1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 /* 25 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 26 */ 27 28 #include <sys/param.h> 29 #include <sys/t_lock.h> 30 #include <sys/types.h> 31 #include <sys/tuneable.h> 32 #include <sys/sysmacros.h> 33 #include <sys/systm.h> 34 #include <sys/cpuvar.h> 35 #include <sys/lgrp.h> 36 #include <sys/user.h> 37 #include <sys/proc.h> 38 #include <sys/callo.h> 39 #include <sys/kmem.h> 40 #include <sys/var.h> 41 #include <sys/cmn_err.h> 42 #include <sys/swap.h> 43 #include <sys/vmsystm.h> 44 #include <sys/class.h> 45 #include <sys/time.h> 46 #include <sys/debug.h> 47 #include <sys/vtrace.h> 48 #include <sys/spl.h> 49 #include <sys/atomic.h> 50 #include <sys/dumphdr.h> 51 #include <sys/archsystm.h> 52 #include <sys/fs/swapnode.h> 53 #include <sys/panic.h> 54 #include <sys/disp.h> 55 #include <sys/msacct.h> 56 #include <sys/mem_cage.h> 57 #include <sys/kflt_mem.h> 58 59 #include <vm/page.h> 60 #include <vm/anon.h> 61 #include <vm/rm.h> 62 #include <sys/cyclic.h> 63 #include <sys/cpupart.h> 64 #include <sys/rctl.h> 65 #include <sys/task.h> 66 #include <sys/sdt.h> 67 #include <sys/ddi_timer.h> 68 #include <sys/random.h> 69 #include <sys/modctl.h> 70 71 /* 72 * for NTP support 73 */ 74 #include <sys/timex.h> 75 #include <sys/inttypes.h> 76 77 #include <sys/sunddi.h> 78 #include <sys/clock_impl.h> 79 80 /* 81 * clock() is called straight from the clock cyclic; see clock_init(). 82 * 83 * Functions: 84 * reprime clock 85 * maintain date 86 * jab the scheduler 87 */ 88 89 extern kcondvar_t fsflush_cv; 90 extern sysinfo_t sysinfo; 91 extern vminfo_t vminfo; 92 extern int idleswtch; /* flag set while idle in pswtch() */ 93 extern hrtime_t volatile devinfo_freeze; 94 95 /* 96 * high-precision avenrun values. These are needed to make the 97 * regular avenrun values accurate. 98 */ 99 static uint64_t hp_avenrun[3]; 100 int avenrun[3]; /* FSCALED average run queue lengths */ 101 time_t time; /* time in seconds since 1970 - for compatibility only */ 102 103 static struct loadavg_s loadavg; 104 /* 105 * Phase/frequency-lock loop (PLL/FLL) definitions 106 * 107 * The following variables are read and set by the ntp_adjtime() system 108 * call. 109 * 110 * time_state shows the state of the system clock, with values defined 111 * in the timex.h header file. 112 * 113 * time_status shows the status of the system clock, with bits defined 114 * in the timex.h header file. 115 * 116 * time_offset is used by the PLL/FLL to adjust the system time in small 117 * increments. 118 * 119 * time_constant determines the bandwidth or "stiffness" of the PLL. 120 * 121 * time_tolerance determines maximum frequency error or tolerance of the 122 * CPU clock oscillator and is a property of the architecture; however, 123 * in principle it could change as result of the presence of external 124 * discipline signals, for instance. 125 * 126 * time_precision is usually equal to the kernel tick variable; however, 127 * in cases where a precision clock counter or external clock is 128 * available, the resolution can be much less than this and depend on 129 * whether the external clock is working or not. 130 * 131 * time_maxerror is initialized by a ntp_adjtime() call and increased by 132 * the kernel once each second to reflect the maximum error bound 133 * growth. 134 * 135 * time_esterror is set and read by the ntp_adjtime() call, but 136 * otherwise not used by the kernel. 137 */ 138 int32_t time_state = TIME_OK; /* clock state */ 139 int32_t time_status = STA_UNSYNC; /* clock status bits */ 140 int32_t time_offset = 0; /* time offset (us) */ 141 int32_t time_constant = 0; /* pll time constant */ 142 int32_t time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 143 int32_t time_precision = 1; /* clock precision (us) */ 144 int32_t time_maxerror = MAXPHASE; /* maximum error (us) */ 145 int32_t time_esterror = MAXPHASE; /* estimated error (us) */ 146 147 /* 148 * The following variables establish the state of the PLL/FLL and the 149 * residual time and frequency offset of the local clock. The scale 150 * factors are defined in the timex.h header file. 151 * 152 * time_phase and time_freq are the phase increment and the frequency 153 * increment, respectively, of the kernel time variable. 154 * 155 * time_freq is set via ntp_adjtime() from a value stored in a file when 156 * the synchronization daemon is first started. Its value is retrieved 157 * via ntp_adjtime() and written to the file about once per hour by the 158 * daemon. 159 * 160 * time_adj is the adjustment added to the value of tick at each timer 161 * interrupt and is recomputed from time_phase and time_freq at each 162 * seconds rollover. 163 * 164 * time_reftime is the second's portion of the system time at the last 165 * call to ntp_adjtime(). It is used to adjust the time_freq variable 166 * and to increase the time_maxerror as the time since last update 167 * increases. 168 */ 169 int32_t time_phase = 0; /* phase offset (scaled us) */ 170 int32_t time_freq = 0; /* frequency offset (scaled ppm) */ 171 int32_t time_adj = 0; /* tick adjust (scaled 1 / hz) */ 172 int32_t time_reftime = 0; /* time at last adjustment (s) */ 173 174 /* 175 * The scale factors of the following variables are defined in the 176 * timex.h header file. 177 * 178 * pps_time contains the time at each calibration interval, as read by 179 * microtime(). pps_count counts the seconds of the calibration 180 * interval, the duration of which is nominally pps_shift in powers of 181 * two. 182 * 183 * pps_offset is the time offset produced by the time median filter 184 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 185 * this filter. 186 * 187 * pps_freq is the frequency offset produced by the frequency median 188 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 189 * by this filter. 190 * 191 * pps_usec is latched from a high resolution counter or external clock 192 * at pps_time. Here we want the hardware counter contents only, not the 193 * contents plus the time_tv.usec as usual. 194 * 195 * pps_valid counts the number of seconds since the last PPS update. It 196 * is used as a watchdog timer to disable the PPS discipline should the 197 * PPS signal be lost. 198 * 199 * pps_glitch counts the number of seconds since the beginning of an 200 * offset burst more than tick/2 from current nominal offset. It is used 201 * mainly to suppress error bursts due to priority conflicts between the 202 * PPS interrupt and timer interrupt. 203 * 204 * pps_intcnt counts the calibration intervals for use in the interval- 205 * adaptation algorithm. It's just too complicated for words. 206 */ 207 struct timeval pps_time; /* kernel time at last interval */ 208 int32_t pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 209 int32_t pps_offset = 0; /* pps time offset (us) */ 210 int32_t pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 211 int32_t pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 212 int32_t pps_freq = 0; /* frequency offset (scaled ppm) */ 213 int32_t pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 214 int32_t pps_usec = 0; /* microsec counter at last interval */ 215 int32_t pps_valid = PPS_VALID; /* pps signal watchdog counter */ 216 int32_t pps_glitch = 0; /* pps signal glitch counter */ 217 int32_t pps_count = 0; /* calibration interval counter (s) */ 218 int32_t pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 219 int32_t pps_intcnt = 0; /* intervals at current duration */ 220 221 /* 222 * PPS signal quality monitors 223 * 224 * pps_jitcnt counts the seconds that have been discarded because the 225 * jitter measured by the time median filter exceeds the limit MAXTIME 226 * (100 us). 227 * 228 * pps_calcnt counts the frequency calibration intervals, which are 229 * variable from 4 s to 256 s. 230 * 231 * pps_errcnt counts the calibration intervals which have been discarded 232 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 233 * calibration interval jitter exceeds two ticks. 234 * 235 * pps_stbcnt counts the calibration intervals that have been discarded 236 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 237 */ 238 int32_t pps_jitcnt = 0; /* jitter limit exceeded */ 239 int32_t pps_calcnt = 0; /* calibration intervals */ 240 int32_t pps_errcnt = 0; /* calibration errors */ 241 int32_t pps_stbcnt = 0; /* stability limit exceeded */ 242 243 kcondvar_t lbolt_cv; 244 245 /* 246 * Hybrid lbolt implementation: 247 * 248 * The service historically provided by the lbolt and lbolt64 variables has 249 * been replaced by the ddi_get_lbolt() and ddi_get_lbolt64() routines, and the 250 * original symbols removed from the system. The once clock driven variables are 251 * now implemented in an event driven fashion, backed by gethrtime() coarsed to 252 * the appropriate clock resolution. The default event driven implementation is 253 * complemented by a cyclic driven one, active only during periods of intense 254 * activity around the DDI lbolt routines, when a lbolt specific cyclic is 255 * reprogramed to fire at a clock tick interval to serve consumers of lbolt who 256 * rely on the original low cost of consulting a memory position. 257 * 258 * The implementation uses the number of calls to these routines and the 259 * frequency of these to determine when to transition from event to cyclic 260 * driven and vice-versa. These values are kept on a per CPU basis for 261 * scalability reasons and to prevent CPUs from constantly invalidating a single 262 * cache line when modifying a global variable. The transition from event to 263 * cyclic mode happens once the thresholds are crossed, and activity on any CPU 264 * can cause such transition. 265 * 266 * The lbolt_hybrid function pointer is called by ddi_get_lbolt() and 267 * ddi_get_lbolt64(), and will point to lbolt_event_driven() or 268 * lbolt_cyclic_driven() according to the current mode. When the thresholds 269 * are exceeded, lbolt_event_driven() will reprogram the lbolt cyclic to 270 * fire at a nsec_per_tick interval and increment an internal variable at 271 * each firing. lbolt_hybrid will then point to lbolt_cyclic_driven(), which 272 * will simply return the value of such variable. lbolt_cyclic() will attempt 273 * to shut itself off at each threshold interval (sampling period for calls 274 * to the DDI lbolt routines), and return to the event driven mode, but will 275 * be prevented from doing so if lbolt_cyclic_driven() is being heavily used. 276 * 277 * lbolt_bootstrap is used during boot to serve lbolt consumers who don't wait 278 * for the cyclic subsystem to be intialized. 279 * 280 */ 281 int64_t lbolt_bootstrap(void); 282 int64_t lbolt_event_driven(void); 283 int64_t lbolt_cyclic_driven(void); 284 int64_t (*lbolt_hybrid)(void) = lbolt_bootstrap; 285 uint_t lbolt_ev_to_cyclic(caddr_t, caddr_t); 286 287 /* 288 * lbolt's cyclic, installed by clock_init(). 289 */ 290 static void lbolt_cyclic(void); 291 292 /* 293 * Tunable to keep lbolt in cyclic driven mode. This will prevent the system 294 * from switching back to event driven, once it reaches cyclic mode. 295 */ 296 static boolean_t lbolt_cyc_only = B_FALSE; 297 298 /* 299 * Cache aligned, per CPU structure with lbolt usage statistics. 300 */ 301 static lbolt_cpu_t *lb_cpu; 302 303 /* 304 * Single, cache aligned, structure with all the information required by 305 * the lbolt implementation. 306 */ 307 lbolt_info_t *lb_info; 308 309 310 int one_sec = 1; /* turned on once every second */ 311 static int fsflushcnt; /* counter for t_fsflushr */ 312 int dosynctodr = 1; /* patchable; enable/disable sync to TOD chip */ 313 int tod_needsync = 0; /* need to sync tod chip with software time */ 314 static int tod_broken = 0; /* clock chip doesn't work */ 315 time_t boot_time = 0; /* Boot time in seconds since 1970 */ 316 cyclic_id_t clock_cyclic; /* clock()'s cyclic_id */ 317 cyclic_id_t deadman_cyclic; /* deadman()'s cyclic_id */ 318 cyclic_id_t ddi_timer_cyclic; /* cyclic_timer()'s cyclic_id */ 319 320 extern void clock_tick_schedule(int); 321 322 static int lgrp_ticks; /* counter to schedule lgrp load calcs */ 323 324 /* 325 * for tod fault detection 326 */ 327 #define TOD_REF_FREQ ((longlong_t)(NANOSEC)) 328 #define TOD_STALL_THRESHOLD (TOD_REF_FREQ * 3 / 2) 329 #define TOD_JUMP_THRESHOLD (TOD_REF_FREQ / 2) 330 #define TOD_FILTER_N 4 331 #define TOD_FILTER_SETTLE (4 * TOD_FILTER_N) 332 static int tod_faulted = TOD_NOFAULT; 333 334 static int tod_status_flag = 0; /* used by tod_validate() */ 335 336 static hrtime_t prev_set_tick = 0; /* gethrtime() prior to tod_set() */ 337 static time_t prev_set_tod = 0; /* tv_sec value passed to tod_set() */ 338 339 /* patchable via /etc/system */ 340 int tod_validate_enable = 1; 341 342 /* Diagnose/Limit messages about delay(9F) called from interrupt context */ 343 int delay_from_interrupt_diagnose = 0; 344 volatile uint32_t delay_from_interrupt_msg = 20; 345 346 /* 347 * On non-SPARC systems, TOD validation must be deferred until gethrtime 348 * returns non-zero values (after mach_clkinit's execution). 349 * On SPARC systems, it must be deferred until after hrtime_base 350 * and hres_last_tick are set (in the first invocation of hres_tick). 351 * Since in both cases the prerequisites occur before the invocation of 352 * tod_get() in clock(), the deferment is lifted there. 353 */ 354 static boolean_t tod_validate_deferred = B_TRUE; 355 356 /* 357 * tod_fault_table[] must be aligned with 358 * enum tod_fault_type in systm.h 359 */ 360 static char *tod_fault_table[] = { 361 "Reversed", /* TOD_REVERSED */ 362 "Stalled", /* TOD_STALLED */ 363 "Jumped", /* TOD_JUMPED */ 364 "Changed in Clock Rate", /* TOD_RATECHANGED */ 365 "Is Read-Only" /* TOD_RDONLY */ 366 /* 367 * no strings needed for TOD_NOFAULT 368 */ 369 }; 370 371 /* 372 * test hook for tod broken detection in tod_validate 373 */ 374 int tod_unit_test = 0; 375 time_t tod_test_injector; 376 377 #define CLOCK_ADJ_HIST_SIZE 4 378 379 static int adj_hist_entry; 380 381 int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE]; 382 383 static void calcloadavg(int, uint64_t *); 384 static int genloadavg(struct loadavg_s *); 385 static void loadavg_update(); 386 387 void (*cmm_clock_callout)() = NULL; 388 void (*cpucaps_clock_callout)() = NULL; 389 390 extern clock_t clock_tick_proc_max; 391 392 static int64_t deadman_counter = 0; 393 394 static void 395 clock(void) 396 { 397 kthread_t *t; 398 uint_t nrunnable; 399 uint_t w_io; 400 cpu_t *cp; 401 cpupart_t *cpupart; 402 extern void set_anoninfo(); 403 extern void set_freemem(); 404 void (*funcp)(); 405 int32_t ltemp; 406 int64_t lltemp; 407 int s; 408 int do_lgrp_load; 409 int i; 410 clock_t now = LBOLT_NO_ACCOUNT; /* current tick */ 411 412 if (panicstr) 413 return; 414 415 set_anoninfo(); 416 /* 417 * Make sure that 'freemem' do not drift too far from the truth 418 */ 419 set_freemem(); 420 421 422 /* 423 * Before the section which is repeated is executed, we do 424 * the time delta processing which occurs every clock tick 425 * 426 * There is additional processing which happens every time 427 * the nanosecond counter rolls over which is described 428 * below - see the section which begins with : if (one_sec) 429 * 430 * This section marks the beginning of the precision-kernel 431 * code fragment. 432 * 433 * First, compute the phase adjustment. If the low-order bits 434 * (time_phase) of the update overflow, bump the higher order 435 * bits (time_update). 436 */ 437 time_phase += time_adj; 438 if (time_phase <= -FINEUSEC) { 439 ltemp = -time_phase / SCALE_PHASE; 440 time_phase += ltemp * SCALE_PHASE; 441 s = hr_clock_lock(); 442 timedelta -= ltemp * (NANOSEC/MICROSEC); 443 hr_clock_unlock(s); 444 } else if (time_phase >= FINEUSEC) { 445 ltemp = time_phase / SCALE_PHASE; 446 time_phase -= ltemp * SCALE_PHASE; 447 s = hr_clock_lock(); 448 timedelta += ltemp * (NANOSEC/MICROSEC); 449 hr_clock_unlock(s); 450 } 451 452 /* 453 * End of precision-kernel code fragment which is processed 454 * every timer interrupt. 455 * 456 * Continue with the interrupt processing as scheduled. 457 */ 458 /* 459 * Count the number of runnable threads and the number waiting 460 * for some form of I/O to complete -- gets added to 461 * sysinfo.waiting. To know the state of the system, must add 462 * wait counts from all CPUs. Also add up the per-partition 463 * statistics. 464 */ 465 w_io = 0; 466 nrunnable = 0; 467 468 /* 469 * keep track of when to update lgrp/part loads 470 */ 471 472 do_lgrp_load = 0; 473 if (lgrp_ticks++ >= hz / 10) { 474 lgrp_ticks = 0; 475 do_lgrp_load = 1; 476 } 477 478 if (one_sec) { 479 loadavg_update(); 480 deadman_counter++; 481 } 482 483 /* 484 * First count the threads waiting on kpreempt queues in each 485 * CPU partition. 486 */ 487 488 cpupart = cp_list_head; 489 do { 490 uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable; 491 492 cpupart->cp_updates++; 493 nrunnable += cpupart_nrunnable; 494 cpupart->cp_nrunnable_cum += cpupart_nrunnable; 495 if (one_sec) { 496 cpupart->cp_nrunning = 0; 497 cpupart->cp_nrunnable = cpupart_nrunnable; 498 } 499 } while ((cpupart = cpupart->cp_next) != cp_list_head); 500 501 502 /* Now count the per-CPU statistics. */ 503 cp = cpu_list; 504 do { 505 uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable; 506 507 nrunnable += cpu_nrunnable; 508 cpupart = cp->cpu_part; 509 cpupart->cp_nrunnable_cum += cpu_nrunnable; 510 if (one_sec) { 511 cpupart->cp_nrunnable += cpu_nrunnable; 512 /* 513 * Update user, system, and idle cpu times. 514 */ 515 cpupart->cp_nrunning++; 516 /* 517 * w_io is used to update sysinfo.waiting during 518 * one_second processing below. Only gather w_io 519 * information when we walk the list of cpus if we're 520 * going to perform one_second processing. 521 */ 522 w_io += CPU_STATS(cp, sys.iowait); 523 } 524 525 if (one_sec && (cp->cpu_flags & CPU_EXISTS)) { 526 int i, load, change; 527 hrtime_t intracct, intrused; 528 const hrtime_t maxnsec = 1000000000; 529 const int precision = 100; 530 531 /* 532 * Estimate interrupt load on this cpu each second. 533 * Computes cpu_intrload as %utilization (0-99). 534 */ 535 536 /* add up interrupt time from all micro states */ 537 for (intracct = 0, i = 0; i < NCMSTATES; i++) 538 intracct += cp->cpu_intracct[i]; 539 scalehrtime(&intracct); 540 541 /* compute nsec used in the past second */ 542 intrused = intracct - cp->cpu_intrlast; 543 cp->cpu_intrlast = intracct; 544 545 /* limit the value for safety (and the first pass) */ 546 if (intrused >= maxnsec) 547 intrused = maxnsec - 1; 548 549 /* calculate %time in interrupt */ 550 load = (precision * intrused) / maxnsec; 551 ASSERT(load >= 0 && load < precision); 552 change = cp->cpu_intrload - load; 553 554 /* jump to new max, or decay the old max */ 555 if (change < 0) 556 cp->cpu_intrload = load; 557 else if (change > 0) 558 cp->cpu_intrload -= (change + 3) / 4; 559 560 DTRACE_PROBE3(cpu_intrload, 561 cpu_t *, cp, 562 hrtime_t, intracct, 563 hrtime_t, intrused); 564 } 565 566 if (do_lgrp_load && 567 (cp->cpu_flags & CPU_EXISTS)) { 568 /* 569 * When updating the lgroup's load average, 570 * account for the thread running on the CPU. 571 * If the CPU is the current one, then we need 572 * to account for the underlying thread which 573 * got the clock interrupt not the thread that is 574 * handling the interrupt and caculating the load 575 * average 576 */ 577 t = cp->cpu_thread; 578 if (CPU == cp) 579 t = t->t_intr; 580 581 /* 582 * Account for the load average for this thread if 583 * it isn't the idle thread or it is on the interrupt 584 * stack and not the current CPU handling the clock 585 * interrupt 586 */ 587 if ((t && t != cp->cpu_idle_thread) || (CPU != cp && 588 CPU_ON_INTR(cp))) { 589 if (t->t_lpl == cp->cpu_lpl) { 590 /* local thread */ 591 cpu_nrunnable++; 592 } else { 593 /* 594 * This is a remote thread, charge it 595 * against its home lgroup. Note that 596 * we notice that a thread is remote 597 * only if it's currently executing. 598 * This is a reasonable approximation, 599 * since queued remote threads are rare. 600 * Note also that if we didn't charge 601 * it to its home lgroup, remote 602 * execution would often make a system 603 * appear balanced even though it was 604 * not, and thread placement/migration 605 * would often not be done correctly. 606 */ 607 lgrp_loadavg(t->t_lpl, 608 LGRP_LOADAVG_IN_THREAD_MAX, 0); 609 } 610 } 611 lgrp_loadavg(cp->cpu_lpl, 612 cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1); 613 } 614 } while ((cp = cp->cpu_next) != cpu_list); 615 616 clock_tick_schedule(one_sec); 617 618 /* 619 * Check for a callout that needs be called from the clock 620 * thread to support the membership protocol in a clustered 621 * system. Copy the function pointer so that we can reset 622 * this to NULL if needed. 623 */ 624 if ((funcp = cmm_clock_callout) != NULL) 625 (*funcp)(); 626 627 if ((funcp = cpucaps_clock_callout) != NULL) 628 (*funcp)(); 629 630 /* 631 * Wakeup the cageout thread waiters once per second. 632 */ 633 if (one_sec) { 634 if (kcage_on) { 635 kcage_tick(); 636 } else if (kflt_on) { 637 kflt_tick(); 638 } 639 } 640 641 if (one_sec) { 642 643 int drift, absdrift; 644 timestruc_t tod; 645 int s; 646 647 /* 648 * Beginning of precision-kernel code fragment executed 649 * every second. 650 * 651 * On rollover of the second the phase adjustment to be 652 * used for the next second is calculated. Also, the 653 * maximum error is increased by the tolerance. If the 654 * PPS frequency discipline code is present, the phase is 655 * increased to compensate for the CPU clock oscillator 656 * frequency error. 657 * 658 * On a 32-bit machine and given parameters in the timex.h 659 * header file, the maximum phase adjustment is +-512 ms 660 * and maximum frequency offset is (a tad less than) 661 * +-512 ppm. On a 64-bit machine, you shouldn't need to ask. 662 */ 663 time_maxerror += time_tolerance / SCALE_USEC; 664 665 /* 666 * Leap second processing. If in leap-insert state at 667 * the end of the day, the system clock is set back one 668 * second; if in leap-delete state, the system clock is 669 * set ahead one second. The microtime() routine or 670 * external clock driver will insure that reported time 671 * is always monotonic. The ugly divides should be 672 * replaced. 673 */ 674 switch (time_state) { 675 676 case TIME_OK: 677 if (time_status & STA_INS) 678 time_state = TIME_INS; 679 else if (time_status & STA_DEL) 680 time_state = TIME_DEL; 681 break; 682 683 case TIME_INS: 684 if (hrestime.tv_sec % 86400 == 0) { 685 s = hr_clock_lock(); 686 hrestime.tv_sec--; 687 hr_clock_unlock(s); 688 time_state = TIME_OOP; 689 } 690 break; 691 692 case TIME_DEL: 693 if ((hrestime.tv_sec + 1) % 86400 == 0) { 694 s = hr_clock_lock(); 695 hrestime.tv_sec++; 696 hr_clock_unlock(s); 697 time_state = TIME_WAIT; 698 } 699 break; 700 701 case TIME_OOP: 702 time_state = TIME_WAIT; 703 break; 704 705 case TIME_WAIT: 706 if (!(time_status & (STA_INS | STA_DEL))) 707 time_state = TIME_OK; 708 default: 709 break; 710 } 711 712 /* 713 * Compute the phase adjustment for the next second. In 714 * PLL mode, the offset is reduced by a fixed factor 715 * times the time constant. In FLL mode the offset is 716 * used directly. In either mode, the maximum phase 717 * adjustment for each second is clamped so as to spread 718 * the adjustment over not more than the number of 719 * seconds between updates. 720 */ 721 if (time_offset == 0) 722 time_adj = 0; 723 else if (time_offset < 0) { 724 lltemp = -time_offset; 725 if (!(time_status & STA_FLL)) { 726 if ((1 << time_constant) >= SCALE_KG) 727 lltemp *= (1 << time_constant) / 728 SCALE_KG; 729 else 730 lltemp = (lltemp / SCALE_KG) >> 731 time_constant; 732 } 733 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 734 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 735 time_offset += lltemp; 736 time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 737 } else { 738 lltemp = time_offset; 739 if (!(time_status & STA_FLL)) { 740 if ((1 << time_constant) >= SCALE_KG) 741 lltemp *= (1 << time_constant) / 742 SCALE_KG; 743 else 744 lltemp = (lltemp / SCALE_KG) >> 745 time_constant; 746 } 747 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 748 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 749 time_offset -= lltemp; 750 time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 751 } 752 753 /* 754 * Compute the frequency estimate and additional phase 755 * adjustment due to frequency error for the next 756 * second. When the PPS signal is engaged, gnaw on the 757 * watchdog counter and update the frequency computed by 758 * the pll and the PPS signal. 759 */ 760 pps_valid++; 761 if (pps_valid == PPS_VALID) { 762 pps_jitter = MAXTIME; 763 pps_stabil = MAXFREQ; 764 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 765 STA_PPSWANDER | STA_PPSERROR); 766 } 767 lltemp = time_freq + pps_freq; 768 769 if (lltemp) 770 time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz); 771 772 /* 773 * End of precision kernel-code fragment 774 * 775 * The section below should be modified if we are planning 776 * to use NTP for synchronization. 777 * 778 * Note: the clock synchronization code now assumes 779 * the following: 780 * - if dosynctodr is 1, then compute the drift between 781 * the tod chip and software time and adjust one or 782 * the other depending on the circumstances 783 * 784 * - if dosynctodr is 0, then the tod chip is independent 785 * of the software clock and should not be adjusted, 786 * but allowed to free run. this allows NTP to sync. 787 * hrestime without any interference from the tod chip. 788 */ 789 790 tod_validate_deferred = B_FALSE; 791 mutex_enter(&tod_lock); 792 tod = tod_get(); 793 drift = tod.tv_sec - hrestime.tv_sec; 794 absdrift = (drift >= 0) ? drift : -drift; 795 if (tod_needsync || absdrift > 1) { 796 int s; 797 if (absdrift > 2) { 798 if (!tod_broken && tod_faulted == TOD_NOFAULT) { 799 s = hr_clock_lock(); 800 hrestime = tod; 801 membar_enter(); /* hrestime visible */ 802 timedelta = 0; 803 timechanged++; 804 tod_needsync = 0; 805 hr_clock_unlock(s); 806 callout_hrestime(); 807 808 } 809 } else { 810 if (tod_needsync || !dosynctodr) { 811 gethrestime(&tod); 812 tod_set(tod); 813 s = hr_clock_lock(); 814 if (timedelta == 0) 815 tod_needsync = 0; 816 hr_clock_unlock(s); 817 } else { 818 /* 819 * If the drift is 2 seconds on the 820 * money, then the TOD is adjusting 821 * the clock; record that. 822 */ 823 clock_adj_hist[adj_hist_entry++ % 824 CLOCK_ADJ_HIST_SIZE] = now; 825 s = hr_clock_lock(); 826 timedelta = (int64_t)drift*NANOSEC; 827 hr_clock_unlock(s); 828 } 829 } 830 } 831 one_sec = 0; 832 time = gethrestime_sec(); /* for crusty old kmem readers */ 833 mutex_exit(&tod_lock); 834 835 /* 836 * Some drivers still depend on this... XXX 837 */ 838 cv_broadcast(&lbolt_cv); 839 840 vminfo.freemem += freemem; 841 { 842 pgcnt_t maxswap, resv, free; 843 pgcnt_t avail = 844 MAX((spgcnt_t)(availrmem - swapfs_minfree), 0); 845 846 maxswap = k_anoninfo.ani_mem_resv + 847 k_anoninfo.ani_max +avail; 848 free = k_anoninfo.ani_free + avail; 849 resv = k_anoninfo.ani_phys_resv + 850 k_anoninfo.ani_mem_resv; 851 852 vminfo.swap_resv += resv; 853 /* number of reserved and allocated pages */ 854 #ifdef DEBUG 855 if (maxswap < free) 856 cmn_err(CE_WARN, "clock: maxswap < free"); 857 if (maxswap < resv) 858 cmn_err(CE_WARN, "clock: maxswap < resv"); 859 #endif 860 vminfo.swap_alloc += maxswap - free; 861 vminfo.swap_avail += maxswap - resv; 862 vminfo.swap_free += free; 863 } 864 vminfo.updates++; 865 if (nrunnable) { 866 sysinfo.runque += nrunnable; 867 sysinfo.runocc++; 868 } 869 if (nswapped) { 870 sysinfo.swpque += nswapped; 871 sysinfo.swpocc++; 872 } 873 sysinfo.waiting += w_io; 874 sysinfo.updates++; 875 876 /* 877 * Wake up fsflush to write out DELWRI 878 * buffers, dirty pages and other cached 879 * administrative data, e.g. inodes. 880 */ 881 if (--fsflushcnt <= 0) { 882 fsflushcnt = tune.t_fsflushr; 883 cv_signal(&fsflush_cv); 884 } 885 886 vmmeter(); 887 calcloadavg(genloadavg(&loadavg), hp_avenrun); 888 for (i = 0; i < 3; i++) 889 /* 890 * At the moment avenrun[] can only hold 31 891 * bits of load average as it is a signed 892 * int in the API. We need to ensure that 893 * hp_avenrun[i] >> (16 - FSHIFT) will not be 894 * too large. If it is, we put the largest value 895 * that we can use into avenrun[i]. This is 896 * kludgey, but about all we can do until we 897 * avenrun[] is declared as an array of uint64[] 898 */ 899 if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT))) 900 avenrun[i] = (int32_t)(hp_avenrun[i] >> 901 (16 - FSHIFT)); 902 else 903 avenrun[i] = 0x7fffffff; 904 905 cpupart = cp_list_head; 906 do { 907 calcloadavg(genloadavg(&cpupart->cp_loadavg), 908 cpupart->cp_hp_avenrun); 909 } while ((cpupart = cpupart->cp_next) != cp_list_head); 910 911 /* 912 * Wake up the swapper thread if necessary. 913 */ 914 if (runin || 915 (runout && (avefree < desfree || wake_sched_sec))) { 916 t = &t0; 917 thread_lock(t); 918 if (t->t_state == TS_STOPPED) { 919 runin = runout = 0; 920 wake_sched_sec = 0; 921 t->t_whystop = 0; 922 t->t_whatstop = 0; 923 t->t_schedflag &= ~TS_ALLSTART; 924 THREAD_TRANSITION(t); 925 setfrontdq(t); 926 } 927 thread_unlock(t); 928 } 929 } 930 931 /* 932 * Wake up the swapper if any high priority swapped-out threads 933 * became runable during the last tick. 934 */ 935 if (wake_sched) { 936 t = &t0; 937 thread_lock(t); 938 if (t->t_state == TS_STOPPED) { 939 runin = runout = 0; 940 wake_sched = 0; 941 t->t_whystop = 0; 942 t->t_whatstop = 0; 943 t->t_schedflag &= ~TS_ALLSTART; 944 THREAD_TRANSITION(t); 945 setfrontdq(t); 946 } 947 thread_unlock(t); 948 } 949 } 950 951 void 952 clock_init(void) 953 { 954 cyc_handler_t clk_hdlr, timer_hdlr, lbolt_hdlr; 955 cyc_time_t clk_when, lbolt_when; 956 int i, sz; 957 intptr_t buf; 958 959 /* 960 * Setup handler and timer for the clock cyclic. 961 */ 962 clk_hdlr.cyh_func = (cyc_func_t)clock; 963 clk_hdlr.cyh_level = CY_LOCK_LEVEL; 964 clk_hdlr.cyh_arg = NULL; 965 966 clk_when.cyt_when = 0; 967 clk_when.cyt_interval = nsec_per_tick; 968 969 /* 970 * cyclic_timer is dedicated to the ddi interface, which 971 * uses the same clock resolution as the system one. 972 */ 973 timer_hdlr.cyh_func = (cyc_func_t)cyclic_timer; 974 timer_hdlr.cyh_level = CY_LOCK_LEVEL; 975 timer_hdlr.cyh_arg = NULL; 976 977 /* 978 * The lbolt cyclic will be reprogramed to fire at a nsec_per_tick 979 * interval to satisfy performance needs of the DDI lbolt consumers. 980 * It is off by default. 981 */ 982 lbolt_hdlr.cyh_func = (cyc_func_t)lbolt_cyclic; 983 lbolt_hdlr.cyh_level = CY_LOCK_LEVEL; 984 lbolt_hdlr.cyh_arg = NULL; 985 986 lbolt_when.cyt_interval = nsec_per_tick; 987 988 /* 989 * Allocate cache line aligned space for the per CPU lbolt data and 990 * lbolt info structures, and initialize them with their default 991 * values. Note that these structures are also cache line sized. 992 */ 993 sz = sizeof (lbolt_info_t) + CPU_CACHE_COHERENCE_SIZE; 994 buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP); 995 lb_info = (lbolt_info_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE); 996 997 if (hz != HZ_DEFAULT) 998 lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL * 999 hz/HZ_DEFAULT; 1000 else 1001 lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL; 1002 1003 lb_info->lbi_thresh_calls = LBOLT_THRESH_CALLS; 1004 1005 sz = (sizeof (lbolt_cpu_t) * max_ncpus) + CPU_CACHE_COHERENCE_SIZE; 1006 buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP); 1007 lb_cpu = (lbolt_cpu_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE); 1008 1009 for (i = 0; i < max_ncpus; i++) 1010 lb_cpu[i].lbc_counter = lb_info->lbi_thresh_calls; 1011 1012 /* 1013 * Install the softint used to switch between event and cyclic driven 1014 * lbolt. We use a soft interrupt to make sure the context of the 1015 * cyclic reprogram call is safe. 1016 */ 1017 lbolt_softint_add(); 1018 1019 /* 1020 * Since the hybrid lbolt implementation is based on a hardware counter 1021 * that is reset at every hardware reboot and that we'd like to have 1022 * the lbolt value starting at zero after both a hardware and a fast 1023 * reboot, we calculate the number of clock ticks the system's been up 1024 * and store it in the lbi_debug_time field of the lbolt info structure. 1025 * The value of this field will be subtracted from lbolt before 1026 * returning it. 1027 */ 1028 lb_info->lbi_internal = lb_info->lbi_debug_time = 1029 (gethrtime()/nsec_per_tick); 1030 1031 /* 1032 * lbolt_hybrid points at lbolt_bootstrap until now. The LBOLT_* macros 1033 * and lbolt_debug_{enter,return} use this value as an indication that 1034 * the initializaion above hasn't been completed. Setting lbolt_hybrid 1035 * to either lbolt_{cyclic,event}_driven here signals those code paths 1036 * that the lbolt related structures can be used. 1037 */ 1038 if (lbolt_cyc_only) { 1039 lbolt_when.cyt_when = 0; 1040 lbolt_hybrid = lbolt_cyclic_driven; 1041 } else { 1042 lbolt_when.cyt_when = CY_INFINITY; 1043 lbolt_hybrid = lbolt_event_driven; 1044 } 1045 1046 /* 1047 * Grab cpu_lock and install all three cyclics. 1048 */ 1049 mutex_enter(&cpu_lock); 1050 1051 clock_cyclic = cyclic_add(&clk_hdlr, &clk_when); 1052 ddi_timer_cyclic = cyclic_add(&timer_hdlr, &clk_when); 1053 lb_info->id.lbi_cyclic_id = cyclic_add(&lbolt_hdlr, &lbolt_when); 1054 1055 mutex_exit(&cpu_lock); 1056 } 1057 1058 /* 1059 * Called before calcloadavg to get 10-sec moving loadavg together 1060 */ 1061 1062 static int 1063 genloadavg(struct loadavg_s *avgs) 1064 { 1065 int avg; 1066 int spos; /* starting position */ 1067 int cpos; /* moving current position */ 1068 int i; 1069 int slen; 1070 hrtime_t hr_avg; 1071 1072 /* 10-second snapshot, calculate first positon */ 1073 if (avgs->lg_len == 0) { 1074 return (0); 1075 } 1076 slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ; 1077 1078 spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 : 1079 S_LOADAVG_SZ + (avgs->lg_cur - 1); 1080 for (i = hr_avg = 0; i < slen; i++) { 1081 cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i); 1082 hr_avg += avgs->lg_loads[cpos]; 1083 } 1084 1085 hr_avg = hr_avg / slen; 1086 avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 1087 1088 return (avg); 1089 } 1090 1091 /* 1092 * Run every second from clock () to update the loadavg count available to the 1093 * system and cpu-partitions. 1094 * 1095 * This works by sampling the previous usr, sys, wait time elapsed, 1096 * computing a delta, and adding that delta to the elapsed usr, sys, 1097 * wait increase. 1098 */ 1099 1100 static void 1101 loadavg_update() 1102 { 1103 cpu_t *cp; 1104 cpupart_t *cpupart; 1105 hrtime_t cpu_total; 1106 int prev; 1107 1108 cp = cpu_list; 1109 loadavg.lg_total = 0; 1110 1111 /* 1112 * first pass totals up per-cpu statistics for system and cpu 1113 * partitions 1114 */ 1115 1116 do { 1117 struct loadavg_s *lavg; 1118 1119 lavg = &cp->cpu_loadavg; 1120 1121 cpu_total = cp->cpu_acct[CMS_USER] + 1122 cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq; 1123 /* compute delta against last total */ 1124 scalehrtime(&cpu_total); 1125 prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 : 1126 S_LOADAVG_SZ + (lavg->lg_cur - 1); 1127 if (lavg->lg_loads[prev] <= 0) { 1128 lavg->lg_loads[lavg->lg_cur] = cpu_total; 1129 cpu_total = 0; 1130 } else { 1131 lavg->lg_loads[lavg->lg_cur] = cpu_total; 1132 cpu_total = cpu_total - lavg->lg_loads[prev]; 1133 if (cpu_total < 0) 1134 cpu_total = 0; 1135 } 1136 1137 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 1138 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 1139 lavg->lg_len + 1 : S_LOADAVG_SZ; 1140 1141 loadavg.lg_total += cpu_total; 1142 cp->cpu_part->cp_loadavg.lg_total += cpu_total; 1143 1144 } while ((cp = cp->cpu_next) != cpu_list); 1145 1146 loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total; 1147 loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ; 1148 loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ? 1149 loadavg.lg_len + 1 : S_LOADAVG_SZ; 1150 /* 1151 * Second pass updates counts 1152 */ 1153 cpupart = cp_list_head; 1154 1155 do { 1156 struct loadavg_s *lavg; 1157 1158 lavg = &cpupart->cp_loadavg; 1159 lavg->lg_loads[lavg->lg_cur] = lavg->lg_total; 1160 lavg->lg_total = 0; 1161 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 1162 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 1163 lavg->lg_len + 1 : S_LOADAVG_SZ; 1164 1165 } while ((cpupart = cpupart->cp_next) != cp_list_head); 1166 1167 } 1168 1169 /* 1170 * clock_update() - local clock update 1171 * 1172 * This routine is called by ntp_adjtime() to update the local clock 1173 * phase and frequency. The implementation is of an 1174 * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The 1175 * routine computes new time and frequency offset estimates for each 1176 * call. The PPS signal itself determines the new time offset, 1177 * instead of the calling argument. Presumably, calls to 1178 * ntp_adjtime() occur only when the caller believes the local clock 1179 * is valid within some bound (+-128 ms with NTP). If the caller's 1180 * time is far different than the PPS time, an argument will ensue, 1181 * and it's not clear who will lose. 1182 * 1183 * For uncompensated quartz crystal oscillatores and nominal update 1184 * intervals less than 1024 s, operation should be in phase-lock mode 1185 * (STA_FLL = 0), where the loop is disciplined to phase. For update 1186 * intervals greater than this, operation should be in frequency-lock 1187 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 1188 * 1189 * Note: mutex(&tod_lock) is in effect. 1190 */ 1191 void 1192 clock_update(int offset) 1193 { 1194 int ltemp, mtemp, s; 1195 1196 ASSERT(MUTEX_HELD(&tod_lock)); 1197 1198 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 1199 return; 1200 ltemp = offset; 1201 if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL)) 1202 ltemp = pps_offset; 1203 1204 /* 1205 * Scale the phase adjustment and clamp to the operating range. 1206 */ 1207 if (ltemp > MAXPHASE) 1208 time_offset = MAXPHASE * SCALE_UPDATE; 1209 else if (ltemp < -MAXPHASE) 1210 time_offset = -(MAXPHASE * SCALE_UPDATE); 1211 else 1212 time_offset = ltemp * SCALE_UPDATE; 1213 1214 /* 1215 * Select whether the frequency is to be controlled and in which 1216 * mode (PLL or FLL). Clamp to the operating range. Ugly 1217 * multiply/divide should be replaced someday. 1218 */ 1219 if (time_status & STA_FREQHOLD || time_reftime == 0) 1220 time_reftime = hrestime.tv_sec; 1221 1222 mtemp = hrestime.tv_sec - time_reftime; 1223 time_reftime = hrestime.tv_sec; 1224 1225 if (time_status & STA_FLL) { 1226 if (mtemp >= MINSEC) { 1227 ltemp = ((time_offset / mtemp) * (SCALE_USEC / 1228 SCALE_UPDATE)); 1229 if (ltemp) 1230 time_freq += ltemp / SCALE_KH; 1231 } 1232 } else { 1233 if (mtemp < MAXSEC) { 1234 ltemp *= mtemp; 1235 if (ltemp) 1236 time_freq += (int)(((int64_t)ltemp * 1237 SCALE_USEC) / SCALE_KF) 1238 / (1 << (time_constant * 2)); 1239 } 1240 } 1241 if (time_freq > time_tolerance) 1242 time_freq = time_tolerance; 1243 else if (time_freq < -time_tolerance) 1244 time_freq = -time_tolerance; 1245 1246 s = hr_clock_lock(); 1247 tod_needsync = 1; 1248 hr_clock_unlock(s); 1249 } 1250 1251 /* 1252 * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal 1253 * 1254 * This routine is called at each PPS interrupt in order to discipline 1255 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1256 * and leaves it in a handy spot for the clock() routine. It 1257 * integrates successive PPS phase differences and calculates the 1258 * frequency offset. This is used in clock() to discipline the CPU 1259 * clock oscillator so that intrinsic frequency error is cancelled out. 1260 * The code requires the caller to capture the time and hardware counter 1261 * value at the on-time PPS signal transition. 1262 * 1263 * Note that, on some Unix systems, this routine runs at an interrupt 1264 * priority level higher than the timer interrupt routine clock(). 1265 * Therefore, the variables used are distinct from the clock() 1266 * variables, except for certain exceptions: The PPS frequency pps_freq 1267 * and phase pps_offset variables are determined by this routine and 1268 * updated atomically. The time_tolerance variable can be considered a 1269 * constant, since it is infrequently changed, and then only when the 1270 * PPS signal is disabled. The watchdog counter pps_valid is updated 1271 * once per second by clock() and is atomically cleared in this 1272 * routine. 1273 * 1274 * tvp is the time of the last tick; usec is a microsecond count since the 1275 * last tick. 1276 * 1277 * Note: In Solaris systems, the tick value is actually given by 1278 * usec_per_tick. This is called from the serial driver cdintr(), 1279 * or equivalent, at a high PIL. Because the kernel keeps a 1280 * highresolution time, the following code can accept either 1281 * the traditional argument pair, or the current highres timestamp 1282 * in tvp and zero in usec. 1283 */ 1284 void 1285 ddi_hardpps(struct timeval *tvp, int usec) 1286 { 1287 int u_usec, v_usec, bigtick; 1288 time_t cal_sec; 1289 int cal_usec; 1290 1291 /* 1292 * An occasional glitch can be produced when the PPS interrupt 1293 * occurs in the clock() routine before the time variable is 1294 * updated. Here the offset is discarded when the difference 1295 * between it and the last one is greater than tick/2, but not 1296 * if the interval since the first discard exceeds 30 s. 1297 */ 1298 time_status |= STA_PPSSIGNAL; 1299 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1300 pps_valid = 0; 1301 u_usec = -tvp->tv_usec; 1302 if (u_usec < -(MICROSEC/2)) 1303 u_usec += MICROSEC; 1304 v_usec = pps_offset - u_usec; 1305 if (v_usec < 0) 1306 v_usec = -v_usec; 1307 if (v_usec > (usec_per_tick >> 1)) { 1308 if (pps_glitch > MAXGLITCH) { 1309 pps_glitch = 0; 1310 pps_tf[2] = u_usec; 1311 pps_tf[1] = u_usec; 1312 } else { 1313 pps_glitch++; 1314 u_usec = pps_offset; 1315 } 1316 } else 1317 pps_glitch = 0; 1318 1319 /* 1320 * A three-stage median filter is used to help deglitch the pps 1321 * time. The median sample becomes the time offset estimate; the 1322 * difference between the other two samples becomes the time 1323 * dispersion (jitter) estimate. 1324 */ 1325 pps_tf[2] = pps_tf[1]; 1326 pps_tf[1] = pps_tf[0]; 1327 pps_tf[0] = u_usec; 1328 if (pps_tf[0] > pps_tf[1]) { 1329 if (pps_tf[1] > pps_tf[2]) { 1330 pps_offset = pps_tf[1]; /* 0 1 2 */ 1331 v_usec = pps_tf[0] - pps_tf[2]; 1332 } else if (pps_tf[2] > pps_tf[0]) { 1333 pps_offset = pps_tf[0]; /* 2 0 1 */ 1334 v_usec = pps_tf[2] - pps_tf[1]; 1335 } else { 1336 pps_offset = pps_tf[2]; /* 0 2 1 */ 1337 v_usec = pps_tf[0] - pps_tf[1]; 1338 } 1339 } else { 1340 if (pps_tf[1] < pps_tf[2]) { 1341 pps_offset = pps_tf[1]; /* 2 1 0 */ 1342 v_usec = pps_tf[2] - pps_tf[0]; 1343 } else if (pps_tf[2] < pps_tf[0]) { 1344 pps_offset = pps_tf[0]; /* 1 0 2 */ 1345 v_usec = pps_tf[1] - pps_tf[2]; 1346 } else { 1347 pps_offset = pps_tf[2]; /* 1 2 0 */ 1348 v_usec = pps_tf[1] - pps_tf[0]; 1349 } 1350 } 1351 if (v_usec > MAXTIME) 1352 pps_jitcnt++; 1353 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1354 pps_jitter += v_usec / (1 << PPS_AVG); 1355 if (pps_jitter > (MAXTIME >> 1)) 1356 time_status |= STA_PPSJITTER; 1357 1358 /* 1359 * During the calibration interval adjust the starting time when 1360 * the tick overflows. At the end of the interval compute the 1361 * duration of the interval and the difference of the hardware 1362 * counters at the beginning and end of the interval. This code 1363 * is deliciously complicated by the fact valid differences may 1364 * exceed the value of tick when using long calibration 1365 * intervals and small ticks. Note that the counter can be 1366 * greater than tick if caught at just the wrong instant, but 1367 * the values returned and used here are correct. 1368 */ 1369 bigtick = (int)usec_per_tick * SCALE_USEC; 1370 pps_usec -= pps_freq; 1371 if (pps_usec >= bigtick) 1372 pps_usec -= bigtick; 1373 if (pps_usec < 0) 1374 pps_usec += bigtick; 1375 pps_time.tv_sec++; 1376 pps_count++; 1377 if (pps_count < (1 << pps_shift)) 1378 return; 1379 pps_count = 0; 1380 pps_calcnt++; 1381 u_usec = usec * SCALE_USEC; 1382 v_usec = pps_usec - u_usec; 1383 if (v_usec >= bigtick >> 1) 1384 v_usec -= bigtick; 1385 if (v_usec < -(bigtick >> 1)) 1386 v_usec += bigtick; 1387 if (v_usec < 0) 1388 v_usec = -(-v_usec >> pps_shift); 1389 else 1390 v_usec = v_usec >> pps_shift; 1391 pps_usec = u_usec; 1392 cal_sec = tvp->tv_sec; 1393 cal_usec = tvp->tv_usec; 1394 cal_sec -= pps_time.tv_sec; 1395 cal_usec -= pps_time.tv_usec; 1396 if (cal_usec < 0) { 1397 cal_usec += MICROSEC; 1398 cal_sec--; 1399 } 1400 pps_time = *tvp; 1401 1402 /* 1403 * Check for lost interrupts, noise, excessive jitter and 1404 * excessive frequency error. The number of timer ticks during 1405 * the interval may vary +-1 tick. Add to this a margin of one 1406 * tick for the PPS signal jitter and maximum frequency 1407 * deviation. If the limits are exceeded, the calibration 1408 * interval is reset to the minimum and we start over. 1409 */ 1410 u_usec = (int)usec_per_tick << 1; 1411 if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) || 1412 (cal_sec == 0 && cal_usec < u_usec)) || 1413 v_usec > time_tolerance || v_usec < -time_tolerance) { 1414 pps_errcnt++; 1415 pps_shift = PPS_SHIFT; 1416 pps_intcnt = 0; 1417 time_status |= STA_PPSERROR; 1418 return; 1419 } 1420 1421 /* 1422 * A three-stage median filter is used to help deglitch the pps 1423 * frequency. The median sample becomes the frequency offset 1424 * estimate; the difference between the other two samples 1425 * becomes the frequency dispersion (stability) estimate. 1426 */ 1427 pps_ff[2] = pps_ff[1]; 1428 pps_ff[1] = pps_ff[0]; 1429 pps_ff[0] = v_usec; 1430 if (pps_ff[0] > pps_ff[1]) { 1431 if (pps_ff[1] > pps_ff[2]) { 1432 u_usec = pps_ff[1]; /* 0 1 2 */ 1433 v_usec = pps_ff[0] - pps_ff[2]; 1434 } else if (pps_ff[2] > pps_ff[0]) { 1435 u_usec = pps_ff[0]; /* 2 0 1 */ 1436 v_usec = pps_ff[2] - pps_ff[1]; 1437 } else { 1438 u_usec = pps_ff[2]; /* 0 2 1 */ 1439 v_usec = pps_ff[0] - pps_ff[1]; 1440 } 1441 } else { 1442 if (pps_ff[1] < pps_ff[2]) { 1443 u_usec = pps_ff[1]; /* 2 1 0 */ 1444 v_usec = pps_ff[2] - pps_ff[0]; 1445 } else if (pps_ff[2] < pps_ff[0]) { 1446 u_usec = pps_ff[0]; /* 1 0 2 */ 1447 v_usec = pps_ff[1] - pps_ff[2]; 1448 } else { 1449 u_usec = pps_ff[2]; /* 1 2 0 */ 1450 v_usec = pps_ff[1] - pps_ff[0]; 1451 } 1452 } 1453 1454 /* 1455 * Here the frequency dispersion (stability) is updated. If it 1456 * is less than one-fourth the maximum (MAXFREQ), the frequency 1457 * offset is updated as well, but clamped to the tolerance. It 1458 * will be processed later by the clock() routine. 1459 */ 1460 v_usec = (v_usec >> 1) - pps_stabil; 1461 if (v_usec < 0) 1462 pps_stabil -= -v_usec >> PPS_AVG; 1463 else 1464 pps_stabil += v_usec >> PPS_AVG; 1465 if (pps_stabil > MAXFREQ >> 2) { 1466 pps_stbcnt++; 1467 time_status |= STA_PPSWANDER; 1468 return; 1469 } 1470 if (time_status & STA_PPSFREQ) { 1471 if (u_usec < 0) { 1472 pps_freq -= -u_usec >> PPS_AVG; 1473 if (pps_freq < -time_tolerance) 1474 pps_freq = -time_tolerance; 1475 u_usec = -u_usec; 1476 } else { 1477 pps_freq += u_usec >> PPS_AVG; 1478 if (pps_freq > time_tolerance) 1479 pps_freq = time_tolerance; 1480 } 1481 } 1482 1483 /* 1484 * Here the calibration interval is adjusted. If the maximum 1485 * time difference is greater than tick / 4, reduce the interval 1486 * by half. If this is not the case for four consecutive 1487 * intervals, double the interval. 1488 */ 1489 if (u_usec << pps_shift > bigtick >> 2) { 1490 pps_intcnt = 0; 1491 if (pps_shift > PPS_SHIFT) 1492 pps_shift--; 1493 } else if (pps_intcnt >= 4) { 1494 pps_intcnt = 0; 1495 if (pps_shift < PPS_SHIFTMAX) 1496 pps_shift++; 1497 } else 1498 pps_intcnt++; 1499 1500 /* 1501 * If recovering from kmdb, then make sure the tod chip gets resynced. 1502 * If we took an early exit above, then we don't yet have a stable 1503 * calibration signal to lock onto, so don't mark the tod for sync 1504 * until we get all the way here. 1505 */ 1506 { 1507 int s = hr_clock_lock(); 1508 1509 tod_needsync = 1; 1510 hr_clock_unlock(s); 1511 } 1512 } 1513 1514 /* 1515 * Handle clock tick processing for a thread. 1516 * Check for timer action, enforce CPU rlimit, do profiling etc. 1517 */ 1518 void 1519 clock_tick(kthread_t *t, int pending) 1520 { 1521 struct proc *pp; 1522 klwp_id_t lwp; 1523 struct as *as; 1524 clock_t ticks; 1525 int poke = 0; /* notify another CPU */ 1526 int user_mode; 1527 size_t rss; 1528 int i, total_usec, usec; 1529 rctl_qty_t secs; 1530 1531 ASSERT(pending > 0); 1532 1533 /* Must be operating on a lwp/thread */ 1534 if ((lwp = ttolwp(t)) == NULL) { 1535 panic("clock_tick: no lwp"); 1536 /*NOTREACHED*/ 1537 } 1538 1539 for (i = 0; i < pending; i++) { 1540 CL_TICK(t); /* Class specific tick processing */ 1541 DTRACE_SCHED1(tick, kthread_t *, t); 1542 } 1543 1544 pp = ttoproc(t); 1545 1546 /* pp->p_lock makes sure that the thread does not exit */ 1547 ASSERT(MUTEX_HELD(&pp->p_lock)); 1548 1549 user_mode = (lwp->lwp_state == LWP_USER); 1550 1551 ticks = (pp->p_utime + pp->p_stime) % hz; 1552 /* 1553 * Update process times. Should use high res clock and state 1554 * changes instead of statistical sampling method. XXX 1555 */ 1556 if (user_mode) { 1557 pp->p_utime += pending; 1558 } else { 1559 pp->p_stime += pending; 1560 } 1561 1562 pp->p_ttime += pending; 1563 as = pp->p_as; 1564 1565 /* 1566 * Update user profiling statistics. Get the pc from the 1567 * lwp when the AST happens. 1568 */ 1569 if (pp->p_prof.pr_scale) { 1570 atomic_add_32(&lwp->lwp_oweupc, (int32_t)pending); 1571 if (user_mode) { 1572 poke = 1; 1573 aston(t); 1574 } 1575 } 1576 1577 /* 1578 * If CPU was in user state, process lwp-virtual time 1579 * interval timer. The value passed to itimerdecr() has to be 1580 * in microseconds and has to be less than one second. Hence 1581 * this loop. 1582 */ 1583 total_usec = usec_per_tick * pending; 1584 while (total_usec > 0) { 1585 usec = MIN(total_usec, (MICROSEC - 1)); 1586 if (user_mode && 1587 timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) && 1588 itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec) == 0) { 1589 poke = 1; 1590 sigtoproc(pp, t, SIGVTALRM); 1591 } 1592 total_usec -= usec; 1593 } 1594 1595 /* 1596 * If CPU was in user state, process lwp-profile 1597 * interval timer. 1598 */ 1599 total_usec = usec_per_tick * pending; 1600 while (total_usec > 0) { 1601 usec = MIN(total_usec, (MICROSEC - 1)); 1602 if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) && 1603 itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec) == 0) { 1604 poke = 1; 1605 sigtoproc(pp, t, SIGPROF); 1606 } 1607 total_usec -= usec; 1608 } 1609 1610 /* 1611 * Enforce CPU resource controls: 1612 * (a) process.max-cpu-time resource control 1613 * 1614 * Perform the check only if we have accumulated more a second. 1615 */ 1616 if ((ticks + pending) >= hz) { 1617 (void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp, 1618 (pp->p_utime + pp->p_stime)/hz, RCA_UNSAFE_SIGINFO); 1619 } 1620 1621 /* 1622 * (b) task.max-cpu-time resource control 1623 * 1624 * If we have accumulated enough ticks, increment the task CPU 1625 * time usage and test for the resource limit. This minimizes the 1626 * number of calls to the rct_test(). The task CPU time mutex 1627 * is highly contentious as many processes can be sharing a task. 1628 */ 1629 if (pp->p_ttime >= clock_tick_proc_max) { 1630 secs = task_cpu_time_incr(pp->p_task, pp->p_ttime); 1631 pp->p_ttime = 0; 1632 if (secs) { 1633 (void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls, 1634 pp, secs, RCA_UNSAFE_SIGINFO); 1635 } 1636 } 1637 1638 /* 1639 * Update memory usage for the currently running process. 1640 */ 1641 rss = rm_asrss(as); 1642 PTOU(pp)->u_mem += rss; 1643 if (rss > PTOU(pp)->u_mem_max) 1644 PTOU(pp)->u_mem_max = rss; 1645 1646 /* 1647 * Notify the CPU the thread is running on. 1648 */ 1649 if (poke && t->t_cpu != CPU) 1650 poke_cpu(t->t_cpu->cpu_id); 1651 } 1652 1653 void 1654 profil_tick(uintptr_t upc) 1655 { 1656 int ticks; 1657 proc_t *p = ttoproc(curthread); 1658 klwp_t *lwp = ttolwp(curthread); 1659 struct prof *pr = &p->p_prof; 1660 1661 do { 1662 ticks = lwp->lwp_oweupc; 1663 } while (cas32(&lwp->lwp_oweupc, ticks, 0) != ticks); 1664 1665 mutex_enter(&p->p_pflock); 1666 if (pr->pr_scale >= 2 && upc >= pr->pr_off) { 1667 /* 1668 * Old-style profiling 1669 */ 1670 uint16_t *slot = pr->pr_base; 1671 uint16_t old, new; 1672 if (pr->pr_scale != 2) { 1673 uintptr_t delta = upc - pr->pr_off; 1674 uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) + 1675 (((delta & 0xffff) * pr->pr_scale) >> 16); 1676 if (byteoff >= (uintptr_t)pr->pr_size) { 1677 mutex_exit(&p->p_pflock); 1678 return; 1679 } 1680 slot += byteoff / sizeof (uint16_t); 1681 } 1682 if (fuword16(slot, &old) < 0 || 1683 (new = old + ticks) > SHRT_MAX || 1684 suword16(slot, new) < 0) { 1685 pr->pr_scale = 0; 1686 } 1687 } else if (pr->pr_scale == 1) { 1688 /* 1689 * PC Sampling 1690 */ 1691 model_t model = lwp_getdatamodel(lwp); 1692 int result; 1693 #ifdef __lint 1694 model = model; 1695 #endif 1696 while (ticks-- > 0) { 1697 if (pr->pr_samples == pr->pr_size) { 1698 /* buffer full, turn off sampling */ 1699 pr->pr_scale = 0; 1700 break; 1701 } 1702 switch (SIZEOF_PTR(model)) { 1703 case sizeof (uint32_t): 1704 result = suword32(pr->pr_base, (uint32_t)upc); 1705 break; 1706 #ifdef _LP64 1707 case sizeof (uint64_t): 1708 result = suword64(pr->pr_base, (uint64_t)upc); 1709 break; 1710 #endif 1711 default: 1712 cmn_err(CE_WARN, "profil_tick: unexpected " 1713 "data model"); 1714 result = -1; 1715 break; 1716 } 1717 if (result != 0) { 1718 pr->pr_scale = 0; 1719 break; 1720 } 1721 pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model); 1722 pr->pr_samples++; 1723 } 1724 } 1725 mutex_exit(&p->p_pflock); 1726 } 1727 1728 static void 1729 delay_wakeup(void *arg) 1730 { 1731 kthread_t *t = arg; 1732 1733 mutex_enter(&t->t_delay_lock); 1734 cv_signal(&t->t_delay_cv); 1735 mutex_exit(&t->t_delay_lock); 1736 } 1737 1738 /* 1739 * The delay(9F) man page indicates that it can only be called from user or 1740 * kernel context - detect and diagnose bad calls. The following macro will 1741 * produce a limited number of messages identifying bad callers. This is done 1742 * in a macro so that caller() is meaningful. When a bad caller is identified, 1743 * switching to 'drv_usecwait(TICK_TO_USEC(ticks));' may be appropriate. 1744 */ 1745 #define DELAY_CONTEXT_CHECK() { \ 1746 uint32_t m; \ 1747 char *f; \ 1748 ulong_t off; \ 1749 \ 1750 m = delay_from_interrupt_msg; \ 1751 if (delay_from_interrupt_diagnose && servicing_interrupt() && \ 1752 !panicstr && !devinfo_freeze && \ 1753 atomic_cas_32(&delay_from_interrupt_msg, m ? m : 1, m-1)) { \ 1754 f = modgetsymname((uintptr_t)caller(), &off); \ 1755 cmn_err(CE_WARN, "delay(9F) called from " \ 1756 "interrupt context: %s`%s", \ 1757 mod_containing_pc(caller()), f ? f : "..."); \ 1758 } \ 1759 } 1760 1761 /* 1762 * delay_common: common delay code. 1763 */ 1764 static void 1765 delay_common(clock_t ticks) 1766 { 1767 kthread_t *t = curthread; 1768 clock_t deadline; 1769 clock_t timeleft; 1770 callout_id_t id; 1771 1772 /* If timeouts aren't running all we can do is spin. */ 1773 if (panicstr || devinfo_freeze) { 1774 /* Convert delay(9F) call into drv_usecwait(9F) call. */ 1775 if (ticks > 0) 1776 drv_usecwait(TICK_TO_USEC(ticks)); 1777 return; 1778 } 1779 1780 deadline = ddi_get_lbolt() + ticks; 1781 while ((timeleft = deadline - ddi_get_lbolt()) > 0) { 1782 mutex_enter(&t->t_delay_lock); 1783 id = timeout_default(delay_wakeup, t, timeleft); 1784 cv_wait(&t->t_delay_cv, &t->t_delay_lock); 1785 mutex_exit(&t->t_delay_lock); 1786 (void) untimeout_default(id, 0); 1787 } 1788 } 1789 1790 /* 1791 * Delay specified number of clock ticks. 1792 */ 1793 void 1794 delay(clock_t ticks) 1795 { 1796 DELAY_CONTEXT_CHECK(); 1797 1798 delay_common(ticks); 1799 } 1800 1801 /* 1802 * Delay a random number of clock ticks between 1 and ticks. 1803 */ 1804 void 1805 delay_random(clock_t ticks) 1806 { 1807 int r; 1808 1809 DELAY_CONTEXT_CHECK(); 1810 1811 (void) random_get_pseudo_bytes((void *)&r, sizeof (r)); 1812 if (ticks == 0) 1813 ticks = 1; 1814 ticks = (r % ticks) + 1; 1815 delay_common(ticks); 1816 } 1817 1818 /* 1819 * Like delay, but interruptible by a signal. 1820 */ 1821 int 1822 delay_sig(clock_t ticks) 1823 { 1824 kthread_t *t = curthread; 1825 clock_t deadline; 1826 clock_t rc; 1827 1828 /* If timeouts aren't running all we can do is spin. */ 1829 if (panicstr || devinfo_freeze) { 1830 if (ticks > 0) 1831 drv_usecwait(TICK_TO_USEC(ticks)); 1832 return (0); 1833 } 1834 1835 deadline = ddi_get_lbolt() + ticks; 1836 mutex_enter(&t->t_delay_lock); 1837 do { 1838 rc = cv_timedwait_sig(&t->t_delay_cv, 1839 &t->t_delay_lock, deadline); 1840 /* loop until past deadline or signaled */ 1841 } while (rc > 0); 1842 mutex_exit(&t->t_delay_lock); 1843 if (rc == 0) 1844 return (EINTR); 1845 return (0); 1846 } 1847 1848 1849 #define SECONDS_PER_DAY 86400 1850 1851 /* 1852 * Initialize the system time based on the TOD chip. approx is used as 1853 * an approximation of time (e.g. from the filesystem) in the event that 1854 * the TOD chip has been cleared or is unresponsive. An approx of -1 1855 * means the filesystem doesn't keep time. 1856 */ 1857 void 1858 clkset(time_t approx) 1859 { 1860 timestruc_t ts; 1861 int spl; 1862 int set_clock = 0; 1863 1864 mutex_enter(&tod_lock); 1865 ts = tod_get(); 1866 1867 if (ts.tv_sec > 365 * SECONDS_PER_DAY) { 1868 /* 1869 * If the TOD chip is reporting some time after 1971, 1870 * then it probably didn't lose power or become otherwise 1871 * cleared in the recent past; check to assure that 1872 * the time coming from the filesystem isn't in the future 1873 * according to the TOD chip. 1874 */ 1875 if (approx != -1 && approx > ts.tv_sec) { 1876 cmn_err(CE_WARN, "Last shutdown is later " 1877 "than time on time-of-day chip; check date."); 1878 } 1879 } else { 1880 /* 1881 * If the TOD chip isn't giving correct time, set it to the 1882 * greater of i) approx and ii) 1987. That way if approx 1883 * is negative or is earlier than 1987, we set the clock 1884 * back to a time when Oliver North, ALF and Dire Straits 1885 * were all on the collective brain: 1987. 1886 */ 1887 timestruc_t tmp; 1888 time_t diagnose_date = (1987 - 1970) * 365 * SECONDS_PER_DAY; 1889 ts.tv_sec = (approx > diagnose_date ? approx : diagnose_date); 1890 ts.tv_nsec = 0; 1891 1892 /* 1893 * Attempt to write the new time to the TOD chip. Set spl high 1894 * to avoid getting preempted between the tod_set and tod_get. 1895 */ 1896 spl = splhi(); 1897 tod_set(ts); 1898 tmp = tod_get(); 1899 splx(spl); 1900 1901 if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) { 1902 tod_broken = 1; 1903 dosynctodr = 0; 1904 cmn_err(CE_WARN, "Time-of-day chip unresponsive."); 1905 } else { 1906 cmn_err(CE_WARN, "Time-of-day chip had " 1907 "incorrect date; check and reset."); 1908 } 1909 set_clock = 1; 1910 } 1911 1912 if (!boot_time) { 1913 boot_time = ts.tv_sec; 1914 set_clock = 1; 1915 } 1916 1917 if (set_clock) 1918 set_hrestime(&ts); 1919 1920 mutex_exit(&tod_lock); 1921 } 1922 1923 int timechanged; /* for testing if the system time has been reset */ 1924 1925 void 1926 set_hrestime(timestruc_t *ts) 1927 { 1928 int spl = hr_clock_lock(); 1929 hrestime = *ts; 1930 membar_enter(); /* hrestime must be visible before timechanged++ */ 1931 timedelta = 0; 1932 timechanged++; 1933 hr_clock_unlock(spl); 1934 callout_hrestime(); 1935 } 1936 1937 static uint_t deadman_seconds; 1938 static uint32_t deadman_panics; 1939 static int deadman_enabled = 0; 1940 static int deadman_panic_timers = 1; 1941 1942 static void 1943 deadman(void) 1944 { 1945 if (panicstr) { 1946 /* 1947 * During panic, other CPUs besides the panic 1948 * master continue to handle cyclics and some other 1949 * interrupts. The code below is intended to be 1950 * single threaded, so any CPU other than the master 1951 * must keep out. 1952 */ 1953 if (CPU->cpu_id != panic_cpu.cpu_id) 1954 return; 1955 1956 if (!deadman_panic_timers) 1957 return; /* allow all timers to be manually disabled */ 1958 1959 /* 1960 * If we are generating a crash dump or syncing filesystems and 1961 * the corresponding timer is set, decrement it and re-enter 1962 * the panic code to abort it and advance to the next state. 1963 * The panic states and triggers are explained in panic.c. 1964 */ 1965 if (panic_dump) { 1966 if (dump_timeleft && (--dump_timeleft == 0)) { 1967 panic("panic dump timeout"); 1968 /*NOTREACHED*/ 1969 } 1970 } else if (panic_sync) { 1971 if (sync_timeleft && (--sync_timeleft == 0)) { 1972 panic("panic sync timeout"); 1973 /*NOTREACHED*/ 1974 } 1975 } 1976 1977 return; 1978 } 1979 1980 if (deadman_counter != CPU->cpu_deadman_counter) { 1981 CPU->cpu_deadman_counter = deadman_counter; 1982 CPU->cpu_deadman_countdown = deadman_seconds; 1983 return; 1984 } 1985 1986 if (--CPU->cpu_deadman_countdown > 0) 1987 return; 1988 1989 /* 1990 * Regardless of whether or not we actually bring the system down, 1991 * bump the deadman_panics variable. 1992 * 1993 * N.B. deadman_panics is incremented once for each CPU that 1994 * passes through here. It's expected that all the CPUs will 1995 * detect this condition within one second of each other, so 1996 * when deadman_enabled is off, deadman_panics will 1997 * typically be a multiple of the total number of CPUs in 1998 * the system. 1999 */ 2000 atomic_add_32(&deadman_panics, 1); 2001 2002 if (!deadman_enabled) { 2003 CPU->cpu_deadman_countdown = deadman_seconds; 2004 return; 2005 } 2006 2007 /* 2008 * If we're here, we want to bring the system down. 2009 */ 2010 panic("deadman: timed out after %d seconds of clock " 2011 "inactivity", deadman_seconds); 2012 /*NOTREACHED*/ 2013 } 2014 2015 /*ARGSUSED*/ 2016 static void 2017 deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when) 2018 { 2019 cpu->cpu_deadman_counter = 0; 2020 cpu->cpu_deadman_countdown = deadman_seconds; 2021 2022 hdlr->cyh_func = (cyc_func_t)deadman; 2023 hdlr->cyh_level = CY_HIGH_LEVEL; 2024 hdlr->cyh_arg = NULL; 2025 2026 /* 2027 * Stagger the CPUs so that they don't all run deadman() at 2028 * the same time. Simplest reason to do this is to make it 2029 * more likely that only one CPU will panic in case of a 2030 * timeout. This is (strictly speaking) an aesthetic, not a 2031 * technical consideration. 2032 */ 2033 when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU); 2034 when->cyt_interval = NANOSEC; 2035 } 2036 2037 2038 void 2039 deadman_init(void) 2040 { 2041 cyc_omni_handler_t hdlr; 2042 2043 if (deadman_seconds == 0) 2044 deadman_seconds = snoop_interval / MICROSEC; 2045 2046 if (snooping) 2047 deadman_enabled = 1; 2048 2049 hdlr.cyo_online = deadman_online; 2050 hdlr.cyo_offline = NULL; 2051 hdlr.cyo_arg = NULL; 2052 2053 mutex_enter(&cpu_lock); 2054 deadman_cyclic = cyclic_add_omni(&hdlr); 2055 mutex_exit(&cpu_lock); 2056 } 2057 2058 /* 2059 * tod_fault() is for updating tod validate mechanism state: 2060 * (1) TOD_NOFAULT: for resetting the state to 'normal'. 2061 * currently used for debugging only 2062 * (2) The following four cases detected by tod validate mechanism: 2063 * TOD_REVERSED: current tod value is less than previous value. 2064 * TOD_STALLED: current tod value hasn't advanced. 2065 * TOD_JUMPED: current tod value advanced too far from previous value. 2066 * TOD_RATECHANGED: the ratio between average tod delta and 2067 * average tick delta has changed. 2068 * (3) TOD_RDONLY: when the TOD clock is not writeable e.g. because it is 2069 * a virtual TOD provided by a hypervisor. 2070 */ 2071 enum tod_fault_type 2072 tod_fault(enum tod_fault_type ftype, int off) 2073 { 2074 ASSERT(MUTEX_HELD(&tod_lock)); 2075 2076 if (tod_faulted != ftype) { 2077 switch (ftype) { 2078 case TOD_NOFAULT: 2079 plat_tod_fault(TOD_NOFAULT); 2080 cmn_err(CE_NOTE, "Restarted tracking " 2081 "Time of Day clock."); 2082 tod_faulted = ftype; 2083 break; 2084 case TOD_REVERSED: 2085 case TOD_JUMPED: 2086 if (tod_faulted == TOD_NOFAULT) { 2087 plat_tod_fault(ftype); 2088 cmn_err(CE_WARN, "Time of Day clock error: " 2089 "reason [%s by 0x%x]. -- " 2090 " Stopped tracking Time Of Day clock.", 2091 tod_fault_table[ftype], off); 2092 tod_faulted = ftype; 2093 } 2094 break; 2095 case TOD_STALLED: 2096 case TOD_RATECHANGED: 2097 if (tod_faulted == TOD_NOFAULT) { 2098 plat_tod_fault(ftype); 2099 cmn_err(CE_WARN, "Time of Day clock error: " 2100 "reason [%s]. -- " 2101 " Stopped tracking Time Of Day clock.", 2102 tod_fault_table[ftype]); 2103 tod_faulted = ftype; 2104 } 2105 break; 2106 case TOD_RDONLY: 2107 if (tod_faulted == TOD_NOFAULT) { 2108 plat_tod_fault(ftype); 2109 cmn_err(CE_NOTE, "!Time of Day clock is " 2110 "Read-Only; set of Date/Time will not " 2111 "persist across reboot."); 2112 tod_faulted = ftype; 2113 } 2114 break; 2115 default: 2116 break; 2117 } 2118 } 2119 return (tod_faulted); 2120 } 2121 2122 /* 2123 * Two functions that allow tod_status_flag to be manipulated by functions 2124 * external to this file. 2125 */ 2126 2127 void 2128 tod_status_set(int tod_flag) 2129 { 2130 tod_status_flag |= tod_flag; 2131 } 2132 2133 void 2134 tod_status_clear(int tod_flag) 2135 { 2136 tod_status_flag &= ~tod_flag; 2137 } 2138 2139 /* 2140 * Record a timestamp and the value passed to tod_set(). The next call to 2141 * tod_validate() can use these values, prev_set_tick and prev_set_tod, 2142 * when checking the timestruc_t returned by tod_get(). Ordinarily, 2143 * tod_validate() will use prev_tick and prev_tod for this task but these 2144 * become obsolete, and will be re-assigned with the prev_set_* values, 2145 * in the case when the TOD is re-written. 2146 */ 2147 void 2148 tod_set_prev(timestruc_t ts) 2149 { 2150 if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) || 2151 tod_validate_deferred) { 2152 return; 2153 } 2154 prev_set_tick = gethrtime(); 2155 /* 2156 * A negative value will be set to zero in utc_to_tod() so we fake 2157 * a zero here in such a case. This would need to change if the 2158 * behavior of utc_to_tod() changes. 2159 */ 2160 prev_set_tod = ts.tv_sec < 0 ? 0 : ts.tv_sec; 2161 } 2162 2163 /* 2164 * tod_validate() is used for checking values returned by tod_get(). 2165 * Four error cases can be detected by this routine: 2166 * TOD_REVERSED: current tod value is less than previous. 2167 * TOD_STALLED: current tod value hasn't advanced. 2168 * TOD_JUMPED: current tod value advanced too far from previous value. 2169 * TOD_RATECHANGED: the ratio between average tod delta and 2170 * average tick delta has changed. 2171 */ 2172 time_t 2173 tod_validate(time_t tod) 2174 { 2175 time_t diff_tod; 2176 hrtime_t diff_tick; 2177 2178 long dtick; 2179 int dtick_delta; 2180 2181 int off = 0; 2182 enum tod_fault_type tod_bad = TOD_NOFAULT; 2183 2184 static int firsttime = 1; 2185 2186 static time_t prev_tod = 0; 2187 static hrtime_t prev_tick = 0; 2188 static long dtick_avg = TOD_REF_FREQ; 2189 2190 int cpr_resume_done = 0; 2191 int dr_resume_done = 0; 2192 2193 hrtime_t tick = gethrtime(); 2194 2195 ASSERT(MUTEX_HELD(&tod_lock)); 2196 2197 /* 2198 * tod_validate_enable is patchable via /etc/system. 2199 * If TOD is already faulted, or if TOD validation is deferred, 2200 * there is nothing to do. 2201 */ 2202 if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) || 2203 tod_validate_deferred) { 2204 return (tod); 2205 } 2206 2207 /* 2208 * If this is the first time through, we just need to save the tod 2209 * we were called with and hrtime so we can use them next time to 2210 * validate tod_get(). 2211 */ 2212 if (firsttime) { 2213 firsttime = 0; 2214 prev_tod = tod; 2215 prev_tick = tick; 2216 return (tod); 2217 } 2218 2219 /* 2220 * Handle any flags that have been turned on by tod_status_set(). 2221 * In the case where a tod_set() is done and then a subsequent 2222 * tod_get() fails (ie, both TOD_SET_DONE and TOD_GET_FAILED are 2223 * true), we treat the TOD_GET_FAILED with precedence by switching 2224 * off the flag, returning tod and leaving TOD_SET_DONE asserted 2225 * until such time as tod_get() completes successfully. 2226 */ 2227 if (tod_status_flag & TOD_GET_FAILED) { 2228 /* 2229 * tod_get() has encountered an issue, possibly transitory, 2230 * when reading TOD. We'll just return the incoming tod 2231 * value (which is actually hrestime.tv_sec in this case) 2232 * and when we get a genuine tod, following a successful 2233 * tod_get(), we can validate using prev_tod and prev_tick. 2234 */ 2235 tod_status_flag &= ~TOD_GET_FAILED; 2236 return (tod); 2237 } else if (tod_status_flag & TOD_SET_DONE) { 2238 /* 2239 * TOD has been modified. Just before the TOD was written, 2240 * tod_set_prev() saved tod and hrtime; we can now use 2241 * those values, prev_set_tod and prev_set_tick, to validate 2242 * the incoming tod that's just been read. 2243 */ 2244 prev_tod = prev_set_tod; 2245 prev_tick = prev_set_tick; 2246 dtick_avg = TOD_REF_FREQ; 2247 tod_status_flag &= ~TOD_SET_DONE; 2248 /* 2249 * If a tod_set() preceded a cpr_suspend() without an 2250 * intervening tod_validate(), we need to ensure that a 2251 * TOD_JUMPED condition is ignored. 2252 * Note this isn't a concern in the case of DR as we've 2253 * just reassigned dtick_avg, above. 2254 */ 2255 if (tod_status_flag & TOD_CPR_RESUME_DONE) { 2256 cpr_resume_done = 1; 2257 tod_status_flag &= ~TOD_CPR_RESUME_DONE; 2258 } 2259 } else if (tod_status_flag & TOD_CPR_RESUME_DONE) { 2260 /* 2261 * The system's coming back from a checkpoint resume. 2262 */ 2263 cpr_resume_done = 1; 2264 tod_status_flag &= ~TOD_CPR_RESUME_DONE; 2265 /* 2266 * We need to handle the possibility of a CPR suspend 2267 * operation having been initiated whilst a DR event was 2268 * in-flight. 2269 */ 2270 if (tod_status_flag & TOD_DR_RESUME_DONE) { 2271 dr_resume_done = 1; 2272 tod_status_flag &= ~TOD_DR_RESUME_DONE; 2273 } 2274 } else if (tod_status_flag & TOD_DR_RESUME_DONE) { 2275 /* 2276 * A Dynamic Reconfiguration event has taken place. 2277 */ 2278 dr_resume_done = 1; 2279 tod_status_flag &= ~TOD_DR_RESUME_DONE; 2280 } 2281 2282 /* test hook */ 2283 switch (tod_unit_test) { 2284 case 1: /* for testing jumping tod */ 2285 tod += tod_test_injector; 2286 tod_unit_test = 0; 2287 break; 2288 case 2: /* for testing stuck tod bit */ 2289 tod |= 1 << tod_test_injector; 2290 tod_unit_test = 0; 2291 break; 2292 case 3: /* for testing stalled tod */ 2293 tod = prev_tod; 2294 tod_unit_test = 0; 2295 break; 2296 case 4: /* reset tod fault status */ 2297 (void) tod_fault(TOD_NOFAULT, 0); 2298 tod_unit_test = 0; 2299 break; 2300 default: 2301 break; 2302 } 2303 2304 diff_tod = tod - prev_tod; 2305 diff_tick = tick - prev_tick; 2306 2307 ASSERT(diff_tick >= 0); 2308 2309 if (diff_tod < 0) { 2310 /* ERROR - tod reversed */ 2311 tod_bad = TOD_REVERSED; 2312 off = (int)(prev_tod - tod); 2313 } else if (diff_tod == 0) { 2314 /* tod did not advance */ 2315 if (diff_tick > TOD_STALL_THRESHOLD) { 2316 /* ERROR - tod stalled */ 2317 tod_bad = TOD_STALLED; 2318 } else { 2319 /* 2320 * Make sure we don't update prev_tick 2321 * so that diff_tick is calculated since 2322 * the first diff_tod == 0 2323 */ 2324 return (tod); 2325 } 2326 } else { 2327 /* calculate dtick */ 2328 dtick = diff_tick / diff_tod; 2329 2330 /* update dtick averages */ 2331 dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N); 2332 2333 /* 2334 * Calculate dtick_delta as 2335 * variation from reference freq in quartiles 2336 */ 2337 dtick_delta = (dtick_avg - TOD_REF_FREQ) / 2338 (TOD_REF_FREQ >> 2); 2339 2340 /* 2341 * Even with a perfectly functioning TOD device, 2342 * when the number of elapsed seconds is low the 2343 * algorithm can calculate a rate that is beyond 2344 * tolerance, causing an error. The algorithm is 2345 * inaccurate when elapsed time is low (less than 2346 * 5 seconds). 2347 */ 2348 if (diff_tod > 4) { 2349 if (dtick < TOD_JUMP_THRESHOLD) { 2350 /* 2351 * If we've just done a CPR resume, we detect 2352 * a jump in the TOD but, actually, what's 2353 * happened is that the TOD has been increasing 2354 * whilst the system was suspended and the tick 2355 * count hasn't kept up. We consider the first 2356 * occurrence of this after a resume as normal 2357 * and ignore it; otherwise, in a non-resume 2358 * case, we regard it as a TOD problem. 2359 */ 2360 if (!cpr_resume_done) { 2361 /* ERROR - tod jumped */ 2362 tod_bad = TOD_JUMPED; 2363 off = (int)diff_tod; 2364 } 2365 } 2366 if (dtick_delta) { 2367 /* 2368 * If we've just done a DR resume, dtick_avg 2369 * can go a bit askew so we reset it and carry 2370 * on; otherwise, the TOD is in error. 2371 */ 2372 if (dr_resume_done) { 2373 dtick_avg = TOD_REF_FREQ; 2374 } else { 2375 /* ERROR - change in clock rate */ 2376 tod_bad = TOD_RATECHANGED; 2377 } 2378 } 2379 } 2380 } 2381 2382 if (tod_bad != TOD_NOFAULT) { 2383 (void) tod_fault(tod_bad, off); 2384 2385 /* 2386 * Disable dosynctodr since we are going to fault 2387 * the TOD chip anyway here 2388 */ 2389 dosynctodr = 0; 2390 2391 /* 2392 * Set tod to the correct value from hrestime 2393 */ 2394 tod = hrestime.tv_sec; 2395 } 2396 2397 prev_tod = tod; 2398 prev_tick = tick; 2399 return (tod); 2400 } 2401 2402 static void 2403 calcloadavg(int nrun, uint64_t *hp_ave) 2404 { 2405 static int64_t f[3] = { 135, 27, 9 }; 2406 uint_t i; 2407 int64_t q, r; 2408 2409 /* 2410 * Compute load average over the last 1, 5, and 15 minutes 2411 * (60, 300, and 900 seconds). The constants in f[3] are for 2412 * exponential decay: 2413 * (1 - exp(-1/60)) << 13 = 135, 2414 * (1 - exp(-1/300)) << 13 = 27, 2415 * (1 - exp(-1/900)) << 13 = 9. 2416 */ 2417 2418 /* 2419 * a little hoop-jumping to avoid integer overflow 2420 */ 2421 for (i = 0; i < 3; i++) { 2422 q = (hp_ave[i] >> 16) << 7; 2423 r = (hp_ave[i] & 0xffff) << 7; 2424 hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 2425 } 2426 } 2427 2428 /* 2429 * lbolt_hybrid() is used by ddi_get_lbolt() and ddi_get_lbolt64() to 2430 * calculate the value of lbolt according to the current mode. In the event 2431 * driven mode (the default), lbolt is calculated by dividing the current hires 2432 * time by the number of nanoseconds per clock tick. In the cyclic driven mode 2433 * an internal variable is incremented at each firing of the lbolt cyclic 2434 * and returned by lbolt_cyclic_driven(). 2435 * 2436 * The system will transition from event to cyclic driven mode when the number 2437 * of calls to lbolt_event_driven() exceeds the (per CPU) threshold within a 2438 * window of time. It does so by reprograming lbolt_cyclic from CY_INFINITY to 2439 * nsec_per_tick. The lbolt cyclic will remain ON while at least one CPU is 2440 * causing enough activity to cross the thresholds. 2441 */ 2442 int64_t 2443 lbolt_bootstrap(void) 2444 { 2445 return (0); 2446 } 2447 2448 /* ARGSUSED */ 2449 uint_t 2450 lbolt_ev_to_cyclic(caddr_t arg1, caddr_t arg2) 2451 { 2452 hrtime_t ts, exp; 2453 int ret; 2454 2455 ASSERT(lbolt_hybrid != lbolt_cyclic_driven); 2456 2457 kpreempt_disable(); 2458 2459 ts = gethrtime(); 2460 lb_info->lbi_internal = (ts/nsec_per_tick); 2461 2462 /* 2463 * Align the next expiration to a clock tick boundary. 2464 */ 2465 exp = ts + nsec_per_tick - 1; 2466 exp = (exp/nsec_per_tick) * nsec_per_tick; 2467 2468 ret = cyclic_reprogram(lb_info->id.lbi_cyclic_id, exp); 2469 ASSERT(ret); 2470 2471 lbolt_hybrid = lbolt_cyclic_driven; 2472 lb_info->lbi_cyc_deactivate = B_FALSE; 2473 lb_info->lbi_cyc_deac_start = lb_info->lbi_internal; 2474 2475 kpreempt_enable(); 2476 2477 ret = atomic_dec_32_nv(&lb_info->lbi_token); 2478 ASSERT(ret == 0); 2479 2480 return (1); 2481 } 2482 2483 int64_t 2484 lbolt_event_driven(void) 2485 { 2486 hrtime_t ts; 2487 int64_t lb; 2488 int ret, cpu = CPU->cpu_seqid; 2489 2490 ts = gethrtime(); 2491 ASSERT(ts > 0); 2492 2493 ASSERT(nsec_per_tick > 0); 2494 lb = (ts/nsec_per_tick); 2495 2496 /* 2497 * Switch to cyclic mode if the number of calls to this routine 2498 * has reached the threshold within the interval. 2499 */ 2500 if ((lb - lb_cpu[cpu].lbc_cnt_start) < lb_info->lbi_thresh_interval) { 2501 2502 if (--lb_cpu[cpu].lbc_counter == 0) { 2503 /* 2504 * Reached the threshold within the interval, reset 2505 * the usage statistics. 2506 */ 2507 lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls; 2508 lb_cpu[cpu].lbc_cnt_start = lb; 2509 2510 /* 2511 * Make sure only one thread reprograms the 2512 * lbolt cyclic and changes the mode. 2513 */ 2514 if (panicstr == NULL && 2515 atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) { 2516 2517 if (lbolt_hybrid == lbolt_cyclic_driven) { 2518 ret = atomic_dec_32_nv( 2519 &lb_info->lbi_token); 2520 ASSERT(ret == 0); 2521 } else { 2522 lbolt_softint_post(); 2523 } 2524 } 2525 } 2526 } else { 2527 /* 2528 * Exceeded the interval, reset the usage statistics. 2529 */ 2530 lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls; 2531 lb_cpu[cpu].lbc_cnt_start = lb; 2532 } 2533 2534 ASSERT(lb >= lb_info->lbi_debug_time); 2535 2536 return (lb - lb_info->lbi_debug_time); 2537 } 2538 2539 int64_t 2540 lbolt_cyclic_driven(void) 2541 { 2542 int64_t lb = lb_info->lbi_internal; 2543 int cpu; 2544 2545 /* 2546 * If a CPU has already prevented the lbolt cyclic from deactivating 2547 * itself, don't bother tracking the usage. Otherwise check if we're 2548 * within the interval and how the per CPU counter is doing. 2549 */ 2550 if (lb_info->lbi_cyc_deactivate) { 2551 cpu = CPU->cpu_seqid; 2552 if ((lb - lb_cpu[cpu].lbc_cnt_start) < 2553 lb_info->lbi_thresh_interval) { 2554 2555 if (lb_cpu[cpu].lbc_counter == 0) 2556 /* 2557 * Reached the threshold within the interval, 2558 * prevent the lbolt cyclic from turning itself 2559 * off. 2560 */ 2561 lb_info->lbi_cyc_deactivate = B_FALSE; 2562 else 2563 lb_cpu[cpu].lbc_counter--; 2564 } else { 2565 /* 2566 * Only reset the usage statistics when we have 2567 * exceeded the interval. 2568 */ 2569 lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls; 2570 lb_cpu[cpu].lbc_cnt_start = lb; 2571 } 2572 } 2573 2574 ASSERT(lb >= lb_info->lbi_debug_time); 2575 2576 return (lb - lb_info->lbi_debug_time); 2577 } 2578 2579 /* 2580 * The lbolt_cyclic() routine will fire at a nsec_per_tick interval to satisfy 2581 * performance needs of ddi_get_lbolt() and ddi_get_lbolt64() consumers. 2582 * It is inactive by default, and will be activated when switching from event 2583 * to cyclic driven lbolt. The cyclic will turn itself off unless signaled 2584 * by lbolt_cyclic_driven(). 2585 */ 2586 static void 2587 lbolt_cyclic(void) 2588 { 2589 int ret; 2590 2591 lb_info->lbi_internal++; 2592 2593 if (!lbolt_cyc_only) { 2594 2595 if (lb_info->lbi_cyc_deactivate) { 2596 /* 2597 * Switching from cyclic to event driven mode. 2598 */ 2599 if (panicstr == NULL && 2600 atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) { 2601 2602 if (lbolt_hybrid == lbolt_event_driven) { 2603 ret = atomic_dec_32_nv( 2604 &lb_info->lbi_token); 2605 ASSERT(ret == 0); 2606 return; 2607 } 2608 2609 kpreempt_disable(); 2610 2611 lbolt_hybrid = lbolt_event_driven; 2612 ret = cyclic_reprogram( 2613 lb_info->id.lbi_cyclic_id, 2614 CY_INFINITY); 2615 ASSERT(ret); 2616 2617 kpreempt_enable(); 2618 2619 ret = atomic_dec_32_nv(&lb_info->lbi_token); 2620 ASSERT(ret == 0); 2621 } 2622 } 2623 2624 /* 2625 * The lbolt cyclic should not try to deactivate itself before 2626 * the sampling period has elapsed. 2627 */ 2628 if (lb_info->lbi_internal - lb_info->lbi_cyc_deac_start >= 2629 lb_info->lbi_thresh_interval) { 2630 lb_info->lbi_cyc_deactivate = B_TRUE; 2631 lb_info->lbi_cyc_deac_start = lb_info->lbi_internal; 2632 } 2633 } 2634 } 2635 2636 /* 2637 * Since the lbolt service was historically cyclic driven, it must be 'stopped' 2638 * when the system drops into the kernel debugger. lbolt_debug_entry() is 2639 * called by the KDI system claim callbacks to record a hires timestamp at 2640 * debug enter time. lbolt_debug_return() is called by the sistem release 2641 * callbacks to account for the time spent in the debugger. The value is then 2642 * accumulated in the lb_info structure and used by lbolt_event_driven() and 2643 * lbolt_cyclic_driven(), as well as the mdb_get_lbolt() routine. 2644 */ 2645 void 2646 lbolt_debug_entry(void) 2647 { 2648 if (lbolt_hybrid != lbolt_bootstrap) { 2649 ASSERT(lb_info != NULL); 2650 lb_info->lbi_debug_ts = gethrtime(); 2651 } 2652 } 2653 2654 /* 2655 * Calculate the time spent in the debugger and add it to the lbolt info 2656 * structure. We also update the internal lbolt value in case we were in 2657 * cyclic driven mode going in. 2658 */ 2659 void 2660 lbolt_debug_return(void) 2661 { 2662 hrtime_t ts; 2663 2664 if (lbolt_hybrid != lbolt_bootstrap) { 2665 ASSERT(lb_info != NULL); 2666 ASSERT(nsec_per_tick > 0); 2667 2668 ts = gethrtime(); 2669 lb_info->lbi_internal = (ts/nsec_per_tick); 2670 lb_info->lbi_debug_time += 2671 ((ts - lb_info->lbi_debug_ts)/nsec_per_tick); 2672 2673 lb_info->lbi_debug_ts = 0; 2674 } 2675 } 2676