xref: /titanic_52/usr/src/uts/common/os/clock_tick.c (revision 4c1177a46d4d850e30806d4e27d635527bba8e90)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/thread.h>
28 #include <sys/proc.h>
29 #include <sys/task.h>
30 #include <sys/cmn_err.h>
31 #include <sys/class.h>
32 #include <sys/sdt.h>
33 #include <sys/atomic.h>
34 #include <sys/cpu.h>
35 #include <sys/clock_tick.h>
36 #include <sys/clock_impl.h>
37 #include <sys/sysmacros.h>
38 #include <vm/rm.h>
39 
40 /*
41  * This file contains the implementation of clock tick accounting for threads.
42  * Every tick, user threads running on various CPUs are located and charged
43  * with a tick to account for their use of CPU time.
44  *
45  * Every tick, the clock() handler calls clock_tick_schedule() to perform tick
46  * accounting for all the threads in the system. Tick accounting is done in
47  * two phases:
48  *
49  * Tick scheduling	Done in clock_tick_schedule(). In this phase, cross
50  *			calls are scheduled to multiple CPUs to perform
51  *			multi-threaded tick accounting. The CPUs are chosen
52  *			on a rotational basis so as to distribute the tick
53  *			accounting load evenly across all CPUs.
54  *
55  * Tick execution	Done in clock_tick_execute(). In this phase, tick
56  *			accounting is actually performed by softint handlers
57  *			on multiple CPUs.
58  *
59  * This implementation gives us a multi-threaded tick processing facility that
60  * is suitable for configurations with a large number of CPUs. On smaller
61  * configurations it may be desirable to let the processing be single-threaded
62  * and just allow clock() to do it as it has been done traditionally. To
63  * facilitate this, a variable, clock_tick_threshold, is defined. Platforms
64  * that desire multi-threading should set this variable to something
65  * appropriate. A recommended value may be found in clock_tick.h. At boot time,
66  * if the number of CPUs is greater than clock_tick_threshold, multi-threading
67  * kicks in. Note that this is a decision made at boot time. If more CPUs
68  * are dynamically added later on to exceed the threshold, no attempt is made
69  * to switch to multi-threaded. Similarly, if CPUs are removed dynamically
70  * no attempt is made to switch to single-threaded. This is to keep the
71  * implementation simple. Also note that the threshold can be changed for a
72  * specific customer configuration via /etc/system.
73  *
74  * The boot time decision is reflected in clock_tick_single_threaded.
75  */
76 
77 /*
78  * clock_tick_threshold
79  *	If the number of CPUs at boot time exceeds this threshold,
80  *	multi-threaded tick accounting kicks in.
81  *
82  * clock_tick_ncpus
83  *	The number of CPUs in a set. Each set is scheduled for tick execution
84  *	on a separate processor.
85  *
86  * clock_tick_single_threaded
87  *	Indicates whether or not tick accounting is single threaded.
88  *
89  * clock_tick_total_cpus
90  *	Total number of online CPUs.
91  *
92  * clock_tick_cpus
93  *	Array of online CPU pointers.
94  *
95  * clock_tick_cpu
96  *	Per-CPU, cache-aligned data structures to facilitate multi-threading.
97  *
98  * clock_tick_active
99  *	Counter that indicates the number of active tick processing softints
100  *	in the system.
101  *
102  * clock_tick_pending
103  *	Number of pending ticks that need to be accounted by the softint
104  *	handlers.
105  *
106  * clock_tick_lock
107  *	Mutex to synchronize between clock_tick_schedule() and
108  *	CPU online/offline.
109  *
110  * clock_cpu_id
111  *	CPU id of the clock() CPU. Used to detect when the clock CPU
112  *	is offlined.
113  *
114  * clock_tick_online_cpuset
115  *	CPU set of all online processors that can be X-called.
116  *
117  * clock_tick_proc_max
118  *	Each process is allowed to accumulate a few ticks before checking
119  *	for the task CPU time resource limit. We lower the number of calls
120  *	to rctl_test() to make tick accounting more scalable. The tradeoff
121  *	is that the limit may not get enforced in a timely manner. This is
122  *	typically not a problem.
123  *
124  * clock_tick_set
125  *	Per-set structures. Each structure contains the range of CPUs
126  *	to be processed for the set.
127  *
128  * clock_tick_nsets;
129  *	Number of sets.
130  *
131  * clock_tick_scan
132  *	Where to begin the scan for single-threaded mode. In multi-threaded,
133  *	the clock_tick_set itself contains a field for this.
134  */
135 int			clock_tick_threshold;
136 int			clock_tick_ncpus;
137 int			clock_tick_single_threaded;
138 int			clock_tick_total_cpus;
139 cpu_t			*clock_tick_cpus[NCPU];
140 clock_tick_cpu_t	*clock_tick_cpu[NCPU];
141 ulong_t			clock_tick_active;
142 int			clock_tick_pending;
143 kmutex_t		clock_tick_lock;
144 processorid_t		clock_cpu_id;
145 cpuset_t		clock_tick_online_cpuset;
146 clock_t			clock_tick_proc_max;
147 clock_tick_set_t	*clock_tick_set;
148 int			clock_tick_nsets;
149 int			clock_tick_scan;
150 ulong_t			clock_tick_intr;
151 
152 static uint_t	clock_tick_execute(caddr_t, caddr_t);
153 static void	clock_tick_execute_common(int, int, int, clock_t, int);
154 
155 #define	CLOCK_TICK_ALIGN	64	/* cache alignment */
156 
157 /*
158  * Clock tick initialization is done in two phases:
159  *
160  * 1. Before clock_init() is called, clock_tick_init_pre() is called to set
161  *    up single-threading so the clock() can begin to do its job.
162  *
163  * 2. After the slave CPUs are initialized at boot time, we know the number
164  *    of CPUs. clock_tick_init_post() is called to set up multi-threading if
165  *    required.
166  */
167 void
168 clock_tick_init_pre(void)
169 {
170 	clock_tick_cpu_t	*ctp;
171 	int			i, n;
172 	clock_tick_set_t	*csp;
173 	uintptr_t		buf;
174 	size_t			size;
175 
176 	clock_tick_single_threaded = 1;
177 
178 	size = P2ROUNDUP(sizeof (clock_tick_cpu_t), CLOCK_TICK_ALIGN);
179 	buf = (uintptr_t)kmem_zalloc(size * NCPU + CLOCK_TICK_ALIGN, KM_SLEEP);
180 	buf = P2ROUNDUP(buf, CLOCK_TICK_ALIGN);
181 
182 	/*
183 	 * Perform initialization in case multi-threading is chosen later.
184 	 */
185 	if (&create_softint != NULL) {
186 		clock_tick_intr = create_softint(LOCK_LEVEL,
187 		    clock_tick_execute, (caddr_t)NULL);
188 	}
189 	for (i = 0; i < NCPU; i++, buf += size) {
190 		ctp = (clock_tick_cpu_t *)buf;
191 		clock_tick_cpu[i] = ctp;
192 		mutex_init(&ctp->ct_lock, NULL, MUTEX_DEFAULT, NULL);
193 		if (&create_softint != NULL) {
194 			ctp->ct_intr = clock_tick_intr;
195 		}
196 		ctp->ct_pending = 0;
197 	}
198 
199 	mutex_init(&clock_tick_lock, NULL, MUTEX_DEFAULT, NULL);
200 
201 	/*
202 	 * Compute clock_tick_ncpus here. We need it to compute the
203 	 * maximum number of tick sets we need to support.
204 	 */
205 	ASSERT(clock_tick_ncpus >= 0);
206 	if (clock_tick_ncpus == 0)
207 		clock_tick_ncpus = CLOCK_TICK_NCPUS;
208 	if (clock_tick_ncpus > max_ncpus)
209 		clock_tick_ncpus = max_ncpus;
210 
211 	/*
212 	 * Allocate and initialize the tick sets.
213 	 */
214 	n = (max_ncpus + clock_tick_ncpus - 1)/clock_tick_ncpus;
215 	clock_tick_set = kmem_zalloc(sizeof (clock_tick_set_t) * n, KM_SLEEP);
216 	for (i = 0; i < n; i++) {
217 		csp = &clock_tick_set[i];
218 		csp->ct_start = i * clock_tick_ncpus;
219 		csp->ct_scan = csp->ct_start;
220 		csp->ct_end = csp->ct_start;
221 	}
222 }
223 
224 void
225 clock_tick_init_post(void)
226 {
227 	/*
228 	 * If a platform does not provide create_softint() and invoke_softint(),
229 	 * then we assume single threaded.
230 	 */
231 	if (&invoke_softint == NULL)
232 		clock_tick_threshold = 0;
233 
234 	ASSERT(clock_tick_threshold >= 0);
235 
236 	if (clock_tick_threshold == 0)
237 		clock_tick_threshold = max_ncpus;
238 
239 	/*
240 	 * If a platform does not specify a threshold or if the number of CPUs
241 	 * at boot time does not exceed the threshold, tick accounting remains
242 	 * single-threaded.
243 	 */
244 	if (ncpus <= clock_tick_threshold) {
245 		clock_tick_ncpus = max_ncpus;
246 		clock_tick_proc_max = 1;
247 		return;
248 	}
249 
250 	/*
251 	 * OK. Multi-thread tick processing. If a platform has not specified
252 	 * the CPU set size for multi-threading, then use the default value.
253 	 * This value has been arrived through measurements on large
254 	 * configuration systems.
255 	 */
256 	clock_tick_single_threaded = 0;
257 	if (clock_tick_proc_max == 0) {
258 		clock_tick_proc_max = CLOCK_TICK_PROC_MAX;
259 		if (hires_tick)
260 			clock_tick_proc_max *= 10;
261 	}
262 }
263 
264 static void
265 clock_tick_schedule_one(clock_tick_set_t *csp, int pending, processorid_t cid)
266 {
267 	clock_tick_cpu_t	*ctp;
268 
269 	ASSERT(&invoke_softint != NULL);
270 
271 	atomic_inc_ulong(&clock_tick_active);
272 
273 	/*
274 	 * Schedule tick accounting for a set of CPUs.
275 	 */
276 	ctp = clock_tick_cpu[cid];
277 	mutex_enter(&ctp->ct_lock);
278 	ctp->ct_lbolt = LBOLT_NO_ACCOUNT;
279 	ctp->ct_pending += pending;
280 	ctp->ct_start = csp->ct_start;
281 	ctp->ct_end = csp->ct_end;
282 	ctp->ct_scan = csp->ct_scan;
283 	mutex_exit(&ctp->ct_lock);
284 
285 	invoke_softint(cid, ctp->ct_intr);
286 	/*
287 	 * Return without waiting for the softint to finish.
288 	 */
289 }
290 
291 static void
292 clock_tick_process(cpu_t *cp, clock_t mylbolt, int pending)
293 {
294 	kthread_t	*t;
295 	kmutex_t	*plockp;
296 	int		notick, intr;
297 	klwp_id_t	lwp;
298 
299 	/*
300 	 * The locking here is rather tricky. thread_free_prevent()
301 	 * prevents the thread returned from being freed while we
302 	 * are looking at it. We can then check if the thread
303 	 * is exiting and get the appropriate p_lock if it
304 	 * is not.  We have to be careful, though, because
305 	 * the _process_ can still be freed while we've
306 	 * prevented thread free.  To avoid touching the
307 	 * proc structure we put a pointer to the p_lock in the
308 	 * thread structure.  The p_lock is persistent so we
309 	 * can acquire it even if the process is gone.  At that
310 	 * point we can check (again) if the thread is exiting
311 	 * and either drop the lock or do the tick processing.
312 	 */
313 	t = cp->cpu_thread;	/* Current running thread */
314 	if (CPU == cp) {
315 		/*
316 		 * 't' will be the tick processing thread on this
317 		 * CPU.  Use the pinned thread (if any) on this CPU
318 		 * as the target of the clock tick.
319 		 */
320 		if (t->t_intr != NULL)
321 			t = t->t_intr;
322 	}
323 
324 	/*
325 	 * We use thread_free_prevent to keep the currently running
326 	 * thread from being freed or recycled while we're
327 	 * looking at it.
328 	 */
329 	thread_free_prevent(t);
330 	/*
331 	 * We cannot hold the cpu_lock to prevent the
332 	 * cpu_active from changing in the clock interrupt.
333 	 * As long as we don't block (or don't get pre-empted)
334 	 * the cpu_list will not change (all threads are paused
335 	 * before list modification).
336 	 */
337 	if (CLOCK_TICK_CPU_OFFLINE(cp)) {
338 		thread_free_allow(t);
339 		return;
340 	}
341 
342 	/*
343 	 * Make sure the thread is still on the CPU.
344 	 */
345 	if ((t != cp->cpu_thread) &&
346 	    ((cp != CPU) || (t != cp->cpu_thread->t_intr))) {
347 		/*
348 		 * We could not locate the thread. Skip this CPU. Race
349 		 * conditions while performing these checks are benign.
350 		 * These checks are not perfect and they don't need
351 		 * to be.
352 		 */
353 		thread_free_allow(t);
354 		return;
355 	}
356 
357 	intr = t->t_flag & T_INTR_THREAD;
358 	lwp = ttolwp(t);
359 	if (lwp == NULL || (t->t_proc_flag & TP_LWPEXIT) || intr) {
360 		/*
361 		 * Thread is exiting (or uninteresting) so don't
362 		 * do tick processing.
363 		 */
364 		thread_free_allow(t);
365 		return;
366 	}
367 
368 	/*
369 	 * OK, try to grab the process lock.  See
370 	 * comments above for why we're not using
371 	 * ttoproc(t)->p_lockp here.
372 	 */
373 	plockp = t->t_plockp;
374 	mutex_enter(plockp);
375 	/* See above comment. */
376 	if (CLOCK_TICK_CPU_OFFLINE(cp)) {
377 		mutex_exit(plockp);
378 		thread_free_allow(t);
379 		return;
380 	}
381 
382 	/*
383 	 * The thread may have exited between when we
384 	 * checked above, and when we got the p_lock.
385 	 */
386 	if (t->t_proc_flag & TP_LWPEXIT) {
387 		mutex_exit(plockp);
388 		thread_free_allow(t);
389 		return;
390 	}
391 
392 	/*
393 	 * Either we have the p_lock for the thread's process,
394 	 * or we don't care about the thread structure any more.
395 	 * Either way we can allow thread free.
396 	 */
397 	thread_free_allow(t);
398 
399 	/*
400 	 * If we haven't done tick processing for this
401 	 * lwp, then do it now. Since we don't hold the
402 	 * lwp down on a CPU it can migrate and show up
403 	 * more than once, hence the lbolt check. mylbolt
404 	 * is copied at the time of tick scheduling to prevent
405 	 * lbolt mismatches.
406 	 *
407 	 * Also, make sure that it's okay to perform the
408 	 * tick processing before calling clock_tick.
409 	 * Setting notick to a TRUE value (ie. not 0)
410 	 * results in tick processing not being performed for
411 	 * that thread.
412 	 */
413 	notick = ((cp->cpu_flags & CPU_QUIESCED) || CPU_ON_INTR(cp) ||
414 	    (cp->cpu_dispthread == cp->cpu_idle_thread));
415 
416 	if ((!notick) && (t->t_lbolt < mylbolt)) {
417 		t->t_lbolt = mylbolt;
418 		clock_tick(t, pending);
419 	}
420 
421 	mutex_exit(plockp);
422 }
423 
424 void
425 clock_tick_schedule(int one_sec)
426 {
427 	ulong_t			active;
428 	int			i, end;
429 	clock_tick_set_t	*csp;
430 	cpu_t			*cp;
431 
432 	if (clock_cpu_id != CPU->cpu_id)
433 		clock_cpu_id = CPU->cpu_id;
434 
435 	if (clock_tick_single_threaded) {
436 		/*
437 		 * Each tick cycle, start the scan from a different
438 		 * CPU for the sake of fairness.
439 		 */
440 		end = clock_tick_total_cpus;
441 		clock_tick_scan++;
442 		if (clock_tick_scan >= end)
443 			clock_tick_scan = 0;
444 
445 		clock_tick_execute_common(0, clock_tick_scan, end,
446 		    LBOLT_NO_ACCOUNT, 1);
447 
448 		return;
449 	}
450 
451 	/*
452 	 * If the previous invocation of handlers is not yet finished, then
453 	 * simply increment a pending count and return. Eventually when they
454 	 * finish, the pending count is passed down to the next set of
455 	 * handlers to process. This way, ticks that have already elapsed
456 	 * in the past are handled as quickly as possible to minimize the
457 	 * chances of threads getting away before their pending ticks are
458 	 * accounted. The other benefit is that if the pending count is
459 	 * more than one, it can be handled by a single invocation of
460 	 * clock_tick(). This is a good optimization for large configuration
461 	 * busy systems where tick accounting can get backed up for various
462 	 * reasons.
463 	 */
464 	clock_tick_pending++;
465 
466 	active = clock_tick_active;
467 	active = atomic_cas_ulong(&clock_tick_active, active, active);
468 	if (active)
469 		return;
470 
471 	/*
472 	 * We want to handle the clock CPU here. If we
473 	 * scheduled the accounting for the clock CPU to another
474 	 * processor, that processor will find only the clock() thread
475 	 * running and not account for any user thread below it. Also,
476 	 * we want to handle this before we block on anything and allow
477 	 * the pinned thread below the current thread to escape.
478 	 */
479 	clock_tick_process(CPU, LBOLT_NO_ACCOUNT, clock_tick_pending);
480 
481 	mutex_enter(&clock_tick_lock);
482 
483 	/*
484 	 * Schedule each set on a separate processor.
485 	 */
486 	cp = clock_cpu_list;
487 	for (i = 0; i < clock_tick_nsets; i++) {
488 		csp = &clock_tick_set[i];
489 
490 		/*
491 		 * Pick the next online CPU in list for scheduling tick
492 		 * accounting. The clock_tick_lock is held by the caller.
493 		 * So, CPU online/offline cannot muck with this while
494 		 * we are picking our CPU to X-call.
495 		 */
496 		if (cp == CPU)
497 			cp = cp->cpu_next_onln;
498 
499 		/*
500 		 * Each tick cycle, start the scan from a different
501 		 * CPU for the sake of fairness.
502 		 */
503 		csp->ct_scan++;
504 		if (csp->ct_scan >= csp->ct_end)
505 			csp->ct_scan = csp->ct_start;
506 
507 		clock_tick_schedule_one(csp, clock_tick_pending, cp->cpu_id);
508 
509 		cp = cp->cpu_next_onln;
510 	}
511 
512 	if (one_sec) {
513 		/*
514 		 * Move the CPU pointer around every second. This is so
515 		 * all the CPUs can be X-called in a round-robin fashion
516 		 * to evenly distribute the X-calls. We don't do this
517 		 * at a faster rate than this because we don't want
518 		 * to affect cache performance negatively.
519 		 */
520 		clock_cpu_list = clock_cpu_list->cpu_next_onln;
521 	}
522 
523 	mutex_exit(&clock_tick_lock);
524 
525 	clock_tick_pending = 0;
526 }
527 
528 static void
529 clock_tick_execute_common(int start, int scan, int end, clock_t mylbolt,
530 	int pending)
531 {
532 	cpu_t		*cp;
533 	int		i;
534 
535 	ASSERT((start <= scan) && (scan <= end));
536 
537 	/*
538 	 * Handle the thread on current CPU first. This is to prevent a
539 	 * pinned thread from escaping if we ever block on something.
540 	 * Note that in the single-threaded mode, this handles the clock
541 	 * CPU.
542 	 */
543 	clock_tick_process(CPU, mylbolt, pending);
544 
545 	/*
546 	 * Perform tick accounting for the threads running on
547 	 * the scheduled CPUs.
548 	 */
549 	for (i = scan; i < end; i++) {
550 		cp = clock_tick_cpus[i];
551 		if ((cp == NULL) || (cp == CPU) || (cp->cpu_id == clock_cpu_id))
552 			continue;
553 		clock_tick_process(cp, mylbolt, pending);
554 	}
555 
556 	for (i = start; i < scan; i++) {
557 		cp = clock_tick_cpus[i];
558 		if ((cp == NULL) || (cp == CPU) || (cp->cpu_id == clock_cpu_id))
559 			continue;
560 		clock_tick_process(cp, mylbolt, pending);
561 	}
562 }
563 
564 /*ARGSUSED*/
565 static uint_t
566 clock_tick_execute(caddr_t arg1, caddr_t arg2)
567 {
568 	clock_tick_cpu_t	*ctp;
569 	int			start, scan, end, pending;
570 	clock_t			mylbolt;
571 
572 	/*
573 	 * We could have raced with cpu offline. We don't want to
574 	 * process anything on an offlined CPU. If we got blocked
575 	 * on anything, we may not get scheduled when we wakeup
576 	 * later on.
577 	 */
578 	if (!CLOCK_TICK_XCALL_SAFE(CPU))
579 		goto out;
580 
581 	ctp = clock_tick_cpu[CPU->cpu_id];
582 
583 	mutex_enter(&ctp->ct_lock);
584 	pending = ctp->ct_pending;
585 	if (pending == 0) {
586 		/*
587 		 * If a CPU is busy at LOCK_LEVEL, then an invocation
588 		 * of this softint may be queued for some time. In that case,
589 		 * clock_tick_active will not be incremented.
590 		 * clock_tick_schedule() will then assume that the previous
591 		 * invocation is done and post a new softint. The first one
592 		 * that gets in will reset the pending count so the
593 		 * second one is a noop.
594 		 */
595 		mutex_exit(&ctp->ct_lock);
596 		goto out;
597 	}
598 	ctp->ct_pending = 0;
599 	start = ctp->ct_start;
600 	end = ctp->ct_end;
601 	scan = ctp->ct_scan;
602 	mylbolt = ctp->ct_lbolt;
603 	mutex_exit(&ctp->ct_lock);
604 
605 	clock_tick_execute_common(start, scan, end, mylbolt, pending);
606 
607 out:
608 	/*
609 	 * Signal completion to the clock handler.
610 	 */
611 	atomic_dec_ulong(&clock_tick_active);
612 
613 	return (1);
614 }
615 
616 /*ARGSUSED*/
617 static int
618 clock_tick_cpu_setup(cpu_setup_t what, int cid, void *arg)
619 {
620 	cpu_t			*cp, *ncp;
621 	int			i, set;
622 	clock_tick_set_t	*csp;
623 
624 	/*
625 	 * This function performs some computations at CPU offline/online
626 	 * time. The computed values are used during tick scheduling and
627 	 * execution phases. This avoids having to compute things on
628 	 * an every tick basis. The other benefit is that we perform the
629 	 * computations only for onlined CPUs (not offlined ones). As a
630 	 * result, no tick processing is attempted for offlined CPUs.
631 	 *
632 	 * Also, cpu_offline() calls this function before checking for
633 	 * active interrupt threads. This allows us to avoid posting
634 	 * cross calls to CPUs that are being offlined.
635 	 */
636 
637 	cp = cpu[cid];
638 
639 	mutex_enter(&clock_tick_lock);
640 
641 	switch (what) {
642 	case CPU_ON:
643 		clock_tick_cpus[clock_tick_total_cpus] = cp;
644 		set = clock_tick_total_cpus / clock_tick_ncpus;
645 		csp = &clock_tick_set[set];
646 		csp->ct_end++;
647 		clock_tick_total_cpus++;
648 		clock_tick_nsets =
649 		    (clock_tick_total_cpus + clock_tick_ncpus - 1) /
650 		    clock_tick_ncpus;
651 		CPUSET_ADD(clock_tick_online_cpuset, cp->cpu_id);
652 		membar_sync();
653 		break;
654 
655 	case CPU_OFF:
656 		if (&sync_softint != NULL)
657 			sync_softint(clock_tick_online_cpuset);
658 		CPUSET_DEL(clock_tick_online_cpuset, cp->cpu_id);
659 		clock_tick_total_cpus--;
660 		clock_tick_cpus[clock_tick_total_cpus] = NULL;
661 		clock_tick_nsets =
662 		    (clock_tick_total_cpus + clock_tick_ncpus - 1) /
663 		    clock_tick_ncpus;
664 		set = clock_tick_total_cpus / clock_tick_ncpus;
665 		csp = &clock_tick_set[set];
666 		csp->ct_end--;
667 
668 		i = 0;
669 		ncp = cpu_active;
670 		do {
671 			if (cp == ncp)
672 				continue;
673 			clock_tick_cpus[i] = ncp;
674 			i++;
675 		} while ((ncp = ncp->cpu_next_onln) != cpu_active);
676 		ASSERT(i == clock_tick_total_cpus);
677 		membar_sync();
678 		break;
679 
680 	default:
681 		break;
682 	}
683 
684 	mutex_exit(&clock_tick_lock);
685 
686 	return (0);
687 }
688 
689 
690 void
691 clock_tick_mp_init(void)
692 {
693 	cpu_t	*cp;
694 
695 	mutex_enter(&cpu_lock);
696 
697 	cp = cpu_active;
698 	do {
699 		(void) clock_tick_cpu_setup(CPU_ON, cp->cpu_id, NULL);
700 	} while ((cp = cp->cpu_next_onln) != cpu_active);
701 
702 	register_cpu_setup_func(clock_tick_cpu_setup, NULL);
703 
704 	mutex_exit(&cpu_lock);
705 }
706