xref: /titanic_52/usr/src/uts/common/os/clock.c (revision ec851306d86fc4bd601a05db6d187cac3fb96b26)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
23 /*	  All Rights Reserved	*/
24 
25 
26 /*
27  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
28  * Use is subject to license terms.
29  */
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #include <sys/param.h>
34 #include <sys/t_lock.h>
35 #include <sys/types.h>
36 #include <sys/tuneable.h>
37 #include <sys/sysmacros.h>
38 #include <sys/systm.h>
39 #include <sys/cpuvar.h>
40 #include <sys/lgrp.h>
41 #include <sys/user.h>
42 #include <sys/proc.h>
43 #include <sys/callo.h>
44 #include <sys/kmem.h>
45 #include <sys/var.h>
46 #include <sys/cmn_err.h>
47 #include <sys/swap.h>
48 #include <sys/vmsystm.h>
49 #include <sys/class.h>
50 #include <sys/time.h>
51 #include <sys/debug.h>
52 #include <sys/vtrace.h>
53 #include <sys/spl.h>
54 #include <sys/atomic.h>
55 #include <sys/dumphdr.h>
56 #include <sys/archsystm.h>
57 #include <sys/fs/swapnode.h>
58 #include <sys/panic.h>
59 #include <sys/disp.h>
60 #include <sys/msacct.h>
61 #include <sys/mem_cage.h>
62 
63 #include <vm/page.h>
64 #include <vm/anon.h>
65 #include <vm/rm.h>
66 #include <sys/cyclic.h>
67 #include <sys/cpupart.h>
68 #include <sys/rctl.h>
69 #include <sys/task.h>
70 #include <sys/chip.h>
71 #include <sys/sdt.h>
72 
73 /*
74  * for NTP support
75  */
76 #include <sys/timex.h>
77 #include <sys/inttypes.h>
78 
79 /*
80  * clock is called straight from
81  * the real time clock interrupt.
82  *
83  * Functions:
84  *	reprime clock
85  *	schedule callouts
86  *	maintain date
87  *	jab the scheduler
88  */
89 
90 extern kcondvar_t	fsflush_cv;
91 extern sysinfo_t	sysinfo;
92 extern vminfo_t	vminfo;
93 extern int	idleswtch;	/* flag set while idle in pswtch() */
94 
95 /*
96  * high-precision avenrun values.  These are needed to make the
97  * regular avenrun values accurate.
98  */
99 static uint64_t hp_avenrun[3];
100 int	avenrun[3];		/* FSCALED average run queue lengths */
101 time_t	time;	/* time in seconds since 1970 - for compatibility only */
102 
103 static struct loadavg_s loadavg;
104 /*
105  * Phase/frequency-lock loop (PLL/FLL) definitions
106  *
107  * The following variables are read and set by the ntp_adjtime() system
108  * call.
109  *
110  * time_state shows the state of the system clock, with values defined
111  * in the timex.h header file.
112  *
113  * time_status shows the status of the system clock, with bits defined
114  * in the timex.h header file.
115  *
116  * time_offset is used by the PLL/FLL to adjust the system time in small
117  * increments.
118  *
119  * time_constant determines the bandwidth or "stiffness" of the PLL.
120  *
121  * time_tolerance determines maximum frequency error or tolerance of the
122  * CPU clock oscillator and is a property of the architecture; however,
123  * in principle it could change as result of the presence of external
124  * discipline signals, for instance.
125  *
126  * time_precision is usually equal to the kernel tick variable; however,
127  * in cases where a precision clock counter or external clock is
128  * available, the resolution can be much less than this and depend on
129  * whether the external clock is working or not.
130  *
131  * time_maxerror is initialized by a ntp_adjtime() call and increased by
132  * the kernel once each second to reflect the maximum error bound
133  * growth.
134  *
135  * time_esterror is set and read by the ntp_adjtime() call, but
136  * otherwise not used by the kernel.
137  */
138 int32_t time_state = TIME_OK;	/* clock state */
139 int32_t time_status = STA_UNSYNC;	/* clock status bits */
140 int32_t time_offset = 0;		/* time offset (us) */
141 int32_t time_constant = 0;		/* pll time constant */
142 int32_t time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
143 int32_t time_precision = 1;	/* clock precision (us) */
144 int32_t time_maxerror = MAXPHASE;	/* maximum error (us) */
145 int32_t time_esterror = MAXPHASE;	/* estimated error (us) */
146 
147 /*
148  * The following variables establish the state of the PLL/FLL and the
149  * residual time and frequency offset of the local clock. The scale
150  * factors are defined in the timex.h header file.
151  *
152  * time_phase and time_freq are the phase increment and the frequency
153  * increment, respectively, of the kernel time variable.
154  *
155  * time_freq is set via ntp_adjtime() from a value stored in a file when
156  * the synchronization daemon is first started. Its value is retrieved
157  * via ntp_adjtime() and written to the file about once per hour by the
158  * daemon.
159  *
160  * time_adj is the adjustment added to the value of tick at each timer
161  * interrupt and is recomputed from time_phase and time_freq at each
162  * seconds rollover.
163  *
164  * time_reftime is the second's portion of the system time at the last
165  * call to ntp_adjtime(). It is used to adjust the time_freq variable
166  * and to increase the time_maxerror as the time since last update
167  * increases.
168  */
169 int32_t time_phase = 0;		/* phase offset (scaled us) */
170 int32_t time_freq = 0;		/* frequency offset (scaled ppm) */
171 int32_t time_adj = 0;		/* tick adjust (scaled 1 / hz) */
172 int32_t time_reftime = 0;		/* time at last adjustment (s) */
173 
174 /*
175  * The scale factors of the following variables are defined in the
176  * timex.h header file.
177  *
178  * pps_time contains the time at each calibration interval, as read by
179  * microtime(). pps_count counts the seconds of the calibration
180  * interval, the duration of which is nominally pps_shift in powers of
181  * two.
182  *
183  * pps_offset is the time offset produced by the time median filter
184  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
185  * this filter.
186  *
187  * pps_freq is the frequency offset produced by the frequency median
188  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
189  * by this filter.
190  *
191  * pps_usec is latched from a high resolution counter or external clock
192  * at pps_time. Here we want the hardware counter contents only, not the
193  * contents plus the time_tv.usec as usual.
194  *
195  * pps_valid counts the number of seconds since the last PPS update. It
196  * is used as a watchdog timer to disable the PPS discipline should the
197  * PPS signal be lost.
198  *
199  * pps_glitch counts the number of seconds since the beginning of an
200  * offset burst more than tick/2 from current nominal offset. It is used
201  * mainly to suppress error bursts due to priority conflicts between the
202  * PPS interrupt and timer interrupt.
203  *
204  * pps_intcnt counts the calibration intervals for use in the interval-
205  * adaptation algorithm. It's just too complicated for words.
206  */
207 struct timeval pps_time;	/* kernel time at last interval */
208 int32_t pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
209 int32_t pps_offset = 0;		/* pps time offset (us) */
210 int32_t pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
211 int32_t pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
212 int32_t pps_freq = 0;		/* frequency offset (scaled ppm) */
213 int32_t pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
214 int32_t pps_usec = 0;		/* microsec counter at last interval */
215 int32_t pps_valid = PPS_VALID;	/* pps signal watchdog counter */
216 int32_t pps_glitch = 0;		/* pps signal glitch counter */
217 int32_t pps_count = 0;		/* calibration interval counter (s) */
218 int32_t pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
219 int32_t pps_intcnt = 0;		/* intervals at current duration */
220 
221 /*
222  * PPS signal quality monitors
223  *
224  * pps_jitcnt counts the seconds that have been discarded because the
225  * jitter measured by the time median filter exceeds the limit MAXTIME
226  * (100 us).
227  *
228  * pps_calcnt counts the frequency calibration intervals, which are
229  * variable from 4 s to 256 s.
230  *
231  * pps_errcnt counts the calibration intervals which have been discarded
232  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
233  * calibration interval jitter exceeds two ticks.
234  *
235  * pps_stbcnt counts the calibration intervals that have been discarded
236  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
237  */
238 int32_t pps_jitcnt = 0;		/* jitter limit exceeded */
239 int32_t pps_calcnt = 0;		/* calibration intervals */
240 int32_t pps_errcnt = 0;		/* calibration errors */
241 int32_t pps_stbcnt = 0;		/* stability limit exceeded */
242 
243 /* The following variables require no explicit locking */
244 volatile clock_t lbolt;		/* time in Hz since last boot */
245 volatile int64_t lbolt64;	/* lbolt64 won't wrap for 2.9 billion yrs */
246 
247 kcondvar_t lbolt_cv;
248 int one_sec = 1; /* turned on once every second */
249 static int fsflushcnt;	/* counter for t_fsflushr */
250 int	dosynctodr = 1;	/* patchable; enable/disable sync to TOD chip */
251 int	tod_needsync = 0;	/* need to sync tod chip with software time */
252 static int tod_broken = 0;	/* clock chip doesn't work */
253 time_t	boot_time = 0;		/* Boot time in seconds since 1970 */
254 cyclic_id_t clock_cyclic;	/* clock()'s cyclic_id */
255 cyclic_id_t deadman_cyclic;	/* deadman()'s cyclic_id */
256 
257 static int lgrp_ticks;		/* counter to schedule lgrp load calcs */
258 
259 /*
260  * rechoose_interval_history is used to detect when rechoose_interval's
261  * value has changed (via hotpatching for example), so that the
262  * cached values in the cpu structures may be updated.
263  */
264 static int rechoose_interval_history = RECHOOSE_INTERVAL;
265 
266 /*
267  * for tod fault detection
268  */
269 #define	TOD_REF_FREQ		((longlong_t)(NANOSEC))
270 #define	TOD_STALL_THRESHOLD	(TOD_REF_FREQ * 3 / 2)
271 #define	TOD_JUMP_THRESHOLD	(TOD_REF_FREQ / 2)
272 #define	TOD_FILTER_N		4
273 #define	TOD_FILTER_SETTLE	(4 * TOD_FILTER_N)
274 static int tod_faulted = TOD_NOFAULT;
275 static int tod_fault_reset_flag = 0;
276 
277 /* patchable via /etc/system */
278 int tod_validate_enable = 1;
279 
280 /*
281  * tod_fault_table[] must be aligned with
282  * enum tod_fault_type in systm.h
283  */
284 static char *tod_fault_table[] = {
285 	"Reversed",			/* TOD_REVERSED */
286 	"Stalled",			/* TOD_STALLED */
287 	"Jumped",			/* TOD_JUMPED */
288 	"Changed in Clock Rate"		/* TOD_RATECHANGED */
289 	/*
290 	 * no strings needed for TOD_NOFAULT
291 	 */
292 };
293 
294 /*
295  * test hook for tod broken detection in tod_validate
296  */
297 int tod_unit_test = 0;
298 time_t tod_test_injector;
299 
300 #define	CLOCK_ADJ_HIST_SIZE	4
301 
302 static int	adj_hist_entry;
303 
304 int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE];
305 
306 static void clock_tick(kthread_t *);
307 static void calcloadavg(int, uint64_t *);
308 static int genloadavg(struct loadavg_s *);
309 static void loadavg_update();
310 
311 void (*cmm_clock_callout)() = NULL;
312 
313 #ifdef	KSLICE
314 int kslice = KSLICE;
315 #endif
316 
317 static void
318 clock(void)
319 {
320 	kthread_t	*t;
321 	kmutex_t	*plockp;	/* pointer to thread's process lock */
322 	int	pinned_intr = 0;
323 	uint_t	nrunnable, nrunning;
324 	uint_t	w_io;
325 	cpu_t	*cp;
326 	cpupart_t *cpupart;
327 	int	exiting;
328 	extern void set_anoninfo();
329 	extern	void	set_freemem();
330 	void	(*funcp)();
331 	int32_t ltemp;
332 	int64_t lltemp;
333 	int s;
334 	int do_lgrp_load;
335 	int rechoose_update = 0;
336 	int rechoose;
337 	int i;
338 
339 	if (panicstr)
340 		return;
341 
342 	set_anoninfo();
343 	/*
344 	 * Make sure that 'freemem' do not drift too far from the truth
345 	 */
346 	set_freemem();
347 
348 
349 	/*
350 	 * Before the section which is repeated is executed, we do
351 	 * the time delta processing which occurs every clock tick
352 	 *
353 	 * There is additional processing which happens every time
354 	 * the nanosecond counter rolls over which is described
355 	 * below - see the section which begins with : if (one_sec)
356 	 *
357 	 * This section marks the beginning of the precision-kernel
358 	 * code fragment.
359 	 *
360 	 * First, compute the phase adjustment. If the low-order bits
361 	 * (time_phase) of the update overflow, bump the higher order
362 	 * bits (time_update).
363 	 */
364 	time_phase += time_adj;
365 	if (time_phase <= -FINEUSEC) {
366 		ltemp = -time_phase / SCALE_PHASE;
367 		time_phase += ltemp * SCALE_PHASE;
368 		s = hr_clock_lock();
369 		timedelta -= ltemp * (NANOSEC/MICROSEC);
370 		hr_clock_unlock(s);
371 	} else if (time_phase >= FINEUSEC) {
372 		ltemp = time_phase / SCALE_PHASE;
373 		time_phase -= ltemp * SCALE_PHASE;
374 		s = hr_clock_lock();
375 		timedelta += ltemp * (NANOSEC/MICROSEC);
376 		hr_clock_unlock(s);
377 	}
378 
379 	/*
380 	 * End of precision-kernel code fragment which is processed
381 	 * every timer interrupt.
382 	 *
383 	 * Continue with the interrupt processing as scheduled.
384 	 *
385 	 * Did we pin another interrupt thread?  Need to check this before
386 	 * grabbing any adaptive locks, since if we block on a lock the
387 	 * pinned thread could escape.  Note that this is just a heuristic;
388 	 * if we take multiple laps though clock() without returning from
389 	 * the interrupt because we have another clock tick pending, then
390 	 * the pinned interrupt could be released by one of the previous
391 	 * laps.  The only consequence is that the CPU will be counted as
392 	 * in idle (or wait) state once the pinned interrupt is released.
393 	 * Since this accounting is inaccurate by nature, this isn't a big
394 	 * deal --- but we should try to get it right in the common case
395 	 * where we only call clock() once per interrupt.
396 	 */
397 	if (curthread->t_intr != NULL)
398 		pinned_intr = (curthread->t_intr->t_flag & T_INTR_THREAD);
399 
400 	/*
401 	 * Count the number of runnable threads and the number waiting
402 	 * for some form of I/O to complete -- gets added to
403 	 * sysinfo.waiting.  To know the state of the system, must add
404 	 * wait counts from all CPUs.  Also add up the per-partition
405 	 * statistics.
406 	 */
407 	w_io = 0;
408 	nrunnable = 0;
409 
410 	/*
411 	 * keep track of when to update lgrp/part loads
412 	 */
413 
414 	do_lgrp_load = 0;
415 	if (lgrp_ticks++ >= hz / 10) {
416 		lgrp_ticks = 0;
417 		do_lgrp_load = 1;
418 	}
419 
420 	/*
421 	 * The dispatcher tunable rechoose_interval may be hot-patched.
422 	 * Note if it has a new value. If so, the effective rechoose_interval
423 	 * cached in the cpu structures needs to be updated.
424 	 * If needed we'll do this during the walk of the cpu_list below.
425 	 */
426 	if (rechoose_interval != rechoose_interval_history) {
427 		rechoose_interval_history = rechoose_interval;
428 		rechoose_update = 1;
429 	}
430 
431 	if (one_sec)
432 		loadavg_update();
433 
434 
435 	/*
436 	 * First count the threads waiting on kpreempt queues in each
437 	 * CPU partition.
438 	 */
439 
440 	cpupart = cp_list_head;
441 	do {
442 		uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable;
443 
444 		cpupart->cp_updates++;
445 		nrunnable += cpupart_nrunnable;
446 		cpupart->cp_nrunnable_cum += cpupart_nrunnable;
447 		if (one_sec) {
448 			cpupart->cp_nrunning = 0;
449 			cpupart->cp_nrunnable = cpupart_nrunnable;
450 		}
451 	} while ((cpupart = cpupart->cp_next) != cp_list_head);
452 
453 
454 	/* Now count the per-CPU statistics. */
455 	cp = cpu_list;
456 	do {
457 		uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable;
458 
459 		nrunnable += cpu_nrunnable;
460 		cpupart = cp->cpu_part;
461 		cpupart->cp_nrunnable_cum += cpu_nrunnable;
462 		if (one_sec)
463 			cpupart->cp_nrunnable += cpu_nrunnable;
464 		if (do_lgrp_load &&
465 		    (cp->cpu_flags & CPU_EXISTS)) {
466 			/*
467 			 * When updating the lgroup's load average,
468 			 * account for the thread running on the CPU.
469 			 * If the CPU is the current one, then we need
470 			 * to account for the underlying thread which
471 			 * got the clock interrupt not the thread that is
472 			 * handling the interrupt and caculating the load
473 			 * average
474 			 */
475 			t = cp->cpu_thread;
476 			if (CPU == cp)
477 				t = t->t_intr;
478 
479 			/*
480 			 * Account for the load average for this thread if
481 			 * it isn't the idle thread or it is on the interrupt
482 			 * stack and not the current CPU handling the clock
483 			 * interrupt
484 			 */
485 			if ((t && t != cp->cpu_idle_thread) || (CPU != cp &&
486 			    CPU_ON_INTR(cp))) {
487 				if (t->t_lpl == cp->cpu_lpl) {
488 					/* local thread */
489 					cpu_nrunnable++;
490 				} else {
491 					/*
492 					 * This is a remote thread, charge it
493 					 * against its home lgroup.  Note that
494 					 * we notice that a thread is remote
495 					 * only if it's currently executing.
496 					 * This is a reasonable approximation,
497 					 * since queued remote threads are rare.
498 					 * Note also that if we didn't charge
499 					 * it to its home lgroup, remote
500 					 * execution would often make a system
501 					 * appear balanced even though it was
502 					 * not, and thread placement/migration
503 					 * would often not be done correctly.
504 					 */
505 					lgrp_loadavg(t->t_lpl,
506 					    LGRP_LOADAVG_IN_THREAD_MAX, 0);
507 				}
508 			}
509 			lgrp_loadavg(cp->cpu_lpl,
510 			    cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1);
511 		}
512 		/*
513 		 * The platform may define a per physical processor
514 		 * adjustment of rechoose_interval. The effective
515 		 * (base + adjustment) rechoose_interval is cached
516 		 * in the cpu structures for efficiency. Above we detect
517 		 * if the cached values need updating, and here is where
518 		 * the update happens.
519 		 */
520 		if (rechoose_update) {
521 			rechoose = rechoose_interval +
522 				cp->cpu_chip->chip_rechoose_adj;
523 			cp->cpu_rechoose = (rechoose < 0) ? 0 : rechoose;
524 		}
525 	} while ((cp = cp->cpu_next) != cpu_list);
526 
527 	/*
528 	 * Do tick processing for all the active threads running in
529 	 * the system.
530 	 */
531 	cp = cpu_list;
532 	nrunning = 0;
533 	do {
534 		klwp_id_t lwp;
535 		int intr;
536 		int thread_away;
537 
538 		/*
539 		 * Don't do any tick processing on CPUs that
540 		 * aren't even in the system or aren't up yet.
541 		 */
542 		if ((cp->cpu_flags & CPU_EXISTS) == 0) {
543 			continue;
544 		}
545 
546 		/*
547 		 * The locking here is rather tricky.  We use
548 		 * thread_free_lock to keep the currently running
549 		 * thread from being freed or recycled while we're
550 		 * looking at it.  We can then check if the thread
551 		 * is exiting and get the appropriate p_lock if it
552 		 * is not.  We have to be careful, though, because
553 		 * the _process_ can still be freed while we're
554 		 * holding thread_free_lock.  To avoid touching the
555 		 * proc structure we put a pointer to the p_lock in the
556 		 * thread structure.  The p_lock is persistent so we
557 		 * can acquire it even if the process is gone.  At that
558 		 * point we can check (again) if the thread is exiting
559 		 * and either drop the lock or do the tick processing.
560 		 */
561 		mutex_enter(&thread_free_lock);
562 		/*
563 		 * We cannot hold the cpu_lock to prevent the
564 		 * cpu_list from changing in the clock interrupt.
565 		 * As long as we don't block (or don't get pre-empted)
566 		 * the cpu_list will not change (all threads are paused
567 		 * before list modification). If the list does change
568 		 * any deleted cpu structures will remain with cpu_next
569 		 * set to NULL, hence the following test.
570 		 */
571 		if (cp->cpu_next == NULL) {
572 			mutex_exit(&thread_free_lock);
573 			break;
574 		}
575 		t = cp->cpu_thread;	/* Current running thread */
576 		if (CPU == cp) {
577 			/*
578 			 * 't' will be the clock interrupt thread on this
579 			 * CPU.  Use the pinned thread (if any) on this CPU
580 			 * as the target of the clock tick.  If we pinned
581 			 * an interrupt, though, just keep using the clock
582 			 * interrupt thread since the formerly pinned one
583 			 * may have gone away.  One interrupt thread is as
584 			 * good as another, and this means we don't have
585 			 * to continue to check pinned_intr in subsequent
586 			 * code.
587 			 */
588 			ASSERT(t == curthread);
589 			if (t->t_intr != NULL && !pinned_intr)
590 				t = t->t_intr;
591 		}
592 
593 		intr = t->t_flag & T_INTR_THREAD;
594 		lwp = ttolwp(t);
595 		if (lwp == NULL || (t->t_proc_flag & TP_LWPEXIT) || intr) {
596 			/*
597 			 * Thread is exiting (or uninteresting) so don't
598 			 * do tick processing or grab p_lock.  Once we
599 			 * drop thread_free_lock we can't look inside the
600 			 * thread or lwp structure, since the thread may
601 			 * have gone away.
602 			 */
603 			exiting = 1;
604 		} else {
605 			/*
606 			 * OK, try to grab the process lock.  See
607 			 * comments above for why we're not using
608 			 * ttoproc(t)->p_lockp here.
609 			 */
610 			plockp = t->t_plockp;
611 			mutex_enter(plockp);
612 			/* See above comment. */
613 			if (cp->cpu_next == NULL) {
614 				mutex_exit(plockp);
615 				mutex_exit(&thread_free_lock);
616 				break;
617 			}
618 			/*
619 			 * The thread may have exited between when we
620 			 * checked above, and when we got the p_lock.
621 			 */
622 			if (t->t_proc_flag & TP_LWPEXIT) {
623 				mutex_exit(plockp);
624 				exiting = 1;
625 			} else {
626 				exiting = 0;
627 			}
628 		}
629 		/*
630 		 * Either we have the p_lock for the thread's process,
631 		 * or we don't care about the thread structure any more.
632 		 * Either way we can drop thread_free_lock.
633 		 */
634 		mutex_exit(&thread_free_lock);
635 
636 		/*
637 		 * Update user, system, and idle cpu times.
638 		 */
639 		if (one_sec) {
640 			nrunning++;
641 			cp->cpu_part->cp_nrunning++;
642 		}
643 		/*
644 		 * If we haven't done tick processing for this
645 		 * lwp, then do it now. Since we don't hold the
646 		 * lwp down on a CPU it can migrate and show up
647 		 * more than once, hence the lbolt check.
648 		 *
649 		 * Also, make sure that it's okay to perform the
650 		 * tick processing before calling clock_tick.
651 		 * Setting thread_away to a TRUE value (ie. not 0)
652 		 * results in tick processing not being performed for
653 		 * that thread.  Or, in other words, keeps the thread
654 		 * away from clock_tick processing.
655 		 */
656 		thread_away = ((cp->cpu_flags & CPU_QUIESCED) ||
657 		    CPU_ON_INTR(cp) || intr ||
658 		    (cp->cpu_dispthread == cp->cpu_idle_thread) || exiting);
659 
660 		if ((!thread_away) && (lbolt - t->t_lbolt != 0)) {
661 			t->t_lbolt = lbolt;
662 			clock_tick(t);
663 		}
664 
665 #ifdef KSLICE
666 		/*
667 		 * Ah what the heck, give this kid a taste of the real
668 		 * world and yank the rug out from under it.
669 		 * But, only if we are running UniProcessor.
670 		 */
671 		if ((kslice) && (ncpus == 1)) {
672 			aston(t);
673 			cp->cpu_runrun = 1;
674 			cp->cpu_kprunrun = 1;
675 		}
676 #endif
677 		if (!exiting)
678 			mutex_exit(plockp);
679 	} while ((cp = cp->cpu_next) != cpu_list);
680 
681 	/*
682 	 * bump time in ticks
683 	 *
684 	 * We rely on there being only one clock thread and hence
685 	 * don't need a lock to protect lbolt.
686 	 */
687 	lbolt++;
688 	atomic_add_64((uint64_t *)&lbolt64, (int64_t)1);
689 
690 	/*
691 	 * Check for a callout that needs be called from the clock
692 	 * thread to support the membership protocol in a clustered
693 	 * system.  Copy the function pointer so that we can reset
694 	 * this to NULL if needed.
695 	 */
696 	if ((funcp = cmm_clock_callout) != NULL)
697 		(*funcp)();
698 
699 	/*
700 	 * Wakeup the cageout thread waiters once per second.
701 	 */
702 	if (one_sec)
703 		kcage_tick();
704 
705 	/*
706 	 * Schedule timeout() requests if any are due at this time.
707 	 */
708 	callout_schedule();
709 
710 	if (one_sec) {
711 
712 		int drift, absdrift;
713 		timestruc_t tod;
714 		int s;
715 
716 		/*
717 		 * Beginning of precision-kernel code fragment executed
718 		 * every second.
719 		 *
720 		 * On rollover of the second the phase adjustment to be
721 		 * used for the next second is calculated.  Also, the
722 		 * maximum error is increased by the tolerance.  If the
723 		 * PPS frequency discipline code is present, the phase is
724 		 * increased to compensate for the CPU clock oscillator
725 		 * frequency error.
726 		 *
727 		 * On a 32-bit machine and given parameters in the timex.h
728 		 * header file, the maximum phase adjustment is +-512 ms
729 		 * and maximum frequency offset is (a tad less than)
730 		 * +-512 ppm. On a 64-bit machine, you shouldn't need to ask.
731 		 */
732 		time_maxerror += time_tolerance / SCALE_USEC;
733 
734 		/*
735 		 * Leap second processing. If in leap-insert state at
736 		 * the end of the day, the system clock is set back one
737 		 * second; if in leap-delete state, the system clock is
738 		 * set ahead one second. The microtime() routine or
739 		 * external clock driver will insure that reported time
740 		 * is always monotonic. The ugly divides should be
741 		 * replaced.
742 		 */
743 		switch (time_state) {
744 
745 		case TIME_OK:
746 			if (time_status & STA_INS)
747 				time_state = TIME_INS;
748 			else if (time_status & STA_DEL)
749 				time_state = TIME_DEL;
750 			break;
751 
752 		case TIME_INS:
753 			if (hrestime.tv_sec % 86400 == 0) {
754 				s = hr_clock_lock();
755 				hrestime.tv_sec--;
756 				hr_clock_unlock(s);
757 				time_state = TIME_OOP;
758 			}
759 			break;
760 
761 		case TIME_DEL:
762 			if ((hrestime.tv_sec + 1) % 86400 == 0) {
763 				s = hr_clock_lock();
764 				hrestime.tv_sec++;
765 				hr_clock_unlock(s);
766 				time_state = TIME_WAIT;
767 			}
768 			break;
769 
770 		case TIME_OOP:
771 			time_state = TIME_WAIT;
772 			break;
773 
774 		case TIME_WAIT:
775 			if (!(time_status & (STA_INS | STA_DEL)))
776 				time_state = TIME_OK;
777 		default:
778 			break;
779 		}
780 
781 		/*
782 		 * Compute the phase adjustment for the next second. In
783 		 * PLL mode, the offset is reduced by a fixed factor
784 		 * times the time constant. In FLL mode the offset is
785 		 * used directly. In either mode, the maximum phase
786 		 * adjustment for each second is clamped so as to spread
787 		 * the adjustment over not more than the number of
788 		 * seconds between updates.
789 		 */
790 		if (time_offset == 0)
791 			time_adj = 0;
792 		else if (time_offset < 0) {
793 			lltemp = -time_offset;
794 			if (!(time_status & STA_FLL)) {
795 				if ((1 << time_constant) >= SCALE_KG)
796 					lltemp *= (1 << time_constant) /
797 					    SCALE_KG;
798 				else
799 					lltemp = (lltemp / SCALE_KG) >>
800 					    time_constant;
801 			}
802 			if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
803 				lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
804 			time_offset += lltemp;
805 			time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
806 		} else {
807 			lltemp = time_offset;
808 			if (!(time_status & STA_FLL)) {
809 				if ((1 << time_constant) >= SCALE_KG)
810 					lltemp *= (1 << time_constant) /
811 					    SCALE_KG;
812 				else
813 					lltemp = (lltemp / SCALE_KG) >>
814 					    time_constant;
815 			}
816 			if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
817 				lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
818 			time_offset -= lltemp;
819 			time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
820 		}
821 
822 		/*
823 		 * Compute the frequency estimate and additional phase
824 		 * adjustment due to frequency error for the next
825 		 * second. When the PPS signal is engaged, gnaw on the
826 		 * watchdog counter and update the frequency computed by
827 		 * the pll and the PPS signal.
828 		 */
829 		pps_valid++;
830 		if (pps_valid == PPS_VALID) {
831 			pps_jitter = MAXTIME;
832 			pps_stabil = MAXFREQ;
833 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
834 			    STA_PPSWANDER | STA_PPSERROR);
835 		}
836 		lltemp = time_freq + pps_freq;
837 
838 		if (lltemp)
839 			time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz);
840 
841 		/*
842 		 * End of precision kernel-code fragment
843 		 *
844 		 * The section below should be modified if we are planning
845 		 * to use NTP for synchronization.
846 		 *
847 		 * Note: the clock synchronization code now assumes
848 		 * the following:
849 		 *   - if dosynctodr is 1, then compute the drift between
850 		 *	the tod chip and software time and adjust one or
851 		 *	the other depending on the circumstances
852 		 *
853 		 *   - if dosynctodr is 0, then the tod chip is independent
854 		 *	of the software clock and should not be adjusted,
855 		 *	but allowed to free run.  this allows NTP to sync.
856 		 *	hrestime without any interference from the tod chip.
857 		 */
858 
859 		mutex_enter(&tod_lock);
860 		tod = tod_get();
861 		drift = tod.tv_sec - hrestime.tv_sec;
862 		absdrift = (drift >= 0) ? drift : -drift;
863 		if (tod_needsync || absdrift > 1) {
864 			int s;
865 			if (absdrift > 2) {
866 				if (!tod_broken && tod_faulted == TOD_NOFAULT) {
867 					s = hr_clock_lock();
868 					hrestime = tod;
869 					membar_enter();	/* hrestime visible */
870 					timedelta = 0;
871 					timechanged++;
872 					tod_needsync = 0;
873 					hr_clock_unlock(s);
874 				}
875 			} else {
876 				if (tod_needsync || !dosynctodr) {
877 					gethrestime(&tod);
878 					tod_set(tod);
879 					s = hr_clock_lock();
880 					if (timedelta == 0)
881 						tod_needsync = 0;
882 					hr_clock_unlock(s);
883 				} else {
884 					/*
885 					 * If the drift is 2 seconds on the
886 					 * money, then the TOD is adjusting
887 					 * the clock;  record that.
888 					 */
889 					clock_adj_hist[adj_hist_entry++ %
890 					    CLOCK_ADJ_HIST_SIZE] = lbolt64;
891 					s = hr_clock_lock();
892 					timedelta = (int64_t)drift*NANOSEC;
893 					hr_clock_unlock(s);
894 				}
895 			}
896 		}
897 		one_sec = 0;
898 		time = gethrestime_sec();  /* for crusty old kmem readers */
899 		mutex_exit(&tod_lock);
900 
901 		/*
902 		 * Some drivers still depend on this... XXX
903 		 */
904 		cv_broadcast(&lbolt_cv);
905 
906 		sysinfo.updates++;
907 		vminfo.freemem += freemem;
908 		{
909 			pgcnt_t maxswap, resv, free;
910 			pgcnt_t avail =
911 			    MAX((spgcnt_t)(availrmem - swapfs_minfree), 0);
912 
913 			maxswap = k_anoninfo.ani_mem_resv
914 					+ k_anoninfo.ani_max +avail;
915 			free = k_anoninfo.ani_free + avail;
916 			resv = k_anoninfo.ani_phys_resv +
917 			    k_anoninfo.ani_mem_resv;
918 
919 			vminfo.swap_resv += resv;
920 			/* number of reserved and allocated pages */
921 #ifdef	DEBUG
922 			if (maxswap < free)
923 				cmn_err(CE_WARN, "clock: maxswap < free");
924 			if (maxswap < resv)
925 				cmn_err(CE_WARN, "clock: maxswap < resv");
926 #endif
927 			vminfo.swap_alloc += maxswap - free;
928 			vminfo.swap_avail += maxswap - resv;
929 			vminfo.swap_free += free;
930 		}
931 		if (nrunnable) {
932 			sysinfo.runque += nrunnable;
933 			sysinfo.runocc++;
934 		}
935 		if (nswapped) {
936 			sysinfo.swpque += nswapped;
937 			sysinfo.swpocc++;
938 		}
939 		sysinfo.waiting += w_io;
940 
941 		/*
942 		 * Wake up fsflush to write out DELWRI
943 		 * buffers, dirty pages and other cached
944 		 * administrative data, e.g. inodes.
945 		 */
946 		if (--fsflushcnt <= 0) {
947 			fsflushcnt = tune.t_fsflushr;
948 			cv_signal(&fsflush_cv);
949 		}
950 
951 		vmmeter();
952 		calcloadavg(genloadavg(&loadavg), hp_avenrun);
953 		for (i = 0; i < 3; i++)
954 			/*
955 			 * At the moment avenrun[] can only hold 31
956 			 * bits of load average as it is a signed
957 			 * int in the API. We need to ensure that
958 			 * hp_avenrun[i] >> (16 - FSHIFT) will not be
959 			 * too large. If it is, we put the largest value
960 			 * that we can use into avenrun[i]. This is
961 			 * kludgey, but about all we can do until we
962 			 * avenrun[] is declared as an array of uint64[]
963 			 */
964 			if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT)))
965 				avenrun[i] = (int32_t)(hp_avenrun[i] >>
966 				    (16 - FSHIFT));
967 			else
968 				avenrun[i] = 0x7fffffff;
969 
970 		cpupart = cp_list_head;
971 		do {
972 			calcloadavg(genloadavg(&cpupart->cp_loadavg),
973 			    cpupart->cp_hp_avenrun);
974 		} while ((cpupart = cpupart->cp_next) != cp_list_head);
975 
976 		/*
977 		 * Wake up the swapper thread if necessary.
978 		 */
979 		if (runin ||
980 		    (runout && (avefree < desfree || wake_sched_sec))) {
981 			t = &t0;
982 			thread_lock(t);
983 			if (t->t_state == TS_STOPPED) {
984 				runin = runout = 0;
985 				wake_sched_sec = 0;
986 				t->t_whystop = 0;
987 				t->t_whatstop = 0;
988 				t->t_schedflag &= ~TS_ALLSTART;
989 				THREAD_TRANSITION(t);
990 				setfrontdq(t);
991 			}
992 			thread_unlock(t);
993 		}
994 	}
995 
996 	/*
997 	 * Wake up the swapper if any high priority swapped-out threads
998 	 * became runable during the last tick.
999 	 */
1000 	if (wake_sched) {
1001 		t = &t0;
1002 		thread_lock(t);
1003 		if (t->t_state == TS_STOPPED) {
1004 			runin = runout = 0;
1005 			wake_sched = 0;
1006 			t->t_whystop = 0;
1007 			t->t_whatstop = 0;
1008 			t->t_schedflag &= ~TS_ALLSTART;
1009 			THREAD_TRANSITION(t);
1010 			setfrontdq(t);
1011 		}
1012 		thread_unlock(t);
1013 	}
1014 }
1015 
1016 void
1017 clock_init(void)
1018 {
1019 	cyc_handler_t hdlr;
1020 	cyc_time_t when;
1021 
1022 	hdlr.cyh_func = (cyc_func_t)clock;
1023 	hdlr.cyh_level = CY_LOCK_LEVEL;
1024 	hdlr.cyh_arg = NULL;
1025 
1026 	when.cyt_when = 0;
1027 	when.cyt_interval = nsec_per_tick;
1028 
1029 	mutex_enter(&cpu_lock);
1030 	clock_cyclic = cyclic_add(&hdlr, &when);
1031 	mutex_exit(&cpu_lock);
1032 }
1033 
1034 /*
1035  * Called before calcloadavg to get 10-sec moving loadavg together
1036  */
1037 
1038 static int
1039 genloadavg(struct loadavg_s *avgs)
1040 {
1041 	int avg;
1042 	int spos; /* starting position */
1043 	int cpos; /* moving current position */
1044 	int i;
1045 	int slen;
1046 	hrtime_t hr_avg;
1047 
1048 	/* 10-second snapshot, calculate first positon */
1049 	if (avgs->lg_len == 0) {
1050 		return (0);
1051 	}
1052 	slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ;
1053 
1054 	spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 :
1055 	    S_LOADAVG_SZ + (avgs->lg_cur - 1);
1056 	for (i = hr_avg = 0; i < slen; i++) {
1057 		cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i);
1058 		hr_avg += avgs->lg_loads[cpos];
1059 	}
1060 
1061 	hr_avg = hr_avg / slen;
1062 	avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
1063 
1064 	return (avg);
1065 }
1066 
1067 /*
1068  * Run every second from clock () to update the loadavg count available to the
1069  * system and cpu-partitions.
1070  *
1071  * This works by sampling the previous usr, sys, wait time elapsed,
1072  * computing a delta, and adding that delta to the elapsed usr, sys,
1073  * wait increase.
1074  */
1075 
1076 static void
1077 loadavg_update()
1078 {
1079 	cpu_t *cp;
1080 	cpupart_t *cpupart;
1081 	hrtime_t cpu_total;
1082 	int prev;
1083 
1084 	cp = cpu_list;
1085 	loadavg.lg_total = 0;
1086 
1087 	/*
1088 	 * first pass totals up per-cpu statistics for system and cpu
1089 	 * partitions
1090 	 */
1091 
1092 	do {
1093 		struct loadavg_s *lavg;
1094 
1095 		lavg = &cp->cpu_loadavg;
1096 
1097 		cpu_total = cp->cpu_acct[CMS_USER] +
1098 		    cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq;
1099 		/* compute delta against last total */
1100 		scalehrtime(&cpu_total);
1101 		prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 :
1102 		    S_LOADAVG_SZ + (lavg->lg_cur - 1);
1103 		if (lavg->lg_loads[prev] <= 0) {
1104 			lavg->lg_loads[lavg->lg_cur] = cpu_total;
1105 			cpu_total = 0;
1106 		} else {
1107 			lavg->lg_loads[lavg->lg_cur] = cpu_total;
1108 			cpu_total = cpu_total - lavg->lg_loads[prev];
1109 			if (cpu_total < 0)
1110 				cpu_total = 0;
1111 		}
1112 
1113 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
1114 		lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
1115 		    lavg->lg_len + 1 : S_LOADAVG_SZ;
1116 
1117 		loadavg.lg_total += cpu_total;
1118 		cp->cpu_part->cp_loadavg.lg_total += cpu_total;
1119 
1120 	} while ((cp = cp->cpu_next) != cpu_list);
1121 
1122 	loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total;
1123 	loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ;
1124 	loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ?
1125 	    loadavg.lg_len + 1 : S_LOADAVG_SZ;
1126 	/*
1127 	 * Second pass updates counts
1128 	 */
1129 	cpupart = cp_list_head;
1130 
1131 	do {
1132 		struct loadavg_s *lavg;
1133 
1134 		lavg = &cpupart->cp_loadavg;
1135 		lavg->lg_loads[lavg->lg_cur] = lavg->lg_total;
1136 		lavg->lg_total = 0;
1137 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
1138 		lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
1139 		    lavg->lg_len + 1 : S_LOADAVG_SZ;
1140 
1141 	} while ((cpupart = cpupart->cp_next) != cp_list_head);
1142 
1143 }
1144 
1145 /*
1146  * clock_update() - local clock update
1147  *
1148  * This routine is called by ntp_adjtime() to update the local clock
1149  * phase and frequency. The implementation is of an
1150  * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The
1151  * routine computes new time and frequency offset estimates for each
1152  * call.  The PPS signal itself determines the new time offset,
1153  * instead of the calling argument.  Presumably, calls to
1154  * ntp_adjtime() occur only when the caller believes the local clock
1155  * is valid within some bound (+-128 ms with NTP). If the caller's
1156  * time is far different than the PPS time, an argument will ensue,
1157  * and it's not clear who will lose.
1158  *
1159  * For uncompensated quartz crystal oscillatores and nominal update
1160  * intervals less than 1024 s, operation should be in phase-lock mode
1161  * (STA_FLL = 0), where the loop is disciplined to phase. For update
1162  * intervals greater than this, operation should be in frequency-lock
1163  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1164  *
1165  * Note: mutex(&tod_lock) is in effect.
1166  */
1167 void
1168 clock_update(int offset)
1169 {
1170 	int ltemp, mtemp, s;
1171 
1172 	ASSERT(MUTEX_HELD(&tod_lock));
1173 
1174 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1175 		return;
1176 	ltemp = offset;
1177 	if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))
1178 		ltemp = pps_offset;
1179 
1180 	/*
1181 	 * Scale the phase adjustment and clamp to the operating range.
1182 	 */
1183 	if (ltemp > MAXPHASE)
1184 		time_offset = MAXPHASE * SCALE_UPDATE;
1185 	else if (ltemp < -MAXPHASE)
1186 		time_offset = -(MAXPHASE * SCALE_UPDATE);
1187 	else
1188 		time_offset = ltemp * SCALE_UPDATE;
1189 
1190 	/*
1191 	 * Select whether the frequency is to be controlled and in which
1192 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
1193 	 * multiply/divide should be replaced someday.
1194 	 */
1195 	if (time_status & STA_FREQHOLD || time_reftime == 0)
1196 		time_reftime = hrestime.tv_sec;
1197 
1198 	mtemp = hrestime.tv_sec - time_reftime;
1199 	time_reftime = hrestime.tv_sec;
1200 
1201 	if (time_status & STA_FLL) {
1202 		if (mtemp >= MINSEC) {
1203 			ltemp = ((time_offset / mtemp) * (SCALE_USEC /
1204 			    SCALE_UPDATE));
1205 			if (ltemp)
1206 				time_freq += ltemp / SCALE_KH;
1207 		}
1208 	} else {
1209 		if (mtemp < MAXSEC) {
1210 			ltemp *= mtemp;
1211 			if (ltemp)
1212 				time_freq += (int)(((int64_t)ltemp *
1213 				    SCALE_USEC) / SCALE_KF)
1214 				    / (1 << (time_constant * 2));
1215 		}
1216 	}
1217 	if (time_freq > time_tolerance)
1218 		time_freq = time_tolerance;
1219 	else if (time_freq < -time_tolerance)
1220 		time_freq = -time_tolerance;
1221 
1222 	s = hr_clock_lock();
1223 	tod_needsync = 1;
1224 	hr_clock_unlock(s);
1225 }
1226 
1227 /*
1228  * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal
1229  *
1230  * This routine is called at each PPS interrupt in order to discipline
1231  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1232  * and leaves it in a handy spot for the clock() routine. It
1233  * integrates successive PPS phase differences and calculates the
1234  * frequency offset. This is used in clock() to discipline the CPU
1235  * clock oscillator so that intrinsic frequency error is cancelled out.
1236  * The code requires the caller to capture the time and hardware counter
1237  * value at the on-time PPS signal transition.
1238  *
1239  * Note that, on some Unix systems, this routine runs at an interrupt
1240  * priority level higher than the timer interrupt routine clock().
1241  * Therefore, the variables used are distinct from the clock()
1242  * variables, except for certain exceptions: The PPS frequency pps_freq
1243  * and phase pps_offset variables are determined by this routine and
1244  * updated atomically. The time_tolerance variable can be considered a
1245  * constant, since it is infrequently changed, and then only when the
1246  * PPS signal is disabled. The watchdog counter pps_valid is updated
1247  * once per second by clock() and is atomically cleared in this
1248  * routine.
1249  *
1250  * tvp is the time of the last tick; usec is a microsecond count since the
1251  * last tick.
1252  *
1253  * Note: In Solaris systems, the tick value is actually given by
1254  *       usec_per_tick.  This is called from the serial driver cdintr(),
1255  *	 or equivalent, at a high PIL.  Because the kernel keeps a
1256  *	 highresolution time, the following code can accept either
1257  *	 the traditional argument pair, or the current highres timestamp
1258  *       in tvp and zero in usec.
1259  */
1260 void
1261 ddi_hardpps(struct timeval *tvp, int usec)
1262 {
1263 	int u_usec, v_usec, bigtick;
1264 	time_t cal_sec;
1265 	int cal_usec;
1266 
1267 	/*
1268 	 * An occasional glitch can be produced when the PPS interrupt
1269 	 * occurs in the clock() routine before the time variable is
1270 	 * updated. Here the offset is discarded when the difference
1271 	 * between it and the last one is greater than tick/2, but not
1272 	 * if the interval since the first discard exceeds 30 s.
1273 	 */
1274 	time_status |= STA_PPSSIGNAL;
1275 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1276 	pps_valid = 0;
1277 	u_usec = -tvp->tv_usec;
1278 	if (u_usec < -(MICROSEC/2))
1279 		u_usec += MICROSEC;
1280 	v_usec = pps_offset - u_usec;
1281 	if (v_usec < 0)
1282 		v_usec = -v_usec;
1283 	if (v_usec > (usec_per_tick >> 1)) {
1284 		if (pps_glitch > MAXGLITCH) {
1285 			pps_glitch = 0;
1286 			pps_tf[2] = u_usec;
1287 			pps_tf[1] = u_usec;
1288 		} else {
1289 			pps_glitch++;
1290 			u_usec = pps_offset;
1291 		}
1292 	} else
1293 		pps_glitch = 0;
1294 
1295 	/*
1296 	 * A three-stage median filter is used to help deglitch the pps
1297 	 * time. The median sample becomes the time offset estimate; the
1298 	 * difference between the other two samples becomes the time
1299 	 * dispersion (jitter) estimate.
1300 	 */
1301 	pps_tf[2] = pps_tf[1];
1302 	pps_tf[1] = pps_tf[0];
1303 	pps_tf[0] = u_usec;
1304 	if (pps_tf[0] > pps_tf[1]) {
1305 		if (pps_tf[1] > pps_tf[2]) {
1306 			pps_offset = pps_tf[1];		/* 0 1 2 */
1307 			v_usec = pps_tf[0] - pps_tf[2];
1308 		} else if (pps_tf[2] > pps_tf[0]) {
1309 			pps_offset = pps_tf[0];		/* 2 0 1 */
1310 			v_usec = pps_tf[2] - pps_tf[1];
1311 		} else {
1312 			pps_offset = pps_tf[2];		/* 0 2 1 */
1313 			v_usec = pps_tf[0] - pps_tf[1];
1314 		}
1315 	} else {
1316 		if (pps_tf[1] < pps_tf[2]) {
1317 			pps_offset = pps_tf[1];		/* 2 1 0 */
1318 			v_usec = pps_tf[2] - pps_tf[0];
1319 		} else  if (pps_tf[2] < pps_tf[0]) {
1320 			pps_offset = pps_tf[0];		/* 1 0 2 */
1321 			v_usec = pps_tf[1] - pps_tf[2];
1322 		} else {
1323 			pps_offset = pps_tf[2];		/* 1 2 0 */
1324 			v_usec = pps_tf[1] - pps_tf[0];
1325 		}
1326 	}
1327 	if (v_usec > MAXTIME)
1328 		pps_jitcnt++;
1329 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
1330 	pps_jitter += v_usec / (1 << PPS_AVG);
1331 	if (pps_jitter > (MAXTIME >> 1))
1332 		time_status |= STA_PPSJITTER;
1333 
1334 	/*
1335 	 * During the calibration interval adjust the starting time when
1336 	 * the tick overflows. At the end of the interval compute the
1337 	 * duration of the interval and the difference of the hardware
1338 	 * counters at the beginning and end of the interval. This code
1339 	 * is deliciously complicated by the fact valid differences may
1340 	 * exceed the value of tick when using long calibration
1341 	 * intervals and small ticks. Note that the counter can be
1342 	 * greater than tick if caught at just the wrong instant, but
1343 	 * the values returned and used here are correct.
1344 	 */
1345 	bigtick = (int)usec_per_tick * SCALE_USEC;
1346 	pps_usec -= pps_freq;
1347 	if (pps_usec >= bigtick)
1348 		pps_usec -= bigtick;
1349 	if (pps_usec < 0)
1350 		pps_usec += bigtick;
1351 	pps_time.tv_sec++;
1352 	pps_count++;
1353 	if (pps_count < (1 << pps_shift))
1354 		return;
1355 	pps_count = 0;
1356 	pps_calcnt++;
1357 	u_usec = usec * SCALE_USEC;
1358 	v_usec = pps_usec - u_usec;
1359 	if (v_usec >= bigtick >> 1)
1360 		v_usec -= bigtick;
1361 	if (v_usec < -(bigtick >> 1))
1362 		v_usec += bigtick;
1363 	if (v_usec < 0)
1364 		v_usec = -(-v_usec >> pps_shift);
1365 	else
1366 		v_usec = v_usec >> pps_shift;
1367 	pps_usec = u_usec;
1368 	cal_sec = tvp->tv_sec;
1369 	cal_usec = tvp->tv_usec;
1370 	cal_sec -= pps_time.tv_sec;
1371 	cal_usec -= pps_time.tv_usec;
1372 	if (cal_usec < 0) {
1373 		cal_usec += MICROSEC;
1374 		cal_sec--;
1375 	}
1376 	pps_time = *tvp;
1377 
1378 	/*
1379 	 * Check for lost interrupts, noise, excessive jitter and
1380 	 * excessive frequency error. The number of timer ticks during
1381 	 * the interval may vary +-1 tick. Add to this a margin of one
1382 	 * tick for the PPS signal jitter and maximum frequency
1383 	 * deviation. If the limits are exceeded, the calibration
1384 	 * interval is reset to the minimum and we start over.
1385 	 */
1386 	u_usec = (int)usec_per_tick << 1;
1387 	if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) ||
1388 	    (cal_sec == 0 && cal_usec < u_usec)) ||
1389 	    v_usec > time_tolerance || v_usec < -time_tolerance) {
1390 		pps_errcnt++;
1391 		pps_shift = PPS_SHIFT;
1392 		pps_intcnt = 0;
1393 		time_status |= STA_PPSERROR;
1394 		return;
1395 	}
1396 
1397 	/*
1398 	 * A three-stage median filter is used to help deglitch the pps
1399 	 * frequency. The median sample becomes the frequency offset
1400 	 * estimate; the difference between the other two samples
1401 	 * becomes the frequency dispersion (stability) estimate.
1402 	 */
1403 	pps_ff[2] = pps_ff[1];
1404 	pps_ff[1] = pps_ff[0];
1405 	pps_ff[0] = v_usec;
1406 	if (pps_ff[0] > pps_ff[1]) {
1407 		if (pps_ff[1] > pps_ff[2]) {
1408 			u_usec = pps_ff[1];		/* 0 1 2 */
1409 			v_usec = pps_ff[0] - pps_ff[2];
1410 		} else if (pps_ff[2] > pps_ff[0]) {
1411 			u_usec = pps_ff[0];		/* 2 0 1 */
1412 			v_usec = pps_ff[2] - pps_ff[1];
1413 		} else {
1414 			u_usec = pps_ff[2];		/* 0 2 1 */
1415 			v_usec = pps_ff[0] - pps_ff[1];
1416 		}
1417 	} else {
1418 		if (pps_ff[1] < pps_ff[2]) {
1419 			u_usec = pps_ff[1];		/* 2 1 0 */
1420 			v_usec = pps_ff[2] - pps_ff[0];
1421 		} else  if (pps_ff[2] < pps_ff[0]) {
1422 			u_usec = pps_ff[0];		/* 1 0 2 */
1423 			v_usec = pps_ff[1] - pps_ff[2];
1424 		} else {
1425 			u_usec = pps_ff[2];		/* 1 2 0 */
1426 			v_usec = pps_ff[1] - pps_ff[0];
1427 		}
1428 	}
1429 
1430 	/*
1431 	 * Here the frequency dispersion (stability) is updated. If it
1432 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
1433 	 * offset is updated as well, but clamped to the tolerance. It
1434 	 * will be processed later by the clock() routine.
1435 	 */
1436 	v_usec = (v_usec >> 1) - pps_stabil;
1437 	if (v_usec < 0)
1438 		pps_stabil -= -v_usec >> PPS_AVG;
1439 	else
1440 		pps_stabil += v_usec >> PPS_AVG;
1441 	if (pps_stabil > MAXFREQ >> 2) {
1442 		pps_stbcnt++;
1443 		time_status |= STA_PPSWANDER;
1444 		return;
1445 	}
1446 	if (time_status & STA_PPSFREQ) {
1447 		if (u_usec < 0) {
1448 			pps_freq -= -u_usec >> PPS_AVG;
1449 			if (pps_freq < -time_tolerance)
1450 				pps_freq = -time_tolerance;
1451 			u_usec = -u_usec;
1452 		} else {
1453 			pps_freq += u_usec >> PPS_AVG;
1454 			if (pps_freq > time_tolerance)
1455 				pps_freq = time_tolerance;
1456 		}
1457 	}
1458 
1459 	/*
1460 	 * Here the calibration interval is adjusted. If the maximum
1461 	 * time difference is greater than tick / 4, reduce the interval
1462 	 * by half. If this is not the case for four consecutive
1463 	 * intervals, double the interval.
1464 	 */
1465 	if (u_usec << pps_shift > bigtick >> 2) {
1466 		pps_intcnt = 0;
1467 		if (pps_shift > PPS_SHIFT)
1468 			pps_shift--;
1469 	} else if (pps_intcnt >= 4) {
1470 		pps_intcnt = 0;
1471 		if (pps_shift < PPS_SHIFTMAX)
1472 			pps_shift++;
1473 	} else
1474 		pps_intcnt++;
1475 
1476 	/*
1477 	 * If recovering from kmdb, then make sure the tod chip gets resynced.
1478 	 * If we took an early exit above, then we don't yet have a stable
1479 	 * calibration signal to lock onto, so don't mark the tod for sync
1480 	 * until we get all the way here.
1481 	 */
1482 	{
1483 		int s = hr_clock_lock();
1484 
1485 		tod_needsync = 1;
1486 		hr_clock_unlock(s);
1487 	}
1488 }
1489 
1490 /*
1491  * Handle clock tick processing for a thread.
1492  * Check for timer action, enforce CPU rlimit, do profiling etc.
1493  */
1494 void
1495 clock_tick(kthread_t *t)
1496 {
1497 	struct proc *pp;
1498 	klwp_id_t    lwp;
1499 	struct as *as;
1500 	clock_t	utime;
1501 	clock_t	stime;
1502 	int	poke = 0;		/* notify another CPU */
1503 	int	user_mode;
1504 	size_t	 rss;
1505 
1506 	/* Must be operating on a lwp/thread */
1507 	if ((lwp = ttolwp(t)) == NULL) {
1508 		panic("clock_tick: no lwp");
1509 		/*NOTREACHED*/
1510 	}
1511 
1512 	CL_TICK(t);	/* Class specific tick processing */
1513 	DTRACE_SCHED1(tick, kthread_t *, t);
1514 
1515 	pp = ttoproc(t);
1516 
1517 	/* pp->p_lock makes sure that the thread does not exit */
1518 	ASSERT(MUTEX_HELD(&pp->p_lock));
1519 
1520 	user_mode = (lwp->lwp_state == LWP_USER);
1521 
1522 	/*
1523 	 * Update process times. Should use high res clock and state
1524 	 * changes instead of statistical sampling method. XXX
1525 	 */
1526 	if (user_mode) {
1527 		pp->p_utime++;
1528 		pp->p_task->tk_cpu_time++;
1529 	} else {
1530 		pp->p_stime++;
1531 		pp->p_task->tk_cpu_time++;
1532 	}
1533 	as = pp->p_as;
1534 
1535 	/*
1536 	 * Update user profiling statistics. Get the pc from the
1537 	 * lwp when the AST happens.
1538 	 */
1539 	if (pp->p_prof.pr_scale) {
1540 		atomic_add_32(&lwp->lwp_oweupc, 1);
1541 		if (user_mode) {
1542 			poke = 1;
1543 			aston(t);
1544 		}
1545 	}
1546 
1547 	utime = pp->p_utime;
1548 	stime = pp->p_stime;
1549 
1550 	/*
1551 	 * If CPU was in user state, process lwp-virtual time
1552 	 * interval timer.
1553 	 */
1554 	if (user_mode &&
1555 	    timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) &&
1556 	    itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec_per_tick) == 0) {
1557 		poke = 1;
1558 		sigtoproc(pp, t, SIGVTALRM);
1559 	}
1560 
1561 	if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) &&
1562 	    itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec_per_tick) == 0) {
1563 		poke = 1;
1564 		sigtoproc(pp, t, SIGPROF);
1565 	}
1566 
1567 	/*
1568 	 * Enforce CPU resource controls:
1569 	 *   (a) process.max-cpu-time resource control
1570 	 */
1571 	(void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp,
1572 	    (utime + stime)/hz, RCA_UNSAFE_SIGINFO);
1573 
1574 	/*
1575 	 *   (b) task.max-cpu-time resource control
1576 	 */
1577 	(void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls, pp, 1,
1578 	    RCA_UNSAFE_SIGINFO);
1579 
1580 	/*
1581 	 * Update memory usage for the currently running process.
1582 	 */
1583 	rss = rm_asrss(as);
1584 	PTOU(pp)->u_mem += rss;
1585 	if (rss > PTOU(pp)->u_mem_max)
1586 		PTOU(pp)->u_mem_max = rss;
1587 
1588 	/*
1589 	 * Notify the CPU the thread is running on.
1590 	 */
1591 	if (poke && t->t_cpu != CPU)
1592 		poke_cpu(t->t_cpu->cpu_id);
1593 }
1594 
1595 void
1596 profil_tick(uintptr_t upc)
1597 {
1598 	int ticks;
1599 	proc_t *p = ttoproc(curthread);
1600 	klwp_t *lwp = ttolwp(curthread);
1601 	struct prof *pr = &p->p_prof;
1602 
1603 	do {
1604 		ticks = lwp->lwp_oweupc;
1605 	} while (cas32(&lwp->lwp_oweupc, ticks, 0) != ticks);
1606 
1607 	mutex_enter(&p->p_pflock);
1608 	if (pr->pr_scale >= 2 && upc >= pr->pr_off) {
1609 		/*
1610 		 * Old-style profiling
1611 		 */
1612 		uint16_t *slot = pr->pr_base;
1613 		uint16_t old, new;
1614 		if (pr->pr_scale != 2) {
1615 			uintptr_t delta = upc - pr->pr_off;
1616 			uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) +
1617 			    (((delta & 0xffff) * pr->pr_scale) >> 16);
1618 			if (byteoff >= (uintptr_t)pr->pr_size) {
1619 				mutex_exit(&p->p_pflock);
1620 				return;
1621 			}
1622 			slot += byteoff / sizeof (uint16_t);
1623 		}
1624 		if (fuword16(slot, &old) < 0 ||
1625 		    (new = old + ticks) > SHRT_MAX ||
1626 		    suword16(slot, new) < 0) {
1627 			pr->pr_scale = 0;
1628 		}
1629 	} else if (pr->pr_scale == 1) {
1630 		/*
1631 		 * PC Sampling
1632 		 */
1633 		model_t model = lwp_getdatamodel(lwp);
1634 		int result;
1635 #ifdef __lint
1636 		model = model;
1637 #endif
1638 		while (ticks-- > 0) {
1639 			if (pr->pr_samples == pr->pr_size) {
1640 				/* buffer full, turn off sampling */
1641 				pr->pr_scale = 0;
1642 				break;
1643 			}
1644 			switch (SIZEOF_PTR(model)) {
1645 			case sizeof (uint32_t):
1646 				result = suword32(pr->pr_base, (uint32_t)upc);
1647 				break;
1648 #ifdef _LP64
1649 			case sizeof (uint64_t):
1650 				result = suword64(pr->pr_base, (uint64_t)upc);
1651 				break;
1652 #endif
1653 			default:
1654 				cmn_err(CE_WARN, "profil_tick: unexpected "
1655 				    "data model");
1656 				result = -1;
1657 				break;
1658 			}
1659 			if (result != 0) {
1660 				pr->pr_scale = 0;
1661 				break;
1662 			}
1663 			pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model);
1664 			pr->pr_samples++;
1665 		}
1666 	}
1667 	mutex_exit(&p->p_pflock);
1668 }
1669 
1670 static void
1671 delay_wakeup(void *arg)
1672 {
1673 	kthread_t *t = arg;
1674 
1675 	mutex_enter(&t->t_delay_lock);
1676 	cv_signal(&t->t_delay_cv);
1677 	mutex_exit(&t->t_delay_lock);
1678 }
1679 
1680 void
1681 delay(clock_t ticks)
1682 {
1683 	kthread_t *t = curthread;
1684 	clock_t deadline = lbolt + ticks;
1685 	clock_t timeleft;
1686 	timeout_id_t id;
1687 
1688 	if (panicstr && ticks > 0) {
1689 		/*
1690 		 * Timeouts aren't running, so all we can do is spin.
1691 		 */
1692 		drv_usecwait(TICK_TO_USEC(ticks));
1693 		return;
1694 	}
1695 
1696 	while ((timeleft = deadline - lbolt) > 0) {
1697 		mutex_enter(&t->t_delay_lock);
1698 		id = timeout(delay_wakeup, t, timeleft);
1699 		cv_wait(&t->t_delay_cv, &t->t_delay_lock);
1700 		mutex_exit(&t->t_delay_lock);
1701 		(void) untimeout(id);
1702 	}
1703 }
1704 
1705 /*
1706  * Like delay, but interruptible by a signal.
1707  */
1708 int
1709 delay_sig(clock_t ticks)
1710 {
1711 	clock_t deadline = lbolt + ticks;
1712 	clock_t rc;
1713 
1714 	mutex_enter(&curthread->t_delay_lock);
1715 	do {
1716 		rc = cv_timedwait_sig(&curthread->t_delay_cv,
1717 		    &curthread->t_delay_lock, deadline);
1718 	} while (rc > 0);
1719 	mutex_exit(&curthread->t_delay_lock);
1720 	if (rc == 0)
1721 		return (EINTR);
1722 	return (0);
1723 }
1724 
1725 #define	SECONDS_PER_DAY 86400
1726 
1727 /*
1728  * Initialize the system time based on the TOD chip.  approx is used as
1729  * an approximation of time (e.g. from the filesystem) in the event that
1730  * the TOD chip has been cleared or is unresponsive.  An approx of -1
1731  * means the filesystem doesn't keep time.
1732  */
1733 void
1734 clkset(time_t approx)
1735 {
1736 	timestruc_t ts;
1737 	int spl;
1738 	int set_clock = 0;
1739 
1740 	mutex_enter(&tod_lock);
1741 	ts = tod_get();
1742 
1743 	if (ts.tv_sec > 365 * SECONDS_PER_DAY) {
1744 		/*
1745 		 * If the TOD chip is reporting some time after 1971,
1746 		 * then it probably didn't lose power or become otherwise
1747 		 * cleared in the recent past;  check to assure that
1748 		 * the time coming from the filesystem isn't in the future
1749 		 * according to the TOD chip.
1750 		 */
1751 		if (approx != -1 && approx > ts.tv_sec) {
1752 			cmn_err(CE_WARN, "Last shutdown is later "
1753 			    "than time on time-of-day chip; check date.");
1754 		}
1755 	} else {
1756 		/*
1757 		 * If the TOD chip isn't giving correct time, then set it to
1758 		 * the time that was passed in as a rough estimate.  If we
1759 		 * don't have an estimate, then set the clock back to a time
1760 		 * when Oliver North, ALF and Dire Straits were all on the
1761 		 * collective brain:  1987.
1762 		 */
1763 		timestruc_t tmp;
1764 		if (approx == -1)
1765 			ts.tv_sec = (1987 - 1970) * 365 * SECONDS_PER_DAY;
1766 		else
1767 			ts.tv_sec = approx;
1768 		ts.tv_nsec = 0;
1769 
1770 		/*
1771 		 * Attempt to write the new time to the TOD chip.  Set spl high
1772 		 * to avoid getting preempted between the tod_set and tod_get.
1773 		 */
1774 		spl = splhi();
1775 		tod_set(ts);
1776 		tmp = tod_get();
1777 		splx(spl);
1778 
1779 		if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) {
1780 			tod_broken = 1;
1781 			dosynctodr = 0;
1782 			cmn_err(CE_WARN, "Time-of-day chip unresponsive;"
1783 			    " dead batteries?");
1784 		} else {
1785 			cmn_err(CE_WARN, "Time-of-day chip had "
1786 			    "incorrect date; check and reset.");
1787 		}
1788 		set_clock = 1;
1789 	}
1790 
1791 	if (!boot_time) {
1792 		boot_time = ts.tv_sec;
1793 		set_clock = 1;
1794 	}
1795 
1796 	if (set_clock)
1797 		set_hrestime(&ts);
1798 
1799 	mutex_exit(&tod_lock);
1800 }
1801 
1802 int	timechanged;	/* for testing if the system time has been reset */
1803 
1804 void
1805 set_hrestime(timestruc_t *ts)
1806 {
1807 	int spl = hr_clock_lock();
1808 	hrestime = *ts;
1809 	membar_enter();	/* hrestime must be visible before timechanged++ */
1810 	timedelta = 0;
1811 	timechanged++;
1812 	hr_clock_unlock(spl);
1813 }
1814 
1815 static uint_t deadman_seconds;
1816 static uint32_t deadman_panics;
1817 static int deadman_enabled = 0;
1818 static int deadman_panic_timers = 1;
1819 
1820 static void
1821 deadman(void)
1822 {
1823 	if (panicstr) {
1824 		/*
1825 		 * During panic, other CPUs besides the panic
1826 		 * master continue to handle cyclics and some other
1827 		 * interrupts.  The code below is intended to be
1828 		 * single threaded, so any CPU other than the master
1829 		 * must keep out.
1830 		 */
1831 		if (CPU->cpu_id != panic_cpu.cpu_id)
1832 			return;
1833 
1834 		/*
1835 		 * If we're panicking, the deadman cyclic continues to increase
1836 		 * lbolt in case the dump device driver relies on this for
1837 		 * timeouts.  Note that we rely on deadman() being invoked once
1838 		 * per second, and credit lbolt and lbolt64 with hz ticks each.
1839 		 */
1840 		lbolt += hz;
1841 		lbolt64 += hz;
1842 
1843 		if (!deadman_panic_timers)
1844 			return; /* allow all timers to be manually disabled */
1845 
1846 		/*
1847 		 * If we are generating a crash dump or syncing filesystems and
1848 		 * the corresponding timer is set, decrement it and re-enter
1849 		 * the panic code to abort it and advance to the next state.
1850 		 * The panic states and triggers are explained in panic.c.
1851 		 */
1852 		if (panic_dump) {
1853 			if (dump_timeleft && (--dump_timeleft == 0)) {
1854 				panic("panic dump timeout");
1855 				/*NOTREACHED*/
1856 			}
1857 		} else if (panic_sync) {
1858 			if (sync_timeleft && (--sync_timeleft == 0)) {
1859 				panic("panic sync timeout");
1860 				/*NOTREACHED*/
1861 			}
1862 		}
1863 
1864 		return;
1865 	}
1866 
1867 	if (lbolt != CPU->cpu_deadman_lbolt) {
1868 		CPU->cpu_deadman_lbolt = lbolt;
1869 		CPU->cpu_deadman_countdown = deadman_seconds;
1870 		return;
1871 	}
1872 
1873 	if (CPU->cpu_deadman_countdown-- > 0)
1874 		return;
1875 
1876 	/*
1877 	 * Regardless of whether or not we actually bring the system down,
1878 	 * bump the deadman_panics variable.
1879 	 *
1880 	 * N.B. deadman_panics is incremented once for each CPU that
1881 	 * passes through here.  It's expected that all the CPUs will
1882 	 * detect this condition within one second of each other, so
1883 	 * when deadman_enabled is off, deadman_panics will
1884 	 * typically be a multiple of the total number of CPUs in
1885 	 * the system.
1886 	 */
1887 	atomic_add_32(&deadman_panics, 1);
1888 
1889 	if (!deadman_enabled) {
1890 		CPU->cpu_deadman_countdown = deadman_seconds;
1891 		return;
1892 	}
1893 
1894 	/*
1895 	 * If we're here, we want to bring the system down.
1896 	 */
1897 	panic("deadman: timed out after %d seconds of clock "
1898 	    "inactivity", deadman_seconds);
1899 	/*NOTREACHED*/
1900 }
1901 
1902 /*ARGSUSED*/
1903 static void
1904 deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when)
1905 {
1906 	cpu->cpu_deadman_lbolt = 0;
1907 	cpu->cpu_deadman_countdown = deadman_seconds;
1908 
1909 	hdlr->cyh_func = (cyc_func_t)deadman;
1910 	hdlr->cyh_level = CY_HIGH_LEVEL;
1911 	hdlr->cyh_arg = NULL;
1912 
1913 	/*
1914 	 * Stagger the CPUs so that they don't all run deadman() at
1915 	 * the same time.  Simplest reason to do this is to make it
1916 	 * more likely that only one CPU will panic in case of a
1917 	 * timeout.  This is (strictly speaking) an aesthetic, not a
1918 	 * technical consideration.
1919 	 *
1920 	 * The interval must be one second in accordance with the
1921 	 * code in deadman() above to increase lbolt during panic.
1922 	 */
1923 	when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU);
1924 	when->cyt_interval = NANOSEC;
1925 }
1926 
1927 
1928 void
1929 deadman_init(void)
1930 {
1931 	cyc_omni_handler_t hdlr;
1932 
1933 	if (deadman_seconds == 0)
1934 		deadman_seconds = snoop_interval / MICROSEC;
1935 
1936 	if (snooping)
1937 		deadman_enabled = 1;
1938 
1939 	hdlr.cyo_online = deadman_online;
1940 	hdlr.cyo_offline = NULL;
1941 	hdlr.cyo_arg = NULL;
1942 
1943 	mutex_enter(&cpu_lock);
1944 	deadman_cyclic = cyclic_add_omni(&hdlr);
1945 	mutex_exit(&cpu_lock);
1946 }
1947 
1948 /*
1949  * tod_fault() is for updating tod validate mechanism state:
1950  * (1) TOD_NOFAULT: for resetting the state to 'normal'.
1951  *     currently used for debugging only
1952  * (2) The following four cases detected by tod validate mechanism:
1953  *       TOD_REVERSED: current tod value is less than previous value.
1954  *       TOD_STALLED: current tod value hasn't advanced.
1955  *       TOD_JUMPED: current tod value advanced too far from previous value.
1956  *       TOD_RATECHANGED: the ratio between average tod delta and
1957  *       average tick delta has changed.
1958  */
1959 enum tod_fault_type
1960 tod_fault(enum tod_fault_type ftype, int off)
1961 {
1962 	ASSERT(MUTEX_HELD(&tod_lock));
1963 
1964 	if (tod_faulted != ftype) {
1965 		switch (ftype) {
1966 		case TOD_NOFAULT:
1967 			plat_tod_fault(TOD_NOFAULT);
1968 			cmn_err(CE_NOTE, "Restarted tracking "
1969 					"Time of Day clock.");
1970 			tod_faulted = ftype;
1971 			break;
1972 		case TOD_REVERSED:
1973 		case TOD_JUMPED:
1974 			if (tod_faulted == TOD_NOFAULT) {
1975 				plat_tod_fault(ftype);
1976 				cmn_err(CE_WARN, "Time of Day clock error: "
1977 				    "reason [%s by 0x%x]. -- "
1978 				    " Stopped tracking Time Of Day clock.",
1979 				    tod_fault_table[ftype], off);
1980 				tod_faulted = ftype;
1981 			}
1982 			break;
1983 		case TOD_STALLED:
1984 		case TOD_RATECHANGED:
1985 			if (tod_faulted == TOD_NOFAULT) {
1986 				plat_tod_fault(ftype);
1987 				cmn_err(CE_WARN, "Time of Day clock error: "
1988 				    "reason [%s]. -- "
1989 				    " Stopped tracking Time Of Day clock.",
1990 				    tod_fault_table[ftype]);
1991 				tod_faulted = ftype;
1992 			}
1993 			break;
1994 		default:
1995 			break;
1996 		}
1997 	}
1998 	return (tod_faulted);
1999 }
2000 
2001 void
2002 tod_fault_reset()
2003 {
2004 	tod_fault_reset_flag = 1;
2005 }
2006 
2007 
2008 /*
2009  * tod_validate() is used for checking values returned by tod_get().
2010  * Four error cases can be detected by this routine:
2011  *   TOD_REVERSED: current tod value is less than previous.
2012  *   TOD_STALLED: current tod value hasn't advanced.
2013  *   TOD_JUMPED: current tod value advanced too far from previous value.
2014  *   TOD_RATECHANGED: the ratio between average tod delta and
2015  *   average tick delta has changed.
2016  */
2017 time_t
2018 tod_validate(time_t tod)
2019 {
2020 	time_t diff_tod;
2021 	hrtime_t diff_tick;
2022 
2023 	long dtick;
2024 	int dtick_delta;
2025 
2026 	int off = 0;
2027 	enum tod_fault_type tod_bad = TOD_NOFAULT;
2028 
2029 	static int firsttime = 1;
2030 
2031 	static time_t prev_tod = 0;
2032 	static hrtime_t prev_tick = 0;
2033 	static long dtick_avg = TOD_REF_FREQ;
2034 
2035 	hrtime_t tick = gethrtime();
2036 
2037 	ASSERT(MUTEX_HELD(&tod_lock));
2038 
2039 	/*
2040 	 * tod_validate_enable is patchable via /etc/system.
2041 	 * If TOD is already faulted, there is nothing to do
2042 	 */
2043 	if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT)) {
2044 		return (tod);
2045 	}
2046 
2047 	/*
2048 	 * Update prev_tod and prev_tick values for first run
2049 	 */
2050 	if (firsttime) {
2051 		firsttime = 0;
2052 		prev_tod = tod;
2053 		prev_tick = tick;
2054 		return (tod);
2055 	}
2056 
2057 	/*
2058 	 * For either of these conditions, we need to reset ourself
2059 	 * and start validation from zero since each condition
2060 	 * indicates that the TOD will be updated with new value
2061 	 * Also, note that tod_needsync will be reset in clock()
2062 	 */
2063 	if (tod_needsync || tod_fault_reset_flag) {
2064 		firsttime = 1;
2065 		prev_tod = 0;
2066 		prev_tick = 0;
2067 		dtick_avg = TOD_REF_FREQ;
2068 
2069 		if (tod_fault_reset_flag)
2070 			tod_fault_reset_flag = 0;
2071 
2072 		return (tod);
2073 	}
2074 
2075 	/* test hook */
2076 	switch (tod_unit_test) {
2077 	case 1: /* for testing jumping tod */
2078 		tod += tod_test_injector;
2079 		tod_unit_test = 0;
2080 		break;
2081 	case 2:	/* for testing stuck tod bit */
2082 		tod |= 1 << tod_test_injector;
2083 		tod_unit_test = 0;
2084 		break;
2085 	case 3:	/* for testing stalled tod */
2086 		tod = prev_tod;
2087 		tod_unit_test = 0;
2088 		break;
2089 	case 4:	/* reset tod fault status */
2090 		(void) tod_fault(TOD_NOFAULT, 0);
2091 		tod_unit_test = 0;
2092 		break;
2093 	default:
2094 		break;
2095 	}
2096 
2097 	diff_tod = tod - prev_tod;
2098 	diff_tick = tick - prev_tick;
2099 
2100 	ASSERT(diff_tick >= 0);
2101 
2102 	if (diff_tod < 0) {
2103 		/* ERROR - tod reversed */
2104 		tod_bad = TOD_REVERSED;
2105 		off = (int)(prev_tod - tod);
2106 	} else if (diff_tod == 0) {
2107 		/* tod did not advance */
2108 		if (diff_tick > TOD_STALL_THRESHOLD) {
2109 			/* ERROR - tod stalled */
2110 			tod_bad = TOD_STALLED;
2111 		} else {
2112 			/*
2113 			 * Make sure we don't update prev_tick
2114 			 * so that diff_tick is calculated since
2115 			 * the first diff_tod == 0
2116 			 */
2117 			return (tod);
2118 		}
2119 	} else {
2120 		/* calculate dtick */
2121 		dtick = diff_tick / diff_tod;
2122 
2123 		/* update dtick averages */
2124 		dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N);
2125 
2126 		/*
2127 		 * Calculate dtick_delta as
2128 		 * variation from reference freq in quartiles
2129 		 */
2130 		dtick_delta = (dtick_avg - TOD_REF_FREQ) /
2131 			(TOD_REF_FREQ >> 2);
2132 
2133 		/*
2134 		 * Even with a perfectly functioning TOD device,
2135 		 * when the number of elapsed seconds is low the
2136 		 * algorithm can calculate a rate that is beyond
2137 		 * tolerance, causing an error.  The algorithm is
2138 		 * inaccurate when elapsed time is low (less than
2139 		 * 5 seconds).
2140 		 */
2141 		if (diff_tod > 4) {
2142 			if (dtick < TOD_JUMP_THRESHOLD) {
2143 				/* ERROR - tod jumped */
2144 				tod_bad = TOD_JUMPED;
2145 				off = (int)diff_tod;
2146 			} else if (dtick_delta) {
2147 				/* ERROR - change in clock rate */
2148 				tod_bad = TOD_RATECHANGED;
2149 			}
2150 		}
2151 	}
2152 
2153 	if (tod_bad != TOD_NOFAULT) {
2154 		(void) tod_fault(tod_bad, off);
2155 
2156 		/*
2157 		 * Disable dosynctodr since we are going to fault
2158 		 * the TOD chip anyway here
2159 		 */
2160 		dosynctodr = 0;
2161 
2162 		/*
2163 		 * Set tod to the correct value from hrestime
2164 		 */
2165 		tod = hrestime.tv_sec;
2166 	}
2167 
2168 	prev_tod = tod;
2169 	prev_tick = tick;
2170 	return (tod);
2171 }
2172 
2173 static void
2174 calcloadavg(int nrun, uint64_t *hp_ave)
2175 {
2176 	static int64_t f[3] = { 135, 27, 9 };
2177 	uint_t i;
2178 	int64_t q, r;
2179 
2180 	/*
2181 	 * Compute load average over the last 1, 5, and 15 minutes
2182 	 * (60, 300, and 900 seconds).  The constants in f[3] are for
2183 	 * exponential decay:
2184 	 * (1 - exp(-1/60)) << 13 = 135,
2185 	 * (1 - exp(-1/300)) << 13 = 27,
2186 	 * (1 - exp(-1/900)) << 13 = 9.
2187 	 */
2188 
2189 	/*
2190 	 * a little hoop-jumping to avoid integer overflow
2191 	 */
2192 	for (i = 0; i < 3; i++) {
2193 		q = (hp_ave[i]  >> 16) << 7;
2194 		r = (hp_ave[i]  & 0xffff) << 7;
2195 		hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
2196 	}
2197 }
2198