xref: /titanic_52/usr/src/uts/common/os/msacct.c (revision aad98a6d8e89f8f5a62a1793da807d4bc5e5b159)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/user.h>
33 #include <sys/proc.h>
34 #include <sys/cpuvar.h>
35 #include <sys/thread.h>
36 #include <sys/debug.h>
37 #include <sys/msacct.h>
38 #include <sys/time.h>
39 
40 /*
41  * Mega-theory block comment:
42  *
43  * Microstate accounting uses finite states and the transitions between these
44  * states to measure timing and accounting information.  The state information
45  * is presently tracked for threads (via microstate accounting) and cpus (via
46  * cpu microstate accounting).  In each case, these accounting mechanisms use
47  * states and transitions to measure time spent in each state instead of
48  * clock-based sampling methodologies.
49  *
50  * For microstate accounting:
51  * state transitions are accomplished by calling new_mstate() to switch between
52  * states.  Transitions from a sleeping state (LMS_SLEEP and LMS_STOPPED) occur
53  * by calling restore_mstate() which restores a thread to its previously running
54  * state.  This code is primarialy executed by the dispatcher in disp() before
55  * running a process that was put to sleep.  If the thread was not in a sleeping
56  * state, this call has little effect other than to update the count of time the
57  * thread has spent waiting on run-queues in its lifetime.
58  *
59  * For cpu microstate accounting:
60  * Cpu microstate accounting is similar to the microstate accounting for threads
61  * but it tracks user, system, and idle time for cpus.  Cpu microstate
62  * accounting does not track interrupt times as there is a pre-existing
63  * interrupt accounting mechanism for this purpose.  Cpu microstate accounting
64  * tracks time that user threads have spent active, idle, or in the system on a
65  * given cpu.  Cpu microstate accounting has fewer states which allows it to
66  * have better defined transitions.  The states transition in the following
67  * order:
68  *
69  *  CMS_USER <-> CMS_SYSTEM <-> CMS_IDLE
70  *
71  * In order to get to the idle state, the cpu microstate must first go through
72  * the system state, and vice-versa for the user state from idle.  The switching
73  * of the microstates from user to system is done as part of the regular thread
74  * microstate accounting code, except for the idle state which is switched by
75  * the dispatcher before it runs the idle loop.
76  *
77  * Cpu percentages:
78  * Cpu percentages are now handled by and based upon microstate accounting
79  * information (the same is true for load averages).  The routines which handle
80  * the growing/shrinking and exponentiation of cpu percentages have been moved
81  * here as it now makes more sense for them to be generated from the microstate
82  * code.  Cpu percentages are generated similarly to the way they were before;
83  * however, now they are based upon high-resolution timestamps and the
84  * timestamps are modified at various state changes instead of during a clock()
85  * interrupt.  This allows us to generate more accurate cpu percentages which
86  * are also in-sync with microstate data.
87  */
88 
89 /*
90  * Initialize the microstate level and the
91  * associated accounting information for an LWP.
92  */
93 void
94 init_mstate(
95 	kthread_t	*t,
96 	int		init_state)
97 {
98 	struct mstate *ms;
99 	klwp_t *lwp;
100 	hrtime_t curtime;
101 
102 	ASSERT(init_state != LMS_WAIT_CPU);
103 	ASSERT((unsigned)init_state < NMSTATES);
104 
105 	if ((lwp = ttolwp(t)) != NULL) {
106 		ms = &lwp->lwp_mstate;
107 		curtime = gethrtime_unscaled();
108 		ms->ms_prev = LMS_SYSTEM;
109 		ms->ms_start = curtime;
110 		ms->ms_term = 0;
111 		ms->ms_state_start = curtime;
112 		t->t_mstate = init_state;
113 		t->t_waitrq = 0;
114 		t->t_hrtime = curtime;
115 		if ((t->t_proc_flag & TP_MSACCT) == 0)
116 			t->t_proc_flag |= TP_MSACCT;
117 		bzero((caddr_t)&ms->ms_acct[0], sizeof (ms->ms_acct));
118 	}
119 }
120 
121 /*
122  * Initialize the microstate level and associated accounting information
123  * for the specified cpu
124  */
125 
126 void
127 init_cpu_mstate(
128 	cpu_t *cpu,
129 	int init_state)
130 {
131 	ASSERT(init_state != CMS_DISABLED);
132 
133 	cpu->cpu_mstate = init_state;
134 	cpu->cpu_mstate_start = gethrtime_unscaled();
135 	cpu->cpu_waitrq = 0;
136 	bzero((caddr_t)&cpu->cpu_acct[0], sizeof (cpu->cpu_acct));
137 }
138 
139 /*
140  * sets cpu state to OFFLINE.  We don't actually track this time,
141  * but it serves as a useful placeholder state for when we're not
142  * doing anything.
143  */
144 
145 void
146 term_cpu_mstate(struct cpu *cpu)
147 {
148 	ASSERT(cpu->cpu_mstate != CMS_DISABLED);
149 	cpu->cpu_mstate = CMS_DISABLED;
150 	cpu->cpu_mstate_start = 0;
151 }
152 
153 void
154 new_cpu_mstate(int cmstate, hrtime_t curtime)
155 {
156 	cpu_t *cpu = CPU;
157 	uint16_t gen;
158 
159 	ASSERT(cpu->cpu_mstate != CMS_DISABLED);
160 	ASSERT(cmstate < NCMSTATES);
161 	ASSERT(cmstate != CMS_DISABLED);
162 
163 	/*
164 	 * This function cannot be re-entrant on a given CPU. As such,
165 	 * we ASSERT and panic if we are called on behalf of an interrupt.
166 	 * The one exception is for an interrupt which has previously
167 	 * blocked. Such an interrupt is being scheduled by the dispatcher
168 	 * just like a normal thread, and as such cannot arrive here
169 	 * in a re-entrant manner.
170 	 */
171 
172 	ASSERT(!CPU_ON_INTR(cpu) && curthread->t_intr == NULL);
173 	ASSERT(curthread->t_preempt > 0 || curthread == cpu->cpu_idle_thread);
174 
175 	/*
176 	 * LOCKING, or lack thereof:
177 	 *
178 	 * Updates to CPU mstate can only be made by the CPU
179 	 * itself, and the above check to ignore interrupts
180 	 * should prevent recursion into this function on a given
181 	 * processor. i.e. no possible write contention.
182 	 *
183 	 * However, reads of CPU mstate can occur at any time
184 	 * from any CPU. Any locking added to this code path
185 	 * would seriously impact syscall performance. So,
186 	 * instead we have a best-effort protection for readers.
187 	 * The reader will want to account for any time between
188 	 * cpu_mstate_start and the present time. This requires
189 	 * some guarantees that the reader is getting coherent
190 	 * information.
191 	 *
192 	 * We use a generation counter, which is set to 0 before
193 	 * we start making changes, and is set to a new value
194 	 * after we're done. Someone reading the CPU mstate
195 	 * should check for the same non-zero value of this
196 	 * counter both before and after reading all state. The
197 	 * important point is that the reader is not a
198 	 * performance-critical path, but this function is.
199 	 */
200 
201 	gen = cpu->cpu_mstate_gen;
202 	cpu->cpu_mstate_gen = 0;
203 
204 	membar_producer();
205 	cpu->cpu_acct[cpu->cpu_mstate] += curtime - cpu->cpu_mstate_start;
206 	cpu->cpu_mstate = cmstate;
207 	cpu->cpu_mstate_start = curtime;
208 	membar_producer();
209 
210 	cpu->cpu_mstate_gen = (++gen == 0) ? 1 : gen;
211 }
212 
213 /*
214  * Return an aggregation of microstate times in scaled nanoseconds (high-res
215  * time).  This keeps in mind that p_acct is already scaled, and ms_acct is
216  * not.
217  */
218 hrtime_t
219 mstate_aggr_state(proc_t *p, int a_state)
220 {
221 	struct mstate *ms;
222 	kthread_t *t;
223 	klwp_t *lwp;
224 	hrtime_t aggr_time;
225 	hrtime_t scaledtime;
226 
227 	ASSERT(MUTEX_HELD(&p->p_lock));
228 	ASSERT((unsigned)a_state < NMSTATES);
229 
230 	aggr_time = p->p_acct[a_state];
231 	if (a_state == LMS_SYSTEM)
232 		aggr_time += p->p_acct[LMS_TRAP];
233 
234 	t = p->p_tlist;
235 	if (t == NULL)
236 		return (aggr_time);
237 
238 	do {
239 		if (t->t_proc_flag & TP_LWPEXIT)
240 			continue;
241 
242 		lwp = ttolwp(t);
243 		ms = &lwp->lwp_mstate;
244 		scaledtime = ms->ms_acct[a_state];
245 		scalehrtime(&scaledtime);
246 		aggr_time += scaledtime;
247 		if (a_state == LMS_SYSTEM) {
248 			scaledtime = ms->ms_acct[LMS_TRAP];
249 			scalehrtime(&scaledtime);
250 			aggr_time += scaledtime;
251 		}
252 	} while ((t = t->t_forw) != p->p_tlist);
253 
254 	return (aggr_time);
255 }
256 
257 void
258 syscall_mstate(int fromms, int toms)
259 {
260 	kthread_t *t = curthread;
261 	struct mstate *ms;
262 	hrtime_t *mstimep;
263 	hrtime_t curtime;
264 	klwp_t *lwp;
265 	hrtime_t newtime;
266 
267 	if ((lwp = ttolwp(t)) == NULL)
268 		return;
269 
270 	ASSERT(fromms < NMSTATES);
271 	ASSERT(toms < NMSTATES);
272 
273 	ms = &lwp->lwp_mstate;
274 	mstimep = &ms->ms_acct[fromms];
275 	curtime = gethrtime_unscaled();
276 	newtime = curtime - ms->ms_state_start;
277 	while (newtime < 0) {
278 		curtime = gethrtime_unscaled();
279 		newtime = curtime - ms->ms_state_start;
280 	}
281 	*mstimep += newtime;
282 	t->t_mstate = toms;
283 	ms->ms_state_start = curtime;
284 	ms->ms_prev = fromms;
285 	kpreempt_disable(); /* don't change CPU while changing CPU's state */
286 	ASSERT(CPU == t->t_cpu);
287 	if ((toms != LMS_USER) && (t->t_cpu->cpu_mstate != CMS_SYSTEM))
288 		new_cpu_mstate(CMS_SYSTEM, curtime);
289 	else if ((toms == LMS_USER) && (t->t_cpu->cpu_mstate != CMS_USER))
290 		new_cpu_mstate(CMS_USER, curtime);
291 	kpreempt_enable();
292 }
293 
294 /*
295  * The following is for computing the percentage of cpu time used recently
296  * by an lwp.  The function cpu_decay() is also called from /proc code.
297  *
298  * exp_x(x):
299  * Given x as a 64-bit non-negative scaled integer of arbitrary magnitude,
300  * Return exp(-x) as a 64-bit scaled integer in the range [0 .. 1].
301  *
302  * Scaling for 64-bit scaled integer:
303  * The binary point is to the right of the high-order bit
304  * of the low-order 32-bit word.
305  */
306 
307 #define	LSHIFT	31
308 #define	LSI_ONE	((uint32_t)1 << LSHIFT)	/* 32-bit scaled integer 1 */
309 
310 #ifdef DEBUG
311 uint_t expx_cnt = 0;	/* number of calls to exp_x() */
312 uint_t expx_mul = 0;	/* number of long multiplies in exp_x() */
313 #endif
314 
315 static uint64_t
316 exp_x(uint64_t x)
317 {
318 	int i;
319 	uint64_t ull;
320 	uint32_t ui;
321 
322 #ifdef DEBUG
323 	expx_cnt++;
324 #endif
325 	/*
326 	 * By the formula:
327 	 *	exp(-x) = exp(-x/2) * exp(-x/2)
328 	 * we keep halving x until it becomes small enough for
329 	 * the following approximation to be accurate enough:
330 	 *	exp(-x) = 1 - x
331 	 * We reduce x until it is less than 1/4 (the 2 in LSHIFT-2 below).
332 	 * Our final error will be smaller than 4% .
333 	 */
334 
335 	/*
336 	 * Use a uint64_t for the initial shift calculation.
337 	 */
338 	ull = x >> (LSHIFT-2);
339 
340 	/*
341 	 * Short circuit:
342 	 * A number this large produces effectively 0 (actually .005).
343 	 * This way, we will never do more than 5 multiplies.
344 	 */
345 	if (ull >= (1 << 5))
346 		return (0);
347 
348 	ui = ull;	/* OK.  Now we can use a uint_t. */
349 	for (i = 0; ui != 0; i++)
350 		ui >>= 1;
351 
352 	if (i != 0) {
353 #ifdef DEBUG
354 		expx_mul += i;	/* seldom happens */
355 #endif
356 		x >>= i;
357 	}
358 
359 	/*
360 	 * Now we compute 1 - x and square it the number of times
361 	 * that we halved x above to produce the final result:
362 	 */
363 	x = LSI_ONE - x;
364 	while (i--)
365 		x = (x * x) >> LSHIFT;
366 
367 	return (x);
368 }
369 
370 /*
371  * Given the old percent cpu and a time delta in nanoseconds,
372  * return the new decayed percent cpu:  pct * exp(-tau),
373  * where 'tau' is the time delta multiplied by a decay factor.
374  * We have chosen the decay factor (cpu_decay_factor in param.c)
375  * to make the decay over five seconds be approximately 20%.
376  *
377  * 'pct' is a 32-bit scaled integer <= 1
378  * The binary point is to the right of the high-order bit
379  * of the 32-bit word.
380  */
381 static uint32_t
382 cpu_decay(uint32_t pct, hrtime_t nsec)
383 {
384 	uint64_t delta = (uint64_t)nsec;
385 
386 	delta /= cpu_decay_factor;
387 	return ((pct * exp_x(delta)) >> LSHIFT);
388 }
389 
390 /*
391  * Given the old percent cpu and a time delta in nanoseconds,
392  * return the new grown percent cpu:  1 - ( 1 - pct ) * exp(-tau)
393  */
394 static uint32_t
395 cpu_grow(uint32_t pct, hrtime_t nsec)
396 {
397 	return (LSI_ONE - cpu_decay(LSI_ONE - pct, nsec));
398 }
399 
400 
401 /*
402  * Defined to determine whether a lwp is still on a processor.
403  */
404 
405 #define	T_ONPROC(kt)	\
406 	((kt)->t_mstate < LMS_SLEEP)
407 #define	T_OFFPROC(kt)	\
408 	((kt)->t_mstate >= LMS_SLEEP)
409 
410 uint_t
411 cpu_update_pct(kthread_t *t, hrtime_t newtime)
412 {
413 	hrtime_t delta;
414 	hrtime_t hrlb;
415 	uint_t pctcpu;
416 	uint_t npctcpu;
417 
418 	/*
419 	 * This routine can get called at PIL > 0, this *has* to be
420 	 * done atomically. Holding locks here causes bad things to happen.
421 	 * (read: deadlock).
422 	 */
423 
424 	do {
425 		if (T_ONPROC(t) && t->t_waitrq == 0) {
426 			hrlb = t->t_hrtime;
427 			delta = newtime - hrlb;
428 			if (delta < 0) {
429 				newtime = gethrtime_unscaled();
430 				delta = newtime - hrlb;
431 			}
432 			t->t_hrtime = newtime;
433 			scalehrtime(&delta);
434 			pctcpu = t->t_pctcpu;
435 			npctcpu = cpu_grow(pctcpu, delta);
436 		} else {
437 			hrlb = t->t_hrtime;
438 			delta = newtime - hrlb;
439 			if (delta < 0) {
440 				newtime = gethrtime_unscaled();
441 				delta = newtime - hrlb;
442 			}
443 			t->t_hrtime = newtime;
444 			scalehrtime(&delta);
445 			pctcpu = t->t_pctcpu;
446 			npctcpu = cpu_decay(pctcpu, delta);
447 		}
448 	} while (cas32(&t->t_pctcpu, pctcpu, npctcpu) != pctcpu);
449 
450 	return (npctcpu);
451 }
452 
453 /*
454  * Change the microstate level for the LWP and update the
455  * associated accounting information.  Return the previous
456  * LWP state.
457  */
458 int
459 new_mstate(kthread_t *t, int new_state)
460 {
461 	struct mstate *ms;
462 	unsigned state;
463 	hrtime_t *mstimep;
464 	hrtime_t curtime;
465 	hrtime_t newtime;
466 	hrtime_t oldtime;
467 	klwp_t *lwp;
468 
469 	ASSERT(new_state != LMS_WAIT_CPU);
470 	ASSERT((unsigned)new_state < NMSTATES);
471 	ASSERT(t == curthread || THREAD_LOCK_HELD(t));
472 
473 	if ((lwp = ttolwp(t)) == NULL)
474 		return (LMS_SYSTEM);
475 
476 	curtime = gethrtime_unscaled();
477 
478 	/* adjust cpu percentages before we go any further */
479 	(void) cpu_update_pct(t, curtime);
480 
481 	ms = &lwp->lwp_mstate;
482 	state = t->t_mstate;
483 	do {
484 		switch (state) {
485 		case LMS_TFAULT:
486 		case LMS_DFAULT:
487 		case LMS_KFAULT:
488 		case LMS_USER_LOCK:
489 			mstimep = &ms->ms_acct[LMS_SYSTEM];
490 			break;
491 		default:
492 			mstimep = &ms->ms_acct[state];
493 			break;
494 		}
495 		newtime = curtime - ms->ms_state_start;
496 		if (newtime < 0) {
497 			curtime = gethrtime_unscaled();
498 			oldtime = *mstimep - 1; /* force CAS to fail */
499 			continue;
500 		}
501 		oldtime = *mstimep;
502 		newtime += oldtime;
503 		t->t_mstate = new_state;
504 		ms->ms_state_start = curtime;
505 	} while (cas64((uint64_t *)mstimep, oldtime, newtime) != oldtime);
506 	/*
507 	 * Remember the previous running microstate.
508 	 */
509 	if (state != LMS_SLEEP && state != LMS_STOPPED)
510 		ms->ms_prev = state;
511 
512 	/*
513 	 * Switch CPU microstate if appropriate
514 	 */
515 
516 	kpreempt_disable(); /* MUST disable kpreempt before touching t->cpu */
517 	ASSERT(t->t_cpu == CPU);
518 	if (!CPU_ON_INTR(t->t_cpu) && curthread->t_intr == NULL) {
519 		if (new_state == LMS_USER && t->t_cpu->cpu_mstate != CMS_USER)
520 			new_cpu_mstate(CMS_USER, curtime);
521 		else if (new_state != LMS_USER &&
522 		    t->t_cpu->cpu_mstate != CMS_SYSTEM)
523 			new_cpu_mstate(CMS_SYSTEM, curtime);
524 	}
525 	kpreempt_enable();
526 
527 	return (ms->ms_prev);
528 }
529 
530 static long waitrqis0 = 0;
531 
532 /*
533  * Restore the LWP microstate to the previous runnable state.
534  * Called from disp() with the newly selected lwp.
535  */
536 void
537 restore_mstate(kthread_t *t)
538 {
539 	struct mstate *ms;
540 	hrtime_t *mstimep;
541 	klwp_t *lwp;
542 	hrtime_t curtime;
543 	hrtime_t waitrq;
544 	hrtime_t newtime;
545 	hrtime_t oldtime;
546 
547 	if ((lwp = ttolwp(t)) == NULL)
548 		return;
549 
550 	curtime = gethrtime_unscaled();
551 	(void) cpu_update_pct(t, curtime);
552 	ms = &lwp->lwp_mstate;
553 	ASSERT((unsigned)t->t_mstate < NMSTATES);
554 	do {
555 		switch (t->t_mstate) {
556 		case LMS_SLEEP:
557 			/*
558 			 * Update the timer for the current sleep state.
559 			 */
560 			ASSERT((unsigned)ms->ms_prev < NMSTATES);
561 			switch (ms->ms_prev) {
562 			case LMS_TFAULT:
563 			case LMS_DFAULT:
564 			case LMS_KFAULT:
565 			case LMS_USER_LOCK:
566 				mstimep = &ms->ms_acct[ms->ms_prev];
567 				break;
568 			default:
569 				mstimep = &ms->ms_acct[LMS_SLEEP];
570 				break;
571 			}
572 			/*
573 			 * Return to the previous run state.
574 			 */
575 			t->t_mstate = ms->ms_prev;
576 			break;
577 		case LMS_STOPPED:
578 			mstimep = &ms->ms_acct[LMS_STOPPED];
579 			/*
580 			 * Return to the previous run state.
581 			 */
582 			t->t_mstate = ms->ms_prev;
583 			break;
584 		case LMS_TFAULT:
585 		case LMS_DFAULT:
586 		case LMS_KFAULT:
587 		case LMS_USER_LOCK:
588 			mstimep = &ms->ms_acct[LMS_SYSTEM];
589 			break;
590 		default:
591 			mstimep = &ms->ms_acct[t->t_mstate];
592 			break;
593 		}
594 		waitrq = t->t_waitrq;	/* hopefully atomic */
595 		t->t_waitrq = 0;
596 		if (waitrq == 0) {	/* should only happen during boot */
597 			waitrq = curtime;
598 			waitrqis0++;
599 		}
600 		newtime = waitrq - ms->ms_state_start;
601 		if (newtime < 0) {
602 			curtime = gethrtime_unscaled();
603 			oldtime = *mstimep - 1; /* force CAS to fail */
604 			continue;
605 		}
606 		oldtime = *mstimep;
607 		newtime += oldtime;
608 	} while (cas64((uint64_t *)mstimep, oldtime, newtime) != oldtime);
609 	/*
610 	 * Update the WAIT_CPU timer and per-cpu waitrq total.
611 	 */
612 	ms->ms_acct[LMS_WAIT_CPU] += (curtime - waitrq);
613 	CPU->cpu_waitrq += (curtime - waitrq);
614 	ms->ms_state_start = curtime;
615 }
616 
617 /*
618  * Copy lwp microstate accounting and resource usage information
619  * to the process.  (lwp is terminating)
620  */
621 void
622 term_mstate(kthread_t *t)
623 {
624 	struct mstate *ms;
625 	proc_t *p = ttoproc(t);
626 	klwp_t *lwp = ttolwp(t);
627 	int i;
628 	hrtime_t tmp;
629 
630 	ASSERT(MUTEX_HELD(&p->p_lock));
631 
632 	ms = &lwp->lwp_mstate;
633 	(void) new_mstate(t, LMS_STOPPED);
634 	ms->ms_term = ms->ms_state_start;
635 	tmp = ms->ms_term - ms->ms_start;
636 	scalehrtime(&tmp);
637 	p->p_mlreal += tmp;
638 	for (i = 0; i < NMSTATES; i++) {
639 		tmp = ms->ms_acct[i];
640 		scalehrtime(&tmp);
641 		p->p_acct[i] += tmp;
642 	}
643 	p->p_ru.minflt   += lwp->lwp_ru.minflt;
644 	p->p_ru.majflt   += lwp->lwp_ru.majflt;
645 	p->p_ru.nswap    += lwp->lwp_ru.nswap;
646 	p->p_ru.inblock  += lwp->lwp_ru.inblock;
647 	p->p_ru.oublock  += lwp->lwp_ru.oublock;
648 	p->p_ru.msgsnd   += lwp->lwp_ru.msgsnd;
649 	p->p_ru.msgrcv   += lwp->lwp_ru.msgrcv;
650 	p->p_ru.nsignals += lwp->lwp_ru.nsignals;
651 	p->p_ru.nvcsw    += lwp->lwp_ru.nvcsw;
652 	p->p_ru.nivcsw   += lwp->lwp_ru.nivcsw;
653 	p->p_ru.sysc	 += lwp->lwp_ru.sysc;
654 	p->p_ru.ioch	 += lwp->lwp_ru.ioch;
655 	p->p_defunct++;
656 }
657