xref: /titanic_52/usr/src/uts/common/os/strsubr.c (revision 50c83d09652262aba75a6182b3203c80b48b092b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
23 /*	  All Rights Reserved  	*/
24 
25 
26 /*
27  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
28  * Use is subject to license terms.
29  */
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #include <sys/types.h>
34 #include <sys/sysmacros.h>
35 #include <sys/param.h>
36 #include <sys/errno.h>
37 #include <sys/signal.h>
38 #include <sys/proc.h>
39 #include <sys/conf.h>
40 #include <sys/cred.h>
41 #include <sys/user.h>
42 #include <sys/vnode.h>
43 #include <sys/file.h>
44 #include <sys/session.h>
45 #include <sys/stream.h>
46 #include <sys/strsubr.h>
47 #include <sys/stropts.h>
48 #include <sys/poll.h>
49 #include <sys/systm.h>
50 #include <sys/cpuvar.h>
51 #include <sys/uio.h>
52 #include <sys/cmn_err.h>
53 #include <sys/priocntl.h>
54 #include <sys/procset.h>
55 #include <sys/vmem.h>
56 #include <sys/bitmap.h>
57 #include <sys/kmem.h>
58 #include <sys/siginfo.h>
59 #include <sys/vtrace.h>
60 #include <sys/callb.h>
61 #include <sys/debug.h>
62 #include <sys/modctl.h>
63 #include <sys/vmsystm.h>
64 #include <vm/page.h>
65 #include <sys/atomic.h>
66 #include <sys/suntpi.h>
67 #include <sys/strlog.h>
68 #include <sys/promif.h>
69 #include <sys/project.h>
70 #include <sys/vm.h>
71 #include <sys/taskq.h>
72 #include <sys/sunddi.h>
73 #include <sys/sunldi_impl.h>
74 #include <sys/strsun.h>
75 #include <sys/isa_defs.h>
76 #include <sys/multidata.h>
77 #include <sys/pattr.h>
78 #include <sys/strft.h>
79 #include <sys/zone.h>
80 
81 #define	O_SAMESTR(q)	(((q)->q_next) && \
82 	(((q)->q_flag & QREADR) == ((q)->q_next->q_flag & QREADR)))
83 
84 /*
85  * WARNING:
86  * The variables and routines in this file are private, belonging
87  * to the STREAMS subsystem. These should not be used by modules
88  * or drivers. Compatibility will not be guaranteed.
89  */
90 
91 /*
92  * Id value used to distinguish between different multiplexor links.
93  */
94 static int32_t lnk_id = 0;
95 
96 #define	STREAMS_LOPRI MINCLSYSPRI
97 static pri_t streams_lopri = STREAMS_LOPRI;
98 
99 #define	STRSTAT(x)	(str_statistics.x.value.ui64++)
100 typedef struct str_stat {
101 	kstat_named_t	sqenables;
102 	kstat_named_t	stenables;
103 	kstat_named_t	syncqservice;
104 	kstat_named_t	freebs;
105 	kstat_named_t	qwr_outer;
106 	kstat_named_t	rservice;
107 	kstat_named_t	strwaits;
108 	kstat_named_t	taskqfails;
109 	kstat_named_t	bufcalls;
110 	kstat_named_t	qhelps;
111 	kstat_named_t	qremoved;
112 	kstat_named_t	sqremoved;
113 	kstat_named_t	bcwaits;
114 	kstat_named_t	sqtoomany;
115 } str_stat_t;
116 
117 static str_stat_t str_statistics = {
118 	{ "sqenables",		KSTAT_DATA_UINT64 },
119 	{ "stenables",		KSTAT_DATA_UINT64 },
120 	{ "syncqservice",	KSTAT_DATA_UINT64 },
121 	{ "freebs",		KSTAT_DATA_UINT64 },
122 	{ "qwr_outer",		KSTAT_DATA_UINT64 },
123 	{ "rservice",		KSTAT_DATA_UINT64 },
124 	{ "strwaits",		KSTAT_DATA_UINT64 },
125 	{ "taskqfails",		KSTAT_DATA_UINT64 },
126 	{ "bufcalls",		KSTAT_DATA_UINT64 },
127 	{ "qhelps",		KSTAT_DATA_UINT64 },
128 	{ "qremoved",		KSTAT_DATA_UINT64 },
129 	{ "sqremoved",		KSTAT_DATA_UINT64 },
130 	{ "bcwaits",		KSTAT_DATA_UINT64 },
131 	{ "sqtoomany",		KSTAT_DATA_UINT64 },
132 };
133 
134 static kstat_t *str_kstat;
135 
136 /*
137  * qrunflag was used previously to control background scheduling of queues. It
138  * is not used anymore, but kept here in case some module still wants to access
139  * it via qready() and setqsched macros.
140  */
141 char qrunflag;			/*  Unused */
142 
143 /*
144  * Most of the streams scheduling is done via task queues. Task queues may fail
145  * for non-sleep dispatches, so there are two backup threads servicing failed
146  * requests for queues and syncqs. Both of these threads also service failed
147  * dispatches freebs requests. Queues are put in the list specified by `qhead'
148  * and `qtail' pointers, syncqs use `sqhead' and `sqtail' pointers and freebs
149  * requests are put into `freebs_list' which has no tail pointer. All three
150  * lists are protected by a single `service_queue' lock and use
151  * `services_to_run' condition variable for signaling background threads. Use of
152  * a single lock should not be a problem because it is only used under heavy
153  * loads when task queues start to fail and at that time it may be a good idea
154  * to throttle scheduling requests.
155  *
156  * NOTE: queues and syncqs should be scheduled by two separate threads because
157  * queue servicing may be blocked waiting for a syncq which may be also
158  * scheduled for background execution. This may create a deadlock when only one
159  * thread is used for both.
160  */
161 
162 static taskq_t *streams_taskq;		/* Used for most STREAMS scheduling */
163 
164 static kmutex_t service_queue;		/* protects all of servicing vars */
165 static kcondvar_t services_to_run;	/* wake up background service thread */
166 static kcondvar_t syncqs_to_run;	/* wake up background service thread */
167 
168 /*
169  * List of queues scheduled for background processing dueue to lack of resources
170  * in the task queues. Protected by service_queue lock;
171  */
172 static struct queue *qhead;
173 static struct queue *qtail;
174 
175 /*
176  * Same list for syncqs
177  */
178 static syncq_t *sqhead;
179 static syncq_t *sqtail;
180 
181 static mblk_t *freebs_list;	/* list of buffers to free */
182 
183 /*
184  * Backup threads for servicing queues and syncqs
185  */
186 kthread_t *streams_qbkgrnd_thread;
187 kthread_t *streams_sqbkgrnd_thread;
188 
189 /*
190  * Bufcalls related variables.
191  */
192 struct bclist	strbcalls;	/* list of waiting bufcalls */
193 kmutex_t	strbcall_lock;	/* protects bufcall list (strbcalls) */
194 kcondvar_t	strbcall_cv;	/* Signaling when a bufcall is added */
195 kmutex_t	bcall_monitor;	/* sleep/wakeup style monitor */
196 kcondvar_t	bcall_cv;	/* wait 'till executing bufcall completes */
197 kthread_t	*bc_bkgrnd_thread; /* Thread to service bufcall requests */
198 
199 kmutex_t	strresources;	/* protects global resources */
200 kmutex_t	muxifier;	/* single-threads multiplexor creation */
201 
202 extern void	time_to_wait(clock_t *, clock_t);
203 
204 /*
205  * run_queues is no longer used, but is kept in case some 3-d party
206  * module/driver decides to use it.
207  */
208 int run_queues = 0;
209 
210 /*
211  * sq_max_size is the depth of the syncq (in number of messages) before
212  * qfill_syncq() starts QFULL'ing destination queues. As its primary
213  * consumer - IP is no longer D_MTPERMOD, but there may be other
214  * modules/drivers depend on this syncq flow control, we prefer to
215  * choose a large number as the default value. For potential
216  * performance gain, this value is tunable in /etc/system.
217  */
218 int sq_max_size = 10000;
219 
220 /*
221  * the number of ciputctrl structures per syncq and stream we create when
222  * needed.
223  */
224 int n_ciputctrl;
225 int max_n_ciputctrl = 16;
226 /*
227  * if n_ciputctrl is < min_n_ciputctrl don't even create ciputctrl_cache.
228  */
229 int min_n_ciputctrl = 2;
230 
231 static struct mux_node *mux_nodes;	/* mux info for cycle checking */
232 
233 /*
234  * Per-driver/module syncqs
235  * ========================
236  *
237  * For drivers/modules that use PERMOD or outer syncqs we keep a list of
238  * perdm structures, new entries being added (and new syncqs allocated) when
239  * setq() encounters a module/driver with a streamtab that it hasn't seen
240  * before.
241  * The reason for this mechanism is that some modules and drivers share a
242  * common streamtab and it is necessary for those modules and drivers to also
243  * share a common PERMOD syncq.
244  *
245  * perdm_list --> dm_str == streamtab_1
246  *                dm_sq == syncq_1
247  *                dm_ref
248  *                dm_next --> dm_str == streamtab_2
249  *                            dm_sq == syncq_2
250  *                            dm_ref
251  *                            dm_next --> ... NULL
252  *
253  * The dm_ref field is incremented for each new driver/module that takes
254  * a reference to the perdm structure and hence shares the syncq.
255  * References are held in the fmodsw_impl_t structure for each STREAMS module
256  * or the dev_impl array (indexed by device major number) for each driver.
257  *
258  * perdm_list -> [dm_ref == 1] -> [dm_ref == 2] -> [dm_ref == 1] -> NULL
259  *		     ^                 ^ ^               ^
260  *                   |  ______________/  |               |
261  *                   | /                 |               |
262  * dev_impl:     ...|x|y|...          module A	      module B
263  *
264  * When a module/driver is unloaded the reference count is decremented and,
265  * when it falls to zero, the perdm structure is removed from the list and
266  * the syncq is freed (see rele_dm()).
267  */
268 perdm_t *perdm_list = NULL;
269 static krwlock_t perdm_rwlock;
270 cdevsw_impl_t *devimpl;
271 
272 extern struct qinit strdata;
273 extern struct qinit stwdata;
274 
275 static void runservice(queue_t *);
276 static void streams_bufcall_service(void);
277 static void streams_qbkgrnd_service(void);
278 static void streams_sqbkgrnd_service(void);
279 static syncq_t *new_syncq(void);
280 static void free_syncq(syncq_t *);
281 static void outer_insert(syncq_t *, syncq_t *);
282 static void outer_remove(syncq_t *, syncq_t *);
283 static void write_now(syncq_t *);
284 static void clr_qfull(queue_t *);
285 static void enable_svc(queue_t *);
286 static void runbufcalls(void);
287 static void sqenable(syncq_t *);
288 static void sqfill_events(syncq_t *, queue_t *, mblk_t *, void (*)());
289 static void wait_q_syncq(queue_t *);
290 static void backenable_insertedq(queue_t *);
291 
292 static void queue_service(queue_t *);
293 static void stream_service(stdata_t *);
294 static void syncq_service(syncq_t *);
295 static void qwriter_outer_service(syncq_t *);
296 static void mblk_free(mblk_t *);
297 #ifdef DEBUG
298 static int qprocsareon(queue_t *);
299 #endif
300 
301 static void set_nfsrv_ptr(queue_t *, queue_t *, queue_t *, queue_t *);
302 static void reset_nfsrv_ptr(queue_t *, queue_t *);
303 
304 static void sq_run_events(syncq_t *);
305 static int propagate_syncq(queue_t *);
306 
307 static void	blocksq(syncq_t *, ushort_t, int);
308 static void	unblocksq(syncq_t *, ushort_t, int);
309 static int	dropsq(syncq_t *, uint16_t);
310 static void	emptysq(syncq_t *);
311 static sqlist_t *sqlist_alloc(struct stdata *, int);
312 static void	sqlist_free(sqlist_t *);
313 static sqlist_t	*sqlist_build(queue_t *, struct stdata *, boolean_t);
314 static void	sqlist_insert(sqlist_t *, syncq_t *);
315 static void	sqlist_insertall(sqlist_t *, queue_t *);
316 
317 static void	strsetuio(stdata_t *);
318 
319 struct kmem_cache *stream_head_cache;
320 struct kmem_cache *queue_cache;
321 struct kmem_cache *syncq_cache;
322 struct kmem_cache *qband_cache;
323 struct kmem_cache *linkinfo_cache;
324 struct kmem_cache *ciputctrl_cache = NULL;
325 
326 static linkinfo_t *linkinfo_list;
327 
328 /*
329  *  Qinit structure and Module_info structures
330  *	for passthru read and write queues
331  */
332 
333 static void pass_wput(queue_t *, mblk_t *);
334 static queue_t *link_addpassthru(stdata_t *);
335 static void link_rempassthru(queue_t *);
336 
337 struct  module_info passthru_info = {
338 	0,
339 	"passthru",
340 	0,
341 	INFPSZ,
342 	STRHIGH,
343 	STRLOW
344 };
345 
346 struct  qinit passthru_rinit = {
347 	(int (*)())putnext,
348 	NULL,
349 	NULL,
350 	NULL,
351 	NULL,
352 	&passthru_info,
353 	NULL
354 };
355 
356 struct  qinit passthru_winit = {
357 	(int (*)()) pass_wput,
358 	NULL,
359 	NULL,
360 	NULL,
361 	NULL,
362 	&passthru_info,
363 	NULL
364 };
365 
366 /*
367  * Special form of assertion: verify that X implies Y i.e. when X is true Y
368  * should also be true.
369  */
370 #define	IMPLY(X, Y)	ASSERT(!(X) || (Y))
371 
372 /*
373  * Logical equivalence. Verify that both X and Y are either TRUE or FALSE.
374  */
375 #define	EQUIV(X, Y)	{ IMPLY(X, Y); IMPLY(Y, X); }
376 
377 /*
378  * Verify correctness of list head/tail pointers.
379  */
380 #define	LISTCHECK(head, tail, link) {				\
381 	EQUIV(head, tail);					\
382 	IMPLY(tail != NULL, tail->link == NULL);		\
383 }
384 
385 /*
386  * Enqueue a list element `el' in the end of a list denoted by `head' and `tail'
387  * using a `link' field.
388  */
389 #define	ENQUEUE(el, head, tail, link) {				\
390 	ASSERT(el->link == NULL);				\
391 	LISTCHECK(head, tail, link);				\
392 	if (head == NULL)					\
393 		head = el;					\
394 	else							\
395 		tail->link = el;				\
396 	tail = el;						\
397 }
398 
399 /*
400  * Dequeue the first element of the list denoted by `head' and `tail' pointers
401  * using a `link' field and put result into `el'.
402  */
403 #define	DQ(el, head, tail, link) {				\
404 	LISTCHECK(head, tail, link);				\
405 	el = head;						\
406 	if (head != NULL) {					\
407 		head = head->link;				\
408 		if (head == NULL)				\
409 			tail = NULL;				\
410 		el->link = NULL;				\
411 	}							\
412 }
413 
414 /*
415  * Remove `el' from the list using `chase' and `curr' pointers and return result
416  * in `succeed'.
417  */
418 #define	RMQ(el, head, tail, link, chase, curr, succeed) {	\
419 	LISTCHECK(head, tail, link);				\
420 	chase = NULL;						\
421 	succeed = 0;						\
422 	for (curr = head; (curr != el) && (curr != NULL); curr = curr->link) \
423 		chase = curr;					\
424 	if (curr != NULL) {					\
425 		succeed = 1;					\
426 		ASSERT(curr == el);				\
427 		if (chase != NULL)				\
428 			chase->link = curr->link;		\
429 		else						\
430 			head = curr->link;			\
431 		curr->link = NULL;				\
432 		if (curr == tail)				\
433 			tail = chase;				\
434 	}							\
435 	LISTCHECK(head, tail, link);				\
436 }
437 
438 /* Handling of delayed messages on the inner syncq. */
439 
440 /*
441  * DEBUG versions should use function versions (to simplify tracing) and
442  * non-DEBUG kernels should use macro versions.
443  */
444 
445 /*
446  * Put a queue on the syncq list of queues.
447  * Assumes SQLOCK held.
448  */
449 #define	SQPUT_Q(sq, qp)							\
450 {									\
451 	ASSERT(MUTEX_HELD(SQLOCK(sq)));					\
452 	if (!(qp->q_sqflags & Q_SQQUEUED)) {				\
453 		/* The queue should not be linked anywhere */		\
454 		ASSERT((qp->q_sqprev == NULL) && (qp->q_sqnext == NULL)); \
455 		/* Head and tail may only be NULL simultaneously */	\
456 		EQUIV(sq->sq_head, sq->sq_tail);			\
457 		/* Queue may be only enqueyed on its syncq */		\
458 		ASSERT(sq == qp->q_syncq);				\
459 		/* Check the correctness of SQ_MESSAGES flag */		\
460 		EQUIV(sq->sq_head, (sq->sq_flags & SQ_MESSAGES));	\
461 		/* Sanity check first/last elements of the list */	\
462 		IMPLY(sq->sq_head != NULL, sq->sq_head->q_sqprev == NULL);\
463 		IMPLY(sq->sq_tail != NULL, sq->sq_tail->q_sqnext == NULL);\
464 		/*							\
465 		 * Sanity check of priority field: empty queue should	\
466 		 * have zero priority					\
467 		 * and nqueues equal to zero.				\
468 		 */							\
469 		IMPLY(sq->sq_head == NULL, sq->sq_pri == 0);		\
470 		/* Sanity check of sq_nqueues field */			\
471 		EQUIV(sq->sq_head, sq->sq_nqueues);			\
472 		if (sq->sq_head == NULL) {				\
473 			sq->sq_head = sq->sq_tail = qp;			\
474 			sq->sq_flags |= SQ_MESSAGES;			\
475 		} else if (qp->q_spri == 0) {				\
476 			qp->q_sqprev = sq->sq_tail;			\
477 			sq->sq_tail->q_sqnext = qp;			\
478 			sq->sq_tail = qp;				\
479 		} else {						\
480 			/*						\
481 			 * Put this queue in priority order: higher	\
482 			 * priority gets closer to the head.		\
483 			 */						\
484 			queue_t **qpp = &sq->sq_tail;			\
485 			queue_t *qnext = NULL;				\
486 									\
487 			while (*qpp != NULL && qp->q_spri > (*qpp)->q_spri) { \
488 				qnext = *qpp;				\
489 				qpp = &(*qpp)->q_sqprev;		\
490 			}						\
491 			qp->q_sqnext = qnext;				\
492 			qp->q_sqprev = *qpp;				\
493 			if (*qpp != NULL) {				\
494 				(*qpp)->q_sqnext = qp;			\
495 			} else {					\
496 				sq->sq_head = qp;			\
497 				sq->sq_pri = sq->sq_head->q_spri;	\
498 			}						\
499 			*qpp = qp;					\
500 		}							\
501 		qp->q_sqflags |= Q_SQQUEUED;				\
502 		qp->q_sqtstamp = lbolt;					\
503 		sq->sq_nqueues++;					\
504 	}								\
505 }
506 
507 /*
508  * Remove a queue from the syncq list
509  * Assumes SQLOCK held.
510  */
511 #define	SQRM_Q(sq, qp)							\
512 	{								\
513 		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
514 		ASSERT(qp->q_sqflags & Q_SQQUEUED);			\
515 		ASSERT(sq->sq_head != NULL && sq->sq_tail != NULL);	\
516 		ASSERT((sq->sq_flags & SQ_MESSAGES) != 0);		\
517 		/* Check that the queue is actually in the list */	\
518 		ASSERT(qp->q_sqnext != NULL || sq->sq_tail == qp);	\
519 		ASSERT(qp->q_sqprev != NULL || sq->sq_head == qp);	\
520 		ASSERT(sq->sq_nqueues != 0);				\
521 		if (qp->q_sqprev == NULL) {				\
522 			/* First queue on list, make head q_sqnext */	\
523 			sq->sq_head = qp->q_sqnext;			\
524 		} else {						\
525 			/* Make prev->next == next */			\
526 			qp->q_sqprev->q_sqnext = qp->q_sqnext;		\
527 		}							\
528 		if (qp->q_sqnext == NULL) {				\
529 			/* Last queue on list, make tail sqprev */	\
530 			sq->sq_tail = qp->q_sqprev;			\
531 		} else {						\
532 			/* Make next->prev == prev */			\
533 			qp->q_sqnext->q_sqprev = qp->q_sqprev;		\
534 		}							\
535 		/* clear out references on this queue */		\
536 		qp->q_sqprev = qp->q_sqnext = NULL;			\
537 		qp->q_sqflags &= ~Q_SQQUEUED;				\
538 		/* If there is nothing queued, clear SQ_MESSAGES */	\
539 		if (sq->sq_head != NULL) {				\
540 			sq->sq_pri = sq->sq_head->q_spri;		\
541 		} else	{						\
542 			sq->sq_flags &= ~SQ_MESSAGES;			\
543 			sq->sq_pri = 0;					\
544 		}							\
545 		sq->sq_nqueues--;					\
546 		ASSERT(sq->sq_head != NULL || sq->sq_evhead != NULL ||	\
547 		    (sq->sq_flags & SQ_QUEUED) == 0);			\
548 	}
549 
550 /* Hide the definition from the header file. */
551 #ifdef SQPUT_MP
552 #undef SQPUT_MP
553 #endif
554 
555 /*
556  * Put a message on the queue syncq.
557  * Assumes QLOCK held.
558  */
559 #define	SQPUT_MP(qp, mp)						\
560 	{								\
561 		ASSERT(MUTEX_HELD(QLOCK(qp)));				\
562 		ASSERT(qp->q_sqhead == NULL ||				\
563 		    (qp->q_sqtail != NULL &&				\
564 		    qp->q_sqtail->b_next == NULL));			\
565 		qp->q_syncqmsgs++;					\
566 		ASSERT(qp->q_syncqmsgs != 0);	/* Wraparound */	\
567 		if (qp->q_sqhead == NULL) {				\
568 			qp->q_sqhead = qp->q_sqtail = mp;		\
569 		} else {						\
570 			qp->q_sqtail->b_next = mp;			\
571 			qp->q_sqtail = mp;				\
572 		}							\
573 		ASSERT(qp->q_syncqmsgs > 0);				\
574 	}
575 
576 #define	SQ_PUTCOUNT_SETFAST_LOCKED(sq) {				\
577 		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
578 		if ((sq)->sq_ciputctrl != NULL) {			\
579 			int i;						\
580 			int nlocks = (sq)->sq_nciputctrl;		\
581 			ciputctrl_t *cip = (sq)->sq_ciputctrl;		\
582 			ASSERT((sq)->sq_type & SQ_CIPUT);		\
583 			for (i = 0; i <= nlocks; i++) {			\
584 				ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
585 				cip[i].ciputctrl_count |= SQ_FASTPUT;	\
586 			}						\
587 		}							\
588 	}
589 
590 
591 #define	SQ_PUTCOUNT_CLRFAST_LOCKED(sq) {				\
592 		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
593 		if ((sq)->sq_ciputctrl != NULL) {			\
594 			int i;						\
595 			int nlocks = (sq)->sq_nciputctrl;		\
596 			ciputctrl_t *cip = (sq)->sq_ciputctrl;		\
597 			ASSERT((sq)->sq_type & SQ_CIPUT);		\
598 			for (i = 0; i <= nlocks; i++) {			\
599 				ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
600 				cip[i].ciputctrl_count &= ~SQ_FASTPUT;	\
601 			}						\
602 		}							\
603 	}
604 
605 /*
606  * Run service procedures for all queues in the stream head.
607  */
608 #define	STR_SERVICE(stp, q) {						\
609 	ASSERT(MUTEX_HELD(&stp->sd_qlock));				\
610 	while (stp->sd_qhead != NULL) {					\
611 		DQ(q, stp->sd_qhead, stp->sd_qtail, q_link);		\
612 		ASSERT(stp->sd_nqueues > 0);				\
613 		stp->sd_nqueues--;					\
614 		ASSERT(!(q->q_flag & QINSERVICE));			\
615 		mutex_exit(&stp->sd_qlock);				\
616 		queue_service(q);					\
617 		mutex_enter(&stp->sd_qlock);				\
618 	}								\
619 	ASSERT(stp->sd_nqueues == 0);					\
620 	ASSERT((stp->sd_qhead == NULL) && (stp->sd_qtail == NULL));	\
621 }
622 
623 /*
624  * constructor/destructor routines for the stream head cache
625  */
626 /* ARGSUSED */
627 static int
628 stream_head_constructor(void *buf, void *cdrarg, int kmflags)
629 {
630 	stdata_t *stp = buf;
631 
632 	mutex_init(&stp->sd_lock, NULL, MUTEX_DEFAULT, NULL);
633 	mutex_init(&stp->sd_reflock, NULL, MUTEX_DEFAULT, NULL);
634 	mutex_init(&stp->sd_qlock, NULL, MUTEX_DEFAULT, NULL);
635 	cv_init(&stp->sd_monitor, NULL, CV_DEFAULT, NULL);
636 	cv_init(&stp->sd_iocmonitor, NULL, CV_DEFAULT, NULL);
637 	cv_init(&stp->sd_refmonitor, NULL, CV_DEFAULT, NULL);
638 	cv_init(&stp->sd_qcv, NULL, CV_DEFAULT, NULL);
639 	cv_init(&stp->sd_zcopy_wait, NULL, CV_DEFAULT, NULL);
640 	stp->sd_wrq = NULL;
641 
642 	return (0);
643 }
644 
645 /* ARGSUSED */
646 static void
647 stream_head_destructor(void *buf, void *cdrarg)
648 {
649 	stdata_t *stp = buf;
650 
651 	mutex_destroy(&stp->sd_lock);
652 	mutex_destroy(&stp->sd_reflock);
653 	mutex_destroy(&stp->sd_qlock);
654 	cv_destroy(&stp->sd_monitor);
655 	cv_destroy(&stp->sd_iocmonitor);
656 	cv_destroy(&stp->sd_refmonitor);
657 	cv_destroy(&stp->sd_qcv);
658 	cv_destroy(&stp->sd_zcopy_wait);
659 }
660 
661 /*
662  * constructor/destructor routines for the queue cache
663  */
664 /* ARGSUSED */
665 static int
666 queue_constructor(void *buf, void *cdrarg, int kmflags)
667 {
668 	queinfo_t *qip = buf;
669 	queue_t *qp = &qip->qu_rqueue;
670 	queue_t *wqp = &qip->qu_wqueue;
671 	syncq_t	*sq = &qip->qu_syncq;
672 
673 	qp->q_first = NULL;
674 	qp->q_link = NULL;
675 	qp->q_count = 0;
676 	qp->q_mblkcnt = 0;
677 	qp->q_sqhead = NULL;
678 	qp->q_sqtail = NULL;
679 	qp->q_sqnext = NULL;
680 	qp->q_sqprev = NULL;
681 	qp->q_sqflags = 0;
682 	qp->q_rwcnt = 0;
683 	qp->q_spri = 0;
684 
685 	mutex_init(QLOCK(qp), NULL, MUTEX_DEFAULT, NULL);
686 	cv_init(&qp->q_wait, NULL, CV_DEFAULT, NULL);
687 
688 	wqp->q_first = NULL;
689 	wqp->q_link = NULL;
690 	wqp->q_count = 0;
691 	wqp->q_mblkcnt = 0;
692 	wqp->q_sqhead = NULL;
693 	wqp->q_sqtail = NULL;
694 	wqp->q_sqnext = NULL;
695 	wqp->q_sqprev = NULL;
696 	wqp->q_sqflags = 0;
697 	wqp->q_rwcnt = 0;
698 	wqp->q_spri = 0;
699 
700 	mutex_init(QLOCK(wqp), NULL, MUTEX_DEFAULT, NULL);
701 	cv_init(&wqp->q_wait, NULL, CV_DEFAULT, NULL);
702 
703 	sq->sq_head = NULL;
704 	sq->sq_tail = NULL;
705 	sq->sq_evhead = NULL;
706 	sq->sq_evtail = NULL;
707 	sq->sq_callbpend = NULL;
708 	sq->sq_outer = NULL;
709 	sq->sq_onext = NULL;
710 	sq->sq_oprev = NULL;
711 	sq->sq_next = NULL;
712 	sq->sq_svcflags = 0;
713 	sq->sq_servcount = 0;
714 	sq->sq_needexcl = 0;
715 	sq->sq_nqueues = 0;
716 	sq->sq_pri = 0;
717 
718 	mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
719 	cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
720 	cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
721 
722 	return (0);
723 }
724 
725 /* ARGSUSED */
726 static void
727 queue_destructor(void *buf, void *cdrarg)
728 {
729 	queinfo_t *qip = buf;
730 	queue_t *qp = &qip->qu_rqueue;
731 	queue_t *wqp = &qip->qu_wqueue;
732 	syncq_t	*sq = &qip->qu_syncq;
733 
734 	ASSERT(qp->q_sqhead == NULL);
735 	ASSERT(wqp->q_sqhead == NULL);
736 	ASSERT(qp->q_sqnext == NULL);
737 	ASSERT(wqp->q_sqnext == NULL);
738 	ASSERT(qp->q_rwcnt == 0);
739 	ASSERT(wqp->q_rwcnt == 0);
740 
741 	mutex_destroy(&qp->q_lock);
742 	cv_destroy(&qp->q_wait);
743 
744 	mutex_destroy(&wqp->q_lock);
745 	cv_destroy(&wqp->q_wait);
746 
747 	mutex_destroy(&sq->sq_lock);
748 	cv_destroy(&sq->sq_wait);
749 	cv_destroy(&sq->sq_exitwait);
750 }
751 
752 /*
753  * constructor/destructor routines for the syncq cache
754  */
755 /* ARGSUSED */
756 static int
757 syncq_constructor(void *buf, void *cdrarg, int kmflags)
758 {
759 	syncq_t	*sq = buf;
760 
761 	bzero(buf, sizeof (syncq_t));
762 
763 	mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
764 	cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
765 	cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
766 
767 	return (0);
768 }
769 
770 /* ARGSUSED */
771 static void
772 syncq_destructor(void *buf, void *cdrarg)
773 {
774 	syncq_t	*sq = buf;
775 
776 	ASSERT(sq->sq_head == NULL);
777 	ASSERT(sq->sq_tail == NULL);
778 	ASSERT(sq->sq_evhead == NULL);
779 	ASSERT(sq->sq_evtail == NULL);
780 	ASSERT(sq->sq_callbpend == NULL);
781 	ASSERT(sq->sq_callbflags == 0);
782 	ASSERT(sq->sq_outer == NULL);
783 	ASSERT(sq->sq_onext == NULL);
784 	ASSERT(sq->sq_oprev == NULL);
785 	ASSERT(sq->sq_next == NULL);
786 	ASSERT(sq->sq_needexcl == 0);
787 	ASSERT(sq->sq_svcflags == 0);
788 	ASSERT(sq->sq_servcount == 0);
789 	ASSERT(sq->sq_nqueues == 0);
790 	ASSERT(sq->sq_pri == 0);
791 	ASSERT(sq->sq_count == 0);
792 	ASSERT(sq->sq_rmqcount == 0);
793 	ASSERT(sq->sq_cancelid == 0);
794 	ASSERT(sq->sq_ciputctrl == NULL);
795 	ASSERT(sq->sq_nciputctrl == 0);
796 	ASSERT(sq->sq_type == 0);
797 	ASSERT(sq->sq_flags == 0);
798 
799 	mutex_destroy(&sq->sq_lock);
800 	cv_destroy(&sq->sq_wait);
801 	cv_destroy(&sq->sq_exitwait);
802 }
803 
804 /* ARGSUSED */
805 static int
806 ciputctrl_constructor(void *buf, void *cdrarg, int kmflags)
807 {
808 	ciputctrl_t *cip = buf;
809 	int i;
810 
811 	for (i = 0; i < n_ciputctrl; i++) {
812 		cip[i].ciputctrl_count = SQ_FASTPUT;
813 		mutex_init(&cip[i].ciputctrl_lock, NULL, MUTEX_DEFAULT, NULL);
814 	}
815 
816 	return (0);
817 }
818 
819 /* ARGSUSED */
820 static void
821 ciputctrl_destructor(void *buf, void *cdrarg)
822 {
823 	ciputctrl_t *cip = buf;
824 	int i;
825 
826 	for (i = 0; i < n_ciputctrl; i++) {
827 		ASSERT(cip[i].ciputctrl_count & SQ_FASTPUT);
828 		mutex_destroy(&cip[i].ciputctrl_lock);
829 	}
830 }
831 
832 /*
833  * Init routine run from main at boot time.
834  */
835 void
836 strinit(void)
837 {
838 	int i;
839 	int ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus);
840 
841 	/*
842 	 * Set up mux_node structures.
843 	 */
844 	mux_nodes = kmem_zalloc((sizeof (struct mux_node) * devcnt), KM_SLEEP);
845 	for (i = 0; i < devcnt; i++)
846 		mux_nodes[i].mn_imaj = i;
847 
848 	stream_head_cache = kmem_cache_create("stream_head_cache",
849 		sizeof (stdata_t), 0,
850 		stream_head_constructor, stream_head_destructor, NULL,
851 		NULL, NULL, 0);
852 
853 	queue_cache = kmem_cache_create("queue_cache", sizeof (queinfo_t), 0,
854 		queue_constructor, queue_destructor, NULL, NULL, NULL, 0);
855 
856 	syncq_cache = kmem_cache_create("syncq_cache", sizeof (syncq_t), 0,
857 		syncq_constructor, syncq_destructor, NULL, NULL, NULL, 0);
858 
859 	qband_cache = kmem_cache_create("qband_cache",
860 		sizeof (qband_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
861 
862 	linkinfo_cache = kmem_cache_create("linkinfo_cache",
863 		sizeof (linkinfo_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
864 
865 	n_ciputctrl = ncpus;
866 	n_ciputctrl = 1 << highbit(n_ciputctrl - 1);
867 	ASSERT(n_ciputctrl >= 1);
868 	n_ciputctrl = MIN(n_ciputctrl, max_n_ciputctrl);
869 	if (n_ciputctrl >= min_n_ciputctrl) {
870 		ciputctrl_cache = kmem_cache_create("ciputctrl_cache",
871 			sizeof (ciputctrl_t) * n_ciputctrl,
872 			sizeof (ciputctrl_t), ciputctrl_constructor,
873 			ciputctrl_destructor, NULL, NULL, NULL, 0);
874 	}
875 
876 	streams_taskq = system_taskq;
877 
878 	if (streams_taskq == NULL)
879 		panic("strinit: no memory for streams taskq!");
880 
881 	bc_bkgrnd_thread = thread_create(NULL, 0,
882 	    streams_bufcall_service, NULL, 0, &p0, TS_RUN, streams_lopri);
883 
884 	streams_qbkgrnd_thread = thread_create(NULL, 0,
885 	    streams_qbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
886 
887 	streams_sqbkgrnd_thread = thread_create(NULL, 0,
888 	    streams_sqbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
889 
890 	/*
891 	 * Create STREAMS kstats.
892 	 */
893 	str_kstat = kstat_create("streams", 0, "strstat",
894 	    "net", KSTAT_TYPE_NAMED,
895 	    sizeof (str_statistics) / sizeof (kstat_named_t),
896 	    KSTAT_FLAG_VIRTUAL);
897 
898 	if (str_kstat != NULL) {
899 		str_kstat->ks_data = &str_statistics;
900 		kstat_install(str_kstat);
901 	}
902 
903 	/*
904 	 * TPI support routine initialisation.
905 	 */
906 	tpi_init();
907 }
908 
909 void
910 str_sendsig(vnode_t *vp, int event, uchar_t band, int error)
911 {
912 	struct stdata *stp;
913 
914 	ASSERT(vp->v_stream);
915 	stp = vp->v_stream;
916 	/* Have to hold sd_lock to prevent siglist from changing */
917 	mutex_enter(&stp->sd_lock);
918 	if (stp->sd_sigflags & event)
919 		strsendsig(stp->sd_siglist, event, band, error);
920 	mutex_exit(&stp->sd_lock);
921 }
922 
923 /*
924  * Send the "sevent" set of signals to a process.
925  * This might send more than one signal if the process is registered
926  * for multiple events. The caller should pass in an sevent that only
927  * includes the events for which the process has registered.
928  */
929 static void
930 dosendsig(proc_t *proc, int events, int sevent, k_siginfo_t *info,
931 	uchar_t band, int error)
932 {
933 	ASSERT(MUTEX_HELD(&proc->p_lock));
934 
935 	info->si_band = 0;
936 	info->si_errno = 0;
937 
938 	if (sevent & S_ERROR) {
939 		sevent &= ~S_ERROR;
940 		info->si_code = POLL_ERR;
941 		info->si_errno = error;
942 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
943 			"strsendsig:proc %p info %p", proc, info);
944 		sigaddq(proc, NULL, info, KM_NOSLEEP);
945 		info->si_errno = 0;
946 	}
947 	if (sevent & S_HANGUP) {
948 		sevent &= ~S_HANGUP;
949 		info->si_code = POLL_HUP;
950 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
951 			"strsendsig:proc %p info %p", proc, info);
952 		sigaddq(proc, NULL, info, KM_NOSLEEP);
953 	}
954 	if (sevent & S_HIPRI) {
955 		sevent &= ~S_HIPRI;
956 		info->si_code = POLL_PRI;
957 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
958 			"strsendsig:proc %p info %p", proc, info);
959 		sigaddq(proc, NULL, info, KM_NOSLEEP);
960 	}
961 	if (sevent & S_RDBAND) {
962 		sevent &= ~S_RDBAND;
963 		if (events & S_BANDURG)
964 			sigtoproc(proc, NULL, SIGURG);
965 		else
966 			sigtoproc(proc, NULL, SIGPOLL);
967 	}
968 	if (sevent & S_WRBAND) {
969 		sevent &= ~S_WRBAND;
970 		sigtoproc(proc, NULL, SIGPOLL);
971 	}
972 	if (sevent & S_INPUT) {
973 		sevent &= ~S_INPUT;
974 		info->si_code = POLL_IN;
975 		info->si_band = band;
976 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
977 			"strsendsig:proc %p info %p", proc, info);
978 		sigaddq(proc, NULL, info, KM_NOSLEEP);
979 		info->si_band = 0;
980 	}
981 	if (sevent & S_OUTPUT) {
982 		sevent &= ~S_OUTPUT;
983 		info->si_code = POLL_OUT;
984 		info->si_band = band;
985 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
986 			"strsendsig:proc %p info %p", proc, info);
987 		sigaddq(proc, NULL, info, KM_NOSLEEP);
988 		info->si_band = 0;
989 	}
990 	if (sevent & S_MSG) {
991 		sevent &= ~S_MSG;
992 		info->si_code = POLL_MSG;
993 		info->si_band = band;
994 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
995 			"strsendsig:proc %p info %p", proc, info);
996 		sigaddq(proc, NULL, info, KM_NOSLEEP);
997 		info->si_band = 0;
998 	}
999 	if (sevent & S_RDNORM) {
1000 		sevent &= ~S_RDNORM;
1001 		sigtoproc(proc, NULL, SIGPOLL);
1002 	}
1003 	if (sevent != 0) {
1004 		panic("strsendsig: unknown event(s) %x", sevent);
1005 	}
1006 }
1007 
1008 /*
1009  * Send SIGPOLL/SIGURG signal to all processes and process groups
1010  * registered on the given signal list that want a signal for at
1011  * least one of the specified events.
1012  *
1013  * Must be called with exclusive access to siglist (caller holding sd_lock).
1014  *
1015  * strioctl(I_SETSIG/I_ESETSIG) will only change siglist when holding
1016  * sd_lock and the ioctl code maintains a PID_HOLD on the pid structure
1017  * while it is in the siglist.
1018  *
1019  * For performance reasons (MP scalability) the code drops pidlock
1020  * when sending signals to a single process.
1021  * When sending to a process group the code holds
1022  * pidlock to prevent the membership in the process group from changing
1023  * while walking the p_pglink list.
1024  */
1025 void
1026 strsendsig(strsig_t *siglist, int event, uchar_t band, int error)
1027 {
1028 	strsig_t *ssp;
1029 	k_siginfo_t info;
1030 	struct pid *pidp;
1031 	proc_t  *proc;
1032 
1033 	info.si_signo = SIGPOLL;
1034 	info.si_errno = 0;
1035 	for (ssp = siglist; ssp; ssp = ssp->ss_next) {
1036 		int sevent;
1037 
1038 		sevent = ssp->ss_events & event;
1039 		if (sevent == 0)
1040 			continue;
1041 
1042 		if ((pidp = ssp->ss_pidp) == NULL) {
1043 			/* pid was released but still on event list */
1044 			continue;
1045 		}
1046 
1047 
1048 		if (ssp->ss_pid > 0) {
1049 			/*
1050 			 * XXX This unfortunately still generates
1051 			 * a signal when a fd is closed but
1052 			 * the proc is active.
1053 			 */
1054 			ASSERT(ssp->ss_pid == pidp->pid_id);
1055 
1056 			mutex_enter(&pidlock);
1057 			proc = prfind_zone(pidp->pid_id, ALL_ZONES);
1058 			if (proc == NULL) {
1059 				mutex_exit(&pidlock);
1060 				continue;
1061 			}
1062 			mutex_enter(&proc->p_lock);
1063 			mutex_exit(&pidlock);
1064 			dosendsig(proc, ssp->ss_events, sevent, &info,
1065 				band, error);
1066 			mutex_exit(&proc->p_lock);
1067 		} else {
1068 			/*
1069 			 * Send to process group. Hold pidlock across
1070 			 * calls to dosendsig().
1071 			 */
1072 			pid_t pgrp = -ssp->ss_pid;
1073 
1074 			mutex_enter(&pidlock);
1075 			proc = pgfind_zone(pgrp, ALL_ZONES);
1076 			while (proc != NULL) {
1077 				mutex_enter(&proc->p_lock);
1078 				dosendsig(proc, ssp->ss_events, sevent,
1079 					&info, band, error);
1080 				mutex_exit(&proc->p_lock);
1081 				proc = proc->p_pglink;
1082 			}
1083 			mutex_exit(&pidlock);
1084 		}
1085 	}
1086 }
1087 
1088 /*
1089  * Attach a stream device or module.
1090  * qp is a read queue; the new queue goes in so its next
1091  * read ptr is the argument, and the write queue corresponding
1092  * to the argument points to this queue. Return 0 on success,
1093  * or a non-zero errno on failure.
1094  */
1095 int
1096 qattach(queue_t *qp, dev_t *devp, int oflag, cred_t *crp, fmodsw_impl_t *fp,
1097     boolean_t is_insert)
1098 {
1099 	major_t			major;
1100 	cdevsw_impl_t		*dp;
1101 	struct streamtab	*str;
1102 	queue_t			*rq;
1103 	queue_t			*wrq;
1104 	uint32_t		qflag;
1105 	uint32_t		sqtype;
1106 	perdm_t			*dmp;
1107 	int			error;
1108 	int			sflag;
1109 
1110 	rq = allocq();
1111 	wrq = _WR(rq);
1112 	STREAM(rq) = STREAM(wrq) = STREAM(qp);
1113 
1114 	if (fp != NULL) {
1115 		str = fp->f_str;
1116 		qflag = fp->f_qflag;
1117 		sqtype = fp->f_sqtype;
1118 		dmp = fp->f_dmp;
1119 		IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
1120 		sflag = MODOPEN;
1121 
1122 		/*
1123 		 * stash away a pointer to the module structure so we can
1124 		 * unref it in qdetach.
1125 		 */
1126 		rq->q_fp = fp;
1127 	} else {
1128 		ASSERT(!is_insert);
1129 
1130 		major = getmajor(*devp);
1131 		dp = &devimpl[major];
1132 
1133 		str = dp->d_str;
1134 		ASSERT(str == STREAMSTAB(major));
1135 
1136 		qflag = dp->d_qflag;
1137 		ASSERT(qflag & QISDRV);
1138 		sqtype = dp->d_sqtype;
1139 
1140 		/* create perdm_t if needed */
1141 		if (NEED_DM(dp->d_dmp, qflag))
1142 			dp->d_dmp = hold_dm(str, qflag, sqtype);
1143 
1144 		dmp = dp->d_dmp;
1145 		sflag = 0;
1146 	}
1147 
1148 	TRACE_2(TR_FAC_STREAMS_FR, TR_QATTACH_FLAGS,
1149 	    "qattach:qflag == %X(%X)", qflag, *devp);
1150 
1151 	/* setq might sleep in allocator - avoid holding locks. */
1152 	setq(rq, str->st_rdinit, str->st_wrinit, dmp, qflag, sqtype, B_FALSE);
1153 
1154 	/*
1155 	 * Before calling the module's open routine, set up the q_next
1156 	 * pointer for inserting a module in the middle of a stream.
1157 	 *
1158 	 * Note that we can always set _QINSERTING and set up q_next
1159 	 * pointer for both inserting and pushing a module.  Then there
1160 	 * is no need for the is_insert parameter.  In insertq(), called
1161 	 * by qprocson(), assume that q_next of the new module always points
1162 	 * to the correct queue and use it for insertion.  Everything should
1163 	 * work out fine.  But in the first release of _I_INSERT, we
1164 	 * distinguish between inserting and pushing to make sure that
1165 	 * pushing a module follows the same code path as before.
1166 	 */
1167 	if (is_insert) {
1168 		rq->q_flag |= _QINSERTING;
1169 		rq->q_next = qp;
1170 	}
1171 
1172 	/*
1173 	 * If there is an outer perimeter get exclusive access during
1174 	 * the open procedure.  Bump up the reference count on the queue.
1175 	 */
1176 	entersq(rq->q_syncq, SQ_OPENCLOSE);
1177 	error = (*rq->q_qinfo->qi_qopen)(rq, devp, oflag, sflag, crp);
1178 	if (error != 0)
1179 		goto failed;
1180 	leavesq(rq->q_syncq, SQ_OPENCLOSE);
1181 	ASSERT(qprocsareon(rq));
1182 	return (0);
1183 
1184 failed:
1185 	rq->q_flag &= ~_QINSERTING;
1186 	if (backq(wrq) != NULL && backq(wrq)->q_next == wrq)
1187 		qprocsoff(rq);
1188 	leavesq(rq->q_syncq, SQ_OPENCLOSE);
1189 	rq->q_next = wrq->q_next = NULL;
1190 	qdetach(rq, 0, 0, crp, B_FALSE);
1191 	return (error);
1192 }
1193 
1194 /*
1195  * Handle second open of stream. For modules, set the
1196  * last argument to MODOPEN and do not pass any open flags.
1197  * Ignore dummydev since this is not the first open.
1198  */
1199 int
1200 qreopen(queue_t *qp, dev_t *devp, int flag, cred_t *crp)
1201 {
1202 	int	error;
1203 	dev_t dummydev;
1204 	queue_t *wqp = _WR(qp);
1205 
1206 	ASSERT(qp->q_flag & QREADR);
1207 	entersq(qp->q_syncq, SQ_OPENCLOSE);
1208 
1209 	dummydev = *devp;
1210 	if (error = ((*qp->q_qinfo->qi_qopen)(qp, &dummydev,
1211 	    (wqp->q_next ? 0 : flag), (wqp->q_next ? MODOPEN : 0), crp))) {
1212 		leavesq(qp->q_syncq, SQ_OPENCLOSE);
1213 		mutex_enter(&STREAM(qp)->sd_lock);
1214 		qp->q_stream->sd_flag |= STREOPENFAIL;
1215 		mutex_exit(&STREAM(qp)->sd_lock);
1216 		return (error);
1217 	}
1218 	leavesq(qp->q_syncq, SQ_OPENCLOSE);
1219 
1220 	/*
1221 	 * successful open should have done qprocson()
1222 	 */
1223 	ASSERT(qprocsareon(_RD(qp)));
1224 	return (0);
1225 }
1226 
1227 /*
1228  * Detach a stream module or device.
1229  * If clmode == 1 then the module or driver was opened and its
1230  * close routine must be called. If clmode == 0, the module
1231  * or driver was never opened or the open failed, and so its close
1232  * should not be called.
1233  */
1234 void
1235 qdetach(queue_t *qp, int clmode, int flag, cred_t *crp, boolean_t is_remove)
1236 {
1237 	queue_t *wqp = _WR(qp);
1238 	ASSERT(STREAM(qp)->sd_flag & (STRCLOSE|STWOPEN|STRPLUMB));
1239 
1240 	if (STREAM_NEEDSERVICE(STREAM(qp)))
1241 		stream_runservice(STREAM(qp));
1242 
1243 	if (clmode) {
1244 		/*
1245 		 * Make sure that all the messages on the write side syncq are
1246 		 * processed and nothing is left. Since we are closing, no new
1247 		 * messages may appear there.
1248 		 */
1249 		wait_q_syncq(wqp);
1250 
1251 		entersq(qp->q_syncq, SQ_OPENCLOSE);
1252 		if (is_remove) {
1253 			mutex_enter(QLOCK(qp));
1254 			qp->q_flag |= _QREMOVING;
1255 			mutex_exit(QLOCK(qp));
1256 		}
1257 		(*qp->q_qinfo->qi_qclose)(qp, flag, crp);
1258 		/*
1259 		 * Check that qprocsoff() was actually called.
1260 		 */
1261 		ASSERT((qp->q_flag & QWCLOSE) && (wqp->q_flag & QWCLOSE));
1262 
1263 		leavesq(qp->q_syncq, SQ_OPENCLOSE);
1264 	} else {
1265 		disable_svc(qp);
1266 	}
1267 
1268 	/*
1269 	 * Allow any threads blocked in entersq to proceed and discover
1270 	 * the QWCLOSE is set.
1271 	 * Note: This assumes that all users of entersq check QWCLOSE.
1272 	 * Currently runservice is the only entersq that can happen
1273 	 * after removeq has finished.
1274 	 * Removeq will have discarded all messages destined to the closing
1275 	 * pair of queues from the syncq.
1276 	 * NOTE: Calling a function inside an assert is unconventional.
1277 	 * However, it does not cause any problem since flush_syncq() does
1278 	 * not change any state except when it returns non-zero i.e.
1279 	 * when the assert will trigger.
1280 	 */
1281 	ASSERT(flush_syncq(qp->q_syncq, qp) == 0);
1282 	ASSERT(flush_syncq(wqp->q_syncq, wqp) == 0);
1283 	ASSERT((qp->q_flag & QPERMOD) ||
1284 		((qp->q_syncq->sq_head == NULL) &&
1285 		(wqp->q_syncq->sq_head == NULL)));
1286 
1287 	/*
1288 	 * Flush the queues before q_next is set to NULL. This is needed
1289 	 * in order to backenable any downstream queue before we go away.
1290 	 * Note: we are already removed from the stream so that the
1291 	 * backenabling will not cause any messages to be delivered to our
1292 	 * put procedures.
1293 	 */
1294 	flushq(qp, FLUSHALL);
1295 	flushq(wqp, FLUSHALL);
1296 
1297 	/*
1298 	 * wait for any pending service processing to complete
1299 	 */
1300 	wait_svc(qp);
1301 
1302 	/* Tidy up - removeq only does a half-remove from stream */
1303 	qp->q_next = wqp->q_next = NULL;
1304 	ASSERT(!(qp->q_flag & QENAB));
1305 	ASSERT(!(wqp->q_flag & QENAB));
1306 
1307 	/* release any fmodsw_impl_t structure held on behalf of the queue */
1308 
1309 	ASSERT(qp->q_fp != NULL || qp->q_flag & QISDRV);
1310 	if (qp->q_fp != NULL)
1311 		fmodsw_rele(qp->q_fp);
1312 
1313 	/* freeq removes us from the outer perimeter if any */
1314 	freeq(qp);
1315 }
1316 
1317 /* Prevent service procedures from being called */
1318 void
1319 disable_svc(queue_t *qp)
1320 {
1321 	queue_t *wqp = _WR(qp);
1322 
1323 	ASSERT(qp->q_flag & QREADR);
1324 	mutex_enter(QLOCK(qp));
1325 	qp->q_flag |= QWCLOSE;
1326 	mutex_exit(QLOCK(qp));
1327 	mutex_enter(QLOCK(wqp));
1328 	wqp->q_flag |= QWCLOSE;
1329 	mutex_exit(QLOCK(wqp));
1330 }
1331 
1332 /* allow service procedures to be called again */
1333 void
1334 enable_svc(queue_t *qp)
1335 {
1336 	queue_t *wqp = _WR(qp);
1337 
1338 	ASSERT(qp->q_flag & QREADR);
1339 	mutex_enter(QLOCK(qp));
1340 	qp->q_flag &= ~QWCLOSE;
1341 	mutex_exit(QLOCK(qp));
1342 	mutex_enter(QLOCK(wqp));
1343 	wqp->q_flag &= ~QWCLOSE;
1344 	mutex_exit(QLOCK(wqp));
1345 }
1346 
1347 /*
1348  * Remove queue from qhead/qtail if it is enabled.
1349  * Only reset QENAB if the queue was removed from the runlist.
1350  * A queue goes through 3 stages:
1351  *	It is on the service list and QENAB is set.
1352  *	It is removed from the service list but QENAB is still set.
1353  *	QENAB gets changed to QINSERVICE.
1354  *	QINSERVICE is reset (when the service procedure is done)
1355  * Thus we can not reset QENAB unless we actually removed it from the service
1356  * queue.
1357  */
1358 void
1359 remove_runlist(queue_t *qp)
1360 {
1361 	if (qp->q_flag & QENAB && qhead != NULL) {
1362 		queue_t *q_chase;
1363 		queue_t *q_curr;
1364 		int removed;
1365 
1366 		mutex_enter(&service_queue);
1367 		RMQ(qp, qhead, qtail, q_link, q_chase, q_curr, removed);
1368 		mutex_exit(&service_queue);
1369 		if (removed) {
1370 			STRSTAT(qremoved);
1371 			qp->q_flag &= ~QENAB;
1372 		}
1373 	}
1374 }
1375 
1376 
1377 /*
1378  * wait for any pending service processing to complete.
1379  * The removal of queues from the runlist is not atomic with the
1380  * clearing of the QENABLED flag and setting the INSERVICE flag.
1381  * consequently it is possible for remove_runlist in strclose
1382  * to not find the queue on the runlist but for it to be QENABLED
1383  * and not yet INSERVICE -> hence wait_svc needs to check QENABLED
1384  * as well as INSERVICE.
1385  */
1386 void
1387 wait_svc(queue_t *qp)
1388 {
1389 	queue_t *wqp = _WR(qp);
1390 
1391 	ASSERT(qp->q_flag & QREADR);
1392 
1393 	/*
1394 	 * Try to remove queues from qhead/qtail list.
1395 	 */
1396 	if (qhead != NULL) {
1397 		remove_runlist(qp);
1398 		remove_runlist(wqp);
1399 	}
1400 	/*
1401 	 * Wait till the syncqs associated with the queue
1402 	 * will dissapear from background processing list.
1403 	 * This only needs to be done for non-PERMOD perimeters since
1404 	 * for PERMOD perimeters the syncq may be shared and will only be freed
1405 	 * when the last module/driver is unloaded.
1406 	 * If for PERMOD perimeters queue was on the syncq list, removeq()
1407 	 * should call propagate_syncq() or drain_syncq() for it. Both of these
1408 	 * function remove the queue from its syncq list, so sqthread will not
1409 	 * try to access the queue.
1410 	 */
1411 	if (!(qp->q_flag & QPERMOD)) {
1412 		syncq_t *rsq = qp->q_syncq;
1413 		syncq_t *wsq = wqp->q_syncq;
1414 
1415 		/*
1416 		 * Disable rsq and wsq and wait for any background processing of
1417 		 * syncq to complete.
1418 		 */
1419 		wait_sq_svc(rsq);
1420 		if (wsq != rsq)
1421 			wait_sq_svc(wsq);
1422 	}
1423 
1424 	mutex_enter(QLOCK(qp));
1425 	while (qp->q_flag & (QINSERVICE|QENAB))
1426 		cv_wait(&qp->q_wait, QLOCK(qp));
1427 	mutex_exit(QLOCK(qp));
1428 	mutex_enter(QLOCK(wqp));
1429 	while (wqp->q_flag & (QINSERVICE|QENAB))
1430 		cv_wait(&wqp->q_wait, QLOCK(wqp));
1431 	mutex_exit(QLOCK(wqp));
1432 }
1433 
1434 /*
1435  * Put ioctl data from userland buffer `arg' into the mblk chain `bp'.
1436  * `flag' must always contain either K_TO_K or U_TO_K; STR_NOSIG may
1437  * also be set, and is passed through to allocb_cred_wait().
1438  *
1439  * Returns errno on failure, zero on success.
1440  */
1441 int
1442 putiocd(mblk_t *bp, char *arg, int flag, cred_t *cr)
1443 {
1444 	mblk_t *tmp;
1445 	ssize_t  count;
1446 	size_t n;
1447 	int error = 0;
1448 
1449 	ASSERT((flag & (U_TO_K | K_TO_K)) == U_TO_K ||
1450 		(flag & (U_TO_K | K_TO_K)) == K_TO_K);
1451 
1452 	if (bp->b_datap->db_type == M_IOCTL) {
1453 		count = ((struct iocblk *)bp->b_rptr)->ioc_count;
1454 	} else {
1455 		ASSERT(bp->b_datap->db_type == M_COPYIN);
1456 		count = ((struct copyreq *)bp->b_rptr)->cq_size;
1457 	}
1458 	/*
1459 	 * strdoioctl validates ioc_count, so if this assert fails it
1460 	 * cannot be due to user error.
1461 	 */
1462 	ASSERT(count >= 0);
1463 
1464 	while (count > 0) {
1465 		n = MIN(MAXIOCBSZ, count);
1466 		if ((tmp = allocb_cred_wait(n, (flag & STR_NOSIG), &error,
1467 		    cr)) == NULL) {
1468 			return (error);
1469 		}
1470 		error = strcopyin(arg, tmp->b_wptr, n, flag & (U_TO_K|K_TO_K));
1471 		if (error != 0) {
1472 			freeb(tmp);
1473 			return (error);
1474 		}
1475 		arg += n;
1476 		DB_CPID(tmp) = curproc->p_pid;
1477 		tmp->b_wptr += n;
1478 		count -= n;
1479 		bp = (bp->b_cont = tmp);
1480 	}
1481 
1482 	return (0);
1483 }
1484 
1485 /*
1486  * Copy ioctl data to user-land. Return non-zero errno on failure,
1487  * 0 for success.
1488  */
1489 int
1490 getiocd(mblk_t *bp, char *arg, int copymode)
1491 {
1492 	ssize_t count;
1493 	size_t  n;
1494 	int	error;
1495 
1496 	if (bp->b_datap->db_type == M_IOCACK)
1497 		count = ((struct iocblk *)bp->b_rptr)->ioc_count;
1498 	else {
1499 		ASSERT(bp->b_datap->db_type == M_COPYOUT);
1500 		count = ((struct copyreq *)bp->b_rptr)->cq_size;
1501 	}
1502 	ASSERT(count >= 0);
1503 
1504 	for (bp = bp->b_cont; bp && count;
1505 	    count -= n, bp = bp->b_cont, arg += n) {
1506 		n = MIN(count, bp->b_wptr - bp->b_rptr);
1507 		error = strcopyout(bp->b_rptr, arg, n, copymode);
1508 		if (error)
1509 			return (error);
1510 	}
1511 	ASSERT(count == 0);
1512 	return (0);
1513 }
1514 
1515 /*
1516  * Allocate a linkinfo entry given the write queue of the
1517  * bottom module of the top stream and the write queue of the
1518  * stream head of the bottom stream.
1519  */
1520 linkinfo_t *
1521 alloclink(queue_t *qup, queue_t *qdown, file_t *fpdown)
1522 {
1523 	linkinfo_t *linkp;
1524 
1525 	linkp = kmem_cache_alloc(linkinfo_cache, KM_SLEEP);
1526 
1527 	linkp->li_lblk.l_qtop = qup;
1528 	linkp->li_lblk.l_qbot = qdown;
1529 	linkp->li_fpdown = fpdown;
1530 
1531 	mutex_enter(&strresources);
1532 	linkp->li_next = linkinfo_list;
1533 	linkp->li_prev = NULL;
1534 	if (linkp->li_next)
1535 		linkp->li_next->li_prev = linkp;
1536 	linkinfo_list = linkp;
1537 	linkp->li_lblk.l_index = ++lnk_id;
1538 	ASSERT(lnk_id != 0);	/* this should never wrap in practice */
1539 	mutex_exit(&strresources);
1540 
1541 	return (linkp);
1542 }
1543 
1544 /*
1545  * Free a linkinfo entry.
1546  */
1547 void
1548 lbfree(linkinfo_t *linkp)
1549 {
1550 	mutex_enter(&strresources);
1551 	if (linkp->li_next)
1552 		linkp->li_next->li_prev = linkp->li_prev;
1553 	if (linkp->li_prev)
1554 		linkp->li_prev->li_next = linkp->li_next;
1555 	else
1556 		linkinfo_list = linkp->li_next;
1557 	mutex_exit(&strresources);
1558 
1559 	kmem_cache_free(linkinfo_cache, linkp);
1560 }
1561 
1562 /*
1563  * Check for a potential linking cycle.
1564  * Return 1 if a link will result in a cycle,
1565  * and 0 otherwise.
1566  */
1567 int
1568 linkcycle(stdata_t *upstp, stdata_t *lostp)
1569 {
1570 	struct mux_node *np;
1571 	struct mux_edge *ep;
1572 	int i;
1573 	major_t lomaj;
1574 	major_t upmaj;
1575 	/*
1576 	 * if the lower stream is a pipe/FIFO, return, since link
1577 	 * cycles can not happen on pipes/FIFOs
1578 	 */
1579 	if (lostp->sd_vnode->v_type == VFIFO)
1580 		return (0);
1581 
1582 	for (i = 0; i < devcnt; i++) {
1583 		np = &mux_nodes[i];
1584 		MUX_CLEAR(np);
1585 	}
1586 	lomaj = getmajor(lostp->sd_vnode->v_rdev);
1587 	upmaj = getmajor(upstp->sd_vnode->v_rdev);
1588 	np = &mux_nodes[lomaj];
1589 	for (;;) {
1590 		if (!MUX_DIDVISIT(np)) {
1591 			if (np->mn_imaj == upmaj)
1592 				return (1);
1593 			if (np->mn_outp == NULL) {
1594 				MUX_VISIT(np);
1595 				if (np->mn_originp == NULL)
1596 					return (0);
1597 				np = np->mn_originp;
1598 				continue;
1599 			}
1600 			MUX_VISIT(np);
1601 			np->mn_startp = np->mn_outp;
1602 		} else {
1603 			if (np->mn_startp == NULL) {
1604 				if (np->mn_originp == NULL)
1605 					return (0);
1606 				else {
1607 					np = np->mn_originp;
1608 					continue;
1609 				}
1610 			}
1611 			/*
1612 			 * If ep->me_nodep is a FIFO (me_nodep == NULL),
1613 			 * ignore the edge and move on. ep->me_nodep gets
1614 			 * set to NULL in mux_addedge() if it is a FIFO.
1615 			 *
1616 			 */
1617 			ep = np->mn_startp;
1618 			np->mn_startp = ep->me_nextp;
1619 			if (ep->me_nodep == NULL)
1620 				continue;
1621 			ep->me_nodep->mn_originp = np;
1622 			np = ep->me_nodep;
1623 		}
1624 	}
1625 }
1626 
1627 /*
1628  * Find linkinfo entry corresponding to the parameters.
1629  */
1630 linkinfo_t *
1631 findlinks(stdata_t *stp, int index, int type)
1632 {
1633 	linkinfo_t *linkp;
1634 	struct mux_edge *mep;
1635 	struct mux_node *mnp;
1636 	queue_t *qup;
1637 
1638 	mutex_enter(&strresources);
1639 	if ((type & LINKTYPEMASK) == LINKNORMAL) {
1640 		qup = getendq(stp->sd_wrq);
1641 		for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
1642 			if ((qup == linkp->li_lblk.l_qtop) &&
1643 			    (!index || (index == linkp->li_lblk.l_index))) {
1644 				mutex_exit(&strresources);
1645 				return (linkp);
1646 			}
1647 		}
1648 	} else {
1649 		ASSERT((type & LINKTYPEMASK) == LINKPERSIST);
1650 		mnp = &mux_nodes[getmajor(stp->sd_vnode->v_rdev)];
1651 		mep = mnp->mn_outp;
1652 		while (mep) {
1653 			if ((index == 0) || (index == mep->me_muxid))
1654 				break;
1655 			mep = mep->me_nextp;
1656 		}
1657 		if (!mep) {
1658 			mutex_exit(&strresources);
1659 			return (NULL);
1660 		}
1661 		for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
1662 			if ((!linkp->li_lblk.l_qtop) &&
1663 			    (mep->me_muxid == linkp->li_lblk.l_index)) {
1664 				mutex_exit(&strresources);
1665 				return (linkp);
1666 			}
1667 		}
1668 	}
1669 	mutex_exit(&strresources);
1670 	return (NULL);
1671 }
1672 
1673 /*
1674  * Given a queue ptr, follow the chain of q_next pointers until you reach the
1675  * last queue on the chain and return it.
1676  */
1677 queue_t *
1678 getendq(queue_t *q)
1679 {
1680 	ASSERT(q != NULL);
1681 	while (_SAMESTR(q))
1682 		q = q->q_next;
1683 	return (q);
1684 }
1685 
1686 /*
1687  * wait for the syncq count to drop to zero.
1688  * sq could be either outer or inner.
1689  */
1690 
1691 static void
1692 wait_syncq(syncq_t *sq)
1693 {
1694 	uint16_t count;
1695 
1696 	mutex_enter(SQLOCK(sq));
1697 	count = sq->sq_count;
1698 	SQ_PUTLOCKS_ENTER(sq);
1699 	SUM_SQ_PUTCOUNTS(sq, count);
1700 	while (count != 0) {
1701 		sq->sq_flags |= SQ_WANTWAKEUP;
1702 		SQ_PUTLOCKS_EXIT(sq);
1703 		cv_wait(&sq->sq_wait, SQLOCK(sq));
1704 		count = sq->sq_count;
1705 		SQ_PUTLOCKS_ENTER(sq);
1706 		SUM_SQ_PUTCOUNTS(sq, count);
1707 	}
1708 	SQ_PUTLOCKS_EXIT(sq);
1709 	mutex_exit(SQLOCK(sq));
1710 }
1711 
1712 /*
1713  * Wait while there are any messages for the queue in its syncq.
1714  */
1715 static void
1716 wait_q_syncq(queue_t *q)
1717 {
1718 	if ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
1719 		syncq_t *sq = q->q_syncq;
1720 
1721 		mutex_enter(SQLOCK(sq));
1722 		while ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
1723 			sq->sq_flags |= SQ_WANTWAKEUP;
1724 			cv_wait(&sq->sq_wait, SQLOCK(sq));
1725 		}
1726 		mutex_exit(SQLOCK(sq));
1727 	}
1728 }
1729 
1730 
1731 int
1732 mlink_file(vnode_t *vp, int cmd, struct file *fpdown, cred_t *crp, int *rvalp,
1733     int lhlink)
1734 {
1735 	struct stdata *stp;
1736 	struct strioctl strioc;
1737 	struct linkinfo *linkp;
1738 	struct stdata *stpdown;
1739 	struct streamtab *str;
1740 	queue_t *passq;
1741 	syncq_t *passyncq;
1742 	queue_t *rq;
1743 	cdevsw_impl_t *dp;
1744 	uint32_t qflag;
1745 	uint32_t sqtype;
1746 	perdm_t *dmp;
1747 	int error = 0;
1748 
1749 	stp = vp->v_stream;
1750 	TRACE_1(TR_FAC_STREAMS_FR,
1751 		TR_I_LINK, "I_LINK/I_PLINK:stp %p", stp);
1752 	/*
1753 	 * Test for invalid upper stream
1754 	 */
1755 	if (stp->sd_flag & STRHUP) {
1756 		return (ENXIO);
1757 	}
1758 	if (vp->v_type == VFIFO) {
1759 		return (EINVAL);
1760 	}
1761 	if (stp->sd_strtab == NULL) {
1762 		return (EINVAL);
1763 	}
1764 	if (!stp->sd_strtab->st_muxwinit) {
1765 		return (EINVAL);
1766 	}
1767 	if (fpdown == NULL) {
1768 		return (EBADF);
1769 	}
1770 	if (getmajor(stp->sd_vnode->v_rdev) >= devcnt) {
1771 		return (EINVAL);
1772 	}
1773 	mutex_enter(&muxifier);
1774 	if (stp->sd_flag & STPLEX) {
1775 		mutex_exit(&muxifier);
1776 		return (ENXIO);
1777 	}
1778 
1779 	/*
1780 	 * Test for invalid lower stream.
1781 	 * The check for the v_type != VFIFO and having a major
1782 	 * number not >= devcnt is done to avoid problems with
1783 	 * adding mux_node entry past the end of mux_nodes[].
1784 	 * For FIFO's we don't add an entry so this isn't a
1785 	 * problem.
1786 	 */
1787 	if (((stpdown = fpdown->f_vnode->v_stream) == NULL) ||
1788 	    (stpdown == stp) || (stpdown->sd_flag &
1789 	    (STPLEX|STRHUP|STRDERR|STWRERR|IOCWAIT|STRPLUMB)) ||
1790 	    ((stpdown->sd_vnode->v_type != VFIFO) &&
1791 	    (getmajor(stpdown->sd_vnode->v_rdev) >= devcnt)) ||
1792 	    linkcycle(stp, stpdown)) {
1793 		mutex_exit(&muxifier);
1794 		return (EINVAL);
1795 	}
1796 	TRACE_1(TR_FAC_STREAMS_FR,
1797 		TR_STPDOWN, "stpdown:%p", stpdown);
1798 	rq = getendq(stp->sd_wrq);
1799 	if (cmd == I_PLINK)
1800 		rq = NULL;
1801 
1802 	linkp = alloclink(rq, stpdown->sd_wrq, fpdown);
1803 
1804 	strioc.ic_cmd = cmd;
1805 	strioc.ic_timout = INFTIM;
1806 	strioc.ic_len = sizeof (struct linkblk);
1807 	strioc.ic_dp = (char *)&linkp->li_lblk;
1808 
1809 	/*
1810 	 * STRPLUMB protects plumbing changes and should be set before
1811 	 * link_addpassthru()/link_rempassthru() are called, so it is set here
1812 	 * and cleared in the end of mlink when passthru queue is removed.
1813 	 * Setting of STRPLUMB prevents reopens of the stream while passthru
1814 	 * queue is in-place (it is not a proper module and doesn't have open
1815 	 * entry point).
1816 	 *
1817 	 * STPLEX prevents any threads from entering the stream from above. It
1818 	 * can't be set before the call to link_addpassthru() because putnext
1819 	 * from below may cause stream head I/O routines to be called and these
1820 	 * routines assert that STPLEX is not set. After link_addpassthru()
1821 	 * nothing may come from below since the pass queue syncq is blocked.
1822 	 * Note also that STPLEX should be cleared before the call to
1823 	 * link_remmpassthru() since when messages start flowing to the stream
1824 	 * head (e.g. because of message propagation from the pass queue) stream
1825 	 * head I/O routines may be called with STPLEX flag set.
1826 	 *
1827 	 * When STPLEX is set, nothing may come into the stream from above and
1828 	 * it is safe to do a setq which will change stream head. So, the
1829 	 * correct sequence of actions is:
1830 	 *
1831 	 * 1) Set STRPLUMB
1832 	 * 2) Call link_addpassthru()
1833 	 * 3) Set STPLEX
1834 	 * 4) Call setq and update the stream state
1835 	 * 5) Clear STPLEX
1836 	 * 6) Call link_rempassthru()
1837 	 * 7) Clear STRPLUMB
1838 	 *
1839 	 * The same sequence applies to munlink() code.
1840 	 */
1841 	mutex_enter(&stpdown->sd_lock);
1842 	stpdown->sd_flag |= STRPLUMB;
1843 	mutex_exit(&stpdown->sd_lock);
1844 	/*
1845 	 * Add passthru queue below lower mux. This will block
1846 	 * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
1847 	 */
1848 	passq = link_addpassthru(stpdown);
1849 
1850 	mutex_enter(&stpdown->sd_lock);
1851 	stpdown->sd_flag |= STPLEX;
1852 	mutex_exit(&stpdown->sd_lock);
1853 
1854 	rq = _RD(stpdown->sd_wrq);
1855 	/*
1856 	 * There may be messages in the streamhead's syncq due to messages
1857 	 * that arrived before link_addpassthru() was done. To avoid
1858 	 * background processing of the syncq happening simultaneous with
1859 	 * setq processing, we disable the streamhead syncq and wait until
1860 	 * existing background thread finishes working on it.
1861 	 */
1862 	wait_sq_svc(rq->q_syncq);
1863 	passyncq = passq->q_syncq;
1864 	if (!(passyncq->sq_flags & SQ_BLOCKED))
1865 		blocksq(passyncq, SQ_BLOCKED, 0);
1866 
1867 	ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
1868 	ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
1869 	rq->q_ptr = _WR(rq)->q_ptr = NULL;
1870 
1871 	/* setq might sleep in allocator - avoid holding locks. */
1872 	/* Note: we are holding muxifier here. */
1873 
1874 	str = stp->sd_strtab;
1875 	dp = &devimpl[getmajor(vp->v_rdev)];
1876 	ASSERT(dp->d_str == str);
1877 
1878 	qflag = dp->d_qflag;
1879 	sqtype = dp->d_sqtype;
1880 
1881 	/* create perdm_t if needed */
1882 	if (NEED_DM(dp->d_dmp, qflag))
1883 		dp->d_dmp = hold_dm(str, qflag, sqtype);
1884 
1885 	dmp = dp->d_dmp;
1886 
1887 	setq(rq, str->st_muxrinit, str->st_muxwinit, dmp, qflag, sqtype,
1888 	    B_TRUE);
1889 
1890 	/*
1891 	 * XXX Remove any "odd" messages from the queue.
1892 	 * Keep only M_DATA, M_PROTO, M_PCPROTO.
1893 	 */
1894 	error = strdoioctl(stp, &strioc, FNATIVE,
1895 	    K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
1896 	if (error != 0) {
1897 		lbfree(linkp);
1898 
1899 		if (!(passyncq->sq_flags & SQ_BLOCKED))
1900 			blocksq(passyncq, SQ_BLOCKED, 0);
1901 		/*
1902 		 * Restore the stream head queue and then remove
1903 		 * the passq. Turn off STPLEX before we turn on
1904 		 * the stream by removing the passq.
1905 		 */
1906 		rq->q_ptr = _WR(rq)->q_ptr = stpdown;
1907 		setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO,
1908 		    B_TRUE);
1909 
1910 		mutex_enter(&stpdown->sd_lock);
1911 		stpdown->sd_flag &= ~STPLEX;
1912 		mutex_exit(&stpdown->sd_lock);
1913 
1914 		link_rempassthru(passq);
1915 
1916 		mutex_enter(&stpdown->sd_lock);
1917 		stpdown->sd_flag &= ~STRPLUMB;
1918 		/* Wakeup anyone waiting for STRPLUMB to clear. */
1919 		cv_broadcast(&stpdown->sd_monitor);
1920 		mutex_exit(&stpdown->sd_lock);
1921 
1922 		mutex_exit(&muxifier);
1923 		return (error);
1924 	}
1925 	mutex_enter(&fpdown->f_tlock);
1926 	fpdown->f_count++;
1927 	mutex_exit(&fpdown->f_tlock);
1928 
1929 	/*
1930 	 * if we've made it here the linkage is all set up so we should also
1931 	 * set up the layered driver linkages
1932 	 */
1933 
1934 	ASSERT((cmd == I_LINK) || (cmd == I_PLINK));
1935 	if (cmd == I_LINK) {
1936 		ldi_mlink_fp(stp, fpdown, lhlink, LINKNORMAL);
1937 	} else {
1938 		ldi_mlink_fp(stp, fpdown, lhlink, LINKPERSIST);
1939 	}
1940 
1941 	link_rempassthru(passq);
1942 
1943 	mux_addedge(stp, stpdown, linkp->li_lblk.l_index);
1944 
1945 	/*
1946 	 * Mark the upper stream as having dependent links
1947 	 * so that strclose can clean it up.
1948 	 */
1949 	if (cmd == I_LINK) {
1950 		mutex_enter(&stp->sd_lock);
1951 		stp->sd_flag |= STRHASLINKS;
1952 		mutex_exit(&stp->sd_lock);
1953 	}
1954 	/*
1955 	 * Wake up any other processes that may have been
1956 	 * waiting on the lower stream. These will all
1957 	 * error out.
1958 	 */
1959 	mutex_enter(&stpdown->sd_lock);
1960 	/* The passthru module is removed so we may release STRPLUMB */
1961 	stpdown->sd_flag &= ~STRPLUMB;
1962 	cv_broadcast(&rq->q_wait);
1963 	cv_broadcast(&_WR(rq)->q_wait);
1964 	cv_broadcast(&stpdown->sd_monitor);
1965 	mutex_exit(&stpdown->sd_lock);
1966 	mutex_exit(&muxifier);
1967 	*rvalp = linkp->li_lblk.l_index;
1968 	return (0);
1969 }
1970 
1971 int
1972 mlink(vnode_t *vp, int cmd, int arg, cred_t *crp, int *rvalp, int lhlink)
1973 {
1974 	int		ret;
1975 	struct file	*fpdown;
1976 
1977 	fpdown = getf(arg);
1978 	ret = mlink_file(vp, cmd, fpdown, crp, rvalp, lhlink);
1979 	if (fpdown != NULL)
1980 		releasef(arg);
1981 	return (ret);
1982 }
1983 
1984 /*
1985  * Unlink a multiplexor link. Stp is the controlling stream for the
1986  * link, and linkp points to the link's entry in the linkinfo list.
1987  * The muxifier lock must be held on entry and is dropped on exit.
1988  *
1989  * NOTE : Currently it is assumed that mux would process all the messages
1990  * sitting on it's queue before ACKing the UNLINK. It is the responsibility
1991  * of the mux to handle all the messages that arrive before UNLINK.
1992  * If the mux has to send down messages on its lower stream before
1993  * ACKing I_UNLINK, then it *should* know to handle messages even
1994  * after the UNLINK is acked (actually it should be able to handle till we
1995  * re-block the read side of the pass queue here). If the mux does not
1996  * open up the lower stream, any messages that arrive during UNLINK
1997  * will be put in the stream head. In the case of lower stream opening
1998  * up, some messages might land in the stream head depending on when
1999  * the message arrived and when the read side of the pass queue was
2000  * re-blocked.
2001  */
2002 int
2003 munlink(stdata_t *stp, linkinfo_t *linkp, int flag, cred_t *crp, int *rvalp)
2004 {
2005 	struct strioctl strioc;
2006 	struct stdata *stpdown;
2007 	queue_t *rq, *wrq;
2008 	queue_t	*passq;
2009 	syncq_t *passyncq;
2010 	int error = 0;
2011 	file_t *fpdown;
2012 
2013 	ASSERT(MUTEX_HELD(&muxifier));
2014 
2015 	stpdown = linkp->li_fpdown->f_vnode->v_stream;
2016 
2017 	/*
2018 	 * See the comment in mlink() concerning STRPLUMB/STPLEX flags.
2019 	 */
2020 	mutex_enter(&stpdown->sd_lock);
2021 	stpdown->sd_flag |= STRPLUMB;
2022 	mutex_exit(&stpdown->sd_lock);
2023 
2024 	/*
2025 	 * Add passthru queue below lower mux. This will block
2026 	 * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
2027 	 */
2028 	passq = link_addpassthru(stpdown);
2029 
2030 	if ((flag & LINKTYPEMASK) == LINKNORMAL)
2031 		strioc.ic_cmd = I_UNLINK;
2032 	else
2033 		strioc.ic_cmd = I_PUNLINK;
2034 	strioc.ic_timout = INFTIM;
2035 	strioc.ic_len = sizeof (struct linkblk);
2036 	strioc.ic_dp = (char *)&linkp->li_lblk;
2037 
2038 	error = strdoioctl(stp, &strioc, FNATIVE,
2039 	    K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
2040 
2041 	/*
2042 	 * If there was an error and this is not called via strclose,
2043 	 * return to the user. Otherwise, pretend there was no error
2044 	 * and close the link.
2045 	 */
2046 	if (error) {
2047 		if (flag & LINKCLOSE) {
2048 			cmn_err(CE_WARN, "KERNEL: munlink: could not perform "
2049 			    "unlink ioctl, closing anyway (%d)\n", error);
2050 		} else {
2051 			link_rempassthru(passq);
2052 			mutex_enter(&stpdown->sd_lock);
2053 			stpdown->sd_flag &= ~STRPLUMB;
2054 			cv_broadcast(&stpdown->sd_monitor);
2055 			mutex_exit(&stpdown->sd_lock);
2056 			mutex_exit(&muxifier);
2057 			return (error);
2058 		}
2059 	}
2060 
2061 	mux_rmvedge(stp, linkp->li_lblk.l_index);
2062 	fpdown = linkp->li_fpdown;
2063 	lbfree(linkp);
2064 
2065 	/*
2066 	 * We go ahead and drop muxifier here--it's a nasty global lock that
2067 	 * can slow others down. It's okay to since attempts to mlink() this
2068 	 * stream will be stopped because STPLEX is still set in the stdata
2069 	 * structure, and munlink() is stopped because mux_rmvedge() and
2070 	 * lbfree() have removed it from mux_nodes[] and linkinfo_list,
2071 	 * respectively.  Note that we defer the closef() of fpdown until
2072 	 * after we drop muxifier since strclose() can call munlinkall().
2073 	 */
2074 	mutex_exit(&muxifier);
2075 
2076 	wrq = stpdown->sd_wrq;
2077 	rq = _RD(wrq);
2078 
2079 	/*
2080 	 * Get rid of outstanding service procedure runs, before we make
2081 	 * it a stream head, since a stream head doesn't have any service
2082 	 * procedure.
2083 	 */
2084 	disable_svc(rq);
2085 	wait_svc(rq);
2086 
2087 	/*
2088 	 * Since we don't disable the syncq for QPERMOD, we wait for whatever
2089 	 * is queued up to be finished. mux should take care that nothing is
2090 	 * send down to this queue. We should do it now as we're going to block
2091 	 * passyncq if it was unblocked.
2092 	 */
2093 	if (wrq->q_flag & QPERMOD) {
2094 		syncq_t	*sq = wrq->q_syncq;
2095 
2096 		mutex_enter(SQLOCK(sq));
2097 		while (wrq->q_sqflags & Q_SQQUEUED) {
2098 			sq->sq_flags |= SQ_WANTWAKEUP;
2099 			cv_wait(&sq->sq_wait, SQLOCK(sq));
2100 		}
2101 		mutex_exit(SQLOCK(sq));
2102 	}
2103 	passyncq = passq->q_syncq;
2104 	if (!(passyncq->sq_flags & SQ_BLOCKED)) {
2105 
2106 		syncq_t *sq, *outer;
2107 
2108 		/*
2109 		 * Messages could be flowing from underneath. We will
2110 		 * block the read side of the passq. This would be
2111 		 * sufficient for QPAIR and QPERQ muxes to ensure
2112 		 * that no data is flowing up into this queue
2113 		 * and hence no thread active in this instance of
2114 		 * lower mux. But for QPERMOD and QMTOUTPERIM there
2115 		 * could be messages on the inner and outer/inner
2116 		 * syncqs respectively. We will wait for them to drain.
2117 		 * Because passq is blocked messages end up in the syncq
2118 		 * And qfill_syncq could possibly end up setting QFULL
2119 		 * which will access the rq->q_flag. Hence, we have to
2120 		 * acquire the QLOCK in setq.
2121 		 *
2122 		 * XXX Messages can also flow from top into this
2123 		 * queue though the unlink is over (Ex. some instance
2124 		 * in putnext() called from top that has still not
2125 		 * accessed this queue. And also putq(lowerq) ?).
2126 		 * Solution : How about blocking the l_qtop queue ?
2127 		 * Do we really care about such pure D_MP muxes ?
2128 		 */
2129 
2130 		blocksq(passyncq, SQ_BLOCKED, 0);
2131 
2132 		sq = rq->q_syncq;
2133 		if ((outer = sq->sq_outer) != NULL) {
2134 
2135 			/*
2136 			 * We have to just wait for the outer sq_count
2137 			 * drop to zero. As this does not prevent new
2138 			 * messages to enter the outer perimeter, this
2139 			 * is subject to starvation.
2140 			 *
2141 			 * NOTE :Because of blocksq above, messages could
2142 			 * be in the inner syncq only because of some
2143 			 * thread holding the outer perimeter exclusively.
2144 			 * Hence it would be sufficient to wait for the
2145 			 * exclusive holder of the outer perimeter to drain
2146 			 * the inner and outer syncqs. But we will not depend
2147 			 * on this feature and hence check the inner syncqs
2148 			 * separately.
2149 			 */
2150 			wait_syncq(outer);
2151 		}
2152 
2153 
2154 		/*
2155 		 * There could be messages destined for
2156 		 * this queue. Let the exclusive holder
2157 		 * drain it.
2158 		 */
2159 
2160 		wait_syncq(sq);
2161 		ASSERT((rq->q_flag & QPERMOD) ||
2162 			((rq->q_syncq->sq_head == NULL) &&
2163 			(_WR(rq)->q_syncq->sq_head == NULL)));
2164 	}
2165 
2166 	/*
2167 	 * We haven't taken care of QPERMOD case yet. QPERMOD is a special
2168 	 * case as we don't disable its syncq or remove it off the syncq
2169 	 * service list.
2170 	 */
2171 	if (rq->q_flag & QPERMOD) {
2172 		syncq_t	*sq = rq->q_syncq;
2173 
2174 		mutex_enter(SQLOCK(sq));
2175 		while (rq->q_sqflags & Q_SQQUEUED) {
2176 			sq->sq_flags |= SQ_WANTWAKEUP;
2177 			cv_wait(&sq->sq_wait, SQLOCK(sq));
2178 		}
2179 		mutex_exit(SQLOCK(sq));
2180 	}
2181 
2182 	/*
2183 	 * flush_syncq changes states only when there is some messages to
2184 	 * free. ie when it returns non-zero value to return.
2185 	 */
2186 	ASSERT(flush_syncq(rq->q_syncq, rq) == 0);
2187 	ASSERT(flush_syncq(wrq->q_syncq, wrq) == 0);
2188 
2189 	/*
2190 	 * No body else should know about this queue now.
2191 	 * If the mux did not process the messages before
2192 	 * acking the I_UNLINK, free them now.
2193 	 */
2194 
2195 	flushq(rq, FLUSHALL);
2196 	flushq(_WR(rq), FLUSHALL);
2197 
2198 	/*
2199 	 * Convert the mux lower queue into a stream head queue.
2200 	 * Turn off STPLEX before we turn on the stream by removing the passq.
2201 	 */
2202 	rq->q_ptr = wrq->q_ptr = stpdown;
2203 	setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_TRUE);
2204 
2205 	ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
2206 	ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
2207 
2208 	enable_svc(rq);
2209 
2210 	/*
2211 	 * Now it is a proper stream, so STPLEX is cleared. But STRPLUMB still
2212 	 * needs to be set to prevent reopen() of the stream - such reopen may
2213 	 * try to call non-existent pass queue open routine and panic.
2214 	 */
2215 	mutex_enter(&stpdown->sd_lock);
2216 	stpdown->sd_flag &= ~STPLEX;
2217 	mutex_exit(&stpdown->sd_lock);
2218 
2219 	ASSERT(((flag & LINKTYPEMASK) == LINKNORMAL) ||
2220 	    ((flag & LINKTYPEMASK) == LINKPERSIST));
2221 
2222 	/* clean up the layered driver linkages */
2223 	if ((flag & LINKTYPEMASK) == LINKNORMAL) {
2224 		ldi_munlink_fp(stp, fpdown, LINKNORMAL);
2225 	} else {
2226 		ldi_munlink_fp(stp, fpdown, LINKPERSIST);
2227 	}
2228 
2229 	link_rempassthru(passq);
2230 
2231 	/*
2232 	 * Now all plumbing changes are finished and STRPLUMB is no
2233 	 * longer needed.
2234 	 */
2235 	mutex_enter(&stpdown->sd_lock);
2236 	stpdown->sd_flag &= ~STRPLUMB;
2237 	cv_broadcast(&stpdown->sd_monitor);
2238 	mutex_exit(&stpdown->sd_lock);
2239 
2240 	(void) closef(fpdown);
2241 	return (0);
2242 }
2243 
2244 /*
2245  * Unlink all multiplexor links for which stp is the controlling stream.
2246  * Return 0, or a non-zero errno on failure.
2247  */
2248 int
2249 munlinkall(stdata_t *stp, int flag, cred_t *crp, int *rvalp)
2250 {
2251 	linkinfo_t *linkp;
2252 	int error = 0;
2253 
2254 	mutex_enter(&muxifier);
2255 	while (linkp = findlinks(stp, 0, flag)) {
2256 		/*
2257 		 * munlink() releases the muxifier lock.
2258 		 */
2259 		if (error = munlink(stp, linkp, flag, crp, rvalp))
2260 			return (error);
2261 		mutex_enter(&muxifier);
2262 	}
2263 	mutex_exit(&muxifier);
2264 	return (0);
2265 }
2266 
2267 /*
2268  * A multiplexor link has been made. Add an
2269  * edge to the directed graph.
2270  */
2271 void
2272 mux_addedge(stdata_t *upstp, stdata_t *lostp, int muxid)
2273 {
2274 	struct mux_node *np;
2275 	struct mux_edge *ep;
2276 	major_t upmaj;
2277 	major_t lomaj;
2278 
2279 	upmaj = getmajor(upstp->sd_vnode->v_rdev);
2280 	lomaj = getmajor(lostp->sd_vnode->v_rdev);
2281 	np = &mux_nodes[upmaj];
2282 	if (np->mn_outp) {
2283 		ep = np->mn_outp;
2284 		while (ep->me_nextp)
2285 			ep = ep->me_nextp;
2286 		ep->me_nextp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
2287 		ep = ep->me_nextp;
2288 	} else {
2289 		np->mn_outp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
2290 		ep = np->mn_outp;
2291 	}
2292 	ep->me_nextp = NULL;
2293 	ep->me_muxid = muxid;
2294 	if (lostp->sd_vnode->v_type == VFIFO)
2295 		ep->me_nodep = NULL;
2296 	else
2297 		ep->me_nodep = &mux_nodes[lomaj];
2298 }
2299 
2300 /*
2301  * A multiplexor link has been removed. Remove the
2302  * edge in the directed graph.
2303  */
2304 void
2305 mux_rmvedge(stdata_t *upstp, int muxid)
2306 {
2307 	struct mux_node *np;
2308 	struct mux_edge *ep;
2309 	struct mux_edge *pep = NULL;
2310 	major_t upmaj;
2311 
2312 	upmaj = getmajor(upstp->sd_vnode->v_rdev);
2313 	np = &mux_nodes[upmaj];
2314 	ASSERT(np->mn_outp != NULL);
2315 	ep = np->mn_outp;
2316 	while (ep) {
2317 		if (ep->me_muxid == muxid) {
2318 			if (pep)
2319 				pep->me_nextp = ep->me_nextp;
2320 			else
2321 				np->mn_outp = ep->me_nextp;
2322 			kmem_free(ep, sizeof (struct mux_edge));
2323 			return;
2324 		}
2325 		pep = ep;
2326 		ep = ep->me_nextp;
2327 	}
2328 	ASSERT(0);	/* should not reach here */
2329 }
2330 
2331 /*
2332  * Translate the device flags (from conf.h) to the corresponding
2333  * qflag and sq_flag (type) values.
2334  */
2335 int
2336 devflg_to_qflag(struct streamtab *stp, uint32_t devflag, uint32_t *qflagp,
2337 	uint32_t *sqtypep)
2338 {
2339 	uint32_t qflag = 0;
2340 	uint32_t sqtype = 0;
2341 
2342 	if (devflag & _D_OLD)
2343 		goto bad;
2344 
2345 	/* Inner perimeter presence and scope */
2346 	switch (devflag & D_MTINNER_MASK) {
2347 	case D_MP:
2348 		qflag |= QMTSAFE;
2349 		sqtype |= SQ_CI;
2350 		break;
2351 	case D_MTPERQ|D_MP:
2352 		qflag |= QPERQ;
2353 		break;
2354 	case D_MTQPAIR|D_MP:
2355 		qflag |= QPAIR;
2356 		break;
2357 	case D_MTPERMOD|D_MP:
2358 		qflag |= QPERMOD;
2359 		break;
2360 	default:
2361 		goto bad;
2362 	}
2363 
2364 	/* Outer perimeter */
2365 	if (devflag & D_MTOUTPERIM) {
2366 		switch (devflag & D_MTINNER_MASK) {
2367 		case D_MP:
2368 		case D_MTPERQ|D_MP:
2369 		case D_MTQPAIR|D_MP:
2370 			break;
2371 		default:
2372 			goto bad;
2373 		}
2374 		qflag |= QMTOUTPERIM;
2375 	}
2376 
2377 	/* Inner perimeter modifiers */
2378 	if (devflag & D_MTINNER_MOD) {
2379 		switch (devflag & D_MTINNER_MASK) {
2380 		case D_MP:
2381 			goto bad;
2382 		default:
2383 			break;
2384 		}
2385 		if (devflag & D_MTPUTSHARED)
2386 			sqtype |= SQ_CIPUT;
2387 		if (devflag & _D_MTOCSHARED) {
2388 			/*
2389 			 * The code in putnext assumes that it has the
2390 			 * highest concurrency by not checking sq_count.
2391 			 * Thus _D_MTOCSHARED can only be supported when
2392 			 * D_MTPUTSHARED is set.
2393 			 */
2394 			if (!(devflag & D_MTPUTSHARED))
2395 				goto bad;
2396 			sqtype |= SQ_CIOC;
2397 		}
2398 		if (devflag & _D_MTCBSHARED) {
2399 			/*
2400 			 * The code in putnext assumes that it has the
2401 			 * highest concurrency by not checking sq_count.
2402 			 * Thus _D_MTCBSHARED can only be supported when
2403 			 * D_MTPUTSHARED is set.
2404 			 */
2405 			if (!(devflag & D_MTPUTSHARED))
2406 				goto bad;
2407 			sqtype |= SQ_CICB;
2408 		}
2409 		if (devflag & _D_MTSVCSHARED) {
2410 			/*
2411 			 * The code in putnext assumes that it has the
2412 			 * highest concurrency by not checking sq_count.
2413 			 * Thus _D_MTSVCSHARED can only be supported when
2414 			 * D_MTPUTSHARED is set. Also _D_MTSVCSHARED is
2415 			 * supported only for QPERMOD.
2416 			 */
2417 			if (!(devflag & D_MTPUTSHARED) || !(qflag & QPERMOD))
2418 				goto bad;
2419 			sqtype |= SQ_CISVC;
2420 		}
2421 	}
2422 
2423 	/* Default outer perimeter concurrency */
2424 	sqtype |= SQ_CO;
2425 
2426 	/* Outer perimeter modifiers */
2427 	if (devflag & D_MTOCEXCL) {
2428 		if (!(devflag & D_MTOUTPERIM)) {
2429 			/* No outer perimeter */
2430 			goto bad;
2431 		}
2432 		sqtype &= ~SQ_COOC;
2433 	}
2434 
2435 	/* Synchronous Streams extended qinit structure */
2436 	if (devflag & D_SYNCSTR)
2437 		qflag |= QSYNCSTR;
2438 
2439 	*qflagp = qflag;
2440 	*sqtypep = sqtype;
2441 	return (0);
2442 
2443 bad:
2444 	cmn_err(CE_WARN,
2445 	    "stropen: bad MT flags (0x%x) in driver '%s'",
2446 	    (int)(qflag & D_MTSAFETY_MASK),
2447 	    stp->st_rdinit->qi_minfo->mi_idname);
2448 
2449 	return (EINVAL);
2450 }
2451 
2452 /*
2453  * Set the interface values for a pair of queues (qinit structure,
2454  * packet sizes, water marks).
2455  * setq assumes that the caller does not have a claim (entersq or claimq)
2456  * on the queue.
2457  */
2458 void
2459 setq(queue_t *rq, struct qinit *rinit, struct qinit *winit,
2460     perdm_t *dmp, uint32_t qflag, uint32_t sqtype, boolean_t lock_needed)
2461 {
2462 	queue_t *wq;
2463 	syncq_t	*sq, *outer;
2464 
2465 	ASSERT(rq->q_flag & QREADR);
2466 	ASSERT((qflag & QMT_TYPEMASK) != 0);
2467 	IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
2468 
2469 	wq = _WR(rq);
2470 	rq->q_qinfo = rinit;
2471 	rq->q_hiwat = rinit->qi_minfo->mi_hiwat;
2472 	rq->q_lowat = rinit->qi_minfo->mi_lowat;
2473 	rq->q_minpsz = rinit->qi_minfo->mi_minpsz;
2474 	rq->q_maxpsz = rinit->qi_minfo->mi_maxpsz;
2475 	wq->q_qinfo = winit;
2476 	wq->q_hiwat = winit->qi_minfo->mi_hiwat;
2477 	wq->q_lowat = winit->qi_minfo->mi_lowat;
2478 	wq->q_minpsz = winit->qi_minfo->mi_minpsz;
2479 	wq->q_maxpsz = winit->qi_minfo->mi_maxpsz;
2480 
2481 	/* Remove old syncqs */
2482 	sq = rq->q_syncq;
2483 	outer = sq->sq_outer;
2484 	if (outer != NULL) {
2485 		ASSERT(wq->q_syncq->sq_outer == outer);
2486 		outer_remove(outer, rq->q_syncq);
2487 		if (wq->q_syncq != rq->q_syncq)
2488 			outer_remove(outer, wq->q_syncq);
2489 	}
2490 	ASSERT(sq->sq_outer == NULL);
2491 	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
2492 
2493 	if (sq != SQ(rq)) {
2494 		if (!(rq->q_flag & QPERMOD))
2495 			free_syncq(sq);
2496 		if (wq->q_syncq == rq->q_syncq)
2497 			wq->q_syncq = NULL;
2498 		rq->q_syncq = NULL;
2499 	}
2500 	if (wq->q_syncq != NULL && wq->q_syncq != sq &&
2501 	    wq->q_syncq != SQ(rq)) {
2502 		free_syncq(wq->q_syncq);
2503 		wq->q_syncq = NULL;
2504 	}
2505 	ASSERT(rq->q_syncq == NULL || (rq->q_syncq->sq_head == NULL &&
2506 				rq->q_syncq->sq_tail == NULL));
2507 	ASSERT(wq->q_syncq == NULL || (wq->q_syncq->sq_head == NULL &&
2508 				wq->q_syncq->sq_tail == NULL));
2509 
2510 	if (!(rq->q_flag & QPERMOD) &&
2511 	    rq->q_syncq != NULL && rq->q_syncq->sq_ciputctrl != NULL) {
2512 		ASSERT(rq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
2513 		SUMCHECK_CIPUTCTRL_COUNTS(rq->q_syncq->sq_ciputctrl,
2514 		    rq->q_syncq->sq_nciputctrl, 0);
2515 		ASSERT(ciputctrl_cache != NULL);
2516 		kmem_cache_free(ciputctrl_cache, rq->q_syncq->sq_ciputctrl);
2517 		rq->q_syncq->sq_ciputctrl = NULL;
2518 		rq->q_syncq->sq_nciputctrl = 0;
2519 	}
2520 
2521 	if (!(wq->q_flag & QPERMOD) &&
2522 	    wq->q_syncq != NULL && wq->q_syncq->sq_ciputctrl != NULL) {
2523 		ASSERT(wq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
2524 		SUMCHECK_CIPUTCTRL_COUNTS(wq->q_syncq->sq_ciputctrl,
2525 		    wq->q_syncq->sq_nciputctrl, 0);
2526 		ASSERT(ciputctrl_cache != NULL);
2527 		kmem_cache_free(ciputctrl_cache, wq->q_syncq->sq_ciputctrl);
2528 		wq->q_syncq->sq_ciputctrl = NULL;
2529 		wq->q_syncq->sq_nciputctrl = 0;
2530 	}
2531 
2532 	sq = SQ(rq);
2533 	ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
2534 	ASSERT(sq->sq_outer == NULL);
2535 	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
2536 
2537 	/*
2538 	 * Create syncqs based on qflag and sqtype. Set the SQ_TYPES_IN_FLAGS
2539 	 * bits in sq_flag based on the sqtype.
2540 	 */
2541 	ASSERT((sq->sq_flags & ~SQ_TYPES_IN_FLAGS) == 0);
2542 
2543 	rq->q_syncq = wq->q_syncq = sq;
2544 	sq->sq_type = sqtype;
2545 	sq->sq_flags = (sqtype & SQ_TYPES_IN_FLAGS);
2546 
2547 	/*
2548 	 *  We are making sq_svcflags zero,
2549 	 *  resetting SQ_DISABLED in case it was set by
2550 	 *  wait_svc() in the munlink path.
2551 	 *
2552 	 */
2553 	ASSERT((sq->sq_svcflags & SQ_SERVICE) == 0);
2554 	sq->sq_svcflags = 0;
2555 
2556 	/*
2557 	 * We need to acquire the lock here for the mlink and munlink case,
2558 	 * where canputnext, backenable, etc can access the q_flag.
2559 	 */
2560 	if (lock_needed) {
2561 		mutex_enter(QLOCK(rq));
2562 		rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2563 		mutex_exit(QLOCK(rq));
2564 		mutex_enter(QLOCK(wq));
2565 		wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2566 		mutex_exit(QLOCK(wq));
2567 	} else {
2568 		rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2569 		wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2570 	}
2571 
2572 	if (qflag & QPERQ) {
2573 		/* Allocate a separate syncq for the write side */
2574 		sq = new_syncq();
2575 		sq->sq_type = rq->q_syncq->sq_type;
2576 		sq->sq_flags = rq->q_syncq->sq_flags;
2577 		ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
2578 		    sq->sq_oprev == NULL);
2579 		wq->q_syncq = sq;
2580 	}
2581 	if (qflag & QPERMOD) {
2582 		sq = dmp->dm_sq;
2583 
2584 		/*
2585 		 * Assert that we do have an inner perimeter syncq and that it
2586 		 * does not have an outer perimeter associated with it.
2587 		 */
2588 		ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
2589 		    sq->sq_oprev == NULL);
2590 		rq->q_syncq = wq->q_syncq = sq;
2591 	}
2592 	if (qflag & QMTOUTPERIM) {
2593 		outer = dmp->dm_sq;
2594 
2595 		ASSERT(outer->sq_outer == NULL);
2596 		outer_insert(outer, rq->q_syncq);
2597 		if (wq->q_syncq != rq->q_syncq)
2598 			outer_insert(outer, wq->q_syncq);
2599 	}
2600 	ASSERT((rq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
2601 		(rq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
2602 	ASSERT((wq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
2603 		(wq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
2604 	ASSERT((rq->q_flag & QMT_TYPEMASK) == (qflag & QMT_TYPEMASK));
2605 
2606 	/*
2607 	 * Initialize struio() types.
2608 	 */
2609 	rq->q_struiot =
2610 	    (rq->q_flag & QSYNCSTR) ? rinit->qi_struiot : STRUIOT_NONE;
2611 	wq->q_struiot =
2612 	    (wq->q_flag & QSYNCSTR) ? winit->qi_struiot : STRUIOT_NONE;
2613 }
2614 
2615 perdm_t *
2616 hold_dm(struct streamtab *str, uint32_t qflag, uint32_t sqtype)
2617 {
2618 	syncq_t	*sq;
2619 	perdm_t	**pp;
2620 	perdm_t	*p;
2621 	perdm_t	*dmp;
2622 
2623 	ASSERT(str != NULL);
2624 	ASSERT(qflag & (QPERMOD | QMTOUTPERIM));
2625 
2626 	rw_enter(&perdm_rwlock, RW_READER);
2627 	for (p = perdm_list; p != NULL; p = p->dm_next) {
2628 		if (p->dm_str == str) {	/* found one */
2629 			atomic_add_32(&(p->dm_ref), 1);
2630 			rw_exit(&perdm_rwlock);
2631 			return (p);
2632 		}
2633 	}
2634 	rw_exit(&perdm_rwlock);
2635 
2636 	sq = new_syncq();
2637 	if (qflag & QPERMOD) {
2638 		sq->sq_type = sqtype | SQ_PERMOD;
2639 		sq->sq_flags = sqtype & SQ_TYPES_IN_FLAGS;
2640 	} else {
2641 		ASSERT(qflag & QMTOUTPERIM);
2642 		sq->sq_onext = sq->sq_oprev = sq;
2643 	}
2644 
2645 	dmp = kmem_alloc(sizeof (perdm_t), KM_SLEEP);
2646 	dmp->dm_sq = sq;
2647 	dmp->dm_str = str;
2648 	dmp->dm_ref = 1;
2649 	dmp->dm_next = NULL;
2650 
2651 	rw_enter(&perdm_rwlock, RW_WRITER);
2652 	for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next)) {
2653 		if (p->dm_str == str) {	/* already present */
2654 			p->dm_ref++;
2655 			rw_exit(&perdm_rwlock);
2656 			free_syncq(sq);
2657 			kmem_free(dmp, sizeof (perdm_t));
2658 			return (p);
2659 		}
2660 	}
2661 
2662 	*pp = dmp;
2663 	rw_exit(&perdm_rwlock);
2664 	return (dmp);
2665 }
2666 
2667 void
2668 rele_dm(perdm_t *dmp)
2669 {
2670 	perdm_t **pp;
2671 	perdm_t *p;
2672 
2673 	rw_enter(&perdm_rwlock, RW_WRITER);
2674 	ASSERT(dmp->dm_ref > 0);
2675 
2676 	if (--dmp->dm_ref > 0) {
2677 		rw_exit(&perdm_rwlock);
2678 		return;
2679 	}
2680 
2681 	for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next))
2682 		if (p == dmp)
2683 			break;
2684 	ASSERT(p == dmp);
2685 	*pp = p->dm_next;
2686 	rw_exit(&perdm_rwlock);
2687 
2688 	/*
2689 	 * Wait for any background processing that relies on the
2690 	 * syncq to complete before it is freed.
2691 	 */
2692 	wait_sq_svc(p->dm_sq);
2693 	free_syncq(p->dm_sq);
2694 	kmem_free(p, sizeof (perdm_t));
2695 }
2696 
2697 /*
2698  * Make a protocol message given control and data buffers.
2699  * n.b., this can block; be careful of what locks you hold when calling it.
2700  *
2701  * If sd_maxblk is less than *iosize this routine can fail part way through
2702  * (due to an allocation failure). In this case on return *iosize will contain
2703  * the amount that was consumed. Otherwise *iosize will not be modified
2704  * i.e. it will contain the amount that was consumed.
2705  */
2706 int
2707 strmakemsg(
2708 	struct strbuf *mctl,
2709 	ssize_t *iosize,
2710 	struct uio *uiop,
2711 	stdata_t *stp,
2712 	int32_t flag,
2713 	mblk_t **mpp)
2714 {
2715 	mblk_t *mpctl = NULL;
2716 	mblk_t *mpdata = NULL;
2717 	int error;
2718 
2719 	ASSERT(uiop != NULL);
2720 
2721 	*mpp = NULL;
2722 	/* Create control part, if any */
2723 	if ((mctl != NULL) && (mctl->len >= 0)) {
2724 		error = strmakectl(mctl, flag, uiop->uio_fmode, &mpctl);
2725 		if (error)
2726 			return (error);
2727 	}
2728 	/* Create data part, if any */
2729 	if (*iosize >= 0) {
2730 		error = strmakedata(iosize, uiop, stp, flag, &mpdata);
2731 		if (error) {
2732 			freemsg(mpctl);
2733 			return (error);
2734 		}
2735 	}
2736 	if (mpctl != NULL) {
2737 		if (mpdata != NULL)
2738 			linkb(mpctl, mpdata);
2739 		*mpp = mpctl;
2740 	} else {
2741 		*mpp = mpdata;
2742 	}
2743 	return (0);
2744 }
2745 
2746 /*
2747  * Make the control part of a protocol message given a control buffer.
2748  * n.b., this can block; be careful of what locks you hold when calling it.
2749  */
2750 int
2751 strmakectl(
2752 	struct strbuf *mctl,
2753 	int32_t flag,
2754 	int32_t fflag,
2755 	mblk_t **mpp)
2756 {
2757 	mblk_t *bp = NULL;
2758 	unsigned char msgtype;
2759 	int error = 0;
2760 
2761 	*mpp = NULL;
2762 	/*
2763 	 * Create control part of message, if any.
2764 	 */
2765 	if ((mctl != NULL) && (mctl->len >= 0)) {
2766 		caddr_t base;
2767 		int ctlcount;
2768 		int allocsz;
2769 
2770 		if (flag & RS_HIPRI)
2771 			msgtype = M_PCPROTO;
2772 		else
2773 			msgtype = M_PROTO;
2774 
2775 		ctlcount = mctl->len;
2776 		base = mctl->buf;
2777 
2778 		/*
2779 		 * Give modules a better chance to reuse M_PROTO/M_PCPROTO
2780 		 * blocks by increasing the size to something more usable.
2781 		 */
2782 		allocsz = MAX(ctlcount, 64);
2783 
2784 		/*
2785 		 * Range checking has already been done; simply try
2786 		 * to allocate a message block for the ctl part.
2787 		 */
2788 		while (!(bp = allocb(allocsz, BPRI_MED))) {
2789 			if (fflag & (FNDELAY|FNONBLOCK))
2790 				return (EAGAIN);
2791 			if (error = strwaitbuf(allocsz, BPRI_MED))
2792 				return (error);
2793 		}
2794 
2795 		bp->b_datap->db_type = msgtype;
2796 		if (copyin(base, bp->b_wptr, ctlcount)) {
2797 			freeb(bp);
2798 			return (EFAULT);
2799 		}
2800 		bp->b_wptr += ctlcount;
2801 	}
2802 	*mpp = bp;
2803 	return (0);
2804 }
2805 
2806 /*
2807  * Make a protocol message given data buffers.
2808  * n.b., this can block; be careful of what locks you hold when calling it.
2809  *
2810  * If sd_maxblk is less than *iosize this routine can fail part way through
2811  * (due to an allocation failure). In this case on return *iosize will contain
2812  * the amount that was consumed. Otherwise *iosize will not be modified
2813  * i.e. it will contain the amount that was consumed.
2814  */
2815 int
2816 strmakedata(
2817 	ssize_t   *iosize,
2818 	struct uio *uiop,
2819 	stdata_t *stp,
2820 	int32_t flag,
2821 	mblk_t **mpp)
2822 {
2823 	mblk_t *mp = NULL;
2824 	mblk_t *bp;
2825 	int wroff = (int)stp->sd_wroff;
2826 	int error = 0;
2827 	ssize_t maxblk;
2828 	ssize_t count = *iosize;
2829 	cred_t *cr = CRED();
2830 
2831 	*mpp = NULL;
2832 	if (count < 0)
2833 		return (0);
2834 
2835 	maxblk = stp->sd_maxblk;
2836 	if (maxblk == INFPSZ)
2837 		maxblk = count;
2838 
2839 	/*
2840 	 * Create data part of message, if any.
2841 	 */
2842 	do {
2843 		ssize_t size;
2844 		dblk_t  *dp;
2845 
2846 		ASSERT(uiop);
2847 
2848 		size = MIN(count, maxblk);
2849 
2850 		while ((bp = allocb_cred(size + wroff, cr)) == NULL) {
2851 			error = EAGAIN;
2852 			if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) ||
2853 			    (error = strwaitbuf(size + wroff, BPRI_MED)) != 0) {
2854 				if (count == *iosize) {
2855 					freemsg(mp);
2856 					return (error);
2857 				} else {
2858 					*iosize -= count;
2859 					*mpp = mp;
2860 					return (0);
2861 				}
2862 			}
2863 		}
2864 		dp = bp->b_datap;
2865 		dp->db_cpid = curproc->p_pid;
2866 		ASSERT(wroff <= dp->db_lim - bp->b_wptr);
2867 		bp->b_wptr = bp->b_rptr = bp->b_rptr + wroff;
2868 
2869 		if (flag & STRUIO_POSTPONE) {
2870 			/*
2871 			 * Setup the stream uio portion of the
2872 			 * dblk for subsequent use by struioget().
2873 			 */
2874 			dp->db_struioflag = STRUIO_SPEC;
2875 			dp->db_cksumstart = 0;
2876 			dp->db_cksumstuff = 0;
2877 			dp->db_cksumend = size;
2878 			*(long long *)dp->db_struioun.data = 0ll;
2879 		} else {
2880 			if (stp->sd_copyflag & STRCOPYCACHED)
2881 				uiop->uio_extflg |= UIO_COPY_CACHED;
2882 
2883 			if (size != 0) {
2884 				error = uiomove(bp->b_wptr, size, UIO_WRITE,
2885 				    uiop);
2886 				if (error != 0) {
2887 					freeb(bp);
2888 					freemsg(mp);
2889 					return (error);
2890 				}
2891 			}
2892 		}
2893 
2894 		bp->b_wptr += size;
2895 		count -= size;
2896 
2897 		if (mp == NULL)
2898 			mp = bp;
2899 		else
2900 			linkb(mp, bp);
2901 	} while (count > 0);
2902 
2903 	*mpp = mp;
2904 	return (0);
2905 }
2906 
2907 /*
2908  * Wait for a buffer to become available. Return non-zero errno
2909  * if not able to wait, 0 if buffer is probably there.
2910  */
2911 int
2912 strwaitbuf(size_t size, int pri)
2913 {
2914 	bufcall_id_t id;
2915 
2916 	mutex_enter(&bcall_monitor);
2917 	if ((id = bufcall(size, pri, (void (*)(void *))cv_broadcast,
2918 	    &ttoproc(curthread)->p_flag_cv)) == 0) {
2919 		mutex_exit(&bcall_monitor);
2920 		return (ENOSR);
2921 	}
2922 	if (!cv_wait_sig(&(ttoproc(curthread)->p_flag_cv), &bcall_monitor)) {
2923 		unbufcall(id);
2924 		mutex_exit(&bcall_monitor);
2925 		return (EINTR);
2926 	}
2927 	unbufcall(id);
2928 	mutex_exit(&bcall_monitor);
2929 	return (0);
2930 }
2931 
2932 /*
2933  * This function waits for a read or write event to happen on a stream.
2934  * fmode can specify FNDELAY and/or FNONBLOCK.
2935  * The timeout is in ms with -1 meaning infinite.
2936  * The flag values work as follows:
2937  *	READWAIT	Check for read side errors, send M_READ
2938  *	GETWAIT		Check for read side errors, no M_READ
2939  *	WRITEWAIT	Check for write side errors.
2940  *	NOINTR		Do not return error if nonblocking or timeout.
2941  * 	STR_NOERROR	Ignore all errors except STPLEX.
2942  *	STR_NOSIG	Ignore/hold signals during the duration of the call.
2943  *	STR_PEEK	Pass through the strgeterr().
2944  */
2945 int
2946 strwaitq(stdata_t *stp, int flag, ssize_t count, int fmode, clock_t timout,
2947     int *done)
2948 {
2949 	int slpflg, errs;
2950 	int error;
2951 	kcondvar_t *sleepon;
2952 	mblk_t *mp;
2953 	ssize_t *rd_count;
2954 	clock_t rval;
2955 
2956 	ASSERT(MUTEX_HELD(&stp->sd_lock));
2957 	if ((flag & READWAIT) || (flag & GETWAIT)) {
2958 		slpflg = RSLEEP;
2959 		sleepon = &_RD(stp->sd_wrq)->q_wait;
2960 		errs = STRDERR|STPLEX;
2961 	} else {
2962 		slpflg = WSLEEP;
2963 		sleepon = &stp->sd_wrq->q_wait;
2964 		errs = STWRERR|STRHUP|STPLEX;
2965 	}
2966 	if (flag & STR_NOERROR)
2967 		errs = STPLEX;
2968 
2969 	if (stp->sd_wakeq & slpflg) {
2970 		/*
2971 		 * A strwakeq() is pending, no need to sleep.
2972 		 */
2973 		stp->sd_wakeq &= ~slpflg;
2974 		*done = 0;
2975 		return (0);
2976 	}
2977 
2978 	if (fmode & (FNDELAY|FNONBLOCK)) {
2979 		if (!(flag & NOINTR))
2980 			error = EAGAIN;
2981 		else
2982 			error = 0;
2983 		*done = 1;
2984 		return (error);
2985 	}
2986 
2987 	if (stp->sd_flag & errs) {
2988 		/*
2989 		 * Check for errors before going to sleep since the
2990 		 * caller might not have checked this while holding
2991 		 * sd_lock.
2992 		 */
2993 		error = strgeterr(stp, errs, (flag & STR_PEEK));
2994 		if (error != 0) {
2995 			*done = 1;
2996 			return (error);
2997 		}
2998 	}
2999 
3000 	/*
3001 	 * If any module downstream has requested read notification
3002 	 * by setting SNDMREAD flag using M_SETOPTS, send a message
3003 	 * down stream.
3004 	 */
3005 	if ((flag & READWAIT) && (stp->sd_flag & SNDMREAD)) {
3006 		mutex_exit(&stp->sd_lock);
3007 		if (!(mp = allocb_wait(sizeof (ssize_t), BPRI_MED,
3008 		    (flag & STR_NOSIG), &error))) {
3009 			mutex_enter(&stp->sd_lock);
3010 			*done = 1;
3011 			return (error);
3012 		}
3013 		mp->b_datap->db_type = M_READ;
3014 		rd_count = (ssize_t *)mp->b_wptr;
3015 		*rd_count = count;
3016 		mp->b_wptr += sizeof (ssize_t);
3017 		/*
3018 		 * Send the number of bytes requested by the
3019 		 * read as the argument to M_READ.
3020 		 */
3021 		stream_willservice(stp);
3022 		putnext(stp->sd_wrq, mp);
3023 		stream_runservice(stp);
3024 		mutex_enter(&stp->sd_lock);
3025 
3026 		/*
3027 		 * If any data arrived due to inline processing
3028 		 * of putnext(), don't sleep.
3029 		 */
3030 		if (_RD(stp->sd_wrq)->q_first != NULL) {
3031 			*done = 0;
3032 			return (0);
3033 		}
3034 	}
3035 
3036 	stp->sd_flag |= slpflg;
3037 	TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAIT2,
3038 		"strwaitq sleeps (2):%p, %X, %lX, %X, %p",
3039 		stp, flag, count, fmode, done);
3040 
3041 	rval = str_cv_wait(sleepon, &stp->sd_lock, timout, flag & STR_NOSIG);
3042 	if (rval > 0) {
3043 		/* EMPTY */
3044 		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAKE2,
3045 			"strwaitq awakes(2):%X, %X, %X, %X, %X",
3046 			stp, flag, count, fmode, done);
3047 	} else if (rval == 0) {
3048 		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_INTR2,
3049 			"strwaitq interrupt #2:%p, %X, %lX, %X, %p",
3050 			stp, flag, count, fmode, done);
3051 		stp->sd_flag &= ~slpflg;
3052 		cv_broadcast(sleepon);
3053 		if (!(flag & NOINTR))
3054 			error = EINTR;
3055 		else
3056 			error = 0;
3057 		*done = 1;
3058 		return (error);
3059 	} else {
3060 		/* timeout */
3061 		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_TIME,
3062 			"strwaitq timeout:%p, %X, %lX, %X, %p",
3063 			stp, flag, count, fmode, done);
3064 		*done = 1;
3065 		if (!(flag & NOINTR))
3066 			return (ETIME);
3067 		else
3068 			return (0);
3069 	}
3070 	/*
3071 	 * If the caller implements delayed errors (i.e. queued after data)
3072 	 * we can not check for errors here since data as well as an
3073 	 * error might have arrived at the stream head. We return to
3074 	 * have the caller check the read queue before checking for errors.
3075 	 */
3076 	if ((stp->sd_flag & errs) && !(flag & STR_DELAYERR)) {
3077 		error = strgeterr(stp, errs, (flag & STR_PEEK));
3078 		if (error != 0) {
3079 			*done = 1;
3080 			return (error);
3081 		}
3082 	}
3083 	*done = 0;
3084 	return (0);
3085 }
3086 
3087 /*
3088  * Perform job control discipline access checks.
3089  * Return 0 for success and the errno for failure.
3090  */
3091 
3092 #define	cantsend(p, t, sig) \
3093 	(sigismember(&(p)->p_ignore, sig) || signal_is_blocked((t), sig))
3094 
3095 int
3096 straccess(struct stdata *stp, enum jcaccess mode)
3097 {
3098 	extern kcondvar_t lbolt_cv;	/* XXX: should be in a header file */
3099 	kthread_t *t = curthread;
3100 	proc_t *p = ttoproc(t);
3101 	sess_t *sp;
3102 
3103 	if (stp->sd_sidp == NULL || stp->sd_vnode->v_type == VFIFO)
3104 		return (0);
3105 
3106 	mutex_enter(&p->p_lock);
3107 	sp = p->p_sessp;
3108 
3109 	for (;;) {
3110 		/*
3111 		 * If this is not the calling process's controlling terminal
3112 		 * or if the calling process is already in the foreground
3113 		 * then allow access.
3114 		 */
3115 		if (sp->s_dev != stp->sd_vnode->v_rdev ||
3116 		    p->p_pgidp == stp->sd_pgidp) {
3117 			mutex_exit(&p->p_lock);
3118 			return (0);
3119 		}
3120 
3121 		/*
3122 		 * Check to see if controlling terminal has been deallocated.
3123 		 */
3124 		if (sp->s_vp == NULL) {
3125 			if (!cantsend(p, t, SIGHUP))
3126 				sigtoproc(p, t, SIGHUP);
3127 			mutex_exit(&p->p_lock);
3128 			return (EIO);
3129 		}
3130 
3131 		if (mode == JCGETP) {
3132 			mutex_exit(&p->p_lock);
3133 			return (0);
3134 		}
3135 
3136 		if (mode == JCREAD) {
3137 			if (p->p_detached || cantsend(p, t, SIGTTIN)) {
3138 				mutex_exit(&p->p_lock);
3139 				return (EIO);
3140 			}
3141 			mutex_exit(&p->p_lock);
3142 			pgsignal(p->p_pgidp, SIGTTIN);
3143 			mutex_enter(&p->p_lock);
3144 		} else {  /* mode == JCWRITE or JCSETP */
3145 			if ((mode == JCWRITE && !(stp->sd_flag & STRTOSTOP)) ||
3146 			    cantsend(p, t, SIGTTOU)) {
3147 				mutex_exit(&p->p_lock);
3148 				return (0);
3149 			}
3150 			if (p->p_detached) {
3151 				mutex_exit(&p->p_lock);
3152 				return (EIO);
3153 			}
3154 			mutex_exit(&p->p_lock);
3155 			pgsignal(p->p_pgidp, SIGTTOU);
3156 			mutex_enter(&p->p_lock);
3157 		}
3158 
3159 		/*
3160 		 * We call cv_wait_sig_swap() to cause the appropriate
3161 		 * action for the jobcontrol signal to take place.
3162 		 * If the signal is being caught, we will take the
3163 		 * EINTR error return.  Otherwise, the default action
3164 		 * of causing the process to stop will take place.
3165 		 * In this case, we rely on the periodic cv_broadcast() on
3166 		 * &lbolt_cv to wake us up to loop around and test again.
3167 		 * We can't get here if the signal is ignored or
3168 		 * if the current thread is blocking the signal.
3169 		 */
3170 		if (!cv_wait_sig_swap(&lbolt_cv, &p->p_lock)) {
3171 			mutex_exit(&p->p_lock);
3172 			return (EINTR);
3173 		}
3174 	}
3175 }
3176 
3177 /*
3178  * Return size of message of block type (bp->b_datap->db_type)
3179  */
3180 size_t
3181 xmsgsize(mblk_t *bp)
3182 {
3183 	unsigned char type;
3184 	size_t count = 0;
3185 
3186 	type = bp->b_datap->db_type;
3187 
3188 	for (; bp; bp = bp->b_cont) {
3189 		if (type != bp->b_datap->db_type)
3190 			break;
3191 		ASSERT(bp->b_wptr >= bp->b_rptr);
3192 		count += bp->b_wptr - bp->b_rptr;
3193 	}
3194 	return (count);
3195 }
3196 
3197 /*
3198  * Allocate a stream head.
3199  */
3200 struct stdata *
3201 shalloc(queue_t *qp)
3202 {
3203 	stdata_t *stp;
3204 
3205 	stp = kmem_cache_alloc(stream_head_cache, KM_SLEEP);
3206 
3207 	stp->sd_wrq = _WR(qp);
3208 	stp->sd_strtab = NULL;
3209 	stp->sd_iocid = 0;
3210 	stp->sd_mate = NULL;
3211 	stp->sd_freezer = NULL;
3212 	stp->sd_refcnt = 0;
3213 	stp->sd_wakeq = 0;
3214 	stp->sd_anchor = 0;
3215 	stp->sd_struiowrq = NULL;
3216 	stp->sd_struiordq = NULL;
3217 	stp->sd_struiodnak = 0;
3218 	stp->sd_struionak = NULL;
3219 #ifdef C2_AUDIT
3220 	stp->sd_t_audit_data = NULL;
3221 #endif
3222 	stp->sd_rput_opt = 0;
3223 	stp->sd_wput_opt = 0;
3224 	stp->sd_read_opt = 0;
3225 	stp->sd_rprotofunc = strrput_proto;
3226 	stp->sd_rmiscfunc = strrput_misc;
3227 	stp->sd_rderrfunc = stp->sd_wrerrfunc = NULL;
3228 	stp->sd_ciputctrl = NULL;
3229 	stp->sd_nciputctrl = 0;
3230 	stp->sd_qhead = NULL;
3231 	stp->sd_qtail = NULL;
3232 	stp->sd_servid = NULL;
3233 	stp->sd_nqueues = 0;
3234 	stp->sd_svcflags = 0;
3235 	stp->sd_copyflag = 0;
3236 	return (stp);
3237 }
3238 
3239 /*
3240  * Free a stream head.
3241  */
3242 void
3243 shfree(stdata_t *stp)
3244 {
3245 	ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
3246 
3247 	stp->sd_wrq = NULL;
3248 
3249 	mutex_enter(&stp->sd_qlock);
3250 	while (stp->sd_svcflags & STRS_SCHEDULED) {
3251 		STRSTAT(strwaits);
3252 		cv_wait(&stp->sd_qcv, &stp->sd_qlock);
3253 	}
3254 	mutex_exit(&stp->sd_qlock);
3255 
3256 	if (stp->sd_ciputctrl != NULL) {
3257 		ASSERT(stp->sd_nciputctrl == n_ciputctrl - 1);
3258 		SUMCHECK_CIPUTCTRL_COUNTS(stp->sd_ciputctrl,
3259 		    stp->sd_nciputctrl, 0);
3260 		ASSERT(ciputctrl_cache != NULL);
3261 		kmem_cache_free(ciputctrl_cache, stp->sd_ciputctrl);
3262 		stp->sd_ciputctrl = NULL;
3263 		stp->sd_nciputctrl = 0;
3264 	}
3265 	ASSERT(stp->sd_qhead == NULL);
3266 	ASSERT(stp->sd_qtail == NULL);
3267 	ASSERT(stp->sd_nqueues == 0);
3268 	kmem_cache_free(stream_head_cache, stp);
3269 }
3270 
3271 /*
3272  * Allocate a pair of queues and a syncq for the pair
3273  */
3274 queue_t *
3275 allocq(void)
3276 {
3277 	queinfo_t *qip;
3278 	queue_t *qp, *wqp;
3279 	syncq_t	*sq;
3280 
3281 	qip = kmem_cache_alloc(queue_cache, KM_SLEEP);
3282 
3283 	qp = &qip->qu_rqueue;
3284 	wqp = &qip->qu_wqueue;
3285 	sq = &qip->qu_syncq;
3286 
3287 	qp->q_last	= NULL;
3288 	qp->q_next	= NULL;
3289 	qp->q_ptr	= NULL;
3290 	qp->q_flag	= QUSE | QREADR;
3291 	qp->q_bandp	= NULL;
3292 	qp->q_stream	= NULL;
3293 	qp->q_syncq	= sq;
3294 	qp->q_nband	= 0;
3295 	qp->q_nfsrv	= NULL;
3296 	qp->q_draining	= 0;
3297 	qp->q_syncqmsgs	= 0;
3298 	qp->q_spri	= 0;
3299 	qp->q_qtstamp	= 0;
3300 	qp->q_sqtstamp	= 0;
3301 	qp->q_fp	= NULL;
3302 
3303 	wqp->q_last	= NULL;
3304 	wqp->q_next	= NULL;
3305 	wqp->q_ptr	= NULL;
3306 	wqp->q_flag	= QUSE;
3307 	wqp->q_bandp	= NULL;
3308 	wqp->q_stream	= NULL;
3309 	wqp->q_syncq	= sq;
3310 	wqp->q_nband	= 0;
3311 	wqp->q_nfsrv	= NULL;
3312 	wqp->q_draining	= 0;
3313 	wqp->q_syncqmsgs = 0;
3314 	wqp->q_qtstamp	= 0;
3315 	wqp->q_sqtstamp	= 0;
3316 	wqp->q_spri	= 0;
3317 
3318 	sq->sq_count	= 0;
3319 	sq->sq_rmqcount	= 0;
3320 	sq->sq_flags	= 0;
3321 	sq->sq_type	= 0;
3322 	sq->sq_callbflags = 0;
3323 	sq->sq_cancelid	= 0;
3324 	sq->sq_ciputctrl = NULL;
3325 	sq->sq_nciputctrl = 0;
3326 	sq->sq_needexcl = 0;
3327 	sq->sq_svcflags = 0;
3328 
3329 	return (qp);
3330 }
3331 
3332 /*
3333  * Free a pair of queues and the "attached" syncq.
3334  * Discard any messages left on the syncq(s), remove the syncq(s) from the
3335  * outer perimeter, and free the syncq(s) if they are not the "attached" syncq.
3336  */
3337 void
3338 freeq(queue_t *qp)
3339 {
3340 	qband_t *qbp, *nqbp;
3341 	syncq_t *sq, *outer;
3342 	queue_t *wqp = _WR(qp);
3343 
3344 	ASSERT(qp->q_flag & QREADR);
3345 
3346 	(void) flush_syncq(qp->q_syncq, qp);
3347 	(void) flush_syncq(wqp->q_syncq, wqp);
3348 	ASSERT(qp->q_syncqmsgs == 0 && wqp->q_syncqmsgs == 0);
3349 
3350 	outer = qp->q_syncq->sq_outer;
3351 	if (outer != NULL) {
3352 		outer_remove(outer, qp->q_syncq);
3353 		if (wqp->q_syncq != qp->q_syncq)
3354 			outer_remove(outer, wqp->q_syncq);
3355 	}
3356 	/*
3357 	 * Free any syncqs that are outside what allocq returned.
3358 	 */
3359 	if (qp->q_syncq != SQ(qp) && !(qp->q_flag & QPERMOD))
3360 		free_syncq(qp->q_syncq);
3361 	if (qp->q_syncq != wqp->q_syncq && wqp->q_syncq != SQ(qp))
3362 		free_syncq(wqp->q_syncq);
3363 
3364 	ASSERT((qp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
3365 	ASSERT((wqp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
3366 	ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
3367 	ASSERT(MUTEX_NOT_HELD(QLOCK(wqp)));
3368 	sq = SQ(qp);
3369 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
3370 	ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
3371 	ASSERT(sq->sq_outer == NULL);
3372 	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
3373 	ASSERT(sq->sq_callbpend == NULL);
3374 	ASSERT(sq->sq_needexcl == 0);
3375 
3376 	if (sq->sq_ciputctrl != NULL) {
3377 		ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
3378 		SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
3379 		    sq->sq_nciputctrl, 0);
3380 		ASSERT(ciputctrl_cache != NULL);
3381 		kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
3382 		sq->sq_ciputctrl = NULL;
3383 		sq->sq_nciputctrl = 0;
3384 	}
3385 
3386 	ASSERT(qp->q_first == NULL && wqp->q_first == NULL);
3387 	ASSERT(qp->q_count == 0 && wqp->q_count == 0);
3388 	ASSERT(qp->q_mblkcnt == 0 && wqp->q_mblkcnt == 0);
3389 
3390 	qp->q_flag &= ~QUSE;
3391 	wqp->q_flag &= ~QUSE;
3392 
3393 	/* NOTE: Uncomment the assert below once bugid 1159635 is fixed. */
3394 	/* ASSERT((qp->q_flag & QWANTW) == 0 && (wqp->q_flag & QWANTW) == 0); */
3395 
3396 	qbp = qp->q_bandp;
3397 	while (qbp) {
3398 		nqbp = qbp->qb_next;
3399 		freeband(qbp);
3400 		qbp = nqbp;
3401 	}
3402 	qbp = wqp->q_bandp;
3403 	while (qbp) {
3404 		nqbp = qbp->qb_next;
3405 		freeband(qbp);
3406 		qbp = nqbp;
3407 	}
3408 	kmem_cache_free(queue_cache, qp);
3409 }
3410 
3411 /*
3412  * Allocate a qband structure.
3413  */
3414 qband_t *
3415 allocband(void)
3416 {
3417 	qband_t *qbp;
3418 
3419 	qbp = kmem_cache_alloc(qband_cache, KM_NOSLEEP);
3420 	if (qbp == NULL)
3421 		return (NULL);
3422 
3423 	qbp->qb_next	= NULL;
3424 	qbp->qb_count	= 0;
3425 	qbp->qb_mblkcnt	= 0;
3426 	qbp->qb_first	= NULL;
3427 	qbp->qb_last	= NULL;
3428 	qbp->qb_flag	= 0;
3429 
3430 	return (qbp);
3431 }
3432 
3433 /*
3434  * Free a qband structure.
3435  */
3436 void
3437 freeband(qband_t *qbp)
3438 {
3439 	kmem_cache_free(qband_cache, qbp);
3440 }
3441 
3442 /*
3443  * Just like putnextctl(9F), except that allocb_wait() is used.
3444  *
3445  * Consolidation Private, and of course only callable from the stream head or
3446  * routines that may block.
3447  */
3448 int
3449 putnextctl_wait(queue_t *q, int type)
3450 {
3451 	mblk_t *bp;
3452 	int error;
3453 
3454 	if ((datamsg(type) && (type != M_DELAY)) ||
3455 	    (bp = allocb_wait(0, BPRI_HI, 0, &error)) == NULL)
3456 		return (0);
3457 
3458 	bp->b_datap->db_type = (unsigned char)type;
3459 	putnext(q, bp);
3460 	return (1);
3461 }
3462 
3463 /*
3464  * run any possible bufcalls.
3465  */
3466 void
3467 runbufcalls(void)
3468 {
3469 	strbufcall_t *bcp;
3470 
3471 	mutex_enter(&bcall_monitor);
3472 	mutex_enter(&strbcall_lock);
3473 
3474 	if (strbcalls.bc_head) {
3475 		size_t count;
3476 		int nevent;
3477 
3478 		/*
3479 		 * count how many events are on the list
3480 		 * now so we can check to avoid looping
3481 		 * in low memory situations
3482 		 */
3483 		nevent = 0;
3484 		for (bcp = strbcalls.bc_head; bcp; bcp = bcp->bc_next)
3485 			nevent++;
3486 
3487 		/*
3488 		 * get estimate of available memory from kmem_avail().
3489 		 * awake all bufcall functions waiting for
3490 		 * memory whose request could be satisfied
3491 		 * by 'count' memory and let 'em fight for it.
3492 		 */
3493 		count = kmem_avail();
3494 		while ((bcp = strbcalls.bc_head) != NULL && nevent) {
3495 			STRSTAT(bufcalls);
3496 			--nevent;
3497 			if (bcp->bc_size <= count) {
3498 				bcp->bc_executor = curthread;
3499 				mutex_exit(&strbcall_lock);
3500 				(*bcp->bc_func)(bcp->bc_arg);
3501 				mutex_enter(&strbcall_lock);
3502 				bcp->bc_executor = NULL;
3503 				cv_broadcast(&bcall_cv);
3504 				strbcalls.bc_head = bcp->bc_next;
3505 				kmem_free(bcp, sizeof (strbufcall_t));
3506 			} else {
3507 				/*
3508 				 * too big, try again later - note
3509 				 * that nevent was decremented above
3510 				 * so we won't retry this one on this
3511 				 * iteration of the loop
3512 				 */
3513 				if (bcp->bc_next != NULL) {
3514 					strbcalls.bc_head = bcp->bc_next;
3515 					bcp->bc_next = NULL;
3516 					strbcalls.bc_tail->bc_next = bcp;
3517 					strbcalls.bc_tail = bcp;
3518 				}
3519 			}
3520 		}
3521 		if (strbcalls.bc_head == NULL)
3522 			strbcalls.bc_tail = NULL;
3523 	}
3524 
3525 	mutex_exit(&strbcall_lock);
3526 	mutex_exit(&bcall_monitor);
3527 }
3528 
3529 
3530 /*
3531  * actually run queue's service routine.
3532  */
3533 static void
3534 runservice(queue_t *q)
3535 {
3536 	qband_t *qbp;
3537 
3538 	ASSERT(q->q_qinfo->qi_srvp);
3539 again:
3540 	entersq(q->q_syncq, SQ_SVC);
3541 	TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_START,
3542 		"runservice starts:%p", q);
3543 
3544 	if (!(q->q_flag & QWCLOSE))
3545 		(*q->q_qinfo->qi_srvp)(q);
3546 
3547 	TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_END,
3548 		"runservice ends:(%p)", q);
3549 
3550 	leavesq(q->q_syncq, SQ_SVC);
3551 
3552 	mutex_enter(QLOCK(q));
3553 	if (q->q_flag & QENAB) {
3554 		q->q_flag &= ~QENAB;
3555 		mutex_exit(QLOCK(q));
3556 		goto again;
3557 	}
3558 	q->q_flag &= ~QINSERVICE;
3559 	q->q_flag &= ~QBACK;
3560 	for (qbp = q->q_bandp; qbp; qbp = qbp->qb_next)
3561 		qbp->qb_flag &= ~QB_BACK;
3562 	/*
3563 	 * Wakeup thread waiting for the service procedure
3564 	 * to be run (strclose and qdetach).
3565 	 */
3566 	cv_broadcast(&q->q_wait);
3567 
3568 	mutex_exit(QLOCK(q));
3569 }
3570 
3571 /*
3572  * Background processing of bufcalls.
3573  */
3574 void
3575 streams_bufcall_service(void)
3576 {
3577 	callb_cpr_t	cprinfo;
3578 
3579 	CALLB_CPR_INIT(&cprinfo, &strbcall_lock, callb_generic_cpr,
3580 	    "streams_bufcall_service");
3581 
3582 	mutex_enter(&strbcall_lock);
3583 
3584 	for (;;) {
3585 		if (strbcalls.bc_head != NULL && kmem_avail() > 0) {
3586 			mutex_exit(&strbcall_lock);
3587 			runbufcalls();
3588 			mutex_enter(&strbcall_lock);
3589 		}
3590 		if (strbcalls.bc_head != NULL) {
3591 			clock_t wt, tick;
3592 
3593 			STRSTAT(bcwaits);
3594 			/* Wait for memory to become available */
3595 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3596 			tick = SEC_TO_TICK(60);
3597 			time_to_wait(&wt, tick);
3598 			(void) cv_timedwait(&memavail_cv, &strbcall_lock, wt);
3599 			CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
3600 		}
3601 
3602 		/* Wait for new work to arrive */
3603 		if (strbcalls.bc_head == NULL) {
3604 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3605 			cv_wait(&strbcall_cv, &strbcall_lock);
3606 			CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
3607 		}
3608 	}
3609 }
3610 
3611 /*
3612  * Background processing of streams background tasks which failed
3613  * taskq_dispatch.
3614  */
3615 static void
3616 streams_qbkgrnd_service(void)
3617 {
3618 	callb_cpr_t cprinfo;
3619 	queue_t *q;
3620 
3621 	CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
3622 	    "streams_bkgrnd_service");
3623 
3624 	mutex_enter(&service_queue);
3625 
3626 	for (;;) {
3627 		/*
3628 		 * Wait for work to arrive.
3629 		 */
3630 		while ((freebs_list == NULL) && (qhead == NULL)) {
3631 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3632 			cv_wait(&services_to_run, &service_queue);
3633 			CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
3634 		}
3635 		/*
3636 		 * Handle all pending freebs requests to free memory.
3637 		 */
3638 		while (freebs_list != NULL) {
3639 			mblk_t *mp = freebs_list;
3640 			freebs_list = mp->b_next;
3641 			mutex_exit(&service_queue);
3642 			mblk_free(mp);
3643 			mutex_enter(&service_queue);
3644 		}
3645 		/*
3646 		 * Run pending queues.
3647 		 */
3648 		while (qhead != NULL) {
3649 			DQ(q, qhead, qtail, q_link);
3650 			ASSERT(q != NULL);
3651 			mutex_exit(&service_queue);
3652 			queue_service(q);
3653 			mutex_enter(&service_queue);
3654 		}
3655 		ASSERT(qhead == NULL && qtail == NULL);
3656 	}
3657 }
3658 
3659 /*
3660  * Background processing of streams background tasks which failed
3661  * taskq_dispatch.
3662  */
3663 static void
3664 streams_sqbkgrnd_service(void)
3665 {
3666 	callb_cpr_t cprinfo;
3667 	syncq_t *sq;
3668 
3669 	CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
3670 	    "streams_sqbkgrnd_service");
3671 
3672 	mutex_enter(&service_queue);
3673 
3674 	for (;;) {
3675 		/*
3676 		 * Wait for work to arrive.
3677 		 */
3678 		while (sqhead == NULL) {
3679 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3680 			cv_wait(&syncqs_to_run, &service_queue);
3681 			CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
3682 		}
3683 
3684 		/*
3685 		 * Run pending syncqs.
3686 		 */
3687 		while (sqhead != NULL) {
3688 			DQ(sq, sqhead, sqtail, sq_next);
3689 			ASSERT(sq != NULL);
3690 			ASSERT(sq->sq_svcflags & SQ_BGTHREAD);
3691 			mutex_exit(&service_queue);
3692 			syncq_service(sq);
3693 			mutex_enter(&service_queue);
3694 		}
3695 	}
3696 }
3697 
3698 /*
3699  * Disable the syncq and wait for background syncq processing to complete.
3700  * If the syncq is placed on the sqhead/sqtail queue, try to remove it from the
3701  * list.
3702  */
3703 void
3704 wait_sq_svc(syncq_t *sq)
3705 {
3706 	mutex_enter(SQLOCK(sq));
3707 	sq->sq_svcflags |= SQ_DISABLED;
3708 	if (sq->sq_svcflags & SQ_BGTHREAD) {
3709 		syncq_t *sq_chase;
3710 		syncq_t *sq_curr;
3711 		int removed;
3712 
3713 		ASSERT(sq->sq_servcount == 1);
3714 		mutex_enter(&service_queue);
3715 		RMQ(sq, sqhead, sqtail, sq_next, sq_chase, sq_curr, removed);
3716 		mutex_exit(&service_queue);
3717 		if (removed) {
3718 			sq->sq_svcflags &= ~SQ_BGTHREAD;
3719 			sq->sq_servcount = 0;
3720 			STRSTAT(sqremoved);
3721 			goto done;
3722 		}
3723 	}
3724 	while (sq->sq_servcount != 0) {
3725 		sq->sq_flags |= SQ_WANTWAKEUP;
3726 		cv_wait(&sq->sq_wait, SQLOCK(sq));
3727 	}
3728 done:
3729 	mutex_exit(SQLOCK(sq));
3730 }
3731 
3732 /*
3733  * Put a syncq on the list of syncq's to be serviced by the sqthread.
3734  * Add the argument to the end of the sqhead list and set the flag
3735  * indicating this syncq has been enabled.  If it has already been
3736  * enabled, don't do anything.
3737  * This routine assumes that SQLOCK is held.
3738  * NOTE that the lock order is to have the SQLOCK first,
3739  * so if the service_syncq lock is held, we need to release it
3740  * before aquiring the SQLOCK (mostly relevant for the background
3741  * thread, and this seems to be common among the STREAMS global locks).
3742  * Note the the sq_svcflags are protected by the SQLOCK.
3743  */
3744 void
3745 sqenable(syncq_t *sq)
3746 {
3747 	/*
3748 	 * This is probably not important except for where I believe it
3749 	 * is being called.  At that point, it should be held (and it
3750 	 * is a pain to release it just for this routine, so don't do
3751 	 * it).
3752 	 */
3753 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
3754 
3755 	IMPLY(sq->sq_servcount == 0, sq->sq_next == NULL);
3756 	IMPLY(sq->sq_next != NULL, sq->sq_svcflags & SQ_BGTHREAD);
3757 
3758 	/*
3759 	 * Do not put on list if background thread is scheduled or
3760 	 * syncq is disabled.
3761 	 */
3762 	if (sq->sq_svcflags & (SQ_DISABLED | SQ_BGTHREAD))
3763 		return;
3764 
3765 	/*
3766 	 * Check whether we should enable sq at all.
3767 	 * Non PERMOD syncqs may be drained by at most one thread.
3768 	 * PERMOD syncqs may be drained by several threads but we limit the
3769 	 * total amount to the lesser of
3770 	 *	Number of queues on the squeue and
3771 	 *	Number of CPUs.
3772 	 */
3773 	if (sq->sq_servcount != 0) {
3774 		if (((sq->sq_type & SQ_PERMOD) == 0) ||
3775 		    (sq->sq_servcount >= MIN(sq->sq_nqueues, ncpus_online))) {
3776 			STRSTAT(sqtoomany);
3777 			return;
3778 		}
3779 	}
3780 
3781 	sq->sq_tstamp = lbolt;
3782 	STRSTAT(sqenables);
3783 
3784 	/* Attempt a taskq dispatch */
3785 	sq->sq_servid = (void *)taskq_dispatch(streams_taskq,
3786 	    (task_func_t *)syncq_service, sq, TQ_NOSLEEP | TQ_NOQUEUE);
3787 	if (sq->sq_servid != NULL) {
3788 		sq->sq_servcount++;
3789 		return;
3790 	}
3791 
3792 	/*
3793 	 * This taskq dispatch failed, but a previous one may have succeeded.
3794 	 * Don't try to schedule on the background thread whilst there is
3795 	 * outstanding taskq processing.
3796 	 */
3797 	if (sq->sq_servcount != 0)
3798 		return;
3799 
3800 	/*
3801 	 * System is low on resources and can't perform a non-sleeping
3802 	 * dispatch. Schedule the syncq for a background thread and mark the
3803 	 * syncq to avoid any further taskq dispatch attempts.
3804 	 */
3805 	mutex_enter(&service_queue);
3806 	STRSTAT(taskqfails);
3807 	ENQUEUE(sq, sqhead, sqtail, sq_next);
3808 	sq->sq_svcflags |= SQ_BGTHREAD;
3809 	sq->sq_servcount = 1;
3810 	cv_signal(&syncqs_to_run);
3811 	mutex_exit(&service_queue);
3812 }
3813 
3814 /*
3815  * Note: fifo_close() depends on the mblk_t on the queue being freed
3816  * asynchronously. The asynchronous freeing of messages breaks the
3817  * recursive call chain of fifo_close() while there are I_SENDFD type of
3818  * messages refering other file pointers on the queue. Then when
3819  * closing pipes it can avoid stack overflow in case of daisy-chained
3820  * pipes, and also avoid deadlock in case of fifonode_t pairs (which
3821  * share the same fifolock_t).
3822  */
3823 
3824 /* ARGSUSED */
3825 void
3826 freebs_enqueue(mblk_t *mp, dblk_t *dbp)
3827 {
3828 	ASSERT(dbp->db_mblk == mp);
3829 
3830 	/*
3831 	 * Check data sanity. The dblock should have non-empty free function.
3832 	 * It is better to panic here then later when the dblock is freed
3833 	 * asynchronously when the context is lost.
3834 	 */
3835 	if (dbp->db_frtnp->free_func == NULL) {
3836 		panic("freebs_enqueue: dblock %p has a NULL free callback",
3837 		    (void *) dbp);
3838 	}
3839 
3840 	STRSTAT(freebs);
3841 	if (taskq_dispatch(streams_taskq, (task_func_t *)mblk_free, mp,
3842 	    TQ_NOSLEEP) == NULL) {
3843 		/*
3844 		 * System is low on resources and can't perform a non-sleeping
3845 		 * dispatch. Schedule for a background thread.
3846 		 */
3847 		mutex_enter(&service_queue);
3848 		STRSTAT(taskqfails);
3849 		mp->b_next = freebs_list;
3850 		freebs_list = mp;
3851 		cv_signal(&services_to_run);
3852 		mutex_exit(&service_queue);
3853 	}
3854 }
3855 
3856 /*
3857  * Set the QBACK or QB_BACK flag in the given queue for
3858  * the given priority band.
3859  */
3860 void
3861 setqback(queue_t *q, unsigned char pri)
3862 {
3863 	int i;
3864 	qband_t *qbp;
3865 	qband_t **qbpp;
3866 
3867 	ASSERT(MUTEX_HELD(QLOCK(q)));
3868 	if (pri != 0) {
3869 		if (pri > q->q_nband) {
3870 			qbpp = &q->q_bandp;
3871 			while (*qbpp)
3872 				qbpp = &(*qbpp)->qb_next;
3873 			while (pri > q->q_nband) {
3874 				if ((*qbpp = allocband()) == NULL) {
3875 					cmn_err(CE_WARN,
3876 					    "setqback: can't allocate qband\n");
3877 					return;
3878 				}
3879 				(*qbpp)->qb_hiwat = q->q_hiwat;
3880 				(*qbpp)->qb_lowat = q->q_lowat;
3881 				q->q_nband++;
3882 				qbpp = &(*qbpp)->qb_next;
3883 			}
3884 		}
3885 		qbp = q->q_bandp;
3886 		i = pri;
3887 		while (--i)
3888 			qbp = qbp->qb_next;
3889 		qbp->qb_flag |= QB_BACK;
3890 	} else {
3891 		q->q_flag |= QBACK;
3892 	}
3893 }
3894 
3895 int
3896 strcopyin(void *from, void *to, size_t len, int copyflag)
3897 {
3898 	if (copyflag & U_TO_K) {
3899 		ASSERT((copyflag & K_TO_K) == 0);
3900 		if (copyin(from, to, len))
3901 			return (EFAULT);
3902 	} else {
3903 		ASSERT(copyflag & K_TO_K);
3904 		bcopy(from, to, len);
3905 	}
3906 	return (0);
3907 }
3908 
3909 int
3910 strcopyout(void *from, void *to, size_t len, int copyflag)
3911 {
3912 	if (copyflag & U_TO_K) {
3913 		if (copyout(from, to, len))
3914 			return (EFAULT);
3915 	} else {
3916 		ASSERT(copyflag & K_TO_K);
3917 		bcopy(from, to, len);
3918 	}
3919 	return (0);
3920 }
3921 
3922 /*
3923  * strsignal_nolock() posts a signal to the process(es) at the stream head.
3924  * It assumes that the stream head lock is already held, whereas strsignal()
3925  * acquires the lock first.  This routine was created because a few callers
3926  * release the stream head lock before calling only to re-acquire it after
3927  * it returns.
3928  */
3929 void
3930 strsignal_nolock(stdata_t *stp, int sig, int32_t band)
3931 {
3932 	ASSERT(MUTEX_HELD(&stp->sd_lock));
3933 	switch (sig) {
3934 	case SIGPOLL:
3935 		if (stp->sd_sigflags & S_MSG)
3936 			strsendsig(stp->sd_siglist, S_MSG, (uchar_t)band, 0);
3937 		break;
3938 
3939 	default:
3940 		if (stp->sd_pgidp) {
3941 			pgsignal(stp->sd_pgidp, sig);
3942 		}
3943 		break;
3944 	}
3945 }
3946 
3947 void
3948 strsignal(stdata_t *stp, int sig, int32_t band)
3949 {
3950 	TRACE_3(TR_FAC_STREAMS_FR, TR_SENDSIG,
3951 		"strsignal:%p, %X, %X", stp, sig, band);
3952 
3953 	mutex_enter(&stp->sd_lock);
3954 	switch (sig) {
3955 	case SIGPOLL:
3956 		if (stp->sd_sigflags & S_MSG)
3957 			strsendsig(stp->sd_siglist, S_MSG, (uchar_t)band, 0);
3958 		break;
3959 
3960 	default:
3961 		if (stp->sd_pgidp) {
3962 			pgsignal(stp->sd_pgidp, sig);
3963 		}
3964 		break;
3965 	}
3966 	mutex_exit(&stp->sd_lock);
3967 }
3968 
3969 void
3970 strhup(stdata_t *stp)
3971 {
3972 	pollwakeup(&stp->sd_pollist, POLLHUP);
3973 	mutex_enter(&stp->sd_lock);
3974 	if (stp->sd_sigflags & S_HANGUP)
3975 		strsendsig(stp->sd_siglist, S_HANGUP, 0, 0);
3976 	mutex_exit(&stp->sd_lock);
3977 }
3978 
3979 void
3980 stralloctty(sess_t *sp, stdata_t *stp)
3981 {
3982 	mutex_enter(&stp->sd_lock);
3983 	mutex_enter(&pidlock);
3984 	stp->sd_sidp = sp->s_sidp;
3985 	stp->sd_pgidp = sp->s_sidp;
3986 	PID_HOLD(stp->sd_pgidp);
3987 	PID_HOLD(stp->sd_sidp);
3988 	mutex_exit(&pidlock);
3989 	mutex_exit(&stp->sd_lock);
3990 }
3991 
3992 void
3993 strfreectty(stdata_t *stp)
3994 {
3995 	mutex_enter(&stp->sd_lock);
3996 	pgsignal(stp->sd_pgidp, SIGHUP);
3997 	mutex_enter(&pidlock);
3998 	PID_RELE(stp->sd_pgidp);
3999 	PID_RELE(stp->sd_sidp);
4000 	stp->sd_pgidp = NULL;
4001 	stp->sd_sidp = NULL;
4002 	mutex_exit(&pidlock);
4003 	mutex_exit(&stp->sd_lock);
4004 	if (!(stp->sd_flag & STRHUP))
4005 		strhup(stp);
4006 }
4007 
4008 void
4009 strctty(stdata_t *stp)
4010 {
4011 	extern vnode_t *makectty();
4012 	proc_t *p = curproc;
4013 	sess_t *sp = p->p_sessp;
4014 
4015 	mutex_enter(&stp->sd_lock);
4016 	/*
4017 	 * No need to hold the session lock or do a TTYHOLD,
4018 	 * because this is the only thread that can be the
4019 	 * session leader and not have a controlling tty.
4020 	 */
4021 	if ((stp->sd_flag & (STRHUP|STRDERR|STWRERR|STPLEX)) == 0 &&
4022 	    stp->sd_sidp == NULL &&		/* not allocated as ctty */
4023 	    sp->s_sidp == p->p_pidp &&		/* session leader */
4024 	    sp->s_flag != SESS_CLOSE &&		/* session is not closing */
4025 	    sp->s_vp == NULL) {			/* without ctty */
4026 		mutex_exit(&stp->sd_lock);
4027 		ASSERT(stp->sd_pgidp == NULL);
4028 		alloctty(p, makectty(stp->sd_vnode));
4029 		stralloctty(sp, stp);
4030 		mutex_enter(&stp->sd_lock);
4031 		stp->sd_flag |= STRISTTY;	/* just to be sure */
4032 	}
4033 	mutex_exit(&stp->sd_lock);
4034 }
4035 
4036 /*
4037  * enable first back queue with svc procedure.
4038  * Use pri == -1 to avoid the setqback
4039  */
4040 void
4041 backenable(queue_t *q, uchar_t pri)
4042 {
4043 	queue_t	*nq;
4044 
4045 	/*
4046 	 * our presence might not prevent other modules in our own
4047 	 * stream from popping/pushing since the caller of getq might not
4048 	 * have a claim on the queue (some drivers do a getq on somebody
4049 	 * else's queue - they know that the queue itself is not going away
4050 	 * but the framework has to guarantee q_next in that stream.)
4051 	 */
4052 	claimstr(q);
4053 
4054 	/* find nearest back queue with service proc */
4055 	for (nq = backq(q); nq && !nq->q_qinfo->qi_srvp; nq = backq(nq)) {
4056 		ASSERT(STRMATED(q->q_stream) || STREAM(q) == STREAM(nq));
4057 	}
4058 
4059 	if (nq) {
4060 		kthread_t *freezer;
4061 		/*
4062 		 * backenable can be called either with no locks held
4063 		 * or with the stream frozen (the latter occurs when a module
4064 		 * calls rmvq with the stream frozen.) If the stream is frozen
4065 		 * by the caller the caller will hold all qlocks in the stream.
4066 		 */
4067 		freezer = STREAM(q)->sd_freezer;
4068 		if (freezer != curthread) {
4069 			mutex_enter(QLOCK(nq));
4070 		}
4071 #ifdef DEBUG
4072 		else {
4073 			ASSERT(frozenstr(q));
4074 			ASSERT(MUTEX_HELD(QLOCK(q)));
4075 			ASSERT(MUTEX_HELD(QLOCK(nq)));
4076 		}
4077 #endif
4078 		setqback(nq, pri);
4079 		qenable_locked(nq);
4080 		if (freezer != curthread)
4081 			mutex_exit(QLOCK(nq));
4082 	}
4083 	releasestr(q);
4084 }
4085 
4086 /*
4087  * Return the appropriate errno when one of flags_to_check is set
4088  * in sd_flags. Uses the exported error routines if they are set.
4089  * Will return 0 if non error is set (or if the exported error routines
4090  * do not return an error).
4091  *
4092  * If there is both a read and write error to check we prefer the read error.
4093  * Also, give preference to recorded errno's over the error functions.
4094  * The flags that are handled are:
4095  *	STPLEX		return EINVAL
4096  *	STRDERR		return sd_rerror (and clear if STRDERRNONPERSIST)
4097  *	STWRERR		return sd_werror (and clear if STWRERRNONPERSIST)
4098  *	STRHUP		return sd_werror
4099  *
4100  * If the caller indicates that the operation is a peek a nonpersistent error
4101  * is not cleared.
4102  */
4103 int
4104 strgeterr(stdata_t *stp, int32_t flags_to_check, int ispeek)
4105 {
4106 	int32_t sd_flag = stp->sd_flag & flags_to_check;
4107 	int error = 0;
4108 
4109 	ASSERT(MUTEX_HELD(&stp->sd_lock));
4110 	ASSERT((flags_to_check & ~(STRDERR|STWRERR|STRHUP|STPLEX)) == 0);
4111 	if (sd_flag & STPLEX)
4112 		error = EINVAL;
4113 	else if (sd_flag & STRDERR) {
4114 		error = stp->sd_rerror;
4115 		if ((stp->sd_flag & STRDERRNONPERSIST) && !ispeek) {
4116 			/*
4117 			 * Read errors are non-persistent i.e. discarded once
4118 			 * returned to a non-peeking caller,
4119 			 */
4120 			stp->sd_rerror = 0;
4121 			stp->sd_flag &= ~STRDERR;
4122 		}
4123 		if (error == 0 && stp->sd_rderrfunc != NULL) {
4124 			int clearerr = 0;
4125 
4126 			error = (*stp->sd_rderrfunc)(stp->sd_vnode, ispeek,
4127 						&clearerr);
4128 			if (clearerr) {
4129 				stp->sd_flag &= ~STRDERR;
4130 				stp->sd_rderrfunc = NULL;
4131 			}
4132 		}
4133 	} else if (sd_flag & STWRERR) {
4134 		error = stp->sd_werror;
4135 		if ((stp->sd_flag & STWRERRNONPERSIST) && !ispeek) {
4136 			/*
4137 			 * Write errors are non-persistent i.e. discarded once
4138 			 * returned to a non-peeking caller,
4139 			 */
4140 			stp->sd_werror = 0;
4141 			stp->sd_flag &= ~STWRERR;
4142 		}
4143 		if (error == 0 && stp->sd_wrerrfunc != NULL) {
4144 			int clearerr = 0;
4145 
4146 			error = (*stp->sd_wrerrfunc)(stp->sd_vnode, ispeek,
4147 						&clearerr);
4148 			if (clearerr) {
4149 				stp->sd_flag &= ~STWRERR;
4150 				stp->sd_wrerrfunc = NULL;
4151 			}
4152 		}
4153 	} else if (sd_flag & STRHUP) {
4154 		/* sd_werror set when STRHUP */
4155 		error = stp->sd_werror;
4156 	}
4157 	return (error);
4158 }
4159 
4160 
4161 /*
4162  * single-thread open/close/push/pop
4163  * for twisted streams also
4164  */
4165 int
4166 strstartplumb(stdata_t *stp, int flag, int cmd)
4167 {
4168 	int waited = 1;
4169 	int error = 0;
4170 
4171 	if (STRMATED(stp)) {
4172 		struct stdata *stmatep = stp->sd_mate;
4173 
4174 		STRLOCKMATES(stp);
4175 		while (waited) {
4176 			waited = 0;
4177 			while (stmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4178 				if ((cmd == I_POP) &&
4179 				    (flag & (FNDELAY|FNONBLOCK))) {
4180 					STRUNLOCKMATES(stp);
4181 					return (EAGAIN);
4182 				}
4183 				waited = 1;
4184 				mutex_exit(&stp->sd_lock);
4185 				if (!cv_wait_sig(&stmatep->sd_monitor,
4186 				    &stmatep->sd_lock)) {
4187 					mutex_exit(&stmatep->sd_lock);
4188 					return (EINTR);
4189 				}
4190 				mutex_exit(&stmatep->sd_lock);
4191 				STRLOCKMATES(stp);
4192 			}
4193 			while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4194 				if ((cmd == I_POP) &&
4195 					(flag & (FNDELAY|FNONBLOCK))) {
4196 					STRUNLOCKMATES(stp);
4197 					return (EAGAIN);
4198 				}
4199 				waited = 1;
4200 				mutex_exit(&stmatep->sd_lock);
4201 				if (!cv_wait_sig(&stp->sd_monitor,
4202 				    &stp->sd_lock)) {
4203 					mutex_exit(&stp->sd_lock);
4204 					return (EINTR);
4205 				}
4206 				mutex_exit(&stp->sd_lock);
4207 				STRLOCKMATES(stp);
4208 			}
4209 			if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4210 				error = strgeterr(stp,
4211 					STRDERR|STWRERR|STRHUP|STPLEX, 0);
4212 				if (error != 0) {
4213 					STRUNLOCKMATES(stp);
4214 					return (error);
4215 				}
4216 			}
4217 		}
4218 		stp->sd_flag |= STRPLUMB;
4219 		STRUNLOCKMATES(stp);
4220 	} else {
4221 		mutex_enter(&stp->sd_lock);
4222 		while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4223 			if (((cmd == I_POP) || (cmd == _I_REMOVE)) &&
4224 			    (flag & (FNDELAY|FNONBLOCK))) {
4225 				mutex_exit(&stp->sd_lock);
4226 				return (EAGAIN);
4227 			}
4228 			if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) {
4229 				mutex_exit(&stp->sd_lock);
4230 				return (EINTR);
4231 			}
4232 			if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4233 				error = strgeterr(stp,
4234 					STRDERR|STWRERR|STRHUP|STPLEX, 0);
4235 				if (error != 0) {
4236 					mutex_exit(&stp->sd_lock);
4237 					return (error);
4238 				}
4239 			}
4240 		}
4241 		stp->sd_flag |= STRPLUMB;
4242 		mutex_exit(&stp->sd_lock);
4243 	}
4244 	return (0);
4245 }
4246 
4247 /*
4248  * Complete the plumbing operation associated with stream `stp'.
4249  */
4250 void
4251 strendplumb(stdata_t *stp)
4252 {
4253 	ASSERT(MUTEX_HELD(&stp->sd_lock));
4254 	ASSERT(stp->sd_flag & STRPLUMB);
4255 	stp->sd_flag &= ~STRPLUMB;
4256 	cv_broadcast(&stp->sd_monitor);
4257 }
4258 
4259 /*
4260  * This describes how the STREAMS framework handles synchronization
4261  * during open/push and close/pop.
4262  * The key interfaces for open and close are qprocson and qprocsoff,
4263  * respectively. While the close case in general is harder both open
4264  * have close have significant similarities.
4265  *
4266  * During close the STREAMS framework has to both ensure that there
4267  * are no stale references to the queue pair (and syncq) that
4268  * are being closed and also provide the guarantees that are documented
4269  * in qprocsoff(9F).
4270  * If there are stale references to the queue that is closing it can
4271  * result in kernel memory corruption or kernel panics.
4272  *
4273  * Note that is it up to the module/driver to ensure that it itself
4274  * does not have any stale references to the closing queues once its close
4275  * routine returns. This includes:
4276  *  - Cancelling any timeout/bufcall/qtimeout/qbufcall callback routines
4277  *    associated with the queues. For timeout and bufcall callbacks the
4278  *    module/driver also has to ensure (or wait for) any callbacks that
4279  *    are in progress.
4280  *  - If the module/driver is using esballoc it has to ensure that any
4281  *    esballoc free functions do not refer to a queue that has closed.
4282  *    (Note that in general the close routine can not wait for the esballoc'ed
4283  *    messages to be freed since that can cause a deadlock.)
4284  *  - Cancelling any interrupts that refer to the closing queues and
4285  *    also ensuring that there are no interrupts in progress that will
4286  *    refer to the closing queues once the close routine returns.
4287  *  - For multiplexors removing any driver global state that refers to
4288  *    the closing queue and also ensuring that there are no threads in
4289  *    the multiplexor that has picked up a queue pointer but not yet
4290  *    finished using it.
4291  *
4292  * In addition, a driver/module can only reference the q_next pointer
4293  * in its open, close, put, or service procedures or in a
4294  * qtimeout/qbufcall callback procedure executing "on" the correct
4295  * stream. Thus it can not reference the q_next pointer in an interrupt
4296  * routine or a timeout, bufcall or esballoc callback routine. Likewise
4297  * it can not reference q_next of a different queue e.g. in a mux that
4298  * passes messages from one queues put/service procedure to another queue.
4299  * In all the cases when the driver/module can not access the q_next
4300  * field it must use the *next* versions e.g. canputnext instead of
4301  * canput(q->q_next) and putnextctl instead of putctl(q->q_next, ...).
4302  *
4303  *
4304  * Assuming that the driver/module conforms to the above constraints
4305  * the STREAMS framework has to avoid stale references to q_next for all
4306  * the framework internal cases which include (but are not limited to):
4307  *  - Threads in canput/canputnext/backenable and elsewhere that are
4308  *    walking q_next.
4309  *  - Messages on a syncq that have a reference to the queue through b_queue.
4310  *  - Messages on an outer perimeter (syncq) that have a reference to the
4311  *    queue through b_queue.
4312  *  - Threads that use q_nfsrv (e.g. canput) to find a queue.
4313  *    Note that only canput and bcanput use q_nfsrv without any locking.
4314  *
4315  * The STREAMS framework providing the qprocsoff(9F) guarantees means that
4316  * after qprocsoff returns, the framework has to ensure that no threads can
4317  * enter the put or service routines for the closing read or write-side queue.
4318  * In addition to preventing "direct" entry into the put procedures
4319  * the framework also has to prevent messages being drained from
4320  * the syncq or the outer perimeter.
4321  * XXX Note that currently qdetach does relies on D_MTOCEXCL as the only
4322  * mechanism to prevent qwriter(PERIM_OUTER) from running after
4323  * qprocsoff has returned.
4324  * Note that if a module/driver uses put(9F) on one of its own queues
4325  * it is up to the module/driver to ensure that the put() doesn't
4326  * get called when the queue is closing.
4327  *
4328  *
4329  * The framework aspects of the above "contract" is implemented by
4330  * qprocsoff, removeq, and strlock:
4331  *  - qprocsoff (disable_svc) sets QWCLOSE to prevent runservice from
4332  *    entering the service procedures.
4333  *  - strlock acquires the sd_lock and sd_reflock to prevent putnext,
4334  *    canputnext, backenable etc from dereferencing the q_next that will
4335  *    soon change.
4336  *  - strlock waits for sd_refcnt to be zero to wait for e.g. any canputnext
4337  *    or other q_next walker that uses claimstr/releasestr to finish.
4338  *  - optionally for every syncq in the stream strlock acquires all the
4339  *    sq_lock's and waits for all sq_counts to drop to a value that indicates
4340  *    that no thread executes in the put or service procedures and that no
4341  *    thread is draining into the module/driver. This ensures that no
4342  *    open, close, put, service, or qtimeout/qbufcall callback procedure is
4343  *    currently executing hence no such thread can end up with the old stale
4344  *    q_next value and no canput/backenable can have the old stale
4345  *    q_nfsrv/q_next.
4346  *  - qdetach (wait_svc) makes sure that any scheduled or running threads
4347  *    have either finished or observed the QWCLOSE flag and gone away.
4348  */
4349 
4350 
4351 /*
4352  * Get all the locks necessary to change q_next.
4353  *
4354  * Wait for sd_refcnt to reach 0 and, if sqlist is present, wait for  the
4355  * sq_count of each syncq in the list to drop to sq_rmqcount, indicating that
4356  * the only threads inside the sqncq are threads currently calling removeq().
4357  * Since threads calling removeq() are in the process of removing their queues
4358  * from the stream, we do not need to worry about them accessing a stale q_next
4359  * pointer and thus we do not need to wait for them to exit (in fact, waiting
4360  * for them can cause deadlock).
4361  *
4362  * This routine is subject to starvation since it does not set any flag to
4363  * prevent threads from entering a module in the stream(i.e. sq_count can
4364  * increase on some syncq while it is waiting on some other syncq.)
4365  *
4366  * Assumes that only one thread attempts to call strlock for a given
4367  * stream. If this is not the case the two threads would deadlock.
4368  * This assumption is guaranteed since strlock is only called by insertq
4369  * and removeq and streams plumbing changes are single-threaded for
4370  * a given stream using the STWOPEN, STRCLOSE, and STRPLUMB flags.
4371  *
4372  * For pipes, it is not difficult to atomically designate a pair of streams
4373  * to be mated. Once mated atomically by the framework the twisted pair remain
4374  * configured that way until dismantled atomically by the framework.
4375  * When plumbing takes place on a twisted stream it is necessary to ensure that
4376  * this operation is done exclusively on the twisted stream since two such
4377  * operations, each initiated on different ends of the pipe will deadlock
4378  * waiting for each other to complete.
4379  *
4380  * On entry, no locks should be held.
4381  * The locks acquired and held by strlock depends on a few factors.
4382  * - If sqlist is non-NULL all the syncq locks in the sqlist will be acquired
4383  *   and held on exit and all sq_count are at an acceptable level.
4384  * - In all cases, sd_lock and sd_reflock are acquired and held on exit with
4385  *   sd_refcnt being zero.
4386  */
4387 
4388 static void
4389 strlock(struct stdata *stp, sqlist_t *sqlist)
4390 {
4391 	syncql_t *sql, *sql2;
4392 retry:
4393 	/*
4394 	 * Wait for any claimstr to go away.
4395 	 */
4396 	if (STRMATED(stp)) {
4397 		struct stdata *stp1, *stp2;
4398 
4399 		STRLOCKMATES(stp);
4400 		/*
4401 		 * Note that the selection of locking order is not
4402 		 * important, just that they are always aquired in
4403 		 * the same order.  To assure this, we choose this
4404 		 * order based on the value of the pointer, and since
4405 		 * the pointer will not change for the life of this
4406 		 * pair, we will always grab the locks in the same
4407 		 * order (and hence, prevent deadlocks).
4408 		 */
4409 		if (&(stp->sd_lock) > &((stp->sd_mate)->sd_lock)) {
4410 			stp1 = stp;
4411 			stp2 = stp->sd_mate;
4412 		} else {
4413 			stp2 = stp;
4414 			stp1 = stp->sd_mate;
4415 		}
4416 		mutex_enter(&stp1->sd_reflock);
4417 		if (stp1->sd_refcnt > 0) {
4418 			STRUNLOCKMATES(stp);
4419 			cv_wait(&stp1->sd_refmonitor, &stp1->sd_reflock);
4420 			mutex_exit(&stp1->sd_reflock);
4421 			goto retry;
4422 		}
4423 		mutex_enter(&stp2->sd_reflock);
4424 		if (stp2->sd_refcnt > 0) {
4425 			STRUNLOCKMATES(stp);
4426 			mutex_exit(&stp1->sd_reflock);
4427 			cv_wait(&stp2->sd_refmonitor, &stp2->sd_reflock);
4428 			mutex_exit(&stp2->sd_reflock);
4429 			goto retry;
4430 		}
4431 		STREAM_PUTLOCKS_ENTER(stp1);
4432 		STREAM_PUTLOCKS_ENTER(stp2);
4433 	} else {
4434 		mutex_enter(&stp->sd_lock);
4435 		mutex_enter(&stp->sd_reflock);
4436 		while (stp->sd_refcnt > 0) {
4437 			mutex_exit(&stp->sd_lock);
4438 			cv_wait(&stp->sd_refmonitor, &stp->sd_reflock);
4439 			if (mutex_tryenter(&stp->sd_lock) == 0) {
4440 				mutex_exit(&stp->sd_reflock);
4441 				mutex_enter(&stp->sd_lock);
4442 				mutex_enter(&stp->sd_reflock);
4443 			}
4444 		}
4445 		STREAM_PUTLOCKS_ENTER(stp);
4446 	}
4447 
4448 	if (sqlist == NULL)
4449 		return;
4450 
4451 	for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
4452 		syncq_t *sq = sql->sql_sq;
4453 		uint16_t count;
4454 
4455 		mutex_enter(SQLOCK(sq));
4456 		count = sq->sq_count;
4457 		ASSERT(sq->sq_rmqcount <= count);
4458 		SQ_PUTLOCKS_ENTER(sq);
4459 		SUM_SQ_PUTCOUNTS(sq, count);
4460 		if (count == sq->sq_rmqcount)
4461 			continue;
4462 
4463 		/* Failed - drop all locks that we have acquired so far */
4464 		if (STRMATED(stp)) {
4465 			STREAM_PUTLOCKS_EXIT(stp);
4466 			STREAM_PUTLOCKS_EXIT(stp->sd_mate);
4467 			STRUNLOCKMATES(stp);
4468 			mutex_exit(&stp->sd_reflock);
4469 			mutex_exit(&stp->sd_mate->sd_reflock);
4470 		} else {
4471 			STREAM_PUTLOCKS_EXIT(stp);
4472 			mutex_exit(&stp->sd_lock);
4473 			mutex_exit(&stp->sd_reflock);
4474 		}
4475 		for (sql2 = sqlist->sqlist_head; sql2 != sql;
4476 		    sql2 = sql2->sql_next) {
4477 			SQ_PUTLOCKS_EXIT(sql2->sql_sq);
4478 			mutex_exit(SQLOCK(sql2->sql_sq));
4479 		}
4480 
4481 		/*
4482 		 * The wait loop below may starve when there are many threads
4483 		 * claiming the syncq. This is especially a problem with permod
4484 		 * syncqs (IP). To lessen the impact of the problem we increment
4485 		 * sq_needexcl and clear fastbits so that putnexts will slow
4486 		 * down and call sqenable instead of draining right away.
4487 		 */
4488 		sq->sq_needexcl++;
4489 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
4490 		while (count > sq->sq_rmqcount) {
4491 			sq->sq_flags |= SQ_WANTWAKEUP;
4492 			SQ_PUTLOCKS_EXIT(sq);
4493 			cv_wait(&sq->sq_wait, SQLOCK(sq));
4494 			count = sq->sq_count;
4495 			SQ_PUTLOCKS_ENTER(sq);
4496 			SUM_SQ_PUTCOUNTS(sq, count);
4497 		}
4498 		sq->sq_needexcl--;
4499 		if (sq->sq_needexcl == 0)
4500 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
4501 		SQ_PUTLOCKS_EXIT(sq);
4502 		ASSERT(count == sq->sq_rmqcount);
4503 		mutex_exit(SQLOCK(sq));
4504 		goto retry;
4505 	}
4506 }
4507 
4508 /*
4509  * Drop all the locks that strlock acquired.
4510  */
4511 static void
4512 strunlock(struct stdata *stp, sqlist_t *sqlist)
4513 {
4514 	syncql_t *sql;
4515 
4516 	if (STRMATED(stp)) {
4517 		STREAM_PUTLOCKS_EXIT(stp);
4518 		STREAM_PUTLOCKS_EXIT(stp->sd_mate);
4519 		STRUNLOCKMATES(stp);
4520 		mutex_exit(&stp->sd_reflock);
4521 		mutex_exit(&stp->sd_mate->sd_reflock);
4522 	} else {
4523 		STREAM_PUTLOCKS_EXIT(stp);
4524 		mutex_exit(&stp->sd_lock);
4525 		mutex_exit(&stp->sd_reflock);
4526 	}
4527 
4528 	if (sqlist == NULL)
4529 		return;
4530 
4531 	for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
4532 		SQ_PUTLOCKS_EXIT(sql->sql_sq);
4533 		mutex_exit(SQLOCK(sql->sql_sq));
4534 	}
4535 }
4536 
4537 /*
4538  * When the module has service procedure, we need check if the next
4539  * module which has service procedure is in flow control to trigger
4540  * the backenable.
4541  */
4542 static void
4543 backenable_insertedq(queue_t *q)
4544 {
4545 	qband_t	*qbp;
4546 
4547 	claimstr(q);
4548 	if (q->q_qinfo->qi_srvp != NULL && q->q_next != NULL) {
4549 		if (q->q_next->q_nfsrv->q_flag & QWANTW)
4550 			backenable(q, 0);
4551 
4552 		qbp = q->q_next->q_nfsrv->q_bandp;
4553 		for (; qbp != NULL; qbp = qbp->qb_next)
4554 			if ((qbp->qb_flag & QB_WANTW) && qbp->qb_first != NULL)
4555 				backenable(q, qbp->qb_first->b_band);
4556 	}
4557 	releasestr(q);
4558 }
4559 
4560 /*
4561  * Given two read queues, insert a new single one after another.
4562  *
4563  * This routine acquires all the necessary locks in order to change
4564  * q_next and related pointer using strlock().
4565  * It depends on the stream head ensuring that there are no concurrent
4566  * insertq or removeq on the same stream. The stream head ensures this
4567  * using the flags STWOPEN, STRCLOSE, and STRPLUMB.
4568  *
4569  * Note that no syncq locks are held during the q_next change. This is
4570  * applied to all streams since, unlike removeq, there is no problem of stale
4571  * pointers when adding a module to the stream. Thus drivers/modules that do a
4572  * canput(rq->q_next) would never get a closed/freed queue pointer even if we
4573  * applied this optimization to all streams.
4574  */
4575 void
4576 insertq(struct stdata *stp, queue_t *new)
4577 {
4578 	queue_t	*after;
4579 	queue_t *wafter;
4580 	queue_t *wnew = _WR(new);
4581 	boolean_t have_fifo = B_FALSE;
4582 
4583 	if (new->q_flag & _QINSERTING) {
4584 		ASSERT(stp->sd_vnode->v_type != VFIFO);
4585 		after = new->q_next;
4586 		wafter = _WR(new->q_next);
4587 	} else {
4588 		after = _RD(stp->sd_wrq);
4589 		wafter = stp->sd_wrq;
4590 	}
4591 
4592 	TRACE_2(TR_FAC_STREAMS_FR, TR_INSERTQ,
4593 		"insertq:%p, %p", after, new);
4594 	ASSERT(after->q_flag & QREADR);
4595 	ASSERT(new->q_flag & QREADR);
4596 
4597 	strlock(stp, NULL);
4598 
4599 	/* Do we have a FIFO? */
4600 	if (wafter->q_next == after) {
4601 		have_fifo = B_TRUE;
4602 		wnew->q_next = new;
4603 	} else {
4604 		wnew->q_next = wafter->q_next;
4605 	}
4606 	new->q_next = after;
4607 
4608 	set_nfsrv_ptr(new, wnew, after, wafter);
4609 	/*
4610 	 * set_nfsrv_ptr() needs to know if this is an insertion or not,
4611 	 * so only reset this flag after calling it.
4612 	 */
4613 	new->q_flag &= ~_QINSERTING;
4614 
4615 	if (have_fifo) {
4616 		wafter->q_next = wnew;
4617 	} else {
4618 		if (wafter->q_next)
4619 			_OTHERQ(wafter->q_next)->q_next = new;
4620 		wafter->q_next = wnew;
4621 	}
4622 
4623 	set_qend(new);
4624 	/* The QEND flag might have to be updated for the upstream guy */
4625 	set_qend(after);
4626 
4627 	ASSERT(_SAMESTR(new) == O_SAMESTR(new));
4628 	ASSERT(_SAMESTR(wnew) == O_SAMESTR(wnew));
4629 	ASSERT(_SAMESTR(after) == O_SAMESTR(after));
4630 	ASSERT(_SAMESTR(wafter) == O_SAMESTR(wafter));
4631 	strsetuio(stp);
4632 
4633 	/*
4634 	 * If this was a module insertion, bump the push count.
4635 	 */
4636 	if (!(new->q_flag & QISDRV))
4637 		stp->sd_pushcnt++;
4638 
4639 	strunlock(stp, NULL);
4640 
4641 	/* check if the write Q needs backenable */
4642 	backenable_insertedq(wnew);
4643 
4644 	/* check if the read Q needs backenable */
4645 	backenable_insertedq(new);
4646 }
4647 
4648 /*
4649  * Given a read queue, unlink it from any neighbors.
4650  *
4651  * This routine acquires all the necessary locks in order to
4652  * change q_next and related pointers and also guard against
4653  * stale references (e.g. through q_next) to the queue that
4654  * is being removed. It also plays part of the role in ensuring
4655  * that the module's/driver's put procedure doesn't get called
4656  * after qprocsoff returns.
4657  *
4658  * Removeq depends on the stream head ensuring that there are
4659  * no concurrent insertq or removeq on the same stream. The
4660  * stream head ensures this using the flags STWOPEN, STRCLOSE and
4661  * STRPLUMB.
4662  *
4663  * The set of locks needed to remove the queue is different in
4664  * different cases:
4665  *
4666  * Acquire sd_lock, sd_reflock, and all the syncq locks in the stream after
4667  * waiting for the syncq reference count to drop to 0 indicating that no
4668  * non-close threads are present anywhere in the stream. This ensures that any
4669  * module/driver can reference q_next in its open, close, put, or service
4670  * procedures.
4671  *
4672  * The sq_rmqcount counter tracks the number of threads inside removeq().
4673  * strlock() ensures that there is either no threads executing inside perimeter
4674  * or there is only a thread calling qprocsoff().
4675  *
4676  * strlock() compares the value of sq_count with the number of threads inside
4677  * removeq() and waits until sq_count is equal to sq_rmqcount. We need to wakeup
4678  * any threads waiting in strlock() when the sq_rmqcount increases.
4679  */
4680 
4681 void
4682 removeq(queue_t *qp)
4683 {
4684 	queue_t *wqp = _WR(qp);
4685 	struct stdata *stp = STREAM(qp);
4686 	sqlist_t *sqlist = NULL;
4687 	boolean_t isdriver;
4688 	int moved;
4689 	syncq_t *sq = qp->q_syncq;
4690 	syncq_t *wsq = wqp->q_syncq;
4691 
4692 	ASSERT(stp);
4693 
4694 	TRACE_2(TR_FAC_STREAMS_FR, TR_REMOVEQ,
4695 		"removeq:%p %p", qp, wqp);
4696 	ASSERT(qp->q_flag&QREADR);
4697 
4698 	/*
4699 	 * For queues using Synchronous streams, we must wait for all threads in
4700 	 * rwnext() to drain out before proceeding.
4701 	 */
4702 	if (qp->q_flag & QSYNCSTR) {
4703 		/* First, we need wakeup any threads blocked in rwnext() */
4704 		mutex_enter(SQLOCK(sq));
4705 		if (sq->sq_flags & SQ_WANTWAKEUP) {
4706 			sq->sq_flags &= ~SQ_WANTWAKEUP;
4707 			cv_broadcast(&sq->sq_wait);
4708 		}
4709 		mutex_exit(SQLOCK(sq));
4710 
4711 		if (wsq != sq) {
4712 			mutex_enter(SQLOCK(wsq));
4713 			if (wsq->sq_flags & SQ_WANTWAKEUP) {
4714 				wsq->sq_flags &= ~SQ_WANTWAKEUP;
4715 				cv_broadcast(&wsq->sq_wait);
4716 			}
4717 			mutex_exit(SQLOCK(wsq));
4718 		}
4719 
4720 		mutex_enter(QLOCK(qp));
4721 		while (qp->q_rwcnt > 0) {
4722 			qp->q_flag |= QWANTRMQSYNC;
4723 			cv_wait(&qp->q_wait, QLOCK(qp));
4724 		}
4725 		mutex_exit(QLOCK(qp));
4726 
4727 		mutex_enter(QLOCK(wqp));
4728 		while (wqp->q_rwcnt > 0) {
4729 			wqp->q_flag |= QWANTRMQSYNC;
4730 			cv_wait(&wqp->q_wait, QLOCK(wqp));
4731 		}
4732 		mutex_exit(QLOCK(wqp));
4733 	}
4734 
4735 	mutex_enter(SQLOCK(sq));
4736 	sq->sq_rmqcount++;
4737 	if (sq->sq_flags & SQ_WANTWAKEUP) {
4738 		sq->sq_flags &= ~SQ_WANTWAKEUP;
4739 		cv_broadcast(&sq->sq_wait);
4740 	}
4741 	mutex_exit(SQLOCK(sq));
4742 
4743 	isdriver = (qp->q_flag & QISDRV);
4744 
4745 	sqlist = sqlist_build(qp, stp, STRMATED(stp));
4746 	strlock(stp, sqlist);
4747 
4748 	reset_nfsrv_ptr(qp, wqp);
4749 
4750 	ASSERT(wqp->q_next == NULL || backq(qp)->q_next == qp);
4751 	ASSERT(qp->q_next == NULL || backq(wqp)->q_next == wqp);
4752 	/* Do we have a FIFO? */
4753 	if (wqp->q_next == qp) {
4754 		stp->sd_wrq->q_next = _RD(stp->sd_wrq);
4755 	} else {
4756 		if (wqp->q_next)
4757 			backq(qp)->q_next = qp->q_next;
4758 		if (qp->q_next)
4759 			backq(wqp)->q_next = wqp->q_next;
4760 	}
4761 
4762 	/* The QEND flag might have to be updated for the upstream guy */
4763 	if (qp->q_next)
4764 		set_qend(qp->q_next);
4765 
4766 	ASSERT(_SAMESTR(stp->sd_wrq) == O_SAMESTR(stp->sd_wrq));
4767 	ASSERT(_SAMESTR(_RD(stp->sd_wrq)) == O_SAMESTR(_RD(stp->sd_wrq)));
4768 
4769 	/*
4770 	 * Move any messages destined for the put procedures to the next
4771 	 * syncq in line. Otherwise free them.
4772 	 */
4773 	moved = 0;
4774 	/*
4775 	 * Quick check to see whether there are any messages or events.
4776 	 */
4777 	if (qp->q_syncqmsgs != 0 || (qp->q_syncq->sq_flags & SQ_EVENTS))
4778 		moved += propagate_syncq(qp);
4779 	if (wqp->q_syncqmsgs != 0 ||
4780 	    (wqp->q_syncq->sq_flags & SQ_EVENTS))
4781 		moved += propagate_syncq(wqp);
4782 
4783 	strsetuio(stp);
4784 
4785 	/*
4786 	 * If this was a module removal, decrement the push count.
4787 	 */
4788 	if (!isdriver)
4789 		stp->sd_pushcnt--;
4790 
4791 	strunlock(stp, sqlist);
4792 	sqlist_free(sqlist);
4793 
4794 	/*
4795 	 * Make sure any messages that were propagated are drained.
4796 	 * Also clear any QFULL bit caused by messages that were propagated.
4797 	 */
4798 
4799 	if (qp->q_next != NULL) {
4800 		clr_qfull(qp);
4801 		/*
4802 		 * For the driver calling qprocsoff, propagate_syncq
4803 		 * frees all the messages instead of putting it in
4804 		 * the stream head
4805 		 */
4806 		if (!isdriver && (moved > 0))
4807 			emptysq(qp->q_next->q_syncq);
4808 	}
4809 	if (wqp->q_next != NULL) {
4810 		clr_qfull(wqp);
4811 		/*
4812 		 * We come here for any pop of a module except for the
4813 		 * case of driver being removed. We don't call emptysq
4814 		 * if we did not move any messages. This will avoid holding
4815 		 * PERMOD syncq locks in emptysq
4816 		 */
4817 		if (moved > 0)
4818 			emptysq(wqp->q_next->q_syncq);
4819 	}
4820 
4821 	mutex_enter(SQLOCK(sq));
4822 	sq->sq_rmqcount--;
4823 	mutex_exit(SQLOCK(sq));
4824 }
4825 
4826 /*
4827  * Prevent further entry by setting a flag (like SQ_FROZEN, SQ_BLOCKED or
4828  * SQ_WRITER) on a syncq.
4829  * If maxcnt is not -1 it assumes that caller has "maxcnt" claim(s) on the
4830  * sync queue and waits until sq_count reaches maxcnt.
4831  *
4832  * if maxcnt is -1 there's no need to grab sq_putlocks since the caller
4833  * does not care about putnext threads that are in the middle of calling put
4834  * entry points.
4835  *
4836  * This routine is used for both inner and outer syncqs.
4837  */
4838 static void
4839 blocksq(syncq_t *sq, ushort_t flag, int maxcnt)
4840 {
4841 	uint16_t count = 0;
4842 
4843 	mutex_enter(SQLOCK(sq));
4844 	/*
4845 	 * Wait for SQ_FROZEN/SQ_BLOCKED to be reset.
4846 	 * SQ_FROZEN will be set if there is a frozen stream that has a
4847 	 * queue which also refers to this "shared" syncq.
4848 	 * SQ_BLOCKED will be set if there is "off" queue which also
4849 	 * refers to this "shared" syncq.
4850 	 */
4851 	if (maxcnt != -1) {
4852 		count = sq->sq_count;
4853 		SQ_PUTLOCKS_ENTER(sq);
4854 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
4855 		SUM_SQ_PUTCOUNTS(sq, count);
4856 	}
4857 	sq->sq_needexcl++;
4858 	ASSERT(sq->sq_needexcl != 0);	/* wraparound */
4859 
4860 	while ((sq->sq_flags & flag) ||
4861 	    (maxcnt != -1 && count > (unsigned)maxcnt)) {
4862 		sq->sq_flags |= SQ_WANTWAKEUP;
4863 		if (maxcnt != -1) {
4864 			SQ_PUTLOCKS_EXIT(sq);
4865 		}
4866 		cv_wait(&sq->sq_wait, SQLOCK(sq));
4867 		if (maxcnt != -1) {
4868 			count = sq->sq_count;
4869 			SQ_PUTLOCKS_ENTER(sq);
4870 			SUM_SQ_PUTCOUNTS(sq, count);
4871 		}
4872 	}
4873 	sq->sq_needexcl--;
4874 	sq->sq_flags |= flag;
4875 	ASSERT(maxcnt == -1 || count == maxcnt);
4876 	if (maxcnt != -1) {
4877 		if (sq->sq_needexcl == 0) {
4878 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
4879 		}
4880 		SQ_PUTLOCKS_EXIT(sq);
4881 	} else if (sq->sq_needexcl == 0) {
4882 		SQ_PUTCOUNT_SETFAST(sq);
4883 	}
4884 
4885 	mutex_exit(SQLOCK(sq));
4886 }
4887 
4888 /*
4889  * Reset a flag that was set with blocksq.
4890  *
4891  * Can not use this routine to reset SQ_WRITER.
4892  *
4893  * If "isouter" is set then the syncq is assumed to be an outer perimeter
4894  * and drain_syncq is not called. Instead we rely on the qwriter_outer thread
4895  * to handle the queued qwriter operations.
4896  *
4897  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
4898  * sq_putlocks are used.
4899  */
4900 static void
4901 unblocksq(syncq_t *sq, uint16_t resetflag, int isouter)
4902 {
4903 	uint16_t flags;
4904 
4905 	mutex_enter(SQLOCK(sq));
4906 	ASSERT(resetflag != SQ_WRITER);
4907 	ASSERT(sq->sq_flags & resetflag);
4908 	flags = sq->sq_flags & ~resetflag;
4909 	sq->sq_flags = flags;
4910 	if (flags & (SQ_QUEUED | SQ_WANTWAKEUP)) {
4911 		if (flags & SQ_WANTWAKEUP) {
4912 			flags &= ~SQ_WANTWAKEUP;
4913 			cv_broadcast(&sq->sq_wait);
4914 		}
4915 		sq->sq_flags = flags;
4916 		if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
4917 			if (!isouter) {
4918 				/* drain_syncq drops SQLOCK */
4919 				drain_syncq(sq);
4920 				return;
4921 			}
4922 		}
4923 	}
4924 	mutex_exit(SQLOCK(sq));
4925 }
4926 
4927 /*
4928  * Reset a flag that was set with blocksq.
4929  * Does not drain the syncq. Use emptysq() for that.
4930  * Returns 1 if SQ_QUEUED is set. Otherwise 0.
4931  *
4932  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
4933  * sq_putlocks are used.
4934  */
4935 static int
4936 dropsq(syncq_t *sq, uint16_t resetflag)
4937 {
4938 	uint16_t flags;
4939 
4940 	mutex_enter(SQLOCK(sq));
4941 	ASSERT(sq->sq_flags & resetflag);
4942 	flags = sq->sq_flags & ~resetflag;
4943 	if (flags & SQ_WANTWAKEUP) {
4944 		flags &= ~SQ_WANTWAKEUP;
4945 		cv_broadcast(&sq->sq_wait);
4946 	}
4947 	sq->sq_flags = flags;
4948 	mutex_exit(SQLOCK(sq));
4949 	if (flags & SQ_QUEUED)
4950 		return (1);
4951 	return (0);
4952 }
4953 
4954 /*
4955  * Empty all the messages on a syncq.
4956  *
4957  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
4958  * sq_putlocks are used.
4959  */
4960 static void
4961 emptysq(syncq_t *sq)
4962 {
4963 	uint16_t flags;
4964 
4965 	mutex_enter(SQLOCK(sq));
4966 	flags = sq->sq_flags;
4967 	if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
4968 		/*
4969 		 * To prevent potential recursive invocation of drain_syncq we
4970 		 * do not call drain_syncq if count is non-zero.
4971 		 */
4972 		if (sq->sq_count == 0) {
4973 			/* drain_syncq() drops SQLOCK */
4974 			drain_syncq(sq);
4975 			return;
4976 		} else
4977 			sqenable(sq);
4978 	}
4979 	mutex_exit(SQLOCK(sq));
4980 }
4981 
4982 /*
4983  * Ordered insert while removing duplicates.
4984  */
4985 static void
4986 sqlist_insert(sqlist_t *sqlist, syncq_t *sqp)
4987 {
4988 	syncql_t *sqlp, **prev_sqlpp, *new_sqlp;
4989 
4990 	prev_sqlpp = &sqlist->sqlist_head;
4991 	while ((sqlp = *prev_sqlpp) != NULL) {
4992 		if (sqlp->sql_sq >= sqp) {
4993 			if (sqlp->sql_sq == sqp)	/* duplicate */
4994 				return;
4995 			break;
4996 		}
4997 		prev_sqlpp = &sqlp->sql_next;
4998 	}
4999 	new_sqlp = &sqlist->sqlist_array[sqlist->sqlist_index++];
5000 	ASSERT((char *)new_sqlp < (char *)sqlist + sqlist->sqlist_size);
5001 	new_sqlp->sql_next = sqlp;
5002 	new_sqlp->sql_sq = sqp;
5003 	*prev_sqlpp = new_sqlp;
5004 }
5005 
5006 /*
5007  * Walk the write side queues until we hit either the driver
5008  * or a twist in the stream (_SAMESTR will return false in both
5009  * these cases) then turn around and walk the read side queues
5010  * back up to the stream head.
5011  */
5012 static void
5013 sqlist_insertall(sqlist_t *sqlist, queue_t *q)
5014 {
5015 	while (q != NULL) {
5016 		sqlist_insert(sqlist, q->q_syncq);
5017 
5018 		if (_SAMESTR(q))
5019 			q = q->q_next;
5020 		else if (!(q->q_flag & QREADR))
5021 			q = _RD(q);
5022 		else
5023 			q = NULL;
5024 	}
5025 }
5026 
5027 /*
5028  * Allocate and build a list of all syncqs in a stream and the syncq(s)
5029  * associated with the "q" parameter. The resulting list is sorted in a
5030  * canonical order and is free of duplicates.
5031  * Assumes the passed queue is a _RD(q).
5032  */
5033 static sqlist_t *
5034 sqlist_build(queue_t *q, struct stdata *stp, boolean_t do_twist)
5035 {
5036 	sqlist_t *sqlist = sqlist_alloc(stp, KM_SLEEP);
5037 
5038 	/*
5039 	 * start with the current queue/qpair
5040 	 */
5041 	ASSERT(q->q_flag & QREADR);
5042 
5043 	sqlist_insert(sqlist, q->q_syncq);
5044 	sqlist_insert(sqlist, _WR(q)->q_syncq);
5045 
5046 	sqlist_insertall(sqlist, stp->sd_wrq);
5047 	if (do_twist)
5048 		sqlist_insertall(sqlist, stp->sd_mate->sd_wrq);
5049 
5050 	return (sqlist);
5051 }
5052 
5053 static sqlist_t *
5054 sqlist_alloc(struct stdata *stp, int kmflag)
5055 {
5056 	size_t sqlist_size;
5057 	sqlist_t *sqlist;
5058 
5059 	/*
5060 	 * Allocate 2 syncql_t's for each pushed module. Note that
5061 	 * the sqlist_t structure already has 4 syncql_t's built in:
5062 	 * 2 for the stream head, and 2 for the driver/other stream head.
5063 	 */
5064 	sqlist_size = 2 * sizeof (syncql_t) * stp->sd_pushcnt +
5065 		sizeof (sqlist_t);
5066 	if (STRMATED(stp))
5067 		sqlist_size += 2 * sizeof (syncql_t) * stp->sd_mate->sd_pushcnt;
5068 	sqlist = kmem_alloc(sqlist_size, kmflag);
5069 
5070 	sqlist->sqlist_head = NULL;
5071 	sqlist->sqlist_size = sqlist_size;
5072 	sqlist->sqlist_index = 0;
5073 
5074 	return (sqlist);
5075 }
5076 
5077 /*
5078  * Free the list created by sqlist_alloc()
5079  */
5080 static void
5081 sqlist_free(sqlist_t *sqlist)
5082 {
5083 	kmem_free(sqlist, sqlist->sqlist_size);
5084 }
5085 
5086 /*
5087  * Prevent any new entries into any syncq in this stream.
5088  * Used by freezestr.
5089  */
5090 void
5091 strblock(queue_t *q)
5092 {
5093 	struct stdata	*stp;
5094 	syncql_t	*sql;
5095 	sqlist_t	*sqlist;
5096 
5097 	q = _RD(q);
5098 
5099 	stp = STREAM(q);
5100 	ASSERT(stp != NULL);
5101 
5102 	/*
5103 	 * Get a sorted list with all the duplicates removed containing
5104 	 * all the syncqs referenced by this stream.
5105 	 */
5106 	sqlist = sqlist_build(q, stp, B_FALSE);
5107 	for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
5108 		blocksq(sql->sql_sq, SQ_FROZEN, -1);
5109 	sqlist_free(sqlist);
5110 }
5111 
5112 /*
5113  * Release the block on new entries into this stream
5114  */
5115 void
5116 strunblock(queue_t *q)
5117 {
5118 	struct stdata	*stp;
5119 	syncql_t	*sql;
5120 	sqlist_t	*sqlist;
5121 	int		drain_needed;
5122 
5123 	q = _RD(q);
5124 
5125 	/*
5126 	 * Get a sorted list with all the duplicates removed containing
5127 	 * all the syncqs referenced by this stream.
5128 	 * Have to drop the SQ_FROZEN flag on all the syncqs before
5129 	 * starting to drain them; otherwise the draining might
5130 	 * cause a freezestr in some module on the stream (which
5131 	 * would deadlock.)
5132 	 */
5133 	stp = STREAM(q);
5134 	ASSERT(stp != NULL);
5135 	sqlist = sqlist_build(q, stp, B_FALSE);
5136 	drain_needed = 0;
5137 	for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
5138 		drain_needed += dropsq(sql->sql_sq, SQ_FROZEN);
5139 	if (drain_needed) {
5140 		for (sql = sqlist->sqlist_head; sql != NULL;
5141 		    sql = sql->sql_next)
5142 			emptysq(sql->sql_sq);
5143 	}
5144 	sqlist_free(sqlist);
5145 }
5146 
5147 #ifdef DEBUG
5148 static int
5149 qprocsareon(queue_t *rq)
5150 {
5151 	if (rq->q_next == NULL)
5152 		return (0);
5153 	return (_WR(rq->q_next)->q_next == _WR(rq));
5154 }
5155 
5156 int
5157 qclaimed(queue_t *q)
5158 {
5159 	uint_t count;
5160 
5161 	count = q->q_syncq->sq_count;
5162 	SUM_SQ_PUTCOUNTS(q->q_syncq, count);
5163 	return (count != 0);
5164 }
5165 
5166 /*
5167  * Check if anyone has frozen this stream with freezestr
5168  */
5169 int
5170 frozenstr(queue_t *q)
5171 {
5172 	return ((q->q_syncq->sq_flags & SQ_FROZEN) != 0);
5173 }
5174 #endif /* DEBUG */
5175 
5176 /*
5177  * Enter a queue.
5178  * Obsoleted interface. Should not be used.
5179  */
5180 void
5181 enterq(queue_t *q)
5182 {
5183 	entersq(q->q_syncq, SQ_CALLBACK);
5184 }
5185 
5186 void
5187 leaveq(queue_t *q)
5188 {
5189 	leavesq(q->q_syncq, SQ_CALLBACK);
5190 }
5191 
5192 /*
5193  * Enter a perimeter. c_inner and c_outer specifies which concurrency bits
5194  * to check.
5195  * Wait if SQ_QUEUED is set to preserve ordering between messages and qwriter
5196  * calls and the running of open, close and service procedures.
5197  *
5198  * if c_inner bit is set no need to grab sq_putlocks since we don't care
5199  * if other threads have entered or are entering put entry point.
5200  *
5201  * if c_inner bit is set it might have been posible to use
5202  * sq_putlocks/sq_putcounts instead of SQLOCK/sq_count (e.g. to optimize
5203  * open/close path for IP) but since the count may need to be decremented in
5204  * qwait() we wouldn't know which counter to decrement. Currently counter is
5205  * selected by current cpu_seqid and current CPU can change at any moment. XXX
5206  * in the future we might use curthread id bits to select the counter and this
5207  * would stay constant across routine calls.
5208  */
5209 void
5210 entersq(syncq_t *sq, int entrypoint)
5211 {
5212 	uint16_t	count = 0;
5213 	uint16_t	flags;
5214 	uint16_t	waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
5215 	uint16_t	type;
5216 	uint_t		c_inner = entrypoint & SQ_CI;
5217 	uint_t		c_outer = entrypoint & SQ_CO;
5218 
5219 	/*
5220 	 * Increment ref count to keep closes out of this queue.
5221 	 */
5222 	ASSERT(sq);
5223 	ASSERT(c_inner && c_outer);
5224 	mutex_enter(SQLOCK(sq));
5225 	flags = sq->sq_flags;
5226 	type = sq->sq_type;
5227 	if (!(type & c_inner)) {
5228 		/* Make sure all putcounts now use slowlock. */
5229 		count = sq->sq_count;
5230 		SQ_PUTLOCKS_ENTER(sq);
5231 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
5232 		SUM_SQ_PUTCOUNTS(sq, count);
5233 		sq->sq_needexcl++;
5234 		ASSERT(sq->sq_needexcl != 0);	/* wraparound */
5235 		waitflags |= SQ_MESSAGES;
5236 	}
5237 	/*
5238 	 * Wait until we can enter the inner perimeter.
5239 	 * If we want exclusive access we wait until sq_count is 0.
5240 	 * We have to do this before entering the outer perimeter in order
5241 	 * to preserve put/close message ordering.
5242 	 */
5243 	while ((flags & waitflags) || (!(type & c_inner) && count != 0)) {
5244 		sq->sq_flags = flags | SQ_WANTWAKEUP;
5245 		if (!(type & c_inner)) {
5246 			SQ_PUTLOCKS_EXIT(sq);
5247 		}
5248 		cv_wait(&sq->sq_wait, SQLOCK(sq));
5249 		if (!(type & c_inner)) {
5250 			count = sq->sq_count;
5251 			SQ_PUTLOCKS_ENTER(sq);
5252 			SUM_SQ_PUTCOUNTS(sq, count);
5253 		}
5254 		flags = sq->sq_flags;
5255 	}
5256 
5257 	if (!(type & c_inner)) {
5258 		ASSERT(sq->sq_needexcl > 0);
5259 		sq->sq_needexcl--;
5260 		if (sq->sq_needexcl == 0) {
5261 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
5262 		}
5263 	}
5264 
5265 	/* Check if we need to enter the outer perimeter */
5266 	if (!(type & c_outer)) {
5267 		/*
5268 		 * We have to enter the outer perimeter exclusively before
5269 		 * we can increment sq_count to avoid deadlock. This implies
5270 		 * that we have to re-check sq_flags and sq_count.
5271 		 *
5272 		 * is it possible to have c_inner set when c_outer is not set?
5273 		 */
5274 		if (!(type & c_inner)) {
5275 			SQ_PUTLOCKS_EXIT(sq);
5276 		}
5277 		mutex_exit(SQLOCK(sq));
5278 		outer_enter(sq->sq_outer, SQ_GOAWAY);
5279 		mutex_enter(SQLOCK(sq));
5280 		flags = sq->sq_flags;
5281 		/*
5282 		 * there should be no need to recheck sq_putcounts
5283 		 * because outer_enter() has already waited for them to clear
5284 		 * after setting SQ_WRITER.
5285 		 */
5286 		count = sq->sq_count;
5287 #ifdef DEBUG
5288 		/*
5289 		 * SUMCHECK_SQ_PUTCOUNTS should return the sum instead
5290 		 * of doing an ASSERT internally. Others should do
5291 		 * something like
5292 		 *	 ASSERT(SUMCHECK_SQ_PUTCOUNTS(sq) == 0);
5293 		 * without the need to #ifdef DEBUG it.
5294 		 */
5295 		SUMCHECK_SQ_PUTCOUNTS(sq, 0);
5296 #endif
5297 		while ((flags & (SQ_EXCL|SQ_BLOCKED|SQ_FROZEN)) ||
5298 		    (!(type & c_inner) && count != 0)) {
5299 			sq->sq_flags = flags | SQ_WANTWAKEUP;
5300 			cv_wait(&sq->sq_wait, SQLOCK(sq));
5301 			count = sq->sq_count;
5302 			flags = sq->sq_flags;
5303 		}
5304 	}
5305 
5306 	sq->sq_count++;
5307 	ASSERT(sq->sq_count != 0);	/* Wraparound */
5308 	if (!(type & c_inner)) {
5309 		/* Exclusive entry */
5310 		ASSERT(sq->sq_count == 1);
5311 		sq->sq_flags |= SQ_EXCL;
5312 		if (type & c_outer) {
5313 			SQ_PUTLOCKS_EXIT(sq);
5314 		}
5315 	}
5316 	mutex_exit(SQLOCK(sq));
5317 }
5318 
5319 /*
5320  * leave a syncq. announce to framework that closes may proceed.
5321  * c_inner and c_outer specifies which concurrency bits
5322  * to check.
5323  *
5324  * must never be called from driver or module put entry point.
5325  *
5326  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5327  * sq_putlocks are used.
5328  */
5329 void
5330 leavesq(syncq_t *sq, int entrypoint)
5331 {
5332 	uint16_t	flags;
5333 	uint16_t	type;
5334 	uint_t		c_outer = entrypoint & SQ_CO;
5335 #ifdef DEBUG
5336 	uint_t		c_inner = entrypoint & SQ_CI;
5337 #endif
5338 
5339 	/*
5340 	 * decrement ref count, drain the syncq if possible, and wake up
5341 	 * any waiting close.
5342 	 */
5343 	ASSERT(sq);
5344 	ASSERT(c_inner && c_outer);
5345 	mutex_enter(SQLOCK(sq));
5346 	flags = sq->sq_flags;
5347 	type = sq->sq_type;
5348 	if (flags & (SQ_QUEUED|SQ_WANTWAKEUP|SQ_WANTEXWAKEUP)) {
5349 
5350 		if (flags & SQ_WANTWAKEUP) {
5351 			flags &= ~SQ_WANTWAKEUP;
5352 			cv_broadcast(&sq->sq_wait);
5353 		}
5354 		if (flags & SQ_WANTEXWAKEUP) {
5355 			flags &= ~SQ_WANTEXWAKEUP;
5356 			cv_broadcast(&sq->sq_exitwait);
5357 		}
5358 
5359 		if ((flags & SQ_QUEUED) && !(flags & SQ_STAYAWAY)) {
5360 			/*
5361 			 * The syncq needs to be drained. "Exit" the syncq
5362 			 * before calling drain_syncq.
5363 			 */
5364 			ASSERT(sq->sq_count != 0);
5365 			sq->sq_count--;
5366 			ASSERT((flags & SQ_EXCL) || (type & c_inner));
5367 			sq->sq_flags = flags & ~SQ_EXCL;
5368 			drain_syncq(sq);
5369 			ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
5370 			/* Check if we need to exit the outer perimeter */
5371 			/* XXX will this ever be true? */
5372 			if (!(type & c_outer))
5373 				outer_exit(sq->sq_outer);
5374 			return;
5375 		}
5376 	}
5377 	ASSERT(sq->sq_count != 0);
5378 	sq->sq_count--;
5379 	ASSERT((flags & SQ_EXCL) || (type & c_inner));
5380 	sq->sq_flags = flags & ~SQ_EXCL;
5381 	mutex_exit(SQLOCK(sq));
5382 
5383 	/* Check if we need to exit the outer perimeter */
5384 	if (!(sq->sq_type & c_outer))
5385 		outer_exit(sq->sq_outer);
5386 }
5387 
5388 /*
5389  * Prevent q_next from changing in this stream by incrementing sq_count.
5390  *
5391  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5392  * sq_putlocks are used.
5393  */
5394 void
5395 claimq(queue_t *qp)
5396 {
5397 	syncq_t	*sq = qp->q_syncq;
5398 
5399 	mutex_enter(SQLOCK(sq));
5400 	sq->sq_count++;
5401 	ASSERT(sq->sq_count != 0);	/* Wraparound */
5402 	mutex_exit(SQLOCK(sq));
5403 }
5404 
5405 /*
5406  * Undo claimq.
5407  *
5408  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5409  * sq_putlocks are used.
5410  */
5411 void
5412 releaseq(queue_t *qp)
5413 {
5414 	syncq_t	*sq = qp->q_syncq;
5415 	uint16_t flags;
5416 
5417 	mutex_enter(SQLOCK(sq));
5418 	ASSERT(sq->sq_count > 0);
5419 	sq->sq_count--;
5420 
5421 	flags = sq->sq_flags;
5422 	if (flags & (SQ_WANTWAKEUP|SQ_QUEUED)) {
5423 		if (flags & SQ_WANTWAKEUP) {
5424 			flags &= ~SQ_WANTWAKEUP;
5425 			cv_broadcast(&sq->sq_wait);
5426 		}
5427 		sq->sq_flags = flags;
5428 		if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5429 			/*
5430 			 * To prevent potential recursive invocation of
5431 			 * drain_syncq we do not call drain_syncq if count is
5432 			 * non-zero.
5433 			 */
5434 			if (sq->sq_count == 0) {
5435 				drain_syncq(sq);
5436 				return;
5437 			} else
5438 				sqenable(sq);
5439 		}
5440 	}
5441 	mutex_exit(SQLOCK(sq));
5442 }
5443 
5444 /*
5445  * Prevent q_next from changing in this stream by incrementing sd_refcnt.
5446  */
5447 void
5448 claimstr(queue_t *qp)
5449 {
5450 	struct stdata *stp = STREAM(qp);
5451 
5452 	mutex_enter(&stp->sd_reflock);
5453 	stp->sd_refcnt++;
5454 	ASSERT(stp->sd_refcnt != 0);	/* Wraparound */
5455 	mutex_exit(&stp->sd_reflock);
5456 }
5457 
5458 /*
5459  * Undo claimstr.
5460  */
5461 void
5462 releasestr(queue_t *qp)
5463 {
5464 	struct stdata *stp = STREAM(qp);
5465 
5466 	mutex_enter(&stp->sd_reflock);
5467 	ASSERT(stp->sd_refcnt != 0);
5468 	if (--stp->sd_refcnt == 0)
5469 		cv_broadcast(&stp->sd_refmonitor);
5470 	mutex_exit(&stp->sd_reflock);
5471 }
5472 
5473 static syncq_t *
5474 new_syncq(void)
5475 {
5476 	return (kmem_cache_alloc(syncq_cache, KM_SLEEP));
5477 }
5478 
5479 static void
5480 free_syncq(syncq_t *sq)
5481 {
5482 	ASSERT(sq->sq_head == NULL);
5483 	ASSERT(sq->sq_outer == NULL);
5484 	ASSERT(sq->sq_callbpend == NULL);
5485 	ASSERT((sq->sq_onext == NULL && sq->sq_oprev == NULL) ||
5486 	    (sq->sq_onext == sq && sq->sq_oprev == sq));
5487 
5488 	if (sq->sq_ciputctrl != NULL) {
5489 		ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
5490 		SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
5491 		    sq->sq_nciputctrl, 0);
5492 		ASSERT(ciputctrl_cache != NULL);
5493 		kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
5494 	}
5495 
5496 	sq->sq_tail = NULL;
5497 	sq->sq_evhead = NULL;
5498 	sq->sq_evtail = NULL;
5499 	sq->sq_ciputctrl = NULL;
5500 	sq->sq_nciputctrl = 0;
5501 	sq->sq_count = 0;
5502 	sq->sq_rmqcount = 0;
5503 	sq->sq_callbflags = 0;
5504 	sq->sq_cancelid = 0;
5505 	sq->sq_next = NULL;
5506 	sq->sq_needexcl = 0;
5507 	sq->sq_svcflags = 0;
5508 	sq->sq_nqueues = 0;
5509 	sq->sq_pri = 0;
5510 	sq->sq_onext = NULL;
5511 	sq->sq_oprev = NULL;
5512 	sq->sq_flags = 0;
5513 	sq->sq_type = 0;
5514 	sq->sq_servcount = 0;
5515 
5516 	kmem_cache_free(syncq_cache, sq);
5517 }
5518 
5519 /* Outer perimeter code */
5520 
5521 /*
5522  * The outer syncq uses the fields and flags in the syncq slightly
5523  * differently from the inner syncqs.
5524  *	sq_count	Incremented when there are pending or running
5525  *			writers at the outer perimeter to prevent the set of
5526  *			inner syncqs that belong to the outer perimeter from
5527  *			changing.
5528  *	sq_head/tail	List of deferred qwriter(OUTER) operations.
5529  *
5530  *	SQ_BLOCKED	Set to prevent traversing of sq_next,sq_prev while
5531  *			inner syncqs are added to or removed from the
5532  *			outer perimeter.
5533  *	SQ_QUEUED	sq_head/tail has messages or eventsqueued.
5534  *
5535  *	SQ_WRITER	A thread is currently traversing all the inner syncqs
5536  *			setting the SQ_WRITER flag.
5537  */
5538 
5539 /*
5540  * Get write access at the outer perimeter.
5541  * Note that read access is done by entersq, putnext, and put by simply
5542  * incrementing sq_count in the inner syncq.
5543  *
5544  * Waits until "flags" is no longer set in the outer to prevent multiple
5545  * threads from having write access at the same time. SQ_WRITER has to be part
5546  * of "flags".
5547  *
5548  * Increases sq_count on the outer syncq to keep away outer_insert/remove
5549  * until the outer_exit is finished.
5550  *
5551  * outer_enter is vulnerable to starvation since it does not prevent new
5552  * threads from entering the inner syncqs while it is waiting for sq_count to
5553  * go to zero.
5554  */
5555 void
5556 outer_enter(syncq_t *outer, uint16_t flags)
5557 {
5558 	syncq_t	*sq;
5559 	int	wait_needed;
5560 	uint16_t	count;
5561 
5562 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5563 	    outer->sq_oprev != NULL);
5564 	ASSERT(flags & SQ_WRITER);
5565 
5566 retry:
5567 	mutex_enter(SQLOCK(outer));
5568 	while (outer->sq_flags & flags) {
5569 		outer->sq_flags |= SQ_WANTWAKEUP;
5570 		cv_wait(&outer->sq_wait, SQLOCK(outer));
5571 	}
5572 
5573 	ASSERT(!(outer->sq_flags & SQ_WRITER));
5574 	outer->sq_flags |= SQ_WRITER;
5575 	outer->sq_count++;
5576 	ASSERT(outer->sq_count != 0);	/* wraparound */
5577 	wait_needed = 0;
5578 	/*
5579 	 * Set SQ_WRITER on all the inner syncqs while holding
5580 	 * the SQLOCK on the outer syncq. This ensures that the changing
5581 	 * of SQ_WRITER is atomic under the outer SQLOCK.
5582 	 */
5583 	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5584 		mutex_enter(SQLOCK(sq));
5585 		count = sq->sq_count;
5586 		SQ_PUTLOCKS_ENTER(sq);
5587 		sq->sq_flags |= SQ_WRITER;
5588 		SUM_SQ_PUTCOUNTS(sq, count);
5589 		if (count != 0)
5590 			wait_needed = 1;
5591 		SQ_PUTLOCKS_EXIT(sq);
5592 		mutex_exit(SQLOCK(sq));
5593 	}
5594 	mutex_exit(SQLOCK(outer));
5595 
5596 	/*
5597 	 * Get everybody out of the syncqs sequentially.
5598 	 * Note that we don't actually need to aqiure the PUTLOCKS, since
5599 	 * we have already cleared the fastbit, and set QWRITER.  By
5600 	 * definition, the count can not increase since putnext will
5601 	 * take the slowlock path (and the purpose of aquiring the
5602 	 * putlocks was to make sure it didn't increase while we were
5603 	 * waiting).
5604 	 *
5605 	 * Note that we still aquire the PUTLOCKS to be safe.
5606 	 */
5607 	if (wait_needed) {
5608 		for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5609 			mutex_enter(SQLOCK(sq));
5610 			count = sq->sq_count;
5611 			SQ_PUTLOCKS_ENTER(sq);
5612 			SUM_SQ_PUTCOUNTS(sq, count);
5613 			while (count != 0) {
5614 				sq->sq_flags |= SQ_WANTWAKEUP;
5615 				SQ_PUTLOCKS_EXIT(sq);
5616 				cv_wait(&sq->sq_wait, SQLOCK(sq));
5617 				count = sq->sq_count;
5618 				SQ_PUTLOCKS_ENTER(sq);
5619 				SUM_SQ_PUTCOUNTS(sq, count);
5620 			}
5621 			SQ_PUTLOCKS_EXIT(sq);
5622 			mutex_exit(SQLOCK(sq));
5623 		}
5624 		/*
5625 		 * Verify that none of the flags got set while we
5626 		 * were waiting for the sq_counts to drop.
5627 		 * If this happens we exit and retry entering the
5628 		 * outer perimeter.
5629 		 */
5630 		mutex_enter(SQLOCK(outer));
5631 		if (outer->sq_flags & (flags & ~SQ_WRITER)) {
5632 			mutex_exit(SQLOCK(outer));
5633 			outer_exit(outer);
5634 			goto retry;
5635 		}
5636 		mutex_exit(SQLOCK(outer));
5637 	}
5638 }
5639 
5640 /*
5641  * Drop the write access at the outer perimeter.
5642  * Read access is dropped implicitly (by putnext, put, and leavesq) by
5643  * decrementing sq_count.
5644  */
5645 void
5646 outer_exit(syncq_t *outer)
5647 {
5648 	syncq_t	*sq;
5649 	int	 drain_needed;
5650 	uint16_t flags;
5651 
5652 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5653 	    outer->sq_oprev != NULL);
5654 	ASSERT(MUTEX_NOT_HELD(SQLOCK(outer)));
5655 
5656 	/*
5657 	 * Atomically (from the perspective of threads calling become_writer)
5658 	 * drop the write access at the outer perimeter by holding
5659 	 * SQLOCK(outer) across all the dropsq calls and the resetting of
5660 	 * SQ_WRITER.
5661 	 * This defines a locking order between the outer perimeter
5662 	 * SQLOCK and the inner perimeter SQLOCKs.
5663 	 */
5664 	mutex_enter(SQLOCK(outer));
5665 	flags = outer->sq_flags;
5666 	ASSERT(outer->sq_flags & SQ_WRITER);
5667 	if (flags & SQ_QUEUED) {
5668 		write_now(outer);
5669 		flags = outer->sq_flags;
5670 	}
5671 
5672 	/*
5673 	 * sq_onext is stable since sq_count has not yet been decreased.
5674 	 * Reset the SQ_WRITER flags in all syncqs.
5675 	 * After dropping SQ_WRITER on the outer syncq we empty all the
5676 	 * inner syncqs.
5677 	 */
5678 	drain_needed = 0;
5679 	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
5680 		drain_needed += dropsq(sq, SQ_WRITER);
5681 	ASSERT(!(outer->sq_flags & SQ_QUEUED));
5682 	flags &= ~SQ_WRITER;
5683 	if (drain_needed) {
5684 		outer->sq_flags = flags;
5685 		mutex_exit(SQLOCK(outer));
5686 		for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
5687 			emptysq(sq);
5688 		mutex_enter(SQLOCK(outer));
5689 		flags = outer->sq_flags;
5690 	}
5691 	if (flags & SQ_WANTWAKEUP) {
5692 		flags &= ~SQ_WANTWAKEUP;
5693 		cv_broadcast(&outer->sq_wait);
5694 	}
5695 	outer->sq_flags = flags;
5696 	ASSERT(outer->sq_count > 0);
5697 	outer->sq_count--;
5698 	mutex_exit(SQLOCK(outer));
5699 }
5700 
5701 /*
5702  * Add another syncq to an outer perimeter.
5703  * Block out all other access to the outer perimeter while it is being
5704  * changed using blocksq.
5705  * Assumes that the caller has *not* done an outer_enter.
5706  *
5707  * Vulnerable to starvation in blocksq.
5708  */
5709 static void
5710 outer_insert(syncq_t *outer, syncq_t *sq)
5711 {
5712 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5713 	    outer->sq_oprev != NULL);
5714 	ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
5715 	    sq->sq_oprev == NULL);	/* Can't be in an outer perimeter */
5716 
5717 	/* Get exclusive access to the outer perimeter list */
5718 	blocksq(outer, SQ_BLOCKED, 0);
5719 	ASSERT(outer->sq_flags & SQ_BLOCKED);
5720 	ASSERT(!(outer->sq_flags & SQ_WRITER));
5721 
5722 	mutex_enter(SQLOCK(sq));
5723 	sq->sq_outer = outer;
5724 	outer->sq_onext->sq_oprev = sq;
5725 	sq->sq_onext = outer->sq_onext;
5726 	outer->sq_onext = sq;
5727 	sq->sq_oprev = outer;
5728 	mutex_exit(SQLOCK(sq));
5729 	unblocksq(outer, SQ_BLOCKED, 1);
5730 }
5731 
5732 /*
5733  * Remove a syncq from an outer perimeter.
5734  * Block out all other access to the outer perimeter while it is being
5735  * changed using blocksq.
5736  * Assumes that the caller has *not* done an outer_enter.
5737  *
5738  * Vulnerable to starvation in blocksq.
5739  */
5740 static void
5741 outer_remove(syncq_t *outer, syncq_t *sq)
5742 {
5743 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5744 	    outer->sq_oprev != NULL);
5745 	ASSERT(sq->sq_outer == outer);
5746 
5747 	/* Get exclusive access to the outer perimeter list */
5748 	blocksq(outer, SQ_BLOCKED, 0);
5749 	ASSERT(outer->sq_flags & SQ_BLOCKED);
5750 	ASSERT(!(outer->sq_flags & SQ_WRITER));
5751 
5752 	mutex_enter(SQLOCK(sq));
5753 	sq->sq_outer = NULL;
5754 	sq->sq_onext->sq_oprev = sq->sq_oprev;
5755 	sq->sq_oprev->sq_onext = sq->sq_onext;
5756 	sq->sq_oprev = sq->sq_onext = NULL;
5757 	mutex_exit(SQLOCK(sq));
5758 	unblocksq(outer, SQ_BLOCKED, 1);
5759 }
5760 
5761 /*
5762  * Queue a deferred qwriter(OUTER) callback for this outer perimeter.
5763  * If this is the first callback for this outer perimeter then add
5764  * this outer perimeter to the list of outer perimeters that
5765  * the qwriter_outer_thread will process.
5766  *
5767  * Increments sq_count in the outer syncq to prevent the membership
5768  * of the outer perimeter (in terms of inner syncqs) to change while
5769  * the callback is pending.
5770  */
5771 static void
5772 queue_writer(syncq_t *outer, void (*func)(), queue_t *q, mblk_t *mp)
5773 {
5774 	ASSERT(MUTEX_HELD(SQLOCK(outer)));
5775 
5776 	mp->b_prev = (mblk_t *)func;
5777 	mp->b_queue = q;
5778 	mp->b_next = NULL;
5779 	outer->sq_count++;	/* Decremented when dequeued */
5780 	ASSERT(outer->sq_count != 0);	/* Wraparound */
5781 	if (outer->sq_evhead == NULL) {
5782 		/* First message. */
5783 		outer->sq_evhead = outer->sq_evtail = mp;
5784 		outer->sq_flags |= SQ_EVENTS;
5785 		mutex_exit(SQLOCK(outer));
5786 		STRSTAT(qwr_outer);
5787 		(void) taskq_dispatch(streams_taskq,
5788 		    (task_func_t *)qwriter_outer_service, outer, TQ_SLEEP);
5789 	} else {
5790 		ASSERT(outer->sq_flags & SQ_EVENTS);
5791 		outer->sq_evtail->b_next = mp;
5792 		outer->sq_evtail = mp;
5793 		mutex_exit(SQLOCK(outer));
5794 	}
5795 }
5796 
5797 /*
5798  * Try and upgrade to write access at the outer perimeter. If this can
5799  * not be done without blocking then queue the callback to be done
5800  * by the qwriter_outer_thread.
5801  *
5802  * This routine can only be called from put or service procedures plus
5803  * asynchronous callback routines that have properly entered to
5804  * queue (with entersq.) Thus qwriter(OUTER) assumes the caller has one claim
5805  * on the syncq associated with q.
5806  */
5807 void
5808 qwriter_outer(queue_t *q, mblk_t *mp, void (*func)())
5809 {
5810 	syncq_t	*osq, *sq, *outer;
5811 	int	failed;
5812 	uint16_t flags;
5813 
5814 	osq = q->q_syncq;
5815 	outer = osq->sq_outer;
5816 	if (outer == NULL)
5817 		panic("qwriter(PERIM_OUTER): no outer perimeter");
5818 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5819 	    outer->sq_oprev != NULL);
5820 
5821 	mutex_enter(SQLOCK(outer));
5822 	flags = outer->sq_flags;
5823 	/*
5824 	 * If some thread is traversing sq_next, or if we are blocked by
5825 	 * outer_insert or outer_remove, or if the we already have queued
5826 	 * callbacks, then queue this callback for later processing.
5827 	 *
5828 	 * Also queue the qwriter for an interrupt thread in order
5829 	 * to reduce the time spent running at high IPL.
5830 	 * to identify there are events.
5831 	 */
5832 	if ((flags & SQ_GOAWAY) || (curthread->t_pri >= kpreemptpri)) {
5833 		/*
5834 		 * Queue the become_writer request.
5835 		 * The queueing is atomic under SQLOCK(outer) in order
5836 		 * to synchronize with outer_exit.
5837 		 * queue_writer will drop the outer SQLOCK
5838 		 */
5839 		if (flags & SQ_BLOCKED) {
5840 			/* Must set SQ_WRITER on inner perimeter */
5841 			mutex_enter(SQLOCK(osq));
5842 			osq->sq_flags |= SQ_WRITER;
5843 			mutex_exit(SQLOCK(osq));
5844 		} else {
5845 			if (!(flags & SQ_WRITER)) {
5846 				/*
5847 				 * The outer could have been SQ_BLOCKED thus
5848 				 * SQ_WRITER might not be set on the inner.
5849 				 */
5850 				mutex_enter(SQLOCK(osq));
5851 				osq->sq_flags |= SQ_WRITER;
5852 				mutex_exit(SQLOCK(osq));
5853 			}
5854 			ASSERT(osq->sq_flags & SQ_WRITER);
5855 		}
5856 		queue_writer(outer, func, q, mp);
5857 		return;
5858 	}
5859 	/*
5860 	 * We are half-way to exclusive access to the outer perimeter.
5861 	 * Prevent any outer_enter, qwriter(OUTER), or outer_insert/remove
5862 	 * while the inner syncqs are traversed.
5863 	 */
5864 	outer->sq_count++;
5865 	ASSERT(outer->sq_count != 0);	/* wraparound */
5866 	flags |= SQ_WRITER;
5867 	/*
5868 	 * Check if we can run the function immediately. Mark all
5869 	 * syncqs with the writer flag to prevent new entries into
5870 	 * put and service procedures.
5871 	 *
5872 	 * Set SQ_WRITER on all the inner syncqs while holding
5873 	 * the SQLOCK on the outer syncq. This ensures that the changing
5874 	 * of SQ_WRITER is atomic under the outer SQLOCK.
5875 	 */
5876 	failed = 0;
5877 	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5878 		uint16_t count;
5879 		uint_t	maxcnt = (sq == osq) ? 1 : 0;
5880 
5881 		mutex_enter(SQLOCK(sq));
5882 		count = sq->sq_count;
5883 		SQ_PUTLOCKS_ENTER(sq);
5884 		SUM_SQ_PUTCOUNTS(sq, count);
5885 		if (sq->sq_count > maxcnt)
5886 			failed = 1;
5887 		sq->sq_flags |= SQ_WRITER;
5888 		SQ_PUTLOCKS_EXIT(sq);
5889 		mutex_exit(SQLOCK(sq));
5890 	}
5891 	if (failed) {
5892 		/*
5893 		 * Some other thread has a read claim on the outer perimeter.
5894 		 * Queue the callback for deferred processing.
5895 		 *
5896 		 * queue_writer will set SQ_QUEUED before we drop SQ_WRITER
5897 		 * so that other qwriter(OUTER) calls will queue their
5898 		 * callbacks as well. queue_writer increments sq_count so we
5899 		 * decrement to compensate for the our increment.
5900 		 *
5901 		 * Dropping SQ_WRITER enables the writer thread to work
5902 		 * on this outer perimeter.
5903 		 */
5904 		outer->sq_flags = flags;
5905 		queue_writer(outer, func, q, mp);
5906 		/* queue_writer dropper the lock */
5907 		mutex_enter(SQLOCK(outer));
5908 		ASSERT(outer->sq_count > 0);
5909 		outer->sq_count--;
5910 		ASSERT(outer->sq_flags & SQ_WRITER);
5911 		flags = outer->sq_flags;
5912 		flags &= ~SQ_WRITER;
5913 		if (flags & SQ_WANTWAKEUP) {
5914 			flags &= ~SQ_WANTWAKEUP;
5915 			cv_broadcast(&outer->sq_wait);
5916 		}
5917 		outer->sq_flags = flags;
5918 		mutex_exit(SQLOCK(outer));
5919 		return;
5920 	} else {
5921 		outer->sq_flags = flags;
5922 		mutex_exit(SQLOCK(outer));
5923 	}
5924 
5925 	/* Can run it immediately */
5926 	(*func)(q, mp);
5927 
5928 	outer_exit(outer);
5929 }
5930 
5931 /*
5932  * Dequeue all writer callbacks from the outer perimeter and run them.
5933  */
5934 static void
5935 write_now(syncq_t *outer)
5936 {
5937 	mblk_t		*mp;
5938 	queue_t		*q;
5939 	void	(*func)();
5940 
5941 	ASSERT(MUTEX_HELD(SQLOCK(outer)));
5942 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5943 	    outer->sq_oprev != NULL);
5944 	while ((mp = outer->sq_evhead) != NULL) {
5945 		/*
5946 		 * queues cannot be placed on the queuelist on the outer
5947 		 * perimiter.
5948 		 */
5949 		ASSERT(!(outer->sq_flags & SQ_MESSAGES));
5950 		ASSERT((outer->sq_flags & SQ_EVENTS));
5951 
5952 		outer->sq_evhead = mp->b_next;
5953 		if (outer->sq_evhead == NULL) {
5954 			outer->sq_evtail = NULL;
5955 			outer->sq_flags &= ~SQ_EVENTS;
5956 		}
5957 		ASSERT(outer->sq_count != 0);
5958 		outer->sq_count--;	/* Incremented when enqueued. */
5959 		mutex_exit(SQLOCK(outer));
5960 		/*
5961 		 * Drop the message if the queue is closing.
5962 		 * Make sure that the queue is "claimed" when the callback
5963 		 * is run in order to satisfy various ASSERTs.
5964 		 */
5965 		q = mp->b_queue;
5966 		func = (void (*)())mp->b_prev;
5967 		ASSERT(func != NULL);
5968 		mp->b_next = mp->b_prev = NULL;
5969 		if (q->q_flag & QWCLOSE) {
5970 			freemsg(mp);
5971 		} else {
5972 			claimq(q);
5973 			(*func)(q, mp);
5974 			releaseq(q);
5975 		}
5976 		mutex_enter(SQLOCK(outer));
5977 	}
5978 	ASSERT(MUTEX_HELD(SQLOCK(outer)));
5979 }
5980 
5981 /*
5982  * The list of messages on the inner syncq is effectively hashed
5983  * by destination queue.  These destination queues are doubly
5984  * linked lists (hopefully) in priority order.  Messages are then
5985  * put on the queue referenced by the q_sqhead/q_sqtail elements.
5986  * Additional messages are linked together by the b_next/b_prev
5987  * elements in the mblk, with (similar to putq()) the first message
5988  * having a NULL b_prev and the last message having a NULL b_next.
5989  *
5990  * Events, such as qwriter callbacks, are put onto a list in FIFO
5991  * order referenced by sq_evhead, and sq_evtail.  This is a singly
5992  * linked list, and messages here MUST be processed in the order queued.
5993  */
5994 
5995 /*
5996  * Run the events on the syncq event list (sq_evhead).
5997  * Assumes there is only one claim on the syncq, it is
5998  * already exclusive (SQ_EXCL set), and the SQLOCK held.
5999  * Messages here are processed in order, with the SQ_EXCL bit
6000  * held all the way through till the last message is processed.
6001  */
6002 void
6003 sq_run_events(syncq_t *sq)
6004 {
6005 	mblk_t		*bp;
6006 	queue_t		*qp;
6007 	uint16_t	flags = sq->sq_flags;
6008 	void		(*func)();
6009 
6010 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6011 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6012 		sq->sq_oprev == NULL) ||
6013 		(sq->sq_outer != NULL && sq->sq_onext != NULL &&
6014 		sq->sq_oprev != NULL));
6015 
6016 	ASSERT(flags & SQ_EXCL);
6017 	ASSERT(sq->sq_count == 1);
6018 
6019 	/*
6020 	 * We need to process all of the events on this list.  It
6021 	 * is possible that new events will be added while we are
6022 	 * away processing a callback, so on every loop, we start
6023 	 * back at the beginning of the list.
6024 	 */
6025 	/*
6026 	 * We have to reaccess sq_evhead since there is a
6027 	 * possibility of a new entry while we were running
6028 	 * the callback.
6029 	 */
6030 	for (bp = sq->sq_evhead; bp != NULL; bp = sq->sq_evhead) {
6031 		ASSERT(bp->b_queue->q_syncq == sq);
6032 		ASSERT(sq->sq_flags & SQ_EVENTS);
6033 
6034 		qp = bp->b_queue;
6035 		func = (void (*)())bp->b_prev;
6036 		ASSERT(func != NULL);
6037 
6038 		/*
6039 		 * Messages from the event queue must be taken off in
6040 		 * FIFO order.
6041 		 */
6042 		ASSERT(sq->sq_evhead == bp);
6043 		sq->sq_evhead = bp->b_next;
6044 
6045 		if (bp->b_next == NULL) {
6046 			/* Deleting last */
6047 			ASSERT(sq->sq_evtail == bp);
6048 			sq->sq_evtail = NULL;
6049 			sq->sq_flags &= ~SQ_EVENTS;
6050 		}
6051 		bp->b_prev = bp->b_next = NULL;
6052 		ASSERT(bp->b_datap->db_ref != 0);
6053 
6054 		mutex_exit(SQLOCK(sq));
6055 
6056 		(*func)(qp, bp);
6057 
6058 		mutex_enter(SQLOCK(sq));
6059 		/*
6060 		 * re-read the flags, since they could have changed.
6061 		 */
6062 		flags = sq->sq_flags;
6063 		ASSERT(flags & SQ_EXCL);
6064 	}
6065 	ASSERT(sq->sq_evhead == NULL && sq->sq_evtail == NULL);
6066 	ASSERT(!(sq->sq_flags & SQ_EVENTS));
6067 
6068 	if (flags & SQ_WANTWAKEUP) {
6069 		flags &= ~SQ_WANTWAKEUP;
6070 		cv_broadcast(&sq->sq_wait);
6071 	}
6072 	if (flags & SQ_WANTEXWAKEUP) {
6073 		flags &= ~SQ_WANTEXWAKEUP;
6074 		cv_broadcast(&sq->sq_exitwait);
6075 	}
6076 	sq->sq_flags = flags;
6077 }
6078 
6079 /*
6080  * Put messages on the event list.
6081  * If we can go exclusive now, do so and process the event list, otherwise
6082  * let the last claim service this list (or wake the sqthread).
6083  * This procedure assumes SQLOCK is held.  To run the event list, it
6084  * must be called with no claims.
6085  */
6086 static void
6087 sqfill_events(syncq_t *sq, queue_t *q, mblk_t *mp, void (*func)())
6088 {
6089 	uint16_t count;
6090 
6091 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6092 	ASSERT(func != NULL);
6093 
6094 	/*
6095 	 * This is a callback.  Add it to the list of callbacks
6096 	 * and see about upgrading.
6097 	 */
6098 	mp->b_prev = (mblk_t *)func;
6099 	mp->b_queue = q;
6100 	mp->b_next = NULL;
6101 	if (sq->sq_evhead == NULL) {
6102 		sq->sq_evhead = sq->sq_evtail = mp;
6103 		sq->sq_flags |= SQ_EVENTS;
6104 	} else {
6105 		ASSERT(sq->sq_evtail != NULL);
6106 		ASSERT(sq->sq_evtail->b_next == NULL);
6107 		ASSERT(sq->sq_flags & SQ_EVENTS);
6108 		sq->sq_evtail->b_next = mp;
6109 		sq->sq_evtail = mp;
6110 	}
6111 	/*
6112 	 * We have set SQ_EVENTS, so threads will have to
6113 	 * unwind out of the perimiter, and new entries will
6114 	 * not grab a putlock.  But we still need to know
6115 	 * how many threads have already made a claim to the
6116 	 * syncq, so grab the putlocks, and sum the counts.
6117 	 * If there are no claims on the syncq, we can upgrade
6118 	 * to exclusive, and run the event list.
6119 	 * NOTE: We hold the SQLOCK, so we can just grab the
6120 	 * putlocks.
6121 	 */
6122 	count = sq->sq_count;
6123 	SQ_PUTLOCKS_ENTER(sq);
6124 	SUM_SQ_PUTCOUNTS(sq, count);
6125 	/*
6126 	 * We have no claim, so we need to check if there
6127 	 * are no others, then we can upgrade.
6128 	 */
6129 	/*
6130 	 * There are currently no claims on
6131 	 * the syncq by this thread (at least on this entry). The thread who has
6132 	 * the claim should drain syncq.
6133 	 */
6134 	if (count > 0) {
6135 		/*
6136 		 * Can't upgrade - other threads inside.
6137 		 */
6138 		SQ_PUTLOCKS_EXIT(sq);
6139 		mutex_exit(SQLOCK(sq));
6140 		return;
6141 	}
6142 	/*
6143 	 * Need to set SQ_EXCL and make a claim on the syncq.
6144 	 */
6145 	ASSERT((sq->sq_flags & SQ_EXCL) == 0);
6146 	sq->sq_flags |= SQ_EXCL;
6147 	ASSERT(sq->sq_count == 0);
6148 	sq->sq_count++;
6149 	SQ_PUTLOCKS_EXIT(sq);
6150 
6151 	/* Process the events list */
6152 	sq_run_events(sq);
6153 
6154 	/*
6155 	 * Release our claim...
6156 	 */
6157 	sq->sq_count--;
6158 
6159 	/*
6160 	 * And release SQ_EXCL.
6161 	 * We don't need to acquire the putlocks to release
6162 	 * SQ_EXCL, since we are exclusive, and hold the SQLOCK.
6163 	 */
6164 	sq->sq_flags &= ~SQ_EXCL;
6165 
6166 	/*
6167 	 * sq_run_events should have released SQ_EXCL
6168 	 */
6169 	ASSERT(!(sq->sq_flags & SQ_EXCL));
6170 
6171 	/*
6172 	 * If anything happened while we were running the
6173 	 * events (or was there before), we need to process
6174 	 * them now.  We shouldn't be exclusive sine we
6175 	 * released the perimiter above (plus, we asserted
6176 	 * for it).
6177 	 */
6178 	if (!(sq->sq_flags & SQ_STAYAWAY) && (sq->sq_flags & SQ_QUEUED))
6179 		drain_syncq(sq);
6180 	else
6181 		mutex_exit(SQLOCK(sq));
6182 }
6183 
6184 /*
6185  * Perform delayed processing. The caller has to make sure that it is safe
6186  * to enter the syncq (e.g. by checking that none of the SQ_STAYAWAY bits are
6187  * set.)
6188  *
6189  * Assume that the caller has NO claims on the syncq.  However, a claim
6190  * on the syncq does not indicate that a thread is draining the syncq.
6191  * There may be more claims on the syncq than there are threads draining
6192  * (i.e.  #_threads_draining <= sq_count)
6193  *
6194  * drain_syncq has to terminate when one of the SQ_STAYAWAY bits gets set
6195  * in order to preserve qwriter(OUTER) ordering constraints.
6196  *
6197  * sq_putcount only needs to be checked when dispatching the queued
6198  * writer call for CIPUT sync queue, but this is handled in sq_run_events.
6199  */
6200 void
6201 drain_syncq(syncq_t *sq)
6202 {
6203 	queue_t		*qp;
6204 	uint16_t	count;
6205 	uint16_t	type = sq->sq_type;
6206 	uint16_t	flags = sq->sq_flags;
6207 	boolean_t	bg_service = sq->sq_svcflags & SQ_SERVICE;
6208 
6209 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
6210 		"drain_syncq start:%p", sq);
6211 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6212 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6213 		sq->sq_oprev == NULL) ||
6214 		(sq->sq_outer != NULL && sq->sq_onext != NULL &&
6215 		sq->sq_oprev != NULL));
6216 
6217 	/*
6218 	 * Drop SQ_SERVICE flag.
6219 	 */
6220 	if (bg_service)
6221 		sq->sq_svcflags &= ~SQ_SERVICE;
6222 
6223 	/*
6224 	 * If SQ_EXCL is set, someone else is processing this syncq - let him
6225 	 * finish the job.
6226 	 */
6227 	if (flags & SQ_EXCL) {
6228 		if (bg_service) {
6229 			ASSERT(sq->sq_servcount != 0);
6230 			sq->sq_servcount--;
6231 		}
6232 		mutex_exit(SQLOCK(sq));
6233 		return;
6234 	}
6235 
6236 	/*
6237 	 * This routine can be called by a background thread if
6238 	 * it was scheduled by a hi-priority thread.  SO, if there are
6239 	 * NOT messages queued, return (remember, we have the SQLOCK,
6240 	 * and it cannot change until we release it). Wakeup any waiters also.
6241 	 */
6242 	if (!(flags & SQ_QUEUED)) {
6243 		if (flags & SQ_WANTWAKEUP) {
6244 			flags &= ~SQ_WANTWAKEUP;
6245 			cv_broadcast(&sq->sq_wait);
6246 		}
6247 		if (flags & SQ_WANTEXWAKEUP) {
6248 			flags &= ~SQ_WANTEXWAKEUP;
6249 			cv_broadcast(&sq->sq_exitwait);
6250 		}
6251 		sq->sq_flags = flags;
6252 		if (bg_service) {
6253 			ASSERT(sq->sq_servcount != 0);
6254 			sq->sq_servcount--;
6255 		}
6256 		mutex_exit(SQLOCK(sq));
6257 		return;
6258 	}
6259 
6260 	/*
6261 	 * If this is not a concurrent put perimiter, we need to
6262 	 * become exclusive to drain.  Also, if not CIPUT, we would
6263 	 * not have acquired a putlock, so we don't need to check
6264 	 * the putcounts.  If not entering with a claim, we test
6265 	 * for sq_count == 0.
6266 	 */
6267 	type = sq->sq_type;
6268 	if (!(type & SQ_CIPUT)) {
6269 		if (sq->sq_count > 1) {
6270 			if (bg_service) {
6271 				ASSERT(sq->sq_servcount != 0);
6272 				sq->sq_servcount--;
6273 			}
6274 			mutex_exit(SQLOCK(sq));
6275 			return;
6276 		}
6277 		sq->sq_flags |= SQ_EXCL;
6278 	}
6279 
6280 	/*
6281 	 * This is where we make a claim to the syncq.
6282 	 * This can either be done by incrementing a putlock, or
6283 	 * the sq_count.  But since we already have the SQLOCK
6284 	 * here, we just bump the sq_count.
6285 	 *
6286 	 * Note that after we make a claim, we need to let the code
6287 	 * fall through to the end of this routine to clean itself
6288 	 * up.  A return in the while loop will put the syncq in a
6289 	 * very bad state.
6290 	 */
6291 	sq->sq_count++;
6292 	ASSERT(sq->sq_count != 0);	/* wraparound */
6293 
6294 	while ((flags = sq->sq_flags) & SQ_QUEUED) {
6295 		/*
6296 		 * If we are told to stayaway or went exclusive,
6297 		 * we are done.
6298 		 */
6299 		if (flags & (SQ_STAYAWAY)) {
6300 			break;
6301 		}
6302 
6303 		/*
6304 		 * If there are events to run, do so.
6305 		 * We have one claim to the syncq, so if there are
6306 		 * more than one, other threads are running.
6307 		 */
6308 		if (sq->sq_evhead != NULL) {
6309 			ASSERT(sq->sq_flags & SQ_EVENTS);
6310 
6311 			count = sq->sq_count;
6312 			SQ_PUTLOCKS_ENTER(sq);
6313 			SUM_SQ_PUTCOUNTS(sq, count);
6314 			if (count > 1) {
6315 				SQ_PUTLOCKS_EXIT(sq);
6316 				/* Can't upgrade - other threads inside */
6317 				break;
6318 			}
6319 			ASSERT((flags & SQ_EXCL) == 0);
6320 			sq->sq_flags = flags | SQ_EXCL;
6321 			SQ_PUTLOCKS_EXIT(sq);
6322 			/*
6323 			 * we have the only claim, run the events,
6324 			 * sq_run_events will clear the SQ_EXCL flag.
6325 			 */
6326 			sq_run_events(sq);
6327 
6328 			/*
6329 			 * If this is a CIPUT perimiter, we need
6330 			 * to drop the SQ_EXCL flag so we can properly
6331 			 * continue draining the syncq.
6332 			 */
6333 			if (type & SQ_CIPUT) {
6334 				ASSERT(sq->sq_flags & SQ_EXCL);
6335 				sq->sq_flags &= ~SQ_EXCL;
6336 			}
6337 
6338 			/*
6339 			 * And go back to the beginning just in case
6340 			 * anything changed while we were away.
6341 			 */
6342 			ASSERT((sq->sq_flags & SQ_EXCL) || (type & SQ_CIPUT));
6343 			continue;
6344 		}
6345 
6346 		ASSERT(sq->sq_evhead == NULL);
6347 		ASSERT(!(sq->sq_flags & SQ_EVENTS));
6348 
6349 		/*
6350 		 * Find the queue that is not draining.
6351 		 *
6352 		 * q_draining is protected by QLOCK which we do not hold.
6353 		 * But if it was set, then a thread was draining, and if it gets
6354 		 * cleared, then it was because the thread has successfully
6355 		 * drained the syncq, or a GOAWAY state occured. For the GOAWAY
6356 		 * state to happen, a thread needs the SQLOCK which we hold, and
6357 		 * if there was such a flag, we whould have already seen it.
6358 		 */
6359 
6360 		for (qp = sq->sq_head;
6361 		    qp != NULL && (qp->q_draining ||
6362 			(qp->q_sqflags & Q_SQDRAINING));
6363 		    qp = qp->q_sqnext)
6364 			;
6365 
6366 		if (qp == NULL)
6367 			break;
6368 
6369 		/*
6370 		 * We have a queue to work on, and we hold the
6371 		 * SQLOCK and one claim, call qdrain_syncq.
6372 		 * This means we need to release the SQLOCK and
6373 		 * aquire the QLOCK (OK since we have a claim).
6374 		 * Note that qdrain_syncq will actually dequeue
6375 		 * this queue from the sq_head list when it is
6376 		 * convinced all the work is done and release
6377 		 * the QLOCK before returning.
6378 		 */
6379 		qp->q_sqflags |= Q_SQDRAINING;
6380 		mutex_exit(SQLOCK(sq));
6381 		mutex_enter(QLOCK(qp));
6382 		qdrain_syncq(sq, qp);
6383 		mutex_enter(SQLOCK(sq));
6384 
6385 		/* The queue is drained */
6386 		ASSERT(qp->q_sqflags & Q_SQDRAINING);
6387 		qp->q_sqflags &= ~Q_SQDRAINING;
6388 		/*
6389 		 * NOTE: After this point qp should not be used since it may be
6390 		 * closed.
6391 		 */
6392 	}
6393 
6394 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6395 	flags = sq->sq_flags;
6396 
6397 	/*
6398 	 * sq->sq_head cannot change because we hold the
6399 	 * sqlock. However, a thread CAN decide that it is no longer
6400 	 * going to drain that queue.  However, this should be due to
6401 	 * a GOAWAY state, and we should see that here.
6402 	 *
6403 	 * This loop is not very efficient. One solution may be adding a second
6404 	 * pointer to the "draining" queue, but it is difficult to do when
6405 	 * queues are inserted in the middle due to priority ordering. Another
6406 	 * possibility is to yank the queue out of the sq list and put it onto
6407 	 * the "draining list" and then put it back if it can't be drained.
6408 	 */
6409 
6410 	ASSERT((sq->sq_head == NULL) || (flags & SQ_GOAWAY) ||
6411 		(type & SQ_CI) || sq->sq_head->q_draining);
6412 
6413 	/* Drop SQ_EXCL for non-CIPUT perimiters */
6414 	if (!(type & SQ_CIPUT))
6415 		flags &= ~SQ_EXCL;
6416 	ASSERT((flags & SQ_EXCL) == 0);
6417 
6418 	/* Wake up any waiters. */
6419 	if (flags & SQ_WANTWAKEUP) {
6420 		flags &= ~SQ_WANTWAKEUP;
6421 		cv_broadcast(&sq->sq_wait);
6422 	}
6423 	if (flags & SQ_WANTEXWAKEUP) {
6424 		flags &= ~SQ_WANTEXWAKEUP;
6425 		cv_broadcast(&sq->sq_exitwait);
6426 	}
6427 	sq->sq_flags = flags;
6428 
6429 	ASSERT(sq->sq_count != 0);
6430 	/* Release our claim. */
6431 	sq->sq_count--;
6432 
6433 	if (bg_service) {
6434 		ASSERT(sq->sq_servcount != 0);
6435 		sq->sq_servcount--;
6436 	}
6437 
6438 	mutex_exit(SQLOCK(sq));
6439 
6440 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
6441 		"drain_syncq end:%p", sq);
6442 }
6443 
6444 
6445 /*
6446  *
6447  * qdrain_syncq can be called (currently) from only one of two places:
6448  *	drain_syncq
6449  * 	putnext  (or some variation of it).
6450  * and eventually
6451  * 	qwait(_sig)
6452  *
6453  * If called from drain_syncq, we found it in the list
6454  * of queue's needing service, so there is work to be done (or it
6455  * wouldn't be on the list).
6456  *
6457  * If called from some putnext variation, it was because the
6458  * perimiter is open, but messages are blocking a putnext and
6459  * there is not a thread working on it.  Now a thread could start
6460  * working on it while we are getting ready to do so ourself, but
6461  * the thread would set the q_draining flag, and we can spin out.
6462  *
6463  * As for qwait(_sig), I think I shall let it continue to call
6464  * drain_syncq directly (after all, it will get here eventually).
6465  *
6466  * qdrain_syncq has to terminate when:
6467  * - one of the SQ_STAYAWAY bits gets set to preserve qwriter(OUTER) ordering
6468  * - SQ_EVENTS gets set to preserve qwriter(INNER) ordering
6469  *
6470  * ASSUMES:
6471  *	One claim
6472  * 	QLOCK held
6473  * 	SQLOCK not held
6474  *	Will release QLOCK before returning
6475  */
6476 void
6477 qdrain_syncq(syncq_t *sq, queue_t *q)
6478 {
6479 	mblk_t		*bp;
6480 	boolean_t	do_clr;
6481 #ifdef DEBUG
6482 	uint16_t	count;
6483 #endif
6484 
6485 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
6486 		"drain_syncq start:%p", sq);
6487 	ASSERT(q->q_syncq == sq);
6488 	ASSERT(MUTEX_HELD(QLOCK(q)));
6489 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6490 	/*
6491 	 * For non-CIPUT perimiters, we should be called with the
6492 	 * exclusive bit set already.  For non-CIPUT perimiters we
6493 	 * will be doing a concurrent drain, so it better not be set.
6494 	 */
6495 	ASSERT((sq->sq_flags & (SQ_EXCL|SQ_CIPUT)));
6496 	ASSERT(!((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)));
6497 	ASSERT((sq->sq_type & SQ_CIPUT) || (sq->sq_flags & SQ_EXCL));
6498 	/*
6499 	 * All outer pointers are set, or none of them are
6500 	 */
6501 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6502 		sq->sq_oprev == NULL) ||
6503 		(sq->sq_outer != NULL && sq->sq_onext != NULL &&
6504 		sq->sq_oprev != NULL));
6505 #ifdef DEBUG
6506 	count = sq->sq_count;
6507 	/*
6508 	 * This is OK without the putlocks, because we have one
6509 	 * claim either from the sq_count, or a putcount.  We could
6510 	 * get an erroneous value from other counts, but ours won't
6511 	 * change, so one way or another, we will have at least a
6512 	 * value of one.
6513 	 */
6514 	SUM_SQ_PUTCOUNTS(sq, count);
6515 	ASSERT(count >= 1);
6516 #endif /* DEBUG */
6517 
6518 	/*
6519 	 * The first thing to do here, is find out if a thread is already
6520 	 * draining this queue or the queue is closing. If so, we are done,
6521 	 * just return. Also, if there are no messages, we are done as well.
6522 	 * Note that we check the q_sqhead since there is s window of
6523 	 * opportunity for us to enter here because Q_SQQUEUED was set, but is
6524 	 * not anymore.
6525 	 */
6526 	if (q->q_draining || (q->q_sqhead == NULL)) {
6527 		mutex_exit(QLOCK(q));
6528 		return;
6529 	}
6530 
6531 	/*
6532 	 * If the perimiter is exclusive, there is nothing we can
6533 	 * do right now, go away.
6534 	 * Note that there is nothing to prevent this case from changing
6535 	 * right after this check, but the spin-out will catch it.
6536 	 */
6537 
6538 	/* Tell other threads that we are draining this queue */
6539 	q->q_draining = 1;	/* Protected by QLOCK */
6540 
6541 	for (bp = q->q_sqhead; bp != NULL; bp = q->q_sqhead) {
6542 
6543 		/*
6544 		 * Because we can enter this routine just because
6545 		 * a putnext is blocked, we need to spin out if
6546 		 * the perimiter wants to go exclusive as well
6547 		 * as just blocked. We need to spin out also if
6548 		 * events are queued on the syncq.
6549 		 * Don't check for SQ_EXCL, because non-CIPUT
6550 		 * perimiters would set it, and it can't become
6551 		 * exclusive while we hold a claim.
6552 		 */
6553 		if (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)) {
6554 			break;
6555 		}
6556 
6557 #ifdef DEBUG
6558 		/*
6559 		 * Since we are in qdrain_syncq, we already know the queue,
6560 		 * but for sanity, we want to check this against the qp that
6561 		 * was passed in by bp->b_queue.
6562 		 */
6563 
6564 		ASSERT(bp->b_queue == q);
6565 		ASSERT(bp->b_queue->q_syncq == sq);
6566 		bp->b_queue = NULL;
6567 
6568 		/*
6569 		 * We would have the following check in the DEBUG code:
6570 		 *
6571 		 * if (bp->b_prev != NULL)  {
6572 		 *	ASSERT(bp->b_prev == (void (*)())q->q_qinfo->qi_putp);
6573 		 * }
6574 		 *
6575 		 * This can't be done, however, since IP modifies qinfo
6576 		 * structure at run-time (switching between IPv4 qinfo and IPv6
6577 		 * qinfo), invalidating the check.
6578 		 * So the assignment to func is left here, but the ASSERT itself
6579 		 * is removed until the whole issue is resolved.
6580 		 */
6581 #endif
6582 		ASSERT(q->q_sqhead == bp);
6583 		q->q_sqhead = bp->b_next;
6584 		bp->b_prev = bp->b_next = NULL;
6585 		ASSERT(q->q_syncqmsgs > 0);
6586 		mutex_exit(QLOCK(q));
6587 
6588 		ASSERT(bp->b_datap->db_ref != 0);
6589 
6590 		(void) (*q->q_qinfo->qi_putp)(q, bp);
6591 
6592 		mutex_enter(QLOCK(q));
6593 		/*
6594 		 * We should decrement q_syncqmsgs only after executing the
6595 		 * put procedure to avoid a possible race with putnext().
6596 		 * In putnext() though it sees Q_SQQUEUED is set, there is
6597 		 * an optimization which allows putnext to call the put
6598 		 * procedure directly if (q_syncqmsgs == 0) and thus
6599 		 * a message reodering could otherwise occur.
6600 		 */
6601 		q->q_syncqmsgs--;
6602 
6603 		/*
6604 		 * Clear QFULL in the next service procedure queue if
6605 		 * this is the last message destined to that queue.
6606 		 *
6607 		 * It would make better sense to have some sort of
6608 		 * tunable for the low water mark, but these symantics
6609 		 * are not yet defined.  So, alas, we use a constant.
6610 		 */
6611 		do_clr = (q->q_syncqmsgs == 0);
6612 		mutex_exit(QLOCK(q));
6613 
6614 		if (do_clr)
6615 			clr_qfull(q);
6616 
6617 		mutex_enter(QLOCK(q));
6618 		/*
6619 		 * Always clear SQ_EXCL when CIPUT in order to handle
6620 		 * qwriter(INNER).
6621 		 */
6622 		/*
6623 		 * The putp() can call qwriter and get exclusive access
6624 		 * IFF this is the only claim.  So, we need to test for
6625 		 * this possibility so we can aquire the mutex and clear
6626 		 * the bit.
6627 		 */
6628 		if ((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)) {
6629 			mutex_enter(SQLOCK(sq));
6630 			sq->sq_flags &= ~SQ_EXCL;
6631 			mutex_exit(SQLOCK(sq));
6632 		}
6633 	}
6634 
6635 	/*
6636 	 * We should either have no queues on the syncq, or we were
6637 	 * told to goaway by a waiter (which we will wake up at the
6638 	 * end of this function).
6639 	 */
6640 	ASSERT((q->q_sqhead == NULL) ||
6641 	    (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)));
6642 
6643 	ASSERT(MUTEX_HELD(QLOCK(q)));
6644 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6645 
6646 	/*
6647 	 * Remove the q from the syncq list if all the messages are
6648 	 * drained.
6649 	 */
6650 	if (q->q_sqhead == NULL) {
6651 		mutex_enter(SQLOCK(sq));
6652 		if (q->q_sqflags & Q_SQQUEUED)
6653 			SQRM_Q(sq, q);
6654 		mutex_exit(SQLOCK(sq));
6655 		/*
6656 		 * Since the queue is removed from the list, reset its priority.
6657 		 */
6658 		q->q_spri = 0;
6659 	}
6660 
6661 	/*
6662 	 * Remember, the q_draining flag is used to let another
6663 	 * thread know that there is a thread currently draining
6664 	 * the messages for a queue.  Since we are now done with
6665 	 * this queue (even if there may be messages still there),
6666 	 * we need to clear this flag so some thread will work
6667 	 * on it if needed.
6668 	 */
6669 	ASSERT(q->q_draining);
6670 	q->q_draining = 0;
6671 
6672 	/* called with a claim, so OK to drop all locks. */
6673 	mutex_exit(QLOCK(q));
6674 
6675 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
6676 		"drain_syncq end:%p", sq);
6677 }
6678 /* END OF QDRAIN_SYNCQ  */
6679 
6680 
6681 /*
6682  * This is the mate to qdrain_syncq, except that it is putting the
6683  * message onto the the queue instead draining.  Since the
6684  * message is destined for the queue that is selected, there is
6685  * no need to identify the function because the message is
6686  * intended for the put routine for the queue.  But this
6687  * routine will do it anyway just in case (but only for debug kernels).
6688  *
6689  * After the message is enqueued on the syncq, it calls putnext_tail()
6690  * which will schedule a background thread to actually process the message.
6691  *
6692  * Assumes that there is a claim on the syncq (sq->sq_count > 0) and
6693  * SQLOCK(sq) and QLOCK(q) are not held.
6694  */
6695 void
6696 qfill_syncq(syncq_t *sq, queue_t *q, mblk_t *mp)
6697 {
6698 	queue_t		*fq = NULL;
6699 
6700 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6701 	ASSERT(MUTEX_NOT_HELD(QLOCK(q)));
6702 	ASSERT(sq->sq_count > 0);
6703 	ASSERT(q->q_syncq == sq);
6704 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6705 		sq->sq_oprev == NULL) ||
6706 		(sq->sq_outer != NULL && sq->sq_onext != NULL &&
6707 		sq->sq_oprev != NULL));
6708 
6709 	mutex_enter(QLOCK(q));
6710 
6711 	/*
6712 	 * Set QFULL in next service procedure queue (that cares) if not
6713 	 * already set and if there are already more messages on the syncq
6714 	 * than sq_max_size.  If sq_max_size is 0, no flow control will be
6715 	 * asserted on any syncq.
6716 	 *
6717 	 * The fq here is the next queue with a service procedure.
6718 	 * This is where we would fail canputnext, so this is where we
6719 	 * need to set QFULL.
6720 	 *
6721 	 * LOCKING HIERARCHY: In the case when fq != q we need to
6722 	 *  a) Take QLOCK(fq) to set QFULL flag and
6723 	 *  b) Take sd_reflock in the case of the hot stream to update
6724 	 *  	sd_refcnt.
6725 	 * We already have QLOCK at this point. To avoid cross-locks with
6726 	 * freezestr() which grabs all QLOCKs and with strlock() which grabs
6727 	 * both SQLOCK and sd_reflock, we need to drop respective locks first.
6728 	 */
6729 	if ((sq_max_size != 0) && (!(q->q_nfsrv->q_flag & QFULL)) &&
6730 	    (q->q_syncqmsgs > sq_max_size)) {
6731 		if ((fq = q->q_nfsrv) == q) {
6732 			fq->q_flag |= QFULL;
6733 		} else {
6734 			mutex_exit(QLOCK(q));
6735 			mutex_enter(QLOCK(fq));
6736 			fq->q_flag |= QFULL;
6737 			mutex_exit(QLOCK(fq));
6738 			mutex_enter(QLOCK(q));
6739 		}
6740 	}
6741 
6742 #ifdef DEBUG
6743 	/*
6744 	 * This is used for debug in the qfill_syncq/qdrain_syncq case
6745 	 * to trace the queue that the message is intended for.  Note
6746 	 * that the original use was to identify the queue and function
6747 	 * to call on the drain.  In the new syncq, we have the context
6748 	 * of the queue that we are draining, so call it's putproc and
6749 	 * don't rely on the saved values.  But for debug this is still
6750 	 * usefull information.
6751 	 */
6752 	mp->b_prev = (mblk_t *)q->q_qinfo->qi_putp;
6753 	mp->b_queue = q;
6754 	mp->b_next = NULL;
6755 #endif
6756 	ASSERT(q->q_syncq == sq);
6757 	/*
6758 	 * Enqueue the message on the list.
6759 	 * SQPUT_MP() accesses q_syncqmsgs.  We are already holding QLOCK to
6760 	 * protect it.  So its ok to acquire SQLOCK after SQPUT_MP().
6761 	 */
6762 	SQPUT_MP(q, mp);
6763 	mutex_enter(SQLOCK(sq));
6764 
6765 	/*
6766 	 * And queue on syncq for scheduling, if not already queued.
6767 	 * Note that we need the SQLOCK for this, and for testing flags
6768 	 * at the end to see if we will drain.  So grab it now, and
6769 	 * release it before we call qdrain_syncq or return.
6770 	 */
6771 	if (!(q->q_sqflags & Q_SQQUEUED)) {
6772 		q->q_spri = curthread->t_pri;
6773 		SQPUT_Q(sq, q);
6774 	}
6775 #ifdef DEBUG
6776 	else {
6777 		/*
6778 		 * All of these conditions MUST be true!
6779 		 */
6780 		ASSERT(sq->sq_tail != NULL);
6781 		if (sq->sq_tail == sq->sq_head) {
6782 			ASSERT((q->q_sqprev == NULL) &&
6783 			    (q->q_sqnext == NULL));
6784 		} else {
6785 			ASSERT((q->q_sqprev != NULL) ||
6786 			    (q->q_sqnext != NULL));
6787 		}
6788 		ASSERT(sq->sq_flags & SQ_QUEUED);
6789 		ASSERT(q->q_syncqmsgs != 0);
6790 		ASSERT(q->q_sqflags & Q_SQQUEUED);
6791 	}
6792 #endif
6793 	mutex_exit(QLOCK(q));
6794 	/*
6795 	 * SQLOCK is still held, so sq_count can be safely decremented.
6796 	 */
6797 	sq->sq_count--;
6798 
6799 	putnext_tail(sq, q, 0);
6800 	/* Should not reference sq or q after this point. */
6801 }
6802 
6803 /*  End of qfill_syncq  */
6804 
6805 /*
6806  * Remove all messages from a syncq (if qp is NULL) or remove all messages
6807  * that would be put into qp by drain_syncq.
6808  * Used when deleting the syncq (qp == NULL) or when detaching
6809  * a queue (qp != NULL).
6810  * Return non-zero if one or more messages were freed.
6811  *
6812  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
6813  * sq_putlocks are used.
6814  *
6815  * NOTE: This function assumes that it is called from the close() context and
6816  * that all the queues in the syncq are going aay. For this reason it doesn't
6817  * acquire QLOCK for modifying q_sqhead/q_sqtail fields. This assumption is
6818  * currently valid, but it is useful to rethink this function to behave properly
6819  * in other cases.
6820  */
6821 int
6822 flush_syncq(syncq_t *sq, queue_t *qp)
6823 {
6824 	mblk_t		*bp, *mp_head, *mp_next, *mp_prev;
6825 	queue_t		*q;
6826 	int		ret = 0;
6827 
6828 	mutex_enter(SQLOCK(sq));
6829 
6830 	/*
6831 	 * Before we leave, we need to make sure there are no
6832 	 * events listed for this queue.  All events for this queue
6833 	 * will just be freed.
6834 	 */
6835 	if (qp != NULL && sq->sq_evhead != NULL) {
6836 		ASSERT(sq->sq_flags & SQ_EVENTS);
6837 
6838 		mp_prev = NULL;
6839 		for (bp = sq->sq_evhead; bp != NULL; bp = mp_next) {
6840 			mp_next = bp->b_next;
6841 			if (bp->b_queue == qp) {
6842 				/* Delete this message */
6843 				if (mp_prev != NULL) {
6844 					mp_prev->b_next = mp_next;
6845 					/*
6846 					 * Update sq_evtail if the last element
6847 					 * is removed.
6848 					 */
6849 					if (bp == sq->sq_evtail) {
6850 						ASSERT(mp_next == NULL);
6851 						sq->sq_evtail = mp_prev;
6852 					}
6853 				} else
6854 					sq->sq_evhead = mp_next;
6855 				if (sq->sq_evhead == NULL)
6856 					sq->sq_flags &= ~SQ_EVENTS;
6857 				bp->b_prev = bp->b_next = NULL;
6858 				freemsg(bp);
6859 				ret++;
6860 			} else {
6861 				mp_prev = bp;
6862 			}
6863 		}
6864 	}
6865 
6866 	/*
6867 	 * Walk sq_head and:
6868 	 *	- match qp if qp is set, remove it's messages
6869 	 *	- all if qp is not set
6870 	 */
6871 	q = sq->sq_head;
6872 	while (q != NULL) {
6873 		ASSERT(q->q_syncq == sq);
6874 		if ((qp == NULL) || (qp == q)) {
6875 			/*
6876 			 * Yank the messages as a list off the queue
6877 			 */
6878 			mp_head = q->q_sqhead;
6879 			/*
6880 			 * We do not have QLOCK(q) here (which is safe due to
6881 			 * assumptions mentioned above). To obtain the lock we
6882 			 * need to release SQLOCK which may allow lots of things
6883 			 * to change upon us. This place requires more analysis.
6884 			 */
6885 			q->q_sqhead = q->q_sqtail = NULL;
6886 			ASSERT(mp_head->b_queue &&
6887 			    mp_head->b_queue->q_syncq == sq);
6888 
6889 			/*
6890 			 * Free each of the messages.
6891 			 */
6892 			for (bp = mp_head; bp != NULL; bp = mp_next) {
6893 				mp_next = bp->b_next;
6894 				bp->b_prev = bp->b_next = NULL;
6895 				freemsg(bp);
6896 				ret++;
6897 			}
6898 			/*
6899 			 * Now remove the queue from the syncq.
6900 			 */
6901 			ASSERT(q->q_sqflags & Q_SQQUEUED);
6902 			SQRM_Q(sq, q);
6903 			q->q_spri = 0;
6904 			q->q_syncqmsgs = 0;
6905 
6906 			/*
6907 			 * If qp was specified, we are done with it and are
6908 			 * going to drop SQLOCK(sq) and return. We wakeup syncq
6909 			 * waiters while we still have the SQLOCK.
6910 			 */
6911 			if ((qp != NULL) && (sq->sq_flags & SQ_WANTWAKEUP)) {
6912 				sq->sq_flags &= ~SQ_WANTWAKEUP;
6913 				cv_broadcast(&sq->sq_wait);
6914 			}
6915 			/* Drop SQLOCK across clr_qfull */
6916 			mutex_exit(SQLOCK(sq));
6917 
6918 			/*
6919 			 * We avoid doing the test that drain_syncq does and
6920 			 * unconditionally clear qfull for every flushed
6921 			 * message. Since flush_syncq is only called during
6922 			 * close this should not be a problem.
6923 			 */
6924 			clr_qfull(q);
6925 			if (qp != NULL) {
6926 				return (ret);
6927 			} else {
6928 				mutex_enter(SQLOCK(sq));
6929 				/*
6930 				 * The head was removed by SQRM_Q above.
6931 				 * reread the new head and flush it.
6932 				 */
6933 				q = sq->sq_head;
6934 			}
6935 		} else {
6936 			q = q->q_sqnext;
6937 		}
6938 		ASSERT(MUTEX_HELD(SQLOCK(sq)));
6939 	}
6940 
6941 	if (sq->sq_flags & SQ_WANTWAKEUP) {
6942 		sq->sq_flags &= ~SQ_WANTWAKEUP;
6943 		cv_broadcast(&sq->sq_wait);
6944 	}
6945 
6946 	mutex_exit(SQLOCK(sq));
6947 	return (ret);
6948 }
6949 
6950 /*
6951  * Propagate all messages from a syncq to the next syncq that are associated
6952  * with the specified queue. If the queue is attached to a driver or if the
6953  * messages have been added due to a qwriter(PERIM_INNER), free the messages.
6954  *
6955  * Assumes that the stream is strlock()'ed. We don't come here if there
6956  * are no messages to propagate.
6957  *
6958  * NOTE : If the queue is attached to a driver, all the messages are freed
6959  * as there is no point in propagating the messages from the driver syncq
6960  * to the closing stream head which will in turn get freed later.
6961  */
6962 static int
6963 propagate_syncq(queue_t *qp)
6964 {
6965 	mblk_t		*bp, *head, *tail, *prev, *next;
6966 	syncq_t 	*sq;
6967 	queue_t		*nqp;
6968 	syncq_t		*nsq;
6969 	boolean_t	isdriver;
6970 	int 		moved = 0;
6971 	uint16_t	flags;
6972 	pri_t		priority = curthread->t_pri;
6973 #ifdef DEBUG
6974 	void		(*func)();
6975 #endif
6976 
6977 	sq = qp->q_syncq;
6978 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6979 	/* debug macro */
6980 	SQ_PUTLOCKS_HELD(sq);
6981 	/*
6982 	 * As entersq() does not increment the sq_count for
6983 	 * the write side, check sq_count for non-QPERQ
6984 	 * perimeters alone.
6985 	 */
6986 	ASSERT((qp->q_flag & QPERQ) || (sq->sq_count >= 1));
6987 
6988 	/*
6989 	 * propagate_syncq() can be called because of either messages on the
6990 	 * queue syncq or because on events on the queue syncq. Do actual
6991 	 * message propagations if there are any messages.
6992 	 */
6993 	if (qp->q_syncqmsgs) {
6994 		isdriver = (qp->q_flag & QISDRV);
6995 
6996 		if (!isdriver) {
6997 			nqp = qp->q_next;
6998 			nsq = nqp->q_syncq;
6999 			ASSERT(MUTEX_HELD(SQLOCK(nsq)));
7000 			/* debug macro */
7001 			SQ_PUTLOCKS_HELD(nsq);
7002 #ifdef DEBUG
7003 			func = (void (*)())nqp->q_qinfo->qi_putp;
7004 #endif
7005 		}
7006 
7007 		SQRM_Q(sq, qp);
7008 		priority = MAX(qp->q_spri, priority);
7009 		qp->q_spri = 0;
7010 		head = qp->q_sqhead;
7011 		tail = qp->q_sqtail;
7012 		qp->q_sqhead = qp->q_sqtail = NULL;
7013 		qp->q_syncqmsgs = 0;
7014 
7015 		/*
7016 		 * Walk the list of messages, and free them if this is a driver,
7017 		 * otherwise reset the b_prev and b_queue value to the new putp.
7018 		 * Afterward, we will just add the head to the end of the next
7019 		 * syncq, and point the tail to the end of this one.
7020 		 */
7021 
7022 		for (bp = head; bp != NULL; bp = next) {
7023 			next = bp->b_next;
7024 			if (isdriver) {
7025 				bp->b_prev = bp->b_next = NULL;
7026 				freemsg(bp);
7027 				continue;
7028 			}
7029 			/* Change the q values for this message */
7030 			bp->b_queue = nqp;
7031 #ifdef DEBUG
7032 			bp->b_prev = (mblk_t *)func;
7033 #endif
7034 			moved++;
7035 		}
7036 		/*
7037 		 * Attach list of messages to the end of the new queue (if there
7038 		 * is a list of messages).
7039 		 */
7040 
7041 		if (!isdriver && head != NULL) {
7042 			ASSERT(tail != NULL);
7043 			if (nqp->q_sqhead == NULL) {
7044 				nqp->q_sqhead = head;
7045 			} else {
7046 				ASSERT(nqp->q_sqtail != NULL);
7047 				nqp->q_sqtail->b_next = head;
7048 			}
7049 			nqp->q_sqtail = tail;
7050 			/*
7051 			 * When messages are moved from high priority queue to
7052 			 * another queue, the destination queue priority is
7053 			 * upgraded.
7054 			 */
7055 
7056 			if (priority > nqp->q_spri)
7057 				nqp->q_spri = priority;
7058 
7059 			SQPUT_Q(nsq, nqp);
7060 
7061 			nqp->q_syncqmsgs += moved;
7062 			ASSERT(nqp->q_syncqmsgs != 0);
7063 		}
7064 	}
7065 
7066 	/*
7067 	 * Before we leave, we need to make sure there are no
7068 	 * events listed for this queue.  All events for this queue
7069 	 * will just be freed.
7070 	 */
7071 	if (sq->sq_evhead != NULL) {
7072 		ASSERT(sq->sq_flags & SQ_EVENTS);
7073 		prev = NULL;
7074 		for (bp = sq->sq_evhead; bp != NULL; bp = next) {
7075 			next = bp->b_next;
7076 			if (bp->b_queue == qp) {
7077 				/* Delete this message */
7078 				if (prev != NULL) {
7079 					prev->b_next = next;
7080 					/*
7081 					 * Update sq_evtail if the last element
7082 					 * is removed.
7083 					 */
7084 					if (bp == sq->sq_evtail) {
7085 						ASSERT(next == NULL);
7086 						sq->sq_evtail = prev;
7087 					}
7088 				} else
7089 					sq->sq_evhead = next;
7090 				if (sq->sq_evhead == NULL)
7091 					sq->sq_flags &= ~SQ_EVENTS;
7092 				bp->b_prev = bp->b_next = NULL;
7093 				freemsg(bp);
7094 			} else {
7095 				prev = bp;
7096 			}
7097 		}
7098 	}
7099 
7100 	flags = sq->sq_flags;
7101 
7102 	/* Wake up any waiter before leaving. */
7103 	if (flags & SQ_WANTWAKEUP) {
7104 		flags &= ~SQ_WANTWAKEUP;
7105 		cv_broadcast(&sq->sq_wait);
7106 	}
7107 	sq->sq_flags = flags;
7108 
7109 	return (moved);
7110 }
7111 
7112 /*
7113  * Try and upgrade to exclusive access at the inner perimeter. If this can
7114  * not be done without blocking then request will be queued on the syncq
7115  * and drain_syncq will run it later.
7116  *
7117  * This routine can only be called from put or service procedures plus
7118  * asynchronous callback routines that have properly entered to
7119  * queue (with entersq.) Thus qwriter_inner assumes the caller has one claim
7120  * on the syncq associated with q.
7121  */
7122 void
7123 qwriter_inner(queue_t *q, mblk_t *mp, void (*func)())
7124 {
7125 	syncq_t	*sq = q->q_syncq;
7126 	uint16_t count;
7127 
7128 	mutex_enter(SQLOCK(sq));
7129 	count = sq->sq_count;
7130 	SQ_PUTLOCKS_ENTER(sq);
7131 	SUM_SQ_PUTCOUNTS(sq, count);
7132 	ASSERT(count >= 1);
7133 	ASSERT(sq->sq_type & (SQ_CIPUT|SQ_CISVC));
7134 
7135 	if (count == 1) {
7136 		/*
7137 		 * Can upgrade. This case also handles nested qwriter calls
7138 		 * (when the qwriter callback function calls qwriter). In that
7139 		 * case SQ_EXCL is already set.
7140 		 */
7141 		sq->sq_flags |= SQ_EXCL;
7142 		SQ_PUTLOCKS_EXIT(sq);
7143 		mutex_exit(SQLOCK(sq));
7144 		(*func)(q, mp);
7145 		/*
7146 		 * Assumes that leavesq, putnext, and drain_syncq will reset
7147 		 * SQ_EXCL for SQ_CIPUT/SQ_CISVC queues. We leave SQ_EXCL on
7148 		 * until putnext, leavesq, or drain_syncq drops it.
7149 		 * That way we handle nested qwriter(INNER) without dropping
7150 		 * SQ_EXCL until the outermost qwriter callback routine is
7151 		 * done.
7152 		 */
7153 		return;
7154 	}
7155 	SQ_PUTLOCKS_EXIT(sq);
7156 	sqfill_events(sq, q, mp, func);
7157 }
7158 
7159 /*
7160  * Synchronous callback support functions
7161  */
7162 
7163 /*
7164  * Allocate a callback parameter structure.
7165  * Assumes that caller initializes the flags and the id.
7166  * Acquires SQLOCK(sq) if non-NULL is returned.
7167  */
7168 callbparams_t *
7169 callbparams_alloc(syncq_t *sq, void (*func)(void *), void *arg, int kmflags)
7170 {
7171 	callbparams_t *cbp;
7172 	size_t size = sizeof (callbparams_t);
7173 
7174 	cbp = kmem_alloc(size, kmflags & ~KM_PANIC);
7175 
7176 	/*
7177 	 * Only try tryhard allocation if the caller is ready to panic.
7178 	 * Otherwise just fail.
7179 	 */
7180 	if (cbp == NULL) {
7181 		if (kmflags & KM_PANIC)
7182 			cbp = kmem_alloc_tryhard(sizeof (callbparams_t),
7183 			    &size, kmflags);
7184 		else
7185 			return (NULL);
7186 	}
7187 
7188 	ASSERT(size >= sizeof (callbparams_t));
7189 	cbp->cbp_size = size;
7190 	cbp->cbp_sq = sq;
7191 	cbp->cbp_func = func;
7192 	cbp->cbp_arg = arg;
7193 	mutex_enter(SQLOCK(sq));
7194 	cbp->cbp_next = sq->sq_callbpend;
7195 	sq->sq_callbpend = cbp;
7196 	return (cbp);
7197 }
7198 
7199 void
7200 callbparams_free(syncq_t *sq, callbparams_t *cbp)
7201 {
7202 	callbparams_t **pp, *p;
7203 
7204 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7205 
7206 	for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
7207 		if (p == cbp) {
7208 			*pp = p->cbp_next;
7209 			kmem_free(p, p->cbp_size);
7210 			return;
7211 		}
7212 	}
7213 	(void) (STRLOG(0, 0, 0, SL_CONSOLE,
7214 	    "callbparams_free: not found\n"));
7215 }
7216 
7217 void
7218 callbparams_free_id(syncq_t *sq, callbparams_id_t id, int32_t flag)
7219 {
7220 	callbparams_t **pp, *p;
7221 
7222 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7223 
7224 	for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
7225 		if (p->cbp_id == id && p->cbp_flags == flag) {
7226 			*pp = p->cbp_next;
7227 			kmem_free(p, p->cbp_size);
7228 			return;
7229 		}
7230 	}
7231 	(void) (STRLOG(0, 0, 0, SL_CONSOLE,
7232 	    "callbparams_free_id: not found\n"));
7233 }
7234 
7235 /*
7236  * Callback wrapper function used by once-only callbacks that can be
7237  * cancelled (qtimeout and qbufcall)
7238  * Contains inline version of entersq(sq, SQ_CALLBACK) that can be
7239  * cancelled by the qun* functions.
7240  */
7241 void
7242 qcallbwrapper(void *arg)
7243 {
7244 	callbparams_t *cbp = arg;
7245 	syncq_t	*sq;
7246 	uint16_t count = 0;
7247 	uint16_t waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
7248 	uint16_t type;
7249 
7250 	sq = cbp->cbp_sq;
7251 	mutex_enter(SQLOCK(sq));
7252 	type = sq->sq_type;
7253 	if (!(type & SQ_CICB)) {
7254 		count = sq->sq_count;
7255 		SQ_PUTLOCKS_ENTER(sq);
7256 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
7257 		SUM_SQ_PUTCOUNTS(sq, count);
7258 		sq->sq_needexcl++;
7259 		ASSERT(sq->sq_needexcl != 0);	/* wraparound */
7260 		waitflags |= SQ_MESSAGES;
7261 	}
7262 	/* Can not handle exlusive entry at outer perimeter */
7263 	ASSERT(type & SQ_COCB);
7264 
7265 	while ((sq->sq_flags & waitflags) || (!(type & SQ_CICB) &&count != 0)) {
7266 		if ((sq->sq_callbflags & cbp->cbp_flags) &&
7267 		    (sq->sq_cancelid == cbp->cbp_id)) {
7268 			/* timeout has been cancelled */
7269 			sq->sq_callbflags |= SQ_CALLB_BYPASSED;
7270 			callbparams_free(sq, cbp);
7271 			if (!(type & SQ_CICB)) {
7272 				ASSERT(sq->sq_needexcl > 0);
7273 				sq->sq_needexcl--;
7274 				if (sq->sq_needexcl == 0) {
7275 					SQ_PUTCOUNT_SETFAST_LOCKED(sq);
7276 				}
7277 				SQ_PUTLOCKS_EXIT(sq);
7278 			}
7279 			mutex_exit(SQLOCK(sq));
7280 			return;
7281 		}
7282 		sq->sq_flags |= SQ_WANTWAKEUP;
7283 		if (!(type & SQ_CICB)) {
7284 			SQ_PUTLOCKS_EXIT(sq);
7285 		}
7286 		cv_wait(&sq->sq_wait, SQLOCK(sq));
7287 		if (!(type & SQ_CICB)) {
7288 			count = sq->sq_count;
7289 			SQ_PUTLOCKS_ENTER(sq);
7290 			SUM_SQ_PUTCOUNTS(sq, count);
7291 		}
7292 	}
7293 
7294 	sq->sq_count++;
7295 	ASSERT(sq->sq_count != 0);	/* Wraparound */
7296 	if (!(type & SQ_CICB)) {
7297 		ASSERT(count == 0);
7298 		sq->sq_flags |= SQ_EXCL;
7299 		ASSERT(sq->sq_needexcl > 0);
7300 		sq->sq_needexcl--;
7301 		if (sq->sq_needexcl == 0) {
7302 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
7303 		}
7304 		SQ_PUTLOCKS_EXIT(sq);
7305 	}
7306 
7307 	mutex_exit(SQLOCK(sq));
7308 
7309 	cbp->cbp_func(cbp->cbp_arg);
7310 
7311 	/*
7312 	 * We drop the lock only for leavesq to re-acquire it.
7313 	 * Possible optimization is inline of leavesq.
7314 	 */
7315 	mutex_enter(SQLOCK(sq));
7316 	callbparams_free(sq, cbp);
7317 	mutex_exit(SQLOCK(sq));
7318 	leavesq(sq, SQ_CALLBACK);
7319 }
7320 
7321 /*
7322  * no need to grab sq_putlocks here. See comment in strsubr.h that
7323  * explains when sq_putlocks are used.
7324  *
7325  * sq_count (or one of the sq_putcounts) has already been
7326  * decremented by the caller, and if SQ_QUEUED, we need to call
7327  * drain_syncq (the global syncq drain).
7328  * If putnext_tail is called with the SQ_EXCL bit set, we are in
7329  * one of two states, non-CIPUT perimiter, and we need to clear
7330  * it, or we went exclusive in the put procedure.  In any case,
7331  * we want to clear the bit now, and it is probably easier to do
7332  * this at the beginning of this function (remember, we hold
7333  * the SQLOCK).  Lastly, if there are other messages queued
7334  * on the syncq (and not for our destination), enable the syncq
7335  * for background work.
7336  */
7337 
7338 /* ARGSUSED */
7339 void
7340 putnext_tail(syncq_t *sq, queue_t *qp, uint32_t passflags)
7341 {
7342 	uint16_t	flags = sq->sq_flags;
7343 
7344 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7345 	ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
7346 
7347 	/* Clear SQ_EXCL if set in passflags */
7348 	if (passflags & SQ_EXCL) {
7349 		flags &= ~SQ_EXCL;
7350 	}
7351 	if (flags & SQ_WANTWAKEUP) {
7352 		flags &= ~SQ_WANTWAKEUP;
7353 		cv_broadcast(&sq->sq_wait);
7354 	}
7355 	if (flags & SQ_WANTEXWAKEUP) {
7356 		flags &= ~SQ_WANTEXWAKEUP;
7357 		cv_broadcast(&sq->sq_exitwait);
7358 	}
7359 	sq->sq_flags = flags;
7360 
7361 	/*
7362 	 * We have cleared SQ_EXCL if we were asked to, and started
7363 	 * the wakeup process for waiters.  If there are no writers
7364 	 * then we need to drain the syncq if we were told to, or
7365 	 * enable the background thread to do it.
7366 	 */
7367 	if (!(flags & (SQ_STAYAWAY|SQ_EXCL))) {
7368 		if ((passflags & SQ_QUEUED) ||
7369 		    (sq->sq_svcflags & SQ_DISABLED)) {
7370 			/* drain_syncq will take care of events in the list */
7371 			drain_syncq(sq);
7372 			return;
7373 		} else if (flags & SQ_QUEUED) {
7374 			sqenable(sq);
7375 		}
7376 	}
7377 	/* Drop the SQLOCK on exit */
7378 	mutex_exit(SQLOCK(sq));
7379 	TRACE_3(TR_FAC_STREAMS_FR, TR_PUTNEXT_END,
7380 		"putnext_end:(%p, %p, %p) done", NULL, qp, sq);
7381 }
7382 
7383 void
7384 set_qend(queue_t *q)
7385 {
7386 	mutex_enter(QLOCK(q));
7387 	if (!O_SAMESTR(q))
7388 		q->q_flag |= QEND;
7389 	else
7390 		q->q_flag &= ~QEND;
7391 	mutex_exit(QLOCK(q));
7392 	q = _OTHERQ(q);
7393 	mutex_enter(QLOCK(q));
7394 	if (!O_SAMESTR(q))
7395 		q->q_flag |= QEND;
7396 	else
7397 		q->q_flag &= ~QEND;
7398 	mutex_exit(QLOCK(q));
7399 }
7400 
7401 
7402 void
7403 clr_qfull(queue_t *q)
7404 {
7405 	queue_t	*oq = q;
7406 
7407 	q = q->q_nfsrv;
7408 	/* Fast check if there is any work to do before getting the lock. */
7409 	if ((q->q_flag & (QFULL|QWANTW)) == 0) {
7410 		return;
7411 	}
7412 
7413 	/*
7414 	 * Do not reset QFULL (and backenable) if the q_count is the reason
7415 	 * for QFULL being set.
7416 	 */
7417 	mutex_enter(QLOCK(q));
7418 	/*
7419 	 * If both q_count and q_mblkcnt are less than the hiwat mark
7420 	 */
7421 	if ((q->q_count < q->q_hiwat) && (q->q_mblkcnt < q->q_hiwat)) {
7422 		q->q_flag &= ~QFULL;
7423 		/*
7424 		 * A little more confusing, how about this way:
7425 		 * if someone wants to write,
7426 		 * AND
7427 		 *    both counts are less than the lowat mark
7428 		 *    OR
7429 		 *    the lowat mark is zero
7430 		 * THEN
7431 		 * backenable
7432 		 */
7433 		if ((q->q_flag & QWANTW) &&
7434 		    (((q->q_count < q->q_lowat) &&
7435 		    (q->q_mblkcnt < q->q_lowat)) || q->q_lowat == 0)) {
7436 			q->q_flag &= ~QWANTW;
7437 			mutex_exit(QLOCK(q));
7438 			backenable(oq, 0);
7439 		} else
7440 			mutex_exit(QLOCK(q));
7441 	} else
7442 		mutex_exit(QLOCK(q));
7443 }
7444 
7445 /*
7446  * Set the forward service procedure pointer.
7447  *
7448  * Called at insert-time to cache a queue's next forward service procedure in
7449  * q_nfsrv; used by canput() and canputnext().  If the queue to be inserted
7450  * has a service procedure then q_nfsrv points to itself.  If the queue to be
7451  * inserted does not have a service procedure, then q_nfsrv points to the next
7452  * queue forward that has a service procedure.  If the queue is at the logical
7453  * end of the stream (driver for write side, stream head for the read side)
7454  * and does not have a service procedure, then q_nfsrv also points to itself.
7455  */
7456 void
7457 set_nfsrv_ptr(
7458 	queue_t  *rnew,		/* read queue pointer to new module */
7459 	queue_t  *wnew,		/* write queue pointer to new module */
7460 	queue_t  *prev_rq,	/* read queue pointer to the module above */
7461 	queue_t  *prev_wq)	/* write queue pointer to the module above */
7462 {
7463 	queue_t *qp;
7464 
7465 	if (prev_wq->q_next == NULL) {
7466 		/*
7467 		 * Insert the driver, initialize the driver and stream head.
7468 		 * In this case, prev_rq/prev_wq should be the stream head.
7469 		 * _I_INSERT does not allow inserting a driver.  Make sure
7470 		 * that it is not an insertion.
7471 		 */
7472 		ASSERT(!(rnew->q_flag & _QINSERTING));
7473 		wnew->q_nfsrv = wnew;
7474 		if (rnew->q_qinfo->qi_srvp)
7475 			rnew->q_nfsrv = rnew;
7476 		else
7477 			rnew->q_nfsrv = prev_rq;
7478 		prev_rq->q_nfsrv = prev_rq;
7479 		prev_wq->q_nfsrv = prev_wq;
7480 	} else {
7481 		/*
7482 		 * set up read side q_nfsrv pointer.  This MUST be done
7483 		 * before setting the write side, because the setting of
7484 		 * the write side for a fifo may depend on it.
7485 		 *
7486 		 * Suppose we have a fifo that only has pipemod pushed.
7487 		 * pipemod has no read or write service procedures, so
7488 		 * nfsrv for both pipemod queues points to prev_rq (the
7489 		 * stream read head).  Now push bufmod (which has only a
7490 		 * read service procedure).  Doing the write side first,
7491 		 * wnew->q_nfsrv is set to pipemod's writeq nfsrv, which
7492 		 * is WRONG; the next queue forward from wnew with a
7493 		 * service procedure will be rnew, not the stream read head.
7494 		 * Since the downstream queue (which in the case of a fifo
7495 		 * is the read queue rnew) can affect upstream queues, it
7496 		 * needs to be done first.  Setting up the read side first
7497 		 * sets nfsrv for both pipemod queues to rnew and then
7498 		 * when the write side is set up, wnew-q_nfsrv will also
7499 		 * point to rnew.
7500 		 */
7501 		if (rnew->q_qinfo->qi_srvp) {
7502 			/*
7503 			 * use _OTHERQ() because, if this is a pipe, next
7504 			 * module may have been pushed from other end and
7505 			 * q_next could be a read queue.
7506 			 */
7507 			qp = _OTHERQ(prev_wq->q_next);
7508 			while (qp && qp->q_nfsrv != qp) {
7509 				qp->q_nfsrv = rnew;
7510 				qp = backq(qp);
7511 			}
7512 			rnew->q_nfsrv = rnew;
7513 		} else
7514 			rnew->q_nfsrv = prev_rq->q_nfsrv;
7515 
7516 		/* set up write side q_nfsrv pointer */
7517 		if (wnew->q_qinfo->qi_srvp) {
7518 			wnew->q_nfsrv = wnew;
7519 
7520 			/*
7521 			 * For insertion, need to update nfsrv of the modules
7522 			 * above which do not have a service routine.
7523 			 */
7524 			if (rnew->q_flag & _QINSERTING) {
7525 				for (qp = prev_wq;
7526 				    qp != NULL && qp->q_nfsrv != qp;
7527 				    qp = backq(qp)) {
7528 					qp->q_nfsrv = wnew->q_nfsrv;
7529 				}
7530 			}
7531 		} else {
7532 			if (prev_wq->q_next == prev_rq)
7533 				/*
7534 				 * Since prev_wq/prev_rq are the middle of a
7535 				 * fifo, wnew/rnew will also be the middle of
7536 				 * a fifo and wnew's nfsrv is same as rnew's.
7537 				 */
7538 				wnew->q_nfsrv = rnew->q_nfsrv;
7539 			else
7540 				wnew->q_nfsrv = prev_wq->q_next->q_nfsrv;
7541 		}
7542 	}
7543 }
7544 
7545 /*
7546  * Reset the forward service procedure pointer; called at remove-time.
7547  */
7548 void
7549 reset_nfsrv_ptr(queue_t *rqp, queue_t *wqp)
7550 {
7551 	queue_t *tmp_qp;
7552 
7553 	/* Reset the write side q_nfsrv pointer for _I_REMOVE */
7554 	if ((rqp->q_flag & _QREMOVING) && (wqp->q_qinfo->qi_srvp != NULL)) {
7555 		for (tmp_qp = backq(wqp);
7556 		    tmp_qp != NULL && tmp_qp->q_nfsrv == wqp;
7557 		    tmp_qp = backq(tmp_qp)) {
7558 			tmp_qp->q_nfsrv = wqp->q_nfsrv;
7559 		}
7560 	}
7561 
7562 	/* reset the read side q_nfsrv pointer */
7563 	if (rqp->q_qinfo->qi_srvp) {
7564 		if (wqp->q_next) {	/* non-driver case */
7565 			tmp_qp = _OTHERQ(wqp->q_next);
7566 			while (tmp_qp && tmp_qp->q_nfsrv == rqp) {
7567 				/* Note that rqp->q_next cannot be NULL */
7568 				ASSERT(rqp->q_next != NULL);
7569 				tmp_qp->q_nfsrv = rqp->q_next->q_nfsrv;
7570 				tmp_qp = backq(tmp_qp);
7571 			}
7572 		}
7573 	}
7574 }
7575 
7576 /*
7577  * This routine should be called after all stream geometry changes to update
7578  * the stream head cached struio() rd/wr queue pointers. Note must be called
7579  * with the streamlock()ed.
7580  *
7581  * Note: only enables Synchronous STREAMS for a side of a Stream which has
7582  *	 an explicit synchronous barrier module queue. That is, a queue that
7583  *	 has specified a struio() type.
7584  */
7585 static void
7586 strsetuio(stdata_t *stp)
7587 {
7588 	queue_t *wrq;
7589 
7590 	if (stp->sd_flag & STPLEX) {
7591 		/*
7592 		 * Not stremahead, but a mux, so no Synchronous STREAMS.
7593 		 */
7594 		stp->sd_struiowrq = NULL;
7595 		stp->sd_struiordq = NULL;
7596 		return;
7597 	}
7598 	/*
7599 	 * Scan the write queue(s) while synchronous
7600 	 * until we find a qinfo uio type specified.
7601 	 */
7602 	wrq = stp->sd_wrq->q_next;
7603 	while (wrq) {
7604 		if (wrq->q_struiot == STRUIOT_NONE) {
7605 			wrq = 0;
7606 			break;
7607 		}
7608 		if (wrq->q_struiot != STRUIOT_DONTCARE)
7609 			break;
7610 		if (! _SAMESTR(wrq)) {
7611 			wrq = 0;
7612 			break;
7613 		}
7614 		wrq = wrq->q_next;
7615 	}
7616 	stp->sd_struiowrq = wrq;
7617 	/*
7618 	 * Scan the read queue(s) while synchronous
7619 	 * until we find a qinfo uio type specified.
7620 	 */
7621 	wrq = stp->sd_wrq->q_next;
7622 	while (wrq) {
7623 		if (_RD(wrq)->q_struiot == STRUIOT_NONE) {
7624 			wrq = 0;
7625 			break;
7626 		}
7627 		if (_RD(wrq)->q_struiot != STRUIOT_DONTCARE)
7628 			break;
7629 		if (! _SAMESTR(wrq)) {
7630 			wrq = 0;
7631 			break;
7632 		}
7633 		wrq = wrq->q_next;
7634 	}
7635 	stp->sd_struiordq = wrq ? _RD(wrq) : 0;
7636 }
7637 
7638 /*
7639  * pass_wput, unblocks the passthru queues, so that
7640  * messages can arrive at muxs lower read queue, before
7641  * I_LINK/I_UNLINK is acked/nacked.
7642  */
7643 static void
7644 pass_wput(queue_t *q, mblk_t *mp)
7645 {
7646 	syncq_t *sq;
7647 
7648 	sq = _RD(q)->q_syncq;
7649 	if (sq->sq_flags & SQ_BLOCKED)
7650 		unblocksq(sq, SQ_BLOCKED, 0);
7651 	putnext(q, mp);
7652 }
7653 
7654 /*
7655  * Set up queues for the link/unlink.
7656  * Create a new queue and block it and then insert it
7657  * below the stream head on the lower stream.
7658  * This prevents any messages from arriving during the setq
7659  * as well as while the mux is processing the LINK/I_UNLINK.
7660  * The blocked passq is unblocked once the LINK/I_UNLINK has
7661  * been acked or nacked or if a message is generated and sent
7662  * down muxs write put procedure.
7663  * see pass_wput().
7664  *
7665  * After the new queue is inserted, all messages coming from below are
7666  * blocked. The call to strlock will ensure that all activity in the stream head
7667  * read queue syncq is stopped (sq_count drops to zero).
7668  */
7669 static queue_t *
7670 link_addpassthru(stdata_t *stpdown)
7671 {
7672 	queue_t *passq;
7673 	sqlist_t sqlist;
7674 
7675 	passq = allocq();
7676 	STREAM(passq) = STREAM(_WR(passq)) = stpdown;
7677 	/* setq might sleep in allocator - avoid holding locks. */
7678 	setq(passq, &passthru_rinit, &passthru_winit, NULL, QPERQ,
7679 	    SQ_CI|SQ_CO, B_FALSE);
7680 	claimq(passq);
7681 	blocksq(passq->q_syncq, SQ_BLOCKED, 1);
7682 	insertq(STREAM(passq), passq);
7683 
7684 	/*
7685 	 * Use strlock() to wait for the stream head sq_count to drop to zero
7686 	 * since we are going to change q_ptr in the stream head.  Note that
7687 	 * insertq() doesn't wait for any syncq counts to drop to zero.
7688 	 */
7689 	sqlist.sqlist_head = NULL;
7690 	sqlist.sqlist_index = 0;
7691 	sqlist.sqlist_size = sizeof (sqlist_t);
7692 	sqlist_insert(&sqlist, _RD(stpdown->sd_wrq)->q_syncq);
7693 	strlock(stpdown, &sqlist);
7694 	strunlock(stpdown, &sqlist);
7695 
7696 	releaseq(passq);
7697 	return (passq);
7698 }
7699 
7700 /*
7701  * Let messages flow up into the mux by removing
7702  * the passq.
7703  */
7704 static void
7705 link_rempassthru(queue_t *passq)
7706 {
7707 	claimq(passq);
7708 	removeq(passq);
7709 	releaseq(passq);
7710 	freeq(passq);
7711 }
7712 
7713 /*
7714  * wait for an event with optional timeout and optional return if
7715  * a signal is sent to the thread
7716  * tim:  -1 : no timeout
7717  *       otherwise the value is relative time in milliseconds to wait
7718  * nosig:  if 0 then signals will be ignored, otherwise signals
7719  *       will terminate wait
7720  * returns >0 on success, 0 if signal was encountered, -1 if timeout
7721  * was reached.
7722  */
7723 clock_t
7724 str_cv_wait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim, int nosigs)
7725 {
7726 	clock_t ret, now, tick;
7727 
7728 	if (tim < 0) {
7729 		if (nosigs) {
7730 			cv_wait(cvp, mp);
7731 			ret = 1;
7732 		} else {
7733 			ret = cv_wait_sig(cvp, mp);
7734 		}
7735 	} else if (tim > 0) {
7736 		/*
7737 		 * convert milliseconds to clock ticks
7738 		 */
7739 		tick = MSEC_TO_TICK_ROUNDUP(tim);
7740 		time_to_wait(&now, tick);
7741 		if (nosigs) {
7742 			ret = cv_timedwait(cvp, mp, now);
7743 		} else {
7744 			ret = cv_timedwait_sig(cvp, mp, now);
7745 		}
7746 	} else {
7747 		ret = -1;
7748 	}
7749 	return (ret);
7750 }
7751 
7752 /*
7753  * Wait until the stream head can determine if it is at the mark but
7754  * don't wait forever to prevent a race condition between the "mark" state
7755  * in the stream head and any mark state in the caller/user of this routine.
7756  *
7757  * This is used by sockets and for a socket it would be incorrect
7758  * to return a failure for SIOCATMARK when there is no data in the receive
7759  * queue and the marked urgent data is traveling up the stream.
7760  *
7761  * This routine waits until the mark is known by waiting for one of these
7762  * three events:
7763  *	The stream head read queue becoming non-empty (including an EOF)
7764  *	The STRATMARK flag being set. (Due to a MSGMARKNEXT message.)
7765  *	The STRNOTATMARK flag being set (which indicates that the transport
7766  *	has sent a MSGNOTMARKNEXT message to indicate that it is not at
7767  *	the mark).
7768  *
7769  * The routine returns 1 if the stream is at the mark; 0 if it can
7770  * be determined that the stream is not at the mark.
7771  * If the wait times out and it can't determine
7772  * whether or not the stream might be at the mark the routine will return -1.
7773  *
7774  * Note: This routine should only be used when a mark is pending i.e.,
7775  * in the socket case the SIGURG has been posted.
7776  * Note2: This can not wakeup just because synchronous streams indicate
7777  * that data is available since it is not possible to use the synchronous
7778  * streams interfaces to determine the b_flag value for the data queued below
7779  * the stream head.
7780  */
7781 int
7782 strwaitmark(vnode_t *vp)
7783 {
7784 	struct stdata *stp = vp->v_stream;
7785 	queue_t *rq = _RD(stp->sd_wrq);
7786 	int mark;
7787 
7788 	mutex_enter(&stp->sd_lock);
7789 	while (rq->q_first == NULL &&
7790 	    !(stp->sd_flag & (STRATMARK|STRNOTATMARK|STREOF))) {
7791 		stp->sd_flag |= RSLEEP;
7792 
7793 		/* Wait for 100 milliseconds for any state change. */
7794 		if (str_cv_wait(&rq->q_wait, &stp->sd_lock, 100, 1) == -1) {
7795 			mutex_exit(&stp->sd_lock);
7796 			return (-1);
7797 		}
7798 	}
7799 	if (stp->sd_flag & STRATMARK)
7800 		mark = 1;
7801 	else if (rq->q_first != NULL && (rq->q_first->b_flag & MSGMARK))
7802 		mark = 1;
7803 	else
7804 		mark = 0;
7805 
7806 	mutex_exit(&stp->sd_lock);
7807 	return (mark);
7808 }
7809 
7810 /*
7811  * Set a read side error. If persist is set change the socket error
7812  * to persistent. If errfunc is set install the function as the exported
7813  * error handler.
7814  */
7815 void
7816 strsetrerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
7817 {
7818 	struct stdata *stp = vp->v_stream;
7819 
7820 	mutex_enter(&stp->sd_lock);
7821 	stp->sd_rerror = error;
7822 	if (error == 0 && errfunc == NULL)
7823 		stp->sd_flag &= ~STRDERR;
7824 	else
7825 		stp->sd_flag |= STRDERR;
7826 	if (persist) {
7827 		stp->sd_flag &= ~STRDERRNONPERSIST;
7828 	} else {
7829 		stp->sd_flag |= STRDERRNONPERSIST;
7830 	}
7831 	stp->sd_rderrfunc = errfunc;
7832 	if (error != 0 || errfunc != NULL) {
7833 		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);	/* readers */
7834 		cv_broadcast(&stp->sd_wrq->q_wait);		/* writers */
7835 		cv_broadcast(&stp->sd_monitor);			/* ioctllers */
7836 
7837 		mutex_exit(&stp->sd_lock);
7838 		pollwakeup(&stp->sd_pollist, POLLERR);
7839 		mutex_enter(&stp->sd_lock);
7840 
7841 		if (stp->sd_sigflags & S_ERROR)
7842 			strsendsig(stp->sd_siglist, S_ERROR, 0, error);
7843 	}
7844 	mutex_exit(&stp->sd_lock);
7845 }
7846 
7847 /*
7848  * Set a write side error. If persist is set change the socket error
7849  * to persistent.
7850  */
7851 void
7852 strsetwerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
7853 {
7854 	struct stdata *stp = vp->v_stream;
7855 
7856 	mutex_enter(&stp->sd_lock);
7857 	stp->sd_werror = error;
7858 	if (error == 0 && errfunc == NULL)
7859 		stp->sd_flag &= ~STWRERR;
7860 	else
7861 		stp->sd_flag |= STWRERR;
7862 	if (persist) {
7863 		stp->sd_flag &= ~STWRERRNONPERSIST;
7864 	} else {
7865 		stp->sd_flag |= STWRERRNONPERSIST;
7866 	}
7867 	stp->sd_wrerrfunc = errfunc;
7868 	if (error != 0 || errfunc != NULL) {
7869 		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);	/* readers */
7870 		cv_broadcast(&stp->sd_wrq->q_wait);		/* writers */
7871 		cv_broadcast(&stp->sd_monitor);			/* ioctllers */
7872 
7873 		mutex_exit(&stp->sd_lock);
7874 		pollwakeup(&stp->sd_pollist, POLLERR);
7875 		mutex_enter(&stp->sd_lock);
7876 
7877 		if (stp->sd_sigflags & S_ERROR)
7878 			strsendsig(stp->sd_siglist, S_ERROR, 0, error);
7879 	}
7880 	mutex_exit(&stp->sd_lock);
7881 }
7882 
7883 /*
7884  * Make the stream return 0 (EOF) when all data has been read.
7885  * No effect on write side.
7886  */
7887 void
7888 strseteof(vnode_t *vp, int eof)
7889 {
7890 	struct stdata *stp = vp->v_stream;
7891 
7892 	mutex_enter(&stp->sd_lock);
7893 	if (!eof) {
7894 		stp->sd_flag &= ~STREOF;
7895 		mutex_exit(&stp->sd_lock);
7896 		return;
7897 	}
7898 	stp->sd_flag |= STREOF;
7899 	if (stp->sd_flag & RSLEEP) {
7900 		stp->sd_flag &= ~RSLEEP;
7901 		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);
7902 	}
7903 
7904 	mutex_exit(&stp->sd_lock);
7905 	pollwakeup(&stp->sd_pollist, POLLIN|POLLRDNORM);
7906 	mutex_enter(&stp->sd_lock);
7907 
7908 	if (stp->sd_sigflags & (S_INPUT|S_RDNORM))
7909 		strsendsig(stp->sd_siglist, S_INPUT|S_RDNORM, 0, 0);
7910 	mutex_exit(&stp->sd_lock);
7911 }
7912 
7913 void
7914 strflushrq(vnode_t *vp, int flag)
7915 {
7916 	struct stdata *stp = vp->v_stream;
7917 
7918 	mutex_enter(&stp->sd_lock);
7919 	flushq(_RD(stp->sd_wrq), flag);
7920 	mutex_exit(&stp->sd_lock);
7921 }
7922 
7923 void
7924 strsetrputhooks(vnode_t *vp, uint_t flags,
7925 		msgfunc_t protofunc, msgfunc_t miscfunc)
7926 {
7927 	struct stdata *stp = vp->v_stream;
7928 
7929 	mutex_enter(&stp->sd_lock);
7930 
7931 	if (protofunc == NULL)
7932 		stp->sd_rprotofunc = strrput_proto;
7933 	else
7934 		stp->sd_rprotofunc = protofunc;
7935 
7936 	if (miscfunc == NULL)
7937 		stp->sd_rmiscfunc = strrput_misc;
7938 	else
7939 		stp->sd_rmiscfunc = miscfunc;
7940 
7941 	if (flags & SH_CONSOL_DATA)
7942 		stp->sd_rput_opt |= SR_CONSOL_DATA;
7943 	else
7944 		stp->sd_rput_opt &= ~SR_CONSOL_DATA;
7945 
7946 	if (flags & SH_SIGALLDATA)
7947 		stp->sd_rput_opt |= SR_SIGALLDATA;
7948 	else
7949 		stp->sd_rput_opt &= ~SR_SIGALLDATA;
7950 
7951 	if (flags & SH_IGN_ZEROLEN)
7952 		stp->sd_rput_opt |= SR_IGN_ZEROLEN;
7953 	else
7954 		stp->sd_rput_opt &= ~SR_IGN_ZEROLEN;
7955 
7956 	mutex_exit(&stp->sd_lock);
7957 }
7958 
7959 void
7960 strsetwputhooks(vnode_t *vp, uint_t flags, clock_t closetime)
7961 {
7962 	struct stdata *stp = vp->v_stream;
7963 
7964 	mutex_enter(&stp->sd_lock);
7965 	stp->sd_closetime = closetime;
7966 
7967 	if (flags & SH_SIGPIPE)
7968 		stp->sd_wput_opt |= SW_SIGPIPE;
7969 	else
7970 		stp->sd_wput_opt &= ~SW_SIGPIPE;
7971 	if (flags & SH_RECHECK_ERR)
7972 		stp->sd_wput_opt |= SW_RECHECK_ERR;
7973 	else
7974 		stp->sd_wput_opt &= ~SW_RECHECK_ERR;
7975 
7976 	mutex_exit(&stp->sd_lock);
7977 }
7978 
7979 /* Used within framework when the queue is already locked */
7980 void
7981 qenable_locked(queue_t *q)
7982 {
7983 	stdata_t *stp = STREAM(q);
7984 
7985 	ASSERT(MUTEX_HELD(QLOCK(q)));
7986 
7987 	if (!q->q_qinfo->qi_srvp)
7988 		return;
7989 
7990 	/*
7991 	 * Do not place on run queue if already enabled or closing.
7992 	 */
7993 	if (q->q_flag & (QWCLOSE|QENAB))
7994 		return;
7995 
7996 	/*
7997 	 * mark queue enabled and place on run list if it is not already being
7998 	 * serviced. If it is serviced, the runservice() function will detect
7999 	 * that QENAB is set and call service procedure before clearing
8000 	 * QINSERVICE flag.
8001 	 */
8002 	q->q_flag |= QENAB;
8003 	if (q->q_flag & QINSERVICE)
8004 		return;
8005 
8006 	/* Record the time of qenable */
8007 	q->q_qtstamp = lbolt;
8008 
8009 	/*
8010 	 * Put the queue in the stp list and schedule it for background
8011 	 * processing if it is not already scheduled or if stream head does not
8012 	 * intent to process it in the foreground later by setting
8013 	 * STRS_WILLSERVICE flag.
8014 	 */
8015 	mutex_enter(&stp->sd_qlock);
8016 	/*
8017 	 * If there are already something on the list, stp flags should show
8018 	 * intention to drain it.
8019 	 */
8020 	IMPLY(STREAM_NEEDSERVICE(stp),
8021 	    (stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED)));
8022 
8023 	ENQUEUE(q, stp->sd_qhead, stp->sd_qtail, q_link);
8024 	stp->sd_nqueues++;
8025 
8026 	/*
8027 	 * If no one will drain this stream we are the first producer and
8028 	 * need to schedule it for background thread.
8029 	 */
8030 	if (!(stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED))) {
8031 		/*
8032 		 * No one will service this stream later, so we have to
8033 		 * schedule it now.
8034 		 */
8035 		STRSTAT(stenables);
8036 		stp->sd_svcflags |= STRS_SCHEDULED;
8037 		stp->sd_servid = (void *)taskq_dispatch(streams_taskq,
8038 		    (task_func_t *)stream_service, stp, TQ_NOSLEEP|TQ_NOQUEUE);
8039 
8040 		if (stp->sd_servid == NULL) {
8041 			/*
8042 			 * Task queue failed so fail over to the backup
8043 			 * servicing thread.
8044 			 */
8045 			STRSTAT(taskqfails);
8046 			/*
8047 			 * It is safe to clear STRS_SCHEDULED flag because it
8048 			 * was set by this thread above.
8049 			 */
8050 			stp->sd_svcflags &= ~STRS_SCHEDULED;
8051 
8052 			/*
8053 			 * Failover scheduling is protected by service_queue
8054 			 * lock.
8055 			 */
8056 			mutex_enter(&service_queue);
8057 			ASSERT((stp->sd_qhead == q) && (stp->sd_qtail == q));
8058 			ASSERT(q->q_link == NULL);
8059 			/*
8060 			 * Append the queue to qhead/qtail list.
8061 			 */
8062 			if (qhead == NULL)
8063 				qhead = q;
8064 			else
8065 				qtail->q_link = q;
8066 			qtail = q;
8067 			/*
8068 			 * Clear stp queue list.
8069 			 */
8070 			stp->sd_qhead = stp->sd_qtail = NULL;
8071 			stp->sd_nqueues = 0;
8072 			/*
8073 			 * Wakeup background queue processing thread.
8074 			 */
8075 			cv_signal(&services_to_run);
8076 			mutex_exit(&service_queue);
8077 		}
8078 	}
8079 	mutex_exit(&stp->sd_qlock);
8080 }
8081 
8082 static void
8083 queue_service(queue_t *q)
8084 {
8085 	/*
8086 	 * The queue in the list should have
8087 	 * QENAB flag set and should not have
8088 	 * QINSERVICE flag set. QINSERVICE is
8089 	 * set when the queue is dequeued and
8090 	 * qenable_locked doesn't enqueue a
8091 	 * queue with QINSERVICE set.
8092 	 */
8093 
8094 	ASSERT(!(q->q_flag & QINSERVICE));
8095 	ASSERT((q->q_flag & QENAB));
8096 	mutex_enter(QLOCK(q));
8097 	q->q_flag &= ~QENAB;
8098 	q->q_flag |= QINSERVICE;
8099 	mutex_exit(QLOCK(q));
8100 	runservice(q);
8101 }
8102 
8103 static void
8104 syncq_service(syncq_t *sq)
8105 {
8106 	STRSTAT(syncqservice);
8107 	mutex_enter(SQLOCK(sq));
8108 	ASSERT(!(sq->sq_svcflags & SQ_SERVICE));
8109 	ASSERT(sq->sq_servcount != 0);
8110 	ASSERT(sq->sq_next == NULL);
8111 
8112 	/* if we came here from the background thread, clear the flag */
8113 	if (sq->sq_svcflags & SQ_BGTHREAD)
8114 		sq->sq_svcflags &= ~SQ_BGTHREAD;
8115 
8116 	/* let drain_syncq know that it's being called in the background */
8117 	sq->sq_svcflags |= SQ_SERVICE;
8118 	drain_syncq(sq);
8119 }
8120 
8121 static void
8122 qwriter_outer_service(syncq_t *outer)
8123 {
8124 	/*
8125 	 * Note that SQ_WRITER is used on the outer perimeter
8126 	 * to signal that a qwriter(OUTER) is either investigating
8127 	 * running or that it is actually running a function.
8128 	 */
8129 	outer_enter(outer, SQ_BLOCKED|SQ_WRITER);
8130 
8131 	/*
8132 	 * All inner syncq are empty and have SQ_WRITER set
8133 	 * to block entering the outer perimeter.
8134 	 *
8135 	 * We do not need to explicitly call write_now since
8136 	 * outer_exit does it for us.
8137 	 */
8138 	outer_exit(outer);
8139 }
8140 
8141 static void
8142 mblk_free(mblk_t *mp)
8143 {
8144 	dblk_t *dbp = mp->b_datap;
8145 	frtn_t *frp = dbp->db_frtnp;
8146 
8147 	mp->b_next = NULL;
8148 	if (dbp->db_fthdr != NULL)
8149 		str_ftfree(dbp);
8150 
8151 	ASSERT(dbp->db_fthdr == NULL);
8152 	frp->free_func(frp->free_arg);
8153 	ASSERT(dbp->db_mblk == mp);
8154 
8155 	if (dbp->db_credp != NULL) {
8156 		crfree(dbp->db_credp);
8157 		dbp->db_credp = NULL;
8158 	}
8159 	dbp->db_cpid = -1;
8160 	dbp->db_struioflag = 0;
8161 	dbp->db_struioun.cksum.flags = 0;
8162 
8163 	kmem_cache_free(dbp->db_cache, dbp);
8164 }
8165 
8166 /*
8167  * Background processing of the stream queue list.
8168  */
8169 static void
8170 stream_service(stdata_t *stp)
8171 {
8172 	queue_t *q;
8173 
8174 	mutex_enter(&stp->sd_qlock);
8175 
8176 	STR_SERVICE(stp, q);
8177 
8178 	stp->sd_svcflags &= ~STRS_SCHEDULED;
8179 	stp->sd_servid = NULL;
8180 	cv_signal(&stp->sd_qcv);
8181 	mutex_exit(&stp->sd_qlock);
8182 }
8183 
8184 /*
8185  * Foreground processing of the stream queue list.
8186  */
8187 void
8188 stream_runservice(stdata_t *stp)
8189 {
8190 	queue_t *q;
8191 
8192 	mutex_enter(&stp->sd_qlock);
8193 	STRSTAT(rservice);
8194 	/*
8195 	 * We are going to drain this stream queue list, so qenable_locked will
8196 	 * not schedule it until we finish.
8197 	 */
8198 	stp->sd_svcflags |= STRS_WILLSERVICE;
8199 
8200 	STR_SERVICE(stp, q);
8201 
8202 	stp->sd_svcflags &= ~STRS_WILLSERVICE;
8203 	mutex_exit(&stp->sd_qlock);
8204 	/*
8205 	 * Help backup background thread to drain the qhead/qtail list.
8206 	 */
8207 	while (qhead != NULL) {
8208 		STRSTAT(qhelps);
8209 		mutex_enter(&service_queue);
8210 		DQ(q, qhead, qtail, q_link);
8211 		mutex_exit(&service_queue);
8212 		if (q != NULL)
8213 			queue_service(q);
8214 	}
8215 }
8216 
8217 void
8218 stream_willservice(stdata_t *stp)
8219 {
8220 	mutex_enter(&stp->sd_qlock);
8221 	stp->sd_svcflags |= STRS_WILLSERVICE;
8222 	mutex_exit(&stp->sd_qlock);
8223 }
8224 
8225 /*
8226  * Replace the cred currently in the mblk with a different one.
8227  */
8228 void
8229 mblk_setcred(mblk_t *mp, cred_t *cr)
8230 {
8231 	cred_t *ocr = DB_CRED(mp);
8232 
8233 	ASSERT(cr != NULL);
8234 
8235 	if (cr != ocr) {
8236 		crhold(mp->b_datap->db_credp = cr);
8237 		if (ocr != NULL)
8238 			crfree(ocr);
8239 	}
8240 }
8241 
8242 int
8243 hcksum_assoc(mblk_t *mp,  multidata_t *mmd, pdesc_t *pd,
8244     uint32_t start, uint32_t stuff, uint32_t end, uint32_t value,
8245     uint32_t flags, int km_flags)
8246 {
8247 	int rc = 0;
8248 
8249 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8250 	if (mp->b_datap->db_type == M_DATA) {
8251 		/* Associate values for M_DATA type */
8252 		mp->b_datap->db_cksumstart = (intptr_t)start;
8253 		mp->b_datap->db_cksumstuff = (intptr_t)stuff;
8254 		mp->b_datap->db_cksumend = (intptr_t)end;
8255 		mp->b_datap->db_struioun.cksum.flags = flags;
8256 		mp->b_datap->db_cksum16 = (uint16_t)value;
8257 
8258 	} else {
8259 		pattrinfo_t pa_info;
8260 
8261 		ASSERT(mmd != NULL);
8262 
8263 		pa_info.type = PATTR_HCKSUM;
8264 		pa_info.len = sizeof (pattr_hcksum_t);
8265 
8266 		if (mmd_addpattr(mmd, pd, &pa_info, B_TRUE, km_flags) != NULL) {
8267 			pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf;
8268 
8269 			hck->hcksum_start_offset = start;
8270 			hck->hcksum_stuff_offset = stuff;
8271 			hck->hcksum_end_offset = end;
8272 			hck->hcksum_cksum_val.inet_cksum = (uint16_t)value;
8273 			hck->hcksum_flags = flags;
8274 		}
8275 	}
8276 	return (rc);
8277 }
8278 
8279 void
8280 hcksum_retrieve(mblk_t *mp, multidata_t *mmd, pdesc_t *pd,
8281     uint32_t *start, uint32_t *stuff, uint32_t *end,
8282     uint32_t *value, uint32_t *flags)
8283 {
8284 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8285 	if (mp->b_datap->db_type == M_DATA) {
8286 		if (flags != NULL) {
8287 			*flags = mp->b_datap->db_struioun.cksum.flags;
8288 			if (*flags & HCK_PARTIALCKSUM) {
8289 				if (start != NULL)
8290 					*start = (uint32_t)
8291 					    mp->b_datap->db_cksumstart;
8292 				if (stuff != NULL)
8293 					*stuff = (uint32_t)
8294 					    mp->b_datap->db_cksumstuff;
8295 				if (end != NULL)
8296 					*end =
8297 					    (uint32_t)mp->b_datap->db_cksumend;
8298 				if (value != NULL)
8299 					*value =
8300 					    (uint32_t)mp->b_datap->db_cksum16;
8301 			}
8302 		}
8303 	} else {
8304 		pattrinfo_t hck_attr = {PATTR_HCKSUM};
8305 
8306 		ASSERT(mmd != NULL);
8307 
8308 		/* get hardware checksum attribute */
8309 		if (mmd_getpattr(mmd, pd, &hck_attr) != NULL) {
8310 			pattr_hcksum_t *hck = (pattr_hcksum_t *)hck_attr.buf;
8311 
8312 			ASSERT(hck_attr.len >= sizeof (pattr_hcksum_t));
8313 			if (flags != NULL)
8314 				*flags = hck->hcksum_flags;
8315 			if (start != NULL)
8316 				*start = hck->hcksum_start_offset;
8317 			if (stuff != NULL)
8318 				*stuff = hck->hcksum_stuff_offset;
8319 			if (end != NULL)
8320 				*end = hck->hcksum_end_offset;
8321 			if (value != NULL)
8322 				*value = (uint32_t)
8323 				    hck->hcksum_cksum_val.inet_cksum;
8324 		}
8325 	}
8326 }
8327 
8328 /*
8329  * Checksum buffer *bp for len bytes with psum partial checksum,
8330  * or 0 if none, and return the 16 bit partial checksum.
8331  */
8332 unsigned
8333 bcksum(uchar_t *bp, int len, unsigned int psum)
8334 {
8335 	int odd = len & 1;
8336 	extern unsigned int ip_ocsum();
8337 
8338 	if (((intptr_t)bp & 1) == 0 && !odd) {
8339 		/*
8340 		 * Bp is 16 bit aligned and len is multiple of 16 bit word.
8341 		 */
8342 		return (ip_ocsum((ushort_t *)bp, len >> 1, psum));
8343 	}
8344 	if (((intptr_t)bp & 1) != 0) {
8345 		/*
8346 		 * Bp isn't 16 bit aligned.
8347 		 */
8348 		unsigned int tsum;
8349 
8350 #ifdef _LITTLE_ENDIAN
8351 		psum += *bp;
8352 #else
8353 		psum += *bp << 8;
8354 #endif
8355 		len--;
8356 		bp++;
8357 		tsum = ip_ocsum((ushort_t *)bp, len >> 1, 0);
8358 		psum += (tsum << 8) & 0xffff | (tsum >> 8);
8359 		if (len & 1) {
8360 			bp += len - 1;
8361 #ifdef _LITTLE_ENDIAN
8362 			psum += *bp << 8;
8363 #else
8364 			psum += *bp;
8365 #endif
8366 		}
8367 	} else {
8368 		/*
8369 		 * Bp is 16 bit aligned.
8370 		 */
8371 		psum = ip_ocsum((ushort_t *)bp, len >> 1, psum);
8372 		if (odd) {
8373 			bp += len - 1;
8374 #ifdef _LITTLE_ENDIAN
8375 			psum += *bp;
8376 #else
8377 			psum += *bp << 8;
8378 #endif
8379 		}
8380 	}
8381 	/*
8382 	 * Normalize psum to 16 bits before returning the new partial
8383 	 * checksum. The max psum value before normalization is 0x3FDFE.
8384 	 */
8385 	return ((psum >> 16) + (psum & 0xFFFF));
8386 }
8387 
8388 boolean_t
8389 is_vmloaned_mblk(mblk_t *mp, multidata_t *mmd, pdesc_t *pd)
8390 {
8391 	boolean_t rc;
8392 
8393 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8394 	if (DB_TYPE(mp) == M_DATA) {
8395 		rc = (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0);
8396 	} else {
8397 		pattrinfo_t zcopy_attr = {PATTR_ZCOPY};
8398 
8399 		ASSERT(mmd != NULL);
8400 		rc = (mmd_getpattr(mmd, pd, &zcopy_attr) != NULL);
8401 	}
8402 	return (rc);
8403 }
8404 
8405 void
8406 freemsgchain(mblk_t *mp)
8407 {
8408 	mblk_t	*next;
8409 
8410 	while (mp != NULL) {
8411 		next = mp->b_next;
8412 		mp->b_next = NULL;
8413 
8414 		freemsg(mp);
8415 		mp = next;
8416 	}
8417 }
8418 
8419 mblk_t *
8420 copymsgchain(mblk_t *mp)
8421 {
8422 	mblk_t	*nmp = NULL;
8423 	mblk_t	**nmpp = &nmp;
8424 
8425 	for (; mp != NULL; mp = mp->b_next) {
8426 		if ((*nmpp = copymsg(mp)) == NULL) {
8427 			freemsgchain(nmp);
8428 			return (NULL);
8429 		}
8430 
8431 		nmpp = &((*nmpp)->b_next);
8432 	}
8433 
8434 	return (nmp);
8435 }
8436 
8437 /* NOTE: Do not add code after this point. */
8438 #undef QLOCK
8439 
8440 /*
8441  * replacement for QLOCK macro for those that can't use it.
8442  */
8443 kmutex_t *
8444 QLOCK(queue_t *q)
8445 {
8446 	return (&(q)->q_lock);
8447 }
8448 
8449 /*
8450  * Dummy runqueues/queuerun functions functions for backwards compatibility.
8451  */
8452 #undef runqueues
8453 void
8454 runqueues(void)
8455 {
8456 }
8457 
8458 #undef queuerun
8459 void
8460 queuerun(void)
8461 {
8462 }
8463