xref: /titanic_52/usr/src/uts/common/os/strsubr.c (revision eb4a63c65afce422715b540e0b0b649f445b0c25)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22 /*	  All Rights Reserved  	*/
23 
24 
25 /*
26  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #include <sys/types.h>
31 #include <sys/sysmacros.h>
32 #include <sys/param.h>
33 #include <sys/errno.h>
34 #include <sys/signal.h>
35 #include <sys/proc.h>
36 #include <sys/conf.h>
37 #include <sys/cred.h>
38 #include <sys/user.h>
39 #include <sys/vnode.h>
40 #include <sys/file.h>
41 #include <sys/session.h>
42 #include <sys/stream.h>
43 #include <sys/strsubr.h>
44 #include <sys/stropts.h>
45 #include <sys/poll.h>
46 #include <sys/systm.h>
47 #include <sys/cpuvar.h>
48 #include <sys/uio.h>
49 #include <sys/cmn_err.h>
50 #include <sys/priocntl.h>
51 #include <sys/procset.h>
52 #include <sys/vmem.h>
53 #include <sys/bitmap.h>
54 #include <sys/kmem.h>
55 #include <sys/siginfo.h>
56 #include <sys/vtrace.h>
57 #include <sys/callb.h>
58 #include <sys/debug.h>
59 #include <sys/modctl.h>
60 #include <sys/vmsystm.h>
61 #include <vm/page.h>
62 #include <sys/atomic.h>
63 #include <sys/suntpi.h>
64 #include <sys/strlog.h>
65 #include <sys/promif.h>
66 #include <sys/project.h>
67 #include <sys/vm.h>
68 #include <sys/taskq.h>
69 #include <sys/sunddi.h>
70 #include <sys/sunldi_impl.h>
71 #include <sys/strsun.h>
72 #include <sys/isa_defs.h>
73 #include <sys/multidata.h>
74 #include <sys/pattr.h>
75 #include <sys/strft.h>
76 #include <sys/fs/snode.h>
77 #include <sys/zone.h>
78 #include <sys/open.h>
79 #include <sys/sunldi.h>
80 #include <sys/sad.h>
81 #include <sys/netstack.h>
82 
83 #define	O_SAMESTR(q)	(((q)->q_next) && \
84 	(((q)->q_flag & QREADR) == ((q)->q_next->q_flag & QREADR)))
85 
86 /*
87  * WARNING:
88  * The variables and routines in this file are private, belonging
89  * to the STREAMS subsystem. These should not be used by modules
90  * or drivers. Compatibility will not be guaranteed.
91  */
92 
93 /*
94  * Id value used to distinguish between different multiplexor links.
95  */
96 static int32_t lnk_id = 0;
97 
98 #define	STREAMS_LOPRI MINCLSYSPRI
99 static pri_t streams_lopri = STREAMS_LOPRI;
100 
101 #define	STRSTAT(x)	(str_statistics.x.value.ui64++)
102 typedef struct str_stat {
103 	kstat_named_t	sqenables;
104 	kstat_named_t	stenables;
105 	kstat_named_t	syncqservice;
106 	kstat_named_t	freebs;
107 	kstat_named_t	qwr_outer;
108 	kstat_named_t	rservice;
109 	kstat_named_t	strwaits;
110 	kstat_named_t	taskqfails;
111 	kstat_named_t	bufcalls;
112 	kstat_named_t	qhelps;
113 	kstat_named_t	qremoved;
114 	kstat_named_t	sqremoved;
115 	kstat_named_t	bcwaits;
116 	kstat_named_t	sqtoomany;
117 } str_stat_t;
118 
119 static str_stat_t str_statistics = {
120 	{ "sqenables",		KSTAT_DATA_UINT64 },
121 	{ "stenables",		KSTAT_DATA_UINT64 },
122 	{ "syncqservice",	KSTAT_DATA_UINT64 },
123 	{ "freebs",		KSTAT_DATA_UINT64 },
124 	{ "qwr_outer",		KSTAT_DATA_UINT64 },
125 	{ "rservice",		KSTAT_DATA_UINT64 },
126 	{ "strwaits",		KSTAT_DATA_UINT64 },
127 	{ "taskqfails",		KSTAT_DATA_UINT64 },
128 	{ "bufcalls",		KSTAT_DATA_UINT64 },
129 	{ "qhelps",		KSTAT_DATA_UINT64 },
130 	{ "qremoved",		KSTAT_DATA_UINT64 },
131 	{ "sqremoved",		KSTAT_DATA_UINT64 },
132 	{ "bcwaits",		KSTAT_DATA_UINT64 },
133 	{ "sqtoomany",		KSTAT_DATA_UINT64 },
134 };
135 
136 static kstat_t *str_kstat;
137 
138 /*
139  * qrunflag was used previously to control background scheduling of queues. It
140  * is not used anymore, but kept here in case some module still wants to access
141  * it via qready() and setqsched macros.
142  */
143 char qrunflag;			/*  Unused */
144 
145 /*
146  * Most of the streams scheduling is done via task queues. Task queues may fail
147  * for non-sleep dispatches, so there are two backup threads servicing failed
148  * requests for queues and syncqs. Both of these threads also service failed
149  * dispatches freebs requests. Queues are put in the list specified by `qhead'
150  * and `qtail' pointers, syncqs use `sqhead' and `sqtail' pointers and freebs
151  * requests are put into `freebs_list' which has no tail pointer. All three
152  * lists are protected by a single `service_queue' lock and use
153  * `services_to_run' condition variable for signaling background threads. Use of
154  * a single lock should not be a problem because it is only used under heavy
155  * loads when task queues start to fail and at that time it may be a good idea
156  * to throttle scheduling requests.
157  *
158  * NOTE: queues and syncqs should be scheduled by two separate threads because
159  * queue servicing may be blocked waiting for a syncq which may be also
160  * scheduled for background execution. This may create a deadlock when only one
161  * thread is used for both.
162  */
163 
164 static taskq_t *streams_taskq;		/* Used for most STREAMS scheduling */
165 
166 static kmutex_t service_queue;		/* protects all of servicing vars */
167 static kcondvar_t services_to_run;	/* wake up background service thread */
168 static kcondvar_t syncqs_to_run;	/* wake up background service thread */
169 
170 /*
171  * List of queues scheduled for background processing dueue to lack of resources
172  * in the task queues. Protected by service_queue lock;
173  */
174 static struct queue *qhead;
175 static struct queue *qtail;
176 
177 /*
178  * Same list for syncqs
179  */
180 static syncq_t *sqhead;
181 static syncq_t *sqtail;
182 
183 static mblk_t *freebs_list;	/* list of buffers to free */
184 
185 /*
186  * Backup threads for servicing queues and syncqs
187  */
188 kthread_t *streams_qbkgrnd_thread;
189 kthread_t *streams_sqbkgrnd_thread;
190 
191 /*
192  * Bufcalls related variables.
193  */
194 struct bclist	strbcalls;	/* list of waiting bufcalls */
195 kmutex_t	strbcall_lock;	/* protects bufcall list (strbcalls) */
196 kcondvar_t	strbcall_cv;	/* Signaling when a bufcall is added */
197 kmutex_t	bcall_monitor;	/* sleep/wakeup style monitor */
198 kcondvar_t	bcall_cv;	/* wait 'till executing bufcall completes */
199 kthread_t	*bc_bkgrnd_thread; /* Thread to service bufcall requests */
200 
201 kmutex_t	strresources;	/* protects global resources */
202 kmutex_t	muxifier;	/* single-threads multiplexor creation */
203 
204 static void	*str_stack_init(netstackid_t stackid, netstack_t *ns);
205 static void	str_stack_shutdown(netstackid_t stackid, void *arg);
206 static void	str_stack_fini(netstackid_t stackid, void *arg);
207 
208 extern void	time_to_wait(clock_t *, clock_t);
209 
210 /*
211  * run_queues is no longer used, but is kept in case some 3-d party
212  * module/driver decides to use it.
213  */
214 int run_queues = 0;
215 
216 /*
217  * sq_max_size is the depth of the syncq (in number of messages) before
218  * qfill_syncq() starts QFULL'ing destination queues. As its primary
219  * consumer - IP is no longer D_MTPERMOD, but there may be other
220  * modules/drivers depend on this syncq flow control, we prefer to
221  * choose a large number as the default value. For potential
222  * performance gain, this value is tunable in /etc/system.
223  */
224 int sq_max_size = 10000;
225 
226 /*
227  * the number of ciputctrl structures per syncq and stream we create when
228  * needed.
229  */
230 int n_ciputctrl;
231 int max_n_ciputctrl = 16;
232 /*
233  * if n_ciputctrl is < min_n_ciputctrl don't even create ciputctrl_cache.
234  */
235 int min_n_ciputctrl = 2;
236 
237 /*
238  * Per-driver/module syncqs
239  * ========================
240  *
241  * For drivers/modules that use PERMOD or outer syncqs we keep a list of
242  * perdm structures, new entries being added (and new syncqs allocated) when
243  * setq() encounters a module/driver with a streamtab that it hasn't seen
244  * before.
245  * The reason for this mechanism is that some modules and drivers share a
246  * common streamtab and it is necessary for those modules and drivers to also
247  * share a common PERMOD syncq.
248  *
249  * perdm_list --> dm_str == streamtab_1
250  *                dm_sq == syncq_1
251  *                dm_ref
252  *                dm_next --> dm_str == streamtab_2
253  *                            dm_sq == syncq_2
254  *                            dm_ref
255  *                            dm_next --> ... NULL
256  *
257  * The dm_ref field is incremented for each new driver/module that takes
258  * a reference to the perdm structure and hence shares the syncq.
259  * References are held in the fmodsw_impl_t structure for each STREAMS module
260  * or the dev_impl array (indexed by device major number) for each driver.
261  *
262  * perdm_list -> [dm_ref == 1] -> [dm_ref == 2] -> [dm_ref == 1] -> NULL
263  *		     ^                 ^ ^               ^
264  *                   |  ______________/  |               |
265  *                   | /                 |               |
266  * dev_impl:     ...|x|y|...          module A	      module B
267  *
268  * When a module/driver is unloaded the reference count is decremented and,
269  * when it falls to zero, the perdm structure is removed from the list and
270  * the syncq is freed (see rele_dm()).
271  */
272 perdm_t *perdm_list = NULL;
273 static krwlock_t perdm_rwlock;
274 cdevsw_impl_t *devimpl;
275 
276 extern struct qinit strdata;
277 extern struct qinit stwdata;
278 
279 static void runservice(queue_t *);
280 static void streams_bufcall_service(void);
281 static void streams_qbkgrnd_service(void);
282 static void streams_sqbkgrnd_service(void);
283 static syncq_t *new_syncq(void);
284 static void free_syncq(syncq_t *);
285 static void outer_insert(syncq_t *, syncq_t *);
286 static void outer_remove(syncq_t *, syncq_t *);
287 static void write_now(syncq_t *);
288 static void clr_qfull(queue_t *);
289 static void enable_svc(queue_t *);
290 static void runbufcalls(void);
291 static void sqenable(syncq_t *);
292 static void sqfill_events(syncq_t *, queue_t *, mblk_t *, void (*)());
293 static void wait_q_syncq(queue_t *);
294 static void backenable_insertedq(queue_t *);
295 
296 static void queue_service(queue_t *);
297 static void stream_service(stdata_t *);
298 static void syncq_service(syncq_t *);
299 static void qwriter_outer_service(syncq_t *);
300 static void mblk_free(mblk_t *);
301 #ifdef DEBUG
302 static int qprocsareon(queue_t *);
303 #endif
304 
305 static void set_nfsrv_ptr(queue_t *, queue_t *, queue_t *, queue_t *);
306 static void reset_nfsrv_ptr(queue_t *, queue_t *);
307 void set_qfull(queue_t *);
308 
309 static void sq_run_events(syncq_t *);
310 static int propagate_syncq(queue_t *);
311 
312 static void	blocksq(syncq_t *, ushort_t, int);
313 static void	unblocksq(syncq_t *, ushort_t, int);
314 static int	dropsq(syncq_t *, uint16_t);
315 static void	emptysq(syncq_t *);
316 static sqlist_t *sqlist_alloc(struct stdata *, int);
317 static void	sqlist_free(sqlist_t *);
318 static sqlist_t	*sqlist_build(queue_t *, struct stdata *, boolean_t);
319 static void	sqlist_insert(sqlist_t *, syncq_t *);
320 static void	sqlist_insertall(sqlist_t *, queue_t *);
321 
322 static void	strsetuio(stdata_t *);
323 
324 struct kmem_cache *stream_head_cache;
325 struct kmem_cache *queue_cache;
326 struct kmem_cache *syncq_cache;
327 struct kmem_cache *qband_cache;
328 struct kmem_cache *linkinfo_cache;
329 struct kmem_cache *ciputctrl_cache = NULL;
330 
331 static linkinfo_t *linkinfo_list;
332 
333 /* global esballoc throttling queue */
334 static esb_queue_t	system_esbq;
335 
336 /*
337  * esballoc tunable parameters.
338  */
339 int		esbq_max_qlen = 0x16;	/* throttled queue length */
340 clock_t		esbq_timeout = 0x8;	/* timeout to process esb queue */
341 
342 /*
343  * routines to handle esballoc queuing.
344  */
345 static void esballoc_process_queue(esb_queue_t *);
346 static void esballoc_enqueue_mblk(mblk_t *);
347 static void esballoc_timer(void *);
348 static void esballoc_set_timer(esb_queue_t *, clock_t);
349 static void esballoc_mblk_free(mblk_t *);
350 
351 /*
352  *  Qinit structure and Module_info structures
353  *	for passthru read and write queues
354  */
355 
356 static void pass_wput(queue_t *, mblk_t *);
357 static queue_t *link_addpassthru(stdata_t *);
358 static void link_rempassthru(queue_t *);
359 
360 struct  module_info passthru_info = {
361 	0,
362 	"passthru",
363 	0,
364 	INFPSZ,
365 	STRHIGH,
366 	STRLOW
367 };
368 
369 struct  qinit passthru_rinit = {
370 	(int (*)())putnext,
371 	NULL,
372 	NULL,
373 	NULL,
374 	NULL,
375 	&passthru_info,
376 	NULL
377 };
378 
379 struct  qinit passthru_winit = {
380 	(int (*)()) pass_wput,
381 	NULL,
382 	NULL,
383 	NULL,
384 	NULL,
385 	&passthru_info,
386 	NULL
387 };
388 
389 /*
390  * Special form of assertion: verify that X implies Y i.e. when X is true Y
391  * should also be true.
392  */
393 #define	IMPLY(X, Y)	ASSERT(!(X) || (Y))
394 
395 /*
396  * Logical equivalence. Verify that both X and Y are either TRUE or FALSE.
397  */
398 #define	EQUIV(X, Y)	{ IMPLY(X, Y); IMPLY(Y, X); }
399 
400 /*
401  * Verify correctness of list head/tail pointers.
402  */
403 #define	LISTCHECK(head, tail, link) {				\
404 	EQUIV(head, tail);					\
405 	IMPLY(tail != NULL, tail->link == NULL);		\
406 }
407 
408 /*
409  * Enqueue a list element `el' in the end of a list denoted by `head' and `tail'
410  * using a `link' field.
411  */
412 #define	ENQUEUE(el, head, tail, link) {				\
413 	ASSERT(el->link == NULL);				\
414 	LISTCHECK(head, tail, link);				\
415 	if (head == NULL)					\
416 		head = el;					\
417 	else							\
418 		tail->link = el;				\
419 	tail = el;						\
420 }
421 
422 /*
423  * Dequeue the first element of the list denoted by `head' and `tail' pointers
424  * using a `link' field and put result into `el'.
425  */
426 #define	DQ(el, head, tail, link) {				\
427 	LISTCHECK(head, tail, link);				\
428 	el = head;						\
429 	if (head != NULL) {					\
430 		head = head->link;				\
431 		if (head == NULL)				\
432 			tail = NULL;				\
433 		el->link = NULL;				\
434 	}							\
435 }
436 
437 /*
438  * Remove `el' from the list using `chase' and `curr' pointers and return result
439  * in `succeed'.
440  */
441 #define	RMQ(el, head, tail, link, chase, curr, succeed) {	\
442 	LISTCHECK(head, tail, link);				\
443 	chase = NULL;						\
444 	succeed = 0;						\
445 	for (curr = head; (curr != el) && (curr != NULL); curr = curr->link) \
446 		chase = curr;					\
447 	if (curr != NULL) {					\
448 		succeed = 1;					\
449 		ASSERT(curr == el);				\
450 		if (chase != NULL)				\
451 			chase->link = curr->link;		\
452 		else						\
453 			head = curr->link;			\
454 		curr->link = NULL;				\
455 		if (curr == tail)				\
456 			tail = chase;				\
457 	}							\
458 	LISTCHECK(head, tail, link);				\
459 }
460 
461 /* Handling of delayed messages on the inner syncq. */
462 
463 /*
464  * DEBUG versions should use function versions (to simplify tracing) and
465  * non-DEBUG kernels should use macro versions.
466  */
467 
468 /*
469  * Put a queue on the syncq list of queues.
470  * Assumes SQLOCK held.
471  */
472 #define	SQPUT_Q(sq, qp)							\
473 {									\
474 	ASSERT(MUTEX_HELD(SQLOCK(sq)));					\
475 	if (!(qp->q_sqflags & Q_SQQUEUED)) {				\
476 		/* The queue should not be linked anywhere */		\
477 		ASSERT((qp->q_sqprev == NULL) && (qp->q_sqnext == NULL)); \
478 		/* Head and tail may only be NULL simultaneously */	\
479 		EQUIV(sq->sq_head, sq->sq_tail);			\
480 		/* Queue may be only enqueyed on its syncq */		\
481 		ASSERT(sq == qp->q_syncq);				\
482 		/* Check the correctness of SQ_MESSAGES flag */		\
483 		EQUIV(sq->sq_head, (sq->sq_flags & SQ_MESSAGES));	\
484 		/* Sanity check first/last elements of the list */	\
485 		IMPLY(sq->sq_head != NULL, sq->sq_head->q_sqprev == NULL);\
486 		IMPLY(sq->sq_tail != NULL, sq->sq_tail->q_sqnext == NULL);\
487 		/*							\
488 		 * Sanity check of priority field: empty queue should	\
489 		 * have zero priority					\
490 		 * and nqueues equal to zero.				\
491 		 */							\
492 		IMPLY(sq->sq_head == NULL, sq->sq_pri == 0);		\
493 		/* Sanity check of sq_nqueues field */			\
494 		EQUIV(sq->sq_head, sq->sq_nqueues);			\
495 		if (sq->sq_head == NULL) {				\
496 			sq->sq_head = sq->sq_tail = qp;			\
497 			sq->sq_flags |= SQ_MESSAGES;			\
498 		} else if (qp->q_spri == 0) {				\
499 			qp->q_sqprev = sq->sq_tail;			\
500 			sq->sq_tail->q_sqnext = qp;			\
501 			sq->sq_tail = qp;				\
502 		} else {						\
503 			/*						\
504 			 * Put this queue in priority order: higher	\
505 			 * priority gets closer to the head.		\
506 			 */						\
507 			queue_t **qpp = &sq->sq_tail;			\
508 			queue_t *qnext = NULL;				\
509 									\
510 			while (*qpp != NULL && qp->q_spri > (*qpp)->q_spri) { \
511 				qnext = *qpp;				\
512 				qpp = &(*qpp)->q_sqprev;		\
513 			}						\
514 			qp->q_sqnext = qnext;				\
515 			qp->q_sqprev = *qpp;				\
516 			if (*qpp != NULL) {				\
517 				(*qpp)->q_sqnext = qp;			\
518 			} else {					\
519 				sq->sq_head = qp;			\
520 				sq->sq_pri = sq->sq_head->q_spri;	\
521 			}						\
522 			*qpp = qp;					\
523 		}							\
524 		qp->q_sqflags |= Q_SQQUEUED;				\
525 		qp->q_sqtstamp = lbolt;					\
526 		sq->sq_nqueues++;					\
527 	}								\
528 }
529 
530 /*
531  * Remove a queue from the syncq list
532  * Assumes SQLOCK held.
533  */
534 #define	SQRM_Q(sq, qp)							\
535 	{								\
536 		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
537 		ASSERT(qp->q_sqflags & Q_SQQUEUED);			\
538 		ASSERT(sq->sq_head != NULL && sq->sq_tail != NULL);	\
539 		ASSERT((sq->sq_flags & SQ_MESSAGES) != 0);		\
540 		/* Check that the queue is actually in the list */	\
541 		ASSERT(qp->q_sqnext != NULL || sq->sq_tail == qp);	\
542 		ASSERT(qp->q_sqprev != NULL || sq->sq_head == qp);	\
543 		ASSERT(sq->sq_nqueues != 0);				\
544 		if (qp->q_sqprev == NULL) {				\
545 			/* First queue on list, make head q_sqnext */	\
546 			sq->sq_head = qp->q_sqnext;			\
547 		} else {						\
548 			/* Make prev->next == next */			\
549 			qp->q_sqprev->q_sqnext = qp->q_sqnext;		\
550 		}							\
551 		if (qp->q_sqnext == NULL) {				\
552 			/* Last queue on list, make tail sqprev */	\
553 			sq->sq_tail = qp->q_sqprev;			\
554 		} else {						\
555 			/* Make next->prev == prev */			\
556 			qp->q_sqnext->q_sqprev = qp->q_sqprev;		\
557 		}							\
558 		/* clear out references on this queue */		\
559 		qp->q_sqprev = qp->q_sqnext = NULL;			\
560 		qp->q_sqflags &= ~Q_SQQUEUED;				\
561 		/* If there is nothing queued, clear SQ_MESSAGES */	\
562 		if (sq->sq_head != NULL) {				\
563 			sq->sq_pri = sq->sq_head->q_spri;		\
564 		} else	{						\
565 			sq->sq_flags &= ~SQ_MESSAGES;			\
566 			sq->sq_pri = 0;					\
567 		}							\
568 		sq->sq_nqueues--;					\
569 		ASSERT(sq->sq_head != NULL || sq->sq_evhead != NULL ||	\
570 		    (sq->sq_flags & SQ_QUEUED) == 0);			\
571 	}
572 
573 /* Hide the definition from the header file. */
574 #ifdef SQPUT_MP
575 #undef SQPUT_MP
576 #endif
577 
578 /*
579  * Put a message on the queue syncq.
580  * Assumes QLOCK held.
581  */
582 #define	SQPUT_MP(qp, mp)						\
583 	{								\
584 		ASSERT(MUTEX_HELD(QLOCK(qp)));				\
585 		ASSERT(qp->q_sqhead == NULL ||				\
586 		    (qp->q_sqtail != NULL &&				\
587 		    qp->q_sqtail->b_next == NULL));			\
588 		qp->q_syncqmsgs++;					\
589 		ASSERT(qp->q_syncqmsgs != 0);	/* Wraparound */	\
590 		if (qp->q_sqhead == NULL) {				\
591 			qp->q_sqhead = qp->q_sqtail = mp;		\
592 		} else {						\
593 			qp->q_sqtail->b_next = mp;			\
594 			qp->q_sqtail = mp;				\
595 		}							\
596 		ASSERT(qp->q_syncqmsgs > 0);				\
597 		set_qfull(qp);						\
598 	}
599 
600 #define	SQ_PUTCOUNT_SETFAST_LOCKED(sq) {				\
601 		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
602 		if ((sq)->sq_ciputctrl != NULL) {			\
603 			int i;						\
604 			int nlocks = (sq)->sq_nciputctrl;		\
605 			ciputctrl_t *cip = (sq)->sq_ciputctrl;		\
606 			ASSERT((sq)->sq_type & SQ_CIPUT);		\
607 			for (i = 0; i <= nlocks; i++) {			\
608 				ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
609 				cip[i].ciputctrl_count |= SQ_FASTPUT;	\
610 			}						\
611 		}							\
612 	}
613 
614 
615 #define	SQ_PUTCOUNT_CLRFAST_LOCKED(sq) {				\
616 		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
617 		if ((sq)->sq_ciputctrl != NULL) {			\
618 			int i;						\
619 			int nlocks = (sq)->sq_nciputctrl;		\
620 			ciputctrl_t *cip = (sq)->sq_ciputctrl;		\
621 			ASSERT((sq)->sq_type & SQ_CIPUT);		\
622 			for (i = 0; i <= nlocks; i++) {			\
623 				ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
624 				cip[i].ciputctrl_count &= ~SQ_FASTPUT;	\
625 			}						\
626 		}							\
627 	}
628 
629 /*
630  * Run service procedures for all queues in the stream head.
631  */
632 #define	STR_SERVICE(stp, q) {						\
633 	ASSERT(MUTEX_HELD(&stp->sd_qlock));				\
634 	while (stp->sd_qhead != NULL) {					\
635 		DQ(q, stp->sd_qhead, stp->sd_qtail, q_link);		\
636 		ASSERT(stp->sd_nqueues > 0);				\
637 		stp->sd_nqueues--;					\
638 		ASSERT(!(q->q_flag & QINSERVICE));			\
639 		mutex_exit(&stp->sd_qlock);				\
640 		queue_service(q);					\
641 		mutex_enter(&stp->sd_qlock);				\
642 	}								\
643 	ASSERT(stp->sd_nqueues == 0);					\
644 	ASSERT((stp->sd_qhead == NULL) && (stp->sd_qtail == NULL));	\
645 }
646 
647 /*
648  * constructor/destructor routines for the stream head cache
649  */
650 /* ARGSUSED */
651 static int
652 stream_head_constructor(void *buf, void *cdrarg, int kmflags)
653 {
654 	stdata_t *stp = buf;
655 
656 	mutex_init(&stp->sd_lock, NULL, MUTEX_DEFAULT, NULL);
657 	mutex_init(&stp->sd_reflock, NULL, MUTEX_DEFAULT, NULL);
658 	mutex_init(&stp->sd_qlock, NULL, MUTEX_DEFAULT, NULL);
659 	cv_init(&stp->sd_monitor, NULL, CV_DEFAULT, NULL);
660 	cv_init(&stp->sd_iocmonitor, NULL, CV_DEFAULT, NULL);
661 	cv_init(&stp->sd_refmonitor, NULL, CV_DEFAULT, NULL);
662 	cv_init(&stp->sd_qcv, NULL, CV_DEFAULT, NULL);
663 	cv_init(&stp->sd_zcopy_wait, NULL, CV_DEFAULT, NULL);
664 	stp->sd_wrq = NULL;
665 
666 	return (0);
667 }
668 
669 /* ARGSUSED */
670 static void
671 stream_head_destructor(void *buf, void *cdrarg)
672 {
673 	stdata_t *stp = buf;
674 
675 	mutex_destroy(&stp->sd_lock);
676 	mutex_destroy(&stp->sd_reflock);
677 	mutex_destroy(&stp->sd_qlock);
678 	cv_destroy(&stp->sd_monitor);
679 	cv_destroy(&stp->sd_iocmonitor);
680 	cv_destroy(&stp->sd_refmonitor);
681 	cv_destroy(&stp->sd_qcv);
682 	cv_destroy(&stp->sd_zcopy_wait);
683 }
684 
685 /*
686  * constructor/destructor routines for the queue cache
687  */
688 /* ARGSUSED */
689 static int
690 queue_constructor(void *buf, void *cdrarg, int kmflags)
691 {
692 	queinfo_t *qip = buf;
693 	queue_t *qp = &qip->qu_rqueue;
694 	queue_t *wqp = &qip->qu_wqueue;
695 	syncq_t	*sq = &qip->qu_syncq;
696 
697 	qp->q_first = NULL;
698 	qp->q_link = NULL;
699 	qp->q_count = 0;
700 	qp->q_mblkcnt = 0;
701 	qp->q_sqhead = NULL;
702 	qp->q_sqtail = NULL;
703 	qp->q_sqnext = NULL;
704 	qp->q_sqprev = NULL;
705 	qp->q_sqflags = 0;
706 	qp->q_rwcnt = 0;
707 	qp->q_spri = 0;
708 
709 	mutex_init(QLOCK(qp), NULL, MUTEX_DEFAULT, NULL);
710 	cv_init(&qp->q_wait, NULL, CV_DEFAULT, NULL);
711 
712 	wqp->q_first = NULL;
713 	wqp->q_link = NULL;
714 	wqp->q_count = 0;
715 	wqp->q_mblkcnt = 0;
716 	wqp->q_sqhead = NULL;
717 	wqp->q_sqtail = NULL;
718 	wqp->q_sqnext = NULL;
719 	wqp->q_sqprev = NULL;
720 	wqp->q_sqflags = 0;
721 	wqp->q_rwcnt = 0;
722 	wqp->q_spri = 0;
723 
724 	mutex_init(QLOCK(wqp), NULL, MUTEX_DEFAULT, NULL);
725 	cv_init(&wqp->q_wait, NULL, CV_DEFAULT, NULL);
726 
727 	sq->sq_head = NULL;
728 	sq->sq_tail = NULL;
729 	sq->sq_evhead = NULL;
730 	sq->sq_evtail = NULL;
731 	sq->sq_callbpend = NULL;
732 	sq->sq_outer = NULL;
733 	sq->sq_onext = NULL;
734 	sq->sq_oprev = NULL;
735 	sq->sq_next = NULL;
736 	sq->sq_svcflags = 0;
737 	sq->sq_servcount = 0;
738 	sq->sq_needexcl = 0;
739 	sq->sq_nqueues = 0;
740 	sq->sq_pri = 0;
741 
742 	mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
743 	cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
744 	cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
745 
746 	return (0);
747 }
748 
749 /* ARGSUSED */
750 static void
751 queue_destructor(void *buf, void *cdrarg)
752 {
753 	queinfo_t *qip = buf;
754 	queue_t *qp = &qip->qu_rqueue;
755 	queue_t *wqp = &qip->qu_wqueue;
756 	syncq_t	*sq = &qip->qu_syncq;
757 
758 	ASSERT(qp->q_sqhead == NULL);
759 	ASSERT(wqp->q_sqhead == NULL);
760 	ASSERT(qp->q_sqnext == NULL);
761 	ASSERT(wqp->q_sqnext == NULL);
762 	ASSERT(qp->q_rwcnt == 0);
763 	ASSERT(wqp->q_rwcnt == 0);
764 
765 	mutex_destroy(&qp->q_lock);
766 	cv_destroy(&qp->q_wait);
767 
768 	mutex_destroy(&wqp->q_lock);
769 	cv_destroy(&wqp->q_wait);
770 
771 	mutex_destroy(&sq->sq_lock);
772 	cv_destroy(&sq->sq_wait);
773 	cv_destroy(&sq->sq_exitwait);
774 }
775 
776 /*
777  * constructor/destructor routines for the syncq cache
778  */
779 /* ARGSUSED */
780 static int
781 syncq_constructor(void *buf, void *cdrarg, int kmflags)
782 {
783 	syncq_t	*sq = buf;
784 
785 	bzero(buf, sizeof (syncq_t));
786 
787 	mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
788 	cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
789 	cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
790 
791 	return (0);
792 }
793 
794 /* ARGSUSED */
795 static void
796 syncq_destructor(void *buf, void *cdrarg)
797 {
798 	syncq_t	*sq = buf;
799 
800 	ASSERT(sq->sq_head == NULL);
801 	ASSERT(sq->sq_tail == NULL);
802 	ASSERT(sq->sq_evhead == NULL);
803 	ASSERT(sq->sq_evtail == NULL);
804 	ASSERT(sq->sq_callbpend == NULL);
805 	ASSERT(sq->sq_callbflags == 0);
806 	ASSERT(sq->sq_outer == NULL);
807 	ASSERT(sq->sq_onext == NULL);
808 	ASSERT(sq->sq_oprev == NULL);
809 	ASSERT(sq->sq_next == NULL);
810 	ASSERT(sq->sq_needexcl == 0);
811 	ASSERT(sq->sq_svcflags == 0);
812 	ASSERT(sq->sq_servcount == 0);
813 	ASSERT(sq->sq_nqueues == 0);
814 	ASSERT(sq->sq_pri == 0);
815 	ASSERT(sq->sq_count == 0);
816 	ASSERT(sq->sq_rmqcount == 0);
817 	ASSERT(sq->sq_cancelid == 0);
818 	ASSERT(sq->sq_ciputctrl == NULL);
819 	ASSERT(sq->sq_nciputctrl == 0);
820 	ASSERT(sq->sq_type == 0);
821 	ASSERT(sq->sq_flags == 0);
822 
823 	mutex_destroy(&sq->sq_lock);
824 	cv_destroy(&sq->sq_wait);
825 	cv_destroy(&sq->sq_exitwait);
826 }
827 
828 /* ARGSUSED */
829 static int
830 ciputctrl_constructor(void *buf, void *cdrarg, int kmflags)
831 {
832 	ciputctrl_t *cip = buf;
833 	int i;
834 
835 	for (i = 0; i < n_ciputctrl; i++) {
836 		cip[i].ciputctrl_count = SQ_FASTPUT;
837 		mutex_init(&cip[i].ciputctrl_lock, NULL, MUTEX_DEFAULT, NULL);
838 	}
839 
840 	return (0);
841 }
842 
843 /* ARGSUSED */
844 static void
845 ciputctrl_destructor(void *buf, void *cdrarg)
846 {
847 	ciputctrl_t *cip = buf;
848 	int i;
849 
850 	for (i = 0; i < n_ciputctrl; i++) {
851 		ASSERT(cip[i].ciputctrl_count & SQ_FASTPUT);
852 		mutex_destroy(&cip[i].ciputctrl_lock);
853 	}
854 }
855 
856 /*
857  * Init routine run from main at boot time.
858  */
859 void
860 strinit(void)
861 {
862 	int ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus);
863 
864 	stream_head_cache = kmem_cache_create("stream_head_cache",
865 	    sizeof (stdata_t), 0,
866 	    stream_head_constructor, stream_head_destructor, NULL,
867 	    NULL, NULL, 0);
868 
869 	queue_cache = kmem_cache_create("queue_cache", sizeof (queinfo_t), 0,
870 	    queue_constructor, queue_destructor, NULL, NULL, NULL, 0);
871 
872 	syncq_cache = kmem_cache_create("syncq_cache", sizeof (syncq_t), 0,
873 	    syncq_constructor, syncq_destructor, NULL, NULL, NULL, 0);
874 
875 	qband_cache = kmem_cache_create("qband_cache",
876 	    sizeof (qband_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
877 
878 	linkinfo_cache = kmem_cache_create("linkinfo_cache",
879 	    sizeof (linkinfo_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
880 
881 	n_ciputctrl = ncpus;
882 	n_ciputctrl = 1 << highbit(n_ciputctrl - 1);
883 	ASSERT(n_ciputctrl >= 1);
884 	n_ciputctrl = MIN(n_ciputctrl, max_n_ciputctrl);
885 	if (n_ciputctrl >= min_n_ciputctrl) {
886 		ciputctrl_cache = kmem_cache_create("ciputctrl_cache",
887 		    sizeof (ciputctrl_t) * n_ciputctrl,
888 		    sizeof (ciputctrl_t), ciputctrl_constructor,
889 		    ciputctrl_destructor, NULL, NULL, NULL, 0);
890 	}
891 
892 	streams_taskq = system_taskq;
893 
894 	if (streams_taskq == NULL)
895 		panic("strinit: no memory for streams taskq!");
896 
897 	bc_bkgrnd_thread = thread_create(NULL, 0,
898 	    streams_bufcall_service, NULL, 0, &p0, TS_RUN, streams_lopri);
899 
900 	streams_qbkgrnd_thread = thread_create(NULL, 0,
901 	    streams_qbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
902 
903 	streams_sqbkgrnd_thread = thread_create(NULL, 0,
904 	    streams_sqbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
905 
906 	/*
907 	 * Create STREAMS kstats.
908 	 */
909 	str_kstat = kstat_create("streams", 0, "strstat",
910 	    "net", KSTAT_TYPE_NAMED,
911 	    sizeof (str_statistics) / sizeof (kstat_named_t),
912 	    KSTAT_FLAG_VIRTUAL);
913 
914 	if (str_kstat != NULL) {
915 		str_kstat->ks_data = &str_statistics;
916 		kstat_install(str_kstat);
917 	}
918 
919 	/*
920 	 * TPI support routine initialisation.
921 	 */
922 	tpi_init();
923 
924 	/*
925 	 * Handle to have autopush and persistent link information per
926 	 * zone.
927 	 * Note: uses shutdown hook instead of destroy hook so that the
928 	 * persistent links can be torn down before the destroy hooks
929 	 * in the TCP/IP stack are called.
930 	 */
931 	netstack_register(NS_STR, str_stack_init, str_stack_shutdown,
932 	    str_stack_fini);
933 }
934 
935 void
936 str_sendsig(vnode_t *vp, int event, uchar_t band, int error)
937 {
938 	struct stdata *stp;
939 
940 	ASSERT(vp->v_stream);
941 	stp = vp->v_stream;
942 	/* Have to hold sd_lock to prevent siglist from changing */
943 	mutex_enter(&stp->sd_lock);
944 	if (stp->sd_sigflags & event)
945 		strsendsig(stp->sd_siglist, event, band, error);
946 	mutex_exit(&stp->sd_lock);
947 }
948 
949 /*
950  * Send the "sevent" set of signals to a process.
951  * This might send more than one signal if the process is registered
952  * for multiple events. The caller should pass in an sevent that only
953  * includes the events for which the process has registered.
954  */
955 static void
956 dosendsig(proc_t *proc, int events, int sevent, k_siginfo_t *info,
957 	uchar_t band, int error)
958 {
959 	ASSERT(MUTEX_HELD(&proc->p_lock));
960 
961 	info->si_band = 0;
962 	info->si_errno = 0;
963 
964 	if (sevent & S_ERROR) {
965 		sevent &= ~S_ERROR;
966 		info->si_code = POLL_ERR;
967 		info->si_errno = error;
968 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
969 		    "strsendsig:proc %p info %p", proc, info);
970 		sigaddq(proc, NULL, info, KM_NOSLEEP);
971 		info->si_errno = 0;
972 	}
973 	if (sevent & S_HANGUP) {
974 		sevent &= ~S_HANGUP;
975 		info->si_code = POLL_HUP;
976 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
977 		    "strsendsig:proc %p info %p", proc, info);
978 		sigaddq(proc, NULL, info, KM_NOSLEEP);
979 	}
980 	if (sevent & S_HIPRI) {
981 		sevent &= ~S_HIPRI;
982 		info->si_code = POLL_PRI;
983 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
984 		    "strsendsig:proc %p info %p", proc, info);
985 		sigaddq(proc, NULL, info, KM_NOSLEEP);
986 	}
987 	if (sevent & S_RDBAND) {
988 		sevent &= ~S_RDBAND;
989 		if (events & S_BANDURG)
990 			sigtoproc(proc, NULL, SIGURG);
991 		else
992 			sigtoproc(proc, NULL, SIGPOLL);
993 	}
994 	if (sevent & S_WRBAND) {
995 		sevent &= ~S_WRBAND;
996 		sigtoproc(proc, NULL, SIGPOLL);
997 	}
998 	if (sevent & S_INPUT) {
999 		sevent &= ~S_INPUT;
1000 		info->si_code = POLL_IN;
1001 		info->si_band = band;
1002 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1003 		    "strsendsig:proc %p info %p", proc, info);
1004 		sigaddq(proc, NULL, info, KM_NOSLEEP);
1005 		info->si_band = 0;
1006 	}
1007 	if (sevent & S_OUTPUT) {
1008 		sevent &= ~S_OUTPUT;
1009 		info->si_code = POLL_OUT;
1010 		info->si_band = band;
1011 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1012 		    "strsendsig:proc %p info %p", proc, info);
1013 		sigaddq(proc, NULL, info, KM_NOSLEEP);
1014 		info->si_band = 0;
1015 	}
1016 	if (sevent & S_MSG) {
1017 		sevent &= ~S_MSG;
1018 		info->si_code = POLL_MSG;
1019 		info->si_band = band;
1020 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1021 		    "strsendsig:proc %p info %p", proc, info);
1022 		sigaddq(proc, NULL, info, KM_NOSLEEP);
1023 		info->si_band = 0;
1024 	}
1025 	if (sevent & S_RDNORM) {
1026 		sevent &= ~S_RDNORM;
1027 		sigtoproc(proc, NULL, SIGPOLL);
1028 	}
1029 	if (sevent != 0) {
1030 		panic("strsendsig: unknown event(s) %x", sevent);
1031 	}
1032 }
1033 
1034 /*
1035  * Send SIGPOLL/SIGURG signal to all processes and process groups
1036  * registered on the given signal list that want a signal for at
1037  * least one of the specified events.
1038  *
1039  * Must be called with exclusive access to siglist (caller holding sd_lock).
1040  *
1041  * strioctl(I_SETSIG/I_ESETSIG) will only change siglist when holding
1042  * sd_lock and the ioctl code maintains a PID_HOLD on the pid structure
1043  * while it is in the siglist.
1044  *
1045  * For performance reasons (MP scalability) the code drops pidlock
1046  * when sending signals to a single process.
1047  * When sending to a process group the code holds
1048  * pidlock to prevent the membership in the process group from changing
1049  * while walking the p_pglink list.
1050  */
1051 void
1052 strsendsig(strsig_t *siglist, int event, uchar_t band, int error)
1053 {
1054 	strsig_t *ssp;
1055 	k_siginfo_t info;
1056 	struct pid *pidp;
1057 	proc_t  *proc;
1058 
1059 	info.si_signo = SIGPOLL;
1060 	info.si_errno = 0;
1061 	for (ssp = siglist; ssp; ssp = ssp->ss_next) {
1062 		int sevent;
1063 
1064 		sevent = ssp->ss_events & event;
1065 		if (sevent == 0)
1066 			continue;
1067 
1068 		if ((pidp = ssp->ss_pidp) == NULL) {
1069 			/* pid was released but still on event list */
1070 			continue;
1071 		}
1072 
1073 
1074 		if (ssp->ss_pid > 0) {
1075 			/*
1076 			 * XXX This unfortunately still generates
1077 			 * a signal when a fd is closed but
1078 			 * the proc is active.
1079 			 */
1080 			ASSERT(ssp->ss_pid == pidp->pid_id);
1081 
1082 			mutex_enter(&pidlock);
1083 			proc = prfind_zone(pidp->pid_id, ALL_ZONES);
1084 			if (proc == NULL) {
1085 				mutex_exit(&pidlock);
1086 				continue;
1087 			}
1088 			mutex_enter(&proc->p_lock);
1089 			mutex_exit(&pidlock);
1090 			dosendsig(proc, ssp->ss_events, sevent, &info,
1091 			    band, error);
1092 			mutex_exit(&proc->p_lock);
1093 		} else {
1094 			/*
1095 			 * Send to process group. Hold pidlock across
1096 			 * calls to dosendsig().
1097 			 */
1098 			pid_t pgrp = -ssp->ss_pid;
1099 
1100 			mutex_enter(&pidlock);
1101 			proc = pgfind_zone(pgrp, ALL_ZONES);
1102 			while (proc != NULL) {
1103 				mutex_enter(&proc->p_lock);
1104 				dosendsig(proc, ssp->ss_events, sevent,
1105 				    &info, band, error);
1106 				mutex_exit(&proc->p_lock);
1107 				proc = proc->p_pglink;
1108 			}
1109 			mutex_exit(&pidlock);
1110 		}
1111 	}
1112 }
1113 
1114 /*
1115  * Attach a stream device or module.
1116  * qp is a read queue; the new queue goes in so its next
1117  * read ptr is the argument, and the write queue corresponding
1118  * to the argument points to this queue. Return 0 on success,
1119  * or a non-zero errno on failure.
1120  */
1121 int
1122 qattach(queue_t *qp, dev_t *devp, int oflag, cred_t *crp, fmodsw_impl_t *fp,
1123     boolean_t is_insert)
1124 {
1125 	major_t			major;
1126 	cdevsw_impl_t		*dp;
1127 	struct streamtab	*str;
1128 	queue_t			*rq;
1129 	queue_t			*wrq;
1130 	uint32_t		qflag;
1131 	uint32_t		sqtype;
1132 	perdm_t			*dmp;
1133 	int			error;
1134 	int			sflag;
1135 
1136 	rq = allocq();
1137 	wrq = _WR(rq);
1138 	STREAM(rq) = STREAM(wrq) = STREAM(qp);
1139 
1140 	if (fp != NULL) {
1141 		str = fp->f_str;
1142 		qflag = fp->f_qflag;
1143 		sqtype = fp->f_sqtype;
1144 		dmp = fp->f_dmp;
1145 		IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
1146 		sflag = MODOPEN;
1147 
1148 		/*
1149 		 * stash away a pointer to the module structure so we can
1150 		 * unref it in qdetach.
1151 		 */
1152 		rq->q_fp = fp;
1153 	} else {
1154 		ASSERT(!is_insert);
1155 
1156 		major = getmajor(*devp);
1157 		dp = &devimpl[major];
1158 
1159 		str = dp->d_str;
1160 		ASSERT(str == STREAMSTAB(major));
1161 
1162 		qflag = dp->d_qflag;
1163 		ASSERT(qflag & QISDRV);
1164 		sqtype = dp->d_sqtype;
1165 
1166 		/* create perdm_t if needed */
1167 		if (NEED_DM(dp->d_dmp, qflag))
1168 			dp->d_dmp = hold_dm(str, qflag, sqtype);
1169 
1170 		dmp = dp->d_dmp;
1171 		sflag = 0;
1172 	}
1173 
1174 	TRACE_2(TR_FAC_STREAMS_FR, TR_QATTACH_FLAGS,
1175 	    "qattach:qflag == %X(%X)", qflag, *devp);
1176 
1177 	/* setq might sleep in allocator - avoid holding locks. */
1178 	setq(rq, str->st_rdinit, str->st_wrinit, dmp, qflag, sqtype, B_FALSE);
1179 
1180 	/*
1181 	 * Before calling the module's open routine, set up the q_next
1182 	 * pointer for inserting a module in the middle of a stream.
1183 	 *
1184 	 * Note that we can always set _QINSERTING and set up q_next
1185 	 * pointer for both inserting and pushing a module.  Then there
1186 	 * is no need for the is_insert parameter.  In insertq(), called
1187 	 * by qprocson(), assume that q_next of the new module always points
1188 	 * to the correct queue and use it for insertion.  Everything should
1189 	 * work out fine.  But in the first release of _I_INSERT, we
1190 	 * distinguish between inserting and pushing to make sure that
1191 	 * pushing a module follows the same code path as before.
1192 	 */
1193 	if (is_insert) {
1194 		rq->q_flag |= _QINSERTING;
1195 		rq->q_next = qp;
1196 	}
1197 
1198 	/*
1199 	 * If there is an outer perimeter get exclusive access during
1200 	 * the open procedure.  Bump up the reference count on the queue.
1201 	 */
1202 	entersq(rq->q_syncq, SQ_OPENCLOSE);
1203 	error = (*rq->q_qinfo->qi_qopen)(rq, devp, oflag, sflag, crp);
1204 	if (error != 0)
1205 		goto failed;
1206 	leavesq(rq->q_syncq, SQ_OPENCLOSE);
1207 	ASSERT(qprocsareon(rq));
1208 	return (0);
1209 
1210 failed:
1211 	rq->q_flag &= ~_QINSERTING;
1212 	if (backq(wrq) != NULL && backq(wrq)->q_next == wrq)
1213 		qprocsoff(rq);
1214 	leavesq(rq->q_syncq, SQ_OPENCLOSE);
1215 	rq->q_next = wrq->q_next = NULL;
1216 	qdetach(rq, 0, 0, crp, B_FALSE);
1217 	return (error);
1218 }
1219 
1220 /*
1221  * Handle second open of stream. For modules, set the
1222  * last argument to MODOPEN and do not pass any open flags.
1223  * Ignore dummydev since this is not the first open.
1224  */
1225 int
1226 qreopen(queue_t *qp, dev_t *devp, int flag, cred_t *crp)
1227 {
1228 	int	error;
1229 	dev_t dummydev;
1230 	queue_t *wqp = _WR(qp);
1231 
1232 	ASSERT(qp->q_flag & QREADR);
1233 	entersq(qp->q_syncq, SQ_OPENCLOSE);
1234 
1235 	dummydev = *devp;
1236 	if (error = ((*qp->q_qinfo->qi_qopen)(qp, &dummydev,
1237 	    (wqp->q_next ? 0 : flag), (wqp->q_next ? MODOPEN : 0), crp))) {
1238 		leavesq(qp->q_syncq, SQ_OPENCLOSE);
1239 		mutex_enter(&STREAM(qp)->sd_lock);
1240 		qp->q_stream->sd_flag |= STREOPENFAIL;
1241 		mutex_exit(&STREAM(qp)->sd_lock);
1242 		return (error);
1243 	}
1244 	leavesq(qp->q_syncq, SQ_OPENCLOSE);
1245 
1246 	/*
1247 	 * successful open should have done qprocson()
1248 	 */
1249 	ASSERT(qprocsareon(_RD(qp)));
1250 	return (0);
1251 }
1252 
1253 /*
1254  * Detach a stream module or device.
1255  * If clmode == 1 then the module or driver was opened and its
1256  * close routine must be called. If clmode == 0, the module
1257  * or driver was never opened or the open failed, and so its close
1258  * should not be called.
1259  */
1260 void
1261 qdetach(queue_t *qp, int clmode, int flag, cred_t *crp, boolean_t is_remove)
1262 {
1263 	queue_t *wqp = _WR(qp);
1264 	ASSERT(STREAM(qp)->sd_flag & (STRCLOSE|STWOPEN|STRPLUMB));
1265 
1266 	if (STREAM_NEEDSERVICE(STREAM(qp)))
1267 		stream_runservice(STREAM(qp));
1268 
1269 	if (clmode) {
1270 		/*
1271 		 * Make sure that all the messages on the write side syncq are
1272 		 * processed and nothing is left. Since we are closing, no new
1273 		 * messages may appear there.
1274 		 */
1275 		wait_q_syncq(wqp);
1276 
1277 		entersq(qp->q_syncq, SQ_OPENCLOSE);
1278 		if (is_remove) {
1279 			mutex_enter(QLOCK(qp));
1280 			qp->q_flag |= _QREMOVING;
1281 			mutex_exit(QLOCK(qp));
1282 		}
1283 		(*qp->q_qinfo->qi_qclose)(qp, flag, crp);
1284 		/*
1285 		 * Check that qprocsoff() was actually called.
1286 		 */
1287 		ASSERT((qp->q_flag & QWCLOSE) && (wqp->q_flag & QWCLOSE));
1288 
1289 		leavesq(qp->q_syncq, SQ_OPENCLOSE);
1290 	} else {
1291 		disable_svc(qp);
1292 	}
1293 
1294 	/*
1295 	 * Allow any threads blocked in entersq to proceed and discover
1296 	 * the QWCLOSE is set.
1297 	 * Note: This assumes that all users of entersq check QWCLOSE.
1298 	 * Currently runservice is the only entersq that can happen
1299 	 * after removeq has finished.
1300 	 * Removeq will have discarded all messages destined to the closing
1301 	 * pair of queues from the syncq.
1302 	 * NOTE: Calling a function inside an assert is unconventional.
1303 	 * However, it does not cause any problem since flush_syncq() does
1304 	 * not change any state except when it returns non-zero i.e.
1305 	 * when the assert will trigger.
1306 	 */
1307 	ASSERT(flush_syncq(qp->q_syncq, qp) == 0);
1308 	ASSERT(flush_syncq(wqp->q_syncq, wqp) == 0);
1309 	ASSERT((qp->q_flag & QPERMOD) ||
1310 	    ((qp->q_syncq->sq_head == NULL) &&
1311 	    (wqp->q_syncq->sq_head == NULL)));
1312 
1313 	/* release any fmodsw_impl_t structure held on behalf of the queue */
1314 	ASSERT(qp->q_fp != NULL || qp->q_flag & QISDRV);
1315 	if (qp->q_fp != NULL)
1316 		fmodsw_rele(qp->q_fp);
1317 
1318 	/* freeq removes us from the outer perimeter if any */
1319 	freeq(qp);
1320 }
1321 
1322 /* Prevent service procedures from being called */
1323 void
1324 disable_svc(queue_t *qp)
1325 {
1326 	queue_t *wqp = _WR(qp);
1327 
1328 	ASSERT(qp->q_flag & QREADR);
1329 	mutex_enter(QLOCK(qp));
1330 	qp->q_flag |= QWCLOSE;
1331 	mutex_exit(QLOCK(qp));
1332 	mutex_enter(QLOCK(wqp));
1333 	wqp->q_flag |= QWCLOSE;
1334 	mutex_exit(QLOCK(wqp));
1335 }
1336 
1337 /* allow service procedures to be called again */
1338 void
1339 enable_svc(queue_t *qp)
1340 {
1341 	queue_t *wqp = _WR(qp);
1342 
1343 	ASSERT(qp->q_flag & QREADR);
1344 	mutex_enter(QLOCK(qp));
1345 	qp->q_flag &= ~QWCLOSE;
1346 	mutex_exit(QLOCK(qp));
1347 	mutex_enter(QLOCK(wqp));
1348 	wqp->q_flag &= ~QWCLOSE;
1349 	mutex_exit(QLOCK(wqp));
1350 }
1351 
1352 /*
1353  * Remove queue from qhead/qtail if it is enabled.
1354  * Only reset QENAB if the queue was removed from the runlist.
1355  * A queue goes through 3 stages:
1356  *	It is on the service list and QENAB is set.
1357  *	It is removed from the service list but QENAB is still set.
1358  *	QENAB gets changed to QINSERVICE.
1359  *	QINSERVICE is reset (when the service procedure is done)
1360  * Thus we can not reset QENAB unless we actually removed it from the service
1361  * queue.
1362  */
1363 void
1364 remove_runlist(queue_t *qp)
1365 {
1366 	if (qp->q_flag & QENAB && qhead != NULL) {
1367 		queue_t *q_chase;
1368 		queue_t *q_curr;
1369 		int removed;
1370 
1371 		mutex_enter(&service_queue);
1372 		RMQ(qp, qhead, qtail, q_link, q_chase, q_curr, removed);
1373 		mutex_exit(&service_queue);
1374 		if (removed) {
1375 			STRSTAT(qremoved);
1376 			qp->q_flag &= ~QENAB;
1377 		}
1378 	}
1379 }
1380 
1381 
1382 /*
1383  * wait for any pending service processing to complete.
1384  * The removal of queues from the runlist is not atomic with the
1385  * clearing of the QENABLED flag and setting the INSERVICE flag.
1386  * consequently it is possible for remove_runlist in strclose
1387  * to not find the queue on the runlist but for it to be QENABLED
1388  * and not yet INSERVICE -> hence wait_svc needs to check QENABLED
1389  * as well as INSERVICE.
1390  */
1391 void
1392 wait_svc(queue_t *qp)
1393 {
1394 	queue_t *wqp = _WR(qp);
1395 
1396 	ASSERT(qp->q_flag & QREADR);
1397 
1398 	/*
1399 	 * Try to remove queues from qhead/qtail list.
1400 	 */
1401 	if (qhead != NULL) {
1402 		remove_runlist(qp);
1403 		remove_runlist(wqp);
1404 	}
1405 	/*
1406 	 * Wait till the syncqs associated with the queue
1407 	 * will dissapear from background processing list.
1408 	 * This only needs to be done for non-PERMOD perimeters since
1409 	 * for PERMOD perimeters the syncq may be shared and will only be freed
1410 	 * when the last module/driver is unloaded.
1411 	 * If for PERMOD perimeters queue was on the syncq list, removeq()
1412 	 * should call propagate_syncq() or drain_syncq() for it. Both of these
1413 	 * function remove the queue from its syncq list, so sqthread will not
1414 	 * try to access the queue.
1415 	 */
1416 	if (!(qp->q_flag & QPERMOD)) {
1417 		syncq_t *rsq = qp->q_syncq;
1418 		syncq_t *wsq = wqp->q_syncq;
1419 
1420 		/*
1421 		 * Disable rsq and wsq and wait for any background processing of
1422 		 * syncq to complete.
1423 		 */
1424 		wait_sq_svc(rsq);
1425 		if (wsq != rsq)
1426 			wait_sq_svc(wsq);
1427 	}
1428 
1429 	mutex_enter(QLOCK(qp));
1430 	while (qp->q_flag & (QINSERVICE|QENAB))
1431 		cv_wait(&qp->q_wait, QLOCK(qp));
1432 	mutex_exit(QLOCK(qp));
1433 	mutex_enter(QLOCK(wqp));
1434 	while (wqp->q_flag & (QINSERVICE|QENAB))
1435 		cv_wait(&wqp->q_wait, QLOCK(wqp));
1436 	mutex_exit(QLOCK(wqp));
1437 }
1438 
1439 /*
1440  * Put ioctl data from userland buffer `arg' into the mblk chain `bp'.
1441  * `flag' must always contain either K_TO_K or U_TO_K; STR_NOSIG may
1442  * also be set, and is passed through to allocb_cred_wait().
1443  *
1444  * Returns errno on failure, zero on success.
1445  */
1446 int
1447 putiocd(mblk_t *bp, char *arg, int flag, cred_t *cr)
1448 {
1449 	mblk_t *tmp;
1450 	ssize_t  count;
1451 	int error = 0;
1452 
1453 	ASSERT((flag & (U_TO_K | K_TO_K)) == U_TO_K ||
1454 	    (flag & (U_TO_K | K_TO_K)) == K_TO_K);
1455 
1456 	if (bp->b_datap->db_type == M_IOCTL) {
1457 		count = ((struct iocblk *)bp->b_rptr)->ioc_count;
1458 	} else {
1459 		ASSERT(bp->b_datap->db_type == M_COPYIN);
1460 		count = ((struct copyreq *)bp->b_rptr)->cq_size;
1461 	}
1462 	/*
1463 	 * strdoioctl validates ioc_count, so if this assert fails it
1464 	 * cannot be due to user error.
1465 	 */
1466 	ASSERT(count >= 0);
1467 
1468 	if ((tmp = allocb_cred_wait(count, (flag & STR_NOSIG), &error, cr)) ==
1469 	    NULL) {
1470 		return (error);
1471 	}
1472 	error = strcopyin(arg, tmp->b_wptr, count, flag & (U_TO_K|K_TO_K));
1473 	if (error != 0) {
1474 		freeb(tmp);
1475 		return (error);
1476 	}
1477 	DB_CPID(tmp) = curproc->p_pid;
1478 	tmp->b_wptr += count;
1479 	bp->b_cont = tmp;
1480 
1481 	return (0);
1482 }
1483 
1484 /*
1485  * Copy ioctl data to user-land. Return non-zero errno on failure,
1486  * 0 for success.
1487  */
1488 int
1489 getiocd(mblk_t *bp, char *arg, int copymode)
1490 {
1491 	ssize_t count;
1492 	size_t  n;
1493 	int	error;
1494 
1495 	if (bp->b_datap->db_type == M_IOCACK)
1496 		count = ((struct iocblk *)bp->b_rptr)->ioc_count;
1497 	else {
1498 		ASSERT(bp->b_datap->db_type == M_COPYOUT);
1499 		count = ((struct copyreq *)bp->b_rptr)->cq_size;
1500 	}
1501 	ASSERT(count >= 0);
1502 
1503 	for (bp = bp->b_cont; bp && count;
1504 	    count -= n, bp = bp->b_cont, arg += n) {
1505 		n = MIN(count, bp->b_wptr - bp->b_rptr);
1506 		error = strcopyout(bp->b_rptr, arg, n, copymode);
1507 		if (error)
1508 			return (error);
1509 	}
1510 	ASSERT(count == 0);
1511 	return (0);
1512 }
1513 
1514 /*
1515  * Allocate a linkinfo entry given the write queue of the
1516  * bottom module of the top stream and the write queue of the
1517  * stream head of the bottom stream.
1518  */
1519 linkinfo_t *
1520 alloclink(queue_t *qup, queue_t *qdown, file_t *fpdown)
1521 {
1522 	linkinfo_t *linkp;
1523 
1524 	linkp = kmem_cache_alloc(linkinfo_cache, KM_SLEEP);
1525 
1526 	linkp->li_lblk.l_qtop = qup;
1527 	linkp->li_lblk.l_qbot = qdown;
1528 	linkp->li_fpdown = fpdown;
1529 
1530 	mutex_enter(&strresources);
1531 	linkp->li_next = linkinfo_list;
1532 	linkp->li_prev = NULL;
1533 	if (linkp->li_next)
1534 		linkp->li_next->li_prev = linkp;
1535 	linkinfo_list = linkp;
1536 	linkp->li_lblk.l_index = ++lnk_id;
1537 	ASSERT(lnk_id != 0);	/* this should never wrap in practice */
1538 	mutex_exit(&strresources);
1539 
1540 	return (linkp);
1541 }
1542 
1543 /*
1544  * Free a linkinfo entry.
1545  */
1546 void
1547 lbfree(linkinfo_t *linkp)
1548 {
1549 	mutex_enter(&strresources);
1550 	if (linkp->li_next)
1551 		linkp->li_next->li_prev = linkp->li_prev;
1552 	if (linkp->li_prev)
1553 		linkp->li_prev->li_next = linkp->li_next;
1554 	else
1555 		linkinfo_list = linkp->li_next;
1556 	mutex_exit(&strresources);
1557 
1558 	kmem_cache_free(linkinfo_cache, linkp);
1559 }
1560 
1561 /*
1562  * Check for a potential linking cycle.
1563  * Return 1 if a link will result in a cycle,
1564  * and 0 otherwise.
1565  */
1566 int
1567 linkcycle(stdata_t *upstp, stdata_t *lostp, str_stack_t *ss)
1568 {
1569 	struct mux_node *np;
1570 	struct mux_edge *ep;
1571 	int i;
1572 	major_t lomaj;
1573 	major_t upmaj;
1574 	/*
1575 	 * if the lower stream is a pipe/FIFO, return, since link
1576 	 * cycles can not happen on pipes/FIFOs
1577 	 */
1578 	if (lostp->sd_vnode->v_type == VFIFO)
1579 		return (0);
1580 
1581 	for (i = 0; i < ss->ss_devcnt; i++) {
1582 		np = &ss->ss_mux_nodes[i];
1583 		MUX_CLEAR(np);
1584 	}
1585 	lomaj = getmajor(lostp->sd_vnode->v_rdev);
1586 	upmaj = getmajor(upstp->sd_vnode->v_rdev);
1587 	np = &ss->ss_mux_nodes[lomaj];
1588 	for (;;) {
1589 		if (!MUX_DIDVISIT(np)) {
1590 			if (np->mn_imaj == upmaj)
1591 				return (1);
1592 			if (np->mn_outp == NULL) {
1593 				MUX_VISIT(np);
1594 				if (np->mn_originp == NULL)
1595 					return (0);
1596 				np = np->mn_originp;
1597 				continue;
1598 			}
1599 			MUX_VISIT(np);
1600 			np->mn_startp = np->mn_outp;
1601 		} else {
1602 			if (np->mn_startp == NULL) {
1603 				if (np->mn_originp == NULL)
1604 					return (0);
1605 				else {
1606 					np = np->mn_originp;
1607 					continue;
1608 				}
1609 			}
1610 			/*
1611 			 * If ep->me_nodep is a FIFO (me_nodep == NULL),
1612 			 * ignore the edge and move on. ep->me_nodep gets
1613 			 * set to NULL in mux_addedge() if it is a FIFO.
1614 			 *
1615 			 */
1616 			ep = np->mn_startp;
1617 			np->mn_startp = ep->me_nextp;
1618 			if (ep->me_nodep == NULL)
1619 				continue;
1620 			ep->me_nodep->mn_originp = np;
1621 			np = ep->me_nodep;
1622 		}
1623 	}
1624 }
1625 
1626 /*
1627  * Find linkinfo entry corresponding to the parameters.
1628  */
1629 linkinfo_t *
1630 findlinks(stdata_t *stp, int index, int type, str_stack_t *ss)
1631 {
1632 	linkinfo_t *linkp;
1633 	struct mux_edge *mep;
1634 	struct mux_node *mnp;
1635 	queue_t *qup;
1636 
1637 	mutex_enter(&strresources);
1638 	if ((type & LINKTYPEMASK) == LINKNORMAL) {
1639 		qup = getendq(stp->sd_wrq);
1640 		for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
1641 			if ((qup == linkp->li_lblk.l_qtop) &&
1642 			    (!index || (index == linkp->li_lblk.l_index))) {
1643 				mutex_exit(&strresources);
1644 				return (linkp);
1645 			}
1646 		}
1647 	} else {
1648 		ASSERT((type & LINKTYPEMASK) == LINKPERSIST);
1649 		mnp = &ss->ss_mux_nodes[getmajor(stp->sd_vnode->v_rdev)];
1650 		mep = mnp->mn_outp;
1651 		while (mep) {
1652 			if ((index == 0) || (index == mep->me_muxid))
1653 				break;
1654 			mep = mep->me_nextp;
1655 		}
1656 		if (!mep) {
1657 			mutex_exit(&strresources);
1658 			return (NULL);
1659 		}
1660 		for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
1661 			if ((!linkp->li_lblk.l_qtop) &&
1662 			    (mep->me_muxid == linkp->li_lblk.l_index)) {
1663 				mutex_exit(&strresources);
1664 				return (linkp);
1665 			}
1666 		}
1667 	}
1668 	mutex_exit(&strresources);
1669 	return (NULL);
1670 }
1671 
1672 /*
1673  * Given a queue ptr, follow the chain of q_next pointers until you reach the
1674  * last queue on the chain and return it.
1675  */
1676 queue_t *
1677 getendq(queue_t *q)
1678 {
1679 	ASSERT(q != NULL);
1680 	while (_SAMESTR(q))
1681 		q = q->q_next;
1682 	return (q);
1683 }
1684 
1685 /*
1686  * wait for the syncq count to drop to zero.
1687  * sq could be either outer or inner.
1688  */
1689 
1690 static void
1691 wait_syncq(syncq_t *sq)
1692 {
1693 	uint16_t count;
1694 
1695 	mutex_enter(SQLOCK(sq));
1696 	count = sq->sq_count;
1697 	SQ_PUTLOCKS_ENTER(sq);
1698 	SUM_SQ_PUTCOUNTS(sq, count);
1699 	while (count != 0) {
1700 		sq->sq_flags |= SQ_WANTWAKEUP;
1701 		SQ_PUTLOCKS_EXIT(sq);
1702 		cv_wait(&sq->sq_wait, SQLOCK(sq));
1703 		count = sq->sq_count;
1704 		SQ_PUTLOCKS_ENTER(sq);
1705 		SUM_SQ_PUTCOUNTS(sq, count);
1706 	}
1707 	SQ_PUTLOCKS_EXIT(sq);
1708 	mutex_exit(SQLOCK(sq));
1709 }
1710 
1711 /*
1712  * Wait while there are any messages for the queue in its syncq.
1713  */
1714 static void
1715 wait_q_syncq(queue_t *q)
1716 {
1717 	if ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
1718 		syncq_t *sq = q->q_syncq;
1719 
1720 		mutex_enter(SQLOCK(sq));
1721 		while ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
1722 			sq->sq_flags |= SQ_WANTWAKEUP;
1723 			cv_wait(&sq->sq_wait, SQLOCK(sq));
1724 		}
1725 		mutex_exit(SQLOCK(sq));
1726 	}
1727 }
1728 
1729 
1730 int
1731 mlink_file(vnode_t *vp, int cmd, struct file *fpdown, cred_t *crp, int *rvalp,
1732     int lhlink)
1733 {
1734 	struct stdata *stp;
1735 	struct strioctl strioc;
1736 	struct linkinfo *linkp;
1737 	struct stdata *stpdown;
1738 	struct streamtab *str;
1739 	queue_t *passq;
1740 	syncq_t *passyncq;
1741 	queue_t *rq;
1742 	cdevsw_impl_t *dp;
1743 	uint32_t qflag;
1744 	uint32_t sqtype;
1745 	perdm_t *dmp;
1746 	int error = 0;
1747 	netstack_t *ns;
1748 	str_stack_t *ss;
1749 
1750 	stp = vp->v_stream;
1751 	TRACE_1(TR_FAC_STREAMS_FR,
1752 	    TR_I_LINK, "I_LINK/I_PLINK:stp %p", stp);
1753 	/*
1754 	 * Test for invalid upper stream
1755 	 */
1756 	if (stp->sd_flag & STRHUP) {
1757 		return (ENXIO);
1758 	}
1759 	if (vp->v_type == VFIFO) {
1760 		return (EINVAL);
1761 	}
1762 	if (stp->sd_strtab == NULL) {
1763 		return (EINVAL);
1764 	}
1765 	if (!stp->sd_strtab->st_muxwinit) {
1766 		return (EINVAL);
1767 	}
1768 	if (fpdown == NULL) {
1769 		return (EBADF);
1770 	}
1771 	ns = netstack_find_by_cred(crp);
1772 	ASSERT(ns != NULL);
1773 	ss = ns->netstack_str;
1774 	ASSERT(ss != NULL);
1775 
1776 	if (getmajor(stp->sd_vnode->v_rdev) >= ss->ss_devcnt) {
1777 		netstack_rele(ss->ss_netstack);
1778 		return (EINVAL);
1779 	}
1780 	mutex_enter(&muxifier);
1781 	if (stp->sd_flag & STPLEX) {
1782 		mutex_exit(&muxifier);
1783 		netstack_rele(ss->ss_netstack);
1784 		return (ENXIO);
1785 	}
1786 
1787 	/*
1788 	 * Test for invalid lower stream.
1789 	 * The check for the v_type != VFIFO and having a major
1790 	 * number not >= devcnt is done to avoid problems with
1791 	 * adding mux_node entry past the end of mux_nodes[].
1792 	 * For FIFO's we don't add an entry so this isn't a
1793 	 * problem.
1794 	 */
1795 	if (((stpdown = fpdown->f_vnode->v_stream) == NULL) ||
1796 	    (stpdown == stp) || (stpdown->sd_flag &
1797 	    (STPLEX|STRHUP|STRDERR|STWRERR|IOCWAIT|STRPLUMB)) ||
1798 	    ((stpdown->sd_vnode->v_type != VFIFO) &&
1799 	    (getmajor(stpdown->sd_vnode->v_rdev) >= ss->ss_devcnt)) ||
1800 	    linkcycle(stp, stpdown, ss)) {
1801 		mutex_exit(&muxifier);
1802 		netstack_rele(ss->ss_netstack);
1803 		return (EINVAL);
1804 	}
1805 	TRACE_1(TR_FAC_STREAMS_FR,
1806 	    TR_STPDOWN, "stpdown:%p", stpdown);
1807 	rq = getendq(stp->sd_wrq);
1808 	if (cmd == I_PLINK)
1809 		rq = NULL;
1810 
1811 	linkp = alloclink(rq, stpdown->sd_wrq, fpdown);
1812 
1813 	strioc.ic_cmd = cmd;
1814 	strioc.ic_timout = INFTIM;
1815 	strioc.ic_len = sizeof (struct linkblk);
1816 	strioc.ic_dp = (char *)&linkp->li_lblk;
1817 
1818 	/*
1819 	 * STRPLUMB protects plumbing changes and should be set before
1820 	 * link_addpassthru()/link_rempassthru() are called, so it is set here
1821 	 * and cleared in the end of mlink when passthru queue is removed.
1822 	 * Setting of STRPLUMB prevents reopens of the stream while passthru
1823 	 * queue is in-place (it is not a proper module and doesn't have open
1824 	 * entry point).
1825 	 *
1826 	 * STPLEX prevents any threads from entering the stream from above. It
1827 	 * can't be set before the call to link_addpassthru() because putnext
1828 	 * from below may cause stream head I/O routines to be called and these
1829 	 * routines assert that STPLEX is not set. After link_addpassthru()
1830 	 * nothing may come from below since the pass queue syncq is blocked.
1831 	 * Note also that STPLEX should be cleared before the call to
1832 	 * link_remmpassthru() since when messages start flowing to the stream
1833 	 * head (e.g. because of message propagation from the pass queue) stream
1834 	 * head I/O routines may be called with STPLEX flag set.
1835 	 *
1836 	 * When STPLEX is set, nothing may come into the stream from above and
1837 	 * it is safe to do a setq which will change stream head. So, the
1838 	 * correct sequence of actions is:
1839 	 *
1840 	 * 1) Set STRPLUMB
1841 	 * 2) Call link_addpassthru()
1842 	 * 3) Set STPLEX
1843 	 * 4) Call setq and update the stream state
1844 	 * 5) Clear STPLEX
1845 	 * 6) Call link_rempassthru()
1846 	 * 7) Clear STRPLUMB
1847 	 *
1848 	 * The same sequence applies to munlink() code.
1849 	 */
1850 	mutex_enter(&stpdown->sd_lock);
1851 	stpdown->sd_flag |= STRPLUMB;
1852 	mutex_exit(&stpdown->sd_lock);
1853 	/*
1854 	 * Add passthru queue below lower mux. This will block
1855 	 * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
1856 	 */
1857 	passq = link_addpassthru(stpdown);
1858 
1859 	mutex_enter(&stpdown->sd_lock);
1860 	stpdown->sd_flag |= STPLEX;
1861 	mutex_exit(&stpdown->sd_lock);
1862 
1863 	rq = _RD(stpdown->sd_wrq);
1864 	/*
1865 	 * There may be messages in the streamhead's syncq due to messages
1866 	 * that arrived before link_addpassthru() was done. To avoid
1867 	 * background processing of the syncq happening simultaneous with
1868 	 * setq processing, we disable the streamhead syncq and wait until
1869 	 * existing background thread finishes working on it.
1870 	 */
1871 	wait_sq_svc(rq->q_syncq);
1872 	passyncq = passq->q_syncq;
1873 	if (!(passyncq->sq_flags & SQ_BLOCKED))
1874 		blocksq(passyncq, SQ_BLOCKED, 0);
1875 
1876 	ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
1877 	ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
1878 	rq->q_ptr = _WR(rq)->q_ptr = NULL;
1879 
1880 	/* setq might sleep in allocator - avoid holding locks. */
1881 	/* Note: we are holding muxifier here. */
1882 
1883 	str = stp->sd_strtab;
1884 	dp = &devimpl[getmajor(vp->v_rdev)];
1885 	ASSERT(dp->d_str == str);
1886 
1887 	qflag = dp->d_qflag;
1888 	sqtype = dp->d_sqtype;
1889 
1890 	/* create perdm_t if needed */
1891 	if (NEED_DM(dp->d_dmp, qflag))
1892 		dp->d_dmp = hold_dm(str, qflag, sqtype);
1893 
1894 	dmp = dp->d_dmp;
1895 
1896 	setq(rq, str->st_muxrinit, str->st_muxwinit, dmp, qflag, sqtype,
1897 	    B_TRUE);
1898 
1899 	/*
1900 	 * XXX Remove any "odd" messages from the queue.
1901 	 * Keep only M_DATA, M_PROTO, M_PCPROTO.
1902 	 */
1903 	error = strdoioctl(stp, &strioc, FNATIVE,
1904 	    K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
1905 	if (error != 0) {
1906 		lbfree(linkp);
1907 
1908 		if (!(passyncq->sq_flags & SQ_BLOCKED))
1909 			blocksq(passyncq, SQ_BLOCKED, 0);
1910 		/*
1911 		 * Restore the stream head queue and then remove
1912 		 * the passq. Turn off STPLEX before we turn on
1913 		 * the stream by removing the passq.
1914 		 */
1915 		rq->q_ptr = _WR(rq)->q_ptr = stpdown;
1916 		setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO,
1917 		    B_TRUE);
1918 
1919 		mutex_enter(&stpdown->sd_lock);
1920 		stpdown->sd_flag &= ~STPLEX;
1921 		mutex_exit(&stpdown->sd_lock);
1922 
1923 		link_rempassthru(passq);
1924 
1925 		mutex_enter(&stpdown->sd_lock);
1926 		stpdown->sd_flag &= ~STRPLUMB;
1927 		/* Wakeup anyone waiting for STRPLUMB to clear. */
1928 		cv_broadcast(&stpdown->sd_monitor);
1929 		mutex_exit(&stpdown->sd_lock);
1930 
1931 		mutex_exit(&muxifier);
1932 		netstack_rele(ss->ss_netstack);
1933 		return (error);
1934 	}
1935 	mutex_enter(&fpdown->f_tlock);
1936 	fpdown->f_count++;
1937 	mutex_exit(&fpdown->f_tlock);
1938 
1939 	/*
1940 	 * if we've made it here the linkage is all set up so we should also
1941 	 * set up the layered driver linkages
1942 	 */
1943 
1944 	ASSERT((cmd == I_LINK) || (cmd == I_PLINK));
1945 	if (cmd == I_LINK) {
1946 		ldi_mlink_fp(stp, fpdown, lhlink, LINKNORMAL);
1947 	} else {
1948 		ldi_mlink_fp(stp, fpdown, lhlink, LINKPERSIST);
1949 	}
1950 
1951 	link_rempassthru(passq);
1952 
1953 	mux_addedge(stp, stpdown, linkp->li_lblk.l_index, ss);
1954 
1955 	/*
1956 	 * Mark the upper stream as having dependent links
1957 	 * so that strclose can clean it up.
1958 	 */
1959 	if (cmd == I_LINK) {
1960 		mutex_enter(&stp->sd_lock);
1961 		stp->sd_flag |= STRHASLINKS;
1962 		mutex_exit(&stp->sd_lock);
1963 	}
1964 	/*
1965 	 * Wake up any other processes that may have been
1966 	 * waiting on the lower stream. These will all
1967 	 * error out.
1968 	 */
1969 	mutex_enter(&stpdown->sd_lock);
1970 	/* The passthru module is removed so we may release STRPLUMB */
1971 	stpdown->sd_flag &= ~STRPLUMB;
1972 	cv_broadcast(&rq->q_wait);
1973 	cv_broadcast(&_WR(rq)->q_wait);
1974 	cv_broadcast(&stpdown->sd_monitor);
1975 	mutex_exit(&stpdown->sd_lock);
1976 	mutex_exit(&muxifier);
1977 	*rvalp = linkp->li_lblk.l_index;
1978 	netstack_rele(ss->ss_netstack);
1979 	return (0);
1980 }
1981 
1982 int
1983 mlink(vnode_t *vp, int cmd, int arg, cred_t *crp, int *rvalp, int lhlink)
1984 {
1985 	int		ret;
1986 	struct file	*fpdown;
1987 
1988 	fpdown = getf(arg);
1989 	ret = mlink_file(vp, cmd, fpdown, crp, rvalp, lhlink);
1990 	if (fpdown != NULL)
1991 		releasef(arg);
1992 	return (ret);
1993 }
1994 
1995 /*
1996  * Unlink a multiplexor link. Stp is the controlling stream for the
1997  * link, and linkp points to the link's entry in the linkinfo list.
1998  * The muxifier lock must be held on entry and is dropped on exit.
1999  *
2000  * NOTE : Currently it is assumed that mux would process all the messages
2001  * sitting on it's queue before ACKing the UNLINK. It is the responsibility
2002  * of the mux to handle all the messages that arrive before UNLINK.
2003  * If the mux has to send down messages on its lower stream before
2004  * ACKing I_UNLINK, then it *should* know to handle messages even
2005  * after the UNLINK is acked (actually it should be able to handle till we
2006  * re-block the read side of the pass queue here). If the mux does not
2007  * open up the lower stream, any messages that arrive during UNLINK
2008  * will be put in the stream head. In the case of lower stream opening
2009  * up, some messages might land in the stream head depending on when
2010  * the message arrived and when the read side of the pass queue was
2011  * re-blocked.
2012  */
2013 int
2014 munlink(stdata_t *stp, linkinfo_t *linkp, int flag, cred_t *crp, int *rvalp,
2015     str_stack_t *ss)
2016 {
2017 	struct strioctl strioc;
2018 	struct stdata *stpdown;
2019 	queue_t *rq, *wrq;
2020 	queue_t	*passq;
2021 	syncq_t *passyncq;
2022 	int error = 0;
2023 	file_t *fpdown;
2024 
2025 	ASSERT(MUTEX_HELD(&muxifier));
2026 
2027 	stpdown = linkp->li_fpdown->f_vnode->v_stream;
2028 
2029 	/*
2030 	 * See the comment in mlink() concerning STRPLUMB/STPLEX flags.
2031 	 */
2032 	mutex_enter(&stpdown->sd_lock);
2033 	stpdown->sd_flag |= STRPLUMB;
2034 	mutex_exit(&stpdown->sd_lock);
2035 
2036 	/*
2037 	 * Add passthru queue below lower mux. This will block
2038 	 * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
2039 	 */
2040 	passq = link_addpassthru(stpdown);
2041 
2042 	if ((flag & LINKTYPEMASK) == LINKNORMAL)
2043 		strioc.ic_cmd = I_UNLINK;
2044 	else
2045 		strioc.ic_cmd = I_PUNLINK;
2046 	strioc.ic_timout = INFTIM;
2047 	strioc.ic_len = sizeof (struct linkblk);
2048 	strioc.ic_dp = (char *)&linkp->li_lblk;
2049 
2050 	error = strdoioctl(stp, &strioc, FNATIVE,
2051 	    K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
2052 
2053 	/*
2054 	 * If there was an error and this is not called via strclose,
2055 	 * return to the user. Otherwise, pretend there was no error
2056 	 * and close the link.
2057 	 */
2058 	if (error) {
2059 		if (flag & LINKCLOSE) {
2060 			cmn_err(CE_WARN, "KERNEL: munlink: could not perform "
2061 			    "unlink ioctl, closing anyway (%d)\n", error);
2062 		} else {
2063 			link_rempassthru(passq);
2064 			mutex_enter(&stpdown->sd_lock);
2065 			stpdown->sd_flag &= ~STRPLUMB;
2066 			cv_broadcast(&stpdown->sd_monitor);
2067 			mutex_exit(&stpdown->sd_lock);
2068 			mutex_exit(&muxifier);
2069 			return (error);
2070 		}
2071 	}
2072 
2073 	mux_rmvedge(stp, linkp->li_lblk.l_index, ss);
2074 	fpdown = linkp->li_fpdown;
2075 	lbfree(linkp);
2076 
2077 	/*
2078 	 * We go ahead and drop muxifier here--it's a nasty global lock that
2079 	 * can slow others down. It's okay to since attempts to mlink() this
2080 	 * stream will be stopped because STPLEX is still set in the stdata
2081 	 * structure, and munlink() is stopped because mux_rmvedge() and
2082 	 * lbfree() have removed it from mux_nodes[] and linkinfo_list,
2083 	 * respectively.  Note that we defer the closef() of fpdown until
2084 	 * after we drop muxifier since strclose() can call munlinkall().
2085 	 */
2086 	mutex_exit(&muxifier);
2087 
2088 	wrq = stpdown->sd_wrq;
2089 	rq = _RD(wrq);
2090 
2091 	/*
2092 	 * Get rid of outstanding service procedure runs, before we make
2093 	 * it a stream head, since a stream head doesn't have any service
2094 	 * procedure.
2095 	 */
2096 	disable_svc(rq);
2097 	wait_svc(rq);
2098 
2099 	/*
2100 	 * Since we don't disable the syncq for QPERMOD, we wait for whatever
2101 	 * is queued up to be finished. mux should take care that nothing is
2102 	 * send down to this queue. We should do it now as we're going to block
2103 	 * passyncq if it was unblocked.
2104 	 */
2105 	if (wrq->q_flag & QPERMOD) {
2106 		syncq_t	*sq = wrq->q_syncq;
2107 
2108 		mutex_enter(SQLOCK(sq));
2109 		while (wrq->q_sqflags & Q_SQQUEUED) {
2110 			sq->sq_flags |= SQ_WANTWAKEUP;
2111 			cv_wait(&sq->sq_wait, SQLOCK(sq));
2112 		}
2113 		mutex_exit(SQLOCK(sq));
2114 	}
2115 	passyncq = passq->q_syncq;
2116 	if (!(passyncq->sq_flags & SQ_BLOCKED)) {
2117 
2118 		syncq_t *sq, *outer;
2119 
2120 		/*
2121 		 * Messages could be flowing from underneath. We will
2122 		 * block the read side of the passq. This would be
2123 		 * sufficient for QPAIR and QPERQ muxes to ensure
2124 		 * that no data is flowing up into this queue
2125 		 * and hence no thread active in this instance of
2126 		 * lower mux. But for QPERMOD and QMTOUTPERIM there
2127 		 * could be messages on the inner and outer/inner
2128 		 * syncqs respectively. We will wait for them to drain.
2129 		 * Because passq is blocked messages end up in the syncq
2130 		 * And qfill_syncq could possibly end up setting QFULL
2131 		 * which will access the rq->q_flag. Hence, we have to
2132 		 * acquire the QLOCK in setq.
2133 		 *
2134 		 * XXX Messages can also flow from top into this
2135 		 * queue though the unlink is over (Ex. some instance
2136 		 * in putnext() called from top that has still not
2137 		 * accessed this queue. And also putq(lowerq) ?).
2138 		 * Solution : How about blocking the l_qtop queue ?
2139 		 * Do we really care about such pure D_MP muxes ?
2140 		 */
2141 
2142 		blocksq(passyncq, SQ_BLOCKED, 0);
2143 
2144 		sq = rq->q_syncq;
2145 		if ((outer = sq->sq_outer) != NULL) {
2146 
2147 			/*
2148 			 * We have to just wait for the outer sq_count
2149 			 * drop to zero. As this does not prevent new
2150 			 * messages to enter the outer perimeter, this
2151 			 * is subject to starvation.
2152 			 *
2153 			 * NOTE :Because of blocksq above, messages could
2154 			 * be in the inner syncq only because of some
2155 			 * thread holding the outer perimeter exclusively.
2156 			 * Hence it would be sufficient to wait for the
2157 			 * exclusive holder of the outer perimeter to drain
2158 			 * the inner and outer syncqs. But we will not depend
2159 			 * on this feature and hence check the inner syncqs
2160 			 * separately.
2161 			 */
2162 			wait_syncq(outer);
2163 		}
2164 
2165 
2166 		/*
2167 		 * There could be messages destined for
2168 		 * this queue. Let the exclusive holder
2169 		 * drain it.
2170 		 */
2171 
2172 		wait_syncq(sq);
2173 		ASSERT((rq->q_flag & QPERMOD) ||
2174 		    ((rq->q_syncq->sq_head == NULL) &&
2175 		    (_WR(rq)->q_syncq->sq_head == NULL)));
2176 	}
2177 
2178 	/*
2179 	 * We haven't taken care of QPERMOD case yet. QPERMOD is a special
2180 	 * case as we don't disable its syncq or remove it off the syncq
2181 	 * service list.
2182 	 */
2183 	if (rq->q_flag & QPERMOD) {
2184 		syncq_t	*sq = rq->q_syncq;
2185 
2186 		mutex_enter(SQLOCK(sq));
2187 		while (rq->q_sqflags & Q_SQQUEUED) {
2188 			sq->sq_flags |= SQ_WANTWAKEUP;
2189 			cv_wait(&sq->sq_wait, SQLOCK(sq));
2190 		}
2191 		mutex_exit(SQLOCK(sq));
2192 	}
2193 
2194 	/*
2195 	 * flush_syncq changes states only when there is some messages to
2196 	 * free. ie when it returns non-zero value to return.
2197 	 */
2198 	ASSERT(flush_syncq(rq->q_syncq, rq) == 0);
2199 	ASSERT(flush_syncq(wrq->q_syncq, wrq) == 0);
2200 
2201 	/*
2202 	 * No body else should know about this queue now.
2203 	 * If the mux did not process the messages before
2204 	 * acking the I_UNLINK, free them now.
2205 	 */
2206 
2207 	flushq(rq, FLUSHALL);
2208 	flushq(_WR(rq), FLUSHALL);
2209 
2210 	/*
2211 	 * Convert the mux lower queue into a stream head queue.
2212 	 * Turn off STPLEX before we turn on the stream by removing the passq.
2213 	 */
2214 	rq->q_ptr = wrq->q_ptr = stpdown;
2215 	setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_TRUE);
2216 
2217 	ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
2218 	ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
2219 
2220 	enable_svc(rq);
2221 
2222 	/*
2223 	 * Now it is a proper stream, so STPLEX is cleared. But STRPLUMB still
2224 	 * needs to be set to prevent reopen() of the stream - such reopen may
2225 	 * try to call non-existent pass queue open routine and panic.
2226 	 */
2227 	mutex_enter(&stpdown->sd_lock);
2228 	stpdown->sd_flag &= ~STPLEX;
2229 	mutex_exit(&stpdown->sd_lock);
2230 
2231 	ASSERT(((flag & LINKTYPEMASK) == LINKNORMAL) ||
2232 	    ((flag & LINKTYPEMASK) == LINKPERSIST));
2233 
2234 	/* clean up the layered driver linkages */
2235 	if ((flag & LINKTYPEMASK) == LINKNORMAL) {
2236 		ldi_munlink_fp(stp, fpdown, LINKNORMAL);
2237 	} else {
2238 		ldi_munlink_fp(stp, fpdown, LINKPERSIST);
2239 	}
2240 
2241 	link_rempassthru(passq);
2242 
2243 	/*
2244 	 * Now all plumbing changes are finished and STRPLUMB is no
2245 	 * longer needed.
2246 	 */
2247 	mutex_enter(&stpdown->sd_lock);
2248 	stpdown->sd_flag &= ~STRPLUMB;
2249 	cv_broadcast(&stpdown->sd_monitor);
2250 	mutex_exit(&stpdown->sd_lock);
2251 
2252 	(void) closef(fpdown);
2253 	return (0);
2254 }
2255 
2256 /*
2257  * Unlink all multiplexor links for which stp is the controlling stream.
2258  * Return 0, or a non-zero errno on failure.
2259  */
2260 int
2261 munlinkall(stdata_t *stp, int flag, cred_t *crp, int *rvalp, str_stack_t *ss)
2262 {
2263 	linkinfo_t *linkp;
2264 	int error = 0;
2265 
2266 	mutex_enter(&muxifier);
2267 	while (linkp = findlinks(stp, 0, flag, ss)) {
2268 		/*
2269 		 * munlink() releases the muxifier lock.
2270 		 */
2271 		if (error = munlink(stp, linkp, flag, crp, rvalp, ss))
2272 			return (error);
2273 		mutex_enter(&muxifier);
2274 	}
2275 	mutex_exit(&muxifier);
2276 	return (0);
2277 }
2278 
2279 /*
2280  * A multiplexor link has been made. Add an
2281  * edge to the directed graph.
2282  */
2283 void
2284 mux_addedge(stdata_t *upstp, stdata_t *lostp, int muxid, str_stack_t *ss)
2285 {
2286 	struct mux_node *np;
2287 	struct mux_edge *ep;
2288 	major_t upmaj;
2289 	major_t lomaj;
2290 
2291 	upmaj = getmajor(upstp->sd_vnode->v_rdev);
2292 	lomaj = getmajor(lostp->sd_vnode->v_rdev);
2293 	np = &ss->ss_mux_nodes[upmaj];
2294 	if (np->mn_outp) {
2295 		ep = np->mn_outp;
2296 		while (ep->me_nextp)
2297 			ep = ep->me_nextp;
2298 		ep->me_nextp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
2299 		ep = ep->me_nextp;
2300 	} else {
2301 		np->mn_outp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
2302 		ep = np->mn_outp;
2303 	}
2304 	ep->me_nextp = NULL;
2305 	ep->me_muxid = muxid;
2306 	/*
2307 	 * Save the dev_t for the purposes of str_stack_shutdown.
2308 	 * str_stack_shutdown assumes that the device allows reopen, since
2309 	 * this dev_t is the one after any cloning by xx_open().
2310 	 * Would prefer finding the dev_t from before any cloning,
2311 	 * but specfs doesn't retain that.
2312 	 */
2313 	ep->me_dev = upstp->sd_vnode->v_rdev;
2314 	if (lostp->sd_vnode->v_type == VFIFO)
2315 		ep->me_nodep = NULL;
2316 	else
2317 		ep->me_nodep = &ss->ss_mux_nodes[lomaj];
2318 }
2319 
2320 /*
2321  * A multiplexor link has been removed. Remove the
2322  * edge in the directed graph.
2323  */
2324 void
2325 mux_rmvedge(stdata_t *upstp, int muxid, str_stack_t *ss)
2326 {
2327 	struct mux_node *np;
2328 	struct mux_edge *ep;
2329 	struct mux_edge *pep = NULL;
2330 	major_t upmaj;
2331 
2332 	upmaj = getmajor(upstp->sd_vnode->v_rdev);
2333 	np = &ss->ss_mux_nodes[upmaj];
2334 	ASSERT(np->mn_outp != NULL);
2335 	ep = np->mn_outp;
2336 	while (ep) {
2337 		if (ep->me_muxid == muxid) {
2338 			if (pep)
2339 				pep->me_nextp = ep->me_nextp;
2340 			else
2341 				np->mn_outp = ep->me_nextp;
2342 			kmem_free(ep, sizeof (struct mux_edge));
2343 			return;
2344 		}
2345 		pep = ep;
2346 		ep = ep->me_nextp;
2347 	}
2348 	ASSERT(0);	/* should not reach here */
2349 }
2350 
2351 /*
2352  * Translate the device flags (from conf.h) to the corresponding
2353  * qflag and sq_flag (type) values.
2354  */
2355 int
2356 devflg_to_qflag(struct streamtab *stp, uint32_t devflag, uint32_t *qflagp,
2357 	uint32_t *sqtypep)
2358 {
2359 	uint32_t qflag = 0;
2360 	uint32_t sqtype = 0;
2361 
2362 	if (devflag & _D_OLD)
2363 		goto bad;
2364 
2365 	/* Inner perimeter presence and scope */
2366 	switch (devflag & D_MTINNER_MASK) {
2367 	case D_MP:
2368 		qflag |= QMTSAFE;
2369 		sqtype |= SQ_CI;
2370 		break;
2371 	case D_MTPERQ|D_MP:
2372 		qflag |= QPERQ;
2373 		break;
2374 	case D_MTQPAIR|D_MP:
2375 		qflag |= QPAIR;
2376 		break;
2377 	case D_MTPERMOD|D_MP:
2378 		qflag |= QPERMOD;
2379 		break;
2380 	default:
2381 		goto bad;
2382 	}
2383 
2384 	/* Outer perimeter */
2385 	if (devflag & D_MTOUTPERIM) {
2386 		switch (devflag & D_MTINNER_MASK) {
2387 		case D_MP:
2388 		case D_MTPERQ|D_MP:
2389 		case D_MTQPAIR|D_MP:
2390 			break;
2391 		default:
2392 			goto bad;
2393 		}
2394 		qflag |= QMTOUTPERIM;
2395 	}
2396 
2397 	/* Inner perimeter modifiers */
2398 	if (devflag & D_MTINNER_MOD) {
2399 		switch (devflag & D_MTINNER_MASK) {
2400 		case D_MP:
2401 			goto bad;
2402 		default:
2403 			break;
2404 		}
2405 		if (devflag & D_MTPUTSHARED)
2406 			sqtype |= SQ_CIPUT;
2407 		if (devflag & _D_MTOCSHARED) {
2408 			/*
2409 			 * The code in putnext assumes that it has the
2410 			 * highest concurrency by not checking sq_count.
2411 			 * Thus _D_MTOCSHARED can only be supported when
2412 			 * D_MTPUTSHARED is set.
2413 			 */
2414 			if (!(devflag & D_MTPUTSHARED))
2415 				goto bad;
2416 			sqtype |= SQ_CIOC;
2417 		}
2418 		if (devflag & _D_MTCBSHARED) {
2419 			/*
2420 			 * The code in putnext assumes that it has the
2421 			 * highest concurrency by not checking sq_count.
2422 			 * Thus _D_MTCBSHARED can only be supported when
2423 			 * D_MTPUTSHARED is set.
2424 			 */
2425 			if (!(devflag & D_MTPUTSHARED))
2426 				goto bad;
2427 			sqtype |= SQ_CICB;
2428 		}
2429 		if (devflag & _D_MTSVCSHARED) {
2430 			/*
2431 			 * The code in putnext assumes that it has the
2432 			 * highest concurrency by not checking sq_count.
2433 			 * Thus _D_MTSVCSHARED can only be supported when
2434 			 * D_MTPUTSHARED is set. Also _D_MTSVCSHARED is
2435 			 * supported only for QPERMOD.
2436 			 */
2437 			if (!(devflag & D_MTPUTSHARED) || !(qflag & QPERMOD))
2438 				goto bad;
2439 			sqtype |= SQ_CISVC;
2440 		}
2441 	}
2442 
2443 	/* Default outer perimeter concurrency */
2444 	sqtype |= SQ_CO;
2445 
2446 	/* Outer perimeter modifiers */
2447 	if (devflag & D_MTOCEXCL) {
2448 		if (!(devflag & D_MTOUTPERIM)) {
2449 			/* No outer perimeter */
2450 			goto bad;
2451 		}
2452 		sqtype &= ~SQ_COOC;
2453 	}
2454 
2455 	/* Synchronous Streams extended qinit structure */
2456 	if (devflag & D_SYNCSTR)
2457 		qflag |= QSYNCSTR;
2458 
2459 	/*
2460 	 * Private flag used by a transport module to indicate
2461 	 * to sockfs that it supports direct-access mode without
2462 	 * having to go through STREAMS or the transport can use
2463 	 * sodirect_t sharing to bypass STREAMS for receive-side
2464 	 * M_DATA processing.
2465 	 */
2466 	if (devflag & (_D_DIRECT|_D_SODIRECT)) {
2467 		/* Reject unless the module is fully-MT (no perimeter) */
2468 		if ((qflag & QMT_TYPEMASK) != QMTSAFE)
2469 			goto bad;
2470 		if (devflag & _D_DIRECT)
2471 			qflag |= _QDIRECT;
2472 		if (devflag & _D_SODIRECT)
2473 			qflag |= _QSODIRECT;
2474 	}
2475 
2476 	*qflagp = qflag;
2477 	*sqtypep = sqtype;
2478 	return (0);
2479 
2480 bad:
2481 	cmn_err(CE_WARN,
2482 	    "stropen: bad MT flags (0x%x) in driver '%s'",
2483 	    (int)(qflag & D_MTSAFETY_MASK),
2484 	    stp->st_rdinit->qi_minfo->mi_idname);
2485 
2486 	return (EINVAL);
2487 }
2488 
2489 /*
2490  * Set the interface values for a pair of queues (qinit structure,
2491  * packet sizes, water marks).
2492  * setq assumes that the caller does not have a claim (entersq or claimq)
2493  * on the queue.
2494  */
2495 void
2496 setq(queue_t *rq, struct qinit *rinit, struct qinit *winit,
2497     perdm_t *dmp, uint32_t qflag, uint32_t sqtype, boolean_t lock_needed)
2498 {
2499 	queue_t *wq;
2500 	syncq_t	*sq, *outer;
2501 
2502 	ASSERT(rq->q_flag & QREADR);
2503 	ASSERT((qflag & QMT_TYPEMASK) != 0);
2504 	IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
2505 
2506 	wq = _WR(rq);
2507 	rq->q_qinfo = rinit;
2508 	rq->q_hiwat = rinit->qi_minfo->mi_hiwat;
2509 	rq->q_lowat = rinit->qi_minfo->mi_lowat;
2510 	rq->q_minpsz = rinit->qi_minfo->mi_minpsz;
2511 	rq->q_maxpsz = rinit->qi_minfo->mi_maxpsz;
2512 	wq->q_qinfo = winit;
2513 	wq->q_hiwat = winit->qi_minfo->mi_hiwat;
2514 	wq->q_lowat = winit->qi_minfo->mi_lowat;
2515 	wq->q_minpsz = winit->qi_minfo->mi_minpsz;
2516 	wq->q_maxpsz = winit->qi_minfo->mi_maxpsz;
2517 
2518 	/* Remove old syncqs */
2519 	sq = rq->q_syncq;
2520 	outer = sq->sq_outer;
2521 	if (outer != NULL) {
2522 		ASSERT(wq->q_syncq->sq_outer == outer);
2523 		outer_remove(outer, rq->q_syncq);
2524 		if (wq->q_syncq != rq->q_syncq)
2525 			outer_remove(outer, wq->q_syncq);
2526 	}
2527 	ASSERT(sq->sq_outer == NULL);
2528 	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
2529 
2530 	if (sq != SQ(rq)) {
2531 		if (!(rq->q_flag & QPERMOD))
2532 			free_syncq(sq);
2533 		if (wq->q_syncq == rq->q_syncq)
2534 			wq->q_syncq = NULL;
2535 		rq->q_syncq = NULL;
2536 	}
2537 	if (wq->q_syncq != NULL && wq->q_syncq != sq &&
2538 	    wq->q_syncq != SQ(rq)) {
2539 		free_syncq(wq->q_syncq);
2540 		wq->q_syncq = NULL;
2541 	}
2542 	ASSERT(rq->q_syncq == NULL || (rq->q_syncq->sq_head == NULL &&
2543 	    rq->q_syncq->sq_tail == NULL));
2544 	ASSERT(wq->q_syncq == NULL || (wq->q_syncq->sq_head == NULL &&
2545 	    wq->q_syncq->sq_tail == NULL));
2546 
2547 	if (!(rq->q_flag & QPERMOD) &&
2548 	    rq->q_syncq != NULL && rq->q_syncq->sq_ciputctrl != NULL) {
2549 		ASSERT(rq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
2550 		SUMCHECK_CIPUTCTRL_COUNTS(rq->q_syncq->sq_ciputctrl,
2551 		    rq->q_syncq->sq_nciputctrl, 0);
2552 		ASSERT(ciputctrl_cache != NULL);
2553 		kmem_cache_free(ciputctrl_cache, rq->q_syncq->sq_ciputctrl);
2554 		rq->q_syncq->sq_ciputctrl = NULL;
2555 		rq->q_syncq->sq_nciputctrl = 0;
2556 	}
2557 
2558 	if (!(wq->q_flag & QPERMOD) &&
2559 	    wq->q_syncq != NULL && wq->q_syncq->sq_ciputctrl != NULL) {
2560 		ASSERT(wq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
2561 		SUMCHECK_CIPUTCTRL_COUNTS(wq->q_syncq->sq_ciputctrl,
2562 		    wq->q_syncq->sq_nciputctrl, 0);
2563 		ASSERT(ciputctrl_cache != NULL);
2564 		kmem_cache_free(ciputctrl_cache, wq->q_syncq->sq_ciputctrl);
2565 		wq->q_syncq->sq_ciputctrl = NULL;
2566 		wq->q_syncq->sq_nciputctrl = 0;
2567 	}
2568 
2569 	sq = SQ(rq);
2570 	ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
2571 	ASSERT(sq->sq_outer == NULL);
2572 	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
2573 
2574 	/*
2575 	 * Create syncqs based on qflag and sqtype. Set the SQ_TYPES_IN_FLAGS
2576 	 * bits in sq_flag based on the sqtype.
2577 	 */
2578 	ASSERT((sq->sq_flags & ~SQ_TYPES_IN_FLAGS) == 0);
2579 
2580 	rq->q_syncq = wq->q_syncq = sq;
2581 	sq->sq_type = sqtype;
2582 	sq->sq_flags = (sqtype & SQ_TYPES_IN_FLAGS);
2583 
2584 	/*
2585 	 *  We are making sq_svcflags zero,
2586 	 *  resetting SQ_DISABLED in case it was set by
2587 	 *  wait_svc() in the munlink path.
2588 	 *
2589 	 */
2590 	ASSERT((sq->sq_svcflags & SQ_SERVICE) == 0);
2591 	sq->sq_svcflags = 0;
2592 
2593 	/*
2594 	 * We need to acquire the lock here for the mlink and munlink case,
2595 	 * where canputnext, backenable, etc can access the q_flag.
2596 	 */
2597 	if (lock_needed) {
2598 		mutex_enter(QLOCK(rq));
2599 		rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2600 		mutex_exit(QLOCK(rq));
2601 		mutex_enter(QLOCK(wq));
2602 		wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2603 		mutex_exit(QLOCK(wq));
2604 	} else {
2605 		rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2606 		wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2607 	}
2608 
2609 	if (qflag & QPERQ) {
2610 		/* Allocate a separate syncq for the write side */
2611 		sq = new_syncq();
2612 		sq->sq_type = rq->q_syncq->sq_type;
2613 		sq->sq_flags = rq->q_syncq->sq_flags;
2614 		ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
2615 		    sq->sq_oprev == NULL);
2616 		wq->q_syncq = sq;
2617 	}
2618 	if (qflag & QPERMOD) {
2619 		sq = dmp->dm_sq;
2620 
2621 		/*
2622 		 * Assert that we do have an inner perimeter syncq and that it
2623 		 * does not have an outer perimeter associated with it.
2624 		 */
2625 		ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
2626 		    sq->sq_oprev == NULL);
2627 		rq->q_syncq = wq->q_syncq = sq;
2628 	}
2629 	if (qflag & QMTOUTPERIM) {
2630 		outer = dmp->dm_sq;
2631 
2632 		ASSERT(outer->sq_outer == NULL);
2633 		outer_insert(outer, rq->q_syncq);
2634 		if (wq->q_syncq != rq->q_syncq)
2635 			outer_insert(outer, wq->q_syncq);
2636 	}
2637 	ASSERT((rq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
2638 	    (rq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
2639 	ASSERT((wq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
2640 	    (wq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
2641 	ASSERT((rq->q_flag & QMT_TYPEMASK) == (qflag & QMT_TYPEMASK));
2642 
2643 	/*
2644 	 * Initialize struio() types.
2645 	 */
2646 	rq->q_struiot =
2647 	    (rq->q_flag & QSYNCSTR) ? rinit->qi_struiot : STRUIOT_NONE;
2648 	wq->q_struiot =
2649 	    (wq->q_flag & QSYNCSTR) ? winit->qi_struiot : STRUIOT_NONE;
2650 }
2651 
2652 perdm_t *
2653 hold_dm(struct streamtab *str, uint32_t qflag, uint32_t sqtype)
2654 {
2655 	syncq_t	*sq;
2656 	perdm_t	**pp;
2657 	perdm_t	*p;
2658 	perdm_t	*dmp;
2659 
2660 	ASSERT(str != NULL);
2661 	ASSERT(qflag & (QPERMOD | QMTOUTPERIM));
2662 
2663 	rw_enter(&perdm_rwlock, RW_READER);
2664 	for (p = perdm_list; p != NULL; p = p->dm_next) {
2665 		if (p->dm_str == str) {	/* found one */
2666 			atomic_add_32(&(p->dm_ref), 1);
2667 			rw_exit(&perdm_rwlock);
2668 			return (p);
2669 		}
2670 	}
2671 	rw_exit(&perdm_rwlock);
2672 
2673 	sq = new_syncq();
2674 	if (qflag & QPERMOD) {
2675 		sq->sq_type = sqtype | SQ_PERMOD;
2676 		sq->sq_flags = sqtype & SQ_TYPES_IN_FLAGS;
2677 	} else {
2678 		ASSERT(qflag & QMTOUTPERIM);
2679 		sq->sq_onext = sq->sq_oprev = sq;
2680 	}
2681 
2682 	dmp = kmem_alloc(sizeof (perdm_t), KM_SLEEP);
2683 	dmp->dm_sq = sq;
2684 	dmp->dm_str = str;
2685 	dmp->dm_ref = 1;
2686 	dmp->dm_next = NULL;
2687 
2688 	rw_enter(&perdm_rwlock, RW_WRITER);
2689 	for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next)) {
2690 		if (p->dm_str == str) {	/* already present */
2691 			p->dm_ref++;
2692 			rw_exit(&perdm_rwlock);
2693 			free_syncq(sq);
2694 			kmem_free(dmp, sizeof (perdm_t));
2695 			return (p);
2696 		}
2697 	}
2698 
2699 	*pp = dmp;
2700 	rw_exit(&perdm_rwlock);
2701 	return (dmp);
2702 }
2703 
2704 void
2705 rele_dm(perdm_t *dmp)
2706 {
2707 	perdm_t **pp;
2708 	perdm_t *p;
2709 
2710 	rw_enter(&perdm_rwlock, RW_WRITER);
2711 	ASSERT(dmp->dm_ref > 0);
2712 
2713 	if (--dmp->dm_ref > 0) {
2714 		rw_exit(&perdm_rwlock);
2715 		return;
2716 	}
2717 
2718 	for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next))
2719 		if (p == dmp)
2720 			break;
2721 	ASSERT(p == dmp);
2722 	*pp = p->dm_next;
2723 	rw_exit(&perdm_rwlock);
2724 
2725 	/*
2726 	 * Wait for any background processing that relies on the
2727 	 * syncq to complete before it is freed.
2728 	 */
2729 	wait_sq_svc(p->dm_sq);
2730 	free_syncq(p->dm_sq);
2731 	kmem_free(p, sizeof (perdm_t));
2732 }
2733 
2734 /*
2735  * Make a protocol message given control and data buffers.
2736  * n.b., this can block; be careful of what locks you hold when calling it.
2737  *
2738  * If sd_maxblk is less than *iosize this routine can fail part way through
2739  * (due to an allocation failure). In this case on return *iosize will contain
2740  * the amount that was consumed. Otherwise *iosize will not be modified
2741  * i.e. it will contain the amount that was consumed.
2742  */
2743 int
2744 strmakemsg(
2745 	struct strbuf *mctl,
2746 	ssize_t *iosize,
2747 	struct uio *uiop,
2748 	stdata_t *stp,
2749 	int32_t flag,
2750 	mblk_t **mpp)
2751 {
2752 	mblk_t *mpctl = NULL;
2753 	mblk_t *mpdata = NULL;
2754 	int error;
2755 
2756 	ASSERT(uiop != NULL);
2757 
2758 	*mpp = NULL;
2759 	/* Create control part, if any */
2760 	if ((mctl != NULL) && (mctl->len >= 0)) {
2761 		error = strmakectl(mctl, flag, uiop->uio_fmode, &mpctl);
2762 		if (error)
2763 			return (error);
2764 	}
2765 	/* Create data part, if any */
2766 	if (*iosize >= 0) {
2767 		error = strmakedata(iosize, uiop, stp, flag, &mpdata);
2768 		if (error) {
2769 			freemsg(mpctl);
2770 			return (error);
2771 		}
2772 	}
2773 	if (mpctl != NULL) {
2774 		if (mpdata != NULL)
2775 			linkb(mpctl, mpdata);
2776 		*mpp = mpctl;
2777 	} else {
2778 		*mpp = mpdata;
2779 	}
2780 	return (0);
2781 }
2782 
2783 /*
2784  * Make the control part of a protocol message given a control buffer.
2785  * n.b., this can block; be careful of what locks you hold when calling it.
2786  */
2787 int
2788 strmakectl(
2789 	struct strbuf *mctl,
2790 	int32_t flag,
2791 	int32_t fflag,
2792 	mblk_t **mpp)
2793 {
2794 	mblk_t *bp = NULL;
2795 	unsigned char msgtype;
2796 	int error = 0;
2797 
2798 	*mpp = NULL;
2799 	/*
2800 	 * Create control part of message, if any.
2801 	 */
2802 	if ((mctl != NULL) && (mctl->len >= 0)) {
2803 		caddr_t base;
2804 		int ctlcount;
2805 		int allocsz;
2806 
2807 		if (flag & RS_HIPRI)
2808 			msgtype = M_PCPROTO;
2809 		else
2810 			msgtype = M_PROTO;
2811 
2812 		ctlcount = mctl->len;
2813 		base = mctl->buf;
2814 
2815 		/*
2816 		 * Give modules a better chance to reuse M_PROTO/M_PCPROTO
2817 		 * blocks by increasing the size to something more usable.
2818 		 */
2819 		allocsz = MAX(ctlcount, 64);
2820 
2821 		/*
2822 		 * Range checking has already been done; simply try
2823 		 * to allocate a message block for the ctl part.
2824 		 */
2825 		while (!(bp = allocb(allocsz, BPRI_MED))) {
2826 			if (fflag & (FNDELAY|FNONBLOCK))
2827 				return (EAGAIN);
2828 			if (error = strwaitbuf(allocsz, BPRI_MED))
2829 				return (error);
2830 		}
2831 
2832 		bp->b_datap->db_type = msgtype;
2833 		if (copyin(base, bp->b_wptr, ctlcount)) {
2834 			freeb(bp);
2835 			return (EFAULT);
2836 		}
2837 		bp->b_wptr += ctlcount;
2838 	}
2839 	*mpp = bp;
2840 	return (0);
2841 }
2842 
2843 /*
2844  * Make a protocol message given data buffers.
2845  * n.b., this can block; be careful of what locks you hold when calling it.
2846  *
2847  * If sd_maxblk is less than *iosize this routine can fail part way through
2848  * (due to an allocation failure). In this case on return *iosize will contain
2849  * the amount that was consumed. Otherwise *iosize will not be modified
2850  * i.e. it will contain the amount that was consumed.
2851  */
2852 int
2853 strmakedata(
2854 	ssize_t   *iosize,
2855 	struct uio *uiop,
2856 	stdata_t *stp,
2857 	int32_t flag,
2858 	mblk_t **mpp)
2859 {
2860 	mblk_t *mp = NULL;
2861 	mblk_t *bp;
2862 	int wroff = (int)stp->sd_wroff;
2863 	int tail_len = (int)stp->sd_tail;
2864 	int extra = wroff + tail_len;
2865 	int error = 0;
2866 	ssize_t maxblk;
2867 	ssize_t count = *iosize;
2868 	cred_t *cr = CRED();
2869 
2870 	*mpp = NULL;
2871 	if (count < 0)
2872 		return (0);
2873 
2874 	maxblk = stp->sd_maxblk;
2875 	if (maxblk == INFPSZ)
2876 		maxblk = count;
2877 
2878 	/*
2879 	 * Create data part of message, if any.
2880 	 */
2881 	do {
2882 		ssize_t size;
2883 		dblk_t  *dp;
2884 
2885 		ASSERT(uiop);
2886 
2887 		size = MIN(count, maxblk);
2888 
2889 		while ((bp = allocb_cred(size + extra, cr)) == NULL) {
2890 			error = EAGAIN;
2891 			if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) ||
2892 			    (error = strwaitbuf(size + extra, BPRI_MED)) != 0) {
2893 				if (count == *iosize) {
2894 					freemsg(mp);
2895 					return (error);
2896 				} else {
2897 					*iosize -= count;
2898 					*mpp = mp;
2899 					return (0);
2900 				}
2901 			}
2902 		}
2903 		dp = bp->b_datap;
2904 		dp->db_cpid = curproc->p_pid;
2905 		ASSERT(wroff <= dp->db_lim - bp->b_wptr);
2906 		bp->b_wptr = bp->b_rptr = bp->b_rptr + wroff;
2907 
2908 		if (flag & STRUIO_POSTPONE) {
2909 			/*
2910 			 * Setup the stream uio portion of the
2911 			 * dblk for subsequent use by struioget().
2912 			 */
2913 			dp->db_struioflag = STRUIO_SPEC;
2914 			dp->db_cksumstart = 0;
2915 			dp->db_cksumstuff = 0;
2916 			dp->db_cksumend = size;
2917 			*(long long *)dp->db_struioun.data = 0ll;
2918 			bp->b_wptr += size;
2919 		} else {
2920 			if (stp->sd_copyflag & STRCOPYCACHED)
2921 				uiop->uio_extflg |= UIO_COPY_CACHED;
2922 
2923 			if (size != 0) {
2924 				error = uiomove(bp->b_wptr, size, UIO_WRITE,
2925 				    uiop);
2926 				if (error != 0) {
2927 					freeb(bp);
2928 					freemsg(mp);
2929 					return (error);
2930 				}
2931 			}
2932 			bp->b_wptr += size;
2933 
2934 			if (stp->sd_wputdatafunc != NULL) {
2935 				mblk_t *newbp;
2936 
2937 				newbp = (stp->sd_wputdatafunc)(stp->sd_vnode,
2938 				    bp, NULL, NULL, NULL, NULL);
2939 				if (newbp == NULL) {
2940 					freeb(bp);
2941 					freemsg(mp);
2942 					return (ECOMM);
2943 				}
2944 				bp = newbp;
2945 			}
2946 		}
2947 
2948 		count -= size;
2949 
2950 		if (mp == NULL)
2951 			mp = bp;
2952 		else
2953 			linkb(mp, bp);
2954 	} while (count > 0);
2955 
2956 	*mpp = mp;
2957 	return (0);
2958 }
2959 
2960 /*
2961  * Wait for a buffer to become available. Return non-zero errno
2962  * if not able to wait, 0 if buffer is probably there.
2963  */
2964 int
2965 strwaitbuf(size_t size, int pri)
2966 {
2967 	bufcall_id_t id;
2968 
2969 	mutex_enter(&bcall_monitor);
2970 	if ((id = bufcall(size, pri, (void (*)(void *))cv_broadcast,
2971 	    &ttoproc(curthread)->p_flag_cv)) == 0) {
2972 		mutex_exit(&bcall_monitor);
2973 		return (ENOSR);
2974 	}
2975 	if (!cv_wait_sig(&(ttoproc(curthread)->p_flag_cv), &bcall_monitor)) {
2976 		unbufcall(id);
2977 		mutex_exit(&bcall_monitor);
2978 		return (EINTR);
2979 	}
2980 	unbufcall(id);
2981 	mutex_exit(&bcall_monitor);
2982 	return (0);
2983 }
2984 
2985 /*
2986  * This function waits for a read or write event to happen on a stream.
2987  * fmode can specify FNDELAY and/or FNONBLOCK.
2988  * The timeout is in ms with -1 meaning infinite.
2989  * The flag values work as follows:
2990  *	READWAIT	Check for read side errors, send M_READ
2991  *	GETWAIT		Check for read side errors, no M_READ
2992  *	WRITEWAIT	Check for write side errors.
2993  *	NOINTR		Do not return error if nonblocking or timeout.
2994  * 	STR_NOERROR	Ignore all errors except STPLEX.
2995  *	STR_NOSIG	Ignore/hold signals during the duration of the call.
2996  *	STR_PEEK	Pass through the strgeterr().
2997  */
2998 int
2999 strwaitq(stdata_t *stp, int flag, ssize_t count, int fmode, clock_t timout,
3000     int *done)
3001 {
3002 	int slpflg, errs;
3003 	int error;
3004 	kcondvar_t *sleepon;
3005 	mblk_t *mp;
3006 	ssize_t *rd_count;
3007 	clock_t rval;
3008 
3009 	ASSERT(MUTEX_HELD(&stp->sd_lock));
3010 	if ((flag & READWAIT) || (flag & GETWAIT)) {
3011 		slpflg = RSLEEP;
3012 		sleepon = &_RD(stp->sd_wrq)->q_wait;
3013 		errs = STRDERR|STPLEX;
3014 	} else {
3015 		slpflg = WSLEEP;
3016 		sleepon = &stp->sd_wrq->q_wait;
3017 		errs = STWRERR|STRHUP|STPLEX;
3018 	}
3019 	if (flag & STR_NOERROR)
3020 		errs = STPLEX;
3021 
3022 	if (stp->sd_wakeq & slpflg) {
3023 		/*
3024 		 * A strwakeq() is pending, no need to sleep.
3025 		 */
3026 		stp->sd_wakeq &= ~slpflg;
3027 		*done = 0;
3028 		return (0);
3029 	}
3030 
3031 	if (fmode & (FNDELAY|FNONBLOCK)) {
3032 		if (!(flag & NOINTR))
3033 			error = EAGAIN;
3034 		else
3035 			error = 0;
3036 		*done = 1;
3037 		return (error);
3038 	}
3039 
3040 	if (stp->sd_flag & errs) {
3041 		/*
3042 		 * Check for errors before going to sleep since the
3043 		 * caller might not have checked this while holding
3044 		 * sd_lock.
3045 		 */
3046 		error = strgeterr(stp, errs, (flag & STR_PEEK));
3047 		if (error != 0) {
3048 			*done = 1;
3049 			return (error);
3050 		}
3051 	}
3052 
3053 	/*
3054 	 * If any module downstream has requested read notification
3055 	 * by setting SNDMREAD flag using M_SETOPTS, send a message
3056 	 * down stream.
3057 	 */
3058 	if ((flag & READWAIT) && (stp->sd_flag & SNDMREAD)) {
3059 		mutex_exit(&stp->sd_lock);
3060 		if (!(mp = allocb_wait(sizeof (ssize_t), BPRI_MED,
3061 		    (flag & STR_NOSIG), &error))) {
3062 			mutex_enter(&stp->sd_lock);
3063 			*done = 1;
3064 			return (error);
3065 		}
3066 		mp->b_datap->db_type = M_READ;
3067 		rd_count = (ssize_t *)mp->b_wptr;
3068 		*rd_count = count;
3069 		mp->b_wptr += sizeof (ssize_t);
3070 		/*
3071 		 * Send the number of bytes requested by the
3072 		 * read as the argument to M_READ.
3073 		 */
3074 		stream_willservice(stp);
3075 		putnext(stp->sd_wrq, mp);
3076 		stream_runservice(stp);
3077 		mutex_enter(&stp->sd_lock);
3078 
3079 		/*
3080 		 * If any data arrived due to inline processing
3081 		 * of putnext(), don't sleep.
3082 		 */
3083 		if (_RD(stp->sd_wrq)->q_first != NULL) {
3084 			*done = 0;
3085 			return (0);
3086 		}
3087 	}
3088 
3089 	stp->sd_flag |= slpflg;
3090 	TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAIT2,
3091 	    "strwaitq sleeps (2):%p, %X, %lX, %X, %p",
3092 	    stp, flag, count, fmode, done);
3093 
3094 	rval = str_cv_wait(sleepon, &stp->sd_lock, timout, flag & STR_NOSIG);
3095 	if (rval > 0) {
3096 		/* EMPTY */
3097 		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAKE2,
3098 		    "strwaitq awakes(2):%X, %X, %X, %X, %X",
3099 		    stp, flag, count, fmode, done);
3100 	} else if (rval == 0) {
3101 		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_INTR2,
3102 		    "strwaitq interrupt #2:%p, %X, %lX, %X, %p",
3103 		    stp, flag, count, fmode, done);
3104 		stp->sd_flag &= ~slpflg;
3105 		cv_broadcast(sleepon);
3106 		if (!(flag & NOINTR))
3107 			error = EINTR;
3108 		else
3109 			error = 0;
3110 		*done = 1;
3111 		return (error);
3112 	} else {
3113 		/* timeout */
3114 		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_TIME,
3115 		    "strwaitq timeout:%p, %X, %lX, %X, %p",
3116 		    stp, flag, count, fmode, done);
3117 		*done = 1;
3118 		if (!(flag & NOINTR))
3119 			return (ETIME);
3120 		else
3121 			return (0);
3122 	}
3123 	/*
3124 	 * If the caller implements delayed errors (i.e. queued after data)
3125 	 * we can not check for errors here since data as well as an
3126 	 * error might have arrived at the stream head. We return to
3127 	 * have the caller check the read queue before checking for errors.
3128 	 */
3129 	if ((stp->sd_flag & errs) && !(flag & STR_DELAYERR)) {
3130 		error = strgeterr(stp, errs, (flag & STR_PEEK));
3131 		if (error != 0) {
3132 			*done = 1;
3133 			return (error);
3134 		}
3135 	}
3136 	*done = 0;
3137 	return (0);
3138 }
3139 
3140 /*
3141  * Perform job control discipline access checks.
3142  * Return 0 for success and the errno for failure.
3143  */
3144 
3145 #define	cantsend(p, t, sig) \
3146 	(sigismember(&(p)->p_ignore, sig) || signal_is_blocked((t), sig))
3147 
3148 int
3149 straccess(struct stdata *stp, enum jcaccess mode)
3150 {
3151 	extern kcondvar_t lbolt_cv;	/* XXX: should be in a header file */
3152 	kthread_t *t = curthread;
3153 	proc_t *p = ttoproc(t);
3154 	sess_t *sp;
3155 
3156 	ASSERT(mutex_owned(&stp->sd_lock));
3157 
3158 	if (stp->sd_sidp == NULL || stp->sd_vnode->v_type == VFIFO)
3159 		return (0);
3160 
3161 	mutex_enter(&p->p_lock);		/* protects p_pgidp */
3162 
3163 	for (;;) {
3164 		mutex_enter(&p->p_splock);	/* protects p->p_sessp */
3165 		sp = p->p_sessp;
3166 		mutex_enter(&sp->s_lock);	/* protects sp->* */
3167 
3168 		/*
3169 		 * If this is not the calling process's controlling terminal
3170 		 * or if the calling process is already in the foreground
3171 		 * then allow access.
3172 		 */
3173 		if (sp->s_dev != stp->sd_vnode->v_rdev ||
3174 		    p->p_pgidp == stp->sd_pgidp) {
3175 			mutex_exit(&sp->s_lock);
3176 			mutex_exit(&p->p_splock);
3177 			mutex_exit(&p->p_lock);
3178 			return (0);
3179 		}
3180 
3181 		/*
3182 		 * Check to see if controlling terminal has been deallocated.
3183 		 */
3184 		if (sp->s_vp == NULL) {
3185 			if (!cantsend(p, t, SIGHUP))
3186 				sigtoproc(p, t, SIGHUP);
3187 			mutex_exit(&sp->s_lock);
3188 			mutex_exit(&p->p_splock);
3189 			mutex_exit(&p->p_lock);
3190 			return (EIO);
3191 		}
3192 
3193 		mutex_exit(&sp->s_lock);
3194 		mutex_exit(&p->p_splock);
3195 
3196 		if (mode == JCGETP) {
3197 			mutex_exit(&p->p_lock);
3198 			return (0);
3199 		}
3200 
3201 		if (mode == JCREAD) {
3202 			if (p->p_detached || cantsend(p, t, SIGTTIN)) {
3203 				mutex_exit(&p->p_lock);
3204 				return (EIO);
3205 			}
3206 			mutex_exit(&p->p_lock);
3207 			mutex_exit(&stp->sd_lock);
3208 			pgsignal(p->p_pgidp, SIGTTIN);
3209 			mutex_enter(&stp->sd_lock);
3210 			mutex_enter(&p->p_lock);
3211 		} else {  /* mode == JCWRITE or JCSETP */
3212 			if ((mode == JCWRITE && !(stp->sd_flag & STRTOSTOP)) ||
3213 			    cantsend(p, t, SIGTTOU)) {
3214 				mutex_exit(&p->p_lock);
3215 				return (0);
3216 			}
3217 			if (p->p_detached) {
3218 				mutex_exit(&p->p_lock);
3219 				return (EIO);
3220 			}
3221 			mutex_exit(&p->p_lock);
3222 			mutex_exit(&stp->sd_lock);
3223 			pgsignal(p->p_pgidp, SIGTTOU);
3224 			mutex_enter(&stp->sd_lock);
3225 			mutex_enter(&p->p_lock);
3226 		}
3227 
3228 		/*
3229 		 * We call cv_wait_sig_swap() to cause the appropriate
3230 		 * action for the jobcontrol signal to take place.
3231 		 * If the signal is being caught, we will take the
3232 		 * EINTR error return.  Otherwise, the default action
3233 		 * of causing the process to stop will take place.
3234 		 * In this case, we rely on the periodic cv_broadcast() on
3235 		 * &lbolt_cv to wake us up to loop around and test again.
3236 		 * We can't get here if the signal is ignored or
3237 		 * if the current thread is blocking the signal.
3238 		 */
3239 		mutex_exit(&stp->sd_lock);
3240 		if (!cv_wait_sig_swap(&lbolt_cv, &p->p_lock)) {
3241 			mutex_exit(&p->p_lock);
3242 			mutex_enter(&stp->sd_lock);
3243 			return (EINTR);
3244 		}
3245 		mutex_exit(&p->p_lock);
3246 		mutex_enter(&stp->sd_lock);
3247 		mutex_enter(&p->p_lock);
3248 	}
3249 }
3250 
3251 /*
3252  * Return size of message of block type (bp->b_datap->db_type)
3253  */
3254 size_t
3255 xmsgsize(mblk_t *bp)
3256 {
3257 	unsigned char type;
3258 	size_t count = 0;
3259 
3260 	type = bp->b_datap->db_type;
3261 
3262 	for (; bp; bp = bp->b_cont) {
3263 		if (type != bp->b_datap->db_type)
3264 			break;
3265 		ASSERT(bp->b_wptr >= bp->b_rptr);
3266 		count += bp->b_wptr - bp->b_rptr;
3267 	}
3268 	return (count);
3269 }
3270 
3271 /*
3272  * Allocate a stream head.
3273  */
3274 struct stdata *
3275 shalloc(queue_t *qp)
3276 {
3277 	stdata_t *stp;
3278 
3279 	stp = kmem_cache_alloc(stream_head_cache, KM_SLEEP);
3280 
3281 	stp->sd_wrq = _WR(qp);
3282 	stp->sd_strtab = NULL;
3283 	stp->sd_iocid = 0;
3284 	stp->sd_mate = NULL;
3285 	stp->sd_freezer = NULL;
3286 	stp->sd_refcnt = 0;
3287 	stp->sd_wakeq = 0;
3288 	stp->sd_anchor = 0;
3289 	stp->sd_struiowrq = NULL;
3290 	stp->sd_struiordq = NULL;
3291 	stp->sd_struiodnak = 0;
3292 	stp->sd_struionak = NULL;
3293 	stp->sd_t_audit_data = NULL;
3294 	stp->sd_rput_opt = 0;
3295 	stp->sd_wput_opt = 0;
3296 	stp->sd_read_opt = 0;
3297 	stp->sd_rprotofunc = strrput_proto;
3298 	stp->sd_rmiscfunc = strrput_misc;
3299 	stp->sd_rderrfunc = stp->sd_wrerrfunc = NULL;
3300 	stp->sd_rputdatafunc = stp->sd_wputdatafunc = NULL;
3301 	stp->sd_ciputctrl = NULL;
3302 	stp->sd_nciputctrl = 0;
3303 	stp->sd_qhead = NULL;
3304 	stp->sd_qtail = NULL;
3305 	stp->sd_servid = NULL;
3306 	stp->sd_nqueues = 0;
3307 	stp->sd_svcflags = 0;
3308 	stp->sd_copyflag = 0;
3309 
3310 	return (stp);
3311 }
3312 
3313 /*
3314  * Free a stream head.
3315  */
3316 void
3317 shfree(stdata_t *stp)
3318 {
3319 	ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
3320 
3321 	stp->sd_wrq = NULL;
3322 
3323 	mutex_enter(&stp->sd_qlock);
3324 	while (stp->sd_svcflags & STRS_SCHEDULED) {
3325 		STRSTAT(strwaits);
3326 		cv_wait(&stp->sd_qcv, &stp->sd_qlock);
3327 	}
3328 	mutex_exit(&stp->sd_qlock);
3329 
3330 	if (stp->sd_ciputctrl != NULL) {
3331 		ASSERT(stp->sd_nciputctrl == n_ciputctrl - 1);
3332 		SUMCHECK_CIPUTCTRL_COUNTS(stp->sd_ciputctrl,
3333 		    stp->sd_nciputctrl, 0);
3334 		ASSERT(ciputctrl_cache != NULL);
3335 		kmem_cache_free(ciputctrl_cache, stp->sd_ciputctrl);
3336 		stp->sd_ciputctrl = NULL;
3337 		stp->sd_nciputctrl = 0;
3338 	}
3339 	ASSERT(stp->sd_qhead == NULL);
3340 	ASSERT(stp->sd_qtail == NULL);
3341 	ASSERT(stp->sd_nqueues == 0);
3342 	kmem_cache_free(stream_head_cache, stp);
3343 }
3344 
3345 /*
3346  * Allocate a pair of queues and a syncq for the pair
3347  */
3348 queue_t *
3349 allocq(void)
3350 {
3351 	queinfo_t *qip;
3352 	queue_t *qp, *wqp;
3353 	syncq_t	*sq;
3354 
3355 	qip = kmem_cache_alloc(queue_cache, KM_SLEEP);
3356 
3357 	qp = &qip->qu_rqueue;
3358 	wqp = &qip->qu_wqueue;
3359 	sq = &qip->qu_syncq;
3360 
3361 	qp->q_last	= NULL;
3362 	qp->q_next	= NULL;
3363 	qp->q_ptr	= NULL;
3364 	qp->q_flag	= QUSE | QREADR;
3365 	qp->q_bandp	= NULL;
3366 	qp->q_stream	= NULL;
3367 	qp->q_syncq	= sq;
3368 	qp->q_nband	= 0;
3369 	qp->q_nfsrv	= NULL;
3370 	qp->q_draining	= 0;
3371 	qp->q_syncqmsgs	= 0;
3372 	qp->q_spri	= 0;
3373 	qp->q_qtstamp	= 0;
3374 	qp->q_sqtstamp	= 0;
3375 	qp->q_fp	= NULL;
3376 
3377 	wqp->q_last	= NULL;
3378 	wqp->q_next	= NULL;
3379 	wqp->q_ptr	= NULL;
3380 	wqp->q_flag	= QUSE;
3381 	wqp->q_bandp	= NULL;
3382 	wqp->q_stream	= NULL;
3383 	wqp->q_syncq	= sq;
3384 	wqp->q_nband	= 0;
3385 	wqp->q_nfsrv	= NULL;
3386 	wqp->q_draining	= 0;
3387 	wqp->q_syncqmsgs = 0;
3388 	wqp->q_qtstamp	= 0;
3389 	wqp->q_sqtstamp	= 0;
3390 	wqp->q_spri	= 0;
3391 
3392 	sq->sq_count	= 0;
3393 	sq->sq_rmqcount	= 0;
3394 	sq->sq_flags	= 0;
3395 	sq->sq_type	= 0;
3396 	sq->sq_callbflags = 0;
3397 	sq->sq_cancelid	= 0;
3398 	sq->sq_ciputctrl = NULL;
3399 	sq->sq_nciputctrl = 0;
3400 	sq->sq_needexcl = 0;
3401 	sq->sq_svcflags = 0;
3402 
3403 	return (qp);
3404 }
3405 
3406 /*
3407  * Free a pair of queues and the "attached" syncq.
3408  * Discard any messages left on the syncq(s), remove the syncq(s) from the
3409  * outer perimeter, and free the syncq(s) if they are not the "attached" syncq.
3410  */
3411 void
3412 freeq(queue_t *qp)
3413 {
3414 	qband_t *qbp, *nqbp;
3415 	syncq_t *sq, *outer;
3416 	queue_t *wqp = _WR(qp);
3417 
3418 	ASSERT(qp->q_flag & QREADR);
3419 
3420 	/*
3421 	 * If a previously dispatched taskq job is scheduled to run
3422 	 * sync_service() or a service routine is scheduled for the
3423 	 * queues about to be freed, wait here until all service is
3424 	 * done on the queue and all associated queues and syncqs.
3425 	 */
3426 	wait_svc(qp);
3427 
3428 	(void) flush_syncq(qp->q_syncq, qp);
3429 	(void) flush_syncq(wqp->q_syncq, wqp);
3430 	ASSERT(qp->q_syncqmsgs == 0 && wqp->q_syncqmsgs == 0);
3431 
3432 	/*
3433 	 * Flush the queues before q_next is set to NULL This is needed
3434 	 * in order to backenable any downstream queue before we go away.
3435 	 * Note: we are already removed from the stream so that the
3436 	 * backenabling will not cause any messages to be delivered to our
3437 	 * put procedures.
3438 	 */
3439 	flushq(qp, FLUSHALL);
3440 	flushq(wqp, FLUSHALL);
3441 
3442 	/* Tidy up - removeq only does a half-remove from stream */
3443 	qp->q_next = wqp->q_next = NULL;
3444 	ASSERT(!(qp->q_flag & QENAB));
3445 	ASSERT(!(wqp->q_flag & QENAB));
3446 
3447 	outer = qp->q_syncq->sq_outer;
3448 	if (outer != NULL) {
3449 		outer_remove(outer, qp->q_syncq);
3450 		if (wqp->q_syncq != qp->q_syncq)
3451 			outer_remove(outer, wqp->q_syncq);
3452 	}
3453 	/*
3454 	 * Free any syncqs that are outside what allocq returned.
3455 	 */
3456 	if (qp->q_syncq != SQ(qp) && !(qp->q_flag & QPERMOD))
3457 		free_syncq(qp->q_syncq);
3458 	if (qp->q_syncq != wqp->q_syncq && wqp->q_syncq != SQ(qp))
3459 		free_syncq(wqp->q_syncq);
3460 
3461 	ASSERT((qp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
3462 	ASSERT((wqp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
3463 	ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
3464 	ASSERT(MUTEX_NOT_HELD(QLOCK(wqp)));
3465 	sq = SQ(qp);
3466 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
3467 	ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
3468 	ASSERT(sq->sq_outer == NULL);
3469 	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
3470 	ASSERT(sq->sq_callbpend == NULL);
3471 	ASSERT(sq->sq_needexcl == 0);
3472 
3473 	if (sq->sq_ciputctrl != NULL) {
3474 		ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
3475 		SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
3476 		    sq->sq_nciputctrl, 0);
3477 		ASSERT(ciputctrl_cache != NULL);
3478 		kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
3479 		sq->sq_ciputctrl = NULL;
3480 		sq->sq_nciputctrl = 0;
3481 	}
3482 
3483 	ASSERT(qp->q_first == NULL && wqp->q_first == NULL);
3484 	ASSERT(qp->q_count == 0 && wqp->q_count == 0);
3485 	ASSERT(qp->q_mblkcnt == 0 && wqp->q_mblkcnt == 0);
3486 
3487 	qp->q_flag &= ~QUSE;
3488 	wqp->q_flag &= ~QUSE;
3489 
3490 	/* NOTE: Uncomment the assert below once bugid 1159635 is fixed. */
3491 	/* ASSERT((qp->q_flag & QWANTW) == 0 && (wqp->q_flag & QWANTW) == 0); */
3492 
3493 	qbp = qp->q_bandp;
3494 	while (qbp) {
3495 		nqbp = qbp->qb_next;
3496 		freeband(qbp);
3497 		qbp = nqbp;
3498 	}
3499 	qbp = wqp->q_bandp;
3500 	while (qbp) {
3501 		nqbp = qbp->qb_next;
3502 		freeband(qbp);
3503 		qbp = nqbp;
3504 	}
3505 	kmem_cache_free(queue_cache, qp);
3506 }
3507 
3508 /*
3509  * Allocate a qband structure.
3510  */
3511 qband_t *
3512 allocband(void)
3513 {
3514 	qband_t *qbp;
3515 
3516 	qbp = kmem_cache_alloc(qband_cache, KM_NOSLEEP);
3517 	if (qbp == NULL)
3518 		return (NULL);
3519 
3520 	qbp->qb_next	= NULL;
3521 	qbp->qb_count	= 0;
3522 	qbp->qb_mblkcnt	= 0;
3523 	qbp->qb_first	= NULL;
3524 	qbp->qb_last	= NULL;
3525 	qbp->qb_flag	= 0;
3526 
3527 	return (qbp);
3528 }
3529 
3530 /*
3531  * Free a qband structure.
3532  */
3533 void
3534 freeband(qband_t *qbp)
3535 {
3536 	kmem_cache_free(qband_cache, qbp);
3537 }
3538 
3539 /*
3540  * Just like putnextctl(9F), except that allocb_wait() is used.
3541  *
3542  * Consolidation Private, and of course only callable from the stream head or
3543  * routines that may block.
3544  */
3545 int
3546 putnextctl_wait(queue_t *q, int type)
3547 {
3548 	mblk_t *bp;
3549 	int error;
3550 
3551 	if ((datamsg(type) && (type != M_DELAY)) ||
3552 	    (bp = allocb_wait(0, BPRI_HI, 0, &error)) == NULL)
3553 		return (0);
3554 
3555 	bp->b_datap->db_type = (unsigned char)type;
3556 	putnext(q, bp);
3557 	return (1);
3558 }
3559 
3560 /*
3561  * run any possible bufcalls.
3562  */
3563 void
3564 runbufcalls(void)
3565 {
3566 	strbufcall_t *bcp;
3567 
3568 	mutex_enter(&bcall_monitor);
3569 	mutex_enter(&strbcall_lock);
3570 
3571 	if (strbcalls.bc_head) {
3572 		size_t count;
3573 		int nevent;
3574 
3575 		/*
3576 		 * count how many events are on the list
3577 		 * now so we can check to avoid looping
3578 		 * in low memory situations
3579 		 */
3580 		nevent = 0;
3581 		for (bcp = strbcalls.bc_head; bcp; bcp = bcp->bc_next)
3582 			nevent++;
3583 
3584 		/*
3585 		 * get estimate of available memory from kmem_avail().
3586 		 * awake all bufcall functions waiting for
3587 		 * memory whose request could be satisfied
3588 		 * by 'count' memory and let 'em fight for it.
3589 		 */
3590 		count = kmem_avail();
3591 		while ((bcp = strbcalls.bc_head) != NULL && nevent) {
3592 			STRSTAT(bufcalls);
3593 			--nevent;
3594 			if (bcp->bc_size <= count) {
3595 				bcp->bc_executor = curthread;
3596 				mutex_exit(&strbcall_lock);
3597 				(*bcp->bc_func)(bcp->bc_arg);
3598 				mutex_enter(&strbcall_lock);
3599 				bcp->bc_executor = NULL;
3600 				cv_broadcast(&bcall_cv);
3601 				strbcalls.bc_head = bcp->bc_next;
3602 				kmem_free(bcp, sizeof (strbufcall_t));
3603 			} else {
3604 				/*
3605 				 * too big, try again later - note
3606 				 * that nevent was decremented above
3607 				 * so we won't retry this one on this
3608 				 * iteration of the loop
3609 				 */
3610 				if (bcp->bc_next != NULL) {
3611 					strbcalls.bc_head = bcp->bc_next;
3612 					bcp->bc_next = NULL;
3613 					strbcalls.bc_tail->bc_next = bcp;
3614 					strbcalls.bc_tail = bcp;
3615 				}
3616 			}
3617 		}
3618 		if (strbcalls.bc_head == NULL)
3619 			strbcalls.bc_tail = NULL;
3620 	}
3621 
3622 	mutex_exit(&strbcall_lock);
3623 	mutex_exit(&bcall_monitor);
3624 }
3625 
3626 
3627 /*
3628  * actually run queue's service routine.
3629  */
3630 static void
3631 runservice(queue_t *q)
3632 {
3633 	qband_t *qbp;
3634 
3635 	ASSERT(q->q_qinfo->qi_srvp);
3636 again:
3637 	entersq(q->q_syncq, SQ_SVC);
3638 	TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_START,
3639 	    "runservice starts:%p", q);
3640 
3641 	if (!(q->q_flag & QWCLOSE))
3642 		(*q->q_qinfo->qi_srvp)(q);
3643 
3644 	TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_END,
3645 	    "runservice ends:(%p)", q);
3646 
3647 	leavesq(q->q_syncq, SQ_SVC);
3648 
3649 	mutex_enter(QLOCK(q));
3650 	if (q->q_flag & QENAB) {
3651 		q->q_flag &= ~QENAB;
3652 		mutex_exit(QLOCK(q));
3653 		goto again;
3654 	}
3655 	q->q_flag &= ~QINSERVICE;
3656 	q->q_flag &= ~QBACK;
3657 	for (qbp = q->q_bandp; qbp; qbp = qbp->qb_next)
3658 		qbp->qb_flag &= ~QB_BACK;
3659 	/*
3660 	 * Wakeup thread waiting for the service procedure
3661 	 * to be run (strclose and qdetach).
3662 	 */
3663 	cv_broadcast(&q->q_wait);
3664 
3665 	mutex_exit(QLOCK(q));
3666 }
3667 
3668 /*
3669  * Background processing of bufcalls.
3670  */
3671 void
3672 streams_bufcall_service(void)
3673 {
3674 	callb_cpr_t	cprinfo;
3675 
3676 	CALLB_CPR_INIT(&cprinfo, &strbcall_lock, callb_generic_cpr,
3677 	    "streams_bufcall_service");
3678 
3679 	mutex_enter(&strbcall_lock);
3680 
3681 	for (;;) {
3682 		if (strbcalls.bc_head != NULL && kmem_avail() > 0) {
3683 			mutex_exit(&strbcall_lock);
3684 			runbufcalls();
3685 			mutex_enter(&strbcall_lock);
3686 		}
3687 		if (strbcalls.bc_head != NULL) {
3688 			clock_t wt, tick;
3689 
3690 			STRSTAT(bcwaits);
3691 			/* Wait for memory to become available */
3692 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3693 			tick = SEC_TO_TICK(60);
3694 			time_to_wait(&wt, tick);
3695 			(void) cv_timedwait(&memavail_cv, &strbcall_lock, wt);
3696 			CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
3697 		}
3698 
3699 		/* Wait for new work to arrive */
3700 		if (strbcalls.bc_head == NULL) {
3701 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3702 			cv_wait(&strbcall_cv, &strbcall_lock);
3703 			CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
3704 		}
3705 	}
3706 }
3707 
3708 /*
3709  * Background processing of streams background tasks which failed
3710  * taskq_dispatch.
3711  */
3712 static void
3713 streams_qbkgrnd_service(void)
3714 {
3715 	callb_cpr_t cprinfo;
3716 	queue_t *q;
3717 
3718 	CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
3719 	    "streams_bkgrnd_service");
3720 
3721 	mutex_enter(&service_queue);
3722 
3723 	for (;;) {
3724 		/*
3725 		 * Wait for work to arrive.
3726 		 */
3727 		while ((freebs_list == NULL) && (qhead == NULL)) {
3728 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3729 			cv_wait(&services_to_run, &service_queue);
3730 			CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
3731 		}
3732 		/*
3733 		 * Handle all pending freebs requests to free memory.
3734 		 */
3735 		while (freebs_list != NULL) {
3736 			mblk_t *mp = freebs_list;
3737 			freebs_list = mp->b_next;
3738 			mutex_exit(&service_queue);
3739 			mblk_free(mp);
3740 			mutex_enter(&service_queue);
3741 		}
3742 		/*
3743 		 * Run pending queues.
3744 		 */
3745 		while (qhead != NULL) {
3746 			DQ(q, qhead, qtail, q_link);
3747 			ASSERT(q != NULL);
3748 			mutex_exit(&service_queue);
3749 			queue_service(q);
3750 			mutex_enter(&service_queue);
3751 		}
3752 		ASSERT(qhead == NULL && qtail == NULL);
3753 	}
3754 }
3755 
3756 /*
3757  * Background processing of streams background tasks which failed
3758  * taskq_dispatch.
3759  */
3760 static void
3761 streams_sqbkgrnd_service(void)
3762 {
3763 	callb_cpr_t cprinfo;
3764 	syncq_t *sq;
3765 
3766 	CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
3767 	    "streams_sqbkgrnd_service");
3768 
3769 	mutex_enter(&service_queue);
3770 
3771 	for (;;) {
3772 		/*
3773 		 * Wait for work to arrive.
3774 		 */
3775 		while (sqhead == NULL) {
3776 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3777 			cv_wait(&syncqs_to_run, &service_queue);
3778 			CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
3779 		}
3780 
3781 		/*
3782 		 * Run pending syncqs.
3783 		 */
3784 		while (sqhead != NULL) {
3785 			DQ(sq, sqhead, sqtail, sq_next);
3786 			ASSERT(sq != NULL);
3787 			ASSERT(sq->sq_svcflags & SQ_BGTHREAD);
3788 			mutex_exit(&service_queue);
3789 			syncq_service(sq);
3790 			mutex_enter(&service_queue);
3791 		}
3792 	}
3793 }
3794 
3795 /*
3796  * Disable the syncq and wait for background syncq processing to complete.
3797  * If the syncq is placed on the sqhead/sqtail queue, try to remove it from the
3798  * list.
3799  */
3800 void
3801 wait_sq_svc(syncq_t *sq)
3802 {
3803 	mutex_enter(SQLOCK(sq));
3804 	sq->sq_svcflags |= SQ_DISABLED;
3805 	if (sq->sq_svcflags & SQ_BGTHREAD) {
3806 		syncq_t *sq_chase;
3807 		syncq_t *sq_curr;
3808 		int removed;
3809 
3810 		ASSERT(sq->sq_servcount == 1);
3811 		mutex_enter(&service_queue);
3812 		RMQ(sq, sqhead, sqtail, sq_next, sq_chase, sq_curr, removed);
3813 		mutex_exit(&service_queue);
3814 		if (removed) {
3815 			sq->sq_svcflags &= ~SQ_BGTHREAD;
3816 			sq->sq_servcount = 0;
3817 			STRSTAT(sqremoved);
3818 			goto done;
3819 		}
3820 	}
3821 	while (sq->sq_servcount != 0) {
3822 		sq->sq_flags |= SQ_WANTWAKEUP;
3823 		cv_wait(&sq->sq_wait, SQLOCK(sq));
3824 	}
3825 done:
3826 	mutex_exit(SQLOCK(sq));
3827 }
3828 
3829 /*
3830  * Put a syncq on the list of syncq's to be serviced by the sqthread.
3831  * Add the argument to the end of the sqhead list and set the flag
3832  * indicating this syncq has been enabled.  If it has already been
3833  * enabled, don't do anything.
3834  * This routine assumes that SQLOCK is held.
3835  * NOTE that the lock order is to have the SQLOCK first,
3836  * so if the service_syncq lock is held, we need to release it
3837  * before aquiring the SQLOCK (mostly relevant for the background
3838  * thread, and this seems to be common among the STREAMS global locks).
3839  * Note the the sq_svcflags are protected by the SQLOCK.
3840  */
3841 void
3842 sqenable(syncq_t *sq)
3843 {
3844 	/*
3845 	 * This is probably not important except for where I believe it
3846 	 * is being called.  At that point, it should be held (and it
3847 	 * is a pain to release it just for this routine, so don't do
3848 	 * it).
3849 	 */
3850 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
3851 
3852 	IMPLY(sq->sq_servcount == 0, sq->sq_next == NULL);
3853 	IMPLY(sq->sq_next != NULL, sq->sq_svcflags & SQ_BGTHREAD);
3854 
3855 	/*
3856 	 * Do not put on list if background thread is scheduled or
3857 	 * syncq is disabled.
3858 	 */
3859 	if (sq->sq_svcflags & (SQ_DISABLED | SQ_BGTHREAD))
3860 		return;
3861 
3862 	/*
3863 	 * Check whether we should enable sq at all.
3864 	 * Non PERMOD syncqs may be drained by at most one thread.
3865 	 * PERMOD syncqs may be drained by several threads but we limit the
3866 	 * total amount to the lesser of
3867 	 *	Number of queues on the squeue and
3868 	 *	Number of CPUs.
3869 	 */
3870 	if (sq->sq_servcount != 0) {
3871 		if (((sq->sq_type & SQ_PERMOD) == 0) ||
3872 		    (sq->sq_servcount >= MIN(sq->sq_nqueues, ncpus_online))) {
3873 			STRSTAT(sqtoomany);
3874 			return;
3875 		}
3876 	}
3877 
3878 	sq->sq_tstamp = lbolt;
3879 	STRSTAT(sqenables);
3880 
3881 	/* Attempt a taskq dispatch */
3882 	sq->sq_servid = (void *)taskq_dispatch(streams_taskq,
3883 	    (task_func_t *)syncq_service, sq, TQ_NOSLEEP | TQ_NOQUEUE);
3884 	if (sq->sq_servid != NULL) {
3885 		sq->sq_servcount++;
3886 		return;
3887 	}
3888 
3889 	/*
3890 	 * This taskq dispatch failed, but a previous one may have succeeded.
3891 	 * Don't try to schedule on the background thread whilst there is
3892 	 * outstanding taskq processing.
3893 	 */
3894 	if (sq->sq_servcount != 0)
3895 		return;
3896 
3897 	/*
3898 	 * System is low on resources and can't perform a non-sleeping
3899 	 * dispatch. Schedule the syncq for a background thread and mark the
3900 	 * syncq to avoid any further taskq dispatch attempts.
3901 	 */
3902 	mutex_enter(&service_queue);
3903 	STRSTAT(taskqfails);
3904 	ENQUEUE(sq, sqhead, sqtail, sq_next);
3905 	sq->sq_svcflags |= SQ_BGTHREAD;
3906 	sq->sq_servcount = 1;
3907 	cv_signal(&syncqs_to_run);
3908 	mutex_exit(&service_queue);
3909 }
3910 
3911 /*
3912  * Note: fifo_close() depends on the mblk_t on the queue being freed
3913  * asynchronously. The asynchronous freeing of messages breaks the
3914  * recursive call chain of fifo_close() while there are I_SENDFD type of
3915  * messages refering other file pointers on the queue. Then when
3916  * closing pipes it can avoid stack overflow in case of daisy-chained
3917  * pipes, and also avoid deadlock in case of fifonode_t pairs (which
3918  * share the same fifolock_t).
3919  */
3920 
3921 void
3922 freebs_enqueue(mblk_t *mp, dblk_t *dbp)
3923 {
3924 	esb_queue_t *eqp = &system_esbq;
3925 
3926 	ASSERT(dbp->db_mblk == mp);
3927 
3928 	/*
3929 	 * Check data sanity. The dblock should have non-empty free function.
3930 	 * It is better to panic here then later when the dblock is freed
3931 	 * asynchronously when the context is lost.
3932 	 */
3933 	if (dbp->db_frtnp->free_func == NULL) {
3934 		panic("freebs_enqueue: dblock %p has a NULL free callback",
3935 		    (void *)dbp);
3936 	}
3937 
3938 	mutex_enter(&eqp->eq_lock);
3939 	/* queue the new mblk on the esballoc queue */
3940 	if (eqp->eq_head == NULL) {
3941 		eqp->eq_head = eqp->eq_tail = mp;
3942 	} else {
3943 		eqp->eq_tail->b_next = mp;
3944 		eqp->eq_tail = mp;
3945 	}
3946 	eqp->eq_len++;
3947 
3948 	/* If we're the first thread to reach the threshold, process */
3949 	if (eqp->eq_len >= esbq_max_qlen &&
3950 	    !(eqp->eq_flags & ESBQ_PROCESSING))
3951 		esballoc_process_queue(eqp);
3952 
3953 	esballoc_set_timer(eqp, esbq_timeout);
3954 	mutex_exit(&eqp->eq_lock);
3955 }
3956 
3957 static void
3958 esballoc_process_queue(esb_queue_t *eqp)
3959 {
3960 	mblk_t	*mp;
3961 
3962 	ASSERT(MUTEX_HELD(&eqp->eq_lock));
3963 
3964 	eqp->eq_flags |= ESBQ_PROCESSING;
3965 
3966 	do {
3967 		/*
3968 		 * Detach the message chain for processing.
3969 		 */
3970 		mp = eqp->eq_head;
3971 		eqp->eq_tail->b_next = NULL;
3972 		eqp->eq_head = eqp->eq_tail = NULL;
3973 		eqp->eq_len = 0;
3974 		mutex_exit(&eqp->eq_lock);
3975 
3976 		/*
3977 		 * Process the message chain.
3978 		 */
3979 		esballoc_enqueue_mblk(mp);
3980 		mutex_enter(&eqp->eq_lock);
3981 	} while ((eqp->eq_len >= esbq_max_qlen) && (eqp->eq_len > 0));
3982 
3983 	eqp->eq_flags &= ~ESBQ_PROCESSING;
3984 }
3985 
3986 /*
3987  * taskq callback routine to free esballoced mblk's
3988  */
3989 static void
3990 esballoc_mblk_free(mblk_t *mp)
3991 {
3992 	mblk_t	*nextmp;
3993 
3994 	for (; mp != NULL; mp = nextmp) {
3995 		nextmp = mp->b_next;
3996 		mp->b_next = NULL;
3997 		mblk_free(mp);
3998 	}
3999 }
4000 
4001 static void
4002 esballoc_enqueue_mblk(mblk_t *mp)
4003 {
4004 
4005 	if (taskq_dispatch(system_taskq, (task_func_t *)esballoc_mblk_free, mp,
4006 	    TQ_NOSLEEP) == NULL) {
4007 		mblk_t *first_mp = mp;
4008 		/*
4009 		 * System is low on resources and can't perform a non-sleeping
4010 		 * dispatch. Schedule for a background thread.
4011 		 */
4012 		mutex_enter(&service_queue);
4013 		STRSTAT(taskqfails);
4014 
4015 		while (mp->b_next != NULL)
4016 			mp = mp->b_next;
4017 
4018 		mp->b_next = freebs_list;
4019 		freebs_list = first_mp;
4020 		cv_signal(&services_to_run);
4021 		mutex_exit(&service_queue);
4022 	}
4023 }
4024 
4025 static void
4026 esballoc_timer(void *arg)
4027 {
4028 	esb_queue_t *eqp = arg;
4029 
4030 	mutex_enter(&eqp->eq_lock);
4031 	eqp->eq_flags &= ~ESBQ_TIMER;
4032 
4033 	if (!(eqp->eq_flags & ESBQ_PROCESSING) &&
4034 	    eqp->eq_len > 0)
4035 		esballoc_process_queue(eqp);
4036 
4037 	esballoc_set_timer(eqp, esbq_timeout);
4038 	mutex_exit(&eqp->eq_lock);
4039 }
4040 
4041 static void
4042 esballoc_set_timer(esb_queue_t *eqp, clock_t eq_timeout)
4043 {
4044 	ASSERT(MUTEX_HELD(&eqp->eq_lock));
4045 
4046 	if (eqp->eq_len > 0 && !(eqp->eq_flags & ESBQ_TIMER)) {
4047 		(void) timeout(esballoc_timer, eqp, eq_timeout);
4048 		eqp->eq_flags |= ESBQ_TIMER;
4049 	}
4050 }
4051 
4052 void
4053 esballoc_queue_init(void)
4054 {
4055 	system_esbq.eq_len = 0;
4056 	system_esbq.eq_head = system_esbq.eq_tail = NULL;
4057 	system_esbq.eq_flags = 0;
4058 }
4059 
4060 /*
4061  * Set the QBACK or QB_BACK flag in the given queue for
4062  * the given priority band.
4063  */
4064 void
4065 setqback(queue_t *q, unsigned char pri)
4066 {
4067 	int i;
4068 	qband_t *qbp;
4069 	qband_t **qbpp;
4070 
4071 	ASSERT(MUTEX_HELD(QLOCK(q)));
4072 	if (pri != 0) {
4073 		if (pri > q->q_nband) {
4074 			qbpp = &q->q_bandp;
4075 			while (*qbpp)
4076 				qbpp = &(*qbpp)->qb_next;
4077 			while (pri > q->q_nband) {
4078 				if ((*qbpp = allocband()) == NULL) {
4079 					cmn_err(CE_WARN,
4080 					    "setqback: can't allocate qband\n");
4081 					return;
4082 				}
4083 				(*qbpp)->qb_hiwat = q->q_hiwat;
4084 				(*qbpp)->qb_lowat = q->q_lowat;
4085 				q->q_nband++;
4086 				qbpp = &(*qbpp)->qb_next;
4087 			}
4088 		}
4089 		qbp = q->q_bandp;
4090 		i = pri;
4091 		while (--i)
4092 			qbp = qbp->qb_next;
4093 		qbp->qb_flag |= QB_BACK;
4094 	} else {
4095 		q->q_flag |= QBACK;
4096 	}
4097 }
4098 
4099 int
4100 strcopyin(void *from, void *to, size_t len, int copyflag)
4101 {
4102 	if (copyflag & U_TO_K) {
4103 		ASSERT((copyflag & K_TO_K) == 0);
4104 		if (copyin(from, to, len))
4105 			return (EFAULT);
4106 	} else {
4107 		ASSERT(copyflag & K_TO_K);
4108 		bcopy(from, to, len);
4109 	}
4110 	return (0);
4111 }
4112 
4113 int
4114 strcopyout(void *from, void *to, size_t len, int copyflag)
4115 {
4116 	if (copyflag & U_TO_K) {
4117 		if (copyout(from, to, len))
4118 			return (EFAULT);
4119 	} else {
4120 		ASSERT(copyflag & K_TO_K);
4121 		bcopy(from, to, len);
4122 	}
4123 	return (0);
4124 }
4125 
4126 /*
4127  * strsignal_nolock() posts a signal to the process(es) at the stream head.
4128  * It assumes that the stream head lock is already held, whereas strsignal()
4129  * acquires the lock first.  This routine was created because a few callers
4130  * release the stream head lock before calling only to re-acquire it after
4131  * it returns.
4132  */
4133 void
4134 strsignal_nolock(stdata_t *stp, int sig, int32_t band)
4135 {
4136 	ASSERT(MUTEX_HELD(&stp->sd_lock));
4137 	switch (sig) {
4138 	case SIGPOLL:
4139 		if (stp->sd_sigflags & S_MSG)
4140 			strsendsig(stp->sd_siglist, S_MSG, (uchar_t)band, 0);
4141 		break;
4142 
4143 	default:
4144 		if (stp->sd_pgidp) {
4145 			pgsignal(stp->sd_pgidp, sig);
4146 		}
4147 		break;
4148 	}
4149 }
4150 
4151 void
4152 strsignal(stdata_t *stp, int sig, int32_t band)
4153 {
4154 	TRACE_3(TR_FAC_STREAMS_FR, TR_SENDSIG,
4155 	    "strsignal:%p, %X, %X", stp, sig, band);
4156 
4157 	mutex_enter(&stp->sd_lock);
4158 	switch (sig) {
4159 	case SIGPOLL:
4160 		if (stp->sd_sigflags & S_MSG)
4161 			strsendsig(stp->sd_siglist, S_MSG, (uchar_t)band, 0);
4162 		break;
4163 
4164 	default:
4165 		if (stp->sd_pgidp) {
4166 			pgsignal(stp->sd_pgidp, sig);
4167 		}
4168 		break;
4169 	}
4170 	mutex_exit(&stp->sd_lock);
4171 }
4172 
4173 void
4174 strhup(stdata_t *stp)
4175 {
4176 	ASSERT(mutex_owned(&stp->sd_lock));
4177 	pollwakeup(&stp->sd_pollist, POLLHUP);
4178 	if (stp->sd_sigflags & S_HANGUP)
4179 		strsendsig(stp->sd_siglist, S_HANGUP, 0, 0);
4180 }
4181 
4182 /*
4183  * Backenable the first queue upstream from `q' with a service procedure.
4184  */
4185 void
4186 backenable(queue_t *q, uchar_t pri)
4187 {
4188 	queue_t	*nq;
4189 
4190 	/*
4191 	 * our presence might not prevent other modules in our own
4192 	 * stream from popping/pushing since the caller of getq might not
4193 	 * have a claim on the queue (some drivers do a getq on somebody
4194 	 * else's queue - they know that the queue itself is not going away
4195 	 * but the framework has to guarantee q_next in that stream.)
4196 	 */
4197 	claimstr(q);
4198 
4199 	/* find nearest back queue with service proc */
4200 	for (nq = backq(q); nq && !nq->q_qinfo->qi_srvp; nq = backq(nq)) {
4201 		ASSERT(STRMATED(q->q_stream) || STREAM(q) == STREAM(nq));
4202 	}
4203 
4204 	if (nq) {
4205 		kthread_t *freezer;
4206 		/*
4207 		 * backenable can be called either with no locks held
4208 		 * or with the stream frozen (the latter occurs when a module
4209 		 * calls rmvq with the stream frozen.) If the stream is frozen
4210 		 * by the caller the caller will hold all qlocks in the stream.
4211 		 * Note that a frozen stream doesn't freeze a mated stream,
4212 		 * so we explicitly check for that.
4213 		 */
4214 		freezer = STREAM(q)->sd_freezer;
4215 		if (freezer != curthread || STREAM(q) != STREAM(nq)) {
4216 			mutex_enter(QLOCK(nq));
4217 		}
4218 #ifdef DEBUG
4219 		else {
4220 			ASSERT(frozenstr(q));
4221 			ASSERT(MUTEX_HELD(QLOCK(q)));
4222 			ASSERT(MUTEX_HELD(QLOCK(nq)));
4223 		}
4224 #endif
4225 		setqback(nq, pri);
4226 		qenable_locked(nq);
4227 		if (freezer != curthread || STREAM(q) != STREAM(nq))
4228 			mutex_exit(QLOCK(nq));
4229 	}
4230 	releasestr(q);
4231 }
4232 
4233 /*
4234  * Return the appropriate errno when one of flags_to_check is set
4235  * in sd_flags. Uses the exported error routines if they are set.
4236  * Will return 0 if non error is set (or if the exported error routines
4237  * do not return an error).
4238  *
4239  * If there is both a read and write error to check we prefer the read error.
4240  * Also, give preference to recorded errno's over the error functions.
4241  * The flags that are handled are:
4242  *	STPLEX		return EINVAL
4243  *	STRDERR		return sd_rerror (and clear if STRDERRNONPERSIST)
4244  *	STWRERR		return sd_werror (and clear if STWRERRNONPERSIST)
4245  *	STRHUP		return sd_werror
4246  *
4247  * If the caller indicates that the operation is a peek a nonpersistent error
4248  * is not cleared.
4249  */
4250 int
4251 strgeterr(stdata_t *stp, int32_t flags_to_check, int ispeek)
4252 {
4253 	int32_t sd_flag = stp->sd_flag & flags_to_check;
4254 	int error = 0;
4255 
4256 	ASSERT(MUTEX_HELD(&stp->sd_lock));
4257 	ASSERT((flags_to_check & ~(STRDERR|STWRERR|STRHUP|STPLEX)) == 0);
4258 	if (sd_flag & STPLEX)
4259 		error = EINVAL;
4260 	else if (sd_flag & STRDERR) {
4261 		error = stp->sd_rerror;
4262 		if ((stp->sd_flag & STRDERRNONPERSIST) && !ispeek) {
4263 			/*
4264 			 * Read errors are non-persistent i.e. discarded once
4265 			 * returned to a non-peeking caller,
4266 			 */
4267 			stp->sd_rerror = 0;
4268 			stp->sd_flag &= ~STRDERR;
4269 		}
4270 		if (error == 0 && stp->sd_rderrfunc != NULL) {
4271 			int clearerr = 0;
4272 
4273 			error = (*stp->sd_rderrfunc)(stp->sd_vnode, ispeek,
4274 			    &clearerr);
4275 			if (clearerr) {
4276 				stp->sd_flag &= ~STRDERR;
4277 				stp->sd_rderrfunc = NULL;
4278 			}
4279 		}
4280 	} else if (sd_flag & STWRERR) {
4281 		error = stp->sd_werror;
4282 		if ((stp->sd_flag & STWRERRNONPERSIST) && !ispeek) {
4283 			/*
4284 			 * Write errors are non-persistent i.e. discarded once
4285 			 * returned to a non-peeking caller,
4286 			 */
4287 			stp->sd_werror = 0;
4288 			stp->sd_flag &= ~STWRERR;
4289 		}
4290 		if (error == 0 && stp->sd_wrerrfunc != NULL) {
4291 			int clearerr = 0;
4292 
4293 			error = (*stp->sd_wrerrfunc)(stp->sd_vnode, ispeek,
4294 			    &clearerr);
4295 			if (clearerr) {
4296 				stp->sd_flag &= ~STWRERR;
4297 				stp->sd_wrerrfunc = NULL;
4298 			}
4299 		}
4300 	} else if (sd_flag & STRHUP) {
4301 		/* sd_werror set when STRHUP */
4302 		error = stp->sd_werror;
4303 	}
4304 	return (error);
4305 }
4306 
4307 
4308 /*
4309  * single-thread open/close/push/pop
4310  * for twisted streams also
4311  */
4312 int
4313 strstartplumb(stdata_t *stp, int flag, int cmd)
4314 {
4315 	int waited = 1;
4316 	int error = 0;
4317 
4318 	if (STRMATED(stp)) {
4319 		struct stdata *stmatep = stp->sd_mate;
4320 
4321 		STRLOCKMATES(stp);
4322 		while (waited) {
4323 			waited = 0;
4324 			while (stmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4325 				if ((cmd == I_POP) &&
4326 				    (flag & (FNDELAY|FNONBLOCK))) {
4327 					STRUNLOCKMATES(stp);
4328 					return (EAGAIN);
4329 				}
4330 				waited = 1;
4331 				mutex_exit(&stp->sd_lock);
4332 				if (!cv_wait_sig(&stmatep->sd_monitor,
4333 				    &stmatep->sd_lock)) {
4334 					mutex_exit(&stmatep->sd_lock);
4335 					return (EINTR);
4336 				}
4337 				mutex_exit(&stmatep->sd_lock);
4338 				STRLOCKMATES(stp);
4339 			}
4340 			while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4341 				if ((cmd == I_POP) &&
4342 				    (flag & (FNDELAY|FNONBLOCK))) {
4343 					STRUNLOCKMATES(stp);
4344 					return (EAGAIN);
4345 				}
4346 				waited = 1;
4347 				mutex_exit(&stmatep->sd_lock);
4348 				if (!cv_wait_sig(&stp->sd_monitor,
4349 				    &stp->sd_lock)) {
4350 					mutex_exit(&stp->sd_lock);
4351 					return (EINTR);
4352 				}
4353 				mutex_exit(&stp->sd_lock);
4354 				STRLOCKMATES(stp);
4355 			}
4356 			if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4357 				error = strgeterr(stp,
4358 				    STRDERR|STWRERR|STRHUP|STPLEX, 0);
4359 				if (error != 0) {
4360 					STRUNLOCKMATES(stp);
4361 					return (error);
4362 				}
4363 			}
4364 		}
4365 		stp->sd_flag |= STRPLUMB;
4366 		STRUNLOCKMATES(stp);
4367 	} else {
4368 		mutex_enter(&stp->sd_lock);
4369 		while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4370 			if (((cmd == I_POP) || (cmd == _I_REMOVE)) &&
4371 			    (flag & (FNDELAY|FNONBLOCK))) {
4372 				mutex_exit(&stp->sd_lock);
4373 				return (EAGAIN);
4374 			}
4375 			if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) {
4376 				mutex_exit(&stp->sd_lock);
4377 				return (EINTR);
4378 			}
4379 			if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4380 				error = strgeterr(stp,
4381 				    STRDERR|STWRERR|STRHUP|STPLEX, 0);
4382 				if (error != 0) {
4383 					mutex_exit(&stp->sd_lock);
4384 					return (error);
4385 				}
4386 			}
4387 		}
4388 		stp->sd_flag |= STRPLUMB;
4389 		mutex_exit(&stp->sd_lock);
4390 	}
4391 	return (0);
4392 }
4393 
4394 /*
4395  * Complete the plumbing operation associated with stream `stp'.
4396  */
4397 void
4398 strendplumb(stdata_t *stp)
4399 {
4400 	ASSERT(MUTEX_HELD(&stp->sd_lock));
4401 	ASSERT(stp->sd_flag & STRPLUMB);
4402 	stp->sd_flag &= ~STRPLUMB;
4403 	cv_broadcast(&stp->sd_monitor);
4404 }
4405 
4406 /*
4407  * This describes how the STREAMS framework handles synchronization
4408  * during open/push and close/pop.
4409  * The key interfaces for open and close are qprocson and qprocsoff,
4410  * respectively. While the close case in general is harder both open
4411  * have close have significant similarities.
4412  *
4413  * During close the STREAMS framework has to both ensure that there
4414  * are no stale references to the queue pair (and syncq) that
4415  * are being closed and also provide the guarantees that are documented
4416  * in qprocsoff(9F).
4417  * If there are stale references to the queue that is closing it can
4418  * result in kernel memory corruption or kernel panics.
4419  *
4420  * Note that is it up to the module/driver to ensure that it itself
4421  * does not have any stale references to the closing queues once its close
4422  * routine returns. This includes:
4423  *  - Cancelling any timeout/bufcall/qtimeout/qbufcall callback routines
4424  *    associated with the queues. For timeout and bufcall callbacks the
4425  *    module/driver also has to ensure (or wait for) any callbacks that
4426  *    are in progress.
4427  *  - If the module/driver is using esballoc it has to ensure that any
4428  *    esballoc free functions do not refer to a queue that has closed.
4429  *    (Note that in general the close routine can not wait for the esballoc'ed
4430  *    messages to be freed since that can cause a deadlock.)
4431  *  - Cancelling any interrupts that refer to the closing queues and
4432  *    also ensuring that there are no interrupts in progress that will
4433  *    refer to the closing queues once the close routine returns.
4434  *  - For multiplexors removing any driver global state that refers to
4435  *    the closing queue and also ensuring that there are no threads in
4436  *    the multiplexor that has picked up a queue pointer but not yet
4437  *    finished using it.
4438  *
4439  * In addition, a driver/module can only reference the q_next pointer
4440  * in its open, close, put, or service procedures or in a
4441  * qtimeout/qbufcall callback procedure executing "on" the correct
4442  * stream. Thus it can not reference the q_next pointer in an interrupt
4443  * routine or a timeout, bufcall or esballoc callback routine. Likewise
4444  * it can not reference q_next of a different queue e.g. in a mux that
4445  * passes messages from one queues put/service procedure to another queue.
4446  * In all the cases when the driver/module can not access the q_next
4447  * field it must use the *next* versions e.g. canputnext instead of
4448  * canput(q->q_next) and putnextctl instead of putctl(q->q_next, ...).
4449  *
4450  *
4451  * Assuming that the driver/module conforms to the above constraints
4452  * the STREAMS framework has to avoid stale references to q_next for all
4453  * the framework internal cases which include (but are not limited to):
4454  *  - Threads in canput/canputnext/backenable and elsewhere that are
4455  *    walking q_next.
4456  *  - Messages on a syncq that have a reference to the queue through b_queue.
4457  *  - Messages on an outer perimeter (syncq) that have a reference to the
4458  *    queue through b_queue.
4459  *  - Threads that use q_nfsrv (e.g. canput) to find a queue.
4460  *    Note that only canput and bcanput use q_nfsrv without any locking.
4461  *
4462  * The STREAMS framework providing the qprocsoff(9F) guarantees means that
4463  * after qprocsoff returns, the framework has to ensure that no threads can
4464  * enter the put or service routines for the closing read or write-side queue.
4465  * In addition to preventing "direct" entry into the put procedures
4466  * the framework also has to prevent messages being drained from
4467  * the syncq or the outer perimeter.
4468  * XXX Note that currently qdetach does relies on D_MTOCEXCL as the only
4469  * mechanism to prevent qwriter(PERIM_OUTER) from running after
4470  * qprocsoff has returned.
4471  * Note that if a module/driver uses put(9F) on one of its own queues
4472  * it is up to the module/driver to ensure that the put() doesn't
4473  * get called when the queue is closing.
4474  *
4475  *
4476  * The framework aspects of the above "contract" is implemented by
4477  * qprocsoff, removeq, and strlock:
4478  *  - qprocsoff (disable_svc) sets QWCLOSE to prevent runservice from
4479  *    entering the service procedures.
4480  *  - strlock acquires the sd_lock and sd_reflock to prevent putnext,
4481  *    canputnext, backenable etc from dereferencing the q_next that will
4482  *    soon change.
4483  *  - strlock waits for sd_refcnt to be zero to wait for e.g. any canputnext
4484  *    or other q_next walker that uses claimstr/releasestr to finish.
4485  *  - optionally for every syncq in the stream strlock acquires all the
4486  *    sq_lock's and waits for all sq_counts to drop to a value that indicates
4487  *    that no thread executes in the put or service procedures and that no
4488  *    thread is draining into the module/driver. This ensures that no
4489  *    open, close, put, service, or qtimeout/qbufcall callback procedure is
4490  *    currently executing hence no such thread can end up with the old stale
4491  *    q_next value and no canput/backenable can have the old stale
4492  *    q_nfsrv/q_next.
4493  *  - qdetach (wait_svc) makes sure that any scheduled or running threads
4494  *    have either finished or observed the QWCLOSE flag and gone away.
4495  */
4496 
4497 
4498 /*
4499  * Get all the locks necessary to change q_next.
4500  *
4501  * Wait for sd_refcnt to reach 0 and, if sqlist is present, wait for  the
4502  * sq_count of each syncq in the list to drop to sq_rmqcount, indicating that
4503  * the only threads inside the sqncq are threads currently calling removeq().
4504  * Since threads calling removeq() are in the process of removing their queues
4505  * from the stream, we do not need to worry about them accessing a stale q_next
4506  * pointer and thus we do not need to wait for them to exit (in fact, waiting
4507  * for them can cause deadlock).
4508  *
4509  * This routine is subject to starvation since it does not set any flag to
4510  * prevent threads from entering a module in the stream(i.e. sq_count can
4511  * increase on some syncq while it is waiting on some other syncq.)
4512  *
4513  * Assumes that only one thread attempts to call strlock for a given
4514  * stream. If this is not the case the two threads would deadlock.
4515  * This assumption is guaranteed since strlock is only called by insertq
4516  * and removeq and streams plumbing changes are single-threaded for
4517  * a given stream using the STWOPEN, STRCLOSE, and STRPLUMB flags.
4518  *
4519  * For pipes, it is not difficult to atomically designate a pair of streams
4520  * to be mated. Once mated atomically by the framework the twisted pair remain
4521  * configured that way until dismantled atomically by the framework.
4522  * When plumbing takes place on a twisted stream it is necessary to ensure that
4523  * this operation is done exclusively on the twisted stream since two such
4524  * operations, each initiated on different ends of the pipe will deadlock
4525  * waiting for each other to complete.
4526  *
4527  * On entry, no locks should be held.
4528  * The locks acquired and held by strlock depends on a few factors.
4529  * - If sqlist is non-NULL all the syncq locks in the sqlist will be acquired
4530  *   and held on exit and all sq_count are at an acceptable level.
4531  * - In all cases, sd_lock and sd_reflock are acquired and held on exit with
4532  *   sd_refcnt being zero.
4533  */
4534 
4535 static void
4536 strlock(struct stdata *stp, sqlist_t *sqlist)
4537 {
4538 	syncql_t *sql, *sql2;
4539 retry:
4540 	/*
4541 	 * Wait for any claimstr to go away.
4542 	 */
4543 	if (STRMATED(stp)) {
4544 		struct stdata *stp1, *stp2;
4545 
4546 		STRLOCKMATES(stp);
4547 		/*
4548 		 * Note that the selection of locking order is not
4549 		 * important, just that they are always aquired in
4550 		 * the same order.  To assure this, we choose this
4551 		 * order based on the value of the pointer, and since
4552 		 * the pointer will not change for the life of this
4553 		 * pair, we will always grab the locks in the same
4554 		 * order (and hence, prevent deadlocks).
4555 		 */
4556 		if (&(stp->sd_lock) > &((stp->sd_mate)->sd_lock)) {
4557 			stp1 = stp;
4558 			stp2 = stp->sd_mate;
4559 		} else {
4560 			stp2 = stp;
4561 			stp1 = stp->sd_mate;
4562 		}
4563 		mutex_enter(&stp1->sd_reflock);
4564 		if (stp1->sd_refcnt > 0) {
4565 			STRUNLOCKMATES(stp);
4566 			cv_wait(&stp1->sd_refmonitor, &stp1->sd_reflock);
4567 			mutex_exit(&stp1->sd_reflock);
4568 			goto retry;
4569 		}
4570 		mutex_enter(&stp2->sd_reflock);
4571 		if (stp2->sd_refcnt > 0) {
4572 			STRUNLOCKMATES(stp);
4573 			mutex_exit(&stp1->sd_reflock);
4574 			cv_wait(&stp2->sd_refmonitor, &stp2->sd_reflock);
4575 			mutex_exit(&stp2->sd_reflock);
4576 			goto retry;
4577 		}
4578 		STREAM_PUTLOCKS_ENTER(stp1);
4579 		STREAM_PUTLOCKS_ENTER(stp2);
4580 	} else {
4581 		mutex_enter(&stp->sd_lock);
4582 		mutex_enter(&stp->sd_reflock);
4583 		while (stp->sd_refcnt > 0) {
4584 			mutex_exit(&stp->sd_lock);
4585 			cv_wait(&stp->sd_refmonitor, &stp->sd_reflock);
4586 			if (mutex_tryenter(&stp->sd_lock) == 0) {
4587 				mutex_exit(&stp->sd_reflock);
4588 				mutex_enter(&stp->sd_lock);
4589 				mutex_enter(&stp->sd_reflock);
4590 			}
4591 		}
4592 		STREAM_PUTLOCKS_ENTER(stp);
4593 	}
4594 
4595 	if (sqlist == NULL)
4596 		return;
4597 
4598 	for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
4599 		syncq_t *sq = sql->sql_sq;
4600 		uint16_t count;
4601 
4602 		mutex_enter(SQLOCK(sq));
4603 		count = sq->sq_count;
4604 		ASSERT(sq->sq_rmqcount <= count);
4605 		SQ_PUTLOCKS_ENTER(sq);
4606 		SUM_SQ_PUTCOUNTS(sq, count);
4607 		if (count == sq->sq_rmqcount)
4608 			continue;
4609 
4610 		/* Failed - drop all locks that we have acquired so far */
4611 		if (STRMATED(stp)) {
4612 			STREAM_PUTLOCKS_EXIT(stp);
4613 			STREAM_PUTLOCKS_EXIT(stp->sd_mate);
4614 			STRUNLOCKMATES(stp);
4615 			mutex_exit(&stp->sd_reflock);
4616 			mutex_exit(&stp->sd_mate->sd_reflock);
4617 		} else {
4618 			STREAM_PUTLOCKS_EXIT(stp);
4619 			mutex_exit(&stp->sd_lock);
4620 			mutex_exit(&stp->sd_reflock);
4621 		}
4622 		for (sql2 = sqlist->sqlist_head; sql2 != sql;
4623 		    sql2 = sql2->sql_next) {
4624 			SQ_PUTLOCKS_EXIT(sql2->sql_sq);
4625 			mutex_exit(SQLOCK(sql2->sql_sq));
4626 		}
4627 
4628 		/*
4629 		 * The wait loop below may starve when there are many threads
4630 		 * claiming the syncq. This is especially a problem with permod
4631 		 * syncqs (IP). To lessen the impact of the problem we increment
4632 		 * sq_needexcl and clear fastbits so that putnexts will slow
4633 		 * down and call sqenable instead of draining right away.
4634 		 */
4635 		sq->sq_needexcl++;
4636 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
4637 		while (count > sq->sq_rmqcount) {
4638 			sq->sq_flags |= SQ_WANTWAKEUP;
4639 			SQ_PUTLOCKS_EXIT(sq);
4640 			cv_wait(&sq->sq_wait, SQLOCK(sq));
4641 			count = sq->sq_count;
4642 			SQ_PUTLOCKS_ENTER(sq);
4643 			SUM_SQ_PUTCOUNTS(sq, count);
4644 		}
4645 		sq->sq_needexcl--;
4646 		if (sq->sq_needexcl == 0)
4647 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
4648 		SQ_PUTLOCKS_EXIT(sq);
4649 		ASSERT(count == sq->sq_rmqcount);
4650 		mutex_exit(SQLOCK(sq));
4651 		goto retry;
4652 	}
4653 }
4654 
4655 /*
4656  * Drop all the locks that strlock acquired.
4657  */
4658 static void
4659 strunlock(struct stdata *stp, sqlist_t *sqlist)
4660 {
4661 	syncql_t *sql;
4662 
4663 	if (STRMATED(stp)) {
4664 		STREAM_PUTLOCKS_EXIT(stp);
4665 		STREAM_PUTLOCKS_EXIT(stp->sd_mate);
4666 		STRUNLOCKMATES(stp);
4667 		mutex_exit(&stp->sd_reflock);
4668 		mutex_exit(&stp->sd_mate->sd_reflock);
4669 	} else {
4670 		STREAM_PUTLOCKS_EXIT(stp);
4671 		mutex_exit(&stp->sd_lock);
4672 		mutex_exit(&stp->sd_reflock);
4673 	}
4674 
4675 	if (sqlist == NULL)
4676 		return;
4677 
4678 	for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
4679 		SQ_PUTLOCKS_EXIT(sql->sql_sq);
4680 		mutex_exit(SQLOCK(sql->sql_sq));
4681 	}
4682 }
4683 
4684 /*
4685  * When the module has service procedure, we need check if the next
4686  * module which has service procedure is in flow control to trigger
4687  * the backenable.
4688  */
4689 static void
4690 backenable_insertedq(queue_t *q)
4691 {
4692 	qband_t	*qbp;
4693 
4694 	claimstr(q);
4695 	if (q->q_qinfo->qi_srvp != NULL && q->q_next != NULL) {
4696 		if (q->q_next->q_nfsrv->q_flag & QWANTW)
4697 			backenable(q, 0);
4698 
4699 		qbp = q->q_next->q_nfsrv->q_bandp;
4700 		for (; qbp != NULL; qbp = qbp->qb_next)
4701 			if ((qbp->qb_flag & QB_WANTW) && qbp->qb_first != NULL)
4702 				backenable(q, qbp->qb_first->b_band);
4703 	}
4704 	releasestr(q);
4705 }
4706 
4707 /*
4708  * Given two read queues, insert a new single one after another.
4709  *
4710  * This routine acquires all the necessary locks in order to change
4711  * q_next and related pointer using strlock().
4712  * It depends on the stream head ensuring that there are no concurrent
4713  * insertq or removeq on the same stream. The stream head ensures this
4714  * using the flags STWOPEN, STRCLOSE, and STRPLUMB.
4715  *
4716  * Note that no syncq locks are held during the q_next change. This is
4717  * applied to all streams since, unlike removeq, there is no problem of stale
4718  * pointers when adding a module to the stream. Thus drivers/modules that do a
4719  * canput(rq->q_next) would never get a closed/freed queue pointer even if we
4720  * applied this optimization to all streams.
4721  */
4722 void
4723 insertq(struct stdata *stp, queue_t *new)
4724 {
4725 	queue_t	*after;
4726 	queue_t *wafter;
4727 	queue_t *wnew = _WR(new);
4728 	boolean_t have_fifo = B_FALSE;
4729 
4730 	if (new->q_flag & _QINSERTING) {
4731 		ASSERT(stp->sd_vnode->v_type != VFIFO);
4732 		after = new->q_next;
4733 		wafter = _WR(new->q_next);
4734 	} else {
4735 		after = _RD(stp->sd_wrq);
4736 		wafter = stp->sd_wrq;
4737 	}
4738 
4739 	TRACE_2(TR_FAC_STREAMS_FR, TR_INSERTQ,
4740 	    "insertq:%p, %p", after, new);
4741 	ASSERT(after->q_flag & QREADR);
4742 	ASSERT(new->q_flag & QREADR);
4743 
4744 	strlock(stp, NULL);
4745 
4746 	/* Do we have a FIFO? */
4747 	if (wafter->q_next == after) {
4748 		have_fifo = B_TRUE;
4749 		wnew->q_next = new;
4750 	} else {
4751 		wnew->q_next = wafter->q_next;
4752 	}
4753 	new->q_next = after;
4754 
4755 	set_nfsrv_ptr(new, wnew, after, wafter);
4756 	/*
4757 	 * set_nfsrv_ptr() needs to know if this is an insertion or not,
4758 	 * so only reset this flag after calling it.
4759 	 */
4760 	new->q_flag &= ~_QINSERTING;
4761 
4762 	if (have_fifo) {
4763 		wafter->q_next = wnew;
4764 	} else {
4765 		if (wafter->q_next)
4766 			_OTHERQ(wafter->q_next)->q_next = new;
4767 		wafter->q_next = wnew;
4768 	}
4769 
4770 	set_qend(new);
4771 	/* The QEND flag might have to be updated for the upstream guy */
4772 	set_qend(after);
4773 
4774 	ASSERT(_SAMESTR(new) == O_SAMESTR(new));
4775 	ASSERT(_SAMESTR(wnew) == O_SAMESTR(wnew));
4776 	ASSERT(_SAMESTR(after) == O_SAMESTR(after));
4777 	ASSERT(_SAMESTR(wafter) == O_SAMESTR(wafter));
4778 	strsetuio(stp);
4779 
4780 	/*
4781 	 * If this was a module insertion, bump the push count.
4782 	 */
4783 	if (!(new->q_flag & QISDRV))
4784 		stp->sd_pushcnt++;
4785 
4786 	strunlock(stp, NULL);
4787 
4788 	/* check if the write Q needs backenable */
4789 	backenable_insertedq(wnew);
4790 
4791 	/* check if the read Q needs backenable */
4792 	backenable_insertedq(new);
4793 }
4794 
4795 /*
4796  * Given a read queue, unlink it from any neighbors.
4797  *
4798  * This routine acquires all the necessary locks in order to
4799  * change q_next and related pointers and also guard against
4800  * stale references (e.g. through q_next) to the queue that
4801  * is being removed. It also plays part of the role in ensuring
4802  * that the module's/driver's put procedure doesn't get called
4803  * after qprocsoff returns.
4804  *
4805  * Removeq depends on the stream head ensuring that there are
4806  * no concurrent insertq or removeq on the same stream. The
4807  * stream head ensures this using the flags STWOPEN, STRCLOSE and
4808  * STRPLUMB.
4809  *
4810  * The set of locks needed to remove the queue is different in
4811  * different cases:
4812  *
4813  * Acquire sd_lock, sd_reflock, and all the syncq locks in the stream after
4814  * waiting for the syncq reference count to drop to 0 indicating that no
4815  * non-close threads are present anywhere in the stream. This ensures that any
4816  * module/driver can reference q_next in its open, close, put, or service
4817  * procedures.
4818  *
4819  * The sq_rmqcount counter tracks the number of threads inside removeq().
4820  * strlock() ensures that there is either no threads executing inside perimeter
4821  * or there is only a thread calling qprocsoff().
4822  *
4823  * strlock() compares the value of sq_count with the number of threads inside
4824  * removeq() and waits until sq_count is equal to sq_rmqcount. We need to wakeup
4825  * any threads waiting in strlock() when the sq_rmqcount increases.
4826  */
4827 
4828 void
4829 removeq(queue_t *qp)
4830 {
4831 	queue_t *wqp = _WR(qp);
4832 	struct stdata *stp = STREAM(qp);
4833 	sqlist_t *sqlist = NULL;
4834 	boolean_t isdriver;
4835 	int moved;
4836 	syncq_t *sq = qp->q_syncq;
4837 	syncq_t *wsq = wqp->q_syncq;
4838 
4839 	ASSERT(stp);
4840 
4841 	TRACE_2(TR_FAC_STREAMS_FR, TR_REMOVEQ,
4842 	    "removeq:%p %p", qp, wqp);
4843 	ASSERT(qp->q_flag&QREADR);
4844 
4845 	/*
4846 	 * For queues using Synchronous streams, we must wait for all threads in
4847 	 * rwnext() to drain out before proceeding.
4848 	 */
4849 	if (qp->q_flag & QSYNCSTR) {
4850 		/* First, we need wakeup any threads blocked in rwnext() */
4851 		mutex_enter(SQLOCK(sq));
4852 		if (sq->sq_flags & SQ_WANTWAKEUP) {
4853 			sq->sq_flags &= ~SQ_WANTWAKEUP;
4854 			cv_broadcast(&sq->sq_wait);
4855 		}
4856 		mutex_exit(SQLOCK(sq));
4857 
4858 		if (wsq != sq) {
4859 			mutex_enter(SQLOCK(wsq));
4860 			if (wsq->sq_flags & SQ_WANTWAKEUP) {
4861 				wsq->sq_flags &= ~SQ_WANTWAKEUP;
4862 				cv_broadcast(&wsq->sq_wait);
4863 			}
4864 			mutex_exit(SQLOCK(wsq));
4865 		}
4866 
4867 		mutex_enter(QLOCK(qp));
4868 		while (qp->q_rwcnt > 0) {
4869 			qp->q_flag |= QWANTRMQSYNC;
4870 			cv_wait(&qp->q_wait, QLOCK(qp));
4871 		}
4872 		mutex_exit(QLOCK(qp));
4873 
4874 		mutex_enter(QLOCK(wqp));
4875 		while (wqp->q_rwcnt > 0) {
4876 			wqp->q_flag |= QWANTRMQSYNC;
4877 			cv_wait(&wqp->q_wait, QLOCK(wqp));
4878 		}
4879 		mutex_exit(QLOCK(wqp));
4880 	}
4881 
4882 	mutex_enter(SQLOCK(sq));
4883 	sq->sq_rmqcount++;
4884 	if (sq->sq_flags & SQ_WANTWAKEUP) {
4885 		sq->sq_flags &= ~SQ_WANTWAKEUP;
4886 		cv_broadcast(&sq->sq_wait);
4887 	}
4888 	mutex_exit(SQLOCK(sq));
4889 
4890 	isdriver = (qp->q_flag & QISDRV);
4891 
4892 	sqlist = sqlist_build(qp, stp, STRMATED(stp));
4893 	strlock(stp, sqlist);
4894 
4895 	reset_nfsrv_ptr(qp, wqp);
4896 
4897 	ASSERT(wqp->q_next == NULL || backq(qp)->q_next == qp);
4898 	ASSERT(qp->q_next == NULL || backq(wqp)->q_next == wqp);
4899 	/* Do we have a FIFO? */
4900 	if (wqp->q_next == qp) {
4901 		stp->sd_wrq->q_next = _RD(stp->sd_wrq);
4902 	} else {
4903 		if (wqp->q_next)
4904 			backq(qp)->q_next = qp->q_next;
4905 		if (qp->q_next)
4906 			backq(wqp)->q_next = wqp->q_next;
4907 	}
4908 
4909 	/* The QEND flag might have to be updated for the upstream guy */
4910 	if (qp->q_next)
4911 		set_qend(qp->q_next);
4912 
4913 	ASSERT(_SAMESTR(stp->sd_wrq) == O_SAMESTR(stp->sd_wrq));
4914 	ASSERT(_SAMESTR(_RD(stp->sd_wrq)) == O_SAMESTR(_RD(stp->sd_wrq)));
4915 
4916 	/*
4917 	 * Move any messages destined for the put procedures to the next
4918 	 * syncq in line. Otherwise free them.
4919 	 */
4920 	moved = 0;
4921 	/*
4922 	 * Quick check to see whether there are any messages or events.
4923 	 */
4924 	if (qp->q_syncqmsgs != 0 || (qp->q_syncq->sq_flags & SQ_EVENTS))
4925 		moved += propagate_syncq(qp);
4926 	if (wqp->q_syncqmsgs != 0 ||
4927 	    (wqp->q_syncq->sq_flags & SQ_EVENTS))
4928 		moved += propagate_syncq(wqp);
4929 
4930 	strsetuio(stp);
4931 
4932 	/*
4933 	 * If this was a module removal, decrement the push count.
4934 	 */
4935 	if (!isdriver)
4936 		stp->sd_pushcnt--;
4937 
4938 	strunlock(stp, sqlist);
4939 	sqlist_free(sqlist);
4940 
4941 	/*
4942 	 * Make sure any messages that were propagated are drained.
4943 	 * Also clear any QFULL bit caused by messages that were propagated.
4944 	 */
4945 
4946 	if (qp->q_next != NULL) {
4947 		clr_qfull(qp);
4948 		/*
4949 		 * For the driver calling qprocsoff, propagate_syncq
4950 		 * frees all the messages instead of putting it in
4951 		 * the stream head
4952 		 */
4953 		if (!isdriver && (moved > 0))
4954 			emptysq(qp->q_next->q_syncq);
4955 	}
4956 	if (wqp->q_next != NULL) {
4957 		clr_qfull(wqp);
4958 		/*
4959 		 * We come here for any pop of a module except for the
4960 		 * case of driver being removed. We don't call emptysq
4961 		 * if we did not move any messages. This will avoid holding
4962 		 * PERMOD syncq locks in emptysq
4963 		 */
4964 		if (moved > 0)
4965 			emptysq(wqp->q_next->q_syncq);
4966 	}
4967 
4968 	mutex_enter(SQLOCK(sq));
4969 	sq->sq_rmqcount--;
4970 	mutex_exit(SQLOCK(sq));
4971 }
4972 
4973 /*
4974  * Prevent further entry by setting a flag (like SQ_FROZEN, SQ_BLOCKED or
4975  * SQ_WRITER) on a syncq.
4976  * If maxcnt is not -1 it assumes that caller has "maxcnt" claim(s) on the
4977  * sync queue and waits until sq_count reaches maxcnt.
4978  *
4979  * if maxcnt is -1 there's no need to grab sq_putlocks since the caller
4980  * does not care about putnext threads that are in the middle of calling put
4981  * entry points.
4982  *
4983  * This routine is used for both inner and outer syncqs.
4984  */
4985 static void
4986 blocksq(syncq_t *sq, ushort_t flag, int maxcnt)
4987 {
4988 	uint16_t count = 0;
4989 
4990 	mutex_enter(SQLOCK(sq));
4991 	/*
4992 	 * Wait for SQ_FROZEN/SQ_BLOCKED to be reset.
4993 	 * SQ_FROZEN will be set if there is a frozen stream that has a
4994 	 * queue which also refers to this "shared" syncq.
4995 	 * SQ_BLOCKED will be set if there is "off" queue which also
4996 	 * refers to this "shared" syncq.
4997 	 */
4998 	if (maxcnt != -1) {
4999 		count = sq->sq_count;
5000 		SQ_PUTLOCKS_ENTER(sq);
5001 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
5002 		SUM_SQ_PUTCOUNTS(sq, count);
5003 	}
5004 	sq->sq_needexcl++;
5005 	ASSERT(sq->sq_needexcl != 0);	/* wraparound */
5006 
5007 	while ((sq->sq_flags & flag) ||
5008 	    (maxcnt != -1 && count > (unsigned)maxcnt)) {
5009 		sq->sq_flags |= SQ_WANTWAKEUP;
5010 		if (maxcnt != -1) {
5011 			SQ_PUTLOCKS_EXIT(sq);
5012 		}
5013 		cv_wait(&sq->sq_wait, SQLOCK(sq));
5014 		if (maxcnt != -1) {
5015 			count = sq->sq_count;
5016 			SQ_PUTLOCKS_ENTER(sq);
5017 			SUM_SQ_PUTCOUNTS(sq, count);
5018 		}
5019 	}
5020 	sq->sq_needexcl--;
5021 	sq->sq_flags |= flag;
5022 	ASSERT(maxcnt == -1 || count == maxcnt);
5023 	if (maxcnt != -1) {
5024 		if (sq->sq_needexcl == 0) {
5025 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
5026 		}
5027 		SQ_PUTLOCKS_EXIT(sq);
5028 	} else if (sq->sq_needexcl == 0) {
5029 		SQ_PUTCOUNT_SETFAST(sq);
5030 	}
5031 
5032 	mutex_exit(SQLOCK(sq));
5033 }
5034 
5035 /*
5036  * Reset a flag that was set with blocksq.
5037  *
5038  * Can not use this routine to reset SQ_WRITER.
5039  *
5040  * If "isouter" is set then the syncq is assumed to be an outer perimeter
5041  * and drain_syncq is not called. Instead we rely on the qwriter_outer thread
5042  * to handle the queued qwriter operations.
5043  *
5044  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5045  * sq_putlocks are used.
5046  */
5047 static void
5048 unblocksq(syncq_t *sq, uint16_t resetflag, int isouter)
5049 {
5050 	uint16_t flags;
5051 
5052 	mutex_enter(SQLOCK(sq));
5053 	ASSERT(resetflag != SQ_WRITER);
5054 	ASSERT(sq->sq_flags & resetflag);
5055 	flags = sq->sq_flags & ~resetflag;
5056 	sq->sq_flags = flags;
5057 	if (flags & (SQ_QUEUED | SQ_WANTWAKEUP)) {
5058 		if (flags & SQ_WANTWAKEUP) {
5059 			flags &= ~SQ_WANTWAKEUP;
5060 			cv_broadcast(&sq->sq_wait);
5061 		}
5062 		sq->sq_flags = flags;
5063 		if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5064 			if (!isouter) {
5065 				/* drain_syncq drops SQLOCK */
5066 				drain_syncq(sq);
5067 				return;
5068 			}
5069 		}
5070 	}
5071 	mutex_exit(SQLOCK(sq));
5072 }
5073 
5074 /*
5075  * Reset a flag that was set with blocksq.
5076  * Does not drain the syncq. Use emptysq() for that.
5077  * Returns 1 if SQ_QUEUED is set. Otherwise 0.
5078  *
5079  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5080  * sq_putlocks are used.
5081  */
5082 static int
5083 dropsq(syncq_t *sq, uint16_t resetflag)
5084 {
5085 	uint16_t flags;
5086 
5087 	mutex_enter(SQLOCK(sq));
5088 	ASSERT(sq->sq_flags & resetflag);
5089 	flags = sq->sq_flags & ~resetflag;
5090 	if (flags & SQ_WANTWAKEUP) {
5091 		flags &= ~SQ_WANTWAKEUP;
5092 		cv_broadcast(&sq->sq_wait);
5093 	}
5094 	sq->sq_flags = flags;
5095 	mutex_exit(SQLOCK(sq));
5096 	if (flags & SQ_QUEUED)
5097 		return (1);
5098 	return (0);
5099 }
5100 
5101 /*
5102  * Empty all the messages on a syncq.
5103  *
5104  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5105  * sq_putlocks are used.
5106  */
5107 static void
5108 emptysq(syncq_t *sq)
5109 {
5110 	uint16_t flags;
5111 
5112 	mutex_enter(SQLOCK(sq));
5113 	flags = sq->sq_flags;
5114 	if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5115 		/*
5116 		 * To prevent potential recursive invocation of drain_syncq we
5117 		 * do not call drain_syncq if count is non-zero.
5118 		 */
5119 		if (sq->sq_count == 0) {
5120 			/* drain_syncq() drops SQLOCK */
5121 			drain_syncq(sq);
5122 			return;
5123 		} else
5124 			sqenable(sq);
5125 	}
5126 	mutex_exit(SQLOCK(sq));
5127 }
5128 
5129 /*
5130  * Ordered insert while removing duplicates.
5131  */
5132 static void
5133 sqlist_insert(sqlist_t *sqlist, syncq_t *sqp)
5134 {
5135 	syncql_t *sqlp, **prev_sqlpp, *new_sqlp;
5136 
5137 	prev_sqlpp = &sqlist->sqlist_head;
5138 	while ((sqlp = *prev_sqlpp) != NULL) {
5139 		if (sqlp->sql_sq >= sqp) {
5140 			if (sqlp->sql_sq == sqp)	/* duplicate */
5141 				return;
5142 			break;
5143 		}
5144 		prev_sqlpp = &sqlp->sql_next;
5145 	}
5146 	new_sqlp = &sqlist->sqlist_array[sqlist->sqlist_index++];
5147 	ASSERT((char *)new_sqlp < (char *)sqlist + sqlist->sqlist_size);
5148 	new_sqlp->sql_next = sqlp;
5149 	new_sqlp->sql_sq = sqp;
5150 	*prev_sqlpp = new_sqlp;
5151 }
5152 
5153 /*
5154  * Walk the write side queues until we hit either the driver
5155  * or a twist in the stream (_SAMESTR will return false in both
5156  * these cases) then turn around and walk the read side queues
5157  * back up to the stream head.
5158  */
5159 static void
5160 sqlist_insertall(sqlist_t *sqlist, queue_t *q)
5161 {
5162 	while (q != NULL) {
5163 		sqlist_insert(sqlist, q->q_syncq);
5164 
5165 		if (_SAMESTR(q))
5166 			q = q->q_next;
5167 		else if (!(q->q_flag & QREADR))
5168 			q = _RD(q);
5169 		else
5170 			q = NULL;
5171 	}
5172 }
5173 
5174 /*
5175  * Allocate and build a list of all syncqs in a stream and the syncq(s)
5176  * associated with the "q" parameter. The resulting list is sorted in a
5177  * canonical order and is free of duplicates.
5178  * Assumes the passed queue is a _RD(q).
5179  */
5180 static sqlist_t *
5181 sqlist_build(queue_t *q, struct stdata *stp, boolean_t do_twist)
5182 {
5183 	sqlist_t *sqlist = sqlist_alloc(stp, KM_SLEEP);
5184 
5185 	/*
5186 	 * start with the current queue/qpair
5187 	 */
5188 	ASSERT(q->q_flag & QREADR);
5189 
5190 	sqlist_insert(sqlist, q->q_syncq);
5191 	sqlist_insert(sqlist, _WR(q)->q_syncq);
5192 
5193 	sqlist_insertall(sqlist, stp->sd_wrq);
5194 	if (do_twist)
5195 		sqlist_insertall(sqlist, stp->sd_mate->sd_wrq);
5196 
5197 	return (sqlist);
5198 }
5199 
5200 static sqlist_t *
5201 sqlist_alloc(struct stdata *stp, int kmflag)
5202 {
5203 	size_t sqlist_size;
5204 	sqlist_t *sqlist;
5205 
5206 	/*
5207 	 * Allocate 2 syncql_t's for each pushed module. Note that
5208 	 * the sqlist_t structure already has 4 syncql_t's built in:
5209 	 * 2 for the stream head, and 2 for the driver/other stream head.
5210 	 */
5211 	sqlist_size = 2 * sizeof (syncql_t) * stp->sd_pushcnt +
5212 	    sizeof (sqlist_t);
5213 	if (STRMATED(stp))
5214 		sqlist_size += 2 * sizeof (syncql_t) * stp->sd_mate->sd_pushcnt;
5215 	sqlist = kmem_alloc(sqlist_size, kmflag);
5216 
5217 	sqlist->sqlist_head = NULL;
5218 	sqlist->sqlist_size = sqlist_size;
5219 	sqlist->sqlist_index = 0;
5220 
5221 	return (sqlist);
5222 }
5223 
5224 /*
5225  * Free the list created by sqlist_alloc()
5226  */
5227 static void
5228 sqlist_free(sqlist_t *sqlist)
5229 {
5230 	kmem_free(sqlist, sqlist->sqlist_size);
5231 }
5232 
5233 /*
5234  * Prevent any new entries into any syncq in this stream.
5235  * Used by freezestr.
5236  */
5237 void
5238 strblock(queue_t *q)
5239 {
5240 	struct stdata	*stp;
5241 	syncql_t	*sql;
5242 	sqlist_t	*sqlist;
5243 
5244 	q = _RD(q);
5245 
5246 	stp = STREAM(q);
5247 	ASSERT(stp != NULL);
5248 
5249 	/*
5250 	 * Get a sorted list with all the duplicates removed containing
5251 	 * all the syncqs referenced by this stream.
5252 	 */
5253 	sqlist = sqlist_build(q, stp, B_FALSE);
5254 	for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
5255 		blocksq(sql->sql_sq, SQ_FROZEN, -1);
5256 	sqlist_free(sqlist);
5257 }
5258 
5259 /*
5260  * Release the block on new entries into this stream
5261  */
5262 void
5263 strunblock(queue_t *q)
5264 {
5265 	struct stdata	*stp;
5266 	syncql_t	*sql;
5267 	sqlist_t	*sqlist;
5268 	int		drain_needed;
5269 
5270 	q = _RD(q);
5271 
5272 	/*
5273 	 * Get a sorted list with all the duplicates removed containing
5274 	 * all the syncqs referenced by this stream.
5275 	 * Have to drop the SQ_FROZEN flag on all the syncqs before
5276 	 * starting to drain them; otherwise the draining might
5277 	 * cause a freezestr in some module on the stream (which
5278 	 * would deadlock.)
5279 	 */
5280 	stp = STREAM(q);
5281 	ASSERT(stp != NULL);
5282 	sqlist = sqlist_build(q, stp, B_FALSE);
5283 	drain_needed = 0;
5284 	for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
5285 		drain_needed += dropsq(sql->sql_sq, SQ_FROZEN);
5286 	if (drain_needed) {
5287 		for (sql = sqlist->sqlist_head; sql != NULL;
5288 		    sql = sql->sql_next)
5289 			emptysq(sql->sql_sq);
5290 	}
5291 	sqlist_free(sqlist);
5292 }
5293 
5294 #ifdef DEBUG
5295 static int
5296 qprocsareon(queue_t *rq)
5297 {
5298 	if (rq->q_next == NULL)
5299 		return (0);
5300 	return (_WR(rq->q_next)->q_next == _WR(rq));
5301 }
5302 
5303 int
5304 qclaimed(queue_t *q)
5305 {
5306 	uint_t count;
5307 
5308 	count = q->q_syncq->sq_count;
5309 	SUM_SQ_PUTCOUNTS(q->q_syncq, count);
5310 	return (count != 0);
5311 }
5312 
5313 /*
5314  * Check if anyone has frozen this stream with freezestr
5315  */
5316 int
5317 frozenstr(queue_t *q)
5318 {
5319 	return ((q->q_syncq->sq_flags & SQ_FROZEN) != 0);
5320 }
5321 #endif /* DEBUG */
5322 
5323 /*
5324  * Enter a queue.
5325  * Obsoleted interface. Should not be used.
5326  */
5327 void
5328 enterq(queue_t *q)
5329 {
5330 	entersq(q->q_syncq, SQ_CALLBACK);
5331 }
5332 
5333 void
5334 leaveq(queue_t *q)
5335 {
5336 	leavesq(q->q_syncq, SQ_CALLBACK);
5337 }
5338 
5339 /*
5340  * Enter a perimeter. c_inner and c_outer specifies which concurrency bits
5341  * to check.
5342  * Wait if SQ_QUEUED is set to preserve ordering between messages and qwriter
5343  * calls and the running of open, close and service procedures.
5344  *
5345  * if c_inner bit is set no need to grab sq_putlocks since we don't care
5346  * if other threads have entered or are entering put entry point.
5347  *
5348  * if c_inner bit is set it might have been posible to use
5349  * sq_putlocks/sq_putcounts instead of SQLOCK/sq_count (e.g. to optimize
5350  * open/close path for IP) but since the count may need to be decremented in
5351  * qwait() we wouldn't know which counter to decrement. Currently counter is
5352  * selected by current cpu_seqid and current CPU can change at any moment. XXX
5353  * in the future we might use curthread id bits to select the counter and this
5354  * would stay constant across routine calls.
5355  */
5356 void
5357 entersq(syncq_t *sq, int entrypoint)
5358 {
5359 	uint16_t	count = 0;
5360 	uint16_t	flags;
5361 	uint16_t	waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
5362 	uint16_t	type;
5363 	uint_t		c_inner = entrypoint & SQ_CI;
5364 	uint_t		c_outer = entrypoint & SQ_CO;
5365 
5366 	/*
5367 	 * Increment ref count to keep closes out of this queue.
5368 	 */
5369 	ASSERT(sq);
5370 	ASSERT(c_inner && c_outer);
5371 	mutex_enter(SQLOCK(sq));
5372 	flags = sq->sq_flags;
5373 	type = sq->sq_type;
5374 	if (!(type & c_inner)) {
5375 		/* Make sure all putcounts now use slowlock. */
5376 		count = sq->sq_count;
5377 		SQ_PUTLOCKS_ENTER(sq);
5378 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
5379 		SUM_SQ_PUTCOUNTS(sq, count);
5380 		sq->sq_needexcl++;
5381 		ASSERT(sq->sq_needexcl != 0);	/* wraparound */
5382 		waitflags |= SQ_MESSAGES;
5383 	}
5384 	/*
5385 	 * Wait until we can enter the inner perimeter.
5386 	 * If we want exclusive access we wait until sq_count is 0.
5387 	 * We have to do this before entering the outer perimeter in order
5388 	 * to preserve put/close message ordering.
5389 	 */
5390 	while ((flags & waitflags) || (!(type & c_inner) && count != 0)) {
5391 		sq->sq_flags = flags | SQ_WANTWAKEUP;
5392 		if (!(type & c_inner)) {
5393 			SQ_PUTLOCKS_EXIT(sq);
5394 		}
5395 		cv_wait(&sq->sq_wait, SQLOCK(sq));
5396 		if (!(type & c_inner)) {
5397 			count = sq->sq_count;
5398 			SQ_PUTLOCKS_ENTER(sq);
5399 			SUM_SQ_PUTCOUNTS(sq, count);
5400 		}
5401 		flags = sq->sq_flags;
5402 	}
5403 
5404 	if (!(type & c_inner)) {
5405 		ASSERT(sq->sq_needexcl > 0);
5406 		sq->sq_needexcl--;
5407 		if (sq->sq_needexcl == 0) {
5408 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
5409 		}
5410 	}
5411 
5412 	/* Check if we need to enter the outer perimeter */
5413 	if (!(type & c_outer)) {
5414 		/*
5415 		 * We have to enter the outer perimeter exclusively before
5416 		 * we can increment sq_count to avoid deadlock. This implies
5417 		 * that we have to re-check sq_flags and sq_count.
5418 		 *
5419 		 * is it possible to have c_inner set when c_outer is not set?
5420 		 */
5421 		if (!(type & c_inner)) {
5422 			SQ_PUTLOCKS_EXIT(sq);
5423 		}
5424 		mutex_exit(SQLOCK(sq));
5425 		outer_enter(sq->sq_outer, SQ_GOAWAY);
5426 		mutex_enter(SQLOCK(sq));
5427 		flags = sq->sq_flags;
5428 		/*
5429 		 * there should be no need to recheck sq_putcounts
5430 		 * because outer_enter() has already waited for them to clear
5431 		 * after setting SQ_WRITER.
5432 		 */
5433 		count = sq->sq_count;
5434 #ifdef DEBUG
5435 		/*
5436 		 * SUMCHECK_SQ_PUTCOUNTS should return the sum instead
5437 		 * of doing an ASSERT internally. Others should do
5438 		 * something like
5439 		 *	 ASSERT(SUMCHECK_SQ_PUTCOUNTS(sq) == 0);
5440 		 * without the need to #ifdef DEBUG it.
5441 		 */
5442 		SUMCHECK_SQ_PUTCOUNTS(sq, 0);
5443 #endif
5444 		while ((flags & (SQ_EXCL|SQ_BLOCKED|SQ_FROZEN)) ||
5445 		    (!(type & c_inner) && count != 0)) {
5446 			sq->sq_flags = flags | SQ_WANTWAKEUP;
5447 			cv_wait(&sq->sq_wait, SQLOCK(sq));
5448 			count = sq->sq_count;
5449 			flags = sq->sq_flags;
5450 		}
5451 	}
5452 
5453 	sq->sq_count++;
5454 	ASSERT(sq->sq_count != 0);	/* Wraparound */
5455 	if (!(type & c_inner)) {
5456 		/* Exclusive entry */
5457 		ASSERT(sq->sq_count == 1);
5458 		sq->sq_flags |= SQ_EXCL;
5459 		if (type & c_outer) {
5460 			SQ_PUTLOCKS_EXIT(sq);
5461 		}
5462 	}
5463 	mutex_exit(SQLOCK(sq));
5464 }
5465 
5466 /*
5467  * leave a syncq. announce to framework that closes may proceed.
5468  * c_inner and c_outer specifies which concurrency bits
5469  * to check.
5470  *
5471  * must never be called from driver or module put entry point.
5472  *
5473  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5474  * sq_putlocks are used.
5475  */
5476 void
5477 leavesq(syncq_t *sq, int entrypoint)
5478 {
5479 	uint16_t	flags;
5480 	uint16_t	type;
5481 	uint_t		c_outer = entrypoint & SQ_CO;
5482 #ifdef DEBUG
5483 	uint_t		c_inner = entrypoint & SQ_CI;
5484 #endif
5485 
5486 	/*
5487 	 * decrement ref count, drain the syncq if possible, and wake up
5488 	 * any waiting close.
5489 	 */
5490 	ASSERT(sq);
5491 	ASSERT(c_inner && c_outer);
5492 	mutex_enter(SQLOCK(sq));
5493 	flags = sq->sq_flags;
5494 	type = sq->sq_type;
5495 	if (flags & (SQ_QUEUED|SQ_WANTWAKEUP|SQ_WANTEXWAKEUP)) {
5496 
5497 		if (flags & SQ_WANTWAKEUP) {
5498 			flags &= ~SQ_WANTWAKEUP;
5499 			cv_broadcast(&sq->sq_wait);
5500 		}
5501 		if (flags & SQ_WANTEXWAKEUP) {
5502 			flags &= ~SQ_WANTEXWAKEUP;
5503 			cv_broadcast(&sq->sq_exitwait);
5504 		}
5505 
5506 		if ((flags & SQ_QUEUED) && !(flags & SQ_STAYAWAY)) {
5507 			/*
5508 			 * The syncq needs to be drained. "Exit" the syncq
5509 			 * before calling drain_syncq.
5510 			 */
5511 			ASSERT(sq->sq_count != 0);
5512 			sq->sq_count--;
5513 			ASSERT((flags & SQ_EXCL) || (type & c_inner));
5514 			sq->sq_flags = flags & ~SQ_EXCL;
5515 			drain_syncq(sq);
5516 			ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
5517 			/* Check if we need to exit the outer perimeter */
5518 			/* XXX will this ever be true? */
5519 			if (!(type & c_outer))
5520 				outer_exit(sq->sq_outer);
5521 			return;
5522 		}
5523 	}
5524 	ASSERT(sq->sq_count != 0);
5525 	sq->sq_count--;
5526 	ASSERT((flags & SQ_EXCL) || (type & c_inner));
5527 	sq->sq_flags = flags & ~SQ_EXCL;
5528 	mutex_exit(SQLOCK(sq));
5529 
5530 	/* Check if we need to exit the outer perimeter */
5531 	if (!(sq->sq_type & c_outer))
5532 		outer_exit(sq->sq_outer);
5533 }
5534 
5535 /*
5536  * Prevent q_next from changing in this stream by incrementing sq_count.
5537  *
5538  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5539  * sq_putlocks are used.
5540  */
5541 void
5542 claimq(queue_t *qp)
5543 {
5544 	syncq_t	*sq = qp->q_syncq;
5545 
5546 	mutex_enter(SQLOCK(sq));
5547 	sq->sq_count++;
5548 	ASSERT(sq->sq_count != 0);	/* Wraparound */
5549 	mutex_exit(SQLOCK(sq));
5550 }
5551 
5552 /*
5553  * Undo claimq.
5554  *
5555  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5556  * sq_putlocks are used.
5557  */
5558 void
5559 releaseq(queue_t *qp)
5560 {
5561 	syncq_t	*sq = qp->q_syncq;
5562 	uint16_t flags;
5563 
5564 	mutex_enter(SQLOCK(sq));
5565 	ASSERT(sq->sq_count > 0);
5566 	sq->sq_count--;
5567 
5568 	flags = sq->sq_flags;
5569 	if (flags & (SQ_WANTWAKEUP|SQ_QUEUED)) {
5570 		if (flags & SQ_WANTWAKEUP) {
5571 			flags &= ~SQ_WANTWAKEUP;
5572 			cv_broadcast(&sq->sq_wait);
5573 		}
5574 		sq->sq_flags = flags;
5575 		if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5576 			/*
5577 			 * To prevent potential recursive invocation of
5578 			 * drain_syncq we do not call drain_syncq if count is
5579 			 * non-zero.
5580 			 */
5581 			if (sq->sq_count == 0) {
5582 				drain_syncq(sq);
5583 				return;
5584 			} else
5585 				sqenable(sq);
5586 		}
5587 	}
5588 	mutex_exit(SQLOCK(sq));
5589 }
5590 
5591 /*
5592  * Prevent q_next from changing in this stream by incrementing sd_refcnt.
5593  */
5594 void
5595 claimstr(queue_t *qp)
5596 {
5597 	struct stdata *stp = STREAM(qp);
5598 
5599 	mutex_enter(&stp->sd_reflock);
5600 	stp->sd_refcnt++;
5601 	ASSERT(stp->sd_refcnt != 0);	/* Wraparound */
5602 	mutex_exit(&stp->sd_reflock);
5603 }
5604 
5605 /*
5606  * Undo claimstr.
5607  */
5608 void
5609 releasestr(queue_t *qp)
5610 {
5611 	struct stdata *stp = STREAM(qp);
5612 
5613 	mutex_enter(&stp->sd_reflock);
5614 	ASSERT(stp->sd_refcnt != 0);
5615 	if (--stp->sd_refcnt == 0)
5616 		cv_broadcast(&stp->sd_refmonitor);
5617 	mutex_exit(&stp->sd_reflock);
5618 }
5619 
5620 static syncq_t *
5621 new_syncq(void)
5622 {
5623 	return (kmem_cache_alloc(syncq_cache, KM_SLEEP));
5624 }
5625 
5626 static void
5627 free_syncq(syncq_t *sq)
5628 {
5629 	ASSERT(sq->sq_head == NULL);
5630 	ASSERT(sq->sq_outer == NULL);
5631 	ASSERT(sq->sq_callbpend == NULL);
5632 	ASSERT((sq->sq_onext == NULL && sq->sq_oprev == NULL) ||
5633 	    (sq->sq_onext == sq && sq->sq_oprev == sq));
5634 
5635 	if (sq->sq_ciputctrl != NULL) {
5636 		ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
5637 		SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
5638 		    sq->sq_nciputctrl, 0);
5639 		ASSERT(ciputctrl_cache != NULL);
5640 		kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
5641 	}
5642 
5643 	sq->sq_tail = NULL;
5644 	sq->sq_evhead = NULL;
5645 	sq->sq_evtail = NULL;
5646 	sq->sq_ciputctrl = NULL;
5647 	sq->sq_nciputctrl = 0;
5648 	sq->sq_count = 0;
5649 	sq->sq_rmqcount = 0;
5650 	sq->sq_callbflags = 0;
5651 	sq->sq_cancelid = 0;
5652 	sq->sq_next = NULL;
5653 	sq->sq_needexcl = 0;
5654 	sq->sq_svcflags = 0;
5655 	sq->sq_nqueues = 0;
5656 	sq->sq_pri = 0;
5657 	sq->sq_onext = NULL;
5658 	sq->sq_oprev = NULL;
5659 	sq->sq_flags = 0;
5660 	sq->sq_type = 0;
5661 	sq->sq_servcount = 0;
5662 
5663 	kmem_cache_free(syncq_cache, sq);
5664 }
5665 
5666 /* Outer perimeter code */
5667 
5668 /*
5669  * The outer syncq uses the fields and flags in the syncq slightly
5670  * differently from the inner syncqs.
5671  *	sq_count	Incremented when there are pending or running
5672  *			writers at the outer perimeter to prevent the set of
5673  *			inner syncqs that belong to the outer perimeter from
5674  *			changing.
5675  *	sq_head/tail	List of deferred qwriter(OUTER) operations.
5676  *
5677  *	SQ_BLOCKED	Set to prevent traversing of sq_next,sq_prev while
5678  *			inner syncqs are added to or removed from the
5679  *			outer perimeter.
5680  *	SQ_QUEUED	sq_head/tail has messages or eventsqueued.
5681  *
5682  *	SQ_WRITER	A thread is currently traversing all the inner syncqs
5683  *			setting the SQ_WRITER flag.
5684  */
5685 
5686 /*
5687  * Get write access at the outer perimeter.
5688  * Note that read access is done by entersq, putnext, and put by simply
5689  * incrementing sq_count in the inner syncq.
5690  *
5691  * Waits until "flags" is no longer set in the outer to prevent multiple
5692  * threads from having write access at the same time. SQ_WRITER has to be part
5693  * of "flags".
5694  *
5695  * Increases sq_count on the outer syncq to keep away outer_insert/remove
5696  * until the outer_exit is finished.
5697  *
5698  * outer_enter is vulnerable to starvation since it does not prevent new
5699  * threads from entering the inner syncqs while it is waiting for sq_count to
5700  * go to zero.
5701  */
5702 void
5703 outer_enter(syncq_t *outer, uint16_t flags)
5704 {
5705 	syncq_t	*sq;
5706 	int	wait_needed;
5707 	uint16_t	count;
5708 
5709 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5710 	    outer->sq_oprev != NULL);
5711 	ASSERT(flags & SQ_WRITER);
5712 
5713 retry:
5714 	mutex_enter(SQLOCK(outer));
5715 	while (outer->sq_flags & flags) {
5716 		outer->sq_flags |= SQ_WANTWAKEUP;
5717 		cv_wait(&outer->sq_wait, SQLOCK(outer));
5718 	}
5719 
5720 	ASSERT(!(outer->sq_flags & SQ_WRITER));
5721 	outer->sq_flags |= SQ_WRITER;
5722 	outer->sq_count++;
5723 	ASSERT(outer->sq_count != 0);	/* wraparound */
5724 	wait_needed = 0;
5725 	/*
5726 	 * Set SQ_WRITER on all the inner syncqs while holding
5727 	 * the SQLOCK on the outer syncq. This ensures that the changing
5728 	 * of SQ_WRITER is atomic under the outer SQLOCK.
5729 	 */
5730 	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5731 		mutex_enter(SQLOCK(sq));
5732 		count = sq->sq_count;
5733 		SQ_PUTLOCKS_ENTER(sq);
5734 		sq->sq_flags |= SQ_WRITER;
5735 		SUM_SQ_PUTCOUNTS(sq, count);
5736 		if (count != 0)
5737 			wait_needed = 1;
5738 		SQ_PUTLOCKS_EXIT(sq);
5739 		mutex_exit(SQLOCK(sq));
5740 	}
5741 	mutex_exit(SQLOCK(outer));
5742 
5743 	/*
5744 	 * Get everybody out of the syncqs sequentially.
5745 	 * Note that we don't actually need to aqiure the PUTLOCKS, since
5746 	 * we have already cleared the fastbit, and set QWRITER.  By
5747 	 * definition, the count can not increase since putnext will
5748 	 * take the slowlock path (and the purpose of aquiring the
5749 	 * putlocks was to make sure it didn't increase while we were
5750 	 * waiting).
5751 	 *
5752 	 * Note that we still aquire the PUTLOCKS to be safe.
5753 	 */
5754 	if (wait_needed) {
5755 		for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5756 			mutex_enter(SQLOCK(sq));
5757 			count = sq->sq_count;
5758 			SQ_PUTLOCKS_ENTER(sq);
5759 			SUM_SQ_PUTCOUNTS(sq, count);
5760 			while (count != 0) {
5761 				sq->sq_flags |= SQ_WANTWAKEUP;
5762 				SQ_PUTLOCKS_EXIT(sq);
5763 				cv_wait(&sq->sq_wait, SQLOCK(sq));
5764 				count = sq->sq_count;
5765 				SQ_PUTLOCKS_ENTER(sq);
5766 				SUM_SQ_PUTCOUNTS(sq, count);
5767 			}
5768 			SQ_PUTLOCKS_EXIT(sq);
5769 			mutex_exit(SQLOCK(sq));
5770 		}
5771 		/*
5772 		 * Verify that none of the flags got set while we
5773 		 * were waiting for the sq_counts to drop.
5774 		 * If this happens we exit and retry entering the
5775 		 * outer perimeter.
5776 		 */
5777 		mutex_enter(SQLOCK(outer));
5778 		if (outer->sq_flags & (flags & ~SQ_WRITER)) {
5779 			mutex_exit(SQLOCK(outer));
5780 			outer_exit(outer);
5781 			goto retry;
5782 		}
5783 		mutex_exit(SQLOCK(outer));
5784 	}
5785 }
5786 
5787 /*
5788  * Drop the write access at the outer perimeter.
5789  * Read access is dropped implicitly (by putnext, put, and leavesq) by
5790  * decrementing sq_count.
5791  */
5792 void
5793 outer_exit(syncq_t *outer)
5794 {
5795 	syncq_t	*sq;
5796 	int	 drain_needed;
5797 	uint16_t flags;
5798 
5799 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5800 	    outer->sq_oprev != NULL);
5801 	ASSERT(MUTEX_NOT_HELD(SQLOCK(outer)));
5802 
5803 	/*
5804 	 * Atomically (from the perspective of threads calling become_writer)
5805 	 * drop the write access at the outer perimeter by holding
5806 	 * SQLOCK(outer) across all the dropsq calls and the resetting of
5807 	 * SQ_WRITER.
5808 	 * This defines a locking order between the outer perimeter
5809 	 * SQLOCK and the inner perimeter SQLOCKs.
5810 	 */
5811 	mutex_enter(SQLOCK(outer));
5812 	flags = outer->sq_flags;
5813 	ASSERT(outer->sq_flags & SQ_WRITER);
5814 	if (flags & SQ_QUEUED) {
5815 		write_now(outer);
5816 		flags = outer->sq_flags;
5817 	}
5818 
5819 	/*
5820 	 * sq_onext is stable since sq_count has not yet been decreased.
5821 	 * Reset the SQ_WRITER flags in all syncqs.
5822 	 * After dropping SQ_WRITER on the outer syncq we empty all the
5823 	 * inner syncqs.
5824 	 */
5825 	drain_needed = 0;
5826 	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
5827 		drain_needed += dropsq(sq, SQ_WRITER);
5828 	ASSERT(!(outer->sq_flags & SQ_QUEUED));
5829 	flags &= ~SQ_WRITER;
5830 	if (drain_needed) {
5831 		outer->sq_flags = flags;
5832 		mutex_exit(SQLOCK(outer));
5833 		for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
5834 			emptysq(sq);
5835 		mutex_enter(SQLOCK(outer));
5836 		flags = outer->sq_flags;
5837 	}
5838 	if (flags & SQ_WANTWAKEUP) {
5839 		flags &= ~SQ_WANTWAKEUP;
5840 		cv_broadcast(&outer->sq_wait);
5841 	}
5842 	outer->sq_flags = flags;
5843 	ASSERT(outer->sq_count > 0);
5844 	outer->sq_count--;
5845 	mutex_exit(SQLOCK(outer));
5846 }
5847 
5848 /*
5849  * Add another syncq to an outer perimeter.
5850  * Block out all other access to the outer perimeter while it is being
5851  * changed using blocksq.
5852  * Assumes that the caller has *not* done an outer_enter.
5853  *
5854  * Vulnerable to starvation in blocksq.
5855  */
5856 static void
5857 outer_insert(syncq_t *outer, syncq_t *sq)
5858 {
5859 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5860 	    outer->sq_oprev != NULL);
5861 	ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
5862 	    sq->sq_oprev == NULL);	/* Can't be in an outer perimeter */
5863 
5864 	/* Get exclusive access to the outer perimeter list */
5865 	blocksq(outer, SQ_BLOCKED, 0);
5866 	ASSERT(outer->sq_flags & SQ_BLOCKED);
5867 	ASSERT(!(outer->sq_flags & SQ_WRITER));
5868 
5869 	mutex_enter(SQLOCK(sq));
5870 	sq->sq_outer = outer;
5871 	outer->sq_onext->sq_oprev = sq;
5872 	sq->sq_onext = outer->sq_onext;
5873 	outer->sq_onext = sq;
5874 	sq->sq_oprev = outer;
5875 	mutex_exit(SQLOCK(sq));
5876 	unblocksq(outer, SQ_BLOCKED, 1);
5877 }
5878 
5879 /*
5880  * Remove a syncq from an outer perimeter.
5881  * Block out all other access to the outer perimeter while it is being
5882  * changed using blocksq.
5883  * Assumes that the caller has *not* done an outer_enter.
5884  *
5885  * Vulnerable to starvation in blocksq.
5886  */
5887 static void
5888 outer_remove(syncq_t *outer, syncq_t *sq)
5889 {
5890 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5891 	    outer->sq_oprev != NULL);
5892 	ASSERT(sq->sq_outer == outer);
5893 
5894 	/* Get exclusive access to the outer perimeter list */
5895 	blocksq(outer, SQ_BLOCKED, 0);
5896 	ASSERT(outer->sq_flags & SQ_BLOCKED);
5897 	ASSERT(!(outer->sq_flags & SQ_WRITER));
5898 
5899 	mutex_enter(SQLOCK(sq));
5900 	sq->sq_outer = NULL;
5901 	sq->sq_onext->sq_oprev = sq->sq_oprev;
5902 	sq->sq_oprev->sq_onext = sq->sq_onext;
5903 	sq->sq_oprev = sq->sq_onext = NULL;
5904 	mutex_exit(SQLOCK(sq));
5905 	unblocksq(outer, SQ_BLOCKED, 1);
5906 }
5907 
5908 /*
5909  * Queue a deferred qwriter(OUTER) callback for this outer perimeter.
5910  * If this is the first callback for this outer perimeter then add
5911  * this outer perimeter to the list of outer perimeters that
5912  * the qwriter_outer_thread will process.
5913  *
5914  * Increments sq_count in the outer syncq to prevent the membership
5915  * of the outer perimeter (in terms of inner syncqs) to change while
5916  * the callback is pending.
5917  */
5918 static void
5919 queue_writer(syncq_t *outer, void (*func)(), queue_t *q, mblk_t *mp)
5920 {
5921 	ASSERT(MUTEX_HELD(SQLOCK(outer)));
5922 
5923 	mp->b_prev = (mblk_t *)func;
5924 	mp->b_queue = q;
5925 	mp->b_next = NULL;
5926 	outer->sq_count++;	/* Decremented when dequeued */
5927 	ASSERT(outer->sq_count != 0);	/* Wraparound */
5928 	if (outer->sq_evhead == NULL) {
5929 		/* First message. */
5930 		outer->sq_evhead = outer->sq_evtail = mp;
5931 		outer->sq_flags |= SQ_EVENTS;
5932 		mutex_exit(SQLOCK(outer));
5933 		STRSTAT(qwr_outer);
5934 		(void) taskq_dispatch(streams_taskq,
5935 		    (task_func_t *)qwriter_outer_service, outer, TQ_SLEEP);
5936 	} else {
5937 		ASSERT(outer->sq_flags & SQ_EVENTS);
5938 		outer->sq_evtail->b_next = mp;
5939 		outer->sq_evtail = mp;
5940 		mutex_exit(SQLOCK(outer));
5941 	}
5942 }
5943 
5944 /*
5945  * Try and upgrade to write access at the outer perimeter. If this can
5946  * not be done without blocking then queue the callback to be done
5947  * by the qwriter_outer_thread.
5948  *
5949  * This routine can only be called from put or service procedures plus
5950  * asynchronous callback routines that have properly entered to
5951  * queue (with entersq.) Thus qwriter(OUTER) assumes the caller has one claim
5952  * on the syncq associated with q.
5953  */
5954 void
5955 qwriter_outer(queue_t *q, mblk_t *mp, void (*func)())
5956 {
5957 	syncq_t	*osq, *sq, *outer;
5958 	int	failed;
5959 	uint16_t flags;
5960 
5961 	osq = q->q_syncq;
5962 	outer = osq->sq_outer;
5963 	if (outer == NULL)
5964 		panic("qwriter(PERIM_OUTER): no outer perimeter");
5965 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5966 	    outer->sq_oprev != NULL);
5967 
5968 	mutex_enter(SQLOCK(outer));
5969 	flags = outer->sq_flags;
5970 	/*
5971 	 * If some thread is traversing sq_next, or if we are blocked by
5972 	 * outer_insert or outer_remove, or if the we already have queued
5973 	 * callbacks, then queue this callback for later processing.
5974 	 *
5975 	 * Also queue the qwriter for an interrupt thread in order
5976 	 * to reduce the time spent running at high IPL.
5977 	 * to identify there are events.
5978 	 */
5979 	if ((flags & SQ_GOAWAY) || (curthread->t_pri >= kpreemptpri)) {
5980 		/*
5981 		 * Queue the become_writer request.
5982 		 * The queueing is atomic under SQLOCK(outer) in order
5983 		 * to synchronize with outer_exit.
5984 		 * queue_writer will drop the outer SQLOCK
5985 		 */
5986 		if (flags & SQ_BLOCKED) {
5987 			/* Must set SQ_WRITER on inner perimeter */
5988 			mutex_enter(SQLOCK(osq));
5989 			osq->sq_flags |= SQ_WRITER;
5990 			mutex_exit(SQLOCK(osq));
5991 		} else {
5992 			if (!(flags & SQ_WRITER)) {
5993 				/*
5994 				 * The outer could have been SQ_BLOCKED thus
5995 				 * SQ_WRITER might not be set on the inner.
5996 				 */
5997 				mutex_enter(SQLOCK(osq));
5998 				osq->sq_flags |= SQ_WRITER;
5999 				mutex_exit(SQLOCK(osq));
6000 			}
6001 			ASSERT(osq->sq_flags & SQ_WRITER);
6002 		}
6003 		queue_writer(outer, func, q, mp);
6004 		return;
6005 	}
6006 	/*
6007 	 * We are half-way to exclusive access to the outer perimeter.
6008 	 * Prevent any outer_enter, qwriter(OUTER), or outer_insert/remove
6009 	 * while the inner syncqs are traversed.
6010 	 */
6011 	outer->sq_count++;
6012 	ASSERT(outer->sq_count != 0);	/* wraparound */
6013 	flags |= SQ_WRITER;
6014 	/*
6015 	 * Check if we can run the function immediately. Mark all
6016 	 * syncqs with the writer flag to prevent new entries into
6017 	 * put and service procedures.
6018 	 *
6019 	 * Set SQ_WRITER on all the inner syncqs while holding
6020 	 * the SQLOCK on the outer syncq. This ensures that the changing
6021 	 * of SQ_WRITER is atomic under the outer SQLOCK.
6022 	 */
6023 	failed = 0;
6024 	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
6025 		uint16_t count;
6026 		uint_t	maxcnt = (sq == osq) ? 1 : 0;
6027 
6028 		mutex_enter(SQLOCK(sq));
6029 		count = sq->sq_count;
6030 		SQ_PUTLOCKS_ENTER(sq);
6031 		SUM_SQ_PUTCOUNTS(sq, count);
6032 		if (sq->sq_count > maxcnt)
6033 			failed = 1;
6034 		sq->sq_flags |= SQ_WRITER;
6035 		SQ_PUTLOCKS_EXIT(sq);
6036 		mutex_exit(SQLOCK(sq));
6037 	}
6038 	if (failed) {
6039 		/*
6040 		 * Some other thread has a read claim on the outer perimeter.
6041 		 * Queue the callback for deferred processing.
6042 		 *
6043 		 * queue_writer will set SQ_QUEUED before we drop SQ_WRITER
6044 		 * so that other qwriter(OUTER) calls will queue their
6045 		 * callbacks as well. queue_writer increments sq_count so we
6046 		 * decrement to compensate for the our increment.
6047 		 *
6048 		 * Dropping SQ_WRITER enables the writer thread to work
6049 		 * on this outer perimeter.
6050 		 */
6051 		outer->sq_flags = flags;
6052 		queue_writer(outer, func, q, mp);
6053 		/* queue_writer dropper the lock */
6054 		mutex_enter(SQLOCK(outer));
6055 		ASSERT(outer->sq_count > 0);
6056 		outer->sq_count--;
6057 		ASSERT(outer->sq_flags & SQ_WRITER);
6058 		flags = outer->sq_flags;
6059 		flags &= ~SQ_WRITER;
6060 		if (flags & SQ_WANTWAKEUP) {
6061 			flags &= ~SQ_WANTWAKEUP;
6062 			cv_broadcast(&outer->sq_wait);
6063 		}
6064 		outer->sq_flags = flags;
6065 		mutex_exit(SQLOCK(outer));
6066 		return;
6067 	} else {
6068 		outer->sq_flags = flags;
6069 		mutex_exit(SQLOCK(outer));
6070 	}
6071 
6072 	/* Can run it immediately */
6073 	(*func)(q, mp);
6074 
6075 	outer_exit(outer);
6076 }
6077 
6078 /*
6079  * Dequeue all writer callbacks from the outer perimeter and run them.
6080  */
6081 static void
6082 write_now(syncq_t *outer)
6083 {
6084 	mblk_t		*mp;
6085 	queue_t		*q;
6086 	void	(*func)();
6087 
6088 	ASSERT(MUTEX_HELD(SQLOCK(outer)));
6089 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
6090 	    outer->sq_oprev != NULL);
6091 	while ((mp = outer->sq_evhead) != NULL) {
6092 		/*
6093 		 * queues cannot be placed on the queuelist on the outer
6094 		 * perimiter.
6095 		 */
6096 		ASSERT(!(outer->sq_flags & SQ_MESSAGES));
6097 		ASSERT((outer->sq_flags & SQ_EVENTS));
6098 
6099 		outer->sq_evhead = mp->b_next;
6100 		if (outer->sq_evhead == NULL) {
6101 			outer->sq_evtail = NULL;
6102 			outer->sq_flags &= ~SQ_EVENTS;
6103 		}
6104 		ASSERT(outer->sq_count != 0);
6105 		outer->sq_count--;	/* Incremented when enqueued. */
6106 		mutex_exit(SQLOCK(outer));
6107 		/*
6108 		 * Drop the message if the queue is closing.
6109 		 * Make sure that the queue is "claimed" when the callback
6110 		 * is run in order to satisfy various ASSERTs.
6111 		 */
6112 		q = mp->b_queue;
6113 		func = (void (*)())mp->b_prev;
6114 		ASSERT(func != NULL);
6115 		mp->b_next = mp->b_prev = NULL;
6116 		if (q->q_flag & QWCLOSE) {
6117 			freemsg(mp);
6118 		} else {
6119 			claimq(q);
6120 			(*func)(q, mp);
6121 			releaseq(q);
6122 		}
6123 		mutex_enter(SQLOCK(outer));
6124 	}
6125 	ASSERT(MUTEX_HELD(SQLOCK(outer)));
6126 }
6127 
6128 /*
6129  * The list of messages on the inner syncq is effectively hashed
6130  * by destination queue.  These destination queues are doubly
6131  * linked lists (hopefully) in priority order.  Messages are then
6132  * put on the queue referenced by the q_sqhead/q_sqtail elements.
6133  * Additional messages are linked together by the b_next/b_prev
6134  * elements in the mblk, with (similar to putq()) the first message
6135  * having a NULL b_prev and the last message having a NULL b_next.
6136  *
6137  * Events, such as qwriter callbacks, are put onto a list in FIFO
6138  * order referenced by sq_evhead, and sq_evtail.  This is a singly
6139  * linked list, and messages here MUST be processed in the order queued.
6140  */
6141 
6142 /*
6143  * Run the events on the syncq event list (sq_evhead).
6144  * Assumes there is only one claim on the syncq, it is
6145  * already exclusive (SQ_EXCL set), and the SQLOCK held.
6146  * Messages here are processed in order, with the SQ_EXCL bit
6147  * held all the way through till the last message is processed.
6148  */
6149 void
6150 sq_run_events(syncq_t *sq)
6151 {
6152 	mblk_t		*bp;
6153 	queue_t		*qp;
6154 	uint16_t	flags = sq->sq_flags;
6155 	void		(*func)();
6156 
6157 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6158 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6159 	    sq->sq_oprev == NULL) ||
6160 	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6161 	    sq->sq_oprev != NULL));
6162 
6163 	ASSERT(flags & SQ_EXCL);
6164 	ASSERT(sq->sq_count == 1);
6165 
6166 	/*
6167 	 * We need to process all of the events on this list.  It
6168 	 * is possible that new events will be added while we are
6169 	 * away processing a callback, so on every loop, we start
6170 	 * back at the beginning of the list.
6171 	 */
6172 	/*
6173 	 * We have to reaccess sq_evhead since there is a
6174 	 * possibility of a new entry while we were running
6175 	 * the callback.
6176 	 */
6177 	for (bp = sq->sq_evhead; bp != NULL; bp = sq->sq_evhead) {
6178 		ASSERT(bp->b_queue->q_syncq == sq);
6179 		ASSERT(sq->sq_flags & SQ_EVENTS);
6180 
6181 		qp = bp->b_queue;
6182 		func = (void (*)())bp->b_prev;
6183 		ASSERT(func != NULL);
6184 
6185 		/*
6186 		 * Messages from the event queue must be taken off in
6187 		 * FIFO order.
6188 		 */
6189 		ASSERT(sq->sq_evhead == bp);
6190 		sq->sq_evhead = bp->b_next;
6191 
6192 		if (bp->b_next == NULL) {
6193 			/* Deleting last */
6194 			ASSERT(sq->sq_evtail == bp);
6195 			sq->sq_evtail = NULL;
6196 			sq->sq_flags &= ~SQ_EVENTS;
6197 		}
6198 		bp->b_prev = bp->b_next = NULL;
6199 		ASSERT(bp->b_datap->db_ref != 0);
6200 
6201 		mutex_exit(SQLOCK(sq));
6202 
6203 		(*func)(qp, bp);
6204 
6205 		mutex_enter(SQLOCK(sq));
6206 		/*
6207 		 * re-read the flags, since they could have changed.
6208 		 */
6209 		flags = sq->sq_flags;
6210 		ASSERT(flags & SQ_EXCL);
6211 	}
6212 	ASSERT(sq->sq_evhead == NULL && sq->sq_evtail == NULL);
6213 	ASSERT(!(sq->sq_flags & SQ_EVENTS));
6214 
6215 	if (flags & SQ_WANTWAKEUP) {
6216 		flags &= ~SQ_WANTWAKEUP;
6217 		cv_broadcast(&sq->sq_wait);
6218 	}
6219 	if (flags & SQ_WANTEXWAKEUP) {
6220 		flags &= ~SQ_WANTEXWAKEUP;
6221 		cv_broadcast(&sq->sq_exitwait);
6222 	}
6223 	sq->sq_flags = flags;
6224 }
6225 
6226 /*
6227  * Put messages on the event list.
6228  * If we can go exclusive now, do so and process the event list, otherwise
6229  * let the last claim service this list (or wake the sqthread).
6230  * This procedure assumes SQLOCK is held.  To run the event list, it
6231  * must be called with no claims.
6232  */
6233 static void
6234 sqfill_events(syncq_t *sq, queue_t *q, mblk_t *mp, void (*func)())
6235 {
6236 	uint16_t count;
6237 
6238 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6239 	ASSERT(func != NULL);
6240 
6241 	/*
6242 	 * This is a callback.  Add it to the list of callbacks
6243 	 * and see about upgrading.
6244 	 */
6245 	mp->b_prev = (mblk_t *)func;
6246 	mp->b_queue = q;
6247 	mp->b_next = NULL;
6248 	if (sq->sq_evhead == NULL) {
6249 		sq->sq_evhead = sq->sq_evtail = mp;
6250 		sq->sq_flags |= SQ_EVENTS;
6251 	} else {
6252 		ASSERT(sq->sq_evtail != NULL);
6253 		ASSERT(sq->sq_evtail->b_next == NULL);
6254 		ASSERT(sq->sq_flags & SQ_EVENTS);
6255 		sq->sq_evtail->b_next = mp;
6256 		sq->sq_evtail = mp;
6257 	}
6258 	/*
6259 	 * We have set SQ_EVENTS, so threads will have to
6260 	 * unwind out of the perimiter, and new entries will
6261 	 * not grab a putlock.  But we still need to know
6262 	 * how many threads have already made a claim to the
6263 	 * syncq, so grab the putlocks, and sum the counts.
6264 	 * If there are no claims on the syncq, we can upgrade
6265 	 * to exclusive, and run the event list.
6266 	 * NOTE: We hold the SQLOCK, so we can just grab the
6267 	 * putlocks.
6268 	 */
6269 	count = sq->sq_count;
6270 	SQ_PUTLOCKS_ENTER(sq);
6271 	SUM_SQ_PUTCOUNTS(sq, count);
6272 	/*
6273 	 * We have no claim, so we need to check if there
6274 	 * are no others, then we can upgrade.
6275 	 */
6276 	/*
6277 	 * There are currently no claims on
6278 	 * the syncq by this thread (at least on this entry). The thread who has
6279 	 * the claim should drain syncq.
6280 	 */
6281 	if (count > 0) {
6282 		/*
6283 		 * Can't upgrade - other threads inside.
6284 		 */
6285 		SQ_PUTLOCKS_EXIT(sq);
6286 		mutex_exit(SQLOCK(sq));
6287 		return;
6288 	}
6289 	/*
6290 	 * Need to set SQ_EXCL and make a claim on the syncq.
6291 	 */
6292 	ASSERT((sq->sq_flags & SQ_EXCL) == 0);
6293 	sq->sq_flags |= SQ_EXCL;
6294 	ASSERT(sq->sq_count == 0);
6295 	sq->sq_count++;
6296 	SQ_PUTLOCKS_EXIT(sq);
6297 
6298 	/* Process the events list */
6299 	sq_run_events(sq);
6300 
6301 	/*
6302 	 * Release our claim...
6303 	 */
6304 	sq->sq_count--;
6305 
6306 	/*
6307 	 * And release SQ_EXCL.
6308 	 * We don't need to acquire the putlocks to release
6309 	 * SQ_EXCL, since we are exclusive, and hold the SQLOCK.
6310 	 */
6311 	sq->sq_flags &= ~SQ_EXCL;
6312 
6313 	/*
6314 	 * sq_run_events should have released SQ_EXCL
6315 	 */
6316 	ASSERT(!(sq->sq_flags & SQ_EXCL));
6317 
6318 	/*
6319 	 * If anything happened while we were running the
6320 	 * events (or was there before), we need to process
6321 	 * them now.  We shouldn't be exclusive sine we
6322 	 * released the perimiter above (plus, we asserted
6323 	 * for it).
6324 	 */
6325 	if (!(sq->sq_flags & SQ_STAYAWAY) && (sq->sq_flags & SQ_QUEUED))
6326 		drain_syncq(sq);
6327 	else
6328 		mutex_exit(SQLOCK(sq));
6329 }
6330 
6331 /*
6332  * Perform delayed processing. The caller has to make sure that it is safe
6333  * to enter the syncq (e.g. by checking that none of the SQ_STAYAWAY bits are
6334  * set.)
6335  *
6336  * Assume that the caller has NO claims on the syncq.  However, a claim
6337  * on the syncq does not indicate that a thread is draining the syncq.
6338  * There may be more claims on the syncq than there are threads draining
6339  * (i.e.  #_threads_draining <= sq_count)
6340  *
6341  * drain_syncq has to terminate when one of the SQ_STAYAWAY bits gets set
6342  * in order to preserve qwriter(OUTER) ordering constraints.
6343  *
6344  * sq_putcount only needs to be checked when dispatching the queued
6345  * writer call for CIPUT sync queue, but this is handled in sq_run_events.
6346  */
6347 void
6348 drain_syncq(syncq_t *sq)
6349 {
6350 	queue_t		*qp;
6351 	uint16_t	count;
6352 	uint16_t	type = sq->sq_type;
6353 	uint16_t	flags = sq->sq_flags;
6354 	boolean_t	bg_service = sq->sq_svcflags & SQ_SERVICE;
6355 
6356 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
6357 	    "drain_syncq start:%p", sq);
6358 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6359 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6360 	    sq->sq_oprev == NULL) ||
6361 	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6362 	    sq->sq_oprev != NULL));
6363 
6364 	/*
6365 	 * Drop SQ_SERVICE flag.
6366 	 */
6367 	if (bg_service)
6368 		sq->sq_svcflags &= ~SQ_SERVICE;
6369 
6370 	/*
6371 	 * If SQ_EXCL is set, someone else is processing this syncq - let him
6372 	 * finish the job.
6373 	 */
6374 	if (flags & SQ_EXCL) {
6375 		if (bg_service) {
6376 			ASSERT(sq->sq_servcount != 0);
6377 			sq->sq_servcount--;
6378 		}
6379 		mutex_exit(SQLOCK(sq));
6380 		return;
6381 	}
6382 
6383 	/*
6384 	 * This routine can be called by a background thread if
6385 	 * it was scheduled by a hi-priority thread.  SO, if there are
6386 	 * NOT messages queued, return (remember, we have the SQLOCK,
6387 	 * and it cannot change until we release it). Wakeup any waiters also.
6388 	 */
6389 	if (!(flags & SQ_QUEUED)) {
6390 		if (flags & SQ_WANTWAKEUP) {
6391 			flags &= ~SQ_WANTWAKEUP;
6392 			cv_broadcast(&sq->sq_wait);
6393 		}
6394 		if (flags & SQ_WANTEXWAKEUP) {
6395 			flags &= ~SQ_WANTEXWAKEUP;
6396 			cv_broadcast(&sq->sq_exitwait);
6397 		}
6398 		sq->sq_flags = flags;
6399 		if (bg_service) {
6400 			ASSERT(sq->sq_servcount != 0);
6401 			sq->sq_servcount--;
6402 		}
6403 		mutex_exit(SQLOCK(sq));
6404 		return;
6405 	}
6406 
6407 	/*
6408 	 * If this is not a concurrent put perimiter, we need to
6409 	 * become exclusive to drain.  Also, if not CIPUT, we would
6410 	 * not have acquired a putlock, so we don't need to check
6411 	 * the putcounts.  If not entering with a claim, we test
6412 	 * for sq_count == 0.
6413 	 */
6414 	type = sq->sq_type;
6415 	if (!(type & SQ_CIPUT)) {
6416 		if (sq->sq_count > 1) {
6417 			if (bg_service) {
6418 				ASSERT(sq->sq_servcount != 0);
6419 				sq->sq_servcount--;
6420 			}
6421 			mutex_exit(SQLOCK(sq));
6422 			return;
6423 		}
6424 		sq->sq_flags |= SQ_EXCL;
6425 	}
6426 
6427 	/*
6428 	 * This is where we make a claim to the syncq.
6429 	 * This can either be done by incrementing a putlock, or
6430 	 * the sq_count.  But since we already have the SQLOCK
6431 	 * here, we just bump the sq_count.
6432 	 *
6433 	 * Note that after we make a claim, we need to let the code
6434 	 * fall through to the end of this routine to clean itself
6435 	 * up.  A return in the while loop will put the syncq in a
6436 	 * very bad state.
6437 	 */
6438 	sq->sq_count++;
6439 	ASSERT(sq->sq_count != 0);	/* wraparound */
6440 
6441 	while ((flags = sq->sq_flags) & SQ_QUEUED) {
6442 		/*
6443 		 * If we are told to stayaway or went exclusive,
6444 		 * we are done.
6445 		 */
6446 		if (flags & (SQ_STAYAWAY)) {
6447 			break;
6448 		}
6449 
6450 		/*
6451 		 * If there are events to run, do so.
6452 		 * We have one claim to the syncq, so if there are
6453 		 * more than one, other threads are running.
6454 		 */
6455 		if (sq->sq_evhead != NULL) {
6456 			ASSERT(sq->sq_flags & SQ_EVENTS);
6457 
6458 			count = sq->sq_count;
6459 			SQ_PUTLOCKS_ENTER(sq);
6460 			SUM_SQ_PUTCOUNTS(sq, count);
6461 			if (count > 1) {
6462 				SQ_PUTLOCKS_EXIT(sq);
6463 				/* Can't upgrade - other threads inside */
6464 				break;
6465 			}
6466 			ASSERT((flags & SQ_EXCL) == 0);
6467 			sq->sq_flags = flags | SQ_EXCL;
6468 			SQ_PUTLOCKS_EXIT(sq);
6469 			/*
6470 			 * we have the only claim, run the events,
6471 			 * sq_run_events will clear the SQ_EXCL flag.
6472 			 */
6473 			sq_run_events(sq);
6474 
6475 			/*
6476 			 * If this is a CIPUT perimiter, we need
6477 			 * to drop the SQ_EXCL flag so we can properly
6478 			 * continue draining the syncq.
6479 			 */
6480 			if (type & SQ_CIPUT) {
6481 				ASSERT(sq->sq_flags & SQ_EXCL);
6482 				sq->sq_flags &= ~SQ_EXCL;
6483 			}
6484 
6485 			/*
6486 			 * And go back to the beginning just in case
6487 			 * anything changed while we were away.
6488 			 */
6489 			ASSERT((sq->sq_flags & SQ_EXCL) || (type & SQ_CIPUT));
6490 			continue;
6491 		}
6492 
6493 		ASSERT(sq->sq_evhead == NULL);
6494 		ASSERT(!(sq->sq_flags & SQ_EVENTS));
6495 
6496 		/*
6497 		 * Find the queue that is not draining.
6498 		 *
6499 		 * q_draining is protected by QLOCK which we do not hold.
6500 		 * But if it was set, then a thread was draining, and if it gets
6501 		 * cleared, then it was because the thread has successfully
6502 		 * drained the syncq, or a GOAWAY state occured. For the GOAWAY
6503 		 * state to happen, a thread needs the SQLOCK which we hold, and
6504 		 * if there was such a flag, we whould have already seen it.
6505 		 */
6506 
6507 		for (qp = sq->sq_head;
6508 		    qp != NULL && (qp->q_draining ||
6509 		    (qp->q_sqflags & Q_SQDRAINING));
6510 		    qp = qp->q_sqnext)
6511 			;
6512 
6513 		if (qp == NULL)
6514 			break;
6515 
6516 		/*
6517 		 * We have a queue to work on, and we hold the
6518 		 * SQLOCK and one claim, call qdrain_syncq.
6519 		 * This means we need to release the SQLOCK and
6520 		 * aquire the QLOCK (OK since we have a claim).
6521 		 * Note that qdrain_syncq will actually dequeue
6522 		 * this queue from the sq_head list when it is
6523 		 * convinced all the work is done and release
6524 		 * the QLOCK before returning.
6525 		 */
6526 		qp->q_sqflags |= Q_SQDRAINING;
6527 		mutex_exit(SQLOCK(sq));
6528 		mutex_enter(QLOCK(qp));
6529 		qdrain_syncq(sq, qp);
6530 		mutex_enter(SQLOCK(sq));
6531 
6532 		/* The queue is drained */
6533 		ASSERT(qp->q_sqflags & Q_SQDRAINING);
6534 		qp->q_sqflags &= ~Q_SQDRAINING;
6535 		/*
6536 		 * NOTE: After this point qp should not be used since it may be
6537 		 * closed.
6538 		 */
6539 	}
6540 
6541 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6542 	flags = sq->sq_flags;
6543 
6544 	/*
6545 	 * sq->sq_head cannot change because we hold the
6546 	 * sqlock. However, a thread CAN decide that it is no longer
6547 	 * going to drain that queue.  However, this should be due to
6548 	 * a GOAWAY state, and we should see that here.
6549 	 *
6550 	 * This loop is not very efficient. One solution may be adding a second
6551 	 * pointer to the "draining" queue, but it is difficult to do when
6552 	 * queues are inserted in the middle due to priority ordering. Another
6553 	 * possibility is to yank the queue out of the sq list and put it onto
6554 	 * the "draining list" and then put it back if it can't be drained.
6555 	 */
6556 
6557 	ASSERT((sq->sq_head == NULL) || (flags & SQ_GOAWAY) ||
6558 	    (type & SQ_CI) || sq->sq_head->q_draining);
6559 
6560 	/* Drop SQ_EXCL for non-CIPUT perimiters */
6561 	if (!(type & SQ_CIPUT))
6562 		flags &= ~SQ_EXCL;
6563 	ASSERT((flags & SQ_EXCL) == 0);
6564 
6565 	/* Wake up any waiters. */
6566 	if (flags & SQ_WANTWAKEUP) {
6567 		flags &= ~SQ_WANTWAKEUP;
6568 		cv_broadcast(&sq->sq_wait);
6569 	}
6570 	if (flags & SQ_WANTEXWAKEUP) {
6571 		flags &= ~SQ_WANTEXWAKEUP;
6572 		cv_broadcast(&sq->sq_exitwait);
6573 	}
6574 	sq->sq_flags = flags;
6575 
6576 	ASSERT(sq->sq_count != 0);
6577 	/* Release our claim. */
6578 	sq->sq_count--;
6579 
6580 	if (bg_service) {
6581 		ASSERT(sq->sq_servcount != 0);
6582 		sq->sq_servcount--;
6583 	}
6584 
6585 	mutex_exit(SQLOCK(sq));
6586 
6587 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
6588 	    "drain_syncq end:%p", sq);
6589 }
6590 
6591 
6592 /*
6593  *
6594  * qdrain_syncq can be called (currently) from only one of two places:
6595  *	drain_syncq
6596  * 	putnext  (or some variation of it).
6597  * and eventually
6598  * 	qwait(_sig)
6599  *
6600  * If called from drain_syncq, we found it in the list
6601  * of queue's needing service, so there is work to be done (or it
6602  * wouldn't be on the list).
6603  *
6604  * If called from some putnext variation, it was because the
6605  * perimiter is open, but messages are blocking a putnext and
6606  * there is not a thread working on it.  Now a thread could start
6607  * working on it while we are getting ready to do so ourself, but
6608  * the thread would set the q_draining flag, and we can spin out.
6609  *
6610  * As for qwait(_sig), I think I shall let it continue to call
6611  * drain_syncq directly (after all, it will get here eventually).
6612  *
6613  * qdrain_syncq has to terminate when:
6614  * - one of the SQ_STAYAWAY bits gets set to preserve qwriter(OUTER) ordering
6615  * - SQ_EVENTS gets set to preserve qwriter(INNER) ordering
6616  *
6617  * ASSUMES:
6618  *	One claim
6619  * 	QLOCK held
6620  * 	SQLOCK not held
6621  *	Will release QLOCK before returning
6622  */
6623 void
6624 qdrain_syncq(syncq_t *sq, queue_t *q)
6625 {
6626 	mblk_t		*bp;
6627 	boolean_t	do_clr;
6628 #ifdef DEBUG
6629 	uint16_t	count;
6630 #endif
6631 
6632 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
6633 	    "drain_syncq start:%p", sq);
6634 	ASSERT(q->q_syncq == sq);
6635 	ASSERT(MUTEX_HELD(QLOCK(q)));
6636 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6637 	/*
6638 	 * For non-CIPUT perimiters, we should be called with the
6639 	 * exclusive bit set already.  For non-CIPUT perimiters we
6640 	 * will be doing a concurrent drain, so it better not be set.
6641 	 */
6642 	ASSERT((sq->sq_flags & (SQ_EXCL|SQ_CIPUT)));
6643 	ASSERT(!((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)));
6644 	ASSERT((sq->sq_type & SQ_CIPUT) || (sq->sq_flags & SQ_EXCL));
6645 	/*
6646 	 * All outer pointers are set, or none of them are
6647 	 */
6648 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6649 	    sq->sq_oprev == NULL) ||
6650 	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6651 	    sq->sq_oprev != NULL));
6652 #ifdef DEBUG
6653 	count = sq->sq_count;
6654 	/*
6655 	 * This is OK without the putlocks, because we have one
6656 	 * claim either from the sq_count, or a putcount.  We could
6657 	 * get an erroneous value from other counts, but ours won't
6658 	 * change, so one way or another, we will have at least a
6659 	 * value of one.
6660 	 */
6661 	SUM_SQ_PUTCOUNTS(sq, count);
6662 	ASSERT(count >= 1);
6663 #endif /* DEBUG */
6664 
6665 	/*
6666 	 * The first thing to do here, is find out if a thread is already
6667 	 * draining this queue or the queue is closing. If so, we are done,
6668 	 * just return. Also, if there are no messages, we are done as well.
6669 	 * Note that we check the q_sqhead since there is s window of
6670 	 * opportunity for us to enter here because Q_SQQUEUED was set, but is
6671 	 * not anymore.
6672 	 */
6673 	if (q->q_draining || (q->q_sqhead == NULL)) {
6674 		mutex_exit(QLOCK(q));
6675 		return;
6676 	}
6677 
6678 	/*
6679 	 * If the perimiter is exclusive, there is nothing we can
6680 	 * do right now, go away.
6681 	 * Note that there is nothing to prevent this case from changing
6682 	 * right after this check, but the spin-out will catch it.
6683 	 */
6684 
6685 	/* Tell other threads that we are draining this queue */
6686 	q->q_draining = 1;	/* Protected by QLOCK */
6687 
6688 	for (bp = q->q_sqhead; bp != NULL; bp = q->q_sqhead) {
6689 
6690 		/*
6691 		 * Because we can enter this routine just because
6692 		 * a putnext is blocked, we need to spin out if
6693 		 * the perimiter wants to go exclusive as well
6694 		 * as just blocked. We need to spin out also if
6695 		 * events are queued on the syncq.
6696 		 * Don't check for SQ_EXCL, because non-CIPUT
6697 		 * perimiters would set it, and it can't become
6698 		 * exclusive while we hold a claim.
6699 		 */
6700 		if (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)) {
6701 			break;
6702 		}
6703 
6704 #ifdef DEBUG
6705 		/*
6706 		 * Since we are in qdrain_syncq, we already know the queue,
6707 		 * but for sanity, we want to check this against the qp that
6708 		 * was passed in by bp->b_queue.
6709 		 */
6710 
6711 		ASSERT(bp->b_queue == q);
6712 		ASSERT(bp->b_queue->q_syncq == sq);
6713 		bp->b_queue = NULL;
6714 
6715 		/*
6716 		 * We would have the following check in the DEBUG code:
6717 		 *
6718 		 * if (bp->b_prev != NULL)  {
6719 		 *	ASSERT(bp->b_prev == (void (*)())q->q_qinfo->qi_putp);
6720 		 * }
6721 		 *
6722 		 * This can't be done, however, since IP modifies qinfo
6723 		 * structure at run-time (switching between IPv4 qinfo and IPv6
6724 		 * qinfo), invalidating the check.
6725 		 * So the assignment to func is left here, but the ASSERT itself
6726 		 * is removed until the whole issue is resolved.
6727 		 */
6728 #endif
6729 		ASSERT(q->q_sqhead == bp);
6730 		q->q_sqhead = bp->b_next;
6731 		bp->b_prev = bp->b_next = NULL;
6732 		ASSERT(q->q_syncqmsgs > 0);
6733 		mutex_exit(QLOCK(q));
6734 
6735 		ASSERT(bp->b_datap->db_ref != 0);
6736 
6737 		(void) (*q->q_qinfo->qi_putp)(q, bp);
6738 
6739 		mutex_enter(QLOCK(q));
6740 		/*
6741 		 * We should decrement q_syncqmsgs only after executing the
6742 		 * put procedure to avoid a possible race with putnext().
6743 		 * In putnext() though it sees Q_SQQUEUED is set, there is
6744 		 * an optimization which allows putnext to call the put
6745 		 * procedure directly if (q_syncqmsgs == 0) and thus
6746 		 * a message reodering could otherwise occur.
6747 		 */
6748 		q->q_syncqmsgs--;
6749 
6750 		/*
6751 		 * Clear QFULL in the next service procedure queue if
6752 		 * this is the last message destined to that queue.
6753 		 *
6754 		 * It would make better sense to have some sort of
6755 		 * tunable for the low water mark, but these symantics
6756 		 * are not yet defined.  So, alas, we use a constant.
6757 		 */
6758 		do_clr = (q->q_syncqmsgs == 0);
6759 		mutex_exit(QLOCK(q));
6760 
6761 		if (do_clr)
6762 			clr_qfull(q);
6763 
6764 		mutex_enter(QLOCK(q));
6765 		/*
6766 		 * Always clear SQ_EXCL when CIPUT in order to handle
6767 		 * qwriter(INNER).
6768 		 */
6769 		/*
6770 		 * The putp() can call qwriter and get exclusive access
6771 		 * IFF this is the only claim.  So, we need to test for
6772 		 * this possibility so we can aquire the mutex and clear
6773 		 * the bit.
6774 		 */
6775 		if ((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)) {
6776 			mutex_enter(SQLOCK(sq));
6777 			sq->sq_flags &= ~SQ_EXCL;
6778 			mutex_exit(SQLOCK(sq));
6779 		}
6780 	}
6781 
6782 	/*
6783 	 * We should either have no queues on the syncq, or we were
6784 	 * told to goaway by a waiter (which we will wake up at the
6785 	 * end of this function).
6786 	 */
6787 	ASSERT((q->q_sqhead == NULL) ||
6788 	    (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)));
6789 
6790 	ASSERT(MUTEX_HELD(QLOCK(q)));
6791 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6792 
6793 	/*
6794 	 * Remove the q from the syncq list if all the messages are
6795 	 * drained.
6796 	 */
6797 	if (q->q_sqhead == NULL) {
6798 		mutex_enter(SQLOCK(sq));
6799 		if (q->q_sqflags & Q_SQQUEUED)
6800 			SQRM_Q(sq, q);
6801 		mutex_exit(SQLOCK(sq));
6802 		/*
6803 		 * Since the queue is removed from the list, reset its priority.
6804 		 */
6805 		q->q_spri = 0;
6806 	}
6807 
6808 	/*
6809 	 * Remember, the q_draining flag is used to let another
6810 	 * thread know that there is a thread currently draining
6811 	 * the messages for a queue.  Since we are now done with
6812 	 * this queue (even if there may be messages still there),
6813 	 * we need to clear this flag so some thread will work
6814 	 * on it if needed.
6815 	 */
6816 	ASSERT(q->q_draining);
6817 	q->q_draining = 0;
6818 
6819 	/* called with a claim, so OK to drop all locks. */
6820 	mutex_exit(QLOCK(q));
6821 
6822 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
6823 	    "drain_syncq end:%p", sq);
6824 }
6825 /* END OF QDRAIN_SYNCQ  */
6826 
6827 
6828 /*
6829  * This is the mate to qdrain_syncq, except that it is putting the
6830  * message onto the the queue instead draining.  Since the
6831  * message is destined for the queue that is selected, there is
6832  * no need to identify the function because the message is
6833  * intended for the put routine for the queue.  But this
6834  * routine will do it anyway just in case (but only for debug kernels).
6835  *
6836  * After the message is enqueued on the syncq, it calls putnext_tail()
6837  * which will schedule a background thread to actually process the message.
6838  *
6839  * Assumes that there is a claim on the syncq (sq->sq_count > 0) and
6840  * SQLOCK(sq) and QLOCK(q) are not held.
6841  */
6842 void
6843 qfill_syncq(syncq_t *sq, queue_t *q, mblk_t *mp)
6844 {
6845 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6846 	ASSERT(MUTEX_NOT_HELD(QLOCK(q)));
6847 	ASSERT(sq->sq_count > 0);
6848 	ASSERT(q->q_syncq == sq);
6849 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6850 	    sq->sq_oprev == NULL) ||
6851 	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6852 	    sq->sq_oprev != NULL));
6853 
6854 	mutex_enter(QLOCK(q));
6855 
6856 #ifdef DEBUG
6857 	/*
6858 	 * This is used for debug in the qfill_syncq/qdrain_syncq case
6859 	 * to trace the queue that the message is intended for.  Note
6860 	 * that the original use was to identify the queue and function
6861 	 * to call on the drain.  In the new syncq, we have the context
6862 	 * of the queue that we are draining, so call it's putproc and
6863 	 * don't rely on the saved values.  But for debug this is still
6864 	 * usefull information.
6865 	 */
6866 	mp->b_prev = (mblk_t *)q->q_qinfo->qi_putp;
6867 	mp->b_queue = q;
6868 	mp->b_next = NULL;
6869 #endif
6870 	ASSERT(q->q_syncq == sq);
6871 	/*
6872 	 * Enqueue the message on the list.
6873 	 * SQPUT_MP() accesses q_syncqmsgs.  We are already holding QLOCK to
6874 	 * protect it.  So its ok to acquire SQLOCK after SQPUT_MP().
6875 	 */
6876 	SQPUT_MP(q, mp);
6877 	mutex_enter(SQLOCK(sq));
6878 
6879 	/*
6880 	 * And queue on syncq for scheduling, if not already queued.
6881 	 * Note that we need the SQLOCK for this, and for testing flags
6882 	 * at the end to see if we will drain.  So grab it now, and
6883 	 * release it before we call qdrain_syncq or return.
6884 	 */
6885 	if (!(q->q_sqflags & Q_SQQUEUED)) {
6886 		q->q_spri = curthread->t_pri;
6887 		SQPUT_Q(sq, q);
6888 	}
6889 #ifdef DEBUG
6890 	else {
6891 		/*
6892 		 * All of these conditions MUST be true!
6893 		 */
6894 		ASSERT(sq->sq_tail != NULL);
6895 		if (sq->sq_tail == sq->sq_head) {
6896 			ASSERT((q->q_sqprev == NULL) &&
6897 			    (q->q_sqnext == NULL));
6898 		} else {
6899 			ASSERT((q->q_sqprev != NULL) ||
6900 			    (q->q_sqnext != NULL));
6901 		}
6902 		ASSERT(sq->sq_flags & SQ_QUEUED);
6903 		ASSERT(q->q_syncqmsgs != 0);
6904 		ASSERT(q->q_sqflags & Q_SQQUEUED);
6905 	}
6906 #endif
6907 	mutex_exit(QLOCK(q));
6908 	/*
6909 	 * SQLOCK is still held, so sq_count can be safely decremented.
6910 	 */
6911 	sq->sq_count--;
6912 
6913 	putnext_tail(sq, q, 0);
6914 	/* Should not reference sq or q after this point. */
6915 }
6916 
6917 /*  End of qfill_syncq  */
6918 
6919 /*
6920  * Remove all messages from a syncq (if qp is NULL) or remove all messages
6921  * that would be put into qp by drain_syncq.
6922  * Used when deleting the syncq (qp == NULL) or when detaching
6923  * a queue (qp != NULL).
6924  * Return non-zero if one or more messages were freed.
6925  *
6926  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
6927  * sq_putlocks are used.
6928  *
6929  * NOTE: This function assumes that it is called from the close() context and
6930  * that all the queues in the syncq are going aay. For this reason it doesn't
6931  * acquire QLOCK for modifying q_sqhead/q_sqtail fields. This assumption is
6932  * currently valid, but it is useful to rethink this function to behave properly
6933  * in other cases.
6934  */
6935 int
6936 flush_syncq(syncq_t *sq, queue_t *qp)
6937 {
6938 	mblk_t		*bp, *mp_head, *mp_next, *mp_prev;
6939 	queue_t		*q;
6940 	int		ret = 0;
6941 
6942 	mutex_enter(SQLOCK(sq));
6943 
6944 	/*
6945 	 * Before we leave, we need to make sure there are no
6946 	 * events listed for this queue.  All events for this queue
6947 	 * will just be freed.
6948 	 */
6949 	if (qp != NULL && sq->sq_evhead != NULL) {
6950 		ASSERT(sq->sq_flags & SQ_EVENTS);
6951 
6952 		mp_prev = NULL;
6953 		for (bp = sq->sq_evhead; bp != NULL; bp = mp_next) {
6954 			mp_next = bp->b_next;
6955 			if (bp->b_queue == qp) {
6956 				/* Delete this message */
6957 				if (mp_prev != NULL) {
6958 					mp_prev->b_next = mp_next;
6959 					/*
6960 					 * Update sq_evtail if the last element
6961 					 * is removed.
6962 					 */
6963 					if (bp == sq->sq_evtail) {
6964 						ASSERT(mp_next == NULL);
6965 						sq->sq_evtail = mp_prev;
6966 					}
6967 				} else
6968 					sq->sq_evhead = mp_next;
6969 				if (sq->sq_evhead == NULL)
6970 					sq->sq_flags &= ~SQ_EVENTS;
6971 				bp->b_prev = bp->b_next = NULL;
6972 				freemsg(bp);
6973 				ret++;
6974 			} else {
6975 				mp_prev = bp;
6976 			}
6977 		}
6978 	}
6979 
6980 	/*
6981 	 * Walk sq_head and:
6982 	 *	- match qp if qp is set, remove it's messages
6983 	 *	- all if qp is not set
6984 	 */
6985 	q = sq->sq_head;
6986 	while (q != NULL) {
6987 		ASSERT(q->q_syncq == sq);
6988 		if ((qp == NULL) || (qp == q)) {
6989 			/*
6990 			 * Yank the messages as a list off the queue
6991 			 */
6992 			mp_head = q->q_sqhead;
6993 			/*
6994 			 * We do not have QLOCK(q) here (which is safe due to
6995 			 * assumptions mentioned above). To obtain the lock we
6996 			 * need to release SQLOCK which may allow lots of things
6997 			 * to change upon us. This place requires more analysis.
6998 			 */
6999 			q->q_sqhead = q->q_sqtail = NULL;
7000 			ASSERT(mp_head->b_queue &&
7001 			    mp_head->b_queue->q_syncq == sq);
7002 
7003 			/*
7004 			 * Free each of the messages.
7005 			 */
7006 			for (bp = mp_head; bp != NULL; bp = mp_next) {
7007 				mp_next = bp->b_next;
7008 				bp->b_prev = bp->b_next = NULL;
7009 				freemsg(bp);
7010 				ret++;
7011 			}
7012 			/*
7013 			 * Now remove the queue from the syncq.
7014 			 */
7015 			ASSERT(q->q_sqflags & Q_SQQUEUED);
7016 			SQRM_Q(sq, q);
7017 			q->q_spri = 0;
7018 			q->q_syncqmsgs = 0;
7019 
7020 			/*
7021 			 * If qp was specified, we are done with it and are
7022 			 * going to drop SQLOCK(sq) and return. We wakeup syncq
7023 			 * waiters while we still have the SQLOCK.
7024 			 */
7025 			if ((qp != NULL) && (sq->sq_flags & SQ_WANTWAKEUP)) {
7026 				sq->sq_flags &= ~SQ_WANTWAKEUP;
7027 				cv_broadcast(&sq->sq_wait);
7028 			}
7029 			/* Drop SQLOCK across clr_qfull */
7030 			mutex_exit(SQLOCK(sq));
7031 
7032 			/*
7033 			 * We avoid doing the test that drain_syncq does and
7034 			 * unconditionally clear qfull for every flushed
7035 			 * message. Since flush_syncq is only called during
7036 			 * close this should not be a problem.
7037 			 */
7038 			clr_qfull(q);
7039 			if (qp != NULL) {
7040 				return (ret);
7041 			} else {
7042 				mutex_enter(SQLOCK(sq));
7043 				/*
7044 				 * The head was removed by SQRM_Q above.
7045 				 * reread the new head and flush it.
7046 				 */
7047 				q = sq->sq_head;
7048 			}
7049 		} else {
7050 			q = q->q_sqnext;
7051 		}
7052 		ASSERT(MUTEX_HELD(SQLOCK(sq)));
7053 	}
7054 
7055 	if (sq->sq_flags & SQ_WANTWAKEUP) {
7056 		sq->sq_flags &= ~SQ_WANTWAKEUP;
7057 		cv_broadcast(&sq->sq_wait);
7058 	}
7059 
7060 	mutex_exit(SQLOCK(sq));
7061 	return (ret);
7062 }
7063 
7064 /*
7065  * Propagate all messages from a syncq to the next syncq that are associated
7066  * with the specified queue. If the queue is attached to a driver or if the
7067  * messages have been added due to a qwriter(PERIM_INNER), free the messages.
7068  *
7069  * Assumes that the stream is strlock()'ed. We don't come here if there
7070  * are no messages to propagate.
7071  *
7072  * NOTE : If the queue is attached to a driver, all the messages are freed
7073  * as there is no point in propagating the messages from the driver syncq
7074  * to the closing stream head which will in turn get freed later.
7075  */
7076 static int
7077 propagate_syncq(queue_t *qp)
7078 {
7079 	mblk_t		*bp, *head, *tail, *prev, *next;
7080 	syncq_t 	*sq;
7081 	queue_t		*nqp;
7082 	syncq_t		*nsq;
7083 	boolean_t	isdriver;
7084 	int 		moved = 0;
7085 	uint16_t	flags;
7086 	pri_t		priority = curthread->t_pri;
7087 #ifdef DEBUG
7088 	void		(*func)();
7089 #endif
7090 
7091 	sq = qp->q_syncq;
7092 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7093 	/* debug macro */
7094 	SQ_PUTLOCKS_HELD(sq);
7095 	/*
7096 	 * As entersq() does not increment the sq_count for
7097 	 * the write side, check sq_count for non-QPERQ
7098 	 * perimeters alone.
7099 	 */
7100 	ASSERT((qp->q_flag & QPERQ) || (sq->sq_count >= 1));
7101 
7102 	/*
7103 	 * propagate_syncq() can be called because of either messages on the
7104 	 * queue syncq or because on events on the queue syncq. Do actual
7105 	 * message propagations if there are any messages.
7106 	 */
7107 	if (qp->q_syncqmsgs) {
7108 		isdriver = (qp->q_flag & QISDRV);
7109 
7110 		if (!isdriver) {
7111 			nqp = qp->q_next;
7112 			nsq = nqp->q_syncq;
7113 			ASSERT(MUTEX_HELD(SQLOCK(nsq)));
7114 			/* debug macro */
7115 			SQ_PUTLOCKS_HELD(nsq);
7116 #ifdef DEBUG
7117 			func = (void (*)())nqp->q_qinfo->qi_putp;
7118 #endif
7119 		}
7120 
7121 		SQRM_Q(sq, qp);
7122 		priority = MAX(qp->q_spri, priority);
7123 		qp->q_spri = 0;
7124 		head = qp->q_sqhead;
7125 		tail = qp->q_sqtail;
7126 		qp->q_sqhead = qp->q_sqtail = NULL;
7127 		qp->q_syncqmsgs = 0;
7128 
7129 		/*
7130 		 * Walk the list of messages, and free them if this is a driver,
7131 		 * otherwise reset the b_prev and b_queue value to the new putp.
7132 		 * Afterward, we will just add the head to the end of the next
7133 		 * syncq, and point the tail to the end of this one.
7134 		 */
7135 
7136 		for (bp = head; bp != NULL; bp = next) {
7137 			next = bp->b_next;
7138 			if (isdriver) {
7139 				bp->b_prev = bp->b_next = NULL;
7140 				freemsg(bp);
7141 				continue;
7142 			}
7143 			/* Change the q values for this message */
7144 			bp->b_queue = nqp;
7145 #ifdef DEBUG
7146 			bp->b_prev = (mblk_t *)func;
7147 #endif
7148 			moved++;
7149 		}
7150 		/*
7151 		 * Attach list of messages to the end of the new queue (if there
7152 		 * is a list of messages).
7153 		 */
7154 
7155 		if (!isdriver && head != NULL) {
7156 			ASSERT(tail != NULL);
7157 			if (nqp->q_sqhead == NULL) {
7158 				nqp->q_sqhead = head;
7159 			} else {
7160 				ASSERT(nqp->q_sqtail != NULL);
7161 				nqp->q_sqtail->b_next = head;
7162 			}
7163 			nqp->q_sqtail = tail;
7164 			/*
7165 			 * When messages are moved from high priority queue to
7166 			 * another queue, the destination queue priority is
7167 			 * upgraded.
7168 			 */
7169 
7170 			if (priority > nqp->q_spri)
7171 				nqp->q_spri = priority;
7172 
7173 			SQPUT_Q(nsq, nqp);
7174 
7175 			nqp->q_syncqmsgs += moved;
7176 			ASSERT(nqp->q_syncqmsgs != 0);
7177 		}
7178 	}
7179 
7180 	/*
7181 	 * Before we leave, we need to make sure there are no
7182 	 * events listed for this queue.  All events for this queue
7183 	 * will just be freed.
7184 	 */
7185 	if (sq->sq_evhead != NULL) {
7186 		ASSERT(sq->sq_flags & SQ_EVENTS);
7187 		prev = NULL;
7188 		for (bp = sq->sq_evhead; bp != NULL; bp = next) {
7189 			next = bp->b_next;
7190 			if (bp->b_queue == qp) {
7191 				/* Delete this message */
7192 				if (prev != NULL) {
7193 					prev->b_next = next;
7194 					/*
7195 					 * Update sq_evtail if the last element
7196 					 * is removed.
7197 					 */
7198 					if (bp == sq->sq_evtail) {
7199 						ASSERT(next == NULL);
7200 						sq->sq_evtail = prev;
7201 					}
7202 				} else
7203 					sq->sq_evhead = next;
7204 				if (sq->sq_evhead == NULL)
7205 					sq->sq_flags &= ~SQ_EVENTS;
7206 				bp->b_prev = bp->b_next = NULL;
7207 				freemsg(bp);
7208 			} else {
7209 				prev = bp;
7210 			}
7211 		}
7212 	}
7213 
7214 	flags = sq->sq_flags;
7215 
7216 	/* Wake up any waiter before leaving. */
7217 	if (flags & SQ_WANTWAKEUP) {
7218 		flags &= ~SQ_WANTWAKEUP;
7219 		cv_broadcast(&sq->sq_wait);
7220 	}
7221 	sq->sq_flags = flags;
7222 
7223 	return (moved);
7224 }
7225 
7226 /*
7227  * Try and upgrade to exclusive access at the inner perimeter. If this can
7228  * not be done without blocking then request will be queued on the syncq
7229  * and drain_syncq will run it later.
7230  *
7231  * This routine can only be called from put or service procedures plus
7232  * asynchronous callback routines that have properly entered to
7233  * queue (with entersq.) Thus qwriter_inner assumes the caller has one claim
7234  * on the syncq associated with q.
7235  */
7236 void
7237 qwriter_inner(queue_t *q, mblk_t *mp, void (*func)())
7238 {
7239 	syncq_t	*sq = q->q_syncq;
7240 	uint16_t count;
7241 
7242 	mutex_enter(SQLOCK(sq));
7243 	count = sq->sq_count;
7244 	SQ_PUTLOCKS_ENTER(sq);
7245 	SUM_SQ_PUTCOUNTS(sq, count);
7246 	ASSERT(count >= 1);
7247 	ASSERT(sq->sq_type & (SQ_CIPUT|SQ_CISVC));
7248 
7249 	if (count == 1) {
7250 		/*
7251 		 * Can upgrade. This case also handles nested qwriter calls
7252 		 * (when the qwriter callback function calls qwriter). In that
7253 		 * case SQ_EXCL is already set.
7254 		 */
7255 		sq->sq_flags |= SQ_EXCL;
7256 		SQ_PUTLOCKS_EXIT(sq);
7257 		mutex_exit(SQLOCK(sq));
7258 		(*func)(q, mp);
7259 		/*
7260 		 * Assumes that leavesq, putnext, and drain_syncq will reset
7261 		 * SQ_EXCL for SQ_CIPUT/SQ_CISVC queues. We leave SQ_EXCL on
7262 		 * until putnext, leavesq, or drain_syncq drops it.
7263 		 * That way we handle nested qwriter(INNER) without dropping
7264 		 * SQ_EXCL until the outermost qwriter callback routine is
7265 		 * done.
7266 		 */
7267 		return;
7268 	}
7269 	SQ_PUTLOCKS_EXIT(sq);
7270 	sqfill_events(sq, q, mp, func);
7271 }
7272 
7273 /*
7274  * Synchronous callback support functions
7275  */
7276 
7277 /*
7278  * Allocate a callback parameter structure.
7279  * Assumes that caller initializes the flags and the id.
7280  * Acquires SQLOCK(sq) if non-NULL is returned.
7281  */
7282 callbparams_t *
7283 callbparams_alloc(syncq_t *sq, void (*func)(void *), void *arg, int kmflags)
7284 {
7285 	callbparams_t *cbp;
7286 	size_t size = sizeof (callbparams_t);
7287 
7288 	cbp = kmem_alloc(size, kmflags & ~KM_PANIC);
7289 
7290 	/*
7291 	 * Only try tryhard allocation if the caller is ready to panic.
7292 	 * Otherwise just fail.
7293 	 */
7294 	if (cbp == NULL) {
7295 		if (kmflags & KM_PANIC)
7296 			cbp = kmem_alloc_tryhard(sizeof (callbparams_t),
7297 			    &size, kmflags);
7298 		else
7299 			return (NULL);
7300 	}
7301 
7302 	ASSERT(size >= sizeof (callbparams_t));
7303 	cbp->cbp_size = size;
7304 	cbp->cbp_sq = sq;
7305 	cbp->cbp_func = func;
7306 	cbp->cbp_arg = arg;
7307 	mutex_enter(SQLOCK(sq));
7308 	cbp->cbp_next = sq->sq_callbpend;
7309 	sq->sq_callbpend = cbp;
7310 	return (cbp);
7311 }
7312 
7313 void
7314 callbparams_free(syncq_t *sq, callbparams_t *cbp)
7315 {
7316 	callbparams_t **pp, *p;
7317 
7318 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7319 
7320 	for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
7321 		if (p == cbp) {
7322 			*pp = p->cbp_next;
7323 			kmem_free(p, p->cbp_size);
7324 			return;
7325 		}
7326 	}
7327 	(void) (STRLOG(0, 0, 0, SL_CONSOLE,
7328 	    "callbparams_free: not found\n"));
7329 }
7330 
7331 void
7332 callbparams_free_id(syncq_t *sq, callbparams_id_t id, int32_t flag)
7333 {
7334 	callbparams_t **pp, *p;
7335 
7336 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7337 
7338 	for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
7339 		if (p->cbp_id == id && p->cbp_flags == flag) {
7340 			*pp = p->cbp_next;
7341 			kmem_free(p, p->cbp_size);
7342 			return;
7343 		}
7344 	}
7345 	(void) (STRLOG(0, 0, 0, SL_CONSOLE,
7346 	    "callbparams_free_id: not found\n"));
7347 }
7348 
7349 /*
7350  * Callback wrapper function used by once-only callbacks that can be
7351  * cancelled (qtimeout and qbufcall)
7352  * Contains inline version of entersq(sq, SQ_CALLBACK) that can be
7353  * cancelled by the qun* functions.
7354  */
7355 void
7356 qcallbwrapper(void *arg)
7357 {
7358 	callbparams_t *cbp = arg;
7359 	syncq_t	*sq;
7360 	uint16_t count = 0;
7361 	uint16_t waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
7362 	uint16_t type;
7363 
7364 	sq = cbp->cbp_sq;
7365 	mutex_enter(SQLOCK(sq));
7366 	type = sq->sq_type;
7367 	if (!(type & SQ_CICB)) {
7368 		count = sq->sq_count;
7369 		SQ_PUTLOCKS_ENTER(sq);
7370 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
7371 		SUM_SQ_PUTCOUNTS(sq, count);
7372 		sq->sq_needexcl++;
7373 		ASSERT(sq->sq_needexcl != 0);	/* wraparound */
7374 		waitflags |= SQ_MESSAGES;
7375 	}
7376 	/* Can not handle exlusive entry at outer perimeter */
7377 	ASSERT(type & SQ_COCB);
7378 
7379 	while ((sq->sq_flags & waitflags) || (!(type & SQ_CICB) &&count != 0)) {
7380 		if ((sq->sq_callbflags & cbp->cbp_flags) &&
7381 		    (sq->sq_cancelid == cbp->cbp_id)) {
7382 			/* timeout has been cancelled */
7383 			sq->sq_callbflags |= SQ_CALLB_BYPASSED;
7384 			callbparams_free(sq, cbp);
7385 			if (!(type & SQ_CICB)) {
7386 				ASSERT(sq->sq_needexcl > 0);
7387 				sq->sq_needexcl--;
7388 				if (sq->sq_needexcl == 0) {
7389 					SQ_PUTCOUNT_SETFAST_LOCKED(sq);
7390 				}
7391 				SQ_PUTLOCKS_EXIT(sq);
7392 			}
7393 			mutex_exit(SQLOCK(sq));
7394 			return;
7395 		}
7396 		sq->sq_flags |= SQ_WANTWAKEUP;
7397 		if (!(type & SQ_CICB)) {
7398 			SQ_PUTLOCKS_EXIT(sq);
7399 		}
7400 		cv_wait(&sq->sq_wait, SQLOCK(sq));
7401 		if (!(type & SQ_CICB)) {
7402 			count = sq->sq_count;
7403 			SQ_PUTLOCKS_ENTER(sq);
7404 			SUM_SQ_PUTCOUNTS(sq, count);
7405 		}
7406 	}
7407 
7408 	sq->sq_count++;
7409 	ASSERT(sq->sq_count != 0);	/* Wraparound */
7410 	if (!(type & SQ_CICB)) {
7411 		ASSERT(count == 0);
7412 		sq->sq_flags |= SQ_EXCL;
7413 		ASSERT(sq->sq_needexcl > 0);
7414 		sq->sq_needexcl--;
7415 		if (sq->sq_needexcl == 0) {
7416 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
7417 		}
7418 		SQ_PUTLOCKS_EXIT(sq);
7419 	}
7420 
7421 	mutex_exit(SQLOCK(sq));
7422 
7423 	cbp->cbp_func(cbp->cbp_arg);
7424 
7425 	/*
7426 	 * We drop the lock only for leavesq to re-acquire it.
7427 	 * Possible optimization is inline of leavesq.
7428 	 */
7429 	mutex_enter(SQLOCK(sq));
7430 	callbparams_free(sq, cbp);
7431 	mutex_exit(SQLOCK(sq));
7432 	leavesq(sq, SQ_CALLBACK);
7433 }
7434 
7435 /*
7436  * no need to grab sq_putlocks here. See comment in strsubr.h that
7437  * explains when sq_putlocks are used.
7438  *
7439  * sq_count (or one of the sq_putcounts) has already been
7440  * decremented by the caller, and if SQ_QUEUED, we need to call
7441  * drain_syncq (the global syncq drain).
7442  * If putnext_tail is called with the SQ_EXCL bit set, we are in
7443  * one of two states, non-CIPUT perimiter, and we need to clear
7444  * it, or we went exclusive in the put procedure.  In any case,
7445  * we want to clear the bit now, and it is probably easier to do
7446  * this at the beginning of this function (remember, we hold
7447  * the SQLOCK).  Lastly, if there are other messages queued
7448  * on the syncq (and not for our destination), enable the syncq
7449  * for background work.
7450  */
7451 
7452 /* ARGSUSED */
7453 void
7454 putnext_tail(syncq_t *sq, queue_t *qp, uint32_t passflags)
7455 {
7456 	uint16_t	flags = sq->sq_flags;
7457 
7458 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7459 	ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
7460 
7461 	/* Clear SQ_EXCL if set in passflags */
7462 	if (passflags & SQ_EXCL) {
7463 		flags &= ~SQ_EXCL;
7464 	}
7465 	if (flags & SQ_WANTWAKEUP) {
7466 		flags &= ~SQ_WANTWAKEUP;
7467 		cv_broadcast(&sq->sq_wait);
7468 	}
7469 	if (flags & SQ_WANTEXWAKEUP) {
7470 		flags &= ~SQ_WANTEXWAKEUP;
7471 		cv_broadcast(&sq->sq_exitwait);
7472 	}
7473 	sq->sq_flags = flags;
7474 
7475 	/*
7476 	 * We have cleared SQ_EXCL if we were asked to, and started
7477 	 * the wakeup process for waiters.  If there are no writers
7478 	 * then we need to drain the syncq if we were told to, or
7479 	 * enable the background thread to do it.
7480 	 */
7481 	if (!(flags & (SQ_STAYAWAY|SQ_EXCL))) {
7482 		if ((passflags & SQ_QUEUED) ||
7483 		    (sq->sq_svcflags & SQ_DISABLED)) {
7484 			/* drain_syncq will take care of events in the list */
7485 			drain_syncq(sq);
7486 			return;
7487 		} else if (flags & SQ_QUEUED) {
7488 			sqenable(sq);
7489 		}
7490 	}
7491 	/* Drop the SQLOCK on exit */
7492 	mutex_exit(SQLOCK(sq));
7493 	TRACE_3(TR_FAC_STREAMS_FR, TR_PUTNEXT_END,
7494 	    "putnext_end:(%p, %p, %p) done", NULL, qp, sq);
7495 }
7496 
7497 void
7498 set_qend(queue_t *q)
7499 {
7500 	mutex_enter(QLOCK(q));
7501 	if (!O_SAMESTR(q))
7502 		q->q_flag |= QEND;
7503 	else
7504 		q->q_flag &= ~QEND;
7505 	mutex_exit(QLOCK(q));
7506 	q = _OTHERQ(q);
7507 	mutex_enter(QLOCK(q));
7508 	if (!O_SAMESTR(q))
7509 		q->q_flag |= QEND;
7510 	else
7511 		q->q_flag &= ~QEND;
7512 	mutex_exit(QLOCK(q));
7513 }
7514 
7515 /*
7516  * Set QFULL in next service procedure queue (that cares) if not already
7517  * set and if there are already more messages on the syncq than
7518  * sq_max_size.  If sq_max_size is 0, no flow control will be asserted on
7519  * any syncq.
7520  *
7521  * The fq here is the next queue with a service procedure.  This is where
7522  * we would fail canputnext, so this is where we need to set QFULL.
7523  * In the case when fq != q we need to take QLOCK(fq) to set QFULL flag.
7524  *
7525  * We already have QLOCK at this point. To avoid cross-locks with
7526  * freezestr() which grabs all QLOCKs and with strlock() which grabs both
7527  * SQLOCK and sd_reflock, we need to drop respective locks first.
7528  */
7529 void
7530 set_qfull(queue_t *q)
7531 {
7532 	queue_t		*fq = NULL;
7533 
7534 	ASSERT(MUTEX_HELD(QLOCK(q)));
7535 	if ((sq_max_size != 0) && (!(q->q_nfsrv->q_flag & QFULL)) &&
7536 	    (q->q_syncqmsgs > sq_max_size)) {
7537 		if ((fq = q->q_nfsrv) == q) {
7538 			fq->q_flag |= QFULL;
7539 		} else {
7540 			mutex_exit(QLOCK(q));
7541 			mutex_enter(QLOCK(fq));
7542 			fq->q_flag |= QFULL;
7543 			mutex_exit(QLOCK(fq));
7544 			mutex_enter(QLOCK(q));
7545 		}
7546 	}
7547 }
7548 
7549 void
7550 clr_qfull(queue_t *q)
7551 {
7552 	queue_t	*oq = q;
7553 
7554 	q = q->q_nfsrv;
7555 	/* Fast check if there is any work to do before getting the lock. */
7556 	if ((q->q_flag & (QFULL|QWANTW)) == 0) {
7557 		return;
7558 	}
7559 
7560 	/*
7561 	 * Do not reset QFULL (and backenable) if the q_count is the reason
7562 	 * for QFULL being set.
7563 	 */
7564 	mutex_enter(QLOCK(q));
7565 	/*
7566 	 * If queue is empty i.e q_mblkcnt is zero, queue can not be full.
7567 	 * Hence clear the QFULL.
7568 	 * If both q_count and q_mblkcnt are less than the hiwat mark,
7569 	 * clear the QFULL.
7570 	 */
7571 	if (q->q_mblkcnt == 0 || ((q->q_count < q->q_hiwat) &&
7572 	    (q->q_mblkcnt < q->q_hiwat))) {
7573 		q->q_flag &= ~QFULL;
7574 		/*
7575 		 * A little more confusing, how about this way:
7576 		 * if someone wants to write,
7577 		 * AND
7578 		 *    both counts are less than the lowat mark
7579 		 *    OR
7580 		 *    the lowat mark is zero
7581 		 * THEN
7582 		 * backenable
7583 		 */
7584 		if ((q->q_flag & QWANTW) &&
7585 		    (((q->q_count < q->q_lowat) &&
7586 		    (q->q_mblkcnt < q->q_lowat)) || q->q_lowat == 0)) {
7587 			q->q_flag &= ~QWANTW;
7588 			mutex_exit(QLOCK(q));
7589 			backenable(oq, 0);
7590 		} else
7591 			mutex_exit(QLOCK(q));
7592 	} else
7593 		mutex_exit(QLOCK(q));
7594 }
7595 
7596 /*
7597  * Set the forward service procedure pointer.
7598  *
7599  * Called at insert-time to cache a queue's next forward service procedure in
7600  * q_nfsrv; used by canput() and canputnext().  If the queue to be inserted
7601  * has a service procedure then q_nfsrv points to itself.  If the queue to be
7602  * inserted does not have a service procedure, then q_nfsrv points to the next
7603  * queue forward that has a service procedure.  If the queue is at the logical
7604  * end of the stream (driver for write side, stream head for the read side)
7605  * and does not have a service procedure, then q_nfsrv also points to itself.
7606  */
7607 void
7608 set_nfsrv_ptr(
7609 	queue_t  *rnew,		/* read queue pointer to new module */
7610 	queue_t  *wnew,		/* write queue pointer to new module */
7611 	queue_t  *prev_rq,	/* read queue pointer to the module above */
7612 	queue_t  *prev_wq)	/* write queue pointer to the module above */
7613 {
7614 	queue_t *qp;
7615 
7616 	if (prev_wq->q_next == NULL) {
7617 		/*
7618 		 * Insert the driver, initialize the driver and stream head.
7619 		 * In this case, prev_rq/prev_wq should be the stream head.
7620 		 * _I_INSERT does not allow inserting a driver.  Make sure
7621 		 * that it is not an insertion.
7622 		 */
7623 		ASSERT(!(rnew->q_flag & _QINSERTING));
7624 		wnew->q_nfsrv = wnew;
7625 		if (rnew->q_qinfo->qi_srvp)
7626 			rnew->q_nfsrv = rnew;
7627 		else
7628 			rnew->q_nfsrv = prev_rq;
7629 		prev_rq->q_nfsrv = prev_rq;
7630 		prev_wq->q_nfsrv = prev_wq;
7631 	} else {
7632 		/*
7633 		 * set up read side q_nfsrv pointer.  This MUST be done
7634 		 * before setting the write side, because the setting of
7635 		 * the write side for a fifo may depend on it.
7636 		 *
7637 		 * Suppose we have a fifo that only has pipemod pushed.
7638 		 * pipemod has no read or write service procedures, so
7639 		 * nfsrv for both pipemod queues points to prev_rq (the
7640 		 * stream read head).  Now push bufmod (which has only a
7641 		 * read service procedure).  Doing the write side first,
7642 		 * wnew->q_nfsrv is set to pipemod's writeq nfsrv, which
7643 		 * is WRONG; the next queue forward from wnew with a
7644 		 * service procedure will be rnew, not the stream read head.
7645 		 * Since the downstream queue (which in the case of a fifo
7646 		 * is the read queue rnew) can affect upstream queues, it
7647 		 * needs to be done first.  Setting up the read side first
7648 		 * sets nfsrv for both pipemod queues to rnew and then
7649 		 * when the write side is set up, wnew-q_nfsrv will also
7650 		 * point to rnew.
7651 		 */
7652 		if (rnew->q_qinfo->qi_srvp) {
7653 			/*
7654 			 * use _OTHERQ() because, if this is a pipe, next
7655 			 * module may have been pushed from other end and
7656 			 * q_next could be a read queue.
7657 			 */
7658 			qp = _OTHERQ(prev_wq->q_next);
7659 			while (qp && qp->q_nfsrv != qp) {
7660 				qp->q_nfsrv = rnew;
7661 				qp = backq(qp);
7662 			}
7663 			rnew->q_nfsrv = rnew;
7664 		} else
7665 			rnew->q_nfsrv = prev_rq->q_nfsrv;
7666 
7667 		/* set up write side q_nfsrv pointer */
7668 		if (wnew->q_qinfo->qi_srvp) {
7669 			wnew->q_nfsrv = wnew;
7670 
7671 			/*
7672 			 * For insertion, need to update nfsrv of the modules
7673 			 * above which do not have a service routine.
7674 			 */
7675 			if (rnew->q_flag & _QINSERTING) {
7676 				for (qp = prev_wq;
7677 				    qp != NULL && qp->q_nfsrv != qp;
7678 				    qp = backq(qp)) {
7679 					qp->q_nfsrv = wnew->q_nfsrv;
7680 				}
7681 			}
7682 		} else {
7683 			if (prev_wq->q_next == prev_rq)
7684 				/*
7685 				 * Since prev_wq/prev_rq are the middle of a
7686 				 * fifo, wnew/rnew will also be the middle of
7687 				 * a fifo and wnew's nfsrv is same as rnew's.
7688 				 */
7689 				wnew->q_nfsrv = rnew->q_nfsrv;
7690 			else
7691 				wnew->q_nfsrv = prev_wq->q_next->q_nfsrv;
7692 		}
7693 	}
7694 }
7695 
7696 /*
7697  * Reset the forward service procedure pointer; called at remove-time.
7698  */
7699 void
7700 reset_nfsrv_ptr(queue_t *rqp, queue_t *wqp)
7701 {
7702 	queue_t *tmp_qp;
7703 
7704 	/* Reset the write side q_nfsrv pointer for _I_REMOVE */
7705 	if ((rqp->q_flag & _QREMOVING) && (wqp->q_qinfo->qi_srvp != NULL)) {
7706 		for (tmp_qp = backq(wqp);
7707 		    tmp_qp != NULL && tmp_qp->q_nfsrv == wqp;
7708 		    tmp_qp = backq(tmp_qp)) {
7709 			tmp_qp->q_nfsrv = wqp->q_nfsrv;
7710 		}
7711 	}
7712 
7713 	/* reset the read side q_nfsrv pointer */
7714 	if (rqp->q_qinfo->qi_srvp) {
7715 		if (wqp->q_next) {	/* non-driver case */
7716 			tmp_qp = _OTHERQ(wqp->q_next);
7717 			while (tmp_qp && tmp_qp->q_nfsrv == rqp) {
7718 				/* Note that rqp->q_next cannot be NULL */
7719 				ASSERT(rqp->q_next != NULL);
7720 				tmp_qp->q_nfsrv = rqp->q_next->q_nfsrv;
7721 				tmp_qp = backq(tmp_qp);
7722 			}
7723 		}
7724 	}
7725 }
7726 
7727 /*
7728  * This routine should be called after all stream geometry changes to update
7729  * the stream head cached struio() rd/wr queue pointers. Note must be called
7730  * with the streamlock()ed.
7731  *
7732  * Note: only enables Synchronous STREAMS for a side of a Stream which has
7733  *	 an explicit synchronous barrier module queue. That is, a queue that
7734  *	 has specified a struio() type.
7735  */
7736 static void
7737 strsetuio(stdata_t *stp)
7738 {
7739 	queue_t *wrq;
7740 
7741 	if (stp->sd_flag & STPLEX) {
7742 		/*
7743 		 * Not stremahead, but a mux, so no Synchronous STREAMS.
7744 		 */
7745 		stp->sd_struiowrq = NULL;
7746 		stp->sd_struiordq = NULL;
7747 		return;
7748 	}
7749 	/*
7750 	 * Scan the write queue(s) while synchronous
7751 	 * until we find a qinfo uio type specified.
7752 	 */
7753 	wrq = stp->sd_wrq->q_next;
7754 	while (wrq) {
7755 		if (wrq->q_struiot == STRUIOT_NONE) {
7756 			wrq = 0;
7757 			break;
7758 		}
7759 		if (wrq->q_struiot != STRUIOT_DONTCARE)
7760 			break;
7761 		if (! _SAMESTR(wrq)) {
7762 			wrq = 0;
7763 			break;
7764 		}
7765 		wrq = wrq->q_next;
7766 	}
7767 	stp->sd_struiowrq = wrq;
7768 	/*
7769 	 * Scan the read queue(s) while synchronous
7770 	 * until we find a qinfo uio type specified.
7771 	 */
7772 	wrq = stp->sd_wrq->q_next;
7773 	while (wrq) {
7774 		if (_RD(wrq)->q_struiot == STRUIOT_NONE) {
7775 			wrq = 0;
7776 			break;
7777 		}
7778 		if (_RD(wrq)->q_struiot != STRUIOT_DONTCARE)
7779 			break;
7780 		if (! _SAMESTR(wrq)) {
7781 			wrq = 0;
7782 			break;
7783 		}
7784 		wrq = wrq->q_next;
7785 	}
7786 	stp->sd_struiordq = wrq ? _RD(wrq) : 0;
7787 }
7788 
7789 /*
7790  * pass_wput, unblocks the passthru queues, so that
7791  * messages can arrive at muxs lower read queue, before
7792  * I_LINK/I_UNLINK is acked/nacked.
7793  */
7794 static void
7795 pass_wput(queue_t *q, mblk_t *mp)
7796 {
7797 	syncq_t *sq;
7798 
7799 	sq = _RD(q)->q_syncq;
7800 	if (sq->sq_flags & SQ_BLOCKED)
7801 		unblocksq(sq, SQ_BLOCKED, 0);
7802 	putnext(q, mp);
7803 }
7804 
7805 /*
7806  * Set up queues for the link/unlink.
7807  * Create a new queue and block it and then insert it
7808  * below the stream head on the lower stream.
7809  * This prevents any messages from arriving during the setq
7810  * as well as while the mux is processing the LINK/I_UNLINK.
7811  * The blocked passq is unblocked once the LINK/I_UNLINK has
7812  * been acked or nacked or if a message is generated and sent
7813  * down muxs write put procedure.
7814  * see pass_wput().
7815  *
7816  * After the new queue is inserted, all messages coming from below are
7817  * blocked. The call to strlock will ensure that all activity in the stream head
7818  * read queue syncq is stopped (sq_count drops to zero).
7819  */
7820 static queue_t *
7821 link_addpassthru(stdata_t *stpdown)
7822 {
7823 	queue_t *passq;
7824 	sqlist_t sqlist;
7825 
7826 	passq = allocq();
7827 	STREAM(passq) = STREAM(_WR(passq)) = stpdown;
7828 	/* setq might sleep in allocator - avoid holding locks. */
7829 	setq(passq, &passthru_rinit, &passthru_winit, NULL, QPERQ,
7830 	    SQ_CI|SQ_CO, B_FALSE);
7831 	claimq(passq);
7832 	blocksq(passq->q_syncq, SQ_BLOCKED, 1);
7833 	insertq(STREAM(passq), passq);
7834 
7835 	/*
7836 	 * Use strlock() to wait for the stream head sq_count to drop to zero
7837 	 * since we are going to change q_ptr in the stream head.  Note that
7838 	 * insertq() doesn't wait for any syncq counts to drop to zero.
7839 	 */
7840 	sqlist.sqlist_head = NULL;
7841 	sqlist.sqlist_index = 0;
7842 	sqlist.sqlist_size = sizeof (sqlist_t);
7843 	sqlist_insert(&sqlist, _RD(stpdown->sd_wrq)->q_syncq);
7844 	strlock(stpdown, &sqlist);
7845 	strunlock(stpdown, &sqlist);
7846 
7847 	releaseq(passq);
7848 	return (passq);
7849 }
7850 
7851 /*
7852  * Let messages flow up into the mux by removing
7853  * the passq.
7854  */
7855 static void
7856 link_rempassthru(queue_t *passq)
7857 {
7858 	claimq(passq);
7859 	removeq(passq);
7860 	releaseq(passq);
7861 	freeq(passq);
7862 }
7863 
7864 /*
7865  * Wait for the condition variable pointed to by `cvp' to be signaled,
7866  * or for `tim' milliseconds to elapse, whichever comes first.  If `tim'
7867  * is negative, then there is no time limit.  If `nosigs' is non-zero,
7868  * then the wait will be non-interruptible.
7869  *
7870  * Returns >0 if signaled, 0 if interrupted, or -1 upon timeout.
7871  */
7872 clock_t
7873 str_cv_wait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim, int nosigs)
7874 {
7875 	clock_t ret, now, tick;
7876 
7877 	if (tim < 0) {
7878 		if (nosigs) {
7879 			cv_wait(cvp, mp);
7880 			ret = 1;
7881 		} else {
7882 			ret = cv_wait_sig(cvp, mp);
7883 		}
7884 	} else if (tim > 0) {
7885 		/*
7886 		 * convert milliseconds to clock ticks
7887 		 */
7888 		tick = MSEC_TO_TICK_ROUNDUP(tim);
7889 		time_to_wait(&now, tick);
7890 		if (nosigs) {
7891 			ret = cv_timedwait(cvp, mp, now);
7892 		} else {
7893 			ret = cv_timedwait_sig(cvp, mp, now);
7894 		}
7895 	} else {
7896 		ret = -1;
7897 	}
7898 	return (ret);
7899 }
7900 
7901 /*
7902  * Wait until the stream head can determine if it is at the mark but
7903  * don't wait forever to prevent a race condition between the "mark" state
7904  * in the stream head and any mark state in the caller/user of this routine.
7905  *
7906  * This is used by sockets and for a socket it would be incorrect
7907  * to return a failure for SIOCATMARK when there is no data in the receive
7908  * queue and the marked urgent data is traveling up the stream.
7909  *
7910  * This routine waits until the mark is known by waiting for one of these
7911  * three events:
7912  *	The stream head read queue becoming non-empty (including an EOF)
7913  *	The STRATMARK flag being set. (Due to a MSGMARKNEXT message.)
7914  *	The STRNOTATMARK flag being set (which indicates that the transport
7915  *	has sent a MSGNOTMARKNEXT message to indicate that it is not at
7916  *	the mark).
7917  *
7918  * The routine returns 1 if the stream is at the mark; 0 if it can
7919  * be determined that the stream is not at the mark.
7920  * If the wait times out and it can't determine
7921  * whether or not the stream might be at the mark the routine will return -1.
7922  *
7923  * Note: This routine should only be used when a mark is pending i.e.,
7924  * in the socket case the SIGURG has been posted.
7925  * Note2: This can not wakeup just because synchronous streams indicate
7926  * that data is available since it is not possible to use the synchronous
7927  * streams interfaces to determine the b_flag value for the data queued below
7928  * the stream head.
7929  */
7930 int
7931 strwaitmark(vnode_t *vp)
7932 {
7933 	struct stdata *stp = vp->v_stream;
7934 	queue_t *rq = _RD(stp->sd_wrq);
7935 	int mark;
7936 
7937 	mutex_enter(&stp->sd_lock);
7938 	while (rq->q_first == NULL &&
7939 	    !(stp->sd_flag & (STRATMARK|STRNOTATMARK|STREOF))) {
7940 		stp->sd_flag |= RSLEEP;
7941 
7942 		/* Wait for 100 milliseconds for any state change. */
7943 		if (str_cv_wait(&rq->q_wait, &stp->sd_lock, 100, 1) == -1) {
7944 			mutex_exit(&stp->sd_lock);
7945 			return (-1);
7946 		}
7947 	}
7948 	if (stp->sd_flag & STRATMARK)
7949 		mark = 1;
7950 	else if (rq->q_first != NULL && (rq->q_first->b_flag & MSGMARK))
7951 		mark = 1;
7952 	else
7953 		mark = 0;
7954 
7955 	mutex_exit(&stp->sd_lock);
7956 	return (mark);
7957 }
7958 
7959 /*
7960  * Set a read side error. If persist is set change the socket error
7961  * to persistent. If errfunc is set install the function as the exported
7962  * error handler.
7963  */
7964 void
7965 strsetrerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
7966 {
7967 	struct stdata *stp = vp->v_stream;
7968 
7969 	mutex_enter(&stp->sd_lock);
7970 	stp->sd_rerror = error;
7971 	if (error == 0 && errfunc == NULL)
7972 		stp->sd_flag &= ~STRDERR;
7973 	else
7974 		stp->sd_flag |= STRDERR;
7975 	if (persist) {
7976 		stp->sd_flag &= ~STRDERRNONPERSIST;
7977 	} else {
7978 		stp->sd_flag |= STRDERRNONPERSIST;
7979 	}
7980 	stp->sd_rderrfunc = errfunc;
7981 	if (error != 0 || errfunc != NULL) {
7982 		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);	/* readers */
7983 		cv_broadcast(&stp->sd_wrq->q_wait);		/* writers */
7984 		cv_broadcast(&stp->sd_monitor);			/* ioctllers */
7985 
7986 		mutex_exit(&stp->sd_lock);
7987 		pollwakeup(&stp->sd_pollist, POLLERR);
7988 		mutex_enter(&stp->sd_lock);
7989 
7990 		if (stp->sd_sigflags & S_ERROR)
7991 			strsendsig(stp->sd_siglist, S_ERROR, 0, error);
7992 	}
7993 	mutex_exit(&stp->sd_lock);
7994 }
7995 
7996 /*
7997  * Set a write side error. If persist is set change the socket error
7998  * to persistent.
7999  */
8000 void
8001 strsetwerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
8002 {
8003 	struct stdata *stp = vp->v_stream;
8004 
8005 	mutex_enter(&stp->sd_lock);
8006 	stp->sd_werror = error;
8007 	if (error == 0 && errfunc == NULL)
8008 		stp->sd_flag &= ~STWRERR;
8009 	else
8010 		stp->sd_flag |= STWRERR;
8011 	if (persist) {
8012 		stp->sd_flag &= ~STWRERRNONPERSIST;
8013 	} else {
8014 		stp->sd_flag |= STWRERRNONPERSIST;
8015 	}
8016 	stp->sd_wrerrfunc = errfunc;
8017 	if (error != 0 || errfunc != NULL) {
8018 		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);	/* readers */
8019 		cv_broadcast(&stp->sd_wrq->q_wait);		/* writers */
8020 		cv_broadcast(&stp->sd_monitor);			/* ioctllers */
8021 
8022 		mutex_exit(&stp->sd_lock);
8023 		pollwakeup(&stp->sd_pollist, POLLERR);
8024 		mutex_enter(&stp->sd_lock);
8025 
8026 		if (stp->sd_sigflags & S_ERROR)
8027 			strsendsig(stp->sd_siglist, S_ERROR, 0, error);
8028 	}
8029 	mutex_exit(&stp->sd_lock);
8030 }
8031 
8032 /*
8033  * Make the stream return 0 (EOF) when all data has been read.
8034  * No effect on write side.
8035  */
8036 void
8037 strseteof(vnode_t *vp, int eof)
8038 {
8039 	struct stdata *stp = vp->v_stream;
8040 
8041 	mutex_enter(&stp->sd_lock);
8042 	if (!eof) {
8043 		stp->sd_flag &= ~STREOF;
8044 		mutex_exit(&stp->sd_lock);
8045 		return;
8046 	}
8047 	stp->sd_flag |= STREOF;
8048 	if (stp->sd_flag & RSLEEP) {
8049 		stp->sd_flag &= ~RSLEEP;
8050 		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);
8051 	}
8052 
8053 	mutex_exit(&stp->sd_lock);
8054 	pollwakeup(&stp->sd_pollist, POLLIN|POLLRDNORM);
8055 	mutex_enter(&stp->sd_lock);
8056 
8057 	if (stp->sd_sigflags & (S_INPUT|S_RDNORM))
8058 		strsendsig(stp->sd_siglist, S_INPUT|S_RDNORM, 0, 0);
8059 	mutex_exit(&stp->sd_lock);
8060 }
8061 
8062 void
8063 strflushrq(vnode_t *vp, int flag)
8064 {
8065 	struct stdata *stp = vp->v_stream;
8066 
8067 	mutex_enter(&stp->sd_lock);
8068 	flushq(_RD(stp->sd_wrq), flag);
8069 	mutex_exit(&stp->sd_lock);
8070 }
8071 
8072 void
8073 strsetrputhooks(vnode_t *vp, uint_t flags,
8074 		msgfunc_t protofunc, msgfunc_t miscfunc)
8075 {
8076 	struct stdata *stp = vp->v_stream;
8077 
8078 	mutex_enter(&stp->sd_lock);
8079 
8080 	if (protofunc == NULL)
8081 		stp->sd_rprotofunc = strrput_proto;
8082 	else
8083 		stp->sd_rprotofunc = protofunc;
8084 
8085 	if (miscfunc == NULL)
8086 		stp->sd_rmiscfunc = strrput_misc;
8087 	else
8088 		stp->sd_rmiscfunc = miscfunc;
8089 
8090 	if (flags & SH_CONSOL_DATA)
8091 		stp->sd_rput_opt |= SR_CONSOL_DATA;
8092 	else
8093 		stp->sd_rput_opt &= ~SR_CONSOL_DATA;
8094 
8095 	if (flags & SH_SIGALLDATA)
8096 		stp->sd_rput_opt |= SR_SIGALLDATA;
8097 	else
8098 		stp->sd_rput_opt &= ~SR_SIGALLDATA;
8099 
8100 	if (flags & SH_IGN_ZEROLEN)
8101 		stp->sd_rput_opt |= SR_IGN_ZEROLEN;
8102 	else
8103 		stp->sd_rput_opt &= ~SR_IGN_ZEROLEN;
8104 
8105 	mutex_exit(&stp->sd_lock);
8106 }
8107 
8108 void
8109 strsetwputhooks(vnode_t *vp, uint_t flags, clock_t closetime)
8110 {
8111 	struct stdata *stp = vp->v_stream;
8112 
8113 	mutex_enter(&stp->sd_lock);
8114 	stp->sd_closetime = closetime;
8115 
8116 	if (flags & SH_SIGPIPE)
8117 		stp->sd_wput_opt |= SW_SIGPIPE;
8118 	else
8119 		stp->sd_wput_opt &= ~SW_SIGPIPE;
8120 	if (flags & SH_RECHECK_ERR)
8121 		stp->sd_wput_opt |= SW_RECHECK_ERR;
8122 	else
8123 		stp->sd_wput_opt &= ~SW_RECHECK_ERR;
8124 
8125 	mutex_exit(&stp->sd_lock);
8126 }
8127 
8128 void
8129 strsetrwputdatahooks(vnode_t *vp, msgfunc_t rdatafunc, msgfunc_t wdatafunc)
8130 {
8131 	struct stdata *stp = vp->v_stream;
8132 
8133 	mutex_enter(&stp->sd_lock);
8134 
8135 	stp->sd_rputdatafunc = rdatafunc;
8136 	stp->sd_wputdatafunc = wdatafunc;
8137 
8138 	mutex_exit(&stp->sd_lock);
8139 }
8140 
8141 /* Used within framework when the queue is already locked */
8142 void
8143 qenable_locked(queue_t *q)
8144 {
8145 	stdata_t *stp = STREAM(q);
8146 
8147 	ASSERT(MUTEX_HELD(QLOCK(q)));
8148 
8149 	if (!q->q_qinfo->qi_srvp)
8150 		return;
8151 
8152 	/*
8153 	 * Do not place on run queue if already enabled or closing.
8154 	 */
8155 	if (q->q_flag & (QWCLOSE|QENAB))
8156 		return;
8157 
8158 	/*
8159 	 * mark queue enabled and place on run list if it is not already being
8160 	 * serviced. If it is serviced, the runservice() function will detect
8161 	 * that QENAB is set and call service procedure before clearing
8162 	 * QINSERVICE flag.
8163 	 */
8164 	q->q_flag |= QENAB;
8165 	if (q->q_flag & QINSERVICE)
8166 		return;
8167 
8168 	/* Record the time of qenable */
8169 	q->q_qtstamp = lbolt;
8170 
8171 	/*
8172 	 * Put the queue in the stp list and schedule it for background
8173 	 * processing if it is not already scheduled or if stream head does not
8174 	 * intent to process it in the foreground later by setting
8175 	 * STRS_WILLSERVICE flag.
8176 	 */
8177 	mutex_enter(&stp->sd_qlock);
8178 	/*
8179 	 * If there are already something on the list, stp flags should show
8180 	 * intention to drain it.
8181 	 */
8182 	IMPLY(STREAM_NEEDSERVICE(stp),
8183 	    (stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED)));
8184 
8185 	ENQUEUE(q, stp->sd_qhead, stp->sd_qtail, q_link);
8186 	stp->sd_nqueues++;
8187 
8188 	/*
8189 	 * If no one will drain this stream we are the first producer and
8190 	 * need to schedule it for background thread.
8191 	 */
8192 	if (!(stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED))) {
8193 		/*
8194 		 * No one will service this stream later, so we have to
8195 		 * schedule it now.
8196 		 */
8197 		STRSTAT(stenables);
8198 		stp->sd_svcflags |= STRS_SCHEDULED;
8199 		stp->sd_servid = (void *)taskq_dispatch(streams_taskq,
8200 		    (task_func_t *)stream_service, stp, TQ_NOSLEEP|TQ_NOQUEUE);
8201 
8202 		if (stp->sd_servid == NULL) {
8203 			/*
8204 			 * Task queue failed so fail over to the backup
8205 			 * servicing thread.
8206 			 */
8207 			STRSTAT(taskqfails);
8208 			/*
8209 			 * It is safe to clear STRS_SCHEDULED flag because it
8210 			 * was set by this thread above.
8211 			 */
8212 			stp->sd_svcflags &= ~STRS_SCHEDULED;
8213 
8214 			/*
8215 			 * Failover scheduling is protected by service_queue
8216 			 * lock.
8217 			 */
8218 			mutex_enter(&service_queue);
8219 			ASSERT((stp->sd_qhead == q) && (stp->sd_qtail == q));
8220 			ASSERT(q->q_link == NULL);
8221 			/*
8222 			 * Append the queue to qhead/qtail list.
8223 			 */
8224 			if (qhead == NULL)
8225 				qhead = q;
8226 			else
8227 				qtail->q_link = q;
8228 			qtail = q;
8229 			/*
8230 			 * Clear stp queue list.
8231 			 */
8232 			stp->sd_qhead = stp->sd_qtail = NULL;
8233 			stp->sd_nqueues = 0;
8234 			/*
8235 			 * Wakeup background queue processing thread.
8236 			 */
8237 			cv_signal(&services_to_run);
8238 			mutex_exit(&service_queue);
8239 		}
8240 	}
8241 	mutex_exit(&stp->sd_qlock);
8242 }
8243 
8244 static void
8245 queue_service(queue_t *q)
8246 {
8247 	/*
8248 	 * The queue in the list should have
8249 	 * QENAB flag set and should not have
8250 	 * QINSERVICE flag set. QINSERVICE is
8251 	 * set when the queue is dequeued and
8252 	 * qenable_locked doesn't enqueue a
8253 	 * queue with QINSERVICE set.
8254 	 */
8255 
8256 	ASSERT(!(q->q_flag & QINSERVICE));
8257 	ASSERT((q->q_flag & QENAB));
8258 	mutex_enter(QLOCK(q));
8259 	q->q_flag &= ~QENAB;
8260 	q->q_flag |= QINSERVICE;
8261 	mutex_exit(QLOCK(q));
8262 	runservice(q);
8263 }
8264 
8265 static void
8266 syncq_service(syncq_t *sq)
8267 {
8268 	STRSTAT(syncqservice);
8269 	mutex_enter(SQLOCK(sq));
8270 	ASSERT(!(sq->sq_svcflags & SQ_SERVICE));
8271 	ASSERT(sq->sq_servcount != 0);
8272 	ASSERT(sq->sq_next == NULL);
8273 
8274 	/* if we came here from the background thread, clear the flag */
8275 	if (sq->sq_svcflags & SQ_BGTHREAD)
8276 		sq->sq_svcflags &= ~SQ_BGTHREAD;
8277 
8278 	/* let drain_syncq know that it's being called in the background */
8279 	sq->sq_svcflags |= SQ_SERVICE;
8280 	drain_syncq(sq);
8281 }
8282 
8283 static void
8284 qwriter_outer_service(syncq_t *outer)
8285 {
8286 	/*
8287 	 * Note that SQ_WRITER is used on the outer perimeter
8288 	 * to signal that a qwriter(OUTER) is either investigating
8289 	 * running or that it is actually running a function.
8290 	 */
8291 	outer_enter(outer, SQ_BLOCKED|SQ_WRITER);
8292 
8293 	/*
8294 	 * All inner syncq are empty and have SQ_WRITER set
8295 	 * to block entering the outer perimeter.
8296 	 *
8297 	 * We do not need to explicitly call write_now since
8298 	 * outer_exit does it for us.
8299 	 */
8300 	outer_exit(outer);
8301 }
8302 
8303 static void
8304 mblk_free(mblk_t *mp)
8305 {
8306 	dblk_t *dbp = mp->b_datap;
8307 	frtn_t *frp = dbp->db_frtnp;
8308 
8309 	mp->b_next = NULL;
8310 	if (dbp->db_fthdr != NULL)
8311 		str_ftfree(dbp);
8312 
8313 	ASSERT(dbp->db_fthdr == NULL);
8314 	frp->free_func(frp->free_arg);
8315 	ASSERT(dbp->db_mblk == mp);
8316 
8317 	if (dbp->db_credp != NULL) {
8318 		crfree(dbp->db_credp);
8319 		dbp->db_credp = NULL;
8320 	}
8321 	dbp->db_cpid = -1;
8322 	dbp->db_struioflag = 0;
8323 	dbp->db_struioun.cksum.flags = 0;
8324 
8325 	kmem_cache_free(dbp->db_cache, dbp);
8326 }
8327 
8328 /*
8329  * Background processing of the stream queue list.
8330  */
8331 static void
8332 stream_service(stdata_t *stp)
8333 {
8334 	queue_t *q;
8335 
8336 	mutex_enter(&stp->sd_qlock);
8337 
8338 	STR_SERVICE(stp, q);
8339 
8340 	stp->sd_svcflags &= ~STRS_SCHEDULED;
8341 	stp->sd_servid = NULL;
8342 	cv_signal(&stp->sd_qcv);
8343 	mutex_exit(&stp->sd_qlock);
8344 }
8345 
8346 /*
8347  * Foreground processing of the stream queue list.
8348  */
8349 void
8350 stream_runservice(stdata_t *stp)
8351 {
8352 	queue_t *q;
8353 
8354 	mutex_enter(&stp->sd_qlock);
8355 	STRSTAT(rservice);
8356 	/*
8357 	 * We are going to drain this stream queue list, so qenable_locked will
8358 	 * not schedule it until we finish.
8359 	 */
8360 	stp->sd_svcflags |= STRS_WILLSERVICE;
8361 
8362 	STR_SERVICE(stp, q);
8363 
8364 	stp->sd_svcflags &= ~STRS_WILLSERVICE;
8365 	mutex_exit(&stp->sd_qlock);
8366 	/*
8367 	 * Help backup background thread to drain the qhead/qtail list.
8368 	 */
8369 	while (qhead != NULL) {
8370 		STRSTAT(qhelps);
8371 		mutex_enter(&service_queue);
8372 		DQ(q, qhead, qtail, q_link);
8373 		mutex_exit(&service_queue);
8374 		if (q != NULL)
8375 			queue_service(q);
8376 	}
8377 }
8378 
8379 void
8380 stream_willservice(stdata_t *stp)
8381 {
8382 	mutex_enter(&stp->sd_qlock);
8383 	stp->sd_svcflags |= STRS_WILLSERVICE;
8384 	mutex_exit(&stp->sd_qlock);
8385 }
8386 
8387 /*
8388  * Replace the cred currently in the mblk with a different one.
8389  */
8390 void
8391 mblk_setcred(mblk_t *mp, cred_t *cr)
8392 {
8393 	cred_t *ocr = DB_CRED(mp);
8394 
8395 	ASSERT(cr != NULL);
8396 
8397 	if (cr != ocr) {
8398 		crhold(mp->b_datap->db_credp = cr);
8399 		if (ocr != NULL)
8400 			crfree(ocr);
8401 	}
8402 }
8403 
8404 int
8405 hcksum_assoc(mblk_t *mp,  multidata_t *mmd, pdesc_t *pd,
8406     uint32_t start, uint32_t stuff, uint32_t end, uint32_t value,
8407     uint32_t flags, int km_flags)
8408 {
8409 	int rc = 0;
8410 
8411 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8412 	if (mp->b_datap->db_type == M_DATA) {
8413 		/* Associate values for M_DATA type */
8414 		DB_CKSUMSTART(mp) = (intptr_t)start;
8415 		DB_CKSUMSTUFF(mp) = (intptr_t)stuff;
8416 		DB_CKSUMEND(mp) = (intptr_t)end;
8417 		DB_CKSUMFLAGS(mp) = flags;
8418 		DB_CKSUM16(mp) = (uint16_t)value;
8419 
8420 	} else {
8421 		pattrinfo_t pa_info;
8422 
8423 		ASSERT(mmd != NULL);
8424 
8425 		pa_info.type = PATTR_HCKSUM;
8426 		pa_info.len = sizeof (pattr_hcksum_t);
8427 
8428 		if (mmd_addpattr(mmd, pd, &pa_info, B_TRUE, km_flags) != NULL) {
8429 			pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf;
8430 
8431 			hck->hcksum_start_offset = start;
8432 			hck->hcksum_stuff_offset = stuff;
8433 			hck->hcksum_end_offset = end;
8434 			hck->hcksum_cksum_val.inet_cksum = (uint16_t)value;
8435 			hck->hcksum_flags = flags;
8436 		} else {
8437 			rc = -1;
8438 		}
8439 	}
8440 	return (rc);
8441 }
8442 
8443 void
8444 hcksum_retrieve(mblk_t *mp, multidata_t *mmd, pdesc_t *pd,
8445     uint32_t *start, uint32_t *stuff, uint32_t *end,
8446     uint32_t *value, uint32_t *flags)
8447 {
8448 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8449 	if (mp->b_datap->db_type == M_DATA) {
8450 		if (flags != NULL) {
8451 			*flags = DB_CKSUMFLAGS(mp) & (HCK_IPV4_HDRCKSUM |
8452 			    HCK_PARTIALCKSUM | HCK_FULLCKSUM |
8453 			    HCK_FULLCKSUM_OK);
8454 			if ((*flags & (HCK_PARTIALCKSUM |
8455 			    HCK_FULLCKSUM)) != 0) {
8456 				if (value != NULL)
8457 					*value = (uint32_t)DB_CKSUM16(mp);
8458 				if ((*flags & HCK_PARTIALCKSUM) != 0) {
8459 					if (start != NULL)
8460 						*start =
8461 						    (uint32_t)DB_CKSUMSTART(mp);
8462 					if (stuff != NULL)
8463 						*stuff =
8464 						    (uint32_t)DB_CKSUMSTUFF(mp);
8465 					if (end != NULL)
8466 						*end =
8467 						    (uint32_t)DB_CKSUMEND(mp);
8468 				}
8469 			}
8470 		}
8471 	} else {
8472 		pattrinfo_t hck_attr = {PATTR_HCKSUM};
8473 
8474 		ASSERT(mmd != NULL);
8475 
8476 		/* get hardware checksum attribute */
8477 		if (mmd_getpattr(mmd, pd, &hck_attr) != NULL) {
8478 			pattr_hcksum_t *hck = (pattr_hcksum_t *)hck_attr.buf;
8479 
8480 			ASSERT(hck_attr.len >= sizeof (pattr_hcksum_t));
8481 			if (flags != NULL)
8482 				*flags = hck->hcksum_flags;
8483 			if (start != NULL)
8484 				*start = hck->hcksum_start_offset;
8485 			if (stuff != NULL)
8486 				*stuff = hck->hcksum_stuff_offset;
8487 			if (end != NULL)
8488 				*end = hck->hcksum_end_offset;
8489 			if (value != NULL)
8490 				*value = (uint32_t)
8491 				    hck->hcksum_cksum_val.inet_cksum;
8492 		}
8493 	}
8494 }
8495 
8496 void
8497 lso_info_set(mblk_t *mp, uint32_t mss, uint32_t flags)
8498 {
8499 	ASSERT(DB_TYPE(mp) == M_DATA);
8500 
8501 	/* Set the flags */
8502 	DB_LSOFLAGS(mp) |= flags;
8503 	DB_LSOMSS(mp) = mss;
8504 }
8505 
8506 void
8507 lso_info_get(mblk_t *mp, uint32_t *mss, uint32_t *flags)
8508 {
8509 	ASSERT(DB_TYPE(mp) == M_DATA);
8510 
8511 	if (flags != NULL) {
8512 		*flags = DB_CKSUMFLAGS(mp) & HW_LSO;
8513 		if ((*flags != 0) && (mss != NULL))
8514 			*mss = (uint32_t)DB_LSOMSS(mp);
8515 	}
8516 }
8517 
8518 /*
8519  * Checksum buffer *bp for len bytes with psum partial checksum,
8520  * or 0 if none, and return the 16 bit partial checksum.
8521  */
8522 unsigned
8523 bcksum(uchar_t *bp, int len, unsigned int psum)
8524 {
8525 	int odd = len & 1;
8526 	extern unsigned int ip_ocsum();
8527 
8528 	if (((intptr_t)bp & 1) == 0 && !odd) {
8529 		/*
8530 		 * Bp is 16 bit aligned and len is multiple of 16 bit word.
8531 		 */
8532 		return (ip_ocsum((ushort_t *)bp, len >> 1, psum));
8533 	}
8534 	if (((intptr_t)bp & 1) != 0) {
8535 		/*
8536 		 * Bp isn't 16 bit aligned.
8537 		 */
8538 		unsigned int tsum;
8539 
8540 #ifdef _LITTLE_ENDIAN
8541 		psum += *bp;
8542 #else
8543 		psum += *bp << 8;
8544 #endif
8545 		len--;
8546 		bp++;
8547 		tsum = ip_ocsum((ushort_t *)bp, len >> 1, 0);
8548 		psum += (tsum << 8) & 0xffff | (tsum >> 8);
8549 		if (len & 1) {
8550 			bp += len - 1;
8551 #ifdef _LITTLE_ENDIAN
8552 			psum += *bp << 8;
8553 #else
8554 			psum += *bp;
8555 #endif
8556 		}
8557 	} else {
8558 		/*
8559 		 * Bp is 16 bit aligned.
8560 		 */
8561 		psum = ip_ocsum((ushort_t *)bp, len >> 1, psum);
8562 		if (odd) {
8563 			bp += len - 1;
8564 #ifdef _LITTLE_ENDIAN
8565 			psum += *bp;
8566 #else
8567 			psum += *bp << 8;
8568 #endif
8569 		}
8570 	}
8571 	/*
8572 	 * Normalize psum to 16 bits before returning the new partial
8573 	 * checksum. The max psum value before normalization is 0x3FDFE.
8574 	 */
8575 	return ((psum >> 16) + (psum & 0xFFFF));
8576 }
8577 
8578 boolean_t
8579 is_vmloaned_mblk(mblk_t *mp, multidata_t *mmd, pdesc_t *pd)
8580 {
8581 	boolean_t rc;
8582 
8583 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8584 	if (DB_TYPE(mp) == M_DATA) {
8585 		rc = (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0);
8586 	} else {
8587 		pattrinfo_t zcopy_attr = {PATTR_ZCOPY};
8588 
8589 		ASSERT(mmd != NULL);
8590 		rc = (mmd_getpattr(mmd, pd, &zcopy_attr) != NULL);
8591 	}
8592 	return (rc);
8593 }
8594 
8595 void
8596 freemsgchain(mblk_t *mp)
8597 {
8598 	mblk_t	*next;
8599 
8600 	while (mp != NULL) {
8601 		next = mp->b_next;
8602 		mp->b_next = NULL;
8603 
8604 		freemsg(mp);
8605 		mp = next;
8606 	}
8607 }
8608 
8609 mblk_t *
8610 copymsgchain(mblk_t *mp)
8611 {
8612 	mblk_t	*nmp = NULL;
8613 	mblk_t	**nmpp = &nmp;
8614 
8615 	for (; mp != NULL; mp = mp->b_next) {
8616 		if ((*nmpp = copymsg(mp)) == NULL) {
8617 			freemsgchain(nmp);
8618 			return (NULL);
8619 		}
8620 
8621 		nmpp = &((*nmpp)->b_next);
8622 	}
8623 
8624 	return (nmp);
8625 }
8626 
8627 /* NOTE: Do not add code after this point. */
8628 #undef QLOCK
8629 
8630 /*
8631  * replacement for QLOCK macro for those that can't use it.
8632  */
8633 kmutex_t *
8634 QLOCK(queue_t *q)
8635 {
8636 	return (&(q)->q_lock);
8637 }
8638 
8639 /*
8640  * Dummy runqueues/queuerun functions functions for backwards compatibility.
8641  */
8642 #undef runqueues
8643 void
8644 runqueues(void)
8645 {
8646 }
8647 
8648 #undef queuerun
8649 void
8650 queuerun(void)
8651 {
8652 }
8653 
8654 /*
8655  * Initialize the STR stack instance, which tracks autopush and persistent
8656  * links.
8657  */
8658 /* ARGSUSED */
8659 static void *
8660 str_stack_init(netstackid_t stackid, netstack_t *ns)
8661 {
8662 	str_stack_t	*ss;
8663 	int i;
8664 
8665 	ss = (str_stack_t *)kmem_zalloc(sizeof (*ss), KM_SLEEP);
8666 	ss->ss_netstack = ns;
8667 
8668 	/*
8669 	 * set up autopush
8670 	 */
8671 	sad_initspace(ss);
8672 
8673 	/*
8674 	 * set up mux_node structures.
8675 	 */
8676 	ss->ss_devcnt = devcnt;	/* In case it should change before free */
8677 	ss->ss_mux_nodes = kmem_zalloc((sizeof (struct mux_node) *
8678 	    ss->ss_devcnt), KM_SLEEP);
8679 	for (i = 0; i < ss->ss_devcnt; i++)
8680 		ss->ss_mux_nodes[i].mn_imaj = i;
8681 	return (ss);
8682 }
8683 
8684 /*
8685  * Note: run at zone shutdown and not destroy so that the PLINKs are
8686  * gone by the time other cleanup happens from the destroy callbacks.
8687  */
8688 static void
8689 str_stack_shutdown(netstackid_t stackid, void *arg)
8690 {
8691 	str_stack_t *ss = (str_stack_t *)arg;
8692 	int i;
8693 	cred_t *cr;
8694 
8695 	cr = zone_get_kcred(netstackid_to_zoneid(stackid));
8696 	ASSERT(cr != NULL);
8697 
8698 	/* Undo all the I_PLINKs for this zone */
8699 	for (i = 0; i < ss->ss_devcnt; i++) {
8700 		struct mux_edge		*ep;
8701 		ldi_handle_t		lh;
8702 		ldi_ident_t		li;
8703 		int			ret;
8704 		int			rval;
8705 		dev_t			rdev;
8706 
8707 		ep = ss->ss_mux_nodes[i].mn_outp;
8708 		if (ep == NULL)
8709 			continue;
8710 		ret = ldi_ident_from_major((major_t)i, &li);
8711 		if (ret != 0) {
8712 			continue;
8713 		}
8714 		rdev = ep->me_dev;
8715 		ret = ldi_open_by_dev(&rdev, OTYP_CHR, FREAD|FWRITE,
8716 		    cr, &lh, li);
8717 		if (ret != 0) {
8718 			ldi_ident_release(li);
8719 			continue;
8720 		}
8721 
8722 		ret = ldi_ioctl(lh, I_PUNLINK, (intptr_t)MUXID_ALL, FKIOCTL,
8723 		    cr, &rval);
8724 		if (ret) {
8725 			(void) ldi_close(lh, FREAD|FWRITE, cr);
8726 			ldi_ident_release(li);
8727 			continue;
8728 		}
8729 		(void) ldi_close(lh, FREAD|FWRITE, cr);
8730 
8731 		/* Close layered handles */
8732 		ldi_ident_release(li);
8733 	}
8734 	crfree(cr);
8735 
8736 	sad_freespace(ss);
8737 
8738 	kmem_free(ss->ss_mux_nodes, sizeof (struct mux_node) * ss->ss_devcnt);
8739 	ss->ss_mux_nodes = NULL;
8740 }
8741 
8742 /*
8743  * Free the structure; str_stack_shutdown did the other cleanup work.
8744  */
8745 /* ARGSUSED */
8746 static void
8747 str_stack_fini(netstackid_t stackid, void *arg)
8748 {
8749 	str_stack_t	*ss = (str_stack_t *)arg;
8750 
8751 	kmem_free(ss, sizeof (*ss));
8752 }
8753