xref: /titanic_52/usr/src/uts/common/os/streamio.c (revision f56257d84449cae424f3943cec01573a5027af36)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22 /*	  All Rights Reserved  	*/
23 
24 
25 /*
26  * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
27  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
28  */
29 
30 #include <sys/types.h>
31 #include <sys/sysmacros.h>
32 #include <sys/param.h>
33 #include <sys/errno.h>
34 #include <sys/signal.h>
35 #include <sys/stat.h>
36 #include <sys/proc.h>
37 #include <sys/cred.h>
38 #include <sys/user.h>
39 #include <sys/vnode.h>
40 #include <sys/file.h>
41 #include <sys/stream.h>
42 #include <sys/strsubr.h>
43 #include <sys/stropts.h>
44 #include <sys/tihdr.h>
45 #include <sys/var.h>
46 #include <sys/poll.h>
47 #include <sys/termio.h>
48 #include <sys/ttold.h>
49 #include <sys/systm.h>
50 #include <sys/uio.h>
51 #include <sys/cmn_err.h>
52 #include <sys/sad.h>
53 #include <sys/netstack.h>
54 #include <sys/priocntl.h>
55 #include <sys/jioctl.h>
56 #include <sys/procset.h>
57 #include <sys/session.h>
58 #include <sys/kmem.h>
59 #include <sys/filio.h>
60 #include <sys/vtrace.h>
61 #include <sys/debug.h>
62 #include <sys/strredir.h>
63 #include <sys/fs/fifonode.h>
64 #include <sys/fs/snode.h>
65 #include <sys/strlog.h>
66 #include <sys/strsun.h>
67 #include <sys/project.h>
68 #include <sys/kbio.h>
69 #include <sys/msio.h>
70 #include <sys/tty.h>
71 #include <sys/ptyvar.h>
72 #include <sys/vuid_event.h>
73 #include <sys/modctl.h>
74 #include <sys/sunddi.h>
75 #include <sys/sunldi_impl.h>
76 #include <sys/autoconf.h>
77 #include <sys/policy.h>
78 #include <sys/dld.h>
79 #include <sys/zone.h>
80 #include <c2/audit.h>
81 
82 /*
83  * This define helps improve the readability of streams code while
84  * still maintaining a very old streams performance enhancement.  The
85  * performance enhancement basically involved having all callers
86  * of straccess() perform the first check that straccess() will do
87  * locally before actually calling straccess().  (There by reducing
88  * the number of unnecessary calls to straccess().)
89  */
90 #define	i_straccess(x, y)	((stp->sd_sidp == NULL) ? 0 : \
91 				    (stp->sd_vnode->v_type == VFIFO) ? 0 : \
92 				    straccess((x), (y)))
93 
94 /*
95  * what is mblk_pull_len?
96  *
97  * If a streams message consists of many short messages,
98  * a performance degradation occurs from copyout overhead.
99  * To decrease the per mblk overhead, messages that are
100  * likely to consist of many small mblks are pulled up into
101  * one continuous chunk of memory.
102  *
103  * To avoid the processing overhead of examining every
104  * mblk, a quick heuristic is used. If the first mblk in
105  * the message is shorter than mblk_pull_len, it is likely
106  * that the rest of the mblk will be short.
107  *
108  * This heuristic was decided upon after performance tests
109  * indicated that anything more complex slowed down the main
110  * code path.
111  */
112 #define	MBLK_PULL_LEN 64
113 uint32_t mblk_pull_len = MBLK_PULL_LEN;
114 
115 /*
116  * The sgttyb_handling flag controls the handling of the old BSD
117  * TIOCGETP, TIOCSETP, and TIOCSETN ioctls as follows:
118  *
119  * 0 - Emit no warnings at all and retain old, broken behavior.
120  * 1 - Emit no warnings and silently handle new semantics.
121  * 2 - Send cmn_err(CE_NOTE) when either TIOCSETP or TIOCSETN is used
122  *     (once per system invocation).  Handle with new semantics.
123  * 3 - Send SIGSYS when any TIOCGETP, TIOCSETP, or TIOCSETN call is
124  *     made (so that offenders drop core and are easy to debug).
125  *
126  * The "new semantics" are that TIOCGETP returns B38400 for
127  * sg_[io]speed if the corresponding value is over B38400, and that
128  * TIOCSET[PN] accept B38400 in these cases to mean "retain current
129  * bit rate."
130  */
131 int sgttyb_handling = 1;
132 static boolean_t sgttyb_complaint;
133 
134 /* don't push drcompat module by default on Style-2 streams */
135 static int push_drcompat = 0;
136 
137 /*
138  * id value used to distinguish between different ioctl messages
139  */
140 static uint32_t ioc_id;
141 
142 static void putback(struct stdata *, queue_t *, mblk_t *, int);
143 static void strcleanall(struct vnode *);
144 static int strwsrv(queue_t *);
145 static int strdocmd(struct stdata *, struct strcmd *, cred_t *);
146 
147 /*
148  * qinit and module_info structures for stream head read and write queues
149  */
150 struct module_info strm_info = { 0, "strrhead", 0, INFPSZ, STRHIGH, STRLOW };
151 struct module_info stwm_info = { 0, "strwhead", 0, 0, 0, 0 };
152 struct qinit strdata = { strrput, NULL, NULL, NULL, NULL, &strm_info };
153 struct qinit stwdata = { NULL, strwsrv, NULL, NULL, NULL, &stwm_info };
154 struct module_info fiform_info = { 0, "fifostrrhead", 0, PIPE_BUF, FIFOHIWAT,
155     FIFOLOWAT };
156 struct module_info fifowm_info = { 0, "fifostrwhead", 0, 0, 0, 0 };
157 struct qinit fifo_strdata = { strrput, NULL, NULL, NULL, NULL, &fiform_info };
158 struct qinit fifo_stwdata = { NULL, strwsrv, NULL, NULL, NULL, &fifowm_info };
159 
160 extern kmutex_t	strresources;	/* protects global resources */
161 extern kmutex_t muxifier;	/* single-threads multiplexor creation */
162 
163 static boolean_t msghasdata(mblk_t *bp);
164 #define	msgnodata(bp) (!msghasdata(bp))
165 
166 /*
167  * Stream head locking notes:
168  *	There are four monitors associated with the stream head:
169  *	1. v_stream monitor: in stropen() and strclose() v_lock
170  *		is held while the association of vnode and stream
171  *		head is established or tested for.
172  *	2. open/close/push/pop monitor: sd_lock is held while each
173  *		thread bids for exclusive access to this monitor
174  *		for opening or closing a stream.  In addition, this
175  *		monitor is entered during pushes and pops.  This
176  *		guarantees that during plumbing operations there
177  *		is only one thread trying to change the plumbing.
178  *		Any other threads present in the stream are only
179  *		using the plumbing.
180  *	3. read/write monitor: in the case of read, a thread holds
181  *		sd_lock while trying to get data from the stream
182  *		head queue.  if there is none to fulfill a read
183  *		request, it sets RSLEEP and calls cv_wait_sig() down
184  *		in strwaitq() to await the arrival of new data.
185  *		when new data arrives in strrput(), sd_lock is acquired
186  *		before testing for RSLEEP and calling cv_broadcast().
187  *		the behavior of strwrite(), strwsrv(), and WSLEEP
188  *		mirror this.
189  *	4. ioctl monitor: sd_lock is gotten to ensure that only one
190  *		thread is doing an ioctl at a time.
191  */
192 
193 static int
194 push_mod(queue_t *qp, dev_t *devp, struct stdata *stp, const char *name,
195     int anchor, cred_t *crp, uint_t anchor_zoneid)
196 {
197 	int error;
198 	fmodsw_impl_t *fp;
199 
200 	if (stp->sd_flag & (STRHUP|STRDERR|STWRERR)) {
201 		error = (stp->sd_flag & STRHUP) ? ENXIO : EIO;
202 		return (error);
203 	}
204 	if (stp->sd_pushcnt >= nstrpush) {
205 		return (EINVAL);
206 	}
207 
208 	if ((fp = fmodsw_find(name, FMODSW_HOLD | FMODSW_LOAD)) == NULL) {
209 		stp->sd_flag |= STREOPENFAIL;
210 		return (EINVAL);
211 	}
212 
213 	/*
214 	 * push new module and call its open routine via qattach
215 	 */
216 	if ((error = qattach(qp, devp, 0, crp, fp, B_FALSE)) != 0)
217 		return (error);
218 
219 	/*
220 	 * Check to see if caller wants a STREAMS anchor
221 	 * put at this place in the stream, and add if so.
222 	 */
223 	mutex_enter(&stp->sd_lock);
224 	if (anchor == stp->sd_pushcnt) {
225 		stp->sd_anchor = stp->sd_pushcnt;
226 		stp->sd_anchorzone = anchor_zoneid;
227 	}
228 	mutex_exit(&stp->sd_lock);
229 
230 	return (0);
231 }
232 
233 /*
234  * Open a stream device.
235  */
236 int
237 stropen(vnode_t *vp, dev_t *devp, int flag, cred_t *crp)
238 {
239 	struct stdata *stp;
240 	queue_t *qp;
241 	int s;
242 	dev_t dummydev, savedev;
243 	struct autopush *ap;
244 	struct dlautopush dlap;
245 	int error = 0;
246 	ssize_t	rmin, rmax;
247 	int cloneopen;
248 	queue_t *brq;
249 	major_t major;
250 	str_stack_t *ss;
251 	zoneid_t zoneid;
252 	uint_t anchor;
253 
254 	/*
255 	 * If the stream already exists, wait for any open in progress
256 	 * to complete, then call the open function of each module and
257 	 * driver in the stream.  Otherwise create the stream.
258 	 */
259 	TRACE_1(TR_FAC_STREAMS_FR, TR_STROPEN, "stropen:%p", vp);
260 retry:
261 	mutex_enter(&vp->v_lock);
262 	if ((stp = vp->v_stream) != NULL) {
263 
264 		/*
265 		 * Waiting for stream to be created to device
266 		 * due to another open.
267 		 */
268 		mutex_exit(&vp->v_lock);
269 
270 		if (STRMATED(stp)) {
271 			struct stdata *strmatep = stp->sd_mate;
272 
273 			STRLOCKMATES(stp);
274 			if (strmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
275 				if (flag & (FNDELAY|FNONBLOCK)) {
276 					error = EAGAIN;
277 					mutex_exit(&strmatep->sd_lock);
278 					goto ckreturn;
279 				}
280 				mutex_exit(&stp->sd_lock);
281 				if (!cv_wait_sig(&strmatep->sd_monitor,
282 				    &strmatep->sd_lock)) {
283 					error = EINTR;
284 					mutex_exit(&strmatep->sd_lock);
285 					mutex_enter(&stp->sd_lock);
286 					goto ckreturn;
287 				}
288 				mutex_exit(&strmatep->sd_lock);
289 				goto retry;
290 			}
291 			if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
292 				if (flag & (FNDELAY|FNONBLOCK)) {
293 					error = EAGAIN;
294 					mutex_exit(&strmatep->sd_lock);
295 					goto ckreturn;
296 				}
297 				mutex_exit(&strmatep->sd_lock);
298 				if (!cv_wait_sig(&stp->sd_monitor,
299 				    &stp->sd_lock)) {
300 					error = EINTR;
301 					goto ckreturn;
302 				}
303 				mutex_exit(&stp->sd_lock);
304 				goto retry;
305 			}
306 
307 			if (stp->sd_flag & (STRDERR|STWRERR)) {
308 				error = EIO;
309 				mutex_exit(&strmatep->sd_lock);
310 				goto ckreturn;
311 			}
312 
313 			stp->sd_flag |= STWOPEN;
314 			STRUNLOCKMATES(stp);
315 		} else {
316 			mutex_enter(&stp->sd_lock);
317 			if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
318 				if (flag & (FNDELAY|FNONBLOCK)) {
319 					error = EAGAIN;
320 					goto ckreturn;
321 				}
322 				if (!cv_wait_sig(&stp->sd_monitor,
323 				    &stp->sd_lock)) {
324 					error = EINTR;
325 					goto ckreturn;
326 				}
327 				mutex_exit(&stp->sd_lock);
328 				goto retry;  /* could be clone! */
329 			}
330 
331 			if (stp->sd_flag & (STRDERR|STWRERR)) {
332 				error = EIO;
333 				goto ckreturn;
334 			}
335 
336 			stp->sd_flag |= STWOPEN;
337 			mutex_exit(&stp->sd_lock);
338 		}
339 
340 		/*
341 		 * Open all modules and devices down stream to notify
342 		 * that another user is streaming.  For modules, set the
343 		 * last argument to MODOPEN and do not pass any open flags.
344 		 * Ignore dummydev since this is not the first open.
345 		 */
346 		claimstr(stp->sd_wrq);
347 		qp = stp->sd_wrq;
348 		while (_SAMESTR(qp)) {
349 			qp = qp->q_next;
350 			if ((error = qreopen(_RD(qp), devp, flag, crp)) != 0)
351 				break;
352 		}
353 		releasestr(stp->sd_wrq);
354 		mutex_enter(&stp->sd_lock);
355 		stp->sd_flag &= ~(STRHUP|STWOPEN|STRDERR|STWRERR);
356 		stp->sd_rerror = 0;
357 		stp->sd_werror = 0;
358 ckreturn:
359 		cv_broadcast(&stp->sd_monitor);
360 		mutex_exit(&stp->sd_lock);
361 		return (error);
362 	}
363 
364 	/*
365 	 * This vnode isn't streaming.  SPECFS already
366 	 * checked for multiple vnodes pointing to the
367 	 * same stream, so create a stream to the driver.
368 	 */
369 	qp = allocq();
370 	stp = shalloc(qp);
371 
372 	/*
373 	 * Initialize stream head.  shalloc() has given us
374 	 * exclusive access, and we have the vnode locked;
375 	 * we can do whatever we want with stp.
376 	 */
377 	stp->sd_flag = STWOPEN;
378 	stp->sd_siglist = NULL;
379 	stp->sd_pollist.ph_list = NULL;
380 	stp->sd_sigflags = 0;
381 	stp->sd_mark = NULL;
382 	stp->sd_closetime = STRTIMOUT;
383 	stp->sd_sidp = NULL;
384 	stp->sd_pgidp = NULL;
385 	stp->sd_vnode = vp;
386 	stp->sd_rerror = 0;
387 	stp->sd_werror = 0;
388 	stp->sd_wroff = 0;
389 	stp->sd_tail = 0;
390 	stp->sd_iocblk = NULL;
391 	stp->sd_cmdblk = NULL;
392 	stp->sd_pushcnt = 0;
393 	stp->sd_qn_minpsz = 0;
394 	stp->sd_qn_maxpsz = INFPSZ - 1;	/* used to check for initialization */
395 	stp->sd_maxblk = INFPSZ;
396 	qp->q_ptr = _WR(qp)->q_ptr = stp;
397 	STREAM(qp) = STREAM(_WR(qp)) = stp;
398 	vp->v_stream = stp;
399 	mutex_exit(&vp->v_lock);
400 	if (vp->v_type == VFIFO) {
401 		stp->sd_flag |= OLDNDELAY;
402 		/*
403 		 * This means, both for pipes and fifos
404 		 * strwrite will send SIGPIPE if the other
405 		 * end is closed. For putmsg it depends
406 		 * on whether it is a XPG4_2 application
407 		 * or not
408 		 */
409 		stp->sd_wput_opt = SW_SIGPIPE;
410 
411 		/* setq might sleep in kmem_alloc - avoid holding locks. */
412 		setq(qp, &fifo_strdata, &fifo_stwdata, NULL, QMTSAFE,
413 		    SQ_CI|SQ_CO, B_FALSE);
414 
415 		set_qend(qp);
416 		stp->sd_strtab = fifo_getinfo();
417 		_WR(qp)->q_nfsrv = _WR(qp);
418 		qp->q_nfsrv = qp;
419 		/*
420 		 * Wake up others that are waiting for stream to be created.
421 		 */
422 		mutex_enter(&stp->sd_lock);
423 		/*
424 		 * nothing is be pushed on stream yet, so
425 		 * optimized stream head packetsizes are just that
426 		 * of the read queue
427 		 */
428 		stp->sd_qn_minpsz = qp->q_minpsz;
429 		stp->sd_qn_maxpsz = qp->q_maxpsz;
430 		stp->sd_flag &= ~STWOPEN;
431 		goto fifo_opendone;
432 	}
433 	/* setq might sleep in kmem_alloc - avoid holding locks. */
434 	setq(qp, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_FALSE);
435 
436 	set_qend(qp);
437 
438 	/*
439 	 * Open driver and create stream to it (via qattach).
440 	 */
441 	savedev = *devp;
442 	cloneopen = (getmajor(*devp) == clone_major);
443 	if ((error = qattach(qp, devp, flag, crp, NULL, B_FALSE)) != 0) {
444 		mutex_enter(&vp->v_lock);
445 		vp->v_stream = NULL;
446 		mutex_exit(&vp->v_lock);
447 		mutex_enter(&stp->sd_lock);
448 		cv_broadcast(&stp->sd_monitor);
449 		mutex_exit(&stp->sd_lock);
450 		freeq(_RD(qp));
451 		shfree(stp);
452 		return (error);
453 	}
454 	/*
455 	 * Set sd_strtab after open in order to handle clonable drivers
456 	 */
457 	stp->sd_strtab = STREAMSTAB(getmajor(*devp));
458 
459 	/*
460 	 * Historical note: dummydev used to be be prior to the initial
461 	 * open (via qattach above), which made the value seen
462 	 * inconsistent between an I_PUSH and an autopush of a module.
463 	 */
464 	dummydev = *devp;
465 
466 	/*
467 	 * For clone open of old style (Q not associated) network driver,
468 	 * push DRMODNAME module to handle DL_ATTACH/DL_DETACH
469 	 */
470 	brq = _RD(_WR(qp)->q_next);
471 	major = getmajor(*devp);
472 	if (push_drcompat && cloneopen && NETWORK_DRV(major) &&
473 	    ((brq->q_flag & _QASSOCIATED) == 0)) {
474 		if (push_mod(qp, &dummydev, stp, DRMODNAME, 0, crp, 0) != 0)
475 			cmn_err(CE_WARN, "cannot push " DRMODNAME
476 			    " streams module");
477 	}
478 
479 	if (!NETWORK_DRV(major)) {
480 		savedev = *devp;
481 	} else {
482 		/*
483 		 * For network devices, process differently based on the
484 		 * return value from dld_autopush():
485 		 *
486 		 *   0: the passed-in device points to a GLDv3 datalink with
487 		 *   per-link autopush configuration; use that configuration
488 		 *   and ignore any per-driver autopush configuration.
489 		 *
490 		 *   1: the passed-in device points to a physical GLDv3
491 		 *   datalink without per-link autopush configuration.  The
492 		 *   passed in device was changed to refer to the actual
493 		 *   physical device (if it's not already); we use that new
494 		 *   device to look up any per-driver autopush configuration.
495 		 *
496 		 *   -1: neither of the above cases applied; use the initial
497 		 *   device to look up any per-driver autopush configuration.
498 		 */
499 		switch (dld_autopush(&savedev, &dlap)) {
500 		case 0:
501 			zoneid = crgetzoneid(crp);
502 			for (s = 0; s < dlap.dap_npush; s++) {
503 				error = push_mod(qp, &dummydev, stp,
504 				    dlap.dap_aplist[s], dlap.dap_anchor, crp,
505 				    zoneid);
506 				if (error != 0)
507 					break;
508 			}
509 			goto opendone;
510 		case 1:
511 			break;
512 		case -1:
513 			savedev = *devp;
514 			break;
515 		}
516 	}
517 	/*
518 	 * Find the autopush configuration based on "savedev". Start with the
519 	 * global zone. If not found check in the local zone.
520 	 */
521 	zoneid = GLOBAL_ZONEID;
522 retryap:
523 	ss = netstack_find_by_stackid(zoneid_to_netstackid(zoneid))->
524 	    netstack_str;
525 	if ((ap = sad_ap_find_by_dev(savedev, ss)) == NULL) {
526 		netstack_rele(ss->ss_netstack);
527 		if (zoneid == GLOBAL_ZONEID) {
528 			/*
529 			 * None found. Also look in the zone's autopush table.
530 			 */
531 			zoneid = crgetzoneid(crp);
532 			if (zoneid != GLOBAL_ZONEID)
533 				goto retryap;
534 		}
535 		goto opendone;
536 	}
537 	anchor = ap->ap_anchor;
538 	zoneid = crgetzoneid(crp);
539 	for (s = 0; s < ap->ap_npush; s++) {
540 		error = push_mod(qp, &dummydev, stp, ap->ap_list[s],
541 		    anchor, crp, zoneid);
542 		if (error != 0)
543 			break;
544 	}
545 	sad_ap_rele(ap, ss);
546 	netstack_rele(ss->ss_netstack);
547 
548 opendone:
549 
550 	/*
551 	 * let specfs know that open failed part way through
552 	 */
553 	if (error) {
554 		mutex_enter(&stp->sd_lock);
555 		stp->sd_flag |= STREOPENFAIL;
556 		mutex_exit(&stp->sd_lock);
557 	}
558 
559 	/*
560 	 * Wake up others that are waiting for stream to be created.
561 	 */
562 	mutex_enter(&stp->sd_lock);
563 	stp->sd_flag &= ~STWOPEN;
564 
565 	/*
566 	 * As a performance concern we are caching the values of
567 	 * q_minpsz and q_maxpsz of the module below the stream
568 	 * head in the stream head.
569 	 */
570 	mutex_enter(QLOCK(stp->sd_wrq->q_next));
571 	rmin = stp->sd_wrq->q_next->q_minpsz;
572 	rmax = stp->sd_wrq->q_next->q_maxpsz;
573 	mutex_exit(QLOCK(stp->sd_wrq->q_next));
574 
575 	/* do this processing here as a performance concern */
576 	if (strmsgsz != 0) {
577 		if (rmax == INFPSZ)
578 			rmax = strmsgsz;
579 		else
580 			rmax = MIN(strmsgsz, rmax);
581 	}
582 
583 	mutex_enter(QLOCK(stp->sd_wrq));
584 	stp->sd_qn_minpsz = rmin;
585 	stp->sd_qn_maxpsz = rmax;
586 	mutex_exit(QLOCK(stp->sd_wrq));
587 
588 fifo_opendone:
589 	cv_broadcast(&stp->sd_monitor);
590 	mutex_exit(&stp->sd_lock);
591 	return (error);
592 }
593 
594 static int strsink(queue_t *, mblk_t *);
595 static struct qinit deadrend = {
596 	strsink, NULL, NULL, NULL, NULL, &strm_info, NULL
597 };
598 static struct qinit deadwend = {
599 	NULL, NULL, NULL, NULL, NULL, &stwm_info, NULL
600 };
601 
602 /*
603  * Close a stream.
604  * This is called from closef() on the last close of an open stream.
605  * Strclean() will already have removed the siglist and pollist
606  * information, so all that remains is to remove all multiplexor links
607  * for the stream, pop all the modules (and the driver), and free the
608  * stream structure.
609  */
610 
611 int
612 strclose(struct vnode *vp, int flag, cred_t *crp)
613 {
614 	struct stdata *stp;
615 	queue_t *qp;
616 	int rval;
617 	int freestp = 1;
618 	queue_t *rmq;
619 
620 	TRACE_1(TR_FAC_STREAMS_FR,
621 	    TR_STRCLOSE, "strclose:%p", vp);
622 	ASSERT(vp->v_stream);
623 
624 	stp = vp->v_stream;
625 	ASSERT(!(stp->sd_flag & STPLEX));
626 	qp = stp->sd_wrq;
627 
628 	/*
629 	 * Needed so that strpoll will return non-zero for this fd.
630 	 * Note that with POLLNOERR STRHUP does still cause POLLHUP.
631 	 */
632 	mutex_enter(&stp->sd_lock);
633 	stp->sd_flag |= STRHUP;
634 	mutex_exit(&stp->sd_lock);
635 
636 	/*
637 	 * If the registered process or process group did not have an
638 	 * open instance of this stream then strclean would not be
639 	 * called. Thus at the time of closing all remaining siglist entries
640 	 * are removed.
641 	 */
642 	if (stp->sd_siglist != NULL)
643 		strcleanall(vp);
644 
645 	ASSERT(stp->sd_siglist == NULL);
646 	ASSERT(stp->sd_sigflags == 0);
647 
648 	if (STRMATED(stp)) {
649 		struct stdata *strmatep = stp->sd_mate;
650 		int waited = 1;
651 
652 		STRLOCKMATES(stp);
653 		while (waited) {
654 			waited = 0;
655 			while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
656 				mutex_exit(&strmatep->sd_lock);
657 				cv_wait(&stp->sd_monitor, &stp->sd_lock);
658 				mutex_exit(&stp->sd_lock);
659 				STRLOCKMATES(stp);
660 				waited = 1;
661 			}
662 			while (strmatep->sd_flag &
663 			    (STWOPEN|STRCLOSE|STRPLUMB)) {
664 				mutex_exit(&stp->sd_lock);
665 				cv_wait(&strmatep->sd_monitor,
666 				    &strmatep->sd_lock);
667 				mutex_exit(&strmatep->sd_lock);
668 				STRLOCKMATES(stp);
669 				waited = 1;
670 			}
671 		}
672 		stp->sd_flag |= STRCLOSE;
673 		STRUNLOCKMATES(stp);
674 	} else {
675 		mutex_enter(&stp->sd_lock);
676 		stp->sd_flag |= STRCLOSE;
677 		mutex_exit(&stp->sd_lock);
678 	}
679 
680 	ASSERT(qp->q_first == NULL);	/* No more delayed write */
681 
682 	/* Check if an I_LINK was ever done on this stream */
683 	if (stp->sd_flag & STRHASLINKS) {
684 		netstack_t *ns;
685 		str_stack_t *ss;
686 
687 		ns = netstack_find_by_cred(crp);
688 		ASSERT(ns != NULL);
689 		ss = ns->netstack_str;
690 		ASSERT(ss != NULL);
691 
692 		(void) munlinkall(stp, LINKCLOSE|LINKNORMAL, crp, &rval, ss);
693 		netstack_rele(ss->ss_netstack);
694 	}
695 
696 	while (_SAMESTR(qp)) {
697 		/*
698 		 * Holding sd_lock prevents q_next from changing in
699 		 * this stream.
700 		 */
701 		mutex_enter(&stp->sd_lock);
702 		if (!(flag & (FNDELAY|FNONBLOCK)) && (stp->sd_closetime > 0)) {
703 
704 			/*
705 			 * sleep until awakened by strwsrv() or timeout
706 			 */
707 			for (;;) {
708 				mutex_enter(QLOCK(qp->q_next));
709 				if (!(qp->q_next->q_mblkcnt)) {
710 					mutex_exit(QLOCK(qp->q_next));
711 					break;
712 				}
713 				stp->sd_flag |= WSLEEP;
714 
715 				/* ensure strwsrv gets enabled */
716 				qp->q_next->q_flag |= QWANTW;
717 				mutex_exit(QLOCK(qp->q_next));
718 				/* get out if we timed out or recv'd a signal */
719 				if (str_cv_wait(&qp->q_wait, &stp->sd_lock,
720 				    stp->sd_closetime, 0) <= 0) {
721 					break;
722 				}
723 			}
724 			stp->sd_flag &= ~WSLEEP;
725 		}
726 		mutex_exit(&stp->sd_lock);
727 
728 		rmq = qp->q_next;
729 		if (rmq->q_flag & QISDRV) {
730 			ASSERT(!_SAMESTR(rmq));
731 			wait_sq_svc(_RD(qp)->q_syncq);
732 		}
733 
734 		qdetach(_RD(rmq), 1, flag, crp, B_FALSE);
735 	}
736 
737 	/*
738 	 * Since we call pollwakeup in close() now, the poll list should
739 	 * be empty in most cases. The only exception is the layered devices
740 	 * (e.g. the console drivers with redirection modules pushed on top
741 	 * of it).  We have to do this after calling qdetach() because
742 	 * the redirection module won't have torn down the console
743 	 * redirection until after qdetach() has been invoked.
744 	 */
745 	if (stp->sd_pollist.ph_list != NULL) {
746 		pollwakeup(&stp->sd_pollist, POLLERR);
747 		pollhead_clean(&stp->sd_pollist);
748 	}
749 	ASSERT(stp->sd_pollist.ph_list == NULL);
750 	ASSERT(stp->sd_sidp == NULL);
751 	ASSERT(stp->sd_pgidp == NULL);
752 
753 	/* Prevent qenable from re-enabling the stream head queue */
754 	disable_svc(_RD(qp));
755 
756 	/*
757 	 * Wait until service procedure of each queue is
758 	 * run, if QINSERVICE is set.
759 	 */
760 	wait_svc(_RD(qp));
761 
762 	/*
763 	 * Now, flush both queues.
764 	 */
765 	flushq(_RD(qp), FLUSHALL);
766 	flushq(qp, FLUSHALL);
767 
768 	/*
769 	 * If the write queue of the stream head is pointing to a
770 	 * read queue, we have a twisted stream.  If the read queue
771 	 * is alive, convert the stream head queues into a dead end.
772 	 * If the read queue is dead, free the dead pair.
773 	 */
774 	if (qp->q_next && !_SAMESTR(qp)) {
775 		if (qp->q_next->q_qinfo == &deadrend) {	/* half-closed pipe */
776 			flushq(qp->q_next, FLUSHALL); /* ensure no message */
777 			shfree(qp->q_next->q_stream);
778 			freeq(qp->q_next);
779 			freeq(_RD(qp));
780 		} else if (qp->q_next == _RD(qp)) {	/* fifo */
781 			freeq(_RD(qp));
782 		} else {				/* pipe */
783 			freestp = 0;
784 			/*
785 			 * The q_info pointers are never accessed when
786 			 * SQLOCK is held.
787 			 */
788 			ASSERT(qp->q_syncq == _RD(qp)->q_syncq);
789 			mutex_enter(SQLOCK(qp->q_syncq));
790 			qp->q_qinfo = &deadwend;
791 			_RD(qp)->q_qinfo = &deadrend;
792 			mutex_exit(SQLOCK(qp->q_syncq));
793 		}
794 	} else {
795 		freeq(_RD(qp)); /* free stream head queue pair */
796 	}
797 
798 	mutex_enter(&vp->v_lock);
799 	if (stp->sd_iocblk) {
800 		if (stp->sd_iocblk != (mblk_t *)-1) {
801 			freemsg(stp->sd_iocblk);
802 		}
803 		stp->sd_iocblk = NULL;
804 	}
805 	stp->sd_vnode = NULL;
806 	vp->v_stream = NULL;
807 	mutex_exit(&vp->v_lock);
808 	mutex_enter(&stp->sd_lock);
809 	freemsg(stp->sd_cmdblk);
810 	stp->sd_cmdblk = NULL;
811 	stp->sd_flag &= ~STRCLOSE;
812 	cv_broadcast(&stp->sd_monitor);
813 	mutex_exit(&stp->sd_lock);
814 
815 	if (freestp)
816 		shfree(stp);
817 	return (0);
818 }
819 
820 static int
821 strsink(queue_t *q, mblk_t *bp)
822 {
823 	struct copyresp *resp;
824 
825 	switch (bp->b_datap->db_type) {
826 	case M_FLUSH:
827 		if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) {
828 			*bp->b_rptr &= ~FLUSHR;
829 			bp->b_flag |= MSGNOLOOP;
830 			/*
831 			 * Protect against the driver passing up
832 			 * messages after it has done a qprocsoff.
833 			 */
834 			if (_OTHERQ(q)->q_next == NULL)
835 				freemsg(bp);
836 			else
837 				qreply(q, bp);
838 		} else {
839 			freemsg(bp);
840 		}
841 		break;
842 
843 	case M_COPYIN:
844 	case M_COPYOUT:
845 		if (bp->b_cont) {
846 			freemsg(bp->b_cont);
847 			bp->b_cont = NULL;
848 		}
849 		bp->b_datap->db_type = M_IOCDATA;
850 		bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
851 		resp = (struct copyresp *)bp->b_rptr;
852 		resp->cp_rval = (caddr_t)1;	/* failure */
853 		/*
854 		 * Protect against the driver passing up
855 		 * messages after it has done a qprocsoff.
856 		 */
857 		if (_OTHERQ(q)->q_next == NULL)
858 			freemsg(bp);
859 		else
860 			qreply(q, bp);
861 		break;
862 
863 	case M_IOCTL:
864 		if (bp->b_cont) {
865 			freemsg(bp->b_cont);
866 			bp->b_cont = NULL;
867 		}
868 		bp->b_datap->db_type = M_IOCNAK;
869 		/*
870 		 * Protect against the driver passing up
871 		 * messages after it has done a qprocsoff.
872 		 */
873 		if (_OTHERQ(q)->q_next == NULL)
874 			freemsg(bp);
875 		else
876 			qreply(q, bp);
877 		break;
878 
879 	default:
880 		freemsg(bp);
881 		break;
882 	}
883 
884 	return (0);
885 }
886 
887 /*
888  * Clean up after a process when it closes a stream.  This is called
889  * from closef for all closes, whereas strclose is called only for the
890  * last close on a stream.  The siglist is scanned for entries for the
891  * current process, and these are removed.
892  */
893 void
894 strclean(struct vnode *vp)
895 {
896 	strsig_t *ssp, *pssp, *tssp;
897 	stdata_t *stp;
898 	int update = 0;
899 
900 	TRACE_1(TR_FAC_STREAMS_FR,
901 	    TR_STRCLEAN, "strclean:%p", vp);
902 	stp = vp->v_stream;
903 	pssp = NULL;
904 	mutex_enter(&stp->sd_lock);
905 	ssp = stp->sd_siglist;
906 	while (ssp) {
907 		if (ssp->ss_pidp == curproc->p_pidp) {
908 			tssp = ssp->ss_next;
909 			if (pssp)
910 				pssp->ss_next = tssp;
911 			else
912 				stp->sd_siglist = tssp;
913 			mutex_enter(&pidlock);
914 			PID_RELE(ssp->ss_pidp);
915 			mutex_exit(&pidlock);
916 			kmem_free(ssp, sizeof (strsig_t));
917 			update = 1;
918 			ssp = tssp;
919 		} else {
920 			pssp = ssp;
921 			ssp = ssp->ss_next;
922 		}
923 	}
924 	if (update) {
925 		stp->sd_sigflags = 0;
926 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
927 			stp->sd_sigflags |= ssp->ss_events;
928 	}
929 	mutex_exit(&stp->sd_lock);
930 }
931 
932 /*
933  * Used on the last close to remove any remaining items on the siglist.
934  * These could be present on the siglist due to I_ESETSIG calls that
935  * use process groups or processed that do not have an open file descriptor
936  * for this stream (Such entries would not be removed by strclean).
937  */
938 static void
939 strcleanall(struct vnode *vp)
940 {
941 	strsig_t *ssp, *nssp;
942 	stdata_t *stp;
943 
944 	stp = vp->v_stream;
945 	mutex_enter(&stp->sd_lock);
946 	ssp = stp->sd_siglist;
947 	stp->sd_siglist = NULL;
948 	while (ssp) {
949 		nssp = ssp->ss_next;
950 		mutex_enter(&pidlock);
951 		PID_RELE(ssp->ss_pidp);
952 		mutex_exit(&pidlock);
953 		kmem_free(ssp, sizeof (strsig_t));
954 		ssp = nssp;
955 	}
956 	stp->sd_sigflags = 0;
957 	mutex_exit(&stp->sd_lock);
958 }
959 
960 /*
961  * Retrieve the next message from the logical stream head read queue
962  * using either rwnext (if sync stream) or getq_noenab.
963  * It is the callers responsibility to call qbackenable after
964  * it is finished with the message. The caller should not call
965  * qbackenable until after any putback calls to avoid spurious backenabling.
966  */
967 mblk_t *
968 strget(struct stdata *stp, queue_t *q, struct uio *uiop, int first,
969     int *errorp)
970 {
971 	mblk_t *bp;
972 	int error;
973 	ssize_t rbytes = 0;
974 
975 	/* Holding sd_lock prevents the read queue from changing  */
976 	ASSERT(MUTEX_HELD(&stp->sd_lock));
977 
978 	if (uiop != NULL && stp->sd_struiordq != NULL &&
979 	    q->q_first == NULL &&
980 	    (!first || (stp->sd_wakeq & RSLEEP))) {
981 		/*
982 		 * Stream supports rwnext() for the read side.
983 		 * If this is the first time we're called by e.g. strread
984 		 * only do the downcall if there is a deferred wakeup
985 		 * (registered in sd_wakeq).
986 		 */
987 		struiod_t uiod;
988 
989 		if (first)
990 			stp->sd_wakeq &= ~RSLEEP;
991 
992 		(void) uiodup(uiop, &uiod.d_uio, uiod.d_iov,
993 		    sizeof (uiod.d_iov) / sizeof (*uiod.d_iov));
994 		uiod.d_mp = 0;
995 		/*
996 		 * Mark that a thread is in rwnext on the read side
997 		 * to prevent strrput from nacking ioctls immediately.
998 		 * When the last concurrent rwnext returns
999 		 * the ioctls are nack'ed.
1000 		 */
1001 		ASSERT(MUTEX_HELD(&stp->sd_lock));
1002 		stp->sd_struiodnak++;
1003 		/*
1004 		 * Note: rwnext will drop sd_lock.
1005 		 */
1006 		error = rwnext(q, &uiod);
1007 		ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
1008 		mutex_enter(&stp->sd_lock);
1009 		stp->sd_struiodnak--;
1010 		while (stp->sd_struiodnak == 0 &&
1011 		    ((bp = stp->sd_struionak) != NULL)) {
1012 			stp->sd_struionak = bp->b_next;
1013 			bp->b_next = NULL;
1014 			bp->b_datap->db_type = M_IOCNAK;
1015 			/*
1016 			 * Protect against the driver passing up
1017 			 * messages after it has done a qprocsoff.
1018 			 */
1019 			if (_OTHERQ(q)->q_next == NULL)
1020 				freemsg(bp);
1021 			else {
1022 				mutex_exit(&stp->sd_lock);
1023 				qreply(q, bp);
1024 				mutex_enter(&stp->sd_lock);
1025 			}
1026 		}
1027 		ASSERT(MUTEX_HELD(&stp->sd_lock));
1028 		if (error == 0 || error == EWOULDBLOCK) {
1029 			if ((bp = uiod.d_mp) != NULL) {
1030 				*errorp = 0;
1031 				ASSERT(MUTEX_HELD(&stp->sd_lock));
1032 				return (bp);
1033 			}
1034 			error = 0;
1035 		} else if (error == EINVAL) {
1036 			/*
1037 			 * The stream plumbing must have
1038 			 * changed while we were away, so
1039 			 * just turn off rwnext()s.
1040 			 */
1041 			error = 0;
1042 		} else if (error == EBUSY) {
1043 			/*
1044 			 * The module might have data in transit using putnext
1045 			 * Fall back on waiting + getq.
1046 			 */
1047 			error = 0;
1048 		} else {
1049 			*errorp = error;
1050 			ASSERT(MUTEX_HELD(&stp->sd_lock));
1051 			return (NULL);
1052 		}
1053 		/*
1054 		 * Try a getq in case a rwnext() generated mblk
1055 		 * has bubbled up via strrput().
1056 		 */
1057 	}
1058 	*errorp = 0;
1059 	ASSERT(MUTEX_HELD(&stp->sd_lock));
1060 
1061 	/*
1062 	 * If we have a valid uio, try and use this as a guide for how
1063 	 * many bytes to retrieve from the queue via getq_noenab().
1064 	 * Doing this can avoid unneccesary counting of overlong
1065 	 * messages in putback(). We currently only do this for sockets
1066 	 * and only if there is no sd_rputdatafunc hook.
1067 	 *
1068 	 * The sd_rputdatafunc hook transforms the entire message
1069 	 * before any bytes in it can be given to a client. So, rbytes
1070 	 * must be 0 if there is a hook.
1071 	 */
1072 	if ((uiop != NULL) && (stp->sd_vnode->v_type == VSOCK) &&
1073 	    (stp->sd_rputdatafunc == NULL))
1074 		rbytes = uiop->uio_resid;
1075 
1076 	return (getq_noenab(q, rbytes));
1077 }
1078 
1079 /*
1080  * Copy out the message pointed to by `bp' into the uio pointed to by `uiop'.
1081  * If the message does not fit in the uio the remainder of it is returned;
1082  * otherwise NULL is returned.  Any embedded zero-length mblk_t's are
1083  * consumed, even if uio_resid reaches zero.  On error, `*errorp' is set to
1084  * the error code, the message is consumed, and NULL is returned.
1085  */
1086 static mblk_t *
1087 struiocopyout(mblk_t *bp, struct uio *uiop, int *errorp)
1088 {
1089 	int error;
1090 	ptrdiff_t n;
1091 	mblk_t *nbp;
1092 
1093 	ASSERT(bp->b_wptr >= bp->b_rptr);
1094 
1095 	do {
1096 		if ((n = MIN(uiop->uio_resid, MBLKL(bp))) != 0) {
1097 			ASSERT(n > 0);
1098 
1099 			error = uiomove(bp->b_rptr, n, UIO_READ, uiop);
1100 			if (error != 0) {
1101 				freemsg(bp);
1102 				*errorp = error;
1103 				return (NULL);
1104 			}
1105 		}
1106 
1107 		bp->b_rptr += n;
1108 		while (bp != NULL && (bp->b_rptr >= bp->b_wptr)) {
1109 			nbp = bp;
1110 			bp = bp->b_cont;
1111 			freeb(nbp);
1112 		}
1113 	} while (bp != NULL && uiop->uio_resid > 0);
1114 
1115 	*errorp = 0;
1116 	return (bp);
1117 }
1118 
1119 /*
1120  * Read a stream according to the mode flags in sd_flag:
1121  *
1122  * (default mode)		- Byte stream, msg boundaries are ignored
1123  * RD_MSGDIS (msg discard)	- Read on msg boundaries and throw away
1124  *				any data remaining in msg
1125  * RD_MSGNODIS (msg non-discard) - Read on msg boundaries and put back
1126  *				any remaining data on head of read queue
1127  *
1128  * Consume readable messages on the front of the queue until
1129  * ttolwp(curthread)->lwp_count
1130  * is satisfied, the readable messages are exhausted, or a message
1131  * boundary is reached in a message mode.  If no data was read and
1132  * the stream was not opened with the NDELAY flag, block until data arrives.
1133  * Otherwise return the data read and update the count.
1134  *
1135  * In default mode a 0 length message signifies end-of-file and terminates
1136  * a read in progress.  The 0 length message is removed from the queue
1137  * only if it is the only message read (no data is read).
1138  *
1139  * An attempt to read an M_PROTO or M_PCPROTO message results in an
1140  * EBADMSG error return, unless either RD_PROTDAT or RD_PROTDIS are set.
1141  * If RD_PROTDAT is set, M_PROTO and M_PCPROTO messages are read as data.
1142  * If RD_PROTDIS is set, the M_PROTO and M_PCPROTO parts of the message
1143  * are unlinked from and M_DATA blocks in the message, the protos are
1144  * thrown away, and the data is read.
1145  */
1146 /* ARGSUSED */
1147 int
1148 strread(struct vnode *vp, struct uio *uiop, cred_t *crp)
1149 {
1150 	struct stdata *stp;
1151 	mblk_t *bp, *nbp;
1152 	queue_t *q;
1153 	int error = 0;
1154 	uint_t old_sd_flag;
1155 	int first;
1156 	char rflg;
1157 	uint_t mark;		/* Contains MSG*MARK and _LASTMARK */
1158 #define	_LASTMARK	0x8000	/* Distinct from MSG*MARK */
1159 	short delim;
1160 	unsigned char pri = 0;
1161 	char waitflag;
1162 	unsigned char type;
1163 
1164 	TRACE_1(TR_FAC_STREAMS_FR,
1165 	    TR_STRREAD_ENTER, "strread:%p", vp);
1166 	ASSERT(vp->v_stream);
1167 	stp = vp->v_stream;
1168 
1169 	mutex_enter(&stp->sd_lock);
1170 
1171 	if ((error = i_straccess(stp, JCREAD)) != 0) {
1172 		mutex_exit(&stp->sd_lock);
1173 		return (error);
1174 	}
1175 
1176 	if (stp->sd_flag & (STRDERR|STPLEX)) {
1177 		error = strgeterr(stp, STRDERR|STPLEX, 0);
1178 		if (error != 0) {
1179 			mutex_exit(&stp->sd_lock);
1180 			return (error);
1181 		}
1182 	}
1183 
1184 	/*
1185 	 * Loop terminates when uiop->uio_resid == 0.
1186 	 */
1187 	rflg = 0;
1188 	waitflag = READWAIT;
1189 	q = _RD(stp->sd_wrq);
1190 	for (;;) {
1191 		ASSERT(MUTEX_HELD(&stp->sd_lock));
1192 		old_sd_flag = stp->sd_flag;
1193 		mark = 0;
1194 		delim = 0;
1195 		first = 1;
1196 		while ((bp = strget(stp, q, uiop, first, &error)) == NULL) {
1197 			int done = 0;
1198 
1199 			ASSERT(MUTEX_HELD(&stp->sd_lock));
1200 
1201 			if (error != 0)
1202 				goto oops;
1203 
1204 			if (stp->sd_flag & (STRHUP|STREOF)) {
1205 				goto oops;
1206 			}
1207 			if (rflg && !(stp->sd_flag & STRDELIM)) {
1208 				goto oops;
1209 			}
1210 			/*
1211 			 * If a read(fd,buf,0) has been done, there is no
1212 			 * need to sleep. We always have zero bytes to
1213 			 * return.
1214 			 */
1215 			if (uiop->uio_resid == 0) {
1216 				goto oops;
1217 			}
1218 
1219 			qbackenable(q, 0);
1220 
1221 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_WAIT,
1222 			    "strread calls strwaitq:%p, %p, %p",
1223 			    vp, uiop, crp);
1224 			if ((error = strwaitq(stp, waitflag, uiop->uio_resid,
1225 			    uiop->uio_fmode, -1, &done)) != 0 || done) {
1226 				TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_DONE,
1227 				    "strread error or done:%p, %p, %p",
1228 				    vp, uiop, crp);
1229 				if ((uiop->uio_fmode & FNDELAY) &&
1230 				    (stp->sd_flag & OLDNDELAY) &&
1231 				    (error == EAGAIN))
1232 					error = 0;
1233 				goto oops;
1234 			}
1235 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_AWAKE,
1236 			    "strread awakes:%p, %p, %p", vp, uiop, crp);
1237 			if ((error = i_straccess(stp, JCREAD)) != 0) {
1238 				goto oops;
1239 			}
1240 			first = 0;
1241 		}
1242 
1243 		ASSERT(MUTEX_HELD(&stp->sd_lock));
1244 		ASSERT(bp);
1245 		pri = bp->b_band;
1246 		/*
1247 		 * Extract any mark information. If the message is not
1248 		 * completely consumed this information will be put in the mblk
1249 		 * that is putback.
1250 		 * If MSGMARKNEXT is set and the message is completely consumed
1251 		 * the STRATMARK flag will be set below. Likewise, if
1252 		 * MSGNOTMARKNEXT is set and the message is
1253 		 * completely consumed STRNOTATMARK will be set.
1254 		 *
1255 		 * For some unknown reason strread only breaks the read at the
1256 		 * last mark.
1257 		 */
1258 		mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
1259 		ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
1260 		    (MSGMARKNEXT|MSGNOTMARKNEXT));
1261 		if (mark != 0 && bp == stp->sd_mark) {
1262 			if (rflg) {
1263 				putback(stp, q, bp, pri);
1264 				goto oops;
1265 			}
1266 			mark |= _LASTMARK;
1267 			stp->sd_mark = NULL;
1268 		}
1269 		if ((stp->sd_flag & STRDELIM) && (bp->b_flag & MSGDELIM))
1270 			delim = 1;
1271 		mutex_exit(&stp->sd_lock);
1272 
1273 		if (STREAM_NEEDSERVICE(stp))
1274 			stream_runservice(stp);
1275 
1276 		type = bp->b_datap->db_type;
1277 
1278 		switch (type) {
1279 
1280 		case M_DATA:
1281 ismdata:
1282 			if (msgnodata(bp)) {
1283 				if (mark || delim) {
1284 					freemsg(bp);
1285 				} else if (rflg) {
1286 
1287 					/*
1288 					 * If already read data put zero
1289 					 * length message back on queue else
1290 					 * free msg and return 0.
1291 					 */
1292 					bp->b_band = pri;
1293 					mutex_enter(&stp->sd_lock);
1294 					putback(stp, q, bp, pri);
1295 					mutex_exit(&stp->sd_lock);
1296 				} else {
1297 					freemsg(bp);
1298 				}
1299 				error =  0;
1300 				goto oops1;
1301 			}
1302 
1303 			rflg = 1;
1304 			waitflag |= NOINTR;
1305 			bp = struiocopyout(bp, uiop, &error);
1306 			if (error != 0)
1307 				goto oops1;
1308 
1309 			mutex_enter(&stp->sd_lock);
1310 			if (bp) {
1311 				/*
1312 				 * Have remaining data in message.
1313 				 * Free msg if in discard mode.
1314 				 */
1315 				if (stp->sd_read_opt & RD_MSGDIS) {
1316 					freemsg(bp);
1317 				} else {
1318 					bp->b_band = pri;
1319 					if ((mark & _LASTMARK) &&
1320 					    (stp->sd_mark == NULL))
1321 						stp->sd_mark = bp;
1322 					bp->b_flag |= mark & ~_LASTMARK;
1323 					if (delim)
1324 						bp->b_flag |= MSGDELIM;
1325 					if (msgnodata(bp))
1326 						freemsg(bp);
1327 					else
1328 						putback(stp, q, bp, pri);
1329 				}
1330 			} else {
1331 				/*
1332 				 * Consumed the complete message.
1333 				 * Move the MSG*MARKNEXT information
1334 				 * to the stream head just in case
1335 				 * the read queue becomes empty.
1336 				 *
1337 				 * If the stream head was at the mark
1338 				 * (STRATMARK) before we dropped sd_lock above
1339 				 * and some data was consumed then we have
1340 				 * moved past the mark thus STRATMARK is
1341 				 * cleared. However, if a message arrived in
1342 				 * strrput during the copyout above causing
1343 				 * STRATMARK to be set we can not clear that
1344 				 * flag.
1345 				 */
1346 				if (mark &
1347 				    (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
1348 					if (mark & MSGMARKNEXT) {
1349 						stp->sd_flag &= ~STRNOTATMARK;
1350 						stp->sd_flag |= STRATMARK;
1351 					} else if (mark & MSGNOTMARKNEXT) {
1352 						stp->sd_flag &= ~STRATMARK;
1353 						stp->sd_flag |= STRNOTATMARK;
1354 					} else {
1355 						stp->sd_flag &=
1356 						    ~(STRATMARK|STRNOTATMARK);
1357 					}
1358 				} else if (rflg && (old_sd_flag & STRATMARK)) {
1359 					stp->sd_flag &= ~STRATMARK;
1360 				}
1361 			}
1362 
1363 			/*
1364 			 * Check for signal messages at the front of the read
1365 			 * queue and generate the signal(s) if appropriate.
1366 			 * The only signal that can be on queue is M_SIG at
1367 			 * this point.
1368 			 */
1369 			while ((((bp = q->q_first)) != NULL) &&
1370 			    (bp->b_datap->db_type == M_SIG)) {
1371 				bp = getq_noenab(q, 0);
1372 				/*
1373 				 * sd_lock is held so the content of the
1374 				 * read queue can not change.
1375 				 */
1376 				ASSERT(bp != NULL && DB_TYPE(bp) == M_SIG);
1377 				strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
1378 				mutex_exit(&stp->sd_lock);
1379 				freemsg(bp);
1380 				if (STREAM_NEEDSERVICE(stp))
1381 					stream_runservice(stp);
1382 				mutex_enter(&stp->sd_lock);
1383 			}
1384 
1385 			if ((uiop->uio_resid == 0) || (mark & _LASTMARK) ||
1386 			    delim ||
1387 			    (stp->sd_read_opt & (RD_MSGDIS|RD_MSGNODIS))) {
1388 				goto oops;
1389 			}
1390 			continue;
1391 
1392 		case M_SIG:
1393 			strsignal(stp, *bp->b_rptr, (int32_t)bp->b_band);
1394 			freemsg(bp);
1395 			mutex_enter(&stp->sd_lock);
1396 			continue;
1397 
1398 		case M_PROTO:
1399 		case M_PCPROTO:
1400 			/*
1401 			 * Only data messages are readable.
1402 			 * Any others generate an error, unless
1403 			 * RD_PROTDIS or RD_PROTDAT is set.
1404 			 */
1405 			if (stp->sd_read_opt & RD_PROTDAT) {
1406 				for (nbp = bp; nbp; nbp = nbp->b_next) {
1407 					if ((nbp->b_datap->db_type ==
1408 					    M_PROTO) ||
1409 					    (nbp->b_datap->db_type ==
1410 					    M_PCPROTO)) {
1411 						nbp->b_datap->db_type = M_DATA;
1412 					} else {
1413 						break;
1414 					}
1415 				}
1416 				/*
1417 				 * clear stream head hi pri flag based on
1418 				 * first message
1419 				 */
1420 				if (type == M_PCPROTO) {
1421 					mutex_enter(&stp->sd_lock);
1422 					stp->sd_flag &= ~STRPRI;
1423 					mutex_exit(&stp->sd_lock);
1424 				}
1425 				goto ismdata;
1426 			} else if (stp->sd_read_opt & RD_PROTDIS) {
1427 				/*
1428 				 * discard non-data messages
1429 				 */
1430 				while (bp &&
1431 				    ((bp->b_datap->db_type == M_PROTO) ||
1432 				    (bp->b_datap->db_type == M_PCPROTO))) {
1433 					nbp = unlinkb(bp);
1434 					freeb(bp);
1435 					bp = nbp;
1436 				}
1437 				/*
1438 				 * clear stream head hi pri flag based on
1439 				 * first message
1440 				 */
1441 				if (type == M_PCPROTO) {
1442 					mutex_enter(&stp->sd_lock);
1443 					stp->sd_flag &= ~STRPRI;
1444 					mutex_exit(&stp->sd_lock);
1445 				}
1446 				if (bp) {
1447 					bp->b_band = pri;
1448 					goto ismdata;
1449 				} else {
1450 					break;
1451 				}
1452 			}
1453 			/* FALLTHRU */
1454 		case M_PASSFP:
1455 			if ((bp->b_datap->db_type == M_PASSFP) &&
1456 			    (stp->sd_read_opt & RD_PROTDIS)) {
1457 				freemsg(bp);
1458 				break;
1459 			}
1460 			mutex_enter(&stp->sd_lock);
1461 			putback(stp, q, bp, pri);
1462 			mutex_exit(&stp->sd_lock);
1463 			if (rflg == 0)
1464 				error = EBADMSG;
1465 			goto oops1;
1466 
1467 		default:
1468 			/*
1469 			 * Garbage on stream head read queue.
1470 			 */
1471 			cmn_err(CE_WARN, "bad %x found at stream head\n",
1472 			    bp->b_datap->db_type);
1473 			freemsg(bp);
1474 			goto oops1;
1475 		}
1476 		mutex_enter(&stp->sd_lock);
1477 	}
1478 oops:
1479 	mutex_exit(&stp->sd_lock);
1480 oops1:
1481 	qbackenable(q, pri);
1482 	return (error);
1483 #undef	_LASTMARK
1484 }
1485 
1486 /*
1487  * Default processing of M_PROTO/M_PCPROTO messages.
1488  * Determine which wakeups and signals are needed.
1489  * This can be replaced by a user-specified procedure for kernel users
1490  * of STREAMS.
1491  */
1492 /* ARGSUSED */
1493 mblk_t *
1494 strrput_proto(vnode_t *vp, mblk_t *mp,
1495     strwakeup_t *wakeups, strsigset_t *firstmsgsigs,
1496     strsigset_t *allmsgsigs, strpollset_t *pollwakeups)
1497 {
1498 	*wakeups = RSLEEP;
1499 	*allmsgsigs = 0;
1500 
1501 	switch (mp->b_datap->db_type) {
1502 	case M_PROTO:
1503 		if (mp->b_band == 0) {
1504 			*firstmsgsigs = S_INPUT | S_RDNORM;
1505 			*pollwakeups = POLLIN | POLLRDNORM;
1506 		} else {
1507 			*firstmsgsigs = S_INPUT | S_RDBAND;
1508 			*pollwakeups = POLLIN | POLLRDBAND;
1509 		}
1510 		break;
1511 	case M_PCPROTO:
1512 		*firstmsgsigs = S_HIPRI;
1513 		*pollwakeups = POLLPRI;
1514 		break;
1515 	}
1516 	return (mp);
1517 }
1518 
1519 /*
1520  * Default processing of everything but M_DATA, M_PROTO, M_PCPROTO and
1521  * M_PASSFP messages.
1522  * Determine which wakeups and signals are needed.
1523  * This can be replaced by a user-specified procedure for kernel users
1524  * of STREAMS.
1525  */
1526 /* ARGSUSED */
1527 mblk_t *
1528 strrput_misc(vnode_t *vp, mblk_t *mp,
1529     strwakeup_t *wakeups, strsigset_t *firstmsgsigs,
1530     strsigset_t *allmsgsigs, strpollset_t *pollwakeups)
1531 {
1532 	*wakeups = 0;
1533 	*firstmsgsigs = 0;
1534 	*allmsgsigs = 0;
1535 	*pollwakeups = 0;
1536 	return (mp);
1537 }
1538 
1539 /*
1540  * Stream read put procedure.  Called from downstream driver/module
1541  * with messages for the stream head.  Data, protocol, and in-stream
1542  * signal messages are placed on the queue, others are handled directly.
1543  */
1544 int
1545 strrput(queue_t *q, mblk_t *bp)
1546 {
1547 	struct stdata	*stp;
1548 	ulong_t		rput_opt;
1549 	strwakeup_t	wakeups;
1550 	strsigset_t	firstmsgsigs;	/* Signals if first message on queue */
1551 	strsigset_t	allmsgsigs;	/* Signals for all messages */
1552 	strsigset_t	signals;	/* Signals events to generate */
1553 	strpollset_t	pollwakeups;
1554 	mblk_t		*nextbp;
1555 	uchar_t		band = 0;
1556 	int		hipri_sig;
1557 
1558 	stp = (struct stdata *)q->q_ptr;
1559 	/*
1560 	 * Use rput_opt for optimized access to the SR_ flags except
1561 	 * SR_POLLIN. That flag has to be checked under sd_lock since it
1562 	 * is modified by strpoll().
1563 	 */
1564 	rput_opt = stp->sd_rput_opt;
1565 
1566 	ASSERT(qclaimed(q));
1567 	TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_ENTER,
1568 	    "strrput called with message type:q %p bp %p", q, bp);
1569 
1570 	/*
1571 	 * Perform initial processing and pass to the parameterized functions.
1572 	 */
1573 	ASSERT(bp->b_next == NULL);
1574 
1575 	switch (bp->b_datap->db_type) {
1576 	case M_DATA:
1577 		/*
1578 		 * sockfs is the only consumer of STREOF and when it is set,
1579 		 * it implies that the receiver is not interested in receiving
1580 		 * any more data, hence the mblk is freed to prevent unnecessary
1581 		 * message queueing at the stream head.
1582 		 */
1583 		if (stp->sd_flag == STREOF) {
1584 			freemsg(bp);
1585 			return (0);
1586 		}
1587 		if ((rput_opt & SR_IGN_ZEROLEN) &&
1588 		    bp->b_rptr == bp->b_wptr && msgnodata(bp)) {
1589 			/*
1590 			 * Ignore zero-length M_DATA messages. These might be
1591 			 * generated by some transports.
1592 			 * The zero-length M_DATA messages, even if they
1593 			 * are ignored, should effect the atmark tracking and
1594 			 * should wake up a thread sleeping in strwaitmark.
1595 			 */
1596 			mutex_enter(&stp->sd_lock);
1597 			if (bp->b_flag & MSGMARKNEXT) {
1598 				/*
1599 				 * Record the position of the mark either
1600 				 * in q_last or in STRATMARK.
1601 				 */
1602 				if (q->q_last != NULL) {
1603 					q->q_last->b_flag &= ~MSGNOTMARKNEXT;
1604 					q->q_last->b_flag |= MSGMARKNEXT;
1605 				} else {
1606 					stp->sd_flag &= ~STRNOTATMARK;
1607 					stp->sd_flag |= STRATMARK;
1608 				}
1609 			} else if (bp->b_flag & MSGNOTMARKNEXT) {
1610 				/*
1611 				 * Record that this is not the position of
1612 				 * the mark either in q_last or in
1613 				 * STRNOTATMARK.
1614 				 */
1615 				if (q->q_last != NULL) {
1616 					q->q_last->b_flag &= ~MSGMARKNEXT;
1617 					q->q_last->b_flag |= MSGNOTMARKNEXT;
1618 				} else {
1619 					stp->sd_flag &= ~STRATMARK;
1620 					stp->sd_flag |= STRNOTATMARK;
1621 				}
1622 			}
1623 			if (stp->sd_flag & RSLEEP) {
1624 				stp->sd_flag &= ~RSLEEP;
1625 				cv_broadcast(&q->q_wait);
1626 			}
1627 			mutex_exit(&stp->sd_lock);
1628 			freemsg(bp);
1629 			return (0);
1630 		}
1631 		wakeups = RSLEEP;
1632 		if (bp->b_band == 0) {
1633 			firstmsgsigs = S_INPUT | S_RDNORM;
1634 			pollwakeups = POLLIN | POLLRDNORM;
1635 		} else {
1636 			firstmsgsigs = S_INPUT | S_RDBAND;
1637 			pollwakeups = POLLIN | POLLRDBAND;
1638 		}
1639 		if (rput_opt & SR_SIGALLDATA)
1640 			allmsgsigs = firstmsgsigs;
1641 		else
1642 			allmsgsigs = 0;
1643 
1644 		mutex_enter(&stp->sd_lock);
1645 		if ((rput_opt & SR_CONSOL_DATA) &&
1646 		    (q->q_last != NULL) &&
1647 		    (bp->b_flag & (MSGMARK|MSGDELIM)) == 0) {
1648 			/*
1649 			 * Consolidate an M_DATA message onto an M_DATA,
1650 			 * M_PROTO, or M_PCPROTO by merging it with q_last.
1651 			 * The consolidation does not take place if
1652 			 * the old message is marked with either of the
1653 			 * marks or the delim flag or if the new
1654 			 * message is marked with MSGMARK. The MSGMARK
1655 			 * check is needed to handle the odd semantics of
1656 			 * MSGMARK where essentially the whole message
1657 			 * is to be treated as marked.
1658 			 * Carry any MSGMARKNEXT  and MSGNOTMARKNEXT from the
1659 			 * new message to the front of the b_cont chain.
1660 			 */
1661 			mblk_t *lbp = q->q_last;
1662 			unsigned char db_type = lbp->b_datap->db_type;
1663 
1664 			if ((db_type == M_DATA || db_type == M_PROTO ||
1665 			    db_type == M_PCPROTO) &&
1666 			    !(lbp->b_flag & (MSGDELIM|MSGMARK|MSGMARKNEXT))) {
1667 				rmvq_noenab(q, lbp);
1668 				/*
1669 				 * The first message in the b_cont list
1670 				 * tracks MSGMARKNEXT and MSGNOTMARKNEXT.
1671 				 * We need to handle the case where we
1672 				 * are appending:
1673 				 *
1674 				 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT.
1675 				 * 2) a MSGMARKNEXT to a plain message.
1676 				 * 3) a MSGNOTMARKNEXT to a plain message
1677 				 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT
1678 				 *    message.
1679 				 *
1680 				 * Thus we never append a MSGMARKNEXT or
1681 				 * MSGNOTMARKNEXT to a MSGMARKNEXT message.
1682 				 */
1683 				if (bp->b_flag & MSGMARKNEXT) {
1684 					lbp->b_flag |= MSGMARKNEXT;
1685 					lbp->b_flag &= ~MSGNOTMARKNEXT;
1686 					bp->b_flag &= ~MSGMARKNEXT;
1687 				} else if (bp->b_flag & MSGNOTMARKNEXT) {
1688 					lbp->b_flag |= MSGNOTMARKNEXT;
1689 					bp->b_flag &= ~MSGNOTMARKNEXT;
1690 				}
1691 
1692 				linkb(lbp, bp);
1693 				bp = lbp;
1694 				/*
1695 				 * The new message logically isn't the first
1696 				 * even though the q_first check below thinks
1697 				 * it is. Clear the firstmsgsigs to make it
1698 				 * not appear to be first.
1699 				 */
1700 				firstmsgsigs = 0;
1701 			}
1702 		}
1703 		break;
1704 
1705 	case M_PASSFP:
1706 		wakeups = RSLEEP;
1707 		allmsgsigs = 0;
1708 		if (bp->b_band == 0) {
1709 			firstmsgsigs = S_INPUT | S_RDNORM;
1710 			pollwakeups = POLLIN | POLLRDNORM;
1711 		} else {
1712 			firstmsgsigs = S_INPUT | S_RDBAND;
1713 			pollwakeups = POLLIN | POLLRDBAND;
1714 		}
1715 		mutex_enter(&stp->sd_lock);
1716 		break;
1717 
1718 	case M_PROTO:
1719 	case M_PCPROTO:
1720 		ASSERT(stp->sd_rprotofunc != NULL);
1721 		bp = (stp->sd_rprotofunc)(stp->sd_vnode, bp,
1722 		    &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups);
1723 #define	ALLSIG	(S_INPUT|S_HIPRI|S_OUTPUT|S_MSG|S_ERROR|S_HANGUP|S_RDNORM|\
1724 		S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)
1725 #define	ALLPOLL	(POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLWRNORM|POLLRDBAND|\
1726 		POLLWRBAND)
1727 
1728 		ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0);
1729 		ASSERT((firstmsgsigs & ~ALLSIG) == 0);
1730 		ASSERT((allmsgsigs & ~ALLSIG) == 0);
1731 		ASSERT((pollwakeups & ~ALLPOLL) == 0);
1732 
1733 		mutex_enter(&stp->sd_lock);
1734 		break;
1735 
1736 	default:
1737 		ASSERT(stp->sd_rmiscfunc != NULL);
1738 		bp = (stp->sd_rmiscfunc)(stp->sd_vnode, bp,
1739 		    &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups);
1740 		ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0);
1741 		ASSERT((firstmsgsigs & ~ALLSIG) == 0);
1742 		ASSERT((allmsgsigs & ~ALLSIG) == 0);
1743 		ASSERT((pollwakeups & ~ALLPOLL) == 0);
1744 #undef	ALLSIG
1745 #undef	ALLPOLL
1746 		mutex_enter(&stp->sd_lock);
1747 		break;
1748 	}
1749 	ASSERT(MUTEX_HELD(&stp->sd_lock));
1750 
1751 	/* By default generate superset of signals */
1752 	signals = (firstmsgsigs | allmsgsigs);
1753 
1754 	/*
1755 	 * The  proto and misc functions can return multiple messages
1756 	 * as a b_next chain. Such messages are processed separately.
1757 	 */
1758 one_more:
1759 	hipri_sig = 0;
1760 	if (bp == NULL) {
1761 		nextbp = NULL;
1762 	} else {
1763 		nextbp = bp->b_next;
1764 		bp->b_next = NULL;
1765 
1766 		switch (bp->b_datap->db_type) {
1767 		case M_PCPROTO:
1768 			/*
1769 			 * Only one priority protocol message is allowed at the
1770 			 * stream head at a time.
1771 			 */
1772 			if (stp->sd_flag & STRPRI) {
1773 				TRACE_0(TR_FAC_STREAMS_FR, TR_STRRPUT_PROTERR,
1774 				    "M_PCPROTO already at head");
1775 				freemsg(bp);
1776 				mutex_exit(&stp->sd_lock);
1777 				goto done;
1778 			}
1779 			stp->sd_flag |= STRPRI;
1780 			hipri_sig = 1;
1781 			/* FALLTHRU */
1782 		case M_DATA:
1783 		case M_PROTO:
1784 		case M_PASSFP:
1785 			band = bp->b_band;
1786 			/*
1787 			 * Marking doesn't work well when messages
1788 			 * are marked in more than one band.  We only
1789 			 * remember the last message received, even if
1790 			 * it is placed on the queue ahead of other
1791 			 * marked messages.
1792 			 */
1793 			if (bp->b_flag & MSGMARK)
1794 				stp->sd_mark = bp;
1795 			(void) putq(q, bp);
1796 
1797 			/*
1798 			 * If message is a PCPROTO message, always use
1799 			 * firstmsgsigs to determine if a signal should be
1800 			 * sent as strrput is the only place to send
1801 			 * signals for PCPROTO. Other messages are based on
1802 			 * the STRGETINPROG flag. The flag determines if
1803 			 * strrput or (k)strgetmsg will be responsible for
1804 			 * sending the signals, in the firstmsgsigs case.
1805 			 */
1806 			if ((hipri_sig == 1) ||
1807 			    (((stp->sd_flag & STRGETINPROG) == 0) &&
1808 			    (q->q_first == bp)))
1809 				signals = (firstmsgsigs | allmsgsigs);
1810 			else
1811 				signals = allmsgsigs;
1812 			break;
1813 
1814 		default:
1815 			mutex_exit(&stp->sd_lock);
1816 			(void) strrput_nondata(q, bp);
1817 			mutex_enter(&stp->sd_lock);
1818 			break;
1819 		}
1820 	}
1821 	ASSERT(MUTEX_HELD(&stp->sd_lock));
1822 	/*
1823 	 * Wake sleeping read/getmsg and cancel deferred wakeup
1824 	 */
1825 	if (wakeups & RSLEEP)
1826 		stp->sd_wakeq &= ~RSLEEP;
1827 
1828 	wakeups &= stp->sd_flag;
1829 	if (wakeups & RSLEEP) {
1830 		stp->sd_flag &= ~RSLEEP;
1831 		cv_broadcast(&q->q_wait);
1832 	}
1833 	if (wakeups & WSLEEP) {
1834 		stp->sd_flag &= ~WSLEEP;
1835 		cv_broadcast(&_WR(q)->q_wait);
1836 	}
1837 
1838 	if (pollwakeups != 0) {
1839 		if (pollwakeups == (POLLIN | POLLRDNORM)) {
1840 			/*
1841 			 * Can't use rput_opt since it was not
1842 			 * read when sd_lock was held and SR_POLLIN is changed
1843 			 * by strpoll() under sd_lock.
1844 			 */
1845 			if (!(stp->sd_rput_opt & SR_POLLIN))
1846 				goto no_pollwake;
1847 			stp->sd_rput_opt &= ~SR_POLLIN;
1848 		}
1849 		mutex_exit(&stp->sd_lock);
1850 		pollwakeup(&stp->sd_pollist, pollwakeups);
1851 		mutex_enter(&stp->sd_lock);
1852 	}
1853 no_pollwake:
1854 
1855 	/*
1856 	 * strsendsig can handle multiple signals with a
1857 	 * single call.
1858 	 */
1859 	if (stp->sd_sigflags & signals)
1860 		strsendsig(stp->sd_siglist, signals, band, 0);
1861 	mutex_exit(&stp->sd_lock);
1862 
1863 
1864 done:
1865 	if (nextbp == NULL)
1866 		return (0);
1867 
1868 	/*
1869 	 * Any signals were handled the first time.
1870 	 * Wakeups and pollwakeups are redone to avoid any race
1871 	 * conditions - all the messages are not queued until the
1872 	 * last message has been processed by strrput.
1873 	 */
1874 	bp = nextbp;
1875 	signals = firstmsgsigs = allmsgsigs = 0;
1876 	mutex_enter(&stp->sd_lock);
1877 	goto one_more;
1878 }
1879 
1880 static void
1881 log_dupioc(queue_t *rq, mblk_t *bp)
1882 {
1883 	queue_t *wq, *qp;
1884 	char *modnames, *mnp, *dname;
1885 	size_t maxmodstr;
1886 	boolean_t islast;
1887 
1888 	/*
1889 	 * Allocate a buffer large enough to hold the names of nstrpush modules
1890 	 * and one driver, with spaces between and NUL terminator.  If we can't
1891 	 * get memory, then we'll just log the driver name.
1892 	 */
1893 	maxmodstr = nstrpush * (FMNAMESZ + 1);
1894 	mnp = modnames = kmem_alloc(maxmodstr, KM_NOSLEEP);
1895 
1896 	/* march down write side to print log message down to the driver */
1897 	wq = WR(rq);
1898 
1899 	/* make sure q_next doesn't shift around while we're grabbing data */
1900 	claimstr(wq);
1901 	qp = wq->q_next;
1902 	do {
1903 		dname = Q2NAME(qp);
1904 		islast = !SAMESTR(qp) || qp->q_next == NULL;
1905 		if (modnames == NULL) {
1906 			/*
1907 			 * If we don't have memory, then get the driver name in
1908 			 * the log where we can see it.  Note that memory
1909 			 * pressure is a possible cause of these sorts of bugs.
1910 			 */
1911 			if (islast) {
1912 				modnames = dname;
1913 				maxmodstr = 0;
1914 			}
1915 		} else {
1916 			mnp += snprintf(mnp, FMNAMESZ + 1, "%s", dname);
1917 			if (!islast)
1918 				*mnp++ = ' ';
1919 		}
1920 		qp = qp->q_next;
1921 	} while (!islast);
1922 	releasestr(wq);
1923 	/* Cannot happen unless stream head is corrupt. */
1924 	ASSERT(modnames != NULL);
1925 	(void) strlog(rq->q_qinfo->qi_minfo->mi_idnum, 0, 1,
1926 	    SL_CONSOLE|SL_TRACE|SL_ERROR,
1927 	    "Warning: stream %p received duplicate %X M_IOC%s; module list: %s",
1928 	    rq->q_ptr, ((struct iocblk *)bp->b_rptr)->ioc_cmd,
1929 	    (DB_TYPE(bp) == M_IOCACK ? "ACK" : "NAK"), modnames);
1930 	if (maxmodstr != 0)
1931 		kmem_free(modnames, maxmodstr);
1932 }
1933 
1934 int
1935 strrput_nondata(queue_t *q, mblk_t *bp)
1936 {
1937 	struct stdata *stp;
1938 	struct iocblk *iocbp;
1939 	struct stroptions *sop;
1940 	struct copyreq *reqp;
1941 	struct copyresp *resp;
1942 	unsigned char bpri;
1943 	unsigned char  flushed_already = 0;
1944 
1945 	stp = (struct stdata *)q->q_ptr;
1946 
1947 	ASSERT(!(stp->sd_flag & STPLEX));
1948 	ASSERT(qclaimed(q));
1949 
1950 	switch (bp->b_datap->db_type) {
1951 	case M_ERROR:
1952 		/*
1953 		 * An error has occurred downstream, the errno is in the first
1954 		 * bytes of the message.
1955 		 */
1956 		if ((bp->b_wptr - bp->b_rptr) == 2) {	/* New flavor */
1957 			unsigned char rw = 0;
1958 
1959 			mutex_enter(&stp->sd_lock);
1960 			if (*bp->b_rptr != NOERROR) {	/* read error */
1961 				if (*bp->b_rptr != 0) {
1962 					if (stp->sd_flag & STRDERR)
1963 						flushed_already |= FLUSHR;
1964 					stp->sd_flag |= STRDERR;
1965 					rw |= FLUSHR;
1966 				} else {
1967 					stp->sd_flag &= ~STRDERR;
1968 				}
1969 				stp->sd_rerror = *bp->b_rptr;
1970 			}
1971 			bp->b_rptr++;
1972 			if (*bp->b_rptr != NOERROR) {	/* write error */
1973 				if (*bp->b_rptr != 0) {
1974 					if (stp->sd_flag & STWRERR)
1975 						flushed_already |= FLUSHW;
1976 					stp->sd_flag |= STWRERR;
1977 					rw |= FLUSHW;
1978 				} else {
1979 					stp->sd_flag &= ~STWRERR;
1980 				}
1981 				stp->sd_werror = *bp->b_rptr;
1982 			}
1983 			if (rw) {
1984 				TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_WAKE,
1985 				    "strrput cv_broadcast:q %p, bp %p",
1986 				    q, bp);
1987 				cv_broadcast(&q->q_wait); /* readers */
1988 				cv_broadcast(&_WR(q)->q_wait); /* writers */
1989 				cv_broadcast(&stp->sd_monitor); /* ioctllers */
1990 
1991 				mutex_exit(&stp->sd_lock);
1992 				pollwakeup(&stp->sd_pollist, POLLERR);
1993 				mutex_enter(&stp->sd_lock);
1994 
1995 				if (stp->sd_sigflags & S_ERROR)
1996 					strsendsig(stp->sd_siglist, S_ERROR, 0,
1997 					    ((rw & FLUSHR) ? stp->sd_rerror :
1998 					    stp->sd_werror));
1999 				mutex_exit(&stp->sd_lock);
2000 				/*
2001 				 * Send the M_FLUSH only
2002 				 * for the first M_ERROR
2003 				 * message on the stream
2004 				 */
2005 				if (flushed_already == rw) {
2006 					freemsg(bp);
2007 					return (0);
2008 				}
2009 
2010 				bp->b_datap->db_type = M_FLUSH;
2011 				*bp->b_rptr = rw;
2012 				bp->b_wptr = bp->b_rptr + 1;
2013 				/*
2014 				 * Protect against the driver
2015 				 * passing up messages after
2016 				 * it has done a qprocsoff
2017 				 */
2018 				if (_OTHERQ(q)->q_next == NULL)
2019 					freemsg(bp);
2020 				else
2021 					qreply(q, bp);
2022 				return (0);
2023 			} else
2024 				mutex_exit(&stp->sd_lock);
2025 		} else if (*bp->b_rptr != 0) {		/* Old flavor */
2026 				if (stp->sd_flag & (STRDERR|STWRERR))
2027 					flushed_already = FLUSHRW;
2028 				mutex_enter(&stp->sd_lock);
2029 				stp->sd_flag |= (STRDERR|STWRERR);
2030 				stp->sd_rerror = *bp->b_rptr;
2031 				stp->sd_werror = *bp->b_rptr;
2032 				TRACE_2(TR_FAC_STREAMS_FR,
2033 				    TR_STRRPUT_WAKE2,
2034 				    "strrput wakeup #2:q %p, bp %p", q, bp);
2035 				cv_broadcast(&q->q_wait); /* the readers */
2036 				cv_broadcast(&_WR(q)->q_wait); /* the writers */
2037 				cv_broadcast(&stp->sd_monitor); /* ioctllers */
2038 
2039 				mutex_exit(&stp->sd_lock);
2040 				pollwakeup(&stp->sd_pollist, POLLERR);
2041 				mutex_enter(&stp->sd_lock);
2042 
2043 				if (stp->sd_sigflags & S_ERROR)
2044 					strsendsig(stp->sd_siglist, S_ERROR, 0,
2045 					    (stp->sd_werror ? stp->sd_werror :
2046 					    stp->sd_rerror));
2047 				mutex_exit(&stp->sd_lock);
2048 
2049 				/*
2050 				 * Send the M_FLUSH only
2051 				 * for the first M_ERROR
2052 				 * message on the stream
2053 				 */
2054 				if (flushed_already != FLUSHRW) {
2055 					bp->b_datap->db_type = M_FLUSH;
2056 					*bp->b_rptr = FLUSHRW;
2057 					/*
2058 					 * Protect against the driver passing up
2059 					 * messages after it has done a
2060 					 * qprocsoff.
2061 					 */
2062 				if (_OTHERQ(q)->q_next == NULL)
2063 					freemsg(bp);
2064 				else
2065 					qreply(q, bp);
2066 				return (0);
2067 				}
2068 		}
2069 		freemsg(bp);
2070 		return (0);
2071 
2072 	case M_HANGUP:
2073 
2074 		freemsg(bp);
2075 		mutex_enter(&stp->sd_lock);
2076 		stp->sd_werror = ENXIO;
2077 		stp->sd_flag |= STRHUP;
2078 		stp->sd_flag &= ~(WSLEEP|RSLEEP);
2079 
2080 		/*
2081 		 * send signal if controlling tty
2082 		 */
2083 
2084 		if (stp->sd_sidp) {
2085 			prsignal(stp->sd_sidp, SIGHUP);
2086 			if (stp->sd_sidp != stp->sd_pgidp)
2087 				pgsignal(stp->sd_pgidp, SIGTSTP);
2088 		}
2089 
2090 		/*
2091 		 * wake up read, write, and exception pollers and
2092 		 * reset wakeup mechanism.
2093 		 */
2094 		cv_broadcast(&q->q_wait);	/* the readers */
2095 		cv_broadcast(&_WR(q)->q_wait);	/* the writers */
2096 		cv_broadcast(&stp->sd_monitor);	/* the ioctllers */
2097 		strhup(stp);
2098 		mutex_exit(&stp->sd_lock);
2099 		return (0);
2100 
2101 	case M_UNHANGUP:
2102 		freemsg(bp);
2103 		mutex_enter(&stp->sd_lock);
2104 		stp->sd_werror = 0;
2105 		stp->sd_flag &= ~STRHUP;
2106 		mutex_exit(&stp->sd_lock);
2107 		return (0);
2108 
2109 	case M_SIG:
2110 		/*
2111 		 * Someone downstream wants to post a signal.  The
2112 		 * signal to post is contained in the first byte of the
2113 		 * message.  If the message would go on the front of
2114 		 * the queue, send a signal to the process group
2115 		 * (if not SIGPOLL) or to the siglist processes
2116 		 * (SIGPOLL).  If something is already on the queue,
2117 		 * OR if we are delivering a delayed suspend (*sigh*
2118 		 * another "tty" hack) and there's no one sleeping already,
2119 		 * just enqueue the message.
2120 		 */
2121 		mutex_enter(&stp->sd_lock);
2122 		if (q->q_first || (*bp->b_rptr == SIGTSTP &&
2123 		    !(stp->sd_flag & RSLEEP))) {
2124 			(void) putq(q, bp);
2125 			mutex_exit(&stp->sd_lock);
2126 			return (0);
2127 		}
2128 		mutex_exit(&stp->sd_lock);
2129 		/* FALLTHRU */
2130 
2131 	case M_PCSIG:
2132 		/*
2133 		 * Don't enqueue, just post the signal.
2134 		 */
2135 		strsignal(stp, *bp->b_rptr, 0L);
2136 		freemsg(bp);
2137 		return (0);
2138 
2139 	case M_CMD:
2140 		if (MBLKL(bp) != sizeof (cmdblk_t)) {
2141 			freemsg(bp);
2142 			return (0);
2143 		}
2144 
2145 		mutex_enter(&stp->sd_lock);
2146 		if (stp->sd_flag & STRCMDWAIT) {
2147 			ASSERT(stp->sd_cmdblk == NULL);
2148 			stp->sd_cmdblk = bp;
2149 			cv_broadcast(&stp->sd_monitor);
2150 			mutex_exit(&stp->sd_lock);
2151 		} else {
2152 			mutex_exit(&stp->sd_lock);
2153 			freemsg(bp);
2154 		}
2155 		return (0);
2156 
2157 	case M_FLUSH:
2158 		/*
2159 		 * Flush queues.  The indication of which queues to flush
2160 		 * is in the first byte of the message.  If the read queue
2161 		 * is specified, then flush it.  If FLUSHBAND is set, just
2162 		 * flush the band specified by the second byte of the message.
2163 		 *
2164 		 * If a module has issued a M_SETOPT to not flush hi
2165 		 * priority messages off of the stream head, then pass this
2166 		 * flag into the flushq code to preserve such messages.
2167 		 */
2168 
2169 		if (*bp->b_rptr & FLUSHR) {
2170 			mutex_enter(&stp->sd_lock);
2171 			if (*bp->b_rptr & FLUSHBAND) {
2172 				ASSERT((bp->b_wptr - bp->b_rptr) >= 2);
2173 				flushband(q, *(bp->b_rptr + 1), FLUSHALL);
2174 			} else
2175 				flushq_common(q, FLUSHALL,
2176 				    stp->sd_read_opt & RFLUSHPCPROT);
2177 			if ((q->q_first == NULL) ||
2178 			    (q->q_first->b_datap->db_type < QPCTL))
2179 				stp->sd_flag &= ~STRPRI;
2180 			else {
2181 				ASSERT(stp->sd_flag & STRPRI);
2182 			}
2183 			mutex_exit(&stp->sd_lock);
2184 		}
2185 		if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) {
2186 			*bp->b_rptr &= ~FLUSHR;
2187 			bp->b_flag |= MSGNOLOOP;
2188 			/*
2189 			 * Protect against the driver passing up
2190 			 * messages after it has done a qprocsoff.
2191 			 */
2192 			if (_OTHERQ(q)->q_next == NULL)
2193 				freemsg(bp);
2194 			else
2195 				qreply(q, bp);
2196 			return (0);
2197 		}
2198 		freemsg(bp);
2199 		return (0);
2200 
2201 	case M_IOCACK:
2202 	case M_IOCNAK:
2203 		iocbp = (struct iocblk *)bp->b_rptr;
2204 		/*
2205 		 * If not waiting for ACK or NAK then just free msg.
2206 		 * If incorrect id sequence number then just free msg.
2207 		 * If already have ACK or NAK for user then this is a
2208 		 *    duplicate, display a warning and free the msg.
2209 		 */
2210 		mutex_enter(&stp->sd_lock);
2211 		if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk ||
2212 		    (stp->sd_iocid != iocbp->ioc_id)) {
2213 			/*
2214 			 * If the ACK/NAK is a dup, display a message
2215 			 * Dup is when sd_iocid == ioc_id, and
2216 			 * sd_iocblk == <valid ptr> or -1 (the former
2217 			 * is when an ioctl has been put on the stream
2218 			 * head, but has not yet been consumed, the
2219 			 * later is when it has been consumed).
2220 			 */
2221 			if ((stp->sd_iocid == iocbp->ioc_id) &&
2222 			    (stp->sd_iocblk != NULL)) {
2223 				log_dupioc(q, bp);
2224 			}
2225 			freemsg(bp);
2226 			mutex_exit(&stp->sd_lock);
2227 			return (0);
2228 		}
2229 
2230 		/*
2231 		 * Assign ACK or NAK to user and wake up.
2232 		 */
2233 		stp->sd_iocblk = bp;
2234 		cv_broadcast(&stp->sd_monitor);
2235 		mutex_exit(&stp->sd_lock);
2236 		return (0);
2237 
2238 	case M_COPYIN:
2239 	case M_COPYOUT:
2240 		reqp = (struct copyreq *)bp->b_rptr;
2241 
2242 		/*
2243 		 * If not waiting for ACK or NAK then just fail request.
2244 		 * If already have ACK, NAK, or copy request, then just
2245 		 * fail request.
2246 		 * If incorrect id sequence number then just fail request.
2247 		 */
2248 		mutex_enter(&stp->sd_lock);
2249 		if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk ||
2250 		    (stp->sd_iocid != reqp->cq_id)) {
2251 			if (bp->b_cont) {
2252 				freemsg(bp->b_cont);
2253 				bp->b_cont = NULL;
2254 			}
2255 			bp->b_datap->db_type = M_IOCDATA;
2256 			bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
2257 			resp = (struct copyresp *)bp->b_rptr;
2258 			resp->cp_rval = (caddr_t)1;	/* failure */
2259 			mutex_exit(&stp->sd_lock);
2260 			putnext(stp->sd_wrq, bp);
2261 			return (0);
2262 		}
2263 
2264 		/*
2265 		 * Assign copy request to user and wake up.
2266 		 */
2267 		stp->sd_iocblk = bp;
2268 		cv_broadcast(&stp->sd_monitor);
2269 		mutex_exit(&stp->sd_lock);
2270 		return (0);
2271 
2272 	case M_SETOPTS:
2273 		/*
2274 		 * Set stream head options (read option, write offset,
2275 		 * min/max packet size, and/or high/low water marks for
2276 		 * the read side only).
2277 		 */
2278 
2279 		bpri = 0;
2280 		sop = (struct stroptions *)bp->b_rptr;
2281 		mutex_enter(&stp->sd_lock);
2282 		if (sop->so_flags & SO_READOPT) {
2283 			switch (sop->so_readopt & RMODEMASK) {
2284 			case RNORM:
2285 				stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS);
2286 				break;
2287 
2288 			case RMSGD:
2289 				stp->sd_read_opt =
2290 				    ((stp->sd_read_opt & ~RD_MSGNODIS) |
2291 				    RD_MSGDIS);
2292 				break;
2293 
2294 			case RMSGN:
2295 				stp->sd_read_opt =
2296 				    ((stp->sd_read_opt & ~RD_MSGDIS) |
2297 				    RD_MSGNODIS);
2298 				break;
2299 			}
2300 			switch (sop->so_readopt & RPROTMASK) {
2301 			case RPROTNORM:
2302 				stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS);
2303 				break;
2304 
2305 			case RPROTDAT:
2306 				stp->sd_read_opt =
2307 				    ((stp->sd_read_opt & ~RD_PROTDIS) |
2308 				    RD_PROTDAT);
2309 				break;
2310 
2311 			case RPROTDIS:
2312 				stp->sd_read_opt =
2313 				    ((stp->sd_read_opt & ~RD_PROTDAT) |
2314 				    RD_PROTDIS);
2315 				break;
2316 			}
2317 			switch (sop->so_readopt & RFLUSHMASK) {
2318 			case RFLUSHPCPROT:
2319 				/*
2320 				 * This sets the stream head to NOT flush
2321 				 * M_PCPROTO messages.
2322 				 */
2323 				stp->sd_read_opt |= RFLUSHPCPROT;
2324 				break;
2325 			}
2326 		}
2327 		if (sop->so_flags & SO_ERROPT) {
2328 			switch (sop->so_erropt & RERRMASK) {
2329 			case RERRNORM:
2330 				stp->sd_flag &= ~STRDERRNONPERSIST;
2331 				break;
2332 			case RERRNONPERSIST:
2333 				stp->sd_flag |= STRDERRNONPERSIST;
2334 				break;
2335 			}
2336 			switch (sop->so_erropt & WERRMASK) {
2337 			case WERRNORM:
2338 				stp->sd_flag &= ~STWRERRNONPERSIST;
2339 				break;
2340 			case WERRNONPERSIST:
2341 				stp->sd_flag |= STWRERRNONPERSIST;
2342 				break;
2343 			}
2344 		}
2345 		if (sop->so_flags & SO_COPYOPT) {
2346 			if (sop->so_copyopt & ZCVMSAFE) {
2347 				stp->sd_copyflag |= STZCVMSAFE;
2348 				stp->sd_copyflag &= ~STZCVMUNSAFE;
2349 			} else if (sop->so_copyopt & ZCVMUNSAFE) {
2350 				stp->sd_copyflag |= STZCVMUNSAFE;
2351 				stp->sd_copyflag &= ~STZCVMSAFE;
2352 			}
2353 
2354 			if (sop->so_copyopt & COPYCACHED) {
2355 				stp->sd_copyflag |= STRCOPYCACHED;
2356 			}
2357 		}
2358 		if (sop->so_flags & SO_WROFF)
2359 			stp->sd_wroff = sop->so_wroff;
2360 		if (sop->so_flags & SO_TAIL)
2361 			stp->sd_tail = sop->so_tail;
2362 		if (sop->so_flags & SO_MINPSZ)
2363 			q->q_minpsz = sop->so_minpsz;
2364 		if (sop->so_flags & SO_MAXPSZ)
2365 			q->q_maxpsz = sop->so_maxpsz;
2366 		if (sop->so_flags & SO_MAXBLK)
2367 			stp->sd_maxblk = sop->so_maxblk;
2368 		if (sop->so_flags & SO_HIWAT) {
2369 			if (sop->so_flags & SO_BAND) {
2370 				if (strqset(q, QHIWAT,
2371 				    sop->so_band, sop->so_hiwat)) {
2372 					cmn_err(CE_WARN, "strrput: could not "
2373 					    "allocate qband\n");
2374 				} else {
2375 					bpri = sop->so_band;
2376 				}
2377 			} else {
2378 				q->q_hiwat = sop->so_hiwat;
2379 			}
2380 		}
2381 		if (sop->so_flags & SO_LOWAT) {
2382 			if (sop->so_flags & SO_BAND) {
2383 				if (strqset(q, QLOWAT,
2384 				    sop->so_band, sop->so_lowat)) {
2385 					cmn_err(CE_WARN, "strrput: could not "
2386 					    "allocate qband\n");
2387 				} else {
2388 					bpri = sop->so_band;
2389 				}
2390 			} else {
2391 				q->q_lowat = sop->so_lowat;
2392 			}
2393 		}
2394 		if (sop->so_flags & SO_MREADON)
2395 			stp->sd_flag |= SNDMREAD;
2396 		if (sop->so_flags & SO_MREADOFF)
2397 			stp->sd_flag &= ~SNDMREAD;
2398 		if (sop->so_flags & SO_NDELON)
2399 			stp->sd_flag |= OLDNDELAY;
2400 		if (sop->so_flags & SO_NDELOFF)
2401 			stp->sd_flag &= ~OLDNDELAY;
2402 		if (sop->so_flags & SO_ISTTY)
2403 			stp->sd_flag |= STRISTTY;
2404 		if (sop->so_flags & SO_ISNTTY)
2405 			stp->sd_flag &= ~STRISTTY;
2406 		if (sop->so_flags & SO_TOSTOP)
2407 			stp->sd_flag |= STRTOSTOP;
2408 		if (sop->so_flags & SO_TONSTOP)
2409 			stp->sd_flag &= ~STRTOSTOP;
2410 		if (sop->so_flags & SO_DELIM)
2411 			stp->sd_flag |= STRDELIM;
2412 		if (sop->so_flags & SO_NODELIM)
2413 			stp->sd_flag &= ~STRDELIM;
2414 
2415 		mutex_exit(&stp->sd_lock);
2416 		freemsg(bp);
2417 
2418 		/* Check backenable in case the water marks changed */
2419 		qbackenable(q, bpri);
2420 		return (0);
2421 
2422 	/*
2423 	 * The following set of cases deal with situations where two stream
2424 	 * heads are connected to each other (twisted streams).  These messages
2425 	 * have no meaning at the stream head.
2426 	 */
2427 	case M_BREAK:
2428 	case M_CTL:
2429 	case M_DELAY:
2430 	case M_START:
2431 	case M_STOP:
2432 	case M_IOCDATA:
2433 	case M_STARTI:
2434 	case M_STOPI:
2435 		freemsg(bp);
2436 		return (0);
2437 
2438 	case M_IOCTL:
2439 		/*
2440 		 * Always NAK this condition
2441 		 * (makes no sense)
2442 		 * If there is one or more threads in the read side
2443 		 * rwnext we have to defer the nacking until that thread
2444 		 * returns (in strget).
2445 		 */
2446 		mutex_enter(&stp->sd_lock);
2447 		if (stp->sd_struiodnak != 0) {
2448 			/*
2449 			 * Defer NAK to the streamhead. Queue at the end
2450 			 * the list.
2451 			 */
2452 			mblk_t *mp = stp->sd_struionak;
2453 
2454 			while (mp && mp->b_next)
2455 				mp = mp->b_next;
2456 			if (mp)
2457 				mp->b_next = bp;
2458 			else
2459 				stp->sd_struionak = bp;
2460 			bp->b_next = NULL;
2461 			mutex_exit(&stp->sd_lock);
2462 			return (0);
2463 		}
2464 		mutex_exit(&stp->sd_lock);
2465 
2466 		bp->b_datap->db_type = M_IOCNAK;
2467 		/*
2468 		 * Protect against the driver passing up
2469 		 * messages after it has done a qprocsoff.
2470 		 */
2471 		if (_OTHERQ(q)->q_next == NULL)
2472 			freemsg(bp);
2473 		else
2474 			qreply(q, bp);
2475 		return (0);
2476 
2477 	default:
2478 #ifdef DEBUG
2479 		cmn_err(CE_WARN,
2480 		    "bad message type %x received at stream head\n",
2481 		    bp->b_datap->db_type);
2482 #endif
2483 		freemsg(bp);
2484 		return (0);
2485 	}
2486 
2487 	/* NOTREACHED */
2488 }
2489 
2490 /*
2491  * Check if the stream pointed to by `stp' can be written to, and return an
2492  * error code if not.  If `eiohup' is set, then return EIO if STRHUP is set.
2493  * If `sigpipeok' is set and the SW_SIGPIPE option is enabled on the stream,
2494  * then always return EPIPE and send a SIGPIPE to the invoking thread.
2495  */
2496 static int
2497 strwriteable(struct stdata *stp, boolean_t eiohup, boolean_t sigpipeok)
2498 {
2499 	int error;
2500 
2501 	ASSERT(MUTEX_HELD(&stp->sd_lock));
2502 
2503 	/*
2504 	 * For modem support, POSIX states that on writes, EIO should
2505 	 * be returned if the stream has been hung up.
2506 	 */
2507 	if (eiohup && (stp->sd_flag & (STPLEX|STRHUP)) == STRHUP)
2508 		error = EIO;
2509 	else
2510 		error = strgeterr(stp, STRHUP|STPLEX|STWRERR, 0);
2511 
2512 	if (error != 0) {
2513 		if (!(stp->sd_flag & STPLEX) &&
2514 		    (stp->sd_wput_opt & SW_SIGPIPE) && sigpipeok) {
2515 			tsignal(curthread, SIGPIPE);
2516 			error = EPIPE;
2517 		}
2518 	}
2519 
2520 	return (error);
2521 }
2522 
2523 /*
2524  * Copyin and send data down a stream.
2525  * The caller will allocate and copyin any control part that precedes the
2526  * message and pass that in as mctl.
2527  *
2528  * Caller should *not* hold sd_lock.
2529  * When EWOULDBLOCK is returned the caller has to redo the canputnext
2530  * under sd_lock in order to avoid missing a backenabling wakeup.
2531  *
2532  * Use iosize = -1 to not send any M_DATA. iosize = 0 sends zero-length M_DATA.
2533  *
2534  * Set MSG_IGNFLOW in flags to ignore flow control for hipri messages.
2535  * For sync streams we can only ignore flow control by reverting to using
2536  * putnext.
2537  *
2538  * If sd_maxblk is less than *iosize this routine might return without
2539  * transferring all of *iosize. In all cases, on return *iosize will contain
2540  * the amount of data that was transferred.
2541  */
2542 static int
2543 strput(struct stdata *stp, mblk_t *mctl, struct uio *uiop, ssize_t *iosize,
2544     int b_flag, int pri, int flags)
2545 {
2546 	struiod_t uiod;
2547 	mblk_t *mp;
2548 	queue_t *wqp = stp->sd_wrq;
2549 	int error = 0;
2550 	ssize_t count = *iosize;
2551 
2552 	ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
2553 
2554 	if (uiop != NULL && count >= 0)
2555 		flags |= stp->sd_struiowrq ? STRUIO_POSTPONE : 0;
2556 
2557 	if (!(flags & STRUIO_POSTPONE)) {
2558 		/*
2559 		 * Use regular canputnext, strmakedata, putnext sequence.
2560 		 */
2561 		if (pri == 0) {
2562 			if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) {
2563 				freemsg(mctl);
2564 				return (EWOULDBLOCK);
2565 			}
2566 		} else {
2567 			if (!(flags & MSG_IGNFLOW) && !bcanputnext(wqp, pri)) {
2568 				freemsg(mctl);
2569 				return (EWOULDBLOCK);
2570 			}
2571 		}
2572 
2573 		if ((error = strmakedata(iosize, uiop, stp, flags,
2574 		    &mp)) != 0) {
2575 			freemsg(mctl);
2576 			/*
2577 			 * need to change return code to ENOMEM
2578 			 * so that this is not confused with
2579 			 * flow control, EAGAIN.
2580 			 */
2581 
2582 			if (error == EAGAIN)
2583 				return (ENOMEM);
2584 			else
2585 				return (error);
2586 		}
2587 		if (mctl != NULL) {
2588 			if (mctl->b_cont == NULL)
2589 				mctl->b_cont = mp;
2590 			else if (mp != NULL)
2591 				linkb(mctl, mp);
2592 			mp = mctl;
2593 		} else if (mp == NULL)
2594 			return (0);
2595 
2596 		mp->b_flag |= b_flag;
2597 		mp->b_band = (uchar_t)pri;
2598 
2599 		if (flags & MSG_IGNFLOW) {
2600 			/*
2601 			 * XXX Hack: Don't get stuck running service
2602 			 * procedures. This is needed for sockfs when
2603 			 * sending the unbind message out of the rput
2604 			 * procedure - we don't want a put procedure
2605 			 * to run service procedures.
2606 			 */
2607 			putnext(wqp, mp);
2608 		} else {
2609 			stream_willservice(stp);
2610 			putnext(wqp, mp);
2611 			stream_runservice(stp);
2612 		}
2613 		return (0);
2614 	}
2615 	/*
2616 	 * Stream supports rwnext() for the write side.
2617 	 */
2618 	if ((error = strmakedata(iosize, uiop, stp, flags, &mp)) != 0) {
2619 		freemsg(mctl);
2620 		/*
2621 		 * map EAGAIN to ENOMEM since EAGAIN means "flow controlled".
2622 		 */
2623 		return (error == EAGAIN ? ENOMEM : error);
2624 	}
2625 	if (mctl != NULL) {
2626 		if (mctl->b_cont == NULL)
2627 			mctl->b_cont = mp;
2628 		else if (mp != NULL)
2629 			linkb(mctl, mp);
2630 		mp = mctl;
2631 	} else if (mp == NULL) {
2632 		return (0);
2633 	}
2634 
2635 	mp->b_flag |= b_flag;
2636 	mp->b_band = (uchar_t)pri;
2637 
2638 	(void) uiodup(uiop, &uiod.d_uio, uiod.d_iov,
2639 	    sizeof (uiod.d_iov) / sizeof (*uiod.d_iov));
2640 	uiod.d_uio.uio_offset = 0;
2641 	uiod.d_mp = mp;
2642 	error = rwnext(wqp, &uiod);
2643 	if (! uiod.d_mp) {
2644 		uioskip(uiop, *iosize);
2645 		return (error);
2646 	}
2647 	ASSERT(mp == uiod.d_mp);
2648 	if (error == EINVAL) {
2649 		/*
2650 		 * The stream plumbing must have changed while
2651 		 * we were away, so just turn off rwnext()s.
2652 		 */
2653 		error = 0;
2654 	} else if (error == EBUSY || error == EWOULDBLOCK) {
2655 		/*
2656 		 * Couldn't enter a perimeter or took a page fault,
2657 		 * so fall-back to putnext().
2658 		 */
2659 		error = 0;
2660 	} else {
2661 		freemsg(mp);
2662 		return (error);
2663 	}
2664 	/* Have to check canput before consuming data from the uio */
2665 	if (pri == 0) {
2666 		if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) {
2667 			freemsg(mp);
2668 			return (EWOULDBLOCK);
2669 		}
2670 	} else {
2671 		if (!bcanputnext(wqp, pri) && !(flags & MSG_IGNFLOW)) {
2672 			freemsg(mp);
2673 			return (EWOULDBLOCK);
2674 		}
2675 	}
2676 	ASSERT(mp == uiod.d_mp);
2677 	/* Copyin data from the uio */
2678 	if ((error = struioget(wqp, mp, &uiod, 0)) != 0) {
2679 		freemsg(mp);
2680 		return (error);
2681 	}
2682 	uioskip(uiop, *iosize);
2683 	if (flags & MSG_IGNFLOW) {
2684 		/*
2685 		 * XXX Hack: Don't get stuck running service procedures.
2686 		 * This is needed for sockfs when sending the unbind message
2687 		 * out of the rput procedure - we don't want a put procedure
2688 		 * to run service procedures.
2689 		 */
2690 		putnext(wqp, mp);
2691 	} else {
2692 		stream_willservice(stp);
2693 		putnext(wqp, mp);
2694 		stream_runservice(stp);
2695 	}
2696 	return (0);
2697 }
2698 
2699 /*
2700  * Write attempts to break the write request into messages conforming
2701  * with the minimum and maximum packet sizes set downstream.
2702  *
2703  * Write will not block if downstream queue is full and
2704  * O_NDELAY is set, otherwise it will block waiting for the queue to get room.
2705  *
2706  * A write of zero bytes gets packaged into a zero length message and sent
2707  * downstream like any other message.
2708  *
2709  * If buffers of the requested sizes are not available, the write will
2710  * sleep until the buffers become available.
2711  *
2712  * Write (if specified) will supply a write offset in a message if it
2713  * makes sense. This can be specified by downstream modules as part of
2714  * a M_SETOPTS message.  Write will not supply the write offset if it
2715  * cannot supply any data in a buffer.  In other words, write will never
2716  * send down an empty packet due to a write offset.
2717  */
2718 /* ARGSUSED2 */
2719 int
2720 strwrite(struct vnode *vp, struct uio *uiop, cred_t *crp)
2721 {
2722 	return (strwrite_common(vp, uiop, crp, 0));
2723 }
2724 
2725 /* ARGSUSED2 */
2726 int
2727 strwrite_common(struct vnode *vp, struct uio *uiop, cred_t *crp, int wflag)
2728 {
2729 	struct stdata *stp;
2730 	struct queue *wqp;
2731 	ssize_t rmin, rmax;
2732 	ssize_t iosize;
2733 	int waitflag;
2734 	int tempmode;
2735 	int error = 0;
2736 	int b_flag;
2737 
2738 	ASSERT(vp->v_stream);
2739 	stp = vp->v_stream;
2740 
2741 	mutex_enter(&stp->sd_lock);
2742 
2743 	if ((error = i_straccess(stp, JCWRITE)) != 0) {
2744 		mutex_exit(&stp->sd_lock);
2745 		return (error);
2746 	}
2747 
2748 	if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
2749 		error = strwriteable(stp, B_TRUE, B_TRUE);
2750 		if (error != 0) {
2751 			mutex_exit(&stp->sd_lock);
2752 			return (error);
2753 		}
2754 	}
2755 
2756 	mutex_exit(&stp->sd_lock);
2757 
2758 	wqp = stp->sd_wrq;
2759 
2760 	/* get these values from them cached in the stream head */
2761 	rmin = stp->sd_qn_minpsz;
2762 	rmax = stp->sd_qn_maxpsz;
2763 
2764 	/*
2765 	 * Check the min/max packet size constraints.  If min packet size
2766 	 * is non-zero, the write cannot be split into multiple messages
2767 	 * and still guarantee the size constraints.
2768 	 */
2769 	TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_IN, "strwrite in:q %p", wqp);
2770 
2771 	ASSERT((rmax >= 0) || (rmax == INFPSZ));
2772 	if (rmax == 0) {
2773 		return (0);
2774 	}
2775 	if (rmin > 0) {
2776 		if (uiop->uio_resid < rmin) {
2777 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2778 			    "strwrite out:q %p out %d error %d",
2779 			    wqp, 0, ERANGE);
2780 			return (ERANGE);
2781 		}
2782 		if ((rmax != INFPSZ) && (uiop->uio_resid > rmax)) {
2783 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2784 			    "strwrite out:q %p out %d error %d",
2785 			    wqp, 1, ERANGE);
2786 			return (ERANGE);
2787 		}
2788 	}
2789 
2790 	/*
2791 	 * Do until count satisfied or error.
2792 	 */
2793 	waitflag = WRITEWAIT | wflag;
2794 	if (stp->sd_flag & OLDNDELAY)
2795 		tempmode = uiop->uio_fmode & ~FNDELAY;
2796 	else
2797 		tempmode = uiop->uio_fmode;
2798 
2799 	if (rmax == INFPSZ)
2800 		rmax = uiop->uio_resid;
2801 
2802 	/*
2803 	 * Note that tempmode does not get used in strput/strmakedata
2804 	 * but only in strwaitq. The other routines use uio_fmode
2805 	 * unmodified.
2806 	 */
2807 
2808 	/* LINTED: constant in conditional context */
2809 	while (1) {	/* breaks when uio_resid reaches zero */
2810 		/*
2811 		 * Determine the size of the next message to be
2812 		 * packaged.  May have to break write into several
2813 		 * messages based on max packet size.
2814 		 */
2815 		iosize = MIN(uiop->uio_resid, rmax);
2816 
2817 		/*
2818 		 * Put block downstream when flow control allows it.
2819 		 */
2820 		if ((stp->sd_flag & STRDELIM) && (uiop->uio_resid == iosize))
2821 			b_flag = MSGDELIM;
2822 		else
2823 			b_flag = 0;
2824 
2825 		for (;;) {
2826 			int done = 0;
2827 
2828 			error = strput(stp, NULL, uiop, &iosize, b_flag, 0, 0);
2829 			if (error == 0)
2830 				break;
2831 			if (error != EWOULDBLOCK)
2832 				goto out;
2833 
2834 			mutex_enter(&stp->sd_lock);
2835 			/*
2836 			 * Check for a missed wakeup.
2837 			 * Needed since strput did not hold sd_lock across
2838 			 * the canputnext.
2839 			 */
2840 			if (canputnext(wqp)) {
2841 				/* Try again */
2842 				mutex_exit(&stp->sd_lock);
2843 				continue;
2844 			}
2845 			TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAIT,
2846 			    "strwrite wait:q %p wait", wqp);
2847 			if ((error = strwaitq(stp, waitflag, (ssize_t)0,
2848 			    tempmode, -1, &done)) != 0 || done) {
2849 				mutex_exit(&stp->sd_lock);
2850 				if ((vp->v_type == VFIFO) &&
2851 				    (uiop->uio_fmode & FNDELAY) &&
2852 				    (error == EAGAIN))
2853 					error = 0;
2854 				goto out;
2855 			}
2856 			TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAKE,
2857 			    "strwrite wake:q %p awakes", wqp);
2858 			if ((error = i_straccess(stp, JCWRITE)) != 0) {
2859 				mutex_exit(&stp->sd_lock);
2860 				goto out;
2861 			}
2862 			mutex_exit(&stp->sd_lock);
2863 		}
2864 		waitflag |= NOINTR;
2865 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRWRITE_RESID,
2866 		    "strwrite resid:q %p uiop %p", wqp, uiop);
2867 		if (uiop->uio_resid) {
2868 			/* Recheck for errors - needed for sockets */
2869 			if ((stp->sd_wput_opt & SW_RECHECK_ERR) &&
2870 			    (stp->sd_flag & (STWRERR|STRHUP|STPLEX))) {
2871 				mutex_enter(&stp->sd_lock);
2872 				error = strwriteable(stp, B_FALSE, B_TRUE);
2873 				mutex_exit(&stp->sd_lock);
2874 				if (error != 0)
2875 					return (error);
2876 			}
2877 			continue;
2878 		}
2879 		break;
2880 	}
2881 out:
2882 	/*
2883 	 * For historical reasons, applications expect EAGAIN when a data
2884 	 * mblk_t cannot be allocated, so change ENOMEM back to EAGAIN.
2885 	 */
2886 	if (error == ENOMEM)
2887 		error = EAGAIN;
2888 	TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2889 	    "strwrite out:q %p out %d error %d", wqp, 2, error);
2890 	return (error);
2891 }
2892 
2893 /*
2894  * Stream head write service routine.
2895  * Its job is to wake up any sleeping writers when a queue
2896  * downstream needs data (part of the flow control in putq and getq).
2897  * It also must wake anyone sleeping on a poll().
2898  * For stream head right below mux module, it must also invoke put procedure
2899  * of next downstream module.
2900  */
2901 int
2902 strwsrv(queue_t *q)
2903 {
2904 	struct stdata *stp;
2905 	queue_t *tq;
2906 	qband_t *qbp;
2907 	int i;
2908 	qband_t *myqbp;
2909 	int isevent;
2910 	unsigned char	qbf[NBAND];	/* band flushing backenable flags */
2911 
2912 	TRACE_1(TR_FAC_STREAMS_FR,
2913 	    TR_STRWSRV, "strwsrv:q %p", q);
2914 	stp = (struct stdata *)q->q_ptr;
2915 	ASSERT(qclaimed(q));
2916 	mutex_enter(&stp->sd_lock);
2917 	ASSERT(!(stp->sd_flag & STPLEX));
2918 
2919 	if (stp->sd_flag & WSLEEP) {
2920 		stp->sd_flag &= ~WSLEEP;
2921 		cv_broadcast(&q->q_wait);
2922 	}
2923 	mutex_exit(&stp->sd_lock);
2924 
2925 	/* The other end of a stream pipe went away. */
2926 	if ((tq = q->q_next) == NULL) {
2927 		return (0);
2928 	}
2929 
2930 	/* Find the next module forward that has a service procedure */
2931 	claimstr(q);
2932 	tq = q->q_nfsrv;
2933 	ASSERT(tq != NULL);
2934 
2935 	if ((q->q_flag & QBACK)) {
2936 		if ((tq->q_flag & QFULL)) {
2937 			mutex_enter(QLOCK(tq));
2938 			if (!(tq->q_flag & QFULL)) {
2939 				mutex_exit(QLOCK(tq));
2940 				goto wakeup;
2941 			}
2942 			/*
2943 			 * The queue must have become full again. Set QWANTW
2944 			 * again so strwsrv will be back enabled when
2945 			 * the queue becomes non-full next time.
2946 			 */
2947 			tq->q_flag |= QWANTW;
2948 			mutex_exit(QLOCK(tq));
2949 		} else {
2950 		wakeup:
2951 			pollwakeup(&stp->sd_pollist, POLLWRNORM);
2952 			mutex_enter(&stp->sd_lock);
2953 			if (stp->sd_sigflags & S_WRNORM)
2954 				strsendsig(stp->sd_siglist, S_WRNORM, 0, 0);
2955 			mutex_exit(&stp->sd_lock);
2956 		}
2957 	}
2958 
2959 	isevent = 0;
2960 	i = 1;
2961 	bzero((caddr_t)qbf, NBAND);
2962 	mutex_enter(QLOCK(tq));
2963 	if ((myqbp = q->q_bandp) != NULL)
2964 		for (qbp = tq->q_bandp; qbp && myqbp; qbp = qbp->qb_next) {
2965 			ASSERT(myqbp);
2966 			if ((myqbp->qb_flag & QB_BACK)) {
2967 				if (qbp->qb_flag & QB_FULL) {
2968 					/*
2969 					 * The band must have become full again.
2970 					 * Set QB_WANTW again so strwsrv will
2971 					 * be back enabled when the band becomes
2972 					 * non-full next time.
2973 					 */
2974 					qbp->qb_flag |= QB_WANTW;
2975 				} else {
2976 					isevent = 1;
2977 					qbf[i] = 1;
2978 				}
2979 			}
2980 			myqbp = myqbp->qb_next;
2981 			i++;
2982 		}
2983 	mutex_exit(QLOCK(tq));
2984 
2985 	if (isevent) {
2986 		for (i = tq->q_nband; i; i--) {
2987 			if (qbf[i]) {
2988 				pollwakeup(&stp->sd_pollist, POLLWRBAND);
2989 				mutex_enter(&stp->sd_lock);
2990 				if (stp->sd_sigflags & S_WRBAND)
2991 					strsendsig(stp->sd_siglist, S_WRBAND,
2992 					    (uchar_t)i, 0);
2993 				mutex_exit(&stp->sd_lock);
2994 			}
2995 		}
2996 	}
2997 
2998 	releasestr(q);
2999 	return (0);
3000 }
3001 
3002 /*
3003  * Special case of strcopyin/strcopyout for copying
3004  * struct strioctl that can deal with both data
3005  * models.
3006  */
3007 
3008 #ifdef	_LP64
3009 
3010 static int
3011 strcopyin_strioctl(void *from, void *to, int flag, int copyflag)
3012 {
3013 	struct	strioctl32 strioc32;
3014 	struct	strioctl *striocp;
3015 
3016 	if (copyflag & U_TO_K) {
3017 		ASSERT((copyflag & K_TO_K) == 0);
3018 
3019 		if ((flag & FMODELS) == DATAMODEL_ILP32) {
3020 			if (copyin(from, &strioc32, sizeof (strioc32)))
3021 				return (EFAULT);
3022 
3023 			striocp = (struct strioctl *)to;
3024 			striocp->ic_cmd	= strioc32.ic_cmd;
3025 			striocp->ic_timout = strioc32.ic_timout;
3026 			striocp->ic_len	= strioc32.ic_len;
3027 			striocp->ic_dp	= (char *)(uintptr_t)strioc32.ic_dp;
3028 
3029 		} else { /* NATIVE data model */
3030 			if (copyin(from, to, sizeof (struct strioctl))) {
3031 				return (EFAULT);
3032 			} else {
3033 				return (0);
3034 			}
3035 		}
3036 	} else {
3037 		ASSERT(copyflag & K_TO_K);
3038 		bcopy(from, to, sizeof (struct strioctl));
3039 	}
3040 	return (0);
3041 }
3042 
3043 static int
3044 strcopyout_strioctl(void *from, void *to, int flag, int copyflag)
3045 {
3046 	struct	strioctl32 strioc32;
3047 	struct	strioctl *striocp;
3048 
3049 	if (copyflag & U_TO_K) {
3050 		ASSERT((copyflag & K_TO_K) == 0);
3051 
3052 		if ((flag & FMODELS) == DATAMODEL_ILP32) {
3053 			striocp = (struct strioctl *)from;
3054 			strioc32.ic_cmd	= striocp->ic_cmd;
3055 			strioc32.ic_timout = striocp->ic_timout;
3056 			strioc32.ic_len	= striocp->ic_len;
3057 			strioc32.ic_dp	= (caddr32_t)(uintptr_t)striocp->ic_dp;
3058 			ASSERT((char *)(uintptr_t)strioc32.ic_dp ==
3059 			    striocp->ic_dp);
3060 
3061 			if (copyout(&strioc32, to, sizeof (strioc32)))
3062 				return (EFAULT);
3063 
3064 		} else { /* NATIVE data model */
3065 			if (copyout(from, to, sizeof (struct strioctl))) {
3066 				return (EFAULT);
3067 			} else {
3068 				return (0);
3069 			}
3070 		}
3071 	} else {
3072 		ASSERT(copyflag & K_TO_K);
3073 		bcopy(from, to, sizeof (struct strioctl));
3074 	}
3075 	return (0);
3076 }
3077 
3078 #else	/* ! _LP64 */
3079 
3080 /* ARGSUSED2 */
3081 static int
3082 strcopyin_strioctl(void *from, void *to, int flag, int copyflag)
3083 {
3084 	return (strcopyin(from, to, sizeof (struct strioctl), copyflag));
3085 }
3086 
3087 /* ARGSUSED2 */
3088 static int
3089 strcopyout_strioctl(void *from, void *to, int flag, int copyflag)
3090 {
3091 	return (strcopyout(from, to, sizeof (struct strioctl), copyflag));
3092 }
3093 
3094 #endif	/* _LP64 */
3095 
3096 /*
3097  * Determine type of job control semantics expected by user.  The
3098  * possibilities are:
3099  *	JCREAD	- Behaves like read() on fd; send SIGTTIN
3100  *	JCWRITE	- Behaves like write() on fd; send SIGTTOU if TOSTOP set
3101  *	JCSETP	- Sets a value in the stream; send SIGTTOU, ignore TOSTOP
3102  *	JCGETP	- Gets a value in the stream; no signals.
3103  * See straccess in strsubr.c for usage of these values.
3104  *
3105  * This routine also returns -1 for I_STR as a special case; the
3106  * caller must call again with the real ioctl number for
3107  * classification.
3108  */
3109 static int
3110 job_control_type(int cmd)
3111 {
3112 	switch (cmd) {
3113 	case I_STR:
3114 		return (-1);
3115 
3116 	case I_RECVFD:
3117 	case I_E_RECVFD:
3118 		return (JCREAD);
3119 
3120 	case I_FDINSERT:
3121 	case I_SENDFD:
3122 		return (JCWRITE);
3123 
3124 	case TCSETA:
3125 	case TCSETAW:
3126 	case TCSETAF:
3127 	case TCSBRK:
3128 	case TCXONC:
3129 	case TCFLSH:
3130 	case TCDSET:	/* Obsolete */
3131 	case TIOCSWINSZ:
3132 	case TCSETS:
3133 	case TCSETSW:
3134 	case TCSETSF:
3135 	case TIOCSETD:
3136 	case TIOCHPCL:
3137 	case TIOCSETP:
3138 	case TIOCSETN:
3139 	case TIOCEXCL:
3140 	case TIOCNXCL:
3141 	case TIOCFLUSH:
3142 	case TIOCSETC:
3143 	case TIOCLBIS:
3144 	case TIOCLBIC:
3145 	case TIOCLSET:
3146 	case TIOCSBRK:
3147 	case TIOCCBRK:
3148 	case TIOCSDTR:
3149 	case TIOCCDTR:
3150 	case TIOCSLTC:
3151 	case TIOCSTOP:
3152 	case TIOCSTART:
3153 	case TIOCSTI:
3154 	case TIOCSPGRP:
3155 	case TIOCMSET:
3156 	case TIOCMBIS:
3157 	case TIOCMBIC:
3158 	case TIOCREMOTE:
3159 	case TIOCSIGNAL:
3160 	case LDSETT:
3161 	case LDSMAP:	/* Obsolete */
3162 	case DIOCSETP:
3163 	case I_FLUSH:
3164 	case I_SRDOPT:
3165 	case I_SETSIG:
3166 	case I_SWROPT:
3167 	case I_FLUSHBAND:
3168 	case I_SETCLTIME:
3169 	case I_SERROPT:
3170 	case I_ESETSIG:
3171 	case FIONBIO:
3172 	case FIOASYNC:
3173 	case FIOSETOWN:
3174 	case JBOOT:	/* Obsolete */
3175 	case JTERM:	/* Obsolete */
3176 	case JTIMOM:	/* Obsolete */
3177 	case JZOMBOOT:	/* Obsolete */
3178 	case JAGENT:	/* Obsolete */
3179 	case JTRUN:	/* Obsolete */
3180 	case JXTPROTO:	/* Obsolete */
3181 		return (JCSETP);
3182 	}
3183 
3184 	return (JCGETP);
3185 }
3186 
3187 /*
3188  * ioctl for streams
3189  */
3190 int
3191 strioctl(struct vnode *vp, int cmd, intptr_t arg, int flag, int copyflag,
3192     cred_t *crp, int *rvalp)
3193 {
3194 	struct stdata *stp;
3195 	struct strcmd *scp;
3196 	struct strioctl strioc;
3197 	struct uio uio;
3198 	struct iovec iov;
3199 	int access;
3200 	mblk_t *mp;
3201 	int error = 0;
3202 	int done = 0;
3203 	ssize_t	rmin, rmax;
3204 	queue_t *wrq;
3205 	queue_t *rdq;
3206 	boolean_t kioctl = B_FALSE;
3207 	uint32_t auditing = AU_AUDITING();
3208 
3209 	if (flag & FKIOCTL) {
3210 		copyflag = K_TO_K;
3211 		kioctl = B_TRUE;
3212 	}
3213 	ASSERT(vp->v_stream);
3214 	ASSERT(copyflag == U_TO_K || copyflag == K_TO_K);
3215 	stp = vp->v_stream;
3216 
3217 	TRACE_3(TR_FAC_STREAMS_FR, TR_IOCTL_ENTER,
3218 	    "strioctl:stp %p cmd %X arg %lX", stp, cmd, arg);
3219 
3220 	/*
3221 	 * If the copy is kernel to kernel, make sure that the FNATIVE
3222 	 * flag is set.  After this it would be a serious error to have
3223 	 * no model flag.
3224 	 */
3225 	if (copyflag == K_TO_K)
3226 		flag = (flag & ~FMODELS) | FNATIVE;
3227 
3228 	ASSERT((flag & FMODELS) != 0);
3229 
3230 	wrq = stp->sd_wrq;
3231 	rdq = _RD(wrq);
3232 
3233 	access = job_control_type(cmd);
3234 
3235 	/* We should never see these here, should be handled by iwscn */
3236 	if (cmd == SRIOCSREDIR || cmd == SRIOCISREDIR)
3237 		return (EINVAL);
3238 
3239 	mutex_enter(&stp->sd_lock);
3240 	if ((access != -1) && ((error = i_straccess(stp, access)) != 0)) {
3241 		mutex_exit(&stp->sd_lock);
3242 		return (error);
3243 	}
3244 	mutex_exit(&stp->sd_lock);
3245 
3246 	/*
3247 	 * Check for sgttyb-related ioctls first, and complain as
3248 	 * necessary.
3249 	 */
3250 	switch (cmd) {
3251 	case TIOCGETP:
3252 	case TIOCSETP:
3253 	case TIOCSETN:
3254 		if (sgttyb_handling >= 2 && !sgttyb_complaint) {
3255 			sgttyb_complaint = B_TRUE;
3256 			cmn_err(CE_NOTE,
3257 			    "application used obsolete TIOC[GS]ET");
3258 		}
3259 		if (sgttyb_handling >= 3) {
3260 			tsignal(curthread, SIGSYS);
3261 			return (EIO);
3262 		}
3263 		break;
3264 	}
3265 
3266 	mutex_enter(&stp->sd_lock);
3267 
3268 	switch (cmd) {
3269 	case I_RECVFD:
3270 	case I_E_RECVFD:
3271 	case I_PEEK:
3272 	case I_NREAD:
3273 	case FIONREAD:
3274 	case FIORDCHK:
3275 	case I_ATMARK:
3276 	case FIONBIO:
3277 	case FIOASYNC:
3278 		if (stp->sd_flag & (STRDERR|STPLEX)) {
3279 			error = strgeterr(stp, STRDERR|STPLEX, 0);
3280 			if (error != 0) {
3281 				mutex_exit(&stp->sd_lock);
3282 				return (error);
3283 			}
3284 		}
3285 		break;
3286 
3287 	default:
3288 		if (stp->sd_flag & (STRDERR|STWRERR|STPLEX)) {
3289 			error = strgeterr(stp, STRDERR|STWRERR|STPLEX, 0);
3290 			if (error != 0) {
3291 				mutex_exit(&stp->sd_lock);
3292 				return (error);
3293 			}
3294 		}
3295 	}
3296 
3297 	mutex_exit(&stp->sd_lock);
3298 
3299 	switch (cmd) {
3300 	default:
3301 		/*
3302 		 * The stream head has hardcoded knowledge of a
3303 		 * miscellaneous collection of terminal-, keyboard- and
3304 		 * mouse-related ioctls, enumerated below.  This hardcoded
3305 		 * knowledge allows the stream head to automatically
3306 		 * convert transparent ioctl requests made by userland
3307 		 * programs into I_STR ioctls which many old STREAMS
3308 		 * modules and drivers require.
3309 		 *
3310 		 * No new ioctls should ever be added to this list.
3311 		 * Instead, the STREAMS module or driver should be written
3312 		 * to either handle transparent ioctls or require any
3313 		 * userland programs to use I_STR ioctls (by returning
3314 		 * EINVAL to any transparent ioctl requests).
3315 		 *
3316 		 * More importantly, removing ioctls from this list should
3317 		 * be done with the utmost care, since our STREAMS modules
3318 		 * and drivers *count* on the stream head performing this
3319 		 * conversion, and thus may panic while processing
3320 		 * transparent ioctl request for one of these ioctls (keep
3321 		 * in mind that third party modules and drivers may have
3322 		 * similar problems).
3323 		 */
3324 		if (((cmd & IOCTYPE) == LDIOC) ||
3325 		    ((cmd & IOCTYPE) == tIOC) ||
3326 		    ((cmd & IOCTYPE) == TIOC) ||
3327 		    ((cmd & IOCTYPE) == KIOC) ||
3328 		    ((cmd & IOCTYPE) == MSIOC) ||
3329 		    ((cmd & IOCTYPE) == VUIOC)) {
3330 			/*
3331 			 * The ioctl is a tty ioctl - set up strioc buffer
3332 			 * and call strdoioctl() to do the work.
3333 			 */
3334 			if (stp->sd_flag & STRHUP)
3335 				return (ENXIO);
3336 			strioc.ic_cmd = cmd;
3337 			strioc.ic_timout = INFTIM;
3338 
3339 			switch (cmd) {
3340 
3341 			case TCXONC:
3342 			case TCSBRK:
3343 			case TCFLSH:
3344 			case TCDSET:
3345 				{
3346 				int native_arg = (int)arg;
3347 				strioc.ic_len = sizeof (int);
3348 				strioc.ic_dp = (char *)&native_arg;
3349 				return (strdoioctl(stp, &strioc, flag,
3350 				    K_TO_K, crp, rvalp));
3351 				}
3352 
3353 			case TCSETA:
3354 			case TCSETAW:
3355 			case TCSETAF:
3356 				strioc.ic_len = sizeof (struct termio);
3357 				strioc.ic_dp = (char *)arg;
3358 				return (strdoioctl(stp, &strioc, flag,
3359 				    copyflag, crp, rvalp));
3360 
3361 			case TCSETS:
3362 			case TCSETSW:
3363 			case TCSETSF:
3364 				strioc.ic_len = sizeof (struct termios);
3365 				strioc.ic_dp = (char *)arg;
3366 				return (strdoioctl(stp, &strioc, flag,
3367 				    copyflag, crp, rvalp));
3368 
3369 			case LDSETT:
3370 				strioc.ic_len = sizeof (struct termcb);
3371 				strioc.ic_dp = (char *)arg;
3372 				return (strdoioctl(stp, &strioc, flag,
3373 				    copyflag, crp, rvalp));
3374 
3375 			case TIOCSETP:
3376 				strioc.ic_len = sizeof (struct sgttyb);
3377 				strioc.ic_dp = (char *)arg;
3378 				return (strdoioctl(stp, &strioc, flag,
3379 				    copyflag, crp, rvalp));
3380 
3381 			case TIOCSTI:
3382 				if ((flag & FREAD) == 0 &&
3383 				    secpolicy_sti(crp) != 0) {
3384 					return (EPERM);
3385 				}
3386 				mutex_enter(&stp->sd_lock);
3387 				mutex_enter(&curproc->p_splock);
3388 				if (stp->sd_sidp != curproc->p_sessp->s_sidp &&
3389 				    secpolicy_sti(crp) != 0) {
3390 					mutex_exit(&curproc->p_splock);
3391 					mutex_exit(&stp->sd_lock);
3392 					return (EACCES);
3393 				}
3394 				mutex_exit(&curproc->p_splock);
3395 				mutex_exit(&stp->sd_lock);
3396 
3397 				strioc.ic_len = sizeof (char);
3398 				strioc.ic_dp = (char *)arg;
3399 				return (strdoioctl(stp, &strioc, flag,
3400 				    copyflag, crp, rvalp));
3401 
3402 			case TIOCSWINSZ:
3403 				strioc.ic_len = sizeof (struct winsize);
3404 				strioc.ic_dp = (char *)arg;
3405 				return (strdoioctl(stp, &strioc, flag,
3406 				    copyflag, crp, rvalp));
3407 
3408 			case TIOCSSIZE:
3409 				strioc.ic_len = sizeof (struct ttysize);
3410 				strioc.ic_dp = (char *)arg;
3411 				return (strdoioctl(stp, &strioc, flag,
3412 				    copyflag, crp, rvalp));
3413 
3414 			case TIOCSSOFTCAR:
3415 			case KIOCTRANS:
3416 			case KIOCTRANSABLE:
3417 			case KIOCCMD:
3418 			case KIOCSDIRECT:
3419 			case KIOCSCOMPAT:
3420 			case KIOCSKABORTEN:
3421 			case KIOCSRPTDELAY:
3422 			case KIOCSRPTRATE:
3423 			case VUIDSFORMAT:
3424 			case TIOCSPPS:
3425 				strioc.ic_len = sizeof (int);
3426 				strioc.ic_dp = (char *)arg;
3427 				return (strdoioctl(stp, &strioc, flag,
3428 				    copyflag, crp, rvalp));
3429 
3430 			case KIOCSETKEY:
3431 			case KIOCGETKEY:
3432 				strioc.ic_len = sizeof (struct kiockey);
3433 				strioc.ic_dp = (char *)arg;
3434 				return (strdoioctl(stp, &strioc, flag,
3435 				    copyflag, crp, rvalp));
3436 
3437 			case KIOCSKEY:
3438 			case KIOCGKEY:
3439 				strioc.ic_len = sizeof (struct kiockeymap);
3440 				strioc.ic_dp = (char *)arg;
3441 				return (strdoioctl(stp, &strioc, flag,
3442 				    copyflag, crp, rvalp));
3443 
3444 			case KIOCSLED:
3445 				/* arg is a pointer to char */
3446 				strioc.ic_len = sizeof (char);
3447 				strioc.ic_dp = (char *)arg;
3448 				return (strdoioctl(stp, &strioc, flag,
3449 				    copyflag, crp, rvalp));
3450 
3451 			case MSIOSETPARMS:
3452 				strioc.ic_len = sizeof (Ms_parms);
3453 				strioc.ic_dp = (char *)arg;
3454 				return (strdoioctl(stp, &strioc, flag,
3455 				    copyflag, crp, rvalp));
3456 
3457 			case VUIDSADDR:
3458 			case VUIDGADDR:
3459 				strioc.ic_len = sizeof (struct vuid_addr_probe);
3460 				strioc.ic_dp = (char *)arg;
3461 				return (strdoioctl(stp, &strioc, flag,
3462 				    copyflag, crp, rvalp));
3463 
3464 			/*
3465 			 * These M_IOCTL's don't require any data to be sent
3466 			 * downstream, and the driver will allocate and link
3467 			 * on its own mblk_t upon M_IOCACK -- thus we set
3468 			 * ic_len to zero and set ic_dp to arg so we know
3469 			 * where to copyout to later.
3470 			 */
3471 			case TIOCGSOFTCAR:
3472 			case TIOCGWINSZ:
3473 			case TIOCGSIZE:
3474 			case KIOCGTRANS:
3475 			case KIOCGTRANSABLE:
3476 			case KIOCTYPE:
3477 			case KIOCGDIRECT:
3478 			case KIOCGCOMPAT:
3479 			case KIOCLAYOUT:
3480 			case KIOCGLED:
3481 			case MSIOGETPARMS:
3482 			case MSIOBUTTONS:
3483 			case VUIDGFORMAT:
3484 			case TIOCGPPS:
3485 			case TIOCGPPSEV:
3486 			case TCGETA:
3487 			case TCGETS:
3488 			case LDGETT:
3489 			case TIOCGETP:
3490 			case KIOCGRPTDELAY:
3491 			case KIOCGRPTRATE:
3492 				strioc.ic_len = 0;
3493 				strioc.ic_dp = (char *)arg;
3494 				return (strdoioctl(stp, &strioc, flag,
3495 				    copyflag, crp, rvalp));
3496 			}
3497 		}
3498 
3499 		/*
3500 		 * Unknown cmd - send it down as a transparent ioctl.
3501 		 */
3502 		strioc.ic_cmd = cmd;
3503 		strioc.ic_timout = INFTIM;
3504 		strioc.ic_len = TRANSPARENT;
3505 		strioc.ic_dp = (char *)&arg;
3506 
3507 		return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp));
3508 
3509 	case I_STR:
3510 		/*
3511 		 * Stream ioctl.  Read in an strioctl buffer from the user
3512 		 * along with any data specified and send it downstream.
3513 		 * Strdoioctl will wait allow only one ioctl message at
3514 		 * a time, and waits for the acknowledgement.
3515 		 */
3516 
3517 		if (stp->sd_flag & STRHUP)
3518 			return (ENXIO);
3519 
3520 		error = strcopyin_strioctl((void *)arg, &strioc, flag,
3521 		    copyflag);
3522 		if (error != 0)
3523 			return (error);
3524 
3525 		if ((strioc.ic_len < 0) || (strioc.ic_timout < -1))
3526 			return (EINVAL);
3527 
3528 		access = job_control_type(strioc.ic_cmd);
3529 		mutex_enter(&stp->sd_lock);
3530 		if ((access != -1) &&
3531 		    ((error = i_straccess(stp, access)) != 0)) {
3532 			mutex_exit(&stp->sd_lock);
3533 			return (error);
3534 		}
3535 		mutex_exit(&stp->sd_lock);
3536 
3537 		/*
3538 		 * The I_STR facility provides a trap door for malicious
3539 		 * code to send down bogus streamio(7I) ioctl commands to
3540 		 * unsuspecting STREAMS modules and drivers which expect to
3541 		 * only get these messages from the stream head.
3542 		 * Explicitly prohibit any streamio ioctls which can be
3543 		 * passed downstream by the stream head.  Note that we do
3544 		 * not block all streamio ioctls because the ioctl
3545 		 * numberspace is not well managed and thus it's possible
3546 		 * that a module or driver's ioctl numbers may accidentally
3547 		 * collide with them.
3548 		 */
3549 		switch (strioc.ic_cmd) {
3550 		case I_LINK:
3551 		case I_PLINK:
3552 		case I_UNLINK:
3553 		case I_PUNLINK:
3554 		case _I_GETPEERCRED:
3555 		case _I_PLINK_LH:
3556 			return (EINVAL);
3557 		}
3558 
3559 		error = strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp);
3560 		if (error == 0) {
3561 			error = strcopyout_strioctl(&strioc, (void *)arg,
3562 			    flag, copyflag);
3563 		}
3564 		return (error);
3565 
3566 	case _I_CMD:
3567 		/*
3568 		 * Like I_STR, but without using M_IOC* messages and without
3569 		 * copyins/copyouts beyond the passed-in argument.
3570 		 */
3571 		if (stp->sd_flag & STRHUP)
3572 			return (ENXIO);
3573 
3574 		if ((scp = kmem_alloc(sizeof (strcmd_t), KM_NOSLEEP)) == NULL)
3575 			return (ENOMEM);
3576 
3577 		if (copyin((void *)arg, scp, sizeof (strcmd_t))) {
3578 			kmem_free(scp, sizeof (strcmd_t));
3579 			return (EFAULT);
3580 		}
3581 
3582 		access = job_control_type(scp->sc_cmd);
3583 		mutex_enter(&stp->sd_lock);
3584 		if (access != -1 && (error = i_straccess(stp, access)) != 0) {
3585 			mutex_exit(&stp->sd_lock);
3586 			kmem_free(scp, sizeof (strcmd_t));
3587 			return (error);
3588 		}
3589 		mutex_exit(&stp->sd_lock);
3590 
3591 		*rvalp = 0;
3592 		if ((error = strdocmd(stp, scp, crp)) == 0) {
3593 			if (copyout(scp, (void *)arg, sizeof (strcmd_t)))
3594 				error = EFAULT;
3595 		}
3596 		kmem_free(scp, sizeof (strcmd_t));
3597 		return (error);
3598 
3599 	case I_NREAD:
3600 		/*
3601 		 * Return number of bytes of data in first message
3602 		 * in queue in "arg" and return the number of messages
3603 		 * in queue in return value.
3604 		 */
3605 	{
3606 		size_t	size;
3607 		int	retval;
3608 		int	count = 0;
3609 
3610 		mutex_enter(QLOCK(rdq));
3611 
3612 		size = msgdsize(rdq->q_first);
3613 		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3614 			count++;
3615 
3616 		mutex_exit(QLOCK(rdq));
3617 		if (stp->sd_struiordq) {
3618 			infod_t infod;
3619 
3620 			infod.d_cmd = INFOD_COUNT;
3621 			infod.d_count = 0;
3622 			if (count == 0) {
3623 				infod.d_cmd |= INFOD_FIRSTBYTES;
3624 				infod.d_bytes = 0;
3625 			}
3626 			infod.d_res = 0;
3627 			(void) infonext(rdq, &infod);
3628 			count += infod.d_count;
3629 			if (infod.d_res & INFOD_FIRSTBYTES)
3630 				size = infod.d_bytes;
3631 		}
3632 
3633 		/*
3634 		 * Drop down from size_t to the "int" required by the
3635 		 * interface.  Cap at INT_MAX.
3636 		 */
3637 		retval = MIN(size, INT_MAX);
3638 		error = strcopyout(&retval, (void *)arg, sizeof (retval),
3639 		    copyflag);
3640 		if (!error)
3641 			*rvalp = count;
3642 		return (error);
3643 	}
3644 
3645 	case FIONREAD:
3646 		/*
3647 		 * Return number of bytes of data in all data messages
3648 		 * in queue in "arg".
3649 		 */
3650 	{
3651 		size_t	size = 0;
3652 		int	retval;
3653 
3654 		mutex_enter(QLOCK(rdq));
3655 		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3656 			size += msgdsize(mp);
3657 		mutex_exit(QLOCK(rdq));
3658 
3659 		if (stp->sd_struiordq) {
3660 			infod_t infod;
3661 
3662 			infod.d_cmd = INFOD_BYTES;
3663 			infod.d_res = 0;
3664 			infod.d_bytes = 0;
3665 			(void) infonext(rdq, &infod);
3666 			size += infod.d_bytes;
3667 		}
3668 
3669 		/*
3670 		 * Drop down from size_t to the "int" required by the
3671 		 * interface.  Cap at INT_MAX.
3672 		 */
3673 		retval = MIN(size, INT_MAX);
3674 		error = strcopyout(&retval, (void *)arg, sizeof (retval),
3675 		    copyflag);
3676 
3677 		*rvalp = 0;
3678 		return (error);
3679 	}
3680 	case FIORDCHK:
3681 		/*
3682 		 * FIORDCHK does not use arg value (like FIONREAD),
3683 		 * instead a count is returned. I_NREAD value may
3684 		 * not be accurate but safe. The real thing to do is
3685 		 * to add the msgdsizes of all data  messages until
3686 		 * a non-data message.
3687 		 */
3688 	{
3689 		size_t size = 0;
3690 
3691 		mutex_enter(QLOCK(rdq));
3692 		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3693 			size += msgdsize(mp);
3694 		mutex_exit(QLOCK(rdq));
3695 
3696 		if (stp->sd_struiordq) {
3697 			infod_t infod;
3698 
3699 			infod.d_cmd = INFOD_BYTES;
3700 			infod.d_res = 0;
3701 			infod.d_bytes = 0;
3702 			(void) infonext(rdq, &infod);
3703 			size += infod.d_bytes;
3704 		}
3705 
3706 		/*
3707 		 * Since ioctl returns an int, and memory sizes under
3708 		 * LP64 may not fit, we return INT_MAX if the count was
3709 		 * actually greater.
3710 		 */
3711 		*rvalp = MIN(size, INT_MAX);
3712 		return (0);
3713 	}
3714 
3715 	case I_FIND:
3716 		/*
3717 		 * Get module name.
3718 		 */
3719 	{
3720 		char mname[FMNAMESZ + 1];
3721 		queue_t *q;
3722 
3723 		error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg,
3724 		    mname, FMNAMESZ + 1, NULL);
3725 		if (error)
3726 			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
3727 
3728 		/*
3729 		 * Return EINVAL if we're handed a bogus module name.
3730 		 */
3731 		if (fmodsw_find(mname, FMODSW_LOAD) == NULL) {
3732 			TRACE_0(TR_FAC_STREAMS_FR,
3733 			    TR_I_CANT_FIND, "couldn't I_FIND");
3734 			return (EINVAL);
3735 		}
3736 
3737 		*rvalp = 0;
3738 
3739 		/* Look downstream to see if module is there. */
3740 		claimstr(stp->sd_wrq);
3741 		for (q = stp->sd_wrq->q_next; q; q = q->q_next) {
3742 			if (q->q_flag & QREADR) {
3743 				q = NULL;
3744 				break;
3745 			}
3746 			if (strcmp(mname, Q2NAME(q)) == 0)
3747 				break;
3748 		}
3749 		releasestr(stp->sd_wrq);
3750 
3751 		*rvalp = (q ? 1 : 0);
3752 		return (error);
3753 	}
3754 
3755 	case I_PUSH:
3756 	case __I_PUSH_NOCTTY:
3757 		/*
3758 		 * Push a module.
3759 		 * For the case __I_PUSH_NOCTTY push a module but
3760 		 * do not allocate controlling tty. See bugid 4025044
3761 		 */
3762 
3763 	{
3764 		char mname[FMNAMESZ + 1];
3765 		fmodsw_impl_t *fp;
3766 		dev_t dummydev;
3767 
3768 		if (stp->sd_flag & STRHUP)
3769 			return (ENXIO);
3770 
3771 		/*
3772 		 * Get module name and look up in fmodsw.
3773 		 */
3774 		error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg,
3775 		    mname, FMNAMESZ + 1, NULL);
3776 		if (error)
3777 			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
3778 
3779 		if ((fp = fmodsw_find(mname, FMODSW_HOLD | FMODSW_LOAD)) ==
3780 		    NULL)
3781 			return (EINVAL);
3782 
3783 		TRACE_2(TR_FAC_STREAMS_FR, TR_I_PUSH,
3784 		    "I_PUSH:fp %p stp %p", fp, stp);
3785 
3786 		if (error = strstartplumb(stp, flag, cmd)) {
3787 			fmodsw_rele(fp);
3788 			return (error);
3789 		}
3790 
3791 		/*
3792 		 * See if any more modules can be pushed on this stream.
3793 		 * Note that this check must be done after strstartplumb()
3794 		 * since otherwise multiple threads issuing I_PUSHes on
3795 		 * the same stream will be able to exceed nstrpush.
3796 		 */
3797 		mutex_enter(&stp->sd_lock);
3798 		if (stp->sd_pushcnt >= nstrpush) {
3799 			fmodsw_rele(fp);
3800 			strendplumb(stp);
3801 			mutex_exit(&stp->sd_lock);
3802 			return (EINVAL);
3803 		}
3804 		mutex_exit(&stp->sd_lock);
3805 
3806 		/*
3807 		 * Push new module and call its open routine
3808 		 * via qattach().  Modules don't change device
3809 		 * numbers, so just ignore dummydev here.
3810 		 */
3811 		dummydev = vp->v_rdev;
3812 		if ((error = qattach(rdq, &dummydev, 0, crp, fp,
3813 		    B_FALSE)) == 0) {
3814 			if (vp->v_type == VCHR && /* sorry, no pipes allowed */
3815 			    (cmd == I_PUSH) && (stp->sd_flag & STRISTTY)) {
3816 				/*
3817 				 * try to allocate it as a controlling terminal
3818 				 */
3819 				(void) strctty(stp);
3820 			}
3821 		}
3822 
3823 		mutex_enter(&stp->sd_lock);
3824 
3825 		/*
3826 		 * As a performance concern we are caching the values of
3827 		 * q_minpsz and q_maxpsz of the module below the stream
3828 		 * head in the stream head.
3829 		 */
3830 		mutex_enter(QLOCK(stp->sd_wrq->q_next));
3831 		rmin = stp->sd_wrq->q_next->q_minpsz;
3832 		rmax = stp->sd_wrq->q_next->q_maxpsz;
3833 		mutex_exit(QLOCK(stp->sd_wrq->q_next));
3834 
3835 		/* Do this processing here as a performance concern */
3836 		if (strmsgsz != 0) {
3837 			if (rmax == INFPSZ)
3838 				rmax = strmsgsz;
3839 			else  {
3840 				if (vp->v_type == VFIFO)
3841 					rmax = MIN(PIPE_BUF, rmax);
3842 				else	rmax = MIN(strmsgsz, rmax);
3843 			}
3844 		}
3845 
3846 		mutex_enter(QLOCK(wrq));
3847 		stp->sd_qn_minpsz = rmin;
3848 		stp->sd_qn_maxpsz = rmax;
3849 		mutex_exit(QLOCK(wrq));
3850 
3851 		strendplumb(stp);
3852 		mutex_exit(&stp->sd_lock);
3853 		return (error);
3854 	}
3855 
3856 	case I_POP:
3857 	{
3858 		queue_t	*q;
3859 
3860 		if (stp->sd_flag & STRHUP)
3861 			return (ENXIO);
3862 		if (!wrq->q_next)	/* for broken pipes */
3863 			return (EINVAL);
3864 
3865 		if (error = strstartplumb(stp, flag, cmd))
3866 			return (error);
3867 
3868 		/*
3869 		 * If there is an anchor on this stream and popping
3870 		 * the current module would attempt to pop through the
3871 		 * anchor, then disallow the pop unless we have sufficient
3872 		 * privileges; take the cheapest (non-locking) check
3873 		 * first.
3874 		 */
3875 		if (secpolicy_ip_config(crp, B_TRUE) != 0 ||
3876 		    (stp->sd_anchorzone != crgetzoneid(crp))) {
3877 			mutex_enter(&stp->sd_lock);
3878 			/*
3879 			 * Anchors only apply if there's at least one
3880 			 * module on the stream (sd_pushcnt > 0).
3881 			 */
3882 			if (stp->sd_pushcnt > 0 &&
3883 			    stp->sd_pushcnt == stp->sd_anchor &&
3884 			    stp->sd_vnode->v_type != VFIFO) {
3885 				strendplumb(stp);
3886 				mutex_exit(&stp->sd_lock);
3887 				if (stp->sd_anchorzone != crgetzoneid(crp))
3888 					return (EINVAL);
3889 				/* Audit and report error */
3890 				return (secpolicy_ip_config(crp, B_FALSE));
3891 			}
3892 			mutex_exit(&stp->sd_lock);
3893 		}
3894 
3895 		q = wrq->q_next;
3896 		TRACE_2(TR_FAC_STREAMS_FR, TR_I_POP,
3897 		    "I_POP:%p from %p", q, stp);
3898 		if (q->q_next == NULL || (q->q_flag & (QREADR|QISDRV))) {
3899 			error = EINVAL;
3900 		} else {
3901 			qdetach(_RD(q), 1, flag, crp, B_FALSE);
3902 			error = 0;
3903 		}
3904 		mutex_enter(&stp->sd_lock);
3905 
3906 		/*
3907 		 * As a performance concern we are caching the values of
3908 		 * q_minpsz and q_maxpsz of the module below the stream
3909 		 * head in the stream head.
3910 		 */
3911 		mutex_enter(QLOCK(wrq->q_next));
3912 		rmin = wrq->q_next->q_minpsz;
3913 		rmax = wrq->q_next->q_maxpsz;
3914 		mutex_exit(QLOCK(wrq->q_next));
3915 
3916 		/* Do this processing here as a performance concern */
3917 		if (strmsgsz != 0) {
3918 			if (rmax == INFPSZ)
3919 				rmax = strmsgsz;
3920 			else  {
3921 				if (vp->v_type == VFIFO)
3922 					rmax = MIN(PIPE_BUF, rmax);
3923 				else	rmax = MIN(strmsgsz, rmax);
3924 			}
3925 		}
3926 
3927 		mutex_enter(QLOCK(wrq));
3928 		stp->sd_qn_minpsz = rmin;
3929 		stp->sd_qn_maxpsz = rmax;
3930 		mutex_exit(QLOCK(wrq));
3931 
3932 		/* If we popped through the anchor, then reset the anchor. */
3933 		if (stp->sd_pushcnt < stp->sd_anchor) {
3934 			stp->sd_anchor = 0;
3935 			stp->sd_anchorzone = 0;
3936 		}
3937 		strendplumb(stp);
3938 		mutex_exit(&stp->sd_lock);
3939 		return (error);
3940 	}
3941 
3942 	case _I_MUXID2FD:
3943 	{
3944 		/*
3945 		 * Create a fd for a I_PLINK'ed lower stream with a given
3946 		 * muxid.  With the fd, application can send down ioctls,
3947 		 * like I_LIST, to the previously I_PLINK'ed stream.  Note
3948 		 * that after getting the fd, the application has to do an
3949 		 * I_PUNLINK on the muxid before it can do any operation
3950 		 * on the lower stream.  This is required by spec1170.
3951 		 *
3952 		 * The fd used to do this ioctl should point to the same
3953 		 * controlling device used to do the I_PLINK.  If it uses
3954 		 * a different stream or an invalid muxid, I_MUXID2FD will
3955 		 * fail.  The error code is set to EINVAL.
3956 		 *
3957 		 * The intended use of this interface is the following.
3958 		 * An application I_PLINK'ed a stream and exits.  The fd
3959 		 * to the lower stream is gone.  Another application
3960 		 * wants to get a fd to the lower stream, it uses I_MUXID2FD.
3961 		 */
3962 		int muxid = (int)arg;
3963 		int fd;
3964 		linkinfo_t *linkp;
3965 		struct file *fp;
3966 		netstack_t *ns;
3967 		str_stack_t *ss;
3968 
3969 		/*
3970 		 * Do not allow the wildcard muxid.  This ioctl is not
3971 		 * intended to find arbitrary link.
3972 		 */
3973 		if (muxid == 0) {
3974 			return (EINVAL);
3975 		}
3976 
3977 		ns = netstack_find_by_cred(crp);
3978 		ASSERT(ns != NULL);
3979 		ss = ns->netstack_str;
3980 		ASSERT(ss != NULL);
3981 
3982 		mutex_enter(&muxifier);
3983 		linkp = findlinks(vp->v_stream, muxid, LINKPERSIST, ss);
3984 		if (linkp == NULL) {
3985 			mutex_exit(&muxifier);
3986 			netstack_rele(ss->ss_netstack);
3987 			return (EINVAL);
3988 		}
3989 
3990 		if ((fd = ufalloc(0)) == -1) {
3991 			mutex_exit(&muxifier);
3992 			netstack_rele(ss->ss_netstack);
3993 			return (EMFILE);
3994 		}
3995 		fp = linkp->li_fpdown;
3996 		mutex_enter(&fp->f_tlock);
3997 		fp->f_count++;
3998 		mutex_exit(&fp->f_tlock);
3999 		mutex_exit(&muxifier);
4000 		setf(fd, fp);
4001 		*rvalp = fd;
4002 		netstack_rele(ss->ss_netstack);
4003 		return (0);
4004 	}
4005 
4006 	case _I_INSERT:
4007 	{
4008 		/*
4009 		 * To insert a module to a given position in a stream.
4010 		 * In the first release, only allow privileged user
4011 		 * to use this ioctl. Furthermore, the insert is only allowed
4012 		 * below an anchor if the zoneid is the same as the zoneid
4013 		 * which created the anchor.
4014 		 *
4015 		 * Note that we do not plan to support this ioctl
4016 		 * on pipes in the first release.  We want to learn more
4017 		 * about the implications of these ioctls before extending
4018 		 * their support.  And we do not think these features are
4019 		 * valuable for pipes.
4020 		 */
4021 		STRUCT_DECL(strmodconf, strmodinsert);
4022 		char mod_name[FMNAMESZ + 1];
4023 		fmodsw_impl_t *fp;
4024 		dev_t dummydev;
4025 		queue_t *tmp_wrq;
4026 		int pos;
4027 		boolean_t is_insert;
4028 
4029 		STRUCT_INIT(strmodinsert, flag);
4030 		if (stp->sd_flag & STRHUP)
4031 			return (ENXIO);
4032 		if (STRMATED(stp))
4033 			return (EINVAL);
4034 		if ((error = secpolicy_net_config(crp, B_FALSE)) != 0)
4035 			return (error);
4036 		if (stp->sd_anchor != 0 &&
4037 		    stp->sd_anchorzone != crgetzoneid(crp))
4038 			return (EINVAL);
4039 
4040 		error = strcopyin((void *)arg, STRUCT_BUF(strmodinsert),
4041 		    STRUCT_SIZE(strmodinsert), copyflag);
4042 		if (error)
4043 			return (error);
4044 
4045 		/*
4046 		 * Get module name and look up in fmodsw.
4047 		 */
4048 		error = (copyflag & U_TO_K ? copyinstr :
4049 		    copystr)(STRUCT_FGETP(strmodinsert, mod_name),
4050 		    mod_name, FMNAMESZ + 1, NULL);
4051 		if (error)
4052 			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
4053 
4054 		if ((fp = fmodsw_find(mod_name, FMODSW_HOLD | FMODSW_LOAD)) ==
4055 		    NULL)
4056 			return (EINVAL);
4057 
4058 		if (error = strstartplumb(stp, flag, cmd)) {
4059 			fmodsw_rele(fp);
4060 			return (error);
4061 		}
4062 
4063 		/*
4064 		 * Is this _I_INSERT just like an I_PUSH?  We need to know
4065 		 * this because we do some optimizations if this is a
4066 		 * module being pushed.
4067 		 */
4068 		pos = STRUCT_FGET(strmodinsert, pos);
4069 		is_insert = (pos != 0);
4070 
4071 		/*
4072 		 * Make sure pos is valid.  Even though it is not an I_PUSH,
4073 		 * we impose the same limit on the number of modules in a
4074 		 * stream.
4075 		 */
4076 		mutex_enter(&stp->sd_lock);
4077 		if (stp->sd_pushcnt >= nstrpush || pos < 0 ||
4078 		    pos > stp->sd_pushcnt) {
4079 			fmodsw_rele(fp);
4080 			strendplumb(stp);
4081 			mutex_exit(&stp->sd_lock);
4082 			return (EINVAL);
4083 		}
4084 		if (stp->sd_anchor != 0) {
4085 			/*
4086 			 * Is this insert below the anchor?
4087 			 * Pushcnt hasn't been increased yet hence
4088 			 * we test for greater than here, and greater or
4089 			 * equal after qattach.
4090 			 */
4091 			if (pos > (stp->sd_pushcnt - stp->sd_anchor) &&
4092 			    stp->sd_anchorzone != crgetzoneid(crp)) {
4093 				fmodsw_rele(fp);
4094 				strendplumb(stp);
4095 				mutex_exit(&stp->sd_lock);
4096 				return (EPERM);
4097 			}
4098 		}
4099 
4100 		mutex_exit(&stp->sd_lock);
4101 
4102 		/*
4103 		 * First find the correct position this module to
4104 		 * be inserted.  We don't need to call claimstr()
4105 		 * as the stream should not be changing at this point.
4106 		 *
4107 		 * Insert new module and call its open routine
4108 		 * via qattach().  Modules don't change device
4109 		 * numbers, so just ignore dummydev here.
4110 		 */
4111 		for (tmp_wrq = stp->sd_wrq; pos > 0;
4112 		    tmp_wrq = tmp_wrq->q_next, pos--) {
4113 			ASSERT(SAMESTR(tmp_wrq));
4114 		}
4115 		dummydev = vp->v_rdev;
4116 		if ((error = qattach(_RD(tmp_wrq), &dummydev, 0, crp,
4117 		    fp, is_insert)) != 0) {
4118 			mutex_enter(&stp->sd_lock);
4119 			strendplumb(stp);
4120 			mutex_exit(&stp->sd_lock);
4121 			return (error);
4122 		}
4123 
4124 		mutex_enter(&stp->sd_lock);
4125 
4126 		/*
4127 		 * As a performance concern we are caching the values of
4128 		 * q_minpsz and q_maxpsz of the module below the stream
4129 		 * head in the stream head.
4130 		 */
4131 		if (!is_insert) {
4132 			mutex_enter(QLOCK(stp->sd_wrq->q_next));
4133 			rmin = stp->sd_wrq->q_next->q_minpsz;
4134 			rmax = stp->sd_wrq->q_next->q_maxpsz;
4135 			mutex_exit(QLOCK(stp->sd_wrq->q_next));
4136 
4137 			/* Do this processing here as a performance concern */
4138 			if (strmsgsz != 0) {
4139 				if (rmax == INFPSZ) {
4140 					rmax = strmsgsz;
4141 				} else  {
4142 					rmax = MIN(strmsgsz, rmax);
4143 				}
4144 			}
4145 
4146 			mutex_enter(QLOCK(wrq));
4147 			stp->sd_qn_minpsz = rmin;
4148 			stp->sd_qn_maxpsz = rmax;
4149 			mutex_exit(QLOCK(wrq));
4150 		}
4151 
4152 		/*
4153 		 * Need to update the anchor value if this module is
4154 		 * inserted below the anchor point.
4155 		 */
4156 		if (stp->sd_anchor != 0) {
4157 			pos = STRUCT_FGET(strmodinsert, pos);
4158 			if (pos >= (stp->sd_pushcnt - stp->sd_anchor))
4159 				stp->sd_anchor++;
4160 		}
4161 
4162 		strendplumb(stp);
4163 		mutex_exit(&stp->sd_lock);
4164 		return (0);
4165 	}
4166 
4167 	case _I_REMOVE:
4168 	{
4169 		/*
4170 		 * To remove a module with a given name in a stream.  The
4171 		 * caller of this ioctl needs to provide both the name and
4172 		 * the position of the module to be removed.  This eliminates
4173 		 * the ambiguity of removal if a module is inserted/pushed
4174 		 * multiple times in a stream.  In the first release, only
4175 		 * allow privileged user to use this ioctl.
4176 		 * Furthermore, the remove is only allowed
4177 		 * below an anchor if the zoneid is the same as the zoneid
4178 		 * which created the anchor.
4179 		 *
4180 		 * Note that we do not plan to support this ioctl
4181 		 * on pipes in the first release.  We want to learn more
4182 		 * about the implications of these ioctls before extending
4183 		 * their support.  And we do not think these features are
4184 		 * valuable for pipes.
4185 		 *
4186 		 * Also note that _I_REMOVE cannot be used to remove a
4187 		 * driver or the stream head.
4188 		 */
4189 		STRUCT_DECL(strmodconf, strmodremove);
4190 		queue_t	*q;
4191 		int pos;
4192 		char mod_name[FMNAMESZ + 1];
4193 		boolean_t is_remove;
4194 
4195 		STRUCT_INIT(strmodremove, flag);
4196 		if (stp->sd_flag & STRHUP)
4197 			return (ENXIO);
4198 		if (STRMATED(stp))
4199 			return (EINVAL);
4200 		if ((error = secpolicy_net_config(crp, B_FALSE)) != 0)
4201 			return (error);
4202 		if (stp->sd_anchor != 0 &&
4203 		    stp->sd_anchorzone != crgetzoneid(crp))
4204 			return (EINVAL);
4205 
4206 		error = strcopyin((void *)arg, STRUCT_BUF(strmodremove),
4207 		    STRUCT_SIZE(strmodremove), copyflag);
4208 		if (error)
4209 			return (error);
4210 
4211 		error = (copyflag & U_TO_K ? copyinstr :
4212 		    copystr)(STRUCT_FGETP(strmodremove, mod_name),
4213 		    mod_name, FMNAMESZ + 1, NULL);
4214 		if (error)
4215 			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
4216 
4217 		if ((error = strstartplumb(stp, flag, cmd)) != 0)
4218 			return (error);
4219 
4220 		/*
4221 		 * Match the name of given module to the name of module at
4222 		 * the given position.
4223 		 */
4224 		pos = STRUCT_FGET(strmodremove, pos);
4225 
4226 		is_remove = (pos != 0);
4227 		for (q = stp->sd_wrq->q_next; SAMESTR(q) && pos > 0;
4228 		    q = q->q_next, pos--)
4229 			;
4230 		if (pos > 0 || !SAMESTR(q) ||
4231 		    strcmp(Q2NAME(q), mod_name) != 0) {
4232 			mutex_enter(&stp->sd_lock);
4233 			strendplumb(stp);
4234 			mutex_exit(&stp->sd_lock);
4235 			return (EINVAL);
4236 		}
4237 
4238 		/*
4239 		 * If the position is at or below an anchor, then the zoneid
4240 		 * must match the zoneid that created the anchor.
4241 		 */
4242 		if (stp->sd_anchor != 0) {
4243 			pos = STRUCT_FGET(strmodremove, pos);
4244 			if (pos >= (stp->sd_pushcnt - stp->sd_anchor) &&
4245 			    stp->sd_anchorzone != crgetzoneid(crp)) {
4246 				mutex_enter(&stp->sd_lock);
4247 				strendplumb(stp);
4248 				mutex_exit(&stp->sd_lock);
4249 				return (EPERM);
4250 			}
4251 		}
4252 
4253 
4254 		ASSERT(!(q->q_flag & QREADR));
4255 		qdetach(_RD(q), 1, flag, crp, is_remove);
4256 
4257 		mutex_enter(&stp->sd_lock);
4258 
4259 		/*
4260 		 * As a performance concern we are caching the values of
4261 		 * q_minpsz and q_maxpsz of the module below the stream
4262 		 * head in the stream head.
4263 		 */
4264 		if (!is_remove) {
4265 			mutex_enter(QLOCK(wrq->q_next));
4266 			rmin = wrq->q_next->q_minpsz;
4267 			rmax = wrq->q_next->q_maxpsz;
4268 			mutex_exit(QLOCK(wrq->q_next));
4269 
4270 			/* Do this processing here as a performance concern */
4271 			if (strmsgsz != 0) {
4272 				if (rmax == INFPSZ)
4273 					rmax = strmsgsz;
4274 				else  {
4275 					if (vp->v_type == VFIFO)
4276 						rmax = MIN(PIPE_BUF, rmax);
4277 					else	rmax = MIN(strmsgsz, rmax);
4278 				}
4279 			}
4280 
4281 			mutex_enter(QLOCK(wrq));
4282 			stp->sd_qn_minpsz = rmin;
4283 			stp->sd_qn_maxpsz = rmax;
4284 			mutex_exit(QLOCK(wrq));
4285 		}
4286 
4287 		/*
4288 		 * Need to update the anchor value if this module is removed
4289 		 * at or below the anchor point.  If the removed module is at
4290 		 * the anchor point, remove the anchor for this stream if
4291 		 * there is no module above the anchor point.  Otherwise, if
4292 		 * the removed module is below the anchor point, decrement the
4293 		 * anchor point by 1.
4294 		 */
4295 		if (stp->sd_anchor != 0) {
4296 			pos = STRUCT_FGET(strmodremove, pos);
4297 			if (pos == stp->sd_pushcnt - stp->sd_anchor + 1)
4298 				stp->sd_anchor = 0;
4299 			else if (pos > (stp->sd_pushcnt - stp->sd_anchor + 1))
4300 				stp->sd_anchor--;
4301 		}
4302 
4303 		strendplumb(stp);
4304 		mutex_exit(&stp->sd_lock);
4305 		return (0);
4306 	}
4307 
4308 	case I_ANCHOR:
4309 		/*
4310 		 * Set the anchor position on the stream to reside at
4311 		 * the top module (in other words, the top module
4312 		 * cannot be popped).  Anchors with a FIFO make no
4313 		 * obvious sense, so they're not allowed.
4314 		 */
4315 		mutex_enter(&stp->sd_lock);
4316 
4317 		if (stp->sd_vnode->v_type == VFIFO) {
4318 			mutex_exit(&stp->sd_lock);
4319 			return (EINVAL);
4320 		}
4321 		/* Only allow the same zoneid to update the anchor */
4322 		if (stp->sd_anchor != 0 &&
4323 		    stp->sd_anchorzone != crgetzoneid(crp)) {
4324 			mutex_exit(&stp->sd_lock);
4325 			return (EINVAL);
4326 		}
4327 		stp->sd_anchor = stp->sd_pushcnt;
4328 		stp->sd_anchorzone = crgetzoneid(crp);
4329 		mutex_exit(&stp->sd_lock);
4330 		return (0);
4331 
4332 	case I_LOOK:
4333 		/*
4334 		 * Get name of first module downstream.
4335 		 * If no module, return an error.
4336 		 */
4337 		claimstr(wrq);
4338 		if (_SAMESTR(wrq) && wrq->q_next->q_next != NULL) {
4339 			char *name = Q2NAME(wrq->q_next);
4340 
4341 			error = strcopyout(name, (void *)arg, strlen(name) + 1,
4342 			    copyflag);
4343 			releasestr(wrq);
4344 			return (error);
4345 		}
4346 		releasestr(wrq);
4347 		return (EINVAL);
4348 
4349 	case I_LINK:
4350 	case I_PLINK:
4351 		/*
4352 		 * Link a multiplexor.
4353 		 */
4354 		return (mlink(vp, cmd, (int)arg, crp, rvalp, 0));
4355 
4356 	case _I_PLINK_LH:
4357 		/*
4358 		 * Link a multiplexor: Call must originate from kernel.
4359 		 */
4360 		if (kioctl)
4361 			return (ldi_mlink_lh(vp, cmd, arg, crp, rvalp));
4362 
4363 		return (EINVAL);
4364 	case I_UNLINK:
4365 	case I_PUNLINK:
4366 		/*
4367 		 * Unlink a multiplexor.
4368 		 * If arg is -1, unlink all links for which this is the
4369 		 * controlling stream.  Otherwise, arg is an index number
4370 		 * for a link to be removed.
4371 		 */
4372 	{
4373 		struct linkinfo *linkp;
4374 		int native_arg = (int)arg;
4375 		int type;
4376 		netstack_t *ns;
4377 		str_stack_t *ss;
4378 
4379 		TRACE_1(TR_FAC_STREAMS_FR,
4380 		    TR_I_UNLINK, "I_UNLINK/I_PUNLINK:%p", stp);
4381 		if (vp->v_type == VFIFO) {
4382 			return (EINVAL);
4383 		}
4384 		if (cmd == I_UNLINK)
4385 			type = LINKNORMAL;
4386 		else	/* I_PUNLINK */
4387 			type = LINKPERSIST;
4388 		if (native_arg == 0) {
4389 			return (EINVAL);
4390 		}
4391 		ns = netstack_find_by_cred(crp);
4392 		ASSERT(ns != NULL);
4393 		ss = ns->netstack_str;
4394 		ASSERT(ss != NULL);
4395 
4396 		if (native_arg == MUXID_ALL)
4397 			error = munlinkall(stp, type, crp, rvalp, ss);
4398 		else {
4399 			mutex_enter(&muxifier);
4400 			if (!(linkp = findlinks(stp, (int)arg, type, ss))) {
4401 				/* invalid user supplied index number */
4402 				mutex_exit(&muxifier);
4403 				netstack_rele(ss->ss_netstack);
4404 				return (EINVAL);
4405 			}
4406 			/* munlink drops the muxifier lock */
4407 			error = munlink(stp, linkp, type, crp, rvalp, ss);
4408 		}
4409 		netstack_rele(ss->ss_netstack);
4410 		return (error);
4411 	}
4412 
4413 	case I_FLUSH:
4414 		/*
4415 		 * send a flush message downstream
4416 		 * flush message can indicate
4417 		 * FLUSHR - flush read queue
4418 		 * FLUSHW - flush write queue
4419 		 * FLUSHRW - flush read/write queue
4420 		 */
4421 		if (stp->sd_flag & STRHUP)
4422 			return (ENXIO);
4423 		if (arg & ~FLUSHRW)
4424 			return (EINVAL);
4425 
4426 		for (;;) {
4427 			if (putnextctl1(stp->sd_wrq, M_FLUSH, (int)arg)) {
4428 				break;
4429 			}
4430 			if (error = strwaitbuf(1, BPRI_HI)) {
4431 				return (error);
4432 			}
4433 		}
4434 
4435 		/*
4436 		 * Send down an unsupported ioctl and wait for the nack
4437 		 * in order to allow the M_FLUSH to propagate back
4438 		 * up to the stream head.
4439 		 * Replaces if (qready()) runqueues();
4440 		 */
4441 		strioc.ic_cmd = -1;	/* The unsupported ioctl */
4442 		strioc.ic_timout = 0;
4443 		strioc.ic_len = 0;
4444 		strioc.ic_dp = NULL;
4445 		(void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp);
4446 		*rvalp = 0;
4447 		return (0);
4448 
4449 	case I_FLUSHBAND:
4450 	{
4451 		struct bandinfo binfo;
4452 
4453 		error = strcopyin((void *)arg, &binfo, sizeof (binfo),
4454 		    copyflag);
4455 		if (error)
4456 			return (error);
4457 		if (stp->sd_flag & STRHUP)
4458 			return (ENXIO);
4459 		if (binfo.bi_flag & ~FLUSHRW)
4460 			return (EINVAL);
4461 		while (!(mp = allocb(2, BPRI_HI))) {
4462 			if (error = strwaitbuf(2, BPRI_HI))
4463 				return (error);
4464 		}
4465 		mp->b_datap->db_type = M_FLUSH;
4466 		*mp->b_wptr++ = binfo.bi_flag | FLUSHBAND;
4467 		*mp->b_wptr++ = binfo.bi_pri;
4468 		putnext(stp->sd_wrq, mp);
4469 		/*
4470 		 * Send down an unsupported ioctl and wait for the nack
4471 		 * in order to allow the M_FLUSH to propagate back
4472 		 * up to the stream head.
4473 		 * Replaces if (qready()) runqueues();
4474 		 */
4475 		strioc.ic_cmd = -1;	/* The unsupported ioctl */
4476 		strioc.ic_timout = 0;
4477 		strioc.ic_len = 0;
4478 		strioc.ic_dp = NULL;
4479 		(void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp);
4480 		*rvalp = 0;
4481 		return (0);
4482 	}
4483 
4484 	case I_SRDOPT:
4485 		/*
4486 		 * Set read options
4487 		 *
4488 		 * RNORM - default stream mode
4489 		 * RMSGN - message no discard
4490 		 * RMSGD - message discard
4491 		 * RPROTNORM - fail read with EBADMSG for M_[PC]PROTOs
4492 		 * RPROTDAT - convert M_[PC]PROTOs to M_DATAs
4493 		 * RPROTDIS - discard M_[PC]PROTOs and retain M_DATAs
4494 		 */
4495 		if (arg & ~(RMODEMASK | RPROTMASK))
4496 			return (EINVAL);
4497 
4498 		if ((arg & (RMSGD|RMSGN)) == (RMSGD|RMSGN))
4499 			return (EINVAL);
4500 
4501 		mutex_enter(&stp->sd_lock);
4502 		switch (arg & RMODEMASK) {
4503 		case RNORM:
4504 			stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS);
4505 			break;
4506 		case RMSGD:
4507 			stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGNODIS) |
4508 			    RD_MSGDIS;
4509 			break;
4510 		case RMSGN:
4511 			stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGDIS) |
4512 			    RD_MSGNODIS;
4513 			break;
4514 		}
4515 
4516 		switch (arg & RPROTMASK) {
4517 		case RPROTNORM:
4518 			stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS);
4519 			break;
4520 
4521 		case RPROTDAT:
4522 			stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDIS) |
4523 			    RD_PROTDAT);
4524 			break;
4525 
4526 		case RPROTDIS:
4527 			stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDAT) |
4528 			    RD_PROTDIS);
4529 			break;
4530 		}
4531 		mutex_exit(&stp->sd_lock);
4532 		return (0);
4533 
4534 	case I_GRDOPT:
4535 		/*
4536 		 * Get read option and return the value
4537 		 * to spot pointed to by arg
4538 		 */
4539 	{
4540 		int rdopt;
4541 
4542 		rdopt = ((stp->sd_read_opt & RD_MSGDIS) ? RMSGD :
4543 		    ((stp->sd_read_opt & RD_MSGNODIS) ? RMSGN : RNORM));
4544 		rdopt |= ((stp->sd_read_opt & RD_PROTDAT) ? RPROTDAT :
4545 		    ((stp->sd_read_opt & RD_PROTDIS) ? RPROTDIS : RPROTNORM));
4546 
4547 		return (strcopyout(&rdopt, (void *)arg, sizeof (int),
4548 		    copyflag));
4549 	}
4550 
4551 	case I_SERROPT:
4552 		/*
4553 		 * Set error options
4554 		 *
4555 		 * RERRNORM - persistent read errors
4556 		 * RERRNONPERSIST - non-persistent read errors
4557 		 * WERRNORM - persistent write errors
4558 		 * WERRNONPERSIST - non-persistent write errors
4559 		 */
4560 		if (arg & ~(RERRMASK | WERRMASK))
4561 			return (EINVAL);
4562 
4563 		mutex_enter(&stp->sd_lock);
4564 		switch (arg & RERRMASK) {
4565 		case RERRNORM:
4566 			stp->sd_flag &= ~STRDERRNONPERSIST;
4567 			break;
4568 		case RERRNONPERSIST:
4569 			stp->sd_flag |= STRDERRNONPERSIST;
4570 			break;
4571 		}
4572 		switch (arg & WERRMASK) {
4573 		case WERRNORM:
4574 			stp->sd_flag &= ~STWRERRNONPERSIST;
4575 			break;
4576 		case WERRNONPERSIST:
4577 			stp->sd_flag |= STWRERRNONPERSIST;
4578 			break;
4579 		}
4580 		mutex_exit(&stp->sd_lock);
4581 		return (0);
4582 
4583 	case I_GERROPT:
4584 		/*
4585 		 * Get error option and return the value
4586 		 * to spot pointed to by arg
4587 		 */
4588 	{
4589 		int erropt = 0;
4590 
4591 		erropt |= (stp->sd_flag & STRDERRNONPERSIST) ? RERRNONPERSIST :
4592 		    RERRNORM;
4593 		erropt |= (stp->sd_flag & STWRERRNONPERSIST) ? WERRNONPERSIST :
4594 		    WERRNORM;
4595 		return (strcopyout(&erropt, (void *)arg, sizeof (int),
4596 		    copyflag));
4597 	}
4598 
4599 	case I_SETSIG:
4600 		/*
4601 		 * Register the calling proc to receive the SIGPOLL
4602 		 * signal based on the events given in arg.  If
4603 		 * arg is zero, remove the proc from register list.
4604 		 */
4605 	{
4606 		strsig_t *ssp, *pssp;
4607 		struct pid *pidp;
4608 
4609 		pssp = NULL;
4610 		pidp = curproc->p_pidp;
4611 		/*
4612 		 * Hold sd_lock to prevent traversal of sd_siglist while
4613 		 * it is modified.
4614 		 */
4615 		mutex_enter(&stp->sd_lock);
4616 		for (ssp = stp->sd_siglist; ssp && (ssp->ss_pidp != pidp);
4617 		    pssp = ssp, ssp = ssp->ss_next)
4618 			;
4619 
4620 		if (arg) {
4621 			if (arg & ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR|
4622 			    S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) {
4623 				mutex_exit(&stp->sd_lock);
4624 				return (EINVAL);
4625 			}
4626 			if ((arg & S_BANDURG) && !(arg & S_RDBAND)) {
4627 				mutex_exit(&stp->sd_lock);
4628 				return (EINVAL);
4629 			}
4630 
4631 			/*
4632 			 * If proc not already registered, add it
4633 			 * to list.
4634 			 */
4635 			if (!ssp) {
4636 				ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP);
4637 				ssp->ss_pidp = pidp;
4638 				ssp->ss_pid = pidp->pid_id;
4639 				ssp->ss_next = NULL;
4640 				if (pssp)
4641 					pssp->ss_next = ssp;
4642 				else
4643 					stp->sd_siglist = ssp;
4644 				mutex_enter(&pidlock);
4645 				PID_HOLD(pidp);
4646 				mutex_exit(&pidlock);
4647 			}
4648 
4649 			/*
4650 			 * Set events.
4651 			 */
4652 			ssp->ss_events = (int)arg;
4653 		} else {
4654 			/*
4655 			 * Remove proc from register list.
4656 			 */
4657 			if (ssp) {
4658 				mutex_enter(&pidlock);
4659 				PID_RELE(pidp);
4660 				mutex_exit(&pidlock);
4661 				if (pssp)
4662 					pssp->ss_next = ssp->ss_next;
4663 				else
4664 					stp->sd_siglist = ssp->ss_next;
4665 				kmem_free(ssp, sizeof (strsig_t));
4666 			} else {
4667 				mutex_exit(&stp->sd_lock);
4668 				return (EINVAL);
4669 			}
4670 		}
4671 
4672 		/*
4673 		 * Recalculate OR of sig events.
4674 		 */
4675 		stp->sd_sigflags = 0;
4676 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4677 			stp->sd_sigflags |= ssp->ss_events;
4678 		mutex_exit(&stp->sd_lock);
4679 		return (0);
4680 	}
4681 
4682 	case I_GETSIG:
4683 		/*
4684 		 * Return (in arg) the current registration of events
4685 		 * for which the calling proc is to be signaled.
4686 		 */
4687 	{
4688 		struct strsig *ssp;
4689 		struct pid  *pidp;
4690 
4691 		pidp = curproc->p_pidp;
4692 		mutex_enter(&stp->sd_lock);
4693 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4694 			if (ssp->ss_pidp == pidp) {
4695 				error = strcopyout(&ssp->ss_events, (void *)arg,
4696 				    sizeof (int), copyflag);
4697 				mutex_exit(&stp->sd_lock);
4698 				return (error);
4699 			}
4700 		mutex_exit(&stp->sd_lock);
4701 		return (EINVAL);
4702 	}
4703 
4704 	case I_ESETSIG:
4705 		/*
4706 		 * Register the ss_pid to receive the SIGPOLL
4707 		 * signal based on the events is ss_events arg.  If
4708 		 * ss_events is zero, remove the proc from register list.
4709 		 */
4710 	{
4711 		struct strsig *ssp, *pssp;
4712 		struct proc *proc;
4713 		struct pid  *pidp;
4714 		pid_t pid;
4715 		struct strsigset ss;
4716 
4717 		error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag);
4718 		if (error)
4719 			return (error);
4720 
4721 		pid = ss.ss_pid;
4722 
4723 		if (ss.ss_events != 0) {
4724 			/*
4725 			 * Permissions check by sending signal 0.
4726 			 * Note that when kill fails it does a set_errno
4727 			 * causing the system call to fail.
4728 			 */
4729 			error = kill(pid, 0);
4730 			if (error) {
4731 				return (error);
4732 			}
4733 		}
4734 		mutex_enter(&pidlock);
4735 		if (pid == 0)
4736 			proc = curproc;
4737 		else if (pid < 0)
4738 			proc = pgfind(-pid);
4739 		else
4740 			proc = prfind(pid);
4741 		if (proc == NULL) {
4742 			mutex_exit(&pidlock);
4743 			return (ESRCH);
4744 		}
4745 		if (pid < 0)
4746 			pidp = proc->p_pgidp;
4747 		else
4748 			pidp = proc->p_pidp;
4749 		ASSERT(pidp);
4750 		/*
4751 		 * Get a hold on the pid structure while referencing it.
4752 		 * There is a separate PID_HOLD should it be inserted
4753 		 * in the list below.
4754 		 */
4755 		PID_HOLD(pidp);
4756 		mutex_exit(&pidlock);
4757 
4758 		pssp = NULL;
4759 		/*
4760 		 * Hold sd_lock to prevent traversal of sd_siglist while
4761 		 * it is modified.
4762 		 */
4763 		mutex_enter(&stp->sd_lock);
4764 		for (ssp = stp->sd_siglist; ssp && (ssp->ss_pid != pid);
4765 		    pssp = ssp, ssp = ssp->ss_next)
4766 			;
4767 
4768 		if (ss.ss_events) {
4769 			if (ss.ss_events &
4770 			    ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR|
4771 			    S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) {
4772 				mutex_exit(&stp->sd_lock);
4773 				mutex_enter(&pidlock);
4774 				PID_RELE(pidp);
4775 				mutex_exit(&pidlock);
4776 				return (EINVAL);
4777 			}
4778 			if ((ss.ss_events & S_BANDURG) &&
4779 			    !(ss.ss_events & S_RDBAND)) {
4780 				mutex_exit(&stp->sd_lock);
4781 				mutex_enter(&pidlock);
4782 				PID_RELE(pidp);
4783 				mutex_exit(&pidlock);
4784 				return (EINVAL);
4785 			}
4786 
4787 			/*
4788 			 * If proc not already registered, add it
4789 			 * to list.
4790 			 */
4791 			if (!ssp) {
4792 				ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP);
4793 				ssp->ss_pidp = pidp;
4794 				ssp->ss_pid = pid;
4795 				ssp->ss_next = NULL;
4796 				if (pssp)
4797 					pssp->ss_next = ssp;
4798 				else
4799 					stp->sd_siglist = ssp;
4800 				mutex_enter(&pidlock);
4801 				PID_HOLD(pidp);
4802 				mutex_exit(&pidlock);
4803 			}
4804 
4805 			/*
4806 			 * Set events.
4807 			 */
4808 			ssp->ss_events = ss.ss_events;
4809 		} else {
4810 			/*
4811 			 * Remove proc from register list.
4812 			 */
4813 			if (ssp) {
4814 				mutex_enter(&pidlock);
4815 				PID_RELE(pidp);
4816 				mutex_exit(&pidlock);
4817 				if (pssp)
4818 					pssp->ss_next = ssp->ss_next;
4819 				else
4820 					stp->sd_siglist = ssp->ss_next;
4821 				kmem_free(ssp, sizeof (strsig_t));
4822 			} else {
4823 				mutex_exit(&stp->sd_lock);
4824 				mutex_enter(&pidlock);
4825 				PID_RELE(pidp);
4826 				mutex_exit(&pidlock);
4827 				return (EINVAL);
4828 			}
4829 		}
4830 
4831 		/*
4832 		 * Recalculate OR of sig events.
4833 		 */
4834 		stp->sd_sigflags = 0;
4835 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4836 			stp->sd_sigflags |= ssp->ss_events;
4837 		mutex_exit(&stp->sd_lock);
4838 		mutex_enter(&pidlock);
4839 		PID_RELE(pidp);
4840 		mutex_exit(&pidlock);
4841 		return (0);
4842 	}
4843 
4844 	case I_EGETSIG:
4845 		/*
4846 		 * Return (in arg) the current registration of events
4847 		 * for which the calling proc is to be signaled.
4848 		 */
4849 	{
4850 		struct strsig *ssp;
4851 		struct proc *proc;
4852 		pid_t pid;
4853 		struct pid  *pidp;
4854 		struct strsigset ss;
4855 
4856 		error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag);
4857 		if (error)
4858 			return (error);
4859 
4860 		pid = ss.ss_pid;
4861 		mutex_enter(&pidlock);
4862 		if (pid == 0)
4863 			proc = curproc;
4864 		else if (pid < 0)
4865 			proc = pgfind(-pid);
4866 		else
4867 			proc = prfind(pid);
4868 		if (proc == NULL) {
4869 			mutex_exit(&pidlock);
4870 			return (ESRCH);
4871 		}
4872 		if (pid < 0)
4873 			pidp = proc->p_pgidp;
4874 		else
4875 			pidp = proc->p_pidp;
4876 
4877 		/* Prevent the pidp from being reassigned */
4878 		PID_HOLD(pidp);
4879 		mutex_exit(&pidlock);
4880 
4881 		mutex_enter(&stp->sd_lock);
4882 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4883 			if (ssp->ss_pid == pid) {
4884 				ss.ss_pid = ssp->ss_pid;
4885 				ss.ss_events = ssp->ss_events;
4886 				error = strcopyout(&ss, (void *)arg,
4887 				    sizeof (struct strsigset), copyflag);
4888 				mutex_exit(&stp->sd_lock);
4889 				mutex_enter(&pidlock);
4890 				PID_RELE(pidp);
4891 				mutex_exit(&pidlock);
4892 				return (error);
4893 			}
4894 		mutex_exit(&stp->sd_lock);
4895 		mutex_enter(&pidlock);
4896 		PID_RELE(pidp);
4897 		mutex_exit(&pidlock);
4898 		return (EINVAL);
4899 	}
4900 
4901 	case I_PEEK:
4902 	{
4903 		STRUCT_DECL(strpeek, strpeek);
4904 		size_t n;
4905 		mblk_t *fmp, *tmp_mp = NULL;
4906 
4907 		STRUCT_INIT(strpeek, flag);
4908 
4909 		error = strcopyin((void *)arg, STRUCT_BUF(strpeek),
4910 		    STRUCT_SIZE(strpeek), copyflag);
4911 		if (error)
4912 			return (error);
4913 
4914 		mutex_enter(QLOCK(rdq));
4915 		/*
4916 		 * Skip the invalid messages
4917 		 */
4918 		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
4919 			if (mp->b_datap->db_type != M_SIG)
4920 				break;
4921 
4922 		/*
4923 		 * If user has requested to peek at a high priority message
4924 		 * and first message is not, return 0
4925 		 */
4926 		if (mp != NULL) {
4927 			if ((STRUCT_FGET(strpeek, flags) & RS_HIPRI) &&
4928 			    queclass(mp) == QNORM) {
4929 				*rvalp = 0;
4930 				mutex_exit(QLOCK(rdq));
4931 				return (0);
4932 			}
4933 		} else if (stp->sd_struiordq == NULL ||
4934 		    (STRUCT_FGET(strpeek, flags) & RS_HIPRI)) {
4935 			/*
4936 			 * No mblks to look at at the streamhead and
4937 			 * 1). This isn't a synch stream or
4938 			 * 2). This is a synch stream but caller wants high
4939 			 *	priority messages which is not supported by
4940 			 *	the synch stream. (it only supports QNORM)
4941 			 */
4942 			*rvalp = 0;
4943 			mutex_exit(QLOCK(rdq));
4944 			return (0);
4945 		}
4946 
4947 		fmp = mp;
4948 
4949 		if (mp && mp->b_datap->db_type == M_PASSFP) {
4950 			mutex_exit(QLOCK(rdq));
4951 			return (EBADMSG);
4952 		}
4953 
4954 		ASSERT(mp == NULL || mp->b_datap->db_type == M_PCPROTO ||
4955 		    mp->b_datap->db_type == M_PROTO ||
4956 		    mp->b_datap->db_type == M_DATA);
4957 
4958 		if (mp && mp->b_datap->db_type == M_PCPROTO) {
4959 			STRUCT_FSET(strpeek, flags, RS_HIPRI);
4960 		} else {
4961 			STRUCT_FSET(strpeek, flags, 0);
4962 		}
4963 
4964 
4965 		if (mp && ((tmp_mp = dupmsg(mp)) == NULL)) {
4966 			mutex_exit(QLOCK(rdq));
4967 			return (ENOSR);
4968 		}
4969 		mutex_exit(QLOCK(rdq));
4970 
4971 		/*
4972 		 * set mp = tmp_mp, so that I_PEEK processing can continue.
4973 		 * tmp_mp is used to free the dup'd message.
4974 		 */
4975 		mp = tmp_mp;
4976 
4977 		uio.uio_fmode = 0;
4978 		uio.uio_extflg = UIO_COPY_CACHED;
4979 		uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE :
4980 		    UIO_SYSSPACE;
4981 		uio.uio_limit = 0;
4982 		/*
4983 		 * First process PROTO blocks, if any.
4984 		 * If user doesn't want to get ctl info by setting maxlen <= 0,
4985 		 * then set len to -1/0 and skip control blocks part.
4986 		 */
4987 		if (STRUCT_FGET(strpeek, ctlbuf.maxlen) < 0)
4988 			STRUCT_FSET(strpeek, ctlbuf.len, -1);
4989 		else if (STRUCT_FGET(strpeek, ctlbuf.maxlen) == 0)
4990 			STRUCT_FSET(strpeek, ctlbuf.len, 0);
4991 		else {
4992 			int	ctl_part = 0;
4993 
4994 			iov.iov_base = STRUCT_FGETP(strpeek, ctlbuf.buf);
4995 			iov.iov_len = STRUCT_FGET(strpeek, ctlbuf.maxlen);
4996 			uio.uio_iov = &iov;
4997 			uio.uio_resid = iov.iov_len;
4998 			uio.uio_loffset = 0;
4999 			uio.uio_iovcnt = 1;
5000 			while (mp && mp->b_datap->db_type != M_DATA &&
5001 			    uio.uio_resid >= 0) {
5002 				ASSERT(STRUCT_FGET(strpeek, flags) == 0 ?
5003 				    mp->b_datap->db_type == M_PROTO :
5004 				    mp->b_datap->db_type == M_PCPROTO);
5005 
5006 				if ((n = MIN(uio.uio_resid,
5007 				    mp->b_wptr - mp->b_rptr)) != 0 &&
5008 				    (error = uiomove((char *)mp->b_rptr, n,
5009 				    UIO_READ, &uio)) != 0) {
5010 					freemsg(tmp_mp);
5011 					return (error);
5012 				}
5013 				ctl_part = 1;
5014 				mp = mp->b_cont;
5015 			}
5016 			/* No ctl message */
5017 			if (ctl_part == 0)
5018 				STRUCT_FSET(strpeek, ctlbuf.len, -1);
5019 			else
5020 				STRUCT_FSET(strpeek, ctlbuf.len,
5021 				    STRUCT_FGET(strpeek, ctlbuf.maxlen) -
5022 				    uio.uio_resid);
5023 		}
5024 
5025 		/*
5026 		 * Now process DATA blocks, if any.
5027 		 * If user doesn't want to get data info by setting maxlen <= 0,
5028 		 * then set len to -1/0 and skip data blocks part.
5029 		 */
5030 		if (STRUCT_FGET(strpeek, databuf.maxlen) < 0)
5031 			STRUCT_FSET(strpeek, databuf.len, -1);
5032 		else if (STRUCT_FGET(strpeek, databuf.maxlen) == 0)
5033 			STRUCT_FSET(strpeek, databuf.len, 0);
5034 		else {
5035 			int	data_part = 0;
5036 
5037 			iov.iov_base = STRUCT_FGETP(strpeek, databuf.buf);
5038 			iov.iov_len = STRUCT_FGET(strpeek, databuf.maxlen);
5039 			uio.uio_iov = &iov;
5040 			uio.uio_resid = iov.iov_len;
5041 			uio.uio_loffset = 0;
5042 			uio.uio_iovcnt = 1;
5043 			while (mp && uio.uio_resid) {
5044 				if (mp->b_datap->db_type == M_DATA) {
5045 					if ((n = MIN(uio.uio_resid,
5046 					    mp->b_wptr - mp->b_rptr)) != 0 &&
5047 					    (error = uiomove((char *)mp->b_rptr,
5048 					    n, UIO_READ, &uio)) != 0) {
5049 						freemsg(tmp_mp);
5050 						return (error);
5051 					}
5052 					data_part = 1;
5053 				}
5054 				ASSERT(data_part == 0 ||
5055 				    mp->b_datap->db_type == M_DATA);
5056 				mp = mp->b_cont;
5057 			}
5058 			/* No data message */
5059 			if (data_part == 0)
5060 				STRUCT_FSET(strpeek, databuf.len, -1);
5061 			else
5062 				STRUCT_FSET(strpeek, databuf.len,
5063 				    STRUCT_FGET(strpeek, databuf.maxlen) -
5064 				    uio.uio_resid);
5065 		}
5066 		freemsg(tmp_mp);
5067 
5068 		/*
5069 		 * It is a synch stream and user wants to get
5070 		 * data (maxlen > 0).
5071 		 * uio setup is done by the codes that process DATA
5072 		 * blocks above.
5073 		 */
5074 		if ((fmp == NULL) && STRUCT_FGET(strpeek, databuf.maxlen) > 0) {
5075 			infod_t infod;
5076 
5077 			infod.d_cmd = INFOD_COPYOUT;
5078 			infod.d_res = 0;
5079 			infod.d_uiop = &uio;
5080 			error = infonext(rdq, &infod);
5081 			if (error == EINVAL || error == EBUSY)
5082 				error = 0;
5083 			if (error)
5084 				return (error);
5085 			STRUCT_FSET(strpeek, databuf.len, STRUCT_FGET(strpeek,
5086 			    databuf.maxlen) - uio.uio_resid);
5087 			if (STRUCT_FGET(strpeek, databuf.len) == 0) {
5088 				/*
5089 				 * No data found by the infonext().
5090 				 */
5091 				STRUCT_FSET(strpeek, databuf.len, -1);
5092 			}
5093 		}
5094 		error = strcopyout(STRUCT_BUF(strpeek), (void *)arg,
5095 		    STRUCT_SIZE(strpeek), copyflag);
5096 		if (error) {
5097 			return (error);
5098 		}
5099 		/*
5100 		 * If there is no message retrieved, set return code to 0
5101 		 * otherwise, set it to 1.
5102 		 */
5103 		if (STRUCT_FGET(strpeek, ctlbuf.len) == -1 &&
5104 		    STRUCT_FGET(strpeek, databuf.len) == -1)
5105 			*rvalp = 0;
5106 		else
5107 			*rvalp = 1;
5108 		return (0);
5109 	}
5110 
5111 	case I_FDINSERT:
5112 	{
5113 		STRUCT_DECL(strfdinsert, strfdinsert);
5114 		struct file *resftp;
5115 		struct stdata *resstp;
5116 		t_uscalar_t	ival;
5117 		ssize_t msgsize;
5118 		struct strbuf mctl;
5119 
5120 		STRUCT_INIT(strfdinsert, flag);
5121 		if (stp->sd_flag & STRHUP)
5122 			return (ENXIO);
5123 		/*
5124 		 * STRDERR, STWRERR and STPLEX tested above.
5125 		 */
5126 		error = strcopyin((void *)arg, STRUCT_BUF(strfdinsert),
5127 		    STRUCT_SIZE(strfdinsert), copyflag);
5128 		if (error)
5129 			return (error);
5130 
5131 		if (STRUCT_FGET(strfdinsert, offset) < 0 ||
5132 		    (STRUCT_FGET(strfdinsert, offset) %
5133 		    sizeof (t_uscalar_t)) != 0)
5134 			return (EINVAL);
5135 		if ((resftp = getf(STRUCT_FGET(strfdinsert, fildes))) != NULL) {
5136 			if ((resstp = resftp->f_vnode->v_stream) == NULL) {
5137 				releasef(STRUCT_FGET(strfdinsert, fildes));
5138 				return (EINVAL);
5139 			}
5140 		} else
5141 			return (EINVAL);
5142 
5143 		mutex_enter(&resstp->sd_lock);
5144 		if (resstp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
5145 			error = strgeterr(resstp,
5146 			    STRDERR|STWRERR|STRHUP|STPLEX, 0);
5147 			if (error != 0) {
5148 				mutex_exit(&resstp->sd_lock);
5149 				releasef(STRUCT_FGET(strfdinsert, fildes));
5150 				return (error);
5151 			}
5152 		}
5153 		mutex_exit(&resstp->sd_lock);
5154 
5155 #ifdef	_ILP32
5156 		{
5157 			queue_t	*q;
5158 			queue_t	*mate = NULL;
5159 
5160 			/* get read queue of stream terminus */
5161 			claimstr(resstp->sd_wrq);
5162 			for (q = resstp->sd_wrq->q_next; q->q_next != NULL;
5163 			    q = q->q_next)
5164 				if (!STRMATED(resstp) && STREAM(q) != resstp &&
5165 				    mate == NULL) {
5166 					ASSERT(q->q_qinfo->qi_srvp);
5167 					ASSERT(_OTHERQ(q)->q_qinfo->qi_srvp);
5168 					claimstr(q);
5169 					mate = q;
5170 				}
5171 			q = _RD(q);
5172 			if (mate)
5173 				releasestr(mate);
5174 			releasestr(resstp->sd_wrq);
5175 			ival = (t_uscalar_t)q;
5176 		}
5177 #else
5178 		ival = (t_uscalar_t)getminor(resftp->f_vnode->v_rdev);
5179 #endif	/* _ILP32 */
5180 
5181 		if (STRUCT_FGET(strfdinsert, ctlbuf.len) <
5182 		    STRUCT_FGET(strfdinsert, offset) + sizeof (t_uscalar_t)) {
5183 			releasef(STRUCT_FGET(strfdinsert, fildes));
5184 			return (EINVAL);
5185 		}
5186 
5187 		/*
5188 		 * Check for legal flag value.
5189 		 */
5190 		if (STRUCT_FGET(strfdinsert, flags) & ~RS_HIPRI) {
5191 			releasef(STRUCT_FGET(strfdinsert, fildes));
5192 			return (EINVAL);
5193 		}
5194 
5195 		/* get these values from those cached in the stream head */
5196 		mutex_enter(QLOCK(stp->sd_wrq));
5197 		rmin = stp->sd_qn_minpsz;
5198 		rmax = stp->sd_qn_maxpsz;
5199 		mutex_exit(QLOCK(stp->sd_wrq));
5200 
5201 		/*
5202 		 * Make sure ctl and data sizes together fall within
5203 		 * the limits of the max and min receive packet sizes
5204 		 * and do not exceed system limit.  A negative data
5205 		 * length means that no data part is to be sent.
5206 		 */
5207 		ASSERT((rmax >= 0) || (rmax == INFPSZ));
5208 		if (rmax == 0) {
5209 			releasef(STRUCT_FGET(strfdinsert, fildes));
5210 			return (ERANGE);
5211 		}
5212 		if ((msgsize = STRUCT_FGET(strfdinsert, databuf.len)) < 0)
5213 			msgsize = 0;
5214 		if ((msgsize < rmin) ||
5215 		    ((msgsize > rmax) && (rmax != INFPSZ)) ||
5216 		    (STRUCT_FGET(strfdinsert, ctlbuf.len) > strctlsz)) {
5217 			releasef(STRUCT_FGET(strfdinsert, fildes));
5218 			return (ERANGE);
5219 		}
5220 
5221 		mutex_enter(&stp->sd_lock);
5222 		while (!(STRUCT_FGET(strfdinsert, flags) & RS_HIPRI) &&
5223 		    !canputnext(stp->sd_wrq)) {
5224 			if ((error = strwaitq(stp, WRITEWAIT, (ssize_t)0,
5225 			    flag, -1, &done)) != 0 || done) {
5226 				mutex_exit(&stp->sd_lock);
5227 				releasef(STRUCT_FGET(strfdinsert, fildes));
5228 				return (error);
5229 			}
5230 			if ((error = i_straccess(stp, access)) != 0) {
5231 				mutex_exit(&stp->sd_lock);
5232 				releasef(
5233 				    STRUCT_FGET(strfdinsert, fildes));
5234 				return (error);
5235 			}
5236 		}
5237 		mutex_exit(&stp->sd_lock);
5238 
5239 		/*
5240 		 * Copy strfdinsert.ctlbuf into native form of
5241 		 * ctlbuf to pass down into strmakemsg().
5242 		 */
5243 		mctl.maxlen = STRUCT_FGET(strfdinsert, ctlbuf.maxlen);
5244 		mctl.len = STRUCT_FGET(strfdinsert, ctlbuf.len);
5245 		mctl.buf = STRUCT_FGETP(strfdinsert, ctlbuf.buf);
5246 
5247 		iov.iov_base = STRUCT_FGETP(strfdinsert, databuf.buf);
5248 		iov.iov_len = STRUCT_FGET(strfdinsert, databuf.len);
5249 		uio.uio_iov = &iov;
5250 		uio.uio_iovcnt = 1;
5251 		uio.uio_loffset = 0;
5252 		uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE :
5253 		    UIO_SYSSPACE;
5254 		uio.uio_fmode = 0;
5255 		uio.uio_extflg = UIO_COPY_CACHED;
5256 		uio.uio_resid = iov.iov_len;
5257 		if ((error = strmakemsg(&mctl,
5258 		    &msgsize, &uio, stp,
5259 		    STRUCT_FGET(strfdinsert, flags), &mp)) != 0 || !mp) {
5260 			STRUCT_FSET(strfdinsert, databuf.len, msgsize);
5261 			releasef(STRUCT_FGET(strfdinsert, fildes));
5262 			return (error);
5263 		}
5264 
5265 		STRUCT_FSET(strfdinsert, databuf.len, msgsize);
5266 
5267 		/*
5268 		 * Place the possibly reencoded queue pointer 'offset' bytes
5269 		 * from the start of the control portion of the message.
5270 		 */
5271 		*((t_uscalar_t *)(mp->b_rptr +
5272 		    STRUCT_FGET(strfdinsert, offset))) = ival;
5273 
5274 		/*
5275 		 * Put message downstream.
5276 		 */
5277 		stream_willservice(stp);
5278 		putnext(stp->sd_wrq, mp);
5279 		stream_runservice(stp);
5280 		releasef(STRUCT_FGET(strfdinsert, fildes));
5281 		return (error);
5282 	}
5283 
5284 	case I_SENDFD:
5285 	{
5286 		struct file *fp;
5287 
5288 		if ((fp = getf((int)arg)) == NULL)
5289 			return (EBADF);
5290 		error = do_sendfp(stp, fp, crp);
5291 		if (auditing) {
5292 			audit_fdsend((int)arg, fp, error);
5293 		}
5294 		releasef((int)arg);
5295 		return (error);
5296 	}
5297 
5298 	case I_RECVFD:
5299 	case I_E_RECVFD:
5300 	{
5301 		struct k_strrecvfd *srf;
5302 		int i, fd;
5303 
5304 		mutex_enter(&stp->sd_lock);
5305 		while (!(mp = getq(rdq))) {
5306 			if (stp->sd_flag & (STRHUP|STREOF)) {
5307 				mutex_exit(&stp->sd_lock);
5308 				return (ENXIO);
5309 			}
5310 			if ((error = strwaitq(stp, GETWAIT, (ssize_t)0,
5311 			    flag, -1, &done)) != 0 || done) {
5312 				mutex_exit(&stp->sd_lock);
5313 				return (error);
5314 			}
5315 			if ((error = i_straccess(stp, access)) != 0) {
5316 				mutex_exit(&stp->sd_lock);
5317 				return (error);
5318 			}
5319 		}
5320 		if (mp->b_datap->db_type != M_PASSFP) {
5321 			putback(stp, rdq, mp, mp->b_band);
5322 			mutex_exit(&stp->sd_lock);
5323 			return (EBADMSG);
5324 		}
5325 		mutex_exit(&stp->sd_lock);
5326 
5327 		srf = (struct k_strrecvfd *)mp->b_rptr;
5328 		if ((fd = ufalloc(0)) == -1) {
5329 			mutex_enter(&stp->sd_lock);
5330 			putback(stp, rdq, mp, mp->b_band);
5331 			mutex_exit(&stp->sd_lock);
5332 			return (EMFILE);
5333 		}
5334 		if (cmd == I_RECVFD) {
5335 			struct o_strrecvfd	ostrfd;
5336 
5337 			/* check to see if uid/gid values are too large. */
5338 
5339 			if (srf->uid > (o_uid_t)USHRT_MAX ||
5340 			    srf->gid > (o_gid_t)USHRT_MAX) {
5341 				mutex_enter(&stp->sd_lock);
5342 				putback(stp, rdq, mp, mp->b_band);
5343 				mutex_exit(&stp->sd_lock);
5344 				setf(fd, NULL);	/* release fd entry */
5345 				return (EOVERFLOW);
5346 			}
5347 
5348 			ostrfd.fd = fd;
5349 			ostrfd.uid = (o_uid_t)srf->uid;
5350 			ostrfd.gid = (o_gid_t)srf->gid;
5351 
5352 			/* Null the filler bits */
5353 			for (i = 0; i < 8; i++)
5354 				ostrfd.fill[i] = 0;
5355 
5356 			error = strcopyout(&ostrfd, (void *)arg,
5357 			    sizeof (struct o_strrecvfd), copyflag);
5358 		} else {		/* I_E_RECVFD */
5359 			struct strrecvfd	strfd;
5360 
5361 			strfd.fd = fd;
5362 			strfd.uid = srf->uid;
5363 			strfd.gid = srf->gid;
5364 
5365 			/* null the filler bits */
5366 			for (i = 0; i < 8; i++)
5367 				strfd.fill[i] = 0;
5368 
5369 			error = strcopyout(&strfd, (void *)arg,
5370 			    sizeof (struct strrecvfd), copyflag);
5371 		}
5372 
5373 		if (error) {
5374 			setf(fd, NULL);	/* release fd entry */
5375 			mutex_enter(&stp->sd_lock);
5376 			putback(stp, rdq, mp, mp->b_band);
5377 			mutex_exit(&stp->sd_lock);
5378 			return (error);
5379 		}
5380 		if (auditing) {
5381 			audit_fdrecv(fd, srf->fp);
5382 		}
5383 
5384 		/*
5385 		 * Always increment f_count since the freemsg() below will
5386 		 * always call free_passfp() which performs a closef().
5387 		 */
5388 		mutex_enter(&srf->fp->f_tlock);
5389 		srf->fp->f_count++;
5390 		mutex_exit(&srf->fp->f_tlock);
5391 		setf(fd, srf->fp);
5392 		freemsg(mp);
5393 		return (0);
5394 	}
5395 
5396 	case I_SWROPT:
5397 		/*
5398 		 * Set/clear the write options. arg is a bit
5399 		 * mask with any of the following bits set...
5400 		 * 	SNDZERO - send zero length message
5401 		 *	SNDPIPE - send sigpipe to process if
5402 		 *		sd_werror is set and process is
5403 		 *		doing a write or putmsg.
5404 		 * The new stream head write options should reflect
5405 		 * what is in arg.
5406 		 */
5407 		if (arg & ~(SNDZERO|SNDPIPE))
5408 			return (EINVAL);
5409 
5410 		mutex_enter(&stp->sd_lock);
5411 		stp->sd_wput_opt &= ~(SW_SIGPIPE|SW_SNDZERO);
5412 		if (arg & SNDZERO)
5413 			stp->sd_wput_opt |= SW_SNDZERO;
5414 		if (arg & SNDPIPE)
5415 			stp->sd_wput_opt |= SW_SIGPIPE;
5416 		mutex_exit(&stp->sd_lock);
5417 		return (0);
5418 
5419 	case I_GWROPT:
5420 	{
5421 		int wropt = 0;
5422 
5423 		if (stp->sd_wput_opt & SW_SNDZERO)
5424 			wropt |= SNDZERO;
5425 		if (stp->sd_wput_opt & SW_SIGPIPE)
5426 			wropt |= SNDPIPE;
5427 		return (strcopyout(&wropt, (void *)arg, sizeof (wropt),
5428 		    copyflag));
5429 	}
5430 
5431 	case I_LIST:
5432 		/*
5433 		 * Returns all the modules found on this stream,
5434 		 * upto the driver. If argument is NULL, return the
5435 		 * number of modules (including driver). If argument
5436 		 * is not NULL, copy the names into the structure
5437 		 * provided.
5438 		 */
5439 
5440 	{
5441 		queue_t *q;
5442 		char *qname;
5443 		int i, nmods;
5444 		struct str_mlist *mlist;
5445 		STRUCT_DECL(str_list, strlist);
5446 
5447 		if (arg == NULL) { /* Return number of modules plus driver */
5448 			if (stp->sd_vnode->v_type == VFIFO)
5449 				*rvalp = stp->sd_pushcnt;
5450 			else
5451 				*rvalp = stp->sd_pushcnt + 1;
5452 			return (0);
5453 		}
5454 
5455 		STRUCT_INIT(strlist, flag);
5456 
5457 		error = strcopyin((void *)arg, STRUCT_BUF(strlist),
5458 		    STRUCT_SIZE(strlist), copyflag);
5459 		if (error != 0)
5460 			return (error);
5461 
5462 		mlist = STRUCT_FGETP(strlist, sl_modlist);
5463 		nmods = STRUCT_FGET(strlist, sl_nmods);
5464 		if (nmods <= 0)
5465 			return (EINVAL);
5466 
5467 		claimstr(stp->sd_wrq);
5468 		q = stp->sd_wrq;
5469 		for (i = 0; i < nmods && _SAMESTR(q); i++, q = q->q_next) {
5470 			qname = Q2NAME(q->q_next);
5471 			error = strcopyout(qname, &mlist[i], strlen(qname) + 1,
5472 			    copyflag);
5473 			if (error != 0) {
5474 				releasestr(stp->sd_wrq);
5475 				return (error);
5476 			}
5477 		}
5478 		releasestr(stp->sd_wrq);
5479 		return (strcopyout(&i, (void *)arg, sizeof (int), copyflag));
5480 	}
5481 
5482 	case I_CKBAND:
5483 	{
5484 		queue_t *q;
5485 		qband_t *qbp;
5486 
5487 		if ((arg < 0) || (arg >= NBAND))
5488 			return (EINVAL);
5489 		q = _RD(stp->sd_wrq);
5490 		mutex_enter(QLOCK(q));
5491 		if (arg > (int)q->q_nband) {
5492 			*rvalp = 0;
5493 		} else {
5494 			if (arg == 0) {
5495 				if (q->q_first)
5496 					*rvalp = 1;
5497 				else
5498 					*rvalp = 0;
5499 			} else {
5500 				qbp = q->q_bandp;
5501 				while (--arg > 0)
5502 					qbp = qbp->qb_next;
5503 				if (qbp->qb_first)
5504 					*rvalp = 1;
5505 				else
5506 					*rvalp = 0;
5507 			}
5508 		}
5509 		mutex_exit(QLOCK(q));
5510 		return (0);
5511 	}
5512 
5513 	case I_GETBAND:
5514 	{
5515 		int intpri;
5516 		queue_t *q;
5517 
5518 		q = _RD(stp->sd_wrq);
5519 		mutex_enter(QLOCK(q));
5520 		mp = q->q_first;
5521 		if (!mp) {
5522 			mutex_exit(QLOCK(q));
5523 			return (ENODATA);
5524 		}
5525 		intpri = (int)mp->b_band;
5526 		error = strcopyout(&intpri, (void *)arg, sizeof (int),
5527 		    copyflag);
5528 		mutex_exit(QLOCK(q));
5529 		return (error);
5530 	}
5531 
5532 	case I_ATMARK:
5533 	{
5534 		queue_t *q;
5535 
5536 		if (arg & ~(ANYMARK|LASTMARK))
5537 			return (EINVAL);
5538 		q = _RD(stp->sd_wrq);
5539 		mutex_enter(&stp->sd_lock);
5540 		if ((stp->sd_flag & STRATMARK) && (arg == ANYMARK)) {
5541 			*rvalp = 1;
5542 		} else {
5543 			mutex_enter(QLOCK(q));
5544 			mp = q->q_first;
5545 
5546 			if (mp == NULL)
5547 				*rvalp = 0;
5548 			else if ((arg == ANYMARK) && (mp->b_flag & MSGMARK))
5549 				*rvalp = 1;
5550 			else if ((arg == LASTMARK) && (mp == stp->sd_mark))
5551 				*rvalp = 1;
5552 			else
5553 				*rvalp = 0;
5554 			mutex_exit(QLOCK(q));
5555 		}
5556 		mutex_exit(&stp->sd_lock);
5557 		return (0);
5558 	}
5559 
5560 	case I_CANPUT:
5561 	{
5562 		char band;
5563 
5564 		if ((arg < 0) || (arg >= NBAND))
5565 			return (EINVAL);
5566 		band = (char)arg;
5567 		*rvalp = bcanputnext(stp->sd_wrq, band);
5568 		return (0);
5569 	}
5570 
5571 	case I_SETCLTIME:
5572 	{
5573 		int closetime;
5574 
5575 		error = strcopyin((void *)arg, &closetime, sizeof (int),
5576 		    copyflag);
5577 		if (error)
5578 			return (error);
5579 		if (closetime < 0)
5580 			return (EINVAL);
5581 
5582 		stp->sd_closetime = closetime;
5583 		return (0);
5584 	}
5585 
5586 	case I_GETCLTIME:
5587 	{
5588 		int closetime;
5589 
5590 		closetime = stp->sd_closetime;
5591 		return (strcopyout(&closetime, (void *)arg, sizeof (int),
5592 		    copyflag));
5593 	}
5594 
5595 	case TIOCGSID:
5596 	{
5597 		pid_t sid;
5598 
5599 		mutex_enter(&stp->sd_lock);
5600 		if (stp->sd_sidp == NULL) {
5601 			mutex_exit(&stp->sd_lock);
5602 			return (ENOTTY);
5603 		}
5604 		sid = stp->sd_sidp->pid_id;
5605 		mutex_exit(&stp->sd_lock);
5606 		return (strcopyout(&sid, (void *)arg, sizeof (pid_t),
5607 		    copyflag));
5608 	}
5609 
5610 	case TIOCSPGRP:
5611 	{
5612 		pid_t pgrp;
5613 		proc_t *q;
5614 		pid_t	sid, fg_pgid, bg_pgid;
5615 
5616 		if (error = strcopyin((void *)arg, &pgrp, sizeof (pid_t),
5617 		    copyflag))
5618 			return (error);
5619 		mutex_enter(&stp->sd_lock);
5620 		mutex_enter(&pidlock);
5621 		if (stp->sd_sidp != ttoproc(curthread)->p_sessp->s_sidp) {
5622 			mutex_exit(&pidlock);
5623 			mutex_exit(&stp->sd_lock);
5624 			return (ENOTTY);
5625 		}
5626 		if (pgrp == stp->sd_pgidp->pid_id) {
5627 			mutex_exit(&pidlock);
5628 			mutex_exit(&stp->sd_lock);
5629 			return (0);
5630 		}
5631 		if (pgrp <= 0 || pgrp >= maxpid) {
5632 			mutex_exit(&pidlock);
5633 			mutex_exit(&stp->sd_lock);
5634 			return (EINVAL);
5635 		}
5636 		if ((q = pgfind(pgrp)) == NULL ||
5637 		    q->p_sessp != ttoproc(curthread)->p_sessp) {
5638 			mutex_exit(&pidlock);
5639 			mutex_exit(&stp->sd_lock);
5640 			return (EPERM);
5641 		}
5642 		sid = stp->sd_sidp->pid_id;
5643 		fg_pgid = q->p_pgrp;
5644 		bg_pgid = stp->sd_pgidp->pid_id;
5645 		CL_SET_PROCESS_GROUP(curthread, sid, bg_pgid, fg_pgid);
5646 		PID_RELE(stp->sd_pgidp);
5647 		ctty_clear_sighuped();
5648 		stp->sd_pgidp = q->p_pgidp;
5649 		PID_HOLD(stp->sd_pgidp);
5650 		mutex_exit(&pidlock);
5651 		mutex_exit(&stp->sd_lock);
5652 		return (0);
5653 	}
5654 
5655 	case TIOCGPGRP:
5656 	{
5657 		pid_t pgrp;
5658 
5659 		mutex_enter(&stp->sd_lock);
5660 		if (stp->sd_sidp == NULL) {
5661 			mutex_exit(&stp->sd_lock);
5662 			return (ENOTTY);
5663 		}
5664 		pgrp = stp->sd_pgidp->pid_id;
5665 		mutex_exit(&stp->sd_lock);
5666 		return (strcopyout(&pgrp, (void *)arg, sizeof (pid_t),
5667 		    copyflag));
5668 	}
5669 
5670 	case TIOCSCTTY:
5671 	{
5672 		return (strctty(stp));
5673 	}
5674 
5675 	case TIOCNOTTY:
5676 	{
5677 		/* freectty() always assumes curproc. */
5678 		if (freectty(B_FALSE) != 0)
5679 			return (0);
5680 		return (ENOTTY);
5681 	}
5682 
5683 	case FIONBIO:
5684 	case FIOASYNC:
5685 		return (0);	/* handled by the upper layer */
5686 	}
5687 }
5688 
5689 /*
5690  * Custom free routine used for M_PASSFP messages.
5691  */
5692 static void
5693 free_passfp(struct k_strrecvfd *srf)
5694 {
5695 	(void) closef(srf->fp);
5696 	kmem_free(srf, sizeof (struct k_strrecvfd) + sizeof (frtn_t));
5697 }
5698 
5699 /* ARGSUSED */
5700 int
5701 do_sendfp(struct stdata *stp, struct file *fp, struct cred *cr)
5702 {
5703 	queue_t *qp, *nextqp;
5704 	struct k_strrecvfd *srf;
5705 	mblk_t *mp;
5706 	frtn_t *frtnp;
5707 	size_t bufsize;
5708 	queue_t	*mate = NULL;
5709 	syncq_t	*sq = NULL;
5710 	int retval = 0;
5711 
5712 	if (stp->sd_flag & STRHUP)
5713 		return (ENXIO);
5714 
5715 	claimstr(stp->sd_wrq);
5716 
5717 	/* Fastpath, we have a pipe, and we are already mated, use it. */
5718 	if (STRMATED(stp)) {
5719 		qp = _RD(stp->sd_mate->sd_wrq);
5720 		claimstr(qp);
5721 		mate = qp;
5722 	} else { /* Not already mated. */
5723 
5724 		/*
5725 		 * Walk the stream to the end of this one.
5726 		 * assumes that the claimstr() will prevent
5727 		 * plumbing between the stream head and the
5728 		 * driver from changing
5729 		 */
5730 		qp = stp->sd_wrq;
5731 
5732 		/*
5733 		 * Loop until we reach the end of this stream.
5734 		 * On completion, qp points to the write queue
5735 		 * at the end of the stream, or the read queue
5736 		 * at the stream head if this is a fifo.
5737 		 */
5738 		while (((qp = qp->q_next) != NULL) && _SAMESTR(qp))
5739 			;
5740 
5741 		/*
5742 		 * Just in case we get a q_next which is NULL, but
5743 		 * not at the end of the stream.  This is actually
5744 		 * broken, so we set an assert to catch it in
5745 		 * debug, and set an error and return if not debug.
5746 		 */
5747 		ASSERT(qp);
5748 		if (qp == NULL) {
5749 			releasestr(stp->sd_wrq);
5750 			return (EINVAL);
5751 		}
5752 
5753 		/*
5754 		 * Enter the syncq for the driver, so (hopefully)
5755 		 * the queue values will not change on us.
5756 		 * XXXX - This will only prevent the race IFF only
5757 		 *   the write side modifies the q_next member, and
5758 		 *   the put procedure is protected by at least
5759 		 *   MT_PERQ.
5760 		 */
5761 		if ((sq = qp->q_syncq) != NULL)
5762 			entersq(sq, SQ_PUT);
5763 
5764 		/* Now get the q_next value from this qp. */
5765 		nextqp = qp->q_next;
5766 
5767 		/*
5768 		 * If nextqp exists and the other stream is different
5769 		 * from this one claim the stream, set the mate, and
5770 		 * get the read queue at the stream head of the other
5771 		 * stream.  Assumes that nextqp was at least valid when
5772 		 * we got it.  Hopefully the entersq of the driver
5773 		 * will prevent it from changing on us.
5774 		 */
5775 		if ((nextqp != NULL) && (STREAM(nextqp) != stp)) {
5776 			ASSERT(qp->q_qinfo->qi_srvp);
5777 			ASSERT(_OTHERQ(qp)->q_qinfo->qi_srvp);
5778 			ASSERT(_OTHERQ(qp->q_next)->q_qinfo->qi_srvp);
5779 			claimstr(nextqp);
5780 
5781 			/* Make sure we still have a q_next */
5782 			if (nextqp != qp->q_next) {
5783 				releasestr(stp->sd_wrq);
5784 				releasestr(nextqp);
5785 				return (EINVAL);
5786 			}
5787 
5788 			qp = _RD(STREAM(nextqp)->sd_wrq);
5789 			mate = qp;
5790 		}
5791 		/* If we entered the synq above, leave it. */
5792 		if (sq != NULL)
5793 			leavesq(sq, SQ_PUT);
5794 	} /*  STRMATED(STP)  */
5795 
5796 	/* XXX prevents substitution of the ops vector */
5797 	if (qp->q_qinfo != &strdata && qp->q_qinfo != &fifo_strdata) {
5798 		retval = EINVAL;
5799 		goto out;
5800 	}
5801 
5802 	if (qp->q_flag & QFULL) {
5803 		retval = EAGAIN;
5804 		goto out;
5805 	}
5806 
5807 	/*
5808 	 * Since M_PASSFP messages include a file descriptor, we use
5809 	 * esballoc() and specify a custom free routine (free_passfp()) that
5810 	 * will close the descriptor as part of freeing the message.  For
5811 	 * convenience, we stash the frtn_t right after the data block.
5812 	 */
5813 	bufsize = sizeof (struct k_strrecvfd) + sizeof (frtn_t);
5814 	srf = kmem_alloc(bufsize, KM_NOSLEEP);
5815 	if (srf == NULL) {
5816 		retval = EAGAIN;
5817 		goto out;
5818 	}
5819 
5820 	frtnp = (frtn_t *)(srf + 1);
5821 	frtnp->free_arg = (caddr_t)srf;
5822 	frtnp->free_func = free_passfp;
5823 
5824 	mp = esballoc((uchar_t *)srf, bufsize, BPRI_MED, frtnp);
5825 	if (mp == NULL) {
5826 		kmem_free(srf, bufsize);
5827 		retval = EAGAIN;
5828 		goto out;
5829 	}
5830 	mp->b_wptr += sizeof (struct k_strrecvfd);
5831 	mp->b_datap->db_type = M_PASSFP;
5832 
5833 	srf->fp = fp;
5834 	srf->uid = crgetuid(curthread->t_cred);
5835 	srf->gid = crgetgid(curthread->t_cred);
5836 	mutex_enter(&fp->f_tlock);
5837 	fp->f_count++;
5838 	mutex_exit(&fp->f_tlock);
5839 
5840 	put(qp, mp);
5841 out:
5842 	releasestr(stp->sd_wrq);
5843 	if (mate)
5844 		releasestr(mate);
5845 	return (retval);
5846 }
5847 
5848 /*
5849  * Send an ioctl message downstream and wait for acknowledgement.
5850  * flags may be set to either U_TO_K or K_TO_K and a combination
5851  * of STR_NOERROR or STR_NOSIG
5852  * STR_NOSIG: Signals are essentially ignored or held and have
5853  *	no effect for the duration of the call.
5854  * STR_NOERROR: Ignores stream head read, write and hup errors.
5855  *	Additionally, if an existing ioctl times out, it is assumed
5856  *	lost and and this ioctl will continue as if the previous ioctl had
5857  *	finished.  ETIME may be returned if this ioctl times out (i.e.
5858  *	ic_timout is not INFTIM).  Non-stream head errors may be returned if
5859  *	the ioc_error indicates that the driver/module had problems,
5860  *	an EFAULT was found when accessing user data, a lack of
5861  * 	resources, etc.
5862  */
5863 int
5864 strdoioctl(
5865 	struct stdata *stp,
5866 	struct strioctl *strioc,
5867 	int fflags,		/* file flags with model info */
5868 	int flag,
5869 	cred_t *crp,
5870 	int *rvalp)
5871 {
5872 	mblk_t *bp;
5873 	struct iocblk *iocbp;
5874 	struct copyreq *reqp;
5875 	struct copyresp *resp;
5876 	int id;
5877 	int transparent = 0;
5878 	int error = 0;
5879 	int len = 0;
5880 	caddr_t taddr;
5881 	int copyflag = (flag & (U_TO_K | K_TO_K));
5882 	int sigflag = (flag & STR_NOSIG);
5883 	int errs;
5884 	uint_t waitflags;
5885 	boolean_t set_iocwaitne = B_FALSE;
5886 
5887 	ASSERT(copyflag == U_TO_K || copyflag == K_TO_K);
5888 	ASSERT((fflags & FMODELS) != 0);
5889 
5890 	TRACE_2(TR_FAC_STREAMS_FR,
5891 	    TR_STRDOIOCTL,
5892 	    "strdoioctl:stp %p strioc %p", stp, strioc);
5893 	if (strioc->ic_len == TRANSPARENT) {	/* send arg in M_DATA block */
5894 		transparent = 1;
5895 		strioc->ic_len = sizeof (intptr_t);
5896 	}
5897 
5898 	if (strioc->ic_len < 0 || (strmsgsz > 0 && strioc->ic_len > strmsgsz))
5899 		return (EINVAL);
5900 
5901 	if ((bp = allocb_cred_wait(sizeof (union ioctypes), sigflag, &error,
5902 	    crp, curproc->p_pid)) == NULL)
5903 			return (error);
5904 
5905 	bzero(bp->b_wptr, sizeof (union ioctypes));
5906 
5907 	iocbp = (struct iocblk *)bp->b_wptr;
5908 	iocbp->ioc_count = strioc->ic_len;
5909 	iocbp->ioc_cmd = strioc->ic_cmd;
5910 	iocbp->ioc_flag = (fflags & FMODELS);
5911 
5912 	crhold(crp);
5913 	iocbp->ioc_cr = crp;
5914 	DB_TYPE(bp) = M_IOCTL;
5915 	bp->b_wptr += sizeof (struct iocblk);
5916 
5917 	if (flag & STR_NOERROR)
5918 		errs = STPLEX;
5919 	else
5920 		errs = STRHUP|STRDERR|STWRERR|STPLEX;
5921 
5922 	/*
5923 	 * If there is data to copy into ioctl block, do so.
5924 	 */
5925 	if (iocbp->ioc_count > 0) {
5926 		if (transparent)
5927 			/*
5928 			 * Note: STR_NOERROR does not have an effect
5929 			 * in putiocd()
5930 			 */
5931 			id = K_TO_K | sigflag;
5932 		else
5933 			id = flag;
5934 		if ((error = putiocd(bp, strioc->ic_dp, id, crp)) != 0) {
5935 			freemsg(bp);
5936 			crfree(crp);
5937 			return (error);
5938 		}
5939 
5940 		/*
5941 		 * We could have slept copying in user pages.
5942 		 * Recheck the stream head state (the other end
5943 		 * of a pipe could have gone away).
5944 		 */
5945 		if (stp->sd_flag & errs) {
5946 			mutex_enter(&stp->sd_lock);
5947 			error = strgeterr(stp, errs, 0);
5948 			mutex_exit(&stp->sd_lock);
5949 			if (error != 0) {
5950 				freemsg(bp);
5951 				crfree(crp);
5952 				return (error);
5953 			}
5954 		}
5955 	}
5956 	if (transparent)
5957 		iocbp->ioc_count = TRANSPARENT;
5958 
5959 	/*
5960 	 * Block for up to STRTIMOUT milliseconds if there is an outstanding
5961 	 * ioctl for this stream already running.  All processes
5962 	 * sleeping here will be awakened as a result of an ACK
5963 	 * or NAK being received for the outstanding ioctl, or
5964 	 * as a result of the timer expiring on the outstanding
5965 	 * ioctl (a failure), or as a result of any waiting
5966 	 * process's timer expiring (also a failure).
5967 	 */
5968 
5969 	error = 0;
5970 	mutex_enter(&stp->sd_lock);
5971 	while ((stp->sd_flag & IOCWAIT) ||
5972 	    (!set_iocwaitne && (stp->sd_flag & IOCWAITNE))) {
5973 		clock_t cv_rval;
5974 
5975 		TRACE_0(TR_FAC_STREAMS_FR,
5976 		    TR_STRDOIOCTL_WAIT,
5977 		    "strdoioctl sleeps - IOCWAIT");
5978 		cv_rval = str_cv_wait(&stp->sd_iocmonitor, &stp->sd_lock,
5979 		    STRTIMOUT, sigflag);
5980 		if (cv_rval <= 0) {
5981 			if (cv_rval == 0) {
5982 				error = EINTR;
5983 			} else {
5984 				if (flag & STR_NOERROR) {
5985 					/*
5986 					 * Terminating current ioctl in
5987 					 * progress -- assume it got lost and
5988 					 * wake up the other thread so that the
5989 					 * operation completes.
5990 					 */
5991 					if (!(stp->sd_flag & IOCWAITNE)) {
5992 						set_iocwaitne = B_TRUE;
5993 						stp->sd_flag |= IOCWAITNE;
5994 						cv_broadcast(&stp->sd_monitor);
5995 					}
5996 					/*
5997 					 * Otherwise, there's a running
5998 					 * STR_NOERROR -- we have no choice
5999 					 * here but to wait forever (or until
6000 					 * interrupted).
6001 					 */
6002 				} else {
6003 					/*
6004 					 * pending ioctl has caused
6005 					 * us to time out
6006 					 */
6007 					error = ETIME;
6008 				}
6009 			}
6010 		} else if ((stp->sd_flag & errs)) {
6011 			error = strgeterr(stp, errs, 0);
6012 		}
6013 		if (error) {
6014 			mutex_exit(&stp->sd_lock);
6015 			freemsg(bp);
6016 			crfree(crp);
6017 			return (error);
6018 		}
6019 	}
6020 
6021 	/*
6022 	 * Have control of ioctl mechanism.
6023 	 * Send down ioctl packet and wait for response.
6024 	 */
6025 	if (stp->sd_iocblk != (mblk_t *)-1) {
6026 		freemsg(stp->sd_iocblk);
6027 	}
6028 	stp->sd_iocblk = NULL;
6029 
6030 	/*
6031 	 * If this is marked with 'noerror' (internal; mostly
6032 	 * I_{P,}{UN,}LINK), then make sure nobody else is able to get
6033 	 * in here by setting IOCWAITNE.
6034 	 */
6035 	waitflags = IOCWAIT;
6036 	if (flag & STR_NOERROR)
6037 		waitflags |= IOCWAITNE;
6038 
6039 	stp->sd_flag |= waitflags;
6040 
6041 	/*
6042 	 * Assign sequence number.
6043 	 */
6044 	iocbp->ioc_id = stp->sd_iocid = getiocseqno();
6045 
6046 	mutex_exit(&stp->sd_lock);
6047 
6048 	TRACE_1(TR_FAC_STREAMS_FR,
6049 	    TR_STRDOIOCTL_PUT, "strdoioctl put: stp %p", stp);
6050 	stream_willservice(stp);
6051 	putnext(stp->sd_wrq, bp);
6052 	stream_runservice(stp);
6053 
6054 	/*
6055 	 * Timed wait for acknowledgment.  The wait time is limited by the
6056 	 * timeout value, which must be a positive integer (number of
6057 	 * milliseconds) to wait, or 0 (use default value of STRTIMOUT
6058 	 * milliseconds), or -1 (wait forever).  This will be awakened
6059 	 * either by an ACK/NAK message arriving, the timer expiring, or
6060 	 * the timer expiring on another ioctl waiting for control of the
6061 	 * mechanism.
6062 	 */
6063 waitioc:
6064 	mutex_enter(&stp->sd_lock);
6065 
6066 
6067 	/*
6068 	 * If the reply has already arrived, don't sleep.  If awakened from
6069 	 * the sleep, fail only if the reply has not arrived by then.
6070 	 * Otherwise, process the reply.
6071 	 */
6072 	while (!stp->sd_iocblk) {
6073 		clock_t cv_rval;
6074 
6075 		if (stp->sd_flag & errs) {
6076 			error = strgeterr(stp, errs, 0);
6077 			if (error != 0) {
6078 				stp->sd_flag &= ~waitflags;
6079 				cv_broadcast(&stp->sd_iocmonitor);
6080 				mutex_exit(&stp->sd_lock);
6081 				crfree(crp);
6082 				return (error);
6083 			}
6084 		}
6085 
6086 		TRACE_0(TR_FAC_STREAMS_FR,
6087 		    TR_STRDOIOCTL_WAIT2,
6088 		    "strdoioctl sleeps awaiting reply");
6089 		ASSERT(error == 0);
6090 
6091 		cv_rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock,
6092 		    (strioc->ic_timout ?
6093 		    strioc->ic_timout * 1000 : STRTIMOUT), sigflag);
6094 
6095 		/*
6096 		 * There are four possible cases here: interrupt, timeout,
6097 		 * wakeup by IOCWAITNE (above), or wakeup by strrput_nondata (a
6098 		 * valid M_IOCTL reply).
6099 		 *
6100 		 * If we've been awakened by a STR_NOERROR ioctl on some other
6101 		 * thread, then sd_iocblk will still be NULL, and IOCWAITNE
6102 		 * will be set.  Pretend as if we just timed out.  Note that
6103 		 * this other thread waited at least STRTIMOUT before trying to
6104 		 * awaken our thread, so this is indistinguishable (even for
6105 		 * INFTIM) from the case where we failed with ETIME waiting on
6106 		 * IOCWAIT in the prior loop.
6107 		 */
6108 		if (cv_rval > 0 && !(flag & STR_NOERROR) &&
6109 		    stp->sd_iocblk == NULL && (stp->sd_flag & IOCWAITNE)) {
6110 			cv_rval = -1;
6111 		}
6112 
6113 		/*
6114 		 * note: STR_NOERROR does not protect
6115 		 * us here.. use ic_timout < 0
6116 		 */
6117 		if (cv_rval <= 0) {
6118 			if (cv_rval == 0) {
6119 				error = EINTR;
6120 			} else {
6121 				error =  ETIME;
6122 			}
6123 			/*
6124 			 * A message could have come in after we were scheduled
6125 			 * but before we were actually run.
6126 			 */
6127 			bp = stp->sd_iocblk;
6128 			stp->sd_iocblk = NULL;
6129 			if (bp != NULL) {
6130 				if ((bp->b_datap->db_type == M_COPYIN) ||
6131 				    (bp->b_datap->db_type == M_COPYOUT)) {
6132 					mutex_exit(&stp->sd_lock);
6133 					if (bp->b_cont) {
6134 						freemsg(bp->b_cont);
6135 						bp->b_cont = NULL;
6136 					}
6137 					bp->b_datap->db_type = M_IOCDATA;
6138 					bp->b_wptr = bp->b_rptr +
6139 					    sizeof (struct copyresp);
6140 					resp = (struct copyresp *)bp->b_rptr;
6141 					resp->cp_rval =
6142 					    (caddr_t)1; /* failure */
6143 					stream_willservice(stp);
6144 					putnext(stp->sd_wrq, bp);
6145 					stream_runservice(stp);
6146 					mutex_enter(&stp->sd_lock);
6147 				} else {
6148 					freemsg(bp);
6149 				}
6150 			}
6151 			stp->sd_flag &= ~waitflags;
6152 			cv_broadcast(&stp->sd_iocmonitor);
6153 			mutex_exit(&stp->sd_lock);
6154 			crfree(crp);
6155 			return (error);
6156 		}
6157 	}
6158 	bp = stp->sd_iocblk;
6159 	/*
6160 	 * Note: it is strictly impossible to get here with sd_iocblk set to
6161 	 * -1.  This is because the initial loop above doesn't allow any new
6162 	 * ioctls into the fray until all others have passed this point.
6163 	 */
6164 	ASSERT(bp != NULL && bp != (mblk_t *)-1);
6165 	TRACE_1(TR_FAC_STREAMS_FR,
6166 	    TR_STRDOIOCTL_ACK, "strdoioctl got reply: bp %p", bp);
6167 	if ((bp->b_datap->db_type == M_IOCACK) ||
6168 	    (bp->b_datap->db_type == M_IOCNAK)) {
6169 		/* for detection of duplicate ioctl replies */
6170 		stp->sd_iocblk = (mblk_t *)-1;
6171 		stp->sd_flag &= ~waitflags;
6172 		cv_broadcast(&stp->sd_iocmonitor);
6173 		mutex_exit(&stp->sd_lock);
6174 	} else {
6175 		/*
6176 		 * flags not cleared here because we're still doing
6177 		 * copy in/out for ioctl.
6178 		 */
6179 		stp->sd_iocblk = NULL;
6180 		mutex_exit(&stp->sd_lock);
6181 	}
6182 
6183 
6184 	/*
6185 	 * Have received acknowledgment.
6186 	 */
6187 
6188 	switch (bp->b_datap->db_type) {
6189 	case M_IOCACK:
6190 		/*
6191 		 * Positive ack.
6192 		 */
6193 		iocbp = (struct iocblk *)bp->b_rptr;
6194 
6195 		/*
6196 		 * Set error if indicated.
6197 		 */
6198 		if (iocbp->ioc_error) {
6199 			error = iocbp->ioc_error;
6200 			break;
6201 		}
6202 
6203 		/*
6204 		 * Set return value.
6205 		 */
6206 		*rvalp = iocbp->ioc_rval;
6207 
6208 		/*
6209 		 * Data may have been returned in ACK message (ioc_count > 0).
6210 		 * If so, copy it out to the user's buffer.
6211 		 */
6212 		if (iocbp->ioc_count && !transparent) {
6213 			if (error = getiocd(bp, strioc->ic_dp, copyflag))
6214 				break;
6215 		}
6216 		if (!transparent) {
6217 			if (len)	/* an M_COPYOUT was used with I_STR */
6218 				strioc->ic_len = len;
6219 			else
6220 				strioc->ic_len = (int)iocbp->ioc_count;
6221 		}
6222 		break;
6223 
6224 	case M_IOCNAK:
6225 		/*
6226 		 * Negative ack.
6227 		 *
6228 		 * The only thing to do is set error as specified
6229 		 * in neg ack packet.
6230 		 */
6231 		iocbp = (struct iocblk *)bp->b_rptr;
6232 
6233 		error = (iocbp->ioc_error ? iocbp->ioc_error : EINVAL);
6234 		break;
6235 
6236 	case M_COPYIN:
6237 		/*
6238 		 * Driver or module has requested user ioctl data.
6239 		 */
6240 		reqp = (struct copyreq *)bp->b_rptr;
6241 
6242 		/*
6243 		 * M_COPYIN should *never* have a message attached, though
6244 		 * it's harmless if it does -- thus, panic on a DEBUG
6245 		 * kernel and just free it on a non-DEBUG build.
6246 		 */
6247 		ASSERT(bp->b_cont == NULL);
6248 		if (bp->b_cont != NULL) {
6249 			freemsg(bp->b_cont);
6250 			bp->b_cont = NULL;
6251 		}
6252 
6253 		error = putiocd(bp, reqp->cq_addr, flag, crp);
6254 		if (error && bp->b_cont) {
6255 			freemsg(bp->b_cont);
6256 			bp->b_cont = NULL;
6257 		}
6258 
6259 		bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
6260 		bp->b_datap->db_type = M_IOCDATA;
6261 
6262 		mblk_setcred(bp, crp, curproc->p_pid);
6263 		resp = (struct copyresp *)bp->b_rptr;
6264 		resp->cp_rval = (caddr_t)(uintptr_t)error;
6265 		resp->cp_flag = (fflags & FMODELS);
6266 
6267 		stream_willservice(stp);
6268 		putnext(stp->sd_wrq, bp);
6269 		stream_runservice(stp);
6270 
6271 		if (error) {
6272 			mutex_enter(&stp->sd_lock);
6273 			stp->sd_flag &= ~waitflags;
6274 			cv_broadcast(&stp->sd_iocmonitor);
6275 			mutex_exit(&stp->sd_lock);
6276 			crfree(crp);
6277 			return (error);
6278 		}
6279 
6280 		goto waitioc;
6281 
6282 	case M_COPYOUT:
6283 		/*
6284 		 * Driver or module has ioctl data for a user.
6285 		 */
6286 		reqp = (struct copyreq *)bp->b_rptr;
6287 		ASSERT(bp->b_cont != NULL);
6288 
6289 		/*
6290 		 * Always (transparent or non-transparent )
6291 		 * use the address specified in the request
6292 		 */
6293 		taddr = reqp->cq_addr;
6294 		if (!transparent)
6295 			len = (int)reqp->cq_size;
6296 
6297 		/* copyout data to the provided address */
6298 		error = getiocd(bp, taddr, copyflag);
6299 
6300 		freemsg(bp->b_cont);
6301 		bp->b_cont = NULL;
6302 
6303 		bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
6304 		bp->b_datap->db_type = M_IOCDATA;
6305 
6306 		mblk_setcred(bp, crp, curproc->p_pid);
6307 		resp = (struct copyresp *)bp->b_rptr;
6308 		resp->cp_rval = (caddr_t)(uintptr_t)error;
6309 		resp->cp_flag = (fflags & FMODELS);
6310 
6311 		stream_willservice(stp);
6312 		putnext(stp->sd_wrq, bp);
6313 		stream_runservice(stp);
6314 
6315 		if (error) {
6316 			mutex_enter(&stp->sd_lock);
6317 			stp->sd_flag &= ~waitflags;
6318 			cv_broadcast(&stp->sd_iocmonitor);
6319 			mutex_exit(&stp->sd_lock);
6320 			crfree(crp);
6321 			return (error);
6322 		}
6323 		goto waitioc;
6324 
6325 	default:
6326 		ASSERT(0);
6327 		mutex_enter(&stp->sd_lock);
6328 		stp->sd_flag &= ~waitflags;
6329 		cv_broadcast(&stp->sd_iocmonitor);
6330 		mutex_exit(&stp->sd_lock);
6331 		break;
6332 	}
6333 
6334 	freemsg(bp);
6335 	crfree(crp);
6336 	return (error);
6337 }
6338 
6339 /*
6340  * Send an M_CMD message downstream and wait for a reply.  This is a ptools
6341  * special used to retrieve information from modules/drivers a stream without
6342  * being subjected to flow control or interfering with pending messages on the
6343  * stream (e.g. an ioctl in flight).
6344  */
6345 int
6346 strdocmd(struct stdata *stp, struct strcmd *scp, cred_t *crp)
6347 {
6348 	mblk_t *mp;
6349 	struct cmdblk *cmdp;
6350 	int error = 0;
6351 	int errs = STRHUP|STRDERR|STWRERR|STPLEX;
6352 	clock_t rval, timeout = STRTIMOUT;
6353 
6354 	if (scp->sc_len < 0 || scp->sc_len > sizeof (scp->sc_buf) ||
6355 	    scp->sc_timeout < -1)
6356 		return (EINVAL);
6357 
6358 	if (scp->sc_timeout > 0)
6359 		timeout = scp->sc_timeout * MILLISEC;
6360 
6361 	if ((mp = allocb_cred(sizeof (struct cmdblk), crp,
6362 	    curproc->p_pid)) == NULL)
6363 		return (ENOMEM);
6364 
6365 	crhold(crp);
6366 
6367 	cmdp = (struct cmdblk *)mp->b_wptr;
6368 	cmdp->cb_cr = crp;
6369 	cmdp->cb_cmd = scp->sc_cmd;
6370 	cmdp->cb_len = scp->sc_len;
6371 	cmdp->cb_error = 0;
6372 	mp->b_wptr += sizeof (struct cmdblk);
6373 
6374 	DB_TYPE(mp) = M_CMD;
6375 	DB_CPID(mp) = curproc->p_pid;
6376 
6377 	/*
6378 	 * Copy in the payload.
6379 	 */
6380 	if (cmdp->cb_len > 0) {
6381 		mp->b_cont = allocb_cred(sizeof (scp->sc_buf), crp,
6382 		    curproc->p_pid);
6383 		if (mp->b_cont == NULL) {
6384 			error = ENOMEM;
6385 			goto out;
6386 		}
6387 
6388 		/* cb_len comes from sc_len, which has already been checked */
6389 		ASSERT(cmdp->cb_len <= sizeof (scp->sc_buf));
6390 		(void) bcopy(scp->sc_buf, mp->b_cont->b_wptr, cmdp->cb_len);
6391 		mp->b_cont->b_wptr += cmdp->cb_len;
6392 		DB_CPID(mp->b_cont) = curproc->p_pid;
6393 	}
6394 
6395 	/*
6396 	 * Since this mechanism is strictly for ptools, and since only one
6397 	 * process can be grabbed at a time, we simply fail if there's
6398 	 * currently an operation pending.
6399 	 */
6400 	mutex_enter(&stp->sd_lock);
6401 	if (stp->sd_flag & STRCMDWAIT) {
6402 		mutex_exit(&stp->sd_lock);
6403 		error = EBUSY;
6404 		goto out;
6405 	}
6406 	stp->sd_flag |= STRCMDWAIT;
6407 	ASSERT(stp->sd_cmdblk == NULL);
6408 	mutex_exit(&stp->sd_lock);
6409 
6410 	putnext(stp->sd_wrq, mp);
6411 	mp = NULL;
6412 
6413 	/*
6414 	 * Timed wait for acknowledgment.  If the reply has already arrived,
6415 	 * don't sleep.  If awakened from the sleep, fail only if the reply
6416 	 * has not arrived by then.  Otherwise, process the reply.
6417 	 */
6418 	mutex_enter(&stp->sd_lock);
6419 	while (stp->sd_cmdblk == NULL) {
6420 		if (stp->sd_flag & errs) {
6421 			if ((error = strgeterr(stp, errs, 0)) != 0)
6422 				goto waitout;
6423 		}
6424 
6425 		rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, timeout, 0);
6426 		if (stp->sd_cmdblk != NULL)
6427 			break;
6428 
6429 		if (rval <= 0) {
6430 			error = (rval == 0) ? EINTR : ETIME;
6431 			goto waitout;
6432 		}
6433 	}
6434 
6435 	/*
6436 	 * We received a reply.
6437 	 */
6438 	mp = stp->sd_cmdblk;
6439 	stp->sd_cmdblk = NULL;
6440 	ASSERT(mp != NULL && DB_TYPE(mp) == M_CMD);
6441 	ASSERT(stp->sd_flag & STRCMDWAIT);
6442 	stp->sd_flag &= ~STRCMDWAIT;
6443 	mutex_exit(&stp->sd_lock);
6444 
6445 	cmdp = (struct cmdblk *)mp->b_rptr;
6446 	if ((error = cmdp->cb_error) != 0)
6447 		goto out;
6448 
6449 	/*
6450 	 * Data may have been returned in the reply (cb_len > 0).
6451 	 * If so, copy it out to the user's buffer.
6452 	 */
6453 	if (cmdp->cb_len > 0) {
6454 		if (mp->b_cont == NULL || MBLKL(mp->b_cont) < cmdp->cb_len) {
6455 			error = EPROTO;
6456 			goto out;
6457 		}
6458 
6459 		cmdp->cb_len = MIN(cmdp->cb_len, sizeof (scp->sc_buf));
6460 		(void) bcopy(mp->b_cont->b_rptr, scp->sc_buf, cmdp->cb_len);
6461 	}
6462 	scp->sc_len = cmdp->cb_len;
6463 out:
6464 	freemsg(mp);
6465 	crfree(crp);
6466 	return (error);
6467 waitout:
6468 	ASSERT(stp->sd_cmdblk == NULL);
6469 	stp->sd_flag &= ~STRCMDWAIT;
6470 	mutex_exit(&stp->sd_lock);
6471 	crfree(crp);
6472 	return (error);
6473 }
6474 
6475 /*
6476  * For the SunOS keyboard driver.
6477  * Return the next available "ioctl" sequence number.
6478  * Exported, so that streams modules can send "ioctl" messages
6479  * downstream from their open routine.
6480  */
6481 int
6482 getiocseqno(void)
6483 {
6484 	int	i;
6485 
6486 	mutex_enter(&strresources);
6487 	i = ++ioc_id;
6488 	mutex_exit(&strresources);
6489 	return (i);
6490 }
6491 
6492 /*
6493  * Get the next message from the read queue.  If the message is
6494  * priority, STRPRI will have been set by strrput().  This flag
6495  * should be reset only when the entire message at the front of the
6496  * queue as been consumed.
6497  *
6498  * NOTE: strgetmsg and kstrgetmsg have much of the logic in common.
6499  */
6500 int
6501 strgetmsg(
6502 	struct vnode *vp,
6503 	struct strbuf *mctl,
6504 	struct strbuf *mdata,
6505 	unsigned char *prip,
6506 	int *flagsp,
6507 	int fmode,
6508 	rval_t *rvp)
6509 {
6510 	struct stdata *stp;
6511 	mblk_t *bp, *nbp;
6512 	mblk_t *savemp = NULL;
6513 	mblk_t *savemptail = NULL;
6514 	uint_t old_sd_flag;
6515 	int flg;
6516 	int more = 0;
6517 	int error = 0;
6518 	char first = 1;
6519 	uint_t mark;		/* Contains MSG*MARK and _LASTMARK */
6520 #define	_LASTMARK	0x8000	/* Distinct from MSG*MARK */
6521 	unsigned char pri = 0;
6522 	queue_t *q;
6523 	int	pr = 0;			/* Partial read successful */
6524 	struct uio uios;
6525 	struct uio *uiop = &uios;
6526 	struct iovec iovs;
6527 	unsigned char type;
6528 
6529 	TRACE_1(TR_FAC_STREAMS_FR, TR_STRGETMSG_ENTER,
6530 	    "strgetmsg:%p", vp);
6531 
6532 	ASSERT(vp->v_stream);
6533 	stp = vp->v_stream;
6534 	rvp->r_val1 = 0;
6535 
6536 	mutex_enter(&stp->sd_lock);
6537 
6538 	if ((error = i_straccess(stp, JCREAD)) != 0) {
6539 		mutex_exit(&stp->sd_lock);
6540 		return (error);
6541 	}
6542 
6543 	if (stp->sd_flag & (STRDERR|STPLEX)) {
6544 		error = strgeterr(stp, STRDERR|STPLEX, 0);
6545 		if (error != 0) {
6546 			mutex_exit(&stp->sd_lock);
6547 			return (error);
6548 		}
6549 	}
6550 	mutex_exit(&stp->sd_lock);
6551 
6552 	switch (*flagsp) {
6553 	case MSG_HIPRI:
6554 		if (*prip != 0)
6555 			return (EINVAL);
6556 		break;
6557 
6558 	case MSG_ANY:
6559 	case MSG_BAND:
6560 		break;
6561 
6562 	default:
6563 		return (EINVAL);
6564 	}
6565 	/*
6566 	 * Setup uio and iov for data part
6567 	 */
6568 	iovs.iov_base = mdata->buf;
6569 	iovs.iov_len = mdata->maxlen;
6570 	uios.uio_iov = &iovs;
6571 	uios.uio_iovcnt = 1;
6572 	uios.uio_loffset = 0;
6573 	uios.uio_segflg = UIO_USERSPACE;
6574 	uios.uio_fmode = 0;
6575 	uios.uio_extflg = UIO_COPY_CACHED;
6576 	uios.uio_resid = mdata->maxlen;
6577 	uios.uio_offset = 0;
6578 
6579 	q = _RD(stp->sd_wrq);
6580 	mutex_enter(&stp->sd_lock);
6581 	old_sd_flag = stp->sd_flag;
6582 	mark = 0;
6583 	for (;;) {
6584 		int done = 0;
6585 		mblk_t *q_first = q->q_first;
6586 
6587 		/*
6588 		 * Get the next message of appropriate priority
6589 		 * from the stream head.  If the caller is interested
6590 		 * in band or hipri messages, then they should already
6591 		 * be enqueued at the stream head.  On the other hand
6592 		 * if the caller wants normal (band 0) messages, they
6593 		 * might be deferred in a synchronous stream and they
6594 		 * will need to be pulled up.
6595 		 *
6596 		 * After we have dequeued a message, we might find that
6597 		 * it was a deferred M_SIG that was enqueued at the
6598 		 * stream head.  It must now be posted as part of the
6599 		 * read by calling strsignal_nolock().
6600 		 *
6601 		 * Also note that strrput does not enqueue an M_PCSIG,
6602 		 * and there cannot be more than one hipri message,
6603 		 * so there was no need to have the M_PCSIG case.
6604 		 *
6605 		 * At some time it might be nice to try and wrap the
6606 		 * functionality of kstrgetmsg() and strgetmsg() into
6607 		 * a common routine so to reduce the amount of replicated
6608 		 * code (since they are extremely similar).
6609 		 */
6610 		if (!(*flagsp & (MSG_HIPRI|MSG_BAND))) {
6611 			/* Asking for normal, band0 data */
6612 			bp = strget(stp, q, uiop, first, &error);
6613 			ASSERT(MUTEX_HELD(&stp->sd_lock));
6614 			if (bp != NULL) {
6615 				if (DB_TYPE(bp) == M_SIG) {
6616 					strsignal_nolock(stp, *bp->b_rptr,
6617 					    bp->b_band);
6618 					freemsg(bp);
6619 					continue;
6620 				} else {
6621 					break;
6622 				}
6623 			}
6624 			if (error != 0)
6625 				goto getmout;
6626 
6627 		/*
6628 		 * We can't depend on the value of STRPRI here because
6629 		 * the stream head may be in transit. Therefore, we
6630 		 * must look at the type of the first message to
6631 		 * determine if a high priority messages is waiting
6632 		 */
6633 		} else if ((*flagsp & MSG_HIPRI) && q_first != NULL &&
6634 		    DB_TYPE(q_first) >= QPCTL &&
6635 		    (bp = getq_noenab(q, 0)) != NULL) {
6636 			/* Asked for HIPRI and got one */
6637 			ASSERT(DB_TYPE(bp) >= QPCTL);
6638 			break;
6639 		} else if ((*flagsp & MSG_BAND) && q_first != NULL &&
6640 		    ((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) &&
6641 		    (bp = getq_noenab(q, 0)) != NULL) {
6642 			/*
6643 			 * Asked for at least band "prip" and got either at
6644 			 * least that band or a hipri message.
6645 			 */
6646 			ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL);
6647 			if (DB_TYPE(bp) == M_SIG) {
6648 				strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
6649 				freemsg(bp);
6650 				continue;
6651 			} else {
6652 				break;
6653 			}
6654 		}
6655 
6656 		/* No data. Time to sleep? */
6657 		qbackenable(q, 0);
6658 
6659 		/*
6660 		 * If STRHUP or STREOF, return 0 length control and data.
6661 		 * If resid is 0, then a read(fd,buf,0) was done. Do not
6662 		 * sleep to satisfy this request because by default we have
6663 		 * zero bytes to return.
6664 		 */
6665 		if ((stp->sd_flag & (STRHUP|STREOF)) || (mctl->maxlen == 0 &&
6666 		    mdata->maxlen == 0)) {
6667 			mctl->len = mdata->len = 0;
6668 			*flagsp = 0;
6669 			mutex_exit(&stp->sd_lock);
6670 			return (0);
6671 		}
6672 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_WAIT,
6673 		    "strgetmsg calls strwaitq:%p, %p",
6674 		    vp, uiop);
6675 		if (((error = strwaitq(stp, GETWAIT, (ssize_t)0, fmode, -1,
6676 		    &done)) != 0) || done) {
6677 			TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_DONE,
6678 			    "strgetmsg error or done:%p, %p",
6679 			    vp, uiop);
6680 			mutex_exit(&stp->sd_lock);
6681 			return (error);
6682 		}
6683 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_AWAKE,
6684 		    "strgetmsg awakes:%p, %p", vp, uiop);
6685 		if ((error = i_straccess(stp, JCREAD)) != 0) {
6686 			mutex_exit(&stp->sd_lock);
6687 			return (error);
6688 		}
6689 		first = 0;
6690 	}
6691 	ASSERT(bp != NULL);
6692 	/*
6693 	 * Extract any mark information. If the message is not completely
6694 	 * consumed this information will be put in the mblk
6695 	 * that is putback.
6696 	 * If MSGMARKNEXT is set and the message is completely consumed
6697 	 * the STRATMARK flag will be set below. Likewise, if
6698 	 * MSGNOTMARKNEXT is set and the message is
6699 	 * completely consumed STRNOTATMARK will be set.
6700 	 */
6701 	mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
6702 	ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
6703 	    (MSGMARKNEXT|MSGNOTMARKNEXT));
6704 	if (mark != 0 && bp == stp->sd_mark) {
6705 		mark |= _LASTMARK;
6706 		stp->sd_mark = NULL;
6707 	}
6708 	/*
6709 	 * keep track of the original message type and priority
6710 	 */
6711 	pri = bp->b_band;
6712 	type = bp->b_datap->db_type;
6713 	if (type == M_PASSFP) {
6714 		if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
6715 			stp->sd_mark = bp;
6716 		bp->b_flag |= mark & ~_LASTMARK;
6717 		putback(stp, q, bp, pri);
6718 		qbackenable(q, pri);
6719 		mutex_exit(&stp->sd_lock);
6720 		return (EBADMSG);
6721 	}
6722 	ASSERT(type != M_SIG);
6723 
6724 	/*
6725 	 * Set this flag so strrput will not generate signals. Need to
6726 	 * make sure this flag is cleared before leaving this routine
6727 	 * else signals will stop being sent.
6728 	 */
6729 	stp->sd_flag |= STRGETINPROG;
6730 	mutex_exit(&stp->sd_lock);
6731 
6732 	if (STREAM_NEEDSERVICE(stp))
6733 		stream_runservice(stp);
6734 
6735 	/*
6736 	 * Set HIPRI flag if message is priority.
6737 	 */
6738 	if (type >= QPCTL)
6739 		flg = MSG_HIPRI;
6740 	else
6741 		flg = MSG_BAND;
6742 
6743 	/*
6744 	 * First process PROTO or PCPROTO blocks, if any.
6745 	 */
6746 	if (mctl->maxlen >= 0 && type != M_DATA) {
6747 		size_t	n, bcnt;
6748 		char	*ubuf;
6749 
6750 		bcnt = mctl->maxlen;
6751 		ubuf = mctl->buf;
6752 		while (bp != NULL && bp->b_datap->db_type != M_DATA) {
6753 			if ((n = MIN(bcnt, bp->b_wptr - bp->b_rptr)) != 0 &&
6754 			    copyout(bp->b_rptr, ubuf, n)) {
6755 				error = EFAULT;
6756 				mutex_enter(&stp->sd_lock);
6757 				/*
6758 				 * clear stream head pri flag based on
6759 				 * first message type
6760 				 */
6761 				if (type >= QPCTL) {
6762 					ASSERT(type == M_PCPROTO);
6763 					stp->sd_flag &= ~STRPRI;
6764 				}
6765 				more = 0;
6766 				freemsg(bp);
6767 				goto getmout;
6768 			}
6769 			ubuf += n;
6770 			bp->b_rptr += n;
6771 			if (bp->b_rptr >= bp->b_wptr) {
6772 				nbp = bp;
6773 				bp = bp->b_cont;
6774 				freeb(nbp);
6775 			}
6776 			ASSERT(n <= bcnt);
6777 			bcnt -= n;
6778 			if (bcnt == 0)
6779 				break;
6780 		}
6781 		mctl->len = mctl->maxlen - bcnt;
6782 	} else
6783 		mctl->len = -1;
6784 
6785 	if (bp && bp->b_datap->db_type != M_DATA) {
6786 		/*
6787 		 * More PROTO blocks in msg.
6788 		 */
6789 		more |= MORECTL;
6790 		savemp = bp;
6791 		while (bp && bp->b_datap->db_type != M_DATA) {
6792 			savemptail = bp;
6793 			bp = bp->b_cont;
6794 		}
6795 		savemptail->b_cont = NULL;
6796 	}
6797 
6798 	/*
6799 	 * Now process DATA blocks, if any.
6800 	 */
6801 	if (mdata->maxlen >= 0 && bp) {
6802 		/*
6803 		 * struiocopyout will consume a potential zero-length
6804 		 * M_DATA even if uio_resid is zero.
6805 		 */
6806 		size_t oldresid = uiop->uio_resid;
6807 
6808 		bp = struiocopyout(bp, uiop, &error);
6809 		if (error != 0) {
6810 			mutex_enter(&stp->sd_lock);
6811 			/*
6812 			 * clear stream head hi pri flag based on
6813 			 * first message
6814 			 */
6815 			if (type >= QPCTL) {
6816 				ASSERT(type == M_PCPROTO);
6817 				stp->sd_flag &= ~STRPRI;
6818 			}
6819 			more = 0;
6820 			freemsg(savemp);
6821 			goto getmout;
6822 		}
6823 		/*
6824 		 * (pr == 1) indicates a partial read.
6825 		 */
6826 		if (oldresid > uiop->uio_resid)
6827 			pr = 1;
6828 		mdata->len = mdata->maxlen - uiop->uio_resid;
6829 	} else
6830 		mdata->len = -1;
6831 
6832 	if (bp) {			/* more data blocks in msg */
6833 		more |= MOREDATA;
6834 		if (savemp)
6835 			savemptail->b_cont = bp;
6836 		else
6837 			savemp = bp;
6838 	}
6839 
6840 	mutex_enter(&stp->sd_lock);
6841 	if (savemp) {
6842 		if (pr && (savemp->b_datap->db_type == M_DATA) &&
6843 		    msgnodata(savemp)) {
6844 			/*
6845 			 * Avoid queuing a zero-length tail part of
6846 			 * a message. pr=1 indicates that we read some of
6847 			 * the message.
6848 			 */
6849 			freemsg(savemp);
6850 			more &= ~MOREDATA;
6851 			/*
6852 			 * clear stream head hi pri flag based on
6853 			 * first message
6854 			 */
6855 			if (type >= QPCTL) {
6856 				ASSERT(type == M_PCPROTO);
6857 				stp->sd_flag &= ~STRPRI;
6858 			}
6859 		} else {
6860 			savemp->b_band = pri;
6861 			/*
6862 			 * If the first message was HIPRI and the one we're
6863 			 * putting back isn't, then clear STRPRI, otherwise
6864 			 * set STRPRI again.  Note that we must set STRPRI
6865 			 * again since the flush logic in strrput_nondata()
6866 			 * may have cleared it while we had sd_lock dropped.
6867 			 */
6868 			if (type >= QPCTL) {
6869 				ASSERT(type == M_PCPROTO);
6870 				if (queclass(savemp) < QPCTL)
6871 					stp->sd_flag &= ~STRPRI;
6872 				else
6873 					stp->sd_flag |= STRPRI;
6874 			} else if (queclass(savemp) >= QPCTL) {
6875 				/*
6876 				 * The first message was not a HIPRI message,
6877 				 * but the one we are about to putback is.
6878 				 * For simplicitly, we do not allow for HIPRI
6879 				 * messages to be embedded in the message
6880 				 * body, so just force it to same type as
6881 				 * first message.
6882 				 */
6883 				ASSERT(type == M_DATA || type == M_PROTO);
6884 				ASSERT(savemp->b_datap->db_type == M_PCPROTO);
6885 				savemp->b_datap->db_type = type;
6886 			}
6887 			if (mark != 0) {
6888 				savemp->b_flag |= mark & ~_LASTMARK;
6889 				if ((mark & _LASTMARK) &&
6890 				    (stp->sd_mark == NULL)) {
6891 					/*
6892 					 * If another marked message arrived
6893 					 * while sd_lock was not held sd_mark
6894 					 * would be non-NULL.
6895 					 */
6896 					stp->sd_mark = savemp;
6897 				}
6898 			}
6899 			putback(stp, q, savemp, pri);
6900 		}
6901 	} else {
6902 		/*
6903 		 * The complete message was consumed.
6904 		 *
6905 		 * If another M_PCPROTO arrived while sd_lock was not held
6906 		 * it would have been discarded since STRPRI was still set.
6907 		 *
6908 		 * Move the MSG*MARKNEXT information
6909 		 * to the stream head just in case
6910 		 * the read queue becomes empty.
6911 		 * clear stream head hi pri flag based on
6912 		 * first message
6913 		 *
6914 		 * If the stream head was at the mark
6915 		 * (STRATMARK) before we dropped sd_lock above
6916 		 * and some data was consumed then we have
6917 		 * moved past the mark thus STRATMARK is
6918 		 * cleared. However, if a message arrived in
6919 		 * strrput during the copyout above causing
6920 		 * STRATMARK to be set we can not clear that
6921 		 * flag.
6922 		 */
6923 		if (type >= QPCTL) {
6924 			ASSERT(type == M_PCPROTO);
6925 			stp->sd_flag &= ~STRPRI;
6926 		}
6927 		if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
6928 			if (mark & MSGMARKNEXT) {
6929 				stp->sd_flag &= ~STRNOTATMARK;
6930 				stp->sd_flag |= STRATMARK;
6931 			} else if (mark & MSGNOTMARKNEXT) {
6932 				stp->sd_flag &= ~STRATMARK;
6933 				stp->sd_flag |= STRNOTATMARK;
6934 			} else {
6935 				stp->sd_flag &= ~(STRATMARK|STRNOTATMARK);
6936 			}
6937 		} else if (pr && (old_sd_flag & STRATMARK)) {
6938 			stp->sd_flag &= ~STRATMARK;
6939 		}
6940 	}
6941 
6942 	*flagsp = flg;
6943 	*prip = pri;
6944 
6945 	/*
6946 	 * Getmsg cleanup processing - if the state of the queue has changed
6947 	 * some signals may need to be sent and/or poll awakened.
6948 	 */
6949 getmout:
6950 	qbackenable(q, pri);
6951 
6952 	/*
6953 	 * We dropped the stream head lock above. Send all M_SIG messages
6954 	 * before processing stream head for SIGPOLL messages.
6955 	 */
6956 	ASSERT(MUTEX_HELD(&stp->sd_lock));
6957 	while ((bp = q->q_first) != NULL &&
6958 	    (bp->b_datap->db_type == M_SIG)) {
6959 		/*
6960 		 * sd_lock is held so the content of the read queue can not
6961 		 * change.
6962 		 */
6963 		bp = getq(q);
6964 		ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG);
6965 
6966 		strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
6967 		mutex_exit(&stp->sd_lock);
6968 		freemsg(bp);
6969 		if (STREAM_NEEDSERVICE(stp))
6970 			stream_runservice(stp);
6971 		mutex_enter(&stp->sd_lock);
6972 	}
6973 
6974 	/*
6975 	 * stream head cannot change while we make the determination
6976 	 * whether or not to send a signal. Drop the flag to allow strrput
6977 	 * to send firstmsgsigs again.
6978 	 */
6979 	stp->sd_flag &= ~STRGETINPROG;
6980 
6981 	/*
6982 	 * If the type of message at the front of the queue changed
6983 	 * due to the receive the appropriate signals and pollwakeup events
6984 	 * are generated. The type of changes are:
6985 	 *	Processed a hipri message, q_first is not hipri.
6986 	 *	Processed a band X message, and q_first is band Y.
6987 	 * The generated signals and pollwakeups are identical to what
6988 	 * strrput() generates should the message that is now on q_first
6989 	 * arrive to an empty read queue.
6990 	 *
6991 	 * Note: only strrput will send a signal for a hipri message.
6992 	 */
6993 	if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) {
6994 		strsigset_t signals = 0;
6995 		strpollset_t pollwakeups = 0;
6996 
6997 		if (flg & MSG_HIPRI) {
6998 			/*
6999 			 * Removed a hipri message. Regular data at
7000 			 * the front of  the queue.
7001 			 */
7002 			if (bp->b_band == 0) {
7003 				signals = S_INPUT | S_RDNORM;
7004 				pollwakeups = POLLIN | POLLRDNORM;
7005 			} else {
7006 				signals = S_INPUT | S_RDBAND;
7007 				pollwakeups = POLLIN | POLLRDBAND;
7008 			}
7009 		} else if (pri != bp->b_band) {
7010 			/*
7011 			 * The band is different for the new q_first.
7012 			 */
7013 			if (bp->b_band == 0) {
7014 				signals = S_RDNORM;
7015 				pollwakeups = POLLIN | POLLRDNORM;
7016 			} else {
7017 				signals = S_RDBAND;
7018 				pollwakeups = POLLIN | POLLRDBAND;
7019 			}
7020 		}
7021 
7022 		if (pollwakeups != 0) {
7023 			if (pollwakeups == (POLLIN | POLLRDNORM)) {
7024 				if (!(stp->sd_rput_opt & SR_POLLIN))
7025 					goto no_pollwake;
7026 				stp->sd_rput_opt &= ~SR_POLLIN;
7027 			}
7028 			mutex_exit(&stp->sd_lock);
7029 			pollwakeup(&stp->sd_pollist, pollwakeups);
7030 			mutex_enter(&stp->sd_lock);
7031 		}
7032 no_pollwake:
7033 
7034 		if (stp->sd_sigflags & signals)
7035 			strsendsig(stp->sd_siglist, signals, bp->b_band, 0);
7036 	}
7037 	mutex_exit(&stp->sd_lock);
7038 
7039 	rvp->r_val1 = more;
7040 	return (error);
7041 #undef	_LASTMARK
7042 }
7043 
7044 /*
7045  * Get the next message from the read queue.  If the message is
7046  * priority, STRPRI will have been set by strrput().  This flag
7047  * should be reset only when the entire message at the front of the
7048  * queue as been consumed.
7049  *
7050  * If uiop is NULL all data is returned in mctlp.
7051  * Note that a NULL uiop implies that FNDELAY and FNONBLOCK are assumed
7052  * not enabled.
7053  * The timeout parameter is in milliseconds; -1 for infinity.
7054  * This routine handles the consolidation private flags:
7055  *	MSG_IGNERROR	Ignore any stream head error except STPLEX.
7056  *	MSG_DELAYERROR	Defer the error check until the queue is empty.
7057  *	MSG_HOLDSIG	Hold signals while waiting for data.
7058  *	MSG_IPEEK	Only peek at messages.
7059  *	MSG_DISCARDTAIL	Discard the tail M_DATA part of the message
7060  *			that doesn't fit.
7061  *	MSG_NOMARK	If the message is marked leave it on the queue.
7062  *
7063  * NOTE: strgetmsg and kstrgetmsg have much of the logic in common.
7064  */
7065 int
7066 kstrgetmsg(
7067 	struct vnode *vp,
7068 	mblk_t **mctlp,
7069 	struct uio *uiop,
7070 	unsigned char *prip,
7071 	int *flagsp,
7072 	clock_t timout,
7073 	rval_t *rvp)
7074 {
7075 	struct stdata *stp;
7076 	mblk_t *bp, *nbp;
7077 	mblk_t *savemp = NULL;
7078 	mblk_t *savemptail = NULL;
7079 	int flags;
7080 	uint_t old_sd_flag;
7081 	int flg;
7082 	int more = 0;
7083 	int error = 0;
7084 	char first = 1;
7085 	uint_t mark;		/* Contains MSG*MARK and _LASTMARK */
7086 #define	_LASTMARK	0x8000	/* Distinct from MSG*MARK */
7087 	unsigned char pri = 0;
7088 	queue_t *q;
7089 	int	pr = 0;			/* Partial read successful */
7090 	unsigned char type;
7091 
7092 	TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_ENTER,
7093 	    "kstrgetmsg:%p", vp);
7094 
7095 	ASSERT(vp->v_stream);
7096 	stp = vp->v_stream;
7097 	rvp->r_val1 = 0;
7098 
7099 	mutex_enter(&stp->sd_lock);
7100 
7101 	if ((error = i_straccess(stp, JCREAD)) != 0) {
7102 		mutex_exit(&stp->sd_lock);
7103 		return (error);
7104 	}
7105 
7106 	flags = *flagsp;
7107 	if (stp->sd_flag & (STRDERR|STPLEX)) {
7108 		if ((stp->sd_flag & STPLEX) ||
7109 		    (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == 0) {
7110 			error = strgeterr(stp, STRDERR|STPLEX,
7111 			    (flags & MSG_IPEEK));
7112 			if (error != 0) {
7113 				mutex_exit(&stp->sd_lock);
7114 				return (error);
7115 			}
7116 		}
7117 	}
7118 	mutex_exit(&stp->sd_lock);
7119 
7120 	switch (flags & (MSG_HIPRI|MSG_ANY|MSG_BAND)) {
7121 	case MSG_HIPRI:
7122 		if (*prip != 0)
7123 			return (EINVAL);
7124 		break;
7125 
7126 	case MSG_ANY:
7127 	case MSG_BAND:
7128 		break;
7129 
7130 	default:
7131 		return (EINVAL);
7132 	}
7133 
7134 retry:
7135 	q = _RD(stp->sd_wrq);
7136 	mutex_enter(&stp->sd_lock);
7137 	old_sd_flag = stp->sd_flag;
7138 	mark = 0;
7139 	for (;;) {
7140 		int done = 0;
7141 		int waitflag;
7142 		int fmode;
7143 		mblk_t *q_first = q->q_first;
7144 
7145 		/*
7146 		 * This section of the code operates just like the code
7147 		 * in strgetmsg().  There is a comment there about what
7148 		 * is going on here.
7149 		 */
7150 		if (!(flags & (MSG_HIPRI|MSG_BAND))) {
7151 			/* Asking for normal, band0 data */
7152 			bp = strget(stp, q, uiop, first, &error);
7153 			ASSERT(MUTEX_HELD(&stp->sd_lock));
7154 			if (bp != NULL) {
7155 				if (DB_TYPE(bp) == M_SIG) {
7156 					strsignal_nolock(stp, *bp->b_rptr,
7157 					    bp->b_band);
7158 					freemsg(bp);
7159 					continue;
7160 				} else {
7161 					break;
7162 				}
7163 			}
7164 			if (error != 0) {
7165 				goto getmout;
7166 			}
7167 		/*
7168 		 * We can't depend on the value of STRPRI here because
7169 		 * the stream head may be in transit. Therefore, we
7170 		 * must look at the type of the first message to
7171 		 * determine if a high priority messages is waiting
7172 		 */
7173 		} else if ((flags & MSG_HIPRI) && q_first != NULL &&
7174 		    DB_TYPE(q_first) >= QPCTL &&
7175 		    (bp = getq_noenab(q, 0)) != NULL) {
7176 			ASSERT(DB_TYPE(bp) >= QPCTL);
7177 			break;
7178 		} else if ((flags & MSG_BAND) && q_first != NULL &&
7179 		    ((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) &&
7180 		    (bp = getq_noenab(q, 0)) != NULL) {
7181 			/*
7182 			 * Asked for at least band "prip" and got either at
7183 			 * least that band or a hipri message.
7184 			 */
7185 			ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL);
7186 			if (DB_TYPE(bp) == M_SIG) {
7187 				strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
7188 				freemsg(bp);
7189 				continue;
7190 			} else {
7191 				break;
7192 			}
7193 		}
7194 
7195 		/* No data. Time to sleep? */
7196 		qbackenable(q, 0);
7197 
7198 		/*
7199 		 * Delayed error notification?
7200 		 */
7201 		if ((stp->sd_flag & (STRDERR|STPLEX)) &&
7202 		    (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == MSG_DELAYERROR) {
7203 			error = strgeterr(stp, STRDERR|STPLEX,
7204 			    (flags & MSG_IPEEK));
7205 			if (error != 0) {
7206 				mutex_exit(&stp->sd_lock);
7207 				return (error);
7208 			}
7209 		}
7210 
7211 		/*
7212 		 * If STRHUP or STREOF, return 0 length control and data.
7213 		 * If a read(fd,buf,0) has been done, do not sleep, just
7214 		 * return.
7215 		 *
7216 		 * If mctlp == NULL and uiop == NULL, then the code will
7217 		 * do the strwaitq. This is an understood way of saying
7218 		 * sleep "polling" until a message is received.
7219 		 */
7220 		if ((stp->sd_flag & (STRHUP|STREOF)) ||
7221 		    (uiop != NULL && uiop->uio_resid == 0)) {
7222 			if (mctlp != NULL)
7223 				*mctlp = NULL;
7224 			*flagsp = 0;
7225 			mutex_exit(&stp->sd_lock);
7226 			return (0);
7227 		}
7228 
7229 		waitflag = GETWAIT;
7230 		if (flags &
7231 		    (MSG_HOLDSIG|MSG_IGNERROR|MSG_IPEEK|MSG_DELAYERROR)) {
7232 			if (flags & MSG_HOLDSIG)
7233 				waitflag |= STR_NOSIG;
7234 			if (flags & MSG_IGNERROR)
7235 				waitflag |= STR_NOERROR;
7236 			if (flags & MSG_IPEEK)
7237 				waitflag |= STR_PEEK;
7238 			if (flags & MSG_DELAYERROR)
7239 				waitflag |= STR_DELAYERR;
7240 		}
7241 		if (uiop != NULL)
7242 			fmode = uiop->uio_fmode;
7243 		else
7244 			fmode = 0;
7245 
7246 		TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_WAIT,
7247 		    "kstrgetmsg calls strwaitq:%p, %p",
7248 		    vp, uiop);
7249 		if (((error = strwaitq(stp, waitflag, (ssize_t)0,
7250 		    fmode, timout, &done))) != 0 || done) {
7251 			TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_DONE,
7252 			    "kstrgetmsg error or done:%p, %p",
7253 			    vp, uiop);
7254 			mutex_exit(&stp->sd_lock);
7255 			return (error);
7256 		}
7257 		TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_AWAKE,
7258 		    "kstrgetmsg awakes:%p, %p", vp, uiop);
7259 		if ((error = i_straccess(stp, JCREAD)) != 0) {
7260 			mutex_exit(&stp->sd_lock);
7261 			return (error);
7262 		}
7263 		first = 0;
7264 	}
7265 	ASSERT(bp != NULL);
7266 	/*
7267 	 * Extract any mark information. If the message is not completely
7268 	 * consumed this information will be put in the mblk
7269 	 * that is putback.
7270 	 * If MSGMARKNEXT is set and the message is completely consumed
7271 	 * the STRATMARK flag will be set below. Likewise, if
7272 	 * MSGNOTMARKNEXT is set and the message is
7273 	 * completely consumed STRNOTATMARK will be set.
7274 	 */
7275 	mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
7276 	ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
7277 	    (MSGMARKNEXT|MSGNOTMARKNEXT));
7278 	pri = bp->b_band;
7279 	if (mark != 0) {
7280 		/*
7281 		 * If the caller doesn't want the mark return.
7282 		 * Used to implement MSG_WAITALL in sockets.
7283 		 */
7284 		if (flags & MSG_NOMARK) {
7285 			putback(stp, q, bp, pri);
7286 			qbackenable(q, pri);
7287 			mutex_exit(&stp->sd_lock);
7288 			return (EWOULDBLOCK);
7289 		}
7290 		if (bp == stp->sd_mark) {
7291 			mark |= _LASTMARK;
7292 			stp->sd_mark = NULL;
7293 		}
7294 	}
7295 
7296 	/*
7297 	 * keep track of the first message type
7298 	 */
7299 	type = bp->b_datap->db_type;
7300 
7301 	if (bp->b_datap->db_type == M_PASSFP) {
7302 		if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7303 			stp->sd_mark = bp;
7304 		bp->b_flag |= mark & ~_LASTMARK;
7305 		putback(stp, q, bp, pri);
7306 		qbackenable(q, pri);
7307 		mutex_exit(&stp->sd_lock);
7308 		return (EBADMSG);
7309 	}
7310 	ASSERT(type != M_SIG);
7311 
7312 	if (flags & MSG_IPEEK) {
7313 		/*
7314 		 * Clear any struioflag - we do the uiomove over again
7315 		 * when peeking since it simplifies the code.
7316 		 *
7317 		 * Dup the message and put the original back on the queue.
7318 		 * If dupmsg() fails, try again with copymsg() to see if
7319 		 * there is indeed a shortage of memory.  dupmsg() may fail
7320 		 * if db_ref in any of the messages reaches its limit.
7321 		 */
7322 
7323 		if ((nbp = dupmsg(bp)) == NULL && (nbp = copymsg(bp)) == NULL) {
7324 			/*
7325 			 * Restore the state of the stream head since we
7326 			 * need to drop sd_lock (strwaitbuf is sleeping).
7327 			 */
7328 			size_t size = msgdsize(bp);
7329 
7330 			if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7331 				stp->sd_mark = bp;
7332 			bp->b_flag |= mark & ~_LASTMARK;
7333 			putback(stp, q, bp, pri);
7334 			mutex_exit(&stp->sd_lock);
7335 			error = strwaitbuf(size, BPRI_HI);
7336 			if (error) {
7337 				/*
7338 				 * There is no net change to the queue thus
7339 				 * no need to qbackenable.
7340 				 */
7341 				return (error);
7342 			}
7343 			goto retry;
7344 		}
7345 
7346 		if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7347 			stp->sd_mark = bp;
7348 		bp->b_flag |= mark & ~_LASTMARK;
7349 		putback(stp, q, bp, pri);
7350 		bp = nbp;
7351 	}
7352 
7353 	/*
7354 	 * Set this flag so strrput will not generate signals. Need to
7355 	 * make sure this flag is cleared before leaving this routine
7356 	 * else signals will stop being sent.
7357 	 */
7358 	stp->sd_flag |= STRGETINPROG;
7359 	mutex_exit(&stp->sd_lock);
7360 
7361 	if ((stp->sd_rputdatafunc != NULL) && (DB_TYPE(bp) == M_DATA)) {
7362 		mblk_t *tmp, *prevmp;
7363 
7364 		/*
7365 		 * Put first non-data mblk back to stream head and
7366 		 * cut the mblk chain so sd_rputdatafunc only sees
7367 		 * M_DATA mblks. We can skip the first mblk since it
7368 		 * is M_DATA according to the condition above.
7369 		 */
7370 		for (prevmp = bp, tmp = bp->b_cont; tmp != NULL;
7371 		    prevmp = tmp, tmp = tmp->b_cont) {
7372 			if (DB_TYPE(tmp) != M_DATA) {
7373 				prevmp->b_cont = NULL;
7374 				mutex_enter(&stp->sd_lock);
7375 				putback(stp, q, tmp, tmp->b_band);
7376 				mutex_exit(&stp->sd_lock);
7377 				break;
7378 			}
7379 		}
7380 
7381 		bp = (stp->sd_rputdatafunc)(stp->sd_vnode, bp,
7382 		    NULL, NULL, NULL, NULL);
7383 
7384 		if (bp == NULL)
7385 			goto retry;
7386 	}
7387 
7388 	if (STREAM_NEEDSERVICE(stp))
7389 		stream_runservice(stp);
7390 
7391 	/*
7392 	 * Set HIPRI flag if message is priority.
7393 	 */
7394 	if (type >= QPCTL)
7395 		flg = MSG_HIPRI;
7396 	else
7397 		flg = MSG_BAND;
7398 
7399 	/*
7400 	 * First process PROTO or PCPROTO blocks, if any.
7401 	 */
7402 	if (mctlp != NULL && type != M_DATA) {
7403 		mblk_t *nbp;
7404 
7405 		*mctlp = bp;
7406 		while (bp->b_cont && bp->b_cont->b_datap->db_type != M_DATA)
7407 			bp = bp->b_cont;
7408 		nbp = bp->b_cont;
7409 		bp->b_cont = NULL;
7410 		bp = nbp;
7411 	}
7412 
7413 	if (bp && bp->b_datap->db_type != M_DATA) {
7414 		/*
7415 		 * More PROTO blocks in msg. Will only happen if mctlp is NULL.
7416 		 */
7417 		more |= MORECTL;
7418 		savemp = bp;
7419 		while (bp && bp->b_datap->db_type != M_DATA) {
7420 			savemptail = bp;
7421 			bp = bp->b_cont;
7422 		}
7423 		savemptail->b_cont = NULL;
7424 	}
7425 
7426 	/*
7427 	 * Now process DATA blocks, if any.
7428 	 */
7429 	if (uiop == NULL) {
7430 		/* Append data to tail of mctlp */
7431 
7432 		if (mctlp != NULL) {
7433 			mblk_t **mpp = mctlp;
7434 
7435 			while (*mpp != NULL)
7436 				mpp = &((*mpp)->b_cont);
7437 			*mpp = bp;
7438 			bp = NULL;
7439 		}
7440 	} else if (uiop->uio_resid >= 0 && bp) {
7441 		size_t oldresid = uiop->uio_resid;
7442 
7443 		/*
7444 		 * If a streams message is likely to consist
7445 		 * of many small mblks, it is pulled up into
7446 		 * one continuous chunk of memory.
7447 		 * The size of the first mblk may be bogus because
7448 		 * successive read() calls on the socket reduce
7449 		 * the size of this mblk until it is exhausted
7450 		 * and then the code walks on to the next. Thus
7451 		 * the size of the mblk may not be the original size
7452 		 * that was passed up, it's simply a remainder
7453 		 * and hence can be very small without any
7454 		 * implication that the packet is badly fragmented.
7455 		 * So the size of the possible second mblk is
7456 		 * used to spot a badly fragmented packet.
7457 		 * see longer comment at top of page
7458 		 * by mblk_pull_len declaration.
7459 		 */
7460 
7461 		if (bp->b_cont != NULL && MBLKL(bp->b_cont) < mblk_pull_len) {
7462 			(void) pullupmsg(bp, -1);
7463 		}
7464 
7465 		bp = struiocopyout(bp, uiop, &error);
7466 		if (error != 0) {
7467 			if (mctlp != NULL) {
7468 				freemsg(*mctlp);
7469 				*mctlp = NULL;
7470 			} else
7471 				freemsg(savemp);
7472 			mutex_enter(&stp->sd_lock);
7473 			/*
7474 			 * clear stream head hi pri flag based on
7475 			 * first message
7476 			 */
7477 			if (!(flags & MSG_IPEEK) && (type >= QPCTL)) {
7478 				ASSERT(type == M_PCPROTO);
7479 				stp->sd_flag &= ~STRPRI;
7480 			}
7481 			more = 0;
7482 			goto getmout;
7483 		}
7484 		/*
7485 		 * (pr == 1) indicates a partial read.
7486 		 */
7487 		if (oldresid > uiop->uio_resid)
7488 			pr = 1;
7489 	}
7490 
7491 	if (bp) {			/* more data blocks in msg */
7492 		more |= MOREDATA;
7493 		if (savemp)
7494 			savemptail->b_cont = bp;
7495 		else
7496 			savemp = bp;
7497 	}
7498 
7499 	mutex_enter(&stp->sd_lock);
7500 	if (savemp) {
7501 		if (flags & (MSG_IPEEK|MSG_DISCARDTAIL)) {
7502 			/*
7503 			 * When MSG_DISCARDTAIL is set or
7504 			 * when peeking discard any tail. When peeking this
7505 			 * is the tail of the dup that was copied out - the
7506 			 * message has already been putback on the queue.
7507 			 * Return MOREDATA to the caller even though the data
7508 			 * is discarded. This is used by sockets (to
7509 			 * set MSG_TRUNC).
7510 			 */
7511 			freemsg(savemp);
7512 			if (!(flags & MSG_IPEEK) && (type >= QPCTL)) {
7513 				ASSERT(type == M_PCPROTO);
7514 				stp->sd_flag &= ~STRPRI;
7515 			}
7516 		} else if (pr && (savemp->b_datap->db_type == M_DATA) &&
7517 		    msgnodata(savemp)) {
7518 			/*
7519 			 * Avoid queuing a zero-length tail part of
7520 			 * a message. pr=1 indicates that we read some of
7521 			 * the message.
7522 			 */
7523 			freemsg(savemp);
7524 			more &= ~MOREDATA;
7525 			if (type >= QPCTL) {
7526 				ASSERT(type == M_PCPROTO);
7527 				stp->sd_flag &= ~STRPRI;
7528 			}
7529 		} else {
7530 			savemp->b_band = pri;
7531 			/*
7532 			 * If the first message was HIPRI and the one we're
7533 			 * putting back isn't, then clear STRPRI, otherwise
7534 			 * set STRPRI again.  Note that we must set STRPRI
7535 			 * again since the flush logic in strrput_nondata()
7536 			 * may have cleared it while we had sd_lock dropped.
7537 			 */
7538 
7539 			if (type >= QPCTL) {
7540 				ASSERT(type == M_PCPROTO);
7541 				if (queclass(savemp) < QPCTL)
7542 					stp->sd_flag &= ~STRPRI;
7543 				else
7544 					stp->sd_flag |= STRPRI;
7545 			} else if (queclass(savemp) >= QPCTL) {
7546 				/*
7547 				 * The first message was not a HIPRI message,
7548 				 * but the one we are about to putback is.
7549 				 * For simplicitly, we do not allow for HIPRI
7550 				 * messages to be embedded in the message
7551 				 * body, so just force it to same type as
7552 				 * first message.
7553 				 */
7554 				ASSERT(type == M_DATA || type == M_PROTO);
7555 				ASSERT(savemp->b_datap->db_type == M_PCPROTO);
7556 				savemp->b_datap->db_type = type;
7557 			}
7558 			if (mark != 0) {
7559 				if ((mark & _LASTMARK) &&
7560 				    (stp->sd_mark == NULL)) {
7561 					/*
7562 					 * If another marked message arrived
7563 					 * while sd_lock was not held sd_mark
7564 					 * would be non-NULL.
7565 					 */
7566 					stp->sd_mark = savemp;
7567 				}
7568 				savemp->b_flag |= mark & ~_LASTMARK;
7569 			}
7570 			putback(stp, q, savemp, pri);
7571 		}
7572 	} else if (!(flags & MSG_IPEEK)) {
7573 		/*
7574 		 * The complete message was consumed.
7575 		 *
7576 		 * If another M_PCPROTO arrived while sd_lock was not held
7577 		 * it would have been discarded since STRPRI was still set.
7578 		 *
7579 		 * Move the MSG*MARKNEXT information
7580 		 * to the stream head just in case
7581 		 * the read queue becomes empty.
7582 		 * clear stream head hi pri flag based on
7583 		 * first message
7584 		 *
7585 		 * If the stream head was at the mark
7586 		 * (STRATMARK) before we dropped sd_lock above
7587 		 * and some data was consumed then we have
7588 		 * moved past the mark thus STRATMARK is
7589 		 * cleared. However, if a message arrived in
7590 		 * strrput during the copyout above causing
7591 		 * STRATMARK to be set we can not clear that
7592 		 * flag.
7593 		 * XXX A "perimeter" would help by single-threading strrput,
7594 		 * strread, strgetmsg and kstrgetmsg.
7595 		 */
7596 		if (type >= QPCTL) {
7597 			ASSERT(type == M_PCPROTO);
7598 			stp->sd_flag &= ~STRPRI;
7599 		}
7600 		if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
7601 			if (mark & MSGMARKNEXT) {
7602 				stp->sd_flag &= ~STRNOTATMARK;
7603 				stp->sd_flag |= STRATMARK;
7604 			} else if (mark & MSGNOTMARKNEXT) {
7605 				stp->sd_flag &= ~STRATMARK;
7606 				stp->sd_flag |= STRNOTATMARK;
7607 			} else {
7608 				stp->sd_flag &= ~(STRATMARK|STRNOTATMARK);
7609 			}
7610 		} else if (pr && (old_sd_flag & STRATMARK)) {
7611 			stp->sd_flag &= ~STRATMARK;
7612 		}
7613 	}
7614 
7615 	*flagsp = flg;
7616 	*prip = pri;
7617 
7618 	/*
7619 	 * Getmsg cleanup processing - if the state of the queue has changed
7620 	 * some signals may need to be sent and/or poll awakened.
7621 	 */
7622 getmout:
7623 	qbackenable(q, pri);
7624 
7625 	/*
7626 	 * We dropped the stream head lock above. Send all M_SIG messages
7627 	 * before processing stream head for SIGPOLL messages.
7628 	 */
7629 	ASSERT(MUTEX_HELD(&stp->sd_lock));
7630 	while ((bp = q->q_first) != NULL &&
7631 	    (bp->b_datap->db_type == M_SIG)) {
7632 		/*
7633 		 * sd_lock is held so the content of the read queue can not
7634 		 * change.
7635 		 */
7636 		bp = getq(q);
7637 		ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG);
7638 
7639 		strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
7640 		mutex_exit(&stp->sd_lock);
7641 		freemsg(bp);
7642 		if (STREAM_NEEDSERVICE(stp))
7643 			stream_runservice(stp);
7644 		mutex_enter(&stp->sd_lock);
7645 	}
7646 
7647 	/*
7648 	 * stream head cannot change while we make the determination
7649 	 * whether or not to send a signal. Drop the flag to allow strrput
7650 	 * to send firstmsgsigs again.
7651 	 */
7652 	stp->sd_flag &= ~STRGETINPROG;
7653 
7654 	/*
7655 	 * If the type of message at the front of the queue changed
7656 	 * due to the receive the appropriate signals and pollwakeup events
7657 	 * are generated. The type of changes are:
7658 	 *	Processed a hipri message, q_first is not hipri.
7659 	 *	Processed a band X message, and q_first is band Y.
7660 	 * The generated signals and pollwakeups are identical to what
7661 	 * strrput() generates should the message that is now on q_first
7662 	 * arrive to an empty read queue.
7663 	 *
7664 	 * Note: only strrput will send a signal for a hipri message.
7665 	 */
7666 	if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) {
7667 		strsigset_t signals = 0;
7668 		strpollset_t pollwakeups = 0;
7669 
7670 		if (flg & MSG_HIPRI) {
7671 			/*
7672 			 * Removed a hipri message. Regular data at
7673 			 * the front of  the queue.
7674 			 */
7675 			if (bp->b_band == 0) {
7676 				signals = S_INPUT | S_RDNORM;
7677 				pollwakeups = POLLIN | POLLRDNORM;
7678 			} else {
7679 				signals = S_INPUT | S_RDBAND;
7680 				pollwakeups = POLLIN | POLLRDBAND;
7681 			}
7682 		} else if (pri != bp->b_band) {
7683 			/*
7684 			 * The band is different for the new q_first.
7685 			 */
7686 			if (bp->b_band == 0) {
7687 				signals = S_RDNORM;
7688 				pollwakeups = POLLIN | POLLRDNORM;
7689 			} else {
7690 				signals = S_RDBAND;
7691 				pollwakeups = POLLIN | POLLRDBAND;
7692 			}
7693 		}
7694 
7695 		if (pollwakeups != 0) {
7696 			if (pollwakeups == (POLLIN | POLLRDNORM)) {
7697 				if (!(stp->sd_rput_opt & SR_POLLIN))
7698 					goto no_pollwake;
7699 				stp->sd_rput_opt &= ~SR_POLLIN;
7700 			}
7701 			mutex_exit(&stp->sd_lock);
7702 			pollwakeup(&stp->sd_pollist, pollwakeups);
7703 			mutex_enter(&stp->sd_lock);
7704 		}
7705 no_pollwake:
7706 
7707 		if (stp->sd_sigflags & signals)
7708 			strsendsig(stp->sd_siglist, signals, bp->b_band, 0);
7709 	}
7710 	mutex_exit(&stp->sd_lock);
7711 
7712 	rvp->r_val1 = more;
7713 	return (error);
7714 #undef	_LASTMARK
7715 }
7716 
7717 /*
7718  * Put a message downstream.
7719  *
7720  * NOTE: strputmsg and kstrputmsg have much of the logic in common.
7721  */
7722 int
7723 strputmsg(
7724 	struct vnode *vp,
7725 	struct strbuf *mctl,
7726 	struct strbuf *mdata,
7727 	unsigned char pri,
7728 	int flag,
7729 	int fmode)
7730 {
7731 	struct stdata *stp;
7732 	queue_t *wqp;
7733 	mblk_t *mp;
7734 	ssize_t msgsize;
7735 	ssize_t rmin, rmax;
7736 	int error;
7737 	struct uio uios;
7738 	struct uio *uiop = &uios;
7739 	struct iovec iovs;
7740 	int xpg4 = 0;
7741 
7742 	ASSERT(vp->v_stream);
7743 	stp = vp->v_stream;
7744 	wqp = stp->sd_wrq;
7745 
7746 	/*
7747 	 * If it is an XPG4 application, we need to send
7748 	 * SIGPIPE below
7749 	 */
7750 
7751 	xpg4 = (flag & MSG_XPG4) ? 1 : 0;
7752 	flag &= ~MSG_XPG4;
7753 
7754 	if (AU_AUDITING())
7755 		audit_strputmsg(vp, mctl, mdata, pri, flag, fmode);
7756 
7757 	mutex_enter(&stp->sd_lock);
7758 
7759 	if ((error = i_straccess(stp, JCWRITE)) != 0) {
7760 		mutex_exit(&stp->sd_lock);
7761 		return (error);
7762 	}
7763 
7764 	if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
7765 		error = strwriteable(stp, B_FALSE, xpg4);
7766 		if (error != 0) {
7767 			mutex_exit(&stp->sd_lock);
7768 			return (error);
7769 		}
7770 	}
7771 
7772 	mutex_exit(&stp->sd_lock);
7773 
7774 	/*
7775 	 * Check for legal flag value.
7776 	 */
7777 	switch (flag) {
7778 	case MSG_HIPRI:
7779 		if ((mctl->len < 0) || (pri != 0))
7780 			return (EINVAL);
7781 		break;
7782 	case MSG_BAND:
7783 		break;
7784 
7785 	default:
7786 		return (EINVAL);
7787 	}
7788 
7789 	TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_IN,
7790 	    "strputmsg in:stp %p", stp);
7791 
7792 	/* get these values from those cached in the stream head */
7793 	rmin = stp->sd_qn_minpsz;
7794 	rmax = stp->sd_qn_maxpsz;
7795 
7796 	/*
7797 	 * Make sure ctl and data sizes together fall within the
7798 	 * limits of the max and min receive packet sizes and do
7799 	 * not exceed system limit.
7800 	 */
7801 	ASSERT((rmax >= 0) || (rmax == INFPSZ));
7802 	if (rmax == 0) {
7803 		return (ERANGE);
7804 	}
7805 	/*
7806 	 * Use the MAXIMUM of sd_maxblk and q_maxpsz.
7807 	 * Needed to prevent partial failures in the strmakedata loop.
7808 	 */
7809 	if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk)
7810 		rmax = stp->sd_maxblk;
7811 
7812 	if ((msgsize = mdata->len) < 0) {
7813 		msgsize = 0;
7814 		rmin = 0;	/* no range check for NULL data part */
7815 	}
7816 	if ((msgsize < rmin) ||
7817 	    ((msgsize > rmax) && (rmax != INFPSZ)) ||
7818 	    (mctl->len > strctlsz)) {
7819 		return (ERANGE);
7820 	}
7821 
7822 	/*
7823 	 * Setup uio and iov for data part
7824 	 */
7825 	iovs.iov_base = mdata->buf;
7826 	iovs.iov_len = msgsize;
7827 	uios.uio_iov = &iovs;
7828 	uios.uio_iovcnt = 1;
7829 	uios.uio_loffset = 0;
7830 	uios.uio_segflg = UIO_USERSPACE;
7831 	uios.uio_fmode = fmode;
7832 	uios.uio_extflg = UIO_COPY_DEFAULT;
7833 	uios.uio_resid = msgsize;
7834 	uios.uio_offset = 0;
7835 
7836 	/* Ignore flow control in strput for HIPRI */
7837 	if (flag & MSG_HIPRI)
7838 		flag |= MSG_IGNFLOW;
7839 
7840 	for (;;) {
7841 		int done = 0;
7842 
7843 		/*
7844 		 * strput will always free the ctl mblk - even when strput
7845 		 * fails.
7846 		 */
7847 		if ((error = strmakectl(mctl, flag, fmode, &mp)) != 0) {
7848 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7849 			    "strputmsg out:stp %p out %d error %d",
7850 			    stp, 1, error);
7851 			return (error);
7852 		}
7853 		/*
7854 		 * Verify that the whole message can be transferred by
7855 		 * strput.
7856 		 */
7857 		ASSERT(stp->sd_maxblk == INFPSZ ||
7858 		    stp->sd_maxblk >= mdata->len);
7859 
7860 		msgsize = mdata->len;
7861 		error = strput(stp, mp, uiop, &msgsize, 0, pri, flag);
7862 		mdata->len = msgsize;
7863 
7864 		if (error == 0)
7865 			break;
7866 
7867 		if (error != EWOULDBLOCK)
7868 			goto out;
7869 
7870 		mutex_enter(&stp->sd_lock);
7871 		/*
7872 		 * Check for a missed wakeup.
7873 		 * Needed since strput did not hold sd_lock across
7874 		 * the canputnext.
7875 		 */
7876 		if (bcanputnext(wqp, pri)) {
7877 			/* Try again */
7878 			mutex_exit(&stp->sd_lock);
7879 			continue;
7880 		}
7881 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAIT,
7882 		    "strputmsg wait:stp %p waits pri %d", stp, pri);
7883 		if (((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, fmode, -1,
7884 		    &done)) != 0) || done) {
7885 			mutex_exit(&stp->sd_lock);
7886 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7887 			    "strputmsg out:q %p out %d error %d",
7888 			    stp, 0, error);
7889 			return (error);
7890 		}
7891 		TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAKE,
7892 		    "strputmsg wake:stp %p wakes", stp);
7893 		if ((error = i_straccess(stp, JCWRITE)) != 0) {
7894 			mutex_exit(&stp->sd_lock);
7895 			return (error);
7896 		}
7897 		mutex_exit(&stp->sd_lock);
7898 	}
7899 out:
7900 	/*
7901 	 * For historic reasons, applications expect EAGAIN
7902 	 * when data mblk could not be allocated. so change
7903 	 * ENOMEM back to EAGAIN
7904 	 */
7905 	if (error == ENOMEM)
7906 		error = EAGAIN;
7907 	TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7908 	    "strputmsg out:stp %p out %d error %d", stp, 2, error);
7909 	return (error);
7910 }
7911 
7912 /*
7913  * Put a message downstream.
7914  * Can send only an M_PROTO/M_PCPROTO by passing in a NULL uiop.
7915  * The fmode flag (NDELAY, NONBLOCK) is the or of the flags in the uio
7916  * and the fmode parameter.
7917  *
7918  * This routine handles the consolidation private flags:
7919  *	MSG_IGNERROR	Ignore any stream head error except STPLEX.
7920  *	MSG_HOLDSIG	Hold signals while waiting for data.
7921  *	MSG_IGNFLOW	Don't check streams flow control.
7922  *
7923  * NOTE: strputmsg and kstrputmsg have much of the logic in common.
7924  */
7925 int
7926 kstrputmsg(
7927 	struct vnode *vp,
7928 	mblk_t *mctl,
7929 	struct uio *uiop,
7930 	ssize_t msgsize,
7931 	unsigned char pri,
7932 	int flag,
7933 	int fmode)
7934 {
7935 	struct stdata *stp;
7936 	queue_t *wqp;
7937 	ssize_t rmin, rmax;
7938 	int error;
7939 
7940 	ASSERT(vp->v_stream);
7941 	stp = vp->v_stream;
7942 	wqp = stp->sd_wrq;
7943 	if (AU_AUDITING())
7944 		audit_strputmsg(vp, NULL, NULL, pri, flag, fmode);
7945 	if (mctl == NULL)
7946 		return (EINVAL);
7947 
7948 	mutex_enter(&stp->sd_lock);
7949 
7950 	if ((error = i_straccess(stp, JCWRITE)) != 0) {
7951 		mutex_exit(&stp->sd_lock);
7952 		freemsg(mctl);
7953 		return (error);
7954 	}
7955 
7956 	if ((stp->sd_flag & STPLEX) || !(flag & MSG_IGNERROR)) {
7957 		if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
7958 			error = strwriteable(stp, B_FALSE, B_TRUE);
7959 			if (error != 0) {
7960 				mutex_exit(&stp->sd_lock);
7961 				freemsg(mctl);
7962 				return (error);
7963 			}
7964 		}
7965 	}
7966 
7967 	mutex_exit(&stp->sd_lock);
7968 
7969 	/*
7970 	 * Check for legal flag value.
7971 	 */
7972 	switch (flag & (MSG_HIPRI|MSG_BAND|MSG_ANY)) {
7973 	case MSG_HIPRI:
7974 		if (pri != 0) {
7975 			freemsg(mctl);
7976 			return (EINVAL);
7977 		}
7978 		break;
7979 	case MSG_BAND:
7980 		break;
7981 	default:
7982 		freemsg(mctl);
7983 		return (EINVAL);
7984 	}
7985 
7986 	TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_IN,
7987 	    "kstrputmsg in:stp %p", stp);
7988 
7989 	/* get these values from those cached in the stream head */
7990 	rmin = stp->sd_qn_minpsz;
7991 	rmax = stp->sd_qn_maxpsz;
7992 
7993 	/*
7994 	 * Make sure ctl and data sizes together fall within the
7995 	 * limits of the max and min receive packet sizes and do
7996 	 * not exceed system limit.
7997 	 */
7998 	ASSERT((rmax >= 0) || (rmax == INFPSZ));
7999 	if (rmax == 0) {
8000 		freemsg(mctl);
8001 		return (ERANGE);
8002 	}
8003 	/*
8004 	 * Use the MAXIMUM of sd_maxblk and q_maxpsz.
8005 	 * Needed to prevent partial failures in the strmakedata loop.
8006 	 */
8007 	if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk)
8008 		rmax = stp->sd_maxblk;
8009 
8010 	if (uiop == NULL) {
8011 		msgsize = -1;
8012 		rmin = -1;	/* no range check for NULL data part */
8013 	} else {
8014 		/* Use uio flags as well as the fmode parameter flags */
8015 		fmode |= uiop->uio_fmode;
8016 
8017 		if ((msgsize < rmin) ||
8018 		    ((msgsize > rmax) && (rmax != INFPSZ))) {
8019 			freemsg(mctl);
8020 			return (ERANGE);
8021 		}
8022 	}
8023 
8024 	/* Ignore flow control in strput for HIPRI */
8025 	if (flag & MSG_HIPRI)
8026 		flag |= MSG_IGNFLOW;
8027 
8028 	for (;;) {
8029 		int done = 0;
8030 		int waitflag;
8031 		mblk_t *mp;
8032 
8033 		/*
8034 		 * strput will always free the ctl mblk - even when strput
8035 		 * fails. If MSG_IGNFLOW is set then any error returned
8036 		 * will cause us to break the loop, so we don't need a copy
8037 		 * of the message. If MSG_IGNFLOW is not set, then we can
8038 		 * get hit by flow control and be forced to try again. In
8039 		 * this case we need to have a copy of the message. We
8040 		 * do this using copymsg since the message may get modified
8041 		 * by something below us.
8042 		 *
8043 		 * We've observed that many TPI providers do not check db_ref
8044 		 * on the control messages but blindly reuse them for the
8045 		 * T_OK_ACK/T_ERROR_ACK. Thus using copymsg is more
8046 		 * friendly to such providers than using dupmsg. Also, note
8047 		 * that sockfs uses MSG_IGNFLOW for all TPI control messages.
8048 		 * Only data messages are subject to flow control, hence
8049 		 * subject to this copymsg.
8050 		 */
8051 		if (flag & MSG_IGNFLOW) {
8052 			mp = mctl;
8053 			mctl = NULL;
8054 		} else {
8055 			do {
8056 				/*
8057 				 * If a message has a free pointer, the message
8058 				 * must be dupmsg to maintain this pointer.
8059 				 * Code using this facility must be sure
8060 				 * that modules below will not change the
8061 				 * contents of the dblk without checking db_ref
8062 				 * first. If db_ref is > 1, then the module
8063 				 * needs to do a copymsg first. Otherwise,
8064 				 * the contents of the dblk may become
8065 				 * inconsistent because the freesmg/freeb below
8066 				 * may end up calling atomic_add_32_nv.
8067 				 * The atomic_add_32_nv in freeb (accessing
8068 				 * all of db_ref, db_type, db_flags, and
8069 				 * db_struioflag) does not prevent other threads
8070 				 * from concurrently trying to modify e.g.
8071 				 * db_type.
8072 				 */
8073 				if (mctl->b_datap->db_frtnp != NULL)
8074 					mp = dupmsg(mctl);
8075 				else
8076 					mp = copymsg(mctl);
8077 
8078 				if (mp != NULL)
8079 					break;
8080 
8081 				error = strwaitbuf(msgdsize(mctl), BPRI_MED);
8082 				if (error) {
8083 					freemsg(mctl);
8084 					return (error);
8085 				}
8086 			} while (mp == NULL);
8087 		}
8088 		/*
8089 		 * Verify that all of msgsize can be transferred by
8090 		 * strput.
8091 		 */
8092 		ASSERT(stp->sd_maxblk == INFPSZ || stp->sd_maxblk >= msgsize);
8093 		error = strput(stp, mp, uiop, &msgsize, 0, pri, flag);
8094 		if (error == 0)
8095 			break;
8096 
8097 		if (error != EWOULDBLOCK)
8098 			goto out;
8099 
8100 		/*
8101 		 * IF MSG_IGNFLOW is set we should have broken out of loop
8102 		 * above.
8103 		 */
8104 		ASSERT(!(flag & MSG_IGNFLOW));
8105 		mutex_enter(&stp->sd_lock);
8106 		/*
8107 		 * Check for a missed wakeup.
8108 		 * Needed since strput did not hold sd_lock across
8109 		 * the canputnext.
8110 		 */
8111 		if (bcanputnext(wqp, pri)) {
8112 			/* Try again */
8113 			mutex_exit(&stp->sd_lock);
8114 			continue;
8115 		}
8116 		TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAIT,
8117 		    "kstrputmsg wait:stp %p waits pri %d", stp, pri);
8118 
8119 		waitflag = WRITEWAIT;
8120 		if (flag & (MSG_HOLDSIG|MSG_IGNERROR)) {
8121 			if (flag & MSG_HOLDSIG)
8122 				waitflag |= STR_NOSIG;
8123 			if (flag & MSG_IGNERROR)
8124 				waitflag |= STR_NOERROR;
8125 		}
8126 		if (((error = strwaitq(stp, waitflag,
8127 		    (ssize_t)0, fmode, -1, &done)) != 0) || done) {
8128 			mutex_exit(&stp->sd_lock);
8129 			TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT,
8130 			    "kstrputmsg out:stp %p out %d error %d",
8131 			    stp, 0, error);
8132 			freemsg(mctl);
8133 			return (error);
8134 		}
8135 		TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAKE,
8136 		    "kstrputmsg wake:stp %p wakes", stp);
8137 		if ((error = i_straccess(stp, JCWRITE)) != 0) {
8138 			mutex_exit(&stp->sd_lock);
8139 			freemsg(mctl);
8140 			return (error);
8141 		}
8142 		mutex_exit(&stp->sd_lock);
8143 	}
8144 out:
8145 	freemsg(mctl);
8146 	/*
8147 	 * For historic reasons, applications expect EAGAIN
8148 	 * when data mblk could not be allocated. so change
8149 	 * ENOMEM back to EAGAIN
8150 	 */
8151 	if (error == ENOMEM)
8152 		error = EAGAIN;
8153 	TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT,
8154 	    "kstrputmsg out:stp %p out %d error %d", stp, 2, error);
8155 	return (error);
8156 }
8157 
8158 /*
8159  * Determines whether the necessary conditions are set on a stream
8160  * for it to be readable, writeable, or have exceptions.
8161  *
8162  * strpoll handles the consolidation private events:
8163  *	POLLNOERR	Do not return POLLERR even if there are stream
8164  *			head errors.
8165  *			Used by sockfs.
8166  *	POLLRDDATA	Do not return POLLIN unless at least one message on
8167  *			the queue contains one or more M_DATA mblks. Thus
8168  *			when this flag is set a queue with only
8169  *			M_PROTO/M_PCPROTO mblks does not return POLLIN.
8170  *			Used by sockfs to ignore T_EXDATA_IND messages.
8171  *
8172  * Note: POLLRDDATA assumes that synch streams only return messages with
8173  * an M_DATA attached (i.e. not messages consisting of only
8174  * an M_PROTO/M_PCPROTO part).
8175  */
8176 int
8177 strpoll(
8178 	struct stdata *stp,
8179 	short events_arg,
8180 	int anyyet,
8181 	short *reventsp,
8182 	struct pollhead **phpp)
8183 {
8184 	int events = (ushort_t)events_arg;
8185 	int retevents = 0;
8186 	mblk_t *mp;
8187 	qband_t *qbp;
8188 	long sd_flags = stp->sd_flag;
8189 	int headlocked = 0;
8190 
8191 	/*
8192 	 * For performance, a single 'if' tests for most possible edge
8193 	 * conditions in one shot
8194 	 */
8195 	if (sd_flags & (STPLEX | STRDERR | STWRERR)) {
8196 		if (sd_flags & STPLEX) {
8197 			*reventsp = POLLNVAL;
8198 			return (EINVAL);
8199 		}
8200 		if (((events & (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI)) &&
8201 		    (sd_flags & STRDERR)) ||
8202 		    ((events & (POLLOUT | POLLWRNORM | POLLWRBAND)) &&
8203 		    (sd_flags & STWRERR))) {
8204 			if (!(events & POLLNOERR)) {
8205 				*reventsp = POLLERR;
8206 				return (0);
8207 			}
8208 		}
8209 	}
8210 	if (sd_flags & STRHUP) {
8211 		retevents |= POLLHUP;
8212 	} else if (events & (POLLWRNORM | POLLWRBAND)) {
8213 		queue_t *tq;
8214 		queue_t	*qp = stp->sd_wrq;
8215 
8216 		claimstr(qp);
8217 		/* Find next module forward that has a service procedure */
8218 		tq = qp->q_next->q_nfsrv;
8219 		ASSERT(tq != NULL);
8220 
8221 		if (polllock(&stp->sd_pollist, QLOCK(tq)) != 0) {
8222 			releasestr(qp);
8223 			*reventsp = POLLNVAL;
8224 			return (0);
8225 		}
8226 		if (events & POLLWRNORM) {
8227 			queue_t *sqp;
8228 
8229 			if (tq->q_flag & QFULL)
8230 				/* ensure backq svc procedure runs */
8231 				tq->q_flag |= QWANTW;
8232 			else if ((sqp = stp->sd_struiowrq) != NULL) {
8233 				/* Check sync stream barrier write q */
8234 				mutex_exit(QLOCK(tq));
8235 				if (polllock(&stp->sd_pollist,
8236 				    QLOCK(sqp)) != 0) {
8237 					releasestr(qp);
8238 					*reventsp = POLLNVAL;
8239 					return (0);
8240 				}
8241 				if (sqp->q_flag & QFULL)
8242 					/* ensure pollwakeup() is done */
8243 					sqp->q_flag |= QWANTWSYNC;
8244 				else
8245 					retevents |= POLLOUT;
8246 				/* More write events to process ??? */
8247 				if (! (events & POLLWRBAND)) {
8248 					mutex_exit(QLOCK(sqp));
8249 					releasestr(qp);
8250 					goto chkrd;
8251 				}
8252 				mutex_exit(QLOCK(sqp));
8253 				if (polllock(&stp->sd_pollist,
8254 				    QLOCK(tq)) != 0) {
8255 					releasestr(qp);
8256 					*reventsp = POLLNVAL;
8257 					return (0);
8258 				}
8259 			} else
8260 				retevents |= POLLOUT;
8261 		}
8262 		if (events & POLLWRBAND) {
8263 			qbp = tq->q_bandp;
8264 			if (qbp) {
8265 				while (qbp) {
8266 					if (qbp->qb_flag & QB_FULL)
8267 						qbp->qb_flag |= QB_WANTW;
8268 					else
8269 						retevents |= POLLWRBAND;
8270 					qbp = qbp->qb_next;
8271 				}
8272 			} else {
8273 				retevents |= POLLWRBAND;
8274 			}
8275 		}
8276 		mutex_exit(QLOCK(tq));
8277 		releasestr(qp);
8278 	}
8279 chkrd:
8280 	if (sd_flags & STRPRI) {
8281 		retevents |= (events & POLLPRI);
8282 	} else if (events & (POLLRDNORM | POLLRDBAND | POLLIN)) {
8283 		queue_t	*qp = _RD(stp->sd_wrq);
8284 		int normevents = (events & (POLLIN | POLLRDNORM));
8285 
8286 		/*
8287 		 * Note: Need to do polllock() here since ps_lock may be
8288 		 * held. See bug 4191544.
8289 		 */
8290 		if (polllock(&stp->sd_pollist, &stp->sd_lock) != 0) {
8291 			*reventsp = POLLNVAL;
8292 			return (0);
8293 		}
8294 		headlocked = 1;
8295 		mp = qp->q_first;
8296 		while (mp) {
8297 			/*
8298 			 * For POLLRDDATA we scan b_cont and b_next until we
8299 			 * find an M_DATA.
8300 			 */
8301 			if ((events & POLLRDDATA) &&
8302 			    mp->b_datap->db_type != M_DATA) {
8303 				mblk_t *nmp = mp->b_cont;
8304 
8305 				while (nmp != NULL &&
8306 				    nmp->b_datap->db_type != M_DATA)
8307 					nmp = nmp->b_cont;
8308 				if (nmp == NULL) {
8309 					mp = mp->b_next;
8310 					continue;
8311 				}
8312 			}
8313 			if (mp->b_band == 0)
8314 				retevents |= normevents;
8315 			else
8316 				retevents |= (events & (POLLIN | POLLRDBAND));
8317 			break;
8318 		}
8319 		if (! (retevents & normevents) &&
8320 		    (stp->sd_wakeq & RSLEEP)) {
8321 			/*
8322 			 * Sync stream barrier read queue has data.
8323 			 */
8324 			retevents |= normevents;
8325 		}
8326 		/* Treat eof as normal data */
8327 		if (sd_flags & STREOF)
8328 			retevents |= normevents;
8329 	}
8330 
8331 	*reventsp = (short)retevents;
8332 	if (retevents && !(events & POLLET)) {
8333 		if (headlocked)
8334 			mutex_exit(&stp->sd_lock);
8335 		return (0);
8336 	}
8337 
8338 	/*
8339 	 * If poll() has not found any events yet, set up event cell
8340 	 * to wake up the poll if a requested event occurs on this
8341 	 * stream.  Check for collisions with outstanding poll requests.
8342 	 */
8343 	if (!anyyet) {
8344 		*phpp = &stp->sd_pollist;
8345 		if (headlocked == 0) {
8346 			if (polllock(&stp->sd_pollist, &stp->sd_lock) != 0) {
8347 				*reventsp = POLLNVAL;
8348 				return (0);
8349 			}
8350 			headlocked = 1;
8351 		}
8352 		stp->sd_rput_opt |= SR_POLLIN;
8353 	}
8354 	if (headlocked)
8355 		mutex_exit(&stp->sd_lock);
8356 	return (0);
8357 }
8358 
8359 /*
8360  * The purpose of putback() is to assure sleeping polls/reads
8361  * are awakened when there are no new messages arriving at the,
8362  * stream head, and a message is placed back on the read queue.
8363  *
8364  * sd_lock must be held when messages are placed back on stream
8365  * head.  (getq() holds sd_lock when it removes messages from
8366  * the queue)
8367  */
8368 
8369 static void
8370 putback(struct stdata *stp, queue_t *q, mblk_t *bp, int band)
8371 {
8372 	mblk_t	*qfirst;
8373 	ASSERT(MUTEX_HELD(&stp->sd_lock));
8374 
8375 	/*
8376 	 * As a result of lock-step ordering around q_lock and sd_lock,
8377 	 * it's possible for function calls like putnext() and
8378 	 * canputnext() to get an inaccurate picture of how much
8379 	 * data is really being processed at the stream head.
8380 	 * We only consolidate with existing messages on the queue
8381 	 * if the length of the message we want to put back is smaller
8382 	 * than the queue hiwater mark.
8383 	 */
8384 	if ((stp->sd_rput_opt & SR_CONSOL_DATA) &&
8385 	    (DB_TYPE(bp) == M_DATA) && ((qfirst = q->q_first) != NULL) &&
8386 	    (DB_TYPE(qfirst) == M_DATA) &&
8387 	    ((qfirst->b_flag & (MSGMARK|MSGDELIM)) == 0) &&
8388 	    ((bp->b_flag & (MSGMARK|MSGDELIM|MSGMARKNEXT)) == 0) &&
8389 	    (mp_cont_len(bp, NULL) < q->q_hiwat)) {
8390 		/*
8391 		 * We use the same logic as defined in strrput()
8392 		 * but in reverse as we are putting back onto the
8393 		 * queue and want to retain byte ordering.
8394 		 * Consolidate M_DATA messages with M_DATA ONLY.
8395 		 * strrput() allows the consolidation of M_DATA onto
8396 		 * M_PROTO | M_PCPROTO but not the other way round.
8397 		 *
8398 		 * The consolidation does not take place if the message
8399 		 * we are returning to the queue is marked with either
8400 		 * of the marks or the delim flag or if q_first
8401 		 * is marked with MSGMARK. The MSGMARK check is needed to
8402 		 * handle the odd semantics of MSGMARK where essentially
8403 		 * the whole message is to be treated as marked.
8404 		 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from q_first
8405 		 * to the front of the b_cont chain.
8406 		 */
8407 		rmvq_noenab(q, qfirst);
8408 
8409 		/*
8410 		 * The first message in the b_cont list
8411 		 * tracks MSGMARKNEXT and MSGNOTMARKNEXT.
8412 		 * We need to handle the case where we
8413 		 * are appending:
8414 		 *
8415 		 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT.
8416 		 * 2) a MSGMARKNEXT to a plain message.
8417 		 * 3) a MSGNOTMARKNEXT to a plain message
8418 		 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT
8419 		 *    message.
8420 		 *
8421 		 * Thus we never append a MSGMARKNEXT or
8422 		 * MSGNOTMARKNEXT to a MSGMARKNEXT message.
8423 		 */
8424 		if (qfirst->b_flag & MSGMARKNEXT) {
8425 			bp->b_flag |= MSGMARKNEXT;
8426 			bp->b_flag &= ~MSGNOTMARKNEXT;
8427 			qfirst->b_flag &= ~MSGMARKNEXT;
8428 		} else if (qfirst->b_flag & MSGNOTMARKNEXT) {
8429 			bp->b_flag |= MSGNOTMARKNEXT;
8430 			qfirst->b_flag &= ~MSGNOTMARKNEXT;
8431 		}
8432 
8433 		linkb(bp, qfirst);
8434 	}
8435 	(void) putbq(q, bp);
8436 
8437 	/*
8438 	 * A message may have come in when the sd_lock was dropped in the
8439 	 * calling routine. If this is the case and STR*ATMARK info was
8440 	 * received, need to move that from the stream head to the q_last
8441 	 * so that SIOCATMARK can return the proper value.
8442 	 */
8443 	if (stp->sd_flag & (STRATMARK | STRNOTATMARK)) {
8444 		unsigned short *flagp = &q->q_last->b_flag;
8445 		uint_t b_flag = (uint_t)*flagp;
8446 
8447 		if (stp->sd_flag & STRATMARK) {
8448 			b_flag &= ~MSGNOTMARKNEXT;
8449 			b_flag |= MSGMARKNEXT;
8450 			stp->sd_flag &= ~STRATMARK;
8451 		} else {
8452 			b_flag &= ~MSGMARKNEXT;
8453 			b_flag |= MSGNOTMARKNEXT;
8454 			stp->sd_flag &= ~STRNOTATMARK;
8455 		}
8456 		*flagp = (unsigned short) b_flag;
8457 	}
8458 
8459 #ifdef	DEBUG
8460 	/*
8461 	 * Make sure that the flags are not messed up.
8462 	 */
8463 	{
8464 		mblk_t *mp;
8465 		mp = q->q_last;
8466 		while (mp != NULL) {
8467 			ASSERT((mp->b_flag & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
8468 			    (MSGMARKNEXT|MSGNOTMARKNEXT));
8469 			mp = mp->b_cont;
8470 		}
8471 	}
8472 #endif
8473 	if (q->q_first == bp) {
8474 		short pollevents;
8475 
8476 		if (stp->sd_flag & RSLEEP) {
8477 			stp->sd_flag &= ~RSLEEP;
8478 			cv_broadcast(&q->q_wait);
8479 		}
8480 		if (stp->sd_flag & STRPRI) {
8481 			pollevents = POLLPRI;
8482 		} else {
8483 			if (band == 0) {
8484 				if (!(stp->sd_rput_opt & SR_POLLIN))
8485 					return;
8486 				stp->sd_rput_opt &= ~SR_POLLIN;
8487 				pollevents = POLLIN | POLLRDNORM;
8488 			} else {
8489 				pollevents = POLLIN | POLLRDBAND;
8490 			}
8491 		}
8492 		mutex_exit(&stp->sd_lock);
8493 		pollwakeup(&stp->sd_pollist, pollevents);
8494 		mutex_enter(&stp->sd_lock);
8495 	}
8496 }
8497 
8498 /*
8499  * Return the held vnode attached to the stream head of a
8500  * given queue
8501  * It is the responsibility of the calling routine to ensure
8502  * that the queue does not go away (e.g. pop).
8503  */
8504 vnode_t *
8505 strq2vp(queue_t *qp)
8506 {
8507 	vnode_t *vp;
8508 	vp = STREAM(qp)->sd_vnode;
8509 	ASSERT(vp != NULL);
8510 	VN_HOLD(vp);
8511 	return (vp);
8512 }
8513 
8514 /*
8515  * return the stream head write queue for the given vp
8516  * It is the responsibility of the calling routine to ensure
8517  * that the stream or vnode do not close.
8518  */
8519 queue_t *
8520 strvp2wq(vnode_t *vp)
8521 {
8522 	ASSERT(vp->v_stream != NULL);
8523 	return (vp->v_stream->sd_wrq);
8524 }
8525 
8526 /*
8527  * pollwakeup stream head
8528  * It is the responsibility of the calling routine to ensure
8529  * that the stream or vnode do not close.
8530  */
8531 void
8532 strpollwakeup(vnode_t *vp, short event)
8533 {
8534 	ASSERT(vp->v_stream);
8535 	pollwakeup(&vp->v_stream->sd_pollist, event);
8536 }
8537 
8538 /*
8539  * Mate the stream heads of two vnodes together. If the two vnodes are the
8540  * same, we just make the write-side point at the read-side -- otherwise,
8541  * we do a full mate.  Only works on vnodes associated with streams that are
8542  * still being built and thus have only a stream head.
8543  */
8544 void
8545 strmate(vnode_t *vp1, vnode_t *vp2)
8546 {
8547 	queue_t *wrq1 = strvp2wq(vp1);
8548 	queue_t *wrq2 = strvp2wq(vp2);
8549 
8550 	/*
8551 	 * Verify that there are no modules on the stream yet.  We also
8552 	 * rely on the stream head always having a service procedure to
8553 	 * avoid tweaking q_nfsrv.
8554 	 */
8555 	ASSERT(wrq1->q_next == NULL && wrq2->q_next == NULL);
8556 	ASSERT(wrq1->q_qinfo->qi_srvp != NULL);
8557 	ASSERT(wrq2->q_qinfo->qi_srvp != NULL);
8558 
8559 	/*
8560 	 * If the queues are the same, just twist; otherwise do a full mate.
8561 	 */
8562 	if (wrq1 == wrq2) {
8563 		wrq1->q_next = _RD(wrq1);
8564 	} else {
8565 		wrq1->q_next = _RD(wrq2);
8566 		wrq2->q_next = _RD(wrq1);
8567 		STREAM(wrq1)->sd_mate = STREAM(wrq2);
8568 		STREAM(wrq1)->sd_flag |= STRMATE;
8569 		STREAM(wrq2)->sd_mate = STREAM(wrq1);
8570 		STREAM(wrq2)->sd_flag |= STRMATE;
8571 	}
8572 }
8573 
8574 /*
8575  * XXX will go away when console is correctly fixed.
8576  * Clean up the console PIDS, from previous I_SETSIG,
8577  * called only for cnopen which never calls strclean().
8578  */
8579 void
8580 str_cn_clean(struct vnode *vp)
8581 {
8582 	strsig_t *ssp, *pssp, *tssp;
8583 	struct stdata *stp;
8584 	struct pid  *pidp;
8585 	int update = 0;
8586 
8587 	ASSERT(vp->v_stream);
8588 	stp = vp->v_stream;
8589 	pssp = NULL;
8590 	mutex_enter(&stp->sd_lock);
8591 	ssp = stp->sd_siglist;
8592 	while (ssp) {
8593 		mutex_enter(&pidlock);
8594 		pidp = ssp->ss_pidp;
8595 		/*
8596 		 * Get rid of PID if the proc is gone.
8597 		 */
8598 		if (pidp->pid_prinactive) {
8599 			tssp = ssp->ss_next;
8600 			if (pssp)
8601 				pssp->ss_next = tssp;
8602 			else
8603 				stp->sd_siglist = tssp;
8604 			ASSERT(pidp->pid_ref <= 1);
8605 			PID_RELE(ssp->ss_pidp);
8606 			mutex_exit(&pidlock);
8607 			kmem_free(ssp, sizeof (strsig_t));
8608 			update = 1;
8609 			ssp = tssp;
8610 			continue;
8611 		} else
8612 			mutex_exit(&pidlock);
8613 		pssp = ssp;
8614 		ssp = ssp->ss_next;
8615 	}
8616 	if (update) {
8617 		stp->sd_sigflags = 0;
8618 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
8619 			stp->sd_sigflags |= ssp->ss_events;
8620 	}
8621 	mutex_exit(&stp->sd_lock);
8622 }
8623 
8624 /*
8625  * Return B_TRUE if there is data in the message, B_FALSE otherwise.
8626  */
8627 static boolean_t
8628 msghasdata(mblk_t *bp)
8629 {
8630 	for (; bp; bp = bp->b_cont)
8631 		if (bp->b_datap->db_type == M_DATA) {
8632 			ASSERT(bp->b_wptr >= bp->b_rptr);
8633 			if (bp->b_wptr > bp->b_rptr)
8634 				return (B_TRUE);
8635 		}
8636 	return (B_FALSE);
8637 }
8638