1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #include <sys/param.h> 33 #include <sys/t_lock.h> 34 #include <sys/types.h> 35 #include <sys/tuneable.h> 36 #include <sys/sysmacros.h> 37 #include <sys/systm.h> 38 #include <sys/cpuvar.h> 39 #include <sys/lgrp.h> 40 #include <sys/user.h> 41 #include <sys/proc.h> 42 #include <sys/callo.h> 43 #include <sys/kmem.h> 44 #include <sys/var.h> 45 #include <sys/cmn_err.h> 46 #include <sys/swap.h> 47 #include <sys/vmsystm.h> 48 #include <sys/class.h> 49 #include <sys/time.h> 50 #include <sys/debug.h> 51 #include <sys/vtrace.h> 52 #include <sys/spl.h> 53 #include <sys/atomic.h> 54 #include <sys/dumphdr.h> 55 #include <sys/archsystm.h> 56 #include <sys/fs/swapnode.h> 57 #include <sys/panic.h> 58 #include <sys/disp.h> 59 #include <sys/msacct.h> 60 #include <sys/mem_cage.h> 61 62 #include <vm/page.h> 63 #include <vm/anon.h> 64 #include <vm/rm.h> 65 #include <sys/cyclic.h> 66 #include <sys/cpupart.h> 67 #include <sys/rctl.h> 68 #include <sys/task.h> 69 #include <sys/sdt.h> 70 #include <sys/ddi_timer.h> 71 72 /* 73 * for NTP support 74 */ 75 #include <sys/timex.h> 76 #include <sys/inttypes.h> 77 78 /* 79 * clock() is called straight from the clock cyclic; see clock_init(). 80 * 81 * Functions: 82 * reprime clock 83 * schedule callouts 84 * maintain date 85 * jab the scheduler 86 */ 87 88 extern kcondvar_t fsflush_cv; 89 extern sysinfo_t sysinfo; 90 extern vminfo_t vminfo; 91 extern int idleswtch; /* flag set while idle in pswtch() */ 92 93 /* 94 * high-precision avenrun values. These are needed to make the 95 * regular avenrun values accurate. 96 */ 97 static uint64_t hp_avenrun[3]; 98 int avenrun[3]; /* FSCALED average run queue lengths */ 99 time_t time; /* time in seconds since 1970 - for compatibility only */ 100 101 static struct loadavg_s loadavg; 102 /* 103 * Phase/frequency-lock loop (PLL/FLL) definitions 104 * 105 * The following variables are read and set by the ntp_adjtime() system 106 * call. 107 * 108 * time_state shows the state of the system clock, with values defined 109 * in the timex.h header file. 110 * 111 * time_status shows the status of the system clock, with bits defined 112 * in the timex.h header file. 113 * 114 * time_offset is used by the PLL/FLL to adjust the system time in small 115 * increments. 116 * 117 * time_constant determines the bandwidth or "stiffness" of the PLL. 118 * 119 * time_tolerance determines maximum frequency error or tolerance of the 120 * CPU clock oscillator and is a property of the architecture; however, 121 * in principle it could change as result of the presence of external 122 * discipline signals, for instance. 123 * 124 * time_precision is usually equal to the kernel tick variable; however, 125 * in cases where a precision clock counter or external clock is 126 * available, the resolution can be much less than this and depend on 127 * whether the external clock is working or not. 128 * 129 * time_maxerror is initialized by a ntp_adjtime() call and increased by 130 * the kernel once each second to reflect the maximum error bound 131 * growth. 132 * 133 * time_esterror is set and read by the ntp_adjtime() call, but 134 * otherwise not used by the kernel. 135 */ 136 int32_t time_state = TIME_OK; /* clock state */ 137 int32_t time_status = STA_UNSYNC; /* clock status bits */ 138 int32_t time_offset = 0; /* time offset (us) */ 139 int32_t time_constant = 0; /* pll time constant */ 140 int32_t time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 141 int32_t time_precision = 1; /* clock precision (us) */ 142 int32_t time_maxerror = MAXPHASE; /* maximum error (us) */ 143 int32_t time_esterror = MAXPHASE; /* estimated error (us) */ 144 145 /* 146 * The following variables establish the state of the PLL/FLL and the 147 * residual time and frequency offset of the local clock. The scale 148 * factors are defined in the timex.h header file. 149 * 150 * time_phase and time_freq are the phase increment and the frequency 151 * increment, respectively, of the kernel time variable. 152 * 153 * time_freq is set via ntp_adjtime() from a value stored in a file when 154 * the synchronization daemon is first started. Its value is retrieved 155 * via ntp_adjtime() and written to the file about once per hour by the 156 * daemon. 157 * 158 * time_adj is the adjustment added to the value of tick at each timer 159 * interrupt and is recomputed from time_phase and time_freq at each 160 * seconds rollover. 161 * 162 * time_reftime is the second's portion of the system time at the last 163 * call to ntp_adjtime(). It is used to adjust the time_freq variable 164 * and to increase the time_maxerror as the time since last update 165 * increases. 166 */ 167 int32_t time_phase = 0; /* phase offset (scaled us) */ 168 int32_t time_freq = 0; /* frequency offset (scaled ppm) */ 169 int32_t time_adj = 0; /* tick adjust (scaled 1 / hz) */ 170 int32_t time_reftime = 0; /* time at last adjustment (s) */ 171 172 /* 173 * The scale factors of the following variables are defined in the 174 * timex.h header file. 175 * 176 * pps_time contains the time at each calibration interval, as read by 177 * microtime(). pps_count counts the seconds of the calibration 178 * interval, the duration of which is nominally pps_shift in powers of 179 * two. 180 * 181 * pps_offset is the time offset produced by the time median filter 182 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 183 * this filter. 184 * 185 * pps_freq is the frequency offset produced by the frequency median 186 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 187 * by this filter. 188 * 189 * pps_usec is latched from a high resolution counter or external clock 190 * at pps_time. Here we want the hardware counter contents only, not the 191 * contents plus the time_tv.usec as usual. 192 * 193 * pps_valid counts the number of seconds since the last PPS update. It 194 * is used as a watchdog timer to disable the PPS discipline should the 195 * PPS signal be lost. 196 * 197 * pps_glitch counts the number of seconds since the beginning of an 198 * offset burst more than tick/2 from current nominal offset. It is used 199 * mainly to suppress error bursts due to priority conflicts between the 200 * PPS interrupt and timer interrupt. 201 * 202 * pps_intcnt counts the calibration intervals for use in the interval- 203 * adaptation algorithm. It's just too complicated for words. 204 */ 205 struct timeval pps_time; /* kernel time at last interval */ 206 int32_t pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 207 int32_t pps_offset = 0; /* pps time offset (us) */ 208 int32_t pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 209 int32_t pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 210 int32_t pps_freq = 0; /* frequency offset (scaled ppm) */ 211 int32_t pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 212 int32_t pps_usec = 0; /* microsec counter at last interval */ 213 int32_t pps_valid = PPS_VALID; /* pps signal watchdog counter */ 214 int32_t pps_glitch = 0; /* pps signal glitch counter */ 215 int32_t pps_count = 0; /* calibration interval counter (s) */ 216 int32_t pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 217 int32_t pps_intcnt = 0; /* intervals at current duration */ 218 219 /* 220 * PPS signal quality monitors 221 * 222 * pps_jitcnt counts the seconds that have been discarded because the 223 * jitter measured by the time median filter exceeds the limit MAXTIME 224 * (100 us). 225 * 226 * pps_calcnt counts the frequency calibration intervals, which are 227 * variable from 4 s to 256 s. 228 * 229 * pps_errcnt counts the calibration intervals which have been discarded 230 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 231 * calibration interval jitter exceeds two ticks. 232 * 233 * pps_stbcnt counts the calibration intervals that have been discarded 234 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 235 */ 236 int32_t pps_jitcnt = 0; /* jitter limit exceeded */ 237 int32_t pps_calcnt = 0; /* calibration intervals */ 238 int32_t pps_errcnt = 0; /* calibration errors */ 239 int32_t pps_stbcnt = 0; /* stability limit exceeded */ 240 241 /* The following variables require no explicit locking */ 242 volatile clock_t lbolt; /* time in Hz since last boot */ 243 volatile int64_t lbolt64; /* lbolt64 won't wrap for 2.9 billion yrs */ 244 245 kcondvar_t lbolt_cv; 246 int one_sec = 1; /* turned on once every second */ 247 static int fsflushcnt; /* counter for t_fsflushr */ 248 int dosynctodr = 1; /* patchable; enable/disable sync to TOD chip */ 249 int tod_needsync = 0; /* need to sync tod chip with software time */ 250 static int tod_broken = 0; /* clock chip doesn't work */ 251 time_t boot_time = 0; /* Boot time in seconds since 1970 */ 252 cyclic_id_t clock_cyclic; /* clock()'s cyclic_id */ 253 cyclic_id_t deadman_cyclic; /* deadman()'s cyclic_id */ 254 255 static int lgrp_ticks; /* counter to schedule lgrp load calcs */ 256 257 /* 258 * for tod fault detection 259 */ 260 #define TOD_REF_FREQ ((longlong_t)(NANOSEC)) 261 #define TOD_STALL_THRESHOLD (TOD_REF_FREQ * 3 / 2) 262 #define TOD_JUMP_THRESHOLD (TOD_REF_FREQ / 2) 263 #define TOD_FILTER_N 4 264 #define TOD_FILTER_SETTLE (4 * TOD_FILTER_N) 265 static int tod_faulted = TOD_NOFAULT; 266 static int tod_fault_reset_flag = 0; 267 268 /* patchable via /etc/system */ 269 int tod_validate_enable = 1; 270 271 /* 272 * On non-SPARC systems, TOD validation must be deferred until gethrtime 273 * returns non-zero values (after mach_clkinit's execution). 274 * On SPARC systems, it must be deferred until after hrtime_base 275 * and hres_last_tick are set (in the first invocation of hres_tick). 276 * Since in both cases the prerequisites occur before the invocation of 277 * tod_get() in clock(), the deferment is lifted there. 278 */ 279 static boolean_t tod_validate_deferred = B_TRUE; 280 281 /* 282 * tod_fault_table[] must be aligned with 283 * enum tod_fault_type in systm.h 284 */ 285 static char *tod_fault_table[] = { 286 "Reversed", /* TOD_REVERSED */ 287 "Stalled", /* TOD_STALLED */ 288 "Jumped", /* TOD_JUMPED */ 289 "Changed in Clock Rate", /* TOD_RATECHANGED */ 290 "Is Read-Only" /* TOD_RDONLY */ 291 /* 292 * no strings needed for TOD_NOFAULT 293 */ 294 }; 295 296 /* 297 * test hook for tod broken detection in tod_validate 298 */ 299 int tod_unit_test = 0; 300 time_t tod_test_injector; 301 302 #define CLOCK_ADJ_HIST_SIZE 4 303 304 static int adj_hist_entry; 305 306 int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE]; 307 308 static void clock_tick(kthread_t *); 309 static void calcloadavg(int, uint64_t *); 310 static int genloadavg(struct loadavg_s *); 311 static void loadavg_update(); 312 313 void (*cmm_clock_callout)() = NULL; 314 void (*cpucaps_clock_callout)() = NULL; 315 316 static void 317 clock(void) 318 { 319 kthread_t *t; 320 kmutex_t *plockp; /* pointer to thread's process lock */ 321 int pinned_intr = 0; 322 uint_t nrunnable, nrunning; 323 uint_t w_io; 324 cpu_t *cp; 325 cpupart_t *cpupart; 326 int exiting; 327 extern void set_anoninfo(); 328 extern void set_freemem(); 329 void (*funcp)(); 330 int32_t ltemp; 331 int64_t lltemp; 332 int s; 333 int do_lgrp_load; 334 int i; 335 336 if (panicstr) 337 return; 338 339 set_anoninfo(); 340 /* 341 * Make sure that 'freemem' do not drift too far from the truth 342 */ 343 set_freemem(); 344 345 346 /* 347 * Before the section which is repeated is executed, we do 348 * the time delta processing which occurs every clock tick 349 * 350 * There is additional processing which happens every time 351 * the nanosecond counter rolls over which is described 352 * below - see the section which begins with : if (one_sec) 353 * 354 * This section marks the beginning of the precision-kernel 355 * code fragment. 356 * 357 * First, compute the phase adjustment. If the low-order bits 358 * (time_phase) of the update overflow, bump the higher order 359 * bits (time_update). 360 */ 361 time_phase += time_adj; 362 if (time_phase <= -FINEUSEC) { 363 ltemp = -time_phase / SCALE_PHASE; 364 time_phase += ltemp * SCALE_PHASE; 365 s = hr_clock_lock(); 366 timedelta -= ltemp * (NANOSEC/MICROSEC); 367 hr_clock_unlock(s); 368 } else if (time_phase >= FINEUSEC) { 369 ltemp = time_phase / SCALE_PHASE; 370 time_phase -= ltemp * SCALE_PHASE; 371 s = hr_clock_lock(); 372 timedelta += ltemp * (NANOSEC/MICROSEC); 373 hr_clock_unlock(s); 374 } 375 376 /* 377 * End of precision-kernel code fragment which is processed 378 * every timer interrupt. 379 * 380 * Continue with the interrupt processing as scheduled. 381 * 382 * Did we pin another interrupt thread? Need to check this before 383 * grabbing any adaptive locks, since if we block on a lock the 384 * pinned thread could escape. Note that this is just a heuristic; 385 * if we take multiple laps though clock() without returning from 386 * the interrupt because we have another clock tick pending, then 387 * the pinned interrupt could be released by one of the previous 388 * laps. The only consequence is that the CPU will be counted as 389 * in idle (or wait) state once the pinned interrupt is released. 390 * Since this accounting is inaccurate by nature, this isn't a big 391 * deal --- but we should try to get it right in the common case 392 * where we only call clock() once per interrupt. 393 */ 394 if (curthread->t_intr != NULL) 395 pinned_intr = (curthread->t_intr->t_flag & T_INTR_THREAD); 396 397 /* 398 * Count the number of runnable threads and the number waiting 399 * for some form of I/O to complete -- gets added to 400 * sysinfo.waiting. To know the state of the system, must add 401 * wait counts from all CPUs. Also add up the per-partition 402 * statistics. 403 */ 404 w_io = 0; 405 nrunnable = 0; 406 407 /* 408 * keep track of when to update lgrp/part loads 409 */ 410 411 do_lgrp_load = 0; 412 if (lgrp_ticks++ >= hz / 10) { 413 lgrp_ticks = 0; 414 do_lgrp_load = 1; 415 } 416 417 if (one_sec) 418 loadavg_update(); 419 420 /* 421 * First count the threads waiting on kpreempt queues in each 422 * CPU partition. 423 */ 424 425 cpupart = cp_list_head; 426 do { 427 uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable; 428 429 cpupart->cp_updates++; 430 nrunnable += cpupart_nrunnable; 431 cpupart->cp_nrunnable_cum += cpupart_nrunnable; 432 if (one_sec) { 433 cpupart->cp_nrunning = 0; 434 cpupart->cp_nrunnable = cpupart_nrunnable; 435 } 436 } while ((cpupart = cpupart->cp_next) != cp_list_head); 437 438 439 /* Now count the per-CPU statistics. */ 440 cp = cpu_list; 441 do { 442 uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable; 443 444 nrunnable += cpu_nrunnable; 445 cpupart = cp->cpu_part; 446 cpupart->cp_nrunnable_cum += cpu_nrunnable; 447 if (one_sec) { 448 cpupart->cp_nrunnable += cpu_nrunnable; 449 /* 450 * w_io is used to update sysinfo.waiting during 451 * one_second processing below. Only gather w_io 452 * information when we walk the list of cpus if we're 453 * going to perform one_second processing. 454 */ 455 w_io += CPU_STATS(cp, sys.iowait); 456 } 457 458 if (one_sec && (cp->cpu_flags & CPU_EXISTS)) { 459 int i, load, change; 460 hrtime_t intracct, intrused; 461 const hrtime_t maxnsec = 1000000000; 462 const int precision = 100; 463 464 /* 465 * Estimate interrupt load on this cpu each second. 466 * Computes cpu_intrload as %utilization (0-99). 467 */ 468 469 /* add up interrupt time from all micro states */ 470 for (intracct = 0, i = 0; i < NCMSTATES; i++) 471 intracct += cp->cpu_intracct[i]; 472 scalehrtime(&intracct); 473 474 /* compute nsec used in the past second */ 475 intrused = intracct - cp->cpu_intrlast; 476 cp->cpu_intrlast = intracct; 477 478 /* limit the value for safety (and the first pass) */ 479 if (intrused >= maxnsec) 480 intrused = maxnsec - 1; 481 482 /* calculate %time in interrupt */ 483 load = (precision * intrused) / maxnsec; 484 ASSERT(load >= 0 && load < precision); 485 change = cp->cpu_intrload - load; 486 487 /* jump to new max, or decay the old max */ 488 if (change < 0) 489 cp->cpu_intrload = load; 490 else if (change > 0) 491 cp->cpu_intrload -= (change + 3) / 4; 492 493 DTRACE_PROBE3(cpu_intrload, 494 cpu_t *, cp, 495 hrtime_t, intracct, 496 hrtime_t, intrused); 497 } 498 499 if (do_lgrp_load && 500 (cp->cpu_flags & CPU_EXISTS)) { 501 /* 502 * When updating the lgroup's load average, 503 * account for the thread running on the CPU. 504 * If the CPU is the current one, then we need 505 * to account for the underlying thread which 506 * got the clock interrupt not the thread that is 507 * handling the interrupt and caculating the load 508 * average 509 */ 510 t = cp->cpu_thread; 511 if (CPU == cp) 512 t = t->t_intr; 513 514 /* 515 * Account for the load average for this thread if 516 * it isn't the idle thread or it is on the interrupt 517 * stack and not the current CPU handling the clock 518 * interrupt 519 */ 520 if ((t && t != cp->cpu_idle_thread) || (CPU != cp && 521 CPU_ON_INTR(cp))) { 522 if (t->t_lpl == cp->cpu_lpl) { 523 /* local thread */ 524 cpu_nrunnable++; 525 } else { 526 /* 527 * This is a remote thread, charge it 528 * against its home lgroup. Note that 529 * we notice that a thread is remote 530 * only if it's currently executing. 531 * This is a reasonable approximation, 532 * since queued remote threads are rare. 533 * Note also that if we didn't charge 534 * it to its home lgroup, remote 535 * execution would often make a system 536 * appear balanced even though it was 537 * not, and thread placement/migration 538 * would often not be done correctly. 539 */ 540 lgrp_loadavg(t->t_lpl, 541 LGRP_LOADAVG_IN_THREAD_MAX, 0); 542 } 543 } 544 lgrp_loadavg(cp->cpu_lpl, 545 cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1); 546 } 547 } while ((cp = cp->cpu_next) != cpu_list); 548 549 /* 550 * Do tick processing for all the active threads running in 551 * the system. We're trying to be more fair by walking the 552 * list of CPUs starting from a different CPUs each time. 553 */ 554 cp = clock_cpu_list; 555 nrunning = 0; 556 do { 557 klwp_id_t lwp; 558 int intr; 559 int thread_away; 560 561 /* 562 * Don't do any tick processing on CPUs that 563 * aren't even in the system or aren't up yet. 564 */ 565 if ((cp->cpu_flags & CPU_EXISTS) == 0) { 566 continue; 567 } 568 569 /* 570 * The locking here is rather tricky. We use 571 * thread_free_lock to keep the currently running 572 * thread from being freed or recycled while we're 573 * looking at it. We can then check if the thread 574 * is exiting and get the appropriate p_lock if it 575 * is not. We have to be careful, though, because 576 * the _process_ can still be freed while we're 577 * holding thread_free_lock. To avoid touching the 578 * proc structure we put a pointer to the p_lock in the 579 * thread structure. The p_lock is persistent so we 580 * can acquire it even if the process is gone. At that 581 * point we can check (again) if the thread is exiting 582 * and either drop the lock or do the tick processing. 583 */ 584 mutex_enter(&thread_free_lock); 585 /* 586 * We cannot hold the cpu_lock to prevent the 587 * cpu_list from changing in the clock interrupt. 588 * As long as we don't block (or don't get pre-empted) 589 * the cpu_list will not change (all threads are paused 590 * before list modification). If the list does change 591 * any deleted cpu structures will remain with cpu_next 592 * set to NULL, hence the following test. 593 */ 594 if (cp->cpu_next == NULL) { 595 mutex_exit(&thread_free_lock); 596 break; 597 } 598 t = cp->cpu_thread; /* Current running thread */ 599 if (CPU == cp) { 600 /* 601 * 't' will be the clock interrupt thread on this 602 * CPU. Use the pinned thread (if any) on this CPU 603 * as the target of the clock tick. If we pinned 604 * an interrupt, though, just keep using the clock 605 * interrupt thread since the formerly pinned one 606 * may have gone away. One interrupt thread is as 607 * good as another, and this means we don't have 608 * to continue to check pinned_intr in subsequent 609 * code. 610 */ 611 ASSERT(t == curthread); 612 if (t->t_intr != NULL && !pinned_intr) 613 t = t->t_intr; 614 } 615 616 intr = t->t_flag & T_INTR_THREAD; 617 lwp = ttolwp(t); 618 if (lwp == NULL || (t->t_proc_flag & TP_LWPEXIT) || intr) { 619 /* 620 * Thread is exiting (or uninteresting) so don't 621 * do tick processing or grab p_lock. Once we 622 * drop thread_free_lock we can't look inside the 623 * thread or lwp structure, since the thread may 624 * have gone away. 625 */ 626 exiting = 1; 627 } else { 628 /* 629 * OK, try to grab the process lock. See 630 * comments above for why we're not using 631 * ttoproc(t)->p_lockp here. 632 */ 633 plockp = t->t_plockp; 634 mutex_enter(plockp); 635 /* See above comment. */ 636 if (cp->cpu_next == NULL) { 637 mutex_exit(plockp); 638 mutex_exit(&thread_free_lock); 639 break; 640 } 641 /* 642 * The thread may have exited between when we 643 * checked above, and when we got the p_lock. 644 */ 645 if (t->t_proc_flag & TP_LWPEXIT) { 646 mutex_exit(plockp); 647 exiting = 1; 648 } else { 649 exiting = 0; 650 } 651 } 652 /* 653 * Either we have the p_lock for the thread's process, 654 * or we don't care about the thread structure any more. 655 * Either way we can drop thread_free_lock. 656 */ 657 mutex_exit(&thread_free_lock); 658 659 /* 660 * Update user, system, and idle cpu times. 661 */ 662 if (one_sec) { 663 nrunning++; 664 cp->cpu_part->cp_nrunning++; 665 } 666 /* 667 * If we haven't done tick processing for this 668 * lwp, then do it now. Since we don't hold the 669 * lwp down on a CPU it can migrate and show up 670 * more than once, hence the lbolt check. 671 * 672 * Also, make sure that it's okay to perform the 673 * tick processing before calling clock_tick. 674 * Setting thread_away to a TRUE value (ie. not 0) 675 * results in tick processing not being performed for 676 * that thread. Or, in other words, keeps the thread 677 * away from clock_tick processing. 678 */ 679 thread_away = ((cp->cpu_flags & CPU_QUIESCED) || 680 CPU_ON_INTR(cp) || intr || 681 (cp->cpu_dispthread == cp->cpu_idle_thread) || exiting); 682 683 if ((!thread_away) && (lbolt - t->t_lbolt != 0)) { 684 t->t_lbolt = lbolt; 685 clock_tick(t); 686 } 687 688 if (!exiting) 689 mutex_exit(plockp); 690 } while ((cp = cp->cpu_next) != clock_cpu_list); 691 692 clock_cpu_list = clock_cpu_list->cpu_next; 693 694 /* 695 * bump time in ticks 696 * 697 * We rely on there being only one clock thread and hence 698 * don't need a lock to protect lbolt. 699 */ 700 lbolt++; 701 atomic_add_64((uint64_t *)&lbolt64, (int64_t)1); 702 703 /* 704 * Check for a callout that needs be called from the clock 705 * thread to support the membership protocol in a clustered 706 * system. Copy the function pointer so that we can reset 707 * this to NULL if needed. 708 */ 709 if ((funcp = cmm_clock_callout) != NULL) 710 (*funcp)(); 711 712 if ((funcp = cpucaps_clock_callout) != NULL) 713 (*funcp)(); 714 715 /* 716 * Wakeup the cageout thread waiters once per second. 717 */ 718 if (one_sec) 719 kcage_tick(); 720 721 /* 722 * Schedule timeout() requests if any are due at this time. 723 */ 724 callout_schedule(); 725 726 if (one_sec) { 727 728 int drift, absdrift; 729 timestruc_t tod; 730 int s; 731 732 /* 733 * Beginning of precision-kernel code fragment executed 734 * every second. 735 * 736 * On rollover of the second the phase adjustment to be 737 * used for the next second is calculated. Also, the 738 * maximum error is increased by the tolerance. If the 739 * PPS frequency discipline code is present, the phase is 740 * increased to compensate for the CPU clock oscillator 741 * frequency error. 742 * 743 * On a 32-bit machine and given parameters in the timex.h 744 * header file, the maximum phase adjustment is +-512 ms 745 * and maximum frequency offset is (a tad less than) 746 * +-512 ppm. On a 64-bit machine, you shouldn't need to ask. 747 */ 748 time_maxerror += time_tolerance / SCALE_USEC; 749 750 /* 751 * Leap second processing. If in leap-insert state at 752 * the end of the day, the system clock is set back one 753 * second; if in leap-delete state, the system clock is 754 * set ahead one second. The microtime() routine or 755 * external clock driver will insure that reported time 756 * is always monotonic. The ugly divides should be 757 * replaced. 758 */ 759 switch (time_state) { 760 761 case TIME_OK: 762 if (time_status & STA_INS) 763 time_state = TIME_INS; 764 else if (time_status & STA_DEL) 765 time_state = TIME_DEL; 766 break; 767 768 case TIME_INS: 769 if (hrestime.tv_sec % 86400 == 0) { 770 s = hr_clock_lock(); 771 hrestime.tv_sec--; 772 hr_clock_unlock(s); 773 time_state = TIME_OOP; 774 } 775 break; 776 777 case TIME_DEL: 778 if ((hrestime.tv_sec + 1) % 86400 == 0) { 779 s = hr_clock_lock(); 780 hrestime.tv_sec++; 781 hr_clock_unlock(s); 782 time_state = TIME_WAIT; 783 } 784 break; 785 786 case TIME_OOP: 787 time_state = TIME_WAIT; 788 break; 789 790 case TIME_WAIT: 791 if (!(time_status & (STA_INS | STA_DEL))) 792 time_state = TIME_OK; 793 default: 794 break; 795 } 796 797 /* 798 * Compute the phase adjustment for the next second. In 799 * PLL mode, the offset is reduced by a fixed factor 800 * times the time constant. In FLL mode the offset is 801 * used directly. In either mode, the maximum phase 802 * adjustment for each second is clamped so as to spread 803 * the adjustment over not more than the number of 804 * seconds between updates. 805 */ 806 if (time_offset == 0) 807 time_adj = 0; 808 else if (time_offset < 0) { 809 lltemp = -time_offset; 810 if (!(time_status & STA_FLL)) { 811 if ((1 << time_constant) >= SCALE_KG) 812 lltemp *= (1 << time_constant) / 813 SCALE_KG; 814 else 815 lltemp = (lltemp / SCALE_KG) >> 816 time_constant; 817 } 818 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 819 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 820 time_offset += lltemp; 821 time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 822 } else { 823 lltemp = time_offset; 824 if (!(time_status & STA_FLL)) { 825 if ((1 << time_constant) >= SCALE_KG) 826 lltemp *= (1 << time_constant) / 827 SCALE_KG; 828 else 829 lltemp = (lltemp / SCALE_KG) >> 830 time_constant; 831 } 832 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 833 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 834 time_offset -= lltemp; 835 time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 836 } 837 838 /* 839 * Compute the frequency estimate and additional phase 840 * adjustment due to frequency error for the next 841 * second. When the PPS signal is engaged, gnaw on the 842 * watchdog counter and update the frequency computed by 843 * the pll and the PPS signal. 844 */ 845 pps_valid++; 846 if (pps_valid == PPS_VALID) { 847 pps_jitter = MAXTIME; 848 pps_stabil = MAXFREQ; 849 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 850 STA_PPSWANDER | STA_PPSERROR); 851 } 852 lltemp = time_freq + pps_freq; 853 854 if (lltemp) 855 time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz); 856 857 /* 858 * End of precision kernel-code fragment 859 * 860 * The section below should be modified if we are planning 861 * to use NTP for synchronization. 862 * 863 * Note: the clock synchronization code now assumes 864 * the following: 865 * - if dosynctodr is 1, then compute the drift between 866 * the tod chip and software time and adjust one or 867 * the other depending on the circumstances 868 * 869 * - if dosynctodr is 0, then the tod chip is independent 870 * of the software clock and should not be adjusted, 871 * but allowed to free run. this allows NTP to sync. 872 * hrestime without any interference from the tod chip. 873 */ 874 875 tod_validate_deferred = B_FALSE; 876 mutex_enter(&tod_lock); 877 tod = tod_get(); 878 drift = tod.tv_sec - hrestime.tv_sec; 879 absdrift = (drift >= 0) ? drift : -drift; 880 if (tod_needsync || absdrift > 1) { 881 int s; 882 if (absdrift > 2) { 883 if (!tod_broken && tod_faulted == TOD_NOFAULT) { 884 s = hr_clock_lock(); 885 hrestime = tod; 886 membar_enter(); /* hrestime visible */ 887 timedelta = 0; 888 timechanged++; 889 tod_needsync = 0; 890 hr_clock_unlock(s); 891 } 892 } else { 893 if (tod_needsync || !dosynctodr) { 894 gethrestime(&tod); 895 tod_set(tod); 896 s = hr_clock_lock(); 897 if (timedelta == 0) 898 tod_needsync = 0; 899 hr_clock_unlock(s); 900 } else { 901 /* 902 * If the drift is 2 seconds on the 903 * money, then the TOD is adjusting 904 * the clock; record that. 905 */ 906 clock_adj_hist[adj_hist_entry++ % 907 CLOCK_ADJ_HIST_SIZE] = lbolt64; 908 s = hr_clock_lock(); 909 timedelta = (int64_t)drift*NANOSEC; 910 hr_clock_unlock(s); 911 } 912 } 913 } 914 one_sec = 0; 915 time = gethrestime_sec(); /* for crusty old kmem readers */ 916 mutex_exit(&tod_lock); 917 918 /* 919 * Some drivers still depend on this... XXX 920 */ 921 cv_broadcast(&lbolt_cv); 922 923 sysinfo.updates++; 924 vminfo.freemem += freemem; 925 { 926 pgcnt_t maxswap, resv, free; 927 pgcnt_t avail = 928 MAX((spgcnt_t)(availrmem - swapfs_minfree), 0); 929 930 maxswap = k_anoninfo.ani_mem_resv + 931 k_anoninfo.ani_max +avail; 932 free = k_anoninfo.ani_free + avail; 933 resv = k_anoninfo.ani_phys_resv + 934 k_anoninfo.ani_mem_resv; 935 936 vminfo.swap_resv += resv; 937 /* number of reserved and allocated pages */ 938 #ifdef DEBUG 939 if (maxswap < free) 940 cmn_err(CE_WARN, "clock: maxswap < free"); 941 if (maxswap < resv) 942 cmn_err(CE_WARN, "clock: maxswap < resv"); 943 #endif 944 vminfo.swap_alloc += maxswap - free; 945 vminfo.swap_avail += maxswap - resv; 946 vminfo.swap_free += free; 947 } 948 if (nrunnable) { 949 sysinfo.runque += nrunnable; 950 sysinfo.runocc++; 951 } 952 if (nswapped) { 953 sysinfo.swpque += nswapped; 954 sysinfo.swpocc++; 955 } 956 sysinfo.waiting += w_io; 957 958 /* 959 * Wake up fsflush to write out DELWRI 960 * buffers, dirty pages and other cached 961 * administrative data, e.g. inodes. 962 */ 963 if (--fsflushcnt <= 0) { 964 fsflushcnt = tune.t_fsflushr; 965 cv_signal(&fsflush_cv); 966 } 967 968 vmmeter(); 969 calcloadavg(genloadavg(&loadavg), hp_avenrun); 970 for (i = 0; i < 3; i++) 971 /* 972 * At the moment avenrun[] can only hold 31 973 * bits of load average as it is a signed 974 * int in the API. We need to ensure that 975 * hp_avenrun[i] >> (16 - FSHIFT) will not be 976 * too large. If it is, we put the largest value 977 * that we can use into avenrun[i]. This is 978 * kludgey, but about all we can do until we 979 * avenrun[] is declared as an array of uint64[] 980 */ 981 if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT))) 982 avenrun[i] = (int32_t)(hp_avenrun[i] >> 983 (16 - FSHIFT)); 984 else 985 avenrun[i] = 0x7fffffff; 986 987 cpupart = cp_list_head; 988 do { 989 calcloadavg(genloadavg(&cpupart->cp_loadavg), 990 cpupart->cp_hp_avenrun); 991 } while ((cpupart = cpupart->cp_next) != cp_list_head); 992 993 /* 994 * Wake up the swapper thread if necessary. 995 */ 996 if (runin || 997 (runout && (avefree < desfree || wake_sched_sec))) { 998 t = &t0; 999 thread_lock(t); 1000 if (t->t_state == TS_STOPPED) { 1001 runin = runout = 0; 1002 wake_sched_sec = 0; 1003 t->t_whystop = 0; 1004 t->t_whatstop = 0; 1005 t->t_schedflag &= ~TS_ALLSTART; 1006 THREAD_TRANSITION(t); 1007 setfrontdq(t); 1008 } 1009 thread_unlock(t); 1010 } 1011 } 1012 1013 /* 1014 * Wake up the swapper if any high priority swapped-out threads 1015 * became runable during the last tick. 1016 */ 1017 if (wake_sched) { 1018 t = &t0; 1019 thread_lock(t); 1020 if (t->t_state == TS_STOPPED) { 1021 runin = runout = 0; 1022 wake_sched = 0; 1023 t->t_whystop = 0; 1024 t->t_whatstop = 0; 1025 t->t_schedflag &= ~TS_ALLSTART; 1026 THREAD_TRANSITION(t); 1027 setfrontdq(t); 1028 } 1029 thread_unlock(t); 1030 } 1031 } 1032 1033 void 1034 clock_init(void) 1035 { 1036 cyc_handler_t hdlr; 1037 cyc_time_t when; 1038 1039 hdlr.cyh_func = (cyc_func_t)clock; 1040 hdlr.cyh_level = CY_LOCK_LEVEL; 1041 hdlr.cyh_arg = NULL; 1042 1043 when.cyt_when = 0; 1044 when.cyt_interval = nsec_per_tick; 1045 1046 mutex_enter(&cpu_lock); 1047 clock_cyclic = cyclic_add(&hdlr, &when); 1048 mutex_exit(&cpu_lock); 1049 1050 /* 1051 * cyclic_timer is dedicated to the ddi interface, which 1052 * uses the same clock resolution as the system one. 1053 */ 1054 hdlr.cyh_func = (cyc_func_t)cyclic_timer; 1055 hdlr.cyh_level = CY_LOCK_LEVEL; 1056 hdlr.cyh_arg = NULL; 1057 1058 mutex_enter(&cpu_lock); 1059 clock_cyclic = cyclic_add(&hdlr, &when); 1060 mutex_exit(&cpu_lock); 1061 } 1062 1063 /* 1064 * Called before calcloadavg to get 10-sec moving loadavg together 1065 */ 1066 1067 static int 1068 genloadavg(struct loadavg_s *avgs) 1069 { 1070 int avg; 1071 int spos; /* starting position */ 1072 int cpos; /* moving current position */ 1073 int i; 1074 int slen; 1075 hrtime_t hr_avg; 1076 1077 /* 10-second snapshot, calculate first positon */ 1078 if (avgs->lg_len == 0) { 1079 return (0); 1080 } 1081 slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ; 1082 1083 spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 : 1084 S_LOADAVG_SZ + (avgs->lg_cur - 1); 1085 for (i = hr_avg = 0; i < slen; i++) { 1086 cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i); 1087 hr_avg += avgs->lg_loads[cpos]; 1088 } 1089 1090 hr_avg = hr_avg / slen; 1091 avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 1092 1093 return (avg); 1094 } 1095 1096 /* 1097 * Run every second from clock () to update the loadavg count available to the 1098 * system and cpu-partitions. 1099 * 1100 * This works by sampling the previous usr, sys, wait time elapsed, 1101 * computing a delta, and adding that delta to the elapsed usr, sys, 1102 * wait increase. 1103 */ 1104 1105 static void 1106 loadavg_update() 1107 { 1108 cpu_t *cp; 1109 cpupart_t *cpupart; 1110 hrtime_t cpu_total; 1111 int prev; 1112 1113 cp = cpu_list; 1114 loadavg.lg_total = 0; 1115 1116 /* 1117 * first pass totals up per-cpu statistics for system and cpu 1118 * partitions 1119 */ 1120 1121 do { 1122 struct loadavg_s *lavg; 1123 1124 lavg = &cp->cpu_loadavg; 1125 1126 cpu_total = cp->cpu_acct[CMS_USER] + 1127 cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq; 1128 /* compute delta against last total */ 1129 scalehrtime(&cpu_total); 1130 prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 : 1131 S_LOADAVG_SZ + (lavg->lg_cur - 1); 1132 if (lavg->lg_loads[prev] <= 0) { 1133 lavg->lg_loads[lavg->lg_cur] = cpu_total; 1134 cpu_total = 0; 1135 } else { 1136 lavg->lg_loads[lavg->lg_cur] = cpu_total; 1137 cpu_total = cpu_total - lavg->lg_loads[prev]; 1138 if (cpu_total < 0) 1139 cpu_total = 0; 1140 } 1141 1142 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 1143 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 1144 lavg->lg_len + 1 : S_LOADAVG_SZ; 1145 1146 loadavg.lg_total += cpu_total; 1147 cp->cpu_part->cp_loadavg.lg_total += cpu_total; 1148 1149 } while ((cp = cp->cpu_next) != cpu_list); 1150 1151 loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total; 1152 loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ; 1153 loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ? 1154 loadavg.lg_len + 1 : S_LOADAVG_SZ; 1155 /* 1156 * Second pass updates counts 1157 */ 1158 cpupart = cp_list_head; 1159 1160 do { 1161 struct loadavg_s *lavg; 1162 1163 lavg = &cpupart->cp_loadavg; 1164 lavg->lg_loads[lavg->lg_cur] = lavg->lg_total; 1165 lavg->lg_total = 0; 1166 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 1167 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 1168 lavg->lg_len + 1 : S_LOADAVG_SZ; 1169 1170 } while ((cpupart = cpupart->cp_next) != cp_list_head); 1171 1172 } 1173 1174 /* 1175 * clock_update() - local clock update 1176 * 1177 * This routine is called by ntp_adjtime() to update the local clock 1178 * phase and frequency. The implementation is of an 1179 * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The 1180 * routine computes new time and frequency offset estimates for each 1181 * call. The PPS signal itself determines the new time offset, 1182 * instead of the calling argument. Presumably, calls to 1183 * ntp_adjtime() occur only when the caller believes the local clock 1184 * is valid within some bound (+-128 ms with NTP). If the caller's 1185 * time is far different than the PPS time, an argument will ensue, 1186 * and it's not clear who will lose. 1187 * 1188 * For uncompensated quartz crystal oscillatores and nominal update 1189 * intervals less than 1024 s, operation should be in phase-lock mode 1190 * (STA_FLL = 0), where the loop is disciplined to phase. For update 1191 * intervals greater than this, operation should be in frequency-lock 1192 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 1193 * 1194 * Note: mutex(&tod_lock) is in effect. 1195 */ 1196 void 1197 clock_update(int offset) 1198 { 1199 int ltemp, mtemp, s; 1200 1201 ASSERT(MUTEX_HELD(&tod_lock)); 1202 1203 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 1204 return; 1205 ltemp = offset; 1206 if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL)) 1207 ltemp = pps_offset; 1208 1209 /* 1210 * Scale the phase adjustment and clamp to the operating range. 1211 */ 1212 if (ltemp > MAXPHASE) 1213 time_offset = MAXPHASE * SCALE_UPDATE; 1214 else if (ltemp < -MAXPHASE) 1215 time_offset = -(MAXPHASE * SCALE_UPDATE); 1216 else 1217 time_offset = ltemp * SCALE_UPDATE; 1218 1219 /* 1220 * Select whether the frequency is to be controlled and in which 1221 * mode (PLL or FLL). Clamp to the operating range. Ugly 1222 * multiply/divide should be replaced someday. 1223 */ 1224 if (time_status & STA_FREQHOLD || time_reftime == 0) 1225 time_reftime = hrestime.tv_sec; 1226 1227 mtemp = hrestime.tv_sec - time_reftime; 1228 time_reftime = hrestime.tv_sec; 1229 1230 if (time_status & STA_FLL) { 1231 if (mtemp >= MINSEC) { 1232 ltemp = ((time_offset / mtemp) * (SCALE_USEC / 1233 SCALE_UPDATE)); 1234 if (ltemp) 1235 time_freq += ltemp / SCALE_KH; 1236 } 1237 } else { 1238 if (mtemp < MAXSEC) { 1239 ltemp *= mtemp; 1240 if (ltemp) 1241 time_freq += (int)(((int64_t)ltemp * 1242 SCALE_USEC) / SCALE_KF) 1243 / (1 << (time_constant * 2)); 1244 } 1245 } 1246 if (time_freq > time_tolerance) 1247 time_freq = time_tolerance; 1248 else if (time_freq < -time_tolerance) 1249 time_freq = -time_tolerance; 1250 1251 s = hr_clock_lock(); 1252 tod_needsync = 1; 1253 hr_clock_unlock(s); 1254 } 1255 1256 /* 1257 * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal 1258 * 1259 * This routine is called at each PPS interrupt in order to discipline 1260 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1261 * and leaves it in a handy spot for the clock() routine. It 1262 * integrates successive PPS phase differences and calculates the 1263 * frequency offset. This is used in clock() to discipline the CPU 1264 * clock oscillator so that intrinsic frequency error is cancelled out. 1265 * The code requires the caller to capture the time and hardware counter 1266 * value at the on-time PPS signal transition. 1267 * 1268 * Note that, on some Unix systems, this routine runs at an interrupt 1269 * priority level higher than the timer interrupt routine clock(). 1270 * Therefore, the variables used are distinct from the clock() 1271 * variables, except for certain exceptions: The PPS frequency pps_freq 1272 * and phase pps_offset variables are determined by this routine and 1273 * updated atomically. The time_tolerance variable can be considered a 1274 * constant, since it is infrequently changed, and then only when the 1275 * PPS signal is disabled. The watchdog counter pps_valid is updated 1276 * once per second by clock() and is atomically cleared in this 1277 * routine. 1278 * 1279 * tvp is the time of the last tick; usec is a microsecond count since the 1280 * last tick. 1281 * 1282 * Note: In Solaris systems, the tick value is actually given by 1283 * usec_per_tick. This is called from the serial driver cdintr(), 1284 * or equivalent, at a high PIL. Because the kernel keeps a 1285 * highresolution time, the following code can accept either 1286 * the traditional argument pair, or the current highres timestamp 1287 * in tvp and zero in usec. 1288 */ 1289 void 1290 ddi_hardpps(struct timeval *tvp, int usec) 1291 { 1292 int u_usec, v_usec, bigtick; 1293 time_t cal_sec; 1294 int cal_usec; 1295 1296 /* 1297 * An occasional glitch can be produced when the PPS interrupt 1298 * occurs in the clock() routine before the time variable is 1299 * updated. Here the offset is discarded when the difference 1300 * between it and the last one is greater than tick/2, but not 1301 * if the interval since the first discard exceeds 30 s. 1302 */ 1303 time_status |= STA_PPSSIGNAL; 1304 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1305 pps_valid = 0; 1306 u_usec = -tvp->tv_usec; 1307 if (u_usec < -(MICROSEC/2)) 1308 u_usec += MICROSEC; 1309 v_usec = pps_offset - u_usec; 1310 if (v_usec < 0) 1311 v_usec = -v_usec; 1312 if (v_usec > (usec_per_tick >> 1)) { 1313 if (pps_glitch > MAXGLITCH) { 1314 pps_glitch = 0; 1315 pps_tf[2] = u_usec; 1316 pps_tf[1] = u_usec; 1317 } else { 1318 pps_glitch++; 1319 u_usec = pps_offset; 1320 } 1321 } else 1322 pps_glitch = 0; 1323 1324 /* 1325 * A three-stage median filter is used to help deglitch the pps 1326 * time. The median sample becomes the time offset estimate; the 1327 * difference between the other two samples becomes the time 1328 * dispersion (jitter) estimate. 1329 */ 1330 pps_tf[2] = pps_tf[1]; 1331 pps_tf[1] = pps_tf[0]; 1332 pps_tf[0] = u_usec; 1333 if (pps_tf[0] > pps_tf[1]) { 1334 if (pps_tf[1] > pps_tf[2]) { 1335 pps_offset = pps_tf[1]; /* 0 1 2 */ 1336 v_usec = pps_tf[0] - pps_tf[2]; 1337 } else if (pps_tf[2] > pps_tf[0]) { 1338 pps_offset = pps_tf[0]; /* 2 0 1 */ 1339 v_usec = pps_tf[2] - pps_tf[1]; 1340 } else { 1341 pps_offset = pps_tf[2]; /* 0 2 1 */ 1342 v_usec = pps_tf[0] - pps_tf[1]; 1343 } 1344 } else { 1345 if (pps_tf[1] < pps_tf[2]) { 1346 pps_offset = pps_tf[1]; /* 2 1 0 */ 1347 v_usec = pps_tf[2] - pps_tf[0]; 1348 } else if (pps_tf[2] < pps_tf[0]) { 1349 pps_offset = pps_tf[0]; /* 1 0 2 */ 1350 v_usec = pps_tf[1] - pps_tf[2]; 1351 } else { 1352 pps_offset = pps_tf[2]; /* 1 2 0 */ 1353 v_usec = pps_tf[1] - pps_tf[0]; 1354 } 1355 } 1356 if (v_usec > MAXTIME) 1357 pps_jitcnt++; 1358 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1359 pps_jitter += v_usec / (1 << PPS_AVG); 1360 if (pps_jitter > (MAXTIME >> 1)) 1361 time_status |= STA_PPSJITTER; 1362 1363 /* 1364 * During the calibration interval adjust the starting time when 1365 * the tick overflows. At the end of the interval compute the 1366 * duration of the interval and the difference of the hardware 1367 * counters at the beginning and end of the interval. This code 1368 * is deliciously complicated by the fact valid differences may 1369 * exceed the value of tick when using long calibration 1370 * intervals and small ticks. Note that the counter can be 1371 * greater than tick if caught at just the wrong instant, but 1372 * the values returned and used here are correct. 1373 */ 1374 bigtick = (int)usec_per_tick * SCALE_USEC; 1375 pps_usec -= pps_freq; 1376 if (pps_usec >= bigtick) 1377 pps_usec -= bigtick; 1378 if (pps_usec < 0) 1379 pps_usec += bigtick; 1380 pps_time.tv_sec++; 1381 pps_count++; 1382 if (pps_count < (1 << pps_shift)) 1383 return; 1384 pps_count = 0; 1385 pps_calcnt++; 1386 u_usec = usec * SCALE_USEC; 1387 v_usec = pps_usec - u_usec; 1388 if (v_usec >= bigtick >> 1) 1389 v_usec -= bigtick; 1390 if (v_usec < -(bigtick >> 1)) 1391 v_usec += bigtick; 1392 if (v_usec < 0) 1393 v_usec = -(-v_usec >> pps_shift); 1394 else 1395 v_usec = v_usec >> pps_shift; 1396 pps_usec = u_usec; 1397 cal_sec = tvp->tv_sec; 1398 cal_usec = tvp->tv_usec; 1399 cal_sec -= pps_time.tv_sec; 1400 cal_usec -= pps_time.tv_usec; 1401 if (cal_usec < 0) { 1402 cal_usec += MICROSEC; 1403 cal_sec--; 1404 } 1405 pps_time = *tvp; 1406 1407 /* 1408 * Check for lost interrupts, noise, excessive jitter and 1409 * excessive frequency error. The number of timer ticks during 1410 * the interval may vary +-1 tick. Add to this a margin of one 1411 * tick for the PPS signal jitter and maximum frequency 1412 * deviation. If the limits are exceeded, the calibration 1413 * interval is reset to the minimum and we start over. 1414 */ 1415 u_usec = (int)usec_per_tick << 1; 1416 if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) || 1417 (cal_sec == 0 && cal_usec < u_usec)) || 1418 v_usec > time_tolerance || v_usec < -time_tolerance) { 1419 pps_errcnt++; 1420 pps_shift = PPS_SHIFT; 1421 pps_intcnt = 0; 1422 time_status |= STA_PPSERROR; 1423 return; 1424 } 1425 1426 /* 1427 * A three-stage median filter is used to help deglitch the pps 1428 * frequency. The median sample becomes the frequency offset 1429 * estimate; the difference between the other two samples 1430 * becomes the frequency dispersion (stability) estimate. 1431 */ 1432 pps_ff[2] = pps_ff[1]; 1433 pps_ff[1] = pps_ff[0]; 1434 pps_ff[0] = v_usec; 1435 if (pps_ff[0] > pps_ff[1]) { 1436 if (pps_ff[1] > pps_ff[2]) { 1437 u_usec = pps_ff[1]; /* 0 1 2 */ 1438 v_usec = pps_ff[0] - pps_ff[2]; 1439 } else if (pps_ff[2] > pps_ff[0]) { 1440 u_usec = pps_ff[0]; /* 2 0 1 */ 1441 v_usec = pps_ff[2] - pps_ff[1]; 1442 } else { 1443 u_usec = pps_ff[2]; /* 0 2 1 */ 1444 v_usec = pps_ff[0] - pps_ff[1]; 1445 } 1446 } else { 1447 if (pps_ff[1] < pps_ff[2]) { 1448 u_usec = pps_ff[1]; /* 2 1 0 */ 1449 v_usec = pps_ff[2] - pps_ff[0]; 1450 } else if (pps_ff[2] < pps_ff[0]) { 1451 u_usec = pps_ff[0]; /* 1 0 2 */ 1452 v_usec = pps_ff[1] - pps_ff[2]; 1453 } else { 1454 u_usec = pps_ff[2]; /* 1 2 0 */ 1455 v_usec = pps_ff[1] - pps_ff[0]; 1456 } 1457 } 1458 1459 /* 1460 * Here the frequency dispersion (stability) is updated. If it 1461 * is less than one-fourth the maximum (MAXFREQ), the frequency 1462 * offset is updated as well, but clamped to the tolerance. It 1463 * will be processed later by the clock() routine. 1464 */ 1465 v_usec = (v_usec >> 1) - pps_stabil; 1466 if (v_usec < 0) 1467 pps_stabil -= -v_usec >> PPS_AVG; 1468 else 1469 pps_stabil += v_usec >> PPS_AVG; 1470 if (pps_stabil > MAXFREQ >> 2) { 1471 pps_stbcnt++; 1472 time_status |= STA_PPSWANDER; 1473 return; 1474 } 1475 if (time_status & STA_PPSFREQ) { 1476 if (u_usec < 0) { 1477 pps_freq -= -u_usec >> PPS_AVG; 1478 if (pps_freq < -time_tolerance) 1479 pps_freq = -time_tolerance; 1480 u_usec = -u_usec; 1481 } else { 1482 pps_freq += u_usec >> PPS_AVG; 1483 if (pps_freq > time_tolerance) 1484 pps_freq = time_tolerance; 1485 } 1486 } 1487 1488 /* 1489 * Here the calibration interval is adjusted. If the maximum 1490 * time difference is greater than tick / 4, reduce the interval 1491 * by half. If this is not the case for four consecutive 1492 * intervals, double the interval. 1493 */ 1494 if (u_usec << pps_shift > bigtick >> 2) { 1495 pps_intcnt = 0; 1496 if (pps_shift > PPS_SHIFT) 1497 pps_shift--; 1498 } else if (pps_intcnt >= 4) { 1499 pps_intcnt = 0; 1500 if (pps_shift < PPS_SHIFTMAX) 1501 pps_shift++; 1502 } else 1503 pps_intcnt++; 1504 1505 /* 1506 * If recovering from kmdb, then make sure the tod chip gets resynced. 1507 * If we took an early exit above, then we don't yet have a stable 1508 * calibration signal to lock onto, so don't mark the tod for sync 1509 * until we get all the way here. 1510 */ 1511 { 1512 int s = hr_clock_lock(); 1513 1514 tod_needsync = 1; 1515 hr_clock_unlock(s); 1516 } 1517 } 1518 1519 /* 1520 * Handle clock tick processing for a thread. 1521 * Check for timer action, enforce CPU rlimit, do profiling etc. 1522 */ 1523 void 1524 clock_tick(kthread_t *t) 1525 { 1526 struct proc *pp; 1527 klwp_id_t lwp; 1528 struct as *as; 1529 clock_t utime; 1530 clock_t stime; 1531 int poke = 0; /* notify another CPU */ 1532 int user_mode; 1533 size_t rss; 1534 1535 /* Must be operating on a lwp/thread */ 1536 if ((lwp = ttolwp(t)) == NULL) { 1537 panic("clock_tick: no lwp"); 1538 /*NOTREACHED*/ 1539 } 1540 1541 CL_TICK(t); /* Class specific tick processing */ 1542 DTRACE_SCHED1(tick, kthread_t *, t); 1543 1544 pp = ttoproc(t); 1545 1546 /* pp->p_lock makes sure that the thread does not exit */ 1547 ASSERT(MUTEX_HELD(&pp->p_lock)); 1548 1549 user_mode = (lwp->lwp_state == LWP_USER); 1550 1551 /* 1552 * Update process times. Should use high res clock and state 1553 * changes instead of statistical sampling method. XXX 1554 */ 1555 if (user_mode) { 1556 pp->p_utime++; 1557 pp->p_task->tk_cpu_time++; 1558 } else { 1559 pp->p_stime++; 1560 pp->p_task->tk_cpu_time++; 1561 } 1562 as = pp->p_as; 1563 1564 /* 1565 * Update user profiling statistics. Get the pc from the 1566 * lwp when the AST happens. 1567 */ 1568 if (pp->p_prof.pr_scale) { 1569 atomic_add_32(&lwp->lwp_oweupc, 1); 1570 if (user_mode) { 1571 poke = 1; 1572 aston(t); 1573 } 1574 } 1575 1576 utime = pp->p_utime; 1577 stime = pp->p_stime; 1578 1579 /* 1580 * If CPU was in user state, process lwp-virtual time 1581 * interval timer. 1582 */ 1583 if (user_mode && 1584 timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) && 1585 itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec_per_tick) == 0) { 1586 poke = 1; 1587 sigtoproc(pp, t, SIGVTALRM); 1588 } 1589 1590 if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) && 1591 itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec_per_tick) == 0) { 1592 poke = 1; 1593 sigtoproc(pp, t, SIGPROF); 1594 } 1595 1596 /* 1597 * Enforce CPU resource controls: 1598 * (a) process.max-cpu-time resource control 1599 */ 1600 (void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp, 1601 (utime + stime)/hz, RCA_UNSAFE_SIGINFO); 1602 1603 /* 1604 * (b) task.max-cpu-time resource control 1605 */ 1606 (void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls, pp, 1, 1607 RCA_UNSAFE_SIGINFO); 1608 1609 /* 1610 * Update memory usage for the currently running process. 1611 */ 1612 rss = rm_asrss(as); 1613 PTOU(pp)->u_mem += rss; 1614 if (rss > PTOU(pp)->u_mem_max) 1615 PTOU(pp)->u_mem_max = rss; 1616 1617 /* 1618 * Notify the CPU the thread is running on. 1619 */ 1620 if (poke && t->t_cpu != CPU) 1621 poke_cpu(t->t_cpu->cpu_id); 1622 } 1623 1624 void 1625 profil_tick(uintptr_t upc) 1626 { 1627 int ticks; 1628 proc_t *p = ttoproc(curthread); 1629 klwp_t *lwp = ttolwp(curthread); 1630 struct prof *pr = &p->p_prof; 1631 1632 do { 1633 ticks = lwp->lwp_oweupc; 1634 } while (cas32(&lwp->lwp_oweupc, ticks, 0) != ticks); 1635 1636 mutex_enter(&p->p_pflock); 1637 if (pr->pr_scale >= 2 && upc >= pr->pr_off) { 1638 /* 1639 * Old-style profiling 1640 */ 1641 uint16_t *slot = pr->pr_base; 1642 uint16_t old, new; 1643 if (pr->pr_scale != 2) { 1644 uintptr_t delta = upc - pr->pr_off; 1645 uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) + 1646 (((delta & 0xffff) * pr->pr_scale) >> 16); 1647 if (byteoff >= (uintptr_t)pr->pr_size) { 1648 mutex_exit(&p->p_pflock); 1649 return; 1650 } 1651 slot += byteoff / sizeof (uint16_t); 1652 } 1653 if (fuword16(slot, &old) < 0 || 1654 (new = old + ticks) > SHRT_MAX || 1655 suword16(slot, new) < 0) { 1656 pr->pr_scale = 0; 1657 } 1658 } else if (pr->pr_scale == 1) { 1659 /* 1660 * PC Sampling 1661 */ 1662 model_t model = lwp_getdatamodel(lwp); 1663 int result; 1664 #ifdef __lint 1665 model = model; 1666 #endif 1667 while (ticks-- > 0) { 1668 if (pr->pr_samples == pr->pr_size) { 1669 /* buffer full, turn off sampling */ 1670 pr->pr_scale = 0; 1671 break; 1672 } 1673 switch (SIZEOF_PTR(model)) { 1674 case sizeof (uint32_t): 1675 result = suword32(pr->pr_base, (uint32_t)upc); 1676 break; 1677 #ifdef _LP64 1678 case sizeof (uint64_t): 1679 result = suword64(pr->pr_base, (uint64_t)upc); 1680 break; 1681 #endif 1682 default: 1683 cmn_err(CE_WARN, "profil_tick: unexpected " 1684 "data model"); 1685 result = -1; 1686 break; 1687 } 1688 if (result != 0) { 1689 pr->pr_scale = 0; 1690 break; 1691 } 1692 pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model); 1693 pr->pr_samples++; 1694 } 1695 } 1696 mutex_exit(&p->p_pflock); 1697 } 1698 1699 static void 1700 delay_wakeup(void *arg) 1701 { 1702 kthread_t *t = arg; 1703 1704 mutex_enter(&t->t_delay_lock); 1705 cv_signal(&t->t_delay_cv); 1706 mutex_exit(&t->t_delay_lock); 1707 } 1708 1709 void 1710 delay(clock_t ticks) 1711 { 1712 kthread_t *t = curthread; 1713 clock_t deadline = lbolt + ticks; 1714 clock_t timeleft; 1715 timeout_id_t id; 1716 1717 if (panicstr && ticks > 0) { 1718 /* 1719 * Timeouts aren't running, so all we can do is spin. 1720 */ 1721 drv_usecwait(TICK_TO_USEC(ticks)); 1722 return; 1723 } 1724 1725 while ((timeleft = deadline - lbolt) > 0) { 1726 mutex_enter(&t->t_delay_lock); 1727 id = timeout(delay_wakeup, t, timeleft); 1728 cv_wait(&t->t_delay_cv, &t->t_delay_lock); 1729 mutex_exit(&t->t_delay_lock); 1730 (void) untimeout(id); 1731 } 1732 } 1733 1734 /* 1735 * Like delay, but interruptible by a signal. 1736 */ 1737 int 1738 delay_sig(clock_t ticks) 1739 { 1740 clock_t deadline = lbolt + ticks; 1741 clock_t rc; 1742 1743 mutex_enter(&curthread->t_delay_lock); 1744 do { 1745 rc = cv_timedwait_sig(&curthread->t_delay_cv, 1746 &curthread->t_delay_lock, deadline); 1747 } while (rc > 0); 1748 mutex_exit(&curthread->t_delay_lock); 1749 if (rc == 0) 1750 return (EINTR); 1751 return (0); 1752 } 1753 1754 #define SECONDS_PER_DAY 86400 1755 1756 /* 1757 * Initialize the system time based on the TOD chip. approx is used as 1758 * an approximation of time (e.g. from the filesystem) in the event that 1759 * the TOD chip has been cleared or is unresponsive. An approx of -1 1760 * means the filesystem doesn't keep time. 1761 */ 1762 void 1763 clkset(time_t approx) 1764 { 1765 timestruc_t ts; 1766 int spl; 1767 int set_clock = 0; 1768 1769 mutex_enter(&tod_lock); 1770 ts = tod_get(); 1771 1772 if (ts.tv_sec > 365 * SECONDS_PER_DAY) { 1773 /* 1774 * If the TOD chip is reporting some time after 1971, 1775 * then it probably didn't lose power or become otherwise 1776 * cleared in the recent past; check to assure that 1777 * the time coming from the filesystem isn't in the future 1778 * according to the TOD chip. 1779 */ 1780 if (approx != -1 && approx > ts.tv_sec) { 1781 cmn_err(CE_WARN, "Last shutdown is later " 1782 "than time on time-of-day chip; check date."); 1783 } 1784 } else { 1785 /* 1786 * If the TOD chip isn't giving correct time, then set it to 1787 * the time that was passed in as a rough estimate. If we 1788 * don't have an estimate, then set the clock back to a time 1789 * when Oliver North, ALF and Dire Straits were all on the 1790 * collective brain: 1987. 1791 */ 1792 timestruc_t tmp; 1793 if (approx == -1) 1794 ts.tv_sec = (1987 - 1970) * 365 * SECONDS_PER_DAY; 1795 else 1796 ts.tv_sec = approx; 1797 ts.tv_nsec = 0; 1798 1799 /* 1800 * Attempt to write the new time to the TOD chip. Set spl high 1801 * to avoid getting preempted between the tod_set and tod_get. 1802 */ 1803 spl = splhi(); 1804 tod_set(ts); 1805 tmp = tod_get(); 1806 splx(spl); 1807 1808 if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) { 1809 tod_broken = 1; 1810 dosynctodr = 0; 1811 cmn_err(CE_WARN, "Time-of-day chip unresponsive;" 1812 " dead batteries?"); 1813 } else { 1814 cmn_err(CE_WARN, "Time-of-day chip had " 1815 "incorrect date; check and reset."); 1816 } 1817 set_clock = 1; 1818 } 1819 1820 if (!boot_time) { 1821 boot_time = ts.tv_sec; 1822 set_clock = 1; 1823 } 1824 1825 if (set_clock) 1826 set_hrestime(&ts); 1827 1828 mutex_exit(&tod_lock); 1829 } 1830 1831 int timechanged; /* for testing if the system time has been reset */ 1832 1833 void 1834 set_hrestime(timestruc_t *ts) 1835 { 1836 int spl = hr_clock_lock(); 1837 hrestime = *ts; 1838 membar_enter(); /* hrestime must be visible before timechanged++ */ 1839 timedelta = 0; 1840 timechanged++; 1841 hr_clock_unlock(spl); 1842 } 1843 1844 static uint_t deadman_seconds; 1845 static uint32_t deadman_panics; 1846 static int deadman_enabled = 0; 1847 static int deadman_panic_timers = 1; 1848 1849 static void 1850 deadman(void) 1851 { 1852 if (panicstr) { 1853 /* 1854 * During panic, other CPUs besides the panic 1855 * master continue to handle cyclics and some other 1856 * interrupts. The code below is intended to be 1857 * single threaded, so any CPU other than the master 1858 * must keep out. 1859 */ 1860 if (CPU->cpu_id != panic_cpu.cpu_id) 1861 return; 1862 1863 /* 1864 * If we're panicking, the deadman cyclic continues to increase 1865 * lbolt in case the dump device driver relies on this for 1866 * timeouts. Note that we rely on deadman() being invoked once 1867 * per second, and credit lbolt and lbolt64 with hz ticks each. 1868 */ 1869 lbolt += hz; 1870 lbolt64 += hz; 1871 1872 if (!deadman_panic_timers) 1873 return; /* allow all timers to be manually disabled */ 1874 1875 /* 1876 * If we are generating a crash dump or syncing filesystems and 1877 * the corresponding timer is set, decrement it and re-enter 1878 * the panic code to abort it and advance to the next state. 1879 * The panic states and triggers are explained in panic.c. 1880 */ 1881 if (panic_dump) { 1882 if (dump_timeleft && (--dump_timeleft == 0)) { 1883 panic("panic dump timeout"); 1884 /*NOTREACHED*/ 1885 } 1886 } else if (panic_sync) { 1887 if (sync_timeleft && (--sync_timeleft == 0)) { 1888 panic("panic sync timeout"); 1889 /*NOTREACHED*/ 1890 } 1891 } 1892 1893 return; 1894 } 1895 1896 if (lbolt != CPU->cpu_deadman_lbolt) { 1897 CPU->cpu_deadman_lbolt = lbolt; 1898 CPU->cpu_deadman_countdown = deadman_seconds; 1899 return; 1900 } 1901 1902 if (CPU->cpu_deadman_countdown-- > 0) 1903 return; 1904 1905 /* 1906 * Regardless of whether or not we actually bring the system down, 1907 * bump the deadman_panics variable. 1908 * 1909 * N.B. deadman_panics is incremented once for each CPU that 1910 * passes through here. It's expected that all the CPUs will 1911 * detect this condition within one second of each other, so 1912 * when deadman_enabled is off, deadman_panics will 1913 * typically be a multiple of the total number of CPUs in 1914 * the system. 1915 */ 1916 atomic_add_32(&deadman_panics, 1); 1917 1918 if (!deadman_enabled) { 1919 CPU->cpu_deadman_countdown = deadman_seconds; 1920 return; 1921 } 1922 1923 /* 1924 * If we're here, we want to bring the system down. 1925 */ 1926 panic("deadman: timed out after %d seconds of clock " 1927 "inactivity", deadman_seconds); 1928 /*NOTREACHED*/ 1929 } 1930 1931 /*ARGSUSED*/ 1932 static void 1933 deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when) 1934 { 1935 cpu->cpu_deadman_lbolt = 0; 1936 cpu->cpu_deadman_countdown = deadman_seconds; 1937 1938 hdlr->cyh_func = (cyc_func_t)deadman; 1939 hdlr->cyh_level = CY_HIGH_LEVEL; 1940 hdlr->cyh_arg = NULL; 1941 1942 /* 1943 * Stagger the CPUs so that they don't all run deadman() at 1944 * the same time. Simplest reason to do this is to make it 1945 * more likely that only one CPU will panic in case of a 1946 * timeout. This is (strictly speaking) an aesthetic, not a 1947 * technical consideration. 1948 * 1949 * The interval must be one second in accordance with the 1950 * code in deadman() above to increase lbolt during panic. 1951 */ 1952 when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU); 1953 when->cyt_interval = NANOSEC; 1954 } 1955 1956 1957 void 1958 deadman_init(void) 1959 { 1960 cyc_omni_handler_t hdlr; 1961 1962 if (deadman_seconds == 0) 1963 deadman_seconds = snoop_interval / MICROSEC; 1964 1965 if (snooping) 1966 deadman_enabled = 1; 1967 1968 hdlr.cyo_online = deadman_online; 1969 hdlr.cyo_offline = NULL; 1970 hdlr.cyo_arg = NULL; 1971 1972 mutex_enter(&cpu_lock); 1973 deadman_cyclic = cyclic_add_omni(&hdlr); 1974 mutex_exit(&cpu_lock); 1975 } 1976 1977 /* 1978 * tod_fault() is for updating tod validate mechanism state: 1979 * (1) TOD_NOFAULT: for resetting the state to 'normal'. 1980 * currently used for debugging only 1981 * (2) The following four cases detected by tod validate mechanism: 1982 * TOD_REVERSED: current tod value is less than previous value. 1983 * TOD_STALLED: current tod value hasn't advanced. 1984 * TOD_JUMPED: current tod value advanced too far from previous value. 1985 * TOD_RATECHANGED: the ratio between average tod delta and 1986 * average tick delta has changed. 1987 * (3) TOD_RDONLY: when the TOD clock is not writeable e.g. because it is 1988 * a virtual TOD provided by a hypervisor. 1989 */ 1990 enum tod_fault_type 1991 tod_fault(enum tod_fault_type ftype, int off) 1992 { 1993 ASSERT(MUTEX_HELD(&tod_lock)); 1994 1995 if (tod_faulted != ftype) { 1996 switch (ftype) { 1997 case TOD_NOFAULT: 1998 plat_tod_fault(TOD_NOFAULT); 1999 cmn_err(CE_NOTE, "Restarted tracking " 2000 "Time of Day clock."); 2001 tod_faulted = ftype; 2002 break; 2003 case TOD_REVERSED: 2004 case TOD_JUMPED: 2005 if (tod_faulted == TOD_NOFAULT) { 2006 plat_tod_fault(ftype); 2007 cmn_err(CE_WARN, "Time of Day clock error: " 2008 "reason [%s by 0x%x]. -- " 2009 " Stopped tracking Time Of Day clock.", 2010 tod_fault_table[ftype], off); 2011 tod_faulted = ftype; 2012 } 2013 break; 2014 case TOD_STALLED: 2015 case TOD_RATECHANGED: 2016 if (tod_faulted == TOD_NOFAULT) { 2017 plat_tod_fault(ftype); 2018 cmn_err(CE_WARN, "Time of Day clock error: " 2019 "reason [%s]. -- " 2020 " Stopped tracking Time Of Day clock.", 2021 tod_fault_table[ftype]); 2022 tod_faulted = ftype; 2023 } 2024 break; 2025 case TOD_RDONLY: 2026 if (tod_faulted == TOD_NOFAULT) { 2027 plat_tod_fault(ftype); 2028 cmn_err(CE_NOTE, "!Time of Day clock is " 2029 "Read-Only; set of Date/Time will not " 2030 "persist across reboot."); 2031 tod_faulted = ftype; 2032 } 2033 break; 2034 default: 2035 break; 2036 } 2037 } 2038 return (tod_faulted); 2039 } 2040 2041 void 2042 tod_fault_reset() 2043 { 2044 tod_fault_reset_flag = 1; 2045 } 2046 2047 2048 /* 2049 * tod_validate() is used for checking values returned by tod_get(). 2050 * Four error cases can be detected by this routine: 2051 * TOD_REVERSED: current tod value is less than previous. 2052 * TOD_STALLED: current tod value hasn't advanced. 2053 * TOD_JUMPED: current tod value advanced too far from previous value. 2054 * TOD_RATECHANGED: the ratio between average tod delta and 2055 * average tick delta has changed. 2056 */ 2057 time_t 2058 tod_validate(time_t tod) 2059 { 2060 time_t diff_tod; 2061 hrtime_t diff_tick; 2062 2063 long dtick; 2064 int dtick_delta; 2065 2066 int off = 0; 2067 enum tod_fault_type tod_bad = TOD_NOFAULT; 2068 2069 static int firsttime = 1; 2070 2071 static time_t prev_tod = 0; 2072 static hrtime_t prev_tick = 0; 2073 static long dtick_avg = TOD_REF_FREQ; 2074 2075 hrtime_t tick = gethrtime(); 2076 2077 ASSERT(MUTEX_HELD(&tod_lock)); 2078 2079 /* 2080 * tod_validate_enable is patchable via /etc/system. 2081 * If TOD is already faulted, or if TOD validation is deferred, 2082 * there is nothing to do. 2083 */ 2084 if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) || 2085 tod_validate_deferred) { 2086 return (tod); 2087 } 2088 2089 /* 2090 * Update prev_tod and prev_tick values for first run 2091 */ 2092 if (firsttime) { 2093 firsttime = 0; 2094 prev_tod = tod; 2095 prev_tick = tick; 2096 return (tod); 2097 } 2098 2099 /* 2100 * For either of these conditions, we need to reset ourself 2101 * and start validation from zero since each condition 2102 * indicates that the TOD will be updated with new value 2103 * Also, note that tod_needsync will be reset in clock() 2104 */ 2105 if (tod_needsync || tod_fault_reset_flag) { 2106 firsttime = 1; 2107 prev_tod = 0; 2108 prev_tick = 0; 2109 dtick_avg = TOD_REF_FREQ; 2110 2111 if (tod_fault_reset_flag) 2112 tod_fault_reset_flag = 0; 2113 2114 return (tod); 2115 } 2116 2117 /* test hook */ 2118 switch (tod_unit_test) { 2119 case 1: /* for testing jumping tod */ 2120 tod += tod_test_injector; 2121 tod_unit_test = 0; 2122 break; 2123 case 2: /* for testing stuck tod bit */ 2124 tod |= 1 << tod_test_injector; 2125 tod_unit_test = 0; 2126 break; 2127 case 3: /* for testing stalled tod */ 2128 tod = prev_tod; 2129 tod_unit_test = 0; 2130 break; 2131 case 4: /* reset tod fault status */ 2132 (void) tod_fault(TOD_NOFAULT, 0); 2133 tod_unit_test = 0; 2134 break; 2135 default: 2136 break; 2137 } 2138 2139 diff_tod = tod - prev_tod; 2140 diff_tick = tick - prev_tick; 2141 2142 ASSERT(diff_tick >= 0); 2143 2144 if (diff_tod < 0) { 2145 /* ERROR - tod reversed */ 2146 tod_bad = TOD_REVERSED; 2147 off = (int)(prev_tod - tod); 2148 } else if (diff_tod == 0) { 2149 /* tod did not advance */ 2150 if (diff_tick > TOD_STALL_THRESHOLD) { 2151 /* ERROR - tod stalled */ 2152 tod_bad = TOD_STALLED; 2153 } else { 2154 /* 2155 * Make sure we don't update prev_tick 2156 * so that diff_tick is calculated since 2157 * the first diff_tod == 0 2158 */ 2159 return (tod); 2160 } 2161 } else { 2162 /* calculate dtick */ 2163 dtick = diff_tick / diff_tod; 2164 2165 /* update dtick averages */ 2166 dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N); 2167 2168 /* 2169 * Calculate dtick_delta as 2170 * variation from reference freq in quartiles 2171 */ 2172 dtick_delta = (dtick_avg - TOD_REF_FREQ) / 2173 (TOD_REF_FREQ >> 2); 2174 2175 /* 2176 * Even with a perfectly functioning TOD device, 2177 * when the number of elapsed seconds is low the 2178 * algorithm can calculate a rate that is beyond 2179 * tolerance, causing an error. The algorithm is 2180 * inaccurate when elapsed time is low (less than 2181 * 5 seconds). 2182 */ 2183 if (diff_tod > 4) { 2184 if (dtick < TOD_JUMP_THRESHOLD) { 2185 /* ERROR - tod jumped */ 2186 tod_bad = TOD_JUMPED; 2187 off = (int)diff_tod; 2188 } else if (dtick_delta) { 2189 /* ERROR - change in clock rate */ 2190 tod_bad = TOD_RATECHANGED; 2191 } 2192 } 2193 } 2194 2195 if (tod_bad != TOD_NOFAULT) { 2196 (void) tod_fault(tod_bad, off); 2197 2198 /* 2199 * Disable dosynctodr since we are going to fault 2200 * the TOD chip anyway here 2201 */ 2202 dosynctodr = 0; 2203 2204 /* 2205 * Set tod to the correct value from hrestime 2206 */ 2207 tod = hrestime.tv_sec; 2208 } 2209 2210 prev_tod = tod; 2211 prev_tick = tick; 2212 return (tod); 2213 } 2214 2215 static void 2216 calcloadavg(int nrun, uint64_t *hp_ave) 2217 { 2218 static int64_t f[3] = { 135, 27, 9 }; 2219 uint_t i; 2220 int64_t q, r; 2221 2222 /* 2223 * Compute load average over the last 1, 5, and 15 minutes 2224 * (60, 300, and 900 seconds). The constants in f[3] are for 2225 * exponential decay: 2226 * (1 - exp(-1/60)) << 13 = 135, 2227 * (1 - exp(-1/300)) << 13 = 27, 2228 * (1 - exp(-1/900)) << 13 = 9. 2229 */ 2230 2231 /* 2232 * a little hoop-jumping to avoid integer overflow 2233 */ 2234 for (i = 0; i < 3; i++) { 2235 q = (hp_ave[i] >> 16) << 7; 2236 r = (hp_ave[i] & 0xffff) << 7; 2237 hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 2238 } 2239 } 2240