xref: /titanic_52/usr/src/uts/common/io/timod.c (revision c7158ae983f5a04c4a998f468ecefba6d23ba721)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /* ONC_PLUS EXTRACT START */
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 /*
33  * Transport Interface Library cooperating module - issue 2
34  */
35 
36 /* ONC_PLUS EXTRACT END */
37 #include <sys/param.h>
38 #include <sys/types.h>
39 #include <sys/stream.h>
40 #include <sys/stropts.h>
41 #include <sys/strsubr.h>
42 #define	_SUN_TPI_VERSION 2
43 #include <sys/tihdr.h>
44 #include <sys/timod.h>
45 #include <sys/suntpi.h>
46 #include <sys/debug.h>
47 #include <sys/strlog.h>
48 #include <sys/errno.h>
49 #include <sys/cred.h>
50 #include <sys/cmn_err.h>
51 #include <sys/kmem.h>
52 #include <sys/sysmacros.h>
53 #include <sys/ddi.h>
54 #include <sys/sunddi.h>
55 #include <sys/strsun.h>
56 #include <c2/audit.h>
57 
58 /*
59  * This is the loadable module wrapper.
60  */
61 #include <sys/conf.h>
62 #include <sys/modctl.h>
63 
64 static struct streamtab timinfo;
65 
66 static struct fmodsw fsw = {
67 	"timod",
68 	&timinfo,
69 	D_MTQPAIR | D_MP,
70 };
71 
72 /*
73  * Module linkage information for the kernel.
74  */
75 
76 static struct modlstrmod modlstrmod = {
77 	&mod_strmodops, "transport interface str mod", &fsw
78 };
79 
80 static struct modlinkage modlinkage = {
81 	MODREV_1, &modlstrmod, NULL
82 };
83 
84 static krwlock_t	tim_list_rwlock;
85 
86 /*
87  * This module keeps track of capabilities of underlying transport. Information
88  * is persistent through module invocations (open/close). Currently it remembers
89  * whether underlying transport supports TI_GET{MY,PEER}NAME ioctls and
90  * T_CAPABILITY_REQ message. This module either passes ioctl/messages to the
91  * transport or emulates it when transport doesn't understand these
92  * ioctl/messages.
93  *
94  * It is assumed that transport supports T_CAPABILITY_REQ when timod receives
95  * T_CAPABILITY_ACK from the transport. There is no current standard describing
96  * transport behaviour when it receives unknown message type, so following
97  * reactions are expected and handled:
98  *
99  * 1) Transport drops unknown T_CAPABILITY_REQ message type. In this case timod
100  *    will wait for tcap_wait time and assume that transport doesn't provide
101  *    this message type. T_CAPABILITY_REQ should never travel over the wire, so
102  *    timeout value should only take into consideration internal processing time
103  *    for the message. From user standpoint it may mean that an application will
104  *    hang for TCAP_WAIT time in the kernel the first time this message is used
105  *    with some particular transport (e.g. TCP/IP) during system uptime.
106  *
107  * 2) Transport responds with T_ERROR_ACK specifying T_CAPABILITY_REQ as
108  *    original message type. In this case it is assumed that transport doesn't
109  *    support it (which may not always be true - some transports return
110  *    T_ERROR_ACK in other cases like lack of system memory).
111  *
112  * 3) Transport responds with M_ERROR, effectively shutting down the
113  *    stream. Unfortunately there is no standard way to pass the reason of
114  *    M_ERROR message back to the caller, so it is assumed that if M_ERROR was
115  *    sent in response to T_CAPABILITY_REQ message, transport doesn't support
116  *    it.
117  *
118  * It is possible under certain circumstances that timod will incorrectly assume
119  * that underlying transport doesn't provide T_CAPABILITY_REQ message type. In
120  * this "worst-case" scenario timod will emulate its functionality by itself and
121  * will provide only TC1_INFO capability. All other bits in CAP_bits1 field are
122  * cleaned. TC1_INFO is emulated by sending T_INFO_REQ down to transport
123  * provider.
124  */
125 
126 /*
127  * Notes about locking:
128  *
129  * tim_list_rwlock protects the list of tim_tim structures itself.  When this
130  * lock is held, the list itself is stable, but the contents of the entries
131  * themselves might not be.
132  *
133  * The rest of the members are generally protected by D_MTQPAIR, which
134  * specifies a default exclusive inner perimeter.  If you're looking at
135  * q->q_ptr, then it's stable.
136  *
137  * There's one exception to this rule: tim_peer{maxlen,len,name}.  These members
138  * are touched without entering the associated STREAMS perimeter because we
139  * get the pointer via tim_findlink() rather than q_ptr.  These are protected
140  * by tim_mutex instead.  If you don't hold that lock, don't look at them.
141  *
142  * (It would be possible to separate out the 'set by T_CONN_RES' cases from the
143  * others, but there appears to be no reason to do so.)
144  */
145 struct tim_tim {
146 	uint32_t	tim_flags;
147 	t_uscalar_t	tim_backlog;
148 	mblk_t		*tim_iocsave;
149 	t_scalar_t	tim_mymaxlen;
150 	t_scalar_t	tim_mylen;
151 	caddr_t		tim_myname;
152 	t_scalar_t	tim_peermaxlen;
153 	t_scalar_t	tim_peerlen;
154 	caddr_t		tim_peername;
155 	cred_t		*tim_peercred;
156 	mblk_t		*tim_consave;
157 	bufcall_id_t	tim_wbufcid;
158 	bufcall_id_t	tim_rbufcid;
159 	timeout_id_t	tim_wtimoutid;
160 	timeout_id_t	tim_rtimoutid;
161 	/* Protected by the global tim_list_rwlock for all instances */
162 	struct tim_tim	*tim_next;
163 	struct tim_tim	**tim_ptpn;
164 	t_uscalar_t	tim_acceptor;
165 	t_scalar_t	tim_saved_prim;		/* Primitive from message */
166 						/*  part of ioctl. */
167 	timeout_id_t	tim_tcap_timoutid;	/* For T_CAP_REQ timeout */
168 	tpi_provinfo_t	*tim_provinfo;		/* Transport description */
169 	kmutex_t	tim_mutex;		/* protect tim_peer* */
170 	pid_t		tim_cpid;
171 };
172 
173 
174 /*
175  * Local flags used with tim_flags field in instance structure of
176  * type 'struct _ti_user' declared above.
177  * Historical note:
178  * This namespace constants were previously declared in a
179  * a very messed up namespace in timod.h
180  *
181  * There may be 3 states for transport:
182  *
183  * 1) It provides T_CAPABILITY_REQ
184  * 2) It does not provide T_CAPABILITY_REQ
185  * 3) It is not known yet whether transport provides T_CAPABILITY_REQ or not.
186  *
187  * It is assumed that the underlying transport either provides
188  * T_CAPABILITY_REQ or not and this does not changes during the
189  * system lifetime.
190  *
191  */
192 #define	PEEK_RDQ_EXPIND 0x0001	/* look for expinds on stream rd queues */
193 #define	WAITIOCACK	0x0002	/* waiting for info for ioctl act	*/
194 #define	CLTS		0x0004	/* connectionless transport		*/
195 #define	COTS		0x0008	/* connection-oriented transport	*/
196 #define	CONNWAIT	0x0010	/* waiting for connect confirmation	*/
197 #define	LOCORDREL	0x0020	/* local end has orderly released	*/
198 #define	REMORDREL	0x0040	/* remote end had orderly released	*/
199 #define	NAMEPROC	0x0080	/* processing a NAME ioctl		*/
200 /* ONC_PLUS EXTRACT START */
201 #define	DO_MYNAME	0x0100	/* timod handles TI_GETMYNAME		*/
202 /* ONC_PLUS EXTRACT END */
203 #define	DO_PEERNAME	0x0200	/* timod handles TI_GETPEERNAME		*/
204 #define	TI_CAP_RECVD	0x0400	/* TI_CAPABILITY received		*/
205 #define	CAP_WANTS_INFO	0x0800	/* TI_CAPABILITY has TC1_INFO set	*/
206 #define	WAIT_IOCINFOACK	0x1000	/* T_INFO_REQ generated from ioctl	*/
207 #define	WAIT_CONNRESACK	0x2000	/* waiting for T_OK_ACK to T_CONN_RES	*/
208 
209 
210 /* Debugging facilities */
211 /*
212  * Logging needed for debugging timod should only appear in DEBUG kernel.
213  */
214 #ifdef DEBUG
215 #define	TILOG(msg, arg)		tilog((msg), (arg))
216 #define	TILOGP(msg, arg)	tilogp((msg), (arg))
217 #else
218 #define	TILOG(msg, arg)
219 #define	TILOGP(msg, arg)
220 #endif
221 
222 
223 /*
224  * Sleep timeout for T_CAPABILITY_REQ. This message never travels across
225  * network, so timeout value should be enough to cover all internal processing
226  * time.
227  */
228 clock_t tim_tcap_wait = 2;
229 
230 /* Sleep timeout in tim_recover() */
231 #define	TIMWAIT	(1*hz)
232 /* Sleep timeout in tim_ioctl_retry() 0.2 seconds */
233 #define	TIMIOCWAIT	(200*hz/1000)
234 
235 /*
236  * Return values for ti_doname().
237  */
238 #define	DONAME_FAIL	0	/* failing ioctl (done) */
239 #define	DONAME_DONE	1	/* done processing */
240 #define	DONAME_CONT	2	/* continue proceesing (not done yet) */
241 
242 /*
243  * Function prototypes
244  */
245 static int ti_doname(queue_t *, mblk_t *);
246 static int ti_expind_on_rdqueues(queue_t *);
247 static void tim_ioctl_send_reply(queue_t *, mblk_t *, mblk_t *);
248 static void tim_send_ioc_error_ack(queue_t *, struct tim_tim *, mblk_t *);
249 static void tim_tcap_timer(void *);
250 static void tim_tcap_genreply(queue_t *, struct tim_tim *);
251 static void tim_send_reply(queue_t *, mblk_t *, struct tim_tim *, t_scalar_t);
252 static void tim_answer_ti_sync(queue_t *, mblk_t *, struct tim_tim *,
253     mblk_t *, uint32_t);
254 static void tim_send_ioctl_tpi_msg(queue_t *, mblk_t *, struct tim_tim *,
255 	struct iocblk *);
256 static void tim_clear_peer(struct tim_tim *);
257 
258 int
259 _init(void)
260 {
261 	int	error;
262 
263 	rw_init(&tim_list_rwlock, NULL, RW_DRIVER, NULL);
264 	error = mod_install(&modlinkage);
265 	if (error != 0) {
266 		rw_destroy(&tim_list_rwlock);
267 		return (error);
268 	}
269 
270 	return (0);
271 }
272 
273 int
274 _fini(void)
275 {
276 	int	error;
277 
278 	error = mod_remove(&modlinkage);
279 	if (error != 0)
280 		return (error);
281 	rw_destroy(&tim_list_rwlock);
282 	return (0);
283 }
284 
285 int
286 _info(struct modinfo *modinfop)
287 {
288 	return (mod_info(&modlinkage, modinfop));
289 }
290 
291 
292 /*
293  * Hash list for all instances. Used to find tim_tim structure based on
294  * ACCEPTOR_id in T_CONN_RES. Protected by tim_list_rwlock.
295  */
296 #define	TIM_HASH_SIZE	256
297 #ifdef	_ILP32
298 #define	TIM_HASH(id) (((uintptr_t)(id) >> 8) % TIM_HASH_SIZE)
299 #else
300 #define	TIM_HASH(id) ((uintptr_t)(id) % TIM_HASH_SIZE)
301 #endif	/* _ILP32 */
302 static struct tim_tim	*tim_hash[TIM_HASH_SIZE];
303 int		tim_cnt = 0;
304 
305 static void tilog(char *, t_scalar_t);
306 static void tilogp(char *, uintptr_t);
307 static mblk_t *tim_filladdr(queue_t *, mblk_t *, boolean_t);
308 static void tim_addlink(struct tim_tim	*);
309 static void tim_dellink(struct tim_tim	*);
310 static struct tim_tim *tim_findlink(t_uscalar_t);
311 static void tim_recover(queue_t *, mblk_t *, t_scalar_t);
312 static void tim_ioctl_retry(queue_t *);
313 
314 int dotilog = 0;
315 
316 #define	TIMOD_ID	3
317 
318 /* ONC_PLUS EXTRACT START */
319 static int timodopen(queue_t *, dev_t *, int, int, cred_t *);
320 /* ONC_PLUS EXTRACT END */
321 static int timodclose(queue_t *, int, cred_t *);
322 static void timodwput(queue_t *, mblk_t *);
323 static void timodrput(queue_t *, mblk_t *);
324 /* ONC_PLUS EXTRACT START */
325 static void timodrsrv(queue_t *);
326 /* ONC_PLUS EXTRACT END */
327 static void timodwsrv(queue_t *);
328 /* ONC_PLUS EXTRACT START */
329 static int timodrproc(queue_t *, mblk_t *);
330 static int timodwproc(queue_t *, mblk_t *);
331 /* ONC_PLUS EXTRACT END */
332 
333 /* stream data structure definitions */
334 
335 static struct module_info timod_info =
336 	{TIMOD_ID, "timod", 0, INFPSZ, 512, 128};
337 static struct qinit timodrinit = {
338 	(int (*)())timodrput,
339 	(int (*)())timodrsrv,
340 	timodopen,
341 	timodclose,
342 	nulldev,
343 	&timod_info,
344 	NULL
345 };
346 static struct qinit timodwinit = {
347 	(int (*)())timodwput,
348 	(int (*)())timodwsrv,
349 	timodopen,
350 	timodclose,
351 	nulldev,
352 	&timod_info,
353 	NULL
354 };
355 static struct streamtab timinfo = { &timodrinit, &timodwinit, NULL, NULL };
356 
357 /* ONC_PLUS EXTRACT START */
358 /*
359  * timodopen -	open routine gets called when the module gets pushed
360  *		onto the stream.
361  */
362 /*ARGSUSED*/
363 static int
364 timodopen(
365 	queue_t *q,
366 	dev_t *devp,
367 	int flag,
368 	int sflag,
369 	cred_t *crp)
370 {
371 	struct tim_tim *tp;
372 	struct stroptions *sop;
373 	mblk_t *bp;
374 
375 	ASSERT(q != NULL);
376 
377 	if (q->q_ptr) {
378 		return (0);
379 	}
380 
381 	if ((bp = allocb(sizeof (struct stroptions), BPRI_MED)) == 0)
382 		return (ENOMEM);
383 
384 	tp = kmem_zalloc(sizeof (struct tim_tim), KM_SLEEP);
385 
386 	tp->tim_cpid = -1;
387 	tp->tim_saved_prim = -1;
388 
389 	mutex_init(&tp->tim_mutex, NULL, MUTEX_DEFAULT, NULL);
390 
391 	q->q_ptr = (caddr_t)tp;
392 	WR(q)->q_ptr = (caddr_t)tp;
393 
394 	tilogp("timodopen: Allocated for tp %lx\n", (uintptr_t)tp);
395 	tilogp("timodopen: Allocated for q %lx\n", (uintptr_t)q);
396 
397 	/* Must be done before tpi_findprov and _ILP32 q_next walk below */
398 	qprocson(q);
399 
400 	tp->tim_provinfo = tpi_findprov(q);
401 
402 	/*
403 	 * Defer allocation of the buffers for the local address and
404 	 * the peer's address until we need them.
405 	 * Assume that timod has to handle getname until we here
406 	 * an iocack from the transport provider or we know that
407 	 * transport provider doesn't understand it.
408 	 */
409 	if (tp->tim_provinfo->tpi_myname != PI_YES) {
410 		TILOG("timodopen: setting DO_MYNAME\n", 0);
411 		tp->tim_flags |= DO_MYNAME;
412 	}
413 
414 	if (tp->tim_provinfo->tpi_peername != PI_YES) {
415 		TILOG("timodopen: setting DO_PEERNAME\n", 0);
416 		tp->tim_flags |= DO_PEERNAME;
417 	}
418 
419 #ifdef	_ILP32
420 	{
421 		queue_t *driverq;
422 
423 		/*
424 		 * Find my driver's read queue (for T_CONN_RES handling)
425 		 */
426 		driverq = WR(q);
427 		while (SAMESTR(driverq))
428 			driverq = driverq->q_next;
429 
430 		tp->tim_acceptor = (t_uscalar_t)RD(driverq);
431 	}
432 #else
433 	tp->tim_acceptor = (t_uscalar_t)getminor(*devp);
434 #endif	/* _ILP32 */
435 
436 	/*
437 	 * Add this one to the list.
438 	 */
439 	tim_addlink(tp);
440 
441 	/*
442 	 * Send M_SETOPTS to stream head to make sure M_PCPROTO messages
443 	 * are not flushed. This prevents application deadlocks.
444 	 */
445 	bp->b_datap->db_type = M_SETOPTS;
446 	bp->b_wptr += sizeof (struct stroptions);
447 	sop = (struct stroptions *)bp->b_rptr;
448 	sop->so_flags = SO_READOPT;
449 	sop->so_readopt = RFLUSHPCPROT;
450 
451 	putnext(q, bp);
452 
453 	return (0);
454 }
455 
456 static void
457 tim_timer(void *arg)
458 {
459 	queue_t *q = arg;
460 	struct tim_tim *tp = (struct tim_tim *)q->q_ptr;
461 
462 	ASSERT(tp);
463 
464 	if (q->q_flag & QREADR) {
465 		ASSERT(tp->tim_rtimoutid);
466 		tp->tim_rtimoutid = 0;
467 	} else {
468 		ASSERT(tp->tim_wtimoutid);
469 		tp->tim_wtimoutid = 0;
470 	}
471 	enableok(q);
472 	qenable(q);
473 }
474 
475 static void
476 tim_buffer(void *arg)
477 {
478 	queue_t *q = arg;
479 	struct tim_tim *tp = (struct tim_tim *)q->q_ptr;
480 
481 	ASSERT(tp);
482 
483 	if (q->q_flag & QREADR) {
484 		ASSERT(tp->tim_rbufcid);
485 		tp->tim_rbufcid = 0;
486 	} else {
487 		ASSERT(tp->tim_wbufcid);
488 		tp->tim_wbufcid = 0;
489 	}
490 	enableok(q);
491 	qenable(q);
492 }
493 /* ONC_PLUS EXTRACT END */
494 
495 /*
496  * timodclose - This routine gets called when the module gets popped
497  * off of the stream.
498  */
499 /*ARGSUSED*/
500 static int
501 timodclose(
502 	queue_t *q,
503 	int flag,
504 	cred_t *crp)
505 {
506 	struct tim_tim *tp;
507 	mblk_t *mp;
508 	mblk_t *nmp;
509 
510 	ASSERT(q != NULL);
511 
512 	tp = (struct tim_tim *)q->q_ptr;
513 	q->q_ptr = NULL;
514 
515 	ASSERT(tp != NULL);
516 
517 	tilogp("timodclose: Entered for tp %lx\n", (uintptr_t)tp);
518 	tilogp("timodclose: Entered for q %lx\n", (uintptr_t)q);
519 
520 	qprocsoff(q);
521 	tim_dellink(tp);
522 
523 	/*
524 	 * Cancel any outstanding bufcall
525 	 * or timeout requests.
526 	 */
527 	if (tp->tim_wbufcid) {
528 		qunbufcall(q, tp->tim_wbufcid);
529 		tp->tim_wbufcid = 0;
530 	}
531 	if (tp->tim_rbufcid) {
532 		qunbufcall(q, tp->tim_rbufcid);
533 		tp->tim_rbufcid = 0;
534 	}
535 	if (tp->tim_wtimoutid) {
536 		(void) quntimeout(q, tp->tim_wtimoutid);
537 		tp->tim_wtimoutid = 0;
538 	}
539 	if (tp->tim_rtimoutid) {
540 		(void) quntimeout(q, tp->tim_rtimoutid);
541 		tp->tim_rtimoutid = 0;
542 	}
543 
544 	if (tp->tim_tcap_timoutid != 0) {
545 		(void) quntimeout(q, tp->tim_tcap_timoutid);
546 		tp->tim_tcap_timoutid = 0;
547 	}
548 
549 	if (tp->tim_iocsave != NULL)
550 		freemsg(tp->tim_iocsave);
551 	mp = tp->tim_consave;
552 	while (mp) {
553 		nmp = mp->b_next;
554 		mp->b_next = NULL;
555 		freemsg(mp);
556 		mp = nmp;
557 	}
558 	ASSERT(tp->tim_mymaxlen >= 0);
559 	if (tp->tim_mymaxlen != 0)
560 		kmem_free(tp->tim_myname, (size_t)tp->tim_mymaxlen);
561 	ASSERT(tp->tim_peermaxlen >= 0);
562 	if (tp->tim_peermaxlen != 0)
563 		kmem_free(tp->tim_peername, (size_t)tp->tim_peermaxlen);
564 
565 	q->q_ptr = WR(q)->q_ptr = NULL;
566 
567 	mutex_destroy(&tp->tim_mutex);
568 
569 	if (tp->tim_peercred != NULL)
570 		crfree(tp->tim_peercred);
571 
572 	kmem_free(tp, sizeof (struct tim_tim));
573 
574 	return (0);
575 }
576 
577 /*
578  * timodrput -	Module read put procedure.  This is called from
579  *		the module, driver, or stream head upstream/downstream.
580  *		Handles M_FLUSH, M_DATA and some M_PROTO (T_DATA_IND,
581  *		and T_UNITDATA_IND) messages. All others are queued to
582  *		be handled by the service procedures.
583  */
584 static void
585 timodrput(queue_t *q, mblk_t *mp)
586 {
587 	union T_primitives *pptr;
588 
589 	/*
590 	 * During flow control and other instances when messages
591 	 * are on queue, queue up a non high priority message
592 	 */
593 	if (q->q_first != 0 && mp->b_datap->db_type < QPCTL) {
594 		(void) putq(q, mp);
595 		return;
596 	}
597 
598 	/*
599 	 * Inline processing of data (to avoid additional procedure call).
600 	 * Rest is handled in timodrproc.
601 	 */
602 
603 	switch (mp->b_datap->db_type) {
604 	case M_DATA:
605 		if (bcanputnext(q, mp->b_band))
606 			putnext(q, mp);
607 		else
608 			(void) putq(q, mp);
609 		break;
610 	case M_PROTO:
611 	case M_PCPROTO:
612 		if (MBLKL(mp) < sizeof (t_scalar_t)) {
613 			if (mp->b_datap->db_type == M_PCPROTO ||
614 			    bcanputnext(q, mp->b_band)) {
615 				putnext(q, mp);
616 			} else {
617 				(void) putq(q, mp);
618 			}
619 			break;
620 		}
621 		pptr = (union T_primitives *)mp->b_rptr;
622 		switch (pptr->type) {
623 		case T_EXDATA_IND:
624 		case T_DATA_IND:
625 		case T_UNITDATA_IND:
626 			if (bcanputnext(q, mp->b_band))
627 				putnext(q, mp);
628 			else
629 				(void) putq(q, mp);
630 			break;
631 		default:
632 			(void) timodrproc(q, mp);
633 			break;
634 		}
635 		break;
636 	default:
637 		(void) timodrproc(q, mp);
638 		break;
639 	}
640 }
641 
642 /* ONC_PLUS EXTRACT START */
643 /*
644  * timodrsrv -	Module read queue service procedure.  This is called when
645  *		messages are placed on an empty queue, when high priority
646  *		messages are placed on the queue, and when flow control
647  *		restrictions subside.  This code used to be included in a
648  *		put procedure, but it was moved to a service procedure
649  *		because several points were added where memory allocation
650  *		could fail, and there is no reasonable recovery mechanism
651  *		from the put procedure.
652  */
653 /*ARGSUSED*/
654 static void
655 timodrsrv(queue_t *q)
656 {
657 /* ONC_PLUS EXTRACT END */
658 	mblk_t *mp;
659 	struct tim_tim *tp;
660 
661 	ASSERT(q != NULL);
662 
663 	tp = (struct tim_tim *)q->q_ptr;
664 	if (!tp)
665 	    return;
666 
667 	while ((mp = getq(q)) != NULL) {
668 		if (timodrproc(q, mp)) {
669 			/*
670 			 * timodrproc did a putbq - stop processing
671 			 * messages.
672 			 */
673 			return;
674 		}
675 	}
676 /* ONC_PLUS EXTRACT START */
677 }
678 
679 /*
680  * Perform common processing when a T_CAPABILITY_ACK or T_INFO_ACK
681  * arrive.  Set the queue properties and adjust the tim_flags according
682  * to the service type.
683  */
684 static void
685 timodprocessinfo(queue_t *q, struct tim_tim *tp, struct T_info_ack *tia)
686 {
687 	TILOG("timodprocessinfo: strqset(%d)\n", tia->TIDU_size);
688 	(void) strqset(q, QMAXPSZ, 0, tia->TIDU_size);
689 	(void) strqset(OTHERQ(q), QMAXPSZ, 0, tia->TIDU_size);
690 
691 	if ((tia->SERV_type == T_COTS) || (tia->SERV_type == T_COTS_ORD))
692 		tp->tim_flags = (tp->tim_flags & ~CLTS) | COTS;
693 	else if (tia->SERV_type == T_CLTS)
694 		tp->tim_flags = (tp->tim_flags & ~COTS) | CLTS;
695 }
696 
697 static int
698 timodrproc(queue_t *q, mblk_t *mp)
699 {
700 	union T_primitives *pptr;
701 	struct tim_tim *tp;
702 	struct iocblk *iocbp;
703 	mblk_t *nbp;
704 	size_t blen;
705 /* ONC_PLUS EXTRACT END */
706 
707 	tp = (struct tim_tim *)q->q_ptr;
708 
709 /* ONC_PLUS EXTRACT START */
710 	switch (mp->b_datap->db_type) {
711 	default:
712 		putnext(q, mp);
713 		break;
714 
715 	case M_ERROR:
716 		TILOG("timodrproc: Got M_ERROR, flags = %x\n", tp->tim_flags);
717 		/*
718 		 * There is no specified standard response for driver when it
719 		 * receives unknown message type and M_ERROR is one
720 		 * possibility. If we send T_CAPABILITY_REQ down and transport
721 		 * provider responds with M_ERROR we assume that it doesn't
722 		 * understand this message type. This assumption may be
723 		 * sometimes incorrect (transport may reply with M_ERROR for
724 		 * some other reason) but there is no way for us to distinguish
725 		 * between different cases. In the worst case timod and everyone
726 		 * else sharing global transport description with it may end up
727 		 * emulating T_CAPABILITY_REQ.
728 		 */
729 
730 		/*
731 		 * Check that we are waiting for T_CAPABILITY_ACK and
732 		 * T_CAPABILITY_REQ is not implemented by transport or emulated
733 		 * by timod.
734 		 */
735 		if ((tp->tim_provinfo->tpi_capability == PI_DONTKNOW) &&
736 		    ((tp->tim_flags & TI_CAP_RECVD) != 0)) {
737 			/*
738 			 * Good chances that this transport doesn't provide
739 			 * T_CAPABILITY_REQ. Mark this information  permanently
740 			 * for the module + transport combination.
741 			 */
742 			PI_PROVLOCK(tp->tim_provinfo);
743 			if (tp->tim_provinfo->tpi_capability == PI_DONTKNOW)
744 				tp->tim_provinfo->tpi_capability = PI_NO;
745 			PI_PROVUNLOCK(tp->tim_provinfo);
746 			if (tp->tim_tcap_timoutid != 0) {
747 				(void) quntimeout(q, tp->tim_tcap_timoutid);
748 				tp->tim_tcap_timoutid = 0;
749 			}
750 		}
751 		putnext(q, mp);
752 		break;
753 	case M_DATA:
754 		if (!bcanputnext(q, mp->b_band)) {
755 			(void) putbq(q, mp);
756 			return (1);
757 		}
758 		putnext(q, mp);
759 		break;
760 
761 	case M_PROTO:
762 	case M_PCPROTO:
763 		blen = MBLKL(mp);
764 		if (blen < sizeof (t_scalar_t)) {
765 			/*
766 			 * Note: it's not actually possible to get
767 			 * here with db_type M_PCPROTO, because
768 			 * timodrput has already checked MBLKL, and
769 			 * thus the assertion below.  If the length
770 			 * was too short, then the message would have
771 			 * already been putnext'd, and would thus
772 			 * never appear here.  Just the same, the code
773 			 * below handles the impossible case since
774 			 * it's easy to do and saves future
775 			 * maintainers from unfortunate accidents.
776 			 */
777 			ASSERT(mp->b_datap->db_type == M_PROTO);
778 			if (mp->b_datap->db_type == M_PROTO &&
779 			    !bcanputnext(q, mp->b_band)) {
780 				(void) putbq(q, mp);
781 				return (1);
782 			}
783 			putnext(q, mp);
784 			break;
785 		}
786 
787 		pptr = (union T_primitives *)mp->b_rptr;
788 		switch (pptr->type) {
789 		default:
790 /* ONC_PLUS EXTRACT END */
791 
792 			if (audit_active)
793 				audit_sock(T_UNITDATA_IND, q, mp, TIMOD_ID);
794 /* ONC_PLUS EXTRACT START */
795 			putnext(q, mp);
796 			break;
797 /* ONC_PLUS EXTRACT END */
798 
799 		case T_ERROR_ACK:
800 			/* Restore db_type - recover() might have changed it */
801 			mp->b_datap->db_type = M_PCPROTO;
802 			if (blen < sizeof (struct T_error_ack)) {
803 				putnext(q, mp);
804 				break;
805 			}
806 
807 			tilog("timodrproc: Got T_ERROR_ACK, flags = %x\n",
808 			    tp->tim_flags);
809 
810 			if ((tp->tim_flags & WAIT_CONNRESACK) &&
811 			    tp->tim_saved_prim == pptr->error_ack.ERROR_prim) {
812 				tp->tim_flags &=
813 				    ~(WAIT_CONNRESACK | WAITIOCACK);
814 				freemsg(tp->tim_iocsave);
815 				tp->tim_iocsave = NULL;
816 				tp->tim_saved_prim = -1;
817 				putnext(q, mp);
818 			} else if (tp->tim_flags & WAITIOCACK) {
819 				tim_send_ioc_error_ack(q, tp, mp);
820 			} else {
821 				putnext(q, mp);
822 			}
823 			break;
824 
825 		case T_OK_ACK:
826 			if (blen < sizeof (pptr->ok_ack)) {
827 				mp->b_datap->db_type = M_PCPROTO;
828 				putnext(q, mp);
829 				break;
830 			}
831 
832 			tilog("timodrproc: Got T_OK_ACK\n", 0);
833 
834 			if (pptr->ok_ack.CORRECT_prim == T_UNBIND_REQ)
835 				tp->tim_mylen = 0;
836 
837 			if ((tp->tim_flags & WAIT_CONNRESACK) &&
838 			    tp->tim_saved_prim == pptr->ok_ack.CORRECT_prim) {
839 				struct T_conn_res *resp;
840 				struct T_conn_ind *indp;
841 				struct tim_tim *ntp;
842 				caddr_t ptr;
843 
844 				rw_enter(&tim_list_rwlock, RW_READER);
845 				resp = (struct T_conn_res *)
846 				    tp->tim_iocsave->b_rptr;
847 				ntp = tim_findlink(resp->ACCEPTOR_id);
848 				if (ntp == NULL)
849 					goto cresackout;
850 
851 				mutex_enter(&ntp->tim_mutex);
852 				if (ntp->tim_peercred != NULL)
853 					crfree(ntp->tim_peercred);
854 				ntp->tim_peercred =
855 				    DB_CRED(tp->tim_iocsave->b_cont);
856 				ntp->tim_cpid =
857 				    DB_CPID(tp->tim_iocsave->b_cont);
858 				if (ntp->tim_peercred != NULL)
859 					crhold(ntp->tim_peercred);
860 
861 				if (!(ntp->tim_flags & DO_PEERNAME)) {
862 					mutex_exit(&ntp->tim_mutex);
863 					goto cresackout;
864 				}
865 
866 				indp = (struct T_conn_ind *)
867 				    tp->tim_iocsave->b_cont->b_rptr;
868 				/* true as message is put on list */
869 				ASSERT(indp->SRC_length >= 0);
870 
871 				if (indp->SRC_length > ntp->tim_peermaxlen) {
872 					ptr = kmem_alloc(indp->SRC_length,
873 					    KM_NOSLEEP);
874 					if (ptr == NULL) {
875 						mutex_exit(&ntp->tim_mutex);
876 						rw_exit(&tim_list_rwlock);
877 						tilog("timodwproc: kmem_alloc "
878 						    "failed, attempting "
879 						    "recovery\n", 0);
880 						tim_recover(q, mp,
881 						    indp->SRC_length);
882 						return (1);
883 					}
884 					if (ntp->tim_peermaxlen > 0)
885 						kmem_free(ntp->tim_peername,
886 						    ntp->tim_peermaxlen);
887 					ntp->tim_peername = ptr;
888 					ntp->tim_peermaxlen = indp->SRC_length;
889 				}
890 				ntp->tim_peerlen = indp->SRC_length;
891 				ptr = (caddr_t)indp + indp->SRC_offset;
892 				bcopy(ptr, ntp->tim_peername, ntp->tim_peerlen);
893 
894 				mutex_exit(&ntp->tim_mutex);
895 
896 			cresackout:
897 				rw_exit(&tim_list_rwlock);
898 				tp->tim_flags &=
899 				    ~(WAIT_CONNRESACK | WAITIOCACK);
900 				freemsg(tp->tim_iocsave);
901 				tp->tim_iocsave = NULL;
902 				tp->tim_saved_prim = -1;
903 			}
904 
905 			tim_send_reply(q, mp, tp, pptr->ok_ack.CORRECT_prim);
906 			break;
907 
908 /* ONC_PLUS EXTRACT START */
909 		case T_BIND_ACK: {
910 			struct T_bind_ack *ackp =
911 			    (struct T_bind_ack *)mp->b_rptr;
912 
913 			/* Restore db_type - recover() might have changed it */
914 			mp->b_datap->db_type = M_PCPROTO;
915 			if (blen < sizeof (*ackp)) {
916 				putnext(q, mp);
917 				break;
918 			}
919 
920 			/* save negotiated backlog */
921 			tp->tim_backlog = ackp->CONIND_number;
922 
923 			if (((tp->tim_flags & WAITIOCACK) == 0) ||
924 			    ((tp->tim_saved_prim != O_T_BIND_REQ) &&
925 				(tp->tim_saved_prim != T_BIND_REQ))) {
926 				putnext(q, mp);
927 				break;
928 			}
929 			ASSERT(tp->tim_iocsave != NULL);
930 
931 			if (tp->tim_flags & DO_MYNAME) {
932 				caddr_t p;
933 
934 				if (ackp->ADDR_length < 0 ||
935 				    mp->b_rptr + ackp->ADDR_offset +
936 				    ackp->ADDR_length > mp->b_wptr) {
937 					putnext(q, mp);
938 					break;
939 				}
940 				if (ackp->ADDR_length > tp->tim_mymaxlen) {
941 					p = kmem_alloc(ackp->ADDR_length,
942 					    KM_NOSLEEP);
943 					if (p == NULL) {
944 						tilog("timodrproc: kmem_alloc "
945 						    "failed attempt recovery",
946 						    0);
947 
948 						tim_recover(q, mp,
949 						    ackp->ADDR_length);
950 						return (1);
951 					}
952 					ASSERT(tp->tim_mymaxlen >= 0);
953 					if (tp->tim_mymaxlen != NULL) {
954 						kmem_free(tp->tim_myname,
955 						    tp->tim_mymaxlen);
956 					}
957 					tp->tim_myname = p;
958 					tp->tim_mymaxlen = ackp->ADDR_length;
959 				}
960 				tp->tim_mylen = ackp->ADDR_length;
961 				bcopy(mp->b_rptr + ackp->ADDR_offset,
962 				    tp->tim_myname, tp->tim_mylen);
963 			}
964 			tim_ioctl_send_reply(q, tp->tim_iocsave, mp);
965 			tp->tim_iocsave = NULL;
966 			tp->tim_saved_prim = -1;
967 			tp->tim_flags &= ~(WAITIOCACK | WAIT_IOCINFOACK |
968 			    TI_CAP_RECVD | CAP_WANTS_INFO);
969 			break;
970 		}
971 
972 /* ONC_PLUS EXTRACT END */
973 	    case T_OPTMGMT_ACK:
974 
975 		tilog("timodrproc: Got T_OPTMGMT_ACK\n", 0);
976 
977 		/* Restore db_type - recover() might have change it */
978 		mp->b_datap->db_type = M_PCPROTO;
979 
980 		if (((tp->tim_flags & WAITIOCACK) == 0) ||
981 		    ((tp->tim_saved_prim != T_SVR4_OPTMGMT_REQ) &&
982 		    (tp->tim_saved_prim != T_OPTMGMT_REQ))) {
983 			putnext(q, mp);
984 		} else {
985 			ASSERT(tp->tim_iocsave != NULL);
986 			tim_ioctl_send_reply(q, tp->tim_iocsave, mp);
987 			tp->tim_iocsave = NULL;
988 			tp->tim_saved_prim = -1;
989 			tp->tim_flags &= ~(WAITIOCACK | WAIT_IOCINFOACK |
990 			    TI_CAP_RECVD | CAP_WANTS_INFO);
991 		}
992 		break;
993 
994 		case T_INFO_ACK: {
995 		    struct T_info_ack *tia = (struct T_info_ack *)pptr;
996 
997 		    /* Restore db_type - recover() might have changed it */
998 		    mp->b_datap->db_type = M_PCPROTO;
999 
1000 		    if (blen < sizeof (*tia)) {
1001 			putnext(q, mp);
1002 			break;
1003 		    }
1004 
1005 		    tilog("timodrproc: Got T_INFO_ACK, flags = %x\n",
1006 			tp->tim_flags);
1007 
1008 		    timodprocessinfo(q, tp, tia);
1009 
1010 		    TILOG("timodrproc: flags = %x\n", tp->tim_flags);
1011 		    if ((tp->tim_flags & WAITIOCACK) != 0) {
1012 			size_t	expected_ack_size;
1013 			ssize_t	deficit;
1014 			int	ioc_cmd;
1015 			struct T_capability_ack *tcap;
1016 
1017 			/*
1018 			 * The only case when T_INFO_ACK may be received back
1019 			 * when we are waiting for ioctl to complete is when
1020 			 * this ioctl sent T_INFO_REQ down.
1021 			 */
1022 			if (!(tp->tim_flags & WAIT_IOCINFOACK)) {
1023 				putnext(q, mp);
1024 				break;
1025 			}
1026 			ASSERT(tp->tim_iocsave != NULL);
1027 
1028 			iocbp = (struct iocblk *)tp->tim_iocsave->b_rptr;
1029 			ioc_cmd = iocbp->ioc_cmd;
1030 
1031 			/*
1032 			 * Was it sent from TI_CAPABILITY emulation?
1033 			 */
1034 			if (ioc_cmd == TI_CAPABILITY) {
1035 				struct T_info_ack	saved_info;
1036 
1037 				/*
1038 				 * Perform sanity checks. The only case when we
1039 				 * send T_INFO_REQ from TI_CAPABILITY is when
1040 				 * timod emulates T_CAPABILITY_REQ and CAP_bits1
1041 				 * has TC1_INFO set.
1042 				 */
1043 				if ((tp->tim_flags &
1044 				    (TI_CAP_RECVD | CAP_WANTS_INFO)) !=
1045 				    (TI_CAP_RECVD | CAP_WANTS_INFO)) {
1046 					putnext(q, mp);
1047 					break;
1048 				}
1049 
1050 				TILOG("timodrproc: emulating TI_CAPABILITY/"
1051 				    "info\n", 0);
1052 
1053 				/* Save info & reuse mp for T_CAPABILITY_ACK */
1054 				saved_info = *tia;
1055 
1056 				mp = tpi_ack_alloc(mp,
1057 				    sizeof (struct T_capability_ack),
1058 				    M_PCPROTO, T_CAPABILITY_ACK);
1059 
1060 				if (mp == NULL) {
1061 					tilog("timodrproc: realloc failed, "
1062 					    "no recovery attempted\n", 0);
1063 					return (1);
1064 				}
1065 
1066 				/*
1067 				 * Copy T_INFO information into T_CAPABILITY_ACK
1068 				 */
1069 				tcap = (struct T_capability_ack *)mp->b_rptr;
1070 				tcap->CAP_bits1 = TC1_INFO;
1071 				tcap->INFO_ack = saved_info;
1072 				tp->tim_flags &= ~(WAITIOCACK |
1073 				    WAIT_IOCINFOACK | TI_CAP_RECVD |
1074 				    CAP_WANTS_INFO);
1075 				tim_ioctl_send_reply(q, tp->tim_iocsave, mp);
1076 				tp->tim_iocsave = NULL;
1077 				tp->tim_saved_prim = -1;
1078 				break;
1079 			}
1080 
1081 			/*
1082 			 * The code for TI_SYNC/TI_GETINFO is left here only for
1083 			 * backward compatibility with staticaly linked old
1084 			 * applications. New TLI/XTI code should use
1085 			 * TI_CAPABILITY for getting transport info and should
1086 			 * not use TI_GETINFO/TI_SYNC for this purpose.
1087 			 */
1088 
1089 			/*
1090 			 * make sure the message sent back is the size of
1091 			 * the "expected ack"
1092 			 * For TI_GETINFO, expected ack size is
1093 			 *	sizeof (T_info_ack)
1094 			 * For TI_SYNC, expected ack size is
1095 			 *	sizeof (struct ti_sync_ack);
1096 			 */
1097 			if (ioc_cmd != TI_GETINFO && ioc_cmd != TI_SYNC) {
1098 				putnext(q, mp);
1099 				break;
1100 			}
1101 
1102 			expected_ack_size =
1103 				sizeof (struct T_info_ack); /* TI_GETINFO */
1104 			if (iocbp->ioc_cmd == TI_SYNC) {
1105 				expected_ack_size = 2 * sizeof (uint32_t) +
1106 				    sizeof (struct ti_sync_ack);
1107 			}
1108 			deficit = expected_ack_size - blen;
1109 
1110 			if (deficit != 0) {
1111 				if (mp->b_datap->db_lim - mp->b_wptr <
1112 				    deficit) {
1113 				    mblk_t *tmp = allocb(expected_ack_size,
1114 					BPRI_HI);
1115 				    if (tmp == NULL) {
1116 					ASSERT(MBLKSIZE(mp) >=
1117 						sizeof (struct T_error_ack));
1118 
1119 					tilog("timodrproc: allocb failed no "
1120 					    "recovery attempt\n", 0);
1121 
1122 					mp->b_rptr = mp->b_datap->db_base;
1123 					pptr = (union T_primitives *)
1124 						mp->b_rptr;
1125 					pptr->error_ack.ERROR_prim = T_INFO_REQ;
1126 					pptr->error_ack.TLI_error = TSYSERR;
1127 					pptr->error_ack.UNIX_error = EAGAIN;
1128 					pptr->error_ack.PRIM_type = T_ERROR_ACK;
1129 					mp->b_datap->db_type = M_PCPROTO;
1130 					tim_send_ioc_error_ack(q, tp, mp);
1131 					break;
1132 				    } else {
1133 					bcopy(mp->b_rptr, tmp->b_rptr, blen);
1134 					tmp->b_wptr += blen;
1135 					pptr = (union T_primitives *)
1136 					    tmp->b_rptr;
1137 					freemsg(mp);
1138 					mp = tmp;
1139 				    }
1140 				}
1141 			}
1142 			/*
1143 			 * We now have "mp" which has enough space for an
1144 			 * appropriate ack and contains struct T_info_ack
1145 			 * that the transport provider returned. We now
1146 			 * stuff it with more stuff to fullfill
1147 			 * TI_SYNC ioctl needs, as necessary
1148 			 */
1149 			if (iocbp->ioc_cmd == TI_SYNC) {
1150 				/*
1151 				 * Assumes struct T_info_ack is first embedded
1152 				 * type in struct ti_sync_ack so it is
1153 				 * automatically there.
1154 				 */
1155 				struct ti_sync_ack *tsap =
1156 				    (struct ti_sync_ack *)mp->b_rptr;
1157 
1158 				/*
1159 				 * tsap->tsa_qlen needs to be set only if
1160 				 * TSRF_QLEN_REQ flag is set, but for
1161 				 * compatibility with statically linked
1162 				 * applications it is set here regardless of the
1163 				 * flag since old XTI library expected it to be
1164 				 * set.
1165 				 */
1166 				tsap->tsa_qlen = tp->tim_backlog;
1167 				tsap->tsa_flags = 0x0; /* intialize clear */
1168 				if (tp->tim_flags & PEEK_RDQ_EXPIND) {
1169 					/*
1170 					 * Request to peek for EXPIND in
1171 					 * rcvbuf.
1172 					 */
1173 					if (ti_expind_on_rdqueues(q)) {
1174 						/*
1175 						 * Expedited data is
1176 						 * queued on the stream
1177 						 * read side
1178 						 */
1179 						tsap->tsa_flags |=
1180 						    TSAF_EXP_QUEUED;
1181 					}
1182 					tp->tim_flags &=
1183 					    ~PEEK_RDQ_EXPIND;
1184 				}
1185 				mp->b_wptr += 2*sizeof (uint32_t);
1186 			}
1187 			tim_ioctl_send_reply(q, tp->tim_iocsave, mp);
1188 			tp->tim_iocsave = NULL;
1189 			tp->tim_saved_prim = -1;
1190 			tp->tim_flags &= ~(WAITIOCACK | WAIT_IOCINFOACK |
1191 			    TI_CAP_RECVD | CAP_WANTS_INFO);
1192 			break;
1193 		    }
1194 	    }
1195 
1196 	    putnext(q, mp);
1197 	    break;
1198 
1199 	    case T_ADDR_ACK:
1200 		tilog("timodrproc: Got T_ADDR_ACK\n", 0);
1201 		tim_send_reply(q, mp, tp, T_ADDR_REQ);
1202 		break;
1203 
1204 /* ONC_PLUS EXTRACT START */
1205 		case T_CONN_IND: {
1206 			struct T_conn_ind *tcip =
1207 			    (struct T_conn_ind *)mp->b_rptr;
1208 
1209 			tilog("timodrproc: Got T_CONN_IND\n", 0);
1210 
1211 			if (blen >= sizeof (*tcip) &&
1212 			    MBLKIN(mp, tcip->SRC_offset, tcip->SRC_length)) {
1213 				if (((nbp = dupmsg(mp)) != NULL) ||
1214 				    ((nbp = copymsg(mp)) != NULL)) {
1215 					nbp->b_next = tp->tim_consave;
1216 					tp->tim_consave = nbp;
1217 				} else {
1218 					tim_recover(q, mp,
1219 					    (t_scalar_t)sizeof (mblk_t));
1220 					return (1);
1221 				}
1222 			}
1223 /* ONC_PLUS EXTRACT END */
1224 			if (audit_active)
1225 				audit_sock(T_CONN_IND, q, mp, TIMOD_ID);
1226 /* ONC_PLUS EXTRACT START */
1227 			putnext(q, mp);
1228 			break;
1229 		}
1230 
1231 /* ONC_PLUS EXTRACT END */
1232 	    case T_CONN_CON:
1233 		mutex_enter(&tp->tim_mutex);
1234 		if (tp->tim_peercred != NULL)
1235 			crfree(tp->tim_peercred);
1236 		tp->tim_peercred = DB_CRED(mp);
1237 		if (tp->tim_peercred != NULL)
1238 			crhold(tp->tim_peercred);
1239 		tp->tim_cpid = DB_CPID(mp);
1240 		mutex_exit(&tp->tim_mutex);
1241 
1242 		tilog("timodrproc: Got T_CONN_CON\n", 0);
1243 
1244 		tp->tim_flags &= ~CONNWAIT;
1245 		putnext(q, mp);
1246 		break;
1247 
1248 	    case T_DISCON_IND: {
1249 		struct T_discon_ind *disp;
1250 		struct T_conn_ind *conp;
1251 		mblk_t *pbp = NULL;
1252 
1253 		if (q->q_first != 0)
1254 			tilog("timodrput: T_DISCON_IND - flow control\n", 0);
1255 
1256 		if (blen < sizeof (*disp)) {
1257 			putnext(q, mp);
1258 			break;
1259 		}
1260 
1261 		disp = (struct T_discon_ind *)mp->b_rptr;
1262 
1263 		tilog("timodrproc: Got T_DISCON_IND Reason: %d\n",
1264 			disp->DISCON_reason);
1265 
1266 		tp->tim_flags &= ~(CONNWAIT|LOCORDREL|REMORDREL);
1267 		tim_clear_peer(tp);
1268 		for (nbp = tp->tim_consave; nbp; nbp = nbp->b_next) {
1269 		    conp = (struct T_conn_ind *)nbp->b_rptr;
1270 		    if (conp->SEQ_number == disp->SEQ_number)
1271 			break;
1272 		    pbp = nbp;
1273 		}
1274 		if (nbp) {
1275 		    if (pbp)
1276 			pbp->b_next = nbp->b_next;
1277 		    else
1278 			tp->tim_consave = nbp->b_next;
1279 		    nbp->b_next = NULL;
1280 		    freemsg(nbp);
1281 		}
1282 		putnext(q, mp);
1283 		break;
1284 	    }
1285 
1286 	    case T_ORDREL_IND:
1287 
1288 		tilog("timodrproc: Got T_ORDREL_IND\n", 0);
1289 
1290 		if (tp->tim_flags & LOCORDREL) {
1291 			tp->tim_flags &= ~(LOCORDREL|REMORDREL);
1292 			tim_clear_peer(tp);
1293 		} else {
1294 			tp->tim_flags |= REMORDREL;
1295 		}
1296 		putnext(q, mp);
1297 		break;
1298 
1299 	    case T_EXDATA_IND:
1300 	    case T_DATA_IND:
1301 	    case T_UNITDATA_IND:
1302 		if (pptr->type == T_EXDATA_IND)
1303 			tilog("timodrproc: Got T_EXDATA_IND\n", 0);
1304 
1305 		if (!bcanputnext(q, mp->b_band)) {
1306 			(void) putbq(q, mp);
1307 			return (1);
1308 		}
1309 		putnext(q, mp);
1310 		break;
1311 
1312 	    case T_CAPABILITY_ACK: {
1313 			struct T_capability_ack	*tca;
1314 
1315 			if (blen < sizeof (*tca)) {
1316 				putnext(q, mp);
1317 				break;
1318 			}
1319 
1320 			/* This transport supports T_CAPABILITY_REQ */
1321 			tilog("timodrproc: Got T_CAPABILITY_ACK\n", 0);
1322 
1323 			PI_PROVLOCK(tp->tim_provinfo);
1324 			if (tp->tim_provinfo->tpi_capability != PI_YES)
1325 				tp->tim_provinfo->tpi_capability = PI_YES;
1326 			PI_PROVUNLOCK(tp->tim_provinfo);
1327 
1328 			/* Reset possible pending timeout */
1329 			if (tp->tim_tcap_timoutid != 0) {
1330 				(void) quntimeout(q, tp->tim_tcap_timoutid);
1331 				tp->tim_tcap_timoutid = 0;
1332 			}
1333 
1334 			tca = (struct T_capability_ack *)mp->b_rptr;
1335 
1336 			if (tca->CAP_bits1 & TC1_INFO)
1337 				timodprocessinfo(q, tp, &tca->INFO_ack);
1338 
1339 			tim_send_reply(q, mp, tp, T_CAPABILITY_REQ);
1340 		}
1341 		break;
1342 	    }
1343 	    break;
1344 
1345 /* ONC_PLUS EXTRACT START */
1346 	case M_FLUSH:
1347 
1348 		tilog("timodrproc: Got M_FLUSH\n", 0);
1349 
1350 		if (*mp->b_rptr & FLUSHR) {
1351 			if (*mp->b_rptr & FLUSHBAND)
1352 				flushband(q, *(mp->b_rptr + 1), FLUSHDATA);
1353 			else
1354 				flushq(q, FLUSHDATA);
1355 		}
1356 		putnext(q, mp);
1357 		break;
1358 /* ONC_PLUS EXTRACT END */
1359 
1360 	case M_IOCACK:
1361 	    iocbp = (struct iocblk *)mp->b_rptr;
1362 
1363 	    tilog("timodrproc: Got M_IOCACK\n", 0);
1364 
1365 	    if (iocbp->ioc_cmd == TI_GETMYNAME) {
1366 
1367 		/*
1368 		 * Transport provider supports this ioctl,
1369 		 * so I don't have to.
1370 		 */
1371 		if ((tp->tim_flags & DO_MYNAME) != 0) {
1372 			tp->tim_flags &= ~DO_MYNAME;
1373 			PI_PROVLOCK(tp->tim_provinfo);
1374 			tp->tim_provinfo->tpi_myname = PI_YES;
1375 			PI_PROVUNLOCK(tp->tim_provinfo);
1376 		}
1377 
1378 		ASSERT(tp->tim_mymaxlen >= 0);
1379 		if (tp->tim_mymaxlen != 0) {
1380 			kmem_free(tp->tim_myname, (size_t)tp->tim_mymaxlen);
1381 			tp->tim_myname = NULL;
1382 			tp->tim_mymaxlen = 0;
1383 		}
1384 		/* tim_iocsave may already be overwritten. */
1385 		if (tp->tim_saved_prim == -1) {
1386 			freemsg(tp->tim_iocsave);
1387 			tp->tim_iocsave = NULL;
1388 		}
1389 	    } else if (iocbp->ioc_cmd == TI_GETPEERNAME) {
1390 		boolean_t clearit;
1391 
1392 		/*
1393 		 * Transport provider supports this ioctl,
1394 		 * so I don't have to.
1395 		 */
1396 		if ((tp->tim_flags & DO_PEERNAME) != 0) {
1397 			tp->tim_flags &= ~DO_PEERNAME;
1398 			PI_PROVLOCK(tp->tim_provinfo);
1399 			tp->tim_provinfo->tpi_peername = PI_YES;
1400 			PI_PROVUNLOCK(tp->tim_provinfo);
1401 		}
1402 
1403 		mutex_enter(&tp->tim_mutex);
1404 		ASSERT(tp->tim_peermaxlen >= 0);
1405 		clearit = tp->tim_peermaxlen != 0;
1406 		if (clearit) {
1407 			kmem_free(tp->tim_peername, tp->tim_peermaxlen);
1408 			tp->tim_peername = NULL;
1409 			tp->tim_peermaxlen = 0;
1410 			tp->tim_peerlen = 0;
1411 		}
1412 		mutex_exit(&tp->tim_mutex);
1413 		if (clearit) {
1414 			mblk_t *bp;
1415 
1416 			bp = tp->tim_consave;
1417 			while (bp != NULL) {
1418 				nbp = bp->b_next;
1419 				bp->b_next = NULL;
1420 				freemsg(bp);
1421 				bp = nbp;
1422 			}
1423 			tp->tim_consave = NULL;
1424 		}
1425 		/* tim_iocsave may already be overwritten. */
1426 		if (tp->tim_saved_prim == -1) {
1427 			freemsg(tp->tim_iocsave);
1428 			tp->tim_iocsave = NULL;
1429 		}
1430 	    }
1431 	    putnext(q, mp);
1432 	    break;
1433 
1434 /* ONC_PLUS EXTRACT START */
1435 	case M_IOCNAK:
1436 
1437 	    tilog("timodrproc: Got M_IOCNAK\n", 0);
1438 
1439 	    iocbp = (struct iocblk *)mp->b_rptr;
1440 	    if (((iocbp->ioc_cmd == TI_GETMYNAME) ||
1441 		(iocbp->ioc_cmd == TI_GETPEERNAME)) &&
1442 		((iocbp->ioc_error == EINVAL) || (iocbp->ioc_error == 0))) {
1443 		    PI_PROVLOCK(tp->tim_provinfo);
1444 		    if (iocbp->ioc_cmd == TI_GETMYNAME) {
1445 			    if (tp->tim_provinfo->tpi_myname == PI_DONTKNOW)
1446 				    tp->tim_provinfo->tpi_myname = PI_NO;
1447 		    } else if (iocbp->ioc_cmd == TI_GETPEERNAME) {
1448 			    if (tp->tim_provinfo->tpi_peername == PI_DONTKNOW)
1449 				    tp->tim_provinfo->tpi_peername = PI_NO;
1450 		    }
1451 		    PI_PROVUNLOCK(tp->tim_provinfo);
1452 		    /* tim_iocsave may already be overwritten. */
1453 		    if ((tp->tim_iocsave != NULL) &&
1454 			(tp->tim_saved_prim == -1)) {
1455 			    freemsg(mp);
1456 			    mp = tp->tim_iocsave;
1457 			    tp->tim_iocsave = NULL;
1458 			    tp->tim_flags |= NAMEPROC;
1459 			    if (ti_doname(WR(q), mp) != DONAME_CONT) {
1460 				    tp->tim_flags &= ~NAMEPROC;
1461 			    }
1462 			    break;
1463 		    }
1464 	    }
1465 	    putnext(q, mp);
1466 	    break;
1467 /* ONC_PLUS EXTRACT END */
1468 	}
1469 
1470 	return (0);
1471 }
1472 
1473 /* ONC_PLUS EXTRACT START */
1474 /*
1475  * timodwput -	Module write put procedure.  This is called from
1476  *		the module, driver, or stream head upstream/downstream.
1477  *		Handles M_FLUSH, M_DATA and some M_PROTO (T_DATA_REQ,
1478  *		and T_UNITDATA_REQ) messages. All others are queued to
1479  *		be handled by the service procedures.
1480  */
1481 
1482 static void
1483 timodwput(queue_t *q, mblk_t *mp)
1484 {
1485 	union T_primitives *pptr;
1486 	struct tim_tim *tp;
1487 	struct iocblk *iocbp;
1488 
1489 	/*
1490 	 * Enqueue normal-priority messages if our queue already
1491 	 * holds some messages for deferred processing but don't
1492 	 * enqueue those M_IOCTLs which will result in an
1493 	 * M_PCPROTO (ie, high priority) message being created.
1494 	 */
1495 /* ONC_PLUS EXTRACT END */
1496 	if (q->q_first != 0 && mp->b_datap->db_type < QPCTL) {
1497 		if (mp->b_datap->db_type == M_IOCTL) {
1498 			iocbp = (struct iocblk *)mp->b_rptr;
1499 			switch (iocbp->ioc_cmd) {
1500 			default:
1501 				(void) putq(q, mp);
1502 				return;
1503 
1504 			case TI_GETINFO:
1505 			case TI_SYNC:
1506 			case TI_CAPABILITY:
1507 				break;
1508 			}
1509 		} else {
1510 			(void) putq(q, mp);
1511 			return;
1512 		}
1513 	}
1514 /* ONC_PLUS EXTRACT START */
1515 	/*
1516 	 * Inline processing of data (to avoid additional procedure call).
1517 	 * Rest is handled in timodwproc.
1518 	 */
1519 
1520 	switch (mp->b_datap->db_type) {
1521 	case M_DATA:
1522 		tp = (struct tim_tim *)q->q_ptr;
1523 		ASSERT(tp);
1524 		if (tp->tim_flags & CLTS) {
1525 			mblk_t	*tmp;
1526 
1527 			if ((tmp = tim_filladdr(q, mp, B_FALSE)) == NULL) {
1528 				(void) putq(q, mp);
1529 				break;
1530 			} else {
1531 				mp = tmp;
1532 			}
1533 		}
1534 		if (bcanputnext(q, mp->b_band))
1535 			putnext(q, mp);
1536 		else
1537 			(void) putq(q, mp);
1538 		break;
1539 	case M_PROTO:
1540 	case M_PCPROTO:
1541 		pptr = (union T_primitives *)mp->b_rptr;
1542 		switch (pptr->type) {
1543 /* ONC_PLUS EXTRACT END */
1544 		case T_UNITDATA_REQ:
1545 			tp = (struct tim_tim *)q->q_ptr;
1546 			ASSERT(tp);
1547 			if (tp->tim_flags & CLTS) {
1548 				mblk_t	*tmp;
1549 
1550 				tmp = tim_filladdr(q, mp, B_FALSE);
1551 				if (tmp == NULL) {
1552 					(void) putq(q, mp);
1553 					break;
1554 				} else {
1555 					mp = tmp;
1556 				}
1557 			}
1558 			if (bcanputnext(q, mp->b_band))
1559 				putnext(q, mp);
1560 			else
1561 				(void) putq(q, mp);
1562 			break;
1563 
1564 		case T_DATA_REQ:
1565 		case T_EXDATA_REQ:
1566 			if (bcanputnext(q, mp->b_band))
1567 				putnext(q, mp);
1568 			else
1569 				(void) putq(q, mp);
1570 			break;
1571 		default:
1572 			(void) timodwproc(q, mp);
1573 			break;
1574 		}
1575 		break;
1576 /* ONC_PLUS EXTRACT START */
1577 	default:
1578 		(void) timodwproc(q, mp);
1579 		break;
1580 	}
1581 }
1582 /*
1583  * timodwsrv -	Module write queue service procedure.
1584  *		This is called when messages are placed on an empty queue,
1585  *		when high priority messages are placed on the queue, and
1586  *		when flow control restrictions subside.  This code used to
1587  *		be included in a put procedure, but it was moved to a
1588  *		service procedure because several points were added where
1589  *		memory allocation could fail, and there is no reasonable
1590  *		recovery mechanism from the put procedure.
1591  */
1592 static void
1593 timodwsrv(queue_t *q)
1594 {
1595 	mblk_t *mp;
1596 
1597 	ASSERT(q != NULL);
1598 	if (q->q_ptr == NULL)
1599 	    return;
1600 
1601 	while ((mp = getq(q)) != NULL) {
1602 		if (timodwproc(q, mp)) {
1603 			/*
1604 			 * timodwproc did a putbq - stop processing
1605 			 * messages.
1606 			 */
1607 			return;
1608 		}
1609 	}
1610 }
1611 
1612 /*
1613  * Common routine to process write side messages
1614  */
1615 
1616 static int
1617 timodwproc(queue_t *q, mblk_t *mp)
1618 {
1619 	union T_primitives *pptr;
1620 	struct tim_tim *tp;
1621 	mblk_t *tmp;
1622 	struct iocblk *iocbp;
1623 	int error;
1624 
1625 	tp = (struct tim_tim *)q->q_ptr;
1626 
1627 	switch (mp->b_datap->db_type) {
1628 	default:
1629 		putnext(q, mp);
1630 		break;
1631 /* ONC_PLUS EXTRACT END */
1632 
1633 	case M_DATA:
1634 		if (tp->tim_flags & CLTS) {
1635 			if ((tmp = tim_filladdr(q, mp, B_TRUE)) == NULL) {
1636 				return (1);
1637 			} else {
1638 				mp = tmp;
1639 			}
1640 		}
1641 		if (!bcanputnext(q, mp->b_band)) {
1642 			(void) putbq(q, mp);
1643 			return (1);
1644 		}
1645 		putnext(q, mp);
1646 		break;
1647 
1648 /* ONC_PLUS EXTRACT START */
1649 	case M_IOCTL:
1650 
1651 		iocbp = (struct iocblk *)mp->b_rptr;
1652 		TILOG("timodwproc: Got M_IOCTL(%d)\n", iocbp->ioc_cmd);
1653 
1654 		ASSERT(MBLKL(mp) == sizeof (struct iocblk));
1655 
1656 		/*
1657 		 * TPI requires we await response to a previously sent message
1658 		 * before handling another, put it back on the head of queue.
1659 		 * Since putbq() may see QWANTR unset when called from the
1660 		 * service procedure, the queue must be explicitly scheduled
1661 		 * for service, as no backenable will occur for this case.
1662 		 * tim_ioctl_retry() sets a timer to handle the qenable.
1663 		 */
1664 		if (tp->tim_flags & WAITIOCACK) {
1665 			TILOG("timodwproc: putbq M_IOCTL(%d)\n",
1666 			    iocbp->ioc_cmd);
1667 			(void) putbq(q, mp);
1668 			/* Called from timodwsrv() and messages on queue */
1669 			if (!(q->q_flag & QWANTR))
1670 				tim_ioctl_retry(q);
1671 			return (1);
1672 		}
1673 /* ONC_PLUS EXTRACT END */
1674 
1675 		switch (iocbp->ioc_cmd) {
1676 		default:
1677 			putnext(q, mp);
1678 			break;
1679 
1680 		case _I_GETPEERCRED:
1681 			if ((tp->tim_flags & COTS) == 0) {
1682 				miocnak(q, mp, 0, ENOTSUP);
1683 			} else {
1684 				mblk_t *cmp = mp->b_cont;
1685 				k_peercred_t *kp = NULL;
1686 
1687 				mutex_enter(&tp->tim_mutex);
1688 				if (cmp != NULL &&
1689 				    iocbp->ioc_flag == IOC_NATIVE &&
1690 				    (tp->tim_flags &
1691 					(CONNWAIT|LOCORDREL|REMORDREL)) == 0 &&
1692 				    tp->tim_peercred != NULL &&
1693 				    DB_TYPE(cmp) == M_DATA &&
1694 				    MBLKL(cmp) == sizeof (k_peercred_t)) {
1695 					kp = (k_peercred_t *)cmp->b_rptr;
1696 					crhold(kp->pc_cr = tp->tim_peercred);
1697 					kp->pc_cpid = tp->tim_cpid;
1698 				}
1699 				mutex_exit(&tp->tim_mutex);
1700 				if (kp != NULL)
1701 					miocack(q, mp, sizeof (*kp), 0);
1702 				else
1703 					miocnak(q, mp, 0, ENOTCONN);
1704 			}
1705 			break;
1706 		case TI_BIND:
1707 		case TI_UNBIND:
1708 		case TI_OPTMGMT:
1709 		case TI_GETADDRS:
1710 			TILOG("timodwproc: TI_{BIND|UNBIND|OPTMGMT|GETADDRS}"
1711 			    "\n", 0);
1712 
1713 			/*
1714 			 * We know that tim_send_ioctl_tpi_msg() is only
1715 			 * going to examine the `type' field, so we only
1716 			 * check that we can access that much data.
1717 			 */
1718 			error = miocpullup(mp, sizeof (t_scalar_t));
1719 			if (error != 0) {
1720 				miocnak(q, mp, 0, error);
1721 				break;
1722 			}
1723 			tim_send_ioctl_tpi_msg(q, mp, tp, iocbp);
1724 			break;
1725 
1726 		case TI_GETINFO:
1727 			TILOG("timodwproc: TI_GETINFO\n", 0);
1728 			error = miocpullup(mp, sizeof (struct T_info_req));
1729 			if (error != 0) {
1730 				miocnak(q, mp, 0, error);
1731 				break;
1732 			}
1733 			tp->tim_flags |= WAIT_IOCINFOACK;
1734 			tim_send_ioctl_tpi_msg(q, mp, tp, iocbp);
1735 			break;
1736 
1737 		case TI_SYNC: {
1738 			mblk_t *tsr_mp;
1739 			struct ti_sync_req *tsr;
1740 			uint32_t tsr_flags;
1741 
1742 			error = miocpullup(mp, sizeof (struct ti_sync_req));
1743 			if (error != 0) {
1744 				miocnak(q, mp, 0, error);
1745 				break;
1746 			}
1747 
1748 			tsr_mp = mp->b_cont;
1749 			tsr = (struct ti_sync_req *)tsr_mp->b_rptr;
1750 			TILOG("timodwproc: TI_SYNC(%x)\n", tsr->tsr_flags);
1751 
1752 			/*
1753 			 * Save out the value of tsr_flags, in case we
1754 			 * reallocb() tsr_mp (below).
1755 			 */
1756 			tsr_flags = tsr->tsr_flags;
1757 			if ((tsr_flags & TSRF_INFO_REQ) == 0) {
1758 				mblk_t *ack_mp = reallocb(tsr_mp,
1759 				    sizeof (struct ti_sync_ack), 0);
1760 
1761 				/* Can reply immediately. */
1762 				mp->b_cont = NULL;
1763 				if (ack_mp == NULL) {
1764 					tilog("timodwproc: allocb failed no "
1765 					    "recovery attempt\n", 0);
1766 					freemsg(tsr_mp);
1767 					miocnak(q, mp, 0, ENOMEM);
1768 				} else {
1769 					tim_answer_ti_sync(q, mp, tp,
1770 					    ack_mp, tsr_flags);
1771 				}
1772 				break;
1773 			}
1774 
1775 			/*
1776 			 * This code is retained for compatibility with
1777 			 * old statically linked applications. New code
1778 			 * should use TI_CAPABILITY for all TPI
1779 			 * information and should not use TSRF_INFO_REQ
1780 			 * flag.
1781 			 *
1782 			 * defer processsing necessary to rput procedure
1783 			 * as we need to get information from transport
1784 			 * driver. Set flags that will tell the read
1785 			 * side the work needed on this request.
1786 			 */
1787 
1788 			if (tsr_flags & TSRF_IS_EXP_IN_RCVBUF)
1789 				tp->tim_flags |= PEEK_RDQ_EXPIND;
1790 
1791 			/*
1792 			 * Convert message to a T_INFO_REQ message; relies
1793 			 * on sizeof (struct ti_sync_req) >= sizeof (struct
1794 			 * T_info_req)).
1795 			 */
1796 			ASSERT(MBLKL(tsr_mp) >= sizeof (struct T_info_req));
1797 
1798 			((struct T_info_req *)tsr_mp->b_rptr)->PRIM_type =
1799 			    T_INFO_REQ;
1800 			tsr_mp->b_wptr = tsr_mp->b_rptr +
1801 			    sizeof (struct T_info_req);
1802 			tp->tim_flags |= WAIT_IOCINFOACK;
1803 			tim_send_ioctl_tpi_msg(q, mp, tp, iocbp);
1804 		}
1805 		break;
1806 
1807 		case TI_CAPABILITY: {
1808 			mblk_t *tcsr_mp;
1809 			struct T_capability_req *tcr;
1810 
1811 			error = miocpullup(mp, sizeof (*tcr));
1812 			if (error != 0) {
1813 				miocnak(q, mp, 0, error);
1814 				break;
1815 			}
1816 
1817 			tcsr_mp = mp->b_cont;
1818 			tcr = (struct T_capability_req *)tcsr_mp->b_rptr;
1819 			TILOG("timodwproc: TI_CAPABILITY(CAP_bits1 = %x)\n",
1820 			    tcr->CAP_bits1);
1821 
1822 			if (tcr->PRIM_type != T_CAPABILITY_REQ) {
1823 				TILOG("timodwproc: invalid msg type %d\n",
1824 				    tcr->PRIM_type);
1825 				miocnak(q, mp, 0, EPROTO);
1826 				break;
1827 			}
1828 
1829 			switch (tp->tim_provinfo->tpi_capability) {
1830 			case PI_YES:
1831 				/* Just send T_CAPABILITY_REQ down */
1832 				tim_send_ioctl_tpi_msg(q, mp, tp, iocbp);
1833 				break;
1834 
1835 			case PI_DONTKNOW:
1836 				/*
1837 				 * It is unknown yet whether transport provides
1838 				 * T_CAPABILITY_REQ or not. Send message down
1839 				 * and wait for reply.
1840 				 */
1841 
1842 				ASSERT(tp->tim_tcap_timoutid == 0);
1843 				if ((tcr->CAP_bits1 & TC1_INFO) == 0) {
1844 					tp->tim_flags |= TI_CAP_RECVD;
1845 				} else {
1846 					tp->tim_flags |= (TI_CAP_RECVD |
1847 					    CAP_WANTS_INFO);
1848 				}
1849 
1850 				tp->tim_tcap_timoutid = qtimeout(q,
1851 				    tim_tcap_timer, q, tim_tcap_wait * hz);
1852 				tim_send_ioctl_tpi_msg(q, mp, tp, iocbp);
1853 				break;
1854 
1855 			case PI_NO:
1856 				/*
1857 				 * Transport doesn't support T_CAPABILITY_REQ.
1858 				 * Either reply immediately or send T_INFO_REQ
1859 				 * if needed.
1860 				 */
1861 				if ((tcr->CAP_bits1 & TC1_INFO) != 0) {
1862 					tp->tim_flags |= (TI_CAP_RECVD |
1863 					    CAP_WANTS_INFO | WAIT_IOCINFOACK);
1864 					TILOG("timodwproc: sending down "
1865 					    "T_INFO_REQ, flags = %x\n",
1866 					    tp->tim_flags);
1867 
1868 				/*
1869 				 * Generate T_INFO_REQ message and send
1870 				 * it down
1871 				 */
1872 					((struct T_info_req *)tcsr_mp->b_rptr)->
1873 					    PRIM_type = T_INFO_REQ;
1874 					tcsr_mp->b_wptr = tcsr_mp->b_rptr +
1875 					    sizeof (struct T_info_req);
1876 					tim_send_ioctl_tpi_msg(q, mp, tp,
1877 					    iocbp);
1878 					break;
1879 				}
1880 
1881 
1882 				/*
1883 				 * Can reply immediately. Just send back
1884 				 * T_CAPABILITY_ACK with CAP_bits1 set to 0.
1885 				 */
1886 				mp->b_cont = tcsr_mp = tpi_ack_alloc(mp->b_cont,
1887 				    sizeof (struct T_capability_ack), M_PCPROTO,
1888 				    T_CAPABILITY_ACK);
1889 
1890 				if (tcsr_mp == NULL) {
1891 					tilog("timodwproc: allocb failed no "
1892 					    "recovery attempt\n", 0);
1893 					miocnak(q, mp, 0, ENOMEM);
1894 					break;
1895 				}
1896 
1897 				tp->tim_flags &= ~(WAITIOCACK | TI_CAP_RECVD |
1898 				    WAIT_IOCINFOACK | CAP_WANTS_INFO);
1899 				((struct T_capability_ack *)
1900 				    tcsr_mp->b_rptr)->CAP_bits1 = 0;
1901 				tim_ioctl_send_reply(q, mp, tcsr_mp);
1902 
1903 				/*
1904 				 * It could happen when timod is awaiting ack
1905 				 * for TI_GETPEERNAME/TI_GETMYNAME.
1906 				 */
1907 				if (tp->tim_iocsave != NULL) {
1908 					freemsg(tp->tim_iocsave);
1909 					tp->tim_iocsave = NULL;
1910 					tp->tim_saved_prim = -1;
1911 				}
1912 				break;
1913 
1914 			default:
1915 				cmn_err(CE_PANIC,
1916 				    "timodwproc: unknown tpi_capability value "
1917 				    "%d\n", tp->tim_provinfo->tpi_capability);
1918 				break;
1919 			}
1920 		}
1921 		break;
1922 
1923 /* ONC_PLUS EXTRACT START */
1924 		case TI_GETMYNAME:
1925 
1926 			tilog("timodwproc: Got TI_GETMYNAME\n", 0);
1927 
1928 			if (tp->tim_provinfo->tpi_myname == PI_YES) {
1929 				putnext(q, mp);
1930 				break;
1931 			}
1932 			goto getname;
1933 
1934 		case TI_GETPEERNAME:
1935 
1936 			tilog("timodwproc: Got TI_GETPEERNAME\n", 0);
1937 
1938 			if (tp->tim_provinfo->tpi_peername == PI_YES) {
1939 				putnext(q, mp);
1940 				break;
1941 			}
1942 getname:
1943 			if ((tmp = copymsg(mp)) == NULL) {
1944 				tim_recover(q, mp, msgsize(mp));
1945 				return (1);
1946 			}
1947 			/*
1948 			 * tim_iocsave may be non-NULL when timod is awaiting
1949 			 * ack for another TI_GETPEERNAME/TI_GETMYNAME.
1950 			 */
1951 			freemsg(tp->tim_iocsave);
1952 			tp->tim_iocsave = mp;
1953 			tp->tim_saved_prim = -1;
1954 			putnext(q, tmp);
1955 			break;
1956 			}
1957 		break;
1958 
1959 	case M_IOCDATA:
1960 
1961 		if (tp->tim_flags & NAMEPROC) {
1962 			if (ti_doname(q, mp) != DONAME_CONT) {
1963 				tp->tim_flags &= ~NAMEPROC;
1964 			}
1965 		} else
1966 			putnext(q, mp);
1967 		break;
1968 
1969 	case M_PROTO:
1970 	case M_PCPROTO:
1971 		if (MBLKL(mp) < sizeof (t_scalar_t)) {
1972 			merror(q, mp, EPROTO);
1973 			return (1);
1974 		}
1975 
1976 		pptr = (union T_primitives *)mp->b_rptr;
1977 		switch (pptr->type) {
1978 		default:
1979 			putnext(q, mp);
1980 			break;
1981 
1982 		case T_EXDATA_REQ:
1983 		case T_DATA_REQ:
1984 			if (pptr->type == T_EXDATA_REQ)
1985 				tilog("timodwproc: Got T_EXDATA_REQ\n", 0);
1986 
1987 		if (!bcanputnext(q, mp->b_band)) {
1988 			(void) putbq(q, mp);
1989 			return (1);
1990 		}
1991 		putnext(q, mp);
1992 		break;
1993 /* ONC_PLUS EXTRACT END */
1994 
1995 		case T_UNITDATA_REQ:
1996 			if (tp->tim_flags & CLTS) {
1997 				tmp = tim_filladdr(q, mp, B_TRUE);
1998 				if (tmp == NULL) {
1999 					return (1);
2000 				} else {
2001 					mp = tmp;
2002 				}
2003 			}
2004 			if (audit_active)
2005 				audit_sock(T_UNITDATA_REQ, q, mp, TIMOD_ID);
2006 		if (!bcanputnext(q, mp->b_band)) {
2007 				(void) putbq(q, mp);
2008 				return (1);
2009 			}
2010 			putnext(q, mp);
2011 			break;
2012 
2013 /* ONC_PLUS EXTRACT START */
2014 		case T_CONN_REQ: {
2015 			struct T_conn_req *reqp = (struct T_conn_req *)
2016 			    mp->b_rptr;
2017 			void *p;
2018 
2019 			tilog("timodwproc: Got T_CONN_REQ\n", 0);
2020 
2021 			if (MBLKL(mp) < sizeof (struct T_conn_req)) {
2022 				merror(q, mp, EPROTO);
2023 				return (1);
2024 			}
2025 
2026 			if (tp->tim_flags & DO_PEERNAME) {
2027 				if (!MBLKIN(mp, reqp->DEST_offset,
2028 				    reqp->DEST_length)) {
2029 					merror(q, mp, EPROTO);
2030 					return (1);
2031 				}
2032 				ASSERT(reqp->DEST_length >= 0);
2033 				mutex_enter(&tp->tim_mutex);
2034 				if (reqp->DEST_length > tp->tim_peermaxlen) {
2035 					p = kmem_alloc(reqp->DEST_length,
2036 					    KM_NOSLEEP);
2037 					if (p == NULL) {
2038 						mutex_exit(&tp->tim_mutex);
2039 						tilog("timodwproc: kmem_alloc "
2040 						    "failed, attempting "
2041 						    "recovery\n", 0);
2042 						tim_recover(q, mp,
2043 						    reqp->DEST_length);
2044 						return (1);
2045 					}
2046 					if (tp->tim_peermaxlen)
2047 						kmem_free(tp->tim_peername,
2048 						    tp->tim_peermaxlen);
2049 					tp->tim_peername = p;
2050 					tp->tim_peermaxlen = reqp->DEST_length;
2051 				}
2052 				tp->tim_peerlen = reqp->DEST_length;
2053 				p = mp->b_rptr + reqp->DEST_offset;
2054 				bcopy(p, tp->tim_peername, tp->tim_peerlen);
2055 				mutex_exit(&tp->tim_mutex);
2056 			}
2057 			if (tp->tim_flags & COTS)
2058 				tp->tim_flags |= CONNWAIT;
2059 /* ONC_PLUS EXTRACT END */
2060 			if (audit_active)
2061 				audit_sock(T_CONN_REQ, q, mp, TIMOD_ID);
2062 /* ONC_PLUS EXTRACT START */
2063 		putnext(q, mp);
2064 		break;
2065 	    }
2066 
2067 		case O_T_CONN_RES:
2068 		case T_CONN_RES: {
2069 			struct T_conn_res *resp;
2070 			struct T_conn_ind *indp;
2071 			mblk_t *pmp = NULL;
2072 			mblk_t *nbp;
2073 
2074 			if (MBLKL(mp) < sizeof (struct T_conn_res) ||
2075 			    (tp->tim_flags & WAITIOCACK)) {
2076 				merror(q, mp, EPROTO);
2077 				return (1);
2078 			}
2079 
2080 			resp = (struct T_conn_res *)mp->b_rptr;
2081 			for (tmp = tp->tim_consave; tmp != NULL;
2082 			    tmp = tmp->b_next) {
2083 				indp = (struct T_conn_ind *)tmp->b_rptr;
2084 				if (indp->SEQ_number == resp->SEQ_number)
2085 					break;
2086 				pmp = tmp;
2087 			}
2088 			if (tmp == NULL)
2089 				goto cresout;
2090 
2091 			if ((nbp = dupb(mp)) == NULL &&
2092 			    (nbp = copyb(mp)) == NULL) {
2093 				tim_recover(q, mp, msgsize(mp));
2094 				return (1);
2095 			}
2096 
2097 			if (pmp != NULL)
2098 				pmp->b_next = tmp->b_next;
2099 			else
2100 				tp->tim_consave = tmp->b_next;
2101 			tmp->b_next = NULL;
2102 
2103 			/*
2104 			 * Construct a list with:
2105 			 *	nbp - copy of user's original request
2106 			 *	tmp - the extracted T_conn_ind
2107 			 */
2108 			nbp->b_cont = tmp;
2109 			/*
2110 			 * tim_iocsave may be non-NULL when timod is awaiting
2111 			 * ack for TI_GETPEERNAME/TI_GETMYNAME.
2112 			 */
2113 			freemsg(tp->tim_iocsave);
2114 			tp->tim_iocsave = nbp;
2115 			tp->tim_saved_prim = pptr->type;
2116 			tp->tim_flags |= WAIT_CONNRESACK | WAITIOCACK;
2117 
2118 		cresout:
2119 			putnext(q, mp);
2120 			break;
2121 		}
2122 
2123 /* ONC_PLUS EXTRACT END */
2124 		case T_DISCON_REQ: {
2125 			struct T_discon_req *disp;
2126 			struct T_conn_ind *conp;
2127 			mblk_t *pmp = NULL;
2128 
2129 			if (MBLKL(mp) < sizeof (struct T_discon_req)) {
2130 				merror(q, mp, EPROTO);
2131 				return (1);
2132 			}
2133 
2134 			disp = (struct T_discon_req *)mp->b_rptr;
2135 			tp->tim_flags &= ~(CONNWAIT|LOCORDREL|REMORDREL);
2136 			tim_clear_peer(tp);
2137 
2138 			/*
2139 			 * If we are already connected, there won't
2140 			 * be any messages on tim_consave.
2141 			 */
2142 			for (tmp = tp->tim_consave; tmp; tmp = tmp->b_next) {
2143 				conp = (struct T_conn_ind *)tmp->b_rptr;
2144 				if (conp->SEQ_number == disp->SEQ_number)
2145 					break;
2146 				pmp = tmp;
2147 			}
2148 			if (tmp) {
2149 				if (pmp)
2150 					pmp->b_next = tmp->b_next;
2151 				else
2152 					tp->tim_consave = tmp->b_next;
2153 				tmp->b_next = NULL;
2154 				freemsg(tmp);
2155 			}
2156 			putnext(q, mp);
2157 			break;
2158 		}
2159 
2160 		case T_ORDREL_REQ:
2161 			if (tp->tim_flags & REMORDREL) {
2162 				tp->tim_flags &= ~(LOCORDREL|REMORDREL);
2163 				tim_clear_peer(tp);
2164 			} else {
2165 				tp->tim_flags |= LOCORDREL;
2166 			}
2167 			putnext(q, mp);
2168 			break;
2169 
2170 		case T_CAPABILITY_REQ:
2171 			tilog("timodwproc: Got T_CAPABILITY_REQ\n", 0);
2172 			/*
2173 			 * XXX: We may know at this point whether transport
2174 			 * provides T_CAPABILITY_REQ or not and we may utilise
2175 			 * this knowledge here.
2176 			 */
2177 			putnext(q, mp);
2178 			break;
2179 /* ONC_PLUS EXTRACT START */
2180 		}
2181 		break;
2182 	case M_FLUSH:
2183 
2184 		tilog("timodwproc: Got M_FLUSH\n", 0);
2185 
2186 		if (*mp->b_rptr & FLUSHW) {
2187 			if (*mp->b_rptr & FLUSHBAND)
2188 				flushband(q, *(mp->b_rptr + 1), FLUSHDATA);
2189 			else
2190 				flushq(q, FLUSHDATA);
2191 		}
2192 		putnext(q, mp);
2193 		break;
2194 	}
2195 
2196 	return (0);
2197 }
2198 
2199 static void
2200 tilog(char *str, t_scalar_t arg)
2201 {
2202 	if (dotilog) {
2203 		if (dotilog & 2)
2204 			cmn_err(CE_CONT, str, arg);
2205 		if (dotilog & 4)
2206 			(void) strlog(TIMOD_ID, -1, 0, SL_TRACE | SL_ERROR,
2207 			    str, arg);
2208 		else
2209 			(void) strlog(TIMOD_ID, -1, 0, SL_TRACE, str, arg);
2210 	}
2211 }
2212 
2213 static void
2214 tilogp(char *str, uintptr_t arg)
2215 {
2216 	if (dotilog) {
2217 		if (dotilog & 2)
2218 			cmn_err(CE_CONT, str, arg);
2219 		if (dotilog & 4)
2220 			(void) strlog(TIMOD_ID, -1, 0, SL_TRACE | SL_ERROR,
2221 			    str, arg);
2222 		else
2223 			(void) strlog(TIMOD_ID, -1, 0, SL_TRACE, str, arg);
2224 	}
2225 }
2226 
2227 
2228 /*
2229  * Process the TI_GETNAME ioctl.  If no name exists, return len = 0
2230  * in strbuf structures.  The state transitions are determined by what
2231  * is hung of cq_private (cp_private) in the copyresp (copyreq) structure.
2232  * The high-level steps in the ioctl processing are as follows:
2233  *
2234  * 1) we recieve an transparent M_IOCTL with the arg in the second message
2235  *	block of the message.
2236  * 2) we send up an M_COPYIN request for the strbuf structure pointed to
2237  *	by arg.  The block containing arg is hung off cq_private.
2238  * 3) we receive an M_IOCDATA response with cp->cp_private->b_cont == NULL.
2239  *	This means that the strbuf structure is found in the message block
2240  *	mp->b_cont.
2241  * 4) we send up an M_COPYOUT request with the strbuf message hung off
2242  *	cq_private->b_cont.  The address we are copying to is strbuf.buf.
2243  *	we set strbuf.len to 0 to indicate that we should copy the strbuf
2244  *	structure the next time.  The message mp->b_cont contains the
2245  *	address info.
2246  * 5) we receive an M_IOCDATA with cp_private->b_cont != NULL and
2247  *	strbuf.len == 0.  Restore strbuf.len to either tp->tim_mylen or
2248  *	tp->tim_peerlen.
2249  * 6) we send up an M_COPYOUT request with a copy of the strbuf message
2250  *	hung off mp->b_cont.  In the strbuf structure in the message hung
2251  *	off cq_private->b_cont, we set strbuf.len to 0 and strbuf.maxlen
2252  *	to 0.  This means that the next step is to ACK the ioctl.
2253  * 7) we receive an M_IOCDATA message with cp_private->b_cont != NULL and
2254  *	strbuf.len == 0 and strbuf.maxlen == 0.  Free up cp->private and
2255  *	send an M_IOCACK upstream, and we are done.
2256  *
2257  */
2258 static int
2259 ti_doname(
2260 	queue_t *q,		/* queue message arrived at */
2261 	mblk_t *mp)		/* M_IOCTL or M_IOCDATA message only */
2262 {
2263 	struct iocblk *iocp;
2264 	struct copyreq *cqp;
2265 	STRUCT_HANDLE(strbuf, sb);
2266 	struct copyresp *csp;
2267 	int ret;
2268 	mblk_t *bp;
2269 	struct tim_tim *tp = q->q_ptr;
2270 	boolean_t getpeer;
2271 
2272 	switch (mp->b_datap->db_type) {
2273 	case M_IOCTL:
2274 		iocp = (struct iocblk *)mp->b_rptr;
2275 		if ((iocp->ioc_cmd != TI_GETMYNAME) &&
2276 		    (iocp->ioc_cmd != TI_GETPEERNAME)) {
2277 			tilog("ti_doname: bad M_IOCTL command\n", 0);
2278 			miocnak(q, mp, 0, EINVAL);
2279 			ret = DONAME_FAIL;
2280 			break;
2281 		}
2282 		if ((iocp->ioc_count != TRANSPARENT)) {
2283 			miocnak(q, mp, 0, EINVAL);
2284 			ret = DONAME_FAIL;
2285 			break;
2286 		}
2287 
2288 		cqp = (struct copyreq *)mp->b_rptr;
2289 		cqp->cq_private = mp->b_cont;
2290 		cqp->cq_addr = (caddr_t)*(intptr_t *)mp->b_cont->b_rptr;
2291 		mp->b_cont = NULL;
2292 		cqp->cq_size = SIZEOF_STRUCT(strbuf, iocp->ioc_flag);
2293 		cqp->cq_flag = 0;
2294 		mp->b_datap->db_type = M_COPYIN;
2295 		mp->b_wptr = mp->b_rptr + sizeof (struct copyreq);
2296 		qreply(q, mp);
2297 		ret = DONAME_CONT;
2298 		break;
2299 
2300 	case M_IOCDATA:
2301 		csp = (struct copyresp *)mp->b_rptr;
2302 		iocp = (struct iocblk *)mp->b_rptr;
2303 		cqp = (struct copyreq *)mp->b_rptr;
2304 		if ((csp->cp_cmd != TI_GETMYNAME) &&
2305 		    (csp->cp_cmd != TI_GETPEERNAME)) {
2306 			cmn_err(CE_WARN, "ti_doname: bad M_IOCDATA command\n");
2307 			miocnak(q, mp, 0, EINVAL);
2308 			ret = DONAME_FAIL;
2309 			break;
2310 		}
2311 		if (csp->cp_rval) {	/* error */
2312 			freemsg(csp->cp_private);
2313 			freemsg(mp);
2314 			ret = DONAME_FAIL;
2315 			break;
2316 		}
2317 		ASSERT(csp->cp_private != NULL);
2318 		getpeer = csp->cp_cmd == TI_GETPEERNAME;
2319 		if (getpeer)
2320 			mutex_enter(&tp->tim_mutex);
2321 		if (csp->cp_private->b_cont == NULL) {	/* got strbuf */
2322 			ASSERT(mp->b_cont);
2323 			STRUCT_SET_HANDLE(sb, iocp->ioc_flag,
2324 			    (void *)mp->b_cont->b_rptr);
2325 			if (getpeer) {
2326 				if (tp->tim_peerlen == 0) {
2327 					/* copy just strbuf */
2328 					STRUCT_FSET(sb, len, 0);
2329 				} else if (tp->tim_peerlen >
2330 				    STRUCT_FGET(sb, maxlen)) {
2331 					mutex_exit(&tp->tim_mutex);
2332 					miocnak(q, mp, 0, ENAMETOOLONG);
2333 					ret = DONAME_FAIL;
2334 					break;
2335 				} else {
2336 					/* copy buffer */
2337 					STRUCT_FSET(sb, len, tp->tim_peerlen);
2338 				}
2339 			} else {
2340 				if (tp->tim_mylen == 0) {
2341 					/* copy just strbuf */
2342 					STRUCT_FSET(sb, len, 0);
2343 				} else if (tp->tim_mylen >
2344 				    STRUCT_FGET(sb, maxlen)) {
2345 					freemsg(csp->cp_private);
2346 					miocnak(q, mp, 0, ENAMETOOLONG);
2347 					ret = DONAME_FAIL;
2348 					break;
2349 				} else {
2350 					/* copy buffer */
2351 					STRUCT_FSET(sb, len, tp->tim_mylen);
2352 				}
2353 			}
2354 			csp->cp_private->b_cont = mp->b_cont;
2355 			mp->b_cont = NULL;
2356 		}
2357 		STRUCT_SET_HANDLE(sb, iocp->ioc_flag,
2358 		    (void *)csp->cp_private->b_cont->b_rptr);
2359 		if (STRUCT_FGET(sb, len) == 0) {
2360 			/*
2361 			 * restore strbuf.len
2362 			 */
2363 			if (getpeer)
2364 				STRUCT_FSET(sb, len, tp->tim_peerlen);
2365 			else
2366 				STRUCT_FSET(sb, len, tp->tim_mylen);
2367 
2368 			if (getpeer)
2369 				mutex_exit(&tp->tim_mutex);
2370 			if (STRUCT_FGET(sb, maxlen) == 0) {
2371 
2372 				/*
2373 				 * ack the ioctl
2374 				 */
2375 				freemsg(csp->cp_private);
2376 				tim_ioctl_send_reply(q, mp, NULL);
2377 				ret = DONAME_DONE;
2378 				break;
2379 			}
2380 
2381 			if ((bp = allocb(STRUCT_SIZE(sb), BPRI_MED)) == NULL) {
2382 
2383 				tilog(
2384 			"ti_doname: allocb failed no recovery attempt\n", 0);
2385 
2386 				freemsg(csp->cp_private);
2387 				miocnak(q, mp, 0, EAGAIN);
2388 				ret = DONAME_FAIL;
2389 				break;
2390 			}
2391 			bp->b_wptr += STRUCT_SIZE(sb);
2392 			bcopy(STRUCT_BUF(sb), bp->b_rptr, STRUCT_SIZE(sb));
2393 			cqp->cq_addr =
2394 			    (caddr_t)*(intptr_t *)csp->cp_private->b_rptr;
2395 			cqp->cq_size = STRUCT_SIZE(sb);
2396 			cqp->cq_flag = 0;
2397 			mp->b_datap->db_type = M_COPYOUT;
2398 			mp->b_cont = bp;
2399 			STRUCT_FSET(sb, len, 0);
2400 			STRUCT_FSET(sb, maxlen, 0); /* ack next time around */
2401 			qreply(q, mp);
2402 			ret = DONAME_CONT;
2403 			break;
2404 		}
2405 
2406 		/*
2407 		 * copy the address to the user
2408 		 */
2409 		if ((bp = allocb((size_t)STRUCT_FGET(sb, len), BPRI_MED))
2410 		    == NULL) {
2411 			if (getpeer)
2412 				mutex_exit(&tp->tim_mutex);
2413 
2414 			tilog("ti_doname: allocb failed no recovery attempt\n",
2415 			    0);
2416 
2417 			freemsg(csp->cp_private);
2418 			miocnak(q, mp, 0, EAGAIN);
2419 			ret = DONAME_FAIL;
2420 			break;
2421 		}
2422 		bp->b_wptr += STRUCT_FGET(sb, len);
2423 		if (getpeer) {
2424 			bcopy(tp->tim_peername, bp->b_rptr,
2425 			    STRUCT_FGET(sb, len));
2426 			mutex_exit(&tp->tim_mutex);
2427 		} else {
2428 			bcopy(tp->tim_myname, bp->b_rptr, STRUCT_FGET(sb, len));
2429 		}
2430 		cqp->cq_addr = (caddr_t)STRUCT_FGETP(sb, buf);
2431 		cqp->cq_size = STRUCT_FGET(sb, len);
2432 		cqp->cq_flag = 0;
2433 		mp->b_datap->db_type = M_COPYOUT;
2434 		mp->b_cont = bp;
2435 		STRUCT_FSET(sb, len, 0); /* copy the strbuf next time around */
2436 		qreply(q, mp);
2437 		ret = DONAME_CONT;
2438 		break;
2439 
2440 	default:
2441 		tilog("ti_doname: freeing bad message type = %d\n",
2442 		    mp->b_datap->db_type);
2443 		freemsg(mp);
2444 		ret = DONAME_FAIL;
2445 		break;
2446 	}
2447 	return (ret);
2448 }
2449 
2450 /* ONC_PLUS EXTRACT END */
2451 
2452 /*
2453  * Fill in the address of a connectionless data packet if a connect
2454  * had been done on this endpoint.
2455  */
2456 static mblk_t *
2457 tim_filladdr(queue_t *q, mblk_t *mp, boolean_t dorecover)
2458 {
2459 	mblk_t *bp;
2460 	struct tim_tim *tp;
2461 	struct T_unitdata_req *up;
2462 	struct T_unitdata_req *nup;
2463 	size_t plen;
2464 
2465 	tp = (struct tim_tim *)q->q_ptr;
2466 	if (mp->b_datap->db_type == M_DATA) {
2467 		mutex_enter(&tp->tim_mutex);
2468 		bp = allocb(sizeof (struct T_unitdata_req) + tp->tim_peerlen,
2469 		    BPRI_MED);
2470 		if (bp != NULL) {
2471 			bp->b_datap->db_type = M_PROTO;
2472 			up = (struct T_unitdata_req *)bp->b_rptr;
2473 			up->PRIM_type = T_UNITDATA_REQ;
2474 			up->DEST_length = tp->tim_peerlen;
2475 			bp->b_wptr += sizeof (struct T_unitdata_req);
2476 			up->DEST_offset = sizeof (struct T_unitdata_req);
2477 			up->OPT_length = 0;
2478 			up->OPT_offset = 0;
2479 			if (tp->tim_peerlen > 0) {
2480 				bcopy(tp->tim_peername, bp->b_wptr,
2481 				    tp->tim_peerlen);
2482 				bp->b_wptr += tp->tim_peerlen;
2483 			}
2484 			bp->b_cont = mp;
2485 		}
2486 	} else {
2487 		ASSERT(mp->b_datap->db_type == M_PROTO);
2488 		up = (struct T_unitdata_req *)mp->b_rptr;
2489 		ASSERT(up->PRIM_type == T_UNITDATA_REQ);
2490 		if (up->DEST_length != 0)
2491 			return (mp);
2492 		mutex_enter(&tp->tim_mutex);
2493 		bp = allocb(sizeof (struct T_unitdata_req) + up->OPT_length +
2494 		    tp->tim_peerlen, BPRI_MED);
2495 		if (bp != NULL) {
2496 			bp->b_datap->db_type = M_PROTO;
2497 			nup = (struct T_unitdata_req *)bp->b_rptr;
2498 			nup->PRIM_type = T_UNITDATA_REQ;
2499 			nup->DEST_length = plen = tp->tim_peerlen;
2500 			bp->b_wptr += sizeof (struct T_unitdata_req);
2501 			nup->DEST_offset = sizeof (struct T_unitdata_req);
2502 			if (plen > 0) {
2503 				bcopy(tp->tim_peername, bp->b_wptr, plen);
2504 				bp->b_wptr += plen;
2505 			}
2506 			mutex_exit(&tp->tim_mutex);
2507 			if (up->OPT_length == 0) {
2508 				nup->OPT_length = 0;
2509 				nup->OPT_offset = 0;
2510 			} else {
2511 				nup->OPT_length = up->OPT_length;
2512 				nup->OPT_offset =
2513 				    sizeof (struct T_unitdata_req) + plen;
2514 				bcopy((mp->b_wptr + up->OPT_offset), bp->b_wptr,
2515 				    up->OPT_length);
2516 				bp->b_wptr += up->OPT_length;
2517 			}
2518 			bp->b_cont = mp->b_cont;
2519 			mp->b_cont = NULL;
2520 			freeb(mp);
2521 			return (bp);
2522 		}
2523 	}
2524 	ASSERT(MUTEX_HELD(&tp->tim_mutex));
2525 	if (bp == NULL && dorecover) {
2526 		tim_recover(q, mp,
2527 		    sizeof (struct T_unitdata_req) + tp->tim_peerlen);
2528 	}
2529 	mutex_exit(&tp->tim_mutex);
2530 	return (bp);
2531 }
2532 
2533 static void
2534 tim_addlink(struct tim_tim *tp)
2535 {
2536 	struct tim_tim **tpp;
2537 	struct tim_tim	*next;
2538 
2539 	tpp = &tim_hash[TIM_HASH(tp->tim_acceptor)];
2540 	rw_enter(&tim_list_rwlock, RW_WRITER);
2541 
2542 	if ((next = *tpp) != NULL)
2543 		next->tim_ptpn = &tp->tim_next;
2544 	tp->tim_next = next;
2545 	tp->tim_ptpn = tpp;
2546 	*tpp = tp;
2547 
2548 	tim_cnt++;
2549 
2550 	rw_exit(&tim_list_rwlock);
2551 }
2552 
2553 static void
2554 tim_dellink(struct tim_tim *tp)
2555 {
2556 	struct tim_tim	*next;
2557 
2558 	rw_enter(&tim_list_rwlock, RW_WRITER);
2559 
2560 	if ((next = tp->tim_next) != NULL)
2561 		next->tim_ptpn = tp->tim_ptpn;
2562 	*(tp->tim_ptpn) = next;
2563 
2564 	tim_cnt--;
2565 
2566 	rw_exit(&tim_list_rwlock);
2567 }
2568 
2569 static struct tim_tim *
2570 tim_findlink(t_uscalar_t id)
2571 {
2572 	struct tim_tim	*tp;
2573 
2574 	ASSERT(rw_lock_held(&tim_list_rwlock));
2575 
2576 	for (tp = tim_hash[TIM_HASH(id)]; tp != NULL; tp = tp->tim_next) {
2577 		if (tp->tim_acceptor == id) {
2578 			break;
2579 		}
2580 	}
2581 	return (tp);
2582 }
2583 
2584 /* ONC_PLUS EXTRACT START */
2585 static void
2586 tim_recover(queue_t *q, mblk_t *mp, t_scalar_t size)
2587 {
2588 	struct tim_tim	*tp;
2589 	bufcall_id_t	bid;
2590 	timeout_id_t	tid;
2591 
2592 	tp = (struct tim_tim *)q->q_ptr;
2593 
2594 	/*
2595 	 * Avoid re-enabling the queue.
2596 	 */
2597 	if (mp->b_datap->db_type == M_PCPROTO)
2598 		mp->b_datap->db_type = M_PROTO;
2599 	noenable(q);
2600 	(void) putbq(q, mp);
2601 
2602 	/*
2603 	 * Make sure there is at most one outstanding request per queue.
2604 	 */
2605 	if (q->q_flag & QREADR) {
2606 		if (tp->tim_rtimoutid || tp->tim_rbufcid)
2607 			return;
2608 	} else {
2609 		if (tp->tim_wtimoutid || tp->tim_wbufcid)
2610 			return;
2611 	}
2612 	if (!(bid = qbufcall(RD(q), (size_t)size, BPRI_MED, tim_buffer, q))) {
2613 		tid = qtimeout(RD(q), tim_timer, q, TIMWAIT);
2614 		if (q->q_flag & QREADR)
2615 			tp->tim_rtimoutid = tid;
2616 		else
2617 			tp->tim_wtimoutid = tid;
2618 	} else	{
2619 		if (q->q_flag & QREADR)
2620 			tp->tim_rbufcid = bid;
2621 		else
2622 			tp->tim_wbufcid = bid;
2623 	}
2624 }
2625 
2626 /*
2627  * Timod is waiting on a downstream ioctl reply, come back soon
2628  * to reschedule the write side service routine, which will check
2629  * if the ioctl is done and another can proceed.
2630  */
2631 static void
2632 tim_ioctl_retry(queue_t *q)
2633 {
2634 	struct tim_tim  *tp;
2635 
2636 	tp = (struct tim_tim *)q->q_ptr;
2637 
2638 	/*
2639 	 * Make sure there is at most one outstanding request per wqueue.
2640 	 */
2641 	if (tp->tim_wtimoutid || tp->tim_wbufcid)
2642 		return;
2643 
2644 	tp->tim_wtimoutid = qtimeout(RD(q), tim_timer, q, TIMIOCWAIT);
2645 }
2646 
2647 /*
2648  * Inspect the data on read queues starting from read queues passed as
2649  * paramter (timod read queue) and traverse until
2650  * q_next is NULL (stream head). Look for a TPI T_EXDATA_IND message
2651  * reutrn 1 if found, 0 if not found.
2652  */
2653 static int
2654 ti_expind_on_rdqueues(queue_t *rq)
2655 {
2656 	mblk_t *bp;
2657 	queue_t *q;
2658 
2659 	q = rq;
2660 	/*
2661 	 * We are going to walk q_next, so protect stream from plumbing
2662 	 * changes.
2663 	 */
2664 	claimstr(q);
2665 	do {
2666 		/*
2667 		 * Hold QLOCK while referencing data on queues
2668 		 */
2669 		mutex_enter(QLOCK(rq));
2670 		bp = rq->q_first;
2671 		while (bp != NULL) {
2672 			/*
2673 			 * Walk the messages on the queue looking
2674 			 * for a possible T_EXDATA_IND
2675 			 */
2676 			if ((bp->b_datap->db_type == M_PROTO) &&
2677 			    ((bp->b_wptr - bp->b_rptr) >=
2678 				sizeof (struct T_exdata_ind)) &&
2679 			    (((struct T_exdata_ind *)bp->b_rptr)->PRIM_type
2680 				== T_EXDATA_IND)) {
2681 				/* bp is T_EXDATA_IND */
2682 				mutex_exit(QLOCK(rq));
2683 				releasestr(q); /* decrement sd_refcnt  */
2684 				return (1); /* expdata is on a read queue */
2685 			}
2686 			bp = bp->b_next; /* next message */
2687 		}
2688 		mutex_exit(QLOCK(rq));
2689 		rq = rq->q_next;	/* next upstream queue */
2690 	} while (rq != NULL);
2691 	releasestr(q);
2692 	return (0);		/* no expdata on read queues */
2693 }
2694 
2695 /* ONC_PLUS EXTRACT END */
2696 static void
2697 tim_tcap_timer(void *q_ptr)
2698 {
2699 	queue_t *q = (queue_t *)q_ptr;
2700 	struct tim_tim *tp = (struct tim_tim *)q->q_ptr;
2701 
2702 	ASSERT(tp != NULL && tp->tim_tcap_timoutid != 0);
2703 	ASSERT((tp->tim_flags & TI_CAP_RECVD) != 0);
2704 
2705 	tp->tim_tcap_timoutid = 0;
2706 	TILOG("tim_tcap_timer: fired\n", 0);
2707 	tim_tcap_genreply(q, tp);
2708 }
2709 
2710 /*
2711  * tim_tcap_genreply() is called either from timeout routine or when
2712  * T_ERROR_ACK is received. In both cases it means that underlying
2713  * transport doesn't provide T_CAPABILITY_REQ.
2714  */
2715 static void
2716 tim_tcap_genreply(queue_t *q, struct tim_tim *tp)
2717 {
2718 	mblk_t		*mp = tp->tim_iocsave;
2719 	struct iocblk	*iocbp;
2720 
2721 	TILOG("timodrproc: tim_tcap_genreply\n", 0);
2722 
2723 	ASSERT(tp == (struct tim_tim *)q->q_ptr);
2724 	ASSERT(mp != NULL);
2725 
2726 	iocbp = (struct iocblk *)mp->b_rptr;
2727 	ASSERT(iocbp != NULL);
2728 	ASSERT(MBLKL(mp) == sizeof (struct iocblk));
2729 	ASSERT(iocbp->ioc_cmd == TI_CAPABILITY);
2730 	ASSERT(mp->b_cont == NULL);
2731 
2732 	/* Save this information permanently in the module */
2733 	PI_PROVLOCK(tp->tim_provinfo);
2734 	if (tp->tim_provinfo->tpi_capability == PI_DONTKNOW)
2735 		tp->tim_provinfo->tpi_capability = PI_NO;
2736 	PI_PROVUNLOCK(tp->tim_provinfo);
2737 
2738 	if (tp->tim_tcap_timoutid != 0) {
2739 		(void) quntimeout(q, tp->tim_tcap_timoutid);
2740 		tp->tim_tcap_timoutid = 0;
2741 	}
2742 
2743 	if ((tp->tim_flags & CAP_WANTS_INFO) != 0) {
2744 		/* Send T_INFO_REQ down */
2745 		mblk_t *tirmp = tpi_ack_alloc(NULL,
2746 		    sizeof (struct T_info_req), M_PCPROTO, T_INFO_REQ);
2747 
2748 		if (tirmp != NULL) {
2749 			/* Emulate TC1_INFO */
2750 			TILOG("emulate_tcap_ioc_req: sending T_INFO_REQ\n", 0);
2751 			tp->tim_flags |= WAIT_IOCINFOACK;
2752 			putnext(WR(q), tirmp);
2753 		} else {
2754 			tilog("emulate_tcap_req: allocb fail, "
2755 			    "no recovery attmpt\n", 0);
2756 			tp->tim_iocsave = NULL;
2757 			tp->tim_saved_prim = -1;
2758 			tp->tim_flags &= ~(TI_CAP_RECVD | WAITIOCACK |
2759 			    CAP_WANTS_INFO | WAIT_IOCINFOACK);
2760 			miocnak(q, mp, 0, ENOMEM);
2761 		}
2762 	} else {
2763 		/* Reply immediately */
2764 		mblk_t *ackmp = tpi_ack_alloc(NULL,
2765 		    sizeof (struct T_capability_ack), M_PCPROTO,
2766 		    T_CAPABILITY_ACK);
2767 
2768 		mp->b_cont = ackmp;
2769 
2770 		if (ackmp != NULL) {
2771 			((struct T_capability_ack *)
2772 			    ackmp->b_rptr)->CAP_bits1 = 0;
2773 			tim_ioctl_send_reply(q, mp, ackmp);
2774 			tp->tim_iocsave = NULL;
2775 			tp->tim_saved_prim = -1;
2776 			tp->tim_flags &= ~(WAITIOCACK | WAIT_IOCINFOACK |
2777 			    TI_CAP_RECVD | CAP_WANTS_INFO);
2778 		} else {
2779 			tilog("timodwproc:allocb failed no "
2780 			    "recovery attempt\n", 0);
2781 			tp->tim_iocsave = NULL;
2782 			tp->tim_saved_prim = -1;
2783 			tp->tim_flags &= ~(TI_CAP_RECVD | WAITIOCACK |
2784 			    CAP_WANTS_INFO | WAIT_IOCINFOACK);
2785 			miocnak(q, mp, 0, ENOMEM);
2786 		}
2787 	}
2788 }
2789 
2790 
2791 static void
2792 tim_ioctl_send_reply(queue_t *q, mblk_t *ioc_mp, mblk_t *mp)
2793 {
2794 	struct iocblk	*iocbp;
2795 
2796 	ASSERT(q != NULL && ioc_mp != NULL);
2797 
2798 	ioc_mp->b_datap->db_type = M_IOCACK;
2799 	if (mp != NULL)
2800 		mp->b_datap->db_type = M_DATA;
2801 
2802 	if (ioc_mp->b_cont != mp) {
2803 		/* It is safe to call freemsg for NULL pointers */
2804 		freemsg(ioc_mp->b_cont);
2805 		ioc_mp->b_cont = mp;
2806 	}
2807 	iocbp = (struct iocblk *)ioc_mp->b_rptr;
2808 	iocbp->ioc_error = 0;
2809 	iocbp->ioc_rval = 0;
2810 	/*
2811 	 * All ioctl's may return more data than was specified by
2812 	 * count arg. For TI_CAPABILITY count is treated as maximum data size.
2813 	 */
2814 	if (mp == NULL)
2815 		iocbp->ioc_count = 0;
2816 	else if (iocbp->ioc_cmd != TI_CAPABILITY)
2817 		iocbp->ioc_count = msgsize(mp);
2818 	else {
2819 		iocbp->ioc_count = MIN(MBLKL(mp), iocbp->ioc_count);
2820 		/* Truncate message if too large */
2821 		mp->b_wptr = mp->b_rptr + iocbp->ioc_count;
2822 	}
2823 
2824 	TILOG("iosendreply: ioc_cmd = %d, ", iocbp->ioc_cmd);
2825 	putnext(RD(q), ioc_mp);
2826 }
2827 
2828 /*
2829  * Send M_IOCACK for errors.
2830  */
2831 static void
2832 tim_send_ioc_error_ack(queue_t *q, struct tim_tim *tp, mblk_t *mp)
2833 {
2834 	struct T_error_ack *tea = (struct T_error_ack *)mp->b_rptr;
2835 	t_scalar_t error_prim;
2836 
2837 	mp->b_wptr = mp->b_rptr + sizeof (struct T_error_ack);
2838 	ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
2839 	error_prim = tea->ERROR_prim;
2840 
2841 	ASSERT(tp->tim_iocsave != NULL);
2842 	ASSERT(tp->tim_iocsave->b_cont != mp);
2843 
2844 	/* Always send this to the read side of the queue */
2845 	q = RD(q);
2846 
2847 	TILOG("tim_send_ioc_error_ack: prim = %d\n", tp->tim_saved_prim);
2848 
2849 	if (tp->tim_saved_prim != error_prim) {
2850 		putnext(q, mp);
2851 	} else if (error_prim == T_CAPABILITY_REQ) {
2852 		TILOG("timodrproc: T_ERROR_ACK/T_CAPABILITY_REQ\n", 0);
2853 		ASSERT(tp->tim_iocsave->b_cont == NULL);
2854 
2855 		tim_tcap_genreply(q, tp);
2856 		freemsg(mp);
2857 	} else {
2858 		struct iocblk *iocbp = (struct iocblk *)tp->tim_iocsave->b_rptr;
2859 
2860 		TILOG("tim_send_ioc_error_ack: T_ERROR_ACK: prim %d\n",
2861 		    error_prim);
2862 		ASSERT(tp->tim_iocsave->b_cont == NULL);
2863 
2864 		switch (error_prim) {
2865 		default:
2866 			TILOG("timodrproc: Unknown T_ERROR_ACK:  tlierror %d\n",
2867 			    tea->TLI_error);
2868 
2869 			putnext(q, mp);
2870 			break;
2871 
2872 		case T_INFO_REQ:
2873 		case T_SVR4_OPTMGMT_REQ:
2874 		case T_OPTMGMT_REQ:
2875 		case O_T_BIND_REQ:
2876 		case T_BIND_REQ:
2877 		case T_UNBIND_REQ:
2878 		case T_ADDR_REQ:
2879 		case T_CAPABILITY_REQ:
2880 
2881 			TILOG("ioc_err_ack: T_ERROR_ACK: tlierror %x\n",
2882 			    tea->TLI_error);
2883 
2884 			/* get saved ioctl msg and set values */
2885 			iocbp->ioc_count = 0;
2886 			iocbp->ioc_error = 0;
2887 			iocbp->ioc_rval = tea->TLI_error;
2888 			if (iocbp->ioc_rval == TSYSERR)
2889 				iocbp->ioc_rval |= tea->UNIX_error << 8;
2890 			tp->tim_iocsave->b_datap->db_type = M_IOCACK;
2891 			freemsg(mp);
2892 			putnext(q, tp->tim_iocsave);
2893 			tp->tim_iocsave = NULL;
2894 			tp->tim_saved_prim = -1;
2895 			tp->tim_flags &= ~(WAITIOCACK | TI_CAP_RECVD |
2896 			    CAP_WANTS_INFO | WAIT_IOCINFOACK);
2897 			break;
2898 		}
2899 	}
2900 }
2901 
2902 /*
2903  * Send reply to a usual message or ioctl message upstream.
2904  * Should be called from the read side only.
2905  */
2906 static void
2907 tim_send_reply(queue_t *q, mblk_t *mp, struct tim_tim *tp, t_scalar_t prim)
2908 {
2909 	ASSERT(mp != NULL && q != NULL && tp != NULL);
2910 	ASSERT(q == RD(q));
2911 
2912 	/* Restore db_type - recover() might have changed it */
2913 	mp->b_datap->db_type = M_PCPROTO;
2914 
2915 	if (((tp->tim_flags & WAITIOCACK) == 0) || (tp->tim_saved_prim != prim))
2916 		putnext(q, mp);
2917 	else {
2918 		ASSERT(tp->tim_iocsave != NULL);
2919 		tim_ioctl_send_reply(q, tp->tim_iocsave, mp);
2920 		tp->tim_iocsave = NULL;
2921 		tp->tim_saved_prim = -1;
2922 		tp->tim_flags &= ~(WAITIOCACK | WAIT_IOCINFOACK |
2923 		    TI_CAP_RECVD | CAP_WANTS_INFO);
2924 	}
2925 }
2926 
2927 /*
2928  * Reply to TI_SYNC reequest without sending anything downstream.
2929  */
2930 static void
2931 tim_answer_ti_sync(queue_t *q, mblk_t *mp, struct tim_tim *tp,
2932     mblk_t *ackmp, uint32_t tsr_flags)
2933 {
2934 	struct ti_sync_ack *tsap;
2935 
2936 	ASSERT(q != NULL && q == WR(q) && ackmp != NULL);
2937 
2938 	tsap = (struct ti_sync_ack *)ackmp->b_rptr;
2939 	bzero(tsap, sizeof (struct ti_sync_ack));
2940 	ackmp->b_wptr = ackmp->b_rptr + sizeof (struct ti_sync_ack);
2941 
2942 	if (tsr_flags == 0 ||
2943 	    (tsr_flags & ~(TSRF_QLEN_REQ | TSRF_IS_EXP_IN_RCVBUF)) != 0) {
2944 		/*
2945 		 * unsupported/bad flag setting
2946 		 * or no flag set.
2947 		 */
2948 		TILOG("timodwproc: unsupported/bad flag setting %x\n",
2949 		    tsr_flags);
2950 		freemsg(ackmp);
2951 		miocnak(q, mp, 0, EINVAL);
2952 		return;
2953 	}
2954 
2955 	if ((tsr_flags & TSRF_QLEN_REQ) != 0)
2956 		tsap->tsa_qlen = tp->tim_backlog;
2957 
2958 	if ((tsr_flags & TSRF_IS_EXP_IN_RCVBUF) != 0 &&
2959 	    ti_expind_on_rdqueues(RD(q))) {
2960 		/*
2961 		 * Expedited data is queued on
2962 		 * the stream read side
2963 		 */
2964 		tsap->tsa_flags |= TSAF_EXP_QUEUED;
2965 	}
2966 
2967 	tim_ioctl_send_reply(q, mp, ackmp);
2968 	tp->tim_iocsave = NULL;
2969 	tp->tim_saved_prim = -1;
2970 	tp->tim_flags &= ~(WAITIOCACK | WAIT_IOCINFOACK |
2971 	    TI_CAP_RECVD | CAP_WANTS_INFO);
2972 }
2973 
2974 /*
2975  * Send TPI message from IOCTL message, ssave original ioctl header and TPI
2976  * message type. Should be called from write side only.
2977  */
2978 static void
2979 tim_send_ioctl_tpi_msg(queue_t *q, mblk_t *mp, struct tim_tim *tp,
2980 	struct iocblk *iocb)
2981 {
2982 	mblk_t *tmp;
2983 	int ioc_cmd = iocb->ioc_cmd;
2984 
2985 	ASSERT(q != NULL && mp != NULL && tp != NULL);
2986 	ASSERT(q == WR(q));
2987 	ASSERT(mp->b_cont != NULL);
2988 
2989 	tp->tim_iocsave = mp;
2990 	tmp = mp->b_cont;
2991 
2992 	mp->b_cont = NULL;
2993 	tp->tim_flags |= WAITIOCACK;
2994 	tp->tim_saved_prim = ((union T_primitives *)tmp->b_rptr)->type;
2995 
2996 	/*
2997 	 * For TI_GETINFO, the attached message is a T_INFO_REQ
2998 	 * For TI_SYNC, we generate the T_INFO_REQ message above
2999 	 * For TI_CAPABILITY the attached message is either
3000 	 * T_CAPABILITY_REQ or T_INFO_REQ.
3001 	 * Among TPI request messages possible,
3002 	 *	T_INFO_REQ/T_CAPABILITY_ACK messages are a M_PCPROTO, rest
3003 	 *	are M_PROTO
3004 	 */
3005 	if (ioc_cmd == TI_GETINFO || ioc_cmd == TI_SYNC ||
3006 	    ioc_cmd == TI_CAPABILITY) {
3007 		tmp->b_datap->db_type = M_PCPROTO;
3008 	} else {
3009 		tmp->b_datap->db_type = M_PROTO;
3010 	}
3011 
3012 	/* Verify credentials in STREAM */
3013 	ASSERT(iocb->ioc_cr == NULL || iocb->ioc_cr == DB_CRED(tmp));
3014 
3015 	TILOG("timodwproc: sending down %d\n", tp->tim_saved_prim);
3016 	putnext(q, tmp);
3017 }
3018 
3019 static void
3020 tim_clear_peer(struct tim_tim *tp)
3021 {
3022 	mutex_enter(&tp->tim_mutex);
3023 	if (tp->tim_peercred != NULL) {
3024 		crfree(tp->tim_peercred);
3025 		tp->tim_peercred = NULL;
3026 	}
3027 	tp->tim_peerlen = 0;
3028 	mutex_exit(&tp->tim_mutex);
3029 }
3030