1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 28 */ 29 30 /* 31 * Kernel task queues: general-purpose asynchronous task scheduling. 32 * 33 * A common problem in kernel programming is the need to schedule tasks 34 * to be performed later, by another thread. There are several reasons 35 * you may want or need to do this: 36 * 37 * (1) The task isn't time-critical, but your current code path is. 38 * 39 * (2) The task may require grabbing locks that you already hold. 40 * 41 * (3) The task may need to block (e.g. to wait for memory), but you 42 * cannot block in your current context. 43 * 44 * (4) Your code path can't complete because of some condition, but you can't 45 * sleep or fail, so you queue the task for later execution when condition 46 * disappears. 47 * 48 * (5) You just want a simple way to launch multiple tasks in parallel. 49 * 50 * Task queues provide such a facility. In its simplest form (used when 51 * performance is not a critical consideration) a task queue consists of a 52 * single list of tasks, together with one or more threads to service the 53 * list. There are some cases when this simple queue is not sufficient: 54 * 55 * (1) The task queues are very hot and there is a need to avoid data and lock 56 * contention over global resources. 57 * 58 * (2) Some tasks may depend on other tasks to complete, so they can't be put in 59 * the same list managed by the same thread. 60 * 61 * (3) Some tasks may block for a long time, and this should not block other 62 * tasks in the queue. 63 * 64 * To provide useful service in such cases we define a "dynamic task queue" 65 * which has an individual thread for each of the tasks. These threads are 66 * dynamically created as they are needed and destroyed when they are not in 67 * use. The API for managing task pools is the same as for managing task queues 68 * with the exception of a taskq creation flag TASKQ_DYNAMIC which tells that 69 * dynamic task pool behavior is desired. 70 * 71 * Dynamic task queues may also place tasks in the normal queue (called "backing 72 * queue") when task pool runs out of resources. Users of task queues may 73 * disallow such queued scheduling by specifying TQ_NOQUEUE in the dispatch 74 * flags. 75 * 76 * The backing task queue is also used for scheduling internal tasks needed for 77 * dynamic task queue maintenance. 78 * 79 * INTERFACES ================================================================== 80 * 81 * taskq_t *taskq_create(name, nthreads, pri, minalloc, maxall, flags); 82 * 83 * Create a taskq with specified properties. 84 * Possible 'flags': 85 * 86 * TASKQ_DYNAMIC: Create task pool for task management. If this flag is 87 * specified, 'nthreads' specifies the maximum number of threads in 88 * the task queue. Task execution order for dynamic task queues is 89 * not predictable. 90 * 91 * If this flag is not specified (default case) a 92 * single-list task queue is created with 'nthreads' threads 93 * servicing it. Entries in this queue are managed by 94 * taskq_ent_alloc() and taskq_ent_free() which try to keep the 95 * task population between 'minalloc' and 'maxalloc', but the 96 * latter limit is only advisory for TQ_SLEEP dispatches and the 97 * former limit is only advisory for TQ_NOALLOC dispatches. If 98 * TASKQ_PREPOPULATE is set in 'flags', the taskq will be 99 * prepopulated with 'minalloc' task structures. 100 * 101 * Since non-DYNAMIC taskqs are queues, tasks are guaranteed to be 102 * executed in the order they are scheduled if nthreads == 1. 103 * If nthreads > 1, task execution order is not predictable. 104 * 105 * TASKQ_PREPOPULATE: Prepopulate task queue with threads. 106 * Also prepopulate the task queue with 'minalloc' task structures. 107 * 108 * TASKQ_THREADS_CPU_PCT: This flag specifies that 'nthreads' should be 109 * interpreted as a percentage of the # of online CPUs on the 110 * system. The taskq subsystem will automatically adjust the 111 * number of threads in the taskq in response to CPU online 112 * and offline events, to keep the ratio. nthreads must be in 113 * the range [0,100]. 114 * 115 * The calculation used is: 116 * 117 * MAX((ncpus_online * percentage)/100, 1) 118 * 119 * This flag is not supported for DYNAMIC task queues. 120 * This flag is not compatible with TASKQ_CPR_SAFE. 121 * 122 * TASKQ_CPR_SAFE: This flag specifies that users of the task queue will 123 * use their own protocol for handling CPR issues. This flag is not 124 * supported for DYNAMIC task queues. This flag is not compatible 125 * with TASKQ_THREADS_CPU_PCT. 126 * 127 * The 'pri' field specifies the default priority for the threads that 128 * service all scheduled tasks. 129 * 130 * taskq_t *taskq_create_instance(name, instance, nthreads, pri, minalloc, 131 * maxall, flags); 132 * 133 * Like taskq_create(), but takes an instance number (or -1 to indicate 134 * no instance). 135 * 136 * taskq_t *taskq_create_proc(name, nthreads, pri, minalloc, maxall, proc, 137 * flags); 138 * 139 * Like taskq_create(), but creates the taskq threads in the specified 140 * system process. If proc != &p0, this must be called from a thread 141 * in that process. 142 * 143 * taskq_t *taskq_create_sysdc(name, nthreads, minalloc, maxall, proc, 144 * dc, flags); 145 * 146 * Like taskq_create_proc(), but the taskq threads will use the 147 * System Duty Cycle (SDC) scheduling class with a duty cycle of dc. 148 * 149 * void taskq_destroy(tap): 150 * 151 * Waits for any scheduled tasks to complete, then destroys the taskq. 152 * Caller should guarantee that no new tasks are scheduled in the closing 153 * taskq. 154 * 155 * taskqid_t taskq_dispatch(tq, func, arg, flags): 156 * 157 * Dispatches the task "func(arg)" to taskq. The 'flags' indicates whether 158 * the caller is willing to block for memory. The function returns an 159 * opaque value which is zero iff dispatch fails. If flags is TQ_NOSLEEP 160 * or TQ_NOALLOC and the task can't be dispatched, taskq_dispatch() fails 161 * and returns (taskqid_t)0. 162 * 163 * ASSUMES: func != NULL. 164 * 165 * Possible flags: 166 * TQ_NOSLEEP: Do not wait for resources; may fail. 167 * 168 * TQ_NOALLOC: Do not allocate memory; may fail. May only be used with 169 * non-dynamic task queues. 170 * 171 * TQ_NOQUEUE: Do not enqueue a task if it can't dispatch it due to 172 * lack of available resources and fail. If this flag is not 173 * set, and the task pool is exhausted, the task may be scheduled 174 * in the backing queue. This flag may ONLY be used with dynamic 175 * task queues. 176 * 177 * NOTE: This flag should always be used when a task queue is used 178 * for tasks that may depend on each other for completion. 179 * Enqueueing dependent tasks may create deadlocks. 180 * 181 * TQ_SLEEP: May block waiting for resources. May still fail for 182 * dynamic task queues if TQ_NOQUEUE is also specified, otherwise 183 * always succeed. 184 * 185 * TQ_FRONT: Puts the new task at the front of the queue. Be careful. 186 * 187 * NOTE: Dynamic task queues are much more likely to fail in 188 * taskq_dispatch() (especially if TQ_NOQUEUE was specified), so it 189 * is important to have backup strategies handling such failures. 190 * 191 * void taskq_dispatch_ent(tq, func, arg, flags, tqent) 192 * 193 * This is a light-weight form of taskq_dispatch(), that uses a 194 * preallocated taskq_ent_t structure for scheduling. As a 195 * result, it does not perform allocations and cannot ever fail. 196 * Note especially that it cannot be used with TASKQ_DYNAMIC 197 * taskqs. The memory for the tqent must not be modified or used 198 * until the function (func) is called. (However, func itself 199 * may safely modify or free this memory, once it is called.) 200 * Note that the taskq framework will NOT free this memory. 201 * 202 * void taskq_wait(tq): 203 * 204 * Waits for all previously scheduled tasks to complete. 205 * 206 * NOTE: It does not stop any new task dispatches. 207 * Do NOT call taskq_wait() from a task: it will cause deadlock. 208 * 209 * void taskq_suspend(tq) 210 * 211 * Suspend all task execution. Tasks already scheduled for a dynamic task 212 * queue will still be executed, but all new scheduled tasks will be 213 * suspended until taskq_resume() is called. 214 * 215 * int taskq_suspended(tq) 216 * 217 * Returns 1 if taskq is suspended and 0 otherwise. It is intended to 218 * ASSERT that the task queue is suspended. 219 * 220 * void taskq_resume(tq) 221 * 222 * Resume task queue execution. 223 * 224 * int taskq_member(tq, thread) 225 * 226 * Returns 1 if 'thread' belongs to taskq 'tq' and 0 otherwise. The 227 * intended use is to ASSERT that a given function is called in taskq 228 * context only. 229 * 230 * system_taskq 231 * 232 * Global system-wide dynamic task queue for common uses. It may be used by 233 * any subsystem that needs to schedule tasks and does not need to manage 234 * its own task queues. It is initialized quite early during system boot. 235 * 236 * IMPLEMENTATION ============================================================== 237 * 238 * This is schematic representation of the task queue structures. 239 * 240 * taskq: 241 * +-------------+ 242 * | tq_lock | +---< taskq_ent_free() 243 * +-------------+ | 244 * |... | | tqent: tqent: 245 * +-------------+ | +------------+ +------------+ 246 * | tq_freelist |-->| tqent_next |--> ... ->| tqent_next | 247 * +-------------+ +------------+ +------------+ 248 * |... | | ... | | ... | 249 * +-------------+ +------------+ +------------+ 250 * | tq_task | | 251 * | | +-------------->taskq_ent_alloc() 252 * +--------------------------------------------------------------------------+ 253 * | | | tqent tqent | 254 * | +---------------------+ +--> +------------+ +--> +------------+ | 255 * | | ... | | | func, arg | | | func, arg | | 256 * +>+---------------------+ <---|-+ +------------+ <---|-+ +------------+ | 257 * | tq_taskq.tqent_next | ----+ | | tqent_next | --->+ | | tqent_next |--+ 258 * +---------------------+ | +------------+ ^ | +------------+ 259 * +-| tq_task.tqent_prev | +--| tqent_prev | | +--| tqent_prev | ^ 260 * | +---------------------+ +------------+ | +------------+ | 261 * | |... | | ... | | | ... | | 262 * | +---------------------+ +------------+ | +------------+ | 263 * | ^ | | 264 * | | | | 265 * +--------------------------------------+--------------+ TQ_APPEND() -+ 266 * | | | 267 * |... | taskq_thread()-----+ 268 * +-------------+ 269 * | tq_buckets |--+-------> [ NULL ] (for regular task queues) 270 * +-------------+ | 271 * | DYNAMIC TASK QUEUES: 272 * | 273 * +-> taskq_bucket[nCPU] taskq_bucket_dispatch() 274 * +-------------------+ ^ 275 * +--->| tqbucket_lock | | 276 * | +-------------------+ +--------+ +--------+ 277 * | | tqbucket_freelist |-->| tqent |-->...| tqent | ^ 278 * | +-------------------+<--+--------+<--...+--------+ | 279 * | | ... | | thread | | thread | | 280 * | +-------------------+ +--------+ +--------+ | 281 * | +-------------------+ | 282 * taskq_dispatch()--+--->| tqbucket_lock | TQ_APPEND()------+ 283 * TQ_HASH() | +-------------------+ +--------+ +--------+ 284 * | | tqbucket_freelist |-->| tqent |-->...| tqent | 285 * | +-------------------+<--+--------+<--...+--------+ 286 * | | ... | | thread | | thread | 287 * | +-------------------+ +--------+ +--------+ 288 * +---> ... 289 * 290 * 291 * Task queues use tq_task field to link new entry in the queue. The queue is a 292 * circular doubly-linked list. Entries are put in the end of the list with 293 * TQ_APPEND() and processed from the front of the list by taskq_thread() in 294 * FIFO order. Task queue entries are cached in the free list managed by 295 * taskq_ent_alloc() and taskq_ent_free() functions. 296 * 297 * All threads used by task queues mark t_taskq field of the thread to 298 * point to the task queue. 299 * 300 * Taskq Thread Management ----------------------------------------------------- 301 * 302 * Taskq's non-dynamic threads are managed with several variables and flags: 303 * 304 * * tq_nthreads - The number of threads in taskq_thread() for the 305 * taskq. 306 * 307 * * tq_active - The number of threads not waiting on a CV in 308 * taskq_thread(); includes newly created threads 309 * not yet counted in tq_nthreads. 310 * 311 * * tq_nthreads_target 312 * - The number of threads desired for the taskq. 313 * 314 * * tq_flags & TASKQ_CHANGING 315 * - Indicates that tq_nthreads != tq_nthreads_target. 316 * 317 * * tq_flags & TASKQ_THREAD_CREATED 318 * - Indicates that a thread is being created in the taskq. 319 * 320 * During creation, tq_nthreads and tq_active are set to 0, and 321 * tq_nthreads_target is set to the number of threads desired. The 322 * TASKQ_CHANGING flag is set, and taskq_thread_create() is called to 323 * create the first thread. taskq_thread_create() increments tq_active, 324 * sets TASKQ_THREAD_CREATED, and creates the new thread. 325 * 326 * Each thread starts in taskq_thread(), clears the TASKQ_THREAD_CREATED 327 * flag, and increments tq_nthreads. It stores the new value of 328 * tq_nthreads as its "thread_id", and stores its thread pointer in the 329 * tq_threadlist at the (thread_id - 1). We keep the thread_id space 330 * densely packed by requiring that only the largest thread_id can exit during 331 * normal adjustment. The exception is during the destruction of the 332 * taskq; once tq_nthreads_target is set to zero, no new threads will be created 333 * for the taskq queue, so every thread can exit without any ordering being 334 * necessary. 335 * 336 * Threads will only process work if their thread id is <= tq_nthreads_target. 337 * 338 * When TASKQ_CHANGING is set, threads will check the current thread target 339 * whenever they wake up, and do whatever they can to apply its effects. 340 * 341 * TASKQ_THREAD_CPU_PCT -------------------------------------------------------- 342 * 343 * When a taskq is created with TASKQ_THREAD_CPU_PCT, we store their requested 344 * percentage in tq_threads_ncpus_pct, start them off with the correct thread 345 * target, and add them to the taskq_cpupct_list for later adjustment. 346 * 347 * We register taskq_cpu_setup() to be called whenever a CPU changes state. It 348 * walks the list of TASKQ_THREAD_CPU_PCT taskqs, adjusts their nthread_target 349 * if need be, and wakes up all of the threads to process the change. 350 * 351 * Dynamic Task Queues Implementation ------------------------------------------ 352 * 353 * For a dynamic task queues there is a 1-to-1 mapping between a thread and 354 * taskq_ent_structure. Each entry is serviced by its own thread and each thread 355 * is controlled by a single entry. 356 * 357 * Entries are distributed over a set of buckets. To avoid using modulo 358 * arithmetics the number of buckets is 2^n and is determined as the nearest 359 * power of two roundown of the number of CPUs in the system. Tunable 360 * variable 'taskq_maxbuckets' limits the maximum number of buckets. Each entry 361 * is attached to a bucket for its lifetime and can't migrate to other buckets. 362 * 363 * Entries that have scheduled tasks are not placed in any list. The dispatch 364 * function sets their "func" and "arg" fields and signals the corresponding 365 * thread to execute the task. Once the thread executes the task it clears the 366 * "func" field and places an entry on the bucket cache of free entries pointed 367 * by "tqbucket_freelist" field. ALL entries on the free list should have "func" 368 * field equal to NULL. The free list is a circular doubly-linked list identical 369 * in structure to the tq_task list above, but entries are taken from it in LIFO 370 * order - the last freed entry is the first to be allocated. The 371 * taskq_bucket_dispatch() function gets the most recently used entry from the 372 * free list, sets its "func" and "arg" fields and signals a worker thread. 373 * 374 * After executing each task a per-entry thread taskq_d_thread() places its 375 * entry on the bucket free list and goes to a timed sleep. If it wakes up 376 * without getting new task it removes the entry from the free list and destroys 377 * itself. The thread sleep time is controlled by a tunable variable 378 * `taskq_thread_timeout'. 379 * 380 * There are various statistics kept in the bucket which allows for later 381 * analysis of taskq usage patterns. Also, a global copy of taskq creation and 382 * death statistics is kept in the global taskq data structure. Since thread 383 * creation and death happen rarely, updating such global data does not present 384 * a performance problem. 385 * 386 * NOTE: Threads are not bound to any CPU and there is absolutely no association 387 * between the bucket and actual thread CPU, so buckets are used only to 388 * split resources and reduce resource contention. Having threads attached 389 * to the CPU denoted by a bucket may reduce number of times the job 390 * switches between CPUs. 391 * 392 * Current algorithm creates a thread whenever a bucket has no free 393 * entries. It would be nice to know how many threads are in the running 394 * state and don't create threads if all CPUs are busy with existing 395 * tasks, but it is unclear how such strategy can be implemented. 396 * 397 * Currently buckets are created statically as an array attached to task 398 * queue. On some system with nCPUs < max_ncpus it may waste system 399 * memory. One solution may be allocation of buckets when they are first 400 * touched, but it is not clear how useful it is. 401 * 402 * SUSPEND/RESUME implementation ----------------------------------------------- 403 * 404 * Before executing a task taskq_thread() (executing non-dynamic task 405 * queues) obtains taskq's thread lock as a reader. The taskq_suspend() 406 * function gets the same lock as a writer blocking all non-dynamic task 407 * execution. The taskq_resume() function releases the lock allowing 408 * taskq_thread to continue execution. 409 * 410 * For dynamic task queues, each bucket is marked as TQBUCKET_SUSPEND by 411 * taskq_suspend() function. After that taskq_bucket_dispatch() always 412 * fails, so that taskq_dispatch() will either enqueue tasks for a 413 * suspended backing queue or fail if TQ_NOQUEUE is specified in dispatch 414 * flags. 415 * 416 * NOTE: taskq_suspend() does not immediately block any tasks already 417 * scheduled for dynamic task queues. It only suspends new tasks 418 * scheduled after taskq_suspend() was called. 419 * 420 * taskq_member() function works by comparing a thread t_taskq pointer with 421 * the passed thread pointer. 422 * 423 * LOCKS and LOCK Hierarchy ---------------------------------------------------- 424 * 425 * There are three locks used in task queues: 426 * 427 * 1) The taskq_t's tq_lock, protecting global task queue state. 428 * 429 * 2) Each per-CPU bucket has a lock for bucket management. 430 * 431 * 3) The global taskq_cpupct_lock, which protects the list of 432 * TASKQ_THREADS_CPU_PCT taskqs. 433 * 434 * If both (1) and (2) are needed, tq_lock should be taken *after* the bucket 435 * lock. 436 * 437 * If both (1) and (3) are needed, tq_lock should be taken *after* 438 * taskq_cpupct_lock. 439 * 440 * DEBUG FACILITIES ------------------------------------------------------------ 441 * 442 * For DEBUG kernels it is possible to induce random failures to 443 * taskq_dispatch() function when it is given TQ_NOSLEEP argument. The value of 444 * taskq_dmtbf and taskq_smtbf tunables control the mean time between induced 445 * failures for dynamic and static task queues respectively. 446 * 447 * Setting TASKQ_STATISTIC to 0 will disable per-bucket statistics. 448 * 449 * TUNABLES -------------------------------------------------------------------- 450 * 451 * system_taskq_size - Size of the global system_taskq. 452 * This value is multiplied by nCPUs to determine 453 * actual size. 454 * Default value: 64 455 * 456 * taskq_minimum_nthreads_max 457 * - Minimum size of the thread list for a taskq. 458 * Useful for testing different thread pool 459 * sizes by overwriting tq_nthreads_target. 460 * 461 * taskq_thread_timeout - Maximum idle time for taskq_d_thread() 462 * Default value: 5 minutes 463 * 464 * taskq_maxbuckets - Maximum number of buckets in any task queue 465 * Default value: 128 466 * 467 * taskq_search_depth - Maximum # of buckets searched for a free entry 468 * Default value: 4 469 * 470 * taskq_dmtbf - Mean time between induced dispatch failures 471 * for dynamic task queues. 472 * Default value: UINT_MAX (no induced failures) 473 * 474 * taskq_smtbf - Mean time between induced dispatch failures 475 * for static task queues. 476 * Default value: UINT_MAX (no induced failures) 477 * 478 * CONDITIONAL compilation ----------------------------------------------------- 479 * 480 * TASKQ_STATISTIC - If set will enable bucket statistic (default). 481 * 482 */ 483 484 #include <sys/taskq_impl.h> 485 #include <sys/thread.h> 486 #include <sys/proc.h> 487 #include <sys/kmem.h> 488 #include <sys/vmem.h> 489 #include <sys/callb.h> 490 #include <sys/class.h> 491 #include <sys/systm.h> 492 #include <sys/cmn_err.h> 493 #include <sys/debug.h> 494 #include <sys/vmsystm.h> /* For throttlefree */ 495 #include <sys/sysmacros.h> 496 #include <sys/cpuvar.h> 497 #include <sys/cpupart.h> 498 #include <sys/sdt.h> 499 #include <sys/sysdc.h> 500 #include <sys/note.h> 501 502 static kmem_cache_t *taskq_ent_cache, *taskq_cache; 503 504 /* 505 * Pseudo instance numbers for taskqs without explicitly provided instance. 506 */ 507 static vmem_t *taskq_id_arena; 508 509 /* Global system task queue for common use */ 510 taskq_t *system_taskq; 511 512 /* 513 * Maximum number of entries in global system taskq is 514 * system_taskq_size * max_ncpus 515 */ 516 #define SYSTEM_TASKQ_SIZE 64 517 int system_taskq_size = SYSTEM_TASKQ_SIZE; 518 519 /* 520 * Minimum size for tq_nthreads_max; useful for those who want to play around 521 * with increasing a taskq's tq_nthreads_target. 522 */ 523 int taskq_minimum_nthreads_max = 1; 524 525 /* 526 * We want to ensure that when taskq_create() returns, there is at least 527 * one thread ready to handle requests. To guarantee this, we have to wait 528 * for the second thread, since the first one cannot process requests until 529 * the second thread has been created. 530 */ 531 #define TASKQ_CREATE_ACTIVE_THREADS 2 532 533 /* Maximum percentage allowed for TASKQ_THREADS_CPU_PCT */ 534 #define TASKQ_CPUPCT_MAX_PERCENT 1000 535 int taskq_cpupct_max_percent = TASKQ_CPUPCT_MAX_PERCENT; 536 537 /* 538 * Dynamic task queue threads that don't get any work within 539 * taskq_thread_timeout destroy themselves 540 */ 541 #define TASKQ_THREAD_TIMEOUT (60 * 5) 542 int taskq_thread_timeout = TASKQ_THREAD_TIMEOUT; 543 544 #define TASKQ_MAXBUCKETS 128 545 int taskq_maxbuckets = TASKQ_MAXBUCKETS; 546 547 /* 548 * When a bucket has no available entries another buckets are tried. 549 * taskq_search_depth parameter limits the amount of buckets that we search 550 * before failing. This is mostly useful in systems with many CPUs where we may 551 * spend too much time scanning busy buckets. 552 */ 553 #define TASKQ_SEARCH_DEPTH 4 554 int taskq_search_depth = TASKQ_SEARCH_DEPTH; 555 556 /* 557 * Hashing function: mix various bits of x. May be pretty much anything. 558 */ 559 #define TQ_HASH(x) ((x) ^ ((x) >> 11) ^ ((x) >> 17) ^ ((x) ^ 27)) 560 561 /* 562 * We do not create any new threads when the system is low on memory and start 563 * throttling memory allocations. The following macro tries to estimate such 564 * condition. 565 */ 566 #define ENOUGH_MEMORY() (freemem > throttlefree) 567 568 /* 569 * Static functions. 570 */ 571 static taskq_t *taskq_create_common(const char *, int, int, pri_t, int, 572 int, proc_t *, uint_t, uint_t); 573 static void taskq_thread(void *); 574 static void taskq_d_thread(taskq_ent_t *); 575 static void taskq_bucket_extend(void *); 576 static int taskq_constructor(void *, void *, int); 577 static void taskq_destructor(void *, void *); 578 static int taskq_ent_constructor(void *, void *, int); 579 static void taskq_ent_destructor(void *, void *); 580 static taskq_ent_t *taskq_ent_alloc(taskq_t *, int); 581 static void taskq_ent_free(taskq_t *, taskq_ent_t *); 582 static int taskq_ent_exists(taskq_t *, task_func_t, void *); 583 static taskq_ent_t *taskq_bucket_dispatch(taskq_bucket_t *, task_func_t, 584 void *); 585 586 /* 587 * Task queues kstats. 588 */ 589 struct taskq_kstat { 590 kstat_named_t tq_pid; 591 kstat_named_t tq_tasks; 592 kstat_named_t tq_executed; 593 kstat_named_t tq_maxtasks; 594 kstat_named_t tq_totaltime; 595 kstat_named_t tq_nalloc; 596 kstat_named_t tq_nactive; 597 kstat_named_t tq_pri; 598 kstat_named_t tq_nthreads; 599 } taskq_kstat = { 600 { "pid", KSTAT_DATA_UINT64 }, 601 { "tasks", KSTAT_DATA_UINT64 }, 602 { "executed", KSTAT_DATA_UINT64 }, 603 { "maxtasks", KSTAT_DATA_UINT64 }, 604 { "totaltime", KSTAT_DATA_UINT64 }, 605 { "nactive", KSTAT_DATA_UINT64 }, 606 { "nalloc", KSTAT_DATA_UINT64 }, 607 { "priority", KSTAT_DATA_UINT64 }, 608 { "threads", KSTAT_DATA_UINT64 }, 609 }; 610 611 struct taskq_d_kstat { 612 kstat_named_t tqd_pri; 613 kstat_named_t tqd_btasks; 614 kstat_named_t tqd_bexecuted; 615 kstat_named_t tqd_bmaxtasks; 616 kstat_named_t tqd_bnalloc; 617 kstat_named_t tqd_bnactive; 618 kstat_named_t tqd_btotaltime; 619 kstat_named_t tqd_hits; 620 kstat_named_t tqd_misses; 621 kstat_named_t tqd_overflows; 622 kstat_named_t tqd_tcreates; 623 kstat_named_t tqd_tdeaths; 624 kstat_named_t tqd_maxthreads; 625 kstat_named_t tqd_nomem; 626 kstat_named_t tqd_disptcreates; 627 kstat_named_t tqd_totaltime; 628 kstat_named_t tqd_nalloc; 629 kstat_named_t tqd_nfree; 630 } taskq_d_kstat = { 631 { "priority", KSTAT_DATA_UINT64 }, 632 { "btasks", KSTAT_DATA_UINT64 }, 633 { "bexecuted", KSTAT_DATA_UINT64 }, 634 { "bmaxtasks", KSTAT_DATA_UINT64 }, 635 { "bnalloc", KSTAT_DATA_UINT64 }, 636 { "bnactive", KSTAT_DATA_UINT64 }, 637 { "btotaltime", KSTAT_DATA_UINT64 }, 638 { "hits", KSTAT_DATA_UINT64 }, 639 { "misses", KSTAT_DATA_UINT64 }, 640 { "overflows", KSTAT_DATA_UINT64 }, 641 { "tcreates", KSTAT_DATA_UINT64 }, 642 { "tdeaths", KSTAT_DATA_UINT64 }, 643 { "maxthreads", KSTAT_DATA_UINT64 }, 644 { "nomem", KSTAT_DATA_UINT64 }, 645 { "disptcreates", KSTAT_DATA_UINT64 }, 646 { "totaltime", KSTAT_DATA_UINT64 }, 647 { "nalloc", KSTAT_DATA_UINT64 }, 648 { "nfree", KSTAT_DATA_UINT64 }, 649 }; 650 651 static kmutex_t taskq_kstat_lock; 652 static kmutex_t taskq_d_kstat_lock; 653 static int taskq_kstat_update(kstat_t *, int); 654 static int taskq_d_kstat_update(kstat_t *, int); 655 656 /* 657 * List of all TASKQ_THREADS_CPU_PCT taskqs. 658 */ 659 static list_t taskq_cpupct_list; /* protected by cpu_lock */ 660 661 /* 662 * Collect per-bucket statistic when TASKQ_STATISTIC is defined. 663 */ 664 #define TASKQ_STATISTIC 1 665 666 #if TASKQ_STATISTIC 667 #define TQ_STAT(b, x) b->tqbucket_stat.x++ 668 #else 669 #define TQ_STAT(b, x) 670 #endif 671 672 /* 673 * Random fault injection. 674 */ 675 uint_t taskq_random; 676 uint_t taskq_dmtbf = UINT_MAX; /* mean time between injected failures */ 677 uint_t taskq_smtbf = UINT_MAX; /* mean time between injected failures */ 678 679 /* 680 * TQ_NOSLEEP dispatches on dynamic task queues are always allowed to fail. 681 * 682 * TQ_NOSLEEP dispatches on static task queues can't arbitrarily fail because 683 * they could prepopulate the cache and make sure that they do not use more 684 * then minalloc entries. So, fault injection in this case insures that 685 * either TASKQ_PREPOPULATE is not set or there are more entries allocated 686 * than is specified by minalloc. TQ_NOALLOC dispatches are always allowed 687 * to fail, but for simplicity we treat them identically to TQ_NOSLEEP 688 * dispatches. 689 */ 690 #ifdef DEBUG 691 #define TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag) \ 692 taskq_random = (taskq_random * 2416 + 374441) % 1771875;\ 693 if ((flag & TQ_NOSLEEP) && \ 694 taskq_random < 1771875 / taskq_dmtbf) { \ 695 return (NULL); \ 696 } 697 698 #define TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag) \ 699 taskq_random = (taskq_random * 2416 + 374441) % 1771875;\ 700 if ((flag & (TQ_NOSLEEP | TQ_NOALLOC)) && \ 701 (!(tq->tq_flags & TASKQ_PREPOPULATE) || \ 702 (tq->tq_nalloc > tq->tq_minalloc)) && \ 703 (taskq_random < (1771875 / taskq_smtbf))) { \ 704 mutex_exit(&tq->tq_lock); \ 705 return (NULL); \ 706 } 707 #else 708 #define TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag) 709 #define TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag) 710 #endif 711 712 #define IS_EMPTY(l) (((l).tqent_prev == (l).tqent_next) && \ 713 ((l).tqent_prev == &(l))) 714 715 /* 716 * Append `tqe' in the end of the doubly-linked list denoted by l. 717 */ 718 #define TQ_APPEND(l, tqe) { \ 719 tqe->tqent_next = &l; \ 720 tqe->tqent_prev = l.tqent_prev; \ 721 tqe->tqent_next->tqent_prev = tqe; \ 722 tqe->tqent_prev->tqent_next = tqe; \ 723 } 724 /* 725 * Prepend 'tqe' to the beginning of l 726 */ 727 #define TQ_PREPEND(l, tqe) { \ 728 tqe->tqent_next = l.tqent_next; \ 729 tqe->tqent_prev = &l; \ 730 tqe->tqent_next->tqent_prev = tqe; \ 731 tqe->tqent_prev->tqent_next = tqe; \ 732 } 733 734 /* 735 * Schedule a task specified by func and arg into the task queue entry tqe. 736 */ 737 #define TQ_DO_ENQUEUE(tq, tqe, func, arg, front) { \ 738 ASSERT(MUTEX_HELD(&tq->tq_lock)); \ 739 _NOTE(CONSTCOND) \ 740 if (front) { \ 741 TQ_PREPEND(tq->tq_task, tqe); \ 742 } else { \ 743 TQ_APPEND(tq->tq_task, tqe); \ 744 } \ 745 tqe->tqent_func = (func); \ 746 tqe->tqent_arg = (arg); \ 747 tq->tq_tasks++; \ 748 if (tq->tq_tasks - tq->tq_executed > tq->tq_maxtasks) \ 749 tq->tq_maxtasks = tq->tq_tasks - tq->tq_executed; \ 750 cv_signal(&tq->tq_dispatch_cv); \ 751 DTRACE_PROBE2(taskq__enqueue, taskq_t *, tq, taskq_ent_t *, tqe); \ 752 } 753 754 #define TQ_ENQUEUE(tq, tqe, func, arg) \ 755 TQ_DO_ENQUEUE(tq, tqe, func, arg, 0) 756 757 #define TQ_ENQUEUE_FRONT(tq, tqe, func, arg) \ 758 TQ_DO_ENQUEUE(tq, tqe, func, arg, 1) 759 760 /* 761 * Do-nothing task which may be used to prepopulate thread caches. 762 */ 763 /*ARGSUSED*/ 764 void 765 nulltask(void *unused) 766 { 767 } 768 769 /*ARGSUSED*/ 770 static int 771 taskq_constructor(void *buf, void *cdrarg, int kmflags) 772 { 773 taskq_t *tq = buf; 774 775 bzero(tq, sizeof (taskq_t)); 776 777 mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL); 778 rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL); 779 cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL); 780 cv_init(&tq->tq_exit_cv, NULL, CV_DEFAULT, NULL); 781 cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL); 782 cv_init(&tq->tq_maxalloc_cv, NULL, CV_DEFAULT, NULL); 783 784 tq->tq_task.tqent_next = &tq->tq_task; 785 tq->tq_task.tqent_prev = &tq->tq_task; 786 787 return (0); 788 } 789 790 /*ARGSUSED*/ 791 static void 792 taskq_destructor(void *buf, void *cdrarg) 793 { 794 taskq_t *tq = buf; 795 796 ASSERT(tq->tq_nthreads == 0); 797 ASSERT(tq->tq_buckets == NULL); 798 ASSERT(tq->tq_tcreates == 0); 799 ASSERT(tq->tq_tdeaths == 0); 800 801 mutex_destroy(&tq->tq_lock); 802 rw_destroy(&tq->tq_threadlock); 803 cv_destroy(&tq->tq_dispatch_cv); 804 cv_destroy(&tq->tq_exit_cv); 805 cv_destroy(&tq->tq_wait_cv); 806 cv_destroy(&tq->tq_maxalloc_cv); 807 } 808 809 /*ARGSUSED*/ 810 static int 811 taskq_ent_constructor(void *buf, void *cdrarg, int kmflags) 812 { 813 taskq_ent_t *tqe = buf; 814 815 tqe->tqent_thread = NULL; 816 cv_init(&tqe->tqent_cv, NULL, CV_DEFAULT, NULL); 817 818 return (0); 819 } 820 821 /*ARGSUSED*/ 822 static void 823 taskq_ent_destructor(void *buf, void *cdrarg) 824 { 825 taskq_ent_t *tqe = buf; 826 827 ASSERT(tqe->tqent_thread == NULL); 828 cv_destroy(&tqe->tqent_cv); 829 } 830 831 void 832 taskq_init(void) 833 { 834 taskq_ent_cache = kmem_cache_create("taskq_ent_cache", 835 sizeof (taskq_ent_t), 0, taskq_ent_constructor, 836 taskq_ent_destructor, NULL, NULL, NULL, 0); 837 taskq_cache = kmem_cache_create("taskq_cache", sizeof (taskq_t), 838 0, taskq_constructor, taskq_destructor, NULL, NULL, NULL, 0); 839 taskq_id_arena = vmem_create("taskq_id_arena", 840 (void *)1, INT32_MAX, 1, NULL, NULL, NULL, 0, 841 VM_SLEEP | VMC_IDENTIFIER); 842 843 list_create(&taskq_cpupct_list, sizeof (taskq_t), 844 offsetof(taskq_t, tq_cpupct_link)); 845 } 846 847 static void 848 taskq_update_nthreads(taskq_t *tq, uint_t ncpus) 849 { 850 uint_t newtarget = TASKQ_THREADS_PCT(ncpus, tq->tq_threads_ncpus_pct); 851 852 ASSERT(MUTEX_HELD(&cpu_lock)); 853 ASSERT(MUTEX_HELD(&tq->tq_lock)); 854 855 /* We must be going from non-zero to non-zero; no exiting. */ 856 ASSERT3U(tq->tq_nthreads_target, !=, 0); 857 ASSERT3U(newtarget, !=, 0); 858 859 ASSERT3U(newtarget, <=, tq->tq_nthreads_max); 860 if (newtarget != tq->tq_nthreads_target) { 861 tq->tq_flags |= TASKQ_CHANGING; 862 tq->tq_nthreads_target = newtarget; 863 cv_broadcast(&tq->tq_dispatch_cv); 864 cv_broadcast(&tq->tq_exit_cv); 865 } 866 } 867 868 /* called during task queue creation */ 869 static void 870 taskq_cpupct_install(taskq_t *tq, cpupart_t *cpup) 871 { 872 ASSERT(tq->tq_flags & TASKQ_THREADS_CPU_PCT); 873 874 mutex_enter(&cpu_lock); 875 mutex_enter(&tq->tq_lock); 876 tq->tq_cpupart = cpup->cp_id; 877 taskq_update_nthreads(tq, cpup->cp_ncpus); 878 mutex_exit(&tq->tq_lock); 879 880 list_insert_tail(&taskq_cpupct_list, tq); 881 mutex_exit(&cpu_lock); 882 } 883 884 static void 885 taskq_cpupct_remove(taskq_t *tq) 886 { 887 ASSERT(tq->tq_flags & TASKQ_THREADS_CPU_PCT); 888 889 mutex_enter(&cpu_lock); 890 list_remove(&taskq_cpupct_list, tq); 891 mutex_exit(&cpu_lock); 892 } 893 894 /*ARGSUSED*/ 895 static int 896 taskq_cpu_setup(cpu_setup_t what, int id, void *arg) 897 { 898 taskq_t *tq; 899 cpupart_t *cp = cpu[id]->cpu_part; 900 uint_t ncpus = cp->cp_ncpus; 901 902 ASSERT(MUTEX_HELD(&cpu_lock)); 903 ASSERT(ncpus > 0); 904 905 switch (what) { 906 case CPU_OFF: 907 case CPU_CPUPART_OUT: 908 /* offlines are called *before* the cpu is offlined. */ 909 if (ncpus > 1) 910 ncpus--; 911 break; 912 913 case CPU_ON: 914 case CPU_CPUPART_IN: 915 break; 916 917 default: 918 return (0); /* doesn't affect cpu count */ 919 } 920 921 for (tq = list_head(&taskq_cpupct_list); tq != NULL; 922 tq = list_next(&taskq_cpupct_list, tq)) { 923 924 mutex_enter(&tq->tq_lock); 925 /* 926 * If the taskq is part of the cpuset which is changing, 927 * update its nthreads_target. 928 */ 929 if (tq->tq_cpupart == cp->cp_id) { 930 taskq_update_nthreads(tq, ncpus); 931 } 932 mutex_exit(&tq->tq_lock); 933 } 934 return (0); 935 } 936 937 void 938 taskq_mp_init(void) 939 { 940 mutex_enter(&cpu_lock); 941 register_cpu_setup_func(taskq_cpu_setup, NULL); 942 /* 943 * Make sure we're up to date. At this point in boot, there is only 944 * one processor set, so we only have to update the current CPU. 945 */ 946 (void) taskq_cpu_setup(CPU_ON, CPU->cpu_id, NULL); 947 mutex_exit(&cpu_lock); 948 } 949 950 /* 951 * Create global system dynamic task queue. 952 */ 953 void 954 system_taskq_init(void) 955 { 956 system_taskq = taskq_create_common("system_taskq", 0, 957 system_taskq_size * max_ncpus, minclsyspri, 4, 512, &p0, 0, 958 TASKQ_DYNAMIC | TASKQ_PREPOPULATE); 959 } 960 961 /* 962 * taskq_ent_alloc() 963 * 964 * Allocates a new taskq_ent_t structure either from the free list or from the 965 * cache. Returns NULL if it can't be allocated. 966 * 967 * Assumes: tq->tq_lock is held. 968 */ 969 static taskq_ent_t * 970 taskq_ent_alloc(taskq_t *tq, int flags) 971 { 972 int kmflags = (flags & TQ_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP; 973 taskq_ent_t *tqe; 974 clock_t wait_time; 975 clock_t wait_rv; 976 977 ASSERT(MUTEX_HELD(&tq->tq_lock)); 978 979 /* 980 * TQ_NOALLOC allocations are allowed to use the freelist, even if 981 * we are below tq_minalloc. 982 */ 983 again: if ((tqe = tq->tq_freelist) != NULL && 984 ((flags & TQ_NOALLOC) || tq->tq_nalloc >= tq->tq_minalloc)) { 985 tq->tq_freelist = tqe->tqent_next; 986 } else { 987 if (flags & TQ_NOALLOC) 988 return (NULL); 989 990 if (tq->tq_nalloc >= tq->tq_maxalloc) { 991 if (kmflags & KM_NOSLEEP) 992 return (NULL); 993 994 /* 995 * We don't want to exceed tq_maxalloc, but we can't 996 * wait for other tasks to complete (and thus free up 997 * task structures) without risking deadlock with 998 * the caller. So, we just delay for one second 999 * to throttle the allocation rate. If we have tasks 1000 * complete before one second timeout expires then 1001 * taskq_ent_free will signal us and we will 1002 * immediately retry the allocation (reap free). 1003 */ 1004 wait_time = ddi_get_lbolt() + hz; 1005 while (tq->tq_freelist == NULL) { 1006 tq->tq_maxalloc_wait++; 1007 wait_rv = cv_timedwait(&tq->tq_maxalloc_cv, 1008 &tq->tq_lock, wait_time); 1009 tq->tq_maxalloc_wait--; 1010 if (wait_rv == -1) 1011 break; 1012 } 1013 if (tq->tq_freelist) 1014 goto again; /* reap freelist */ 1015 1016 } 1017 mutex_exit(&tq->tq_lock); 1018 1019 tqe = kmem_cache_alloc(taskq_ent_cache, kmflags); 1020 1021 mutex_enter(&tq->tq_lock); 1022 if (tqe != NULL) 1023 tq->tq_nalloc++; 1024 } 1025 return (tqe); 1026 } 1027 1028 /* 1029 * taskq_ent_free() 1030 * 1031 * Free taskq_ent_t structure by either putting it on the free list or freeing 1032 * it to the cache. 1033 * 1034 * Assumes: tq->tq_lock is held. 1035 */ 1036 static void 1037 taskq_ent_free(taskq_t *tq, taskq_ent_t *tqe) 1038 { 1039 ASSERT(MUTEX_HELD(&tq->tq_lock)); 1040 1041 if (tq->tq_nalloc <= tq->tq_minalloc) { 1042 tqe->tqent_next = tq->tq_freelist; 1043 tq->tq_freelist = tqe; 1044 } else { 1045 tq->tq_nalloc--; 1046 mutex_exit(&tq->tq_lock); 1047 kmem_cache_free(taskq_ent_cache, tqe); 1048 mutex_enter(&tq->tq_lock); 1049 } 1050 1051 if (tq->tq_maxalloc_wait) 1052 cv_signal(&tq->tq_maxalloc_cv); 1053 } 1054 1055 /* 1056 * taskq_ent_exists() 1057 * 1058 * Return 1 if taskq already has entry for calling 'func(arg)'. 1059 * 1060 * Assumes: tq->tq_lock is held. 1061 */ 1062 static int 1063 taskq_ent_exists(taskq_t *tq, task_func_t func, void *arg) 1064 { 1065 taskq_ent_t *tqe; 1066 1067 ASSERT(MUTEX_HELD(&tq->tq_lock)); 1068 1069 for (tqe = tq->tq_task.tqent_next; tqe != &tq->tq_task; 1070 tqe = tqe->tqent_next) 1071 if ((tqe->tqent_func == func) && (tqe->tqent_arg == arg)) 1072 return (1); 1073 return (0); 1074 } 1075 1076 /* 1077 * Dispatch a task "func(arg)" to a free entry of bucket b. 1078 * 1079 * Assumes: no bucket locks is held. 1080 * 1081 * Returns: a pointer to an entry if dispatch was successful. 1082 * NULL if there are no free entries or if the bucket is suspended. 1083 */ 1084 static taskq_ent_t * 1085 taskq_bucket_dispatch(taskq_bucket_t *b, task_func_t func, void *arg) 1086 { 1087 taskq_ent_t *tqe; 1088 1089 ASSERT(MUTEX_NOT_HELD(&b->tqbucket_lock)); 1090 ASSERT(func != NULL); 1091 1092 mutex_enter(&b->tqbucket_lock); 1093 1094 ASSERT(b->tqbucket_nfree != 0 || IS_EMPTY(b->tqbucket_freelist)); 1095 ASSERT(b->tqbucket_nfree == 0 || !IS_EMPTY(b->tqbucket_freelist)); 1096 1097 /* 1098 * Get en entry from the freelist if there is one. 1099 * Schedule task into the entry. 1100 */ 1101 if ((b->tqbucket_nfree != 0) && 1102 !(b->tqbucket_flags & TQBUCKET_SUSPEND)) { 1103 tqe = b->tqbucket_freelist.tqent_prev; 1104 1105 ASSERT(tqe != &b->tqbucket_freelist); 1106 ASSERT(tqe->tqent_thread != NULL); 1107 1108 tqe->tqent_prev->tqent_next = tqe->tqent_next; 1109 tqe->tqent_next->tqent_prev = tqe->tqent_prev; 1110 b->tqbucket_nalloc++; 1111 b->tqbucket_nfree--; 1112 tqe->tqent_func = func; 1113 tqe->tqent_arg = arg; 1114 TQ_STAT(b, tqs_hits); 1115 cv_signal(&tqe->tqent_cv); 1116 DTRACE_PROBE2(taskq__d__enqueue, taskq_bucket_t *, b, 1117 taskq_ent_t *, tqe); 1118 } else { 1119 tqe = NULL; 1120 TQ_STAT(b, tqs_misses); 1121 } 1122 mutex_exit(&b->tqbucket_lock); 1123 return (tqe); 1124 } 1125 1126 /* 1127 * Dispatch a task. 1128 * 1129 * Assumes: func != NULL 1130 * 1131 * Returns: NULL if dispatch failed. 1132 * non-NULL if task dispatched successfully. 1133 * Actual return value is the pointer to taskq entry that was used to 1134 * dispatch a task. This is useful for debugging. 1135 */ 1136 taskqid_t 1137 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags) 1138 { 1139 taskq_bucket_t *bucket = NULL; /* Which bucket needs extension */ 1140 taskq_ent_t *tqe = NULL; 1141 taskq_ent_t *tqe1; 1142 uint_t bsize; 1143 1144 ASSERT(tq != NULL); 1145 ASSERT(func != NULL); 1146 1147 if (!(tq->tq_flags & TASKQ_DYNAMIC)) { 1148 /* 1149 * TQ_NOQUEUE flag can't be used with non-dynamic task queues. 1150 */ 1151 ASSERT(!(flags & TQ_NOQUEUE)); 1152 /* 1153 * Enqueue the task to the underlying queue. 1154 */ 1155 mutex_enter(&tq->tq_lock); 1156 1157 TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flags); 1158 1159 if ((tqe = taskq_ent_alloc(tq, flags)) == NULL) { 1160 mutex_exit(&tq->tq_lock); 1161 return (NULL); 1162 } 1163 /* Make sure we start without any flags */ 1164 tqe->tqent_un.tqent_flags = 0; 1165 1166 if (flags & TQ_FRONT) { 1167 TQ_ENQUEUE_FRONT(tq, tqe, func, arg); 1168 } else { 1169 TQ_ENQUEUE(tq, tqe, func, arg); 1170 } 1171 mutex_exit(&tq->tq_lock); 1172 return ((taskqid_t)tqe); 1173 } 1174 1175 /* 1176 * Dynamic taskq dispatching. 1177 */ 1178 ASSERT(!(flags & (TQ_NOALLOC | TQ_FRONT))); 1179 TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flags); 1180 1181 bsize = tq->tq_nbuckets; 1182 1183 if (bsize == 1) { 1184 /* 1185 * In a single-CPU case there is only one bucket, so get 1186 * entry directly from there. 1187 */ 1188 if ((tqe = taskq_bucket_dispatch(tq->tq_buckets, func, arg)) 1189 != NULL) 1190 return ((taskqid_t)tqe); /* Fastpath */ 1191 bucket = tq->tq_buckets; 1192 } else { 1193 int loopcount; 1194 taskq_bucket_t *b; 1195 uintptr_t h = ((uintptr_t)CPU + (uintptr_t)arg) >> 3; 1196 1197 h = TQ_HASH(h); 1198 1199 /* 1200 * The 'bucket' points to the original bucket that we hit. If we 1201 * can't allocate from it, we search other buckets, but only 1202 * extend this one. 1203 */ 1204 b = &tq->tq_buckets[h & (bsize - 1)]; 1205 ASSERT(b->tqbucket_taskq == tq); /* Sanity check */ 1206 1207 /* 1208 * Do a quick check before grabbing the lock. If the bucket does 1209 * not have free entries now, chances are very small that it 1210 * will after we take the lock, so we just skip it. 1211 */ 1212 if (b->tqbucket_nfree != 0) { 1213 if ((tqe = taskq_bucket_dispatch(b, func, arg)) != NULL) 1214 return ((taskqid_t)tqe); /* Fastpath */ 1215 } else { 1216 TQ_STAT(b, tqs_misses); 1217 } 1218 1219 bucket = b; 1220 loopcount = MIN(taskq_search_depth, bsize); 1221 /* 1222 * If bucket dispatch failed, search loopcount number of buckets 1223 * before we give up and fail. 1224 */ 1225 do { 1226 b = &tq->tq_buckets[++h & (bsize - 1)]; 1227 ASSERT(b->tqbucket_taskq == tq); /* Sanity check */ 1228 loopcount--; 1229 1230 if (b->tqbucket_nfree != 0) { 1231 tqe = taskq_bucket_dispatch(b, func, arg); 1232 } else { 1233 TQ_STAT(b, tqs_misses); 1234 } 1235 } while ((tqe == NULL) && (loopcount > 0)); 1236 } 1237 1238 /* 1239 * At this point we either scheduled a task and (tqe != NULL) or failed 1240 * (tqe == NULL). Try to recover from fails. 1241 */ 1242 1243 /* 1244 * For KM_SLEEP dispatches, try to extend the bucket and retry dispatch. 1245 */ 1246 if ((tqe == NULL) && !(flags & TQ_NOSLEEP)) { 1247 /* 1248 * taskq_bucket_extend() may fail to do anything, but this is 1249 * fine - we deal with it later. If the bucket was successfully 1250 * extended, there is a good chance that taskq_bucket_dispatch() 1251 * will get this new entry, unless someone is racing with us and 1252 * stealing the new entry from under our nose. 1253 * taskq_bucket_extend() may sleep. 1254 */ 1255 taskq_bucket_extend(bucket); 1256 TQ_STAT(bucket, tqs_disptcreates); 1257 if ((tqe = taskq_bucket_dispatch(bucket, func, arg)) != NULL) 1258 return ((taskqid_t)tqe); 1259 } 1260 1261 ASSERT(bucket != NULL); 1262 1263 /* 1264 * Since there are not enough free entries in the bucket, add a 1265 * taskq entry to extend it in the background using backing queue 1266 * (unless we already have a taskq entry to perform that extension). 1267 */ 1268 mutex_enter(&tq->tq_lock); 1269 if (!taskq_ent_exists(tq, taskq_bucket_extend, bucket)) { 1270 if ((tqe1 = taskq_ent_alloc(tq, TQ_NOSLEEP)) != NULL) { 1271 TQ_ENQUEUE_FRONT(tq, tqe1, taskq_bucket_extend, bucket); 1272 } else { 1273 TQ_STAT(bucket, tqs_nomem); 1274 } 1275 } 1276 1277 /* 1278 * Dispatch failed and we can't find an entry to schedule a task. 1279 * Revert to the backing queue unless TQ_NOQUEUE was asked. 1280 */ 1281 if ((tqe == NULL) && !(flags & TQ_NOQUEUE)) { 1282 if ((tqe = taskq_ent_alloc(tq, flags)) != NULL) { 1283 TQ_ENQUEUE(tq, tqe, func, arg); 1284 } else { 1285 TQ_STAT(bucket, tqs_nomem); 1286 } 1287 } 1288 mutex_exit(&tq->tq_lock); 1289 1290 return ((taskqid_t)tqe); 1291 } 1292 1293 void 1294 taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint_t flags, 1295 taskq_ent_t *tqe) 1296 { 1297 ASSERT(func != NULL); 1298 ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC)); 1299 1300 /* 1301 * Mark it as a prealloc'd task. This is important 1302 * to ensure that we don't free it later. 1303 */ 1304 tqe->tqent_un.tqent_flags |= TQENT_FLAG_PREALLOC; 1305 /* 1306 * Enqueue the task to the underlying queue. 1307 */ 1308 mutex_enter(&tq->tq_lock); 1309 1310 if (flags & TQ_FRONT) { 1311 TQ_ENQUEUE_FRONT(tq, tqe, func, arg); 1312 } else { 1313 TQ_ENQUEUE(tq, tqe, func, arg); 1314 } 1315 mutex_exit(&tq->tq_lock); 1316 } 1317 1318 /* 1319 * Wait for all pending tasks to complete. 1320 * Calling taskq_wait from a task will cause deadlock. 1321 */ 1322 void 1323 taskq_wait(taskq_t *tq) 1324 { 1325 ASSERT(tq != curthread->t_taskq); 1326 1327 mutex_enter(&tq->tq_lock); 1328 while (tq->tq_task.tqent_next != &tq->tq_task || tq->tq_active != 0) 1329 cv_wait(&tq->tq_wait_cv, &tq->tq_lock); 1330 mutex_exit(&tq->tq_lock); 1331 1332 if (tq->tq_flags & TASKQ_DYNAMIC) { 1333 taskq_bucket_t *b = tq->tq_buckets; 1334 int bid = 0; 1335 for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) { 1336 mutex_enter(&b->tqbucket_lock); 1337 while (b->tqbucket_nalloc > 0) 1338 cv_wait(&b->tqbucket_cv, &b->tqbucket_lock); 1339 mutex_exit(&b->tqbucket_lock); 1340 } 1341 } 1342 } 1343 1344 /* 1345 * Suspend execution of tasks. 1346 * 1347 * Tasks in the queue part will be suspended immediately upon return from this 1348 * function. Pending tasks in the dynamic part will continue to execute, but all 1349 * new tasks will be suspended. 1350 */ 1351 void 1352 taskq_suspend(taskq_t *tq) 1353 { 1354 rw_enter(&tq->tq_threadlock, RW_WRITER); 1355 1356 if (tq->tq_flags & TASKQ_DYNAMIC) { 1357 taskq_bucket_t *b = tq->tq_buckets; 1358 int bid = 0; 1359 for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) { 1360 mutex_enter(&b->tqbucket_lock); 1361 b->tqbucket_flags |= TQBUCKET_SUSPEND; 1362 mutex_exit(&b->tqbucket_lock); 1363 } 1364 } 1365 /* 1366 * Mark task queue as being suspended. Needed for taskq_suspended(). 1367 */ 1368 mutex_enter(&tq->tq_lock); 1369 ASSERT(!(tq->tq_flags & TASKQ_SUSPENDED)); 1370 tq->tq_flags |= TASKQ_SUSPENDED; 1371 mutex_exit(&tq->tq_lock); 1372 } 1373 1374 /* 1375 * returns: 1 if tq is suspended, 0 otherwise. 1376 */ 1377 int 1378 taskq_suspended(taskq_t *tq) 1379 { 1380 return ((tq->tq_flags & TASKQ_SUSPENDED) != 0); 1381 } 1382 1383 /* 1384 * Resume taskq execution. 1385 */ 1386 void 1387 taskq_resume(taskq_t *tq) 1388 { 1389 ASSERT(RW_WRITE_HELD(&tq->tq_threadlock)); 1390 1391 if (tq->tq_flags & TASKQ_DYNAMIC) { 1392 taskq_bucket_t *b = tq->tq_buckets; 1393 int bid = 0; 1394 for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) { 1395 mutex_enter(&b->tqbucket_lock); 1396 b->tqbucket_flags &= ~TQBUCKET_SUSPEND; 1397 mutex_exit(&b->tqbucket_lock); 1398 } 1399 } 1400 mutex_enter(&tq->tq_lock); 1401 ASSERT(tq->tq_flags & TASKQ_SUSPENDED); 1402 tq->tq_flags &= ~TASKQ_SUSPENDED; 1403 mutex_exit(&tq->tq_lock); 1404 1405 rw_exit(&tq->tq_threadlock); 1406 } 1407 1408 int 1409 taskq_member(taskq_t *tq, kthread_t *thread) 1410 { 1411 return (thread->t_taskq == tq); 1412 } 1413 1414 /* 1415 * Creates a thread in the taskq. We only allow one outstanding create at 1416 * a time. We drop and reacquire the tq_lock in order to avoid blocking other 1417 * taskq activity while thread_create() or lwp_kernel_create() run. 1418 * 1419 * The first time we're called, we do some additional setup, and do not 1420 * return until there are enough threads to start servicing requests. 1421 */ 1422 static void 1423 taskq_thread_create(taskq_t *tq) 1424 { 1425 kthread_t *t; 1426 const boolean_t first = (tq->tq_nthreads == 0); 1427 1428 ASSERT(MUTEX_HELD(&tq->tq_lock)); 1429 ASSERT(tq->tq_flags & TASKQ_CHANGING); 1430 ASSERT(tq->tq_nthreads < tq->tq_nthreads_target); 1431 ASSERT(!(tq->tq_flags & TASKQ_THREAD_CREATED)); 1432 1433 1434 tq->tq_flags |= TASKQ_THREAD_CREATED; 1435 tq->tq_active++; 1436 mutex_exit(&tq->tq_lock); 1437 1438 /* 1439 * With TASKQ_DUTY_CYCLE the new thread must have an LWP 1440 * as explained in ../disp/sysdc.c (for the msacct data). 1441 * Otherwise simple kthreads are preferred. 1442 */ 1443 if ((tq->tq_flags & TASKQ_DUTY_CYCLE) != 0) { 1444 /* Enforced in taskq_create_common */ 1445 ASSERT3P(tq->tq_proc, !=, &p0); 1446 t = lwp_kernel_create(tq->tq_proc, taskq_thread, tq, TS_RUN, 1447 tq->tq_pri); 1448 } else { 1449 t = thread_create(NULL, 0, taskq_thread, tq, 0, tq->tq_proc, 1450 TS_RUN, tq->tq_pri); 1451 } 1452 1453 if (!first) { 1454 mutex_enter(&tq->tq_lock); 1455 return; 1456 } 1457 1458 /* 1459 * We know the thread cannot go away, since tq cannot be 1460 * destroyed until creation has completed. We can therefore 1461 * safely dereference t. 1462 */ 1463 if (tq->tq_flags & TASKQ_THREADS_CPU_PCT) { 1464 taskq_cpupct_install(tq, t->t_cpupart); 1465 } 1466 mutex_enter(&tq->tq_lock); 1467 1468 /* Wait until we can service requests. */ 1469 while (tq->tq_nthreads != tq->tq_nthreads_target && 1470 tq->tq_nthreads < TASKQ_CREATE_ACTIVE_THREADS) { 1471 cv_wait(&tq->tq_wait_cv, &tq->tq_lock); 1472 } 1473 } 1474 1475 /* 1476 * Common "sleep taskq thread" function, which handles CPR stuff, as well 1477 * as giving a nice common point for debuggers to find inactive threads. 1478 */ 1479 static clock_t 1480 taskq_thread_wait(taskq_t *tq, kmutex_t *mx, kcondvar_t *cv, 1481 callb_cpr_t *cprinfo, clock_t timeout) 1482 { 1483 clock_t ret = 0; 1484 1485 if (!(tq->tq_flags & TASKQ_CPR_SAFE)) { 1486 CALLB_CPR_SAFE_BEGIN(cprinfo); 1487 } 1488 if (timeout < 0) 1489 cv_wait(cv, mx); 1490 else 1491 ret = cv_reltimedwait(cv, mx, timeout, TR_CLOCK_TICK); 1492 1493 if (!(tq->tq_flags & TASKQ_CPR_SAFE)) { 1494 CALLB_CPR_SAFE_END(cprinfo, mx); 1495 } 1496 1497 return (ret); 1498 } 1499 1500 /* 1501 * Worker thread for processing task queue. 1502 */ 1503 static void 1504 taskq_thread(void *arg) 1505 { 1506 int thread_id; 1507 1508 taskq_t *tq = arg; 1509 taskq_ent_t *tqe; 1510 callb_cpr_t cprinfo; 1511 hrtime_t start, end; 1512 boolean_t freeit; 1513 1514 curthread->t_taskq = tq; /* mark ourselves for taskq_member() */ 1515 1516 if (curproc != &p0 && (tq->tq_flags & TASKQ_DUTY_CYCLE)) { 1517 sysdc_thread_enter(curthread, tq->tq_DC, 1518 (tq->tq_flags & TASKQ_DC_BATCH) ? SYSDC_THREAD_BATCH : 0); 1519 } 1520 1521 if (tq->tq_flags & TASKQ_CPR_SAFE) { 1522 CALLB_CPR_INIT_SAFE(curthread, tq->tq_name); 1523 } else { 1524 CALLB_CPR_INIT(&cprinfo, &tq->tq_lock, callb_generic_cpr, 1525 tq->tq_name); 1526 } 1527 mutex_enter(&tq->tq_lock); 1528 thread_id = ++tq->tq_nthreads; 1529 ASSERT(tq->tq_flags & TASKQ_THREAD_CREATED); 1530 ASSERT(tq->tq_flags & TASKQ_CHANGING); 1531 tq->tq_flags &= ~TASKQ_THREAD_CREATED; 1532 1533 VERIFY3S(thread_id, <=, tq->tq_nthreads_max); 1534 1535 if (tq->tq_nthreads_max == 1) 1536 tq->tq_thread = curthread; 1537 else 1538 tq->tq_threadlist[thread_id - 1] = curthread; 1539 1540 /* Allow taskq_create_common()'s taskq_thread_create() to return. */ 1541 if (tq->tq_nthreads == TASKQ_CREATE_ACTIVE_THREADS) 1542 cv_broadcast(&tq->tq_wait_cv); 1543 1544 for (;;) { 1545 if (tq->tq_flags & TASKQ_CHANGING) { 1546 /* See if we're no longer needed */ 1547 if (thread_id > tq->tq_nthreads_target) { 1548 /* 1549 * To preserve the one-to-one mapping between 1550 * thread_id and thread, we must exit from 1551 * highest thread ID to least. 1552 * 1553 * However, if everyone is exiting, the order 1554 * doesn't matter, so just exit immediately. 1555 * (this is safe, since you must wait for 1556 * nthreads to reach 0 after setting 1557 * tq_nthreads_target to 0) 1558 */ 1559 if (thread_id == tq->tq_nthreads || 1560 tq->tq_nthreads_target == 0) 1561 break; 1562 1563 /* Wait for higher thread_ids to exit */ 1564 (void) taskq_thread_wait(tq, &tq->tq_lock, 1565 &tq->tq_exit_cv, &cprinfo, -1); 1566 continue; 1567 } 1568 1569 /* 1570 * If no thread is starting taskq_thread(), we can 1571 * do some bookkeeping. 1572 */ 1573 if (!(tq->tq_flags & TASKQ_THREAD_CREATED)) { 1574 /* Check if we've reached our target */ 1575 if (tq->tq_nthreads == tq->tq_nthreads_target) { 1576 tq->tq_flags &= ~TASKQ_CHANGING; 1577 cv_broadcast(&tq->tq_wait_cv); 1578 } 1579 /* Check if we need to create a thread */ 1580 if (tq->tq_nthreads < tq->tq_nthreads_target) { 1581 taskq_thread_create(tq); 1582 continue; /* tq_lock was dropped */ 1583 } 1584 } 1585 } 1586 if ((tqe = tq->tq_task.tqent_next) == &tq->tq_task) { 1587 if (--tq->tq_active == 0) 1588 cv_broadcast(&tq->tq_wait_cv); 1589 (void) taskq_thread_wait(tq, &tq->tq_lock, 1590 &tq->tq_dispatch_cv, &cprinfo, -1); 1591 tq->tq_active++; 1592 continue; 1593 } 1594 1595 tqe->tqent_prev->tqent_next = tqe->tqent_next; 1596 tqe->tqent_next->tqent_prev = tqe->tqent_prev; 1597 mutex_exit(&tq->tq_lock); 1598 1599 /* 1600 * For prealloc'd tasks, we don't free anything. We 1601 * have to check this now, because once we call the 1602 * function for a prealloc'd taskq, we can't touch the 1603 * tqent any longer (calling the function returns the 1604 * ownershp of the tqent back to caller of 1605 * taskq_dispatch.) 1606 */ 1607 if ((!(tq->tq_flags & TASKQ_DYNAMIC)) && 1608 (tqe->tqent_un.tqent_flags & TQENT_FLAG_PREALLOC)) { 1609 /* clear pointers to assist assertion checks */ 1610 tqe->tqent_next = tqe->tqent_prev = NULL; 1611 freeit = B_FALSE; 1612 } else { 1613 freeit = B_TRUE; 1614 } 1615 1616 rw_enter(&tq->tq_threadlock, RW_READER); 1617 start = gethrtime(); 1618 DTRACE_PROBE2(taskq__exec__start, taskq_t *, tq, 1619 taskq_ent_t *, tqe); 1620 tqe->tqent_func(tqe->tqent_arg); 1621 DTRACE_PROBE2(taskq__exec__end, taskq_t *, tq, 1622 taskq_ent_t *, tqe); 1623 end = gethrtime(); 1624 rw_exit(&tq->tq_threadlock); 1625 1626 mutex_enter(&tq->tq_lock); 1627 tq->tq_totaltime += end - start; 1628 tq->tq_executed++; 1629 1630 if (freeit) 1631 taskq_ent_free(tq, tqe); 1632 } 1633 1634 if (tq->tq_nthreads_max == 1) 1635 tq->tq_thread = NULL; 1636 else 1637 tq->tq_threadlist[thread_id - 1] = NULL; 1638 1639 /* We're exiting, and therefore no longer active */ 1640 ASSERT(tq->tq_active > 0); 1641 tq->tq_active--; 1642 1643 ASSERT(tq->tq_nthreads > 0); 1644 tq->tq_nthreads--; 1645 1646 /* Wake up anyone waiting for us to exit */ 1647 cv_broadcast(&tq->tq_exit_cv); 1648 if (tq->tq_nthreads == tq->tq_nthreads_target) { 1649 if (!(tq->tq_flags & TASKQ_THREAD_CREATED)) 1650 tq->tq_flags &= ~TASKQ_CHANGING; 1651 1652 cv_broadcast(&tq->tq_wait_cv); 1653 } 1654 1655 ASSERT(!(tq->tq_flags & TASKQ_CPR_SAFE)); 1656 CALLB_CPR_EXIT(&cprinfo); /* drops tq->tq_lock */ 1657 if (curthread->t_lwp != NULL) { 1658 mutex_enter(&curproc->p_lock); 1659 lwp_exit(); 1660 } else { 1661 thread_exit(); 1662 } 1663 } 1664 1665 /* 1666 * Worker per-entry thread for dynamic dispatches. 1667 */ 1668 static void 1669 taskq_d_thread(taskq_ent_t *tqe) 1670 { 1671 taskq_bucket_t *bucket = tqe->tqent_un.tqent_bucket; 1672 taskq_t *tq = bucket->tqbucket_taskq; 1673 kmutex_t *lock = &bucket->tqbucket_lock; 1674 kcondvar_t *cv = &tqe->tqent_cv; 1675 callb_cpr_t cprinfo; 1676 clock_t w; 1677 1678 CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, tq->tq_name); 1679 1680 mutex_enter(lock); 1681 1682 for (;;) { 1683 /* 1684 * If a task is scheduled (func != NULL), execute it, otherwise 1685 * sleep, waiting for a job. 1686 */ 1687 if (tqe->tqent_func != NULL) { 1688 hrtime_t start; 1689 hrtime_t end; 1690 1691 ASSERT(bucket->tqbucket_nalloc > 0); 1692 1693 /* 1694 * It is possible to free the entry right away before 1695 * actually executing the task so that subsequent 1696 * dispatches may immediately reuse it. But this, 1697 * effectively, creates a two-length queue in the entry 1698 * and may lead to a deadlock if the execution of the 1699 * current task depends on the execution of the next 1700 * scheduled task. So, we keep the entry busy until the 1701 * task is processed. 1702 */ 1703 1704 mutex_exit(lock); 1705 start = gethrtime(); 1706 DTRACE_PROBE3(taskq__d__exec__start, taskq_t *, tq, 1707 taskq_bucket_t *, bucket, taskq_ent_t *, tqe); 1708 tqe->tqent_func(tqe->tqent_arg); 1709 DTRACE_PROBE3(taskq__d__exec__end, taskq_t *, tq, 1710 taskq_bucket_t *, bucket, taskq_ent_t *, tqe); 1711 end = gethrtime(); 1712 mutex_enter(lock); 1713 bucket->tqbucket_totaltime += end - start; 1714 1715 /* 1716 * Return the entry to the bucket free list. 1717 */ 1718 tqe->tqent_func = NULL; 1719 TQ_APPEND(bucket->tqbucket_freelist, tqe); 1720 bucket->tqbucket_nalloc--; 1721 bucket->tqbucket_nfree++; 1722 ASSERT(!IS_EMPTY(bucket->tqbucket_freelist)); 1723 /* 1724 * taskq_wait() waits for nalloc to drop to zero on 1725 * tqbucket_cv. 1726 */ 1727 cv_signal(&bucket->tqbucket_cv); 1728 } 1729 1730 /* 1731 * At this point the entry must be in the bucket free list - 1732 * either because it was there initially or because it just 1733 * finished executing a task and put itself on the free list. 1734 */ 1735 ASSERT(bucket->tqbucket_nfree > 0); 1736 /* 1737 * Go to sleep unless we are closing. 1738 * If a thread is sleeping too long, it dies. 1739 */ 1740 if (! (bucket->tqbucket_flags & TQBUCKET_CLOSE)) { 1741 w = taskq_thread_wait(tq, lock, cv, 1742 &cprinfo, taskq_thread_timeout * hz); 1743 } 1744 1745 /* 1746 * At this point we may be in two different states: 1747 * 1748 * (1) tqent_func is set which means that a new task is 1749 * dispatched and we need to execute it. 1750 * 1751 * (2) Thread is sleeping for too long or we are closing. In 1752 * both cases destroy the thread and the entry. 1753 */ 1754 1755 /* If func is NULL we should be on the freelist. */ 1756 ASSERT((tqe->tqent_func != NULL) || 1757 (bucket->tqbucket_nfree > 0)); 1758 /* If func is non-NULL we should be allocated */ 1759 ASSERT((tqe->tqent_func == NULL) || 1760 (bucket->tqbucket_nalloc > 0)); 1761 1762 /* Check freelist consistency */ 1763 ASSERT((bucket->tqbucket_nfree > 0) || 1764 IS_EMPTY(bucket->tqbucket_freelist)); 1765 ASSERT((bucket->tqbucket_nfree == 0) || 1766 !IS_EMPTY(bucket->tqbucket_freelist)); 1767 1768 if ((tqe->tqent_func == NULL) && 1769 ((w == -1) || (bucket->tqbucket_flags & TQBUCKET_CLOSE))) { 1770 /* 1771 * This thread is sleeping for too long or we are 1772 * closing - time to die. 1773 * Thread creation/destruction happens rarely, 1774 * so grabbing the lock is not a big performance issue. 1775 * The bucket lock is dropped by CALLB_CPR_EXIT(). 1776 */ 1777 1778 /* Remove the entry from the free list. */ 1779 tqe->tqent_prev->tqent_next = tqe->tqent_next; 1780 tqe->tqent_next->tqent_prev = tqe->tqent_prev; 1781 ASSERT(bucket->tqbucket_nfree > 0); 1782 bucket->tqbucket_nfree--; 1783 1784 TQ_STAT(bucket, tqs_tdeaths); 1785 cv_signal(&bucket->tqbucket_cv); 1786 tqe->tqent_thread = NULL; 1787 mutex_enter(&tq->tq_lock); 1788 tq->tq_tdeaths++; 1789 mutex_exit(&tq->tq_lock); 1790 CALLB_CPR_EXIT(&cprinfo); 1791 kmem_cache_free(taskq_ent_cache, tqe); 1792 thread_exit(); 1793 } 1794 } 1795 } 1796 1797 1798 /* 1799 * Taskq creation. May sleep for memory. 1800 * Always use automatically generated instances to avoid kstat name space 1801 * collisions. 1802 */ 1803 1804 taskq_t * 1805 taskq_create(const char *name, int nthreads, pri_t pri, int minalloc, 1806 int maxalloc, uint_t flags) 1807 { 1808 ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0); 1809 1810 return (taskq_create_common(name, 0, nthreads, pri, minalloc, 1811 maxalloc, &p0, 0, flags | TASKQ_NOINSTANCE)); 1812 } 1813 1814 /* 1815 * Create an instance of task queue. It is legal to create task queues with the 1816 * same name and different instances. 1817 * 1818 * taskq_create_instance is used by ddi_taskq_create() where it gets the 1819 * instance from ddi_get_instance(). In some cases the instance is not 1820 * initialized and is set to -1. This case is handled as if no instance was 1821 * passed at all. 1822 */ 1823 taskq_t * 1824 taskq_create_instance(const char *name, int instance, int nthreads, pri_t pri, 1825 int minalloc, int maxalloc, uint_t flags) 1826 { 1827 ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0); 1828 ASSERT((instance >= 0) || (instance == -1)); 1829 1830 if (instance < 0) { 1831 flags |= TASKQ_NOINSTANCE; 1832 } 1833 1834 return (taskq_create_common(name, instance, nthreads, 1835 pri, minalloc, maxalloc, &p0, 0, flags)); 1836 } 1837 1838 taskq_t * 1839 taskq_create_proc(const char *name, int nthreads, pri_t pri, int minalloc, 1840 int maxalloc, proc_t *proc, uint_t flags) 1841 { 1842 ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0); 1843 ASSERT(proc->p_flag & SSYS); 1844 1845 return (taskq_create_common(name, 0, nthreads, pri, minalloc, 1846 maxalloc, proc, 0, flags | TASKQ_NOINSTANCE)); 1847 } 1848 1849 taskq_t * 1850 taskq_create_sysdc(const char *name, int nthreads, int minalloc, 1851 int maxalloc, proc_t *proc, uint_t dc, uint_t flags) 1852 { 1853 ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0); 1854 ASSERT(proc->p_flag & SSYS); 1855 1856 return (taskq_create_common(name, 0, nthreads, minclsyspri, minalloc, 1857 maxalloc, proc, dc, flags | TASKQ_NOINSTANCE | TASKQ_DUTY_CYCLE)); 1858 } 1859 1860 static taskq_t * 1861 taskq_create_common(const char *name, int instance, int nthreads, pri_t pri, 1862 int minalloc, int maxalloc, proc_t *proc, uint_t dc, uint_t flags) 1863 { 1864 taskq_t *tq = kmem_cache_alloc(taskq_cache, KM_SLEEP); 1865 uint_t ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus); 1866 uint_t bsize; /* # of buckets - always power of 2 */ 1867 int max_nthreads; 1868 1869 /* 1870 * TASKQ_DYNAMIC, TASKQ_CPR_SAFE and TASKQ_THREADS_CPU_PCT are all 1871 * mutually incompatible. 1872 */ 1873 IMPLY((flags & TASKQ_DYNAMIC), !(flags & TASKQ_CPR_SAFE)); 1874 IMPLY((flags & TASKQ_DYNAMIC), !(flags & TASKQ_THREADS_CPU_PCT)); 1875 IMPLY((flags & TASKQ_CPR_SAFE), !(flags & TASKQ_THREADS_CPU_PCT)); 1876 1877 /* Cannot have DYNAMIC with DUTY_CYCLE */ 1878 IMPLY((flags & TASKQ_DYNAMIC), !(flags & TASKQ_DUTY_CYCLE)); 1879 1880 /* Cannot have DUTY_CYCLE with a p0 kernel process */ 1881 IMPLY((flags & TASKQ_DUTY_CYCLE), proc != &p0); 1882 1883 /* Cannot have DC_BATCH without DUTY_CYCLE */ 1884 ASSERT((flags & (TASKQ_DUTY_CYCLE|TASKQ_DC_BATCH)) != TASKQ_DC_BATCH); 1885 1886 ASSERT(proc != NULL); 1887 1888 bsize = 1 << (highbit(ncpus) - 1); 1889 ASSERT(bsize >= 1); 1890 bsize = MIN(bsize, taskq_maxbuckets); 1891 1892 if (flags & TASKQ_DYNAMIC) { 1893 ASSERT3S(nthreads, >=, 1); 1894 tq->tq_maxsize = nthreads; 1895 1896 /* For dynamic task queues use just one backup thread */ 1897 nthreads = max_nthreads = 1; 1898 1899 } else if (flags & TASKQ_THREADS_CPU_PCT) { 1900 uint_t pct; 1901 ASSERT3S(nthreads, >=, 0); 1902 pct = nthreads; 1903 1904 if (pct > taskq_cpupct_max_percent) 1905 pct = taskq_cpupct_max_percent; 1906 1907 /* 1908 * If you're using THREADS_CPU_PCT, the process for the 1909 * taskq threads must be curproc. This allows any pset 1910 * binding to be inherited correctly. If proc is &p0, 1911 * we won't be creating LWPs, so new threads will be assigned 1912 * to the default processor set. 1913 */ 1914 ASSERT(curproc == proc || proc == &p0); 1915 tq->tq_threads_ncpus_pct = pct; 1916 nthreads = 1; /* corrected in taskq_thread_create() */ 1917 max_nthreads = TASKQ_THREADS_PCT(max_ncpus, pct); 1918 1919 } else { 1920 ASSERT3S(nthreads, >=, 1); 1921 max_nthreads = nthreads; 1922 } 1923 1924 if (max_nthreads < taskq_minimum_nthreads_max) 1925 max_nthreads = taskq_minimum_nthreads_max; 1926 1927 /* 1928 * Make sure the name is 0-terminated, and conforms to the rules for 1929 * C indentifiers 1930 */ 1931 (void) strncpy(tq->tq_name, name, TASKQ_NAMELEN + 1); 1932 strident_canon(tq->tq_name, TASKQ_NAMELEN + 1); 1933 1934 tq->tq_flags = flags | TASKQ_CHANGING; 1935 tq->tq_active = 0; 1936 tq->tq_instance = instance; 1937 tq->tq_nthreads_target = nthreads; 1938 tq->tq_nthreads_max = max_nthreads; 1939 tq->tq_minalloc = minalloc; 1940 tq->tq_maxalloc = maxalloc; 1941 tq->tq_nbuckets = bsize; 1942 tq->tq_proc = proc; 1943 tq->tq_pri = pri; 1944 tq->tq_DC = dc; 1945 list_link_init(&tq->tq_cpupct_link); 1946 1947 if (max_nthreads > 1) 1948 tq->tq_threadlist = kmem_alloc( 1949 sizeof (kthread_t *) * max_nthreads, KM_SLEEP); 1950 1951 mutex_enter(&tq->tq_lock); 1952 if (flags & TASKQ_PREPOPULATE) { 1953 while (minalloc-- > 0) 1954 taskq_ent_free(tq, taskq_ent_alloc(tq, TQ_SLEEP)); 1955 } 1956 1957 /* 1958 * Before we start creating threads for this taskq, take a 1959 * zone hold so the zone can't go away before taskq_destroy 1960 * makes sure all the taskq threads are gone. This hold is 1961 * similar in purpose to those taken by zthread_create(). 1962 */ 1963 zone_hold(tq->tq_proc->p_zone); 1964 1965 /* 1966 * Create the first thread, which will create any other threads 1967 * necessary. taskq_thread_create will not return until we have 1968 * enough threads to be able to process requests. 1969 */ 1970 taskq_thread_create(tq); 1971 mutex_exit(&tq->tq_lock); 1972 1973 if (flags & TASKQ_DYNAMIC) { 1974 taskq_bucket_t *bucket = kmem_zalloc(sizeof (taskq_bucket_t) * 1975 bsize, KM_SLEEP); 1976 int b_id; 1977 1978 tq->tq_buckets = bucket; 1979 1980 /* Initialize each bucket */ 1981 for (b_id = 0; b_id < bsize; b_id++, bucket++) { 1982 mutex_init(&bucket->tqbucket_lock, NULL, MUTEX_DEFAULT, 1983 NULL); 1984 cv_init(&bucket->tqbucket_cv, NULL, CV_DEFAULT, NULL); 1985 bucket->tqbucket_taskq = tq; 1986 bucket->tqbucket_freelist.tqent_next = 1987 bucket->tqbucket_freelist.tqent_prev = 1988 &bucket->tqbucket_freelist; 1989 if (flags & TASKQ_PREPOPULATE) 1990 taskq_bucket_extend(bucket); 1991 } 1992 } 1993 1994 /* 1995 * Install kstats. 1996 * We have two cases: 1997 * 1) Instance is provided to taskq_create_instance(). In this case it 1998 * should be >= 0 and we use it. 1999 * 2000 * 2) Instance is not provided and is automatically generated 2001 */ 2002 if (flags & TASKQ_NOINSTANCE) { 2003 instance = tq->tq_instance = 2004 (int)(uintptr_t)vmem_alloc(taskq_id_arena, 1, VM_SLEEP); 2005 } 2006 2007 if (flags & TASKQ_DYNAMIC) { 2008 if ((tq->tq_kstat = kstat_create("unix", instance, 2009 tq->tq_name, "taskq_d", KSTAT_TYPE_NAMED, 2010 sizeof (taskq_d_kstat) / sizeof (kstat_named_t), 2011 KSTAT_FLAG_VIRTUAL)) != NULL) { 2012 tq->tq_kstat->ks_lock = &taskq_d_kstat_lock; 2013 tq->tq_kstat->ks_data = &taskq_d_kstat; 2014 tq->tq_kstat->ks_update = taskq_d_kstat_update; 2015 tq->tq_kstat->ks_private = tq; 2016 kstat_install(tq->tq_kstat); 2017 } 2018 } else { 2019 if ((tq->tq_kstat = kstat_create("unix", instance, tq->tq_name, 2020 "taskq", KSTAT_TYPE_NAMED, 2021 sizeof (taskq_kstat) / sizeof (kstat_named_t), 2022 KSTAT_FLAG_VIRTUAL)) != NULL) { 2023 tq->tq_kstat->ks_lock = &taskq_kstat_lock; 2024 tq->tq_kstat->ks_data = &taskq_kstat; 2025 tq->tq_kstat->ks_update = taskq_kstat_update; 2026 tq->tq_kstat->ks_private = tq; 2027 kstat_install(tq->tq_kstat); 2028 } 2029 } 2030 2031 return (tq); 2032 } 2033 2034 /* 2035 * taskq_destroy(). 2036 * 2037 * Assumes: by the time taskq_destroy is called no one will use this task queue 2038 * in any way and no one will try to dispatch entries in it. 2039 */ 2040 void 2041 taskq_destroy(taskq_t *tq) 2042 { 2043 taskq_bucket_t *b = tq->tq_buckets; 2044 int bid = 0; 2045 2046 ASSERT(! (tq->tq_flags & TASKQ_CPR_SAFE)); 2047 2048 /* 2049 * Destroy kstats. 2050 */ 2051 if (tq->tq_kstat != NULL) { 2052 kstat_delete(tq->tq_kstat); 2053 tq->tq_kstat = NULL; 2054 } 2055 2056 /* 2057 * Destroy instance if needed. 2058 */ 2059 if (tq->tq_flags & TASKQ_NOINSTANCE) { 2060 vmem_free(taskq_id_arena, (void *)(uintptr_t)(tq->tq_instance), 2061 1); 2062 tq->tq_instance = 0; 2063 } 2064 2065 /* 2066 * Unregister from the cpupct list. 2067 */ 2068 if (tq->tq_flags & TASKQ_THREADS_CPU_PCT) { 2069 taskq_cpupct_remove(tq); 2070 } 2071 2072 /* 2073 * Wait for any pending entries to complete. 2074 */ 2075 taskq_wait(tq); 2076 2077 mutex_enter(&tq->tq_lock); 2078 ASSERT((tq->tq_task.tqent_next == &tq->tq_task) && 2079 (tq->tq_active == 0)); 2080 2081 /* notify all the threads that they need to exit */ 2082 tq->tq_nthreads_target = 0; 2083 2084 tq->tq_flags |= TASKQ_CHANGING; 2085 cv_broadcast(&tq->tq_dispatch_cv); 2086 cv_broadcast(&tq->tq_exit_cv); 2087 2088 while (tq->tq_nthreads != 0) 2089 cv_wait(&tq->tq_wait_cv, &tq->tq_lock); 2090 2091 if (tq->tq_nthreads_max != 1) 2092 kmem_free(tq->tq_threadlist, sizeof (kthread_t *) * 2093 tq->tq_nthreads_max); 2094 2095 tq->tq_minalloc = 0; 2096 while (tq->tq_nalloc != 0) 2097 taskq_ent_free(tq, taskq_ent_alloc(tq, TQ_SLEEP)); 2098 2099 mutex_exit(&tq->tq_lock); 2100 2101 /* 2102 * Mark each bucket as closing and wakeup all sleeping threads. 2103 */ 2104 for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) { 2105 taskq_ent_t *tqe; 2106 2107 mutex_enter(&b->tqbucket_lock); 2108 2109 b->tqbucket_flags |= TQBUCKET_CLOSE; 2110 /* Wakeup all sleeping threads */ 2111 2112 for (tqe = b->tqbucket_freelist.tqent_next; 2113 tqe != &b->tqbucket_freelist; tqe = tqe->tqent_next) 2114 cv_signal(&tqe->tqent_cv); 2115 2116 ASSERT(b->tqbucket_nalloc == 0); 2117 2118 /* 2119 * At this point we waited for all pending jobs to complete (in 2120 * both the task queue and the bucket and no new jobs should 2121 * arrive. Wait for all threads to die. 2122 */ 2123 while (b->tqbucket_nfree > 0) 2124 cv_wait(&b->tqbucket_cv, &b->tqbucket_lock); 2125 mutex_exit(&b->tqbucket_lock); 2126 mutex_destroy(&b->tqbucket_lock); 2127 cv_destroy(&b->tqbucket_cv); 2128 } 2129 2130 if (tq->tq_buckets != NULL) { 2131 ASSERT(tq->tq_flags & TASKQ_DYNAMIC); 2132 kmem_free(tq->tq_buckets, 2133 sizeof (taskq_bucket_t) * tq->tq_nbuckets); 2134 2135 /* Cleanup fields before returning tq to the cache */ 2136 tq->tq_buckets = NULL; 2137 tq->tq_tcreates = 0; 2138 tq->tq_tdeaths = 0; 2139 } else { 2140 ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC)); 2141 } 2142 2143 /* 2144 * Now that all the taskq threads are gone, we can 2145 * drop the zone hold taken in taskq_create_common 2146 */ 2147 zone_rele(tq->tq_proc->p_zone); 2148 2149 tq->tq_threads_ncpus_pct = 0; 2150 tq->tq_totaltime = 0; 2151 tq->tq_tasks = 0; 2152 tq->tq_maxtasks = 0; 2153 tq->tq_executed = 0; 2154 kmem_cache_free(taskq_cache, tq); 2155 } 2156 2157 /* 2158 * Extend a bucket with a new entry on the free list and attach a worker thread 2159 * to it. 2160 * 2161 * Argument: pointer to the bucket. 2162 * 2163 * This function may quietly fail. It is only used by taskq_dispatch() which 2164 * handles such failures properly. 2165 */ 2166 static void 2167 taskq_bucket_extend(void *arg) 2168 { 2169 taskq_ent_t *tqe; 2170 taskq_bucket_t *b = (taskq_bucket_t *)arg; 2171 taskq_t *tq = b->tqbucket_taskq; 2172 int nthreads; 2173 2174 if (! ENOUGH_MEMORY()) { 2175 TQ_STAT(b, tqs_nomem); 2176 return; 2177 } 2178 2179 mutex_enter(&tq->tq_lock); 2180 2181 /* 2182 * Observe global taskq limits on the number of threads. 2183 */ 2184 if (tq->tq_tcreates++ - tq->tq_tdeaths > tq->tq_maxsize) { 2185 tq->tq_tcreates--; 2186 mutex_exit(&tq->tq_lock); 2187 return; 2188 } 2189 mutex_exit(&tq->tq_lock); 2190 2191 tqe = kmem_cache_alloc(taskq_ent_cache, KM_NOSLEEP); 2192 2193 if (tqe == NULL) { 2194 mutex_enter(&tq->tq_lock); 2195 TQ_STAT(b, tqs_nomem); 2196 tq->tq_tcreates--; 2197 mutex_exit(&tq->tq_lock); 2198 return; 2199 } 2200 2201 ASSERT(tqe->tqent_thread == NULL); 2202 2203 tqe->tqent_un.tqent_bucket = b; 2204 2205 /* 2206 * Create a thread in a TS_STOPPED state first. If it is successfully 2207 * created, place the entry on the free list and start the thread. 2208 */ 2209 tqe->tqent_thread = thread_create(NULL, 0, taskq_d_thread, tqe, 2210 0, tq->tq_proc, TS_STOPPED, tq->tq_pri); 2211 2212 /* 2213 * Once the entry is ready, link it to the the bucket free list. 2214 */ 2215 mutex_enter(&b->tqbucket_lock); 2216 tqe->tqent_func = NULL; 2217 TQ_APPEND(b->tqbucket_freelist, tqe); 2218 b->tqbucket_nfree++; 2219 TQ_STAT(b, tqs_tcreates); 2220 2221 #if TASKQ_STATISTIC 2222 nthreads = b->tqbucket_stat.tqs_tcreates - 2223 b->tqbucket_stat.tqs_tdeaths; 2224 b->tqbucket_stat.tqs_maxthreads = MAX(nthreads, 2225 b->tqbucket_stat.tqs_maxthreads); 2226 #endif 2227 2228 mutex_exit(&b->tqbucket_lock); 2229 /* 2230 * Start the stopped thread. 2231 */ 2232 thread_lock(tqe->tqent_thread); 2233 tqe->tqent_thread->t_taskq = tq; 2234 tqe->tqent_thread->t_schedflag |= TS_ALLSTART; 2235 setrun_locked(tqe->tqent_thread); 2236 thread_unlock(tqe->tqent_thread); 2237 } 2238 2239 static int 2240 taskq_kstat_update(kstat_t *ksp, int rw) 2241 { 2242 struct taskq_kstat *tqsp = &taskq_kstat; 2243 taskq_t *tq = ksp->ks_private; 2244 2245 if (rw == KSTAT_WRITE) 2246 return (EACCES); 2247 2248 tqsp->tq_pid.value.ui64 = tq->tq_proc->p_pid; 2249 tqsp->tq_tasks.value.ui64 = tq->tq_tasks; 2250 tqsp->tq_executed.value.ui64 = tq->tq_executed; 2251 tqsp->tq_maxtasks.value.ui64 = tq->tq_maxtasks; 2252 tqsp->tq_totaltime.value.ui64 = tq->tq_totaltime; 2253 tqsp->tq_nactive.value.ui64 = tq->tq_active; 2254 tqsp->tq_nalloc.value.ui64 = tq->tq_nalloc; 2255 tqsp->tq_pri.value.ui64 = tq->tq_pri; 2256 tqsp->tq_nthreads.value.ui64 = tq->tq_nthreads; 2257 return (0); 2258 } 2259 2260 static int 2261 taskq_d_kstat_update(kstat_t *ksp, int rw) 2262 { 2263 struct taskq_d_kstat *tqsp = &taskq_d_kstat; 2264 taskq_t *tq = ksp->ks_private; 2265 taskq_bucket_t *b = tq->tq_buckets; 2266 int bid = 0; 2267 2268 if (rw == KSTAT_WRITE) 2269 return (EACCES); 2270 2271 ASSERT(tq->tq_flags & TASKQ_DYNAMIC); 2272 2273 tqsp->tqd_btasks.value.ui64 = tq->tq_tasks; 2274 tqsp->tqd_bexecuted.value.ui64 = tq->tq_executed; 2275 tqsp->tqd_bmaxtasks.value.ui64 = tq->tq_maxtasks; 2276 tqsp->tqd_bnalloc.value.ui64 = tq->tq_nalloc; 2277 tqsp->tqd_bnactive.value.ui64 = tq->tq_active; 2278 tqsp->tqd_btotaltime.value.ui64 = tq->tq_totaltime; 2279 tqsp->tqd_pri.value.ui64 = tq->tq_pri; 2280 2281 tqsp->tqd_hits.value.ui64 = 0; 2282 tqsp->tqd_misses.value.ui64 = 0; 2283 tqsp->tqd_overflows.value.ui64 = 0; 2284 tqsp->tqd_tcreates.value.ui64 = 0; 2285 tqsp->tqd_tdeaths.value.ui64 = 0; 2286 tqsp->tqd_maxthreads.value.ui64 = 0; 2287 tqsp->tqd_nomem.value.ui64 = 0; 2288 tqsp->tqd_disptcreates.value.ui64 = 0; 2289 tqsp->tqd_totaltime.value.ui64 = 0; 2290 tqsp->tqd_nalloc.value.ui64 = 0; 2291 tqsp->tqd_nfree.value.ui64 = 0; 2292 2293 for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) { 2294 tqsp->tqd_hits.value.ui64 += b->tqbucket_stat.tqs_hits; 2295 tqsp->tqd_misses.value.ui64 += b->tqbucket_stat.tqs_misses; 2296 tqsp->tqd_overflows.value.ui64 += b->tqbucket_stat.tqs_overflow; 2297 tqsp->tqd_tcreates.value.ui64 += b->tqbucket_stat.tqs_tcreates; 2298 tqsp->tqd_tdeaths.value.ui64 += b->tqbucket_stat.tqs_tdeaths; 2299 tqsp->tqd_maxthreads.value.ui64 += 2300 b->tqbucket_stat.tqs_maxthreads; 2301 tqsp->tqd_nomem.value.ui64 += b->tqbucket_stat.tqs_nomem; 2302 tqsp->tqd_disptcreates.value.ui64 += 2303 b->tqbucket_stat.tqs_disptcreates; 2304 tqsp->tqd_totaltime.value.ui64 += b->tqbucket_totaltime; 2305 tqsp->tqd_nalloc.value.ui64 += b->tqbucket_nalloc; 2306 tqsp->tqd_nfree.value.ui64 += b->tqbucket_nfree; 2307 } 2308 return (0); 2309 } 2310