_lfree, init_dfree, init_mfree;
220 	static spgcnt_t init_tfree, init_preserve, init_mpgio;
221 	static spgcnt_t init_mfscan, init_fscan, init_sscan, init_hspages;
222 
223 	looppages = LOOPPAGES;
224 
225 	/*
226 	 * setupclock can now be called to recalculate the paging
227 	 * parameters in the case of dynamic addition of memory.
228 	 * So to make sure we make the proper calculations, if such a
229 	 * situation should arise, we save away the initial values
230 	 * of each parameter so we can recall them when needed. This
231 	 * way we don't lose the settings an admin might have made
232 	 * through the /etc/system file.
233 	 */
234 
235 	if (!recalc) {
236 		init_lfree = lotsfree;
237 		init_dfree = desfree;
238 		init_mfree = minfree;
239 		init_tfree = throttlefree;
240 		init_preserve = pageout_reserve;
241 		init_mpgio = maxpgio;
242 		init_mfscan = maxfastscan;
243 		init_fscan = fastscan;
244 		init_sscan = slowscan;
245 		init_hspages = handspreadpages;
246 	}
247 
248 	/*
249 	 * Set up thresholds for paging:
250 	 */
251 
252 	/*
253 	 * Lotsfree is threshold where paging daemon turns on.
254 	 */
255 	if (init_lfree == 0 || init_lfree >= looppages)
256 		lotsfree = MAX(looppages / 64, btop(512 * 1024));
257 	else
258 		lotsfree = init_lfree;
259 
260 	/*
261 	 * Desfree is amount of memory desired free.
262 	 * If less than this for extended period, start swapping.
263 	 */
264 	if (init_dfree == 0 || init_dfree >= lotsfree)
265 		desfree = lotsfree / 2;
266 	else
267 		desfree = init_dfree;
268 
269 	/*
270 	 * Minfree is minimal amount of free memory which is tolerable.
271 	 */
272 	if (init_mfree == 0 || init_mfree >= desfree)
273 		minfree = desfree / 2;
274 	else
275 		minfree = init_mfree;
276 
277 	/*
278 	 * Throttlefree is the point at which we start throttling
279 	 * PG_WAIT requests until enough memory becomes available.
280 	 */
281 	if (init_tfree == 0 || init_tfree >= desfree)
282 		throttlefree = minfree;
283 	else
284 		throttlefree = init_tfree;
285 
286 	/*
287 	 * Pageout_reserve is the number of pages that we keep in
288 	 * stock for pageout's own use.  Having a few such pages
289 	 * provides insurance against system deadlock due to
290 	 * pageout needing pages.  When freemem < pageout_reserve,
291 	 * non-blocking allocations are denied to any threads
292 	 * other than pageout and sched.  (At some point we might
293 	 * want to consider a per-thread flag like T_PUSHING_PAGES
294 	 * to indicate that a thread is part of the page-pushing
295 	 * dance (e.g. an interrupt thread) and thus is entitled
296 	 * to the same special dispensation we accord pageout.)
297 	 */
298 	if (init_preserve == 0 || init_preserve >= throttlefree)
299 		pageout_reserve = throttlefree / 2;
300 	else
301 		pageout_reserve = init_preserve;
302 
303 	/*
304 	 * Maxpgio thresholds how much paging is acceptable.
305 	 * This figures that 2/3 busy on an arm is all that is
306 	 * tolerable for paging.  We assume one operation per disk rev.
307 	 *
308 	 * XXX - Does not account for multiple swap devices.
309 	 */
310 	if (init_mpgio == 0)
311 		maxpgio = (DISKRPM * 2) / 3;
312 	else
313 		maxpgio = init_mpgio;
314 
315 	/*
316 	 * The clock scan rate varies between fastscan and slowscan
317 	 * based on the amount of free memory available.  Fastscan
318 	 * rate should be set based on the number pages that can be
319 	 * scanned per sec using ~10% of processor time.  Since this
320 	 * value depends on the processor, MMU, Mhz etc., it is
321 	 * difficult to determine it in a generic manner for all
322 	 * architectures.
323 	 *
324 	 * Instead of trying to determine the number of pages scanned
325 	 * per sec for every processor, fastscan is set to be the smaller
326 	 * of 1/2 of memory or MAXHANDSPREADPAGES and the sampling
327 	 * time is limited to ~4% of processor time.
328 	 *
329 	 * Setting fastscan to be 1/2 of memory allows pageout to scan
330 	 * all of memory in ~2 secs.  This implies that user pages not
331 	 * accessed within 1 sec (assuming, handspreadpages == fastscan)
332 	 * can be reclaimed when free memory is very low.  Stealing pages
333 	 * not accessed within 1 sec seems reasonable and ensures that
334 	 * active user processes don't thrash.
335 	 *
336 	 * Smaller values of fastscan result in scanning fewer pages
337 	 * every second and consequently pageout may not be able to free
338 	 * sufficient memory to maintain the minimum threshold.  Larger
339 	 * values of fastscan result in scanning a lot more pages which
340 	 * could lead to thrashing and higher CPU usage.
341 	 *
342 	 * Fastscan needs to be limited to a maximum value and should not
343 	 * scale with memory to prevent pageout from consuming too much
344 	 * time for scanning on slow CPU's and avoid thrashing, as a
345 	 * result of scanning too many pages, on faster CPU's.
346 	 * The value of 64 Meg was chosen for MAXHANDSPREADPAGES
347 	 * (the upper bound for fastscan) based on the average number
348 	 * of pages that can potentially be scanned in ~1 sec (using ~4%
349 	 * of the CPU) on some of the following machines that currently
350 	 * run Solaris 2.x:
351 	 *
352 	 *			average memory scanned in ~1 sec
353 	 *
354 	 *	25 Mhz SS1+:		23 Meg
355 	 *	LX:			37 Meg
356 	 *	50 Mhz SC2000:		68 Meg
357 	 *
358 	 *	40 Mhz 486:		26 Meg
359 	 *	66 Mhz 486:		42 Meg
360 	 *
361 	 * When free memory falls just below lotsfree, the scan rate
362 	 * goes from 0 to slowscan (i.e., pageout starts running).  This
363 	 * transition needs to be smooth and is achieved by ensuring that
364 	 * pageout scans a small number of pages to satisfy the transient
365 	 * memory demand.  This is set to not exceed 100 pages/sec (25 per
366 	 * wakeup) since scanning that many pages has no noticible impact
367 	 * on system performance.
368 	 *
369 	 * In addition to setting fastscan and slowscan, pageout is
370 	 * limited to using ~4% of the CPU.  This results in increasing
371 	 * the time taken to scan all of memory, which in turn means that
372 	 * user processes have a better opportunity of preventing their
373 	 * pages from being stolen.  This has a positive effect on
374 	 * interactive and overall system performance when memory demand
375 	 * is high.
376 	 *
377 	 * Thus, the rate at which pages are scanned for replacement will
378 	 * vary linearly between slowscan and the number of pages that
379 	 * can be scanned using ~4% of processor time instead of varying
380 	 * linearly between slowscan and fastscan.
381 	 *
382 	 * Also, the processor time used by pageout will vary from ~1%
383 	 * at slowscan to ~4% at fastscan instead of varying between
384 	 * ~1% at slowscan and ~10% at fastscan.
385 	 *
386 	 * The values chosen for the various VM parameters (fastscan,
387 	 * handspreadpages, etc) are not universally true for all machines,
388 	 * but appear to be a good rule of thumb for the machines we've
389 	 * tested.  They have the following ranges:
390 	 *
391 	 *	cpu speed:	20 to 70 Mhz
392 	 *	page size:	4K to 8K
393 	 *	memory size:	16M to 5G
394 	 *	page scan rate:	4000 - 17400 4K pages per sec
395 	 *
396 	 * The values need to be re-examined for machines which don't
397 	 * fall into the various ranges (e.g., slower or faster CPUs,
398 	 * smaller or larger pagesizes etc) shown above.
399 	 *
400 	 * On an MP machine, pageout is often unable to maintain the
401 	 * minimum paging thresholds under heavy load.  This is due to
402 	 * the fact that user processes running on other CPU's can be
403 	 * dirtying memory at a much faster pace than pageout can find
404 	 * pages to free.  The memory demands could be met by enabling
405 	 * more than one CPU to run the clock algorithm in such a manner
406 	 * that the various clock hands don't overlap.  This also makes
407 	 * it more difficult to determine the values for fastscan, slowscan
408 	 * and handspreadpages.
409 	 *
410 	 * The swapper is currently used to free up memory when pageout
411 	 * is unable to meet memory demands by swapping out processes.
412 	 * In addition to freeing up memory, swapping also reduces the
413 	 * demand for memory by preventing user processes from running
414 	 * and thereby consuming memory.
415 	 */
416 	if (init_mfscan == 0) {
417 		if (pageout_new_spread != 0)
418 			maxfastscan = pageout_new_spread;
419 		else
420 			maxfastscan = MAXHANDSPREADPAGES;
421 	} else {
422 		maxfastscan = init_mfscan;
423 	}
424 	if (init_fscan == 0)
425 		fastscan = MIN(looppages / loopfraction, maxfastscan);
426 	else
427 		fastscan = init_fscan;
428 	if (fastscan > looppages / loopfraction)
429 		fastscan = looppages / loopfraction;
430 
431 	/*
432 	 * Set slow scan time to 1/10 the fast scan time, but
433 	 * not to exceed maxslowscan.
434 	 */
435 	if (init_sscan == 0)
436 		slowscan = MIN(fastscan / 10, maxslowscan);
437 	else
438 		slowscan = init_sscan;
439 	if (slowscan > fastscan / 2)
440 		slowscan = fastscan / 2;
441 
442 	/*
443 	 * Handspreadpages is distance (in pages) between front and back
444 	 * pageout daemon hands.  The amount of time to reclaim a page
445 	 * once pageout examines it increases with this distance and
446 	 * decreases as the scan rate rises. It must be < the amount
447 	 * of pageable memory.
448 	 *
449 	 * Since pageout is limited to ~4% of the CPU, setting handspreadpages
450 	 * to be "fastscan" results in the front hand being a few secs
451 	 * (varies based on the processor speed) ahead of the back hand
452 	 * at fastscan rates.  This distance can be further reduced, if
453 	 * necessary, by increasing the processor time used by pageout
454 	 * to be more than ~4% and preferrably not more than ~10%.
455 	 *
456 	 * As a result, user processes have a much better chance of
457 	 * referencing their pages before the back hand examines them.
458 	 * This also significantly lowers the number of reclaims from
459 	 * the freelist since pageout does not end up freeing pages which
460 	 * may be referenced a sec later.
461 	 */
462 	if (init_hspages == 0)
463 		handspreadpages = fastscan;
464 	else
465 		handspreadpages = init_hspages;
466 
467 	/*
468 	 * Make sure that back hand follows front hand by at least
469 	 * 1/RATETOSCHEDPAGING seconds.  Without this test, it is possible
470 	 * for the back hand to look at a page during the same wakeup of
471 	 * the pageout daemon in which the front hand cleared its ref bit.
472 	 */
473 	if (handspreadpages >= looppages)
474 		handspreadpages = looppages - 1;
475 
476 	/*
477 	 * If we have been called to recalculate the parameters,
478 	 * set a flag to re-evaluate the clock hand pointers.
479 	 */
480 	if (recalc)
481 		reset_hands = 1;
482 }
483 
484 /*
485  * Pageout scheduling.
486  *
487  * Schedpaging controls the rate at which the page out daemon runs by
488  * setting the global variables nscan and desscan RATETOSCHEDPAGING
489  * times a second.  Nscan records the number of pages pageout has examined
490  * in its current pass; schedpaging resets this value to zero each time
491  * it runs.  Desscan records the number of pages pageout should examine
492  * in its next pass; schedpaging sets this value based on the amount of
493  * currently available memory.
494  */
495 
496 #define	RATETOSCHEDPAGING	4		/* hz that is */
497 
498 static kmutex_t	pageout_mutex;	/* held while pageout or schedpaging running */
499 
500 /*
501  * Pool of available async pageout putpage requests.
502  */
503 static struct async_reqs *push_req;
504 static struct async_reqs *req_freelist;	/* available req structs */
505 static struct async_reqs *push_list;	/* pending reqs */
506 static kmutex_t push_lock;		/* protects req pool */
507 static kcondvar_t push_cv;
508 
509 static int async_list_size = 256;	/* number of async request structs */
510 
511 static void pageout_scanner(void);
512 
513 /*
514  * If a page is being shared more than "po_share" times
515  * then leave it alone- don't page it out.
516  */
517 #define	MIN_PO_SHARE	(8)
518 #define	MAX_PO_SHARE	((MIN_PO_SHARE) << 24)
519 ulong_t	po_share = MIN_PO_SHARE;
520 
521 /*
522  * Schedule rate for paging.
523  * Rate is linear interpolation between
524  * slowscan with lotsfree and fastscan when out of memory.
525  */
526 static void
527 schedpaging(void *arg)
528 {
529 	spgcnt_t vavail;
530 
531 	if (freemem < lotsfree + needfree + kmem_reapahead)
532 		kmem_reap();
533 
534 	if (freemem < lotsfree + needfree + seg_preapahead)
535 		seg_preap();
536 
537 	if (kcage_on && (kcage_freemem < kcage_desfree || kcage_needfree))
538 		kcage_cageout_wakeup();
539 
540 	if (mutex_tryenter(&pageout_mutex)) {
541 		/* pageout() not running */
542 		nscan = 0;
543 		vavail = freemem - deficit;
544 		if (vavail < 0)
545 			vavail = 0;
546 		if (vavail > lotsfree)
547 			vavail = lotsfree;
548 
549 		/*
550 		 * Fix for 1161438 (CRS SPR# 73922).  All variables
551 		 * in the original calculation for desscan were 32 bit signed
552 		 * ints.  As freemem approaches 0x0 on a system with 1 Gig or
553 		 * more of memory, the calculation can overflow.  When this
554 		 * happens, desscan becomes negative and pageout_scanner()
555 		 * stops paging out.
556 		 */
557 		if (needfree) {
558 			desscan = fastscan / RATETOSCHEDPAGING;
559 		} else {
560 			spgcnt_t faststmp, slowstmp, result;
561 
562 			slowstmp = slowscan * vavail;
563 			faststmp = fastscan * (lotsfree - vavail);
564 			result = (slowstmp + faststmp) /
565 				nz(lotsfree) / RATETOSCHEDPAGING;
566 			desscan = (pgcnt_t)result;
567 		}
568 
569 		pageout_ticks = min_pageout_ticks + (lotsfree - vavail) *
570 		    (max_pageout_ticks - min_pageout_ticks) / nz(lotsfree);
571 
572 		if (freemem < lotsfree + needfree ||
573 		    pageout_sample_cnt < pageout_sample_lim) {
574 			TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
575 				"pageout_cv_signal:freemem %ld", freemem);
576 			cv_signal(&proc_pageout->p_cv);
577 		} else {
578 			/*
579 			 * There are enough free pages, no need to
580 			 * kick the scanner thread.  And next time
581 			 * around, keep more of the `highly shared'
582 			 * pages.
583 			 */
584 			cv_signal_pageout();
585 			if (po_share > MIN_PO_SHARE) {
586 				po_share >>= 1;
587 			}
588 		}
589 		mutex_exit(&pageout_mutex);
590 	}
591 
592 	/*
593 	 * Signal threads waiting for available memory.
594 	 * NOTE: usually we need to grab memavail_lock before cv_broadcast, but
595 	 * in this case it is not needed - the waiters will be waken up during
596 	 * the next invocation of this function.
597 	 */
598 	if (kmem_avail() > 0)
599 		cv_broadcast(&memavail_cv);
600 
601 	(void) timeout(schedpaging, arg, hz / RATETOSCHEDPAGING);
602 }
603 
604 pgcnt_t		pushes;
605 ulong_t		push_list_size;		/* # of requests on pageout queue */
606 
607 #define	FRONT	1
608 #define	BACK	2
609 
610 int dopageout = 1;	/* must be non-zero to turn page stealing on */
611 
612 /*
613  * The page out daemon, which runs as process 2.
614  *
615  * As long as there are at least lotsfree pages,
616  * this process is not run.  When the number of free
617  * pages stays in the range desfree to lotsfree,
618  * this daemon runs through the pages in the loop
619  * at a rate determined in schedpaging().  Pageout manages
620  * two hands on the clock.  The front hand moves through
621  * memory, clearing the reference bit,
622  * and stealing pages from procs that are over maxrss.
623  * The back hand travels a distance behind the front hand,
624  * freeing the pages that have not been referenced in the time
625  * since the front hand passed.  If modified, they are pushed to
626  * swap before being freed.
627  *
628  * There are 2 threads that act on behalf of the pageout process.
629  * One thread scans pages (pageout_scanner) and frees them up if
630  * they don't require any VOP_PUTPAGE operation. If a page must be
631  * written back to its backing store, the request is put on a list
632  * and the other (pageout) thread is signaled. The pageout thread
633  * grabs VOP_PUTPAGE requests from the list, and processes them.
634  * Some filesystems may require resources for the VOP_PUTPAGE
635  * operations (like memory) and hence can block the pageout
636  * thread, but the scanner thread can still operate. There is still
637  * no gaurentee that memory deadlocks cannot occur.
638  *
639  * For now, this thing is in very rough form.
640  */
641 void
642 pageout()
643 {
644 	struct async_reqs *arg;
645 	pri_t pageout_pri;
646 	int i;
647 	pgcnt_t max_pushes;
648 	callb_cpr_t cprinfo;
649 
650 	proc_pageout = ttoproc(curthread);
651 	proc_pageout->p_cstime = 0;
652 	proc_pageout->p_stime =  0;
653 	proc_pageout->p_cutime =  0;
654 	proc_pageout->p_utime = 0;
655 	bcopy("pageout", PTOU(curproc)->u_psargs, 8);
656 	bcopy("pageout", PTOU(curproc)->u_comm, 7);
657 
658 	/*
659 	 * Create pageout scanner thread
660 	 */
661 	mutex_init(&pageout_mutex, NULL, MUTEX_DEFAULT, NULL);
662 	mutex_init(&push_lock, NULL, MUTEX_DEFAULT, NULL);
663 
664 	/*
665 	 * Allocate and initialize the async request structures
666 	 * for pageout.
667 	 */
668 	push_req = (struct async_reqs *)
669 	    kmem_zalloc(async_list_size * sizeof (struct async_reqs), KM_SLEEP);
670 
671 	req_freelist = push_req;
672 	for (i = 0; i < async_list_size - 1; i++)
673 		push_req[i].a_next = &push_req[i + 1];
674 
675 	pageout_pri = curthread->t_pri;
676 	pageout_init(pageout_scanner, proc_pageout, pageout_pri - 1);
677 
678 	/*
679 	 * kick off pageout scheduler.
680 	 */
681 	schedpaging(NULL);
682 
683 	/*
684 	 * Create kernel cage thread.
685 	 * The kernel cage thread is started under the pageout process
686 	 * to take advantage of the less restricted page allocation
687 	 * in page_create_throttle().
688 	 */
689 	kcage_cageout_init();
690 
691 	/*
692 	 * Limit pushes to avoid saturating pageout devices.
693 	 */
694 	max_pushes = maxpgio / RATETOSCHEDPAGING;
695 	CALLB_CPR_INIT(&cprinfo, &push_lock, callb_generic_cpr, "pageout");
696 
697 	for (;;) {
698 		mutex_enter(&push_lock);
699 
700 		while ((arg = push_list) == NULL || pushes > max_pushes) {
701 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
702 			cv_wait(&push_cv, &push_lock);
703 			pushes = 0;
704 			CALLB_CPR_SAFE_END(&cprinfo, &push_lock);
705 		}
706 		push_list = arg->a_next;
707 		arg->a_next = NULL;
708 		mutex_exit(&push_lock);
709 
710 		if (VOP_PUTPAGE(arg->a_vp, (offset_t)arg->a_off,
711 			arg->a_len, arg->a_flags,
712 			    arg->a_cred) == 0) {
713 			pushes++;
714 		}
715 
716 		/* vp held by checkpage() */
717 		VN_RELE(arg->a_vp);
718 
719 		mutex_enter(&push_lock);
720 		arg->a_next = req_freelist;	/* back on freelist */
721 		req_freelist = arg;
722 		push_list_size--;
723 		mutex_exit(&push_lock);
724 	}
725 }
726 
727 /*
728  * Kernel thread that scans pages looking for ones to free
729  */
730 static void
731 pageout_scanner(void)
732 {
733 	struct page *fronthand, *backhand;
734 	uint_t count;
735 	callb_cpr_t cprinfo;
736 	pgcnt_t	nscan_limit;
737 	pgcnt_t	pcount;
738 
739 	CALLB_CPR_INIT(&cprinfo, &pageout_mutex, callb_generic_cpr, "poscan");
740 	mutex_enter(&pageout_mutex);
741 
742 	/*
743 	 * The restart case does not attempt to point the hands at roughly
744 	 * the right point on the assumption that after one circuit things
745 	 * will have settled down - and restarts shouldn't be that often.
746 	 */
747 
748 	/*
749 	 * Set the two clock hands to be separated by a reasonable amount,
750 	 * but no more than 360 degrees apart.
751 	 */
752 	backhand = page_first();
753 	if (handspreadpages >= total_pages)
754 		fronthand = page_nextn(backhand, total_pages - 1);
755 	else
756 		fronthand = page_nextn(backhand, handspreadpages);
757 
758 	min_pageout_ticks = MAX(1,
759 	    ((hz * min_percent_cpu) / 100) / RATETOSCHEDPAGING);
760 	max_pageout_ticks = MAX(min_pageout_ticks,
761 	    ((hz * max_percent_cpu) / 100) / RATETOSCHEDPAGING);
762 
763 loop:
764 	cv_signal_pageout();
765 
766 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
767 	cv_wait(&proc_pageout->p_cv, &pageout_mutex);
768 	CALLB_CPR_SAFE_END(&cprinfo, &pageout_mutex);
769 
770 	if (!dopageout)
771 		goto loop;
772 
773 	if (reset_hands) {
774 		reset_hands = 0;
775 
776 		backhand = page_first();
777 		if (handspreadpages >= total_pages)
778 			fronthand = page_nextn(backhand, total_pages - 1);
779 		else
780 			fronthand = page_nextn(backhand, handspreadpages);
781 	}
782 
783 	CPU_STATS_ADDQ(CPU, vm, pgrrun, 1);
784 	count = 0;
785 
786 	TRACE_4(TR_FAC_VM, TR_PAGEOUT_START,
787 		"pageout_start:freemem %ld lotsfree %ld nscan %ld desscan %ld",
788 		freemem, lotsfree, nscan, desscan);
789 
790 	/* Kernel probe */
791 	TNF_PROBE_2(pageout_scan_start, "vm pagedaemon", /* CSTYLED */,
792 		tnf_ulong, pages_free, freemem,
793 		tnf_ulong, pages_needed, needfree);
794 
795 	pcount = 0;
796 	if (pageout_sample_cnt < pageout_sample_lim) {
797 		nscan_limit = total_pages;
798 	} else {
799 		nscan_limit = desscan;
800 	}
801 	pageout_lbolt = lbolt;
802 	sample_start = gethrtime();
803 
804 	/*
805 	 * Scan the appropriate number of pages for a single duty cycle.
806 	 * However, stop scanning as soon as there is enough free memory.
807 	 * For a short while, we will be sampling the performance of the
808 	 * scanner and need to keep running just to get sample data, in
809 	 * which case we keep going and don't pay attention to whether
810 	 * or not there is enough free memory.
811 	 */
812 
813 	while (nscan < nscan_limit && (freemem < lotsfree + needfree ||
814 	    pageout_sample_cnt < pageout_sample_lim)) {
815 		int rvfront, rvback;
816 
817 		/*
818 		 * Check to see if we have exceeded our %CPU budget
819 		 * for this wakeup, but not on every single page visited,
820 		 * just every once in a while.
821 		 */
822 		if ((pcount & PAGES_POLL_MASK) == PAGES_POLL_MASK) {
823 			pageout_cycle_ticks = lbolt - pageout_lbolt;
824 			if (pageout_cycle_ticks >= pageout_ticks) {
825 				++pageout_timeouts;
826 				break;
827 			}
828 		}
829 
830 		/*
831 		 * If checkpage manages to add a page to the free list,
832 		 * we give ourselves another couple of trips around the loop.
833 		 */
834 		if ((rvfront = checkpage(fronthand, FRONT)) == 1)
835 			count = 0;
836 		if ((rvback = checkpage(backhand, BACK)) == 1)
837 			count = 0;
838 
839 		++pcount;
840 
841 		/*
842 		 * protected by pageout_mutex instead of cpu_stat_lock
843 		 */
844 		CPU_STATS_ADDQ(CPU, vm, scan, 1);
845 
846 		/*
847 		 * Don't include ineligible pages in the number scanned.
848 		 */
849 		if (rvfront != -1 || rvback != -1)
850 			nscan++;
851 
852 		backhand = page_next(backhand);
853 
854 		/*
855 		 * backhand update and wraparound check are done separately
856 		 * because lint barks when it finds an empty "if" body
857 		 */
858 
859 		if ((fronthand = page_next(fronthand)) == page_first())	{
860 			TRACE_2(TR_FAC_VM, TR_PAGEOUT_HAND_WRAP,
861 				"pageout_hand_wrap:freemem %ld whichhand %d",
862 				freemem, FRONT);
863 
864 			/*
865 			 * protected by pageout_mutex instead of cpu_stat_lock
866 			 */
867 			CPU_STATS_ADDQ(CPU, vm, rev, 1);
868 			if (++count > 1) {
869 				/*
870 				 * Extremely unlikely, but it happens.
871 				 * We went around the loop at least once
872 				 * and didn't get far enough.
873 				 * If we are still skipping `highly shared'
874 				 * pages, skip fewer of them.  Otherwise,
875 				 * give up till the next clock tick.
876 				 */
877 				if (po_share < MAX_PO_SHARE) {
878 					po_share <<= 1;
879 				} else {
880 					/*
881 					 * Really a "goto loop", but
882 					 * if someone is TRACing or
883 					 * TNF_PROBE_ing, at least
884 					 * make records to show
885 					 * where we are.
886 					 */
887 					break;
888 				}
889 			}
890 		}
891 	}
892 
893 	sample_end = gethrtime();
894 
895 	TRACE_5(TR_FAC_VM, TR_PAGEOUT_END,
896 		"pageout_end:freemem %ld lots %ld nscan %ld des %ld count %u",
897 		freemem, lotsfree, nscan, desscan, count);
898 
899 	/* Kernel probe */
900 	TNF_PROBE_2(pageout_scan_end, "vm pagedaemon", /* CSTYLED */,
901 		tnf_ulong, pages_scanned, nscan,
902 		tnf_ulong, pages_free, freemem);
903 
904 	if (pageout_sample_cnt < pageout_sample_lim) {
905 		pageout_sample_pages += pcount;
906 		pageout_sample_etime += sample_end - sample_start;
907 		++pageout_sample_cnt;
908 	}
909 	if (pageout_sample_cnt >= pageout_sample_lim &&
910 	    pageout_new_spread == 0) {
911 		pageout_rate = (hrrate_t)pageout_sample_pages *
912 		    (hrrate_t)(NANOSEC) / pageout_sample_etime;
913 		pageout_new_spread = pageout_rate / 10;
914 		setupclock(1);
915 	}
916 
917 	goto loop;
918 }
919 
920 /*
921  * Look at the page at hand.  If it is locked (e.g., for physical i/o),
922  * system (u., page table) or free, then leave it alone.  Otherwise,
923  * if we are running the front hand, turn off the page's reference bit.
924  * If the proc is over maxrss, we take it.  If running the back hand,
925  * check whether the page has been reclaimed.  If not, free the page,
926  * pushing it to disk first if necessary.
927  *
928  * Return values:
929  *	-1 if the page is not a candidate at all,
930  *	 0 if not freed, or
931  *	 1 if we freed it.
932  */
933 static int
934 checkpage(struct page *pp, int whichhand)
935 {
936 	int ppattr;
937 	int isfs = 0;
938 	int isexec = 0;
939 	int pagesync_flag;
940 
941 	/*
942 	 * Skip pages:
943 	 * 	- associated with the kernel vnode since
944 	 *	    they are always "exclusively" locked.
945 	 *	- that are free
946 	 *	- that are shared more than po_share'd times
947 	 *	- its already locked
948 	 *
949 	 * NOTE:  These optimizations assume that reads are atomic.
950 	 */
951 top:
952 	if ((PP_ISKAS(pp)) || (PP_ISFREE(pp)) ||
953 	    (hat_page_getshare(pp) > po_share) || PAGE_LOCKED(pp)) {
954 		return (-1);
955 	}
956 
957 	if (!page_trylock(pp, SE_EXCL)) {
958 		/*
959 		 * Skip the page if we can't acquire the "exclusive" lock.
960 		 */
961 		return (-1);
962 	} else if (PP_ISFREE(pp)) {
963 		/*
964 		 * It became free between the above check and our actually
965 		 * locking the page.  Oh, well there will be other pages.
966 		 */
967 		page_unlock(pp);
968 		return (-1);
969 	}
970 
971 	/*
972 	 * Reject pages that cannot be freed. The page_struct_lock
973 	 * need not be acquired to examine these
974 	 * fields since the page has an "exclusive" lock.
975 	 */
976 	if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
977 		page_unlock(pp);
978 		return (-1);
979 	}
980 
981 	/*
982 	 * Maintain statistics for what we are freeing
983 	 */
984 
985 	if (pp->p_vnode != NULL) {
986 		if (pp->p_vnode->v_flag & VVMEXEC)
987 			isexec = 1;
988 
989 		if (!IS_SWAPFSVP(pp->p_vnode))
990 			isfs = 1;
991 	}
992 
993 	/*
994 	 * Turn off REF and MOD bits with the front hand.
995 	 * The back hand examines the REF bit and always considers
996 	 * SHARED pages as referenced.
997 	 */
998 	if (whichhand == FRONT)
999 		pagesync_flag = HAT_SYNC_ZERORM;
1000 	else
1001 		pagesync_flag = HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_REF |
1002 		    HAT_SYNC_STOPON_SHARED;
1003 
1004 	ppattr = hat_pagesync(pp, pagesync_flag);
1005 
1006 recheck:
1007 	/*
1008 	 * If page is referenced; make unreferenced but reclaimable.
1009 	 * If this page is not referenced, then it must be reclaimable
1010 	 * and we can add it to the free list.
1011 	 */
1012 	if (ppattr & P_REF) {
1013 		TRACE_2(TR_FAC_VM, TR_PAGEOUT_ISREF,
1014 		    "pageout_isref:pp %p whichhand %d", pp, whichhand);
1015 		if (whichhand == FRONT) {
1016 			/*
1017 			 * Checking of rss or madvise flags needed here...
1018 			 *
1019 			 * If not "well-behaved", fall through into the code
1020 			 * for not referenced.
1021 			 */
1022 			hat_clrref(pp);
1023 		}
1024 		/*
1025 		 * Somebody referenced the page since the front
1026 		 * hand went by, so it's not a candidate for
1027 		 * freeing up.
1028 		 */
1029 		page_unlock(pp);
1030 		return (0);
1031 	}
1032 
1033 	VM_STAT_ADD(pageoutvmstats.checkpage[0]);
1034 
1035 	/*
1036 	 * If large page, attempt to demote it. If successfully demoted,
1037 	 * retry the checkpage.
1038 	 */
1039 	if (pp->p_szc != 0) {
1040 		if (!page_try_demote_pages(pp)) {
1041 			VM_STAT_ADD(pageoutvmstats.checkpage[1]);
1042 			page_unlock(pp);
1043 			return (-1);
1044 		}
1045 		ASSERT(pp->p_szc == 0);
1046 		VM_STAT_ADD(pageoutvmstats.checkpage[2]);
1047 		/*
1048 		 * since page_try_demote_pages() could have unloaded some
1049 		 * mappings it makes sense to reload ppattr.
1050 		 */
1051 		ppattr = hat_page_getattr(pp, P_MOD | P_REF);
1052 	}
1053 
1054 	/*
1055 	 * If the page is currently dirty, we have to arrange
1056 	 * to have it cleaned before it can be freed.
1057 	 *
1058 	 * XXX - ASSERT(pp->p_vnode != NULL);
1059 	 */
1060 	if ((ppattr & P_MOD) && pp->p_vnode) {
1061 		struct vnode *vp = pp->p_vnode;
1062 		u_offset_t offset = pp->p_offset;
1063 
1064 		/*
1065 		 * XXX - Test for process being swapped out or about to exit?
1066 		 * [Can't get back to process(es) using the page.]
1067 		 */
1068 
1069 		/*
1070 		 * Hold the vnode before releasing the page lock to
1071 		 * prevent it from being freed and re-used by some
1072 		 * other thread.
1073 		 */
1074 		VN_HOLD(vp);
1075 		page_unlock(pp);
1076 
1077 		/*
1078 		 * Queue i/o request for the pageout thread.
1079 		 */
1080 		if (!queue_io_request(vp, offset)) {
1081 			VN_RELE(vp);
1082 			return (0);
1083 		}
1084 		return (1);
1085 	}
1086 
1087 	/*
1088 	 * Now we unload all the translations,
1089 	 * and put the page back on to the free list.
1090 	 * If the page was used (referenced or modified) after
1091 	 * the pagesync but before it was unloaded we catch it
1092 	 * and handle the page properly.
1093 	 */
1094 	TRACE_2(TR_FAC_VM, TR_PAGEOUT_FREE,
1095 		"pageout_free:pp %p whichhand %d", pp, whichhand);
1096 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1097 	ppattr = hat_page_getattr(pp, P_MOD | P_REF);
1098 	if ((ppattr & P_REF) || ((ppattr & P_MOD) && pp->p_vnode))
1099 		goto recheck;
1100 
1101 	/*LINTED: constant in conditional context*/
1102 	VN_DISPOSE(pp, B_FREE, 0, kcred);
1103 
1104 	CPU_STATS_ADD_K(vm, dfree, 1);
1105 
1106 	if (isfs) {
1107 		if (isexec) {
1108 			CPU_STATS_ADD_K(vm, execfree, 1);
1109 		} else {
1110 			CPU_STATS_ADD_K(vm, fsfree, 1);
1111 		}
1112 	} else {
1113 		CPU_STATS_ADD_K(vm, anonfree, 1);
1114 	}
1115 
1116 	return (1);		/* freed a page! */
1117 }
1118 
1119 /*
1120  * Queue async i/o request from pageout_scanner and segment swapout
1121  * routines on one common list.  This ensures that pageout devices (swap)
1122  * are not saturated by pageout_scanner or swapout requests.
1123  * The pageout thread empties this list by initiating i/o operations.
1124  */
1125 int
1126 queue_io_request(vnode_t *vp, u_offset_t off)
1127 {
1128 	struct async_reqs *arg;
1129 
1130 	/*
1131 	 * If we cannot allocate an async request struct,
1132 	 * skip this page.
1133 	 */
1134 	mutex_enter(&push_lock);
1135 	if ((arg = req_freelist) == NULL) {
1136 		mutex_exit(&push_lock);
1137 		return (0);
1138 	}
1139 	req_freelist = arg->a_next;		/* adjust freelist */
1140 	push_list_size++;
1141 
1142 	arg->a_vp = vp;
1143 	arg->a_off = off;
1144 	arg->a_len = PAGESIZE;
1145 	arg->a_flags = B_ASYNC | B_FREE;
1146 	arg->a_cred = kcred;		/* always held */
1147 
1148 	/*
1149 	 * Add to list of pending write requests.
1150 	 */
1151 	arg->a_next = push_list;
1152 	push_list = arg;
1153 
1154 	if (req_freelist == NULL) {
1155 		/*
1156 		 * No free async requests left. The lock is held so we
1157 		 * might as well signal the pusher thread now.
1158 		 */
1159 		cv_signal(&push_cv);
1160 	}
1161 	mutex_exit(&push_lock);
1162 	return (1);
1163 }
1164 
1165 /*
1166  * Wakeup pageout to initiate i/o if push_list is not empty.
1167  */
1168 void
1169 cv_signal_pageout()
1170 {
1171 	if (push_list != NULL) {
1172 		mutex_enter(&push_lock);
1173 		cv_signal(&push_cv);
1174 		mutex_exit(&push_lock);
1175 	}
1176 }
1177