1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 2011 by Delphix. All rights reserved. */ 28 29 #include <sys/thread.h> 30 #include <sys/proc.h> 31 #include <sys/debug.h> 32 #include <sys/cmn_err.h> 33 #include <sys/systm.h> 34 #include <sys/sobject.h> 35 #include <sys/sleepq.h> 36 #include <sys/cpuvar.h> 37 #include <sys/condvar.h> 38 #include <sys/condvar_impl.h> 39 #include <sys/schedctl.h> 40 #include <sys/procfs.h> 41 #include <sys/sdt.h> 42 #include <sys/callo.h> 43 44 clock_t cv_timedwait_hires(kcondvar_t *, kmutex_t *, hrtime_t, hrtime_t, int); 45 46 /* 47 * CV_MAX_WAITERS is the maximum number of waiters we track; once 48 * the number becomes higher than that, we look at the sleepq to 49 * see whether there are *really* any waiters. 50 */ 51 #define CV_MAX_WAITERS 1024 /* must be power of 2 */ 52 #define CV_WAITERS_MASK (CV_MAX_WAITERS - 1) 53 54 /* 55 * Threads don't "own" condition variables. 56 */ 57 /* ARGSUSED */ 58 static kthread_t * 59 cv_owner(void *cvp) 60 { 61 return (NULL); 62 } 63 64 /* 65 * Unsleep a thread that's blocked on a condition variable. 66 */ 67 static void 68 cv_unsleep(kthread_t *t) 69 { 70 condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan; 71 sleepq_head_t *sqh = SQHASH(cvp); 72 73 ASSERT(THREAD_LOCK_HELD(t)); 74 75 if (cvp == NULL) 76 panic("cv_unsleep: thread %p not on sleepq %p", 77 (void *)t, (void *)sqh); 78 DTRACE_SCHED1(wakeup, kthread_t *, t); 79 sleepq_unsleep(t); 80 if (cvp->cv_waiters != CV_MAX_WAITERS) 81 cvp->cv_waiters--; 82 disp_lock_exit_high(&sqh->sq_lock); 83 CL_SETRUN(t); 84 } 85 86 /* 87 * Change the priority of a thread that's blocked on a condition variable. 88 */ 89 static void 90 cv_change_pri(kthread_t *t, pri_t pri, pri_t *t_prip) 91 { 92 condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan; 93 sleepq_t *sqp = t->t_sleepq; 94 95 ASSERT(THREAD_LOCK_HELD(t)); 96 ASSERT(&SQHASH(cvp)->sq_queue == sqp); 97 98 if (cvp == NULL) 99 panic("cv_change_pri: %p not on sleep queue", (void *)t); 100 sleepq_dequeue(t); 101 *t_prip = pri; 102 sleepq_insert(sqp, t); 103 } 104 105 /* 106 * The sobj_ops vector exports a set of functions needed when a thread 107 * is asleep on a synchronization object of this type. 108 */ 109 static sobj_ops_t cv_sobj_ops = { 110 SOBJ_CV, cv_owner, cv_unsleep, cv_change_pri 111 }; 112 113 /* ARGSUSED */ 114 void 115 cv_init(kcondvar_t *cvp, char *name, kcv_type_t type, void *arg) 116 { 117 ((condvar_impl_t *)cvp)->cv_waiters = 0; 118 } 119 120 /* 121 * cv_destroy is not currently needed, but is part of the DDI. 122 * This is in case cv_init ever needs to allocate something for a cv. 123 */ 124 /* ARGSUSED */ 125 void 126 cv_destroy(kcondvar_t *cvp) 127 { 128 ASSERT((((condvar_impl_t *)cvp)->cv_waiters & CV_WAITERS_MASK) == 0); 129 } 130 131 /* 132 * The cv_block() function blocks a thread on a condition variable 133 * by putting it in a hashed sleep queue associated with the 134 * synchronization object. 135 * 136 * Threads are taken off the hashed sleep queues via calls to 137 * cv_signal(), cv_broadcast(), or cv_unsleep(). 138 */ 139 static void 140 cv_block(condvar_impl_t *cvp) 141 { 142 kthread_t *t = curthread; 143 klwp_t *lwp = ttolwp(t); 144 sleepq_head_t *sqh; 145 146 ASSERT(THREAD_LOCK_HELD(t)); 147 ASSERT(t != CPU->cpu_idle_thread); 148 ASSERT(CPU_ON_INTR(CPU) == 0); 149 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 150 ASSERT(t->t_state == TS_ONPROC); 151 152 t->t_schedflag &= ~TS_SIGNALLED; 153 CL_SLEEP(t); /* assign kernel priority */ 154 t->t_wchan = (caddr_t)cvp; 155 t->t_sobj_ops = &cv_sobj_ops; 156 DTRACE_SCHED(sleep); 157 158 /* 159 * The check for t_intr is to avoid doing the 160 * account for an interrupt thread on the still-pinned 161 * lwp's statistics. 162 */ 163 if (lwp != NULL && t->t_intr == NULL) { 164 lwp->lwp_ru.nvcsw++; 165 (void) new_mstate(t, LMS_SLEEP); 166 } 167 168 sqh = SQHASH(cvp); 169 disp_lock_enter_high(&sqh->sq_lock); 170 if (cvp->cv_waiters < CV_MAX_WAITERS) 171 cvp->cv_waiters++; 172 ASSERT(cvp->cv_waiters <= CV_MAX_WAITERS); 173 THREAD_SLEEP(t, &sqh->sq_lock); 174 sleepq_insert(&sqh->sq_queue, t); 175 /* 176 * THREAD_SLEEP() moves curthread->t_lockp to point to the 177 * lock sqh->sq_lock. This lock is later released by the caller 178 * when it calls thread_unlock() on curthread. 179 */ 180 } 181 182 #define cv_block_sig(t, cvp) \ 183 { (t)->t_flag |= T_WAKEABLE; cv_block(cvp); } 184 185 /* 186 * Block on the indicated condition variable and release the 187 * associated kmutex while blocked. 188 */ 189 void 190 cv_wait(kcondvar_t *cvp, kmutex_t *mp) 191 { 192 if (panicstr) 193 return; 194 ASSERT(!quiesce_active); 195 196 ASSERT(curthread->t_schedflag & TS_DONT_SWAP); 197 thread_lock(curthread); /* lock the thread */ 198 cv_block((condvar_impl_t *)cvp); 199 thread_unlock_nopreempt(curthread); /* unlock the waiters field */ 200 mutex_exit(mp); 201 swtch(); 202 mutex_enter(mp); 203 } 204 205 static void 206 cv_wakeup(void *arg) 207 { 208 kthread_t *t = arg; 209 210 /* 211 * This mutex is acquired and released in order to make sure that 212 * the wakeup does not happen before the block itself happens. 213 */ 214 mutex_enter(&t->t_wait_mutex); 215 mutex_exit(&t->t_wait_mutex); 216 setrun(t); 217 } 218 219 /* 220 * Same as cv_wait except the thread will unblock at 'tim' 221 * (an absolute time) if it hasn't already unblocked. 222 * 223 * Returns the amount of time left from the original 'tim' value 224 * when it was unblocked. 225 */ 226 clock_t 227 cv_timedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim) 228 { 229 hrtime_t hrtim; 230 clock_t now = ddi_get_lbolt(); 231 232 if (tim <= now) 233 return (-1); 234 235 hrtim = TICK_TO_NSEC(tim - now); 236 return (cv_timedwait_hires(cvp, mp, hrtim, nsec_per_tick, 0)); 237 } 238 239 /* 240 * Same as cv_timedwait() except that the third argument is a relative 241 * timeout value, as opposed to an absolute one. There is also a fourth 242 * argument that specifies how accurately the timeout must be implemented. 243 */ 244 clock_t 245 cv_reltimedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t delta, time_res_t res) 246 { 247 hrtime_t exp; 248 249 ASSERT(TIME_RES_VALID(res)); 250 251 if (delta <= 0) 252 return (-1); 253 254 if ((exp = TICK_TO_NSEC(delta)) < 0) 255 exp = CY_INFINITY; 256 257 return (cv_timedwait_hires(cvp, mp, exp, time_res[res], 0)); 258 } 259 260 clock_t 261 cv_timedwait_hires(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim, 262 hrtime_t res, int flag) 263 { 264 kthread_t *t = curthread; 265 callout_id_t id; 266 clock_t timeleft; 267 hrtime_t limit; 268 int signalled; 269 270 if (panicstr) 271 return (-1); 272 ASSERT(!quiesce_active); 273 274 limit = (flag & CALLOUT_FLAG_ABSOLUTE) ? gethrtime() : 0; 275 if (tim <= limit) 276 return (-1); 277 mutex_enter(&t->t_wait_mutex); 278 id = timeout_generic(CALLOUT_REALTIME, (void (*)(void *))cv_wakeup, t, 279 tim, res, flag); 280 thread_lock(t); /* lock the thread */ 281 cv_block((condvar_impl_t *)cvp); 282 thread_unlock_nopreempt(t); 283 mutex_exit(&t->t_wait_mutex); 284 mutex_exit(mp); 285 swtch(); 286 signalled = (t->t_schedflag & TS_SIGNALLED); 287 /* 288 * Get the time left. untimeout() returns -1 if the timeout has 289 * occured or the time remaining. If the time remaining is zero, 290 * the timeout has occured between when we were awoken and 291 * we called untimeout. We will treat this as if the timeout 292 * has occured and set timeleft to -1. 293 */ 294 timeleft = untimeout_default(id, 0); 295 mutex_enter(mp); 296 if (timeleft <= 0) { 297 timeleft = -1; 298 if (signalled) /* avoid consuming the cv_signal() */ 299 cv_signal(cvp); 300 } 301 return (timeleft); 302 } 303 304 int 305 cv_wait_sig(kcondvar_t *cvp, kmutex_t *mp) 306 { 307 kthread_t *t = curthread; 308 proc_t *p = ttoproc(t); 309 klwp_t *lwp = ttolwp(t); 310 int cancel_pending; 311 int rval = 1; 312 int signalled = 0; 313 314 if (panicstr) 315 return (rval); 316 ASSERT(!quiesce_active); 317 318 /* 319 * Threads in system processes don't process signals. This is 320 * true both for standard threads of system processes and for 321 * interrupt threads which have borrowed their pinned thread's LWP. 322 */ 323 if (lwp == NULL || (p->p_flag & SSYS)) { 324 cv_wait(cvp, mp); 325 return (rval); 326 } 327 ASSERT(t->t_intr == NULL); 328 329 ASSERT(curthread->t_schedflag & TS_DONT_SWAP); 330 cancel_pending = schedctl_cancel_pending(); 331 lwp->lwp_asleep = 1; 332 lwp->lwp_sysabort = 0; 333 thread_lock(t); 334 cv_block_sig(t, (condvar_impl_t *)cvp); 335 thread_unlock_nopreempt(t); 336 mutex_exit(mp); 337 if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending) 338 setrun(t); 339 /* ASSERT(no locks are held) */ 340 swtch(); 341 signalled = (t->t_schedflag & TS_SIGNALLED); 342 t->t_flag &= ~T_WAKEABLE; 343 mutex_enter(mp); 344 if (ISSIG_PENDING(t, lwp, p)) { 345 mutex_exit(mp); 346 if (issig(FORREAL)) 347 rval = 0; 348 mutex_enter(mp); 349 } 350 if (lwp->lwp_sysabort || MUSTRETURN(p, t)) 351 rval = 0; 352 if (rval != 0 && cancel_pending) { 353 schedctl_cancel_eintr(); 354 rval = 0; 355 } 356 lwp->lwp_asleep = 0; 357 lwp->lwp_sysabort = 0; 358 if (rval == 0 && signalled) /* avoid consuming the cv_signal() */ 359 cv_signal(cvp); 360 return (rval); 361 } 362 363 static clock_t 364 cv_timedwait_sig_hires(kcondvar_t *cvp, kmutex_t *mp, hrtime_t tim, 365 hrtime_t res, int flag) 366 { 367 kthread_t *t = curthread; 368 proc_t *p = ttoproc(t); 369 klwp_t *lwp = ttolwp(t); 370 int cancel_pending = 0; 371 callout_id_t id; 372 clock_t rval = 1; 373 hrtime_t limit; 374 int signalled = 0; 375 376 if (panicstr) 377 return (rval); 378 ASSERT(!quiesce_active); 379 380 /* 381 * Threads in system processes don't process signals. This is 382 * true both for standard threads of system processes and for 383 * interrupt threads which have borrowed their pinned thread's LWP. 384 */ 385 if (lwp == NULL || (p->p_flag & SSYS)) 386 return (cv_timedwait_hires(cvp, mp, tim, res, flag)); 387 ASSERT(t->t_intr == NULL); 388 389 /* 390 * If tim is less than or equal to current hrtime, then the timeout 391 * has already occured. So just check to see if there is a signal 392 * pending. If so return 0 indicating that there is a signal pending. 393 * Else return -1 indicating that the timeout occured. No need to 394 * wait on anything. 395 */ 396 limit = (flag & CALLOUT_FLAG_ABSOLUTE) ? gethrtime() : 0; 397 if (tim <= limit) { 398 lwp->lwp_asleep = 1; 399 lwp->lwp_sysabort = 0; 400 rval = -1; 401 goto out; 402 } 403 404 /* 405 * Set the timeout and wait. 406 */ 407 cancel_pending = schedctl_cancel_pending(); 408 mutex_enter(&t->t_wait_mutex); 409 id = timeout_generic(CALLOUT_REALTIME, (void (*)(void *))cv_wakeup, t, 410 tim, res, flag); 411 lwp->lwp_asleep = 1; 412 lwp->lwp_sysabort = 0; 413 thread_lock(t); 414 cv_block_sig(t, (condvar_impl_t *)cvp); 415 thread_unlock_nopreempt(t); 416 mutex_exit(&t->t_wait_mutex); 417 mutex_exit(mp); 418 if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending) 419 setrun(t); 420 /* ASSERT(no locks are held) */ 421 swtch(); 422 signalled = (t->t_schedflag & TS_SIGNALLED); 423 t->t_flag &= ~T_WAKEABLE; 424 425 /* 426 * Untimeout the thread. untimeout() returns -1 if the timeout has 427 * occured or the time remaining. If the time remaining is zero, 428 * the timeout has occured between when we were awoken and 429 * we called untimeout. We will treat this as if the timeout 430 * has occured and set rval to -1. 431 */ 432 rval = untimeout_default(id, 0); 433 mutex_enter(mp); 434 if (rval <= 0) 435 rval = -1; 436 437 /* 438 * Check to see if a signal is pending. If so, regardless of whether 439 * or not we were awoken due to the signal, the signal is now pending 440 * and a return of 0 has the highest priority. 441 */ 442 out: 443 if (ISSIG_PENDING(t, lwp, p)) { 444 mutex_exit(mp); 445 if (issig(FORREAL)) 446 rval = 0; 447 mutex_enter(mp); 448 } 449 if (lwp->lwp_sysabort || MUSTRETURN(p, t)) 450 rval = 0; 451 if (rval != 0 && cancel_pending) { 452 schedctl_cancel_eintr(); 453 rval = 0; 454 } 455 lwp->lwp_asleep = 0; 456 lwp->lwp_sysabort = 0; 457 if (rval <= 0 && signalled) /* avoid consuming the cv_signal() */ 458 cv_signal(cvp); 459 return (rval); 460 } 461 462 /* 463 * Returns: 464 * Function result in order of precedence: 465 * 0 if a signal was received 466 * -1 if timeout occured 467 * >0 if awakened via cv_signal() or cv_broadcast(). 468 * (returns time remaining) 469 * 470 * cv_timedwait_sig() is now part of the DDI. 471 * 472 * This function is now just a wrapper for cv_timedwait_sig_hires(). 473 */ 474 clock_t 475 cv_timedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t tim) 476 { 477 hrtime_t hrtim; 478 479 hrtim = TICK_TO_NSEC(tim - ddi_get_lbolt()); 480 return (cv_timedwait_sig_hires(cvp, mp, hrtim, nsec_per_tick, 0)); 481 } 482 483 /* 484 * Same as cv_timedwait_sig() except that the third argument is a relative 485 * timeout value, as opposed to an absolute one. There is also a fourth 486 * argument that specifies how accurately the timeout must be implemented. 487 */ 488 clock_t 489 cv_reltimedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t delta, 490 time_res_t res) 491 { 492 hrtime_t exp = 0; 493 494 ASSERT(TIME_RES_VALID(res)); 495 496 if (delta > 0) { 497 if ((exp = TICK_TO_NSEC(delta)) < 0) 498 exp = CY_INFINITY; 499 } 500 501 return (cv_timedwait_sig_hires(cvp, mp, exp, time_res[res], 0)); 502 } 503 504 /* 505 * Same as cv_reltimedwait_sig() except that the timeout is optional. If 506 * there is no timeout then the function will block until woken up 507 * or interrupted. 508 */ 509 clock_t 510 cv_relwaituntil_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t *delta, 511 time_res_t res) 512 { 513 /* 514 * If there is no timeout specified wait indefinitely for a 515 * signal or a wakeup. 516 */ 517 if (delta == NULL) { 518 return (cv_wait_sig_swap(cvp, mp)); 519 } 520 521 /* 522 * cv_reltimedwait_sig will wait for the relative timeout 523 * specified by delta. 524 */ 525 return (cv_reltimedwait_sig(cvp, mp, *delta, res)); 526 } 527 528 /* 529 * Like cv_wait_sig_swap but allows the caller to indicate (with a 530 * non-NULL sigret) that they will take care of signalling the cv 531 * after wakeup, if necessary. This is a vile hack that should only 532 * be used when no other option is available; almost all callers 533 * should just use cv_wait_sig_swap (which takes care of the cv_signal 534 * stuff automatically) instead. 535 */ 536 int 537 cv_wait_sig_swap_core(kcondvar_t *cvp, kmutex_t *mp, int *sigret) 538 { 539 kthread_t *t = curthread; 540 proc_t *p = ttoproc(t); 541 klwp_t *lwp = ttolwp(t); 542 int cancel_pending; 543 int rval = 1; 544 int signalled = 0; 545 546 if (panicstr) 547 return (rval); 548 549 /* 550 * Threads in system processes don't process signals. This is 551 * true both for standard threads of system processes and for 552 * interrupt threads which have borrowed their pinned thread's LWP. 553 */ 554 if (lwp == NULL || (p->p_flag & SSYS)) { 555 cv_wait(cvp, mp); 556 return (rval); 557 } 558 ASSERT(t->t_intr == NULL); 559 560 cancel_pending = schedctl_cancel_pending(); 561 lwp->lwp_asleep = 1; 562 lwp->lwp_sysabort = 0; 563 thread_lock(t); 564 t->t_kpri_req = 0; /* don't need kernel priority */ 565 cv_block_sig(t, (condvar_impl_t *)cvp); 566 /* I can be swapped now */ 567 curthread->t_schedflag &= ~TS_DONT_SWAP; 568 thread_unlock_nopreempt(t); 569 mutex_exit(mp); 570 if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending) 571 setrun(t); 572 /* ASSERT(no locks are held) */ 573 swtch(); 574 signalled = (t->t_schedflag & TS_SIGNALLED); 575 t->t_flag &= ~T_WAKEABLE; 576 /* TS_DONT_SWAP set by disp() */ 577 ASSERT(curthread->t_schedflag & TS_DONT_SWAP); 578 mutex_enter(mp); 579 if (ISSIG_PENDING(t, lwp, p)) { 580 mutex_exit(mp); 581 if (issig(FORREAL)) 582 rval = 0; 583 mutex_enter(mp); 584 } 585 if (lwp->lwp_sysabort || MUSTRETURN(p, t)) 586 rval = 0; 587 if (rval != 0 && cancel_pending) { 588 schedctl_cancel_eintr(); 589 rval = 0; 590 } 591 lwp->lwp_asleep = 0; 592 lwp->lwp_sysabort = 0; 593 if (rval == 0) { 594 if (sigret != NULL) 595 *sigret = signalled; /* just tell the caller */ 596 else if (signalled) 597 cv_signal(cvp); /* avoid consuming the cv_signal() */ 598 } 599 return (rval); 600 } 601 602 /* 603 * Same as cv_wait_sig but the thread can be swapped out while waiting. 604 * This should only be used when we know we aren't holding any locks. 605 */ 606 int 607 cv_wait_sig_swap(kcondvar_t *cvp, kmutex_t *mp) 608 { 609 return (cv_wait_sig_swap_core(cvp, mp, NULL)); 610 } 611 612 void 613 cv_signal(kcondvar_t *cvp) 614 { 615 condvar_impl_t *cp = (condvar_impl_t *)cvp; 616 617 /* make sure the cv_waiters field looks sane */ 618 ASSERT(cp->cv_waiters <= CV_MAX_WAITERS); 619 if (cp->cv_waiters > 0) { 620 sleepq_head_t *sqh = SQHASH(cp); 621 disp_lock_enter(&sqh->sq_lock); 622 ASSERT(CPU_ON_INTR(CPU) == 0); 623 if (cp->cv_waiters & CV_WAITERS_MASK) { 624 kthread_t *t; 625 cp->cv_waiters--; 626 t = sleepq_wakeone_chan(&sqh->sq_queue, cp); 627 /* 628 * If cv_waiters is non-zero (and less than 629 * CV_MAX_WAITERS) there should be a thread 630 * in the queue. 631 */ 632 ASSERT(t != NULL); 633 } else if (sleepq_wakeone_chan(&sqh->sq_queue, cp) == NULL) { 634 cp->cv_waiters = 0; 635 } 636 disp_lock_exit(&sqh->sq_lock); 637 } 638 } 639 640 void 641 cv_broadcast(kcondvar_t *cvp) 642 { 643 condvar_impl_t *cp = (condvar_impl_t *)cvp; 644 645 /* make sure the cv_waiters field looks sane */ 646 ASSERT(cp->cv_waiters <= CV_MAX_WAITERS); 647 if (cp->cv_waiters > 0) { 648 sleepq_head_t *sqh = SQHASH(cp); 649 disp_lock_enter(&sqh->sq_lock); 650 ASSERT(CPU_ON_INTR(CPU) == 0); 651 sleepq_wakeall_chan(&sqh->sq_queue, cp); 652 cp->cv_waiters = 0; 653 disp_lock_exit(&sqh->sq_lock); 654 } 655 } 656 657 /* 658 * Same as cv_wait(), but wakes up (after wakeup_time milliseconds) to check 659 * for requests to stop, like cv_wait_sig() but without dealing with signals. 660 * This is a horrible kludge. It is evil. It is vile. It is swill. 661 * If your code has to call this function then your code is the same. 662 */ 663 void 664 cv_wait_stop(kcondvar_t *cvp, kmutex_t *mp, int wakeup_time) 665 { 666 kthread_t *t = curthread; 667 klwp_t *lwp = ttolwp(t); 668 proc_t *p = ttoproc(t); 669 callout_id_t id; 670 clock_t tim; 671 672 if (panicstr) 673 return; 674 675 /* 676 * Threads in system processes don't process signals. This is 677 * true both for standard threads of system processes and for 678 * interrupt threads which have borrowed their pinned thread's LWP. 679 */ 680 if (lwp == NULL || (p->p_flag & SSYS)) { 681 cv_wait(cvp, mp); 682 return; 683 } 684 ASSERT(t->t_intr == NULL); 685 686 /* 687 * Wakeup in wakeup_time milliseconds, i.e., human time. 688 */ 689 tim = ddi_get_lbolt() + MSEC_TO_TICK(wakeup_time); 690 mutex_enter(&t->t_wait_mutex); 691 id = realtime_timeout_default((void (*)(void *))cv_wakeup, t, 692 tim - ddi_get_lbolt()); 693 thread_lock(t); /* lock the thread */ 694 cv_block((condvar_impl_t *)cvp); 695 thread_unlock_nopreempt(t); 696 mutex_exit(&t->t_wait_mutex); 697 mutex_exit(mp); 698 /* ASSERT(no locks are held); */ 699 swtch(); 700 (void) untimeout_default(id, 0); 701 702 /* 703 * Check for reasons to stop, if lwp_nostop is not true. 704 * See issig_forreal() for explanations of the various stops. 705 */ 706 mutex_enter(&p->p_lock); 707 while (lwp->lwp_nostop == 0 && !(p->p_flag & SEXITLWPS)) { 708 /* 709 * Hold the lwp here for watchpoint manipulation. 710 */ 711 if (t->t_proc_flag & TP_PAUSE) { 712 stop(PR_SUSPENDED, SUSPEND_PAUSE); 713 continue; 714 } 715 /* 716 * System checkpoint. 717 */ 718 if (t->t_proc_flag & TP_CHKPT) { 719 stop(PR_CHECKPOINT, 0); 720 continue; 721 } 722 /* 723 * Honor fork1(), watchpoint activity (remapping a page), 724 * and lwp_suspend() requests. 725 */ 726 if ((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) || 727 (t->t_proc_flag & TP_HOLDLWP)) { 728 stop(PR_SUSPENDED, SUSPEND_NORMAL); 729 continue; 730 } 731 /* 732 * Honor /proc requested stop. 733 */ 734 if (t->t_proc_flag & TP_PRSTOP) { 735 stop(PR_REQUESTED, 0); 736 } 737 /* 738 * If some lwp in the process has already stopped 739 * showing PR_JOBCONTROL, stop in sympathy with it. 740 */ 741 if (p->p_stopsig && t != p->p_agenttp) { 742 stop(PR_JOBCONTROL, p->p_stopsig); 743 continue; 744 } 745 break; 746 } 747 mutex_exit(&p->p_lock); 748 mutex_enter(mp); 749 } 750 751 /* 752 * Like cv_timedwait_sig(), but takes an absolute hires future time 753 * rather than a future time in clock ticks. Will not return showing 754 * that a timeout occurred until the future time is passed. 755 * If 'when' is a NULL pointer, no timeout will occur. 756 * Returns: 757 * Function result in order of precedence: 758 * 0 if a signal was received 759 * -1 if timeout occured 760 * >0 if awakened via cv_signal() or cv_broadcast() 761 * or by a spurious wakeup. 762 * (might return time remaining) 763 * As a special test, if someone abruptly resets the system time 764 * (but not through adjtime(2); drifting of the clock is allowed and 765 * expected [see timespectohz_adj()]), then we force a return of -1 766 * so the caller can return a premature timeout to the calling process 767 * so it can reevaluate the situation in light of the new system time. 768 * (The system clock has been reset if timecheck != timechanged.) 769 */ 770 int 771 cv_waituntil_sig(kcondvar_t *cvp, kmutex_t *mp, 772 timestruc_t *when, int timecheck) 773 { 774 timestruc_t now; 775 timestruc_t delta; 776 hrtime_t interval; 777 int rval; 778 779 if (when == NULL) 780 return (cv_wait_sig_swap(cvp, mp)); 781 782 gethrestime(&now); 783 delta = *when; 784 timespecsub(&delta, &now); 785 if (delta.tv_sec < 0 || (delta.tv_sec == 0 && delta.tv_nsec == 0)) { 786 /* 787 * We have already reached the absolute future time. 788 * Call cv_timedwait_sig() just to check for signals. 789 * We will return immediately with either 0 or -1. 790 */ 791 rval = cv_timedwait_sig_hires(cvp, mp, 0, 1, 0); 792 } else { 793 if (timecheck == timechanged) { 794 /* 795 * Make sure that the interval is atleast one tick. 796 * This is to prevent a user from flooding the system 797 * with very small, high resolution timers. 798 */ 799 interval = ts2hrt(&delta); 800 if (interval < nsec_per_tick) 801 interval = nsec_per_tick; 802 rval = cv_timedwait_sig_hires(cvp, mp, interval, 1, 803 CALLOUT_FLAG_HRESTIME); 804 } else { 805 /* 806 * Someone reset the system time; 807 * just force an immediate timeout. 808 */ 809 rval = -1; 810 } 811 if (rval == -1 && timecheck == timechanged) { 812 /* 813 * Even though cv_timedwait_sig() returned showing a 814 * timeout, the future time may not have passed yet. 815 * If not, change rval to indicate a normal wakeup. 816 */ 817 gethrestime(&now); 818 delta = *when; 819 timespecsub(&delta, &now); 820 if (delta.tv_sec > 0 || (delta.tv_sec == 0 && 821 delta.tv_nsec > 0)) 822 rval = 1; 823 } 824 } 825 return (rval); 826 } 827