xref: /titanic_52/usr/src/uts/common/os/strsubr.c (revision 24e578f70527399e2779096b981ecd8669596b6b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22 /*	  All Rights Reserved  	*/
23 
24 
25 /*
26  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #include <sys/types.h>
31 #include <sys/sysmacros.h>
32 #include <sys/param.h>
33 #include <sys/errno.h>
34 #include <sys/signal.h>
35 #include <sys/proc.h>
36 #include <sys/conf.h>
37 #include <sys/cred.h>
38 #include <sys/user.h>
39 #include <sys/vnode.h>
40 #include <sys/file.h>
41 #include <sys/session.h>
42 #include <sys/stream.h>
43 #include <sys/strsubr.h>
44 #include <sys/stropts.h>
45 #include <sys/poll.h>
46 #include <sys/systm.h>
47 #include <sys/cpuvar.h>
48 #include <sys/uio.h>
49 #include <sys/cmn_err.h>
50 #include <sys/priocntl.h>
51 #include <sys/procset.h>
52 #include <sys/vmem.h>
53 #include <sys/bitmap.h>
54 #include <sys/kmem.h>
55 #include <sys/siginfo.h>
56 #include <sys/vtrace.h>
57 #include <sys/callb.h>
58 #include <sys/debug.h>
59 #include <sys/modctl.h>
60 #include <sys/vmsystm.h>
61 #include <vm/page.h>
62 #include <sys/atomic.h>
63 #include <sys/suntpi.h>
64 #include <sys/strlog.h>
65 #include <sys/promif.h>
66 #include <sys/project.h>
67 #include <sys/vm.h>
68 #include <sys/taskq.h>
69 #include <sys/sunddi.h>
70 #include <sys/sunldi_impl.h>
71 #include <sys/strsun.h>
72 #include <sys/isa_defs.h>
73 #include <sys/multidata.h>
74 #include <sys/pattr.h>
75 #include <sys/strft.h>
76 #include <sys/fs/snode.h>
77 #include <sys/zone.h>
78 #include <sys/open.h>
79 #include <sys/sunldi.h>
80 #include <sys/sad.h>
81 #include <sys/netstack.h>
82 
83 #define	O_SAMESTR(q)	(((q)->q_next) && \
84 	(((q)->q_flag & QREADR) == ((q)->q_next->q_flag & QREADR)))
85 
86 /*
87  * WARNING:
88  * The variables and routines in this file are private, belonging
89  * to the STREAMS subsystem. These should not be used by modules
90  * or drivers. Compatibility will not be guaranteed.
91  */
92 
93 /*
94  * Id value used to distinguish between different multiplexor links.
95  */
96 static int32_t lnk_id = 0;
97 
98 #define	STREAMS_LOPRI MINCLSYSPRI
99 static pri_t streams_lopri = STREAMS_LOPRI;
100 
101 #define	STRSTAT(x)	(str_statistics.x.value.ui64++)
102 typedef struct str_stat {
103 	kstat_named_t	sqenables;
104 	kstat_named_t	stenables;
105 	kstat_named_t	syncqservice;
106 	kstat_named_t	freebs;
107 	kstat_named_t	qwr_outer;
108 	kstat_named_t	rservice;
109 	kstat_named_t	strwaits;
110 	kstat_named_t	taskqfails;
111 	kstat_named_t	bufcalls;
112 	kstat_named_t	qhelps;
113 	kstat_named_t	qremoved;
114 	kstat_named_t	sqremoved;
115 	kstat_named_t	bcwaits;
116 	kstat_named_t	sqtoomany;
117 } str_stat_t;
118 
119 static str_stat_t str_statistics = {
120 	{ "sqenables",		KSTAT_DATA_UINT64 },
121 	{ "stenables",		KSTAT_DATA_UINT64 },
122 	{ "syncqservice",	KSTAT_DATA_UINT64 },
123 	{ "freebs",		KSTAT_DATA_UINT64 },
124 	{ "qwr_outer",		KSTAT_DATA_UINT64 },
125 	{ "rservice",		KSTAT_DATA_UINT64 },
126 	{ "strwaits",		KSTAT_DATA_UINT64 },
127 	{ "taskqfails",		KSTAT_DATA_UINT64 },
128 	{ "bufcalls",		KSTAT_DATA_UINT64 },
129 	{ "qhelps",		KSTAT_DATA_UINT64 },
130 	{ "qremoved",		KSTAT_DATA_UINT64 },
131 	{ "sqremoved",		KSTAT_DATA_UINT64 },
132 	{ "bcwaits",		KSTAT_DATA_UINT64 },
133 	{ "sqtoomany",		KSTAT_DATA_UINT64 },
134 };
135 
136 static kstat_t *str_kstat;
137 
138 /*
139  * qrunflag was used previously to control background scheduling of queues. It
140  * is not used anymore, but kept here in case some module still wants to access
141  * it via qready() and setqsched macros.
142  */
143 char qrunflag;			/*  Unused */
144 
145 /*
146  * Most of the streams scheduling is done via task queues. Task queues may fail
147  * for non-sleep dispatches, so there are two backup threads servicing failed
148  * requests for queues and syncqs. Both of these threads also service failed
149  * dispatches freebs requests. Queues are put in the list specified by `qhead'
150  * and `qtail' pointers, syncqs use `sqhead' and `sqtail' pointers and freebs
151  * requests are put into `freebs_list' which has no tail pointer. All three
152  * lists are protected by a single `service_queue' lock and use
153  * `services_to_run' condition variable for signaling background threads. Use of
154  * a single lock should not be a problem because it is only used under heavy
155  * loads when task queues start to fail and at that time it may be a good idea
156  * to throttle scheduling requests.
157  *
158  * NOTE: queues and syncqs should be scheduled by two separate threads because
159  * queue servicing may be blocked waiting for a syncq which may be also
160  * scheduled for background execution. This may create a deadlock when only one
161  * thread is used for both.
162  */
163 
164 static taskq_t *streams_taskq;		/* Used for most STREAMS scheduling */
165 
166 static kmutex_t service_queue;		/* protects all of servicing vars */
167 static kcondvar_t services_to_run;	/* wake up background service thread */
168 static kcondvar_t syncqs_to_run;	/* wake up background service thread */
169 
170 /*
171  * List of queues scheduled for background processing due to lack of resources
172  * in the task queues. Protected by service_queue lock;
173  */
174 static struct queue *qhead;
175 static struct queue *qtail;
176 
177 /*
178  * Same list for syncqs
179  */
180 static syncq_t *sqhead;
181 static syncq_t *sqtail;
182 
183 static mblk_t *freebs_list;	/* list of buffers to free */
184 
185 /*
186  * Backup threads for servicing queues and syncqs
187  */
188 kthread_t *streams_qbkgrnd_thread;
189 kthread_t *streams_sqbkgrnd_thread;
190 
191 /*
192  * Bufcalls related variables.
193  */
194 struct bclist	strbcalls;	/* list of waiting bufcalls */
195 kmutex_t	strbcall_lock;	/* protects bufcall list (strbcalls) */
196 kcondvar_t	strbcall_cv;	/* Signaling when a bufcall is added */
197 kmutex_t	bcall_monitor;	/* sleep/wakeup style monitor */
198 kcondvar_t	bcall_cv;	/* wait 'till executing bufcall completes */
199 kthread_t	*bc_bkgrnd_thread; /* Thread to service bufcall requests */
200 
201 kmutex_t	strresources;	/* protects global resources */
202 kmutex_t	muxifier;	/* single-threads multiplexor creation */
203 
204 static void	*str_stack_init(netstackid_t stackid, netstack_t *ns);
205 static void	str_stack_shutdown(netstackid_t stackid, void *arg);
206 static void	str_stack_fini(netstackid_t stackid, void *arg);
207 
208 /*
209  * run_queues is no longer used, but is kept in case some 3rd party
210  * module/driver decides to use it.
211  */
212 int run_queues = 0;
213 
214 /*
215  * sq_max_size is the depth of the syncq (in number of messages) before
216  * qfill_syncq() starts QFULL'ing destination queues. As its primary
217  * consumer - IP is no longer D_MTPERMOD, but there may be other
218  * modules/drivers depend on this syncq flow control, we prefer to
219  * choose a large number as the default value. For potential
220  * performance gain, this value is tunable in /etc/system.
221  */
222 int sq_max_size = 10000;
223 
224 /*
225  * The number of ciputctrl structures per syncq and stream we create when
226  * needed.
227  */
228 int n_ciputctrl;
229 int max_n_ciputctrl = 16;
230 /*
231  * If n_ciputctrl is < min_n_ciputctrl don't even create ciputctrl_cache.
232  */
233 int min_n_ciputctrl = 2;
234 
235 /*
236  * Per-driver/module syncqs
237  * ========================
238  *
239  * For drivers/modules that use PERMOD or outer syncqs we keep a list of
240  * perdm structures, new entries being added (and new syncqs allocated) when
241  * setq() encounters a module/driver with a streamtab that it hasn't seen
242  * before.
243  * The reason for this mechanism is that some modules and drivers share a
244  * common streamtab and it is necessary for those modules and drivers to also
245  * share a common PERMOD syncq.
246  *
247  * perdm_list --> dm_str == streamtab_1
248  *                dm_sq == syncq_1
249  *                dm_ref
250  *                dm_next --> dm_str == streamtab_2
251  *                            dm_sq == syncq_2
252  *                            dm_ref
253  *                            dm_next --> ... NULL
254  *
255  * The dm_ref field is incremented for each new driver/module that takes
256  * a reference to the perdm structure and hence shares the syncq.
257  * References are held in the fmodsw_impl_t structure for each STREAMS module
258  * or the dev_impl array (indexed by device major number) for each driver.
259  *
260  * perdm_list -> [dm_ref == 1] -> [dm_ref == 2] -> [dm_ref == 1] -> NULL
261  *		     ^                 ^ ^               ^
262  *                   |  ______________/  |               |
263  *                   | /                 |               |
264  * dev_impl:     ...|x|y|...          module A	      module B
265  *
266  * When a module/driver is unloaded the reference count is decremented and,
267  * when it falls to zero, the perdm structure is removed from the list and
268  * the syncq is freed (see rele_dm()).
269  */
270 perdm_t *perdm_list = NULL;
271 static krwlock_t perdm_rwlock;
272 cdevsw_impl_t *devimpl;
273 
274 extern struct qinit strdata;
275 extern struct qinit stwdata;
276 
277 static void runservice(queue_t *);
278 static void streams_bufcall_service(void);
279 static void streams_qbkgrnd_service(void);
280 static void streams_sqbkgrnd_service(void);
281 static syncq_t *new_syncq(void);
282 static void free_syncq(syncq_t *);
283 static void outer_insert(syncq_t *, syncq_t *);
284 static void outer_remove(syncq_t *, syncq_t *);
285 static void write_now(syncq_t *);
286 static void clr_qfull(queue_t *);
287 static void runbufcalls(void);
288 static void sqenable(syncq_t *);
289 static void sqfill_events(syncq_t *, queue_t *, mblk_t *, void (*)());
290 static void wait_q_syncq(queue_t *);
291 static void backenable_insertedq(queue_t *);
292 
293 static void queue_service(queue_t *);
294 static void stream_service(stdata_t *);
295 static void syncq_service(syncq_t *);
296 static void qwriter_outer_service(syncq_t *);
297 static void mblk_free(mblk_t *);
298 #ifdef DEBUG
299 static int qprocsareon(queue_t *);
300 #endif
301 
302 static void set_nfsrv_ptr(queue_t *, queue_t *, queue_t *, queue_t *);
303 static void reset_nfsrv_ptr(queue_t *, queue_t *);
304 void set_qfull(queue_t *);
305 
306 static void sq_run_events(syncq_t *);
307 static int propagate_syncq(queue_t *);
308 
309 static void	blocksq(syncq_t *, ushort_t, int);
310 static void	unblocksq(syncq_t *, ushort_t, int);
311 static int	dropsq(syncq_t *, uint16_t);
312 static void	emptysq(syncq_t *);
313 static sqlist_t *sqlist_alloc(struct stdata *, int);
314 static void	sqlist_free(sqlist_t *);
315 static sqlist_t	*sqlist_build(queue_t *, struct stdata *, boolean_t);
316 static void	sqlist_insert(sqlist_t *, syncq_t *);
317 static void	sqlist_insertall(sqlist_t *, queue_t *);
318 
319 static void	strsetuio(stdata_t *);
320 
321 struct kmem_cache *stream_head_cache;
322 struct kmem_cache *queue_cache;
323 struct kmem_cache *syncq_cache;
324 struct kmem_cache *qband_cache;
325 struct kmem_cache *linkinfo_cache;
326 struct kmem_cache *ciputctrl_cache = NULL;
327 
328 static linkinfo_t *linkinfo_list;
329 
330 /* Global esballoc throttling queue */
331 static esb_queue_t	system_esbq;
332 
333 /*
334  * esballoc tunable parameters.
335  */
336 int		esbq_max_qlen = 0x16;	/* throttled queue length */
337 clock_t		esbq_timeout = 0x8;	/* timeout to process esb queue */
338 
339 /*
340  * Routines to handle esballoc queueing.
341  */
342 static void esballoc_process_queue(esb_queue_t *);
343 static void esballoc_enqueue_mblk(mblk_t *);
344 static void esballoc_timer(void *);
345 static void esballoc_set_timer(esb_queue_t *, clock_t);
346 static void esballoc_mblk_free(mblk_t *);
347 
348 /*
349  *  Qinit structure and Module_info structures
350  *	for passthru read and write queues
351  */
352 
353 static void pass_wput(queue_t *, mblk_t *);
354 static queue_t *link_addpassthru(stdata_t *);
355 static void link_rempassthru(queue_t *);
356 
357 struct  module_info passthru_info = {
358 	0,
359 	"passthru",
360 	0,
361 	INFPSZ,
362 	STRHIGH,
363 	STRLOW
364 };
365 
366 struct  qinit passthru_rinit = {
367 	(int (*)())putnext,
368 	NULL,
369 	NULL,
370 	NULL,
371 	NULL,
372 	&passthru_info,
373 	NULL
374 };
375 
376 struct  qinit passthru_winit = {
377 	(int (*)()) pass_wput,
378 	NULL,
379 	NULL,
380 	NULL,
381 	NULL,
382 	&passthru_info,
383 	NULL
384 };
385 
386 /*
387  * Special form of assertion: verify that X implies Y i.e. when X is true Y
388  * should also be true.
389  */
390 #define	IMPLY(X, Y)	ASSERT(!(X) || (Y))
391 
392 /*
393  * Logical equivalence. Verify that both X and Y are either TRUE or FALSE.
394  */
395 #define	EQUIV(X, Y)	{ IMPLY(X, Y); IMPLY(Y, X); }
396 
397 /*
398  * Verify correctness of list head/tail pointers.
399  */
400 #define	LISTCHECK(head, tail, link) {				\
401 	EQUIV(head, tail);					\
402 	IMPLY(tail != NULL, tail->link == NULL);		\
403 }
404 
405 /*
406  * Enqueue a list element `el' in the end of a list denoted by `head' and `tail'
407  * using a `link' field.
408  */
409 #define	ENQUEUE(el, head, tail, link) {				\
410 	ASSERT(el->link == NULL);				\
411 	LISTCHECK(head, tail, link);				\
412 	if (head == NULL)					\
413 		head = el;					\
414 	else							\
415 		tail->link = el;				\
416 	tail = el;						\
417 }
418 
419 /*
420  * Dequeue the first element of the list denoted by `head' and `tail' pointers
421  * using a `link' field and put result into `el'.
422  */
423 #define	DQ(el, head, tail, link) {				\
424 	LISTCHECK(head, tail, link);				\
425 	el = head;						\
426 	if (head != NULL) {					\
427 		head = head->link;				\
428 		if (head == NULL)				\
429 			tail = NULL;				\
430 		el->link = NULL;				\
431 	}							\
432 }
433 
434 /*
435  * Remove `el' from the list using `chase' and `curr' pointers and return result
436  * in `succeed'.
437  */
438 #define	RMQ(el, head, tail, link, chase, curr, succeed) {	\
439 	LISTCHECK(head, tail, link);				\
440 	chase = NULL;						\
441 	succeed = 0;						\
442 	for (curr = head; (curr != el) && (curr != NULL); curr = curr->link) \
443 		chase = curr;					\
444 	if (curr != NULL) {					\
445 		succeed = 1;					\
446 		ASSERT(curr == el);				\
447 		if (chase != NULL)				\
448 			chase->link = curr->link;		\
449 		else						\
450 			head = curr->link;			\
451 		curr->link = NULL;				\
452 		if (curr == tail)				\
453 			tail = chase;				\
454 	}							\
455 	LISTCHECK(head, tail, link);				\
456 }
457 
458 /* Handling of delayed messages on the inner syncq. */
459 
460 /*
461  * DEBUG versions should use function versions (to simplify tracing) and
462  * non-DEBUG kernels should use macro versions.
463  */
464 
465 /*
466  * Put a queue on the syncq list of queues.
467  * Assumes SQLOCK held.
468  */
469 #define	SQPUT_Q(sq, qp)							\
470 {									\
471 	ASSERT(MUTEX_HELD(SQLOCK(sq)));					\
472 	if (!(qp->q_sqflags & Q_SQQUEUED)) {				\
473 		/* The queue should not be linked anywhere */		\
474 		ASSERT((qp->q_sqprev == NULL) && (qp->q_sqnext == NULL)); \
475 		/* Head and tail may only be NULL simultaneously */	\
476 		EQUIV(sq->sq_head, sq->sq_tail);			\
477 		/* Queue may be only enqueued on its syncq */		\
478 		ASSERT(sq == qp->q_syncq);				\
479 		/* Check the correctness of SQ_MESSAGES flag */		\
480 		EQUIV(sq->sq_head, (sq->sq_flags & SQ_MESSAGES));	\
481 		/* Sanity check first/last elements of the list */	\
482 		IMPLY(sq->sq_head != NULL, sq->sq_head->q_sqprev == NULL);\
483 		IMPLY(sq->sq_tail != NULL, sq->sq_tail->q_sqnext == NULL);\
484 		/*							\
485 		 * Sanity check of priority field: empty queue should	\
486 		 * have zero priority					\
487 		 * and nqueues equal to zero.				\
488 		 */							\
489 		IMPLY(sq->sq_head == NULL, sq->sq_pri == 0);		\
490 		/* Sanity check of sq_nqueues field */			\
491 		EQUIV(sq->sq_head, sq->sq_nqueues);			\
492 		if (sq->sq_head == NULL) {				\
493 			sq->sq_head = sq->sq_tail = qp;			\
494 			sq->sq_flags |= SQ_MESSAGES;			\
495 		} else if (qp->q_spri == 0) {				\
496 			qp->q_sqprev = sq->sq_tail;			\
497 			sq->sq_tail->q_sqnext = qp;			\
498 			sq->sq_tail = qp;				\
499 		} else {						\
500 			/*						\
501 			 * Put this queue in priority order: higher	\
502 			 * priority gets closer to the head.		\
503 			 */						\
504 			queue_t **qpp = &sq->sq_tail;			\
505 			queue_t *qnext = NULL;				\
506 									\
507 			while (*qpp != NULL && qp->q_spri > (*qpp)->q_spri) { \
508 				qnext = *qpp;				\
509 				qpp = &(*qpp)->q_sqprev;		\
510 			}						\
511 			qp->q_sqnext = qnext;				\
512 			qp->q_sqprev = *qpp;				\
513 			if (*qpp != NULL) {				\
514 				(*qpp)->q_sqnext = qp;			\
515 			} else {					\
516 				sq->sq_head = qp;			\
517 				sq->sq_pri = sq->sq_head->q_spri;	\
518 			}						\
519 			*qpp = qp;					\
520 		}							\
521 		qp->q_sqflags |= Q_SQQUEUED;				\
522 		qp->q_sqtstamp = ddi_get_lbolt();			\
523 		sq->sq_nqueues++;					\
524 	}								\
525 }
526 
527 /*
528  * Remove a queue from the syncq list
529  * Assumes SQLOCK held.
530  */
531 #define	SQRM_Q(sq, qp)							\
532 	{								\
533 		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
534 		ASSERT(qp->q_sqflags & Q_SQQUEUED);			\
535 		ASSERT(sq->sq_head != NULL && sq->sq_tail != NULL);	\
536 		ASSERT((sq->sq_flags & SQ_MESSAGES) != 0);		\
537 		/* Check that the queue is actually in the list */	\
538 		ASSERT(qp->q_sqnext != NULL || sq->sq_tail == qp);	\
539 		ASSERT(qp->q_sqprev != NULL || sq->sq_head == qp);	\
540 		ASSERT(sq->sq_nqueues != 0);				\
541 		if (qp->q_sqprev == NULL) {				\
542 			/* First queue on list, make head q_sqnext */	\
543 			sq->sq_head = qp->q_sqnext;			\
544 		} else {						\
545 			/* Make prev->next == next */			\
546 			qp->q_sqprev->q_sqnext = qp->q_sqnext;		\
547 		}							\
548 		if (qp->q_sqnext == NULL) {				\
549 			/* Last queue on list, make tail sqprev */	\
550 			sq->sq_tail = qp->q_sqprev;			\
551 		} else {						\
552 			/* Make next->prev == prev */			\
553 			qp->q_sqnext->q_sqprev = qp->q_sqprev;		\
554 		}							\
555 		/* clear out references on this queue */		\
556 		qp->q_sqprev = qp->q_sqnext = NULL;			\
557 		qp->q_sqflags &= ~Q_SQQUEUED;				\
558 		/* If there is nothing queued, clear SQ_MESSAGES */	\
559 		if (sq->sq_head != NULL) {				\
560 			sq->sq_pri = sq->sq_head->q_spri;		\
561 		} else	{						\
562 			sq->sq_flags &= ~SQ_MESSAGES;			\
563 			sq->sq_pri = 0;					\
564 		}							\
565 		sq->sq_nqueues--;					\
566 		ASSERT(sq->sq_head != NULL || sq->sq_evhead != NULL ||	\
567 		    (sq->sq_flags & SQ_QUEUED) == 0);			\
568 	}
569 
570 /* Hide the definition from the header file. */
571 #ifdef SQPUT_MP
572 #undef SQPUT_MP
573 #endif
574 
575 /*
576  * Put a message on the queue syncq.
577  * Assumes QLOCK held.
578  */
579 #define	SQPUT_MP(qp, mp)						\
580 	{								\
581 		ASSERT(MUTEX_HELD(QLOCK(qp)));				\
582 		ASSERT(qp->q_sqhead == NULL ||				\
583 		    (qp->q_sqtail != NULL &&				\
584 		    qp->q_sqtail->b_next == NULL));			\
585 		qp->q_syncqmsgs++;					\
586 		ASSERT(qp->q_syncqmsgs != 0);	/* Wraparound */	\
587 		if (qp->q_sqhead == NULL) {				\
588 			qp->q_sqhead = qp->q_sqtail = mp;		\
589 		} else {						\
590 			qp->q_sqtail->b_next = mp;			\
591 			qp->q_sqtail = mp;				\
592 		}							\
593 		ASSERT(qp->q_syncqmsgs > 0);				\
594 		set_qfull(qp);						\
595 	}
596 
597 #define	SQ_PUTCOUNT_SETFAST_LOCKED(sq) {				\
598 		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
599 		if ((sq)->sq_ciputctrl != NULL) {			\
600 			int i;						\
601 			int nlocks = (sq)->sq_nciputctrl;		\
602 			ciputctrl_t *cip = (sq)->sq_ciputctrl;		\
603 			ASSERT((sq)->sq_type & SQ_CIPUT);		\
604 			for (i = 0; i <= nlocks; i++) {			\
605 				ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
606 				cip[i].ciputctrl_count |= SQ_FASTPUT;	\
607 			}						\
608 		}							\
609 	}
610 
611 
612 #define	SQ_PUTCOUNT_CLRFAST_LOCKED(sq) {				\
613 		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
614 		if ((sq)->sq_ciputctrl != NULL) {			\
615 			int i;						\
616 			int nlocks = (sq)->sq_nciputctrl;		\
617 			ciputctrl_t *cip = (sq)->sq_ciputctrl;		\
618 			ASSERT((sq)->sq_type & SQ_CIPUT);		\
619 			for (i = 0; i <= nlocks; i++) {			\
620 				ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
621 				cip[i].ciputctrl_count &= ~SQ_FASTPUT;	\
622 			}						\
623 		}							\
624 	}
625 
626 /*
627  * Run service procedures for all queues in the stream head.
628  */
629 #define	STR_SERVICE(stp, q) {						\
630 	ASSERT(MUTEX_HELD(&stp->sd_qlock));				\
631 	while (stp->sd_qhead != NULL) {					\
632 		DQ(q, stp->sd_qhead, stp->sd_qtail, q_link);		\
633 		ASSERT(stp->sd_nqueues > 0);				\
634 		stp->sd_nqueues--;					\
635 		ASSERT(!(q->q_flag & QINSERVICE));			\
636 		mutex_exit(&stp->sd_qlock);				\
637 		queue_service(q);					\
638 		mutex_enter(&stp->sd_qlock);				\
639 	}								\
640 	ASSERT(stp->sd_nqueues == 0);					\
641 	ASSERT((stp->sd_qhead == NULL) && (stp->sd_qtail == NULL));	\
642 }
643 
644 /*
645  * Constructor/destructor routines for the stream head cache
646  */
647 /* ARGSUSED */
648 static int
649 stream_head_constructor(void *buf, void *cdrarg, int kmflags)
650 {
651 	stdata_t *stp = buf;
652 
653 	mutex_init(&stp->sd_lock, NULL, MUTEX_DEFAULT, NULL);
654 	mutex_init(&stp->sd_reflock, NULL, MUTEX_DEFAULT, NULL);
655 	mutex_init(&stp->sd_qlock, NULL, MUTEX_DEFAULT, NULL);
656 	cv_init(&stp->sd_monitor, NULL, CV_DEFAULT, NULL);
657 	cv_init(&stp->sd_iocmonitor, NULL, CV_DEFAULT, NULL);
658 	cv_init(&stp->sd_refmonitor, NULL, CV_DEFAULT, NULL);
659 	cv_init(&stp->sd_qcv, NULL, CV_DEFAULT, NULL);
660 	cv_init(&stp->sd_zcopy_wait, NULL, CV_DEFAULT, NULL);
661 	stp->sd_wrq = NULL;
662 
663 	return (0);
664 }
665 
666 /* ARGSUSED */
667 static void
668 stream_head_destructor(void *buf, void *cdrarg)
669 {
670 	stdata_t *stp = buf;
671 
672 	mutex_destroy(&stp->sd_lock);
673 	mutex_destroy(&stp->sd_reflock);
674 	mutex_destroy(&stp->sd_qlock);
675 	cv_destroy(&stp->sd_monitor);
676 	cv_destroy(&stp->sd_iocmonitor);
677 	cv_destroy(&stp->sd_refmonitor);
678 	cv_destroy(&stp->sd_qcv);
679 	cv_destroy(&stp->sd_zcopy_wait);
680 }
681 
682 /*
683  * Constructor/destructor routines for the queue cache
684  */
685 /* ARGSUSED */
686 static int
687 queue_constructor(void *buf, void *cdrarg, int kmflags)
688 {
689 	queinfo_t *qip = buf;
690 	queue_t *qp = &qip->qu_rqueue;
691 	queue_t *wqp = &qip->qu_wqueue;
692 	syncq_t	*sq = &qip->qu_syncq;
693 
694 	qp->q_first = NULL;
695 	qp->q_link = NULL;
696 	qp->q_count = 0;
697 	qp->q_mblkcnt = 0;
698 	qp->q_sqhead = NULL;
699 	qp->q_sqtail = NULL;
700 	qp->q_sqnext = NULL;
701 	qp->q_sqprev = NULL;
702 	qp->q_sqflags = 0;
703 	qp->q_rwcnt = 0;
704 	qp->q_spri = 0;
705 
706 	mutex_init(QLOCK(qp), NULL, MUTEX_DEFAULT, NULL);
707 	cv_init(&qp->q_wait, NULL, CV_DEFAULT, NULL);
708 
709 	wqp->q_first = NULL;
710 	wqp->q_link = NULL;
711 	wqp->q_count = 0;
712 	wqp->q_mblkcnt = 0;
713 	wqp->q_sqhead = NULL;
714 	wqp->q_sqtail = NULL;
715 	wqp->q_sqnext = NULL;
716 	wqp->q_sqprev = NULL;
717 	wqp->q_sqflags = 0;
718 	wqp->q_rwcnt = 0;
719 	wqp->q_spri = 0;
720 
721 	mutex_init(QLOCK(wqp), NULL, MUTEX_DEFAULT, NULL);
722 	cv_init(&wqp->q_wait, NULL, CV_DEFAULT, NULL);
723 
724 	sq->sq_head = NULL;
725 	sq->sq_tail = NULL;
726 	sq->sq_evhead = NULL;
727 	sq->sq_evtail = NULL;
728 	sq->sq_callbpend = NULL;
729 	sq->sq_outer = NULL;
730 	sq->sq_onext = NULL;
731 	sq->sq_oprev = NULL;
732 	sq->sq_next = NULL;
733 	sq->sq_svcflags = 0;
734 	sq->sq_servcount = 0;
735 	sq->sq_needexcl = 0;
736 	sq->sq_nqueues = 0;
737 	sq->sq_pri = 0;
738 
739 	mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
740 	cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
741 	cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
742 
743 	return (0);
744 }
745 
746 /* ARGSUSED */
747 static void
748 queue_destructor(void *buf, void *cdrarg)
749 {
750 	queinfo_t *qip = buf;
751 	queue_t *qp = &qip->qu_rqueue;
752 	queue_t *wqp = &qip->qu_wqueue;
753 	syncq_t	*sq = &qip->qu_syncq;
754 
755 	ASSERT(qp->q_sqhead == NULL);
756 	ASSERT(wqp->q_sqhead == NULL);
757 	ASSERT(qp->q_sqnext == NULL);
758 	ASSERT(wqp->q_sqnext == NULL);
759 	ASSERT(qp->q_rwcnt == 0);
760 	ASSERT(wqp->q_rwcnt == 0);
761 
762 	mutex_destroy(&qp->q_lock);
763 	cv_destroy(&qp->q_wait);
764 
765 	mutex_destroy(&wqp->q_lock);
766 	cv_destroy(&wqp->q_wait);
767 
768 	mutex_destroy(&sq->sq_lock);
769 	cv_destroy(&sq->sq_wait);
770 	cv_destroy(&sq->sq_exitwait);
771 }
772 
773 /*
774  * Constructor/destructor routines for the syncq cache
775  */
776 /* ARGSUSED */
777 static int
778 syncq_constructor(void *buf, void *cdrarg, int kmflags)
779 {
780 	syncq_t	*sq = buf;
781 
782 	bzero(buf, sizeof (syncq_t));
783 
784 	mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
785 	cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
786 	cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
787 
788 	return (0);
789 }
790 
791 /* ARGSUSED */
792 static void
793 syncq_destructor(void *buf, void *cdrarg)
794 {
795 	syncq_t	*sq = buf;
796 
797 	ASSERT(sq->sq_head == NULL);
798 	ASSERT(sq->sq_tail == NULL);
799 	ASSERT(sq->sq_evhead == NULL);
800 	ASSERT(sq->sq_evtail == NULL);
801 	ASSERT(sq->sq_callbpend == NULL);
802 	ASSERT(sq->sq_callbflags == 0);
803 	ASSERT(sq->sq_outer == NULL);
804 	ASSERT(sq->sq_onext == NULL);
805 	ASSERT(sq->sq_oprev == NULL);
806 	ASSERT(sq->sq_next == NULL);
807 	ASSERT(sq->sq_needexcl == 0);
808 	ASSERT(sq->sq_svcflags == 0);
809 	ASSERT(sq->sq_servcount == 0);
810 	ASSERT(sq->sq_nqueues == 0);
811 	ASSERT(sq->sq_pri == 0);
812 	ASSERT(sq->sq_count == 0);
813 	ASSERT(sq->sq_rmqcount == 0);
814 	ASSERT(sq->sq_cancelid == 0);
815 	ASSERT(sq->sq_ciputctrl == NULL);
816 	ASSERT(sq->sq_nciputctrl == 0);
817 	ASSERT(sq->sq_type == 0);
818 	ASSERT(sq->sq_flags == 0);
819 
820 	mutex_destroy(&sq->sq_lock);
821 	cv_destroy(&sq->sq_wait);
822 	cv_destroy(&sq->sq_exitwait);
823 }
824 
825 /* ARGSUSED */
826 static int
827 ciputctrl_constructor(void *buf, void *cdrarg, int kmflags)
828 {
829 	ciputctrl_t *cip = buf;
830 	int i;
831 
832 	for (i = 0; i < n_ciputctrl; i++) {
833 		cip[i].ciputctrl_count = SQ_FASTPUT;
834 		mutex_init(&cip[i].ciputctrl_lock, NULL, MUTEX_DEFAULT, NULL);
835 	}
836 
837 	return (0);
838 }
839 
840 /* ARGSUSED */
841 static void
842 ciputctrl_destructor(void *buf, void *cdrarg)
843 {
844 	ciputctrl_t *cip = buf;
845 	int i;
846 
847 	for (i = 0; i < n_ciputctrl; i++) {
848 		ASSERT(cip[i].ciputctrl_count & SQ_FASTPUT);
849 		mutex_destroy(&cip[i].ciputctrl_lock);
850 	}
851 }
852 
853 /*
854  * Init routine run from main at boot time.
855  */
856 void
857 strinit(void)
858 {
859 	int ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus);
860 
861 	stream_head_cache = kmem_cache_create("stream_head_cache",
862 	    sizeof (stdata_t), 0,
863 	    stream_head_constructor, stream_head_destructor, NULL,
864 	    NULL, NULL, 0);
865 
866 	queue_cache = kmem_cache_create("queue_cache", sizeof (queinfo_t), 0,
867 	    queue_constructor, queue_destructor, NULL, NULL, NULL, 0);
868 
869 	syncq_cache = kmem_cache_create("syncq_cache", sizeof (syncq_t), 0,
870 	    syncq_constructor, syncq_destructor, NULL, NULL, NULL, 0);
871 
872 	qband_cache = kmem_cache_create("qband_cache",
873 	    sizeof (qband_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
874 
875 	linkinfo_cache = kmem_cache_create("linkinfo_cache",
876 	    sizeof (linkinfo_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
877 
878 	n_ciputctrl = ncpus;
879 	n_ciputctrl = 1 << highbit(n_ciputctrl - 1);
880 	ASSERT(n_ciputctrl >= 1);
881 	n_ciputctrl = MIN(n_ciputctrl, max_n_ciputctrl);
882 	if (n_ciputctrl >= min_n_ciputctrl) {
883 		ciputctrl_cache = kmem_cache_create("ciputctrl_cache",
884 		    sizeof (ciputctrl_t) * n_ciputctrl,
885 		    sizeof (ciputctrl_t), ciputctrl_constructor,
886 		    ciputctrl_destructor, NULL, NULL, NULL, 0);
887 	}
888 
889 	streams_taskq = system_taskq;
890 
891 	if (streams_taskq == NULL)
892 		panic("strinit: no memory for streams taskq!");
893 
894 	bc_bkgrnd_thread = thread_create(NULL, 0,
895 	    streams_bufcall_service, NULL, 0, &p0, TS_RUN, streams_lopri);
896 
897 	streams_qbkgrnd_thread = thread_create(NULL, 0,
898 	    streams_qbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
899 
900 	streams_sqbkgrnd_thread = thread_create(NULL, 0,
901 	    streams_sqbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
902 
903 	/*
904 	 * Create STREAMS kstats.
905 	 */
906 	str_kstat = kstat_create("streams", 0, "strstat",
907 	    "net", KSTAT_TYPE_NAMED,
908 	    sizeof (str_statistics) / sizeof (kstat_named_t),
909 	    KSTAT_FLAG_VIRTUAL);
910 
911 	if (str_kstat != NULL) {
912 		str_kstat->ks_data = &str_statistics;
913 		kstat_install(str_kstat);
914 	}
915 
916 	/*
917 	 * TPI support routine initialisation.
918 	 */
919 	tpi_init();
920 
921 	/*
922 	 * Handle to have autopush and persistent link information per
923 	 * zone.
924 	 * Note: uses shutdown hook instead of destroy hook so that the
925 	 * persistent links can be torn down before the destroy hooks
926 	 * in the TCP/IP stack are called.
927 	 */
928 	netstack_register(NS_STR, str_stack_init, str_stack_shutdown,
929 	    str_stack_fini);
930 }
931 
932 void
933 str_sendsig(vnode_t *vp, int event, uchar_t band, int error)
934 {
935 	struct stdata *stp;
936 
937 	ASSERT(vp->v_stream);
938 	stp = vp->v_stream;
939 	/* Have to hold sd_lock to prevent siglist from changing */
940 	mutex_enter(&stp->sd_lock);
941 	if (stp->sd_sigflags & event)
942 		strsendsig(stp->sd_siglist, event, band, error);
943 	mutex_exit(&stp->sd_lock);
944 }
945 
946 /*
947  * Send the "sevent" set of signals to a process.
948  * This might send more than one signal if the process is registered
949  * for multiple events. The caller should pass in an sevent that only
950  * includes the events for which the process has registered.
951  */
952 static void
953 dosendsig(proc_t *proc, int events, int sevent, k_siginfo_t *info,
954 	uchar_t band, int error)
955 {
956 	ASSERT(MUTEX_HELD(&proc->p_lock));
957 
958 	info->si_band = 0;
959 	info->si_errno = 0;
960 
961 	if (sevent & S_ERROR) {
962 		sevent &= ~S_ERROR;
963 		info->si_code = POLL_ERR;
964 		info->si_errno = error;
965 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
966 		    "strsendsig:proc %p info %p", proc, info);
967 		sigaddq(proc, NULL, info, KM_NOSLEEP);
968 		info->si_errno = 0;
969 	}
970 	if (sevent & S_HANGUP) {
971 		sevent &= ~S_HANGUP;
972 		info->si_code = POLL_HUP;
973 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
974 		    "strsendsig:proc %p info %p", proc, info);
975 		sigaddq(proc, NULL, info, KM_NOSLEEP);
976 	}
977 	if (sevent & S_HIPRI) {
978 		sevent &= ~S_HIPRI;
979 		info->si_code = POLL_PRI;
980 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
981 		    "strsendsig:proc %p info %p", proc, info);
982 		sigaddq(proc, NULL, info, KM_NOSLEEP);
983 	}
984 	if (sevent & S_RDBAND) {
985 		sevent &= ~S_RDBAND;
986 		if (events & S_BANDURG)
987 			sigtoproc(proc, NULL, SIGURG);
988 		else
989 			sigtoproc(proc, NULL, SIGPOLL);
990 	}
991 	if (sevent & S_WRBAND) {
992 		sevent &= ~S_WRBAND;
993 		sigtoproc(proc, NULL, SIGPOLL);
994 	}
995 	if (sevent & S_INPUT) {
996 		sevent &= ~S_INPUT;
997 		info->si_code = POLL_IN;
998 		info->si_band = band;
999 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1000 		    "strsendsig:proc %p info %p", proc, info);
1001 		sigaddq(proc, NULL, info, KM_NOSLEEP);
1002 		info->si_band = 0;
1003 	}
1004 	if (sevent & S_OUTPUT) {
1005 		sevent &= ~S_OUTPUT;
1006 		info->si_code = POLL_OUT;
1007 		info->si_band = band;
1008 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1009 		    "strsendsig:proc %p info %p", proc, info);
1010 		sigaddq(proc, NULL, info, KM_NOSLEEP);
1011 		info->si_band = 0;
1012 	}
1013 	if (sevent & S_MSG) {
1014 		sevent &= ~S_MSG;
1015 		info->si_code = POLL_MSG;
1016 		info->si_band = band;
1017 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1018 		    "strsendsig:proc %p info %p", proc, info);
1019 		sigaddq(proc, NULL, info, KM_NOSLEEP);
1020 		info->si_band = 0;
1021 	}
1022 	if (sevent & S_RDNORM) {
1023 		sevent &= ~S_RDNORM;
1024 		sigtoproc(proc, NULL, SIGPOLL);
1025 	}
1026 	if (sevent != 0) {
1027 		panic("strsendsig: unknown event(s) %x", sevent);
1028 	}
1029 }
1030 
1031 /*
1032  * Send SIGPOLL/SIGURG signal to all processes and process groups
1033  * registered on the given signal list that want a signal for at
1034  * least one of the specified events.
1035  *
1036  * Must be called with exclusive access to siglist (caller holding sd_lock).
1037  *
1038  * strioctl(I_SETSIG/I_ESETSIG) will only change siglist when holding
1039  * sd_lock and the ioctl code maintains a PID_HOLD on the pid structure
1040  * while it is in the siglist.
1041  *
1042  * For performance reasons (MP scalability) the code drops pidlock
1043  * when sending signals to a single process.
1044  * When sending to a process group the code holds
1045  * pidlock to prevent the membership in the process group from changing
1046  * while walking the p_pglink list.
1047  */
1048 void
1049 strsendsig(strsig_t *siglist, int event, uchar_t band, int error)
1050 {
1051 	strsig_t *ssp;
1052 	k_siginfo_t info;
1053 	struct pid *pidp;
1054 	proc_t  *proc;
1055 
1056 	info.si_signo = SIGPOLL;
1057 	info.si_errno = 0;
1058 	for (ssp = siglist; ssp; ssp = ssp->ss_next) {
1059 		int sevent;
1060 
1061 		sevent = ssp->ss_events & event;
1062 		if (sevent == 0)
1063 			continue;
1064 
1065 		if ((pidp = ssp->ss_pidp) == NULL) {
1066 			/* pid was released but still on event list */
1067 			continue;
1068 		}
1069 
1070 
1071 		if (ssp->ss_pid > 0) {
1072 			/*
1073 			 * XXX This unfortunately still generates
1074 			 * a signal when a fd is closed but
1075 			 * the proc is active.
1076 			 */
1077 			ASSERT(ssp->ss_pid == pidp->pid_id);
1078 
1079 			mutex_enter(&pidlock);
1080 			proc = prfind_zone(pidp->pid_id, ALL_ZONES);
1081 			if (proc == NULL) {
1082 				mutex_exit(&pidlock);
1083 				continue;
1084 			}
1085 			mutex_enter(&proc->p_lock);
1086 			mutex_exit(&pidlock);
1087 			dosendsig(proc, ssp->ss_events, sevent, &info,
1088 			    band, error);
1089 			mutex_exit(&proc->p_lock);
1090 		} else {
1091 			/*
1092 			 * Send to process group. Hold pidlock across
1093 			 * calls to dosendsig().
1094 			 */
1095 			pid_t pgrp = -ssp->ss_pid;
1096 
1097 			mutex_enter(&pidlock);
1098 			proc = pgfind_zone(pgrp, ALL_ZONES);
1099 			while (proc != NULL) {
1100 				mutex_enter(&proc->p_lock);
1101 				dosendsig(proc, ssp->ss_events, sevent,
1102 				    &info, band, error);
1103 				mutex_exit(&proc->p_lock);
1104 				proc = proc->p_pglink;
1105 			}
1106 			mutex_exit(&pidlock);
1107 		}
1108 	}
1109 }
1110 
1111 /*
1112  * Attach a stream device or module.
1113  * qp is a read queue; the new queue goes in so its next
1114  * read ptr is the argument, and the write queue corresponding
1115  * to the argument points to this queue. Return 0 on success,
1116  * or a non-zero errno on failure.
1117  */
1118 int
1119 qattach(queue_t *qp, dev_t *devp, int oflag, cred_t *crp, fmodsw_impl_t *fp,
1120     boolean_t is_insert)
1121 {
1122 	major_t			major;
1123 	cdevsw_impl_t		*dp;
1124 	struct streamtab	*str;
1125 	queue_t			*rq;
1126 	queue_t			*wrq;
1127 	uint32_t		qflag;
1128 	uint32_t		sqtype;
1129 	perdm_t			*dmp;
1130 	int			error;
1131 	int			sflag;
1132 
1133 	rq = allocq();
1134 	wrq = _WR(rq);
1135 	STREAM(rq) = STREAM(wrq) = STREAM(qp);
1136 
1137 	if (fp != NULL) {
1138 		str = fp->f_str;
1139 		qflag = fp->f_qflag;
1140 		sqtype = fp->f_sqtype;
1141 		dmp = fp->f_dmp;
1142 		IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
1143 		sflag = MODOPEN;
1144 
1145 		/*
1146 		 * stash away a pointer to the module structure so we can
1147 		 * unref it in qdetach.
1148 		 */
1149 		rq->q_fp = fp;
1150 	} else {
1151 		ASSERT(!is_insert);
1152 
1153 		major = getmajor(*devp);
1154 		dp = &devimpl[major];
1155 
1156 		str = dp->d_str;
1157 		ASSERT(str == STREAMSTAB(major));
1158 
1159 		qflag = dp->d_qflag;
1160 		ASSERT(qflag & QISDRV);
1161 		sqtype = dp->d_sqtype;
1162 
1163 		/* create perdm_t if needed */
1164 		if (NEED_DM(dp->d_dmp, qflag))
1165 			dp->d_dmp = hold_dm(str, qflag, sqtype);
1166 
1167 		dmp = dp->d_dmp;
1168 		sflag = 0;
1169 	}
1170 
1171 	TRACE_2(TR_FAC_STREAMS_FR, TR_QATTACH_FLAGS,
1172 	    "qattach:qflag == %X(%X)", qflag, *devp);
1173 
1174 	/* setq might sleep in allocator - avoid holding locks. */
1175 	setq(rq, str->st_rdinit, str->st_wrinit, dmp, qflag, sqtype, B_FALSE);
1176 
1177 	/*
1178 	 * Before calling the module's open routine, set up the q_next
1179 	 * pointer for inserting a module in the middle of a stream.
1180 	 *
1181 	 * Note that we can always set _QINSERTING and set up q_next
1182 	 * pointer for both inserting and pushing a module.  Then there
1183 	 * is no need for the is_insert parameter.  In insertq(), called
1184 	 * by qprocson(), assume that q_next of the new module always points
1185 	 * to the correct queue and use it for insertion.  Everything should
1186 	 * work out fine.  But in the first release of _I_INSERT, we
1187 	 * distinguish between inserting and pushing to make sure that
1188 	 * pushing a module follows the same code path as before.
1189 	 */
1190 	if (is_insert) {
1191 		rq->q_flag |= _QINSERTING;
1192 		rq->q_next = qp;
1193 	}
1194 
1195 	/*
1196 	 * If there is an outer perimeter get exclusive access during
1197 	 * the open procedure.  Bump up the reference count on the queue.
1198 	 */
1199 	entersq(rq->q_syncq, SQ_OPENCLOSE);
1200 	error = (*rq->q_qinfo->qi_qopen)(rq, devp, oflag, sflag, crp);
1201 	if (error != 0)
1202 		goto failed;
1203 	leavesq(rq->q_syncq, SQ_OPENCLOSE);
1204 	ASSERT(qprocsareon(rq));
1205 	return (0);
1206 
1207 failed:
1208 	rq->q_flag &= ~_QINSERTING;
1209 	if (backq(wrq) != NULL && backq(wrq)->q_next == wrq)
1210 		qprocsoff(rq);
1211 	leavesq(rq->q_syncq, SQ_OPENCLOSE);
1212 	rq->q_next = wrq->q_next = NULL;
1213 	qdetach(rq, 0, 0, crp, B_FALSE);
1214 	return (error);
1215 }
1216 
1217 /*
1218  * Handle second open of stream. For modules, set the
1219  * last argument to MODOPEN and do not pass any open flags.
1220  * Ignore dummydev since this is not the first open.
1221  */
1222 int
1223 qreopen(queue_t *qp, dev_t *devp, int flag, cred_t *crp)
1224 {
1225 	int	error;
1226 	dev_t dummydev;
1227 	queue_t *wqp = _WR(qp);
1228 
1229 	ASSERT(qp->q_flag & QREADR);
1230 	entersq(qp->q_syncq, SQ_OPENCLOSE);
1231 
1232 	dummydev = *devp;
1233 	if (error = ((*qp->q_qinfo->qi_qopen)(qp, &dummydev,
1234 	    (wqp->q_next ? 0 : flag), (wqp->q_next ? MODOPEN : 0), crp))) {
1235 		leavesq(qp->q_syncq, SQ_OPENCLOSE);
1236 		mutex_enter(&STREAM(qp)->sd_lock);
1237 		qp->q_stream->sd_flag |= STREOPENFAIL;
1238 		mutex_exit(&STREAM(qp)->sd_lock);
1239 		return (error);
1240 	}
1241 	leavesq(qp->q_syncq, SQ_OPENCLOSE);
1242 
1243 	/*
1244 	 * successful open should have done qprocson()
1245 	 */
1246 	ASSERT(qprocsareon(_RD(qp)));
1247 	return (0);
1248 }
1249 
1250 /*
1251  * Detach a stream module or device.
1252  * If clmode == 1 then the module or driver was opened and its
1253  * close routine must be called. If clmode == 0, the module
1254  * or driver was never opened or the open failed, and so its close
1255  * should not be called.
1256  */
1257 void
1258 qdetach(queue_t *qp, int clmode, int flag, cred_t *crp, boolean_t is_remove)
1259 {
1260 	queue_t *wqp = _WR(qp);
1261 	ASSERT(STREAM(qp)->sd_flag & (STRCLOSE|STWOPEN|STRPLUMB));
1262 
1263 	if (STREAM_NEEDSERVICE(STREAM(qp)))
1264 		stream_runservice(STREAM(qp));
1265 
1266 	if (clmode) {
1267 		/*
1268 		 * Make sure that all the messages on the write side syncq are
1269 		 * processed and nothing is left. Since we are closing, no new
1270 		 * messages may appear there.
1271 		 */
1272 		wait_q_syncq(wqp);
1273 
1274 		entersq(qp->q_syncq, SQ_OPENCLOSE);
1275 		if (is_remove) {
1276 			mutex_enter(QLOCK(qp));
1277 			qp->q_flag |= _QREMOVING;
1278 			mutex_exit(QLOCK(qp));
1279 		}
1280 		(*qp->q_qinfo->qi_qclose)(qp, flag, crp);
1281 		/*
1282 		 * Check that qprocsoff() was actually called.
1283 		 */
1284 		ASSERT((qp->q_flag & QWCLOSE) && (wqp->q_flag & QWCLOSE));
1285 
1286 		leavesq(qp->q_syncq, SQ_OPENCLOSE);
1287 	} else {
1288 		disable_svc(qp);
1289 	}
1290 
1291 	/*
1292 	 * Allow any threads blocked in entersq to proceed and discover
1293 	 * the QWCLOSE is set.
1294 	 * Note: This assumes that all users of entersq check QWCLOSE.
1295 	 * Currently runservice is the only entersq that can happen
1296 	 * after removeq has finished.
1297 	 * Removeq will have discarded all messages destined to the closing
1298 	 * pair of queues from the syncq.
1299 	 * NOTE: Calling a function inside an assert is unconventional.
1300 	 * However, it does not cause any problem since flush_syncq() does
1301 	 * not change any state except when it returns non-zero i.e.
1302 	 * when the assert will trigger.
1303 	 */
1304 	ASSERT(flush_syncq(qp->q_syncq, qp) == 0);
1305 	ASSERT(flush_syncq(wqp->q_syncq, wqp) == 0);
1306 	ASSERT((qp->q_flag & QPERMOD) ||
1307 	    ((qp->q_syncq->sq_head == NULL) &&
1308 	    (wqp->q_syncq->sq_head == NULL)));
1309 
1310 	/* release any fmodsw_impl_t structure held on behalf of the queue */
1311 	ASSERT(qp->q_fp != NULL || qp->q_flag & QISDRV);
1312 	if (qp->q_fp != NULL)
1313 		fmodsw_rele(qp->q_fp);
1314 
1315 	/* freeq removes us from the outer perimeter if any */
1316 	freeq(qp);
1317 }
1318 
1319 /* Prevent service procedures from being called */
1320 void
1321 disable_svc(queue_t *qp)
1322 {
1323 	queue_t *wqp = _WR(qp);
1324 
1325 	ASSERT(qp->q_flag & QREADR);
1326 	mutex_enter(QLOCK(qp));
1327 	qp->q_flag |= QWCLOSE;
1328 	mutex_exit(QLOCK(qp));
1329 	mutex_enter(QLOCK(wqp));
1330 	wqp->q_flag |= QWCLOSE;
1331 	mutex_exit(QLOCK(wqp));
1332 }
1333 
1334 /* Allow service procedures to be called again */
1335 void
1336 enable_svc(queue_t *qp)
1337 {
1338 	queue_t *wqp = _WR(qp);
1339 
1340 	ASSERT(qp->q_flag & QREADR);
1341 	mutex_enter(QLOCK(qp));
1342 	qp->q_flag &= ~QWCLOSE;
1343 	mutex_exit(QLOCK(qp));
1344 	mutex_enter(QLOCK(wqp));
1345 	wqp->q_flag &= ~QWCLOSE;
1346 	mutex_exit(QLOCK(wqp));
1347 }
1348 
1349 /*
1350  * Remove queue from qhead/qtail if it is enabled.
1351  * Only reset QENAB if the queue was removed from the runlist.
1352  * A queue goes through 3 stages:
1353  *	It is on the service list and QENAB is set.
1354  *	It is removed from the service list but QENAB is still set.
1355  *	QENAB gets changed to QINSERVICE.
1356  *	QINSERVICE is reset (when the service procedure is done)
1357  * Thus we can not reset QENAB unless we actually removed it from the service
1358  * queue.
1359  */
1360 void
1361 remove_runlist(queue_t *qp)
1362 {
1363 	if (qp->q_flag & QENAB && qhead != NULL) {
1364 		queue_t *q_chase;
1365 		queue_t *q_curr;
1366 		int removed;
1367 
1368 		mutex_enter(&service_queue);
1369 		RMQ(qp, qhead, qtail, q_link, q_chase, q_curr, removed);
1370 		mutex_exit(&service_queue);
1371 		if (removed) {
1372 			STRSTAT(qremoved);
1373 			qp->q_flag &= ~QENAB;
1374 		}
1375 	}
1376 }
1377 
1378 
1379 /*
1380  * Wait for any pending service processing to complete.
1381  * The removal of queues from the runlist is not atomic with the
1382  * clearing of the QENABLED flag and setting the INSERVICE flag.
1383  * consequently it is possible for remove_runlist in strclose
1384  * to not find the queue on the runlist but for it to be QENABLED
1385  * and not yet INSERVICE -> hence wait_svc needs to check QENABLED
1386  * as well as INSERVICE.
1387  */
1388 void
1389 wait_svc(queue_t *qp)
1390 {
1391 	queue_t *wqp = _WR(qp);
1392 
1393 	ASSERT(qp->q_flag & QREADR);
1394 
1395 	/*
1396 	 * Try to remove queues from qhead/qtail list.
1397 	 */
1398 	if (qhead != NULL) {
1399 		remove_runlist(qp);
1400 		remove_runlist(wqp);
1401 	}
1402 	/*
1403 	 * Wait till the syncqs associated with the queue disappear from the
1404 	 * background processing list.
1405 	 * This only needs to be done for non-PERMOD perimeters since
1406 	 * for PERMOD perimeters the syncq may be shared and will only be freed
1407 	 * when the last module/driver is unloaded.
1408 	 * If for PERMOD perimeters queue was on the syncq list, removeq()
1409 	 * should call propagate_syncq() or drain_syncq() for it. Both of these
1410 	 * functions remove the queue from its syncq list, so sqthread will not
1411 	 * try to access the queue.
1412 	 */
1413 	if (!(qp->q_flag & QPERMOD)) {
1414 		syncq_t *rsq = qp->q_syncq;
1415 		syncq_t *wsq = wqp->q_syncq;
1416 
1417 		/*
1418 		 * Disable rsq and wsq and wait for any background processing of
1419 		 * syncq to complete.
1420 		 */
1421 		wait_sq_svc(rsq);
1422 		if (wsq != rsq)
1423 			wait_sq_svc(wsq);
1424 	}
1425 
1426 	mutex_enter(QLOCK(qp));
1427 	while (qp->q_flag & (QINSERVICE|QENAB))
1428 		cv_wait(&qp->q_wait, QLOCK(qp));
1429 	mutex_exit(QLOCK(qp));
1430 	mutex_enter(QLOCK(wqp));
1431 	while (wqp->q_flag & (QINSERVICE|QENAB))
1432 		cv_wait(&wqp->q_wait, QLOCK(wqp));
1433 	mutex_exit(QLOCK(wqp));
1434 }
1435 
1436 /*
1437  * Put ioctl data from userland buffer `arg' into the mblk chain `bp'.
1438  * `flag' must always contain either K_TO_K or U_TO_K; STR_NOSIG may
1439  * also be set, and is passed through to allocb_cred_wait().
1440  *
1441  * Returns errno on failure, zero on success.
1442  */
1443 int
1444 putiocd(mblk_t *bp, char *arg, int flag, cred_t *cr)
1445 {
1446 	mblk_t *tmp;
1447 	ssize_t  count;
1448 	int error = 0;
1449 
1450 	ASSERT((flag & (U_TO_K | K_TO_K)) == U_TO_K ||
1451 	    (flag & (U_TO_K | K_TO_K)) == K_TO_K);
1452 
1453 	if (bp->b_datap->db_type == M_IOCTL) {
1454 		count = ((struct iocblk *)bp->b_rptr)->ioc_count;
1455 	} else {
1456 		ASSERT(bp->b_datap->db_type == M_COPYIN);
1457 		count = ((struct copyreq *)bp->b_rptr)->cq_size;
1458 	}
1459 	/*
1460 	 * strdoioctl validates ioc_count, so if this assert fails it
1461 	 * cannot be due to user error.
1462 	 */
1463 	ASSERT(count >= 0);
1464 
1465 	if ((tmp = allocb_cred_wait(count, (flag & STR_NOSIG), &error, cr,
1466 	    curproc->p_pid)) == NULL) {
1467 		return (error);
1468 	}
1469 	error = strcopyin(arg, tmp->b_wptr, count, flag & (U_TO_K|K_TO_K));
1470 	if (error != 0) {
1471 		freeb(tmp);
1472 		return (error);
1473 	}
1474 	DB_CPID(tmp) = curproc->p_pid;
1475 	tmp->b_wptr += count;
1476 	bp->b_cont = tmp;
1477 
1478 	return (0);
1479 }
1480 
1481 /*
1482  * Copy ioctl data to user-land. Return non-zero errno on failure,
1483  * 0 for success.
1484  */
1485 int
1486 getiocd(mblk_t *bp, char *arg, int copymode)
1487 {
1488 	ssize_t count;
1489 	size_t  n;
1490 	int	error;
1491 
1492 	if (bp->b_datap->db_type == M_IOCACK)
1493 		count = ((struct iocblk *)bp->b_rptr)->ioc_count;
1494 	else {
1495 		ASSERT(bp->b_datap->db_type == M_COPYOUT);
1496 		count = ((struct copyreq *)bp->b_rptr)->cq_size;
1497 	}
1498 	ASSERT(count >= 0);
1499 
1500 	for (bp = bp->b_cont; bp && count;
1501 	    count -= n, bp = bp->b_cont, arg += n) {
1502 		n = MIN(count, bp->b_wptr - bp->b_rptr);
1503 		error = strcopyout(bp->b_rptr, arg, n, copymode);
1504 		if (error)
1505 			return (error);
1506 	}
1507 	ASSERT(count == 0);
1508 	return (0);
1509 }
1510 
1511 /*
1512  * Allocate a linkinfo entry given the write queue of the
1513  * bottom module of the top stream and the write queue of the
1514  * stream head of the bottom stream.
1515  */
1516 linkinfo_t *
1517 alloclink(queue_t *qup, queue_t *qdown, file_t *fpdown)
1518 {
1519 	linkinfo_t *linkp;
1520 
1521 	linkp = kmem_cache_alloc(linkinfo_cache, KM_SLEEP);
1522 
1523 	linkp->li_lblk.l_qtop = qup;
1524 	linkp->li_lblk.l_qbot = qdown;
1525 	linkp->li_fpdown = fpdown;
1526 
1527 	mutex_enter(&strresources);
1528 	linkp->li_next = linkinfo_list;
1529 	linkp->li_prev = NULL;
1530 	if (linkp->li_next)
1531 		linkp->li_next->li_prev = linkp;
1532 	linkinfo_list = linkp;
1533 	linkp->li_lblk.l_index = ++lnk_id;
1534 	ASSERT(lnk_id != 0);	/* this should never wrap in practice */
1535 	mutex_exit(&strresources);
1536 
1537 	return (linkp);
1538 }
1539 
1540 /*
1541  * Free a linkinfo entry.
1542  */
1543 void
1544 lbfree(linkinfo_t *linkp)
1545 {
1546 	mutex_enter(&strresources);
1547 	if (linkp->li_next)
1548 		linkp->li_next->li_prev = linkp->li_prev;
1549 	if (linkp->li_prev)
1550 		linkp->li_prev->li_next = linkp->li_next;
1551 	else
1552 		linkinfo_list = linkp->li_next;
1553 	mutex_exit(&strresources);
1554 
1555 	kmem_cache_free(linkinfo_cache, linkp);
1556 }
1557 
1558 /*
1559  * Check for a potential linking cycle.
1560  * Return 1 if a link will result in a cycle,
1561  * and 0 otherwise.
1562  */
1563 int
1564 linkcycle(stdata_t *upstp, stdata_t *lostp, str_stack_t *ss)
1565 {
1566 	struct mux_node *np;
1567 	struct mux_edge *ep;
1568 	int i;
1569 	major_t lomaj;
1570 	major_t upmaj;
1571 	/*
1572 	 * if the lower stream is a pipe/FIFO, return, since link
1573 	 * cycles can not happen on pipes/FIFOs
1574 	 */
1575 	if (lostp->sd_vnode->v_type == VFIFO)
1576 		return (0);
1577 
1578 	for (i = 0; i < ss->ss_devcnt; i++) {
1579 		np = &ss->ss_mux_nodes[i];
1580 		MUX_CLEAR(np);
1581 	}
1582 	lomaj = getmajor(lostp->sd_vnode->v_rdev);
1583 	upmaj = getmajor(upstp->sd_vnode->v_rdev);
1584 	np = &ss->ss_mux_nodes[lomaj];
1585 	for (;;) {
1586 		if (!MUX_DIDVISIT(np)) {
1587 			if (np->mn_imaj == upmaj)
1588 				return (1);
1589 			if (np->mn_outp == NULL) {
1590 				MUX_VISIT(np);
1591 				if (np->mn_originp == NULL)
1592 					return (0);
1593 				np = np->mn_originp;
1594 				continue;
1595 			}
1596 			MUX_VISIT(np);
1597 			np->mn_startp = np->mn_outp;
1598 		} else {
1599 			if (np->mn_startp == NULL) {
1600 				if (np->mn_originp == NULL)
1601 					return (0);
1602 				else {
1603 					np = np->mn_originp;
1604 					continue;
1605 				}
1606 			}
1607 			/*
1608 			 * If ep->me_nodep is a FIFO (me_nodep == NULL),
1609 			 * ignore the edge and move on. ep->me_nodep gets
1610 			 * set to NULL in mux_addedge() if it is a FIFO.
1611 			 *
1612 			 */
1613 			ep = np->mn_startp;
1614 			np->mn_startp = ep->me_nextp;
1615 			if (ep->me_nodep == NULL)
1616 				continue;
1617 			ep->me_nodep->mn_originp = np;
1618 			np = ep->me_nodep;
1619 		}
1620 	}
1621 }
1622 
1623 /*
1624  * Find linkinfo entry corresponding to the parameters.
1625  */
1626 linkinfo_t *
1627 findlinks(stdata_t *stp, int index, int type, str_stack_t *ss)
1628 {
1629 	linkinfo_t *linkp;
1630 	struct mux_edge *mep;
1631 	struct mux_node *mnp;
1632 	queue_t *qup;
1633 
1634 	mutex_enter(&strresources);
1635 	if ((type & LINKTYPEMASK) == LINKNORMAL) {
1636 		qup = getendq(stp->sd_wrq);
1637 		for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
1638 			if ((qup == linkp->li_lblk.l_qtop) &&
1639 			    (!index || (index == linkp->li_lblk.l_index))) {
1640 				mutex_exit(&strresources);
1641 				return (linkp);
1642 			}
1643 		}
1644 	} else {
1645 		ASSERT((type & LINKTYPEMASK) == LINKPERSIST);
1646 		mnp = &ss->ss_mux_nodes[getmajor(stp->sd_vnode->v_rdev)];
1647 		mep = mnp->mn_outp;
1648 		while (mep) {
1649 			if ((index == 0) || (index == mep->me_muxid))
1650 				break;
1651 			mep = mep->me_nextp;
1652 		}
1653 		if (!mep) {
1654 			mutex_exit(&strresources);
1655 			return (NULL);
1656 		}
1657 		for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
1658 			if ((!linkp->li_lblk.l_qtop) &&
1659 			    (mep->me_muxid == linkp->li_lblk.l_index)) {
1660 				mutex_exit(&strresources);
1661 				return (linkp);
1662 			}
1663 		}
1664 	}
1665 	mutex_exit(&strresources);
1666 	return (NULL);
1667 }
1668 
1669 /*
1670  * Given a queue ptr, follow the chain of q_next pointers until you reach the
1671  * last queue on the chain and return it.
1672  */
1673 queue_t *
1674 getendq(queue_t *q)
1675 {
1676 	ASSERT(q != NULL);
1677 	while (_SAMESTR(q))
1678 		q = q->q_next;
1679 	return (q);
1680 }
1681 
1682 /*
1683  * Wait for the syncq count to drop to zero.
1684  * sq could be either outer or inner.
1685  */
1686 
1687 static void
1688 wait_syncq(syncq_t *sq)
1689 {
1690 	uint16_t count;
1691 
1692 	mutex_enter(SQLOCK(sq));
1693 	count = sq->sq_count;
1694 	SQ_PUTLOCKS_ENTER(sq);
1695 	SUM_SQ_PUTCOUNTS(sq, count);
1696 	while (count != 0) {
1697 		sq->sq_flags |= SQ_WANTWAKEUP;
1698 		SQ_PUTLOCKS_EXIT(sq);
1699 		cv_wait(&sq->sq_wait, SQLOCK(sq));
1700 		count = sq->sq_count;
1701 		SQ_PUTLOCKS_ENTER(sq);
1702 		SUM_SQ_PUTCOUNTS(sq, count);
1703 	}
1704 	SQ_PUTLOCKS_EXIT(sq);
1705 	mutex_exit(SQLOCK(sq));
1706 }
1707 
1708 /*
1709  * Wait while there are any messages for the queue in its syncq.
1710  */
1711 static void
1712 wait_q_syncq(queue_t *q)
1713 {
1714 	if ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
1715 		syncq_t *sq = q->q_syncq;
1716 
1717 		mutex_enter(SQLOCK(sq));
1718 		while ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
1719 			sq->sq_flags |= SQ_WANTWAKEUP;
1720 			cv_wait(&sq->sq_wait, SQLOCK(sq));
1721 		}
1722 		mutex_exit(SQLOCK(sq));
1723 	}
1724 }
1725 
1726 
1727 int
1728 mlink_file(vnode_t *vp, int cmd, struct file *fpdown, cred_t *crp, int *rvalp,
1729     int lhlink)
1730 {
1731 	struct stdata *stp;
1732 	struct strioctl strioc;
1733 	struct linkinfo *linkp;
1734 	struct stdata *stpdown;
1735 	struct streamtab *str;
1736 	queue_t *passq;
1737 	syncq_t *passyncq;
1738 	queue_t *rq;
1739 	cdevsw_impl_t *dp;
1740 	uint32_t qflag;
1741 	uint32_t sqtype;
1742 	perdm_t *dmp;
1743 	int error = 0;
1744 	netstack_t *ns;
1745 	str_stack_t *ss;
1746 
1747 	stp = vp->v_stream;
1748 	TRACE_1(TR_FAC_STREAMS_FR,
1749 	    TR_I_LINK, "I_LINK/I_PLINK:stp %p", stp);
1750 	/*
1751 	 * Test for invalid upper stream
1752 	 */
1753 	if (stp->sd_flag & STRHUP) {
1754 		return (ENXIO);
1755 	}
1756 	if (vp->v_type == VFIFO) {
1757 		return (EINVAL);
1758 	}
1759 	if (stp->sd_strtab == NULL) {
1760 		return (EINVAL);
1761 	}
1762 	if (!stp->sd_strtab->st_muxwinit) {
1763 		return (EINVAL);
1764 	}
1765 	if (fpdown == NULL) {
1766 		return (EBADF);
1767 	}
1768 	ns = netstack_find_by_cred(crp);
1769 	ASSERT(ns != NULL);
1770 	ss = ns->netstack_str;
1771 	ASSERT(ss != NULL);
1772 
1773 	if (getmajor(stp->sd_vnode->v_rdev) >= ss->ss_devcnt) {
1774 		netstack_rele(ss->ss_netstack);
1775 		return (EINVAL);
1776 	}
1777 	mutex_enter(&muxifier);
1778 	if (stp->sd_flag & STPLEX) {
1779 		mutex_exit(&muxifier);
1780 		netstack_rele(ss->ss_netstack);
1781 		return (ENXIO);
1782 	}
1783 
1784 	/*
1785 	 * Test for invalid lower stream.
1786 	 * The check for the v_type != VFIFO and having a major
1787 	 * number not >= devcnt is done to avoid problems with
1788 	 * adding mux_node entry past the end of mux_nodes[].
1789 	 * For FIFO's we don't add an entry so this isn't a
1790 	 * problem.
1791 	 */
1792 	if (((stpdown = fpdown->f_vnode->v_stream) == NULL) ||
1793 	    (stpdown == stp) || (stpdown->sd_flag &
1794 	    (STPLEX|STRHUP|STRDERR|STWRERR|IOCWAIT|STRPLUMB)) ||
1795 	    ((stpdown->sd_vnode->v_type != VFIFO) &&
1796 	    (getmajor(stpdown->sd_vnode->v_rdev) >= ss->ss_devcnt)) ||
1797 	    linkcycle(stp, stpdown, ss)) {
1798 		mutex_exit(&muxifier);
1799 		netstack_rele(ss->ss_netstack);
1800 		return (EINVAL);
1801 	}
1802 	TRACE_1(TR_FAC_STREAMS_FR,
1803 	    TR_STPDOWN, "stpdown:%p", stpdown);
1804 	rq = getendq(stp->sd_wrq);
1805 	if (cmd == I_PLINK)
1806 		rq = NULL;
1807 
1808 	linkp = alloclink(rq, stpdown->sd_wrq, fpdown);
1809 
1810 	strioc.ic_cmd = cmd;
1811 	strioc.ic_timout = INFTIM;
1812 	strioc.ic_len = sizeof (struct linkblk);
1813 	strioc.ic_dp = (char *)&linkp->li_lblk;
1814 
1815 	/*
1816 	 * STRPLUMB protects plumbing changes and should be set before
1817 	 * link_addpassthru()/link_rempassthru() are called, so it is set here
1818 	 * and cleared in the end of mlink when passthru queue is removed.
1819 	 * Setting of STRPLUMB prevents reopens of the stream while passthru
1820 	 * queue is in-place (it is not a proper module and doesn't have open
1821 	 * entry point).
1822 	 *
1823 	 * STPLEX prevents any threads from entering the stream from above. It
1824 	 * can't be set before the call to link_addpassthru() because putnext
1825 	 * from below may cause stream head I/O routines to be called and these
1826 	 * routines assert that STPLEX is not set. After link_addpassthru()
1827 	 * nothing may come from below since the pass queue syncq is blocked.
1828 	 * Note also that STPLEX should be cleared before the call to
1829 	 * link_rempassthru() since when messages start flowing to the stream
1830 	 * head (e.g. because of message propagation from the pass queue) stream
1831 	 * head I/O routines may be called with STPLEX flag set.
1832 	 *
1833 	 * When STPLEX is set, nothing may come into the stream from above and
1834 	 * it is safe to do a setq which will change stream head. So, the
1835 	 * correct sequence of actions is:
1836 	 *
1837 	 * 1) Set STRPLUMB
1838 	 * 2) Call link_addpassthru()
1839 	 * 3) Set STPLEX
1840 	 * 4) Call setq and update the stream state
1841 	 * 5) Clear STPLEX
1842 	 * 6) Call link_rempassthru()
1843 	 * 7) Clear STRPLUMB
1844 	 *
1845 	 * The same sequence applies to munlink() code.
1846 	 */
1847 	mutex_enter(&stpdown->sd_lock);
1848 	stpdown->sd_flag |= STRPLUMB;
1849 	mutex_exit(&stpdown->sd_lock);
1850 	/*
1851 	 * Add passthru queue below lower mux. This will block
1852 	 * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
1853 	 */
1854 	passq = link_addpassthru(stpdown);
1855 
1856 	mutex_enter(&stpdown->sd_lock);
1857 	stpdown->sd_flag |= STPLEX;
1858 	mutex_exit(&stpdown->sd_lock);
1859 
1860 	rq = _RD(stpdown->sd_wrq);
1861 	/*
1862 	 * There may be messages in the streamhead's syncq due to messages
1863 	 * that arrived before link_addpassthru() was done. To avoid
1864 	 * background processing of the syncq happening simultaneous with
1865 	 * setq processing, we disable the streamhead syncq and wait until
1866 	 * existing background thread finishes working on it.
1867 	 */
1868 	wait_sq_svc(rq->q_syncq);
1869 	passyncq = passq->q_syncq;
1870 	if (!(passyncq->sq_flags & SQ_BLOCKED))
1871 		blocksq(passyncq, SQ_BLOCKED, 0);
1872 
1873 	ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
1874 	ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
1875 	rq->q_ptr = _WR(rq)->q_ptr = NULL;
1876 
1877 	/* setq might sleep in allocator - avoid holding locks. */
1878 	/* Note: we are holding muxifier here. */
1879 
1880 	str = stp->sd_strtab;
1881 	dp = &devimpl[getmajor(vp->v_rdev)];
1882 	ASSERT(dp->d_str == str);
1883 
1884 	qflag = dp->d_qflag;
1885 	sqtype = dp->d_sqtype;
1886 
1887 	/* create perdm_t if needed */
1888 	if (NEED_DM(dp->d_dmp, qflag))
1889 		dp->d_dmp = hold_dm(str, qflag, sqtype);
1890 
1891 	dmp = dp->d_dmp;
1892 
1893 	setq(rq, str->st_muxrinit, str->st_muxwinit, dmp, qflag, sqtype,
1894 	    B_TRUE);
1895 
1896 	/*
1897 	 * XXX Remove any "odd" messages from the queue.
1898 	 * Keep only M_DATA, M_PROTO, M_PCPROTO.
1899 	 */
1900 	error = strdoioctl(stp, &strioc, FNATIVE,
1901 	    K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
1902 	if (error != 0) {
1903 		lbfree(linkp);
1904 
1905 		if (!(passyncq->sq_flags & SQ_BLOCKED))
1906 			blocksq(passyncq, SQ_BLOCKED, 0);
1907 		/*
1908 		 * Restore the stream head queue and then remove
1909 		 * the passq. Turn off STPLEX before we turn on
1910 		 * the stream by removing the passq.
1911 		 */
1912 		rq->q_ptr = _WR(rq)->q_ptr = stpdown;
1913 		setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO,
1914 		    B_TRUE);
1915 
1916 		mutex_enter(&stpdown->sd_lock);
1917 		stpdown->sd_flag &= ~STPLEX;
1918 		mutex_exit(&stpdown->sd_lock);
1919 
1920 		link_rempassthru(passq);
1921 
1922 		mutex_enter(&stpdown->sd_lock);
1923 		stpdown->sd_flag &= ~STRPLUMB;
1924 		/* Wakeup anyone waiting for STRPLUMB to clear. */
1925 		cv_broadcast(&stpdown->sd_monitor);
1926 		mutex_exit(&stpdown->sd_lock);
1927 
1928 		mutex_exit(&muxifier);
1929 		netstack_rele(ss->ss_netstack);
1930 		return (error);
1931 	}
1932 	mutex_enter(&fpdown->f_tlock);
1933 	fpdown->f_count++;
1934 	mutex_exit(&fpdown->f_tlock);
1935 
1936 	/*
1937 	 * if we've made it here the linkage is all set up so we should also
1938 	 * set up the layered driver linkages
1939 	 */
1940 
1941 	ASSERT((cmd == I_LINK) || (cmd == I_PLINK));
1942 	if (cmd == I_LINK) {
1943 		ldi_mlink_fp(stp, fpdown, lhlink, LINKNORMAL);
1944 	} else {
1945 		ldi_mlink_fp(stp, fpdown, lhlink, LINKPERSIST);
1946 	}
1947 
1948 	link_rempassthru(passq);
1949 
1950 	mux_addedge(stp, stpdown, linkp->li_lblk.l_index, ss);
1951 
1952 	/*
1953 	 * Mark the upper stream as having dependent links
1954 	 * so that strclose can clean it up.
1955 	 */
1956 	if (cmd == I_LINK) {
1957 		mutex_enter(&stp->sd_lock);
1958 		stp->sd_flag |= STRHASLINKS;
1959 		mutex_exit(&stp->sd_lock);
1960 	}
1961 	/*
1962 	 * Wake up any other processes that may have been
1963 	 * waiting on the lower stream. These will all
1964 	 * error out.
1965 	 */
1966 	mutex_enter(&stpdown->sd_lock);
1967 	/* The passthru module is removed so we may release STRPLUMB */
1968 	stpdown->sd_flag &= ~STRPLUMB;
1969 	cv_broadcast(&rq->q_wait);
1970 	cv_broadcast(&_WR(rq)->q_wait);
1971 	cv_broadcast(&stpdown->sd_monitor);
1972 	mutex_exit(&stpdown->sd_lock);
1973 	mutex_exit(&muxifier);
1974 	*rvalp = linkp->li_lblk.l_index;
1975 	netstack_rele(ss->ss_netstack);
1976 	return (0);
1977 }
1978 
1979 int
1980 mlink(vnode_t *vp, int cmd, int arg, cred_t *crp, int *rvalp, int lhlink)
1981 {
1982 	int		ret;
1983 	struct file	*fpdown;
1984 
1985 	fpdown = getf(arg);
1986 	ret = mlink_file(vp, cmd, fpdown, crp, rvalp, lhlink);
1987 	if (fpdown != NULL)
1988 		releasef(arg);
1989 	return (ret);
1990 }
1991 
1992 /*
1993  * Unlink a multiplexor link. Stp is the controlling stream for the
1994  * link, and linkp points to the link's entry in the linkinfo list.
1995  * The muxifier lock must be held on entry and is dropped on exit.
1996  *
1997  * NOTE : Currently it is assumed that mux would process all the messages
1998  * sitting on it's queue before ACKing the UNLINK. It is the responsibility
1999  * of the mux to handle all the messages that arrive before UNLINK.
2000  * If the mux has to send down messages on its lower stream before
2001  * ACKing I_UNLINK, then it *should* know to handle messages even
2002  * after the UNLINK is acked (actually it should be able to handle till we
2003  * re-block the read side of the pass queue here). If the mux does not
2004  * open up the lower stream, any messages that arrive during UNLINK
2005  * will be put in the stream head. In the case of lower stream opening
2006  * up, some messages might land in the stream head depending on when
2007  * the message arrived and when the read side of the pass queue was
2008  * re-blocked.
2009  */
2010 int
2011 munlink(stdata_t *stp, linkinfo_t *linkp, int flag, cred_t *crp, int *rvalp,
2012     str_stack_t *ss)
2013 {
2014 	struct strioctl strioc;
2015 	struct stdata *stpdown;
2016 	queue_t *rq, *wrq;
2017 	queue_t	*passq;
2018 	syncq_t *passyncq;
2019 	int error = 0;
2020 	file_t *fpdown;
2021 
2022 	ASSERT(MUTEX_HELD(&muxifier));
2023 
2024 	stpdown = linkp->li_fpdown->f_vnode->v_stream;
2025 
2026 	/*
2027 	 * See the comment in mlink() concerning STRPLUMB/STPLEX flags.
2028 	 */
2029 	mutex_enter(&stpdown->sd_lock);
2030 	stpdown->sd_flag |= STRPLUMB;
2031 	mutex_exit(&stpdown->sd_lock);
2032 
2033 	/*
2034 	 * Add passthru queue below lower mux. This will block
2035 	 * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
2036 	 */
2037 	passq = link_addpassthru(stpdown);
2038 
2039 	if ((flag & LINKTYPEMASK) == LINKNORMAL)
2040 		strioc.ic_cmd = I_UNLINK;
2041 	else
2042 		strioc.ic_cmd = I_PUNLINK;
2043 	strioc.ic_timout = INFTIM;
2044 	strioc.ic_len = sizeof (struct linkblk);
2045 	strioc.ic_dp = (char *)&linkp->li_lblk;
2046 
2047 	error = strdoioctl(stp, &strioc, FNATIVE,
2048 	    K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
2049 
2050 	/*
2051 	 * If there was an error and this is not called via strclose,
2052 	 * return to the user. Otherwise, pretend there was no error
2053 	 * and close the link.
2054 	 */
2055 	if (error) {
2056 		if (flag & LINKCLOSE) {
2057 			cmn_err(CE_WARN, "KERNEL: munlink: could not perform "
2058 			    "unlink ioctl, closing anyway (%d)\n", error);
2059 		} else {
2060 			link_rempassthru(passq);
2061 			mutex_enter(&stpdown->sd_lock);
2062 			stpdown->sd_flag &= ~STRPLUMB;
2063 			cv_broadcast(&stpdown->sd_monitor);
2064 			mutex_exit(&stpdown->sd_lock);
2065 			mutex_exit(&muxifier);
2066 			return (error);
2067 		}
2068 	}
2069 
2070 	mux_rmvedge(stp, linkp->li_lblk.l_index, ss);
2071 	fpdown = linkp->li_fpdown;
2072 	lbfree(linkp);
2073 
2074 	/*
2075 	 * We go ahead and drop muxifier here--it's a nasty global lock that
2076 	 * can slow others down. It's okay to since attempts to mlink() this
2077 	 * stream will be stopped because STPLEX is still set in the stdata
2078 	 * structure, and munlink() is stopped because mux_rmvedge() and
2079 	 * lbfree() have removed it from mux_nodes[] and linkinfo_list,
2080 	 * respectively.  Note that we defer the closef() of fpdown until
2081 	 * after we drop muxifier since strclose() can call munlinkall().
2082 	 */
2083 	mutex_exit(&muxifier);
2084 
2085 	wrq = stpdown->sd_wrq;
2086 	rq = _RD(wrq);
2087 
2088 	/*
2089 	 * Get rid of outstanding service procedure runs, before we make
2090 	 * it a stream head, since a stream head doesn't have any service
2091 	 * procedure.
2092 	 */
2093 	disable_svc(rq);
2094 	wait_svc(rq);
2095 
2096 	/*
2097 	 * Since we don't disable the syncq for QPERMOD, we wait for whatever
2098 	 * is queued up to be finished. mux should take care that nothing is
2099 	 * send down to this queue. We should do it now as we're going to block
2100 	 * passyncq if it was unblocked.
2101 	 */
2102 	if (wrq->q_flag & QPERMOD) {
2103 		syncq_t	*sq = wrq->q_syncq;
2104 
2105 		mutex_enter(SQLOCK(sq));
2106 		while (wrq->q_sqflags & Q_SQQUEUED) {
2107 			sq->sq_flags |= SQ_WANTWAKEUP;
2108 			cv_wait(&sq->sq_wait, SQLOCK(sq));
2109 		}
2110 		mutex_exit(SQLOCK(sq));
2111 	}
2112 	passyncq = passq->q_syncq;
2113 	if (!(passyncq->sq_flags & SQ_BLOCKED)) {
2114 
2115 		syncq_t *sq, *outer;
2116 
2117 		/*
2118 		 * Messages could be flowing from underneath. We will
2119 		 * block the read side of the passq. This would be
2120 		 * sufficient for QPAIR and QPERQ muxes to ensure
2121 		 * that no data is flowing up into this queue
2122 		 * and hence no thread active in this instance of
2123 		 * lower mux. But for QPERMOD and QMTOUTPERIM there
2124 		 * could be messages on the inner and outer/inner
2125 		 * syncqs respectively. We will wait for them to drain.
2126 		 * Because passq is blocked messages end up in the syncq
2127 		 * And qfill_syncq could possibly end up setting QFULL
2128 		 * which will access the rq->q_flag. Hence, we have to
2129 		 * acquire the QLOCK in setq.
2130 		 *
2131 		 * XXX Messages can also flow from top into this
2132 		 * queue though the unlink is over (Ex. some instance
2133 		 * in putnext() called from top that has still not
2134 		 * accessed this queue. And also putq(lowerq) ?).
2135 		 * Solution : How about blocking the l_qtop queue ?
2136 		 * Do we really care about such pure D_MP muxes ?
2137 		 */
2138 
2139 		blocksq(passyncq, SQ_BLOCKED, 0);
2140 
2141 		sq = rq->q_syncq;
2142 		if ((outer = sq->sq_outer) != NULL) {
2143 
2144 			/*
2145 			 * We have to just wait for the outer sq_count
2146 			 * drop to zero. As this does not prevent new
2147 			 * messages to enter the outer perimeter, this
2148 			 * is subject to starvation.
2149 			 *
2150 			 * NOTE :Because of blocksq above, messages could
2151 			 * be in the inner syncq only because of some
2152 			 * thread holding the outer perimeter exclusively.
2153 			 * Hence it would be sufficient to wait for the
2154 			 * exclusive holder of the outer perimeter to drain
2155 			 * the inner and outer syncqs. But we will not depend
2156 			 * on this feature and hence check the inner syncqs
2157 			 * separately.
2158 			 */
2159 			wait_syncq(outer);
2160 		}
2161 
2162 
2163 		/*
2164 		 * There could be messages destined for
2165 		 * this queue. Let the exclusive holder
2166 		 * drain it.
2167 		 */
2168 
2169 		wait_syncq(sq);
2170 		ASSERT((rq->q_flag & QPERMOD) ||
2171 		    ((rq->q_syncq->sq_head == NULL) &&
2172 		    (_WR(rq)->q_syncq->sq_head == NULL)));
2173 	}
2174 
2175 	/*
2176 	 * We haven't taken care of QPERMOD case yet. QPERMOD is a special
2177 	 * case as we don't disable its syncq or remove it off the syncq
2178 	 * service list.
2179 	 */
2180 	if (rq->q_flag & QPERMOD) {
2181 		syncq_t	*sq = rq->q_syncq;
2182 
2183 		mutex_enter(SQLOCK(sq));
2184 		while (rq->q_sqflags & Q_SQQUEUED) {
2185 			sq->sq_flags |= SQ_WANTWAKEUP;
2186 			cv_wait(&sq->sq_wait, SQLOCK(sq));
2187 		}
2188 		mutex_exit(SQLOCK(sq));
2189 	}
2190 
2191 	/*
2192 	 * flush_syncq changes states only when there are some messages to
2193 	 * free, i.e. when it returns non-zero value to return.
2194 	 */
2195 	ASSERT(flush_syncq(rq->q_syncq, rq) == 0);
2196 	ASSERT(flush_syncq(wrq->q_syncq, wrq) == 0);
2197 
2198 	/*
2199 	 * Nobody else should know about this queue now.
2200 	 * If the mux did not process the messages before
2201 	 * acking the I_UNLINK, free them now.
2202 	 */
2203 
2204 	flushq(rq, FLUSHALL);
2205 	flushq(_WR(rq), FLUSHALL);
2206 
2207 	/*
2208 	 * Convert the mux lower queue into a stream head queue.
2209 	 * Turn off STPLEX before we turn on the stream by removing the passq.
2210 	 */
2211 	rq->q_ptr = wrq->q_ptr = stpdown;
2212 	setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_TRUE);
2213 
2214 	ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
2215 	ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
2216 
2217 	enable_svc(rq);
2218 
2219 	/*
2220 	 * Now it is a proper stream, so STPLEX is cleared. But STRPLUMB still
2221 	 * needs to be set to prevent reopen() of the stream - such reopen may
2222 	 * try to call non-existent pass queue open routine and panic.
2223 	 */
2224 	mutex_enter(&stpdown->sd_lock);
2225 	stpdown->sd_flag &= ~STPLEX;
2226 	mutex_exit(&stpdown->sd_lock);
2227 
2228 	ASSERT(((flag & LINKTYPEMASK) == LINKNORMAL) ||
2229 	    ((flag & LINKTYPEMASK) == LINKPERSIST));
2230 
2231 	/* clean up the layered driver linkages */
2232 	if ((flag & LINKTYPEMASK) == LINKNORMAL) {
2233 		ldi_munlink_fp(stp, fpdown, LINKNORMAL);
2234 	} else {
2235 		ldi_munlink_fp(stp, fpdown, LINKPERSIST);
2236 	}
2237 
2238 	link_rempassthru(passq);
2239 
2240 	/*
2241 	 * Now all plumbing changes are finished and STRPLUMB is no
2242 	 * longer needed.
2243 	 */
2244 	mutex_enter(&stpdown->sd_lock);
2245 	stpdown->sd_flag &= ~STRPLUMB;
2246 	cv_broadcast(&stpdown->sd_monitor);
2247 	mutex_exit(&stpdown->sd_lock);
2248 
2249 	(void) closef(fpdown);
2250 	return (0);
2251 }
2252 
2253 /*
2254  * Unlink all multiplexor links for which stp is the controlling stream.
2255  * Return 0, or a non-zero errno on failure.
2256  */
2257 int
2258 munlinkall(stdata_t *stp, int flag, cred_t *crp, int *rvalp, str_stack_t *ss)
2259 {
2260 	linkinfo_t *linkp;
2261 	int error = 0;
2262 
2263 	mutex_enter(&muxifier);
2264 	while (linkp = findlinks(stp, 0, flag, ss)) {
2265 		/*
2266 		 * munlink() releases the muxifier lock.
2267 		 */
2268 		if (error = munlink(stp, linkp, flag, crp, rvalp, ss))
2269 			return (error);
2270 		mutex_enter(&muxifier);
2271 	}
2272 	mutex_exit(&muxifier);
2273 	return (0);
2274 }
2275 
2276 /*
2277  * A multiplexor link has been made. Add an
2278  * edge to the directed graph.
2279  */
2280 void
2281 mux_addedge(stdata_t *upstp, stdata_t *lostp, int muxid, str_stack_t *ss)
2282 {
2283 	struct mux_node *np;
2284 	struct mux_edge *ep;
2285 	major_t upmaj;
2286 	major_t lomaj;
2287 
2288 	upmaj = getmajor(upstp->sd_vnode->v_rdev);
2289 	lomaj = getmajor(lostp->sd_vnode->v_rdev);
2290 	np = &ss->ss_mux_nodes[upmaj];
2291 	if (np->mn_outp) {
2292 		ep = np->mn_outp;
2293 		while (ep->me_nextp)
2294 			ep = ep->me_nextp;
2295 		ep->me_nextp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
2296 		ep = ep->me_nextp;
2297 	} else {
2298 		np->mn_outp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
2299 		ep = np->mn_outp;
2300 	}
2301 	ep->me_nextp = NULL;
2302 	ep->me_muxid = muxid;
2303 	/*
2304 	 * Save the dev_t for the purposes of str_stack_shutdown.
2305 	 * str_stack_shutdown assumes that the device allows reopen, since
2306 	 * this dev_t is the one after any cloning by xx_open().
2307 	 * Would prefer finding the dev_t from before any cloning,
2308 	 * but specfs doesn't retain that.
2309 	 */
2310 	ep->me_dev = upstp->sd_vnode->v_rdev;
2311 	if (lostp->sd_vnode->v_type == VFIFO)
2312 		ep->me_nodep = NULL;
2313 	else
2314 		ep->me_nodep = &ss->ss_mux_nodes[lomaj];
2315 }
2316 
2317 /*
2318  * A multiplexor link has been removed. Remove the
2319  * edge in the directed graph.
2320  */
2321 void
2322 mux_rmvedge(stdata_t *upstp, int muxid, str_stack_t *ss)
2323 {
2324 	struct mux_node *np;
2325 	struct mux_edge *ep;
2326 	struct mux_edge *pep = NULL;
2327 	major_t upmaj;
2328 
2329 	upmaj = getmajor(upstp->sd_vnode->v_rdev);
2330 	np = &ss->ss_mux_nodes[upmaj];
2331 	ASSERT(np->mn_outp != NULL);
2332 	ep = np->mn_outp;
2333 	while (ep) {
2334 		if (ep->me_muxid == muxid) {
2335 			if (pep)
2336 				pep->me_nextp = ep->me_nextp;
2337 			else
2338 				np->mn_outp = ep->me_nextp;
2339 			kmem_free(ep, sizeof (struct mux_edge));
2340 			return;
2341 		}
2342 		pep = ep;
2343 		ep = ep->me_nextp;
2344 	}
2345 	ASSERT(0);	/* should not reach here */
2346 }
2347 
2348 /*
2349  * Translate the device flags (from conf.h) to the corresponding
2350  * qflag and sq_flag (type) values.
2351  */
2352 int
2353 devflg_to_qflag(struct streamtab *stp, uint32_t devflag, uint32_t *qflagp,
2354 	uint32_t *sqtypep)
2355 {
2356 	uint32_t qflag = 0;
2357 	uint32_t sqtype = 0;
2358 
2359 	if (devflag & _D_OLD)
2360 		goto bad;
2361 
2362 	/* Inner perimeter presence and scope */
2363 	switch (devflag & D_MTINNER_MASK) {
2364 	case D_MP:
2365 		qflag |= QMTSAFE;
2366 		sqtype |= SQ_CI;
2367 		break;
2368 	case D_MTPERQ|D_MP:
2369 		qflag |= QPERQ;
2370 		break;
2371 	case D_MTQPAIR|D_MP:
2372 		qflag |= QPAIR;
2373 		break;
2374 	case D_MTPERMOD|D_MP:
2375 		qflag |= QPERMOD;
2376 		break;
2377 	default:
2378 		goto bad;
2379 	}
2380 
2381 	/* Outer perimeter */
2382 	if (devflag & D_MTOUTPERIM) {
2383 		switch (devflag & D_MTINNER_MASK) {
2384 		case D_MP:
2385 		case D_MTPERQ|D_MP:
2386 		case D_MTQPAIR|D_MP:
2387 			break;
2388 		default:
2389 			goto bad;
2390 		}
2391 		qflag |= QMTOUTPERIM;
2392 	}
2393 
2394 	/* Inner perimeter modifiers */
2395 	if (devflag & D_MTINNER_MOD) {
2396 		switch (devflag & D_MTINNER_MASK) {
2397 		case D_MP:
2398 			goto bad;
2399 		default:
2400 			break;
2401 		}
2402 		if (devflag & D_MTPUTSHARED)
2403 			sqtype |= SQ_CIPUT;
2404 		if (devflag & _D_MTOCSHARED) {
2405 			/*
2406 			 * The code in putnext assumes that it has the
2407 			 * highest concurrency by not checking sq_count.
2408 			 * Thus _D_MTOCSHARED can only be supported when
2409 			 * D_MTPUTSHARED is set.
2410 			 */
2411 			if (!(devflag & D_MTPUTSHARED))
2412 				goto bad;
2413 			sqtype |= SQ_CIOC;
2414 		}
2415 		if (devflag & _D_MTCBSHARED) {
2416 			/*
2417 			 * The code in putnext assumes that it has the
2418 			 * highest concurrency by not checking sq_count.
2419 			 * Thus _D_MTCBSHARED can only be supported when
2420 			 * D_MTPUTSHARED is set.
2421 			 */
2422 			if (!(devflag & D_MTPUTSHARED))
2423 				goto bad;
2424 			sqtype |= SQ_CICB;
2425 		}
2426 		if (devflag & _D_MTSVCSHARED) {
2427 			/*
2428 			 * The code in putnext assumes that it has the
2429 			 * highest concurrency by not checking sq_count.
2430 			 * Thus _D_MTSVCSHARED can only be supported when
2431 			 * D_MTPUTSHARED is set. Also _D_MTSVCSHARED is
2432 			 * supported only for QPERMOD.
2433 			 */
2434 			if (!(devflag & D_MTPUTSHARED) || !(qflag & QPERMOD))
2435 				goto bad;
2436 			sqtype |= SQ_CISVC;
2437 		}
2438 	}
2439 
2440 	/* Default outer perimeter concurrency */
2441 	sqtype |= SQ_CO;
2442 
2443 	/* Outer perimeter modifiers */
2444 	if (devflag & D_MTOCEXCL) {
2445 		if (!(devflag & D_MTOUTPERIM)) {
2446 			/* No outer perimeter */
2447 			goto bad;
2448 		}
2449 		sqtype &= ~SQ_COOC;
2450 	}
2451 
2452 	/* Synchronous Streams extended qinit structure */
2453 	if (devflag & D_SYNCSTR)
2454 		qflag |= QSYNCSTR;
2455 
2456 	/*
2457 	 * Private flag used by a transport module to indicate
2458 	 * to sockfs that it supports direct-access mode without
2459 	 * having to go through STREAMS.
2460 	 */
2461 	if (devflag & _D_DIRECT) {
2462 		/* Reject unless the module is fully-MT (no perimeter) */
2463 		if ((qflag & QMT_TYPEMASK) != QMTSAFE)
2464 			goto bad;
2465 		qflag |= _QDIRECT;
2466 	}
2467 
2468 	*qflagp = qflag;
2469 	*sqtypep = sqtype;
2470 	return (0);
2471 
2472 bad:
2473 	cmn_err(CE_WARN,
2474 	    "stropen: bad MT flags (0x%x) in driver '%s'",
2475 	    (int)(qflag & D_MTSAFETY_MASK),
2476 	    stp->st_rdinit->qi_minfo->mi_idname);
2477 
2478 	return (EINVAL);
2479 }
2480 
2481 /*
2482  * Set the interface values for a pair of queues (qinit structure,
2483  * packet sizes, water marks).
2484  * setq assumes that the caller does not have a claim (entersq or claimq)
2485  * on the queue.
2486  */
2487 void
2488 setq(queue_t *rq, struct qinit *rinit, struct qinit *winit,
2489     perdm_t *dmp, uint32_t qflag, uint32_t sqtype, boolean_t lock_needed)
2490 {
2491 	queue_t *wq;
2492 	syncq_t	*sq, *outer;
2493 
2494 	ASSERT(rq->q_flag & QREADR);
2495 	ASSERT((qflag & QMT_TYPEMASK) != 0);
2496 	IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
2497 
2498 	wq = _WR(rq);
2499 	rq->q_qinfo = rinit;
2500 	rq->q_hiwat = rinit->qi_minfo->mi_hiwat;
2501 	rq->q_lowat = rinit->qi_minfo->mi_lowat;
2502 	rq->q_minpsz = rinit->qi_minfo->mi_minpsz;
2503 	rq->q_maxpsz = rinit->qi_minfo->mi_maxpsz;
2504 	wq->q_qinfo = winit;
2505 	wq->q_hiwat = winit->qi_minfo->mi_hiwat;
2506 	wq->q_lowat = winit->qi_minfo->mi_lowat;
2507 	wq->q_minpsz = winit->qi_minfo->mi_minpsz;
2508 	wq->q_maxpsz = winit->qi_minfo->mi_maxpsz;
2509 
2510 	/* Remove old syncqs */
2511 	sq = rq->q_syncq;
2512 	outer = sq->sq_outer;
2513 	if (outer != NULL) {
2514 		ASSERT(wq->q_syncq->sq_outer == outer);
2515 		outer_remove(outer, rq->q_syncq);
2516 		if (wq->q_syncq != rq->q_syncq)
2517 			outer_remove(outer, wq->q_syncq);
2518 	}
2519 	ASSERT(sq->sq_outer == NULL);
2520 	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
2521 
2522 	if (sq != SQ(rq)) {
2523 		if (!(rq->q_flag & QPERMOD))
2524 			free_syncq(sq);
2525 		if (wq->q_syncq == rq->q_syncq)
2526 			wq->q_syncq = NULL;
2527 		rq->q_syncq = NULL;
2528 	}
2529 	if (wq->q_syncq != NULL && wq->q_syncq != sq &&
2530 	    wq->q_syncq != SQ(rq)) {
2531 		free_syncq(wq->q_syncq);
2532 		wq->q_syncq = NULL;
2533 	}
2534 	ASSERT(rq->q_syncq == NULL || (rq->q_syncq->sq_head == NULL &&
2535 	    rq->q_syncq->sq_tail == NULL));
2536 	ASSERT(wq->q_syncq == NULL || (wq->q_syncq->sq_head == NULL &&
2537 	    wq->q_syncq->sq_tail == NULL));
2538 
2539 	if (!(rq->q_flag & QPERMOD) &&
2540 	    rq->q_syncq != NULL && rq->q_syncq->sq_ciputctrl != NULL) {
2541 		ASSERT(rq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
2542 		SUMCHECK_CIPUTCTRL_COUNTS(rq->q_syncq->sq_ciputctrl,
2543 		    rq->q_syncq->sq_nciputctrl, 0);
2544 		ASSERT(ciputctrl_cache != NULL);
2545 		kmem_cache_free(ciputctrl_cache, rq->q_syncq->sq_ciputctrl);
2546 		rq->q_syncq->sq_ciputctrl = NULL;
2547 		rq->q_syncq->sq_nciputctrl = 0;
2548 	}
2549 
2550 	if (!(wq->q_flag & QPERMOD) &&
2551 	    wq->q_syncq != NULL && wq->q_syncq->sq_ciputctrl != NULL) {
2552 		ASSERT(wq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
2553 		SUMCHECK_CIPUTCTRL_COUNTS(wq->q_syncq->sq_ciputctrl,
2554 		    wq->q_syncq->sq_nciputctrl, 0);
2555 		ASSERT(ciputctrl_cache != NULL);
2556 		kmem_cache_free(ciputctrl_cache, wq->q_syncq->sq_ciputctrl);
2557 		wq->q_syncq->sq_ciputctrl = NULL;
2558 		wq->q_syncq->sq_nciputctrl = 0;
2559 	}
2560 
2561 	sq = SQ(rq);
2562 	ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
2563 	ASSERT(sq->sq_outer == NULL);
2564 	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
2565 
2566 	/*
2567 	 * Create syncqs based on qflag and sqtype. Set the SQ_TYPES_IN_FLAGS
2568 	 * bits in sq_flag based on the sqtype.
2569 	 */
2570 	ASSERT((sq->sq_flags & ~SQ_TYPES_IN_FLAGS) == 0);
2571 
2572 	rq->q_syncq = wq->q_syncq = sq;
2573 	sq->sq_type = sqtype;
2574 	sq->sq_flags = (sqtype & SQ_TYPES_IN_FLAGS);
2575 
2576 	/*
2577 	 *  We are making sq_svcflags zero,
2578 	 *  resetting SQ_DISABLED in case it was set by
2579 	 *  wait_svc() in the munlink path.
2580 	 *
2581 	 */
2582 	ASSERT((sq->sq_svcflags & SQ_SERVICE) == 0);
2583 	sq->sq_svcflags = 0;
2584 
2585 	/*
2586 	 * We need to acquire the lock here for the mlink and munlink case,
2587 	 * where canputnext, backenable, etc can access the q_flag.
2588 	 */
2589 	if (lock_needed) {
2590 		mutex_enter(QLOCK(rq));
2591 		rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2592 		mutex_exit(QLOCK(rq));
2593 		mutex_enter(QLOCK(wq));
2594 		wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2595 		mutex_exit(QLOCK(wq));
2596 	} else {
2597 		rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2598 		wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2599 	}
2600 
2601 	if (qflag & QPERQ) {
2602 		/* Allocate a separate syncq for the write side */
2603 		sq = new_syncq();
2604 		sq->sq_type = rq->q_syncq->sq_type;
2605 		sq->sq_flags = rq->q_syncq->sq_flags;
2606 		ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
2607 		    sq->sq_oprev == NULL);
2608 		wq->q_syncq = sq;
2609 	}
2610 	if (qflag & QPERMOD) {
2611 		sq = dmp->dm_sq;
2612 
2613 		/*
2614 		 * Assert that we do have an inner perimeter syncq and that it
2615 		 * does not have an outer perimeter associated with it.
2616 		 */
2617 		ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
2618 		    sq->sq_oprev == NULL);
2619 		rq->q_syncq = wq->q_syncq = sq;
2620 	}
2621 	if (qflag & QMTOUTPERIM) {
2622 		outer = dmp->dm_sq;
2623 
2624 		ASSERT(outer->sq_outer == NULL);
2625 		outer_insert(outer, rq->q_syncq);
2626 		if (wq->q_syncq != rq->q_syncq)
2627 			outer_insert(outer, wq->q_syncq);
2628 	}
2629 	ASSERT((rq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
2630 	    (rq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
2631 	ASSERT((wq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
2632 	    (wq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
2633 	ASSERT((rq->q_flag & QMT_TYPEMASK) == (qflag & QMT_TYPEMASK));
2634 
2635 	/*
2636 	 * Initialize struio() types.
2637 	 */
2638 	rq->q_struiot =
2639 	    (rq->q_flag & QSYNCSTR) ? rinit->qi_struiot : STRUIOT_NONE;
2640 	wq->q_struiot =
2641 	    (wq->q_flag & QSYNCSTR) ? winit->qi_struiot : STRUIOT_NONE;
2642 }
2643 
2644 perdm_t *
2645 hold_dm(struct streamtab *str, uint32_t qflag, uint32_t sqtype)
2646 {
2647 	syncq_t	*sq;
2648 	perdm_t	**pp;
2649 	perdm_t	*p;
2650 	perdm_t	*dmp;
2651 
2652 	ASSERT(str != NULL);
2653 	ASSERT(qflag & (QPERMOD | QMTOUTPERIM));
2654 
2655 	rw_enter(&perdm_rwlock, RW_READER);
2656 	for (p = perdm_list; p != NULL; p = p->dm_next) {
2657 		if (p->dm_str == str) {	/* found one */
2658 			atomic_add_32(&(p->dm_ref), 1);
2659 			rw_exit(&perdm_rwlock);
2660 			return (p);
2661 		}
2662 	}
2663 	rw_exit(&perdm_rwlock);
2664 
2665 	sq = new_syncq();
2666 	if (qflag & QPERMOD) {
2667 		sq->sq_type = sqtype | SQ_PERMOD;
2668 		sq->sq_flags = sqtype & SQ_TYPES_IN_FLAGS;
2669 	} else {
2670 		ASSERT(qflag & QMTOUTPERIM);
2671 		sq->sq_onext = sq->sq_oprev = sq;
2672 	}
2673 
2674 	dmp = kmem_alloc(sizeof (perdm_t), KM_SLEEP);
2675 	dmp->dm_sq = sq;
2676 	dmp->dm_str = str;
2677 	dmp->dm_ref = 1;
2678 	dmp->dm_next = NULL;
2679 
2680 	rw_enter(&perdm_rwlock, RW_WRITER);
2681 	for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next)) {
2682 		if (p->dm_str == str) {	/* already present */
2683 			p->dm_ref++;
2684 			rw_exit(&perdm_rwlock);
2685 			free_syncq(sq);
2686 			kmem_free(dmp, sizeof (perdm_t));
2687 			return (p);
2688 		}
2689 	}
2690 
2691 	*pp = dmp;
2692 	rw_exit(&perdm_rwlock);
2693 	return (dmp);
2694 }
2695 
2696 void
2697 rele_dm(perdm_t *dmp)
2698 {
2699 	perdm_t **pp;
2700 	perdm_t *p;
2701 
2702 	rw_enter(&perdm_rwlock, RW_WRITER);
2703 	ASSERT(dmp->dm_ref > 0);
2704 
2705 	if (--dmp->dm_ref > 0) {
2706 		rw_exit(&perdm_rwlock);
2707 		return;
2708 	}
2709 
2710 	for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next))
2711 		if (p == dmp)
2712 			break;
2713 	ASSERT(p == dmp);
2714 	*pp = p->dm_next;
2715 	rw_exit(&perdm_rwlock);
2716 
2717 	/*
2718 	 * Wait for any background processing that relies on the
2719 	 * syncq to complete before it is freed.
2720 	 */
2721 	wait_sq_svc(p->dm_sq);
2722 	free_syncq(p->dm_sq);
2723 	kmem_free(p, sizeof (perdm_t));
2724 }
2725 
2726 /*
2727  * Make a protocol message given control and data buffers.
2728  * n.b., this can block; be careful of what locks you hold when calling it.
2729  *
2730  * If sd_maxblk is less than *iosize this routine can fail part way through
2731  * (due to an allocation failure). In this case on return *iosize will contain
2732  * the amount that was consumed. Otherwise *iosize will not be modified
2733  * i.e. it will contain the amount that was consumed.
2734  */
2735 int
2736 strmakemsg(
2737 	struct strbuf *mctl,
2738 	ssize_t *iosize,
2739 	struct uio *uiop,
2740 	stdata_t *stp,
2741 	int32_t flag,
2742 	mblk_t **mpp)
2743 {
2744 	mblk_t *mpctl = NULL;
2745 	mblk_t *mpdata = NULL;
2746 	int error;
2747 
2748 	ASSERT(uiop != NULL);
2749 
2750 	*mpp = NULL;
2751 	/* Create control part, if any */
2752 	if ((mctl != NULL) && (mctl->len >= 0)) {
2753 		error = strmakectl(mctl, flag, uiop->uio_fmode, &mpctl);
2754 		if (error)
2755 			return (error);
2756 	}
2757 	/* Create data part, if any */
2758 	if (*iosize >= 0) {
2759 		error = strmakedata(iosize, uiop, stp, flag, &mpdata);
2760 		if (error) {
2761 			freemsg(mpctl);
2762 			return (error);
2763 		}
2764 	}
2765 	if (mpctl != NULL) {
2766 		if (mpdata != NULL)
2767 			linkb(mpctl, mpdata);
2768 		*mpp = mpctl;
2769 	} else {
2770 		*mpp = mpdata;
2771 	}
2772 	return (0);
2773 }
2774 
2775 /*
2776  * Make the control part of a protocol message given a control buffer.
2777  * n.b., this can block; be careful of what locks you hold when calling it.
2778  */
2779 int
2780 strmakectl(
2781 	struct strbuf *mctl,
2782 	int32_t flag,
2783 	int32_t fflag,
2784 	mblk_t **mpp)
2785 {
2786 	mblk_t *bp = NULL;
2787 	unsigned char msgtype;
2788 	int error = 0;
2789 	cred_t *cr = CRED();
2790 
2791 	/* We do not support interrupt threads using the stream head to send */
2792 	ASSERT(cr != NULL);
2793 
2794 	*mpp = NULL;
2795 	/*
2796 	 * Create control part of message, if any.
2797 	 */
2798 	if ((mctl != NULL) && (mctl->len >= 0)) {
2799 		caddr_t base;
2800 		int ctlcount;
2801 		int allocsz;
2802 
2803 		if (flag & RS_HIPRI)
2804 			msgtype = M_PCPROTO;
2805 		else
2806 			msgtype = M_PROTO;
2807 
2808 		ctlcount = mctl->len;
2809 		base = mctl->buf;
2810 
2811 		/*
2812 		 * Give modules a better chance to reuse M_PROTO/M_PCPROTO
2813 		 * blocks by increasing the size to something more usable.
2814 		 */
2815 		allocsz = MAX(ctlcount, 64);
2816 
2817 		/*
2818 		 * Range checking has already been done; simply try
2819 		 * to allocate a message block for the ctl part.
2820 		 */
2821 		while ((bp = allocb_cred(allocsz, cr,
2822 		    curproc->p_pid)) == NULL) {
2823 			if (fflag & (FNDELAY|FNONBLOCK))
2824 				return (EAGAIN);
2825 			if (error = strwaitbuf(allocsz, BPRI_MED))
2826 				return (error);
2827 		}
2828 
2829 		bp->b_datap->db_type = msgtype;
2830 		if (copyin(base, bp->b_wptr, ctlcount)) {
2831 			freeb(bp);
2832 			return (EFAULT);
2833 		}
2834 		bp->b_wptr += ctlcount;
2835 	}
2836 	*mpp = bp;
2837 	return (0);
2838 }
2839 
2840 /*
2841  * Make a protocol message given data buffers.
2842  * n.b., this can block; be careful of what locks you hold when calling it.
2843  *
2844  * If sd_maxblk is less than *iosize this routine can fail part way through
2845  * (due to an allocation failure). In this case on return *iosize will contain
2846  * the amount that was consumed. Otherwise *iosize will not be modified
2847  * i.e. it will contain the amount that was consumed.
2848  */
2849 int
2850 strmakedata(
2851 	ssize_t   *iosize,
2852 	struct uio *uiop,
2853 	stdata_t *stp,
2854 	int32_t flag,
2855 	mblk_t **mpp)
2856 {
2857 	mblk_t *mp = NULL;
2858 	mblk_t *bp;
2859 	int wroff = (int)stp->sd_wroff;
2860 	int tail_len = (int)stp->sd_tail;
2861 	int extra = wroff + tail_len;
2862 	int error = 0;
2863 	ssize_t maxblk;
2864 	ssize_t count = *iosize;
2865 	cred_t *cr;
2866 
2867 	*mpp = NULL;
2868 	if (count < 0)
2869 		return (0);
2870 
2871 	/* We do not support interrupt threads using the stream head to send */
2872 	cr = CRED();
2873 	ASSERT(cr != NULL);
2874 
2875 	maxblk = stp->sd_maxblk;
2876 	if (maxblk == INFPSZ)
2877 		maxblk = count;
2878 
2879 	/*
2880 	 * Create data part of message, if any.
2881 	 */
2882 	do {
2883 		ssize_t size;
2884 		dblk_t  *dp;
2885 
2886 		ASSERT(uiop);
2887 
2888 		size = MIN(count, maxblk);
2889 
2890 		while ((bp = allocb_cred(size + extra, cr,
2891 		    curproc->p_pid)) == NULL) {
2892 			error = EAGAIN;
2893 			if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) ||
2894 			    (error = strwaitbuf(size + extra, BPRI_MED)) != 0) {
2895 				if (count == *iosize) {
2896 					freemsg(mp);
2897 					return (error);
2898 				} else {
2899 					*iosize -= count;
2900 					*mpp = mp;
2901 					return (0);
2902 				}
2903 			}
2904 		}
2905 		dp = bp->b_datap;
2906 		dp->db_cpid = curproc->p_pid;
2907 		ASSERT(wroff <= dp->db_lim - bp->b_wptr);
2908 		bp->b_wptr = bp->b_rptr = bp->b_rptr + wroff;
2909 
2910 		if (flag & STRUIO_POSTPONE) {
2911 			/*
2912 			 * Setup the stream uio portion of the
2913 			 * dblk for subsequent use by struioget().
2914 			 */
2915 			dp->db_struioflag = STRUIO_SPEC;
2916 			dp->db_cksumstart = 0;
2917 			dp->db_cksumstuff = 0;
2918 			dp->db_cksumend = size;
2919 			*(long long *)dp->db_struioun.data = 0ll;
2920 			bp->b_wptr += size;
2921 		} else {
2922 			if (stp->sd_copyflag & STRCOPYCACHED)
2923 				uiop->uio_extflg |= UIO_COPY_CACHED;
2924 
2925 			if (size != 0) {
2926 				error = uiomove(bp->b_wptr, size, UIO_WRITE,
2927 				    uiop);
2928 				if (error != 0) {
2929 					freeb(bp);
2930 					freemsg(mp);
2931 					return (error);
2932 				}
2933 			}
2934 			bp->b_wptr += size;
2935 
2936 			if (stp->sd_wputdatafunc != NULL) {
2937 				mblk_t *newbp;
2938 
2939 				newbp = (stp->sd_wputdatafunc)(stp->sd_vnode,
2940 				    bp, NULL, NULL, NULL, NULL);
2941 				if (newbp == NULL) {
2942 					freeb(bp);
2943 					freemsg(mp);
2944 					return (ECOMM);
2945 				}
2946 				bp = newbp;
2947 			}
2948 		}
2949 
2950 		count -= size;
2951 
2952 		if (mp == NULL)
2953 			mp = bp;
2954 		else
2955 			linkb(mp, bp);
2956 	} while (count > 0);
2957 
2958 	*mpp = mp;
2959 	return (0);
2960 }
2961 
2962 /*
2963  * Wait for a buffer to become available. Return non-zero errno
2964  * if not able to wait, 0 if buffer is probably there.
2965  */
2966 int
2967 strwaitbuf(size_t size, int pri)
2968 {
2969 	bufcall_id_t id;
2970 
2971 	mutex_enter(&bcall_monitor);
2972 	if ((id = bufcall(size, pri, (void (*)(void *))cv_broadcast,
2973 	    &ttoproc(curthread)->p_flag_cv)) == 0) {
2974 		mutex_exit(&bcall_monitor);
2975 		return (ENOSR);
2976 	}
2977 	if (!cv_wait_sig(&(ttoproc(curthread)->p_flag_cv), &bcall_monitor)) {
2978 		unbufcall(id);
2979 		mutex_exit(&bcall_monitor);
2980 		return (EINTR);
2981 	}
2982 	unbufcall(id);
2983 	mutex_exit(&bcall_monitor);
2984 	return (0);
2985 }
2986 
2987 /*
2988  * This function waits for a read or write event to happen on a stream.
2989  * fmode can specify FNDELAY and/or FNONBLOCK.
2990  * The timeout is in ms with -1 meaning infinite.
2991  * The flag values work as follows:
2992  *	READWAIT	Check for read side errors, send M_READ
2993  *	GETWAIT		Check for read side errors, no M_READ
2994  *	WRITEWAIT	Check for write side errors.
2995  *	NOINTR		Do not return error if nonblocking or timeout.
2996  * 	STR_NOERROR	Ignore all errors except STPLEX.
2997  *	STR_NOSIG	Ignore/hold signals during the duration of the call.
2998  *	STR_PEEK	Pass through the strgeterr().
2999  */
3000 int
3001 strwaitq(stdata_t *stp, int flag, ssize_t count, int fmode, clock_t timout,
3002     int *done)
3003 {
3004 	int slpflg, errs;
3005 	int error;
3006 	kcondvar_t *sleepon;
3007 	mblk_t *mp;
3008 	ssize_t *rd_count;
3009 	clock_t rval;
3010 
3011 	ASSERT(MUTEX_HELD(&stp->sd_lock));
3012 	if ((flag & READWAIT) || (flag & GETWAIT)) {
3013 		slpflg = RSLEEP;
3014 		sleepon = &_RD(stp->sd_wrq)->q_wait;
3015 		errs = STRDERR|STPLEX;
3016 	} else {
3017 		slpflg = WSLEEP;
3018 		sleepon = &stp->sd_wrq->q_wait;
3019 		errs = STWRERR|STRHUP|STPLEX;
3020 	}
3021 	if (flag & STR_NOERROR)
3022 		errs = STPLEX;
3023 
3024 	if (stp->sd_wakeq & slpflg) {
3025 		/*
3026 		 * A strwakeq() is pending, no need to sleep.
3027 		 */
3028 		stp->sd_wakeq &= ~slpflg;
3029 		*done = 0;
3030 		return (0);
3031 	}
3032 
3033 	if (stp->sd_flag & errs) {
3034 		/*
3035 		 * Check for errors before going to sleep since the
3036 		 * caller might not have checked this while holding
3037 		 * sd_lock.
3038 		 */
3039 		error = strgeterr(stp, errs, (flag & STR_PEEK));
3040 		if (error != 0) {
3041 			*done = 1;
3042 			return (error);
3043 		}
3044 	}
3045 
3046 	/*
3047 	 * If any module downstream has requested read notification
3048 	 * by setting SNDMREAD flag using M_SETOPTS, send a message
3049 	 * down stream.
3050 	 */
3051 	if ((flag & READWAIT) && (stp->sd_flag & SNDMREAD)) {
3052 		mutex_exit(&stp->sd_lock);
3053 		if (!(mp = allocb_wait(sizeof (ssize_t), BPRI_MED,
3054 		    (flag & STR_NOSIG), &error))) {
3055 			mutex_enter(&stp->sd_lock);
3056 			*done = 1;
3057 			return (error);
3058 		}
3059 		mp->b_datap->db_type = M_READ;
3060 		rd_count = (ssize_t *)mp->b_wptr;
3061 		*rd_count = count;
3062 		mp->b_wptr += sizeof (ssize_t);
3063 		/*
3064 		 * Send the number of bytes requested by the
3065 		 * read as the argument to M_READ.
3066 		 */
3067 		stream_willservice(stp);
3068 		putnext(stp->sd_wrq, mp);
3069 		stream_runservice(stp);
3070 		mutex_enter(&stp->sd_lock);
3071 
3072 		/*
3073 		 * If any data arrived due to inline processing
3074 		 * of putnext(), don't sleep.
3075 		 */
3076 		if (_RD(stp->sd_wrq)->q_first != NULL) {
3077 			*done = 0;
3078 			return (0);
3079 		}
3080 	}
3081 
3082 	if (fmode & (FNDELAY|FNONBLOCK)) {
3083 		if (!(flag & NOINTR))
3084 			error = EAGAIN;
3085 		else
3086 			error = 0;
3087 		*done = 1;
3088 		return (error);
3089 	}
3090 
3091 	stp->sd_flag |= slpflg;
3092 	TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAIT2,
3093 	    "strwaitq sleeps (2):%p, %X, %lX, %X, %p",
3094 	    stp, flag, count, fmode, done);
3095 
3096 	rval = str_cv_wait(sleepon, &stp->sd_lock, timout, flag & STR_NOSIG);
3097 	if (rval > 0) {
3098 		/* EMPTY */
3099 		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAKE2,
3100 		    "strwaitq awakes(2):%X, %X, %X, %X, %X",
3101 		    stp, flag, count, fmode, done);
3102 	} else if (rval == 0) {
3103 		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_INTR2,
3104 		    "strwaitq interrupt #2:%p, %X, %lX, %X, %p",
3105 		    stp, flag, count, fmode, done);
3106 		stp->sd_flag &= ~slpflg;
3107 		cv_broadcast(sleepon);
3108 		if (!(flag & NOINTR))
3109 			error = EINTR;
3110 		else
3111 			error = 0;
3112 		*done = 1;
3113 		return (error);
3114 	} else {
3115 		/* timeout */
3116 		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_TIME,
3117 		    "strwaitq timeout:%p, %X, %lX, %X, %p",
3118 		    stp, flag, count, fmode, done);
3119 		*done = 1;
3120 		if (!(flag & NOINTR))
3121 			return (ETIME);
3122 		else
3123 			return (0);
3124 	}
3125 	/*
3126 	 * If the caller implements delayed errors (i.e. queued after data)
3127 	 * we can not check for errors here since data as well as an
3128 	 * error might have arrived at the stream head. We return to
3129 	 * have the caller check the read queue before checking for errors.
3130 	 */
3131 	if ((stp->sd_flag & errs) && !(flag & STR_DELAYERR)) {
3132 		error = strgeterr(stp, errs, (flag & STR_PEEK));
3133 		if (error != 0) {
3134 			*done = 1;
3135 			return (error);
3136 		}
3137 	}
3138 	*done = 0;
3139 	return (0);
3140 }
3141 
3142 /*
3143  * Perform job control discipline access checks.
3144  * Return 0 for success and the errno for failure.
3145  */
3146 
3147 #define	cantsend(p, t, sig) \
3148 	(sigismember(&(p)->p_ignore, sig) || signal_is_blocked((t), sig))
3149 
3150 int
3151 straccess(struct stdata *stp, enum jcaccess mode)
3152 {
3153 	extern kcondvar_t lbolt_cv;	/* XXX: should be in a header file */
3154 	kthread_t *t = curthread;
3155 	proc_t *p = ttoproc(t);
3156 	sess_t *sp;
3157 
3158 	ASSERT(mutex_owned(&stp->sd_lock));
3159 
3160 	if (stp->sd_sidp == NULL || stp->sd_vnode->v_type == VFIFO)
3161 		return (0);
3162 
3163 	mutex_enter(&p->p_lock);		/* protects p_pgidp */
3164 
3165 	for (;;) {
3166 		mutex_enter(&p->p_splock);	/* protects p->p_sessp */
3167 		sp = p->p_sessp;
3168 		mutex_enter(&sp->s_lock);	/* protects sp->* */
3169 
3170 		/*
3171 		 * If this is not the calling process's controlling terminal
3172 		 * or if the calling process is already in the foreground
3173 		 * then allow access.
3174 		 */
3175 		if (sp->s_dev != stp->sd_vnode->v_rdev ||
3176 		    p->p_pgidp == stp->sd_pgidp) {
3177 			mutex_exit(&sp->s_lock);
3178 			mutex_exit(&p->p_splock);
3179 			mutex_exit(&p->p_lock);
3180 			return (0);
3181 		}
3182 
3183 		/*
3184 		 * Check to see if controlling terminal has been deallocated.
3185 		 */
3186 		if (sp->s_vp == NULL) {
3187 			if (!cantsend(p, t, SIGHUP))
3188 				sigtoproc(p, t, SIGHUP);
3189 			mutex_exit(&sp->s_lock);
3190 			mutex_exit(&p->p_splock);
3191 			mutex_exit(&p->p_lock);
3192 			return (EIO);
3193 		}
3194 
3195 		mutex_exit(&sp->s_lock);
3196 		mutex_exit(&p->p_splock);
3197 
3198 		if (mode == JCGETP) {
3199 			mutex_exit(&p->p_lock);
3200 			return (0);
3201 		}
3202 
3203 		if (mode == JCREAD) {
3204 			if (p->p_detached || cantsend(p, t, SIGTTIN)) {
3205 				mutex_exit(&p->p_lock);
3206 				return (EIO);
3207 			}
3208 			mutex_exit(&p->p_lock);
3209 			mutex_exit(&stp->sd_lock);
3210 			pgsignal(p->p_pgidp, SIGTTIN);
3211 			mutex_enter(&stp->sd_lock);
3212 			mutex_enter(&p->p_lock);
3213 		} else {  /* mode == JCWRITE or JCSETP */
3214 			if ((mode == JCWRITE && !(stp->sd_flag & STRTOSTOP)) ||
3215 			    cantsend(p, t, SIGTTOU)) {
3216 				mutex_exit(&p->p_lock);
3217 				return (0);
3218 			}
3219 			if (p->p_detached) {
3220 				mutex_exit(&p->p_lock);
3221 				return (EIO);
3222 			}
3223 			mutex_exit(&p->p_lock);
3224 			mutex_exit(&stp->sd_lock);
3225 			pgsignal(p->p_pgidp, SIGTTOU);
3226 			mutex_enter(&stp->sd_lock);
3227 			mutex_enter(&p->p_lock);
3228 		}
3229 
3230 		/*
3231 		 * We call cv_wait_sig_swap() to cause the appropriate
3232 		 * action for the jobcontrol signal to take place.
3233 		 * If the signal is being caught, we will take the
3234 		 * EINTR error return.  Otherwise, the default action
3235 		 * of causing the process to stop will take place.
3236 		 * In this case, we rely on the periodic cv_broadcast() on
3237 		 * &lbolt_cv to wake us up to loop around and test again.
3238 		 * We can't get here if the signal is ignored or
3239 		 * if the current thread is blocking the signal.
3240 		 */
3241 		mutex_exit(&stp->sd_lock);
3242 		if (!cv_wait_sig_swap(&lbolt_cv, &p->p_lock)) {
3243 			mutex_exit(&p->p_lock);
3244 			mutex_enter(&stp->sd_lock);
3245 			return (EINTR);
3246 		}
3247 		mutex_exit(&p->p_lock);
3248 		mutex_enter(&stp->sd_lock);
3249 		mutex_enter(&p->p_lock);
3250 	}
3251 }
3252 
3253 /*
3254  * Return size of message of block type (bp->b_datap->db_type)
3255  */
3256 size_t
3257 xmsgsize(mblk_t *bp)
3258 {
3259 	unsigned char type;
3260 	size_t count = 0;
3261 
3262 	type = bp->b_datap->db_type;
3263 
3264 	for (; bp; bp = bp->b_cont) {
3265 		if (type != bp->b_datap->db_type)
3266 			break;
3267 		ASSERT(bp->b_wptr >= bp->b_rptr);
3268 		count += bp->b_wptr - bp->b_rptr;
3269 	}
3270 	return (count);
3271 }
3272 
3273 /*
3274  * Allocate a stream head.
3275  */
3276 struct stdata *
3277 shalloc(queue_t *qp)
3278 {
3279 	stdata_t *stp;
3280 
3281 	stp = kmem_cache_alloc(stream_head_cache, KM_SLEEP);
3282 
3283 	stp->sd_wrq = _WR(qp);
3284 	stp->sd_strtab = NULL;
3285 	stp->sd_iocid = 0;
3286 	stp->sd_mate = NULL;
3287 	stp->sd_freezer = NULL;
3288 	stp->sd_refcnt = 0;
3289 	stp->sd_wakeq = 0;
3290 	stp->sd_anchor = 0;
3291 	stp->sd_struiowrq = NULL;
3292 	stp->sd_struiordq = NULL;
3293 	stp->sd_struiodnak = 0;
3294 	stp->sd_struionak = NULL;
3295 	stp->sd_t_audit_data = NULL;
3296 	stp->sd_rput_opt = 0;
3297 	stp->sd_wput_opt = 0;
3298 	stp->sd_read_opt = 0;
3299 	stp->sd_rprotofunc = strrput_proto;
3300 	stp->sd_rmiscfunc = strrput_misc;
3301 	stp->sd_rderrfunc = stp->sd_wrerrfunc = NULL;
3302 	stp->sd_rputdatafunc = stp->sd_wputdatafunc = NULL;
3303 	stp->sd_ciputctrl = NULL;
3304 	stp->sd_nciputctrl = 0;
3305 	stp->sd_qhead = NULL;
3306 	stp->sd_qtail = NULL;
3307 	stp->sd_servid = NULL;
3308 	stp->sd_nqueues = 0;
3309 	stp->sd_svcflags = 0;
3310 	stp->sd_copyflag = 0;
3311 
3312 	return (stp);
3313 }
3314 
3315 /*
3316  * Free a stream head.
3317  */
3318 void
3319 shfree(stdata_t *stp)
3320 {
3321 	ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
3322 
3323 	stp->sd_wrq = NULL;
3324 
3325 	mutex_enter(&stp->sd_qlock);
3326 	while (stp->sd_svcflags & STRS_SCHEDULED) {
3327 		STRSTAT(strwaits);
3328 		cv_wait(&stp->sd_qcv, &stp->sd_qlock);
3329 	}
3330 	mutex_exit(&stp->sd_qlock);
3331 
3332 	if (stp->sd_ciputctrl != NULL) {
3333 		ASSERT(stp->sd_nciputctrl == n_ciputctrl - 1);
3334 		SUMCHECK_CIPUTCTRL_COUNTS(stp->sd_ciputctrl,
3335 		    stp->sd_nciputctrl, 0);
3336 		ASSERT(ciputctrl_cache != NULL);
3337 		kmem_cache_free(ciputctrl_cache, stp->sd_ciputctrl);
3338 		stp->sd_ciputctrl = NULL;
3339 		stp->sd_nciputctrl = 0;
3340 	}
3341 	ASSERT(stp->sd_qhead == NULL);
3342 	ASSERT(stp->sd_qtail == NULL);
3343 	ASSERT(stp->sd_nqueues == 0);
3344 	kmem_cache_free(stream_head_cache, stp);
3345 }
3346 
3347 /*
3348  * Allocate a pair of queues and a syncq for the pair
3349  */
3350 queue_t *
3351 allocq(void)
3352 {
3353 	queinfo_t *qip;
3354 	queue_t *qp, *wqp;
3355 	syncq_t	*sq;
3356 
3357 	qip = kmem_cache_alloc(queue_cache, KM_SLEEP);
3358 
3359 	qp = &qip->qu_rqueue;
3360 	wqp = &qip->qu_wqueue;
3361 	sq = &qip->qu_syncq;
3362 
3363 	qp->q_last	= NULL;
3364 	qp->q_next	= NULL;
3365 	qp->q_ptr	= NULL;
3366 	qp->q_flag	= QUSE | QREADR;
3367 	qp->q_bandp	= NULL;
3368 	qp->q_stream	= NULL;
3369 	qp->q_syncq	= sq;
3370 	qp->q_nband	= 0;
3371 	qp->q_nfsrv	= NULL;
3372 	qp->q_draining	= 0;
3373 	qp->q_syncqmsgs	= 0;
3374 	qp->q_spri	= 0;
3375 	qp->q_qtstamp	= 0;
3376 	qp->q_sqtstamp	= 0;
3377 	qp->q_fp	= NULL;
3378 
3379 	wqp->q_last	= NULL;
3380 	wqp->q_next	= NULL;
3381 	wqp->q_ptr	= NULL;
3382 	wqp->q_flag	= QUSE;
3383 	wqp->q_bandp	= NULL;
3384 	wqp->q_stream	= NULL;
3385 	wqp->q_syncq	= sq;
3386 	wqp->q_nband	= 0;
3387 	wqp->q_nfsrv	= NULL;
3388 	wqp->q_draining	= 0;
3389 	wqp->q_syncqmsgs = 0;
3390 	wqp->q_qtstamp	= 0;
3391 	wqp->q_sqtstamp	= 0;
3392 	wqp->q_spri	= 0;
3393 
3394 	sq->sq_count	= 0;
3395 	sq->sq_rmqcount	= 0;
3396 	sq->sq_flags	= 0;
3397 	sq->sq_type	= 0;
3398 	sq->sq_callbflags = 0;
3399 	sq->sq_cancelid	= 0;
3400 	sq->sq_ciputctrl = NULL;
3401 	sq->sq_nciputctrl = 0;
3402 	sq->sq_needexcl = 0;
3403 	sq->sq_svcflags = 0;
3404 
3405 	return (qp);
3406 }
3407 
3408 /*
3409  * Free a pair of queues and the "attached" syncq.
3410  * Discard any messages left on the syncq(s), remove the syncq(s) from the
3411  * outer perimeter, and free the syncq(s) if they are not the "attached" syncq.
3412  */
3413 void
3414 freeq(queue_t *qp)
3415 {
3416 	qband_t *qbp, *nqbp;
3417 	syncq_t *sq, *outer;
3418 	queue_t *wqp = _WR(qp);
3419 
3420 	ASSERT(qp->q_flag & QREADR);
3421 
3422 	/*
3423 	 * If a previously dispatched taskq job is scheduled to run
3424 	 * sync_service() or a service routine is scheduled for the
3425 	 * queues about to be freed, wait here until all service is
3426 	 * done on the queue and all associated queues and syncqs.
3427 	 */
3428 	wait_svc(qp);
3429 
3430 	(void) flush_syncq(qp->q_syncq, qp);
3431 	(void) flush_syncq(wqp->q_syncq, wqp);
3432 	ASSERT(qp->q_syncqmsgs == 0 && wqp->q_syncqmsgs == 0);
3433 
3434 	/*
3435 	 * Flush the queues before q_next is set to NULL This is needed
3436 	 * in order to backenable any downstream queue before we go away.
3437 	 * Note: we are already removed from the stream so that the
3438 	 * backenabling will not cause any messages to be delivered to our
3439 	 * put procedures.
3440 	 */
3441 	flushq(qp, FLUSHALL);
3442 	flushq(wqp, FLUSHALL);
3443 
3444 	/* Tidy up - removeq only does a half-remove from stream */
3445 	qp->q_next = wqp->q_next = NULL;
3446 	ASSERT(!(qp->q_flag & QENAB));
3447 	ASSERT(!(wqp->q_flag & QENAB));
3448 
3449 	outer = qp->q_syncq->sq_outer;
3450 	if (outer != NULL) {
3451 		outer_remove(outer, qp->q_syncq);
3452 		if (wqp->q_syncq != qp->q_syncq)
3453 			outer_remove(outer, wqp->q_syncq);
3454 	}
3455 	/*
3456 	 * Free any syncqs that are outside what allocq returned.
3457 	 */
3458 	if (qp->q_syncq != SQ(qp) && !(qp->q_flag & QPERMOD))
3459 		free_syncq(qp->q_syncq);
3460 	if (qp->q_syncq != wqp->q_syncq && wqp->q_syncq != SQ(qp))
3461 		free_syncq(wqp->q_syncq);
3462 
3463 	ASSERT((qp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
3464 	ASSERT((wqp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
3465 	ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
3466 	ASSERT(MUTEX_NOT_HELD(QLOCK(wqp)));
3467 	sq = SQ(qp);
3468 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
3469 	ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
3470 	ASSERT(sq->sq_outer == NULL);
3471 	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
3472 	ASSERT(sq->sq_callbpend == NULL);
3473 	ASSERT(sq->sq_needexcl == 0);
3474 
3475 	if (sq->sq_ciputctrl != NULL) {
3476 		ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
3477 		SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
3478 		    sq->sq_nciputctrl, 0);
3479 		ASSERT(ciputctrl_cache != NULL);
3480 		kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
3481 		sq->sq_ciputctrl = NULL;
3482 		sq->sq_nciputctrl = 0;
3483 	}
3484 
3485 	ASSERT(qp->q_first == NULL && wqp->q_first == NULL);
3486 	ASSERT(qp->q_count == 0 && wqp->q_count == 0);
3487 	ASSERT(qp->q_mblkcnt == 0 && wqp->q_mblkcnt == 0);
3488 
3489 	qp->q_flag &= ~QUSE;
3490 	wqp->q_flag &= ~QUSE;
3491 
3492 	/* NOTE: Uncomment the assert below once bugid 1159635 is fixed. */
3493 	/* ASSERT((qp->q_flag & QWANTW) == 0 && (wqp->q_flag & QWANTW) == 0); */
3494 
3495 	qbp = qp->q_bandp;
3496 	while (qbp) {
3497 		nqbp = qbp->qb_next;
3498 		freeband(qbp);
3499 		qbp = nqbp;
3500 	}
3501 	qbp = wqp->q_bandp;
3502 	while (qbp) {
3503 		nqbp = qbp->qb_next;
3504 		freeband(qbp);
3505 		qbp = nqbp;
3506 	}
3507 	kmem_cache_free(queue_cache, qp);
3508 }
3509 
3510 /*
3511  * Allocate a qband structure.
3512  */
3513 qband_t *
3514 allocband(void)
3515 {
3516 	qband_t *qbp;
3517 
3518 	qbp = kmem_cache_alloc(qband_cache, KM_NOSLEEP);
3519 	if (qbp == NULL)
3520 		return (NULL);
3521 
3522 	qbp->qb_next	= NULL;
3523 	qbp->qb_count	= 0;
3524 	qbp->qb_mblkcnt	= 0;
3525 	qbp->qb_first	= NULL;
3526 	qbp->qb_last	= NULL;
3527 	qbp->qb_flag	= 0;
3528 
3529 	return (qbp);
3530 }
3531 
3532 /*
3533  * Free a qband structure.
3534  */
3535 void
3536 freeband(qband_t *qbp)
3537 {
3538 	kmem_cache_free(qband_cache, qbp);
3539 }
3540 
3541 /*
3542  * Just like putnextctl(9F), except that allocb_wait() is used.
3543  *
3544  * Consolidation Private, and of course only callable from the stream head or
3545  * routines that may block.
3546  */
3547 int
3548 putnextctl_wait(queue_t *q, int type)
3549 {
3550 	mblk_t *bp;
3551 	int error;
3552 
3553 	if ((datamsg(type) && (type != M_DELAY)) ||
3554 	    (bp = allocb_wait(0, BPRI_HI, 0, &error)) == NULL)
3555 		return (0);
3556 
3557 	bp->b_datap->db_type = (unsigned char)type;
3558 	putnext(q, bp);
3559 	return (1);
3560 }
3561 
3562 /*
3563  * Run any possible bufcalls.
3564  */
3565 void
3566 runbufcalls(void)
3567 {
3568 	strbufcall_t *bcp;
3569 
3570 	mutex_enter(&bcall_monitor);
3571 	mutex_enter(&strbcall_lock);
3572 
3573 	if (strbcalls.bc_head) {
3574 		size_t count;
3575 		int nevent;
3576 
3577 		/*
3578 		 * count how many events are on the list
3579 		 * now so we can check to avoid looping
3580 		 * in low memory situations
3581 		 */
3582 		nevent = 0;
3583 		for (bcp = strbcalls.bc_head; bcp; bcp = bcp->bc_next)
3584 			nevent++;
3585 
3586 		/*
3587 		 * get estimate of available memory from kmem_avail().
3588 		 * awake all bufcall functions waiting for
3589 		 * memory whose request could be satisfied
3590 		 * by 'count' memory and let 'em fight for it.
3591 		 */
3592 		count = kmem_avail();
3593 		while ((bcp = strbcalls.bc_head) != NULL && nevent) {
3594 			STRSTAT(bufcalls);
3595 			--nevent;
3596 			if (bcp->bc_size <= count) {
3597 				bcp->bc_executor = curthread;
3598 				mutex_exit(&strbcall_lock);
3599 				(*bcp->bc_func)(bcp->bc_arg);
3600 				mutex_enter(&strbcall_lock);
3601 				bcp->bc_executor = NULL;
3602 				cv_broadcast(&bcall_cv);
3603 				strbcalls.bc_head = bcp->bc_next;
3604 				kmem_free(bcp, sizeof (strbufcall_t));
3605 			} else {
3606 				/*
3607 				 * too big, try again later - note
3608 				 * that nevent was decremented above
3609 				 * so we won't retry this one on this
3610 				 * iteration of the loop
3611 				 */
3612 				if (bcp->bc_next != NULL) {
3613 					strbcalls.bc_head = bcp->bc_next;
3614 					bcp->bc_next = NULL;
3615 					strbcalls.bc_tail->bc_next = bcp;
3616 					strbcalls.bc_tail = bcp;
3617 				}
3618 			}
3619 		}
3620 		if (strbcalls.bc_head == NULL)
3621 			strbcalls.bc_tail = NULL;
3622 	}
3623 
3624 	mutex_exit(&strbcall_lock);
3625 	mutex_exit(&bcall_monitor);
3626 }
3627 
3628 
3629 /*
3630  * Actually run queue's service routine.
3631  */
3632 static void
3633 runservice(queue_t *q)
3634 {
3635 	qband_t *qbp;
3636 
3637 	ASSERT(q->q_qinfo->qi_srvp);
3638 again:
3639 	entersq(q->q_syncq, SQ_SVC);
3640 	TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_START,
3641 	    "runservice starts:%p", q);
3642 
3643 	if (!(q->q_flag & QWCLOSE))
3644 		(*q->q_qinfo->qi_srvp)(q);
3645 
3646 	TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_END,
3647 	    "runservice ends:(%p)", q);
3648 
3649 	leavesq(q->q_syncq, SQ_SVC);
3650 
3651 	mutex_enter(QLOCK(q));
3652 	if (q->q_flag & QENAB) {
3653 		q->q_flag &= ~QENAB;
3654 		mutex_exit(QLOCK(q));
3655 		goto again;
3656 	}
3657 	q->q_flag &= ~QINSERVICE;
3658 	q->q_flag &= ~QBACK;
3659 	for (qbp = q->q_bandp; qbp; qbp = qbp->qb_next)
3660 		qbp->qb_flag &= ~QB_BACK;
3661 	/*
3662 	 * Wakeup thread waiting for the service procedure
3663 	 * to be run (strclose and qdetach).
3664 	 */
3665 	cv_broadcast(&q->q_wait);
3666 
3667 	mutex_exit(QLOCK(q));
3668 }
3669 
3670 /*
3671  * Background processing of bufcalls.
3672  */
3673 void
3674 streams_bufcall_service(void)
3675 {
3676 	callb_cpr_t	cprinfo;
3677 
3678 	CALLB_CPR_INIT(&cprinfo, &strbcall_lock, callb_generic_cpr,
3679 	    "streams_bufcall_service");
3680 
3681 	mutex_enter(&strbcall_lock);
3682 
3683 	for (;;) {
3684 		if (strbcalls.bc_head != NULL && kmem_avail() > 0) {
3685 			mutex_exit(&strbcall_lock);
3686 			runbufcalls();
3687 			mutex_enter(&strbcall_lock);
3688 		}
3689 		if (strbcalls.bc_head != NULL) {
3690 			STRSTAT(bcwaits);
3691 			/* Wait for memory to become available */
3692 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3693 			(void) cv_reltimedwait(&memavail_cv, &strbcall_lock,
3694 			    SEC_TO_TICK(60), TR_CLOCK_TICK);
3695 			CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
3696 		}
3697 
3698 		/* Wait for new work to arrive */
3699 		if (strbcalls.bc_head == NULL) {
3700 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3701 			cv_wait(&strbcall_cv, &strbcall_lock);
3702 			CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
3703 		}
3704 	}
3705 }
3706 
3707 /*
3708  * Background processing of streams background tasks which failed
3709  * taskq_dispatch.
3710  */
3711 static void
3712 streams_qbkgrnd_service(void)
3713 {
3714 	callb_cpr_t cprinfo;
3715 	queue_t *q;
3716 
3717 	CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
3718 	    "streams_bkgrnd_service");
3719 
3720 	mutex_enter(&service_queue);
3721 
3722 	for (;;) {
3723 		/*
3724 		 * Wait for work to arrive.
3725 		 */
3726 		while ((freebs_list == NULL) && (qhead == NULL)) {
3727 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3728 			cv_wait(&services_to_run, &service_queue);
3729 			CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
3730 		}
3731 		/*
3732 		 * Handle all pending freebs requests to free memory.
3733 		 */
3734 		while (freebs_list != NULL) {
3735 			mblk_t *mp = freebs_list;
3736 			freebs_list = mp->b_next;
3737 			mutex_exit(&service_queue);
3738 			mblk_free(mp);
3739 			mutex_enter(&service_queue);
3740 		}
3741 		/*
3742 		 * Run pending queues.
3743 		 */
3744 		while (qhead != NULL) {
3745 			DQ(q, qhead, qtail, q_link);
3746 			ASSERT(q != NULL);
3747 			mutex_exit(&service_queue);
3748 			queue_service(q);
3749 			mutex_enter(&service_queue);
3750 		}
3751 		ASSERT(qhead == NULL && qtail == NULL);
3752 	}
3753 }
3754 
3755 /*
3756  * Background processing of streams background tasks which failed
3757  * taskq_dispatch.
3758  */
3759 static void
3760 streams_sqbkgrnd_service(void)
3761 {
3762 	callb_cpr_t cprinfo;
3763 	syncq_t *sq;
3764 
3765 	CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
3766 	    "streams_sqbkgrnd_service");
3767 
3768 	mutex_enter(&service_queue);
3769 
3770 	for (;;) {
3771 		/*
3772 		 * Wait for work to arrive.
3773 		 */
3774 		while (sqhead == NULL) {
3775 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3776 			cv_wait(&syncqs_to_run, &service_queue);
3777 			CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
3778 		}
3779 
3780 		/*
3781 		 * Run pending syncqs.
3782 		 */
3783 		while (sqhead != NULL) {
3784 			DQ(sq, sqhead, sqtail, sq_next);
3785 			ASSERT(sq != NULL);
3786 			ASSERT(sq->sq_svcflags & SQ_BGTHREAD);
3787 			mutex_exit(&service_queue);
3788 			syncq_service(sq);
3789 			mutex_enter(&service_queue);
3790 		}
3791 	}
3792 }
3793 
3794 /*
3795  * Disable the syncq and wait for background syncq processing to complete.
3796  * If the syncq is placed on the sqhead/sqtail queue, try to remove it from the
3797  * list.
3798  */
3799 void
3800 wait_sq_svc(syncq_t *sq)
3801 {
3802 	mutex_enter(SQLOCK(sq));
3803 	sq->sq_svcflags |= SQ_DISABLED;
3804 	if (sq->sq_svcflags & SQ_BGTHREAD) {
3805 		syncq_t *sq_chase;
3806 		syncq_t *sq_curr;
3807 		int removed;
3808 
3809 		ASSERT(sq->sq_servcount == 1);
3810 		mutex_enter(&service_queue);
3811 		RMQ(sq, sqhead, sqtail, sq_next, sq_chase, sq_curr, removed);
3812 		mutex_exit(&service_queue);
3813 		if (removed) {
3814 			sq->sq_svcflags &= ~SQ_BGTHREAD;
3815 			sq->sq_servcount = 0;
3816 			STRSTAT(sqremoved);
3817 			goto done;
3818 		}
3819 	}
3820 	while (sq->sq_servcount != 0) {
3821 		sq->sq_flags |= SQ_WANTWAKEUP;
3822 		cv_wait(&sq->sq_wait, SQLOCK(sq));
3823 	}
3824 done:
3825 	mutex_exit(SQLOCK(sq));
3826 }
3827 
3828 /*
3829  * Put a syncq on the list of syncq's to be serviced by the sqthread.
3830  * Add the argument to the end of the sqhead list and set the flag
3831  * indicating this syncq has been enabled.  If it has already been
3832  * enabled, don't do anything.
3833  * This routine assumes that SQLOCK is held.
3834  * NOTE that the lock order is to have the SQLOCK first,
3835  * so if the service_syncq lock is held, we need to release it
3836  * before acquiring the SQLOCK (mostly relevant for the background
3837  * thread, and this seems to be common among the STREAMS global locks).
3838  * Note that the sq_svcflags are protected by the SQLOCK.
3839  */
3840 void
3841 sqenable(syncq_t *sq)
3842 {
3843 	/*
3844 	 * This is probably not important except for where I believe it
3845 	 * is being called.  At that point, it should be held (and it
3846 	 * is a pain to release it just for this routine, so don't do
3847 	 * it).
3848 	 */
3849 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
3850 
3851 	IMPLY(sq->sq_servcount == 0, sq->sq_next == NULL);
3852 	IMPLY(sq->sq_next != NULL, sq->sq_svcflags & SQ_BGTHREAD);
3853 
3854 	/*
3855 	 * Do not put on list if background thread is scheduled or
3856 	 * syncq is disabled.
3857 	 */
3858 	if (sq->sq_svcflags & (SQ_DISABLED | SQ_BGTHREAD))
3859 		return;
3860 
3861 	/*
3862 	 * Check whether we should enable sq at all.
3863 	 * Non PERMOD syncqs may be drained by at most one thread.
3864 	 * PERMOD syncqs may be drained by several threads but we limit the
3865 	 * total amount to the lesser of
3866 	 *	Number of queues on the squeue and
3867 	 *	Number of CPUs.
3868 	 */
3869 	if (sq->sq_servcount != 0) {
3870 		if (((sq->sq_type & SQ_PERMOD) == 0) ||
3871 		    (sq->sq_servcount >= MIN(sq->sq_nqueues, ncpus_online))) {
3872 			STRSTAT(sqtoomany);
3873 			return;
3874 		}
3875 	}
3876 
3877 	sq->sq_tstamp = ddi_get_lbolt();
3878 	STRSTAT(sqenables);
3879 
3880 	/* Attempt a taskq dispatch */
3881 	sq->sq_servid = (void *)taskq_dispatch(streams_taskq,
3882 	    (task_func_t *)syncq_service, sq, TQ_NOSLEEP | TQ_NOQUEUE);
3883 	if (sq->sq_servid != NULL) {
3884 		sq->sq_servcount++;
3885 		return;
3886 	}
3887 
3888 	/*
3889 	 * This taskq dispatch failed, but a previous one may have succeeded.
3890 	 * Don't try to schedule on the background thread whilst there is
3891 	 * outstanding taskq processing.
3892 	 */
3893 	if (sq->sq_servcount != 0)
3894 		return;
3895 
3896 	/*
3897 	 * System is low on resources and can't perform a non-sleeping
3898 	 * dispatch. Schedule the syncq for a background thread and mark the
3899 	 * syncq to avoid any further taskq dispatch attempts.
3900 	 */
3901 	mutex_enter(&service_queue);
3902 	STRSTAT(taskqfails);
3903 	ENQUEUE(sq, sqhead, sqtail, sq_next);
3904 	sq->sq_svcflags |= SQ_BGTHREAD;
3905 	sq->sq_servcount = 1;
3906 	cv_signal(&syncqs_to_run);
3907 	mutex_exit(&service_queue);
3908 }
3909 
3910 /*
3911  * Note: fifo_close() depends on the mblk_t on the queue being freed
3912  * asynchronously. The asynchronous freeing of messages breaks the
3913  * recursive call chain of fifo_close() while there are I_SENDFD type of
3914  * messages referring to other file pointers on the queue. Then when
3915  * closing pipes it can avoid stack overflow in case of daisy-chained
3916  * pipes, and also avoid deadlock in case of fifonode_t pairs (which
3917  * share the same fifolock_t).
3918  */
3919 
3920 void
3921 freebs_enqueue(mblk_t *mp, dblk_t *dbp)
3922 {
3923 	esb_queue_t *eqp = &system_esbq;
3924 
3925 	ASSERT(dbp->db_mblk == mp);
3926 
3927 	/*
3928 	 * Check data sanity. The dblock should have non-empty free function.
3929 	 * It is better to panic here then later when the dblock is freed
3930 	 * asynchronously when the context is lost.
3931 	 */
3932 	if (dbp->db_frtnp->free_func == NULL) {
3933 		panic("freebs_enqueue: dblock %p has a NULL free callback",
3934 		    (void *)dbp);
3935 	}
3936 
3937 	mutex_enter(&eqp->eq_lock);
3938 	/* queue the new mblk on the esballoc queue */
3939 	if (eqp->eq_head == NULL) {
3940 		eqp->eq_head = eqp->eq_tail = mp;
3941 	} else {
3942 		eqp->eq_tail->b_next = mp;
3943 		eqp->eq_tail = mp;
3944 	}
3945 	eqp->eq_len++;
3946 
3947 	/* If we're the first thread to reach the threshold, process */
3948 	if (eqp->eq_len >= esbq_max_qlen &&
3949 	    !(eqp->eq_flags & ESBQ_PROCESSING))
3950 		esballoc_process_queue(eqp);
3951 
3952 	esballoc_set_timer(eqp, esbq_timeout);
3953 	mutex_exit(&eqp->eq_lock);
3954 }
3955 
3956 static void
3957 esballoc_process_queue(esb_queue_t *eqp)
3958 {
3959 	mblk_t	*mp;
3960 
3961 	ASSERT(MUTEX_HELD(&eqp->eq_lock));
3962 
3963 	eqp->eq_flags |= ESBQ_PROCESSING;
3964 
3965 	do {
3966 		/*
3967 		 * Detach the message chain for processing.
3968 		 */
3969 		mp = eqp->eq_head;
3970 		eqp->eq_tail->b_next = NULL;
3971 		eqp->eq_head = eqp->eq_tail = NULL;
3972 		eqp->eq_len = 0;
3973 		mutex_exit(&eqp->eq_lock);
3974 
3975 		/*
3976 		 * Process the message chain.
3977 		 */
3978 		esballoc_enqueue_mblk(mp);
3979 		mutex_enter(&eqp->eq_lock);
3980 	} while ((eqp->eq_len >= esbq_max_qlen) && (eqp->eq_len > 0));
3981 
3982 	eqp->eq_flags &= ~ESBQ_PROCESSING;
3983 }
3984 
3985 /*
3986  * taskq callback routine to free esballoced mblk's
3987  */
3988 static void
3989 esballoc_mblk_free(mblk_t *mp)
3990 {
3991 	mblk_t	*nextmp;
3992 
3993 	for (; mp != NULL; mp = nextmp) {
3994 		nextmp = mp->b_next;
3995 		mp->b_next = NULL;
3996 		mblk_free(mp);
3997 	}
3998 }
3999 
4000 static void
4001 esballoc_enqueue_mblk(mblk_t *mp)
4002 {
4003 
4004 	if (taskq_dispatch(system_taskq, (task_func_t *)esballoc_mblk_free, mp,
4005 	    TQ_NOSLEEP) == NULL) {
4006 		mblk_t *first_mp = mp;
4007 		/*
4008 		 * System is low on resources and can't perform a non-sleeping
4009 		 * dispatch. Schedule for a background thread.
4010 		 */
4011 		mutex_enter(&service_queue);
4012 		STRSTAT(taskqfails);
4013 
4014 		while (mp->b_next != NULL)
4015 			mp = mp->b_next;
4016 
4017 		mp->b_next = freebs_list;
4018 		freebs_list = first_mp;
4019 		cv_signal(&services_to_run);
4020 		mutex_exit(&service_queue);
4021 	}
4022 }
4023 
4024 static void
4025 esballoc_timer(void *arg)
4026 {
4027 	esb_queue_t *eqp = arg;
4028 
4029 	mutex_enter(&eqp->eq_lock);
4030 	eqp->eq_flags &= ~ESBQ_TIMER;
4031 
4032 	if (!(eqp->eq_flags & ESBQ_PROCESSING) &&
4033 	    eqp->eq_len > 0)
4034 		esballoc_process_queue(eqp);
4035 
4036 	esballoc_set_timer(eqp, esbq_timeout);
4037 	mutex_exit(&eqp->eq_lock);
4038 }
4039 
4040 static void
4041 esballoc_set_timer(esb_queue_t *eqp, clock_t eq_timeout)
4042 {
4043 	ASSERT(MUTEX_HELD(&eqp->eq_lock));
4044 
4045 	if (eqp->eq_len > 0 && !(eqp->eq_flags & ESBQ_TIMER)) {
4046 		(void) timeout(esballoc_timer, eqp, eq_timeout);
4047 		eqp->eq_flags |= ESBQ_TIMER;
4048 	}
4049 }
4050 
4051 void
4052 esballoc_queue_init(void)
4053 {
4054 	system_esbq.eq_len = 0;
4055 	system_esbq.eq_head = system_esbq.eq_tail = NULL;
4056 	system_esbq.eq_flags = 0;
4057 }
4058 
4059 /*
4060  * Set the QBACK or QB_BACK flag in the given queue for
4061  * the given priority band.
4062  */
4063 void
4064 setqback(queue_t *q, unsigned char pri)
4065 {
4066 	int i;
4067 	qband_t *qbp;
4068 	qband_t **qbpp;
4069 
4070 	ASSERT(MUTEX_HELD(QLOCK(q)));
4071 	if (pri != 0) {
4072 		if (pri > q->q_nband) {
4073 			qbpp = &q->q_bandp;
4074 			while (*qbpp)
4075 				qbpp = &(*qbpp)->qb_next;
4076 			while (pri > q->q_nband) {
4077 				if ((*qbpp = allocband()) == NULL) {
4078 					cmn_err(CE_WARN,
4079 					    "setqback: can't allocate qband\n");
4080 					return;
4081 				}
4082 				(*qbpp)->qb_hiwat = q->q_hiwat;
4083 				(*qbpp)->qb_lowat = q->q_lowat;
4084 				q->q_nband++;
4085 				qbpp = &(*qbpp)->qb_next;
4086 			}
4087 		}
4088 		qbp = q->q_bandp;
4089 		i = pri;
4090 		while (--i)
4091 			qbp = qbp->qb_next;
4092 		qbp->qb_flag |= QB_BACK;
4093 	} else {
4094 		q->q_flag |= QBACK;
4095 	}
4096 }
4097 
4098 int
4099 strcopyin(void *from, void *to, size_t len, int copyflag)
4100 {
4101 	if (copyflag & U_TO_K) {
4102 		ASSERT((copyflag & K_TO_K) == 0);
4103 		if (copyin(from, to, len))
4104 			return (EFAULT);
4105 	} else {
4106 		ASSERT(copyflag & K_TO_K);
4107 		bcopy(from, to, len);
4108 	}
4109 	return (0);
4110 }
4111 
4112 int
4113 strcopyout(void *from, void *to, size_t len, int copyflag)
4114 {
4115 	if (copyflag & U_TO_K) {
4116 		if (copyout(from, to, len))
4117 			return (EFAULT);
4118 	} else {
4119 		ASSERT(copyflag & K_TO_K);
4120 		bcopy(from, to, len);
4121 	}
4122 	return (0);
4123 }
4124 
4125 /*
4126  * strsignal_nolock() posts a signal to the process(es) at the stream head.
4127  * It assumes that the stream head lock is already held, whereas strsignal()
4128  * acquires the lock first.  This routine was created because a few callers
4129  * release the stream head lock before calling only to re-acquire it after
4130  * it returns.
4131  */
4132 void
4133 strsignal_nolock(stdata_t *stp, int sig, uchar_t band)
4134 {
4135 	ASSERT(MUTEX_HELD(&stp->sd_lock));
4136 	switch (sig) {
4137 	case SIGPOLL:
4138 		if (stp->sd_sigflags & S_MSG)
4139 			strsendsig(stp->sd_siglist, S_MSG, band, 0);
4140 		break;
4141 	default:
4142 		if (stp->sd_pgidp)
4143 			pgsignal(stp->sd_pgidp, sig);
4144 		break;
4145 	}
4146 }
4147 
4148 void
4149 strsignal(stdata_t *stp, int sig, int32_t band)
4150 {
4151 	TRACE_3(TR_FAC_STREAMS_FR, TR_SENDSIG,
4152 	    "strsignal:%p, %X, %X", stp, sig, band);
4153 
4154 	mutex_enter(&stp->sd_lock);
4155 	switch (sig) {
4156 	case SIGPOLL:
4157 		if (stp->sd_sigflags & S_MSG)
4158 			strsendsig(stp->sd_siglist, S_MSG, (uchar_t)band, 0);
4159 		break;
4160 
4161 	default:
4162 		if (stp->sd_pgidp) {
4163 			pgsignal(stp->sd_pgidp, sig);
4164 		}
4165 		break;
4166 	}
4167 	mutex_exit(&stp->sd_lock);
4168 }
4169 
4170 void
4171 strhup(stdata_t *stp)
4172 {
4173 	ASSERT(mutex_owned(&stp->sd_lock));
4174 	pollwakeup(&stp->sd_pollist, POLLHUP);
4175 	if (stp->sd_sigflags & S_HANGUP)
4176 		strsendsig(stp->sd_siglist, S_HANGUP, 0, 0);
4177 }
4178 
4179 /*
4180  * Backenable the first queue upstream from `q' with a service procedure.
4181  */
4182 void
4183 backenable(queue_t *q, uchar_t pri)
4184 {
4185 	queue_t	*nq;
4186 
4187 	/*
4188 	 * Our presence might not prevent other modules in our own
4189 	 * stream from popping/pushing since the caller of getq might not
4190 	 * have a claim on the queue (some drivers do a getq on somebody
4191 	 * else's queue - they know that the queue itself is not going away
4192 	 * but the framework has to guarantee q_next in that stream).
4193 	 */
4194 	claimstr(q);
4195 
4196 	/* Find nearest back queue with service proc */
4197 	for (nq = backq(q); nq && !nq->q_qinfo->qi_srvp; nq = backq(nq)) {
4198 		ASSERT(STRMATED(q->q_stream) || STREAM(q) == STREAM(nq));
4199 	}
4200 
4201 	if (nq) {
4202 		kthread_t *freezer;
4203 		/*
4204 		 * backenable can be called either with no locks held
4205 		 * or with the stream frozen (the latter occurs when a module
4206 		 * calls rmvq with the stream frozen). If the stream is frozen
4207 		 * by the caller the caller will hold all qlocks in the stream.
4208 		 * Note that a frozen stream doesn't freeze a mated stream,
4209 		 * so we explicitly check for that.
4210 		 */
4211 		freezer = STREAM(q)->sd_freezer;
4212 		if (freezer != curthread || STREAM(q) != STREAM(nq)) {
4213 			mutex_enter(QLOCK(nq));
4214 		}
4215 #ifdef DEBUG
4216 		else {
4217 			ASSERT(frozenstr(q));
4218 			ASSERT(MUTEX_HELD(QLOCK(q)));
4219 			ASSERT(MUTEX_HELD(QLOCK(nq)));
4220 		}
4221 #endif
4222 		setqback(nq, pri);
4223 		qenable_locked(nq);
4224 		if (freezer != curthread || STREAM(q) != STREAM(nq))
4225 			mutex_exit(QLOCK(nq));
4226 	}
4227 	releasestr(q);
4228 }
4229 
4230 /*
4231  * Return the appropriate errno when one of flags_to_check is set
4232  * in sd_flags. Uses the exported error routines if they are set.
4233  * Will return 0 if non error is set (or if the exported error routines
4234  * do not return an error).
4235  *
4236  * If there is both a read and write error to check, we prefer the read error.
4237  * Also, give preference to recorded errno's over the error functions.
4238  * The flags that are handled are:
4239  *	STPLEX		return EINVAL
4240  *	STRDERR		return sd_rerror (and clear if STRDERRNONPERSIST)
4241  *	STWRERR		return sd_werror (and clear if STWRERRNONPERSIST)
4242  *	STRHUP		return sd_werror
4243  *
4244  * If the caller indicates that the operation is a peek, a nonpersistent error
4245  * is not cleared.
4246  */
4247 int
4248 strgeterr(stdata_t *stp, int32_t flags_to_check, int ispeek)
4249 {
4250 	int32_t sd_flag = stp->sd_flag & flags_to_check;
4251 	int error = 0;
4252 
4253 	ASSERT(MUTEX_HELD(&stp->sd_lock));
4254 	ASSERT((flags_to_check & ~(STRDERR|STWRERR|STRHUP|STPLEX)) == 0);
4255 	if (sd_flag & STPLEX)
4256 		error = EINVAL;
4257 	else if (sd_flag & STRDERR) {
4258 		error = stp->sd_rerror;
4259 		if ((stp->sd_flag & STRDERRNONPERSIST) && !ispeek) {
4260 			/*
4261 			 * Read errors are non-persistent i.e. discarded once
4262 			 * returned to a non-peeking caller,
4263 			 */
4264 			stp->sd_rerror = 0;
4265 			stp->sd_flag &= ~STRDERR;
4266 		}
4267 		if (error == 0 && stp->sd_rderrfunc != NULL) {
4268 			int clearerr = 0;
4269 
4270 			error = (*stp->sd_rderrfunc)(stp->sd_vnode, ispeek,
4271 			    &clearerr);
4272 			if (clearerr) {
4273 				stp->sd_flag &= ~STRDERR;
4274 				stp->sd_rderrfunc = NULL;
4275 			}
4276 		}
4277 	} else if (sd_flag & STWRERR) {
4278 		error = stp->sd_werror;
4279 		if ((stp->sd_flag & STWRERRNONPERSIST) && !ispeek) {
4280 			/*
4281 			 * Write errors are non-persistent i.e. discarded once
4282 			 * returned to a non-peeking caller,
4283 			 */
4284 			stp->sd_werror = 0;
4285 			stp->sd_flag &= ~STWRERR;
4286 		}
4287 		if (error == 0 && stp->sd_wrerrfunc != NULL) {
4288 			int clearerr = 0;
4289 
4290 			error = (*stp->sd_wrerrfunc)(stp->sd_vnode, ispeek,
4291 			    &clearerr);
4292 			if (clearerr) {
4293 				stp->sd_flag &= ~STWRERR;
4294 				stp->sd_wrerrfunc = NULL;
4295 			}
4296 		}
4297 	} else if (sd_flag & STRHUP) {
4298 		/* sd_werror set when STRHUP */
4299 		error = stp->sd_werror;
4300 	}
4301 	return (error);
4302 }
4303 
4304 
4305 /*
4306  * Single-thread open/close/push/pop
4307  * for twisted streams also
4308  */
4309 int
4310 strstartplumb(stdata_t *stp, int flag, int cmd)
4311 {
4312 	int waited = 1;
4313 	int error = 0;
4314 
4315 	if (STRMATED(stp)) {
4316 		struct stdata *stmatep = stp->sd_mate;
4317 
4318 		STRLOCKMATES(stp);
4319 		while (waited) {
4320 			waited = 0;
4321 			while (stmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4322 				if ((cmd == I_POP) &&
4323 				    (flag & (FNDELAY|FNONBLOCK))) {
4324 					STRUNLOCKMATES(stp);
4325 					return (EAGAIN);
4326 				}
4327 				waited = 1;
4328 				mutex_exit(&stp->sd_lock);
4329 				if (!cv_wait_sig(&stmatep->sd_monitor,
4330 				    &stmatep->sd_lock)) {
4331 					mutex_exit(&stmatep->sd_lock);
4332 					return (EINTR);
4333 				}
4334 				mutex_exit(&stmatep->sd_lock);
4335 				STRLOCKMATES(stp);
4336 			}
4337 			while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4338 				if ((cmd == I_POP) &&
4339 				    (flag & (FNDELAY|FNONBLOCK))) {
4340 					STRUNLOCKMATES(stp);
4341 					return (EAGAIN);
4342 				}
4343 				waited = 1;
4344 				mutex_exit(&stmatep->sd_lock);
4345 				if (!cv_wait_sig(&stp->sd_monitor,
4346 				    &stp->sd_lock)) {
4347 					mutex_exit(&stp->sd_lock);
4348 					return (EINTR);
4349 				}
4350 				mutex_exit(&stp->sd_lock);
4351 				STRLOCKMATES(stp);
4352 			}
4353 			if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4354 				error = strgeterr(stp,
4355 				    STRDERR|STWRERR|STRHUP|STPLEX, 0);
4356 				if (error != 0) {
4357 					STRUNLOCKMATES(stp);
4358 					return (error);
4359 				}
4360 			}
4361 		}
4362 		stp->sd_flag |= STRPLUMB;
4363 		STRUNLOCKMATES(stp);
4364 	} else {
4365 		mutex_enter(&stp->sd_lock);
4366 		while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4367 			if (((cmd == I_POP) || (cmd == _I_REMOVE)) &&
4368 			    (flag & (FNDELAY|FNONBLOCK))) {
4369 				mutex_exit(&stp->sd_lock);
4370 				return (EAGAIN);
4371 			}
4372 			if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) {
4373 				mutex_exit(&stp->sd_lock);
4374 				return (EINTR);
4375 			}
4376 			if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4377 				error = strgeterr(stp,
4378 				    STRDERR|STWRERR|STRHUP|STPLEX, 0);
4379 				if (error != 0) {
4380 					mutex_exit(&stp->sd_lock);
4381 					return (error);
4382 				}
4383 			}
4384 		}
4385 		stp->sd_flag |= STRPLUMB;
4386 		mutex_exit(&stp->sd_lock);
4387 	}
4388 	return (0);
4389 }
4390 
4391 /*
4392  * Complete the plumbing operation associated with stream `stp'.
4393  */
4394 void
4395 strendplumb(stdata_t *stp)
4396 {
4397 	ASSERT(MUTEX_HELD(&stp->sd_lock));
4398 	ASSERT(stp->sd_flag & STRPLUMB);
4399 	stp->sd_flag &= ~STRPLUMB;
4400 	cv_broadcast(&stp->sd_monitor);
4401 }
4402 
4403 /*
4404  * This describes how the STREAMS framework handles synchronization
4405  * during open/push and close/pop.
4406  * The key interfaces for open and close are qprocson and qprocsoff,
4407  * respectively. While the close case in general is harder both open
4408  * have close have significant similarities.
4409  *
4410  * During close the STREAMS framework has to both ensure that there
4411  * are no stale references to the queue pair (and syncq) that
4412  * are being closed and also provide the guarantees that are documented
4413  * in qprocsoff(9F).
4414  * If there are stale references to the queue that is closing it can
4415  * result in kernel memory corruption or kernel panics.
4416  *
4417  * Note that is it up to the module/driver to ensure that it itself
4418  * does not have any stale references to the closing queues once its close
4419  * routine returns. This includes:
4420  *  - Cancelling any timeout/bufcall/qtimeout/qbufcall callback routines
4421  *    associated with the queues. For timeout and bufcall callbacks the
4422  *    module/driver also has to ensure (or wait for) any callbacks that
4423  *    are in progress.
4424  *  - If the module/driver is using esballoc it has to ensure that any
4425  *    esballoc free functions do not refer to a queue that has closed.
4426  *    (Note that in general the close routine can not wait for the esballoc'ed
4427  *    messages to be freed since that can cause a deadlock.)
4428  *  - Cancelling any interrupts that refer to the closing queues and
4429  *    also ensuring that there are no interrupts in progress that will
4430  *    refer to the closing queues once the close routine returns.
4431  *  - For multiplexors removing any driver global state that refers to
4432  *    the closing queue and also ensuring that there are no threads in
4433  *    the multiplexor that has picked up a queue pointer but not yet
4434  *    finished using it.
4435  *
4436  * In addition, a driver/module can only reference the q_next pointer
4437  * in its open, close, put, or service procedures or in a
4438  * qtimeout/qbufcall callback procedure executing "on" the correct
4439  * stream. Thus it can not reference the q_next pointer in an interrupt
4440  * routine or a timeout, bufcall or esballoc callback routine. Likewise
4441  * it can not reference q_next of a different queue e.g. in a mux that
4442  * passes messages from one queues put/service procedure to another queue.
4443  * In all the cases when the driver/module can not access the q_next
4444  * field it must use the *next* versions e.g. canputnext instead of
4445  * canput(q->q_next) and putnextctl instead of putctl(q->q_next, ...).
4446  *
4447  *
4448  * Assuming that the driver/module conforms to the above constraints
4449  * the STREAMS framework has to avoid stale references to q_next for all
4450  * the framework internal cases which include (but are not limited to):
4451  *  - Threads in canput/canputnext/backenable and elsewhere that are
4452  *    walking q_next.
4453  *  - Messages on a syncq that have a reference to the queue through b_queue.
4454  *  - Messages on an outer perimeter (syncq) that have a reference to the
4455  *    queue through b_queue.
4456  *  - Threads that use q_nfsrv (e.g. canput) to find a queue.
4457  *    Note that only canput and bcanput use q_nfsrv without any locking.
4458  *
4459  * The STREAMS framework providing the qprocsoff(9F) guarantees means that
4460  * after qprocsoff returns, the framework has to ensure that no threads can
4461  * enter the put or service routines for the closing read or write-side queue.
4462  * In addition to preventing "direct" entry into the put procedures
4463  * the framework also has to prevent messages being drained from
4464  * the syncq or the outer perimeter.
4465  * XXX Note that currently qdetach does relies on D_MTOCEXCL as the only
4466  * mechanism to prevent qwriter(PERIM_OUTER) from running after
4467  * qprocsoff has returned.
4468  * Note that if a module/driver uses put(9F) on one of its own queues
4469  * it is up to the module/driver to ensure that the put() doesn't
4470  * get called when the queue is closing.
4471  *
4472  *
4473  * The framework aspects of the above "contract" is implemented by
4474  * qprocsoff, removeq, and strlock:
4475  *  - qprocsoff (disable_svc) sets QWCLOSE to prevent runservice from
4476  *    entering the service procedures.
4477  *  - strlock acquires the sd_lock and sd_reflock to prevent putnext,
4478  *    canputnext, backenable etc from dereferencing the q_next that will
4479  *    soon change.
4480  *  - strlock waits for sd_refcnt to be zero to wait for e.g. any canputnext
4481  *    or other q_next walker that uses claimstr/releasestr to finish.
4482  *  - optionally for every syncq in the stream strlock acquires all the
4483  *    sq_lock's and waits for all sq_counts to drop to a value that indicates
4484  *    that no thread executes in the put or service procedures and that no
4485  *    thread is draining into the module/driver. This ensures that no
4486  *    open, close, put, service, or qtimeout/qbufcall callback procedure is
4487  *    currently executing hence no such thread can end up with the old stale
4488  *    q_next value and no canput/backenable can have the old stale
4489  *    q_nfsrv/q_next.
4490  *  - qdetach (wait_svc) makes sure that any scheduled or running threads
4491  *    have either finished or observed the QWCLOSE flag and gone away.
4492  */
4493 
4494 
4495 /*
4496  * Get all the locks necessary to change q_next.
4497  *
4498  * Wait for sd_refcnt to reach 0 and, if sqlist is present, wait for the
4499  * sq_count of each syncq in the list to drop to sq_rmqcount, indicating that
4500  * the only threads inside the syncq are threads currently calling removeq().
4501  * Since threads calling removeq() are in the process of removing their queues
4502  * from the stream, we do not need to worry about them accessing a stale q_next
4503  * pointer and thus we do not need to wait for them to exit (in fact, waiting
4504  * for them can cause deadlock).
4505  *
4506  * This routine is subject to starvation since it does not set any flag to
4507  * prevent threads from entering a module in the stream (i.e. sq_count can
4508  * increase on some syncq while it is waiting on some other syncq).
4509  *
4510  * Assumes that only one thread attempts to call strlock for a given
4511  * stream. If this is not the case the two threads would deadlock.
4512  * This assumption is guaranteed since strlock is only called by insertq
4513  * and removeq and streams plumbing changes are single-threaded for
4514  * a given stream using the STWOPEN, STRCLOSE, and STRPLUMB flags.
4515  *
4516  * For pipes, it is not difficult to atomically designate a pair of streams
4517  * to be mated. Once mated atomically by the framework the twisted pair remain
4518  * configured that way until dismantled atomically by the framework.
4519  * When plumbing takes place on a twisted stream it is necessary to ensure that
4520  * this operation is done exclusively on the twisted stream since two such
4521  * operations, each initiated on different ends of the pipe will deadlock
4522  * waiting for each other to complete.
4523  *
4524  * On entry, no locks should be held.
4525  * The locks acquired and held by strlock depends on a few factors.
4526  * - If sqlist is non-NULL all the syncq locks in the sqlist will be acquired
4527  *   and held on exit and all sq_count are at an acceptable level.
4528  * - In all cases, sd_lock and sd_reflock are acquired and held on exit with
4529  *   sd_refcnt being zero.
4530  */
4531 
4532 static void
4533 strlock(struct stdata *stp, sqlist_t *sqlist)
4534 {
4535 	syncql_t *sql, *sql2;
4536 retry:
4537 	/*
4538 	 * Wait for any claimstr to go away.
4539 	 */
4540 	if (STRMATED(stp)) {
4541 		struct stdata *stp1, *stp2;
4542 
4543 		STRLOCKMATES(stp);
4544 		/*
4545 		 * Note that the selection of locking order is not
4546 		 * important, just that they are always acquired in
4547 		 * the same order.  To assure this, we choose this
4548 		 * order based on the value of the pointer, and since
4549 		 * the pointer will not change for the life of this
4550 		 * pair, we will always grab the locks in the same
4551 		 * order (and hence, prevent deadlocks).
4552 		 */
4553 		if (&(stp->sd_lock) > &((stp->sd_mate)->sd_lock)) {
4554 			stp1 = stp;
4555 			stp2 = stp->sd_mate;
4556 		} else {
4557 			stp2 = stp;
4558 			stp1 = stp->sd_mate;
4559 		}
4560 		mutex_enter(&stp1->sd_reflock);
4561 		if (stp1->sd_refcnt > 0) {
4562 			STRUNLOCKMATES(stp);
4563 			cv_wait(&stp1->sd_refmonitor, &stp1->sd_reflock);
4564 			mutex_exit(&stp1->sd_reflock);
4565 			goto retry;
4566 		}
4567 		mutex_enter(&stp2->sd_reflock);
4568 		if (stp2->sd_refcnt > 0) {
4569 			STRUNLOCKMATES(stp);
4570 			mutex_exit(&stp1->sd_reflock);
4571 			cv_wait(&stp2->sd_refmonitor, &stp2->sd_reflock);
4572 			mutex_exit(&stp2->sd_reflock);
4573 			goto retry;
4574 		}
4575 		STREAM_PUTLOCKS_ENTER(stp1);
4576 		STREAM_PUTLOCKS_ENTER(stp2);
4577 	} else {
4578 		mutex_enter(&stp->sd_lock);
4579 		mutex_enter(&stp->sd_reflock);
4580 		while (stp->sd_refcnt > 0) {
4581 			mutex_exit(&stp->sd_lock);
4582 			cv_wait(&stp->sd_refmonitor, &stp->sd_reflock);
4583 			if (mutex_tryenter(&stp->sd_lock) == 0) {
4584 				mutex_exit(&stp->sd_reflock);
4585 				mutex_enter(&stp->sd_lock);
4586 				mutex_enter(&stp->sd_reflock);
4587 			}
4588 		}
4589 		STREAM_PUTLOCKS_ENTER(stp);
4590 	}
4591 
4592 	if (sqlist == NULL)
4593 		return;
4594 
4595 	for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
4596 		syncq_t *sq = sql->sql_sq;
4597 		uint16_t count;
4598 
4599 		mutex_enter(SQLOCK(sq));
4600 		count = sq->sq_count;
4601 		ASSERT(sq->sq_rmqcount <= count);
4602 		SQ_PUTLOCKS_ENTER(sq);
4603 		SUM_SQ_PUTCOUNTS(sq, count);
4604 		if (count == sq->sq_rmqcount)
4605 			continue;
4606 
4607 		/* Failed - drop all locks that we have acquired so far */
4608 		if (STRMATED(stp)) {
4609 			STREAM_PUTLOCKS_EXIT(stp);
4610 			STREAM_PUTLOCKS_EXIT(stp->sd_mate);
4611 			STRUNLOCKMATES(stp);
4612 			mutex_exit(&stp->sd_reflock);
4613 			mutex_exit(&stp->sd_mate->sd_reflock);
4614 		} else {
4615 			STREAM_PUTLOCKS_EXIT(stp);
4616 			mutex_exit(&stp->sd_lock);
4617 			mutex_exit(&stp->sd_reflock);
4618 		}
4619 		for (sql2 = sqlist->sqlist_head; sql2 != sql;
4620 		    sql2 = sql2->sql_next) {
4621 			SQ_PUTLOCKS_EXIT(sql2->sql_sq);
4622 			mutex_exit(SQLOCK(sql2->sql_sq));
4623 		}
4624 
4625 		/*
4626 		 * The wait loop below may starve when there are many threads
4627 		 * claiming the syncq. This is especially a problem with permod
4628 		 * syncqs (IP). To lessen the impact of the problem we increment
4629 		 * sq_needexcl and clear fastbits so that putnexts will slow
4630 		 * down and call sqenable instead of draining right away.
4631 		 */
4632 		sq->sq_needexcl++;
4633 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
4634 		while (count > sq->sq_rmqcount) {
4635 			sq->sq_flags |= SQ_WANTWAKEUP;
4636 			SQ_PUTLOCKS_EXIT(sq);
4637 			cv_wait(&sq->sq_wait, SQLOCK(sq));
4638 			count = sq->sq_count;
4639 			SQ_PUTLOCKS_ENTER(sq);
4640 			SUM_SQ_PUTCOUNTS(sq, count);
4641 		}
4642 		sq->sq_needexcl--;
4643 		if (sq->sq_needexcl == 0)
4644 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
4645 		SQ_PUTLOCKS_EXIT(sq);
4646 		ASSERT(count == sq->sq_rmqcount);
4647 		mutex_exit(SQLOCK(sq));
4648 		goto retry;
4649 	}
4650 }
4651 
4652 /*
4653  * Drop all the locks that strlock acquired.
4654  */
4655 static void
4656 strunlock(struct stdata *stp, sqlist_t *sqlist)
4657 {
4658 	syncql_t *sql;
4659 
4660 	if (STRMATED(stp)) {
4661 		STREAM_PUTLOCKS_EXIT(stp);
4662 		STREAM_PUTLOCKS_EXIT(stp->sd_mate);
4663 		STRUNLOCKMATES(stp);
4664 		mutex_exit(&stp->sd_reflock);
4665 		mutex_exit(&stp->sd_mate->sd_reflock);
4666 	} else {
4667 		STREAM_PUTLOCKS_EXIT(stp);
4668 		mutex_exit(&stp->sd_lock);
4669 		mutex_exit(&stp->sd_reflock);
4670 	}
4671 
4672 	if (sqlist == NULL)
4673 		return;
4674 
4675 	for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
4676 		SQ_PUTLOCKS_EXIT(sql->sql_sq);
4677 		mutex_exit(SQLOCK(sql->sql_sq));
4678 	}
4679 }
4680 
4681 /*
4682  * When the module has service procedure, we need check if the next
4683  * module which has service procedure is in flow control to trigger
4684  * the backenable.
4685  */
4686 static void
4687 backenable_insertedq(queue_t *q)
4688 {
4689 	qband_t	*qbp;
4690 
4691 	claimstr(q);
4692 	if (q->q_qinfo->qi_srvp != NULL && q->q_next != NULL) {
4693 		if (q->q_next->q_nfsrv->q_flag & QWANTW)
4694 			backenable(q, 0);
4695 
4696 		qbp = q->q_next->q_nfsrv->q_bandp;
4697 		for (; qbp != NULL; qbp = qbp->qb_next)
4698 			if ((qbp->qb_flag & QB_WANTW) && qbp->qb_first != NULL)
4699 				backenable(q, qbp->qb_first->b_band);
4700 	}
4701 	releasestr(q);
4702 }
4703 
4704 /*
4705  * Given two read queues, insert a new single one after another.
4706  *
4707  * This routine acquires all the necessary locks in order to change
4708  * q_next and related pointer using strlock().
4709  * It depends on the stream head ensuring that there are no concurrent
4710  * insertq or removeq on the same stream. The stream head ensures this
4711  * using the flags STWOPEN, STRCLOSE, and STRPLUMB.
4712  *
4713  * Note that no syncq locks are held during the q_next change. This is
4714  * applied to all streams since, unlike removeq, there is no problem of stale
4715  * pointers when adding a module to the stream. Thus drivers/modules that do a
4716  * canput(rq->q_next) would never get a closed/freed queue pointer even if we
4717  * applied this optimization to all streams.
4718  */
4719 void
4720 insertq(struct stdata *stp, queue_t *new)
4721 {
4722 	queue_t	*after;
4723 	queue_t *wafter;
4724 	queue_t *wnew = _WR(new);
4725 	boolean_t have_fifo = B_FALSE;
4726 
4727 	if (new->q_flag & _QINSERTING) {
4728 		ASSERT(stp->sd_vnode->v_type != VFIFO);
4729 		after = new->q_next;
4730 		wafter = _WR(new->q_next);
4731 	} else {
4732 		after = _RD(stp->sd_wrq);
4733 		wafter = stp->sd_wrq;
4734 	}
4735 
4736 	TRACE_2(TR_FAC_STREAMS_FR, TR_INSERTQ,
4737 	    "insertq:%p, %p", after, new);
4738 	ASSERT(after->q_flag & QREADR);
4739 	ASSERT(new->q_flag & QREADR);
4740 
4741 	strlock(stp, NULL);
4742 
4743 	/* Do we have a FIFO? */
4744 	if (wafter->q_next == after) {
4745 		have_fifo = B_TRUE;
4746 		wnew->q_next = new;
4747 	} else {
4748 		wnew->q_next = wafter->q_next;
4749 	}
4750 	new->q_next = after;
4751 
4752 	set_nfsrv_ptr(new, wnew, after, wafter);
4753 	/*
4754 	 * set_nfsrv_ptr() needs to know if this is an insertion or not,
4755 	 * so only reset this flag after calling it.
4756 	 */
4757 	new->q_flag &= ~_QINSERTING;
4758 
4759 	if (have_fifo) {
4760 		wafter->q_next = wnew;
4761 	} else {
4762 		if (wafter->q_next)
4763 			_OTHERQ(wafter->q_next)->q_next = new;
4764 		wafter->q_next = wnew;
4765 	}
4766 
4767 	set_qend(new);
4768 	/* The QEND flag might have to be updated for the upstream guy */
4769 	set_qend(after);
4770 
4771 	ASSERT(_SAMESTR(new) == O_SAMESTR(new));
4772 	ASSERT(_SAMESTR(wnew) == O_SAMESTR(wnew));
4773 	ASSERT(_SAMESTR(after) == O_SAMESTR(after));
4774 	ASSERT(_SAMESTR(wafter) == O_SAMESTR(wafter));
4775 	strsetuio(stp);
4776 
4777 	/*
4778 	 * If this was a module insertion, bump the push count.
4779 	 */
4780 	if (!(new->q_flag & QISDRV))
4781 		stp->sd_pushcnt++;
4782 
4783 	strunlock(stp, NULL);
4784 
4785 	/* check if the write Q needs backenable */
4786 	backenable_insertedq(wnew);
4787 
4788 	/* check if the read Q needs backenable */
4789 	backenable_insertedq(new);
4790 }
4791 
4792 /*
4793  * Given a read queue, unlink it from any neighbors.
4794  *
4795  * This routine acquires all the necessary locks in order to
4796  * change q_next and related pointers and also guard against
4797  * stale references (e.g. through q_next) to the queue that
4798  * is being removed. It also plays part of the role in ensuring
4799  * that the module's/driver's put procedure doesn't get called
4800  * after qprocsoff returns.
4801  *
4802  * Removeq depends on the stream head ensuring that there are
4803  * no concurrent insertq or removeq on the same stream. The
4804  * stream head ensures this using the flags STWOPEN, STRCLOSE and
4805  * STRPLUMB.
4806  *
4807  * The set of locks needed to remove the queue is different in
4808  * different cases:
4809  *
4810  * Acquire sd_lock, sd_reflock, and all the syncq locks in the stream after
4811  * waiting for the syncq reference count to drop to 0 indicating that no
4812  * non-close threads are present anywhere in the stream. This ensures that any
4813  * module/driver can reference q_next in its open, close, put, or service
4814  * procedures.
4815  *
4816  * The sq_rmqcount counter tracks the number of threads inside removeq().
4817  * strlock() ensures that there is either no threads executing inside perimeter
4818  * or there is only a thread calling qprocsoff().
4819  *
4820  * strlock() compares the value of sq_count with the number of threads inside
4821  * removeq() and waits until sq_count is equal to sq_rmqcount. We need to wakeup
4822  * any threads waiting in strlock() when the sq_rmqcount increases.
4823  */
4824 
4825 void
4826 removeq(queue_t *qp)
4827 {
4828 	queue_t *wqp = _WR(qp);
4829 	struct stdata *stp = STREAM(qp);
4830 	sqlist_t *sqlist = NULL;
4831 	boolean_t isdriver;
4832 	int moved;
4833 	syncq_t *sq = qp->q_syncq;
4834 	syncq_t *wsq = wqp->q_syncq;
4835 
4836 	ASSERT(stp);
4837 
4838 	TRACE_2(TR_FAC_STREAMS_FR, TR_REMOVEQ,
4839 	    "removeq:%p %p", qp, wqp);
4840 	ASSERT(qp->q_flag&QREADR);
4841 
4842 	/*
4843 	 * For queues using Synchronous streams, we must wait for all threads in
4844 	 * rwnext() to drain out before proceeding.
4845 	 */
4846 	if (qp->q_flag & QSYNCSTR) {
4847 		/* First, we need wakeup any threads blocked in rwnext() */
4848 		mutex_enter(SQLOCK(sq));
4849 		if (sq->sq_flags & SQ_WANTWAKEUP) {
4850 			sq->sq_flags &= ~SQ_WANTWAKEUP;
4851 			cv_broadcast(&sq->sq_wait);
4852 		}
4853 		mutex_exit(SQLOCK(sq));
4854 
4855 		if (wsq != sq) {
4856 			mutex_enter(SQLOCK(wsq));
4857 			if (wsq->sq_flags & SQ_WANTWAKEUP) {
4858 				wsq->sq_flags &= ~SQ_WANTWAKEUP;
4859 				cv_broadcast(&wsq->sq_wait);
4860 			}
4861 			mutex_exit(SQLOCK(wsq));
4862 		}
4863 
4864 		mutex_enter(QLOCK(qp));
4865 		while (qp->q_rwcnt > 0) {
4866 			qp->q_flag |= QWANTRMQSYNC;
4867 			cv_wait(&qp->q_wait, QLOCK(qp));
4868 		}
4869 		mutex_exit(QLOCK(qp));
4870 
4871 		mutex_enter(QLOCK(wqp));
4872 		while (wqp->q_rwcnt > 0) {
4873 			wqp->q_flag |= QWANTRMQSYNC;
4874 			cv_wait(&wqp->q_wait, QLOCK(wqp));
4875 		}
4876 		mutex_exit(QLOCK(wqp));
4877 	}
4878 
4879 	mutex_enter(SQLOCK(sq));
4880 	sq->sq_rmqcount++;
4881 	if (sq->sq_flags & SQ_WANTWAKEUP) {
4882 		sq->sq_flags &= ~SQ_WANTWAKEUP;
4883 		cv_broadcast(&sq->sq_wait);
4884 	}
4885 	mutex_exit(SQLOCK(sq));
4886 
4887 	isdriver = (qp->q_flag & QISDRV);
4888 
4889 	sqlist = sqlist_build(qp, stp, STRMATED(stp));
4890 	strlock(stp, sqlist);
4891 
4892 	reset_nfsrv_ptr(qp, wqp);
4893 
4894 	ASSERT(wqp->q_next == NULL || backq(qp)->q_next == qp);
4895 	ASSERT(qp->q_next == NULL || backq(wqp)->q_next == wqp);
4896 	/* Do we have a FIFO? */
4897 	if (wqp->q_next == qp) {
4898 		stp->sd_wrq->q_next = _RD(stp->sd_wrq);
4899 	} else {
4900 		if (wqp->q_next)
4901 			backq(qp)->q_next = qp->q_next;
4902 		if (qp->q_next)
4903 			backq(wqp)->q_next = wqp->q_next;
4904 	}
4905 
4906 	/* The QEND flag might have to be updated for the upstream guy */
4907 	if (qp->q_next)
4908 		set_qend(qp->q_next);
4909 
4910 	ASSERT(_SAMESTR(stp->sd_wrq) == O_SAMESTR(stp->sd_wrq));
4911 	ASSERT(_SAMESTR(_RD(stp->sd_wrq)) == O_SAMESTR(_RD(stp->sd_wrq)));
4912 
4913 	/*
4914 	 * Move any messages destined for the put procedures to the next
4915 	 * syncq in line. Otherwise free them.
4916 	 */
4917 	moved = 0;
4918 	/*
4919 	 * Quick check to see whether there are any messages or events.
4920 	 */
4921 	if (qp->q_syncqmsgs != 0 || (qp->q_syncq->sq_flags & SQ_EVENTS))
4922 		moved += propagate_syncq(qp);
4923 	if (wqp->q_syncqmsgs != 0 ||
4924 	    (wqp->q_syncq->sq_flags & SQ_EVENTS))
4925 		moved += propagate_syncq(wqp);
4926 
4927 	strsetuio(stp);
4928 
4929 	/*
4930 	 * If this was a module removal, decrement the push count.
4931 	 */
4932 	if (!isdriver)
4933 		stp->sd_pushcnt--;
4934 
4935 	strunlock(stp, sqlist);
4936 	sqlist_free(sqlist);
4937 
4938 	/*
4939 	 * Make sure any messages that were propagated are drained.
4940 	 * Also clear any QFULL bit caused by messages that were propagated.
4941 	 */
4942 
4943 	if (qp->q_next != NULL) {
4944 		clr_qfull(qp);
4945 		/*
4946 		 * For the driver calling qprocsoff, propagate_syncq
4947 		 * frees all the messages instead of putting it in
4948 		 * the stream head
4949 		 */
4950 		if (!isdriver && (moved > 0))
4951 			emptysq(qp->q_next->q_syncq);
4952 	}
4953 	if (wqp->q_next != NULL) {
4954 		clr_qfull(wqp);
4955 		/*
4956 		 * We come here for any pop of a module except for the
4957 		 * case of driver being removed. We don't call emptysq
4958 		 * if we did not move any messages. This will avoid holding
4959 		 * PERMOD syncq locks in emptysq
4960 		 */
4961 		if (moved > 0)
4962 			emptysq(wqp->q_next->q_syncq);
4963 	}
4964 
4965 	mutex_enter(SQLOCK(sq));
4966 	sq->sq_rmqcount--;
4967 	mutex_exit(SQLOCK(sq));
4968 }
4969 
4970 /*
4971  * Prevent further entry by setting a flag (like SQ_FROZEN, SQ_BLOCKED or
4972  * SQ_WRITER) on a syncq.
4973  * If maxcnt is not -1 it assumes that caller has "maxcnt" claim(s) on the
4974  * sync queue and waits until sq_count reaches maxcnt.
4975  *
4976  * If maxcnt is -1 there's no need to grab sq_putlocks since the caller
4977  * does not care about putnext threads that are in the middle of calling put
4978  * entry points.
4979  *
4980  * This routine is used for both inner and outer syncqs.
4981  */
4982 static void
4983 blocksq(syncq_t *sq, ushort_t flag, int maxcnt)
4984 {
4985 	uint16_t count = 0;
4986 
4987 	mutex_enter(SQLOCK(sq));
4988 	/*
4989 	 * Wait for SQ_FROZEN/SQ_BLOCKED to be reset.
4990 	 * SQ_FROZEN will be set if there is a frozen stream that has a
4991 	 * queue which also refers to this "shared" syncq.
4992 	 * SQ_BLOCKED will be set if there is "off" queue which also
4993 	 * refers to this "shared" syncq.
4994 	 */
4995 	if (maxcnt != -1) {
4996 		count = sq->sq_count;
4997 		SQ_PUTLOCKS_ENTER(sq);
4998 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
4999 		SUM_SQ_PUTCOUNTS(sq, count);
5000 	}
5001 	sq->sq_needexcl++;
5002 	ASSERT(sq->sq_needexcl != 0);	/* wraparound */
5003 
5004 	while ((sq->sq_flags & flag) ||
5005 	    (maxcnt != -1 && count > (unsigned)maxcnt)) {
5006 		sq->sq_flags |= SQ_WANTWAKEUP;
5007 		if (maxcnt != -1) {
5008 			SQ_PUTLOCKS_EXIT(sq);
5009 		}
5010 		cv_wait(&sq->sq_wait, SQLOCK(sq));
5011 		if (maxcnt != -1) {
5012 			count = sq->sq_count;
5013 			SQ_PUTLOCKS_ENTER(sq);
5014 			SUM_SQ_PUTCOUNTS(sq, count);
5015 		}
5016 	}
5017 	sq->sq_needexcl--;
5018 	sq->sq_flags |= flag;
5019 	ASSERT(maxcnt == -1 || count == maxcnt);
5020 	if (maxcnt != -1) {
5021 		if (sq->sq_needexcl == 0) {
5022 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
5023 		}
5024 		SQ_PUTLOCKS_EXIT(sq);
5025 	} else if (sq->sq_needexcl == 0) {
5026 		SQ_PUTCOUNT_SETFAST(sq);
5027 	}
5028 
5029 	mutex_exit(SQLOCK(sq));
5030 }
5031 
5032 /*
5033  * Reset a flag that was set with blocksq.
5034  *
5035  * Can not use this routine to reset SQ_WRITER.
5036  *
5037  * If "isouter" is set then the syncq is assumed to be an outer perimeter
5038  * and drain_syncq is not called. Instead we rely on the qwriter_outer thread
5039  * to handle the queued qwriter operations.
5040  *
5041  * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5042  * sq_putlocks are used.
5043  */
5044 static void
5045 unblocksq(syncq_t *sq, uint16_t resetflag, int isouter)
5046 {
5047 	uint16_t flags;
5048 
5049 	mutex_enter(SQLOCK(sq));
5050 	ASSERT(resetflag != SQ_WRITER);
5051 	ASSERT(sq->sq_flags & resetflag);
5052 	flags = sq->sq_flags & ~resetflag;
5053 	sq->sq_flags = flags;
5054 	if (flags & (SQ_QUEUED | SQ_WANTWAKEUP)) {
5055 		if (flags & SQ_WANTWAKEUP) {
5056 			flags &= ~SQ_WANTWAKEUP;
5057 			cv_broadcast(&sq->sq_wait);
5058 		}
5059 		sq->sq_flags = flags;
5060 		if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5061 			if (!isouter) {
5062 				/* drain_syncq drops SQLOCK */
5063 				drain_syncq(sq);
5064 				return;
5065 			}
5066 		}
5067 	}
5068 	mutex_exit(SQLOCK(sq));
5069 }
5070 
5071 /*
5072  * Reset a flag that was set with blocksq.
5073  * Does not drain the syncq. Use emptysq() for that.
5074  * Returns 1 if SQ_QUEUED is set. Otherwise 0.
5075  *
5076  * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5077  * sq_putlocks are used.
5078  */
5079 static int
5080 dropsq(syncq_t *sq, uint16_t resetflag)
5081 {
5082 	uint16_t flags;
5083 
5084 	mutex_enter(SQLOCK(sq));
5085 	ASSERT(sq->sq_flags & resetflag);
5086 	flags = sq->sq_flags & ~resetflag;
5087 	if (flags & SQ_WANTWAKEUP) {
5088 		flags &= ~SQ_WANTWAKEUP;
5089 		cv_broadcast(&sq->sq_wait);
5090 	}
5091 	sq->sq_flags = flags;
5092 	mutex_exit(SQLOCK(sq));
5093 	if (flags & SQ_QUEUED)
5094 		return (1);
5095 	return (0);
5096 }
5097 
5098 /*
5099  * Empty all the messages on a syncq.
5100  *
5101  * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5102  * sq_putlocks are used.
5103  */
5104 static void
5105 emptysq(syncq_t *sq)
5106 {
5107 	uint16_t flags;
5108 
5109 	mutex_enter(SQLOCK(sq));
5110 	flags = sq->sq_flags;
5111 	if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5112 		/*
5113 		 * To prevent potential recursive invocation of drain_syncq we
5114 		 * do not call drain_syncq if count is non-zero.
5115 		 */
5116 		if (sq->sq_count == 0) {
5117 			/* drain_syncq() drops SQLOCK */
5118 			drain_syncq(sq);
5119 			return;
5120 		} else
5121 			sqenable(sq);
5122 	}
5123 	mutex_exit(SQLOCK(sq));
5124 }
5125 
5126 /*
5127  * Ordered insert while removing duplicates.
5128  */
5129 static void
5130 sqlist_insert(sqlist_t *sqlist, syncq_t *sqp)
5131 {
5132 	syncql_t *sqlp, **prev_sqlpp, *new_sqlp;
5133 
5134 	prev_sqlpp = &sqlist->sqlist_head;
5135 	while ((sqlp = *prev_sqlpp) != NULL) {
5136 		if (sqlp->sql_sq >= sqp) {
5137 			if (sqlp->sql_sq == sqp)	/* duplicate */
5138 				return;
5139 			break;
5140 		}
5141 		prev_sqlpp = &sqlp->sql_next;
5142 	}
5143 	new_sqlp = &sqlist->sqlist_array[sqlist->sqlist_index++];
5144 	ASSERT((char *)new_sqlp < (char *)sqlist + sqlist->sqlist_size);
5145 	new_sqlp->sql_next = sqlp;
5146 	new_sqlp->sql_sq = sqp;
5147 	*prev_sqlpp = new_sqlp;
5148 }
5149 
5150 /*
5151  * Walk the write side queues until we hit either the driver
5152  * or a twist in the stream (_SAMESTR will return false in both
5153  * these cases) then turn around and walk the read side queues
5154  * back up to the stream head.
5155  */
5156 static void
5157 sqlist_insertall(sqlist_t *sqlist, queue_t *q)
5158 {
5159 	while (q != NULL) {
5160 		sqlist_insert(sqlist, q->q_syncq);
5161 
5162 		if (_SAMESTR(q))
5163 			q = q->q_next;
5164 		else if (!(q->q_flag & QREADR))
5165 			q = _RD(q);
5166 		else
5167 			q = NULL;
5168 	}
5169 }
5170 
5171 /*
5172  * Allocate and build a list of all syncqs in a stream and the syncq(s)
5173  * associated with the "q" parameter. The resulting list is sorted in a
5174  * canonical order and is free of duplicates.
5175  * Assumes the passed queue is a _RD(q).
5176  */
5177 static sqlist_t *
5178 sqlist_build(queue_t *q, struct stdata *stp, boolean_t do_twist)
5179 {
5180 	sqlist_t *sqlist = sqlist_alloc(stp, KM_SLEEP);
5181 
5182 	/*
5183 	 * start with the current queue/qpair
5184 	 */
5185 	ASSERT(q->q_flag & QREADR);
5186 
5187 	sqlist_insert(sqlist, q->q_syncq);
5188 	sqlist_insert(sqlist, _WR(q)->q_syncq);
5189 
5190 	sqlist_insertall(sqlist, stp->sd_wrq);
5191 	if (do_twist)
5192 		sqlist_insertall(sqlist, stp->sd_mate->sd_wrq);
5193 
5194 	return (sqlist);
5195 }
5196 
5197 static sqlist_t *
5198 sqlist_alloc(struct stdata *stp, int kmflag)
5199 {
5200 	size_t sqlist_size;
5201 	sqlist_t *sqlist;
5202 
5203 	/*
5204 	 * Allocate 2 syncql_t's for each pushed module. Note that
5205 	 * the sqlist_t structure already has 4 syncql_t's built in:
5206 	 * 2 for the stream head, and 2 for the driver/other stream head.
5207 	 */
5208 	sqlist_size = 2 * sizeof (syncql_t) * stp->sd_pushcnt +
5209 	    sizeof (sqlist_t);
5210 	if (STRMATED(stp))
5211 		sqlist_size += 2 * sizeof (syncql_t) * stp->sd_mate->sd_pushcnt;
5212 	sqlist = kmem_alloc(sqlist_size, kmflag);
5213 
5214 	sqlist->sqlist_head = NULL;
5215 	sqlist->sqlist_size = sqlist_size;
5216 	sqlist->sqlist_index = 0;
5217 
5218 	return (sqlist);
5219 }
5220 
5221 /*
5222  * Free the list created by sqlist_alloc()
5223  */
5224 static void
5225 sqlist_free(sqlist_t *sqlist)
5226 {
5227 	kmem_free(sqlist, sqlist->sqlist_size);
5228 }
5229 
5230 /*
5231  * Prevent any new entries into any syncq in this stream.
5232  * Used by freezestr.
5233  */
5234 void
5235 strblock(queue_t *q)
5236 {
5237 	struct stdata	*stp;
5238 	syncql_t	*sql;
5239 	sqlist_t	*sqlist;
5240 
5241 	q = _RD(q);
5242 
5243 	stp = STREAM(q);
5244 	ASSERT(stp != NULL);
5245 
5246 	/*
5247 	 * Get a sorted list with all the duplicates removed containing
5248 	 * all the syncqs referenced by this stream.
5249 	 */
5250 	sqlist = sqlist_build(q, stp, B_FALSE);
5251 	for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
5252 		blocksq(sql->sql_sq, SQ_FROZEN, -1);
5253 	sqlist_free(sqlist);
5254 }
5255 
5256 /*
5257  * Release the block on new entries into this stream
5258  */
5259 void
5260 strunblock(queue_t *q)
5261 {
5262 	struct stdata	*stp;
5263 	syncql_t	*sql;
5264 	sqlist_t	*sqlist;
5265 	int		drain_needed;
5266 
5267 	q = _RD(q);
5268 
5269 	/*
5270 	 * Get a sorted list with all the duplicates removed containing
5271 	 * all the syncqs referenced by this stream.
5272 	 * Have to drop the SQ_FROZEN flag on all the syncqs before
5273 	 * starting to drain them; otherwise the draining might
5274 	 * cause a freezestr in some module on the stream (which
5275 	 * would deadlock).
5276 	 */
5277 	stp = STREAM(q);
5278 	ASSERT(stp != NULL);
5279 	sqlist = sqlist_build(q, stp, B_FALSE);
5280 	drain_needed = 0;
5281 	for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
5282 		drain_needed += dropsq(sql->sql_sq, SQ_FROZEN);
5283 	if (drain_needed) {
5284 		for (sql = sqlist->sqlist_head; sql != NULL;
5285 		    sql = sql->sql_next)
5286 			emptysq(sql->sql_sq);
5287 	}
5288 	sqlist_free(sqlist);
5289 }
5290 
5291 #ifdef DEBUG
5292 static int
5293 qprocsareon(queue_t *rq)
5294 {
5295 	if (rq->q_next == NULL)
5296 		return (0);
5297 	return (_WR(rq->q_next)->q_next == _WR(rq));
5298 }
5299 
5300 int
5301 qclaimed(queue_t *q)
5302 {
5303 	uint_t count;
5304 
5305 	count = q->q_syncq->sq_count;
5306 	SUM_SQ_PUTCOUNTS(q->q_syncq, count);
5307 	return (count != 0);
5308 }
5309 
5310 /*
5311  * Check if anyone has frozen this stream with freezestr
5312  */
5313 int
5314 frozenstr(queue_t *q)
5315 {
5316 	return ((q->q_syncq->sq_flags & SQ_FROZEN) != 0);
5317 }
5318 #endif /* DEBUG */
5319 
5320 /*
5321  * Enter a queue.
5322  * Obsoleted interface. Should not be used.
5323  */
5324 void
5325 enterq(queue_t *q)
5326 {
5327 	entersq(q->q_syncq, SQ_CALLBACK);
5328 }
5329 
5330 void
5331 leaveq(queue_t *q)
5332 {
5333 	leavesq(q->q_syncq, SQ_CALLBACK);
5334 }
5335 
5336 /*
5337  * Enter a perimeter. c_inner and c_outer specifies which concurrency bits
5338  * to check.
5339  * Wait if SQ_QUEUED is set to preserve ordering between messages and qwriter
5340  * calls and the running of open, close and service procedures.
5341  *
5342  * If c_inner bit is set no need to grab sq_putlocks since we don't care
5343  * if other threads have entered or are entering put entry point.
5344  *
5345  * If c_inner bit is set it might have been possible to use
5346  * sq_putlocks/sq_putcounts instead of SQLOCK/sq_count (e.g. to optimize
5347  * open/close path for IP) but since the count may need to be decremented in
5348  * qwait() we wouldn't know which counter to decrement. Currently counter is
5349  * selected by current cpu_seqid and current CPU can change at any moment. XXX
5350  * in the future we might use curthread id bits to select the counter and this
5351  * would stay constant across routine calls.
5352  */
5353 void
5354 entersq(syncq_t *sq, int entrypoint)
5355 {
5356 	uint16_t	count = 0;
5357 	uint16_t	flags;
5358 	uint16_t	waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
5359 	uint16_t	type;
5360 	uint_t		c_inner = entrypoint & SQ_CI;
5361 	uint_t		c_outer = entrypoint & SQ_CO;
5362 
5363 	/*
5364 	 * Increment ref count to keep closes out of this queue.
5365 	 */
5366 	ASSERT(sq);
5367 	ASSERT(c_inner && c_outer);
5368 	mutex_enter(SQLOCK(sq));
5369 	flags = sq->sq_flags;
5370 	type = sq->sq_type;
5371 	if (!(type & c_inner)) {
5372 		/* Make sure all putcounts now use slowlock. */
5373 		count = sq->sq_count;
5374 		SQ_PUTLOCKS_ENTER(sq);
5375 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
5376 		SUM_SQ_PUTCOUNTS(sq, count);
5377 		sq->sq_needexcl++;
5378 		ASSERT(sq->sq_needexcl != 0);	/* wraparound */
5379 		waitflags |= SQ_MESSAGES;
5380 	}
5381 	/*
5382 	 * Wait until we can enter the inner perimeter.
5383 	 * If we want exclusive access we wait until sq_count is 0.
5384 	 * We have to do this before entering the outer perimeter in order
5385 	 * to preserve put/close message ordering.
5386 	 */
5387 	while ((flags & waitflags) || (!(type & c_inner) && count != 0)) {
5388 		sq->sq_flags = flags | SQ_WANTWAKEUP;
5389 		if (!(type & c_inner)) {
5390 			SQ_PUTLOCKS_EXIT(sq);
5391 		}
5392 		cv_wait(&sq->sq_wait, SQLOCK(sq));
5393 		if (!(type & c_inner)) {
5394 			count = sq->sq_count;
5395 			SQ_PUTLOCKS_ENTER(sq);
5396 			SUM_SQ_PUTCOUNTS(sq, count);
5397 		}
5398 		flags = sq->sq_flags;
5399 	}
5400 
5401 	if (!(type & c_inner)) {
5402 		ASSERT(sq->sq_needexcl > 0);
5403 		sq->sq_needexcl--;
5404 		if (sq->sq_needexcl == 0) {
5405 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
5406 		}
5407 	}
5408 
5409 	/* Check if we need to enter the outer perimeter */
5410 	if (!(type & c_outer)) {
5411 		/*
5412 		 * We have to enter the outer perimeter exclusively before
5413 		 * we can increment sq_count to avoid deadlock. This implies
5414 		 * that we have to re-check sq_flags and sq_count.
5415 		 *
5416 		 * is it possible to have c_inner set when c_outer is not set?
5417 		 */
5418 		if (!(type & c_inner)) {
5419 			SQ_PUTLOCKS_EXIT(sq);
5420 		}
5421 		mutex_exit(SQLOCK(sq));
5422 		outer_enter(sq->sq_outer, SQ_GOAWAY);
5423 		mutex_enter(SQLOCK(sq));
5424 		flags = sq->sq_flags;
5425 		/*
5426 		 * there should be no need to recheck sq_putcounts
5427 		 * because outer_enter() has already waited for them to clear
5428 		 * after setting SQ_WRITER.
5429 		 */
5430 		count = sq->sq_count;
5431 #ifdef DEBUG
5432 		/*
5433 		 * SUMCHECK_SQ_PUTCOUNTS should return the sum instead
5434 		 * of doing an ASSERT internally. Others should do
5435 		 * something like
5436 		 *	 ASSERT(SUMCHECK_SQ_PUTCOUNTS(sq) == 0);
5437 		 * without the need to #ifdef DEBUG it.
5438 		 */
5439 		SUMCHECK_SQ_PUTCOUNTS(sq, 0);
5440 #endif
5441 		while ((flags & (SQ_EXCL|SQ_BLOCKED|SQ_FROZEN)) ||
5442 		    (!(type & c_inner) && count != 0)) {
5443 			sq->sq_flags = flags | SQ_WANTWAKEUP;
5444 			cv_wait(&sq->sq_wait, SQLOCK(sq));
5445 			count = sq->sq_count;
5446 			flags = sq->sq_flags;
5447 		}
5448 	}
5449 
5450 	sq->sq_count++;
5451 	ASSERT(sq->sq_count != 0);	/* Wraparound */
5452 	if (!(type & c_inner)) {
5453 		/* Exclusive entry */
5454 		ASSERT(sq->sq_count == 1);
5455 		sq->sq_flags |= SQ_EXCL;
5456 		if (type & c_outer) {
5457 			SQ_PUTLOCKS_EXIT(sq);
5458 		}
5459 	}
5460 	mutex_exit(SQLOCK(sq));
5461 }
5462 
5463 /*
5464  * Leave a syncq. Announce to framework that closes may proceed.
5465  * c_inner and c_outer specify which concurrency bits to check.
5466  *
5467  * Must never be called from driver or module put entry point.
5468  *
5469  * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5470  * sq_putlocks are used.
5471  */
5472 void
5473 leavesq(syncq_t *sq, int entrypoint)
5474 {
5475 	uint16_t	flags;
5476 	uint16_t	type;
5477 	uint_t		c_outer = entrypoint & SQ_CO;
5478 #ifdef DEBUG
5479 	uint_t		c_inner = entrypoint & SQ_CI;
5480 #endif
5481 
5482 	/*
5483 	 * Decrement ref count, drain the syncq if possible, and wake up
5484 	 * any waiting close.
5485 	 */
5486 	ASSERT(sq);
5487 	ASSERT(c_inner && c_outer);
5488 	mutex_enter(SQLOCK(sq));
5489 	flags = sq->sq_flags;
5490 	type = sq->sq_type;
5491 	if (flags & (SQ_QUEUED|SQ_WANTWAKEUP|SQ_WANTEXWAKEUP)) {
5492 
5493 		if (flags & SQ_WANTWAKEUP) {
5494 			flags &= ~SQ_WANTWAKEUP;
5495 			cv_broadcast(&sq->sq_wait);
5496 		}
5497 		if (flags & SQ_WANTEXWAKEUP) {
5498 			flags &= ~SQ_WANTEXWAKEUP;
5499 			cv_broadcast(&sq->sq_exitwait);
5500 		}
5501 
5502 		if ((flags & SQ_QUEUED) && !(flags & SQ_STAYAWAY)) {
5503 			/*
5504 			 * The syncq needs to be drained. "Exit" the syncq
5505 			 * before calling drain_syncq.
5506 			 */
5507 			ASSERT(sq->sq_count != 0);
5508 			sq->sq_count--;
5509 			ASSERT((flags & SQ_EXCL) || (type & c_inner));
5510 			sq->sq_flags = flags & ~SQ_EXCL;
5511 			drain_syncq(sq);
5512 			ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
5513 			/* Check if we need to exit the outer perimeter */
5514 			/* XXX will this ever be true? */
5515 			if (!(type & c_outer))
5516 				outer_exit(sq->sq_outer);
5517 			return;
5518 		}
5519 	}
5520 	ASSERT(sq->sq_count != 0);
5521 	sq->sq_count--;
5522 	ASSERT((flags & SQ_EXCL) || (type & c_inner));
5523 	sq->sq_flags = flags & ~SQ_EXCL;
5524 	mutex_exit(SQLOCK(sq));
5525 
5526 	/* Check if we need to exit the outer perimeter */
5527 	if (!(sq->sq_type & c_outer))
5528 		outer_exit(sq->sq_outer);
5529 }
5530 
5531 /*
5532  * Prevent q_next from changing in this stream by incrementing sq_count.
5533  *
5534  * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5535  * sq_putlocks are used.
5536  */
5537 void
5538 claimq(queue_t *qp)
5539 {
5540 	syncq_t	*sq = qp->q_syncq;
5541 
5542 	mutex_enter(SQLOCK(sq));
5543 	sq->sq_count++;
5544 	ASSERT(sq->sq_count != 0);	/* Wraparound */
5545 	mutex_exit(SQLOCK(sq));
5546 }
5547 
5548 /*
5549  * Undo claimq.
5550  *
5551  * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
5552  * sq_putlocks are used.
5553  */
5554 void
5555 releaseq(queue_t *qp)
5556 {
5557 	syncq_t	*sq = qp->q_syncq;
5558 	uint16_t flags;
5559 
5560 	mutex_enter(SQLOCK(sq));
5561 	ASSERT(sq->sq_count > 0);
5562 	sq->sq_count--;
5563 
5564 	flags = sq->sq_flags;
5565 	if (flags & (SQ_WANTWAKEUP|SQ_QUEUED)) {
5566 		if (flags & SQ_WANTWAKEUP) {
5567 			flags &= ~SQ_WANTWAKEUP;
5568 			cv_broadcast(&sq->sq_wait);
5569 		}
5570 		sq->sq_flags = flags;
5571 		if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5572 			/*
5573 			 * To prevent potential recursive invocation of
5574 			 * drain_syncq we do not call drain_syncq if count is
5575 			 * non-zero.
5576 			 */
5577 			if (sq->sq_count == 0) {
5578 				drain_syncq(sq);
5579 				return;
5580 			} else
5581 				sqenable(sq);
5582 		}
5583 	}
5584 	mutex_exit(SQLOCK(sq));
5585 }
5586 
5587 /*
5588  * Prevent q_next from changing in this stream by incrementing sd_refcnt.
5589  */
5590 void
5591 claimstr(queue_t *qp)
5592 {
5593 	struct stdata *stp = STREAM(qp);
5594 
5595 	mutex_enter(&stp->sd_reflock);
5596 	stp->sd_refcnt++;
5597 	ASSERT(stp->sd_refcnt != 0);	/* Wraparound */
5598 	mutex_exit(&stp->sd_reflock);
5599 }
5600 
5601 /*
5602  * Undo claimstr.
5603  */
5604 void
5605 releasestr(queue_t *qp)
5606 {
5607 	struct stdata *stp = STREAM(qp);
5608 
5609 	mutex_enter(&stp->sd_reflock);
5610 	ASSERT(stp->sd_refcnt != 0);
5611 	if (--stp->sd_refcnt == 0)
5612 		cv_broadcast(&stp->sd_refmonitor);
5613 	mutex_exit(&stp->sd_reflock);
5614 }
5615 
5616 static syncq_t *
5617 new_syncq(void)
5618 {
5619 	return (kmem_cache_alloc(syncq_cache, KM_SLEEP));
5620 }
5621 
5622 static void
5623 free_syncq(syncq_t *sq)
5624 {
5625 	ASSERT(sq->sq_head == NULL);
5626 	ASSERT(sq->sq_outer == NULL);
5627 	ASSERT(sq->sq_callbpend == NULL);
5628 	ASSERT((sq->sq_onext == NULL && sq->sq_oprev == NULL) ||
5629 	    (sq->sq_onext == sq && sq->sq_oprev == sq));
5630 
5631 	if (sq->sq_ciputctrl != NULL) {
5632 		ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
5633 		SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
5634 		    sq->sq_nciputctrl, 0);
5635 		ASSERT(ciputctrl_cache != NULL);
5636 		kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
5637 	}
5638 
5639 	sq->sq_tail = NULL;
5640 	sq->sq_evhead = NULL;
5641 	sq->sq_evtail = NULL;
5642 	sq->sq_ciputctrl = NULL;
5643 	sq->sq_nciputctrl = 0;
5644 	sq->sq_count = 0;
5645 	sq->sq_rmqcount = 0;
5646 	sq->sq_callbflags = 0;
5647 	sq->sq_cancelid = 0;
5648 	sq->sq_next = NULL;
5649 	sq->sq_needexcl = 0;
5650 	sq->sq_svcflags = 0;
5651 	sq->sq_nqueues = 0;
5652 	sq->sq_pri = 0;
5653 	sq->sq_onext = NULL;
5654 	sq->sq_oprev = NULL;
5655 	sq->sq_flags = 0;
5656 	sq->sq_type = 0;
5657 	sq->sq_servcount = 0;
5658 
5659 	kmem_cache_free(syncq_cache, sq);
5660 }
5661 
5662 /* Outer perimeter code */
5663 
5664 /*
5665  * The outer syncq uses the fields and flags in the syncq slightly
5666  * differently from the inner syncqs.
5667  *	sq_count	Incremented when there are pending or running
5668  *			writers at the outer perimeter to prevent the set of
5669  *			inner syncqs that belong to the outer perimeter from
5670  *			changing.
5671  *	sq_head/tail	List of deferred qwriter(OUTER) operations.
5672  *
5673  *	SQ_BLOCKED	Set to prevent traversing of sq_next,sq_prev while
5674  *			inner syncqs are added to or removed from the
5675  *			outer perimeter.
5676  *	SQ_QUEUED	sq_head/tail has messages or events queued.
5677  *
5678  *	SQ_WRITER	A thread is currently traversing all the inner syncqs
5679  *			setting the SQ_WRITER flag.
5680  */
5681 
5682 /*
5683  * Get write access at the outer perimeter.
5684  * Note that read access is done by entersq, putnext, and put by simply
5685  * incrementing sq_count in the inner syncq.
5686  *
5687  * Waits until "flags" is no longer set in the outer to prevent multiple
5688  * threads from having write access at the same time. SQ_WRITER has to be part
5689  * of "flags".
5690  *
5691  * Increases sq_count on the outer syncq to keep away outer_insert/remove
5692  * until the outer_exit is finished.
5693  *
5694  * outer_enter is vulnerable to starvation since it does not prevent new
5695  * threads from entering the inner syncqs while it is waiting for sq_count to
5696  * go to zero.
5697  */
5698 void
5699 outer_enter(syncq_t *outer, uint16_t flags)
5700 {
5701 	syncq_t	*sq;
5702 	int	wait_needed;
5703 	uint16_t	count;
5704 
5705 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5706 	    outer->sq_oprev != NULL);
5707 	ASSERT(flags & SQ_WRITER);
5708 
5709 retry:
5710 	mutex_enter(SQLOCK(outer));
5711 	while (outer->sq_flags & flags) {
5712 		outer->sq_flags |= SQ_WANTWAKEUP;
5713 		cv_wait(&outer->sq_wait, SQLOCK(outer));
5714 	}
5715 
5716 	ASSERT(!(outer->sq_flags & SQ_WRITER));
5717 	outer->sq_flags |= SQ_WRITER;
5718 	outer->sq_count++;
5719 	ASSERT(outer->sq_count != 0);	/* wraparound */
5720 	wait_needed = 0;
5721 	/*
5722 	 * Set SQ_WRITER on all the inner syncqs while holding
5723 	 * the SQLOCK on the outer syncq. This ensures that the changing
5724 	 * of SQ_WRITER is atomic under the outer SQLOCK.
5725 	 */
5726 	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5727 		mutex_enter(SQLOCK(sq));
5728 		count = sq->sq_count;
5729 		SQ_PUTLOCKS_ENTER(sq);
5730 		sq->sq_flags |= SQ_WRITER;
5731 		SUM_SQ_PUTCOUNTS(sq, count);
5732 		if (count != 0)
5733 			wait_needed = 1;
5734 		SQ_PUTLOCKS_EXIT(sq);
5735 		mutex_exit(SQLOCK(sq));
5736 	}
5737 	mutex_exit(SQLOCK(outer));
5738 
5739 	/*
5740 	 * Get everybody out of the syncqs sequentially.
5741 	 * Note that we don't actually need to acquire the PUTLOCKS, since
5742 	 * we have already cleared the fastbit, and set QWRITER.  By
5743 	 * definition, the count can not increase since putnext will
5744 	 * take the slowlock path (and the purpose of acquiring the
5745 	 * putlocks was to make sure it didn't increase while we were
5746 	 * waiting).
5747 	 *
5748 	 * Note that we still acquire the PUTLOCKS to be safe.
5749 	 */
5750 	if (wait_needed) {
5751 		for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5752 			mutex_enter(SQLOCK(sq));
5753 			count = sq->sq_count;
5754 			SQ_PUTLOCKS_ENTER(sq);
5755 			SUM_SQ_PUTCOUNTS(sq, count);
5756 			while (count != 0) {
5757 				sq->sq_flags |= SQ_WANTWAKEUP;
5758 				SQ_PUTLOCKS_EXIT(sq);
5759 				cv_wait(&sq->sq_wait, SQLOCK(sq));
5760 				count = sq->sq_count;
5761 				SQ_PUTLOCKS_ENTER(sq);
5762 				SUM_SQ_PUTCOUNTS(sq, count);
5763 			}
5764 			SQ_PUTLOCKS_EXIT(sq);
5765 			mutex_exit(SQLOCK(sq));
5766 		}
5767 		/*
5768 		 * Verify that none of the flags got set while we
5769 		 * were waiting for the sq_counts to drop.
5770 		 * If this happens we exit and retry entering the
5771 		 * outer perimeter.
5772 		 */
5773 		mutex_enter(SQLOCK(outer));
5774 		if (outer->sq_flags & (flags & ~SQ_WRITER)) {
5775 			mutex_exit(SQLOCK(outer));
5776 			outer_exit(outer);
5777 			goto retry;
5778 		}
5779 		mutex_exit(SQLOCK(outer));
5780 	}
5781 }
5782 
5783 /*
5784  * Drop the write access at the outer perimeter.
5785  * Read access is dropped implicitly (by putnext, put, and leavesq) by
5786  * decrementing sq_count.
5787  */
5788 void
5789 outer_exit(syncq_t *outer)
5790 {
5791 	syncq_t	*sq;
5792 	int	 drain_needed;
5793 	uint16_t flags;
5794 
5795 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5796 	    outer->sq_oprev != NULL);
5797 	ASSERT(MUTEX_NOT_HELD(SQLOCK(outer)));
5798 
5799 	/*
5800 	 * Atomically (from the perspective of threads calling become_writer)
5801 	 * drop the write access at the outer perimeter by holding
5802 	 * SQLOCK(outer) across all the dropsq calls and the resetting of
5803 	 * SQ_WRITER.
5804 	 * This defines a locking order between the outer perimeter
5805 	 * SQLOCK and the inner perimeter SQLOCKs.
5806 	 */
5807 	mutex_enter(SQLOCK(outer));
5808 	flags = outer->sq_flags;
5809 	ASSERT(outer->sq_flags & SQ_WRITER);
5810 	if (flags & SQ_QUEUED) {
5811 		write_now(outer);
5812 		flags = outer->sq_flags;
5813 	}
5814 
5815 	/*
5816 	 * sq_onext is stable since sq_count has not yet been decreased.
5817 	 * Reset the SQ_WRITER flags in all syncqs.
5818 	 * After dropping SQ_WRITER on the outer syncq we empty all the
5819 	 * inner syncqs.
5820 	 */
5821 	drain_needed = 0;
5822 	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
5823 		drain_needed += dropsq(sq, SQ_WRITER);
5824 	ASSERT(!(outer->sq_flags & SQ_QUEUED));
5825 	flags &= ~SQ_WRITER;
5826 	if (drain_needed) {
5827 		outer->sq_flags = flags;
5828 		mutex_exit(SQLOCK(outer));
5829 		for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
5830 			emptysq(sq);
5831 		mutex_enter(SQLOCK(outer));
5832 		flags = outer->sq_flags;
5833 	}
5834 	if (flags & SQ_WANTWAKEUP) {
5835 		flags &= ~SQ_WANTWAKEUP;
5836 		cv_broadcast(&outer->sq_wait);
5837 	}
5838 	outer->sq_flags = flags;
5839 	ASSERT(outer->sq_count > 0);
5840 	outer->sq_count--;
5841 	mutex_exit(SQLOCK(outer));
5842 }
5843 
5844 /*
5845  * Add another syncq to an outer perimeter.
5846  * Block out all other access to the outer perimeter while it is being
5847  * changed using blocksq.
5848  * Assumes that the caller has *not* done an outer_enter.
5849  *
5850  * Vulnerable to starvation in blocksq.
5851  */
5852 static void
5853 outer_insert(syncq_t *outer, syncq_t *sq)
5854 {
5855 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5856 	    outer->sq_oprev != NULL);
5857 	ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
5858 	    sq->sq_oprev == NULL);	/* Can't be in an outer perimeter */
5859 
5860 	/* Get exclusive access to the outer perimeter list */
5861 	blocksq(outer, SQ_BLOCKED, 0);
5862 	ASSERT(outer->sq_flags & SQ_BLOCKED);
5863 	ASSERT(!(outer->sq_flags & SQ_WRITER));
5864 
5865 	mutex_enter(SQLOCK(sq));
5866 	sq->sq_outer = outer;
5867 	outer->sq_onext->sq_oprev = sq;
5868 	sq->sq_onext = outer->sq_onext;
5869 	outer->sq_onext = sq;
5870 	sq->sq_oprev = outer;
5871 	mutex_exit(SQLOCK(sq));
5872 	unblocksq(outer, SQ_BLOCKED, 1);
5873 }
5874 
5875 /*
5876  * Remove a syncq from an outer perimeter.
5877  * Block out all other access to the outer perimeter while it is being
5878  * changed using blocksq.
5879  * Assumes that the caller has *not* done an outer_enter.
5880  *
5881  * Vulnerable to starvation in blocksq.
5882  */
5883 static void
5884 outer_remove(syncq_t *outer, syncq_t *sq)
5885 {
5886 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5887 	    outer->sq_oprev != NULL);
5888 	ASSERT(sq->sq_outer == outer);
5889 
5890 	/* Get exclusive access to the outer perimeter list */
5891 	blocksq(outer, SQ_BLOCKED, 0);
5892 	ASSERT(outer->sq_flags & SQ_BLOCKED);
5893 	ASSERT(!(outer->sq_flags & SQ_WRITER));
5894 
5895 	mutex_enter(SQLOCK(sq));
5896 	sq->sq_outer = NULL;
5897 	sq->sq_onext->sq_oprev = sq->sq_oprev;
5898 	sq->sq_oprev->sq_onext = sq->sq_onext;
5899 	sq->sq_oprev = sq->sq_onext = NULL;
5900 	mutex_exit(SQLOCK(sq));
5901 	unblocksq(outer, SQ_BLOCKED, 1);
5902 }
5903 
5904 /*
5905  * Queue a deferred qwriter(OUTER) callback for this outer perimeter.
5906  * If this is the first callback for this outer perimeter then add
5907  * this outer perimeter to the list of outer perimeters that
5908  * the qwriter_outer_thread will process.
5909  *
5910  * Increments sq_count in the outer syncq to prevent the membership
5911  * of the outer perimeter (in terms of inner syncqs) to change while
5912  * the callback is pending.
5913  */
5914 static void
5915 queue_writer(syncq_t *outer, void (*func)(), queue_t *q, mblk_t *mp)
5916 {
5917 	ASSERT(MUTEX_HELD(SQLOCK(outer)));
5918 
5919 	mp->b_prev = (mblk_t *)func;
5920 	mp->b_queue = q;
5921 	mp->b_next = NULL;
5922 	outer->sq_count++;	/* Decremented when dequeued */
5923 	ASSERT(outer->sq_count != 0);	/* Wraparound */
5924 	if (outer->sq_evhead == NULL) {
5925 		/* First message. */
5926 		outer->sq_evhead = outer->sq_evtail = mp;
5927 		outer->sq_flags |= SQ_EVENTS;
5928 		mutex_exit(SQLOCK(outer));
5929 		STRSTAT(qwr_outer);
5930 		(void) taskq_dispatch(streams_taskq,
5931 		    (task_func_t *)qwriter_outer_service, outer, TQ_SLEEP);
5932 	} else {
5933 		ASSERT(outer->sq_flags & SQ_EVENTS);
5934 		outer->sq_evtail->b_next = mp;
5935 		outer->sq_evtail = mp;
5936 		mutex_exit(SQLOCK(outer));
5937 	}
5938 }
5939 
5940 /*
5941  * Try and upgrade to write access at the outer perimeter. If this can
5942  * not be done without blocking then queue the callback to be done
5943  * by the qwriter_outer_thread.
5944  *
5945  * This routine can only be called from put or service procedures plus
5946  * asynchronous callback routines that have properly entered the queue (with
5947  * entersq). Thus qwriter(OUTER) assumes the caller has one claim on the syncq
5948  * associated with q.
5949  */
5950 void
5951 qwriter_outer(queue_t *q, mblk_t *mp, void (*func)())
5952 {
5953 	syncq_t	*osq, *sq, *outer;
5954 	int	failed;
5955 	uint16_t flags;
5956 
5957 	osq = q->q_syncq;
5958 	outer = osq->sq_outer;
5959 	if (outer == NULL)
5960 		panic("qwriter(PERIM_OUTER): no outer perimeter");
5961 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5962 	    outer->sq_oprev != NULL);
5963 
5964 	mutex_enter(SQLOCK(outer));
5965 	flags = outer->sq_flags;
5966 	/*
5967 	 * If some thread is traversing sq_next, or if we are blocked by
5968 	 * outer_insert or outer_remove, or if the we already have queued
5969 	 * callbacks, then queue this callback for later processing.
5970 	 *
5971 	 * Also queue the qwriter for an interrupt thread in order
5972 	 * to reduce the time spent running at high IPL.
5973 	 * to identify there are events.
5974 	 */
5975 	if ((flags & SQ_GOAWAY) || (curthread->t_pri >= kpreemptpri)) {
5976 		/*
5977 		 * Queue the become_writer request.
5978 		 * The queueing is atomic under SQLOCK(outer) in order
5979 		 * to synchronize with outer_exit.
5980 		 * queue_writer will drop the outer SQLOCK
5981 		 */
5982 		if (flags & SQ_BLOCKED) {
5983 			/* Must set SQ_WRITER on inner perimeter */
5984 			mutex_enter(SQLOCK(osq));
5985 			osq->sq_flags |= SQ_WRITER;
5986 			mutex_exit(SQLOCK(osq));
5987 		} else {
5988 			if (!(flags & SQ_WRITER)) {
5989 				/*
5990 				 * The outer could have been SQ_BLOCKED thus
5991 				 * SQ_WRITER might not be set on the inner.
5992 				 */
5993 				mutex_enter(SQLOCK(osq));
5994 				osq->sq_flags |= SQ_WRITER;
5995 				mutex_exit(SQLOCK(osq));
5996 			}
5997 			ASSERT(osq->sq_flags & SQ_WRITER);
5998 		}
5999 		queue_writer(outer, func, q, mp);
6000 		return;
6001 	}
6002 	/*
6003 	 * We are half-way to exclusive access to the outer perimeter.
6004 	 * Prevent any outer_enter, qwriter(OUTER), or outer_insert/remove
6005 	 * while the inner syncqs are traversed.
6006 	 */
6007 	outer->sq_count++;
6008 	ASSERT(outer->sq_count != 0);	/* wraparound */
6009 	flags |= SQ_WRITER;
6010 	/*
6011 	 * Check if we can run the function immediately. Mark all
6012 	 * syncqs with the writer flag to prevent new entries into
6013 	 * put and service procedures.
6014 	 *
6015 	 * Set SQ_WRITER on all the inner syncqs while holding
6016 	 * the SQLOCK on the outer syncq. This ensures that the changing
6017 	 * of SQ_WRITER is atomic under the outer SQLOCK.
6018 	 */
6019 	failed = 0;
6020 	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
6021 		uint16_t count;
6022 		uint_t	maxcnt = (sq == osq) ? 1 : 0;
6023 
6024 		mutex_enter(SQLOCK(sq));
6025 		count = sq->sq_count;
6026 		SQ_PUTLOCKS_ENTER(sq);
6027 		SUM_SQ_PUTCOUNTS(sq, count);
6028 		if (sq->sq_count > maxcnt)
6029 			failed = 1;
6030 		sq->sq_flags |= SQ_WRITER;
6031 		SQ_PUTLOCKS_EXIT(sq);
6032 		mutex_exit(SQLOCK(sq));
6033 	}
6034 	if (failed) {
6035 		/*
6036 		 * Some other thread has a read claim on the outer perimeter.
6037 		 * Queue the callback for deferred processing.
6038 		 *
6039 		 * queue_writer will set SQ_QUEUED before we drop SQ_WRITER
6040 		 * so that other qwriter(OUTER) calls will queue their
6041 		 * callbacks as well. queue_writer increments sq_count so we
6042 		 * decrement to compensate for the our increment.
6043 		 *
6044 		 * Dropping SQ_WRITER enables the writer thread to work
6045 		 * on this outer perimeter.
6046 		 */
6047 		outer->sq_flags = flags;
6048 		queue_writer(outer, func, q, mp);
6049 		/* queue_writer dropper the lock */
6050 		mutex_enter(SQLOCK(outer));
6051 		ASSERT(outer->sq_count > 0);
6052 		outer->sq_count--;
6053 		ASSERT(outer->sq_flags & SQ_WRITER);
6054 		flags = outer->sq_flags;
6055 		flags &= ~SQ_WRITER;
6056 		if (flags & SQ_WANTWAKEUP) {
6057 			flags &= ~SQ_WANTWAKEUP;
6058 			cv_broadcast(&outer->sq_wait);
6059 		}
6060 		outer->sq_flags = flags;
6061 		mutex_exit(SQLOCK(outer));
6062 		return;
6063 	} else {
6064 		outer->sq_flags = flags;
6065 		mutex_exit(SQLOCK(outer));
6066 	}
6067 
6068 	/* Can run it immediately */
6069 	(*func)(q, mp);
6070 
6071 	outer_exit(outer);
6072 }
6073 
6074 /*
6075  * Dequeue all writer callbacks from the outer perimeter and run them.
6076  */
6077 static void
6078 write_now(syncq_t *outer)
6079 {
6080 	mblk_t		*mp;
6081 	queue_t		*q;
6082 	void	(*func)();
6083 
6084 	ASSERT(MUTEX_HELD(SQLOCK(outer)));
6085 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
6086 	    outer->sq_oprev != NULL);
6087 	while ((mp = outer->sq_evhead) != NULL) {
6088 		/*
6089 		 * queues cannot be placed on the queuelist on the outer
6090 		 * perimeter.
6091 		 */
6092 		ASSERT(!(outer->sq_flags & SQ_MESSAGES));
6093 		ASSERT((outer->sq_flags & SQ_EVENTS));
6094 
6095 		outer->sq_evhead = mp->b_next;
6096 		if (outer->sq_evhead == NULL) {
6097 			outer->sq_evtail = NULL;
6098 			outer->sq_flags &= ~SQ_EVENTS;
6099 		}
6100 		ASSERT(outer->sq_count != 0);
6101 		outer->sq_count--;	/* Incremented when enqueued. */
6102 		mutex_exit(SQLOCK(outer));
6103 		/*
6104 		 * Drop the message if the queue is closing.
6105 		 * Make sure that the queue is "claimed" when the callback
6106 		 * is run in order to satisfy various ASSERTs.
6107 		 */
6108 		q = mp->b_queue;
6109 		func = (void (*)())mp->b_prev;
6110 		ASSERT(func != NULL);
6111 		mp->b_next = mp->b_prev = NULL;
6112 		if (q->q_flag & QWCLOSE) {
6113 			freemsg(mp);
6114 		} else {
6115 			claimq(q);
6116 			(*func)(q, mp);
6117 			releaseq(q);
6118 		}
6119 		mutex_enter(SQLOCK(outer));
6120 	}
6121 	ASSERT(MUTEX_HELD(SQLOCK(outer)));
6122 }
6123 
6124 /*
6125  * The list of messages on the inner syncq is effectively hashed
6126  * by destination queue.  These destination queues are doubly
6127  * linked lists (hopefully) in priority order.  Messages are then
6128  * put on the queue referenced by the q_sqhead/q_sqtail elements.
6129  * Additional messages are linked together by the b_next/b_prev
6130  * elements in the mblk, with (similar to putq()) the first message
6131  * having a NULL b_prev and the last message having a NULL b_next.
6132  *
6133  * Events, such as qwriter callbacks, are put onto a list in FIFO
6134  * order referenced by sq_evhead, and sq_evtail.  This is a singly
6135  * linked list, and messages here MUST be processed in the order queued.
6136  */
6137 
6138 /*
6139  * Run the events on the syncq event list (sq_evhead).
6140  * Assumes there is only one claim on the syncq, it is
6141  * already exclusive (SQ_EXCL set), and the SQLOCK held.
6142  * Messages here are processed in order, with the SQ_EXCL bit
6143  * held all the way through till the last message is processed.
6144  */
6145 void
6146 sq_run_events(syncq_t *sq)
6147 {
6148 	mblk_t		*bp;
6149 	queue_t		*qp;
6150 	uint16_t	flags = sq->sq_flags;
6151 	void		(*func)();
6152 
6153 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6154 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6155 	    sq->sq_oprev == NULL) ||
6156 	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6157 	    sq->sq_oprev != NULL));
6158 
6159 	ASSERT(flags & SQ_EXCL);
6160 	ASSERT(sq->sq_count == 1);
6161 
6162 	/*
6163 	 * We need to process all of the events on this list.  It
6164 	 * is possible that new events will be added while we are
6165 	 * away processing a callback, so on every loop, we start
6166 	 * back at the beginning of the list.
6167 	 */
6168 	/*
6169 	 * We have to reaccess sq_evhead since there is a
6170 	 * possibility of a new entry while we were running
6171 	 * the callback.
6172 	 */
6173 	for (bp = sq->sq_evhead; bp != NULL; bp = sq->sq_evhead) {
6174 		ASSERT(bp->b_queue->q_syncq == sq);
6175 		ASSERT(sq->sq_flags & SQ_EVENTS);
6176 
6177 		qp = bp->b_queue;
6178 		func = (void (*)())bp->b_prev;
6179 		ASSERT(func != NULL);
6180 
6181 		/*
6182 		 * Messages from the event queue must be taken off in
6183 		 * FIFO order.
6184 		 */
6185 		ASSERT(sq->sq_evhead == bp);
6186 		sq->sq_evhead = bp->b_next;
6187 
6188 		if (bp->b_next == NULL) {
6189 			/* Deleting last */
6190 			ASSERT(sq->sq_evtail == bp);
6191 			sq->sq_evtail = NULL;
6192 			sq->sq_flags &= ~SQ_EVENTS;
6193 		}
6194 		bp->b_prev = bp->b_next = NULL;
6195 		ASSERT(bp->b_datap->db_ref != 0);
6196 
6197 		mutex_exit(SQLOCK(sq));
6198 
6199 		(*func)(qp, bp);
6200 
6201 		mutex_enter(SQLOCK(sq));
6202 		/*
6203 		 * re-read the flags, since they could have changed.
6204 		 */
6205 		flags = sq->sq_flags;
6206 		ASSERT(flags & SQ_EXCL);
6207 	}
6208 	ASSERT(sq->sq_evhead == NULL && sq->sq_evtail == NULL);
6209 	ASSERT(!(sq->sq_flags & SQ_EVENTS));
6210 
6211 	if (flags & SQ_WANTWAKEUP) {
6212 		flags &= ~SQ_WANTWAKEUP;
6213 		cv_broadcast(&sq->sq_wait);
6214 	}
6215 	if (flags & SQ_WANTEXWAKEUP) {
6216 		flags &= ~SQ_WANTEXWAKEUP;
6217 		cv_broadcast(&sq->sq_exitwait);
6218 	}
6219 	sq->sq_flags = flags;
6220 }
6221 
6222 /*
6223  * Put messages on the event list.
6224  * If we can go exclusive now, do so and process the event list, otherwise
6225  * let the last claim service this list (or wake the sqthread).
6226  * This procedure assumes SQLOCK is held.  To run the event list, it
6227  * must be called with no claims.
6228  */
6229 static void
6230 sqfill_events(syncq_t *sq, queue_t *q, mblk_t *mp, void (*func)())
6231 {
6232 	uint16_t count;
6233 
6234 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6235 	ASSERT(func != NULL);
6236 
6237 	/*
6238 	 * This is a callback.  Add it to the list of callbacks
6239 	 * and see about upgrading.
6240 	 */
6241 	mp->b_prev = (mblk_t *)func;
6242 	mp->b_queue = q;
6243 	mp->b_next = NULL;
6244 	if (sq->sq_evhead == NULL) {
6245 		sq->sq_evhead = sq->sq_evtail = mp;
6246 		sq->sq_flags |= SQ_EVENTS;
6247 	} else {
6248 		ASSERT(sq->sq_evtail != NULL);
6249 		ASSERT(sq->sq_evtail->b_next == NULL);
6250 		ASSERT(sq->sq_flags & SQ_EVENTS);
6251 		sq->sq_evtail->b_next = mp;
6252 		sq->sq_evtail = mp;
6253 	}
6254 	/*
6255 	 * We have set SQ_EVENTS, so threads will have to
6256 	 * unwind out of the perimeter, and new entries will
6257 	 * not grab a putlock.  But we still need to know
6258 	 * how many threads have already made a claim to the
6259 	 * syncq, so grab the putlocks, and sum the counts.
6260 	 * If there are no claims on the syncq, we can upgrade
6261 	 * to exclusive, and run the event list.
6262 	 * NOTE: We hold the SQLOCK, so we can just grab the
6263 	 * putlocks.
6264 	 */
6265 	count = sq->sq_count;
6266 	SQ_PUTLOCKS_ENTER(sq);
6267 	SUM_SQ_PUTCOUNTS(sq, count);
6268 	/*
6269 	 * We have no claim, so we need to check if there
6270 	 * are no others, then we can upgrade.
6271 	 */
6272 	/*
6273 	 * There are currently no claims on
6274 	 * the syncq by this thread (at least on this entry). The thread who has
6275 	 * the claim should drain syncq.
6276 	 */
6277 	if (count > 0) {
6278 		/*
6279 		 * Can't upgrade - other threads inside.
6280 		 */
6281 		SQ_PUTLOCKS_EXIT(sq);
6282 		mutex_exit(SQLOCK(sq));
6283 		return;
6284 	}
6285 	/*
6286 	 * Need to set SQ_EXCL and make a claim on the syncq.
6287 	 */
6288 	ASSERT((sq->sq_flags & SQ_EXCL) == 0);
6289 	sq->sq_flags |= SQ_EXCL;
6290 	ASSERT(sq->sq_count == 0);
6291 	sq->sq_count++;
6292 	SQ_PUTLOCKS_EXIT(sq);
6293 
6294 	/* Process the events list */
6295 	sq_run_events(sq);
6296 
6297 	/*
6298 	 * Release our claim...
6299 	 */
6300 	sq->sq_count--;
6301 
6302 	/*
6303 	 * And release SQ_EXCL.
6304 	 * We don't need to acquire the putlocks to release
6305 	 * SQ_EXCL, since we are exclusive, and hold the SQLOCK.
6306 	 */
6307 	sq->sq_flags &= ~SQ_EXCL;
6308 
6309 	/*
6310 	 * sq_run_events should have released SQ_EXCL
6311 	 */
6312 	ASSERT(!(sq->sq_flags & SQ_EXCL));
6313 
6314 	/*
6315 	 * If anything happened while we were running the
6316 	 * events (or was there before), we need to process
6317 	 * them now.  We shouldn't be exclusive sine we
6318 	 * released the perimeter above (plus, we asserted
6319 	 * for it).
6320 	 */
6321 	if (!(sq->sq_flags & SQ_STAYAWAY) && (sq->sq_flags & SQ_QUEUED))
6322 		drain_syncq(sq);
6323 	else
6324 		mutex_exit(SQLOCK(sq));
6325 }
6326 
6327 /*
6328  * Perform delayed processing. The caller has to make sure that it is safe
6329  * to enter the syncq (e.g. by checking that none of the SQ_STAYAWAY bits are
6330  * set).
6331  *
6332  * Assume that the caller has NO claims on the syncq.  However, a claim
6333  * on the syncq does not indicate that a thread is draining the syncq.
6334  * There may be more claims on the syncq than there are threads draining
6335  * (i.e.  #_threads_draining <= sq_count)
6336  *
6337  * drain_syncq has to terminate when one of the SQ_STAYAWAY bits gets set
6338  * in order to preserve qwriter(OUTER) ordering constraints.
6339  *
6340  * sq_putcount only needs to be checked when dispatching the queued
6341  * writer call for CIPUT sync queue, but this is handled in sq_run_events.
6342  */
6343 void
6344 drain_syncq(syncq_t *sq)
6345 {
6346 	queue_t		*qp;
6347 	uint16_t	count;
6348 	uint16_t	type = sq->sq_type;
6349 	uint16_t	flags = sq->sq_flags;
6350 	boolean_t	bg_service = sq->sq_svcflags & SQ_SERVICE;
6351 
6352 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
6353 	    "drain_syncq start:%p", sq);
6354 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6355 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6356 	    sq->sq_oprev == NULL) ||
6357 	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6358 	    sq->sq_oprev != NULL));
6359 
6360 	/*
6361 	 * Drop SQ_SERVICE flag.
6362 	 */
6363 	if (bg_service)
6364 		sq->sq_svcflags &= ~SQ_SERVICE;
6365 
6366 	/*
6367 	 * If SQ_EXCL is set, someone else is processing this syncq - let him
6368 	 * finish the job.
6369 	 */
6370 	if (flags & SQ_EXCL) {
6371 		if (bg_service) {
6372 			ASSERT(sq->sq_servcount != 0);
6373 			sq->sq_servcount--;
6374 		}
6375 		mutex_exit(SQLOCK(sq));
6376 		return;
6377 	}
6378 
6379 	/*
6380 	 * This routine can be called by a background thread if
6381 	 * it was scheduled by a hi-priority thread.  SO, if there are
6382 	 * NOT messages queued, return (remember, we have the SQLOCK,
6383 	 * and it cannot change until we release it). Wakeup any waiters also.
6384 	 */
6385 	if (!(flags & SQ_QUEUED)) {
6386 		if (flags & SQ_WANTWAKEUP) {
6387 			flags &= ~SQ_WANTWAKEUP;
6388 			cv_broadcast(&sq->sq_wait);
6389 		}
6390 		if (flags & SQ_WANTEXWAKEUP) {
6391 			flags &= ~SQ_WANTEXWAKEUP;
6392 			cv_broadcast(&sq->sq_exitwait);
6393 		}
6394 		sq->sq_flags = flags;
6395 		if (bg_service) {
6396 			ASSERT(sq->sq_servcount != 0);
6397 			sq->sq_servcount--;
6398 		}
6399 		mutex_exit(SQLOCK(sq));
6400 		return;
6401 	}
6402 
6403 	/*
6404 	 * If this is not a concurrent put perimeter, we need to
6405 	 * become exclusive to drain.  Also, if not CIPUT, we would
6406 	 * not have acquired a putlock, so we don't need to check
6407 	 * the putcounts.  If not entering with a claim, we test
6408 	 * for sq_count == 0.
6409 	 */
6410 	type = sq->sq_type;
6411 	if (!(type & SQ_CIPUT)) {
6412 		if (sq->sq_count > 1) {
6413 			if (bg_service) {
6414 				ASSERT(sq->sq_servcount != 0);
6415 				sq->sq_servcount--;
6416 			}
6417 			mutex_exit(SQLOCK(sq));
6418 			return;
6419 		}
6420 		sq->sq_flags |= SQ_EXCL;
6421 	}
6422 
6423 	/*
6424 	 * This is where we make a claim to the syncq.
6425 	 * This can either be done by incrementing a putlock, or
6426 	 * the sq_count.  But since we already have the SQLOCK
6427 	 * here, we just bump the sq_count.
6428 	 *
6429 	 * Note that after we make a claim, we need to let the code
6430 	 * fall through to the end of this routine to clean itself
6431 	 * up.  A return in the while loop will put the syncq in a
6432 	 * very bad state.
6433 	 */
6434 	sq->sq_count++;
6435 	ASSERT(sq->sq_count != 0);	/* wraparound */
6436 
6437 	while ((flags = sq->sq_flags) & SQ_QUEUED) {
6438 		/*
6439 		 * If we are told to stayaway or went exclusive,
6440 		 * we are done.
6441 		 */
6442 		if (flags & (SQ_STAYAWAY)) {
6443 			break;
6444 		}
6445 
6446 		/*
6447 		 * If there are events to run, do so.
6448 		 * We have one claim to the syncq, so if there are
6449 		 * more than one, other threads are running.
6450 		 */
6451 		if (sq->sq_evhead != NULL) {
6452 			ASSERT(sq->sq_flags & SQ_EVENTS);
6453 
6454 			count = sq->sq_count;
6455 			SQ_PUTLOCKS_ENTER(sq);
6456 			SUM_SQ_PUTCOUNTS(sq, count);
6457 			if (count > 1) {
6458 				SQ_PUTLOCKS_EXIT(sq);
6459 				/* Can't upgrade - other threads inside */
6460 				break;
6461 			}
6462 			ASSERT((flags & SQ_EXCL) == 0);
6463 			sq->sq_flags = flags | SQ_EXCL;
6464 			SQ_PUTLOCKS_EXIT(sq);
6465 			/*
6466 			 * we have the only claim, run the events,
6467 			 * sq_run_events will clear the SQ_EXCL flag.
6468 			 */
6469 			sq_run_events(sq);
6470 
6471 			/*
6472 			 * If this is a CIPUT perimeter, we need
6473 			 * to drop the SQ_EXCL flag so we can properly
6474 			 * continue draining the syncq.
6475 			 */
6476 			if (type & SQ_CIPUT) {
6477 				ASSERT(sq->sq_flags & SQ_EXCL);
6478 				sq->sq_flags &= ~SQ_EXCL;
6479 			}
6480 
6481 			/*
6482 			 * And go back to the beginning just in case
6483 			 * anything changed while we were away.
6484 			 */
6485 			ASSERT((sq->sq_flags & SQ_EXCL) || (type & SQ_CIPUT));
6486 			continue;
6487 		}
6488 
6489 		ASSERT(sq->sq_evhead == NULL);
6490 		ASSERT(!(sq->sq_flags & SQ_EVENTS));
6491 
6492 		/*
6493 		 * Find the queue that is not draining.
6494 		 *
6495 		 * q_draining is protected by QLOCK which we do not hold.
6496 		 * But if it was set, then a thread was draining, and if it gets
6497 		 * cleared, then it was because the thread has successfully
6498 		 * drained the syncq, or a GOAWAY state occurred. For the GOAWAY
6499 		 * state to happen, a thread needs the SQLOCK which we hold, and
6500 		 * if there was such a flag, we would have already seen it.
6501 		 */
6502 
6503 		for (qp = sq->sq_head;
6504 		    qp != NULL && (qp->q_draining ||
6505 		    (qp->q_sqflags & Q_SQDRAINING));
6506 		    qp = qp->q_sqnext)
6507 			;
6508 
6509 		if (qp == NULL)
6510 			break;
6511 
6512 		/*
6513 		 * We have a queue to work on, and we hold the
6514 		 * SQLOCK and one claim, call qdrain_syncq.
6515 		 * This means we need to release the SQLOCK and
6516 		 * acquire the QLOCK (OK since we have a claim).
6517 		 * Note that qdrain_syncq will actually dequeue
6518 		 * this queue from the sq_head list when it is
6519 		 * convinced all the work is done and release
6520 		 * the QLOCK before returning.
6521 		 */
6522 		qp->q_sqflags |= Q_SQDRAINING;
6523 		mutex_exit(SQLOCK(sq));
6524 		mutex_enter(QLOCK(qp));
6525 		qdrain_syncq(sq, qp);
6526 		mutex_enter(SQLOCK(sq));
6527 
6528 		/* The queue is drained */
6529 		ASSERT(qp->q_sqflags & Q_SQDRAINING);
6530 		qp->q_sqflags &= ~Q_SQDRAINING;
6531 		/*
6532 		 * NOTE: After this point qp should not be used since it may be
6533 		 * closed.
6534 		 */
6535 	}
6536 
6537 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6538 	flags = sq->sq_flags;
6539 
6540 	/*
6541 	 * sq->sq_head cannot change because we hold the
6542 	 * sqlock. However, a thread CAN decide that it is no longer
6543 	 * going to drain that queue.  However, this should be due to
6544 	 * a GOAWAY state, and we should see that here.
6545 	 *
6546 	 * This loop is not very efficient. One solution may be adding a second
6547 	 * pointer to the "draining" queue, but it is difficult to do when
6548 	 * queues are inserted in the middle due to priority ordering. Another
6549 	 * possibility is to yank the queue out of the sq list and put it onto
6550 	 * the "draining list" and then put it back if it can't be drained.
6551 	 */
6552 
6553 	ASSERT((sq->sq_head == NULL) || (flags & SQ_GOAWAY) ||
6554 	    (type & SQ_CI) || sq->sq_head->q_draining);
6555 
6556 	/* Drop SQ_EXCL for non-CIPUT perimeters */
6557 	if (!(type & SQ_CIPUT))
6558 		flags &= ~SQ_EXCL;
6559 	ASSERT((flags & SQ_EXCL) == 0);
6560 
6561 	/* Wake up any waiters. */
6562 	if (flags & SQ_WANTWAKEUP) {
6563 		flags &= ~SQ_WANTWAKEUP;
6564 		cv_broadcast(&sq->sq_wait);
6565 	}
6566 	if (flags & SQ_WANTEXWAKEUP) {
6567 		flags &= ~SQ_WANTEXWAKEUP;
6568 		cv_broadcast(&sq->sq_exitwait);
6569 	}
6570 	sq->sq_flags = flags;
6571 
6572 	ASSERT(sq->sq_count != 0);
6573 	/* Release our claim. */
6574 	sq->sq_count--;
6575 
6576 	if (bg_service) {
6577 		ASSERT(sq->sq_servcount != 0);
6578 		sq->sq_servcount--;
6579 	}
6580 
6581 	mutex_exit(SQLOCK(sq));
6582 
6583 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
6584 	    "drain_syncq end:%p", sq);
6585 }
6586 
6587 
6588 /*
6589  *
6590  * qdrain_syncq can be called (currently) from only one of two places:
6591  *	drain_syncq
6592  * 	putnext  (or some variation of it).
6593  * and eventually
6594  * 	qwait(_sig)
6595  *
6596  * If called from drain_syncq, we found it in the list of queues needing
6597  * service, so there is work to be done (or it wouldn't be in the list).
6598  *
6599  * If called from some putnext variation, it was because the
6600  * perimeter is open, but messages are blocking a putnext and
6601  * there is not a thread working on it.  Now a thread could start
6602  * working on it while we are getting ready to do so ourself, but
6603  * the thread would set the q_draining flag, and we can spin out.
6604  *
6605  * As for qwait(_sig), I think I shall let it continue to call
6606  * drain_syncq directly (after all, it will get here eventually).
6607  *
6608  * qdrain_syncq has to terminate when:
6609  * - one of the SQ_STAYAWAY bits gets set to preserve qwriter(OUTER) ordering
6610  * - SQ_EVENTS gets set to preserve qwriter(INNER) ordering
6611  *
6612  * ASSUMES:
6613  *	One claim
6614  * 	QLOCK held
6615  * 	SQLOCK not held
6616  *	Will release QLOCK before returning
6617  */
6618 void
6619 qdrain_syncq(syncq_t *sq, queue_t *q)
6620 {
6621 	mblk_t		*bp;
6622 #ifdef DEBUG
6623 	uint16_t	count;
6624 #endif
6625 
6626 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
6627 	    "drain_syncq start:%p", sq);
6628 	ASSERT(q->q_syncq == sq);
6629 	ASSERT(MUTEX_HELD(QLOCK(q)));
6630 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6631 	/*
6632 	 * For non-CIPUT perimeters, we should be called with the exclusive bit
6633 	 * set already. For CIPUT perimeters, we will be doing a concurrent
6634 	 * drain, so it better not be set.
6635 	 */
6636 	ASSERT((sq->sq_flags & (SQ_EXCL|SQ_CIPUT)));
6637 	ASSERT(!((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)));
6638 	ASSERT((sq->sq_type & SQ_CIPUT) || (sq->sq_flags & SQ_EXCL));
6639 	/*
6640 	 * All outer pointers are set, or none of them are
6641 	 */
6642 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6643 	    sq->sq_oprev == NULL) ||
6644 	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6645 	    sq->sq_oprev != NULL));
6646 #ifdef DEBUG
6647 	count = sq->sq_count;
6648 	/*
6649 	 * This is OK without the putlocks, because we have one
6650 	 * claim either from the sq_count, or a putcount.  We could
6651 	 * get an erroneous value from other counts, but ours won't
6652 	 * change, so one way or another, we will have at least a
6653 	 * value of one.
6654 	 */
6655 	SUM_SQ_PUTCOUNTS(sq, count);
6656 	ASSERT(count >= 1);
6657 #endif /* DEBUG */
6658 
6659 	/*
6660 	 * The first thing to do is find out if a thread is already draining
6661 	 * this queue. If so, we are done, just return.
6662 	 */
6663 	if (q->q_draining) {
6664 		mutex_exit(QLOCK(q));
6665 		return;
6666 	}
6667 
6668 	/*
6669 	 * If the perimeter is exclusive, there is nothing we can do right now,
6670 	 * go away. Note that there is nothing to prevent this case from
6671 	 * changing right after this check, but the spin-out will catch it.
6672 	 */
6673 
6674 	/* Tell other threads that we are draining this queue */
6675 	q->q_draining = 1;	/* Protected by QLOCK */
6676 
6677 	/*
6678 	 * If there is nothing to do, clear QFULL as necessary. This caters for
6679 	 * the case where an empty queue was enqueued onto the syncq.
6680 	 */
6681 	if (q->q_sqhead == NULL) {
6682 		ASSERT(q->q_syncqmsgs == 0);
6683 		mutex_exit(QLOCK(q));
6684 		clr_qfull(q);
6685 		mutex_enter(QLOCK(q));
6686 	}
6687 
6688 	/*
6689 	 * Note that q_sqhead must be re-checked here in case another message
6690 	 * was enqueued whilst QLOCK was dropped during the call to clr_qfull.
6691 	 */
6692 	for (bp = q->q_sqhead; bp != NULL; bp = q->q_sqhead) {
6693 		/*
6694 		 * Because we can enter this routine just because a putnext is
6695 		 * blocked, we need to spin out if the perimeter wants to go
6696 		 * exclusive as well as just blocked. We need to spin out also
6697 		 * if events are queued on the syncq.
6698 		 * Don't check for SQ_EXCL, because non-CIPUT perimeters would
6699 		 * set it, and it can't become exclusive while we hold a claim.
6700 		 */
6701 		if (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)) {
6702 			break;
6703 		}
6704 
6705 #ifdef DEBUG
6706 		/*
6707 		 * Since we are in qdrain_syncq, we already know the queue,
6708 		 * but for sanity, we want to check this against the qp that
6709 		 * was passed in by bp->b_queue.
6710 		 */
6711 
6712 		ASSERT(bp->b_queue == q);
6713 		ASSERT(bp->b_queue->q_syncq == sq);
6714 		bp->b_queue = NULL;
6715 
6716 		/*
6717 		 * We would have the following check in the DEBUG code:
6718 		 *
6719 		 * if (bp->b_prev != NULL)  {
6720 		 *	ASSERT(bp->b_prev == (void (*)())q->q_qinfo->qi_putp);
6721 		 * }
6722 		 *
6723 		 * This can't be done, however, since IP modifies qinfo
6724 		 * structure at run-time (switching between IPv4 qinfo and IPv6
6725 		 * qinfo), invalidating the check.
6726 		 * So the assignment to func is left here, but the ASSERT itself
6727 		 * is removed until the whole issue is resolved.
6728 		 */
6729 #endif
6730 		ASSERT(q->q_sqhead == bp);
6731 		q->q_sqhead = bp->b_next;
6732 		bp->b_prev = bp->b_next = NULL;
6733 		ASSERT(q->q_syncqmsgs > 0);
6734 		mutex_exit(QLOCK(q));
6735 
6736 		ASSERT(bp->b_datap->db_ref != 0);
6737 
6738 		(void) (*q->q_qinfo->qi_putp)(q, bp);
6739 
6740 		mutex_enter(QLOCK(q));
6741 
6742 		/*
6743 		 * q_syncqmsgs should only be decremented after executing the
6744 		 * put procedure to avoid message re-ordering. This is due to an
6745 		 * optimisation in putnext() which can call the put procedure
6746 		 * directly if it sees q_syncqmsgs == 0 (despite Q_SQQUEUED
6747 		 * being set).
6748 		 *
6749 		 * We also need to clear QFULL in the next service procedure
6750 		 * queue if this is the last message destined for that queue.
6751 		 *
6752 		 * It would make better sense to have some sort of tunable for
6753 		 * the low water mark, but these semantics are not yet defined.
6754 		 * So, alas, we use a constant.
6755 		 */
6756 		if (--q->q_syncqmsgs == 0) {
6757 			mutex_exit(QLOCK(q));
6758 			clr_qfull(q);
6759 			mutex_enter(QLOCK(q));
6760 		}
6761 
6762 		/*
6763 		 * Always clear SQ_EXCL when CIPUT in order to handle
6764 		 * qwriter(INNER). The putp() can call qwriter and get exclusive
6765 		 * access IFF this is the only claim. So, we need to test for
6766 		 * this possibility, acquire the mutex and clear the bit.
6767 		 */
6768 		if ((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)) {
6769 			mutex_enter(SQLOCK(sq));
6770 			sq->sq_flags &= ~SQ_EXCL;
6771 			mutex_exit(SQLOCK(sq));
6772 		}
6773 	}
6774 
6775 	/*
6776 	 * We should either have no messages on this queue, or we were told to
6777 	 * goaway by a waiter (which we will wake up at the end of this
6778 	 * function).
6779 	 */
6780 	ASSERT((q->q_sqhead == NULL) ||
6781 	    (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)));
6782 
6783 	ASSERT(MUTEX_HELD(QLOCK(q)));
6784 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6785 
6786 	/* Remove the q from the syncq list if all the messages are drained. */
6787 	if (q->q_sqhead == NULL) {
6788 		ASSERT(q->q_syncqmsgs == 0);
6789 		mutex_enter(SQLOCK(sq));
6790 		if (q->q_sqflags & Q_SQQUEUED)
6791 			SQRM_Q(sq, q);
6792 		mutex_exit(SQLOCK(sq));
6793 		/*
6794 		 * Since the queue is removed from the list, reset its priority.
6795 		 */
6796 		q->q_spri = 0;
6797 	}
6798 
6799 	/*
6800 	 * Remember, the q_draining flag is used to let another thread know
6801 	 * that there is a thread currently draining the messages for a queue.
6802 	 * Since we are now done with this queue (even if there may be messages
6803 	 * still there), we need to clear this flag so some thread will work on
6804 	 * it if needed.
6805 	 */
6806 	ASSERT(q->q_draining);
6807 	q->q_draining = 0;
6808 
6809 	/* Called with a claim, so OK to drop all locks. */
6810 	mutex_exit(QLOCK(q));
6811 
6812 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
6813 	    "drain_syncq end:%p", sq);
6814 }
6815 /* END OF QDRAIN_SYNCQ  */
6816 
6817 
6818 /*
6819  * This is the mate to qdrain_syncq, except that it is putting the message onto
6820  * the queue instead of draining. Since the message is destined for the queue
6821  * that is selected, there is no need to identify the function because the
6822  * message is intended for the put routine for the queue. For debug kernels,
6823  * this routine will do it anyway just in case.
6824  *
6825  * After the message is enqueued on the syncq, it calls putnext_tail()
6826  * which will schedule a background thread to actually process the message.
6827  *
6828  * Assumes that there is a claim on the syncq (sq->sq_count > 0) and
6829  * SQLOCK(sq) and QLOCK(q) are not held.
6830  */
6831 void
6832 qfill_syncq(syncq_t *sq, queue_t *q, mblk_t *mp)
6833 {
6834 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6835 	ASSERT(MUTEX_NOT_HELD(QLOCK(q)));
6836 	ASSERT(sq->sq_count > 0);
6837 	ASSERT(q->q_syncq == sq);
6838 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6839 	    sq->sq_oprev == NULL) ||
6840 	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6841 	    sq->sq_oprev != NULL));
6842 
6843 	mutex_enter(QLOCK(q));
6844 
6845 #ifdef DEBUG
6846 	/*
6847 	 * This is used for debug in the qfill_syncq/qdrain_syncq case
6848 	 * to trace the queue that the message is intended for.  Note
6849 	 * that the original use was to identify the queue and function
6850 	 * to call on the drain.  In the new syncq, we have the context
6851 	 * of the queue that we are draining, so call it's putproc and
6852 	 * don't rely on the saved values.  But for debug this is still
6853 	 * useful information.
6854 	 */
6855 	mp->b_prev = (mblk_t *)q->q_qinfo->qi_putp;
6856 	mp->b_queue = q;
6857 	mp->b_next = NULL;
6858 #endif
6859 	ASSERT(q->q_syncq == sq);
6860 	/*
6861 	 * Enqueue the message on the list.
6862 	 * SQPUT_MP() accesses q_syncqmsgs.  We are already holding QLOCK to
6863 	 * protect it.  So it's ok to acquire SQLOCK after SQPUT_MP().
6864 	 */
6865 	SQPUT_MP(q, mp);
6866 	mutex_enter(SQLOCK(sq));
6867 
6868 	/*
6869 	 * And queue on syncq for scheduling, if not already queued.
6870 	 * Note that we need the SQLOCK for this, and for testing flags
6871 	 * at the end to see if we will drain.  So grab it now, and
6872 	 * release it before we call qdrain_syncq or return.
6873 	 */
6874 	if (!(q->q_sqflags & Q_SQQUEUED)) {
6875 		q->q_spri = curthread->t_pri;
6876 		SQPUT_Q(sq, q);
6877 	}
6878 #ifdef DEBUG
6879 	else {
6880 		/*
6881 		 * All of these conditions MUST be true!
6882 		 */
6883 		ASSERT(sq->sq_tail != NULL);
6884 		if (sq->sq_tail == sq->sq_head) {
6885 			ASSERT((q->q_sqprev == NULL) &&
6886 			    (q->q_sqnext == NULL));
6887 		} else {
6888 			ASSERT((q->q_sqprev != NULL) ||
6889 			    (q->q_sqnext != NULL));
6890 		}
6891 		ASSERT(sq->sq_flags & SQ_QUEUED);
6892 		ASSERT(q->q_syncqmsgs != 0);
6893 		ASSERT(q->q_sqflags & Q_SQQUEUED);
6894 	}
6895 #endif
6896 	mutex_exit(QLOCK(q));
6897 	/*
6898 	 * SQLOCK is still held, so sq_count can be safely decremented.
6899 	 */
6900 	sq->sq_count--;
6901 
6902 	putnext_tail(sq, q, 0);
6903 	/* Should not reference sq or q after this point. */
6904 }
6905 
6906 /*  End of qfill_syncq  */
6907 
6908 /*
6909  * Remove all messages from a syncq (if qp is NULL) or remove all messages
6910  * that would be put into qp by drain_syncq.
6911  * Used when deleting the syncq (qp == NULL) or when detaching
6912  * a queue (qp != NULL).
6913  * Return non-zero if one or more messages were freed.
6914  *
6915  * No need to grab sq_putlocks here. See comment in strsubr.h that explains when
6916  * sq_putlocks are used.
6917  *
6918  * NOTE: This function assumes that it is called from the close() context and
6919  * that all the queues in the syncq are going away. For this reason it doesn't
6920  * acquire QLOCK for modifying q_sqhead/q_sqtail fields. This assumption is
6921  * currently valid, but it is useful to rethink this function to behave properly
6922  * in other cases.
6923  */
6924 int
6925 flush_syncq(syncq_t *sq, queue_t *qp)
6926 {
6927 	mblk_t		*bp, *mp_head, *mp_next, *mp_prev;
6928 	queue_t		*q;
6929 	int		ret = 0;
6930 
6931 	mutex_enter(SQLOCK(sq));
6932 
6933 	/*
6934 	 * Before we leave, we need to make sure there are no
6935 	 * events listed for this queue.  All events for this queue
6936 	 * will just be freed.
6937 	 */
6938 	if (qp != NULL && sq->sq_evhead != NULL) {
6939 		ASSERT(sq->sq_flags & SQ_EVENTS);
6940 
6941 		mp_prev = NULL;
6942 		for (bp = sq->sq_evhead; bp != NULL; bp = mp_next) {
6943 			mp_next = bp->b_next;
6944 			if (bp->b_queue == qp) {
6945 				/* Delete this message */
6946 				if (mp_prev != NULL) {
6947 					mp_prev->b_next = mp_next;
6948 					/*
6949 					 * Update sq_evtail if the last element
6950 					 * is removed.
6951 					 */
6952 					if (bp == sq->sq_evtail) {
6953 						ASSERT(mp_next == NULL);
6954 						sq->sq_evtail = mp_prev;
6955 					}
6956 				} else
6957 					sq->sq_evhead = mp_next;
6958 				if (sq->sq_evhead == NULL)
6959 					sq->sq_flags &= ~SQ_EVENTS;
6960 				bp->b_prev = bp->b_next = NULL;
6961 				freemsg(bp);
6962 				ret++;
6963 			} else {
6964 				mp_prev = bp;
6965 			}
6966 		}
6967 	}
6968 
6969 	/*
6970 	 * Walk sq_head and:
6971 	 *	- match qp if qp is set, remove it's messages
6972 	 *	- all if qp is not set
6973 	 */
6974 	q = sq->sq_head;
6975 	while (q != NULL) {
6976 		ASSERT(q->q_syncq == sq);
6977 		if ((qp == NULL) || (qp == q)) {
6978 			/*
6979 			 * Yank the messages as a list off the queue
6980 			 */
6981 			mp_head = q->q_sqhead;
6982 			/*
6983 			 * We do not have QLOCK(q) here (which is safe due to
6984 			 * assumptions mentioned above). To obtain the lock we
6985 			 * need to release SQLOCK which may allow lots of things
6986 			 * to change upon us. This place requires more analysis.
6987 			 */
6988 			q->q_sqhead = q->q_sqtail = NULL;
6989 			ASSERT(mp_head->b_queue &&
6990 			    mp_head->b_queue->q_syncq == sq);
6991 
6992 			/*
6993 			 * Free each of the messages.
6994 			 */
6995 			for (bp = mp_head; bp != NULL; bp = mp_next) {
6996 				mp_next = bp->b_next;
6997 				bp->b_prev = bp->b_next = NULL;
6998 				freemsg(bp);
6999 				ret++;
7000 			}
7001 			/*
7002 			 * Now remove the queue from the syncq.
7003 			 */
7004 			ASSERT(q->q_sqflags & Q_SQQUEUED);
7005 			SQRM_Q(sq, q);
7006 			q->q_spri = 0;
7007 			q->q_syncqmsgs = 0;
7008 
7009 			/*
7010 			 * If qp was specified, we are done with it and are
7011 			 * going to drop SQLOCK(sq) and return. We wakeup syncq
7012 			 * waiters while we still have the SQLOCK.
7013 			 */
7014 			if ((qp != NULL) && (sq->sq_flags & SQ_WANTWAKEUP)) {
7015 				sq->sq_flags &= ~SQ_WANTWAKEUP;
7016 				cv_broadcast(&sq->sq_wait);
7017 			}
7018 			/* Drop SQLOCK across clr_qfull */
7019 			mutex_exit(SQLOCK(sq));
7020 
7021 			/*
7022 			 * We avoid doing the test that drain_syncq does and
7023 			 * unconditionally clear qfull for every flushed
7024 			 * message. Since flush_syncq is only called during
7025 			 * close this should not be a problem.
7026 			 */
7027 			clr_qfull(q);
7028 			if (qp != NULL) {
7029 				return (ret);
7030 			} else {
7031 				mutex_enter(SQLOCK(sq));
7032 				/*
7033 				 * The head was removed by SQRM_Q above.
7034 				 * reread the new head and flush it.
7035 				 */
7036 				q = sq->sq_head;
7037 			}
7038 		} else {
7039 			q = q->q_sqnext;
7040 		}
7041 		ASSERT(MUTEX_HELD(SQLOCK(sq)));
7042 	}
7043 
7044 	if (sq->sq_flags & SQ_WANTWAKEUP) {
7045 		sq->sq_flags &= ~SQ_WANTWAKEUP;
7046 		cv_broadcast(&sq->sq_wait);
7047 	}
7048 
7049 	mutex_exit(SQLOCK(sq));
7050 	return (ret);
7051 }
7052 
7053 /*
7054  * Propagate all messages from a syncq to the next syncq that are associated
7055  * with the specified queue. If the queue is attached to a driver or if the
7056  * messages have been added due to a qwriter(PERIM_INNER), free the messages.
7057  *
7058  * Assumes that the stream is strlock()'ed. We don't come here if there
7059  * are no messages to propagate.
7060  *
7061  * NOTE : If the queue is attached to a driver, all the messages are freed
7062  * as there is no point in propagating the messages from the driver syncq
7063  * to the closing stream head which will in turn get freed later.
7064  */
7065 static int
7066 propagate_syncq(queue_t *qp)
7067 {
7068 	mblk_t		*bp, *head, *tail, *prev, *next;
7069 	syncq_t 	*sq;
7070 	queue_t		*nqp;
7071 	syncq_t		*nsq;
7072 	boolean_t	isdriver;
7073 	int 		moved = 0;
7074 	uint16_t	flags;
7075 	pri_t		priority = curthread->t_pri;
7076 #ifdef DEBUG
7077 	void		(*func)();
7078 #endif
7079 
7080 	sq = qp->q_syncq;
7081 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7082 	/* debug macro */
7083 	SQ_PUTLOCKS_HELD(sq);
7084 	/*
7085 	 * As entersq() does not increment the sq_count for
7086 	 * the write side, check sq_count for non-QPERQ
7087 	 * perimeters alone.
7088 	 */
7089 	ASSERT((qp->q_flag & QPERQ) || (sq->sq_count >= 1));
7090 
7091 	/*
7092 	 * propagate_syncq() can be called because of either messages on the
7093 	 * queue syncq or because on events on the queue syncq. Do actual
7094 	 * message propagations if there are any messages.
7095 	 */
7096 	if (qp->q_syncqmsgs) {
7097 		isdriver = (qp->q_flag & QISDRV);
7098 
7099 		if (!isdriver) {
7100 			nqp = qp->q_next;
7101 			nsq = nqp->q_syncq;
7102 			ASSERT(MUTEX_HELD(SQLOCK(nsq)));
7103 			/* debug macro */
7104 			SQ_PUTLOCKS_HELD(nsq);
7105 #ifdef DEBUG
7106 			func = (void (*)())nqp->q_qinfo->qi_putp;
7107 #endif
7108 		}
7109 
7110 		SQRM_Q(sq, qp);
7111 		priority = MAX(qp->q_spri, priority);
7112 		qp->q_spri = 0;
7113 		head = qp->q_sqhead;
7114 		tail = qp->q_sqtail;
7115 		qp->q_sqhead = qp->q_sqtail = NULL;
7116 		qp->q_syncqmsgs = 0;
7117 
7118 		/*
7119 		 * Walk the list of messages, and free them if this is a driver,
7120 		 * otherwise reset the b_prev and b_queue value to the new putp.
7121 		 * Afterward, we will just add the head to the end of the next
7122 		 * syncq, and point the tail to the end of this one.
7123 		 */
7124 
7125 		for (bp = head; bp != NULL; bp = next) {
7126 			next = bp->b_next;
7127 			if (isdriver) {
7128 				bp->b_prev = bp->b_next = NULL;
7129 				freemsg(bp);
7130 				continue;
7131 			}
7132 			/* Change the q values for this message */
7133 			bp->b_queue = nqp;
7134 #ifdef DEBUG
7135 			bp->b_prev = (mblk_t *)func;
7136 #endif
7137 			moved++;
7138 		}
7139 		/*
7140 		 * Attach list of messages to the end of the new queue (if there
7141 		 * is a list of messages).
7142 		 */
7143 
7144 		if (!isdriver && head != NULL) {
7145 			ASSERT(tail != NULL);
7146 			if (nqp->q_sqhead == NULL) {
7147 				nqp->q_sqhead = head;
7148 			} else {
7149 				ASSERT(nqp->q_sqtail != NULL);
7150 				nqp->q_sqtail->b_next = head;
7151 			}
7152 			nqp->q_sqtail = tail;
7153 			/*
7154 			 * When messages are moved from high priority queue to
7155 			 * another queue, the destination queue priority is
7156 			 * upgraded.
7157 			 */
7158 
7159 			if (priority > nqp->q_spri)
7160 				nqp->q_spri = priority;
7161 
7162 			SQPUT_Q(nsq, nqp);
7163 
7164 			nqp->q_syncqmsgs += moved;
7165 			ASSERT(nqp->q_syncqmsgs != 0);
7166 		}
7167 	}
7168 
7169 	/*
7170 	 * Before we leave, we need to make sure there are no
7171 	 * events listed for this queue.  All events for this queue
7172 	 * will just be freed.
7173 	 */
7174 	if (sq->sq_evhead != NULL) {
7175 		ASSERT(sq->sq_flags & SQ_EVENTS);
7176 		prev = NULL;
7177 		for (bp = sq->sq_evhead; bp != NULL; bp = next) {
7178 			next = bp->b_next;
7179 			if (bp->b_queue == qp) {
7180 				/* Delete this message */
7181 				if (prev != NULL) {
7182 					prev->b_next = next;
7183 					/*
7184 					 * Update sq_evtail if the last element
7185 					 * is removed.
7186 					 */
7187 					if (bp == sq->sq_evtail) {
7188 						ASSERT(next == NULL);
7189 						sq->sq_evtail = prev;
7190 					}
7191 				} else
7192 					sq->sq_evhead = next;
7193 				if (sq->sq_evhead == NULL)
7194 					sq->sq_flags &= ~SQ_EVENTS;
7195 				bp->b_prev = bp->b_next = NULL;
7196 				freemsg(bp);
7197 			} else {
7198 				prev = bp;
7199 			}
7200 		}
7201 	}
7202 
7203 	flags = sq->sq_flags;
7204 
7205 	/* Wake up any waiter before leaving. */
7206 	if (flags & SQ_WANTWAKEUP) {
7207 		flags &= ~SQ_WANTWAKEUP;
7208 		cv_broadcast(&sq->sq_wait);
7209 	}
7210 	sq->sq_flags = flags;
7211 
7212 	return (moved);
7213 }
7214 
7215 /*
7216  * Try and upgrade to exclusive access at the inner perimeter. If this can
7217  * not be done without blocking then request will be queued on the syncq
7218  * and drain_syncq will run it later.
7219  *
7220  * This routine can only be called from put or service procedures plus
7221  * asynchronous callback routines that have properly entered the queue (with
7222  * entersq). Thus qwriter_inner assumes the caller has one claim on the syncq
7223  * associated with q.
7224  */
7225 void
7226 qwriter_inner(queue_t *q, mblk_t *mp, void (*func)())
7227 {
7228 	syncq_t	*sq = q->q_syncq;
7229 	uint16_t count;
7230 
7231 	mutex_enter(SQLOCK(sq));
7232 	count = sq->sq_count;
7233 	SQ_PUTLOCKS_ENTER(sq);
7234 	SUM_SQ_PUTCOUNTS(sq, count);
7235 	ASSERT(count >= 1);
7236 	ASSERT(sq->sq_type & (SQ_CIPUT|SQ_CISVC));
7237 
7238 	if (count == 1) {
7239 		/*
7240 		 * Can upgrade. This case also handles nested qwriter calls
7241 		 * (when the qwriter callback function calls qwriter). In that
7242 		 * case SQ_EXCL is already set.
7243 		 */
7244 		sq->sq_flags |= SQ_EXCL;
7245 		SQ_PUTLOCKS_EXIT(sq);
7246 		mutex_exit(SQLOCK(sq));
7247 		(*func)(q, mp);
7248 		/*
7249 		 * Assumes that leavesq, putnext, and drain_syncq will reset
7250 		 * SQ_EXCL for SQ_CIPUT/SQ_CISVC queues. We leave SQ_EXCL on
7251 		 * until putnext, leavesq, or drain_syncq drops it.
7252 		 * That way we handle nested qwriter(INNER) without dropping
7253 		 * SQ_EXCL until the outermost qwriter callback routine is
7254 		 * done.
7255 		 */
7256 		return;
7257 	}
7258 	SQ_PUTLOCKS_EXIT(sq);
7259 	sqfill_events(sq, q, mp, func);
7260 }
7261 
7262 /*
7263  * Synchronous callback support functions
7264  */
7265 
7266 /*
7267  * Allocate a callback parameter structure.
7268  * Assumes that caller initializes the flags and the id.
7269  * Acquires SQLOCK(sq) if non-NULL is returned.
7270  */
7271 callbparams_t *
7272 callbparams_alloc(syncq_t *sq, void (*func)(void *), void *arg, int kmflags)
7273 {
7274 	callbparams_t *cbp;
7275 	size_t size = sizeof (callbparams_t);
7276 
7277 	cbp = kmem_alloc(size, kmflags & ~KM_PANIC);
7278 
7279 	/*
7280 	 * Only try tryhard allocation if the caller is ready to panic.
7281 	 * Otherwise just fail.
7282 	 */
7283 	if (cbp == NULL) {
7284 		if (kmflags & KM_PANIC)
7285 			cbp = kmem_alloc_tryhard(sizeof (callbparams_t),
7286 			    &size, kmflags);
7287 		else
7288 			return (NULL);
7289 	}
7290 
7291 	ASSERT(size >= sizeof (callbparams_t));
7292 	cbp->cbp_size = size;
7293 	cbp->cbp_sq = sq;
7294 	cbp->cbp_func = func;
7295 	cbp->cbp_arg = arg;
7296 	mutex_enter(SQLOCK(sq));
7297 	cbp->cbp_next = sq->sq_callbpend;
7298 	sq->sq_callbpend = cbp;
7299 	return (cbp);
7300 }
7301 
7302 void
7303 callbparams_free(syncq_t *sq, callbparams_t *cbp)
7304 {
7305 	callbparams_t **pp, *p;
7306 
7307 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7308 
7309 	for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
7310 		if (p == cbp) {
7311 			*pp = p->cbp_next;
7312 			kmem_free(p, p->cbp_size);
7313 			return;
7314 		}
7315 	}
7316 	(void) (STRLOG(0, 0, 0, SL_CONSOLE,
7317 	    "callbparams_free: not found\n"));
7318 }
7319 
7320 void
7321 callbparams_free_id(syncq_t *sq, callbparams_id_t id, int32_t flag)
7322 {
7323 	callbparams_t **pp, *p;
7324 
7325 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7326 
7327 	for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
7328 		if (p->cbp_id == id && p->cbp_flags == flag) {
7329 			*pp = p->cbp_next;
7330 			kmem_free(p, p->cbp_size);
7331 			return;
7332 		}
7333 	}
7334 	(void) (STRLOG(0, 0, 0, SL_CONSOLE,
7335 	    "callbparams_free_id: not found\n"));
7336 }
7337 
7338 /*
7339  * Callback wrapper function used by once-only callbacks that can be
7340  * cancelled (qtimeout and qbufcall)
7341  * Contains inline version of entersq(sq, SQ_CALLBACK) that can be
7342  * cancelled by the qun* functions.
7343  */
7344 void
7345 qcallbwrapper(void *arg)
7346 {
7347 	callbparams_t *cbp = arg;
7348 	syncq_t	*sq;
7349 	uint16_t count = 0;
7350 	uint16_t waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
7351 	uint16_t type;
7352 
7353 	sq = cbp->cbp_sq;
7354 	mutex_enter(SQLOCK(sq));
7355 	type = sq->sq_type;
7356 	if (!(type & SQ_CICB)) {
7357 		count = sq->sq_count;
7358 		SQ_PUTLOCKS_ENTER(sq);
7359 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
7360 		SUM_SQ_PUTCOUNTS(sq, count);
7361 		sq->sq_needexcl++;
7362 		ASSERT(sq->sq_needexcl != 0);	/* wraparound */
7363 		waitflags |= SQ_MESSAGES;
7364 	}
7365 	/* Can not handle exclusive entry at outer perimeter */
7366 	ASSERT(type & SQ_COCB);
7367 
7368 	while ((sq->sq_flags & waitflags) || (!(type & SQ_CICB) &&count != 0)) {
7369 		if ((sq->sq_callbflags & cbp->cbp_flags) &&
7370 		    (sq->sq_cancelid == cbp->cbp_id)) {
7371 			/* timeout has been cancelled */
7372 			sq->sq_callbflags |= SQ_CALLB_BYPASSED;
7373 			callbparams_free(sq, cbp);
7374 			if (!(type & SQ_CICB)) {
7375 				ASSERT(sq->sq_needexcl > 0);
7376 				sq->sq_needexcl--;
7377 				if (sq->sq_needexcl == 0) {
7378 					SQ_PUTCOUNT_SETFAST_LOCKED(sq);
7379 				}
7380 				SQ_PUTLOCKS_EXIT(sq);
7381 			}
7382 			mutex_exit(SQLOCK(sq));
7383 			return;
7384 		}
7385 		sq->sq_flags |= SQ_WANTWAKEUP;
7386 		if (!(type & SQ_CICB)) {
7387 			SQ_PUTLOCKS_EXIT(sq);
7388 		}
7389 		cv_wait(&sq->sq_wait, SQLOCK(sq));
7390 		if (!(type & SQ_CICB)) {
7391 			count = sq->sq_count;
7392 			SQ_PUTLOCKS_ENTER(sq);
7393 			SUM_SQ_PUTCOUNTS(sq, count);
7394 		}
7395 	}
7396 
7397 	sq->sq_count++;
7398 	ASSERT(sq->sq_count != 0);	/* Wraparound */
7399 	if (!(type & SQ_CICB)) {
7400 		ASSERT(count == 0);
7401 		sq->sq_flags |= SQ_EXCL;
7402 		ASSERT(sq->sq_needexcl > 0);
7403 		sq->sq_needexcl--;
7404 		if (sq->sq_needexcl == 0) {
7405 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
7406 		}
7407 		SQ_PUTLOCKS_EXIT(sq);
7408 	}
7409 
7410 	mutex_exit(SQLOCK(sq));
7411 
7412 	cbp->cbp_func(cbp->cbp_arg);
7413 
7414 	/*
7415 	 * We drop the lock only for leavesq to re-acquire it.
7416 	 * Possible optimization is inline of leavesq.
7417 	 */
7418 	mutex_enter(SQLOCK(sq));
7419 	callbparams_free(sq, cbp);
7420 	mutex_exit(SQLOCK(sq));
7421 	leavesq(sq, SQ_CALLBACK);
7422 }
7423 
7424 /*
7425  * No need to grab sq_putlocks here. See comment in strsubr.h that
7426  * explains when sq_putlocks are used.
7427  *
7428  * sq_count (or one of the sq_putcounts) has already been
7429  * decremented by the caller, and if SQ_QUEUED, we need to call
7430  * drain_syncq (the global syncq drain).
7431  * If putnext_tail is called with the SQ_EXCL bit set, we are in
7432  * one of two states, non-CIPUT perimeter, and we need to clear
7433  * it, or we went exclusive in the put procedure.  In any case,
7434  * we want to clear the bit now, and it is probably easier to do
7435  * this at the beginning of this function (remember, we hold
7436  * the SQLOCK).  Lastly, if there are other messages queued
7437  * on the syncq (and not for our destination), enable the syncq
7438  * for background work.
7439  */
7440 
7441 /* ARGSUSED */
7442 void
7443 putnext_tail(syncq_t *sq, queue_t *qp, uint32_t passflags)
7444 {
7445 	uint16_t	flags = sq->sq_flags;
7446 
7447 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7448 	ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
7449 
7450 	/* Clear SQ_EXCL if set in passflags */
7451 	if (passflags & SQ_EXCL) {
7452 		flags &= ~SQ_EXCL;
7453 	}
7454 	if (flags & SQ_WANTWAKEUP) {
7455 		flags &= ~SQ_WANTWAKEUP;
7456 		cv_broadcast(&sq->sq_wait);
7457 	}
7458 	if (flags & SQ_WANTEXWAKEUP) {
7459 		flags &= ~SQ_WANTEXWAKEUP;
7460 		cv_broadcast(&sq->sq_exitwait);
7461 	}
7462 	sq->sq_flags = flags;
7463 
7464 	/*
7465 	 * We have cleared SQ_EXCL if we were asked to, and started
7466 	 * the wakeup process for waiters.  If there are no writers
7467 	 * then we need to drain the syncq if we were told to, or
7468 	 * enable the background thread to do it.
7469 	 */
7470 	if (!(flags & (SQ_STAYAWAY|SQ_EXCL))) {
7471 		if ((passflags & SQ_QUEUED) ||
7472 		    (sq->sq_svcflags & SQ_DISABLED)) {
7473 			/* drain_syncq will take care of events in the list */
7474 			drain_syncq(sq);
7475 			return;
7476 		} else if (flags & SQ_QUEUED) {
7477 			sqenable(sq);
7478 		}
7479 	}
7480 	/* Drop the SQLOCK on exit */
7481 	mutex_exit(SQLOCK(sq));
7482 	TRACE_3(TR_FAC_STREAMS_FR, TR_PUTNEXT_END,
7483 	    "putnext_end:(%p, %p, %p) done", NULL, qp, sq);
7484 }
7485 
7486 void
7487 set_qend(queue_t *q)
7488 {
7489 	mutex_enter(QLOCK(q));
7490 	if (!O_SAMESTR(q))
7491 		q->q_flag |= QEND;
7492 	else
7493 		q->q_flag &= ~QEND;
7494 	mutex_exit(QLOCK(q));
7495 	q = _OTHERQ(q);
7496 	mutex_enter(QLOCK(q));
7497 	if (!O_SAMESTR(q))
7498 		q->q_flag |= QEND;
7499 	else
7500 		q->q_flag &= ~QEND;
7501 	mutex_exit(QLOCK(q));
7502 }
7503 
7504 /*
7505  * Set QFULL in next service procedure queue (that cares) if not already
7506  * set and if there are already more messages on the syncq than
7507  * sq_max_size.  If sq_max_size is 0, no flow control will be asserted on
7508  * any syncq.
7509  *
7510  * The fq here is the next queue with a service procedure.  This is where
7511  * we would fail canputnext, so this is where we need to set QFULL.
7512  * In the case when fq != q we need to take QLOCK(fq) to set QFULL flag.
7513  *
7514  * We already have QLOCK at this point. To avoid cross-locks with
7515  * freezestr() which grabs all QLOCKs and with strlock() which grabs both
7516  * SQLOCK and sd_reflock, we need to drop respective locks first.
7517  */
7518 void
7519 set_qfull(queue_t *q)
7520 {
7521 	queue_t		*fq = NULL;
7522 
7523 	ASSERT(MUTEX_HELD(QLOCK(q)));
7524 	if ((sq_max_size != 0) && (!(q->q_nfsrv->q_flag & QFULL)) &&
7525 	    (q->q_syncqmsgs > sq_max_size)) {
7526 		if ((fq = q->q_nfsrv) == q) {
7527 			fq->q_flag |= QFULL;
7528 		} else {
7529 			mutex_exit(QLOCK(q));
7530 			mutex_enter(QLOCK(fq));
7531 			fq->q_flag |= QFULL;
7532 			mutex_exit(QLOCK(fq));
7533 			mutex_enter(QLOCK(q));
7534 		}
7535 	}
7536 }
7537 
7538 void
7539 clr_qfull(queue_t *q)
7540 {
7541 	queue_t	*oq = q;
7542 
7543 	q = q->q_nfsrv;
7544 	/* Fast check if there is any work to do before getting the lock. */
7545 	if ((q->q_flag & (QFULL|QWANTW)) == 0) {
7546 		return;
7547 	}
7548 
7549 	/*
7550 	 * Do not reset QFULL (and backenable) if the q_count is the reason
7551 	 * for QFULL being set.
7552 	 */
7553 	mutex_enter(QLOCK(q));
7554 	/*
7555 	 * If queue is empty i.e q_mblkcnt is zero, queue can not be full.
7556 	 * Hence clear the QFULL.
7557 	 * If both q_count and q_mblkcnt are less than the hiwat mark,
7558 	 * clear the QFULL.
7559 	 */
7560 	if (q->q_mblkcnt == 0 || ((q->q_count < q->q_hiwat) &&
7561 	    (q->q_mblkcnt < q->q_hiwat))) {
7562 		q->q_flag &= ~QFULL;
7563 		/*
7564 		 * A little more confusing, how about this way:
7565 		 * if someone wants to write,
7566 		 * AND
7567 		 *    both counts are less than the lowat mark
7568 		 *    OR
7569 		 *    the lowat mark is zero
7570 		 * THEN
7571 		 * backenable
7572 		 */
7573 		if ((q->q_flag & QWANTW) &&
7574 		    (((q->q_count < q->q_lowat) &&
7575 		    (q->q_mblkcnt < q->q_lowat)) || q->q_lowat == 0)) {
7576 			q->q_flag &= ~QWANTW;
7577 			mutex_exit(QLOCK(q));
7578 			backenable(oq, 0);
7579 		} else
7580 			mutex_exit(QLOCK(q));
7581 	} else
7582 		mutex_exit(QLOCK(q));
7583 }
7584 
7585 /*
7586  * Set the forward service procedure pointer.
7587  *
7588  * Called at insert-time to cache a queue's next forward service procedure in
7589  * q_nfsrv; used by canput() and canputnext().  If the queue to be inserted
7590  * has a service procedure then q_nfsrv points to itself.  If the queue to be
7591  * inserted does not have a service procedure, then q_nfsrv points to the next
7592  * queue forward that has a service procedure.  If the queue is at the logical
7593  * end of the stream (driver for write side, stream head for the read side)
7594  * and does not have a service procedure, then q_nfsrv also points to itself.
7595  */
7596 void
7597 set_nfsrv_ptr(
7598 	queue_t  *rnew,		/* read queue pointer to new module */
7599 	queue_t  *wnew,		/* write queue pointer to new module */
7600 	queue_t  *prev_rq,	/* read queue pointer to the module above */
7601 	queue_t  *prev_wq)	/* write queue pointer to the module above */
7602 {
7603 	queue_t *qp;
7604 
7605 	if (prev_wq->q_next == NULL) {
7606 		/*
7607 		 * Insert the driver, initialize the driver and stream head.
7608 		 * In this case, prev_rq/prev_wq should be the stream head.
7609 		 * _I_INSERT does not allow inserting a driver.  Make sure
7610 		 * that it is not an insertion.
7611 		 */
7612 		ASSERT(!(rnew->q_flag & _QINSERTING));
7613 		wnew->q_nfsrv = wnew;
7614 		if (rnew->q_qinfo->qi_srvp)
7615 			rnew->q_nfsrv = rnew;
7616 		else
7617 			rnew->q_nfsrv = prev_rq;
7618 		prev_rq->q_nfsrv = prev_rq;
7619 		prev_wq->q_nfsrv = prev_wq;
7620 	} else {
7621 		/*
7622 		 * set up read side q_nfsrv pointer.  This MUST be done
7623 		 * before setting the write side, because the setting of
7624 		 * the write side for a fifo may depend on it.
7625 		 *
7626 		 * Suppose we have a fifo that only has pipemod pushed.
7627 		 * pipemod has no read or write service procedures, so
7628 		 * nfsrv for both pipemod queues points to prev_rq (the
7629 		 * stream read head).  Now push bufmod (which has only a
7630 		 * read service procedure).  Doing the write side first,
7631 		 * wnew->q_nfsrv is set to pipemod's writeq nfsrv, which
7632 		 * is WRONG; the next queue forward from wnew with a
7633 		 * service procedure will be rnew, not the stream read head.
7634 		 * Since the downstream queue (which in the case of a fifo
7635 		 * is the read queue rnew) can affect upstream queues, it
7636 		 * needs to be done first.  Setting up the read side first
7637 		 * sets nfsrv for both pipemod queues to rnew and then
7638 		 * when the write side is set up, wnew-q_nfsrv will also
7639 		 * point to rnew.
7640 		 */
7641 		if (rnew->q_qinfo->qi_srvp) {
7642 			/*
7643 			 * use _OTHERQ() because, if this is a pipe, next
7644 			 * module may have been pushed from other end and
7645 			 * q_next could be a read queue.
7646 			 */
7647 			qp = _OTHERQ(prev_wq->q_next);
7648 			while (qp && qp->q_nfsrv != qp) {
7649 				qp->q_nfsrv = rnew;
7650 				qp = backq(qp);
7651 			}
7652 			rnew->q_nfsrv = rnew;
7653 		} else
7654 			rnew->q_nfsrv = prev_rq->q_nfsrv;
7655 
7656 		/* set up write side q_nfsrv pointer */
7657 		if (wnew->q_qinfo->qi_srvp) {
7658 			wnew->q_nfsrv = wnew;
7659 
7660 			/*
7661 			 * For insertion, need to update nfsrv of the modules
7662 			 * above which do not have a service routine.
7663 			 */
7664 			if (rnew->q_flag & _QINSERTING) {
7665 				for (qp = prev_wq;
7666 				    qp != NULL && qp->q_nfsrv != qp;
7667 				    qp = backq(qp)) {
7668 					qp->q_nfsrv = wnew->q_nfsrv;
7669 				}
7670 			}
7671 		} else {
7672 			if (prev_wq->q_next == prev_rq)
7673 				/*
7674 				 * Since prev_wq/prev_rq are the middle of a
7675 				 * fifo, wnew/rnew will also be the middle of
7676 				 * a fifo and wnew's nfsrv is same as rnew's.
7677 				 */
7678 				wnew->q_nfsrv = rnew->q_nfsrv;
7679 			else
7680 				wnew->q_nfsrv = prev_wq->q_next->q_nfsrv;
7681 		}
7682 	}
7683 }
7684 
7685 /*
7686  * Reset the forward service procedure pointer; called at remove-time.
7687  */
7688 void
7689 reset_nfsrv_ptr(queue_t *rqp, queue_t *wqp)
7690 {
7691 	queue_t *tmp_qp;
7692 
7693 	/* Reset the write side q_nfsrv pointer for _I_REMOVE */
7694 	if ((rqp->q_flag & _QREMOVING) && (wqp->q_qinfo->qi_srvp != NULL)) {
7695 		for (tmp_qp = backq(wqp);
7696 		    tmp_qp != NULL && tmp_qp->q_nfsrv == wqp;
7697 		    tmp_qp = backq(tmp_qp)) {
7698 			tmp_qp->q_nfsrv = wqp->q_nfsrv;
7699 		}
7700 	}
7701 
7702 	/* reset the read side q_nfsrv pointer */
7703 	if (rqp->q_qinfo->qi_srvp) {
7704 		if (wqp->q_next) {	/* non-driver case */
7705 			tmp_qp = _OTHERQ(wqp->q_next);
7706 			while (tmp_qp && tmp_qp->q_nfsrv == rqp) {
7707 				/* Note that rqp->q_next cannot be NULL */
7708 				ASSERT(rqp->q_next != NULL);
7709 				tmp_qp->q_nfsrv = rqp->q_next->q_nfsrv;
7710 				tmp_qp = backq(tmp_qp);
7711 			}
7712 		}
7713 	}
7714 }
7715 
7716 /*
7717  * This routine should be called after all stream geometry changes to update
7718  * the stream head cached struio() rd/wr queue pointers. Note must be called
7719  * with the streamlock()ed.
7720  *
7721  * Note: only enables Synchronous STREAMS for a side of a Stream which has
7722  *	 an explicit synchronous barrier module queue. That is, a queue that
7723  *	 has specified a struio() type.
7724  */
7725 static void
7726 strsetuio(stdata_t *stp)
7727 {
7728 	queue_t *wrq;
7729 
7730 	if (stp->sd_flag & STPLEX) {
7731 		/*
7732 		 * Not streamhead, but a mux, so no Synchronous STREAMS.
7733 		 */
7734 		stp->sd_struiowrq = NULL;
7735 		stp->sd_struiordq = NULL;
7736 		return;
7737 	}
7738 	/*
7739 	 * Scan the write queue(s) while synchronous
7740 	 * until we find a qinfo uio type specified.
7741 	 */
7742 	wrq = stp->sd_wrq->q_next;
7743 	while (wrq) {
7744 		if (wrq->q_struiot == STRUIOT_NONE) {
7745 			wrq = 0;
7746 			break;
7747 		}
7748 		if (wrq->q_struiot != STRUIOT_DONTCARE)
7749 			break;
7750 		if (! _SAMESTR(wrq)) {
7751 			wrq = 0;
7752 			break;
7753 		}
7754 		wrq = wrq->q_next;
7755 	}
7756 	stp->sd_struiowrq = wrq;
7757 	/*
7758 	 * Scan the read queue(s) while synchronous
7759 	 * until we find a qinfo uio type specified.
7760 	 */
7761 	wrq = stp->sd_wrq->q_next;
7762 	while (wrq) {
7763 		if (_RD(wrq)->q_struiot == STRUIOT_NONE) {
7764 			wrq = 0;
7765 			break;
7766 		}
7767 		if (_RD(wrq)->q_struiot != STRUIOT_DONTCARE)
7768 			break;
7769 		if (! _SAMESTR(wrq)) {
7770 			wrq = 0;
7771 			break;
7772 		}
7773 		wrq = wrq->q_next;
7774 	}
7775 	stp->sd_struiordq = wrq ? _RD(wrq) : 0;
7776 }
7777 
7778 /*
7779  * pass_wput, unblocks the passthru queues, so that
7780  * messages can arrive at muxs lower read queue, before
7781  * I_LINK/I_UNLINK is acked/nacked.
7782  */
7783 static void
7784 pass_wput(queue_t *q, mblk_t *mp)
7785 {
7786 	syncq_t *sq;
7787 
7788 	sq = _RD(q)->q_syncq;
7789 	if (sq->sq_flags & SQ_BLOCKED)
7790 		unblocksq(sq, SQ_BLOCKED, 0);
7791 	putnext(q, mp);
7792 }
7793 
7794 /*
7795  * Set up queues for the link/unlink.
7796  * Create a new queue and block it and then insert it
7797  * below the stream head on the lower stream.
7798  * This prevents any messages from arriving during the setq
7799  * as well as while the mux is processing the LINK/I_UNLINK.
7800  * The blocked passq is unblocked once the LINK/I_UNLINK has
7801  * been acked or nacked or if a message is generated and sent
7802  * down muxs write put procedure.
7803  * See pass_wput().
7804  *
7805  * After the new queue is inserted, all messages coming from below are
7806  * blocked. The call to strlock will ensure that all activity in the stream head
7807  * read queue syncq is stopped (sq_count drops to zero).
7808  */
7809 static queue_t *
7810 link_addpassthru(stdata_t *stpdown)
7811 {
7812 	queue_t *passq;
7813 	sqlist_t sqlist;
7814 
7815 	passq = allocq();
7816 	STREAM(passq) = STREAM(_WR(passq)) = stpdown;
7817 	/* setq might sleep in allocator - avoid holding locks. */
7818 	setq(passq, &passthru_rinit, &passthru_winit, NULL, QPERQ,
7819 	    SQ_CI|SQ_CO, B_FALSE);
7820 	claimq(passq);
7821 	blocksq(passq->q_syncq, SQ_BLOCKED, 1);
7822 	insertq(STREAM(passq), passq);
7823 
7824 	/*
7825 	 * Use strlock() to wait for the stream head sq_count to drop to zero
7826 	 * since we are going to change q_ptr in the stream head.  Note that
7827 	 * insertq() doesn't wait for any syncq counts to drop to zero.
7828 	 */
7829 	sqlist.sqlist_head = NULL;
7830 	sqlist.sqlist_index = 0;
7831 	sqlist.sqlist_size = sizeof (sqlist_t);
7832 	sqlist_insert(&sqlist, _RD(stpdown->sd_wrq)->q_syncq);
7833 	strlock(stpdown, &sqlist);
7834 	strunlock(stpdown, &sqlist);
7835 
7836 	releaseq(passq);
7837 	return (passq);
7838 }
7839 
7840 /*
7841  * Let messages flow up into the mux by removing
7842  * the passq.
7843  */
7844 static void
7845 link_rempassthru(queue_t *passq)
7846 {
7847 	claimq(passq);
7848 	removeq(passq);
7849 	releaseq(passq);
7850 	freeq(passq);
7851 }
7852 
7853 /*
7854  * Wait for the condition variable pointed to by `cvp' to be signaled,
7855  * or for `tim' milliseconds to elapse, whichever comes first.  If `tim'
7856  * is negative, then there is no time limit.  If `nosigs' is non-zero,
7857  * then the wait will be non-interruptible.
7858  *
7859  * Returns >0 if signaled, 0 if interrupted, or -1 upon timeout.
7860  */
7861 clock_t
7862 str_cv_wait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim, int nosigs)
7863 {
7864 	clock_t ret;
7865 
7866 	if (tim < 0) {
7867 		if (nosigs) {
7868 			cv_wait(cvp, mp);
7869 			ret = 1;
7870 		} else {
7871 			ret = cv_wait_sig(cvp, mp);
7872 		}
7873 	} else if (tim > 0) {
7874 		/*
7875 		 * convert milliseconds to clock ticks
7876 		 */
7877 		if (nosigs) {
7878 			ret = cv_reltimedwait(cvp, mp,
7879 			    MSEC_TO_TICK_ROUNDUP(tim), TR_CLOCK_TICK);
7880 		} else {
7881 			ret = cv_reltimedwait_sig(cvp, mp,
7882 			    MSEC_TO_TICK_ROUNDUP(tim), TR_CLOCK_TICK);
7883 		}
7884 	} else {
7885 		ret = -1;
7886 	}
7887 	return (ret);
7888 }
7889 
7890 /*
7891  * Wait until the stream head can determine if it is at the mark but
7892  * don't wait forever to prevent a race condition between the "mark" state
7893  * in the stream head and any mark state in the caller/user of this routine.
7894  *
7895  * This is used by sockets and for a socket it would be incorrect
7896  * to return a failure for SIOCATMARK when there is no data in the receive
7897  * queue and the marked urgent data is traveling up the stream.
7898  *
7899  * This routine waits until the mark is known by waiting for one of these
7900  * three events:
7901  *	The stream head read queue becoming non-empty (including an EOF).
7902  *	The STRATMARK flag being set (due to a MSGMARKNEXT message).
7903  *	The STRNOTATMARK flag being set (which indicates that the transport
7904  *	has sent a MSGNOTMARKNEXT message to indicate that it is not at
7905  *	the mark).
7906  *
7907  * The routine returns 1 if the stream is at the mark; 0 if it can
7908  * be determined that the stream is not at the mark.
7909  * If the wait times out and it can't determine
7910  * whether or not the stream might be at the mark the routine will return -1.
7911  *
7912  * Note: This routine should only be used when a mark is pending i.e.,
7913  * in the socket case the SIGURG has been posted.
7914  * Note2: This can not wakeup just because synchronous streams indicate
7915  * that data is available since it is not possible to use the synchronous
7916  * streams interfaces to determine the b_flag value for the data queued below
7917  * the stream head.
7918  */
7919 int
7920 strwaitmark(vnode_t *vp)
7921 {
7922 	struct stdata *stp = vp->v_stream;
7923 	queue_t *rq = _RD(stp->sd_wrq);
7924 	int mark;
7925 
7926 	mutex_enter(&stp->sd_lock);
7927 	while (rq->q_first == NULL &&
7928 	    !(stp->sd_flag & (STRATMARK|STRNOTATMARK|STREOF))) {
7929 		stp->sd_flag |= RSLEEP;
7930 
7931 		/* Wait for 100 milliseconds for any state change. */
7932 		if (str_cv_wait(&rq->q_wait, &stp->sd_lock, 100, 1) == -1) {
7933 			mutex_exit(&stp->sd_lock);
7934 			return (-1);
7935 		}
7936 	}
7937 	if (stp->sd_flag & STRATMARK)
7938 		mark = 1;
7939 	else if (rq->q_first != NULL && (rq->q_first->b_flag & MSGMARK))
7940 		mark = 1;
7941 	else
7942 		mark = 0;
7943 
7944 	mutex_exit(&stp->sd_lock);
7945 	return (mark);
7946 }
7947 
7948 /*
7949  * Set a read side error. If persist is set change the socket error
7950  * to persistent. If errfunc is set install the function as the exported
7951  * error handler.
7952  */
7953 void
7954 strsetrerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
7955 {
7956 	struct stdata *stp = vp->v_stream;
7957 
7958 	mutex_enter(&stp->sd_lock);
7959 	stp->sd_rerror = error;
7960 	if (error == 0 && errfunc == NULL)
7961 		stp->sd_flag &= ~STRDERR;
7962 	else
7963 		stp->sd_flag |= STRDERR;
7964 	if (persist) {
7965 		stp->sd_flag &= ~STRDERRNONPERSIST;
7966 	} else {
7967 		stp->sd_flag |= STRDERRNONPERSIST;
7968 	}
7969 	stp->sd_rderrfunc = errfunc;
7970 	if (error != 0 || errfunc != NULL) {
7971 		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);	/* readers */
7972 		cv_broadcast(&stp->sd_wrq->q_wait);		/* writers */
7973 		cv_broadcast(&stp->sd_monitor);			/* ioctllers */
7974 
7975 		mutex_exit(&stp->sd_lock);
7976 		pollwakeup(&stp->sd_pollist, POLLERR);
7977 		mutex_enter(&stp->sd_lock);
7978 
7979 		if (stp->sd_sigflags & S_ERROR)
7980 			strsendsig(stp->sd_siglist, S_ERROR, 0, error);
7981 	}
7982 	mutex_exit(&stp->sd_lock);
7983 }
7984 
7985 /*
7986  * Set a write side error. If persist is set change the socket error
7987  * to persistent.
7988  */
7989 void
7990 strsetwerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
7991 {
7992 	struct stdata *stp = vp->v_stream;
7993 
7994 	mutex_enter(&stp->sd_lock);
7995 	stp->sd_werror = error;
7996 	if (error == 0 && errfunc == NULL)
7997 		stp->sd_flag &= ~STWRERR;
7998 	else
7999 		stp->sd_flag |= STWRERR;
8000 	if (persist) {
8001 		stp->sd_flag &= ~STWRERRNONPERSIST;
8002 	} else {
8003 		stp->sd_flag |= STWRERRNONPERSIST;
8004 	}
8005 	stp->sd_wrerrfunc = errfunc;
8006 	if (error != 0 || errfunc != NULL) {
8007 		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);	/* readers */
8008 		cv_broadcast(&stp->sd_wrq->q_wait);		/* writers */
8009 		cv_broadcast(&stp->sd_monitor);			/* ioctllers */
8010 
8011 		mutex_exit(&stp->sd_lock);
8012 		pollwakeup(&stp->sd_pollist, POLLERR);
8013 		mutex_enter(&stp->sd_lock);
8014 
8015 		if (stp->sd_sigflags & S_ERROR)
8016 			strsendsig(stp->sd_siglist, S_ERROR, 0, error);
8017 	}
8018 	mutex_exit(&stp->sd_lock);
8019 }
8020 
8021 /*
8022  * Make the stream return 0 (EOF) when all data has been read.
8023  * No effect on write side.
8024  */
8025 void
8026 strseteof(vnode_t *vp, int eof)
8027 {
8028 	struct stdata *stp = vp->v_stream;
8029 
8030 	mutex_enter(&stp->sd_lock);
8031 	if (!eof) {
8032 		stp->sd_flag &= ~STREOF;
8033 		mutex_exit(&stp->sd_lock);
8034 		return;
8035 	}
8036 	stp->sd_flag |= STREOF;
8037 	if (stp->sd_flag & RSLEEP) {
8038 		stp->sd_flag &= ~RSLEEP;
8039 		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);
8040 	}
8041 
8042 	mutex_exit(&stp->sd_lock);
8043 	pollwakeup(&stp->sd_pollist, POLLIN|POLLRDNORM);
8044 	mutex_enter(&stp->sd_lock);
8045 
8046 	if (stp->sd_sigflags & (S_INPUT|S_RDNORM))
8047 		strsendsig(stp->sd_siglist, S_INPUT|S_RDNORM, 0, 0);
8048 	mutex_exit(&stp->sd_lock);
8049 }
8050 
8051 void
8052 strflushrq(vnode_t *vp, int flag)
8053 {
8054 	struct stdata *stp = vp->v_stream;
8055 
8056 	mutex_enter(&stp->sd_lock);
8057 	flushq(_RD(stp->sd_wrq), flag);
8058 	mutex_exit(&stp->sd_lock);
8059 }
8060 
8061 void
8062 strsetrputhooks(vnode_t *vp, uint_t flags,
8063 		msgfunc_t protofunc, msgfunc_t miscfunc)
8064 {
8065 	struct stdata *stp = vp->v_stream;
8066 
8067 	mutex_enter(&stp->sd_lock);
8068 
8069 	if (protofunc == NULL)
8070 		stp->sd_rprotofunc = strrput_proto;
8071 	else
8072 		stp->sd_rprotofunc = protofunc;
8073 
8074 	if (miscfunc == NULL)
8075 		stp->sd_rmiscfunc = strrput_misc;
8076 	else
8077 		stp->sd_rmiscfunc = miscfunc;
8078 
8079 	if (flags & SH_CONSOL_DATA)
8080 		stp->sd_rput_opt |= SR_CONSOL_DATA;
8081 	else
8082 		stp->sd_rput_opt &= ~SR_CONSOL_DATA;
8083 
8084 	if (flags & SH_SIGALLDATA)
8085 		stp->sd_rput_opt |= SR_SIGALLDATA;
8086 	else
8087 		stp->sd_rput_opt &= ~SR_SIGALLDATA;
8088 
8089 	if (flags & SH_IGN_ZEROLEN)
8090 		stp->sd_rput_opt |= SR_IGN_ZEROLEN;
8091 	else
8092 		stp->sd_rput_opt &= ~SR_IGN_ZEROLEN;
8093 
8094 	mutex_exit(&stp->sd_lock);
8095 }
8096 
8097 void
8098 strsetwputhooks(vnode_t *vp, uint_t flags, clock_t closetime)
8099 {
8100 	struct stdata *stp = vp->v_stream;
8101 
8102 	mutex_enter(&stp->sd_lock);
8103 	stp->sd_closetime = closetime;
8104 
8105 	if (flags & SH_SIGPIPE)
8106 		stp->sd_wput_opt |= SW_SIGPIPE;
8107 	else
8108 		stp->sd_wput_opt &= ~SW_SIGPIPE;
8109 	if (flags & SH_RECHECK_ERR)
8110 		stp->sd_wput_opt |= SW_RECHECK_ERR;
8111 	else
8112 		stp->sd_wput_opt &= ~SW_RECHECK_ERR;
8113 
8114 	mutex_exit(&stp->sd_lock);
8115 }
8116 
8117 void
8118 strsetrwputdatahooks(vnode_t *vp, msgfunc_t rdatafunc, msgfunc_t wdatafunc)
8119 {
8120 	struct stdata *stp = vp->v_stream;
8121 
8122 	mutex_enter(&stp->sd_lock);
8123 
8124 	stp->sd_rputdatafunc = rdatafunc;
8125 	stp->sd_wputdatafunc = wdatafunc;
8126 
8127 	mutex_exit(&stp->sd_lock);
8128 }
8129 
8130 /* Used within framework when the queue is already locked */
8131 void
8132 qenable_locked(queue_t *q)
8133 {
8134 	stdata_t *stp = STREAM(q);
8135 
8136 	ASSERT(MUTEX_HELD(QLOCK(q)));
8137 
8138 	if (!q->q_qinfo->qi_srvp)
8139 		return;
8140 
8141 	/*
8142 	 * Do not place on run queue if already enabled or closing.
8143 	 */
8144 	if (q->q_flag & (QWCLOSE|QENAB))
8145 		return;
8146 
8147 	/*
8148 	 * mark queue enabled and place on run list if it is not already being
8149 	 * serviced. If it is serviced, the runservice() function will detect
8150 	 * that QENAB is set and call service procedure before clearing
8151 	 * QINSERVICE flag.
8152 	 */
8153 	q->q_flag |= QENAB;
8154 	if (q->q_flag & QINSERVICE)
8155 		return;
8156 
8157 	/* Record the time of qenable */
8158 	q->q_qtstamp = ddi_get_lbolt();
8159 
8160 	/*
8161 	 * Put the queue in the stp list and schedule it for background
8162 	 * processing if it is not already scheduled or if stream head does not
8163 	 * intent to process it in the foreground later by setting
8164 	 * STRS_WILLSERVICE flag.
8165 	 */
8166 	mutex_enter(&stp->sd_qlock);
8167 	/*
8168 	 * If there are already something on the list, stp flags should show
8169 	 * intention to drain it.
8170 	 */
8171 	IMPLY(STREAM_NEEDSERVICE(stp),
8172 	    (stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED)));
8173 
8174 	ENQUEUE(q, stp->sd_qhead, stp->sd_qtail, q_link);
8175 	stp->sd_nqueues++;
8176 
8177 	/*
8178 	 * If no one will drain this stream we are the first producer and
8179 	 * need to schedule it for background thread.
8180 	 */
8181 	if (!(stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED))) {
8182 		/*
8183 		 * No one will service this stream later, so we have to
8184 		 * schedule it now.
8185 		 */
8186 		STRSTAT(stenables);
8187 		stp->sd_svcflags |= STRS_SCHEDULED;
8188 		stp->sd_servid = (void *)taskq_dispatch(streams_taskq,
8189 		    (task_func_t *)stream_service, stp, TQ_NOSLEEP|TQ_NOQUEUE);
8190 
8191 		if (stp->sd_servid == NULL) {
8192 			/*
8193 			 * Task queue failed so fail over to the backup
8194 			 * servicing thread.
8195 			 */
8196 			STRSTAT(taskqfails);
8197 			/*
8198 			 * It is safe to clear STRS_SCHEDULED flag because it
8199 			 * was set by this thread above.
8200 			 */
8201 			stp->sd_svcflags &= ~STRS_SCHEDULED;
8202 
8203 			/*
8204 			 * Failover scheduling is protected by service_queue
8205 			 * lock.
8206 			 */
8207 			mutex_enter(&service_queue);
8208 			ASSERT((stp->sd_qhead == q) && (stp->sd_qtail == q));
8209 			ASSERT(q->q_link == NULL);
8210 			/*
8211 			 * Append the queue to qhead/qtail list.
8212 			 */
8213 			if (qhead == NULL)
8214 				qhead = q;
8215 			else
8216 				qtail->q_link = q;
8217 			qtail = q;
8218 			/*
8219 			 * Clear stp queue list.
8220 			 */
8221 			stp->sd_qhead = stp->sd_qtail = NULL;
8222 			stp->sd_nqueues = 0;
8223 			/*
8224 			 * Wakeup background queue processing thread.
8225 			 */
8226 			cv_signal(&services_to_run);
8227 			mutex_exit(&service_queue);
8228 		}
8229 	}
8230 	mutex_exit(&stp->sd_qlock);
8231 }
8232 
8233 static void
8234 queue_service(queue_t *q)
8235 {
8236 	/*
8237 	 * The queue in the list should have
8238 	 * QENAB flag set and should not have
8239 	 * QINSERVICE flag set. QINSERVICE is
8240 	 * set when the queue is dequeued and
8241 	 * qenable_locked doesn't enqueue a
8242 	 * queue with QINSERVICE set.
8243 	 */
8244 
8245 	ASSERT(!(q->q_flag & QINSERVICE));
8246 	ASSERT((q->q_flag & QENAB));
8247 	mutex_enter(QLOCK(q));
8248 	q->q_flag &= ~QENAB;
8249 	q->q_flag |= QINSERVICE;
8250 	mutex_exit(QLOCK(q));
8251 	runservice(q);
8252 }
8253 
8254 static void
8255 syncq_service(syncq_t *sq)
8256 {
8257 	STRSTAT(syncqservice);
8258 	mutex_enter(SQLOCK(sq));
8259 	ASSERT(!(sq->sq_svcflags & SQ_SERVICE));
8260 	ASSERT(sq->sq_servcount != 0);
8261 	ASSERT(sq->sq_next == NULL);
8262 
8263 	/* if we came here from the background thread, clear the flag */
8264 	if (sq->sq_svcflags & SQ_BGTHREAD)
8265 		sq->sq_svcflags &= ~SQ_BGTHREAD;
8266 
8267 	/* let drain_syncq know that it's being called in the background */
8268 	sq->sq_svcflags |= SQ_SERVICE;
8269 	drain_syncq(sq);
8270 }
8271 
8272 static void
8273 qwriter_outer_service(syncq_t *outer)
8274 {
8275 	/*
8276 	 * Note that SQ_WRITER is used on the outer perimeter
8277 	 * to signal that a qwriter(OUTER) is either investigating
8278 	 * running or that it is actually running a function.
8279 	 */
8280 	outer_enter(outer, SQ_BLOCKED|SQ_WRITER);
8281 
8282 	/*
8283 	 * All inner syncq are empty and have SQ_WRITER set
8284 	 * to block entering the outer perimeter.
8285 	 *
8286 	 * We do not need to explicitly call write_now since
8287 	 * outer_exit does it for us.
8288 	 */
8289 	outer_exit(outer);
8290 }
8291 
8292 static void
8293 mblk_free(mblk_t *mp)
8294 {
8295 	dblk_t *dbp = mp->b_datap;
8296 	frtn_t *frp = dbp->db_frtnp;
8297 
8298 	mp->b_next = NULL;
8299 	if (dbp->db_fthdr != NULL)
8300 		str_ftfree(dbp);
8301 
8302 	ASSERT(dbp->db_fthdr == NULL);
8303 	frp->free_func(frp->free_arg);
8304 	ASSERT(dbp->db_mblk == mp);
8305 
8306 	if (dbp->db_credp != NULL) {
8307 		crfree(dbp->db_credp);
8308 		dbp->db_credp = NULL;
8309 	}
8310 	dbp->db_cpid = -1;
8311 	dbp->db_struioflag = 0;
8312 	dbp->db_struioun.cksum.flags = 0;
8313 
8314 	kmem_cache_free(dbp->db_cache, dbp);
8315 }
8316 
8317 /*
8318  * Background processing of the stream queue list.
8319  */
8320 static void
8321 stream_service(stdata_t *stp)
8322 {
8323 	queue_t *q;
8324 
8325 	mutex_enter(&stp->sd_qlock);
8326 
8327 	STR_SERVICE(stp, q);
8328 
8329 	stp->sd_svcflags &= ~STRS_SCHEDULED;
8330 	stp->sd_servid = NULL;
8331 	cv_signal(&stp->sd_qcv);
8332 	mutex_exit(&stp->sd_qlock);
8333 }
8334 
8335 /*
8336  * Foreground processing of the stream queue list.
8337  */
8338 void
8339 stream_runservice(stdata_t *stp)
8340 {
8341 	queue_t *q;
8342 
8343 	mutex_enter(&stp->sd_qlock);
8344 	STRSTAT(rservice);
8345 	/*
8346 	 * We are going to drain this stream queue list, so qenable_locked will
8347 	 * not schedule it until we finish.
8348 	 */
8349 	stp->sd_svcflags |= STRS_WILLSERVICE;
8350 
8351 	STR_SERVICE(stp, q);
8352 
8353 	stp->sd_svcflags &= ~STRS_WILLSERVICE;
8354 	mutex_exit(&stp->sd_qlock);
8355 	/*
8356 	 * Help backup background thread to drain the qhead/qtail list.
8357 	 */
8358 	while (qhead != NULL) {
8359 		STRSTAT(qhelps);
8360 		mutex_enter(&service_queue);
8361 		DQ(q, qhead, qtail, q_link);
8362 		mutex_exit(&service_queue);
8363 		if (q != NULL)
8364 			queue_service(q);
8365 	}
8366 }
8367 
8368 void
8369 stream_willservice(stdata_t *stp)
8370 {
8371 	mutex_enter(&stp->sd_qlock);
8372 	stp->sd_svcflags |= STRS_WILLSERVICE;
8373 	mutex_exit(&stp->sd_qlock);
8374 }
8375 
8376 /*
8377  * Replace the cred currently in the mblk with a different one.
8378  * Also update db_cpid.
8379  */
8380 void
8381 mblk_setcred(mblk_t *mp, cred_t *cr, pid_t cpid)
8382 {
8383 	dblk_t *dbp = mp->b_datap;
8384 	cred_t *ocr = dbp->db_credp;
8385 
8386 	ASSERT(cr != NULL);
8387 
8388 	if (cr != ocr) {
8389 		crhold(dbp->db_credp = cr);
8390 		if (ocr != NULL)
8391 			crfree(ocr);
8392 	}
8393 	/* Don't overwrite with NOPID */
8394 	if (cpid != NOPID)
8395 		dbp->db_cpid = cpid;
8396 }
8397 
8398 /*
8399  * If the src message has a cred, then replace the cred currently in the mblk
8400  * with it.
8401  * Also update db_cpid.
8402  */
8403 void
8404 mblk_copycred(mblk_t *mp, const mblk_t *src)
8405 {
8406 	dblk_t *dbp = mp->b_datap;
8407 	cred_t *cr, *ocr;
8408 	pid_t cpid;
8409 
8410 	cr = msg_getcred(src, &cpid);
8411 	if (cr == NULL)
8412 		return;
8413 
8414 	ocr = dbp->db_credp;
8415 	if (cr != ocr) {
8416 		crhold(dbp->db_credp = cr);
8417 		if (ocr != NULL)
8418 			crfree(ocr);
8419 	}
8420 	/* Don't overwrite with NOPID */
8421 	if (cpid != NOPID)
8422 		dbp->db_cpid = cpid;
8423 }
8424 
8425 int
8426 hcksum_assoc(mblk_t *mp,  multidata_t *mmd, pdesc_t *pd,
8427     uint32_t start, uint32_t stuff, uint32_t end, uint32_t value,
8428     uint32_t flags, int km_flags)
8429 {
8430 	int rc = 0;
8431 
8432 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8433 	if (mp->b_datap->db_type == M_DATA) {
8434 		/* Associate values for M_DATA type */
8435 		DB_CKSUMSTART(mp) = (intptr_t)start;
8436 		DB_CKSUMSTUFF(mp) = (intptr_t)stuff;
8437 		DB_CKSUMEND(mp) = (intptr_t)end;
8438 		DB_CKSUMFLAGS(mp) = flags;
8439 		DB_CKSUM16(mp) = (uint16_t)value;
8440 
8441 	} else {
8442 		pattrinfo_t pa_info;
8443 
8444 		ASSERT(mmd != NULL);
8445 
8446 		pa_info.type = PATTR_HCKSUM;
8447 		pa_info.len = sizeof (pattr_hcksum_t);
8448 
8449 		if (mmd_addpattr(mmd, pd, &pa_info, B_TRUE, km_flags) != NULL) {
8450 			pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf;
8451 
8452 			hck->hcksum_start_offset = start;
8453 			hck->hcksum_stuff_offset = stuff;
8454 			hck->hcksum_end_offset = end;
8455 			hck->hcksum_cksum_val.inet_cksum = (uint16_t)value;
8456 			hck->hcksum_flags = flags;
8457 		} else {
8458 			rc = -1;
8459 		}
8460 	}
8461 	return (rc);
8462 }
8463 
8464 void
8465 hcksum_retrieve(mblk_t *mp, multidata_t *mmd, pdesc_t *pd,
8466     uint32_t *start, uint32_t *stuff, uint32_t *end,
8467     uint32_t *value, uint32_t *flags)
8468 {
8469 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8470 	if (mp->b_datap->db_type == M_DATA) {
8471 		if (flags != NULL) {
8472 			*flags = DB_CKSUMFLAGS(mp) & HCK_FLAGS;
8473 			if ((*flags & (HCK_PARTIALCKSUM |
8474 			    HCK_FULLCKSUM)) != 0) {
8475 				if (value != NULL)
8476 					*value = (uint32_t)DB_CKSUM16(mp);
8477 				if ((*flags & HCK_PARTIALCKSUM) != 0) {
8478 					if (start != NULL)
8479 						*start =
8480 						    (uint32_t)DB_CKSUMSTART(mp);
8481 					if (stuff != NULL)
8482 						*stuff =
8483 						    (uint32_t)DB_CKSUMSTUFF(mp);
8484 					if (end != NULL)
8485 						*end =
8486 						    (uint32_t)DB_CKSUMEND(mp);
8487 				}
8488 			}
8489 		}
8490 	} else {
8491 		pattrinfo_t hck_attr = {PATTR_HCKSUM};
8492 
8493 		ASSERT(mmd != NULL);
8494 
8495 		/* get hardware checksum attribute */
8496 		if (mmd_getpattr(mmd, pd, &hck_attr) != NULL) {
8497 			pattr_hcksum_t *hck = (pattr_hcksum_t *)hck_attr.buf;
8498 
8499 			ASSERT(hck_attr.len >= sizeof (pattr_hcksum_t));
8500 			if (flags != NULL)
8501 				*flags = hck->hcksum_flags;
8502 			if (start != NULL)
8503 				*start = hck->hcksum_start_offset;
8504 			if (stuff != NULL)
8505 				*stuff = hck->hcksum_stuff_offset;
8506 			if (end != NULL)
8507 				*end = hck->hcksum_end_offset;
8508 			if (value != NULL)
8509 				*value = (uint32_t)
8510 				    hck->hcksum_cksum_val.inet_cksum;
8511 		}
8512 	}
8513 }
8514 
8515 void
8516 lso_info_set(mblk_t *mp, uint32_t mss, uint32_t flags)
8517 {
8518 	ASSERT(DB_TYPE(mp) == M_DATA);
8519 	ASSERT((flags & ~HW_LSO_FLAGS) == 0);
8520 
8521 	/* Set the flags */
8522 	DB_LSOFLAGS(mp) |= flags;
8523 	DB_LSOMSS(mp) = mss;
8524 }
8525 
8526 void
8527 lso_info_cleanup(mblk_t *mp)
8528 {
8529 	ASSERT(DB_TYPE(mp) == M_DATA);
8530 
8531 	/* Clear the flags */
8532 	DB_LSOFLAGS(mp) &= ~HW_LSO_FLAGS;
8533 	DB_LSOMSS(mp) = 0;
8534 }
8535 
8536 void
8537 lso_info_get(mblk_t *mp, uint32_t *mss, uint32_t *flags)
8538 {
8539 	ASSERT(DB_TYPE(mp) == M_DATA);
8540 
8541 	if (flags != NULL) {
8542 		*flags = DB_CKSUMFLAGS(mp) & HW_LSO_FLAGS;
8543 		if ((*flags != 0) && (mss != NULL))
8544 			*mss = (uint32_t)DB_LSOMSS(mp);
8545 	}
8546 }
8547 
8548 /*
8549  * Checksum buffer *bp for len bytes with psum partial checksum,
8550  * or 0 if none, and return the 16 bit partial checksum.
8551  */
8552 unsigned
8553 bcksum(uchar_t *bp, int len, unsigned int psum)
8554 {
8555 	int odd = len & 1;
8556 	extern unsigned int ip_ocsum();
8557 
8558 	if (((intptr_t)bp & 1) == 0 && !odd) {
8559 		/*
8560 		 * Bp is 16 bit aligned and len is multiple of 16 bit word.
8561 		 */
8562 		return (ip_ocsum((ushort_t *)bp, len >> 1, psum));
8563 	}
8564 	if (((intptr_t)bp & 1) != 0) {
8565 		/*
8566 		 * Bp isn't 16 bit aligned.
8567 		 */
8568 		unsigned int tsum;
8569 
8570 #ifdef _LITTLE_ENDIAN
8571 		psum += *bp;
8572 #else
8573 		psum += *bp << 8;
8574 #endif
8575 		len--;
8576 		bp++;
8577 		tsum = ip_ocsum((ushort_t *)bp, len >> 1, 0);
8578 		psum += (tsum << 8) & 0xffff | (tsum >> 8);
8579 		if (len & 1) {
8580 			bp += len - 1;
8581 #ifdef _LITTLE_ENDIAN
8582 			psum += *bp << 8;
8583 #else
8584 			psum += *bp;
8585 #endif
8586 		}
8587 	} else {
8588 		/*
8589 		 * Bp is 16 bit aligned.
8590 		 */
8591 		psum = ip_ocsum((ushort_t *)bp, len >> 1, psum);
8592 		if (odd) {
8593 			bp += len - 1;
8594 #ifdef _LITTLE_ENDIAN
8595 			psum += *bp;
8596 #else
8597 			psum += *bp << 8;
8598 #endif
8599 		}
8600 	}
8601 	/*
8602 	 * Normalize psum to 16 bits before returning the new partial
8603 	 * checksum. The max psum value before normalization is 0x3FDFE.
8604 	 */
8605 	return ((psum >> 16) + (psum & 0xFFFF));
8606 }
8607 
8608 boolean_t
8609 is_vmloaned_mblk(mblk_t *mp, multidata_t *mmd, pdesc_t *pd)
8610 {
8611 	boolean_t rc;
8612 
8613 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8614 	if (DB_TYPE(mp) == M_DATA) {
8615 		rc = (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0);
8616 	} else {
8617 		pattrinfo_t zcopy_attr = {PATTR_ZCOPY};
8618 
8619 		ASSERT(mmd != NULL);
8620 		rc = (mmd_getpattr(mmd, pd, &zcopy_attr) != NULL);
8621 	}
8622 	return (rc);
8623 }
8624 
8625 void
8626 freemsgchain(mblk_t *mp)
8627 {
8628 	mblk_t	*next;
8629 
8630 	while (mp != NULL) {
8631 		next = mp->b_next;
8632 		mp->b_next = NULL;
8633 
8634 		freemsg(mp);
8635 		mp = next;
8636 	}
8637 }
8638 
8639 mblk_t *
8640 copymsgchain(mblk_t *mp)
8641 {
8642 	mblk_t	*nmp = NULL;
8643 	mblk_t	**nmpp = &nmp;
8644 
8645 	for (; mp != NULL; mp = mp->b_next) {
8646 		if ((*nmpp = copymsg(mp)) == NULL) {
8647 			freemsgchain(nmp);
8648 			return (NULL);
8649 		}
8650 
8651 		nmpp = &((*nmpp)->b_next);
8652 	}
8653 
8654 	return (nmp);
8655 }
8656 
8657 /* NOTE: Do not add code after this point. */
8658 #undef QLOCK
8659 
8660 /*
8661  * Replacement for QLOCK macro for those that can't use it.
8662  */
8663 kmutex_t *
8664 QLOCK(queue_t *q)
8665 {
8666 	return (&(q)->q_lock);
8667 }
8668 
8669 /*
8670  * Dummy runqueues/queuerun functions functions for backwards compatibility.
8671  */
8672 #undef runqueues
8673 void
8674 runqueues(void)
8675 {
8676 }
8677 
8678 #undef queuerun
8679 void
8680 queuerun(void)
8681 {
8682 }
8683 
8684 /*
8685  * Initialize the STR stack instance, which tracks autopush and persistent
8686  * links.
8687  */
8688 /* ARGSUSED */
8689 static void *
8690 str_stack_init(netstackid_t stackid, netstack_t *ns)
8691 {
8692 	str_stack_t	*ss;
8693 	int i;
8694 
8695 	ss = (str_stack_t *)kmem_zalloc(sizeof (*ss), KM_SLEEP);
8696 	ss->ss_netstack = ns;
8697 
8698 	/*
8699 	 * set up autopush
8700 	 */
8701 	sad_initspace(ss);
8702 
8703 	/*
8704 	 * set up mux_node structures.
8705 	 */
8706 	ss->ss_devcnt = devcnt;	/* In case it should change before free */
8707 	ss->ss_mux_nodes = kmem_zalloc((sizeof (struct mux_node) *
8708 	    ss->ss_devcnt), KM_SLEEP);
8709 	for (i = 0; i < ss->ss_devcnt; i++)
8710 		ss->ss_mux_nodes[i].mn_imaj = i;
8711 	return (ss);
8712 }
8713 
8714 /*
8715  * Note: run at zone shutdown and not destroy so that the PLINKs are
8716  * gone by the time other cleanup happens from the destroy callbacks.
8717  */
8718 static void
8719 str_stack_shutdown(netstackid_t stackid, void *arg)
8720 {
8721 	str_stack_t *ss = (str_stack_t *)arg;
8722 	int i;
8723 	cred_t *cr;
8724 
8725 	cr = zone_get_kcred(netstackid_to_zoneid(stackid));
8726 	ASSERT(cr != NULL);
8727 
8728 	/* Undo all the I_PLINKs for this zone */
8729 	for (i = 0; i < ss->ss_devcnt; i++) {
8730 		struct mux_edge		*ep;
8731 		ldi_handle_t		lh;
8732 		ldi_ident_t		li;
8733 		int			ret;
8734 		int			rval;
8735 		dev_t			rdev;
8736 
8737 		ep = ss->ss_mux_nodes[i].mn_outp;
8738 		if (ep == NULL)
8739 			continue;
8740 		ret = ldi_ident_from_major((major_t)i, &li);
8741 		if (ret != 0) {
8742 			continue;
8743 		}
8744 		rdev = ep->me_dev;
8745 		ret = ldi_open_by_dev(&rdev, OTYP_CHR, FREAD|FWRITE,
8746 		    cr, &lh, li);
8747 		if (ret != 0) {
8748 			ldi_ident_release(li);
8749 			continue;
8750 		}
8751 
8752 		ret = ldi_ioctl(lh, I_PUNLINK, (intptr_t)MUXID_ALL, FKIOCTL,
8753 		    cr, &rval);
8754 		if (ret) {
8755 			(void) ldi_close(lh, FREAD|FWRITE, cr);
8756 			ldi_ident_release(li);
8757 			continue;
8758 		}
8759 		(void) ldi_close(lh, FREAD|FWRITE, cr);
8760 
8761 		/* Close layered handles */
8762 		ldi_ident_release(li);
8763 	}
8764 	crfree(cr);
8765 
8766 	sad_freespace(ss);
8767 
8768 	kmem_free(ss->ss_mux_nodes, sizeof (struct mux_node) * ss->ss_devcnt);
8769 	ss->ss_mux_nodes = NULL;
8770 }
8771 
8772 /*
8773  * Free the structure; str_stack_shutdown did the other cleanup work.
8774  */
8775 /* ARGSUSED */
8776 static void
8777 str_stack_fini(netstackid_t stackid, void *arg)
8778 {
8779 	str_stack_t	*ss = (str_stack_t *)arg;
8780 
8781 	kmem_free(ss, sizeof (*ss));
8782 }
8783