xref: /titanic_52/usr/src/uts/common/os/clock.c (revision c5aee8047f101b999b8f96ced79e802071372a52)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22 /*	  All Rights Reserved	*/
23 
24 /*
25  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
26  * Use is subject to license terms.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/t_lock.h>
31 #include <sys/types.h>
32 #include <sys/tuneable.h>
33 #include <sys/sysmacros.h>
34 #include <sys/systm.h>
35 #include <sys/cpuvar.h>
36 #include <sys/lgrp.h>
37 #include <sys/user.h>
38 #include <sys/proc.h>
39 #include <sys/callo.h>
40 #include <sys/kmem.h>
41 #include <sys/var.h>
42 #include <sys/cmn_err.h>
43 #include <sys/swap.h>
44 #include <sys/vmsystm.h>
45 #include <sys/class.h>
46 #include <sys/time.h>
47 #include <sys/debug.h>
48 #include <sys/vtrace.h>
49 #include <sys/spl.h>
50 #include <sys/atomic.h>
51 #include <sys/dumphdr.h>
52 #include <sys/archsystm.h>
53 #include <sys/fs/swapnode.h>
54 #include <sys/panic.h>
55 #include <sys/disp.h>
56 #include <sys/msacct.h>
57 #include <sys/mem_cage.h>
58 
59 #include <vm/page.h>
60 #include <vm/anon.h>
61 #include <vm/rm.h>
62 #include <sys/cyclic.h>
63 #include <sys/cpupart.h>
64 #include <sys/rctl.h>
65 #include <sys/task.h>
66 #include <sys/sdt.h>
67 #include <sys/ddi_timer.h>
68 #include <sys/random.h>
69 #include <sys/modctl.h>
70 
71 /*
72  * for NTP support
73  */
74 #include <sys/timex.h>
75 #include <sys/inttypes.h>
76 
77 #include <sys/sunddi.h>
78 #include <sys/clock_impl.h>
79 
80 /*
81  * clock() is called straight from the clock cyclic; see clock_init().
82  *
83  * Functions:
84  *	reprime clock
85  *	maintain date
86  *	jab the scheduler
87  */
88 
89 extern kcondvar_t	fsflush_cv;
90 extern sysinfo_t	sysinfo;
91 extern vminfo_t	vminfo;
92 extern int	idleswtch;	/* flag set while idle in pswtch() */
93 extern hrtime_t volatile devinfo_freeze;
94 
95 /*
96  * high-precision avenrun values.  These are needed to make the
97  * regular avenrun values accurate.
98  */
99 static uint64_t hp_avenrun[3];
100 int	avenrun[3];		/* FSCALED average run queue lengths */
101 time_t	time;	/* time in seconds since 1970 - for compatibility only */
102 
103 static struct loadavg_s loadavg;
104 /*
105  * Phase/frequency-lock loop (PLL/FLL) definitions
106  *
107  * The following variables are read and set by the ntp_adjtime() system
108  * call.
109  *
110  * time_state shows the state of the system clock, with values defined
111  * in the timex.h header file.
112  *
113  * time_status shows the status of the system clock, with bits defined
114  * in the timex.h header file.
115  *
116  * time_offset is used by the PLL/FLL to adjust the system time in small
117  * increments.
118  *
119  * time_constant determines the bandwidth or "stiffness" of the PLL.
120  *
121  * time_tolerance determines maximum frequency error or tolerance of the
122  * CPU clock oscillator and is a property of the architecture; however,
123  * in principle it could change as result of the presence of external
124  * discipline signals, for instance.
125  *
126  * time_precision is usually equal to the kernel tick variable; however,
127  * in cases where a precision clock counter or external clock is
128  * available, the resolution can be much less than this and depend on
129  * whether the external clock is working or not.
130  *
131  * time_maxerror is initialized by a ntp_adjtime() call and increased by
132  * the kernel once each second to reflect the maximum error bound
133  * growth.
134  *
135  * time_esterror is set and read by the ntp_adjtime() call, but
136  * otherwise not used by the kernel.
137  */
138 int32_t time_state = TIME_OK;	/* clock state */
139 int32_t time_status = STA_UNSYNC;	/* clock status bits */
140 int32_t time_offset = 0;		/* time offset (us) */
141 int32_t time_constant = 0;		/* pll time constant */
142 int32_t time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
143 int32_t time_precision = 1;	/* clock precision (us) */
144 int32_t time_maxerror = MAXPHASE;	/* maximum error (us) */
145 int32_t time_esterror = MAXPHASE;	/* estimated error (us) */
146 
147 /*
148  * The following variables establish the state of the PLL/FLL and the
149  * residual time and frequency offset of the local clock. The scale
150  * factors are defined in the timex.h header file.
151  *
152  * time_phase and time_freq are the phase increment and the frequency
153  * increment, respectively, of the kernel time variable.
154  *
155  * time_freq is set via ntp_adjtime() from a value stored in a file when
156  * the synchronization daemon is first started. Its value is retrieved
157  * via ntp_adjtime() and written to the file about once per hour by the
158  * daemon.
159  *
160  * time_adj is the adjustment added to the value of tick at each timer
161  * interrupt and is recomputed from time_phase and time_freq at each
162  * seconds rollover.
163  *
164  * time_reftime is the second's portion of the system time at the last
165  * call to ntp_adjtime(). It is used to adjust the time_freq variable
166  * and to increase the time_maxerror as the time since last update
167  * increases.
168  */
169 int32_t time_phase = 0;		/* phase offset (scaled us) */
170 int32_t time_freq = 0;		/* frequency offset (scaled ppm) */
171 int32_t time_adj = 0;		/* tick adjust (scaled 1 / hz) */
172 int32_t time_reftime = 0;		/* time at last adjustment (s) */
173 
174 /*
175  * The scale factors of the following variables are defined in the
176  * timex.h header file.
177  *
178  * pps_time contains the time at each calibration interval, as read by
179  * microtime(). pps_count counts the seconds of the calibration
180  * interval, the duration of which is nominally pps_shift in powers of
181  * two.
182  *
183  * pps_offset is the time offset produced by the time median filter
184  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
185  * this filter.
186  *
187  * pps_freq is the frequency offset produced by the frequency median
188  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
189  * by this filter.
190  *
191  * pps_usec is latched from a high resolution counter or external clock
192  * at pps_time. Here we want the hardware counter contents only, not the
193  * contents plus the time_tv.usec as usual.
194  *
195  * pps_valid counts the number of seconds since the last PPS update. It
196  * is used as a watchdog timer to disable the PPS discipline should the
197  * PPS signal be lost.
198  *
199  * pps_glitch counts the number of seconds since the beginning of an
200  * offset burst more than tick/2 from current nominal offset. It is used
201  * mainly to suppress error bursts due to priority conflicts between the
202  * PPS interrupt and timer interrupt.
203  *
204  * pps_intcnt counts the calibration intervals for use in the interval-
205  * adaptation algorithm. It's just too complicated for words.
206  */
207 struct timeval pps_time;	/* kernel time at last interval */
208 int32_t pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
209 int32_t pps_offset = 0;		/* pps time offset (us) */
210 int32_t pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
211 int32_t pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
212 int32_t pps_freq = 0;		/* frequency offset (scaled ppm) */
213 int32_t pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
214 int32_t pps_usec = 0;		/* microsec counter at last interval */
215 int32_t pps_valid = PPS_VALID;	/* pps signal watchdog counter */
216 int32_t pps_glitch = 0;		/* pps signal glitch counter */
217 int32_t pps_count = 0;		/* calibration interval counter (s) */
218 int32_t pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
219 int32_t pps_intcnt = 0;		/* intervals at current duration */
220 
221 /*
222  * PPS signal quality monitors
223  *
224  * pps_jitcnt counts the seconds that have been discarded because the
225  * jitter measured by the time median filter exceeds the limit MAXTIME
226  * (100 us).
227  *
228  * pps_calcnt counts the frequency calibration intervals, which are
229  * variable from 4 s to 256 s.
230  *
231  * pps_errcnt counts the calibration intervals which have been discarded
232  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
233  * calibration interval jitter exceeds two ticks.
234  *
235  * pps_stbcnt counts the calibration intervals that have been discarded
236  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
237  */
238 int32_t pps_jitcnt = 0;		/* jitter limit exceeded */
239 int32_t pps_calcnt = 0;		/* calibration intervals */
240 int32_t pps_errcnt = 0;		/* calibration errors */
241 int32_t pps_stbcnt = 0;		/* stability limit exceeded */
242 
243 kcondvar_t lbolt_cv;
244 
245 /*
246  * Hybrid lbolt implementation:
247  *
248  * The service historically provided by the lbolt and lbolt64 variables has
249  * been replaced by the ddi_get_lbolt() and ddi_get_lbolt64() routines, and the
250  * original symbols removed from the system. The once clock driven variables are
251  * now implemented in an event driven fashion, backed by gethrtime() coarsed to
252  * the appropriate clock resolution. The default event driven implementation is
253  * complemented by a cyclic driven one, active only during periods of intense
254  * activity around the DDI lbolt routines, when a lbolt specific cyclic is
255  * reprogramed to fire at a clock tick interval to serve consumers of lbolt who
256  * rely on the original low cost of consulting a memory position.
257  *
258  * The implementation uses the number of calls to these routines and the
259  * frequency of these to determine when to transition from event to cyclic
260  * driven and vice-versa. These values are kept on a per CPU basis for
261  * scalability reasons and to prevent CPUs from constantly invalidating a single
262  * cache line when modifying a global variable. The transition from event to
263  * cyclic mode happens once the thresholds are crossed, and activity on any CPU
264  * can cause such transition.
265  *
266  * The lbolt_hybrid function pointer is called by ddi_get_lbolt() and
267  * ddi_get_lbolt64(), and will point to lbolt_event_driven() or
268  * lbolt_cyclic_driven() according to the current mode. When the thresholds
269  * are exceeded, lbolt_event_driven() will reprogram the lbolt cyclic to
270  * fire at a nsec_per_tick interval and increment an internal variable at
271  * each firing. lbolt_hybrid will then point to lbolt_cyclic_driven(), which
272  * will simply return the value of such variable. lbolt_cyclic() will attempt
273  * to shut itself off at each threshold interval (sampling period for calls
274  * to the DDI lbolt routines), and return to the event driven mode, but will
275  * be prevented from doing so if lbolt_cyclic_driven() is being heavily used.
276  *
277  * lbolt_bootstrap is used during boot to serve lbolt consumers who don't wait
278  * for the cyclic subsystem to be intialized.
279  *
280  */
281 static int64_t lbolt_bootstrap(void);
282 int64_t lbolt_event_driven(void);
283 int64_t lbolt_cyclic_driven(void);
284 int64_t (*lbolt_hybrid)(void) = lbolt_bootstrap;
285 uint_t lbolt_ev_to_cyclic(caddr_t, caddr_t);
286 
287 /*
288  * lbolt's cyclic, installed by clock_init().
289  */
290 static void lbolt_cyclic(void);
291 
292 /*
293  * Tunable to keep lbolt in cyclic driven mode. This will prevent the system
294  * from switching back to event driven, once it reaches cyclic mode.
295  */
296 static boolean_t lbolt_cyc_only = B_FALSE;
297 
298 /*
299  * Cache aligned, per CPU structure with lbolt usage statistics.
300  */
301 static lbolt_cpu_t *lb_cpu;
302 
303 /*
304  * Single, cache aligned, structure with all the information required by
305  * the lbolt implementation.
306  */
307 lbolt_info_t *lb_info;
308 
309 
310 int one_sec = 1; /* turned on once every second */
311 static int fsflushcnt;	/* counter for t_fsflushr */
312 int	dosynctodr = 1;	/* patchable; enable/disable sync to TOD chip */
313 int	tod_needsync = 0;	/* need to sync tod chip with software time */
314 static int tod_broken = 0;	/* clock chip doesn't work */
315 time_t	boot_time = 0;		/* Boot time in seconds since 1970 */
316 cyclic_id_t clock_cyclic;	/* clock()'s cyclic_id */
317 cyclic_id_t deadman_cyclic;	/* deadman()'s cyclic_id */
318 cyclic_id_t ddi_timer_cyclic;	/* cyclic_timer()'s cyclic_id */
319 
320 extern void	clock_tick_schedule(int);
321 
322 static int lgrp_ticks;		/* counter to schedule lgrp load calcs */
323 
324 /*
325  * for tod fault detection
326  */
327 #define	TOD_REF_FREQ		((longlong_t)(NANOSEC))
328 #define	TOD_STALL_THRESHOLD	(TOD_REF_FREQ * 3 / 2)
329 #define	TOD_JUMP_THRESHOLD	(TOD_REF_FREQ / 2)
330 #define	TOD_FILTER_N		4
331 #define	TOD_FILTER_SETTLE	(4 * TOD_FILTER_N)
332 static int tod_faulted = TOD_NOFAULT;
333 static int tod_fault_reset_flag = 0;
334 
335 /* patchable via /etc/system */
336 int tod_validate_enable = 1;
337 
338 /* Diagnose/Limit messages about delay(9F) called from interrupt context */
339 int			delay_from_interrupt_diagnose = 0;
340 volatile uint32_t	delay_from_interrupt_msg = 20;
341 
342 /*
343  * On non-SPARC systems, TOD validation must be deferred until gethrtime
344  * returns non-zero values (after mach_clkinit's execution).
345  * On SPARC systems, it must be deferred until after hrtime_base
346  * and hres_last_tick are set (in the first invocation of hres_tick).
347  * Since in both cases the prerequisites occur before the invocation of
348  * tod_get() in clock(), the deferment is lifted there.
349  */
350 static boolean_t tod_validate_deferred = B_TRUE;
351 
352 /*
353  * tod_fault_table[] must be aligned with
354  * enum tod_fault_type in systm.h
355  */
356 static char *tod_fault_table[] = {
357 	"Reversed",			/* TOD_REVERSED */
358 	"Stalled",			/* TOD_STALLED */
359 	"Jumped",			/* TOD_JUMPED */
360 	"Changed in Clock Rate",	/* TOD_RATECHANGED */
361 	"Is Read-Only"			/* TOD_RDONLY */
362 	/*
363 	 * no strings needed for TOD_NOFAULT
364 	 */
365 };
366 
367 /*
368  * test hook for tod broken detection in tod_validate
369  */
370 int tod_unit_test = 0;
371 time_t tod_test_injector;
372 
373 #define	CLOCK_ADJ_HIST_SIZE	4
374 
375 static int	adj_hist_entry;
376 
377 int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE];
378 
379 static void calcloadavg(int, uint64_t *);
380 static int genloadavg(struct loadavg_s *);
381 static void loadavg_update();
382 
383 void (*cmm_clock_callout)() = NULL;
384 void (*cpucaps_clock_callout)() = NULL;
385 
386 extern clock_t clock_tick_proc_max;
387 
388 static int64_t deadman_counter = 0;
389 
390 static void
391 clock(void)
392 {
393 	kthread_t	*t;
394 	uint_t	nrunnable;
395 	uint_t	w_io;
396 	cpu_t	*cp;
397 	cpupart_t *cpupart;
398 	extern void set_anoninfo();
399 	extern	void	set_freemem();
400 	void	(*funcp)();
401 	int32_t ltemp;
402 	int64_t lltemp;
403 	int s;
404 	int do_lgrp_load;
405 	int i;
406 	clock_t now = LBOLT_NO_ACCOUNT;	/* current tick */
407 
408 	if (panicstr)
409 		return;
410 
411 	set_anoninfo();
412 	/*
413 	 * Make sure that 'freemem' do not drift too far from the truth
414 	 */
415 	set_freemem();
416 
417 
418 	/*
419 	 * Before the section which is repeated is executed, we do
420 	 * the time delta processing which occurs every clock tick
421 	 *
422 	 * There is additional processing which happens every time
423 	 * the nanosecond counter rolls over which is described
424 	 * below - see the section which begins with : if (one_sec)
425 	 *
426 	 * This section marks the beginning of the precision-kernel
427 	 * code fragment.
428 	 *
429 	 * First, compute the phase adjustment. If the low-order bits
430 	 * (time_phase) of the update overflow, bump the higher order
431 	 * bits (time_update).
432 	 */
433 	time_phase += time_adj;
434 	if (time_phase <= -FINEUSEC) {
435 		ltemp = -time_phase / SCALE_PHASE;
436 		time_phase += ltemp * SCALE_PHASE;
437 		s = hr_clock_lock();
438 		timedelta -= ltemp * (NANOSEC/MICROSEC);
439 		hr_clock_unlock(s);
440 	} else if (time_phase >= FINEUSEC) {
441 		ltemp = time_phase / SCALE_PHASE;
442 		time_phase -= ltemp * SCALE_PHASE;
443 		s = hr_clock_lock();
444 		timedelta += ltemp * (NANOSEC/MICROSEC);
445 		hr_clock_unlock(s);
446 	}
447 
448 	/*
449 	 * End of precision-kernel code fragment which is processed
450 	 * every timer interrupt.
451 	 *
452 	 * Continue with the interrupt processing as scheduled.
453 	 */
454 	/*
455 	 * Count the number of runnable threads and the number waiting
456 	 * for some form of I/O to complete -- gets added to
457 	 * sysinfo.waiting.  To know the state of the system, must add
458 	 * wait counts from all CPUs.  Also add up the per-partition
459 	 * statistics.
460 	 */
461 	w_io = 0;
462 	nrunnable = 0;
463 
464 	/*
465 	 * keep track of when to update lgrp/part loads
466 	 */
467 
468 	do_lgrp_load = 0;
469 	if (lgrp_ticks++ >= hz / 10) {
470 		lgrp_ticks = 0;
471 		do_lgrp_load = 1;
472 	}
473 
474 	if (one_sec) {
475 		loadavg_update();
476 		deadman_counter++;
477 	}
478 
479 	/*
480 	 * First count the threads waiting on kpreempt queues in each
481 	 * CPU partition.
482 	 */
483 
484 	cpupart = cp_list_head;
485 	do {
486 		uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable;
487 
488 		cpupart->cp_updates++;
489 		nrunnable += cpupart_nrunnable;
490 		cpupart->cp_nrunnable_cum += cpupart_nrunnable;
491 		if (one_sec) {
492 			cpupart->cp_nrunning = 0;
493 			cpupart->cp_nrunnable = cpupart_nrunnable;
494 		}
495 	} while ((cpupart = cpupart->cp_next) != cp_list_head);
496 
497 
498 	/* Now count the per-CPU statistics. */
499 	cp = cpu_list;
500 	do {
501 		uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable;
502 
503 		nrunnable += cpu_nrunnable;
504 		cpupart = cp->cpu_part;
505 		cpupart->cp_nrunnable_cum += cpu_nrunnable;
506 		if (one_sec) {
507 			cpupart->cp_nrunnable += cpu_nrunnable;
508 			/*
509 			 * Update user, system, and idle cpu times.
510 			 */
511 			cpupart->cp_nrunning++;
512 			/*
513 			 * w_io is used to update sysinfo.waiting during
514 			 * one_second processing below.  Only gather w_io
515 			 * information when we walk the list of cpus if we're
516 			 * going to perform one_second processing.
517 			 */
518 			w_io += CPU_STATS(cp, sys.iowait);
519 		}
520 
521 		if (one_sec && (cp->cpu_flags & CPU_EXISTS)) {
522 			int i, load, change;
523 			hrtime_t intracct, intrused;
524 			const hrtime_t maxnsec = 1000000000;
525 			const int precision = 100;
526 
527 			/*
528 			 * Estimate interrupt load on this cpu each second.
529 			 * Computes cpu_intrload as %utilization (0-99).
530 			 */
531 
532 			/* add up interrupt time from all micro states */
533 			for (intracct = 0, i = 0; i < NCMSTATES; i++)
534 				intracct += cp->cpu_intracct[i];
535 			scalehrtime(&intracct);
536 
537 			/* compute nsec used in the past second */
538 			intrused = intracct - cp->cpu_intrlast;
539 			cp->cpu_intrlast = intracct;
540 
541 			/* limit the value for safety (and the first pass) */
542 			if (intrused >= maxnsec)
543 				intrused = maxnsec - 1;
544 
545 			/* calculate %time in interrupt */
546 			load = (precision * intrused) / maxnsec;
547 			ASSERT(load >= 0 && load < precision);
548 			change = cp->cpu_intrload - load;
549 
550 			/* jump to new max, or decay the old max */
551 			if (change < 0)
552 				cp->cpu_intrload = load;
553 			else if (change > 0)
554 				cp->cpu_intrload -= (change + 3) / 4;
555 
556 			DTRACE_PROBE3(cpu_intrload,
557 			    cpu_t *, cp,
558 			    hrtime_t, intracct,
559 			    hrtime_t, intrused);
560 		}
561 
562 		if (do_lgrp_load &&
563 		    (cp->cpu_flags & CPU_EXISTS)) {
564 			/*
565 			 * When updating the lgroup's load average,
566 			 * account for the thread running on the CPU.
567 			 * If the CPU is the current one, then we need
568 			 * to account for the underlying thread which
569 			 * got the clock interrupt not the thread that is
570 			 * handling the interrupt and caculating the load
571 			 * average
572 			 */
573 			t = cp->cpu_thread;
574 			if (CPU == cp)
575 				t = t->t_intr;
576 
577 			/*
578 			 * Account for the load average for this thread if
579 			 * it isn't the idle thread or it is on the interrupt
580 			 * stack and not the current CPU handling the clock
581 			 * interrupt
582 			 */
583 			if ((t && t != cp->cpu_idle_thread) || (CPU != cp &&
584 			    CPU_ON_INTR(cp))) {
585 				if (t->t_lpl == cp->cpu_lpl) {
586 					/* local thread */
587 					cpu_nrunnable++;
588 				} else {
589 					/*
590 					 * This is a remote thread, charge it
591 					 * against its home lgroup.  Note that
592 					 * we notice that a thread is remote
593 					 * only if it's currently executing.
594 					 * This is a reasonable approximation,
595 					 * since queued remote threads are rare.
596 					 * Note also that if we didn't charge
597 					 * it to its home lgroup, remote
598 					 * execution would often make a system
599 					 * appear balanced even though it was
600 					 * not, and thread placement/migration
601 					 * would often not be done correctly.
602 					 */
603 					lgrp_loadavg(t->t_lpl,
604 					    LGRP_LOADAVG_IN_THREAD_MAX, 0);
605 				}
606 			}
607 			lgrp_loadavg(cp->cpu_lpl,
608 			    cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1);
609 		}
610 	} while ((cp = cp->cpu_next) != cpu_list);
611 
612 	clock_tick_schedule(one_sec);
613 
614 	/*
615 	 * Check for a callout that needs be called from the clock
616 	 * thread to support the membership protocol in a clustered
617 	 * system.  Copy the function pointer so that we can reset
618 	 * this to NULL if needed.
619 	 */
620 	if ((funcp = cmm_clock_callout) != NULL)
621 		(*funcp)();
622 
623 	if ((funcp = cpucaps_clock_callout) != NULL)
624 		(*funcp)();
625 
626 	/*
627 	 * Wakeup the cageout thread waiters once per second.
628 	 */
629 	if (one_sec)
630 		kcage_tick();
631 
632 	if (one_sec) {
633 
634 		int drift, absdrift;
635 		timestruc_t tod;
636 		int s;
637 
638 		/*
639 		 * Beginning of precision-kernel code fragment executed
640 		 * every second.
641 		 *
642 		 * On rollover of the second the phase adjustment to be
643 		 * used for the next second is calculated.  Also, the
644 		 * maximum error is increased by the tolerance.  If the
645 		 * PPS frequency discipline code is present, the phase is
646 		 * increased to compensate for the CPU clock oscillator
647 		 * frequency error.
648 		 *
649 		 * On a 32-bit machine and given parameters in the timex.h
650 		 * header file, the maximum phase adjustment is +-512 ms
651 		 * and maximum frequency offset is (a tad less than)
652 		 * +-512 ppm. On a 64-bit machine, you shouldn't need to ask.
653 		 */
654 		time_maxerror += time_tolerance / SCALE_USEC;
655 
656 		/*
657 		 * Leap second processing. If in leap-insert state at
658 		 * the end of the day, the system clock is set back one
659 		 * second; if in leap-delete state, the system clock is
660 		 * set ahead one second. The microtime() routine or
661 		 * external clock driver will insure that reported time
662 		 * is always monotonic. The ugly divides should be
663 		 * replaced.
664 		 */
665 		switch (time_state) {
666 
667 		case TIME_OK:
668 			if (time_status & STA_INS)
669 				time_state = TIME_INS;
670 			else if (time_status & STA_DEL)
671 				time_state = TIME_DEL;
672 			break;
673 
674 		case TIME_INS:
675 			if (hrestime.tv_sec % 86400 == 0) {
676 				s = hr_clock_lock();
677 				hrestime.tv_sec--;
678 				hr_clock_unlock(s);
679 				time_state = TIME_OOP;
680 			}
681 			break;
682 
683 		case TIME_DEL:
684 			if ((hrestime.tv_sec + 1) % 86400 == 0) {
685 				s = hr_clock_lock();
686 				hrestime.tv_sec++;
687 				hr_clock_unlock(s);
688 				time_state = TIME_WAIT;
689 			}
690 			break;
691 
692 		case TIME_OOP:
693 			time_state = TIME_WAIT;
694 			break;
695 
696 		case TIME_WAIT:
697 			if (!(time_status & (STA_INS | STA_DEL)))
698 				time_state = TIME_OK;
699 		default:
700 			break;
701 		}
702 
703 		/*
704 		 * Compute the phase adjustment for the next second. In
705 		 * PLL mode, the offset is reduced by a fixed factor
706 		 * times the time constant. In FLL mode the offset is
707 		 * used directly. In either mode, the maximum phase
708 		 * adjustment for each second is clamped so as to spread
709 		 * the adjustment over not more than the number of
710 		 * seconds between updates.
711 		 */
712 		if (time_offset == 0)
713 			time_adj = 0;
714 		else if (time_offset < 0) {
715 			lltemp = -time_offset;
716 			if (!(time_status & STA_FLL)) {
717 				if ((1 << time_constant) >= SCALE_KG)
718 					lltemp *= (1 << time_constant) /
719 					    SCALE_KG;
720 				else
721 					lltemp = (lltemp / SCALE_KG) >>
722 					    time_constant;
723 			}
724 			if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
725 				lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
726 			time_offset += lltemp;
727 			time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
728 		} else {
729 			lltemp = time_offset;
730 			if (!(time_status & STA_FLL)) {
731 				if ((1 << time_constant) >= SCALE_KG)
732 					lltemp *= (1 << time_constant) /
733 					    SCALE_KG;
734 				else
735 					lltemp = (lltemp / SCALE_KG) >>
736 					    time_constant;
737 			}
738 			if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
739 				lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
740 			time_offset -= lltemp;
741 			time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
742 		}
743 
744 		/*
745 		 * Compute the frequency estimate and additional phase
746 		 * adjustment due to frequency error for the next
747 		 * second. When the PPS signal is engaged, gnaw on the
748 		 * watchdog counter and update the frequency computed by
749 		 * the pll and the PPS signal.
750 		 */
751 		pps_valid++;
752 		if (pps_valid == PPS_VALID) {
753 			pps_jitter = MAXTIME;
754 			pps_stabil = MAXFREQ;
755 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
756 			    STA_PPSWANDER | STA_PPSERROR);
757 		}
758 		lltemp = time_freq + pps_freq;
759 
760 		if (lltemp)
761 			time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz);
762 
763 		/*
764 		 * End of precision kernel-code fragment
765 		 *
766 		 * The section below should be modified if we are planning
767 		 * to use NTP for synchronization.
768 		 *
769 		 * Note: the clock synchronization code now assumes
770 		 * the following:
771 		 *   - if dosynctodr is 1, then compute the drift between
772 		 *	the tod chip and software time and adjust one or
773 		 *	the other depending on the circumstances
774 		 *
775 		 *   - if dosynctodr is 0, then the tod chip is independent
776 		 *	of the software clock and should not be adjusted,
777 		 *	but allowed to free run.  this allows NTP to sync.
778 		 *	hrestime without any interference from the tod chip.
779 		 */
780 
781 		tod_validate_deferred = B_FALSE;
782 		mutex_enter(&tod_lock);
783 		tod = tod_get();
784 		drift = tod.tv_sec - hrestime.tv_sec;
785 		absdrift = (drift >= 0) ? drift : -drift;
786 		if (tod_needsync || absdrift > 1) {
787 			int s;
788 			if (absdrift > 2) {
789 				if (!tod_broken && tod_faulted == TOD_NOFAULT) {
790 					s = hr_clock_lock();
791 					hrestime = tod;
792 					membar_enter();	/* hrestime visible */
793 					timedelta = 0;
794 					timechanged++;
795 					tod_needsync = 0;
796 					hr_clock_unlock(s);
797 					callout_hrestime();
798 
799 				}
800 			} else {
801 				if (tod_needsync || !dosynctodr) {
802 					gethrestime(&tod);
803 					tod_set(tod);
804 					s = hr_clock_lock();
805 					if (timedelta == 0)
806 						tod_needsync = 0;
807 					hr_clock_unlock(s);
808 				} else {
809 					/*
810 					 * If the drift is 2 seconds on the
811 					 * money, then the TOD is adjusting
812 					 * the clock;  record that.
813 					 */
814 					clock_adj_hist[adj_hist_entry++ %
815 					    CLOCK_ADJ_HIST_SIZE] = now;
816 					s = hr_clock_lock();
817 					timedelta = (int64_t)drift*NANOSEC;
818 					hr_clock_unlock(s);
819 				}
820 			}
821 		}
822 		one_sec = 0;
823 		time = gethrestime_sec();  /* for crusty old kmem readers */
824 		mutex_exit(&tod_lock);
825 
826 		/*
827 		 * Some drivers still depend on this... XXX
828 		 */
829 		cv_broadcast(&lbolt_cv);
830 
831 		sysinfo.updates++;
832 		vminfo.freemem += freemem;
833 		{
834 			pgcnt_t maxswap, resv, free;
835 			pgcnt_t avail =
836 			    MAX((spgcnt_t)(availrmem - swapfs_minfree), 0);
837 
838 			maxswap = k_anoninfo.ani_mem_resv +
839 			    k_anoninfo.ani_max +avail;
840 			free = k_anoninfo.ani_free + avail;
841 			resv = k_anoninfo.ani_phys_resv +
842 			    k_anoninfo.ani_mem_resv;
843 
844 			vminfo.swap_resv += resv;
845 			/* number of reserved and allocated pages */
846 #ifdef	DEBUG
847 			if (maxswap < free)
848 				cmn_err(CE_WARN, "clock: maxswap < free");
849 			if (maxswap < resv)
850 				cmn_err(CE_WARN, "clock: maxswap < resv");
851 #endif
852 			vminfo.swap_alloc += maxswap - free;
853 			vminfo.swap_avail += maxswap - resv;
854 			vminfo.swap_free += free;
855 		}
856 		if (nrunnable) {
857 			sysinfo.runque += nrunnable;
858 			sysinfo.runocc++;
859 		}
860 		if (nswapped) {
861 			sysinfo.swpque += nswapped;
862 			sysinfo.swpocc++;
863 		}
864 		sysinfo.waiting += w_io;
865 
866 		/*
867 		 * Wake up fsflush to write out DELWRI
868 		 * buffers, dirty pages and other cached
869 		 * administrative data, e.g. inodes.
870 		 */
871 		if (--fsflushcnt <= 0) {
872 			fsflushcnt = tune.t_fsflushr;
873 			cv_signal(&fsflush_cv);
874 		}
875 
876 		vmmeter();
877 		calcloadavg(genloadavg(&loadavg), hp_avenrun);
878 		for (i = 0; i < 3; i++)
879 			/*
880 			 * At the moment avenrun[] can only hold 31
881 			 * bits of load average as it is a signed
882 			 * int in the API. We need to ensure that
883 			 * hp_avenrun[i] >> (16 - FSHIFT) will not be
884 			 * too large. If it is, we put the largest value
885 			 * that we can use into avenrun[i]. This is
886 			 * kludgey, but about all we can do until we
887 			 * avenrun[] is declared as an array of uint64[]
888 			 */
889 			if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT)))
890 				avenrun[i] = (int32_t)(hp_avenrun[i] >>
891 				    (16 - FSHIFT));
892 			else
893 				avenrun[i] = 0x7fffffff;
894 
895 		cpupart = cp_list_head;
896 		do {
897 			calcloadavg(genloadavg(&cpupart->cp_loadavg),
898 			    cpupart->cp_hp_avenrun);
899 		} while ((cpupart = cpupart->cp_next) != cp_list_head);
900 
901 		/*
902 		 * Wake up the swapper thread if necessary.
903 		 */
904 		if (runin ||
905 		    (runout && (avefree < desfree || wake_sched_sec))) {
906 			t = &t0;
907 			thread_lock(t);
908 			if (t->t_state == TS_STOPPED) {
909 				runin = runout = 0;
910 				wake_sched_sec = 0;
911 				t->t_whystop = 0;
912 				t->t_whatstop = 0;
913 				t->t_schedflag &= ~TS_ALLSTART;
914 				THREAD_TRANSITION(t);
915 				setfrontdq(t);
916 			}
917 			thread_unlock(t);
918 		}
919 	}
920 
921 	/*
922 	 * Wake up the swapper if any high priority swapped-out threads
923 	 * became runable during the last tick.
924 	 */
925 	if (wake_sched) {
926 		t = &t0;
927 		thread_lock(t);
928 		if (t->t_state == TS_STOPPED) {
929 			runin = runout = 0;
930 			wake_sched = 0;
931 			t->t_whystop = 0;
932 			t->t_whatstop = 0;
933 			t->t_schedflag &= ~TS_ALLSTART;
934 			THREAD_TRANSITION(t);
935 			setfrontdq(t);
936 		}
937 		thread_unlock(t);
938 	}
939 }
940 
941 void
942 clock_init(void)
943 {
944 	cyc_handler_t clk_hdlr, timer_hdlr, lbolt_hdlr;
945 	cyc_time_t clk_when, lbolt_when;
946 	int i, sz;
947 	intptr_t buf;
948 
949 	/*
950 	 * Setup handler and timer for the clock cyclic.
951 	 */
952 	clk_hdlr.cyh_func = (cyc_func_t)clock;
953 	clk_hdlr.cyh_level = CY_LOCK_LEVEL;
954 	clk_hdlr.cyh_arg = NULL;
955 
956 	clk_when.cyt_when = 0;
957 	clk_when.cyt_interval = nsec_per_tick;
958 
959 	/*
960 	 * cyclic_timer is dedicated to the ddi interface, which
961 	 * uses the same clock resolution as the system one.
962 	 */
963 	timer_hdlr.cyh_func = (cyc_func_t)cyclic_timer;
964 	timer_hdlr.cyh_level = CY_LOCK_LEVEL;
965 	timer_hdlr.cyh_arg = NULL;
966 
967 	/*
968 	 * Setup the necessary structures for the lbolt cyclic and add the
969 	 * soft interrupt which will switch from event to cyclic mode when
970 	 * under high pil.
971 	 */
972 	lbolt_hdlr.cyh_func = (cyc_func_t)lbolt_cyclic;
973 	lbolt_hdlr.cyh_level = CY_LOCK_LEVEL;
974 	lbolt_hdlr.cyh_arg = NULL;
975 
976 	lbolt_when.cyt_interval = nsec_per_tick;
977 
978 	/*
979 	 * Allocate cache line aligned space for the per CPU lbolt data and
980 	 * lbolt info structures, and initialize them with their default
981 	 * values. Note that these structures are also cache line sized.
982 	 */
983 	sz = sizeof (lbolt_info_t) + CPU_CACHE_COHERENCE_SIZE;
984 	buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP);
985 	lb_info = (lbolt_info_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE);
986 
987 	if (hz != HZ_DEFAULT)
988 		lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL *
989 		    hz/HZ_DEFAULT;
990 	else
991 		lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL;
992 
993 	lb_info->lbi_thresh_calls = LBOLT_THRESH_CALLS;
994 
995 	sz = (sizeof (lbolt_cpu_t) * max_ncpus) + CPU_CACHE_COHERENCE_SIZE;
996 	buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP);
997 	lb_cpu = (lbolt_cpu_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE);
998 
999 	for (i = 0; i < max_ncpus; i++)
1000 		lb_cpu[i].lbc_counter = lb_info->lbi_thresh_calls;
1001 
1002 	lbolt_softint_add();
1003 
1004 	if (lbolt_cyc_only) {
1005 		lbolt_when.cyt_when = 0;
1006 		lbolt_hybrid = lbolt_cyclic_driven;
1007 	} else {
1008 		lbolt_when.cyt_when = CY_INFINITY;
1009 		lbolt_hybrid = lbolt_event_driven;
1010 	}
1011 
1012 	/*
1013 	 * Grab cpu_lock and install all three cyclics.
1014 	 */
1015 	mutex_enter(&cpu_lock);
1016 
1017 	clock_cyclic = cyclic_add(&clk_hdlr, &clk_when);
1018 	ddi_timer_cyclic = cyclic_add(&timer_hdlr, &clk_when);
1019 	lb_info->id.lbi_cyclic_id = cyclic_add(&lbolt_hdlr, &lbolt_when);
1020 
1021 	mutex_exit(&cpu_lock);
1022 }
1023 
1024 /*
1025  * Called before calcloadavg to get 10-sec moving loadavg together
1026  */
1027 
1028 static int
1029 genloadavg(struct loadavg_s *avgs)
1030 {
1031 	int avg;
1032 	int spos; /* starting position */
1033 	int cpos; /* moving current position */
1034 	int i;
1035 	int slen;
1036 	hrtime_t hr_avg;
1037 
1038 	/* 10-second snapshot, calculate first positon */
1039 	if (avgs->lg_len == 0) {
1040 		return (0);
1041 	}
1042 	slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ;
1043 
1044 	spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 :
1045 	    S_LOADAVG_SZ + (avgs->lg_cur - 1);
1046 	for (i = hr_avg = 0; i < slen; i++) {
1047 		cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i);
1048 		hr_avg += avgs->lg_loads[cpos];
1049 	}
1050 
1051 	hr_avg = hr_avg / slen;
1052 	avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
1053 
1054 	return (avg);
1055 }
1056 
1057 /*
1058  * Run every second from clock () to update the loadavg count available to the
1059  * system and cpu-partitions.
1060  *
1061  * This works by sampling the previous usr, sys, wait time elapsed,
1062  * computing a delta, and adding that delta to the elapsed usr, sys,
1063  * wait increase.
1064  */
1065 
1066 static void
1067 loadavg_update()
1068 {
1069 	cpu_t *cp;
1070 	cpupart_t *cpupart;
1071 	hrtime_t cpu_total;
1072 	int prev;
1073 
1074 	cp = cpu_list;
1075 	loadavg.lg_total = 0;
1076 
1077 	/*
1078 	 * first pass totals up per-cpu statistics for system and cpu
1079 	 * partitions
1080 	 */
1081 
1082 	do {
1083 		struct loadavg_s *lavg;
1084 
1085 		lavg = &cp->cpu_loadavg;
1086 
1087 		cpu_total = cp->cpu_acct[CMS_USER] +
1088 		    cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq;
1089 		/* compute delta against last total */
1090 		scalehrtime(&cpu_total);
1091 		prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 :
1092 		    S_LOADAVG_SZ + (lavg->lg_cur - 1);
1093 		if (lavg->lg_loads[prev] <= 0) {
1094 			lavg->lg_loads[lavg->lg_cur] = cpu_total;
1095 			cpu_total = 0;
1096 		} else {
1097 			lavg->lg_loads[lavg->lg_cur] = cpu_total;
1098 			cpu_total = cpu_total - lavg->lg_loads[prev];
1099 			if (cpu_total < 0)
1100 				cpu_total = 0;
1101 		}
1102 
1103 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
1104 		lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
1105 		    lavg->lg_len + 1 : S_LOADAVG_SZ;
1106 
1107 		loadavg.lg_total += cpu_total;
1108 		cp->cpu_part->cp_loadavg.lg_total += cpu_total;
1109 
1110 	} while ((cp = cp->cpu_next) != cpu_list);
1111 
1112 	loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total;
1113 	loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ;
1114 	loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ?
1115 	    loadavg.lg_len + 1 : S_LOADAVG_SZ;
1116 	/*
1117 	 * Second pass updates counts
1118 	 */
1119 	cpupart = cp_list_head;
1120 
1121 	do {
1122 		struct loadavg_s *lavg;
1123 
1124 		lavg = &cpupart->cp_loadavg;
1125 		lavg->lg_loads[lavg->lg_cur] = lavg->lg_total;
1126 		lavg->lg_total = 0;
1127 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
1128 		lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
1129 		    lavg->lg_len + 1 : S_LOADAVG_SZ;
1130 
1131 	} while ((cpupart = cpupart->cp_next) != cp_list_head);
1132 
1133 }
1134 
1135 /*
1136  * clock_update() - local clock update
1137  *
1138  * This routine is called by ntp_adjtime() to update the local clock
1139  * phase and frequency. The implementation is of an
1140  * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The
1141  * routine computes new time and frequency offset estimates for each
1142  * call.  The PPS signal itself determines the new time offset,
1143  * instead of the calling argument.  Presumably, calls to
1144  * ntp_adjtime() occur only when the caller believes the local clock
1145  * is valid within some bound (+-128 ms with NTP). If the caller's
1146  * time is far different than the PPS time, an argument will ensue,
1147  * and it's not clear who will lose.
1148  *
1149  * For uncompensated quartz crystal oscillatores and nominal update
1150  * intervals less than 1024 s, operation should be in phase-lock mode
1151  * (STA_FLL = 0), where the loop is disciplined to phase. For update
1152  * intervals greater than this, operation should be in frequency-lock
1153  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1154  *
1155  * Note: mutex(&tod_lock) is in effect.
1156  */
1157 void
1158 clock_update(int offset)
1159 {
1160 	int ltemp, mtemp, s;
1161 
1162 	ASSERT(MUTEX_HELD(&tod_lock));
1163 
1164 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1165 		return;
1166 	ltemp = offset;
1167 	if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))
1168 		ltemp = pps_offset;
1169 
1170 	/*
1171 	 * Scale the phase adjustment and clamp to the operating range.
1172 	 */
1173 	if (ltemp > MAXPHASE)
1174 		time_offset = MAXPHASE * SCALE_UPDATE;
1175 	else if (ltemp < -MAXPHASE)
1176 		time_offset = -(MAXPHASE * SCALE_UPDATE);
1177 	else
1178 		time_offset = ltemp * SCALE_UPDATE;
1179 
1180 	/*
1181 	 * Select whether the frequency is to be controlled and in which
1182 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
1183 	 * multiply/divide should be replaced someday.
1184 	 */
1185 	if (time_status & STA_FREQHOLD || time_reftime == 0)
1186 		time_reftime = hrestime.tv_sec;
1187 
1188 	mtemp = hrestime.tv_sec - time_reftime;
1189 	time_reftime = hrestime.tv_sec;
1190 
1191 	if (time_status & STA_FLL) {
1192 		if (mtemp >= MINSEC) {
1193 			ltemp = ((time_offset / mtemp) * (SCALE_USEC /
1194 			    SCALE_UPDATE));
1195 			if (ltemp)
1196 				time_freq += ltemp / SCALE_KH;
1197 		}
1198 	} else {
1199 		if (mtemp < MAXSEC) {
1200 			ltemp *= mtemp;
1201 			if (ltemp)
1202 				time_freq += (int)(((int64_t)ltemp *
1203 				    SCALE_USEC) / SCALE_KF)
1204 				    / (1 << (time_constant * 2));
1205 		}
1206 	}
1207 	if (time_freq > time_tolerance)
1208 		time_freq = time_tolerance;
1209 	else if (time_freq < -time_tolerance)
1210 		time_freq = -time_tolerance;
1211 
1212 	s = hr_clock_lock();
1213 	tod_needsync = 1;
1214 	hr_clock_unlock(s);
1215 }
1216 
1217 /*
1218  * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal
1219  *
1220  * This routine is called at each PPS interrupt in order to discipline
1221  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1222  * and leaves it in a handy spot for the clock() routine. It
1223  * integrates successive PPS phase differences and calculates the
1224  * frequency offset. This is used in clock() to discipline the CPU
1225  * clock oscillator so that intrinsic frequency error is cancelled out.
1226  * The code requires the caller to capture the time and hardware counter
1227  * value at the on-time PPS signal transition.
1228  *
1229  * Note that, on some Unix systems, this routine runs at an interrupt
1230  * priority level higher than the timer interrupt routine clock().
1231  * Therefore, the variables used are distinct from the clock()
1232  * variables, except for certain exceptions: The PPS frequency pps_freq
1233  * and phase pps_offset variables are determined by this routine and
1234  * updated atomically. The time_tolerance variable can be considered a
1235  * constant, since it is infrequently changed, and then only when the
1236  * PPS signal is disabled. The watchdog counter pps_valid is updated
1237  * once per second by clock() and is atomically cleared in this
1238  * routine.
1239  *
1240  * tvp is the time of the last tick; usec is a microsecond count since the
1241  * last tick.
1242  *
1243  * Note: In Solaris systems, the tick value is actually given by
1244  *       usec_per_tick.  This is called from the serial driver cdintr(),
1245  *	 or equivalent, at a high PIL.  Because the kernel keeps a
1246  *	 highresolution time, the following code can accept either
1247  *	 the traditional argument pair, or the current highres timestamp
1248  *       in tvp and zero in usec.
1249  */
1250 void
1251 ddi_hardpps(struct timeval *tvp, int usec)
1252 {
1253 	int u_usec, v_usec, bigtick;
1254 	time_t cal_sec;
1255 	int cal_usec;
1256 
1257 	/*
1258 	 * An occasional glitch can be produced when the PPS interrupt
1259 	 * occurs in the clock() routine before the time variable is
1260 	 * updated. Here the offset is discarded when the difference
1261 	 * between it and the last one is greater than tick/2, but not
1262 	 * if the interval since the first discard exceeds 30 s.
1263 	 */
1264 	time_status |= STA_PPSSIGNAL;
1265 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1266 	pps_valid = 0;
1267 	u_usec = -tvp->tv_usec;
1268 	if (u_usec < -(MICROSEC/2))
1269 		u_usec += MICROSEC;
1270 	v_usec = pps_offset - u_usec;
1271 	if (v_usec < 0)
1272 		v_usec = -v_usec;
1273 	if (v_usec > (usec_per_tick >> 1)) {
1274 		if (pps_glitch > MAXGLITCH) {
1275 			pps_glitch = 0;
1276 			pps_tf[2] = u_usec;
1277 			pps_tf[1] = u_usec;
1278 		} else {
1279 			pps_glitch++;
1280 			u_usec = pps_offset;
1281 		}
1282 	} else
1283 		pps_glitch = 0;
1284 
1285 	/*
1286 	 * A three-stage median filter is used to help deglitch the pps
1287 	 * time. The median sample becomes the time offset estimate; the
1288 	 * difference between the other two samples becomes the time
1289 	 * dispersion (jitter) estimate.
1290 	 */
1291 	pps_tf[2] = pps_tf[1];
1292 	pps_tf[1] = pps_tf[0];
1293 	pps_tf[0] = u_usec;
1294 	if (pps_tf[0] > pps_tf[1]) {
1295 		if (pps_tf[1] > pps_tf[2]) {
1296 			pps_offset = pps_tf[1];		/* 0 1 2 */
1297 			v_usec = pps_tf[0] - pps_tf[2];
1298 		} else if (pps_tf[2] > pps_tf[0]) {
1299 			pps_offset = pps_tf[0];		/* 2 0 1 */
1300 			v_usec = pps_tf[2] - pps_tf[1];
1301 		} else {
1302 			pps_offset = pps_tf[2];		/* 0 2 1 */
1303 			v_usec = pps_tf[0] - pps_tf[1];
1304 		}
1305 	} else {
1306 		if (pps_tf[1] < pps_tf[2]) {
1307 			pps_offset = pps_tf[1];		/* 2 1 0 */
1308 			v_usec = pps_tf[2] - pps_tf[0];
1309 		} else  if (pps_tf[2] < pps_tf[0]) {
1310 			pps_offset = pps_tf[0];		/* 1 0 2 */
1311 			v_usec = pps_tf[1] - pps_tf[2];
1312 		} else {
1313 			pps_offset = pps_tf[2];		/* 1 2 0 */
1314 			v_usec = pps_tf[1] - pps_tf[0];
1315 		}
1316 	}
1317 	if (v_usec > MAXTIME)
1318 		pps_jitcnt++;
1319 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
1320 	pps_jitter += v_usec / (1 << PPS_AVG);
1321 	if (pps_jitter > (MAXTIME >> 1))
1322 		time_status |= STA_PPSJITTER;
1323 
1324 	/*
1325 	 * During the calibration interval adjust the starting time when
1326 	 * the tick overflows. At the end of the interval compute the
1327 	 * duration of the interval and the difference of the hardware
1328 	 * counters at the beginning and end of the interval. This code
1329 	 * is deliciously complicated by the fact valid differences may
1330 	 * exceed the value of tick when using long calibration
1331 	 * intervals and small ticks. Note that the counter can be
1332 	 * greater than tick if caught at just the wrong instant, but
1333 	 * the values returned and used here are correct.
1334 	 */
1335 	bigtick = (int)usec_per_tick * SCALE_USEC;
1336 	pps_usec -= pps_freq;
1337 	if (pps_usec >= bigtick)
1338 		pps_usec -= bigtick;
1339 	if (pps_usec < 0)
1340 		pps_usec += bigtick;
1341 	pps_time.tv_sec++;
1342 	pps_count++;
1343 	if (pps_count < (1 << pps_shift))
1344 		return;
1345 	pps_count = 0;
1346 	pps_calcnt++;
1347 	u_usec = usec * SCALE_USEC;
1348 	v_usec = pps_usec - u_usec;
1349 	if (v_usec >= bigtick >> 1)
1350 		v_usec -= bigtick;
1351 	if (v_usec < -(bigtick >> 1))
1352 		v_usec += bigtick;
1353 	if (v_usec < 0)
1354 		v_usec = -(-v_usec >> pps_shift);
1355 	else
1356 		v_usec = v_usec >> pps_shift;
1357 	pps_usec = u_usec;
1358 	cal_sec = tvp->tv_sec;
1359 	cal_usec = tvp->tv_usec;
1360 	cal_sec -= pps_time.tv_sec;
1361 	cal_usec -= pps_time.tv_usec;
1362 	if (cal_usec < 0) {
1363 		cal_usec += MICROSEC;
1364 		cal_sec--;
1365 	}
1366 	pps_time = *tvp;
1367 
1368 	/*
1369 	 * Check for lost interrupts, noise, excessive jitter and
1370 	 * excessive frequency error. The number of timer ticks during
1371 	 * the interval may vary +-1 tick. Add to this a margin of one
1372 	 * tick for the PPS signal jitter and maximum frequency
1373 	 * deviation. If the limits are exceeded, the calibration
1374 	 * interval is reset to the minimum and we start over.
1375 	 */
1376 	u_usec = (int)usec_per_tick << 1;
1377 	if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) ||
1378 	    (cal_sec == 0 && cal_usec < u_usec)) ||
1379 	    v_usec > time_tolerance || v_usec < -time_tolerance) {
1380 		pps_errcnt++;
1381 		pps_shift = PPS_SHIFT;
1382 		pps_intcnt = 0;
1383 		time_status |= STA_PPSERROR;
1384 		return;
1385 	}
1386 
1387 	/*
1388 	 * A three-stage median filter is used to help deglitch the pps
1389 	 * frequency. The median sample becomes the frequency offset
1390 	 * estimate; the difference between the other two samples
1391 	 * becomes the frequency dispersion (stability) estimate.
1392 	 */
1393 	pps_ff[2] = pps_ff[1];
1394 	pps_ff[1] = pps_ff[0];
1395 	pps_ff[0] = v_usec;
1396 	if (pps_ff[0] > pps_ff[1]) {
1397 		if (pps_ff[1] > pps_ff[2]) {
1398 			u_usec = pps_ff[1];		/* 0 1 2 */
1399 			v_usec = pps_ff[0] - pps_ff[2];
1400 		} else if (pps_ff[2] > pps_ff[0]) {
1401 			u_usec = pps_ff[0];		/* 2 0 1 */
1402 			v_usec = pps_ff[2] - pps_ff[1];
1403 		} else {
1404 			u_usec = pps_ff[2];		/* 0 2 1 */
1405 			v_usec = pps_ff[0] - pps_ff[1];
1406 		}
1407 	} else {
1408 		if (pps_ff[1] < pps_ff[2]) {
1409 			u_usec = pps_ff[1];		/* 2 1 0 */
1410 			v_usec = pps_ff[2] - pps_ff[0];
1411 		} else  if (pps_ff[2] < pps_ff[0]) {
1412 			u_usec = pps_ff[0];		/* 1 0 2 */
1413 			v_usec = pps_ff[1] - pps_ff[2];
1414 		} else {
1415 			u_usec = pps_ff[2];		/* 1 2 0 */
1416 			v_usec = pps_ff[1] - pps_ff[0];
1417 		}
1418 	}
1419 
1420 	/*
1421 	 * Here the frequency dispersion (stability) is updated. If it
1422 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
1423 	 * offset is updated as well, but clamped to the tolerance. It
1424 	 * will be processed later by the clock() routine.
1425 	 */
1426 	v_usec = (v_usec >> 1) - pps_stabil;
1427 	if (v_usec < 0)
1428 		pps_stabil -= -v_usec >> PPS_AVG;
1429 	else
1430 		pps_stabil += v_usec >> PPS_AVG;
1431 	if (pps_stabil > MAXFREQ >> 2) {
1432 		pps_stbcnt++;
1433 		time_status |= STA_PPSWANDER;
1434 		return;
1435 	}
1436 	if (time_status & STA_PPSFREQ) {
1437 		if (u_usec < 0) {
1438 			pps_freq -= -u_usec >> PPS_AVG;
1439 			if (pps_freq < -time_tolerance)
1440 				pps_freq = -time_tolerance;
1441 			u_usec = -u_usec;
1442 		} else {
1443 			pps_freq += u_usec >> PPS_AVG;
1444 			if (pps_freq > time_tolerance)
1445 				pps_freq = time_tolerance;
1446 		}
1447 	}
1448 
1449 	/*
1450 	 * Here the calibration interval is adjusted. If the maximum
1451 	 * time difference is greater than tick / 4, reduce the interval
1452 	 * by half. If this is not the case for four consecutive
1453 	 * intervals, double the interval.
1454 	 */
1455 	if (u_usec << pps_shift > bigtick >> 2) {
1456 		pps_intcnt = 0;
1457 		if (pps_shift > PPS_SHIFT)
1458 			pps_shift--;
1459 	} else if (pps_intcnt >= 4) {
1460 		pps_intcnt = 0;
1461 		if (pps_shift < PPS_SHIFTMAX)
1462 			pps_shift++;
1463 	} else
1464 		pps_intcnt++;
1465 
1466 	/*
1467 	 * If recovering from kmdb, then make sure the tod chip gets resynced.
1468 	 * If we took an early exit above, then we don't yet have a stable
1469 	 * calibration signal to lock onto, so don't mark the tod for sync
1470 	 * until we get all the way here.
1471 	 */
1472 	{
1473 		int s = hr_clock_lock();
1474 
1475 		tod_needsync = 1;
1476 		hr_clock_unlock(s);
1477 	}
1478 }
1479 
1480 /*
1481  * Handle clock tick processing for a thread.
1482  * Check for timer action, enforce CPU rlimit, do profiling etc.
1483  */
1484 void
1485 clock_tick(kthread_t *t, int pending)
1486 {
1487 	struct proc *pp;
1488 	klwp_id_t    lwp;
1489 	struct as *as;
1490 	clock_t	ticks;
1491 	int	poke = 0;		/* notify another CPU */
1492 	int	user_mode;
1493 	size_t	 rss;
1494 	int i, total_usec, usec;
1495 	rctl_qty_t secs;
1496 
1497 	ASSERT(pending > 0);
1498 
1499 	/* Must be operating on a lwp/thread */
1500 	if ((lwp = ttolwp(t)) == NULL) {
1501 		panic("clock_tick: no lwp");
1502 		/*NOTREACHED*/
1503 	}
1504 
1505 	for (i = 0; i < pending; i++) {
1506 		CL_TICK(t);	/* Class specific tick processing */
1507 		DTRACE_SCHED1(tick, kthread_t *, t);
1508 	}
1509 
1510 	pp = ttoproc(t);
1511 
1512 	/* pp->p_lock makes sure that the thread does not exit */
1513 	ASSERT(MUTEX_HELD(&pp->p_lock));
1514 
1515 	user_mode = (lwp->lwp_state == LWP_USER);
1516 
1517 	ticks = (pp->p_utime + pp->p_stime) % hz;
1518 	/*
1519 	 * Update process times. Should use high res clock and state
1520 	 * changes instead of statistical sampling method. XXX
1521 	 */
1522 	if (user_mode) {
1523 		pp->p_utime += pending;
1524 	} else {
1525 		pp->p_stime += pending;
1526 	}
1527 
1528 	pp->p_ttime += pending;
1529 	as = pp->p_as;
1530 
1531 	/*
1532 	 * Update user profiling statistics. Get the pc from the
1533 	 * lwp when the AST happens.
1534 	 */
1535 	if (pp->p_prof.pr_scale) {
1536 		atomic_add_32(&lwp->lwp_oweupc, (int32_t)pending);
1537 		if (user_mode) {
1538 			poke = 1;
1539 			aston(t);
1540 		}
1541 	}
1542 
1543 	/*
1544 	 * If CPU was in user state, process lwp-virtual time
1545 	 * interval timer. The value passed to itimerdecr() has to be
1546 	 * in microseconds and has to be less than one second. Hence
1547 	 * this loop.
1548 	 */
1549 	total_usec = usec_per_tick * pending;
1550 	while (total_usec > 0) {
1551 		usec = MIN(total_usec, (MICROSEC - 1));
1552 		if (user_mode &&
1553 		    timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) &&
1554 		    itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec) == 0) {
1555 			poke = 1;
1556 			sigtoproc(pp, t, SIGVTALRM);
1557 		}
1558 		total_usec -= usec;
1559 	}
1560 
1561 	/*
1562 	 * If CPU was in user state, process lwp-profile
1563 	 * interval timer.
1564 	 */
1565 	total_usec = usec_per_tick * pending;
1566 	while (total_usec > 0) {
1567 		usec = MIN(total_usec, (MICROSEC - 1));
1568 		if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) &&
1569 		    itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec) == 0) {
1570 			poke = 1;
1571 			sigtoproc(pp, t, SIGPROF);
1572 		}
1573 		total_usec -= usec;
1574 	}
1575 
1576 	/*
1577 	 * Enforce CPU resource controls:
1578 	 *   (a) process.max-cpu-time resource control
1579 	 *
1580 	 * Perform the check only if we have accumulated more a second.
1581 	 */
1582 	if ((ticks + pending) >= hz) {
1583 		(void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp,
1584 		    (pp->p_utime + pp->p_stime)/hz, RCA_UNSAFE_SIGINFO);
1585 	}
1586 
1587 	/*
1588 	 *   (b) task.max-cpu-time resource control
1589 	 *
1590 	 * If we have accumulated enough ticks, increment the task CPU
1591 	 * time usage and test for the resource limit. This minimizes the
1592 	 * number of calls to the rct_test(). The task CPU time mutex
1593 	 * is highly contentious as many processes can be sharing a task.
1594 	 */
1595 	if (pp->p_ttime >= clock_tick_proc_max) {
1596 		secs = task_cpu_time_incr(pp->p_task, pp->p_ttime);
1597 		pp->p_ttime = 0;
1598 		if (secs) {
1599 			(void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls,
1600 			    pp, secs, RCA_UNSAFE_SIGINFO);
1601 		}
1602 	}
1603 
1604 	/*
1605 	 * Update memory usage for the currently running process.
1606 	 */
1607 	rss = rm_asrss(as);
1608 	PTOU(pp)->u_mem += rss;
1609 	if (rss > PTOU(pp)->u_mem_max)
1610 		PTOU(pp)->u_mem_max = rss;
1611 
1612 	/*
1613 	 * Notify the CPU the thread is running on.
1614 	 */
1615 	if (poke && t->t_cpu != CPU)
1616 		poke_cpu(t->t_cpu->cpu_id);
1617 }
1618 
1619 void
1620 profil_tick(uintptr_t upc)
1621 {
1622 	int ticks;
1623 	proc_t *p = ttoproc(curthread);
1624 	klwp_t *lwp = ttolwp(curthread);
1625 	struct prof *pr = &p->p_prof;
1626 
1627 	do {
1628 		ticks = lwp->lwp_oweupc;
1629 	} while (cas32(&lwp->lwp_oweupc, ticks, 0) != ticks);
1630 
1631 	mutex_enter(&p->p_pflock);
1632 	if (pr->pr_scale >= 2 && upc >= pr->pr_off) {
1633 		/*
1634 		 * Old-style profiling
1635 		 */
1636 		uint16_t *slot = pr->pr_base;
1637 		uint16_t old, new;
1638 		if (pr->pr_scale != 2) {
1639 			uintptr_t delta = upc - pr->pr_off;
1640 			uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) +
1641 			    (((delta & 0xffff) * pr->pr_scale) >> 16);
1642 			if (byteoff >= (uintptr_t)pr->pr_size) {
1643 				mutex_exit(&p->p_pflock);
1644 				return;
1645 			}
1646 			slot += byteoff / sizeof (uint16_t);
1647 		}
1648 		if (fuword16(slot, &old) < 0 ||
1649 		    (new = old + ticks) > SHRT_MAX ||
1650 		    suword16(slot, new) < 0) {
1651 			pr->pr_scale = 0;
1652 		}
1653 	} else if (pr->pr_scale == 1) {
1654 		/*
1655 		 * PC Sampling
1656 		 */
1657 		model_t model = lwp_getdatamodel(lwp);
1658 		int result;
1659 #ifdef __lint
1660 		model = model;
1661 #endif
1662 		while (ticks-- > 0) {
1663 			if (pr->pr_samples == pr->pr_size) {
1664 				/* buffer full, turn off sampling */
1665 				pr->pr_scale = 0;
1666 				break;
1667 			}
1668 			switch (SIZEOF_PTR(model)) {
1669 			case sizeof (uint32_t):
1670 				result = suword32(pr->pr_base, (uint32_t)upc);
1671 				break;
1672 #ifdef _LP64
1673 			case sizeof (uint64_t):
1674 				result = suword64(pr->pr_base, (uint64_t)upc);
1675 				break;
1676 #endif
1677 			default:
1678 				cmn_err(CE_WARN, "profil_tick: unexpected "
1679 				    "data model");
1680 				result = -1;
1681 				break;
1682 			}
1683 			if (result != 0) {
1684 				pr->pr_scale = 0;
1685 				break;
1686 			}
1687 			pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model);
1688 			pr->pr_samples++;
1689 		}
1690 	}
1691 	mutex_exit(&p->p_pflock);
1692 }
1693 
1694 static void
1695 delay_wakeup(void *arg)
1696 {
1697 	kthread_t	*t = arg;
1698 
1699 	mutex_enter(&t->t_delay_lock);
1700 	cv_signal(&t->t_delay_cv);
1701 	mutex_exit(&t->t_delay_lock);
1702 }
1703 
1704 /*
1705  * The delay(9F) man page indicates that it can only be called from user or
1706  * kernel context - detect and diagnose bad calls. The following macro will
1707  * produce a limited number of messages identifying bad callers.  This is done
1708  * in a macro so that caller() is meaningful. When a bad caller is identified,
1709  * switching to 'drv_usecwait(TICK_TO_USEC(ticks));' may be appropriate.
1710  */
1711 #define	DELAY_CONTEXT_CHECK()	{					\
1712 	uint32_t	m;						\
1713 	char		*f;						\
1714 	ulong_t		off;						\
1715 									\
1716 	m = delay_from_interrupt_msg;					\
1717 	if (delay_from_interrupt_diagnose && servicing_interrupt() &&	\
1718 	    !panicstr && !devinfo_freeze &&				\
1719 	    atomic_cas_32(&delay_from_interrupt_msg, m ? m : 1, m-1)) {	\
1720 		f = modgetsymname((uintptr_t)caller(), &off);		\
1721 		cmn_err(CE_WARN, "delay(9F) called from "		\
1722 		    "interrupt context: %s`%s",				\
1723 		    mod_containing_pc(caller()), f ? f : "...");	\
1724 	}								\
1725 }
1726 
1727 /*
1728  * delay_common: common delay code.
1729  */
1730 static void
1731 delay_common(clock_t ticks)
1732 {
1733 	kthread_t	*t = curthread;
1734 	clock_t		deadline;
1735 	clock_t		timeleft;
1736 	callout_id_t	id;
1737 
1738 	/* If timeouts aren't running all we can do is spin. */
1739 	if (panicstr || devinfo_freeze) {
1740 		/* Convert delay(9F) call into drv_usecwait(9F) call. */
1741 		if (ticks > 0)
1742 			drv_usecwait(TICK_TO_USEC(ticks));
1743 		return;
1744 	}
1745 
1746 	deadline = ddi_get_lbolt() + ticks;
1747 	while ((timeleft = deadline - ddi_get_lbolt()) > 0) {
1748 		mutex_enter(&t->t_delay_lock);
1749 		id = timeout_default(delay_wakeup, t, timeleft);
1750 		cv_wait(&t->t_delay_cv, &t->t_delay_lock);
1751 		mutex_exit(&t->t_delay_lock);
1752 		(void) untimeout_default(id, 0);
1753 	}
1754 }
1755 
1756 /*
1757  * Delay specified number of clock ticks.
1758  */
1759 void
1760 delay(clock_t ticks)
1761 {
1762 	DELAY_CONTEXT_CHECK();
1763 
1764 	delay_common(ticks);
1765 }
1766 
1767 /*
1768  * Delay a random number of clock ticks between 1 and ticks.
1769  */
1770 void
1771 delay_random(clock_t ticks)
1772 {
1773 	int	r;
1774 
1775 	DELAY_CONTEXT_CHECK();
1776 
1777 	(void) random_get_pseudo_bytes((void *)&r, sizeof (r));
1778 	if (ticks == 0)
1779 		ticks = 1;
1780 	ticks = (r % ticks) + 1;
1781 	delay_common(ticks);
1782 }
1783 
1784 /*
1785  * Like delay, but interruptible by a signal.
1786  */
1787 int
1788 delay_sig(clock_t ticks)
1789 {
1790 	kthread_t	*t = curthread;
1791 	clock_t		deadline;
1792 	clock_t		rc;
1793 
1794 	/* If timeouts aren't running all we can do is spin. */
1795 	if (panicstr || devinfo_freeze) {
1796 		if (ticks > 0)
1797 			drv_usecwait(TICK_TO_USEC(ticks));
1798 		return (0);
1799 	}
1800 
1801 	deadline = ddi_get_lbolt() + ticks;
1802 	mutex_enter(&t->t_delay_lock);
1803 	do {
1804 		rc = cv_timedwait_sig(&t->t_delay_cv,
1805 		    &t->t_delay_lock, deadline);
1806 		/* loop until past deadline or signaled */
1807 	} while (rc > 0);
1808 	mutex_exit(&t->t_delay_lock);
1809 	if (rc == 0)
1810 		return (EINTR);
1811 	return (0);
1812 }
1813 
1814 
1815 #define	SECONDS_PER_DAY 86400
1816 
1817 /*
1818  * Initialize the system time based on the TOD chip.  approx is used as
1819  * an approximation of time (e.g. from the filesystem) in the event that
1820  * the TOD chip has been cleared or is unresponsive.  An approx of -1
1821  * means the filesystem doesn't keep time.
1822  */
1823 void
1824 clkset(time_t approx)
1825 {
1826 	timestruc_t ts;
1827 	int spl;
1828 	int set_clock = 0;
1829 
1830 	mutex_enter(&tod_lock);
1831 	ts = tod_get();
1832 
1833 	if (ts.tv_sec > 365 * SECONDS_PER_DAY) {
1834 		/*
1835 		 * If the TOD chip is reporting some time after 1971,
1836 		 * then it probably didn't lose power or become otherwise
1837 		 * cleared in the recent past;  check to assure that
1838 		 * the time coming from the filesystem isn't in the future
1839 		 * according to the TOD chip.
1840 		 */
1841 		if (approx != -1 && approx > ts.tv_sec) {
1842 			cmn_err(CE_WARN, "Last shutdown is later "
1843 			    "than time on time-of-day chip; check date.");
1844 		}
1845 	} else {
1846 		/*
1847 		 * If the TOD chip isn't giving correct time, set it to the
1848 		 * greater of i) approx and ii) 1987. That way if approx
1849 		 * is negative or is earlier than 1987, we set the clock
1850 		 * back to a time when Oliver North, ALF and Dire Straits
1851 		 * were all on the collective brain:  1987.
1852 		 */
1853 		timestruc_t tmp;
1854 		time_t diagnose_date = (1987 - 1970) * 365 * SECONDS_PER_DAY;
1855 		ts.tv_sec = (approx > diagnose_date ? approx : diagnose_date);
1856 		ts.tv_nsec = 0;
1857 
1858 		/*
1859 		 * Attempt to write the new time to the TOD chip.  Set spl high
1860 		 * to avoid getting preempted between the tod_set and tod_get.
1861 		 */
1862 		spl = splhi();
1863 		tod_set(ts);
1864 		tmp = tod_get();
1865 		splx(spl);
1866 
1867 		if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) {
1868 			tod_broken = 1;
1869 			dosynctodr = 0;
1870 			cmn_err(CE_WARN, "Time-of-day chip unresponsive.");
1871 		} else {
1872 			cmn_err(CE_WARN, "Time-of-day chip had "
1873 			    "incorrect date; check and reset.");
1874 		}
1875 		set_clock = 1;
1876 	}
1877 
1878 	if (!boot_time) {
1879 		boot_time = ts.tv_sec;
1880 		set_clock = 1;
1881 	}
1882 
1883 	if (set_clock)
1884 		set_hrestime(&ts);
1885 
1886 	mutex_exit(&tod_lock);
1887 }
1888 
1889 int	timechanged;	/* for testing if the system time has been reset */
1890 
1891 void
1892 set_hrestime(timestruc_t *ts)
1893 {
1894 	int spl = hr_clock_lock();
1895 	hrestime = *ts;
1896 	membar_enter();	/* hrestime must be visible before timechanged++ */
1897 	timedelta = 0;
1898 	timechanged++;
1899 	hr_clock_unlock(spl);
1900 	callout_hrestime();
1901 }
1902 
1903 static uint_t deadman_seconds;
1904 static uint32_t deadman_panics;
1905 static int deadman_enabled = 0;
1906 static int deadman_panic_timers = 1;
1907 
1908 static void
1909 deadman(void)
1910 {
1911 	if (panicstr) {
1912 		/*
1913 		 * During panic, other CPUs besides the panic
1914 		 * master continue to handle cyclics and some other
1915 		 * interrupts.  The code below is intended to be
1916 		 * single threaded, so any CPU other than the master
1917 		 * must keep out.
1918 		 */
1919 		if (CPU->cpu_id != panic_cpu.cpu_id)
1920 			return;
1921 
1922 		if (!deadman_panic_timers)
1923 			return; /* allow all timers to be manually disabled */
1924 
1925 		/*
1926 		 * If we are generating a crash dump or syncing filesystems and
1927 		 * the corresponding timer is set, decrement it and re-enter
1928 		 * the panic code to abort it and advance to the next state.
1929 		 * The panic states and triggers are explained in panic.c.
1930 		 */
1931 		if (panic_dump) {
1932 			if (dump_timeleft && (--dump_timeleft == 0)) {
1933 				panic("panic dump timeout");
1934 				/*NOTREACHED*/
1935 			}
1936 		} else if (panic_sync) {
1937 			if (sync_timeleft && (--sync_timeleft == 0)) {
1938 				panic("panic sync timeout");
1939 				/*NOTREACHED*/
1940 			}
1941 		}
1942 
1943 		return;
1944 	}
1945 
1946 	if (deadman_counter != CPU->cpu_deadman_counter) {
1947 		CPU->cpu_deadman_counter = deadman_counter;
1948 		CPU->cpu_deadman_countdown = deadman_seconds;
1949 		return;
1950 	}
1951 
1952 	if (--CPU->cpu_deadman_countdown > 0)
1953 		return;
1954 
1955 	/*
1956 	 * Regardless of whether or not we actually bring the system down,
1957 	 * bump the deadman_panics variable.
1958 	 *
1959 	 * N.B. deadman_panics is incremented once for each CPU that
1960 	 * passes through here.  It's expected that all the CPUs will
1961 	 * detect this condition within one second of each other, so
1962 	 * when deadman_enabled is off, deadman_panics will
1963 	 * typically be a multiple of the total number of CPUs in
1964 	 * the system.
1965 	 */
1966 	atomic_add_32(&deadman_panics, 1);
1967 
1968 	if (!deadman_enabled) {
1969 		CPU->cpu_deadman_countdown = deadman_seconds;
1970 		return;
1971 	}
1972 
1973 	/*
1974 	 * If we're here, we want to bring the system down.
1975 	 */
1976 	panic("deadman: timed out after %d seconds of clock "
1977 	    "inactivity", deadman_seconds);
1978 	/*NOTREACHED*/
1979 }
1980 
1981 /*ARGSUSED*/
1982 static void
1983 deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when)
1984 {
1985 	cpu->cpu_deadman_counter = 0;
1986 	cpu->cpu_deadman_countdown = deadman_seconds;
1987 
1988 	hdlr->cyh_func = (cyc_func_t)deadman;
1989 	hdlr->cyh_level = CY_HIGH_LEVEL;
1990 	hdlr->cyh_arg = NULL;
1991 
1992 	/*
1993 	 * Stagger the CPUs so that they don't all run deadman() at
1994 	 * the same time.  Simplest reason to do this is to make it
1995 	 * more likely that only one CPU will panic in case of a
1996 	 * timeout.  This is (strictly speaking) an aesthetic, not a
1997 	 * technical consideration.
1998 	 */
1999 	when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU);
2000 	when->cyt_interval = NANOSEC;
2001 }
2002 
2003 
2004 void
2005 deadman_init(void)
2006 {
2007 	cyc_omni_handler_t hdlr;
2008 
2009 	if (deadman_seconds == 0)
2010 		deadman_seconds = snoop_interval / MICROSEC;
2011 
2012 	if (snooping)
2013 		deadman_enabled = 1;
2014 
2015 	hdlr.cyo_online = deadman_online;
2016 	hdlr.cyo_offline = NULL;
2017 	hdlr.cyo_arg = NULL;
2018 
2019 	mutex_enter(&cpu_lock);
2020 	deadman_cyclic = cyclic_add_omni(&hdlr);
2021 	mutex_exit(&cpu_lock);
2022 }
2023 
2024 /*
2025  * tod_fault() is for updating tod validate mechanism state:
2026  * (1) TOD_NOFAULT: for resetting the state to 'normal'.
2027  *     currently used for debugging only
2028  * (2) The following four cases detected by tod validate mechanism:
2029  *       TOD_REVERSED: current tod value is less than previous value.
2030  *       TOD_STALLED: current tod value hasn't advanced.
2031  *       TOD_JUMPED: current tod value advanced too far from previous value.
2032  *       TOD_RATECHANGED: the ratio between average tod delta and
2033  *       average tick delta has changed.
2034  * (3) TOD_RDONLY: when the TOD clock is not writeable e.g. because it is
2035  *     a virtual TOD provided by a hypervisor.
2036  */
2037 enum tod_fault_type
2038 tod_fault(enum tod_fault_type ftype, int off)
2039 {
2040 	ASSERT(MUTEX_HELD(&tod_lock));
2041 
2042 	if (tod_faulted != ftype) {
2043 		switch (ftype) {
2044 		case TOD_NOFAULT:
2045 			plat_tod_fault(TOD_NOFAULT);
2046 			cmn_err(CE_NOTE, "Restarted tracking "
2047 			    "Time of Day clock.");
2048 			tod_faulted = ftype;
2049 			break;
2050 		case TOD_REVERSED:
2051 		case TOD_JUMPED:
2052 			if (tod_faulted == TOD_NOFAULT) {
2053 				plat_tod_fault(ftype);
2054 				cmn_err(CE_WARN, "Time of Day clock error: "
2055 				    "reason [%s by 0x%x]. -- "
2056 				    " Stopped tracking Time Of Day clock.",
2057 				    tod_fault_table[ftype], off);
2058 				tod_faulted = ftype;
2059 			}
2060 			break;
2061 		case TOD_STALLED:
2062 		case TOD_RATECHANGED:
2063 			if (tod_faulted == TOD_NOFAULT) {
2064 				plat_tod_fault(ftype);
2065 				cmn_err(CE_WARN, "Time of Day clock error: "
2066 				    "reason [%s]. -- "
2067 				    " Stopped tracking Time Of Day clock.",
2068 				    tod_fault_table[ftype]);
2069 				tod_faulted = ftype;
2070 			}
2071 			break;
2072 		case TOD_RDONLY:
2073 			if (tod_faulted == TOD_NOFAULT) {
2074 				plat_tod_fault(ftype);
2075 				cmn_err(CE_NOTE, "!Time of Day clock is "
2076 				    "Read-Only; set of Date/Time will not "
2077 				    "persist across reboot.");
2078 				tod_faulted = ftype;
2079 			}
2080 			break;
2081 		default:
2082 			break;
2083 		}
2084 	}
2085 	return (tod_faulted);
2086 }
2087 
2088 void
2089 tod_fault_reset()
2090 {
2091 	tod_fault_reset_flag = 1;
2092 }
2093 
2094 
2095 /*
2096  * tod_validate() is used for checking values returned by tod_get().
2097  * Four error cases can be detected by this routine:
2098  *   TOD_REVERSED: current tod value is less than previous.
2099  *   TOD_STALLED: current tod value hasn't advanced.
2100  *   TOD_JUMPED: current tod value advanced too far from previous value.
2101  *   TOD_RATECHANGED: the ratio between average tod delta and
2102  *   average tick delta has changed.
2103  */
2104 time_t
2105 tod_validate(time_t tod)
2106 {
2107 	time_t diff_tod;
2108 	hrtime_t diff_tick;
2109 
2110 	long dtick;
2111 	int dtick_delta;
2112 
2113 	int off = 0;
2114 	enum tod_fault_type tod_bad = TOD_NOFAULT;
2115 
2116 	static int firsttime = 1;
2117 
2118 	static time_t prev_tod = 0;
2119 	static hrtime_t prev_tick = 0;
2120 	static long dtick_avg = TOD_REF_FREQ;
2121 
2122 	hrtime_t tick = gethrtime();
2123 
2124 	ASSERT(MUTEX_HELD(&tod_lock));
2125 
2126 	/*
2127 	 * tod_validate_enable is patchable via /etc/system.
2128 	 * If TOD is already faulted, or if TOD validation is deferred,
2129 	 * there is nothing to do.
2130 	 */
2131 	if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) ||
2132 	    tod_validate_deferred) {
2133 		return (tod);
2134 	}
2135 
2136 	/*
2137 	 * Update prev_tod and prev_tick values for first run
2138 	 */
2139 	if (firsttime) {
2140 		firsttime = 0;
2141 		prev_tod = tod;
2142 		prev_tick = tick;
2143 		return (tod);
2144 	}
2145 
2146 	/*
2147 	 * For either of these conditions, we need to reset ourself
2148 	 * and start validation from zero since each condition
2149 	 * indicates that the TOD will be updated with new value
2150 	 * Also, note that tod_needsync will be reset in clock()
2151 	 */
2152 	if (tod_needsync || tod_fault_reset_flag) {
2153 		firsttime = 1;
2154 		prev_tod = 0;
2155 		prev_tick = 0;
2156 		dtick_avg = TOD_REF_FREQ;
2157 
2158 		if (tod_fault_reset_flag)
2159 			tod_fault_reset_flag = 0;
2160 
2161 		return (tod);
2162 	}
2163 
2164 	/* test hook */
2165 	switch (tod_unit_test) {
2166 	case 1: /* for testing jumping tod */
2167 		tod += tod_test_injector;
2168 		tod_unit_test = 0;
2169 		break;
2170 	case 2:	/* for testing stuck tod bit */
2171 		tod |= 1 << tod_test_injector;
2172 		tod_unit_test = 0;
2173 		break;
2174 	case 3:	/* for testing stalled tod */
2175 		tod = prev_tod;
2176 		tod_unit_test = 0;
2177 		break;
2178 	case 4:	/* reset tod fault status */
2179 		(void) tod_fault(TOD_NOFAULT, 0);
2180 		tod_unit_test = 0;
2181 		break;
2182 	default:
2183 		break;
2184 	}
2185 
2186 	diff_tod = tod - prev_tod;
2187 	diff_tick = tick - prev_tick;
2188 
2189 	ASSERT(diff_tick >= 0);
2190 
2191 	if (diff_tod < 0) {
2192 		/* ERROR - tod reversed */
2193 		tod_bad = TOD_REVERSED;
2194 		off = (int)(prev_tod - tod);
2195 	} else if (diff_tod == 0) {
2196 		/* tod did not advance */
2197 		if (diff_tick > TOD_STALL_THRESHOLD) {
2198 			/* ERROR - tod stalled */
2199 			tod_bad = TOD_STALLED;
2200 		} else {
2201 			/*
2202 			 * Make sure we don't update prev_tick
2203 			 * so that diff_tick is calculated since
2204 			 * the first diff_tod == 0
2205 			 */
2206 			return (tod);
2207 		}
2208 	} else {
2209 		/* calculate dtick */
2210 		dtick = diff_tick / diff_tod;
2211 
2212 		/* update dtick averages */
2213 		dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N);
2214 
2215 		/*
2216 		 * Calculate dtick_delta as
2217 		 * variation from reference freq in quartiles
2218 		 */
2219 		dtick_delta = (dtick_avg - TOD_REF_FREQ) /
2220 		    (TOD_REF_FREQ >> 2);
2221 
2222 		/*
2223 		 * Even with a perfectly functioning TOD device,
2224 		 * when the number of elapsed seconds is low the
2225 		 * algorithm can calculate a rate that is beyond
2226 		 * tolerance, causing an error.  The algorithm is
2227 		 * inaccurate when elapsed time is low (less than
2228 		 * 5 seconds).
2229 		 */
2230 		if (diff_tod > 4) {
2231 			if (dtick < TOD_JUMP_THRESHOLD) {
2232 				/* ERROR - tod jumped */
2233 				tod_bad = TOD_JUMPED;
2234 				off = (int)diff_tod;
2235 			} else if (dtick_delta) {
2236 				/* ERROR - change in clock rate */
2237 				tod_bad = TOD_RATECHANGED;
2238 			}
2239 		}
2240 	}
2241 
2242 	if (tod_bad != TOD_NOFAULT) {
2243 		(void) tod_fault(tod_bad, off);
2244 
2245 		/*
2246 		 * Disable dosynctodr since we are going to fault
2247 		 * the TOD chip anyway here
2248 		 */
2249 		dosynctodr = 0;
2250 
2251 		/*
2252 		 * Set tod to the correct value from hrestime
2253 		 */
2254 		tod = hrestime.tv_sec;
2255 	}
2256 
2257 	prev_tod = tod;
2258 	prev_tick = tick;
2259 	return (tod);
2260 }
2261 
2262 static void
2263 calcloadavg(int nrun, uint64_t *hp_ave)
2264 {
2265 	static int64_t f[3] = { 135, 27, 9 };
2266 	uint_t i;
2267 	int64_t q, r;
2268 
2269 	/*
2270 	 * Compute load average over the last 1, 5, and 15 minutes
2271 	 * (60, 300, and 900 seconds).  The constants in f[3] are for
2272 	 * exponential decay:
2273 	 * (1 - exp(-1/60)) << 13 = 135,
2274 	 * (1 - exp(-1/300)) << 13 = 27,
2275 	 * (1 - exp(-1/900)) << 13 = 9.
2276 	 */
2277 
2278 	/*
2279 	 * a little hoop-jumping to avoid integer overflow
2280 	 */
2281 	for (i = 0; i < 3; i++) {
2282 		q = (hp_ave[i]  >> 16) << 7;
2283 		r = (hp_ave[i]  & 0xffff) << 7;
2284 		hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
2285 	}
2286 }
2287 
2288 /*
2289  * lbolt_hybrid() is used by ddi_get_lbolt() and ddi_get_lbolt64() to
2290  * calculate the value of lbolt according to the current mode. In the event
2291  * driven mode (the default), lbolt is calculated by dividing the current hires
2292  * time by the number of nanoseconds per clock tick. In the cyclic driven mode
2293  * an internal variable is incremented at each firing of the lbolt cyclic
2294  * and returned by lbolt_cyclic_driven().
2295  *
2296  * The system will transition from event to cyclic driven mode when the number
2297  * of calls to lbolt_event_driven() exceeds the (per CPU) threshold within a
2298  * window of time. It does so by reprograming lbolt_cyclic from CY_INFINITY to
2299  * nsec_per_tick. The lbolt cyclic will remain ON while at least one CPU is
2300  * causing enough activity to cross the thresholds.
2301  */
2302 static int64_t
2303 lbolt_bootstrap(void)
2304 {
2305 	return (0);
2306 }
2307 
2308 /* ARGSUSED */
2309 uint_t
2310 lbolt_ev_to_cyclic(caddr_t arg1, caddr_t arg2)
2311 {
2312 	hrtime_t ts, exp;
2313 	int ret;
2314 
2315 	ASSERT(lbolt_hybrid != lbolt_cyclic_driven);
2316 
2317 	kpreempt_disable();
2318 
2319 	ts = gethrtime();
2320 	lb_info->lbi_internal = (ts/nsec_per_tick);
2321 
2322 	/*
2323 	 * Align the next expiration to a clock tick boundary.
2324 	 */
2325 	exp = ts + nsec_per_tick - 1;
2326 	exp = (exp/nsec_per_tick) * nsec_per_tick;
2327 
2328 	ret = cyclic_reprogram(lb_info->id.lbi_cyclic_id, exp);
2329 	ASSERT(ret);
2330 
2331 	lbolt_hybrid = lbolt_cyclic_driven;
2332 	lb_info->lbi_cyc_deactivate = B_FALSE;
2333 	lb_info->lbi_cyc_deac_start = lb_info->lbi_internal;
2334 
2335 	kpreempt_enable();
2336 
2337 	ret = atomic_dec_32_nv(&lb_info->lbi_token);
2338 	ASSERT(ret == 0);
2339 
2340 	return (1);
2341 }
2342 
2343 int64_t
2344 lbolt_event_driven(void)
2345 {
2346 	hrtime_t ts;
2347 	int64_t lb;
2348 	int ret, cpu = CPU->cpu_seqid;
2349 
2350 	ts = gethrtime();
2351 	ASSERT(ts > 0);
2352 
2353 	ASSERT(nsec_per_tick > 0);
2354 	lb = (ts/nsec_per_tick);
2355 
2356 	/*
2357 	 * Switch to cyclic mode if the number of calls to this routine
2358 	 * has reached the threshold within the interval.
2359 	 */
2360 	if ((lb - lb_cpu[cpu].lbc_cnt_start) < lb_info->lbi_thresh_interval) {
2361 
2362 		if (--lb_cpu[cpu].lbc_counter == 0) {
2363 			/*
2364 			 * Reached the threshold within the interval, reset
2365 			 * the usage statistics.
2366 			 */
2367 			lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2368 			lb_cpu[cpu].lbc_cnt_start = lb;
2369 
2370 			/*
2371 			 * Make sure only one thread reprograms the
2372 			 * lbolt cyclic and changes the mode.
2373 			 */
2374 			if (panicstr == NULL &&
2375 			    atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) {
2376 
2377 				if (lbolt_hybrid == lbolt_cyclic_driven) {
2378 					ret = atomic_dec_32_nv(
2379 					    &lb_info->lbi_token);
2380 					ASSERT(ret == 0);
2381 					return (lb);
2382 				}
2383 
2384 				lbolt_softint_post();
2385 			}
2386 		}
2387 	} else {
2388 		/*
2389 		 * Exceeded the interval, reset the usage statistics.
2390 		 */
2391 		lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2392 		lb_cpu[cpu].lbc_cnt_start = lb;
2393 	}
2394 
2395 	ASSERT(lb >= lb_info->lbi_debug_time);
2396 
2397 	return (lb - lb_info->lbi_debug_time);
2398 }
2399 
2400 int64_t
2401 lbolt_cyclic_driven(void)
2402 {
2403 	int64_t lb = lb_info->lbi_internal;
2404 	int cpu = CPU->cpu_seqid;
2405 
2406 	if ((lb - lb_cpu[cpu].lbc_cnt_start) < lb_info->lbi_thresh_interval) {
2407 
2408 		if (lb_cpu[cpu].lbc_counter == 0)
2409 			/*
2410 			 * Reached the threshold within the interval,
2411 			 * prevent the lbolt cyclic from turning itself
2412 			 * off.
2413 			 */
2414 			lb_info->lbi_cyc_deactivate = B_FALSE;
2415 		else
2416 			lb_cpu[cpu].lbc_counter--;
2417 	} else {
2418 		/*
2419 		 * Only reset the usage statistics when the interval has
2420 		 * exceeded.
2421 		 */
2422 		lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2423 		lb_cpu[cpu].lbc_cnt_start = lb;
2424 	}
2425 
2426 	ASSERT(lb >= lb_info->lbi_debug_time);
2427 
2428 	return (lb - lb_info->lbi_debug_time);
2429 }
2430 
2431 /*
2432  * The lbolt_cyclic() routine will fire at a nsec_per_tick rate to satisfy
2433  * performance needs of ddi_get_lbolt() and ddi_get_lbolt64() consumers.
2434  * It is inactive by default, and will be activated when switching from event
2435  * to cyclic driven lbolt. The cyclic will turn itself off unless signaled
2436  * by lbolt_cyclic_driven().
2437  */
2438 static void
2439 lbolt_cyclic(void)
2440 {
2441 	int ret;
2442 
2443 	lb_info->lbi_internal++;
2444 
2445 	if (!lbolt_cyc_only) {
2446 
2447 		if (lb_info->lbi_cyc_deactivate) {
2448 			/*
2449 			 * Switching from cyclic to event driven mode.
2450 			 */
2451 			if (atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) {
2452 
2453 				if (lbolt_hybrid == lbolt_event_driven) {
2454 					ret = atomic_dec_32_nv(
2455 					    &lb_info->lbi_token);
2456 					ASSERT(ret == 0);
2457 					return;
2458 				}
2459 
2460 				kpreempt_disable();
2461 
2462 				lbolt_hybrid = lbolt_event_driven;
2463 				ret = cyclic_reprogram(
2464 				    lb_info->id.lbi_cyclic_id,
2465 				    CY_INFINITY);
2466 				ASSERT(ret);
2467 
2468 				kpreempt_enable();
2469 
2470 				ret = atomic_dec_32_nv(&lb_info->lbi_token);
2471 				ASSERT(ret == 0);
2472 			}
2473 		}
2474 
2475 		/*
2476 		 * The lbolt cyclic should not try to deactivate itself before
2477 		 * the sampling period has elapsed.
2478 		 */
2479 		if (lb_info->lbi_internal - lb_info->lbi_cyc_deac_start >=
2480 		    lb_info->lbi_thresh_interval) {
2481 			lb_info->lbi_cyc_deactivate = B_TRUE;
2482 			lb_info->lbi_cyc_deac_start = lb_info->lbi_internal;
2483 		}
2484 	}
2485 }
2486 
2487 /*
2488  * Since the lbolt service was historically cyclic driven, it must be 'stopped'
2489  * when the system drops into the kernel debugger. lbolt_debug_entry() is
2490  * called by the KDI system claim callbacks to record a hires timestamp at
2491  * debug enter time. lbolt_debug_return() is called by the sistem release
2492  * callbacks to account for the time spent in the debugger. The value is then
2493  * accumulated in the lb_info structure and used by lbolt_event_driven() and
2494  * lbolt_cyclic_driven(), as well as the mdb_get_lbolt() routine.
2495  */
2496 void
2497 lbolt_debug_entry(void)
2498 {
2499 	if (lbolt_hybrid != lbolt_bootstrap) {
2500 		ASSERT(lb_info != NULL);
2501 		lb_info->lbi_debug_ts = gethrtime();
2502 	}
2503 }
2504 
2505 /*
2506  * Calculate the time spent in the debugger and add it to the lbolt info
2507  * structure. We also update the internal lbolt value in case we were in
2508  * cyclic driven mode going in.
2509  */
2510 void
2511 lbolt_debug_return(void)
2512 {
2513 	hrtime_t ts;
2514 
2515 	if (lbolt_hybrid != lbolt_bootstrap) {
2516 		ASSERT(lb_info != NULL);
2517 		ASSERT(nsec_per_tick > 0);
2518 
2519 		ts = gethrtime();
2520 		lb_info->lbi_internal = (ts/nsec_per_tick);
2521 		lb_info->lbi_debug_time +=
2522 		    ((ts - lb_info->lbi_debug_ts)/nsec_per_tick);
2523 
2524 		lb_info->lbi_debug_ts = 0;
2525 	}
2526 }
2527