xref: /titanic_52/usr/src/uts/common/io/wpi/wpi.c (revision aa52b40e638e124bfdc5d2a65d512955e606cab1)
1 /*
2  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Copyright (c) 2006
8  *	Damien Bergamini <damien.bergamini@free.fr>
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 #pragma ident	"%Z%%M%	%I%	%E% SMI"
24 
25 /*
26  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
27  */
28 
29 #include <sys/types.h>
30 #include <sys/byteorder.h>
31 #include <sys/conf.h>
32 #include <sys/cmn_err.h>
33 #include <sys/stat.h>
34 #include <sys/ddi.h>
35 #include <sys/sunddi.h>
36 #include <sys/strsubr.h>
37 #include <sys/ethernet.h>
38 #include <inet/common.h>
39 #include <inet/nd.h>
40 #include <inet/mi.h>
41 #include <sys/note.h>
42 #include <sys/stream.h>
43 #include <sys/strsun.h>
44 #include <sys/modctl.h>
45 #include <sys/devops.h>
46 #include <sys/dlpi.h>
47 #include <sys/mac.h>
48 #include <sys/mac_wifi.h>
49 #include <sys/net80211.h>
50 #include <sys/net80211_proto.h>
51 #include <sys/varargs.h>
52 #include <sys/policy.h>
53 #include <sys/pci.h>
54 
55 #include "wpireg.h"
56 #include "wpivar.h"
57 #include <inet/wifi_ioctl.h>
58 
59 #ifdef DEBUG
60 #define	WPI_DEBUG_80211		(1 << 0)
61 #define	WPI_DEBUG_CMD		(1 << 1)
62 #define	WPI_DEBUG_DMA		(1 << 2)
63 #define	WPI_DEBUG_EEPROM	(1 << 3)
64 #define	WPI_DEBUG_FW		(1 << 4)
65 #define	WPI_DEBUG_HW		(1 << 5)
66 #define	WPI_DEBUG_INTR		(1 << 6)
67 #define	WPI_DEBUG_MRR		(1 << 7)
68 #define	WPI_DEBUG_PIO		(1 << 8)
69 #define	WPI_DEBUG_RX		(1 << 9)
70 #define	WPI_DEBUG_SCAN		(1 << 10)
71 #define	WPI_DEBUG_TX		(1 << 11)
72 #define	WPI_DEBUG_RATECTL	(1 << 12)
73 #define	WPI_DEBUG_RADIO		(1 << 13)
74 uint32_t wpi_dbg_flags = 0;
75 #define	WPI_DBG(x) \
76 	wpi_dbg x
77 #else
78 #define	WPI_DBG(x)
79 #endif
80 
81 static void	*wpi_soft_state_p = NULL;
82 static uint8_t wpi_fw_bin [] = {
83 #include "fw-wpi/ipw3945.ucode.hex"
84 };
85 
86 /* DMA attributes for a shared page */
87 static ddi_dma_attr_t sh_dma_attr = {
88 	DMA_ATTR_V0,	/* version of this structure */
89 	0,		/* lowest usable address */
90 	0xffffffffU,	/* highest usable address */
91 	0xffffffffU,	/* maximum DMAable byte count */
92 	0x1000,		/* alignment in bytes */
93 	0x1000,		/* burst sizes (any?) */
94 	1,		/* minimum transfer */
95 	0xffffffffU,	/* maximum transfer */
96 	0xffffffffU,	/* maximum segment length */
97 	1,		/* maximum number of segments */
98 	1,		/* granularity */
99 	0,		/* flags (reserved) */
100 };
101 
102 /* DMA attributes for a ring descriptor */
103 static ddi_dma_attr_t ring_desc_dma_attr = {
104 	DMA_ATTR_V0,	/* version of this structure */
105 	0,		/* lowest usable address */
106 	0xffffffffU,	/* highest usable address */
107 	0xffffffffU,	/* maximum DMAable byte count */
108 	0x4000,		/* alignment in bytes */
109 	0x100,		/* burst sizes (any?) */
110 	1,		/* minimum transfer */
111 	0xffffffffU,	/* maximum transfer */
112 	0xffffffffU,	/* maximum segment length */
113 	1,		/* maximum number of segments */
114 	1,		/* granularity */
115 	0,		/* flags (reserved) */
116 };
117 
118 
119 /* DMA attributes for a tx cmd */
120 static ddi_dma_attr_t tx_cmd_dma_attr = {
121 	DMA_ATTR_V0,	/* version of this structure */
122 	0,		/* lowest usable address */
123 	0xffffffffU,	/* highest usable address */
124 	0xffffffffU,	/* maximum DMAable byte count */
125 	4,		/* alignment in bytes */
126 	0x100,		/* burst sizes (any?) */
127 	1,		/* minimum transfer */
128 	0xffffffffU,	/* maximum transfer */
129 	0xffffffffU,	/* maximum segment length */
130 	1,		/* maximum number of segments */
131 	1,		/* granularity */
132 	0,		/* flags (reserved) */
133 };
134 
135 /* DMA attributes for a rx buffer */
136 static ddi_dma_attr_t rx_buffer_dma_attr = {
137 	DMA_ATTR_V0,	/* version of this structure */
138 	0,		/* lowest usable address */
139 	0xffffffffU,	/* highest usable address */
140 	0xffffffffU,	/* maximum DMAable byte count */
141 	1,		/* alignment in bytes */
142 	0x100,		/* burst sizes (any?) */
143 	1,		/* minimum transfer */
144 	0xffffffffU,	/* maximum transfer */
145 	0xffffffffU,	/* maximum segment length */
146 	1,		/* maximum number of segments */
147 	1,		/* granularity */
148 	0,		/* flags (reserved) */
149 };
150 
151 /*
152  * DMA attributes for a tx buffer.
153  * the maximum number of segments is 4 for the hardware.
154  * now all the wifi drivers put the whole frame in a single
155  * descriptor, so we define the maximum  number of segments 4,
156  * just the same as the rx_buffer. we consider leverage the HW
157  * ability in the future, that is why we don't define rx and tx
158  * buffer_dma_attr as the same.
159  */
160 static ddi_dma_attr_t tx_buffer_dma_attr = {
161 	DMA_ATTR_V0,	/* version of this structure */
162 	0,		/* lowest usable address */
163 	0xffffffffU,	/* highest usable address */
164 	0xffffffffU,	/* maximum DMAable byte count */
165 	1,		/* alignment in bytes */
166 	0x100,		/* burst sizes (any?) */
167 	1,		/* minimum transfer */
168 	0xffffffffU,	/* maximum transfer */
169 	0xffffffffU,	/* maximum segment length */
170 	1,		/* maximum number of segments */
171 	1,		/* granularity */
172 	0,		/* flags (reserved) */
173 };
174 
175 /* DMA attributes for a load firmware */
176 static ddi_dma_attr_t fw_buffer_dma_attr = {
177 	DMA_ATTR_V0,	/* version of this structure */
178 	0,		/* lowest usable address */
179 	0xffffffffU,	/* highest usable address */
180 	0x7fffffff,	/* maximum DMAable byte count */
181 	4,		/* alignment in bytes */
182 	0x100,		/* burst sizes (any?) */
183 	1,		/* minimum transfer */
184 	0xffffffffU,	/* maximum transfer */
185 	0xffffffffU,	/* maximum segment length */
186 	4,		/* maximum number of segments */
187 	1,		/* granularity */
188 	0,		/* flags (reserved) */
189 };
190 
191 /* regs access attributes */
192 static ddi_device_acc_attr_t wpi_reg_accattr = {
193 	DDI_DEVICE_ATTR_V0,
194 	DDI_STRUCTURE_LE_ACC,
195 	DDI_STRICTORDER_ACC,
196 	DDI_DEFAULT_ACC
197 };
198 
199 /* DMA access attributes */
200 static ddi_device_acc_attr_t wpi_dma_accattr = {
201 	DDI_DEVICE_ATTR_V0,
202 	DDI_NEVERSWAP_ACC,
203 	DDI_STRICTORDER_ACC,
204 	DDI_DEFAULT_ACC
205 };
206 
207 static int	wpi_ring_init(wpi_sc_t *);
208 static void	wpi_ring_free(wpi_sc_t *);
209 static int	wpi_alloc_shared(wpi_sc_t *);
210 static void	wpi_free_shared(wpi_sc_t *);
211 static int	wpi_alloc_fw_dma(wpi_sc_t *);
212 static void	wpi_free_fw_dma(wpi_sc_t *);
213 static int	wpi_alloc_rx_ring(wpi_sc_t *);
214 static void	wpi_reset_rx_ring(wpi_sc_t *);
215 static void	wpi_free_rx_ring(wpi_sc_t *);
216 static int	wpi_alloc_tx_ring(wpi_sc_t *, wpi_tx_ring_t *, int, int);
217 static void	wpi_reset_tx_ring(wpi_sc_t *, wpi_tx_ring_t *);
218 static void	wpi_free_tx_ring(wpi_sc_t *, wpi_tx_ring_t *);
219 
220 static ieee80211_node_t *wpi_node_alloc(ieee80211com_t *);
221 static void	wpi_node_free(ieee80211_node_t *);
222 static int	wpi_newstate(ieee80211com_t *, enum ieee80211_state, int);
223 static void	wpi_mem_lock(wpi_sc_t *);
224 static void	wpi_mem_unlock(wpi_sc_t *);
225 static uint32_t	wpi_mem_read(wpi_sc_t *, uint16_t);
226 static void	wpi_mem_write(wpi_sc_t *, uint16_t, uint32_t);
227 static void	wpi_mem_write_region_4(wpi_sc_t *, uint16_t,
228 		    const uint32_t *, int);
229 static uint16_t	wpi_read_prom_word(wpi_sc_t *, uint32_t);
230 static int	wpi_load_microcode(wpi_sc_t *);
231 static int	wpi_load_firmware(wpi_sc_t *, uint32_t);
232 static void	wpi_rx_intr(wpi_sc_t *, wpi_rx_desc_t *,
233 		    wpi_rx_data_t *);
234 static void	wpi_tx_intr(wpi_sc_t *, wpi_rx_desc_t *,
235 		    wpi_rx_data_t *);
236 static void	wpi_cmd_intr(wpi_sc_t *, wpi_rx_desc_t *);
237 static uint_t	wpi_intr(caddr_t);
238 static uint_t	wpi_notif_softintr(caddr_t);
239 static uint8_t	wpi_plcp_signal(int);
240 static void	wpi_read_eeprom(wpi_sc_t *);
241 static int	wpi_cmd(wpi_sc_t *, int, const void *, int, int);
242 static int	wpi_mrr_setup(wpi_sc_t *);
243 static void	wpi_set_led(wpi_sc_t *, uint8_t, uint8_t, uint8_t);
244 static int	wpi_auth(wpi_sc_t *);
245 static int	wpi_scan(wpi_sc_t *);
246 static int	wpi_config(wpi_sc_t *);
247 static void	wpi_stop_master(wpi_sc_t *);
248 static int	wpi_power_up(wpi_sc_t *);
249 static int	wpi_reset(wpi_sc_t *);
250 static void	wpi_hw_config(wpi_sc_t *);
251 static int	wpi_init(wpi_sc_t *);
252 static void	wpi_stop(wpi_sc_t *);
253 static void	wpi_amrr_init(wpi_amrr_t *);
254 static void	wpi_amrr_timeout(wpi_sc_t *);
255 static void	wpi_amrr_ratectl(void *, ieee80211_node_t *);
256 
257 static int wpi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
258 static int wpi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
259 
260 /*
261  * GLD specific operations
262  */
263 static int	wpi_m_stat(void *arg, uint_t stat, uint64_t *val);
264 static int	wpi_m_start(void *arg);
265 static void	wpi_m_stop(void *arg);
266 static int	wpi_m_unicst(void *arg, const uint8_t *macaddr);
267 static int	wpi_m_multicst(void *arg, boolean_t add, const uint8_t *m);
268 static int	wpi_m_promisc(void *arg, boolean_t on);
269 static mblk_t  *wpi_m_tx(void *arg, mblk_t *mp);
270 static void	wpi_m_ioctl(void *arg, queue_t *wq, mblk_t *mp);
271 
272 static void	wpi_destroy_locks(wpi_sc_t *sc);
273 static int	wpi_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type);
274 static void	wpi_thread(wpi_sc_t *sc);
275 
276 /*
277  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
278  */
279 static const struct ieee80211_rateset wpi_rateset_11b =
280 	{ 4, { 2, 4, 11, 22 } };
281 
282 static const struct ieee80211_rateset wpi_rateset_11g =
283 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
284 
285 static const uint8_t wpi_ridx_to_signal[] = {
286 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
287 	/* R1-R4 (ral/ural is R4-R1) */
288 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
289 	/* CCK: device-dependent */
290 	10, 20, 55, 110
291 };
292 
293 /*
294  * For mfthread only
295  */
296 extern pri_t minclsyspri;
297 
298 /*
299  * Module Loading Data & Entry Points
300  */
301 DDI_DEFINE_STREAM_OPS(wpi_devops, nulldev, nulldev, wpi_attach,
302     wpi_detach, nodev, NULL, D_MP, NULL);
303 
304 static struct modldrv wpi_modldrv = {
305 	&mod_driverops,
306 	"Intel(R) PRO/Wireless 3945ABG driver",
307 	&wpi_devops
308 };
309 
310 static struct modlinkage wpi_modlinkage = {
311 	MODREV_1,
312 	&wpi_modldrv,
313 	NULL
314 };
315 
316 int
317 _init(void)
318 {
319 	int	status;
320 
321 	status = ddi_soft_state_init(&wpi_soft_state_p,
322 	    sizeof (wpi_sc_t), 1);
323 	if (status != DDI_SUCCESS)
324 		return (status);
325 
326 	mac_init_ops(&wpi_devops, "wpi");
327 	status = mod_install(&wpi_modlinkage);
328 	if (status != DDI_SUCCESS) {
329 		mac_fini_ops(&wpi_devops);
330 		ddi_soft_state_fini(&wpi_soft_state_p);
331 	}
332 
333 	return (status);
334 }
335 
336 int
337 _fini(void)
338 {
339 	int status;
340 
341 	status = mod_remove(&wpi_modlinkage);
342 	if (status == DDI_SUCCESS) {
343 		mac_fini_ops(&wpi_devops);
344 		ddi_soft_state_fini(&wpi_soft_state_p);
345 	}
346 
347 	return (status);
348 }
349 
350 int
351 _info(struct modinfo *mip)
352 {
353 	return (mod_info(&wpi_modlinkage, mip));
354 }
355 
356 /*
357  * Mac Call Back entries
358  */
359 mac_callbacks_t	wpi_m_callbacks = {
360 	MC_IOCTL,
361 	wpi_m_stat,
362 	wpi_m_start,
363 	wpi_m_stop,
364 	wpi_m_promisc,
365 	wpi_m_multicst,
366 	wpi_m_unicst,
367 	wpi_m_tx,
368 	NULL,
369 	wpi_m_ioctl
370 };
371 
372 #ifdef DEBUG
373 void
374 wpi_dbg(uint32_t flags, const char *fmt, ...)
375 {
376 	va_list	ap;
377 
378 	if (flags & wpi_dbg_flags) {
379 		va_start(ap, fmt);
380 		vcmn_err(CE_NOTE, fmt, ap);
381 		va_end(ap);
382 	}
383 }
384 #endif
385 /*
386  * device operations
387  */
388 int
389 wpi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
390 {
391 	wpi_sc_t		*sc;
392 	ddi_acc_handle_t	cfg_handle;
393 	caddr_t			cfg_base;
394 	ieee80211com_t	*ic;
395 	int			instance, err, i;
396 	char			strbuf[32];
397 	wifi_data_t		wd = { 0 };
398 	mac_register_t		*macp;
399 
400 	if (cmd != DDI_ATTACH) {
401 		err = DDI_FAILURE;
402 		goto attach_fail1;
403 	}
404 
405 	instance = ddi_get_instance(dip);
406 	err = ddi_soft_state_zalloc(wpi_soft_state_p, instance);
407 	if (err != DDI_SUCCESS) {
408 		cmn_err(CE_WARN,
409 		    "wpi_attach(): failed to allocate soft state\n");
410 		goto attach_fail1;
411 	}
412 	sc = ddi_get_soft_state(wpi_soft_state_p, instance);
413 	sc->sc_dip = dip;
414 
415 	err = ddi_regs_map_setup(dip, 0, &cfg_base, 0, 0,
416 	    &wpi_reg_accattr, &cfg_handle);
417 	if (err != DDI_SUCCESS) {
418 		cmn_err(CE_WARN,
419 		    "wpi_attach(): failed to map config spaces regs\n");
420 		goto attach_fail2;
421 	}
422 	sc->sc_rev = ddi_get8(cfg_handle,
423 	    (uint8_t *)(cfg_base + PCI_CONF_REVID));
424 	ddi_put8(cfg_handle, (uint8_t *)(cfg_base + 0x41), 0);
425 	sc->sc_clsz = ddi_get16(cfg_handle,
426 	    (uint16_t *)(cfg_base + PCI_CONF_CACHE_LINESZ));
427 	ddi_regs_map_free(&cfg_handle);
428 	if (!sc->sc_clsz)
429 		sc->sc_clsz = 16;
430 	sc->sc_clsz = (sc->sc_clsz << 2);
431 	sc->sc_dmabuf_sz = roundup(0x1000 + sizeof (struct ieee80211_frame) +
432 	    IEEE80211_MTU + IEEE80211_CRC_LEN +
433 	    (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
434 	    IEEE80211_WEP_CRCLEN), sc->sc_clsz);
435 	/*
436 	 * Map operating registers
437 	 */
438 	err = ddi_regs_map_setup(dip, 1, &sc->sc_base,
439 	    0, 0, &wpi_reg_accattr, &sc->sc_handle);
440 	if (err != DDI_SUCCESS) {
441 		cmn_err(CE_WARN,
442 		    "wpi_attach(): failed to map device regs\n");
443 		goto attach_fail2;
444 	}
445 
446 	/*
447 	 * Allocate shared page.
448 	 */
449 	err = wpi_alloc_shared(sc);
450 	if (err != DDI_SUCCESS) {
451 		cmn_err(CE_WARN, "failed to allocate shared page\n");
452 		goto attach_fail3;
453 	}
454 
455 	/*
456 	 * Get the hw conf, including MAC address, then init all rings.
457 	 */
458 	wpi_read_eeprom(sc);
459 	err = wpi_ring_init(sc);
460 	if (err != DDI_SUCCESS) {
461 		cmn_err(CE_WARN, "wpi_attach(): "
462 		    "failed to allocate and initialize ring\n");
463 		goto attach_fail4;
464 	}
465 
466 	sc->sc_hdr = (const wpi_firmware_hdr_t *)wpi_fw_bin;
467 
468 	/* firmware image layout: |HDR|<--TEXT-->|<--DATA-->|<--BOOT-->| */
469 	sc->sc_text = (const char *)(sc->sc_hdr + 1);
470 	sc->sc_data = sc->sc_text + LE_32(sc->sc_hdr->textsz);
471 	sc->sc_boot = sc->sc_data + LE_32(sc->sc_hdr->datasz);
472 	err = wpi_alloc_fw_dma(sc);
473 	if (err != DDI_SUCCESS) {
474 		cmn_err(CE_WARN, "wpi_attach(): "
475 		    "failed to allocate firmware dma\n");
476 		goto attach_fail5;
477 	}
478 
479 	/*
480 	 * Initialize mutexs and condvars
481 	 */
482 	err = ddi_get_iblock_cookie(dip, 0, &sc->sc_iblk);
483 	if (err != DDI_SUCCESS) {
484 		cmn_err(CE_WARN,
485 		    "wpi_attach(): failed to do ddi_get_iblock_cookie()\n");
486 		goto attach_fail6;
487 	}
488 	mutex_init(&sc->sc_glock, NULL, MUTEX_DRIVER, sc->sc_iblk);
489 	mutex_init(&sc->sc_tx_lock, NULL, MUTEX_DRIVER, sc->sc_iblk);
490 	cv_init(&sc->sc_fw_cv, NULL, CV_DRIVER, NULL);
491 	cv_init(&sc->sc_cmd_cv, NULL, CV_DRIVER, NULL);
492 	cv_init(&sc->sc_tx_cv, "tx-ring", CV_DRIVER, NULL);
493 	/*
494 	 * initialize the mfthread
495 	 */
496 	mutex_init(&sc->sc_mt_lock, NULL, MUTEX_DRIVER,
497 	    (void *) sc->sc_iblk);
498 	cv_init(&sc->sc_mt_cv, NULL, CV_DRIVER, NULL);
499 	sc->sc_mf_thread = NULL;
500 	sc->sc_mf_thread_switch = 0;
501 	/*
502 	 * Initialize the wifi part, which will be used by
503 	 * generic layer
504 	 */
505 	ic = &sc->sc_ic;
506 	ic->ic_phytype  = IEEE80211_T_OFDM;
507 	ic->ic_opmode   = IEEE80211_M_STA; /* default to BSS mode */
508 	ic->ic_state    = IEEE80211_S_INIT;
509 	ic->ic_maxrssi  = 70; /* experimental number */
510 	/*
511 	 * use software WEP for the current version.
512 	 */
513 	ic->ic_caps = IEEE80211_C_SHPREAMBLE | IEEE80211_C_TXPMGT |
514 	    IEEE80211_C_PMGT | IEEE80211_C_SHSLOT;
515 
516 	/* set supported .11b and .11g rates */
517 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
518 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
519 
520 	/* set supported .11b and .11g channels (1 through 14) */
521 	for (i = 1; i <= 14; i++) {
522 		ic->ic_sup_channels[i].ich_freq =
523 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
524 		ic->ic_sup_channels[i].ich_flags =
525 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
526 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
527 	}
528 	ic->ic_ibss_chan = &ic->ic_sup_channels[0];
529 	ic->ic_xmit = wpi_send;
530 	/*
531 	 * init Wifi layer
532 	 */
533 	ieee80211_attach(ic);
534 
535 	/*
536 	 * Override 80211 default routines
537 	 */
538 	sc->sc_newstate = ic->ic_newstate;
539 	ic->ic_newstate = wpi_newstate;
540 	ic->ic_node_alloc = wpi_node_alloc;
541 	ic->ic_node_free = wpi_node_free;
542 	ieee80211_media_init(ic);
543 	/*
544 	 * initialize default tx key
545 	 */
546 	ic->ic_def_txkey = 0;
547 
548 	err = ddi_add_softintr(dip, DDI_SOFTINT_LOW,
549 	    &sc->sc_notif_softint_id, &sc->sc_iblk, NULL, wpi_notif_softintr,
550 	    (caddr_t)sc);
551 	if (err != DDI_SUCCESS) {
552 		cmn_err(CE_WARN,
553 		    "wpi_attach(): failed to do ddi_add_softintr()\n");
554 		goto attach_fail7;
555 	}
556 
557 	/*
558 	 * Add the interrupt handler
559 	 */
560 	err = ddi_add_intr(dip, 0, &sc->sc_iblk, NULL,
561 	    wpi_intr, (caddr_t)sc);
562 	if (err != DDI_SUCCESS) {
563 		cmn_err(CE_WARN,
564 		    "wpi_attach(): failed to do ddi_add_intr()\n");
565 		goto attach_fail8;
566 	}
567 
568 	/*
569 	 * Initialize pointer to device specific functions
570 	 */
571 	wd.wd_secalloc = WIFI_SEC_NONE;
572 	wd.wd_opmode = ic->ic_opmode;
573 	IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_macaddr);
574 
575 	macp = mac_alloc(MAC_VERSION);
576 	if (err != DDI_SUCCESS) {
577 		cmn_err(CE_WARN,
578 		    "wpi_attach(): failed to do mac_alloc()\n");
579 		goto attach_fail9;
580 	}
581 
582 	macp->m_type_ident	= MAC_PLUGIN_IDENT_WIFI;
583 	macp->m_driver		= sc;
584 	macp->m_dip		= dip;
585 	macp->m_src_addr	= ic->ic_macaddr;
586 	macp->m_callbacks	= &wpi_m_callbacks;
587 	macp->m_min_sdu		= 0;
588 	macp->m_max_sdu		= IEEE80211_MTU;
589 	macp->m_pdata		= &wd;
590 	macp->m_pdata_size	= sizeof (wd);
591 
592 	/*
593 	 * Register the macp to mac
594 	 */
595 	err = mac_register(macp, &ic->ic_mach);
596 	mac_free(macp);
597 	if (err != DDI_SUCCESS) {
598 		cmn_err(CE_WARN,
599 		    "wpi_attach(): failed to do mac_register()\n");
600 		goto attach_fail9;
601 	}
602 
603 	/*
604 	 * Create minor node of type DDI_NT_NET_WIFI
605 	 */
606 	(void) snprintf(strbuf, sizeof (strbuf), "wpi%d", instance);
607 	err = ddi_create_minor_node(dip, strbuf, S_IFCHR,
608 	    instance + 1, DDI_NT_NET_WIFI, 0);
609 	if (err != DDI_SUCCESS)
610 		cmn_err(CE_WARN,
611 		    "wpi_attach(): failed to do ddi_create_minor_node()\n");
612 
613 	/*
614 	 * Notify link is down now
615 	 */
616 	mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
617 
618 	/*
619 	 * create the mf thread to handle the link status,
620 	 * recovery fatal error, etc.
621 	 */
622 
623 	sc->sc_mf_thread_switch = 1;
624 	if (sc->sc_mf_thread == NULL)
625 		sc->sc_mf_thread = thread_create((caddr_t)NULL, 0,
626 		    wpi_thread, sc, 0, &p0, TS_RUN, minclsyspri);
627 
628 	sc->sc_flags |= WPI_F_ATTACHED;
629 
630 	return (DDI_SUCCESS);
631 attach_fail9:
632 	ddi_remove_intr(dip, 0, sc->sc_iblk);
633 attach_fail8:
634 	ddi_remove_softintr(sc->sc_notif_softint_id);
635 	sc->sc_notif_softint_id = NULL;
636 attach_fail7:
637 	ieee80211_detach(ic);
638 	wpi_destroy_locks(sc);
639 attach_fail6:
640 	wpi_free_fw_dma(sc);
641 attach_fail5:
642 	wpi_ring_free(sc);
643 attach_fail4:
644 	wpi_free_shared(sc);
645 attach_fail3:
646 	ddi_regs_map_free(&sc->sc_handle);
647 attach_fail2:
648 	ddi_soft_state_free(wpi_soft_state_p, instance);
649 attach_fail1:
650 	return (err);
651 }
652 
653 int
654 wpi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
655 {
656 	wpi_sc_t	*sc;
657 	int err;
658 
659 	sc = ddi_get_soft_state(wpi_soft_state_p, ddi_get_instance(dip));
660 	ASSERT(sc != NULL);
661 
662 	if (cmd != DDI_DETACH)
663 		return (DDI_FAILURE);
664 	if (!(sc->sc_flags & WPI_F_ATTACHED))
665 		return (DDI_FAILURE);
666 
667 	/*
668 	 * Destroy the mf_thread
669 	 */
670 	mutex_enter(&sc->sc_mt_lock);
671 	sc->sc_mf_thread_switch = 0;
672 	while (sc->sc_mf_thread != NULL) {
673 		if (cv_wait_sig(&sc->sc_mt_cv, &sc->sc_mt_lock) == 0)
674 			break;
675 	}
676 	mutex_exit(&sc->sc_mt_lock);
677 
678 	wpi_stop(sc);
679 
680 	/*
681 	 * Unregiste from the MAC layer subsystem
682 	 */
683 	err = mac_unregister(sc->sc_ic.ic_mach);
684 	if (err != DDI_SUCCESS)
685 		return (err);
686 
687 	mutex_enter(&sc->sc_glock);
688 	wpi_free_fw_dma(sc);
689 	wpi_ring_free(sc);
690 	wpi_free_shared(sc);
691 	mutex_exit(&sc->sc_glock);
692 
693 	ddi_remove_intr(dip, 0, sc->sc_iblk);
694 	ddi_remove_softintr(sc->sc_notif_softint_id);
695 	sc->sc_notif_softint_id = NULL;
696 
697 	/*
698 	 * detach ieee80211
699 	 */
700 	ieee80211_detach(&sc->sc_ic);
701 
702 	wpi_destroy_locks(sc);
703 
704 	ddi_regs_map_free(&sc->sc_handle);
705 	ddi_remove_minor_node(dip, NULL);
706 	ddi_soft_state_free(wpi_soft_state_p, ddi_get_instance(dip));
707 
708 	return (DDI_SUCCESS);
709 }
710 
711 static void
712 wpi_destroy_locks(wpi_sc_t *sc)
713 {
714 	cv_destroy(&sc->sc_mt_cv);
715 	mutex_destroy(&sc->sc_mt_lock);
716 	cv_destroy(&sc->sc_tx_cv);
717 	cv_destroy(&sc->sc_cmd_cv);
718 	cv_destroy(&sc->sc_fw_cv);
719 	mutex_destroy(&sc->sc_tx_lock);
720 	mutex_destroy(&sc->sc_glock);
721 }
722 
723 /*
724  * Allocate an area of memory and a DMA handle for accessing it
725  */
726 static int
727 wpi_alloc_dma_mem(wpi_sc_t *sc, size_t memsize, ddi_dma_attr_t *dma_attr_p,
728 	ddi_device_acc_attr_t *acc_attr_p, uint_t dma_flags, wpi_dma_t *dma_p)
729 {
730 	caddr_t vaddr;
731 	int err;
732 
733 	/*
734 	 * Allocate handle
735 	 */
736 	err = ddi_dma_alloc_handle(sc->sc_dip, dma_attr_p,
737 	    DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl);
738 	if (err != DDI_SUCCESS) {
739 		dma_p->dma_hdl = NULL;
740 		return (DDI_FAILURE);
741 	}
742 
743 	/*
744 	 * Allocate memory
745 	 */
746 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, acc_attr_p,
747 	    dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING),
748 	    DDI_DMA_SLEEP, NULL, &vaddr, &dma_p->alength, &dma_p->acc_hdl);
749 	if (err != DDI_SUCCESS) {
750 		ddi_dma_free_handle(&dma_p->dma_hdl);
751 		dma_p->dma_hdl = NULL;
752 		dma_p->acc_hdl = NULL;
753 		return (DDI_FAILURE);
754 	}
755 
756 	/*
757 	 * Bind the two together
758 	 */
759 	dma_p->mem_va = vaddr;
760 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
761 	    vaddr, dma_p->alength, dma_flags, DDI_DMA_SLEEP, NULL,
762 	    &dma_p->cookie, &dma_p->ncookies);
763 	if (err != DDI_DMA_MAPPED) {
764 		ddi_dma_mem_free(&dma_p->acc_hdl);
765 		ddi_dma_free_handle(&dma_p->dma_hdl);
766 		dma_p->acc_hdl = NULL;
767 		dma_p->dma_hdl = NULL;
768 		return (DDI_FAILURE);
769 	}
770 
771 	dma_p->nslots = ~0U;
772 	dma_p->size = ~0U;
773 	dma_p->token = ~0U;
774 	dma_p->offset = 0;
775 	return (DDI_SUCCESS);
776 }
777 
778 /*
779  * Free one allocated area of DMAable memory
780  */
781 static void
782 wpi_free_dma_mem(wpi_dma_t *dma_p)
783 {
784 	if (dma_p->dma_hdl != NULL) {
785 		if (dma_p->ncookies) {
786 			(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
787 			dma_p->ncookies = 0;
788 		}
789 		ddi_dma_free_handle(&dma_p->dma_hdl);
790 		dma_p->dma_hdl = NULL;
791 	}
792 
793 	if (dma_p->acc_hdl != NULL) {
794 		ddi_dma_mem_free(&dma_p->acc_hdl);
795 		dma_p->acc_hdl = NULL;
796 	}
797 }
798 
799 /*
800  * Allocate an area of dma memory for firmware load.
801  * Idealy, this allocation should be a one time action, that is,
802  * the memory will be freed after the firmware is uploaded to the
803  * card. but since a recovery mechanism for the fatal firmware need
804  * reload the firmware, and re-allocate dma at run time may be failed,
805  * so we allocate it at attach and keep it in the whole lifecycle of
806  * the driver.
807  */
808 static int
809 wpi_alloc_fw_dma(wpi_sc_t *sc)
810 {
811 	int i, err = DDI_SUCCESS;
812 	wpi_dma_t *dma_p;
813 
814 	err = wpi_alloc_dma_mem(sc, LE_32(sc->sc_hdr->textsz),
815 	    &fw_buffer_dma_attr, &wpi_dma_accattr,
816 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
817 	    &sc->sc_dma_fw_text);
818 	dma_p = &sc->sc_dma_fw_text;
819 	WPI_DBG((WPI_DEBUG_DMA, "ncookies:%d addr1:%x size1:%x\n",
820 	    dma_p->ncookies, dma_p->cookie.dmac_address,
821 	    dma_p->cookie.dmac_size));
822 	if (err != DDI_SUCCESS) {
823 		cmn_err(CE_WARN, "wpi_alloc_fw_dma(): failed to alloc"
824 		    "text dma memory");
825 		goto fail;
826 	}
827 	for (i = 0; i < dma_p->ncookies; i++) {
828 		sc->sc_fw_text_cookie[i] = dma_p->cookie;
829 		ddi_dma_nextcookie(dma_p->dma_hdl, &dma_p->cookie);
830 	}
831 	err = wpi_alloc_dma_mem(sc, LE_32(sc->sc_hdr->datasz),
832 	    &fw_buffer_dma_attr, &wpi_dma_accattr,
833 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
834 	    &sc->sc_dma_fw_data);
835 	dma_p = &sc->sc_dma_fw_data;
836 	WPI_DBG((WPI_DEBUG_DMA, "ncookies:%d addr1:%x size1:%x\n",
837 	    dma_p->ncookies, dma_p->cookie.dmac_address,
838 	    dma_p->cookie.dmac_size));
839 	if (err != DDI_SUCCESS) {
840 		cmn_err(CE_WARN, "wpi_alloc_fw_dma(): failed to alloc"
841 		    "data dma memory");
842 		goto fail;
843 	}
844 	for (i = 0; i < dma_p->ncookies; i++) {
845 		sc->sc_fw_data_cookie[i] = dma_p->cookie;
846 		ddi_dma_nextcookie(dma_p->dma_hdl, &dma_p->cookie);
847 	}
848 fail:
849 	return (err);
850 }
851 
852 static void
853 wpi_free_fw_dma(wpi_sc_t *sc)
854 {
855 	wpi_free_dma_mem(&sc->sc_dma_fw_text);
856 	wpi_free_dma_mem(&sc->sc_dma_fw_data);
857 }
858 
859 /*
860  * Allocate a shared page between host and NIC.
861  */
862 static int
863 wpi_alloc_shared(wpi_sc_t *sc)
864 {
865 	int err = DDI_SUCCESS;
866 
867 	/* must be aligned on a 4K-page boundary */
868 	err = wpi_alloc_dma_mem(sc, sizeof (wpi_shared_t),
869 	    &sh_dma_attr, &wpi_dma_accattr,
870 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
871 	    &sc->sc_dma_sh);
872 	if (err != DDI_SUCCESS)
873 		goto fail;
874 	sc->sc_shared = (wpi_shared_t *)sc->sc_dma_sh.mem_va;
875 	return (err);
876 
877 fail:
878 	wpi_free_shared(sc);
879 	return (err);
880 }
881 
882 static void
883 wpi_free_shared(wpi_sc_t *sc)
884 {
885 	wpi_free_dma_mem(&sc->sc_dma_sh);
886 }
887 
888 static int
889 wpi_alloc_rx_ring(wpi_sc_t *sc)
890 {
891 	wpi_rx_ring_t *ring;
892 	wpi_rx_data_t *data;
893 	int i, err = DDI_SUCCESS;
894 
895 	ring = &sc->sc_rxq;
896 	ring->cur = 0;
897 
898 	err = wpi_alloc_dma_mem(sc, WPI_RX_RING_COUNT * sizeof (uint32_t),
899 	    &ring_desc_dma_attr, &wpi_dma_accattr,
900 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
901 	    &ring->dma_desc);
902 	if (err != DDI_SUCCESS) {
903 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc rx ring desc failed\n"));
904 		goto fail;
905 	}
906 	ring->desc = (uint32_t *)ring->dma_desc.mem_va;
907 
908 	/*
909 	 * Allocate Rx buffers.
910 	 */
911 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
912 		data = &ring->data[i];
913 		err = wpi_alloc_dma_mem(sc, sc->sc_dmabuf_sz,
914 		    &rx_buffer_dma_attr, &wpi_dma_accattr,
915 		    DDI_DMA_READ | DDI_DMA_STREAMING,
916 		    &data->dma_data);
917 		if (err != DDI_SUCCESS) {
918 			WPI_DBG((WPI_DEBUG_DMA, "dma alloc rx ring buf[%d] "
919 			    "failed\n", i));
920 			goto fail;
921 		}
922 
923 		ring->desc[i] = LE_32(data->dma_data.cookie.dmac_address);
924 	}
925 
926 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
927 
928 	return (err);
929 
930 fail:
931 	wpi_free_rx_ring(sc);
932 	return (err);
933 }
934 
935 static void
936 wpi_reset_rx_ring(wpi_sc_t *sc)
937 {
938 	int ntries;
939 
940 	wpi_mem_lock(sc);
941 
942 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
943 	for (ntries = 0; ntries < 2000; ntries++) {
944 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
945 			break;
946 		DELAY(1000);
947 	}
948 #ifdef DEBUG
949 	if (ntries == 2000)
950 		WPI_DBG((WPI_DEBUG_DMA, "timeout resetting Rx ring\n"));
951 #endif
952 	wpi_mem_unlock(sc);
953 
954 	sc->sc_rxq.cur = 0;
955 }
956 
957 static void
958 wpi_free_rx_ring(wpi_sc_t *sc)
959 {
960 	int i;
961 
962 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
963 		if (sc->sc_rxq.data[i].dma_data.dma_hdl)
964 			WPI_DMA_SYNC(sc->sc_rxq.data[i].dma_data,
965 			    DDI_DMA_SYNC_FORCPU);
966 		wpi_free_dma_mem(&sc->sc_rxq.data[i].dma_data);
967 	}
968 
969 	if (sc->sc_rxq.dma_desc.dma_hdl)
970 		WPI_DMA_SYNC(sc->sc_rxq.dma_desc, DDI_DMA_SYNC_FORDEV);
971 	wpi_free_dma_mem(&sc->sc_rxq.dma_desc);
972 }
973 
974 static int
975 wpi_alloc_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring, int count, int qid)
976 {
977 	wpi_tx_data_t *data;
978 	wpi_tx_desc_t *desc_h;
979 	uint32_t paddr_desc_h;
980 	wpi_tx_cmd_t *cmd_h;
981 	uint32_t paddr_cmd_h;
982 	int i, err = DDI_SUCCESS;
983 
984 	ring->qid = qid;
985 	ring->count = count;
986 	ring->queued = 0;
987 	ring->cur = 0;
988 
989 	err = wpi_alloc_dma_mem(sc, count * sizeof (wpi_tx_desc_t),
990 	    &ring_desc_dma_attr, &wpi_dma_accattr,
991 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
992 	    &ring->dma_desc);
993 	if (err != DDI_SUCCESS) {
994 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring desc[%d] failed\n",
995 		    qid));
996 		goto fail;
997 	}
998 
999 	/* update shared page with ring's base address */
1000 	sc->sc_shared->txbase[qid] = ring->dma_desc.cookie.dmac_address;
1001 
1002 	desc_h = (wpi_tx_desc_t *)ring->dma_desc.mem_va;
1003 	paddr_desc_h = ring->dma_desc.cookie.dmac_address;
1004 
1005 	err = wpi_alloc_dma_mem(sc, count * sizeof (wpi_tx_cmd_t),
1006 	    &tx_cmd_dma_attr, &wpi_dma_accattr,
1007 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1008 	    &ring->dma_cmd);
1009 	if (err != DDI_SUCCESS) {
1010 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring cmd[%d] failed\n",
1011 		    qid));
1012 		goto fail;
1013 	}
1014 
1015 	cmd_h = (wpi_tx_cmd_t *)ring->dma_cmd.mem_va;
1016 	paddr_cmd_h = ring->dma_cmd.cookie.dmac_address;
1017 
1018 	/*
1019 	 * Allocate Tx buffers.
1020 	 */
1021 	ring->data = kmem_zalloc(sizeof (wpi_tx_data_t) * count, KM_NOSLEEP);
1022 	if (ring->data == NULL) {
1023 		WPI_DBG((WPI_DEBUG_DMA, "could not allocate tx data slots\n"));
1024 		goto fail;
1025 	}
1026 
1027 	for (i = 0; i < count; i++) {
1028 		data = &ring->data[i];
1029 		err = wpi_alloc_dma_mem(sc, sc->sc_dmabuf_sz,
1030 		    &tx_buffer_dma_attr, &wpi_dma_accattr,
1031 		    DDI_DMA_WRITE | DDI_DMA_STREAMING,
1032 		    &data->dma_data);
1033 		if (err != DDI_SUCCESS) {
1034 			WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring buf[%d] "
1035 			    "failed\n", i));
1036 			goto fail;
1037 		}
1038 
1039 		data->desc = desc_h + i;
1040 		data->paddr_desc = paddr_desc_h +
1041 		    ((caddr_t)data->desc - (caddr_t)desc_h);
1042 		data->cmd = cmd_h + i;
1043 		data->paddr_cmd = paddr_cmd_h +
1044 		    ((caddr_t)data->cmd - (caddr_t)cmd_h);
1045 	}
1046 
1047 	return (err);
1048 
1049 fail:
1050 	if (ring->data)
1051 		kmem_free(ring->data, sizeof (wpi_tx_data_t) * count);
1052 	wpi_free_tx_ring(sc, ring);
1053 	return (err);
1054 }
1055 
1056 static void
1057 wpi_reset_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring)
1058 {
1059 	wpi_tx_data_t *data;
1060 	int i, ntries;
1061 
1062 	wpi_mem_lock(sc);
1063 
1064 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1065 	for (ntries = 0; ntries < 100; ntries++) {
1066 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1067 			break;
1068 		DELAY(10);
1069 	}
1070 #ifdef DEBUG
1071 	if (ntries == 100 && wpi_dbg_flags > 0) {
1072 		WPI_DBG((WPI_DEBUG_DMA, "timeout resetting Tx ring %d\n",
1073 		    ring->qid));
1074 	}
1075 #endif
1076 	wpi_mem_unlock(sc);
1077 
1078 	for (i = 0; i < ring->count; i++) {
1079 		data = &ring->data[i];
1080 		WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
1081 	}
1082 
1083 	ring->queued = 0;
1084 	ring->cur = 0;
1085 }
1086 
1087 /*ARGSUSED*/
1088 static void
1089 wpi_free_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring)
1090 {
1091 	int i;
1092 
1093 	if (ring->dma_desc.dma_hdl != NULL)
1094 		WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
1095 	wpi_free_dma_mem(&ring->dma_desc);
1096 
1097 	if (ring->dma_cmd.dma_hdl != NULL)
1098 		WPI_DMA_SYNC(ring->dma_cmd, DDI_DMA_SYNC_FORDEV);
1099 	wpi_free_dma_mem(&ring->dma_cmd);
1100 
1101 	if (ring->data != NULL) {
1102 		for (i = 0; i < ring->count; i++) {
1103 			if (ring->data[i].dma_data.dma_hdl)
1104 				WPI_DMA_SYNC(ring->data[i].dma_data,
1105 				    DDI_DMA_SYNC_FORDEV);
1106 			wpi_free_dma_mem(&ring->data[i].dma_data);
1107 		}
1108 		kmem_free(ring->data, ring->count * sizeof (wpi_tx_data_t));
1109 	}
1110 }
1111 
1112 static int
1113 wpi_ring_init(wpi_sc_t *sc)
1114 {
1115 	int i, err = DDI_SUCCESS;
1116 
1117 	for (i = 0; i < 4; i++) {
1118 		err = wpi_alloc_tx_ring(sc, &sc->sc_txq[i], WPI_TX_RING_COUNT,
1119 		    i);
1120 		if (err != DDI_SUCCESS)
1121 			goto fail;
1122 	}
1123 	err = wpi_alloc_tx_ring(sc, &sc->sc_cmdq, WPI_CMD_RING_COUNT, 4);
1124 	if (err != DDI_SUCCESS)
1125 		goto fail;
1126 	err = wpi_alloc_tx_ring(sc, &sc->sc_svcq, WPI_SVC_RING_COUNT, 5);
1127 	if (err != DDI_SUCCESS)
1128 		goto fail;
1129 	err = wpi_alloc_rx_ring(sc);
1130 	if (err != DDI_SUCCESS)
1131 		goto fail;
1132 	return (err);
1133 
1134 fail:
1135 	return (err);
1136 }
1137 
1138 static void
1139 wpi_ring_free(wpi_sc_t *sc)
1140 {
1141 	int i = 4;
1142 
1143 	wpi_free_rx_ring(sc);
1144 	wpi_free_tx_ring(sc, &sc->sc_svcq);
1145 	wpi_free_tx_ring(sc, &sc->sc_cmdq);
1146 	while (--i >= 0) {
1147 		wpi_free_tx_ring(sc, &sc->sc_txq[i]);
1148 	}
1149 }
1150 
1151 /* ARGSUSED */
1152 static ieee80211_node_t *
1153 wpi_node_alloc(ieee80211com_t *ic)
1154 {
1155 	wpi_amrr_t *amrr;
1156 
1157 	amrr = kmem_zalloc(sizeof (wpi_amrr_t), KM_SLEEP);
1158 	if (amrr != NULL)
1159 		wpi_amrr_init(amrr);
1160 	return (&amrr->in);
1161 }
1162 
1163 static void
1164 wpi_node_free(ieee80211_node_t *in)
1165 {
1166 	ieee80211com_t *ic = in->in_ic;
1167 
1168 	ic->ic_node_cleanup(in);
1169 	kmem_free(in, sizeof (wpi_amrr_t));
1170 }
1171 
1172 /*ARGSUSED*/
1173 static int
1174 wpi_newstate(ieee80211com_t *ic, enum ieee80211_state nstate, int arg)
1175 {
1176 	wpi_sc_t *sc = (wpi_sc_t *)ic;
1177 	ieee80211_node_t *in = ic->ic_bss;
1178 	int i, err = WPI_SUCCESS;
1179 
1180 	mutex_enter(&sc->sc_glock);
1181 	switch (nstate) {
1182 	case IEEE80211_S_SCAN:
1183 		/* ieee80211_node_table_reset(&ic->ic_scan); */
1184 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1185 		/* make the link LED blink while we're scanning */
1186 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
1187 
1188 		if ((err = wpi_scan(sc)) != 0) {
1189 			WPI_DBG((WPI_DEBUG_80211, "could not initiate scan\n"));
1190 			ic->ic_flags &= ~(IEEE80211_F_SCAN |
1191 			    IEEE80211_F_ASCAN);
1192 			mutex_exit(&sc->sc_glock);
1193 			return (err);
1194 		}
1195 		ic->ic_state = nstate;
1196 		sc->sc_clk = 0;
1197 
1198 		mutex_exit(&sc->sc_glock);
1199 		return (WPI_SUCCESS);
1200 
1201 	case IEEE80211_S_AUTH:
1202 		/* reset state to handle reassociations correctly */
1203 		sc->sc_config.state = 0;
1204 		sc->sc_config.filter &= ~LE_32(WPI_FILTER_BSS);
1205 
1206 		if ((err = wpi_auth(sc)) != 0) {
1207 			WPI_DBG((WPI_DEBUG_80211,
1208 			    "could not send authentication request\n"));
1209 			mutex_exit(&sc->sc_glock);
1210 			return (err);
1211 		}
1212 		break;
1213 
1214 	case IEEE80211_S_RUN:
1215 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1216 			/* link LED blinks while monitoring */
1217 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
1218 			break;
1219 		}
1220 
1221 		if (ic->ic_opmode != IEEE80211_M_STA) {
1222 			(void) wpi_auth(sc);
1223 			/* need setup beacon here */
1224 		}
1225 		WPI_DBG((WPI_DEBUG_80211, "wpi: associated."));
1226 
1227 		/* update adapter's configuration */
1228 		sc->sc_config.state = LE_16(WPI_CONFIG_ASSOCIATED);
1229 		/* short preamble/slot time are negotiated when associating */
1230 		sc->sc_config.flags &= ~LE_32(WPI_CONFIG_SHPREAMBLE |
1231 		    WPI_CONFIG_SHSLOT);
1232 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
1233 			sc->sc_config.flags |= LE_32(WPI_CONFIG_SHSLOT);
1234 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1235 			sc->sc_config.flags |= LE_32(WPI_CONFIG_SHPREAMBLE);
1236 		sc->sc_config.filter |= LE_32(WPI_FILTER_BSS);
1237 		if (ic->ic_opmode != IEEE80211_M_STA)
1238 			sc->sc_config.filter |= LE_32(WPI_FILTER_BEACON);
1239 
1240 		WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x\n",
1241 		    sc->sc_config.chan, sc->sc_config.flags));
1242 		err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
1243 		    sizeof (wpi_config_t), 1);
1244 		if (err != WPI_SUCCESS) {
1245 			WPI_DBG((WPI_DEBUG_80211,
1246 			    "could not update configuration\n"));
1247 			mutex_exit(&sc->sc_glock);
1248 			return (err);
1249 		}
1250 
1251 		/* start automatic rate control */
1252 		mutex_enter(&sc->sc_mt_lock);
1253 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1254 			sc->sc_flags |= WPI_F_RATE_AUTO_CTL;
1255 			/* set rate to some reasonable initial value */
1256 			i = in->in_rates.ir_nrates - 1;
1257 			while (i > 0 && IEEE80211_RATE(i) > 72)
1258 				i--;
1259 			in->in_txrate = i;
1260 		} else {
1261 			sc->sc_flags &= ~WPI_F_RATE_AUTO_CTL;
1262 		}
1263 		mutex_exit(&sc->sc_mt_lock);
1264 
1265 		/* link LED always on while associated */
1266 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1267 		break;
1268 
1269 	case IEEE80211_S_INIT:
1270 	case IEEE80211_S_ASSOC:
1271 		break;
1272 	}
1273 
1274 	mutex_exit(&sc->sc_glock);
1275 	return (sc->sc_newstate(ic, nstate, arg));
1276 }
1277 
1278 /*
1279  * Grab exclusive access to NIC memory.
1280  */
1281 static void
1282 wpi_mem_lock(wpi_sc_t *sc)
1283 {
1284 	uint32_t tmp;
1285 	int ntries;
1286 
1287 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1288 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1289 
1290 	/* spin until we actually get the lock */
1291 	for (ntries = 0; ntries < 1000; ntries++) {
1292 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1293 		    (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1294 			break;
1295 		DELAY(10);
1296 	}
1297 	if (ntries == 1000)
1298 		WPI_DBG((WPI_DEBUG_PIO, "could not lock memory\n"));
1299 }
1300 
1301 /*
1302  * Release lock on NIC memory.
1303  */
1304 static void
1305 wpi_mem_unlock(wpi_sc_t *sc)
1306 {
1307 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1308 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1309 }
1310 
1311 static uint32_t
1312 wpi_mem_read(wpi_sc_t *sc, uint16_t addr)
1313 {
1314 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1315 	return (WPI_READ(sc, WPI_READ_MEM_DATA));
1316 }
1317 
1318 static void
1319 wpi_mem_write(wpi_sc_t *sc, uint16_t addr, uint32_t data)
1320 {
1321 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1322 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1323 }
1324 
1325 static void
1326 wpi_mem_write_region_4(wpi_sc_t *sc, uint16_t addr,
1327     const uint32_t *data, int wlen)
1328 {
1329 	for (; wlen > 0; wlen--, data++, addr += 4)
1330 		wpi_mem_write(sc, addr, *data);
1331 }
1332 
1333 /*
1334  * Read 16 bits from the EEPROM.  We access EEPROM through the MAC instead of
1335  * using the traditional bit-bang method.
1336  */
1337 static uint16_t
1338 wpi_read_prom_word(wpi_sc_t *sc, uint32_t addr)
1339 {
1340 	uint32_t val;
1341 	int ntries;
1342 
1343 	WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1344 
1345 	wpi_mem_lock(sc);
1346 	for (ntries = 0; ntries < 10; ntries++) {
1347 		if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1348 			break;
1349 		DELAY(10);
1350 	}
1351 	wpi_mem_unlock(sc);
1352 
1353 	if (ntries == 10) {
1354 		WPI_DBG((WPI_DEBUG_PIO, "could not read EEPROM\n"));
1355 		return (0xdead);
1356 	}
1357 	return (val >> 16);
1358 }
1359 
1360 /*
1361  * The firmware boot code is small and is intended to be copied directly into
1362  * the NIC internal memory.
1363  */
1364 static int
1365 wpi_load_microcode(wpi_sc_t *sc)
1366 {
1367 	const char *ucode;
1368 	int size;
1369 
1370 	ucode = sc->sc_boot;
1371 	size = LE_32(sc->sc_hdr->bootsz);
1372 	/* check that microcode size is a multiple of 4 */
1373 	if (size & 3)
1374 		return (EINVAL);
1375 
1376 	size /= sizeof (uint32_t);
1377 
1378 	wpi_mem_lock(sc);
1379 
1380 	/* copy microcode image into NIC memory */
1381 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, (const uint32_t *)ucode,
1382 	    size);
1383 
1384 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1385 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1386 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1387 
1388 	/* run microcode */
1389 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1390 
1391 	wpi_mem_unlock(sc);
1392 
1393 	return (WPI_SUCCESS);
1394 }
1395 
1396 /*
1397  * The firmware text and data segments are transferred to the NIC using DMA.
1398  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1399  * where to find it.  Once the NIC has copied the firmware into its internal
1400  * memory, we can free our local copy in the driver.
1401  */
1402 static int
1403 wpi_load_firmware(wpi_sc_t *sc, uint32_t target)
1404 {
1405 	const char *fw;
1406 	int size;
1407 	wpi_dma_t *dma_p;
1408 	ddi_dma_cookie_t *cookie;
1409 	wpi_tx_desc_t desc;
1410 	int i, ntries, err = WPI_SUCCESS;
1411 
1412 	/* only text and data here */
1413 	if (target == WPI_FW_TEXT) {
1414 		fw = sc->sc_text;
1415 		size = LE_32(sc->sc_hdr->textsz);
1416 		dma_p = &sc->sc_dma_fw_text;
1417 		cookie = sc->sc_fw_text_cookie;
1418 	} else {
1419 		fw = sc->sc_data;
1420 		size = LE_32(sc->sc_hdr->datasz);
1421 		dma_p = &sc->sc_dma_fw_data;
1422 		cookie = sc->sc_fw_data_cookie;
1423 	}
1424 
1425 	/* copy firmware image to DMA-safe memory */
1426 	(void) memcpy(dma_p->mem_va, fw, size);
1427 
1428 	/* make sure the adapter will get up-to-date values */
1429 	(void) ddi_dma_sync(dma_p->dma_hdl, 0, size, DDI_DMA_SYNC_FORDEV);
1430 
1431 	(void) memset(&desc, 0, sizeof (desc));
1432 	desc.flags = LE_32(WPI_PAD32(size) << 28 | dma_p->ncookies << 24);
1433 	for (i = 0; i < dma_p->ncookies; i++) {
1434 		WPI_DBG((WPI_DEBUG_DMA, "cookie%d addr:%x size:%x\n",
1435 		    i, cookie[i].dmac_address, cookie[i].dmac_size));
1436 		desc.segs[i].addr = cookie[i].dmac_address;
1437 		desc.segs[i].len = (uint32_t)cookie[i].dmac_size;
1438 	}
1439 
1440 	wpi_mem_lock(sc);
1441 
1442 	/* tell adapter where to copy image in its internal memory */
1443 	WPI_WRITE(sc, WPI_FW_TARGET, target);
1444 
1445 	WPI_WRITE(sc, WPI_TX_CONFIG(6), 0);
1446 
1447 	/* copy firmware descriptor into NIC memory */
1448 	WPI_WRITE_REGION_4(sc, WPI_TX_DESC(6), (uint32_t *)&desc,
1449 	    sizeof desc / sizeof (uint32_t));
1450 
1451 	WPI_WRITE(sc, WPI_TX_CREDIT(6), 0xfffff);
1452 	WPI_WRITE(sc, WPI_TX_STATE(6), 0x4001);
1453 	WPI_WRITE(sc, WPI_TX_CONFIG(6), 0x80000001);
1454 
1455 	/* wait while the adapter is busy copying the firmware */
1456 	for (ntries = 0; ntries < 100; ntries++) {
1457 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(6))
1458 			break;
1459 		DELAY(1000);
1460 	}
1461 	if (ntries == 100) {
1462 		WPI_DBG((WPI_DEBUG_FW, "timeout transferring firmware\n"));
1463 		err = ETIMEDOUT;
1464 	}
1465 
1466 	WPI_WRITE(sc, WPI_TX_CREDIT(6), 0);
1467 
1468 	wpi_mem_unlock(sc);
1469 
1470 	return (err);
1471 }
1472 
1473 /*ARGSUSED*/
1474 static void
1475 wpi_rx_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc, wpi_rx_data_t *data)
1476 {
1477 	ieee80211com_t *ic = &sc->sc_ic;
1478 	wpi_rx_ring_t *ring = &sc->sc_rxq;
1479 	wpi_rx_stat_t *stat;
1480 	wpi_rx_head_t *head;
1481 	wpi_rx_tail_t *tail;
1482 	ieee80211_node_t *in;
1483 	struct ieee80211_frame *wh;
1484 	mblk_t *mp;
1485 	uint16_t len;
1486 
1487 	stat = (wpi_rx_stat_t *)(desc + 1);
1488 
1489 	if (stat->len > WPI_STAT_MAXLEN) {
1490 		WPI_DBG((WPI_DEBUG_RX, "invalid rx statistic header\n"));
1491 		return;
1492 	}
1493 
1494 	head = (wpi_rx_head_t *)((caddr_t)(stat + 1) + stat->len);
1495 	tail = (wpi_rx_tail_t *)((caddr_t)(head + 1) + LE_16(head->len));
1496 
1497 	len = LE_16(head->len);
1498 
1499 	WPI_DBG((WPI_DEBUG_RX, "rx intr: idx=%d len=%d stat len=%d rssi=%d "
1500 	    "rate=%x chan=%d tstamp=%llu", ring->cur, LE_32(desc->len),
1501 	    len, (int8_t)stat->rssi, head->rate, head->chan,
1502 	    LE_64(tail->tstamp)));
1503 
1504 	if ((len < 20) || (len > sc->sc_dmabuf_sz)) {
1505 		sc->sc_rx_err++;
1506 		return;
1507 	}
1508 
1509 	/*
1510 	 * Discard Rx frames with bad CRC early
1511 	 */
1512 	if ((LE_32(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1513 		WPI_DBG((WPI_DEBUG_RX, "rx tail flags error %x\n",
1514 		    LE_32(tail->flags)));
1515 		sc->sc_rx_err++;
1516 		return;
1517 	}
1518 
1519 	/* update Rx descriptor */
1520 	/* ring->desc[ring->cur] = LE_32(data->dma_data.cookie.dmac_address); */
1521 
1522 #ifdef WPI_BPF
1523 #ifndef WPI_CURRENT
1524 	if (sc->sc_drvbpf != NULL) {
1525 #else
1526 	if (bpf_peers_present(sc->sc_drvbpf)) {
1527 #endif
1528 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1529 
1530 		tap->wr_flags = 0;
1531 		tap->wr_rate = head->rate;
1532 		tap->wr_chan_freq =
1533 		    LE_16(ic->ic_channels[head->chan].ic_freq);
1534 		tap->wr_chan_flags =
1535 		    LE_16(ic->ic_channels[head->chan].ic_flags);
1536 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1537 		tap->wr_dbm_antnoise = (int8_t)LE_16(stat->noise);
1538 		tap->wr_tsft = tail->tstamp;
1539 		tap->wr_antenna = (LE_16(head->flags) >> 4) & 0xf;
1540 		switch (head->rate) {
1541 		/* CCK rates */
1542 		case  10: tap->wr_rate =   2; break;
1543 		case  20: tap->wr_rate =   4; break;
1544 		case  55: tap->wr_rate =  11; break;
1545 		case 110: tap->wr_rate =  22; break;
1546 		/* OFDM rates */
1547 		case 0xd: tap->wr_rate =  12; break;
1548 		case 0xf: tap->wr_rate =  18; break;
1549 		case 0x5: tap->wr_rate =  24; break;
1550 		case 0x7: tap->wr_rate =  36; break;
1551 		case 0x9: tap->wr_rate =  48; break;
1552 		case 0xb: tap->wr_rate =  72; break;
1553 		case 0x1: tap->wr_rate =  96; break;
1554 		case 0x3: tap->wr_rate = 108; break;
1555 		/* unknown rate: should not happen */
1556 		default:  tap->wr_rate =   0;
1557 		}
1558 		if (LE_16(head->flags) & 0x4)
1559 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1560 
1561 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1562 	}
1563 #endif
1564 	/* grab a reference to the source node */
1565 	wh = (struct ieee80211_frame *)(head + 1);
1566 
1567 #ifdef DEBUG
1568 	if (wpi_dbg_flags & WPI_DEBUG_RX)
1569 		ieee80211_dump_pkt((uint8_t *)wh, len, 0, 0);
1570 #endif
1571 
1572 	in = ieee80211_find_rxnode(ic, wh);
1573 	mp = allocb(len, BPRI_MED);
1574 	if (mp) {
1575 		(void) memcpy(mp->b_wptr, wh, len);
1576 		mp->b_wptr += len;
1577 
1578 		/* send the frame to the 802.11 layer */
1579 		(void) ieee80211_input(ic, mp, in, stat->rssi, 0);
1580 	} else {
1581 		sc->sc_rx_nobuf++;
1582 		WPI_DBG((WPI_DEBUG_RX,
1583 		    "wpi_rx_intr(): alloc rx buf failed\n"));
1584 	}
1585 	/* release node reference */
1586 	ieee80211_free_node(in);
1587 }
1588 
1589 /*ARGSUSED*/
1590 static void
1591 wpi_tx_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc, wpi_rx_data_t *data)
1592 {
1593 	ieee80211com_t *ic = &sc->sc_ic;
1594 	wpi_tx_ring_t *ring = &sc->sc_txq[desc->qid & 0x3];
1595 	/* wpi_tx_data_t *txdata = &ring->data[desc->idx]; */
1596 	wpi_tx_stat_t *stat = (wpi_tx_stat_t *)(desc + 1);
1597 	wpi_amrr_t *amrr = (wpi_amrr_t *)ic->ic_bss;
1598 
1599 	WPI_DBG((WPI_DEBUG_TX, "tx done: qid=%d idx=%d retries=%d nkill=%d "
1600 	    "rate=%x duration=%d status=%x\n",
1601 	    desc->qid, desc->idx, stat->ntries, stat->nkill, stat->rate,
1602 	    LE_32(stat->duration), LE_32(stat->status)));
1603 
1604 	amrr->txcnt++;
1605 	WPI_DBG((WPI_DEBUG_RATECTL, "tx: %d cnt\n", amrr->txcnt));
1606 	if (stat->ntries > 0) {
1607 		amrr->retrycnt++;
1608 		sc->sc_tx_retries++;
1609 		WPI_DBG((WPI_DEBUG_RATECTL, "tx: %d retries\n",
1610 		    amrr->retrycnt));
1611 	}
1612 
1613 	sc->sc_tx_timer = 0;
1614 
1615 	mutex_enter(&sc->sc_tx_lock);
1616 	ring->queued--;
1617 	if (ring->queued < 0)
1618 		ring->queued = 0;
1619 	if ((sc->sc_need_reschedule) && (ring->queued <= (ring->count << 3))) {
1620 		sc->sc_need_reschedule = 0;
1621 		mutex_exit(&sc->sc_tx_lock);
1622 		mac_tx_update(ic->ic_mach);
1623 		mutex_enter(&sc->sc_tx_lock);
1624 	}
1625 	mutex_exit(&sc->sc_tx_lock);
1626 }
1627 
1628 static void
1629 wpi_cmd_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc)
1630 {
1631 	if ((desc->qid & 7) != 4) {
1632 		return;	/* not a command ack */
1633 	}
1634 	mutex_enter(&sc->sc_glock);
1635 	sc->sc_flags |= WPI_F_CMD_DONE;
1636 	cv_signal(&sc->sc_cmd_cv);
1637 	mutex_exit(&sc->sc_glock);
1638 }
1639 
1640 static uint_t
1641 wpi_notif_softintr(caddr_t arg)
1642 {
1643 	wpi_sc_t *sc = (wpi_sc_t *)arg;
1644 	ieee80211com_t *ic = &sc->sc_ic;
1645 	wpi_rx_desc_t *desc;
1646 	wpi_rx_data_t *data;
1647 	uint32_t hw;
1648 
1649 	mutex_enter(&sc->sc_glock);
1650 	if (sc->sc_notif_softint_pending != 1) {
1651 		mutex_exit(&sc->sc_glock);
1652 		return (DDI_INTR_UNCLAIMED);
1653 	}
1654 	mutex_exit(&sc->sc_glock);
1655 
1656 	hw = LE_32(sc->sc_shared->next);
1657 
1658 	while (sc->sc_rxq.cur != hw) {
1659 		data = &sc->sc_rxq.data[sc->sc_rxq.cur];
1660 		desc = (wpi_rx_desc_t *)data->dma_data.mem_va;
1661 
1662 		WPI_DBG((WPI_DEBUG_INTR, "rx notification hw = %d cur = %d "
1663 		    "qid=%x idx=%d flags=%x type=%d len=%d\n",
1664 		    hw, sc->sc_rxq.cur, desc->qid, desc->idx, desc->flags,
1665 		    desc->type, LE_32(desc->len)));
1666 
1667 		if (!(desc->qid & 0x80))	/* reply to a command */
1668 			wpi_cmd_intr(sc, desc);
1669 
1670 		switch (desc->type) {
1671 		case WPI_RX_DONE:
1672 			/* a 802.11 frame was received */
1673 			wpi_rx_intr(sc, desc, data);
1674 			break;
1675 
1676 		case WPI_TX_DONE:
1677 			/* a 802.11 frame has been transmitted */
1678 			wpi_tx_intr(sc, desc, data);
1679 			break;
1680 
1681 		case WPI_UC_READY:
1682 		{
1683 			wpi_ucode_info_t *uc =
1684 			    (wpi_ucode_info_t *)(desc + 1);
1685 
1686 			/* the microcontroller is ready */
1687 			WPI_DBG((WPI_DEBUG_FW,
1688 			    "microcode alive notification version %x "
1689 			    "alive %x\n", LE_32(uc->version),
1690 			    LE_32(uc->valid)));
1691 
1692 			if (LE_32(uc->valid) != 1) {
1693 				WPI_DBG((WPI_DEBUG_FW,
1694 				    "microcontroller initialization failed\n"));
1695 			}
1696 			break;
1697 		}
1698 		case WPI_STATE_CHANGED:
1699 		{
1700 			uint32_t *status = (uint32_t *)(desc + 1);
1701 
1702 			/* enabled/disabled notification */
1703 			WPI_DBG((WPI_DEBUG_RADIO, "state changed to %x\n",
1704 			    LE_32(*status)));
1705 
1706 			if (LE_32(*status) & 1) {
1707 				/* the radio button has to be pushed */
1708 				cmn_err(CE_NOTE,
1709 				    "wpi: Radio transmitter is off\n");
1710 			}
1711 			break;
1712 		}
1713 		case WPI_START_SCAN:
1714 		{
1715 			wpi_start_scan_t *scan =
1716 			    (wpi_start_scan_t *)(desc + 1);
1717 
1718 			WPI_DBG((WPI_DEBUG_SCAN,
1719 			    "scanning channel %d status %x\n",
1720 			    scan->chan, LE_32(scan->status)));
1721 
1722 			/* fix current channel */
1723 			ic->ic_curchan = &ic->ic_sup_channels[scan->chan];
1724 			break;
1725 		}
1726 		case WPI_STOP_SCAN:
1727 			WPI_DBG((WPI_DEBUG_SCAN, "scan finished\n"));
1728 			ieee80211_end_scan(ic);
1729 			break;
1730 		}
1731 
1732 		sc->sc_rxq.cur = (sc->sc_rxq.cur + 1) % WPI_RX_RING_COUNT;
1733 	}
1734 
1735 	/* tell the firmware what we have processed */
1736 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1737 	WPI_WRITE(sc, WPI_RX_WIDX, hw & (~7));
1738 	mutex_enter(&sc->sc_glock);
1739 	sc->sc_notif_softint_pending = 0;
1740 	mutex_exit(&sc->sc_glock);
1741 
1742 	return (DDI_INTR_CLAIMED);
1743 }
1744 
1745 static uint_t
1746 wpi_intr(caddr_t arg)
1747 {
1748 	wpi_sc_t *sc = (wpi_sc_t *)arg;
1749 	uint32_t r;
1750 
1751 	mutex_enter(&sc->sc_glock);
1752 	r = WPI_READ(sc, WPI_INTR);
1753 	if (r == 0 || r == 0xffffffff) {
1754 		mutex_exit(&sc->sc_glock);
1755 		return (DDI_INTR_UNCLAIMED);
1756 	}
1757 
1758 	WPI_DBG((WPI_DEBUG_INTR, "interrupt reg %x\n", r));
1759 
1760 	/* disable interrupts */
1761 	WPI_WRITE(sc, WPI_MASK, 0);
1762 	/* ack interrupts */
1763 	WPI_WRITE(sc, WPI_INTR, r);
1764 
1765 	if (sc->sc_notif_softint_id == NULL) {
1766 		mutex_exit(&sc->sc_glock);
1767 		return (DDI_INTR_CLAIMED);
1768 	}
1769 
1770 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1771 		WPI_DBG((WPI_DEBUG_FW, "fatal firmware error\n"));
1772 		mutex_exit(&sc->sc_glock);
1773 		wpi_stop(sc);
1774 		sc->sc_ostate = sc->sc_ic.ic_state;
1775 		ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
1776 		sc->sc_flags |= WPI_F_HW_ERR_RECOVER;
1777 		return (DDI_INTR_CLAIMED);
1778 	}
1779 
1780 	if (r & WPI_RX_INTR) {
1781 		sc->sc_notif_softint_pending = 1;
1782 		ddi_trigger_softintr(sc->sc_notif_softint_id);
1783 	}
1784 
1785 	if (r & WPI_ALIVE_INTR)	{ /* firmware initialized */
1786 		sc->sc_flags |= WPI_F_FW_INIT;
1787 		cv_signal(&sc->sc_fw_cv);
1788 	}
1789 
1790 	/* re-enable interrupts */
1791 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1792 	mutex_exit(&sc->sc_glock);
1793 
1794 	return (DDI_INTR_CLAIMED);
1795 }
1796 
1797 static uint8_t
1798 wpi_plcp_signal(int rate)
1799 {
1800 	switch (rate) {
1801 	/* CCK rates (returned values are device-dependent) */
1802 	case 2:		return (10);
1803 	case 4:		return (20);
1804 	case 11:	return (55);
1805 	case 22:	return (110);
1806 
1807 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1808 	/* R1-R4 (ral/ural is R4-R1) */
1809 	case 12:	return (0xd);
1810 	case 18:	return (0xf);
1811 	case 24:	return (0x5);
1812 	case 36:	return (0x7);
1813 	case 48:	return (0x9);
1814 	case 72:	return (0xb);
1815 	case 96:	return (0x1);
1816 	case 108:	return (0x3);
1817 
1818 	/* unsupported rates (should not get there) */
1819 	default:	return (0);
1820 	}
1821 }
1822 
1823 static mblk_t *
1824 wpi_m_tx(void *arg, mblk_t *mp)
1825 {
1826 	wpi_sc_t	*sc = (wpi_sc_t *)arg;
1827 	ieee80211com_t	*ic = &sc->sc_ic;
1828 	mblk_t			*next;
1829 
1830 	if (ic->ic_state != IEEE80211_S_RUN) {
1831 		freemsgchain(mp);
1832 		return (NULL);
1833 	}
1834 
1835 	while (mp != NULL) {
1836 		next = mp->b_next;
1837 		mp->b_next = NULL;
1838 		if (wpi_send(ic, mp, IEEE80211_FC0_TYPE_DATA) != 0) {
1839 			mp->b_next = next;
1840 			break;
1841 		}
1842 		mp = next;
1843 	}
1844 	return (mp);
1845 }
1846 
1847 /* ARGSUSED */
1848 static int
1849 wpi_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
1850 {
1851 	wpi_sc_t *sc = (wpi_sc_t *)ic;
1852 	wpi_tx_ring_t *ring;
1853 	wpi_tx_desc_t *desc;
1854 	wpi_tx_data_t *data;
1855 	wpi_tx_cmd_t *cmd;
1856 	wpi_cmd_data_t *tx;
1857 	ieee80211_node_t *in;
1858 	struct ieee80211_frame *wh;
1859 	struct ieee80211_key *k;
1860 	mblk_t *m, *m0;
1861 	int rate, hdrlen, len, mblen, off, err = WPI_SUCCESS;
1862 
1863 	ring = ((type & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA) ?
1864 	    (&sc->sc_txq[0]) : (&sc->sc_txq[1]);
1865 	data = &ring->data[ring->cur];
1866 	desc = data->desc;
1867 	cmd = data->cmd;
1868 	bzero(desc, sizeof (*desc));
1869 	bzero(cmd, sizeof (*cmd));
1870 
1871 	mutex_enter(&sc->sc_tx_lock);
1872 	if (ring->queued > ring->count - 64) {
1873 		WPI_DBG((WPI_DEBUG_TX, "wpi_send(): no txbuf\n"));
1874 		sc->sc_need_reschedule = 1;
1875 		mutex_exit(&sc->sc_tx_lock);
1876 		if ((type & IEEE80211_FC0_TYPE_MASK) !=
1877 		    IEEE80211_FC0_TYPE_DATA) {
1878 			freemsg(mp);
1879 		}
1880 		sc->sc_tx_nobuf++;
1881 		err = WPI_FAIL;
1882 		goto exit;
1883 	}
1884 	mutex_exit(&sc->sc_tx_lock);
1885 
1886 	hdrlen = sizeof (struct ieee80211_frame);
1887 
1888 	m = allocb(msgdsize(mp) + 32, BPRI_MED);
1889 	if (m == NULL) { /* can not alloc buf, drop this package */
1890 		cmn_err(CE_WARN,
1891 		    "wpi_send(): failed to allocate msgbuf\n");
1892 		freemsg(mp);
1893 		err = WPI_SUCCESS;
1894 		goto exit;
1895 	}
1896 	for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) {
1897 		mblen = MBLKL(m0);
1898 		(void) memcpy(m->b_rptr + off, m0->b_rptr, mblen);
1899 		off += mblen;
1900 	}
1901 	m->b_wptr += off;
1902 	freemsg(mp);
1903 
1904 	wh = (struct ieee80211_frame *)m->b_rptr;
1905 
1906 	in = ieee80211_find_txnode(ic, wh->i_addr1);
1907 	if (in == NULL) {
1908 		cmn_err(CE_WARN, "wpi_send(): failed to find tx node\n");
1909 		freemsg(m);
1910 		sc->sc_tx_err++;
1911 		err = WPI_SUCCESS;
1912 		goto exit;
1913 	}
1914 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1915 		k = ieee80211_crypto_encap(ic, m);
1916 		if (k == NULL) {
1917 			freemsg(m);
1918 			sc->sc_tx_err++;
1919 			err = WPI_SUCCESS;
1920 			goto exit;
1921 		}
1922 
1923 		/* packet header may have moved, reset our local pointer */
1924 		wh = (struct ieee80211_frame *)m->b_rptr;
1925 	}
1926 
1927 	len = msgdsize(m);
1928 
1929 #ifdef DEBUG
1930 	if (wpi_dbg_flags & WPI_DEBUG_TX)
1931 		ieee80211_dump_pkt((uint8_t *)wh, hdrlen, 0, 0);
1932 #endif
1933 
1934 	/* pickup a rate */
1935 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1936 	    IEEE80211_FC0_TYPE_MGT) {
1937 		/* mgmt frames are sent at the lowest available bit-rate */
1938 		rate = 2;
1939 	} else {
1940 		if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1941 			rate = ic->ic_fixed_rate;
1942 		} else
1943 			rate = in->in_rates.ir_rates[in->in_txrate];
1944 	}
1945 	rate &= IEEE80211_RATE_VAL;
1946 	WPI_DBG((WPI_DEBUG_RATECTL, "tx rate[%d of %d] = %x",
1947 	    in->in_txrate, in->in_rates.ir_nrates, rate));
1948 #ifdef WPI_BPF
1949 #ifndef WPI_CURRENT
1950 	if (sc->sc_drvbpf != NULL) {
1951 #else
1952 	if (bpf_peers_present(sc->sc_drvbpf)) {
1953 #endif
1954 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1955 
1956 		tap->wt_flags = 0;
1957 		tap->wt_chan_freq = LE_16(ic->ic_curchan->ic_freq);
1958 		tap->wt_chan_flags = LE_16(ic->ic_curchan->ic_flags);
1959 		tap->wt_rate = rate;
1960 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1961 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1962 
1963 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1964 	}
1965 #endif
1966 
1967 	cmd->code = WPI_CMD_TX_DATA;
1968 	cmd->flags = 0;
1969 	cmd->qid = ring->qid;
1970 	cmd->idx = ring->cur;
1971 
1972 	tx = (wpi_cmd_data_t *)cmd->data;
1973 	tx->flags = 0;
1974 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1975 		tx->flags |= LE_32(WPI_TX_NEED_ACK);
1976 	} else {
1977 		tx->flags &= ~(LE_32(WPI_TX_NEED_ACK));
1978 	}
1979 
1980 	tx->flags |= (LE_32(WPI_TX_AUTO_SEQ));
1981 	tx->flags |= LE_32(WPI_TX_BT_DISABLE | WPI_TX_CALIBRATION);
1982 
1983 	/* retrieve destination node's id */
1984 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1985 	    WPI_ID_BSS;
1986 
1987 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1988 	    IEEE80211_FC0_TYPE_MGT) {
1989 		/* tell h/w to set timestamp in probe responses */
1990 		if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1991 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1992 			tx->flags |= LE_32(WPI_TX_INSERT_TSTAMP);
1993 
1994 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1995 		    IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1996 		    ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1997 		    IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1998 			tx->timeout = 3;
1999 		else
2000 			tx->timeout = 2;
2001 	} else
2002 		tx->timeout = 0;
2003 
2004 	tx->rate = wpi_plcp_signal(rate);
2005 
2006 	/* be very persistant at sending frames out */
2007 	tx->rts_ntries = 7;
2008 	tx->data_ntries = 15;
2009 
2010 	tx->cck_mask  = 0x0f;
2011 	tx->ofdm_mask = 0xff;
2012 	tx->lifetime  = LE_32(0xffffffff);
2013 
2014 	tx->len = LE_16(len);
2015 
2016 	/* save and trim IEEE802.11 header */
2017 	(void) memcpy(tx + 1, m->b_rptr, hdrlen);
2018 	m->b_rptr += hdrlen;
2019 	(void) memcpy(data->dma_data.mem_va, m->b_rptr, len - hdrlen);
2020 
2021 	WPI_DBG((WPI_DEBUG_TX, "sending data: qid=%d idx=%d len=%d", ring->qid,
2022 	    ring->cur, len));
2023 
2024 	/* first scatter/gather segment is used by the tx data command */
2025 	desc->flags = LE_32(WPI_PAD32(len) << 28 | (2) << 24);
2026 	desc->segs[0].addr = LE_32(data->paddr_cmd);
2027 	desc->segs[0].len  = LE_32(
2028 	    roundup(4 + sizeof (wpi_cmd_data_t) + hdrlen, 4));
2029 	desc->segs[1].addr = LE_32(data->dma_data.cookie.dmac_address);
2030 	desc->segs[1].len  = LE_32(len - hdrlen);
2031 
2032 	WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
2033 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
2034 
2035 	mutex_enter(&sc->sc_tx_lock);
2036 	ring->queued++;
2037 	mutex_exit(&sc->sc_tx_lock);
2038 
2039 	/* kick ring */
2040 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2041 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2042 	freemsg(m);
2043 	/* release node reference */
2044 	ieee80211_free_node(in);
2045 
2046 	ic->ic_stats.is_tx_bytes += len;
2047 	ic->ic_stats.is_tx_frags++;
2048 
2049 	if (sc->sc_tx_timer == 0)
2050 		sc->sc_tx_timer = 5;
2051 exit:
2052 	return (err);
2053 }
2054 
2055 static void
2056 wpi_m_ioctl(void* arg, queue_t *wq, mblk_t *mp)
2057 {
2058 	wpi_sc_t	*sc  = (wpi_sc_t *)arg;
2059 	ieee80211com_t	*ic = &sc->sc_ic;
2060 	int		err;
2061 
2062 	err = ieee80211_ioctl(ic, wq, mp);
2063 	if (err == ENETRESET) {
2064 		(void) ieee80211_new_state(ic,
2065 		    IEEE80211_S_SCAN, -1);
2066 	}
2067 }
2068 
2069 /*ARGSUSED*/
2070 static int
2071 wpi_m_stat(void *arg, uint_t stat, uint64_t *val)
2072 {
2073 	wpi_sc_t	*sc  = (wpi_sc_t *)arg;
2074 	ieee80211com_t	*ic = &sc->sc_ic;
2075 	ieee80211_node_t *in = ic->ic_bss;
2076 	struct ieee80211_rateset *rs = &in->in_rates;
2077 
2078 	mutex_enter(&sc->sc_glock);
2079 	switch (stat) {
2080 	case MAC_STAT_IFSPEED:
2081 		*val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ?
2082 		    (rs->ir_rates[in->in_txrate] & IEEE80211_RATE_VAL)
2083 		    : ic->ic_fixed_rate) * 5000000ull;
2084 		break;
2085 	case MAC_STAT_NOXMTBUF:
2086 		*val = sc->sc_tx_nobuf;
2087 		break;
2088 	case MAC_STAT_NORCVBUF:
2089 		*val = sc->sc_rx_nobuf;
2090 		break;
2091 	case MAC_STAT_IERRORS:
2092 		*val = sc->sc_rx_err;
2093 		break;
2094 	case MAC_STAT_RBYTES:
2095 		*val = ic->ic_stats.is_rx_bytes;
2096 		break;
2097 	case MAC_STAT_IPACKETS:
2098 		*val = ic->ic_stats.is_rx_frags;
2099 		break;
2100 	case MAC_STAT_OBYTES:
2101 		*val = ic->ic_stats.is_tx_bytes;
2102 		break;
2103 	case MAC_STAT_OPACKETS:
2104 		*val = ic->ic_stats.is_tx_frags;
2105 		break;
2106 	case MAC_STAT_OERRORS:
2107 	case WIFI_STAT_TX_FAILED:
2108 		*val = sc->sc_tx_err;
2109 		break;
2110 	case WIFI_STAT_TX_RETRANS:
2111 		*val = sc->sc_tx_retries;
2112 		break;
2113 	case WIFI_STAT_FCS_ERRORS:
2114 	case WIFI_STAT_WEP_ERRORS:
2115 	case WIFI_STAT_TX_FRAGS:
2116 	case WIFI_STAT_MCAST_TX:
2117 	case WIFI_STAT_RTS_SUCCESS:
2118 	case WIFI_STAT_RTS_FAILURE:
2119 	case WIFI_STAT_ACK_FAILURE:
2120 	case WIFI_STAT_RX_FRAGS:
2121 	case WIFI_STAT_MCAST_RX:
2122 	case WIFI_STAT_RX_DUPS:
2123 		mutex_exit(&sc->sc_glock);
2124 		return (ieee80211_stat(ic, stat, val));
2125 	default:
2126 		mutex_exit(&sc->sc_glock);
2127 		return (ENOTSUP);
2128 	}
2129 	mutex_exit(&sc->sc_glock);
2130 
2131 	return (WPI_SUCCESS);
2132 
2133 }
2134 
2135 static int
2136 wpi_m_start(void *arg)
2137 {
2138 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2139 	ieee80211com_t	*ic = &sc->sc_ic;
2140 	int err;
2141 
2142 	err = wpi_init(sc);
2143 	if (err != WPI_SUCCESS) {
2144 		wpi_stop(sc);
2145 		DELAY(1000000);
2146 		err = wpi_init(sc);
2147 	}
2148 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2149 
2150 	return (err);
2151 }
2152 
2153 static void
2154 wpi_m_stop(void *arg)
2155 {
2156 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2157 	ieee80211com_t	*ic = &sc->sc_ic;
2158 
2159 	wpi_stop(sc);
2160 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2161 	mutex_enter(&sc->sc_mt_lock);
2162 	sc->sc_flags &= ~WPI_F_HW_ERR_RECOVER;
2163 	sc->sc_flags &= ~WPI_F_RATE_AUTO_CTL;
2164 	mutex_exit(&sc->sc_mt_lock);
2165 }
2166 
2167 /*ARGSUSED*/
2168 static int
2169 wpi_m_unicst(void *arg, const uint8_t *macaddr)
2170 {
2171 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2172 	ieee80211com_t	*ic = &sc->sc_ic;
2173 	int err;
2174 
2175 	if (!IEEE80211_ADDR_EQ(ic->ic_macaddr, macaddr)) {
2176 		IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr);
2177 		mutex_enter(&sc->sc_glock);
2178 		err = wpi_config(sc);
2179 		mutex_exit(&sc->sc_glock);
2180 		if (err != WPI_SUCCESS) {
2181 			cmn_err(CE_WARN,
2182 			    "wpi_m_unicst(): "
2183 			    "failed to configure device\n");
2184 			goto fail;
2185 		}
2186 	}
2187 	return (WPI_SUCCESS);
2188 fail:
2189 	return (err);
2190 }
2191 
2192 /*ARGSUSED*/
2193 static int
2194 wpi_m_multicst(void *arg, boolean_t add, const uint8_t *m)
2195 {
2196 	return (WPI_SUCCESS);
2197 }
2198 
2199 /*ARGSUSED*/
2200 static int
2201 wpi_m_promisc(void *arg, boolean_t on)
2202 {
2203 	return (WPI_SUCCESS);
2204 }
2205 
2206 static void
2207 wpi_thread(wpi_sc_t *sc)
2208 {
2209 	ieee80211com_t	*ic = &sc->sc_ic;
2210 	clock_t clk;
2211 	int times = 0, err, n = 0, timeout = 0;
2212 
2213 	mutex_enter(&sc->sc_mt_lock);
2214 	while (sc->sc_mf_thread_switch) {
2215 		/*
2216 		 * recovery fatal error
2217 		 */
2218 		if (ic->ic_mach &&
2219 		    (sc->sc_flags & WPI_F_HW_ERR_RECOVER)) {
2220 
2221 			WPI_DBG((WPI_DEBUG_FW,
2222 			    "wpi_thread(): "
2223 			    "try to recover fatal hw error: %d\n", times++));
2224 
2225 			wpi_stop(sc);
2226 			ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2227 
2228 			mutex_exit(&sc->sc_mt_lock);
2229 			delay(drv_usectohz(2000000));
2230 			mutex_enter(&sc->sc_mt_lock);
2231 			err = wpi_init(sc);
2232 			if (err != WPI_SUCCESS) {
2233 				n++;
2234 				if (n < 3)
2235 					continue;
2236 			}
2237 			n = 0;
2238 			sc->sc_flags &= ~WPI_F_HW_ERR_RECOVER;
2239 			mutex_exit(&sc->sc_mt_lock);
2240 			delay(drv_usectohz(2000000));
2241 			if (sc->sc_ostate != IEEE80211_S_INIT)
2242 				ieee80211_begin_scan(ic, 0);
2243 			mutex_enter(&sc->sc_mt_lock);
2244 		}
2245 
2246 		/*
2247 		 * rate ctl
2248 		 */
2249 		if (ic->ic_mach &&
2250 		    (sc->sc_flags & WPI_F_RATE_AUTO_CTL)) {
2251 			clk = ddi_get_lbolt();
2252 			if (clk > sc->sc_clk + drv_usectohz(500000)) {
2253 				wpi_amrr_timeout(sc);
2254 			}
2255 		}
2256 		mutex_exit(&sc->sc_mt_lock);
2257 		delay(drv_usectohz(100000));
2258 		mutex_enter(&sc->sc_mt_lock);
2259 		if (sc->sc_tx_timer) {
2260 			timeout++;
2261 			if (timeout == 10) {
2262 				sc->sc_tx_timer--;
2263 				if (sc->sc_tx_timer == 0) {
2264 					sc->sc_flags |= WPI_F_HW_ERR_RECOVER;
2265 					sc->sc_ostate = IEEE80211_S_RUN;
2266 				}
2267 				timeout = 0;
2268 			}
2269 		}
2270 	}
2271 	sc->sc_mf_thread = NULL;
2272 	cv_signal(&sc->sc_mt_cv);
2273 	mutex_exit(&sc->sc_mt_lock);
2274 }
2275 
2276 /*
2277  * Extract various information from EEPROM.
2278  */
2279 static void
2280 wpi_read_eeprom(wpi_sc_t *sc)
2281 {
2282 	ieee80211com_t *ic = &sc->sc_ic;
2283 	uint16_t val;
2284 	int i;
2285 
2286 	/* read MAC address */
2287 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 0);
2288 	ic->ic_macaddr[0] = val & 0xff;
2289 	ic->ic_macaddr[1] = val >> 8;
2290 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 1);
2291 	ic->ic_macaddr[2] = val & 0xff;
2292 	ic->ic_macaddr[3] = val >> 8;
2293 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 2);
2294 	ic->ic_macaddr[4] = val & 0xff;
2295 	ic->ic_macaddr[5] = val >> 8;
2296 
2297 	WPI_DBG((WPI_DEBUG_EEPROM,
2298 	    "mac:%2x:%2x:%2x:%2x:%2x:%2x\n",
2299 	    ic->ic_macaddr[0], ic->ic_macaddr[1],
2300 	    ic->ic_macaddr[2], ic->ic_macaddr[3],
2301 	    ic->ic_macaddr[4], ic->ic_macaddr[5]));
2302 	/* read power settings for 2.4GHz channels */
2303 	for (i = 0; i < 14; i++) {
2304 		sc->sc_pwr1[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR1 + i);
2305 		sc->sc_pwr2[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR2 + i);
2306 		WPI_DBG((WPI_DEBUG_EEPROM,
2307 		    "channel %d pwr1 0x%04x pwr2 0x%04x\n", i + 1,
2308 		    sc->sc_pwr1[i], sc->sc_pwr2[i]));
2309 	}
2310 }
2311 
2312 /*
2313  * Send a command to the firmware.
2314  */
2315 static int
2316 wpi_cmd(wpi_sc_t *sc, int code, const void *buf, int size, int async)
2317 {
2318 	wpi_tx_ring_t *ring = &sc->sc_cmdq;
2319 	wpi_tx_desc_t *desc;
2320 	wpi_tx_cmd_t *cmd;
2321 
2322 	ASSERT(size <= sizeof (cmd->data));
2323 	ASSERT(mutex_owned(&sc->sc_glock));
2324 
2325 	WPI_DBG((WPI_DEBUG_CMD, "wpi_cmd() # code[%d]", code));
2326 	desc = ring->data[ring->cur].desc;
2327 	cmd = ring->data[ring->cur].cmd;
2328 
2329 	cmd->code = (uint8_t)code;
2330 	cmd->flags = 0;
2331 	cmd->qid = ring->qid;
2332 	cmd->idx = ring->cur;
2333 	(void) memcpy(cmd->data, buf, size);
2334 
2335 	desc->flags = LE_32(WPI_PAD32(size) << 28 | 1 << 24);
2336 	desc->segs[0].addr = ring->data[ring->cur].paddr_cmd;
2337 	desc->segs[0].len  = 4 + size;
2338 
2339 	/* kick cmd ring */
2340 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2341 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2342 
2343 	if (async)
2344 		return (WPI_SUCCESS);
2345 	else {
2346 		clock_t clk;
2347 		sc->sc_flags &= ~WPI_F_CMD_DONE;
2348 		clk = ddi_get_lbolt() + drv_usectohz(2000000);
2349 		while (!(sc->sc_flags & WPI_F_CMD_DONE)) {
2350 			if (cv_timedwait(&sc->sc_cmd_cv, &sc->sc_glock, clk)
2351 			    < 0)
2352 				break;
2353 		}
2354 		if (sc->sc_flags & WPI_F_CMD_DONE)
2355 			return (WPI_SUCCESS);
2356 		else
2357 			return (WPI_FAIL);
2358 	}
2359 }
2360 
2361 /*
2362  * Configure h/w multi-rate retries.
2363  */
2364 static int
2365 wpi_mrr_setup(wpi_sc_t *sc)
2366 {
2367 	wpi_mrr_setup_t mrr;
2368 	int i, err;
2369 
2370 	/* CCK rates (not used with 802.11a) */
2371 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2372 		mrr.rates[i].flags = 0;
2373 		mrr.rates[i].signal = wpi_ridx_to_signal[i];
2374 		/* fallback to the immediate lower CCK rate (if any) */
2375 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2376 		/* try one time at this rate before falling back to "next" */
2377 		mrr.rates[i].ntries = 1;
2378 	}
2379 
2380 	/* OFDM rates (not used with 802.11b) */
2381 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2382 		mrr.rates[i].flags = 0;
2383 		mrr.rates[i].signal = wpi_ridx_to_signal[i];
2384 		/* fallback to the immediate lower OFDM rate (if any) */
2385 		mrr.rates[i].next = (i == WPI_OFDM6) ? WPI_OFDM6 : i - 1;
2386 		/* try one time at this rate before falling back to "next" */
2387 		mrr.rates[i].ntries = 1;
2388 	}
2389 
2390 	/* setup MRR for control frames */
2391 	mrr.which = LE_32(WPI_MRR_CTL);
2392 	err = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof (mrr), 1);
2393 	if (err != WPI_SUCCESS) {
2394 		WPI_DBG((WPI_DEBUG_MRR,
2395 		    "could not setup MRR for control frames\n"));
2396 		return (err);
2397 	}
2398 
2399 	/* setup MRR for data frames */
2400 	mrr.which = LE_32(WPI_MRR_DATA);
2401 	err = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof (mrr), 1);
2402 	if (err != WPI_SUCCESS) {
2403 		WPI_DBG((WPI_DEBUG_MRR,
2404 		    "could not setup MRR for data frames\n"));
2405 		return (err);
2406 	}
2407 
2408 	return (WPI_SUCCESS);
2409 }
2410 
2411 static void
2412 wpi_set_led(wpi_sc_t *sc, uint8_t which, uint8_t off, uint8_t on)
2413 {
2414 	wpi_cmd_led_t led;
2415 
2416 	led.which = which;
2417 	led.unit = LE_32(100000);	/* on/off in unit of 100ms */
2418 	led.off = off;
2419 	led.on = on;
2420 
2421 	(void) wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof (led), 1);
2422 }
2423 
2424 static int
2425 wpi_auth(wpi_sc_t *sc)
2426 {
2427 	ieee80211com_t *ic = &sc->sc_ic;
2428 	ieee80211_node_t *in = ic->ic_bss;
2429 	wpi_node_t node;
2430 	int err;
2431 
2432 	/* update adapter's configuration */
2433 	IEEE80211_ADDR_COPY(sc->sc_config.bssid, in->in_bssid);
2434 	sc->sc_config.chan = ieee80211_chan2ieee(ic, in->in_chan);
2435 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2436 		sc->sc_config.cck_mask  = 0x03;
2437 		sc->sc_config.ofdm_mask = 0;
2438 	} else if ((in->in_chan != IEEE80211_CHAN_ANYC) &&
2439 	    (IEEE80211_IS_CHAN_5GHZ(in->in_chan))) {
2440 		sc->sc_config.cck_mask  = 0;
2441 		sc->sc_config.ofdm_mask = 0x15;
2442 	} else {	/* assume 802.11b/g */
2443 		sc->sc_config.cck_mask  = 0x0f;
2444 		sc->sc_config.ofdm_mask = 0x15;
2445 	}
2446 
2447 	WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x cck %x ofdm %x"
2448 	    " bssid:%02x:%02x:%02x:%02x:%02x:%2x\n",
2449 	    sc->sc_config.chan, sc->sc_config.flags,
2450 	    sc->sc_config.cck_mask, sc->sc_config.ofdm_mask,
2451 	    sc->sc_config.bssid[0], sc->sc_config.bssid[1],
2452 	    sc->sc_config.bssid[2], sc->sc_config.bssid[3],
2453 	    sc->sc_config.bssid[4], sc->sc_config.bssid[5]));
2454 	err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
2455 	    sizeof (wpi_config_t), 1);
2456 	if (err != WPI_SUCCESS) {
2457 		cmn_err(CE_WARN, "wpi_auth(): failed to configurate chan%d\n",
2458 		    sc->sc_config.chan);
2459 		return (err);
2460 	}
2461 
2462 	/* add default node */
2463 	(void) memset(&node, 0, sizeof (node));
2464 	IEEE80211_ADDR_COPY(node.bssid, in->in_bssid);
2465 	node.id = WPI_ID_BSS;
2466 	node.rate = wpi_plcp_signal(2);
2467 	err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 1);
2468 	if (err != WPI_SUCCESS) {
2469 		cmn_err(CE_WARN, "wpi_auth(): failed to add BSS node\n");
2470 		return (err);
2471 	}
2472 
2473 	err = wpi_mrr_setup(sc);
2474 	if (err != WPI_SUCCESS) {
2475 		cmn_err(CE_WARN, "wpi_auth(): failed to setup MRR\n");
2476 		return (err);
2477 	}
2478 
2479 	return (WPI_SUCCESS);
2480 }
2481 
2482 /*
2483  * Send a scan request to the firmware.
2484  */
2485 static int
2486 wpi_scan(wpi_sc_t *sc)
2487 {
2488 	ieee80211com_t *ic = &sc->sc_ic;
2489 	wpi_tx_ring_t *ring = &sc->sc_cmdq;
2490 	wpi_tx_desc_t *desc;
2491 	wpi_tx_data_t *data;
2492 	wpi_tx_cmd_t *cmd;
2493 	wpi_scan_hdr_t *hdr;
2494 	wpi_scan_chan_t *chan;
2495 	struct ieee80211_frame *wh;
2496 	ieee80211_node_t *in = ic->ic_bss;
2497 	struct ieee80211_rateset *rs;
2498 	enum ieee80211_phymode mode;
2499 	uint8_t *frm;
2500 	int i, pktlen, nrates;
2501 
2502 	data = &ring->data[ring->cur];
2503 	desc = data->desc;
2504 	cmd = (wpi_tx_cmd_t *)data->dma_data.mem_va;
2505 
2506 	cmd->code = WPI_CMD_SCAN;
2507 	cmd->flags = 0;
2508 	cmd->qid = ring->qid;
2509 	cmd->idx = ring->cur;
2510 
2511 	hdr = (wpi_scan_hdr_t *)cmd->data;
2512 	(void) memset(hdr, 0, sizeof (wpi_scan_hdr_t));
2513 	hdr->first = 1;
2514 	hdr->nchan = 14;
2515 	hdr->len = hdr->nchan * sizeof (wpi_scan_chan_t);
2516 	hdr->quiet = LE_16(5);
2517 	hdr->threshold = LE_16(1);
2518 	hdr->filter = LE_32(5);
2519 	hdr->rate = wpi_plcp_signal(2);
2520 	hdr->id = WPI_ID_BROADCAST;
2521 	hdr->mask = LE_32(0xffffffff);
2522 	hdr->esslen = ic->ic_des_esslen;
2523 	if (ic->ic_des_esslen)
2524 		bcopy(ic->ic_des_essid, hdr->essid, ic->ic_des_esslen);
2525 	else
2526 		bzero(hdr->essid, sizeof (hdr->essid));
2527 	/*
2528 	 * Build a probe request frame.  Most of the following code is a
2529 	 * copy & paste of what is done in net80211.  Unfortunately, the
2530 	 * functions to add IEs are static and thus can't be reused here.
2531 	 */
2532 	wh = (struct ieee80211_frame *)(hdr + 1);
2533 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2534 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2535 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2536 	(void) memset(wh->i_addr1, 0xff, 6);
2537 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_macaddr);
2538 	(void) memset(wh->i_addr3, 0xff, 6);
2539 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2540 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2541 
2542 	frm = (uint8_t *)(wh + 1);
2543 
2544 	/* add essid IE */
2545 	*frm++ = IEEE80211_ELEMID_SSID;
2546 	*frm++ = in->in_esslen;
2547 	(void) memcpy(frm, in->in_essid, in->in_esslen);
2548 	frm += in->in_esslen;
2549 
2550 	mode = ieee80211_chan2mode(ic, ic->ic_curchan);
2551 	rs = &ic->ic_sup_rates[mode];
2552 
2553 	/* add supported rates IE */
2554 	*frm++ = IEEE80211_ELEMID_RATES;
2555 	nrates = rs->ir_nrates;
2556 	if (nrates > IEEE80211_RATE_SIZE)
2557 		nrates = IEEE80211_RATE_SIZE;
2558 	*frm++ = (uint8_t)nrates;
2559 	(void) memcpy(frm, rs->ir_rates, nrates);
2560 	frm += nrates;
2561 
2562 	/* add supported xrates IE */
2563 	if (rs->ir_nrates > IEEE80211_RATE_SIZE) {
2564 		nrates = rs->ir_nrates - IEEE80211_RATE_SIZE;
2565 		*frm++ = IEEE80211_ELEMID_XRATES;
2566 		*frm++ = (uint8_t)nrates;
2567 		(void) memcpy(frm, rs->ir_rates + IEEE80211_RATE_SIZE, nrates);
2568 		frm += nrates;
2569 	}
2570 
2571 	/* add optionnal IE (usually an RSN IE) */
2572 	if (ic->ic_opt_ie != NULL) {
2573 		(void) memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
2574 		frm += ic->ic_opt_ie_len;
2575 	}
2576 
2577 	/* setup length of probe request */
2578 	hdr->pbrlen = LE_16(frm - (uint8_t *)wh);
2579 
2580 	/* align on a 4-byte boundary */
2581 	chan = (wpi_scan_chan_t *)frm;
2582 	for (i = 1; i <= hdr->nchan; i++, chan++) {
2583 		chan->flags = 3;
2584 		chan->chan = (uint8_t)i;
2585 		chan->magic = LE_16(0x62ab);
2586 		chan->active = LE_16(20);
2587 		chan->passive = LE_16(120);
2588 
2589 		frm += sizeof (wpi_scan_chan_t);
2590 	}
2591 
2592 	pktlen = frm - (uint8_t *)cmd;
2593 
2594 	desc->flags = LE_32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2595 	desc->segs[0].addr = LE_32(data->dma_data.cookie.dmac_address);
2596 	desc->segs[0].len  = LE_32(pktlen);
2597 
2598 	WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
2599 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
2600 
2601 	/* kick cmd ring */
2602 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2603 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2604 
2605 	return (WPI_SUCCESS);	/* will be notified async. of failure/success */
2606 }
2607 
2608 static int
2609 wpi_config(wpi_sc_t *sc)
2610 {
2611 	ieee80211com_t *ic = &sc->sc_ic;
2612 	wpi_txpower_t txpower;
2613 	wpi_power_t power;
2614 #ifdef WPI_BLUE_COEXISTENCE
2615 	wpi_bluetooth_t bluetooth;
2616 #endif
2617 	wpi_node_t node;
2618 	int err;
2619 
2620 	/* Intel's binary only daemon is a joke.. */
2621 
2622 	/* set Tx power for 2.4GHz channels (values read from EEPROM) */
2623 	(void) memset(&txpower, 0, sizeof (txpower));
2624 	(void) memcpy(txpower.pwr1, sc->sc_pwr1, 14 * sizeof (uint16_t));
2625 	(void) memcpy(txpower.pwr2, sc->sc_pwr2, 14 * sizeof (uint16_t));
2626 	err = wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof (txpower), 0);
2627 	if (err != WPI_SUCCESS) {
2628 		cmn_err(CE_WARN, "wpi_config(): failed to set txpower\n");
2629 		return (err);
2630 	}
2631 
2632 	/* set power mode */
2633 	(void) memset(&power, 0, sizeof (power));
2634 	power.flags = LE_32(0x8);
2635 	err = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof (power), 0);
2636 	if (err != WPI_SUCCESS) {
2637 		cmn_err(CE_WARN, "wpi_config(): failed to set power mode\n");
2638 		return (err);
2639 	}
2640 #ifdef WPI_BLUE_COEXISTENCE
2641 	/* configure bluetooth coexistence */
2642 	(void) memset(&bluetooth, 0, sizeof (bluetooth));
2643 	bluetooth.flags = 3;
2644 	bluetooth.lead = 0xaa;
2645 	bluetooth.kill = 1;
2646 	err = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth,
2647 	    sizeof (bluetooth), 0);
2648 	if (err != WPI_SUCCESS) {
2649 		cmn_err(CE_WARN,
2650 		    "wpi_config(): "
2651 		    "failed to configurate bluetooth coexistence\n");
2652 		return (err);
2653 	}
2654 #endif
2655 	/* configure adapter */
2656 	(void) memset(&sc->sc_config, 0, sizeof (wpi_config_t));
2657 	IEEE80211_ADDR_COPY(sc->sc_config.myaddr, ic->ic_macaddr);
2658 	sc->sc_config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2659 	sc->sc_config.flags = LE_32(WPI_CONFIG_TSF | WPI_CONFIG_AUTO |
2660 	    WPI_CONFIG_24GHZ);
2661 	sc->sc_config.filter = 0;
2662 	switch (ic->ic_opmode) {
2663 	case IEEE80211_M_STA:
2664 		sc->sc_config.mode = WPI_MODE_STA;
2665 		sc->sc_config.filter |= LE_32(WPI_FILTER_MULTICAST |
2666 		    WPI_FILTER_NODECRYPT);
2667 		break;
2668 	case IEEE80211_M_IBSS:
2669 	case IEEE80211_M_AHDEMO:
2670 		sc->sc_config.mode = WPI_MODE_IBSS;
2671 		break;
2672 	case IEEE80211_M_HOSTAP:
2673 		sc->sc_config.mode = WPI_MODE_HOSTAP;
2674 		break;
2675 	case IEEE80211_M_MONITOR:
2676 		sc->sc_config.mode = WPI_MODE_MONITOR;
2677 		sc->sc_config.filter |= LE_32(WPI_FILTER_MULTICAST |
2678 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2679 		break;
2680 	}
2681 	sc->sc_config.cck_mask  = 0x0f;	/* not yet negotiated */
2682 	sc->sc_config.ofdm_mask = 0xff;	/* not yet negotiated */
2683 	err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
2684 	    sizeof (wpi_config_t), 0);
2685 	if (err != WPI_SUCCESS) {
2686 		cmn_err(CE_WARN, "wpi_config(): "
2687 		    "failed to set configure command\n");
2688 		return (err);
2689 	}
2690 
2691 	/* add broadcast node */
2692 	(void) memset(&node, 0, sizeof (node));
2693 	(void) memset(node.bssid, 0xff, 6);
2694 	node.id = WPI_ID_BROADCAST;
2695 	node.rate = wpi_plcp_signal(2);
2696 	err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 0);
2697 	if (err != WPI_SUCCESS) {
2698 		cmn_err(CE_WARN, "wpi_config(): "
2699 		    "failed to add broadcast node\n");
2700 		return (err);
2701 	}
2702 
2703 	return (WPI_SUCCESS);
2704 }
2705 
2706 static void
2707 wpi_stop_master(wpi_sc_t *sc)
2708 {
2709 	uint32_t tmp;
2710 	int ntries;
2711 
2712 	tmp = WPI_READ(sc, WPI_RESET);
2713 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2714 
2715 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2716 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2717 		return;	/* already asleep */
2718 
2719 	for (ntries = 0; ntries < 2000; ntries++) {
2720 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2721 			break;
2722 		DELAY(1000);
2723 	}
2724 	if (ntries == 2000)
2725 		WPI_DBG((WPI_DEBUG_HW, "timeout waiting for master\n"));
2726 }
2727 
2728 static int
2729 wpi_power_up(wpi_sc_t *sc)
2730 {
2731 	uint32_t tmp;
2732 	int ntries;
2733 
2734 	wpi_mem_lock(sc);
2735 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2736 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2737 	wpi_mem_unlock(sc);
2738 
2739 	for (ntries = 0; ntries < 5000; ntries++) {
2740 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2741 			break;
2742 		DELAY(10);
2743 	}
2744 	if (ntries == 5000) {
2745 		cmn_err(CE_WARN,
2746 		    "wpi_power_up(): timeout waiting for NIC to power up\n");
2747 		return (ETIMEDOUT);
2748 	}
2749 	return (WPI_SUCCESS);
2750 }
2751 
2752 static int
2753 wpi_reset(wpi_sc_t *sc)
2754 {
2755 	uint32_t tmp;
2756 	int ntries;
2757 
2758 	/* clear any pending interrupts */
2759 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2760 
2761 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2762 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2763 
2764 	tmp = WPI_READ(sc, WPI_CHICKEN);
2765 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2766 
2767 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2768 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2769 
2770 	/* wait for clock stabilization */
2771 	for (ntries = 0; ntries < 1000; ntries++) {
2772 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2773 			break;
2774 		DELAY(10);
2775 	}
2776 	if (ntries == 1000) {
2777 		cmn_err(CE_WARN,
2778 		    "wpi_reset(): timeout waiting for clock stabilization\n");
2779 		return (ETIMEDOUT);
2780 	}
2781 
2782 	/* initialize EEPROM */
2783 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2784 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2785 		cmn_err(CE_WARN, "wpi_reset(): EEPROM not found\n");
2786 		return (EIO);
2787 	}
2788 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2789 
2790 	return (WPI_SUCCESS);
2791 }
2792 
2793 static void
2794 wpi_hw_config(wpi_sc_t *sc)
2795 {
2796 	uint16_t val;
2797 	uint32_t hw;
2798 
2799 	/* voodoo from the Linux "driver".. */
2800 	hw = WPI_READ(sc, WPI_HWCONFIG);
2801 
2802 	if ((sc->sc_rev & 0xc0) == 0x40)
2803 		hw |= WPI_HW_ALM_MB;
2804 	else if (!(sc->sc_rev & 0x80))
2805 		hw |= WPI_HW_ALM_MM;
2806 
2807 	val = wpi_read_prom_word(sc, WPI_EEPROM_CAPABILITIES);
2808 	if ((val & 0xff) == 0x80)
2809 		hw |= WPI_HW_SKU_MRC;
2810 
2811 	val = wpi_read_prom_word(sc, WPI_EEPROM_REVISION);
2812 	hw &= ~WPI_HW_REV_D;
2813 	if ((val & 0xf0) == 0xd0)
2814 		hw |= WPI_HW_REV_D;
2815 
2816 	val = wpi_read_prom_word(sc, WPI_EEPROM_TYPE);
2817 	if ((val & 0xff) > 1)
2818 		hw |= WPI_HW_TYPE_B;
2819 
2820 	WPI_DBG((WPI_DEBUG_HW, "setting h/w config %x\n", hw));
2821 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2822 }
2823 
2824 static int
2825 wpi_init(wpi_sc_t *sc)
2826 {
2827 	uint32_t tmp;
2828 	int qid, ntries, err;
2829 	clock_t clk;
2830 
2831 	mutex_enter(&sc->sc_glock);
2832 	sc->sc_flags &= ~WPI_F_FW_INIT;
2833 
2834 	(void) wpi_reset(sc);
2835 
2836 	wpi_mem_lock(sc);
2837 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
2838 	DELAY(20);
2839 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
2840 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
2841 	wpi_mem_unlock(sc);
2842 
2843 	(void) wpi_power_up(sc);
2844 	wpi_hw_config(sc);
2845 
2846 	/* init Rx ring */
2847 	wpi_mem_lock(sc);
2848 	WPI_WRITE(sc, WPI_RX_BASE, sc->sc_rxq.dma_desc.cookie.dmac_address);
2849 	WPI_WRITE(sc, WPI_RX_RIDX_PTR,
2850 	    (uint32_t)(sc->sc_dma_sh.cookie.dmac_address +
2851 	    offsetof(wpi_shared_t, next)));
2852 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & (~7));
2853 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
2854 	wpi_mem_unlock(sc);
2855 
2856 	/* init Tx rings */
2857 	wpi_mem_lock(sc);
2858 	wpi_mem_write(sc, WPI_MEM_MODE, 2);	/* bypass mode */
2859 	wpi_mem_write(sc, WPI_MEM_RA, 1);	/* enable RA0 */
2860 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f);	/* enable all 6 Tx rings */
2861 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
2862 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
2863 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
2864 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
2865 
2866 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->sc_dma_sh.cookie.dmac_address);
2867 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
2868 
2869 	for (qid = 0; qid < 6; qid++) {
2870 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
2871 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
2872 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
2873 	}
2874 	wpi_mem_unlock(sc);
2875 
2876 	/* clear "radio off" and "disable command" bits (reversed logic) */
2877 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2878 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2879 
2880 	/* clear any pending interrupts */
2881 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2882 
2883 	/* enable interrupts */
2884 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
2885 
2886 	/* load firmware boot code into NIC */
2887 	err = wpi_load_microcode(sc);
2888 	if (err != WPI_SUCCESS) {
2889 		cmn_err(CE_WARN, "wpi_init(): failed to load microcode\n");
2890 		goto fail1;
2891 	}
2892 
2893 	/* load firmware .text segment into NIC */
2894 	err = wpi_load_firmware(sc, WPI_FW_TEXT);
2895 	if (err != WPI_SUCCESS) {
2896 		cmn_err(CE_WARN, "wpi_init(): "
2897 		    "failed to load firmware(text)\n");
2898 		goto fail1;
2899 	}
2900 
2901 	/* load firmware .data segment into NIC */
2902 	err = wpi_load_firmware(sc, WPI_FW_DATA);
2903 	if (err != WPI_SUCCESS) {
2904 		cmn_err(CE_WARN, "wpi_init(): "
2905 		    "failed to load firmware(data)\n");
2906 		goto fail1;
2907 	}
2908 
2909 	/* now press "execute" ;-) */
2910 	tmp = WPI_READ(sc, WPI_RESET);
2911 	tmp &= ~(WPI_MASTER_DISABLED | WPI_STOP_MASTER | WPI_NEVO_RESET);
2912 	WPI_WRITE(sc, WPI_RESET, tmp);
2913 
2914 	/* ..and wait at most one second for adapter to initialize */
2915 	clk = ddi_get_lbolt() + drv_usectohz(2000000);
2916 	while (!(sc->sc_flags & WPI_F_FW_INIT)) {
2917 		if (cv_timedwait(&sc->sc_fw_cv, &sc->sc_glock, clk) < 0)
2918 			break;
2919 	}
2920 	if (!(sc->sc_flags & WPI_F_FW_INIT)) {
2921 		cmn_err(CE_WARN,
2922 		    "wpi_init(): timeout waiting for firmware init\n");
2923 		goto fail1;
2924 	}
2925 
2926 	/* wait for thermal sensors to calibrate */
2927 	for (ntries = 0; ntries < 1000; ntries++) {
2928 		if (WPI_READ(sc, WPI_TEMPERATURE) != 0)
2929 			break;
2930 		DELAY(10);
2931 	}
2932 
2933 	if (ntries == 1000) {
2934 		WPI_DBG((WPI_DEBUG_HW,
2935 		    "wpi_init(): timeout waiting for thermal sensors "
2936 		    "calibration\n"));
2937 	}
2938 
2939 	WPI_DBG((WPI_DEBUG_HW, "temperature %d\n",
2940 	    (int)WPI_READ(sc, WPI_TEMPERATURE)));
2941 
2942 	err = wpi_config(sc);
2943 	if (err) {
2944 		cmn_err(CE_WARN, "wpi_init(): failed to configure device\n");
2945 		goto fail1;
2946 	}
2947 
2948 	mutex_exit(&sc->sc_glock);
2949 	return (WPI_SUCCESS);
2950 
2951 fail1:
2952 	err = WPI_FAIL;
2953 	mutex_exit(&sc->sc_glock);
2954 	return (err);
2955 }
2956 
2957 static void
2958 wpi_stop(wpi_sc_t *sc)
2959 {
2960 	uint32_t tmp;
2961 	int ac;
2962 
2963 
2964 	mutex_enter(&sc->sc_glock);
2965 	/* disable interrupts */
2966 	WPI_WRITE(sc, WPI_MASK, 0);
2967 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
2968 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
2969 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
2970 
2971 	wpi_mem_lock(sc);
2972 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
2973 	wpi_mem_unlock(sc);
2974 
2975 	/* reset all Tx rings */
2976 	for (ac = 0; ac < 4; ac++)
2977 		wpi_reset_tx_ring(sc, &sc->sc_txq[ac]);
2978 	wpi_reset_tx_ring(sc, &sc->sc_cmdq);
2979 	wpi_reset_tx_ring(sc, &sc->sc_svcq);
2980 
2981 	/* reset Rx ring */
2982 	wpi_reset_rx_ring(sc);
2983 
2984 	wpi_mem_lock(sc);
2985 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
2986 	wpi_mem_unlock(sc);
2987 
2988 	DELAY(5);
2989 
2990 	wpi_stop_master(sc);
2991 
2992 	sc->sc_tx_timer = 0;
2993 	tmp = WPI_READ(sc, WPI_RESET);
2994 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
2995 	mutex_exit(&sc->sc_glock);
2996 }
2997 
2998 /*
2999  * Naive implementation of the Adaptive Multi Rate Retry algorithm:
3000  * "IEEE 802.11 Rate Adaptation: A Practical Approach"
3001  * Mathieu Lacage, Hossein Manshaei, Thierry Turletti
3002  * INRIA Sophia - Projet Planete
3003  * http://www-sop.inria.fr/rapports/sophia/RR-5208.html
3004  */
3005 #define	is_success(amrr)	\
3006 	((amrr)->retrycnt < (amrr)->txcnt / 10)
3007 #define	is_failure(amrr)	\
3008 	((amrr)->retrycnt > (amrr)->txcnt / 3)
3009 #define	is_enough(amrr)		\
3010 	((amrr)->txcnt > 100)
3011 #define	is_min_rate(in)		\
3012 	((in)->in_txrate == 0)
3013 #define	is_max_rate(in)		\
3014 	((in)->in_txrate == (in)->in_rates.ir_nrates - 1)
3015 #define	increase_rate(in)	\
3016 	((in)->in_txrate++)
3017 #define	decrease_rate(in)	\
3018 	((in)->in_txrate--)
3019 #define	reset_cnt(amrr)		\
3020 	{ (amrr)->txcnt = (amrr)->retrycnt = 0; }
3021 
3022 #define	WPI_AMRR_MIN_SUCCESS_THRESHOLD	 1
3023 #define	WPI_AMRR_MAX_SUCCESS_THRESHOLD	15
3024 
3025 static void
3026 wpi_amrr_init(wpi_amrr_t *amrr)
3027 {
3028 	amrr->success = 0;
3029 	amrr->recovery = 0;
3030 	amrr->txcnt = amrr->retrycnt = 0;
3031 	amrr->success_threshold = WPI_AMRR_MIN_SUCCESS_THRESHOLD;
3032 }
3033 
3034 static void
3035 wpi_amrr_timeout(wpi_sc_t *sc)
3036 {
3037 	ieee80211com_t *ic = &sc->sc_ic;
3038 
3039 	WPI_DBG((WPI_DEBUG_RATECTL, "wpi_amrr_timeout() enter\n"));
3040 	if (ic->ic_opmode == IEEE80211_M_STA)
3041 		wpi_amrr_ratectl(NULL, ic->ic_bss);
3042 	else
3043 		ieee80211_iterate_nodes(&ic->ic_sta, wpi_amrr_ratectl, NULL);
3044 	sc->sc_clk = ddi_get_lbolt();
3045 }
3046 
3047 /* ARGSUSED */
3048 static void
3049 wpi_amrr_ratectl(void *arg, ieee80211_node_t *in)
3050 {
3051 	wpi_amrr_t *amrr = (wpi_amrr_t *)in;
3052 	int need_change = 0;
3053 
3054 	if (is_success(amrr) && is_enough(amrr)) {
3055 		amrr->success++;
3056 		if (amrr->success >= amrr->success_threshold &&
3057 		    !is_max_rate(in)) {
3058 			amrr->recovery = 1;
3059 			amrr->success = 0;
3060 			increase_rate(in);
3061 			WPI_DBG((WPI_DEBUG_RATECTL,
3062 			    "AMRR increasing rate %d (txcnt=%d retrycnt=%d)\n",
3063 			    in->in_txrate, amrr->txcnt, amrr->retrycnt));
3064 			need_change = 1;
3065 		} else {
3066 			amrr->recovery = 0;
3067 		}
3068 	} else if (is_failure(amrr)) {
3069 		amrr->success = 0;
3070 		if (!is_min_rate(in)) {
3071 			if (amrr->recovery) {
3072 				amrr->success_threshold++;
3073 				if (amrr->success_threshold >
3074 				    WPI_AMRR_MAX_SUCCESS_THRESHOLD)
3075 					amrr->success_threshold =
3076 					    WPI_AMRR_MAX_SUCCESS_THRESHOLD;
3077 			} else {
3078 				amrr->success_threshold =
3079 				    WPI_AMRR_MIN_SUCCESS_THRESHOLD;
3080 			}
3081 			decrease_rate(in);
3082 			WPI_DBG((WPI_DEBUG_RATECTL,
3083 			    "AMRR decreasing rate %d (txcnt=%d retrycnt=%d)\n",
3084 			    in->in_txrate, amrr->txcnt, amrr->retrycnt));
3085 			need_change = 1;
3086 		}
3087 		amrr->recovery = 0;	/* paper is incorrect */
3088 	}
3089 
3090 	if (is_enough(amrr) || need_change)
3091 		reset_cnt(amrr);
3092 }
3093