xref: /titanic_52/usr/src/uts/common/os/pg.c (revision 5dfd244acc8f144280c5bc8f69ed941185fc3ccc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/systm.h>
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/thread.h>
30 #include <sys/cpuvar.h>
31 #include <sys/cpupart.h>
32 #include <sys/kmem.h>
33 #include <sys/cmn_err.h>
34 #include <sys/kstat.h>
35 #include <sys/processor.h>
36 #include <sys/disp.h>
37 #include <sys/group.h>
38 #include <sys/pg.h>
39 
40 /*
41  * Processor groups
42  *
43  * With the introduction of Chip Multi-Threaded (CMT) processor architectures,
44  * it is no longer necessarily true that a given physical processor module
45  * will present itself as a single schedulable entity (cpu_t). Rather, each
46  * chip and/or processor core may present itself as one or more "logical" CPUs.
47  *
48  * The logical CPUs presented may share physical components such as caches,
49  * data pipes, execution pipelines, FPUs, etc. It is advantageous to have the
50  * kernel be aware of the relationships existing between logical CPUs so that
51  * the appropriate optmizations may be employed.
52  *
53  * The processor group abstraction represents a set of logical CPUs that
54  * generally share some sort of physical or characteristic relationship.
55  *
56  * In the case of a physical sharing relationship, the CPUs in the group may
57  * share a pipeline, cache or floating point unit. In the case of a logical
58  * relationship, a PG may represent the set of CPUs in a processor set, or the
59  * set of CPUs running at a particular clock speed.
60  *
61  * The generic processor group structure, pg_t, contains the elements generic
62  * to a group of CPUs. Depending on the nature of the CPU relationship
63  * (LOGICAL or PHYSICAL), a pointer to a pg may be recast to a "view" of that
64  * PG where more specific data is represented.
65  *
66  * As an example, a PG representing a PHYSICAL relationship, may be recast to
67  * a pghw_t, where data further describing the hardware sharing relationship
68  * is maintained. See pghw.c and pghw.h for details on physical PGs.
69  *
70  * At this time a more specialized casting of a PG representing a LOGICAL
71  * relationship has not been implemented, but the architecture allows for this
72  * in the future.
73  *
74  * Processor Group Classes
75  *
76  * Processor group consumers may wish to maintain and associate specific
77  * data with the PGs they create. For this reason, a mechanism for creating
78  * class specific PGs exists. Classes may overload the default functions for
79  * creating, destroying, and associating CPUs with PGs, and may also register
80  * class specific callbacks to be invoked when the CPU related system
81  * configuration changes. Class specific data is stored/associated with
82  * PGs by incorporating the pg_t (or pghw_t, as appropriate), as the first
83  * element of a class specific PG object. In memory, such a structure may look
84  * like:
85  *
86  * ----------------------- - - -
87  * | common              | | | |  <--(pg_t *)
88  * ----------------------- | | -
89  * | HW specific         | | | <-----(pghw_t *)
90  * ----------------------- | -
91  * | class specific      | | <-------(pg_cmt_t *)
92  * ----------------------- -
93  *
94  * Access to the PG class specific data can be had by casting a pointer to
95  * it's class specific view.
96  */
97 
98 static pg_t		*pg_alloc_default(pg_class_t);
99 static void		pg_free_default(pg_t *);
100 static void		pg_null_op();
101 
102 /*
103  * Bootstrap CPU specific PG data
104  * See pg_cpu_bootstrap()
105  */
106 static cpu_pg_t		bootstrap_pg_data;
107 
108 /*
109  * Bitset of allocated PG ids (they are sequential)
110  * and the next free id in the set.
111  */
112 static bitset_t		pg_id_set;
113 static pgid_t		pg_id_next = 0;
114 
115 /*
116  * Default and externed PG ops vectors
117  */
118 static struct pg_ops pg_ops_default = {
119 	pg_alloc_default,	/* alloc */
120 	pg_free_default,	/* free */
121 	NULL,			/* cpu_init */
122 	NULL,			/* cpu_fini */
123 	NULL,			/* cpu_active */
124 	NULL,			/* cpu_inactive */
125 	NULL,			/* cpupart_in */
126 	NULL,			/* cpupart_out */
127 	NULL,			/* cpupart_move */
128 	NULL,			/* cpu_belongs */
129 	NULL,			/* policy_name */
130 };
131 
132 static struct pg_cb_ops pg_cb_ops_default = {
133 	pg_null_op,		/* thread_swtch */
134 	pg_null_op,		/* thread_remain */
135 };
136 
137 /*
138  * Class specific PG allocation callbacks
139  */
140 #define	PG_ALLOC(class)							\
141 	(pg_classes[class].pgc_ops->alloc ?				\
142 	    pg_classes[class].pgc_ops->alloc() :			\
143 	    pg_classes[pg_default_cid].pgc_ops->alloc())
144 
145 #define	PG_FREE(pg)							\
146 	((pg)->pg_class->pgc_ops->free ?				\
147 	    (pg)->pg_class->pgc_ops->free(pg) :				\
148 	    pg_classes[pg_default_cid].pgc_ops->free(pg))		\
149 
150 
151 /*
152  * Class specific PG policy name
153  */
154 #define	PG_POLICY_NAME(pg)						\
155 	((pg)->pg_class->pgc_ops->policy_name ?				\
156 	    (pg)->pg_class->pgc_ops->policy_name(pg) : NULL)		\
157 
158 /*
159  * Class specific membership test callback
160  */
161 #define	PG_CPU_BELONGS(pg, cp)						\
162 	((pg)->pg_class->pgc_ops->cpu_belongs ?				\
163 	    (pg)->pg_class->pgc_ops->cpu_belongs(pg, cp) : 0)		\
164 
165 /*
166  * CPU configuration callbacks
167  */
168 #define	PG_CPU_INIT(class, cp, cpu_pg)					\
169 {									\
170 	if (pg_classes[class].pgc_ops->cpu_init)			\
171 		pg_classes[class].pgc_ops->cpu_init(cp, cpu_pg);	\
172 }
173 
174 #define	PG_CPU_FINI(class, cp, cpu_pg)					\
175 {									\
176 	if (pg_classes[class].pgc_ops->cpu_fini)			\
177 		pg_classes[class].pgc_ops->cpu_fini(cp, cpu_pg);	\
178 }
179 
180 #define	PG_CPU_ACTIVE(class, cp)					\
181 {									\
182 	if (pg_classes[class].pgc_ops->cpu_active)			\
183 		pg_classes[class].pgc_ops->cpu_active(cp);		\
184 }
185 
186 #define	PG_CPU_INACTIVE(class, cp)					\
187 {									\
188 	if (pg_classes[class].pgc_ops->cpu_inactive)			\
189 		pg_classes[class].pgc_ops->cpu_inactive(cp);		\
190 }
191 
192 /*
193  * CPU / cpupart configuration callbacks
194  */
195 #define	PG_CPUPART_IN(class, cp, pp)					\
196 {									\
197 	if (pg_classes[class].pgc_ops->cpupart_in)			\
198 		pg_classes[class].pgc_ops->cpupart_in(cp, pp);		\
199 }
200 
201 #define	PG_CPUPART_OUT(class, cp, pp)					\
202 {									\
203 	if (pg_classes[class].pgc_ops->cpupart_out)			\
204 		pg_classes[class].pgc_ops->cpupart_out(cp, pp);		\
205 }
206 
207 #define	PG_CPUPART_MOVE(class, cp, old, new)				\
208 {									\
209 	if (pg_classes[class].pgc_ops->cpupart_move)			\
210 		pg_classes[class].pgc_ops->cpupart_move(cp, old, new);	\
211 }
212 
213 
214 
215 static pg_class_t	*pg_classes;
216 static int		pg_nclasses;
217 
218 static pg_cid_t		pg_default_cid;
219 
220 /*
221  * Initialze common PG subsystem.
222  */
223 void
224 pg_init(void)
225 {
226 	extern void pg_cmt_class_init();
227 
228 	pg_default_cid =
229 	    pg_class_register("default", &pg_ops_default, PGR_LOGICAL);
230 
231 	/*
232 	 * Initialize classes to allow them to register with the framework
233 	 */
234 	pg_cmt_class_init();
235 
236 	pg_cpu0_init();
237 }
238 
239 /*
240  * Perform CPU 0 initialization
241  */
242 void
243 pg_cpu0_init(void)
244 {
245 	extern void pghw_physid_create();
246 
247 	/*
248 	 * Create the physical ID cache for the boot CPU
249 	 */
250 	pghw_physid_create(CPU);
251 
252 	/*
253 	 * pg_cpu_* require that cpu_lock be held
254 	 */
255 	mutex_enter(&cpu_lock);
256 
257 	pg_cpu_init(CPU);
258 	pg_cpupart_in(CPU, &cp_default);
259 	pg_cpu_active(CPU);
260 
261 	mutex_exit(&cpu_lock);
262 }
263 
264 /*
265  * Invoked when topology for CPU0 changes
266  * post pg_cpu0_init().
267  *
268  * Currently happens as a result of null_proc_lpa
269  * on Starcat.
270  */
271 void
272 pg_cpu0_reinit(void)
273 {
274 	mutex_enter(&cpu_lock);
275 	pg_cpu_inactive(CPU);
276 	pg_cpupart_out(CPU, &cp_default);
277 	pg_cpu_fini(CPU);
278 
279 	pg_cpu_init(CPU);
280 	pg_cpupart_in(CPU, &cp_default);
281 	pg_cpu_active(CPU);
282 	mutex_exit(&cpu_lock);
283 }
284 
285 /*
286  * Register a new PG class
287  */
288 pg_cid_t
289 pg_class_register(char *name, struct pg_ops *ops, pg_relation_t relation)
290 {
291 	pg_class_t	*newclass;
292 	pg_class_t	*classes_old;
293 	id_t		cid;
294 
295 	mutex_enter(&cpu_lock);
296 
297 	/*
298 	 * Allocate a new pg_class_t in the pg_classes array
299 	 */
300 	if (pg_nclasses == 0) {
301 		pg_classes = kmem_zalloc(sizeof (pg_class_t), KM_SLEEP);
302 	} else {
303 		classes_old = pg_classes;
304 		pg_classes =
305 		    kmem_zalloc(sizeof (pg_class_t) * (pg_nclasses + 1),
306 		    KM_SLEEP);
307 		(void) kcopy(classes_old, pg_classes,
308 		    sizeof (pg_class_t) * pg_nclasses);
309 		kmem_free(classes_old, sizeof (pg_class_t) * pg_nclasses);
310 	}
311 
312 	cid = pg_nclasses++;
313 	newclass = &pg_classes[cid];
314 
315 	(void) strncpy(newclass->pgc_name, name, PG_CLASS_NAME_MAX);
316 	newclass->pgc_id = cid;
317 	newclass->pgc_ops = ops;
318 	newclass->pgc_relation = relation;
319 
320 	mutex_exit(&cpu_lock);
321 
322 	return (cid);
323 }
324 
325 /*
326  * Try to find an existing pg in set in which to place cp.
327  * Returns the pg if found, and NULL otherwise.
328  * In the event that the CPU could belong to multiple
329  * PGs in the set, the first matching PG will be returned.
330  */
331 pg_t *
332 pg_cpu_find_pg(cpu_t *cp, group_t *set)
333 {
334 	pg_t		*pg;
335 	group_iter_t	i;
336 
337 	group_iter_init(&i);
338 	while ((pg = group_iterate(set, &i)) != NULL) {
339 		/*
340 		 * Ask the class if the CPU belongs here
341 		 */
342 		if (PG_CPU_BELONGS(pg, cp))
343 			return (pg);
344 	}
345 	return (NULL);
346 }
347 
348 /*
349  * Iterate over the CPUs in a PG after initializing
350  * the iterator with PG_CPU_ITR_INIT()
351  */
352 cpu_t *
353 pg_cpu_next(pg_cpu_itr_t *itr)
354 {
355 	cpu_t		*cpu;
356 	pg_t		*pg = itr->pg;
357 
358 	cpu = group_iterate(&pg->pg_cpus, &itr->position);
359 	return (cpu);
360 }
361 
362 /*
363  * Test if a given PG contains a given CPU
364  */
365 boolean_t
366 pg_cpu_find(pg_t *pg, cpu_t *cp)
367 {
368 	if (group_find(&pg->pg_cpus, cp) == (uint_t)-1)
369 		return (B_FALSE);
370 
371 	return (B_TRUE);
372 }
373 
374 /*
375  * Set the PGs callbacks to the default
376  */
377 void
378 pg_callback_set_defaults(pg_t *pg)
379 {
380 	bcopy(&pg_cb_ops_default, &pg->pg_cb, sizeof (struct pg_cb_ops));
381 }
382 
383 /*
384  * Create a PG of a given class.
385  * This routine may block.
386  */
387 pg_t *
388 pg_create(pg_cid_t cid)
389 {
390 	pg_t	*pg;
391 	pgid_t	id;
392 
393 	ASSERT(MUTEX_HELD(&cpu_lock));
394 
395 	/*
396 	 * Call the class specific PG allocation routine
397 	 */
398 	pg = PG_ALLOC(cid);
399 	pg->pg_class = &pg_classes[cid];
400 	pg->pg_relation = pg->pg_class->pgc_relation;
401 
402 	/*
403 	 * Find the next free sequential pg id
404 	 */
405 	do {
406 		if (pg_id_next >= bitset_capacity(&pg_id_set))
407 			bitset_resize(&pg_id_set, pg_id_next + 1);
408 		id = pg_id_next++;
409 	} while (bitset_in_set(&pg_id_set, id));
410 
411 	pg->pg_id = id;
412 	bitset_add(&pg_id_set, pg->pg_id);
413 
414 	/*
415 	 * Create the PG's CPU group
416 	 */
417 	group_create(&pg->pg_cpus);
418 
419 	/*
420 	 * Initialize the events ops vector
421 	 */
422 	pg_callback_set_defaults(pg);
423 
424 	return (pg);
425 }
426 
427 /*
428  * Destroy a PG.
429  * This routine may block.
430  */
431 void
432 pg_destroy(pg_t *pg)
433 {
434 	ASSERT(MUTEX_HELD(&cpu_lock));
435 
436 	group_destroy(&pg->pg_cpus);
437 
438 	/*
439 	 * Unassign the pg_id
440 	 */
441 	if (pg_id_next > pg->pg_id)
442 		pg_id_next = pg->pg_id;
443 	bitset_del(&pg_id_set, pg->pg_id);
444 
445 	/*
446 	 * Invoke the class specific de-allocation routine
447 	 */
448 	PG_FREE(pg);
449 }
450 
451 /*
452  * Add the CPU "cp" to processor group "pg"
453  * This routine may block.
454  */
455 void
456 pg_cpu_add(pg_t *pg, cpu_t *cp, cpu_pg_t *cpu_pg)
457 {
458 	int	err;
459 
460 	ASSERT(MUTEX_HELD(&cpu_lock));
461 
462 	/* This adds the CPU to the PG's CPU group */
463 	err = group_add(&pg->pg_cpus, cp, GRP_RESIZE);
464 	ASSERT(err == 0);
465 
466 	/*
467 	 * The CPU should be referencing the bootstrap PG data still
468 	 * at this point, since this routine may block causing us to
469 	 * enter the dispatcher.
470 	 */
471 	ASSERT(pg_cpu_is_bootstrapped(cp));
472 
473 	/* This adds the PG to the CPUs PG group */
474 	err = group_add(&cpu_pg->pgs, pg, GRP_RESIZE);
475 	ASSERT(err == 0);
476 }
477 
478 /*
479  * Remove "cp" from "pg".
480  * This routine may block.
481  */
482 void
483 pg_cpu_delete(pg_t *pg, cpu_t *cp, cpu_pg_t *cpu_pg)
484 {
485 	int	err;
486 
487 	ASSERT(MUTEX_HELD(&cpu_lock));
488 
489 	/* Remove the CPU from the PG */
490 	err = group_remove(&pg->pg_cpus, cp, GRP_RESIZE);
491 	ASSERT(err == 0);
492 
493 	/*
494 	 * The CPU should be referencing the bootstrap PG data still
495 	 * at this point, since this routine may block causing us to
496 	 * enter the dispatcher.
497 	 */
498 	ASSERT(pg_cpu_is_bootstrapped(cp));
499 
500 	/* Remove the PG from the CPU's PG group */
501 	err = group_remove(&cpu_pg->pgs, pg, GRP_RESIZE);
502 	ASSERT(err == 0);
503 }
504 
505 /*
506  * Allocate a CPU's PG data. This hangs off struct cpu at cpu_pg
507  */
508 static cpu_pg_t *
509 pg_cpu_data_alloc(void)
510 {
511 	cpu_pg_t	*pgd;
512 
513 	pgd = kmem_zalloc(sizeof (cpu_pg_t), KM_SLEEP);
514 	group_create(&pgd->pgs);
515 	group_create(&pgd->cmt_pgs);
516 
517 	return (pgd);
518 }
519 
520 /*
521  * Free the CPU's PG data.
522  */
523 static void
524 pg_cpu_data_free(cpu_pg_t *pgd)
525 {
526 	group_destroy(&pgd->pgs);
527 	group_destroy(&pgd->cmt_pgs);
528 	kmem_free(pgd, sizeof (cpu_pg_t));
529 }
530 
531 /*
532  * A new CPU is coming into the system, either via booting or DR.
533  * Allocate it's PG data, and notify all registered classes about
534  * the new CPU.
535  *
536  * This routine may block.
537  */
538 void
539 pg_cpu_init(cpu_t *cp)
540 {
541 	pg_cid_t	i;
542 	cpu_pg_t	*cpu_pg;
543 
544 	ASSERT(MUTEX_HELD(&cpu_lock));
545 
546 	/*
547 	 * Allocate and size the per CPU pg data
548 	 *
549 	 * The CPU's PG data will be populated by the various
550 	 * PG classes during the invocation of the PG_CPU_INIT()
551 	 * callback below.
552 	 *
553 	 * Since the we could block and enter the dispatcher during
554 	 * this process, the CPU will continue to reference the bootstrap
555 	 * PG data until all the initialization completes.
556 	 */
557 	ASSERT(pg_cpu_is_bootstrapped(cp));
558 
559 	cpu_pg = pg_cpu_data_alloc();
560 
561 	/*
562 	 * Notify all registered classes about the new CPU
563 	 */
564 	for (i = 0; i < pg_nclasses; i++)
565 		PG_CPU_INIT(i, cp, cpu_pg);
566 
567 	/*
568 	 * The CPU's PG data is now ready to use.
569 	 */
570 	cp->cpu_pg = cpu_pg;
571 }
572 
573 /*
574  * This CPU is being deleted from the system. Notify the classes
575  * and free up the CPU's PG data.
576  */
577 void
578 pg_cpu_fini(cpu_t *cp)
579 {
580 	pg_cid_t	i;
581 	cpu_pg_t	*cpu_pg;
582 
583 	ASSERT(MUTEX_HELD(&cpu_lock));
584 
585 	cpu_pg = cp->cpu_pg;
586 
587 	/*
588 	 * This can happen if the CPU coming into the system
589 	 * failed to power on.
590 	 */
591 	if (cpu_pg == NULL || pg_cpu_is_bootstrapped(cp))
592 		return;
593 
594 	/*
595 	 * Have the CPU reference the bootstrap PG data to survive
596 	 * the dispatcher should it block from here on out.
597 	 */
598 	pg_cpu_bootstrap(cp);
599 
600 	for (i = 0; i < pg_nclasses; i++)
601 		PG_CPU_FINI(i, cp, cpu_pg);
602 
603 	pg_cpu_data_free(cpu_pg);
604 }
605 
606 /*
607  * This CPU is becoming active (online)
608  * This routine may not block as it is called from paused CPUs
609  * context.
610  */
611 void
612 pg_cpu_active(cpu_t *cp)
613 {
614 	pg_cid_t	i;
615 
616 	ASSERT(MUTEX_HELD(&cpu_lock));
617 
618 	/*
619 	 * Notify all registered classes about the new CPU
620 	 */
621 	for (i = 0; i < pg_nclasses; i++)
622 		PG_CPU_ACTIVE(i, cp);
623 }
624 
625 /*
626  * This CPU is going inactive (offline)
627  * This routine may not block, as it is called from paused
628  * CPUs context.
629  */
630 void
631 pg_cpu_inactive(cpu_t *cp)
632 {
633 	pg_cid_t	i;
634 
635 	ASSERT(MUTEX_HELD(&cpu_lock));
636 
637 	/*
638 	 * Notify all registered classes about the new CPU
639 	 */
640 	for (i = 0; i < pg_nclasses; i++)
641 		PG_CPU_INACTIVE(i, cp);
642 }
643 
644 /*
645  * Invoked when the CPU is about to move into the partition
646  * This routine may block.
647  */
648 void
649 pg_cpupart_in(cpu_t *cp, cpupart_t *pp)
650 {
651 	int	i;
652 
653 	ASSERT(MUTEX_HELD(&cpu_lock));
654 
655 	/*
656 	 * Notify all registered classes that the
657 	 * CPU is about to enter the CPU partition
658 	 */
659 	for (i = 0; i < pg_nclasses; i++)
660 		PG_CPUPART_IN(i, cp, pp);
661 }
662 
663 /*
664  * Invoked when the CPU is about to move out of the partition
665  * This routine may block.
666  */
667 /*ARGSUSED*/
668 void
669 pg_cpupart_out(cpu_t *cp, cpupart_t *pp)
670 {
671 	int	i;
672 
673 	ASSERT(MUTEX_HELD(&cpu_lock));
674 
675 	/*
676 	 * Notify all registered classes that the
677 	 * CPU is about to leave the CPU partition
678 	 */
679 	for (i = 0; i < pg_nclasses; i++)
680 		PG_CPUPART_OUT(i, cp, pp);
681 }
682 
683 /*
684  * Invoked when the CPU is *moving* partitions.
685  *
686  * This routine may not block, as it is called from paused CPUs
687  * context.
688  */
689 void
690 pg_cpupart_move(cpu_t *cp, cpupart_t *oldpp, cpupart_t *newpp)
691 {
692 	int	i;
693 
694 	ASSERT(MUTEX_HELD(&cpu_lock));
695 
696 	/*
697 	 * Notify all registered classes that the
698 	 * CPU is about to leave the CPU partition
699 	 */
700 	for (i = 0; i < pg_nclasses; i++)
701 		PG_CPUPART_MOVE(i, cp, oldpp, newpp);
702 }
703 
704 /*
705  * Return a class specific string describing a policy implemented
706  * across this PG
707  */
708 char *
709 pg_policy_name(pg_t *pg)
710 {
711 	char *str;
712 	if ((str = PG_POLICY_NAME(pg)) != NULL)
713 		return (str);
714 
715 	return ("N/A");
716 }
717 
718 /*
719  * Provide the specified CPU a bootstrap pg
720  * This is needed to allow sane behaviour if any PG consuming
721  * code needs to deal with a partially initialized CPU
722  */
723 void
724 pg_cpu_bootstrap(cpu_t *cp)
725 {
726 	cp->cpu_pg = &bootstrap_pg_data;
727 }
728 
729 /*
730  * Return non-zero if the specified CPU is bootstrapped,
731  * which means it's CPU specific PG data has not yet been
732  * fully constructed.
733  */
734 int
735 pg_cpu_is_bootstrapped(cpu_t *cp)
736 {
737 	return (cp->cpu_pg == &bootstrap_pg_data);
738 }
739 
740 /*ARGSUSED*/
741 static pg_t *
742 pg_alloc_default(pg_class_t class)
743 {
744 	return (kmem_zalloc(sizeof (pg_t), KM_SLEEP));
745 }
746 
747 /*ARGSUSED*/
748 static void
749 pg_free_default(struct pg *pg)
750 {
751 	kmem_free(pg, sizeof (pg_t));
752 }
753 
754 static void
755 pg_null_op()
756 {
757 }
758 
759 /*
760  * Invoke the "thread switch" callback for each of the CPU's PGs
761  * This is invoked from the dispatcher swtch() routine, which is called
762  * when a thread running an a CPU should switch to another thread.
763  * "cp" is the CPU on which the thread switch is happening
764  * "now" is an unscaled hrtime_t timestamp taken in swtch()
765  * "old" and "new" are the outgoing and incoming threads, respectively.
766  */
767 void
768 pg_ev_thread_swtch(struct cpu *cp, hrtime_t now, kthread_t *old, kthread_t *new)
769 {
770 	int	i, sz;
771 	group_t	*grp;
772 	pg_t	*pg;
773 
774 	grp = &cp->cpu_pg->pgs;
775 	sz = GROUP_SIZE(grp);
776 	for (i = 0; i < sz; i++) {
777 		pg = GROUP_ACCESS(grp, i);
778 		pg->pg_cb.thread_swtch(pg, cp, now, old, new);
779 	}
780 }
781 
782 /*
783  * Invoke the "thread remain" callback for each of the CPU's PGs.
784  * This is called from the dispatcher's swtch() routine when a thread
785  * running on the CPU "cp" is switching to itself, which can happen as an
786  * artifact of the thread's timeslice expiring.
787  */
788 void
789 pg_ev_thread_remain(struct cpu *cp, kthread_t *t)
790 {
791 	int	i, sz;
792 	group_t	*grp;
793 	pg_t	*pg;
794 
795 	grp = &cp->cpu_pg->pgs;
796 	sz = GROUP_SIZE(grp);
797 	for (i = 0; i < sz; i++) {
798 		pg = GROUP_ACCESS(grp, i);
799 		pg->pg_cb.thread_remain(pg, cp, t);
800 	}
801 }
802