xref: /titanic_52/usr/src/uts/common/os/kmem.c (revision d8f51c152cc99fd56fa20b11acebc5921f85970b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  */
26 
27 /*
28  * Kernel memory allocator, as described in the following two papers and a
29  * statement about the consolidator:
30  *
31  * Jeff Bonwick,
32  * The Slab Allocator: An Object-Caching Kernel Memory Allocator.
33  * Proceedings of the Summer 1994 Usenix Conference.
34  * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
35  *
36  * Jeff Bonwick and Jonathan Adams,
37  * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
38  * Arbitrary Resources.
39  * Proceedings of the 2001 Usenix Conference.
40  * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
41  *
42  * kmem Slab Consolidator Big Theory Statement:
43  *
44  * 1. Motivation
45  *
46  * As stated in Bonwick94, slabs provide the following advantages over other
47  * allocation structures in terms of memory fragmentation:
48  *
49  *  - Internal fragmentation (per-buffer wasted space) is minimal.
50  *  - Severe external fragmentation (unused buffers on the free list) is
51  *    unlikely.
52  *
53  * Segregating objects by size eliminates one source of external fragmentation,
54  * and according to Bonwick:
55  *
56  *   The other reason that slabs reduce external fragmentation is that all
57  *   objects in a slab are of the same type, so they have the same lifetime
58  *   distribution. The resulting segregation of short-lived and long-lived
59  *   objects at slab granularity reduces the likelihood of an entire page being
60  *   held hostage due to a single long-lived allocation [Barrett93, Hanson90].
61  *
62  * While unlikely, severe external fragmentation remains possible. Clients that
63  * allocate both short- and long-lived objects from the same cache cannot
64  * anticipate the distribution of long-lived objects within the allocator's slab
65  * implementation. Even a small percentage of long-lived objects distributed
66  * randomly across many slabs can lead to a worst case scenario where the client
67  * frees the majority of its objects and the system gets back almost none of the
68  * slabs. Despite the client doing what it reasonably can to help the system
69  * reclaim memory, the allocator cannot shake free enough slabs because of
70  * lonely allocations stubbornly hanging on. Although the allocator is in a
71  * position to diagnose the fragmentation, there is nothing that the allocator
72  * by itself can do about it. It only takes a single allocated object to prevent
73  * an entire slab from being reclaimed, and any object handed out by
74  * kmem_cache_alloc() is by definition in the client's control. Conversely,
75  * although the client is in a position to move a long-lived object, it has no
76  * way of knowing if the object is causing fragmentation, and if so, where to
77  * move it. A solution necessarily requires further cooperation between the
78  * allocator and the client.
79  *
80  * 2. Move Callback
81  *
82  * The kmem slab consolidator therefore adds a move callback to the
83  * allocator/client interface, improving worst-case external fragmentation in
84  * kmem caches that supply a function to move objects from one memory location
85  * to another. In a situation of low memory kmem attempts to consolidate all of
86  * a cache's slabs at once; otherwise it works slowly to bring external
87  * fragmentation within the 1/8 limit guaranteed for internal fragmentation,
88  * thereby helping to avoid a low memory situation in the future.
89  *
90  * The callback has the following signature:
91  *
92  *   kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg)
93  *
94  * It supplies the kmem client with two addresses: the allocated object that
95  * kmem wants to move and a buffer selected by kmem for the client to use as the
96  * copy destination. The callback is kmem's way of saying "Please get off of
97  * this buffer and use this one instead." kmem knows where it wants to move the
98  * object in order to best reduce fragmentation. All the client needs to know
99  * about the second argument (void *new) is that it is an allocated, constructed
100  * object ready to take the contents of the old object. When the move function
101  * is called, the system is likely to be low on memory, and the new object
102  * spares the client from having to worry about allocating memory for the
103  * requested move. The third argument supplies the size of the object, in case a
104  * single move function handles multiple caches whose objects differ only in
105  * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional
106  * user argument passed to the constructor, destructor, and reclaim functions is
107  * also passed to the move callback.
108  *
109  * 2.1 Setting the Move Callback
110  *
111  * The client sets the move callback after creating the cache and before
112  * allocating from it:
113  *
114  *	object_cache = kmem_cache_create(...);
115  *      kmem_cache_set_move(object_cache, object_move);
116  *
117  * 2.2 Move Callback Return Values
118  *
119  * Only the client knows about its own data and when is a good time to move it.
120  * The client is cooperating with kmem to return unused memory to the system,
121  * and kmem respectfully accepts this help at the client's convenience. When
122  * asked to move an object, the client can respond with any of the following:
123  *
124  *   typedef enum kmem_cbrc {
125  *           KMEM_CBRC_YES,
126  *           KMEM_CBRC_NO,
127  *           KMEM_CBRC_LATER,
128  *           KMEM_CBRC_DONT_NEED,
129  *           KMEM_CBRC_DONT_KNOW
130  *   } kmem_cbrc_t;
131  *
132  * The client must not explicitly kmem_cache_free() either of the objects passed
133  * to the callback, since kmem wants to free them directly to the slab layer
134  * (bypassing the per-CPU magazine layer). The response tells kmem which of the
135  * objects to free:
136  *
137  *       YES: (Did it) The client moved the object, so kmem frees the old one.
138  *        NO: (Never) The client refused, so kmem frees the new object (the
139  *            unused copy destination). kmem also marks the slab of the old
140  *            object so as not to bother the client with further callbacks for
141  *            that object as long as the slab remains on the partial slab list.
142  *            (The system won't be getting the slab back as long as the
143  *            immovable object holds it hostage, so there's no point in moving
144  *            any of its objects.)
145  *     LATER: The client is using the object and cannot move it now, so kmem
146  *            frees the new object (the unused copy destination). kmem still
147  *            attempts to move other objects off the slab, since it expects to
148  *            succeed in clearing the slab in a later callback. The client
149  *            should use LATER instead of NO if the object is likely to become
150  *            movable very soon.
151  * DONT_NEED: The client no longer needs the object, so kmem frees the old along
152  *            with the new object (the unused copy destination). This response
153  *            is the client's opportunity to be a model citizen and give back as
154  *            much as it can.
155  * DONT_KNOW: The client does not know about the object because
156  *            a) the client has just allocated the object and not yet put it
157  *               wherever it expects to find known objects
158  *            b) the client has removed the object from wherever it expects to
159  *               find known objects and is about to free it, or
160  *            c) the client has freed the object.
161  *            In all these cases (a, b, and c) kmem frees the new object (the
162  *            unused copy destination).  In the first case, the object is in
163  *            use and the correct action is that for LATER; in the latter two
164  *            cases, we know that the object is either freed or about to be
165  *            freed, in which case it is either already in a magazine or about
166  *            to be in one.  In these cases, we know that the object will either
167  *            be reallocated and reused, or it will end up in a full magazine
168  *            that will be reaped (thereby liberating the slab).  Because it
169  *            is prohibitively expensive to differentiate these cases, and
170  *            because the defrag code is executed when we're low on memory
171  *            (thereby biasing the system to reclaim full magazines) we treat
172  *            all DONT_KNOW cases as LATER and rely on cache reaping to
173  *            generally clean up full magazines.  While we take the same action
174  *            for these cases, we maintain their semantic distinction:  if
175  *            defragmentation is not occurring, it is useful to know if this
176  *            is due to objects in use (LATER) or objects in an unknown state
177  *            of transition (DONT_KNOW).
178  *
179  * 2.3 Object States
180  *
181  * Neither kmem nor the client can be assumed to know the object's whereabouts
182  * at the time of the callback. An object belonging to a kmem cache may be in
183  * any of the following states:
184  *
185  * 1. Uninitialized on the slab
186  * 2. Allocated from the slab but not constructed (still uninitialized)
187  * 3. Allocated from the slab, constructed, but not yet ready for business
188  *    (not in a valid state for the move callback)
189  * 4. In use (valid and known to the client)
190  * 5. About to be freed (no longer in a valid state for the move callback)
191  * 6. Freed to a magazine (still constructed)
192  * 7. Allocated from a magazine, not yet ready for business (not in a valid
193  *    state for the move callback), and about to return to state #4
194  * 8. Deconstructed on a magazine that is about to be freed
195  * 9. Freed to the slab
196  *
197  * Since the move callback may be called at any time while the object is in any
198  * of the above states (except state #1), the client needs a safe way to
199  * determine whether or not it knows about the object. Specifically, the client
200  * needs to know whether or not the object is in state #4, the only state in
201  * which a move is valid. If the object is in any other state, the client should
202  * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of
203  * the object's fields.
204  *
205  * Note that although an object may be in state #4 when kmem initiates the move
206  * request, the object may no longer be in that state by the time kmem actually
207  * calls the move function. Not only does the client free objects
208  * asynchronously, kmem itself puts move requests on a queue where thay are
209  * pending until kmem processes them from another context. Also, objects freed
210  * to a magazine appear allocated from the point of view of the slab layer, so
211  * kmem may even initiate requests for objects in a state other than state #4.
212  *
213  * 2.3.1 Magazine Layer
214  *
215  * An important insight revealed by the states listed above is that the magazine
216  * layer is populated only by kmem_cache_free(). Magazines of constructed
217  * objects are never populated directly from the slab layer (which contains raw,
218  * unconstructed objects). Whenever an allocation request cannot be satisfied
219  * from the magazine layer, the magazines are bypassed and the request is
220  * satisfied from the slab layer (creating a new slab if necessary). kmem calls
221  * the object constructor only when allocating from the slab layer, and only in
222  * response to kmem_cache_alloc() or to prepare the destination buffer passed in
223  * the move callback. kmem does not preconstruct objects in anticipation of
224  * kmem_cache_alloc().
225  *
226  * 2.3.2 Object Constructor and Destructor
227  *
228  * If the client supplies a destructor, it must be valid to call the destructor
229  * on a newly created object (immediately after the constructor).
230  *
231  * 2.4 Recognizing Known Objects
232  *
233  * There is a simple test to determine safely whether or not the client knows
234  * about a given object in the move callback. It relies on the fact that kmem
235  * guarantees that the object of the move callback has only been touched by the
236  * client itself or else by kmem. kmem does this by ensuring that none of the
237  * cache's slabs are freed to the virtual memory (VM) subsystem while a move
238  * callback is pending. When the last object on a slab is freed, if there is a
239  * pending move, kmem puts the slab on a per-cache dead list and defers freeing
240  * slabs on that list until all pending callbacks are completed. That way,
241  * clients can be certain that the object of a move callback is in one of the
242  * states listed above, making it possible to distinguish known objects (in
243  * state #4) using the two low order bits of any pointer member (with the
244  * exception of 'char *' or 'short *' which may not be 4-byte aligned on some
245  * platforms).
246  *
247  * The test works as long as the client always transitions objects from state #4
248  * (known, in use) to state #5 (about to be freed, invalid) by setting the low
249  * order bit of the client-designated pointer member. Since kmem only writes
250  * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and
251  * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is
252  * guaranteed to set at least one of the two low order bits. Therefore, given an
253  * object with a back pointer to a 'container_t *o_container', the client can
254  * test
255  *
256  *      container_t *container = object->o_container;
257  *      if ((uintptr_t)container & 0x3) {
258  *              return (KMEM_CBRC_DONT_KNOW);
259  *      }
260  *
261  * Typically, an object will have a pointer to some structure with a list or
262  * hash where objects from the cache are kept while in use. Assuming that the
263  * client has some way of knowing that the container structure is valid and will
264  * not go away during the move, and assuming that the structure includes a lock
265  * to protect whatever collection is used, then the client would continue as
266  * follows:
267  *
268  *	// Ensure that the container structure does not go away.
269  *      if (container_hold(container) == 0) {
270  *              return (KMEM_CBRC_DONT_KNOW);
271  *      }
272  *      mutex_enter(&container->c_objects_lock);
273  *      if (container != object->o_container) {
274  *              mutex_exit(&container->c_objects_lock);
275  *              container_rele(container);
276  *              return (KMEM_CBRC_DONT_KNOW);
277  *      }
278  *
279  * At this point the client knows that the object cannot be freed as long as
280  * c_objects_lock is held. Note that after acquiring the lock, the client must
281  * recheck the o_container pointer in case the object was removed just before
282  * acquiring the lock.
283  *
284  * When the client is about to free an object, it must first remove that object
285  * from the list, hash, or other structure where it is kept. At that time, to
286  * mark the object so it can be distinguished from the remaining, known objects,
287  * the client sets the designated low order bit:
288  *
289  *      mutex_enter(&container->c_objects_lock);
290  *      object->o_container = (void *)((uintptr_t)object->o_container | 0x1);
291  *      list_remove(&container->c_objects, object);
292  *      mutex_exit(&container->c_objects_lock);
293  *
294  * In the common case, the object is freed to the magazine layer, where it may
295  * be reused on a subsequent allocation without the overhead of calling the
296  * constructor. While in the magazine it appears allocated from the point of
297  * view of the slab layer, making it a candidate for the move callback. Most
298  * objects unrecognized by the client in the move callback fall into this
299  * category and are cheaply distinguished from known objects by the test
300  * described earlier. Because searching magazines is prohibitively expensive
301  * for kmem, clients that do not mark freed objects (and therefore return
302  * KMEM_CBRC_DONT_KNOW for large numbers of objects) may find defragmentation
303  * efficacy reduced.
304  *
305  * Invalidating the designated pointer member before freeing the object marks
306  * the object to be avoided in the callback, and conversely, assigning a valid
307  * value to the designated pointer member after allocating the object makes the
308  * object fair game for the callback:
309  *
310  *      ... allocate object ...
311  *      ... set any initial state not set by the constructor ...
312  *
313  *      mutex_enter(&container->c_objects_lock);
314  *      list_insert_tail(&container->c_objects, object);
315  *      membar_producer();
316  *      object->o_container = container;
317  *      mutex_exit(&container->c_objects_lock);
318  *
319  * Note that everything else must be valid before setting o_container makes the
320  * object fair game for the move callback. The membar_producer() call ensures
321  * that all the object's state is written to memory before setting the pointer
322  * that transitions the object from state #3 or #7 (allocated, constructed, not
323  * yet in use) to state #4 (in use, valid). That's important because the move
324  * function has to check the validity of the pointer before it can safely
325  * acquire the lock protecting the collection where it expects to find known
326  * objects.
327  *
328  * This method of distinguishing known objects observes the usual symmetry:
329  * invalidating the designated pointer is the first thing the client does before
330  * freeing the object, and setting the designated pointer is the last thing the
331  * client does after allocating the object. Of course, the client is not
332  * required to use this method. Fundamentally, how the client recognizes known
333  * objects is completely up to the client, but this method is recommended as an
334  * efficient and safe way to take advantage of the guarantees made by kmem. If
335  * the entire object is arbitrary data without any markable bits from a suitable
336  * pointer member, then the client must find some other method, such as
337  * searching a hash table of known objects.
338  *
339  * 2.5 Preventing Objects From Moving
340  *
341  * Besides a way to distinguish known objects, the other thing that the client
342  * needs is a strategy to ensure that an object will not move while the client
343  * is actively using it. The details of satisfying this requirement tend to be
344  * highly cache-specific. It might seem that the same rules that let a client
345  * remove an object safely should also decide when an object can be moved
346  * safely. However, any object state that makes a removal attempt invalid is
347  * likely to be long-lasting for objects that the client does not expect to
348  * remove. kmem knows nothing about the object state and is equally likely (from
349  * the client's point of view) to request a move for any object in the cache,
350  * whether prepared for removal or not. Even a low percentage of objects stuck
351  * in place by unremovability will defeat the consolidator if the stuck objects
352  * are the same long-lived allocations likely to hold slabs hostage.
353  * Fundamentally, the consolidator is not aimed at common cases. Severe external
354  * fragmentation is a worst case scenario manifested as sparsely allocated
355  * slabs, by definition a low percentage of the cache's objects. When deciding
356  * what makes an object movable, keep in mind the goal of the consolidator: to
357  * bring worst-case external fragmentation within the limits guaranteed for
358  * internal fragmentation. Removability is a poor criterion if it is likely to
359  * exclude more than an insignificant percentage of objects for long periods of
360  * time.
361  *
362  * A tricky general solution exists, and it has the advantage of letting you
363  * move any object at almost any moment, practically eliminating the likelihood
364  * that an object can hold a slab hostage. However, if there is a cache-specific
365  * way to ensure that an object is not actively in use in the vast majority of
366  * cases, a simpler solution that leverages this cache-specific knowledge is
367  * preferred.
368  *
369  * 2.5.1 Cache-Specific Solution
370  *
371  * As an example of a cache-specific solution, the ZFS znode cache takes
372  * advantage of the fact that the vast majority of znodes are only being
373  * referenced from the DNLC. (A typical case might be a few hundred in active
374  * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS
375  * client has established that it recognizes the znode and can access its fields
376  * safely (using the method described earlier), it then tests whether the znode
377  * is referenced by anything other than the DNLC. If so, it assumes that the
378  * znode may be in active use and is unsafe to move, so it drops its locks and
379  * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere
380  * else znodes are used, no change is needed to protect against the possibility
381  * of the znode moving. The disadvantage is that it remains possible for an
382  * application to hold a znode slab hostage with an open file descriptor.
383  * However, this case ought to be rare and the consolidator has a way to deal
384  * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same
385  * object, kmem eventually stops believing it and treats the slab as if the
386  * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can
387  * then focus on getting it off of the partial slab list by allocating rather
388  * than freeing all of its objects. (Either way of getting a slab off the
389  * free list reduces fragmentation.)
390  *
391  * 2.5.2 General Solution
392  *
393  * The general solution, on the other hand, requires an explicit hold everywhere
394  * the object is used to prevent it from moving. To keep the client locking
395  * strategy as uncomplicated as possible, kmem guarantees the simplifying
396  * assumption that move callbacks are sequential, even across multiple caches.
397  * Internally, a global queue processed by a single thread supports all caches
398  * implementing the callback function. No matter how many caches supply a move
399  * function, the consolidator never moves more than one object at a time, so the
400  * client does not have to worry about tricky lock ordering involving several
401  * related objects from different kmem caches.
402  *
403  * The general solution implements the explicit hold as a read-write lock, which
404  * allows multiple readers to access an object from the cache simultaneously
405  * while a single writer is excluded from moving it. A single rwlock for the
406  * entire cache would lock out all threads from using any of the cache's objects
407  * even though only a single object is being moved, so to reduce contention,
408  * the client can fan out the single rwlock into an array of rwlocks hashed by
409  * the object address, making it probable that moving one object will not
410  * prevent other threads from using a different object. The rwlock cannot be a
411  * member of the object itself, because the possibility of the object moving
412  * makes it unsafe to access any of the object's fields until the lock is
413  * acquired.
414  *
415  * Assuming a small, fixed number of locks, it's possible that multiple objects
416  * will hash to the same lock. A thread that needs to use multiple objects in
417  * the same function may acquire the same lock multiple times. Since rwlocks are
418  * reentrant for readers, and since there is never more than a single writer at
419  * a time (assuming that the client acquires the lock as a writer only when
420  * moving an object inside the callback), there would seem to be no problem.
421  * However, a client locking multiple objects in the same function must handle
422  * one case of potential deadlock: Assume that thread A needs to prevent both
423  * object 1 and object 2 from moving, and thread B, the callback, meanwhile
424  * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the
425  * same lock, that thread A will acquire the lock for object 1 as a reader
426  * before thread B sets the lock's write-wanted bit, preventing thread A from
427  * reacquiring the lock for object 2 as a reader. Unable to make forward
428  * progress, thread A will never release the lock for object 1, resulting in
429  * deadlock.
430  *
431  * There are two ways of avoiding the deadlock just described. The first is to
432  * use rw_tryenter() rather than rw_enter() in the callback function when
433  * attempting to acquire the lock as a writer. If tryenter discovers that the
434  * same object (or another object hashed to the same lock) is already in use, it
435  * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use
436  * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t,
437  * since it allows a thread to acquire the lock as a reader in spite of a
438  * waiting writer. This second approach insists on moving the object now, no
439  * matter how many readers the move function must wait for in order to do so,
440  * and could delay the completion of the callback indefinitely (blocking
441  * callbacks to other clients). In practice, a less insistent callback using
442  * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems
443  * little reason to use anything else.
444  *
445  * Avoiding deadlock is not the only problem that an implementation using an
446  * explicit hold needs to solve. Locking the object in the first place (to
447  * prevent it from moving) remains a problem, since the object could move
448  * between the time you obtain a pointer to the object and the time you acquire
449  * the rwlock hashed to that pointer value. Therefore the client needs to
450  * recheck the value of the pointer after acquiring the lock, drop the lock if
451  * the value has changed, and try again. This requires a level of indirection:
452  * something that points to the object rather than the object itself, that the
453  * client can access safely while attempting to acquire the lock. (The object
454  * itself cannot be referenced safely because it can move at any time.)
455  * The following lock-acquisition function takes whatever is safe to reference
456  * (arg), follows its pointer to the object (using function f), and tries as
457  * often as necessary to acquire the hashed lock and verify that the object
458  * still has not moved:
459  *
460  *      object_t *
461  *      object_hold(object_f f, void *arg)
462  *      {
463  *              object_t *op;
464  *
465  *              op = f(arg);
466  *              if (op == NULL) {
467  *                      return (NULL);
468  *              }
469  *
470  *              rw_enter(OBJECT_RWLOCK(op), RW_READER);
471  *              while (op != f(arg)) {
472  *                      rw_exit(OBJECT_RWLOCK(op));
473  *                      op = f(arg);
474  *                      if (op == NULL) {
475  *                              break;
476  *                      }
477  *                      rw_enter(OBJECT_RWLOCK(op), RW_READER);
478  *              }
479  *
480  *              return (op);
481  *      }
482  *
483  * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The
484  * lock reacquisition loop, while necessary, almost never executes. The function
485  * pointer f (used to obtain the object pointer from arg) has the following type
486  * definition:
487  *
488  *      typedef object_t *(*object_f)(void *arg);
489  *
490  * An object_f implementation is likely to be as simple as accessing a structure
491  * member:
492  *
493  *      object_t *
494  *      s_object(void *arg)
495  *      {
496  *              something_t *sp = arg;
497  *              return (sp->s_object);
498  *      }
499  *
500  * The flexibility of a function pointer allows the path to the object to be
501  * arbitrarily complex and also supports the notion that depending on where you
502  * are using the object, you may need to get it from someplace different.
503  *
504  * The function that releases the explicit hold is simpler because it does not
505  * have to worry about the object moving:
506  *
507  *      void
508  *      object_rele(object_t *op)
509  *      {
510  *              rw_exit(OBJECT_RWLOCK(op));
511  *      }
512  *
513  * The caller is spared these details so that obtaining and releasing an
514  * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller
515  * of object_hold() only needs to know that the returned object pointer is valid
516  * if not NULL and that the object will not move until released.
517  *
518  * Although object_hold() prevents an object from moving, it does not prevent it
519  * from being freed. The caller must take measures before calling object_hold()
520  * (afterwards is too late) to ensure that the held object cannot be freed. The
521  * caller must do so without accessing the unsafe object reference, so any lock
522  * or reference count used to ensure the continued existence of the object must
523  * live outside the object itself.
524  *
525  * Obtaining a new object is a special case where an explicit hold is impossible
526  * for the caller. Any function that returns a newly allocated object (either as
527  * a return value, or as an in-out paramter) must return it already held; after
528  * the caller gets it is too late, since the object cannot be safely accessed
529  * without the level of indirection described earlier. The following
530  * object_alloc() example uses the same code shown earlier to transition a new
531  * object into the state of being recognized (by the client) as a known object.
532  * The function must acquire the hold (rw_enter) before that state transition
533  * makes the object movable:
534  *
535  *      static object_t *
536  *      object_alloc(container_t *container)
537  *      {
538  *              object_t *object = kmem_cache_alloc(object_cache, 0);
539  *              ... set any initial state not set by the constructor ...
540  *              rw_enter(OBJECT_RWLOCK(object), RW_READER);
541  *              mutex_enter(&container->c_objects_lock);
542  *              list_insert_tail(&container->c_objects, object);
543  *              membar_producer();
544  *              object->o_container = container;
545  *              mutex_exit(&container->c_objects_lock);
546  *              return (object);
547  *      }
548  *
549  * Functions that implicitly acquire an object hold (any function that calls
550  * object_alloc() to supply an object for the caller) need to be carefully noted
551  * so that the matching object_rele() is not neglected. Otherwise, leaked holds
552  * prevent all objects hashed to the affected rwlocks from ever being moved.
553  *
554  * The pointer to a held object can be hashed to the holding rwlock even after
555  * the object has been freed. Although it is possible to release the hold
556  * after freeing the object, you may decide to release the hold implicitly in
557  * whatever function frees the object, so as to release the hold as soon as
558  * possible, and for the sake of symmetry with the function that implicitly
559  * acquires the hold when it allocates the object. Here, object_free() releases
560  * the hold acquired by object_alloc(). Its implicit object_rele() forms a
561  * matching pair with object_hold():
562  *
563  *      void
564  *      object_free(object_t *object)
565  *      {
566  *              container_t *container;
567  *
568  *              ASSERT(object_held(object));
569  *              container = object->o_container;
570  *              mutex_enter(&container->c_objects_lock);
571  *              object->o_container =
572  *                  (void *)((uintptr_t)object->o_container | 0x1);
573  *              list_remove(&container->c_objects, object);
574  *              mutex_exit(&container->c_objects_lock);
575  *              object_rele(object);
576  *              kmem_cache_free(object_cache, object);
577  *      }
578  *
579  * Note that object_free() cannot safely accept an object pointer as an argument
580  * unless the object is already held. Any function that calls object_free()
581  * needs to be carefully noted since it similarly forms a matching pair with
582  * object_hold().
583  *
584  * To complete the picture, the following callback function implements the
585  * general solution by moving objects only if they are currently unheld:
586  *
587  *      static kmem_cbrc_t
588  *      object_move(void *buf, void *newbuf, size_t size, void *arg)
589  *      {
590  *              object_t *op = buf, *np = newbuf;
591  *              container_t *container;
592  *
593  *              container = op->o_container;
594  *              if ((uintptr_t)container & 0x3) {
595  *                      return (KMEM_CBRC_DONT_KNOW);
596  *              }
597  *
598  *	        // Ensure that the container structure does not go away.
599  *              if (container_hold(container) == 0) {
600  *                      return (KMEM_CBRC_DONT_KNOW);
601  *              }
602  *
603  *              mutex_enter(&container->c_objects_lock);
604  *              if (container != op->o_container) {
605  *                      mutex_exit(&container->c_objects_lock);
606  *                      container_rele(container);
607  *                      return (KMEM_CBRC_DONT_KNOW);
608  *              }
609  *
610  *              if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) {
611  *                      mutex_exit(&container->c_objects_lock);
612  *                      container_rele(container);
613  *                      return (KMEM_CBRC_LATER);
614  *              }
615  *
616  *              object_move_impl(op, np); // critical section
617  *              rw_exit(OBJECT_RWLOCK(op));
618  *
619  *              op->o_container = (void *)((uintptr_t)op->o_container | 0x1);
620  *              list_link_replace(&op->o_link_node, &np->o_link_node);
621  *              mutex_exit(&container->c_objects_lock);
622  *              container_rele(container);
623  *              return (KMEM_CBRC_YES);
624  *      }
625  *
626  * Note that object_move() must invalidate the designated o_container pointer of
627  * the old object in the same way that object_free() does, since kmem will free
628  * the object in response to the KMEM_CBRC_YES return value.
629  *
630  * The lock order in object_move() differs from object_alloc(), which locks
631  * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the
632  * callback uses rw_tryenter() (preventing the deadlock described earlier), it's
633  * not a problem. Holding the lock on the object list in the example above
634  * through the entire callback not only prevents the object from going away, it
635  * also allows you to lock the list elsewhere and know that none of its elements
636  * will move during iteration.
637  *
638  * Adding an explicit hold everywhere an object from the cache is used is tricky
639  * and involves much more change to client code than a cache-specific solution
640  * that leverages existing state to decide whether or not an object is
641  * movable. However, this approach has the advantage that no object remains
642  * immovable for any significant length of time, making it extremely unlikely
643  * that long-lived allocations can continue holding slabs hostage; and it works
644  * for any cache.
645  *
646  * 3. Consolidator Implementation
647  *
648  * Once the client supplies a move function that a) recognizes known objects and
649  * b) avoids moving objects that are actively in use, the remaining work is up
650  * to the consolidator to decide which objects to move and when to issue
651  * callbacks.
652  *
653  * The consolidator relies on the fact that a cache's slabs are ordered by
654  * usage. Each slab has a fixed number of objects. Depending on the slab's
655  * "color" (the offset of the first object from the beginning of the slab;
656  * offsets are staggered to mitigate false sharing of cache lines) it is either
657  * the maximum number of objects per slab determined at cache creation time or
658  * else the number closest to the maximum that fits within the space remaining
659  * after the initial offset. A completely allocated slab may contribute some
660  * internal fragmentation (per-slab overhead) but no external fragmentation, so
661  * it is of no interest to the consolidator. At the other extreme, slabs whose
662  * objects have all been freed to the slab are released to the virtual memory
663  * (VM) subsystem (objects freed to magazines are still allocated as far as the
664  * slab is concerned). External fragmentation exists when there are slabs
665  * somewhere between these extremes. A partial slab has at least one but not all
666  * of its objects allocated. The more partial slabs, and the fewer allocated
667  * objects on each of them, the higher the fragmentation. Hence the
668  * consolidator's overall strategy is to reduce the number of partial slabs by
669  * moving allocated objects from the least allocated slabs to the most allocated
670  * slabs.
671  *
672  * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated
673  * slabs are kept separately in an unordered list. Since the majority of slabs
674  * tend to be completely allocated (a typical unfragmented cache may have
675  * thousands of complete slabs and only a single partial slab), separating
676  * complete slabs improves the efficiency of partial slab ordering, since the
677  * complete slabs do not affect the depth or balance of the AVL tree. This
678  * ordered sequence of partial slabs acts as a "free list" supplying objects for
679  * allocation requests.
680  *
681  * Objects are always allocated from the first partial slab in the free list,
682  * where the allocation is most likely to eliminate a partial slab (by
683  * completely allocating it). Conversely, when a single object from a completely
684  * allocated slab is freed to the slab, that slab is added to the front of the
685  * free list. Since most free list activity involves highly allocated slabs
686  * coming and going at the front of the list, slabs tend naturally toward the
687  * ideal order: highly allocated at the front, sparsely allocated at the back.
688  * Slabs with few allocated objects are likely to become completely free if they
689  * keep a safe distance away from the front of the free list. Slab misorders
690  * interfere with the natural tendency of slabs to become completely free or
691  * completely allocated. For example, a slab with a single allocated object
692  * needs only a single free to escape the cache; its natural desire is
693  * frustrated when it finds itself at the front of the list where a second
694  * allocation happens just before the free could have released it. Another slab
695  * with all but one object allocated might have supplied the buffer instead, so
696  * that both (as opposed to neither) of the slabs would have been taken off the
697  * free list.
698  *
699  * Although slabs tend naturally toward the ideal order, misorders allowed by a
700  * simple list implementation defeat the consolidator's strategy of merging
701  * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem
702  * needs another way to fix misorders to optimize its callback strategy. One
703  * approach is to periodically scan a limited number of slabs, advancing a
704  * marker to hold the current scan position, and to move extreme misorders to
705  * the front or back of the free list and to the front or back of the current
706  * scan range. By making consecutive scan ranges overlap by one slab, the least
707  * allocated slab in the current range can be carried along from the end of one
708  * scan to the start of the next.
709  *
710  * Maintaining partial slabs in an AVL tree relieves kmem of this additional
711  * task, however. Since most of the cache's activity is in the magazine layer,
712  * and allocations from the slab layer represent only a startup cost, the
713  * overhead of maintaining a balanced tree is not a significant concern compared
714  * to the opportunity of reducing complexity by eliminating the partial slab
715  * scanner just described. The overhead of an AVL tree is minimized by
716  * maintaining only partial slabs in the tree and keeping completely allocated
717  * slabs separately in a list. To avoid increasing the size of the slab
718  * structure the AVL linkage pointers are reused for the slab's list linkage,
719  * since the slab will always be either partial or complete, never stored both
720  * ways at the same time. To further minimize the overhead of the AVL tree the
721  * compare function that orders partial slabs by usage divides the range of
722  * allocated object counts into bins such that counts within the same bin are
723  * considered equal. Binning partial slabs makes it less likely that allocating
724  * or freeing a single object will change the slab's order, requiring a tree
725  * reinsertion (an avl_remove() followed by an avl_add(), both potentially
726  * requiring some rebalancing of the tree). Allocation counts closest to
727  * completely free and completely allocated are left unbinned (finely sorted) to
728  * better support the consolidator's strategy of merging slabs at either
729  * extreme.
730  *
731  * 3.1 Assessing Fragmentation and Selecting Candidate Slabs
732  *
733  * The consolidator piggybacks on the kmem maintenance thread and is called on
734  * the same interval as kmem_cache_update(), once per cache every fifteen
735  * seconds. kmem maintains a running count of unallocated objects in the slab
736  * layer (cache_bufslab). The consolidator checks whether that number exceeds
737  * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether
738  * there is a significant number of slabs in the cache (arbitrarily a minimum
739  * 101 total slabs). Unused objects that have fallen out of the magazine layer's
740  * working set are included in the assessment, and magazines in the depot are
741  * reaped if those objects would lift cache_bufslab above the fragmentation
742  * threshold. Once the consolidator decides that a cache is fragmented, it looks
743  * for a candidate slab to reclaim, starting at the end of the partial slab free
744  * list and scanning backwards. At first the consolidator is choosy: only a slab
745  * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a
746  * single allocated object, regardless of percentage). If there is difficulty
747  * finding a candidate slab, kmem raises the allocation threshold incrementally,
748  * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce
749  * external fragmentation (unused objects on the free list) below 12.5% (1/8),
750  * even in the worst case of every slab in the cache being almost 7/8 allocated.
751  * The threshold can also be lowered incrementally when candidate slabs are easy
752  * to find, and the threshold is reset to the minimum 1/8 as soon as the cache
753  * is no longer fragmented.
754  *
755  * 3.2 Generating Callbacks
756  *
757  * Once an eligible slab is chosen, a callback is generated for every allocated
758  * object on the slab, in the hope that the client will move everything off the
759  * slab and make it reclaimable. Objects selected as move destinations are
760  * chosen from slabs at the front of the free list. Assuming slabs in the ideal
761  * order (most allocated at the front, least allocated at the back) and a
762  * cooperative client, the consolidator will succeed in removing slabs from both
763  * ends of the free list, completely allocating on the one hand and completely
764  * freeing on the other. Objects selected as move destinations are allocated in
765  * the kmem maintenance thread where move requests are enqueued. A separate
766  * callback thread removes pending callbacks from the queue and calls the
767  * client. The separate thread ensures that client code (the move function) does
768  * not interfere with internal kmem maintenance tasks. A map of pending
769  * callbacks keyed by object address (the object to be moved) is checked to
770  * ensure that duplicate callbacks are not generated for the same object.
771  * Allocating the move destination (the object to move to) prevents subsequent
772  * callbacks from selecting the same destination as an earlier pending callback.
773  *
774  * Move requests can also be generated by kmem_cache_reap() when the system is
775  * desperate for memory and by kmem_cache_move_notify(), called by the client to
776  * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible.
777  * The map of pending callbacks is protected by the same lock that protects the
778  * slab layer.
779  *
780  * When the system is desperate for memory, kmem does not bother to determine
781  * whether or not the cache exceeds the fragmentation threshold, but tries to
782  * consolidate as many slabs as possible. Normally, the consolidator chews
783  * slowly, one sparsely allocated slab at a time during each maintenance
784  * interval that the cache is fragmented. When desperate, the consolidator
785  * starts at the last partial slab and enqueues callbacks for every allocated
786  * object on every partial slab, working backwards until it reaches the first
787  * partial slab. The first partial slab, meanwhile, advances in pace with the
788  * consolidator as allocations to supply move destinations for the enqueued
789  * callbacks use up the highly allocated slabs at the front of the free list.
790  * Ideally, the overgrown free list collapses like an accordion, starting at
791  * both ends and ending at the center with a single partial slab.
792  *
793  * 3.3 Client Responses
794  *
795  * When the client returns KMEM_CBRC_NO in response to the move callback, kmem
796  * marks the slab that supplied the stuck object non-reclaimable and moves it to
797  * front of the free list. The slab remains marked as long as it remains on the
798  * free list, and it appears more allocated to the partial slab compare function
799  * than any unmarked slab, no matter how many of its objects are allocated.
800  * Since even one immovable object ties up the entire slab, the goal is to
801  * completely allocate any slab that cannot be completely freed. kmem does not
802  * bother generating callbacks to move objects from a marked slab unless the
803  * system is desperate.
804  *
805  * When the client responds KMEM_CBRC_LATER, kmem increments a count for the
806  * slab. If the client responds LATER too many times, kmem disbelieves and
807  * treats the response as a NO. The count is cleared when the slab is taken off
808  * the partial slab list or when the client moves one of the slab's objects.
809  *
810  * 4. Observability
811  *
812  * A kmem cache's external fragmentation is best observed with 'mdb -k' using
813  * the ::kmem_slabs dcmd. For a complete description of the command, enter
814  * '::help kmem_slabs' at the mdb prompt.
815  */
816 
817 #include <sys/kmem_impl.h>
818 #include <sys/vmem_impl.h>
819 #include <sys/param.h>
820 #include <sys/sysmacros.h>
821 #include <sys/vm.h>
822 #include <sys/proc.h>
823 #include <sys/tuneable.h>
824 #include <sys/systm.h>
825 #include <sys/cmn_err.h>
826 #include <sys/debug.h>
827 #include <sys/sdt.h>
828 #include <sys/mutex.h>
829 #include <sys/bitmap.h>
830 #include <sys/atomic.h>
831 #include <sys/kobj.h>
832 #include <sys/disp.h>
833 #include <vm/seg_kmem.h>
834 #include <sys/log.h>
835 #include <sys/callb.h>
836 #include <sys/taskq.h>
837 #include <sys/modctl.h>
838 #include <sys/reboot.h>
839 #include <sys/id32.h>
840 #include <sys/zone.h>
841 #include <sys/netstack.h>
842 #ifdef	DEBUG
843 #include <sys/random.h>
844 #endif
845 
846 extern void streams_msg_init(void);
847 extern int segkp_fromheap;
848 extern void segkp_cache_free(void);
849 extern int callout_init_done;
850 
851 struct kmem_cache_kstat {
852 	kstat_named_t	kmc_buf_size;
853 	kstat_named_t	kmc_align;
854 	kstat_named_t	kmc_chunk_size;
855 	kstat_named_t	kmc_slab_size;
856 	kstat_named_t	kmc_alloc;
857 	kstat_named_t	kmc_alloc_fail;
858 	kstat_named_t	kmc_free;
859 	kstat_named_t	kmc_depot_alloc;
860 	kstat_named_t	kmc_depot_free;
861 	kstat_named_t	kmc_depot_contention;
862 	kstat_named_t	kmc_slab_alloc;
863 	kstat_named_t	kmc_slab_free;
864 	kstat_named_t	kmc_buf_constructed;
865 	kstat_named_t	kmc_buf_avail;
866 	kstat_named_t	kmc_buf_inuse;
867 	kstat_named_t	kmc_buf_total;
868 	kstat_named_t	kmc_buf_max;
869 	kstat_named_t	kmc_slab_create;
870 	kstat_named_t	kmc_slab_destroy;
871 	kstat_named_t	kmc_vmem_source;
872 	kstat_named_t	kmc_hash_size;
873 	kstat_named_t	kmc_hash_lookup_depth;
874 	kstat_named_t	kmc_hash_rescale;
875 	kstat_named_t	kmc_full_magazines;
876 	kstat_named_t	kmc_empty_magazines;
877 	kstat_named_t	kmc_magazine_size;
878 	kstat_named_t	kmc_reap; /* number of kmem_cache_reap() calls */
879 	kstat_named_t	kmc_defrag; /* attempts to defrag all partial slabs */
880 	kstat_named_t	kmc_scan; /* attempts to defrag one partial slab */
881 	kstat_named_t	kmc_move_callbacks; /* sum of yes, no, later, dn, dk */
882 	kstat_named_t	kmc_move_yes;
883 	kstat_named_t	kmc_move_no;
884 	kstat_named_t	kmc_move_later;
885 	kstat_named_t	kmc_move_dont_need;
886 	kstat_named_t	kmc_move_dont_know; /* obj unrecognized by client ... */
887 	kstat_named_t	kmc_move_hunt_found; /* ... but found in mag layer */
888 	kstat_named_t	kmc_move_slabs_freed; /* slabs freed by consolidator */
889 	kstat_named_t	kmc_move_reclaimable; /* buffers, if consolidator ran */
890 } kmem_cache_kstat = {
891 	{ "buf_size",		KSTAT_DATA_UINT64 },
892 	{ "align",		KSTAT_DATA_UINT64 },
893 	{ "chunk_size",		KSTAT_DATA_UINT64 },
894 	{ "slab_size",		KSTAT_DATA_UINT64 },
895 	{ "alloc",		KSTAT_DATA_UINT64 },
896 	{ "alloc_fail",		KSTAT_DATA_UINT64 },
897 	{ "free",		KSTAT_DATA_UINT64 },
898 	{ "depot_alloc",	KSTAT_DATA_UINT64 },
899 	{ "depot_free",		KSTAT_DATA_UINT64 },
900 	{ "depot_contention",	KSTAT_DATA_UINT64 },
901 	{ "slab_alloc",		KSTAT_DATA_UINT64 },
902 	{ "slab_free",		KSTAT_DATA_UINT64 },
903 	{ "buf_constructed",	KSTAT_DATA_UINT64 },
904 	{ "buf_avail",		KSTAT_DATA_UINT64 },
905 	{ "buf_inuse",		KSTAT_DATA_UINT64 },
906 	{ "buf_total",		KSTAT_DATA_UINT64 },
907 	{ "buf_max",		KSTAT_DATA_UINT64 },
908 	{ "slab_create",	KSTAT_DATA_UINT64 },
909 	{ "slab_destroy",	KSTAT_DATA_UINT64 },
910 	{ "vmem_source",	KSTAT_DATA_UINT64 },
911 	{ "hash_size",		KSTAT_DATA_UINT64 },
912 	{ "hash_lookup_depth",	KSTAT_DATA_UINT64 },
913 	{ "hash_rescale",	KSTAT_DATA_UINT64 },
914 	{ "full_magazines",	KSTAT_DATA_UINT64 },
915 	{ "empty_magazines",	KSTAT_DATA_UINT64 },
916 	{ "magazine_size",	KSTAT_DATA_UINT64 },
917 	{ "reap",		KSTAT_DATA_UINT64 },
918 	{ "defrag",		KSTAT_DATA_UINT64 },
919 	{ "scan",		KSTAT_DATA_UINT64 },
920 	{ "move_callbacks",	KSTAT_DATA_UINT64 },
921 	{ "move_yes",		KSTAT_DATA_UINT64 },
922 	{ "move_no",		KSTAT_DATA_UINT64 },
923 	{ "move_later",		KSTAT_DATA_UINT64 },
924 	{ "move_dont_need",	KSTAT_DATA_UINT64 },
925 	{ "move_dont_know",	KSTAT_DATA_UINT64 },
926 	{ "move_hunt_found",	KSTAT_DATA_UINT64 },
927 	{ "move_slabs_freed",	KSTAT_DATA_UINT64 },
928 	{ "move_reclaimable",	KSTAT_DATA_UINT64 },
929 };
930 
931 static kmutex_t kmem_cache_kstat_lock;
932 
933 /*
934  * The default set of caches to back kmem_alloc().
935  * These sizes should be reevaluated periodically.
936  *
937  * We want allocations that are multiples of the coherency granularity
938  * (64 bytes) to be satisfied from a cache which is a multiple of 64
939  * bytes, so that it will be 64-byte aligned.  For all multiples of 64,
940  * the next kmem_cache_size greater than or equal to it must be a
941  * multiple of 64.
942  *
943  * We split the table into two sections:  size <= 4k and size > 4k.  This
944  * saves a lot of space and cache footprint in our cache tables.
945  */
946 static const int kmem_alloc_sizes[] = {
947 	1 * 8,
948 	2 * 8,
949 	3 * 8,
950 	4 * 8,		5 * 8,		6 * 8,		7 * 8,
951 	4 * 16,		5 * 16,		6 * 16,		7 * 16,
952 	4 * 32,		5 * 32,		6 * 32,		7 * 32,
953 	4 * 64,		5 * 64,		6 * 64,		7 * 64,
954 	4 * 128,	5 * 128,	6 * 128,	7 * 128,
955 	P2ALIGN(8192 / 7, 64),
956 	P2ALIGN(8192 / 6, 64),
957 	P2ALIGN(8192 / 5, 64),
958 	P2ALIGN(8192 / 4, 64),
959 	P2ALIGN(8192 / 3, 64),
960 	P2ALIGN(8192 / 2, 64),
961 };
962 
963 static const int kmem_big_alloc_sizes[] = {
964 	2 * 4096,	3 * 4096,
965 	2 * 8192,	3 * 8192,
966 	4 * 8192,	5 * 8192,	6 * 8192,	7 * 8192,
967 	8 * 8192,	9 * 8192,	10 * 8192,	11 * 8192,
968 	12 * 8192,	13 * 8192,	14 * 8192,	15 * 8192,
969 	16 * 8192
970 };
971 
972 #define	KMEM_MAXBUF		4096
973 #define	KMEM_BIG_MAXBUF_32BIT	32768
974 #define	KMEM_BIG_MAXBUF		131072
975 
976 #define	KMEM_BIG_MULTIPLE	4096	/* big_alloc_sizes must be a multiple */
977 #define	KMEM_BIG_SHIFT		12	/* lg(KMEM_BIG_MULTIPLE) */
978 
979 static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT];
980 static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT];
981 
982 #define	KMEM_ALLOC_TABLE_MAX	(KMEM_MAXBUF >> KMEM_ALIGN_SHIFT)
983 static size_t kmem_big_alloc_table_max = 0;	/* # of filled elements */
984 
985 static kmem_magtype_t kmem_magtype[] = {
986 	{ 1,	8,	3200,	65536	},
987 	{ 3,	16,	256,	32768	},
988 	{ 7,	32,	64,	16384	},
989 	{ 15,	64,	0,	8192	},
990 	{ 31,	64,	0,	4096	},
991 	{ 47,	64,	0,	2048	},
992 	{ 63,	64,	0,	1024	},
993 	{ 95,	64,	0,	512	},
994 	{ 143,	64,	0,	0	},
995 };
996 
997 static uint32_t kmem_reaping;
998 static uint32_t kmem_reaping_idspace;
999 
1000 /*
1001  * kmem tunables
1002  */
1003 clock_t kmem_reap_interval;	/* cache reaping rate [15 * HZ ticks] */
1004 int kmem_depot_contention = 3;	/* max failed tryenters per real interval */
1005 pgcnt_t kmem_reapahead = 0;	/* start reaping N pages before pageout */
1006 int kmem_panic = 1;		/* whether to panic on error */
1007 int kmem_logging = 1;		/* kmem_log_enter() override */
1008 uint32_t kmem_mtbf = 0;		/* mean time between failures [default: off] */
1009 size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */
1010 size_t kmem_content_log_size;	/* content log size [2% of memory] */
1011 size_t kmem_failure_log_size;	/* failure log [4 pages per CPU] */
1012 size_t kmem_slab_log_size;	/* slab create log [4 pages per CPU] */
1013 size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */
1014 size_t kmem_lite_minsize = 0;	/* minimum buffer size for KMF_LITE */
1015 size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */
1016 int kmem_lite_pcs = 4;		/* number of PCs to store in KMF_LITE mode */
1017 size_t kmem_maxverify;		/* maximum bytes to inspect in debug routines */
1018 size_t kmem_minfirewall;	/* hardware-enforced redzone threshold */
1019 
1020 #ifdef _LP64
1021 size_t	kmem_max_cached = KMEM_BIG_MAXBUF;	/* maximum kmem_alloc cache */
1022 #else
1023 size_t	kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */
1024 #endif
1025 
1026 #ifdef DEBUG
1027 int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS;
1028 #else
1029 int kmem_flags = 0;
1030 #endif
1031 int kmem_ready;
1032 
1033 static kmem_cache_t	*kmem_slab_cache;
1034 static kmem_cache_t	*kmem_bufctl_cache;
1035 static kmem_cache_t	*kmem_bufctl_audit_cache;
1036 
1037 static kmutex_t		kmem_cache_lock;	/* inter-cache linkage only */
1038 static list_t		kmem_caches;
1039 
1040 static taskq_t		*kmem_taskq;
1041 static kmutex_t		kmem_flags_lock;
1042 static vmem_t		*kmem_metadata_arena;
1043 static vmem_t		*kmem_msb_arena;	/* arena for metadata caches */
1044 static vmem_t		*kmem_cache_arena;
1045 static vmem_t		*kmem_hash_arena;
1046 static vmem_t		*kmem_log_arena;
1047 static vmem_t		*kmem_oversize_arena;
1048 static vmem_t		*kmem_va_arena;
1049 static vmem_t		*kmem_default_arena;
1050 static vmem_t		*kmem_firewall_va_arena;
1051 static vmem_t		*kmem_firewall_arena;
1052 
1053 /*
1054  * kmem slab consolidator thresholds (tunables)
1055  */
1056 size_t kmem_frag_minslabs = 101;	/* minimum total slabs */
1057 size_t kmem_frag_numer = 1;		/* free buffers (numerator) */
1058 size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */
1059 /*
1060  * Maximum number of slabs from which to move buffers during a single
1061  * maintenance interval while the system is not low on memory.
1062  */
1063 size_t kmem_reclaim_max_slabs = 1;
1064 /*
1065  * Number of slabs to scan backwards from the end of the partial slab list
1066  * when searching for buffers to relocate.
1067  */
1068 size_t kmem_reclaim_scan_range = 12;
1069 
1070 /* consolidator knobs */
1071 static boolean_t kmem_move_noreap;
1072 static boolean_t kmem_move_blocked;
1073 static boolean_t kmem_move_fulltilt;
1074 static boolean_t kmem_move_any_partial;
1075 
1076 #ifdef	DEBUG
1077 /*
1078  * kmem consolidator debug tunables:
1079  * Ensure code coverage by occasionally running the consolidator even when the
1080  * caches are not fragmented (they may never be). These intervals are mean time
1081  * in cache maintenance intervals (kmem_cache_update).
1082  */
1083 uint32_t kmem_mtb_move = 60;	/* defrag 1 slab (~15min) */
1084 uint32_t kmem_mtb_reap = 1800;	/* defrag all slabs (~7.5hrs) */
1085 #endif	/* DEBUG */
1086 
1087 static kmem_cache_t	*kmem_defrag_cache;
1088 static kmem_cache_t	*kmem_move_cache;
1089 static taskq_t		*kmem_move_taskq;
1090 
1091 static void kmem_cache_scan(kmem_cache_t *);
1092 static void kmem_cache_defrag(kmem_cache_t *);
1093 static void kmem_slab_prefill(kmem_cache_t *, kmem_slab_t *);
1094 
1095 
1096 kmem_log_header_t	*kmem_transaction_log;
1097 kmem_log_header_t	*kmem_content_log;
1098 kmem_log_header_t	*kmem_failure_log;
1099 kmem_log_header_t	*kmem_slab_log;
1100 
1101 static int		kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */
1102 
1103 #define	KMEM_BUFTAG_LITE_ENTER(bt, count, caller)			\
1104 	if ((count) > 0) {						\
1105 		pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history;	\
1106 		pc_t *_e;						\
1107 		/* memmove() the old entries down one notch */		\
1108 		for (_e = &_s[(count) - 1]; _e > _s; _e--)		\
1109 			*_e = *(_e - 1);				\
1110 		*_s = (uintptr_t)(caller);				\
1111 	}
1112 
1113 #define	KMERR_MODIFIED	0	/* buffer modified while on freelist */
1114 #define	KMERR_REDZONE	1	/* redzone violation (write past end of buf) */
1115 #define	KMERR_DUPFREE	2	/* freed a buffer twice */
1116 #define	KMERR_BADADDR	3	/* freed a bad (unallocated) address */
1117 #define	KMERR_BADBUFTAG	4	/* buftag corrupted */
1118 #define	KMERR_BADBUFCTL	5	/* bufctl corrupted */
1119 #define	KMERR_BADCACHE	6	/* freed a buffer to the wrong cache */
1120 #define	KMERR_BADSIZE	7	/* alloc size != free size */
1121 #define	KMERR_BADBASE	8	/* buffer base address wrong */
1122 
1123 struct {
1124 	hrtime_t	kmp_timestamp;	/* timestamp of panic */
1125 	int		kmp_error;	/* type of kmem error */
1126 	void		*kmp_buffer;	/* buffer that induced panic */
1127 	void		*kmp_realbuf;	/* real start address for buffer */
1128 	kmem_cache_t	*kmp_cache;	/* buffer's cache according to client */
1129 	kmem_cache_t	*kmp_realcache;	/* actual cache containing buffer */
1130 	kmem_slab_t	*kmp_slab;	/* slab accoring to kmem_findslab() */
1131 	kmem_bufctl_t	*kmp_bufctl;	/* bufctl */
1132 } kmem_panic_info;
1133 
1134 
1135 static void
1136 copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
1137 {
1138 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1139 	uint64_t *buf = buf_arg;
1140 
1141 	while (buf < bufend)
1142 		*buf++ = pattern;
1143 }
1144 
1145 static void *
1146 verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
1147 {
1148 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1149 	uint64_t *buf;
1150 
1151 	for (buf = buf_arg; buf < bufend; buf++)
1152 		if (*buf != pattern)
1153 			return (buf);
1154 	return (NULL);
1155 }
1156 
1157 static void *
1158 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
1159 {
1160 	uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
1161 	uint64_t *buf;
1162 
1163 	for (buf = buf_arg; buf < bufend; buf++) {
1164 		if (*buf != old) {
1165 			copy_pattern(old, buf_arg,
1166 			    (char *)buf - (char *)buf_arg);
1167 			return (buf);
1168 		}
1169 		*buf = new;
1170 	}
1171 
1172 	return (NULL);
1173 }
1174 
1175 static void
1176 kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1177 {
1178 	kmem_cache_t *cp;
1179 
1180 	mutex_enter(&kmem_cache_lock);
1181 	for (cp = list_head(&kmem_caches); cp != NULL;
1182 	    cp = list_next(&kmem_caches, cp))
1183 		if (tq != NULL)
1184 			(void) taskq_dispatch(tq, (task_func_t *)func, cp,
1185 			    tqflag);
1186 		else
1187 			func(cp);
1188 	mutex_exit(&kmem_cache_lock);
1189 }
1190 
1191 static void
1192 kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
1193 {
1194 	kmem_cache_t *cp;
1195 
1196 	mutex_enter(&kmem_cache_lock);
1197 	for (cp = list_head(&kmem_caches); cp != NULL;
1198 	    cp = list_next(&kmem_caches, cp)) {
1199 		if (!(cp->cache_cflags & KMC_IDENTIFIER))
1200 			continue;
1201 		if (tq != NULL)
1202 			(void) taskq_dispatch(tq, (task_func_t *)func, cp,
1203 			    tqflag);
1204 		else
1205 			func(cp);
1206 	}
1207 	mutex_exit(&kmem_cache_lock);
1208 }
1209 
1210 /*
1211  * Debugging support.  Given a buffer address, find its slab.
1212  */
1213 static kmem_slab_t *
1214 kmem_findslab(kmem_cache_t *cp, void *buf)
1215 {
1216 	kmem_slab_t *sp;
1217 
1218 	mutex_enter(&cp->cache_lock);
1219 	for (sp = list_head(&cp->cache_complete_slabs); sp != NULL;
1220 	    sp = list_next(&cp->cache_complete_slabs, sp)) {
1221 		if (KMEM_SLAB_MEMBER(sp, buf)) {
1222 			mutex_exit(&cp->cache_lock);
1223 			return (sp);
1224 		}
1225 	}
1226 	for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL;
1227 	    sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) {
1228 		if (KMEM_SLAB_MEMBER(sp, buf)) {
1229 			mutex_exit(&cp->cache_lock);
1230 			return (sp);
1231 		}
1232 	}
1233 	mutex_exit(&cp->cache_lock);
1234 
1235 	return (NULL);
1236 }
1237 
1238 static void
1239 kmem_error(int error, kmem_cache_t *cparg, void *bufarg)
1240 {
1241 	kmem_buftag_t *btp = NULL;
1242 	kmem_bufctl_t *bcp = NULL;
1243 	kmem_cache_t *cp = cparg;
1244 	kmem_slab_t *sp;
1245 	uint64_t *off;
1246 	void *buf = bufarg;
1247 
1248 	kmem_logging = 0;	/* stop logging when a bad thing happens */
1249 
1250 	kmem_panic_info.kmp_timestamp = gethrtime();
1251 
1252 	sp = kmem_findslab(cp, buf);
1253 	if (sp == NULL) {
1254 		for (cp = list_tail(&kmem_caches); cp != NULL;
1255 		    cp = list_prev(&kmem_caches, cp)) {
1256 			if ((sp = kmem_findslab(cp, buf)) != NULL)
1257 				break;
1258 		}
1259 	}
1260 
1261 	if (sp == NULL) {
1262 		cp = NULL;
1263 		error = KMERR_BADADDR;
1264 	} else {
1265 		if (cp != cparg)
1266 			error = KMERR_BADCACHE;
1267 		else
1268 			buf = (char *)bufarg - ((uintptr_t)bufarg -
1269 			    (uintptr_t)sp->slab_base) % cp->cache_chunksize;
1270 		if (buf != bufarg)
1271 			error = KMERR_BADBASE;
1272 		if (cp->cache_flags & KMF_BUFTAG)
1273 			btp = KMEM_BUFTAG(cp, buf);
1274 		if (cp->cache_flags & KMF_HASH) {
1275 			mutex_enter(&cp->cache_lock);
1276 			for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
1277 				if (bcp->bc_addr == buf)
1278 					break;
1279 			mutex_exit(&cp->cache_lock);
1280 			if (bcp == NULL && btp != NULL)
1281 				bcp = btp->bt_bufctl;
1282 			if (kmem_findslab(cp->cache_bufctl_cache, bcp) ==
1283 			    NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) ||
1284 			    bcp->bc_addr != buf) {
1285 				error = KMERR_BADBUFCTL;
1286 				bcp = NULL;
1287 			}
1288 		}
1289 	}
1290 
1291 	kmem_panic_info.kmp_error = error;
1292 	kmem_panic_info.kmp_buffer = bufarg;
1293 	kmem_panic_info.kmp_realbuf = buf;
1294 	kmem_panic_info.kmp_cache = cparg;
1295 	kmem_panic_info.kmp_realcache = cp;
1296 	kmem_panic_info.kmp_slab = sp;
1297 	kmem_panic_info.kmp_bufctl = bcp;
1298 
1299 	printf("kernel memory allocator: ");
1300 
1301 	switch (error) {
1302 
1303 	case KMERR_MODIFIED:
1304 		printf("buffer modified after being freed\n");
1305 		off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1306 		if (off == NULL)	/* shouldn't happen */
1307 			off = buf;
1308 		printf("modification occurred at offset 0x%lx "
1309 		    "(0x%llx replaced by 0x%llx)\n",
1310 		    (uintptr_t)off - (uintptr_t)buf,
1311 		    (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off);
1312 		break;
1313 
1314 	case KMERR_REDZONE:
1315 		printf("redzone violation: write past end of buffer\n");
1316 		break;
1317 
1318 	case KMERR_BADADDR:
1319 		printf("invalid free: buffer not in cache\n");
1320 		break;
1321 
1322 	case KMERR_DUPFREE:
1323 		printf("duplicate free: buffer freed twice\n");
1324 		break;
1325 
1326 	case KMERR_BADBUFTAG:
1327 		printf("boundary tag corrupted\n");
1328 		printf("bcp ^ bxstat = %lx, should be %lx\n",
1329 		    (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
1330 		    KMEM_BUFTAG_FREE);
1331 		break;
1332 
1333 	case KMERR_BADBUFCTL:
1334 		printf("bufctl corrupted\n");
1335 		break;
1336 
1337 	case KMERR_BADCACHE:
1338 		printf("buffer freed to wrong cache\n");
1339 		printf("buffer was allocated from %s,\n", cp->cache_name);
1340 		printf("caller attempting free to %s.\n", cparg->cache_name);
1341 		break;
1342 
1343 	case KMERR_BADSIZE:
1344 		printf("bad free: free size (%u) != alloc size (%u)\n",
1345 		    KMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
1346 		    KMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
1347 		break;
1348 
1349 	case KMERR_BADBASE:
1350 		printf("bad free: free address (%p) != alloc address (%p)\n",
1351 		    bufarg, buf);
1352 		break;
1353 	}
1354 
1355 	printf("buffer=%p  bufctl=%p  cache: %s\n",
1356 	    bufarg, (void *)bcp, cparg->cache_name);
1357 
1358 	if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) &&
1359 	    error != KMERR_BADBUFCTL) {
1360 		int d;
1361 		timestruc_t ts;
1362 		kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp;
1363 
1364 		hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts);
1365 		printf("previous transaction on buffer %p:\n", buf);
1366 		printf("thread=%p  time=T-%ld.%09ld  slab=%p  cache: %s\n",
1367 		    (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
1368 		    (void *)sp, cp->cache_name);
1369 		for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) {
1370 			ulong_t off;
1371 			char *sym = kobj_getsymname(bcap->bc_stack[d], &off);
1372 			printf("%s+%lx\n", sym ? sym : "?", off);
1373 		}
1374 	}
1375 	if (kmem_panic > 0)
1376 		panic("kernel heap corruption detected");
1377 	if (kmem_panic == 0)
1378 		debug_enter(NULL);
1379 	kmem_logging = 1;	/* resume logging */
1380 }
1381 
1382 static kmem_log_header_t *
1383 kmem_log_init(size_t logsize)
1384 {
1385 	kmem_log_header_t *lhp;
1386 	int nchunks = 4 * max_ncpus;
1387 	size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus];
1388 	int i;
1389 
1390 	/*
1391 	 * Make sure that lhp->lh_cpu[] is nicely aligned
1392 	 * to prevent false sharing of cache lines.
1393 	 */
1394 	lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN);
1395 	lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
1396 	    NULL, NULL, VM_SLEEP);
1397 	bzero(lhp, lhsize);
1398 
1399 	mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL);
1400 	lhp->lh_nchunks = nchunks;
1401 	lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE);
1402 	lhp->lh_base = vmem_alloc(kmem_log_arena,
1403 	    lhp->lh_chunksize * nchunks, VM_SLEEP);
1404 	lhp->lh_free = vmem_alloc(kmem_log_arena,
1405 	    nchunks * sizeof (int), VM_SLEEP);
1406 	bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
1407 
1408 	for (i = 0; i < max_ncpus; i++) {
1409 		kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
1410 		mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL);
1411 		clhp->clh_chunk = i;
1412 	}
1413 
1414 	for (i = max_ncpus; i < nchunks; i++)
1415 		lhp->lh_free[i] = i;
1416 
1417 	lhp->lh_head = max_ncpus;
1418 	lhp->lh_tail = 0;
1419 
1420 	return (lhp);
1421 }
1422 
1423 static void *
1424 kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size)
1425 {
1426 	void *logspace;
1427 	kmem_cpu_log_header_t *clhp;
1428 
1429 	if (lhp == NULL || kmem_logging == 0 || panicstr)
1430 		return (NULL);
1431 
1432 	clhp = &lhp->lh_cpu[CPU->cpu_seqid];
1433 
1434 	mutex_enter(&clhp->clh_lock);
1435 	clhp->clh_hits++;
1436 	if (size > clhp->clh_avail) {
1437 		mutex_enter(&lhp->lh_lock);
1438 		lhp->lh_hits++;
1439 		lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
1440 		lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
1441 		clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
1442 		lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
1443 		clhp->clh_current = lhp->lh_base +
1444 		    clhp->clh_chunk * lhp->lh_chunksize;
1445 		clhp->clh_avail = lhp->lh_chunksize;
1446 		if (size > lhp->lh_chunksize)
1447 			size = lhp->lh_chunksize;
1448 		mutex_exit(&lhp->lh_lock);
1449 	}
1450 	logspace = clhp->clh_current;
1451 	clhp->clh_current += size;
1452 	clhp->clh_avail -= size;
1453 	bcopy(data, logspace, size);
1454 	mutex_exit(&clhp->clh_lock);
1455 	return (logspace);
1456 }
1457 
1458 #define	KMEM_AUDIT(lp, cp, bcp)						\
1459 {									\
1460 	kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp);	\
1461 	_bcp->bc_timestamp = gethrtime();				\
1462 	_bcp->bc_thread = curthread;					\
1463 	_bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH);	\
1464 	_bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp));	\
1465 }
1466 
1467 static void
1468 kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp,
1469     kmem_slab_t *sp, void *addr)
1470 {
1471 	kmem_bufctl_audit_t bca;
1472 
1473 	bzero(&bca, sizeof (kmem_bufctl_audit_t));
1474 	bca.bc_addr = addr;
1475 	bca.bc_slab = sp;
1476 	bca.bc_cache = cp;
1477 	KMEM_AUDIT(lp, cp, &bca);
1478 }
1479 
1480 /*
1481  * Create a new slab for cache cp.
1482  */
1483 static kmem_slab_t *
1484 kmem_slab_create(kmem_cache_t *cp, int kmflag)
1485 {
1486 	size_t slabsize = cp->cache_slabsize;
1487 	size_t chunksize = cp->cache_chunksize;
1488 	int cache_flags = cp->cache_flags;
1489 	size_t color, chunks;
1490 	char *buf, *slab;
1491 	kmem_slab_t *sp;
1492 	kmem_bufctl_t *bcp;
1493 	vmem_t *vmp = cp->cache_arena;
1494 
1495 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1496 
1497 	color = cp->cache_color + cp->cache_align;
1498 	if (color > cp->cache_maxcolor)
1499 		color = cp->cache_mincolor;
1500 	cp->cache_color = color;
1501 
1502 	slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS);
1503 
1504 	if (slab == NULL)
1505 		goto vmem_alloc_failure;
1506 
1507 	ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
1508 
1509 	/*
1510 	 * Reverify what was already checked in kmem_cache_set_move(), since the
1511 	 * consolidator depends (for correctness) on slabs being initialized
1512 	 * with the 0xbaddcafe memory pattern (setting a low order bit usable by
1513 	 * clients to distinguish uninitialized memory from known objects).
1514 	 */
1515 	ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH));
1516 	if (!(cp->cache_cflags & KMC_NOTOUCH))
1517 		copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize);
1518 
1519 	if (cache_flags & KMF_HASH) {
1520 		if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL)
1521 			goto slab_alloc_failure;
1522 		chunks = (slabsize - color) / chunksize;
1523 	} else {
1524 		sp = KMEM_SLAB(cp, slab);
1525 		chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize;
1526 	}
1527 
1528 	sp->slab_cache	= cp;
1529 	sp->slab_head	= NULL;
1530 	sp->slab_refcnt	= 0;
1531 	sp->slab_base	= buf = slab + color;
1532 	sp->slab_chunks	= chunks;
1533 	sp->slab_stuck_offset = (uint32_t)-1;
1534 	sp->slab_later_count = 0;
1535 	sp->slab_flags = 0;
1536 
1537 	ASSERT(chunks > 0);
1538 	while (chunks-- != 0) {
1539 		if (cache_flags & KMF_HASH) {
1540 			bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag);
1541 			if (bcp == NULL)
1542 				goto bufctl_alloc_failure;
1543 			if (cache_flags & KMF_AUDIT) {
1544 				kmem_bufctl_audit_t *bcap =
1545 				    (kmem_bufctl_audit_t *)bcp;
1546 				bzero(bcap, sizeof (kmem_bufctl_audit_t));
1547 				bcap->bc_cache = cp;
1548 			}
1549 			bcp->bc_addr = buf;
1550 			bcp->bc_slab = sp;
1551 		} else {
1552 			bcp = KMEM_BUFCTL(cp, buf);
1553 		}
1554 		if (cache_flags & KMF_BUFTAG) {
1555 			kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1556 			btp->bt_redzone = KMEM_REDZONE_PATTERN;
1557 			btp->bt_bufctl = bcp;
1558 			btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1559 			if (cache_flags & KMF_DEADBEEF) {
1560 				copy_pattern(KMEM_FREE_PATTERN, buf,
1561 				    cp->cache_verify);
1562 			}
1563 		}
1564 		bcp->bc_next = sp->slab_head;
1565 		sp->slab_head = bcp;
1566 		buf += chunksize;
1567 	}
1568 
1569 	kmem_log_event(kmem_slab_log, cp, sp, slab);
1570 
1571 	return (sp);
1572 
1573 bufctl_alloc_failure:
1574 
1575 	while ((bcp = sp->slab_head) != NULL) {
1576 		sp->slab_head = bcp->bc_next;
1577 		kmem_cache_free(cp->cache_bufctl_cache, bcp);
1578 	}
1579 	kmem_cache_free(kmem_slab_cache, sp);
1580 
1581 slab_alloc_failure:
1582 
1583 	vmem_free(vmp, slab, slabsize);
1584 
1585 vmem_alloc_failure:
1586 
1587 	kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1588 	atomic_inc_64(&cp->cache_alloc_fail);
1589 
1590 	return (NULL);
1591 }
1592 
1593 /*
1594  * Destroy a slab.
1595  */
1596 static void
1597 kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp)
1598 {
1599 	vmem_t *vmp = cp->cache_arena;
1600 	void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
1601 
1602 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
1603 	ASSERT(sp->slab_refcnt == 0);
1604 
1605 	if (cp->cache_flags & KMF_HASH) {
1606 		kmem_bufctl_t *bcp;
1607 		while ((bcp = sp->slab_head) != NULL) {
1608 			sp->slab_head = bcp->bc_next;
1609 			kmem_cache_free(cp->cache_bufctl_cache, bcp);
1610 		}
1611 		kmem_cache_free(kmem_slab_cache, sp);
1612 	}
1613 	vmem_free(vmp, slab, cp->cache_slabsize);
1614 }
1615 
1616 static void *
1617 kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp, boolean_t prefill)
1618 {
1619 	kmem_bufctl_t *bcp, **hash_bucket;
1620 	void *buf;
1621 	boolean_t new_slab = (sp->slab_refcnt == 0);
1622 
1623 	ASSERT(MUTEX_HELD(&cp->cache_lock));
1624 	/*
1625 	 * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we
1626 	 * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the
1627 	 * slab is newly created.
1628 	 */
1629 	ASSERT(new_slab || (KMEM_SLAB_IS_PARTIAL(sp) &&
1630 	    (sp == avl_first(&cp->cache_partial_slabs))));
1631 	ASSERT(sp->slab_cache == cp);
1632 
1633 	cp->cache_slab_alloc++;
1634 	cp->cache_bufslab--;
1635 	sp->slab_refcnt++;
1636 
1637 	bcp = sp->slab_head;
1638 	sp->slab_head = bcp->bc_next;
1639 
1640 	if (cp->cache_flags & KMF_HASH) {
1641 		/*
1642 		 * Add buffer to allocated-address hash table.
1643 		 */
1644 		buf = bcp->bc_addr;
1645 		hash_bucket = KMEM_HASH(cp, buf);
1646 		bcp->bc_next = *hash_bucket;
1647 		*hash_bucket = bcp;
1648 		if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1649 			KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1650 		}
1651 	} else {
1652 		buf = KMEM_BUF(cp, bcp);
1653 	}
1654 
1655 	ASSERT(KMEM_SLAB_MEMBER(sp, buf));
1656 
1657 	if (sp->slab_head == NULL) {
1658 		ASSERT(KMEM_SLAB_IS_ALL_USED(sp));
1659 		if (new_slab) {
1660 			ASSERT(sp->slab_chunks == 1);
1661 		} else {
1662 			ASSERT(sp->slab_chunks > 1); /* the slab was partial */
1663 			avl_remove(&cp->cache_partial_slabs, sp);
1664 			sp->slab_later_count = 0; /* clear history */
1665 			sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
1666 			sp->slab_stuck_offset = (uint32_t)-1;
1667 		}
1668 		list_insert_head(&cp->cache_complete_slabs, sp);
1669 		cp->cache_complete_slab_count++;
1670 		return (buf);
1671 	}
1672 
1673 	ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
1674 	/*
1675 	 * Peek to see if the magazine layer is enabled before
1676 	 * we prefill.  We're not holding the cpu cache lock,
1677 	 * so the peek could be wrong, but there's no harm in it.
1678 	 */
1679 	if (new_slab && prefill && (cp->cache_flags & KMF_PREFILL) &&
1680 	    (KMEM_CPU_CACHE(cp)->cc_magsize != 0))  {
1681 		kmem_slab_prefill(cp, sp);
1682 		return (buf);
1683 	}
1684 
1685 	if (new_slab) {
1686 		avl_add(&cp->cache_partial_slabs, sp);
1687 		return (buf);
1688 	}
1689 
1690 	/*
1691 	 * The slab is now more allocated than it was, so the
1692 	 * order remains unchanged.
1693 	 */
1694 	ASSERT(!avl_update(&cp->cache_partial_slabs, sp));
1695 	return (buf);
1696 }
1697 
1698 /*
1699  * Allocate a raw (unconstructed) buffer from cp's slab layer.
1700  */
1701 static void *
1702 kmem_slab_alloc(kmem_cache_t *cp, int kmflag)
1703 {
1704 	kmem_slab_t *sp;
1705 	void *buf;
1706 	boolean_t test_destructor;
1707 
1708 	mutex_enter(&cp->cache_lock);
1709 	test_destructor = (cp->cache_slab_alloc == 0);
1710 	sp = avl_first(&cp->cache_partial_slabs);
1711 	if (sp == NULL) {
1712 		ASSERT(cp->cache_bufslab == 0);
1713 
1714 		/*
1715 		 * The freelist is empty.  Create a new slab.
1716 		 */
1717 		mutex_exit(&cp->cache_lock);
1718 		if ((sp = kmem_slab_create(cp, kmflag)) == NULL) {
1719 			return (NULL);
1720 		}
1721 		mutex_enter(&cp->cache_lock);
1722 		cp->cache_slab_create++;
1723 		if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
1724 			cp->cache_bufmax = cp->cache_buftotal;
1725 		cp->cache_bufslab += sp->slab_chunks;
1726 	}
1727 
1728 	buf = kmem_slab_alloc_impl(cp, sp, B_TRUE);
1729 	ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1730 	    (cp->cache_complete_slab_count +
1731 	    avl_numnodes(&cp->cache_partial_slabs) +
1732 	    (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1733 	mutex_exit(&cp->cache_lock);
1734 
1735 	if (test_destructor && cp->cache_destructor != NULL) {
1736 		/*
1737 		 * On the first kmem_slab_alloc(), assert that it is valid to
1738 		 * call the destructor on a newly constructed object without any
1739 		 * client involvement.
1740 		 */
1741 		if ((cp->cache_constructor == NULL) ||
1742 		    cp->cache_constructor(buf, cp->cache_private,
1743 		    kmflag) == 0) {
1744 			cp->cache_destructor(buf, cp->cache_private);
1745 		}
1746 		copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf,
1747 		    cp->cache_bufsize);
1748 		if (cp->cache_flags & KMF_DEADBEEF) {
1749 			copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1750 		}
1751 	}
1752 
1753 	return (buf);
1754 }
1755 
1756 static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *);
1757 
1758 /*
1759  * Free a raw (unconstructed) buffer to cp's slab layer.
1760  */
1761 static void
1762 kmem_slab_free(kmem_cache_t *cp, void *buf)
1763 {
1764 	kmem_slab_t *sp;
1765 	kmem_bufctl_t *bcp, **prev_bcpp;
1766 
1767 	ASSERT(buf != NULL);
1768 
1769 	mutex_enter(&cp->cache_lock);
1770 	cp->cache_slab_free++;
1771 
1772 	if (cp->cache_flags & KMF_HASH) {
1773 		/*
1774 		 * Look up buffer in allocated-address hash table.
1775 		 */
1776 		prev_bcpp = KMEM_HASH(cp, buf);
1777 		while ((bcp = *prev_bcpp) != NULL) {
1778 			if (bcp->bc_addr == buf) {
1779 				*prev_bcpp = bcp->bc_next;
1780 				sp = bcp->bc_slab;
1781 				break;
1782 			}
1783 			cp->cache_lookup_depth++;
1784 			prev_bcpp = &bcp->bc_next;
1785 		}
1786 	} else {
1787 		bcp = KMEM_BUFCTL(cp, buf);
1788 		sp = KMEM_SLAB(cp, buf);
1789 	}
1790 
1791 	if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) {
1792 		mutex_exit(&cp->cache_lock);
1793 		kmem_error(KMERR_BADADDR, cp, buf);
1794 		return;
1795 	}
1796 
1797 	if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) {
1798 		/*
1799 		 * If this is the buffer that prevented the consolidator from
1800 		 * clearing the slab, we can reset the slab flags now that the
1801 		 * buffer is freed. (It makes sense to do this in
1802 		 * kmem_cache_free(), where the client gives up ownership of the
1803 		 * buffer, but on the hot path the test is too expensive.)
1804 		 */
1805 		kmem_slab_move_yes(cp, sp, buf);
1806 	}
1807 
1808 	if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
1809 		if (cp->cache_flags & KMF_CONTENTS)
1810 			((kmem_bufctl_audit_t *)bcp)->bc_contents =
1811 			    kmem_log_enter(kmem_content_log, buf,
1812 			    cp->cache_contents);
1813 		KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1814 	}
1815 
1816 	bcp->bc_next = sp->slab_head;
1817 	sp->slab_head = bcp;
1818 
1819 	cp->cache_bufslab++;
1820 	ASSERT(sp->slab_refcnt >= 1);
1821 
1822 	if (--sp->slab_refcnt == 0) {
1823 		/*
1824 		 * There are no outstanding allocations from this slab,
1825 		 * so we can reclaim the memory.
1826 		 */
1827 		if (sp->slab_chunks == 1) {
1828 			list_remove(&cp->cache_complete_slabs, sp);
1829 			cp->cache_complete_slab_count--;
1830 		} else {
1831 			avl_remove(&cp->cache_partial_slabs, sp);
1832 		}
1833 
1834 		cp->cache_buftotal -= sp->slab_chunks;
1835 		cp->cache_bufslab -= sp->slab_chunks;
1836 		/*
1837 		 * Defer releasing the slab to the virtual memory subsystem
1838 		 * while there is a pending move callback, since we guarantee
1839 		 * that buffers passed to the move callback have only been
1840 		 * touched by kmem or by the client itself. Since the memory
1841 		 * patterns baddcafe (uninitialized) and deadbeef (freed) both
1842 		 * set at least one of the two lowest order bits, the client can
1843 		 * test those bits in the move callback to determine whether or
1844 		 * not it knows about the buffer (assuming that the client also
1845 		 * sets one of those low order bits whenever it frees a buffer).
1846 		 */
1847 		if (cp->cache_defrag == NULL ||
1848 		    (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) &&
1849 		    !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) {
1850 			cp->cache_slab_destroy++;
1851 			mutex_exit(&cp->cache_lock);
1852 			kmem_slab_destroy(cp, sp);
1853 		} else {
1854 			list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
1855 			/*
1856 			 * Slabs are inserted at both ends of the deadlist to
1857 			 * distinguish between slabs freed while move callbacks
1858 			 * are pending (list head) and a slab freed while the
1859 			 * lock is dropped in kmem_move_buffers() (list tail) so
1860 			 * that in both cases slab_destroy() is called from the
1861 			 * right context.
1862 			 */
1863 			if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
1864 				list_insert_tail(deadlist, sp);
1865 			} else {
1866 				list_insert_head(deadlist, sp);
1867 			}
1868 			cp->cache_defrag->kmd_deadcount++;
1869 			mutex_exit(&cp->cache_lock);
1870 		}
1871 		return;
1872 	}
1873 
1874 	if (bcp->bc_next == NULL) {
1875 		/* Transition the slab from completely allocated to partial. */
1876 		ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1));
1877 		ASSERT(sp->slab_chunks > 1);
1878 		list_remove(&cp->cache_complete_slabs, sp);
1879 		cp->cache_complete_slab_count--;
1880 		avl_add(&cp->cache_partial_slabs, sp);
1881 	} else {
1882 		(void) avl_update_gt(&cp->cache_partial_slabs, sp);
1883 	}
1884 
1885 	ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) ==
1886 	    (cp->cache_complete_slab_count +
1887 	    avl_numnodes(&cp->cache_partial_slabs) +
1888 	    (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount)));
1889 	mutex_exit(&cp->cache_lock);
1890 }
1891 
1892 /*
1893  * Return -1 if kmem_error, 1 if constructor fails, 0 if successful.
1894  */
1895 static int
1896 kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct,
1897     caddr_t caller)
1898 {
1899 	kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1900 	kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1901 	uint32_t mtbf;
1902 
1903 	if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1904 		kmem_error(KMERR_BADBUFTAG, cp, buf);
1905 		return (-1);
1906 	}
1907 
1908 	btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC;
1909 
1910 	if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
1911 		kmem_error(KMERR_BADBUFCTL, cp, buf);
1912 		return (-1);
1913 	}
1914 
1915 	if (cp->cache_flags & KMF_DEADBEEF) {
1916 		if (!construct && (cp->cache_flags & KMF_LITE)) {
1917 			if (*(uint64_t *)buf != KMEM_FREE_PATTERN) {
1918 				kmem_error(KMERR_MODIFIED, cp, buf);
1919 				return (-1);
1920 			}
1921 			if (cp->cache_constructor != NULL)
1922 				*(uint64_t *)buf = btp->bt_redzone;
1923 			else
1924 				*(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN;
1925 		} else {
1926 			construct = 1;
1927 			if (verify_and_copy_pattern(KMEM_FREE_PATTERN,
1928 			    KMEM_UNINITIALIZED_PATTERN, buf,
1929 			    cp->cache_verify)) {
1930 				kmem_error(KMERR_MODIFIED, cp, buf);
1931 				return (-1);
1932 			}
1933 		}
1934 	}
1935 	btp->bt_redzone = KMEM_REDZONE_PATTERN;
1936 
1937 	if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 &&
1938 	    gethrtime() % mtbf == 0 &&
1939 	    (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) {
1940 		kmem_log_event(kmem_failure_log, cp, NULL, NULL);
1941 		if (!construct && cp->cache_destructor != NULL)
1942 			cp->cache_destructor(buf, cp->cache_private);
1943 	} else {
1944 		mtbf = 0;
1945 	}
1946 
1947 	if (mtbf || (construct && cp->cache_constructor != NULL &&
1948 	    cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) {
1949 		atomic_inc_64(&cp->cache_alloc_fail);
1950 		btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1951 		if (cp->cache_flags & KMF_DEADBEEF)
1952 			copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
1953 		kmem_slab_free(cp, buf);
1954 		return (1);
1955 	}
1956 
1957 	if (cp->cache_flags & KMF_AUDIT) {
1958 		KMEM_AUDIT(kmem_transaction_log, cp, bcp);
1959 	}
1960 
1961 	if ((cp->cache_flags & KMF_LITE) &&
1962 	    !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
1963 		KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
1964 	}
1965 
1966 	return (0);
1967 }
1968 
1969 static int
1970 kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller)
1971 {
1972 	kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
1973 	kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
1974 	kmem_slab_t *sp;
1975 
1976 	if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) {
1977 		if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
1978 			kmem_error(KMERR_DUPFREE, cp, buf);
1979 			return (-1);
1980 		}
1981 		sp = kmem_findslab(cp, buf);
1982 		if (sp == NULL || sp->slab_cache != cp)
1983 			kmem_error(KMERR_BADADDR, cp, buf);
1984 		else
1985 			kmem_error(KMERR_REDZONE, cp, buf);
1986 		return (-1);
1987 	}
1988 
1989 	btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
1990 
1991 	if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
1992 		kmem_error(KMERR_BADBUFCTL, cp, buf);
1993 		return (-1);
1994 	}
1995 
1996 	if (btp->bt_redzone != KMEM_REDZONE_PATTERN) {
1997 		kmem_error(KMERR_REDZONE, cp, buf);
1998 		return (-1);
1999 	}
2000 
2001 	if (cp->cache_flags & KMF_AUDIT) {
2002 		if (cp->cache_flags & KMF_CONTENTS)
2003 			bcp->bc_contents = kmem_log_enter(kmem_content_log,
2004 			    buf, cp->cache_contents);
2005 		KMEM_AUDIT(kmem_transaction_log, cp, bcp);
2006 	}
2007 
2008 	if ((cp->cache_flags & KMF_LITE) &&
2009 	    !(cp->cache_cflags & KMC_KMEM_ALLOC)) {
2010 		KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
2011 	}
2012 
2013 	if (cp->cache_flags & KMF_DEADBEEF) {
2014 		if (cp->cache_flags & KMF_LITE)
2015 			btp->bt_redzone = *(uint64_t *)buf;
2016 		else if (cp->cache_destructor != NULL)
2017 			cp->cache_destructor(buf, cp->cache_private);
2018 
2019 		copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
2020 	}
2021 
2022 	return (0);
2023 }
2024 
2025 /*
2026  * Free each object in magazine mp to cp's slab layer, and free mp itself.
2027  */
2028 static void
2029 kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds)
2030 {
2031 	int round;
2032 
2033 	ASSERT(!list_link_active(&cp->cache_link) ||
2034 	    taskq_member(kmem_taskq, curthread));
2035 
2036 	for (round = 0; round < nrounds; round++) {
2037 		void *buf = mp->mag_round[round];
2038 
2039 		if (cp->cache_flags & KMF_DEADBEEF) {
2040 			if (verify_pattern(KMEM_FREE_PATTERN, buf,
2041 			    cp->cache_verify) != NULL) {
2042 				kmem_error(KMERR_MODIFIED, cp, buf);
2043 				continue;
2044 			}
2045 			if ((cp->cache_flags & KMF_LITE) &&
2046 			    cp->cache_destructor != NULL) {
2047 				kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2048 				*(uint64_t *)buf = btp->bt_redzone;
2049 				cp->cache_destructor(buf, cp->cache_private);
2050 				*(uint64_t *)buf = KMEM_FREE_PATTERN;
2051 			}
2052 		} else if (cp->cache_destructor != NULL) {
2053 			cp->cache_destructor(buf, cp->cache_private);
2054 		}
2055 
2056 		kmem_slab_free(cp, buf);
2057 	}
2058 	ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2059 	kmem_cache_free(cp->cache_magtype->mt_cache, mp);
2060 }
2061 
2062 /*
2063  * Allocate a magazine from the depot.
2064  */
2065 static kmem_magazine_t *
2066 kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp)
2067 {
2068 	kmem_magazine_t *mp;
2069 
2070 	/*
2071 	 * If we can't get the depot lock without contention,
2072 	 * update our contention count.  We use the depot
2073 	 * contention rate to determine whether we need to
2074 	 * increase the magazine size for better scalability.
2075 	 */
2076 	if (!mutex_tryenter(&cp->cache_depot_lock)) {
2077 		mutex_enter(&cp->cache_depot_lock);
2078 		cp->cache_depot_contention++;
2079 	}
2080 
2081 	if ((mp = mlp->ml_list) != NULL) {
2082 		ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2083 		mlp->ml_list = mp->mag_next;
2084 		if (--mlp->ml_total < mlp->ml_min)
2085 			mlp->ml_min = mlp->ml_total;
2086 		mlp->ml_alloc++;
2087 	}
2088 
2089 	mutex_exit(&cp->cache_depot_lock);
2090 
2091 	return (mp);
2092 }
2093 
2094 /*
2095  * Free a magazine to the depot.
2096  */
2097 static void
2098 kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp)
2099 {
2100 	mutex_enter(&cp->cache_depot_lock);
2101 	ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
2102 	mp->mag_next = mlp->ml_list;
2103 	mlp->ml_list = mp;
2104 	mlp->ml_total++;
2105 	mutex_exit(&cp->cache_depot_lock);
2106 }
2107 
2108 /*
2109  * Update the working set statistics for cp's depot.
2110  */
2111 static void
2112 kmem_depot_ws_update(kmem_cache_t *cp)
2113 {
2114 	mutex_enter(&cp->cache_depot_lock);
2115 	cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
2116 	cp->cache_full.ml_min = cp->cache_full.ml_total;
2117 	cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
2118 	cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2119 	mutex_exit(&cp->cache_depot_lock);
2120 }
2121 
2122 /*
2123  * Set the working set statistics for cp's depot to zero.  (Everything is
2124  * eligible for reaping.)
2125  */
2126 static void
2127 kmem_depot_ws_zero(kmem_cache_t *cp)
2128 {
2129 	mutex_enter(&cp->cache_depot_lock);
2130 	cp->cache_full.ml_reaplimit = cp->cache_full.ml_total;
2131 	cp->cache_full.ml_min = cp->cache_full.ml_total;
2132 	cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_total;
2133 	cp->cache_empty.ml_min = cp->cache_empty.ml_total;
2134 	mutex_exit(&cp->cache_depot_lock);
2135 }
2136 
2137 /*
2138  * The number of bytes to reap before we call kpreempt(). The default (1MB)
2139  * causes us to preempt reaping up to hundreds of times per second. Using a
2140  * larger value (1GB) causes this to have virtually no effect.
2141  */
2142 size_t kmem_reap_preempt_bytes = 1024 * 1024;
2143 
2144 /*
2145  * Reap all magazines that have fallen out of the depot's working set.
2146  */
2147 static void
2148 kmem_depot_ws_reap(kmem_cache_t *cp)
2149 {
2150 	size_t bytes = 0;
2151 	long reap;
2152 	kmem_magazine_t *mp;
2153 
2154 	ASSERT(!list_link_active(&cp->cache_link) ||
2155 	    taskq_member(kmem_taskq, curthread));
2156 
2157 	reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
2158 	while (reap-- &&
2159 	    (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) {
2160 		kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
2161 		bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2162 		if (bytes > kmem_reap_preempt_bytes) {
2163 			kpreempt(KPREEMPT_SYNC);
2164 			bytes = 0;
2165 		}
2166 	}
2167 
2168 	reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
2169 	while (reap-- &&
2170 	    (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) {
2171 		kmem_magazine_destroy(cp, mp, 0);
2172 		bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize;
2173 		if (bytes > kmem_reap_preempt_bytes) {
2174 			kpreempt(KPREEMPT_SYNC);
2175 			bytes = 0;
2176 		}
2177 	}
2178 }
2179 
2180 static void
2181 kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds)
2182 {
2183 	ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
2184 	    (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
2185 	ASSERT(ccp->cc_magsize > 0);
2186 
2187 	ccp->cc_ploaded = ccp->cc_loaded;
2188 	ccp->cc_prounds = ccp->cc_rounds;
2189 	ccp->cc_loaded = mp;
2190 	ccp->cc_rounds = rounds;
2191 }
2192 
2193 /*
2194  * Intercept kmem alloc/free calls during crash dump in order to avoid
2195  * changing kmem state while memory is being saved to the dump device.
2196  * Otherwise, ::kmem_verify will report "corrupt buffers".  Note that
2197  * there are no locks because only one CPU calls kmem during a crash
2198  * dump. To enable this feature, first create the associated vmem
2199  * arena with VMC_DUMPSAFE.
2200  */
2201 static void *kmem_dump_start;	/* start of pre-reserved heap */
2202 static void *kmem_dump_end;	/* end of heap area */
2203 static void *kmem_dump_curr;	/* current free heap pointer */
2204 static size_t kmem_dump_size;	/* size of heap area */
2205 
2206 /* append to each buf created in the pre-reserved heap */
2207 typedef struct kmem_dumpctl {
2208 	void	*kdc_next;	/* cache dump free list linkage */
2209 } kmem_dumpctl_t;
2210 
2211 #define	KMEM_DUMPCTL(cp, buf)	\
2212 	((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \
2213 	    sizeof (void *)))
2214 
2215 /* set non zero for full report */
2216 uint_t kmem_dump_verbose = 0;
2217 
2218 /* stats for overize heap */
2219 uint_t kmem_dump_oversize_allocs = 0;
2220 uint_t kmem_dump_oversize_max = 0;
2221 
2222 static void
2223 kmem_dumppr(char **pp, char *e, const char *format, ...)
2224 {
2225 	char *p = *pp;
2226 
2227 	if (p < e) {
2228 		int n;
2229 		va_list ap;
2230 
2231 		va_start(ap, format);
2232 		n = vsnprintf(p, e - p, format, ap);
2233 		va_end(ap);
2234 		*pp = p + n;
2235 	}
2236 }
2237 
2238 /*
2239  * Called when dumpadm(1M) configures dump parameters.
2240  */
2241 void
2242 kmem_dump_init(size_t size)
2243 {
2244 	/* Our caller ensures size is always set. */
2245 	ASSERT3U(size, >, 0);
2246 
2247 	if (kmem_dump_start != NULL)
2248 		kmem_free(kmem_dump_start, kmem_dump_size);
2249 
2250 	kmem_dump_start = kmem_alloc(size, KM_SLEEP);
2251 	kmem_dump_size = size;
2252 	kmem_dump_curr = kmem_dump_start;
2253 	kmem_dump_end = (void *)((char *)kmem_dump_start + size);
2254 	copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size);
2255 }
2256 
2257 /*
2258  * Set flag for each kmem_cache_t if is safe to use alternate dump
2259  * memory. Called just before panic crash dump starts. Set the flag
2260  * for the calling CPU.
2261  */
2262 void
2263 kmem_dump_begin(void)
2264 {
2265 	kmem_cache_t *cp;
2266 
2267 	ASSERT(panicstr != NULL);
2268 
2269 	for (cp = list_head(&kmem_caches); cp != NULL;
2270 	    cp = list_next(&kmem_caches, cp)) {
2271 		kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2272 
2273 		if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) {
2274 			cp->cache_flags |= KMF_DUMPDIVERT;
2275 			ccp->cc_flags |= KMF_DUMPDIVERT;
2276 			ccp->cc_dump_rounds = ccp->cc_rounds;
2277 			ccp->cc_dump_prounds = ccp->cc_prounds;
2278 			ccp->cc_rounds = ccp->cc_prounds = -1;
2279 		} else {
2280 			cp->cache_flags |= KMF_DUMPUNSAFE;
2281 			ccp->cc_flags |= KMF_DUMPUNSAFE;
2282 		}
2283 	}
2284 }
2285 
2286 /*
2287  * finished dump intercept
2288  * print any warnings on the console
2289  * return verbose information to dumpsys() in the given buffer
2290  */
2291 size_t
2292 kmem_dump_finish(char *buf, size_t size)
2293 {
2294 	int percent = 0;
2295 	size_t used;
2296 	char *e = buf + size;
2297 	char *p = buf;
2298 
2299 	if (kmem_dump_curr == kmem_dump_end) {
2300 		cmn_err(CE_WARN, "exceeded kmem_dump space of %lu "
2301 		    "bytes: kmem state in dump may be inconsistent",
2302 		    kmem_dump_size);
2303 	}
2304 
2305 	if (kmem_dump_verbose == 0)
2306 		return (0);
2307 
2308 	used = (char *)kmem_dump_curr - (char *)kmem_dump_start;
2309 	percent = (used * 100) / kmem_dump_size;
2310 
2311 	kmem_dumppr(&p, e, "%% heap used,%d\n", percent);
2312 	kmem_dumppr(&p, e, "used bytes,%ld\n", used);
2313 	kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size);
2314 	kmem_dumppr(&p, e, "Oversize allocs,%d\n",
2315 	    kmem_dump_oversize_allocs);
2316 	kmem_dumppr(&p, e, "Oversize max size,%ld\n",
2317 	    kmem_dump_oversize_max);
2318 
2319 	/* return buffer size used */
2320 	if (p < e)
2321 		bzero(p, e - p);
2322 	return (p - buf);
2323 }
2324 
2325 /*
2326  * Allocate a constructed object from alternate dump memory.
2327  */
2328 void *
2329 kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag)
2330 {
2331 	void *buf;
2332 	void *curr;
2333 	char *bufend;
2334 
2335 	/* return a constructed object */
2336 	if ((buf = cp->cache_dump.kd_freelist) != NULL) {
2337 		cp->cache_dump.kd_freelist = KMEM_DUMPCTL(cp, buf)->kdc_next;
2338 		return (buf);
2339 	}
2340 
2341 	/* create a new constructed object */
2342 	curr = kmem_dump_curr;
2343 	buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align);
2344 	bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t);
2345 
2346 	/* hat layer objects cannot cross a page boundary */
2347 	if (cp->cache_align < PAGESIZE) {
2348 		char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE);
2349 		if (bufend > page) {
2350 			bufend += page - (char *)buf;
2351 			buf = (void *)page;
2352 		}
2353 	}
2354 
2355 	/* fall back to normal alloc if reserved area is used up */
2356 	if (bufend > (char *)kmem_dump_end) {
2357 		kmem_dump_curr = kmem_dump_end;
2358 		cp->cache_dump.kd_alloc_fails++;
2359 		return (NULL);
2360 	}
2361 
2362 	/*
2363 	 * Must advance curr pointer before calling a constructor that
2364 	 * may also allocate memory.
2365 	 */
2366 	kmem_dump_curr = bufend;
2367 
2368 	/* run constructor */
2369 	if (cp->cache_constructor != NULL &&
2370 	    cp->cache_constructor(buf, cp->cache_private, kmflag)
2371 	    != 0) {
2372 #ifdef DEBUG
2373 		printf("name='%s' cache=0x%p: kmem cache constructor failed\n",
2374 		    cp->cache_name, (void *)cp);
2375 #endif
2376 		/* reset curr pointer iff no allocs were done */
2377 		if (kmem_dump_curr == bufend)
2378 			kmem_dump_curr = curr;
2379 
2380 		cp->cache_dump.kd_alloc_fails++;
2381 		/* fall back to normal alloc if the constructor fails */
2382 		return (NULL);
2383 	}
2384 
2385 	return (buf);
2386 }
2387 
2388 /*
2389  * Free a constructed object in alternate dump memory.
2390  */
2391 int
2392 kmem_cache_free_dump(kmem_cache_t *cp, void *buf)
2393 {
2394 	/* save constructed buffers for next time */
2395 	if ((char *)buf >= (char *)kmem_dump_start &&
2396 	    (char *)buf < (char *)kmem_dump_end) {
2397 		KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dump.kd_freelist;
2398 		cp->cache_dump.kd_freelist = buf;
2399 		return (0);
2400 	}
2401 
2402 	/* just drop buffers that were allocated before dump started */
2403 	if (kmem_dump_curr < kmem_dump_end)
2404 		return (0);
2405 
2406 	/* fall back to normal free if reserved area is used up */
2407 	return (1);
2408 }
2409 
2410 /*
2411  * Allocate a constructed object from cache cp.
2412  */
2413 void *
2414 kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
2415 {
2416 	kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2417 	kmem_magazine_t *fmp;
2418 	void *buf;
2419 
2420 	mutex_enter(&ccp->cc_lock);
2421 	for (;;) {
2422 		/*
2423 		 * If there's an object available in the current CPU's
2424 		 * loaded magazine, just take it and return.
2425 		 */
2426 		if (ccp->cc_rounds > 0) {
2427 			buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
2428 			ccp->cc_alloc++;
2429 			mutex_exit(&ccp->cc_lock);
2430 			if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) {
2431 				if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2432 					ASSERT(!(ccp->cc_flags &
2433 					    KMF_DUMPDIVERT));
2434 					cp->cache_dump.kd_unsafe++;
2435 				}
2436 				if ((ccp->cc_flags & KMF_BUFTAG) &&
2437 				    kmem_cache_alloc_debug(cp, buf, kmflag, 0,
2438 				    caller()) != 0) {
2439 					if (kmflag & KM_NOSLEEP)
2440 						return (NULL);
2441 					mutex_enter(&ccp->cc_lock);
2442 					continue;
2443 				}
2444 			}
2445 			return (buf);
2446 		}
2447 
2448 		/*
2449 		 * The loaded magazine is empty.  If the previously loaded
2450 		 * magazine was full, exchange them and try again.
2451 		 */
2452 		if (ccp->cc_prounds > 0) {
2453 			kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2454 			continue;
2455 		}
2456 
2457 		/*
2458 		 * Return an alternate buffer at dump time to preserve
2459 		 * the heap.
2460 		 */
2461 		if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2462 			if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2463 				ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2464 				/* log it so that we can warn about it */
2465 				cp->cache_dump.kd_unsafe++;
2466 			} else {
2467 				if ((buf = kmem_cache_alloc_dump(cp, kmflag)) !=
2468 				    NULL) {
2469 					mutex_exit(&ccp->cc_lock);
2470 					return (buf);
2471 				}
2472 				break;		/* fall back to slab layer */
2473 			}
2474 		}
2475 
2476 		/*
2477 		 * If the magazine layer is disabled, break out now.
2478 		 */
2479 		if (ccp->cc_magsize == 0)
2480 			break;
2481 
2482 		/*
2483 		 * Try to get a full magazine from the depot.
2484 		 */
2485 		fmp = kmem_depot_alloc(cp, &cp->cache_full);
2486 		if (fmp != NULL) {
2487 			if (ccp->cc_ploaded != NULL)
2488 				kmem_depot_free(cp, &cp->cache_empty,
2489 				    ccp->cc_ploaded);
2490 			kmem_cpu_reload(ccp, fmp, ccp->cc_magsize);
2491 			continue;
2492 		}
2493 
2494 		/*
2495 		 * There are no full magazines in the depot,
2496 		 * so fall through to the slab layer.
2497 		 */
2498 		break;
2499 	}
2500 	mutex_exit(&ccp->cc_lock);
2501 
2502 	/*
2503 	 * We couldn't allocate a constructed object from the magazine layer,
2504 	 * so get a raw buffer from the slab layer and apply its constructor.
2505 	 */
2506 	buf = kmem_slab_alloc(cp, kmflag);
2507 
2508 	if (buf == NULL)
2509 		return (NULL);
2510 
2511 	if (cp->cache_flags & KMF_BUFTAG) {
2512 		/*
2513 		 * Make kmem_cache_alloc_debug() apply the constructor for us.
2514 		 */
2515 		int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller());
2516 		if (rc != 0) {
2517 			if (kmflag & KM_NOSLEEP)
2518 				return (NULL);
2519 			/*
2520 			 * kmem_cache_alloc_debug() detected corruption
2521 			 * but didn't panic (kmem_panic <= 0). We should not be
2522 			 * here because the constructor failed (indicated by a
2523 			 * return code of 1). Try again.
2524 			 */
2525 			ASSERT(rc == -1);
2526 			return (kmem_cache_alloc(cp, kmflag));
2527 		}
2528 		return (buf);
2529 	}
2530 
2531 	if (cp->cache_constructor != NULL &&
2532 	    cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) {
2533 		atomic_inc_64(&cp->cache_alloc_fail);
2534 		kmem_slab_free(cp, buf);
2535 		return (NULL);
2536 	}
2537 
2538 	return (buf);
2539 }
2540 
2541 /*
2542  * The freed argument tells whether or not kmem_cache_free_debug() has already
2543  * been called so that we can avoid the duplicate free error. For example, a
2544  * buffer on a magazine has already been freed by the client but is still
2545  * constructed.
2546  */
2547 static void
2548 kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed)
2549 {
2550 	if (!freed && (cp->cache_flags & KMF_BUFTAG))
2551 		if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2552 			return;
2553 
2554 	/*
2555 	 * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not,
2556 	 * kmem_cache_free_debug() will have already applied the destructor.
2557 	 */
2558 	if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF &&
2559 	    cp->cache_destructor != NULL) {
2560 		if (cp->cache_flags & KMF_DEADBEEF) {	/* KMF_LITE implied */
2561 			kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2562 			*(uint64_t *)buf = btp->bt_redzone;
2563 			cp->cache_destructor(buf, cp->cache_private);
2564 			*(uint64_t *)buf = KMEM_FREE_PATTERN;
2565 		} else {
2566 			cp->cache_destructor(buf, cp->cache_private);
2567 		}
2568 	}
2569 
2570 	kmem_slab_free(cp, buf);
2571 }
2572 
2573 /*
2574  * Used when there's no room to free a buffer to the per-CPU cache.
2575  * Drops and re-acquires &ccp->cc_lock, and returns non-zero if the
2576  * caller should try freeing to the per-CPU cache again.
2577  * Note that we don't directly install the magazine in the cpu cache,
2578  * since its state may have changed wildly while the lock was dropped.
2579  */
2580 static int
2581 kmem_cpucache_magazine_alloc(kmem_cpu_cache_t *ccp, kmem_cache_t *cp)
2582 {
2583 	kmem_magazine_t *emp;
2584 	kmem_magtype_t *mtp;
2585 
2586 	ASSERT(MUTEX_HELD(&ccp->cc_lock));
2587 	ASSERT(((uint_t)ccp->cc_rounds == ccp->cc_magsize ||
2588 	    ((uint_t)ccp->cc_rounds == -1)) &&
2589 	    ((uint_t)ccp->cc_prounds == ccp->cc_magsize ||
2590 	    ((uint_t)ccp->cc_prounds == -1)));
2591 
2592 	emp = kmem_depot_alloc(cp, &cp->cache_empty);
2593 	if (emp != NULL) {
2594 		if (ccp->cc_ploaded != NULL)
2595 			kmem_depot_free(cp, &cp->cache_full,
2596 			    ccp->cc_ploaded);
2597 		kmem_cpu_reload(ccp, emp, 0);
2598 		return (1);
2599 	}
2600 	/*
2601 	 * There are no empty magazines in the depot,
2602 	 * so try to allocate a new one.  We must drop all locks
2603 	 * across kmem_cache_alloc() because lower layers may
2604 	 * attempt to allocate from this cache.
2605 	 */
2606 	mtp = cp->cache_magtype;
2607 	mutex_exit(&ccp->cc_lock);
2608 	emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP);
2609 	mutex_enter(&ccp->cc_lock);
2610 
2611 	if (emp != NULL) {
2612 		/*
2613 		 * We successfully allocated an empty magazine.
2614 		 * However, we had to drop ccp->cc_lock to do it,
2615 		 * so the cache's magazine size may have changed.
2616 		 * If so, free the magazine and try again.
2617 		 */
2618 		if (ccp->cc_magsize != mtp->mt_magsize) {
2619 			mutex_exit(&ccp->cc_lock);
2620 			kmem_cache_free(mtp->mt_cache, emp);
2621 			mutex_enter(&ccp->cc_lock);
2622 			return (1);
2623 		}
2624 
2625 		/*
2626 		 * We got a magazine of the right size.  Add it to
2627 		 * the depot and try the whole dance again.
2628 		 */
2629 		kmem_depot_free(cp, &cp->cache_empty, emp);
2630 		return (1);
2631 	}
2632 
2633 	/*
2634 	 * We couldn't allocate an empty magazine,
2635 	 * so fall through to the slab layer.
2636 	 */
2637 	return (0);
2638 }
2639 
2640 /*
2641  * Free a constructed object to cache cp.
2642  */
2643 void
2644 kmem_cache_free(kmem_cache_t *cp, void *buf)
2645 {
2646 	kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2647 
2648 	/*
2649 	 * The client must not free either of the buffers passed to the move
2650 	 * callback function.
2651 	 */
2652 	ASSERT(cp->cache_defrag == NULL ||
2653 	    cp->cache_defrag->kmd_thread != curthread ||
2654 	    (buf != cp->cache_defrag->kmd_from_buf &&
2655 	    buf != cp->cache_defrag->kmd_to_buf));
2656 
2657 	if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) {
2658 		if (ccp->cc_flags & KMF_DUMPUNSAFE) {
2659 			ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT));
2660 			/* log it so that we can warn about it */
2661 			cp->cache_dump.kd_unsafe++;
2662 		} else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) {
2663 			return;
2664 		}
2665 		if (ccp->cc_flags & KMF_BUFTAG) {
2666 			if (kmem_cache_free_debug(cp, buf, caller()) == -1)
2667 				return;
2668 		}
2669 	}
2670 
2671 	mutex_enter(&ccp->cc_lock);
2672 	/*
2673 	 * Any changes to this logic should be reflected in kmem_slab_prefill()
2674 	 */
2675 	for (;;) {
2676 		/*
2677 		 * If there's a slot available in the current CPU's
2678 		 * loaded magazine, just put the object there and return.
2679 		 */
2680 		if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2681 			ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
2682 			ccp->cc_free++;
2683 			mutex_exit(&ccp->cc_lock);
2684 			return;
2685 		}
2686 
2687 		/*
2688 		 * The loaded magazine is full.  If the previously loaded
2689 		 * magazine was empty, exchange them and try again.
2690 		 */
2691 		if (ccp->cc_prounds == 0) {
2692 			kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2693 			continue;
2694 		}
2695 
2696 		/*
2697 		 * If the magazine layer is disabled, break out now.
2698 		 */
2699 		if (ccp->cc_magsize == 0)
2700 			break;
2701 
2702 		if (!kmem_cpucache_magazine_alloc(ccp, cp)) {
2703 			/*
2704 			 * We couldn't free our constructed object to the
2705 			 * magazine layer, so apply its destructor and free it
2706 			 * to the slab layer.
2707 			 */
2708 			break;
2709 		}
2710 	}
2711 	mutex_exit(&ccp->cc_lock);
2712 	kmem_slab_free_constructed(cp, buf, B_TRUE);
2713 }
2714 
2715 static void
2716 kmem_slab_prefill(kmem_cache_t *cp, kmem_slab_t *sp)
2717 {
2718 	kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
2719 	int cache_flags = cp->cache_flags;
2720 
2721 	kmem_bufctl_t *next, *head;
2722 	size_t nbufs;
2723 
2724 	/*
2725 	 * Completely allocate the newly created slab and put the pre-allocated
2726 	 * buffers in magazines. Any of the buffers that cannot be put in
2727 	 * magazines must be returned to the slab.
2728 	 */
2729 	ASSERT(MUTEX_HELD(&cp->cache_lock));
2730 	ASSERT((cache_flags & (KMF_PREFILL|KMF_BUFTAG)) == KMF_PREFILL);
2731 	ASSERT(cp->cache_constructor == NULL);
2732 	ASSERT(sp->slab_cache == cp);
2733 	ASSERT(sp->slab_refcnt == 1);
2734 	ASSERT(sp->slab_head != NULL && sp->slab_chunks > sp->slab_refcnt);
2735 	ASSERT(avl_find(&cp->cache_partial_slabs, sp, NULL) == NULL);
2736 
2737 	head = sp->slab_head;
2738 	nbufs = (sp->slab_chunks - sp->slab_refcnt);
2739 	sp->slab_head = NULL;
2740 	sp->slab_refcnt += nbufs;
2741 	cp->cache_bufslab -= nbufs;
2742 	cp->cache_slab_alloc += nbufs;
2743 	list_insert_head(&cp->cache_complete_slabs, sp);
2744 	cp->cache_complete_slab_count++;
2745 	mutex_exit(&cp->cache_lock);
2746 	mutex_enter(&ccp->cc_lock);
2747 
2748 	while (head != NULL) {
2749 		void *buf = KMEM_BUF(cp, head);
2750 		/*
2751 		 * If there's a slot available in the current CPU's
2752 		 * loaded magazine, just put the object there and
2753 		 * continue.
2754 		 */
2755 		if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2756 			ccp->cc_loaded->mag_round[ccp->cc_rounds++] =
2757 			    buf;
2758 			ccp->cc_free++;
2759 			nbufs--;
2760 			head = head->bc_next;
2761 			continue;
2762 		}
2763 
2764 		/*
2765 		 * The loaded magazine is full.  If the previously
2766 		 * loaded magazine was empty, exchange them and try
2767 		 * again.
2768 		 */
2769 		if (ccp->cc_prounds == 0) {
2770 			kmem_cpu_reload(ccp, ccp->cc_ploaded,
2771 			    ccp->cc_prounds);
2772 			continue;
2773 		}
2774 
2775 		/*
2776 		 * If the magazine layer is disabled, break out now.
2777 		 */
2778 
2779 		if (ccp->cc_magsize == 0) {
2780 			break;
2781 		}
2782 
2783 		if (!kmem_cpucache_magazine_alloc(ccp, cp))
2784 			break;
2785 	}
2786 	mutex_exit(&ccp->cc_lock);
2787 	if (nbufs != 0) {
2788 		ASSERT(head != NULL);
2789 
2790 		/*
2791 		 * If there was a failure, return remaining objects to
2792 		 * the slab
2793 		 */
2794 		while (head != NULL) {
2795 			ASSERT(nbufs != 0);
2796 			next = head->bc_next;
2797 			head->bc_next = NULL;
2798 			kmem_slab_free(cp, KMEM_BUF(cp, head));
2799 			head = next;
2800 			nbufs--;
2801 		}
2802 	}
2803 	ASSERT(head == NULL);
2804 	ASSERT(nbufs == 0);
2805 	mutex_enter(&cp->cache_lock);
2806 }
2807 
2808 void *
2809 kmem_zalloc(size_t size, int kmflag)
2810 {
2811 	size_t index;
2812 	void *buf;
2813 
2814 	if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2815 		kmem_cache_t *cp = kmem_alloc_table[index];
2816 		buf = kmem_cache_alloc(cp, kmflag);
2817 		if (buf != NULL) {
2818 			if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2819 				kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2820 				((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2821 				((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2822 
2823 				if (cp->cache_flags & KMF_LITE) {
2824 					KMEM_BUFTAG_LITE_ENTER(btp,
2825 					    kmem_lite_count, caller());
2826 				}
2827 			}
2828 			bzero(buf, size);
2829 		}
2830 	} else {
2831 		buf = kmem_alloc(size, kmflag);
2832 		if (buf != NULL)
2833 			bzero(buf, size);
2834 	}
2835 	return (buf);
2836 }
2837 
2838 void *
2839 kmem_alloc(size_t size, int kmflag)
2840 {
2841 	size_t index;
2842 	kmem_cache_t *cp;
2843 	void *buf;
2844 
2845 	if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) {
2846 		cp = kmem_alloc_table[index];
2847 		/* fall through to kmem_cache_alloc() */
2848 
2849 	} else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2850 	    kmem_big_alloc_table_max) {
2851 		cp = kmem_big_alloc_table[index];
2852 		/* fall through to kmem_cache_alloc() */
2853 
2854 	} else {
2855 		if (size == 0)
2856 			return (NULL);
2857 
2858 		buf = vmem_alloc(kmem_oversize_arena, size,
2859 		    kmflag & KM_VMFLAGS);
2860 		if (buf == NULL)
2861 			kmem_log_event(kmem_failure_log, NULL, NULL,
2862 			    (void *)size);
2863 		else if (KMEM_DUMP(kmem_slab_cache)) {
2864 			/* stats for dump intercept */
2865 			kmem_dump_oversize_allocs++;
2866 			if (size > kmem_dump_oversize_max)
2867 				kmem_dump_oversize_max = size;
2868 		}
2869 		return (buf);
2870 	}
2871 
2872 	buf = kmem_cache_alloc(cp, kmflag);
2873 	if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) {
2874 		kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2875 		((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
2876 		((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
2877 
2878 		if (cp->cache_flags & KMF_LITE) {
2879 			KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller());
2880 		}
2881 	}
2882 	return (buf);
2883 }
2884 
2885 void
2886 kmem_free(void *buf, size_t size)
2887 {
2888 	size_t index;
2889 	kmem_cache_t *cp;
2890 
2891 	if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) {
2892 		cp = kmem_alloc_table[index];
2893 		/* fall through to kmem_cache_free() */
2894 
2895 	} else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
2896 	    kmem_big_alloc_table_max) {
2897 		cp = kmem_big_alloc_table[index];
2898 		/* fall through to kmem_cache_free() */
2899 
2900 	} else {
2901 		EQUIV(buf == NULL, size == 0);
2902 		if (buf == NULL && size == 0)
2903 			return;
2904 		vmem_free(kmem_oversize_arena, buf, size);
2905 		return;
2906 	}
2907 
2908 	if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) {
2909 		kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
2910 		uint32_t *ip = (uint32_t *)btp;
2911 		if (ip[1] != KMEM_SIZE_ENCODE(size)) {
2912 			if (*(uint64_t *)buf == KMEM_FREE_PATTERN) {
2913 				kmem_error(KMERR_DUPFREE, cp, buf);
2914 				return;
2915 			}
2916 			if (KMEM_SIZE_VALID(ip[1])) {
2917 				ip[0] = KMEM_SIZE_ENCODE(size);
2918 				kmem_error(KMERR_BADSIZE, cp, buf);
2919 			} else {
2920 				kmem_error(KMERR_REDZONE, cp, buf);
2921 			}
2922 			return;
2923 		}
2924 		if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) {
2925 			kmem_error(KMERR_REDZONE, cp, buf);
2926 			return;
2927 		}
2928 		btp->bt_redzone = KMEM_REDZONE_PATTERN;
2929 		if (cp->cache_flags & KMF_LITE) {
2930 			KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count,
2931 			    caller());
2932 		}
2933 	}
2934 	kmem_cache_free(cp, buf);
2935 }
2936 
2937 void *
2938 kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
2939 {
2940 	size_t realsize = size + vmp->vm_quantum;
2941 	void *addr;
2942 
2943 	/*
2944 	 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
2945 	 * vm_quantum will cause integer wraparound.  Check for this, and
2946 	 * blow off the firewall page in this case.  Note that such a
2947 	 * giant allocation (the entire kernel address space) can never
2948 	 * be satisfied, so it will either fail immediately (VM_NOSLEEP)
2949 	 * or sleep forever (VM_SLEEP).  Thus, there is no need for a
2950 	 * corresponding check in kmem_firewall_va_free().
2951 	 */
2952 	if (realsize < size)
2953 		realsize = size;
2954 
2955 	/*
2956 	 * While boot still owns resource management, make sure that this
2957 	 * redzone virtual address allocation is properly accounted for in
2958 	 * OBPs "virtual-memory" "available" lists because we're
2959 	 * effectively claiming them for a red zone.  If we don't do this,
2960 	 * the available lists become too fragmented and too large for the
2961 	 * current boot/kernel memory list interface.
2962 	 */
2963 	addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT);
2964 
2965 	if (addr != NULL && kvseg.s_base == NULL && realsize != size)
2966 		(void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum);
2967 
2968 	return (addr);
2969 }
2970 
2971 void
2972 kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
2973 {
2974 	ASSERT((kvseg.s_base == NULL ?
2975 	    va_to_pfn((char *)addr + size) :
2976 	    hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID);
2977 
2978 	vmem_free(vmp, addr, size + vmp->vm_quantum);
2979 }
2980 
2981 /*
2982  * Try to allocate at least `size' bytes of memory without sleeping or
2983  * panicking. Return actual allocated size in `asize'. If allocation failed,
2984  * try final allocation with sleep or panic allowed.
2985  */
2986 void *
2987 kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag)
2988 {
2989 	void *p;
2990 
2991 	*asize = P2ROUNDUP(size, KMEM_ALIGN);
2992 	do {
2993 		p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC);
2994 		if (p != NULL)
2995 			return (p);
2996 		*asize += KMEM_ALIGN;
2997 	} while (*asize <= PAGESIZE);
2998 
2999 	*asize = P2ROUNDUP(size, KMEM_ALIGN);
3000 	return (kmem_alloc(*asize, kmflag));
3001 }
3002 
3003 /*
3004  * Reclaim all unused memory from a cache.
3005  */
3006 static void
3007 kmem_cache_reap(kmem_cache_t *cp)
3008 {
3009 	ASSERT(taskq_member(kmem_taskq, curthread));
3010 	cp->cache_reap++;
3011 
3012 	/*
3013 	 * Ask the cache's owner to free some memory if possible.
3014 	 * The idea is to handle things like the inode cache, which
3015 	 * typically sits on a bunch of memory that it doesn't truly
3016 	 * *need*.  Reclaim policy is entirely up to the owner; this
3017 	 * callback is just an advisory plea for help.
3018 	 */
3019 	if (cp->cache_reclaim != NULL) {
3020 		long delta;
3021 
3022 		/*
3023 		 * Reclaimed memory should be reapable (not included in the
3024 		 * depot's working set).
3025 		 */
3026 		delta = cp->cache_full.ml_total;
3027 		cp->cache_reclaim(cp->cache_private);
3028 		delta = cp->cache_full.ml_total - delta;
3029 		if (delta > 0) {
3030 			mutex_enter(&cp->cache_depot_lock);
3031 			cp->cache_full.ml_reaplimit += delta;
3032 			cp->cache_full.ml_min += delta;
3033 			mutex_exit(&cp->cache_depot_lock);
3034 		}
3035 	}
3036 
3037 	kmem_depot_ws_reap(cp);
3038 
3039 	if (cp->cache_defrag != NULL && !kmem_move_noreap) {
3040 		kmem_cache_defrag(cp);
3041 	}
3042 }
3043 
3044 static void
3045 kmem_reap_timeout(void *flag_arg)
3046 {
3047 	uint32_t *flag = (uint32_t *)flag_arg;
3048 
3049 	ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3050 	*flag = 0;
3051 }
3052 
3053 static void
3054 kmem_reap_done(void *flag)
3055 {
3056 	if (!callout_init_done) {
3057 		/* can't schedule a timeout at this point */
3058 		kmem_reap_timeout(flag);
3059 	} else {
3060 		(void) timeout(kmem_reap_timeout, flag, kmem_reap_interval);
3061 	}
3062 }
3063 
3064 static void
3065 kmem_reap_start(void *flag)
3066 {
3067 	ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
3068 
3069 	if (flag == &kmem_reaping) {
3070 		kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3071 		/*
3072 		 * if we have segkp under heap, reap segkp cache.
3073 		 */
3074 		if (segkp_fromheap)
3075 			segkp_cache_free();
3076 	}
3077 	else
3078 		kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
3079 
3080 	/*
3081 	 * We use taskq_dispatch() to schedule a timeout to clear
3082 	 * the flag so that kmem_reap() becomes self-throttling:
3083 	 * we won't reap again until the current reap completes *and*
3084 	 * at least kmem_reap_interval ticks have elapsed.
3085 	 */
3086 	if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP))
3087 		kmem_reap_done(flag);
3088 }
3089 
3090 static void
3091 kmem_reap_common(void *flag_arg)
3092 {
3093 	uint32_t *flag = (uint32_t *)flag_arg;
3094 
3095 	if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL ||
3096 	    atomic_cas_32(flag, 0, 1) != 0)
3097 		return;
3098 
3099 	/*
3100 	 * It may not be kosher to do memory allocation when a reap is called
3101 	 * (for example, if vmem_populate() is in the call chain).  So we
3102 	 * start the reap going with a TQ_NOALLOC dispatch.  If the dispatch
3103 	 * fails, we reset the flag, and the next reap will try again.
3104 	 */
3105 	if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC))
3106 		*flag = 0;
3107 }
3108 
3109 /*
3110  * Reclaim all unused memory from all caches.  Called from the VM system
3111  * when memory gets tight.
3112  */
3113 void
3114 kmem_reap(void)
3115 {
3116 	kmem_reap_common(&kmem_reaping);
3117 }
3118 
3119 /*
3120  * Reclaim all unused memory from identifier arenas, called when a vmem
3121  * arena not back by memory is exhausted.  Since reaping memory-backed caches
3122  * cannot help with identifier exhaustion, we avoid both a large amount of
3123  * work and unwanted side-effects from reclaim callbacks.
3124  */
3125 void
3126 kmem_reap_idspace(void)
3127 {
3128 	kmem_reap_common(&kmem_reaping_idspace);
3129 }
3130 
3131 /*
3132  * Purge all magazines from a cache and set its magazine limit to zero.
3133  * All calls are serialized by the kmem_taskq lock, except for the final
3134  * call from kmem_cache_destroy().
3135  */
3136 static void
3137 kmem_cache_magazine_purge(kmem_cache_t *cp)
3138 {
3139 	kmem_cpu_cache_t *ccp;
3140 	kmem_magazine_t *mp, *pmp;
3141 	int rounds, prounds, cpu_seqid;
3142 
3143 	ASSERT(!list_link_active(&cp->cache_link) ||
3144 	    taskq_member(kmem_taskq, curthread));
3145 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
3146 
3147 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3148 		ccp = &cp->cache_cpu[cpu_seqid];
3149 
3150 		mutex_enter(&ccp->cc_lock);
3151 		mp = ccp->cc_loaded;
3152 		pmp = ccp->cc_ploaded;
3153 		rounds = ccp->cc_rounds;
3154 		prounds = ccp->cc_prounds;
3155 		ccp->cc_loaded = NULL;
3156 		ccp->cc_ploaded = NULL;
3157 		ccp->cc_rounds = -1;
3158 		ccp->cc_prounds = -1;
3159 		ccp->cc_magsize = 0;
3160 		mutex_exit(&ccp->cc_lock);
3161 
3162 		if (mp)
3163 			kmem_magazine_destroy(cp, mp, rounds);
3164 		if (pmp)
3165 			kmem_magazine_destroy(cp, pmp, prounds);
3166 	}
3167 
3168 	kmem_depot_ws_zero(cp);
3169 	kmem_depot_ws_reap(cp);
3170 }
3171 
3172 /*
3173  * Enable per-cpu magazines on a cache.
3174  */
3175 static void
3176 kmem_cache_magazine_enable(kmem_cache_t *cp)
3177 {
3178 	int cpu_seqid;
3179 
3180 	if (cp->cache_flags & KMF_NOMAGAZINE)
3181 		return;
3182 
3183 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3184 		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3185 		mutex_enter(&ccp->cc_lock);
3186 		ccp->cc_magsize = cp->cache_magtype->mt_magsize;
3187 		mutex_exit(&ccp->cc_lock);
3188 	}
3189 
3190 }
3191 
3192 /*
3193  * Reap (almost) everything right now.
3194  */
3195 void
3196 kmem_cache_reap_now(kmem_cache_t *cp)
3197 {
3198 	ASSERT(list_link_active(&cp->cache_link));
3199 
3200 	kmem_depot_ws_zero(cp);
3201 
3202 	(void) taskq_dispatch(kmem_taskq,
3203 	    (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP);
3204 	taskq_wait(kmem_taskq);
3205 }
3206 
3207 /*
3208  * Recompute a cache's magazine size.  The trade-off is that larger magazines
3209  * provide a higher transfer rate with the depot, while smaller magazines
3210  * reduce memory consumption.  Magazine resizing is an expensive operation;
3211  * it should not be done frequently.
3212  *
3213  * Changes to the magazine size are serialized by the kmem_taskq lock.
3214  *
3215  * Note: at present this only grows the magazine size.  It might be useful
3216  * to allow shrinkage too.
3217  */
3218 static void
3219 kmem_cache_magazine_resize(kmem_cache_t *cp)
3220 {
3221 	kmem_magtype_t *mtp = cp->cache_magtype;
3222 
3223 	ASSERT(taskq_member(kmem_taskq, curthread));
3224 
3225 	if (cp->cache_chunksize < mtp->mt_maxbuf) {
3226 		kmem_cache_magazine_purge(cp);
3227 		mutex_enter(&cp->cache_depot_lock);
3228 		cp->cache_magtype = ++mtp;
3229 		cp->cache_depot_contention_prev =
3230 		    cp->cache_depot_contention + INT_MAX;
3231 		mutex_exit(&cp->cache_depot_lock);
3232 		kmem_cache_magazine_enable(cp);
3233 	}
3234 }
3235 
3236 /*
3237  * Rescale a cache's hash table, so that the table size is roughly the
3238  * cache size.  We want the average lookup time to be extremely small.
3239  */
3240 static void
3241 kmem_hash_rescale(kmem_cache_t *cp)
3242 {
3243 	kmem_bufctl_t **old_table, **new_table, *bcp;
3244 	size_t old_size, new_size, h;
3245 
3246 	ASSERT(taskq_member(kmem_taskq, curthread));
3247 
3248 	new_size = MAX(KMEM_HASH_INITIAL,
3249 	    1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
3250 	old_size = cp->cache_hash_mask + 1;
3251 
3252 	if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
3253 		return;
3254 
3255 	new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *),
3256 	    VM_NOSLEEP);
3257 	if (new_table == NULL)
3258 		return;
3259 	bzero(new_table, new_size * sizeof (void *));
3260 
3261 	mutex_enter(&cp->cache_lock);
3262 
3263 	old_size = cp->cache_hash_mask + 1;
3264 	old_table = cp->cache_hash_table;
3265 
3266 	cp->cache_hash_mask = new_size - 1;
3267 	cp->cache_hash_table = new_table;
3268 	cp->cache_rescale++;
3269 
3270 	for (h = 0; h < old_size; h++) {
3271 		bcp = old_table[h];
3272 		while (bcp != NULL) {
3273 			void *addr = bcp->bc_addr;
3274 			kmem_bufctl_t *next_bcp = bcp->bc_next;
3275 			kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr);
3276 			bcp->bc_next = *hash_bucket;
3277 			*hash_bucket = bcp;
3278 			bcp = next_bcp;
3279 		}
3280 	}
3281 
3282 	mutex_exit(&cp->cache_lock);
3283 
3284 	vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *));
3285 }
3286 
3287 /*
3288  * Perform periodic maintenance on a cache: hash rescaling, depot working-set
3289  * update, magazine resizing, and slab consolidation.
3290  */
3291 static void
3292 kmem_cache_update(kmem_cache_t *cp)
3293 {
3294 	int need_hash_rescale = 0;
3295 	int need_magazine_resize = 0;
3296 
3297 	ASSERT(MUTEX_HELD(&kmem_cache_lock));
3298 
3299 	/*
3300 	 * If the cache has become much larger or smaller than its hash table,
3301 	 * fire off a request to rescale the hash table.
3302 	 */
3303 	mutex_enter(&cp->cache_lock);
3304 
3305 	if ((cp->cache_flags & KMF_HASH) &&
3306 	    (cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
3307 	    (cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
3308 	    cp->cache_hash_mask > KMEM_HASH_INITIAL)))
3309 		need_hash_rescale = 1;
3310 
3311 	mutex_exit(&cp->cache_lock);
3312 
3313 	/*
3314 	 * Update the depot working set statistics.
3315 	 */
3316 	kmem_depot_ws_update(cp);
3317 
3318 	/*
3319 	 * If there's a lot of contention in the depot,
3320 	 * increase the magazine size.
3321 	 */
3322 	mutex_enter(&cp->cache_depot_lock);
3323 
3324 	if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
3325 	    (int)(cp->cache_depot_contention -
3326 	    cp->cache_depot_contention_prev) > kmem_depot_contention)
3327 		need_magazine_resize = 1;
3328 
3329 	cp->cache_depot_contention_prev = cp->cache_depot_contention;
3330 
3331 	mutex_exit(&cp->cache_depot_lock);
3332 
3333 	if (need_hash_rescale)
3334 		(void) taskq_dispatch(kmem_taskq,
3335 		    (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP);
3336 
3337 	if (need_magazine_resize)
3338 		(void) taskq_dispatch(kmem_taskq,
3339 		    (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP);
3340 
3341 	if (cp->cache_defrag != NULL)
3342 		(void) taskq_dispatch(kmem_taskq,
3343 		    (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP);
3344 }
3345 
3346 static void kmem_update(void *);
3347 
3348 static void
3349 kmem_update_timeout(void *dummy)
3350 {
3351 	(void) timeout(kmem_update, dummy, kmem_reap_interval);
3352 }
3353 
3354 static void
3355 kmem_update(void *dummy)
3356 {
3357 	kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP);
3358 
3359 	/*
3360 	 * We use taskq_dispatch() to reschedule the timeout so that
3361 	 * kmem_update() becomes self-throttling: it won't schedule
3362 	 * new tasks until all previous tasks have completed.
3363 	 */
3364 	if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP))
3365 		kmem_update_timeout(NULL);
3366 }
3367 
3368 static int
3369 kmem_cache_kstat_update(kstat_t *ksp, int rw)
3370 {
3371 	struct kmem_cache_kstat *kmcp = &kmem_cache_kstat;
3372 	kmem_cache_t *cp = ksp->ks_private;
3373 	uint64_t cpu_buf_avail;
3374 	uint64_t buf_avail = 0;
3375 	int cpu_seqid;
3376 	long reap;
3377 
3378 	ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock));
3379 
3380 	if (rw == KSTAT_WRITE)
3381 		return (EACCES);
3382 
3383 	mutex_enter(&cp->cache_lock);
3384 
3385 	kmcp->kmc_alloc_fail.value.ui64		= cp->cache_alloc_fail;
3386 	kmcp->kmc_alloc.value.ui64		= cp->cache_slab_alloc;
3387 	kmcp->kmc_free.value.ui64		= cp->cache_slab_free;
3388 	kmcp->kmc_slab_alloc.value.ui64		= cp->cache_slab_alloc;
3389 	kmcp->kmc_slab_free.value.ui64		= cp->cache_slab_free;
3390 
3391 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3392 		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3393 
3394 		mutex_enter(&ccp->cc_lock);
3395 
3396 		cpu_buf_avail = 0;
3397 		if (ccp->cc_rounds > 0)
3398 			cpu_buf_avail += ccp->cc_rounds;
3399 		if (ccp->cc_prounds > 0)
3400 			cpu_buf_avail += ccp->cc_prounds;
3401 
3402 		kmcp->kmc_alloc.value.ui64	+= ccp->cc_alloc;
3403 		kmcp->kmc_free.value.ui64	+= ccp->cc_free;
3404 		buf_avail			+= cpu_buf_avail;
3405 
3406 		mutex_exit(&ccp->cc_lock);
3407 	}
3408 
3409 	mutex_enter(&cp->cache_depot_lock);
3410 
3411 	kmcp->kmc_depot_alloc.value.ui64	= cp->cache_full.ml_alloc;
3412 	kmcp->kmc_depot_free.value.ui64		= cp->cache_empty.ml_alloc;
3413 	kmcp->kmc_depot_contention.value.ui64	= cp->cache_depot_contention;
3414 	kmcp->kmc_full_magazines.value.ui64	= cp->cache_full.ml_total;
3415 	kmcp->kmc_empty_magazines.value.ui64	= cp->cache_empty.ml_total;
3416 	kmcp->kmc_magazine_size.value.ui64	=
3417 	    (cp->cache_flags & KMF_NOMAGAZINE) ?
3418 	    0 : cp->cache_magtype->mt_magsize;
3419 
3420 	kmcp->kmc_alloc.value.ui64		+= cp->cache_full.ml_alloc;
3421 	kmcp->kmc_free.value.ui64		+= cp->cache_empty.ml_alloc;
3422 	buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize;
3423 
3424 	reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
3425 	reap = MIN(reap, cp->cache_full.ml_total);
3426 
3427 	mutex_exit(&cp->cache_depot_lock);
3428 
3429 	kmcp->kmc_buf_size.value.ui64	= cp->cache_bufsize;
3430 	kmcp->kmc_align.value.ui64	= cp->cache_align;
3431 	kmcp->kmc_chunk_size.value.ui64	= cp->cache_chunksize;
3432 	kmcp->kmc_slab_size.value.ui64	= cp->cache_slabsize;
3433 	kmcp->kmc_buf_constructed.value.ui64 = buf_avail;
3434 	buf_avail += cp->cache_bufslab;
3435 	kmcp->kmc_buf_avail.value.ui64	= buf_avail;
3436 	kmcp->kmc_buf_inuse.value.ui64	= cp->cache_buftotal - buf_avail;
3437 	kmcp->kmc_buf_total.value.ui64	= cp->cache_buftotal;
3438 	kmcp->kmc_buf_max.value.ui64	= cp->cache_bufmax;
3439 	kmcp->kmc_slab_create.value.ui64	= cp->cache_slab_create;
3440 	kmcp->kmc_slab_destroy.value.ui64	= cp->cache_slab_destroy;
3441 	kmcp->kmc_hash_size.value.ui64	= (cp->cache_flags & KMF_HASH) ?
3442 	    cp->cache_hash_mask + 1 : 0;
3443 	kmcp->kmc_hash_lookup_depth.value.ui64	= cp->cache_lookup_depth;
3444 	kmcp->kmc_hash_rescale.value.ui64	= cp->cache_rescale;
3445 	kmcp->kmc_vmem_source.value.ui64	= cp->cache_arena->vm_id;
3446 	kmcp->kmc_reap.value.ui64	= cp->cache_reap;
3447 
3448 	if (cp->cache_defrag == NULL) {
3449 		kmcp->kmc_move_callbacks.value.ui64	= 0;
3450 		kmcp->kmc_move_yes.value.ui64		= 0;
3451 		kmcp->kmc_move_no.value.ui64		= 0;
3452 		kmcp->kmc_move_later.value.ui64		= 0;
3453 		kmcp->kmc_move_dont_need.value.ui64	= 0;
3454 		kmcp->kmc_move_dont_know.value.ui64	= 0;
3455 		kmcp->kmc_move_hunt_found.value.ui64	= 0;
3456 		kmcp->kmc_move_slabs_freed.value.ui64	= 0;
3457 		kmcp->kmc_defrag.value.ui64		= 0;
3458 		kmcp->kmc_scan.value.ui64		= 0;
3459 		kmcp->kmc_move_reclaimable.value.ui64	= 0;
3460 	} else {
3461 		int64_t reclaimable;
3462 
3463 		kmem_defrag_t *kd = cp->cache_defrag;
3464 		kmcp->kmc_move_callbacks.value.ui64	= kd->kmd_callbacks;
3465 		kmcp->kmc_move_yes.value.ui64		= kd->kmd_yes;
3466 		kmcp->kmc_move_no.value.ui64		= kd->kmd_no;
3467 		kmcp->kmc_move_later.value.ui64		= kd->kmd_later;
3468 		kmcp->kmc_move_dont_need.value.ui64	= kd->kmd_dont_need;
3469 		kmcp->kmc_move_dont_know.value.ui64	= kd->kmd_dont_know;
3470 		kmcp->kmc_move_hunt_found.value.ui64	= 0;
3471 		kmcp->kmc_move_slabs_freed.value.ui64	= kd->kmd_slabs_freed;
3472 		kmcp->kmc_defrag.value.ui64		= kd->kmd_defrags;
3473 		kmcp->kmc_scan.value.ui64		= kd->kmd_scans;
3474 
3475 		reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1);
3476 		reclaimable = MAX(reclaimable, 0);
3477 		reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
3478 		kmcp->kmc_move_reclaimable.value.ui64	= reclaimable;
3479 	}
3480 
3481 	mutex_exit(&cp->cache_lock);
3482 	return (0);
3483 }
3484 
3485 /*
3486  * Return a named statistic about a particular cache.
3487  * This shouldn't be called very often, so it's currently designed for
3488  * simplicity (leverages existing kstat support) rather than efficiency.
3489  */
3490 uint64_t
3491 kmem_cache_stat(kmem_cache_t *cp, char *name)
3492 {
3493 	int i;
3494 	kstat_t *ksp = cp->cache_kstat;
3495 	kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat;
3496 	uint64_t value = 0;
3497 
3498 	if (ksp != NULL) {
3499 		mutex_enter(&kmem_cache_kstat_lock);
3500 		(void) kmem_cache_kstat_update(ksp, KSTAT_READ);
3501 		for (i = 0; i < ksp->ks_ndata; i++) {
3502 			if (strcmp(knp[i].name, name) == 0) {
3503 				value = knp[i].value.ui64;
3504 				break;
3505 			}
3506 		}
3507 		mutex_exit(&kmem_cache_kstat_lock);
3508 	}
3509 	return (value);
3510 }
3511 
3512 /*
3513  * Return an estimate of currently available kernel heap memory.
3514  * On 32-bit systems, physical memory may exceed virtual memory,
3515  * we just truncate the result at 1GB.
3516  */
3517 size_t
3518 kmem_avail(void)
3519 {
3520 	spgcnt_t rmem = availrmem - tune.t_minarmem;
3521 	spgcnt_t fmem = freemem - minfree;
3522 
3523 	return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0),
3524 	    1 << (30 - PAGESHIFT))));
3525 }
3526 
3527 /*
3528  * Return the maximum amount of memory that is (in theory) allocatable
3529  * from the heap. This may be used as an estimate only since there
3530  * is no guarentee this space will still be available when an allocation
3531  * request is made, nor that the space may be allocated in one big request
3532  * due to kernel heap fragmentation.
3533  */
3534 size_t
3535 kmem_maxavail(void)
3536 {
3537 	spgcnt_t pmem = availrmem - tune.t_minarmem;
3538 	spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE));
3539 
3540 	return ((size_t)ptob(MAX(MIN(pmem, vmem), 0)));
3541 }
3542 
3543 /*
3544  * Indicate whether memory-intensive kmem debugging is enabled.
3545  */
3546 int
3547 kmem_debugging(void)
3548 {
3549 	return (kmem_flags & (KMF_AUDIT | KMF_REDZONE));
3550 }
3551 
3552 /* binning function, sorts finely at the two extremes */
3553 #define	KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift)				\
3554 	((((sp)->slab_refcnt <= (binshift)) ||				\
3555 	    (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift)))	\
3556 	    ? -(sp)->slab_refcnt					\
3557 	    : -((binshift) + ((sp)->slab_refcnt >> (binshift))))
3558 
3559 /*
3560  * Minimizing the number of partial slabs on the freelist minimizes
3561  * fragmentation (the ratio of unused buffers held by the slab layer). There are
3562  * two ways to get a slab off of the freelist: 1) free all the buffers on the
3563  * slab, and 2) allocate all the buffers on the slab. It follows that we want
3564  * the most-used slabs at the front of the list where they have the best chance
3565  * of being completely allocated, and the least-used slabs at a safe distance
3566  * from the front to improve the odds that the few remaining buffers will all be
3567  * freed before another allocation can tie up the slab. For that reason a slab
3568  * with a higher slab_refcnt sorts less than than a slab with a lower
3569  * slab_refcnt.
3570  *
3571  * However, if a slab has at least one buffer that is deemed unfreeable, we
3572  * would rather have that slab at the front of the list regardless of
3573  * slab_refcnt, since even one unfreeable buffer makes the entire slab
3574  * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move()
3575  * callback, the slab is marked unfreeable for as long as it remains on the
3576  * freelist.
3577  */
3578 static int
3579 kmem_partial_slab_cmp(const void *p0, const void *p1)
3580 {
3581 	const kmem_cache_t *cp;
3582 	const kmem_slab_t *s0 = p0;
3583 	const kmem_slab_t *s1 = p1;
3584 	int w0, w1;
3585 	size_t binshift;
3586 
3587 	ASSERT(KMEM_SLAB_IS_PARTIAL(s0));
3588 	ASSERT(KMEM_SLAB_IS_PARTIAL(s1));
3589 	ASSERT(s0->slab_cache == s1->slab_cache);
3590 	cp = s1->slab_cache;
3591 	ASSERT(MUTEX_HELD(&cp->cache_lock));
3592 	binshift = cp->cache_partial_binshift;
3593 
3594 	/* weight of first slab */
3595 	w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift);
3596 	if (s0->slab_flags & KMEM_SLAB_NOMOVE) {
3597 		w0 -= cp->cache_maxchunks;
3598 	}
3599 
3600 	/* weight of second slab */
3601 	w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift);
3602 	if (s1->slab_flags & KMEM_SLAB_NOMOVE) {
3603 		w1 -= cp->cache_maxchunks;
3604 	}
3605 
3606 	if (w0 < w1)
3607 		return (-1);
3608 	if (w0 > w1)
3609 		return (1);
3610 
3611 	/* compare pointer values */
3612 	if ((uintptr_t)s0 < (uintptr_t)s1)
3613 		return (-1);
3614 	if ((uintptr_t)s0 > (uintptr_t)s1)
3615 		return (1);
3616 
3617 	return (0);
3618 }
3619 
3620 /*
3621  * It must be valid to call the destructor (if any) on a newly created object.
3622  * That is, the constructor (if any) must leave the object in a valid state for
3623  * the destructor.
3624  */
3625 kmem_cache_t *
3626 kmem_cache_create(
3627 	char *name,		/* descriptive name for this cache */
3628 	size_t bufsize,		/* size of the objects it manages */
3629 	size_t align,		/* required object alignment */
3630 	int (*constructor)(void *, void *, int), /* object constructor */
3631 	void (*destructor)(void *, void *),	/* object destructor */
3632 	void (*reclaim)(void *), /* memory reclaim callback */
3633 	void *private,		/* pass-thru arg for constr/destr/reclaim */
3634 	vmem_t *vmp,		/* vmem source for slab allocation */
3635 	int cflags)		/* cache creation flags */
3636 {
3637 	int cpu_seqid;
3638 	size_t chunksize;
3639 	kmem_cache_t *cp;
3640 	kmem_magtype_t *mtp;
3641 	size_t csize = KMEM_CACHE_SIZE(max_ncpus);
3642 
3643 #ifdef	DEBUG
3644 	/*
3645 	 * Cache names should conform to the rules for valid C identifiers
3646 	 */
3647 	if (!strident_valid(name)) {
3648 		cmn_err(CE_CONT,
3649 		    "kmem_cache_create: '%s' is an invalid cache name\n"
3650 		    "cache names must conform to the rules for "
3651 		    "C identifiers\n", name);
3652 	}
3653 #endif	/* DEBUG */
3654 
3655 	if (vmp == NULL)
3656 		vmp = kmem_default_arena;
3657 
3658 	/*
3659 	 * If this kmem cache has an identifier vmem arena as its source, mark
3660 	 * it such to allow kmem_reap_idspace().
3661 	 */
3662 	ASSERT(!(cflags & KMC_IDENTIFIER));   /* consumer should not set this */
3663 	if (vmp->vm_cflags & VMC_IDENTIFIER)
3664 		cflags |= KMC_IDENTIFIER;
3665 
3666 	/*
3667 	 * Get a kmem_cache structure.  We arrange that cp->cache_cpu[]
3668 	 * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent
3669 	 * false sharing of per-CPU data.
3670 	 */
3671 	cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE,
3672 	    P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP);
3673 	bzero(cp, csize);
3674 	list_link_init(&cp->cache_link);
3675 
3676 	if (align == 0)
3677 		align = KMEM_ALIGN;
3678 
3679 	/*
3680 	 * If we're not at least KMEM_ALIGN aligned, we can't use free
3681 	 * memory to hold bufctl information (because we can't safely
3682 	 * perform word loads and stores on it).
3683 	 */
3684 	if (align < KMEM_ALIGN)
3685 		cflags |= KMC_NOTOUCH;
3686 
3687 	if (!ISP2(align) || align > vmp->vm_quantum)
3688 		panic("kmem_cache_create: bad alignment %lu", align);
3689 
3690 	mutex_enter(&kmem_flags_lock);
3691 	if (kmem_flags & KMF_RANDOMIZE)
3692 		kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) |
3693 		    KMF_RANDOMIZE;
3694 	cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG;
3695 	mutex_exit(&kmem_flags_lock);
3696 
3697 	/*
3698 	 * Make sure all the various flags are reasonable.
3699 	 */
3700 	ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH));
3701 
3702 	if (cp->cache_flags & KMF_LITE) {
3703 		if (bufsize >= kmem_lite_minsize &&
3704 		    align <= kmem_lite_maxalign &&
3705 		    P2PHASE(bufsize, kmem_lite_maxalign) != 0) {
3706 			cp->cache_flags |= KMF_BUFTAG;
3707 			cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3708 		} else {
3709 			cp->cache_flags &= ~KMF_DEBUG;
3710 		}
3711 	}
3712 
3713 	if (cp->cache_flags & KMF_DEADBEEF)
3714 		cp->cache_flags |= KMF_REDZONE;
3715 
3716 	if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT))
3717 		cp->cache_flags |= KMF_NOMAGAZINE;
3718 
3719 	if (cflags & KMC_NODEBUG)
3720 		cp->cache_flags &= ~KMF_DEBUG;
3721 
3722 	if (cflags & KMC_NOTOUCH)
3723 		cp->cache_flags &= ~KMF_TOUCH;
3724 
3725 	if (cflags & KMC_PREFILL)
3726 		cp->cache_flags |= KMF_PREFILL;
3727 
3728 	if (cflags & KMC_NOHASH)
3729 		cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
3730 
3731 	if (cflags & KMC_NOMAGAZINE)
3732 		cp->cache_flags |= KMF_NOMAGAZINE;
3733 
3734 	if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH))
3735 		cp->cache_flags |= KMF_REDZONE;
3736 
3737 	if (!(cp->cache_flags & KMF_AUDIT))
3738 		cp->cache_flags &= ~KMF_CONTENTS;
3739 
3740 	if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall &&
3741 	    !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH))
3742 		cp->cache_flags |= KMF_FIREWALL;
3743 
3744 	if (vmp != kmem_default_arena || kmem_firewall_arena == NULL)
3745 		cp->cache_flags &= ~KMF_FIREWALL;
3746 
3747 	if (cp->cache_flags & KMF_FIREWALL) {
3748 		cp->cache_flags &= ~KMF_BUFTAG;
3749 		cp->cache_flags |= KMF_NOMAGAZINE;
3750 		ASSERT(vmp == kmem_default_arena);
3751 		vmp = kmem_firewall_arena;
3752 	}
3753 
3754 	/*
3755 	 * Set cache properties.
3756 	 */
3757 	(void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN);
3758 	strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1);
3759 	cp->cache_bufsize = bufsize;
3760 	cp->cache_align = align;
3761 	cp->cache_constructor = constructor;
3762 	cp->cache_destructor = destructor;
3763 	cp->cache_reclaim = reclaim;
3764 	cp->cache_private = private;
3765 	cp->cache_arena = vmp;
3766 	cp->cache_cflags = cflags;
3767 
3768 	/*
3769 	 * Determine the chunk size.
3770 	 */
3771 	chunksize = bufsize;
3772 
3773 	if (align >= KMEM_ALIGN) {
3774 		chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN);
3775 		cp->cache_bufctl = chunksize - KMEM_ALIGN;
3776 	}
3777 
3778 	if (cp->cache_flags & KMF_BUFTAG) {
3779 		cp->cache_bufctl = chunksize;
3780 		cp->cache_buftag = chunksize;
3781 		if (cp->cache_flags & KMF_LITE)
3782 			chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count);
3783 		else
3784 			chunksize += sizeof (kmem_buftag_t);
3785 	}
3786 
3787 	if (cp->cache_flags & KMF_DEADBEEF) {
3788 		cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify);
3789 		if (cp->cache_flags & KMF_LITE)
3790 			cp->cache_verify = sizeof (uint64_t);
3791 	}
3792 
3793 	cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave);
3794 
3795 	cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
3796 
3797 	/*
3798 	 * Now that we know the chunk size, determine the optimal slab size.
3799 	 */
3800 	if (vmp == kmem_firewall_arena) {
3801 		cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
3802 		cp->cache_mincolor = cp->cache_slabsize - chunksize;
3803 		cp->cache_maxcolor = cp->cache_mincolor;
3804 		cp->cache_flags |= KMF_HASH;
3805 		ASSERT(!(cp->cache_flags & KMF_BUFTAG));
3806 	} else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) &&
3807 	    !(cp->cache_flags & KMF_AUDIT) &&
3808 	    chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) {
3809 		cp->cache_slabsize = vmp->vm_quantum;
3810 		cp->cache_mincolor = 0;
3811 		cp->cache_maxcolor =
3812 		    (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize;
3813 		ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize);
3814 		ASSERT(!(cp->cache_flags & KMF_AUDIT));
3815 	} else {
3816 		size_t chunks, bestfit, waste, slabsize;
3817 		size_t minwaste = LONG_MAX;
3818 
3819 		for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) {
3820 			slabsize = P2ROUNDUP(chunksize * chunks,
3821 			    vmp->vm_quantum);
3822 			chunks = slabsize / chunksize;
3823 			waste = (slabsize % chunksize) / chunks;
3824 			if (waste < minwaste) {
3825 				minwaste = waste;
3826 				bestfit = slabsize;
3827 			}
3828 		}
3829 		if (cflags & KMC_QCACHE)
3830 			bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max);
3831 		cp->cache_slabsize = bestfit;
3832 		cp->cache_mincolor = 0;
3833 		cp->cache_maxcolor = bestfit % chunksize;
3834 		cp->cache_flags |= KMF_HASH;
3835 	}
3836 
3837 	cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize);
3838 	cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1;
3839 
3840 	/*
3841 	 * Disallowing prefill when either the DEBUG or HASH flag is set or when
3842 	 * there is a constructor avoids some tricky issues with debug setup
3843 	 * that may be revisited later. We cannot allow prefill in a
3844 	 * metadata cache because of potential recursion.
3845 	 */
3846 	if (vmp == kmem_msb_arena ||
3847 	    cp->cache_flags & (KMF_HASH | KMF_BUFTAG) ||
3848 	    cp->cache_constructor != NULL)
3849 		cp->cache_flags &= ~KMF_PREFILL;
3850 
3851 	if (cp->cache_flags & KMF_HASH) {
3852 		ASSERT(!(cflags & KMC_NOHASH));
3853 		cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ?
3854 		    kmem_bufctl_audit_cache : kmem_bufctl_cache;
3855 	}
3856 
3857 	if (cp->cache_maxcolor >= vmp->vm_quantum)
3858 		cp->cache_maxcolor = vmp->vm_quantum - 1;
3859 
3860 	cp->cache_color = cp->cache_mincolor;
3861 
3862 	/*
3863 	 * Initialize the rest of the slab layer.
3864 	 */
3865 	mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL);
3866 
3867 	avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp,
3868 	    sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3869 	/* LINTED: E_TRUE_LOGICAL_EXPR */
3870 	ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
3871 	/* reuse partial slab AVL linkage for complete slab list linkage */
3872 	list_create(&cp->cache_complete_slabs,
3873 	    sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link));
3874 
3875 	if (cp->cache_flags & KMF_HASH) {
3876 		cp->cache_hash_table = vmem_alloc(kmem_hash_arena,
3877 		    KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP);
3878 		bzero(cp->cache_hash_table,
3879 		    KMEM_HASH_INITIAL * sizeof (void *));
3880 		cp->cache_hash_mask = KMEM_HASH_INITIAL - 1;
3881 		cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
3882 	}
3883 
3884 	/*
3885 	 * Initialize the depot.
3886 	 */
3887 	mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL);
3888 
3889 	for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
3890 		continue;
3891 
3892 	cp->cache_magtype = mtp;
3893 
3894 	/*
3895 	 * Initialize the CPU layer.
3896 	 */
3897 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
3898 		kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
3899 		mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL);
3900 		ccp->cc_flags = cp->cache_flags;
3901 		ccp->cc_rounds = -1;
3902 		ccp->cc_prounds = -1;
3903 	}
3904 
3905 	/*
3906 	 * Create the cache's kstats.
3907 	 */
3908 	if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name,
3909 	    "kmem_cache", KSTAT_TYPE_NAMED,
3910 	    sizeof (kmem_cache_kstat) / sizeof (kstat_named_t),
3911 	    KSTAT_FLAG_VIRTUAL)) != NULL) {
3912 		cp->cache_kstat->ks_data = &kmem_cache_kstat;
3913 		cp->cache_kstat->ks_update = kmem_cache_kstat_update;
3914 		cp->cache_kstat->ks_private = cp;
3915 		cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock;
3916 		kstat_install(cp->cache_kstat);
3917 	}
3918 
3919 	/*
3920 	 * Add the cache to the global list.  This makes it visible
3921 	 * to kmem_update(), so the cache must be ready for business.
3922 	 */
3923 	mutex_enter(&kmem_cache_lock);
3924 	list_insert_tail(&kmem_caches, cp);
3925 	mutex_exit(&kmem_cache_lock);
3926 
3927 	if (kmem_ready)
3928 		kmem_cache_magazine_enable(cp);
3929 
3930 	return (cp);
3931 }
3932 
3933 static int
3934 kmem_move_cmp(const void *buf, const void *p)
3935 {
3936 	const kmem_move_t *kmm = p;
3937 	uintptr_t v1 = (uintptr_t)buf;
3938 	uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf;
3939 	return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0));
3940 }
3941 
3942 static void
3943 kmem_reset_reclaim_threshold(kmem_defrag_t *kmd)
3944 {
3945 	kmd->kmd_reclaim_numer = 1;
3946 }
3947 
3948 /*
3949  * Initially, when choosing candidate slabs for buffers to move, we want to be
3950  * very selective and take only slabs that are less than
3951  * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate
3952  * slabs, then we raise the allocation ceiling incrementally. The reclaim
3953  * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no
3954  * longer fragmented.
3955  */
3956 static void
3957 kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction)
3958 {
3959 	if (direction > 0) {
3960 		/* make it easier to find a candidate slab */
3961 		if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) {
3962 			kmd->kmd_reclaim_numer++;
3963 		}
3964 	} else {
3965 		/* be more selective */
3966 		if (kmd->kmd_reclaim_numer > 1) {
3967 			kmd->kmd_reclaim_numer--;
3968 		}
3969 	}
3970 }
3971 
3972 void
3973 kmem_cache_set_move(kmem_cache_t *cp,
3974     kmem_cbrc_t (*move)(void *, void *, size_t, void *))
3975 {
3976 	kmem_defrag_t *defrag;
3977 
3978 	ASSERT(move != NULL);
3979 	/*
3980 	 * The consolidator does not support NOTOUCH caches because kmem cannot
3981 	 * initialize their slabs with the 0xbaddcafe memory pattern, which sets
3982 	 * a low order bit usable by clients to distinguish uninitialized memory
3983 	 * from known objects (see kmem_slab_create).
3984 	 */
3985 	ASSERT(!(cp->cache_cflags & KMC_NOTOUCH));
3986 	ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER));
3987 
3988 	/*
3989 	 * We should not be holding anyone's cache lock when calling
3990 	 * kmem_cache_alloc(), so allocate in all cases before acquiring the
3991 	 * lock.
3992 	 */
3993 	defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP);
3994 
3995 	mutex_enter(&cp->cache_lock);
3996 
3997 	if (KMEM_IS_MOVABLE(cp)) {
3998 		if (cp->cache_move == NULL) {
3999 			ASSERT(cp->cache_slab_alloc == 0);
4000 
4001 			cp->cache_defrag = defrag;
4002 			defrag = NULL; /* nothing to free */
4003 			bzero(cp->cache_defrag, sizeof (kmem_defrag_t));
4004 			avl_create(&cp->cache_defrag->kmd_moves_pending,
4005 			    kmem_move_cmp, sizeof (kmem_move_t),
4006 			    offsetof(kmem_move_t, kmm_entry));
4007 			/* LINTED: E_TRUE_LOGICAL_EXPR */
4008 			ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t));
4009 			/* reuse the slab's AVL linkage for deadlist linkage */
4010 			list_create(&cp->cache_defrag->kmd_deadlist,
4011 			    sizeof (kmem_slab_t),
4012 			    offsetof(kmem_slab_t, slab_link));
4013 			kmem_reset_reclaim_threshold(cp->cache_defrag);
4014 		}
4015 		cp->cache_move = move;
4016 	}
4017 
4018 	mutex_exit(&cp->cache_lock);
4019 
4020 	if (defrag != NULL) {
4021 		kmem_cache_free(kmem_defrag_cache, defrag); /* unused */
4022 	}
4023 }
4024 
4025 void
4026 kmem_cache_destroy(kmem_cache_t *cp)
4027 {
4028 	int cpu_seqid;
4029 
4030 	/*
4031 	 * Remove the cache from the global cache list so that no one else
4032 	 * can schedule tasks on its behalf, wait for any pending tasks to
4033 	 * complete, purge the cache, and then destroy it.
4034 	 */
4035 	mutex_enter(&kmem_cache_lock);
4036 	list_remove(&kmem_caches, cp);
4037 	mutex_exit(&kmem_cache_lock);
4038 
4039 	if (kmem_taskq != NULL)
4040 		taskq_wait(kmem_taskq);
4041 
4042 	if (kmem_move_taskq != NULL && cp->cache_defrag != NULL)
4043 		taskq_wait(kmem_move_taskq);
4044 
4045 	kmem_cache_magazine_purge(cp);
4046 
4047 	mutex_enter(&cp->cache_lock);
4048 	if (cp->cache_buftotal != 0)
4049 		cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty",
4050 		    cp->cache_name, (void *)cp);
4051 	if (cp->cache_defrag != NULL) {
4052 		avl_destroy(&cp->cache_defrag->kmd_moves_pending);
4053 		list_destroy(&cp->cache_defrag->kmd_deadlist);
4054 		kmem_cache_free(kmem_defrag_cache, cp->cache_defrag);
4055 		cp->cache_defrag = NULL;
4056 	}
4057 	/*
4058 	 * The cache is now dead.  There should be no further activity.  We
4059 	 * enforce this by setting land mines in the constructor, destructor,
4060 	 * reclaim, and move routines that induce a kernel text fault if
4061 	 * invoked.
4062 	 */
4063 	cp->cache_constructor = (int (*)(void *, void *, int))1;
4064 	cp->cache_destructor = (void (*)(void *, void *))2;
4065 	cp->cache_reclaim = (void (*)(void *))3;
4066 	cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4;
4067 	mutex_exit(&cp->cache_lock);
4068 
4069 	kstat_delete(cp->cache_kstat);
4070 
4071 	if (cp->cache_hash_table != NULL)
4072 		vmem_free(kmem_hash_arena, cp->cache_hash_table,
4073 		    (cp->cache_hash_mask + 1) * sizeof (void *));
4074 
4075 	for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++)
4076 		mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
4077 
4078 	mutex_destroy(&cp->cache_depot_lock);
4079 	mutex_destroy(&cp->cache_lock);
4080 
4081 	vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus));
4082 }
4083 
4084 /*ARGSUSED*/
4085 static int
4086 kmem_cpu_setup(cpu_setup_t what, int id, void *arg)
4087 {
4088 	ASSERT(MUTEX_HELD(&cpu_lock));
4089 	if (what == CPU_UNCONFIG) {
4090 		kmem_cache_applyall(kmem_cache_magazine_purge,
4091 		    kmem_taskq, TQ_SLEEP);
4092 		kmem_cache_applyall(kmem_cache_magazine_enable,
4093 		    kmem_taskq, TQ_SLEEP);
4094 	}
4095 	return (0);
4096 }
4097 
4098 static void
4099 kmem_alloc_caches_create(const int *array, size_t count,
4100     kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift)
4101 {
4102 	char name[KMEM_CACHE_NAMELEN + 1];
4103 	size_t table_unit = (1 << shift); /* range of one alloc_table entry */
4104 	size_t size = table_unit;
4105 	int i;
4106 
4107 	for (i = 0; i < count; i++) {
4108 		size_t cache_size = array[i];
4109 		size_t align = KMEM_ALIGN;
4110 		kmem_cache_t *cp;
4111 
4112 		/* if the table has an entry for maxbuf, we're done */
4113 		if (size > maxbuf)
4114 			break;
4115 
4116 		/* cache size must be a multiple of the table unit */
4117 		ASSERT(P2PHASE(cache_size, table_unit) == 0);
4118 
4119 		/*
4120 		 * If they allocate a multiple of the coherency granularity,
4121 		 * they get a coherency-granularity-aligned address.
4122 		 */
4123 		if (IS_P2ALIGNED(cache_size, 64))
4124 			align = 64;
4125 		if (IS_P2ALIGNED(cache_size, PAGESIZE))
4126 			align = PAGESIZE;
4127 		(void) snprintf(name, sizeof (name),
4128 		    "kmem_alloc_%lu", cache_size);
4129 		cp = kmem_cache_create(name, cache_size, align,
4130 		    NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC);
4131 
4132 		while (size <= cache_size) {
4133 			alloc_table[(size - 1) >> shift] = cp;
4134 			size += table_unit;
4135 		}
4136 	}
4137 
4138 	ASSERT(size > maxbuf);		/* i.e. maxbuf <= max(cache_size) */
4139 }
4140 
4141 static void
4142 kmem_cache_init(int pass, int use_large_pages)
4143 {
4144 	int i;
4145 	size_t maxbuf;
4146 	kmem_magtype_t *mtp;
4147 
4148 	for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) {
4149 		char name[KMEM_CACHE_NAMELEN + 1];
4150 
4151 		mtp = &kmem_magtype[i];
4152 		(void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize);
4153 		mtp->mt_cache = kmem_cache_create(name,
4154 		    (mtp->mt_magsize + 1) * sizeof (void *),
4155 		    mtp->mt_align, NULL, NULL, NULL, NULL,
4156 		    kmem_msb_arena, KMC_NOHASH);
4157 	}
4158 
4159 	kmem_slab_cache = kmem_cache_create("kmem_slab_cache",
4160 	    sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL,
4161 	    kmem_msb_arena, KMC_NOHASH);
4162 
4163 	kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache",
4164 	    sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL,
4165 	    kmem_msb_arena, KMC_NOHASH);
4166 
4167 	kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache",
4168 	    sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL,
4169 	    kmem_msb_arena, KMC_NOHASH);
4170 
4171 	if (pass == 2) {
4172 		kmem_va_arena = vmem_create("kmem_va",
4173 		    NULL, 0, PAGESIZE,
4174 		    vmem_alloc, vmem_free, heap_arena,
4175 		    8 * PAGESIZE, VM_SLEEP);
4176 
4177 		if (use_large_pages) {
4178 			kmem_default_arena = vmem_xcreate("kmem_default",
4179 			    NULL, 0, PAGESIZE,
4180 			    segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena,
4181 			    0, VMC_DUMPSAFE | VM_SLEEP);
4182 		} else {
4183 			kmem_default_arena = vmem_create("kmem_default",
4184 			    NULL, 0, PAGESIZE,
4185 			    segkmem_alloc, segkmem_free, kmem_va_arena,
4186 			    0, VMC_DUMPSAFE | VM_SLEEP);
4187 		}
4188 
4189 		/* Figure out what our maximum cache size is */
4190 		maxbuf = kmem_max_cached;
4191 		if (maxbuf <= KMEM_MAXBUF) {
4192 			maxbuf = 0;
4193 			kmem_max_cached = KMEM_MAXBUF;
4194 		} else {
4195 			size_t size = 0;
4196 			size_t max =
4197 			    sizeof (kmem_big_alloc_sizes) / sizeof (int);
4198 			/*
4199 			 * Round maxbuf up to an existing cache size.  If maxbuf
4200 			 * is larger than the largest cache, we truncate it to
4201 			 * the largest cache's size.
4202 			 */
4203 			for (i = 0; i < max; i++) {
4204 				size = kmem_big_alloc_sizes[i];
4205 				if (maxbuf <= size)
4206 					break;
4207 			}
4208 			kmem_max_cached = maxbuf = size;
4209 		}
4210 
4211 		/*
4212 		 * The big alloc table may not be completely overwritten, so
4213 		 * we clear out any stale cache pointers from the first pass.
4214 		 */
4215 		bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table));
4216 	} else {
4217 		/*
4218 		 * During the first pass, the kmem_alloc_* caches
4219 		 * are treated as metadata.
4220 		 */
4221 		kmem_default_arena = kmem_msb_arena;
4222 		maxbuf = KMEM_BIG_MAXBUF_32BIT;
4223 	}
4224 
4225 	/*
4226 	 * Set up the default caches to back kmem_alloc()
4227 	 */
4228 	kmem_alloc_caches_create(
4229 	    kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int),
4230 	    kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT);
4231 
4232 	kmem_alloc_caches_create(
4233 	    kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int),
4234 	    kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT);
4235 
4236 	kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT;
4237 }
4238 
4239 void
4240 kmem_init(void)
4241 {
4242 	kmem_cache_t *cp;
4243 	int old_kmem_flags = kmem_flags;
4244 	int use_large_pages = 0;
4245 	size_t maxverify, minfirewall;
4246 
4247 	kstat_init();
4248 
4249 	/*
4250 	 * Don't do firewalled allocations if the heap is less than 1TB
4251 	 * (i.e. on a 32-bit kernel)
4252 	 * The resulting VM_NEXTFIT allocations would create too much
4253 	 * fragmentation in a small heap.
4254 	 */
4255 #if defined(_LP64)
4256 	maxverify = minfirewall = PAGESIZE / 2;
4257 #else
4258 	maxverify = minfirewall = ULONG_MAX;
4259 #endif
4260 
4261 	/* LINTED */
4262 	ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE);
4263 
4264 	list_create(&kmem_caches, sizeof (kmem_cache_t),
4265 	    offsetof(kmem_cache_t, cache_link));
4266 
4267 	kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE,
4268 	    vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE,
4269 	    VM_SLEEP | VMC_NO_QCACHE);
4270 
4271 	kmem_msb_arena = vmem_create("kmem_msb", NULL, 0,
4272 	    PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0,
4273 	    VMC_DUMPSAFE | VM_SLEEP);
4274 
4275 	kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN,
4276 	    segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4277 
4278 	kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN,
4279 	    segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
4280 
4281 	kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN,
4282 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4283 
4284 	kmem_firewall_va_arena = vmem_create("kmem_firewall_va",
4285 	    NULL, 0, PAGESIZE,
4286 	    kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena,
4287 	    0, VM_SLEEP);
4288 
4289 	kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE,
4290 	    segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0,
4291 	    VMC_DUMPSAFE | VM_SLEEP);
4292 
4293 	/* temporary oversize arena for mod_read_system_file */
4294 	kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE,
4295 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4296 
4297 	kmem_reap_interval = 15 * hz;
4298 
4299 	/*
4300 	 * Read /etc/system.  This is a chicken-and-egg problem because
4301 	 * kmem_flags may be set in /etc/system, but mod_read_system_file()
4302 	 * needs to use the allocator.  The simplest solution is to create
4303 	 * all the standard kmem caches, read /etc/system, destroy all the
4304 	 * caches we just created, and then create them all again in light
4305 	 * of the (possibly) new kmem_flags and other kmem tunables.
4306 	 */
4307 	kmem_cache_init(1, 0);
4308 
4309 	mod_read_system_file(boothowto & RB_ASKNAME);
4310 
4311 	while ((cp = list_tail(&kmem_caches)) != NULL)
4312 		kmem_cache_destroy(cp);
4313 
4314 	vmem_destroy(kmem_oversize_arena);
4315 
4316 	if (old_kmem_flags & KMF_STICKY)
4317 		kmem_flags = old_kmem_flags;
4318 
4319 	if (!(kmem_flags & KMF_AUDIT))
4320 		vmem_seg_size = offsetof(vmem_seg_t, vs_thread);
4321 
4322 	if (kmem_maxverify == 0)
4323 		kmem_maxverify = maxverify;
4324 
4325 	if (kmem_minfirewall == 0)
4326 		kmem_minfirewall = minfirewall;
4327 
4328 	/*
4329 	 * give segkmem a chance to figure out if we are using large pages
4330 	 * for the kernel heap
4331 	 */
4332 	use_large_pages = segkmem_lpsetup();
4333 
4334 	/*
4335 	 * To protect against corruption, we keep the actual number of callers
4336 	 * KMF_LITE records seperate from the tunable.  We arbitrarily clamp
4337 	 * to 16, since the overhead for small buffers quickly gets out of
4338 	 * hand.
4339 	 *
4340 	 * The real limit would depend on the needs of the largest KMC_NOHASH
4341 	 * cache.
4342 	 */
4343 	kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16);
4344 	kmem_lite_pcs = kmem_lite_count;
4345 
4346 	/*
4347 	 * Normally, we firewall oversized allocations when possible, but
4348 	 * if we are using large pages for kernel memory, and we don't have
4349 	 * any non-LITE debugging flags set, we want to allocate oversized
4350 	 * buffers from large pages, and so skip the firewalling.
4351 	 */
4352 	if (use_large_pages &&
4353 	    ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) {
4354 		kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0,
4355 		    PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena,
4356 		    0, VMC_DUMPSAFE | VM_SLEEP);
4357 	} else {
4358 		kmem_oversize_arena = vmem_create("kmem_oversize",
4359 		    NULL, 0, PAGESIZE,
4360 		    segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX?
4361 		    kmem_firewall_va_arena : heap_arena, 0, VMC_DUMPSAFE |
4362 		    VM_SLEEP);
4363 	}
4364 
4365 	kmem_cache_init(2, use_large_pages);
4366 
4367 	if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) {
4368 		if (kmem_transaction_log_size == 0)
4369 			kmem_transaction_log_size = kmem_maxavail() / 50;
4370 		kmem_transaction_log = kmem_log_init(kmem_transaction_log_size);
4371 	}
4372 
4373 	if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) {
4374 		if (kmem_content_log_size == 0)
4375 			kmem_content_log_size = kmem_maxavail() / 50;
4376 		kmem_content_log = kmem_log_init(kmem_content_log_size);
4377 	}
4378 
4379 	kmem_failure_log = kmem_log_init(kmem_failure_log_size);
4380 
4381 	kmem_slab_log = kmem_log_init(kmem_slab_log_size);
4382 
4383 	/*
4384 	 * Initialize STREAMS message caches so allocb() is available.
4385 	 * This allows us to initialize the logging framework (cmn_err(9F),
4386 	 * strlog(9F), etc) so we can start recording messages.
4387 	 */
4388 	streams_msg_init();
4389 
4390 	/*
4391 	 * Initialize the ZSD framework in Zones so modules loaded henceforth
4392 	 * can register their callbacks.
4393 	 */
4394 	zone_zsd_init();
4395 
4396 	log_init();
4397 	taskq_init();
4398 
4399 	/*
4400 	 * Warn about invalid or dangerous values of kmem_flags.
4401 	 * Always warn about unsupported values.
4402 	 */
4403 	if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE |
4404 	    KMF_CONTENTS | KMF_LITE)) != 0) ||
4405 	    ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE))
4406 		cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. "
4407 		    "See the Solaris Tunable Parameters Reference Manual.",
4408 		    kmem_flags);
4409 
4410 #ifdef DEBUG
4411 	if ((kmem_flags & KMF_DEBUG) == 0)
4412 		cmn_err(CE_NOTE, "kmem debugging disabled.");
4413 #else
4414 	/*
4415 	 * For non-debug kernels, the only "normal" flags are 0, KMF_LITE,
4416 	 * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled
4417 	 * if KMF_AUDIT is set). We should warn the user about the performance
4418 	 * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE
4419 	 * isn't set (since that disables AUDIT).
4420 	 */
4421 	if (!(kmem_flags & KMF_LITE) &&
4422 	    (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0)
4423 		cmn_err(CE_WARN, "High-overhead kmem debugging features "
4424 		    "enabled (kmem_flags = 0x%x).  Performance degradation "
4425 		    "and large memory overhead possible. See the Solaris "
4426 		    "Tunable Parameters Reference Manual.", kmem_flags);
4427 #endif /* not DEBUG */
4428 
4429 	kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP);
4430 
4431 	kmem_ready = 1;
4432 
4433 	/*
4434 	 * Initialize the platform-specific aligned/DMA memory allocator.
4435 	 */
4436 	ka_init();
4437 
4438 	/*
4439 	 * Initialize 32-bit ID cache.
4440 	 */
4441 	id32_init();
4442 
4443 	/*
4444 	 * Initialize the networking stack so modules loaded can
4445 	 * register their callbacks.
4446 	 */
4447 	netstack_init();
4448 }
4449 
4450 static void
4451 kmem_move_init(void)
4452 {
4453 	kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache",
4454 	    sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL,
4455 	    kmem_msb_arena, KMC_NOHASH);
4456 	kmem_move_cache = kmem_cache_create("kmem_move_cache",
4457 	    sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL,
4458 	    kmem_msb_arena, KMC_NOHASH);
4459 
4460 	/*
4461 	 * kmem guarantees that move callbacks are sequential and that even
4462 	 * across multiple caches no two moves ever execute simultaneously.
4463 	 * Move callbacks are processed on a separate taskq so that client code
4464 	 * does not interfere with internal maintenance tasks.
4465 	 */
4466 	kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1,
4467 	    minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE);
4468 }
4469 
4470 void
4471 kmem_thread_init(void)
4472 {
4473 	kmem_move_init();
4474 	kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri,
4475 	    300, INT_MAX, TASKQ_PREPOPULATE);
4476 }
4477 
4478 void
4479 kmem_mp_init(void)
4480 {
4481 	mutex_enter(&cpu_lock);
4482 	register_cpu_setup_func(kmem_cpu_setup, NULL);
4483 	mutex_exit(&cpu_lock);
4484 
4485 	kmem_update_timeout(NULL);
4486 
4487 	taskq_mp_init();
4488 }
4489 
4490 /*
4491  * Return the slab of the allocated buffer, or NULL if the buffer is not
4492  * allocated. This function may be called with a known slab address to determine
4493  * whether or not the buffer is allocated, or with a NULL slab address to obtain
4494  * an allocated buffer's slab.
4495  */
4496 static kmem_slab_t *
4497 kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf)
4498 {
4499 	kmem_bufctl_t *bcp, *bufbcp;
4500 
4501 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4502 	ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf));
4503 
4504 	if (cp->cache_flags & KMF_HASH) {
4505 		for (bcp = *KMEM_HASH(cp, buf);
4506 		    (bcp != NULL) && (bcp->bc_addr != buf);
4507 		    bcp = bcp->bc_next) {
4508 			continue;
4509 		}
4510 		ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1);
4511 		return (bcp == NULL ? NULL : bcp->bc_slab);
4512 	}
4513 
4514 	if (sp == NULL) {
4515 		sp = KMEM_SLAB(cp, buf);
4516 	}
4517 	bufbcp = KMEM_BUFCTL(cp, buf);
4518 	for (bcp = sp->slab_head;
4519 	    (bcp != NULL) && (bcp != bufbcp);
4520 	    bcp = bcp->bc_next) {
4521 		continue;
4522 	}
4523 	return (bcp == NULL ? sp : NULL);
4524 }
4525 
4526 static boolean_t
4527 kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags)
4528 {
4529 	long refcnt = sp->slab_refcnt;
4530 
4531 	ASSERT(cp->cache_defrag != NULL);
4532 
4533 	/*
4534 	 * For code coverage we want to be able to move an object within the
4535 	 * same slab (the only partial slab) even if allocating the destination
4536 	 * buffer resulted in a completely allocated slab.
4537 	 */
4538 	if (flags & KMM_DEBUG) {
4539 		return ((flags & KMM_DESPERATE) ||
4540 		    ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0));
4541 	}
4542 
4543 	/* If we're desperate, we don't care if the client said NO. */
4544 	if (flags & KMM_DESPERATE) {
4545 		return (refcnt < sp->slab_chunks); /* any partial */
4546 	}
4547 
4548 	if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4549 		return (B_FALSE);
4550 	}
4551 
4552 	if ((refcnt == 1) || kmem_move_any_partial) {
4553 		return (refcnt < sp->slab_chunks);
4554 	}
4555 
4556 	/*
4557 	 * The reclaim threshold is adjusted at each kmem_cache_scan() so that
4558 	 * slabs with a progressively higher percentage of used buffers can be
4559 	 * reclaimed until the cache as a whole is no longer fragmented.
4560 	 *
4561 	 *	sp->slab_refcnt   kmd_reclaim_numer
4562 	 *	--------------- < ------------------
4563 	 *	sp->slab_chunks   KMEM_VOID_FRACTION
4564 	 */
4565 	return ((refcnt * KMEM_VOID_FRACTION) <
4566 	    (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer));
4567 }
4568 
4569 /*
4570  * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(),
4571  * or when the buffer is freed.
4572  */
4573 static void
4574 kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4575 {
4576 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4577 	ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4578 
4579 	if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4580 		return;
4581 	}
4582 
4583 	if (sp->slab_flags & KMEM_SLAB_NOMOVE) {
4584 		if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) {
4585 			avl_remove(&cp->cache_partial_slabs, sp);
4586 			sp->slab_flags &= ~KMEM_SLAB_NOMOVE;
4587 			sp->slab_stuck_offset = (uint32_t)-1;
4588 			avl_add(&cp->cache_partial_slabs, sp);
4589 		}
4590 	} else {
4591 		sp->slab_later_count = 0;
4592 		sp->slab_stuck_offset = (uint32_t)-1;
4593 	}
4594 }
4595 
4596 static void
4597 kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf)
4598 {
4599 	ASSERT(taskq_member(kmem_move_taskq, curthread));
4600 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4601 	ASSERT(KMEM_SLAB_MEMBER(sp, from_buf));
4602 
4603 	if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4604 		return;
4605 	}
4606 
4607 	avl_remove(&cp->cache_partial_slabs, sp);
4608 	sp->slab_later_count = 0;
4609 	sp->slab_flags |= KMEM_SLAB_NOMOVE;
4610 	sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf);
4611 	avl_add(&cp->cache_partial_slabs, sp);
4612 }
4613 
4614 static void kmem_move_end(kmem_cache_t *, kmem_move_t *);
4615 
4616 /*
4617  * The move callback takes two buffer addresses, the buffer to be moved, and a
4618  * newly allocated and constructed buffer selected by kmem as the destination.
4619  * It also takes the size of the buffer and an optional user argument specified
4620  * at cache creation time. kmem guarantees that the buffer to be moved has not
4621  * been unmapped by the virtual memory subsystem. Beyond that, it cannot
4622  * guarantee the present whereabouts of the buffer to be moved, so it is up to
4623  * the client to safely determine whether or not it is still using the buffer.
4624  * The client must not free either of the buffers passed to the move callback,
4625  * since kmem wants to free them directly to the slab layer. The client response
4626  * tells kmem which of the two buffers to free:
4627  *
4628  * YES		kmem frees the old buffer (the move was successful)
4629  * NO		kmem frees the new buffer, marks the slab of the old buffer
4630  *              non-reclaimable to avoid bothering the client again
4631  * LATER	kmem frees the new buffer, increments slab_later_count
4632  * DONT_KNOW	kmem frees the new buffer
4633  * DONT_NEED	kmem frees both the old buffer and the new buffer
4634  *
4635  * The pending callback argument now being processed contains both of the
4636  * buffers (old and new) passed to the move callback function, the slab of the
4637  * old buffer, and flags related to the move request, such as whether or not the
4638  * system was desperate for memory.
4639  *
4640  * Slabs are not freed while there is a pending callback, but instead are kept
4641  * on a deadlist, which is drained after the last callback completes. This means
4642  * that slabs are safe to access until kmem_move_end(), no matter how many of
4643  * their buffers have been freed. Once slab_refcnt reaches zero, it stays at
4644  * zero for as long as the slab remains on the deadlist and until the slab is
4645  * freed.
4646  */
4647 static void
4648 kmem_move_buffer(kmem_move_t *callback)
4649 {
4650 	kmem_cbrc_t response;
4651 	kmem_slab_t *sp = callback->kmm_from_slab;
4652 	kmem_cache_t *cp = sp->slab_cache;
4653 	boolean_t free_on_slab;
4654 
4655 	ASSERT(taskq_member(kmem_move_taskq, curthread));
4656 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4657 	ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf));
4658 
4659 	/*
4660 	 * The number of allocated buffers on the slab may have changed since we
4661 	 * last checked the slab's reclaimability (when the pending move was
4662 	 * enqueued), or the client may have responded NO when asked to move
4663 	 * another buffer on the same slab.
4664 	 */
4665 	if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) {
4666 		kmem_slab_free(cp, callback->kmm_to_buf);
4667 		kmem_move_end(cp, callback);
4668 		return;
4669 	}
4670 
4671 	/*
4672 	 * Checking the slab layer is easy, so we might as well do that here
4673 	 * in case we can avoid bothering the client.
4674 	 */
4675 	mutex_enter(&cp->cache_lock);
4676 	free_on_slab = (kmem_slab_allocated(cp, sp,
4677 	    callback->kmm_from_buf) == NULL);
4678 	mutex_exit(&cp->cache_lock);
4679 
4680 	if (free_on_slab) {
4681 		kmem_slab_free(cp, callback->kmm_to_buf);
4682 		kmem_move_end(cp, callback);
4683 		return;
4684 	}
4685 
4686 	if (cp->cache_flags & KMF_BUFTAG) {
4687 		/*
4688 		 * Make kmem_cache_alloc_debug() apply the constructor for us.
4689 		 */
4690 		if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf,
4691 		    KM_NOSLEEP, 1, caller()) != 0) {
4692 			kmem_move_end(cp, callback);
4693 			return;
4694 		}
4695 	} else if (cp->cache_constructor != NULL &&
4696 	    cp->cache_constructor(callback->kmm_to_buf, cp->cache_private,
4697 	    KM_NOSLEEP) != 0) {
4698 		atomic_inc_64(&cp->cache_alloc_fail);
4699 		kmem_slab_free(cp, callback->kmm_to_buf);
4700 		kmem_move_end(cp, callback);
4701 		return;
4702 	}
4703 
4704 	cp->cache_defrag->kmd_callbacks++;
4705 	cp->cache_defrag->kmd_thread = curthread;
4706 	cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf;
4707 	cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf;
4708 	DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *,
4709 	    callback);
4710 
4711 	response = cp->cache_move(callback->kmm_from_buf,
4712 	    callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private);
4713 
4714 	DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *,
4715 	    callback, kmem_cbrc_t, response);
4716 	cp->cache_defrag->kmd_thread = NULL;
4717 	cp->cache_defrag->kmd_from_buf = NULL;
4718 	cp->cache_defrag->kmd_to_buf = NULL;
4719 
4720 	if (response == KMEM_CBRC_YES) {
4721 		cp->cache_defrag->kmd_yes++;
4722 		kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4723 		/* slab safe to access until kmem_move_end() */
4724 		if (sp->slab_refcnt == 0)
4725 			cp->cache_defrag->kmd_slabs_freed++;
4726 		mutex_enter(&cp->cache_lock);
4727 		kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4728 		mutex_exit(&cp->cache_lock);
4729 		kmem_move_end(cp, callback);
4730 		return;
4731 	}
4732 
4733 	switch (response) {
4734 	case KMEM_CBRC_NO:
4735 		cp->cache_defrag->kmd_no++;
4736 		mutex_enter(&cp->cache_lock);
4737 		kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4738 		mutex_exit(&cp->cache_lock);
4739 		break;
4740 	case KMEM_CBRC_LATER:
4741 		cp->cache_defrag->kmd_later++;
4742 		mutex_enter(&cp->cache_lock);
4743 		if (!KMEM_SLAB_IS_PARTIAL(sp)) {
4744 			mutex_exit(&cp->cache_lock);
4745 			break;
4746 		}
4747 
4748 		if (++sp->slab_later_count >= KMEM_DISBELIEF) {
4749 			kmem_slab_move_no(cp, sp, callback->kmm_from_buf);
4750 		} else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) {
4751 			sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp,
4752 			    callback->kmm_from_buf);
4753 		}
4754 		mutex_exit(&cp->cache_lock);
4755 		break;
4756 	case KMEM_CBRC_DONT_NEED:
4757 		cp->cache_defrag->kmd_dont_need++;
4758 		kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE);
4759 		if (sp->slab_refcnt == 0)
4760 			cp->cache_defrag->kmd_slabs_freed++;
4761 		mutex_enter(&cp->cache_lock);
4762 		kmem_slab_move_yes(cp, sp, callback->kmm_from_buf);
4763 		mutex_exit(&cp->cache_lock);
4764 		break;
4765 	case KMEM_CBRC_DONT_KNOW:
4766 		/*
4767 		 * If we don't know if we can move this buffer or not, we'll
4768 		 * just assume that we can't:  if the buffer is in fact free,
4769 		 * then it is sitting in one of the per-CPU magazines or in
4770 		 * a full magazine in the depot layer.  Either way, because
4771 		 * defrag is induced in the same logic that reaps a cache,
4772 		 * it's likely that full magazines will be returned to the
4773 		 * system soon (thereby accomplishing what we're trying to
4774 		 * accomplish here: return those magazines to their slabs).
4775 		 * Given this, any work that we might do now to locate a buffer
4776 		 * in a magazine is wasted (and expensive!) work; we bump
4777 		 * a counter in this case and otherwise assume that we can't
4778 		 * move it.
4779 		 */
4780 		cp->cache_defrag->kmd_dont_know++;
4781 		break;
4782 	default:
4783 		panic("'%s' (%p) unexpected move callback response %d\n",
4784 		    cp->cache_name, (void *)cp, response);
4785 	}
4786 
4787 	kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE);
4788 	kmem_move_end(cp, callback);
4789 }
4790 
4791 /* Return B_FALSE if there is insufficient memory for the move request. */
4792 static boolean_t
4793 kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags)
4794 {
4795 	void *to_buf;
4796 	avl_index_t index;
4797 	kmem_move_t *callback, *pending;
4798 	ulong_t n;
4799 
4800 	ASSERT(taskq_member(kmem_taskq, curthread));
4801 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4802 	ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
4803 
4804 	callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP);
4805 
4806 	if (callback == NULL)
4807 		return (B_FALSE);
4808 
4809 	callback->kmm_from_slab = sp;
4810 	callback->kmm_from_buf = buf;
4811 	callback->kmm_flags = flags;
4812 
4813 	mutex_enter(&cp->cache_lock);
4814 
4815 	n = avl_numnodes(&cp->cache_partial_slabs);
4816 	if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) {
4817 		mutex_exit(&cp->cache_lock);
4818 		kmem_cache_free(kmem_move_cache, callback);
4819 		return (B_TRUE); /* there is no need for the move request */
4820 	}
4821 
4822 	pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index);
4823 	if (pending != NULL) {
4824 		/*
4825 		 * If the move is already pending and we're desperate now,
4826 		 * update the move flags.
4827 		 */
4828 		if (flags & KMM_DESPERATE) {
4829 			pending->kmm_flags |= KMM_DESPERATE;
4830 		}
4831 		mutex_exit(&cp->cache_lock);
4832 		kmem_cache_free(kmem_move_cache, callback);
4833 		return (B_TRUE);
4834 	}
4835 
4836 	to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs),
4837 	    B_FALSE);
4838 	callback->kmm_to_buf = to_buf;
4839 	avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index);
4840 
4841 	mutex_exit(&cp->cache_lock);
4842 
4843 	if (!taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer,
4844 	    callback, TQ_NOSLEEP)) {
4845 		mutex_enter(&cp->cache_lock);
4846 		avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4847 		mutex_exit(&cp->cache_lock);
4848 		kmem_slab_free(cp, to_buf);
4849 		kmem_cache_free(kmem_move_cache, callback);
4850 		return (B_FALSE);
4851 	}
4852 
4853 	return (B_TRUE);
4854 }
4855 
4856 static void
4857 kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback)
4858 {
4859 	avl_index_t index;
4860 
4861 	ASSERT(cp->cache_defrag != NULL);
4862 	ASSERT(taskq_member(kmem_move_taskq, curthread));
4863 	ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
4864 
4865 	mutex_enter(&cp->cache_lock);
4866 	VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending,
4867 	    callback->kmm_from_buf, &index) != NULL);
4868 	avl_remove(&cp->cache_defrag->kmd_moves_pending, callback);
4869 	if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) {
4870 		list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
4871 		kmem_slab_t *sp;
4872 
4873 		/*
4874 		 * The last pending move completed. Release all slabs from the
4875 		 * front of the dead list except for any slab at the tail that
4876 		 * needs to be released from the context of kmem_move_buffers().
4877 		 * kmem deferred unmapping the buffers on these slabs in order
4878 		 * to guarantee that buffers passed to the move callback have
4879 		 * been touched only by kmem or by the client itself.
4880 		 */
4881 		while ((sp = list_remove_head(deadlist)) != NULL) {
4882 			if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) {
4883 				list_insert_tail(deadlist, sp);
4884 				break;
4885 			}
4886 			cp->cache_defrag->kmd_deadcount--;
4887 			cp->cache_slab_destroy++;
4888 			mutex_exit(&cp->cache_lock);
4889 			kmem_slab_destroy(cp, sp);
4890 			mutex_enter(&cp->cache_lock);
4891 		}
4892 	}
4893 	mutex_exit(&cp->cache_lock);
4894 	kmem_cache_free(kmem_move_cache, callback);
4895 }
4896 
4897 /*
4898  * Move buffers from least used slabs first by scanning backwards from the end
4899  * of the partial slab list. Scan at most max_scan candidate slabs and move
4900  * buffers from at most max_slabs slabs (0 for all partial slabs in both cases).
4901  * If desperate to reclaim memory, move buffers from any partial slab, otherwise
4902  * skip slabs with a ratio of allocated buffers at or above the current
4903  * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the
4904  * scan is aborted) so that the caller can adjust the reclaimability threshold
4905  * depending on how many reclaimable slabs it finds.
4906  *
4907  * kmem_move_buffers() drops and reacquires cache_lock every time it issues a
4908  * move request, since it is not valid for kmem_move_begin() to call
4909  * kmem_cache_alloc() or taskq_dispatch() with cache_lock held.
4910  */
4911 static int
4912 kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs,
4913     int flags)
4914 {
4915 	kmem_slab_t *sp;
4916 	void *buf;
4917 	int i, j; /* slab index, buffer index */
4918 	int s; /* reclaimable slabs */
4919 	int b; /* allocated (movable) buffers on reclaimable slab */
4920 	boolean_t success;
4921 	int refcnt;
4922 	int nomove;
4923 
4924 	ASSERT(taskq_member(kmem_taskq, curthread));
4925 	ASSERT(MUTEX_HELD(&cp->cache_lock));
4926 	ASSERT(kmem_move_cache != NULL);
4927 	ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL);
4928 	ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) :
4929 	    avl_numnodes(&cp->cache_partial_slabs) > 1);
4930 
4931 	if (kmem_move_blocked) {
4932 		return (0);
4933 	}
4934 
4935 	if (kmem_move_fulltilt) {
4936 		flags |= KMM_DESPERATE;
4937 	}
4938 
4939 	if (max_scan == 0 || (flags & KMM_DESPERATE)) {
4940 		/*
4941 		 * Scan as many slabs as needed to find the desired number of
4942 		 * candidate slabs.
4943 		 */
4944 		max_scan = (size_t)-1;
4945 	}
4946 
4947 	if (max_slabs == 0 || (flags & KMM_DESPERATE)) {
4948 		/* Find as many candidate slabs as possible. */
4949 		max_slabs = (size_t)-1;
4950 	}
4951 
4952 	sp = avl_last(&cp->cache_partial_slabs);
4953 	ASSERT(KMEM_SLAB_IS_PARTIAL(sp));
4954 	for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) &&
4955 	    ((sp != avl_first(&cp->cache_partial_slabs)) ||
4956 	    (flags & KMM_DEBUG));
4957 	    sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) {
4958 
4959 		if (!kmem_slab_is_reclaimable(cp, sp, flags)) {
4960 			continue;
4961 		}
4962 		s++;
4963 
4964 		/* Look for allocated buffers to move. */
4965 		for (j = 0, b = 0, buf = sp->slab_base;
4966 		    (j < sp->slab_chunks) && (b < sp->slab_refcnt);
4967 		    buf = (((char *)buf) + cp->cache_chunksize), j++) {
4968 
4969 			if (kmem_slab_allocated(cp, sp, buf) == NULL) {
4970 				continue;
4971 			}
4972 
4973 			b++;
4974 
4975 			/*
4976 			 * Prevent the slab from being destroyed while we drop
4977 			 * cache_lock and while the pending move is not yet
4978 			 * registered. Flag the pending move while
4979 			 * kmd_moves_pending may still be empty, since we can't
4980 			 * yet rely on a non-zero pending move count to prevent
4981 			 * the slab from being destroyed.
4982 			 */
4983 			ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
4984 			sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
4985 			/*
4986 			 * Recheck refcnt and nomove after reacquiring the lock,
4987 			 * since these control the order of partial slabs, and
4988 			 * we want to know if we can pick up the scan where we
4989 			 * left off.
4990 			 */
4991 			refcnt = sp->slab_refcnt;
4992 			nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE);
4993 			mutex_exit(&cp->cache_lock);
4994 
4995 			success = kmem_move_begin(cp, sp, buf, flags);
4996 
4997 			/*
4998 			 * Now, before the lock is reacquired, kmem could
4999 			 * process all pending move requests and purge the
5000 			 * deadlist, so that upon reacquiring the lock, sp has
5001 			 * been remapped. Or, the client may free all the
5002 			 * objects on the slab while the pending moves are still
5003 			 * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING
5004 			 * flag causes the slab to be put at the end of the
5005 			 * deadlist and prevents it from being destroyed, since
5006 			 * we plan to destroy it here after reacquiring the
5007 			 * lock.
5008 			 */
5009 			mutex_enter(&cp->cache_lock);
5010 			ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5011 			sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5012 
5013 			if (sp->slab_refcnt == 0) {
5014 				list_t *deadlist =
5015 				    &cp->cache_defrag->kmd_deadlist;
5016 				list_remove(deadlist, sp);
5017 
5018 				if (!avl_is_empty(
5019 				    &cp->cache_defrag->kmd_moves_pending)) {
5020 					/*
5021 					 * A pending move makes it unsafe to
5022 					 * destroy the slab, because even though
5023 					 * the move is no longer needed, the
5024 					 * context where that is determined
5025 					 * requires the slab to exist.
5026 					 * Fortunately, a pending move also
5027 					 * means we don't need to destroy the
5028 					 * slab here, since it will get
5029 					 * destroyed along with any other slabs
5030 					 * on the deadlist after the last
5031 					 * pending move completes.
5032 					 */
5033 					list_insert_head(deadlist, sp);
5034 					return (-1);
5035 				}
5036 
5037 				/*
5038 				 * Destroy the slab now if it was completely
5039 				 * freed while we dropped cache_lock and there
5040 				 * are no pending moves. Since slab_refcnt
5041 				 * cannot change once it reaches zero, no new
5042 				 * pending moves from that slab are possible.
5043 				 */
5044 				cp->cache_defrag->kmd_deadcount--;
5045 				cp->cache_slab_destroy++;
5046 				mutex_exit(&cp->cache_lock);
5047 				kmem_slab_destroy(cp, sp);
5048 				mutex_enter(&cp->cache_lock);
5049 				/*
5050 				 * Since we can't pick up the scan where we left
5051 				 * off, abort the scan and say nothing about the
5052 				 * number of reclaimable slabs.
5053 				 */
5054 				return (-1);
5055 			}
5056 
5057 			if (!success) {
5058 				/*
5059 				 * Abort the scan if there is not enough memory
5060 				 * for the request and say nothing about the
5061 				 * number of reclaimable slabs.
5062 				 */
5063 				return (-1);
5064 			}
5065 
5066 			/*
5067 			 * The slab's position changed while the lock was
5068 			 * dropped, so we don't know where we are in the
5069 			 * sequence any more.
5070 			 */
5071 			if (sp->slab_refcnt != refcnt) {
5072 				/*
5073 				 * If this is a KMM_DEBUG move, the slab_refcnt
5074 				 * may have changed because we allocated a
5075 				 * destination buffer on the same slab. In that
5076 				 * case, we're not interested in counting it.
5077 				 */
5078 				return (-1);
5079 			}
5080 			if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove)
5081 				return (-1);
5082 
5083 			/*
5084 			 * Generating a move request allocates a destination
5085 			 * buffer from the slab layer, bumping the first partial
5086 			 * slab if it is completely allocated. If the current
5087 			 * slab becomes the first partial slab as a result, we
5088 			 * can't continue to scan backwards.
5089 			 *
5090 			 * If this is a KMM_DEBUG move and we allocated the
5091 			 * destination buffer from the last partial slab, then
5092 			 * the buffer we're moving is on the same slab and our
5093 			 * slab_refcnt has changed, causing us to return before
5094 			 * reaching here if there are no partial slabs left.
5095 			 */
5096 			ASSERT(!avl_is_empty(&cp->cache_partial_slabs));
5097 			if (sp == avl_first(&cp->cache_partial_slabs)) {
5098 				/*
5099 				 * We're not interested in a second KMM_DEBUG
5100 				 * move.
5101 				 */
5102 				goto end_scan;
5103 			}
5104 		}
5105 	}
5106 end_scan:
5107 
5108 	return (s);
5109 }
5110 
5111 typedef struct kmem_move_notify_args {
5112 	kmem_cache_t *kmna_cache;
5113 	void *kmna_buf;
5114 } kmem_move_notify_args_t;
5115 
5116 static void
5117 kmem_cache_move_notify_task(void *arg)
5118 {
5119 	kmem_move_notify_args_t *args = arg;
5120 	kmem_cache_t *cp = args->kmna_cache;
5121 	void *buf = args->kmna_buf;
5122 	kmem_slab_t *sp;
5123 
5124 	ASSERT(taskq_member(kmem_taskq, curthread));
5125 	ASSERT(list_link_active(&cp->cache_link));
5126 
5127 	kmem_free(args, sizeof (kmem_move_notify_args_t));
5128 	mutex_enter(&cp->cache_lock);
5129 	sp = kmem_slab_allocated(cp, NULL, buf);
5130 
5131 	/* Ignore the notification if the buffer is no longer allocated. */
5132 	if (sp == NULL) {
5133 		mutex_exit(&cp->cache_lock);
5134 		return;
5135 	}
5136 
5137 	/* Ignore the notification if there's no reason to move the buffer. */
5138 	if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5139 		/*
5140 		 * So far the notification is not ignored. Ignore the
5141 		 * notification if the slab is not marked by an earlier refusal
5142 		 * to move a buffer.
5143 		 */
5144 		if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) &&
5145 		    (sp->slab_later_count == 0)) {
5146 			mutex_exit(&cp->cache_lock);
5147 			return;
5148 		}
5149 
5150 		kmem_slab_move_yes(cp, sp, buf);
5151 		ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING));
5152 		sp->slab_flags |= KMEM_SLAB_MOVE_PENDING;
5153 		mutex_exit(&cp->cache_lock);
5154 		/* see kmem_move_buffers() about dropping the lock */
5155 		(void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY);
5156 		mutex_enter(&cp->cache_lock);
5157 		ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING);
5158 		sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING;
5159 		if (sp->slab_refcnt == 0) {
5160 			list_t *deadlist = &cp->cache_defrag->kmd_deadlist;
5161 			list_remove(deadlist, sp);
5162 
5163 			if (!avl_is_empty(
5164 			    &cp->cache_defrag->kmd_moves_pending)) {
5165 				list_insert_head(deadlist, sp);
5166 				mutex_exit(&cp->cache_lock);
5167 				return;
5168 			}
5169 
5170 			cp->cache_defrag->kmd_deadcount--;
5171 			cp->cache_slab_destroy++;
5172 			mutex_exit(&cp->cache_lock);
5173 			kmem_slab_destroy(cp, sp);
5174 			return;
5175 		}
5176 	} else {
5177 		kmem_slab_move_yes(cp, sp, buf);
5178 	}
5179 	mutex_exit(&cp->cache_lock);
5180 }
5181 
5182 void
5183 kmem_cache_move_notify(kmem_cache_t *cp, void *buf)
5184 {
5185 	kmem_move_notify_args_t *args;
5186 
5187 	args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP);
5188 	if (args != NULL) {
5189 		args->kmna_cache = cp;
5190 		args->kmna_buf = buf;
5191 		if (!taskq_dispatch(kmem_taskq,
5192 		    (task_func_t *)kmem_cache_move_notify_task, args,
5193 		    TQ_NOSLEEP))
5194 			kmem_free(args, sizeof (kmem_move_notify_args_t));
5195 	}
5196 }
5197 
5198 static void
5199 kmem_cache_defrag(kmem_cache_t *cp)
5200 {
5201 	size_t n;
5202 
5203 	ASSERT(cp->cache_defrag != NULL);
5204 
5205 	mutex_enter(&cp->cache_lock);
5206 	n = avl_numnodes(&cp->cache_partial_slabs);
5207 	if (n > 1) {
5208 		/* kmem_move_buffers() drops and reacquires cache_lock */
5209 		cp->cache_defrag->kmd_defrags++;
5210 		(void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE);
5211 	}
5212 	mutex_exit(&cp->cache_lock);
5213 }
5214 
5215 /* Is this cache above the fragmentation threshold? */
5216 static boolean_t
5217 kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree)
5218 {
5219 	/*
5220 	 *	nfree		kmem_frag_numer
5221 	 * ------------------ > ---------------
5222 	 * cp->cache_buftotal	kmem_frag_denom
5223 	 */
5224 	return ((nfree * kmem_frag_denom) >
5225 	    (cp->cache_buftotal * kmem_frag_numer));
5226 }
5227 
5228 static boolean_t
5229 kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap)
5230 {
5231 	boolean_t fragmented;
5232 	uint64_t nfree;
5233 
5234 	ASSERT(MUTEX_HELD(&cp->cache_lock));
5235 	*doreap = B_FALSE;
5236 
5237 	if (kmem_move_fulltilt) {
5238 		if (avl_numnodes(&cp->cache_partial_slabs) > 1) {
5239 			return (B_TRUE);
5240 		}
5241 	} else {
5242 		if ((cp->cache_complete_slab_count + avl_numnodes(
5243 		    &cp->cache_partial_slabs)) < kmem_frag_minslabs) {
5244 			return (B_FALSE);
5245 		}
5246 	}
5247 
5248 	nfree = cp->cache_bufslab;
5249 	fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) &&
5250 	    kmem_cache_frag_threshold(cp, nfree));
5251 
5252 	/*
5253 	 * Free buffers in the magazine layer appear allocated from the point of
5254 	 * view of the slab layer. We want to know if the slab layer would
5255 	 * appear fragmented if we included free buffers from magazines that
5256 	 * have fallen out of the working set.
5257 	 */
5258 	if (!fragmented) {
5259 		long reap;
5260 
5261 		mutex_enter(&cp->cache_depot_lock);
5262 		reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
5263 		reap = MIN(reap, cp->cache_full.ml_total);
5264 		mutex_exit(&cp->cache_depot_lock);
5265 
5266 		nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize);
5267 		if (kmem_cache_frag_threshold(cp, nfree)) {
5268 			*doreap = B_TRUE;
5269 		}
5270 	}
5271 
5272 	return (fragmented);
5273 }
5274 
5275 /* Called periodically from kmem_taskq */
5276 static void
5277 kmem_cache_scan(kmem_cache_t *cp)
5278 {
5279 	boolean_t reap = B_FALSE;
5280 	kmem_defrag_t *kmd;
5281 
5282 	ASSERT(taskq_member(kmem_taskq, curthread));
5283 
5284 	mutex_enter(&cp->cache_lock);
5285 
5286 	kmd = cp->cache_defrag;
5287 	if (kmd->kmd_consolidate > 0) {
5288 		kmd->kmd_consolidate--;
5289 		mutex_exit(&cp->cache_lock);
5290 		kmem_cache_reap(cp);
5291 		return;
5292 	}
5293 
5294 	if (kmem_cache_is_fragmented(cp, &reap)) {
5295 		size_t slabs_found;
5296 
5297 		/*
5298 		 * Consolidate reclaimable slabs from the end of the partial
5299 		 * slab list (scan at most kmem_reclaim_scan_range slabs to find
5300 		 * reclaimable slabs). Keep track of how many candidate slabs we
5301 		 * looked for and how many we actually found so we can adjust
5302 		 * the definition of a candidate slab if we're having trouble
5303 		 * finding them.
5304 		 *
5305 		 * kmem_move_buffers() drops and reacquires cache_lock.
5306 		 */
5307 		kmd->kmd_scans++;
5308 		slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range,
5309 		    kmem_reclaim_max_slabs, 0);
5310 		if (slabs_found >= 0) {
5311 			kmd->kmd_slabs_sought += kmem_reclaim_max_slabs;
5312 			kmd->kmd_slabs_found += slabs_found;
5313 		}
5314 
5315 		if (++kmd->kmd_tries >= kmem_reclaim_scan_range) {
5316 			kmd->kmd_tries = 0;
5317 
5318 			/*
5319 			 * If we had difficulty finding candidate slabs in
5320 			 * previous scans, adjust the threshold so that
5321 			 * candidates are easier to find.
5322 			 */
5323 			if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) {
5324 				kmem_adjust_reclaim_threshold(kmd, -1);
5325 			} else if ((kmd->kmd_slabs_found * 2) <
5326 			    kmd->kmd_slabs_sought) {
5327 				kmem_adjust_reclaim_threshold(kmd, 1);
5328 			}
5329 			kmd->kmd_slabs_sought = 0;
5330 			kmd->kmd_slabs_found = 0;
5331 		}
5332 	} else {
5333 		kmem_reset_reclaim_threshold(cp->cache_defrag);
5334 #ifdef	DEBUG
5335 		if (!avl_is_empty(&cp->cache_partial_slabs)) {
5336 			/*
5337 			 * In a debug kernel we want the consolidator to
5338 			 * run occasionally even when there is plenty of
5339 			 * memory.
5340 			 */
5341 			uint16_t debug_rand;
5342 
5343 			(void) random_get_bytes((uint8_t *)&debug_rand, 2);
5344 			if (!kmem_move_noreap &&
5345 			    ((debug_rand % kmem_mtb_reap) == 0)) {
5346 				mutex_exit(&cp->cache_lock);
5347 				kmem_cache_reap(cp);
5348 				return;
5349 			} else if ((debug_rand % kmem_mtb_move) == 0) {
5350 				kmd->kmd_scans++;
5351 				(void) kmem_move_buffers(cp,
5352 				    kmem_reclaim_scan_range, 1, KMM_DEBUG);
5353 			}
5354 		}
5355 #endif	/* DEBUG */
5356 	}
5357 
5358 	mutex_exit(&cp->cache_lock);
5359 
5360 	if (reap)
5361 		kmem_depot_ws_reap(cp);
5362 }
5363