17c478bd9Sstevel@tonic-gate /* 27c478bd9Sstevel@tonic-gate * CDDL HEADER START 37c478bd9Sstevel@tonic-gate * 47c478bd9Sstevel@tonic-gate * The contents of this file are subject to the terms of the 57d692464Sdp201428 * Common Development and Distribution License (the "License"). 67d692464Sdp201428 * You may not use this file except in compliance with the License. 77c478bd9Sstevel@tonic-gate * 87c478bd9Sstevel@tonic-gate * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 97c478bd9Sstevel@tonic-gate * or http://www.opensolaris.org/os/licensing. 107c478bd9Sstevel@tonic-gate * See the License for the specific language governing permissions 117c478bd9Sstevel@tonic-gate * and limitations under the License. 127c478bd9Sstevel@tonic-gate * 137c478bd9Sstevel@tonic-gate * When distributing Covered Code, include this CDDL HEADER in each 147c478bd9Sstevel@tonic-gate * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 157c478bd9Sstevel@tonic-gate * If applicable, add the following below this CDDL HEADER, with the 167c478bd9Sstevel@tonic-gate * fields enclosed by brackets "[]" replaced with your own identifying 177c478bd9Sstevel@tonic-gate * information: Portions Copyright [yyyy] [name of copyright owner] 187c478bd9Sstevel@tonic-gate * 197c478bd9Sstevel@tonic-gate * CDDL HEADER END 207c478bd9Sstevel@tonic-gate */ 217c478bd9Sstevel@tonic-gate /* 22b942e89bSDavid Valin * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved. 2347bb2664SMatthew Ahrens * Copyright (c) 2012, 2016 by Delphix. All rights reserved. 240c833d64SJosef 'Jeff' Sipek * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25*de58340cSJoshua M. Clulow * Copyright 2020 Oxide Computer Company 267c478bd9Sstevel@tonic-gate */ 277c478bd9Sstevel@tonic-gate 287c478bd9Sstevel@tonic-gate /* 29b5fca8f8Stomee * Kernel memory allocator, as described in the following two papers and a 30b5fca8f8Stomee * statement about the consolidator: 317c478bd9Sstevel@tonic-gate * 327c478bd9Sstevel@tonic-gate * Jeff Bonwick, 337c478bd9Sstevel@tonic-gate * The Slab Allocator: An Object-Caching Kernel Memory Allocator. 347c478bd9Sstevel@tonic-gate * Proceedings of the Summer 1994 Usenix Conference. 357c478bd9Sstevel@tonic-gate * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf. 367c478bd9Sstevel@tonic-gate * 377c478bd9Sstevel@tonic-gate * Jeff Bonwick and Jonathan Adams, 387c478bd9Sstevel@tonic-gate * Magazines and vmem: Extending the Slab Allocator to Many CPUs and 397c478bd9Sstevel@tonic-gate * Arbitrary Resources. 407c478bd9Sstevel@tonic-gate * Proceedings of the 2001 Usenix Conference. 417c478bd9Sstevel@tonic-gate * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf. 42b5fca8f8Stomee * 43b5fca8f8Stomee * kmem Slab Consolidator Big Theory Statement: 44b5fca8f8Stomee * 45b5fca8f8Stomee * 1. Motivation 46b5fca8f8Stomee * 47b5fca8f8Stomee * As stated in Bonwick94, slabs provide the following advantages over other 48b5fca8f8Stomee * allocation structures in terms of memory fragmentation: 49b5fca8f8Stomee * 50b5fca8f8Stomee * - Internal fragmentation (per-buffer wasted space) is minimal. 51b5fca8f8Stomee * - Severe external fragmentation (unused buffers on the free list) is 52b5fca8f8Stomee * unlikely. 53b5fca8f8Stomee * 54b5fca8f8Stomee * Segregating objects by size eliminates one source of external fragmentation, 55b5fca8f8Stomee * and according to Bonwick: 56b5fca8f8Stomee * 57b5fca8f8Stomee * The other reason that slabs reduce external fragmentation is that all 58b5fca8f8Stomee * objects in a slab are of the same type, so they have the same lifetime 59b5fca8f8Stomee * distribution. The resulting segregation of short-lived and long-lived 60b5fca8f8Stomee * objects at slab granularity reduces the likelihood of an entire page being 61b5fca8f8Stomee * held hostage due to a single long-lived allocation [Barrett93, Hanson90]. 62b5fca8f8Stomee * 63b5fca8f8Stomee * While unlikely, severe external fragmentation remains possible. Clients that 64b5fca8f8Stomee * allocate both short- and long-lived objects from the same cache cannot 65b5fca8f8Stomee * anticipate the distribution of long-lived objects within the allocator's slab 66b5fca8f8Stomee * implementation. Even a small percentage of long-lived objects distributed 67b5fca8f8Stomee * randomly across many slabs can lead to a worst case scenario where the client 68b5fca8f8Stomee * frees the majority of its objects and the system gets back almost none of the 69b5fca8f8Stomee * slabs. Despite the client doing what it reasonably can to help the system 70b5fca8f8Stomee * reclaim memory, the allocator cannot shake free enough slabs because of 71b5fca8f8Stomee * lonely allocations stubbornly hanging on. Although the allocator is in a 72b5fca8f8Stomee * position to diagnose the fragmentation, there is nothing that the allocator 73b5fca8f8Stomee * by itself can do about it. It only takes a single allocated object to prevent 74b5fca8f8Stomee * an entire slab from being reclaimed, and any object handed out by 75b5fca8f8Stomee * kmem_cache_alloc() is by definition in the client's control. Conversely, 76b5fca8f8Stomee * although the client is in a position to move a long-lived object, it has no 77b5fca8f8Stomee * way of knowing if the object is causing fragmentation, and if so, where to 78b5fca8f8Stomee * move it. A solution necessarily requires further cooperation between the 79b5fca8f8Stomee * allocator and the client. 80b5fca8f8Stomee * 81b5fca8f8Stomee * 2. Move Callback 82b5fca8f8Stomee * 83b5fca8f8Stomee * The kmem slab consolidator therefore adds a move callback to the 84b5fca8f8Stomee * allocator/client interface, improving worst-case external fragmentation in 85b5fca8f8Stomee * kmem caches that supply a function to move objects from one memory location 86b5fca8f8Stomee * to another. In a situation of low memory kmem attempts to consolidate all of 87b5fca8f8Stomee * a cache's slabs at once; otherwise it works slowly to bring external 88b5fca8f8Stomee * fragmentation within the 1/8 limit guaranteed for internal fragmentation, 89b5fca8f8Stomee * thereby helping to avoid a low memory situation in the future. 90b5fca8f8Stomee * 91b5fca8f8Stomee * The callback has the following signature: 92b5fca8f8Stomee * 93b5fca8f8Stomee * kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg) 94b5fca8f8Stomee * 95b5fca8f8Stomee * It supplies the kmem client with two addresses: the allocated object that 96b5fca8f8Stomee * kmem wants to move and a buffer selected by kmem for the client to use as the 97b5fca8f8Stomee * copy destination. The callback is kmem's way of saying "Please get off of 98b5fca8f8Stomee * this buffer and use this one instead." kmem knows where it wants to move the 99b5fca8f8Stomee * object in order to best reduce fragmentation. All the client needs to know 100b5fca8f8Stomee * about the second argument (void *new) is that it is an allocated, constructed 101b5fca8f8Stomee * object ready to take the contents of the old object. When the move function 102b5fca8f8Stomee * is called, the system is likely to be low on memory, and the new object 103b5fca8f8Stomee * spares the client from having to worry about allocating memory for the 104b5fca8f8Stomee * requested move. The third argument supplies the size of the object, in case a 105b5fca8f8Stomee * single move function handles multiple caches whose objects differ only in 106b5fca8f8Stomee * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional 107b5fca8f8Stomee * user argument passed to the constructor, destructor, and reclaim functions is 108b5fca8f8Stomee * also passed to the move callback. 109b5fca8f8Stomee * 110b5fca8f8Stomee * 2.1 Setting the Move Callback 111b5fca8f8Stomee * 112b5fca8f8Stomee * The client sets the move callback after creating the cache and before 113b5fca8f8Stomee * allocating from it: 114b5fca8f8Stomee * 115b5fca8f8Stomee * object_cache = kmem_cache_create(...); 116b5fca8f8Stomee * kmem_cache_set_move(object_cache, object_move); 117b5fca8f8Stomee * 118b5fca8f8Stomee * 2.2 Move Callback Return Values 119b5fca8f8Stomee * 120b5fca8f8Stomee * Only the client knows about its own data and when is a good time to move it. 121b5fca8f8Stomee * The client is cooperating with kmem to return unused memory to the system, 122b5fca8f8Stomee * and kmem respectfully accepts this help at the client's convenience. When 123b5fca8f8Stomee * asked to move an object, the client can respond with any of the following: 124b5fca8f8Stomee * 125b5fca8f8Stomee * typedef enum kmem_cbrc { 126b5fca8f8Stomee * KMEM_CBRC_YES, 127b5fca8f8Stomee * KMEM_CBRC_NO, 128b5fca8f8Stomee * KMEM_CBRC_LATER, 129b5fca8f8Stomee * KMEM_CBRC_DONT_NEED, 130b5fca8f8Stomee * KMEM_CBRC_DONT_KNOW 131b5fca8f8Stomee * } kmem_cbrc_t; 132b5fca8f8Stomee * 133b5fca8f8Stomee * The client must not explicitly kmem_cache_free() either of the objects passed 134b5fca8f8Stomee * to the callback, since kmem wants to free them directly to the slab layer 135b5fca8f8Stomee * (bypassing the per-CPU magazine layer). The response tells kmem which of the 136b5fca8f8Stomee * objects to free: 137b5fca8f8Stomee * 138b5fca8f8Stomee * YES: (Did it) The client moved the object, so kmem frees the old one. 139b5fca8f8Stomee * NO: (Never) The client refused, so kmem frees the new object (the 140b5fca8f8Stomee * unused copy destination). kmem also marks the slab of the old 141b5fca8f8Stomee * object so as not to bother the client with further callbacks for 142b5fca8f8Stomee * that object as long as the slab remains on the partial slab list. 143b5fca8f8Stomee * (The system won't be getting the slab back as long as the 144b5fca8f8Stomee * immovable object holds it hostage, so there's no point in moving 145b5fca8f8Stomee * any of its objects.) 146b5fca8f8Stomee * LATER: The client is using the object and cannot move it now, so kmem 147b5fca8f8Stomee * frees the new object (the unused copy destination). kmem still 148b5fca8f8Stomee * attempts to move other objects off the slab, since it expects to 149b5fca8f8Stomee * succeed in clearing the slab in a later callback. The client 150b5fca8f8Stomee * should use LATER instead of NO if the object is likely to become 151b5fca8f8Stomee * movable very soon. 152b5fca8f8Stomee * DONT_NEED: The client no longer needs the object, so kmem frees the old along 153b5fca8f8Stomee * with the new object (the unused copy destination). This response 154b5fca8f8Stomee * is the client's opportunity to be a model citizen and give back as 155b5fca8f8Stomee * much as it can. 156b5fca8f8Stomee * DONT_KNOW: The client does not know about the object because 157b5fca8f8Stomee * a) the client has just allocated the object and not yet put it 158b5fca8f8Stomee * wherever it expects to find known objects 159b5fca8f8Stomee * b) the client has removed the object from wherever it expects to 160b5fca8f8Stomee * find known objects and is about to free it, or 161b5fca8f8Stomee * c) the client has freed the object. 162b5fca8f8Stomee * In all these cases (a, b, and c) kmem frees the new object (the 163aa7175abSBryan Cantrill * unused copy destination). In the first case, the object is in 164aa7175abSBryan Cantrill * use and the correct action is that for LATER; in the latter two 165aa7175abSBryan Cantrill * cases, we know that the object is either freed or about to be 166aa7175abSBryan Cantrill * freed, in which case it is either already in a magazine or about 167aa7175abSBryan Cantrill * to be in one. In these cases, we know that the object will either 168aa7175abSBryan Cantrill * be reallocated and reused, or it will end up in a full magazine 169aa7175abSBryan Cantrill * that will be reaped (thereby liberating the slab). Because it 170aa7175abSBryan Cantrill * is prohibitively expensive to differentiate these cases, and 171aa7175abSBryan Cantrill * because the defrag code is executed when we're low on memory 172aa7175abSBryan Cantrill * (thereby biasing the system to reclaim full magazines) we treat 173aa7175abSBryan Cantrill * all DONT_KNOW cases as LATER and rely on cache reaping to 174aa7175abSBryan Cantrill * generally clean up full magazines. While we take the same action 175aa7175abSBryan Cantrill * for these cases, we maintain their semantic distinction: if 176aa7175abSBryan Cantrill * defragmentation is not occurring, it is useful to know if this 177aa7175abSBryan Cantrill * is due to objects in use (LATER) or objects in an unknown state 178aa7175abSBryan Cantrill * of transition (DONT_KNOW). 179b5fca8f8Stomee * 180b5fca8f8Stomee * 2.3 Object States 181b5fca8f8Stomee * 182b5fca8f8Stomee * Neither kmem nor the client can be assumed to know the object's whereabouts 183b5fca8f8Stomee * at the time of the callback. An object belonging to a kmem cache may be in 184b5fca8f8Stomee * any of the following states: 185b5fca8f8Stomee * 186b5fca8f8Stomee * 1. Uninitialized on the slab 187b5fca8f8Stomee * 2. Allocated from the slab but not constructed (still uninitialized) 188b5fca8f8Stomee * 3. Allocated from the slab, constructed, but not yet ready for business 189b5fca8f8Stomee * (not in a valid state for the move callback) 190b5fca8f8Stomee * 4. In use (valid and known to the client) 191b5fca8f8Stomee * 5. About to be freed (no longer in a valid state for the move callback) 192b5fca8f8Stomee * 6. Freed to a magazine (still constructed) 193b5fca8f8Stomee * 7. Allocated from a magazine, not yet ready for business (not in a valid 194b5fca8f8Stomee * state for the move callback), and about to return to state #4 195b5fca8f8Stomee * 8. Deconstructed on a magazine that is about to be freed 196b5fca8f8Stomee * 9. Freed to the slab 197b5fca8f8Stomee * 198b5fca8f8Stomee * Since the move callback may be called at any time while the object is in any 199b5fca8f8Stomee * of the above states (except state #1), the client needs a safe way to 200b5fca8f8Stomee * determine whether or not it knows about the object. Specifically, the client 201b5fca8f8Stomee * needs to know whether or not the object is in state #4, the only state in 202b5fca8f8Stomee * which a move is valid. If the object is in any other state, the client should 203b5fca8f8Stomee * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of 204b5fca8f8Stomee * the object's fields. 205b5fca8f8Stomee * 206b5fca8f8Stomee * Note that although an object may be in state #4 when kmem initiates the move 207b5fca8f8Stomee * request, the object may no longer be in that state by the time kmem actually 208b5fca8f8Stomee * calls the move function. Not only does the client free objects 209b5fca8f8Stomee * asynchronously, kmem itself puts move requests on a queue where thay are 210b5fca8f8Stomee * pending until kmem processes them from another context. Also, objects freed 211b5fca8f8Stomee * to a magazine appear allocated from the point of view of the slab layer, so 212b5fca8f8Stomee * kmem may even initiate requests for objects in a state other than state #4. 213b5fca8f8Stomee * 214b5fca8f8Stomee * 2.3.1 Magazine Layer 215b5fca8f8Stomee * 216b5fca8f8Stomee * An important insight revealed by the states listed above is that the magazine 217b5fca8f8Stomee * layer is populated only by kmem_cache_free(). Magazines of constructed 218b5fca8f8Stomee * objects are never populated directly from the slab layer (which contains raw, 219b5fca8f8Stomee * unconstructed objects). Whenever an allocation request cannot be satisfied 220b5fca8f8Stomee * from the magazine layer, the magazines are bypassed and the request is 221b5fca8f8Stomee * satisfied from the slab layer (creating a new slab if necessary). kmem calls 222b5fca8f8Stomee * the object constructor only when allocating from the slab layer, and only in 223b5fca8f8Stomee * response to kmem_cache_alloc() or to prepare the destination buffer passed in 224b5fca8f8Stomee * the move callback. kmem does not preconstruct objects in anticipation of 225b5fca8f8Stomee * kmem_cache_alloc(). 226b5fca8f8Stomee * 227b5fca8f8Stomee * 2.3.2 Object Constructor and Destructor 228b5fca8f8Stomee * 229b5fca8f8Stomee * If the client supplies a destructor, it must be valid to call the destructor 230b5fca8f8Stomee * on a newly created object (immediately after the constructor). 231b5fca8f8Stomee * 232b5fca8f8Stomee * 2.4 Recognizing Known Objects 233b5fca8f8Stomee * 234b5fca8f8Stomee * There is a simple test to determine safely whether or not the client knows 235b5fca8f8Stomee * about a given object in the move callback. It relies on the fact that kmem 236b5fca8f8Stomee * guarantees that the object of the move callback has only been touched by the 237b5fca8f8Stomee * client itself or else by kmem. kmem does this by ensuring that none of the 238b5fca8f8Stomee * cache's slabs are freed to the virtual memory (VM) subsystem while a move 239b5fca8f8Stomee * callback is pending. When the last object on a slab is freed, if there is a 240b5fca8f8Stomee * pending move, kmem puts the slab on a per-cache dead list and defers freeing 241b5fca8f8Stomee * slabs on that list until all pending callbacks are completed. That way, 242b5fca8f8Stomee * clients can be certain that the object of a move callback is in one of the 243b5fca8f8Stomee * states listed above, making it possible to distinguish known objects (in 244b5fca8f8Stomee * state #4) using the two low order bits of any pointer member (with the 245b5fca8f8Stomee * exception of 'char *' or 'short *' which may not be 4-byte aligned on some 246b5fca8f8Stomee * platforms). 247b5fca8f8Stomee * 248b5fca8f8Stomee * The test works as long as the client always transitions objects from state #4 249b5fca8f8Stomee * (known, in use) to state #5 (about to be freed, invalid) by setting the low 250b5fca8f8Stomee * order bit of the client-designated pointer member. Since kmem only writes 251b5fca8f8Stomee * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and 252b5fca8f8Stomee * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is 253b5fca8f8Stomee * guaranteed to set at least one of the two low order bits. Therefore, given an 254b5fca8f8Stomee * object with a back pointer to a 'container_t *o_container', the client can 255b5fca8f8Stomee * test 256b5fca8f8Stomee * 257b5fca8f8Stomee * container_t *container = object->o_container; 258b5fca8f8Stomee * if ((uintptr_t)container & 0x3) { 259b5fca8f8Stomee * return (KMEM_CBRC_DONT_KNOW); 260b5fca8f8Stomee * } 261b5fca8f8Stomee * 262b5fca8f8Stomee * Typically, an object will have a pointer to some structure with a list or 263b5fca8f8Stomee * hash where objects from the cache are kept while in use. Assuming that the 264b5fca8f8Stomee * client has some way of knowing that the container structure is valid and will 265b5fca8f8Stomee * not go away during the move, and assuming that the structure includes a lock 266b5fca8f8Stomee * to protect whatever collection is used, then the client would continue as 267b5fca8f8Stomee * follows: 268b5fca8f8Stomee * 269b5fca8f8Stomee * // Ensure that the container structure does not go away. 270b5fca8f8Stomee * if (container_hold(container) == 0) { 271b5fca8f8Stomee * return (KMEM_CBRC_DONT_KNOW); 272b5fca8f8Stomee * } 273b5fca8f8Stomee * mutex_enter(&container->c_objects_lock); 274b5fca8f8Stomee * if (container != object->o_container) { 275b5fca8f8Stomee * mutex_exit(&container->c_objects_lock); 276b5fca8f8Stomee * container_rele(container); 277b5fca8f8Stomee * return (KMEM_CBRC_DONT_KNOW); 278b5fca8f8Stomee * } 279b5fca8f8Stomee * 280b5fca8f8Stomee * At this point the client knows that the object cannot be freed as long as 281b5fca8f8Stomee * c_objects_lock is held. Note that after acquiring the lock, the client must 282b5fca8f8Stomee * recheck the o_container pointer in case the object was removed just before 283b5fca8f8Stomee * acquiring the lock. 284b5fca8f8Stomee * 285b5fca8f8Stomee * When the client is about to free an object, it must first remove that object 286b5fca8f8Stomee * from the list, hash, or other structure where it is kept. At that time, to 287b5fca8f8Stomee * mark the object so it can be distinguished from the remaining, known objects, 288b5fca8f8Stomee * the client sets the designated low order bit: 289b5fca8f8Stomee * 290b5fca8f8Stomee * mutex_enter(&container->c_objects_lock); 291b5fca8f8Stomee * object->o_container = (void *)((uintptr_t)object->o_container | 0x1); 292b5fca8f8Stomee * list_remove(&container->c_objects, object); 293b5fca8f8Stomee * mutex_exit(&container->c_objects_lock); 294b5fca8f8Stomee * 295b5fca8f8Stomee * In the common case, the object is freed to the magazine layer, where it may 296b5fca8f8Stomee * be reused on a subsequent allocation without the overhead of calling the 297b5fca8f8Stomee * constructor. While in the magazine it appears allocated from the point of 298b5fca8f8Stomee * view of the slab layer, making it a candidate for the move callback. Most 299b5fca8f8Stomee * objects unrecognized by the client in the move callback fall into this 300b5fca8f8Stomee * category and are cheaply distinguished from known objects by the test 301aa7175abSBryan Cantrill * described earlier. Because searching magazines is prohibitively expensive 302aa7175abSBryan Cantrill * for kmem, clients that do not mark freed objects (and therefore return 303aa7175abSBryan Cantrill * KMEM_CBRC_DONT_KNOW for large numbers of objects) may find defragmentation 304aa7175abSBryan Cantrill * efficacy reduced. 305b5fca8f8Stomee * 306b5fca8f8Stomee * Invalidating the designated pointer member before freeing the object marks 307b5fca8f8Stomee * the object to be avoided in the callback, and conversely, assigning a valid 308b5fca8f8Stomee * value to the designated pointer member after allocating the object makes the 309b5fca8f8Stomee * object fair game for the callback: 310b5fca8f8Stomee * 311b5fca8f8Stomee * ... allocate object ... 312b5fca8f8Stomee * ... set any initial state not set by the constructor ... 313b5fca8f8Stomee * 314b5fca8f8Stomee * mutex_enter(&container->c_objects_lock); 315b5fca8f8Stomee * list_insert_tail(&container->c_objects, object); 316b5fca8f8Stomee * membar_producer(); 317b5fca8f8Stomee * object->o_container = container; 318b5fca8f8Stomee * mutex_exit(&container->c_objects_lock); 319b5fca8f8Stomee * 320b5fca8f8Stomee * Note that everything else must be valid before setting o_container makes the 321b5fca8f8Stomee * object fair game for the move callback. The membar_producer() call ensures 322b5fca8f8Stomee * that all the object's state is written to memory before setting the pointer 323b5fca8f8Stomee * that transitions the object from state #3 or #7 (allocated, constructed, not 324b5fca8f8Stomee * yet in use) to state #4 (in use, valid). That's important because the move 325b5fca8f8Stomee * function has to check the validity of the pointer before it can safely 326b5fca8f8Stomee * acquire the lock protecting the collection where it expects to find known 327b5fca8f8Stomee * objects. 328b5fca8f8Stomee * 329b5fca8f8Stomee * This method of distinguishing known objects observes the usual symmetry: 330b5fca8f8Stomee * invalidating the designated pointer is the first thing the client does before 331b5fca8f8Stomee * freeing the object, and setting the designated pointer is the last thing the 332b5fca8f8Stomee * client does after allocating the object. Of course, the client is not 333b5fca8f8Stomee * required to use this method. Fundamentally, how the client recognizes known 334b5fca8f8Stomee * objects is completely up to the client, but this method is recommended as an 335b5fca8f8Stomee * efficient and safe way to take advantage of the guarantees made by kmem. If 336b5fca8f8Stomee * the entire object is arbitrary data without any markable bits from a suitable 337b5fca8f8Stomee * pointer member, then the client must find some other method, such as 338b5fca8f8Stomee * searching a hash table of known objects. 339b5fca8f8Stomee * 340b5fca8f8Stomee * 2.5 Preventing Objects From Moving 341b5fca8f8Stomee * 342b5fca8f8Stomee * Besides a way to distinguish known objects, the other thing that the client 343b5fca8f8Stomee * needs is a strategy to ensure that an object will not move while the client 344b5fca8f8Stomee * is actively using it. The details of satisfying this requirement tend to be 345b5fca8f8Stomee * highly cache-specific. It might seem that the same rules that let a client 346b5fca8f8Stomee * remove an object safely should also decide when an object can be moved 347b5fca8f8Stomee * safely. However, any object state that makes a removal attempt invalid is 348b5fca8f8Stomee * likely to be long-lasting for objects that the client does not expect to 349b5fca8f8Stomee * remove. kmem knows nothing about the object state and is equally likely (from 350b5fca8f8Stomee * the client's point of view) to request a move for any object in the cache, 351b5fca8f8Stomee * whether prepared for removal or not. Even a low percentage of objects stuck 352b5fca8f8Stomee * in place by unremovability will defeat the consolidator if the stuck objects 353b5fca8f8Stomee * are the same long-lived allocations likely to hold slabs hostage. 354b5fca8f8Stomee * Fundamentally, the consolidator is not aimed at common cases. Severe external 355b5fca8f8Stomee * fragmentation is a worst case scenario manifested as sparsely allocated 356b5fca8f8Stomee * slabs, by definition a low percentage of the cache's objects. When deciding 357b5fca8f8Stomee * what makes an object movable, keep in mind the goal of the consolidator: to 358b5fca8f8Stomee * bring worst-case external fragmentation within the limits guaranteed for 359b5fca8f8Stomee * internal fragmentation. Removability is a poor criterion if it is likely to 360b5fca8f8Stomee * exclude more than an insignificant percentage of objects for long periods of 361b5fca8f8Stomee * time. 362b5fca8f8Stomee * 363b5fca8f8Stomee * A tricky general solution exists, and it has the advantage of letting you 364b5fca8f8Stomee * move any object at almost any moment, practically eliminating the likelihood 365b5fca8f8Stomee * that an object can hold a slab hostage. However, if there is a cache-specific 366b5fca8f8Stomee * way to ensure that an object is not actively in use in the vast majority of 367b5fca8f8Stomee * cases, a simpler solution that leverages this cache-specific knowledge is 368b5fca8f8Stomee * preferred. 369b5fca8f8Stomee * 370b5fca8f8Stomee * 2.5.1 Cache-Specific Solution 371b5fca8f8Stomee * 372b5fca8f8Stomee * As an example of a cache-specific solution, the ZFS znode cache takes 373b5fca8f8Stomee * advantage of the fact that the vast majority of znodes are only being 374b5fca8f8Stomee * referenced from the DNLC. (A typical case might be a few hundred in active 375b5fca8f8Stomee * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS 376b5fca8f8Stomee * client has established that it recognizes the znode and can access its fields 377b5fca8f8Stomee * safely (using the method described earlier), it then tests whether the znode 378b5fca8f8Stomee * is referenced by anything other than the DNLC. If so, it assumes that the 379b5fca8f8Stomee * znode may be in active use and is unsafe to move, so it drops its locks and 380b5fca8f8Stomee * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere 381b5fca8f8Stomee * else znodes are used, no change is needed to protect against the possibility 382b5fca8f8Stomee * of the znode moving. The disadvantage is that it remains possible for an 383b5fca8f8Stomee * application to hold a znode slab hostage with an open file descriptor. 384b5fca8f8Stomee * However, this case ought to be rare and the consolidator has a way to deal 385b5fca8f8Stomee * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same 386b5fca8f8Stomee * object, kmem eventually stops believing it and treats the slab as if the 387b5fca8f8Stomee * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can 388b5fca8f8Stomee * then focus on getting it off of the partial slab list by allocating rather 389b5fca8f8Stomee * than freeing all of its objects. (Either way of getting a slab off the 390b5fca8f8Stomee * free list reduces fragmentation.) 391b5fca8f8Stomee * 392b5fca8f8Stomee * 2.5.2 General Solution 393b5fca8f8Stomee * 394b5fca8f8Stomee * The general solution, on the other hand, requires an explicit hold everywhere 395b5fca8f8Stomee * the object is used to prevent it from moving. To keep the client locking 396b5fca8f8Stomee * strategy as uncomplicated as possible, kmem guarantees the simplifying 397b5fca8f8Stomee * assumption that move callbacks are sequential, even across multiple caches. 398b5fca8f8Stomee * Internally, a global queue processed by a single thread supports all caches 399b5fca8f8Stomee * implementing the callback function. No matter how many caches supply a move 400b5fca8f8Stomee * function, the consolidator never moves more than one object at a time, so the 401b5fca8f8Stomee * client does not have to worry about tricky lock ordering involving several 402b5fca8f8Stomee * related objects from different kmem caches. 403b5fca8f8Stomee * 404b5fca8f8Stomee * The general solution implements the explicit hold as a read-write lock, which 405b5fca8f8Stomee * allows multiple readers to access an object from the cache simultaneously 406b5fca8f8Stomee * while a single writer is excluded from moving it. A single rwlock for the 407b5fca8f8Stomee * entire cache would lock out all threads from using any of the cache's objects 408b5fca8f8Stomee * even though only a single object is being moved, so to reduce contention, 409b5fca8f8Stomee * the client can fan out the single rwlock into an array of rwlocks hashed by 410b5fca8f8Stomee * the object address, making it probable that moving one object will not 411b5fca8f8Stomee * prevent other threads from using a different object. The rwlock cannot be a 412b5fca8f8Stomee * member of the object itself, because the possibility of the object moving 413b5fca8f8Stomee * makes it unsafe to access any of the object's fields until the lock is 414b5fca8f8Stomee * acquired. 415b5fca8f8Stomee * 416b5fca8f8Stomee * Assuming a small, fixed number of locks, it's possible that multiple objects 417b5fca8f8Stomee * will hash to the same lock. A thread that needs to use multiple objects in 418b5fca8f8Stomee * the same function may acquire the same lock multiple times. Since rwlocks are 419b5fca8f8Stomee * reentrant for readers, and since there is never more than a single writer at 420b5fca8f8Stomee * a time (assuming that the client acquires the lock as a writer only when 421b5fca8f8Stomee * moving an object inside the callback), there would seem to be no problem. 422b5fca8f8Stomee * However, a client locking multiple objects in the same function must handle 423b5fca8f8Stomee * one case of potential deadlock: Assume that thread A needs to prevent both 424b5fca8f8Stomee * object 1 and object 2 from moving, and thread B, the callback, meanwhile 425b5fca8f8Stomee * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the 426b5fca8f8Stomee * same lock, that thread A will acquire the lock for object 1 as a reader 427b5fca8f8Stomee * before thread B sets the lock's write-wanted bit, preventing thread A from 428b5fca8f8Stomee * reacquiring the lock for object 2 as a reader. Unable to make forward 429b5fca8f8Stomee * progress, thread A will never release the lock for object 1, resulting in 430b5fca8f8Stomee * deadlock. 431b5fca8f8Stomee * 432b5fca8f8Stomee * There are two ways of avoiding the deadlock just described. The first is to 433b5fca8f8Stomee * use rw_tryenter() rather than rw_enter() in the callback function when 434b5fca8f8Stomee * attempting to acquire the lock as a writer. If tryenter discovers that the 435b5fca8f8Stomee * same object (or another object hashed to the same lock) is already in use, it 436b5fca8f8Stomee * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use 437b5fca8f8Stomee * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t, 438b5fca8f8Stomee * since it allows a thread to acquire the lock as a reader in spite of a 439b5fca8f8Stomee * waiting writer. This second approach insists on moving the object now, no 440b5fca8f8Stomee * matter how many readers the move function must wait for in order to do so, 441b5fca8f8Stomee * and could delay the completion of the callback indefinitely (blocking 442b5fca8f8Stomee * callbacks to other clients). In practice, a less insistent callback using 443b5fca8f8Stomee * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems 444b5fca8f8Stomee * little reason to use anything else. 445b5fca8f8Stomee * 446b5fca8f8Stomee * Avoiding deadlock is not the only problem that an implementation using an 447b5fca8f8Stomee * explicit hold needs to solve. Locking the object in the first place (to 448b5fca8f8Stomee * prevent it from moving) remains a problem, since the object could move 449b5fca8f8Stomee * between the time you obtain a pointer to the object and the time you acquire 450b5fca8f8Stomee * the rwlock hashed to that pointer value. Therefore the client needs to 451b5fca8f8Stomee * recheck the value of the pointer after acquiring the lock, drop the lock if 452b5fca8f8Stomee * the value has changed, and try again. This requires a level of indirection: 453b5fca8f8Stomee * something that points to the object rather than the object itself, that the 454b5fca8f8Stomee * client can access safely while attempting to acquire the lock. (The object 455b5fca8f8Stomee * itself cannot be referenced safely because it can move at any time.) 456b5fca8f8Stomee * The following lock-acquisition function takes whatever is safe to reference 457b5fca8f8Stomee * (arg), follows its pointer to the object (using function f), and tries as 458b5fca8f8Stomee * often as necessary to acquire the hashed lock and verify that the object 459b5fca8f8Stomee * still has not moved: 460b5fca8f8Stomee * 461b5fca8f8Stomee * object_t * 462b5fca8f8Stomee * object_hold(object_f f, void *arg) 463b5fca8f8Stomee * { 464b5fca8f8Stomee * object_t *op; 465b5fca8f8Stomee * 466b5fca8f8Stomee * op = f(arg); 467b5fca8f8Stomee * if (op == NULL) { 468b5fca8f8Stomee * return (NULL); 469b5fca8f8Stomee * } 470b5fca8f8Stomee * 471b5fca8f8Stomee * rw_enter(OBJECT_RWLOCK(op), RW_READER); 472b5fca8f8Stomee * while (op != f(arg)) { 473b5fca8f8Stomee * rw_exit(OBJECT_RWLOCK(op)); 474b5fca8f8Stomee * op = f(arg); 475b5fca8f8Stomee * if (op == NULL) { 476b5fca8f8Stomee * break; 477b5fca8f8Stomee * } 478b5fca8f8Stomee * rw_enter(OBJECT_RWLOCK(op), RW_READER); 479b5fca8f8Stomee * } 480b5fca8f8Stomee * 481b5fca8f8Stomee * return (op); 482b5fca8f8Stomee * } 483b5fca8f8Stomee * 484b5fca8f8Stomee * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The 485b5fca8f8Stomee * lock reacquisition loop, while necessary, almost never executes. The function 486b5fca8f8Stomee * pointer f (used to obtain the object pointer from arg) has the following type 487b5fca8f8Stomee * definition: 488b5fca8f8Stomee * 489b5fca8f8Stomee * typedef object_t *(*object_f)(void *arg); 490b5fca8f8Stomee * 491b5fca8f8Stomee * An object_f implementation is likely to be as simple as accessing a structure 492b5fca8f8Stomee * member: 493b5fca8f8Stomee * 494b5fca8f8Stomee * object_t * 495b5fca8f8Stomee * s_object(void *arg) 496b5fca8f8Stomee * { 497b5fca8f8Stomee * something_t *sp = arg; 498b5fca8f8Stomee * return (sp->s_object); 499b5fca8f8Stomee * } 500b5fca8f8Stomee * 501b5fca8f8Stomee * The flexibility of a function pointer allows the path to the object to be 502b5fca8f8Stomee * arbitrarily complex and also supports the notion that depending on where you 503b5fca8f8Stomee * are using the object, you may need to get it from someplace different. 504b5fca8f8Stomee * 505b5fca8f8Stomee * The function that releases the explicit hold is simpler because it does not 506b5fca8f8Stomee * have to worry about the object moving: 507b5fca8f8Stomee * 508b5fca8f8Stomee * void 509b5fca8f8Stomee * object_rele(object_t *op) 510b5fca8f8Stomee * { 511b5fca8f8Stomee * rw_exit(OBJECT_RWLOCK(op)); 512b5fca8f8Stomee * } 513b5fca8f8Stomee * 514b5fca8f8Stomee * The caller is spared these details so that obtaining and releasing an 515b5fca8f8Stomee * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller 516b5fca8f8Stomee * of object_hold() only needs to know that the returned object pointer is valid 517b5fca8f8Stomee * if not NULL and that the object will not move until released. 518b5fca8f8Stomee * 519b5fca8f8Stomee * Although object_hold() prevents an object from moving, it does not prevent it 520b5fca8f8Stomee * from being freed. The caller must take measures before calling object_hold() 521b5fca8f8Stomee * (afterwards is too late) to ensure that the held object cannot be freed. The 522b5fca8f8Stomee * caller must do so without accessing the unsafe object reference, so any lock 523b5fca8f8Stomee * or reference count used to ensure the continued existence of the object must 524b5fca8f8Stomee * live outside the object itself. 525b5fca8f8Stomee * 526b5fca8f8Stomee * Obtaining a new object is a special case where an explicit hold is impossible 527b5fca8f8Stomee * for the caller. Any function that returns a newly allocated object (either as 528b5fca8f8Stomee * a return value, or as an in-out paramter) must return it already held; after 529b5fca8f8Stomee * the caller gets it is too late, since the object cannot be safely accessed 530b5fca8f8Stomee * without the level of indirection described earlier. The following 531b5fca8f8Stomee * object_alloc() example uses the same code shown earlier to transition a new 532b5fca8f8Stomee * object into the state of being recognized (by the client) as a known object. 533b5fca8f8Stomee * The function must acquire the hold (rw_enter) before that state transition 534b5fca8f8Stomee * makes the object movable: 535b5fca8f8Stomee * 536b5fca8f8Stomee * static object_t * 537b5fca8f8Stomee * object_alloc(container_t *container) 538b5fca8f8Stomee * { 5394d4c4c43STom Erickson * object_t *object = kmem_cache_alloc(object_cache, 0); 540b5fca8f8Stomee * ... set any initial state not set by the constructor ... 541b5fca8f8Stomee * rw_enter(OBJECT_RWLOCK(object), RW_READER); 542b5fca8f8Stomee * mutex_enter(&container->c_objects_lock); 543b5fca8f8Stomee * list_insert_tail(&container->c_objects, object); 544b5fca8f8Stomee * membar_producer(); 545b5fca8f8Stomee * object->o_container = container; 546b5fca8f8Stomee * mutex_exit(&container->c_objects_lock); 547b5fca8f8Stomee * return (object); 548b5fca8f8Stomee * } 549b5fca8f8Stomee * 550b5fca8f8Stomee * Functions that implicitly acquire an object hold (any function that calls 551b5fca8f8Stomee * object_alloc() to supply an object for the caller) need to be carefully noted 552b5fca8f8Stomee * so that the matching object_rele() is not neglected. Otherwise, leaked holds 553b5fca8f8Stomee * prevent all objects hashed to the affected rwlocks from ever being moved. 554b5fca8f8Stomee * 555b5fca8f8Stomee * The pointer to a held object can be hashed to the holding rwlock even after 556b5fca8f8Stomee * the object has been freed. Although it is possible to release the hold 557b5fca8f8Stomee * after freeing the object, you may decide to release the hold implicitly in 558b5fca8f8Stomee * whatever function frees the object, so as to release the hold as soon as 559b5fca8f8Stomee * possible, and for the sake of symmetry with the function that implicitly 560b5fca8f8Stomee * acquires the hold when it allocates the object. Here, object_free() releases 561b5fca8f8Stomee * the hold acquired by object_alloc(). Its implicit object_rele() forms a 562b5fca8f8Stomee * matching pair with object_hold(): 563b5fca8f8Stomee * 564b5fca8f8Stomee * void 565b5fca8f8Stomee * object_free(object_t *object) 566b5fca8f8Stomee * { 567b5fca8f8Stomee * container_t *container; 568b5fca8f8Stomee * 569b5fca8f8Stomee * ASSERT(object_held(object)); 570b5fca8f8Stomee * container = object->o_container; 571b5fca8f8Stomee * mutex_enter(&container->c_objects_lock); 572b5fca8f8Stomee * object->o_container = 573b5fca8f8Stomee * (void *)((uintptr_t)object->o_container | 0x1); 574b5fca8f8Stomee * list_remove(&container->c_objects, object); 575b5fca8f8Stomee * mutex_exit(&container->c_objects_lock); 576b5fca8f8Stomee * object_rele(object); 577b5fca8f8Stomee * kmem_cache_free(object_cache, object); 578b5fca8f8Stomee * } 579b5fca8f8Stomee * 580b5fca8f8Stomee * Note that object_free() cannot safely accept an object pointer as an argument 581b5fca8f8Stomee * unless the object is already held. Any function that calls object_free() 582b5fca8f8Stomee * needs to be carefully noted since it similarly forms a matching pair with 583b5fca8f8Stomee * object_hold(). 584b5fca8f8Stomee * 585b5fca8f8Stomee * To complete the picture, the following callback function implements the 586b5fca8f8Stomee * general solution by moving objects only if they are currently unheld: 587b5fca8f8Stomee * 588b5fca8f8Stomee * static kmem_cbrc_t 589b5fca8f8Stomee * object_move(void *buf, void *newbuf, size_t size, void *arg) 590b5fca8f8Stomee * { 591b5fca8f8Stomee * object_t *op = buf, *np = newbuf; 592b5fca8f8Stomee * container_t *container; 593b5fca8f8Stomee * 594b5fca8f8Stomee * container = op->o_container; 595b5fca8f8Stomee * if ((uintptr_t)container & 0x3) { 596b5fca8f8Stomee * return (KMEM_CBRC_DONT_KNOW); 597b5fca8f8Stomee * } 598b5fca8f8Stomee * 599b5fca8f8Stomee * // Ensure that the container structure does not go away. 600b5fca8f8Stomee * if (container_hold(container) == 0) { 601b5fca8f8Stomee * return (KMEM_CBRC_DONT_KNOW); 602b5fca8f8Stomee * } 603b5fca8f8Stomee * 604b5fca8f8Stomee * mutex_enter(&container->c_objects_lock); 605b5fca8f8Stomee * if (container != op->o_container) { 606b5fca8f8Stomee * mutex_exit(&container->c_objects_lock); 607b5fca8f8Stomee * container_rele(container); 608b5fca8f8Stomee * return (KMEM_CBRC_DONT_KNOW); 609b5fca8f8Stomee * } 610b5fca8f8Stomee * 611b5fca8f8Stomee * if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) { 612b5fca8f8Stomee * mutex_exit(&container->c_objects_lock); 613b5fca8f8Stomee * container_rele(container); 614b5fca8f8Stomee * return (KMEM_CBRC_LATER); 615b5fca8f8Stomee * } 616b5fca8f8Stomee * 617b5fca8f8Stomee * object_move_impl(op, np); // critical section 618b5fca8f8Stomee * rw_exit(OBJECT_RWLOCK(op)); 619b5fca8f8Stomee * 620b5fca8f8Stomee * op->o_container = (void *)((uintptr_t)op->o_container | 0x1); 621b5fca8f8Stomee * list_link_replace(&op->o_link_node, &np->o_link_node); 622b5fca8f8Stomee * mutex_exit(&container->c_objects_lock); 623b5fca8f8Stomee * container_rele(container); 624b5fca8f8Stomee * return (KMEM_CBRC_YES); 625b5fca8f8Stomee * } 626b5fca8f8Stomee * 627b5fca8f8Stomee * Note that object_move() must invalidate the designated o_container pointer of 628b5fca8f8Stomee * the old object in the same way that object_free() does, since kmem will free 629b5fca8f8Stomee * the object in response to the KMEM_CBRC_YES return value. 630b5fca8f8Stomee * 631b5fca8f8Stomee * The lock order in object_move() differs from object_alloc(), which locks 632b5fca8f8Stomee * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the 633b5fca8f8Stomee * callback uses rw_tryenter() (preventing the deadlock described earlier), it's 634b5fca8f8Stomee * not a problem. Holding the lock on the object list in the example above 635b5fca8f8Stomee * through the entire callback not only prevents the object from going away, it 636b5fca8f8Stomee * also allows you to lock the list elsewhere and know that none of its elements 637b5fca8f8Stomee * will move during iteration. 638b5fca8f8Stomee * 639b5fca8f8Stomee * Adding an explicit hold everywhere an object from the cache is used is tricky 640b5fca8f8Stomee * and involves much more change to client code than a cache-specific solution 641b5fca8f8Stomee * that leverages existing state to decide whether or not an object is 642b5fca8f8Stomee * movable. However, this approach has the advantage that no object remains 643b5fca8f8Stomee * immovable for any significant length of time, making it extremely unlikely 644b5fca8f8Stomee * that long-lived allocations can continue holding slabs hostage; and it works 645b5fca8f8Stomee * for any cache. 646b5fca8f8Stomee * 647b5fca8f8Stomee * 3. Consolidator Implementation 648b5fca8f8Stomee * 649b5fca8f8Stomee * Once the client supplies a move function that a) recognizes known objects and 650b5fca8f8Stomee * b) avoids moving objects that are actively in use, the remaining work is up 651b5fca8f8Stomee * to the consolidator to decide which objects to move and when to issue 652b5fca8f8Stomee * callbacks. 653b5fca8f8Stomee * 654b5fca8f8Stomee * The consolidator relies on the fact that a cache's slabs are ordered by 655b5fca8f8Stomee * usage. Each slab has a fixed number of objects. Depending on the slab's 656b5fca8f8Stomee * "color" (the offset of the first object from the beginning of the slab; 657b5fca8f8Stomee * offsets are staggered to mitigate false sharing of cache lines) it is either 658b5fca8f8Stomee * the maximum number of objects per slab determined at cache creation time or 659b5fca8f8Stomee * else the number closest to the maximum that fits within the space remaining 660b5fca8f8Stomee * after the initial offset. A completely allocated slab may contribute some 661b5fca8f8Stomee * internal fragmentation (per-slab overhead) but no external fragmentation, so 662b5fca8f8Stomee * it is of no interest to the consolidator. At the other extreme, slabs whose 663b5fca8f8Stomee * objects have all been freed to the slab are released to the virtual memory 664b5fca8f8Stomee * (VM) subsystem (objects freed to magazines are still allocated as far as the 665b5fca8f8Stomee * slab is concerned). External fragmentation exists when there are slabs 666b5fca8f8Stomee * somewhere between these extremes. A partial slab has at least one but not all 667b5fca8f8Stomee * of its objects allocated. The more partial slabs, and the fewer allocated 668b5fca8f8Stomee * objects on each of them, the higher the fragmentation. Hence the 669b5fca8f8Stomee * consolidator's overall strategy is to reduce the number of partial slabs by 670b5fca8f8Stomee * moving allocated objects from the least allocated slabs to the most allocated 671b5fca8f8Stomee * slabs. 672b5fca8f8Stomee * 673b5fca8f8Stomee * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated 674b5fca8f8Stomee * slabs are kept separately in an unordered list. Since the majority of slabs 675b5fca8f8Stomee * tend to be completely allocated (a typical unfragmented cache may have 676b5fca8f8Stomee * thousands of complete slabs and only a single partial slab), separating 677b5fca8f8Stomee * complete slabs improves the efficiency of partial slab ordering, since the 678b5fca8f8Stomee * complete slabs do not affect the depth or balance of the AVL tree. This 679b5fca8f8Stomee * ordered sequence of partial slabs acts as a "free list" supplying objects for 680b5fca8f8Stomee * allocation requests. 681b5fca8f8Stomee * 682b5fca8f8Stomee * Objects are always allocated from the first partial slab in the free list, 683b5fca8f8Stomee * where the allocation is most likely to eliminate a partial slab (by 684b5fca8f8Stomee * completely allocating it). Conversely, when a single object from a completely 685b5fca8f8Stomee * allocated slab is freed to the slab, that slab is added to the front of the 686b5fca8f8Stomee * free list. Since most free list activity involves highly allocated slabs 687b5fca8f8Stomee * coming and going at the front of the list, slabs tend naturally toward the 688b5fca8f8Stomee * ideal order: highly allocated at the front, sparsely allocated at the back. 689b5fca8f8Stomee * Slabs with few allocated objects are likely to become completely free if they 690b5fca8f8Stomee * keep a safe distance away from the front of the free list. Slab misorders 691b5fca8f8Stomee * interfere with the natural tendency of slabs to become completely free or 692b5fca8f8Stomee * completely allocated. For example, a slab with a single allocated object 693b5fca8f8Stomee * needs only a single free to escape the cache; its natural desire is 694b5fca8f8Stomee * frustrated when it finds itself at the front of the list where a second 695b5fca8f8Stomee * allocation happens just before the free could have released it. Another slab 696b5fca8f8Stomee * with all but one object allocated might have supplied the buffer instead, so 697b5fca8f8Stomee * that both (as opposed to neither) of the slabs would have been taken off the 698b5fca8f8Stomee * free list. 699b5fca8f8Stomee * 700b5fca8f8Stomee * Although slabs tend naturally toward the ideal order, misorders allowed by a 701b5fca8f8Stomee * simple list implementation defeat the consolidator's strategy of merging 702b5fca8f8Stomee * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem 703b5fca8f8Stomee * needs another way to fix misorders to optimize its callback strategy. One 704b5fca8f8Stomee * approach is to periodically scan a limited number of slabs, advancing a 705b5fca8f8Stomee * marker to hold the current scan position, and to move extreme misorders to 706b5fca8f8Stomee * the front or back of the free list and to the front or back of the current 707b5fca8f8Stomee * scan range. By making consecutive scan ranges overlap by one slab, the least 708b5fca8f8Stomee * allocated slab in the current range can be carried along from the end of one 709b5fca8f8Stomee * scan to the start of the next. 710b5fca8f8Stomee * 711b5fca8f8Stomee * Maintaining partial slabs in an AVL tree relieves kmem of this additional 712b5fca8f8Stomee * task, however. Since most of the cache's activity is in the magazine layer, 713b5fca8f8Stomee * and allocations from the slab layer represent only a startup cost, the 714b5fca8f8Stomee * overhead of maintaining a balanced tree is not a significant concern compared 715b5fca8f8Stomee * to the opportunity of reducing complexity by eliminating the partial slab 716b5fca8f8Stomee * scanner just described. The overhead of an AVL tree is minimized by 717b5fca8f8Stomee * maintaining only partial slabs in the tree and keeping completely allocated 718b5fca8f8Stomee * slabs separately in a list. To avoid increasing the size of the slab 719b5fca8f8Stomee * structure the AVL linkage pointers are reused for the slab's list linkage, 720b5fca8f8Stomee * since the slab will always be either partial or complete, never stored both 721b5fca8f8Stomee * ways at the same time. To further minimize the overhead of the AVL tree the 722b5fca8f8Stomee * compare function that orders partial slabs by usage divides the range of 723b5fca8f8Stomee * allocated object counts into bins such that counts within the same bin are 724b5fca8f8Stomee * considered equal. Binning partial slabs makes it less likely that allocating 725b5fca8f8Stomee * or freeing a single object will change the slab's order, requiring a tree 726b5fca8f8Stomee * reinsertion (an avl_remove() followed by an avl_add(), both potentially 727b5fca8f8Stomee * requiring some rebalancing of the tree). Allocation counts closest to 728b5fca8f8Stomee * completely free and completely allocated are left unbinned (finely sorted) to 729b5fca8f8Stomee * better support the consolidator's strategy of merging slabs at either 730b5fca8f8Stomee * extreme. 731b5fca8f8Stomee * 732b5fca8f8Stomee * 3.1 Assessing Fragmentation and Selecting Candidate Slabs 733b5fca8f8Stomee * 734b5fca8f8Stomee * The consolidator piggybacks on the kmem maintenance thread and is called on 735b5fca8f8Stomee * the same interval as kmem_cache_update(), once per cache every fifteen 736b5fca8f8Stomee * seconds. kmem maintains a running count of unallocated objects in the slab 737b5fca8f8Stomee * layer (cache_bufslab). The consolidator checks whether that number exceeds 738b5fca8f8Stomee * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether 739b5fca8f8Stomee * there is a significant number of slabs in the cache (arbitrarily a minimum 740b5fca8f8Stomee * 101 total slabs). Unused objects that have fallen out of the magazine layer's 741b5fca8f8Stomee * working set are included in the assessment, and magazines in the depot are 742b5fca8f8Stomee * reaped if those objects would lift cache_bufslab above the fragmentation 743b5fca8f8Stomee * threshold. Once the consolidator decides that a cache is fragmented, it looks 744b5fca8f8Stomee * for a candidate slab to reclaim, starting at the end of the partial slab free 745b5fca8f8Stomee * list and scanning backwards. At first the consolidator is choosy: only a slab 746b5fca8f8Stomee * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a 747b5fca8f8Stomee * single allocated object, regardless of percentage). If there is difficulty 748b5fca8f8Stomee * finding a candidate slab, kmem raises the allocation threshold incrementally, 749b5fca8f8Stomee * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce 750b5fca8f8Stomee * external fragmentation (unused objects on the free list) below 12.5% (1/8), 751b5fca8f8Stomee * even in the worst case of every slab in the cache being almost 7/8 allocated. 752b5fca8f8Stomee * The threshold can also be lowered incrementally when candidate slabs are easy 753b5fca8f8Stomee * to find, and the threshold is reset to the minimum 1/8 as soon as the cache 754b5fca8f8Stomee * is no longer fragmented. 755b5fca8f8Stomee * 756b5fca8f8Stomee * 3.2 Generating Callbacks 757b5fca8f8Stomee * 758b5fca8f8Stomee * Once an eligible slab is chosen, a callback is generated for every allocated 759b5fca8f8Stomee * object on the slab, in the hope that the client will move everything off the 760b5fca8f8Stomee * slab and make it reclaimable. Objects selected as move destinations are 761b5fca8f8Stomee * chosen from slabs at the front of the free list. Assuming slabs in the ideal 762b5fca8f8Stomee * order (most allocated at the front, least allocated at the back) and a 763b5fca8f8Stomee * cooperative client, the consolidator will succeed in removing slabs from both 764b5fca8f8Stomee * ends of the free list, completely allocating on the one hand and completely 765b5fca8f8Stomee * freeing on the other. Objects selected as move destinations are allocated in 766b5fca8f8Stomee * the kmem maintenance thread where move requests are enqueued. A separate 767b5fca8f8Stomee * callback thread removes pending callbacks from the queue and calls the 768b5fca8f8Stomee * client. The separate thread ensures that client code (the move function) does 769b5fca8f8Stomee * not interfere with internal kmem maintenance tasks. A map of pending 770b5fca8f8Stomee * callbacks keyed by object address (the object to be moved) is checked to 771b5fca8f8Stomee * ensure that duplicate callbacks are not generated for the same object. 772b5fca8f8Stomee * Allocating the move destination (the object to move to) prevents subsequent 773b5fca8f8Stomee * callbacks from selecting the same destination as an earlier pending callback. 774b5fca8f8Stomee * 775b5fca8f8Stomee * Move requests can also be generated by kmem_cache_reap() when the system is 776b5fca8f8Stomee * desperate for memory and by kmem_cache_move_notify(), called by the client to 777b5fca8f8Stomee * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible. 778b5fca8f8Stomee * The map of pending callbacks is protected by the same lock that protects the 779b5fca8f8Stomee * slab layer. 780b5fca8f8Stomee * 781b5fca8f8Stomee * When the system is desperate for memory, kmem does not bother to determine 782b5fca8f8Stomee * whether or not the cache exceeds the fragmentation threshold, but tries to 783b5fca8f8Stomee * consolidate as many slabs as possible. Normally, the consolidator chews 784b5fca8f8Stomee * slowly, one sparsely allocated slab at a time during each maintenance 785b5fca8f8Stomee * interval that the cache is fragmented. When desperate, the consolidator 786b5fca8f8Stomee * starts at the last partial slab and enqueues callbacks for every allocated 787b5fca8f8Stomee * object on every partial slab, working backwards until it reaches the first 788b5fca8f8Stomee * partial slab. The first partial slab, meanwhile, advances in pace with the 789b5fca8f8Stomee * consolidator as allocations to supply move destinations for the enqueued 790b5fca8f8Stomee * callbacks use up the highly allocated slabs at the front of the free list. 791b5fca8f8Stomee * Ideally, the overgrown free list collapses like an accordion, starting at 792b5fca8f8Stomee * both ends and ending at the center with a single partial slab. 793b5fca8f8Stomee * 794b5fca8f8Stomee * 3.3 Client Responses 795b5fca8f8Stomee * 796b5fca8f8Stomee * When the client returns KMEM_CBRC_NO in response to the move callback, kmem 797b5fca8f8Stomee * marks the slab that supplied the stuck object non-reclaimable and moves it to 798b5fca8f8Stomee * front of the free list. The slab remains marked as long as it remains on the 799b5fca8f8Stomee * free list, and it appears more allocated to the partial slab compare function 800b5fca8f8Stomee * than any unmarked slab, no matter how many of its objects are allocated. 801b5fca8f8Stomee * Since even one immovable object ties up the entire slab, the goal is to 802b5fca8f8Stomee * completely allocate any slab that cannot be completely freed. kmem does not 803b5fca8f8Stomee * bother generating callbacks to move objects from a marked slab unless the 804b5fca8f8Stomee * system is desperate. 805b5fca8f8Stomee * 806b5fca8f8Stomee * When the client responds KMEM_CBRC_LATER, kmem increments a count for the 807b5fca8f8Stomee * slab. If the client responds LATER too many times, kmem disbelieves and 808b5fca8f8Stomee * treats the response as a NO. The count is cleared when the slab is taken off 809b5fca8f8Stomee * the partial slab list or when the client moves one of the slab's objects. 810b5fca8f8Stomee * 811b5fca8f8Stomee * 4. Observability 812b5fca8f8Stomee * 813b5fca8f8Stomee * A kmem cache's external fragmentation is best observed with 'mdb -k' using 814b5fca8f8Stomee * the ::kmem_slabs dcmd. For a complete description of the command, enter 815b5fca8f8Stomee * '::help kmem_slabs' at the mdb prompt. 8167c478bd9Sstevel@tonic-gate */ 8177c478bd9Sstevel@tonic-gate 8187c478bd9Sstevel@tonic-gate #include <sys/kmem_impl.h> 8197c478bd9Sstevel@tonic-gate #include <sys/vmem_impl.h> 8207c478bd9Sstevel@tonic-gate #include <sys/param.h> 8217c478bd9Sstevel@tonic-gate #include <sys/sysmacros.h> 8227c478bd9Sstevel@tonic-gate #include <sys/vm.h> 8237c478bd9Sstevel@tonic-gate #include <sys/proc.h> 8247c478bd9Sstevel@tonic-gate #include <sys/tuneable.h> 8257c478bd9Sstevel@tonic-gate #include <sys/systm.h> 8267c478bd9Sstevel@tonic-gate #include <sys/cmn_err.h> 8277c478bd9Sstevel@tonic-gate #include <sys/debug.h> 828b5fca8f8Stomee #include <sys/sdt.h> 8297c478bd9Sstevel@tonic-gate #include <sys/mutex.h> 8307c478bd9Sstevel@tonic-gate #include <sys/bitmap.h> 8317c478bd9Sstevel@tonic-gate #include <sys/atomic.h> 8327c478bd9Sstevel@tonic-gate #include <sys/kobj.h> 8337c478bd9Sstevel@tonic-gate #include <sys/disp.h> 8347c478bd9Sstevel@tonic-gate #include <vm/seg_kmem.h> 8357c478bd9Sstevel@tonic-gate #include <sys/log.h> 8367c478bd9Sstevel@tonic-gate #include <sys/callb.h> 8377c478bd9Sstevel@tonic-gate #include <sys/taskq.h> 8387c478bd9Sstevel@tonic-gate #include <sys/modctl.h> 8397c478bd9Sstevel@tonic-gate #include <sys/reboot.h> 8407c478bd9Sstevel@tonic-gate #include <sys/id32.h> 8417c478bd9Sstevel@tonic-gate #include <sys/zone.h> 842f4b3ec61Sdh155122 #include <sys/netstack.h> 843b5fca8f8Stomee #ifdef DEBUG 844b5fca8f8Stomee #include <sys/random.h> 845b5fca8f8Stomee #endif 8467c478bd9Sstevel@tonic-gate 8477c478bd9Sstevel@tonic-gate extern void streams_msg_init(void); 8487c478bd9Sstevel@tonic-gate extern int segkp_fromheap; 8497c478bd9Sstevel@tonic-gate extern void segkp_cache_free(void); 8506e00b116SPeter Telford extern int callout_init_done; 8517c478bd9Sstevel@tonic-gate 8527c478bd9Sstevel@tonic-gate struct kmem_cache_kstat { 8537c478bd9Sstevel@tonic-gate kstat_named_t kmc_buf_size; 8547c478bd9Sstevel@tonic-gate kstat_named_t kmc_align; 8557c478bd9Sstevel@tonic-gate kstat_named_t kmc_chunk_size; 8567c478bd9Sstevel@tonic-gate kstat_named_t kmc_slab_size; 8577c478bd9Sstevel@tonic-gate kstat_named_t kmc_alloc; 8587c478bd9Sstevel@tonic-gate kstat_named_t kmc_alloc_fail; 8597c478bd9Sstevel@tonic-gate kstat_named_t kmc_free; 8607c478bd9Sstevel@tonic-gate kstat_named_t kmc_depot_alloc; 8617c478bd9Sstevel@tonic-gate kstat_named_t kmc_depot_free; 8627c478bd9Sstevel@tonic-gate kstat_named_t kmc_depot_contention; 8637c478bd9Sstevel@tonic-gate kstat_named_t kmc_slab_alloc; 8647c478bd9Sstevel@tonic-gate kstat_named_t kmc_slab_free; 8657c478bd9Sstevel@tonic-gate kstat_named_t kmc_buf_constructed; 8667c478bd9Sstevel@tonic-gate kstat_named_t kmc_buf_avail; 8677c478bd9Sstevel@tonic-gate kstat_named_t kmc_buf_inuse; 8687c478bd9Sstevel@tonic-gate kstat_named_t kmc_buf_total; 8697c478bd9Sstevel@tonic-gate kstat_named_t kmc_buf_max; 8707c478bd9Sstevel@tonic-gate kstat_named_t kmc_slab_create; 8717c478bd9Sstevel@tonic-gate kstat_named_t kmc_slab_destroy; 8727c478bd9Sstevel@tonic-gate kstat_named_t kmc_vmem_source; 8737c478bd9Sstevel@tonic-gate kstat_named_t kmc_hash_size; 8747c478bd9Sstevel@tonic-gate kstat_named_t kmc_hash_lookup_depth; 8757c478bd9Sstevel@tonic-gate kstat_named_t kmc_hash_rescale; 8767c478bd9Sstevel@tonic-gate kstat_named_t kmc_full_magazines; 8777c478bd9Sstevel@tonic-gate kstat_named_t kmc_empty_magazines; 8787c478bd9Sstevel@tonic-gate kstat_named_t kmc_magazine_size; 879686031edSTom Erickson kstat_named_t kmc_reap; /* number of kmem_cache_reap() calls */ 880686031edSTom Erickson kstat_named_t kmc_defrag; /* attempts to defrag all partial slabs */ 881686031edSTom Erickson kstat_named_t kmc_scan; /* attempts to defrag one partial slab */ 882686031edSTom Erickson kstat_named_t kmc_move_callbacks; /* sum of yes, no, later, dn, dk */ 883b5fca8f8Stomee kstat_named_t kmc_move_yes; 884b5fca8f8Stomee kstat_named_t kmc_move_no; 885b5fca8f8Stomee kstat_named_t kmc_move_later; 886b5fca8f8Stomee kstat_named_t kmc_move_dont_need; 887686031edSTom Erickson kstat_named_t kmc_move_dont_know; /* obj unrecognized by client ... */ 888686031edSTom Erickson kstat_named_t kmc_move_hunt_found; /* ... but found in mag layer */ 889686031edSTom Erickson kstat_named_t kmc_move_slabs_freed; /* slabs freed by consolidator */ 890686031edSTom Erickson kstat_named_t kmc_move_reclaimable; /* buffers, if consolidator ran */ 8917c478bd9Sstevel@tonic-gate } kmem_cache_kstat = { 8927c478bd9Sstevel@tonic-gate { "buf_size", KSTAT_DATA_UINT64 }, 8937c478bd9Sstevel@tonic-gate { "align", KSTAT_DATA_UINT64 }, 8947c478bd9Sstevel@tonic-gate { "chunk_size", KSTAT_DATA_UINT64 }, 8957c478bd9Sstevel@tonic-gate { "slab_size", KSTAT_DATA_UINT64 }, 8967c478bd9Sstevel@tonic-gate { "alloc", KSTAT_DATA_UINT64 }, 8977c478bd9Sstevel@tonic-gate { "alloc_fail", KSTAT_DATA_UINT64 }, 8987c478bd9Sstevel@tonic-gate { "free", KSTAT_DATA_UINT64 }, 8997c478bd9Sstevel@tonic-gate { "depot_alloc", KSTAT_DATA_UINT64 }, 9007c478bd9Sstevel@tonic-gate { "depot_free", KSTAT_DATA_UINT64 }, 9017c478bd9Sstevel@tonic-gate { "depot_contention", KSTAT_DATA_UINT64 }, 9027c478bd9Sstevel@tonic-gate { "slab_alloc", KSTAT_DATA_UINT64 }, 9037c478bd9Sstevel@tonic-gate { "slab_free", KSTAT_DATA_UINT64 }, 9047c478bd9Sstevel@tonic-gate { "buf_constructed", KSTAT_DATA_UINT64 }, 9057c478bd9Sstevel@tonic-gate { "buf_avail", KSTAT_DATA_UINT64 }, 9067c478bd9Sstevel@tonic-gate { "buf_inuse", KSTAT_DATA_UINT64 }, 9077c478bd9Sstevel@tonic-gate { "buf_total", KSTAT_DATA_UINT64 }, 9087c478bd9Sstevel@tonic-gate { "buf_max", KSTAT_DATA_UINT64 }, 9097c478bd9Sstevel@tonic-gate { "slab_create", KSTAT_DATA_UINT64 }, 9107c478bd9Sstevel@tonic-gate { "slab_destroy", KSTAT_DATA_UINT64 }, 9117c478bd9Sstevel@tonic-gate { "vmem_source", KSTAT_DATA_UINT64 }, 9127c478bd9Sstevel@tonic-gate { "hash_size", KSTAT_DATA_UINT64 }, 9137c478bd9Sstevel@tonic-gate { "hash_lookup_depth", KSTAT_DATA_UINT64 }, 9147c478bd9Sstevel@tonic-gate { "hash_rescale", KSTAT_DATA_UINT64 }, 9157c478bd9Sstevel@tonic-gate { "full_magazines", KSTAT_DATA_UINT64 }, 9167c478bd9Sstevel@tonic-gate { "empty_magazines", KSTAT_DATA_UINT64 }, 9177c478bd9Sstevel@tonic-gate { "magazine_size", KSTAT_DATA_UINT64 }, 918686031edSTom Erickson { "reap", KSTAT_DATA_UINT64 }, 919686031edSTom Erickson { "defrag", KSTAT_DATA_UINT64 }, 920686031edSTom Erickson { "scan", KSTAT_DATA_UINT64 }, 921b5fca8f8Stomee { "move_callbacks", KSTAT_DATA_UINT64 }, 922b5fca8f8Stomee { "move_yes", KSTAT_DATA_UINT64 }, 923b5fca8f8Stomee { "move_no", KSTAT_DATA_UINT64 }, 924b5fca8f8Stomee { "move_later", KSTAT_DATA_UINT64 }, 925b5fca8f8Stomee { "move_dont_need", KSTAT_DATA_UINT64 }, 926b5fca8f8Stomee { "move_dont_know", KSTAT_DATA_UINT64 }, 927b5fca8f8Stomee { "move_hunt_found", KSTAT_DATA_UINT64 }, 928686031edSTom Erickson { "move_slabs_freed", KSTAT_DATA_UINT64 }, 929686031edSTom Erickson { "move_reclaimable", KSTAT_DATA_UINT64 }, 9307c478bd9Sstevel@tonic-gate }; 9317c478bd9Sstevel@tonic-gate 9327c478bd9Sstevel@tonic-gate static kmutex_t kmem_cache_kstat_lock; 9337c478bd9Sstevel@tonic-gate 9347c478bd9Sstevel@tonic-gate /* 9357c478bd9Sstevel@tonic-gate * The default set of caches to back kmem_alloc(). 9367c478bd9Sstevel@tonic-gate * These sizes should be reevaluated periodically. 9377c478bd9Sstevel@tonic-gate * 9387c478bd9Sstevel@tonic-gate * We want allocations that are multiples of the coherency granularity 9397c478bd9Sstevel@tonic-gate * (64 bytes) to be satisfied from a cache which is a multiple of 64 9407c478bd9Sstevel@tonic-gate * bytes, so that it will be 64-byte aligned. For all multiples of 64, 9417c478bd9Sstevel@tonic-gate * the next kmem_cache_size greater than or equal to it must be a 9427c478bd9Sstevel@tonic-gate * multiple of 64. 943dce01e3fSJonathan W Adams * 944dce01e3fSJonathan W Adams * We split the table into two sections: size <= 4k and size > 4k. This 945dce01e3fSJonathan W Adams * saves a lot of space and cache footprint in our cache tables. 9467c478bd9Sstevel@tonic-gate */ 9477c478bd9Sstevel@tonic-gate static const int kmem_alloc_sizes[] = { 9487c478bd9Sstevel@tonic-gate 1 * 8, 9497c478bd9Sstevel@tonic-gate 2 * 8, 9507c478bd9Sstevel@tonic-gate 3 * 8, 9517c478bd9Sstevel@tonic-gate 4 * 8, 5 * 8, 6 * 8, 7 * 8, 9527c478bd9Sstevel@tonic-gate 4 * 16, 5 * 16, 6 * 16, 7 * 16, 9537c478bd9Sstevel@tonic-gate 4 * 32, 5 * 32, 6 * 32, 7 * 32, 9547c478bd9Sstevel@tonic-gate 4 * 64, 5 * 64, 6 * 64, 7 * 64, 9557c478bd9Sstevel@tonic-gate 4 * 128, 5 * 128, 6 * 128, 7 * 128, 9567c478bd9Sstevel@tonic-gate P2ALIGN(8192 / 7, 64), 9577c478bd9Sstevel@tonic-gate P2ALIGN(8192 / 6, 64), 9587c478bd9Sstevel@tonic-gate P2ALIGN(8192 / 5, 64), 9597c478bd9Sstevel@tonic-gate P2ALIGN(8192 / 4, 64), 9607c478bd9Sstevel@tonic-gate P2ALIGN(8192 / 3, 64), 9617c478bd9Sstevel@tonic-gate P2ALIGN(8192 / 2, 64), 9627c478bd9Sstevel@tonic-gate }; 9637c478bd9Sstevel@tonic-gate 964dce01e3fSJonathan W Adams static const int kmem_big_alloc_sizes[] = { 965dce01e3fSJonathan W Adams 2 * 4096, 3 * 4096, 966dce01e3fSJonathan W Adams 2 * 8192, 3 * 8192, 967dce01e3fSJonathan W Adams 4 * 8192, 5 * 8192, 6 * 8192, 7 * 8192, 968dce01e3fSJonathan W Adams 8 * 8192, 9 * 8192, 10 * 8192, 11 * 8192, 969dce01e3fSJonathan W Adams 12 * 8192, 13 * 8192, 14 * 8192, 15 * 8192, 970dce01e3fSJonathan W Adams 16 * 8192 971dce01e3fSJonathan W Adams }; 972dce01e3fSJonathan W Adams 973dce01e3fSJonathan W Adams #define KMEM_MAXBUF 4096 974dce01e3fSJonathan W Adams #define KMEM_BIG_MAXBUF_32BIT 32768 975dce01e3fSJonathan W Adams #define KMEM_BIG_MAXBUF 131072 976dce01e3fSJonathan W Adams 977dce01e3fSJonathan W Adams #define KMEM_BIG_MULTIPLE 4096 /* big_alloc_sizes must be a multiple */ 978dce01e3fSJonathan W Adams #define KMEM_BIG_SHIFT 12 /* lg(KMEM_BIG_MULTIPLE) */ 9797c478bd9Sstevel@tonic-gate 9807c478bd9Sstevel@tonic-gate static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT]; 981dce01e3fSJonathan W Adams static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT]; 982dce01e3fSJonathan W Adams 983dce01e3fSJonathan W Adams #define KMEM_ALLOC_TABLE_MAX (KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) 984dce01e3fSJonathan W Adams static size_t kmem_big_alloc_table_max = 0; /* # of filled elements */ 9857c478bd9Sstevel@tonic-gate 9867c478bd9Sstevel@tonic-gate static kmem_magtype_t kmem_magtype[] = { 9877c478bd9Sstevel@tonic-gate { 1, 8, 3200, 65536 }, 9887c478bd9Sstevel@tonic-gate { 3, 16, 256, 32768 }, 9897c478bd9Sstevel@tonic-gate { 7, 32, 64, 16384 }, 9907c478bd9Sstevel@tonic-gate { 15, 64, 0, 8192 }, 9917c478bd9Sstevel@tonic-gate { 31, 64, 0, 4096 }, 9927c478bd9Sstevel@tonic-gate { 47, 64, 0, 2048 }, 9937c478bd9Sstevel@tonic-gate { 63, 64, 0, 1024 }, 9947c478bd9Sstevel@tonic-gate { 95, 64, 0, 512 }, 9957c478bd9Sstevel@tonic-gate { 143, 64, 0, 0 }, 9967c478bd9Sstevel@tonic-gate }; 9977c478bd9Sstevel@tonic-gate 9987c478bd9Sstevel@tonic-gate static uint32_t kmem_reaping; 9997c478bd9Sstevel@tonic-gate static uint32_t kmem_reaping_idspace; 10007c478bd9Sstevel@tonic-gate 10017c478bd9Sstevel@tonic-gate /* 10027c478bd9Sstevel@tonic-gate * kmem tunables 10037c478bd9Sstevel@tonic-gate */ 10047c478bd9Sstevel@tonic-gate clock_t kmem_reap_interval; /* cache reaping rate [15 * HZ ticks] */ 10057c478bd9Sstevel@tonic-gate int kmem_depot_contention = 3; /* max failed tryenters per real interval */ 10067c478bd9Sstevel@tonic-gate pgcnt_t kmem_reapahead = 0; /* start reaping N pages before pageout */ 10077c478bd9Sstevel@tonic-gate int kmem_panic = 1; /* whether to panic on error */ 10087c478bd9Sstevel@tonic-gate int kmem_logging = 1; /* kmem_log_enter() override */ 10097c478bd9Sstevel@tonic-gate uint32_t kmem_mtbf = 0; /* mean time between failures [default: off] */ 10107c478bd9Sstevel@tonic-gate size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */ 10117c478bd9Sstevel@tonic-gate size_t kmem_content_log_size; /* content log size [2% of memory] */ 10127c478bd9Sstevel@tonic-gate size_t kmem_failure_log_size; /* failure log [4 pages per CPU] */ 10137c478bd9Sstevel@tonic-gate size_t kmem_slab_log_size; /* slab create log [4 pages per CPU] */ 10147c478bd9Sstevel@tonic-gate size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */ 10157c478bd9Sstevel@tonic-gate size_t kmem_lite_minsize = 0; /* minimum buffer size for KMF_LITE */ 10167c478bd9Sstevel@tonic-gate size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */ 10177c478bd9Sstevel@tonic-gate int kmem_lite_pcs = 4; /* number of PCs to store in KMF_LITE mode */ 10187c478bd9Sstevel@tonic-gate size_t kmem_maxverify; /* maximum bytes to inspect in debug routines */ 10197c478bd9Sstevel@tonic-gate size_t kmem_minfirewall; /* hardware-enforced redzone threshold */ 10207c478bd9Sstevel@tonic-gate 1021dce01e3fSJonathan W Adams #ifdef _LP64 1022dce01e3fSJonathan W Adams size_t kmem_max_cached = KMEM_BIG_MAXBUF; /* maximum kmem_alloc cache */ 1023dce01e3fSJonathan W Adams #else 1024dce01e3fSJonathan W Adams size_t kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */ 1025dce01e3fSJonathan W Adams #endif 1026dce01e3fSJonathan W Adams 10277c478bd9Sstevel@tonic-gate #ifdef DEBUG 10287c478bd9Sstevel@tonic-gate int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS; 10297c478bd9Sstevel@tonic-gate #else 10307c478bd9Sstevel@tonic-gate int kmem_flags = 0; 10317c478bd9Sstevel@tonic-gate #endif 10327c478bd9Sstevel@tonic-gate int kmem_ready; 10337c478bd9Sstevel@tonic-gate 10347c478bd9Sstevel@tonic-gate static kmem_cache_t *kmem_slab_cache; 10357c478bd9Sstevel@tonic-gate static kmem_cache_t *kmem_bufctl_cache; 10367c478bd9Sstevel@tonic-gate static kmem_cache_t *kmem_bufctl_audit_cache; 10377c478bd9Sstevel@tonic-gate 10387c478bd9Sstevel@tonic-gate static kmutex_t kmem_cache_lock; /* inter-cache linkage only */ 1039b5fca8f8Stomee static list_t kmem_caches; 10407c478bd9Sstevel@tonic-gate 10417c478bd9Sstevel@tonic-gate static taskq_t *kmem_taskq; 10427c478bd9Sstevel@tonic-gate static kmutex_t kmem_flags_lock; 10437c478bd9Sstevel@tonic-gate static vmem_t *kmem_metadata_arena; 10447c478bd9Sstevel@tonic-gate static vmem_t *kmem_msb_arena; /* arena for metadata caches */ 10457c478bd9Sstevel@tonic-gate static vmem_t *kmem_cache_arena; 10467c478bd9Sstevel@tonic-gate static vmem_t *kmem_hash_arena; 10477c478bd9Sstevel@tonic-gate static vmem_t *kmem_log_arena; 10487c478bd9Sstevel@tonic-gate static vmem_t *kmem_oversize_arena; 10497c478bd9Sstevel@tonic-gate static vmem_t *kmem_va_arena; 10507c478bd9Sstevel@tonic-gate static vmem_t *kmem_default_arena; 10517c478bd9Sstevel@tonic-gate static vmem_t *kmem_firewall_va_arena; 10527c478bd9Sstevel@tonic-gate static vmem_t *kmem_firewall_arena; 10537c478bd9Sstevel@tonic-gate 1054b5fca8f8Stomee /* 1055b5fca8f8Stomee * kmem slab consolidator thresholds (tunables) 1056b5fca8f8Stomee */ 1057686031edSTom Erickson size_t kmem_frag_minslabs = 101; /* minimum total slabs */ 1058686031edSTom Erickson size_t kmem_frag_numer = 1; /* free buffers (numerator) */ 1059686031edSTom Erickson size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */ 1060b5fca8f8Stomee /* 1061b5fca8f8Stomee * Maximum number of slabs from which to move buffers during a single 1062b5fca8f8Stomee * maintenance interval while the system is not low on memory. 1063b5fca8f8Stomee */ 1064686031edSTom Erickson size_t kmem_reclaim_max_slabs = 1; 1065b5fca8f8Stomee /* 1066b5fca8f8Stomee * Number of slabs to scan backwards from the end of the partial slab list 1067b5fca8f8Stomee * when searching for buffers to relocate. 1068b5fca8f8Stomee */ 1069686031edSTom Erickson size_t kmem_reclaim_scan_range = 12; 1070b5fca8f8Stomee 1071b5fca8f8Stomee /* consolidator knobs */ 1072b5fca8f8Stomee static boolean_t kmem_move_noreap; 1073b5fca8f8Stomee static boolean_t kmem_move_blocked; 1074b5fca8f8Stomee static boolean_t kmem_move_fulltilt; 1075b5fca8f8Stomee static boolean_t kmem_move_any_partial; 1076b5fca8f8Stomee 1077b5fca8f8Stomee #ifdef DEBUG 1078b5fca8f8Stomee /* 1079686031edSTom Erickson * kmem consolidator debug tunables: 1080b5fca8f8Stomee * Ensure code coverage by occasionally running the consolidator even when the 1081b5fca8f8Stomee * caches are not fragmented (they may never be). These intervals are mean time 1082b5fca8f8Stomee * in cache maintenance intervals (kmem_cache_update). 1083b5fca8f8Stomee */ 1084686031edSTom Erickson uint32_t kmem_mtb_move = 60; /* defrag 1 slab (~15min) */ 1085686031edSTom Erickson uint32_t kmem_mtb_reap = 1800; /* defrag all slabs (~7.5hrs) */ 1086b5fca8f8Stomee #endif /* DEBUG */ 1087b5fca8f8Stomee 1088b5fca8f8Stomee static kmem_cache_t *kmem_defrag_cache; 1089b5fca8f8Stomee static kmem_cache_t *kmem_move_cache; 1090b5fca8f8Stomee static taskq_t *kmem_move_taskq; 1091b5fca8f8Stomee 1092b5fca8f8Stomee static void kmem_cache_scan(kmem_cache_t *); 1093b5fca8f8Stomee static void kmem_cache_defrag(kmem_cache_t *); 1094b942e89bSDavid Valin static void kmem_slab_prefill(kmem_cache_t *, kmem_slab_t *); 1095b5fca8f8Stomee 1096b5fca8f8Stomee 10977c478bd9Sstevel@tonic-gate kmem_log_header_t *kmem_transaction_log; 10987c478bd9Sstevel@tonic-gate kmem_log_header_t *kmem_content_log; 10997c478bd9Sstevel@tonic-gate kmem_log_header_t *kmem_failure_log; 11007c478bd9Sstevel@tonic-gate kmem_log_header_t *kmem_slab_log; 11017c478bd9Sstevel@tonic-gate 11027c478bd9Sstevel@tonic-gate static int kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */ 11037c478bd9Sstevel@tonic-gate 11047c478bd9Sstevel@tonic-gate #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller) \ 11057c478bd9Sstevel@tonic-gate if ((count) > 0) { \ 11067c478bd9Sstevel@tonic-gate pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history; \ 11077c478bd9Sstevel@tonic-gate pc_t *_e; \ 11087c478bd9Sstevel@tonic-gate /* memmove() the old entries down one notch */ \ 11097c478bd9Sstevel@tonic-gate for (_e = &_s[(count) - 1]; _e > _s; _e--) \ 11107c478bd9Sstevel@tonic-gate *_e = *(_e - 1); \ 11117c478bd9Sstevel@tonic-gate *_s = (uintptr_t)(caller); \ 11127c478bd9Sstevel@tonic-gate } 11137c478bd9Sstevel@tonic-gate 11147c478bd9Sstevel@tonic-gate #define KMERR_MODIFIED 0 /* buffer modified while on freelist */ 11157c478bd9Sstevel@tonic-gate #define KMERR_REDZONE 1 /* redzone violation (write past end of buf) */ 11167c478bd9Sstevel@tonic-gate #define KMERR_DUPFREE 2 /* freed a buffer twice */ 11177c478bd9Sstevel@tonic-gate #define KMERR_BADADDR 3 /* freed a bad (unallocated) address */ 11187c478bd9Sstevel@tonic-gate #define KMERR_BADBUFTAG 4 /* buftag corrupted */ 11197c478bd9Sstevel@tonic-gate #define KMERR_BADBUFCTL 5 /* bufctl corrupted */ 11207c478bd9Sstevel@tonic-gate #define KMERR_BADCACHE 6 /* freed a buffer to the wrong cache */ 11217c478bd9Sstevel@tonic-gate #define KMERR_BADSIZE 7 /* alloc size != free size */ 11227c478bd9Sstevel@tonic-gate #define KMERR_BADBASE 8 /* buffer base address wrong */ 11237c478bd9Sstevel@tonic-gate 11247c478bd9Sstevel@tonic-gate struct { 11257c478bd9Sstevel@tonic-gate hrtime_t kmp_timestamp; /* timestamp of panic */ 11267c478bd9Sstevel@tonic-gate int kmp_error; /* type of kmem error */ 11277c478bd9Sstevel@tonic-gate void *kmp_buffer; /* buffer that induced panic */ 11287c478bd9Sstevel@tonic-gate void *kmp_realbuf; /* real start address for buffer */ 11297c478bd9Sstevel@tonic-gate kmem_cache_t *kmp_cache; /* buffer's cache according to client */ 11307c478bd9Sstevel@tonic-gate kmem_cache_t *kmp_realcache; /* actual cache containing buffer */ 11317c478bd9Sstevel@tonic-gate kmem_slab_t *kmp_slab; /* slab accoring to kmem_findslab() */ 11327c478bd9Sstevel@tonic-gate kmem_bufctl_t *kmp_bufctl; /* bufctl */ 11337c478bd9Sstevel@tonic-gate } kmem_panic_info; 11347c478bd9Sstevel@tonic-gate 11357c478bd9Sstevel@tonic-gate 11367c478bd9Sstevel@tonic-gate static void 11377c478bd9Sstevel@tonic-gate copy_pattern(uint64_t pattern, void *buf_arg, size_t size) 11387c478bd9Sstevel@tonic-gate { 11397c478bd9Sstevel@tonic-gate uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 11407c478bd9Sstevel@tonic-gate uint64_t *buf = buf_arg; 11417c478bd9Sstevel@tonic-gate 11427c478bd9Sstevel@tonic-gate while (buf < bufend) 11437c478bd9Sstevel@tonic-gate *buf++ = pattern; 11447c478bd9Sstevel@tonic-gate } 11457c478bd9Sstevel@tonic-gate 11467c478bd9Sstevel@tonic-gate static void * 11477c478bd9Sstevel@tonic-gate verify_pattern(uint64_t pattern, void *buf_arg, size_t size) 11487c478bd9Sstevel@tonic-gate { 11497c478bd9Sstevel@tonic-gate uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 11507c478bd9Sstevel@tonic-gate uint64_t *buf; 11517c478bd9Sstevel@tonic-gate 11527c478bd9Sstevel@tonic-gate for (buf = buf_arg; buf < bufend; buf++) 11537c478bd9Sstevel@tonic-gate if (*buf != pattern) 11547c478bd9Sstevel@tonic-gate return (buf); 11557c478bd9Sstevel@tonic-gate return (NULL); 11567c478bd9Sstevel@tonic-gate } 11577c478bd9Sstevel@tonic-gate 11587c478bd9Sstevel@tonic-gate static void * 11597c478bd9Sstevel@tonic-gate verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size) 11607c478bd9Sstevel@tonic-gate { 11617c478bd9Sstevel@tonic-gate uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 11627c478bd9Sstevel@tonic-gate uint64_t *buf; 11637c478bd9Sstevel@tonic-gate 11647c478bd9Sstevel@tonic-gate for (buf = buf_arg; buf < bufend; buf++) { 11657c478bd9Sstevel@tonic-gate if (*buf != old) { 11667c478bd9Sstevel@tonic-gate copy_pattern(old, buf_arg, 11677c478bd9Sstevel@tonic-gate (char *)buf - (char *)buf_arg); 11687c478bd9Sstevel@tonic-gate return (buf); 11697c478bd9Sstevel@tonic-gate } 11707c478bd9Sstevel@tonic-gate *buf = new; 11717c478bd9Sstevel@tonic-gate } 11727c478bd9Sstevel@tonic-gate 11737c478bd9Sstevel@tonic-gate return (NULL); 11747c478bd9Sstevel@tonic-gate } 11757c478bd9Sstevel@tonic-gate 11767c478bd9Sstevel@tonic-gate static void 11777c478bd9Sstevel@tonic-gate kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 11787c478bd9Sstevel@tonic-gate { 11797c478bd9Sstevel@tonic-gate kmem_cache_t *cp; 11807c478bd9Sstevel@tonic-gate 11817c478bd9Sstevel@tonic-gate mutex_enter(&kmem_cache_lock); 1182b5fca8f8Stomee for (cp = list_head(&kmem_caches); cp != NULL; 1183b5fca8f8Stomee cp = list_next(&kmem_caches, cp)) 11847c478bd9Sstevel@tonic-gate if (tq != NULL) 11857c478bd9Sstevel@tonic-gate (void) taskq_dispatch(tq, (task_func_t *)func, cp, 11867c478bd9Sstevel@tonic-gate tqflag); 11877c478bd9Sstevel@tonic-gate else 11887c478bd9Sstevel@tonic-gate func(cp); 11897c478bd9Sstevel@tonic-gate mutex_exit(&kmem_cache_lock); 11907c478bd9Sstevel@tonic-gate } 11917c478bd9Sstevel@tonic-gate 11927c478bd9Sstevel@tonic-gate static void 11937c478bd9Sstevel@tonic-gate kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) 11947c478bd9Sstevel@tonic-gate { 11957c478bd9Sstevel@tonic-gate kmem_cache_t *cp; 11967c478bd9Sstevel@tonic-gate 11977c478bd9Sstevel@tonic-gate mutex_enter(&kmem_cache_lock); 1198b5fca8f8Stomee for (cp = list_head(&kmem_caches); cp != NULL; 1199b5fca8f8Stomee cp = list_next(&kmem_caches, cp)) { 12007c478bd9Sstevel@tonic-gate if (!(cp->cache_cflags & KMC_IDENTIFIER)) 12017c478bd9Sstevel@tonic-gate continue; 12027c478bd9Sstevel@tonic-gate if (tq != NULL) 12037c478bd9Sstevel@tonic-gate (void) taskq_dispatch(tq, (task_func_t *)func, cp, 12047c478bd9Sstevel@tonic-gate tqflag); 12057c478bd9Sstevel@tonic-gate else 12067c478bd9Sstevel@tonic-gate func(cp); 12077c478bd9Sstevel@tonic-gate } 12087c478bd9Sstevel@tonic-gate mutex_exit(&kmem_cache_lock); 12097c478bd9Sstevel@tonic-gate } 12107c478bd9Sstevel@tonic-gate 12117c478bd9Sstevel@tonic-gate /* 12127c478bd9Sstevel@tonic-gate * Debugging support. Given a buffer address, find its slab. 12137c478bd9Sstevel@tonic-gate */ 12147c478bd9Sstevel@tonic-gate static kmem_slab_t * 12157c478bd9Sstevel@tonic-gate kmem_findslab(kmem_cache_t *cp, void *buf) 12167c478bd9Sstevel@tonic-gate { 12177c478bd9Sstevel@tonic-gate kmem_slab_t *sp; 12187c478bd9Sstevel@tonic-gate 12197c478bd9Sstevel@tonic-gate mutex_enter(&cp->cache_lock); 1220b5fca8f8Stomee for (sp = list_head(&cp->cache_complete_slabs); sp != NULL; 1221b5fca8f8Stomee sp = list_next(&cp->cache_complete_slabs, sp)) { 1222b5fca8f8Stomee if (KMEM_SLAB_MEMBER(sp, buf)) { 1223b5fca8f8Stomee mutex_exit(&cp->cache_lock); 1224b5fca8f8Stomee return (sp); 1225b5fca8f8Stomee } 1226b5fca8f8Stomee } 1227b5fca8f8Stomee for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL; 1228b5fca8f8Stomee sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) { 12297c478bd9Sstevel@tonic-gate if (KMEM_SLAB_MEMBER(sp, buf)) { 12307c478bd9Sstevel@tonic-gate mutex_exit(&cp->cache_lock); 12317c478bd9Sstevel@tonic-gate return (sp); 12327c478bd9Sstevel@tonic-gate } 12337c478bd9Sstevel@tonic-gate } 12347c478bd9Sstevel@tonic-gate mutex_exit(&cp->cache_lock); 12357c478bd9Sstevel@tonic-gate 12367c478bd9Sstevel@tonic-gate return (NULL); 12377c478bd9Sstevel@tonic-gate } 12387c478bd9Sstevel@tonic-gate 12397c478bd9Sstevel@tonic-gate static void 12407c478bd9Sstevel@tonic-gate kmem_error(int error, kmem_cache_t *cparg, void *bufarg) 12417c478bd9Sstevel@tonic-gate { 12427c478bd9Sstevel@tonic-gate kmem_buftag_t *btp = NULL; 12437c478bd9Sstevel@tonic-gate kmem_bufctl_t *bcp = NULL; 12447c478bd9Sstevel@tonic-gate kmem_cache_t *cp = cparg; 12457c478bd9Sstevel@tonic-gate kmem_slab_t *sp; 12467c478bd9Sstevel@tonic-gate uint64_t *off; 12477c478bd9Sstevel@tonic-gate void *buf = bufarg; 12487c478bd9Sstevel@tonic-gate 12497c478bd9Sstevel@tonic-gate kmem_logging = 0; /* stop logging when a bad thing happens */ 12507c478bd9Sstevel@tonic-gate 12517c478bd9Sstevel@tonic-gate kmem_panic_info.kmp_timestamp = gethrtime(); 12527c478bd9Sstevel@tonic-gate 12537c478bd9Sstevel@tonic-gate sp = kmem_findslab(cp, buf); 12547c478bd9Sstevel@tonic-gate if (sp == NULL) { 1255b5fca8f8Stomee for (cp = list_tail(&kmem_caches); cp != NULL; 1256b5fca8f8Stomee cp = list_prev(&kmem_caches, cp)) { 12577c478bd9Sstevel@tonic-gate if ((sp = kmem_findslab(cp, buf)) != NULL) 12587c478bd9Sstevel@tonic-gate break; 12597c478bd9Sstevel@tonic-gate } 12607c478bd9Sstevel@tonic-gate } 12617c478bd9Sstevel@tonic-gate 12627c478bd9Sstevel@tonic-gate if (sp == NULL) { 12637c478bd9Sstevel@tonic-gate cp = NULL; 12647c478bd9Sstevel@tonic-gate error = KMERR_BADADDR; 12657c478bd9Sstevel@tonic-gate } else { 12667c478bd9Sstevel@tonic-gate if (cp != cparg) 12677c478bd9Sstevel@tonic-gate error = KMERR_BADCACHE; 12687c478bd9Sstevel@tonic-gate else 12697c478bd9Sstevel@tonic-gate buf = (char *)bufarg - ((uintptr_t)bufarg - 12707c478bd9Sstevel@tonic-gate (uintptr_t)sp->slab_base) % cp->cache_chunksize; 12717c478bd9Sstevel@tonic-gate if (buf != bufarg) 12727c478bd9Sstevel@tonic-gate error = KMERR_BADBASE; 12737c478bd9Sstevel@tonic-gate if (cp->cache_flags & KMF_BUFTAG) 12747c478bd9Sstevel@tonic-gate btp = KMEM_BUFTAG(cp, buf); 12757c478bd9Sstevel@tonic-gate if (cp->cache_flags & KMF_HASH) { 12767c478bd9Sstevel@tonic-gate mutex_enter(&cp->cache_lock); 12777c478bd9Sstevel@tonic-gate for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next) 12787c478bd9Sstevel@tonic-gate if (bcp->bc_addr == buf) 12797c478bd9Sstevel@tonic-gate break; 12807c478bd9Sstevel@tonic-gate mutex_exit(&cp->cache_lock); 12817c478bd9Sstevel@tonic-gate if (bcp == NULL && btp != NULL) 12827c478bd9Sstevel@tonic-gate bcp = btp->bt_bufctl; 12837c478bd9Sstevel@tonic-gate if (kmem_findslab(cp->cache_bufctl_cache, bcp) == 12847c478bd9Sstevel@tonic-gate NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) || 12857c478bd9Sstevel@tonic-gate bcp->bc_addr != buf) { 12867c478bd9Sstevel@tonic-gate error = KMERR_BADBUFCTL; 12877c478bd9Sstevel@tonic-gate bcp = NULL; 12887c478bd9Sstevel@tonic-gate } 12897c478bd9Sstevel@tonic-gate } 12907c478bd9Sstevel@tonic-gate } 12917c478bd9Sstevel@tonic-gate 12927c478bd9Sstevel@tonic-gate kmem_panic_info.kmp_error = error; 12937c478bd9Sstevel@tonic-gate kmem_panic_info.kmp_buffer = bufarg; 12947c478bd9Sstevel@tonic-gate kmem_panic_info.kmp_realbuf = buf; 12957c478bd9Sstevel@tonic-gate kmem_panic_info.kmp_cache = cparg; 12967c478bd9Sstevel@tonic-gate kmem_panic_info.kmp_realcache = cp; 12977c478bd9Sstevel@tonic-gate kmem_panic_info.kmp_slab = sp; 12987c478bd9Sstevel@tonic-gate kmem_panic_info.kmp_bufctl = bcp; 12997c478bd9Sstevel@tonic-gate 13007c478bd9Sstevel@tonic-gate printf("kernel memory allocator: "); 13017c478bd9Sstevel@tonic-gate 13027c478bd9Sstevel@tonic-gate switch (error) { 13037c478bd9Sstevel@tonic-gate 13047c478bd9Sstevel@tonic-gate case KMERR_MODIFIED: 13057c478bd9Sstevel@tonic-gate printf("buffer modified after being freed\n"); 13067c478bd9Sstevel@tonic-gate off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 13077c478bd9Sstevel@tonic-gate if (off == NULL) /* shouldn't happen */ 13087c478bd9Sstevel@tonic-gate off = buf; 13097c478bd9Sstevel@tonic-gate printf("modification occurred at offset 0x%lx " 13107c478bd9Sstevel@tonic-gate "(0x%llx replaced by 0x%llx)\n", 13117c478bd9Sstevel@tonic-gate (uintptr_t)off - (uintptr_t)buf, 13127c478bd9Sstevel@tonic-gate (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off); 13137c478bd9Sstevel@tonic-gate break; 13147c478bd9Sstevel@tonic-gate 13157c478bd9Sstevel@tonic-gate case KMERR_REDZONE: 13167c478bd9Sstevel@tonic-gate printf("redzone violation: write past end of buffer\n"); 13177c478bd9Sstevel@tonic-gate break; 13187c478bd9Sstevel@tonic-gate 13197c478bd9Sstevel@tonic-gate case KMERR_BADADDR: 13207c478bd9Sstevel@tonic-gate printf("invalid free: buffer not in cache\n"); 13217c478bd9Sstevel@tonic-gate break; 13227c478bd9Sstevel@tonic-gate 13237c478bd9Sstevel@tonic-gate case KMERR_DUPFREE: 13247c478bd9Sstevel@tonic-gate printf("duplicate free: buffer freed twice\n"); 13257c478bd9Sstevel@tonic-gate break; 13267c478bd9Sstevel@tonic-gate 13277c478bd9Sstevel@tonic-gate case KMERR_BADBUFTAG: 13287c478bd9Sstevel@tonic-gate printf("boundary tag corrupted\n"); 13297c478bd9Sstevel@tonic-gate printf("bcp ^ bxstat = %lx, should be %lx\n", 13307c478bd9Sstevel@tonic-gate (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat, 13317c478bd9Sstevel@tonic-gate KMEM_BUFTAG_FREE); 13327c478bd9Sstevel@tonic-gate break; 13337c478bd9Sstevel@tonic-gate 13347c478bd9Sstevel@tonic-gate case KMERR_BADBUFCTL: 13357c478bd9Sstevel@tonic-gate printf("bufctl corrupted\n"); 13367c478bd9Sstevel@tonic-gate break; 13377c478bd9Sstevel@tonic-gate 13387c478bd9Sstevel@tonic-gate case KMERR_BADCACHE: 13397c478bd9Sstevel@tonic-gate printf("buffer freed to wrong cache\n"); 13407c478bd9Sstevel@tonic-gate printf("buffer was allocated from %s,\n", cp->cache_name); 13417c478bd9Sstevel@tonic-gate printf("caller attempting free to %s.\n", cparg->cache_name); 13427c478bd9Sstevel@tonic-gate break; 13437c478bd9Sstevel@tonic-gate 13447c478bd9Sstevel@tonic-gate case KMERR_BADSIZE: 13457c478bd9Sstevel@tonic-gate printf("bad free: free size (%u) != alloc size (%u)\n", 13467c478bd9Sstevel@tonic-gate KMEM_SIZE_DECODE(((uint32_t *)btp)[0]), 13477c478bd9Sstevel@tonic-gate KMEM_SIZE_DECODE(((uint32_t *)btp)[1])); 13487c478bd9Sstevel@tonic-gate break; 13497c478bd9Sstevel@tonic-gate 13507c478bd9Sstevel@tonic-gate case KMERR_BADBASE: 13517c478bd9Sstevel@tonic-gate printf("bad free: free address (%p) != alloc address (%p)\n", 13527c478bd9Sstevel@tonic-gate bufarg, buf); 13537c478bd9Sstevel@tonic-gate break; 13547c478bd9Sstevel@tonic-gate } 13557c478bd9Sstevel@tonic-gate 13567c478bd9Sstevel@tonic-gate printf("buffer=%p bufctl=%p cache: %s\n", 13577c478bd9Sstevel@tonic-gate bufarg, (void *)bcp, cparg->cache_name); 13587c478bd9Sstevel@tonic-gate 13597c478bd9Sstevel@tonic-gate if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) && 13607c478bd9Sstevel@tonic-gate error != KMERR_BADBUFCTL) { 13617c478bd9Sstevel@tonic-gate int d; 13627c478bd9Sstevel@tonic-gate timestruc_t ts; 13637c478bd9Sstevel@tonic-gate kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp; 13647c478bd9Sstevel@tonic-gate 13657c478bd9Sstevel@tonic-gate hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts); 13667c478bd9Sstevel@tonic-gate printf("previous transaction on buffer %p:\n", buf); 13677c478bd9Sstevel@tonic-gate printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n", 13687c478bd9Sstevel@tonic-gate (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec, 13697c478bd9Sstevel@tonic-gate (void *)sp, cp->cache_name); 13707c478bd9Sstevel@tonic-gate for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) { 13717c478bd9Sstevel@tonic-gate ulong_t off; 13727c478bd9Sstevel@tonic-gate char *sym = kobj_getsymname(bcap->bc_stack[d], &off); 13737c478bd9Sstevel@tonic-gate printf("%s+%lx\n", sym ? sym : "?", off); 13747c478bd9Sstevel@tonic-gate } 13757c478bd9Sstevel@tonic-gate } 13767c478bd9Sstevel@tonic-gate if (kmem_panic > 0) 13777c478bd9Sstevel@tonic-gate panic("kernel heap corruption detected"); 13787c478bd9Sstevel@tonic-gate if (kmem_panic == 0) 13797c478bd9Sstevel@tonic-gate debug_enter(NULL); 13807c478bd9Sstevel@tonic-gate kmem_logging = 1; /* resume logging */ 13817c478bd9Sstevel@tonic-gate } 13827c478bd9Sstevel@tonic-gate 13837c478bd9Sstevel@tonic-gate static kmem_log_header_t * 13847c478bd9Sstevel@tonic-gate kmem_log_init(size_t logsize) 13857c478bd9Sstevel@tonic-gate { 13867c478bd9Sstevel@tonic-gate kmem_log_header_t *lhp; 13877c478bd9Sstevel@tonic-gate int nchunks = 4 * max_ncpus; 13887c478bd9Sstevel@tonic-gate size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus]; 13897c478bd9Sstevel@tonic-gate int i; 13907c478bd9Sstevel@tonic-gate 13917c478bd9Sstevel@tonic-gate /* 13927c478bd9Sstevel@tonic-gate * Make sure that lhp->lh_cpu[] is nicely aligned 13937c478bd9Sstevel@tonic-gate * to prevent false sharing of cache lines. 13947c478bd9Sstevel@tonic-gate */ 13957c478bd9Sstevel@tonic-gate lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN); 13967c478bd9Sstevel@tonic-gate lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0, 13977c478bd9Sstevel@tonic-gate NULL, NULL, VM_SLEEP); 13987c478bd9Sstevel@tonic-gate bzero(lhp, lhsize); 13997c478bd9Sstevel@tonic-gate 14007c478bd9Sstevel@tonic-gate mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL); 14017c478bd9Sstevel@tonic-gate lhp->lh_nchunks = nchunks; 14027c478bd9Sstevel@tonic-gate lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE); 14037c478bd9Sstevel@tonic-gate lhp->lh_base = vmem_alloc(kmem_log_arena, 14047c478bd9Sstevel@tonic-gate lhp->lh_chunksize * nchunks, VM_SLEEP); 14057c478bd9Sstevel@tonic-gate lhp->lh_free = vmem_alloc(kmem_log_arena, 14067c478bd9Sstevel@tonic-gate nchunks * sizeof (int), VM_SLEEP); 14077c478bd9Sstevel@tonic-gate bzero(lhp->lh_base, lhp->lh_chunksize * nchunks); 14087c478bd9Sstevel@tonic-gate 14097c478bd9Sstevel@tonic-gate for (i = 0; i < max_ncpus; i++) { 14107c478bd9Sstevel@tonic-gate kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i]; 14117c478bd9Sstevel@tonic-gate mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL); 14127c478bd9Sstevel@tonic-gate clhp->clh_chunk = i; 14137c478bd9Sstevel@tonic-gate } 14147c478bd9Sstevel@tonic-gate 14157c478bd9Sstevel@tonic-gate for (i = max_ncpus; i < nchunks; i++) 14167c478bd9Sstevel@tonic-gate lhp->lh_free[i] = i; 14177c478bd9Sstevel@tonic-gate 14187c478bd9Sstevel@tonic-gate lhp->lh_head = max_ncpus; 14197c478bd9Sstevel@tonic-gate lhp->lh_tail = 0; 14207c478bd9Sstevel@tonic-gate 14217c478bd9Sstevel@tonic-gate return (lhp); 14227c478bd9Sstevel@tonic-gate } 14237c478bd9Sstevel@tonic-gate 14247c478bd9Sstevel@tonic-gate static void * 14257c478bd9Sstevel@tonic-gate kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size) 14267c478bd9Sstevel@tonic-gate { 14277c478bd9Sstevel@tonic-gate void *logspace; 1428d8f51c15SJohn Levon kmem_cpu_log_header_t *clhp; 14297c478bd9Sstevel@tonic-gate 14307c478bd9Sstevel@tonic-gate if (lhp == NULL || kmem_logging == 0 || panicstr) 14317c478bd9Sstevel@tonic-gate return (NULL); 14327c478bd9Sstevel@tonic-gate 1433d8f51c15SJohn Levon clhp = &lhp->lh_cpu[CPU->cpu_seqid]; 1434d8f51c15SJohn Levon 14357c478bd9Sstevel@tonic-gate mutex_enter(&clhp->clh_lock); 14367c478bd9Sstevel@tonic-gate clhp->clh_hits++; 14377c478bd9Sstevel@tonic-gate if (size > clhp->clh_avail) { 14387c478bd9Sstevel@tonic-gate mutex_enter(&lhp->lh_lock); 14397c478bd9Sstevel@tonic-gate lhp->lh_hits++; 14407c478bd9Sstevel@tonic-gate lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk; 14417c478bd9Sstevel@tonic-gate lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks; 14427c478bd9Sstevel@tonic-gate clhp->clh_chunk = lhp->lh_free[lhp->lh_head]; 14437c478bd9Sstevel@tonic-gate lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks; 14447c478bd9Sstevel@tonic-gate clhp->clh_current = lhp->lh_base + 14457c478bd9Sstevel@tonic-gate clhp->clh_chunk * lhp->lh_chunksize; 14467c478bd9Sstevel@tonic-gate clhp->clh_avail = lhp->lh_chunksize; 14477c478bd9Sstevel@tonic-gate if (size > lhp->lh_chunksize) 14487c478bd9Sstevel@tonic-gate size = lhp->lh_chunksize; 14497c478bd9Sstevel@tonic-gate mutex_exit(&lhp->lh_lock); 14507c478bd9Sstevel@tonic-gate } 14517c478bd9Sstevel@tonic-gate logspace = clhp->clh_current; 14527c478bd9Sstevel@tonic-gate clhp->clh_current += size; 14537c478bd9Sstevel@tonic-gate clhp->clh_avail -= size; 14547c478bd9Sstevel@tonic-gate bcopy(data, logspace, size); 14557c478bd9Sstevel@tonic-gate mutex_exit(&clhp->clh_lock); 14567c478bd9Sstevel@tonic-gate return (logspace); 14577c478bd9Sstevel@tonic-gate } 14587c478bd9Sstevel@tonic-gate 14597c478bd9Sstevel@tonic-gate #define KMEM_AUDIT(lp, cp, bcp) \ 14607c478bd9Sstevel@tonic-gate { \ 14617c478bd9Sstevel@tonic-gate kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp); \ 14627c478bd9Sstevel@tonic-gate _bcp->bc_timestamp = gethrtime(); \ 14637c478bd9Sstevel@tonic-gate _bcp->bc_thread = curthread; \ 14647c478bd9Sstevel@tonic-gate _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH); \ 14657c478bd9Sstevel@tonic-gate _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp)); \ 14667c478bd9Sstevel@tonic-gate } 14677c478bd9Sstevel@tonic-gate 14687c478bd9Sstevel@tonic-gate static void 14697c478bd9Sstevel@tonic-gate kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp, 14707c478bd9Sstevel@tonic-gate kmem_slab_t *sp, void *addr) 14717c478bd9Sstevel@tonic-gate { 14727c478bd9Sstevel@tonic-gate kmem_bufctl_audit_t bca; 14737c478bd9Sstevel@tonic-gate 14747c478bd9Sstevel@tonic-gate bzero(&bca, sizeof (kmem_bufctl_audit_t)); 14757c478bd9Sstevel@tonic-gate bca.bc_addr = addr; 14767c478bd9Sstevel@tonic-gate bca.bc_slab = sp; 14777c478bd9Sstevel@tonic-gate bca.bc_cache = cp; 14787c478bd9Sstevel@tonic-gate KMEM_AUDIT(lp, cp, &bca); 14797c478bd9Sstevel@tonic-gate } 14807c478bd9Sstevel@tonic-gate 14817c478bd9Sstevel@tonic-gate /* 14827c478bd9Sstevel@tonic-gate * Create a new slab for cache cp. 14837c478bd9Sstevel@tonic-gate */ 14847c478bd9Sstevel@tonic-gate static kmem_slab_t * 14857c478bd9Sstevel@tonic-gate kmem_slab_create(kmem_cache_t *cp, int kmflag) 14867c478bd9Sstevel@tonic-gate { 14877c478bd9Sstevel@tonic-gate size_t slabsize = cp->cache_slabsize; 14887c478bd9Sstevel@tonic-gate size_t chunksize = cp->cache_chunksize; 14897c478bd9Sstevel@tonic-gate int cache_flags = cp->cache_flags; 14907c478bd9Sstevel@tonic-gate size_t color, chunks; 14917c478bd9Sstevel@tonic-gate char *buf, *slab; 14927c478bd9Sstevel@tonic-gate kmem_slab_t *sp; 14937c478bd9Sstevel@tonic-gate kmem_bufctl_t *bcp; 14947c478bd9Sstevel@tonic-gate vmem_t *vmp = cp->cache_arena; 14957c478bd9Sstevel@tonic-gate 1496b5fca8f8Stomee ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1497b5fca8f8Stomee 14987c478bd9Sstevel@tonic-gate color = cp->cache_color + cp->cache_align; 14997c478bd9Sstevel@tonic-gate if (color > cp->cache_maxcolor) 15007c478bd9Sstevel@tonic-gate color = cp->cache_mincolor; 15017c478bd9Sstevel@tonic-gate cp->cache_color = color; 15027c478bd9Sstevel@tonic-gate 15037c478bd9Sstevel@tonic-gate slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS); 15047c478bd9Sstevel@tonic-gate 15057c478bd9Sstevel@tonic-gate if (slab == NULL) 15067c478bd9Sstevel@tonic-gate goto vmem_alloc_failure; 15077c478bd9Sstevel@tonic-gate 15087c478bd9Sstevel@tonic-gate ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0); 15097c478bd9Sstevel@tonic-gate 1510b5fca8f8Stomee /* 1511b5fca8f8Stomee * Reverify what was already checked in kmem_cache_set_move(), since the 1512b5fca8f8Stomee * consolidator depends (for correctness) on slabs being initialized 1513b5fca8f8Stomee * with the 0xbaddcafe memory pattern (setting a low order bit usable by 1514b5fca8f8Stomee * clients to distinguish uninitialized memory from known objects). 1515b5fca8f8Stomee */ 1516b5fca8f8Stomee ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH)); 15177c478bd9Sstevel@tonic-gate if (!(cp->cache_cflags & KMC_NOTOUCH)) 15187c478bd9Sstevel@tonic-gate copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize); 15197c478bd9Sstevel@tonic-gate 15207c478bd9Sstevel@tonic-gate if (cache_flags & KMF_HASH) { 15217c478bd9Sstevel@tonic-gate if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL) 15227c478bd9Sstevel@tonic-gate goto slab_alloc_failure; 15237c478bd9Sstevel@tonic-gate chunks = (slabsize - color) / chunksize; 15247c478bd9Sstevel@tonic-gate } else { 15257c478bd9Sstevel@tonic-gate sp = KMEM_SLAB(cp, slab); 15267c478bd9Sstevel@tonic-gate chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize; 15277c478bd9Sstevel@tonic-gate } 15287c478bd9Sstevel@tonic-gate 15297c478bd9Sstevel@tonic-gate sp->slab_cache = cp; 15307c478bd9Sstevel@tonic-gate sp->slab_head = NULL; 15317c478bd9Sstevel@tonic-gate sp->slab_refcnt = 0; 15327c478bd9Sstevel@tonic-gate sp->slab_base = buf = slab + color; 15337c478bd9Sstevel@tonic-gate sp->slab_chunks = chunks; 1534b5fca8f8Stomee sp->slab_stuck_offset = (uint32_t)-1; 1535b5fca8f8Stomee sp->slab_later_count = 0; 1536b5fca8f8Stomee sp->slab_flags = 0; 15377c478bd9Sstevel@tonic-gate 15387c478bd9Sstevel@tonic-gate ASSERT(chunks > 0); 15397c478bd9Sstevel@tonic-gate while (chunks-- != 0) { 15407c478bd9Sstevel@tonic-gate if (cache_flags & KMF_HASH) { 15417c478bd9Sstevel@tonic-gate bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag); 15427c478bd9Sstevel@tonic-gate if (bcp == NULL) 15437c478bd9Sstevel@tonic-gate goto bufctl_alloc_failure; 15447c478bd9Sstevel@tonic-gate if (cache_flags & KMF_AUDIT) { 15457c478bd9Sstevel@tonic-gate kmem_bufctl_audit_t *bcap = 15467c478bd9Sstevel@tonic-gate (kmem_bufctl_audit_t *)bcp; 15477c478bd9Sstevel@tonic-gate bzero(bcap, sizeof (kmem_bufctl_audit_t)); 15487c478bd9Sstevel@tonic-gate bcap->bc_cache = cp; 15497c478bd9Sstevel@tonic-gate } 15507c478bd9Sstevel@tonic-gate bcp->bc_addr = buf; 15517c478bd9Sstevel@tonic-gate bcp->bc_slab = sp; 15527c478bd9Sstevel@tonic-gate } else { 15537c478bd9Sstevel@tonic-gate bcp = KMEM_BUFCTL(cp, buf); 15547c478bd9Sstevel@tonic-gate } 15557c478bd9Sstevel@tonic-gate if (cache_flags & KMF_BUFTAG) { 15567c478bd9Sstevel@tonic-gate kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 15577c478bd9Sstevel@tonic-gate btp->bt_redzone = KMEM_REDZONE_PATTERN; 15587c478bd9Sstevel@tonic-gate btp->bt_bufctl = bcp; 15597c478bd9Sstevel@tonic-gate btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 15607c478bd9Sstevel@tonic-gate if (cache_flags & KMF_DEADBEEF) { 15617c478bd9Sstevel@tonic-gate copy_pattern(KMEM_FREE_PATTERN, buf, 15627c478bd9Sstevel@tonic-gate cp->cache_verify); 15637c478bd9Sstevel@tonic-gate } 15647c478bd9Sstevel@tonic-gate } 15657c478bd9Sstevel@tonic-gate bcp->bc_next = sp->slab_head; 15667c478bd9Sstevel@tonic-gate sp->slab_head = bcp; 15677c478bd9Sstevel@tonic-gate buf += chunksize; 15687c478bd9Sstevel@tonic-gate } 15697c478bd9Sstevel@tonic-gate 15707c478bd9Sstevel@tonic-gate kmem_log_event(kmem_slab_log, cp, sp, slab); 15717c478bd9Sstevel@tonic-gate 15727c478bd9Sstevel@tonic-gate return (sp); 15737c478bd9Sstevel@tonic-gate 15747c478bd9Sstevel@tonic-gate bufctl_alloc_failure: 15757c478bd9Sstevel@tonic-gate 15767c478bd9Sstevel@tonic-gate while ((bcp = sp->slab_head) != NULL) { 15777c478bd9Sstevel@tonic-gate sp->slab_head = bcp->bc_next; 15787c478bd9Sstevel@tonic-gate kmem_cache_free(cp->cache_bufctl_cache, bcp); 15797c478bd9Sstevel@tonic-gate } 15807c478bd9Sstevel@tonic-gate kmem_cache_free(kmem_slab_cache, sp); 15817c478bd9Sstevel@tonic-gate 15827c478bd9Sstevel@tonic-gate slab_alloc_failure: 15837c478bd9Sstevel@tonic-gate 15847c478bd9Sstevel@tonic-gate vmem_free(vmp, slab, slabsize); 15857c478bd9Sstevel@tonic-gate 15867c478bd9Sstevel@tonic-gate vmem_alloc_failure: 15877c478bd9Sstevel@tonic-gate 15887c478bd9Sstevel@tonic-gate kmem_log_event(kmem_failure_log, cp, NULL, NULL); 15891a5e258fSJosef 'Jeff' Sipek atomic_inc_64(&cp->cache_alloc_fail); 15907c478bd9Sstevel@tonic-gate 15917c478bd9Sstevel@tonic-gate return (NULL); 15927c478bd9Sstevel@tonic-gate } 15937c478bd9Sstevel@tonic-gate 15947c478bd9Sstevel@tonic-gate /* 15957c478bd9Sstevel@tonic-gate * Destroy a slab. 15967c478bd9Sstevel@tonic-gate */ 15977c478bd9Sstevel@tonic-gate static void 15987c478bd9Sstevel@tonic-gate kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp) 15997c478bd9Sstevel@tonic-gate { 16007c478bd9Sstevel@tonic-gate vmem_t *vmp = cp->cache_arena; 16017c478bd9Sstevel@tonic-gate void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum); 16027c478bd9Sstevel@tonic-gate 1603b5fca8f8Stomee ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 1604b5fca8f8Stomee ASSERT(sp->slab_refcnt == 0); 1605b5fca8f8Stomee 16067c478bd9Sstevel@tonic-gate if (cp->cache_flags & KMF_HASH) { 16077c478bd9Sstevel@tonic-gate kmem_bufctl_t *bcp; 16087c478bd9Sstevel@tonic-gate while ((bcp = sp->slab_head) != NULL) { 16097c478bd9Sstevel@tonic-gate sp->slab_head = bcp->bc_next; 16107c478bd9Sstevel@tonic-gate kmem_cache_free(cp->cache_bufctl_cache, bcp); 16117c478bd9Sstevel@tonic-gate } 16127c478bd9Sstevel@tonic-gate kmem_cache_free(kmem_slab_cache, sp); 16137c478bd9Sstevel@tonic-gate } 16147c478bd9Sstevel@tonic-gate vmem_free(vmp, slab, cp->cache_slabsize); 16157c478bd9Sstevel@tonic-gate } 16167c478bd9Sstevel@tonic-gate 16177c478bd9Sstevel@tonic-gate static void * 1618b942e89bSDavid Valin kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp, boolean_t prefill) 16197c478bd9Sstevel@tonic-gate { 16207c478bd9Sstevel@tonic-gate kmem_bufctl_t *bcp, **hash_bucket; 16217c478bd9Sstevel@tonic-gate void *buf; 1622b942e89bSDavid Valin boolean_t new_slab = (sp->slab_refcnt == 0); 16237c478bd9Sstevel@tonic-gate 1624b5fca8f8Stomee ASSERT(MUTEX_HELD(&cp->cache_lock)); 16257c478bd9Sstevel@tonic-gate /* 1626b5fca8f8Stomee * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we 1627b5fca8f8Stomee * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the 1628b942e89bSDavid Valin * slab is newly created. 16297c478bd9Sstevel@tonic-gate */ 1630b942e89bSDavid Valin ASSERT(new_slab || (KMEM_SLAB_IS_PARTIAL(sp) && 1631b5fca8f8Stomee (sp == avl_first(&cp->cache_partial_slabs)))); 1632b5fca8f8Stomee ASSERT(sp->slab_cache == cp); 16337c478bd9Sstevel@tonic-gate 1634b5fca8f8Stomee cp->cache_slab_alloc++; 16359f1b636aStomee cp->cache_bufslab--; 16367c478bd9Sstevel@tonic-gate sp->slab_refcnt++; 16377c478bd9Sstevel@tonic-gate 16387c478bd9Sstevel@tonic-gate bcp = sp->slab_head; 1639b942e89bSDavid Valin sp->slab_head = bcp->bc_next; 16407c478bd9Sstevel@tonic-gate 16417c478bd9Sstevel@tonic-gate if (cp->cache_flags & KMF_HASH) { 16427c478bd9Sstevel@tonic-gate /* 16437c478bd9Sstevel@tonic-gate * Add buffer to allocated-address hash table. 16447c478bd9Sstevel@tonic-gate */ 16457c478bd9Sstevel@tonic-gate buf = bcp->bc_addr; 16467c478bd9Sstevel@tonic-gate hash_bucket = KMEM_HASH(cp, buf); 16477c478bd9Sstevel@tonic-gate bcp->bc_next = *hash_bucket; 16487c478bd9Sstevel@tonic-gate *hash_bucket = bcp; 16497c478bd9Sstevel@tonic-gate if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 16507c478bd9Sstevel@tonic-gate KMEM_AUDIT(kmem_transaction_log, cp, bcp); 16517c478bd9Sstevel@tonic-gate } 16527c478bd9Sstevel@tonic-gate } else { 16537c478bd9Sstevel@tonic-gate buf = KMEM_BUF(cp, bcp); 16547c478bd9Sstevel@tonic-gate } 16557c478bd9Sstevel@tonic-gate 16567c478bd9Sstevel@tonic-gate ASSERT(KMEM_SLAB_MEMBER(sp, buf)); 1657b942e89bSDavid Valin 1658b942e89bSDavid Valin if (sp->slab_head == NULL) { 1659b942e89bSDavid Valin ASSERT(KMEM_SLAB_IS_ALL_USED(sp)); 1660b942e89bSDavid Valin if (new_slab) { 1661b942e89bSDavid Valin ASSERT(sp->slab_chunks == 1); 1662b942e89bSDavid Valin } else { 1663b942e89bSDavid Valin ASSERT(sp->slab_chunks > 1); /* the slab was partial */ 1664b942e89bSDavid Valin avl_remove(&cp->cache_partial_slabs, sp); 1665b942e89bSDavid Valin sp->slab_later_count = 0; /* clear history */ 1666b942e89bSDavid Valin sp->slab_flags &= ~KMEM_SLAB_NOMOVE; 1667b942e89bSDavid Valin sp->slab_stuck_offset = (uint32_t)-1; 1668b942e89bSDavid Valin } 1669b942e89bSDavid Valin list_insert_head(&cp->cache_complete_slabs, sp); 1670b942e89bSDavid Valin cp->cache_complete_slab_count++; 1671b942e89bSDavid Valin return (buf); 1672b942e89bSDavid Valin } 1673b942e89bSDavid Valin 1674b942e89bSDavid Valin ASSERT(KMEM_SLAB_IS_PARTIAL(sp)); 1675b942e89bSDavid Valin /* 1676b942e89bSDavid Valin * Peek to see if the magazine layer is enabled before 1677b942e89bSDavid Valin * we prefill. We're not holding the cpu cache lock, 1678b942e89bSDavid Valin * so the peek could be wrong, but there's no harm in it. 1679b942e89bSDavid Valin */ 1680b942e89bSDavid Valin if (new_slab && prefill && (cp->cache_flags & KMF_PREFILL) && 1681b942e89bSDavid Valin (KMEM_CPU_CACHE(cp)->cc_magsize != 0)) { 1682b942e89bSDavid Valin kmem_slab_prefill(cp, sp); 1683b942e89bSDavid Valin return (buf); 1684b942e89bSDavid Valin } 1685b942e89bSDavid Valin 1686b942e89bSDavid Valin if (new_slab) { 1687b942e89bSDavid Valin avl_add(&cp->cache_partial_slabs, sp); 1688b942e89bSDavid Valin return (buf); 1689b942e89bSDavid Valin } 1690b942e89bSDavid Valin 1691b942e89bSDavid Valin /* 1692b942e89bSDavid Valin * The slab is now more allocated than it was, so the 1693b942e89bSDavid Valin * order remains unchanged. 1694b942e89bSDavid Valin */ 1695b942e89bSDavid Valin ASSERT(!avl_update(&cp->cache_partial_slabs, sp)); 1696b5fca8f8Stomee return (buf); 1697b5fca8f8Stomee } 16987c478bd9Sstevel@tonic-gate 1699b5fca8f8Stomee /* 1700b5fca8f8Stomee * Allocate a raw (unconstructed) buffer from cp's slab layer. 1701b5fca8f8Stomee */ 1702b5fca8f8Stomee static void * 1703b5fca8f8Stomee kmem_slab_alloc(kmem_cache_t *cp, int kmflag) 1704b5fca8f8Stomee { 1705b5fca8f8Stomee kmem_slab_t *sp; 1706b5fca8f8Stomee void *buf; 17074d4c4c43STom Erickson boolean_t test_destructor; 1708b5fca8f8Stomee 1709b5fca8f8Stomee mutex_enter(&cp->cache_lock); 17104d4c4c43STom Erickson test_destructor = (cp->cache_slab_alloc == 0); 1711b5fca8f8Stomee sp = avl_first(&cp->cache_partial_slabs); 1712b5fca8f8Stomee if (sp == NULL) { 1713b5fca8f8Stomee ASSERT(cp->cache_bufslab == 0); 1714b5fca8f8Stomee 1715b5fca8f8Stomee /* 1716b5fca8f8Stomee * The freelist is empty. Create a new slab. 1717b5fca8f8Stomee */ 1718b5fca8f8Stomee mutex_exit(&cp->cache_lock); 1719b5fca8f8Stomee if ((sp = kmem_slab_create(cp, kmflag)) == NULL) { 1720b5fca8f8Stomee return (NULL); 1721b5fca8f8Stomee } 1722b5fca8f8Stomee mutex_enter(&cp->cache_lock); 1723b5fca8f8Stomee cp->cache_slab_create++; 1724b5fca8f8Stomee if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax) 1725b5fca8f8Stomee cp->cache_bufmax = cp->cache_buftotal; 1726b5fca8f8Stomee cp->cache_bufslab += sp->slab_chunks; 1727b5fca8f8Stomee } 1728b5fca8f8Stomee 1729b942e89bSDavid Valin buf = kmem_slab_alloc_impl(cp, sp, B_TRUE); 1730b5fca8f8Stomee ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == 1731b5fca8f8Stomee (cp->cache_complete_slab_count + 1732b5fca8f8Stomee avl_numnodes(&cp->cache_partial_slabs) + 1733b5fca8f8Stomee (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); 17347c478bd9Sstevel@tonic-gate mutex_exit(&cp->cache_lock); 17357c478bd9Sstevel@tonic-gate 17364d4c4c43STom Erickson if (test_destructor && cp->cache_destructor != NULL) { 17374d4c4c43STom Erickson /* 17384d4c4c43STom Erickson * On the first kmem_slab_alloc(), assert that it is valid to 17394d4c4c43STom Erickson * call the destructor on a newly constructed object without any 17404d4c4c43STom Erickson * client involvement. 17414d4c4c43STom Erickson */ 17424d4c4c43STom Erickson if ((cp->cache_constructor == NULL) || 17434d4c4c43STom Erickson cp->cache_constructor(buf, cp->cache_private, 17444d4c4c43STom Erickson kmflag) == 0) { 17454d4c4c43STom Erickson cp->cache_destructor(buf, cp->cache_private); 17464d4c4c43STom Erickson } 17474d4c4c43STom Erickson copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf, 17484d4c4c43STom Erickson cp->cache_bufsize); 17494d4c4c43STom Erickson if (cp->cache_flags & KMF_DEADBEEF) { 17504d4c4c43STom Erickson copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 17514d4c4c43STom Erickson } 17524d4c4c43STom Erickson } 17534d4c4c43STom Erickson 17547c478bd9Sstevel@tonic-gate return (buf); 17557c478bd9Sstevel@tonic-gate } 17567c478bd9Sstevel@tonic-gate 1757b5fca8f8Stomee static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *); 1758b5fca8f8Stomee 17597c478bd9Sstevel@tonic-gate /* 17607c478bd9Sstevel@tonic-gate * Free a raw (unconstructed) buffer to cp's slab layer. 17617c478bd9Sstevel@tonic-gate */ 17627c478bd9Sstevel@tonic-gate static void 17637c478bd9Sstevel@tonic-gate kmem_slab_free(kmem_cache_t *cp, void *buf) 17647c478bd9Sstevel@tonic-gate { 17657c478bd9Sstevel@tonic-gate kmem_slab_t *sp; 17667c478bd9Sstevel@tonic-gate kmem_bufctl_t *bcp, **prev_bcpp; 17677c478bd9Sstevel@tonic-gate 17687c478bd9Sstevel@tonic-gate ASSERT(buf != NULL); 17697c478bd9Sstevel@tonic-gate 17707c478bd9Sstevel@tonic-gate mutex_enter(&cp->cache_lock); 17717c478bd9Sstevel@tonic-gate cp->cache_slab_free++; 17727c478bd9Sstevel@tonic-gate 17737c478bd9Sstevel@tonic-gate if (cp->cache_flags & KMF_HASH) { 17747c478bd9Sstevel@tonic-gate /* 17757c478bd9Sstevel@tonic-gate * Look up buffer in allocated-address hash table. 17767c478bd9Sstevel@tonic-gate */ 17777c478bd9Sstevel@tonic-gate prev_bcpp = KMEM_HASH(cp, buf); 17787c478bd9Sstevel@tonic-gate while ((bcp = *prev_bcpp) != NULL) { 17797c478bd9Sstevel@tonic-gate if (bcp->bc_addr == buf) { 17807c478bd9Sstevel@tonic-gate *prev_bcpp = bcp->bc_next; 17817c478bd9Sstevel@tonic-gate sp = bcp->bc_slab; 17827c478bd9Sstevel@tonic-gate break; 17837c478bd9Sstevel@tonic-gate } 17847c478bd9Sstevel@tonic-gate cp->cache_lookup_depth++; 17857c478bd9Sstevel@tonic-gate prev_bcpp = &bcp->bc_next; 17867c478bd9Sstevel@tonic-gate } 17877c478bd9Sstevel@tonic-gate } else { 17887c478bd9Sstevel@tonic-gate bcp = KMEM_BUFCTL(cp, buf); 17897c478bd9Sstevel@tonic-gate sp = KMEM_SLAB(cp, buf); 17907c478bd9Sstevel@tonic-gate } 17917c478bd9Sstevel@tonic-gate 17927c478bd9Sstevel@tonic-gate if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) { 17937c478bd9Sstevel@tonic-gate mutex_exit(&cp->cache_lock); 17947c478bd9Sstevel@tonic-gate kmem_error(KMERR_BADADDR, cp, buf); 17957c478bd9Sstevel@tonic-gate return; 17967c478bd9Sstevel@tonic-gate } 17977c478bd9Sstevel@tonic-gate 1798b5fca8f8Stomee if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) { 1799b5fca8f8Stomee /* 1800b5fca8f8Stomee * If this is the buffer that prevented the consolidator from 1801b5fca8f8Stomee * clearing the slab, we can reset the slab flags now that the 1802b5fca8f8Stomee * buffer is freed. (It makes sense to do this in 1803b5fca8f8Stomee * kmem_cache_free(), where the client gives up ownership of the 1804b5fca8f8Stomee * buffer, but on the hot path the test is too expensive.) 1805b5fca8f8Stomee */ 1806b5fca8f8Stomee kmem_slab_move_yes(cp, sp, buf); 1807b5fca8f8Stomee } 1808b5fca8f8Stomee 18097c478bd9Sstevel@tonic-gate if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { 18107c478bd9Sstevel@tonic-gate if (cp->cache_flags & KMF_CONTENTS) 18117c478bd9Sstevel@tonic-gate ((kmem_bufctl_audit_t *)bcp)->bc_contents = 18127c478bd9Sstevel@tonic-gate kmem_log_enter(kmem_content_log, buf, 18137c478bd9Sstevel@tonic-gate cp->cache_contents); 18147c478bd9Sstevel@tonic-gate KMEM_AUDIT(kmem_transaction_log, cp, bcp); 18157c478bd9Sstevel@tonic-gate } 18167c478bd9Sstevel@tonic-gate 18177c478bd9Sstevel@tonic-gate bcp->bc_next = sp->slab_head; 18187c478bd9Sstevel@tonic-gate sp->slab_head = bcp; 18197c478bd9Sstevel@tonic-gate 18209f1b636aStomee cp->cache_bufslab++; 18217c478bd9Sstevel@tonic-gate ASSERT(sp->slab_refcnt >= 1); 1822b5fca8f8Stomee 18237c478bd9Sstevel@tonic-gate if (--sp->slab_refcnt == 0) { 18247c478bd9Sstevel@tonic-gate /* 18257c478bd9Sstevel@tonic-gate * There are no outstanding allocations from this slab, 18267c478bd9Sstevel@tonic-gate * so we can reclaim the memory. 18277c478bd9Sstevel@tonic-gate */ 1828b5fca8f8Stomee if (sp->slab_chunks == 1) { 1829b5fca8f8Stomee list_remove(&cp->cache_complete_slabs, sp); 1830b5fca8f8Stomee cp->cache_complete_slab_count--; 1831b5fca8f8Stomee } else { 1832b5fca8f8Stomee avl_remove(&cp->cache_partial_slabs, sp); 1833b5fca8f8Stomee } 1834b5fca8f8Stomee 18357c478bd9Sstevel@tonic-gate cp->cache_buftotal -= sp->slab_chunks; 18369f1b636aStomee cp->cache_bufslab -= sp->slab_chunks; 1837b5fca8f8Stomee /* 1838b5fca8f8Stomee * Defer releasing the slab to the virtual memory subsystem 1839b5fca8f8Stomee * while there is a pending move callback, since we guarantee 1840b5fca8f8Stomee * that buffers passed to the move callback have only been 1841b5fca8f8Stomee * touched by kmem or by the client itself. Since the memory 1842b5fca8f8Stomee * patterns baddcafe (uninitialized) and deadbeef (freed) both 1843b5fca8f8Stomee * set at least one of the two lowest order bits, the client can 1844b5fca8f8Stomee * test those bits in the move callback to determine whether or 1845b5fca8f8Stomee * not it knows about the buffer (assuming that the client also 1846b5fca8f8Stomee * sets one of those low order bits whenever it frees a buffer). 1847b5fca8f8Stomee */ 1848b5fca8f8Stomee if (cp->cache_defrag == NULL || 1849b5fca8f8Stomee (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) && 1850b5fca8f8Stomee !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) { 1851b5fca8f8Stomee cp->cache_slab_destroy++; 18527c478bd9Sstevel@tonic-gate mutex_exit(&cp->cache_lock); 18537c478bd9Sstevel@tonic-gate kmem_slab_destroy(cp, sp); 1854b5fca8f8Stomee } else { 1855b5fca8f8Stomee list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 1856b5fca8f8Stomee /* 1857b5fca8f8Stomee * Slabs are inserted at both ends of the deadlist to 1858b5fca8f8Stomee * distinguish between slabs freed while move callbacks 1859b5fca8f8Stomee * are pending (list head) and a slab freed while the 1860b5fca8f8Stomee * lock is dropped in kmem_move_buffers() (list tail) so 1861b5fca8f8Stomee * that in both cases slab_destroy() is called from the 1862b5fca8f8Stomee * right context. 1863b5fca8f8Stomee */ 1864b5fca8f8Stomee if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) { 1865b5fca8f8Stomee list_insert_tail(deadlist, sp); 1866b5fca8f8Stomee } else { 1867b5fca8f8Stomee list_insert_head(deadlist, sp); 1868b5fca8f8Stomee } 1869b5fca8f8Stomee cp->cache_defrag->kmd_deadcount++; 1870b5fca8f8Stomee mutex_exit(&cp->cache_lock); 1871b5fca8f8Stomee } 18727c478bd9Sstevel@tonic-gate return; 18737c478bd9Sstevel@tonic-gate } 1874b5fca8f8Stomee 1875b5fca8f8Stomee if (bcp->bc_next == NULL) { 1876b5fca8f8Stomee /* Transition the slab from completely allocated to partial. */ 1877b5fca8f8Stomee ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1)); 1878b5fca8f8Stomee ASSERT(sp->slab_chunks > 1); 1879b5fca8f8Stomee list_remove(&cp->cache_complete_slabs, sp); 1880b5fca8f8Stomee cp->cache_complete_slab_count--; 1881b5fca8f8Stomee avl_add(&cp->cache_partial_slabs, sp); 1882b5fca8f8Stomee } else { 1883b5fca8f8Stomee (void) avl_update_gt(&cp->cache_partial_slabs, sp); 1884b5fca8f8Stomee } 1885b5fca8f8Stomee 1886b5fca8f8Stomee ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == 1887b5fca8f8Stomee (cp->cache_complete_slab_count + 1888b5fca8f8Stomee avl_numnodes(&cp->cache_partial_slabs) + 1889b5fca8f8Stomee (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); 18907c478bd9Sstevel@tonic-gate mutex_exit(&cp->cache_lock); 18917c478bd9Sstevel@tonic-gate } 18927c478bd9Sstevel@tonic-gate 1893b5fca8f8Stomee /* 1894b5fca8f8Stomee * Return -1 if kmem_error, 1 if constructor fails, 0 if successful. 1895b5fca8f8Stomee */ 18967c478bd9Sstevel@tonic-gate static int 18977c478bd9Sstevel@tonic-gate kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct, 18987c478bd9Sstevel@tonic-gate caddr_t caller) 18997c478bd9Sstevel@tonic-gate { 19007c478bd9Sstevel@tonic-gate kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 19017c478bd9Sstevel@tonic-gate kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 19027c478bd9Sstevel@tonic-gate uint32_t mtbf; 19037c478bd9Sstevel@tonic-gate 19047c478bd9Sstevel@tonic-gate if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 19057c478bd9Sstevel@tonic-gate kmem_error(KMERR_BADBUFTAG, cp, buf); 19067c478bd9Sstevel@tonic-gate return (-1); 19077c478bd9Sstevel@tonic-gate } 19087c478bd9Sstevel@tonic-gate 19097c478bd9Sstevel@tonic-gate btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC; 19107c478bd9Sstevel@tonic-gate 19117c478bd9Sstevel@tonic-gate if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 19127c478bd9Sstevel@tonic-gate kmem_error(KMERR_BADBUFCTL, cp, buf); 19137c478bd9Sstevel@tonic-gate return (-1); 19147c478bd9Sstevel@tonic-gate } 19157c478bd9Sstevel@tonic-gate 19167c478bd9Sstevel@tonic-gate if (cp->cache_flags & KMF_DEADBEEF) { 19177c478bd9Sstevel@tonic-gate if (!construct && (cp->cache_flags & KMF_LITE)) { 19187c478bd9Sstevel@tonic-gate if (*(uint64_t *)buf != KMEM_FREE_PATTERN) { 19197c478bd9Sstevel@tonic-gate kmem_error(KMERR_MODIFIED, cp, buf); 19207c478bd9Sstevel@tonic-gate return (-1); 19217c478bd9Sstevel@tonic-gate } 19227c478bd9Sstevel@tonic-gate if (cp->cache_constructor != NULL) 19237c478bd9Sstevel@tonic-gate *(uint64_t *)buf = btp->bt_redzone; 19247c478bd9Sstevel@tonic-gate else 19257c478bd9Sstevel@tonic-gate *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN; 19267c478bd9Sstevel@tonic-gate } else { 19277c478bd9Sstevel@tonic-gate construct = 1; 19287c478bd9Sstevel@tonic-gate if (verify_and_copy_pattern(KMEM_FREE_PATTERN, 19297c478bd9Sstevel@tonic-gate KMEM_UNINITIALIZED_PATTERN, buf, 19307c478bd9Sstevel@tonic-gate cp->cache_verify)) { 19317c478bd9Sstevel@tonic-gate kmem_error(KMERR_MODIFIED, cp, buf); 19327c478bd9Sstevel@tonic-gate return (-1); 19337c478bd9Sstevel@tonic-gate } 19347c478bd9Sstevel@tonic-gate } 19357c478bd9Sstevel@tonic-gate } 19367c478bd9Sstevel@tonic-gate btp->bt_redzone = KMEM_REDZONE_PATTERN; 19377c478bd9Sstevel@tonic-gate 19387c478bd9Sstevel@tonic-gate if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 && 19397c478bd9Sstevel@tonic-gate gethrtime() % mtbf == 0 && 19407c478bd9Sstevel@tonic-gate (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) { 19417c478bd9Sstevel@tonic-gate kmem_log_event(kmem_failure_log, cp, NULL, NULL); 19427c478bd9Sstevel@tonic-gate if (!construct && cp->cache_destructor != NULL) 19437c478bd9Sstevel@tonic-gate cp->cache_destructor(buf, cp->cache_private); 19447c478bd9Sstevel@tonic-gate } else { 19457c478bd9Sstevel@tonic-gate mtbf = 0; 19467c478bd9Sstevel@tonic-gate } 19477c478bd9Sstevel@tonic-gate 19487c478bd9Sstevel@tonic-gate if (mtbf || (construct && cp->cache_constructor != NULL && 19497c478bd9Sstevel@tonic-gate cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) { 19501a5e258fSJosef 'Jeff' Sipek atomic_inc_64(&cp->cache_alloc_fail); 19517c478bd9Sstevel@tonic-gate btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 19527c478bd9Sstevel@tonic-gate if (cp->cache_flags & KMF_DEADBEEF) 19537c478bd9Sstevel@tonic-gate copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 19547c478bd9Sstevel@tonic-gate kmem_slab_free(cp, buf); 1955b5fca8f8Stomee return (1); 19567c478bd9Sstevel@tonic-gate } 19577c478bd9Sstevel@tonic-gate 19587c478bd9Sstevel@tonic-gate if (cp->cache_flags & KMF_AUDIT) { 19597c478bd9Sstevel@tonic-gate KMEM_AUDIT(kmem_transaction_log, cp, bcp); 19607c478bd9Sstevel@tonic-gate } 19617c478bd9Sstevel@tonic-gate 19627c478bd9Sstevel@tonic-gate if ((cp->cache_flags & KMF_LITE) && 19637c478bd9Sstevel@tonic-gate !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 19647c478bd9Sstevel@tonic-gate KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 19657c478bd9Sstevel@tonic-gate } 19667c478bd9Sstevel@tonic-gate 19677c478bd9Sstevel@tonic-gate return (0); 19687c478bd9Sstevel@tonic-gate } 19697c478bd9Sstevel@tonic-gate 19707c478bd9Sstevel@tonic-gate static int 19717c478bd9Sstevel@tonic-gate kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller) 19727c478bd9Sstevel@tonic-gate { 19737c478bd9Sstevel@tonic-gate kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 19747c478bd9Sstevel@tonic-gate kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; 19757c478bd9Sstevel@tonic-gate kmem_slab_t *sp; 19767c478bd9Sstevel@tonic-gate 19777c478bd9Sstevel@tonic-gate if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) { 19787c478bd9Sstevel@tonic-gate if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { 19797c478bd9Sstevel@tonic-gate kmem_error(KMERR_DUPFREE, cp, buf); 19807c478bd9Sstevel@tonic-gate return (-1); 19817c478bd9Sstevel@tonic-gate } 19827c478bd9Sstevel@tonic-gate sp = kmem_findslab(cp, buf); 19837c478bd9Sstevel@tonic-gate if (sp == NULL || sp->slab_cache != cp) 19847c478bd9Sstevel@tonic-gate kmem_error(KMERR_BADADDR, cp, buf); 19857c478bd9Sstevel@tonic-gate else 19867c478bd9Sstevel@tonic-gate kmem_error(KMERR_REDZONE, cp, buf); 19877c478bd9Sstevel@tonic-gate return (-1); 19887c478bd9Sstevel@tonic-gate } 19897c478bd9Sstevel@tonic-gate 19907c478bd9Sstevel@tonic-gate btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; 19917c478bd9Sstevel@tonic-gate 19927c478bd9Sstevel@tonic-gate if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { 19937c478bd9Sstevel@tonic-gate kmem_error(KMERR_BADBUFCTL, cp, buf); 19947c478bd9Sstevel@tonic-gate return (-1); 19957c478bd9Sstevel@tonic-gate } 19967c478bd9Sstevel@tonic-gate 19977c478bd9Sstevel@tonic-gate if (btp->bt_redzone != KMEM_REDZONE_PATTERN) { 19987c478bd9Sstevel@tonic-gate kmem_error(KMERR_REDZONE, cp, buf); 19997c478bd9Sstevel@tonic-gate return (-1); 20007c478bd9Sstevel@tonic-gate } 20017c478bd9Sstevel@tonic-gate 20027c478bd9Sstevel@tonic-gate if (cp->cache_flags & KMF_AUDIT) { 20037c478bd9Sstevel@tonic-gate if (cp->cache_flags & KMF_CONTENTS) 20047c478bd9Sstevel@tonic-gate bcp->bc_contents = kmem_log_enter(kmem_content_log, 20057c478bd9Sstevel@tonic-gate buf, cp->cache_contents); 20067c478bd9Sstevel@tonic-gate KMEM_AUDIT(kmem_transaction_log, cp, bcp); 20077c478bd9Sstevel@tonic-gate } 20087c478bd9Sstevel@tonic-gate 20097c478bd9Sstevel@tonic-gate if ((cp->cache_flags & KMF_LITE) && 20107c478bd9Sstevel@tonic-gate !(cp->cache_cflags & KMC_KMEM_ALLOC)) { 20117c478bd9Sstevel@tonic-gate KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); 20127c478bd9Sstevel@tonic-gate } 20137c478bd9Sstevel@tonic-gate 20147c478bd9Sstevel@tonic-gate if (cp->cache_flags & KMF_DEADBEEF) { 20157c478bd9Sstevel@tonic-gate if (cp->cache_flags & KMF_LITE) 20167c478bd9Sstevel@tonic-gate btp->bt_redzone = *(uint64_t *)buf; 20177c478bd9Sstevel@tonic-gate else if (cp->cache_destructor != NULL) 20187c478bd9Sstevel@tonic-gate cp->cache_destructor(buf, cp->cache_private); 20197c478bd9Sstevel@tonic-gate 20207c478bd9Sstevel@tonic-gate copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); 20217c478bd9Sstevel@tonic-gate } 20227c478bd9Sstevel@tonic-gate 20237c478bd9Sstevel@tonic-gate return (0); 20247c478bd9Sstevel@tonic-gate } 20257c478bd9Sstevel@tonic-gate 20267c478bd9Sstevel@tonic-gate /* 20277c478bd9Sstevel@tonic-gate * Free each object in magazine mp to cp's slab layer, and free mp itself. 20287c478bd9Sstevel@tonic-gate */ 20297c478bd9Sstevel@tonic-gate static void 20307c478bd9Sstevel@tonic-gate kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds) 20317c478bd9Sstevel@tonic-gate { 20327c478bd9Sstevel@tonic-gate int round; 20337c478bd9Sstevel@tonic-gate 2034b5fca8f8Stomee ASSERT(!list_link_active(&cp->cache_link) || 2035b5fca8f8Stomee taskq_member(kmem_taskq, curthread)); 20367c478bd9Sstevel@tonic-gate 20377c478bd9Sstevel@tonic-gate for (round = 0; round < nrounds; round++) { 20387c478bd9Sstevel@tonic-gate void *buf = mp->mag_round[round]; 20397c478bd9Sstevel@tonic-gate 20407c478bd9Sstevel@tonic-gate if (cp->cache_flags & KMF_DEADBEEF) { 20417c478bd9Sstevel@tonic-gate if (verify_pattern(KMEM_FREE_PATTERN, buf, 20427c478bd9Sstevel@tonic-gate cp->cache_verify) != NULL) { 20437c478bd9Sstevel@tonic-gate kmem_error(KMERR_MODIFIED, cp, buf); 20447c478bd9Sstevel@tonic-gate continue; 20457c478bd9Sstevel@tonic-gate } 20467c478bd9Sstevel@tonic-gate if ((cp->cache_flags & KMF_LITE) && 20477c478bd9Sstevel@tonic-gate cp->cache_destructor != NULL) { 20487c478bd9Sstevel@tonic-gate kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 20497c478bd9Sstevel@tonic-gate *(uint64_t *)buf = btp->bt_redzone; 20507c478bd9Sstevel@tonic-gate cp->cache_destructor(buf, cp->cache_private); 20517c478bd9Sstevel@tonic-gate *(uint64_t *)buf = KMEM_FREE_PATTERN; 20527c478bd9Sstevel@tonic-gate } 20537c478bd9Sstevel@tonic-gate } else if (cp->cache_destructor != NULL) { 20547c478bd9Sstevel@tonic-gate cp->cache_destructor(buf, cp->cache_private); 20557c478bd9Sstevel@tonic-gate } 20567c478bd9Sstevel@tonic-gate 20577c478bd9Sstevel@tonic-gate kmem_slab_free(cp, buf); 20587c478bd9Sstevel@tonic-gate } 20597c478bd9Sstevel@tonic-gate ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 20607c478bd9Sstevel@tonic-gate kmem_cache_free(cp->cache_magtype->mt_cache, mp); 20617c478bd9Sstevel@tonic-gate } 20627c478bd9Sstevel@tonic-gate 20637c478bd9Sstevel@tonic-gate /* 20647c478bd9Sstevel@tonic-gate * Allocate a magazine from the depot. 20657c478bd9Sstevel@tonic-gate */ 20667c478bd9Sstevel@tonic-gate static kmem_magazine_t * 20677c478bd9Sstevel@tonic-gate kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp) 20687c478bd9Sstevel@tonic-gate { 20697c478bd9Sstevel@tonic-gate kmem_magazine_t *mp; 20707c478bd9Sstevel@tonic-gate 20717c478bd9Sstevel@tonic-gate /* 20727c478bd9Sstevel@tonic-gate * If we can't get the depot lock without contention, 20737c478bd9Sstevel@tonic-gate * update our contention count. We use the depot 20747c478bd9Sstevel@tonic-gate * contention rate to determine whether we need to 20757c478bd9Sstevel@tonic-gate * increase the magazine size for better scalability. 20767c478bd9Sstevel@tonic-gate */ 20777c478bd9Sstevel@tonic-gate if (!mutex_tryenter(&cp->cache_depot_lock)) { 20787c478bd9Sstevel@tonic-gate mutex_enter(&cp->cache_depot_lock); 20797c478bd9Sstevel@tonic-gate cp->cache_depot_contention++; 20807c478bd9Sstevel@tonic-gate } 20817c478bd9Sstevel@tonic-gate 20827c478bd9Sstevel@tonic-gate if ((mp = mlp->ml_list) != NULL) { 20837c478bd9Sstevel@tonic-gate ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 20847c478bd9Sstevel@tonic-gate mlp->ml_list = mp->mag_next; 20857c478bd9Sstevel@tonic-gate if (--mlp->ml_total < mlp->ml_min) 20867c478bd9Sstevel@tonic-gate mlp->ml_min = mlp->ml_total; 20877c478bd9Sstevel@tonic-gate mlp->ml_alloc++; 20887c478bd9Sstevel@tonic-gate } 20897c478bd9Sstevel@tonic-gate 20907c478bd9Sstevel@tonic-gate mutex_exit(&cp->cache_depot_lock); 20917c478bd9Sstevel@tonic-gate 20927c478bd9Sstevel@tonic-gate return (mp); 20937c478bd9Sstevel@tonic-gate } 20947c478bd9Sstevel@tonic-gate 20957c478bd9Sstevel@tonic-gate /* 20967c478bd9Sstevel@tonic-gate * Free a magazine to the depot. 20977c478bd9Sstevel@tonic-gate */ 20987c478bd9Sstevel@tonic-gate static void 20997c478bd9Sstevel@tonic-gate kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp) 21007c478bd9Sstevel@tonic-gate { 21017c478bd9Sstevel@tonic-gate mutex_enter(&cp->cache_depot_lock); 21027c478bd9Sstevel@tonic-gate ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); 21037c478bd9Sstevel@tonic-gate mp->mag_next = mlp->ml_list; 21047c478bd9Sstevel@tonic-gate mlp->ml_list = mp; 21057c478bd9Sstevel@tonic-gate mlp->ml_total++; 21067c478bd9Sstevel@tonic-gate mutex_exit(&cp->cache_depot_lock); 21077c478bd9Sstevel@tonic-gate } 21087c478bd9Sstevel@tonic-gate 21097c478bd9Sstevel@tonic-gate /* 21107c478bd9Sstevel@tonic-gate * Update the working set statistics for cp's depot. 21117c478bd9Sstevel@tonic-gate */ 21127c478bd9Sstevel@tonic-gate static void 21137c478bd9Sstevel@tonic-gate kmem_depot_ws_update(kmem_cache_t *cp) 21147c478bd9Sstevel@tonic-gate { 21157c478bd9Sstevel@tonic-gate mutex_enter(&cp->cache_depot_lock); 21167c478bd9Sstevel@tonic-gate cp->cache_full.ml_reaplimit = cp->cache_full.ml_min; 21177c478bd9Sstevel@tonic-gate cp->cache_full.ml_min = cp->cache_full.ml_total; 21187c478bd9Sstevel@tonic-gate cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min; 21197c478bd9Sstevel@tonic-gate cp->cache_empty.ml_min = cp->cache_empty.ml_total; 21207c478bd9Sstevel@tonic-gate mutex_exit(&cp->cache_depot_lock); 21217c478bd9Sstevel@tonic-gate } 21227c478bd9Sstevel@tonic-gate 21237c478bd9Sstevel@tonic-gate /* 21240c833d64SJosef 'Jeff' Sipek * Set the working set statistics for cp's depot to zero. (Everything is 21250c833d64SJosef 'Jeff' Sipek * eligible for reaping.) 21260c833d64SJosef 'Jeff' Sipek */ 21270c833d64SJosef 'Jeff' Sipek static void 21280c833d64SJosef 'Jeff' Sipek kmem_depot_ws_zero(kmem_cache_t *cp) 21290c833d64SJosef 'Jeff' Sipek { 21300c833d64SJosef 'Jeff' Sipek mutex_enter(&cp->cache_depot_lock); 21310c833d64SJosef 'Jeff' Sipek cp->cache_full.ml_reaplimit = cp->cache_full.ml_total; 21320c833d64SJosef 'Jeff' Sipek cp->cache_full.ml_min = cp->cache_full.ml_total; 21330c833d64SJosef 'Jeff' Sipek cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_total; 21340c833d64SJosef 'Jeff' Sipek cp->cache_empty.ml_min = cp->cache_empty.ml_total; 21350c833d64SJosef 'Jeff' Sipek mutex_exit(&cp->cache_depot_lock); 21360c833d64SJosef 'Jeff' Sipek } 21370c833d64SJosef 'Jeff' Sipek 21380c833d64SJosef 'Jeff' Sipek /* 213947bb2664SMatthew Ahrens * The number of bytes to reap before we call kpreempt(). The default (1MB) 214047bb2664SMatthew Ahrens * causes us to preempt reaping up to hundreds of times per second. Using a 214147bb2664SMatthew Ahrens * larger value (1GB) causes this to have virtually no effect. 214247bb2664SMatthew Ahrens */ 214347bb2664SMatthew Ahrens size_t kmem_reap_preempt_bytes = 1024 * 1024; 214447bb2664SMatthew Ahrens 214547bb2664SMatthew Ahrens /* 21467c478bd9Sstevel@tonic-gate * Reap all magazines that have fallen out of the depot's working set. 21477c478bd9Sstevel@tonic-gate */ 21487c478bd9Sstevel@tonic-gate static void 21497c478bd9Sstevel@tonic-gate kmem_depot_ws_reap(kmem_cache_t *cp) 21507c478bd9Sstevel@tonic-gate { 215147bb2664SMatthew Ahrens size_t bytes = 0; 21527c478bd9Sstevel@tonic-gate long reap; 21537c478bd9Sstevel@tonic-gate kmem_magazine_t *mp; 21547c478bd9Sstevel@tonic-gate 2155b5fca8f8Stomee ASSERT(!list_link_active(&cp->cache_link) || 2156b5fca8f8Stomee taskq_member(kmem_taskq, curthread)); 21577c478bd9Sstevel@tonic-gate 21587c478bd9Sstevel@tonic-gate reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 215947bb2664SMatthew Ahrens while (reap-- && 216047bb2664SMatthew Ahrens (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) { 21617c478bd9Sstevel@tonic-gate kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize); 216247bb2664SMatthew Ahrens bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize; 216347bb2664SMatthew Ahrens if (bytes > kmem_reap_preempt_bytes) { 216447bb2664SMatthew Ahrens kpreempt(KPREEMPT_SYNC); 216547bb2664SMatthew Ahrens bytes = 0; 216647bb2664SMatthew Ahrens } 216747bb2664SMatthew Ahrens } 21687c478bd9Sstevel@tonic-gate 21697c478bd9Sstevel@tonic-gate reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min); 217047bb2664SMatthew Ahrens while (reap-- && 217147bb2664SMatthew Ahrens (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) { 21727c478bd9Sstevel@tonic-gate kmem_magazine_destroy(cp, mp, 0); 217347bb2664SMatthew Ahrens bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize; 217447bb2664SMatthew Ahrens if (bytes > kmem_reap_preempt_bytes) { 217547bb2664SMatthew Ahrens kpreempt(KPREEMPT_SYNC); 217647bb2664SMatthew Ahrens bytes = 0; 217747bb2664SMatthew Ahrens } 217847bb2664SMatthew Ahrens } 21797c478bd9Sstevel@tonic-gate } 21807c478bd9Sstevel@tonic-gate 21817c478bd9Sstevel@tonic-gate static void 21827c478bd9Sstevel@tonic-gate kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds) 21837c478bd9Sstevel@tonic-gate { 21847c478bd9Sstevel@tonic-gate ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) || 21857c478bd9Sstevel@tonic-gate (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize)); 21867c478bd9Sstevel@tonic-gate ASSERT(ccp->cc_magsize > 0); 21877c478bd9Sstevel@tonic-gate 21887c478bd9Sstevel@tonic-gate ccp->cc_ploaded = ccp->cc_loaded; 21897c478bd9Sstevel@tonic-gate ccp->cc_prounds = ccp->cc_rounds; 21907c478bd9Sstevel@tonic-gate ccp->cc_loaded = mp; 21917c478bd9Sstevel@tonic-gate ccp->cc_rounds = rounds; 21927c478bd9Sstevel@tonic-gate } 21937c478bd9Sstevel@tonic-gate 21947c478bd9Sstevel@tonic-gate /* 21959dd77bc8SDave Plauger * Intercept kmem alloc/free calls during crash dump in order to avoid 21969dd77bc8SDave Plauger * changing kmem state while memory is being saved to the dump device. 21979dd77bc8SDave Plauger * Otherwise, ::kmem_verify will report "corrupt buffers". Note that 21989dd77bc8SDave Plauger * there are no locks because only one CPU calls kmem during a crash 21999dd77bc8SDave Plauger * dump. To enable this feature, first create the associated vmem 22009dd77bc8SDave Plauger * arena with VMC_DUMPSAFE. 22019dd77bc8SDave Plauger */ 22029dd77bc8SDave Plauger static void *kmem_dump_start; /* start of pre-reserved heap */ 22039dd77bc8SDave Plauger static void *kmem_dump_end; /* end of heap area */ 22049dd77bc8SDave Plauger static void *kmem_dump_curr; /* current free heap pointer */ 22059dd77bc8SDave Plauger static size_t kmem_dump_size; /* size of heap area */ 22069dd77bc8SDave Plauger 22079dd77bc8SDave Plauger /* append to each buf created in the pre-reserved heap */ 22089dd77bc8SDave Plauger typedef struct kmem_dumpctl { 22099dd77bc8SDave Plauger void *kdc_next; /* cache dump free list linkage */ 22109dd77bc8SDave Plauger } kmem_dumpctl_t; 22119dd77bc8SDave Plauger 22129dd77bc8SDave Plauger #define KMEM_DUMPCTL(cp, buf) \ 22139dd77bc8SDave Plauger ((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \ 22149dd77bc8SDave Plauger sizeof (void *))) 22159dd77bc8SDave Plauger 22169dd77bc8SDave Plauger /* set non zero for full report */ 22179dd77bc8SDave Plauger uint_t kmem_dump_verbose = 0; 22189dd77bc8SDave Plauger 22199dd77bc8SDave Plauger /* stats for overize heap */ 22209dd77bc8SDave Plauger uint_t kmem_dump_oversize_allocs = 0; 22219dd77bc8SDave Plauger uint_t kmem_dump_oversize_max = 0; 22229dd77bc8SDave Plauger 22239dd77bc8SDave Plauger static void 22249dd77bc8SDave Plauger kmem_dumppr(char **pp, char *e, const char *format, ...) 22259dd77bc8SDave Plauger { 22269dd77bc8SDave Plauger char *p = *pp; 22279dd77bc8SDave Plauger 22289dd77bc8SDave Plauger if (p < e) { 22299dd77bc8SDave Plauger int n; 22309dd77bc8SDave Plauger va_list ap; 22319dd77bc8SDave Plauger 22329dd77bc8SDave Plauger va_start(ap, format); 22339dd77bc8SDave Plauger n = vsnprintf(p, e - p, format, ap); 22349dd77bc8SDave Plauger va_end(ap); 22359dd77bc8SDave Plauger *pp = p + n; 22369dd77bc8SDave Plauger } 22379dd77bc8SDave Plauger } 22389dd77bc8SDave Plauger 22399dd77bc8SDave Plauger /* 22409dd77bc8SDave Plauger * Called when dumpadm(1M) configures dump parameters. 22419dd77bc8SDave Plauger */ 22429dd77bc8SDave Plauger void 22439dd77bc8SDave Plauger kmem_dump_init(size_t size) 22449dd77bc8SDave Plauger { 22453608e2e0SJohn Levon /* Our caller ensures size is always set. */ 22463608e2e0SJohn Levon ASSERT3U(size, >, 0); 22473608e2e0SJohn Levon 22489dd77bc8SDave Plauger if (kmem_dump_start != NULL) 22499dd77bc8SDave Plauger kmem_free(kmem_dump_start, kmem_dump_size); 22509dd77bc8SDave Plauger 22519dd77bc8SDave Plauger kmem_dump_start = kmem_alloc(size, KM_SLEEP); 22529dd77bc8SDave Plauger kmem_dump_size = size; 22539dd77bc8SDave Plauger kmem_dump_curr = kmem_dump_start; 22549dd77bc8SDave Plauger kmem_dump_end = (void *)((char *)kmem_dump_start + size); 22559dd77bc8SDave Plauger copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size); 22569dd77bc8SDave Plauger } 22579dd77bc8SDave Plauger 22589dd77bc8SDave Plauger /* 22599dd77bc8SDave Plauger * Set flag for each kmem_cache_t if is safe to use alternate dump 22609dd77bc8SDave Plauger * memory. Called just before panic crash dump starts. Set the flag 22619dd77bc8SDave Plauger * for the calling CPU. 22629dd77bc8SDave Plauger */ 22639dd77bc8SDave Plauger void 22649dd77bc8SDave Plauger kmem_dump_begin(void) 22659dd77bc8SDave Plauger { 22669dd77bc8SDave Plauger kmem_cache_t *cp; 22679dd77bc8SDave Plauger 22683608e2e0SJohn Levon ASSERT(panicstr != NULL); 22693608e2e0SJohn Levon 22709dd77bc8SDave Plauger for (cp = list_head(&kmem_caches); cp != NULL; 22719dd77bc8SDave Plauger cp = list_next(&kmem_caches, cp)) { 22729dd77bc8SDave Plauger kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 22739dd77bc8SDave Plauger 22749dd77bc8SDave Plauger if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) { 22759dd77bc8SDave Plauger cp->cache_flags |= KMF_DUMPDIVERT; 22769dd77bc8SDave Plauger ccp->cc_flags |= KMF_DUMPDIVERT; 22779dd77bc8SDave Plauger ccp->cc_dump_rounds = ccp->cc_rounds; 22789dd77bc8SDave Plauger ccp->cc_dump_prounds = ccp->cc_prounds; 22799dd77bc8SDave Plauger ccp->cc_rounds = ccp->cc_prounds = -1; 22809dd77bc8SDave Plauger } else { 22819dd77bc8SDave Plauger cp->cache_flags |= KMF_DUMPUNSAFE; 22829dd77bc8SDave Plauger ccp->cc_flags |= KMF_DUMPUNSAFE; 22839dd77bc8SDave Plauger } 22849dd77bc8SDave Plauger } 22859dd77bc8SDave Plauger } 22869dd77bc8SDave Plauger 22879dd77bc8SDave Plauger /* 22889dd77bc8SDave Plauger * finished dump intercept 22899dd77bc8SDave Plauger * print any warnings on the console 22909dd77bc8SDave Plauger * return verbose information to dumpsys() in the given buffer 22919dd77bc8SDave Plauger */ 22929dd77bc8SDave Plauger size_t 22939dd77bc8SDave Plauger kmem_dump_finish(char *buf, size_t size) 22949dd77bc8SDave Plauger { 22959dd77bc8SDave Plauger int percent = 0; 22969dd77bc8SDave Plauger size_t used; 22979dd77bc8SDave Plauger char *e = buf + size; 22989dd77bc8SDave Plauger char *p = buf; 22999dd77bc8SDave Plauger 23003608e2e0SJohn Levon if (kmem_dump_curr == kmem_dump_end) { 23013608e2e0SJohn Levon cmn_err(CE_WARN, "exceeded kmem_dump space of %lu " 23023608e2e0SJohn Levon "bytes: kmem state in dump may be inconsistent", 23033608e2e0SJohn Levon kmem_dump_size); 23043608e2e0SJohn Levon } 23053608e2e0SJohn Levon 23063608e2e0SJohn Levon if (kmem_dump_verbose == 0) 23079dd77bc8SDave Plauger return (0); 23089dd77bc8SDave Plauger 23099dd77bc8SDave Plauger used = (char *)kmem_dump_curr - (char *)kmem_dump_start; 23109dd77bc8SDave Plauger percent = (used * 100) / kmem_dump_size; 23119dd77bc8SDave Plauger 23129dd77bc8SDave Plauger kmem_dumppr(&p, e, "%% heap used,%d\n", percent); 23139dd77bc8SDave Plauger kmem_dumppr(&p, e, "used bytes,%ld\n", used); 23149dd77bc8SDave Plauger kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size); 23159dd77bc8SDave Plauger kmem_dumppr(&p, e, "Oversize allocs,%d\n", 23169dd77bc8SDave Plauger kmem_dump_oversize_allocs); 23179dd77bc8SDave Plauger kmem_dumppr(&p, e, "Oversize max size,%ld\n", 23189dd77bc8SDave Plauger kmem_dump_oversize_max); 23199dd77bc8SDave Plauger 23209dd77bc8SDave Plauger /* return buffer size used */ 23219dd77bc8SDave Plauger if (p < e) 23229dd77bc8SDave Plauger bzero(p, e - p); 23239dd77bc8SDave Plauger return (p - buf); 23249dd77bc8SDave Plauger } 23259dd77bc8SDave Plauger 23269dd77bc8SDave Plauger /* 23279dd77bc8SDave Plauger * Allocate a constructed object from alternate dump memory. 23289dd77bc8SDave Plauger */ 23299dd77bc8SDave Plauger void * 23309dd77bc8SDave Plauger kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag) 23319dd77bc8SDave Plauger { 23329dd77bc8SDave Plauger void *buf; 23339dd77bc8SDave Plauger void *curr; 23349dd77bc8SDave Plauger char *bufend; 23359dd77bc8SDave Plauger 23369dd77bc8SDave Plauger /* return a constructed object */ 23373608e2e0SJohn Levon if ((buf = cp->cache_dump.kd_freelist) != NULL) { 23383608e2e0SJohn Levon cp->cache_dump.kd_freelist = KMEM_DUMPCTL(cp, buf)->kdc_next; 23399dd77bc8SDave Plauger return (buf); 23409dd77bc8SDave Plauger } 23419dd77bc8SDave Plauger 23429dd77bc8SDave Plauger /* create a new constructed object */ 23439dd77bc8SDave Plauger curr = kmem_dump_curr; 23449dd77bc8SDave Plauger buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align); 23459dd77bc8SDave Plauger bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t); 23469dd77bc8SDave Plauger 23479dd77bc8SDave Plauger /* hat layer objects cannot cross a page boundary */ 23489dd77bc8SDave Plauger if (cp->cache_align < PAGESIZE) { 23499dd77bc8SDave Plauger char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE); 23509dd77bc8SDave Plauger if (bufend > page) { 23519dd77bc8SDave Plauger bufend += page - (char *)buf; 23529dd77bc8SDave Plauger buf = (void *)page; 23539dd77bc8SDave Plauger } 23549dd77bc8SDave Plauger } 23559dd77bc8SDave Plauger 23569dd77bc8SDave Plauger /* fall back to normal alloc if reserved area is used up */ 23579dd77bc8SDave Plauger if (bufend > (char *)kmem_dump_end) { 23589dd77bc8SDave Plauger kmem_dump_curr = kmem_dump_end; 23593608e2e0SJohn Levon cp->cache_dump.kd_alloc_fails++; 23609dd77bc8SDave Plauger return (NULL); 23619dd77bc8SDave Plauger } 23629dd77bc8SDave Plauger 23639dd77bc8SDave Plauger /* 23649dd77bc8SDave Plauger * Must advance curr pointer before calling a constructor that 23659dd77bc8SDave Plauger * may also allocate memory. 23669dd77bc8SDave Plauger */ 23679dd77bc8SDave Plauger kmem_dump_curr = bufend; 23689dd77bc8SDave Plauger 23699dd77bc8SDave Plauger /* run constructor */ 23709dd77bc8SDave Plauger if (cp->cache_constructor != NULL && 23719dd77bc8SDave Plauger cp->cache_constructor(buf, cp->cache_private, kmflag) 23729dd77bc8SDave Plauger != 0) { 23739dd77bc8SDave Plauger #ifdef DEBUG 23749dd77bc8SDave Plauger printf("name='%s' cache=0x%p: kmem cache constructor failed\n", 23759dd77bc8SDave Plauger cp->cache_name, (void *)cp); 23769dd77bc8SDave Plauger #endif 23779dd77bc8SDave Plauger /* reset curr pointer iff no allocs were done */ 23789dd77bc8SDave Plauger if (kmem_dump_curr == bufend) 23799dd77bc8SDave Plauger kmem_dump_curr = curr; 23809dd77bc8SDave Plauger 23813608e2e0SJohn Levon cp->cache_dump.kd_alloc_fails++; 23829dd77bc8SDave Plauger /* fall back to normal alloc if the constructor fails */ 23839dd77bc8SDave Plauger return (NULL); 23849dd77bc8SDave Plauger } 23859dd77bc8SDave Plauger 23869dd77bc8SDave Plauger return (buf); 23879dd77bc8SDave Plauger } 23889dd77bc8SDave Plauger 23899dd77bc8SDave Plauger /* 23909dd77bc8SDave Plauger * Free a constructed object in alternate dump memory. 23919dd77bc8SDave Plauger */ 23929dd77bc8SDave Plauger int 23939dd77bc8SDave Plauger kmem_cache_free_dump(kmem_cache_t *cp, void *buf) 23949dd77bc8SDave Plauger { 23959dd77bc8SDave Plauger /* save constructed buffers for next time */ 23969dd77bc8SDave Plauger if ((char *)buf >= (char *)kmem_dump_start && 23979dd77bc8SDave Plauger (char *)buf < (char *)kmem_dump_end) { 23983608e2e0SJohn Levon KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dump.kd_freelist; 23993608e2e0SJohn Levon cp->cache_dump.kd_freelist = buf; 24009dd77bc8SDave Plauger return (0); 24019dd77bc8SDave Plauger } 24029dd77bc8SDave Plauger 24039dd77bc8SDave Plauger /* just drop buffers that were allocated before dump started */ 24049dd77bc8SDave Plauger if (kmem_dump_curr < kmem_dump_end) 24059dd77bc8SDave Plauger return (0); 24069dd77bc8SDave Plauger 24079dd77bc8SDave Plauger /* fall back to normal free if reserved area is used up */ 24089dd77bc8SDave Plauger return (1); 24099dd77bc8SDave Plauger } 24109dd77bc8SDave Plauger 24119dd77bc8SDave Plauger /* 24127c478bd9Sstevel@tonic-gate * Allocate a constructed object from cache cp. 24137c478bd9Sstevel@tonic-gate */ 24147c478bd9Sstevel@tonic-gate void * 24157c478bd9Sstevel@tonic-gate kmem_cache_alloc(kmem_cache_t *cp, int kmflag) 24167c478bd9Sstevel@tonic-gate { 24177c478bd9Sstevel@tonic-gate kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 24187c478bd9Sstevel@tonic-gate kmem_magazine_t *fmp; 24197c478bd9Sstevel@tonic-gate void *buf; 24207c478bd9Sstevel@tonic-gate 24217c478bd9Sstevel@tonic-gate mutex_enter(&ccp->cc_lock); 24227c478bd9Sstevel@tonic-gate for (;;) { 24237c478bd9Sstevel@tonic-gate /* 24247c478bd9Sstevel@tonic-gate * If there's an object available in the current CPU's 24257c478bd9Sstevel@tonic-gate * loaded magazine, just take it and return. 24267c478bd9Sstevel@tonic-gate */ 24277c478bd9Sstevel@tonic-gate if (ccp->cc_rounds > 0) { 24287c478bd9Sstevel@tonic-gate buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds]; 24297c478bd9Sstevel@tonic-gate ccp->cc_alloc++; 24307c478bd9Sstevel@tonic-gate mutex_exit(&ccp->cc_lock); 24319dd77bc8SDave Plauger if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) { 24329dd77bc8SDave Plauger if (ccp->cc_flags & KMF_DUMPUNSAFE) { 24339dd77bc8SDave Plauger ASSERT(!(ccp->cc_flags & 24349dd77bc8SDave Plauger KMF_DUMPDIVERT)); 24353608e2e0SJohn Levon cp->cache_dump.kd_unsafe++; 24369dd77bc8SDave Plauger } 24377c478bd9Sstevel@tonic-gate if ((ccp->cc_flags & KMF_BUFTAG) && 24387c478bd9Sstevel@tonic-gate kmem_cache_alloc_debug(cp, buf, kmflag, 0, 2439b5fca8f8Stomee caller()) != 0) { 24407c478bd9Sstevel@tonic-gate if (kmflag & KM_NOSLEEP) 24417c478bd9Sstevel@tonic-gate return (NULL); 24427c478bd9Sstevel@tonic-gate mutex_enter(&ccp->cc_lock); 24437c478bd9Sstevel@tonic-gate continue; 24447c478bd9Sstevel@tonic-gate } 24459dd77bc8SDave Plauger } 24467c478bd9Sstevel@tonic-gate return (buf); 24477c478bd9Sstevel@tonic-gate } 24487c478bd9Sstevel@tonic-gate 24497c478bd9Sstevel@tonic-gate /* 24507c478bd9Sstevel@tonic-gate * The loaded magazine is empty. If the previously loaded 24517c478bd9Sstevel@tonic-gate * magazine was full, exchange them and try again. 24527c478bd9Sstevel@tonic-gate */ 24537c478bd9Sstevel@tonic-gate if (ccp->cc_prounds > 0) { 24547c478bd9Sstevel@tonic-gate kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 24557c478bd9Sstevel@tonic-gate continue; 24567c478bd9Sstevel@tonic-gate } 24577c478bd9Sstevel@tonic-gate 24587c478bd9Sstevel@tonic-gate /* 24599dd77bc8SDave Plauger * Return an alternate buffer at dump time to preserve 24609dd77bc8SDave Plauger * the heap. 24619dd77bc8SDave Plauger */ 24629dd77bc8SDave Plauger if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) { 24639dd77bc8SDave Plauger if (ccp->cc_flags & KMF_DUMPUNSAFE) { 24649dd77bc8SDave Plauger ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT)); 24659dd77bc8SDave Plauger /* log it so that we can warn about it */ 24663608e2e0SJohn Levon cp->cache_dump.kd_unsafe++; 24679dd77bc8SDave Plauger } else { 24689dd77bc8SDave Plauger if ((buf = kmem_cache_alloc_dump(cp, kmflag)) != 24699dd77bc8SDave Plauger NULL) { 24709dd77bc8SDave Plauger mutex_exit(&ccp->cc_lock); 24719dd77bc8SDave Plauger return (buf); 24729dd77bc8SDave Plauger } 24739dd77bc8SDave Plauger break; /* fall back to slab layer */ 24749dd77bc8SDave Plauger } 24759dd77bc8SDave Plauger } 24769dd77bc8SDave Plauger 24779dd77bc8SDave Plauger /* 24787c478bd9Sstevel@tonic-gate * If the magazine layer is disabled, break out now. 24797c478bd9Sstevel@tonic-gate */ 24807c478bd9Sstevel@tonic-gate if (ccp->cc_magsize == 0) 24817c478bd9Sstevel@tonic-gate break; 24827c478bd9Sstevel@tonic-gate 24837c478bd9Sstevel@tonic-gate /* 24847c478bd9Sstevel@tonic-gate * Try to get a full magazine from the depot. 24857c478bd9Sstevel@tonic-gate */ 24867c478bd9Sstevel@tonic-gate fmp = kmem_depot_alloc(cp, &cp->cache_full); 24877c478bd9Sstevel@tonic-gate if (fmp != NULL) { 24887c478bd9Sstevel@tonic-gate if (ccp->cc_ploaded != NULL) 24897c478bd9Sstevel@tonic-gate kmem_depot_free(cp, &cp->cache_empty, 24907c478bd9Sstevel@tonic-gate ccp->cc_ploaded); 24917c478bd9Sstevel@tonic-gate kmem_cpu_reload(ccp, fmp, ccp->cc_magsize); 24927c478bd9Sstevel@tonic-gate continue; 24937c478bd9Sstevel@tonic-gate } 24947c478bd9Sstevel@tonic-gate 24957c478bd9Sstevel@tonic-gate /* 24967c478bd9Sstevel@tonic-gate * There are no full magazines in the depot, 24977c478bd9Sstevel@tonic-gate * so fall through to the slab layer. 24987c478bd9Sstevel@tonic-gate */ 24997c478bd9Sstevel@tonic-gate break; 25007c478bd9Sstevel@tonic-gate } 25017c478bd9Sstevel@tonic-gate mutex_exit(&ccp->cc_lock); 25027c478bd9Sstevel@tonic-gate 25037c478bd9Sstevel@tonic-gate /* 25047c478bd9Sstevel@tonic-gate * We couldn't allocate a constructed object from the magazine layer, 25057c478bd9Sstevel@tonic-gate * so get a raw buffer from the slab layer and apply its constructor. 25067c478bd9Sstevel@tonic-gate */ 25077c478bd9Sstevel@tonic-gate buf = kmem_slab_alloc(cp, kmflag); 25087c478bd9Sstevel@tonic-gate 25097c478bd9Sstevel@tonic-gate if (buf == NULL) 25107c478bd9Sstevel@tonic-gate return (NULL); 25117c478bd9Sstevel@tonic-gate 25127c478bd9Sstevel@tonic-gate if (cp->cache_flags & KMF_BUFTAG) { 25137c478bd9Sstevel@tonic-gate /* 25147c478bd9Sstevel@tonic-gate * Make kmem_cache_alloc_debug() apply the constructor for us. 25157c478bd9Sstevel@tonic-gate */ 2516b5fca8f8Stomee int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller()); 2517b5fca8f8Stomee if (rc != 0) { 25187c478bd9Sstevel@tonic-gate if (kmflag & KM_NOSLEEP) 25197c478bd9Sstevel@tonic-gate return (NULL); 25207c478bd9Sstevel@tonic-gate /* 25217c478bd9Sstevel@tonic-gate * kmem_cache_alloc_debug() detected corruption 2522b5fca8f8Stomee * but didn't panic (kmem_panic <= 0). We should not be 2523b5fca8f8Stomee * here because the constructor failed (indicated by a 2524b5fca8f8Stomee * return code of 1). Try again. 25257c478bd9Sstevel@tonic-gate */ 2526b5fca8f8Stomee ASSERT(rc == -1); 25277c478bd9Sstevel@tonic-gate return (kmem_cache_alloc(cp, kmflag)); 25287c478bd9Sstevel@tonic-gate } 25297c478bd9Sstevel@tonic-gate return (buf); 25307c478bd9Sstevel@tonic-gate } 25317c478bd9Sstevel@tonic-gate 25327c478bd9Sstevel@tonic-gate if (cp->cache_constructor != NULL && 25337c478bd9Sstevel@tonic-gate cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) { 25341a5e258fSJosef 'Jeff' Sipek atomic_inc_64(&cp->cache_alloc_fail); 25357c478bd9Sstevel@tonic-gate kmem_slab_free(cp, buf); 25367c478bd9Sstevel@tonic-gate return (NULL); 25377c478bd9Sstevel@tonic-gate } 25387c478bd9Sstevel@tonic-gate 25397c478bd9Sstevel@tonic-gate return (buf); 25407c478bd9Sstevel@tonic-gate } 25417c478bd9Sstevel@tonic-gate 25427c478bd9Sstevel@tonic-gate /* 2543b5fca8f8Stomee * The freed argument tells whether or not kmem_cache_free_debug() has already 2544b5fca8f8Stomee * been called so that we can avoid the duplicate free error. For example, a 2545b5fca8f8Stomee * buffer on a magazine has already been freed by the client but is still 2546b5fca8f8Stomee * constructed. 2547b5fca8f8Stomee */ 2548b5fca8f8Stomee static void 2549b5fca8f8Stomee kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed) 2550b5fca8f8Stomee { 2551b5fca8f8Stomee if (!freed && (cp->cache_flags & KMF_BUFTAG)) 2552b5fca8f8Stomee if (kmem_cache_free_debug(cp, buf, caller()) == -1) 2553b5fca8f8Stomee return; 2554b5fca8f8Stomee 2555b5fca8f8Stomee /* 2556b5fca8f8Stomee * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not, 2557b5fca8f8Stomee * kmem_cache_free_debug() will have already applied the destructor. 2558b5fca8f8Stomee */ 2559b5fca8f8Stomee if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF && 2560b5fca8f8Stomee cp->cache_destructor != NULL) { 2561b5fca8f8Stomee if (cp->cache_flags & KMF_DEADBEEF) { /* KMF_LITE implied */ 2562b5fca8f8Stomee kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 2563b5fca8f8Stomee *(uint64_t *)buf = btp->bt_redzone; 2564b5fca8f8Stomee cp->cache_destructor(buf, cp->cache_private); 2565b5fca8f8Stomee *(uint64_t *)buf = KMEM_FREE_PATTERN; 2566b5fca8f8Stomee } else { 2567b5fca8f8Stomee cp->cache_destructor(buf, cp->cache_private); 2568b5fca8f8Stomee } 2569b5fca8f8Stomee } 2570b5fca8f8Stomee 2571b5fca8f8Stomee kmem_slab_free(cp, buf); 2572b5fca8f8Stomee } 2573b5fca8f8Stomee 2574b5fca8f8Stomee /* 2575b942e89bSDavid Valin * Used when there's no room to free a buffer to the per-CPU cache. 2576b942e89bSDavid Valin * Drops and re-acquires &ccp->cc_lock, and returns non-zero if the 2577b942e89bSDavid Valin * caller should try freeing to the per-CPU cache again. 2578b942e89bSDavid Valin * Note that we don't directly install the magazine in the cpu cache, 2579b942e89bSDavid Valin * since its state may have changed wildly while the lock was dropped. 2580b942e89bSDavid Valin */ 2581b942e89bSDavid Valin static int 2582b942e89bSDavid Valin kmem_cpucache_magazine_alloc(kmem_cpu_cache_t *ccp, kmem_cache_t *cp) 2583b942e89bSDavid Valin { 2584b942e89bSDavid Valin kmem_magazine_t *emp; 2585b942e89bSDavid Valin kmem_magtype_t *mtp; 2586b942e89bSDavid Valin 2587b942e89bSDavid Valin ASSERT(MUTEX_HELD(&ccp->cc_lock)); 2588b942e89bSDavid Valin ASSERT(((uint_t)ccp->cc_rounds == ccp->cc_magsize || 2589b942e89bSDavid Valin ((uint_t)ccp->cc_rounds == -1)) && 2590b942e89bSDavid Valin ((uint_t)ccp->cc_prounds == ccp->cc_magsize || 2591b942e89bSDavid Valin ((uint_t)ccp->cc_prounds == -1))); 2592b942e89bSDavid Valin 2593b942e89bSDavid Valin emp = kmem_depot_alloc(cp, &cp->cache_empty); 2594b942e89bSDavid Valin if (emp != NULL) { 2595b942e89bSDavid Valin if (ccp->cc_ploaded != NULL) 2596b942e89bSDavid Valin kmem_depot_free(cp, &cp->cache_full, 2597b942e89bSDavid Valin ccp->cc_ploaded); 2598b942e89bSDavid Valin kmem_cpu_reload(ccp, emp, 0); 2599b942e89bSDavid Valin return (1); 2600b942e89bSDavid Valin } 2601b942e89bSDavid Valin /* 2602b942e89bSDavid Valin * There are no empty magazines in the depot, 2603b942e89bSDavid Valin * so try to allocate a new one. We must drop all locks 2604b942e89bSDavid Valin * across kmem_cache_alloc() because lower layers may 2605b942e89bSDavid Valin * attempt to allocate from this cache. 2606b942e89bSDavid Valin */ 2607b942e89bSDavid Valin mtp = cp->cache_magtype; 2608b942e89bSDavid Valin mutex_exit(&ccp->cc_lock); 2609b942e89bSDavid Valin emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP); 2610b942e89bSDavid Valin mutex_enter(&ccp->cc_lock); 2611b942e89bSDavid Valin 2612b942e89bSDavid Valin if (emp != NULL) { 2613b942e89bSDavid Valin /* 2614b942e89bSDavid Valin * We successfully allocated an empty magazine. 2615b942e89bSDavid Valin * However, we had to drop ccp->cc_lock to do it, 2616b942e89bSDavid Valin * so the cache's magazine size may have changed. 2617b942e89bSDavid Valin * If so, free the magazine and try again. 2618b942e89bSDavid Valin */ 2619b942e89bSDavid Valin if (ccp->cc_magsize != mtp->mt_magsize) { 2620b942e89bSDavid Valin mutex_exit(&ccp->cc_lock); 2621b942e89bSDavid Valin kmem_cache_free(mtp->mt_cache, emp); 2622b942e89bSDavid Valin mutex_enter(&ccp->cc_lock); 2623b942e89bSDavid Valin return (1); 2624b942e89bSDavid Valin } 2625b942e89bSDavid Valin 2626b942e89bSDavid Valin /* 2627b942e89bSDavid Valin * We got a magazine of the right size. Add it to 2628b942e89bSDavid Valin * the depot and try the whole dance again. 2629b942e89bSDavid Valin */ 2630b942e89bSDavid Valin kmem_depot_free(cp, &cp->cache_empty, emp); 2631b942e89bSDavid Valin return (1); 2632b942e89bSDavid Valin } 2633b942e89bSDavid Valin 2634b942e89bSDavid Valin /* 2635b942e89bSDavid Valin * We couldn't allocate an empty magazine, 2636b942e89bSDavid Valin * so fall through to the slab layer. 2637b942e89bSDavid Valin */ 2638b942e89bSDavid Valin return (0); 2639b942e89bSDavid Valin } 2640b942e89bSDavid Valin 2641b942e89bSDavid Valin /* 26427c478bd9Sstevel@tonic-gate * Free a constructed object to cache cp. 26437c478bd9Sstevel@tonic-gate */ 26447c478bd9Sstevel@tonic-gate void 26457c478bd9Sstevel@tonic-gate kmem_cache_free(kmem_cache_t *cp, void *buf) 26467c478bd9Sstevel@tonic-gate { 26477c478bd9Sstevel@tonic-gate kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 26487c478bd9Sstevel@tonic-gate 2649b5fca8f8Stomee /* 2650b5fca8f8Stomee * The client must not free either of the buffers passed to the move 2651b5fca8f8Stomee * callback function. 2652b5fca8f8Stomee */ 2653b5fca8f8Stomee ASSERT(cp->cache_defrag == NULL || 2654b5fca8f8Stomee cp->cache_defrag->kmd_thread != curthread || 2655b5fca8f8Stomee (buf != cp->cache_defrag->kmd_from_buf && 2656b5fca8f8Stomee buf != cp->cache_defrag->kmd_to_buf)); 2657b5fca8f8Stomee 26589dd77bc8SDave Plauger if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) { 26599dd77bc8SDave Plauger if (ccp->cc_flags & KMF_DUMPUNSAFE) { 26609dd77bc8SDave Plauger ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT)); 26619dd77bc8SDave Plauger /* log it so that we can warn about it */ 26623608e2e0SJohn Levon cp->cache_dump.kd_unsafe++; 26639dd77bc8SDave Plauger } else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) { 26649dd77bc8SDave Plauger return; 26659dd77bc8SDave Plauger } 26669dd77bc8SDave Plauger if (ccp->cc_flags & KMF_BUFTAG) { 26677c478bd9Sstevel@tonic-gate if (kmem_cache_free_debug(cp, buf, caller()) == -1) 26687c478bd9Sstevel@tonic-gate return; 26699dd77bc8SDave Plauger } 26709dd77bc8SDave Plauger } 26717c478bd9Sstevel@tonic-gate 26727c478bd9Sstevel@tonic-gate mutex_enter(&ccp->cc_lock); 2673b942e89bSDavid Valin /* 2674b942e89bSDavid Valin * Any changes to this logic should be reflected in kmem_slab_prefill() 2675b942e89bSDavid Valin */ 26767c478bd9Sstevel@tonic-gate for (;;) { 26777c478bd9Sstevel@tonic-gate /* 26787c478bd9Sstevel@tonic-gate * If there's a slot available in the current CPU's 26797c478bd9Sstevel@tonic-gate * loaded magazine, just put the object there and return. 26807c478bd9Sstevel@tonic-gate */ 26817c478bd9Sstevel@tonic-gate if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 26827c478bd9Sstevel@tonic-gate ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf; 26837c478bd9Sstevel@tonic-gate ccp->cc_free++; 26847c478bd9Sstevel@tonic-gate mutex_exit(&ccp->cc_lock); 26857c478bd9Sstevel@tonic-gate return; 26867c478bd9Sstevel@tonic-gate } 26877c478bd9Sstevel@tonic-gate 26887c478bd9Sstevel@tonic-gate /* 26897c478bd9Sstevel@tonic-gate * The loaded magazine is full. If the previously loaded 26907c478bd9Sstevel@tonic-gate * magazine was empty, exchange them and try again. 26917c478bd9Sstevel@tonic-gate */ 26927c478bd9Sstevel@tonic-gate if (ccp->cc_prounds == 0) { 26937c478bd9Sstevel@tonic-gate kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); 26947c478bd9Sstevel@tonic-gate continue; 26957c478bd9Sstevel@tonic-gate } 26967c478bd9Sstevel@tonic-gate 26977c478bd9Sstevel@tonic-gate /* 26987c478bd9Sstevel@tonic-gate * If the magazine layer is disabled, break out now. 26997c478bd9Sstevel@tonic-gate */ 27007c478bd9Sstevel@tonic-gate if (ccp->cc_magsize == 0) 27017c478bd9Sstevel@tonic-gate break; 27027c478bd9Sstevel@tonic-gate 2703b942e89bSDavid Valin if (!kmem_cpucache_magazine_alloc(ccp, cp)) { 27047c478bd9Sstevel@tonic-gate /* 2705b942e89bSDavid Valin * We couldn't free our constructed object to the 2706b942e89bSDavid Valin * magazine layer, so apply its destructor and free it 2707b942e89bSDavid Valin * to the slab layer. 27087c478bd9Sstevel@tonic-gate */ 27097c478bd9Sstevel@tonic-gate break; 27107c478bd9Sstevel@tonic-gate } 2711b942e89bSDavid Valin } 27127c478bd9Sstevel@tonic-gate mutex_exit(&ccp->cc_lock); 2713b942e89bSDavid Valin kmem_slab_free_constructed(cp, buf, B_TRUE); 2714b942e89bSDavid Valin } 2715b942e89bSDavid Valin 2716b942e89bSDavid Valin static void 2717b942e89bSDavid Valin kmem_slab_prefill(kmem_cache_t *cp, kmem_slab_t *sp) 2718b942e89bSDavid Valin { 2719b942e89bSDavid Valin kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); 2720b942e89bSDavid Valin int cache_flags = cp->cache_flags; 2721b942e89bSDavid Valin 2722b942e89bSDavid Valin kmem_bufctl_t *next, *head; 2723b942e89bSDavid Valin size_t nbufs; 27247c478bd9Sstevel@tonic-gate 27257c478bd9Sstevel@tonic-gate /* 2726b942e89bSDavid Valin * Completely allocate the newly created slab and put the pre-allocated 2727b942e89bSDavid Valin * buffers in magazines. Any of the buffers that cannot be put in 2728b942e89bSDavid Valin * magazines must be returned to the slab. 27297c478bd9Sstevel@tonic-gate */ 2730b942e89bSDavid Valin ASSERT(MUTEX_HELD(&cp->cache_lock)); 2731b942e89bSDavid Valin ASSERT((cache_flags & (KMF_PREFILL|KMF_BUFTAG)) == KMF_PREFILL); 2732b942e89bSDavid Valin ASSERT(cp->cache_constructor == NULL); 2733b942e89bSDavid Valin ASSERT(sp->slab_cache == cp); 2734b942e89bSDavid Valin ASSERT(sp->slab_refcnt == 1); 2735b942e89bSDavid Valin ASSERT(sp->slab_head != NULL && sp->slab_chunks > sp->slab_refcnt); 2736b942e89bSDavid Valin ASSERT(avl_find(&cp->cache_partial_slabs, sp, NULL) == NULL); 2737b942e89bSDavid Valin 2738b942e89bSDavid Valin head = sp->slab_head; 2739b942e89bSDavid Valin nbufs = (sp->slab_chunks - sp->slab_refcnt); 2740b942e89bSDavid Valin sp->slab_head = NULL; 2741b942e89bSDavid Valin sp->slab_refcnt += nbufs; 2742b942e89bSDavid Valin cp->cache_bufslab -= nbufs; 2743b942e89bSDavid Valin cp->cache_slab_alloc += nbufs; 2744b942e89bSDavid Valin list_insert_head(&cp->cache_complete_slabs, sp); 2745b942e89bSDavid Valin cp->cache_complete_slab_count++; 2746b942e89bSDavid Valin mutex_exit(&cp->cache_lock); 2747b942e89bSDavid Valin mutex_enter(&ccp->cc_lock); 2748b942e89bSDavid Valin 2749b942e89bSDavid Valin while (head != NULL) { 2750b942e89bSDavid Valin void *buf = KMEM_BUF(cp, head); 2751b942e89bSDavid Valin /* 2752b942e89bSDavid Valin * If there's a slot available in the current CPU's 2753b942e89bSDavid Valin * loaded magazine, just put the object there and 2754b942e89bSDavid Valin * continue. 2755b942e89bSDavid Valin */ 2756b942e89bSDavid Valin if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { 2757b942e89bSDavid Valin ccp->cc_loaded->mag_round[ccp->cc_rounds++] = 2758b942e89bSDavid Valin buf; 2759b942e89bSDavid Valin ccp->cc_free++; 2760b942e89bSDavid Valin nbufs--; 2761b942e89bSDavid Valin head = head->bc_next; 2762b942e89bSDavid Valin continue; 2763b942e89bSDavid Valin } 2764b942e89bSDavid Valin 2765b942e89bSDavid Valin /* 2766b942e89bSDavid Valin * The loaded magazine is full. If the previously 2767b942e89bSDavid Valin * loaded magazine was empty, exchange them and try 2768b942e89bSDavid Valin * again. 2769b942e89bSDavid Valin */ 2770b942e89bSDavid Valin if (ccp->cc_prounds == 0) { 2771b942e89bSDavid Valin kmem_cpu_reload(ccp, ccp->cc_ploaded, 2772b942e89bSDavid Valin ccp->cc_prounds); 2773b942e89bSDavid Valin continue; 2774b942e89bSDavid Valin } 2775b942e89bSDavid Valin 2776b942e89bSDavid Valin /* 2777b942e89bSDavid Valin * If the magazine layer is disabled, break out now. 2778b942e89bSDavid Valin */ 2779b942e89bSDavid Valin 2780b942e89bSDavid Valin if (ccp->cc_magsize == 0) { 2781b942e89bSDavid Valin break; 2782b942e89bSDavid Valin } 2783b942e89bSDavid Valin 2784b942e89bSDavid Valin if (!kmem_cpucache_magazine_alloc(ccp, cp)) 2785b942e89bSDavid Valin break; 2786b942e89bSDavid Valin } 2787b942e89bSDavid Valin mutex_exit(&ccp->cc_lock); 2788b942e89bSDavid Valin if (nbufs != 0) { 2789b942e89bSDavid Valin ASSERT(head != NULL); 2790b942e89bSDavid Valin 2791b942e89bSDavid Valin /* 2792b942e89bSDavid Valin * If there was a failure, return remaining objects to 2793b942e89bSDavid Valin * the slab 2794b942e89bSDavid Valin */ 2795b942e89bSDavid Valin while (head != NULL) { 2796b942e89bSDavid Valin ASSERT(nbufs != 0); 2797b942e89bSDavid Valin next = head->bc_next; 2798b942e89bSDavid Valin head->bc_next = NULL; 2799b942e89bSDavid Valin kmem_slab_free(cp, KMEM_BUF(cp, head)); 2800b942e89bSDavid Valin head = next; 2801b942e89bSDavid Valin nbufs--; 2802b942e89bSDavid Valin } 2803b942e89bSDavid Valin } 2804b942e89bSDavid Valin ASSERT(head == NULL); 2805b942e89bSDavid Valin ASSERT(nbufs == 0); 2806b942e89bSDavid Valin mutex_enter(&cp->cache_lock); 28077c478bd9Sstevel@tonic-gate } 28087c478bd9Sstevel@tonic-gate 28097c478bd9Sstevel@tonic-gate void * 28107c478bd9Sstevel@tonic-gate kmem_zalloc(size_t size, int kmflag) 28117c478bd9Sstevel@tonic-gate { 2812dce01e3fSJonathan W Adams size_t index; 28137c478bd9Sstevel@tonic-gate void *buf; 28147c478bd9Sstevel@tonic-gate 2815dce01e3fSJonathan W Adams if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) { 28167c478bd9Sstevel@tonic-gate kmem_cache_t *cp = kmem_alloc_table[index]; 28177c478bd9Sstevel@tonic-gate buf = kmem_cache_alloc(cp, kmflag); 28187c478bd9Sstevel@tonic-gate if (buf != NULL) { 28199dd77bc8SDave Plauger if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) { 28207c478bd9Sstevel@tonic-gate kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 28217c478bd9Sstevel@tonic-gate ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 28227c478bd9Sstevel@tonic-gate ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 28237c478bd9Sstevel@tonic-gate 28247c478bd9Sstevel@tonic-gate if (cp->cache_flags & KMF_LITE) { 28257c478bd9Sstevel@tonic-gate KMEM_BUFTAG_LITE_ENTER(btp, 28267c478bd9Sstevel@tonic-gate kmem_lite_count, caller()); 28277c478bd9Sstevel@tonic-gate } 28287c478bd9Sstevel@tonic-gate } 28297c478bd9Sstevel@tonic-gate bzero(buf, size); 28307c478bd9Sstevel@tonic-gate } 28317c478bd9Sstevel@tonic-gate } else { 28327c478bd9Sstevel@tonic-gate buf = kmem_alloc(size, kmflag); 28337c478bd9Sstevel@tonic-gate if (buf != NULL) 28347c478bd9Sstevel@tonic-gate bzero(buf, size); 28357c478bd9Sstevel@tonic-gate } 28367c478bd9Sstevel@tonic-gate return (buf); 28377c478bd9Sstevel@tonic-gate } 28387c478bd9Sstevel@tonic-gate 28397c478bd9Sstevel@tonic-gate void * 28407c478bd9Sstevel@tonic-gate kmem_alloc(size_t size, int kmflag) 28417c478bd9Sstevel@tonic-gate { 2842dce01e3fSJonathan W Adams size_t index; 2843dce01e3fSJonathan W Adams kmem_cache_t *cp; 28447c478bd9Sstevel@tonic-gate void *buf; 28457c478bd9Sstevel@tonic-gate 2846dce01e3fSJonathan W Adams if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) { 2847dce01e3fSJonathan W Adams cp = kmem_alloc_table[index]; 2848dce01e3fSJonathan W Adams /* fall through to kmem_cache_alloc() */ 2849dce01e3fSJonathan W Adams 2850dce01e3fSJonathan W Adams } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) < 2851dce01e3fSJonathan W Adams kmem_big_alloc_table_max) { 2852dce01e3fSJonathan W Adams cp = kmem_big_alloc_table[index]; 2853dce01e3fSJonathan W Adams /* fall through to kmem_cache_alloc() */ 2854dce01e3fSJonathan W Adams 2855dce01e3fSJonathan W Adams } else { 2856dce01e3fSJonathan W Adams if (size == 0) 2857dce01e3fSJonathan W Adams return (NULL); 2858dce01e3fSJonathan W Adams 2859dce01e3fSJonathan W Adams buf = vmem_alloc(kmem_oversize_arena, size, 2860dce01e3fSJonathan W Adams kmflag & KM_VMFLAGS); 2861dce01e3fSJonathan W Adams if (buf == NULL) 2862dce01e3fSJonathan W Adams kmem_log_event(kmem_failure_log, NULL, NULL, 2863dce01e3fSJonathan W Adams (void *)size); 28649dd77bc8SDave Plauger else if (KMEM_DUMP(kmem_slab_cache)) { 28659dd77bc8SDave Plauger /* stats for dump intercept */ 28669dd77bc8SDave Plauger kmem_dump_oversize_allocs++; 28679dd77bc8SDave Plauger if (size > kmem_dump_oversize_max) 28689dd77bc8SDave Plauger kmem_dump_oversize_max = size; 28699dd77bc8SDave Plauger } 2870dce01e3fSJonathan W Adams return (buf); 2871dce01e3fSJonathan W Adams } 2872dce01e3fSJonathan W Adams 28737c478bd9Sstevel@tonic-gate buf = kmem_cache_alloc(cp, kmflag); 28749dd77bc8SDave Plauger if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) { 28757c478bd9Sstevel@tonic-gate kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 28767c478bd9Sstevel@tonic-gate ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; 28777c478bd9Sstevel@tonic-gate ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); 28787c478bd9Sstevel@tonic-gate 28797c478bd9Sstevel@tonic-gate if (cp->cache_flags & KMF_LITE) { 2880dce01e3fSJonathan W Adams KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller()); 28817c478bd9Sstevel@tonic-gate } 28827c478bd9Sstevel@tonic-gate } 28837c478bd9Sstevel@tonic-gate return (buf); 28847c478bd9Sstevel@tonic-gate } 28857c478bd9Sstevel@tonic-gate 28867c478bd9Sstevel@tonic-gate void 28877c478bd9Sstevel@tonic-gate kmem_free(void *buf, size_t size) 28887c478bd9Sstevel@tonic-gate { 2889dce01e3fSJonathan W Adams size_t index; 2890dce01e3fSJonathan W Adams kmem_cache_t *cp; 28917c478bd9Sstevel@tonic-gate 2892dce01e3fSJonathan W Adams if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) { 2893dce01e3fSJonathan W Adams cp = kmem_alloc_table[index]; 2894dce01e3fSJonathan W Adams /* fall through to kmem_cache_free() */ 2895dce01e3fSJonathan W Adams 2896dce01e3fSJonathan W Adams } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) < 2897dce01e3fSJonathan W Adams kmem_big_alloc_table_max) { 2898dce01e3fSJonathan W Adams cp = kmem_big_alloc_table[index]; 2899dce01e3fSJonathan W Adams /* fall through to kmem_cache_free() */ 2900dce01e3fSJonathan W Adams 2901dce01e3fSJonathan W Adams } else { 290296992ee7SEthindra Ramamurthy EQUIV(buf == NULL, size == 0); 2903dce01e3fSJonathan W Adams if (buf == NULL && size == 0) 2904dce01e3fSJonathan W Adams return; 2905dce01e3fSJonathan W Adams vmem_free(kmem_oversize_arena, buf, size); 2906dce01e3fSJonathan W Adams return; 2907dce01e3fSJonathan W Adams } 2908dce01e3fSJonathan W Adams 29099dd77bc8SDave Plauger if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) { 29107c478bd9Sstevel@tonic-gate kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); 29117c478bd9Sstevel@tonic-gate uint32_t *ip = (uint32_t *)btp; 29127c478bd9Sstevel@tonic-gate if (ip[1] != KMEM_SIZE_ENCODE(size)) { 29137c478bd9Sstevel@tonic-gate if (*(uint64_t *)buf == KMEM_FREE_PATTERN) { 29147c478bd9Sstevel@tonic-gate kmem_error(KMERR_DUPFREE, cp, buf); 29157c478bd9Sstevel@tonic-gate return; 29167c478bd9Sstevel@tonic-gate } 29177c478bd9Sstevel@tonic-gate if (KMEM_SIZE_VALID(ip[1])) { 29187c478bd9Sstevel@tonic-gate ip[0] = KMEM_SIZE_ENCODE(size); 29197c478bd9Sstevel@tonic-gate kmem_error(KMERR_BADSIZE, cp, buf); 29207c478bd9Sstevel@tonic-gate } else { 29217c478bd9Sstevel@tonic-gate kmem_error(KMERR_REDZONE, cp, buf); 29227c478bd9Sstevel@tonic-gate } 29237c478bd9Sstevel@tonic-gate return; 29247c478bd9Sstevel@tonic-gate } 29257c478bd9Sstevel@tonic-gate if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) { 29267c478bd9Sstevel@tonic-gate kmem_error(KMERR_REDZONE, cp, buf); 29277c478bd9Sstevel@tonic-gate return; 29287c478bd9Sstevel@tonic-gate } 29297c478bd9Sstevel@tonic-gate btp->bt_redzone = KMEM_REDZONE_PATTERN; 29307c478bd9Sstevel@tonic-gate if (cp->cache_flags & KMF_LITE) { 29317c478bd9Sstevel@tonic-gate KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, 29327c478bd9Sstevel@tonic-gate caller()); 29337c478bd9Sstevel@tonic-gate } 29347c478bd9Sstevel@tonic-gate } 29357c478bd9Sstevel@tonic-gate kmem_cache_free(cp, buf); 29367c478bd9Sstevel@tonic-gate } 29377c478bd9Sstevel@tonic-gate 29387c478bd9Sstevel@tonic-gate void * 29397c478bd9Sstevel@tonic-gate kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag) 29407c478bd9Sstevel@tonic-gate { 29417c478bd9Sstevel@tonic-gate size_t realsize = size + vmp->vm_quantum; 29427c478bd9Sstevel@tonic-gate void *addr; 29437c478bd9Sstevel@tonic-gate 29447c478bd9Sstevel@tonic-gate /* 29457c478bd9Sstevel@tonic-gate * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding 29467c478bd9Sstevel@tonic-gate * vm_quantum will cause integer wraparound. Check for this, and 29477c478bd9Sstevel@tonic-gate * blow off the firewall page in this case. Note that such a 29487c478bd9Sstevel@tonic-gate * giant allocation (the entire kernel address space) can never 29497c478bd9Sstevel@tonic-gate * be satisfied, so it will either fail immediately (VM_NOSLEEP) 29507c478bd9Sstevel@tonic-gate * or sleep forever (VM_SLEEP). Thus, there is no need for a 29517c478bd9Sstevel@tonic-gate * corresponding check in kmem_firewall_va_free(). 29527c478bd9Sstevel@tonic-gate */ 29537c478bd9Sstevel@tonic-gate if (realsize < size) 29547c478bd9Sstevel@tonic-gate realsize = size; 29557c478bd9Sstevel@tonic-gate 29567c478bd9Sstevel@tonic-gate /* 29577c478bd9Sstevel@tonic-gate * While boot still owns resource management, make sure that this 29587c478bd9Sstevel@tonic-gate * redzone virtual address allocation is properly accounted for in 29597c478bd9Sstevel@tonic-gate * OBPs "virtual-memory" "available" lists because we're 29607c478bd9Sstevel@tonic-gate * effectively claiming them for a red zone. If we don't do this, 29617c478bd9Sstevel@tonic-gate * the available lists become too fragmented and too large for the 29627c478bd9Sstevel@tonic-gate * current boot/kernel memory list interface. 29637c478bd9Sstevel@tonic-gate */ 29647c478bd9Sstevel@tonic-gate addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT); 29657c478bd9Sstevel@tonic-gate 29667c478bd9Sstevel@tonic-gate if (addr != NULL && kvseg.s_base == NULL && realsize != size) 29677c478bd9Sstevel@tonic-gate (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum); 29687c478bd9Sstevel@tonic-gate 29697c478bd9Sstevel@tonic-gate return (addr); 29707c478bd9Sstevel@tonic-gate } 29717c478bd9Sstevel@tonic-gate 29727c478bd9Sstevel@tonic-gate void 29737c478bd9Sstevel@tonic-gate kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size) 29747c478bd9Sstevel@tonic-gate { 29757c478bd9Sstevel@tonic-gate ASSERT((kvseg.s_base == NULL ? 29767c478bd9Sstevel@tonic-gate va_to_pfn((char *)addr + size) : 29777c478bd9Sstevel@tonic-gate hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID); 29787c478bd9Sstevel@tonic-gate 29797c478bd9Sstevel@tonic-gate vmem_free(vmp, addr, size + vmp->vm_quantum); 29807c478bd9Sstevel@tonic-gate } 29817c478bd9Sstevel@tonic-gate 29827c478bd9Sstevel@tonic-gate /* 29837c478bd9Sstevel@tonic-gate * Try to allocate at least `size' bytes of memory without sleeping or 29847c478bd9Sstevel@tonic-gate * panicking. Return actual allocated size in `asize'. If allocation failed, 29857c478bd9Sstevel@tonic-gate * try final allocation with sleep or panic allowed. 29867c478bd9Sstevel@tonic-gate */ 29877c478bd9Sstevel@tonic-gate void * 29887c478bd9Sstevel@tonic-gate kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag) 29897c478bd9Sstevel@tonic-gate { 29907c478bd9Sstevel@tonic-gate void *p; 29917c478bd9Sstevel@tonic-gate 29927c478bd9Sstevel@tonic-gate *asize = P2ROUNDUP(size, KMEM_ALIGN); 29937c478bd9Sstevel@tonic-gate do { 29947c478bd9Sstevel@tonic-gate p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC); 29957c478bd9Sstevel@tonic-gate if (p != NULL) 29967c478bd9Sstevel@tonic-gate return (p); 29977c478bd9Sstevel@tonic-gate *asize += KMEM_ALIGN; 29987c478bd9Sstevel@tonic-gate } while (*asize <= PAGESIZE); 29997c478bd9Sstevel@tonic-gate 30007c478bd9Sstevel@tonic-gate *asize = P2ROUNDUP(size, KMEM_ALIGN); 30017c478bd9Sstevel@tonic-gate return (kmem_alloc(*asize, kmflag)); 30027c478bd9Sstevel@tonic-gate } 30037c478bd9Sstevel@tonic-gate 30047c478bd9Sstevel@tonic-gate /* 30057c478bd9Sstevel@tonic-gate * Reclaim all unused memory from a cache. 30067c478bd9Sstevel@tonic-gate */ 30077c478bd9Sstevel@tonic-gate static void 30087c478bd9Sstevel@tonic-gate kmem_cache_reap(kmem_cache_t *cp) 30097c478bd9Sstevel@tonic-gate { 3010b5fca8f8Stomee ASSERT(taskq_member(kmem_taskq, curthread)); 3011686031edSTom Erickson cp->cache_reap++; 3012b5fca8f8Stomee 30137c478bd9Sstevel@tonic-gate /* 30147c478bd9Sstevel@tonic-gate * Ask the cache's owner to free some memory if possible. 30157c478bd9Sstevel@tonic-gate * The idea is to handle things like the inode cache, which 30167c478bd9Sstevel@tonic-gate * typically sits on a bunch of memory that it doesn't truly 30177c478bd9Sstevel@tonic-gate * *need*. Reclaim policy is entirely up to the owner; this 30187c478bd9Sstevel@tonic-gate * callback is just an advisory plea for help. 30197c478bd9Sstevel@tonic-gate */ 3020b5fca8f8Stomee if (cp->cache_reclaim != NULL) { 3021b5fca8f8Stomee long delta; 3022b5fca8f8Stomee 3023b5fca8f8Stomee /* 3024b5fca8f8Stomee * Reclaimed memory should be reapable (not included in the 3025b5fca8f8Stomee * depot's working set). 3026b5fca8f8Stomee */ 3027b5fca8f8Stomee delta = cp->cache_full.ml_total; 30287c478bd9Sstevel@tonic-gate cp->cache_reclaim(cp->cache_private); 3029b5fca8f8Stomee delta = cp->cache_full.ml_total - delta; 3030b5fca8f8Stomee if (delta > 0) { 3031b5fca8f8Stomee mutex_enter(&cp->cache_depot_lock); 3032b5fca8f8Stomee cp->cache_full.ml_reaplimit += delta; 3033b5fca8f8Stomee cp->cache_full.ml_min += delta; 3034b5fca8f8Stomee mutex_exit(&cp->cache_depot_lock); 3035b5fca8f8Stomee } 3036b5fca8f8Stomee } 30377c478bd9Sstevel@tonic-gate 30387c478bd9Sstevel@tonic-gate kmem_depot_ws_reap(cp); 3039b5fca8f8Stomee 3040b5fca8f8Stomee if (cp->cache_defrag != NULL && !kmem_move_noreap) { 3041b5fca8f8Stomee kmem_cache_defrag(cp); 3042b5fca8f8Stomee } 30437c478bd9Sstevel@tonic-gate } 30447c478bd9Sstevel@tonic-gate 30457c478bd9Sstevel@tonic-gate static void 30467c478bd9Sstevel@tonic-gate kmem_reap_timeout(void *flag_arg) 30477c478bd9Sstevel@tonic-gate { 30487c478bd9Sstevel@tonic-gate uint32_t *flag = (uint32_t *)flag_arg; 30497c478bd9Sstevel@tonic-gate 30507c478bd9Sstevel@tonic-gate ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 30517c478bd9Sstevel@tonic-gate *flag = 0; 30527c478bd9Sstevel@tonic-gate } 30537c478bd9Sstevel@tonic-gate 30547c478bd9Sstevel@tonic-gate static void 30557c478bd9Sstevel@tonic-gate kmem_reap_done(void *flag) 30567c478bd9Sstevel@tonic-gate { 30576e00b116SPeter Telford if (!callout_init_done) { 30586e00b116SPeter Telford /* can't schedule a timeout at this point */ 30596e00b116SPeter Telford kmem_reap_timeout(flag); 30606e00b116SPeter Telford } else { 30617c478bd9Sstevel@tonic-gate (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval); 30627c478bd9Sstevel@tonic-gate } 30636e00b116SPeter Telford } 30647c478bd9Sstevel@tonic-gate 30657c478bd9Sstevel@tonic-gate static void 30667c478bd9Sstevel@tonic-gate kmem_reap_start(void *flag) 30677c478bd9Sstevel@tonic-gate { 30687c478bd9Sstevel@tonic-gate ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); 30697c478bd9Sstevel@tonic-gate 30707c478bd9Sstevel@tonic-gate if (flag == &kmem_reaping) { 30717c478bd9Sstevel@tonic-gate kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 30727c478bd9Sstevel@tonic-gate /* 30737c478bd9Sstevel@tonic-gate * if we have segkp under heap, reap segkp cache. 30747c478bd9Sstevel@tonic-gate */ 30757c478bd9Sstevel@tonic-gate if (segkp_fromheap) 30767c478bd9Sstevel@tonic-gate segkp_cache_free(); 30777c478bd9Sstevel@tonic-gate } 30787c478bd9Sstevel@tonic-gate else 30797c478bd9Sstevel@tonic-gate kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); 30807c478bd9Sstevel@tonic-gate 30817c478bd9Sstevel@tonic-gate /* 30827c478bd9Sstevel@tonic-gate * We use taskq_dispatch() to schedule a timeout to clear 30837c478bd9Sstevel@tonic-gate * the flag so that kmem_reap() becomes self-throttling: 30847c478bd9Sstevel@tonic-gate * we won't reap again until the current reap completes *and* 30857c478bd9Sstevel@tonic-gate * at least kmem_reap_interval ticks have elapsed. 30867c478bd9Sstevel@tonic-gate */ 30877c478bd9Sstevel@tonic-gate if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP)) 30887c478bd9Sstevel@tonic-gate kmem_reap_done(flag); 30897c478bd9Sstevel@tonic-gate } 30907c478bd9Sstevel@tonic-gate 30917c478bd9Sstevel@tonic-gate static void 30927c478bd9Sstevel@tonic-gate kmem_reap_common(void *flag_arg) 30937c478bd9Sstevel@tonic-gate { 30947c478bd9Sstevel@tonic-gate uint32_t *flag = (uint32_t *)flag_arg; 30957c478bd9Sstevel@tonic-gate 30967c478bd9Sstevel@tonic-gate if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL || 309775d94465SJosef 'Jeff' Sipek atomic_cas_32(flag, 0, 1) != 0) 30987c478bd9Sstevel@tonic-gate return; 30997c478bd9Sstevel@tonic-gate 31007c478bd9Sstevel@tonic-gate /* 31017c478bd9Sstevel@tonic-gate * It may not be kosher to do memory allocation when a reap is called 31029321cd04SJosef 'Jeff' Sipek * (for example, if vmem_populate() is in the call chain). So we 31039321cd04SJosef 'Jeff' Sipek * start the reap going with a TQ_NOALLOC dispatch. If the dispatch 31049321cd04SJosef 'Jeff' Sipek * fails, we reset the flag, and the next reap will try again. 31057c478bd9Sstevel@tonic-gate */ 31067c478bd9Sstevel@tonic-gate if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC)) 31077c478bd9Sstevel@tonic-gate *flag = 0; 31087c478bd9Sstevel@tonic-gate } 31097c478bd9Sstevel@tonic-gate 31107c478bd9Sstevel@tonic-gate /* 31117c478bd9Sstevel@tonic-gate * Reclaim all unused memory from all caches. Called from the VM system 31127c478bd9Sstevel@tonic-gate * when memory gets tight. 31137c478bd9Sstevel@tonic-gate */ 31147c478bd9Sstevel@tonic-gate void 31157c478bd9Sstevel@tonic-gate kmem_reap(void) 31167c478bd9Sstevel@tonic-gate { 31177c478bd9Sstevel@tonic-gate kmem_reap_common(&kmem_reaping); 31187c478bd9Sstevel@tonic-gate } 31197c478bd9Sstevel@tonic-gate 31207c478bd9Sstevel@tonic-gate /* 31217c478bd9Sstevel@tonic-gate * Reclaim all unused memory from identifier arenas, called when a vmem 31227c478bd9Sstevel@tonic-gate * arena not back by memory is exhausted. Since reaping memory-backed caches 31237c478bd9Sstevel@tonic-gate * cannot help with identifier exhaustion, we avoid both a large amount of 31247c478bd9Sstevel@tonic-gate * work and unwanted side-effects from reclaim callbacks. 31257c478bd9Sstevel@tonic-gate */ 31267c478bd9Sstevel@tonic-gate void 31277c478bd9Sstevel@tonic-gate kmem_reap_idspace(void) 31287c478bd9Sstevel@tonic-gate { 31297c478bd9Sstevel@tonic-gate kmem_reap_common(&kmem_reaping_idspace); 31307c478bd9Sstevel@tonic-gate } 31317c478bd9Sstevel@tonic-gate 31327c478bd9Sstevel@tonic-gate /* 31337c478bd9Sstevel@tonic-gate * Purge all magazines from a cache and set its magazine limit to zero. 31347c478bd9Sstevel@tonic-gate * All calls are serialized by the kmem_taskq lock, except for the final 31357c478bd9Sstevel@tonic-gate * call from kmem_cache_destroy(). 31367c478bd9Sstevel@tonic-gate */ 31377c478bd9Sstevel@tonic-gate static void 31387c478bd9Sstevel@tonic-gate kmem_cache_magazine_purge(kmem_cache_t *cp) 31397c478bd9Sstevel@tonic-gate { 31407c478bd9Sstevel@tonic-gate kmem_cpu_cache_t *ccp; 31417c478bd9Sstevel@tonic-gate kmem_magazine_t *mp, *pmp; 31427c478bd9Sstevel@tonic-gate int rounds, prounds, cpu_seqid; 31437c478bd9Sstevel@tonic-gate 3144b5fca8f8Stomee ASSERT(!list_link_active(&cp->cache_link) || 3145b5fca8f8Stomee taskq_member(kmem_taskq, curthread)); 31467c478bd9Sstevel@tonic-gate ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 31477c478bd9Sstevel@tonic-gate 31487c478bd9Sstevel@tonic-gate for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 31497c478bd9Sstevel@tonic-gate ccp = &cp->cache_cpu[cpu_seqid]; 31507c478bd9Sstevel@tonic-gate 31517c478bd9Sstevel@tonic-gate mutex_enter(&ccp->cc_lock); 31527c478bd9Sstevel@tonic-gate mp = ccp->cc_loaded; 31537c478bd9Sstevel@tonic-gate pmp = ccp->cc_ploaded; 31547c478bd9Sstevel@tonic-gate rounds = ccp->cc_rounds; 31557c478bd9Sstevel@tonic-gate prounds = ccp->cc_prounds; 31567c478bd9Sstevel@tonic-gate ccp->cc_loaded = NULL; 31577c478bd9Sstevel@tonic-gate ccp->cc_ploaded = NULL; 31587c478bd9Sstevel@tonic-gate ccp->cc_rounds = -1; 31597c478bd9Sstevel@tonic-gate ccp->cc_prounds = -1; 31607c478bd9Sstevel@tonic-gate ccp->cc_magsize = 0; 31617c478bd9Sstevel@tonic-gate mutex_exit(&ccp->cc_lock); 31627c478bd9Sstevel@tonic-gate 31637c478bd9Sstevel@tonic-gate if (mp) 31647c478bd9Sstevel@tonic-gate kmem_magazine_destroy(cp, mp, rounds); 31657c478bd9Sstevel@tonic-gate if (pmp) 31667c478bd9Sstevel@tonic-gate kmem_magazine_destroy(cp, pmp, prounds); 31677c478bd9Sstevel@tonic-gate } 31687c478bd9Sstevel@tonic-gate 31690c833d64SJosef 'Jeff' Sipek kmem_depot_ws_zero(cp); 31707c478bd9Sstevel@tonic-gate kmem_depot_ws_reap(cp); 31717c478bd9Sstevel@tonic-gate } 31727c478bd9Sstevel@tonic-gate 31737c478bd9Sstevel@tonic-gate /* 31747c478bd9Sstevel@tonic-gate * Enable per-cpu magazines on a cache. 31757c478bd9Sstevel@tonic-gate */ 31767c478bd9Sstevel@tonic-gate static void 31777c478bd9Sstevel@tonic-gate kmem_cache_magazine_enable(kmem_cache_t *cp) 31787c478bd9Sstevel@tonic-gate { 31797c478bd9Sstevel@tonic-gate int cpu_seqid; 31807c478bd9Sstevel@tonic-gate 31817c478bd9Sstevel@tonic-gate if (cp->cache_flags & KMF_NOMAGAZINE) 31827c478bd9Sstevel@tonic-gate return; 31837c478bd9Sstevel@tonic-gate 31847c478bd9Sstevel@tonic-gate for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 31857c478bd9Sstevel@tonic-gate kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 31867c478bd9Sstevel@tonic-gate mutex_enter(&ccp->cc_lock); 31877c478bd9Sstevel@tonic-gate ccp->cc_magsize = cp->cache_magtype->mt_magsize; 31887c478bd9Sstevel@tonic-gate mutex_exit(&ccp->cc_lock); 31897c478bd9Sstevel@tonic-gate } 31907c478bd9Sstevel@tonic-gate 31917c478bd9Sstevel@tonic-gate } 31927c478bd9Sstevel@tonic-gate 31937c478bd9Sstevel@tonic-gate /* 31940c833d64SJosef 'Jeff' Sipek * Reap (almost) everything right now. 3195fa9e4066Sahrens */ 3196fa9e4066Sahrens void 3197fa9e4066Sahrens kmem_cache_reap_now(kmem_cache_t *cp) 3198fa9e4066Sahrens { 3199b5fca8f8Stomee ASSERT(list_link_active(&cp->cache_link)); 3200b5fca8f8Stomee 32010c833d64SJosef 'Jeff' Sipek kmem_depot_ws_zero(cp); 3202fa9e4066Sahrens 3203fa9e4066Sahrens (void) taskq_dispatch(kmem_taskq, 3204fa9e4066Sahrens (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP); 3205fa9e4066Sahrens taskq_wait(kmem_taskq); 3206fa9e4066Sahrens } 3207fa9e4066Sahrens 3208fa9e4066Sahrens /* 32097c478bd9Sstevel@tonic-gate * Recompute a cache's magazine size. The trade-off is that larger magazines 32107c478bd9Sstevel@tonic-gate * provide a higher transfer rate with the depot, while smaller magazines 32117c478bd9Sstevel@tonic-gate * reduce memory consumption. Magazine resizing is an expensive operation; 32127c478bd9Sstevel@tonic-gate * it should not be done frequently. 32137c478bd9Sstevel@tonic-gate * 32147c478bd9Sstevel@tonic-gate * Changes to the magazine size are serialized by the kmem_taskq lock. 32157c478bd9Sstevel@tonic-gate * 32167c478bd9Sstevel@tonic-gate * Note: at present this only grows the magazine size. It might be useful 32177c478bd9Sstevel@tonic-gate * to allow shrinkage too. 32187c478bd9Sstevel@tonic-gate */ 32197c478bd9Sstevel@tonic-gate static void 32207c478bd9Sstevel@tonic-gate kmem_cache_magazine_resize(kmem_cache_t *cp) 32217c478bd9Sstevel@tonic-gate { 32227c478bd9Sstevel@tonic-gate kmem_magtype_t *mtp = cp->cache_magtype; 32237c478bd9Sstevel@tonic-gate 32247c478bd9Sstevel@tonic-gate ASSERT(taskq_member(kmem_taskq, curthread)); 32257c478bd9Sstevel@tonic-gate 32267c478bd9Sstevel@tonic-gate if (cp->cache_chunksize < mtp->mt_maxbuf) { 32277c478bd9Sstevel@tonic-gate kmem_cache_magazine_purge(cp); 32287c478bd9Sstevel@tonic-gate mutex_enter(&cp->cache_depot_lock); 32297c478bd9Sstevel@tonic-gate cp->cache_magtype = ++mtp; 32307c478bd9Sstevel@tonic-gate cp->cache_depot_contention_prev = 32317c478bd9Sstevel@tonic-gate cp->cache_depot_contention + INT_MAX; 32327c478bd9Sstevel@tonic-gate mutex_exit(&cp->cache_depot_lock); 32337c478bd9Sstevel@tonic-gate kmem_cache_magazine_enable(cp); 32347c478bd9Sstevel@tonic-gate } 32357c478bd9Sstevel@tonic-gate } 32367c478bd9Sstevel@tonic-gate 32377c478bd9Sstevel@tonic-gate /* 32387c478bd9Sstevel@tonic-gate * Rescale a cache's hash table, so that the table size is roughly the 32397c478bd9Sstevel@tonic-gate * cache size. We want the average lookup time to be extremely small. 32407c478bd9Sstevel@tonic-gate */ 32417c478bd9Sstevel@tonic-gate static void 32427c478bd9Sstevel@tonic-gate kmem_hash_rescale(kmem_cache_t *cp) 32437c478bd9Sstevel@tonic-gate { 32447c478bd9Sstevel@tonic-gate kmem_bufctl_t **old_table, **new_table, *bcp; 32457c478bd9Sstevel@tonic-gate size_t old_size, new_size, h; 32467c478bd9Sstevel@tonic-gate 32477c478bd9Sstevel@tonic-gate ASSERT(taskq_member(kmem_taskq, curthread)); 32487c478bd9Sstevel@tonic-gate 32497c478bd9Sstevel@tonic-gate new_size = MAX(KMEM_HASH_INITIAL, 32507c478bd9Sstevel@tonic-gate 1 << (highbit(3 * cp->cache_buftotal + 4) - 2)); 32517c478bd9Sstevel@tonic-gate old_size = cp->cache_hash_mask + 1; 32527c478bd9Sstevel@tonic-gate 32537c478bd9Sstevel@tonic-gate if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) 32547c478bd9Sstevel@tonic-gate return; 32557c478bd9Sstevel@tonic-gate 32567c478bd9Sstevel@tonic-gate new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *), 32577c478bd9Sstevel@tonic-gate VM_NOSLEEP); 32587c478bd9Sstevel@tonic-gate if (new_table == NULL) 32597c478bd9Sstevel@tonic-gate return; 32607c478bd9Sstevel@tonic-gate bzero(new_table, new_size * sizeof (void *)); 32617c478bd9Sstevel@tonic-gate 32627c478bd9Sstevel@tonic-gate mutex_enter(&cp->cache_lock); 32637c478bd9Sstevel@tonic-gate 32647c478bd9Sstevel@tonic-gate old_size = cp->cache_hash_mask + 1; 32657c478bd9Sstevel@tonic-gate old_table = cp->cache_hash_table; 32667c478bd9Sstevel@tonic-gate 32677c478bd9Sstevel@tonic-gate cp->cache_hash_mask = new_size - 1; 32687c478bd9Sstevel@tonic-gate cp->cache_hash_table = new_table; 32697c478bd9Sstevel@tonic-gate cp->cache_rescale++; 32707c478bd9Sstevel@tonic-gate 32717c478bd9Sstevel@tonic-gate for (h = 0; h < old_size; h++) { 32727c478bd9Sstevel@tonic-gate bcp = old_table[h]; 32737c478bd9Sstevel@tonic-gate while (bcp != NULL) { 32747c478bd9Sstevel@tonic-gate void *addr = bcp->bc_addr; 32757c478bd9Sstevel@tonic-gate kmem_bufctl_t *next_bcp = bcp->bc_next; 32767c478bd9Sstevel@tonic-gate kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr); 32777c478bd9Sstevel@tonic-gate bcp->bc_next = *hash_bucket; 32787c478bd9Sstevel@tonic-gate *hash_bucket = bcp; 32797c478bd9Sstevel@tonic-gate bcp = next_bcp; 32807c478bd9Sstevel@tonic-gate } 32817c478bd9Sstevel@tonic-gate } 32827c478bd9Sstevel@tonic-gate 32837c478bd9Sstevel@tonic-gate mutex_exit(&cp->cache_lock); 32847c478bd9Sstevel@tonic-gate 32857c478bd9Sstevel@tonic-gate vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *)); 32867c478bd9Sstevel@tonic-gate } 32877c478bd9Sstevel@tonic-gate 32887c478bd9Sstevel@tonic-gate /* 3289b5fca8f8Stomee * Perform periodic maintenance on a cache: hash rescaling, depot working-set 3290b5fca8f8Stomee * update, magazine resizing, and slab consolidation. 32917c478bd9Sstevel@tonic-gate */ 32927c478bd9Sstevel@tonic-gate static void 32937c478bd9Sstevel@tonic-gate kmem_cache_update(kmem_cache_t *cp) 32947c478bd9Sstevel@tonic-gate { 32957c478bd9Sstevel@tonic-gate int need_hash_rescale = 0; 32967c478bd9Sstevel@tonic-gate int need_magazine_resize = 0; 32977c478bd9Sstevel@tonic-gate 32987c478bd9Sstevel@tonic-gate ASSERT(MUTEX_HELD(&kmem_cache_lock)); 32997c478bd9Sstevel@tonic-gate 33007c478bd9Sstevel@tonic-gate /* 33017c478bd9Sstevel@tonic-gate * If the cache has become much larger or smaller than its hash table, 33027c478bd9Sstevel@tonic-gate * fire off a request to rescale the hash table. 33037c478bd9Sstevel@tonic-gate */ 33047c478bd9Sstevel@tonic-gate mutex_enter(&cp->cache_lock); 33057c478bd9Sstevel@tonic-gate 33067c478bd9Sstevel@tonic-gate if ((cp->cache_flags & KMF_HASH) && 33077c478bd9Sstevel@tonic-gate (cp->cache_buftotal > (cp->cache_hash_mask << 1) || 33087c478bd9Sstevel@tonic-gate (cp->cache_buftotal < (cp->cache_hash_mask >> 1) && 33097c478bd9Sstevel@tonic-gate cp->cache_hash_mask > KMEM_HASH_INITIAL))) 33107c478bd9Sstevel@tonic-gate need_hash_rescale = 1; 33117c478bd9Sstevel@tonic-gate 33127c478bd9Sstevel@tonic-gate mutex_exit(&cp->cache_lock); 33137c478bd9Sstevel@tonic-gate 33147c478bd9Sstevel@tonic-gate /* 33157c478bd9Sstevel@tonic-gate * Update the depot working set statistics. 33167c478bd9Sstevel@tonic-gate */ 33177c478bd9Sstevel@tonic-gate kmem_depot_ws_update(cp); 33187c478bd9Sstevel@tonic-gate 33197c478bd9Sstevel@tonic-gate /* 33207c478bd9Sstevel@tonic-gate * If there's a lot of contention in the depot, 33217c478bd9Sstevel@tonic-gate * increase the magazine size. 33227c478bd9Sstevel@tonic-gate */ 33237c478bd9Sstevel@tonic-gate mutex_enter(&cp->cache_depot_lock); 33247c478bd9Sstevel@tonic-gate 33257c478bd9Sstevel@tonic-gate if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf && 33267c478bd9Sstevel@tonic-gate (int)(cp->cache_depot_contention - 33277c478bd9Sstevel@tonic-gate cp->cache_depot_contention_prev) > kmem_depot_contention) 33287c478bd9Sstevel@tonic-gate need_magazine_resize = 1; 33297c478bd9Sstevel@tonic-gate 33307c478bd9Sstevel@tonic-gate cp->cache_depot_contention_prev = cp->cache_depot_contention; 33317c478bd9Sstevel@tonic-gate 33327c478bd9Sstevel@tonic-gate mutex_exit(&cp->cache_depot_lock); 33337c478bd9Sstevel@tonic-gate 33347c478bd9Sstevel@tonic-gate if (need_hash_rescale) 33357c478bd9Sstevel@tonic-gate (void) taskq_dispatch(kmem_taskq, 33367c478bd9Sstevel@tonic-gate (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP); 33377c478bd9Sstevel@tonic-gate 33387c478bd9Sstevel@tonic-gate if (need_magazine_resize) 33397c478bd9Sstevel@tonic-gate (void) taskq_dispatch(kmem_taskq, 33407c478bd9Sstevel@tonic-gate (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP); 3341b5fca8f8Stomee 3342b5fca8f8Stomee if (cp->cache_defrag != NULL) 3343b5fca8f8Stomee (void) taskq_dispatch(kmem_taskq, 3344b5fca8f8Stomee (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP); 33457c478bd9Sstevel@tonic-gate } 33467c478bd9Sstevel@tonic-gate 3347d67944fbSScott Rotondo static void kmem_update(void *); 3348d67944fbSScott Rotondo 33497c478bd9Sstevel@tonic-gate static void 33507c478bd9Sstevel@tonic-gate kmem_update_timeout(void *dummy) 33517c478bd9Sstevel@tonic-gate { 33527c478bd9Sstevel@tonic-gate (void) timeout(kmem_update, dummy, kmem_reap_interval); 33537c478bd9Sstevel@tonic-gate } 33547c478bd9Sstevel@tonic-gate 33557c478bd9Sstevel@tonic-gate static void 33567c478bd9Sstevel@tonic-gate kmem_update(void *dummy) 33577c478bd9Sstevel@tonic-gate { 33587c478bd9Sstevel@tonic-gate kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP); 33597c478bd9Sstevel@tonic-gate 33607c478bd9Sstevel@tonic-gate /* 33617c478bd9Sstevel@tonic-gate * We use taskq_dispatch() to reschedule the timeout so that 33627c478bd9Sstevel@tonic-gate * kmem_update() becomes self-throttling: it won't schedule 33637c478bd9Sstevel@tonic-gate * new tasks until all previous tasks have completed. 33647c478bd9Sstevel@tonic-gate */ 33657c478bd9Sstevel@tonic-gate if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP)) 33667c478bd9Sstevel@tonic-gate kmem_update_timeout(NULL); 33677c478bd9Sstevel@tonic-gate } 33687c478bd9Sstevel@tonic-gate 33697c478bd9Sstevel@tonic-gate static int 33707c478bd9Sstevel@tonic-gate kmem_cache_kstat_update(kstat_t *ksp, int rw) 33717c478bd9Sstevel@tonic-gate { 33727c478bd9Sstevel@tonic-gate struct kmem_cache_kstat *kmcp = &kmem_cache_kstat; 33737c478bd9Sstevel@tonic-gate kmem_cache_t *cp = ksp->ks_private; 33747c478bd9Sstevel@tonic-gate uint64_t cpu_buf_avail; 33757c478bd9Sstevel@tonic-gate uint64_t buf_avail = 0; 33767c478bd9Sstevel@tonic-gate int cpu_seqid; 3377686031edSTom Erickson long reap; 33787c478bd9Sstevel@tonic-gate 33797c478bd9Sstevel@tonic-gate ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock)); 33807c478bd9Sstevel@tonic-gate 33817c478bd9Sstevel@tonic-gate if (rw == KSTAT_WRITE) 33827c478bd9Sstevel@tonic-gate return (EACCES); 33837c478bd9Sstevel@tonic-gate 33847c478bd9Sstevel@tonic-gate mutex_enter(&cp->cache_lock); 33857c478bd9Sstevel@tonic-gate 33867c478bd9Sstevel@tonic-gate kmcp->kmc_alloc_fail.value.ui64 = cp->cache_alloc_fail; 33877c478bd9Sstevel@tonic-gate kmcp->kmc_alloc.value.ui64 = cp->cache_slab_alloc; 33887c478bd9Sstevel@tonic-gate kmcp->kmc_free.value.ui64 = cp->cache_slab_free; 33897c478bd9Sstevel@tonic-gate kmcp->kmc_slab_alloc.value.ui64 = cp->cache_slab_alloc; 33907c478bd9Sstevel@tonic-gate kmcp->kmc_slab_free.value.ui64 = cp->cache_slab_free; 33917c478bd9Sstevel@tonic-gate 33927c478bd9Sstevel@tonic-gate for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 33937c478bd9Sstevel@tonic-gate kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 33947c478bd9Sstevel@tonic-gate 33957c478bd9Sstevel@tonic-gate mutex_enter(&ccp->cc_lock); 33967c478bd9Sstevel@tonic-gate 33977c478bd9Sstevel@tonic-gate cpu_buf_avail = 0; 33987c478bd9Sstevel@tonic-gate if (ccp->cc_rounds > 0) 33997c478bd9Sstevel@tonic-gate cpu_buf_avail += ccp->cc_rounds; 34007c478bd9Sstevel@tonic-gate if (ccp->cc_prounds > 0) 34017c478bd9Sstevel@tonic-gate cpu_buf_avail += ccp->cc_prounds; 34027c478bd9Sstevel@tonic-gate 34037c478bd9Sstevel@tonic-gate kmcp->kmc_alloc.value.ui64 += ccp->cc_alloc; 34047c478bd9Sstevel@tonic-gate kmcp->kmc_free.value.ui64 += ccp->cc_free; 34057c478bd9Sstevel@tonic-gate buf_avail += cpu_buf_avail; 34067c478bd9Sstevel@tonic-gate 34077c478bd9Sstevel@tonic-gate mutex_exit(&ccp->cc_lock); 34087c478bd9Sstevel@tonic-gate } 34097c478bd9Sstevel@tonic-gate 34107c478bd9Sstevel@tonic-gate mutex_enter(&cp->cache_depot_lock); 34117c478bd9Sstevel@tonic-gate 34127c478bd9Sstevel@tonic-gate kmcp->kmc_depot_alloc.value.ui64 = cp->cache_full.ml_alloc; 34137c478bd9Sstevel@tonic-gate kmcp->kmc_depot_free.value.ui64 = cp->cache_empty.ml_alloc; 34147c478bd9Sstevel@tonic-gate kmcp->kmc_depot_contention.value.ui64 = cp->cache_depot_contention; 34157c478bd9Sstevel@tonic-gate kmcp->kmc_full_magazines.value.ui64 = cp->cache_full.ml_total; 34167c478bd9Sstevel@tonic-gate kmcp->kmc_empty_magazines.value.ui64 = cp->cache_empty.ml_total; 34177c478bd9Sstevel@tonic-gate kmcp->kmc_magazine_size.value.ui64 = 34187c478bd9Sstevel@tonic-gate (cp->cache_flags & KMF_NOMAGAZINE) ? 34197c478bd9Sstevel@tonic-gate 0 : cp->cache_magtype->mt_magsize; 34207c478bd9Sstevel@tonic-gate 34217c478bd9Sstevel@tonic-gate kmcp->kmc_alloc.value.ui64 += cp->cache_full.ml_alloc; 34227c478bd9Sstevel@tonic-gate kmcp->kmc_free.value.ui64 += cp->cache_empty.ml_alloc; 34237c478bd9Sstevel@tonic-gate buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize; 34247c478bd9Sstevel@tonic-gate 3425686031edSTom Erickson reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 3426686031edSTom Erickson reap = MIN(reap, cp->cache_full.ml_total); 3427686031edSTom Erickson 34287c478bd9Sstevel@tonic-gate mutex_exit(&cp->cache_depot_lock); 34297c478bd9Sstevel@tonic-gate 34307c478bd9Sstevel@tonic-gate kmcp->kmc_buf_size.value.ui64 = cp->cache_bufsize; 34317c478bd9Sstevel@tonic-gate kmcp->kmc_align.value.ui64 = cp->cache_align; 34327c478bd9Sstevel@tonic-gate kmcp->kmc_chunk_size.value.ui64 = cp->cache_chunksize; 34337c478bd9Sstevel@tonic-gate kmcp->kmc_slab_size.value.ui64 = cp->cache_slabsize; 34347c478bd9Sstevel@tonic-gate kmcp->kmc_buf_constructed.value.ui64 = buf_avail; 34359f1b636aStomee buf_avail += cp->cache_bufslab; 34367c478bd9Sstevel@tonic-gate kmcp->kmc_buf_avail.value.ui64 = buf_avail; 34377c478bd9Sstevel@tonic-gate kmcp->kmc_buf_inuse.value.ui64 = cp->cache_buftotal - buf_avail; 34387c478bd9Sstevel@tonic-gate kmcp->kmc_buf_total.value.ui64 = cp->cache_buftotal; 34397c478bd9Sstevel@tonic-gate kmcp->kmc_buf_max.value.ui64 = cp->cache_bufmax; 34407c478bd9Sstevel@tonic-gate kmcp->kmc_slab_create.value.ui64 = cp->cache_slab_create; 34417c478bd9Sstevel@tonic-gate kmcp->kmc_slab_destroy.value.ui64 = cp->cache_slab_destroy; 34427c478bd9Sstevel@tonic-gate kmcp->kmc_hash_size.value.ui64 = (cp->cache_flags & KMF_HASH) ? 34437c478bd9Sstevel@tonic-gate cp->cache_hash_mask + 1 : 0; 34447c478bd9Sstevel@tonic-gate kmcp->kmc_hash_lookup_depth.value.ui64 = cp->cache_lookup_depth; 34457c478bd9Sstevel@tonic-gate kmcp->kmc_hash_rescale.value.ui64 = cp->cache_rescale; 34467c478bd9Sstevel@tonic-gate kmcp->kmc_vmem_source.value.ui64 = cp->cache_arena->vm_id; 3447686031edSTom Erickson kmcp->kmc_reap.value.ui64 = cp->cache_reap; 34487c478bd9Sstevel@tonic-gate 3449b5fca8f8Stomee if (cp->cache_defrag == NULL) { 3450b5fca8f8Stomee kmcp->kmc_move_callbacks.value.ui64 = 0; 3451b5fca8f8Stomee kmcp->kmc_move_yes.value.ui64 = 0; 3452b5fca8f8Stomee kmcp->kmc_move_no.value.ui64 = 0; 3453b5fca8f8Stomee kmcp->kmc_move_later.value.ui64 = 0; 3454b5fca8f8Stomee kmcp->kmc_move_dont_need.value.ui64 = 0; 3455b5fca8f8Stomee kmcp->kmc_move_dont_know.value.ui64 = 0; 3456b5fca8f8Stomee kmcp->kmc_move_hunt_found.value.ui64 = 0; 3457686031edSTom Erickson kmcp->kmc_move_slabs_freed.value.ui64 = 0; 3458686031edSTom Erickson kmcp->kmc_defrag.value.ui64 = 0; 3459686031edSTom Erickson kmcp->kmc_scan.value.ui64 = 0; 3460686031edSTom Erickson kmcp->kmc_move_reclaimable.value.ui64 = 0; 3461b5fca8f8Stomee } else { 3462686031edSTom Erickson int64_t reclaimable; 3463686031edSTom Erickson 3464b5fca8f8Stomee kmem_defrag_t *kd = cp->cache_defrag; 3465b5fca8f8Stomee kmcp->kmc_move_callbacks.value.ui64 = kd->kmd_callbacks; 3466b5fca8f8Stomee kmcp->kmc_move_yes.value.ui64 = kd->kmd_yes; 3467b5fca8f8Stomee kmcp->kmc_move_no.value.ui64 = kd->kmd_no; 3468b5fca8f8Stomee kmcp->kmc_move_later.value.ui64 = kd->kmd_later; 3469b5fca8f8Stomee kmcp->kmc_move_dont_need.value.ui64 = kd->kmd_dont_need; 3470b5fca8f8Stomee kmcp->kmc_move_dont_know.value.ui64 = kd->kmd_dont_know; 3471aa7175abSBryan Cantrill kmcp->kmc_move_hunt_found.value.ui64 = 0; 3472686031edSTom Erickson kmcp->kmc_move_slabs_freed.value.ui64 = kd->kmd_slabs_freed; 3473686031edSTom Erickson kmcp->kmc_defrag.value.ui64 = kd->kmd_defrags; 3474686031edSTom Erickson kmcp->kmc_scan.value.ui64 = kd->kmd_scans; 3475686031edSTom Erickson 3476686031edSTom Erickson reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1); 3477686031edSTom Erickson reclaimable = MAX(reclaimable, 0); 3478686031edSTom Erickson reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize); 3479686031edSTom Erickson kmcp->kmc_move_reclaimable.value.ui64 = reclaimable; 3480b5fca8f8Stomee } 3481b5fca8f8Stomee 34827c478bd9Sstevel@tonic-gate mutex_exit(&cp->cache_lock); 34837c478bd9Sstevel@tonic-gate return (0); 34847c478bd9Sstevel@tonic-gate } 34857c478bd9Sstevel@tonic-gate 34867c478bd9Sstevel@tonic-gate /* 34877c478bd9Sstevel@tonic-gate * Return a named statistic about a particular cache. 34887c478bd9Sstevel@tonic-gate * This shouldn't be called very often, so it's currently designed for 34897c478bd9Sstevel@tonic-gate * simplicity (leverages existing kstat support) rather than efficiency. 34907c478bd9Sstevel@tonic-gate */ 34917c478bd9Sstevel@tonic-gate uint64_t 34927c478bd9Sstevel@tonic-gate kmem_cache_stat(kmem_cache_t *cp, char *name) 34937c478bd9Sstevel@tonic-gate { 34947c478bd9Sstevel@tonic-gate int i; 34957c478bd9Sstevel@tonic-gate kstat_t *ksp = cp->cache_kstat; 34967c478bd9Sstevel@tonic-gate kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat; 34977c478bd9Sstevel@tonic-gate uint64_t value = 0; 34987c478bd9Sstevel@tonic-gate 34997c478bd9Sstevel@tonic-gate if (ksp != NULL) { 35007c478bd9Sstevel@tonic-gate mutex_enter(&kmem_cache_kstat_lock); 35017c478bd9Sstevel@tonic-gate (void) kmem_cache_kstat_update(ksp, KSTAT_READ); 35027c478bd9Sstevel@tonic-gate for (i = 0; i < ksp->ks_ndata; i++) { 35037c478bd9Sstevel@tonic-gate if (strcmp(knp[i].name, name) == 0) { 35047c478bd9Sstevel@tonic-gate value = knp[i].value.ui64; 35057c478bd9Sstevel@tonic-gate break; 35067c478bd9Sstevel@tonic-gate } 35077c478bd9Sstevel@tonic-gate } 35087c478bd9Sstevel@tonic-gate mutex_exit(&kmem_cache_kstat_lock); 35097c478bd9Sstevel@tonic-gate } 35107c478bd9Sstevel@tonic-gate return (value); 35117c478bd9Sstevel@tonic-gate } 35127c478bd9Sstevel@tonic-gate 35137c478bd9Sstevel@tonic-gate /* 35147c478bd9Sstevel@tonic-gate * Return an estimate of currently available kernel heap memory. 35157c478bd9Sstevel@tonic-gate * On 32-bit systems, physical memory may exceed virtual memory, 35167c478bd9Sstevel@tonic-gate * we just truncate the result at 1GB. 35177c478bd9Sstevel@tonic-gate */ 35187c478bd9Sstevel@tonic-gate size_t 35197c478bd9Sstevel@tonic-gate kmem_avail(void) 35207c478bd9Sstevel@tonic-gate { 35217c478bd9Sstevel@tonic-gate spgcnt_t rmem = availrmem - tune.t_minarmem; 35227c478bd9Sstevel@tonic-gate spgcnt_t fmem = freemem - minfree; 35237c478bd9Sstevel@tonic-gate 35247c478bd9Sstevel@tonic-gate return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0), 35257c478bd9Sstevel@tonic-gate 1 << (30 - PAGESHIFT)))); 35267c478bd9Sstevel@tonic-gate } 35277c478bd9Sstevel@tonic-gate 35287c478bd9Sstevel@tonic-gate /* 35297c478bd9Sstevel@tonic-gate * Return the maximum amount of memory that is (in theory) allocatable 35307c478bd9Sstevel@tonic-gate * from the heap. This may be used as an estimate only since there 35317c478bd9Sstevel@tonic-gate * is no guarentee this space will still be available when an allocation 35327c478bd9Sstevel@tonic-gate * request is made, nor that the space may be allocated in one big request 35337c478bd9Sstevel@tonic-gate * due to kernel heap fragmentation. 35347c478bd9Sstevel@tonic-gate */ 35357c478bd9Sstevel@tonic-gate size_t 35367c478bd9Sstevel@tonic-gate kmem_maxavail(void) 35377c478bd9Sstevel@tonic-gate { 35387c478bd9Sstevel@tonic-gate spgcnt_t pmem = availrmem - tune.t_minarmem; 35397c478bd9Sstevel@tonic-gate spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE)); 35407c478bd9Sstevel@tonic-gate 35417c478bd9Sstevel@tonic-gate return ((size_t)ptob(MAX(MIN(pmem, vmem), 0))); 35427c478bd9Sstevel@tonic-gate } 35437c478bd9Sstevel@tonic-gate 3544fa9e4066Sahrens /* 3545fa9e4066Sahrens * Indicate whether memory-intensive kmem debugging is enabled. 3546fa9e4066Sahrens */ 3547fa9e4066Sahrens int 3548fa9e4066Sahrens kmem_debugging(void) 3549fa9e4066Sahrens { 3550fa9e4066Sahrens return (kmem_flags & (KMF_AUDIT | KMF_REDZONE)); 3551fa9e4066Sahrens } 3552fa9e4066Sahrens 3553b5fca8f8Stomee /* binning function, sorts finely at the two extremes */ 3554b5fca8f8Stomee #define KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift) \ 3555b5fca8f8Stomee ((((sp)->slab_refcnt <= (binshift)) || \ 3556b5fca8f8Stomee (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift))) \ 3557b5fca8f8Stomee ? -(sp)->slab_refcnt \ 3558b5fca8f8Stomee : -((binshift) + ((sp)->slab_refcnt >> (binshift)))) 3559b5fca8f8Stomee 3560b5fca8f8Stomee /* 3561b5fca8f8Stomee * Minimizing the number of partial slabs on the freelist minimizes 3562b5fca8f8Stomee * fragmentation (the ratio of unused buffers held by the slab layer). There are 3563b5fca8f8Stomee * two ways to get a slab off of the freelist: 1) free all the buffers on the 3564b5fca8f8Stomee * slab, and 2) allocate all the buffers on the slab. It follows that we want 3565b5fca8f8Stomee * the most-used slabs at the front of the list where they have the best chance 3566b5fca8f8Stomee * of being completely allocated, and the least-used slabs at a safe distance 3567b5fca8f8Stomee * from the front to improve the odds that the few remaining buffers will all be 3568b5fca8f8Stomee * freed before another allocation can tie up the slab. For that reason a slab 3569b5fca8f8Stomee * with a higher slab_refcnt sorts less than than a slab with a lower 3570b5fca8f8Stomee * slab_refcnt. 3571b5fca8f8Stomee * 3572b5fca8f8Stomee * However, if a slab has at least one buffer that is deemed unfreeable, we 3573b5fca8f8Stomee * would rather have that slab at the front of the list regardless of 3574b5fca8f8Stomee * slab_refcnt, since even one unfreeable buffer makes the entire slab 3575b5fca8f8Stomee * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move() 3576b5fca8f8Stomee * callback, the slab is marked unfreeable for as long as it remains on the 3577b5fca8f8Stomee * freelist. 3578b5fca8f8Stomee */ 3579b5fca8f8Stomee static int 3580b5fca8f8Stomee kmem_partial_slab_cmp(const void *p0, const void *p1) 3581b5fca8f8Stomee { 3582b5fca8f8Stomee const kmem_cache_t *cp; 3583b5fca8f8Stomee const kmem_slab_t *s0 = p0; 3584b5fca8f8Stomee const kmem_slab_t *s1 = p1; 3585b5fca8f8Stomee int w0, w1; 3586b5fca8f8Stomee size_t binshift; 3587b5fca8f8Stomee 3588b5fca8f8Stomee ASSERT(KMEM_SLAB_IS_PARTIAL(s0)); 3589b5fca8f8Stomee ASSERT(KMEM_SLAB_IS_PARTIAL(s1)); 3590b5fca8f8Stomee ASSERT(s0->slab_cache == s1->slab_cache); 3591b5fca8f8Stomee cp = s1->slab_cache; 3592b5fca8f8Stomee ASSERT(MUTEX_HELD(&cp->cache_lock)); 3593b5fca8f8Stomee binshift = cp->cache_partial_binshift; 3594b5fca8f8Stomee 3595b5fca8f8Stomee /* weight of first slab */ 3596b5fca8f8Stomee w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift); 3597b5fca8f8Stomee if (s0->slab_flags & KMEM_SLAB_NOMOVE) { 3598b5fca8f8Stomee w0 -= cp->cache_maxchunks; 3599b5fca8f8Stomee } 3600b5fca8f8Stomee 3601b5fca8f8Stomee /* weight of second slab */ 3602b5fca8f8Stomee w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift); 3603b5fca8f8Stomee if (s1->slab_flags & KMEM_SLAB_NOMOVE) { 3604b5fca8f8Stomee w1 -= cp->cache_maxchunks; 3605b5fca8f8Stomee } 3606b5fca8f8Stomee 3607b5fca8f8Stomee if (w0 < w1) 3608b5fca8f8Stomee return (-1); 3609b5fca8f8Stomee if (w0 > w1) 3610b5fca8f8Stomee return (1); 3611b5fca8f8Stomee 3612b5fca8f8Stomee /* compare pointer values */ 3613b5fca8f8Stomee if ((uintptr_t)s0 < (uintptr_t)s1) 3614b5fca8f8Stomee return (-1); 3615b5fca8f8Stomee if ((uintptr_t)s0 > (uintptr_t)s1) 3616b5fca8f8Stomee return (1); 3617b5fca8f8Stomee 3618b5fca8f8Stomee return (0); 3619b5fca8f8Stomee } 3620b5fca8f8Stomee 3621b5fca8f8Stomee /* 3622b5fca8f8Stomee * It must be valid to call the destructor (if any) on a newly created object. 3623b5fca8f8Stomee * That is, the constructor (if any) must leave the object in a valid state for 3624b5fca8f8Stomee * the destructor. 3625b5fca8f8Stomee */ 36267c478bd9Sstevel@tonic-gate kmem_cache_t * 36277c478bd9Sstevel@tonic-gate kmem_cache_create( 36287c478bd9Sstevel@tonic-gate char *name, /* descriptive name for this cache */ 36297c478bd9Sstevel@tonic-gate size_t bufsize, /* size of the objects it manages */ 36307c478bd9Sstevel@tonic-gate size_t align, /* required object alignment */ 36317c478bd9Sstevel@tonic-gate int (*constructor)(void *, void *, int), /* object constructor */ 36327c478bd9Sstevel@tonic-gate void (*destructor)(void *, void *), /* object destructor */ 36337c478bd9Sstevel@tonic-gate void (*reclaim)(void *), /* memory reclaim callback */ 36347c478bd9Sstevel@tonic-gate void *private, /* pass-thru arg for constr/destr/reclaim */ 36357c478bd9Sstevel@tonic-gate vmem_t *vmp, /* vmem source for slab allocation */ 36367c478bd9Sstevel@tonic-gate int cflags) /* cache creation flags */ 36377c478bd9Sstevel@tonic-gate { 36387c478bd9Sstevel@tonic-gate int cpu_seqid; 36397c478bd9Sstevel@tonic-gate size_t chunksize; 3640b5fca8f8Stomee kmem_cache_t *cp; 36417c478bd9Sstevel@tonic-gate kmem_magtype_t *mtp; 36427c478bd9Sstevel@tonic-gate size_t csize = KMEM_CACHE_SIZE(max_ncpus); 36437c478bd9Sstevel@tonic-gate 36447c478bd9Sstevel@tonic-gate #ifdef DEBUG 36457c478bd9Sstevel@tonic-gate /* 36467c478bd9Sstevel@tonic-gate * Cache names should conform to the rules for valid C identifiers 36477c478bd9Sstevel@tonic-gate */ 36487c478bd9Sstevel@tonic-gate if (!strident_valid(name)) { 36497c478bd9Sstevel@tonic-gate cmn_err(CE_CONT, 36507c478bd9Sstevel@tonic-gate "kmem_cache_create: '%s' is an invalid cache name\n" 36517c478bd9Sstevel@tonic-gate "cache names must conform to the rules for " 36527c478bd9Sstevel@tonic-gate "C identifiers\n", name); 36537c478bd9Sstevel@tonic-gate } 36547c478bd9Sstevel@tonic-gate #endif /* DEBUG */ 36557c478bd9Sstevel@tonic-gate 36567c478bd9Sstevel@tonic-gate if (vmp == NULL) 36577c478bd9Sstevel@tonic-gate vmp = kmem_default_arena; 36587c478bd9Sstevel@tonic-gate 36597c478bd9Sstevel@tonic-gate /* 36607c478bd9Sstevel@tonic-gate * If this kmem cache has an identifier vmem arena as its source, mark 36617c478bd9Sstevel@tonic-gate * it such to allow kmem_reap_idspace(). 36627c478bd9Sstevel@tonic-gate */ 36637c478bd9Sstevel@tonic-gate ASSERT(!(cflags & KMC_IDENTIFIER)); /* consumer should not set this */ 36647c478bd9Sstevel@tonic-gate if (vmp->vm_cflags & VMC_IDENTIFIER) 36657c478bd9Sstevel@tonic-gate cflags |= KMC_IDENTIFIER; 36667c478bd9Sstevel@tonic-gate 36677c478bd9Sstevel@tonic-gate /* 36687c478bd9Sstevel@tonic-gate * Get a kmem_cache structure. We arrange that cp->cache_cpu[] 36697c478bd9Sstevel@tonic-gate * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent 36707c478bd9Sstevel@tonic-gate * false sharing of per-CPU data. 36717c478bd9Sstevel@tonic-gate */ 36727c478bd9Sstevel@tonic-gate cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE, 36737c478bd9Sstevel@tonic-gate P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP); 36747c478bd9Sstevel@tonic-gate bzero(cp, csize); 3675b5fca8f8Stomee list_link_init(&cp->cache_link); 36767c478bd9Sstevel@tonic-gate 36777c478bd9Sstevel@tonic-gate if (align == 0) 36787c478bd9Sstevel@tonic-gate align = KMEM_ALIGN; 36797c478bd9Sstevel@tonic-gate 36807c478bd9Sstevel@tonic-gate /* 36817c478bd9Sstevel@tonic-gate * If we're not at least KMEM_ALIGN aligned, we can't use free 36827c478bd9Sstevel@tonic-gate * memory to hold bufctl information (because we can't safely 36837c478bd9Sstevel@tonic-gate * perform word loads and stores on it). 36847c478bd9Sstevel@tonic-gate */ 36857c478bd9Sstevel@tonic-gate if (align < KMEM_ALIGN) 36867c478bd9Sstevel@tonic-gate cflags |= KMC_NOTOUCH; 36877c478bd9Sstevel@tonic-gate 3688de710d24SJosef 'Jeff' Sipek if (!ISP2(align) || align > vmp->vm_quantum) 36897c478bd9Sstevel@tonic-gate panic("kmem_cache_create: bad alignment %lu", align); 36907c478bd9Sstevel@tonic-gate 36917c478bd9Sstevel@tonic-gate mutex_enter(&kmem_flags_lock); 36927c478bd9Sstevel@tonic-gate if (kmem_flags & KMF_RANDOMIZE) 36937c478bd9Sstevel@tonic-gate kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) | 36947c478bd9Sstevel@tonic-gate KMF_RANDOMIZE; 36957c478bd9Sstevel@tonic-gate cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG; 36967c478bd9Sstevel@tonic-gate mutex_exit(&kmem_flags_lock); 36977c478bd9Sstevel@tonic-gate 36987c478bd9Sstevel@tonic-gate /* 36997c478bd9Sstevel@tonic-gate * Make sure all the various flags are reasonable. 37007c478bd9Sstevel@tonic-gate */ 37017c478bd9Sstevel@tonic-gate ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH)); 37027c478bd9Sstevel@tonic-gate 37037c478bd9Sstevel@tonic-gate if (cp->cache_flags & KMF_LITE) { 37047c478bd9Sstevel@tonic-gate if (bufsize >= kmem_lite_minsize && 37057c478bd9Sstevel@tonic-gate align <= kmem_lite_maxalign && 37067c478bd9Sstevel@tonic-gate P2PHASE(bufsize, kmem_lite_maxalign) != 0) { 37077c478bd9Sstevel@tonic-gate cp->cache_flags |= KMF_BUFTAG; 37087c478bd9Sstevel@tonic-gate cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); 37097c478bd9Sstevel@tonic-gate } else { 37107c478bd9Sstevel@tonic-gate cp->cache_flags &= ~KMF_DEBUG; 37117c478bd9Sstevel@tonic-gate } 37127c478bd9Sstevel@tonic-gate } 37137c478bd9Sstevel@tonic-gate 37147c478bd9Sstevel@tonic-gate if (cp->cache_flags & KMF_DEADBEEF) 37157c478bd9Sstevel@tonic-gate cp->cache_flags |= KMF_REDZONE; 37167c478bd9Sstevel@tonic-gate 37177c478bd9Sstevel@tonic-gate if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT)) 37187c478bd9Sstevel@tonic-gate cp->cache_flags |= KMF_NOMAGAZINE; 37197c478bd9Sstevel@tonic-gate 37207c478bd9Sstevel@tonic-gate if (cflags & KMC_NODEBUG) 37217c478bd9Sstevel@tonic-gate cp->cache_flags &= ~KMF_DEBUG; 37227c478bd9Sstevel@tonic-gate 37237c478bd9Sstevel@tonic-gate if (cflags & KMC_NOTOUCH) 37247c478bd9Sstevel@tonic-gate cp->cache_flags &= ~KMF_TOUCH; 37257c478bd9Sstevel@tonic-gate 3726b942e89bSDavid Valin if (cflags & KMC_PREFILL) 3727b942e89bSDavid Valin cp->cache_flags |= KMF_PREFILL; 3728b942e89bSDavid Valin 37297c478bd9Sstevel@tonic-gate if (cflags & KMC_NOHASH) 37307c478bd9Sstevel@tonic-gate cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); 37317c478bd9Sstevel@tonic-gate 37327c478bd9Sstevel@tonic-gate if (cflags & KMC_NOMAGAZINE) 37337c478bd9Sstevel@tonic-gate cp->cache_flags |= KMF_NOMAGAZINE; 37347c478bd9Sstevel@tonic-gate 37357c478bd9Sstevel@tonic-gate if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH)) 37367c478bd9Sstevel@tonic-gate cp->cache_flags |= KMF_REDZONE; 37377c478bd9Sstevel@tonic-gate 37387c478bd9Sstevel@tonic-gate if (!(cp->cache_flags & KMF_AUDIT)) 37397c478bd9Sstevel@tonic-gate cp->cache_flags &= ~KMF_CONTENTS; 37407c478bd9Sstevel@tonic-gate 37417c478bd9Sstevel@tonic-gate if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall && 37427c478bd9Sstevel@tonic-gate !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH)) 37437c478bd9Sstevel@tonic-gate cp->cache_flags |= KMF_FIREWALL; 37447c478bd9Sstevel@tonic-gate 37457c478bd9Sstevel@tonic-gate if (vmp != kmem_default_arena || kmem_firewall_arena == NULL) 37467c478bd9Sstevel@tonic-gate cp->cache_flags &= ~KMF_FIREWALL; 37477c478bd9Sstevel@tonic-gate 37487c478bd9Sstevel@tonic-gate if (cp->cache_flags & KMF_FIREWALL) { 37497c478bd9Sstevel@tonic-gate cp->cache_flags &= ~KMF_BUFTAG; 37507c478bd9Sstevel@tonic-gate cp->cache_flags |= KMF_NOMAGAZINE; 37517c478bd9Sstevel@tonic-gate ASSERT(vmp == kmem_default_arena); 37527c478bd9Sstevel@tonic-gate vmp = kmem_firewall_arena; 37537c478bd9Sstevel@tonic-gate } 37547c478bd9Sstevel@tonic-gate 37557c478bd9Sstevel@tonic-gate /* 37567c478bd9Sstevel@tonic-gate * Set cache properties. 37577c478bd9Sstevel@tonic-gate */ 37587c478bd9Sstevel@tonic-gate (void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN); 3759b5fca8f8Stomee strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1); 37607c478bd9Sstevel@tonic-gate cp->cache_bufsize = bufsize; 37617c478bd9Sstevel@tonic-gate cp->cache_align = align; 37627c478bd9Sstevel@tonic-gate cp->cache_constructor = constructor; 37637c478bd9Sstevel@tonic-gate cp->cache_destructor = destructor; 37647c478bd9Sstevel@tonic-gate cp->cache_reclaim = reclaim; 37657c478bd9Sstevel@tonic-gate cp->cache_private = private; 37667c478bd9Sstevel@tonic-gate cp->cache_arena = vmp; 37677c478bd9Sstevel@tonic-gate cp->cache_cflags = cflags; 37687c478bd9Sstevel@tonic-gate 37697c478bd9Sstevel@tonic-gate /* 37707c478bd9Sstevel@tonic-gate * Determine the chunk size. 37717c478bd9Sstevel@tonic-gate */ 37727c478bd9Sstevel@tonic-gate chunksize = bufsize; 37737c478bd9Sstevel@tonic-gate 37747c478bd9Sstevel@tonic-gate if (align >= KMEM_ALIGN) { 37757c478bd9Sstevel@tonic-gate chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN); 37767c478bd9Sstevel@tonic-gate cp->cache_bufctl = chunksize - KMEM_ALIGN; 37777c478bd9Sstevel@tonic-gate } 37787c478bd9Sstevel@tonic-gate 37797c478bd9Sstevel@tonic-gate if (cp->cache_flags & KMF_BUFTAG) { 37807c478bd9Sstevel@tonic-gate cp->cache_bufctl = chunksize; 37817c478bd9Sstevel@tonic-gate cp->cache_buftag = chunksize; 37827c478bd9Sstevel@tonic-gate if (cp->cache_flags & KMF_LITE) 37837c478bd9Sstevel@tonic-gate chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count); 37847c478bd9Sstevel@tonic-gate else 37857c478bd9Sstevel@tonic-gate chunksize += sizeof (kmem_buftag_t); 37867c478bd9Sstevel@tonic-gate } 37877c478bd9Sstevel@tonic-gate 37887c478bd9Sstevel@tonic-gate if (cp->cache_flags & KMF_DEADBEEF) { 37897c478bd9Sstevel@tonic-gate cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify); 37907c478bd9Sstevel@tonic-gate if (cp->cache_flags & KMF_LITE) 37917c478bd9Sstevel@tonic-gate cp->cache_verify = sizeof (uint64_t); 37927c478bd9Sstevel@tonic-gate } 37937c478bd9Sstevel@tonic-gate 37947c478bd9Sstevel@tonic-gate cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave); 37957c478bd9Sstevel@tonic-gate 37967c478bd9Sstevel@tonic-gate cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align); 37977c478bd9Sstevel@tonic-gate 37987c478bd9Sstevel@tonic-gate /* 37997c478bd9Sstevel@tonic-gate * Now that we know the chunk size, determine the optimal slab size. 38007c478bd9Sstevel@tonic-gate */ 38017c478bd9Sstevel@tonic-gate if (vmp == kmem_firewall_arena) { 38027c478bd9Sstevel@tonic-gate cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum); 38037c478bd9Sstevel@tonic-gate cp->cache_mincolor = cp->cache_slabsize - chunksize; 38047c478bd9Sstevel@tonic-gate cp->cache_maxcolor = cp->cache_mincolor; 38057c478bd9Sstevel@tonic-gate cp->cache_flags |= KMF_HASH; 38067c478bd9Sstevel@tonic-gate ASSERT(!(cp->cache_flags & KMF_BUFTAG)); 38077c478bd9Sstevel@tonic-gate } else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) && 38087c478bd9Sstevel@tonic-gate !(cp->cache_flags & KMF_AUDIT) && 38097c478bd9Sstevel@tonic-gate chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) { 38107c478bd9Sstevel@tonic-gate cp->cache_slabsize = vmp->vm_quantum; 38117c478bd9Sstevel@tonic-gate cp->cache_mincolor = 0; 38127c478bd9Sstevel@tonic-gate cp->cache_maxcolor = 38137c478bd9Sstevel@tonic-gate (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize; 38147c478bd9Sstevel@tonic-gate ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize); 38157c478bd9Sstevel@tonic-gate ASSERT(!(cp->cache_flags & KMF_AUDIT)); 38167c478bd9Sstevel@tonic-gate } else { 38177c478bd9Sstevel@tonic-gate size_t chunks, bestfit, waste, slabsize; 38187c478bd9Sstevel@tonic-gate size_t minwaste = LONG_MAX; 38197c478bd9Sstevel@tonic-gate 38207c478bd9Sstevel@tonic-gate for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) { 38217c478bd9Sstevel@tonic-gate slabsize = P2ROUNDUP(chunksize * chunks, 38227c478bd9Sstevel@tonic-gate vmp->vm_quantum); 38237c478bd9Sstevel@tonic-gate chunks = slabsize / chunksize; 38247c478bd9Sstevel@tonic-gate waste = (slabsize % chunksize) / chunks; 38257c478bd9Sstevel@tonic-gate if (waste < minwaste) { 38267c478bd9Sstevel@tonic-gate minwaste = waste; 38277c478bd9Sstevel@tonic-gate bestfit = slabsize; 38287c478bd9Sstevel@tonic-gate } 38297c478bd9Sstevel@tonic-gate } 38307c478bd9Sstevel@tonic-gate if (cflags & KMC_QCACHE) 38317c478bd9Sstevel@tonic-gate bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max); 38327c478bd9Sstevel@tonic-gate cp->cache_slabsize = bestfit; 38337c478bd9Sstevel@tonic-gate cp->cache_mincolor = 0; 38347c478bd9Sstevel@tonic-gate cp->cache_maxcolor = bestfit % chunksize; 38357c478bd9Sstevel@tonic-gate cp->cache_flags |= KMF_HASH; 38367c478bd9Sstevel@tonic-gate } 38377c478bd9Sstevel@tonic-gate 3838b5fca8f8Stomee cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize); 3839b5fca8f8Stomee cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1; 3840b5fca8f8Stomee 3841b942e89bSDavid Valin /* 3842b942e89bSDavid Valin * Disallowing prefill when either the DEBUG or HASH flag is set or when 3843b942e89bSDavid Valin * there is a constructor avoids some tricky issues with debug setup 3844b942e89bSDavid Valin * that may be revisited later. We cannot allow prefill in a 3845b942e89bSDavid Valin * metadata cache because of potential recursion. 3846b942e89bSDavid Valin */ 3847b942e89bSDavid Valin if (vmp == kmem_msb_arena || 3848b942e89bSDavid Valin cp->cache_flags & (KMF_HASH | KMF_BUFTAG) || 3849b942e89bSDavid Valin cp->cache_constructor != NULL) 3850b942e89bSDavid Valin cp->cache_flags &= ~KMF_PREFILL; 3851b942e89bSDavid Valin 38527c478bd9Sstevel@tonic-gate if (cp->cache_flags & KMF_HASH) { 38537c478bd9Sstevel@tonic-gate ASSERT(!(cflags & KMC_NOHASH)); 38547c478bd9Sstevel@tonic-gate cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ? 38557c478bd9Sstevel@tonic-gate kmem_bufctl_audit_cache : kmem_bufctl_cache; 38567c478bd9Sstevel@tonic-gate } 38577c478bd9Sstevel@tonic-gate 38587c478bd9Sstevel@tonic-gate if (cp->cache_maxcolor >= vmp->vm_quantum) 38597c478bd9Sstevel@tonic-gate cp->cache_maxcolor = vmp->vm_quantum - 1; 38607c478bd9Sstevel@tonic-gate 38617c478bd9Sstevel@tonic-gate cp->cache_color = cp->cache_mincolor; 38627c478bd9Sstevel@tonic-gate 38637c478bd9Sstevel@tonic-gate /* 38647c478bd9Sstevel@tonic-gate * Initialize the rest of the slab layer. 38657c478bd9Sstevel@tonic-gate */ 38667c478bd9Sstevel@tonic-gate mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL); 38677c478bd9Sstevel@tonic-gate 3868b5fca8f8Stomee avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp, 3869b5fca8f8Stomee sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link)); 3870b5fca8f8Stomee /* LINTED: E_TRUE_LOGICAL_EXPR */ 3871b5fca8f8Stomee ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t)); 3872b5fca8f8Stomee /* reuse partial slab AVL linkage for complete slab list linkage */ 3873b5fca8f8Stomee list_create(&cp->cache_complete_slabs, 3874b5fca8f8Stomee sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link)); 38757c478bd9Sstevel@tonic-gate 38767c478bd9Sstevel@tonic-gate if (cp->cache_flags & KMF_HASH) { 38777c478bd9Sstevel@tonic-gate cp->cache_hash_table = vmem_alloc(kmem_hash_arena, 38787c478bd9Sstevel@tonic-gate KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP); 38797c478bd9Sstevel@tonic-gate bzero(cp->cache_hash_table, 38807c478bd9Sstevel@tonic-gate KMEM_HASH_INITIAL * sizeof (void *)); 38817c478bd9Sstevel@tonic-gate cp->cache_hash_mask = KMEM_HASH_INITIAL - 1; 38827c478bd9Sstevel@tonic-gate cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1; 38837c478bd9Sstevel@tonic-gate } 38847c478bd9Sstevel@tonic-gate 38857c478bd9Sstevel@tonic-gate /* 38867c478bd9Sstevel@tonic-gate * Initialize the depot. 38877c478bd9Sstevel@tonic-gate */ 38887c478bd9Sstevel@tonic-gate mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL); 38897c478bd9Sstevel@tonic-gate 38907c478bd9Sstevel@tonic-gate for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++) 38917c478bd9Sstevel@tonic-gate continue; 38927c478bd9Sstevel@tonic-gate 38937c478bd9Sstevel@tonic-gate cp->cache_magtype = mtp; 38947c478bd9Sstevel@tonic-gate 38957c478bd9Sstevel@tonic-gate /* 38967c478bd9Sstevel@tonic-gate * Initialize the CPU layer. 38977c478bd9Sstevel@tonic-gate */ 38987c478bd9Sstevel@tonic-gate for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { 38997c478bd9Sstevel@tonic-gate kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; 39007c478bd9Sstevel@tonic-gate mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL); 39017c478bd9Sstevel@tonic-gate ccp->cc_flags = cp->cache_flags; 39027c478bd9Sstevel@tonic-gate ccp->cc_rounds = -1; 39037c478bd9Sstevel@tonic-gate ccp->cc_prounds = -1; 39047c478bd9Sstevel@tonic-gate } 39057c478bd9Sstevel@tonic-gate 39067c478bd9Sstevel@tonic-gate /* 39077c478bd9Sstevel@tonic-gate * Create the cache's kstats. 39087c478bd9Sstevel@tonic-gate */ 39097c478bd9Sstevel@tonic-gate if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name, 39107c478bd9Sstevel@tonic-gate "kmem_cache", KSTAT_TYPE_NAMED, 39117c478bd9Sstevel@tonic-gate sizeof (kmem_cache_kstat) / sizeof (kstat_named_t), 39127c478bd9Sstevel@tonic-gate KSTAT_FLAG_VIRTUAL)) != NULL) { 39137c478bd9Sstevel@tonic-gate cp->cache_kstat->ks_data = &kmem_cache_kstat; 39147c478bd9Sstevel@tonic-gate cp->cache_kstat->ks_update = kmem_cache_kstat_update; 39157c478bd9Sstevel@tonic-gate cp->cache_kstat->ks_private = cp; 39167c478bd9Sstevel@tonic-gate cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock; 39177c478bd9Sstevel@tonic-gate kstat_install(cp->cache_kstat); 39187c478bd9Sstevel@tonic-gate } 39197c478bd9Sstevel@tonic-gate 39207c478bd9Sstevel@tonic-gate /* 39217c478bd9Sstevel@tonic-gate * Add the cache to the global list. This makes it visible 39227c478bd9Sstevel@tonic-gate * to kmem_update(), so the cache must be ready for business. 39237c478bd9Sstevel@tonic-gate */ 39247c478bd9Sstevel@tonic-gate mutex_enter(&kmem_cache_lock); 3925b5fca8f8Stomee list_insert_tail(&kmem_caches, cp); 39267c478bd9Sstevel@tonic-gate mutex_exit(&kmem_cache_lock); 39277c478bd9Sstevel@tonic-gate 39287c478bd9Sstevel@tonic-gate if (kmem_ready) 39297c478bd9Sstevel@tonic-gate kmem_cache_magazine_enable(cp); 39307c478bd9Sstevel@tonic-gate 39317c478bd9Sstevel@tonic-gate return (cp); 39327c478bd9Sstevel@tonic-gate } 39337c478bd9Sstevel@tonic-gate 3934b5fca8f8Stomee static int 3935b5fca8f8Stomee kmem_move_cmp(const void *buf, const void *p) 3936b5fca8f8Stomee { 3937b5fca8f8Stomee const kmem_move_t *kmm = p; 3938b5fca8f8Stomee uintptr_t v1 = (uintptr_t)buf; 3939b5fca8f8Stomee uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf; 3940b5fca8f8Stomee return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0)); 3941b5fca8f8Stomee } 3942b5fca8f8Stomee 3943b5fca8f8Stomee static void 3944b5fca8f8Stomee kmem_reset_reclaim_threshold(kmem_defrag_t *kmd) 3945b5fca8f8Stomee { 3946b5fca8f8Stomee kmd->kmd_reclaim_numer = 1; 3947b5fca8f8Stomee } 3948b5fca8f8Stomee 3949b5fca8f8Stomee /* 3950b5fca8f8Stomee * Initially, when choosing candidate slabs for buffers to move, we want to be 3951b5fca8f8Stomee * very selective and take only slabs that are less than 3952b5fca8f8Stomee * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate 3953b5fca8f8Stomee * slabs, then we raise the allocation ceiling incrementally. The reclaim 3954b5fca8f8Stomee * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no 3955b5fca8f8Stomee * longer fragmented. 3956b5fca8f8Stomee */ 3957b5fca8f8Stomee static void 3958b5fca8f8Stomee kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction) 3959b5fca8f8Stomee { 3960b5fca8f8Stomee if (direction > 0) { 3961b5fca8f8Stomee /* make it easier to find a candidate slab */ 3962b5fca8f8Stomee if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) { 3963b5fca8f8Stomee kmd->kmd_reclaim_numer++; 3964b5fca8f8Stomee } 3965b5fca8f8Stomee } else { 3966b5fca8f8Stomee /* be more selective */ 3967b5fca8f8Stomee if (kmd->kmd_reclaim_numer > 1) { 3968b5fca8f8Stomee kmd->kmd_reclaim_numer--; 3969b5fca8f8Stomee } 3970b5fca8f8Stomee } 3971b5fca8f8Stomee } 3972b5fca8f8Stomee 3973b5fca8f8Stomee void 3974b5fca8f8Stomee kmem_cache_set_move(kmem_cache_t *cp, 3975b5fca8f8Stomee kmem_cbrc_t (*move)(void *, void *, size_t, void *)) 3976b5fca8f8Stomee { 3977b5fca8f8Stomee kmem_defrag_t *defrag; 3978b5fca8f8Stomee 3979b5fca8f8Stomee ASSERT(move != NULL); 3980b5fca8f8Stomee /* 3981b5fca8f8Stomee * The consolidator does not support NOTOUCH caches because kmem cannot 3982b5fca8f8Stomee * initialize their slabs with the 0xbaddcafe memory pattern, which sets 3983b5fca8f8Stomee * a low order bit usable by clients to distinguish uninitialized memory 3984b5fca8f8Stomee * from known objects (see kmem_slab_create). 3985b5fca8f8Stomee */ 3986b5fca8f8Stomee ASSERT(!(cp->cache_cflags & KMC_NOTOUCH)); 3987b5fca8f8Stomee ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER)); 3988b5fca8f8Stomee 3989b5fca8f8Stomee /* 3990b5fca8f8Stomee * We should not be holding anyone's cache lock when calling 3991b5fca8f8Stomee * kmem_cache_alloc(), so allocate in all cases before acquiring the 3992b5fca8f8Stomee * lock. 3993b5fca8f8Stomee */ 3994b5fca8f8Stomee defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP); 3995b5fca8f8Stomee 3996b5fca8f8Stomee mutex_enter(&cp->cache_lock); 3997b5fca8f8Stomee 3998b5fca8f8Stomee if (KMEM_IS_MOVABLE(cp)) { 3999b5fca8f8Stomee if (cp->cache_move == NULL) { 40004d4c4c43STom Erickson ASSERT(cp->cache_slab_alloc == 0); 4001b5fca8f8Stomee 4002b5fca8f8Stomee cp->cache_defrag = defrag; 4003b5fca8f8Stomee defrag = NULL; /* nothing to free */ 4004b5fca8f8Stomee bzero(cp->cache_defrag, sizeof (kmem_defrag_t)); 4005b5fca8f8Stomee avl_create(&cp->cache_defrag->kmd_moves_pending, 4006b5fca8f8Stomee kmem_move_cmp, sizeof (kmem_move_t), 4007b5fca8f8Stomee offsetof(kmem_move_t, kmm_entry)); 4008b5fca8f8Stomee /* LINTED: E_TRUE_LOGICAL_EXPR */ 4009b5fca8f8Stomee ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t)); 4010b5fca8f8Stomee /* reuse the slab's AVL linkage for deadlist linkage */ 4011b5fca8f8Stomee list_create(&cp->cache_defrag->kmd_deadlist, 4012b5fca8f8Stomee sizeof (kmem_slab_t), 4013b5fca8f8Stomee offsetof(kmem_slab_t, slab_link)); 4014b5fca8f8Stomee kmem_reset_reclaim_threshold(cp->cache_defrag); 4015b5fca8f8Stomee } 4016b5fca8f8Stomee cp->cache_move = move; 4017b5fca8f8Stomee } 4018b5fca8f8Stomee 4019b5fca8f8Stomee mutex_exit(&cp->cache_lock); 4020b5fca8f8Stomee 4021b5fca8f8Stomee if (defrag != NULL) { 4022b5fca8f8Stomee kmem_cache_free(kmem_defrag_cache, defrag); /* unused */ 4023b5fca8f8Stomee } 4024b5fca8f8Stomee } 4025b5fca8f8Stomee 40267c478bd9Sstevel@tonic-gate void 40277c478bd9Sstevel@tonic-gate kmem_cache_destroy(kmem_cache_t *cp) 40287c478bd9Sstevel@tonic-gate { 40297c478bd9Sstevel@tonic-gate int cpu_seqid; 40307c478bd9Sstevel@tonic-gate 40317c478bd9Sstevel@tonic-gate /* 40327c478bd9Sstevel@tonic-gate * Remove the cache from the global cache list so that no one else 40337c478bd9Sstevel@tonic-gate * can schedule tasks on its behalf, wait for any pending tasks to 40347c478bd9Sstevel@tonic-gate * complete, purge the cache, and then destroy it. 40357c478bd9Sstevel@tonic-gate */ 40367c478bd9Sstevel@tonic-gate mutex_enter(&kmem_cache_lock); 4037b5fca8f8Stomee list_remove(&kmem_caches, cp); 40387c478bd9Sstevel@tonic-gate mutex_exit(&kmem_cache_lock); 40397c478bd9Sstevel@tonic-gate 40407c478bd9Sstevel@tonic-gate if (kmem_taskq != NULL) 40417c478bd9Sstevel@tonic-gate taskq_wait(kmem_taskq); 4042aa7175abSBryan Cantrill 4043aa7175abSBryan Cantrill if (kmem_move_taskq != NULL && cp->cache_defrag != NULL) 4044b5fca8f8Stomee taskq_wait(kmem_move_taskq); 40457c478bd9Sstevel@tonic-gate 40467c478bd9Sstevel@tonic-gate kmem_cache_magazine_purge(cp); 40477c478bd9Sstevel@tonic-gate 40487c478bd9Sstevel@tonic-gate mutex_enter(&cp->cache_lock); 40497c478bd9Sstevel@tonic-gate if (cp->cache_buftotal != 0) 40507c478bd9Sstevel@tonic-gate cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty", 40517c478bd9Sstevel@tonic-gate cp->cache_name, (void *)cp); 4052b5fca8f8Stomee if (cp->cache_defrag != NULL) { 4053b5fca8f8Stomee avl_destroy(&cp->cache_defrag->kmd_moves_pending); 4054b5fca8f8Stomee list_destroy(&cp->cache_defrag->kmd_deadlist); 4055b5fca8f8Stomee kmem_cache_free(kmem_defrag_cache, cp->cache_defrag); 4056b5fca8f8Stomee cp->cache_defrag = NULL; 4057b5fca8f8Stomee } 40587c478bd9Sstevel@tonic-gate /* 4059b5fca8f8Stomee * The cache is now dead. There should be no further activity. We 4060b5fca8f8Stomee * enforce this by setting land mines in the constructor, destructor, 4061b5fca8f8Stomee * reclaim, and move routines that induce a kernel text fault if 4062b5fca8f8Stomee * invoked. 40637c478bd9Sstevel@tonic-gate */ 40647c478bd9Sstevel@tonic-gate cp->cache_constructor = (int (*)(void *, void *, int))1; 40657c478bd9Sstevel@tonic-gate cp->cache_destructor = (void (*)(void *, void *))2; 4066b5fca8f8Stomee cp->cache_reclaim = (void (*)(void *))3; 4067b5fca8f8Stomee cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4; 40687c478bd9Sstevel@tonic-gate mutex_exit(&cp->cache_lock); 40697c478bd9Sstevel@tonic-gate 40707c478bd9Sstevel@tonic-gate kstat_delete(cp->cache_kstat); 40717c478bd9Sstevel@tonic-gate 40727c478bd9Sstevel@tonic-gate if (cp->cache_hash_table != NULL) 40737c478bd9Sstevel@tonic-gate vmem_free(kmem_hash_arena, cp->cache_hash_table, 40747c478bd9Sstevel@tonic-gate (cp->cache_hash_mask + 1) * sizeof (void *)); 40757c478bd9Sstevel@tonic-gate 40767c478bd9Sstevel@tonic-gate for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) 40777c478bd9Sstevel@tonic-gate mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock); 40787c478bd9Sstevel@tonic-gate 40797c478bd9Sstevel@tonic-gate mutex_destroy(&cp->cache_depot_lock); 40807c478bd9Sstevel@tonic-gate mutex_destroy(&cp->cache_lock); 40817c478bd9Sstevel@tonic-gate 40827c478bd9Sstevel@tonic-gate vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus)); 40837c478bd9Sstevel@tonic-gate } 40847c478bd9Sstevel@tonic-gate 40857c478bd9Sstevel@tonic-gate /*ARGSUSED*/ 40867c478bd9Sstevel@tonic-gate static int 40877c478bd9Sstevel@tonic-gate kmem_cpu_setup(cpu_setup_t what, int id, void *arg) 40887c478bd9Sstevel@tonic-gate { 40897c478bd9Sstevel@tonic-gate ASSERT(MUTEX_HELD(&cpu_lock)); 40907c478bd9Sstevel@tonic-gate if (what == CPU_UNCONFIG) { 40917c478bd9Sstevel@tonic-gate kmem_cache_applyall(kmem_cache_magazine_purge, 40927c478bd9Sstevel@tonic-gate kmem_taskq, TQ_SLEEP); 40937c478bd9Sstevel@tonic-gate kmem_cache_applyall(kmem_cache_magazine_enable, 40947c478bd9Sstevel@tonic-gate kmem_taskq, TQ_SLEEP); 40957c478bd9Sstevel@tonic-gate } 40967c478bd9Sstevel@tonic-gate return (0); 40977c478bd9Sstevel@tonic-gate } 40987c478bd9Sstevel@tonic-gate 40997c478bd9Sstevel@tonic-gate static void 4100dce01e3fSJonathan W Adams kmem_alloc_caches_create(const int *array, size_t count, 4101dce01e3fSJonathan W Adams kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift) 4102dce01e3fSJonathan W Adams { 4103dce01e3fSJonathan W Adams char name[KMEM_CACHE_NAMELEN + 1]; 4104dce01e3fSJonathan W Adams size_t table_unit = (1 << shift); /* range of one alloc_table entry */ 4105dce01e3fSJonathan W Adams size_t size = table_unit; 4106dce01e3fSJonathan W Adams int i; 4107dce01e3fSJonathan W Adams 4108dce01e3fSJonathan W Adams for (i = 0; i < count; i++) { 4109dce01e3fSJonathan W Adams size_t cache_size = array[i]; 4110dce01e3fSJonathan W Adams size_t align = KMEM_ALIGN; 4111dce01e3fSJonathan W Adams kmem_cache_t *cp; 4112dce01e3fSJonathan W Adams 4113dce01e3fSJonathan W Adams /* if the table has an entry for maxbuf, we're done */ 4114dce01e3fSJonathan W Adams if (size > maxbuf) 4115dce01e3fSJonathan W Adams break; 4116dce01e3fSJonathan W Adams 4117dce01e3fSJonathan W Adams /* cache size must be a multiple of the table unit */ 4118dce01e3fSJonathan W Adams ASSERT(P2PHASE(cache_size, table_unit) == 0); 4119dce01e3fSJonathan W Adams 4120dce01e3fSJonathan W Adams /* 4121dce01e3fSJonathan W Adams * If they allocate a multiple of the coherency granularity, 4122dce01e3fSJonathan W Adams * they get a coherency-granularity-aligned address. 4123dce01e3fSJonathan W Adams */ 4124dce01e3fSJonathan W Adams if (IS_P2ALIGNED(cache_size, 64)) 4125dce01e3fSJonathan W Adams align = 64; 4126dce01e3fSJonathan W Adams if (IS_P2ALIGNED(cache_size, PAGESIZE)) 4127dce01e3fSJonathan W Adams align = PAGESIZE; 4128dce01e3fSJonathan W Adams (void) snprintf(name, sizeof (name), 4129dce01e3fSJonathan W Adams "kmem_alloc_%lu", cache_size); 4130dce01e3fSJonathan W Adams cp = kmem_cache_create(name, cache_size, align, 4131dce01e3fSJonathan W Adams NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC); 4132dce01e3fSJonathan W Adams 4133dce01e3fSJonathan W Adams while (size <= cache_size) { 4134dce01e3fSJonathan W Adams alloc_table[(size - 1) >> shift] = cp; 4135dce01e3fSJonathan W Adams size += table_unit; 4136dce01e3fSJonathan W Adams } 4137dce01e3fSJonathan W Adams } 4138dce01e3fSJonathan W Adams 4139dce01e3fSJonathan W Adams ASSERT(size > maxbuf); /* i.e. maxbuf <= max(cache_size) */ 4140dce01e3fSJonathan W Adams } 4141dce01e3fSJonathan W Adams 4142dce01e3fSJonathan W Adams static void 41437c478bd9Sstevel@tonic-gate kmem_cache_init(int pass, int use_large_pages) 41447c478bd9Sstevel@tonic-gate { 41457c478bd9Sstevel@tonic-gate int i; 4146dce01e3fSJonathan W Adams size_t maxbuf; 41477c478bd9Sstevel@tonic-gate kmem_magtype_t *mtp; 41487c478bd9Sstevel@tonic-gate 41497c478bd9Sstevel@tonic-gate for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) { 4150dce01e3fSJonathan W Adams char name[KMEM_CACHE_NAMELEN + 1]; 4151dce01e3fSJonathan W Adams 41527c478bd9Sstevel@tonic-gate mtp = &kmem_magtype[i]; 41537c478bd9Sstevel@tonic-gate (void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize); 41547c478bd9Sstevel@tonic-gate mtp->mt_cache = kmem_cache_create(name, 41557c478bd9Sstevel@tonic-gate (mtp->mt_magsize + 1) * sizeof (void *), 41567c478bd9Sstevel@tonic-gate mtp->mt_align, NULL, NULL, NULL, NULL, 41577c478bd9Sstevel@tonic-gate kmem_msb_arena, KMC_NOHASH); 41587c478bd9Sstevel@tonic-gate } 41597c478bd9Sstevel@tonic-gate 41607c478bd9Sstevel@tonic-gate kmem_slab_cache = kmem_cache_create("kmem_slab_cache", 41617c478bd9Sstevel@tonic-gate sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL, 41627c478bd9Sstevel@tonic-gate kmem_msb_arena, KMC_NOHASH); 41637c478bd9Sstevel@tonic-gate 41647c478bd9Sstevel@tonic-gate kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache", 41657c478bd9Sstevel@tonic-gate sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL, 41667c478bd9Sstevel@tonic-gate kmem_msb_arena, KMC_NOHASH); 41677c478bd9Sstevel@tonic-gate 41687c478bd9Sstevel@tonic-gate kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache", 41697c478bd9Sstevel@tonic-gate sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL, 41707c478bd9Sstevel@tonic-gate kmem_msb_arena, KMC_NOHASH); 41717c478bd9Sstevel@tonic-gate 41727c478bd9Sstevel@tonic-gate if (pass == 2) { 41737c478bd9Sstevel@tonic-gate kmem_va_arena = vmem_create("kmem_va", 41747c478bd9Sstevel@tonic-gate NULL, 0, PAGESIZE, 41757c478bd9Sstevel@tonic-gate vmem_alloc, vmem_free, heap_arena, 41767c478bd9Sstevel@tonic-gate 8 * PAGESIZE, VM_SLEEP); 41777c478bd9Sstevel@tonic-gate 41787c478bd9Sstevel@tonic-gate if (use_large_pages) { 41797c478bd9Sstevel@tonic-gate kmem_default_arena = vmem_xcreate("kmem_default", 41807c478bd9Sstevel@tonic-gate NULL, 0, PAGESIZE, 41817c478bd9Sstevel@tonic-gate segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena, 41829dd77bc8SDave Plauger 0, VMC_DUMPSAFE | VM_SLEEP); 41837c478bd9Sstevel@tonic-gate } else { 41847c478bd9Sstevel@tonic-gate kmem_default_arena = vmem_create("kmem_default", 41857c478bd9Sstevel@tonic-gate NULL, 0, PAGESIZE, 41867c478bd9Sstevel@tonic-gate segkmem_alloc, segkmem_free, kmem_va_arena, 41879dd77bc8SDave Plauger 0, VMC_DUMPSAFE | VM_SLEEP); 41887c478bd9Sstevel@tonic-gate } 4189dce01e3fSJonathan W Adams 4190dce01e3fSJonathan W Adams /* Figure out what our maximum cache size is */ 4191dce01e3fSJonathan W Adams maxbuf = kmem_max_cached; 4192dce01e3fSJonathan W Adams if (maxbuf <= KMEM_MAXBUF) { 4193dce01e3fSJonathan W Adams maxbuf = 0; 4194dce01e3fSJonathan W Adams kmem_max_cached = KMEM_MAXBUF; 4195dce01e3fSJonathan W Adams } else { 4196dce01e3fSJonathan W Adams size_t size = 0; 4197dce01e3fSJonathan W Adams size_t max = 4198dce01e3fSJonathan W Adams sizeof (kmem_big_alloc_sizes) / sizeof (int); 4199dce01e3fSJonathan W Adams /* 4200dce01e3fSJonathan W Adams * Round maxbuf up to an existing cache size. If maxbuf 4201dce01e3fSJonathan W Adams * is larger than the largest cache, we truncate it to 4202dce01e3fSJonathan W Adams * the largest cache's size. 4203dce01e3fSJonathan W Adams */ 4204dce01e3fSJonathan W Adams for (i = 0; i < max; i++) { 4205dce01e3fSJonathan W Adams size = kmem_big_alloc_sizes[i]; 4206dce01e3fSJonathan W Adams if (maxbuf <= size) 4207dce01e3fSJonathan W Adams break; 4208dce01e3fSJonathan W Adams } 4209dce01e3fSJonathan W Adams kmem_max_cached = maxbuf = size; 4210dce01e3fSJonathan W Adams } 4211dce01e3fSJonathan W Adams 4212dce01e3fSJonathan W Adams /* 4213dce01e3fSJonathan W Adams * The big alloc table may not be completely overwritten, so 4214dce01e3fSJonathan W Adams * we clear out any stale cache pointers from the first pass. 4215dce01e3fSJonathan W Adams */ 4216dce01e3fSJonathan W Adams bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table)); 42177c478bd9Sstevel@tonic-gate } else { 42187c478bd9Sstevel@tonic-gate /* 42197c478bd9Sstevel@tonic-gate * During the first pass, the kmem_alloc_* caches 42207c478bd9Sstevel@tonic-gate * are treated as metadata. 42217c478bd9Sstevel@tonic-gate */ 42227c478bd9Sstevel@tonic-gate kmem_default_arena = kmem_msb_arena; 4223dce01e3fSJonathan W Adams maxbuf = KMEM_BIG_MAXBUF_32BIT; 42247c478bd9Sstevel@tonic-gate } 42257c478bd9Sstevel@tonic-gate 42267c478bd9Sstevel@tonic-gate /* 42277c478bd9Sstevel@tonic-gate * Set up the default caches to back kmem_alloc() 42287c478bd9Sstevel@tonic-gate */ 4229dce01e3fSJonathan W Adams kmem_alloc_caches_create( 4230dce01e3fSJonathan W Adams kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int), 4231dce01e3fSJonathan W Adams kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT); 4232dce01e3fSJonathan W Adams 4233dce01e3fSJonathan W Adams kmem_alloc_caches_create( 4234dce01e3fSJonathan W Adams kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int), 4235dce01e3fSJonathan W Adams kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT); 4236dce01e3fSJonathan W Adams 4237dce01e3fSJonathan W Adams kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT; 42387c478bd9Sstevel@tonic-gate } 42397c478bd9Sstevel@tonic-gate 42407c478bd9Sstevel@tonic-gate void 42417c478bd9Sstevel@tonic-gate kmem_init(void) 42427c478bd9Sstevel@tonic-gate { 42437c478bd9Sstevel@tonic-gate kmem_cache_t *cp; 42447c478bd9Sstevel@tonic-gate int old_kmem_flags = kmem_flags; 42457c478bd9Sstevel@tonic-gate int use_large_pages = 0; 42467c478bd9Sstevel@tonic-gate size_t maxverify, minfirewall; 42477c478bd9Sstevel@tonic-gate 42487c478bd9Sstevel@tonic-gate kstat_init(); 42497c478bd9Sstevel@tonic-gate 42507c478bd9Sstevel@tonic-gate /* 42517c478bd9Sstevel@tonic-gate * Don't do firewalled allocations if the heap is less than 1TB 42527c478bd9Sstevel@tonic-gate * (i.e. on a 32-bit kernel) 42537c478bd9Sstevel@tonic-gate * The resulting VM_NEXTFIT allocations would create too much 42547c478bd9Sstevel@tonic-gate * fragmentation in a small heap. 42557c478bd9Sstevel@tonic-gate */ 42567c478bd9Sstevel@tonic-gate #if defined(_LP64) 42577c478bd9Sstevel@tonic-gate maxverify = minfirewall = PAGESIZE / 2; 42587c478bd9Sstevel@tonic-gate #else 42597c478bd9Sstevel@tonic-gate maxverify = minfirewall = ULONG_MAX; 42607c478bd9Sstevel@tonic-gate #endif 42617c478bd9Sstevel@tonic-gate 42627c478bd9Sstevel@tonic-gate /* LINTED */ 42637c478bd9Sstevel@tonic-gate ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE); 42647c478bd9Sstevel@tonic-gate 4265b5fca8f8Stomee list_create(&kmem_caches, sizeof (kmem_cache_t), 4266b5fca8f8Stomee offsetof(kmem_cache_t, cache_link)); 42677c478bd9Sstevel@tonic-gate 42687c478bd9Sstevel@tonic-gate kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE, 42697c478bd9Sstevel@tonic-gate vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE, 42707c478bd9Sstevel@tonic-gate VM_SLEEP | VMC_NO_QCACHE); 42717c478bd9Sstevel@tonic-gate 42727c478bd9Sstevel@tonic-gate kmem_msb_arena = vmem_create("kmem_msb", NULL, 0, 42737c478bd9Sstevel@tonic-gate PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, 42749dd77bc8SDave Plauger VMC_DUMPSAFE | VM_SLEEP); 42757c478bd9Sstevel@tonic-gate 42767c478bd9Sstevel@tonic-gate kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN, 42777c478bd9Sstevel@tonic-gate segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); 42787c478bd9Sstevel@tonic-gate 42797c478bd9Sstevel@tonic-gate kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN, 42807c478bd9Sstevel@tonic-gate segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); 42817c478bd9Sstevel@tonic-gate 42827c478bd9Sstevel@tonic-gate kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN, 42837c478bd9Sstevel@tonic-gate segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 42847c478bd9Sstevel@tonic-gate 42857c478bd9Sstevel@tonic-gate kmem_firewall_va_arena = vmem_create("kmem_firewall_va", 42867c478bd9Sstevel@tonic-gate NULL, 0, PAGESIZE, 42877c478bd9Sstevel@tonic-gate kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena, 42887c478bd9Sstevel@tonic-gate 0, VM_SLEEP); 42897c478bd9Sstevel@tonic-gate 42907c478bd9Sstevel@tonic-gate kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE, 42919dd77bc8SDave Plauger segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0, 42929dd77bc8SDave Plauger VMC_DUMPSAFE | VM_SLEEP); 42937c478bd9Sstevel@tonic-gate 42947c478bd9Sstevel@tonic-gate /* temporary oversize arena for mod_read_system_file */ 42957c478bd9Sstevel@tonic-gate kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE, 42967c478bd9Sstevel@tonic-gate segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 42977c478bd9Sstevel@tonic-gate 42987c478bd9Sstevel@tonic-gate kmem_reap_interval = 15 * hz; 42997c478bd9Sstevel@tonic-gate 43007c478bd9Sstevel@tonic-gate /* 43017c478bd9Sstevel@tonic-gate * Read /etc/system. This is a chicken-and-egg problem because 43027c478bd9Sstevel@tonic-gate * kmem_flags may be set in /etc/system, but mod_read_system_file() 43037c478bd9Sstevel@tonic-gate * needs to use the allocator. The simplest solution is to create 43047c478bd9Sstevel@tonic-gate * all the standard kmem caches, read /etc/system, destroy all the 43057c478bd9Sstevel@tonic-gate * caches we just created, and then create them all again in light 43067c478bd9Sstevel@tonic-gate * of the (possibly) new kmem_flags and other kmem tunables. 43077c478bd9Sstevel@tonic-gate */ 43087c478bd9Sstevel@tonic-gate kmem_cache_init(1, 0); 43097c478bd9Sstevel@tonic-gate 43107c478bd9Sstevel@tonic-gate mod_read_system_file(boothowto & RB_ASKNAME); 43117c478bd9Sstevel@tonic-gate 4312b5fca8f8Stomee while ((cp = list_tail(&kmem_caches)) != NULL) 43137c478bd9Sstevel@tonic-gate kmem_cache_destroy(cp); 43147c478bd9Sstevel@tonic-gate 43157c478bd9Sstevel@tonic-gate vmem_destroy(kmem_oversize_arena); 43167c478bd9Sstevel@tonic-gate 43177c478bd9Sstevel@tonic-gate if (old_kmem_flags & KMF_STICKY) 43187c478bd9Sstevel@tonic-gate kmem_flags = old_kmem_flags; 43197c478bd9Sstevel@tonic-gate 43207c478bd9Sstevel@tonic-gate if (!(kmem_flags & KMF_AUDIT)) 43217c478bd9Sstevel@tonic-gate vmem_seg_size = offsetof(vmem_seg_t, vs_thread); 43227c478bd9Sstevel@tonic-gate 43237c478bd9Sstevel@tonic-gate if (kmem_maxverify == 0) 43247c478bd9Sstevel@tonic-gate kmem_maxverify = maxverify; 43257c478bd9Sstevel@tonic-gate 43267c478bd9Sstevel@tonic-gate if (kmem_minfirewall == 0) 43277c478bd9Sstevel@tonic-gate kmem_minfirewall = minfirewall; 43287c478bd9Sstevel@tonic-gate 43297c478bd9Sstevel@tonic-gate /* 43307c478bd9Sstevel@tonic-gate * give segkmem a chance to figure out if we are using large pages 43317c478bd9Sstevel@tonic-gate * for the kernel heap 43327c478bd9Sstevel@tonic-gate */ 43337c478bd9Sstevel@tonic-gate use_large_pages = segkmem_lpsetup(); 43347c478bd9Sstevel@tonic-gate 43357c478bd9Sstevel@tonic-gate /* 43367c478bd9Sstevel@tonic-gate * To protect against corruption, we keep the actual number of callers 43377c478bd9Sstevel@tonic-gate * KMF_LITE records seperate from the tunable. We arbitrarily clamp 43387c478bd9Sstevel@tonic-gate * to 16, since the overhead for small buffers quickly gets out of 43397c478bd9Sstevel@tonic-gate * hand. 43407c478bd9Sstevel@tonic-gate * 43417c478bd9Sstevel@tonic-gate * The real limit would depend on the needs of the largest KMC_NOHASH 43427c478bd9Sstevel@tonic-gate * cache. 43437c478bd9Sstevel@tonic-gate */ 43447c478bd9Sstevel@tonic-gate kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16); 43457c478bd9Sstevel@tonic-gate kmem_lite_pcs = kmem_lite_count; 43467c478bd9Sstevel@tonic-gate 43477c478bd9Sstevel@tonic-gate /* 43487c478bd9Sstevel@tonic-gate * Normally, we firewall oversized allocations when possible, but 43497c478bd9Sstevel@tonic-gate * if we are using large pages for kernel memory, and we don't have 43507c478bd9Sstevel@tonic-gate * any non-LITE debugging flags set, we want to allocate oversized 43517c478bd9Sstevel@tonic-gate * buffers from large pages, and so skip the firewalling. 43527c478bd9Sstevel@tonic-gate */ 43537c478bd9Sstevel@tonic-gate if (use_large_pages && 43547c478bd9Sstevel@tonic-gate ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) { 43557c478bd9Sstevel@tonic-gate kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0, 43567c478bd9Sstevel@tonic-gate PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena, 43579dd77bc8SDave Plauger 0, VMC_DUMPSAFE | VM_SLEEP); 43587c478bd9Sstevel@tonic-gate } else { 43597c478bd9Sstevel@tonic-gate kmem_oversize_arena = vmem_create("kmem_oversize", 43607c478bd9Sstevel@tonic-gate NULL, 0, PAGESIZE, 43617c478bd9Sstevel@tonic-gate segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX? 43629dd77bc8SDave Plauger kmem_firewall_va_arena : heap_arena, 0, VMC_DUMPSAFE | 43639dd77bc8SDave Plauger VM_SLEEP); 43647c478bd9Sstevel@tonic-gate } 43657c478bd9Sstevel@tonic-gate 43667c478bd9Sstevel@tonic-gate kmem_cache_init(2, use_large_pages); 43677c478bd9Sstevel@tonic-gate 43687c478bd9Sstevel@tonic-gate if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) { 43697c478bd9Sstevel@tonic-gate if (kmem_transaction_log_size == 0) 43707c478bd9Sstevel@tonic-gate kmem_transaction_log_size = kmem_maxavail() / 50; 43717c478bd9Sstevel@tonic-gate kmem_transaction_log = kmem_log_init(kmem_transaction_log_size); 43727c478bd9Sstevel@tonic-gate } 43737c478bd9Sstevel@tonic-gate 43747c478bd9Sstevel@tonic-gate if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) { 43757c478bd9Sstevel@tonic-gate if (kmem_content_log_size == 0) 43767c478bd9Sstevel@tonic-gate kmem_content_log_size = kmem_maxavail() / 50; 43777c478bd9Sstevel@tonic-gate kmem_content_log = kmem_log_init(kmem_content_log_size); 43787c478bd9Sstevel@tonic-gate } 43797c478bd9Sstevel@tonic-gate 43807c478bd9Sstevel@tonic-gate kmem_failure_log = kmem_log_init(kmem_failure_log_size); 43817c478bd9Sstevel@tonic-gate 43827c478bd9Sstevel@tonic-gate kmem_slab_log = kmem_log_init(kmem_slab_log_size); 43837c478bd9Sstevel@tonic-gate 43847c478bd9Sstevel@tonic-gate /* 43857c478bd9Sstevel@tonic-gate * Initialize STREAMS message caches so allocb() is available. 43867c478bd9Sstevel@tonic-gate * This allows us to initialize the logging framework (cmn_err(9F), 43877c478bd9Sstevel@tonic-gate * strlog(9F), etc) so we can start recording messages. 43887c478bd9Sstevel@tonic-gate */ 43897c478bd9Sstevel@tonic-gate streams_msg_init(); 43907d692464Sdp201428 43917c478bd9Sstevel@tonic-gate /* 43927c478bd9Sstevel@tonic-gate * Initialize the ZSD framework in Zones so modules loaded henceforth 43937c478bd9Sstevel@tonic-gate * can register their callbacks. 43947c478bd9Sstevel@tonic-gate */ 43957c478bd9Sstevel@tonic-gate zone_zsd_init(); 4396f4b3ec61Sdh155122 43977c478bd9Sstevel@tonic-gate log_init(); 43987c478bd9Sstevel@tonic-gate taskq_init(); 43997c478bd9Sstevel@tonic-gate 44007d692464Sdp201428 /* 44017d692464Sdp201428 * Warn about invalid or dangerous values of kmem_flags. 44027d692464Sdp201428 * Always warn about unsupported values. 44037d692464Sdp201428 */ 44047d692464Sdp201428 if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | 44057d692464Sdp201428 KMF_CONTENTS | KMF_LITE)) != 0) || 44067d692464Sdp201428 ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE)) 44077d692464Sdp201428 cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. " 44087d692464Sdp201428 "See the Solaris Tunable Parameters Reference Manual.", 44097d692464Sdp201428 kmem_flags); 44107d692464Sdp201428 44117d692464Sdp201428 #ifdef DEBUG 44127d692464Sdp201428 if ((kmem_flags & KMF_DEBUG) == 0) 44137d692464Sdp201428 cmn_err(CE_NOTE, "kmem debugging disabled."); 44147d692464Sdp201428 #else 44157d692464Sdp201428 /* 44167d692464Sdp201428 * For non-debug kernels, the only "normal" flags are 0, KMF_LITE, 44177d692464Sdp201428 * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled 44187d692464Sdp201428 * if KMF_AUDIT is set). We should warn the user about the performance 44197d692464Sdp201428 * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE 44207d692464Sdp201428 * isn't set (since that disables AUDIT). 44217d692464Sdp201428 */ 44227d692464Sdp201428 if (!(kmem_flags & KMF_LITE) && 44237d692464Sdp201428 (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0) 44247d692464Sdp201428 cmn_err(CE_WARN, "High-overhead kmem debugging features " 44257d692464Sdp201428 "enabled (kmem_flags = 0x%x). Performance degradation " 44267d692464Sdp201428 "and large memory overhead possible. See the Solaris " 44277d692464Sdp201428 "Tunable Parameters Reference Manual.", kmem_flags); 44287d692464Sdp201428 #endif /* not DEBUG */ 44297d692464Sdp201428 44307c478bd9Sstevel@tonic-gate kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP); 44317c478bd9Sstevel@tonic-gate 44327c478bd9Sstevel@tonic-gate kmem_ready = 1; 44337c478bd9Sstevel@tonic-gate 44347c478bd9Sstevel@tonic-gate /* 44357c478bd9Sstevel@tonic-gate * Initialize the platform-specific aligned/DMA memory allocator. 44367c478bd9Sstevel@tonic-gate */ 44377c478bd9Sstevel@tonic-gate ka_init(); 44387c478bd9Sstevel@tonic-gate 44397c478bd9Sstevel@tonic-gate /* 44407c478bd9Sstevel@tonic-gate * Initialize 32-bit ID cache. 44417c478bd9Sstevel@tonic-gate */ 44427c478bd9Sstevel@tonic-gate id32_init(); 4443f4b3ec61Sdh155122 4444f4b3ec61Sdh155122 /* 4445f4b3ec61Sdh155122 * Initialize the networking stack so modules loaded can 4446f4b3ec61Sdh155122 * register their callbacks. 4447f4b3ec61Sdh155122 */ 4448f4b3ec61Sdh155122 netstack_init(); 44497c478bd9Sstevel@tonic-gate } 44507c478bd9Sstevel@tonic-gate 4451b5fca8f8Stomee static void 4452b5fca8f8Stomee kmem_move_init(void) 4453b5fca8f8Stomee { 4454b5fca8f8Stomee kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache", 4455b5fca8f8Stomee sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL, 4456b5fca8f8Stomee kmem_msb_arena, KMC_NOHASH); 4457b5fca8f8Stomee kmem_move_cache = kmem_cache_create("kmem_move_cache", 4458b5fca8f8Stomee sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL, 4459b5fca8f8Stomee kmem_msb_arena, KMC_NOHASH); 4460b5fca8f8Stomee 4461b5fca8f8Stomee /* 4462b5fca8f8Stomee * kmem guarantees that move callbacks are sequential and that even 4463b5fca8f8Stomee * across multiple caches no two moves ever execute simultaneously. 4464b5fca8f8Stomee * Move callbacks are processed on a separate taskq so that client code 4465b5fca8f8Stomee * does not interfere with internal maintenance tasks. 4466b5fca8f8Stomee */ 4467b5fca8f8Stomee kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1, 4468b5fca8f8Stomee minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE); 4469b5fca8f8Stomee } 4470b5fca8f8Stomee 44717c478bd9Sstevel@tonic-gate void 44727c478bd9Sstevel@tonic-gate kmem_thread_init(void) 44737c478bd9Sstevel@tonic-gate { 4474b5fca8f8Stomee kmem_move_init(); 4475*de58340cSJoshua M. Clulow 4476*de58340cSJoshua M. Clulow /* 4477*de58340cSJoshua M. Clulow * This taskq is used for various kmem maintenance functions, including 4478*de58340cSJoshua M. Clulow * kmem_reap(). When maintenance is required on every cache, 4479*de58340cSJoshua M. Clulow * kmem_cache_applyall() dispatches one task per cache onto this queue. 4480*de58340cSJoshua M. Clulow * 4481*de58340cSJoshua M. Clulow * In the case of kmem_reap(), the system may be under increasingly 4482*de58340cSJoshua M. Clulow * dire memory pressure and may not be able to allocate a new task 4483*de58340cSJoshua M. Clulow * entry. The count of entries to prepopulate (below) should cover at 4484*de58340cSJoshua M. Clulow * least as many caches as we generally expect to exist on the system 4485*de58340cSJoshua M. Clulow * so that they may all be scheduled for reaping under those 4486*de58340cSJoshua M. Clulow * conditions. 4487*de58340cSJoshua M. Clulow */ 44887c478bd9Sstevel@tonic-gate kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri, 4489*de58340cSJoshua M. Clulow 600, INT_MAX, TASKQ_PREPOPULATE); 44907c478bd9Sstevel@tonic-gate } 44917c478bd9Sstevel@tonic-gate 44927c478bd9Sstevel@tonic-gate void 44937c478bd9Sstevel@tonic-gate kmem_mp_init(void) 44947c478bd9Sstevel@tonic-gate { 44957c478bd9Sstevel@tonic-gate mutex_enter(&cpu_lock); 44967c478bd9Sstevel@tonic-gate register_cpu_setup_func(kmem_cpu_setup, NULL); 44977c478bd9Sstevel@tonic-gate mutex_exit(&cpu_lock); 44987c478bd9Sstevel@tonic-gate 44997c478bd9Sstevel@tonic-gate kmem_update_timeout(NULL); 45002e0c549eSJonathan Adams 45012e0c549eSJonathan Adams taskq_mp_init(); 45027c478bd9Sstevel@tonic-gate } 4503b5fca8f8Stomee 4504b5fca8f8Stomee /* 4505b5fca8f8Stomee * Return the slab of the allocated buffer, or NULL if the buffer is not 4506b5fca8f8Stomee * allocated. This function may be called with a known slab address to determine 4507b5fca8f8Stomee * whether or not the buffer is allocated, or with a NULL slab address to obtain 4508b5fca8f8Stomee * an allocated buffer's slab. 4509b5fca8f8Stomee */ 4510b5fca8f8Stomee static kmem_slab_t * 4511b5fca8f8Stomee kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf) 4512b5fca8f8Stomee { 4513b5fca8f8Stomee kmem_bufctl_t *bcp, *bufbcp; 4514b5fca8f8Stomee 4515b5fca8f8Stomee ASSERT(MUTEX_HELD(&cp->cache_lock)); 4516b5fca8f8Stomee ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf)); 4517b5fca8f8Stomee 4518b5fca8f8Stomee if (cp->cache_flags & KMF_HASH) { 4519b5fca8f8Stomee for (bcp = *KMEM_HASH(cp, buf); 4520b5fca8f8Stomee (bcp != NULL) && (bcp->bc_addr != buf); 4521b5fca8f8Stomee bcp = bcp->bc_next) { 4522b5fca8f8Stomee continue; 4523b5fca8f8Stomee } 4524b5fca8f8Stomee ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1); 4525b5fca8f8Stomee return (bcp == NULL ? NULL : bcp->bc_slab); 4526b5fca8f8Stomee } 4527b5fca8f8Stomee 4528b5fca8f8Stomee if (sp == NULL) { 4529b5fca8f8Stomee sp = KMEM_SLAB(cp, buf); 4530b5fca8f8Stomee } 4531b5fca8f8Stomee bufbcp = KMEM_BUFCTL(cp, buf); 4532b5fca8f8Stomee for (bcp = sp->slab_head; 4533b5fca8f8Stomee (bcp != NULL) && (bcp != bufbcp); 4534b5fca8f8Stomee bcp = bcp->bc_next) { 4535b5fca8f8Stomee continue; 4536b5fca8f8Stomee } 4537b5fca8f8Stomee return (bcp == NULL ? sp : NULL); 4538b5fca8f8Stomee } 4539b5fca8f8Stomee 4540b5fca8f8Stomee static boolean_t 4541b5fca8f8Stomee kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags) 4542b5fca8f8Stomee { 4543686031edSTom Erickson long refcnt = sp->slab_refcnt; 4544b5fca8f8Stomee 4545b5fca8f8Stomee ASSERT(cp->cache_defrag != NULL); 4546b5fca8f8Stomee 4547686031edSTom Erickson /* 4548686031edSTom Erickson * For code coverage we want to be able to move an object within the 4549686031edSTom Erickson * same slab (the only partial slab) even if allocating the destination 4550686031edSTom Erickson * buffer resulted in a completely allocated slab. 4551686031edSTom Erickson */ 4552686031edSTom Erickson if (flags & KMM_DEBUG) { 4553686031edSTom Erickson return ((flags & KMM_DESPERATE) || 4554686031edSTom Erickson ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0)); 4555686031edSTom Erickson } 4556686031edSTom Erickson 4557b5fca8f8Stomee /* If we're desperate, we don't care if the client said NO. */ 4558b5fca8f8Stomee if (flags & KMM_DESPERATE) { 4559b5fca8f8Stomee return (refcnt < sp->slab_chunks); /* any partial */ 4560b5fca8f8Stomee } 4561b5fca8f8Stomee 4562b5fca8f8Stomee if (sp->slab_flags & KMEM_SLAB_NOMOVE) { 4563b5fca8f8Stomee return (B_FALSE); 4564b5fca8f8Stomee } 4565b5fca8f8Stomee 4566686031edSTom Erickson if ((refcnt == 1) || kmem_move_any_partial) { 4567b5fca8f8Stomee return (refcnt < sp->slab_chunks); 4568b5fca8f8Stomee } 4569b5fca8f8Stomee 4570b5fca8f8Stomee /* 4571b5fca8f8Stomee * The reclaim threshold is adjusted at each kmem_cache_scan() so that 4572b5fca8f8Stomee * slabs with a progressively higher percentage of used buffers can be 4573b5fca8f8Stomee * reclaimed until the cache as a whole is no longer fragmented. 4574b5fca8f8Stomee * 4575b5fca8f8Stomee * sp->slab_refcnt kmd_reclaim_numer 4576b5fca8f8Stomee * --------------- < ------------------ 4577b5fca8f8Stomee * sp->slab_chunks KMEM_VOID_FRACTION 4578b5fca8f8Stomee */ 4579b5fca8f8Stomee return ((refcnt * KMEM_VOID_FRACTION) < 4580b5fca8f8Stomee (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer)); 4581b5fca8f8Stomee } 4582b5fca8f8Stomee 4583b5fca8f8Stomee /* 4584b5fca8f8Stomee * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(), 4585b5fca8f8Stomee * or when the buffer is freed. 4586b5fca8f8Stomee */ 4587b5fca8f8Stomee static void 4588b5fca8f8Stomee kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf) 4589b5fca8f8Stomee { 4590b5fca8f8Stomee ASSERT(MUTEX_HELD(&cp->cache_lock)); 4591b5fca8f8Stomee ASSERT(KMEM_SLAB_MEMBER(sp, from_buf)); 4592b5fca8f8Stomee 4593b5fca8f8Stomee if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4594b5fca8f8Stomee return; 4595b5fca8f8Stomee } 4596b5fca8f8Stomee 4597b5fca8f8Stomee if (sp->slab_flags & KMEM_SLAB_NOMOVE) { 4598b5fca8f8Stomee if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) { 4599b5fca8f8Stomee avl_remove(&cp->cache_partial_slabs, sp); 4600b5fca8f8Stomee sp->slab_flags &= ~KMEM_SLAB_NOMOVE; 4601b5fca8f8Stomee sp->slab_stuck_offset = (uint32_t)-1; 4602b5fca8f8Stomee avl_add(&cp->cache_partial_slabs, sp); 4603b5fca8f8Stomee } 4604b5fca8f8Stomee } else { 4605b5fca8f8Stomee sp->slab_later_count = 0; 4606b5fca8f8Stomee sp->slab_stuck_offset = (uint32_t)-1; 4607b5fca8f8Stomee } 4608b5fca8f8Stomee } 4609b5fca8f8Stomee 4610b5fca8f8Stomee static void 4611b5fca8f8Stomee kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf) 4612b5fca8f8Stomee { 4613b5fca8f8Stomee ASSERT(taskq_member(kmem_move_taskq, curthread)); 4614b5fca8f8Stomee ASSERT(MUTEX_HELD(&cp->cache_lock)); 4615b5fca8f8Stomee ASSERT(KMEM_SLAB_MEMBER(sp, from_buf)); 4616b5fca8f8Stomee 4617b5fca8f8Stomee if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4618b5fca8f8Stomee return; 4619b5fca8f8Stomee } 4620b5fca8f8Stomee 4621b5fca8f8Stomee avl_remove(&cp->cache_partial_slabs, sp); 4622b5fca8f8Stomee sp->slab_later_count = 0; 4623b5fca8f8Stomee sp->slab_flags |= KMEM_SLAB_NOMOVE; 4624b5fca8f8Stomee sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf); 4625b5fca8f8Stomee avl_add(&cp->cache_partial_slabs, sp); 4626b5fca8f8Stomee } 4627b5fca8f8Stomee 4628b5fca8f8Stomee static void kmem_move_end(kmem_cache_t *, kmem_move_t *); 4629b5fca8f8Stomee 4630b5fca8f8Stomee /* 4631b5fca8f8Stomee * The move callback takes two buffer addresses, the buffer to be moved, and a 4632b5fca8f8Stomee * newly allocated and constructed buffer selected by kmem as the destination. 4633b5fca8f8Stomee * It also takes the size of the buffer and an optional user argument specified 4634b5fca8f8Stomee * at cache creation time. kmem guarantees that the buffer to be moved has not 4635b5fca8f8Stomee * been unmapped by the virtual memory subsystem. Beyond that, it cannot 4636b5fca8f8Stomee * guarantee the present whereabouts of the buffer to be moved, so it is up to 4637b5fca8f8Stomee * the client to safely determine whether or not it is still using the buffer. 4638b5fca8f8Stomee * The client must not free either of the buffers passed to the move callback, 4639b5fca8f8Stomee * since kmem wants to free them directly to the slab layer. The client response 4640b5fca8f8Stomee * tells kmem which of the two buffers to free: 4641b5fca8f8Stomee * 4642b5fca8f8Stomee * YES kmem frees the old buffer (the move was successful) 4643b5fca8f8Stomee * NO kmem frees the new buffer, marks the slab of the old buffer 4644b5fca8f8Stomee * non-reclaimable to avoid bothering the client again 4645b5fca8f8Stomee * LATER kmem frees the new buffer, increments slab_later_count 4646aa7175abSBryan Cantrill * DONT_KNOW kmem frees the new buffer 4647b5fca8f8Stomee * DONT_NEED kmem frees both the old buffer and the new buffer 4648b5fca8f8Stomee * 4649b5fca8f8Stomee * The pending callback argument now being processed contains both of the 4650b5fca8f8Stomee * buffers (old and new) passed to the move callback function, the slab of the 4651b5fca8f8Stomee * old buffer, and flags related to the move request, such as whether or not the 4652b5fca8f8Stomee * system was desperate for memory. 4653686031edSTom Erickson * 4654686031edSTom Erickson * Slabs are not freed while there is a pending callback, but instead are kept 4655686031edSTom Erickson * on a deadlist, which is drained after the last callback completes. This means 4656686031edSTom Erickson * that slabs are safe to access until kmem_move_end(), no matter how many of 4657686031edSTom Erickson * their buffers have been freed. Once slab_refcnt reaches zero, it stays at 4658686031edSTom Erickson * zero for as long as the slab remains on the deadlist and until the slab is 4659686031edSTom Erickson * freed. 4660b5fca8f8Stomee */ 4661b5fca8f8Stomee static void 4662b5fca8f8Stomee kmem_move_buffer(kmem_move_t *callback) 4663b5fca8f8Stomee { 4664b5fca8f8Stomee kmem_cbrc_t response; 4665b5fca8f8Stomee kmem_slab_t *sp = callback->kmm_from_slab; 4666b5fca8f8Stomee kmem_cache_t *cp = sp->slab_cache; 4667b5fca8f8Stomee boolean_t free_on_slab; 4668b5fca8f8Stomee 4669b5fca8f8Stomee ASSERT(taskq_member(kmem_move_taskq, curthread)); 4670b5fca8f8Stomee ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4671b5fca8f8Stomee ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf)); 4672b5fca8f8Stomee 4673b5fca8f8Stomee /* 4674b5fca8f8Stomee * The number of allocated buffers on the slab may have changed since we 4675b5fca8f8Stomee * last checked the slab's reclaimability (when the pending move was 4676b5fca8f8Stomee * enqueued), or the client may have responded NO when asked to move 4677b5fca8f8Stomee * another buffer on the same slab. 4678b5fca8f8Stomee */ 4679b5fca8f8Stomee if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) { 4680b5fca8f8Stomee kmem_slab_free(cp, callback->kmm_to_buf); 4681b5fca8f8Stomee kmem_move_end(cp, callback); 4682b5fca8f8Stomee return; 4683b5fca8f8Stomee } 4684b5fca8f8Stomee 4685b5fca8f8Stomee /* 4686aa7175abSBryan Cantrill * Checking the slab layer is easy, so we might as well do that here 4687aa7175abSBryan Cantrill * in case we can avoid bothering the client. 4688b5fca8f8Stomee */ 4689b5fca8f8Stomee mutex_enter(&cp->cache_lock); 4690b5fca8f8Stomee free_on_slab = (kmem_slab_allocated(cp, sp, 4691b5fca8f8Stomee callback->kmm_from_buf) == NULL); 4692b5fca8f8Stomee mutex_exit(&cp->cache_lock); 4693b5fca8f8Stomee 4694b5fca8f8Stomee if (free_on_slab) { 4695b5fca8f8Stomee kmem_slab_free(cp, callback->kmm_to_buf); 4696b5fca8f8Stomee kmem_move_end(cp, callback); 4697b5fca8f8Stomee return; 4698b5fca8f8Stomee } 4699b5fca8f8Stomee 4700b5fca8f8Stomee if (cp->cache_flags & KMF_BUFTAG) { 4701b5fca8f8Stomee /* 4702b5fca8f8Stomee * Make kmem_cache_alloc_debug() apply the constructor for us. 4703b5fca8f8Stomee */ 4704b5fca8f8Stomee if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf, 4705b5fca8f8Stomee KM_NOSLEEP, 1, caller()) != 0) { 4706b5fca8f8Stomee kmem_move_end(cp, callback); 4707b5fca8f8Stomee return; 4708b5fca8f8Stomee } 4709b5fca8f8Stomee } else if (cp->cache_constructor != NULL && 4710b5fca8f8Stomee cp->cache_constructor(callback->kmm_to_buf, cp->cache_private, 4711b5fca8f8Stomee KM_NOSLEEP) != 0) { 47121a5e258fSJosef 'Jeff' Sipek atomic_inc_64(&cp->cache_alloc_fail); 4713b5fca8f8Stomee kmem_slab_free(cp, callback->kmm_to_buf); 4714b5fca8f8Stomee kmem_move_end(cp, callback); 4715b5fca8f8Stomee return; 4716b5fca8f8Stomee } 4717b5fca8f8Stomee 4718b5fca8f8Stomee cp->cache_defrag->kmd_callbacks++; 4719b5fca8f8Stomee cp->cache_defrag->kmd_thread = curthread; 4720b5fca8f8Stomee cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf; 4721b5fca8f8Stomee cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf; 4722b5fca8f8Stomee DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *, 4723b5fca8f8Stomee callback); 4724b5fca8f8Stomee 4725b5fca8f8Stomee response = cp->cache_move(callback->kmm_from_buf, 4726b5fca8f8Stomee callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private); 4727b5fca8f8Stomee 4728b5fca8f8Stomee DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *, 4729b5fca8f8Stomee callback, kmem_cbrc_t, response); 4730b5fca8f8Stomee cp->cache_defrag->kmd_thread = NULL; 4731b5fca8f8Stomee cp->cache_defrag->kmd_from_buf = NULL; 4732b5fca8f8Stomee cp->cache_defrag->kmd_to_buf = NULL; 4733b5fca8f8Stomee 4734b5fca8f8Stomee if (response == KMEM_CBRC_YES) { 4735b5fca8f8Stomee cp->cache_defrag->kmd_yes++; 4736b5fca8f8Stomee kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE); 4737686031edSTom Erickson /* slab safe to access until kmem_move_end() */ 4738686031edSTom Erickson if (sp->slab_refcnt == 0) 4739686031edSTom Erickson cp->cache_defrag->kmd_slabs_freed++; 4740b5fca8f8Stomee mutex_enter(&cp->cache_lock); 4741b5fca8f8Stomee kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4742b5fca8f8Stomee mutex_exit(&cp->cache_lock); 4743b5fca8f8Stomee kmem_move_end(cp, callback); 4744b5fca8f8Stomee return; 4745b5fca8f8Stomee } 4746b5fca8f8Stomee 4747b5fca8f8Stomee switch (response) { 4748b5fca8f8Stomee case KMEM_CBRC_NO: 4749b5fca8f8Stomee cp->cache_defrag->kmd_no++; 4750b5fca8f8Stomee mutex_enter(&cp->cache_lock); 4751b5fca8f8Stomee kmem_slab_move_no(cp, sp, callback->kmm_from_buf); 4752b5fca8f8Stomee mutex_exit(&cp->cache_lock); 4753b5fca8f8Stomee break; 4754b5fca8f8Stomee case KMEM_CBRC_LATER: 4755b5fca8f8Stomee cp->cache_defrag->kmd_later++; 4756b5fca8f8Stomee mutex_enter(&cp->cache_lock); 4757b5fca8f8Stomee if (!KMEM_SLAB_IS_PARTIAL(sp)) { 4758b5fca8f8Stomee mutex_exit(&cp->cache_lock); 4759b5fca8f8Stomee break; 4760b5fca8f8Stomee } 4761b5fca8f8Stomee 4762b5fca8f8Stomee if (++sp->slab_later_count >= KMEM_DISBELIEF) { 4763b5fca8f8Stomee kmem_slab_move_no(cp, sp, callback->kmm_from_buf); 4764b5fca8f8Stomee } else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) { 4765b5fca8f8Stomee sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, 4766b5fca8f8Stomee callback->kmm_from_buf); 4767b5fca8f8Stomee } 4768b5fca8f8Stomee mutex_exit(&cp->cache_lock); 4769b5fca8f8Stomee break; 4770b5fca8f8Stomee case KMEM_CBRC_DONT_NEED: 4771b5fca8f8Stomee cp->cache_defrag->kmd_dont_need++; 4772b5fca8f8Stomee kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE); 4773686031edSTom Erickson if (sp->slab_refcnt == 0) 4774686031edSTom Erickson cp->cache_defrag->kmd_slabs_freed++; 4775b5fca8f8Stomee mutex_enter(&cp->cache_lock); 4776b5fca8f8Stomee kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); 4777b5fca8f8Stomee mutex_exit(&cp->cache_lock); 4778b5fca8f8Stomee break; 4779b5fca8f8Stomee case KMEM_CBRC_DONT_KNOW: 4780aa7175abSBryan Cantrill /* 4781aa7175abSBryan Cantrill * If we don't know if we can move this buffer or not, we'll 4782aa7175abSBryan Cantrill * just assume that we can't: if the buffer is in fact free, 4783aa7175abSBryan Cantrill * then it is sitting in one of the per-CPU magazines or in 4784aa7175abSBryan Cantrill * a full magazine in the depot layer. Either way, because 4785aa7175abSBryan Cantrill * defrag is induced in the same logic that reaps a cache, 4786aa7175abSBryan Cantrill * it's likely that full magazines will be returned to the 4787aa7175abSBryan Cantrill * system soon (thereby accomplishing what we're trying to 4788aa7175abSBryan Cantrill * accomplish here: return those magazines to their slabs). 4789aa7175abSBryan Cantrill * Given this, any work that we might do now to locate a buffer 4790aa7175abSBryan Cantrill * in a magazine is wasted (and expensive!) work; we bump 4791aa7175abSBryan Cantrill * a counter in this case and otherwise assume that we can't 4792aa7175abSBryan Cantrill * move it. 4793aa7175abSBryan Cantrill */ 4794b5fca8f8Stomee cp->cache_defrag->kmd_dont_know++; 4795b5fca8f8Stomee break; 4796b5fca8f8Stomee default: 4797b5fca8f8Stomee panic("'%s' (%p) unexpected move callback response %d\n", 4798b5fca8f8Stomee cp->cache_name, (void *)cp, response); 4799b5fca8f8Stomee } 4800b5fca8f8Stomee 4801b5fca8f8Stomee kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE); 4802b5fca8f8Stomee kmem_move_end(cp, callback); 4803b5fca8f8Stomee } 4804b5fca8f8Stomee 4805b5fca8f8Stomee /* Return B_FALSE if there is insufficient memory for the move request. */ 4806b5fca8f8Stomee static boolean_t 4807b5fca8f8Stomee kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags) 4808b5fca8f8Stomee { 4809b5fca8f8Stomee void *to_buf; 4810b5fca8f8Stomee avl_index_t index; 4811b5fca8f8Stomee kmem_move_t *callback, *pending; 4812686031edSTom Erickson ulong_t n; 4813b5fca8f8Stomee 4814b5fca8f8Stomee ASSERT(taskq_member(kmem_taskq, curthread)); 4815b5fca8f8Stomee ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4816b5fca8f8Stomee ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 4817b5fca8f8Stomee 4818b5fca8f8Stomee callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP); 4819aa7175abSBryan Cantrill 4820aa7175abSBryan Cantrill if (callback == NULL) 4821b5fca8f8Stomee return (B_FALSE); 4822b5fca8f8Stomee 4823b5fca8f8Stomee callback->kmm_from_slab = sp; 4824b5fca8f8Stomee callback->kmm_from_buf = buf; 4825b5fca8f8Stomee callback->kmm_flags = flags; 4826b5fca8f8Stomee 4827b5fca8f8Stomee mutex_enter(&cp->cache_lock); 4828b5fca8f8Stomee 4829686031edSTom Erickson n = avl_numnodes(&cp->cache_partial_slabs); 4830686031edSTom Erickson if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) { 4831b5fca8f8Stomee mutex_exit(&cp->cache_lock); 4832b5fca8f8Stomee kmem_cache_free(kmem_move_cache, callback); 4833b5fca8f8Stomee return (B_TRUE); /* there is no need for the move request */ 4834b5fca8f8Stomee } 4835b5fca8f8Stomee 4836b5fca8f8Stomee pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index); 4837b5fca8f8Stomee if (pending != NULL) { 4838b5fca8f8Stomee /* 4839b5fca8f8Stomee * If the move is already pending and we're desperate now, 4840b5fca8f8Stomee * update the move flags. 4841b5fca8f8Stomee */ 4842b5fca8f8Stomee if (flags & KMM_DESPERATE) { 4843b5fca8f8Stomee pending->kmm_flags |= KMM_DESPERATE; 4844b5fca8f8Stomee } 4845b5fca8f8Stomee mutex_exit(&cp->cache_lock); 4846b5fca8f8Stomee kmem_cache_free(kmem_move_cache, callback); 4847b5fca8f8Stomee return (B_TRUE); 4848b5fca8f8Stomee } 4849b5fca8f8Stomee 4850b942e89bSDavid Valin to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs), 4851b942e89bSDavid Valin B_FALSE); 4852b5fca8f8Stomee callback->kmm_to_buf = to_buf; 4853b5fca8f8Stomee avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index); 4854b5fca8f8Stomee 4855b5fca8f8Stomee mutex_exit(&cp->cache_lock); 4856b5fca8f8Stomee 4857b5fca8f8Stomee if (!taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer, 4858b5fca8f8Stomee callback, TQ_NOSLEEP)) { 4859b5fca8f8Stomee mutex_enter(&cp->cache_lock); 4860b5fca8f8Stomee avl_remove(&cp->cache_defrag->kmd_moves_pending, callback); 4861b5fca8f8Stomee mutex_exit(&cp->cache_lock); 486225e2c9cfStomee kmem_slab_free(cp, to_buf); 4863b5fca8f8Stomee kmem_cache_free(kmem_move_cache, callback); 4864b5fca8f8Stomee return (B_FALSE); 4865b5fca8f8Stomee } 4866b5fca8f8Stomee 4867b5fca8f8Stomee return (B_TRUE); 4868b5fca8f8Stomee } 4869b5fca8f8Stomee 4870b5fca8f8Stomee static void 4871b5fca8f8Stomee kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback) 4872b5fca8f8Stomee { 4873b5fca8f8Stomee avl_index_t index; 4874b5fca8f8Stomee 4875b5fca8f8Stomee ASSERT(cp->cache_defrag != NULL); 4876b5fca8f8Stomee ASSERT(taskq_member(kmem_move_taskq, curthread)); 4877b5fca8f8Stomee ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); 4878b5fca8f8Stomee 4879b5fca8f8Stomee mutex_enter(&cp->cache_lock); 4880b5fca8f8Stomee VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending, 4881b5fca8f8Stomee callback->kmm_from_buf, &index) != NULL); 4882b5fca8f8Stomee avl_remove(&cp->cache_defrag->kmd_moves_pending, callback); 4883b5fca8f8Stomee if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) { 4884b5fca8f8Stomee list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 4885b5fca8f8Stomee kmem_slab_t *sp; 4886b5fca8f8Stomee 4887b5fca8f8Stomee /* 4888b5fca8f8Stomee * The last pending move completed. Release all slabs from the 4889b5fca8f8Stomee * front of the dead list except for any slab at the tail that 4890b5fca8f8Stomee * needs to be released from the context of kmem_move_buffers(). 4891b5fca8f8Stomee * kmem deferred unmapping the buffers on these slabs in order 4892b5fca8f8Stomee * to guarantee that buffers passed to the move callback have 4893b5fca8f8Stomee * been touched only by kmem or by the client itself. 4894b5fca8f8Stomee */ 4895b5fca8f8Stomee while ((sp = list_remove_head(deadlist)) != NULL) { 4896b5fca8f8Stomee if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) { 4897b5fca8f8Stomee list_insert_tail(deadlist, sp); 4898b5fca8f8Stomee break; 4899b5fca8f8Stomee } 4900b5fca8f8Stomee cp->cache_defrag->kmd_deadcount--; 4901b5fca8f8Stomee cp->cache_slab_destroy++; 4902b5fca8f8Stomee mutex_exit(&cp->cache_lock); 4903b5fca8f8Stomee kmem_slab_destroy(cp, sp); 4904b5fca8f8Stomee mutex_enter(&cp->cache_lock); 4905b5fca8f8Stomee } 4906b5fca8f8Stomee } 4907b5fca8f8Stomee mutex_exit(&cp->cache_lock); 4908b5fca8f8Stomee kmem_cache_free(kmem_move_cache, callback); 4909b5fca8f8Stomee } 4910b5fca8f8Stomee 4911b5fca8f8Stomee /* 4912b5fca8f8Stomee * Move buffers from least used slabs first by scanning backwards from the end 4913b5fca8f8Stomee * of the partial slab list. Scan at most max_scan candidate slabs and move 4914b5fca8f8Stomee * buffers from at most max_slabs slabs (0 for all partial slabs in both cases). 4915b5fca8f8Stomee * If desperate to reclaim memory, move buffers from any partial slab, otherwise 4916b5fca8f8Stomee * skip slabs with a ratio of allocated buffers at or above the current 4917b5fca8f8Stomee * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the 4918b5fca8f8Stomee * scan is aborted) so that the caller can adjust the reclaimability threshold 4919b5fca8f8Stomee * depending on how many reclaimable slabs it finds. 4920b5fca8f8Stomee * 4921b5fca8f8Stomee * kmem_move_buffers() drops and reacquires cache_lock every time it issues a 4922b5fca8f8Stomee * move request, since it is not valid for kmem_move_begin() to call 4923b5fca8f8Stomee * kmem_cache_alloc() or taskq_dispatch() with cache_lock held. 4924b5fca8f8Stomee */ 4925b5fca8f8Stomee static int 4926b5fca8f8Stomee kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs, 4927b5fca8f8Stomee int flags) 4928b5fca8f8Stomee { 4929b5fca8f8Stomee kmem_slab_t *sp; 4930b5fca8f8Stomee void *buf; 4931b5fca8f8Stomee int i, j; /* slab index, buffer index */ 4932b5fca8f8Stomee int s; /* reclaimable slabs */ 4933b5fca8f8Stomee int b; /* allocated (movable) buffers on reclaimable slab */ 4934b5fca8f8Stomee boolean_t success; 4935b5fca8f8Stomee int refcnt; 4936b5fca8f8Stomee int nomove; 4937b5fca8f8Stomee 4938b5fca8f8Stomee ASSERT(taskq_member(kmem_taskq, curthread)); 4939b5fca8f8Stomee ASSERT(MUTEX_HELD(&cp->cache_lock)); 4940b5fca8f8Stomee ASSERT(kmem_move_cache != NULL); 4941b5fca8f8Stomee ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL); 4942686031edSTom Erickson ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) : 4943686031edSTom Erickson avl_numnodes(&cp->cache_partial_slabs) > 1); 4944b5fca8f8Stomee 4945b5fca8f8Stomee if (kmem_move_blocked) { 4946b5fca8f8Stomee return (0); 4947b5fca8f8Stomee } 4948b5fca8f8Stomee 4949b5fca8f8Stomee if (kmem_move_fulltilt) { 4950b5fca8f8Stomee flags |= KMM_DESPERATE; 4951b5fca8f8Stomee } 4952b5fca8f8Stomee 4953b5fca8f8Stomee if (max_scan == 0 || (flags & KMM_DESPERATE)) { 4954b5fca8f8Stomee /* 4955b5fca8f8Stomee * Scan as many slabs as needed to find the desired number of 4956b5fca8f8Stomee * candidate slabs. 4957b5fca8f8Stomee */ 4958b5fca8f8Stomee max_scan = (size_t)-1; 4959b5fca8f8Stomee } 4960b5fca8f8Stomee 4961b5fca8f8Stomee if (max_slabs == 0 || (flags & KMM_DESPERATE)) { 4962b5fca8f8Stomee /* Find as many candidate slabs as possible. */ 4963b5fca8f8Stomee max_slabs = (size_t)-1; 4964b5fca8f8Stomee } 4965b5fca8f8Stomee 4966b5fca8f8Stomee sp = avl_last(&cp->cache_partial_slabs); 4967686031edSTom Erickson ASSERT(KMEM_SLAB_IS_PARTIAL(sp)); 4968686031edSTom Erickson for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) && 4969686031edSTom Erickson ((sp != avl_first(&cp->cache_partial_slabs)) || 4970686031edSTom Erickson (flags & KMM_DEBUG)); 4971b5fca8f8Stomee sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) { 4972b5fca8f8Stomee 4973b5fca8f8Stomee if (!kmem_slab_is_reclaimable(cp, sp, flags)) { 4974b5fca8f8Stomee continue; 4975b5fca8f8Stomee } 4976b5fca8f8Stomee s++; 4977b5fca8f8Stomee 4978b5fca8f8Stomee /* Look for allocated buffers to move. */ 4979b5fca8f8Stomee for (j = 0, b = 0, buf = sp->slab_base; 4980b5fca8f8Stomee (j < sp->slab_chunks) && (b < sp->slab_refcnt); 4981b5fca8f8Stomee buf = (((char *)buf) + cp->cache_chunksize), j++) { 4982b5fca8f8Stomee 4983b5fca8f8Stomee if (kmem_slab_allocated(cp, sp, buf) == NULL) { 4984b5fca8f8Stomee continue; 4985b5fca8f8Stomee } 4986b5fca8f8Stomee 4987b5fca8f8Stomee b++; 4988b5fca8f8Stomee 4989b5fca8f8Stomee /* 4990b5fca8f8Stomee * Prevent the slab from being destroyed while we drop 4991b5fca8f8Stomee * cache_lock and while the pending move is not yet 4992b5fca8f8Stomee * registered. Flag the pending move while 4993b5fca8f8Stomee * kmd_moves_pending may still be empty, since we can't 4994b5fca8f8Stomee * yet rely on a non-zero pending move count to prevent 4995b5fca8f8Stomee * the slab from being destroyed. 4996b5fca8f8Stomee */ 4997b5fca8f8Stomee ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING)); 4998b5fca8f8Stomee sp->slab_flags |= KMEM_SLAB_MOVE_PENDING; 4999b5fca8f8Stomee /* 5000b5fca8f8Stomee * Recheck refcnt and nomove after reacquiring the lock, 5001b5fca8f8Stomee * since these control the order of partial slabs, and 5002b5fca8f8Stomee * we want to know if we can pick up the scan where we 5003b5fca8f8Stomee * left off. 5004b5fca8f8Stomee */ 5005b5fca8f8Stomee refcnt = sp->slab_refcnt; 5006b5fca8f8Stomee nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE); 5007b5fca8f8Stomee mutex_exit(&cp->cache_lock); 5008b5fca8f8Stomee 5009b5fca8f8Stomee success = kmem_move_begin(cp, sp, buf, flags); 5010b5fca8f8Stomee 5011b5fca8f8Stomee /* 5012b5fca8f8Stomee * Now, before the lock is reacquired, kmem could 5013b5fca8f8Stomee * process all pending move requests and purge the 5014b5fca8f8Stomee * deadlist, so that upon reacquiring the lock, sp has 5015686031edSTom Erickson * been remapped. Or, the client may free all the 5016686031edSTom Erickson * objects on the slab while the pending moves are still 5017686031edSTom Erickson * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING 5018b5fca8f8Stomee * flag causes the slab to be put at the end of the 5019686031edSTom Erickson * deadlist and prevents it from being destroyed, since 5020686031edSTom Erickson * we plan to destroy it here after reacquiring the 5021686031edSTom Erickson * lock. 5022b5fca8f8Stomee */ 5023b5fca8f8Stomee mutex_enter(&cp->cache_lock); 5024b5fca8f8Stomee ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 5025b5fca8f8Stomee sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING; 5026b5fca8f8Stomee 5027b5fca8f8Stomee if (sp->slab_refcnt == 0) { 5028b5fca8f8Stomee list_t *deadlist = 5029b5fca8f8Stomee &cp->cache_defrag->kmd_deadlist; 5030b5fca8f8Stomee list_remove(deadlist, sp); 5031686031edSTom Erickson 5032686031edSTom Erickson if (!avl_is_empty( 5033686031edSTom Erickson &cp->cache_defrag->kmd_moves_pending)) { 5034686031edSTom Erickson /* 5035686031edSTom Erickson * A pending move makes it unsafe to 5036686031edSTom Erickson * destroy the slab, because even though 5037686031edSTom Erickson * the move is no longer needed, the 5038686031edSTom Erickson * context where that is determined 5039686031edSTom Erickson * requires the slab to exist. 5040686031edSTom Erickson * Fortunately, a pending move also 5041686031edSTom Erickson * means we don't need to destroy the 5042686031edSTom Erickson * slab here, since it will get 5043686031edSTom Erickson * destroyed along with any other slabs 5044686031edSTom Erickson * on the deadlist after the last 5045686031edSTom Erickson * pending move completes. 5046686031edSTom Erickson */ 5047686031edSTom Erickson list_insert_head(deadlist, sp); 5048686031edSTom Erickson return (-1); 5049686031edSTom Erickson } 5050686031edSTom Erickson 5051686031edSTom Erickson /* 5052686031edSTom Erickson * Destroy the slab now if it was completely 5053686031edSTom Erickson * freed while we dropped cache_lock and there 5054686031edSTom Erickson * are no pending moves. Since slab_refcnt 5055686031edSTom Erickson * cannot change once it reaches zero, no new 5056686031edSTom Erickson * pending moves from that slab are possible. 5057686031edSTom Erickson */ 5058b5fca8f8Stomee cp->cache_defrag->kmd_deadcount--; 5059b5fca8f8Stomee cp->cache_slab_destroy++; 5060b5fca8f8Stomee mutex_exit(&cp->cache_lock); 5061b5fca8f8Stomee kmem_slab_destroy(cp, sp); 5062b5fca8f8Stomee mutex_enter(&cp->cache_lock); 5063b5fca8f8Stomee /* 5064b5fca8f8Stomee * Since we can't pick up the scan where we left 5065b5fca8f8Stomee * off, abort the scan and say nothing about the 5066b5fca8f8Stomee * number of reclaimable slabs. 5067b5fca8f8Stomee */ 5068b5fca8f8Stomee return (-1); 5069b5fca8f8Stomee } 5070b5fca8f8Stomee 5071b5fca8f8Stomee if (!success) { 5072b5fca8f8Stomee /* 5073b5fca8f8Stomee * Abort the scan if there is not enough memory 5074b5fca8f8Stomee * for the request and say nothing about the 5075b5fca8f8Stomee * number of reclaimable slabs. 5076b5fca8f8Stomee */ 5077b5fca8f8Stomee return (-1); 5078b5fca8f8Stomee } 5079b5fca8f8Stomee 5080b5fca8f8Stomee /* 5081b5fca8f8Stomee * The slab's position changed while the lock was 5082b5fca8f8Stomee * dropped, so we don't know where we are in the 5083b5fca8f8Stomee * sequence any more. 5084b5fca8f8Stomee */ 5085b5fca8f8Stomee if (sp->slab_refcnt != refcnt) { 5086686031edSTom Erickson /* 5087686031edSTom Erickson * If this is a KMM_DEBUG move, the slab_refcnt 5088686031edSTom Erickson * may have changed because we allocated a 5089686031edSTom Erickson * destination buffer on the same slab. In that 5090686031edSTom Erickson * case, we're not interested in counting it. 5091686031edSTom Erickson */ 5092b5fca8f8Stomee return (-1); 5093b5fca8f8Stomee } 5094aa7175abSBryan Cantrill if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove) 5095b5fca8f8Stomee return (-1); 5096b5fca8f8Stomee 5097b5fca8f8Stomee /* 5098b5fca8f8Stomee * Generating a move request allocates a destination 5099686031edSTom Erickson * buffer from the slab layer, bumping the first partial 5100686031edSTom Erickson * slab if it is completely allocated. If the current 5101686031edSTom Erickson * slab becomes the first partial slab as a result, we 5102686031edSTom Erickson * can't continue to scan backwards. 5103686031edSTom Erickson * 5104686031edSTom Erickson * If this is a KMM_DEBUG move and we allocated the 5105686031edSTom Erickson * destination buffer from the last partial slab, then 5106686031edSTom Erickson * the buffer we're moving is on the same slab and our 5107686031edSTom Erickson * slab_refcnt has changed, causing us to return before 5108686031edSTom Erickson * reaching here if there are no partial slabs left. 5109b5fca8f8Stomee */ 5110b5fca8f8Stomee ASSERT(!avl_is_empty(&cp->cache_partial_slabs)); 5111b5fca8f8Stomee if (sp == avl_first(&cp->cache_partial_slabs)) { 5112686031edSTom Erickson /* 5113686031edSTom Erickson * We're not interested in a second KMM_DEBUG 5114686031edSTom Erickson * move. 5115686031edSTom Erickson */ 5116b5fca8f8Stomee goto end_scan; 5117b5fca8f8Stomee } 5118b5fca8f8Stomee } 5119b5fca8f8Stomee } 5120b5fca8f8Stomee end_scan: 5121b5fca8f8Stomee 5122b5fca8f8Stomee return (s); 5123b5fca8f8Stomee } 5124b5fca8f8Stomee 5125b5fca8f8Stomee typedef struct kmem_move_notify_args { 5126b5fca8f8Stomee kmem_cache_t *kmna_cache; 5127b5fca8f8Stomee void *kmna_buf; 5128b5fca8f8Stomee } kmem_move_notify_args_t; 5129b5fca8f8Stomee 5130b5fca8f8Stomee static void 5131b5fca8f8Stomee kmem_cache_move_notify_task(void *arg) 5132b5fca8f8Stomee { 5133b5fca8f8Stomee kmem_move_notify_args_t *args = arg; 5134b5fca8f8Stomee kmem_cache_t *cp = args->kmna_cache; 5135b5fca8f8Stomee void *buf = args->kmna_buf; 5136b5fca8f8Stomee kmem_slab_t *sp; 5137b5fca8f8Stomee 5138b5fca8f8Stomee ASSERT(taskq_member(kmem_taskq, curthread)); 5139b5fca8f8Stomee ASSERT(list_link_active(&cp->cache_link)); 5140b5fca8f8Stomee 5141b5fca8f8Stomee kmem_free(args, sizeof (kmem_move_notify_args_t)); 5142b5fca8f8Stomee mutex_enter(&cp->cache_lock); 5143b5fca8f8Stomee sp = kmem_slab_allocated(cp, NULL, buf); 5144b5fca8f8Stomee 5145b5fca8f8Stomee /* Ignore the notification if the buffer is no longer allocated. */ 5146b5fca8f8Stomee if (sp == NULL) { 5147b5fca8f8Stomee mutex_exit(&cp->cache_lock); 5148b5fca8f8Stomee return; 5149b5fca8f8Stomee } 5150b5fca8f8Stomee 5151b5fca8f8Stomee /* Ignore the notification if there's no reason to move the buffer. */ 5152b5fca8f8Stomee if (avl_numnodes(&cp->cache_partial_slabs) > 1) { 5153b5fca8f8Stomee /* 5154b5fca8f8Stomee * So far the notification is not ignored. Ignore the 5155b5fca8f8Stomee * notification if the slab is not marked by an earlier refusal 5156b5fca8f8Stomee * to move a buffer. 5157b5fca8f8Stomee */ 5158b5fca8f8Stomee if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) && 5159b5fca8f8Stomee (sp->slab_later_count == 0)) { 5160b5fca8f8Stomee mutex_exit(&cp->cache_lock); 5161b5fca8f8Stomee return; 5162b5fca8f8Stomee } 5163b5fca8f8Stomee 5164b5fca8f8Stomee kmem_slab_move_yes(cp, sp, buf); 5165b5fca8f8Stomee ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING)); 5166b5fca8f8Stomee sp->slab_flags |= KMEM_SLAB_MOVE_PENDING; 5167b5fca8f8Stomee mutex_exit(&cp->cache_lock); 5168b5fca8f8Stomee /* see kmem_move_buffers() about dropping the lock */ 5169b5fca8f8Stomee (void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY); 5170b5fca8f8Stomee mutex_enter(&cp->cache_lock); 5171b5fca8f8Stomee ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); 5172b5fca8f8Stomee sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING; 5173b5fca8f8Stomee if (sp->slab_refcnt == 0) { 5174b5fca8f8Stomee list_t *deadlist = &cp->cache_defrag->kmd_deadlist; 5175b5fca8f8Stomee list_remove(deadlist, sp); 5176686031edSTom Erickson 5177686031edSTom Erickson if (!avl_is_empty( 5178686031edSTom Erickson &cp->cache_defrag->kmd_moves_pending)) { 5179686031edSTom Erickson list_insert_head(deadlist, sp); 5180686031edSTom Erickson mutex_exit(&cp->cache_lock); 5181686031edSTom Erickson return; 5182686031edSTom Erickson } 5183686031edSTom Erickson 5184b5fca8f8Stomee cp->cache_defrag->kmd_deadcount--; 5185b5fca8f8Stomee cp->cache_slab_destroy++; 5186b5fca8f8Stomee mutex_exit(&cp->cache_lock); 5187b5fca8f8Stomee kmem_slab_destroy(cp, sp); 5188b5fca8f8Stomee return; 5189b5fca8f8Stomee } 5190b5fca8f8Stomee } else { 5191b5fca8f8Stomee kmem_slab_move_yes(cp, sp, buf); 5192b5fca8f8Stomee } 5193b5fca8f8Stomee mutex_exit(&cp->cache_lock); 5194b5fca8f8Stomee } 5195b5fca8f8Stomee 5196b5fca8f8Stomee void 5197b5fca8f8Stomee kmem_cache_move_notify(kmem_cache_t *cp, void *buf) 5198b5fca8f8Stomee { 5199b5fca8f8Stomee kmem_move_notify_args_t *args; 5200b5fca8f8Stomee 5201b5fca8f8Stomee args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP); 5202b5fca8f8Stomee if (args != NULL) { 5203b5fca8f8Stomee args->kmna_cache = cp; 5204b5fca8f8Stomee args->kmna_buf = buf; 5205eb697d4eStomee if (!taskq_dispatch(kmem_taskq, 5206b5fca8f8Stomee (task_func_t *)kmem_cache_move_notify_task, args, 5207eb697d4eStomee TQ_NOSLEEP)) 5208eb697d4eStomee kmem_free(args, sizeof (kmem_move_notify_args_t)); 5209b5fca8f8Stomee } 5210b5fca8f8Stomee } 5211b5fca8f8Stomee 5212b5fca8f8Stomee static void 5213b5fca8f8Stomee kmem_cache_defrag(kmem_cache_t *cp) 5214b5fca8f8Stomee { 5215b5fca8f8Stomee size_t n; 5216b5fca8f8Stomee 5217b5fca8f8Stomee ASSERT(cp->cache_defrag != NULL); 5218b5fca8f8Stomee 5219b5fca8f8Stomee mutex_enter(&cp->cache_lock); 5220b5fca8f8Stomee n = avl_numnodes(&cp->cache_partial_slabs); 5221b5fca8f8Stomee if (n > 1) { 5222b5fca8f8Stomee /* kmem_move_buffers() drops and reacquires cache_lock */ 5223686031edSTom Erickson cp->cache_defrag->kmd_defrags++; 5224686031edSTom Erickson (void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE); 5225b5fca8f8Stomee } 5226b5fca8f8Stomee mutex_exit(&cp->cache_lock); 5227b5fca8f8Stomee } 5228b5fca8f8Stomee 5229b5fca8f8Stomee /* Is this cache above the fragmentation threshold? */ 5230b5fca8f8Stomee static boolean_t 5231b5fca8f8Stomee kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree) 5232b5fca8f8Stomee { 5233b5fca8f8Stomee /* 5234b5fca8f8Stomee * nfree kmem_frag_numer 5235b5fca8f8Stomee * ------------------ > --------------- 5236b5fca8f8Stomee * cp->cache_buftotal kmem_frag_denom 5237b5fca8f8Stomee */ 5238b5fca8f8Stomee return ((nfree * kmem_frag_denom) > 5239b5fca8f8Stomee (cp->cache_buftotal * kmem_frag_numer)); 5240b5fca8f8Stomee } 5241b5fca8f8Stomee 5242b5fca8f8Stomee static boolean_t 5243b5fca8f8Stomee kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap) 5244b5fca8f8Stomee { 5245b5fca8f8Stomee boolean_t fragmented; 5246b5fca8f8Stomee uint64_t nfree; 5247b5fca8f8Stomee 5248b5fca8f8Stomee ASSERT(MUTEX_HELD(&cp->cache_lock)); 5249b5fca8f8Stomee *doreap = B_FALSE; 5250b5fca8f8Stomee 5251686031edSTom Erickson if (kmem_move_fulltilt) { 5252686031edSTom Erickson if (avl_numnodes(&cp->cache_partial_slabs) > 1) { 5253686031edSTom Erickson return (B_TRUE); 5254686031edSTom Erickson } 5255686031edSTom Erickson } else { 5256686031edSTom Erickson if ((cp->cache_complete_slab_count + avl_numnodes( 5257686031edSTom Erickson &cp->cache_partial_slabs)) < kmem_frag_minslabs) { 5258b5fca8f8Stomee return (B_FALSE); 5259686031edSTom Erickson } 5260686031edSTom Erickson } 5261b5fca8f8Stomee 5262b5fca8f8Stomee nfree = cp->cache_bufslab; 5263686031edSTom Erickson fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) && 5264686031edSTom Erickson kmem_cache_frag_threshold(cp, nfree)); 5265686031edSTom Erickson 5266b5fca8f8Stomee /* 5267b5fca8f8Stomee * Free buffers in the magazine layer appear allocated from the point of 5268b5fca8f8Stomee * view of the slab layer. We want to know if the slab layer would 5269b5fca8f8Stomee * appear fragmented if we included free buffers from magazines that 5270b5fca8f8Stomee * have fallen out of the working set. 5271b5fca8f8Stomee */ 5272b5fca8f8Stomee if (!fragmented) { 5273b5fca8f8Stomee long reap; 5274b5fca8f8Stomee 5275b5fca8f8Stomee mutex_enter(&cp->cache_depot_lock); 5276b5fca8f8Stomee reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); 5277b5fca8f8Stomee reap = MIN(reap, cp->cache_full.ml_total); 5278b5fca8f8Stomee mutex_exit(&cp->cache_depot_lock); 5279b5fca8f8Stomee 5280b5fca8f8Stomee nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize); 5281b5fca8f8Stomee if (kmem_cache_frag_threshold(cp, nfree)) { 5282b5fca8f8Stomee *doreap = B_TRUE; 5283b5fca8f8Stomee } 5284b5fca8f8Stomee } 5285b5fca8f8Stomee 5286b5fca8f8Stomee return (fragmented); 5287b5fca8f8Stomee } 5288b5fca8f8Stomee 5289b5fca8f8Stomee /* Called periodically from kmem_taskq */ 5290b5fca8f8Stomee static void 5291b5fca8f8Stomee kmem_cache_scan(kmem_cache_t *cp) 5292b5fca8f8Stomee { 5293b5fca8f8Stomee boolean_t reap = B_FALSE; 5294686031edSTom Erickson kmem_defrag_t *kmd; 5295b5fca8f8Stomee 5296b5fca8f8Stomee ASSERT(taskq_member(kmem_taskq, curthread)); 5297b5fca8f8Stomee 5298b5fca8f8Stomee mutex_enter(&cp->cache_lock); 5299b5fca8f8Stomee 5300686031edSTom Erickson kmd = cp->cache_defrag; 5301686031edSTom Erickson if (kmd->kmd_consolidate > 0) { 5302686031edSTom Erickson kmd->kmd_consolidate--; 5303686031edSTom Erickson mutex_exit(&cp->cache_lock); 5304686031edSTom Erickson kmem_cache_reap(cp); 5305686031edSTom Erickson return; 5306686031edSTom Erickson } 5307686031edSTom Erickson 5308b5fca8f8Stomee if (kmem_cache_is_fragmented(cp, &reap)) { 5309b5fca8f8Stomee size_t slabs_found; 5310b5fca8f8Stomee 5311b5fca8f8Stomee /* 5312b5fca8f8Stomee * Consolidate reclaimable slabs from the end of the partial 5313b5fca8f8Stomee * slab list (scan at most kmem_reclaim_scan_range slabs to find 5314b5fca8f8Stomee * reclaimable slabs). Keep track of how many candidate slabs we 5315b5fca8f8Stomee * looked for and how many we actually found so we can adjust 5316b5fca8f8Stomee * the definition of a candidate slab if we're having trouble 5317b5fca8f8Stomee * finding them. 5318b5fca8f8Stomee * 5319b5fca8f8Stomee * kmem_move_buffers() drops and reacquires cache_lock. 5320b5fca8f8Stomee */ 5321686031edSTom Erickson kmd->kmd_scans++; 5322b5fca8f8Stomee slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range, 5323b5fca8f8Stomee kmem_reclaim_max_slabs, 0); 5324b5fca8f8Stomee if (slabs_found >= 0) { 5325b5fca8f8Stomee kmd->kmd_slabs_sought += kmem_reclaim_max_slabs; 5326b5fca8f8Stomee kmd->kmd_slabs_found += slabs_found; 5327b5fca8f8Stomee } 5328b5fca8f8Stomee 5329686031edSTom Erickson if (++kmd->kmd_tries >= kmem_reclaim_scan_range) { 5330686031edSTom Erickson kmd->kmd_tries = 0; 5331b5fca8f8Stomee 5332b5fca8f8Stomee /* 5333b5fca8f8Stomee * If we had difficulty finding candidate slabs in 5334b5fca8f8Stomee * previous scans, adjust the threshold so that 5335b5fca8f8Stomee * candidates are easier to find. 5336b5fca8f8Stomee */ 5337b5fca8f8Stomee if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) { 5338b5fca8f8Stomee kmem_adjust_reclaim_threshold(kmd, -1); 5339b5fca8f8Stomee } else if ((kmd->kmd_slabs_found * 2) < 5340b5fca8f8Stomee kmd->kmd_slabs_sought) { 5341b5fca8f8Stomee kmem_adjust_reclaim_threshold(kmd, 1); 5342b5fca8f8Stomee } 5343b5fca8f8Stomee kmd->kmd_slabs_sought = 0; 5344b5fca8f8Stomee kmd->kmd_slabs_found = 0; 5345b5fca8f8Stomee } 5346b5fca8f8Stomee } else { 5347b5fca8f8Stomee kmem_reset_reclaim_threshold(cp->cache_defrag); 5348b5fca8f8Stomee #ifdef DEBUG 5349686031edSTom Erickson if (!avl_is_empty(&cp->cache_partial_slabs)) { 5350b5fca8f8Stomee /* 5351b5fca8f8Stomee * In a debug kernel we want the consolidator to 5352b5fca8f8Stomee * run occasionally even when there is plenty of 5353b5fca8f8Stomee * memory. 5354b5fca8f8Stomee */ 5355686031edSTom Erickson uint16_t debug_rand; 5356b5fca8f8Stomee 5357686031edSTom Erickson (void) random_get_bytes((uint8_t *)&debug_rand, 2); 5358b5fca8f8Stomee if (!kmem_move_noreap && 5359b5fca8f8Stomee ((debug_rand % kmem_mtb_reap) == 0)) { 5360b5fca8f8Stomee mutex_exit(&cp->cache_lock); 5361686031edSTom Erickson kmem_cache_reap(cp); 5362b5fca8f8Stomee return; 5363b5fca8f8Stomee } else if ((debug_rand % kmem_mtb_move) == 0) { 5364686031edSTom Erickson kmd->kmd_scans++; 5365b5fca8f8Stomee (void) kmem_move_buffers(cp, 5366686031edSTom Erickson kmem_reclaim_scan_range, 1, KMM_DEBUG); 5367b5fca8f8Stomee } 5368b5fca8f8Stomee } 5369b5fca8f8Stomee #endif /* DEBUG */ 5370b5fca8f8Stomee } 5371b5fca8f8Stomee 5372b5fca8f8Stomee mutex_exit(&cp->cache_lock); 5373b5fca8f8Stomee 5374aa7175abSBryan Cantrill if (reap) 5375b5fca8f8Stomee kmem_depot_ws_reap(cp); 5376b5fca8f8Stomee } 5377