xref: /titanic_52/usr/src/uts/common/os/mmapobj.c (revision 4c1177a46d4d850e30806d4e27d635527bba8e90)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  * Copyright 2014 Joyent, Inc.  All rights reserved.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/sysmacros.h>
29 #include <sys/kmem.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/errno.h>
33 #include <sys/mman.h>
34 #include <sys/cmn_err.h>
35 #include <sys/cred.h>
36 #include <sys/vmsystm.h>
37 #include <sys/machsystm.h>
38 #include <sys/debug.h>
39 #include <vm/as.h>
40 #include <vm/seg.h>
41 #include <sys/vmparam.h>
42 #include <sys/vfs.h>
43 #include <sys/elf.h>
44 #include <sys/machelf.h>
45 #include <sys/corectl.h>
46 #include <sys/exec.h>
47 #include <sys/exechdr.h>
48 #include <sys/autoconf.h>
49 #include <sys/mem.h>
50 #include <vm/seg_dev.h>
51 #include <sys/vmparam.h>
52 #include <sys/mmapobj.h>
53 #include <sys/atomic.h>
54 
55 /*
56  * Theory statement:
57  *
58  * The main driving force behind mmapobj is to interpret and map ELF files
59  * inside of the kernel instead of having the linker be responsible for this.
60  *
61  * mmapobj also supports the AOUT 4.x binary format as well as flat files in
62  * a read only manner.
63  *
64  * When interpreting and mapping an ELF file, mmapobj will map each PT_LOAD
65  * or PT_SUNWBSS segment according to the ELF standard.  Refer to the "Linker
66  * and Libraries Guide" for more information about the standard and mapping
67  * rules.
68  *
69  * Having mmapobj interpret and map objects will allow the kernel to make the
70  * best decision for where to place the mappings for said objects.  Thus, we
71  * can make optimizations inside of the kernel for specific platforms or
72  * cache mapping information to make mapping objects faster.
73  *
74  * The lib_va_hash will be one such optimization.  For each ELF object that
75  * mmapobj is asked to interpret, we will attempt to cache the information
76  * about the PT_LOAD and PT_SUNWBSS sections to speed up future mappings of
77  * the same objects.  We will cache up to LIBVA_CACHED_SEGS (see below) program
78  * headers which should cover a majority of the libraries out there without
79  * wasting space.  In order to make sure that the cached information is valid,
80  * we check the passed in vnode's mtime and ctime to make sure the vnode
81  * has not been modified since the last time we used it.
82  *
83  * In addition, the lib_va_hash may contain a preferred starting VA for the
84  * object which can be useful for platforms which support a shared context.
85  * This will increase the likelyhood that library text can be shared among
86  * many different processes.  We limit the reserved VA space for 32 bit objects
87  * in order to minimize fragmenting the processes address space.
88  *
89  * In addition to the above, the mmapobj interface allows for padding to be
90  * requested before the first mapping and after the last mapping created.
91  * When padding is requested, no additional optimizations will be made for
92  * that request.
93  */
94 
95 /*
96  * Threshold to prevent allocating too much kernel memory to read in the
97  * program headers for an object.  If it requires more than below,
98  * we will use a KM_NOSLEEP allocation to allocate memory to hold all of the
99  * program headers which could possibly fail.  If less memory than below is
100  * needed, then we use a KM_SLEEP allocation and are willing to wait for the
101  * memory if we need to.
102  */
103 size_t mmapobj_alloc_threshold = 65536;
104 
105 /* Debug stats for test coverage */
106 #ifdef DEBUG
107 struct mobj_stats {
108 	uint_t	mobjs_unmap_called;
109 	uint_t	mobjs_remap_devnull;
110 	uint_t	mobjs_lookup_start;
111 	uint_t	mobjs_alloc_start;
112 	uint_t	mobjs_alloc_vmem;
113 	uint_t	mobjs_add_collision;
114 	uint_t	mobjs_get_addr;
115 	uint_t	mobjs_map_flat_no_padding;
116 	uint_t	mobjs_map_flat_padding;
117 	uint_t	mobjs_map_ptload_text;
118 	uint_t	mobjs_map_ptload_initdata;
119 	uint_t	mobjs_map_ptload_preread;
120 	uint_t	mobjs_map_ptload_unaligned_text;
121 	uint_t	mobjs_map_ptload_unaligned_map_fail;
122 	uint_t	mobjs_map_ptload_unaligned_read_fail;
123 	uint_t	mobjs_zfoddiff;
124 	uint_t	mobjs_zfoddiff_nowrite;
125 	uint_t	mobjs_zfodextra;
126 	uint_t	mobjs_ptload_failed;
127 	uint_t	mobjs_map_elf_no_holes;
128 	uint_t	mobjs_unmap_hole;
129 	uint_t	mobjs_nomem_header;
130 	uint_t	mobjs_inval_header;
131 	uint_t	mobjs_overlap_header;
132 	uint_t	mobjs_np2_align;
133 	uint_t	mobjs_np2_align_overflow;
134 	uint_t	mobjs_exec_padding;
135 	uint_t	mobjs_exec_addr_mapped;
136 	uint_t	mobjs_exec_addr_devnull;
137 	uint_t	mobjs_exec_addr_in_use;
138 	uint_t	mobjs_lvp_found;
139 	uint_t	mobjs_no_loadable_yet;
140 	uint_t	mobjs_nothing_to_map;
141 	uint_t	mobjs_e2big;
142 	uint_t	mobjs_dyn_pad_align;
143 	uint_t	mobjs_dyn_pad_noalign;
144 	uint_t	mobjs_alloc_start_fail;
145 	uint_t	mobjs_lvp_nocache;
146 	uint_t	mobjs_extra_padding;
147 	uint_t	mobjs_lvp_not_needed;
148 	uint_t	mobjs_no_mem_map_sz;
149 	uint_t	mobjs_check_exec_failed;
150 	uint_t	mobjs_lvp_used;
151 	uint_t	mobjs_wrong_model;
152 	uint_t	mobjs_noexec_fs;
153 	uint_t	mobjs_e2big_et_rel;
154 	uint_t	mobjs_et_rel_mapped;
155 	uint_t	mobjs_unknown_elf_type;
156 	uint_t	mobjs_phent32_too_small;
157 	uint_t	mobjs_phent64_too_small;
158 	uint_t	mobjs_inval_elf_class;
159 	uint_t	mobjs_too_many_phdrs;
160 	uint_t	mobjs_no_phsize;
161 	uint_t	mobjs_phsize_large;
162 	uint_t	mobjs_phsize_xtralarge;
163 	uint_t	mobjs_fast_wrong_model;
164 	uint_t	mobjs_fast_e2big;
165 	uint_t	mobjs_fast;
166 	uint_t	mobjs_fast_success;
167 	uint_t	mobjs_fast_not_now;
168 	uint_t	mobjs_small_file;
169 	uint_t	mobjs_read_error;
170 	uint_t	mobjs_unsupported;
171 	uint_t	mobjs_flat_e2big;
172 	uint_t	mobjs_phent_align32;
173 	uint_t	mobjs_phent_align64;
174 	uint_t	mobjs_lib_va_find_hit;
175 	uint_t	mobjs_lib_va_find_delay_delete;
176 	uint_t	mobjs_lib_va_find_delete;
177 	uint_t	mobjs_lib_va_add_delay_delete;
178 	uint_t	mobjs_lib_va_add_delete;
179 	uint_t	mobjs_lib_va_create_failure;
180 	uint_t	mobjs_min_align;
181 #if defined(__sparc)
182 	uint_t	mobjs_aout_uzero_fault;
183 	uint_t	mobjs_aout_64bit_try;
184 	uint_t	mobjs_aout_noexec;
185 	uint_t	mobjs_aout_e2big;
186 	uint_t	mobjs_aout_lib;
187 	uint_t	mobjs_aout_fixed;
188 	uint_t	mobjs_aout_zfoddiff;
189 	uint_t	mobjs_aout_map_bss;
190 	uint_t	mobjs_aout_bss_fail;
191 	uint_t	mobjs_aout_nlist;
192 	uint_t	mobjs_aout_addr_in_use;
193 #endif
194 } mobj_stats;
195 
196 #define	MOBJ_STAT_ADD(stat)		((mobj_stats.mobjs_##stat)++)
197 #else
198 #define	MOBJ_STAT_ADD(stat)
199 #endif
200 
201 /*
202  * Check if addr is at or above the address space reserved for the stack.
203  * The stack is at the top of the address space for all sparc processes
204  * and 64 bit x86 processes.  For 32 bit x86, the stack is not at the top
205  * of the address space and thus this check wil always return false for
206  * 32 bit x86 processes.
207  */
208 #if defined(__sparc)
209 #define	OVERLAPS_STACK(addr, p)						\
210 	(addr >= (p->p_usrstack - ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK)))
211 #elif defined(__amd64)
212 #define	OVERLAPS_STACK(addr, p)						\
213 	((p->p_model == DATAMODEL_LP64) &&				\
214 	(addr >= (p->p_usrstack - ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK))))
215 #elif defined(__i386)
216 #define	OVERLAPS_STACK(addr, p)	0
217 #endif
218 
219 /* lv_flags values - bitmap */
220 #define	LV_ELF32	0x1		/* 32 bit ELF file */
221 #define	LV_ELF64	0x2		/* 64 bit ELF file */
222 #define	LV_DEL		0x4		/* delete when lv_refcnt hits zero */
223 
224 /*
225  * Note: lv_num_segs will denote how many segments this file has and will
226  * only be set after the lv_mps array has been filled out.
227  * lv_mps can only be valid if lv_num_segs is non-zero.
228  */
229 struct lib_va {
230 	struct lib_va		*lv_next;
231 	caddr_t			lv_base_va;	/* start va for library */
232 	ssize_t			lv_len;		/* total va span of library */
233 	size_t			lv_align;	/* minimum alignment */
234 	uint64_t		lv_nodeid;	/* filesystem node id */
235 	uint64_t		lv_fsid;	/* filesystem id */
236 	timestruc_t		lv_ctime;	/* last time file was changed */
237 	timestruc_t		lv_mtime;	/* or modified */
238 	mmapobj_result_t	lv_mps[LIBVA_CACHED_SEGS]; /* cached pheaders */
239 	int			lv_num_segs;	/* # segs for this file */
240 	int			lv_flags;
241 	uint_t			lv_refcnt;	/* number of holds on struct */
242 };
243 
244 #define	LIB_VA_SIZE	1024
245 #define	LIB_VA_MASK	(LIB_VA_SIZE - 1)
246 #define	LIB_VA_MUTEX_SHIFT	3
247 
248 #if (LIB_VA_SIZE & (LIB_VA_SIZE - 1))
249 #error	"LIB_VA_SIZE is not a power of 2"
250 #endif
251 
252 static struct lib_va *lib_va_hash[LIB_VA_SIZE];
253 static kmutex_t lib_va_hash_mutex[LIB_VA_SIZE >> LIB_VA_MUTEX_SHIFT];
254 
255 #define	LIB_VA_HASH_MUTEX(index)					\
256 	(&lib_va_hash_mutex[index >> LIB_VA_MUTEX_SHIFT])
257 
258 #define	LIB_VA_HASH(nodeid)						\
259 	(((nodeid) ^ ((nodeid) << 7) ^ ((nodeid) << 13)) & LIB_VA_MASK)
260 
261 #define	LIB_VA_MATCH_ID(arg1, arg2)					\
262 	((arg1)->lv_nodeid == (arg2)->va_nodeid &&			\
263 	(arg1)->lv_fsid == (arg2)->va_fsid)
264 
265 #define	LIB_VA_MATCH_TIME(arg1, arg2)					\
266 	((arg1)->lv_ctime.tv_sec == (arg2)->va_ctime.tv_sec &&		\
267 	(arg1)->lv_mtime.tv_sec == (arg2)->va_mtime.tv_sec &&		\
268 	(arg1)->lv_ctime.tv_nsec == (arg2)->va_ctime.tv_nsec &&		\
269 	(arg1)->lv_mtime.tv_nsec == (arg2)->va_mtime.tv_nsec)
270 
271 #define	LIB_VA_MATCH(arg1, arg2)					\
272 	(LIB_VA_MATCH_ID(arg1, arg2) && LIB_VA_MATCH_TIME(arg1, arg2))
273 
274 /*
275  * lib_va will be used for optimized allocation of address ranges for
276  * libraries, such that subsequent mappings of the same library will attempt
277  * to use the same VA as previous mappings of that library.
278  * In order to map libraries at the same VA in many processes, we need to carve
279  * out our own address space for them which is unique across many processes.
280  * We use different arenas for 32 bit and 64 bit libraries.
281  *
282  * Since the 32 bit address space is relatively small, we limit the number of
283  * libraries which try to use consistent virtual addresses to lib_threshold.
284  * For 64 bit libraries there is no such limit since the address space is large.
285  */
286 static vmem_t *lib_va_32_arena;
287 static vmem_t *lib_va_64_arena;
288 uint_t lib_threshold = 20;	/* modifiable via /etc/system */
289 
290 static kmutex_t lib_va_init_mutex;	/* no need to initialize */
291 
292 /*
293  * Number of 32 bit and 64 bit libraries in lib_va hash.
294  */
295 static uint_t libs_mapped_32 = 0;
296 static uint_t libs_mapped_64 = 0;
297 
298 /*
299  * Free up the resources associated with lvp as well as lvp itself.
300  * We also decrement the number of libraries mapped via a lib_va
301  * cached virtual address.
302  */
303 void
304 lib_va_free(struct lib_va *lvp)
305 {
306 	int is_64bit = lvp->lv_flags & LV_ELF64;
307 	ASSERT(lvp->lv_refcnt == 0);
308 
309 	if (lvp->lv_base_va != NULL) {
310 		vmem_xfree(is_64bit ? lib_va_64_arena : lib_va_32_arena,
311 		    lvp->lv_base_va, lvp->lv_len);
312 		if (is_64bit) {
313 			atomic_dec_32(&libs_mapped_64);
314 		} else {
315 			atomic_dec_32(&libs_mapped_32);
316 		}
317 	}
318 	kmem_free(lvp, sizeof (struct lib_va));
319 }
320 
321 /*
322  * See if the file associated with the vap passed in is in the lib_va hash.
323  * If it is and the file has not been modified since last use, then
324  * return a pointer to that data.  Otherwise, return NULL if the file has
325  * changed or the file was not found in the hash.
326  */
327 static struct lib_va *
328 lib_va_find(vattr_t *vap)
329 {
330 	struct lib_va *lvp;
331 	struct lib_va *del = NULL;
332 	struct lib_va **tmp;
333 	uint_t index;
334 	index = LIB_VA_HASH(vap->va_nodeid);
335 
336 	mutex_enter(LIB_VA_HASH_MUTEX(index));
337 	tmp = &lib_va_hash[index];
338 	while (*tmp != NULL) {
339 		lvp = *tmp;
340 		if (LIB_VA_MATCH_ID(lvp, vap)) {
341 			if (LIB_VA_MATCH_TIME(lvp, vap)) {
342 				ASSERT((lvp->lv_flags & LV_DEL) == 0);
343 				lvp->lv_refcnt++;
344 				MOBJ_STAT_ADD(lib_va_find_hit);
345 			} else {
346 				/*
347 				 * file was updated since last use.
348 				 * need to remove it from list.
349 				 */
350 				del = lvp;
351 				*tmp = del->lv_next;
352 				del->lv_next = NULL;
353 				/*
354 				 * If we can't delete it now, mark it for later
355 				 */
356 				if (del->lv_refcnt) {
357 					MOBJ_STAT_ADD(lib_va_find_delay_delete);
358 					del->lv_flags |= LV_DEL;
359 					del = NULL;
360 				}
361 				lvp = NULL;
362 			}
363 			mutex_exit(LIB_VA_HASH_MUTEX(index));
364 			if (del) {
365 				ASSERT(del->lv_refcnt == 0);
366 				MOBJ_STAT_ADD(lib_va_find_delete);
367 				lib_va_free(del);
368 			}
369 			return (lvp);
370 		}
371 		tmp = &lvp->lv_next;
372 	}
373 	mutex_exit(LIB_VA_HASH_MUTEX(index));
374 	return (NULL);
375 }
376 
377 /*
378  * Add a new entry to the lib_va hash.
379  * Search the hash while holding the appropriate mutex to make sure that the
380  * data is not already in the cache.  If we find data that is in the cache
381  * already and has not been modified since last use, we return NULL.  If it
382  * has been modified since last use, we will remove that entry from
383  * the hash and it will be deleted once it's reference count reaches zero.
384  * If there is no current entry in the hash we will add the new entry and
385  * return it to the caller who is responsible for calling lib_va_release to
386  * drop their reference count on it.
387  *
388  * lv_num_segs will be set to zero since the caller needs to add that
389  * information to the data structure.
390  */
391 static struct lib_va *
392 lib_va_add_hash(caddr_t base_va, ssize_t len, size_t align, vattr_t *vap)
393 {
394 	struct lib_va *lvp;
395 	uint_t index;
396 	model_t model;
397 	struct lib_va **tmp;
398 	struct lib_va *del = NULL;
399 
400 	model = get_udatamodel();
401 	index = LIB_VA_HASH(vap->va_nodeid);
402 
403 	lvp = kmem_alloc(sizeof (struct lib_va), KM_SLEEP);
404 
405 	mutex_enter(LIB_VA_HASH_MUTEX(index));
406 
407 	/*
408 	 * Make sure not adding same data a second time.
409 	 * The hash chains should be relatively short and adding
410 	 * is a relatively rare event, so it's worth the check.
411 	 */
412 	tmp = &lib_va_hash[index];
413 	while (*tmp != NULL) {
414 		if (LIB_VA_MATCH_ID(*tmp, vap)) {
415 			if (LIB_VA_MATCH_TIME(*tmp, vap)) {
416 				mutex_exit(LIB_VA_HASH_MUTEX(index));
417 				kmem_free(lvp, sizeof (struct lib_va));
418 				return (NULL);
419 			}
420 
421 			/*
422 			 * We have the same nodeid and fsid but the file has
423 			 * been modified since we last saw it.
424 			 * Need to remove the old node and add this new
425 			 * one.
426 			 * Could probably use a callback mechanism to make
427 			 * this cleaner.
428 			 */
429 			ASSERT(del == NULL);
430 			del = *tmp;
431 			*tmp = del->lv_next;
432 			del->lv_next = NULL;
433 
434 			/*
435 			 * Check to see if we can free it.  If lv_refcnt
436 			 * is greater than zero, than some other thread
437 			 * has a reference to the one we want to delete
438 			 * and we can not delete it.  All of this is done
439 			 * under the lib_va_hash_mutex lock so it is atomic.
440 			 */
441 			if (del->lv_refcnt) {
442 				MOBJ_STAT_ADD(lib_va_add_delay_delete);
443 				del->lv_flags |= LV_DEL;
444 				del = NULL;
445 			}
446 			/* tmp is already advanced */
447 			continue;
448 		}
449 		tmp = &((*tmp)->lv_next);
450 	}
451 
452 	lvp->lv_base_va = base_va;
453 	lvp->lv_len = len;
454 	lvp->lv_align = align;
455 	lvp->lv_nodeid = vap->va_nodeid;
456 	lvp->lv_fsid = vap->va_fsid;
457 	lvp->lv_ctime.tv_sec = vap->va_ctime.tv_sec;
458 	lvp->lv_ctime.tv_nsec = vap->va_ctime.tv_nsec;
459 	lvp->lv_mtime.tv_sec = vap->va_mtime.tv_sec;
460 	lvp->lv_mtime.tv_nsec = vap->va_mtime.tv_nsec;
461 	lvp->lv_next = NULL;
462 	lvp->lv_refcnt = 1;
463 
464 	/* Caller responsible for filling this and lv_mps out */
465 	lvp->lv_num_segs = 0;
466 
467 	if (model == DATAMODEL_LP64) {
468 		lvp->lv_flags = LV_ELF64;
469 	} else {
470 		ASSERT(model == DATAMODEL_ILP32);
471 		lvp->lv_flags = LV_ELF32;
472 	}
473 
474 	if (base_va != NULL) {
475 		if (model == DATAMODEL_LP64) {
476 			atomic_inc_32(&libs_mapped_64);
477 		} else {
478 			ASSERT(model == DATAMODEL_ILP32);
479 			atomic_inc_32(&libs_mapped_32);
480 		}
481 	}
482 	ASSERT(*tmp == NULL);
483 	*tmp = lvp;
484 	mutex_exit(LIB_VA_HASH_MUTEX(index));
485 	if (del) {
486 		ASSERT(del->lv_refcnt == 0);
487 		MOBJ_STAT_ADD(lib_va_add_delete);
488 		lib_va_free(del);
489 	}
490 	return (lvp);
491 }
492 
493 /*
494  * Release the hold on lvp which was acquired by lib_va_find or lib_va_add_hash.
495  * In addition, if this is the last hold and lvp is marked for deletion,
496  * free up it's reserved address space and free the structure.
497  */
498 static void
499 lib_va_release(struct lib_va *lvp)
500 {
501 	uint_t index;
502 	int to_del = 0;
503 
504 	ASSERT(lvp->lv_refcnt > 0);
505 
506 	index = LIB_VA_HASH(lvp->lv_nodeid);
507 	mutex_enter(LIB_VA_HASH_MUTEX(index));
508 	if (--lvp->lv_refcnt == 0 && (lvp->lv_flags & LV_DEL)) {
509 		to_del = 1;
510 	}
511 	mutex_exit(LIB_VA_HASH_MUTEX(index));
512 	if (to_del) {
513 		ASSERT(lvp->lv_next == 0);
514 		lib_va_free(lvp);
515 	}
516 }
517 
518 /*
519  * Dummy function for mapping through /dev/null
520  * Normally I would have used mmmmap in common/io/mem.c
521  * but that is a static function, and for /dev/null, it
522  * just returns -1.
523  */
524 /* ARGSUSED */
525 static int
526 mmapobj_dummy(dev_t dev, off_t off, int prot)
527 {
528 	return (-1);
529 }
530 
531 /*
532  * Called when an error occurred which requires mmapobj to return failure.
533  * All mapped objects will be unmapped and /dev/null mappings will be
534  * reclaimed if necessary.
535  * num_mapped is the number of elements of mrp which have been mapped, and
536  * num_segs is the total number of elements in mrp.
537  * For e_type ET_EXEC, we need to unmap all of the elements in mrp since
538  * we had already made reservations for them.
539  * If num_mapped equals num_segs, then we know that we had fully mapped
540  * the file and only need to clean up the segments described.
541  * If they are not equal, then for ET_DYN we will unmap the range from the
542  * end of the last mapped segment to the end of the last segment in mrp
543  * since we would have made a reservation for that memory earlier.
544  * If e_type is passed in as zero, num_mapped must equal num_segs.
545  */
546 void
547 mmapobj_unmap(mmapobj_result_t *mrp, int num_mapped, int num_segs,
548     ushort_t e_type)
549 {
550 	int i;
551 	struct as *as = curproc->p_as;
552 	caddr_t addr;
553 	size_t size;
554 
555 	if (e_type == ET_EXEC) {
556 		num_mapped = num_segs;
557 	}
558 #ifdef DEBUG
559 	if (e_type == 0) {
560 		ASSERT(num_mapped == num_segs);
561 	}
562 #endif
563 
564 	MOBJ_STAT_ADD(unmap_called);
565 	for (i = 0; i < num_mapped; i++) {
566 
567 		/*
568 		 * If we are going to have to create a mapping we need to
569 		 * make sure that no one else will use the address we
570 		 * need to remap between the time it is unmapped and
571 		 * mapped below.
572 		 */
573 		if (mrp[i].mr_flags & MR_RESV) {
574 			as_rangelock(as);
575 		}
576 		/* Always need to unmap what we mapped */
577 		(void) as_unmap(as, mrp[i].mr_addr, mrp[i].mr_msize);
578 
579 		/* Need to reclaim /dev/null reservation from earlier */
580 		if (mrp[i].mr_flags & MR_RESV) {
581 			struct segdev_crargs dev_a;
582 
583 			ASSERT(e_type != ET_DYN);
584 			/*
585 			 * Use seg_dev segment driver for /dev/null mapping.
586 			 */
587 			dev_a.mapfunc = mmapobj_dummy;
588 			dev_a.dev = makedevice(mm_major, M_NULL);
589 			dev_a.offset = 0;
590 			dev_a.type = 0;		/* neither PRIVATE nor SHARED */
591 			dev_a.prot = dev_a.maxprot = (uchar_t)PROT_NONE;
592 			dev_a.hat_attr = 0;
593 			dev_a.hat_flags = 0;
594 
595 			(void) as_map(as, mrp[i].mr_addr, mrp[i].mr_msize,
596 			    segdev_create, &dev_a);
597 			MOBJ_STAT_ADD(remap_devnull);
598 			as_rangeunlock(as);
599 		}
600 	}
601 
602 	if (num_mapped != num_segs) {
603 		ASSERT(e_type == ET_DYN);
604 		/* Need to unmap any reservation made after last mapped seg */
605 		if (num_mapped == 0) {
606 			addr = mrp[0].mr_addr;
607 		} else {
608 			addr = mrp[num_mapped - 1].mr_addr +
609 			    mrp[num_mapped - 1].mr_msize;
610 		}
611 		size = (size_t)mrp[num_segs - 1].mr_addr +
612 		    mrp[num_segs - 1].mr_msize - (size_t)addr;
613 		(void) as_unmap(as, addr, size);
614 
615 		/*
616 		 * Now we need to unmap the holes between mapped segs.
617 		 * Note that we have not mapped all of the segments and thus
618 		 * the holes between segments would not have been unmapped
619 		 * yet.  If num_mapped == num_segs, then all of the holes
620 		 * between segments would have already been unmapped.
621 		 */
622 
623 		for (i = 1; i < num_mapped; i++) {
624 			addr = mrp[i - 1].mr_addr + mrp[i - 1].mr_msize;
625 			size = mrp[i].mr_addr - addr;
626 			(void) as_unmap(as, addr, size);
627 		}
628 	}
629 }
630 
631 /*
632  * We need to add the start address into mrp so that the unmap function
633  * has absolute addresses to use.
634  */
635 static void
636 mmapobj_unmap_exec(mmapobj_result_t *mrp, int num_mapped, caddr_t start_addr)
637 {
638 	int i;
639 
640 	for (i = 0; i < num_mapped; i++) {
641 		mrp[i].mr_addr += (size_t)start_addr;
642 	}
643 	mmapobj_unmap(mrp, num_mapped, num_mapped, ET_EXEC);
644 }
645 
646 static caddr_t
647 mmapobj_lookup_start_addr(struct lib_va *lvp)
648 {
649 	proc_t *p = curproc;
650 	struct as *as = p->p_as;
651 	struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL);
652 	int error;
653 	uint_t ma_flags = _MAP_LOW32;
654 	caddr_t base = NULL;
655 	size_t len;
656 	size_t align;
657 
658 	ASSERT(lvp != NULL);
659 	MOBJ_STAT_ADD(lookup_start);
660 
661 	as_rangelock(as);
662 
663 	base = lvp->lv_base_va;
664 	len = lvp->lv_len;
665 
666 	/*
667 	 * If we don't have an expected base address, or the one that we want
668 	 * to use is not available or acceptable, go get an acceptable
669 	 * address range.
670 	 */
671 	if (base == NULL || as_gap(as, len, &base, &len, 0, NULL) ||
672 	    valid_usr_range(base, len, PROT_ALL, as, as->a_userlimit) !=
673 	    RANGE_OKAY || OVERLAPS_STACK(base + len, p)) {
674 		if (lvp->lv_flags & LV_ELF64) {
675 			ma_flags = 0;
676 		}
677 
678 		align = lvp->lv_align;
679 		if (align > 1) {
680 			ma_flags |= MAP_ALIGN;
681 		}
682 
683 		base = (caddr_t)align;
684 		map_addr(&base, len, 0, 1, ma_flags);
685 	}
686 
687 	/*
688 	 * Need to reserve the address space we're going to use.
689 	 * Don't reserve swap space since we'll be mapping over this.
690 	 */
691 	if (base != NULL) {
692 		crargs.flags |= MAP_NORESERVE;
693 		error = as_map(as, base, len, segvn_create, &crargs);
694 		if (error) {
695 			base = NULL;
696 		}
697 	}
698 
699 	as_rangeunlock(as);
700 	return (base);
701 }
702 
703 /*
704  * Get the starting address for a given file to be mapped and return it
705  * to the caller.  If we're using lib_va and we need to allocate an address,
706  * we will attempt to allocate it from the global reserved pool such that the
707  * same address can be used in the future for this file.  If we can't use the
708  * reserved address then we just get one that will fit in our address space.
709  *
710  * Returns the starting virtual address for the range to be mapped or NULL
711  * if an error is encountered. If we successfully insert the requested info
712  * into the lib_va hash, then *lvpp will be set to point to this lib_va
713  * structure.  The structure will have a hold on it and thus lib_va_release
714  * needs to be called on it by the caller.  This function will not fill out
715  * lv_mps or lv_num_segs since it does not have enough information to do so.
716  * The caller is responsible for doing this making sure that any modifications
717  * to lv_mps are visible before setting lv_num_segs.
718  */
719 static caddr_t
720 mmapobj_alloc_start_addr(struct lib_va **lvpp, size_t len, int use_lib_va,
721     size_t align, vattr_t *vap)
722 {
723 	proc_t *p = curproc;
724 	struct as *as = p->p_as;
725 	struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL);
726 	int error;
727 	model_t model;
728 	uint_t ma_flags = _MAP_LOW32;
729 	caddr_t base = NULL;
730 	vmem_t *model_vmem;
731 	size_t lib_va_start;
732 	size_t lib_va_end;
733 	size_t lib_va_len;
734 
735 	ASSERT(lvpp != NULL);
736 
737 	MOBJ_STAT_ADD(alloc_start);
738 	model = get_udatamodel();
739 
740 	if (model == DATAMODEL_LP64) {
741 		ma_flags = 0;
742 		model_vmem = lib_va_64_arena;
743 	} else {
744 		ASSERT(model == DATAMODEL_ILP32);
745 		model_vmem = lib_va_32_arena;
746 	}
747 
748 	if (align > 1) {
749 		ma_flags |= MAP_ALIGN;
750 	}
751 	if (use_lib_va) {
752 		/*
753 		 * The first time through, we need to setup the lib_va arenas.
754 		 * We call map_addr to find a suitable range of memory to map
755 		 * the given library, and we will set the highest address
756 		 * in our vmem arena to the end of this adddress range.
757 		 * We allow up to half of the address space to be used
758 		 * for lib_va addresses but we do not prevent any allocations
759 		 * in this range from other allocation paths.
760 		 */
761 		if (lib_va_64_arena == NULL && model == DATAMODEL_LP64) {
762 			mutex_enter(&lib_va_init_mutex);
763 			if (lib_va_64_arena == NULL) {
764 				base = (caddr_t)align;
765 				as_rangelock(as);
766 				map_addr(&base, len, 0, 1, ma_flags);
767 				as_rangeunlock(as);
768 				if (base == NULL) {
769 					mutex_exit(&lib_va_init_mutex);
770 					MOBJ_STAT_ADD(lib_va_create_failure);
771 					goto nolibva;
772 				}
773 				lib_va_end = (size_t)base + len;
774 				lib_va_len = lib_va_end >> 1;
775 				lib_va_len = P2ROUNDUP(lib_va_len, PAGESIZE);
776 				lib_va_start = lib_va_end - lib_va_len;
777 
778 				/*
779 				 * Need to make sure we avoid the address hole.
780 				 * We know lib_va_end is valid but we need to
781 				 * make sure lib_va_start is as well.
782 				 */
783 				if ((lib_va_end > (size_t)hole_end) &&
784 				    (lib_va_start < (size_t)hole_end)) {
785 					lib_va_start = P2ROUNDUP(
786 					    (size_t)hole_end, PAGESIZE);
787 					lib_va_len = lib_va_end - lib_va_start;
788 				}
789 				lib_va_64_arena = vmem_create("lib_va_64",
790 				    (void *)lib_va_start, lib_va_len, PAGESIZE,
791 				    NULL, NULL, NULL, 0,
792 				    VM_NOSLEEP | VMC_IDENTIFIER);
793 				if (lib_va_64_arena == NULL) {
794 					mutex_exit(&lib_va_init_mutex);
795 					goto nolibva;
796 				}
797 			}
798 			model_vmem = lib_va_64_arena;
799 			mutex_exit(&lib_va_init_mutex);
800 		} else if (lib_va_32_arena == NULL &&
801 		    model == DATAMODEL_ILP32) {
802 			mutex_enter(&lib_va_init_mutex);
803 			if (lib_va_32_arena == NULL) {
804 				base = (caddr_t)align;
805 				as_rangelock(as);
806 				map_addr(&base, len, 0, 1, ma_flags);
807 				as_rangeunlock(as);
808 				if (base == NULL) {
809 					mutex_exit(&lib_va_init_mutex);
810 					MOBJ_STAT_ADD(lib_va_create_failure);
811 					goto nolibva;
812 				}
813 				lib_va_end = (size_t)base + len;
814 				lib_va_len = lib_va_end >> 1;
815 				lib_va_len = P2ROUNDUP(lib_va_len, PAGESIZE);
816 				lib_va_start = lib_va_end - lib_va_len;
817 				lib_va_32_arena = vmem_create("lib_va_32",
818 				    (void *)lib_va_start, lib_va_len, PAGESIZE,
819 				    NULL, NULL, NULL, 0,
820 				    VM_NOSLEEP | VMC_IDENTIFIER);
821 				if (lib_va_32_arena == NULL) {
822 					mutex_exit(&lib_va_init_mutex);
823 					goto nolibva;
824 				}
825 			}
826 			model_vmem = lib_va_32_arena;
827 			mutex_exit(&lib_va_init_mutex);
828 		}
829 
830 		if (model == DATAMODEL_LP64 || libs_mapped_32 < lib_threshold) {
831 			base = vmem_xalloc(model_vmem, len, align, 0, 0, NULL,
832 			    NULL, VM_NOSLEEP | VM_ENDALLOC);
833 			MOBJ_STAT_ADD(alloc_vmem);
834 		}
835 
836 		/*
837 		 * Even if the address fails to fit in our address space,
838 		 * or we can't use a reserved address,
839 		 * we should still save it off in lib_va_hash.
840 		 */
841 		*lvpp = lib_va_add_hash(base, len, align, vap);
842 
843 		/*
844 		 * Check for collision on insertion and free up our VA space.
845 		 * This is expected to be rare, so we'll just reset base to
846 		 * NULL instead of looking it up in the lib_va hash.
847 		 */
848 		if (*lvpp == NULL) {
849 			if (base != NULL) {
850 				vmem_xfree(model_vmem, base, len);
851 				base = NULL;
852 				MOBJ_STAT_ADD(add_collision);
853 			}
854 		}
855 	}
856 
857 nolibva:
858 	as_rangelock(as);
859 
860 	/*
861 	 * If we don't have an expected base address, or the one that we want
862 	 * to use is not available or acceptable, go get an acceptable
863 	 * address range.
864 	 */
865 	if (base == NULL || as_gap(as, len, &base, &len, 0, NULL) ||
866 	    valid_usr_range(base, len, PROT_ALL, as, as->a_userlimit) !=
867 	    RANGE_OKAY || OVERLAPS_STACK(base + len, p)) {
868 		MOBJ_STAT_ADD(get_addr);
869 		base = (caddr_t)align;
870 		map_addr(&base, len, 0, 1, ma_flags);
871 	}
872 
873 	/*
874 	 * Need to reserve the address space we're going to use.
875 	 * Don't reserve swap space since we'll be mapping over this.
876 	 */
877 	if (base != NULL) {
878 		/* Don't reserve swap space since we'll be mapping over this */
879 		crargs.flags |= MAP_NORESERVE;
880 		error = as_map(as, base, len, segvn_create, &crargs);
881 		if (error) {
882 			base = NULL;
883 		}
884 	}
885 
886 	as_rangeunlock(as);
887 	return (base);
888 }
889 
890 /*
891  * Map the file associated with vp into the address space as a single
892  * read only private mapping.
893  * Returns 0 for success, and non-zero for failure to map the file.
894  */
895 static int
896 mmapobj_map_flat(vnode_t *vp, mmapobj_result_t *mrp, size_t padding,
897     cred_t *fcred)
898 {
899 	int error = 0;
900 	struct as *as = curproc->p_as;
901 	caddr_t addr = NULL;
902 	caddr_t start_addr;
903 	size_t len;
904 	size_t pad_len;
905 	int prot = PROT_USER | PROT_READ;
906 	uint_t ma_flags = _MAP_LOW32;
907 	vattr_t vattr;
908 	struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_USER, PROT_ALL);
909 
910 	if (get_udatamodel() == DATAMODEL_LP64) {
911 		ma_flags = 0;
912 	}
913 
914 	vattr.va_mask = AT_SIZE;
915 	error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL);
916 	if (error) {
917 		return (error);
918 	}
919 
920 	len = vattr.va_size;
921 
922 	ma_flags |= MAP_PRIVATE;
923 	if (padding == 0) {
924 		MOBJ_STAT_ADD(map_flat_no_padding);
925 		error = VOP_MAP(vp, 0, as, &addr, len, prot, PROT_ALL,
926 		    ma_flags, fcred, NULL);
927 		if (error == 0) {
928 			mrp[0].mr_addr = addr;
929 			mrp[0].mr_msize = len;
930 			mrp[0].mr_fsize = len;
931 			mrp[0].mr_offset = 0;
932 			mrp[0].mr_prot = prot;
933 			mrp[0].mr_flags = 0;
934 		}
935 		return (error);
936 	}
937 
938 	/* padding was requested so there's more work to be done */
939 	MOBJ_STAT_ADD(map_flat_padding);
940 
941 	/* No need to reserve swap space now since it will be reserved later */
942 	crargs.flags |= MAP_NORESERVE;
943 
944 	/* Need to setup padding which can only be in PAGESIZE increments. */
945 	ASSERT((padding & PAGEOFFSET) == 0);
946 	pad_len = len + (2 * padding);
947 
948 	as_rangelock(as);
949 	map_addr(&addr, pad_len, 0, 1, ma_flags);
950 	error = as_map(as, addr, pad_len, segvn_create, &crargs);
951 	as_rangeunlock(as);
952 	if (error) {
953 		return (error);
954 	}
955 	start_addr = addr;
956 	addr += padding;
957 	ma_flags |= MAP_FIXED;
958 	error = VOP_MAP(vp, 0, as, &addr, len, prot, PROT_ALL, ma_flags,
959 	    fcred, NULL);
960 	if (error == 0) {
961 		mrp[0].mr_addr = start_addr;
962 		mrp[0].mr_msize = padding;
963 		mrp[0].mr_fsize = 0;
964 		mrp[0].mr_offset = 0;
965 		mrp[0].mr_prot = 0;
966 		mrp[0].mr_flags = MR_PADDING;
967 
968 		mrp[1].mr_addr = addr;
969 		mrp[1].mr_msize = len;
970 		mrp[1].mr_fsize = len;
971 		mrp[1].mr_offset = 0;
972 		mrp[1].mr_prot = prot;
973 		mrp[1].mr_flags = 0;
974 
975 		mrp[2].mr_addr = addr + P2ROUNDUP(len, PAGESIZE);
976 		mrp[2].mr_msize = padding;
977 		mrp[2].mr_fsize = 0;
978 		mrp[2].mr_offset = 0;
979 		mrp[2].mr_prot = 0;
980 		mrp[2].mr_flags = MR_PADDING;
981 	} else {
982 		/* Need to cleanup the as_map from earlier */
983 		(void) as_unmap(as, start_addr, pad_len);
984 	}
985 	return (error);
986 }
987 
988 /*
989  * Map a PT_LOAD or PT_SUNWBSS section of an executable file into the user's
990  * address space.
991  * vp - vnode to be mapped in
992  * addr - start address
993  * len - length of vp to be mapped
994  * zfodlen - length of zero filled memory after len above
995  * offset - offset into file where mapping should start
996  * prot - protections for this mapping
997  * fcred - credentials for the file associated with vp at open time.
998  */
999 static int
1000 mmapobj_map_ptload(struct vnode *vp, caddr_t addr, size_t len, size_t zfodlen,
1001     off_t offset, int prot, cred_t *fcred)
1002 {
1003 	int error = 0;
1004 	caddr_t zfodbase, oldaddr;
1005 	size_t oldlen;
1006 	size_t end;
1007 	size_t zfoddiff;
1008 	label_t ljb;
1009 	struct as *as = curproc->p_as;
1010 	model_t model;
1011 	int full_page;
1012 
1013 	/*
1014 	 * See if addr and offset are aligned such that we can map in
1015 	 * full pages instead of partial pages.
1016 	 */
1017 	full_page = (((uintptr_t)addr & PAGEOFFSET) ==
1018 	    ((uintptr_t)offset & PAGEOFFSET));
1019 
1020 	model = get_udatamodel();
1021 
1022 	oldaddr = addr;
1023 	addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1024 	if (len) {
1025 		spgcnt_t availm, npages;
1026 		int preread;
1027 		uint_t mflag = MAP_PRIVATE | MAP_FIXED;
1028 
1029 		if (model == DATAMODEL_ILP32) {
1030 			mflag |= _MAP_LOW32;
1031 		}
1032 		/* We may need to map in extra bytes */
1033 		oldlen = len;
1034 		len += ((size_t)oldaddr & PAGEOFFSET);
1035 
1036 		if (full_page) {
1037 			offset = (off_t)((uintptr_t)offset & PAGEMASK);
1038 			if ((prot & (PROT_WRITE | PROT_EXEC)) == PROT_EXEC) {
1039 				mflag |= MAP_TEXT;
1040 				MOBJ_STAT_ADD(map_ptload_text);
1041 			} else {
1042 				mflag |= MAP_INITDATA;
1043 				MOBJ_STAT_ADD(map_ptload_initdata);
1044 			}
1045 
1046 			/*
1047 			 * maxprot is passed as PROT_ALL so that mdb can
1048 			 * write to this segment.
1049 			 */
1050 			if (error = VOP_MAP(vp, (offset_t)offset, as, &addr,
1051 			    len, prot, PROT_ALL, mflag, fcred, NULL)) {
1052 				return (error);
1053 			}
1054 
1055 			/*
1056 			 * If the segment can fit and is relatively small, then
1057 			 * we prefault the entire segment in.  This is based
1058 			 * on the model that says the best working set of a
1059 			 * small program is all of its pages.
1060 			 * We only do this if freemem will not drop below
1061 			 * lotsfree since we don't want to induce paging.
1062 			 */
1063 			npages = (spgcnt_t)btopr(len);
1064 			availm = freemem - lotsfree;
1065 			preread = (npages < availm && len < PGTHRESH) ? 1 : 0;
1066 
1067 			/*
1068 			 * If we aren't prefaulting the segment,
1069 			 * increment "deficit", if necessary to ensure
1070 			 * that pages will become available when this
1071 			 * process starts executing.
1072 			 */
1073 			if (preread == 0 && npages > availm &&
1074 			    deficit < lotsfree) {
1075 				deficit += MIN((pgcnt_t)(npages - availm),
1076 				    lotsfree - deficit);
1077 			}
1078 
1079 			if (preread) {
1080 				(void) as_faulta(as, addr, len);
1081 				MOBJ_STAT_ADD(map_ptload_preread);
1082 			}
1083 		} else {
1084 			/*
1085 			 * addr and offset were not aligned such that we could
1086 			 * use VOP_MAP, thus we need to as_map the memory we
1087 			 * need and then read the data in from disk.
1088 			 * This code path is a corner case which should never
1089 			 * be taken, but hand crafted binaries could trigger
1090 			 * this logic and it needs to work correctly.
1091 			 */
1092 			MOBJ_STAT_ADD(map_ptload_unaligned_text);
1093 			as_rangelock(as);
1094 			(void) as_unmap(as, addr, len);
1095 
1096 			/*
1097 			 * We use zfod_argsp because we need to be able to
1098 			 * write to the mapping and then we'll change the
1099 			 * protections later if they are incorrect.
1100 			 */
1101 			error = as_map(as, addr, len, segvn_create, zfod_argsp);
1102 			as_rangeunlock(as);
1103 			if (error) {
1104 				MOBJ_STAT_ADD(map_ptload_unaligned_map_fail);
1105 				return (error);
1106 			}
1107 
1108 			/* Now read in the data from disk */
1109 			error = vn_rdwr(UIO_READ, vp, oldaddr, oldlen, offset,
1110 			    UIO_USERSPACE, 0, (rlim64_t)0, fcred, NULL);
1111 			if (error) {
1112 				MOBJ_STAT_ADD(map_ptload_unaligned_read_fail);
1113 				return (error);
1114 			}
1115 
1116 			/*
1117 			 * Now set protections.
1118 			 */
1119 			if (prot != PROT_ZFOD) {
1120 				(void) as_setprot(as, addr, len, prot);
1121 			}
1122 		}
1123 	}
1124 
1125 	if (zfodlen) {
1126 		end = (size_t)addr + len;
1127 		zfodbase = (caddr_t)P2ROUNDUP(end, PAGESIZE);
1128 		zfoddiff = (uintptr_t)zfodbase - end;
1129 		if (zfoddiff) {
1130 			/*
1131 			 * Before we go to zero the remaining space on the last
1132 			 * page, make sure we have write permission.
1133 			 *
1134 			 * We need to be careful how we zero-fill the last page
1135 			 * if the protection does not include PROT_WRITE. Using
1136 			 * as_setprot() can cause the VM segment code to call
1137 			 * segvn_vpage(), which must allocate a page struct for
1138 			 * each page in the segment. If we have a very large
1139 			 * segment, this may fail, so we check for that, even
1140 			 * though we ignore other return values from as_setprot.
1141 			 */
1142 			MOBJ_STAT_ADD(zfoddiff);
1143 			if ((prot & PROT_WRITE) == 0) {
1144 				if (as_setprot(as, (caddr_t)end, zfoddiff,
1145 				    prot | PROT_WRITE) == ENOMEM)
1146 					return (ENOMEM);
1147 				MOBJ_STAT_ADD(zfoddiff_nowrite);
1148 			}
1149 			if (on_fault(&ljb)) {
1150 				no_fault();
1151 				if ((prot & PROT_WRITE) == 0) {
1152 					(void) as_setprot(as, (caddr_t)end,
1153 					    zfoddiff, prot);
1154 				}
1155 				return (EFAULT);
1156 			}
1157 			uzero((void *)end, zfoddiff);
1158 			no_fault();
1159 
1160 			/*
1161 			 * Remove write protection to return to original state
1162 			 */
1163 			if ((prot & PROT_WRITE) == 0) {
1164 				(void) as_setprot(as, (caddr_t)end,
1165 				    zfoddiff, prot);
1166 			}
1167 		}
1168 		if (zfodlen > zfoddiff) {
1169 			struct segvn_crargs crargs =
1170 			    SEGVN_ZFOD_ARGS(prot, PROT_ALL);
1171 
1172 			MOBJ_STAT_ADD(zfodextra);
1173 			zfodlen -= zfoddiff;
1174 			crargs.szc = AS_MAP_NO_LPOOB;
1175 
1176 
1177 			as_rangelock(as);
1178 			(void) as_unmap(as, (caddr_t)zfodbase, zfodlen);
1179 			error = as_map(as, (caddr_t)zfodbase,
1180 			    zfodlen, segvn_create, &crargs);
1181 			as_rangeunlock(as);
1182 			if (error) {
1183 				return (error);
1184 			}
1185 		}
1186 	}
1187 	return (0);
1188 }
1189 
1190 /*
1191  * Map the ELF file represented by vp into the users address space.  The
1192  * first mapping will start at start_addr and there will be num_elements
1193  * mappings.  The mappings are described by the data in mrp which may be
1194  * modified upon returning from this function.
1195  * Returns 0 for success or errno for failure.
1196  */
1197 static int
1198 mmapobj_map_elf(struct vnode *vp, caddr_t start_addr, mmapobj_result_t *mrp,
1199     int num_elements, cred_t *fcred, ushort_t e_type)
1200 {
1201 	int i;
1202 	int ret;
1203 	caddr_t lo;
1204 	caddr_t hi;
1205 	struct as *as = curproc->p_as;
1206 
1207 	for (i = 0; i < num_elements; i++) {
1208 		caddr_t addr;
1209 		size_t p_memsz;
1210 		size_t p_filesz;
1211 		size_t zfodlen;
1212 		offset_t p_offset;
1213 		size_t dif;
1214 		int prot;
1215 
1216 		/* Always need to adjust mr_addr */
1217 		addr = start_addr + (size_t)(mrp[i].mr_addr);
1218 		mrp[i].mr_addr =
1219 		    (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1220 
1221 		/* Padding has already been mapped */
1222 		if (MR_GET_TYPE(mrp[i].mr_flags) == MR_PADDING) {
1223 			continue;
1224 		}
1225 		p_memsz = mrp[i].mr_msize;
1226 		p_filesz = mrp[i].mr_fsize;
1227 		zfodlen = p_memsz - p_filesz;
1228 		p_offset = mrp[i].mr_offset;
1229 		dif = (uintptr_t)(addr) & PAGEOFFSET;
1230 		prot = mrp[i].mr_prot | PROT_USER;
1231 		ret = mmapobj_map_ptload(vp, addr, p_filesz, zfodlen,
1232 		    p_offset, prot, fcred);
1233 		if (ret != 0) {
1234 			MOBJ_STAT_ADD(ptload_failed);
1235 			mmapobj_unmap(mrp, i, num_elements, e_type);
1236 			return (ret);
1237 		}
1238 
1239 		/* Need to cleanup mrp to reflect the actual values used */
1240 		mrp[i].mr_msize += dif;
1241 		mrp[i].mr_offset = (size_t)addr & PAGEOFFSET;
1242 	}
1243 
1244 	/* Also need to unmap any holes created above */
1245 	if (num_elements == 1) {
1246 		MOBJ_STAT_ADD(map_elf_no_holes);
1247 		return (0);
1248 	}
1249 	if (e_type == ET_EXEC) {
1250 		return (0);
1251 	}
1252 
1253 	as_rangelock(as);
1254 	lo = start_addr;
1255 	hi = mrp[0].mr_addr;
1256 
1257 	/* Remove holes made by the rest of the segments */
1258 	for (i = 0; i < num_elements - 1; i++) {
1259 		lo = (caddr_t)P2ROUNDUP((size_t)(mrp[i].mr_addr) +
1260 		    mrp[i].mr_msize, PAGESIZE);
1261 		hi = mrp[i + 1].mr_addr;
1262 		if (lo < hi) {
1263 			/*
1264 			 * If as_unmap fails we just use up a bit of extra
1265 			 * space
1266 			 */
1267 			(void) as_unmap(as, (caddr_t)lo,
1268 			    (size_t)hi - (size_t)lo);
1269 			MOBJ_STAT_ADD(unmap_hole);
1270 		}
1271 	}
1272 	as_rangeunlock(as);
1273 
1274 	return (0);
1275 }
1276 
1277 /* Ugly hack to get STRUCT_* macros to work below */
1278 struct myphdr {
1279 	Phdr		x;	/* native version */
1280 };
1281 
1282 struct myphdr32 {
1283 	Elf32_Phdr	x;
1284 };
1285 
1286 /*
1287  * Calculate and return the number of loadable segments in the ELF Phdr
1288  * represented by phdrbase as well as the len of the total mapping and
1289  * the max alignment that is needed for a given segment.  On success,
1290  * 0 is returned, and *len, *loadable and *align have been filled out.
1291  * On failure, errno will be returned, which in this case is ENOTSUP
1292  * if we were passed an ELF file with overlapping segments.
1293  */
1294 static int
1295 calc_loadable(Ehdr *ehdrp, caddr_t phdrbase, int nphdrs, size_t *len,
1296     int *loadable, size_t *align)
1297 {
1298 	int i;
1299 	int hsize;
1300 	model_t model;
1301 	ushort_t e_type = ehdrp->e_type;	/* same offset 32 and 64 bit */
1302 	uint_t p_type;
1303 	offset_t p_offset;
1304 	size_t p_memsz;
1305 	size_t p_align;
1306 	caddr_t vaddr;
1307 	int num_segs = 0;
1308 	caddr_t start_addr = NULL;
1309 	caddr_t p_end = NULL;
1310 	size_t max_align = 0;
1311 	size_t min_align = PAGESIZE;	/* needed for vmem_xalloc */
1312 	STRUCT_HANDLE(myphdr, mph);
1313 #if defined(__sparc)
1314 	extern int vac_size;
1315 
1316 	/*
1317 	 * Want to prevent aliasing by making the start address at least be
1318 	 * aligned to vac_size.
1319 	 */
1320 	min_align = MAX(PAGESIZE, vac_size);
1321 #endif
1322 
1323 	model = get_udatamodel();
1324 	STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase);
1325 
1326 	/* hsize alignment should have been checked before calling this func */
1327 	if (model == DATAMODEL_LP64) {
1328 		hsize = ehdrp->e_phentsize;
1329 		if (hsize & 7) {
1330 			return (ENOTSUP);
1331 		}
1332 	} else {
1333 		ASSERT(model == DATAMODEL_ILP32);
1334 		hsize = ((Elf32_Ehdr *)ehdrp)->e_phentsize;
1335 		if (hsize & 3) {
1336 			return (ENOTSUP);
1337 		}
1338 	}
1339 
1340 	/*
1341 	 * Determine the span of all loadable segments and calculate the
1342 	 * number of loadable segments.
1343 	 */
1344 	for (i = 0; i < nphdrs; i++) {
1345 		p_type = STRUCT_FGET(mph, x.p_type);
1346 		if (p_type == PT_LOAD || p_type == PT_SUNWBSS) {
1347 			vaddr = (caddr_t)(uintptr_t)STRUCT_FGET(mph, x.p_vaddr);
1348 			p_memsz = STRUCT_FGET(mph, x.p_memsz);
1349 
1350 			/*
1351 			 * Skip this header if it requests no memory to be
1352 			 * mapped.
1353 			 */
1354 			if (p_memsz == 0) {
1355 				STRUCT_SET_HANDLE(mph, model,
1356 				    (struct myphdr *)((size_t)STRUCT_BUF(mph) +
1357 				    hsize));
1358 				MOBJ_STAT_ADD(nomem_header);
1359 				continue;
1360 			}
1361 			if (num_segs++ == 0) {
1362 				/*
1363 				 * The p_vaddr of the first PT_LOAD segment
1364 				 * must either be NULL or within the first
1365 				 * page in order to be interpreted.
1366 				 * Otherwise, its an invalid file.
1367 				 */
1368 				if (e_type == ET_DYN &&
1369 				    ((caddr_t)((uintptr_t)vaddr &
1370 				    (uintptr_t)PAGEMASK) != NULL)) {
1371 					MOBJ_STAT_ADD(inval_header);
1372 					return (ENOTSUP);
1373 				}
1374 				start_addr = vaddr;
1375 				/*
1376 				 * For the first segment, we need to map from
1377 				 * the beginning of the file, so we will
1378 				 * adjust the size of the mapping to include
1379 				 * this memory.
1380 				 */
1381 				p_offset = STRUCT_FGET(mph, x.p_offset);
1382 			} else {
1383 				p_offset = 0;
1384 			}
1385 			/*
1386 			 * Check to make sure that this mapping wouldn't
1387 			 * overlap a previous mapping.
1388 			 */
1389 			if (vaddr < p_end) {
1390 				MOBJ_STAT_ADD(overlap_header);
1391 				return (ENOTSUP);
1392 			}
1393 
1394 			p_end = vaddr + p_memsz + p_offset;
1395 			p_end = (caddr_t)P2ROUNDUP((size_t)p_end, PAGESIZE);
1396 
1397 			p_align = STRUCT_FGET(mph, x.p_align);
1398 			if (p_align > 1 && p_align > max_align) {
1399 				max_align = p_align;
1400 				if (max_align < min_align) {
1401 					max_align = min_align;
1402 					MOBJ_STAT_ADD(min_align);
1403 				}
1404 			}
1405 		}
1406 		STRUCT_SET_HANDLE(mph, model,
1407 		    (struct myphdr *)((size_t)STRUCT_BUF(mph) + hsize));
1408 	}
1409 
1410 	/*
1411 	 * The alignment should be a power of 2, if it isn't we forgive it
1412 	 * and round up.  On overflow, we'll set the alignment to max_align
1413 	 * rounded down to the nearest power of 2.
1414 	 */
1415 	if (max_align > 0 && !ISP2(max_align)) {
1416 		MOBJ_STAT_ADD(np2_align);
1417 		*align = 2 * (1L << (highbit(max_align) - 1));
1418 		if (*align < max_align ||
1419 		    (*align > UINT_MAX && model == DATAMODEL_ILP32)) {
1420 			MOBJ_STAT_ADD(np2_align_overflow);
1421 			*align = 1L << (highbit(max_align) - 1);
1422 		}
1423 	} else {
1424 		*align = max_align;
1425 	}
1426 
1427 	ASSERT(*align >= PAGESIZE || *align == 0);
1428 
1429 	*loadable = num_segs;
1430 	*len = p_end - start_addr;
1431 	return (0);
1432 }
1433 
1434 /*
1435  * Check the address space to see if the virtual addresses to be used are
1436  * available.  If they are not, return errno for failure.  On success, 0
1437  * will be returned, and the virtual addresses for each mmapobj_result_t
1438  * will be reserved.  Note that a reservation could have earlier been made
1439  * for a given segment via a /dev/null mapping.  If that is the case, then
1440  * we can use that VA space for our mappings.
1441  * Note: this function will only be used for ET_EXEC binaries.
1442  */
1443 int
1444 check_exec_addrs(int loadable, mmapobj_result_t *mrp, caddr_t start_addr)
1445 {
1446 	int i;
1447 	struct as *as = curproc->p_as;
1448 	struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
1449 	int ret;
1450 	caddr_t myaddr;
1451 	size_t mylen;
1452 	struct seg *seg;
1453 
1454 	/* No need to reserve swap space now since it will be reserved later */
1455 	crargs.flags |= MAP_NORESERVE;
1456 	as_rangelock(as);
1457 	for (i = 0; i < loadable; i++) {
1458 
1459 		myaddr = start_addr + (size_t)mrp[i].mr_addr;
1460 		mylen = mrp[i].mr_msize;
1461 
1462 		/* See if there is a hole in the as for this range */
1463 		if (as_gap(as, mylen, &myaddr, &mylen, 0, NULL) == 0) {
1464 			ASSERT(myaddr == start_addr + (size_t)mrp[i].mr_addr);
1465 			ASSERT(mylen == mrp[i].mr_msize);
1466 
1467 #ifdef DEBUG
1468 			if (MR_GET_TYPE(mrp[i].mr_flags) == MR_PADDING) {
1469 				MOBJ_STAT_ADD(exec_padding);
1470 			}
1471 #endif
1472 			ret = as_map(as, myaddr, mylen, segvn_create, &crargs);
1473 			if (ret) {
1474 				as_rangeunlock(as);
1475 				mmapobj_unmap_exec(mrp, i, start_addr);
1476 				return (ret);
1477 			}
1478 		} else {
1479 			/*
1480 			 * There is a mapping that exists in the range
1481 			 * so check to see if it was a "reservation"
1482 			 * from /dev/null.  The mapping is from
1483 			 * /dev/null if the mapping comes from
1484 			 * segdev and the type is neither MAP_SHARED
1485 			 * nor MAP_PRIVATE.
1486 			 */
1487 			AS_LOCK_ENTER(as, RW_READER);
1488 			seg = as_findseg(as, myaddr, 0);
1489 			MOBJ_STAT_ADD(exec_addr_mapped);
1490 			if (seg && seg->s_ops == &segdev_ops &&
1491 			    ((SEGOP_GETTYPE(seg, myaddr) &
1492 			    (MAP_SHARED | MAP_PRIVATE)) == 0) &&
1493 			    myaddr >= seg->s_base &&
1494 			    myaddr + mylen <=
1495 			    seg->s_base + seg->s_size) {
1496 				MOBJ_STAT_ADD(exec_addr_devnull);
1497 				AS_LOCK_EXIT(as);
1498 				(void) as_unmap(as, myaddr, mylen);
1499 				ret = as_map(as, myaddr, mylen, segvn_create,
1500 				    &crargs);
1501 				mrp[i].mr_flags |= MR_RESV;
1502 				if (ret) {
1503 					as_rangeunlock(as);
1504 					/* Need to remap what we unmapped */
1505 					mmapobj_unmap_exec(mrp, i + 1,
1506 					    start_addr);
1507 					return (ret);
1508 				}
1509 			} else {
1510 				AS_LOCK_EXIT(as);
1511 				as_rangeunlock(as);
1512 				mmapobj_unmap_exec(mrp, i, start_addr);
1513 				MOBJ_STAT_ADD(exec_addr_in_use);
1514 				return (EADDRINUSE);
1515 			}
1516 		}
1517 	}
1518 	as_rangeunlock(as);
1519 	return (0);
1520 }
1521 
1522 /*
1523  * Walk through the ELF program headers and extract all useful information
1524  * for PT_LOAD and PT_SUNWBSS segments into mrp.
1525  * Return 0 on success or error on failure.
1526  */
1527 static int
1528 process_phdr(Ehdr *ehdrp, caddr_t phdrbase, int nphdrs, mmapobj_result_t *mrp,
1529     vnode_t *vp, uint_t *num_mapped, size_t padding, cred_t *fcred)
1530 {
1531 	int i;
1532 	caddr_t start_addr = NULL;
1533 	caddr_t vaddr;
1534 	size_t len = 0;
1535 	size_t lib_len = 0;
1536 	int ret;
1537 	int prot;
1538 	struct lib_va *lvp = NULL;
1539 	vattr_t vattr;
1540 	struct as *as = curproc->p_as;
1541 	int error;
1542 	int loadable = 0;
1543 	int current = 0;
1544 	int use_lib_va = 1;
1545 	size_t align = 0;
1546 	size_t add_pad = 0;
1547 	int hdr_seen = 0;
1548 	ushort_t e_type = ehdrp->e_type;	/* same offset 32 and 64 bit */
1549 	uint_t p_type;
1550 	offset_t p_offset;
1551 	size_t p_memsz;
1552 	size_t p_filesz;
1553 	uint_t p_flags;
1554 	int hsize;
1555 	model_t model;
1556 	STRUCT_HANDLE(myphdr, mph);
1557 
1558 	model = get_udatamodel();
1559 	STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase);
1560 
1561 	/*
1562 	 * Need to make sure that hsize is aligned properly.
1563 	 * For 32bit processes, 4 byte alignment is required.
1564 	 * For 64bit processes, 8 byte alignment is required.
1565 	 * If the alignment isn't correct, we need to return failure
1566 	 * since it could cause an alignment error panic while walking
1567 	 * the phdr array.
1568 	 */
1569 	if (model == DATAMODEL_LP64) {
1570 		hsize = ehdrp->e_phentsize;
1571 		if (hsize & 7) {
1572 			MOBJ_STAT_ADD(phent_align64);
1573 			return (ENOTSUP);
1574 		}
1575 	} else {
1576 		ASSERT(model == DATAMODEL_ILP32);
1577 		hsize = ((Elf32_Ehdr *)ehdrp)->e_phentsize;
1578 		if (hsize & 3) {
1579 			MOBJ_STAT_ADD(phent_align32);
1580 			return (ENOTSUP);
1581 		}
1582 	}
1583 
1584 	if (padding != 0) {
1585 		use_lib_va = 0;
1586 	}
1587 	if (e_type == ET_DYN) {
1588 		vattr.va_mask = AT_FSID | AT_NODEID | AT_CTIME | AT_MTIME;
1589 		error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL);
1590 		if (error) {
1591 			return (error);
1592 		}
1593 		/* Check to see if we already have a description for this lib */
1594 		lvp = lib_va_find(&vattr);
1595 
1596 		if (lvp != NULL) {
1597 			MOBJ_STAT_ADD(lvp_found);
1598 			if (use_lib_va) {
1599 				start_addr = mmapobj_lookup_start_addr(lvp);
1600 				if (start_addr == NULL) {
1601 					lib_va_release(lvp);
1602 					return (ENOMEM);
1603 				}
1604 			}
1605 
1606 			/*
1607 			 * loadable may be zero if the original allocator
1608 			 * of lvp hasn't finished setting it up but the rest
1609 			 * of the fields will be accurate.
1610 			 */
1611 			loadable = lvp->lv_num_segs;
1612 			len = lvp->lv_len;
1613 			align = lvp->lv_align;
1614 		}
1615 	}
1616 
1617 	/*
1618 	 * Determine the span of all loadable segments and calculate the
1619 	 * number of loadable segments, the total len spanned by the mappings
1620 	 * and the max alignment, if we didn't get them above.
1621 	 */
1622 	if (loadable == 0) {
1623 		MOBJ_STAT_ADD(no_loadable_yet);
1624 		ret = calc_loadable(ehdrp, phdrbase, nphdrs, &len,
1625 		    &loadable, &align);
1626 		if (ret != 0) {
1627 			/*
1628 			 * Since it'd be an invalid file, we shouldn't have
1629 			 * cached it previously.
1630 			 */
1631 			ASSERT(lvp == NULL);
1632 			return (ret);
1633 		}
1634 #ifdef DEBUG
1635 		if (lvp) {
1636 			ASSERT(len == lvp->lv_len);
1637 			ASSERT(align == lvp->lv_align);
1638 		}
1639 #endif
1640 	}
1641 
1642 	/* Make sure there's something to map. */
1643 	if (len == 0 || loadable == 0) {
1644 		/*
1645 		 * Since it'd be an invalid file, we shouldn't have
1646 		 * cached it previously.
1647 		 */
1648 		ASSERT(lvp == NULL);
1649 		MOBJ_STAT_ADD(nothing_to_map);
1650 		return (ENOTSUP);
1651 	}
1652 
1653 	lib_len = len;
1654 	if (padding != 0) {
1655 		loadable += 2;
1656 	}
1657 	if (loadable > *num_mapped) {
1658 		*num_mapped = loadable;
1659 		/* cleanup previous reservation */
1660 		if (start_addr) {
1661 			(void) as_unmap(as, start_addr, lib_len);
1662 		}
1663 		MOBJ_STAT_ADD(e2big);
1664 		if (lvp) {
1665 			lib_va_release(lvp);
1666 		}
1667 		return (E2BIG);
1668 	}
1669 
1670 	/*
1671 	 * We now know the size of the object to map and now we need to
1672 	 * get the start address to map it at.  It's possible we already
1673 	 * have it if we found all the info we need in the lib_va cache.
1674 	 */
1675 	if (e_type == ET_DYN && start_addr == NULL) {
1676 		/*
1677 		 * Need to make sure padding does not throw off
1678 		 * required alignment.  We can only specify an
1679 		 * alignment for the starting address to be mapped,
1680 		 * so we round padding up to the alignment and map
1681 		 * from there and then throw out the extra later.
1682 		 */
1683 		if (padding != 0) {
1684 			if (align > 1) {
1685 				add_pad = P2ROUNDUP(padding, align);
1686 				len += add_pad;
1687 				MOBJ_STAT_ADD(dyn_pad_align);
1688 			} else {
1689 				MOBJ_STAT_ADD(dyn_pad_noalign);
1690 				len += padding;	/* at beginning */
1691 			}
1692 			len += padding;	/* at end of mapping */
1693 		}
1694 		/*
1695 		 * At this point, if lvp is non-NULL, then above we
1696 		 * already found it in the cache but did not get
1697 		 * the start address since we were not going to use lib_va.
1698 		 * Since we know that lib_va will not be used, it's safe
1699 		 * to call mmapobj_alloc_start_addr and know that lvp
1700 		 * will not be modified.
1701 		 */
1702 		ASSERT(lvp ? use_lib_va == 0 : 1);
1703 		start_addr = mmapobj_alloc_start_addr(&lvp, len,
1704 		    use_lib_va, align, &vattr);
1705 		if (start_addr == NULL) {
1706 			if (lvp) {
1707 				lib_va_release(lvp);
1708 			}
1709 			MOBJ_STAT_ADD(alloc_start_fail);
1710 			return (ENOMEM);
1711 		}
1712 		/*
1713 		 * If we can't cache it, no need to hang on to it.
1714 		 * Setting lv_num_segs to non-zero will make that
1715 		 * field active and since there are too many segments
1716 		 * to cache, all future users will not try to use lv_mps.
1717 		 */
1718 		if (lvp != NULL && loadable > LIBVA_CACHED_SEGS && use_lib_va) {
1719 			lvp->lv_num_segs = loadable;
1720 			lib_va_release(lvp);
1721 			lvp = NULL;
1722 			MOBJ_STAT_ADD(lvp_nocache);
1723 		}
1724 		/*
1725 		 * Free the beginning of the mapping if the padding
1726 		 * was not aligned correctly.
1727 		 */
1728 		if (padding != 0 && add_pad != padding) {
1729 			(void) as_unmap(as, start_addr,
1730 			    add_pad - padding);
1731 			start_addr += (add_pad - padding);
1732 			MOBJ_STAT_ADD(extra_padding);
1733 		}
1734 	}
1735 
1736 	/*
1737 	 * At this point, we have reserved the virtual address space
1738 	 * for our mappings.  Now we need to start filling out the mrp
1739 	 * array to describe all of the individual mappings we are going
1740 	 * to return.
1741 	 * For ET_EXEC there has been no memory reservation since we are
1742 	 * using fixed addresses.  While filling in the mrp array below,
1743 	 * we will have the first segment biased to start at addr 0
1744 	 * and the rest will be biased by this same amount.  Thus if there
1745 	 * is padding, the first padding will start at addr 0, and the next
1746 	 * segment will start at the value of padding.
1747 	 */
1748 
1749 	/* We'll fill out padding later, so start filling in mrp at index 1 */
1750 	if (padding != 0) {
1751 		current = 1;
1752 	}
1753 
1754 	/* If we have no more need for lvp let it go now */
1755 	if (lvp != NULL && use_lib_va == 0) {
1756 		lib_va_release(lvp);
1757 		MOBJ_STAT_ADD(lvp_not_needed);
1758 		lvp = NULL;
1759 	}
1760 
1761 	/* Now fill out the mrp structs from the program headers */
1762 	STRUCT_SET_HANDLE(mph, model, (struct myphdr *)phdrbase);
1763 	for (i = 0; i < nphdrs; i++) {
1764 		p_type = STRUCT_FGET(mph, x.p_type);
1765 		if (p_type == PT_LOAD || p_type == PT_SUNWBSS) {
1766 			vaddr = (caddr_t)(uintptr_t)STRUCT_FGET(mph, x.p_vaddr);
1767 			p_memsz = STRUCT_FGET(mph, x.p_memsz);
1768 			p_filesz = STRUCT_FGET(mph, x.p_filesz);
1769 			p_offset = STRUCT_FGET(mph, x.p_offset);
1770 			p_flags = STRUCT_FGET(mph, x.p_flags);
1771 
1772 			/*
1773 			 * Skip this header if it requests no memory to be
1774 			 * mapped.
1775 			 */
1776 			if (p_memsz == 0) {
1777 				STRUCT_SET_HANDLE(mph, model,
1778 				    (struct myphdr *)((size_t)STRUCT_BUF(mph) +
1779 				    hsize));
1780 				MOBJ_STAT_ADD(no_mem_map_sz);
1781 				continue;
1782 			}
1783 
1784 			prot = 0;
1785 			if (p_flags & PF_R)
1786 				prot |= PROT_READ;
1787 			if (p_flags & PF_W)
1788 				prot |= PROT_WRITE;
1789 			if (p_flags & PF_X)
1790 				prot |= PROT_EXEC;
1791 
1792 			ASSERT(current < loadable);
1793 			mrp[current].mr_msize = p_memsz;
1794 			mrp[current].mr_fsize = p_filesz;
1795 			mrp[current].mr_offset = p_offset;
1796 			mrp[current].mr_prot = prot;
1797 
1798 			if (hdr_seen == 0 && p_filesz != 0) {
1799 				mrp[current].mr_flags = MR_HDR_ELF;
1800 				/*
1801 				 * We modify mr_offset because we
1802 				 * need to map the ELF header as well, and if
1803 				 * we didn't then the header could be left out
1804 				 * of the mapping that we will create later.
1805 				 * Since we're removing the offset, we need to
1806 				 * account for that in the other fields as well
1807 				 * since we will be mapping the memory from 0
1808 				 * to p_offset.
1809 				 */
1810 				if (e_type == ET_DYN) {
1811 					mrp[current].mr_offset = 0;
1812 					mrp[current].mr_msize += p_offset;
1813 					mrp[current].mr_fsize += p_offset;
1814 				} else {
1815 					ASSERT(e_type == ET_EXEC);
1816 					/*
1817 					 * Save off the start addr which will be
1818 					 * our bias for the rest of the
1819 					 * ET_EXEC mappings.
1820 					 */
1821 					start_addr = vaddr - padding;
1822 				}
1823 				mrp[current].mr_addr = (caddr_t)padding;
1824 				hdr_seen = 1;
1825 			} else {
1826 				if (e_type == ET_EXEC) {
1827 					/* bias mr_addr */
1828 					mrp[current].mr_addr =
1829 					    vaddr - (size_t)start_addr;
1830 				} else {
1831 					mrp[current].mr_addr = vaddr + padding;
1832 				}
1833 				mrp[current].mr_flags = 0;
1834 			}
1835 			current++;
1836 		}
1837 
1838 		/* Move to next phdr */
1839 		STRUCT_SET_HANDLE(mph, model,
1840 		    (struct myphdr *)((size_t)STRUCT_BUF(mph) +
1841 		    hsize));
1842 	}
1843 
1844 	/* Now fill out the padding segments */
1845 	if (padding != 0) {
1846 		mrp[0].mr_addr = NULL;
1847 		mrp[0].mr_msize = padding;
1848 		mrp[0].mr_fsize = 0;
1849 		mrp[0].mr_offset = 0;
1850 		mrp[0].mr_prot = 0;
1851 		mrp[0].mr_flags = MR_PADDING;
1852 
1853 		/* Setup padding for the last segment */
1854 		ASSERT(current == loadable - 1);
1855 		mrp[current].mr_addr = (caddr_t)lib_len + padding;
1856 		mrp[current].mr_msize = padding;
1857 		mrp[current].mr_fsize = 0;
1858 		mrp[current].mr_offset = 0;
1859 		mrp[current].mr_prot = 0;
1860 		mrp[current].mr_flags = MR_PADDING;
1861 	}
1862 
1863 	/*
1864 	 * Need to make sure address ranges desired are not in use or
1865 	 * are previously allocated reservations from /dev/null.  For
1866 	 * ET_DYN, we already made sure our address range was free.
1867 	 */
1868 	if (e_type == ET_EXEC) {
1869 		ret = check_exec_addrs(loadable, mrp, start_addr);
1870 		if (ret != 0) {
1871 			ASSERT(lvp == NULL);
1872 			MOBJ_STAT_ADD(check_exec_failed);
1873 			return (ret);
1874 		}
1875 	}
1876 
1877 	/* Finish up our business with lvp. */
1878 	if (lvp) {
1879 		ASSERT(e_type == ET_DYN);
1880 		if (lvp->lv_num_segs == 0 && loadable <= LIBVA_CACHED_SEGS) {
1881 			bcopy(mrp, lvp->lv_mps,
1882 			    loadable * sizeof (mmapobj_result_t));
1883 			membar_producer();
1884 		}
1885 		/*
1886 		 * Setting lv_num_segs to a non-zero value indicates that
1887 		 * lv_mps is now valid and can be used by other threads.
1888 		 * So, the above stores need to finish before lv_num_segs
1889 		 * is updated. lv_mps is only valid if lv_num_segs is
1890 		 * greater than LIBVA_CACHED_SEGS.
1891 		 */
1892 		lvp->lv_num_segs = loadable;
1893 		lib_va_release(lvp);
1894 		MOBJ_STAT_ADD(lvp_used);
1895 	}
1896 
1897 	/* Now that we have mrp completely filled out go map it */
1898 	ret = mmapobj_map_elf(vp, start_addr, mrp, loadable, fcred, e_type);
1899 	if (ret == 0) {
1900 		*num_mapped = loadable;
1901 	}
1902 
1903 	return (ret);
1904 }
1905 
1906 /*
1907  * Take the ELF file passed in, and do the work of mapping it.
1908  * num_mapped in - # elements in user buffer
1909  * num_mapped out - # sections mapped and length of mrp array if
1910  *			no errors.
1911  */
1912 static int
1913 doelfwork(Ehdr *ehdrp, vnode_t *vp, mmapobj_result_t *mrp,
1914     uint_t *num_mapped, size_t padding, cred_t *fcred)
1915 {
1916 	int error;
1917 	offset_t phoff;
1918 	int nphdrs;
1919 	unsigned char ei_class;
1920 	unsigned short phentsize;
1921 	ssize_t phsizep;
1922 	caddr_t phbasep;
1923 	int to_map;
1924 	model_t model;
1925 
1926 	ei_class = ehdrp->e_ident[EI_CLASS];
1927 	model = get_udatamodel();
1928 	if ((model == DATAMODEL_ILP32 && ei_class == ELFCLASS64) ||
1929 	    (model == DATAMODEL_LP64 && ei_class == ELFCLASS32)) {
1930 		MOBJ_STAT_ADD(wrong_model);
1931 		return (ENOTSUP);
1932 	}
1933 
1934 	/* Can't execute code from "noexec" mounted filesystem. */
1935 	if (ehdrp->e_type == ET_EXEC &&
1936 	    (vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0) {
1937 		MOBJ_STAT_ADD(noexec_fs);
1938 		return (EACCES);
1939 	}
1940 
1941 	/*
1942 	 * Relocatable and core files are mapped as a single flat file
1943 	 * since no interpretation is done on them by mmapobj.
1944 	 */
1945 	if (ehdrp->e_type == ET_REL || ehdrp->e_type == ET_CORE) {
1946 		to_map = padding ? 3 : 1;
1947 		if (*num_mapped < to_map) {
1948 			*num_mapped = to_map;
1949 			MOBJ_STAT_ADD(e2big_et_rel);
1950 			return (E2BIG);
1951 		}
1952 		error = mmapobj_map_flat(vp, mrp, padding, fcred);
1953 		if (error == 0) {
1954 			*num_mapped = to_map;
1955 			mrp[padding ? 1 : 0].mr_flags = MR_HDR_ELF;
1956 			MOBJ_STAT_ADD(et_rel_mapped);
1957 		}
1958 		return (error);
1959 	}
1960 
1961 	/* Check for an unknown ELF type */
1962 	if (ehdrp->e_type != ET_EXEC && ehdrp->e_type != ET_DYN) {
1963 		MOBJ_STAT_ADD(unknown_elf_type);
1964 		return (ENOTSUP);
1965 	}
1966 
1967 	if (ei_class == ELFCLASS32) {
1968 		Elf32_Ehdr *e32hdr = (Elf32_Ehdr *)ehdrp;
1969 		ASSERT(model == DATAMODEL_ILP32);
1970 		nphdrs = e32hdr->e_phnum;
1971 		phentsize = e32hdr->e_phentsize;
1972 		if (phentsize < sizeof (Elf32_Phdr)) {
1973 			MOBJ_STAT_ADD(phent32_too_small);
1974 			return (ENOTSUP);
1975 		}
1976 		phoff = e32hdr->e_phoff;
1977 	} else if (ei_class == ELFCLASS64) {
1978 		Elf64_Ehdr *e64hdr = (Elf64_Ehdr *)ehdrp;
1979 		ASSERT(model == DATAMODEL_LP64);
1980 		nphdrs = e64hdr->e_phnum;
1981 		phentsize = e64hdr->e_phentsize;
1982 		if (phentsize < sizeof (Elf64_Phdr)) {
1983 			MOBJ_STAT_ADD(phent64_too_small);
1984 			return (ENOTSUP);
1985 		}
1986 		phoff = e64hdr->e_phoff;
1987 	} else {
1988 		/* fallthrough case for an invalid ELF class */
1989 		MOBJ_STAT_ADD(inval_elf_class);
1990 		return (ENOTSUP);
1991 	}
1992 
1993 	/*
1994 	 * nphdrs should only have this value for core files which are handled
1995 	 * above as a single mapping.  If other file types ever use this
1996 	 * sentinel, then we'll add the support needed to handle this here.
1997 	 */
1998 	if (nphdrs == PN_XNUM) {
1999 		MOBJ_STAT_ADD(too_many_phdrs);
2000 		return (ENOTSUP);
2001 	}
2002 
2003 	phsizep = nphdrs * phentsize;
2004 
2005 	if (phsizep == 0) {
2006 		MOBJ_STAT_ADD(no_phsize);
2007 		return (ENOTSUP);
2008 	}
2009 
2010 	/* Make sure we only wait for memory if it's a reasonable request */
2011 	if (phsizep > mmapobj_alloc_threshold) {
2012 		MOBJ_STAT_ADD(phsize_large);
2013 		if ((phbasep = kmem_alloc(phsizep, KM_NOSLEEP)) == NULL) {
2014 			MOBJ_STAT_ADD(phsize_xtralarge);
2015 			return (ENOMEM);
2016 		}
2017 	} else {
2018 		phbasep = kmem_alloc(phsizep, KM_SLEEP);
2019 	}
2020 
2021 	if ((error = vn_rdwr(UIO_READ, vp, phbasep, phsizep,
2022 	    (offset_t)phoff, UIO_SYSSPACE, 0, (rlim64_t)0,
2023 	    fcred, NULL)) != 0) {
2024 		kmem_free(phbasep, phsizep);
2025 		return (error);
2026 	}
2027 
2028 	/* Now process the phdr's */
2029 	error = process_phdr(ehdrp, phbasep, nphdrs, mrp, vp, num_mapped,
2030 	    padding, fcred);
2031 	kmem_free(phbasep, phsizep);
2032 	return (error);
2033 }
2034 
2035 #if defined(__sparc)
2036 /*
2037  * Hack to support 64 bit kernels running AOUT 4.x programs.
2038  * This is the sizeof (struct nlist) for a 32 bit kernel.
2039  * Since AOUT programs are 32 bit only, they will never use the 64 bit
2040  * sizeof (struct nlist) and thus creating a #define is the simplest
2041  * way around this since this is a format which is not being updated.
2042  * This will be used in the place of sizeof (struct nlist) below.
2043  */
2044 #define	NLIST_SIZE	(0xC)
2045 
2046 static int
2047 doaoutwork(vnode_t *vp, mmapobj_result_t *mrp,
2048     uint_t *num_mapped, struct exec *hdr, cred_t *fcred)
2049 {
2050 	int error;
2051 	size_t size;
2052 	size_t osize;
2053 	size_t nsize;	/* nlist size */
2054 	size_t msize;
2055 	size_t zfoddiff;
2056 	caddr_t addr;
2057 	caddr_t start_addr;
2058 	struct as *as = curproc->p_as;
2059 	int prot = PROT_USER | PROT_READ | PROT_EXEC;
2060 	uint_t mflag = MAP_PRIVATE | _MAP_LOW32;
2061 	offset_t off = 0;
2062 	int segnum = 0;
2063 	uint_t to_map;
2064 	int is_library = 0;
2065 	struct segvn_crargs crargs = SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
2066 
2067 	/* Only 32bit apps supported by this file format */
2068 	if (get_udatamodel() != DATAMODEL_ILP32) {
2069 		MOBJ_STAT_ADD(aout_64bit_try);
2070 		return (ENOTSUP);
2071 	}
2072 
2073 	/* Check to see if this is a library */
2074 	if (hdr->a_magic == ZMAGIC && hdr->a_entry < PAGESIZE) {
2075 		is_library = 1;
2076 	}
2077 
2078 	/* Can't execute code from "noexec" mounted filesystem. */
2079 	if (((vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0) && (is_library == 0)) {
2080 		MOBJ_STAT_ADD(aout_noexec);
2081 		return (EACCES);
2082 	}
2083 
2084 	/*
2085 	 * There are 2 ways to calculate the mapped size of executable:
2086 	 * 1) rounded text size + data size + bss size.
2087 	 * 2) starting offset for text + text size + data size + text relocation
2088 	 *    size + data relocation size + room for nlist data structure.
2089 	 *
2090 	 * The larger of the two sizes will be used to map this binary.
2091 	 */
2092 	osize = P2ROUNDUP(hdr->a_text, PAGESIZE) + hdr->a_data + hdr->a_bss;
2093 
2094 	off = hdr->a_magic == ZMAGIC ? 0 : sizeof (struct exec);
2095 
2096 	nsize = off + hdr->a_text + hdr->a_data + hdr->a_trsize +
2097 	    hdr->a_drsize + NLIST_SIZE;
2098 
2099 	size = MAX(osize, nsize);
2100 	if (size != nsize) {
2101 		nsize = 0;
2102 	}
2103 
2104 	/*
2105 	 * 1 seg for text and 1 seg for initialized data.
2106 	 * 1 seg for bss (if can't fit in leftover space of init data)
2107 	 * 1 seg for nlist if needed.
2108 	 */
2109 	to_map = 2 + (nsize ? 1 : 0) +
2110 	    (hdr->a_bss > PAGESIZE - P2PHASE(hdr->a_data, PAGESIZE) ? 1 : 0);
2111 	if (*num_mapped < to_map) {
2112 		*num_mapped = to_map;
2113 		MOBJ_STAT_ADD(aout_e2big);
2114 		return (E2BIG);
2115 	}
2116 
2117 	/* Reserve address space for the whole mapping */
2118 	if (is_library) {
2119 		/* We'll let VOP_MAP below pick our address for us */
2120 		addr = NULL;
2121 		MOBJ_STAT_ADD(aout_lib);
2122 	} else {
2123 		/*
2124 		 * default start address for fixed binaries from AOUT 4.x
2125 		 * standard.
2126 		 */
2127 		MOBJ_STAT_ADD(aout_fixed);
2128 		mflag |= MAP_FIXED;
2129 		addr = (caddr_t)0x2000;
2130 		as_rangelock(as);
2131 		if (as_gap(as, size, &addr, &size, 0, NULL) != 0) {
2132 			as_rangeunlock(as);
2133 			MOBJ_STAT_ADD(aout_addr_in_use);
2134 			return (EADDRINUSE);
2135 		}
2136 		crargs.flags |= MAP_NORESERVE;
2137 		error = as_map(as, addr, size, segvn_create, &crargs);
2138 		ASSERT(addr == (caddr_t)0x2000);
2139 		as_rangeunlock(as);
2140 	}
2141 
2142 	start_addr = addr;
2143 	osize = size;
2144 
2145 	/*
2146 	 * Map as large as we need, backed by file, this will be text, and
2147 	 * possibly the nlist segment.  We map over this mapping for bss and
2148 	 * initialized data segments.
2149 	 */
2150 	error = VOP_MAP(vp, off, as, &addr, size, prot, PROT_ALL,
2151 	    mflag, fcred, NULL);
2152 	if (error) {
2153 		if (!is_library) {
2154 			(void) as_unmap(as, start_addr, osize);
2155 		}
2156 		return (error);
2157 	}
2158 
2159 	/* pickup the value of start_addr and osize for libraries */
2160 	start_addr = addr;
2161 	osize = size;
2162 
2163 	/*
2164 	 * We have our initial reservation/allocation so we need to use fixed
2165 	 * addresses from now on.
2166 	 */
2167 	mflag |= MAP_FIXED;
2168 
2169 	mrp[0].mr_addr = addr;
2170 	mrp[0].mr_msize = hdr->a_text;
2171 	mrp[0].mr_fsize = hdr->a_text;
2172 	mrp[0].mr_offset = 0;
2173 	mrp[0].mr_prot = PROT_READ | PROT_EXEC;
2174 	mrp[0].mr_flags = MR_HDR_AOUT;
2175 
2176 
2177 	/*
2178 	 * Map initialized data. We are mapping over a portion of the
2179 	 * previous mapping which will be unmapped in VOP_MAP below.
2180 	 */
2181 	off = P2ROUNDUP((offset_t)(hdr->a_text), PAGESIZE);
2182 	msize = off;
2183 	addr += off;
2184 	size = hdr->a_data;
2185 	error = VOP_MAP(vp, off, as, &addr, size, PROT_ALL, PROT_ALL,
2186 	    mflag, fcred, NULL);
2187 	if (error) {
2188 		(void) as_unmap(as, start_addr, osize);
2189 		return (error);
2190 	}
2191 	msize += size;
2192 	mrp[1].mr_addr = addr;
2193 	mrp[1].mr_msize = size;
2194 	mrp[1].mr_fsize = size;
2195 	mrp[1].mr_offset = 0;
2196 	mrp[1].mr_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
2197 	mrp[1].mr_flags = 0;
2198 
2199 	/* Need to zero out remainder of page */
2200 	addr += hdr->a_data;
2201 	zfoddiff = P2PHASE((size_t)addr, PAGESIZE);
2202 	if (zfoddiff) {
2203 		label_t ljb;
2204 
2205 		MOBJ_STAT_ADD(aout_zfoddiff);
2206 		zfoddiff = PAGESIZE - zfoddiff;
2207 		if (on_fault(&ljb)) {
2208 			no_fault();
2209 			MOBJ_STAT_ADD(aout_uzero_fault);
2210 			(void) as_unmap(as, start_addr, osize);
2211 			return (EFAULT);
2212 		}
2213 		uzero(addr, zfoddiff);
2214 		no_fault();
2215 	}
2216 	msize += zfoddiff;
2217 	segnum = 2;
2218 
2219 	/* Map bss */
2220 	if (hdr->a_bss > zfoddiff) {
2221 		struct segvn_crargs crargs =
2222 		    SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
2223 		MOBJ_STAT_ADD(aout_map_bss);
2224 		addr += zfoddiff;
2225 		size = hdr->a_bss - zfoddiff;
2226 		as_rangelock(as);
2227 		(void) as_unmap(as, addr, size);
2228 		error = as_map(as, addr, size, segvn_create, &crargs);
2229 		as_rangeunlock(as);
2230 		msize += size;
2231 
2232 		if (error) {
2233 			MOBJ_STAT_ADD(aout_bss_fail);
2234 			(void) as_unmap(as, start_addr, osize);
2235 			return (error);
2236 		}
2237 		mrp[2].mr_addr = addr;
2238 		mrp[2].mr_msize = size;
2239 		mrp[2].mr_fsize = 0;
2240 		mrp[2].mr_offset = 0;
2241 		mrp[2].mr_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
2242 		mrp[2].mr_flags = 0;
2243 
2244 		addr += size;
2245 		segnum = 3;
2246 	}
2247 
2248 	/*
2249 	 * If we have extra bits left over, we need to include that in how
2250 	 * much we mapped to make sure the nlist logic is correct
2251 	 */
2252 	msize = P2ROUNDUP(msize, PAGESIZE);
2253 
2254 	if (nsize && msize < nsize) {
2255 		MOBJ_STAT_ADD(aout_nlist);
2256 		mrp[segnum].mr_addr = addr;
2257 		mrp[segnum].mr_msize = nsize - msize;
2258 		mrp[segnum].mr_fsize = 0;
2259 		mrp[segnum].mr_offset = 0;
2260 		mrp[segnum].mr_prot = PROT_READ | PROT_EXEC;
2261 		mrp[segnum].mr_flags = 0;
2262 	}
2263 
2264 	*num_mapped = to_map;
2265 	return (0);
2266 }
2267 #endif
2268 
2269 /*
2270  * These are the two types of files that we can interpret and we want to read
2271  * in enough info to cover both types when looking at the initial header.
2272  */
2273 #define	MAX_HEADER_SIZE	(MAX(sizeof (Ehdr), sizeof (struct exec)))
2274 
2275 /*
2276  * Map vp passed in in an interpreted manner.  ELF and AOUT files will be
2277  * interpreted and mapped appropriately for execution.
2278  * num_mapped in - # elements in mrp
2279  * num_mapped out - # sections mapped and length of mrp array if
2280  *		    no errors or E2BIG returned.
2281  *
2282  * Returns 0 on success, errno value on failure.
2283  */
2284 static int
2285 mmapobj_map_interpret(vnode_t *vp, mmapobj_result_t *mrp,
2286     uint_t *num_mapped, size_t padding, cred_t *fcred)
2287 {
2288 	int error = 0;
2289 	vattr_t vattr;
2290 	struct lib_va *lvp;
2291 	caddr_t start_addr;
2292 	model_t model;
2293 
2294 	/*
2295 	 * header has to be aligned to the native size of ulong_t in order
2296 	 * to avoid an unaligned access when dereferencing the header as
2297 	 * a ulong_t.  Thus we allocate our array on the stack of type
2298 	 * ulong_t and then have header, which we dereference later as a char
2299 	 * array point at lheader.
2300 	 */
2301 	ulong_t lheader[(MAX_HEADER_SIZE / (sizeof (ulong_t))) + 1];
2302 	caddr_t header = (caddr_t)&lheader;
2303 
2304 	vattr.va_mask = AT_FSID | AT_NODEID | AT_CTIME | AT_MTIME | AT_SIZE;
2305 	error = VOP_GETATTR(vp, &vattr, 0, fcred, NULL);
2306 	if (error) {
2307 		return (error);
2308 	}
2309 
2310 	/*
2311 	 * Check lib_va to see if we already have a full description
2312 	 * for this library.  This is the fast path and only used for
2313 	 * ET_DYN ELF files (dynamic libraries).
2314 	 */
2315 	if (padding == 0 && (lvp = lib_va_find(&vattr)) != NULL) {
2316 		int num_segs;
2317 
2318 		model = get_udatamodel();
2319 		if ((model == DATAMODEL_ILP32 &&
2320 		    lvp->lv_flags & LV_ELF64) ||
2321 		    (model == DATAMODEL_LP64 &&
2322 		    lvp->lv_flags & LV_ELF32)) {
2323 			lib_va_release(lvp);
2324 			MOBJ_STAT_ADD(fast_wrong_model);
2325 			return (ENOTSUP);
2326 		}
2327 		num_segs = lvp->lv_num_segs;
2328 		if (*num_mapped < num_segs) {
2329 			*num_mapped = num_segs;
2330 			lib_va_release(lvp);
2331 			MOBJ_STAT_ADD(fast_e2big);
2332 			return (E2BIG);
2333 		}
2334 
2335 		/*
2336 		 * Check to see if we have all the mappable program headers
2337 		 * cached.
2338 		 */
2339 		if (num_segs <= LIBVA_CACHED_SEGS && num_segs != 0) {
2340 			MOBJ_STAT_ADD(fast);
2341 			start_addr = mmapobj_lookup_start_addr(lvp);
2342 			if (start_addr == NULL) {
2343 				lib_va_release(lvp);
2344 				return (ENOMEM);
2345 			}
2346 
2347 			bcopy(lvp->lv_mps, mrp,
2348 			    num_segs * sizeof (mmapobj_result_t));
2349 
2350 			error = mmapobj_map_elf(vp, start_addr, mrp,
2351 			    num_segs, fcred, ET_DYN);
2352 
2353 			lib_va_release(lvp);
2354 			if (error == 0) {
2355 				*num_mapped = num_segs;
2356 				MOBJ_STAT_ADD(fast_success);
2357 			}
2358 			return (error);
2359 		}
2360 		MOBJ_STAT_ADD(fast_not_now);
2361 
2362 		/* Release it for now since we'll look it up below */
2363 		lib_va_release(lvp);
2364 	}
2365 
2366 	/*
2367 	 * Time to see if this is a file we can interpret.  If it's smaller
2368 	 * than this, then we can't interpret it.
2369 	 */
2370 	if (vattr.va_size < MAX_HEADER_SIZE) {
2371 		MOBJ_STAT_ADD(small_file);
2372 		return (ENOTSUP);
2373 	}
2374 
2375 	if ((error = vn_rdwr(UIO_READ, vp, header, MAX_HEADER_SIZE, 0,
2376 	    UIO_SYSSPACE, 0, (rlim64_t)0, fcred, NULL)) != 0) {
2377 		MOBJ_STAT_ADD(read_error);
2378 		return (error);
2379 	}
2380 
2381 	/* Verify file type */
2382 	if (header[EI_MAG0] == ELFMAG0 && header[EI_MAG1] == ELFMAG1 &&
2383 	    header[EI_MAG2] == ELFMAG2 && header[EI_MAG3] == ELFMAG3) {
2384 		return (doelfwork((Ehdr *)lheader, vp, mrp, num_mapped,
2385 		    padding, fcred));
2386 	}
2387 
2388 #if defined(__sparc)
2389 	/* On sparc, check for 4.X AOUT format */
2390 	switch (((struct exec *)header)->a_magic) {
2391 	case OMAGIC:
2392 	case ZMAGIC:
2393 	case NMAGIC:
2394 		return (doaoutwork(vp, mrp, num_mapped,
2395 		    (struct exec *)lheader, fcred));
2396 	}
2397 #endif
2398 
2399 	/* Unsupported type */
2400 	MOBJ_STAT_ADD(unsupported);
2401 	return (ENOTSUP);
2402 }
2403 
2404 /*
2405  * Given a vnode, map it as either a flat file or interpret it and map
2406  * it according to the rules of the file type.
2407  * *num_mapped will contain the size of the mmapobj_result_t array passed in.
2408  * If padding is non-zero, the mappings will be padded by that amount
2409  * rounded up to the nearest pagesize.
2410  * If the mapping is successful, *num_mapped will contain the number of
2411  * distinct mappings created, and mrp will point to the array of
2412  * mmapobj_result_t's which describe these mappings.
2413  *
2414  * On error, -1 is returned and errno is set appropriately.
2415  * A special error case will set errno to E2BIG when there are more than
2416  * *num_mapped mappings to be created and *num_mapped will be set to the
2417  * number of mappings needed.
2418  */
2419 int
2420 mmapobj(vnode_t *vp, uint_t flags, mmapobj_result_t *mrp,
2421     uint_t *num_mapped, size_t padding, cred_t *fcred)
2422 {
2423 	int to_map;
2424 	int error = 0;
2425 
2426 	ASSERT((padding & PAGEOFFSET) == 0);
2427 	ASSERT((flags & ~MMOBJ_ALL_FLAGS) == 0);
2428 	ASSERT(num_mapped != NULL);
2429 	ASSERT((flags & MMOBJ_PADDING) ? padding != 0 : padding == 0);
2430 
2431 	if ((flags & MMOBJ_INTERPRET) == 0) {
2432 		to_map = padding ? 3 : 1;
2433 		if (*num_mapped < to_map) {
2434 			*num_mapped = to_map;
2435 			MOBJ_STAT_ADD(flat_e2big);
2436 			return (E2BIG);
2437 		}
2438 		error = mmapobj_map_flat(vp, mrp, padding, fcred);
2439 
2440 		if (error) {
2441 			return (error);
2442 		}
2443 		*num_mapped = to_map;
2444 		return (0);
2445 	}
2446 
2447 	error = mmapobj_map_interpret(vp, mrp, num_mapped, padding, fcred);
2448 	return (error);
2449 }
2450