1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Architecture-independent CPU control functions. 30 */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/var.h> 35 #include <sys/thread.h> 36 #include <sys/cpuvar.h> 37 #include <sys/kstat.h> 38 #include <sys/uadmin.h> 39 #include <sys/systm.h> 40 #include <sys/errno.h> 41 #include <sys/cmn_err.h> 42 #include <sys/procset.h> 43 #include <sys/processor.h> 44 #include <sys/debug.h> 45 #include <sys/cpupart.h> 46 #include <sys/lgrp.h> 47 #include <sys/pset.h> 48 #include <sys/pghw.h> 49 #include <sys/kmem.h> 50 #include <sys/kmem_impl.h> /* to set per-cpu kmem_cache offset */ 51 #include <sys/atomic.h> 52 #include <sys/callb.h> 53 #include <sys/vtrace.h> 54 #include <sys/cyclic.h> 55 #include <sys/bitmap.h> 56 #include <sys/nvpair.h> 57 #include <sys/pool_pset.h> 58 #include <sys/msacct.h> 59 #include <sys/time.h> 60 #include <sys/archsystm.h> 61 #if defined(__x86) 62 #include <sys/x86_archext.h> 63 #endif 64 65 extern int mp_cpu_start(cpu_t *); 66 extern int mp_cpu_stop(cpu_t *); 67 extern int mp_cpu_poweron(cpu_t *); 68 extern int mp_cpu_poweroff(cpu_t *); 69 extern int mp_cpu_configure(int); 70 extern int mp_cpu_unconfigure(int); 71 extern void mp_cpu_faulted_enter(cpu_t *); 72 extern void mp_cpu_faulted_exit(cpu_t *); 73 74 extern int cmp_cpu_to_chip(processorid_t cpuid); 75 #ifdef __sparcv9 76 extern char *cpu_fru_fmri(cpu_t *cp); 77 #endif 78 79 static void cpu_add_active_internal(cpu_t *cp); 80 static void cpu_remove_active(cpu_t *cp); 81 static void cpu_info_kstat_create(cpu_t *cp); 82 static void cpu_info_kstat_destroy(cpu_t *cp); 83 static void cpu_stats_kstat_create(cpu_t *cp); 84 static void cpu_stats_kstat_destroy(cpu_t *cp); 85 86 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw); 87 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw); 88 static int cpu_stat_ks_update(kstat_t *ksp, int rw); 89 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t); 90 91 /* 92 * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active, 93 * and dispatch queue reallocations. The lock ordering with respect to 94 * related locks is: 95 * 96 * cpu_lock --> thread_free_lock ---> p_lock ---> thread_lock() 97 * 98 * Warning: Certain sections of code do not use the cpu_lock when 99 * traversing the cpu_list (e.g. mutex_vector_enter(), clock()). Since 100 * all cpus are paused during modifications to this list, a solution 101 * to protect the list is too either disable kernel preemption while 102 * walking the list, *or* recheck the cpu_next pointer at each 103 * iteration in the loop. Note that in no cases can any cached 104 * copies of the cpu pointers be kept as they may become invalid. 105 */ 106 kmutex_t cpu_lock; 107 cpu_t *cpu_list; /* list of all CPUs */ 108 cpu_t *cpu_active; /* list of active CPUs */ 109 static cpuset_t cpu_available; /* set of available CPUs */ 110 cpuset_t cpu_seqid_inuse; /* which cpu_seqids are in use */ 111 112 /* 113 * max_ncpus keeps the max cpus the system can have. Initially 114 * it's NCPU, but since most archs scan the devtree for cpus 115 * fairly early on during boot, the real max can be known before 116 * ncpus is set (useful for early NCPU based allocations). 117 */ 118 int max_ncpus = NCPU; 119 /* 120 * platforms that set max_ncpus to maxiumum number of cpus that can be 121 * dynamically added will set boot_max_ncpus to the number of cpus found 122 * at device tree scan time during boot. 123 */ 124 int boot_max_ncpus = -1; 125 /* 126 * Maximum possible CPU id. This can never be >= NCPU since NCPU is 127 * used to size arrays that are indexed by CPU id. 128 */ 129 processorid_t max_cpuid = NCPU - 1; 130 131 int ncpus = 1; 132 int ncpus_online = 1; 133 134 /* 135 * CPU that we're trying to offline. Protected by cpu_lock. 136 */ 137 cpu_t *cpu_inmotion; 138 139 /* 140 * Can be raised to suppress further weakbinding, which are instead 141 * satisfied by disabling preemption. Must be raised/lowered under cpu_lock, 142 * while individual thread weakbinding synchronisation is done under thread 143 * lock. 144 */ 145 int weakbindingbarrier; 146 147 /* 148 * Variables used in pause_cpus(). 149 */ 150 static volatile char safe_list[NCPU]; 151 152 static struct _cpu_pause_info { 153 int cp_spl; /* spl saved in pause_cpus() */ 154 volatile int cp_go; /* Go signal sent after all ready */ 155 int cp_count; /* # of CPUs to pause */ 156 ksema_t cp_sem; /* synch pause_cpus & cpu_pause */ 157 kthread_id_t cp_paused; 158 } cpu_pause_info; 159 160 static kmutex_t pause_free_mutex; 161 static kcondvar_t pause_free_cv; 162 163 static struct cpu_sys_stats_ks_data { 164 kstat_named_t cpu_ticks_idle; 165 kstat_named_t cpu_ticks_user; 166 kstat_named_t cpu_ticks_kernel; 167 kstat_named_t cpu_ticks_wait; 168 kstat_named_t cpu_nsec_idle; 169 kstat_named_t cpu_nsec_user; 170 kstat_named_t cpu_nsec_kernel; 171 kstat_named_t wait_ticks_io; 172 kstat_named_t bread; 173 kstat_named_t bwrite; 174 kstat_named_t lread; 175 kstat_named_t lwrite; 176 kstat_named_t phread; 177 kstat_named_t phwrite; 178 kstat_named_t pswitch; 179 kstat_named_t trap; 180 kstat_named_t intr; 181 kstat_named_t syscall; 182 kstat_named_t sysread; 183 kstat_named_t syswrite; 184 kstat_named_t sysfork; 185 kstat_named_t sysvfork; 186 kstat_named_t sysexec; 187 kstat_named_t readch; 188 kstat_named_t writech; 189 kstat_named_t rcvint; 190 kstat_named_t xmtint; 191 kstat_named_t mdmint; 192 kstat_named_t rawch; 193 kstat_named_t canch; 194 kstat_named_t outch; 195 kstat_named_t msg; 196 kstat_named_t sema; 197 kstat_named_t namei; 198 kstat_named_t ufsiget; 199 kstat_named_t ufsdirblk; 200 kstat_named_t ufsipage; 201 kstat_named_t ufsinopage; 202 kstat_named_t procovf; 203 kstat_named_t intrthread; 204 kstat_named_t intrblk; 205 kstat_named_t intrunpin; 206 kstat_named_t idlethread; 207 kstat_named_t inv_swtch; 208 kstat_named_t nthreads; 209 kstat_named_t cpumigrate; 210 kstat_named_t xcalls; 211 kstat_named_t mutex_adenters; 212 kstat_named_t rw_rdfails; 213 kstat_named_t rw_wrfails; 214 kstat_named_t modload; 215 kstat_named_t modunload; 216 kstat_named_t bawrite; 217 kstat_named_t iowait; 218 } cpu_sys_stats_ks_data_template = { 219 { "cpu_ticks_idle", KSTAT_DATA_UINT64 }, 220 { "cpu_ticks_user", KSTAT_DATA_UINT64 }, 221 { "cpu_ticks_kernel", KSTAT_DATA_UINT64 }, 222 { "cpu_ticks_wait", KSTAT_DATA_UINT64 }, 223 { "cpu_nsec_idle", KSTAT_DATA_UINT64 }, 224 { "cpu_nsec_user", KSTAT_DATA_UINT64 }, 225 { "cpu_nsec_kernel", KSTAT_DATA_UINT64 }, 226 { "wait_ticks_io", KSTAT_DATA_UINT64 }, 227 { "bread", KSTAT_DATA_UINT64 }, 228 { "bwrite", KSTAT_DATA_UINT64 }, 229 { "lread", KSTAT_DATA_UINT64 }, 230 { "lwrite", KSTAT_DATA_UINT64 }, 231 { "phread", KSTAT_DATA_UINT64 }, 232 { "phwrite", KSTAT_DATA_UINT64 }, 233 { "pswitch", KSTAT_DATA_UINT64 }, 234 { "trap", KSTAT_DATA_UINT64 }, 235 { "intr", KSTAT_DATA_UINT64 }, 236 { "syscall", KSTAT_DATA_UINT64 }, 237 { "sysread", KSTAT_DATA_UINT64 }, 238 { "syswrite", KSTAT_DATA_UINT64 }, 239 { "sysfork", KSTAT_DATA_UINT64 }, 240 { "sysvfork", KSTAT_DATA_UINT64 }, 241 { "sysexec", KSTAT_DATA_UINT64 }, 242 { "readch", KSTAT_DATA_UINT64 }, 243 { "writech", KSTAT_DATA_UINT64 }, 244 { "rcvint", KSTAT_DATA_UINT64 }, 245 { "xmtint", KSTAT_DATA_UINT64 }, 246 { "mdmint", KSTAT_DATA_UINT64 }, 247 { "rawch", KSTAT_DATA_UINT64 }, 248 { "canch", KSTAT_DATA_UINT64 }, 249 { "outch", KSTAT_DATA_UINT64 }, 250 { "msg", KSTAT_DATA_UINT64 }, 251 { "sema", KSTAT_DATA_UINT64 }, 252 { "namei", KSTAT_DATA_UINT64 }, 253 { "ufsiget", KSTAT_DATA_UINT64 }, 254 { "ufsdirblk", KSTAT_DATA_UINT64 }, 255 { "ufsipage", KSTAT_DATA_UINT64 }, 256 { "ufsinopage", KSTAT_DATA_UINT64 }, 257 { "procovf", KSTAT_DATA_UINT64 }, 258 { "intrthread", KSTAT_DATA_UINT64 }, 259 { "intrblk", KSTAT_DATA_UINT64 }, 260 { "intrunpin", KSTAT_DATA_UINT64 }, 261 { "idlethread", KSTAT_DATA_UINT64 }, 262 { "inv_swtch", KSTAT_DATA_UINT64 }, 263 { "nthreads", KSTAT_DATA_UINT64 }, 264 { "cpumigrate", KSTAT_DATA_UINT64 }, 265 { "xcalls", KSTAT_DATA_UINT64 }, 266 { "mutex_adenters", KSTAT_DATA_UINT64 }, 267 { "rw_rdfails", KSTAT_DATA_UINT64 }, 268 { "rw_wrfails", KSTAT_DATA_UINT64 }, 269 { "modload", KSTAT_DATA_UINT64 }, 270 { "modunload", KSTAT_DATA_UINT64 }, 271 { "bawrite", KSTAT_DATA_UINT64 }, 272 { "iowait", KSTAT_DATA_UINT64 }, 273 }; 274 275 static struct cpu_vm_stats_ks_data { 276 kstat_named_t pgrec; 277 kstat_named_t pgfrec; 278 kstat_named_t pgin; 279 kstat_named_t pgpgin; 280 kstat_named_t pgout; 281 kstat_named_t pgpgout; 282 kstat_named_t swapin; 283 kstat_named_t pgswapin; 284 kstat_named_t swapout; 285 kstat_named_t pgswapout; 286 kstat_named_t zfod; 287 kstat_named_t dfree; 288 kstat_named_t scan; 289 kstat_named_t rev; 290 kstat_named_t hat_fault; 291 kstat_named_t as_fault; 292 kstat_named_t maj_fault; 293 kstat_named_t cow_fault; 294 kstat_named_t prot_fault; 295 kstat_named_t softlock; 296 kstat_named_t kernel_asflt; 297 kstat_named_t pgrrun; 298 kstat_named_t execpgin; 299 kstat_named_t execpgout; 300 kstat_named_t execfree; 301 kstat_named_t anonpgin; 302 kstat_named_t anonpgout; 303 kstat_named_t anonfree; 304 kstat_named_t fspgin; 305 kstat_named_t fspgout; 306 kstat_named_t fsfree; 307 } cpu_vm_stats_ks_data_template = { 308 { "pgrec", KSTAT_DATA_UINT64 }, 309 { "pgfrec", KSTAT_DATA_UINT64 }, 310 { "pgin", KSTAT_DATA_UINT64 }, 311 { "pgpgin", KSTAT_DATA_UINT64 }, 312 { "pgout", KSTAT_DATA_UINT64 }, 313 { "pgpgout", KSTAT_DATA_UINT64 }, 314 { "swapin", KSTAT_DATA_UINT64 }, 315 { "pgswapin", KSTAT_DATA_UINT64 }, 316 { "swapout", KSTAT_DATA_UINT64 }, 317 { "pgswapout", KSTAT_DATA_UINT64 }, 318 { "zfod", KSTAT_DATA_UINT64 }, 319 { "dfree", KSTAT_DATA_UINT64 }, 320 { "scan", KSTAT_DATA_UINT64 }, 321 { "rev", KSTAT_DATA_UINT64 }, 322 { "hat_fault", KSTAT_DATA_UINT64 }, 323 { "as_fault", KSTAT_DATA_UINT64 }, 324 { "maj_fault", KSTAT_DATA_UINT64 }, 325 { "cow_fault", KSTAT_DATA_UINT64 }, 326 { "prot_fault", KSTAT_DATA_UINT64 }, 327 { "softlock", KSTAT_DATA_UINT64 }, 328 { "kernel_asflt", KSTAT_DATA_UINT64 }, 329 { "pgrrun", KSTAT_DATA_UINT64 }, 330 { "execpgin", KSTAT_DATA_UINT64 }, 331 { "execpgout", KSTAT_DATA_UINT64 }, 332 { "execfree", KSTAT_DATA_UINT64 }, 333 { "anonpgin", KSTAT_DATA_UINT64 }, 334 { "anonpgout", KSTAT_DATA_UINT64 }, 335 { "anonfree", KSTAT_DATA_UINT64 }, 336 { "fspgin", KSTAT_DATA_UINT64 }, 337 { "fspgout", KSTAT_DATA_UINT64 }, 338 { "fsfree", KSTAT_DATA_UINT64 }, 339 }; 340 341 /* 342 * Force the specified thread to migrate to the appropriate processor. 343 * Called with thread lock held, returns with it dropped. 344 */ 345 static void 346 force_thread_migrate(kthread_id_t tp) 347 { 348 ASSERT(THREAD_LOCK_HELD(tp)); 349 if (tp == curthread) { 350 THREAD_TRANSITION(tp); 351 CL_SETRUN(tp); 352 thread_unlock_nopreempt(tp); 353 swtch(); 354 } else { 355 if (tp->t_state == TS_ONPROC) { 356 cpu_surrender(tp); 357 } else if (tp->t_state == TS_RUN) { 358 (void) dispdeq(tp); 359 setbackdq(tp); 360 } 361 thread_unlock(tp); 362 } 363 } 364 365 /* 366 * Set affinity for a specified CPU. 367 * A reference count is incremented and the affinity is held until the 368 * reference count is decremented to zero by thread_affinity_clear(). 369 * This is so regions of code requiring affinity can be nested. 370 * Caller needs to ensure that cpu_id remains valid, which can be 371 * done by holding cpu_lock across this call, unless the caller 372 * specifies CPU_CURRENT in which case the cpu_lock will be acquired 373 * by thread_affinity_set and CPU->cpu_id will be the target CPU. 374 */ 375 void 376 thread_affinity_set(kthread_id_t t, int cpu_id) 377 { 378 cpu_t *cp; 379 int c; 380 381 ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL)); 382 383 if ((c = cpu_id) == CPU_CURRENT) { 384 mutex_enter(&cpu_lock); 385 cpu_id = CPU->cpu_id; 386 } 387 /* 388 * We should be asserting that cpu_lock is held here, but 389 * the NCA code doesn't acquire it. The following assert 390 * should be uncommented when the NCA code is fixed. 391 * 392 * ASSERT(MUTEX_HELD(&cpu_lock)); 393 */ 394 ASSERT((cpu_id >= 0) && (cpu_id < NCPU)); 395 cp = cpu[cpu_id]; 396 ASSERT(cp != NULL); /* user must provide a good cpu_id */ 397 /* 398 * If there is already a hard affinity requested, and this affinity 399 * conflicts with that, panic. 400 */ 401 thread_lock(t); 402 if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) { 403 panic("affinity_set: setting %p but already bound to %p", 404 (void *)cp, (void *)t->t_bound_cpu); 405 } 406 t->t_affinitycnt++; 407 t->t_bound_cpu = cp; 408 409 /* 410 * Make sure we're running on the right CPU. 411 */ 412 if (cp != t->t_cpu || t != curthread) { 413 force_thread_migrate(t); /* drops thread lock */ 414 } else { 415 thread_unlock(t); 416 } 417 418 if (c == CPU_CURRENT) 419 mutex_exit(&cpu_lock); 420 } 421 422 /* 423 * Wrapper for backward compatibility. 424 */ 425 void 426 affinity_set(int cpu_id) 427 { 428 thread_affinity_set(curthread, cpu_id); 429 } 430 431 /* 432 * Decrement the affinity reservation count and if it becomes zero, 433 * clear the CPU affinity for the current thread, or set it to the user's 434 * software binding request. 435 */ 436 void 437 thread_affinity_clear(kthread_id_t t) 438 { 439 register processorid_t binding; 440 441 thread_lock(t); 442 if (--t->t_affinitycnt == 0) { 443 if ((binding = t->t_bind_cpu) == PBIND_NONE) { 444 /* 445 * Adjust disp_max_unbound_pri if necessary. 446 */ 447 disp_adjust_unbound_pri(t); 448 t->t_bound_cpu = NULL; 449 if (t->t_cpu->cpu_part != t->t_cpupart) { 450 force_thread_migrate(t); 451 return; 452 } 453 } else { 454 t->t_bound_cpu = cpu[binding]; 455 /* 456 * Make sure the thread is running on the bound CPU. 457 */ 458 if (t->t_cpu != t->t_bound_cpu) { 459 force_thread_migrate(t); 460 return; /* already dropped lock */ 461 } 462 } 463 } 464 thread_unlock(t); 465 } 466 467 /* 468 * Wrapper for backward compatibility. 469 */ 470 void 471 affinity_clear(void) 472 { 473 thread_affinity_clear(curthread); 474 } 475 476 /* 477 * Weak cpu affinity. Bind to the "current" cpu for short periods 478 * of time during which the thread must not block (but may be preempted). 479 * Use this instead of kpreempt_disable() when it is only "no migration" 480 * rather than "no preemption" semantics that are required - disabling 481 * preemption holds higher priority threads off of cpu and if the 482 * operation that is protected is more than momentary this is not good 483 * for realtime etc. 484 * 485 * Weakly bound threads will not prevent a cpu from being offlined - 486 * we'll only run them on the cpu to which they are weakly bound but 487 * (because they do not block) we'll always be able to move them on to 488 * another cpu at offline time if we give them just a short moment to 489 * run during which they will unbind. To give a cpu a chance of offlining, 490 * however, we require a barrier to weak bindings that may be raised for a 491 * given cpu (offline/move code may set this and then wait a short time for 492 * existing weak bindings to drop); the cpu_inmotion pointer is that barrier. 493 * 494 * There are few restrictions on the calling context of thread_nomigrate. 495 * The caller must not hold the thread lock. Calls may be nested. 496 * 497 * After weakbinding a thread must not perform actions that may block. 498 * In particular it must not call thread_affinity_set; calling that when 499 * already weakbound is nonsensical anyway. 500 * 501 * If curthread is prevented from migrating for other reasons 502 * (kernel preemption disabled; high pil; strongly bound; interrupt thread) 503 * then the weak binding will succeed even if this cpu is the target of an 504 * offline/move request. 505 */ 506 void 507 thread_nomigrate(void) 508 { 509 cpu_t *cp; 510 kthread_id_t t = curthread; 511 512 again: 513 kpreempt_disable(); 514 cp = CPU; 515 516 /* 517 * A highlevel interrupt must not modify t_nomigrate or 518 * t_weakbound_cpu of the thread it has interrupted. A lowlevel 519 * interrupt thread cannot migrate and we can avoid the 520 * thread_lock call below by short-circuiting here. In either 521 * case we can just return since no migration is possible and 522 * the condition will persist (ie, when we test for these again 523 * in thread_allowmigrate they can't have changed). Migration 524 * is also impossible if we're at or above DISP_LEVEL pil. 525 */ 526 if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD || 527 getpil() >= DISP_LEVEL) { 528 kpreempt_enable(); 529 return; 530 } 531 532 /* 533 * We must be consistent with existing weak bindings. Since we 534 * may be interrupted between the increment of t_nomigrate and 535 * the store to t_weakbound_cpu below we cannot assume that 536 * t_weakbound_cpu will be set if t_nomigrate is. Note that we 537 * cannot assert t_weakbound_cpu == t_bind_cpu since that is not 538 * always the case. 539 */ 540 if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) { 541 if (!panicstr) 542 panic("thread_nomigrate: binding to %p but already " 543 "bound to %p", (void *)cp, 544 (void *)t->t_weakbound_cpu); 545 } 546 547 /* 548 * At this point we have preemption disabled and we don't yet hold 549 * the thread lock. So it's possible that somebody else could 550 * set t_bind_cpu here and not be able to force us across to the 551 * new cpu (since we have preemption disabled). 552 */ 553 thread_lock(curthread); 554 555 /* 556 * If further weak bindings are being (temporarily) suppressed then 557 * we'll settle for disabling kernel preemption (which assures 558 * no migration provided the thread does not block which it is 559 * not allowed to if using thread_nomigrate). We must remember 560 * this disposition so we can take appropriate action in 561 * thread_allowmigrate. If this is a nested call and the 562 * thread is already weakbound then fall through as normal. 563 * We remember the decision to settle for kpreempt_disable through 564 * negative nesting counting in t_nomigrate. Once a thread has had one 565 * weakbinding request satisfied in this way any further (nested) 566 * requests will continue to be satisfied in the same way, 567 * even if weak bindings have recommenced. 568 */ 569 if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) { 570 --t->t_nomigrate; 571 thread_unlock(curthread); 572 return; /* with kpreempt_disable still active */ 573 } 574 575 /* 576 * We hold thread_lock so t_bind_cpu cannot change. We could, 577 * however, be running on a different cpu to which we are t_bound_cpu 578 * to (as explained above). If we grant the weak binding request 579 * in that case then the dispatcher must favour our weak binding 580 * over our strong (in which case, just as when preemption is 581 * disabled, we can continue to run on a cpu other than the one to 582 * which we are strongbound; the difference in this case is that 583 * this thread can be preempted and so can appear on the dispatch 584 * queues of a cpu other than the one it is strongbound to). 585 * 586 * If the cpu we are running on does not appear to be a current 587 * offline target (we check cpu_inmotion to determine this - since 588 * we don't hold cpu_lock we may not see a recent store to that, 589 * so it's possible that we at times can grant a weak binding to a 590 * cpu that is an offline target, but that one request will not 591 * prevent the offline from succeeding) then we will always grant 592 * the weak binding request. This includes the case above where 593 * we grant a weakbinding not commensurate with our strong binding. 594 * 595 * If our cpu does appear to be an offline target then we're inclined 596 * not to grant the weakbinding request just yet - we'd prefer to 597 * migrate to another cpu and grant the request there. The 598 * exceptions are those cases where going through preemption code 599 * will not result in us changing cpu: 600 * 601 * . interrupts have already bypassed this case (see above) 602 * . we are already weakbound to this cpu (dispatcher code will 603 * always return us to the weakbound cpu) 604 * . preemption was disabled even before we disabled it above 605 * . we are strongbound to this cpu (if we're strongbound to 606 * another and not yet running there the trip through the 607 * dispatcher will move us to the strongbound cpu and we 608 * will grant the weak binding there) 609 */ 610 if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 || 611 t->t_bound_cpu == cp) { 612 /* 613 * Don't be tempted to store to t_weakbound_cpu only on 614 * the first nested bind request - if we're interrupted 615 * after the increment of t_nomigrate and before the 616 * store to t_weakbound_cpu and the interrupt calls 617 * thread_nomigrate then the assertion in thread_allowmigrate 618 * would fail. 619 */ 620 t->t_nomigrate++; 621 t->t_weakbound_cpu = cp; 622 membar_producer(); 623 thread_unlock(curthread); 624 /* 625 * Now that we have dropped the thread_lock another thread 626 * can set our t_weakbound_cpu, and will try to migrate us 627 * to the strongbound cpu (which will not be prevented by 628 * preemption being disabled since we're about to enable 629 * preemption). We have granted the weakbinding to the current 630 * cpu, so again we are in the position that is is is possible 631 * that our weak and strong bindings differ. Again this 632 * is catered for by dispatcher code which will favour our 633 * weak binding. 634 */ 635 kpreempt_enable(); 636 } else { 637 /* 638 * Move to another cpu before granting the request by 639 * forcing this thread through preemption code. When we 640 * get to set{front,back}dq called from CL_PREEMPT() 641 * cpu_choose() will be used to select a cpu to queue 642 * us on - that will see cpu_inmotion and take 643 * steps to avoid returning us to this cpu. 644 */ 645 cp->cpu_kprunrun = 1; 646 thread_unlock(curthread); 647 kpreempt_enable(); /* will call preempt() */ 648 goto again; 649 } 650 } 651 652 void 653 thread_allowmigrate(void) 654 { 655 kthread_id_t t = curthread; 656 657 ASSERT(t->t_weakbound_cpu == CPU || 658 (t->t_nomigrate < 0 && t->t_preempt > 0) || 659 CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD || 660 getpil() >= DISP_LEVEL); 661 662 if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) || 663 getpil() >= DISP_LEVEL) 664 return; 665 666 if (t->t_nomigrate < 0) { 667 /* 668 * This thread was granted "weak binding" in the 669 * stronger form of kernel preemption disabling. 670 * Undo a level of nesting for both t_nomigrate 671 * and t_preempt. 672 */ 673 ++t->t_nomigrate; 674 kpreempt_enable(); 675 } else if (--t->t_nomigrate == 0) { 676 /* 677 * Time to drop the weak binding. We need to cater 678 * for the case where we're weakbound to a different 679 * cpu than that to which we're strongbound (a very 680 * temporary arrangement that must only persist until 681 * weak binding drops). We don't acquire thread_lock 682 * here so even as this code executes t_bound_cpu 683 * may be changing. So we disable preemption and 684 * a) in the case that t_bound_cpu changes while we 685 * have preemption disabled kprunrun will be set 686 * asynchronously, and b) if before disabling 687 * preemption we were already on a different cpu to 688 * our t_bound_cpu then we set kprunrun ourselves 689 * to force a trip through the dispatcher when 690 * preemption is enabled. 691 */ 692 kpreempt_disable(); 693 if (t->t_bound_cpu && 694 t->t_weakbound_cpu != t->t_bound_cpu) 695 CPU->cpu_kprunrun = 1; 696 t->t_weakbound_cpu = NULL; 697 membar_producer(); 698 kpreempt_enable(); 699 } 700 } 701 702 /* 703 * weakbinding_stop can be used to temporarily cause weakbindings made 704 * with thread_nomigrate to be satisfied through the stronger action of 705 * kpreempt_disable. weakbinding_start recommences normal weakbinding. 706 */ 707 708 void 709 weakbinding_stop(void) 710 { 711 ASSERT(MUTEX_HELD(&cpu_lock)); 712 weakbindingbarrier = 1; 713 membar_producer(); /* make visible before subsequent thread_lock */ 714 } 715 716 void 717 weakbinding_start(void) 718 { 719 ASSERT(MUTEX_HELD(&cpu_lock)); 720 weakbindingbarrier = 0; 721 } 722 723 /* 724 * This routine is called to place the CPUs in a safe place so that 725 * one of them can be taken off line or placed on line. What we are 726 * trying to do here is prevent a thread from traversing the list 727 * of active CPUs while we are changing it or from getting placed on 728 * the run queue of a CPU that has just gone off line. We do this by 729 * creating a thread with the highest possible prio for each CPU and 730 * having it call this routine. The advantage of this method is that 731 * we can eliminate all checks for CPU_ACTIVE in the disp routines. 732 * This makes disp faster at the expense of making p_online() slower 733 * which is a good trade off. 734 */ 735 static void 736 cpu_pause(volatile char *safe) 737 { 738 int s; 739 struct _cpu_pause_info *cpi = &cpu_pause_info; 740 741 ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE)); 742 743 while (*safe != PAUSE_DIE) { 744 *safe = PAUSE_READY; 745 membar_enter(); /* make sure stores are flushed */ 746 sema_v(&cpi->cp_sem); /* signal requesting thread */ 747 748 /* 749 * Wait here until all pause threads are running. That 750 * indicates that it's safe to do the spl. Until 751 * cpu_pause_info.cp_go is set, we don't want to spl 752 * because that might block clock interrupts needed 753 * to preempt threads on other CPUs. 754 */ 755 while (cpi->cp_go == 0) 756 ; 757 /* 758 * Even though we are at the highest disp prio, we need 759 * to block out all interrupts below LOCK_LEVEL so that 760 * an intr doesn't come in, wake up a thread, and call 761 * setbackdq/setfrontdq. 762 */ 763 s = splhigh(); 764 765 mach_cpu_pause(safe); 766 767 splx(s); 768 /* 769 * Waiting is at an end. Switch out of cpu_pause 770 * loop and resume useful work. 771 */ 772 swtch(); 773 } 774 775 mutex_enter(&pause_free_mutex); 776 *safe = PAUSE_DEAD; 777 cv_broadcast(&pause_free_cv); 778 mutex_exit(&pause_free_mutex); 779 } 780 781 /* 782 * Allow the cpus to start running again. 783 */ 784 void 785 start_cpus() 786 { 787 int i; 788 789 ASSERT(MUTEX_HELD(&cpu_lock)); 790 ASSERT(cpu_pause_info.cp_paused); 791 cpu_pause_info.cp_paused = NULL; 792 for (i = 0; i < NCPU; i++) 793 safe_list[i] = PAUSE_IDLE; 794 membar_enter(); /* make sure stores are flushed */ 795 affinity_clear(); 796 splx(cpu_pause_info.cp_spl); 797 kpreempt_enable(); 798 } 799 800 /* 801 * Allocate a pause thread for a CPU. 802 */ 803 static void 804 cpu_pause_alloc(cpu_t *cp) 805 { 806 kthread_id_t t; 807 int cpun = cp->cpu_id; 808 809 /* 810 * Note, v.v_nglobpris will not change value as long as I hold 811 * cpu_lock. 812 */ 813 t = thread_create(NULL, 0, cpu_pause, (caddr_t)&safe_list[cpun], 814 0, &p0, TS_STOPPED, v.v_nglobpris - 1); 815 thread_lock(t); 816 t->t_bound_cpu = cp; 817 t->t_disp_queue = cp->cpu_disp; 818 t->t_affinitycnt = 1; 819 t->t_preempt = 1; 820 thread_unlock(t); 821 cp->cpu_pause_thread = t; 822 /* 823 * Registering a thread in the callback table is usually done 824 * in the initialization code of the thread. In this 825 * case, we do it right after thread creation because the 826 * thread itself may never run, and we need to register the 827 * fact that it is safe for cpr suspend. 828 */ 829 CALLB_CPR_INIT_SAFE(t, "cpu_pause"); 830 } 831 832 /* 833 * Free a pause thread for a CPU. 834 */ 835 static void 836 cpu_pause_free(cpu_t *cp) 837 { 838 kthread_id_t t; 839 int cpun = cp->cpu_id; 840 841 ASSERT(MUTEX_HELD(&cpu_lock)); 842 /* 843 * We have to get the thread and tell him to die. 844 */ 845 if ((t = cp->cpu_pause_thread) == NULL) { 846 ASSERT(safe_list[cpun] == PAUSE_IDLE); 847 return; 848 } 849 thread_lock(t); 850 t->t_cpu = CPU; /* disp gets upset if last cpu is quiesced. */ 851 t->t_bound_cpu = NULL; /* Must un-bind; cpu may not be running. */ 852 t->t_pri = v.v_nglobpris - 1; 853 ASSERT(safe_list[cpun] == PAUSE_IDLE); 854 safe_list[cpun] = PAUSE_DIE; 855 THREAD_TRANSITION(t); 856 setbackdq(t); 857 thread_unlock_nopreempt(t); 858 859 /* 860 * If we don't wait for the thread to actually die, it may try to 861 * run on the wrong cpu as part of an actual call to pause_cpus(). 862 */ 863 mutex_enter(&pause_free_mutex); 864 while (safe_list[cpun] != PAUSE_DEAD) { 865 cv_wait(&pause_free_cv, &pause_free_mutex); 866 } 867 mutex_exit(&pause_free_mutex); 868 safe_list[cpun] = PAUSE_IDLE; 869 870 cp->cpu_pause_thread = NULL; 871 } 872 873 /* 874 * Initialize basic structures for pausing CPUs. 875 */ 876 void 877 cpu_pause_init() 878 { 879 sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL); 880 /* 881 * Create initial CPU pause thread. 882 */ 883 cpu_pause_alloc(CPU); 884 } 885 886 /* 887 * Start the threads used to pause another CPU. 888 */ 889 static int 890 cpu_pause_start(processorid_t cpu_id) 891 { 892 int i; 893 int cpu_count = 0; 894 895 for (i = 0; i < NCPU; i++) { 896 cpu_t *cp; 897 kthread_id_t t; 898 899 cp = cpu[i]; 900 if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) { 901 safe_list[i] = PAUSE_WAIT; 902 continue; 903 } 904 905 /* 906 * Skip CPU if it is quiesced or not yet started. 907 */ 908 if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) { 909 safe_list[i] = PAUSE_WAIT; 910 continue; 911 } 912 913 /* 914 * Start this CPU's pause thread. 915 */ 916 t = cp->cpu_pause_thread; 917 thread_lock(t); 918 /* 919 * Reset the priority, since nglobpris may have 920 * changed since the thread was created, if someone 921 * has loaded the RT (or some other) scheduling 922 * class. 923 */ 924 t->t_pri = v.v_nglobpris - 1; 925 THREAD_TRANSITION(t); 926 setbackdq(t); 927 thread_unlock_nopreempt(t); 928 ++cpu_count; 929 } 930 return (cpu_count); 931 } 932 933 934 /* 935 * Pause all of the CPUs except the one we are on by creating a high 936 * priority thread bound to those CPUs. 937 * 938 * Note that one must be extremely careful regarding code 939 * executed while CPUs are paused. Since a CPU may be paused 940 * while a thread scheduling on that CPU is holding an adaptive 941 * lock, code executed with CPUs paused must not acquire adaptive 942 * (or low-level spin) locks. Also, such code must not block, 943 * since the thread that is supposed to initiate the wakeup may 944 * never run. 945 * 946 * With a few exceptions, the restrictions on code executed with CPUs 947 * paused match those for code executed at high-level interrupt 948 * context. 949 */ 950 void 951 pause_cpus(cpu_t *off_cp) 952 { 953 processorid_t cpu_id; 954 int i; 955 struct _cpu_pause_info *cpi = &cpu_pause_info; 956 957 ASSERT(MUTEX_HELD(&cpu_lock)); 958 ASSERT(cpi->cp_paused == NULL); 959 cpi->cp_count = 0; 960 cpi->cp_go = 0; 961 for (i = 0; i < NCPU; i++) 962 safe_list[i] = PAUSE_IDLE; 963 kpreempt_disable(); 964 965 /* 966 * If running on the cpu that is going offline, get off it. 967 * This is so that it won't be necessary to rechoose a CPU 968 * when done. 969 */ 970 if (CPU == off_cp) 971 cpu_id = off_cp->cpu_next_part->cpu_id; 972 else 973 cpu_id = CPU->cpu_id; 974 affinity_set(cpu_id); 975 976 /* 977 * Start the pause threads and record how many were started 978 */ 979 cpi->cp_count = cpu_pause_start(cpu_id); 980 981 /* 982 * Now wait for all CPUs to be running the pause thread. 983 */ 984 while (cpi->cp_count > 0) { 985 /* 986 * Spin reading the count without grabbing the disp 987 * lock to make sure we don't prevent the pause 988 * threads from getting the lock. 989 */ 990 while (sema_held(&cpi->cp_sem)) 991 ; 992 if (sema_tryp(&cpi->cp_sem)) 993 --cpi->cp_count; 994 } 995 cpi->cp_go = 1; /* all have reached cpu_pause */ 996 997 /* 998 * Now wait for all CPUs to spl. (Transition from PAUSE_READY 999 * to PAUSE_WAIT.) 1000 */ 1001 for (i = 0; i < NCPU; i++) { 1002 while (safe_list[i] != PAUSE_WAIT) 1003 ; 1004 } 1005 cpi->cp_spl = splhigh(); /* block dispatcher on this CPU */ 1006 cpi->cp_paused = curthread; 1007 } 1008 1009 /* 1010 * Check whether the current thread has CPUs paused 1011 */ 1012 int 1013 cpus_paused(void) 1014 { 1015 if (cpu_pause_info.cp_paused != NULL) { 1016 ASSERT(cpu_pause_info.cp_paused == curthread); 1017 return (1); 1018 } 1019 return (0); 1020 } 1021 1022 static cpu_t * 1023 cpu_get_all(processorid_t cpun) 1024 { 1025 ASSERT(MUTEX_HELD(&cpu_lock)); 1026 1027 if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun)) 1028 return (NULL); 1029 return (cpu[cpun]); 1030 } 1031 1032 /* 1033 * Check whether cpun is a valid processor id and whether it should be 1034 * visible from the current zone. If it is, return a pointer to the 1035 * associated CPU structure. 1036 */ 1037 cpu_t * 1038 cpu_get(processorid_t cpun) 1039 { 1040 cpu_t *c; 1041 1042 ASSERT(MUTEX_HELD(&cpu_lock)); 1043 c = cpu_get_all(cpun); 1044 if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() && 1045 zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c)) 1046 return (NULL); 1047 return (c); 1048 } 1049 1050 /* 1051 * The following functions should be used to check CPU states in the kernel. 1052 * They should be invoked with cpu_lock held. Kernel subsystems interested 1053 * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc 1054 * states. Those are for user-land (and system call) use only. 1055 */ 1056 1057 /* 1058 * Determine whether the CPU is online and handling interrupts. 1059 */ 1060 int 1061 cpu_is_online(cpu_t *cpu) 1062 { 1063 ASSERT(MUTEX_HELD(&cpu_lock)); 1064 return (cpu_flagged_online(cpu->cpu_flags)); 1065 } 1066 1067 /* 1068 * Determine whether the CPU is offline (this includes spare and faulted). 1069 */ 1070 int 1071 cpu_is_offline(cpu_t *cpu) 1072 { 1073 ASSERT(MUTEX_HELD(&cpu_lock)); 1074 return (cpu_flagged_offline(cpu->cpu_flags)); 1075 } 1076 1077 /* 1078 * Determine whether the CPU is powered off. 1079 */ 1080 int 1081 cpu_is_poweredoff(cpu_t *cpu) 1082 { 1083 ASSERT(MUTEX_HELD(&cpu_lock)); 1084 return (cpu_flagged_poweredoff(cpu->cpu_flags)); 1085 } 1086 1087 /* 1088 * Determine whether the CPU is handling interrupts. 1089 */ 1090 int 1091 cpu_is_nointr(cpu_t *cpu) 1092 { 1093 ASSERT(MUTEX_HELD(&cpu_lock)); 1094 return (cpu_flagged_nointr(cpu->cpu_flags)); 1095 } 1096 1097 /* 1098 * Determine whether the CPU is active (scheduling threads). 1099 */ 1100 int 1101 cpu_is_active(cpu_t *cpu) 1102 { 1103 ASSERT(MUTEX_HELD(&cpu_lock)); 1104 return (cpu_flagged_active(cpu->cpu_flags)); 1105 } 1106 1107 /* 1108 * Same as above, but these require cpu_flags instead of cpu_t pointers. 1109 */ 1110 int 1111 cpu_flagged_online(cpu_flag_t cpu_flags) 1112 { 1113 return (cpu_flagged_active(cpu_flags) && 1114 (cpu_flags & CPU_ENABLE)); 1115 } 1116 1117 int 1118 cpu_flagged_offline(cpu_flag_t cpu_flags) 1119 { 1120 return (((cpu_flags & CPU_POWEROFF) == 0) && 1121 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)); 1122 } 1123 1124 int 1125 cpu_flagged_poweredoff(cpu_flag_t cpu_flags) 1126 { 1127 return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF); 1128 } 1129 1130 int 1131 cpu_flagged_nointr(cpu_flag_t cpu_flags) 1132 { 1133 return (cpu_flagged_active(cpu_flags) && 1134 (cpu_flags & CPU_ENABLE) == 0); 1135 } 1136 1137 int 1138 cpu_flagged_active(cpu_flag_t cpu_flags) 1139 { 1140 return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) && 1141 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY)); 1142 } 1143 1144 /* 1145 * Bring the indicated CPU online. 1146 */ 1147 int 1148 cpu_online(cpu_t *cp) 1149 { 1150 int error = 0; 1151 1152 /* 1153 * Handle on-line request. 1154 * This code must put the new CPU on the active list before 1155 * starting it because it will not be paused, and will start 1156 * using the active list immediately. The real start occurs 1157 * when the CPU_QUIESCED flag is turned off. 1158 */ 1159 1160 ASSERT(MUTEX_HELD(&cpu_lock)); 1161 1162 /* 1163 * Put all the cpus into a known safe place. 1164 * No mutexes can be entered while CPUs are paused. 1165 */ 1166 error = mp_cpu_start(cp); /* arch-dep hook */ 1167 if (error == 0) { 1168 pause_cpus(NULL); 1169 cpu_add_active_internal(cp); 1170 if (cp->cpu_flags & CPU_FAULTED) { 1171 cp->cpu_flags &= ~CPU_FAULTED; 1172 mp_cpu_faulted_exit(cp); 1173 } 1174 cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN | 1175 CPU_SPARE); 1176 start_cpus(); 1177 cpu_stats_kstat_create(cp); 1178 cpu_create_intrstat(cp); 1179 lgrp_kstat_create(cp); 1180 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1181 cpu_intr_enable(cp); /* arch-dep hook */ 1182 cpu_set_state(cp); 1183 cyclic_online(cp); 1184 poke_cpu(cp->cpu_id); 1185 } 1186 1187 return (error); 1188 } 1189 1190 /* 1191 * Take the indicated CPU offline. 1192 */ 1193 int 1194 cpu_offline(cpu_t *cp, int flags) 1195 { 1196 cpupart_t *pp; 1197 int error = 0; 1198 cpu_t *ncp; 1199 int intr_enable; 1200 int cyclic_off = 0; 1201 int loop_count; 1202 int no_quiesce = 0; 1203 int (*bound_func)(struct cpu *, int); 1204 kthread_t *t; 1205 lpl_t *cpu_lpl; 1206 proc_t *p; 1207 int lgrp_diff_lpl; 1208 1209 ASSERT(MUTEX_HELD(&cpu_lock)); 1210 1211 /* 1212 * If we're going from faulted or spare to offline, just 1213 * clear these flags and update CPU state. 1214 */ 1215 if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) { 1216 if (cp->cpu_flags & CPU_FAULTED) { 1217 cp->cpu_flags &= ~CPU_FAULTED; 1218 mp_cpu_faulted_exit(cp); 1219 } 1220 cp->cpu_flags &= ~CPU_SPARE; 1221 cpu_set_state(cp); 1222 return (0); 1223 } 1224 1225 /* 1226 * Handle off-line request. 1227 */ 1228 pp = cp->cpu_part; 1229 /* 1230 * Don't offline last online CPU in partition 1231 */ 1232 if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2) 1233 return (EBUSY); 1234 /* 1235 * Unbind all thread bound to our CPU if we were asked to. 1236 */ 1237 if (flags & CPU_FORCED && (error = cpu_unbind(cp->cpu_id)) != 0) 1238 return (error); 1239 /* 1240 * We shouldn't be bound to this CPU ourselves. 1241 */ 1242 if (curthread->t_bound_cpu == cp) 1243 return (EBUSY); 1244 1245 /* 1246 * Tell interested parties that this CPU is going offline. 1247 */ 1248 cpu_state_change_notify(cp->cpu_id, CPU_OFF); 1249 1250 /* 1251 * Tell the PG subsystem that the CPU is leaving the partition 1252 */ 1253 pg_cpupart_out(cp, pp); 1254 1255 /* 1256 * Take the CPU out of interrupt participation so we won't find 1257 * bound kernel threads. If the architecture cannot completely 1258 * shut off interrupts on the CPU, don't quiesce it, but don't 1259 * run anything but interrupt thread... this is indicated by 1260 * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being 1261 * off. 1262 */ 1263 intr_enable = cp->cpu_flags & CPU_ENABLE; 1264 if (intr_enable) 1265 no_quiesce = cpu_intr_disable(cp); 1266 1267 /* 1268 * Record that we are aiming to offline this cpu. This acts as 1269 * a barrier to further weak binding requests in thread_nomigrate 1270 * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to 1271 * lean away from this cpu. Further strong bindings are already 1272 * avoided since we hold cpu_lock. Since threads that are set 1273 * runnable around now and others coming off the target cpu are 1274 * directed away from the target, existing strong and weak bindings 1275 * (especially the latter) to the target cpu stand maximum chance of 1276 * being able to unbind during the short delay loop below (if other 1277 * unbound threads compete they may not see cpu in time to unbind 1278 * even if they would do so immediately. 1279 */ 1280 cpu_inmotion = cp; 1281 membar_enter(); 1282 1283 /* 1284 * Check for kernel threads (strong or weak) bound to that CPU. 1285 * Strongly bound threads may not unbind, and we'll have to return 1286 * EBUSY. Weakly bound threads should always disappear - we've 1287 * stopped more weak binding with cpu_inmotion and existing 1288 * bindings will drain imminently (they may not block). Nonetheless 1289 * we will wait for a fixed period for all bound threads to disappear. 1290 * Inactive interrupt threads are OK (they'll be in TS_FREE 1291 * state). If test finds some bound threads, wait a few ticks 1292 * to give short-lived threads (such as interrupts) chance to 1293 * complete. Note that if no_quiesce is set, i.e. this cpu 1294 * is required to service interrupts, then we take the route 1295 * that permits interrupt threads to be active (or bypassed). 1296 */ 1297 bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads; 1298 1299 again: for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) { 1300 if (loop_count >= 5) { 1301 error = EBUSY; /* some threads still bound */ 1302 break; 1303 } 1304 1305 /* 1306 * If some threads were assigned, give them 1307 * a chance to complete or move. 1308 * 1309 * This assumes that the clock_thread is not bound 1310 * to any CPU, because the clock_thread is needed to 1311 * do the delay(hz/100). 1312 * 1313 * Note: we still hold the cpu_lock while waiting for 1314 * the next clock tick. This is OK since it isn't 1315 * needed for anything else except processor_bind(2), 1316 * and system initialization. If we drop the lock, 1317 * we would risk another p_online disabling the last 1318 * processor. 1319 */ 1320 delay(hz/100); 1321 } 1322 1323 if (error == 0 && cyclic_off == 0) { 1324 if (!cyclic_offline(cp)) { 1325 /* 1326 * We must have bound cyclics... 1327 */ 1328 error = EBUSY; 1329 goto out; 1330 } 1331 cyclic_off = 1; 1332 } 1333 1334 /* 1335 * Call mp_cpu_stop() to perform any special operations 1336 * needed for this machine architecture to offline a CPU. 1337 */ 1338 if (error == 0) 1339 error = mp_cpu_stop(cp); /* arch-dep hook */ 1340 1341 /* 1342 * If that all worked, take the CPU offline and decrement 1343 * ncpus_online. 1344 */ 1345 if (error == 0) { 1346 /* 1347 * Put all the cpus into a known safe place. 1348 * No mutexes can be entered while CPUs are paused. 1349 */ 1350 pause_cpus(cp); 1351 /* 1352 * Repeat the operation, if necessary, to make sure that 1353 * all outstanding low-level interrupts run to completion 1354 * before we set the CPU_QUIESCED flag. It's also possible 1355 * that a thread has weak bound to the cpu despite our raising 1356 * cpu_inmotion above since it may have loaded that 1357 * value before the barrier became visible (this would have 1358 * to be the thread that was on the target cpu at the time 1359 * we raised the barrier). 1360 */ 1361 if ((!no_quiesce && cp->cpu_intr_actv != 0) || 1362 (*bound_func)(cp, 1)) { 1363 start_cpus(); 1364 (void) mp_cpu_start(cp); 1365 goto again; 1366 } 1367 ncp = cp->cpu_next_part; 1368 cpu_lpl = cp->cpu_lpl; 1369 ASSERT(cpu_lpl != NULL); 1370 1371 /* 1372 * Remove the CPU from the list of active CPUs. 1373 */ 1374 cpu_remove_active(cp); 1375 1376 /* 1377 * Walk the active process list and look for threads 1378 * whose home lgroup needs to be updated, or 1379 * the last CPU they run on is the one being offlined now. 1380 */ 1381 1382 ASSERT(curthread->t_cpu != cp); 1383 for (p = practive; p != NULL; p = p->p_next) { 1384 1385 t = p->p_tlist; 1386 1387 if (t == NULL) 1388 continue; 1389 1390 lgrp_diff_lpl = 0; 1391 1392 do { 1393 ASSERT(t->t_lpl != NULL); 1394 /* 1395 * Taking last CPU in lpl offline 1396 * Rehome thread if it is in this lpl 1397 * Otherwise, update the count of how many 1398 * threads are in this CPU's lgroup but have 1399 * a different lpl. 1400 */ 1401 1402 if (cpu_lpl->lpl_ncpu == 0) { 1403 if (t->t_lpl == cpu_lpl) 1404 lgrp_move_thread(t, 1405 lgrp_choose(t, 1406 t->t_cpupart), 0); 1407 else if (t->t_lpl->lpl_lgrpid == 1408 cpu_lpl->lpl_lgrpid) 1409 lgrp_diff_lpl++; 1410 } 1411 ASSERT(t->t_lpl->lpl_ncpu > 0); 1412 1413 /* 1414 * Update CPU last ran on if it was this CPU 1415 */ 1416 if (t->t_cpu == cp && t->t_bound_cpu != cp) 1417 t->t_cpu = disp_lowpri_cpu(ncp, t->t_lpl, 1418 t->t_pri, NULL); 1419 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1420 t->t_weakbound_cpu == cp); 1421 1422 t = t->t_forw; 1423 } while (t != p->p_tlist); 1424 1425 /* 1426 * Didn't find any threads in the same lgroup as this 1427 * CPU with a different lpl, so remove the lgroup from 1428 * the process lgroup bitmask. 1429 */ 1430 1431 if (lgrp_diff_lpl == 0) 1432 klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid); 1433 } 1434 1435 /* 1436 * Walk thread list looking for threads that need to be 1437 * rehomed, since there are some threads that are not in 1438 * their process's p_tlist. 1439 */ 1440 1441 t = curthread; 1442 do { 1443 ASSERT(t != NULL && t->t_lpl != NULL); 1444 1445 /* 1446 * Rehome threads with same lpl as this CPU when this 1447 * is the last CPU in the lpl. 1448 */ 1449 1450 if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl)) 1451 lgrp_move_thread(t, 1452 lgrp_choose(t, t->t_cpupart), 1); 1453 1454 ASSERT(t->t_lpl->lpl_ncpu > 0); 1455 1456 /* 1457 * Update CPU last ran on if it was this CPU 1458 */ 1459 1460 if (t->t_cpu == cp && t->t_bound_cpu != cp) { 1461 t->t_cpu = disp_lowpri_cpu(ncp, 1462 t->t_lpl, t->t_pri, NULL); 1463 } 1464 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1465 t->t_weakbound_cpu == cp); 1466 t = t->t_next; 1467 1468 } while (t != curthread); 1469 ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0); 1470 cp->cpu_flags |= CPU_OFFLINE; 1471 disp_cpu_inactive(cp); 1472 if (!no_quiesce) 1473 cp->cpu_flags |= CPU_QUIESCED; 1474 ncpus_online--; 1475 cpu_set_state(cp); 1476 cpu_inmotion = NULL; 1477 start_cpus(); 1478 cpu_stats_kstat_destroy(cp); 1479 cpu_delete_intrstat(cp); 1480 lgrp_kstat_destroy(cp); 1481 } 1482 1483 out: 1484 cpu_inmotion = NULL; 1485 1486 /* 1487 * If we failed, re-enable interrupts. 1488 * Do this even if cpu_intr_disable returned an error, because 1489 * it may have partially disabled interrupts. 1490 */ 1491 if (error && intr_enable) 1492 cpu_intr_enable(cp); 1493 1494 /* 1495 * If we failed, but managed to offline the cyclic subsystem on this 1496 * CPU, bring it back online. 1497 */ 1498 if (error && cyclic_off) 1499 cyclic_online(cp); 1500 1501 /* 1502 * If we failed, tell the PG subsystem that the CPU is back 1503 */ 1504 pg_cpupart_in(cp, pp); 1505 1506 /* 1507 * If we failed, we need to notify everyone that this CPU is back on. 1508 */ 1509 if (error != 0) 1510 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1511 1512 return (error); 1513 } 1514 1515 /* 1516 * Mark the indicated CPU as faulted, taking it offline. 1517 */ 1518 int 1519 cpu_faulted(cpu_t *cp, int flags) 1520 { 1521 int error = 0; 1522 1523 ASSERT(MUTEX_HELD(&cpu_lock)); 1524 ASSERT(!cpu_is_poweredoff(cp)); 1525 1526 if (cpu_is_offline(cp)) { 1527 cp->cpu_flags &= ~CPU_SPARE; 1528 cp->cpu_flags |= CPU_FAULTED; 1529 mp_cpu_faulted_enter(cp); 1530 cpu_set_state(cp); 1531 return (0); 1532 } 1533 1534 if ((error = cpu_offline(cp, flags)) == 0) { 1535 cp->cpu_flags |= CPU_FAULTED; 1536 mp_cpu_faulted_enter(cp); 1537 cpu_set_state(cp); 1538 } 1539 1540 return (error); 1541 } 1542 1543 /* 1544 * Mark the indicated CPU as a spare, taking it offline. 1545 */ 1546 int 1547 cpu_spare(cpu_t *cp, int flags) 1548 { 1549 int error = 0; 1550 1551 ASSERT(MUTEX_HELD(&cpu_lock)); 1552 ASSERT(!cpu_is_poweredoff(cp)); 1553 1554 if (cpu_is_offline(cp)) { 1555 if (cp->cpu_flags & CPU_FAULTED) { 1556 cp->cpu_flags &= ~CPU_FAULTED; 1557 mp_cpu_faulted_exit(cp); 1558 } 1559 cp->cpu_flags |= CPU_SPARE; 1560 cpu_set_state(cp); 1561 return (0); 1562 } 1563 1564 if ((error = cpu_offline(cp, flags)) == 0) { 1565 cp->cpu_flags |= CPU_SPARE; 1566 cpu_set_state(cp); 1567 } 1568 1569 return (error); 1570 } 1571 1572 /* 1573 * Take the indicated CPU from poweroff to offline. 1574 */ 1575 int 1576 cpu_poweron(cpu_t *cp) 1577 { 1578 int error = ENOTSUP; 1579 1580 ASSERT(MUTEX_HELD(&cpu_lock)); 1581 ASSERT(cpu_is_poweredoff(cp)); 1582 1583 error = mp_cpu_poweron(cp); /* arch-dep hook */ 1584 if (error == 0) 1585 cpu_set_state(cp); 1586 1587 return (error); 1588 } 1589 1590 /* 1591 * Take the indicated CPU from any inactive state to powered off. 1592 */ 1593 int 1594 cpu_poweroff(cpu_t *cp) 1595 { 1596 int error = ENOTSUP; 1597 1598 ASSERT(MUTEX_HELD(&cpu_lock)); 1599 ASSERT(cpu_is_offline(cp)); 1600 1601 if (!(cp->cpu_flags & CPU_QUIESCED)) 1602 return (EBUSY); /* not completely idle */ 1603 1604 error = mp_cpu_poweroff(cp); /* arch-dep hook */ 1605 if (error == 0) 1606 cpu_set_state(cp); 1607 1608 return (error); 1609 } 1610 1611 /* 1612 * Initialize the CPU lists for the first CPU. 1613 */ 1614 void 1615 cpu_list_init(cpu_t *cp) 1616 { 1617 cp->cpu_next = cp; 1618 cp->cpu_prev = cp; 1619 cpu_list = cp; 1620 1621 cp->cpu_next_onln = cp; 1622 cp->cpu_prev_onln = cp; 1623 cpu_active = cp; 1624 1625 cp->cpu_seqid = 0; 1626 CPUSET_ADD(cpu_seqid_inuse, 0); 1627 cp->cpu_cache_offset = KMEM_CACHE_SIZE(cp->cpu_seqid); 1628 cp_default.cp_mach = &cp_default_mach; 1629 cp_default.cp_cpulist = cp; 1630 cp_default.cp_ncpus = 1; 1631 cp->cpu_next_part = cp; 1632 cp->cpu_prev_part = cp; 1633 cp->cpu_part = &cp_default; 1634 1635 CPUSET_ADD(cpu_available, cp->cpu_id); 1636 } 1637 1638 /* 1639 * Insert a CPU into the list of available CPUs. 1640 */ 1641 void 1642 cpu_add_unit(cpu_t *cp) 1643 { 1644 int seqid; 1645 1646 ASSERT(MUTEX_HELD(&cpu_lock)); 1647 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1648 1649 lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0); 1650 1651 /* 1652 * Note: most users of the cpu_list will grab the 1653 * cpu_lock to insure that it isn't modified. However, 1654 * certain users can't or won't do that. To allow this 1655 * we pause the other cpus. Users who walk the list 1656 * without cpu_lock, must disable kernel preemption 1657 * to insure that the list isn't modified underneath 1658 * them. Also, any cached pointers to cpu structures 1659 * must be revalidated by checking to see if the 1660 * cpu_next pointer points to itself. This check must 1661 * be done with the cpu_lock held or kernel preemption 1662 * disabled. This check relies upon the fact that 1663 * old cpu structures are not free'ed or cleared after 1664 * then are removed from the cpu_list. 1665 * 1666 * Note that the clock code walks the cpu list dereferencing 1667 * the cpu_part pointer, so we need to initialize it before 1668 * adding the cpu to the list. 1669 */ 1670 cp->cpu_part = &cp_default; 1671 (void) pause_cpus(NULL); 1672 cp->cpu_next = cpu_list; 1673 cp->cpu_prev = cpu_list->cpu_prev; 1674 cpu_list->cpu_prev->cpu_next = cp; 1675 cpu_list->cpu_prev = cp; 1676 start_cpus(); 1677 1678 for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++) 1679 continue; 1680 CPUSET_ADD(cpu_seqid_inuse, seqid); 1681 cp->cpu_seqid = seqid; 1682 ASSERT(ncpus < max_ncpus); 1683 ncpus++; 1684 cp->cpu_cache_offset = KMEM_CACHE_SIZE(cp->cpu_seqid); 1685 cpu[cp->cpu_id] = cp; 1686 CPUSET_ADD(cpu_available, cp->cpu_id); 1687 1688 /* 1689 * allocate a pause thread for this CPU. 1690 */ 1691 cpu_pause_alloc(cp); 1692 1693 /* 1694 * So that new CPUs won't have NULL prev_onln and next_onln pointers, 1695 * link them into a list of just that CPU. 1696 * This is so that disp_lowpri_cpu will work for thread_create in 1697 * pause_cpus() when called from the startup thread in a new CPU. 1698 */ 1699 cp->cpu_next_onln = cp; 1700 cp->cpu_prev_onln = cp; 1701 cpu_info_kstat_create(cp); 1702 cp->cpu_next_part = cp; 1703 cp->cpu_prev_part = cp; 1704 1705 init_cpu_mstate(cp, CMS_SYSTEM); 1706 1707 pool_pset_mod = gethrtime(); 1708 } 1709 1710 /* 1711 * Do the opposite of cpu_add_unit(). 1712 */ 1713 void 1714 cpu_del_unit(int cpuid) 1715 { 1716 struct cpu *cp, *cpnext; 1717 1718 ASSERT(MUTEX_HELD(&cpu_lock)); 1719 cp = cpu[cpuid]; 1720 ASSERT(cp != NULL); 1721 1722 ASSERT(cp->cpu_next_onln == cp); 1723 ASSERT(cp->cpu_prev_onln == cp); 1724 ASSERT(cp->cpu_next_part == cp); 1725 ASSERT(cp->cpu_prev_part == cp); 1726 1727 /* 1728 * Tear down the CPU's physical ID cache, and update any 1729 * processor groups 1730 */ 1731 pg_cpu_fini(cp); 1732 pghw_physid_destroy(cp); 1733 1734 /* 1735 * Destroy kstat stuff. 1736 */ 1737 cpu_info_kstat_destroy(cp); 1738 term_cpu_mstate(cp); 1739 /* 1740 * Free up pause thread. 1741 */ 1742 cpu_pause_free(cp); 1743 CPUSET_DEL(cpu_available, cp->cpu_id); 1744 cpu[cp->cpu_id] = NULL; 1745 /* 1746 * The clock thread and mutex_vector_enter cannot hold the 1747 * cpu_lock while traversing the cpu list, therefore we pause 1748 * all other threads by pausing the other cpus. These, and any 1749 * other routines holding cpu pointers while possibly sleeping 1750 * must be sure to call kpreempt_disable before processing the 1751 * list and be sure to check that the cpu has not been deleted 1752 * after any sleeps (check cp->cpu_next != NULL). We guarantee 1753 * to keep the deleted cpu structure around. 1754 * 1755 * Note that this MUST be done AFTER cpu_available 1756 * has been updated so that we don't waste time 1757 * trying to pause the cpu we're trying to delete. 1758 */ 1759 (void) pause_cpus(NULL); 1760 1761 cpnext = cp->cpu_next; 1762 cp->cpu_prev->cpu_next = cp->cpu_next; 1763 cp->cpu_next->cpu_prev = cp->cpu_prev; 1764 if (cp == cpu_list) 1765 cpu_list = cpnext; 1766 1767 /* 1768 * Signals that the cpu has been deleted (see above). 1769 */ 1770 cp->cpu_next = NULL; 1771 cp->cpu_prev = NULL; 1772 1773 start_cpus(); 1774 1775 CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid); 1776 ncpus--; 1777 lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0); 1778 1779 pool_pset_mod = gethrtime(); 1780 } 1781 1782 /* 1783 * Add a CPU to the list of active CPUs. 1784 * This routine must not get any locks, because other CPUs are paused. 1785 */ 1786 static void 1787 cpu_add_active_internal(cpu_t *cp) 1788 { 1789 cpupart_t *pp = cp->cpu_part; 1790 1791 ASSERT(MUTEX_HELD(&cpu_lock)); 1792 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1793 1794 ncpus_online++; 1795 cpu_set_state(cp); 1796 cp->cpu_next_onln = cpu_active; 1797 cp->cpu_prev_onln = cpu_active->cpu_prev_onln; 1798 cpu_active->cpu_prev_onln->cpu_next_onln = cp; 1799 cpu_active->cpu_prev_onln = cp; 1800 1801 if (pp->cp_cpulist) { 1802 cp->cpu_next_part = pp->cp_cpulist; 1803 cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part; 1804 pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp; 1805 pp->cp_cpulist->cpu_prev_part = cp; 1806 } else { 1807 ASSERT(pp->cp_ncpus == 0); 1808 pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp; 1809 } 1810 pp->cp_ncpus++; 1811 if (pp->cp_ncpus == 1) { 1812 cp_numparts_nonempty++; 1813 ASSERT(cp_numparts_nonempty != 0); 1814 } 1815 1816 pg_cpu_active(cp); 1817 lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0); 1818 1819 bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg)); 1820 } 1821 1822 /* 1823 * Add a CPU to the list of active CPUs. 1824 * This is called from machine-dependent layers when a new CPU is started. 1825 */ 1826 void 1827 cpu_add_active(cpu_t *cp) 1828 { 1829 pg_cpupart_in(cp, cp->cpu_part); 1830 1831 pause_cpus(NULL); 1832 cpu_add_active_internal(cp); 1833 start_cpus(); 1834 1835 cpu_stats_kstat_create(cp); 1836 cpu_create_intrstat(cp); 1837 lgrp_kstat_create(cp); 1838 cpu_state_change_notify(cp->cpu_id, CPU_INIT); 1839 } 1840 1841 1842 /* 1843 * Remove a CPU from the list of active CPUs. 1844 * This routine must not get any locks, because other CPUs are paused. 1845 */ 1846 /* ARGSUSED */ 1847 static void 1848 cpu_remove_active(cpu_t *cp) 1849 { 1850 cpupart_t *pp = cp->cpu_part; 1851 1852 ASSERT(MUTEX_HELD(&cpu_lock)); 1853 ASSERT(cp->cpu_next_onln != cp); /* not the last one */ 1854 ASSERT(cp->cpu_prev_onln != cp); /* not the last one */ 1855 1856 pg_cpu_inactive(cp); 1857 1858 lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0); 1859 1860 cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln; 1861 cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln; 1862 if (cpu_active == cp) { 1863 cpu_active = cp->cpu_next_onln; 1864 } 1865 cp->cpu_next_onln = cp; 1866 cp->cpu_prev_onln = cp; 1867 1868 cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part; 1869 cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part; 1870 if (pp->cp_cpulist == cp) { 1871 pp->cp_cpulist = cp->cpu_next_part; 1872 ASSERT(pp->cp_cpulist != cp); 1873 } 1874 cp->cpu_next_part = cp; 1875 cp->cpu_prev_part = cp; 1876 pp->cp_ncpus--; 1877 if (pp->cp_ncpus == 0) { 1878 cp_numparts_nonempty--; 1879 ASSERT(cp_numparts_nonempty != 0); 1880 } 1881 } 1882 1883 /* 1884 * Routine used to setup a newly inserted CPU in preparation for starting 1885 * it running code. 1886 */ 1887 int 1888 cpu_configure(int cpuid) 1889 { 1890 int retval = 0; 1891 1892 ASSERT(MUTEX_HELD(&cpu_lock)); 1893 1894 /* 1895 * Some structures are statically allocated based upon 1896 * the maximum number of cpus the system supports. Do not 1897 * try to add anything beyond this limit. 1898 */ 1899 if (cpuid < 0 || cpuid >= NCPU) { 1900 return (EINVAL); 1901 } 1902 1903 if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) { 1904 return (EALREADY); 1905 } 1906 1907 if ((retval = mp_cpu_configure(cpuid)) != 0) { 1908 return (retval); 1909 } 1910 1911 cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF; 1912 cpu_set_state(cpu[cpuid]); 1913 retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG); 1914 if (retval != 0) 1915 (void) mp_cpu_unconfigure(cpuid); 1916 1917 return (retval); 1918 } 1919 1920 /* 1921 * Routine used to cleanup a CPU that has been powered off. This will 1922 * destroy all per-cpu information related to this cpu. 1923 */ 1924 int 1925 cpu_unconfigure(int cpuid) 1926 { 1927 int error; 1928 1929 ASSERT(MUTEX_HELD(&cpu_lock)); 1930 1931 if (cpu[cpuid] == NULL) { 1932 return (ENODEV); 1933 } 1934 1935 if (cpu[cpuid]->cpu_flags == 0) { 1936 return (EALREADY); 1937 } 1938 1939 if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) { 1940 return (EBUSY); 1941 } 1942 1943 if (cpu[cpuid]->cpu_props != NULL) { 1944 (void) nvlist_free(cpu[cpuid]->cpu_props); 1945 cpu[cpuid]->cpu_props = NULL; 1946 } 1947 1948 error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG); 1949 1950 if (error != 0) 1951 return (error); 1952 1953 return (mp_cpu_unconfigure(cpuid)); 1954 } 1955 1956 /* 1957 * Routines for registering and de-registering cpu_setup callback functions. 1958 * 1959 * Caller's context 1960 * These routines must not be called from a driver's attach(9E) or 1961 * detach(9E) entry point. 1962 * 1963 * NOTE: CPU callbacks should not block. They are called with cpu_lock held. 1964 */ 1965 1966 /* 1967 * Ideally, these would be dynamically allocated and put into a linked 1968 * list; however that is not feasible because the registration routine 1969 * has to be available before the kmem allocator is working (in fact, 1970 * it is called by the kmem allocator init code). In any case, there 1971 * are quite a few extra entries for future users. 1972 */ 1973 #define NCPU_SETUPS 20 1974 1975 struct cpu_setup { 1976 cpu_setup_func_t *func; 1977 void *arg; 1978 } cpu_setups[NCPU_SETUPS]; 1979 1980 void 1981 register_cpu_setup_func(cpu_setup_func_t *func, void *arg) 1982 { 1983 int i; 1984 1985 ASSERT(MUTEX_HELD(&cpu_lock)); 1986 1987 for (i = 0; i < NCPU_SETUPS; i++) 1988 if (cpu_setups[i].func == NULL) 1989 break; 1990 if (i >= NCPU_SETUPS) 1991 cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries"); 1992 1993 cpu_setups[i].func = func; 1994 cpu_setups[i].arg = arg; 1995 } 1996 1997 void 1998 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg) 1999 { 2000 int i; 2001 2002 ASSERT(MUTEX_HELD(&cpu_lock)); 2003 2004 for (i = 0; i < NCPU_SETUPS; i++) 2005 if ((cpu_setups[i].func == func) && 2006 (cpu_setups[i].arg == arg)) 2007 break; 2008 if (i >= NCPU_SETUPS) 2009 cmn_err(CE_PANIC, "Could not find cpu_setup callback to " 2010 "deregister"); 2011 2012 cpu_setups[i].func = NULL; 2013 cpu_setups[i].arg = 0; 2014 } 2015 2016 /* 2017 * Call any state change hooks for this CPU, ignore any errors. 2018 */ 2019 void 2020 cpu_state_change_notify(int id, cpu_setup_t what) 2021 { 2022 int i; 2023 2024 ASSERT(MUTEX_HELD(&cpu_lock)); 2025 2026 for (i = 0; i < NCPU_SETUPS; i++) { 2027 if (cpu_setups[i].func != NULL) { 2028 cpu_setups[i].func(what, id, cpu_setups[i].arg); 2029 } 2030 } 2031 } 2032 2033 /* 2034 * Call any state change hooks for this CPU, undo it if error found. 2035 */ 2036 static int 2037 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo) 2038 { 2039 int i; 2040 int retval = 0; 2041 2042 ASSERT(MUTEX_HELD(&cpu_lock)); 2043 2044 for (i = 0; i < NCPU_SETUPS; i++) { 2045 if (cpu_setups[i].func != NULL) { 2046 retval = cpu_setups[i].func(what, id, 2047 cpu_setups[i].arg); 2048 if (retval) { 2049 for (i--; i >= 0; i--) { 2050 if (cpu_setups[i].func != NULL) 2051 cpu_setups[i].func(undo, 2052 id, cpu_setups[i].arg); 2053 } 2054 break; 2055 } 2056 } 2057 } 2058 return (retval); 2059 } 2060 2061 /* 2062 * Export information about this CPU via the kstat mechanism. 2063 */ 2064 static struct { 2065 kstat_named_t ci_state; 2066 kstat_named_t ci_state_begin; 2067 kstat_named_t ci_cpu_type; 2068 kstat_named_t ci_fpu_type; 2069 kstat_named_t ci_clock_MHz; 2070 kstat_named_t ci_chip_id; 2071 kstat_named_t ci_implementation; 2072 kstat_named_t ci_brandstr; 2073 kstat_named_t ci_core_id; 2074 #if defined(__sparcv9) 2075 kstat_named_t ci_device_ID; 2076 kstat_named_t ci_cpu_fru; 2077 #endif 2078 #if defined(__x86) 2079 kstat_named_t ci_vendorstr; 2080 kstat_named_t ci_family; 2081 kstat_named_t ci_model; 2082 kstat_named_t ci_step; 2083 kstat_named_t ci_clogid; 2084 #endif 2085 } cpu_info_template = { 2086 { "state", KSTAT_DATA_CHAR }, 2087 { "state_begin", KSTAT_DATA_LONG }, 2088 { "cpu_type", KSTAT_DATA_CHAR }, 2089 { "fpu_type", KSTAT_DATA_CHAR }, 2090 { "clock_MHz", KSTAT_DATA_LONG }, 2091 { "chip_id", KSTAT_DATA_LONG }, 2092 { "implementation", KSTAT_DATA_STRING }, 2093 { "brand", KSTAT_DATA_STRING }, 2094 { "core_id", KSTAT_DATA_LONG }, 2095 #if defined(__sparcv9) 2096 { "device_ID", KSTAT_DATA_UINT64 }, 2097 { "cpu_fru", KSTAT_DATA_STRING }, 2098 #endif 2099 #if defined(__x86) 2100 { "vendor_id", KSTAT_DATA_STRING }, 2101 { "family", KSTAT_DATA_INT32 }, 2102 { "model", KSTAT_DATA_INT32 }, 2103 { "stepping", KSTAT_DATA_INT32 }, 2104 { "clog_id", KSTAT_DATA_INT32 }, 2105 #endif 2106 }; 2107 2108 static kmutex_t cpu_info_template_lock; 2109 2110 static int 2111 cpu_info_kstat_update(kstat_t *ksp, int rw) 2112 { 2113 cpu_t *cp = ksp->ks_private; 2114 const char *pi_state; 2115 2116 if (rw == KSTAT_WRITE) 2117 return (EACCES); 2118 2119 switch (cp->cpu_type_info.pi_state) { 2120 case P_ONLINE: 2121 pi_state = PS_ONLINE; 2122 break; 2123 case P_POWEROFF: 2124 pi_state = PS_POWEROFF; 2125 break; 2126 case P_NOINTR: 2127 pi_state = PS_NOINTR; 2128 break; 2129 case P_FAULTED: 2130 pi_state = PS_FAULTED; 2131 break; 2132 case P_SPARE: 2133 pi_state = PS_SPARE; 2134 break; 2135 case P_OFFLINE: 2136 pi_state = PS_OFFLINE; 2137 break; 2138 default: 2139 pi_state = "unknown"; 2140 } 2141 (void) strcpy(cpu_info_template.ci_state.value.c, pi_state); 2142 cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin; 2143 (void) strncpy(cpu_info_template.ci_cpu_type.value.c, 2144 cp->cpu_type_info.pi_processor_type, 15); 2145 (void) strncpy(cpu_info_template.ci_fpu_type.value.c, 2146 cp->cpu_type_info.pi_fputypes, 15); 2147 cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock; 2148 cpu_info_template.ci_chip_id.value.l = 2149 pg_plat_hw_instance_id(cp, PGHW_CHIP); 2150 kstat_named_setstr(&cpu_info_template.ci_implementation, 2151 cp->cpu_idstr); 2152 kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr); 2153 cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp); 2154 2155 #if defined(__sparcv9) 2156 cpu_info_template.ci_device_ID.value.ui64 = 2157 cpunodes[cp->cpu_id].device_id; 2158 kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp)); 2159 #endif 2160 #if defined(__x86) 2161 kstat_named_setstr(&cpu_info_template.ci_vendorstr, 2162 cpuid_getvendorstr(cp)); 2163 cpu_info_template.ci_family.value.l = cpuid_getfamily(cp); 2164 cpu_info_template.ci_model.value.l = cpuid_getmodel(cp); 2165 cpu_info_template.ci_step.value.l = cpuid_getstep(cp); 2166 cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp); 2167 #endif 2168 2169 return (0); 2170 } 2171 2172 static void 2173 cpu_info_kstat_create(cpu_t *cp) 2174 { 2175 zoneid_t zoneid; 2176 2177 ASSERT(MUTEX_HELD(&cpu_lock)); 2178 2179 if (pool_pset_enabled()) 2180 zoneid = GLOBAL_ZONEID; 2181 else 2182 zoneid = ALL_ZONES; 2183 if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id, 2184 NULL, "misc", KSTAT_TYPE_NAMED, 2185 sizeof (cpu_info_template) / sizeof (kstat_named_t), 2186 KSTAT_FLAG_VIRTUAL, zoneid)) != NULL) { 2187 cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN; 2188 #if defined(__sparcv9) 2189 cp->cpu_info_kstat->ks_data_size += 2190 strlen(cpu_fru_fmri(cp)) + 1; 2191 #endif 2192 #if defined(__x86) 2193 cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN; 2194 #endif 2195 cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock; 2196 cp->cpu_info_kstat->ks_data = &cpu_info_template; 2197 cp->cpu_info_kstat->ks_private = cp; 2198 cp->cpu_info_kstat->ks_update = cpu_info_kstat_update; 2199 kstat_install(cp->cpu_info_kstat); 2200 } 2201 } 2202 2203 static void 2204 cpu_info_kstat_destroy(cpu_t *cp) 2205 { 2206 ASSERT(MUTEX_HELD(&cpu_lock)); 2207 2208 kstat_delete(cp->cpu_info_kstat); 2209 cp->cpu_info_kstat = NULL; 2210 } 2211 2212 /* 2213 * Create and install kstats for the boot CPU. 2214 */ 2215 void 2216 cpu_kstat_init(cpu_t *cp) 2217 { 2218 /* 2219 * XXX need pg kstats for boot CPU 2220 */ 2221 mutex_enter(&cpu_lock); 2222 cpu_info_kstat_create(cp); 2223 cpu_stats_kstat_create(cp); 2224 cpu_create_intrstat(cp); 2225 cpu_set_state(cp); 2226 mutex_exit(&cpu_lock); 2227 } 2228 2229 /* 2230 * Make visible to the zone that subset of the cpu information that would be 2231 * initialized when a cpu is configured (but still offline). 2232 */ 2233 void 2234 cpu_visibility_configure(cpu_t *cp, zone_t *zone) 2235 { 2236 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2237 2238 ASSERT(MUTEX_HELD(&cpu_lock)); 2239 ASSERT(pool_pset_enabled()); 2240 ASSERT(cp != NULL); 2241 2242 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2243 zone->zone_ncpus++; 2244 ASSERT(zone->zone_ncpus <= ncpus); 2245 } 2246 if (cp->cpu_info_kstat != NULL) 2247 kstat_zone_add(cp->cpu_info_kstat, zoneid); 2248 } 2249 2250 /* 2251 * Make visible to the zone that subset of the cpu information that would be 2252 * initialized when a previously configured cpu is onlined. 2253 */ 2254 void 2255 cpu_visibility_online(cpu_t *cp, zone_t *zone) 2256 { 2257 kstat_t *ksp; 2258 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2259 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2260 processorid_t cpun; 2261 2262 ASSERT(MUTEX_HELD(&cpu_lock)); 2263 ASSERT(pool_pset_enabled()); 2264 ASSERT(cp != NULL); 2265 ASSERT(cpu_is_active(cp)); 2266 2267 cpun = cp->cpu_id; 2268 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2269 zone->zone_ncpus_online++; 2270 ASSERT(zone->zone_ncpus_online <= ncpus_online); 2271 } 2272 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2273 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2274 != NULL) { 2275 kstat_zone_add(ksp, zoneid); 2276 kstat_rele(ksp); 2277 } 2278 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2279 kstat_zone_add(ksp, zoneid); 2280 kstat_rele(ksp); 2281 } 2282 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2283 kstat_zone_add(ksp, zoneid); 2284 kstat_rele(ksp); 2285 } 2286 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2287 NULL) { 2288 kstat_zone_add(ksp, zoneid); 2289 kstat_rele(ksp); 2290 } 2291 } 2292 2293 /* 2294 * Update relevant kstats such that cpu is now visible to processes 2295 * executing in specified zone. 2296 */ 2297 void 2298 cpu_visibility_add(cpu_t *cp, zone_t *zone) 2299 { 2300 cpu_visibility_configure(cp, zone); 2301 if (cpu_is_active(cp)) 2302 cpu_visibility_online(cp, zone); 2303 } 2304 2305 /* 2306 * Make invisible to the zone that subset of the cpu information that would be 2307 * torn down when a previously offlined cpu is unconfigured. 2308 */ 2309 void 2310 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone) 2311 { 2312 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2313 2314 ASSERT(MUTEX_HELD(&cpu_lock)); 2315 ASSERT(pool_pset_enabled()); 2316 ASSERT(cp != NULL); 2317 2318 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2319 ASSERT(zone->zone_ncpus != 0); 2320 zone->zone_ncpus--; 2321 } 2322 if (cp->cpu_info_kstat) 2323 kstat_zone_remove(cp->cpu_info_kstat, zoneid); 2324 } 2325 2326 /* 2327 * Make invisible to the zone that subset of the cpu information that would be 2328 * torn down when a cpu is offlined (but still configured). 2329 */ 2330 void 2331 cpu_visibility_offline(cpu_t *cp, zone_t *zone) 2332 { 2333 kstat_t *ksp; 2334 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2335 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2336 processorid_t cpun; 2337 2338 ASSERT(MUTEX_HELD(&cpu_lock)); 2339 ASSERT(pool_pset_enabled()); 2340 ASSERT(cp != NULL); 2341 ASSERT(cpu_is_active(cp)); 2342 2343 cpun = cp->cpu_id; 2344 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2345 ASSERT(zone->zone_ncpus_online != 0); 2346 zone->zone_ncpus_online--; 2347 } 2348 2349 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2350 NULL) { 2351 kstat_zone_remove(ksp, zoneid); 2352 kstat_rele(ksp); 2353 } 2354 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2355 kstat_zone_remove(ksp, zoneid); 2356 kstat_rele(ksp); 2357 } 2358 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2359 kstat_zone_remove(ksp, zoneid); 2360 kstat_rele(ksp); 2361 } 2362 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2363 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2364 != NULL) { 2365 kstat_zone_remove(ksp, zoneid); 2366 kstat_rele(ksp); 2367 } 2368 } 2369 2370 /* 2371 * Update relevant kstats such that cpu is no longer visible to processes 2372 * executing in specified zone. 2373 */ 2374 void 2375 cpu_visibility_remove(cpu_t *cp, zone_t *zone) 2376 { 2377 if (cpu_is_active(cp)) 2378 cpu_visibility_offline(cp, zone); 2379 cpu_visibility_unconfigure(cp, zone); 2380 } 2381 2382 /* 2383 * Bind a thread to a CPU as requested. 2384 */ 2385 int 2386 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind, 2387 int *error) 2388 { 2389 processorid_t binding; 2390 cpu_t *cp; 2391 2392 ASSERT(MUTEX_HELD(&cpu_lock)); 2393 ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock)); 2394 2395 thread_lock(tp); 2396 2397 /* 2398 * Record old binding, but change the obind, which was initialized 2399 * to PBIND_NONE, only if this thread has a binding. This avoids 2400 * reporting PBIND_NONE for a process when some LWPs are bound. 2401 */ 2402 binding = tp->t_bind_cpu; 2403 if (binding != PBIND_NONE) 2404 *obind = binding; /* record old binding */ 2405 2406 if (bind == PBIND_QUERY) { 2407 thread_unlock(tp); 2408 return (0); 2409 } 2410 2411 /* 2412 * If this thread/LWP cannot be bound because of permission 2413 * problems, just note that and return success so that the 2414 * other threads/LWPs will be bound. This is the way 2415 * processor_bind() is defined to work. 2416 * 2417 * Binding will get EPERM if the thread is of system class 2418 * or hasprocperm() fails. 2419 */ 2420 if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) { 2421 *error = EPERM; 2422 thread_unlock(tp); 2423 return (0); 2424 } 2425 2426 binding = bind; 2427 if (binding != PBIND_NONE) { 2428 cp = cpu[binding]; 2429 /* 2430 * Make sure binding is in right partition. 2431 */ 2432 if (tp->t_cpupart != cp->cpu_part) { 2433 *error = EINVAL; 2434 thread_unlock(tp); 2435 return (0); 2436 } 2437 } 2438 tp->t_bind_cpu = binding; /* set new binding */ 2439 2440 /* 2441 * If there is no system-set reason for affinity, set 2442 * the t_bound_cpu field to reflect the binding. 2443 */ 2444 if (tp->t_affinitycnt == 0) { 2445 if (binding == PBIND_NONE) { 2446 /* 2447 * We may need to adjust disp_max_unbound_pri 2448 * since we're becoming unbound. 2449 */ 2450 disp_adjust_unbound_pri(tp); 2451 2452 tp->t_bound_cpu = NULL; /* set new binding */ 2453 2454 /* 2455 * Move thread to lgroup with strongest affinity 2456 * after unbinding 2457 */ 2458 if (tp->t_lgrp_affinity) 2459 lgrp_move_thread(tp, 2460 lgrp_choose(tp, tp->t_cpupart), 1); 2461 2462 if (tp->t_state == TS_ONPROC && 2463 tp->t_cpu->cpu_part != tp->t_cpupart) 2464 cpu_surrender(tp); 2465 } else { 2466 lpl_t *lpl; 2467 2468 tp->t_bound_cpu = cp; 2469 ASSERT(cp->cpu_lpl != NULL); 2470 2471 /* 2472 * Set home to lgroup with most affinity containing CPU 2473 * that thread is being bound or minimum bounding 2474 * lgroup if no affinities set 2475 */ 2476 if (tp->t_lgrp_affinity) 2477 lpl = lgrp_affinity_best(tp, tp->t_cpupart, 2478 LGRP_NONE, B_FALSE); 2479 else 2480 lpl = cp->cpu_lpl; 2481 2482 if (tp->t_lpl != lpl) { 2483 /* can't grab cpu_lock */ 2484 lgrp_move_thread(tp, lpl, 1); 2485 } 2486 2487 /* 2488 * Make the thread switch to the bound CPU. 2489 * If the thread is runnable, we need to 2490 * requeue it even if t_cpu is already set 2491 * to the right CPU, since it may be on a 2492 * kpreempt queue and need to move to a local 2493 * queue. We could check t_disp_queue to 2494 * avoid unnecessary overhead if it's already 2495 * on the right queue, but since this isn't 2496 * a performance-critical operation it doesn't 2497 * seem worth the extra code and complexity. 2498 * 2499 * If the thread is weakbound to the cpu then it will 2500 * resist the new binding request until the weak 2501 * binding drops. The cpu_surrender or requeueing 2502 * below could be skipped in such cases (since it 2503 * will have no effect), but that would require 2504 * thread_allowmigrate to acquire thread_lock so 2505 * we'll take the very occasional hit here instead. 2506 */ 2507 if (tp->t_state == TS_ONPROC) { 2508 cpu_surrender(tp); 2509 } else if (tp->t_state == TS_RUN) { 2510 cpu_t *ocp = tp->t_cpu; 2511 2512 (void) dispdeq(tp); 2513 setbackdq(tp); 2514 /* 2515 * Either on the bound CPU's disp queue now, 2516 * or swapped out or on the swap queue. 2517 */ 2518 ASSERT(tp->t_disp_queue == cp->cpu_disp || 2519 tp->t_weakbound_cpu == ocp || 2520 (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) 2521 != TS_LOAD); 2522 } 2523 } 2524 } 2525 2526 /* 2527 * Our binding has changed; set TP_CHANGEBIND. 2528 */ 2529 tp->t_proc_flag |= TP_CHANGEBIND; 2530 aston(tp); 2531 2532 thread_unlock(tp); 2533 2534 return (0); 2535 } 2536 2537 #if CPUSET_WORDS > 1 2538 2539 /* 2540 * Functions for implementing cpuset operations when a cpuset is more 2541 * than one word. On platforms where a cpuset is a single word these 2542 * are implemented as macros in cpuvar.h. 2543 */ 2544 2545 void 2546 cpuset_all(cpuset_t *s) 2547 { 2548 int i; 2549 2550 for (i = 0; i < CPUSET_WORDS; i++) 2551 s->cpub[i] = ~0UL; 2552 } 2553 2554 void 2555 cpuset_all_but(cpuset_t *s, uint_t cpu) 2556 { 2557 cpuset_all(s); 2558 CPUSET_DEL(*s, cpu); 2559 } 2560 2561 void 2562 cpuset_only(cpuset_t *s, uint_t cpu) 2563 { 2564 CPUSET_ZERO(*s); 2565 CPUSET_ADD(*s, cpu); 2566 } 2567 2568 int 2569 cpuset_isnull(cpuset_t *s) 2570 { 2571 int i; 2572 2573 for (i = 0; i < CPUSET_WORDS; i++) 2574 if (s->cpub[i] != 0) 2575 return (0); 2576 return (1); 2577 } 2578 2579 int 2580 cpuset_cmp(cpuset_t *s1, cpuset_t *s2) 2581 { 2582 int i; 2583 2584 for (i = 0; i < CPUSET_WORDS; i++) 2585 if (s1->cpub[i] != s2->cpub[i]) 2586 return (0); 2587 return (1); 2588 } 2589 2590 uint_t 2591 cpuset_find(cpuset_t *s) 2592 { 2593 2594 uint_t i; 2595 uint_t cpu = (uint_t)-1; 2596 2597 /* 2598 * Find a cpu in the cpuset 2599 */ 2600 for (i = 0; i < CPUSET_WORDS; i++) { 2601 cpu = (uint_t)(lowbit(s->cpub[i]) - 1); 2602 if (cpu != (uint_t)-1) { 2603 cpu += i * BT_NBIPUL; 2604 break; 2605 } 2606 } 2607 return (cpu); 2608 } 2609 2610 void 2611 cpuset_bounds(cpuset_t *s, uint_t *smallestid, uint_t *largestid) 2612 { 2613 int i, j; 2614 uint_t bit; 2615 2616 /* 2617 * First, find the smallest cpu id in the set. 2618 */ 2619 for (i = 0; i < CPUSET_WORDS; i++) { 2620 if (s->cpub[i] != 0) { 2621 bit = (uint_t)(lowbit(s->cpub[i]) - 1); 2622 ASSERT(bit != (uint_t)-1); 2623 *smallestid = bit + (i * BT_NBIPUL); 2624 2625 /* 2626 * Now find the largest cpu id in 2627 * the set and return immediately. 2628 * Done in an inner loop to avoid 2629 * having to break out of the first 2630 * loop. 2631 */ 2632 for (j = CPUSET_WORDS - 1; j >= i; j--) { 2633 if (s->cpub[j] != 0) { 2634 bit = (uint_t)(highbit(s->cpub[j]) - 1); 2635 ASSERT(bit != (uint_t)-1); 2636 *largestid = bit + (j * BT_NBIPUL); 2637 ASSERT(*largestid >= *smallestid); 2638 return; 2639 } 2640 } 2641 2642 /* 2643 * If this code is reached, a 2644 * smallestid was found, but not a 2645 * largestid. The cpuset must have 2646 * been changed during the course 2647 * of this function call. 2648 */ 2649 ASSERT(0); 2650 } 2651 } 2652 *smallestid = *largestid = CPUSET_NOTINSET; 2653 } 2654 2655 #endif /* CPUSET_WORDS */ 2656 2657 /* 2658 * Unbind all user threads bound to a given CPU. 2659 */ 2660 int 2661 cpu_unbind(processorid_t cpu) 2662 { 2663 processorid_t obind; 2664 kthread_t *tp; 2665 int ret = 0; 2666 proc_t *pp; 2667 int err, berr = 0; 2668 2669 ASSERT(MUTEX_HELD(&cpu_lock)); 2670 2671 mutex_enter(&pidlock); 2672 for (pp = practive; pp != NULL; pp = pp->p_next) { 2673 mutex_enter(&pp->p_lock); 2674 tp = pp->p_tlist; 2675 /* 2676 * Skip zombies, kernel processes, and processes in 2677 * other zones, if called from a non-global zone. 2678 */ 2679 if (tp == NULL || (pp->p_flag & SSYS) || 2680 !HASZONEACCESS(curproc, pp->p_zone->zone_id)) { 2681 mutex_exit(&pp->p_lock); 2682 continue; 2683 } 2684 do { 2685 if (tp->t_bind_cpu != cpu) 2686 continue; 2687 err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr); 2688 if (ret == 0) 2689 ret = err; 2690 } while ((tp = tp->t_forw) != pp->p_tlist); 2691 mutex_exit(&pp->p_lock); 2692 } 2693 mutex_exit(&pidlock); 2694 if (ret == 0) 2695 ret = berr; 2696 return (ret); 2697 } 2698 2699 2700 /* 2701 * Destroy all remaining bound threads on a cpu. 2702 */ 2703 void 2704 cpu_destroy_bound_threads(cpu_t *cp) 2705 { 2706 extern id_t syscid; 2707 register kthread_id_t t, tlist, tnext; 2708 2709 /* 2710 * Destroy all remaining bound threads on the cpu. This 2711 * should include both the interrupt threads and the idle thread. 2712 * This requires some care, since we need to traverse the 2713 * thread list with the pidlock mutex locked, but thread_free 2714 * also locks the pidlock mutex. So, we collect the threads 2715 * we're going to reap in a list headed by "tlist", then we 2716 * unlock the pidlock mutex and traverse the tlist list, 2717 * doing thread_free's on the thread's. Simple, n'est pas? 2718 * Also, this depends on thread_free not mucking with the 2719 * t_next and t_prev links of the thread. 2720 */ 2721 2722 if ((t = curthread) != NULL) { 2723 2724 tlist = NULL; 2725 mutex_enter(&pidlock); 2726 do { 2727 tnext = t->t_next; 2728 if (t->t_bound_cpu == cp) { 2729 2730 /* 2731 * We've found a bound thread, carefully unlink 2732 * it out of the thread list, and add it to 2733 * our "tlist". We "know" we don't have to 2734 * worry about unlinking curthread (the thread 2735 * that is executing this code). 2736 */ 2737 t->t_next->t_prev = t->t_prev; 2738 t->t_prev->t_next = t->t_next; 2739 t->t_next = tlist; 2740 tlist = t; 2741 ASSERT(t->t_cid == syscid); 2742 /* wake up anyone blocked in thread_join */ 2743 cv_broadcast(&t->t_joincv); 2744 /* 2745 * t_lwp set by interrupt threads and not 2746 * cleared. 2747 */ 2748 t->t_lwp = NULL; 2749 /* 2750 * Pause and idle threads always have 2751 * t_state set to TS_ONPROC. 2752 */ 2753 t->t_state = TS_FREE; 2754 t->t_prev = NULL; /* Just in case */ 2755 } 2756 2757 } while ((t = tnext) != curthread); 2758 2759 mutex_exit(&pidlock); 2760 2761 2762 for (t = tlist; t != NULL; t = tnext) { 2763 tnext = t->t_next; 2764 thread_free(t); 2765 } 2766 } 2767 } 2768 2769 /* 2770 * processor_info(2) and p_online(2) status support functions 2771 * The constants returned by the cpu_get_state() and cpu_get_state_str() are 2772 * for use in communicating processor state information to userland. Kernel 2773 * subsystems should only be using the cpu_flags value directly. Subsystems 2774 * modifying cpu_flags should record the state change via a call to the 2775 * cpu_set_state(). 2776 */ 2777 2778 /* 2779 * Update the pi_state of this CPU. This function provides the CPU status for 2780 * the information returned by processor_info(2). 2781 */ 2782 void 2783 cpu_set_state(cpu_t *cpu) 2784 { 2785 ASSERT(MUTEX_HELD(&cpu_lock)); 2786 cpu->cpu_type_info.pi_state = cpu_get_state(cpu); 2787 cpu->cpu_state_begin = gethrestime_sec(); 2788 pool_cpu_mod = gethrtime(); 2789 } 2790 2791 /* 2792 * Return offline/online/other status for the indicated CPU. Use only for 2793 * communication with user applications; cpu_flags provides the in-kernel 2794 * interface. 2795 */ 2796 int 2797 cpu_get_state(cpu_t *cpu) 2798 { 2799 ASSERT(MUTEX_HELD(&cpu_lock)); 2800 if (cpu->cpu_flags & CPU_POWEROFF) 2801 return (P_POWEROFF); 2802 else if (cpu->cpu_flags & CPU_FAULTED) 2803 return (P_FAULTED); 2804 else if (cpu->cpu_flags & CPU_SPARE) 2805 return (P_SPARE); 2806 else if ((cpu->cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY) 2807 return (P_OFFLINE); 2808 else if (cpu->cpu_flags & CPU_ENABLE) 2809 return (P_ONLINE); 2810 else 2811 return (P_NOINTR); 2812 } 2813 2814 /* 2815 * Return processor_info(2) state as a string. 2816 */ 2817 const char * 2818 cpu_get_state_str(cpu_t *cpu) 2819 { 2820 const char *string; 2821 2822 switch (cpu_get_state(cpu)) { 2823 case P_ONLINE: 2824 string = PS_ONLINE; 2825 break; 2826 case P_POWEROFF: 2827 string = PS_POWEROFF; 2828 break; 2829 case P_NOINTR: 2830 string = PS_NOINTR; 2831 break; 2832 case P_SPARE: 2833 string = PS_SPARE; 2834 break; 2835 case P_FAULTED: 2836 string = PS_FAULTED; 2837 break; 2838 case P_OFFLINE: 2839 string = PS_OFFLINE; 2840 break; 2841 default: 2842 string = "unknown"; 2843 break; 2844 } 2845 return (string); 2846 } 2847 2848 /* 2849 * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named 2850 * kstats, respectively. This is done when a CPU is initialized or placed 2851 * online via p_online(2). 2852 */ 2853 static void 2854 cpu_stats_kstat_create(cpu_t *cp) 2855 { 2856 int instance = cp->cpu_id; 2857 char *module = "cpu"; 2858 char *class = "misc"; 2859 kstat_t *ksp; 2860 zoneid_t zoneid; 2861 2862 ASSERT(MUTEX_HELD(&cpu_lock)); 2863 2864 if (pool_pset_enabled()) 2865 zoneid = GLOBAL_ZONEID; 2866 else 2867 zoneid = ALL_ZONES; 2868 /* 2869 * Create named kstats 2870 */ 2871 #define CPU_STATS_KS_CREATE(name, tsize, update_func) \ 2872 ksp = kstat_create_zone(module, instance, (name), class, \ 2873 KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0, \ 2874 zoneid); \ 2875 if (ksp != NULL) { \ 2876 ksp->ks_private = cp; \ 2877 ksp->ks_update = (update_func); \ 2878 kstat_install(ksp); \ 2879 } else \ 2880 cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \ 2881 module, instance, (name)); 2882 2883 CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template), 2884 cpu_sys_stats_ks_update); 2885 CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template), 2886 cpu_vm_stats_ks_update); 2887 2888 /* 2889 * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat. 2890 */ 2891 ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL, 2892 "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid); 2893 if (ksp != NULL) { 2894 ksp->ks_update = cpu_stat_ks_update; 2895 ksp->ks_private = cp; 2896 kstat_install(ksp); 2897 } 2898 } 2899 2900 static void 2901 cpu_stats_kstat_destroy(cpu_t *cp) 2902 { 2903 char ks_name[KSTAT_STRLEN]; 2904 2905 (void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id); 2906 kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name); 2907 2908 kstat_delete_byname("cpu", cp->cpu_id, "sys"); 2909 kstat_delete_byname("cpu", cp->cpu_id, "vm"); 2910 } 2911 2912 static int 2913 cpu_sys_stats_ks_update(kstat_t *ksp, int rw) 2914 { 2915 cpu_t *cp = (cpu_t *)ksp->ks_private; 2916 struct cpu_sys_stats_ks_data *csskd; 2917 cpu_sys_stats_t *css; 2918 hrtime_t msnsecs[NCMSTATES]; 2919 int i; 2920 2921 if (rw == KSTAT_WRITE) 2922 return (EACCES); 2923 2924 csskd = ksp->ks_data; 2925 css = &cp->cpu_stats.sys; 2926 2927 /* 2928 * Read CPU mstate, but compare with the last values we 2929 * received to make sure that the returned kstats never 2930 * decrease. 2931 */ 2932 2933 get_cpu_mstate(cp, msnsecs); 2934 if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE]) 2935 msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64; 2936 if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER]) 2937 msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64; 2938 if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM]) 2939 msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64; 2940 2941 bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data, 2942 sizeof (cpu_sys_stats_ks_data_template)); 2943 2944 csskd->cpu_ticks_wait.value.ui64 = 0; 2945 csskd->wait_ticks_io.value.ui64 = 0; 2946 2947 csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE]; 2948 csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER]; 2949 csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM]; 2950 csskd->cpu_ticks_idle.value.ui64 = 2951 NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64); 2952 csskd->cpu_ticks_user.value.ui64 = 2953 NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64); 2954 csskd->cpu_ticks_kernel.value.ui64 = 2955 NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64); 2956 csskd->bread.value.ui64 = css->bread; 2957 csskd->bwrite.value.ui64 = css->bwrite; 2958 csskd->lread.value.ui64 = css->lread; 2959 csskd->lwrite.value.ui64 = css->lwrite; 2960 csskd->phread.value.ui64 = css->phread; 2961 csskd->phwrite.value.ui64 = css->phwrite; 2962 csskd->pswitch.value.ui64 = css->pswitch; 2963 csskd->trap.value.ui64 = css->trap; 2964 csskd->intr.value.ui64 = 0; 2965 for (i = 0; i < PIL_MAX; i++) 2966 csskd->intr.value.ui64 += css->intr[i]; 2967 csskd->syscall.value.ui64 = css->syscall; 2968 csskd->sysread.value.ui64 = css->sysread; 2969 csskd->syswrite.value.ui64 = css->syswrite; 2970 csskd->sysfork.value.ui64 = css->sysfork; 2971 csskd->sysvfork.value.ui64 = css->sysvfork; 2972 csskd->sysexec.value.ui64 = css->sysexec; 2973 csskd->readch.value.ui64 = css->readch; 2974 csskd->writech.value.ui64 = css->writech; 2975 csskd->rcvint.value.ui64 = css->rcvint; 2976 csskd->xmtint.value.ui64 = css->xmtint; 2977 csskd->mdmint.value.ui64 = css->mdmint; 2978 csskd->rawch.value.ui64 = css->rawch; 2979 csskd->canch.value.ui64 = css->canch; 2980 csskd->outch.value.ui64 = css->outch; 2981 csskd->msg.value.ui64 = css->msg; 2982 csskd->sema.value.ui64 = css->sema; 2983 csskd->namei.value.ui64 = css->namei; 2984 csskd->ufsiget.value.ui64 = css->ufsiget; 2985 csskd->ufsdirblk.value.ui64 = css->ufsdirblk; 2986 csskd->ufsipage.value.ui64 = css->ufsipage; 2987 csskd->ufsinopage.value.ui64 = css->ufsinopage; 2988 csskd->procovf.value.ui64 = css->procovf; 2989 csskd->intrthread.value.ui64 = 0; 2990 for (i = 0; i < LOCK_LEVEL; i++) 2991 csskd->intrthread.value.ui64 += css->intr[i]; 2992 csskd->intrblk.value.ui64 = css->intrblk; 2993 csskd->intrunpin.value.ui64 = css->intrunpin; 2994 csskd->idlethread.value.ui64 = css->idlethread; 2995 csskd->inv_swtch.value.ui64 = css->inv_swtch; 2996 csskd->nthreads.value.ui64 = css->nthreads; 2997 csskd->cpumigrate.value.ui64 = css->cpumigrate; 2998 csskd->xcalls.value.ui64 = css->xcalls; 2999 csskd->mutex_adenters.value.ui64 = css->mutex_adenters; 3000 csskd->rw_rdfails.value.ui64 = css->rw_rdfails; 3001 csskd->rw_wrfails.value.ui64 = css->rw_wrfails; 3002 csskd->modload.value.ui64 = css->modload; 3003 csskd->modunload.value.ui64 = css->modunload; 3004 csskd->bawrite.value.ui64 = css->bawrite; 3005 csskd->iowait.value.ui64 = css->iowait; 3006 3007 return (0); 3008 } 3009 3010 static int 3011 cpu_vm_stats_ks_update(kstat_t *ksp, int rw) 3012 { 3013 cpu_t *cp = (cpu_t *)ksp->ks_private; 3014 struct cpu_vm_stats_ks_data *cvskd; 3015 cpu_vm_stats_t *cvs; 3016 3017 if (rw == KSTAT_WRITE) 3018 return (EACCES); 3019 3020 cvs = &cp->cpu_stats.vm; 3021 cvskd = ksp->ks_data; 3022 3023 bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data, 3024 sizeof (cpu_vm_stats_ks_data_template)); 3025 cvskd->pgrec.value.ui64 = cvs->pgrec; 3026 cvskd->pgfrec.value.ui64 = cvs->pgfrec; 3027 cvskd->pgin.value.ui64 = cvs->pgin; 3028 cvskd->pgpgin.value.ui64 = cvs->pgpgin; 3029 cvskd->pgout.value.ui64 = cvs->pgout; 3030 cvskd->pgpgout.value.ui64 = cvs->pgpgout; 3031 cvskd->swapin.value.ui64 = cvs->swapin; 3032 cvskd->pgswapin.value.ui64 = cvs->pgswapin; 3033 cvskd->swapout.value.ui64 = cvs->swapout; 3034 cvskd->pgswapout.value.ui64 = cvs->pgswapout; 3035 cvskd->zfod.value.ui64 = cvs->zfod; 3036 cvskd->dfree.value.ui64 = cvs->dfree; 3037 cvskd->scan.value.ui64 = cvs->scan; 3038 cvskd->rev.value.ui64 = cvs->rev; 3039 cvskd->hat_fault.value.ui64 = cvs->hat_fault; 3040 cvskd->as_fault.value.ui64 = cvs->as_fault; 3041 cvskd->maj_fault.value.ui64 = cvs->maj_fault; 3042 cvskd->cow_fault.value.ui64 = cvs->cow_fault; 3043 cvskd->prot_fault.value.ui64 = cvs->prot_fault; 3044 cvskd->softlock.value.ui64 = cvs->softlock; 3045 cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt; 3046 cvskd->pgrrun.value.ui64 = cvs->pgrrun; 3047 cvskd->execpgin.value.ui64 = cvs->execpgin; 3048 cvskd->execpgout.value.ui64 = cvs->execpgout; 3049 cvskd->execfree.value.ui64 = cvs->execfree; 3050 cvskd->anonpgin.value.ui64 = cvs->anonpgin; 3051 cvskd->anonpgout.value.ui64 = cvs->anonpgout; 3052 cvskd->anonfree.value.ui64 = cvs->anonfree; 3053 cvskd->fspgin.value.ui64 = cvs->fspgin; 3054 cvskd->fspgout.value.ui64 = cvs->fspgout; 3055 cvskd->fsfree.value.ui64 = cvs->fsfree; 3056 3057 return (0); 3058 } 3059 3060 static int 3061 cpu_stat_ks_update(kstat_t *ksp, int rw) 3062 { 3063 cpu_stat_t *cso; 3064 cpu_t *cp; 3065 int i; 3066 hrtime_t msnsecs[NCMSTATES]; 3067 3068 cso = (cpu_stat_t *)ksp->ks_data; 3069 cp = (cpu_t *)ksp->ks_private; 3070 3071 if (rw == KSTAT_WRITE) 3072 return (EACCES); 3073 3074 /* 3075 * Read CPU mstate, but compare with the last values we 3076 * received to make sure that the returned kstats never 3077 * decrease. 3078 */ 3079 3080 get_cpu_mstate(cp, msnsecs); 3081 msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]); 3082 msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]); 3083 msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]); 3084 if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE]) 3085 cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE]; 3086 if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER]) 3087 cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER]; 3088 if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM]) 3089 cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM]; 3090 cso->cpu_sysinfo.cpu[CPU_WAIT] = 0; 3091 cso->cpu_sysinfo.wait[W_IO] = 0; 3092 cso->cpu_sysinfo.wait[W_SWAP] = 0; 3093 cso->cpu_sysinfo.wait[W_PIO] = 0; 3094 cso->cpu_sysinfo.bread = CPU_STATS(cp, sys.bread); 3095 cso->cpu_sysinfo.bwrite = CPU_STATS(cp, sys.bwrite); 3096 cso->cpu_sysinfo.lread = CPU_STATS(cp, sys.lread); 3097 cso->cpu_sysinfo.lwrite = CPU_STATS(cp, sys.lwrite); 3098 cso->cpu_sysinfo.phread = CPU_STATS(cp, sys.phread); 3099 cso->cpu_sysinfo.phwrite = CPU_STATS(cp, sys.phwrite); 3100 cso->cpu_sysinfo.pswitch = CPU_STATS(cp, sys.pswitch); 3101 cso->cpu_sysinfo.trap = CPU_STATS(cp, sys.trap); 3102 cso->cpu_sysinfo.intr = 0; 3103 for (i = 0; i < PIL_MAX; i++) 3104 cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]); 3105 cso->cpu_sysinfo.syscall = CPU_STATS(cp, sys.syscall); 3106 cso->cpu_sysinfo.sysread = CPU_STATS(cp, sys.sysread); 3107 cso->cpu_sysinfo.syswrite = CPU_STATS(cp, sys.syswrite); 3108 cso->cpu_sysinfo.sysfork = CPU_STATS(cp, sys.sysfork); 3109 cso->cpu_sysinfo.sysvfork = CPU_STATS(cp, sys.sysvfork); 3110 cso->cpu_sysinfo.sysexec = CPU_STATS(cp, sys.sysexec); 3111 cso->cpu_sysinfo.readch = CPU_STATS(cp, sys.readch); 3112 cso->cpu_sysinfo.writech = CPU_STATS(cp, sys.writech); 3113 cso->cpu_sysinfo.rcvint = CPU_STATS(cp, sys.rcvint); 3114 cso->cpu_sysinfo.xmtint = CPU_STATS(cp, sys.xmtint); 3115 cso->cpu_sysinfo.mdmint = CPU_STATS(cp, sys.mdmint); 3116 cso->cpu_sysinfo.rawch = CPU_STATS(cp, sys.rawch); 3117 cso->cpu_sysinfo.canch = CPU_STATS(cp, sys.canch); 3118 cso->cpu_sysinfo.outch = CPU_STATS(cp, sys.outch); 3119 cso->cpu_sysinfo.msg = CPU_STATS(cp, sys.msg); 3120 cso->cpu_sysinfo.sema = CPU_STATS(cp, sys.sema); 3121 cso->cpu_sysinfo.namei = CPU_STATS(cp, sys.namei); 3122 cso->cpu_sysinfo.ufsiget = CPU_STATS(cp, sys.ufsiget); 3123 cso->cpu_sysinfo.ufsdirblk = CPU_STATS(cp, sys.ufsdirblk); 3124 cso->cpu_sysinfo.ufsipage = CPU_STATS(cp, sys.ufsipage); 3125 cso->cpu_sysinfo.ufsinopage = CPU_STATS(cp, sys.ufsinopage); 3126 cso->cpu_sysinfo.inodeovf = 0; 3127 cso->cpu_sysinfo.fileovf = 0; 3128 cso->cpu_sysinfo.procovf = CPU_STATS(cp, sys.procovf); 3129 cso->cpu_sysinfo.intrthread = 0; 3130 for (i = 0; i < LOCK_LEVEL; i++) 3131 cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]); 3132 cso->cpu_sysinfo.intrblk = CPU_STATS(cp, sys.intrblk); 3133 cso->cpu_sysinfo.idlethread = CPU_STATS(cp, sys.idlethread); 3134 cso->cpu_sysinfo.inv_swtch = CPU_STATS(cp, sys.inv_swtch); 3135 cso->cpu_sysinfo.nthreads = CPU_STATS(cp, sys.nthreads); 3136 cso->cpu_sysinfo.cpumigrate = CPU_STATS(cp, sys.cpumigrate); 3137 cso->cpu_sysinfo.xcalls = CPU_STATS(cp, sys.xcalls); 3138 cso->cpu_sysinfo.mutex_adenters = CPU_STATS(cp, sys.mutex_adenters); 3139 cso->cpu_sysinfo.rw_rdfails = CPU_STATS(cp, sys.rw_rdfails); 3140 cso->cpu_sysinfo.rw_wrfails = CPU_STATS(cp, sys.rw_wrfails); 3141 cso->cpu_sysinfo.modload = CPU_STATS(cp, sys.modload); 3142 cso->cpu_sysinfo.modunload = CPU_STATS(cp, sys.modunload); 3143 cso->cpu_sysinfo.bawrite = CPU_STATS(cp, sys.bawrite); 3144 cso->cpu_sysinfo.rw_enters = 0; 3145 cso->cpu_sysinfo.win_uo_cnt = 0; 3146 cso->cpu_sysinfo.win_uu_cnt = 0; 3147 cso->cpu_sysinfo.win_so_cnt = 0; 3148 cso->cpu_sysinfo.win_su_cnt = 0; 3149 cso->cpu_sysinfo.win_suo_cnt = 0; 3150 3151 cso->cpu_syswait.iowait = CPU_STATS(cp, sys.iowait); 3152 cso->cpu_syswait.swap = 0; 3153 cso->cpu_syswait.physio = 0; 3154 3155 cso->cpu_vminfo.pgrec = CPU_STATS(cp, vm.pgrec); 3156 cso->cpu_vminfo.pgfrec = CPU_STATS(cp, vm.pgfrec); 3157 cso->cpu_vminfo.pgin = CPU_STATS(cp, vm.pgin); 3158 cso->cpu_vminfo.pgpgin = CPU_STATS(cp, vm.pgpgin); 3159 cso->cpu_vminfo.pgout = CPU_STATS(cp, vm.pgout); 3160 cso->cpu_vminfo.pgpgout = CPU_STATS(cp, vm.pgpgout); 3161 cso->cpu_vminfo.swapin = CPU_STATS(cp, vm.swapin); 3162 cso->cpu_vminfo.pgswapin = CPU_STATS(cp, vm.pgswapin); 3163 cso->cpu_vminfo.swapout = CPU_STATS(cp, vm.swapout); 3164 cso->cpu_vminfo.pgswapout = CPU_STATS(cp, vm.pgswapout); 3165 cso->cpu_vminfo.zfod = CPU_STATS(cp, vm.zfod); 3166 cso->cpu_vminfo.dfree = CPU_STATS(cp, vm.dfree); 3167 cso->cpu_vminfo.scan = CPU_STATS(cp, vm.scan); 3168 cso->cpu_vminfo.rev = CPU_STATS(cp, vm.rev); 3169 cso->cpu_vminfo.hat_fault = CPU_STATS(cp, vm.hat_fault); 3170 cso->cpu_vminfo.as_fault = CPU_STATS(cp, vm.as_fault); 3171 cso->cpu_vminfo.maj_fault = CPU_STATS(cp, vm.maj_fault); 3172 cso->cpu_vminfo.cow_fault = CPU_STATS(cp, vm.cow_fault); 3173 cso->cpu_vminfo.prot_fault = CPU_STATS(cp, vm.prot_fault); 3174 cso->cpu_vminfo.softlock = CPU_STATS(cp, vm.softlock); 3175 cso->cpu_vminfo.kernel_asflt = CPU_STATS(cp, vm.kernel_asflt); 3176 cso->cpu_vminfo.pgrrun = CPU_STATS(cp, vm.pgrrun); 3177 cso->cpu_vminfo.execpgin = CPU_STATS(cp, vm.execpgin); 3178 cso->cpu_vminfo.execpgout = CPU_STATS(cp, vm.execpgout); 3179 cso->cpu_vminfo.execfree = CPU_STATS(cp, vm.execfree); 3180 cso->cpu_vminfo.anonpgin = CPU_STATS(cp, vm.anonpgin); 3181 cso->cpu_vminfo.anonpgout = CPU_STATS(cp, vm.anonpgout); 3182 cso->cpu_vminfo.anonfree = CPU_STATS(cp, vm.anonfree); 3183 cso->cpu_vminfo.fspgin = CPU_STATS(cp, vm.fspgin); 3184 cso->cpu_vminfo.fspgout = CPU_STATS(cp, vm.fspgout); 3185 cso->cpu_vminfo.fsfree = CPU_STATS(cp, vm.fsfree); 3186 3187 return (0); 3188 } 3189