xref: /titanic_52/usr/src/uts/common/os/cyclic.c (revision c0dd49bdd68c0d758a67d56f07826f3b45cfc664)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  *  The Cyclic Subsystem
28  *  --------------------
29  *
30  *  Prehistory
31  *
32  *  Historically, most computer architectures have specified interval-based
33  *  timer parts (e.g. SPARCstation's counter/timer; Intel's i8254).  While
34  *  these parts deal in relative (i.e. not absolute) time values, they are
35  *  typically used by the operating system to implement the abstraction of
36  *  absolute time.  As a result, these parts cannot typically be reprogrammed
37  *  without introducing error in the system's notion of time.
38  *
39  *  Starting in about 1994, chip architectures began specifying high resolution
40  *  timestamp registers.  As of this writing (1999), all major chip families
41  *  (UltraSPARC, PentiumPro, MIPS, PowerPC, Alpha) have high resolution
42  *  timestamp registers, and two (UltraSPARC and MIPS) have added the capacity
43  *  to interrupt based on timestamp values.  These timestamp-compare registers
44  *  present a time-based interrupt source which can be reprogrammed arbitrarily
45  *  often without introducing error.  Given the low cost of implementing such a
46  *  timestamp-compare register (and the tangible benefit of eliminating
47  *  discrete timer parts), it is reasonable to expect that future chip
48  *  architectures will adopt this feature.
49  *
50  *  The cyclic subsystem has been designed to take advantage of chip
51  *  architectures with the capacity to interrupt based on absolute, high
52  *  resolution values of time.
53  *
54  *  Subsystem Overview
55  *
56  *  The cyclic subsystem is a low-level kernel subsystem designed to provide
57  *  arbitrarily high resolution, per-CPU interval timers (to avoid colliding
58  *  with existing terms, we dub such an interval timer a "cyclic").  Cyclics
59  *  can be specified to fire at high, lock or low interrupt level, and may be
60  *  optionally bound to a CPU or a CPU partition.  A cyclic's CPU or CPU
61  *  partition binding may be changed dynamically; the cyclic will be "juggled"
62  *  to a CPU which satisfies the new binding.  Alternatively, a cyclic may
63  *  be specified to be "omnipresent", denoting firing on all online CPUs.
64  *
65  *  Cyclic Subsystem Interface Overview
66  *  -----------------------------------
67  *
68  *  The cyclic subsystem has interfaces with the kernel at-large, with other
69  *  kernel subsystems (e.g. the processor management subsystem, the checkpoint
70  *  resume subsystem) and with the platform (the cyclic backend).  Each
71  *  of these interfaces is given a brief synopsis here, and is described
72  *  in full above the interface's implementation.
73  *
74  *  The following diagram displays the cyclic subsystem's interfaces to
75  *  other kernel components.  The arrows denote a "calls" relationship, with
76  *  the large arrow indicating the cyclic subsystem's consumer interface.
77  *  Each arrow is labeled with the section in which the corresponding
78  *  interface is described.
79  *
80  *           Kernel at-large consumers
81  *           -----------++------------
82  *                      ||
83  *                      ||
84  *                     _||_
85  *                     \  /
86  *                      \/
87  *            +---------------------+
88  *            |                     |
89  *            |  Cyclic subsystem   |<-----------  Other kernel subsystems
90  *            |                     |
91  *            +---------------------+
92  *                   ^       |
93  *                   |       |
94  *                   |       |
95  *                   |       v
96  *            +---------------------+
97  *            |                     |
98  *            |   Cyclic backend    |
99  *            | (platform specific) |
100  *            |                     |
101  *            +---------------------+
102  *
103  *
104  *  Kernel At-Large Interfaces
105  *
106  *      cyclic_add()         <-- Creates a cyclic
107  *      cyclic_add_omni()    <-- Creates an omnipresent cyclic
108  *      cyclic_remove()      <-- Removes a cyclic
109  *      cyclic_bind()        <-- Change a cyclic's CPU or partition binding
110  *      cyclic_reprogram()   <-- Reprogram a cyclic's expiration
111  *
112  *  Inter-subsystem Interfaces
113  *
114  *      cyclic_juggle()      <-- Juggles cyclics away from a CPU
115  *      cyclic_offline()     <-- Offlines cyclic operation on a CPU
116  *      cyclic_online()      <-- Reenables operation on an offlined CPU
117  *      cyclic_move_in()     <-- Notifies subsystem of change in CPU partition
118  *      cyclic_move_out()    <-- Notifies subsystem of change in CPU partition
119  *      cyclic_suspend()     <-- Suspends the cyclic subsystem on all CPUs
120  *      cyclic_resume()      <-- Resumes the cyclic subsystem on all CPUs
121  *
122  *  Backend Interfaces
123  *
124  *      cyclic_init()        <-- Initializes the cyclic subsystem
125  *      cyclic_fire()        <-- CY_HIGH_LEVEL interrupt entry point
126  *      cyclic_softint()     <-- CY_LOCK/LOW_LEVEL soft interrupt entry point
127  *
128  *  The backend-supplied interfaces (through the cyc_backend structure) are
129  *  documented in detail in <sys/cyclic_impl.h>
130  *
131  *
132  *  Cyclic Subsystem Implementation Overview
133  *  ----------------------------------------
134  *
135  *  The cyclic subsystem is designed to minimize interference between cyclics
136  *  on different CPUs.  Thus, all of the cyclic subsystem's data structures
137  *  hang off of a per-CPU structure, cyc_cpu.
138  *
139  *  Each cyc_cpu has a power-of-two sized array of cyclic structures (the
140  *  cyp_cyclics member of the cyc_cpu structure).  If cyclic_add() is called
141  *  and there does not exist a free slot in the cyp_cyclics array, the size of
142  *  the array will be doubled.  The array will never shrink.  Cyclics are
143  *  referred to by their index in the cyp_cyclics array, which is of type
144  *  cyc_index_t.
145  *
146  *  The cyclics are kept sorted by expiration time in the cyc_cpu's heap.  The
147  *  heap is keyed by cyclic expiration time, with parents expiring earlier
148  *  than their children.
149  *
150  *  Heap Management
151  *
152  *  The heap is managed primarily by cyclic_fire().  Upon entry, cyclic_fire()
153  *  compares the root cyclic's expiration time to the current time.  If the
154  *  expiration time is in the past, cyclic_expire() is called on the root
155  *  cyclic.  Upon return from cyclic_expire(), the cyclic's new expiration time
156  *  is derived by adding its interval to its old expiration time, and a
157  *  downheap operation is performed.  After the downheap, cyclic_fire()
158  *  examines the (potentially changed) root cyclic, repeating the
159  *  cyclic_expire()/add interval/cyclic_downheap() sequence until the root
160  *  cyclic has an expiration time in the future.  This expiration time
161  *  (guaranteed to be the earliest in the heap) is then communicated to the
162  *  backend via cyb_reprogram.  Optimal backends will next call cyclic_fire()
163  *  shortly after the root cyclic's expiration time.
164  *
165  *  To allow efficient, deterministic downheap operations, we implement the
166  *  heap as an array (the cyp_heap member of the cyc_cpu structure), with each
167  *  element containing an index into the CPU's cyp_cyclics array.
168  *
169  *  The heap is laid out in the array according to the following:
170  *
171  *   1.  The root of the heap is always in the 0th element of the heap array
172  *   2.  The left and right children of the nth element are element
173  *       (((n + 1) << 1) - 1) and element ((n + 1) << 1), respectively.
174  *
175  *  This layout is standard (see, e.g., Cormen's "Algorithms"); the proof
176  *  that these constraints correctly lay out a heap (or indeed, any binary
177  *  tree) is trivial and left to the reader.
178  *
179  *  To see the heap by example, assume our cyclics array has the following
180  *  members (at time t):
181  *
182  *            cy_handler            cy_level      cy_expire
183  *            ---------------------------------------------
184  *     [ 0]   clock()                   LOCK     t+10000000
185  *     [ 1]   deadman()                 HIGH   t+1000000000
186  *     [ 2]   clock_highres_fire()       LOW          t+100
187  *     [ 3]   clock_highres_fire()       LOW         t+1000
188  *     [ 4]   clock_highres_fire()       LOW          t+500
189  *     [ 5]   (free)                      --             --
190  *     [ 6]   (free)                      --             --
191  *     [ 7]   (free)                      --             --
192  *
193  *  The heap array could be:
194  *
195  *                [0]   [1]   [2]   [3]   [4]   [5]   [6]   [7]
196  *              +-----+-----+-----+-----+-----+-----+-----+-----+
197  *              |     |     |     |     |     |     |     |     |
198  *              |  2  |  3  |  4  |  0  |  1  |  x  |  x  |  x  |
199  *              |     |     |     |     |     |     |     |     |
200  *              +-----+-----+-----+-----+-----+-----+-----+-----+
201  *
202  *  Graphically, this array corresponds to the following (excuse the ASCII art):
203  *
204  *                                       2
205  *                                       |
206  *                    +------------------+------------------+
207  *                    3                                     4
208  *                    |
209  *          +---------+--------+
210  *          0                  1
211  *
212  *  Note that the heap is laid out by layer:  all nodes at a given depth are
213  *  stored in consecutive elements of the array.  Moreover, layers of
214  *  consecutive depths are in adjacent element ranges.  This property
215  *  guarantees high locality of reference during downheap operations.
216  *  Specifically, we are guaranteed that we can downheap to a depth of
217  *
218  *      lg (cache_line_size / sizeof (cyc_index_t))
219  *
220  *  nodes with at most one cache miss.  On UltraSPARC (64 byte e-cache line
221  *  size), this corresponds to a depth of four nodes.  Thus, if there are
222  *  fewer than sixteen cyclics in the heap, downheaps on UltraSPARC miss at
223  *  most once in the e-cache.
224  *
225  *  Downheaps are required to compare siblings as they proceed down the
226  *  heap.  For downheaps proceeding beyond the one-cache-miss depth, every
227  *  access to a left child could potentially miss in the cache.  However,
228  *  if we assume
229  *
230  *      (cache_line_size / sizeof (cyc_index_t)) > 2,
231  *
232  *  then all siblings are guaranteed to be on the same cache line.  Thus, the
233  *  miss on the left child will guarantee a hit on the right child; downheaps
234  *  will incur at most one cache miss per layer beyond the one-cache-miss
235  *  depth.  The total number of cache misses for heap management during a
236  *  downheap operation is thus bounded by
237  *
238  *      lg (n) - lg (cache_line_size / sizeof (cyc_index_t))
239  *
240  *  Traditional pointer-based heaps are implemented without regard to
241  *  locality.  Downheaps can thus incur two cache misses per layer (one for
242  *  each child), but at most one cache miss at the root.  This yields a bound
243  *  of
244  *
245  *      2 * lg (n) - 1
246  *
247  *  on the total cache misses.
248  *
249  *  This difference may seem theoretically trivial (the difference is, after
250  *  all, constant), but can become substantial in practice -- especially for
251  *  caches with very large cache lines and high miss penalties (e.g. TLBs).
252  *
253  *  Heaps must always be full, balanced trees.  Heap management must therefore
254  *  track the next point-of-insertion into the heap.  In pointer-based heaps,
255  *  recomputing this point takes O(lg (n)).  Given the layout of the
256  *  array-based implementation, however, the next point-of-insertion is
257  *  always:
258  *
259  *      heap[number_of_elements]
260  *
261  *  We exploit this property by implementing the free-list in the usused
262  *  heap elements.  Heap insertion, therefore, consists only of filling in
263  *  the cyclic at cyp_cyclics[cyp_heap[number_of_elements]], incrementing
264  *  the number of elements, and performing an upheap.  Heap deletion consists
265  *  of decrementing the number of elements, swapping the to-be-deleted element
266  *  with the element at cyp_heap[number_of_elements], and downheaping.
267  *
268  *  Filling in more details in our earlier example:
269  *
270  *                                               +--- free list head
271  *                                               |
272  *                                               V
273  *
274  *                [0]   [1]   [2]   [3]   [4]   [5]   [6]   [7]
275  *              +-----+-----+-----+-----+-----+-----+-----+-----+
276  *              |     |     |     |     |     |     |     |     |
277  *              |  2  |  3  |  4  |  0  |  1  |  5  |  6  |  7  |
278  *              |     |     |     |     |     |     |     |     |
279  *              +-----+-----+-----+-----+-----+-----+-----+-----+
280  *
281  *  To insert into this heap, we would just need to fill in the cyclic at
282  *  cyp_cyclics[5], bump the number of elements (from 5 to 6) and perform
283  *  an upheap.
284  *
285  *  If we wanted to remove, say, cyp_cyclics[3], we would first scan for it
286  *  in the cyp_heap, and discover it at cyp_heap[1].  We would then decrement
287  *  the number of elements (from 5 to 4), swap cyp_heap[1] with cyp_heap[4],
288  *  and perform a downheap from cyp_heap[1].  The linear scan is required
289  *  because the cyclic does not keep a backpointer into the heap.  This makes
290  *  heap manipulation (e.g. downheaps) faster at the expense of removal
291  *  operations.
292  *
293  *  Expiry processing
294  *
295  *  As alluded to above, cyclic_expire() is called by cyclic_fire() at
296  *  CY_HIGH_LEVEL to expire a cyclic.  Cyclic subsystem consumers are
297  *  guaranteed that for an arbitrary time t in the future, their cyclic
298  *  handler will have been called (t - cyt_when) / cyt_interval times.  Thus,
299  *  there must be a one-to-one mapping between a cyclic's expiration at
300  *  CY_HIGH_LEVEL and its execution at the desired level (either CY_HIGH_LEVEL,
301  *  CY_LOCK_LEVEL or CY_LOW_LEVEL).
302  *
303  *  For CY_HIGH_LEVEL cyclics, this is trivial; cyclic_expire() simply needs
304  *  to call the handler.
305  *
306  *  For CY_LOCK_LEVEL and CY_LOW_LEVEL cyclics, however, there exists a
307  *  potential disconnect:  if the CPU is at an interrupt level less than
308  *  CY_HIGH_LEVEL but greater than the level of a cyclic for a period of
309  *  time longer than twice the cyclic's interval, the cyclic will be expired
310  *  twice before it can be handled.
311  *
312  *  To maintain the one-to-one mapping, we track the difference between the
313  *  number of times a cyclic has been expired and the number of times it's
314  *  been handled in a "pending count" (the cy_pend field of the cyclic
315  *  structure).  cyclic_expire() thus increments the cy_pend count for the
316  *  expired cyclic and posts a soft interrupt at the desired level.  In the
317  *  cyclic subsystem's soft interrupt handler, cyclic_softint(), we repeatedly
318  *  call the cyclic handler and decrement cy_pend until we have decremented
319  *  cy_pend to zero.
320  *
321  *  The Producer/Consumer Buffer
322  *
323  *  If we wish to avoid a linear scan of the cyclics array at soft interrupt
324  *  level, cyclic_softint() must be able to quickly determine which cyclics
325  *  have a non-zero cy_pend count.  We thus introduce a per-soft interrupt
326  *  level producer/consumer buffer shared with CY_HIGH_LEVEL.  These buffers
327  *  are encapsulated in the cyc_pcbuffer structure, and, like cyp_heap, are
328  *  implemented as cyc_index_t arrays (the cypc_buf member of the cyc_pcbuffer
329  *  structure).
330  *
331  *  The producer (cyclic_expire() running at CY_HIGH_LEVEL) enqueues a cyclic
332  *  by storing the cyclic's index to cypc_buf[cypc_prodndx] and incrementing
333  *  cypc_prodndx.  The consumer (cyclic_softint() running at either
334  *  CY_LOCK_LEVEL or CY_LOW_LEVEL) dequeues a cyclic by loading from
335  *  cypc_buf[cypc_consndx] and bumping cypc_consndx.  The buffer is empty when
336  *  cypc_prodndx == cypc_consndx.
337  *
338  *  To bound the size of the producer/consumer buffer, cyclic_expire() only
339  *  enqueues a cyclic if its cy_pend was zero (if the cyclic's cy_pend is
340  *  non-zero, cyclic_expire() only bumps cy_pend).  Symmetrically,
341  *  cyclic_softint() only consumes a cyclic after it has decremented the
342  *  cy_pend count to zero.
343  *
344  *  Returning to our example, here is what the CY_LOW_LEVEL producer/consumer
345  *  buffer might look like:
346  *
347  *     cypc_consndx ---+                 +--- cypc_prodndx
348  *                     |                 |
349  *                     V                 V
350  *
351  *        [0]   [1]   [2]   [3]   [4]   [5]   [6]   [7]
352  *      +-----+-----+-----+-----+-----+-----+-----+-----+
353  *      |     |     |     |     |     |     |     |     |
354  *      |  x  |  x  |  3  |  2  |  4  |  x  |  x  |  x  |   <== cypc_buf
355  *      |     |     |  .  |  .  |  .  |     |     |     |
356  *      +-----+-----+- | -+- | -+- | -+-----+-----+-----+
357  *                     |     |     |
358  *                     |     |     |              cy_pend  cy_handler
359  *                     |     |     |          -------------------------
360  *                     |     |     |          [ 0]      1  clock()
361  *                     |     |     |          [ 1]      0  deadman()
362  *                     |     +---- | -------> [ 2]      3  clock_highres_fire()
363  *                     +---------- | -------> [ 3]      1  clock_highres_fire()
364  *                                 +--------> [ 4]      1  clock_highres_fire()
365  *                                            [ 5]      -  (free)
366  *                                            [ 6]      -  (free)
367  *                                            [ 7]      -  (free)
368  *
369  *  In particular, note that clock()'s cy_pend is 1 but that it is _not_ in
370  *  this producer/consumer buffer; it would be enqueued in the CY_LOCK_LEVEL
371  *  producer/consumer buffer.
372  *
373  *  Locking
374  *
375  *  Traditionally, access to per-CPU data structures shared between
376  *  interrupt levels is serialized by manipulating programmable interrupt
377  *  level:  readers and writers are required to raise their interrupt level
378  *  to that of the highest level writer.
379  *
380  *  For the producer/consumer buffers (shared between cyclic_fire()/
381  *  cyclic_expire() executing at CY_HIGH_LEVEL and cyclic_softint() executing
382  *  at one of CY_LOCK_LEVEL or CY_LOW_LEVEL), forcing cyclic_softint() to raise
383  *  programmable interrupt level is undesirable:  aside from the additional
384  *  latency incurred by manipulating interrupt level in the hot cy_pend
385  *  processing path, this would create the potential for soft level cy_pend
386  *  processing to delay CY_HIGH_LEVEL firing and expiry processing.
387  *  CY_LOCK/LOW_LEVEL cyclics could thereby induce jitter in CY_HIGH_LEVEL
388  *  cyclics.
389  *
390  *  To minimize jitter, then, we would like the cyclic_fire()/cyclic_expire()
391  *  and cyclic_softint() code paths to be lock-free.
392  *
393  *  For cyclic_fire()/cyclic_expire(), lock-free execution is straightforward:
394  *  because these routines execute at a higher interrupt level than
395  *  cyclic_softint(), their actions on the producer/consumer buffer appear
396  *  atomic.  In particular, the increment of cy_pend appears to occur
397  *  atomically with the increment of cypc_prodndx.
398  *
399  *  For cyclic_softint(), however, lock-free execution requires more delicacy.
400  *  When cyclic_softint() discovers a cyclic in the producer/consumer buffer,
401  *  it calls the cyclic's handler and attempts to atomically decrement the
402  *  cy_pend count with a compare&swap operation.
403  *
404  *  If the compare&swap operation succeeds, cyclic_softint() behaves
405  *  conditionally based on the value it atomically wrote to cy_pend:
406  *
407  *     - If the cy_pend was decremented to 0, the cyclic has been consumed;
408  *       cyclic_softint() increments the cypc_consndx and checks for more
409  *       enqueued work.
410  *
411  *     - If the count was decremented to a non-zero value, there is more work
412  *       to be done on the cyclic; cyclic_softint() calls the cyclic handler
413  *       and repeats the atomic decrement process.
414  *
415  *  If the compare&swap operation fails, cyclic_softint() knows that
416  *  cyclic_expire() has intervened and bumped the cy_pend count (resizes
417  *  and removals complicate this, however -- see the sections on their
418  *  operation, below).  cyclic_softint() thus reloads cy_pend, and re-attempts
419  *  the atomic decrement.
420  *
421  *  Recall that we bound the size of the producer/consumer buffer by
422  *  having cyclic_expire() only enqueue the specified cyclic if its
423  *  cy_pend count is zero; this assures that each cyclic is enqueued at
424  *  most once.  This leads to a critical constraint on cyclic_softint(),
425  *  however:  after the compare&swap operation which successfully decrements
426  *  cy_pend to zero, cyclic_softint() must _not_ re-examine the consumed
427  *  cyclic.  In part to obey this constraint, cyclic_softint() calls the
428  *  cyclic handler before decrementing cy_pend.
429  *
430  *  Resizing
431  *
432  *  All of the discussion thus far has assumed a static number of cyclics.
433  *  Obviously, static limitations are not practical; we need the capacity
434  *  to resize our data structures dynamically.
435  *
436  *  We resize our data structures lazily, and only on a per-CPU basis.
437  *  The size of the data structures always doubles and never shrinks.  We
438  *  serialize adds (and thus resizes) on cpu_lock; we never need to deal
439  *  with concurrent resizes.  Resizes should be rare; they may induce jitter
440  *  on the CPU being resized, but should not affect cyclic operation on other
441  *  CPUs.  Pending cyclics may not be dropped during a resize operation.
442  *
443  *  Three key cyc_cpu data structures need to be resized:  the cyclics array,
444  *  the heap array and the producer/consumer buffers.  Resizing the first two
445  *  is relatively straightforward:
446  *
447  *    1.  The new, larger arrays are allocated in cyclic_expand() (called
448  *        from cyclic_add()).
449  *    2.  cyclic_expand() cross calls cyclic_expand_xcall() on the CPU
450  *        undergoing the resize.
451  *    3.  cyclic_expand_xcall() raises interrupt level to CY_HIGH_LEVEL
452  *    4.  The contents of the old arrays are copied into the new arrays.
453  *    5.  The old cyclics array is bzero()'d
454  *    6.  The pointers are updated.
455  *
456  *  The producer/consumer buffer is dicier:  cyclic_expand_xcall() may have
457  *  interrupted cyclic_softint() in the middle of consumption. To resize the
458  *  producer/consumer buffer, we implement up to two buffers per soft interrupt
459  *  level:  a hard buffer (the buffer being produced into by cyclic_expire())
460  *  and a soft buffer (the buffer from which cyclic_softint() is consuming).
461  *  During normal operation, the hard buffer and soft buffer point to the
462  *  same underlying producer/consumer buffer.
463  *
464  *  During a resize, however, cyclic_expand_xcall() changes the hard buffer
465  *  to point to the new, larger producer/consumer buffer; all future
466  *  cyclic_expire()'s will produce into the new buffer.  cyclic_expand_xcall()
467  *  then posts a CY_LOCK_LEVEL soft interrupt, landing in cyclic_softint().
468  *
469  *  As under normal operation, cyclic_softint() will consume cyclics from
470  *  its soft buffer.  After the soft buffer is drained, however,
471  *  cyclic_softint() will see that the hard buffer has changed.  At that time,
472  *  cyclic_softint() will change its soft buffer to point to the hard buffer,
473  *  and repeat the producer/consumer buffer draining procedure.
474  *
475  *  After the new buffer is drained, cyclic_softint() will determine if both
476  *  soft levels have seen their new producer/consumer buffer.  If both have,
477  *  cyclic_softint() will post on the semaphore cyp_modify_wait.  If not, a
478  *  soft interrupt will be generated for the remaining level.
479  *
480  *  cyclic_expand() blocks on the cyp_modify_wait semaphore (a semaphore is
481  *  used instead of a condition variable because of the race between the
482  *  sema_p() in cyclic_expand() and the sema_v() in cyclic_softint()).  This
483  *  allows cyclic_expand() to know when the resize operation is complete;
484  *  all of the old buffers (the heap, the cyclics array and the producer/
485  *  consumer buffers) can be freed.
486  *
487  *  A final caveat on resizing:  we described step (5) in the
488  *  cyclic_expand_xcall() procedure without providing any motivation.  This
489  *  step addresses the problem of a cyclic_softint() attempting to decrement
490  *  a cy_pend count while interrupted by a cyclic_expand_xcall().  Because
491  *  cyclic_softint() has already called the handler by the time cy_pend is
492  *  decremented, we want to assure that it doesn't decrement a cy_pend
493  *  count in the old cyclics array.  By zeroing the old cyclics array in
494  *  cyclic_expand_xcall(), we are zeroing out every cy_pend count; when
495  *  cyclic_softint() attempts to compare&swap on the cy_pend count, it will
496  *  fail and recognize that the count has been zeroed.  cyclic_softint() will
497  *  update its stale copy of the cyp_cyclics pointer, re-read the cy_pend
498  *  count from the new cyclics array, and re-attempt the compare&swap.
499  *
500  *  Removals
501  *
502  *  Cyclic removals should be rare.  To simplify the implementation (and to
503  *  allow optimization for the cyclic_fire()/cyclic_expire()/cyclic_softint()
504  *  path), we force removals and adds to serialize on cpu_lock.
505  *
506  *  Cyclic removal is complicated by a guarantee made to the consumer of
507  *  the cyclic subsystem:  after cyclic_remove() returns, the cyclic handler
508  *  has returned and will never again be called.
509  *
510  *  Here is the procedure for cyclic removal:
511  *
512  *    1.  cyclic_remove() calls cyclic_remove_xcall() on the CPU undergoing
513  *        the removal.
514  *    2.  cyclic_remove_xcall() raises interrupt level to CY_HIGH_LEVEL
515  *    3.  The current expiration time for the removed cyclic is recorded.
516  *    4.  If the cy_pend count on the removed cyclic is non-zero, it
517  *        is copied into cyp_rpend and subsequently zeroed.
518  *    5.  The cyclic is removed from the heap
519  *    6.  If the root of the heap has changed, the backend is reprogrammed.
520  *    7.  If the cy_pend count was non-zero cyclic_remove() blocks on the
521  *        cyp_modify_wait semaphore.
522  *
523  *  The motivation for step (3) is explained in "Juggling", below.
524  *
525  *  The cy_pend count is decremented in cyclic_softint() after the cyclic
526  *  handler returns.  Thus, if we find a cy_pend count of zero in step
527  *  (4), we know that cyclic_remove() doesn't need to block.
528  *
529  *  If the cy_pend count is non-zero, however, we must block in cyclic_remove()
530  *  until cyclic_softint() has finished calling the cyclic handler.  To let
531  *  cyclic_softint() know that this cyclic has been removed, we zero the
532  *  cy_pend count.  This will cause cyclic_softint()'s compare&swap to fail.
533  *  When cyclic_softint() sees the zero cy_pend count, it knows that it's been
534  *  caught during a resize (see "Resizing", above) or that the cyclic has been
535  *  removed.  In the latter case, it calls cyclic_remove_pend() to call the
536  *  cyclic handler cyp_rpend - 1 times, and posts on cyp_modify_wait.
537  *
538  *  Juggling
539  *
540  *  At first glance, cyclic juggling seems to be a difficult problem.  The
541  *  subsystem must guarantee that a cyclic doesn't execute simultaneously on
542  *  different CPUs, while also assuring that a cyclic fires exactly once
543  *  per interval.  We solve this problem by leveraging a property of the
544  *  platform:  gethrtime() is required to increase in lock-step across
545  *  multiple CPUs.  Therefore, to juggle a cyclic, we remove it from its
546  *  CPU, recording its expiration time in the remove cross call (step (3)
547  *  in "Removing", above).  We then add the cyclic to the new CPU, explicitly
548  *  setting its expiration time to the time recorded in the removal.  This
549  *  leverages the existing cyclic expiry processing, which will compensate
550  *  for any time lost while juggling.
551  *
552  *  Reprogramming
553  *
554  *  Normally, after a cyclic fires, its next expiration is computed from
555  *  the current time and the cyclic interval. But there are situations when
556  *  the next expiration needs to be reprogrammed by the kernel subsystem that
557  *  is using the cyclic. cyclic_reprogram() allows this to be done. This,
558  *  unlike the other kernel at-large cyclic API functions, is permitted to
559  *  be called from the cyclic handler. This is because it does not use the
560  *  cpu_lock to serialize access.
561  *
562  *  When cyclic_reprogram() is called for an omni-cyclic, the operation is
563  *  applied to the omni-cyclic's component on the current CPU.
564  *
565  *  If a high-level cyclic handler reprograms its own cyclic, then
566  *  cyclic_fire() detects that and does not recompute the cyclic's next
567  *  expiration. However, for a lock-level or a low-level cyclic, the
568  *  actual cyclic handler will execute at the lower PIL only after
569  *  cyclic_fire() is done with all expired cyclics. To deal with this, such
570  *  cyclics can be specified with a special interval of CY_INFINITY (INT64_MAX).
571  *  cyclic_fire() recognizes this special value and recomputes the next
572  *  expiration to CY_INFINITY. This effectively moves the cyclic to the
573  *  bottom of the heap and prevents it from going off until its handler has
574  *  had a chance to reprogram it. Infact, this is the way to create and reuse
575  *  "one-shot" timers in the context of the cyclic subsystem without using
576  *  cyclic_remove().
577  *
578  *  Here is the procedure for cyclic reprogramming:
579  *
580  *    1.  cyclic_reprogram() calls cyclic_reprogram_xcall() on the CPU
581  *        that houses the cyclic.
582  *    2.  cyclic_reprogram_xcall() raises interrupt level to CY_HIGH_LEVEL
583  *    3.  The cyclic is located in the cyclic heap. The search for this is
584  *        done from the bottom of the heap to the top as reprogrammable cyclics
585  *        would be located closer to the bottom than the top.
586  *    4.  The cyclic expiration is set and the cyclic is moved to its
587  *        correct position in the heap (up or down depending on whether the
588  *        new expiration is less than or greater than the old one).
589  *    5.  If the cyclic move modified the root of the heap, the backend is
590  *	  reprogrammed.
591  *
592  *  Reprogramming can be a frequent event (see the callout subsystem). So,
593  *  the serialization used has to be efficient. As with all other cyclic
594  *  operations, the interrupt level is raised during reprogramming. Plus,
595  *  during reprogramming, the cyclic must not be juggled (regular cyclic)
596  *  or stopped (omni-cyclic). The implementation defines a per-cyclic
597  *  reader-writer lock to accomplish this. This lock is acquired in the
598  *  reader mode by cyclic_reprogram() and writer mode by cyclic_juggle() and
599  *  cyclic_omni_stop(). The reader-writer lock makes it efficient if
600  *  an omni-cyclic is reprogrammed on different CPUs frequently.
601  *
602  *  Note that since the cpu_lock is not used during reprogramming, it is
603  *  the responsibility of the user of the reprogrammable cyclic to make sure
604  *  that the cyclic is not removed via cyclic_remove() during reprogramming.
605  *  This is not an unreasonable requirement as the user will typically have
606  *  some sort of synchronization for its cyclic-related activities. This
607  *  little caveat exists because the cyclic ID is not really an ID. It is
608  *  implemented as a pointer to a structure.
609  */
610 #include <sys/cyclic_impl.h>
611 #include <sys/sysmacros.h>
612 #include <sys/systm.h>
613 #include <sys/atomic.h>
614 #include <sys/kmem.h>
615 #include <sys/cmn_err.h>
616 #include <sys/ddi.h>
617 #include <sys/sdt.h>
618 
619 #ifdef CYCLIC_TRACE
620 
621 /*
622  * cyc_trace_enabled is for the benefit of kernel debuggers.
623  */
624 int cyc_trace_enabled = 1;
625 static cyc_tracebuf_t cyc_ptrace;
626 static cyc_coverage_t cyc_coverage[CY_NCOVERAGE];
627 
628 /*
629  * Seen this anywhere?
630  */
631 static uint_t
632 cyclic_coverage_hash(char *p)
633 {
634 	unsigned int g;
635 	uint_t hval;
636 
637 	hval = 0;
638 	while (*p) {
639 		hval = (hval << 4) + *p++;
640 		if ((g = (hval & 0xf0000000)) != 0)
641 			hval ^= g >> 24;
642 		hval &= ~g;
643 	}
644 	return (hval);
645 }
646 
647 static void
648 cyclic_coverage(char *why, int level, uint64_t arg0, uint64_t arg1)
649 {
650 	uint_t ndx, orig;
651 
652 	for (ndx = orig = cyclic_coverage_hash(why) % CY_NCOVERAGE; ; ) {
653 		if (cyc_coverage[ndx].cyv_why == why)
654 			break;
655 
656 		if (cyc_coverage[ndx].cyv_why != NULL ||
657 		    casptr(&cyc_coverage[ndx].cyv_why, NULL, why) != NULL) {
658 
659 			if (++ndx == CY_NCOVERAGE)
660 				ndx = 0;
661 
662 			if (ndx == orig)
663 				panic("too many cyclic coverage points");
664 			continue;
665 		}
666 
667 		/*
668 		 * If we're here, we have successfully swung our guy into
669 		 * the position at "ndx".
670 		 */
671 		break;
672 	}
673 
674 	if (level == CY_PASSIVE_LEVEL)
675 		cyc_coverage[ndx].cyv_passive_count++;
676 	else
677 		cyc_coverage[ndx].cyv_count[level]++;
678 
679 	cyc_coverage[ndx].cyv_arg0 = arg0;
680 	cyc_coverage[ndx].cyv_arg1 = arg1;
681 }
682 
683 #define	CYC_TRACE(cpu, level, why, arg0, arg1) \
684 	CYC_TRACE_IMPL(&cpu->cyp_trace[level], level, why, arg0, arg1)
685 
686 #define	CYC_PTRACE(why, arg0, arg1) \
687 	CYC_TRACE_IMPL(&cyc_ptrace, CY_PASSIVE_LEVEL, why, arg0, arg1)
688 
689 #define	CYC_TRACE_IMPL(buf, level, why, a0, a1) { \
690 	if (panicstr == NULL) { \
691 		int _ndx = (buf)->cyt_ndx; \
692 		cyc_tracerec_t *_rec = &(buf)->cyt_buf[_ndx]; \
693 		(buf)->cyt_ndx = (++_ndx == CY_NTRACEREC) ? 0 : _ndx; \
694 		_rec->cyt_tstamp = gethrtime_unscaled(); \
695 		_rec->cyt_why = (why); \
696 		_rec->cyt_arg0 = (uint64_t)(uintptr_t)(a0); \
697 		_rec->cyt_arg1 = (uint64_t)(uintptr_t)(a1); \
698 		cyclic_coverage(why, level,	\
699 		    (uint64_t)(uintptr_t)(a0), (uint64_t)(uintptr_t)(a1)); \
700 	} \
701 }
702 
703 #else
704 
705 static int cyc_trace_enabled = 0;
706 
707 #define	CYC_TRACE(cpu, level, why, arg0, arg1)
708 #define	CYC_PTRACE(why, arg0, arg1)
709 
710 #endif
711 
712 #define	CYC_TRACE0(cpu, level, why) CYC_TRACE(cpu, level, why, 0, 0)
713 #define	CYC_TRACE1(cpu, level, why, arg0) CYC_TRACE(cpu, level, why, arg0, 0)
714 
715 #define	CYC_PTRACE0(why) CYC_PTRACE(why, 0, 0)
716 #define	CYC_PTRACE1(why, arg0) CYC_PTRACE(why, arg0, 0)
717 
718 static kmem_cache_t *cyclic_id_cache;
719 static cyc_id_t *cyclic_id_head;
720 static hrtime_t cyclic_resolution;
721 static cyc_backend_t cyclic_backend;
722 
723 /*
724  * Returns 1 if the upheap propagated to the root, 0 if it did not.  This
725  * allows the caller to reprogram the backend only when the root has been
726  * modified.
727  */
728 static int
729 cyclic_upheap(cyc_cpu_t *cpu, cyc_index_t ndx)
730 {
731 	cyclic_t *cyclics;
732 	cyc_index_t *heap;
733 	cyc_index_t heap_parent, heap_current = ndx;
734 	cyc_index_t parent, current;
735 
736 	if (heap_current == 0)
737 		return (1);
738 
739 	heap = cpu->cyp_heap;
740 	cyclics = cpu->cyp_cyclics;
741 	heap_parent = CYC_HEAP_PARENT(heap_current);
742 
743 	for (;;) {
744 		current = heap[heap_current];
745 		parent = heap[heap_parent];
746 
747 		/*
748 		 * We have an expiration time later than our parent; we're
749 		 * done.
750 		 */
751 		if (cyclics[current].cy_expire >= cyclics[parent].cy_expire)
752 			return (0);
753 
754 		/*
755 		 * We need to swap with our parent, and continue up the heap.
756 		 */
757 		heap[heap_parent] = current;
758 		heap[heap_current] = parent;
759 
760 		/*
761 		 * If we just reached the root, we're done.
762 		 */
763 		if (heap_parent == 0)
764 			return (1);
765 
766 		heap_current = heap_parent;
767 		heap_parent = CYC_HEAP_PARENT(heap_current);
768 	}
769 }
770 
771 static void
772 cyclic_downheap(cyc_cpu_t *cpu, cyc_index_t ndx)
773 {
774 	cyclic_t *cyclics = cpu->cyp_cyclics;
775 	cyc_index_t *heap = cpu->cyp_heap;
776 
777 	cyc_index_t heap_left, heap_right, heap_me = ndx;
778 	cyc_index_t left, right, me;
779 	cyc_index_t nelems = cpu->cyp_nelems;
780 
781 	for (;;) {
782 		/*
783 		 * If we don't have a left child (i.e., we're a leaf), we're
784 		 * done.
785 		 */
786 		if ((heap_left = CYC_HEAP_LEFT(heap_me)) >= nelems)
787 			return;
788 
789 		left = heap[heap_left];
790 		me = heap[heap_me];
791 
792 		heap_right = CYC_HEAP_RIGHT(heap_me);
793 
794 		/*
795 		 * Even if we don't have a right child, we still need to compare
796 		 * our expiration time against that of our left child.
797 		 */
798 		if (heap_right >= nelems)
799 			goto comp_left;
800 
801 		right = heap[heap_right];
802 
803 		/*
804 		 * We have both a left and a right child.  We need to compare
805 		 * the expiration times of the children to determine which
806 		 * expires earlier.
807 		 */
808 		if (cyclics[right].cy_expire < cyclics[left].cy_expire) {
809 			/*
810 			 * Our right child is the earlier of our children.
811 			 * We'll now compare our expiration time to its; if
812 			 * ours is the earlier, we're done.
813 			 */
814 			if (cyclics[me].cy_expire <= cyclics[right].cy_expire)
815 				return;
816 
817 			/*
818 			 * Our right child expires earlier than we do; swap
819 			 * with our right child, and descend right.
820 			 */
821 			heap[heap_right] = me;
822 			heap[heap_me] = right;
823 			heap_me = heap_right;
824 			continue;
825 		}
826 
827 comp_left:
828 		/*
829 		 * Our left child is the earlier of our children (or we have
830 		 * no right child).  We'll now compare our expiration time
831 		 * to its; if ours is the earlier, we're done.
832 		 */
833 		if (cyclics[me].cy_expire <= cyclics[left].cy_expire)
834 			return;
835 
836 		/*
837 		 * Our left child expires earlier than we do; swap with our
838 		 * left child, and descend left.
839 		 */
840 		heap[heap_left] = me;
841 		heap[heap_me] = left;
842 		heap_me = heap_left;
843 	}
844 }
845 
846 static void
847 cyclic_expire(cyc_cpu_t *cpu, cyc_index_t ndx, cyclic_t *cyclic)
848 {
849 	cyc_backend_t *be = cpu->cyp_backend;
850 	cyc_level_t level = cyclic->cy_level;
851 
852 	/*
853 	 * If this is a CY_HIGH_LEVEL cyclic, just call the handler; we don't
854 	 * need to worry about the pend count for CY_HIGH_LEVEL cyclics.
855 	 */
856 	if (level == CY_HIGH_LEVEL) {
857 		cyc_func_t handler = cyclic->cy_handler;
858 		void *arg = cyclic->cy_arg;
859 
860 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "handler-in", handler, arg);
861 		DTRACE_PROBE1(cyclic__start, cyclic_t *, cyclic);
862 
863 		(*handler)(arg);
864 
865 		DTRACE_PROBE1(cyclic__end, cyclic_t *, cyclic);
866 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "handler-out", handler, arg);
867 
868 		return;
869 	}
870 
871 	/*
872 	 * We're at CY_HIGH_LEVEL; this modification to cy_pend need not
873 	 * be atomic (the high interrupt level assures that it will appear
874 	 * atomic to any softint currently running).
875 	 */
876 	if (cyclic->cy_pend++ == 0) {
877 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[level];
878 		cyc_pcbuffer_t *pc = &softbuf->cys_buf[softbuf->cys_hard];
879 
880 		/*
881 		 * We need to enqueue this cyclic in the soft buffer.
882 		 */
883 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "expire-enq", cyclic,
884 		    pc->cypc_prodndx);
885 		pc->cypc_buf[pc->cypc_prodndx++ & pc->cypc_sizemask] = ndx;
886 
887 		ASSERT(pc->cypc_prodndx != pc->cypc_consndx);
888 	} else {
889 		/*
890 		 * If the pend count is zero after we incremented it, then
891 		 * we've wrapped (i.e. we had a cy_pend count of over four
892 		 * billion.  In this case, we clamp the pend count at
893 		 * UINT32_MAX.  Yes, cyclics can be lost in this case.
894 		 */
895 		if (cyclic->cy_pend == 0) {
896 			CYC_TRACE1(cpu, CY_HIGH_LEVEL, "expire-wrap", cyclic);
897 			cyclic->cy_pend = UINT32_MAX;
898 		}
899 
900 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "expire-bump", cyclic, 0);
901 	}
902 
903 	be->cyb_softint(be->cyb_arg, cyclic->cy_level);
904 }
905 
906 /*
907  *  cyclic_fire(cpu_t *)
908  *
909  *  Overview
910  *
911  *    cyclic_fire() is the cyclic subsystem's CY_HIGH_LEVEL interrupt handler.
912  *    Called by the cyclic backend.
913  *
914  *  Arguments and notes
915  *
916  *    The only argument is the CPU on which the interrupt is executing;
917  *    backends must call into cyclic_fire() on the specified CPU.
918  *
919  *    cyclic_fire() may be called spuriously without ill effect.  Optimal
920  *    backends will call into cyclic_fire() at or shortly after the time
921  *    requested via cyb_reprogram().  However, calling cyclic_fire()
922  *    arbitrarily late will only manifest latency bubbles; the correctness
923  *    of the cyclic subsystem does not rely on the timeliness of the backend.
924  *
925  *    cyclic_fire() is wait-free; it will not block or spin.
926  *
927  *  Return values
928  *
929  *    None.
930  *
931  *  Caller's context
932  *
933  *    cyclic_fire() must be called from CY_HIGH_LEVEL interrupt context.
934  */
935 void
936 cyclic_fire(cpu_t *c)
937 {
938 	cyc_cpu_t *cpu = c->cpu_cyclic;
939 	cyc_backend_t *be = cpu->cyp_backend;
940 	cyc_index_t *heap = cpu->cyp_heap;
941 	cyclic_t *cyclic, *cyclics = cpu->cyp_cyclics;
942 	void *arg = be->cyb_arg;
943 	hrtime_t now = gethrtime();
944 	hrtime_t exp;
945 
946 	CYC_TRACE(cpu, CY_HIGH_LEVEL, "fire", now, 0);
947 
948 	if (cpu->cyp_nelems == 0) {
949 		/*
950 		 * This is a spurious fire.  Count it as such, and blow
951 		 * out of here.
952 		 */
953 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "fire-spurious");
954 		return;
955 	}
956 
957 	for (;;) {
958 		cyc_index_t ndx = heap[0];
959 
960 		cyclic = &cyclics[ndx];
961 
962 		ASSERT(!(cyclic->cy_flags & CYF_FREE));
963 
964 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "fire-check", cyclic,
965 		    cyclic->cy_expire);
966 
967 		if ((exp = cyclic->cy_expire) > now)
968 			break;
969 
970 		cyclic_expire(cpu, ndx, cyclic);
971 
972 		/*
973 		 * If the handler reprogrammed the cyclic, then don't
974 		 * recompute the expiration. Then, if the interval is
975 		 * infinity, set the expiration to infinity. This can
976 		 * be used to create one-shot timers.
977 		 */
978 		if (exp != cyclic->cy_expire) {
979 			/*
980 			 * If a hi level cyclic reprograms itself,
981 			 * the heap adjustment and reprogramming of the
982 			 * clock source have already been done at this
983 			 * point. So, we can continue.
984 			 */
985 			continue;
986 		}
987 
988 		if (cyclic->cy_interval == CY_INFINITY)
989 			exp = CY_INFINITY;
990 		else
991 			exp += cyclic->cy_interval;
992 
993 		/*
994 		 * If this cyclic will be set to next expire in the distant
995 		 * past, we have one of two situations:
996 		 *
997 		 *   a)	This is the first firing of a cyclic which had
998 		 *	cy_expire set to 0.
999 		 *
1000 		 *   b)	We are tragically late for a cyclic -- most likely
1001 		 *	due to being in the debugger.
1002 		 *
1003 		 * In either case, we set the new expiration time to be the
1004 		 * the next interval boundary.  This assures that the
1005 		 * expiration time modulo the interval is invariant.
1006 		 *
1007 		 * We arbitrarily define "distant" to be one second (one second
1008 		 * is chosen because it's shorter than any foray to the
1009 		 * debugger while still being longer than any legitimate
1010 		 * stretch at CY_HIGH_LEVEL).
1011 		 */
1012 
1013 		if (now - exp > NANOSEC) {
1014 			hrtime_t interval = cyclic->cy_interval;
1015 
1016 			CYC_TRACE(cpu, CY_HIGH_LEVEL, exp == interval ?
1017 			    "fire-first" : "fire-swing", now, exp);
1018 
1019 			exp += ((now - exp) / interval + 1) * interval;
1020 		}
1021 
1022 		cyclic->cy_expire = exp;
1023 		cyclic_downheap(cpu, 0);
1024 	}
1025 
1026 	/*
1027 	 * Now we have a cyclic in the root slot which isn't in the past;
1028 	 * reprogram the interrupt source.
1029 	 */
1030 	be->cyb_reprogram(arg, exp);
1031 }
1032 
1033 static void
1034 cyclic_remove_pend(cyc_cpu_t *cpu, cyc_level_t level, cyclic_t *cyclic)
1035 {
1036 	cyc_func_t handler = cyclic->cy_handler;
1037 	void *arg = cyclic->cy_arg;
1038 	uint32_t i, rpend = cpu->cyp_rpend - 1;
1039 
1040 	ASSERT(cyclic->cy_flags & CYF_FREE);
1041 	ASSERT(cyclic->cy_pend == 0);
1042 	ASSERT(cpu->cyp_state == CYS_REMOVING);
1043 	ASSERT(cpu->cyp_rpend > 0);
1044 
1045 	CYC_TRACE(cpu, level, "remove-rpend", cyclic, cpu->cyp_rpend);
1046 
1047 	/*
1048 	 * Note that we only call the handler cyp_rpend - 1 times; this is
1049 	 * to account for the handler call in cyclic_softint().
1050 	 */
1051 	for (i = 0; i < rpend; i++) {
1052 		CYC_TRACE(cpu, level, "rpend-in", handler, arg);
1053 		DTRACE_PROBE1(cyclic__start, cyclic_t *, cyclic);
1054 
1055 		(*handler)(arg);
1056 
1057 		DTRACE_PROBE1(cyclic__end, cyclic_t *, cyclic);
1058 		CYC_TRACE(cpu, level, "rpend-out", handler, arg);
1059 	}
1060 
1061 	/*
1062 	 * We can now let the remove operation complete.
1063 	 */
1064 	sema_v(&cpu->cyp_modify_wait);
1065 }
1066 
1067 /*
1068  *  cyclic_softint(cpu_t *cpu, cyc_level_t level)
1069  *
1070  *  Overview
1071  *
1072  *    cyclic_softint() is the cyclic subsystem's CY_LOCK_LEVEL and CY_LOW_LEVEL
1073  *    soft interrupt handler.  Called by the cyclic backend.
1074  *
1075  *  Arguments and notes
1076  *
1077  *    The first argument to cyclic_softint() is the CPU on which the interrupt
1078  *    is executing; backends must call into cyclic_softint() on the specified
1079  *    CPU.  The second argument is the level of the soft interrupt; it must
1080  *    be one of CY_LOCK_LEVEL or CY_LOW_LEVEL.
1081  *
1082  *    cyclic_softint() will call the handlers for cyclics pending at the
1083  *    specified level.  cyclic_softint() will not return until all pending
1084  *    cyclics at the specified level have been dealt with; intervening
1085  *    CY_HIGH_LEVEL interrupts which enqueue cyclics at the specified level
1086  *    may therefore prolong cyclic_softint().
1087  *
1088  *    cyclic_softint() never disables interrupts, and, if neither a
1089  *    cyclic_add() nor a cyclic_remove() is pending on the specified CPU, is
1090  *    lock-free.  This assures that in the common case, cyclic_softint()
1091  *    completes without blocking, and never starves cyclic_fire().  If either
1092  *    cyclic_add() or cyclic_remove() is pending, cyclic_softint() may grab
1093  *    a dispatcher lock.
1094  *
1095  *    While cyclic_softint() is designed for bounded latency, it is obviously
1096  *    at the mercy of its cyclic handlers.  Because cyclic handlers may block
1097  *    arbitrarily, callers of cyclic_softint() should not rely upon
1098  *    deterministic completion.
1099  *
1100  *    cyclic_softint() may be called spuriously without ill effect.
1101  *
1102  *  Return value
1103  *
1104  *    None.
1105  *
1106  *  Caller's context
1107  *
1108  *    The caller must be executing in soft interrupt context at either
1109  *    CY_LOCK_LEVEL or CY_LOW_LEVEL.  The level passed to cyclic_softint()
1110  *    must match the level at which it is executing.  On optimal backends,
1111  *    the caller will hold no locks.  In any case, the caller may not hold
1112  *    cpu_lock or any lock acquired by any cyclic handler or held across
1113  *    any of cyclic_add(), cyclic_remove(), cyclic_bind() or cyclic_juggle().
1114  */
1115 void
1116 cyclic_softint(cpu_t *c, cyc_level_t level)
1117 {
1118 	cyc_cpu_t *cpu = c->cpu_cyclic;
1119 	cyc_softbuf_t *softbuf;
1120 	int soft, *buf, consndx, resized = 0, intr_resized = 0;
1121 	cyc_pcbuffer_t *pc;
1122 	cyclic_t *cyclics = cpu->cyp_cyclics;
1123 	int sizemask;
1124 
1125 	CYC_TRACE(cpu, level, "softint", cyclics, 0);
1126 
1127 	ASSERT(level < CY_LOW_LEVEL + CY_SOFT_LEVELS);
1128 
1129 	softbuf = &cpu->cyp_softbuf[level];
1130 top:
1131 	soft = softbuf->cys_soft;
1132 	ASSERT(soft == 0 || soft == 1);
1133 
1134 	pc = &softbuf->cys_buf[soft];
1135 	buf = pc->cypc_buf;
1136 	consndx = pc->cypc_consndx;
1137 	sizemask = pc->cypc_sizemask;
1138 
1139 	CYC_TRACE(cpu, level, "softint-top", cyclics, pc);
1140 
1141 	while (consndx != pc->cypc_prodndx) {
1142 		int pend, npend, opend;
1143 		int consmasked = consndx & sizemask;
1144 		cyclic_t *cyclic = &cyclics[buf[consmasked]];
1145 		cyc_func_t handler = cyclic->cy_handler;
1146 		void *arg = cyclic->cy_arg;
1147 
1148 		ASSERT(buf[consmasked] < cpu->cyp_size);
1149 		CYC_TRACE(cpu, level, "consuming", consndx, cyclic);
1150 
1151 		/*
1152 		 * We have found this cyclic in the pcbuffer.  We know that
1153 		 * one of the following is true:
1154 		 *
1155 		 *  (a)	The pend is non-zero.  We need to execute the handler
1156 		 *	at least once.
1157 		 *
1158 		 *  (b)	The pend _was_ non-zero, but it's now zero due to a
1159 		 *	resize.  We will call the handler once, see that we
1160 		 *	are in this case, and read the new cyclics buffer
1161 		 *	(and hence the old non-zero pend).
1162 		 *
1163 		 *  (c)	The pend _was_ non-zero, but it's now zero due to a
1164 		 *	removal.  We will call the handler once, see that we
1165 		 *	are in this case, and call into cyclic_remove_pend()
1166 		 *	to call the cyclic rpend times.  We will take into
1167 		 *	account that we have already called the handler once.
1168 		 *
1169 		 * Point is:  it's safe to call the handler without first
1170 		 * checking the pend.
1171 		 */
1172 		do {
1173 			CYC_TRACE(cpu, level, "handler-in", handler, arg);
1174 			DTRACE_PROBE1(cyclic__start, cyclic_t *, cyclic);
1175 
1176 			(*handler)(arg);
1177 
1178 			DTRACE_PROBE1(cyclic__end, cyclic_t *, cyclic);
1179 			CYC_TRACE(cpu, level, "handler-out", handler, arg);
1180 reread:
1181 			pend = cyclic->cy_pend;
1182 			npend = pend - 1;
1183 
1184 			if (pend == 0) {
1185 				if (cpu->cyp_state == CYS_REMOVING) {
1186 					/*
1187 					 * This cyclic has been removed while
1188 					 * it had a non-zero pend count (we
1189 					 * know it was non-zero because we
1190 					 * found this cyclic in the pcbuffer).
1191 					 * There must be a non-zero rpend for
1192 					 * this CPU, and there must be a remove
1193 					 * operation blocking; we'll call into
1194 					 * cyclic_remove_pend() to clean this
1195 					 * up, and break out of the pend loop.
1196 					 */
1197 					cyclic_remove_pend(cpu, level, cyclic);
1198 					break;
1199 				}
1200 
1201 				/*
1202 				 * We must have had a resize interrupt us.
1203 				 */
1204 				CYC_TRACE(cpu, level, "resize-int", cyclics, 0);
1205 				ASSERT(cpu->cyp_state == CYS_EXPANDING);
1206 				ASSERT(cyclics != cpu->cyp_cyclics);
1207 				ASSERT(resized == 0);
1208 				ASSERT(intr_resized == 0);
1209 				intr_resized = 1;
1210 				cyclics = cpu->cyp_cyclics;
1211 				cyclic = &cyclics[buf[consmasked]];
1212 				ASSERT(cyclic->cy_handler == handler);
1213 				ASSERT(cyclic->cy_arg == arg);
1214 				goto reread;
1215 			}
1216 
1217 			if ((opend =
1218 			    cas32(&cyclic->cy_pend, pend, npend)) != pend) {
1219 				/*
1220 				 * Our cas32 can fail for one of several
1221 				 * reasons:
1222 				 *
1223 				 *  (a)	An intervening high level bumped up the
1224 				 *	pend count on this cyclic.  In this
1225 				 *	case, we will see a higher pend.
1226 				 *
1227 				 *  (b)	The cyclics array has been yanked out
1228 				 *	from underneath us by a resize
1229 				 *	operation.  In this case, pend is 0 and
1230 				 *	cyp_state is CYS_EXPANDING.
1231 				 *
1232 				 *  (c)	The cyclic has been removed by an
1233 				 *	intervening remove-xcall.  In this case,
1234 				 *	pend will be 0, the cyp_state will be
1235 				 *	CYS_REMOVING, and the cyclic will be
1236 				 *	marked CYF_FREE.
1237 				 *
1238 				 * The assertion below checks that we are
1239 				 * in one of the above situations.  The
1240 				 * action under all three is to return to
1241 				 * the top of the loop.
1242 				 */
1243 				CYC_TRACE(cpu, level, "cas-fail", opend, pend);
1244 				ASSERT(opend > pend || (opend == 0 &&
1245 				    ((cyclics != cpu->cyp_cyclics &&
1246 				    cpu->cyp_state == CYS_EXPANDING) ||
1247 				    (cpu->cyp_state == CYS_REMOVING &&
1248 				    (cyclic->cy_flags & CYF_FREE)))));
1249 				goto reread;
1250 			}
1251 
1252 			/*
1253 			 * Okay, so we've managed to successfully decrement
1254 			 * pend.  If we just decremented the pend to 0, we're
1255 			 * done.
1256 			 */
1257 		} while (npend > 0);
1258 
1259 		pc->cypc_consndx = ++consndx;
1260 	}
1261 
1262 	/*
1263 	 * If the high level handler is no longer writing to the same
1264 	 * buffer, then we've had a resize.  We need to switch our soft
1265 	 * index, and goto top.
1266 	 */
1267 	if (soft != softbuf->cys_hard) {
1268 		/*
1269 		 * We can assert that the other buffer has grown by exactly
1270 		 * one factor of two.
1271 		 */
1272 		CYC_TRACE(cpu, level, "buffer-grow", 0, 0);
1273 		ASSERT(cpu->cyp_state == CYS_EXPANDING);
1274 		ASSERT(softbuf->cys_buf[softbuf->cys_hard].cypc_sizemask ==
1275 		    (softbuf->cys_buf[soft].cypc_sizemask << 1) + 1 ||
1276 		    softbuf->cys_buf[soft].cypc_sizemask == 0);
1277 		ASSERT(softbuf->cys_hard == (softbuf->cys_soft ^ 1));
1278 
1279 		/*
1280 		 * If our cached cyclics pointer doesn't match cyp_cyclics,
1281 		 * then we took a resize between our last iteration of the
1282 		 * pend loop and the check against softbuf->cys_hard.
1283 		 */
1284 		if (cpu->cyp_cyclics != cyclics) {
1285 			CYC_TRACE1(cpu, level, "resize-int-int", consndx);
1286 			cyclics = cpu->cyp_cyclics;
1287 		}
1288 
1289 		softbuf->cys_soft = softbuf->cys_hard;
1290 
1291 		ASSERT(resized == 0);
1292 		resized = 1;
1293 		goto top;
1294 	}
1295 
1296 	/*
1297 	 * If we were interrupted by a resize operation, then we must have
1298 	 * seen the hard index change.
1299 	 */
1300 	ASSERT(!(intr_resized == 1 && resized == 0));
1301 
1302 	if (resized) {
1303 		uint32_t lev, nlev;
1304 
1305 		ASSERT(cpu->cyp_state == CYS_EXPANDING);
1306 
1307 		do {
1308 			lev = cpu->cyp_modify_levels;
1309 			nlev = lev + 1;
1310 		} while (cas32(&cpu->cyp_modify_levels, lev, nlev) != lev);
1311 
1312 		/*
1313 		 * If we are the last soft level to see the modification,
1314 		 * post on cyp_modify_wait.  Otherwise, (if we're not
1315 		 * already at low level), post down to the next soft level.
1316 		 */
1317 		if (nlev == CY_SOFT_LEVELS) {
1318 			CYC_TRACE0(cpu, level, "resize-kick");
1319 			sema_v(&cpu->cyp_modify_wait);
1320 		} else {
1321 			ASSERT(nlev < CY_SOFT_LEVELS);
1322 			if (level != CY_LOW_LEVEL) {
1323 				cyc_backend_t *be = cpu->cyp_backend;
1324 
1325 				CYC_TRACE0(cpu, level, "resize-post");
1326 				be->cyb_softint(be->cyb_arg, level - 1);
1327 			}
1328 		}
1329 	}
1330 }
1331 
1332 static void
1333 cyclic_expand_xcall(cyc_xcallarg_t *arg)
1334 {
1335 	cyc_cpu_t *cpu = arg->cyx_cpu;
1336 	cyc_backend_t *be = cpu->cyp_backend;
1337 	cyb_arg_t bar = be->cyb_arg;
1338 	cyc_cookie_t cookie;
1339 	cyc_index_t new_size = arg->cyx_size, size = cpu->cyp_size, i;
1340 	cyc_index_t *new_heap = arg->cyx_heap;
1341 	cyclic_t *cyclics = cpu->cyp_cyclics, *new_cyclics = arg->cyx_cyclics;
1342 
1343 	ASSERT(cpu->cyp_state == CYS_EXPANDING);
1344 
1345 	/*
1346 	 * This is a little dicey.  First, we'll raise our interrupt level
1347 	 * to CY_HIGH_LEVEL.  This CPU already has a new heap, cyclic array,
1348 	 * etc.; we just need to bcopy them across.  As for the softint
1349 	 * buffers, we'll switch the active buffers.  The actual softints will
1350 	 * take care of consuming any pending cyclics in the old buffer.
1351 	 */
1352 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
1353 
1354 	CYC_TRACE(cpu, CY_HIGH_LEVEL, "expand", new_size, 0);
1355 
1356 	/*
1357 	 * Assert that the new size is a power of 2.
1358 	 */
1359 	ASSERT((new_size & new_size - 1) == 0);
1360 	ASSERT(new_size == (size << 1));
1361 	ASSERT(cpu->cyp_heap != NULL && cpu->cyp_cyclics != NULL);
1362 
1363 	bcopy(cpu->cyp_heap, new_heap, sizeof (cyc_index_t) * size);
1364 	bcopy(cyclics, new_cyclics, sizeof (cyclic_t) * size);
1365 
1366 	/*
1367 	 * Now run through the old cyclics array, setting pend to 0.  To
1368 	 * softints (which are executing at a lower priority level), the
1369 	 * pends dropping to 0 will appear atomic with the cyp_cyclics
1370 	 * pointer changing.
1371 	 */
1372 	for (i = 0; i < size; i++)
1373 		cyclics[i].cy_pend = 0;
1374 
1375 	/*
1376 	 * Set up the free list, and set all of the new cyclics to be CYF_FREE.
1377 	 */
1378 	for (i = size; i < new_size; i++) {
1379 		new_heap[i] = i;
1380 		new_cyclics[i].cy_flags = CYF_FREE;
1381 	}
1382 
1383 	/*
1384 	 * We can go ahead and plow the value of cyp_heap and cyp_cyclics;
1385 	 * cyclic_expand() has kept a copy.
1386 	 */
1387 	cpu->cyp_heap = new_heap;
1388 	cpu->cyp_cyclics = new_cyclics;
1389 	cpu->cyp_size = new_size;
1390 
1391 	/*
1392 	 * We've switched over the heap and the cyclics array.  Now we need
1393 	 * to switch over our active softint buffer pointers.
1394 	 */
1395 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
1396 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[i];
1397 		uchar_t hard = softbuf->cys_hard;
1398 
1399 		/*
1400 		 * Assert that we're not in the middle of a resize operation.
1401 		 */
1402 		ASSERT(hard == softbuf->cys_soft);
1403 		ASSERT(hard == 0 || hard == 1);
1404 		ASSERT(softbuf->cys_buf[hard].cypc_buf != NULL);
1405 
1406 		softbuf->cys_hard = hard ^ 1;
1407 
1408 		/*
1409 		 * The caller (cyclic_expand()) is responsible for setting
1410 		 * up the new producer-consumer buffer; assert that it's
1411 		 * been done correctly.
1412 		 */
1413 		ASSERT(softbuf->cys_buf[hard ^ 1].cypc_buf != NULL);
1414 		ASSERT(softbuf->cys_buf[hard ^ 1].cypc_prodndx == 0);
1415 		ASSERT(softbuf->cys_buf[hard ^ 1].cypc_consndx == 0);
1416 	}
1417 
1418 	/*
1419 	 * That's all there is to it; now we just need to postdown to
1420 	 * get the softint chain going.
1421 	 */
1422 	be->cyb_softint(bar, CY_HIGH_LEVEL - 1);
1423 	be->cyb_restore_level(bar, cookie);
1424 }
1425 
1426 /*
1427  * cyclic_expand() will cross call onto the CPU to perform the actual
1428  * expand operation.
1429  */
1430 static void
1431 cyclic_expand(cyc_cpu_t *cpu)
1432 {
1433 	cyc_index_t new_size, old_size;
1434 	cyc_index_t *new_heap, *old_heap;
1435 	cyclic_t *new_cyclics, *old_cyclics;
1436 	cyc_xcallarg_t arg;
1437 	cyc_backend_t *be = cpu->cyp_backend;
1438 	char old_hard;
1439 	int i;
1440 
1441 	ASSERT(MUTEX_HELD(&cpu_lock));
1442 	ASSERT(cpu->cyp_state == CYS_ONLINE);
1443 
1444 	cpu->cyp_state = CYS_EXPANDING;
1445 
1446 	old_heap = cpu->cyp_heap;
1447 	old_cyclics = cpu->cyp_cyclics;
1448 
1449 	if ((new_size = ((old_size = cpu->cyp_size) << 1)) == 0) {
1450 		new_size = CY_DEFAULT_PERCPU;
1451 		ASSERT(old_heap == NULL && old_cyclics == NULL);
1452 	}
1453 
1454 	/*
1455 	 * Check that the new_size is a power of 2.
1456 	 */
1457 	ASSERT((new_size - 1 & new_size) == 0);
1458 
1459 	new_heap = kmem_alloc(sizeof (cyc_index_t) * new_size, KM_SLEEP);
1460 	new_cyclics = kmem_zalloc(sizeof (cyclic_t) * new_size, KM_SLEEP);
1461 
1462 	/*
1463 	 * We know that no other expansions are in progress (they serialize
1464 	 * on cpu_lock), so we can safely read the softbuf metadata.
1465 	 */
1466 	old_hard = cpu->cyp_softbuf[0].cys_hard;
1467 
1468 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
1469 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[i];
1470 		char hard = softbuf->cys_hard;
1471 		cyc_pcbuffer_t *pc = &softbuf->cys_buf[hard ^ 1];
1472 
1473 		ASSERT(hard == old_hard);
1474 		ASSERT(hard == softbuf->cys_soft);
1475 		ASSERT(pc->cypc_buf == NULL);
1476 
1477 		pc->cypc_buf =
1478 		    kmem_alloc(sizeof (cyc_index_t) * new_size, KM_SLEEP);
1479 		pc->cypc_prodndx = pc->cypc_consndx = 0;
1480 		pc->cypc_sizemask = new_size - 1;
1481 	}
1482 
1483 	arg.cyx_cpu = cpu;
1484 	arg.cyx_heap = new_heap;
1485 	arg.cyx_cyclics = new_cyclics;
1486 	arg.cyx_size = new_size;
1487 
1488 	cpu->cyp_modify_levels = 0;
1489 
1490 	be->cyb_xcall(be->cyb_arg, cpu->cyp_cpu,
1491 	    (cyc_func_t)cyclic_expand_xcall, &arg);
1492 
1493 	/*
1494 	 * Now block, waiting for the resize operation to complete.
1495 	 */
1496 	sema_p(&cpu->cyp_modify_wait);
1497 	ASSERT(cpu->cyp_modify_levels == CY_SOFT_LEVELS);
1498 
1499 	/*
1500 	 * The operation is complete; we can now free the old buffers.
1501 	 */
1502 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
1503 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[i];
1504 		char hard = softbuf->cys_hard;
1505 		cyc_pcbuffer_t *pc = &softbuf->cys_buf[hard ^ 1];
1506 
1507 		ASSERT(hard == (old_hard ^ 1));
1508 		ASSERT(hard == softbuf->cys_soft);
1509 
1510 		if (pc->cypc_buf == NULL)
1511 			continue;
1512 
1513 		ASSERT(pc->cypc_sizemask == ((new_size - 1) >> 1));
1514 
1515 		kmem_free(pc->cypc_buf,
1516 		    sizeof (cyc_index_t) * (pc->cypc_sizemask + 1));
1517 		pc->cypc_buf = NULL;
1518 	}
1519 
1520 	if (old_cyclics != NULL) {
1521 		ASSERT(old_heap != NULL);
1522 		ASSERT(old_size != 0);
1523 		kmem_free(old_cyclics, sizeof (cyclic_t) * old_size);
1524 		kmem_free(old_heap, sizeof (cyc_index_t) * old_size);
1525 	}
1526 
1527 	ASSERT(cpu->cyp_state == CYS_EXPANDING);
1528 	cpu->cyp_state = CYS_ONLINE;
1529 }
1530 
1531 /*
1532  * cyclic_pick_cpu will attempt to pick a CPU according to the constraints
1533  * specified by the partition, bound CPU, and flags.  Additionally,
1534  * cyclic_pick_cpu() will not pick the avoid CPU; it will return NULL if
1535  * the avoid CPU is the only CPU which satisfies the constraints.
1536  *
1537  * If CYF_CPU_BOUND is set in flags, the specified CPU must be non-NULL.
1538  * If CYF_PART_BOUND is set in flags, the specified partition must be non-NULL.
1539  * If both CYF_CPU_BOUND and CYF_PART_BOUND are set, the specified CPU must
1540  * be in the specified partition.
1541  */
1542 static cyc_cpu_t *
1543 cyclic_pick_cpu(cpupart_t *part, cpu_t *bound, cpu_t *avoid, uint16_t flags)
1544 {
1545 	cpu_t *c, *start = (part != NULL) ? part->cp_cpulist : CPU;
1546 	cpu_t *online = NULL;
1547 	uintptr_t offset;
1548 
1549 	CYC_PTRACE("pick-cpu", part, bound);
1550 
1551 	ASSERT(!(flags & CYF_CPU_BOUND) || bound != NULL);
1552 	ASSERT(!(flags & CYF_PART_BOUND) || part != NULL);
1553 
1554 	/*
1555 	 * If we're bound to our CPU, there isn't much choice involved.  We
1556 	 * need to check that the CPU passed as bound is in the cpupart, and
1557 	 * that the CPU that we're binding to has been configured.
1558 	 */
1559 	if (flags & CYF_CPU_BOUND) {
1560 		CYC_PTRACE("pick-cpu-bound", bound, avoid);
1561 
1562 		if ((flags & CYF_PART_BOUND) && bound->cpu_part != part)
1563 			panic("cyclic_pick_cpu:  "
1564 			    "CPU binding contradicts partition binding");
1565 
1566 		if (bound == avoid)
1567 			return (NULL);
1568 
1569 		if (bound->cpu_cyclic == NULL)
1570 			panic("cyclic_pick_cpu:  "
1571 			    "attempt to bind to non-configured CPU");
1572 
1573 		return (bound->cpu_cyclic);
1574 	}
1575 
1576 	if (flags & CYF_PART_BOUND) {
1577 		CYC_PTRACE("pick-part-bound", bound, avoid);
1578 		offset = offsetof(cpu_t, cpu_next_part);
1579 	} else {
1580 		offset = offsetof(cpu_t, cpu_next_onln);
1581 	}
1582 
1583 	c = start;
1584 	do {
1585 		if (c->cpu_cyclic == NULL)
1586 			continue;
1587 
1588 		if (c->cpu_cyclic->cyp_state == CYS_OFFLINE)
1589 			continue;
1590 
1591 		if (c == avoid)
1592 			continue;
1593 
1594 		if (c->cpu_flags & CPU_ENABLE)
1595 			goto found;
1596 
1597 		if (online == NULL)
1598 			online = c;
1599 	} while ((c = *(cpu_t **)((uintptr_t)c + offset)) != start);
1600 
1601 	/*
1602 	 * If we're here, we're in one of two situations:
1603 	 *
1604 	 *  (a)	We have a partition-bound cyclic, and there is no CPU in
1605 	 *	our partition which is CPU_ENABLE'd.  If we saw another
1606 	 *	non-CYS_OFFLINE CPU in our partition, we'll go with it.
1607 	 *	If not, the avoid CPU must be the only non-CYS_OFFLINE
1608 	 *	CPU in the partition; we're forced to return NULL.
1609 	 *
1610 	 *  (b)	We have a partition-unbound cyclic, in which case there
1611 	 *	must only be one CPU CPU_ENABLE'd, and it must be the one
1612 	 *	we're trying to avoid.  If cyclic_juggle()/cyclic_offline()
1613 	 *	are called appropriately, this generally shouldn't happen
1614 	 *	(the offline should fail before getting to this code).
1615 	 *	At any rate: we can't avoid the avoid CPU, so we return
1616 	 *	NULL.
1617 	 */
1618 	if (!(flags & CYF_PART_BOUND)) {
1619 		ASSERT(avoid->cpu_flags & CPU_ENABLE);
1620 		return (NULL);
1621 	}
1622 
1623 	CYC_PTRACE("pick-no-intr", part, avoid);
1624 
1625 	if ((c = online) != NULL)
1626 		goto found;
1627 
1628 	CYC_PTRACE("pick-fail", part, avoid);
1629 	ASSERT(avoid->cpu_part == start->cpu_part);
1630 	return (NULL);
1631 
1632 found:
1633 	CYC_PTRACE("pick-cpu-found", c, avoid);
1634 	ASSERT(c != avoid);
1635 	ASSERT(c->cpu_cyclic != NULL);
1636 
1637 	return (c->cpu_cyclic);
1638 }
1639 
1640 static void
1641 cyclic_add_xcall(cyc_xcallarg_t *arg)
1642 {
1643 	cyc_cpu_t *cpu = arg->cyx_cpu;
1644 	cyc_handler_t *hdlr = arg->cyx_hdlr;
1645 	cyc_time_t *when = arg->cyx_when;
1646 	cyc_backend_t *be = cpu->cyp_backend;
1647 	cyc_index_t ndx, nelems;
1648 	cyc_cookie_t cookie;
1649 	cyb_arg_t bar = be->cyb_arg;
1650 	cyclic_t *cyclic;
1651 
1652 	ASSERT(cpu->cyp_nelems < cpu->cyp_size);
1653 
1654 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
1655 
1656 	CYC_TRACE(cpu, CY_HIGH_LEVEL,
1657 	    "add-xcall", when->cyt_when, when->cyt_interval);
1658 
1659 	nelems = cpu->cyp_nelems++;
1660 
1661 	if (nelems == 0) {
1662 		/*
1663 		 * If this is the first element, we need to enable the
1664 		 * backend on this CPU.
1665 		 */
1666 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "enabled");
1667 		be->cyb_enable(bar);
1668 	}
1669 
1670 	ndx = cpu->cyp_heap[nelems];
1671 	cyclic = &cpu->cyp_cyclics[ndx];
1672 
1673 	ASSERT(cyclic->cy_flags == CYF_FREE);
1674 	cyclic->cy_interval = when->cyt_interval;
1675 
1676 	if (when->cyt_when == 0) {
1677 		/*
1678 		 * If a start time hasn't been explicitly specified, we'll
1679 		 * start on the next interval boundary.
1680 		 */
1681 		cyclic->cy_expire = (gethrtime() / cyclic->cy_interval + 1) *
1682 		    cyclic->cy_interval;
1683 	} else {
1684 		cyclic->cy_expire = when->cyt_when;
1685 	}
1686 
1687 	cyclic->cy_handler = hdlr->cyh_func;
1688 	cyclic->cy_arg = hdlr->cyh_arg;
1689 	cyclic->cy_level = hdlr->cyh_level;
1690 	cyclic->cy_flags = arg->cyx_flags;
1691 
1692 	if (cyclic_upheap(cpu, nelems)) {
1693 		hrtime_t exp = cyclic->cy_expire;
1694 
1695 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "add-reprog", cyclic, exp);
1696 
1697 		/*
1698 		 * If our upheap propagated to the root, we need to
1699 		 * reprogram the interrupt source.
1700 		 */
1701 		be->cyb_reprogram(bar, exp);
1702 	}
1703 	be->cyb_restore_level(bar, cookie);
1704 
1705 	arg->cyx_ndx = ndx;
1706 }
1707 
1708 static cyc_index_t
1709 cyclic_add_here(cyc_cpu_t *cpu, cyc_handler_t *hdlr,
1710     cyc_time_t *when, uint16_t flags)
1711 {
1712 	cyc_backend_t *be = cpu->cyp_backend;
1713 	cyb_arg_t bar = be->cyb_arg;
1714 	cyc_xcallarg_t arg;
1715 
1716 	CYC_PTRACE("add-cpu", cpu, hdlr->cyh_func);
1717 	ASSERT(MUTEX_HELD(&cpu_lock));
1718 	ASSERT(cpu->cyp_state == CYS_ONLINE);
1719 	ASSERT(!(cpu->cyp_cpu->cpu_flags & CPU_OFFLINE));
1720 	ASSERT(when->cyt_when >= 0 && when->cyt_interval > 0);
1721 
1722 	if (cpu->cyp_nelems == cpu->cyp_size) {
1723 		/*
1724 		 * This is expensive; it will cross call onto the other
1725 		 * CPU to perform the expansion.
1726 		 */
1727 		cyclic_expand(cpu);
1728 		ASSERT(cpu->cyp_nelems < cpu->cyp_size);
1729 	}
1730 
1731 	/*
1732 	 * By now, we know that we're going to be able to successfully
1733 	 * perform the add.  Now cross call over to the CPU of interest to
1734 	 * actually add our cyclic.
1735 	 */
1736 	arg.cyx_cpu = cpu;
1737 	arg.cyx_hdlr = hdlr;
1738 	arg.cyx_when = when;
1739 	arg.cyx_flags = flags;
1740 
1741 	be->cyb_xcall(bar, cpu->cyp_cpu, (cyc_func_t)cyclic_add_xcall, &arg);
1742 
1743 	CYC_PTRACE("add-cpu-done", cpu, arg.cyx_ndx);
1744 
1745 	return (arg.cyx_ndx);
1746 }
1747 
1748 static void
1749 cyclic_remove_xcall(cyc_xcallarg_t *arg)
1750 {
1751 	cyc_cpu_t *cpu = arg->cyx_cpu;
1752 	cyc_backend_t *be = cpu->cyp_backend;
1753 	cyb_arg_t bar = be->cyb_arg;
1754 	cyc_cookie_t cookie;
1755 	cyc_index_t ndx = arg->cyx_ndx, nelems, i;
1756 	cyc_index_t *heap, last;
1757 	cyclic_t *cyclic;
1758 #ifdef DEBUG
1759 	cyc_index_t root;
1760 #endif
1761 
1762 	ASSERT(cpu->cyp_state == CYS_REMOVING);
1763 
1764 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
1765 
1766 	CYC_TRACE1(cpu, CY_HIGH_LEVEL, "remove-xcall", ndx);
1767 
1768 	heap = cpu->cyp_heap;
1769 	nelems = cpu->cyp_nelems;
1770 	ASSERT(nelems > 0);
1771 	cyclic = &cpu->cyp_cyclics[ndx];
1772 
1773 	/*
1774 	 * Grab the current expiration time.  If this cyclic is being
1775 	 * removed as part of a juggling operation, the expiration time
1776 	 * will be used when the cyclic is added to the new CPU.
1777 	 */
1778 	if (arg->cyx_when != NULL) {
1779 		arg->cyx_when->cyt_when = cyclic->cy_expire;
1780 		arg->cyx_when->cyt_interval = cyclic->cy_interval;
1781 	}
1782 
1783 	if (cyclic->cy_pend != 0) {
1784 		/*
1785 		 * The pend is non-zero; this cyclic is currently being
1786 		 * executed (or will be executed shortly).  If the caller
1787 		 * refuses to wait, we must return (doing nothing).  Otherwise,
1788 		 * we will stash the pend value * in this CPU's rpend, and
1789 		 * then zero it out.  The softint in the pend loop will see
1790 		 * that we have zeroed out pend, and will call the cyclic
1791 		 * handler rpend times.  The caller will wait until the
1792 		 * softint has completed calling the cyclic handler.
1793 		 */
1794 		if (arg->cyx_wait == CY_NOWAIT) {
1795 			arg->cyx_wait = CY_WAIT;
1796 			goto out;
1797 		}
1798 
1799 		ASSERT(cyclic->cy_level != CY_HIGH_LEVEL);
1800 		CYC_TRACE1(cpu, CY_HIGH_LEVEL, "remove-pend", cyclic->cy_pend);
1801 		cpu->cyp_rpend = cyclic->cy_pend;
1802 		cyclic->cy_pend = 0;
1803 	}
1804 
1805 	/*
1806 	 * Now set the flags to CYF_FREE.  We don't need a membar_enter()
1807 	 * between zeroing pend and setting the flags because we're at
1808 	 * CY_HIGH_LEVEL (that is, the zeroing of pend and the setting
1809 	 * of cy_flags appear atomic to softints).
1810 	 */
1811 	cyclic->cy_flags = CYF_FREE;
1812 
1813 	for (i = 0; i < nelems; i++) {
1814 		if (heap[i] == ndx)
1815 			break;
1816 	}
1817 
1818 	if (i == nelems)
1819 		panic("attempt to remove non-existent cyclic");
1820 
1821 	cpu->cyp_nelems = --nelems;
1822 
1823 	if (nelems == 0) {
1824 		/*
1825 		 * If we just removed the last element, then we need to
1826 		 * disable the backend on this CPU.
1827 		 */
1828 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "disabled");
1829 		be->cyb_disable(bar);
1830 	}
1831 
1832 	if (i == nelems) {
1833 		/*
1834 		 * If we just removed the last element of the heap, then
1835 		 * we don't have to downheap.
1836 		 */
1837 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-bottom");
1838 		goto out;
1839 	}
1840 
1841 #ifdef DEBUG
1842 	root = heap[0];
1843 #endif
1844 
1845 	/*
1846 	 * Swap the last element of the heap with the one we want to
1847 	 * remove, and downheap (this has the implicit effect of putting
1848 	 * the newly freed element on the free list).
1849 	 */
1850 	heap[i] = (last = heap[nelems]);
1851 	heap[nelems] = ndx;
1852 
1853 	if (i == 0) {
1854 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-root");
1855 		cyclic_downheap(cpu, 0);
1856 	} else {
1857 		if (cyclic_upheap(cpu, i) == 0) {
1858 			/*
1859 			 * The upheap didn't propagate to the root; if it
1860 			 * didn't propagate at all, we need to downheap.
1861 			 */
1862 			CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-no-root");
1863 			if (heap[i] == last) {
1864 				CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-no-up");
1865 				cyclic_downheap(cpu, i);
1866 			}
1867 			ASSERT(heap[0] == root);
1868 			goto out;
1869 		}
1870 	}
1871 
1872 	/*
1873 	 * We're here because we changed the root; we need to reprogram
1874 	 * the clock source.
1875 	 */
1876 	cyclic = &cpu->cyp_cyclics[heap[0]];
1877 
1878 	CYC_TRACE0(cpu, CY_HIGH_LEVEL, "remove-reprog");
1879 
1880 	ASSERT(nelems != 0);
1881 	be->cyb_reprogram(bar, cyclic->cy_expire);
1882 out:
1883 	be->cyb_restore_level(bar, cookie);
1884 }
1885 
1886 static int
1887 cyclic_remove_here(cyc_cpu_t *cpu, cyc_index_t ndx, cyc_time_t *when, int wait)
1888 {
1889 	cyc_backend_t *be = cpu->cyp_backend;
1890 	cyc_xcallarg_t arg;
1891 	cyclic_t *cyclic = &cpu->cyp_cyclics[ndx];
1892 	cyc_level_t level = cyclic->cy_level;
1893 
1894 	ASSERT(MUTEX_HELD(&cpu_lock));
1895 	ASSERT(cpu->cyp_rpend == 0);
1896 	ASSERT(wait == CY_WAIT || wait == CY_NOWAIT);
1897 
1898 	arg.cyx_ndx = ndx;
1899 	arg.cyx_cpu = cpu;
1900 	arg.cyx_when = when;
1901 	arg.cyx_wait = wait;
1902 
1903 	ASSERT(cpu->cyp_state == CYS_ONLINE);
1904 	cpu->cyp_state = CYS_REMOVING;
1905 
1906 	be->cyb_xcall(be->cyb_arg, cpu->cyp_cpu,
1907 	    (cyc_func_t)cyclic_remove_xcall, &arg);
1908 
1909 	/*
1910 	 * If the cyclic we removed wasn't at CY_HIGH_LEVEL, then we need to
1911 	 * check the cyp_rpend.  If it's non-zero, then we need to wait here
1912 	 * for all pending cyclic handlers to run.
1913 	 */
1914 	ASSERT(!(level == CY_HIGH_LEVEL && cpu->cyp_rpend != 0));
1915 	ASSERT(!(wait == CY_NOWAIT && cpu->cyp_rpend != 0));
1916 	ASSERT(!(arg.cyx_wait == CY_NOWAIT && cpu->cyp_rpend != 0));
1917 
1918 	if (wait != arg.cyx_wait) {
1919 		/*
1920 		 * We are being told that we must wait if we want to
1921 		 * remove this cyclic; put the CPU back in the CYS_ONLINE
1922 		 * state and return failure.
1923 		 */
1924 		ASSERT(wait == CY_NOWAIT && arg.cyx_wait == CY_WAIT);
1925 		ASSERT(cpu->cyp_state == CYS_REMOVING);
1926 		cpu->cyp_state = CYS_ONLINE;
1927 
1928 		return (0);
1929 	}
1930 
1931 	if (cpu->cyp_rpend != 0)
1932 		sema_p(&cpu->cyp_modify_wait);
1933 
1934 	ASSERT(cpu->cyp_state == CYS_REMOVING);
1935 
1936 	cpu->cyp_rpend = 0;
1937 	cpu->cyp_state = CYS_ONLINE;
1938 
1939 	return (1);
1940 }
1941 
1942 /*
1943  * If cyclic_reprogram() is called on the same CPU as the cyclic's CPU, then
1944  * it calls this function directly. Else, it invokes this function through
1945  * an X-call to the cyclic's CPU.
1946  */
1947 static void
1948 cyclic_reprogram_cyclic(cyc_cpu_t *cpu, cyc_index_t ndx, hrtime_t expire)
1949 {
1950 	cyc_backend_t *be = cpu->cyp_backend;
1951 	cyb_arg_t bar = be->cyb_arg;
1952 	cyc_cookie_t cookie;
1953 	cyc_index_t nelems, i;
1954 	cyc_index_t *heap;
1955 	cyclic_t *cyclic;
1956 	hrtime_t oexpire;
1957 	int reprog;
1958 
1959 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
1960 
1961 	CYC_TRACE1(cpu, CY_HIGH_LEVEL, "reprog-xcall", ndx);
1962 
1963 	nelems = cpu->cyp_nelems;
1964 	ASSERT(nelems > 0);
1965 	heap = cpu->cyp_heap;
1966 
1967 	/*
1968 	 * Reprogrammed cyclics are typically one-shot ones that get
1969 	 * set to infinity on every expiration. We shorten the search by
1970 	 * searching from the bottom of the heap to the top instead of the
1971 	 * other way around.
1972 	 */
1973 	for (i = nelems - 1; i >= 0; i--) {
1974 		if (heap[i] == ndx)
1975 			break;
1976 	}
1977 	if (i < 0)
1978 		panic("attempt to reprogram non-existent cyclic");
1979 
1980 	cyclic = &cpu->cyp_cyclics[ndx];
1981 	oexpire = cyclic->cy_expire;
1982 	cyclic->cy_expire = expire;
1983 
1984 	reprog = (i == 0);
1985 	if (expire > oexpire) {
1986 		CYC_TRACE1(cpu, CY_HIGH_LEVEL, "reprog-down", i);
1987 		cyclic_downheap(cpu, i);
1988 	} else if (i > 0) {
1989 		CYC_TRACE1(cpu, CY_HIGH_LEVEL, "reprog-up", i);
1990 		reprog = cyclic_upheap(cpu, i);
1991 	}
1992 
1993 	if (reprog && (cpu->cyp_state != CYS_SUSPENDED)) {
1994 		/*
1995 		 * The root changed. Reprogram the clock source.
1996 		 */
1997 		CYC_TRACE0(cpu, CY_HIGH_LEVEL, "reprog-root");
1998 		cyclic = &cpu->cyp_cyclics[heap[0]];
1999 		be->cyb_reprogram(bar, cyclic->cy_expire);
2000 	}
2001 
2002 	be->cyb_restore_level(bar, cookie);
2003 }
2004 
2005 static void
2006 cyclic_reprogram_xcall(cyc_xcallarg_t *arg)
2007 {
2008 	cyclic_reprogram_cyclic(arg->cyx_cpu, arg->cyx_ndx,
2009 	    arg->cyx_when->cyt_when);
2010 }
2011 
2012 static void
2013 cyclic_reprogram_here(cyc_cpu_t *cpu, cyc_index_t ndx, hrtime_t expiration)
2014 {
2015 	cyc_backend_t *be = cpu->cyp_backend;
2016 	cyc_xcallarg_t arg;
2017 	cyc_time_t when;
2018 
2019 	ASSERT(expiration > 0);
2020 
2021 	arg.cyx_ndx = ndx;
2022 	arg.cyx_cpu = cpu;
2023 	arg.cyx_when = &when;
2024 	when.cyt_when = expiration;
2025 
2026 	be->cyb_xcall(be->cyb_arg, cpu->cyp_cpu,
2027 	    (cyc_func_t)cyclic_reprogram_xcall, &arg);
2028 }
2029 
2030 /*
2031  * cyclic_juggle_one_to() should only be called when the source cyclic
2032  * can be juggled and the destination CPU is known to be able to accept
2033  * it.
2034  */
2035 static void
2036 cyclic_juggle_one_to(cyc_id_t *idp, cyc_cpu_t *dest)
2037 {
2038 	cyc_cpu_t *src = idp->cyi_cpu;
2039 	cyc_index_t ndx = idp->cyi_ndx;
2040 	cyc_time_t when;
2041 	cyc_handler_t hdlr;
2042 	cyclic_t *cyclic;
2043 	uint16_t flags;
2044 	hrtime_t delay;
2045 
2046 	ASSERT(MUTEX_HELD(&cpu_lock));
2047 	ASSERT(src != NULL && idp->cyi_omni_list == NULL);
2048 	ASSERT(!(dest->cyp_cpu->cpu_flags & (CPU_QUIESCED | CPU_OFFLINE)));
2049 	CYC_PTRACE("juggle-one-to", idp, dest);
2050 
2051 	cyclic = &src->cyp_cyclics[ndx];
2052 
2053 	flags = cyclic->cy_flags;
2054 	ASSERT(!(flags & CYF_CPU_BOUND) && !(flags & CYF_FREE));
2055 
2056 	hdlr.cyh_func = cyclic->cy_handler;
2057 	hdlr.cyh_level = cyclic->cy_level;
2058 	hdlr.cyh_arg = cyclic->cy_arg;
2059 
2060 	/*
2061 	 * Before we begin the juggling process, see if the destination
2062 	 * CPU requires an expansion.  If it does, we'll perform the
2063 	 * expansion before removing the cyclic.  This is to prevent us
2064 	 * from blocking while a system-critical cyclic (notably, the clock
2065 	 * cyclic) isn't on a CPU.
2066 	 */
2067 	if (dest->cyp_nelems == dest->cyp_size) {
2068 		CYC_PTRACE("remove-expand", idp, dest);
2069 		cyclic_expand(dest);
2070 		ASSERT(dest->cyp_nelems < dest->cyp_size);
2071 	}
2072 
2073 	/*
2074 	 * Prevent a reprogram of this cyclic while we are relocating it.
2075 	 * Otherwise, cyclic_reprogram_here() will end up sending an X-call
2076 	 * to the wrong CPU.
2077 	 */
2078 	rw_enter(&idp->cyi_lock, RW_WRITER);
2079 
2080 	/*
2081 	 * Remove the cyclic from the source.  As mentioned above, we cannot
2082 	 * block during this operation; if we cannot remove the cyclic
2083 	 * without waiting, we spin for a time shorter than the interval, and
2084 	 * reattempt the (non-blocking) removal.  If we continue to fail,
2085 	 * we will exponentially back off (up to half of the interval).
2086 	 * Note that the removal will ultimately succeed -- even if the
2087 	 * cyclic handler is blocked on a resource held by a thread which we
2088 	 * have preempted, priority inheritance assures that the preempted
2089 	 * thread will preempt us and continue to progress.
2090 	 */
2091 	for (delay = NANOSEC / MICROSEC; ; delay <<= 1) {
2092 		/*
2093 		 * Before we begin this operation, disable kernel preemption.
2094 		 */
2095 		kpreempt_disable();
2096 		if (cyclic_remove_here(src, ndx, &when, CY_NOWAIT))
2097 			break;
2098 
2099 		/*
2100 		 * The operation failed; enable kernel preemption while
2101 		 * spinning.
2102 		 */
2103 		kpreempt_enable();
2104 
2105 		CYC_PTRACE("remove-retry", idp, src);
2106 
2107 		if (delay > (cyclic->cy_interval >> 1))
2108 			delay = cyclic->cy_interval >> 1;
2109 
2110 		/*
2111 		 * Drop the RW lock to avoid a deadlock with the cyclic
2112 		 * handler (because it can potentially call cyclic_reprogram().
2113 		 */
2114 		rw_exit(&idp->cyi_lock);
2115 		drv_usecwait((clock_t)(delay / (NANOSEC / MICROSEC)));
2116 		rw_enter(&idp->cyi_lock, RW_WRITER);
2117 	}
2118 
2119 	/*
2120 	 * Now add the cyclic to the destination.  This won't block; we
2121 	 * performed any necessary (blocking) expansion of the destination
2122 	 * CPU before removing the cyclic from the source CPU.
2123 	 */
2124 	idp->cyi_ndx = cyclic_add_here(dest, &hdlr, &when, flags);
2125 	idp->cyi_cpu = dest;
2126 	kpreempt_enable();
2127 
2128 	/*
2129 	 * Now that we have successfully relocated the cyclic, allow
2130 	 * it to be reprogrammed.
2131 	 */
2132 	rw_exit(&idp->cyi_lock);
2133 }
2134 
2135 static int
2136 cyclic_juggle_one(cyc_id_t *idp)
2137 {
2138 	cyc_index_t ndx = idp->cyi_ndx;
2139 	cyc_cpu_t *cpu = idp->cyi_cpu, *dest;
2140 	cyclic_t *cyclic = &cpu->cyp_cyclics[ndx];
2141 	cpu_t *c = cpu->cyp_cpu;
2142 	cpupart_t *part = c->cpu_part;
2143 
2144 	CYC_PTRACE("juggle-one", idp, cpu);
2145 	ASSERT(MUTEX_HELD(&cpu_lock));
2146 	ASSERT(!(c->cpu_flags & CPU_OFFLINE));
2147 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2148 	ASSERT(!(cyclic->cy_flags & CYF_FREE));
2149 
2150 	if ((dest = cyclic_pick_cpu(part, c, c, cyclic->cy_flags)) == NULL) {
2151 		/*
2152 		 * Bad news:  this cyclic can't be juggled.
2153 		 */
2154 		CYC_PTRACE("juggle-fail", idp, cpu)
2155 		return (0);
2156 	}
2157 
2158 	cyclic_juggle_one_to(idp, dest);
2159 
2160 	return (1);
2161 }
2162 
2163 static void
2164 cyclic_unbind_cpu(cyclic_id_t id)
2165 {
2166 	cyc_id_t *idp = (cyc_id_t *)id;
2167 	cyc_cpu_t *cpu = idp->cyi_cpu;
2168 	cpu_t *c = cpu->cyp_cpu;
2169 	cyclic_t *cyclic = &cpu->cyp_cyclics[idp->cyi_ndx];
2170 
2171 	CYC_PTRACE("unbind-cpu", id, cpu);
2172 	ASSERT(MUTEX_HELD(&cpu_lock));
2173 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2174 	ASSERT(!(cyclic->cy_flags & CYF_FREE));
2175 	ASSERT(cyclic->cy_flags & CYF_CPU_BOUND);
2176 
2177 	cyclic->cy_flags &= ~CYF_CPU_BOUND;
2178 
2179 	/*
2180 	 * If we were bound to CPU which has interrupts disabled, we need
2181 	 * to juggle away.  This can only fail if we are bound to a
2182 	 * processor set, and if every CPU in the processor set has
2183 	 * interrupts disabled.
2184 	 */
2185 	if (!(c->cpu_flags & CPU_ENABLE)) {
2186 		int res = cyclic_juggle_one(idp);
2187 
2188 		ASSERT((res && idp->cyi_cpu != cpu) ||
2189 		    (!res && (cyclic->cy_flags & CYF_PART_BOUND)));
2190 	}
2191 }
2192 
2193 static void
2194 cyclic_bind_cpu(cyclic_id_t id, cpu_t *d)
2195 {
2196 	cyc_id_t *idp = (cyc_id_t *)id;
2197 	cyc_cpu_t *dest = d->cpu_cyclic, *cpu = idp->cyi_cpu;
2198 	cpu_t *c = cpu->cyp_cpu;
2199 	cyclic_t *cyclic = &cpu->cyp_cyclics[idp->cyi_ndx];
2200 	cpupart_t *part = c->cpu_part;
2201 
2202 	CYC_PTRACE("bind-cpu", id, dest);
2203 	ASSERT(MUTEX_HELD(&cpu_lock));
2204 	ASSERT(!(d->cpu_flags & CPU_OFFLINE));
2205 	ASSERT(!(c->cpu_flags & CPU_OFFLINE));
2206 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2207 	ASSERT(dest != NULL);
2208 	ASSERT(dest->cyp_state == CYS_ONLINE);
2209 	ASSERT(!(cyclic->cy_flags & CYF_FREE));
2210 	ASSERT(!(cyclic->cy_flags & CYF_CPU_BOUND));
2211 
2212 	dest = cyclic_pick_cpu(part, d, NULL, cyclic->cy_flags | CYF_CPU_BOUND);
2213 
2214 	if (dest != cpu) {
2215 		cyclic_juggle_one_to(idp, dest);
2216 		cyclic = &dest->cyp_cyclics[idp->cyi_ndx];
2217 	}
2218 
2219 	cyclic->cy_flags |= CYF_CPU_BOUND;
2220 }
2221 
2222 static void
2223 cyclic_unbind_cpupart(cyclic_id_t id)
2224 {
2225 	cyc_id_t *idp = (cyc_id_t *)id;
2226 	cyc_cpu_t *cpu = idp->cyi_cpu;
2227 	cpu_t *c = cpu->cyp_cpu;
2228 	cyclic_t *cyc = &cpu->cyp_cyclics[idp->cyi_ndx];
2229 
2230 	CYC_PTRACE("unbind-part", idp, c->cpu_part);
2231 	ASSERT(MUTEX_HELD(&cpu_lock));
2232 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2233 	ASSERT(!(cyc->cy_flags & CYF_FREE));
2234 	ASSERT(cyc->cy_flags & CYF_PART_BOUND);
2235 
2236 	cyc->cy_flags &= ~CYF_PART_BOUND;
2237 
2238 	/*
2239 	 * If we're on a CPU which has interrupts disabled (and if this cyclic
2240 	 * isn't bound to the CPU), we need to juggle away.
2241 	 */
2242 	if (!(c->cpu_flags & CPU_ENABLE) && !(cyc->cy_flags & CYF_CPU_BOUND)) {
2243 		int res = cyclic_juggle_one(idp);
2244 
2245 		ASSERT(res && idp->cyi_cpu != cpu);
2246 	}
2247 }
2248 
2249 static void
2250 cyclic_bind_cpupart(cyclic_id_t id, cpupart_t *part)
2251 {
2252 	cyc_id_t *idp = (cyc_id_t *)id;
2253 	cyc_cpu_t *cpu = idp->cyi_cpu, *dest;
2254 	cpu_t *c = cpu->cyp_cpu;
2255 	cyclic_t *cyc = &cpu->cyp_cyclics[idp->cyi_ndx];
2256 
2257 	CYC_PTRACE("bind-part", idp, part);
2258 	ASSERT(MUTEX_HELD(&cpu_lock));
2259 	ASSERT(!(c->cpu_flags & CPU_OFFLINE));
2260 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2261 	ASSERT(!(cyc->cy_flags & CYF_FREE));
2262 	ASSERT(!(cyc->cy_flags & CYF_PART_BOUND));
2263 	ASSERT(part->cp_ncpus > 0);
2264 
2265 	dest = cyclic_pick_cpu(part, c, NULL, cyc->cy_flags | CYF_PART_BOUND);
2266 
2267 	if (dest != cpu) {
2268 		cyclic_juggle_one_to(idp, dest);
2269 		cyc = &dest->cyp_cyclics[idp->cyi_ndx];
2270 	}
2271 
2272 	cyc->cy_flags |= CYF_PART_BOUND;
2273 }
2274 
2275 static void
2276 cyclic_configure(cpu_t *c)
2277 {
2278 	cyc_cpu_t *cpu = kmem_zalloc(sizeof (cyc_cpu_t), KM_SLEEP);
2279 	cyc_backend_t *nbe = kmem_zalloc(sizeof (cyc_backend_t), KM_SLEEP);
2280 	int i;
2281 
2282 	CYC_PTRACE1("configure", cpu);
2283 	ASSERT(MUTEX_HELD(&cpu_lock));
2284 
2285 	if (cyclic_id_cache == NULL)
2286 		cyclic_id_cache = kmem_cache_create("cyclic_id_cache",
2287 		    sizeof (cyc_id_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2288 
2289 	cpu->cyp_cpu = c;
2290 
2291 	sema_init(&cpu->cyp_modify_wait, 0, NULL, SEMA_DEFAULT, NULL);
2292 
2293 	cpu->cyp_size = 1;
2294 	cpu->cyp_heap = kmem_zalloc(sizeof (cyc_index_t), KM_SLEEP);
2295 	cpu->cyp_cyclics = kmem_zalloc(sizeof (cyclic_t), KM_SLEEP);
2296 	cpu->cyp_cyclics->cy_flags = CYF_FREE;
2297 
2298 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
2299 		/*
2300 		 * We don't need to set the sizemask; it's already zero
2301 		 * (which is the appropriate sizemask for a size of 1).
2302 		 */
2303 		cpu->cyp_softbuf[i].cys_buf[0].cypc_buf =
2304 		    kmem_alloc(sizeof (cyc_index_t), KM_SLEEP);
2305 	}
2306 
2307 	cpu->cyp_state = CYS_OFFLINE;
2308 
2309 	/*
2310 	 * Setup the backend for this CPU.
2311 	 */
2312 	bcopy(&cyclic_backend, nbe, sizeof (cyc_backend_t));
2313 	nbe->cyb_arg = nbe->cyb_configure(c);
2314 	cpu->cyp_backend = nbe;
2315 
2316 	/*
2317 	 * On platforms where stray interrupts may be taken during startup,
2318 	 * the CPU's cpu_cyclic pointer serves as an indicator that the
2319 	 * cyclic subsystem for this CPU is prepared to field interrupts.
2320 	 */
2321 	membar_producer();
2322 
2323 	c->cpu_cyclic = cpu;
2324 }
2325 
2326 static void
2327 cyclic_unconfigure(cpu_t *c)
2328 {
2329 	cyc_cpu_t *cpu = c->cpu_cyclic;
2330 	cyc_backend_t *be = cpu->cyp_backend;
2331 	cyb_arg_t bar = be->cyb_arg;
2332 	int i;
2333 
2334 	CYC_PTRACE1("unconfigure", cpu);
2335 	ASSERT(MUTEX_HELD(&cpu_lock));
2336 	ASSERT(cpu->cyp_state == CYS_OFFLINE);
2337 	ASSERT(cpu->cyp_nelems == 0);
2338 
2339 	/*
2340 	 * Let the backend know that the CPU is being yanked, and free up
2341 	 * the backend structure.
2342 	 */
2343 	be->cyb_unconfigure(bar);
2344 	kmem_free(be, sizeof (cyc_backend_t));
2345 	cpu->cyp_backend = NULL;
2346 
2347 	/*
2348 	 * Free up the producer/consumer buffers at each of the soft levels.
2349 	 */
2350 	for (i = CY_LOW_LEVEL; i < CY_LOW_LEVEL + CY_SOFT_LEVELS; i++) {
2351 		cyc_softbuf_t *softbuf = &cpu->cyp_softbuf[i];
2352 		uchar_t hard = softbuf->cys_hard;
2353 		cyc_pcbuffer_t *pc = &softbuf->cys_buf[hard];
2354 		size_t bufsize = sizeof (cyc_index_t) * (pc->cypc_sizemask + 1);
2355 
2356 		/*
2357 		 * Assert that we're not in the middle of a resize operation.
2358 		 */
2359 		ASSERT(hard == softbuf->cys_soft);
2360 		ASSERT(hard == 0 || hard == 1);
2361 		ASSERT(pc->cypc_buf != NULL);
2362 		ASSERT(softbuf->cys_buf[hard ^ 1].cypc_buf == NULL);
2363 
2364 		kmem_free(pc->cypc_buf, bufsize);
2365 		pc->cypc_buf = NULL;
2366 	}
2367 
2368 	/*
2369 	 * Finally, clean up our remaining dynamic structures and NULL out
2370 	 * the cpu_cyclic pointer.
2371 	 */
2372 	kmem_free(cpu->cyp_cyclics, cpu->cyp_size * sizeof (cyclic_t));
2373 	kmem_free(cpu->cyp_heap, cpu->cyp_size * sizeof (cyc_index_t));
2374 	kmem_free(cpu, sizeof (cyc_cpu_t));
2375 
2376 	c->cpu_cyclic = NULL;
2377 }
2378 
2379 static int
2380 cyclic_cpu_setup(cpu_setup_t what, int id)
2381 {
2382 	/*
2383 	 * We are guaranteed that there is still/already an entry in the
2384 	 * cpu array for this CPU.
2385 	 */
2386 	cpu_t *c = cpu[id];
2387 	cyc_cpu_t *cyp = c->cpu_cyclic;
2388 
2389 	ASSERT(MUTEX_HELD(&cpu_lock));
2390 
2391 	switch (what) {
2392 	case CPU_CONFIG:
2393 		ASSERT(cyp == NULL);
2394 		cyclic_configure(c);
2395 		break;
2396 
2397 	case CPU_UNCONFIG:
2398 		ASSERT(cyp != NULL && cyp->cyp_state == CYS_OFFLINE);
2399 		cyclic_unconfigure(c);
2400 		break;
2401 
2402 	default:
2403 		break;
2404 	}
2405 
2406 	return (0);
2407 }
2408 
2409 static void
2410 cyclic_suspend_xcall(cyc_xcallarg_t *arg)
2411 {
2412 	cyc_cpu_t *cpu = arg->cyx_cpu;
2413 	cyc_backend_t *be = cpu->cyp_backend;
2414 	cyc_cookie_t cookie;
2415 	cyb_arg_t bar = be->cyb_arg;
2416 
2417 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
2418 
2419 	CYC_TRACE1(cpu, CY_HIGH_LEVEL, "suspend-xcall", cpu->cyp_nelems);
2420 	ASSERT(cpu->cyp_state == CYS_ONLINE || cpu->cyp_state == CYS_OFFLINE);
2421 
2422 	/*
2423 	 * We won't disable this CPU unless it has a non-zero number of
2424 	 * elements (cpu_lock assures that no one else may be attempting
2425 	 * to disable this CPU).
2426 	 */
2427 	if (cpu->cyp_nelems > 0) {
2428 		ASSERT(cpu->cyp_state == CYS_ONLINE);
2429 		be->cyb_disable(bar);
2430 	}
2431 
2432 	if (cpu->cyp_state == CYS_ONLINE)
2433 		cpu->cyp_state = CYS_SUSPENDED;
2434 
2435 	be->cyb_suspend(bar);
2436 	be->cyb_restore_level(bar, cookie);
2437 }
2438 
2439 static void
2440 cyclic_resume_xcall(cyc_xcallarg_t *arg)
2441 {
2442 	cyc_cpu_t *cpu = arg->cyx_cpu;
2443 	cyc_backend_t *be = cpu->cyp_backend;
2444 	cyc_cookie_t cookie;
2445 	cyb_arg_t bar = be->cyb_arg;
2446 	cyc_state_t state = cpu->cyp_state;
2447 
2448 	cookie = be->cyb_set_level(bar, CY_HIGH_LEVEL);
2449 
2450 	CYC_TRACE1(cpu, CY_HIGH_LEVEL, "resume-xcall", cpu->cyp_nelems);
2451 	ASSERT(state == CYS_SUSPENDED || state == CYS_OFFLINE);
2452 
2453 	be->cyb_resume(bar);
2454 
2455 	/*
2456 	 * We won't enable this CPU unless it has a non-zero number of
2457 	 * elements.
2458 	 */
2459 	if (cpu->cyp_nelems > 0) {
2460 		cyclic_t *cyclic = &cpu->cyp_cyclics[cpu->cyp_heap[0]];
2461 		hrtime_t exp = cyclic->cy_expire;
2462 
2463 		CYC_TRACE(cpu, CY_HIGH_LEVEL, "resume-reprog", cyclic, exp);
2464 		ASSERT(state == CYS_SUSPENDED);
2465 		be->cyb_enable(bar);
2466 		be->cyb_reprogram(bar, exp);
2467 	}
2468 
2469 	if (state == CYS_SUSPENDED)
2470 		cpu->cyp_state = CYS_ONLINE;
2471 
2472 	CYC_TRACE1(cpu, CY_HIGH_LEVEL, "resume-done", cpu->cyp_nelems);
2473 	be->cyb_restore_level(bar, cookie);
2474 }
2475 
2476 static void
2477 cyclic_omni_start(cyc_id_t *idp, cyc_cpu_t *cpu)
2478 {
2479 	cyc_omni_handler_t *omni = &idp->cyi_omni_hdlr;
2480 	cyc_omni_cpu_t *ocpu = kmem_alloc(sizeof (cyc_omni_cpu_t), KM_SLEEP);
2481 	cyc_handler_t hdlr;
2482 	cyc_time_t when;
2483 
2484 	CYC_PTRACE("omni-start", cpu, idp);
2485 	ASSERT(MUTEX_HELD(&cpu_lock));
2486 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2487 	ASSERT(idp->cyi_cpu == NULL);
2488 
2489 	hdlr.cyh_func = NULL;
2490 	hdlr.cyh_arg = NULL;
2491 	hdlr.cyh_level = CY_LEVELS;
2492 
2493 	when.cyt_when = 0;
2494 	when.cyt_interval = 0;
2495 
2496 	omni->cyo_online(omni->cyo_arg, cpu->cyp_cpu, &hdlr, &when);
2497 
2498 	ASSERT(hdlr.cyh_func != NULL);
2499 	ASSERT(hdlr.cyh_level < CY_LEVELS);
2500 	ASSERT(when.cyt_when >= 0 && when.cyt_interval > 0);
2501 
2502 	ocpu->cyo_cpu = cpu;
2503 	ocpu->cyo_arg = hdlr.cyh_arg;
2504 	ocpu->cyo_ndx = cyclic_add_here(cpu, &hdlr, &when, 0);
2505 	ocpu->cyo_next = idp->cyi_omni_list;
2506 	idp->cyi_omni_list = ocpu;
2507 }
2508 
2509 static void
2510 cyclic_omni_stop(cyc_id_t *idp, cyc_cpu_t *cpu)
2511 {
2512 	cyc_omni_handler_t *omni = &idp->cyi_omni_hdlr;
2513 	cyc_omni_cpu_t *ocpu = idp->cyi_omni_list, *prev = NULL;
2514 	clock_t delay;
2515 	int ret;
2516 
2517 	CYC_PTRACE("omni-stop", cpu, idp);
2518 	ASSERT(MUTEX_HELD(&cpu_lock));
2519 	ASSERT(cpu->cyp_state == CYS_ONLINE);
2520 	ASSERT(idp->cyi_cpu == NULL);
2521 	ASSERT(ocpu != NULL);
2522 
2523 	/*
2524 	 * Prevent a reprogram of this cyclic while we are removing it.
2525 	 * Otherwise, cyclic_reprogram_here() will end up sending an X-call
2526 	 * to the offlined CPU.
2527 	 */
2528 	rw_enter(&idp->cyi_lock, RW_WRITER);
2529 
2530 	while (ocpu != NULL && ocpu->cyo_cpu != cpu) {
2531 		prev = ocpu;
2532 		ocpu = ocpu->cyo_next;
2533 	}
2534 
2535 	/*
2536 	 * We _must_ have found an cyc_omni_cpu which corresponds to this
2537 	 * CPU -- the definition of an omnipresent cyclic is that it runs
2538 	 * on all online CPUs.
2539 	 */
2540 	ASSERT(ocpu != NULL);
2541 
2542 	if (prev == NULL) {
2543 		idp->cyi_omni_list = ocpu->cyo_next;
2544 	} else {
2545 		prev->cyo_next = ocpu->cyo_next;
2546 	}
2547 
2548 	/*
2549 	 * Remove the cyclic from the source.  We cannot block during this
2550 	 * operation because we are holding the cyi_lock which can be held
2551 	 * by the cyclic handler via cyclic_reprogram().
2552 	 *
2553 	 * If we cannot remove the cyclic without waiting, we spin for a time,
2554 	 * and reattempt the (non-blocking) removal. If the handler is blocked
2555 	 * on the cyi_lock, then we let go of it in the spin loop to give
2556 	 * the handler a chance to run. Note that the removal will ultimately
2557 	 * succeed -- even if the cyclic handler is blocked on a resource
2558 	 * held by a thread which we have preempted, priority inheritance
2559 	 * assures that the preempted thread will preempt us and continue
2560 	 * to progress.
2561 	 */
2562 	for (delay = 1; ; delay <<= 1) {
2563 		/*
2564 		 * Before we begin this operation, disable kernel preemption.
2565 		 */
2566 		kpreempt_disable();
2567 		ret = cyclic_remove_here(ocpu->cyo_cpu, ocpu->cyo_ndx, NULL,
2568 		    CY_NOWAIT);
2569 		/*
2570 		 * Enable kernel preemption while spinning.
2571 		 */
2572 		kpreempt_enable();
2573 
2574 		if (ret)
2575 			break;
2576 
2577 		CYC_PTRACE("remove-omni-retry", idp, ocpu->cyo_cpu);
2578 
2579 		/*
2580 		 * Drop the RW lock to avoid a deadlock with the cyclic
2581 		 * handler (because it can potentially call cyclic_reprogram().
2582 		 */
2583 		rw_exit(&idp->cyi_lock);
2584 		drv_usecwait(delay);
2585 		rw_enter(&idp->cyi_lock, RW_WRITER);
2586 	}
2587 
2588 	/*
2589 	 * Now that we have successfully removed the cyclic, allow the omni
2590 	 * cyclic to be reprogrammed on other CPUs.
2591 	 */
2592 	rw_exit(&idp->cyi_lock);
2593 
2594 	/*
2595 	 * The cyclic has been removed from this CPU; time to call the
2596 	 * omnipresent offline handler.
2597 	 */
2598 	if (omni->cyo_offline != NULL)
2599 		omni->cyo_offline(omni->cyo_arg, cpu->cyp_cpu, ocpu->cyo_arg);
2600 
2601 	kmem_free(ocpu, sizeof (cyc_omni_cpu_t));
2602 }
2603 
2604 static cyc_id_t *
2605 cyclic_new_id()
2606 {
2607 	cyc_id_t *idp;
2608 
2609 	ASSERT(MUTEX_HELD(&cpu_lock));
2610 
2611 	idp = kmem_cache_alloc(cyclic_id_cache, KM_SLEEP);
2612 
2613 	/*
2614 	 * The cyi_cpu field of the cyc_id_t structure tracks the CPU
2615 	 * associated with the cyclic.  If and only if this field is NULL, the
2616 	 * cyc_id_t is an omnipresent cyclic.  Note that cyi_omni_list may be
2617 	 * NULL for an omnipresent cyclic while the cyclic is being created
2618 	 * or destroyed.
2619 	 */
2620 	idp->cyi_cpu = NULL;
2621 	idp->cyi_ndx = 0;
2622 	rw_init(&idp->cyi_lock, NULL, RW_DEFAULT, NULL);
2623 
2624 	idp->cyi_next = cyclic_id_head;
2625 	idp->cyi_prev = NULL;
2626 	idp->cyi_omni_list = NULL;
2627 
2628 	if (cyclic_id_head != NULL) {
2629 		ASSERT(cyclic_id_head->cyi_prev == NULL);
2630 		cyclic_id_head->cyi_prev = idp;
2631 	}
2632 
2633 	cyclic_id_head = idp;
2634 
2635 	return (idp);
2636 }
2637 
2638 /*
2639  *  cyclic_id_t cyclic_add(cyc_handler_t *, cyc_time_t *)
2640  *
2641  *  Overview
2642  *
2643  *    cyclic_add() will create an unbound cyclic with the specified handler and
2644  *    interval.  The cyclic will run on a CPU which both has interrupts enabled
2645  *    and is in the system CPU partition.
2646  *
2647  *  Arguments and notes
2648  *
2649  *    As its first argument, cyclic_add() takes a cyc_handler, which has the
2650  *    following members:
2651  *
2652  *      cyc_func_t cyh_func    <-- Cyclic handler
2653  *      void *cyh_arg          <-- Argument to cyclic handler
2654  *      cyc_level_t cyh_level  <-- Level at which to fire; must be one of
2655  *                                 CY_LOW_LEVEL, CY_LOCK_LEVEL or CY_HIGH_LEVEL
2656  *
2657  *    Note that cyh_level is _not_ an ipl or spl; it must be one the
2658  *    CY_*_LEVELs.  This layer of abstraction allows the platform to define
2659  *    the precise interrupt priority levels, within the following constraints:
2660  *
2661  *       CY_LOCK_LEVEL must map to LOCK_LEVEL
2662  *       CY_HIGH_LEVEL must map to an ipl greater than LOCK_LEVEL
2663  *       CY_LOW_LEVEL must map to an ipl below LOCK_LEVEL
2664  *
2665  *    In addition to a cyc_handler, cyclic_add() takes a cyc_time, which
2666  *    has the following members:
2667  *
2668  *       hrtime_t cyt_when     <-- Absolute time, in nanoseconds since boot, at
2669  *                                 which to start firing
2670  *       hrtime_t cyt_interval <-- Length of interval, in nanoseconds
2671  *
2672  *    gethrtime() is the time source for nanoseconds since boot.  If cyt_when
2673  *    is set to 0, the cyclic will start to fire when cyt_interval next
2674  *    divides the number of nanoseconds since boot.
2675  *
2676  *    The cyt_interval field _must_ be filled in by the caller; one-shots are
2677  *    _not_ explicitly supported by the cyclic subsystem (cyclic_add() will
2678  *    assert that cyt_interval is non-zero).  The maximum value for either
2679  *    field is INT64_MAX; the caller is responsible for assuring that
2680  *    cyt_when + cyt_interval <= INT64_MAX.  Neither field may be negative.
2681  *
2682  *    For an arbitrary time t in the future, the cyclic handler is guaranteed
2683  *    to have been called (t - cyt_when) / cyt_interval times.  This will
2684  *    be true even if interrupts have been disabled for periods greater than
2685  *    cyt_interval nanoseconds.  In order to compensate for such periods,
2686  *    the cyclic handler may be called a finite number of times with an
2687  *    arbitrarily small interval.
2688  *
2689  *    The cyclic subsystem will not enforce any lower bound on the interval;
2690  *    if the interval is less than the time required to process an interrupt,
2691  *    the CPU will wedge.  It's the responsibility of the caller to assure that
2692  *    either the value of the interval is sane, or that its caller has
2693  *    sufficient privilege to deny service (i.e. its caller is root).
2694  *
2695  *    The cyclic handler is guaranteed to be single threaded, even while the
2696  *    cyclic is being juggled between CPUs (see cyclic_juggle(), below).
2697  *    That is, a given cyclic handler will never be executed simultaneously
2698  *    on different CPUs.
2699  *
2700  *  Return value
2701  *
2702  *    cyclic_add() returns a cyclic_id_t, which is guaranteed to be a value
2703  *    other than CYCLIC_NONE.  cyclic_add() cannot fail.
2704  *
2705  *  Caller's context
2706  *
2707  *    cpu_lock must be held by the caller, and the caller must not be in
2708  *    interrupt context.  cyclic_add() will perform a KM_SLEEP kernel
2709  *    memory allocation, so the usual rules (e.g. p_lock cannot be held)
2710  *    apply.  A cyclic may be added even in the presence of CPUs that have
2711  *    not been configured with respect to the cyclic subsystem, but only
2712  *    configured CPUs will be eligible to run the new cyclic.
2713  *
2714  *  Cyclic handler's context
2715  *
2716  *    Cyclic handlers will be executed in the interrupt context corresponding
2717  *    to the specified level (i.e. either high, lock or low level).  The
2718  *    usual context rules apply.
2719  *
2720  *    A cyclic handler may not grab ANY locks held by the caller of any of
2721  *    cyclic_add(), cyclic_remove() or cyclic_bind(); the implementation of
2722  *    these functions may require blocking on cyclic handler completion.
2723  *    Moreover, cyclic handlers may not make any call back into the cyclic
2724  *    subsystem.
2725  */
2726 cyclic_id_t
2727 cyclic_add(cyc_handler_t *hdlr, cyc_time_t *when)
2728 {
2729 	cyc_id_t *idp = cyclic_new_id();
2730 
2731 	ASSERT(MUTEX_HELD(&cpu_lock));
2732 	ASSERT(when->cyt_when >= 0 && when->cyt_interval > 0);
2733 
2734 	idp->cyi_cpu = cyclic_pick_cpu(NULL, NULL, NULL, 0);
2735 	idp->cyi_ndx = cyclic_add_here(idp->cyi_cpu, hdlr, when, 0);
2736 
2737 	return ((uintptr_t)idp);
2738 }
2739 
2740 /*
2741  *  cyclic_id_t cyclic_add_omni(cyc_omni_handler_t *)
2742  *
2743  *  Overview
2744  *
2745  *    cyclic_add_omni() will create an omnipresent cyclic with the specified
2746  *    online and offline handlers.  Omnipresent cyclics run on all online
2747  *    CPUs, including CPUs which have unbound interrupts disabled.
2748  *
2749  *  Arguments
2750  *
2751  *    As its only argument, cyclic_add_omni() takes a cyc_omni_handler, which
2752  *    has the following members:
2753  *
2754  *      void (*cyo_online)()   <-- Online handler
2755  *      void (*cyo_offline)()  <-- Offline handler
2756  *      void *cyo_arg          <-- Argument to be passed to on/offline handlers
2757  *
2758  *  Online handler
2759  *
2760  *    The cyo_online member is a pointer to a function which has the following
2761  *    four arguments:
2762  *
2763  *      void *                 <-- Argument (cyo_arg)
2764  *      cpu_t *                <-- Pointer to CPU about to be onlined
2765  *      cyc_handler_t *        <-- Pointer to cyc_handler_t; must be filled in
2766  *                                 by omni online handler
2767  *      cyc_time_t *           <-- Pointer to cyc_time_t; must be filled in by
2768  *                                 omni online handler
2769  *
2770  *    The omni cyclic online handler is always called _before_ the omni
2771  *    cyclic begins to fire on the specified CPU.  As the above argument
2772  *    description implies, the online handler must fill in the two structures
2773  *    passed to it:  the cyc_handler_t and the cyc_time_t.  These are the
2774  *    same two structures passed to cyclic_add(), outlined above.  This
2775  *    allows the omni cyclic to have maximum flexibility; different CPUs may
2776  *    optionally
2777  *
2778  *      (a)  have different intervals
2779  *      (b)  be explicitly in or out of phase with one another
2780  *      (c)  have different handlers
2781  *      (d)  have different handler arguments
2782  *      (e)  fire at different levels
2783  *
2784  *    Of these, (e) seems somewhat dubious, but is nonetheless allowed.
2785  *
2786  *    The omni online handler is called in the same context as cyclic_add(),
2787  *    and has the same liberties:  omni online handlers may perform KM_SLEEP
2788  *    kernel memory allocations, and may grab locks which are also acquired
2789  *    by cyclic handlers.  However, omni cyclic online handlers may _not_
2790  *    call back into the cyclic subsystem, and should be generally careful
2791  *    about calling into arbitrary kernel subsystems.
2792  *
2793  *  Offline handler
2794  *
2795  *    The cyo_offline member is a pointer to a function which has the following
2796  *    three arguments:
2797  *
2798  *      void *                 <-- Argument (cyo_arg)
2799  *      cpu_t *                <-- Pointer to CPU about to be offlined
2800  *      void *                 <-- CPU's cyclic argument (that is, value
2801  *                                 to which cyh_arg member of the cyc_handler_t
2802  *                                 was set in the omni online handler)
2803  *
2804  *    The omni cyclic offline handler is always called _after_ the omni
2805  *    cyclic has ceased firing on the specified CPU.  Its purpose is to
2806  *    allow cleanup of any resources dynamically allocated in the omni cyclic
2807  *    online handler.  The context of the offline handler is identical to
2808  *    that of the online handler; the same constraints and liberties apply.
2809  *
2810  *    The offline handler is optional; it may be NULL.
2811  *
2812  *  Return value
2813  *
2814  *    cyclic_add_omni() returns a cyclic_id_t, which is guaranteed to be a
2815  *    value other than CYCLIC_NONE.  cyclic_add_omni() cannot fail.
2816  *
2817  *  Caller's context
2818  *
2819  *    The caller's context is identical to that of cyclic_add(), specified
2820  *    above.
2821  */
2822 cyclic_id_t
2823 cyclic_add_omni(cyc_omni_handler_t *omni)
2824 {
2825 	cyc_id_t *idp = cyclic_new_id();
2826 	cyc_cpu_t *cpu;
2827 	cpu_t *c;
2828 
2829 	ASSERT(MUTEX_HELD(&cpu_lock));
2830 	ASSERT(omni != NULL && omni->cyo_online != NULL);
2831 
2832 	idp->cyi_omni_hdlr = *omni;
2833 
2834 	c = cpu_list;
2835 	do {
2836 		if ((cpu = c->cpu_cyclic) == NULL)
2837 			continue;
2838 
2839 		if (cpu->cyp_state != CYS_ONLINE) {
2840 			ASSERT(cpu->cyp_state == CYS_OFFLINE);
2841 			continue;
2842 		}
2843 
2844 		cyclic_omni_start(idp, cpu);
2845 	} while ((c = c->cpu_next) != cpu_list);
2846 
2847 	/*
2848 	 * We must have found at least one online CPU on which to run
2849 	 * this cyclic.
2850 	 */
2851 	ASSERT(idp->cyi_omni_list != NULL);
2852 	ASSERT(idp->cyi_cpu == NULL);
2853 
2854 	return ((uintptr_t)idp);
2855 }
2856 
2857 /*
2858  *  void cyclic_remove(cyclic_id_t)
2859  *
2860  *  Overview
2861  *
2862  *    cyclic_remove() will remove the specified cyclic from the system.
2863  *
2864  *  Arguments and notes
2865  *
2866  *    The only argument is a cyclic_id returned from either cyclic_add() or
2867  *    cyclic_add_omni().
2868  *
2869  *    By the time cyclic_remove() returns, the caller is guaranteed that the
2870  *    removed cyclic handler has completed execution (this is the same
2871  *    semantic that untimeout() provides).  As a result, cyclic_remove() may
2872  *    need to block, waiting for the removed cyclic to complete execution.
2873  *    This leads to an important constraint on the caller:  no lock may be
2874  *    held across cyclic_remove() that also may be acquired by a cyclic
2875  *    handler.
2876  *
2877  *  Return value
2878  *
2879  *    None; cyclic_remove() always succeeds.
2880  *
2881  *  Caller's context
2882  *
2883  *    cpu_lock must be held by the caller, and the caller must not be in
2884  *    interrupt context.  The caller may not hold any locks which are also
2885  *    grabbed by any cyclic handler.  See "Arguments and notes", above.
2886  */
2887 void
2888 cyclic_remove(cyclic_id_t id)
2889 {
2890 	cyc_id_t *idp = (cyc_id_t *)id;
2891 	cyc_id_t *prev = idp->cyi_prev, *next = idp->cyi_next;
2892 	cyc_cpu_t *cpu = idp->cyi_cpu;
2893 
2894 	CYC_PTRACE("remove", idp, idp->cyi_cpu);
2895 	ASSERT(MUTEX_HELD(&cpu_lock));
2896 
2897 	if (cpu != NULL) {
2898 		(void) cyclic_remove_here(cpu, idp->cyi_ndx, NULL, CY_WAIT);
2899 	} else {
2900 		ASSERT(idp->cyi_omni_list != NULL);
2901 		while (idp->cyi_omni_list != NULL)
2902 			cyclic_omni_stop(idp, idp->cyi_omni_list->cyo_cpu);
2903 	}
2904 
2905 	if (prev != NULL) {
2906 		ASSERT(cyclic_id_head != idp);
2907 		prev->cyi_next = next;
2908 	} else {
2909 		ASSERT(cyclic_id_head == idp);
2910 		cyclic_id_head = next;
2911 	}
2912 
2913 	if (next != NULL)
2914 		next->cyi_prev = prev;
2915 
2916 	kmem_cache_free(cyclic_id_cache, idp);
2917 }
2918 
2919 /*
2920  *  void cyclic_bind(cyclic_id_t, cpu_t *, cpupart_t *)
2921  *
2922  *  Overview
2923  *
2924  *    cyclic_bind() atomically changes the CPU and CPU partition bindings
2925  *    of a cyclic.
2926  *
2927  *  Arguments and notes
2928  *
2929  *    The first argument is a cyclic_id retuned from cyclic_add().
2930  *    cyclic_bind() may _not_ be called on a cyclic_id returned from
2931  *    cyclic_add_omni().
2932  *
2933  *    The second argument specifies the CPU to which to bind the specified
2934  *    cyclic.  If the specified cyclic is bound to a CPU other than the one
2935  *    specified, it will be unbound from its bound CPU.  Unbinding the cyclic
2936  *    from its CPU may cause it to be juggled to another CPU.  If the specified
2937  *    CPU is non-NULL, the cyclic will be subsequently rebound to the specified
2938  *    CPU.
2939  *
2940  *    If a CPU with bound cyclics is transitioned into the P_NOINTR state,
2941  *    only cyclics not bound to the CPU can be juggled away; CPU-bound cyclics
2942  *    will continue to fire on the P_NOINTR CPU.  A CPU with bound cyclics
2943  *    cannot be offlined (attempts to offline the CPU will return EBUSY).
2944  *    Likewise, cyclics may not be bound to an offline CPU; if the caller
2945  *    attempts to bind a cyclic to an offline CPU, the cyclic subsystem will
2946  *    panic.
2947  *
2948  *    The third argument specifies the CPU partition to which to bind the
2949  *    specified cyclic.  If the specified cyclic is bound to a CPU partition
2950  *    other than the one specified, it will be unbound from its bound
2951  *    partition.  Unbinding the cyclic from its CPU partition may cause it
2952  *    to be juggled to another CPU.  If the specified CPU partition is
2953  *    non-NULL, the cyclic will be subsequently rebound to the specified CPU
2954  *    partition.
2955  *
2956  *    It is the caller's responsibility to assure that the specified CPU
2957  *    partition contains a CPU.  If it does not, the cyclic subsystem will
2958  *    panic.  A CPU partition with bound cyclics cannot be destroyed (attempts
2959  *    to destroy the partition will return EBUSY).  If a CPU with
2960  *    partition-bound cyclics is transitioned into the P_NOINTR state, cyclics
2961  *    bound to the CPU's partition (but not bound to the CPU) will be juggled
2962  *    away only if there exists another CPU in the partition in the P_ONLINE
2963  *    state.
2964  *
2965  *    It is the caller's responsibility to assure that the specified CPU and
2966  *    CPU partition are self-consistent.  If both parameters are non-NULL,
2967  *    and the specified CPU partition does not contain the specified CPU, the
2968  *    cyclic subsystem will panic.
2969  *
2970  *    It is the caller's responsibility to assure that the specified CPU has
2971  *    been configured with respect to the cyclic subsystem.  Generally, this
2972  *    is always true for valid, on-line CPUs.  The only periods of time during
2973  *    which this may not be true are during MP boot (i.e. after cyclic_init()
2974  *    is called but before cyclic_mp_init() is called) or during dynamic
2975  *    reconfiguration; cyclic_bind() should only be called with great care
2976  *    from these contexts.
2977  *
2978  *  Return value
2979  *
2980  *    None; cyclic_bind() always succeeds.
2981  *
2982  *  Caller's context
2983  *
2984  *    cpu_lock must be held by the caller, and the caller must not be in
2985  *    interrupt context.  The caller may not hold any locks which are also
2986  *    grabbed by any cyclic handler.
2987  */
2988 void
2989 cyclic_bind(cyclic_id_t id, cpu_t *d, cpupart_t *part)
2990 {
2991 	cyc_id_t *idp = (cyc_id_t *)id;
2992 	cyc_cpu_t *cpu = idp->cyi_cpu;
2993 	cpu_t *c;
2994 	uint16_t flags;
2995 
2996 	CYC_PTRACE("bind", d, part);
2997 	ASSERT(MUTEX_HELD(&cpu_lock));
2998 	ASSERT(part == NULL || d == NULL || d->cpu_part == part);
2999 
3000 	if (cpu == NULL) {
3001 		ASSERT(idp->cyi_omni_list != NULL);
3002 		panic("attempt to change binding of omnipresent cyclic");
3003 	}
3004 
3005 	c = cpu->cyp_cpu;
3006 	flags = cpu->cyp_cyclics[idp->cyi_ndx].cy_flags;
3007 
3008 	if (c != d && (flags & CYF_CPU_BOUND))
3009 		cyclic_unbind_cpu(id);
3010 
3011 	/*
3012 	 * Reload our cpu (we may have migrated).  We don't have to reload
3013 	 * the flags field here; if we were CYF_PART_BOUND on entry, we are
3014 	 * CYF_PART_BOUND now.
3015 	 */
3016 	cpu = idp->cyi_cpu;
3017 	c = cpu->cyp_cpu;
3018 
3019 	if (part != c->cpu_part && (flags & CYF_PART_BOUND))
3020 		cyclic_unbind_cpupart(id);
3021 
3022 	/*
3023 	 * Now reload the flags field, asserting that if we are CPU bound,
3024 	 * the CPU was specified (and likewise, if we are partition bound,
3025 	 * the partition was specified).
3026 	 */
3027 	cpu = idp->cyi_cpu;
3028 	c = cpu->cyp_cpu;
3029 	flags = cpu->cyp_cyclics[idp->cyi_ndx].cy_flags;
3030 	ASSERT(!(flags & CYF_CPU_BOUND) || c == d);
3031 	ASSERT(!(flags & CYF_PART_BOUND) || c->cpu_part == part);
3032 
3033 	if (!(flags & CYF_CPU_BOUND) && d != NULL)
3034 		cyclic_bind_cpu(id, d);
3035 
3036 	if (!(flags & CYF_PART_BOUND) && part != NULL)
3037 		cyclic_bind_cpupart(id, part);
3038 }
3039 
3040 int
3041 cyclic_reprogram(cyclic_id_t id, hrtime_t expiration)
3042 {
3043 	cyc_id_t *idp = (cyc_id_t *)id;
3044 	cyc_cpu_t *cpu;
3045 	cyc_omni_cpu_t *ocpu;
3046 	cyc_index_t ndx;
3047 
3048 	ASSERT(expiration > 0);
3049 
3050 	CYC_PTRACE("reprog", idp, idp->cyi_cpu);
3051 
3052 	kpreempt_disable();
3053 
3054 	/*
3055 	 * Prevent the cyclic from moving or disappearing while we reprogram.
3056 	 */
3057 	rw_enter(&idp->cyi_lock, RW_READER);
3058 
3059 	if (idp->cyi_cpu == NULL) {
3060 		ASSERT(curthread->t_preempt > 0);
3061 		cpu = CPU->cpu_cyclic;
3062 
3063 		/*
3064 		 * For an omni cyclic, we reprogram the cyclic corresponding
3065 		 * to the current CPU. Look for it in the list.
3066 		 */
3067 		ocpu = idp->cyi_omni_list;
3068 		while (ocpu != NULL) {
3069 			if (ocpu->cyo_cpu == cpu)
3070 				break;
3071 			ocpu = ocpu->cyo_next;
3072 		}
3073 
3074 		if (ocpu == NULL) {
3075 			/*
3076 			 * Didn't find it. This means that CPU offline
3077 			 * must have removed it racing with us. So,
3078 			 * nothing to do.
3079 			 */
3080 			rw_exit(&idp->cyi_lock);
3081 
3082 			kpreempt_enable();
3083 
3084 			return (0);
3085 		}
3086 		ndx = ocpu->cyo_ndx;
3087 	} else {
3088 		cpu = idp->cyi_cpu;
3089 		ndx = idp->cyi_ndx;
3090 	}
3091 
3092 	if (cpu->cyp_cpu == CPU)
3093 		cyclic_reprogram_cyclic(cpu, ndx, expiration);
3094 	else
3095 		cyclic_reprogram_here(cpu, ndx, expiration);
3096 
3097 	/*
3098 	 * Allow the cyclic to be moved or removed.
3099 	 */
3100 	rw_exit(&idp->cyi_lock);
3101 
3102 	kpreempt_enable();
3103 
3104 	return (1);
3105 }
3106 
3107 hrtime_t
3108 cyclic_getres()
3109 {
3110 	return (cyclic_resolution);
3111 }
3112 
3113 void
3114 cyclic_init(cyc_backend_t *be, hrtime_t resolution)
3115 {
3116 	ASSERT(MUTEX_HELD(&cpu_lock));
3117 
3118 	CYC_PTRACE("init", be, resolution);
3119 	cyclic_resolution = resolution;
3120 
3121 	/*
3122 	 * Copy the passed cyc_backend into the backend template.  This must
3123 	 * be done before the CPU can be configured.
3124 	 */
3125 	bcopy(be, &cyclic_backend, sizeof (cyc_backend_t));
3126 
3127 	/*
3128 	 * It's safe to look at the "CPU" pointer without disabling kernel
3129 	 * preemption; cyclic_init() is called only during startup by the
3130 	 * cyclic backend.
3131 	 */
3132 	cyclic_configure(CPU);
3133 	cyclic_online(CPU);
3134 }
3135 
3136 /*
3137  * It is assumed that cyclic_mp_init() is called some time after cyclic
3138  * init (and therefore, after cpu0 has been initialized).  We grab cpu_lock,
3139  * find the already initialized CPU, and initialize every other CPU with the
3140  * same backend.  Finally, we register a cpu_setup function.
3141  */
3142 void
3143 cyclic_mp_init()
3144 {
3145 	cpu_t *c;
3146 
3147 	mutex_enter(&cpu_lock);
3148 
3149 	c = cpu_list;
3150 	do {
3151 		if (c->cpu_cyclic == NULL) {
3152 			cyclic_configure(c);
3153 			cyclic_online(c);
3154 		}
3155 	} while ((c = c->cpu_next) != cpu_list);
3156 
3157 	register_cpu_setup_func((cpu_setup_func_t *)cyclic_cpu_setup, NULL);
3158 	mutex_exit(&cpu_lock);
3159 }
3160 
3161 /*
3162  *  int cyclic_juggle(cpu_t *)
3163  *
3164  *  Overview
3165  *
3166  *    cyclic_juggle() juggles as many cyclics as possible away from the
3167  *    specified CPU; all remaining cyclics on the CPU will either be CPU-
3168  *    or partition-bound.
3169  *
3170  *  Arguments and notes
3171  *
3172  *    The only argument to cyclic_juggle() is the CPU from which cyclics
3173  *    should be juggled.  CPU-bound cyclics are never juggled; partition-bound
3174  *    cyclics are only juggled if the specified CPU is in the P_NOINTR state
3175  *    and there exists a P_ONLINE CPU in the partition.  The cyclic subsystem
3176  *    assures that a cyclic will never fire late or spuriously, even while
3177  *    being juggled.
3178  *
3179  *  Return value
3180  *
3181  *    cyclic_juggle() returns a non-zero value if all cyclics were able to
3182  *    be juggled away from the CPU, and zero if one or more cyclics could
3183  *    not be juggled away.
3184  *
3185  *  Caller's context
3186  *
3187  *    cpu_lock must be held by the caller, and the caller must not be in
3188  *    interrupt context.  The caller may not hold any locks which are also
3189  *    grabbed by any cyclic handler.  While cyclic_juggle() _may_ be called
3190  *    in any context satisfying these constraints, it _must_ be called
3191  *    immediately after clearing CPU_ENABLE (i.e. before dropping cpu_lock).
3192  *    Failure to do so could result in an assertion failure in the cyclic
3193  *    subsystem.
3194  */
3195 int
3196 cyclic_juggle(cpu_t *c)
3197 {
3198 	cyc_cpu_t *cpu = c->cpu_cyclic;
3199 	cyc_id_t *idp;
3200 	int all_juggled = 1;
3201 
3202 	CYC_PTRACE1("juggle", c);
3203 	ASSERT(MUTEX_HELD(&cpu_lock));
3204 
3205 	/*
3206 	 * We'll go through each cyclic on the CPU, attempting to juggle
3207 	 * each one elsewhere.
3208 	 */
3209 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
3210 		if (idp->cyi_cpu != cpu)
3211 			continue;
3212 
3213 		if (cyclic_juggle_one(idp) == 0) {
3214 			all_juggled = 0;
3215 			continue;
3216 		}
3217 
3218 		ASSERT(idp->cyi_cpu != cpu);
3219 	}
3220 
3221 	return (all_juggled);
3222 }
3223 
3224 /*
3225  *  int cyclic_offline(cpu_t *)
3226  *
3227  *  Overview
3228  *
3229  *    cyclic_offline() offlines the cyclic subsystem on the specified CPU.
3230  *
3231  *  Arguments and notes
3232  *
3233  *    The only argument to cyclic_offline() is a CPU to offline.
3234  *    cyclic_offline() will attempt to juggle cyclics away from the specified
3235  *    CPU.
3236  *
3237  *  Return value
3238  *
3239  *    cyclic_offline() returns 1 if all cyclics on the CPU were juggled away
3240  *    and the cyclic subsystem on the CPU was successfully offlines.
3241  *    cyclic_offline returns 0 if some cyclics remain, blocking the cyclic
3242  *    offline operation.  All remaining cyclics on the CPU will either be
3243  *    CPU- or partition-bound.
3244  *
3245  *    See the "Arguments and notes" of cyclic_juggle(), below, for more detail
3246  *    on cyclic juggling.
3247  *
3248  *  Caller's context
3249  *
3250  *    The only caller of cyclic_offline() should be the processor management
3251  *    subsystem.  It is expected that the caller of cyclic_offline() will
3252  *    offline the CPU immediately after cyclic_offline() returns success (i.e.
3253  *    before dropping cpu_lock).  Moreover, it is expected that the caller will
3254  *    fail the CPU offline operation if cyclic_offline() returns failure.
3255  */
3256 int
3257 cyclic_offline(cpu_t *c)
3258 {
3259 	cyc_cpu_t *cpu = c->cpu_cyclic;
3260 	cyc_id_t *idp;
3261 
3262 	CYC_PTRACE1("offline", cpu);
3263 	ASSERT(MUTEX_HELD(&cpu_lock));
3264 
3265 	if (!cyclic_juggle(c))
3266 		return (0);
3267 
3268 	/*
3269 	 * This CPU is headed offline; we need to now stop omnipresent
3270 	 * cyclic firing on this CPU.
3271 	 */
3272 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
3273 		if (idp->cyi_cpu != NULL)
3274 			continue;
3275 
3276 		/*
3277 		 * We cannot possibly be offlining the last CPU; cyi_omni_list
3278 		 * must be non-NULL.
3279 		 */
3280 		ASSERT(idp->cyi_omni_list != NULL);
3281 		cyclic_omni_stop(idp, cpu);
3282 	}
3283 
3284 	ASSERT(cpu->cyp_state == CYS_ONLINE);
3285 	cpu->cyp_state = CYS_OFFLINE;
3286 
3287 	return (1);
3288 }
3289 
3290 /*
3291  *  void cyclic_online(cpu_t *)
3292  *
3293  *  Overview
3294  *
3295  *    cyclic_online() onlines a CPU previously offlined with cyclic_offline().
3296  *
3297  *  Arguments and notes
3298  *
3299  *    cyclic_online()'s only argument is a CPU to online.  The specified
3300  *    CPU must have been previously offlined with cyclic_offline().  After
3301  *    cyclic_online() returns, the specified CPU will be eligible to execute
3302  *    cyclics.
3303  *
3304  *  Return value
3305  *
3306  *    None; cyclic_online() always succeeds.
3307  *
3308  *  Caller's context
3309  *
3310  *    cyclic_online() should only be called by the processor management
3311  *    subsystem; cpu_lock must be held.
3312  */
3313 void
3314 cyclic_online(cpu_t *c)
3315 {
3316 	cyc_cpu_t *cpu = c->cpu_cyclic;
3317 	cyc_id_t *idp;
3318 
3319 	CYC_PTRACE1("online", cpu);
3320 	ASSERT(c->cpu_flags & CPU_ENABLE);
3321 	ASSERT(MUTEX_HELD(&cpu_lock));
3322 	ASSERT(cpu->cyp_state == CYS_OFFLINE);
3323 
3324 	cpu->cyp_state = CYS_ONLINE;
3325 
3326 	/*
3327 	 * Now that this CPU is open for business, we need to start firing
3328 	 * all omnipresent cyclics on it.
3329 	 */
3330 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
3331 		if (idp->cyi_cpu != NULL)
3332 			continue;
3333 
3334 		cyclic_omni_start(idp, cpu);
3335 	}
3336 }
3337 
3338 /*
3339  *  void cyclic_move_in(cpu_t *)
3340  *
3341  *  Overview
3342  *
3343  *    cyclic_move_in() is called by the CPU partition code immediately after
3344  *    the specified CPU has moved into a new partition.
3345  *
3346  *  Arguments and notes
3347  *
3348  *    The only argument to cyclic_move_in() is a CPU which has moved into a
3349  *    new partition.  If the specified CPU is P_ONLINE, and every other
3350  *    CPU in the specified CPU's new partition is P_NOINTR, cyclic_move_in()
3351  *    will juggle all partition-bound, CPU-unbound cyclics to the specified
3352  *    CPU.
3353  *
3354  *  Return value
3355  *
3356  *    None; cyclic_move_in() always succeeds.
3357  *
3358  *  Caller's context
3359  *
3360  *    cyclic_move_in() should _only_ be called immediately after a CPU has
3361  *    moved into a new partition, with cpu_lock held.  As with other calls
3362  *    into the cyclic subsystem, no lock may be held which is also grabbed
3363  *    by any cyclic handler.
3364  */
3365 void
3366 cyclic_move_in(cpu_t *d)
3367 {
3368 	cyc_id_t *idp;
3369 	cyc_cpu_t *dest = d->cpu_cyclic;
3370 	cyclic_t *cyclic;
3371 	cpupart_t *part = d->cpu_part;
3372 
3373 	CYC_PTRACE("move-in", dest, part);
3374 	ASSERT(MUTEX_HELD(&cpu_lock));
3375 
3376 	/*
3377 	 * Look for CYF_PART_BOUND cyclics in the new partition.  If
3378 	 * we find one, check to see if it is currently on a CPU which has
3379 	 * interrupts disabled.  If it is (and if this CPU currently has
3380 	 * interrupts enabled), we'll juggle those cyclics over here.
3381 	 */
3382 	if (!(d->cpu_flags & CPU_ENABLE)) {
3383 		CYC_PTRACE1("move-in-none", dest);
3384 		return;
3385 	}
3386 
3387 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
3388 		cyc_cpu_t *cpu = idp->cyi_cpu;
3389 		cpu_t *c;
3390 
3391 		/*
3392 		 * Omnipresent cyclics are exempt from juggling.
3393 		 */
3394 		if (cpu == NULL)
3395 			continue;
3396 
3397 		c = cpu->cyp_cpu;
3398 
3399 		if (c->cpu_part != part || (c->cpu_flags & CPU_ENABLE))
3400 			continue;
3401 
3402 		cyclic = &cpu->cyp_cyclics[idp->cyi_ndx];
3403 
3404 		if (cyclic->cy_flags & CYF_CPU_BOUND)
3405 			continue;
3406 
3407 		/*
3408 		 * We know that this cyclic is bound to its processor set
3409 		 * (otherwise, it would not be on a CPU with interrupts
3410 		 * disabled); juggle it to our CPU.
3411 		 */
3412 		ASSERT(cyclic->cy_flags & CYF_PART_BOUND);
3413 		cyclic_juggle_one_to(idp, dest);
3414 	}
3415 
3416 	CYC_PTRACE1("move-in-done", dest);
3417 }
3418 
3419 /*
3420  *  int cyclic_move_out(cpu_t *)
3421  *
3422  *  Overview
3423  *
3424  *    cyclic_move_out() is called by the CPU partition code immediately before
3425  *    the specified CPU is to move out of its partition.
3426  *
3427  *  Arguments and notes
3428  *
3429  *    The only argument to cyclic_move_out() is a CPU which is to move out of
3430  *    its partition.
3431  *
3432  *    cyclic_move_out() will attempt to juggle away all partition-bound
3433  *    cyclics.  If the specified CPU is the last CPU in a partition with
3434  *    partition-bound cyclics, cyclic_move_out() will fail.  If there exists
3435  *    a partition-bound cyclic which is CPU-bound to the specified CPU,
3436  *    cyclic_move_out() will fail.
3437  *
3438  *    Note that cyclic_move_out() will _only_ attempt to juggle away
3439  *    partition-bound cyclics; CPU-bound cyclics which are not partition-bound
3440  *    and unbound cyclics are not affected by changing the partition
3441  *    affiliation of the CPU.
3442  *
3443  *  Return value
3444  *
3445  *    cyclic_move_out() returns 1 if all partition-bound cyclics on the CPU
3446  *    were juggled away; 0 if some cyclics remain.
3447  *
3448  *  Caller's context
3449  *
3450  *    cyclic_move_out() should _only_ be called immediately before a CPU has
3451  *    moved out of its partition, with cpu_lock held.  It is expected that
3452  *    the caller of cyclic_move_out() will change the processor set affiliation
3453  *    of the specified CPU immediately after cyclic_move_out() returns
3454  *    success (i.e. before dropping cpu_lock).  Moreover, it is expected that
3455  *    the caller will fail the CPU repartitioning operation if cyclic_move_out()
3456  *    returns failure.  As with other calls into the cyclic subsystem, no lock
3457  *    may be held which is also grabbed by any cyclic handler.
3458  */
3459 int
3460 cyclic_move_out(cpu_t *c)
3461 {
3462 	cyc_id_t *idp;
3463 	cyc_cpu_t *cpu = c->cpu_cyclic, *dest;
3464 	cyclic_t *cyclic, *cyclics = cpu->cyp_cyclics;
3465 	cpupart_t *part = c->cpu_part;
3466 
3467 	CYC_PTRACE1("move-out", cpu);
3468 	ASSERT(MUTEX_HELD(&cpu_lock));
3469 
3470 	/*
3471 	 * If there are any CYF_PART_BOUND cyclics on this CPU, we need
3472 	 * to try to juggle them away.
3473 	 */
3474 	for (idp = cyclic_id_head; idp != NULL; idp = idp->cyi_next) {
3475 
3476 		if (idp->cyi_cpu != cpu)
3477 			continue;
3478 
3479 		cyclic = &cyclics[idp->cyi_ndx];
3480 
3481 		if (!(cyclic->cy_flags & CYF_PART_BOUND))
3482 			continue;
3483 
3484 		dest = cyclic_pick_cpu(part, c, c, cyclic->cy_flags);
3485 
3486 		if (dest == NULL) {
3487 			/*
3488 			 * We can't juggle this cyclic; we need to return
3489 			 * failure (we won't bother trying to juggle away
3490 			 * other cyclics).
3491 			 */
3492 			CYC_PTRACE("move-out-fail", cpu, idp);
3493 			return (0);
3494 		}
3495 		cyclic_juggle_one_to(idp, dest);
3496 	}
3497 
3498 	CYC_PTRACE1("move-out-done", cpu);
3499 	return (1);
3500 }
3501 
3502 /*
3503  *  void cyclic_suspend()
3504  *
3505  *  Overview
3506  *
3507  *    cyclic_suspend() suspends all cyclic activity throughout the cyclic
3508  *    subsystem.  It should be called only by subsystems which are attempting
3509  *    to suspend the entire system (e.g. checkpoint/resume, dynamic
3510  *    reconfiguration).
3511  *
3512  *  Arguments and notes
3513  *
3514  *    cyclic_suspend() takes no arguments.  Each CPU with an active cyclic
3515  *    disables its backend (offline CPUs disable their backends as part of
3516  *    the cyclic_offline() operation), thereby disabling future CY_HIGH_LEVEL
3517  *    interrupts.
3518  *
3519  *    Note that disabling CY_HIGH_LEVEL interrupts does not completely preclude
3520  *    cyclic handlers from being called after cyclic_suspend() returns:  if a
3521  *    CY_LOCK_LEVEL or CY_LOW_LEVEL interrupt thread was blocked at the time
3522  *    of cyclic_suspend(), cyclic handlers at its level may continue to be
3523  *    called after the interrupt thread becomes unblocked.  The
3524  *    post-cyclic_suspend() activity is bounded by the pend count on all
3525  *    cyclics at the time of cyclic_suspend().  Callers concerned with more
3526  *    than simply disabling future CY_HIGH_LEVEL interrupts must check for
3527  *    this condition.
3528  *
3529  *    On most platforms, timestamps from gethrtime() and gethrestime() are not
3530  *    guaranteed to monotonically increase between cyclic_suspend() and
3531  *    cyclic_resume().  However, timestamps are guaranteed to monotonically
3532  *    increase across the entire cyclic_suspend()/cyclic_resume() operation.
3533  *    That is, every timestamp obtained before cyclic_suspend() will be less
3534  *    than every timestamp obtained after cyclic_resume().
3535  *
3536  *  Return value
3537  *
3538  *    None; cyclic_suspend() always succeeds.
3539  *
3540  *  Caller's context
3541  *
3542  *    The cyclic subsystem must be configured on every valid CPU;
3543  *    cyclic_suspend() may not be called during boot or during dynamic
3544  *    reconfiguration.  Additionally, cpu_lock must be held, and the caller
3545  *    cannot be in high-level interrupt context.  However, unlike most other
3546  *    cyclic entry points, cyclic_suspend() may be called with locks held
3547  *    which are also acquired by CY_LOCK_LEVEL or CY_LOW_LEVEL cyclic
3548  *    handlers.
3549  */
3550 void
3551 cyclic_suspend()
3552 {
3553 	cpu_t *c;
3554 	cyc_cpu_t *cpu;
3555 	cyc_xcallarg_t arg;
3556 	cyc_backend_t *be;
3557 
3558 	CYC_PTRACE0("suspend");
3559 	ASSERT(MUTEX_HELD(&cpu_lock));
3560 	c = cpu_list;
3561 
3562 	do {
3563 		cpu = c->cpu_cyclic;
3564 		be = cpu->cyp_backend;
3565 		arg.cyx_cpu = cpu;
3566 
3567 		be->cyb_xcall(be->cyb_arg, c,
3568 		    (cyc_func_t)cyclic_suspend_xcall, &arg);
3569 	} while ((c = c->cpu_next) != cpu_list);
3570 }
3571 
3572 /*
3573  *  void cyclic_resume()
3574  *
3575  *    cyclic_resume() resumes all cyclic activity throughout the cyclic
3576  *    subsystem.  It should be called only by system-suspending subsystems.
3577  *
3578  *  Arguments and notes
3579  *
3580  *    cyclic_resume() takes no arguments.  Each CPU with an active cyclic
3581  *    reenables and reprograms its backend (offline CPUs are not reenabled).
3582  *    On most platforms, timestamps from gethrtime() and gethrestime() are not
3583  *    guaranteed to monotonically increase between cyclic_suspend() and
3584  *    cyclic_resume().  However, timestamps are guaranteed to monotonically
3585  *    increase across the entire cyclic_suspend()/cyclic_resume() operation.
3586  *    That is, every timestamp obtained before cyclic_suspend() will be less
3587  *    than every timestamp obtained after cyclic_resume().
3588  *
3589  *  Return value
3590  *
3591  *    None; cyclic_resume() always succeeds.
3592  *
3593  *  Caller's context
3594  *
3595  *    The cyclic subsystem must be configured on every valid CPU;
3596  *    cyclic_resume() may not be called during boot or during dynamic
3597  *    reconfiguration.  Additionally, cpu_lock must be held, and the caller
3598  *    cannot be in high-level interrupt context.  However, unlike most other
3599  *    cyclic entry points, cyclic_resume() may be called with locks held which
3600  *    are also acquired by CY_LOCK_LEVEL or CY_LOW_LEVEL cyclic handlers.
3601  */
3602 void
3603 cyclic_resume()
3604 {
3605 	cpu_t *c;
3606 	cyc_cpu_t *cpu;
3607 	cyc_xcallarg_t arg;
3608 	cyc_backend_t *be;
3609 
3610 	CYC_PTRACE0("resume");
3611 	ASSERT(MUTEX_HELD(&cpu_lock));
3612 
3613 	c = cpu_list;
3614 
3615 	do {
3616 		cpu = c->cpu_cyclic;
3617 		be = cpu->cyp_backend;
3618 		arg.cyx_cpu = cpu;
3619 
3620 		be->cyb_xcall(be->cyb_arg, c,
3621 		    (cyc_func_t)cyclic_resume_xcall, &arg);
3622 	} while ((c = c->cpu_next) != cpu_list);
3623 }
3624