1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 /* 26 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 27 */ 28 /* 29 * Copyright 2011 cyril.galibern@opensvc.com 30 */ 31 32 /* 33 * SCSI disk target driver. 34 */ 35 #include <sys/scsi/scsi.h> 36 #include <sys/dkbad.h> 37 #include <sys/dklabel.h> 38 #include <sys/dkio.h> 39 #include <sys/fdio.h> 40 #include <sys/cdio.h> 41 #include <sys/mhd.h> 42 #include <sys/vtoc.h> 43 #include <sys/dktp/fdisk.h> 44 #include <sys/kstat.h> 45 #include <sys/vtrace.h> 46 #include <sys/note.h> 47 #include <sys/thread.h> 48 #include <sys/proc.h> 49 #include <sys/efi_partition.h> 50 #include <sys/var.h> 51 #include <sys/aio_req.h> 52 53 #ifdef __lock_lint 54 #define _LP64 55 #define __amd64 56 #endif 57 58 #if (defined(__fibre)) 59 /* Note: is there a leadville version of the following? */ 60 #include <sys/fc4/fcal_linkapp.h> 61 #endif 62 #include <sys/taskq.h> 63 #include <sys/uuid.h> 64 #include <sys/byteorder.h> 65 #include <sys/sdt.h> 66 67 #include "sd_xbuf.h" 68 69 #include <sys/scsi/targets/sddef.h> 70 #include <sys/cmlb.h> 71 #include <sys/sysevent/eventdefs.h> 72 #include <sys/sysevent/dev.h> 73 74 #include <sys/fm/protocol.h> 75 76 /* 77 * Loadable module info. 78 */ 79 #if (defined(__fibre)) 80 #define SD_MODULE_NAME "SCSI SSA/FCAL Disk Driver" 81 char _depends_on[] = "misc/scsi misc/cmlb drv/fcp"; 82 #else /* !__fibre */ 83 #define SD_MODULE_NAME "SCSI Disk Driver" 84 char _depends_on[] = "misc/scsi misc/cmlb"; 85 #endif /* !__fibre */ 86 87 /* 88 * Define the interconnect type, to allow the driver to distinguish 89 * between parallel SCSI (sd) and fibre channel (ssd) behaviors. 90 * 91 * This is really for backward compatibility. In the future, the driver 92 * should actually check the "interconnect-type" property as reported by 93 * the HBA; however at present this property is not defined by all HBAs, 94 * so we will use this #define (1) to permit the driver to run in 95 * backward-compatibility mode; and (2) to print a notification message 96 * if an FC HBA does not support the "interconnect-type" property. The 97 * behavior of the driver will be to assume parallel SCSI behaviors unless 98 * the "interconnect-type" property is defined by the HBA **AND** has a 99 * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or 100 * INTERCONNECT_FABRIC, in which case the driver will assume Fibre 101 * Channel behaviors (as per the old ssd). (Note that the 102 * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and 103 * will result in the driver assuming parallel SCSI behaviors.) 104 * 105 * (see common/sys/scsi/impl/services.h) 106 * 107 * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default 108 * since some FC HBAs may already support that, and there is some code in 109 * the driver that already looks for it. Using INTERCONNECT_FABRIC as the 110 * default would confuse that code, and besides things should work fine 111 * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the 112 * "interconnect_type" property. 113 * 114 */ 115 #if (defined(__fibre)) 116 #define SD_DEFAULT_INTERCONNECT_TYPE SD_INTERCONNECT_FIBRE 117 #else 118 #define SD_DEFAULT_INTERCONNECT_TYPE SD_INTERCONNECT_PARALLEL 119 #endif 120 121 /* 122 * The name of the driver, established from the module name in _init. 123 */ 124 static char *sd_label = NULL; 125 126 /* 127 * Driver name is unfortunately prefixed on some driver.conf properties. 128 */ 129 #if (defined(__fibre)) 130 #define sd_max_xfer_size ssd_max_xfer_size 131 #define sd_config_list ssd_config_list 132 static char *sd_max_xfer_size = "ssd_max_xfer_size"; 133 static char *sd_config_list = "ssd-config-list"; 134 #else 135 static char *sd_max_xfer_size = "sd_max_xfer_size"; 136 static char *sd_config_list = "sd-config-list"; 137 #endif 138 139 /* 140 * Driver global variables 141 */ 142 143 #if (defined(__fibre)) 144 /* 145 * These #defines are to avoid namespace collisions that occur because this 146 * code is currently used to compile two separate driver modules: sd and ssd. 147 * All global variables need to be treated this way (even if declared static) 148 * in order to allow the debugger to resolve the names properly. 149 * It is anticipated that in the near future the ssd module will be obsoleted, 150 * at which time this namespace issue should go away. 151 */ 152 #define sd_state ssd_state 153 #define sd_io_time ssd_io_time 154 #define sd_failfast_enable ssd_failfast_enable 155 #define sd_ua_retry_count ssd_ua_retry_count 156 #define sd_report_pfa ssd_report_pfa 157 #define sd_max_throttle ssd_max_throttle 158 #define sd_min_throttle ssd_min_throttle 159 #define sd_rot_delay ssd_rot_delay 160 161 #define sd_retry_on_reservation_conflict \ 162 ssd_retry_on_reservation_conflict 163 #define sd_reinstate_resv_delay ssd_reinstate_resv_delay 164 #define sd_resv_conflict_name ssd_resv_conflict_name 165 166 #define sd_component_mask ssd_component_mask 167 #define sd_level_mask ssd_level_mask 168 #define sd_debug_un ssd_debug_un 169 #define sd_error_level ssd_error_level 170 171 #define sd_xbuf_active_limit ssd_xbuf_active_limit 172 #define sd_xbuf_reserve_limit ssd_xbuf_reserve_limit 173 174 #define sd_tr ssd_tr 175 #define sd_reset_throttle_timeout ssd_reset_throttle_timeout 176 #define sd_qfull_throttle_timeout ssd_qfull_throttle_timeout 177 #define sd_qfull_throttle_enable ssd_qfull_throttle_enable 178 #define sd_check_media_time ssd_check_media_time 179 #define sd_wait_cmds_complete ssd_wait_cmds_complete 180 #define sd_label_mutex ssd_label_mutex 181 #define sd_detach_mutex ssd_detach_mutex 182 #define sd_log_buf ssd_log_buf 183 #define sd_log_mutex ssd_log_mutex 184 185 #define sd_disk_table ssd_disk_table 186 #define sd_disk_table_size ssd_disk_table_size 187 #define sd_sense_mutex ssd_sense_mutex 188 #define sd_cdbtab ssd_cdbtab 189 190 #define sd_cb_ops ssd_cb_ops 191 #define sd_ops ssd_ops 192 #define sd_additional_codes ssd_additional_codes 193 #define sd_tgops ssd_tgops 194 195 #define sd_minor_data ssd_minor_data 196 #define sd_minor_data_efi ssd_minor_data_efi 197 198 #define sd_tq ssd_tq 199 #define sd_wmr_tq ssd_wmr_tq 200 #define sd_taskq_name ssd_taskq_name 201 #define sd_wmr_taskq_name ssd_wmr_taskq_name 202 #define sd_taskq_minalloc ssd_taskq_minalloc 203 #define sd_taskq_maxalloc ssd_taskq_maxalloc 204 205 #define sd_dump_format_string ssd_dump_format_string 206 207 #define sd_iostart_chain ssd_iostart_chain 208 #define sd_iodone_chain ssd_iodone_chain 209 210 #define sd_pm_idletime ssd_pm_idletime 211 212 #define sd_force_pm_supported ssd_force_pm_supported 213 214 #define sd_dtype_optical_bind ssd_dtype_optical_bind 215 216 #define sd_ssc_init ssd_ssc_init 217 #define sd_ssc_send ssd_ssc_send 218 #define sd_ssc_fini ssd_ssc_fini 219 #define sd_ssc_assessment ssd_ssc_assessment 220 #define sd_ssc_post ssd_ssc_post 221 #define sd_ssc_print ssd_ssc_print 222 #define sd_ssc_ereport_post ssd_ssc_ereport_post 223 #define sd_ssc_set_info ssd_ssc_set_info 224 #define sd_ssc_extract_info ssd_ssc_extract_info 225 226 #endif 227 228 #ifdef SDDEBUG 229 int sd_force_pm_supported = 0; 230 #endif /* SDDEBUG */ 231 232 void *sd_state = NULL; 233 int sd_io_time = SD_IO_TIME; 234 int sd_failfast_enable = 1; 235 int sd_ua_retry_count = SD_UA_RETRY_COUNT; 236 int sd_report_pfa = 1; 237 int sd_max_throttle = SD_MAX_THROTTLE; 238 int sd_min_throttle = SD_MIN_THROTTLE; 239 int sd_rot_delay = 4; /* Default 4ms Rotation delay */ 240 int sd_qfull_throttle_enable = TRUE; 241 242 int sd_retry_on_reservation_conflict = 1; 243 int sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY; 244 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay)) 245 246 static int sd_dtype_optical_bind = -1; 247 248 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */ 249 static char *sd_resv_conflict_name = "sd_retry_on_reservation_conflict"; 250 251 /* 252 * Global data for debug logging. To enable debug printing, sd_component_mask 253 * and sd_level_mask should be set to the desired bit patterns as outlined in 254 * sddef.h. 255 */ 256 uint_t sd_component_mask = 0x0; 257 uint_t sd_level_mask = 0x0; 258 struct sd_lun *sd_debug_un = NULL; 259 uint_t sd_error_level = SCSI_ERR_RETRYABLE; 260 261 /* Note: these may go away in the future... */ 262 static uint32_t sd_xbuf_active_limit = 512; 263 static uint32_t sd_xbuf_reserve_limit = 16; 264 265 static struct sd_resv_reclaim_request sd_tr = { NULL, NULL, NULL, 0, 0, 0 }; 266 267 /* 268 * Timer value used to reset the throttle after it has been reduced 269 * (typically in response to TRAN_BUSY or STATUS_QFULL) 270 */ 271 static int sd_reset_throttle_timeout = SD_RESET_THROTTLE_TIMEOUT; 272 static int sd_qfull_throttle_timeout = SD_QFULL_THROTTLE_TIMEOUT; 273 274 /* 275 * Interval value associated with the media change scsi watch. 276 */ 277 static int sd_check_media_time = 3000000; 278 279 /* 280 * Wait value used for in progress operations during a DDI_SUSPEND 281 */ 282 static int sd_wait_cmds_complete = SD_WAIT_CMDS_COMPLETE; 283 284 /* 285 * sd_label_mutex protects a static buffer used in the disk label 286 * component of the driver 287 */ 288 static kmutex_t sd_label_mutex; 289 290 /* 291 * sd_detach_mutex protects un_layer_count, un_detach_count, and 292 * un_opens_in_progress in the sd_lun structure. 293 */ 294 static kmutex_t sd_detach_mutex; 295 296 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex, 297 sd_lun::{un_layer_count un_detach_count un_opens_in_progress})) 298 299 /* 300 * Global buffer and mutex for debug logging 301 */ 302 static char sd_log_buf[1024]; 303 static kmutex_t sd_log_mutex; 304 305 /* 306 * Structs and globals for recording attached lun information. 307 * This maintains a chain. Each node in the chain represents a SCSI controller. 308 * The structure records the number of luns attached to each target connected 309 * with the controller. 310 * For parallel scsi device only. 311 */ 312 struct sd_scsi_hba_tgt_lun { 313 struct sd_scsi_hba_tgt_lun *next; 314 dev_info_t *pdip; 315 int nlun[NTARGETS_WIDE]; 316 }; 317 318 /* 319 * Flag to indicate the lun is attached or detached 320 */ 321 #define SD_SCSI_LUN_ATTACH 0 322 #define SD_SCSI_LUN_DETACH 1 323 324 static kmutex_t sd_scsi_target_lun_mutex; 325 static struct sd_scsi_hba_tgt_lun *sd_scsi_target_lun_head = NULL; 326 327 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex, 328 sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip)) 329 330 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex, 331 sd_scsi_target_lun_head)) 332 333 /* 334 * "Smart" Probe Caching structs, globals, #defines, etc. 335 * For parallel scsi and non-self-identify device only. 336 */ 337 338 /* 339 * The following resources and routines are implemented to support 340 * "smart" probing, which caches the scsi_probe() results in an array, 341 * in order to help avoid long probe times. 342 */ 343 struct sd_scsi_probe_cache { 344 struct sd_scsi_probe_cache *next; 345 dev_info_t *pdip; 346 int cache[NTARGETS_WIDE]; 347 }; 348 349 static kmutex_t sd_scsi_probe_cache_mutex; 350 static struct sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL; 351 352 /* 353 * Really we only need protection on the head of the linked list, but 354 * better safe than sorry. 355 */ 356 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex, 357 sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip)) 358 359 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex, 360 sd_scsi_probe_cache_head)) 361 362 /* 363 * Power attribute table 364 */ 365 static sd_power_attr_ss sd_pwr_ss = { 366 { "NAME=spindle-motor", "0=off", "1=on", NULL }, 367 {0, 100}, 368 {30, 0}, 369 {20000, 0} 370 }; 371 372 static sd_power_attr_pc sd_pwr_pc = { 373 { "NAME=spindle-motor", "0=stopped", "1=standby", "2=idle", 374 "3=active", NULL }, 375 {0, 0, 0, 100}, 376 {90, 90, 20, 0}, 377 {15000, 15000, 1000, 0} 378 }; 379 380 /* 381 * Power level to power condition 382 */ 383 static int sd_pl2pc[] = { 384 SD_TARGET_START_VALID, 385 SD_TARGET_STANDBY, 386 SD_TARGET_IDLE, 387 SD_TARGET_ACTIVE 388 }; 389 390 /* 391 * Vendor specific data name property declarations 392 */ 393 394 #if defined(__fibre) || defined(__i386) ||defined(__amd64) 395 396 static sd_tunables seagate_properties = { 397 SEAGATE_THROTTLE_VALUE, 398 0, 399 0, 400 0, 401 0, 402 0, 403 0, 404 0, 405 0 406 }; 407 408 409 static sd_tunables fujitsu_properties = { 410 FUJITSU_THROTTLE_VALUE, 411 0, 412 0, 413 0, 414 0, 415 0, 416 0, 417 0, 418 0 419 }; 420 421 static sd_tunables ibm_properties = { 422 IBM_THROTTLE_VALUE, 423 0, 424 0, 425 0, 426 0, 427 0, 428 0, 429 0, 430 0 431 }; 432 433 static sd_tunables purple_properties = { 434 PURPLE_THROTTLE_VALUE, 435 0, 436 0, 437 PURPLE_BUSY_RETRIES, 438 PURPLE_RESET_RETRY_COUNT, 439 PURPLE_RESERVE_RELEASE_TIME, 440 0, 441 0, 442 0 443 }; 444 445 static sd_tunables sve_properties = { 446 SVE_THROTTLE_VALUE, 447 0, 448 0, 449 SVE_BUSY_RETRIES, 450 SVE_RESET_RETRY_COUNT, 451 SVE_RESERVE_RELEASE_TIME, 452 SVE_MIN_THROTTLE_VALUE, 453 SVE_DISKSORT_DISABLED_FLAG, 454 0 455 }; 456 457 static sd_tunables maserati_properties = { 458 0, 459 0, 460 0, 461 0, 462 0, 463 0, 464 0, 465 MASERATI_DISKSORT_DISABLED_FLAG, 466 MASERATI_LUN_RESET_ENABLED_FLAG 467 }; 468 469 static sd_tunables pirus_properties = { 470 PIRUS_THROTTLE_VALUE, 471 0, 472 PIRUS_NRR_COUNT, 473 PIRUS_BUSY_RETRIES, 474 PIRUS_RESET_RETRY_COUNT, 475 0, 476 PIRUS_MIN_THROTTLE_VALUE, 477 PIRUS_DISKSORT_DISABLED_FLAG, 478 PIRUS_LUN_RESET_ENABLED_FLAG 479 }; 480 481 #endif 482 483 #if (defined(__sparc) && !defined(__fibre)) || \ 484 (defined(__i386) || defined(__amd64)) 485 486 487 static sd_tunables elite_properties = { 488 ELITE_THROTTLE_VALUE, 489 0, 490 0, 491 0, 492 0, 493 0, 494 0, 495 0, 496 0 497 }; 498 499 static sd_tunables st31200n_properties = { 500 ST31200N_THROTTLE_VALUE, 501 0, 502 0, 503 0, 504 0, 505 0, 506 0, 507 0, 508 0 509 }; 510 511 #endif /* Fibre or not */ 512 513 static sd_tunables lsi_properties_scsi = { 514 LSI_THROTTLE_VALUE, 515 0, 516 LSI_NOTREADY_RETRIES, 517 0, 518 0, 519 0, 520 0, 521 0, 522 0 523 }; 524 525 static sd_tunables symbios_properties = { 526 SYMBIOS_THROTTLE_VALUE, 527 0, 528 SYMBIOS_NOTREADY_RETRIES, 529 0, 530 0, 531 0, 532 0, 533 0, 534 0 535 }; 536 537 static sd_tunables lsi_properties = { 538 0, 539 0, 540 LSI_NOTREADY_RETRIES, 541 0, 542 0, 543 0, 544 0, 545 0, 546 0 547 }; 548 549 static sd_tunables lsi_oem_properties = { 550 0, 551 0, 552 LSI_OEM_NOTREADY_RETRIES, 553 0, 554 0, 555 0, 556 0, 557 0, 558 0, 559 1 560 }; 561 562 563 564 #if (defined(SD_PROP_TST)) 565 566 #define SD_TST_CTYPE_VAL CTYPE_CDROM 567 #define SD_TST_THROTTLE_VAL 16 568 #define SD_TST_NOTREADY_VAL 12 569 #define SD_TST_BUSY_VAL 60 570 #define SD_TST_RST_RETRY_VAL 36 571 #define SD_TST_RSV_REL_TIME 60 572 573 static sd_tunables tst_properties = { 574 SD_TST_THROTTLE_VAL, 575 SD_TST_CTYPE_VAL, 576 SD_TST_NOTREADY_VAL, 577 SD_TST_BUSY_VAL, 578 SD_TST_RST_RETRY_VAL, 579 SD_TST_RSV_REL_TIME, 580 0, 581 0, 582 0 583 }; 584 #endif 585 586 /* This is similar to the ANSI toupper implementation */ 587 #define SD_TOUPPER(C) (((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C)) 588 589 /* 590 * Static Driver Configuration Table 591 * 592 * This is the table of disks which need throttle adjustment (or, perhaps 593 * something else as defined by the flags at a future time.) device_id 594 * is a string consisting of concatenated vid (vendor), pid (product/model) 595 * and revision strings as defined in the scsi_inquiry structure. Offsets of 596 * the parts of the string are as defined by the sizes in the scsi_inquiry 597 * structure. Device type is searched as far as the device_id string is 598 * defined. Flags defines which values are to be set in the driver from the 599 * properties list. 600 * 601 * Entries below which begin and end with a "*" are a special case. 602 * These do not have a specific vendor, and the string which follows 603 * can appear anywhere in the 16 byte PID portion of the inquiry data. 604 * 605 * Entries below which begin and end with a " " (blank) are a special 606 * case. The comparison function will treat multiple consecutive blanks 607 * as equivalent to a single blank. For example, this causes a 608 * sd_disk_table entry of " NEC CDROM " to match a device's id string 609 * of "NEC CDROM". 610 * 611 * Note: The MD21 controller type has been obsoleted. 612 * ST318202F is a Legacy device 613 * MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been 614 * made with an FC connection. The entries here are a legacy. 615 */ 616 static sd_disk_config_t sd_disk_table[] = { 617 #if defined(__fibre) || defined(__i386) || defined(__amd64) 618 { "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 619 { "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 620 { "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 621 { "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 622 { "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 623 { "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 624 { "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 625 { "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 626 { "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 627 { "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 628 { "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 629 { "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 630 { "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 631 { "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 632 { "FUJITSU MAG3091F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 633 { "FUJITSU MAG3182F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 634 { "FUJITSU MAA3182F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 635 { "FUJITSU MAF3364F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 636 { "FUJITSU MAL3364F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 637 { "FUJITSU MAL3738F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 638 { "FUJITSU MAM3182FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 639 { "FUJITSU MAM3364FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 640 { "FUJITSU MAM3738FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 641 { "IBM DDYFT1835", SD_CONF_BSET_THROTTLE, &ibm_properties }, 642 { "IBM DDYFT3695", SD_CONF_BSET_THROTTLE, &ibm_properties }, 643 { "IBM IC35LF2D2", SD_CONF_BSET_THROTTLE, &ibm_properties }, 644 { "IBM IC35LF2PR", SD_CONF_BSET_THROTTLE, &ibm_properties }, 645 { "IBM 1724-100", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 646 { "IBM 1726-2xx", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 647 { "IBM 1726-22x", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 648 { "IBM 1726-4xx", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 649 { "IBM 1726-42x", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 650 { "IBM 1726-3xx", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 651 { "IBM 3526", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 652 { "IBM 3542", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 653 { "IBM 3552", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 654 { "IBM 1722", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 655 { "IBM 1742", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 656 { "IBM 1815", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 657 { "IBM FAStT", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 658 { "IBM 1814", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 659 { "IBM 1814-200", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 660 { "IBM 1818", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 661 { "DELL MD3000", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 662 { "DELL MD3000i", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 663 { "LSI INF", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 664 { "ENGENIO INF", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 665 { "SGI TP", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 666 { "SGI IS", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 667 { "*CSM100_*", SD_CONF_BSET_NRR_COUNT | 668 SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties }, 669 { "*CSM200_*", SD_CONF_BSET_NRR_COUNT | 670 SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties }, 671 { "Fujitsu SX300", SD_CONF_BSET_THROTTLE, &lsi_oem_properties }, 672 { "LSI", SD_CONF_BSET_NRR_COUNT, &lsi_properties }, 673 { "SUN T3", SD_CONF_BSET_THROTTLE | 674 SD_CONF_BSET_BSY_RETRY_COUNT| 675 SD_CONF_BSET_RST_RETRIES| 676 SD_CONF_BSET_RSV_REL_TIME, 677 &purple_properties }, 678 { "SUN SESS01", SD_CONF_BSET_THROTTLE | 679 SD_CONF_BSET_BSY_RETRY_COUNT| 680 SD_CONF_BSET_RST_RETRIES| 681 SD_CONF_BSET_RSV_REL_TIME| 682 SD_CONF_BSET_MIN_THROTTLE| 683 SD_CONF_BSET_DISKSORT_DISABLED, 684 &sve_properties }, 685 { "SUN T4", SD_CONF_BSET_THROTTLE | 686 SD_CONF_BSET_BSY_RETRY_COUNT| 687 SD_CONF_BSET_RST_RETRIES| 688 SD_CONF_BSET_RSV_REL_TIME, 689 &purple_properties }, 690 { "SUN SVE01", SD_CONF_BSET_DISKSORT_DISABLED | 691 SD_CONF_BSET_LUN_RESET_ENABLED, 692 &maserati_properties }, 693 { "SUN SE6920", SD_CONF_BSET_THROTTLE | 694 SD_CONF_BSET_NRR_COUNT| 695 SD_CONF_BSET_BSY_RETRY_COUNT| 696 SD_CONF_BSET_RST_RETRIES| 697 SD_CONF_BSET_MIN_THROTTLE| 698 SD_CONF_BSET_DISKSORT_DISABLED| 699 SD_CONF_BSET_LUN_RESET_ENABLED, 700 &pirus_properties }, 701 { "SUN SE6940", SD_CONF_BSET_THROTTLE | 702 SD_CONF_BSET_NRR_COUNT| 703 SD_CONF_BSET_BSY_RETRY_COUNT| 704 SD_CONF_BSET_RST_RETRIES| 705 SD_CONF_BSET_MIN_THROTTLE| 706 SD_CONF_BSET_DISKSORT_DISABLED| 707 SD_CONF_BSET_LUN_RESET_ENABLED, 708 &pirus_properties }, 709 { "SUN StorageTek 6920", SD_CONF_BSET_THROTTLE | 710 SD_CONF_BSET_NRR_COUNT| 711 SD_CONF_BSET_BSY_RETRY_COUNT| 712 SD_CONF_BSET_RST_RETRIES| 713 SD_CONF_BSET_MIN_THROTTLE| 714 SD_CONF_BSET_DISKSORT_DISABLED| 715 SD_CONF_BSET_LUN_RESET_ENABLED, 716 &pirus_properties }, 717 { "SUN StorageTek 6940", SD_CONF_BSET_THROTTLE | 718 SD_CONF_BSET_NRR_COUNT| 719 SD_CONF_BSET_BSY_RETRY_COUNT| 720 SD_CONF_BSET_RST_RETRIES| 721 SD_CONF_BSET_MIN_THROTTLE| 722 SD_CONF_BSET_DISKSORT_DISABLED| 723 SD_CONF_BSET_LUN_RESET_ENABLED, 724 &pirus_properties }, 725 { "SUN PSX1000", SD_CONF_BSET_THROTTLE | 726 SD_CONF_BSET_NRR_COUNT| 727 SD_CONF_BSET_BSY_RETRY_COUNT| 728 SD_CONF_BSET_RST_RETRIES| 729 SD_CONF_BSET_MIN_THROTTLE| 730 SD_CONF_BSET_DISKSORT_DISABLED| 731 SD_CONF_BSET_LUN_RESET_ENABLED, 732 &pirus_properties }, 733 { "SUN SE6330", SD_CONF_BSET_THROTTLE | 734 SD_CONF_BSET_NRR_COUNT| 735 SD_CONF_BSET_BSY_RETRY_COUNT| 736 SD_CONF_BSET_RST_RETRIES| 737 SD_CONF_BSET_MIN_THROTTLE| 738 SD_CONF_BSET_DISKSORT_DISABLED| 739 SD_CONF_BSET_LUN_RESET_ENABLED, 740 &pirus_properties }, 741 { "SUN STK6580_6780", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 742 { "SUN SUN_6180", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 743 { "STK OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 744 { "STK OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 745 { "STK BladeCtlr", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 746 { "STK FLEXLINE", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 747 { "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties }, 748 #endif /* fibre or NON-sparc platforms */ 749 #if ((defined(__sparc) && !defined(__fibre)) ||\ 750 (defined(__i386) || defined(__amd64))) 751 { "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties }, 752 { "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties }, 753 { "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL }, 754 { "CONNER CP30540", SD_CONF_BSET_NOCACHE, NULL }, 755 { "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL }, 756 { "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL }, 757 { "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL }, 758 { "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL }, 759 { "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL }, 760 { "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL }, 761 { "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL }, 762 { "SYMBIOS INF-01-00 ", SD_CONF_BSET_FAB_DEVID, NULL }, 763 { "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT, 764 &symbios_properties }, 765 { "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT, 766 &lsi_properties_scsi }, 767 #if defined(__i386) || defined(__amd64) 768 { " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD 769 | SD_CONF_BSET_READSUB_BCD 770 | SD_CONF_BSET_READ_TOC_ADDR_BCD 771 | SD_CONF_BSET_NO_READ_HEADER 772 | SD_CONF_BSET_READ_CD_XD4), NULL }, 773 774 { " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD 775 | SD_CONF_BSET_READSUB_BCD 776 | SD_CONF_BSET_READ_TOC_ADDR_BCD 777 | SD_CONF_BSET_NO_READ_HEADER 778 | SD_CONF_BSET_READ_CD_XD4), NULL }, 779 #endif /* __i386 || __amd64 */ 780 #endif /* sparc NON-fibre or NON-sparc platforms */ 781 782 #if (defined(SD_PROP_TST)) 783 { "VENDOR PRODUCT ", (SD_CONF_BSET_THROTTLE 784 | SD_CONF_BSET_CTYPE 785 | SD_CONF_BSET_NRR_COUNT 786 | SD_CONF_BSET_FAB_DEVID 787 | SD_CONF_BSET_NOCACHE 788 | SD_CONF_BSET_BSY_RETRY_COUNT 789 | SD_CONF_BSET_PLAYMSF_BCD 790 | SD_CONF_BSET_READSUB_BCD 791 | SD_CONF_BSET_READ_TOC_TRK_BCD 792 | SD_CONF_BSET_READ_TOC_ADDR_BCD 793 | SD_CONF_BSET_NO_READ_HEADER 794 | SD_CONF_BSET_READ_CD_XD4 795 | SD_CONF_BSET_RST_RETRIES 796 | SD_CONF_BSET_RSV_REL_TIME 797 | SD_CONF_BSET_TUR_CHECK), &tst_properties}, 798 #endif 799 }; 800 801 static const int sd_disk_table_size = 802 sizeof (sd_disk_table)/ sizeof (sd_disk_config_t); 803 804 /* 805 * Emulation mode disk drive VID/PID table 806 */ 807 static char sd_flash_dev_table[][25] = { 808 "ATA MARVELL SD88SA02", 809 "MARVELL SD88SA02", 810 "TOSHIBA THNSNV05", 811 }; 812 813 static const int sd_flash_dev_table_size = 814 sizeof (sd_flash_dev_table) / sizeof (sd_flash_dev_table[0]); 815 816 #define SD_INTERCONNECT_PARALLEL 0 817 #define SD_INTERCONNECT_FABRIC 1 818 #define SD_INTERCONNECT_FIBRE 2 819 #define SD_INTERCONNECT_SSA 3 820 #define SD_INTERCONNECT_SATA 4 821 #define SD_INTERCONNECT_SAS 5 822 823 #define SD_IS_PARALLEL_SCSI(un) \ 824 ((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL) 825 #define SD_IS_SERIAL(un) \ 826 (((un)->un_interconnect_type == SD_INTERCONNECT_SATA) ||\ 827 ((un)->un_interconnect_type == SD_INTERCONNECT_SAS)) 828 829 /* 830 * Definitions used by device id registration routines 831 */ 832 #define VPD_HEAD_OFFSET 3 /* size of head for vpd page */ 833 #define VPD_PAGE_LENGTH 3 /* offset for pge length data */ 834 #define VPD_MODE_PAGE 1 /* offset into vpd pg for "page code" */ 835 836 static kmutex_t sd_sense_mutex = {0}; 837 838 /* 839 * Macros for updates of the driver state 840 */ 841 #define New_state(un, s) \ 842 (un)->un_last_state = (un)->un_state, (un)->un_state = (s) 843 #define Restore_state(un) \ 844 { uchar_t tmp = (un)->un_last_state; New_state((un), tmp); } 845 846 static struct sd_cdbinfo sd_cdbtab[] = { 847 { CDB_GROUP0, 0x00, 0x1FFFFF, 0xFF, }, 848 { CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF, }, 849 { CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF, }, 850 { CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, }, 851 }; 852 853 /* 854 * Specifies the number of seconds that must have elapsed since the last 855 * cmd. has completed for a device to be declared idle to the PM framework. 856 */ 857 static int sd_pm_idletime = 1; 858 859 /* 860 * Internal function prototypes 861 */ 862 863 #if (defined(__fibre)) 864 /* 865 * These #defines are to avoid namespace collisions that occur because this 866 * code is currently used to compile two separate driver modules: sd and ssd. 867 * All function names need to be treated this way (even if declared static) 868 * in order to allow the debugger to resolve the names properly. 869 * It is anticipated that in the near future the ssd module will be obsoleted, 870 * at which time this ugliness should go away. 871 */ 872 #define sd_log_trace ssd_log_trace 873 #define sd_log_info ssd_log_info 874 #define sd_log_err ssd_log_err 875 #define sdprobe ssdprobe 876 #define sdinfo ssdinfo 877 #define sd_prop_op ssd_prop_op 878 #define sd_scsi_probe_cache_init ssd_scsi_probe_cache_init 879 #define sd_scsi_probe_cache_fini ssd_scsi_probe_cache_fini 880 #define sd_scsi_clear_probe_cache ssd_scsi_clear_probe_cache 881 #define sd_scsi_probe_with_cache ssd_scsi_probe_with_cache 882 #define sd_scsi_target_lun_init ssd_scsi_target_lun_init 883 #define sd_scsi_target_lun_fini ssd_scsi_target_lun_fini 884 #define sd_scsi_get_target_lun_count ssd_scsi_get_target_lun_count 885 #define sd_scsi_update_lun_on_target ssd_scsi_update_lun_on_target 886 #define sd_spin_up_unit ssd_spin_up_unit 887 #define sd_enable_descr_sense ssd_enable_descr_sense 888 #define sd_reenable_dsense_task ssd_reenable_dsense_task 889 #define sd_set_mmc_caps ssd_set_mmc_caps 890 #define sd_read_unit_properties ssd_read_unit_properties 891 #define sd_process_sdconf_file ssd_process_sdconf_file 892 #define sd_process_sdconf_table ssd_process_sdconf_table 893 #define sd_sdconf_id_match ssd_sdconf_id_match 894 #define sd_blank_cmp ssd_blank_cmp 895 #define sd_chk_vers1_data ssd_chk_vers1_data 896 #define sd_set_vers1_properties ssd_set_vers1_properties 897 #define sd_check_solid_state ssd_check_solid_state 898 #define sd_check_emulation_mode ssd_check_emulation_mode 899 900 #define sd_get_physical_geometry ssd_get_physical_geometry 901 #define sd_get_virtual_geometry ssd_get_virtual_geometry 902 #define sd_update_block_info ssd_update_block_info 903 #define sd_register_devid ssd_register_devid 904 #define sd_get_devid ssd_get_devid 905 #define sd_create_devid ssd_create_devid 906 #define sd_write_deviceid ssd_write_deviceid 907 #define sd_check_vpd_page_support ssd_check_vpd_page_support 908 #define sd_setup_pm ssd_setup_pm 909 #define sd_create_pm_components ssd_create_pm_components 910 #define sd_ddi_suspend ssd_ddi_suspend 911 #define sd_ddi_resume ssd_ddi_resume 912 #define sd_pm_state_change ssd_pm_state_change 913 #define sdpower ssdpower 914 #define sdattach ssdattach 915 #define sddetach ssddetach 916 #define sd_unit_attach ssd_unit_attach 917 #define sd_unit_detach ssd_unit_detach 918 #define sd_set_unit_attributes ssd_set_unit_attributes 919 #define sd_create_errstats ssd_create_errstats 920 #define sd_set_errstats ssd_set_errstats 921 #define sd_set_pstats ssd_set_pstats 922 #define sddump ssddump 923 #define sd_scsi_poll ssd_scsi_poll 924 #define sd_send_polled_RQS ssd_send_polled_RQS 925 #define sd_ddi_scsi_poll ssd_ddi_scsi_poll 926 #define sd_init_event_callbacks ssd_init_event_callbacks 927 #define sd_event_callback ssd_event_callback 928 #define sd_cache_control ssd_cache_control 929 #define sd_get_write_cache_enabled ssd_get_write_cache_enabled 930 #define sd_get_nv_sup ssd_get_nv_sup 931 #define sd_make_device ssd_make_device 932 #define sdopen ssdopen 933 #define sdclose ssdclose 934 #define sd_ready_and_valid ssd_ready_and_valid 935 #define sdmin ssdmin 936 #define sdread ssdread 937 #define sdwrite ssdwrite 938 #define sdaread ssdaread 939 #define sdawrite ssdawrite 940 #define sdstrategy ssdstrategy 941 #define sdioctl ssdioctl 942 #define sd_mapblockaddr_iostart ssd_mapblockaddr_iostart 943 #define sd_mapblocksize_iostart ssd_mapblocksize_iostart 944 #define sd_checksum_iostart ssd_checksum_iostart 945 #define sd_checksum_uscsi_iostart ssd_checksum_uscsi_iostart 946 #define sd_pm_iostart ssd_pm_iostart 947 #define sd_core_iostart ssd_core_iostart 948 #define sd_mapblockaddr_iodone ssd_mapblockaddr_iodone 949 #define sd_mapblocksize_iodone ssd_mapblocksize_iodone 950 #define sd_checksum_iodone ssd_checksum_iodone 951 #define sd_checksum_uscsi_iodone ssd_checksum_uscsi_iodone 952 #define sd_pm_iodone ssd_pm_iodone 953 #define sd_initpkt_for_buf ssd_initpkt_for_buf 954 #define sd_destroypkt_for_buf ssd_destroypkt_for_buf 955 #define sd_setup_rw_pkt ssd_setup_rw_pkt 956 #define sd_setup_next_rw_pkt ssd_setup_next_rw_pkt 957 #define sd_buf_iodone ssd_buf_iodone 958 #define sd_uscsi_strategy ssd_uscsi_strategy 959 #define sd_initpkt_for_uscsi ssd_initpkt_for_uscsi 960 #define sd_destroypkt_for_uscsi ssd_destroypkt_for_uscsi 961 #define sd_uscsi_iodone ssd_uscsi_iodone 962 #define sd_xbuf_strategy ssd_xbuf_strategy 963 #define sd_xbuf_init ssd_xbuf_init 964 #define sd_pm_entry ssd_pm_entry 965 #define sd_pm_exit ssd_pm_exit 966 967 #define sd_pm_idletimeout_handler ssd_pm_idletimeout_handler 968 #define sd_pm_timeout_handler ssd_pm_timeout_handler 969 970 #define sd_add_buf_to_waitq ssd_add_buf_to_waitq 971 #define sdintr ssdintr 972 #define sd_start_cmds ssd_start_cmds 973 #define sd_send_scsi_cmd ssd_send_scsi_cmd 974 #define sd_bioclone_alloc ssd_bioclone_alloc 975 #define sd_bioclone_free ssd_bioclone_free 976 #define sd_shadow_buf_alloc ssd_shadow_buf_alloc 977 #define sd_shadow_buf_free ssd_shadow_buf_free 978 #define sd_print_transport_rejected_message \ 979 ssd_print_transport_rejected_message 980 #define sd_retry_command ssd_retry_command 981 #define sd_set_retry_bp ssd_set_retry_bp 982 #define sd_send_request_sense_command ssd_send_request_sense_command 983 #define sd_start_retry_command ssd_start_retry_command 984 #define sd_start_direct_priority_command \ 985 ssd_start_direct_priority_command 986 #define sd_return_failed_command ssd_return_failed_command 987 #define sd_return_failed_command_no_restart \ 988 ssd_return_failed_command_no_restart 989 #define sd_return_command ssd_return_command 990 #define sd_sync_with_callback ssd_sync_with_callback 991 #define sdrunout ssdrunout 992 #define sd_mark_rqs_busy ssd_mark_rqs_busy 993 #define sd_mark_rqs_idle ssd_mark_rqs_idle 994 #define sd_reduce_throttle ssd_reduce_throttle 995 #define sd_restore_throttle ssd_restore_throttle 996 #define sd_print_incomplete_msg ssd_print_incomplete_msg 997 #define sd_init_cdb_limits ssd_init_cdb_limits 998 #define sd_pkt_status_good ssd_pkt_status_good 999 #define sd_pkt_status_check_condition ssd_pkt_status_check_condition 1000 #define sd_pkt_status_busy ssd_pkt_status_busy 1001 #define sd_pkt_status_reservation_conflict \ 1002 ssd_pkt_status_reservation_conflict 1003 #define sd_pkt_status_qfull ssd_pkt_status_qfull 1004 #define sd_handle_request_sense ssd_handle_request_sense 1005 #define sd_handle_auto_request_sense ssd_handle_auto_request_sense 1006 #define sd_print_sense_failed_msg ssd_print_sense_failed_msg 1007 #define sd_validate_sense_data ssd_validate_sense_data 1008 #define sd_decode_sense ssd_decode_sense 1009 #define sd_print_sense_msg ssd_print_sense_msg 1010 #define sd_sense_key_no_sense ssd_sense_key_no_sense 1011 #define sd_sense_key_recoverable_error ssd_sense_key_recoverable_error 1012 #define sd_sense_key_not_ready ssd_sense_key_not_ready 1013 #define sd_sense_key_medium_or_hardware_error \ 1014 ssd_sense_key_medium_or_hardware_error 1015 #define sd_sense_key_illegal_request ssd_sense_key_illegal_request 1016 #define sd_sense_key_unit_attention ssd_sense_key_unit_attention 1017 #define sd_sense_key_fail_command ssd_sense_key_fail_command 1018 #define sd_sense_key_blank_check ssd_sense_key_blank_check 1019 #define sd_sense_key_aborted_command ssd_sense_key_aborted_command 1020 #define sd_sense_key_default ssd_sense_key_default 1021 #define sd_print_retry_msg ssd_print_retry_msg 1022 #define sd_print_cmd_incomplete_msg ssd_print_cmd_incomplete_msg 1023 #define sd_pkt_reason_cmd_incomplete ssd_pkt_reason_cmd_incomplete 1024 #define sd_pkt_reason_cmd_tran_err ssd_pkt_reason_cmd_tran_err 1025 #define sd_pkt_reason_cmd_reset ssd_pkt_reason_cmd_reset 1026 #define sd_pkt_reason_cmd_aborted ssd_pkt_reason_cmd_aborted 1027 #define sd_pkt_reason_cmd_timeout ssd_pkt_reason_cmd_timeout 1028 #define sd_pkt_reason_cmd_unx_bus_free ssd_pkt_reason_cmd_unx_bus_free 1029 #define sd_pkt_reason_cmd_tag_reject ssd_pkt_reason_cmd_tag_reject 1030 #define sd_pkt_reason_default ssd_pkt_reason_default 1031 #define sd_reset_target ssd_reset_target 1032 #define sd_start_stop_unit_callback ssd_start_stop_unit_callback 1033 #define sd_start_stop_unit_task ssd_start_stop_unit_task 1034 #define sd_taskq_create ssd_taskq_create 1035 #define sd_taskq_delete ssd_taskq_delete 1036 #define sd_target_change_task ssd_target_change_task 1037 #define sd_log_dev_status_event ssd_log_dev_status_event 1038 #define sd_log_lun_expansion_event ssd_log_lun_expansion_event 1039 #define sd_log_eject_request_event ssd_log_eject_request_event 1040 #define sd_media_change_task ssd_media_change_task 1041 #define sd_handle_mchange ssd_handle_mchange 1042 #define sd_send_scsi_DOORLOCK ssd_send_scsi_DOORLOCK 1043 #define sd_send_scsi_READ_CAPACITY ssd_send_scsi_READ_CAPACITY 1044 #define sd_send_scsi_READ_CAPACITY_16 ssd_send_scsi_READ_CAPACITY_16 1045 #define sd_send_scsi_GET_CONFIGURATION ssd_send_scsi_GET_CONFIGURATION 1046 #define sd_send_scsi_feature_GET_CONFIGURATION \ 1047 sd_send_scsi_feature_GET_CONFIGURATION 1048 #define sd_send_scsi_START_STOP_UNIT ssd_send_scsi_START_STOP_UNIT 1049 #define sd_send_scsi_INQUIRY ssd_send_scsi_INQUIRY 1050 #define sd_send_scsi_TEST_UNIT_READY ssd_send_scsi_TEST_UNIT_READY 1051 #define sd_send_scsi_PERSISTENT_RESERVE_IN \ 1052 ssd_send_scsi_PERSISTENT_RESERVE_IN 1053 #define sd_send_scsi_PERSISTENT_RESERVE_OUT \ 1054 ssd_send_scsi_PERSISTENT_RESERVE_OUT 1055 #define sd_send_scsi_SYNCHRONIZE_CACHE ssd_send_scsi_SYNCHRONIZE_CACHE 1056 #define sd_send_scsi_SYNCHRONIZE_CACHE_biodone \ 1057 ssd_send_scsi_SYNCHRONIZE_CACHE_biodone 1058 #define sd_send_scsi_MODE_SENSE ssd_send_scsi_MODE_SENSE 1059 #define sd_send_scsi_MODE_SELECT ssd_send_scsi_MODE_SELECT 1060 #define sd_send_scsi_RDWR ssd_send_scsi_RDWR 1061 #define sd_send_scsi_LOG_SENSE ssd_send_scsi_LOG_SENSE 1062 #define sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION \ 1063 ssd_send_scsi_GET_EVENT_STATUS_NOTIFICATION 1064 #define sd_gesn_media_data_valid ssd_gesn_media_data_valid 1065 #define sd_alloc_rqs ssd_alloc_rqs 1066 #define sd_free_rqs ssd_free_rqs 1067 #define sd_dump_memory ssd_dump_memory 1068 #define sd_get_media_info_com ssd_get_media_info_com 1069 #define sd_get_media_info ssd_get_media_info 1070 #define sd_get_media_info_ext ssd_get_media_info_ext 1071 #define sd_dkio_ctrl_info ssd_dkio_ctrl_info 1072 #define sd_nvpair_str_decode ssd_nvpair_str_decode 1073 #define sd_strtok_r ssd_strtok_r 1074 #define sd_set_properties ssd_set_properties 1075 #define sd_get_tunables_from_conf ssd_get_tunables_from_conf 1076 #define sd_setup_next_xfer ssd_setup_next_xfer 1077 #define sd_dkio_get_temp ssd_dkio_get_temp 1078 #define sd_check_mhd ssd_check_mhd 1079 #define sd_mhd_watch_cb ssd_mhd_watch_cb 1080 #define sd_mhd_watch_incomplete ssd_mhd_watch_incomplete 1081 #define sd_sname ssd_sname 1082 #define sd_mhd_resvd_recover ssd_mhd_resvd_recover 1083 #define sd_resv_reclaim_thread ssd_resv_reclaim_thread 1084 #define sd_take_ownership ssd_take_ownership 1085 #define sd_reserve_release ssd_reserve_release 1086 #define sd_rmv_resv_reclaim_req ssd_rmv_resv_reclaim_req 1087 #define sd_mhd_reset_notify_cb ssd_mhd_reset_notify_cb 1088 #define sd_persistent_reservation_in_read_keys \ 1089 ssd_persistent_reservation_in_read_keys 1090 #define sd_persistent_reservation_in_read_resv \ 1091 ssd_persistent_reservation_in_read_resv 1092 #define sd_mhdioc_takeown ssd_mhdioc_takeown 1093 #define sd_mhdioc_failfast ssd_mhdioc_failfast 1094 #define sd_mhdioc_release ssd_mhdioc_release 1095 #define sd_mhdioc_register_devid ssd_mhdioc_register_devid 1096 #define sd_mhdioc_inkeys ssd_mhdioc_inkeys 1097 #define sd_mhdioc_inresv ssd_mhdioc_inresv 1098 #define sr_change_blkmode ssr_change_blkmode 1099 #define sr_change_speed ssr_change_speed 1100 #define sr_atapi_change_speed ssr_atapi_change_speed 1101 #define sr_pause_resume ssr_pause_resume 1102 #define sr_play_msf ssr_play_msf 1103 #define sr_play_trkind ssr_play_trkind 1104 #define sr_read_all_subcodes ssr_read_all_subcodes 1105 #define sr_read_subchannel ssr_read_subchannel 1106 #define sr_read_tocentry ssr_read_tocentry 1107 #define sr_read_tochdr ssr_read_tochdr 1108 #define sr_read_cdda ssr_read_cdda 1109 #define sr_read_cdxa ssr_read_cdxa 1110 #define sr_read_mode1 ssr_read_mode1 1111 #define sr_read_mode2 ssr_read_mode2 1112 #define sr_read_cd_mode2 ssr_read_cd_mode2 1113 #define sr_sector_mode ssr_sector_mode 1114 #define sr_eject ssr_eject 1115 #define sr_ejected ssr_ejected 1116 #define sr_check_wp ssr_check_wp 1117 #define sd_watch_request_submit ssd_watch_request_submit 1118 #define sd_check_media ssd_check_media 1119 #define sd_media_watch_cb ssd_media_watch_cb 1120 #define sd_delayed_cv_broadcast ssd_delayed_cv_broadcast 1121 #define sr_volume_ctrl ssr_volume_ctrl 1122 #define sr_read_sony_session_offset ssr_read_sony_session_offset 1123 #define sd_log_page_supported ssd_log_page_supported 1124 #define sd_check_for_writable_cd ssd_check_for_writable_cd 1125 #define sd_wm_cache_constructor ssd_wm_cache_constructor 1126 #define sd_wm_cache_destructor ssd_wm_cache_destructor 1127 #define sd_range_lock ssd_range_lock 1128 #define sd_get_range ssd_get_range 1129 #define sd_free_inlist_wmap ssd_free_inlist_wmap 1130 #define sd_range_unlock ssd_range_unlock 1131 #define sd_read_modify_write_task ssd_read_modify_write_task 1132 #define sddump_do_read_of_rmw ssddump_do_read_of_rmw 1133 1134 #define sd_iostart_chain ssd_iostart_chain 1135 #define sd_iodone_chain ssd_iodone_chain 1136 #define sd_initpkt_map ssd_initpkt_map 1137 #define sd_destroypkt_map ssd_destroypkt_map 1138 #define sd_chain_type_map ssd_chain_type_map 1139 #define sd_chain_index_map ssd_chain_index_map 1140 1141 #define sd_failfast_flushctl ssd_failfast_flushctl 1142 #define sd_failfast_flushq ssd_failfast_flushq 1143 #define sd_failfast_flushq_callback ssd_failfast_flushq_callback 1144 1145 #define sd_is_lsi ssd_is_lsi 1146 #define sd_tg_rdwr ssd_tg_rdwr 1147 #define sd_tg_getinfo ssd_tg_getinfo 1148 #define sd_rmw_msg_print_handler ssd_rmw_msg_print_handler 1149 1150 #endif /* #if (defined(__fibre)) */ 1151 1152 1153 int _init(void); 1154 int _fini(void); 1155 int _info(struct modinfo *modinfop); 1156 1157 /*PRINTFLIKE3*/ 1158 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1159 /*PRINTFLIKE3*/ 1160 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1161 /*PRINTFLIKE3*/ 1162 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1163 1164 static int sdprobe(dev_info_t *devi); 1165 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, 1166 void **result); 1167 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 1168 int mod_flags, char *name, caddr_t valuep, int *lengthp); 1169 1170 /* 1171 * Smart probe for parallel scsi 1172 */ 1173 static void sd_scsi_probe_cache_init(void); 1174 static void sd_scsi_probe_cache_fini(void); 1175 static void sd_scsi_clear_probe_cache(void); 1176 static int sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)()); 1177 1178 /* 1179 * Attached luns on target for parallel scsi 1180 */ 1181 static void sd_scsi_target_lun_init(void); 1182 static void sd_scsi_target_lun_fini(void); 1183 static int sd_scsi_get_target_lun_count(dev_info_t *dip, int target); 1184 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag); 1185 1186 static int sd_spin_up_unit(sd_ssc_t *ssc); 1187 1188 /* 1189 * Using sd_ssc_init to establish sd_ssc_t struct 1190 * Using sd_ssc_send to send uscsi internal command 1191 * Using sd_ssc_fini to free sd_ssc_t struct 1192 */ 1193 static sd_ssc_t *sd_ssc_init(struct sd_lun *un); 1194 static int sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, 1195 int flag, enum uio_seg dataspace, int path_flag); 1196 static void sd_ssc_fini(sd_ssc_t *ssc); 1197 1198 /* 1199 * Using sd_ssc_assessment to set correct type-of-assessment 1200 * Using sd_ssc_post to post ereport & system log 1201 * sd_ssc_post will call sd_ssc_print to print system log 1202 * sd_ssc_post will call sd_ssd_ereport_post to post ereport 1203 */ 1204 static void sd_ssc_assessment(sd_ssc_t *ssc, 1205 enum sd_type_assessment tp_assess); 1206 1207 static void sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess); 1208 static void sd_ssc_print(sd_ssc_t *ssc, int sd_severity); 1209 static void sd_ssc_ereport_post(sd_ssc_t *ssc, 1210 enum sd_driver_assessment drv_assess); 1211 1212 /* 1213 * Using sd_ssc_set_info to mark an un-decodable-data error. 1214 * Using sd_ssc_extract_info to transfer information from internal 1215 * data structures to sd_ssc_t. 1216 */ 1217 static void sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp, 1218 const char *fmt, ...); 1219 static void sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, 1220 struct scsi_pkt *pktp, struct buf *bp, struct sd_xbuf *xp); 1221 1222 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag, 1223 enum uio_seg dataspace, int path_flag); 1224 1225 #ifdef _LP64 1226 static void sd_enable_descr_sense(sd_ssc_t *ssc); 1227 static void sd_reenable_dsense_task(void *arg); 1228 #endif /* _LP64 */ 1229 1230 static void sd_set_mmc_caps(sd_ssc_t *ssc); 1231 1232 static void sd_read_unit_properties(struct sd_lun *un); 1233 static int sd_process_sdconf_file(struct sd_lun *un); 1234 static void sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str); 1235 static char *sd_strtok_r(char *string, const char *sepset, char **lasts); 1236 static void sd_set_properties(struct sd_lun *un, char *name, char *value); 1237 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags, 1238 int *data_list, sd_tunables *values); 1239 static void sd_process_sdconf_table(struct sd_lun *un); 1240 static int sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen); 1241 static int sd_blank_cmp(struct sd_lun *un, char *id, int idlen); 1242 static int sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list, 1243 int list_len, char *dataname_ptr); 1244 static void sd_set_vers1_properties(struct sd_lun *un, int flags, 1245 sd_tunables *prop_list); 1246 1247 static void sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, 1248 int reservation_flag); 1249 static int sd_get_devid(sd_ssc_t *ssc); 1250 static ddi_devid_t sd_create_devid(sd_ssc_t *ssc); 1251 static int sd_write_deviceid(sd_ssc_t *ssc); 1252 static int sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len); 1253 static int sd_check_vpd_page_support(sd_ssc_t *ssc); 1254 1255 static void sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi); 1256 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un); 1257 1258 static int sd_ddi_suspend(dev_info_t *devi); 1259 static int sd_ddi_resume(dev_info_t *devi); 1260 static int sd_pm_state_change(struct sd_lun *un, int level, int flag); 1261 static int sdpower(dev_info_t *devi, int component, int level); 1262 1263 static int sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd); 1264 static int sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd); 1265 static int sd_unit_attach(dev_info_t *devi); 1266 static int sd_unit_detach(dev_info_t *devi); 1267 1268 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi); 1269 static void sd_create_errstats(struct sd_lun *un, int instance); 1270 static void sd_set_errstats(struct sd_lun *un); 1271 static void sd_set_pstats(struct sd_lun *un); 1272 1273 static int sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk); 1274 static int sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt); 1275 static int sd_send_polled_RQS(struct sd_lun *un); 1276 static int sd_ddi_scsi_poll(struct scsi_pkt *pkt); 1277 1278 #if (defined(__fibre)) 1279 /* 1280 * Event callbacks (photon) 1281 */ 1282 static void sd_init_event_callbacks(struct sd_lun *un); 1283 static void sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *); 1284 #endif 1285 1286 /* 1287 * Defines for sd_cache_control 1288 */ 1289 1290 #define SD_CACHE_ENABLE 1 1291 #define SD_CACHE_DISABLE 0 1292 #define SD_CACHE_NOCHANGE -1 1293 1294 static int sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag); 1295 static int sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled); 1296 static void sd_get_nv_sup(sd_ssc_t *ssc); 1297 static dev_t sd_make_device(dev_info_t *devi); 1298 static void sd_check_solid_state(sd_ssc_t *ssc); 1299 static void sd_check_emulation_mode(sd_ssc_t *ssc); 1300 static void sd_update_block_info(struct sd_lun *un, uint32_t lbasize, 1301 uint64_t capacity); 1302 1303 /* 1304 * Driver entry point functions. 1305 */ 1306 static int sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p); 1307 static int sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p); 1308 static int sd_ready_and_valid(sd_ssc_t *ssc, int part); 1309 1310 static void sdmin(struct buf *bp); 1311 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p); 1312 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p); 1313 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p); 1314 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p); 1315 1316 static int sdstrategy(struct buf *bp); 1317 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *); 1318 1319 /* 1320 * Function prototypes for layering functions in the iostart chain. 1321 */ 1322 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un, 1323 struct buf *bp); 1324 static void sd_mapblocksize_iostart(int index, struct sd_lun *un, 1325 struct buf *bp); 1326 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp); 1327 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un, 1328 struct buf *bp); 1329 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp); 1330 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp); 1331 1332 /* 1333 * Function prototypes for layering functions in the iodone chain. 1334 */ 1335 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp); 1336 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp); 1337 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un, 1338 struct buf *bp); 1339 static void sd_mapblocksize_iodone(int index, struct sd_lun *un, 1340 struct buf *bp); 1341 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp); 1342 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un, 1343 struct buf *bp); 1344 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp); 1345 1346 /* 1347 * Prototypes for functions to support buf(9S) based IO. 1348 */ 1349 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg); 1350 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **); 1351 static void sd_destroypkt_for_buf(struct buf *); 1352 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp, 1353 struct buf *bp, int flags, 1354 int (*callback)(caddr_t), caddr_t callback_arg, 1355 diskaddr_t lba, uint32_t blockcount); 1356 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp, 1357 struct buf *bp, diskaddr_t lba, uint32_t blockcount); 1358 1359 /* 1360 * Prototypes for functions to support USCSI IO. 1361 */ 1362 static int sd_uscsi_strategy(struct buf *bp); 1363 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **); 1364 static void sd_destroypkt_for_uscsi(struct buf *); 1365 1366 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 1367 uchar_t chain_type, void *pktinfop); 1368 1369 static int sd_pm_entry(struct sd_lun *un); 1370 static void sd_pm_exit(struct sd_lun *un); 1371 1372 static void sd_pm_idletimeout_handler(void *arg); 1373 1374 /* 1375 * sd_core internal functions (used at the sd_core_io layer). 1376 */ 1377 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp); 1378 static void sdintr(struct scsi_pkt *pktp); 1379 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp); 1380 1381 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag, 1382 enum uio_seg dataspace, int path_flag); 1383 1384 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen, 1385 daddr_t blkno, int (*func)(struct buf *)); 1386 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen, 1387 uint_t bflags, daddr_t blkno, int (*func)(struct buf *)); 1388 static void sd_bioclone_free(struct buf *bp); 1389 static void sd_shadow_buf_free(struct buf *bp); 1390 1391 static void sd_print_transport_rejected_message(struct sd_lun *un, 1392 struct sd_xbuf *xp, int code); 1393 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, 1394 void *arg, int code); 1395 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, 1396 void *arg, int code); 1397 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, 1398 void *arg, int code); 1399 1400 static void sd_retry_command(struct sd_lun *un, struct buf *bp, 1401 int retry_check_flag, 1402 void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, 1403 int c), 1404 void *user_arg, int failure_code, clock_t retry_delay, 1405 void (*statp)(kstat_io_t *)); 1406 1407 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp, 1408 clock_t retry_delay, void (*statp)(kstat_io_t *)); 1409 1410 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp, 1411 struct scsi_pkt *pktp); 1412 static void sd_start_retry_command(void *arg); 1413 static void sd_start_direct_priority_command(void *arg); 1414 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp, 1415 int errcode); 1416 static void sd_return_failed_command_no_restart(struct sd_lun *un, 1417 struct buf *bp, int errcode); 1418 static void sd_return_command(struct sd_lun *un, struct buf *bp); 1419 static void sd_sync_with_callback(struct sd_lun *un); 1420 static int sdrunout(caddr_t arg); 1421 1422 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp); 1423 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp); 1424 1425 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type); 1426 static void sd_restore_throttle(void *arg); 1427 1428 static void sd_init_cdb_limits(struct sd_lun *un); 1429 1430 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp, 1431 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1432 1433 /* 1434 * Error handling functions 1435 */ 1436 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp, 1437 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1438 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, 1439 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1440 static void sd_pkt_status_reservation_conflict(struct sd_lun *un, 1441 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1442 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp, 1443 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1444 1445 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp, 1446 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1447 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp, 1448 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1449 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp, 1450 struct sd_xbuf *xp, size_t actual_len); 1451 static void sd_decode_sense(struct sd_lun *un, struct buf *bp, 1452 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1453 1454 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp, 1455 void *arg, int code); 1456 1457 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp, 1458 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1459 static void sd_sense_key_recoverable_error(struct sd_lun *un, 1460 uint8_t *sense_datap, 1461 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1462 static void sd_sense_key_not_ready(struct sd_lun *un, 1463 uint8_t *sense_datap, 1464 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1465 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un, 1466 uint8_t *sense_datap, 1467 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1468 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp, 1469 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1470 static void sd_sense_key_unit_attention(struct sd_lun *un, 1471 uint8_t *sense_datap, 1472 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1473 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp, 1474 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1475 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp, 1476 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1477 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp, 1478 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1479 static void sd_sense_key_default(struct sd_lun *un, 1480 uint8_t *sense_datap, 1481 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1482 1483 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp, 1484 void *arg, int flag); 1485 1486 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp, 1487 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1488 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp, 1489 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1490 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp, 1491 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1492 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp, 1493 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1494 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp, 1495 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1496 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp, 1497 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1498 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp, 1499 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1500 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp, 1501 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1502 1503 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp); 1504 1505 static void sd_start_stop_unit_callback(void *arg); 1506 static void sd_start_stop_unit_task(void *arg); 1507 1508 static void sd_taskq_create(void); 1509 static void sd_taskq_delete(void); 1510 static void sd_target_change_task(void *arg); 1511 static void sd_log_dev_status_event(struct sd_lun *un, char *esc, int km_flag); 1512 static void sd_log_lun_expansion_event(struct sd_lun *un, int km_flag); 1513 static void sd_log_eject_request_event(struct sd_lun *un, int km_flag); 1514 static void sd_media_change_task(void *arg); 1515 1516 static int sd_handle_mchange(struct sd_lun *un); 1517 static int sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag); 1518 static int sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, 1519 uint32_t *lbap, int path_flag); 1520 static int sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp, 1521 uint32_t *lbap, uint32_t *psp, int path_flag); 1522 static int sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag, 1523 int flag, int path_flag); 1524 static int sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, 1525 size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp); 1526 static int sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag); 1527 static int sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, 1528 uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp); 1529 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, 1530 uchar_t usr_cmd, uchar_t *usr_bufp); 1531 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, 1532 struct dk_callback *dkc); 1533 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp); 1534 static int sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, 1535 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 1536 uchar_t *bufaddr, uint_t buflen, int path_flag); 1537 static int sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc, 1538 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 1539 uchar_t *bufaddr, uint_t buflen, char feature, int path_flag); 1540 static int sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, 1541 uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag); 1542 static int sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, 1543 uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag); 1544 static int sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr, 1545 size_t buflen, daddr_t start_block, int path_flag); 1546 #define sd_send_scsi_READ(ssc, bufaddr, buflen, start_block, path_flag) \ 1547 sd_send_scsi_RDWR(ssc, SCMD_READ, bufaddr, buflen, start_block, \ 1548 path_flag) 1549 #define sd_send_scsi_WRITE(ssc, bufaddr, buflen, start_block, path_flag)\ 1550 sd_send_scsi_RDWR(ssc, SCMD_WRITE, bufaddr, buflen, start_block,\ 1551 path_flag) 1552 1553 static int sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, 1554 uint16_t buflen, uchar_t page_code, uchar_t page_control, 1555 uint16_t param_ptr, int path_flag); 1556 static int sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(sd_ssc_t *ssc, 1557 uchar_t *bufaddr, size_t buflen, uchar_t class_req); 1558 static boolean_t sd_gesn_media_data_valid(uchar_t *data); 1559 1560 static int sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un); 1561 static void sd_free_rqs(struct sd_lun *un); 1562 1563 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, 1564 uchar_t *data, int len, int fmt); 1565 static void sd_panic_for_res_conflict(struct sd_lun *un); 1566 1567 /* 1568 * Disk Ioctl Function Prototypes 1569 */ 1570 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag); 1571 static int sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag); 1572 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag); 1573 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag); 1574 1575 /* 1576 * Multi-host Ioctl Prototypes 1577 */ 1578 static int sd_check_mhd(dev_t dev, int interval); 1579 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp); 1580 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt); 1581 static char *sd_sname(uchar_t status); 1582 static void sd_mhd_resvd_recover(void *arg); 1583 static void sd_resv_reclaim_thread(); 1584 static int sd_take_ownership(dev_t dev, struct mhioctkown *p); 1585 static int sd_reserve_release(dev_t dev, int cmd); 1586 static void sd_rmv_resv_reclaim_req(dev_t dev); 1587 static void sd_mhd_reset_notify_cb(caddr_t arg); 1588 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un, 1589 mhioc_inkeys_t *usrp, int flag); 1590 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un, 1591 mhioc_inresvs_t *usrp, int flag); 1592 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag); 1593 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag); 1594 static int sd_mhdioc_release(dev_t dev); 1595 static int sd_mhdioc_register_devid(dev_t dev); 1596 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag); 1597 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag); 1598 1599 /* 1600 * SCSI removable prototypes 1601 */ 1602 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag); 1603 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag); 1604 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag); 1605 static int sr_pause_resume(dev_t dev, int mode); 1606 static int sr_play_msf(dev_t dev, caddr_t data, int flag); 1607 static int sr_play_trkind(dev_t dev, caddr_t data, int flag); 1608 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag); 1609 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag); 1610 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag); 1611 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag); 1612 static int sr_read_cdda(dev_t dev, caddr_t data, int flag); 1613 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag); 1614 static int sr_read_mode1(dev_t dev, caddr_t data, int flag); 1615 static int sr_read_mode2(dev_t dev, caddr_t data, int flag); 1616 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag); 1617 static int sr_sector_mode(dev_t dev, uint32_t blksize); 1618 static int sr_eject(dev_t dev); 1619 static void sr_ejected(register struct sd_lun *un); 1620 static int sr_check_wp(dev_t dev); 1621 static opaque_t sd_watch_request_submit(struct sd_lun *un); 1622 static int sd_check_media(dev_t dev, enum dkio_state state); 1623 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp); 1624 static void sd_delayed_cv_broadcast(void *arg); 1625 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag); 1626 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag); 1627 1628 static int sd_log_page_supported(sd_ssc_t *ssc, int log_page); 1629 1630 /* 1631 * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions. 1632 */ 1633 static void sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag); 1634 static int sd_wm_cache_constructor(void *wm, void *un, int flags); 1635 static void sd_wm_cache_destructor(void *wm, void *un); 1636 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb, 1637 daddr_t endb, ushort_t typ); 1638 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb, 1639 daddr_t endb); 1640 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp); 1641 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm); 1642 static void sd_read_modify_write_task(void * arg); 1643 static int 1644 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk, 1645 struct buf **bpp); 1646 1647 1648 /* 1649 * Function prototypes for failfast support. 1650 */ 1651 static void sd_failfast_flushq(struct sd_lun *un); 1652 static int sd_failfast_flushq_callback(struct buf *bp); 1653 1654 /* 1655 * Function prototypes to check for lsi devices 1656 */ 1657 static void sd_is_lsi(struct sd_lun *un); 1658 1659 /* 1660 * Function prototypes for partial DMA support 1661 */ 1662 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp, 1663 struct scsi_pkt *pkt, struct sd_xbuf *xp); 1664 1665 1666 /* Function prototypes for cmlb */ 1667 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr, 1668 diskaddr_t start_block, size_t reqlength, void *tg_cookie); 1669 1670 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie); 1671 1672 /* 1673 * For printing RMW warning message timely 1674 */ 1675 static void sd_rmw_msg_print_handler(void *arg); 1676 1677 /* 1678 * Constants for failfast support: 1679 * 1680 * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO 1681 * failfast processing being performed. 1682 * 1683 * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing 1684 * failfast processing on all bufs with B_FAILFAST set. 1685 */ 1686 1687 #define SD_FAILFAST_INACTIVE 0 1688 #define SD_FAILFAST_ACTIVE 1 1689 1690 /* 1691 * Bitmask to control behavior of buf(9S) flushes when a transition to 1692 * the failfast state occurs. Optional bits include: 1693 * 1694 * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that 1695 * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will 1696 * be flushed. 1697 * 1698 * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the 1699 * driver, in addition to the regular wait queue. This includes the xbuf 1700 * queues. When clear, only the driver's wait queue will be flushed. 1701 */ 1702 #define SD_FAILFAST_FLUSH_ALL_BUFS 0x01 1703 #define SD_FAILFAST_FLUSH_ALL_QUEUES 0x02 1704 1705 /* 1706 * The default behavior is to only flush bufs that have B_FAILFAST set, but 1707 * to flush all queues within the driver. 1708 */ 1709 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES; 1710 1711 1712 /* 1713 * SD Testing Fault Injection 1714 */ 1715 #ifdef SD_FAULT_INJECTION 1716 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un); 1717 static void sd_faultinjection(struct scsi_pkt *pktp); 1718 static void sd_injection_log(char *buf, struct sd_lun *un); 1719 #endif 1720 1721 /* 1722 * Device driver ops vector 1723 */ 1724 static struct cb_ops sd_cb_ops = { 1725 sdopen, /* open */ 1726 sdclose, /* close */ 1727 sdstrategy, /* strategy */ 1728 nodev, /* print */ 1729 sddump, /* dump */ 1730 sdread, /* read */ 1731 sdwrite, /* write */ 1732 sdioctl, /* ioctl */ 1733 nodev, /* devmap */ 1734 nodev, /* mmap */ 1735 nodev, /* segmap */ 1736 nochpoll, /* poll */ 1737 sd_prop_op, /* cb_prop_op */ 1738 0, /* streamtab */ 1739 D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */ 1740 CB_REV, /* cb_rev */ 1741 sdaread, /* async I/O read entry point */ 1742 sdawrite /* async I/O write entry point */ 1743 }; 1744 1745 struct dev_ops sd_ops = { 1746 DEVO_REV, /* devo_rev, */ 1747 0, /* refcnt */ 1748 sdinfo, /* info */ 1749 nulldev, /* identify */ 1750 sdprobe, /* probe */ 1751 sdattach, /* attach */ 1752 sddetach, /* detach */ 1753 nodev, /* reset */ 1754 &sd_cb_ops, /* driver operations */ 1755 NULL, /* bus operations */ 1756 sdpower, /* power */ 1757 ddi_quiesce_not_needed, /* quiesce */ 1758 }; 1759 1760 /* 1761 * This is the loadable module wrapper. 1762 */ 1763 #include <sys/modctl.h> 1764 1765 #ifndef XPV_HVM_DRIVER 1766 static struct modldrv modldrv = { 1767 &mod_driverops, /* Type of module. This one is a driver */ 1768 SD_MODULE_NAME, /* Module name. */ 1769 &sd_ops /* driver ops */ 1770 }; 1771 1772 static struct modlinkage modlinkage = { 1773 MODREV_1, &modldrv, NULL 1774 }; 1775 1776 #else /* XPV_HVM_DRIVER */ 1777 static struct modlmisc modlmisc = { 1778 &mod_miscops, /* Type of module. This one is a misc */ 1779 "HVM " SD_MODULE_NAME, /* Module name. */ 1780 }; 1781 1782 static struct modlinkage modlinkage = { 1783 MODREV_1, &modlmisc, NULL 1784 }; 1785 1786 #endif /* XPV_HVM_DRIVER */ 1787 1788 static cmlb_tg_ops_t sd_tgops = { 1789 TG_DK_OPS_VERSION_1, 1790 sd_tg_rdwr, 1791 sd_tg_getinfo 1792 }; 1793 1794 static struct scsi_asq_key_strings sd_additional_codes[] = { 1795 0x81, 0, "Logical Unit is Reserved", 1796 0x85, 0, "Audio Address Not Valid", 1797 0xb6, 0, "Media Load Mechanism Failed", 1798 0xB9, 0, "Audio Play Operation Aborted", 1799 0xbf, 0, "Buffer Overflow for Read All Subcodes Command", 1800 0x53, 2, "Medium removal prevented", 1801 0x6f, 0, "Authentication failed during key exchange", 1802 0x6f, 1, "Key not present", 1803 0x6f, 2, "Key not established", 1804 0x6f, 3, "Read without proper authentication", 1805 0x6f, 4, "Mismatched region to this logical unit", 1806 0x6f, 5, "Region reset count error", 1807 0xffff, 0x0, NULL 1808 }; 1809 1810 1811 /* 1812 * Struct for passing printing information for sense data messages 1813 */ 1814 struct sd_sense_info { 1815 int ssi_severity; 1816 int ssi_pfa_flag; 1817 }; 1818 1819 /* 1820 * Table of function pointers for iostart-side routines. Separate "chains" 1821 * of layered function calls are formed by placing the function pointers 1822 * sequentially in the desired order. Functions are called according to an 1823 * incrementing table index ordering. The last function in each chain must 1824 * be sd_core_iostart(). The corresponding iodone-side routines are expected 1825 * in the sd_iodone_chain[] array. 1826 * 1827 * Note: It may seem more natural to organize both the iostart and iodone 1828 * functions together, into an array of structures (or some similar 1829 * organization) with a common index, rather than two separate arrays which 1830 * must be maintained in synchronization. The purpose of this division is 1831 * to achieve improved performance: individual arrays allows for more 1832 * effective cache line utilization on certain platforms. 1833 */ 1834 1835 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp); 1836 1837 1838 static sd_chain_t sd_iostart_chain[] = { 1839 1840 /* Chain for buf IO for disk drive targets (PM enabled) */ 1841 sd_mapblockaddr_iostart, /* Index: 0 */ 1842 sd_pm_iostart, /* Index: 1 */ 1843 sd_core_iostart, /* Index: 2 */ 1844 1845 /* Chain for buf IO for disk drive targets (PM disabled) */ 1846 sd_mapblockaddr_iostart, /* Index: 3 */ 1847 sd_core_iostart, /* Index: 4 */ 1848 1849 /* 1850 * Chain for buf IO for removable-media or large sector size 1851 * disk drive targets with RMW needed (PM enabled) 1852 */ 1853 sd_mapblockaddr_iostart, /* Index: 5 */ 1854 sd_mapblocksize_iostart, /* Index: 6 */ 1855 sd_pm_iostart, /* Index: 7 */ 1856 sd_core_iostart, /* Index: 8 */ 1857 1858 /* 1859 * Chain for buf IO for removable-media or large sector size 1860 * disk drive targets with RMW needed (PM disabled) 1861 */ 1862 sd_mapblockaddr_iostart, /* Index: 9 */ 1863 sd_mapblocksize_iostart, /* Index: 10 */ 1864 sd_core_iostart, /* Index: 11 */ 1865 1866 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1867 sd_mapblockaddr_iostart, /* Index: 12 */ 1868 sd_checksum_iostart, /* Index: 13 */ 1869 sd_pm_iostart, /* Index: 14 */ 1870 sd_core_iostart, /* Index: 15 */ 1871 1872 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1873 sd_mapblockaddr_iostart, /* Index: 16 */ 1874 sd_checksum_iostart, /* Index: 17 */ 1875 sd_core_iostart, /* Index: 18 */ 1876 1877 /* Chain for USCSI commands (all targets) */ 1878 sd_pm_iostart, /* Index: 19 */ 1879 sd_core_iostart, /* Index: 20 */ 1880 1881 /* Chain for checksumming USCSI commands (all targets) */ 1882 sd_checksum_uscsi_iostart, /* Index: 21 */ 1883 sd_pm_iostart, /* Index: 22 */ 1884 sd_core_iostart, /* Index: 23 */ 1885 1886 /* Chain for "direct" USCSI commands (all targets) */ 1887 sd_core_iostart, /* Index: 24 */ 1888 1889 /* Chain for "direct priority" USCSI commands (all targets) */ 1890 sd_core_iostart, /* Index: 25 */ 1891 1892 /* 1893 * Chain for buf IO for large sector size disk drive targets 1894 * with RMW needed with checksumming (PM enabled) 1895 */ 1896 sd_mapblockaddr_iostart, /* Index: 26 */ 1897 sd_mapblocksize_iostart, /* Index: 27 */ 1898 sd_checksum_iostart, /* Index: 28 */ 1899 sd_pm_iostart, /* Index: 29 */ 1900 sd_core_iostart, /* Index: 30 */ 1901 1902 /* 1903 * Chain for buf IO for large sector size disk drive targets 1904 * with RMW needed with checksumming (PM disabled) 1905 */ 1906 sd_mapblockaddr_iostart, /* Index: 31 */ 1907 sd_mapblocksize_iostart, /* Index: 32 */ 1908 sd_checksum_iostart, /* Index: 33 */ 1909 sd_core_iostart, /* Index: 34 */ 1910 1911 }; 1912 1913 /* 1914 * Macros to locate the first function of each iostart chain in the 1915 * sd_iostart_chain[] array. These are located by the index in the array. 1916 */ 1917 #define SD_CHAIN_DISK_IOSTART 0 1918 #define SD_CHAIN_DISK_IOSTART_NO_PM 3 1919 #define SD_CHAIN_MSS_DISK_IOSTART 5 1920 #define SD_CHAIN_RMMEDIA_IOSTART 5 1921 #define SD_CHAIN_MSS_DISK_IOSTART_NO_PM 9 1922 #define SD_CHAIN_RMMEDIA_IOSTART_NO_PM 9 1923 #define SD_CHAIN_CHKSUM_IOSTART 12 1924 #define SD_CHAIN_CHKSUM_IOSTART_NO_PM 16 1925 #define SD_CHAIN_USCSI_CMD_IOSTART 19 1926 #define SD_CHAIN_USCSI_CHKSUM_IOSTART 21 1927 #define SD_CHAIN_DIRECT_CMD_IOSTART 24 1928 #define SD_CHAIN_PRIORITY_CMD_IOSTART 25 1929 #define SD_CHAIN_MSS_CHKSUM_IOSTART 26 1930 #define SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM 31 1931 1932 1933 /* 1934 * Table of function pointers for the iodone-side routines for the driver- 1935 * internal layering mechanism. The calling sequence for iodone routines 1936 * uses a decrementing table index, so the last routine called in a chain 1937 * must be at the lowest array index location for that chain. The last 1938 * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs) 1939 * or sd_uscsi_iodone() (for uscsi IOs). Other than this, the ordering 1940 * of the functions in an iodone side chain must correspond to the ordering 1941 * of the iostart routines for that chain. Note that there is no iodone 1942 * side routine that corresponds to sd_core_iostart(), so there is no 1943 * entry in the table for this. 1944 */ 1945 1946 static sd_chain_t sd_iodone_chain[] = { 1947 1948 /* Chain for buf IO for disk drive targets (PM enabled) */ 1949 sd_buf_iodone, /* Index: 0 */ 1950 sd_mapblockaddr_iodone, /* Index: 1 */ 1951 sd_pm_iodone, /* Index: 2 */ 1952 1953 /* Chain for buf IO for disk drive targets (PM disabled) */ 1954 sd_buf_iodone, /* Index: 3 */ 1955 sd_mapblockaddr_iodone, /* Index: 4 */ 1956 1957 /* 1958 * Chain for buf IO for removable-media or large sector size 1959 * disk drive targets with RMW needed (PM enabled) 1960 */ 1961 sd_buf_iodone, /* Index: 5 */ 1962 sd_mapblockaddr_iodone, /* Index: 6 */ 1963 sd_mapblocksize_iodone, /* Index: 7 */ 1964 sd_pm_iodone, /* Index: 8 */ 1965 1966 /* 1967 * Chain for buf IO for removable-media or large sector size 1968 * disk drive targets with RMW needed (PM disabled) 1969 */ 1970 sd_buf_iodone, /* Index: 9 */ 1971 sd_mapblockaddr_iodone, /* Index: 10 */ 1972 sd_mapblocksize_iodone, /* Index: 11 */ 1973 1974 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1975 sd_buf_iodone, /* Index: 12 */ 1976 sd_mapblockaddr_iodone, /* Index: 13 */ 1977 sd_checksum_iodone, /* Index: 14 */ 1978 sd_pm_iodone, /* Index: 15 */ 1979 1980 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1981 sd_buf_iodone, /* Index: 16 */ 1982 sd_mapblockaddr_iodone, /* Index: 17 */ 1983 sd_checksum_iodone, /* Index: 18 */ 1984 1985 /* Chain for USCSI commands (non-checksum targets) */ 1986 sd_uscsi_iodone, /* Index: 19 */ 1987 sd_pm_iodone, /* Index: 20 */ 1988 1989 /* Chain for USCSI commands (checksum targets) */ 1990 sd_uscsi_iodone, /* Index: 21 */ 1991 sd_checksum_uscsi_iodone, /* Index: 22 */ 1992 sd_pm_iodone, /* Index: 22 */ 1993 1994 /* Chain for "direct" USCSI commands (all targets) */ 1995 sd_uscsi_iodone, /* Index: 24 */ 1996 1997 /* Chain for "direct priority" USCSI commands (all targets) */ 1998 sd_uscsi_iodone, /* Index: 25 */ 1999 2000 /* 2001 * Chain for buf IO for large sector size disk drive targets 2002 * with checksumming (PM enabled) 2003 */ 2004 sd_buf_iodone, /* Index: 26 */ 2005 sd_mapblockaddr_iodone, /* Index: 27 */ 2006 sd_mapblocksize_iodone, /* Index: 28 */ 2007 sd_checksum_iodone, /* Index: 29 */ 2008 sd_pm_iodone, /* Index: 30 */ 2009 2010 /* 2011 * Chain for buf IO for large sector size disk drive targets 2012 * with checksumming (PM disabled) 2013 */ 2014 sd_buf_iodone, /* Index: 31 */ 2015 sd_mapblockaddr_iodone, /* Index: 32 */ 2016 sd_mapblocksize_iodone, /* Index: 33 */ 2017 sd_checksum_iodone, /* Index: 34 */ 2018 }; 2019 2020 2021 /* 2022 * Macros to locate the "first" function in the sd_iodone_chain[] array for 2023 * each iodone-side chain. These are located by the array index, but as the 2024 * iodone side functions are called in a decrementing-index order, the 2025 * highest index number in each chain must be specified (as these correspond 2026 * to the first function in the iodone chain that will be called by the core 2027 * at IO completion time). 2028 */ 2029 2030 #define SD_CHAIN_DISK_IODONE 2 2031 #define SD_CHAIN_DISK_IODONE_NO_PM 4 2032 #define SD_CHAIN_RMMEDIA_IODONE 8 2033 #define SD_CHAIN_MSS_DISK_IODONE 8 2034 #define SD_CHAIN_RMMEDIA_IODONE_NO_PM 11 2035 #define SD_CHAIN_MSS_DISK_IODONE_NO_PM 11 2036 #define SD_CHAIN_CHKSUM_IODONE 15 2037 #define SD_CHAIN_CHKSUM_IODONE_NO_PM 18 2038 #define SD_CHAIN_USCSI_CMD_IODONE 20 2039 #define SD_CHAIN_USCSI_CHKSUM_IODONE 22 2040 #define SD_CHAIN_DIRECT_CMD_IODONE 24 2041 #define SD_CHAIN_PRIORITY_CMD_IODONE 25 2042 #define SD_CHAIN_MSS_CHKSUM_IODONE 30 2043 #define SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM 34 2044 2045 2046 2047 /* 2048 * Array to map a layering chain index to the appropriate initpkt routine. 2049 * The redundant entries are present so that the index used for accessing 2050 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 2051 * with this table as well. 2052 */ 2053 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **); 2054 2055 static sd_initpkt_t sd_initpkt_map[] = { 2056 2057 /* Chain for buf IO for disk drive targets (PM enabled) */ 2058 sd_initpkt_for_buf, /* Index: 0 */ 2059 sd_initpkt_for_buf, /* Index: 1 */ 2060 sd_initpkt_for_buf, /* Index: 2 */ 2061 2062 /* Chain for buf IO for disk drive targets (PM disabled) */ 2063 sd_initpkt_for_buf, /* Index: 3 */ 2064 sd_initpkt_for_buf, /* Index: 4 */ 2065 2066 /* 2067 * Chain for buf IO for removable-media or large sector size 2068 * disk drive targets (PM enabled) 2069 */ 2070 sd_initpkt_for_buf, /* Index: 5 */ 2071 sd_initpkt_for_buf, /* Index: 6 */ 2072 sd_initpkt_for_buf, /* Index: 7 */ 2073 sd_initpkt_for_buf, /* Index: 8 */ 2074 2075 /* 2076 * Chain for buf IO for removable-media or large sector size 2077 * disk drive targets (PM disabled) 2078 */ 2079 sd_initpkt_for_buf, /* Index: 9 */ 2080 sd_initpkt_for_buf, /* Index: 10 */ 2081 sd_initpkt_for_buf, /* Index: 11 */ 2082 2083 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 2084 sd_initpkt_for_buf, /* Index: 12 */ 2085 sd_initpkt_for_buf, /* Index: 13 */ 2086 sd_initpkt_for_buf, /* Index: 14 */ 2087 sd_initpkt_for_buf, /* Index: 15 */ 2088 2089 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 2090 sd_initpkt_for_buf, /* Index: 16 */ 2091 sd_initpkt_for_buf, /* Index: 17 */ 2092 sd_initpkt_for_buf, /* Index: 18 */ 2093 2094 /* Chain for USCSI commands (non-checksum targets) */ 2095 sd_initpkt_for_uscsi, /* Index: 19 */ 2096 sd_initpkt_for_uscsi, /* Index: 20 */ 2097 2098 /* Chain for USCSI commands (checksum targets) */ 2099 sd_initpkt_for_uscsi, /* Index: 21 */ 2100 sd_initpkt_for_uscsi, /* Index: 22 */ 2101 sd_initpkt_for_uscsi, /* Index: 22 */ 2102 2103 /* Chain for "direct" USCSI commands (all targets) */ 2104 sd_initpkt_for_uscsi, /* Index: 24 */ 2105 2106 /* Chain for "direct priority" USCSI commands (all targets) */ 2107 sd_initpkt_for_uscsi, /* Index: 25 */ 2108 2109 /* 2110 * Chain for buf IO for large sector size disk drive targets 2111 * with checksumming (PM enabled) 2112 */ 2113 sd_initpkt_for_buf, /* Index: 26 */ 2114 sd_initpkt_for_buf, /* Index: 27 */ 2115 sd_initpkt_for_buf, /* Index: 28 */ 2116 sd_initpkt_for_buf, /* Index: 29 */ 2117 sd_initpkt_for_buf, /* Index: 30 */ 2118 2119 /* 2120 * Chain for buf IO for large sector size disk drive targets 2121 * with checksumming (PM disabled) 2122 */ 2123 sd_initpkt_for_buf, /* Index: 31 */ 2124 sd_initpkt_for_buf, /* Index: 32 */ 2125 sd_initpkt_for_buf, /* Index: 33 */ 2126 sd_initpkt_for_buf, /* Index: 34 */ 2127 }; 2128 2129 2130 /* 2131 * Array to map a layering chain index to the appropriate destroypktpkt routine. 2132 * The redundant entries are present so that the index used for accessing 2133 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 2134 * with this table as well. 2135 */ 2136 typedef void (*sd_destroypkt_t)(struct buf *); 2137 2138 static sd_destroypkt_t sd_destroypkt_map[] = { 2139 2140 /* Chain for buf IO for disk drive targets (PM enabled) */ 2141 sd_destroypkt_for_buf, /* Index: 0 */ 2142 sd_destroypkt_for_buf, /* Index: 1 */ 2143 sd_destroypkt_for_buf, /* Index: 2 */ 2144 2145 /* Chain for buf IO for disk drive targets (PM disabled) */ 2146 sd_destroypkt_for_buf, /* Index: 3 */ 2147 sd_destroypkt_for_buf, /* Index: 4 */ 2148 2149 /* 2150 * Chain for buf IO for removable-media or large sector size 2151 * disk drive targets (PM enabled) 2152 */ 2153 sd_destroypkt_for_buf, /* Index: 5 */ 2154 sd_destroypkt_for_buf, /* Index: 6 */ 2155 sd_destroypkt_for_buf, /* Index: 7 */ 2156 sd_destroypkt_for_buf, /* Index: 8 */ 2157 2158 /* 2159 * Chain for buf IO for removable-media or large sector size 2160 * disk drive targets (PM disabled) 2161 */ 2162 sd_destroypkt_for_buf, /* Index: 9 */ 2163 sd_destroypkt_for_buf, /* Index: 10 */ 2164 sd_destroypkt_for_buf, /* Index: 11 */ 2165 2166 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 2167 sd_destroypkt_for_buf, /* Index: 12 */ 2168 sd_destroypkt_for_buf, /* Index: 13 */ 2169 sd_destroypkt_for_buf, /* Index: 14 */ 2170 sd_destroypkt_for_buf, /* Index: 15 */ 2171 2172 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 2173 sd_destroypkt_for_buf, /* Index: 16 */ 2174 sd_destroypkt_for_buf, /* Index: 17 */ 2175 sd_destroypkt_for_buf, /* Index: 18 */ 2176 2177 /* Chain for USCSI commands (non-checksum targets) */ 2178 sd_destroypkt_for_uscsi, /* Index: 19 */ 2179 sd_destroypkt_for_uscsi, /* Index: 20 */ 2180 2181 /* Chain for USCSI commands (checksum targets) */ 2182 sd_destroypkt_for_uscsi, /* Index: 21 */ 2183 sd_destroypkt_for_uscsi, /* Index: 22 */ 2184 sd_destroypkt_for_uscsi, /* Index: 22 */ 2185 2186 /* Chain for "direct" USCSI commands (all targets) */ 2187 sd_destroypkt_for_uscsi, /* Index: 24 */ 2188 2189 /* Chain for "direct priority" USCSI commands (all targets) */ 2190 sd_destroypkt_for_uscsi, /* Index: 25 */ 2191 2192 /* 2193 * Chain for buf IO for large sector size disk drive targets 2194 * with checksumming (PM disabled) 2195 */ 2196 sd_destroypkt_for_buf, /* Index: 26 */ 2197 sd_destroypkt_for_buf, /* Index: 27 */ 2198 sd_destroypkt_for_buf, /* Index: 28 */ 2199 sd_destroypkt_for_buf, /* Index: 29 */ 2200 sd_destroypkt_for_buf, /* Index: 30 */ 2201 2202 /* 2203 * Chain for buf IO for large sector size disk drive targets 2204 * with checksumming (PM enabled) 2205 */ 2206 sd_destroypkt_for_buf, /* Index: 31 */ 2207 sd_destroypkt_for_buf, /* Index: 32 */ 2208 sd_destroypkt_for_buf, /* Index: 33 */ 2209 sd_destroypkt_for_buf, /* Index: 34 */ 2210 }; 2211 2212 2213 2214 /* 2215 * Array to map a layering chain index to the appropriate chain "type". 2216 * The chain type indicates a specific property/usage of the chain. 2217 * The redundant entries are present so that the index used for accessing 2218 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 2219 * with this table as well. 2220 */ 2221 2222 #define SD_CHAIN_NULL 0 /* for the special RQS cmd */ 2223 #define SD_CHAIN_BUFIO 1 /* regular buf IO */ 2224 #define SD_CHAIN_USCSI 2 /* regular USCSI commands */ 2225 #define SD_CHAIN_DIRECT 3 /* uscsi, w/ bypass power mgt */ 2226 #define SD_CHAIN_DIRECT_PRIORITY 4 /* uscsi, w/ bypass power mgt */ 2227 /* (for error recovery) */ 2228 2229 static int sd_chain_type_map[] = { 2230 2231 /* Chain for buf IO for disk drive targets (PM enabled) */ 2232 SD_CHAIN_BUFIO, /* Index: 0 */ 2233 SD_CHAIN_BUFIO, /* Index: 1 */ 2234 SD_CHAIN_BUFIO, /* Index: 2 */ 2235 2236 /* Chain for buf IO for disk drive targets (PM disabled) */ 2237 SD_CHAIN_BUFIO, /* Index: 3 */ 2238 SD_CHAIN_BUFIO, /* Index: 4 */ 2239 2240 /* 2241 * Chain for buf IO for removable-media or large sector size 2242 * disk drive targets (PM enabled) 2243 */ 2244 SD_CHAIN_BUFIO, /* Index: 5 */ 2245 SD_CHAIN_BUFIO, /* Index: 6 */ 2246 SD_CHAIN_BUFIO, /* Index: 7 */ 2247 SD_CHAIN_BUFIO, /* Index: 8 */ 2248 2249 /* 2250 * Chain for buf IO for removable-media or large sector size 2251 * disk drive targets (PM disabled) 2252 */ 2253 SD_CHAIN_BUFIO, /* Index: 9 */ 2254 SD_CHAIN_BUFIO, /* Index: 10 */ 2255 SD_CHAIN_BUFIO, /* Index: 11 */ 2256 2257 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 2258 SD_CHAIN_BUFIO, /* Index: 12 */ 2259 SD_CHAIN_BUFIO, /* Index: 13 */ 2260 SD_CHAIN_BUFIO, /* Index: 14 */ 2261 SD_CHAIN_BUFIO, /* Index: 15 */ 2262 2263 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 2264 SD_CHAIN_BUFIO, /* Index: 16 */ 2265 SD_CHAIN_BUFIO, /* Index: 17 */ 2266 SD_CHAIN_BUFIO, /* Index: 18 */ 2267 2268 /* Chain for USCSI commands (non-checksum targets) */ 2269 SD_CHAIN_USCSI, /* Index: 19 */ 2270 SD_CHAIN_USCSI, /* Index: 20 */ 2271 2272 /* Chain for USCSI commands (checksum targets) */ 2273 SD_CHAIN_USCSI, /* Index: 21 */ 2274 SD_CHAIN_USCSI, /* Index: 22 */ 2275 SD_CHAIN_USCSI, /* Index: 23 */ 2276 2277 /* Chain for "direct" USCSI commands (all targets) */ 2278 SD_CHAIN_DIRECT, /* Index: 24 */ 2279 2280 /* Chain for "direct priority" USCSI commands (all targets) */ 2281 SD_CHAIN_DIRECT_PRIORITY, /* Index: 25 */ 2282 2283 /* 2284 * Chain for buf IO for large sector size disk drive targets 2285 * with checksumming (PM enabled) 2286 */ 2287 SD_CHAIN_BUFIO, /* Index: 26 */ 2288 SD_CHAIN_BUFIO, /* Index: 27 */ 2289 SD_CHAIN_BUFIO, /* Index: 28 */ 2290 SD_CHAIN_BUFIO, /* Index: 29 */ 2291 SD_CHAIN_BUFIO, /* Index: 30 */ 2292 2293 /* 2294 * Chain for buf IO for large sector size disk drive targets 2295 * with checksumming (PM disabled) 2296 */ 2297 SD_CHAIN_BUFIO, /* Index: 31 */ 2298 SD_CHAIN_BUFIO, /* Index: 32 */ 2299 SD_CHAIN_BUFIO, /* Index: 33 */ 2300 SD_CHAIN_BUFIO, /* Index: 34 */ 2301 }; 2302 2303 2304 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */ 2305 #define SD_IS_BUFIO(xp) \ 2306 (sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO) 2307 2308 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */ 2309 #define SD_IS_DIRECT_PRIORITY(xp) \ 2310 (sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY) 2311 2312 2313 2314 /* 2315 * Struct, array, and macros to map a specific chain to the appropriate 2316 * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays. 2317 * 2318 * The sd_chain_index_map[] array is used at attach time to set the various 2319 * un_xxx_chain type members of the sd_lun softstate to the specific layering 2320 * chain to be used with the instance. This allows different instances to use 2321 * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart 2322 * and xb_chain_iodone index values in the sd_xbuf are initialized to these 2323 * values at sd_xbuf init time, this allows (1) layering chains may be changed 2324 * dynamically & without the use of locking; and (2) a layer may update the 2325 * xb_chain_io[start|done] member in a given xbuf with its current index value, 2326 * to allow for deferred processing of an IO within the same chain from a 2327 * different execution context. 2328 */ 2329 2330 struct sd_chain_index { 2331 int sci_iostart_index; 2332 int sci_iodone_index; 2333 }; 2334 2335 static struct sd_chain_index sd_chain_index_map[] = { 2336 { SD_CHAIN_DISK_IOSTART, SD_CHAIN_DISK_IODONE }, 2337 { SD_CHAIN_DISK_IOSTART_NO_PM, SD_CHAIN_DISK_IODONE_NO_PM }, 2338 { SD_CHAIN_RMMEDIA_IOSTART, SD_CHAIN_RMMEDIA_IODONE }, 2339 { SD_CHAIN_RMMEDIA_IOSTART_NO_PM, SD_CHAIN_RMMEDIA_IODONE_NO_PM }, 2340 { SD_CHAIN_CHKSUM_IOSTART, SD_CHAIN_CHKSUM_IODONE }, 2341 { SD_CHAIN_CHKSUM_IOSTART_NO_PM, SD_CHAIN_CHKSUM_IODONE_NO_PM }, 2342 { SD_CHAIN_USCSI_CMD_IOSTART, SD_CHAIN_USCSI_CMD_IODONE }, 2343 { SD_CHAIN_USCSI_CHKSUM_IOSTART, SD_CHAIN_USCSI_CHKSUM_IODONE }, 2344 { SD_CHAIN_DIRECT_CMD_IOSTART, SD_CHAIN_DIRECT_CMD_IODONE }, 2345 { SD_CHAIN_PRIORITY_CMD_IOSTART, SD_CHAIN_PRIORITY_CMD_IODONE }, 2346 { SD_CHAIN_MSS_CHKSUM_IOSTART, SD_CHAIN_MSS_CHKSUM_IODONE }, 2347 { SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM, SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM }, 2348 2349 }; 2350 2351 2352 /* 2353 * The following are indexes into the sd_chain_index_map[] array. 2354 */ 2355 2356 /* un->un_buf_chain_type must be set to one of these */ 2357 #define SD_CHAIN_INFO_DISK 0 2358 #define SD_CHAIN_INFO_DISK_NO_PM 1 2359 #define SD_CHAIN_INFO_RMMEDIA 2 2360 #define SD_CHAIN_INFO_MSS_DISK 2 2361 #define SD_CHAIN_INFO_RMMEDIA_NO_PM 3 2362 #define SD_CHAIN_INFO_MSS_DSK_NO_PM 3 2363 #define SD_CHAIN_INFO_CHKSUM 4 2364 #define SD_CHAIN_INFO_CHKSUM_NO_PM 5 2365 #define SD_CHAIN_INFO_MSS_DISK_CHKSUM 10 2366 #define SD_CHAIN_INFO_MSS_DISK_CHKSUM_NO_PM 11 2367 2368 /* un->un_uscsi_chain_type must be set to one of these */ 2369 #define SD_CHAIN_INFO_USCSI_CMD 6 2370 /* USCSI with PM disabled is the same as DIRECT */ 2371 #define SD_CHAIN_INFO_USCSI_CMD_NO_PM 8 2372 #define SD_CHAIN_INFO_USCSI_CHKSUM 7 2373 2374 /* un->un_direct_chain_type must be set to one of these */ 2375 #define SD_CHAIN_INFO_DIRECT_CMD 8 2376 2377 /* un->un_priority_chain_type must be set to one of these */ 2378 #define SD_CHAIN_INFO_PRIORITY_CMD 9 2379 2380 /* size for devid inquiries */ 2381 #define MAX_INQUIRY_SIZE 0xF0 2382 2383 /* 2384 * Macros used by functions to pass a given buf(9S) struct along to the 2385 * next function in the layering chain for further processing. 2386 * 2387 * In the following macros, passing more than three arguments to the called 2388 * routines causes the optimizer for the SPARC compiler to stop doing tail 2389 * call elimination which results in significant performance degradation. 2390 */ 2391 #define SD_BEGIN_IOSTART(index, un, bp) \ 2392 ((*(sd_iostart_chain[index]))(index, un, bp)) 2393 2394 #define SD_BEGIN_IODONE(index, un, bp) \ 2395 ((*(sd_iodone_chain[index]))(index, un, bp)) 2396 2397 #define SD_NEXT_IOSTART(index, un, bp) \ 2398 ((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp)) 2399 2400 #define SD_NEXT_IODONE(index, un, bp) \ 2401 ((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp)) 2402 2403 /* 2404 * Function: _init 2405 * 2406 * Description: This is the driver _init(9E) entry point. 2407 * 2408 * Return Code: Returns the value from mod_install(9F) or 2409 * ddi_soft_state_init(9F) as appropriate. 2410 * 2411 * Context: Called when driver module loaded. 2412 */ 2413 2414 int 2415 _init(void) 2416 { 2417 int err; 2418 2419 /* establish driver name from module name */ 2420 sd_label = (char *)mod_modname(&modlinkage); 2421 2422 #ifndef XPV_HVM_DRIVER 2423 err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun), 2424 SD_MAXUNIT); 2425 if (err != 0) { 2426 return (err); 2427 } 2428 2429 #else /* XPV_HVM_DRIVER */ 2430 /* Remove the leading "hvm_" from the module name */ 2431 ASSERT(strncmp(sd_label, "hvm_", strlen("hvm_")) == 0); 2432 sd_label += strlen("hvm_"); 2433 2434 #endif /* XPV_HVM_DRIVER */ 2435 2436 mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL); 2437 mutex_init(&sd_log_mutex, NULL, MUTEX_DRIVER, NULL); 2438 mutex_init(&sd_label_mutex, NULL, MUTEX_DRIVER, NULL); 2439 2440 mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL); 2441 cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL); 2442 cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL); 2443 2444 /* 2445 * it's ok to init here even for fibre device 2446 */ 2447 sd_scsi_probe_cache_init(); 2448 2449 sd_scsi_target_lun_init(); 2450 2451 /* 2452 * Creating taskq before mod_install ensures that all callers (threads) 2453 * that enter the module after a successful mod_install encounter 2454 * a valid taskq. 2455 */ 2456 sd_taskq_create(); 2457 2458 err = mod_install(&modlinkage); 2459 if (err != 0) { 2460 /* delete taskq if install fails */ 2461 sd_taskq_delete(); 2462 2463 mutex_destroy(&sd_detach_mutex); 2464 mutex_destroy(&sd_log_mutex); 2465 mutex_destroy(&sd_label_mutex); 2466 2467 mutex_destroy(&sd_tr.srq_resv_reclaim_mutex); 2468 cv_destroy(&sd_tr.srq_resv_reclaim_cv); 2469 cv_destroy(&sd_tr.srq_inprocess_cv); 2470 2471 sd_scsi_probe_cache_fini(); 2472 2473 sd_scsi_target_lun_fini(); 2474 2475 #ifndef XPV_HVM_DRIVER 2476 ddi_soft_state_fini(&sd_state); 2477 #endif /* !XPV_HVM_DRIVER */ 2478 return (err); 2479 } 2480 2481 return (err); 2482 } 2483 2484 2485 /* 2486 * Function: _fini 2487 * 2488 * Description: This is the driver _fini(9E) entry point. 2489 * 2490 * Return Code: Returns the value from mod_remove(9F) 2491 * 2492 * Context: Called when driver module is unloaded. 2493 */ 2494 2495 int 2496 _fini(void) 2497 { 2498 int err; 2499 2500 if ((err = mod_remove(&modlinkage)) != 0) { 2501 return (err); 2502 } 2503 2504 sd_taskq_delete(); 2505 2506 mutex_destroy(&sd_detach_mutex); 2507 mutex_destroy(&sd_log_mutex); 2508 mutex_destroy(&sd_label_mutex); 2509 mutex_destroy(&sd_tr.srq_resv_reclaim_mutex); 2510 2511 sd_scsi_probe_cache_fini(); 2512 2513 sd_scsi_target_lun_fini(); 2514 2515 cv_destroy(&sd_tr.srq_resv_reclaim_cv); 2516 cv_destroy(&sd_tr.srq_inprocess_cv); 2517 2518 #ifndef XPV_HVM_DRIVER 2519 ddi_soft_state_fini(&sd_state); 2520 #endif /* !XPV_HVM_DRIVER */ 2521 2522 return (err); 2523 } 2524 2525 2526 /* 2527 * Function: _info 2528 * 2529 * Description: This is the driver _info(9E) entry point. 2530 * 2531 * Arguments: modinfop - pointer to the driver modinfo structure 2532 * 2533 * Return Code: Returns the value from mod_info(9F). 2534 * 2535 * Context: Kernel thread context 2536 */ 2537 2538 int 2539 _info(struct modinfo *modinfop) 2540 { 2541 return (mod_info(&modlinkage, modinfop)); 2542 } 2543 2544 2545 /* 2546 * The following routines implement the driver message logging facility. 2547 * They provide component- and level- based debug output filtering. 2548 * Output may also be restricted to messages for a single instance by 2549 * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set 2550 * to NULL, then messages for all instances are printed. 2551 * 2552 * These routines have been cloned from each other due to the language 2553 * constraints of macros and variable argument list processing. 2554 */ 2555 2556 2557 /* 2558 * Function: sd_log_err 2559 * 2560 * Description: This routine is called by the SD_ERROR macro for debug 2561 * logging of error conditions. 2562 * 2563 * Arguments: comp - driver component being logged 2564 * dev - pointer to driver info structure 2565 * fmt - error string and format to be logged 2566 */ 2567 2568 static void 2569 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...) 2570 { 2571 va_list ap; 2572 dev_info_t *dev; 2573 2574 ASSERT(un != NULL); 2575 dev = SD_DEVINFO(un); 2576 ASSERT(dev != NULL); 2577 2578 /* 2579 * Filter messages based on the global component and level masks. 2580 * Also print if un matches the value of sd_debug_un, or if 2581 * sd_debug_un is set to NULL. 2582 */ 2583 if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) && 2584 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2585 mutex_enter(&sd_log_mutex); 2586 va_start(ap, fmt); 2587 (void) vsprintf(sd_log_buf, fmt, ap); 2588 va_end(ap); 2589 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2590 mutex_exit(&sd_log_mutex); 2591 } 2592 #ifdef SD_FAULT_INJECTION 2593 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2594 if (un->sd_injection_mask & comp) { 2595 mutex_enter(&sd_log_mutex); 2596 va_start(ap, fmt); 2597 (void) vsprintf(sd_log_buf, fmt, ap); 2598 va_end(ap); 2599 sd_injection_log(sd_log_buf, un); 2600 mutex_exit(&sd_log_mutex); 2601 } 2602 #endif 2603 } 2604 2605 2606 /* 2607 * Function: sd_log_info 2608 * 2609 * Description: This routine is called by the SD_INFO macro for debug 2610 * logging of general purpose informational conditions. 2611 * 2612 * Arguments: comp - driver component being logged 2613 * dev - pointer to driver info structure 2614 * fmt - info string and format to be logged 2615 */ 2616 2617 static void 2618 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...) 2619 { 2620 va_list ap; 2621 dev_info_t *dev; 2622 2623 ASSERT(un != NULL); 2624 dev = SD_DEVINFO(un); 2625 ASSERT(dev != NULL); 2626 2627 /* 2628 * Filter messages based on the global component and level masks. 2629 * Also print if un matches the value of sd_debug_un, or if 2630 * sd_debug_un is set to NULL. 2631 */ 2632 if ((sd_component_mask & component) && 2633 (sd_level_mask & SD_LOGMASK_INFO) && 2634 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2635 mutex_enter(&sd_log_mutex); 2636 va_start(ap, fmt); 2637 (void) vsprintf(sd_log_buf, fmt, ap); 2638 va_end(ap); 2639 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2640 mutex_exit(&sd_log_mutex); 2641 } 2642 #ifdef SD_FAULT_INJECTION 2643 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2644 if (un->sd_injection_mask & component) { 2645 mutex_enter(&sd_log_mutex); 2646 va_start(ap, fmt); 2647 (void) vsprintf(sd_log_buf, fmt, ap); 2648 va_end(ap); 2649 sd_injection_log(sd_log_buf, un); 2650 mutex_exit(&sd_log_mutex); 2651 } 2652 #endif 2653 } 2654 2655 2656 /* 2657 * Function: sd_log_trace 2658 * 2659 * Description: This routine is called by the SD_TRACE macro for debug 2660 * logging of trace conditions (i.e. function entry/exit). 2661 * 2662 * Arguments: comp - driver component being logged 2663 * dev - pointer to driver info structure 2664 * fmt - trace string and format to be logged 2665 */ 2666 2667 static void 2668 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...) 2669 { 2670 va_list ap; 2671 dev_info_t *dev; 2672 2673 ASSERT(un != NULL); 2674 dev = SD_DEVINFO(un); 2675 ASSERT(dev != NULL); 2676 2677 /* 2678 * Filter messages based on the global component and level masks. 2679 * Also print if un matches the value of sd_debug_un, or if 2680 * sd_debug_un is set to NULL. 2681 */ 2682 if ((sd_component_mask & component) && 2683 (sd_level_mask & SD_LOGMASK_TRACE) && 2684 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2685 mutex_enter(&sd_log_mutex); 2686 va_start(ap, fmt); 2687 (void) vsprintf(sd_log_buf, fmt, ap); 2688 va_end(ap); 2689 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2690 mutex_exit(&sd_log_mutex); 2691 } 2692 #ifdef SD_FAULT_INJECTION 2693 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2694 if (un->sd_injection_mask & component) { 2695 mutex_enter(&sd_log_mutex); 2696 va_start(ap, fmt); 2697 (void) vsprintf(sd_log_buf, fmt, ap); 2698 va_end(ap); 2699 sd_injection_log(sd_log_buf, un); 2700 mutex_exit(&sd_log_mutex); 2701 } 2702 #endif 2703 } 2704 2705 2706 /* 2707 * Function: sdprobe 2708 * 2709 * Description: This is the driver probe(9e) entry point function. 2710 * 2711 * Arguments: devi - opaque device info handle 2712 * 2713 * Return Code: DDI_PROBE_SUCCESS: If the probe was successful. 2714 * DDI_PROBE_FAILURE: If the probe failed. 2715 * DDI_PROBE_PARTIAL: If the instance is not present now, 2716 * but may be present in the future. 2717 */ 2718 2719 static int 2720 sdprobe(dev_info_t *devi) 2721 { 2722 struct scsi_device *devp; 2723 int rval; 2724 #ifndef XPV_HVM_DRIVER 2725 int instance = ddi_get_instance(devi); 2726 #endif /* !XPV_HVM_DRIVER */ 2727 2728 /* 2729 * if it wasn't for pln, sdprobe could actually be nulldev 2730 * in the "__fibre" case. 2731 */ 2732 if (ddi_dev_is_sid(devi) == DDI_SUCCESS) { 2733 return (DDI_PROBE_DONTCARE); 2734 } 2735 2736 devp = ddi_get_driver_private(devi); 2737 2738 if (devp == NULL) { 2739 /* Ooops... nexus driver is mis-configured... */ 2740 return (DDI_PROBE_FAILURE); 2741 } 2742 2743 #ifndef XPV_HVM_DRIVER 2744 if (ddi_get_soft_state(sd_state, instance) != NULL) { 2745 return (DDI_PROBE_PARTIAL); 2746 } 2747 #endif /* !XPV_HVM_DRIVER */ 2748 2749 /* 2750 * Call the SCSA utility probe routine to see if we actually 2751 * have a target at this SCSI nexus. 2752 */ 2753 switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) { 2754 case SCSIPROBE_EXISTS: 2755 switch (devp->sd_inq->inq_dtype) { 2756 case DTYPE_DIRECT: 2757 rval = DDI_PROBE_SUCCESS; 2758 break; 2759 case DTYPE_RODIRECT: 2760 /* CDs etc. Can be removable media */ 2761 rval = DDI_PROBE_SUCCESS; 2762 break; 2763 case DTYPE_OPTICAL: 2764 /* 2765 * Rewritable optical driver HP115AA 2766 * Can also be removable media 2767 */ 2768 2769 /* 2770 * Do not attempt to bind to DTYPE_OPTICAL if 2771 * pre solaris 9 sparc sd behavior is required 2772 * 2773 * If first time through and sd_dtype_optical_bind 2774 * has not been set in /etc/system check properties 2775 */ 2776 2777 if (sd_dtype_optical_bind < 0) { 2778 sd_dtype_optical_bind = ddi_prop_get_int 2779 (DDI_DEV_T_ANY, devi, 0, 2780 "optical-device-bind", 1); 2781 } 2782 2783 if (sd_dtype_optical_bind == 0) { 2784 rval = DDI_PROBE_FAILURE; 2785 } else { 2786 rval = DDI_PROBE_SUCCESS; 2787 } 2788 break; 2789 2790 case DTYPE_NOTPRESENT: 2791 default: 2792 rval = DDI_PROBE_FAILURE; 2793 break; 2794 } 2795 break; 2796 default: 2797 rval = DDI_PROBE_PARTIAL; 2798 break; 2799 } 2800 2801 /* 2802 * This routine checks for resource allocation prior to freeing, 2803 * so it will take care of the "smart probing" case where a 2804 * scsi_probe() may or may not have been issued and will *not* 2805 * free previously-freed resources. 2806 */ 2807 scsi_unprobe(devp); 2808 return (rval); 2809 } 2810 2811 2812 /* 2813 * Function: sdinfo 2814 * 2815 * Description: This is the driver getinfo(9e) entry point function. 2816 * Given the device number, return the devinfo pointer from 2817 * the scsi_device structure or the instance number 2818 * associated with the dev_t. 2819 * 2820 * Arguments: dip - pointer to device info structure 2821 * infocmd - command argument (DDI_INFO_DEVT2DEVINFO, 2822 * DDI_INFO_DEVT2INSTANCE) 2823 * arg - driver dev_t 2824 * resultp - user buffer for request response 2825 * 2826 * Return Code: DDI_SUCCESS 2827 * DDI_FAILURE 2828 */ 2829 /* ARGSUSED */ 2830 static int 2831 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 2832 { 2833 struct sd_lun *un; 2834 dev_t dev; 2835 int instance; 2836 int error; 2837 2838 switch (infocmd) { 2839 case DDI_INFO_DEVT2DEVINFO: 2840 dev = (dev_t)arg; 2841 instance = SDUNIT(dev); 2842 if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) { 2843 return (DDI_FAILURE); 2844 } 2845 *result = (void *) SD_DEVINFO(un); 2846 error = DDI_SUCCESS; 2847 break; 2848 case DDI_INFO_DEVT2INSTANCE: 2849 dev = (dev_t)arg; 2850 instance = SDUNIT(dev); 2851 *result = (void *)(uintptr_t)instance; 2852 error = DDI_SUCCESS; 2853 break; 2854 default: 2855 error = DDI_FAILURE; 2856 } 2857 return (error); 2858 } 2859 2860 /* 2861 * Function: sd_prop_op 2862 * 2863 * Description: This is the driver prop_op(9e) entry point function. 2864 * Return the number of blocks for the partition in question 2865 * or forward the request to the property facilities. 2866 * 2867 * Arguments: dev - device number 2868 * dip - pointer to device info structure 2869 * prop_op - property operator 2870 * mod_flags - DDI_PROP_DONTPASS, don't pass to parent 2871 * name - pointer to property name 2872 * valuep - pointer or address of the user buffer 2873 * lengthp - property length 2874 * 2875 * Return Code: DDI_PROP_SUCCESS 2876 * DDI_PROP_NOT_FOUND 2877 * DDI_PROP_UNDEFINED 2878 * DDI_PROP_NO_MEMORY 2879 * DDI_PROP_BUF_TOO_SMALL 2880 */ 2881 2882 static int 2883 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 2884 char *name, caddr_t valuep, int *lengthp) 2885 { 2886 struct sd_lun *un; 2887 2888 if ((un = ddi_get_soft_state(sd_state, ddi_get_instance(dip))) == NULL) 2889 return (ddi_prop_op(dev, dip, prop_op, mod_flags, 2890 name, valuep, lengthp)); 2891 2892 return (cmlb_prop_op(un->un_cmlbhandle, 2893 dev, dip, prop_op, mod_flags, name, valuep, lengthp, 2894 SDPART(dev), (void *)SD_PATH_DIRECT)); 2895 } 2896 2897 /* 2898 * The following functions are for smart probing: 2899 * sd_scsi_probe_cache_init() 2900 * sd_scsi_probe_cache_fini() 2901 * sd_scsi_clear_probe_cache() 2902 * sd_scsi_probe_with_cache() 2903 */ 2904 2905 /* 2906 * Function: sd_scsi_probe_cache_init 2907 * 2908 * Description: Initializes the probe response cache mutex and head pointer. 2909 * 2910 * Context: Kernel thread context 2911 */ 2912 2913 static void 2914 sd_scsi_probe_cache_init(void) 2915 { 2916 mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL); 2917 sd_scsi_probe_cache_head = NULL; 2918 } 2919 2920 2921 /* 2922 * Function: sd_scsi_probe_cache_fini 2923 * 2924 * Description: Frees all resources associated with the probe response cache. 2925 * 2926 * Context: Kernel thread context 2927 */ 2928 2929 static void 2930 sd_scsi_probe_cache_fini(void) 2931 { 2932 struct sd_scsi_probe_cache *cp; 2933 struct sd_scsi_probe_cache *ncp; 2934 2935 /* Clean up our smart probing linked list */ 2936 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) { 2937 ncp = cp->next; 2938 kmem_free(cp, sizeof (struct sd_scsi_probe_cache)); 2939 } 2940 sd_scsi_probe_cache_head = NULL; 2941 mutex_destroy(&sd_scsi_probe_cache_mutex); 2942 } 2943 2944 2945 /* 2946 * Function: sd_scsi_clear_probe_cache 2947 * 2948 * Description: This routine clears the probe response cache. This is 2949 * done when open() returns ENXIO so that when deferred 2950 * attach is attempted (possibly after a device has been 2951 * turned on) we will retry the probe. Since we don't know 2952 * which target we failed to open, we just clear the 2953 * entire cache. 2954 * 2955 * Context: Kernel thread context 2956 */ 2957 2958 static void 2959 sd_scsi_clear_probe_cache(void) 2960 { 2961 struct sd_scsi_probe_cache *cp; 2962 int i; 2963 2964 mutex_enter(&sd_scsi_probe_cache_mutex); 2965 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) { 2966 /* 2967 * Reset all entries to SCSIPROBE_EXISTS. This will 2968 * force probing to be performed the next time 2969 * sd_scsi_probe_with_cache is called. 2970 */ 2971 for (i = 0; i < NTARGETS_WIDE; i++) { 2972 cp->cache[i] = SCSIPROBE_EXISTS; 2973 } 2974 } 2975 mutex_exit(&sd_scsi_probe_cache_mutex); 2976 } 2977 2978 2979 /* 2980 * Function: sd_scsi_probe_with_cache 2981 * 2982 * Description: This routine implements support for a scsi device probe 2983 * with cache. The driver maintains a cache of the target 2984 * responses to scsi probes. If we get no response from a 2985 * target during a probe inquiry, we remember that, and we 2986 * avoid additional calls to scsi_probe on non-zero LUNs 2987 * on the same target until the cache is cleared. By doing 2988 * so we avoid the 1/4 sec selection timeout for nonzero 2989 * LUNs. lun0 of a target is always probed. 2990 * 2991 * Arguments: devp - Pointer to a scsi_device(9S) structure 2992 * waitfunc - indicates what the allocator routines should 2993 * do when resources are not available. This value 2994 * is passed on to scsi_probe() when that routine 2995 * is called. 2996 * 2997 * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache; 2998 * otherwise the value returned by scsi_probe(9F). 2999 * 3000 * Context: Kernel thread context 3001 */ 3002 3003 static int 3004 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)()) 3005 { 3006 struct sd_scsi_probe_cache *cp; 3007 dev_info_t *pdip = ddi_get_parent(devp->sd_dev); 3008 int lun, tgt; 3009 3010 lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS, 3011 SCSI_ADDR_PROP_LUN, 0); 3012 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS, 3013 SCSI_ADDR_PROP_TARGET, -1); 3014 3015 /* Make sure caching enabled and target in range */ 3016 if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) { 3017 /* do it the old way (no cache) */ 3018 return (scsi_probe(devp, waitfn)); 3019 } 3020 3021 mutex_enter(&sd_scsi_probe_cache_mutex); 3022 3023 /* Find the cache for this scsi bus instance */ 3024 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) { 3025 if (cp->pdip == pdip) { 3026 break; 3027 } 3028 } 3029 3030 /* If we can't find a cache for this pdip, create one */ 3031 if (cp == NULL) { 3032 int i; 3033 3034 cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache), 3035 KM_SLEEP); 3036 cp->pdip = pdip; 3037 cp->next = sd_scsi_probe_cache_head; 3038 sd_scsi_probe_cache_head = cp; 3039 for (i = 0; i < NTARGETS_WIDE; i++) { 3040 cp->cache[i] = SCSIPROBE_EXISTS; 3041 } 3042 } 3043 3044 mutex_exit(&sd_scsi_probe_cache_mutex); 3045 3046 /* Recompute the cache for this target if LUN zero */ 3047 if (lun == 0) { 3048 cp->cache[tgt] = SCSIPROBE_EXISTS; 3049 } 3050 3051 /* Don't probe if cache remembers a NORESP from a previous LUN. */ 3052 if (cp->cache[tgt] != SCSIPROBE_EXISTS) { 3053 return (SCSIPROBE_NORESP); 3054 } 3055 3056 /* Do the actual probe; save & return the result */ 3057 return (cp->cache[tgt] = scsi_probe(devp, waitfn)); 3058 } 3059 3060 3061 /* 3062 * Function: sd_scsi_target_lun_init 3063 * 3064 * Description: Initializes the attached lun chain mutex and head pointer. 3065 * 3066 * Context: Kernel thread context 3067 */ 3068 3069 static void 3070 sd_scsi_target_lun_init(void) 3071 { 3072 mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL); 3073 sd_scsi_target_lun_head = NULL; 3074 } 3075 3076 3077 /* 3078 * Function: sd_scsi_target_lun_fini 3079 * 3080 * Description: Frees all resources associated with the attached lun 3081 * chain 3082 * 3083 * Context: Kernel thread context 3084 */ 3085 3086 static void 3087 sd_scsi_target_lun_fini(void) 3088 { 3089 struct sd_scsi_hba_tgt_lun *cp; 3090 struct sd_scsi_hba_tgt_lun *ncp; 3091 3092 for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) { 3093 ncp = cp->next; 3094 kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun)); 3095 } 3096 sd_scsi_target_lun_head = NULL; 3097 mutex_destroy(&sd_scsi_target_lun_mutex); 3098 } 3099 3100 3101 /* 3102 * Function: sd_scsi_get_target_lun_count 3103 * 3104 * Description: This routine will check in the attached lun chain to see 3105 * how many luns are attached on the required SCSI controller 3106 * and target. Currently, some capabilities like tagged queue 3107 * are supported per target based by HBA. So all luns in a 3108 * target have the same capabilities. Based on this assumption, 3109 * sd should only set these capabilities once per target. This 3110 * function is called when sd needs to decide how many luns 3111 * already attached on a target. 3112 * 3113 * Arguments: dip - Pointer to the system's dev_info_t for the SCSI 3114 * controller device. 3115 * target - The target ID on the controller's SCSI bus. 3116 * 3117 * Return Code: The number of luns attached on the required target and 3118 * controller. 3119 * -1 if target ID is not in parallel SCSI scope or the given 3120 * dip is not in the chain. 3121 * 3122 * Context: Kernel thread context 3123 */ 3124 3125 static int 3126 sd_scsi_get_target_lun_count(dev_info_t *dip, int target) 3127 { 3128 struct sd_scsi_hba_tgt_lun *cp; 3129 3130 if ((target < 0) || (target >= NTARGETS_WIDE)) { 3131 return (-1); 3132 } 3133 3134 mutex_enter(&sd_scsi_target_lun_mutex); 3135 3136 for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) { 3137 if (cp->pdip == dip) { 3138 break; 3139 } 3140 } 3141 3142 mutex_exit(&sd_scsi_target_lun_mutex); 3143 3144 if (cp == NULL) { 3145 return (-1); 3146 } 3147 3148 return (cp->nlun[target]); 3149 } 3150 3151 3152 /* 3153 * Function: sd_scsi_update_lun_on_target 3154 * 3155 * Description: This routine is used to update the attached lun chain when a 3156 * lun is attached or detached on a target. 3157 * 3158 * Arguments: dip - Pointer to the system's dev_info_t for the SCSI 3159 * controller device. 3160 * target - The target ID on the controller's SCSI bus. 3161 * flag - Indicate the lun is attached or detached. 3162 * 3163 * Context: Kernel thread context 3164 */ 3165 3166 static void 3167 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag) 3168 { 3169 struct sd_scsi_hba_tgt_lun *cp; 3170 3171 mutex_enter(&sd_scsi_target_lun_mutex); 3172 3173 for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) { 3174 if (cp->pdip == dip) { 3175 break; 3176 } 3177 } 3178 3179 if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) { 3180 cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun), 3181 KM_SLEEP); 3182 cp->pdip = dip; 3183 cp->next = sd_scsi_target_lun_head; 3184 sd_scsi_target_lun_head = cp; 3185 } 3186 3187 mutex_exit(&sd_scsi_target_lun_mutex); 3188 3189 if (cp != NULL) { 3190 if (flag == SD_SCSI_LUN_ATTACH) { 3191 cp->nlun[target] ++; 3192 } else { 3193 cp->nlun[target] --; 3194 } 3195 } 3196 } 3197 3198 3199 /* 3200 * Function: sd_spin_up_unit 3201 * 3202 * Description: Issues the following commands to spin-up the device: 3203 * START STOP UNIT, and INQUIRY. 3204 * 3205 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 3206 * structure for this target. 3207 * 3208 * Return Code: 0 - success 3209 * EIO - failure 3210 * EACCES - reservation conflict 3211 * 3212 * Context: Kernel thread context 3213 */ 3214 3215 static int 3216 sd_spin_up_unit(sd_ssc_t *ssc) 3217 { 3218 size_t resid = 0; 3219 int has_conflict = FALSE; 3220 uchar_t *bufaddr; 3221 int status; 3222 struct sd_lun *un; 3223 3224 ASSERT(ssc != NULL); 3225 un = ssc->ssc_un; 3226 ASSERT(un != NULL); 3227 3228 /* 3229 * Send a throwaway START UNIT command. 3230 * 3231 * If we fail on this, we don't care presently what precisely 3232 * is wrong. EMC's arrays will also fail this with a check 3233 * condition (0x2/0x4/0x3) if the device is "inactive," but 3234 * we don't want to fail the attach because it may become 3235 * "active" later. 3236 * We don't know if power condition is supported or not at 3237 * this stage, use START STOP bit. 3238 */ 3239 status = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 3240 SD_TARGET_START, SD_PATH_DIRECT); 3241 3242 if (status != 0) { 3243 if (status == EACCES) 3244 has_conflict = TRUE; 3245 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3246 } 3247 3248 /* 3249 * Send another INQUIRY command to the target. This is necessary for 3250 * non-removable media direct access devices because their INQUIRY data 3251 * may not be fully qualified until they are spun up (perhaps via the 3252 * START command above). Note: This seems to be needed for some 3253 * legacy devices only.) The INQUIRY command should succeed even if a 3254 * Reservation Conflict is present. 3255 */ 3256 bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP); 3257 3258 if (sd_send_scsi_INQUIRY(ssc, bufaddr, SUN_INQSIZE, 0, 0, &resid) 3259 != 0) { 3260 kmem_free(bufaddr, SUN_INQSIZE); 3261 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 3262 return (EIO); 3263 } 3264 3265 /* 3266 * If we got enough INQUIRY data, copy it over the old INQUIRY data. 3267 * Note that this routine does not return a failure here even if the 3268 * INQUIRY command did not return any data. This is a legacy behavior. 3269 */ 3270 if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) { 3271 bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE); 3272 } 3273 3274 kmem_free(bufaddr, SUN_INQSIZE); 3275 3276 /* If we hit a reservation conflict above, tell the caller. */ 3277 if (has_conflict == TRUE) { 3278 return (EACCES); 3279 } 3280 3281 return (0); 3282 } 3283 3284 #ifdef _LP64 3285 /* 3286 * Function: sd_enable_descr_sense 3287 * 3288 * Description: This routine attempts to select descriptor sense format 3289 * using the Control mode page. Devices that support 64 bit 3290 * LBAs (for >2TB luns) should also implement descriptor 3291 * sense data so we will call this function whenever we see 3292 * a lun larger than 2TB. If for some reason the device 3293 * supports 64 bit LBAs but doesn't support descriptor sense 3294 * presumably the mode select will fail. Everything will 3295 * continue to work normally except that we will not get 3296 * complete sense data for commands that fail with an LBA 3297 * larger than 32 bits. 3298 * 3299 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 3300 * structure for this target. 3301 * 3302 * Context: Kernel thread context only 3303 */ 3304 3305 static void 3306 sd_enable_descr_sense(sd_ssc_t *ssc) 3307 { 3308 uchar_t *header; 3309 struct mode_control_scsi3 *ctrl_bufp; 3310 size_t buflen; 3311 size_t bd_len; 3312 int status; 3313 struct sd_lun *un; 3314 3315 ASSERT(ssc != NULL); 3316 un = ssc->ssc_un; 3317 ASSERT(un != NULL); 3318 3319 /* 3320 * Read MODE SENSE page 0xA, Control Mode Page 3321 */ 3322 buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH + 3323 sizeof (struct mode_control_scsi3); 3324 header = kmem_zalloc(buflen, KM_SLEEP); 3325 3326 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen, 3327 MODEPAGE_CTRL_MODE, SD_PATH_DIRECT); 3328 3329 if (status != 0) { 3330 SD_ERROR(SD_LOG_COMMON, un, 3331 "sd_enable_descr_sense: mode sense ctrl page failed\n"); 3332 goto eds_exit; 3333 } 3334 3335 /* 3336 * Determine size of Block Descriptors in order to locate 3337 * the mode page data. ATAPI devices return 0, SCSI devices 3338 * should return MODE_BLK_DESC_LENGTH. 3339 */ 3340 bd_len = ((struct mode_header *)header)->bdesc_length; 3341 3342 /* Clear the mode data length field for MODE SELECT */ 3343 ((struct mode_header *)header)->length = 0; 3344 3345 ctrl_bufp = (struct mode_control_scsi3 *) 3346 (header + MODE_HEADER_LENGTH + bd_len); 3347 3348 /* 3349 * If the page length is smaller than the expected value, 3350 * the target device doesn't support D_SENSE. Bail out here. 3351 */ 3352 if (ctrl_bufp->mode_page.length < 3353 sizeof (struct mode_control_scsi3) - 2) { 3354 SD_ERROR(SD_LOG_COMMON, un, 3355 "sd_enable_descr_sense: enable D_SENSE failed\n"); 3356 goto eds_exit; 3357 } 3358 3359 /* 3360 * Clear PS bit for MODE SELECT 3361 */ 3362 ctrl_bufp->mode_page.ps = 0; 3363 3364 /* 3365 * Set D_SENSE to enable descriptor sense format. 3366 */ 3367 ctrl_bufp->d_sense = 1; 3368 3369 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3370 3371 /* 3372 * Use MODE SELECT to commit the change to the D_SENSE bit 3373 */ 3374 status = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header, 3375 buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT); 3376 3377 if (status != 0) { 3378 SD_INFO(SD_LOG_COMMON, un, 3379 "sd_enable_descr_sense: mode select ctrl page failed\n"); 3380 } else { 3381 kmem_free(header, buflen); 3382 return; 3383 } 3384 3385 eds_exit: 3386 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3387 kmem_free(header, buflen); 3388 } 3389 3390 /* 3391 * Function: sd_reenable_dsense_task 3392 * 3393 * Description: Re-enable descriptor sense after device or bus reset 3394 * 3395 * Context: Executes in a taskq() thread context 3396 */ 3397 static void 3398 sd_reenable_dsense_task(void *arg) 3399 { 3400 struct sd_lun *un = arg; 3401 sd_ssc_t *ssc; 3402 3403 ASSERT(un != NULL); 3404 3405 ssc = sd_ssc_init(un); 3406 sd_enable_descr_sense(ssc); 3407 sd_ssc_fini(ssc); 3408 } 3409 #endif /* _LP64 */ 3410 3411 /* 3412 * Function: sd_set_mmc_caps 3413 * 3414 * Description: This routine determines if the device is MMC compliant and if 3415 * the device supports CDDA via a mode sense of the CDVD 3416 * capabilities mode page. Also checks if the device is a 3417 * dvdram writable device. 3418 * 3419 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 3420 * structure for this target. 3421 * 3422 * Context: Kernel thread context only 3423 */ 3424 3425 static void 3426 sd_set_mmc_caps(sd_ssc_t *ssc) 3427 { 3428 struct mode_header_grp2 *sense_mhp; 3429 uchar_t *sense_page; 3430 caddr_t buf; 3431 int bd_len; 3432 int status; 3433 struct uscsi_cmd com; 3434 int rtn; 3435 uchar_t *out_data_rw, *out_data_hd; 3436 uchar_t *rqbuf_rw, *rqbuf_hd; 3437 uchar_t *out_data_gesn; 3438 int gesn_len; 3439 struct sd_lun *un; 3440 3441 ASSERT(ssc != NULL); 3442 un = ssc->ssc_un; 3443 ASSERT(un != NULL); 3444 3445 /* 3446 * The flags which will be set in this function are - mmc compliant, 3447 * dvdram writable device, cdda support. Initialize them to FALSE 3448 * and if a capability is detected - it will be set to TRUE. 3449 */ 3450 un->un_f_mmc_cap = FALSE; 3451 un->un_f_dvdram_writable_device = FALSE; 3452 un->un_f_cfg_cdda = FALSE; 3453 3454 buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 3455 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf, 3456 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT); 3457 3458 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3459 3460 if (status != 0) { 3461 /* command failed; just return */ 3462 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3463 return; 3464 } 3465 /* 3466 * If the mode sense request for the CDROM CAPABILITIES 3467 * page (0x2A) succeeds the device is assumed to be MMC. 3468 */ 3469 un->un_f_mmc_cap = TRUE; 3470 3471 /* See if GET STATUS EVENT NOTIFICATION is supported */ 3472 if (un->un_f_mmc_gesn_polling) { 3473 gesn_len = SD_GESN_HEADER_LEN + SD_GESN_MEDIA_DATA_LEN; 3474 out_data_gesn = kmem_zalloc(gesn_len, KM_SLEEP); 3475 3476 rtn = sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(ssc, 3477 out_data_gesn, gesn_len, 1 << SD_GESN_MEDIA_CLASS); 3478 3479 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3480 3481 if ((rtn != 0) || !sd_gesn_media_data_valid(out_data_gesn)) { 3482 un->un_f_mmc_gesn_polling = FALSE; 3483 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3484 "sd_set_mmc_caps: gesn not supported " 3485 "%d %x %x %x %x\n", rtn, 3486 out_data_gesn[0], out_data_gesn[1], 3487 out_data_gesn[2], out_data_gesn[3]); 3488 } 3489 3490 kmem_free(out_data_gesn, gesn_len); 3491 } 3492 3493 /* Get to the page data */ 3494 sense_mhp = (struct mode_header_grp2 *)buf; 3495 bd_len = (sense_mhp->bdesc_length_hi << 8) | 3496 sense_mhp->bdesc_length_lo; 3497 if (bd_len > MODE_BLK_DESC_LENGTH) { 3498 /* 3499 * We did not get back the expected block descriptor 3500 * length so we cannot determine if the device supports 3501 * CDDA. However, we still indicate the device is MMC 3502 * according to the successful response to the page 3503 * 0x2A mode sense request. 3504 */ 3505 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3506 "sd_set_mmc_caps: Mode Sense returned " 3507 "invalid block descriptor length\n"); 3508 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3509 return; 3510 } 3511 3512 /* See if read CDDA is supported */ 3513 sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + 3514 bd_len); 3515 un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE; 3516 3517 /* See if writing DVD RAM is supported. */ 3518 un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE; 3519 if (un->un_f_dvdram_writable_device == TRUE) { 3520 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3521 return; 3522 } 3523 3524 /* 3525 * If the device presents DVD or CD capabilities in the mode 3526 * page, we can return here since a RRD will not have 3527 * these capabilities. 3528 */ 3529 if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) { 3530 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3531 return; 3532 } 3533 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3534 3535 /* 3536 * If un->un_f_dvdram_writable_device is still FALSE, 3537 * check for a Removable Rigid Disk (RRD). A RRD 3538 * device is identified by the features RANDOM_WRITABLE and 3539 * HARDWARE_DEFECT_MANAGEMENT. 3540 */ 3541 out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3542 rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3543 3544 rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw, 3545 SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN, 3546 RANDOM_WRITABLE, SD_PATH_STANDARD); 3547 3548 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3549 3550 if (rtn != 0) { 3551 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3552 kmem_free(rqbuf_rw, SENSE_LENGTH); 3553 return; 3554 } 3555 3556 out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3557 rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3558 3559 rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd, 3560 SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN, 3561 HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD); 3562 3563 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3564 3565 if (rtn == 0) { 3566 /* 3567 * We have good information, check for random writable 3568 * and hardware defect features. 3569 */ 3570 if ((out_data_rw[9] & RANDOM_WRITABLE) && 3571 (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) { 3572 un->un_f_dvdram_writable_device = TRUE; 3573 } 3574 } 3575 3576 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3577 kmem_free(rqbuf_rw, SENSE_LENGTH); 3578 kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN); 3579 kmem_free(rqbuf_hd, SENSE_LENGTH); 3580 } 3581 3582 /* 3583 * Function: sd_check_for_writable_cd 3584 * 3585 * Description: This routine determines if the media in the device is 3586 * writable or not. It uses the get configuration command (0x46) 3587 * to determine if the media is writable 3588 * 3589 * Arguments: un - driver soft state (unit) structure 3590 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" 3591 * chain and the normal command waitq, or 3592 * SD_PATH_DIRECT_PRIORITY to use the USCSI 3593 * "direct" chain and bypass the normal command 3594 * waitq. 3595 * 3596 * Context: Never called at interrupt context. 3597 */ 3598 3599 static void 3600 sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag) 3601 { 3602 struct uscsi_cmd com; 3603 uchar_t *out_data; 3604 uchar_t *rqbuf; 3605 int rtn; 3606 uchar_t *out_data_rw, *out_data_hd; 3607 uchar_t *rqbuf_rw, *rqbuf_hd; 3608 struct mode_header_grp2 *sense_mhp; 3609 uchar_t *sense_page; 3610 caddr_t buf; 3611 int bd_len; 3612 int status; 3613 struct sd_lun *un; 3614 3615 ASSERT(ssc != NULL); 3616 un = ssc->ssc_un; 3617 ASSERT(un != NULL); 3618 ASSERT(mutex_owned(SD_MUTEX(un))); 3619 3620 /* 3621 * Initialize the writable media to false, if configuration info. 3622 * tells us otherwise then only we will set it. 3623 */ 3624 un->un_f_mmc_writable_media = FALSE; 3625 mutex_exit(SD_MUTEX(un)); 3626 3627 out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP); 3628 rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3629 3630 rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, SENSE_LENGTH, 3631 out_data, SD_PROFILE_HEADER_LEN, path_flag); 3632 3633 if (rtn != 0) 3634 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3635 3636 mutex_enter(SD_MUTEX(un)); 3637 if (rtn == 0) { 3638 /* 3639 * We have good information, check for writable DVD. 3640 */ 3641 if ((out_data[6] == 0) && (out_data[7] == 0x12)) { 3642 un->un_f_mmc_writable_media = TRUE; 3643 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 3644 kmem_free(rqbuf, SENSE_LENGTH); 3645 return; 3646 } 3647 } 3648 3649 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 3650 kmem_free(rqbuf, SENSE_LENGTH); 3651 3652 /* 3653 * Determine if this is a RRD type device. 3654 */ 3655 mutex_exit(SD_MUTEX(un)); 3656 buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 3657 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf, 3658 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag); 3659 3660 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3661 3662 mutex_enter(SD_MUTEX(un)); 3663 if (status != 0) { 3664 /* command failed; just return */ 3665 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3666 return; 3667 } 3668 3669 /* Get to the page data */ 3670 sense_mhp = (struct mode_header_grp2 *)buf; 3671 bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo; 3672 if (bd_len > MODE_BLK_DESC_LENGTH) { 3673 /* 3674 * We did not get back the expected block descriptor length so 3675 * we cannot check the mode page. 3676 */ 3677 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3678 "sd_check_for_writable_cd: Mode Sense returned " 3679 "invalid block descriptor length\n"); 3680 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3681 return; 3682 } 3683 3684 /* 3685 * If the device presents DVD or CD capabilities in the mode 3686 * page, we can return here since a RRD device will not have 3687 * these capabilities. 3688 */ 3689 sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len); 3690 if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) { 3691 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3692 return; 3693 } 3694 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3695 3696 /* 3697 * If un->un_f_mmc_writable_media is still FALSE, 3698 * check for RRD type media. A RRD device is identified 3699 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT. 3700 */ 3701 mutex_exit(SD_MUTEX(un)); 3702 out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3703 rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3704 3705 rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw, 3706 SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN, 3707 RANDOM_WRITABLE, path_flag); 3708 3709 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3710 if (rtn != 0) { 3711 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3712 kmem_free(rqbuf_rw, SENSE_LENGTH); 3713 mutex_enter(SD_MUTEX(un)); 3714 return; 3715 } 3716 3717 out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3718 rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3719 3720 rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd, 3721 SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN, 3722 HARDWARE_DEFECT_MANAGEMENT, path_flag); 3723 3724 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 3725 mutex_enter(SD_MUTEX(un)); 3726 if (rtn == 0) { 3727 /* 3728 * We have good information, check for random writable 3729 * and hardware defect features as current. 3730 */ 3731 if ((out_data_rw[9] & RANDOM_WRITABLE) && 3732 (out_data_rw[10] & 0x1) && 3733 (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) && 3734 (out_data_hd[10] & 0x1)) { 3735 un->un_f_mmc_writable_media = TRUE; 3736 } 3737 } 3738 3739 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3740 kmem_free(rqbuf_rw, SENSE_LENGTH); 3741 kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN); 3742 kmem_free(rqbuf_hd, SENSE_LENGTH); 3743 } 3744 3745 /* 3746 * Function: sd_read_unit_properties 3747 * 3748 * Description: The following implements a property lookup mechanism. 3749 * Properties for particular disks (keyed on vendor, model 3750 * and rev numbers) are sought in the sd.conf file via 3751 * sd_process_sdconf_file(), and if not found there, are 3752 * looked for in a list hardcoded in this driver via 3753 * sd_process_sdconf_table() Once located the properties 3754 * are used to update the driver unit structure. 3755 * 3756 * Arguments: un - driver soft state (unit) structure 3757 */ 3758 3759 static void 3760 sd_read_unit_properties(struct sd_lun *un) 3761 { 3762 /* 3763 * sd_process_sdconf_file returns SD_FAILURE if it cannot find 3764 * the "sd-config-list" property (from the sd.conf file) or if 3765 * there was not a match for the inquiry vid/pid. If this event 3766 * occurs the static driver configuration table is searched for 3767 * a match. 3768 */ 3769 ASSERT(un != NULL); 3770 if (sd_process_sdconf_file(un) == SD_FAILURE) { 3771 sd_process_sdconf_table(un); 3772 } 3773 3774 /* check for LSI device */ 3775 sd_is_lsi(un); 3776 3777 3778 } 3779 3780 3781 /* 3782 * Function: sd_process_sdconf_file 3783 * 3784 * Description: Use ddi_prop_lookup(9F) to obtain the properties from the 3785 * driver's config file (ie, sd.conf) and update the driver 3786 * soft state structure accordingly. 3787 * 3788 * Arguments: un - driver soft state (unit) structure 3789 * 3790 * Return Code: SD_SUCCESS - The properties were successfully set according 3791 * to the driver configuration file. 3792 * SD_FAILURE - The driver config list was not obtained or 3793 * there was no vid/pid match. This indicates that 3794 * the static config table should be used. 3795 * 3796 * The config file has a property, "sd-config-list". Currently we support 3797 * two kinds of formats. For both formats, the value of this property 3798 * is a list of duplets: 3799 * 3800 * sd-config-list= 3801 * <duplet>, 3802 * [,<duplet>]*; 3803 * 3804 * For the improved format, where 3805 * 3806 * <duplet>:= "<vid+pid>","<tunable-list>" 3807 * 3808 * and 3809 * 3810 * <tunable-list>:= <tunable> [, <tunable> ]*; 3811 * <tunable> = <name> : <value> 3812 * 3813 * The <vid+pid> is the string that is returned by the target device on a 3814 * SCSI inquiry command, the <tunable-list> contains one or more tunables 3815 * to apply to all target devices with the specified <vid+pid>. 3816 * 3817 * Each <tunable> is a "<name> : <value>" pair. 3818 * 3819 * For the old format, the structure of each duplet is as follows: 3820 * 3821 * <duplet>:= "<vid+pid>","<data-property-name_list>" 3822 * 3823 * The first entry of the duplet is the device ID string (the concatenated 3824 * vid & pid; not to be confused with a device_id). This is defined in 3825 * the same way as in the sd_disk_table. 3826 * 3827 * The second part of the duplet is a string that identifies a 3828 * data-property-name-list. The data-property-name-list is defined as 3829 * follows: 3830 * 3831 * <data-property-name-list>:=<data-property-name> [<data-property-name>] 3832 * 3833 * The syntax of <data-property-name> depends on the <version> field. 3834 * 3835 * If version = SD_CONF_VERSION_1 we have the following syntax: 3836 * 3837 * <data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN> 3838 * 3839 * where the prop0 value will be used to set prop0 if bit0 set in the 3840 * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1 3841 * 3842 */ 3843 3844 static int 3845 sd_process_sdconf_file(struct sd_lun *un) 3846 { 3847 char **config_list = NULL; 3848 uint_t nelements; 3849 char *vidptr; 3850 int vidlen; 3851 char *dnlist_ptr; 3852 char *dataname_ptr; 3853 char *dataname_lasts; 3854 int *data_list = NULL; 3855 uint_t data_list_len; 3856 int rval = SD_FAILURE; 3857 int i; 3858 3859 ASSERT(un != NULL); 3860 3861 /* Obtain the configuration list associated with the .conf file */ 3862 if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, SD_DEVINFO(un), 3863 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, sd_config_list, 3864 &config_list, &nelements) != DDI_PROP_SUCCESS) { 3865 return (SD_FAILURE); 3866 } 3867 3868 /* 3869 * Compare vids in each duplet to the inquiry vid - if a match is 3870 * made, get the data value and update the soft state structure 3871 * accordingly. 3872 * 3873 * Each duplet should show as a pair of strings, return SD_FAILURE 3874 * otherwise. 3875 */ 3876 if (nelements & 1) { 3877 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3878 "sd-config-list should show as pairs of strings.\n"); 3879 if (config_list) 3880 ddi_prop_free(config_list); 3881 return (SD_FAILURE); 3882 } 3883 3884 for (i = 0; i < nelements; i += 2) { 3885 /* 3886 * Note: The assumption here is that each vid entry is on 3887 * a unique line from its associated duplet. 3888 */ 3889 vidptr = config_list[i]; 3890 vidlen = (int)strlen(vidptr); 3891 if ((vidlen == 0) || 3892 (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) { 3893 continue; 3894 } 3895 3896 /* 3897 * dnlist contains 1 or more blank separated 3898 * data-property-name entries 3899 */ 3900 dnlist_ptr = config_list[i + 1]; 3901 3902 if (strchr(dnlist_ptr, ':') != NULL) { 3903 /* 3904 * Decode the improved format sd-config-list. 3905 */ 3906 sd_nvpair_str_decode(un, dnlist_ptr); 3907 } else { 3908 /* 3909 * The old format sd-config-list, loop through all 3910 * data-property-name entries in the 3911 * data-property-name-list 3912 * setting the properties for each. 3913 */ 3914 for (dataname_ptr = sd_strtok_r(dnlist_ptr, " \t", 3915 &dataname_lasts); dataname_ptr != NULL; 3916 dataname_ptr = sd_strtok_r(NULL, " \t", 3917 &dataname_lasts)) { 3918 int version; 3919 3920 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3921 "sd_process_sdconf_file: disk:%s, " 3922 "data:%s\n", vidptr, dataname_ptr); 3923 3924 /* Get the data list */ 3925 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, 3926 SD_DEVINFO(un), 0, dataname_ptr, &data_list, 3927 &data_list_len) != DDI_PROP_SUCCESS) { 3928 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3929 "sd_process_sdconf_file: data " 3930 "property (%s) has no value\n", 3931 dataname_ptr); 3932 continue; 3933 } 3934 3935 version = data_list[0]; 3936 3937 if (version == SD_CONF_VERSION_1) { 3938 sd_tunables values; 3939 3940 /* Set the properties */ 3941 if (sd_chk_vers1_data(un, data_list[1], 3942 &data_list[2], data_list_len, 3943 dataname_ptr) == SD_SUCCESS) { 3944 sd_get_tunables_from_conf(un, 3945 data_list[1], &data_list[2], 3946 &values); 3947 sd_set_vers1_properties(un, 3948 data_list[1], &values); 3949 rval = SD_SUCCESS; 3950 } else { 3951 rval = SD_FAILURE; 3952 } 3953 } else { 3954 scsi_log(SD_DEVINFO(un), sd_label, 3955 CE_WARN, "data property %s version " 3956 "0x%x is invalid.", 3957 dataname_ptr, version); 3958 rval = SD_FAILURE; 3959 } 3960 if (data_list) 3961 ddi_prop_free(data_list); 3962 } 3963 } 3964 } 3965 3966 /* free up the memory allocated by ddi_prop_lookup_string_array(). */ 3967 if (config_list) { 3968 ddi_prop_free(config_list); 3969 } 3970 3971 return (rval); 3972 } 3973 3974 /* 3975 * Function: sd_nvpair_str_decode() 3976 * 3977 * Description: Parse the improved format sd-config-list to get 3978 * each entry of tunable, which includes a name-value pair. 3979 * Then call sd_set_properties() to set the property. 3980 * 3981 * Arguments: un - driver soft state (unit) structure 3982 * nvpair_str - the tunable list 3983 */ 3984 static void 3985 sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str) 3986 { 3987 char *nv, *name, *value, *token; 3988 char *nv_lasts, *v_lasts, *x_lasts; 3989 3990 for (nv = sd_strtok_r(nvpair_str, ",", &nv_lasts); nv != NULL; 3991 nv = sd_strtok_r(NULL, ",", &nv_lasts)) { 3992 token = sd_strtok_r(nv, ":", &v_lasts); 3993 name = sd_strtok_r(token, " \t", &x_lasts); 3994 token = sd_strtok_r(NULL, ":", &v_lasts); 3995 value = sd_strtok_r(token, " \t", &x_lasts); 3996 if (name == NULL || value == NULL) { 3997 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3998 "sd_nvpair_str_decode: " 3999 "name or value is not valid!\n"); 4000 } else { 4001 sd_set_properties(un, name, value); 4002 } 4003 } 4004 } 4005 4006 /* 4007 * Function: sd_strtok_r() 4008 * 4009 * Description: This function uses strpbrk and strspn to break 4010 * string into tokens on sequentially subsequent calls. Return 4011 * NULL when no non-separator characters remain. The first 4012 * argument is NULL for subsequent calls. 4013 */ 4014 static char * 4015 sd_strtok_r(char *string, const char *sepset, char **lasts) 4016 { 4017 char *q, *r; 4018 4019 /* First or subsequent call */ 4020 if (string == NULL) 4021 string = *lasts; 4022 4023 if (string == NULL) 4024 return (NULL); 4025 4026 /* Skip leading separators */ 4027 q = string + strspn(string, sepset); 4028 4029 if (*q == '\0') 4030 return (NULL); 4031 4032 if ((r = strpbrk(q, sepset)) == NULL) 4033 *lasts = NULL; 4034 else { 4035 *r = '\0'; 4036 *lasts = r + 1; 4037 } 4038 return (q); 4039 } 4040 4041 /* 4042 * Function: sd_set_properties() 4043 * 4044 * Description: Set device properties based on the improved 4045 * format sd-config-list. 4046 * 4047 * Arguments: un - driver soft state (unit) structure 4048 * name - supported tunable name 4049 * value - tunable value 4050 */ 4051 static void 4052 sd_set_properties(struct sd_lun *un, char *name, char *value) 4053 { 4054 char *endptr = NULL; 4055 long val = 0; 4056 4057 if (strcasecmp(name, "cache-nonvolatile") == 0) { 4058 if (strcasecmp(value, "true") == 0) { 4059 un->un_f_suppress_cache_flush = TRUE; 4060 } else if (strcasecmp(value, "false") == 0) { 4061 un->un_f_suppress_cache_flush = FALSE; 4062 } else { 4063 goto value_invalid; 4064 } 4065 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4066 "suppress_cache_flush flag set to %d\n", 4067 un->un_f_suppress_cache_flush); 4068 return; 4069 } 4070 4071 if (strcasecmp(name, "controller-type") == 0) { 4072 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4073 un->un_ctype = val; 4074 } else { 4075 goto value_invalid; 4076 } 4077 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4078 "ctype set to %d\n", un->un_ctype); 4079 return; 4080 } 4081 4082 if (strcasecmp(name, "delay-busy") == 0) { 4083 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4084 un->un_busy_timeout = drv_usectohz(val / 1000); 4085 } else { 4086 goto value_invalid; 4087 } 4088 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4089 "busy_timeout set to %d\n", un->un_busy_timeout); 4090 return; 4091 } 4092 4093 if (strcasecmp(name, "disksort") == 0) { 4094 if (strcasecmp(value, "true") == 0) { 4095 un->un_f_disksort_disabled = FALSE; 4096 } else if (strcasecmp(value, "false") == 0) { 4097 un->un_f_disksort_disabled = TRUE; 4098 } else { 4099 goto value_invalid; 4100 } 4101 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4102 "disksort disabled flag set to %d\n", 4103 un->un_f_disksort_disabled); 4104 return; 4105 } 4106 4107 if (strcasecmp(name, "power-condition") == 0) { 4108 if (strcasecmp(value, "true") == 0) { 4109 un->un_f_power_condition_disabled = FALSE; 4110 } else if (strcasecmp(value, "false") == 0) { 4111 un->un_f_power_condition_disabled = TRUE; 4112 } else { 4113 goto value_invalid; 4114 } 4115 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4116 "power condition disabled flag set to %d\n", 4117 un->un_f_power_condition_disabled); 4118 return; 4119 } 4120 4121 if (strcasecmp(name, "timeout-releasereservation") == 0) { 4122 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4123 un->un_reserve_release_time = val; 4124 } else { 4125 goto value_invalid; 4126 } 4127 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4128 "reservation release timeout set to %d\n", 4129 un->un_reserve_release_time); 4130 return; 4131 } 4132 4133 if (strcasecmp(name, "reset-lun") == 0) { 4134 if (strcasecmp(value, "true") == 0) { 4135 un->un_f_lun_reset_enabled = TRUE; 4136 } else if (strcasecmp(value, "false") == 0) { 4137 un->un_f_lun_reset_enabled = FALSE; 4138 } else { 4139 goto value_invalid; 4140 } 4141 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4142 "lun reset enabled flag set to %d\n", 4143 un->un_f_lun_reset_enabled); 4144 return; 4145 } 4146 4147 if (strcasecmp(name, "retries-busy") == 0) { 4148 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4149 un->un_busy_retry_count = val; 4150 } else { 4151 goto value_invalid; 4152 } 4153 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4154 "busy retry count set to %d\n", un->un_busy_retry_count); 4155 return; 4156 } 4157 4158 if (strcasecmp(name, "retries-timeout") == 0) { 4159 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4160 un->un_retry_count = val; 4161 } else { 4162 goto value_invalid; 4163 } 4164 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4165 "timeout retry count set to %d\n", un->un_retry_count); 4166 return; 4167 } 4168 4169 if (strcasecmp(name, "retries-notready") == 0) { 4170 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4171 un->un_notready_retry_count = val; 4172 } else { 4173 goto value_invalid; 4174 } 4175 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4176 "notready retry count set to %d\n", 4177 un->un_notready_retry_count); 4178 return; 4179 } 4180 4181 if (strcasecmp(name, "retries-reset") == 0) { 4182 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4183 un->un_reset_retry_count = val; 4184 } else { 4185 goto value_invalid; 4186 } 4187 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4188 "reset retry count set to %d\n", 4189 un->un_reset_retry_count); 4190 return; 4191 } 4192 4193 if (strcasecmp(name, "throttle-max") == 0) { 4194 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4195 un->un_saved_throttle = un->un_throttle = val; 4196 } else { 4197 goto value_invalid; 4198 } 4199 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4200 "throttle set to %d\n", un->un_throttle); 4201 } 4202 4203 if (strcasecmp(name, "throttle-min") == 0) { 4204 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4205 un->un_min_throttle = val; 4206 } else { 4207 goto value_invalid; 4208 } 4209 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4210 "min throttle set to %d\n", un->un_min_throttle); 4211 } 4212 4213 if (strcasecmp(name, "rmw-type") == 0) { 4214 if (ddi_strtol(value, &endptr, 0, &val) == 0) { 4215 un->un_f_rmw_type = val; 4216 } else { 4217 goto value_invalid; 4218 } 4219 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4220 "RMW type set to %d\n", un->un_f_rmw_type); 4221 } 4222 4223 /* 4224 * Validate the throttle values. 4225 * If any of the numbers are invalid, set everything to defaults. 4226 */ 4227 if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) || 4228 (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) || 4229 (un->un_min_throttle > un->un_throttle)) { 4230 un->un_saved_throttle = un->un_throttle = sd_max_throttle; 4231 un->un_min_throttle = sd_min_throttle; 4232 } 4233 4234 if (strcasecmp(name, "mmc-gesn-polling") == 0) { 4235 if (strcasecmp(value, "true") == 0) { 4236 un->un_f_mmc_gesn_polling = TRUE; 4237 } else if (strcasecmp(value, "false") == 0) { 4238 un->un_f_mmc_gesn_polling = FALSE; 4239 } else { 4240 goto value_invalid; 4241 } 4242 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4243 "mmc-gesn-polling set to %d\n", 4244 un->un_f_mmc_gesn_polling); 4245 } 4246 4247 return; 4248 4249 value_invalid: 4250 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: " 4251 "value of prop %s is invalid\n", name); 4252 } 4253 4254 /* 4255 * Function: sd_get_tunables_from_conf() 4256 * 4257 * 4258 * This function reads the data list from the sd.conf file and pulls 4259 * the values that can have numeric values as arguments and places 4260 * the values in the appropriate sd_tunables member. 4261 * Since the order of the data list members varies across platforms 4262 * This function reads them from the data list in a platform specific 4263 * order and places them into the correct sd_tunable member that is 4264 * consistent across all platforms. 4265 */ 4266 static void 4267 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list, 4268 sd_tunables *values) 4269 { 4270 int i; 4271 int mask; 4272 4273 bzero(values, sizeof (sd_tunables)); 4274 4275 for (i = 0; i < SD_CONF_MAX_ITEMS; i++) { 4276 4277 mask = 1 << i; 4278 if (mask > flags) { 4279 break; 4280 } 4281 4282 switch (mask & flags) { 4283 case 0: /* This mask bit not set in flags */ 4284 continue; 4285 case SD_CONF_BSET_THROTTLE: 4286 values->sdt_throttle = data_list[i]; 4287 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4288 "sd_get_tunables_from_conf: throttle = %d\n", 4289 values->sdt_throttle); 4290 break; 4291 case SD_CONF_BSET_CTYPE: 4292 values->sdt_ctype = data_list[i]; 4293 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4294 "sd_get_tunables_from_conf: ctype = %d\n", 4295 values->sdt_ctype); 4296 break; 4297 case SD_CONF_BSET_NRR_COUNT: 4298 values->sdt_not_rdy_retries = data_list[i]; 4299 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4300 "sd_get_tunables_from_conf: not_rdy_retries = %d\n", 4301 values->sdt_not_rdy_retries); 4302 break; 4303 case SD_CONF_BSET_BSY_RETRY_COUNT: 4304 values->sdt_busy_retries = data_list[i]; 4305 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4306 "sd_get_tunables_from_conf: busy_retries = %d\n", 4307 values->sdt_busy_retries); 4308 break; 4309 case SD_CONF_BSET_RST_RETRIES: 4310 values->sdt_reset_retries = data_list[i]; 4311 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4312 "sd_get_tunables_from_conf: reset_retries = %d\n", 4313 values->sdt_reset_retries); 4314 break; 4315 case SD_CONF_BSET_RSV_REL_TIME: 4316 values->sdt_reserv_rel_time = data_list[i]; 4317 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4318 "sd_get_tunables_from_conf: reserv_rel_time = %d\n", 4319 values->sdt_reserv_rel_time); 4320 break; 4321 case SD_CONF_BSET_MIN_THROTTLE: 4322 values->sdt_min_throttle = data_list[i]; 4323 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4324 "sd_get_tunables_from_conf: min_throttle = %d\n", 4325 values->sdt_min_throttle); 4326 break; 4327 case SD_CONF_BSET_DISKSORT_DISABLED: 4328 values->sdt_disk_sort_dis = data_list[i]; 4329 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4330 "sd_get_tunables_from_conf: disk_sort_dis = %d\n", 4331 values->sdt_disk_sort_dis); 4332 break; 4333 case SD_CONF_BSET_LUN_RESET_ENABLED: 4334 values->sdt_lun_reset_enable = data_list[i]; 4335 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4336 "sd_get_tunables_from_conf: lun_reset_enable = %d" 4337 "\n", values->sdt_lun_reset_enable); 4338 break; 4339 case SD_CONF_BSET_CACHE_IS_NV: 4340 values->sdt_suppress_cache_flush = data_list[i]; 4341 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4342 "sd_get_tunables_from_conf: \ 4343 suppress_cache_flush = %d" 4344 "\n", values->sdt_suppress_cache_flush); 4345 break; 4346 case SD_CONF_BSET_PC_DISABLED: 4347 values->sdt_disk_sort_dis = data_list[i]; 4348 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4349 "sd_get_tunables_from_conf: power_condition_dis = " 4350 "%d\n", values->sdt_power_condition_dis); 4351 break; 4352 } 4353 } 4354 } 4355 4356 /* 4357 * Function: sd_process_sdconf_table 4358 * 4359 * Description: Search the static configuration table for a match on the 4360 * inquiry vid/pid and update the driver soft state structure 4361 * according to the table property values for the device. 4362 * 4363 * The form of a configuration table entry is: 4364 * <vid+pid>,<flags>,<property-data> 4365 * "SEAGATE ST42400N",1,0x40000, 4366 * 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1; 4367 * 4368 * Arguments: un - driver soft state (unit) structure 4369 */ 4370 4371 static void 4372 sd_process_sdconf_table(struct sd_lun *un) 4373 { 4374 char *id = NULL; 4375 int table_index; 4376 int idlen; 4377 4378 ASSERT(un != NULL); 4379 for (table_index = 0; table_index < sd_disk_table_size; 4380 table_index++) { 4381 id = sd_disk_table[table_index].device_id; 4382 idlen = strlen(id); 4383 if (idlen == 0) { 4384 continue; 4385 } 4386 4387 /* 4388 * The static configuration table currently does not 4389 * implement version 10 properties. Additionally, 4390 * multiple data-property-name entries are not 4391 * implemented in the static configuration table. 4392 */ 4393 if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) { 4394 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4395 "sd_process_sdconf_table: disk %s\n", id); 4396 sd_set_vers1_properties(un, 4397 sd_disk_table[table_index].flags, 4398 sd_disk_table[table_index].properties); 4399 break; 4400 } 4401 } 4402 } 4403 4404 4405 /* 4406 * Function: sd_sdconf_id_match 4407 * 4408 * Description: This local function implements a case sensitive vid/pid 4409 * comparison as well as the boundary cases of wild card and 4410 * multiple blanks. 4411 * 4412 * Note: An implicit assumption made here is that the scsi 4413 * inquiry structure will always keep the vid, pid and 4414 * revision strings in consecutive sequence, so they can be 4415 * read as a single string. If this assumption is not the 4416 * case, a separate string, to be used for the check, needs 4417 * to be built with these strings concatenated. 4418 * 4419 * Arguments: un - driver soft state (unit) structure 4420 * id - table or config file vid/pid 4421 * idlen - length of the vid/pid (bytes) 4422 * 4423 * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid 4424 * SD_FAILURE - Indicates no match with the inquiry vid/pid 4425 */ 4426 4427 static int 4428 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen) 4429 { 4430 struct scsi_inquiry *sd_inq; 4431 int rval = SD_SUCCESS; 4432 4433 ASSERT(un != NULL); 4434 sd_inq = un->un_sd->sd_inq; 4435 ASSERT(id != NULL); 4436 4437 /* 4438 * We use the inq_vid as a pointer to a buffer containing the 4439 * vid and pid and use the entire vid/pid length of the table 4440 * entry for the comparison. This works because the inq_pid 4441 * data member follows inq_vid in the scsi_inquiry structure. 4442 */ 4443 if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) { 4444 /* 4445 * The user id string is compared to the inquiry vid/pid 4446 * using a case insensitive comparison and ignoring 4447 * multiple spaces. 4448 */ 4449 rval = sd_blank_cmp(un, id, idlen); 4450 if (rval != SD_SUCCESS) { 4451 /* 4452 * User id strings that start and end with a "*" 4453 * are a special case. These do not have a 4454 * specific vendor, and the product string can 4455 * appear anywhere in the 16 byte PID portion of 4456 * the inquiry data. This is a simple strstr() 4457 * type search for the user id in the inquiry data. 4458 */ 4459 if ((id[0] == '*') && (id[idlen - 1] == '*')) { 4460 char *pidptr = &id[1]; 4461 int i; 4462 int j; 4463 int pidstrlen = idlen - 2; 4464 j = sizeof (SD_INQUIRY(un)->inq_pid) - 4465 pidstrlen; 4466 4467 if (j < 0) { 4468 return (SD_FAILURE); 4469 } 4470 for (i = 0; i < j; i++) { 4471 if (bcmp(&SD_INQUIRY(un)->inq_pid[i], 4472 pidptr, pidstrlen) == 0) { 4473 rval = SD_SUCCESS; 4474 break; 4475 } 4476 } 4477 } 4478 } 4479 } 4480 return (rval); 4481 } 4482 4483 4484 /* 4485 * Function: sd_blank_cmp 4486 * 4487 * Description: If the id string starts and ends with a space, treat 4488 * multiple consecutive spaces as equivalent to a single 4489 * space. For example, this causes a sd_disk_table entry 4490 * of " NEC CDROM " to match a device's id string of 4491 * "NEC CDROM". 4492 * 4493 * Note: The success exit condition for this routine is if 4494 * the pointer to the table entry is '\0' and the cnt of 4495 * the inquiry length is zero. This will happen if the inquiry 4496 * string returned by the device is padded with spaces to be 4497 * exactly 24 bytes in length (8 byte vid + 16 byte pid). The 4498 * SCSI spec states that the inquiry string is to be padded with 4499 * spaces. 4500 * 4501 * Arguments: un - driver soft state (unit) structure 4502 * id - table or config file vid/pid 4503 * idlen - length of the vid/pid (bytes) 4504 * 4505 * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid 4506 * SD_FAILURE - Indicates no match with the inquiry vid/pid 4507 */ 4508 4509 static int 4510 sd_blank_cmp(struct sd_lun *un, char *id, int idlen) 4511 { 4512 char *p1; 4513 char *p2; 4514 int cnt; 4515 cnt = sizeof (SD_INQUIRY(un)->inq_vid) + 4516 sizeof (SD_INQUIRY(un)->inq_pid); 4517 4518 ASSERT(un != NULL); 4519 p2 = un->un_sd->sd_inq->inq_vid; 4520 ASSERT(id != NULL); 4521 p1 = id; 4522 4523 if ((id[0] == ' ') && (id[idlen - 1] == ' ')) { 4524 /* 4525 * Note: string p1 is terminated by a NUL but string p2 4526 * isn't. The end of p2 is determined by cnt. 4527 */ 4528 for (;;) { 4529 /* skip over any extra blanks in both strings */ 4530 while ((*p1 != '\0') && (*p1 == ' ')) { 4531 p1++; 4532 } 4533 while ((cnt != 0) && (*p2 == ' ')) { 4534 p2++; 4535 cnt--; 4536 } 4537 4538 /* compare the two strings */ 4539 if ((cnt == 0) || 4540 (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) { 4541 break; 4542 } 4543 while ((cnt > 0) && 4544 (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) { 4545 p1++; 4546 p2++; 4547 cnt--; 4548 } 4549 } 4550 } 4551 4552 /* return SD_SUCCESS if both strings match */ 4553 return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE); 4554 } 4555 4556 4557 /* 4558 * Function: sd_chk_vers1_data 4559 * 4560 * Description: Verify the version 1 device properties provided by the 4561 * user via the configuration file 4562 * 4563 * Arguments: un - driver soft state (unit) structure 4564 * flags - integer mask indicating properties to be set 4565 * prop_list - integer list of property values 4566 * list_len - number of the elements 4567 * 4568 * Return Code: SD_SUCCESS - Indicates the user provided data is valid 4569 * SD_FAILURE - Indicates the user provided data is invalid 4570 */ 4571 4572 static int 4573 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list, 4574 int list_len, char *dataname_ptr) 4575 { 4576 int i; 4577 int mask = 1; 4578 int index = 0; 4579 4580 ASSERT(un != NULL); 4581 4582 /* Check for a NULL property name and list */ 4583 if (dataname_ptr == NULL) { 4584 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4585 "sd_chk_vers1_data: NULL data property name."); 4586 return (SD_FAILURE); 4587 } 4588 if (prop_list == NULL) { 4589 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4590 "sd_chk_vers1_data: %s NULL data property list.", 4591 dataname_ptr); 4592 return (SD_FAILURE); 4593 } 4594 4595 /* Display a warning if undefined bits are set in the flags */ 4596 if (flags & ~SD_CONF_BIT_MASK) { 4597 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4598 "sd_chk_vers1_data: invalid bits 0x%x in data list %s. " 4599 "Properties not set.", 4600 (flags & ~SD_CONF_BIT_MASK), dataname_ptr); 4601 return (SD_FAILURE); 4602 } 4603 4604 /* 4605 * Verify the length of the list by identifying the highest bit set 4606 * in the flags and validating that the property list has a length 4607 * up to the index of this bit. 4608 */ 4609 for (i = 0; i < SD_CONF_MAX_ITEMS; i++) { 4610 if (flags & mask) { 4611 index++; 4612 } 4613 mask = 1 << i; 4614 } 4615 if (list_len < (index + 2)) { 4616 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4617 "sd_chk_vers1_data: " 4618 "Data property list %s size is incorrect. " 4619 "Properties not set.", dataname_ptr); 4620 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: " 4621 "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS); 4622 return (SD_FAILURE); 4623 } 4624 return (SD_SUCCESS); 4625 } 4626 4627 4628 /* 4629 * Function: sd_set_vers1_properties 4630 * 4631 * Description: Set version 1 device properties based on a property list 4632 * retrieved from the driver configuration file or static 4633 * configuration table. Version 1 properties have the format: 4634 * 4635 * <data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN> 4636 * 4637 * where the prop0 value will be used to set prop0 if bit0 4638 * is set in the flags 4639 * 4640 * Arguments: un - driver soft state (unit) structure 4641 * flags - integer mask indicating properties to be set 4642 * prop_list - integer list of property values 4643 */ 4644 4645 static void 4646 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list) 4647 { 4648 ASSERT(un != NULL); 4649 4650 /* 4651 * Set the flag to indicate cache is to be disabled. An attempt 4652 * to disable the cache via sd_cache_control() will be made 4653 * later during attach once the basic initialization is complete. 4654 */ 4655 if (flags & SD_CONF_BSET_NOCACHE) { 4656 un->un_f_opt_disable_cache = TRUE; 4657 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4658 "sd_set_vers1_properties: caching disabled flag set\n"); 4659 } 4660 4661 /* CD-specific configuration parameters */ 4662 if (flags & SD_CONF_BSET_PLAYMSF_BCD) { 4663 un->un_f_cfg_playmsf_bcd = TRUE; 4664 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4665 "sd_set_vers1_properties: playmsf_bcd set\n"); 4666 } 4667 if (flags & SD_CONF_BSET_READSUB_BCD) { 4668 un->un_f_cfg_readsub_bcd = TRUE; 4669 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4670 "sd_set_vers1_properties: readsub_bcd set\n"); 4671 } 4672 if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) { 4673 un->un_f_cfg_read_toc_trk_bcd = TRUE; 4674 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4675 "sd_set_vers1_properties: read_toc_trk_bcd set\n"); 4676 } 4677 if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) { 4678 un->un_f_cfg_read_toc_addr_bcd = TRUE; 4679 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4680 "sd_set_vers1_properties: read_toc_addr_bcd set\n"); 4681 } 4682 if (flags & SD_CONF_BSET_NO_READ_HEADER) { 4683 un->un_f_cfg_no_read_header = TRUE; 4684 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4685 "sd_set_vers1_properties: no_read_header set\n"); 4686 } 4687 if (flags & SD_CONF_BSET_READ_CD_XD4) { 4688 un->un_f_cfg_read_cd_xd4 = TRUE; 4689 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4690 "sd_set_vers1_properties: read_cd_xd4 set\n"); 4691 } 4692 4693 /* Support for devices which do not have valid/unique serial numbers */ 4694 if (flags & SD_CONF_BSET_FAB_DEVID) { 4695 un->un_f_opt_fab_devid = TRUE; 4696 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4697 "sd_set_vers1_properties: fab_devid bit set\n"); 4698 } 4699 4700 /* Support for user throttle configuration */ 4701 if (flags & SD_CONF_BSET_THROTTLE) { 4702 ASSERT(prop_list != NULL); 4703 un->un_saved_throttle = un->un_throttle = 4704 prop_list->sdt_throttle; 4705 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4706 "sd_set_vers1_properties: throttle set to %d\n", 4707 prop_list->sdt_throttle); 4708 } 4709 4710 /* Set the per disk retry count according to the conf file or table. */ 4711 if (flags & SD_CONF_BSET_NRR_COUNT) { 4712 ASSERT(prop_list != NULL); 4713 if (prop_list->sdt_not_rdy_retries) { 4714 un->un_notready_retry_count = 4715 prop_list->sdt_not_rdy_retries; 4716 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4717 "sd_set_vers1_properties: not ready retry count" 4718 " set to %d\n", un->un_notready_retry_count); 4719 } 4720 } 4721 4722 /* The controller type is reported for generic disk driver ioctls */ 4723 if (flags & SD_CONF_BSET_CTYPE) { 4724 ASSERT(prop_list != NULL); 4725 switch (prop_list->sdt_ctype) { 4726 case CTYPE_CDROM: 4727 un->un_ctype = prop_list->sdt_ctype; 4728 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4729 "sd_set_vers1_properties: ctype set to " 4730 "CTYPE_CDROM\n"); 4731 break; 4732 case CTYPE_CCS: 4733 un->un_ctype = prop_list->sdt_ctype; 4734 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4735 "sd_set_vers1_properties: ctype set to " 4736 "CTYPE_CCS\n"); 4737 break; 4738 case CTYPE_ROD: /* RW optical */ 4739 un->un_ctype = prop_list->sdt_ctype; 4740 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4741 "sd_set_vers1_properties: ctype set to " 4742 "CTYPE_ROD\n"); 4743 break; 4744 default: 4745 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4746 "sd_set_vers1_properties: Could not set " 4747 "invalid ctype value (%d)", 4748 prop_list->sdt_ctype); 4749 } 4750 } 4751 4752 /* Purple failover timeout */ 4753 if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) { 4754 ASSERT(prop_list != NULL); 4755 un->un_busy_retry_count = 4756 prop_list->sdt_busy_retries; 4757 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4758 "sd_set_vers1_properties: " 4759 "busy retry count set to %d\n", 4760 un->un_busy_retry_count); 4761 } 4762 4763 /* Purple reset retry count */ 4764 if (flags & SD_CONF_BSET_RST_RETRIES) { 4765 ASSERT(prop_list != NULL); 4766 un->un_reset_retry_count = 4767 prop_list->sdt_reset_retries; 4768 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4769 "sd_set_vers1_properties: " 4770 "reset retry count set to %d\n", 4771 un->un_reset_retry_count); 4772 } 4773 4774 /* Purple reservation release timeout */ 4775 if (flags & SD_CONF_BSET_RSV_REL_TIME) { 4776 ASSERT(prop_list != NULL); 4777 un->un_reserve_release_time = 4778 prop_list->sdt_reserv_rel_time; 4779 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4780 "sd_set_vers1_properties: " 4781 "reservation release timeout set to %d\n", 4782 un->un_reserve_release_time); 4783 } 4784 4785 /* 4786 * Driver flag telling the driver to verify that no commands are pending 4787 * for a device before issuing a Test Unit Ready. This is a workaround 4788 * for a firmware bug in some Seagate eliteI drives. 4789 */ 4790 if (flags & SD_CONF_BSET_TUR_CHECK) { 4791 un->un_f_cfg_tur_check = TRUE; 4792 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4793 "sd_set_vers1_properties: tur queue check set\n"); 4794 } 4795 4796 if (flags & SD_CONF_BSET_MIN_THROTTLE) { 4797 un->un_min_throttle = prop_list->sdt_min_throttle; 4798 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4799 "sd_set_vers1_properties: min throttle set to %d\n", 4800 un->un_min_throttle); 4801 } 4802 4803 if (flags & SD_CONF_BSET_DISKSORT_DISABLED) { 4804 un->un_f_disksort_disabled = 4805 (prop_list->sdt_disk_sort_dis != 0) ? 4806 TRUE : FALSE; 4807 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4808 "sd_set_vers1_properties: disksort disabled " 4809 "flag set to %d\n", 4810 prop_list->sdt_disk_sort_dis); 4811 } 4812 4813 if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) { 4814 un->un_f_lun_reset_enabled = 4815 (prop_list->sdt_lun_reset_enable != 0) ? 4816 TRUE : FALSE; 4817 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4818 "sd_set_vers1_properties: lun reset enabled " 4819 "flag set to %d\n", 4820 prop_list->sdt_lun_reset_enable); 4821 } 4822 4823 if (flags & SD_CONF_BSET_CACHE_IS_NV) { 4824 un->un_f_suppress_cache_flush = 4825 (prop_list->sdt_suppress_cache_flush != 0) ? 4826 TRUE : FALSE; 4827 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4828 "sd_set_vers1_properties: suppress_cache_flush " 4829 "flag set to %d\n", 4830 prop_list->sdt_suppress_cache_flush); 4831 } 4832 4833 if (flags & SD_CONF_BSET_PC_DISABLED) { 4834 un->un_f_power_condition_disabled = 4835 (prop_list->sdt_power_condition_dis != 0) ? 4836 TRUE : FALSE; 4837 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4838 "sd_set_vers1_properties: power_condition_disabled " 4839 "flag set to %d\n", 4840 prop_list->sdt_power_condition_dis); 4841 } 4842 4843 /* 4844 * Validate the throttle values. 4845 * If any of the numbers are invalid, set everything to defaults. 4846 */ 4847 if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) || 4848 (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) || 4849 (un->un_min_throttle > un->un_throttle)) { 4850 un->un_saved_throttle = un->un_throttle = sd_max_throttle; 4851 un->un_min_throttle = sd_min_throttle; 4852 } 4853 } 4854 4855 /* 4856 * Function: sd_is_lsi() 4857 * 4858 * Description: Check for lsi devices, step through the static device 4859 * table to match vid/pid. 4860 * 4861 * Args: un - ptr to sd_lun 4862 * 4863 * Notes: When creating new LSI property, need to add the new LSI property 4864 * to this function. 4865 */ 4866 static void 4867 sd_is_lsi(struct sd_lun *un) 4868 { 4869 char *id = NULL; 4870 int table_index; 4871 int idlen; 4872 void *prop; 4873 4874 ASSERT(un != NULL); 4875 for (table_index = 0; table_index < sd_disk_table_size; 4876 table_index++) { 4877 id = sd_disk_table[table_index].device_id; 4878 idlen = strlen(id); 4879 if (idlen == 0) { 4880 continue; 4881 } 4882 4883 if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) { 4884 prop = sd_disk_table[table_index].properties; 4885 if (prop == &lsi_properties || 4886 prop == &lsi_oem_properties || 4887 prop == &lsi_properties_scsi || 4888 prop == &symbios_properties) { 4889 un->un_f_cfg_is_lsi = TRUE; 4890 } 4891 break; 4892 } 4893 } 4894 } 4895 4896 /* 4897 * Function: sd_get_physical_geometry 4898 * 4899 * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and 4900 * MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the 4901 * target, and use this information to initialize the physical 4902 * geometry cache specified by pgeom_p. 4903 * 4904 * MODE SENSE is an optional command, so failure in this case 4905 * does not necessarily denote an error. We want to use the 4906 * MODE SENSE commands to derive the physical geometry of the 4907 * device, but if either command fails, the logical geometry is 4908 * used as the fallback for disk label geometry in cmlb. 4909 * 4910 * This requires that un->un_blockcount and un->un_tgt_blocksize 4911 * have already been initialized for the current target and 4912 * that the current values be passed as args so that we don't 4913 * end up ever trying to use -1 as a valid value. This could 4914 * happen if either value is reset while we're not holding 4915 * the mutex. 4916 * 4917 * Arguments: un - driver soft state (unit) structure 4918 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 4919 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 4920 * to use the USCSI "direct" chain and bypass the normal 4921 * command waitq. 4922 * 4923 * Context: Kernel thread only (can sleep). 4924 */ 4925 4926 static int 4927 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p, 4928 diskaddr_t capacity, int lbasize, int path_flag) 4929 { 4930 struct mode_format *page3p; 4931 struct mode_geometry *page4p; 4932 struct mode_header *headerp; 4933 int sector_size; 4934 int nsect; 4935 int nhead; 4936 int ncyl; 4937 int intrlv; 4938 int spc; 4939 diskaddr_t modesense_capacity; 4940 int rpm; 4941 int bd_len; 4942 int mode_header_length; 4943 uchar_t *p3bufp; 4944 uchar_t *p4bufp; 4945 int cdbsize; 4946 int ret = EIO; 4947 sd_ssc_t *ssc; 4948 int status; 4949 4950 ASSERT(un != NULL); 4951 4952 if (lbasize == 0) { 4953 if (ISCD(un)) { 4954 lbasize = 2048; 4955 } else { 4956 lbasize = un->un_sys_blocksize; 4957 } 4958 } 4959 pgeom_p->g_secsize = (unsigned short)lbasize; 4960 4961 /* 4962 * If the unit is a cd/dvd drive MODE SENSE page three 4963 * and MODE SENSE page four are reserved (see SBC spec 4964 * and MMC spec). To prevent soft errors just return 4965 * using the default LBA size. 4966 */ 4967 if (ISCD(un)) 4968 return (ret); 4969 4970 cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0; 4971 4972 /* 4973 * Retrieve MODE SENSE page 3 - Format Device Page 4974 */ 4975 p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP); 4976 ssc = sd_ssc_init(un); 4977 status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p3bufp, 4978 SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag); 4979 if (status != 0) { 4980 SD_ERROR(SD_LOG_COMMON, un, 4981 "sd_get_physical_geometry: mode sense page 3 failed\n"); 4982 goto page3_exit; 4983 } 4984 4985 /* 4986 * Determine size of Block Descriptors in order to locate the mode 4987 * page data. ATAPI devices return 0, SCSI devices should return 4988 * MODE_BLK_DESC_LENGTH. 4989 */ 4990 headerp = (struct mode_header *)p3bufp; 4991 if (un->un_f_cfg_is_atapi == TRUE) { 4992 struct mode_header_grp2 *mhp = 4993 (struct mode_header_grp2 *)headerp; 4994 mode_header_length = MODE_HEADER_LENGTH_GRP2; 4995 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 4996 } else { 4997 mode_header_length = MODE_HEADER_LENGTH; 4998 bd_len = ((struct mode_header *)headerp)->bdesc_length; 4999 } 5000 5001 if (bd_len > MODE_BLK_DESC_LENGTH) { 5002 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 5003 "sd_get_physical_geometry: received unexpected bd_len " 5004 "of %d, page3\n", bd_len); 5005 status = EIO; 5006 goto page3_exit; 5007 } 5008 5009 page3p = (struct mode_format *) 5010 ((caddr_t)headerp + mode_header_length + bd_len); 5011 5012 if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) { 5013 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 5014 "sd_get_physical_geometry: mode sense pg3 code mismatch " 5015 "%d\n", page3p->mode_page.code); 5016 status = EIO; 5017 goto page3_exit; 5018 } 5019 5020 /* 5021 * Use this physical geometry data only if BOTH MODE SENSE commands 5022 * complete successfully; otherwise, revert to the logical geometry. 5023 * So, we need to save everything in temporary variables. 5024 */ 5025 sector_size = BE_16(page3p->data_bytes_sect); 5026 5027 /* 5028 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size 5029 */ 5030 if (sector_size == 0) { 5031 sector_size = un->un_sys_blocksize; 5032 } else { 5033 sector_size &= ~(un->un_sys_blocksize - 1); 5034 } 5035 5036 nsect = BE_16(page3p->sect_track); 5037 intrlv = BE_16(page3p->interleave); 5038 5039 SD_INFO(SD_LOG_COMMON, un, 5040 "sd_get_physical_geometry: Format Parameters (page 3)\n"); 5041 SD_INFO(SD_LOG_COMMON, un, 5042 " mode page: %d; nsect: %d; sector size: %d;\n", 5043 page3p->mode_page.code, nsect, sector_size); 5044 SD_INFO(SD_LOG_COMMON, un, 5045 " interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv, 5046 BE_16(page3p->track_skew), 5047 BE_16(page3p->cylinder_skew)); 5048 5049 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 5050 5051 /* 5052 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page 5053 */ 5054 p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP); 5055 status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p4bufp, 5056 SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag); 5057 if (status != 0) { 5058 SD_ERROR(SD_LOG_COMMON, un, 5059 "sd_get_physical_geometry: mode sense page 4 failed\n"); 5060 goto page4_exit; 5061 } 5062 5063 /* 5064 * Determine size of Block Descriptors in order to locate the mode 5065 * page data. ATAPI devices return 0, SCSI devices should return 5066 * MODE_BLK_DESC_LENGTH. 5067 */ 5068 headerp = (struct mode_header *)p4bufp; 5069 if (un->un_f_cfg_is_atapi == TRUE) { 5070 struct mode_header_grp2 *mhp = 5071 (struct mode_header_grp2 *)headerp; 5072 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 5073 } else { 5074 bd_len = ((struct mode_header *)headerp)->bdesc_length; 5075 } 5076 5077 if (bd_len > MODE_BLK_DESC_LENGTH) { 5078 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 5079 "sd_get_physical_geometry: received unexpected bd_len of " 5080 "%d, page4\n", bd_len); 5081 status = EIO; 5082 goto page4_exit; 5083 } 5084 5085 page4p = (struct mode_geometry *) 5086 ((caddr_t)headerp + mode_header_length + bd_len); 5087 5088 if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) { 5089 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 5090 "sd_get_physical_geometry: mode sense pg4 code mismatch " 5091 "%d\n", page4p->mode_page.code); 5092 status = EIO; 5093 goto page4_exit; 5094 } 5095 5096 /* 5097 * Stash the data now, after we know that both commands completed. 5098 */ 5099 5100 5101 nhead = (int)page4p->heads; /* uchar, so no conversion needed */ 5102 spc = nhead * nsect; 5103 ncyl = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb; 5104 rpm = BE_16(page4p->rpm); 5105 5106 modesense_capacity = spc * ncyl; 5107 5108 SD_INFO(SD_LOG_COMMON, un, 5109 "sd_get_physical_geometry: Geometry Parameters (page 4)\n"); 5110 SD_INFO(SD_LOG_COMMON, un, 5111 " cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm); 5112 SD_INFO(SD_LOG_COMMON, un, 5113 " computed capacity(h*s*c): %d;\n", modesense_capacity); 5114 SD_INFO(SD_LOG_COMMON, un, " pgeom_p: %p; read cap: %d\n", 5115 (void *)pgeom_p, capacity); 5116 5117 /* 5118 * Compensate if the drive's geometry is not rectangular, i.e., 5119 * the product of C * H * S returned by MODE SENSE >= that returned 5120 * by read capacity. This is an idiosyncrasy of the original x86 5121 * disk subsystem. 5122 */ 5123 if (modesense_capacity >= capacity) { 5124 SD_INFO(SD_LOG_COMMON, un, 5125 "sd_get_physical_geometry: adjusting acyl; " 5126 "old: %d; new: %d\n", pgeom_p->g_acyl, 5127 (modesense_capacity - capacity + spc - 1) / spc); 5128 if (sector_size != 0) { 5129 /* 1243403: NEC D38x7 drives don't support sec size */ 5130 pgeom_p->g_secsize = (unsigned short)sector_size; 5131 } 5132 pgeom_p->g_nsect = (unsigned short)nsect; 5133 pgeom_p->g_nhead = (unsigned short)nhead; 5134 pgeom_p->g_capacity = capacity; 5135 pgeom_p->g_acyl = 5136 (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc; 5137 pgeom_p->g_ncyl = ncyl - pgeom_p->g_acyl; 5138 } 5139 5140 pgeom_p->g_rpm = (unsigned short)rpm; 5141 pgeom_p->g_intrlv = (unsigned short)intrlv; 5142 ret = 0; 5143 5144 SD_INFO(SD_LOG_COMMON, un, 5145 "sd_get_physical_geometry: mode sense geometry:\n"); 5146 SD_INFO(SD_LOG_COMMON, un, 5147 " nsect: %d; sector size: %d; interlv: %d\n", 5148 nsect, sector_size, intrlv); 5149 SD_INFO(SD_LOG_COMMON, un, 5150 " nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n", 5151 nhead, ncyl, rpm, modesense_capacity); 5152 SD_INFO(SD_LOG_COMMON, un, 5153 "sd_get_physical_geometry: (cached)\n"); 5154 SD_INFO(SD_LOG_COMMON, un, 5155 " ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n", 5156 pgeom_p->g_ncyl, pgeom_p->g_acyl, 5157 pgeom_p->g_nhead, pgeom_p->g_nsect); 5158 SD_INFO(SD_LOG_COMMON, un, 5159 " lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n", 5160 pgeom_p->g_secsize, pgeom_p->g_capacity, 5161 pgeom_p->g_intrlv, pgeom_p->g_rpm); 5162 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 5163 5164 page4_exit: 5165 kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH); 5166 5167 page3_exit: 5168 kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH); 5169 5170 if (status != 0) { 5171 if (status == EIO) { 5172 /* 5173 * Some disks do not support mode sense(6), we 5174 * should ignore this kind of error(sense key is 5175 * 0x5 - illegal request). 5176 */ 5177 uint8_t *sensep; 5178 int senlen; 5179 5180 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf; 5181 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen - 5182 ssc->ssc_uscsi_cmd->uscsi_rqresid); 5183 5184 if (senlen > 0 && 5185 scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) { 5186 sd_ssc_assessment(ssc, 5187 SD_FMT_IGNORE_COMPROMISE); 5188 } else { 5189 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 5190 } 5191 } else { 5192 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5193 } 5194 } 5195 sd_ssc_fini(ssc); 5196 return (ret); 5197 } 5198 5199 /* 5200 * Function: sd_get_virtual_geometry 5201 * 5202 * Description: Ask the controller to tell us about the target device. 5203 * 5204 * Arguments: un - pointer to softstate 5205 * capacity - disk capacity in #blocks 5206 * lbasize - disk block size in bytes 5207 * 5208 * Context: Kernel thread only 5209 */ 5210 5211 static int 5212 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p, 5213 diskaddr_t capacity, int lbasize) 5214 { 5215 uint_t geombuf; 5216 int spc; 5217 5218 ASSERT(un != NULL); 5219 5220 /* Set sector size, and total number of sectors */ 5221 (void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size", lbasize, 1); 5222 (void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1); 5223 5224 /* Let the HBA tell us its geometry */ 5225 geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1); 5226 5227 /* A value of -1 indicates an undefined "geometry" property */ 5228 if (geombuf == (-1)) { 5229 return (EINVAL); 5230 } 5231 5232 /* Initialize the logical geometry cache. */ 5233 lgeom_p->g_nhead = (geombuf >> 16) & 0xffff; 5234 lgeom_p->g_nsect = geombuf & 0xffff; 5235 lgeom_p->g_secsize = un->un_sys_blocksize; 5236 5237 spc = lgeom_p->g_nhead * lgeom_p->g_nsect; 5238 5239 /* 5240 * Note: The driver originally converted the capacity value from 5241 * target blocks to system blocks. However, the capacity value passed 5242 * to this routine is already in terms of system blocks (this scaling 5243 * is done when the READ CAPACITY command is issued and processed). 5244 * This 'error' may have gone undetected because the usage of g_ncyl 5245 * (which is based upon g_capacity) is very limited within the driver 5246 */ 5247 lgeom_p->g_capacity = capacity; 5248 5249 /* 5250 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The 5251 * hba may return zero values if the device has been removed. 5252 */ 5253 if (spc == 0) { 5254 lgeom_p->g_ncyl = 0; 5255 } else { 5256 lgeom_p->g_ncyl = lgeom_p->g_capacity / spc; 5257 } 5258 lgeom_p->g_acyl = 0; 5259 5260 SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n"); 5261 return (0); 5262 5263 } 5264 /* 5265 * Function: sd_update_block_info 5266 * 5267 * Description: Calculate a byte count to sector count bitshift value 5268 * from sector size. 5269 * 5270 * Arguments: un: unit struct. 5271 * lbasize: new target sector size 5272 * capacity: new target capacity, ie. block count 5273 * 5274 * Context: Kernel thread context 5275 */ 5276 5277 static void 5278 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity) 5279 { 5280 if (lbasize != 0) { 5281 un->un_tgt_blocksize = lbasize; 5282 un->un_f_tgt_blocksize_is_valid = TRUE; 5283 if (!un->un_f_has_removable_media) { 5284 un->un_sys_blocksize = lbasize; 5285 } 5286 } 5287 5288 if (capacity != 0) { 5289 un->un_blockcount = capacity; 5290 un->un_f_blockcount_is_valid = TRUE; 5291 } 5292 } 5293 5294 5295 /* 5296 * Function: sd_register_devid 5297 * 5298 * Description: This routine will obtain the device id information from the 5299 * target, obtain the serial number, and register the device 5300 * id with the ddi framework. 5301 * 5302 * Arguments: devi - the system's dev_info_t for the device. 5303 * un - driver soft state (unit) structure 5304 * reservation_flag - indicates if a reservation conflict 5305 * occurred during attach 5306 * 5307 * Context: Kernel Thread 5308 */ 5309 static void 5310 sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, int reservation_flag) 5311 { 5312 int rval = 0; 5313 uchar_t *inq80 = NULL; 5314 size_t inq80_len = MAX_INQUIRY_SIZE; 5315 size_t inq80_resid = 0; 5316 uchar_t *inq83 = NULL; 5317 size_t inq83_len = MAX_INQUIRY_SIZE; 5318 size_t inq83_resid = 0; 5319 int dlen, len; 5320 char *sn; 5321 struct sd_lun *un; 5322 5323 ASSERT(ssc != NULL); 5324 un = ssc->ssc_un; 5325 ASSERT(un != NULL); 5326 ASSERT(mutex_owned(SD_MUTEX(un))); 5327 ASSERT((SD_DEVINFO(un)) == devi); 5328 5329 5330 /* 5331 * We check the availability of the World Wide Name (0x83) and Unit 5332 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using 5333 * un_vpd_page_mask from them, we decide which way to get the WWN. If 5334 * 0x83 is available, that is the best choice. Our next choice is 5335 * 0x80. If neither are available, we munge the devid from the device 5336 * vid/pid/serial # for Sun qualified disks, or use the ddi framework 5337 * to fabricate a devid for non-Sun qualified disks. 5338 */ 5339 if (sd_check_vpd_page_support(ssc) == 0) { 5340 /* collect page 80 data if available */ 5341 if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) { 5342 5343 mutex_exit(SD_MUTEX(un)); 5344 inq80 = kmem_zalloc(inq80_len, KM_SLEEP); 5345 5346 rval = sd_send_scsi_INQUIRY(ssc, inq80, inq80_len, 5347 0x01, 0x80, &inq80_resid); 5348 5349 if (rval != 0) { 5350 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5351 kmem_free(inq80, inq80_len); 5352 inq80 = NULL; 5353 inq80_len = 0; 5354 } else if (ddi_prop_exists( 5355 DDI_DEV_T_NONE, SD_DEVINFO(un), 5356 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 5357 INQUIRY_SERIAL_NO) == 0) { 5358 /* 5359 * If we don't already have a serial number 5360 * property, do quick verify of data returned 5361 * and define property. 5362 */ 5363 dlen = inq80_len - inq80_resid; 5364 len = (size_t)inq80[3]; 5365 if ((dlen >= 4) && ((len + 4) <= dlen)) { 5366 /* 5367 * Ensure sn termination, skip leading 5368 * blanks, and create property 5369 * 'inquiry-serial-no'. 5370 */ 5371 sn = (char *)&inq80[4]; 5372 sn[len] = 0; 5373 while (*sn && (*sn == ' ')) 5374 sn++; 5375 if (*sn) { 5376 (void) ddi_prop_update_string( 5377 DDI_DEV_T_NONE, 5378 SD_DEVINFO(un), 5379 INQUIRY_SERIAL_NO, sn); 5380 } 5381 } 5382 } 5383 mutex_enter(SD_MUTEX(un)); 5384 } 5385 5386 /* collect page 83 data if available */ 5387 if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) { 5388 mutex_exit(SD_MUTEX(un)); 5389 inq83 = kmem_zalloc(inq83_len, KM_SLEEP); 5390 5391 rval = sd_send_scsi_INQUIRY(ssc, inq83, inq83_len, 5392 0x01, 0x83, &inq83_resid); 5393 5394 if (rval != 0) { 5395 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5396 kmem_free(inq83, inq83_len); 5397 inq83 = NULL; 5398 inq83_len = 0; 5399 } 5400 mutex_enter(SD_MUTEX(un)); 5401 } 5402 } 5403 5404 /* 5405 * If transport has already registered a devid for this target 5406 * then that takes precedence over the driver's determination 5407 * of the devid. 5408 * 5409 * NOTE: The reason this check is done here instead of at the beginning 5410 * of the function is to allow the code above to create the 5411 * 'inquiry-serial-no' property. 5412 */ 5413 if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) { 5414 ASSERT(un->un_devid); 5415 un->un_f_devid_transport_defined = TRUE; 5416 goto cleanup; /* use devid registered by the transport */ 5417 } 5418 5419 /* 5420 * This is the case of antiquated Sun disk drives that have the 5421 * FAB_DEVID property set in the disk_table. These drives 5422 * manage the devid's by storing them in last 2 available sectors 5423 * on the drive and have them fabricated by the ddi layer by calling 5424 * ddi_devid_init and passing the DEVID_FAB flag. 5425 */ 5426 if (un->un_f_opt_fab_devid == TRUE) { 5427 /* 5428 * Depending on EINVAL isn't reliable, since a reserved disk 5429 * may result in invalid geometry, so check to make sure a 5430 * reservation conflict did not occur during attach. 5431 */ 5432 if ((sd_get_devid(ssc) == EINVAL) && 5433 (reservation_flag != SD_TARGET_IS_RESERVED)) { 5434 /* 5435 * The devid is invalid AND there is no reservation 5436 * conflict. Fabricate a new devid. 5437 */ 5438 (void) sd_create_devid(ssc); 5439 } 5440 5441 /* Register the devid if it exists */ 5442 if (un->un_devid != NULL) { 5443 (void) ddi_devid_register(SD_DEVINFO(un), 5444 un->un_devid); 5445 SD_INFO(SD_LOG_ATTACH_DETACH, un, 5446 "sd_register_devid: Devid Fabricated\n"); 5447 } 5448 goto cleanup; 5449 } 5450 5451 /* encode best devid possible based on data available */ 5452 if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST, 5453 (char *)ddi_driver_name(SD_DEVINFO(un)), 5454 (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)), 5455 inq80, inq80_len - inq80_resid, inq83, inq83_len - 5456 inq83_resid, &un->un_devid) == DDI_SUCCESS) { 5457 5458 /* devid successfully encoded, register devid */ 5459 (void) ddi_devid_register(SD_DEVINFO(un), un->un_devid); 5460 5461 } else { 5462 /* 5463 * Unable to encode a devid based on data available. 5464 * This is not a Sun qualified disk. Older Sun disk 5465 * drives that have the SD_FAB_DEVID property 5466 * set in the disk_table and non Sun qualified 5467 * disks are treated in the same manner. These 5468 * drives manage the devid's by storing them in 5469 * last 2 available sectors on the drive and 5470 * have them fabricated by the ddi layer by 5471 * calling ddi_devid_init and passing the 5472 * DEVID_FAB flag. 5473 * Create a fabricate devid only if there's no 5474 * fabricate devid existed. 5475 */ 5476 if (sd_get_devid(ssc) == EINVAL) { 5477 (void) sd_create_devid(ssc); 5478 } 5479 un->un_f_opt_fab_devid = TRUE; 5480 5481 /* Register the devid if it exists */ 5482 if (un->un_devid != NULL) { 5483 (void) ddi_devid_register(SD_DEVINFO(un), 5484 un->un_devid); 5485 SD_INFO(SD_LOG_ATTACH_DETACH, un, 5486 "sd_register_devid: devid fabricated using " 5487 "ddi framework\n"); 5488 } 5489 } 5490 5491 cleanup: 5492 /* clean up resources */ 5493 if (inq80 != NULL) { 5494 kmem_free(inq80, inq80_len); 5495 } 5496 if (inq83 != NULL) { 5497 kmem_free(inq83, inq83_len); 5498 } 5499 } 5500 5501 5502 5503 /* 5504 * Function: sd_get_devid 5505 * 5506 * Description: This routine will return 0 if a valid device id has been 5507 * obtained from the target and stored in the soft state. If a 5508 * valid device id has not been previously read and stored, a 5509 * read attempt will be made. 5510 * 5511 * Arguments: un - driver soft state (unit) structure 5512 * 5513 * Return Code: 0 if we successfully get the device id 5514 * 5515 * Context: Kernel Thread 5516 */ 5517 5518 static int 5519 sd_get_devid(sd_ssc_t *ssc) 5520 { 5521 struct dk_devid *dkdevid; 5522 ddi_devid_t tmpid; 5523 uint_t *ip; 5524 size_t sz; 5525 diskaddr_t blk; 5526 int status; 5527 int chksum; 5528 int i; 5529 size_t buffer_size; 5530 struct sd_lun *un; 5531 5532 ASSERT(ssc != NULL); 5533 un = ssc->ssc_un; 5534 ASSERT(un != NULL); 5535 ASSERT(mutex_owned(SD_MUTEX(un))); 5536 5537 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n", 5538 un); 5539 5540 if (un->un_devid != NULL) { 5541 return (0); 5542 } 5543 5544 mutex_exit(SD_MUTEX(un)); 5545 if (cmlb_get_devid_block(un->un_cmlbhandle, &blk, 5546 (void *)SD_PATH_DIRECT) != 0) { 5547 mutex_enter(SD_MUTEX(un)); 5548 return (EINVAL); 5549 } 5550 5551 /* 5552 * Read and verify device id, stored in the reserved cylinders at the 5553 * end of the disk. Backup label is on the odd sectors of the last 5554 * track of the last cylinder. Device id will be on track of the next 5555 * to last cylinder. 5556 */ 5557 mutex_enter(SD_MUTEX(un)); 5558 buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid)); 5559 mutex_exit(SD_MUTEX(un)); 5560 dkdevid = kmem_alloc(buffer_size, KM_SLEEP); 5561 status = sd_send_scsi_READ(ssc, dkdevid, buffer_size, blk, 5562 SD_PATH_DIRECT); 5563 5564 if (status != 0) { 5565 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5566 goto error; 5567 } 5568 5569 /* Validate the revision */ 5570 if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) || 5571 (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) { 5572 status = EINVAL; 5573 goto error; 5574 } 5575 5576 /* Calculate the checksum */ 5577 chksum = 0; 5578 ip = (uint_t *)dkdevid; 5579 for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); 5580 i++) { 5581 chksum ^= ip[i]; 5582 } 5583 5584 /* Compare the checksums */ 5585 if (DKD_GETCHKSUM(dkdevid) != chksum) { 5586 status = EINVAL; 5587 goto error; 5588 } 5589 5590 /* Validate the device id */ 5591 if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) { 5592 status = EINVAL; 5593 goto error; 5594 } 5595 5596 /* 5597 * Store the device id in the driver soft state 5598 */ 5599 sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid); 5600 tmpid = kmem_alloc(sz, KM_SLEEP); 5601 5602 mutex_enter(SD_MUTEX(un)); 5603 5604 un->un_devid = tmpid; 5605 bcopy(&dkdevid->dkd_devid, un->un_devid, sz); 5606 5607 kmem_free(dkdevid, buffer_size); 5608 5609 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un); 5610 5611 return (status); 5612 error: 5613 mutex_enter(SD_MUTEX(un)); 5614 kmem_free(dkdevid, buffer_size); 5615 return (status); 5616 } 5617 5618 5619 /* 5620 * Function: sd_create_devid 5621 * 5622 * Description: This routine will fabricate the device id and write it 5623 * to the disk. 5624 * 5625 * Arguments: un - driver soft state (unit) structure 5626 * 5627 * Return Code: value of the fabricated device id 5628 * 5629 * Context: Kernel Thread 5630 */ 5631 5632 static ddi_devid_t 5633 sd_create_devid(sd_ssc_t *ssc) 5634 { 5635 struct sd_lun *un; 5636 5637 ASSERT(ssc != NULL); 5638 un = ssc->ssc_un; 5639 ASSERT(un != NULL); 5640 5641 /* Fabricate the devid */ 5642 if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid) 5643 == DDI_FAILURE) { 5644 return (NULL); 5645 } 5646 5647 /* Write the devid to disk */ 5648 if (sd_write_deviceid(ssc) != 0) { 5649 ddi_devid_free(un->un_devid); 5650 un->un_devid = NULL; 5651 } 5652 5653 return (un->un_devid); 5654 } 5655 5656 5657 /* 5658 * Function: sd_write_deviceid 5659 * 5660 * Description: This routine will write the device id to the disk 5661 * reserved sector. 5662 * 5663 * Arguments: un - driver soft state (unit) structure 5664 * 5665 * Return Code: EINVAL 5666 * value returned by sd_send_scsi_cmd 5667 * 5668 * Context: Kernel Thread 5669 */ 5670 5671 static int 5672 sd_write_deviceid(sd_ssc_t *ssc) 5673 { 5674 struct dk_devid *dkdevid; 5675 uchar_t *buf; 5676 diskaddr_t blk; 5677 uint_t *ip, chksum; 5678 int status; 5679 int i; 5680 struct sd_lun *un; 5681 5682 ASSERT(ssc != NULL); 5683 un = ssc->ssc_un; 5684 ASSERT(un != NULL); 5685 ASSERT(mutex_owned(SD_MUTEX(un))); 5686 5687 mutex_exit(SD_MUTEX(un)); 5688 if (cmlb_get_devid_block(un->un_cmlbhandle, &blk, 5689 (void *)SD_PATH_DIRECT) != 0) { 5690 mutex_enter(SD_MUTEX(un)); 5691 return (-1); 5692 } 5693 5694 5695 /* Allocate the buffer */ 5696 buf = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP); 5697 dkdevid = (struct dk_devid *)buf; 5698 5699 /* Fill in the revision */ 5700 dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB; 5701 dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB; 5702 5703 /* Copy in the device id */ 5704 mutex_enter(SD_MUTEX(un)); 5705 bcopy(un->un_devid, &dkdevid->dkd_devid, 5706 ddi_devid_sizeof(un->un_devid)); 5707 mutex_exit(SD_MUTEX(un)); 5708 5709 /* Calculate the checksum */ 5710 chksum = 0; 5711 ip = (uint_t *)dkdevid; 5712 for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); 5713 i++) { 5714 chksum ^= ip[i]; 5715 } 5716 5717 /* Fill-in checksum */ 5718 DKD_FORMCHKSUM(chksum, dkdevid); 5719 5720 /* Write the reserved sector */ 5721 status = sd_send_scsi_WRITE(ssc, buf, un->un_sys_blocksize, blk, 5722 SD_PATH_DIRECT); 5723 if (status != 0) 5724 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5725 5726 kmem_free(buf, un->un_sys_blocksize); 5727 5728 mutex_enter(SD_MUTEX(un)); 5729 return (status); 5730 } 5731 5732 5733 /* 5734 * Function: sd_check_vpd_page_support 5735 * 5736 * Description: This routine sends an inquiry command with the EVPD bit set and 5737 * a page code of 0x00 to the device. It is used to determine which 5738 * vital product pages are available to find the devid. We are 5739 * looking for pages 0x83 0x80 or 0xB1. If we return a negative 1, 5740 * the device does not support that command. 5741 * 5742 * Arguments: un - driver soft state (unit) structure 5743 * 5744 * Return Code: 0 - success 5745 * 1 - check condition 5746 * 5747 * Context: This routine can sleep. 5748 */ 5749 5750 static int 5751 sd_check_vpd_page_support(sd_ssc_t *ssc) 5752 { 5753 uchar_t *page_list = NULL; 5754 uchar_t page_length = 0xff; /* Use max possible length */ 5755 uchar_t evpd = 0x01; /* Set the EVPD bit */ 5756 uchar_t page_code = 0x00; /* Supported VPD Pages */ 5757 int rval = 0; 5758 int counter; 5759 struct sd_lun *un; 5760 5761 ASSERT(ssc != NULL); 5762 un = ssc->ssc_un; 5763 ASSERT(un != NULL); 5764 ASSERT(mutex_owned(SD_MUTEX(un))); 5765 5766 mutex_exit(SD_MUTEX(un)); 5767 5768 /* 5769 * We'll set the page length to the maximum to save figuring it out 5770 * with an additional call. 5771 */ 5772 page_list = kmem_zalloc(page_length, KM_SLEEP); 5773 5774 rval = sd_send_scsi_INQUIRY(ssc, page_list, page_length, evpd, 5775 page_code, NULL); 5776 5777 if (rval != 0) 5778 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5779 5780 mutex_enter(SD_MUTEX(un)); 5781 5782 /* 5783 * Now we must validate that the device accepted the command, as some 5784 * drives do not support it. If the drive does support it, we will 5785 * return 0, and the supported pages will be in un_vpd_page_mask. If 5786 * not, we return -1. 5787 */ 5788 if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) { 5789 /* Loop to find one of the 2 pages we need */ 5790 counter = 4; /* Supported pages start at byte 4, with 0x00 */ 5791 5792 /* 5793 * Pages are returned in ascending order, and 0x83 is what we 5794 * are hoping for. 5795 */ 5796 while ((page_list[counter] <= 0xB1) && 5797 (counter <= (page_list[VPD_PAGE_LENGTH] + 5798 VPD_HEAD_OFFSET))) { 5799 /* 5800 * Add 3 because page_list[3] is the number of 5801 * pages minus 3 5802 */ 5803 5804 switch (page_list[counter]) { 5805 case 0x00: 5806 un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG; 5807 break; 5808 case 0x80: 5809 un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG; 5810 break; 5811 case 0x81: 5812 un->un_vpd_page_mask |= SD_VPD_OPERATING_PG; 5813 break; 5814 case 0x82: 5815 un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG; 5816 break; 5817 case 0x83: 5818 un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG; 5819 break; 5820 case 0x86: 5821 un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG; 5822 break; 5823 case 0xB1: 5824 un->un_vpd_page_mask |= SD_VPD_DEV_CHARACTER_PG; 5825 break; 5826 } 5827 counter++; 5828 } 5829 5830 } else { 5831 rval = -1; 5832 5833 SD_INFO(SD_LOG_ATTACH_DETACH, un, 5834 "sd_check_vpd_page_support: This drive does not implement " 5835 "VPD pages.\n"); 5836 } 5837 5838 kmem_free(page_list, page_length); 5839 5840 return (rval); 5841 } 5842 5843 5844 /* 5845 * Function: sd_setup_pm 5846 * 5847 * Description: Initialize Power Management on the device 5848 * 5849 * Context: Kernel Thread 5850 */ 5851 5852 static void 5853 sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi) 5854 { 5855 uint_t log_page_size; 5856 uchar_t *log_page_data; 5857 int rval = 0; 5858 struct sd_lun *un; 5859 5860 ASSERT(ssc != NULL); 5861 un = ssc->ssc_un; 5862 ASSERT(un != NULL); 5863 5864 /* 5865 * Since we are called from attach, holding a mutex for 5866 * un is unnecessary. Because some of the routines called 5867 * from here require SD_MUTEX to not be held, assert this 5868 * right up front. 5869 */ 5870 ASSERT(!mutex_owned(SD_MUTEX(un))); 5871 /* 5872 * Since the sd device does not have the 'reg' property, 5873 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries. 5874 * The following code is to tell cpr that this device 5875 * DOES need to be suspended and resumed. 5876 */ 5877 (void) ddi_prop_update_string(DDI_DEV_T_NONE, devi, 5878 "pm-hardware-state", "needs-suspend-resume"); 5879 5880 /* 5881 * This complies with the new power management framework 5882 * for certain desktop machines. Create the pm_components 5883 * property as a string array property. 5884 * If un_f_pm_supported is TRUE, that means the disk 5885 * attached HBA has set the "pm-capable" property and 5886 * the value of this property is bigger than 0. 5887 */ 5888 if (un->un_f_pm_supported) { 5889 /* 5890 * not all devices have a motor, try it first. 5891 * some devices may return ILLEGAL REQUEST, some 5892 * will hang 5893 * The following START_STOP_UNIT is used to check if target 5894 * device has a motor. 5895 */ 5896 un->un_f_start_stop_supported = TRUE; 5897 5898 if (un->un_f_power_condition_supported) { 5899 rval = sd_send_scsi_START_STOP_UNIT(ssc, 5900 SD_POWER_CONDITION, SD_TARGET_ACTIVE, 5901 SD_PATH_DIRECT); 5902 if (rval != 0) { 5903 un->un_f_power_condition_supported = FALSE; 5904 } 5905 } 5906 if (!un->un_f_power_condition_supported) { 5907 rval = sd_send_scsi_START_STOP_UNIT(ssc, 5908 SD_START_STOP, SD_TARGET_START, SD_PATH_DIRECT); 5909 } 5910 if (rval != 0) { 5911 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 5912 un->un_f_start_stop_supported = FALSE; 5913 } 5914 5915 /* 5916 * create pm properties anyways otherwise the parent can't 5917 * go to sleep 5918 */ 5919 un->un_f_pm_is_enabled = TRUE; 5920 (void) sd_create_pm_components(devi, un); 5921 5922 /* 5923 * If it claims that log sense is supported, check it out. 5924 */ 5925 if (un->un_f_log_sense_supported) { 5926 rval = sd_log_page_supported(ssc, 5927 START_STOP_CYCLE_PAGE); 5928 if (rval == 1) { 5929 /* Page found, use it. */ 5930 un->un_start_stop_cycle_page = 5931 START_STOP_CYCLE_PAGE; 5932 } else { 5933 /* 5934 * Page not found or log sense is not 5935 * supported. 5936 * Notice we do not check the old style 5937 * START_STOP_CYCLE_VU_PAGE because this 5938 * code path does not apply to old disks. 5939 */ 5940 un->un_f_log_sense_supported = FALSE; 5941 un->un_f_pm_log_sense_smart = FALSE; 5942 } 5943 } 5944 5945 return; 5946 } 5947 5948 /* 5949 * For the disk whose attached HBA has not set the "pm-capable" 5950 * property, check if it supports the power management. 5951 */ 5952 if (!un->un_f_log_sense_supported) { 5953 un->un_power_level = SD_SPINDLE_ON; 5954 un->un_f_pm_is_enabled = FALSE; 5955 return; 5956 } 5957 5958 rval = sd_log_page_supported(ssc, START_STOP_CYCLE_PAGE); 5959 5960 #ifdef SDDEBUG 5961 if (sd_force_pm_supported) { 5962 /* Force a successful result */ 5963 rval = 1; 5964 } 5965 #endif 5966 5967 /* 5968 * If the start-stop cycle counter log page is not supported 5969 * or if the pm-capable property is set to be false (0), 5970 * then we should not create the pm_components property. 5971 */ 5972 if (rval == -1) { 5973 /* 5974 * Error. 5975 * Reading log sense failed, most likely this is 5976 * an older drive that does not support log sense. 5977 * If this fails auto-pm is not supported. 5978 */ 5979 un->un_power_level = SD_SPINDLE_ON; 5980 un->un_f_pm_is_enabled = FALSE; 5981 5982 } else if (rval == 0) { 5983 /* 5984 * Page not found. 5985 * The start stop cycle counter is implemented as page 5986 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For 5987 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE). 5988 */ 5989 if (sd_log_page_supported(ssc, START_STOP_CYCLE_VU_PAGE) == 1) { 5990 /* 5991 * Page found, use this one. 5992 */ 5993 un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE; 5994 un->un_f_pm_is_enabled = TRUE; 5995 } else { 5996 /* 5997 * Error or page not found. 5998 * auto-pm is not supported for this device. 5999 */ 6000 un->un_power_level = SD_SPINDLE_ON; 6001 un->un_f_pm_is_enabled = FALSE; 6002 } 6003 } else { 6004 /* 6005 * Page found, use it. 6006 */ 6007 un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE; 6008 un->un_f_pm_is_enabled = TRUE; 6009 } 6010 6011 6012 if (un->un_f_pm_is_enabled == TRUE) { 6013 log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE; 6014 log_page_data = kmem_zalloc(log_page_size, KM_SLEEP); 6015 6016 rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 6017 log_page_size, un->un_start_stop_cycle_page, 6018 0x01, 0, SD_PATH_DIRECT); 6019 6020 if (rval != 0) { 6021 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 6022 } 6023 6024 #ifdef SDDEBUG 6025 if (sd_force_pm_supported) { 6026 /* Force a successful result */ 6027 rval = 0; 6028 } 6029 #endif 6030 6031 /* 6032 * If the Log sense for Page( Start/stop cycle counter page) 6033 * succeeds, then power management is supported and we can 6034 * enable auto-pm. 6035 */ 6036 if (rval == 0) { 6037 (void) sd_create_pm_components(devi, un); 6038 } else { 6039 un->un_power_level = SD_SPINDLE_ON; 6040 un->un_f_pm_is_enabled = FALSE; 6041 } 6042 6043 kmem_free(log_page_data, log_page_size); 6044 } 6045 } 6046 6047 6048 /* 6049 * Function: sd_create_pm_components 6050 * 6051 * Description: Initialize PM property. 6052 * 6053 * Context: Kernel thread context 6054 */ 6055 6056 static void 6057 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un) 6058 { 6059 ASSERT(!mutex_owned(SD_MUTEX(un))); 6060 6061 if (un->un_f_power_condition_supported) { 6062 if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi, 6063 "pm-components", sd_pwr_pc.pm_comp, 5) 6064 != DDI_PROP_SUCCESS) { 6065 un->un_power_level = SD_SPINDLE_ACTIVE; 6066 un->un_f_pm_is_enabled = FALSE; 6067 return; 6068 } 6069 } else { 6070 if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi, 6071 "pm-components", sd_pwr_ss.pm_comp, 3) 6072 != DDI_PROP_SUCCESS) { 6073 un->un_power_level = SD_SPINDLE_ON; 6074 un->un_f_pm_is_enabled = FALSE; 6075 return; 6076 } 6077 } 6078 /* 6079 * When components are initially created they are idle, 6080 * power up any non-removables. 6081 * Note: the return value of pm_raise_power can't be used 6082 * for determining if PM should be enabled for this device. 6083 * Even if you check the return values and remove this 6084 * property created above, the PM framework will not honor the 6085 * change after the first call to pm_raise_power. Hence, 6086 * removal of that property does not help if pm_raise_power 6087 * fails. In the case of removable media, the start/stop 6088 * will fail if the media is not present. 6089 */ 6090 if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0, 6091 SD_PM_STATE_ACTIVE(un)) == DDI_SUCCESS)) { 6092 mutex_enter(SD_MUTEX(un)); 6093 un->un_power_level = SD_PM_STATE_ACTIVE(un); 6094 mutex_enter(&un->un_pm_mutex); 6095 /* Set to on and not busy. */ 6096 un->un_pm_count = 0; 6097 } else { 6098 mutex_enter(SD_MUTEX(un)); 6099 un->un_power_level = SD_PM_STATE_STOPPED(un); 6100 mutex_enter(&un->un_pm_mutex); 6101 /* Set to off. */ 6102 un->un_pm_count = -1; 6103 } 6104 mutex_exit(&un->un_pm_mutex); 6105 mutex_exit(SD_MUTEX(un)); 6106 } 6107 6108 6109 /* 6110 * Function: sd_ddi_suspend 6111 * 6112 * Description: Performs system power-down operations. This includes 6113 * setting the drive state to indicate its suspended so 6114 * that no new commands will be accepted. Also, wait for 6115 * all commands that are in transport or queued to a timer 6116 * for retry to complete. All timeout threads are cancelled. 6117 * 6118 * Return Code: DDI_FAILURE or DDI_SUCCESS 6119 * 6120 * Context: Kernel thread context 6121 */ 6122 6123 static int 6124 sd_ddi_suspend(dev_info_t *devi) 6125 { 6126 struct sd_lun *un; 6127 clock_t wait_cmds_complete; 6128 6129 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 6130 if (un == NULL) { 6131 return (DDI_FAILURE); 6132 } 6133 6134 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n"); 6135 6136 mutex_enter(SD_MUTEX(un)); 6137 6138 /* Return success if the device is already suspended. */ 6139 if (un->un_state == SD_STATE_SUSPENDED) { 6140 mutex_exit(SD_MUTEX(un)); 6141 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 6142 "device already suspended, exiting\n"); 6143 return (DDI_SUCCESS); 6144 } 6145 6146 /* Return failure if the device is being used by HA */ 6147 if (un->un_resvd_status & 6148 (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) { 6149 mutex_exit(SD_MUTEX(un)); 6150 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 6151 "device in use by HA, exiting\n"); 6152 return (DDI_FAILURE); 6153 } 6154 6155 /* 6156 * Return failure if the device is in a resource wait 6157 * or power changing state. 6158 */ 6159 if ((un->un_state == SD_STATE_RWAIT) || 6160 (un->un_state == SD_STATE_PM_CHANGING)) { 6161 mutex_exit(SD_MUTEX(un)); 6162 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 6163 "device in resource wait state, exiting\n"); 6164 return (DDI_FAILURE); 6165 } 6166 6167 6168 un->un_save_state = un->un_last_state; 6169 New_state(un, SD_STATE_SUSPENDED); 6170 6171 /* 6172 * Wait for all commands that are in transport or queued to a timer 6173 * for retry to complete. 6174 * 6175 * While waiting, no new commands will be accepted or sent because of 6176 * the new state we set above. 6177 * 6178 * Wait till current operation has completed. If we are in the resource 6179 * wait state (with an intr outstanding) then we need to wait till the 6180 * intr completes and starts the next cmd. We want to wait for 6181 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND. 6182 */ 6183 wait_cmds_complete = ddi_get_lbolt() + 6184 (sd_wait_cmds_complete * drv_usectohz(1000000)); 6185 6186 while (un->un_ncmds_in_transport != 0) { 6187 /* 6188 * Fail if commands do not finish in the specified time. 6189 */ 6190 if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un), 6191 wait_cmds_complete) == -1) { 6192 /* 6193 * Undo the state changes made above. Everything 6194 * must go back to it's original value. 6195 */ 6196 Restore_state(un); 6197 un->un_last_state = un->un_save_state; 6198 /* Wake up any threads that might be waiting. */ 6199 cv_broadcast(&un->un_suspend_cv); 6200 mutex_exit(SD_MUTEX(un)); 6201 SD_ERROR(SD_LOG_IO_PM, un, 6202 "sd_ddi_suspend: failed due to outstanding cmds\n"); 6203 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n"); 6204 return (DDI_FAILURE); 6205 } 6206 } 6207 6208 /* 6209 * Cancel SCSI watch thread and timeouts, if any are active 6210 */ 6211 6212 if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) { 6213 opaque_t temp_token = un->un_swr_token; 6214 mutex_exit(SD_MUTEX(un)); 6215 scsi_watch_suspend(temp_token); 6216 mutex_enter(SD_MUTEX(un)); 6217 } 6218 6219 if (un->un_reset_throttle_timeid != NULL) { 6220 timeout_id_t temp_id = un->un_reset_throttle_timeid; 6221 un->un_reset_throttle_timeid = NULL; 6222 mutex_exit(SD_MUTEX(un)); 6223 (void) untimeout(temp_id); 6224 mutex_enter(SD_MUTEX(un)); 6225 } 6226 6227 if (un->un_dcvb_timeid != NULL) { 6228 timeout_id_t temp_id = un->un_dcvb_timeid; 6229 un->un_dcvb_timeid = NULL; 6230 mutex_exit(SD_MUTEX(un)); 6231 (void) untimeout(temp_id); 6232 mutex_enter(SD_MUTEX(un)); 6233 } 6234 6235 mutex_enter(&un->un_pm_mutex); 6236 if (un->un_pm_timeid != NULL) { 6237 timeout_id_t temp_id = un->un_pm_timeid; 6238 un->un_pm_timeid = NULL; 6239 mutex_exit(&un->un_pm_mutex); 6240 mutex_exit(SD_MUTEX(un)); 6241 (void) untimeout(temp_id); 6242 mutex_enter(SD_MUTEX(un)); 6243 } else { 6244 mutex_exit(&un->un_pm_mutex); 6245 } 6246 6247 if (un->un_rmw_msg_timeid != NULL) { 6248 timeout_id_t temp_id = un->un_rmw_msg_timeid; 6249 un->un_rmw_msg_timeid = NULL; 6250 mutex_exit(SD_MUTEX(un)); 6251 (void) untimeout(temp_id); 6252 mutex_enter(SD_MUTEX(un)); 6253 } 6254 6255 if (un->un_retry_timeid != NULL) { 6256 timeout_id_t temp_id = un->un_retry_timeid; 6257 un->un_retry_timeid = NULL; 6258 mutex_exit(SD_MUTEX(un)); 6259 (void) untimeout(temp_id); 6260 mutex_enter(SD_MUTEX(un)); 6261 6262 if (un->un_retry_bp != NULL) { 6263 un->un_retry_bp->av_forw = un->un_waitq_headp; 6264 un->un_waitq_headp = un->un_retry_bp; 6265 if (un->un_waitq_tailp == NULL) { 6266 un->un_waitq_tailp = un->un_retry_bp; 6267 } 6268 un->un_retry_bp = NULL; 6269 un->un_retry_statp = NULL; 6270 } 6271 } 6272 6273 if (un->un_direct_priority_timeid != NULL) { 6274 timeout_id_t temp_id = un->un_direct_priority_timeid; 6275 un->un_direct_priority_timeid = NULL; 6276 mutex_exit(SD_MUTEX(un)); 6277 (void) untimeout(temp_id); 6278 mutex_enter(SD_MUTEX(un)); 6279 } 6280 6281 if (un->un_f_is_fibre == TRUE) { 6282 /* 6283 * Remove callbacks for insert and remove events 6284 */ 6285 if (un->un_insert_event != NULL) { 6286 mutex_exit(SD_MUTEX(un)); 6287 (void) ddi_remove_event_handler(un->un_insert_cb_id); 6288 mutex_enter(SD_MUTEX(un)); 6289 un->un_insert_event = NULL; 6290 } 6291 6292 if (un->un_remove_event != NULL) { 6293 mutex_exit(SD_MUTEX(un)); 6294 (void) ddi_remove_event_handler(un->un_remove_cb_id); 6295 mutex_enter(SD_MUTEX(un)); 6296 un->un_remove_event = NULL; 6297 } 6298 } 6299 6300 mutex_exit(SD_MUTEX(un)); 6301 6302 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n"); 6303 6304 return (DDI_SUCCESS); 6305 } 6306 6307 6308 /* 6309 * Function: sd_ddi_resume 6310 * 6311 * Description: Performs system power-up operations.. 6312 * 6313 * Return Code: DDI_SUCCESS 6314 * DDI_FAILURE 6315 * 6316 * Context: Kernel thread context 6317 */ 6318 6319 static int 6320 sd_ddi_resume(dev_info_t *devi) 6321 { 6322 struct sd_lun *un; 6323 6324 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 6325 if (un == NULL) { 6326 return (DDI_FAILURE); 6327 } 6328 6329 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n"); 6330 6331 mutex_enter(SD_MUTEX(un)); 6332 Restore_state(un); 6333 6334 /* 6335 * Restore the state which was saved to give the 6336 * the right state in un_last_state 6337 */ 6338 un->un_last_state = un->un_save_state; 6339 /* 6340 * Note: throttle comes back at full. 6341 * Also note: this MUST be done before calling pm_raise_power 6342 * otherwise the system can get hung in biowait. The scenario where 6343 * this'll happen is under cpr suspend. Writing of the system 6344 * state goes through sddump, which writes 0 to un_throttle. If 6345 * writing the system state then fails, example if the partition is 6346 * too small, then cpr attempts a resume. If throttle isn't restored 6347 * from the saved value until after calling pm_raise_power then 6348 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs 6349 * in biowait. 6350 */ 6351 un->un_throttle = un->un_saved_throttle; 6352 6353 /* 6354 * The chance of failure is very rare as the only command done in power 6355 * entry point is START command when you transition from 0->1 or 6356 * unknown->1. Put it to SPINDLE ON state irrespective of the state at 6357 * which suspend was done. Ignore the return value as the resume should 6358 * not be failed. In the case of removable media the media need not be 6359 * inserted and hence there is a chance that raise power will fail with 6360 * media not present. 6361 */ 6362 if (un->un_f_attach_spinup) { 6363 mutex_exit(SD_MUTEX(un)); 6364 (void) pm_raise_power(SD_DEVINFO(un), 0, 6365 SD_PM_STATE_ACTIVE(un)); 6366 mutex_enter(SD_MUTEX(un)); 6367 } 6368 6369 /* 6370 * Don't broadcast to the suspend cv and therefore possibly 6371 * start I/O until after power has been restored. 6372 */ 6373 cv_broadcast(&un->un_suspend_cv); 6374 cv_broadcast(&un->un_state_cv); 6375 6376 /* restart thread */ 6377 if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) { 6378 scsi_watch_resume(un->un_swr_token); 6379 } 6380 6381 #if (defined(__fibre)) 6382 if (un->un_f_is_fibre == TRUE) { 6383 /* 6384 * Add callbacks for insert and remove events 6385 */ 6386 if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) { 6387 sd_init_event_callbacks(un); 6388 } 6389 } 6390 #endif 6391 6392 /* 6393 * Transport any pending commands to the target. 6394 * 6395 * If this is a low-activity device commands in queue will have to wait 6396 * until new commands come in, which may take awhile. Also, we 6397 * specifically don't check un_ncmds_in_transport because we know that 6398 * there really are no commands in progress after the unit was 6399 * suspended and we could have reached the throttle level, been 6400 * suspended, and have no new commands coming in for awhile. Highly 6401 * unlikely, but so is the low-activity disk scenario. 6402 */ 6403 ddi_xbuf_dispatch(un->un_xbuf_attr); 6404 6405 sd_start_cmds(un, NULL); 6406 mutex_exit(SD_MUTEX(un)); 6407 6408 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n"); 6409 6410 return (DDI_SUCCESS); 6411 } 6412 6413 6414 /* 6415 * Function: sd_pm_state_change 6416 * 6417 * Description: Change the driver power state. 6418 * Someone else is required to actually change the driver 6419 * power level. 6420 * 6421 * Arguments: un - driver soft state (unit) structure 6422 * level - the power level that is changed to 6423 * flag - to decide how to change the power state 6424 * 6425 * Return Code: DDI_SUCCESS 6426 * 6427 * Context: Kernel thread context 6428 */ 6429 static int 6430 sd_pm_state_change(struct sd_lun *un, int level, int flag) 6431 { 6432 ASSERT(un != NULL); 6433 SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: entry\n"); 6434 6435 ASSERT(!mutex_owned(SD_MUTEX(un))); 6436 mutex_enter(SD_MUTEX(un)); 6437 6438 if (flag == SD_PM_STATE_ROLLBACK || SD_PM_IS_IO_CAPABLE(un, level)) { 6439 un->un_power_level = level; 6440 ASSERT(!mutex_owned(&un->un_pm_mutex)); 6441 mutex_enter(&un->un_pm_mutex); 6442 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 6443 un->un_pm_count++; 6444 ASSERT(un->un_pm_count == 0); 6445 } 6446 mutex_exit(&un->un_pm_mutex); 6447 } else { 6448 /* 6449 * Exit if power management is not enabled for this device, 6450 * or if the device is being used by HA. 6451 */ 6452 if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status & 6453 (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) { 6454 mutex_exit(SD_MUTEX(un)); 6455 SD_TRACE(SD_LOG_POWER, un, 6456 "sd_pm_state_change: exiting\n"); 6457 return (DDI_FAILURE); 6458 } 6459 6460 SD_INFO(SD_LOG_POWER, un, "sd_pm_state_change: " 6461 "un_ncmds_in_driver=%ld\n", un->un_ncmds_in_driver); 6462 6463 /* 6464 * See if the device is not busy, ie.: 6465 * - we have no commands in the driver for this device 6466 * - not waiting for resources 6467 */ 6468 if ((un->un_ncmds_in_driver == 0) && 6469 (un->un_state != SD_STATE_RWAIT)) { 6470 /* 6471 * The device is not busy, so it is OK to go to low 6472 * power state. Indicate low power, but rely on someone 6473 * else to actually change it. 6474 */ 6475 mutex_enter(&un->un_pm_mutex); 6476 un->un_pm_count = -1; 6477 mutex_exit(&un->un_pm_mutex); 6478 un->un_power_level = level; 6479 } 6480 } 6481 6482 mutex_exit(SD_MUTEX(un)); 6483 6484 SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: exit\n"); 6485 6486 return (DDI_SUCCESS); 6487 } 6488 6489 6490 /* 6491 * Function: sd_pm_idletimeout_handler 6492 * 6493 * Description: A timer routine that's active only while a device is busy. 6494 * The purpose is to extend slightly the pm framework's busy 6495 * view of the device to prevent busy/idle thrashing for 6496 * back-to-back commands. Do this by comparing the current time 6497 * to the time at which the last command completed and when the 6498 * difference is greater than sd_pm_idletime, call 6499 * pm_idle_component. In addition to indicating idle to the pm 6500 * framework, update the chain type to again use the internal pm 6501 * layers of the driver. 6502 * 6503 * Arguments: arg - driver soft state (unit) structure 6504 * 6505 * Context: Executes in a timeout(9F) thread context 6506 */ 6507 6508 static void 6509 sd_pm_idletimeout_handler(void *arg) 6510 { 6511 struct sd_lun *un = arg; 6512 6513 time_t now; 6514 6515 mutex_enter(&sd_detach_mutex); 6516 if (un->un_detach_count != 0) { 6517 /* Abort if the instance is detaching */ 6518 mutex_exit(&sd_detach_mutex); 6519 return; 6520 } 6521 mutex_exit(&sd_detach_mutex); 6522 6523 now = ddi_get_time(); 6524 /* 6525 * Grab both mutexes, in the proper order, since we're accessing 6526 * both PM and softstate variables. 6527 */ 6528 mutex_enter(SD_MUTEX(un)); 6529 mutex_enter(&un->un_pm_mutex); 6530 if (((now - un->un_pm_idle_time) > sd_pm_idletime) && 6531 (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) { 6532 /* 6533 * Update the chain types. 6534 * This takes affect on the next new command received. 6535 */ 6536 if (un->un_f_non_devbsize_supported) { 6537 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA; 6538 } else { 6539 un->un_buf_chain_type = SD_CHAIN_INFO_DISK; 6540 } 6541 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD; 6542 6543 SD_TRACE(SD_LOG_IO_PM, un, 6544 "sd_pm_idletimeout_handler: idling device\n"); 6545 (void) pm_idle_component(SD_DEVINFO(un), 0); 6546 un->un_pm_idle_timeid = NULL; 6547 } else { 6548 un->un_pm_idle_timeid = 6549 timeout(sd_pm_idletimeout_handler, un, 6550 (drv_usectohz((clock_t)300000))); /* 300 ms. */ 6551 } 6552 mutex_exit(&un->un_pm_mutex); 6553 mutex_exit(SD_MUTEX(un)); 6554 } 6555 6556 6557 /* 6558 * Function: sd_pm_timeout_handler 6559 * 6560 * Description: Callback to tell framework we are idle. 6561 * 6562 * Context: timeout(9f) thread context. 6563 */ 6564 6565 static void 6566 sd_pm_timeout_handler(void *arg) 6567 { 6568 struct sd_lun *un = arg; 6569 6570 (void) pm_idle_component(SD_DEVINFO(un), 0); 6571 mutex_enter(&un->un_pm_mutex); 6572 un->un_pm_timeid = NULL; 6573 mutex_exit(&un->un_pm_mutex); 6574 } 6575 6576 6577 /* 6578 * Function: sdpower 6579 * 6580 * Description: PM entry point. 6581 * 6582 * Return Code: DDI_SUCCESS 6583 * DDI_FAILURE 6584 * 6585 * Context: Kernel thread context 6586 */ 6587 6588 static int 6589 sdpower(dev_info_t *devi, int component, int level) 6590 { 6591 struct sd_lun *un; 6592 int instance; 6593 int rval = DDI_SUCCESS; 6594 uint_t i, log_page_size, maxcycles, ncycles; 6595 uchar_t *log_page_data; 6596 int log_sense_page; 6597 int medium_present; 6598 time_t intvlp; 6599 struct pm_trans_data sd_pm_tran_data; 6600 uchar_t save_state; 6601 int sval; 6602 uchar_t state_before_pm; 6603 int got_semaphore_here; 6604 sd_ssc_t *ssc; 6605 int last_power_level; 6606 6607 instance = ddi_get_instance(devi); 6608 6609 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 6610 !SD_PM_IS_LEVEL_VALID(un, level) || component != 0) { 6611 return (DDI_FAILURE); 6612 } 6613 6614 ssc = sd_ssc_init(un); 6615 6616 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level); 6617 6618 /* 6619 * Must synchronize power down with close. 6620 * Attempt to decrement/acquire the open/close semaphore, 6621 * but do NOT wait on it. If it's not greater than zero, 6622 * ie. it can't be decremented without waiting, then 6623 * someone else, either open or close, already has it 6624 * and the try returns 0. Use that knowledge here to determine 6625 * if it's OK to change the device power level. 6626 * Also, only increment it on exit if it was decremented, ie. gotten, 6627 * here. 6628 */ 6629 got_semaphore_here = sema_tryp(&un->un_semoclose); 6630 6631 mutex_enter(SD_MUTEX(un)); 6632 6633 SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n", 6634 un->un_ncmds_in_driver); 6635 6636 /* 6637 * If un_ncmds_in_driver is non-zero it indicates commands are 6638 * already being processed in the driver, or if the semaphore was 6639 * not gotten here it indicates an open or close is being processed. 6640 * At the same time somebody is requesting to go to a lower power 6641 * that can't perform I/O, which can't happen, therefore we need to 6642 * return failure. 6643 */ 6644 if ((!SD_PM_IS_IO_CAPABLE(un, level)) && 6645 ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) { 6646 mutex_exit(SD_MUTEX(un)); 6647 6648 if (got_semaphore_here != 0) { 6649 sema_v(&un->un_semoclose); 6650 } 6651 SD_TRACE(SD_LOG_IO_PM, un, 6652 "sdpower: exit, device has queued cmds.\n"); 6653 6654 goto sdpower_failed; 6655 } 6656 6657 /* 6658 * if it is OFFLINE that means the disk is completely dead 6659 * in our case we have to put the disk in on or off by sending commands 6660 * Of course that will fail anyway so return back here. 6661 * 6662 * Power changes to a device that's OFFLINE or SUSPENDED 6663 * are not allowed. 6664 */ 6665 if ((un->un_state == SD_STATE_OFFLINE) || 6666 (un->un_state == SD_STATE_SUSPENDED)) { 6667 mutex_exit(SD_MUTEX(un)); 6668 6669 if (got_semaphore_here != 0) { 6670 sema_v(&un->un_semoclose); 6671 } 6672 SD_TRACE(SD_LOG_IO_PM, un, 6673 "sdpower: exit, device is off-line.\n"); 6674 6675 goto sdpower_failed; 6676 } 6677 6678 /* 6679 * Change the device's state to indicate it's power level 6680 * is being changed. Do this to prevent a power off in the 6681 * middle of commands, which is especially bad on devices 6682 * that are really powered off instead of just spun down. 6683 */ 6684 state_before_pm = un->un_state; 6685 un->un_state = SD_STATE_PM_CHANGING; 6686 6687 mutex_exit(SD_MUTEX(un)); 6688 6689 /* 6690 * If log sense command is not supported, bypass the 6691 * following checking, otherwise, check the log sense 6692 * information for this device. 6693 */ 6694 if (SD_PM_STOP_MOTOR_NEEDED(un, level) && 6695 un->un_f_log_sense_supported) { 6696 /* 6697 * Get the log sense information to understand whether the 6698 * the powercycle counts have gone beyond the threshhold. 6699 */ 6700 log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE; 6701 log_page_data = kmem_zalloc(log_page_size, KM_SLEEP); 6702 6703 mutex_enter(SD_MUTEX(un)); 6704 log_sense_page = un->un_start_stop_cycle_page; 6705 mutex_exit(SD_MUTEX(un)); 6706 6707 rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 6708 log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT); 6709 6710 if (rval != 0) { 6711 if (rval == EIO) 6712 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 6713 else 6714 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 6715 } 6716 6717 #ifdef SDDEBUG 6718 if (sd_force_pm_supported) { 6719 /* Force a successful result */ 6720 rval = 0; 6721 } 6722 #endif 6723 if (rval != 0) { 6724 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 6725 "Log Sense Failed\n"); 6726 6727 kmem_free(log_page_data, log_page_size); 6728 /* Cannot support power management on those drives */ 6729 6730 if (got_semaphore_here != 0) { 6731 sema_v(&un->un_semoclose); 6732 } 6733 /* 6734 * On exit put the state back to it's original value 6735 * and broadcast to anyone waiting for the power 6736 * change completion. 6737 */ 6738 mutex_enter(SD_MUTEX(un)); 6739 un->un_state = state_before_pm; 6740 cv_broadcast(&un->un_suspend_cv); 6741 mutex_exit(SD_MUTEX(un)); 6742 SD_TRACE(SD_LOG_IO_PM, un, 6743 "sdpower: exit, Log Sense Failed.\n"); 6744 6745 goto sdpower_failed; 6746 } 6747 6748 /* 6749 * From the page data - Convert the essential information to 6750 * pm_trans_data 6751 */ 6752 maxcycles = 6753 (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) | 6754 (log_page_data[0x1E] << 8) | log_page_data[0x1F]; 6755 6756 ncycles = 6757 (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) | 6758 (log_page_data[0x26] << 8) | log_page_data[0x27]; 6759 6760 if (un->un_f_pm_log_sense_smart) { 6761 sd_pm_tran_data.un.smart_count.allowed = maxcycles; 6762 sd_pm_tran_data.un.smart_count.consumed = ncycles; 6763 sd_pm_tran_data.un.smart_count.flag = 0; 6764 sd_pm_tran_data.format = DC_SMART_FORMAT; 6765 } else { 6766 sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles; 6767 sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles; 6768 for (i = 0; i < DC_SCSI_MFR_LEN; i++) { 6769 sd_pm_tran_data.un.scsi_cycles.svc_date[i] = 6770 log_page_data[8+i]; 6771 } 6772 sd_pm_tran_data.un.scsi_cycles.flag = 0; 6773 sd_pm_tran_data.format = DC_SCSI_FORMAT; 6774 } 6775 6776 kmem_free(log_page_data, log_page_size); 6777 6778 /* 6779 * Call pm_trans_check routine to get the Ok from 6780 * the global policy 6781 */ 6782 rval = pm_trans_check(&sd_pm_tran_data, &intvlp); 6783 #ifdef SDDEBUG 6784 if (sd_force_pm_supported) { 6785 /* Force a successful result */ 6786 rval = 1; 6787 } 6788 #endif 6789 switch (rval) { 6790 case 0: 6791 /* 6792 * Not Ok to Power cycle or error in parameters passed 6793 * Would have given the advised time to consider power 6794 * cycle. Based on the new intvlp parameter we are 6795 * supposed to pretend we are busy so that pm framework 6796 * will never call our power entry point. Because of 6797 * that install a timeout handler and wait for the 6798 * recommended time to elapse so that power management 6799 * can be effective again. 6800 * 6801 * To effect this behavior, call pm_busy_component to 6802 * indicate to the framework this device is busy. 6803 * By not adjusting un_pm_count the rest of PM in 6804 * the driver will function normally, and independent 6805 * of this but because the framework is told the device 6806 * is busy it won't attempt powering down until it gets 6807 * a matching idle. The timeout handler sends this. 6808 * Note: sd_pm_entry can't be called here to do this 6809 * because sdpower may have been called as a result 6810 * of a call to pm_raise_power from within sd_pm_entry. 6811 * 6812 * If a timeout handler is already active then 6813 * don't install another. 6814 */ 6815 mutex_enter(&un->un_pm_mutex); 6816 if (un->un_pm_timeid == NULL) { 6817 un->un_pm_timeid = 6818 timeout(sd_pm_timeout_handler, 6819 un, intvlp * drv_usectohz(1000000)); 6820 mutex_exit(&un->un_pm_mutex); 6821 (void) pm_busy_component(SD_DEVINFO(un), 0); 6822 } else { 6823 mutex_exit(&un->un_pm_mutex); 6824 } 6825 if (got_semaphore_here != 0) { 6826 sema_v(&un->un_semoclose); 6827 } 6828 /* 6829 * On exit put the state back to it's original value 6830 * and broadcast to anyone waiting for the power 6831 * change completion. 6832 */ 6833 mutex_enter(SD_MUTEX(un)); 6834 un->un_state = state_before_pm; 6835 cv_broadcast(&un->un_suspend_cv); 6836 mutex_exit(SD_MUTEX(un)); 6837 6838 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, " 6839 "trans check Failed, not ok to power cycle.\n"); 6840 6841 goto sdpower_failed; 6842 case -1: 6843 if (got_semaphore_here != 0) { 6844 sema_v(&un->un_semoclose); 6845 } 6846 /* 6847 * On exit put the state back to it's original value 6848 * and broadcast to anyone waiting for the power 6849 * change completion. 6850 */ 6851 mutex_enter(SD_MUTEX(un)); 6852 un->un_state = state_before_pm; 6853 cv_broadcast(&un->un_suspend_cv); 6854 mutex_exit(SD_MUTEX(un)); 6855 SD_TRACE(SD_LOG_IO_PM, un, 6856 "sdpower: exit, trans check command Failed.\n"); 6857 6858 goto sdpower_failed; 6859 } 6860 } 6861 6862 if (!SD_PM_IS_IO_CAPABLE(un, level)) { 6863 /* 6864 * Save the last state... if the STOP FAILS we need it 6865 * for restoring 6866 */ 6867 mutex_enter(SD_MUTEX(un)); 6868 save_state = un->un_last_state; 6869 last_power_level = un->un_power_level; 6870 /* 6871 * There must not be any cmds. getting processed 6872 * in the driver when we get here. Power to the 6873 * device is potentially going off. 6874 */ 6875 ASSERT(un->un_ncmds_in_driver == 0); 6876 mutex_exit(SD_MUTEX(un)); 6877 6878 /* 6879 * For now PM suspend the device completely before spindle is 6880 * turned off 6881 */ 6882 if ((rval = sd_pm_state_change(un, level, SD_PM_STATE_CHANGE)) 6883 == DDI_FAILURE) { 6884 if (got_semaphore_here != 0) { 6885 sema_v(&un->un_semoclose); 6886 } 6887 /* 6888 * On exit put the state back to it's original value 6889 * and broadcast to anyone waiting for the power 6890 * change completion. 6891 */ 6892 mutex_enter(SD_MUTEX(un)); 6893 un->un_state = state_before_pm; 6894 un->un_power_level = last_power_level; 6895 cv_broadcast(&un->un_suspend_cv); 6896 mutex_exit(SD_MUTEX(un)); 6897 SD_TRACE(SD_LOG_IO_PM, un, 6898 "sdpower: exit, PM suspend Failed.\n"); 6899 6900 goto sdpower_failed; 6901 } 6902 } 6903 6904 /* 6905 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open, 6906 * close, or strategy. Dump no long uses this routine, it uses it's 6907 * own code so it can be done in polled mode. 6908 */ 6909 6910 medium_present = TRUE; 6911 6912 /* 6913 * When powering up, issue a TUR in case the device is at unit 6914 * attention. Don't do retries. Bypass the PM layer, otherwise 6915 * a deadlock on un_pm_busy_cv will occur. 6916 */ 6917 if (SD_PM_IS_IO_CAPABLE(un, level)) { 6918 sval = sd_send_scsi_TEST_UNIT_READY(ssc, 6919 SD_DONT_RETRY_TUR | SD_BYPASS_PM); 6920 if (sval != 0) 6921 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 6922 } 6923 6924 if (un->un_f_power_condition_supported) { 6925 char *pm_condition_name[] = {"STOPPED", "STANDBY", 6926 "IDLE", "ACTIVE"}; 6927 SD_TRACE(SD_LOG_IO_PM, un, 6928 "sdpower: sending \'%s\' power condition", 6929 pm_condition_name[level]); 6930 sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION, 6931 sd_pl2pc[level], SD_PATH_DIRECT); 6932 } else { 6933 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n", 6934 ((level == SD_SPINDLE_ON) ? "START" : "STOP")); 6935 sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 6936 ((level == SD_SPINDLE_ON) ? SD_TARGET_START : 6937 SD_TARGET_STOP), SD_PATH_DIRECT); 6938 } 6939 if (sval != 0) { 6940 if (sval == EIO) 6941 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 6942 else 6943 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 6944 } 6945 6946 /* Command failed, check for media present. */ 6947 if ((sval == ENXIO) && un->un_f_has_removable_media) { 6948 medium_present = FALSE; 6949 } 6950 6951 /* 6952 * The conditions of interest here are: 6953 * if a spindle off with media present fails, 6954 * then restore the state and return an error. 6955 * else if a spindle on fails, 6956 * then return an error (there's no state to restore). 6957 * In all other cases we setup for the new state 6958 * and return success. 6959 */ 6960 if (!SD_PM_IS_IO_CAPABLE(un, level)) { 6961 if ((medium_present == TRUE) && (sval != 0)) { 6962 /* The stop command from above failed */ 6963 rval = DDI_FAILURE; 6964 /* 6965 * The stop command failed, and we have media 6966 * present. Put the level back by calling the 6967 * sd_pm_resume() and set the state back to 6968 * it's previous value. 6969 */ 6970 (void) sd_pm_state_change(un, last_power_level, 6971 SD_PM_STATE_ROLLBACK); 6972 mutex_enter(SD_MUTEX(un)); 6973 un->un_last_state = save_state; 6974 mutex_exit(SD_MUTEX(un)); 6975 } else if (un->un_f_monitor_media_state) { 6976 /* 6977 * The stop command from above succeeded. 6978 * Terminate watch thread in case of removable media 6979 * devices going into low power state. This is as per 6980 * the requirements of pm framework, otherwise commands 6981 * will be generated for the device (through watch 6982 * thread), even when the device is in low power state. 6983 */ 6984 mutex_enter(SD_MUTEX(un)); 6985 un->un_f_watcht_stopped = FALSE; 6986 if (un->un_swr_token != NULL) { 6987 opaque_t temp_token = un->un_swr_token; 6988 un->un_f_watcht_stopped = TRUE; 6989 un->un_swr_token = NULL; 6990 mutex_exit(SD_MUTEX(un)); 6991 (void) scsi_watch_request_terminate(temp_token, 6992 SCSI_WATCH_TERMINATE_ALL_WAIT); 6993 } else { 6994 mutex_exit(SD_MUTEX(un)); 6995 } 6996 } 6997 } else { 6998 /* 6999 * The level requested is I/O capable. 7000 * Legacy behavior: return success on a failed spinup 7001 * if there is no media in the drive. 7002 * Do this by looking at medium_present here. 7003 */ 7004 if ((sval != 0) && medium_present) { 7005 /* The start command from above failed */ 7006 rval = DDI_FAILURE; 7007 } else { 7008 /* 7009 * The start command from above succeeded 7010 * PM resume the devices now that we have 7011 * started the disks 7012 */ 7013 (void) sd_pm_state_change(un, level, 7014 SD_PM_STATE_CHANGE); 7015 7016 /* 7017 * Resume the watch thread since it was suspended 7018 * when the device went into low power mode. 7019 */ 7020 if (un->un_f_monitor_media_state) { 7021 mutex_enter(SD_MUTEX(un)); 7022 if (un->un_f_watcht_stopped == TRUE) { 7023 opaque_t temp_token; 7024 7025 un->un_f_watcht_stopped = FALSE; 7026 mutex_exit(SD_MUTEX(un)); 7027 temp_token = 7028 sd_watch_request_submit(un); 7029 mutex_enter(SD_MUTEX(un)); 7030 un->un_swr_token = temp_token; 7031 } 7032 mutex_exit(SD_MUTEX(un)); 7033 } 7034 } 7035 } 7036 7037 if (got_semaphore_here != 0) { 7038 sema_v(&un->un_semoclose); 7039 } 7040 /* 7041 * On exit put the state back to it's original value 7042 * and broadcast to anyone waiting for the power 7043 * change completion. 7044 */ 7045 mutex_enter(SD_MUTEX(un)); 7046 un->un_state = state_before_pm; 7047 cv_broadcast(&un->un_suspend_cv); 7048 mutex_exit(SD_MUTEX(un)); 7049 7050 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval); 7051 7052 sd_ssc_fini(ssc); 7053 return (rval); 7054 7055 sdpower_failed: 7056 7057 sd_ssc_fini(ssc); 7058 return (DDI_FAILURE); 7059 } 7060 7061 7062 7063 /* 7064 * Function: sdattach 7065 * 7066 * Description: Driver's attach(9e) entry point function. 7067 * 7068 * Arguments: devi - opaque device info handle 7069 * cmd - attach type 7070 * 7071 * Return Code: DDI_SUCCESS 7072 * DDI_FAILURE 7073 * 7074 * Context: Kernel thread context 7075 */ 7076 7077 static int 7078 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd) 7079 { 7080 switch (cmd) { 7081 case DDI_ATTACH: 7082 return (sd_unit_attach(devi)); 7083 case DDI_RESUME: 7084 return (sd_ddi_resume(devi)); 7085 default: 7086 break; 7087 } 7088 return (DDI_FAILURE); 7089 } 7090 7091 7092 /* 7093 * Function: sddetach 7094 * 7095 * Description: Driver's detach(9E) entry point function. 7096 * 7097 * Arguments: devi - opaque device info handle 7098 * cmd - detach type 7099 * 7100 * Return Code: DDI_SUCCESS 7101 * DDI_FAILURE 7102 * 7103 * Context: Kernel thread context 7104 */ 7105 7106 static int 7107 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd) 7108 { 7109 switch (cmd) { 7110 case DDI_DETACH: 7111 return (sd_unit_detach(devi)); 7112 case DDI_SUSPEND: 7113 return (sd_ddi_suspend(devi)); 7114 default: 7115 break; 7116 } 7117 return (DDI_FAILURE); 7118 } 7119 7120 7121 /* 7122 * Function: sd_sync_with_callback 7123 * 7124 * Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft 7125 * state while the callback routine is active. 7126 * 7127 * Arguments: un: softstate structure for the instance 7128 * 7129 * Context: Kernel thread context 7130 */ 7131 7132 static void 7133 sd_sync_with_callback(struct sd_lun *un) 7134 { 7135 ASSERT(un != NULL); 7136 7137 mutex_enter(SD_MUTEX(un)); 7138 7139 ASSERT(un->un_in_callback >= 0); 7140 7141 while (un->un_in_callback > 0) { 7142 mutex_exit(SD_MUTEX(un)); 7143 delay(2); 7144 mutex_enter(SD_MUTEX(un)); 7145 } 7146 7147 mutex_exit(SD_MUTEX(un)); 7148 } 7149 7150 /* 7151 * Function: sd_unit_attach 7152 * 7153 * Description: Performs DDI_ATTACH processing for sdattach(). Allocates 7154 * the soft state structure for the device and performs 7155 * all necessary structure and device initializations. 7156 * 7157 * Arguments: devi: the system's dev_info_t for the device. 7158 * 7159 * Return Code: DDI_SUCCESS if attach is successful. 7160 * DDI_FAILURE if any part of the attach fails. 7161 * 7162 * Context: Called at attach(9e) time for the DDI_ATTACH flag. 7163 * Kernel thread context only. Can sleep. 7164 */ 7165 7166 static int 7167 sd_unit_attach(dev_info_t *devi) 7168 { 7169 struct scsi_device *devp; 7170 struct sd_lun *un; 7171 char *variantp; 7172 char name_str[48]; 7173 int reservation_flag = SD_TARGET_IS_UNRESERVED; 7174 int instance; 7175 int rval; 7176 int wc_enabled; 7177 int tgt; 7178 uint64_t capacity; 7179 uint_t lbasize = 0; 7180 dev_info_t *pdip = ddi_get_parent(devi); 7181 int offbyone = 0; 7182 int geom_label_valid = 0; 7183 sd_ssc_t *ssc; 7184 int status; 7185 struct sd_fm_internal *sfip = NULL; 7186 int max_xfer_size; 7187 7188 /* 7189 * Retrieve the target driver's private data area. This was set 7190 * up by the HBA. 7191 */ 7192 devp = ddi_get_driver_private(devi); 7193 7194 /* 7195 * Retrieve the target ID of the device. 7196 */ 7197 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 7198 SCSI_ADDR_PROP_TARGET, -1); 7199 7200 /* 7201 * Since we have no idea what state things were left in by the last 7202 * user of the device, set up some 'default' settings, ie. turn 'em 7203 * off. The scsi_ifsetcap calls force re-negotiations with the drive. 7204 * Do this before the scsi_probe, which sends an inquiry. 7205 * This is a fix for bug (4430280). 7206 * Of special importance is wide-xfer. The drive could have been left 7207 * in wide transfer mode by the last driver to communicate with it, 7208 * this includes us. If that's the case, and if the following is not 7209 * setup properly or we don't re-negotiate with the drive prior to 7210 * transferring data to/from the drive, it causes bus parity errors, 7211 * data overruns, and unexpected interrupts. This first occurred when 7212 * the fix for bug (4378686) was made. 7213 */ 7214 (void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1); 7215 (void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1); 7216 (void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1); 7217 7218 /* 7219 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs 7220 * on a target. Setting it per lun instance actually sets the 7221 * capability of this target, which affects those luns already 7222 * attached on the same target. So during attach, we can only disable 7223 * this capability only when no other lun has been attached on this 7224 * target. By doing this, we assume a target has the same tagged-qing 7225 * capability for every lun. The condition can be removed when HBA 7226 * is changed to support per lun based tagged-qing capability. 7227 */ 7228 if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) { 7229 (void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1); 7230 } 7231 7232 /* 7233 * Use scsi_probe() to issue an INQUIRY command to the device. 7234 * This call will allocate and fill in the scsi_inquiry structure 7235 * and point the sd_inq member of the scsi_device structure to it. 7236 * If the attach succeeds, then this memory will not be de-allocated 7237 * (via scsi_unprobe()) until the instance is detached. 7238 */ 7239 if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) { 7240 goto probe_failed; 7241 } 7242 7243 /* 7244 * Check the device type as specified in the inquiry data and 7245 * claim it if it is of a type that we support. 7246 */ 7247 switch (devp->sd_inq->inq_dtype) { 7248 case DTYPE_DIRECT: 7249 break; 7250 case DTYPE_RODIRECT: 7251 break; 7252 case DTYPE_OPTICAL: 7253 break; 7254 case DTYPE_NOTPRESENT: 7255 default: 7256 /* Unsupported device type; fail the attach. */ 7257 goto probe_failed; 7258 } 7259 7260 /* 7261 * Allocate the soft state structure for this unit. 7262 * 7263 * We rely upon this memory being set to all zeroes by 7264 * ddi_soft_state_zalloc(). We assume that any member of the 7265 * soft state structure that is not explicitly initialized by 7266 * this routine will have a value of zero. 7267 */ 7268 instance = ddi_get_instance(devp->sd_dev); 7269 #ifndef XPV_HVM_DRIVER 7270 if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) { 7271 goto probe_failed; 7272 } 7273 #endif /* !XPV_HVM_DRIVER */ 7274 7275 /* 7276 * Retrieve a pointer to the newly-allocated soft state. 7277 * 7278 * This should NEVER fail if the ddi_soft_state_zalloc() call above 7279 * was successful, unless something has gone horribly wrong and the 7280 * ddi's soft state internals are corrupt (in which case it is 7281 * probably better to halt here than just fail the attach....) 7282 */ 7283 if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) { 7284 panic("sd_unit_attach: NULL soft state on instance:0x%x", 7285 instance); 7286 /*NOTREACHED*/ 7287 } 7288 7289 /* 7290 * Link the back ptr of the driver soft state to the scsi_device 7291 * struct for this lun. 7292 * Save a pointer to the softstate in the driver-private area of 7293 * the scsi_device struct. 7294 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until 7295 * we first set un->un_sd below. 7296 */ 7297 un->un_sd = devp; 7298 devp->sd_private = (opaque_t)un; 7299 7300 /* 7301 * The following must be after devp is stored in the soft state struct. 7302 */ 7303 #ifdef SDDEBUG 7304 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7305 "%s_unit_attach: un:0x%p instance:%d\n", 7306 ddi_driver_name(devi), un, instance); 7307 #endif 7308 7309 /* 7310 * Set up the device type and node type (for the minor nodes). 7311 * By default we assume that the device can at least support the 7312 * Common Command Set. Call it a CD-ROM if it reports itself 7313 * as a RODIRECT device. 7314 */ 7315 switch (devp->sd_inq->inq_dtype) { 7316 case DTYPE_RODIRECT: 7317 un->un_node_type = DDI_NT_CD_CHAN; 7318 un->un_ctype = CTYPE_CDROM; 7319 break; 7320 case DTYPE_OPTICAL: 7321 un->un_node_type = DDI_NT_BLOCK_CHAN; 7322 un->un_ctype = CTYPE_ROD; 7323 break; 7324 default: 7325 un->un_node_type = DDI_NT_BLOCK_CHAN; 7326 un->un_ctype = CTYPE_CCS; 7327 break; 7328 } 7329 7330 /* 7331 * Try to read the interconnect type from the HBA. 7332 * 7333 * Note: This driver is currently compiled as two binaries, a parallel 7334 * scsi version (sd) and a fibre channel version (ssd). All functional 7335 * differences are determined at compile time. In the future a single 7336 * binary will be provided and the interconnect type will be used to 7337 * differentiate between fibre and parallel scsi behaviors. At that time 7338 * it will be necessary for all fibre channel HBAs to support this 7339 * property. 7340 * 7341 * set un_f_is_fiber to TRUE ( default fiber ) 7342 */ 7343 un->un_f_is_fibre = TRUE; 7344 switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) { 7345 case INTERCONNECT_SSA: 7346 un->un_interconnect_type = SD_INTERCONNECT_SSA; 7347 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7348 "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un); 7349 break; 7350 case INTERCONNECT_PARALLEL: 7351 un->un_f_is_fibre = FALSE; 7352 un->un_interconnect_type = SD_INTERCONNECT_PARALLEL; 7353 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7354 "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un); 7355 break; 7356 case INTERCONNECT_SAS: 7357 un->un_f_is_fibre = FALSE; 7358 un->un_interconnect_type = SD_INTERCONNECT_SAS; 7359 un->un_node_type = DDI_NT_BLOCK_SAS; 7360 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7361 "sd_unit_attach: un:0x%p SD_INTERCONNECT_SAS\n", un); 7362 break; 7363 case INTERCONNECT_SATA: 7364 un->un_f_is_fibre = FALSE; 7365 un->un_interconnect_type = SD_INTERCONNECT_SATA; 7366 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7367 "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un); 7368 break; 7369 case INTERCONNECT_FIBRE: 7370 un->un_interconnect_type = SD_INTERCONNECT_FIBRE; 7371 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7372 "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un); 7373 break; 7374 case INTERCONNECT_FABRIC: 7375 un->un_interconnect_type = SD_INTERCONNECT_FABRIC; 7376 un->un_node_type = DDI_NT_BLOCK_FABRIC; 7377 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7378 "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un); 7379 break; 7380 default: 7381 #ifdef SD_DEFAULT_INTERCONNECT_TYPE 7382 /* 7383 * The HBA does not support the "interconnect-type" property 7384 * (or did not provide a recognized type). 7385 * 7386 * Note: This will be obsoleted when a single fibre channel 7387 * and parallel scsi driver is delivered. In the meantime the 7388 * interconnect type will be set to the platform default.If that 7389 * type is not parallel SCSI, it means that we should be 7390 * assuming "ssd" semantics. However, here this also means that 7391 * the FC HBA is not supporting the "interconnect-type" property 7392 * like we expect it to, so log this occurrence. 7393 */ 7394 un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE; 7395 if (!SD_IS_PARALLEL_SCSI(un)) { 7396 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7397 "sd_unit_attach: un:0x%p Assuming " 7398 "INTERCONNECT_FIBRE\n", un); 7399 } else { 7400 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7401 "sd_unit_attach: un:0x%p Assuming " 7402 "INTERCONNECT_PARALLEL\n", un); 7403 un->un_f_is_fibre = FALSE; 7404 } 7405 #else 7406 /* 7407 * Note: This source will be implemented when a single fibre 7408 * channel and parallel scsi driver is delivered. The default 7409 * will be to assume that if a device does not support the 7410 * "interconnect-type" property it is a parallel SCSI HBA and 7411 * we will set the interconnect type for parallel scsi. 7412 */ 7413 un->un_interconnect_type = SD_INTERCONNECT_PARALLEL; 7414 un->un_f_is_fibre = FALSE; 7415 #endif 7416 break; 7417 } 7418 7419 if (un->un_f_is_fibre == TRUE) { 7420 if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) == 7421 SCSI_VERSION_3) { 7422 switch (un->un_interconnect_type) { 7423 case SD_INTERCONNECT_FIBRE: 7424 case SD_INTERCONNECT_SSA: 7425 un->un_node_type = DDI_NT_BLOCK_WWN; 7426 break; 7427 default: 7428 break; 7429 } 7430 } 7431 } 7432 7433 /* 7434 * Initialize the Request Sense command for the target 7435 */ 7436 if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) { 7437 goto alloc_rqs_failed; 7438 } 7439 7440 /* 7441 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc 7442 * with separate binary for sd and ssd. 7443 * 7444 * x86 has 1 binary, un_retry_count is set base on connection type. 7445 * The hardcoded values will go away when Sparc uses 1 binary 7446 * for sd and ssd. This hardcoded values need to match 7447 * SD_RETRY_COUNT in sddef.h 7448 * The value used is base on interconnect type. 7449 * fibre = 3, parallel = 5 7450 */ 7451 #if defined(__i386) || defined(__amd64) 7452 un->un_retry_count = un->un_f_is_fibre ? 3 : 5; 7453 #else 7454 un->un_retry_count = SD_RETRY_COUNT; 7455 #endif 7456 7457 /* 7458 * Set the per disk retry count to the default number of retries 7459 * for disks and CDROMs. This value can be overridden by the 7460 * disk property list or an entry in sd.conf. 7461 */ 7462 un->un_notready_retry_count = 7463 ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un) 7464 : DISK_NOT_READY_RETRY_COUNT(un); 7465 7466 /* 7467 * Set the busy retry count to the default value of un_retry_count. 7468 * This can be overridden by entries in sd.conf or the device 7469 * config table. 7470 */ 7471 un->un_busy_retry_count = un->un_retry_count; 7472 7473 /* 7474 * Init the reset threshold for retries. This number determines 7475 * how many retries must be performed before a reset can be issued 7476 * (for certain error conditions). This can be overridden by entries 7477 * in sd.conf or the device config table. 7478 */ 7479 un->un_reset_retry_count = (un->un_retry_count / 2); 7480 7481 /* 7482 * Set the victim_retry_count to the default un_retry_count 7483 */ 7484 un->un_victim_retry_count = (2 * un->un_retry_count); 7485 7486 /* 7487 * Set the reservation release timeout to the default value of 7488 * 5 seconds. This can be overridden by entries in ssd.conf or the 7489 * device config table. 7490 */ 7491 un->un_reserve_release_time = 5; 7492 7493 /* 7494 * Set up the default maximum transfer size. Note that this may 7495 * get updated later in the attach, when setting up default wide 7496 * operations for disks. 7497 */ 7498 #if defined(__i386) || defined(__amd64) 7499 un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE; 7500 un->un_partial_dma_supported = 1; 7501 #else 7502 un->un_max_xfer_size = (uint_t)maxphys; 7503 #endif 7504 7505 /* 7506 * Get "allow bus device reset" property (defaults to "enabled" if 7507 * the property was not defined). This is to disable bus resets for 7508 * certain kinds of error recovery. Note: In the future when a run-time 7509 * fibre check is available the soft state flag should default to 7510 * enabled. 7511 */ 7512 if (un->un_f_is_fibre == TRUE) { 7513 un->un_f_allow_bus_device_reset = TRUE; 7514 } else { 7515 if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 7516 "allow-bus-device-reset", 1) != 0) { 7517 un->un_f_allow_bus_device_reset = TRUE; 7518 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7519 "sd_unit_attach: un:0x%p Bus device reset " 7520 "enabled\n", un); 7521 } else { 7522 un->un_f_allow_bus_device_reset = FALSE; 7523 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7524 "sd_unit_attach: un:0x%p Bus device reset " 7525 "disabled\n", un); 7526 } 7527 } 7528 7529 /* 7530 * Check if this is an ATAPI device. ATAPI devices use Group 1 7531 * Read/Write commands and Group 2 Mode Sense/Select commands. 7532 * 7533 * Note: The "obsolete" way of doing this is to check for the "atapi" 7534 * property. The new "variant" property with a value of "atapi" has been 7535 * introduced so that future 'variants' of standard SCSI behavior (like 7536 * atapi) could be specified by the underlying HBA drivers by supplying 7537 * a new value for the "variant" property, instead of having to define a 7538 * new property. 7539 */ 7540 if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) { 7541 un->un_f_cfg_is_atapi = TRUE; 7542 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7543 "sd_unit_attach: un:0x%p Atapi device\n", un); 7544 } 7545 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant", 7546 &variantp) == DDI_PROP_SUCCESS) { 7547 if (strcmp(variantp, "atapi") == 0) { 7548 un->un_f_cfg_is_atapi = TRUE; 7549 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7550 "sd_unit_attach: un:0x%p Atapi device\n", un); 7551 } 7552 ddi_prop_free(variantp); 7553 } 7554 7555 un->un_cmd_timeout = SD_IO_TIME; 7556 7557 un->un_busy_timeout = SD_BSY_TIMEOUT; 7558 7559 /* Info on current states, statuses, etc. (Updated frequently) */ 7560 un->un_state = SD_STATE_NORMAL; 7561 un->un_last_state = SD_STATE_NORMAL; 7562 7563 /* Control & status info for command throttling */ 7564 un->un_throttle = sd_max_throttle; 7565 un->un_saved_throttle = sd_max_throttle; 7566 un->un_min_throttle = sd_min_throttle; 7567 7568 if (un->un_f_is_fibre == TRUE) { 7569 un->un_f_use_adaptive_throttle = TRUE; 7570 } else { 7571 un->un_f_use_adaptive_throttle = FALSE; 7572 } 7573 7574 /* Removable media support. */ 7575 cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL); 7576 un->un_mediastate = DKIO_NONE; 7577 un->un_specified_mediastate = DKIO_NONE; 7578 7579 /* CVs for suspend/resume (PM or DR) */ 7580 cv_init(&un->un_suspend_cv, NULL, CV_DRIVER, NULL); 7581 cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL); 7582 7583 /* Power management support. */ 7584 un->un_power_level = SD_SPINDLE_UNINIT; 7585 7586 cv_init(&un->un_wcc_cv, NULL, CV_DRIVER, NULL); 7587 un->un_f_wcc_inprog = 0; 7588 7589 /* 7590 * The open/close semaphore is used to serialize threads executing 7591 * in the driver's open & close entry point routines for a given 7592 * instance. 7593 */ 7594 (void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL); 7595 7596 /* 7597 * The conf file entry and softstate variable is a forceful override, 7598 * meaning a non-zero value must be entered to change the default. 7599 */ 7600 un->un_f_disksort_disabled = FALSE; 7601 un->un_f_rmw_type = SD_RMW_TYPE_DEFAULT; 7602 un->un_f_enable_rmw = FALSE; 7603 7604 /* 7605 * GET EVENT STATUS NOTIFICATION media polling enabled by default, but 7606 * can be overridden via [s]sd-config-list "mmc-gesn-polling" property. 7607 */ 7608 un->un_f_mmc_gesn_polling = TRUE; 7609 7610 /* 7611 * Retrieve the properties from the static driver table or the driver 7612 * configuration file (.conf) for this unit and update the soft state 7613 * for the device as needed for the indicated properties. 7614 * Note: the property configuration needs to occur here as some of the 7615 * following routines may have dependencies on soft state flags set 7616 * as part of the driver property configuration. 7617 */ 7618 sd_read_unit_properties(un); 7619 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7620 "sd_unit_attach: un:0x%p property configuration complete.\n", un); 7621 7622 /* 7623 * Only if a device has "hotpluggable" property, it is 7624 * treated as hotpluggable device. Otherwise, it is 7625 * regarded as non-hotpluggable one. 7626 */ 7627 if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable", 7628 -1) != -1) { 7629 un->un_f_is_hotpluggable = TRUE; 7630 } 7631 7632 /* 7633 * set unit's attributes(flags) according to "hotpluggable" and 7634 * RMB bit in INQUIRY data. 7635 */ 7636 sd_set_unit_attributes(un, devi); 7637 7638 /* 7639 * By default, we mark the capacity, lbasize, and geometry 7640 * as invalid. Only if we successfully read a valid capacity 7641 * will we update the un_blockcount and un_tgt_blocksize with the 7642 * valid values (the geometry will be validated later). 7643 */ 7644 un->un_f_blockcount_is_valid = FALSE; 7645 un->un_f_tgt_blocksize_is_valid = FALSE; 7646 7647 /* 7648 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine 7649 * otherwise. 7650 */ 7651 un->un_tgt_blocksize = un->un_sys_blocksize = DEV_BSIZE; 7652 un->un_blockcount = 0; 7653 7654 /* 7655 * physical sector size default to DEV_BSIZE currently. 7656 */ 7657 un->un_phy_blocksize = DEV_BSIZE; 7658 7659 /* 7660 * Set up the per-instance info needed to determine the correct 7661 * CDBs and other info for issuing commands to the target. 7662 */ 7663 sd_init_cdb_limits(un); 7664 7665 /* 7666 * Set up the IO chains to use, based upon the target type. 7667 */ 7668 if (un->un_f_non_devbsize_supported) { 7669 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA; 7670 } else { 7671 un->un_buf_chain_type = SD_CHAIN_INFO_DISK; 7672 } 7673 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD; 7674 un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD; 7675 un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD; 7676 7677 un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf), 7678 sd_xbuf_strategy, un, sd_xbuf_active_limit, sd_xbuf_reserve_limit, 7679 ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER); 7680 ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi); 7681 7682 7683 if (ISCD(un)) { 7684 un->un_additional_codes = sd_additional_codes; 7685 } else { 7686 un->un_additional_codes = NULL; 7687 } 7688 7689 /* 7690 * Create the kstats here so they can be available for attach-time 7691 * routines that send commands to the unit (either polled or via 7692 * sd_send_scsi_cmd). 7693 * 7694 * Note: This is a critical sequence that needs to be maintained: 7695 * 1) Instantiate the kstats here, before any routines using the 7696 * iopath (i.e. sd_send_scsi_cmd). 7697 * 2) Instantiate and initialize the partition stats 7698 * (sd_set_pstats). 7699 * 3) Initialize the error stats (sd_set_errstats), following 7700 * sd_validate_geometry(),sd_register_devid(), 7701 * and sd_cache_control(). 7702 */ 7703 7704 un->un_stats = kstat_create(sd_label, instance, 7705 NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT); 7706 if (un->un_stats != NULL) { 7707 un->un_stats->ks_lock = SD_MUTEX(un); 7708 kstat_install(un->un_stats); 7709 } 7710 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7711 "sd_unit_attach: un:0x%p un_stats created\n", un); 7712 7713 sd_create_errstats(un, instance); 7714 if (un->un_errstats == NULL) { 7715 goto create_errstats_failed; 7716 } 7717 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7718 "sd_unit_attach: un:0x%p errstats created\n", un); 7719 7720 /* 7721 * The following if/else code was relocated here from below as part 7722 * of the fix for bug (4430280). However with the default setup added 7723 * on entry to this routine, it's no longer absolutely necessary for 7724 * this to be before the call to sd_spin_up_unit. 7725 */ 7726 if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) { 7727 int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) || 7728 (devp->sd_inq->inq_ansi == 5)) && 7729 devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque; 7730 7731 /* 7732 * If tagged queueing is supported by the target 7733 * and by the host adapter then we will enable it 7734 */ 7735 un->un_tagflags = 0; 7736 if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag && 7737 (un->un_f_arq_enabled == TRUE)) { 7738 if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 7739 1, 1) == 1) { 7740 un->un_tagflags = FLAG_STAG; 7741 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7742 "sd_unit_attach: un:0x%p tag queueing " 7743 "enabled\n", un); 7744 } else if (scsi_ifgetcap(SD_ADDRESS(un), 7745 "untagged-qing", 0) == 1) { 7746 un->un_f_opt_queueing = TRUE; 7747 un->un_saved_throttle = un->un_throttle = 7748 min(un->un_throttle, 3); 7749 } else { 7750 un->un_f_opt_queueing = FALSE; 7751 un->un_saved_throttle = un->un_throttle = 1; 7752 } 7753 } else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0) 7754 == 1) && (un->un_f_arq_enabled == TRUE)) { 7755 /* The Host Adapter supports internal queueing. */ 7756 un->un_f_opt_queueing = TRUE; 7757 un->un_saved_throttle = un->un_throttle = 7758 min(un->un_throttle, 3); 7759 } else { 7760 un->un_f_opt_queueing = FALSE; 7761 un->un_saved_throttle = un->un_throttle = 1; 7762 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7763 "sd_unit_attach: un:0x%p no tag queueing\n", un); 7764 } 7765 7766 /* 7767 * Enable large transfers for SATA/SAS drives 7768 */ 7769 if (SD_IS_SERIAL(un)) { 7770 un->un_max_xfer_size = 7771 ddi_getprop(DDI_DEV_T_ANY, devi, 0, 7772 sd_max_xfer_size, SD_MAX_XFER_SIZE); 7773 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7774 "sd_unit_attach: un:0x%p max transfer " 7775 "size=0x%x\n", un, un->un_max_xfer_size); 7776 7777 } 7778 7779 /* Setup or tear down default wide operations for disks */ 7780 7781 /* 7782 * Note: Legacy: it may be possible for both "sd_max_xfer_size" 7783 * and "ssd_max_xfer_size" to exist simultaneously on the same 7784 * system and be set to different values. In the future this 7785 * code may need to be updated when the ssd module is 7786 * obsoleted and removed from the system. (4299588) 7787 */ 7788 if (SD_IS_PARALLEL_SCSI(un) && 7789 (devp->sd_inq->inq_rdf == RDF_SCSI2) && 7790 (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) { 7791 if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 7792 1, 1) == 1) { 7793 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7794 "sd_unit_attach: un:0x%p Wide Transfer " 7795 "enabled\n", un); 7796 } 7797 7798 /* 7799 * If tagged queuing has also been enabled, then 7800 * enable large xfers 7801 */ 7802 if (un->un_saved_throttle == sd_max_throttle) { 7803 un->un_max_xfer_size = 7804 ddi_getprop(DDI_DEV_T_ANY, devi, 0, 7805 sd_max_xfer_size, SD_MAX_XFER_SIZE); 7806 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7807 "sd_unit_attach: un:0x%p max transfer " 7808 "size=0x%x\n", un, un->un_max_xfer_size); 7809 } 7810 } else { 7811 if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 7812 0, 1) == 1) { 7813 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7814 "sd_unit_attach: un:0x%p " 7815 "Wide Transfer disabled\n", un); 7816 } 7817 } 7818 } else { 7819 un->un_tagflags = FLAG_STAG; 7820 un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY, 7821 devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE); 7822 } 7823 7824 /* 7825 * If this target supports LUN reset, try to enable it. 7826 */ 7827 if (un->un_f_lun_reset_enabled) { 7828 if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) { 7829 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: " 7830 "un:0x%p lun_reset capability set\n", un); 7831 } else { 7832 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: " 7833 "un:0x%p lun-reset capability not set\n", un); 7834 } 7835 } 7836 7837 /* 7838 * Adjust the maximum transfer size. This is to fix 7839 * the problem of partial DMA support on SPARC. Some 7840 * HBA driver, like aac, has very small dma_attr_maxxfer 7841 * size, which requires partial DMA support on SPARC. 7842 * In the future the SPARC pci nexus driver may solve 7843 * the problem instead of this fix. 7844 */ 7845 max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1); 7846 if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) { 7847 /* We need DMA partial even on sparc to ensure sddump() works */ 7848 un->un_max_xfer_size = max_xfer_size; 7849 if (un->un_partial_dma_supported == 0) 7850 un->un_partial_dma_supported = 1; 7851 } 7852 if (ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 7853 DDI_PROP_DONTPASS, "buf_break", 0) == 1) { 7854 if (ddi_xbuf_attr_setup_brk(un->un_xbuf_attr, 7855 un->un_max_xfer_size) == 1) { 7856 un->un_buf_breakup_supported = 1; 7857 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: " 7858 "un:0x%p Buf breakup enabled\n", un); 7859 } 7860 } 7861 7862 /* 7863 * Set PKT_DMA_PARTIAL flag. 7864 */ 7865 if (un->un_partial_dma_supported == 1) { 7866 un->un_pkt_flags = PKT_DMA_PARTIAL; 7867 } else { 7868 un->un_pkt_flags = 0; 7869 } 7870 7871 /* Initialize sd_ssc_t for internal uscsi commands */ 7872 ssc = sd_ssc_init(un); 7873 scsi_fm_init(devp); 7874 7875 /* 7876 * Allocate memory for SCSI FMA stuffs. 7877 */ 7878 un->un_fm_private = 7879 kmem_zalloc(sizeof (struct sd_fm_internal), KM_SLEEP); 7880 sfip = (struct sd_fm_internal *)un->un_fm_private; 7881 sfip->fm_ssc.ssc_uscsi_cmd = &sfip->fm_ucmd; 7882 sfip->fm_ssc.ssc_uscsi_info = &sfip->fm_uinfo; 7883 sfip->fm_ssc.ssc_un = un; 7884 7885 if (ISCD(un) || 7886 un->un_f_has_removable_media || 7887 devp->sd_fm_capable == DDI_FM_NOT_CAPABLE) { 7888 /* 7889 * We don't touch CDROM or the DDI_FM_NOT_CAPABLE device. 7890 * Their log are unchanged. 7891 */ 7892 sfip->fm_log_level = SD_FM_LOG_NSUP; 7893 } else { 7894 /* 7895 * If enter here, it should be non-CDROM and FM-capable 7896 * device, and it will not keep the old scsi_log as before 7897 * in /var/adm/messages. However, the property 7898 * "fm-scsi-log" will control whether the FM telemetry will 7899 * be logged in /var/adm/messages. 7900 */ 7901 int fm_scsi_log; 7902 fm_scsi_log = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 7903 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "fm-scsi-log", 0); 7904 7905 if (fm_scsi_log) 7906 sfip->fm_log_level = SD_FM_LOG_EREPORT; 7907 else 7908 sfip->fm_log_level = SD_FM_LOG_SILENT; 7909 } 7910 7911 /* 7912 * At this point in the attach, we have enough info in the 7913 * soft state to be able to issue commands to the target. 7914 * 7915 * All command paths used below MUST issue their commands as 7916 * SD_PATH_DIRECT. This is important as intermediate layers 7917 * are not all initialized yet (such as PM). 7918 */ 7919 7920 /* 7921 * Send a TEST UNIT READY command to the device. This should clear 7922 * any outstanding UNIT ATTENTION that may be present. 7923 * 7924 * Note: Don't check for success, just track if there is a reservation, 7925 * this is a throw away command to clear any unit attentions. 7926 * 7927 * Note: This MUST be the first command issued to the target during 7928 * attach to ensure power on UNIT ATTENTIONS are cleared. 7929 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated 7930 * with attempts at spinning up a device with no media. 7931 */ 7932 status = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR); 7933 if (status != 0) { 7934 if (status == EACCES) 7935 reservation_flag = SD_TARGET_IS_RESERVED; 7936 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 7937 } 7938 7939 /* 7940 * If the device is NOT a removable media device, attempt to spin 7941 * it up (using the START_STOP_UNIT command) and read its capacity 7942 * (using the READ CAPACITY command). Note, however, that either 7943 * of these could fail and in some cases we would continue with 7944 * the attach despite the failure (see below). 7945 */ 7946 if (un->un_f_descr_format_supported) { 7947 7948 switch (sd_spin_up_unit(ssc)) { 7949 case 0: 7950 /* 7951 * Spin-up was successful; now try to read the 7952 * capacity. If successful then save the results 7953 * and mark the capacity & lbasize as valid. 7954 */ 7955 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7956 "sd_unit_attach: un:0x%p spin-up successful\n", un); 7957 7958 status = sd_send_scsi_READ_CAPACITY(ssc, &capacity, 7959 &lbasize, SD_PATH_DIRECT); 7960 7961 switch (status) { 7962 case 0: { 7963 if (capacity > DK_MAX_BLOCKS) { 7964 #ifdef _LP64 7965 if ((capacity + 1) > 7966 SD_GROUP1_MAX_ADDRESS) { 7967 /* 7968 * Enable descriptor format 7969 * sense data so that we can 7970 * get 64 bit sense data 7971 * fields. 7972 */ 7973 sd_enable_descr_sense(ssc); 7974 } 7975 #else 7976 /* 32-bit kernels can't handle this */ 7977 scsi_log(SD_DEVINFO(un), 7978 sd_label, CE_WARN, 7979 "disk has %llu blocks, which " 7980 "is too large for a 32-bit " 7981 "kernel", capacity); 7982 7983 #if defined(__i386) || defined(__amd64) 7984 /* 7985 * 1TB disk was treated as (1T - 512)B 7986 * in the past, so that it might have 7987 * valid VTOC and solaris partitions, 7988 * we have to allow it to continue to 7989 * work. 7990 */ 7991 if (capacity -1 > DK_MAX_BLOCKS) 7992 #endif 7993 goto spinup_failed; 7994 #endif 7995 } 7996 7997 /* 7998 * Here it's not necessary to check the case: 7999 * the capacity of the device is bigger than 8000 * what the max hba cdb can support. Because 8001 * sd_send_scsi_READ_CAPACITY will retrieve 8002 * the capacity by sending USCSI command, which 8003 * is constrained by the max hba cdb. Actually, 8004 * sd_send_scsi_READ_CAPACITY will return 8005 * EINVAL when using bigger cdb than required 8006 * cdb length. Will handle this case in 8007 * "case EINVAL". 8008 */ 8009 8010 /* 8011 * The following relies on 8012 * sd_send_scsi_READ_CAPACITY never 8013 * returning 0 for capacity and/or lbasize. 8014 */ 8015 sd_update_block_info(un, lbasize, capacity); 8016 8017 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8018 "sd_unit_attach: un:0x%p capacity = %ld " 8019 "blocks; lbasize= %ld.\n", un, 8020 un->un_blockcount, un->un_tgt_blocksize); 8021 8022 break; 8023 } 8024 case EINVAL: 8025 /* 8026 * In the case where the max-cdb-length property 8027 * is smaller than the required CDB length for 8028 * a SCSI device, a target driver can fail to 8029 * attach to that device. 8030 */ 8031 scsi_log(SD_DEVINFO(un), 8032 sd_label, CE_WARN, 8033 "disk capacity is too large " 8034 "for current cdb length"); 8035 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 8036 8037 goto spinup_failed; 8038 case EACCES: 8039 /* 8040 * Should never get here if the spin-up 8041 * succeeded, but code it in anyway. 8042 * From here, just continue with the attach... 8043 */ 8044 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8045 "sd_unit_attach: un:0x%p " 8046 "sd_send_scsi_READ_CAPACITY " 8047 "returned reservation conflict\n", un); 8048 reservation_flag = SD_TARGET_IS_RESERVED; 8049 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 8050 break; 8051 default: 8052 /* 8053 * Likewise, should never get here if the 8054 * spin-up succeeded. Just continue with 8055 * the attach... 8056 */ 8057 if (status == EIO) 8058 sd_ssc_assessment(ssc, 8059 SD_FMT_STATUS_CHECK); 8060 else 8061 sd_ssc_assessment(ssc, 8062 SD_FMT_IGNORE); 8063 break; 8064 } 8065 break; 8066 case EACCES: 8067 /* 8068 * Device is reserved by another host. In this case 8069 * we could not spin it up or read the capacity, but 8070 * we continue with the attach anyway. 8071 */ 8072 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8073 "sd_unit_attach: un:0x%p spin-up reservation " 8074 "conflict.\n", un); 8075 reservation_flag = SD_TARGET_IS_RESERVED; 8076 break; 8077 default: 8078 /* Fail the attach if the spin-up failed. */ 8079 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8080 "sd_unit_attach: un:0x%p spin-up failed.", un); 8081 goto spinup_failed; 8082 } 8083 8084 } 8085 8086 /* 8087 * Check to see if this is a MMC drive 8088 */ 8089 if (ISCD(un)) { 8090 sd_set_mmc_caps(ssc); 8091 } 8092 8093 /* 8094 * Add a zero-length attribute to tell the world we support 8095 * kernel ioctls (for layered drivers) 8096 */ 8097 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP, 8098 DDI_KERNEL_IOCTL, NULL, 0); 8099 8100 /* 8101 * Add a boolean property to tell the world we support 8102 * the B_FAILFAST flag (for layered drivers) 8103 */ 8104 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP, 8105 "ddi-failfast-supported", NULL, 0); 8106 8107 /* 8108 * Initialize power management 8109 */ 8110 mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL); 8111 cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL); 8112 sd_setup_pm(ssc, devi); 8113 if (un->un_f_pm_is_enabled == FALSE) { 8114 /* 8115 * For performance, point to a jump table that does 8116 * not include pm. 8117 * The direct and priority chains don't change with PM. 8118 * 8119 * Note: this is currently done based on individual device 8120 * capabilities. When an interface for determining system 8121 * power enabled state becomes available, or when additional 8122 * layers are added to the command chain, these values will 8123 * have to be re-evaluated for correctness. 8124 */ 8125 if (un->un_f_non_devbsize_supported) { 8126 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM; 8127 } else { 8128 un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM; 8129 } 8130 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM; 8131 } 8132 8133 /* 8134 * This property is set to 0 by HA software to avoid retries 8135 * on a reserved disk. (The preferred property name is 8136 * "retry-on-reservation-conflict") (1189689) 8137 * 8138 * Note: The use of a global here can have unintended consequences. A 8139 * per instance variable is preferable to match the capabilities of 8140 * different underlying hba's (4402600) 8141 */ 8142 sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi, 8143 DDI_PROP_DONTPASS, "retry-on-reservation-conflict", 8144 sd_retry_on_reservation_conflict); 8145 if (sd_retry_on_reservation_conflict != 0) { 8146 sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, 8147 devi, DDI_PROP_DONTPASS, sd_resv_conflict_name, 8148 sd_retry_on_reservation_conflict); 8149 } 8150 8151 /* Set up options for QFULL handling. */ 8152 if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0, 8153 "qfull-retries", -1)) != -1) { 8154 (void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries", 8155 rval, 1); 8156 } 8157 if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0, 8158 "qfull-retry-interval", -1)) != -1) { 8159 (void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval", 8160 rval, 1); 8161 } 8162 8163 /* 8164 * This just prints a message that announces the existence of the 8165 * device. The message is always printed in the system logfile, but 8166 * only appears on the console if the system is booted with the 8167 * -v (verbose) argument. 8168 */ 8169 ddi_report_dev(devi); 8170 8171 un->un_mediastate = DKIO_NONE; 8172 8173 /* 8174 * Check if this is a SSD(Solid State Drive). 8175 */ 8176 sd_check_solid_state(ssc); 8177 8178 /* 8179 * Check whether the drive is in emulation mode. 8180 */ 8181 sd_check_emulation_mode(ssc); 8182 8183 cmlb_alloc_handle(&un->un_cmlbhandle); 8184 8185 #if defined(__i386) || defined(__amd64) 8186 /* 8187 * On x86, compensate for off-by-1 legacy error 8188 */ 8189 if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable && 8190 (lbasize == un->un_sys_blocksize)) 8191 offbyone = CMLB_OFF_BY_ONE; 8192 #endif 8193 8194 if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype, 8195 VOID2BOOLEAN(un->un_f_has_removable_media != 0), 8196 VOID2BOOLEAN(un->un_f_is_hotpluggable != 0), 8197 un->un_node_type, offbyone, un->un_cmlbhandle, 8198 (void *)SD_PATH_DIRECT) != 0) { 8199 goto cmlb_attach_failed; 8200 } 8201 8202 8203 /* 8204 * Read and validate the device's geometry (ie, disk label) 8205 * A new unformatted drive will not have a valid geometry, but 8206 * the driver needs to successfully attach to this device so 8207 * the drive can be formatted via ioctls. 8208 */ 8209 geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0, 8210 (void *)SD_PATH_DIRECT) == 0) ? 1: 0; 8211 8212 mutex_enter(SD_MUTEX(un)); 8213 8214 /* 8215 * Read and initialize the devid for the unit. 8216 */ 8217 if (un->un_f_devid_supported) { 8218 sd_register_devid(ssc, devi, reservation_flag); 8219 } 8220 mutex_exit(SD_MUTEX(un)); 8221 8222 #if (defined(__fibre)) 8223 /* 8224 * Register callbacks for fibre only. You can't do this solely 8225 * on the basis of the devid_type because this is hba specific. 8226 * We need to query our hba capabilities to find out whether to 8227 * register or not. 8228 */ 8229 if (un->un_f_is_fibre) { 8230 if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) { 8231 sd_init_event_callbacks(un); 8232 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8233 "sd_unit_attach: un:0x%p event callbacks inserted", 8234 un); 8235 } 8236 } 8237 #endif 8238 8239 if (un->un_f_opt_disable_cache == TRUE) { 8240 /* 8241 * Disable both read cache and write cache. This is 8242 * the historic behavior of the keywords in the config file. 8243 */ 8244 if (sd_cache_control(ssc, SD_CACHE_DISABLE, SD_CACHE_DISABLE) != 8245 0) { 8246 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8247 "sd_unit_attach: un:0x%p Could not disable " 8248 "caching", un); 8249 goto devid_failed; 8250 } 8251 } 8252 8253 /* 8254 * Check the value of the WCE bit now and 8255 * set un_f_write_cache_enabled accordingly. 8256 */ 8257 (void) sd_get_write_cache_enabled(ssc, &wc_enabled); 8258 mutex_enter(SD_MUTEX(un)); 8259 un->un_f_write_cache_enabled = (wc_enabled != 0); 8260 mutex_exit(SD_MUTEX(un)); 8261 8262 if ((un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR && 8263 un->un_tgt_blocksize != DEV_BSIZE) || 8264 un->un_f_enable_rmw) { 8265 if (!(un->un_wm_cache)) { 8266 (void) snprintf(name_str, sizeof (name_str), 8267 "%s%d_cache", 8268 ddi_driver_name(SD_DEVINFO(un)), 8269 ddi_get_instance(SD_DEVINFO(un))); 8270 un->un_wm_cache = kmem_cache_create( 8271 name_str, sizeof (struct sd_w_map), 8272 8, sd_wm_cache_constructor, 8273 sd_wm_cache_destructor, NULL, 8274 (void *)un, NULL, 0); 8275 if (!(un->un_wm_cache)) { 8276 goto wm_cache_failed; 8277 } 8278 } 8279 } 8280 8281 /* 8282 * Check the value of the NV_SUP bit and set 8283 * un_f_suppress_cache_flush accordingly. 8284 */ 8285 sd_get_nv_sup(ssc); 8286 8287 /* 8288 * Find out what type of reservation this disk supports. 8289 */ 8290 status = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 0, NULL); 8291 8292 switch (status) { 8293 case 0: 8294 /* 8295 * SCSI-3 reservations are supported. 8296 */ 8297 un->un_reservation_type = SD_SCSI3_RESERVATION; 8298 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8299 "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un); 8300 break; 8301 case ENOTSUP: 8302 /* 8303 * The PERSISTENT RESERVE IN command would not be recognized by 8304 * a SCSI-2 device, so assume the reservation type is SCSI-2. 8305 */ 8306 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8307 "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un); 8308 un->un_reservation_type = SD_SCSI2_RESERVATION; 8309 8310 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 8311 break; 8312 default: 8313 /* 8314 * default to SCSI-3 reservations 8315 */ 8316 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8317 "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un); 8318 un->un_reservation_type = SD_SCSI3_RESERVATION; 8319 8320 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 8321 break; 8322 } 8323 8324 /* 8325 * Set the pstat and error stat values here, so data obtained during the 8326 * previous attach-time routines is available. 8327 * 8328 * Note: This is a critical sequence that needs to be maintained: 8329 * 1) Instantiate the kstats before any routines using the iopath 8330 * (i.e. sd_send_scsi_cmd). 8331 * 2) Initialize the error stats (sd_set_errstats) and partition 8332 * stats (sd_set_pstats)here, following 8333 * cmlb_validate_geometry(), sd_register_devid(), and 8334 * sd_cache_control(). 8335 */ 8336 8337 if (un->un_f_pkstats_enabled && geom_label_valid) { 8338 sd_set_pstats(un); 8339 SD_TRACE(SD_LOG_IO_PARTITION, un, 8340 "sd_unit_attach: un:0x%p pstats created and set\n", un); 8341 } 8342 8343 sd_set_errstats(un); 8344 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8345 "sd_unit_attach: un:0x%p errstats set\n", un); 8346 8347 8348 /* 8349 * After successfully attaching an instance, we record the information 8350 * of how many luns have been attached on the relative target and 8351 * controller for parallel SCSI. This information is used when sd tries 8352 * to set the tagged queuing capability in HBA. 8353 */ 8354 if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) { 8355 sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH); 8356 } 8357 8358 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8359 "sd_unit_attach: un:0x%p exit success\n", un); 8360 8361 /* Uninitialize sd_ssc_t pointer */ 8362 sd_ssc_fini(ssc); 8363 8364 return (DDI_SUCCESS); 8365 8366 /* 8367 * An error occurred during the attach; clean up & return failure. 8368 */ 8369 wm_cache_failed: 8370 devid_failed: 8371 8372 setup_pm_failed: 8373 ddi_remove_minor_node(devi, NULL); 8374 8375 cmlb_attach_failed: 8376 /* 8377 * Cleanup from the scsi_ifsetcap() calls (437868) 8378 */ 8379 (void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1); 8380 (void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1); 8381 8382 /* 8383 * Refer to the comments of setting tagged-qing in the beginning of 8384 * sd_unit_attach. We can only disable tagged queuing when there is 8385 * no lun attached on the target. 8386 */ 8387 if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) { 8388 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 8389 } 8390 8391 if (un->un_f_is_fibre == FALSE) { 8392 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1); 8393 } 8394 8395 spinup_failed: 8396 8397 /* Uninitialize sd_ssc_t pointer */ 8398 sd_ssc_fini(ssc); 8399 8400 mutex_enter(SD_MUTEX(un)); 8401 8402 /* Deallocate SCSI FMA memory spaces */ 8403 kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal)); 8404 8405 /* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */ 8406 if (un->un_direct_priority_timeid != NULL) { 8407 timeout_id_t temp_id = un->un_direct_priority_timeid; 8408 un->un_direct_priority_timeid = NULL; 8409 mutex_exit(SD_MUTEX(un)); 8410 (void) untimeout(temp_id); 8411 mutex_enter(SD_MUTEX(un)); 8412 } 8413 8414 /* Cancel any pending start/stop timeouts */ 8415 if (un->un_startstop_timeid != NULL) { 8416 timeout_id_t temp_id = un->un_startstop_timeid; 8417 un->un_startstop_timeid = NULL; 8418 mutex_exit(SD_MUTEX(un)); 8419 (void) untimeout(temp_id); 8420 mutex_enter(SD_MUTEX(un)); 8421 } 8422 8423 /* Cancel any pending reset-throttle timeouts */ 8424 if (un->un_reset_throttle_timeid != NULL) { 8425 timeout_id_t temp_id = un->un_reset_throttle_timeid; 8426 un->un_reset_throttle_timeid = NULL; 8427 mutex_exit(SD_MUTEX(un)); 8428 (void) untimeout(temp_id); 8429 mutex_enter(SD_MUTEX(un)); 8430 } 8431 8432 /* Cancel rmw warning message timeouts */ 8433 if (un->un_rmw_msg_timeid != NULL) { 8434 timeout_id_t temp_id = un->un_rmw_msg_timeid; 8435 un->un_rmw_msg_timeid = NULL; 8436 mutex_exit(SD_MUTEX(un)); 8437 (void) untimeout(temp_id); 8438 mutex_enter(SD_MUTEX(un)); 8439 } 8440 8441 /* Cancel any pending retry timeouts */ 8442 if (un->un_retry_timeid != NULL) { 8443 timeout_id_t temp_id = un->un_retry_timeid; 8444 un->un_retry_timeid = NULL; 8445 mutex_exit(SD_MUTEX(un)); 8446 (void) untimeout(temp_id); 8447 mutex_enter(SD_MUTEX(un)); 8448 } 8449 8450 /* Cancel any pending delayed cv broadcast timeouts */ 8451 if (un->un_dcvb_timeid != NULL) { 8452 timeout_id_t temp_id = un->un_dcvb_timeid; 8453 un->un_dcvb_timeid = NULL; 8454 mutex_exit(SD_MUTEX(un)); 8455 (void) untimeout(temp_id); 8456 mutex_enter(SD_MUTEX(un)); 8457 } 8458 8459 mutex_exit(SD_MUTEX(un)); 8460 8461 /* There should not be any in-progress I/O so ASSERT this check */ 8462 ASSERT(un->un_ncmds_in_transport == 0); 8463 ASSERT(un->un_ncmds_in_driver == 0); 8464 8465 /* Do not free the softstate if the callback routine is active */ 8466 sd_sync_with_callback(un); 8467 8468 /* 8469 * Partition stats apparently are not used with removables. These would 8470 * not have been created during attach, so no need to clean them up... 8471 */ 8472 if (un->un_errstats != NULL) { 8473 kstat_delete(un->un_errstats); 8474 un->un_errstats = NULL; 8475 } 8476 8477 create_errstats_failed: 8478 8479 if (un->un_stats != NULL) { 8480 kstat_delete(un->un_stats); 8481 un->un_stats = NULL; 8482 } 8483 8484 ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi); 8485 ddi_xbuf_attr_destroy(un->un_xbuf_attr); 8486 8487 ddi_prop_remove_all(devi); 8488 sema_destroy(&un->un_semoclose); 8489 cv_destroy(&un->un_state_cv); 8490 8491 getrbuf_failed: 8492 8493 sd_free_rqs(un); 8494 8495 alloc_rqs_failed: 8496 8497 devp->sd_private = NULL; 8498 bzero(un, sizeof (struct sd_lun)); /* Clear any stale data! */ 8499 8500 get_softstate_failed: 8501 /* 8502 * Note: the man pages are unclear as to whether or not doing a 8503 * ddi_soft_state_free(sd_state, instance) is the right way to 8504 * clean up after the ddi_soft_state_zalloc() if the subsequent 8505 * ddi_get_soft_state() fails. The implication seems to be 8506 * that the get_soft_state cannot fail if the zalloc succeeds. 8507 */ 8508 #ifndef XPV_HVM_DRIVER 8509 ddi_soft_state_free(sd_state, instance); 8510 #endif /* !XPV_HVM_DRIVER */ 8511 8512 probe_failed: 8513 scsi_unprobe(devp); 8514 8515 return (DDI_FAILURE); 8516 } 8517 8518 8519 /* 8520 * Function: sd_unit_detach 8521 * 8522 * Description: Performs DDI_DETACH processing for sddetach(). 8523 * 8524 * Return Code: DDI_SUCCESS 8525 * DDI_FAILURE 8526 * 8527 * Context: Kernel thread context 8528 */ 8529 8530 static int 8531 sd_unit_detach(dev_info_t *devi) 8532 { 8533 struct scsi_device *devp; 8534 struct sd_lun *un; 8535 int i; 8536 int tgt; 8537 dev_t dev; 8538 dev_info_t *pdip = ddi_get_parent(devi); 8539 #ifndef XPV_HVM_DRIVER 8540 int instance = ddi_get_instance(devi); 8541 #endif /* !XPV_HVM_DRIVER */ 8542 8543 mutex_enter(&sd_detach_mutex); 8544 8545 /* 8546 * Fail the detach for any of the following: 8547 * - Unable to get the sd_lun struct for the instance 8548 * - A layered driver has an outstanding open on the instance 8549 * - Another thread is already detaching this instance 8550 * - Another thread is currently performing an open 8551 */ 8552 devp = ddi_get_driver_private(devi); 8553 if ((devp == NULL) || 8554 ((un = (struct sd_lun *)devp->sd_private) == NULL) || 8555 (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) || 8556 (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) { 8557 mutex_exit(&sd_detach_mutex); 8558 return (DDI_FAILURE); 8559 } 8560 8561 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un); 8562 8563 /* 8564 * Mark this instance as currently in a detach, to inhibit any 8565 * opens from a layered driver. 8566 */ 8567 un->un_detach_count++; 8568 mutex_exit(&sd_detach_mutex); 8569 8570 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 8571 SCSI_ADDR_PROP_TARGET, -1); 8572 8573 dev = sd_make_device(SD_DEVINFO(un)); 8574 8575 #ifndef lint 8576 _NOTE(COMPETING_THREADS_NOW); 8577 #endif 8578 8579 mutex_enter(SD_MUTEX(un)); 8580 8581 /* 8582 * Fail the detach if there are any outstanding layered 8583 * opens on this device. 8584 */ 8585 for (i = 0; i < NDKMAP; i++) { 8586 if (un->un_ocmap.lyropen[i] != 0) { 8587 goto err_notclosed; 8588 } 8589 } 8590 8591 /* 8592 * Verify there are NO outstanding commands issued to this device. 8593 * ie, un_ncmds_in_transport == 0. 8594 * It's possible to have outstanding commands through the physio 8595 * code path, even though everything's closed. 8596 */ 8597 if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) || 8598 (un->un_direct_priority_timeid != NULL) || 8599 (un->un_state == SD_STATE_RWAIT)) { 8600 mutex_exit(SD_MUTEX(un)); 8601 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8602 "sd_dr_detach: Detach failure due to outstanding cmds\n"); 8603 goto err_stillbusy; 8604 } 8605 8606 /* 8607 * If we have the device reserved, release the reservation. 8608 */ 8609 if ((un->un_resvd_status & SD_RESERVE) && 8610 !(un->un_resvd_status & SD_LOST_RESERVE)) { 8611 mutex_exit(SD_MUTEX(un)); 8612 /* 8613 * Note: sd_reserve_release sends a command to the device 8614 * via the sd_ioctlcmd() path, and can sleep. 8615 */ 8616 if (sd_reserve_release(dev, SD_RELEASE) != 0) { 8617 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8618 "sd_dr_detach: Cannot release reservation \n"); 8619 } 8620 } else { 8621 mutex_exit(SD_MUTEX(un)); 8622 } 8623 8624 /* 8625 * Untimeout any reserve recover, throttle reset, restart unit 8626 * and delayed broadcast timeout threads. Protect the timeout pointer 8627 * from getting nulled by their callback functions. 8628 */ 8629 mutex_enter(SD_MUTEX(un)); 8630 if (un->un_resvd_timeid != NULL) { 8631 timeout_id_t temp_id = un->un_resvd_timeid; 8632 un->un_resvd_timeid = NULL; 8633 mutex_exit(SD_MUTEX(un)); 8634 (void) untimeout(temp_id); 8635 mutex_enter(SD_MUTEX(un)); 8636 } 8637 8638 if (un->un_reset_throttle_timeid != NULL) { 8639 timeout_id_t temp_id = un->un_reset_throttle_timeid; 8640 un->un_reset_throttle_timeid = NULL; 8641 mutex_exit(SD_MUTEX(un)); 8642 (void) untimeout(temp_id); 8643 mutex_enter(SD_MUTEX(un)); 8644 } 8645 8646 if (un->un_startstop_timeid != NULL) { 8647 timeout_id_t temp_id = un->un_startstop_timeid; 8648 un->un_startstop_timeid = NULL; 8649 mutex_exit(SD_MUTEX(un)); 8650 (void) untimeout(temp_id); 8651 mutex_enter(SD_MUTEX(un)); 8652 } 8653 8654 if (un->un_rmw_msg_timeid != NULL) { 8655 timeout_id_t temp_id = un->un_rmw_msg_timeid; 8656 un->un_rmw_msg_timeid = NULL; 8657 mutex_exit(SD_MUTEX(un)); 8658 (void) untimeout(temp_id); 8659 mutex_enter(SD_MUTEX(un)); 8660 } 8661 8662 if (un->un_dcvb_timeid != NULL) { 8663 timeout_id_t temp_id = un->un_dcvb_timeid; 8664 un->un_dcvb_timeid = NULL; 8665 mutex_exit(SD_MUTEX(un)); 8666 (void) untimeout(temp_id); 8667 } else { 8668 mutex_exit(SD_MUTEX(un)); 8669 } 8670 8671 /* Remove any pending reservation reclaim requests for this device */ 8672 sd_rmv_resv_reclaim_req(dev); 8673 8674 mutex_enter(SD_MUTEX(un)); 8675 8676 /* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */ 8677 if (un->un_direct_priority_timeid != NULL) { 8678 timeout_id_t temp_id = un->un_direct_priority_timeid; 8679 un->un_direct_priority_timeid = NULL; 8680 mutex_exit(SD_MUTEX(un)); 8681 (void) untimeout(temp_id); 8682 mutex_enter(SD_MUTEX(un)); 8683 } 8684 8685 /* Cancel any active multi-host disk watch thread requests */ 8686 if (un->un_mhd_token != NULL) { 8687 mutex_exit(SD_MUTEX(un)); 8688 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token)); 8689 if (scsi_watch_request_terminate(un->un_mhd_token, 8690 SCSI_WATCH_TERMINATE_NOWAIT)) { 8691 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8692 "sd_dr_detach: Cannot cancel mhd watch request\n"); 8693 /* 8694 * Note: We are returning here after having removed 8695 * some driver timeouts above. This is consistent with 8696 * the legacy implementation but perhaps the watch 8697 * terminate call should be made with the wait flag set. 8698 */ 8699 goto err_stillbusy; 8700 } 8701 mutex_enter(SD_MUTEX(un)); 8702 un->un_mhd_token = NULL; 8703 } 8704 8705 if (un->un_swr_token != NULL) { 8706 mutex_exit(SD_MUTEX(un)); 8707 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token)); 8708 if (scsi_watch_request_terminate(un->un_swr_token, 8709 SCSI_WATCH_TERMINATE_NOWAIT)) { 8710 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8711 "sd_dr_detach: Cannot cancel swr watch request\n"); 8712 /* 8713 * Note: We are returning here after having removed 8714 * some driver timeouts above. This is consistent with 8715 * the legacy implementation but perhaps the watch 8716 * terminate call should be made with the wait flag set. 8717 */ 8718 goto err_stillbusy; 8719 } 8720 mutex_enter(SD_MUTEX(un)); 8721 un->un_swr_token = NULL; 8722 } 8723 8724 mutex_exit(SD_MUTEX(un)); 8725 8726 /* 8727 * Clear any scsi_reset_notifies. We clear the reset notifies 8728 * if we have not registered one. 8729 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX! 8730 */ 8731 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL, 8732 sd_mhd_reset_notify_cb, (caddr_t)un); 8733 8734 /* 8735 * protect the timeout pointers from getting nulled by 8736 * their callback functions during the cancellation process. 8737 * In such a scenario untimeout can be invoked with a null value. 8738 */ 8739 _NOTE(NO_COMPETING_THREADS_NOW); 8740 8741 mutex_enter(&un->un_pm_mutex); 8742 if (un->un_pm_idle_timeid != NULL) { 8743 timeout_id_t temp_id = un->un_pm_idle_timeid; 8744 un->un_pm_idle_timeid = NULL; 8745 mutex_exit(&un->un_pm_mutex); 8746 8747 /* 8748 * Timeout is active; cancel it. 8749 * Note that it'll never be active on a device 8750 * that does not support PM therefore we don't 8751 * have to check before calling pm_idle_component. 8752 */ 8753 (void) untimeout(temp_id); 8754 (void) pm_idle_component(SD_DEVINFO(un), 0); 8755 mutex_enter(&un->un_pm_mutex); 8756 } 8757 8758 /* 8759 * Check whether there is already a timeout scheduled for power 8760 * management. If yes then don't lower the power here, that's. 8761 * the timeout handler's job. 8762 */ 8763 if (un->un_pm_timeid != NULL) { 8764 timeout_id_t temp_id = un->un_pm_timeid; 8765 un->un_pm_timeid = NULL; 8766 mutex_exit(&un->un_pm_mutex); 8767 /* 8768 * Timeout is active; cancel it. 8769 * Note that it'll never be active on a device 8770 * that does not support PM therefore we don't 8771 * have to check before calling pm_idle_component. 8772 */ 8773 (void) untimeout(temp_id); 8774 (void) pm_idle_component(SD_DEVINFO(un), 0); 8775 8776 } else { 8777 mutex_exit(&un->un_pm_mutex); 8778 if ((un->un_f_pm_is_enabled == TRUE) && 8779 (pm_lower_power(SD_DEVINFO(un), 0, SD_PM_STATE_STOPPED(un)) 8780 != DDI_SUCCESS)) { 8781 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8782 "sd_dr_detach: Lower power request failed, ignoring.\n"); 8783 /* 8784 * Fix for bug: 4297749, item # 13 8785 * The above test now includes a check to see if PM is 8786 * supported by this device before call 8787 * pm_lower_power(). 8788 * Note, the following is not dead code. The call to 8789 * pm_lower_power above will generate a call back into 8790 * our sdpower routine which might result in a timeout 8791 * handler getting activated. Therefore the following 8792 * code is valid and necessary. 8793 */ 8794 mutex_enter(&un->un_pm_mutex); 8795 if (un->un_pm_timeid != NULL) { 8796 timeout_id_t temp_id = un->un_pm_timeid; 8797 un->un_pm_timeid = NULL; 8798 mutex_exit(&un->un_pm_mutex); 8799 (void) untimeout(temp_id); 8800 (void) pm_idle_component(SD_DEVINFO(un), 0); 8801 } else { 8802 mutex_exit(&un->un_pm_mutex); 8803 } 8804 } 8805 } 8806 8807 /* 8808 * Cleanup from the scsi_ifsetcap() calls (437868) 8809 * Relocated here from above to be after the call to 8810 * pm_lower_power, which was getting errors. 8811 */ 8812 (void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1); 8813 (void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1); 8814 8815 /* 8816 * Currently, tagged queuing is supported per target based by HBA. 8817 * Setting this per lun instance actually sets the capability of this 8818 * target in HBA, which affects those luns already attached on the 8819 * same target. So during detach, we can only disable this capability 8820 * only when this is the only lun left on this target. By doing 8821 * this, we assume a target has the same tagged queuing capability 8822 * for every lun. The condition can be removed when HBA is changed to 8823 * support per lun based tagged queuing capability. 8824 */ 8825 if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) { 8826 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 8827 } 8828 8829 if (un->un_f_is_fibre == FALSE) { 8830 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1); 8831 } 8832 8833 /* 8834 * Remove any event callbacks, fibre only 8835 */ 8836 if (un->un_f_is_fibre == TRUE) { 8837 if ((un->un_insert_event != NULL) && 8838 (ddi_remove_event_handler(un->un_insert_cb_id) != 8839 DDI_SUCCESS)) { 8840 /* 8841 * Note: We are returning here after having done 8842 * substantial cleanup above. This is consistent 8843 * with the legacy implementation but this may not 8844 * be the right thing to do. 8845 */ 8846 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8847 "sd_dr_detach: Cannot cancel insert event\n"); 8848 goto err_remove_event; 8849 } 8850 un->un_insert_event = NULL; 8851 8852 if ((un->un_remove_event != NULL) && 8853 (ddi_remove_event_handler(un->un_remove_cb_id) != 8854 DDI_SUCCESS)) { 8855 /* 8856 * Note: We are returning here after having done 8857 * substantial cleanup above. This is consistent 8858 * with the legacy implementation but this may not 8859 * be the right thing to do. 8860 */ 8861 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8862 "sd_dr_detach: Cannot cancel remove event\n"); 8863 goto err_remove_event; 8864 } 8865 un->un_remove_event = NULL; 8866 } 8867 8868 /* Do not free the softstate if the callback routine is active */ 8869 sd_sync_with_callback(un); 8870 8871 cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT); 8872 cmlb_free_handle(&un->un_cmlbhandle); 8873 8874 /* 8875 * Hold the detach mutex here, to make sure that no other threads ever 8876 * can access a (partially) freed soft state structure. 8877 */ 8878 mutex_enter(&sd_detach_mutex); 8879 8880 /* 8881 * Clean up the soft state struct. 8882 * Cleanup is done in reverse order of allocs/inits. 8883 * At this point there should be no competing threads anymore. 8884 */ 8885 8886 scsi_fm_fini(devp); 8887 8888 /* 8889 * Deallocate memory for SCSI FMA. 8890 */ 8891 kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal)); 8892 8893 /* 8894 * Unregister and free device id if it was not registered 8895 * by the transport. 8896 */ 8897 if (un->un_f_devid_transport_defined == FALSE) 8898 ddi_devid_unregister(devi); 8899 8900 /* 8901 * free the devid structure if allocated before (by ddi_devid_init() 8902 * or ddi_devid_get()). 8903 */ 8904 if (un->un_devid) { 8905 ddi_devid_free(un->un_devid); 8906 un->un_devid = NULL; 8907 } 8908 8909 /* 8910 * Destroy wmap cache if it exists. 8911 */ 8912 if (un->un_wm_cache != NULL) { 8913 kmem_cache_destroy(un->un_wm_cache); 8914 un->un_wm_cache = NULL; 8915 } 8916 8917 /* 8918 * kstat cleanup is done in detach for all device types (4363169). 8919 * We do not want to fail detach if the device kstats are not deleted 8920 * since there is a confusion about the devo_refcnt for the device. 8921 * We just delete the kstats and let detach complete successfully. 8922 */ 8923 if (un->un_stats != NULL) { 8924 kstat_delete(un->un_stats); 8925 un->un_stats = NULL; 8926 } 8927 if (un->un_errstats != NULL) { 8928 kstat_delete(un->un_errstats); 8929 un->un_errstats = NULL; 8930 } 8931 8932 /* Remove partition stats */ 8933 if (un->un_f_pkstats_enabled) { 8934 for (i = 0; i < NSDMAP; i++) { 8935 if (un->un_pstats[i] != NULL) { 8936 kstat_delete(un->un_pstats[i]); 8937 un->un_pstats[i] = NULL; 8938 } 8939 } 8940 } 8941 8942 /* Remove xbuf registration */ 8943 ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi); 8944 ddi_xbuf_attr_destroy(un->un_xbuf_attr); 8945 8946 /* Remove driver properties */ 8947 ddi_prop_remove_all(devi); 8948 8949 mutex_destroy(&un->un_pm_mutex); 8950 cv_destroy(&un->un_pm_busy_cv); 8951 8952 cv_destroy(&un->un_wcc_cv); 8953 8954 /* Open/close semaphore */ 8955 sema_destroy(&un->un_semoclose); 8956 8957 /* Removable media condvar. */ 8958 cv_destroy(&un->un_state_cv); 8959 8960 /* Suspend/resume condvar. */ 8961 cv_destroy(&un->un_suspend_cv); 8962 cv_destroy(&un->un_disk_busy_cv); 8963 8964 sd_free_rqs(un); 8965 8966 /* Free up soft state */ 8967 devp->sd_private = NULL; 8968 8969 bzero(un, sizeof (struct sd_lun)); 8970 #ifndef XPV_HVM_DRIVER 8971 ddi_soft_state_free(sd_state, instance); 8972 #endif /* !XPV_HVM_DRIVER */ 8973 8974 mutex_exit(&sd_detach_mutex); 8975 8976 /* This frees up the INQUIRY data associated with the device. */ 8977 scsi_unprobe(devp); 8978 8979 /* 8980 * After successfully detaching an instance, we update the information 8981 * of how many luns have been attached in the relative target and 8982 * controller for parallel SCSI. This information is used when sd tries 8983 * to set the tagged queuing capability in HBA. 8984 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to 8985 * check if the device is parallel SCSI. However, we don't need to 8986 * check here because we've already checked during attach. No device 8987 * that is not parallel SCSI is in the chain. 8988 */ 8989 if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) { 8990 sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH); 8991 } 8992 8993 return (DDI_SUCCESS); 8994 8995 err_notclosed: 8996 mutex_exit(SD_MUTEX(un)); 8997 8998 err_stillbusy: 8999 _NOTE(NO_COMPETING_THREADS_NOW); 9000 9001 err_remove_event: 9002 mutex_enter(&sd_detach_mutex); 9003 un->un_detach_count--; 9004 mutex_exit(&sd_detach_mutex); 9005 9006 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n"); 9007 return (DDI_FAILURE); 9008 } 9009 9010 9011 /* 9012 * Function: sd_create_errstats 9013 * 9014 * Description: This routine instantiates the device error stats. 9015 * 9016 * Note: During attach the stats are instantiated first so they are 9017 * available for attach-time routines that utilize the driver 9018 * iopath to send commands to the device. The stats are initialized 9019 * separately so data obtained during some attach-time routines is 9020 * available. (4362483) 9021 * 9022 * Arguments: un - driver soft state (unit) structure 9023 * instance - driver instance 9024 * 9025 * Context: Kernel thread context 9026 */ 9027 9028 static void 9029 sd_create_errstats(struct sd_lun *un, int instance) 9030 { 9031 struct sd_errstats *stp; 9032 char kstatmodule_err[KSTAT_STRLEN]; 9033 char kstatname[KSTAT_STRLEN]; 9034 int ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t)); 9035 9036 ASSERT(un != NULL); 9037 9038 if (un->un_errstats != NULL) { 9039 return; 9040 } 9041 9042 (void) snprintf(kstatmodule_err, sizeof (kstatmodule_err), 9043 "%serr", sd_label); 9044 (void) snprintf(kstatname, sizeof (kstatname), 9045 "%s%d,err", sd_label, instance); 9046 9047 un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname, 9048 "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT); 9049 9050 if (un->un_errstats == NULL) { 9051 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 9052 "sd_create_errstats: Failed kstat_create\n"); 9053 return; 9054 } 9055 9056 stp = (struct sd_errstats *)un->un_errstats->ks_data; 9057 kstat_named_init(&stp->sd_softerrs, "Soft Errors", 9058 KSTAT_DATA_UINT32); 9059 kstat_named_init(&stp->sd_harderrs, "Hard Errors", 9060 KSTAT_DATA_UINT32); 9061 kstat_named_init(&stp->sd_transerrs, "Transport Errors", 9062 KSTAT_DATA_UINT32); 9063 kstat_named_init(&stp->sd_vid, "Vendor", 9064 KSTAT_DATA_CHAR); 9065 kstat_named_init(&stp->sd_pid, "Product", 9066 KSTAT_DATA_CHAR); 9067 kstat_named_init(&stp->sd_revision, "Revision", 9068 KSTAT_DATA_CHAR); 9069 kstat_named_init(&stp->sd_serial, "Serial No", 9070 KSTAT_DATA_CHAR); 9071 kstat_named_init(&stp->sd_capacity, "Size", 9072 KSTAT_DATA_ULONGLONG); 9073 kstat_named_init(&stp->sd_rq_media_err, "Media Error", 9074 KSTAT_DATA_UINT32); 9075 kstat_named_init(&stp->sd_rq_ntrdy_err, "Device Not Ready", 9076 KSTAT_DATA_UINT32); 9077 kstat_named_init(&stp->sd_rq_nodev_err, "No Device", 9078 KSTAT_DATA_UINT32); 9079 kstat_named_init(&stp->sd_rq_recov_err, "Recoverable", 9080 KSTAT_DATA_UINT32); 9081 kstat_named_init(&stp->sd_rq_illrq_err, "Illegal Request", 9082 KSTAT_DATA_UINT32); 9083 kstat_named_init(&stp->sd_rq_pfa_err, "Predictive Failure Analysis", 9084 KSTAT_DATA_UINT32); 9085 9086 un->un_errstats->ks_private = un; 9087 un->un_errstats->ks_update = nulldev; 9088 9089 kstat_install(un->un_errstats); 9090 } 9091 9092 9093 /* 9094 * Function: sd_set_errstats 9095 * 9096 * Description: This routine sets the value of the vendor id, product id, 9097 * revision, serial number, and capacity device error stats. 9098 * 9099 * Note: During attach the stats are instantiated first so they are 9100 * available for attach-time routines that utilize the driver 9101 * iopath to send commands to the device. The stats are initialized 9102 * separately so data obtained during some attach-time routines is 9103 * available. (4362483) 9104 * 9105 * Arguments: un - driver soft state (unit) structure 9106 * 9107 * Context: Kernel thread context 9108 */ 9109 9110 static void 9111 sd_set_errstats(struct sd_lun *un) 9112 { 9113 struct sd_errstats *stp; 9114 char *sn; 9115 9116 ASSERT(un != NULL); 9117 ASSERT(un->un_errstats != NULL); 9118 stp = (struct sd_errstats *)un->un_errstats->ks_data; 9119 ASSERT(stp != NULL); 9120 (void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8); 9121 (void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16); 9122 (void) strncpy(stp->sd_revision.value.c, 9123 un->un_sd->sd_inq->inq_revision, 4); 9124 9125 /* 9126 * All the errstats are persistent across detach/attach, 9127 * so reset all the errstats here in case of the hot 9128 * replacement of disk drives, except for not changed 9129 * Sun qualified drives. 9130 */ 9131 if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) || 9132 (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c, 9133 sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) { 9134 stp->sd_softerrs.value.ui32 = 0; 9135 stp->sd_harderrs.value.ui32 = 0; 9136 stp->sd_transerrs.value.ui32 = 0; 9137 stp->sd_rq_media_err.value.ui32 = 0; 9138 stp->sd_rq_ntrdy_err.value.ui32 = 0; 9139 stp->sd_rq_nodev_err.value.ui32 = 0; 9140 stp->sd_rq_recov_err.value.ui32 = 0; 9141 stp->sd_rq_illrq_err.value.ui32 = 0; 9142 stp->sd_rq_pfa_err.value.ui32 = 0; 9143 } 9144 9145 /* 9146 * Set the "Serial No" kstat for Sun qualified drives (indicated by 9147 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid) 9148 * (4376302)) 9149 */ 9150 if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) { 9151 bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c, 9152 sizeof (SD_INQUIRY(un)->inq_serial)); 9153 } else { 9154 /* 9155 * Set the "Serial No" kstat for non-Sun qualified drives 9156 */ 9157 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, SD_DEVINFO(un), 9158 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 9159 INQUIRY_SERIAL_NO, &sn) == DDI_SUCCESS) { 9160 (void) strlcpy(stp->sd_serial.value.c, sn, 9161 sizeof (stp->sd_serial.value.c)); 9162 ddi_prop_free(sn); 9163 } 9164 } 9165 9166 if (un->un_f_blockcount_is_valid != TRUE) { 9167 /* 9168 * Set capacity error stat to 0 for no media. This ensures 9169 * a valid capacity is displayed in response to 'iostat -E' 9170 * when no media is present in the device. 9171 */ 9172 stp->sd_capacity.value.ui64 = 0; 9173 } else { 9174 /* 9175 * Multiply un_blockcount by un->un_sys_blocksize to get 9176 * capacity. 9177 * 9178 * Note: for non-512 blocksize devices "un_blockcount" has been 9179 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by 9180 * (un_tgt_blocksize / un->un_sys_blocksize). 9181 */ 9182 stp->sd_capacity.value.ui64 = (uint64_t) 9183 ((uint64_t)un->un_blockcount * un->un_sys_blocksize); 9184 } 9185 } 9186 9187 9188 /* 9189 * Function: sd_set_pstats 9190 * 9191 * Description: This routine instantiates and initializes the partition 9192 * stats for each partition with more than zero blocks. 9193 * (4363169) 9194 * 9195 * Arguments: un - driver soft state (unit) structure 9196 * 9197 * Context: Kernel thread context 9198 */ 9199 9200 static void 9201 sd_set_pstats(struct sd_lun *un) 9202 { 9203 char kstatname[KSTAT_STRLEN]; 9204 int instance; 9205 int i; 9206 diskaddr_t nblks = 0; 9207 char *partname = NULL; 9208 9209 ASSERT(un != NULL); 9210 9211 instance = ddi_get_instance(SD_DEVINFO(un)); 9212 9213 /* Note:x86: is this a VTOC8/VTOC16 difference? */ 9214 for (i = 0; i < NSDMAP; i++) { 9215 9216 if (cmlb_partinfo(un->un_cmlbhandle, i, 9217 &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0) 9218 continue; 9219 mutex_enter(SD_MUTEX(un)); 9220 9221 if ((un->un_pstats[i] == NULL) && 9222 (nblks != 0)) { 9223 9224 (void) snprintf(kstatname, sizeof (kstatname), 9225 "%s%d,%s", sd_label, instance, 9226 partname); 9227 9228 un->un_pstats[i] = kstat_create(sd_label, 9229 instance, kstatname, "partition", KSTAT_TYPE_IO, 9230 1, KSTAT_FLAG_PERSISTENT); 9231 if (un->un_pstats[i] != NULL) { 9232 un->un_pstats[i]->ks_lock = SD_MUTEX(un); 9233 kstat_install(un->un_pstats[i]); 9234 } 9235 } 9236 mutex_exit(SD_MUTEX(un)); 9237 } 9238 } 9239 9240 9241 #if (defined(__fibre)) 9242 /* 9243 * Function: sd_init_event_callbacks 9244 * 9245 * Description: This routine initializes the insertion and removal event 9246 * callbacks. (fibre only) 9247 * 9248 * Arguments: un - driver soft state (unit) structure 9249 * 9250 * Context: Kernel thread context 9251 */ 9252 9253 static void 9254 sd_init_event_callbacks(struct sd_lun *un) 9255 { 9256 ASSERT(un != NULL); 9257 9258 if ((un->un_insert_event == NULL) && 9259 (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT, 9260 &un->un_insert_event) == DDI_SUCCESS)) { 9261 /* 9262 * Add the callback for an insertion event 9263 */ 9264 (void) ddi_add_event_handler(SD_DEVINFO(un), 9265 un->un_insert_event, sd_event_callback, (void *)un, 9266 &(un->un_insert_cb_id)); 9267 } 9268 9269 if ((un->un_remove_event == NULL) && 9270 (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT, 9271 &un->un_remove_event) == DDI_SUCCESS)) { 9272 /* 9273 * Add the callback for a removal event 9274 */ 9275 (void) ddi_add_event_handler(SD_DEVINFO(un), 9276 un->un_remove_event, sd_event_callback, (void *)un, 9277 &(un->un_remove_cb_id)); 9278 } 9279 } 9280 9281 9282 /* 9283 * Function: sd_event_callback 9284 * 9285 * Description: This routine handles insert/remove events (photon). The 9286 * state is changed to OFFLINE which can be used to supress 9287 * error msgs. (fibre only) 9288 * 9289 * Arguments: un - driver soft state (unit) structure 9290 * 9291 * Context: Callout thread context 9292 */ 9293 /* ARGSUSED */ 9294 static void 9295 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg, 9296 void *bus_impldata) 9297 { 9298 struct sd_lun *un = (struct sd_lun *)arg; 9299 9300 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event)); 9301 if (event == un->un_insert_event) { 9302 SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event"); 9303 mutex_enter(SD_MUTEX(un)); 9304 if (un->un_state == SD_STATE_OFFLINE) { 9305 if (un->un_last_state != SD_STATE_SUSPENDED) { 9306 un->un_state = un->un_last_state; 9307 } else { 9308 /* 9309 * We have gone through SUSPEND/RESUME while 9310 * we were offline. Restore the last state 9311 */ 9312 un->un_state = un->un_save_state; 9313 } 9314 } 9315 mutex_exit(SD_MUTEX(un)); 9316 9317 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event)); 9318 } else if (event == un->un_remove_event) { 9319 SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event"); 9320 mutex_enter(SD_MUTEX(un)); 9321 /* 9322 * We need to handle an event callback that occurs during 9323 * the suspend operation, since we don't prevent it. 9324 */ 9325 if (un->un_state != SD_STATE_OFFLINE) { 9326 if (un->un_state != SD_STATE_SUSPENDED) { 9327 New_state(un, SD_STATE_OFFLINE); 9328 } else { 9329 un->un_last_state = SD_STATE_OFFLINE; 9330 } 9331 } 9332 mutex_exit(SD_MUTEX(un)); 9333 } else { 9334 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 9335 "!Unknown event\n"); 9336 } 9337 9338 } 9339 #endif 9340 9341 /* 9342 * Function: sd_cache_control() 9343 * 9344 * Description: This routine is the driver entry point for setting 9345 * read and write caching by modifying the WCE (write cache 9346 * enable) and RCD (read cache disable) bits of mode 9347 * page 8 (MODEPAGE_CACHING). 9348 * 9349 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 9350 * structure for this target. 9351 * rcd_flag - flag for controlling the read cache 9352 * wce_flag - flag for controlling the write cache 9353 * 9354 * Return Code: EIO 9355 * code returned by sd_send_scsi_MODE_SENSE and 9356 * sd_send_scsi_MODE_SELECT 9357 * 9358 * Context: Kernel Thread 9359 */ 9360 9361 static int 9362 sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag) 9363 { 9364 struct mode_caching *mode_caching_page; 9365 uchar_t *header; 9366 size_t buflen; 9367 int hdrlen; 9368 int bd_len; 9369 int rval = 0; 9370 struct mode_header_grp2 *mhp; 9371 struct sd_lun *un; 9372 int status; 9373 9374 ASSERT(ssc != NULL); 9375 un = ssc->ssc_un; 9376 ASSERT(un != NULL); 9377 9378 /* 9379 * Do a test unit ready, otherwise a mode sense may not work if this 9380 * is the first command sent to the device after boot. 9381 */ 9382 status = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 9383 if (status != 0) 9384 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9385 9386 if (un->un_f_cfg_is_atapi == TRUE) { 9387 hdrlen = MODE_HEADER_LENGTH_GRP2; 9388 } else { 9389 hdrlen = MODE_HEADER_LENGTH; 9390 } 9391 9392 /* 9393 * Allocate memory for the retrieved mode page and its headers. Set 9394 * a pointer to the page itself. Use mode_cache_scsi3 to insure 9395 * we get all of the mode sense data otherwise, the mode select 9396 * will fail. mode_cache_scsi3 is a superset of mode_caching. 9397 */ 9398 buflen = hdrlen + MODE_BLK_DESC_LENGTH + 9399 sizeof (struct mode_cache_scsi3); 9400 9401 header = kmem_zalloc(buflen, KM_SLEEP); 9402 9403 /* Get the information from the device. */ 9404 if (un->un_f_cfg_is_atapi == TRUE) { 9405 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen, 9406 MODEPAGE_CACHING, SD_PATH_DIRECT); 9407 } else { 9408 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen, 9409 MODEPAGE_CACHING, SD_PATH_DIRECT); 9410 } 9411 9412 if (rval != 0) { 9413 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 9414 "sd_cache_control: Mode Sense Failed\n"); 9415 goto mode_sense_failed; 9416 } 9417 9418 /* 9419 * Determine size of Block Descriptors in order to locate 9420 * the mode page data. ATAPI devices return 0, SCSI devices 9421 * should return MODE_BLK_DESC_LENGTH. 9422 */ 9423 if (un->un_f_cfg_is_atapi == TRUE) { 9424 mhp = (struct mode_header_grp2 *)header; 9425 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 9426 } else { 9427 bd_len = ((struct mode_header *)header)->bdesc_length; 9428 } 9429 9430 if (bd_len > MODE_BLK_DESC_LENGTH) { 9431 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0, 9432 "sd_cache_control: Mode Sense returned invalid block " 9433 "descriptor length\n"); 9434 rval = EIO; 9435 goto mode_sense_failed; 9436 } 9437 9438 mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len); 9439 if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) { 9440 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 9441 "sd_cache_control: Mode Sense caching page code mismatch " 9442 "%d\n", mode_caching_page->mode_page.code); 9443 rval = EIO; 9444 goto mode_sense_failed; 9445 } 9446 9447 /* Check the relevant bits on successful mode sense. */ 9448 if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) || 9449 (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) || 9450 (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) || 9451 (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) { 9452 9453 size_t sbuflen; 9454 uchar_t save_pg; 9455 9456 /* 9457 * Construct select buffer length based on the 9458 * length of the sense data returned. 9459 */ 9460 sbuflen = hdrlen + bd_len + 9461 sizeof (struct mode_page) + 9462 (int)mode_caching_page->mode_page.length; 9463 9464 /* 9465 * Set the caching bits as requested. 9466 */ 9467 if (rcd_flag == SD_CACHE_ENABLE) 9468 mode_caching_page->rcd = 0; 9469 else if (rcd_flag == SD_CACHE_DISABLE) 9470 mode_caching_page->rcd = 1; 9471 9472 if (wce_flag == SD_CACHE_ENABLE) 9473 mode_caching_page->wce = 1; 9474 else if (wce_flag == SD_CACHE_DISABLE) 9475 mode_caching_page->wce = 0; 9476 9477 /* 9478 * Save the page if the mode sense says the 9479 * drive supports it. 9480 */ 9481 save_pg = mode_caching_page->mode_page.ps ? 9482 SD_SAVE_PAGE : SD_DONTSAVE_PAGE; 9483 9484 /* Clear reserved bits before mode select. */ 9485 mode_caching_page->mode_page.ps = 0; 9486 9487 /* 9488 * Clear out mode header for mode select. 9489 * The rest of the retrieved page will be reused. 9490 */ 9491 bzero(header, hdrlen); 9492 9493 if (un->un_f_cfg_is_atapi == TRUE) { 9494 mhp = (struct mode_header_grp2 *)header; 9495 mhp->bdesc_length_hi = bd_len >> 8; 9496 mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff; 9497 } else { 9498 ((struct mode_header *)header)->bdesc_length = bd_len; 9499 } 9500 9501 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9502 9503 /* Issue mode select to change the cache settings */ 9504 if (un->un_f_cfg_is_atapi == TRUE) { 9505 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, header, 9506 sbuflen, save_pg, SD_PATH_DIRECT); 9507 } else { 9508 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header, 9509 sbuflen, save_pg, SD_PATH_DIRECT); 9510 } 9511 9512 } 9513 9514 9515 mode_sense_failed: 9516 9517 kmem_free(header, buflen); 9518 9519 if (rval != 0) { 9520 if (rval == EIO) 9521 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 9522 else 9523 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9524 } 9525 return (rval); 9526 } 9527 9528 9529 /* 9530 * Function: sd_get_write_cache_enabled() 9531 * 9532 * Description: This routine is the driver entry point for determining if 9533 * write caching is enabled. It examines the WCE (write cache 9534 * enable) bits of mode page 8 (MODEPAGE_CACHING). 9535 * 9536 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 9537 * structure for this target. 9538 * is_enabled - pointer to int where write cache enabled state 9539 * is returned (non-zero -> write cache enabled) 9540 * 9541 * 9542 * Return Code: EIO 9543 * code returned by sd_send_scsi_MODE_SENSE 9544 * 9545 * Context: Kernel Thread 9546 * 9547 * NOTE: If ioctl is added to disable write cache, this sequence should 9548 * be followed so that no locking is required for accesses to 9549 * un->un_f_write_cache_enabled: 9550 * do mode select to clear wce 9551 * do synchronize cache to flush cache 9552 * set un->un_f_write_cache_enabled = FALSE 9553 * 9554 * Conversely, an ioctl to enable the write cache should be done 9555 * in this order: 9556 * set un->un_f_write_cache_enabled = TRUE 9557 * do mode select to set wce 9558 */ 9559 9560 static int 9561 sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled) 9562 { 9563 struct mode_caching *mode_caching_page; 9564 uchar_t *header; 9565 size_t buflen; 9566 int hdrlen; 9567 int bd_len; 9568 int rval = 0; 9569 struct sd_lun *un; 9570 int status; 9571 9572 ASSERT(ssc != NULL); 9573 un = ssc->ssc_un; 9574 ASSERT(un != NULL); 9575 ASSERT(is_enabled != NULL); 9576 9577 /* in case of error, flag as enabled */ 9578 *is_enabled = TRUE; 9579 9580 /* 9581 * Do a test unit ready, otherwise a mode sense may not work if this 9582 * is the first command sent to the device after boot. 9583 */ 9584 status = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 9585 9586 if (status != 0) 9587 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9588 9589 if (un->un_f_cfg_is_atapi == TRUE) { 9590 hdrlen = MODE_HEADER_LENGTH_GRP2; 9591 } else { 9592 hdrlen = MODE_HEADER_LENGTH; 9593 } 9594 9595 /* 9596 * Allocate memory for the retrieved mode page and its headers. Set 9597 * a pointer to the page itself. 9598 */ 9599 buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching); 9600 header = kmem_zalloc(buflen, KM_SLEEP); 9601 9602 /* Get the information from the device. */ 9603 if (un->un_f_cfg_is_atapi == TRUE) { 9604 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen, 9605 MODEPAGE_CACHING, SD_PATH_DIRECT); 9606 } else { 9607 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen, 9608 MODEPAGE_CACHING, SD_PATH_DIRECT); 9609 } 9610 9611 if (rval != 0) { 9612 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 9613 "sd_get_write_cache_enabled: Mode Sense Failed\n"); 9614 goto mode_sense_failed; 9615 } 9616 9617 /* 9618 * Determine size of Block Descriptors in order to locate 9619 * the mode page data. ATAPI devices return 0, SCSI devices 9620 * should return MODE_BLK_DESC_LENGTH. 9621 */ 9622 if (un->un_f_cfg_is_atapi == TRUE) { 9623 struct mode_header_grp2 *mhp; 9624 mhp = (struct mode_header_grp2 *)header; 9625 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 9626 } else { 9627 bd_len = ((struct mode_header *)header)->bdesc_length; 9628 } 9629 9630 if (bd_len > MODE_BLK_DESC_LENGTH) { 9631 /* FMA should make upset complain here */ 9632 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0, 9633 "sd_get_write_cache_enabled: Mode Sense returned invalid " 9634 "block descriptor length\n"); 9635 rval = EIO; 9636 goto mode_sense_failed; 9637 } 9638 9639 mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len); 9640 if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) { 9641 /* FMA could make upset complain here */ 9642 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON, 9643 "sd_get_write_cache_enabled: Mode Sense caching page " 9644 "code mismatch %d\n", mode_caching_page->mode_page.code); 9645 rval = EIO; 9646 goto mode_sense_failed; 9647 } 9648 *is_enabled = mode_caching_page->wce; 9649 9650 mode_sense_failed: 9651 if (rval == 0) { 9652 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 9653 } else if (rval == EIO) { 9654 /* 9655 * Some disks do not support mode sense(6), we 9656 * should ignore this kind of error(sense key is 9657 * 0x5 - illegal request). 9658 */ 9659 uint8_t *sensep; 9660 int senlen; 9661 9662 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf; 9663 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen - 9664 ssc->ssc_uscsi_cmd->uscsi_rqresid); 9665 9666 if (senlen > 0 && 9667 scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) { 9668 sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE); 9669 } else { 9670 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 9671 } 9672 } else { 9673 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9674 } 9675 kmem_free(header, buflen); 9676 return (rval); 9677 } 9678 9679 /* 9680 * Function: sd_get_nv_sup() 9681 * 9682 * Description: This routine is the driver entry point for 9683 * determining whether non-volatile cache is supported. This 9684 * determination process works as follows: 9685 * 9686 * 1. sd first queries sd.conf on whether 9687 * suppress_cache_flush bit is set for this device. 9688 * 9689 * 2. if not there, then queries the internal disk table. 9690 * 9691 * 3. if either sd.conf or internal disk table specifies 9692 * cache flush be suppressed, we don't bother checking 9693 * NV_SUP bit. 9694 * 9695 * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries 9696 * the optional INQUIRY VPD page 0x86. If the device 9697 * supports VPD page 0x86, sd examines the NV_SUP 9698 * (non-volatile cache support) bit in the INQUIRY VPD page 9699 * 0x86: 9700 * o If NV_SUP bit is set, sd assumes the device has a 9701 * non-volatile cache and set the 9702 * un_f_sync_nv_supported to TRUE. 9703 * o Otherwise cache is not non-volatile, 9704 * un_f_sync_nv_supported is set to FALSE. 9705 * 9706 * Arguments: un - driver soft state (unit) structure 9707 * 9708 * Return Code: 9709 * 9710 * Context: Kernel Thread 9711 */ 9712 9713 static void 9714 sd_get_nv_sup(sd_ssc_t *ssc) 9715 { 9716 int rval = 0; 9717 uchar_t *inq86 = NULL; 9718 size_t inq86_len = MAX_INQUIRY_SIZE; 9719 size_t inq86_resid = 0; 9720 struct dk_callback *dkc; 9721 struct sd_lun *un; 9722 9723 ASSERT(ssc != NULL); 9724 un = ssc->ssc_un; 9725 ASSERT(un != NULL); 9726 9727 mutex_enter(SD_MUTEX(un)); 9728 9729 /* 9730 * Be conservative on the device's support of 9731 * SYNC_NV bit: un_f_sync_nv_supported is 9732 * initialized to be false. 9733 */ 9734 un->un_f_sync_nv_supported = FALSE; 9735 9736 /* 9737 * If either sd.conf or internal disk table 9738 * specifies cache flush be suppressed, then 9739 * we don't bother checking NV_SUP bit. 9740 */ 9741 if (un->un_f_suppress_cache_flush == TRUE) { 9742 mutex_exit(SD_MUTEX(un)); 9743 return; 9744 } 9745 9746 if (sd_check_vpd_page_support(ssc) == 0 && 9747 un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) { 9748 mutex_exit(SD_MUTEX(un)); 9749 /* collect page 86 data if available */ 9750 inq86 = kmem_zalloc(inq86_len, KM_SLEEP); 9751 9752 rval = sd_send_scsi_INQUIRY(ssc, inq86, inq86_len, 9753 0x01, 0x86, &inq86_resid); 9754 9755 if (rval == 0 && (inq86_len - inq86_resid > 6)) { 9756 SD_TRACE(SD_LOG_COMMON, un, 9757 "sd_get_nv_sup: \ 9758 successfully get VPD page: %x \ 9759 PAGE LENGTH: %x BYTE 6: %x\n", 9760 inq86[1], inq86[3], inq86[6]); 9761 9762 mutex_enter(SD_MUTEX(un)); 9763 /* 9764 * check the value of NV_SUP bit: only if the device 9765 * reports NV_SUP bit to be 1, the 9766 * un_f_sync_nv_supported bit will be set to true. 9767 */ 9768 if (inq86[6] & SD_VPD_NV_SUP) { 9769 un->un_f_sync_nv_supported = TRUE; 9770 } 9771 mutex_exit(SD_MUTEX(un)); 9772 } else if (rval != 0) { 9773 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9774 } 9775 9776 kmem_free(inq86, inq86_len); 9777 } else { 9778 mutex_exit(SD_MUTEX(un)); 9779 } 9780 9781 /* 9782 * Send a SYNC CACHE command to check whether 9783 * SYNC_NV bit is supported. This command should have 9784 * un_f_sync_nv_supported set to correct value. 9785 */ 9786 mutex_enter(SD_MUTEX(un)); 9787 if (un->un_f_sync_nv_supported) { 9788 mutex_exit(SD_MUTEX(un)); 9789 dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP); 9790 dkc->dkc_flag = FLUSH_VOLATILE; 9791 (void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc); 9792 9793 /* 9794 * Send a TEST UNIT READY command to the device. This should 9795 * clear any outstanding UNIT ATTENTION that may be present. 9796 */ 9797 rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR); 9798 if (rval != 0) 9799 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 9800 9801 kmem_free(dkc, sizeof (struct dk_callback)); 9802 } else { 9803 mutex_exit(SD_MUTEX(un)); 9804 } 9805 9806 SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \ 9807 un_f_suppress_cache_flush is set to %d\n", 9808 un->un_f_suppress_cache_flush); 9809 } 9810 9811 /* 9812 * Function: sd_make_device 9813 * 9814 * Description: Utility routine to return the Solaris device number from 9815 * the data in the device's dev_info structure. 9816 * 9817 * Return Code: The Solaris device number 9818 * 9819 * Context: Any 9820 */ 9821 9822 static dev_t 9823 sd_make_device(dev_info_t *devi) 9824 { 9825 return (makedevice(ddi_driver_major(devi), 9826 ddi_get_instance(devi) << SDUNIT_SHIFT)); 9827 } 9828 9829 9830 /* 9831 * Function: sd_pm_entry 9832 * 9833 * Description: Called at the start of a new command to manage power 9834 * and busy status of a device. This includes determining whether 9835 * the current power state of the device is sufficient for 9836 * performing the command or whether it must be changed. 9837 * The PM framework is notified appropriately. 9838 * Only with a return status of DDI_SUCCESS will the 9839 * component be busy to the framework. 9840 * 9841 * All callers of sd_pm_entry must check the return status 9842 * and only call sd_pm_exit it it was DDI_SUCCESS. A status 9843 * of DDI_FAILURE indicates the device failed to power up. 9844 * In this case un_pm_count has been adjusted so the result 9845 * on exit is still powered down, ie. count is less than 0. 9846 * Calling sd_pm_exit with this count value hits an ASSERT. 9847 * 9848 * Return Code: DDI_SUCCESS or DDI_FAILURE 9849 * 9850 * Context: Kernel thread context. 9851 */ 9852 9853 static int 9854 sd_pm_entry(struct sd_lun *un) 9855 { 9856 int return_status = DDI_SUCCESS; 9857 9858 ASSERT(!mutex_owned(SD_MUTEX(un))); 9859 ASSERT(!mutex_owned(&un->un_pm_mutex)); 9860 9861 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n"); 9862 9863 if (un->un_f_pm_is_enabled == FALSE) { 9864 SD_TRACE(SD_LOG_IO_PM, un, 9865 "sd_pm_entry: exiting, PM not enabled\n"); 9866 return (return_status); 9867 } 9868 9869 /* 9870 * Just increment a counter if PM is enabled. On the transition from 9871 * 0 ==> 1, mark the device as busy. The iodone side will decrement 9872 * the count with each IO and mark the device as idle when the count 9873 * hits 0. 9874 * 9875 * If the count is less than 0 the device is powered down. If a powered 9876 * down device is successfully powered up then the count must be 9877 * incremented to reflect the power up. Note that it'll get incremented 9878 * a second time to become busy. 9879 * 9880 * Because the following has the potential to change the device state 9881 * and must release the un_pm_mutex to do so, only one thread can be 9882 * allowed through at a time. 9883 */ 9884 9885 mutex_enter(&un->un_pm_mutex); 9886 while (un->un_pm_busy == TRUE) { 9887 cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex); 9888 } 9889 un->un_pm_busy = TRUE; 9890 9891 if (un->un_pm_count < 1) { 9892 9893 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n"); 9894 9895 /* 9896 * Indicate we are now busy so the framework won't attempt to 9897 * power down the device. This call will only fail if either 9898 * we passed a bad component number or the device has no 9899 * components. Neither of these should ever happen. 9900 */ 9901 mutex_exit(&un->un_pm_mutex); 9902 return_status = pm_busy_component(SD_DEVINFO(un), 0); 9903 ASSERT(return_status == DDI_SUCCESS); 9904 9905 mutex_enter(&un->un_pm_mutex); 9906 9907 if (un->un_pm_count < 0) { 9908 mutex_exit(&un->un_pm_mutex); 9909 9910 SD_TRACE(SD_LOG_IO_PM, un, 9911 "sd_pm_entry: power up component\n"); 9912 9913 /* 9914 * pm_raise_power will cause sdpower to be called 9915 * which brings the device power level to the 9916 * desired state, If successful, un_pm_count and 9917 * un_power_level will be updated appropriately. 9918 */ 9919 return_status = pm_raise_power(SD_DEVINFO(un), 0, 9920 SD_PM_STATE_ACTIVE(un)); 9921 9922 mutex_enter(&un->un_pm_mutex); 9923 9924 if (return_status != DDI_SUCCESS) { 9925 /* 9926 * Power up failed. 9927 * Idle the device and adjust the count 9928 * so the result on exit is that we're 9929 * still powered down, ie. count is less than 0. 9930 */ 9931 SD_TRACE(SD_LOG_IO_PM, un, 9932 "sd_pm_entry: power up failed," 9933 " idle the component\n"); 9934 9935 (void) pm_idle_component(SD_DEVINFO(un), 0); 9936 un->un_pm_count--; 9937 } else { 9938 /* 9939 * Device is powered up, verify the 9940 * count is non-negative. 9941 * This is debug only. 9942 */ 9943 ASSERT(un->un_pm_count == 0); 9944 } 9945 } 9946 9947 if (return_status == DDI_SUCCESS) { 9948 /* 9949 * For performance, now that the device has been tagged 9950 * as busy, and it's known to be powered up, update the 9951 * chain types to use jump tables that do not include 9952 * pm. This significantly lowers the overhead and 9953 * therefore improves performance. 9954 */ 9955 9956 mutex_exit(&un->un_pm_mutex); 9957 mutex_enter(SD_MUTEX(un)); 9958 SD_TRACE(SD_LOG_IO_PM, un, 9959 "sd_pm_entry: changing uscsi_chain_type from %d\n", 9960 un->un_uscsi_chain_type); 9961 9962 if (un->un_f_non_devbsize_supported) { 9963 un->un_buf_chain_type = 9964 SD_CHAIN_INFO_RMMEDIA_NO_PM; 9965 } else { 9966 un->un_buf_chain_type = 9967 SD_CHAIN_INFO_DISK_NO_PM; 9968 } 9969 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM; 9970 9971 SD_TRACE(SD_LOG_IO_PM, un, 9972 " changed uscsi_chain_type to %d\n", 9973 un->un_uscsi_chain_type); 9974 mutex_exit(SD_MUTEX(un)); 9975 mutex_enter(&un->un_pm_mutex); 9976 9977 if (un->un_pm_idle_timeid == NULL) { 9978 /* 300 ms. */ 9979 un->un_pm_idle_timeid = 9980 timeout(sd_pm_idletimeout_handler, un, 9981 (drv_usectohz((clock_t)300000))); 9982 /* 9983 * Include an extra call to busy which keeps the 9984 * device busy with-respect-to the PM layer 9985 * until the timer fires, at which time it'll 9986 * get the extra idle call. 9987 */ 9988 (void) pm_busy_component(SD_DEVINFO(un), 0); 9989 } 9990 } 9991 } 9992 un->un_pm_busy = FALSE; 9993 /* Next... */ 9994 cv_signal(&un->un_pm_busy_cv); 9995 9996 un->un_pm_count++; 9997 9998 SD_TRACE(SD_LOG_IO_PM, un, 9999 "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count); 10000 10001 mutex_exit(&un->un_pm_mutex); 10002 10003 return (return_status); 10004 } 10005 10006 10007 /* 10008 * Function: sd_pm_exit 10009 * 10010 * Description: Called at the completion of a command to manage busy 10011 * status for the device. If the device becomes idle the 10012 * PM framework is notified. 10013 * 10014 * Context: Kernel thread context 10015 */ 10016 10017 static void 10018 sd_pm_exit(struct sd_lun *un) 10019 { 10020 ASSERT(!mutex_owned(SD_MUTEX(un))); 10021 ASSERT(!mutex_owned(&un->un_pm_mutex)); 10022 10023 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n"); 10024 10025 /* 10026 * After attach the following flag is only read, so don't 10027 * take the penalty of acquiring a mutex for it. 10028 */ 10029 if (un->un_f_pm_is_enabled == TRUE) { 10030 10031 mutex_enter(&un->un_pm_mutex); 10032 un->un_pm_count--; 10033 10034 SD_TRACE(SD_LOG_IO_PM, un, 10035 "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count); 10036 10037 ASSERT(un->un_pm_count >= 0); 10038 if (un->un_pm_count == 0) { 10039 mutex_exit(&un->un_pm_mutex); 10040 10041 SD_TRACE(SD_LOG_IO_PM, un, 10042 "sd_pm_exit: idle component\n"); 10043 10044 (void) pm_idle_component(SD_DEVINFO(un), 0); 10045 10046 } else { 10047 mutex_exit(&un->un_pm_mutex); 10048 } 10049 } 10050 10051 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n"); 10052 } 10053 10054 10055 /* 10056 * Function: sdopen 10057 * 10058 * Description: Driver's open(9e) entry point function. 10059 * 10060 * Arguments: dev_i - pointer to device number 10061 * flag - how to open file (FEXCL, FNDELAY, FREAD, FWRITE) 10062 * otyp - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR) 10063 * cred_p - user credential pointer 10064 * 10065 * Return Code: EINVAL 10066 * ENXIO 10067 * EIO 10068 * EROFS 10069 * EBUSY 10070 * 10071 * Context: Kernel thread context 10072 */ 10073 /* ARGSUSED */ 10074 static int 10075 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p) 10076 { 10077 struct sd_lun *un; 10078 int nodelay; 10079 int part; 10080 uint64_t partmask; 10081 int instance; 10082 dev_t dev; 10083 int rval = EIO; 10084 diskaddr_t nblks = 0; 10085 diskaddr_t label_cap; 10086 10087 /* Validate the open type */ 10088 if (otyp >= OTYPCNT) { 10089 return (EINVAL); 10090 } 10091 10092 dev = *dev_p; 10093 instance = SDUNIT(dev); 10094 mutex_enter(&sd_detach_mutex); 10095 10096 /* 10097 * Fail the open if there is no softstate for the instance, or 10098 * if another thread somewhere is trying to detach the instance. 10099 */ 10100 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 10101 (un->un_detach_count != 0)) { 10102 mutex_exit(&sd_detach_mutex); 10103 /* 10104 * The probe cache only needs to be cleared when open (9e) fails 10105 * with ENXIO (4238046). 10106 */ 10107 /* 10108 * un-conditionally clearing probe cache is ok with 10109 * separate sd/ssd binaries 10110 * x86 platform can be an issue with both parallel 10111 * and fibre in 1 binary 10112 */ 10113 sd_scsi_clear_probe_cache(); 10114 return (ENXIO); 10115 } 10116 10117 /* 10118 * The un_layer_count is to prevent another thread in specfs from 10119 * trying to detach the instance, which can happen when we are 10120 * called from a higher-layer driver instead of thru specfs. 10121 * This will not be needed when DDI provides a layered driver 10122 * interface that allows specfs to know that an instance is in 10123 * use by a layered driver & should not be detached. 10124 * 10125 * Note: the semantics for layered driver opens are exactly one 10126 * close for every open. 10127 */ 10128 if (otyp == OTYP_LYR) { 10129 un->un_layer_count++; 10130 } 10131 10132 /* 10133 * Keep a count of the current # of opens in progress. This is because 10134 * some layered drivers try to call us as a regular open. This can 10135 * cause problems that we cannot prevent, however by keeping this count 10136 * we can at least keep our open and detach routines from racing against 10137 * each other under such conditions. 10138 */ 10139 un->un_opens_in_progress++; 10140 mutex_exit(&sd_detach_mutex); 10141 10142 nodelay = (flag & (FNDELAY | FNONBLOCK)); 10143 part = SDPART(dev); 10144 partmask = 1 << part; 10145 10146 /* 10147 * We use a semaphore here in order to serialize 10148 * open and close requests on the device. 10149 */ 10150 sema_p(&un->un_semoclose); 10151 10152 mutex_enter(SD_MUTEX(un)); 10153 10154 /* 10155 * All device accesses go thru sdstrategy() where we check 10156 * on suspend status but there could be a scsi_poll command, 10157 * which bypasses sdstrategy(), so we need to check pm 10158 * status. 10159 */ 10160 10161 if (!nodelay) { 10162 while ((un->un_state == SD_STATE_SUSPENDED) || 10163 (un->un_state == SD_STATE_PM_CHANGING)) { 10164 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10165 } 10166 10167 mutex_exit(SD_MUTEX(un)); 10168 if (sd_pm_entry(un) != DDI_SUCCESS) { 10169 rval = EIO; 10170 SD_ERROR(SD_LOG_OPEN_CLOSE, un, 10171 "sdopen: sd_pm_entry failed\n"); 10172 goto open_failed_with_pm; 10173 } 10174 mutex_enter(SD_MUTEX(un)); 10175 } 10176 10177 /* check for previous exclusive open */ 10178 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un); 10179 SD_TRACE(SD_LOG_OPEN_CLOSE, un, 10180 "sdopen: exclopen=%x, flag=%x, regopen=%x\n", 10181 un->un_exclopen, flag, un->un_ocmap.regopen[otyp]); 10182 10183 if (un->un_exclopen & (partmask)) { 10184 goto excl_open_fail; 10185 } 10186 10187 if (flag & FEXCL) { 10188 int i; 10189 if (un->un_ocmap.lyropen[part]) { 10190 goto excl_open_fail; 10191 } 10192 for (i = 0; i < (OTYPCNT - 1); i++) { 10193 if (un->un_ocmap.regopen[i] & (partmask)) { 10194 goto excl_open_fail; 10195 } 10196 } 10197 } 10198 10199 /* 10200 * Check the write permission if this is a removable media device, 10201 * NDELAY has not been set, and writable permission is requested. 10202 * 10203 * Note: If NDELAY was set and this is write-protected media the WRITE 10204 * attempt will fail with EIO as part of the I/O processing. This is a 10205 * more permissive implementation that allows the open to succeed and 10206 * WRITE attempts to fail when appropriate. 10207 */ 10208 if (un->un_f_chk_wp_open) { 10209 if ((flag & FWRITE) && (!nodelay)) { 10210 mutex_exit(SD_MUTEX(un)); 10211 /* 10212 * Defer the check for write permission on writable 10213 * DVD drive till sdstrategy and will not fail open even 10214 * if FWRITE is set as the device can be writable 10215 * depending upon the media and the media can change 10216 * after the call to open(). 10217 */ 10218 if (un->un_f_dvdram_writable_device == FALSE) { 10219 if (ISCD(un) || sr_check_wp(dev)) { 10220 rval = EROFS; 10221 mutex_enter(SD_MUTEX(un)); 10222 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: " 10223 "write to cd or write protected media\n"); 10224 goto open_fail; 10225 } 10226 } 10227 mutex_enter(SD_MUTEX(un)); 10228 } 10229 } 10230 10231 /* 10232 * If opening in NDELAY/NONBLOCK mode, just return. 10233 * Check if disk is ready and has a valid geometry later. 10234 */ 10235 if (!nodelay) { 10236 sd_ssc_t *ssc; 10237 10238 mutex_exit(SD_MUTEX(un)); 10239 ssc = sd_ssc_init(un); 10240 rval = sd_ready_and_valid(ssc, part); 10241 sd_ssc_fini(ssc); 10242 mutex_enter(SD_MUTEX(un)); 10243 /* 10244 * Fail if device is not ready or if the number of disk 10245 * blocks is zero or negative for non CD devices. 10246 */ 10247 10248 nblks = 0; 10249 10250 if (rval == SD_READY_VALID && (!ISCD(un))) { 10251 /* if cmlb_partinfo fails, nblks remains 0 */ 10252 mutex_exit(SD_MUTEX(un)); 10253 (void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks, 10254 NULL, NULL, NULL, (void *)SD_PATH_DIRECT); 10255 mutex_enter(SD_MUTEX(un)); 10256 } 10257 10258 if ((rval != SD_READY_VALID) || 10259 (!ISCD(un) && nblks <= 0)) { 10260 rval = un->un_f_has_removable_media ? ENXIO : EIO; 10261 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: " 10262 "device not ready or invalid disk block value\n"); 10263 goto open_fail; 10264 } 10265 #if defined(__i386) || defined(__amd64) 10266 } else { 10267 uchar_t *cp; 10268 /* 10269 * x86 requires special nodelay handling, so that p0 is 10270 * always defined and accessible. 10271 * Invalidate geometry only if device is not already open. 10272 */ 10273 cp = &un->un_ocmap.chkd[0]; 10274 while (cp < &un->un_ocmap.chkd[OCSIZE]) { 10275 if (*cp != (uchar_t)0) { 10276 break; 10277 } 10278 cp++; 10279 } 10280 if (cp == &un->un_ocmap.chkd[OCSIZE]) { 10281 mutex_exit(SD_MUTEX(un)); 10282 cmlb_invalidate(un->un_cmlbhandle, 10283 (void *)SD_PATH_DIRECT); 10284 mutex_enter(SD_MUTEX(un)); 10285 } 10286 10287 #endif 10288 } 10289 10290 if (otyp == OTYP_LYR) { 10291 un->un_ocmap.lyropen[part]++; 10292 } else { 10293 un->un_ocmap.regopen[otyp] |= partmask; 10294 } 10295 10296 /* Set up open and exclusive open flags */ 10297 if (flag & FEXCL) { 10298 un->un_exclopen |= (partmask); 10299 } 10300 10301 /* 10302 * If the lun is EFI labeled and lun capacity is greater than the 10303 * capacity contained in the label, log a sys-event to notify the 10304 * interested module. 10305 * To avoid an infinite loop of logging sys-event, we only log the 10306 * event when the lun is not opened in NDELAY mode. The event handler 10307 * should open the lun in NDELAY mode. 10308 */ 10309 if (!nodelay) { 10310 mutex_exit(SD_MUTEX(un)); 10311 if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap, 10312 (void*)SD_PATH_DIRECT) == 0) { 10313 mutex_enter(SD_MUTEX(un)); 10314 if (un->un_f_blockcount_is_valid && 10315 un->un_blockcount > label_cap && 10316 un->un_f_expnevent == B_FALSE) { 10317 un->un_f_expnevent = B_TRUE; 10318 mutex_exit(SD_MUTEX(un)); 10319 sd_log_lun_expansion_event(un, 10320 (nodelay ? KM_NOSLEEP : KM_SLEEP)); 10321 mutex_enter(SD_MUTEX(un)); 10322 } 10323 } else { 10324 mutex_enter(SD_MUTEX(un)); 10325 } 10326 } 10327 10328 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: " 10329 "open of part %d type %d\n", part, otyp); 10330 10331 mutex_exit(SD_MUTEX(un)); 10332 if (!nodelay) { 10333 sd_pm_exit(un); 10334 } 10335 10336 sema_v(&un->un_semoclose); 10337 10338 mutex_enter(&sd_detach_mutex); 10339 un->un_opens_in_progress--; 10340 mutex_exit(&sd_detach_mutex); 10341 10342 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n"); 10343 return (DDI_SUCCESS); 10344 10345 excl_open_fail: 10346 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n"); 10347 rval = EBUSY; 10348 10349 open_fail: 10350 mutex_exit(SD_MUTEX(un)); 10351 10352 /* 10353 * On a failed open we must exit the pm management. 10354 */ 10355 if (!nodelay) { 10356 sd_pm_exit(un); 10357 } 10358 open_failed_with_pm: 10359 sema_v(&un->un_semoclose); 10360 10361 mutex_enter(&sd_detach_mutex); 10362 un->un_opens_in_progress--; 10363 if (otyp == OTYP_LYR) { 10364 un->un_layer_count--; 10365 } 10366 mutex_exit(&sd_detach_mutex); 10367 10368 return (rval); 10369 } 10370 10371 10372 /* 10373 * Function: sdclose 10374 * 10375 * Description: Driver's close(9e) entry point function. 10376 * 10377 * Arguments: dev - device number 10378 * flag - file status flag, informational only 10379 * otyp - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR) 10380 * cred_p - user credential pointer 10381 * 10382 * Return Code: ENXIO 10383 * 10384 * Context: Kernel thread context 10385 */ 10386 /* ARGSUSED */ 10387 static int 10388 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p) 10389 { 10390 struct sd_lun *un; 10391 uchar_t *cp; 10392 int part; 10393 int nodelay; 10394 int rval = 0; 10395 10396 /* Validate the open type */ 10397 if (otyp >= OTYPCNT) { 10398 return (ENXIO); 10399 } 10400 10401 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10402 return (ENXIO); 10403 } 10404 10405 part = SDPART(dev); 10406 nodelay = flag & (FNDELAY | FNONBLOCK); 10407 10408 SD_TRACE(SD_LOG_OPEN_CLOSE, un, 10409 "sdclose: close of part %d type %d\n", part, otyp); 10410 10411 /* 10412 * We use a semaphore here in order to serialize 10413 * open and close requests on the device. 10414 */ 10415 sema_p(&un->un_semoclose); 10416 10417 mutex_enter(SD_MUTEX(un)); 10418 10419 /* Don't proceed if power is being changed. */ 10420 while (un->un_state == SD_STATE_PM_CHANGING) { 10421 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10422 } 10423 10424 if (un->un_exclopen & (1 << part)) { 10425 un->un_exclopen &= ~(1 << part); 10426 } 10427 10428 /* Update the open partition map */ 10429 if (otyp == OTYP_LYR) { 10430 un->un_ocmap.lyropen[part] -= 1; 10431 } else { 10432 un->un_ocmap.regopen[otyp] &= ~(1 << part); 10433 } 10434 10435 cp = &un->un_ocmap.chkd[0]; 10436 while (cp < &un->un_ocmap.chkd[OCSIZE]) { 10437 if (*cp != NULL) { 10438 break; 10439 } 10440 cp++; 10441 } 10442 10443 if (cp == &un->un_ocmap.chkd[OCSIZE]) { 10444 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n"); 10445 10446 /* 10447 * We avoid persistance upon the last close, and set 10448 * the throttle back to the maximum. 10449 */ 10450 un->un_throttle = un->un_saved_throttle; 10451 10452 if (un->un_state == SD_STATE_OFFLINE) { 10453 if (un->un_f_is_fibre == FALSE) { 10454 scsi_log(SD_DEVINFO(un), sd_label, 10455 CE_WARN, "offline\n"); 10456 } 10457 mutex_exit(SD_MUTEX(un)); 10458 cmlb_invalidate(un->un_cmlbhandle, 10459 (void *)SD_PATH_DIRECT); 10460 mutex_enter(SD_MUTEX(un)); 10461 10462 } else { 10463 /* 10464 * Flush any outstanding writes in NVRAM cache. 10465 * Note: SYNCHRONIZE CACHE is an optional SCSI-2 10466 * cmd, it may not work for non-Pluto devices. 10467 * SYNCHRONIZE CACHE is not required for removables, 10468 * except DVD-RAM drives. 10469 * 10470 * Also note: because SYNCHRONIZE CACHE is currently 10471 * the only command issued here that requires the 10472 * drive be powered up, only do the power up before 10473 * sending the Sync Cache command. If additional 10474 * commands are added which require a powered up 10475 * drive, the following sequence may have to change. 10476 * 10477 * And finally, note that parallel SCSI on SPARC 10478 * only issues a Sync Cache to DVD-RAM, a newly 10479 * supported device. 10480 */ 10481 #if defined(__i386) || defined(__amd64) 10482 if ((un->un_f_sync_cache_supported && 10483 un->un_f_sync_cache_required) || 10484 un->un_f_dvdram_writable_device == TRUE) { 10485 #else 10486 if (un->un_f_dvdram_writable_device == TRUE) { 10487 #endif 10488 mutex_exit(SD_MUTEX(un)); 10489 if (sd_pm_entry(un) == DDI_SUCCESS) { 10490 rval = 10491 sd_send_scsi_SYNCHRONIZE_CACHE(un, 10492 NULL); 10493 /* ignore error if not supported */ 10494 if (rval == ENOTSUP) { 10495 rval = 0; 10496 } else if (rval != 0) { 10497 rval = EIO; 10498 } 10499 sd_pm_exit(un); 10500 } else { 10501 rval = EIO; 10502 } 10503 mutex_enter(SD_MUTEX(un)); 10504 } 10505 10506 /* 10507 * For devices which supports DOOR_LOCK, send an ALLOW 10508 * MEDIA REMOVAL command, but don't get upset if it 10509 * fails. We need to raise the power of the drive before 10510 * we can call sd_send_scsi_DOORLOCK() 10511 */ 10512 if (un->un_f_doorlock_supported) { 10513 mutex_exit(SD_MUTEX(un)); 10514 if (sd_pm_entry(un) == DDI_SUCCESS) { 10515 sd_ssc_t *ssc; 10516 10517 ssc = sd_ssc_init(un); 10518 rval = sd_send_scsi_DOORLOCK(ssc, 10519 SD_REMOVAL_ALLOW, SD_PATH_DIRECT); 10520 if (rval != 0) 10521 sd_ssc_assessment(ssc, 10522 SD_FMT_IGNORE); 10523 sd_ssc_fini(ssc); 10524 10525 sd_pm_exit(un); 10526 if (ISCD(un) && (rval != 0) && 10527 (nodelay != 0)) { 10528 rval = ENXIO; 10529 } 10530 } else { 10531 rval = EIO; 10532 } 10533 mutex_enter(SD_MUTEX(un)); 10534 } 10535 10536 /* 10537 * If a device has removable media, invalidate all 10538 * parameters related to media, such as geometry, 10539 * blocksize, and blockcount. 10540 */ 10541 if (un->un_f_has_removable_media) { 10542 sr_ejected(un); 10543 } 10544 10545 /* 10546 * Destroy the cache (if it exists) which was 10547 * allocated for the write maps since this is 10548 * the last close for this media. 10549 */ 10550 if (un->un_wm_cache) { 10551 /* 10552 * Check if there are pending commands. 10553 * and if there are give a warning and 10554 * do not destroy the cache. 10555 */ 10556 if (un->un_ncmds_in_driver > 0) { 10557 scsi_log(SD_DEVINFO(un), 10558 sd_label, CE_WARN, 10559 "Unable to clean up memory " 10560 "because of pending I/O\n"); 10561 } else { 10562 kmem_cache_destroy( 10563 un->un_wm_cache); 10564 un->un_wm_cache = NULL; 10565 } 10566 } 10567 } 10568 } 10569 10570 mutex_exit(SD_MUTEX(un)); 10571 sema_v(&un->un_semoclose); 10572 10573 if (otyp == OTYP_LYR) { 10574 mutex_enter(&sd_detach_mutex); 10575 /* 10576 * The detach routine may run when the layer count 10577 * drops to zero. 10578 */ 10579 un->un_layer_count--; 10580 mutex_exit(&sd_detach_mutex); 10581 } 10582 10583 return (rval); 10584 } 10585 10586 10587 /* 10588 * Function: sd_ready_and_valid 10589 * 10590 * Description: Test if device is ready and has a valid geometry. 10591 * 10592 * Arguments: ssc - sd_ssc_t will contain un 10593 * un - driver soft state (unit) structure 10594 * 10595 * Return Code: SD_READY_VALID ready and valid label 10596 * SD_NOT_READY_VALID not ready, no label 10597 * SD_RESERVED_BY_OTHERS reservation conflict 10598 * 10599 * Context: Never called at interrupt context. 10600 */ 10601 10602 static int 10603 sd_ready_and_valid(sd_ssc_t *ssc, int part) 10604 { 10605 struct sd_errstats *stp; 10606 uint64_t capacity; 10607 uint_t lbasize; 10608 int rval = SD_READY_VALID; 10609 char name_str[48]; 10610 boolean_t is_valid; 10611 struct sd_lun *un; 10612 int status; 10613 10614 ASSERT(ssc != NULL); 10615 un = ssc->ssc_un; 10616 ASSERT(un != NULL); 10617 ASSERT(!mutex_owned(SD_MUTEX(un))); 10618 10619 mutex_enter(SD_MUTEX(un)); 10620 /* 10621 * If a device has removable media, we must check if media is 10622 * ready when checking if this device is ready and valid. 10623 */ 10624 if (un->un_f_has_removable_media) { 10625 mutex_exit(SD_MUTEX(un)); 10626 status = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 10627 10628 if (status != 0) { 10629 rval = SD_NOT_READY_VALID; 10630 mutex_enter(SD_MUTEX(un)); 10631 10632 /* Ignore all failed status for removalbe media */ 10633 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10634 10635 goto done; 10636 } 10637 10638 is_valid = SD_IS_VALID_LABEL(un); 10639 mutex_enter(SD_MUTEX(un)); 10640 if (!is_valid || 10641 (un->un_f_blockcount_is_valid == FALSE) || 10642 (un->un_f_tgt_blocksize_is_valid == FALSE)) { 10643 10644 /* capacity has to be read every open. */ 10645 mutex_exit(SD_MUTEX(un)); 10646 status = sd_send_scsi_READ_CAPACITY(ssc, &capacity, 10647 &lbasize, SD_PATH_DIRECT); 10648 10649 if (status != 0) { 10650 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10651 10652 cmlb_invalidate(un->un_cmlbhandle, 10653 (void *)SD_PATH_DIRECT); 10654 mutex_enter(SD_MUTEX(un)); 10655 rval = SD_NOT_READY_VALID; 10656 10657 goto done; 10658 } else { 10659 mutex_enter(SD_MUTEX(un)); 10660 sd_update_block_info(un, lbasize, capacity); 10661 } 10662 } 10663 10664 /* 10665 * Check if the media in the device is writable or not. 10666 */ 10667 if (!is_valid && ISCD(un)) { 10668 sd_check_for_writable_cd(ssc, SD_PATH_DIRECT); 10669 } 10670 10671 } else { 10672 /* 10673 * Do a test unit ready to clear any unit attention from non-cd 10674 * devices. 10675 */ 10676 mutex_exit(SD_MUTEX(un)); 10677 10678 status = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 10679 if (status != 0) { 10680 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10681 } 10682 10683 mutex_enter(SD_MUTEX(un)); 10684 } 10685 10686 10687 /* 10688 * If this is a non 512 block device, allocate space for 10689 * the wmap cache. This is being done here since every time 10690 * a media is changed this routine will be called and the 10691 * block size is a function of media rather than device. 10692 */ 10693 if (((un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR || 10694 un->un_f_non_devbsize_supported) && 10695 un->un_tgt_blocksize != DEV_BSIZE) || 10696 un->un_f_enable_rmw) { 10697 if (!(un->un_wm_cache)) { 10698 (void) snprintf(name_str, sizeof (name_str), 10699 "%s%d_cache", 10700 ddi_driver_name(SD_DEVINFO(un)), 10701 ddi_get_instance(SD_DEVINFO(un))); 10702 un->un_wm_cache = kmem_cache_create( 10703 name_str, sizeof (struct sd_w_map), 10704 8, sd_wm_cache_constructor, 10705 sd_wm_cache_destructor, NULL, 10706 (void *)un, NULL, 0); 10707 if (!(un->un_wm_cache)) { 10708 rval = ENOMEM; 10709 goto done; 10710 } 10711 } 10712 } 10713 10714 if (un->un_state == SD_STATE_NORMAL) { 10715 /* 10716 * If the target is not yet ready here (defined by a TUR 10717 * failure), invalidate the geometry and print an 'offline' 10718 * message. This is a legacy message, as the state of the 10719 * target is not actually changed to SD_STATE_OFFLINE. 10720 * 10721 * If the TUR fails for EACCES (Reservation Conflict), 10722 * SD_RESERVED_BY_OTHERS will be returned to indicate 10723 * reservation conflict. If the TUR fails for other 10724 * reasons, SD_NOT_READY_VALID will be returned. 10725 */ 10726 int err; 10727 10728 mutex_exit(SD_MUTEX(un)); 10729 err = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 10730 mutex_enter(SD_MUTEX(un)); 10731 10732 if (err != 0) { 10733 mutex_exit(SD_MUTEX(un)); 10734 cmlb_invalidate(un->un_cmlbhandle, 10735 (void *)SD_PATH_DIRECT); 10736 mutex_enter(SD_MUTEX(un)); 10737 if (err == EACCES) { 10738 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 10739 "reservation conflict\n"); 10740 rval = SD_RESERVED_BY_OTHERS; 10741 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10742 } else { 10743 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 10744 "drive offline\n"); 10745 rval = SD_NOT_READY_VALID; 10746 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 10747 } 10748 goto done; 10749 } 10750 } 10751 10752 if (un->un_f_format_in_progress == FALSE) { 10753 mutex_exit(SD_MUTEX(un)); 10754 10755 (void) cmlb_validate(un->un_cmlbhandle, 0, 10756 (void *)SD_PATH_DIRECT); 10757 if (cmlb_partinfo(un->un_cmlbhandle, part, NULL, NULL, NULL, 10758 NULL, (void *) SD_PATH_DIRECT) != 0) { 10759 rval = SD_NOT_READY_VALID; 10760 mutex_enter(SD_MUTEX(un)); 10761 10762 goto done; 10763 } 10764 if (un->un_f_pkstats_enabled) { 10765 sd_set_pstats(un); 10766 SD_TRACE(SD_LOG_IO_PARTITION, un, 10767 "sd_ready_and_valid: un:0x%p pstats created and " 10768 "set\n", un); 10769 } 10770 mutex_enter(SD_MUTEX(un)); 10771 } 10772 10773 /* 10774 * If this device supports DOOR_LOCK command, try and send 10775 * this command to PREVENT MEDIA REMOVAL, but don't get upset 10776 * if it fails. For a CD, however, it is an error 10777 */ 10778 if (un->un_f_doorlock_supported) { 10779 mutex_exit(SD_MUTEX(un)); 10780 status = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT, 10781 SD_PATH_DIRECT); 10782 10783 if ((status != 0) && ISCD(un)) { 10784 rval = SD_NOT_READY_VALID; 10785 mutex_enter(SD_MUTEX(un)); 10786 10787 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10788 10789 goto done; 10790 } else if (status != 0) 10791 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 10792 mutex_enter(SD_MUTEX(un)); 10793 } 10794 10795 /* The state has changed, inform the media watch routines */ 10796 un->un_mediastate = DKIO_INSERTED; 10797 cv_broadcast(&un->un_state_cv); 10798 rval = SD_READY_VALID; 10799 10800 done: 10801 10802 /* 10803 * Initialize the capacity kstat value, if no media previously 10804 * (capacity kstat is 0) and a media has been inserted 10805 * (un_blockcount > 0). 10806 */ 10807 if (un->un_errstats != NULL) { 10808 stp = (struct sd_errstats *)un->un_errstats->ks_data; 10809 if ((stp->sd_capacity.value.ui64 == 0) && 10810 (un->un_f_blockcount_is_valid == TRUE)) { 10811 stp->sd_capacity.value.ui64 = 10812 (uint64_t)((uint64_t)un->un_blockcount * 10813 un->un_sys_blocksize); 10814 } 10815 } 10816 10817 mutex_exit(SD_MUTEX(un)); 10818 return (rval); 10819 } 10820 10821 10822 /* 10823 * Function: sdmin 10824 * 10825 * Description: Routine to limit the size of a data transfer. Used in 10826 * conjunction with physio(9F). 10827 * 10828 * Arguments: bp - pointer to the indicated buf(9S) struct. 10829 * 10830 * Context: Kernel thread context. 10831 */ 10832 10833 static void 10834 sdmin(struct buf *bp) 10835 { 10836 struct sd_lun *un; 10837 int instance; 10838 10839 instance = SDUNIT(bp->b_edev); 10840 10841 un = ddi_get_soft_state(sd_state, instance); 10842 ASSERT(un != NULL); 10843 10844 /* 10845 * We depend on buf breakup to restrict 10846 * IO size if it is enabled. 10847 */ 10848 if (un->un_buf_breakup_supported) { 10849 return; 10850 } 10851 10852 if (bp->b_bcount > un->un_max_xfer_size) { 10853 bp->b_bcount = un->un_max_xfer_size; 10854 } 10855 } 10856 10857 10858 /* 10859 * Function: sdread 10860 * 10861 * Description: Driver's read(9e) entry point function. 10862 * 10863 * Arguments: dev - device number 10864 * uio - structure pointer describing where data is to be stored 10865 * in user's space 10866 * cred_p - user credential pointer 10867 * 10868 * Return Code: ENXIO 10869 * EIO 10870 * EINVAL 10871 * value returned by physio 10872 * 10873 * Context: Kernel thread context. 10874 */ 10875 /* ARGSUSED */ 10876 static int 10877 sdread(dev_t dev, struct uio *uio, cred_t *cred_p) 10878 { 10879 struct sd_lun *un = NULL; 10880 int secmask; 10881 int err = 0; 10882 sd_ssc_t *ssc; 10883 10884 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10885 return (ENXIO); 10886 } 10887 10888 ASSERT(!mutex_owned(SD_MUTEX(un))); 10889 10890 10891 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 10892 mutex_enter(SD_MUTEX(un)); 10893 /* 10894 * Because the call to sd_ready_and_valid will issue I/O we 10895 * must wait here if either the device is suspended or 10896 * if it's power level is changing. 10897 */ 10898 while ((un->un_state == SD_STATE_SUSPENDED) || 10899 (un->un_state == SD_STATE_PM_CHANGING)) { 10900 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10901 } 10902 un->un_ncmds_in_driver++; 10903 mutex_exit(SD_MUTEX(un)); 10904 10905 /* Initialize sd_ssc_t for internal uscsi commands */ 10906 ssc = sd_ssc_init(un); 10907 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) { 10908 err = EIO; 10909 } else { 10910 err = 0; 10911 } 10912 sd_ssc_fini(ssc); 10913 10914 mutex_enter(SD_MUTEX(un)); 10915 un->un_ncmds_in_driver--; 10916 ASSERT(un->un_ncmds_in_driver >= 0); 10917 mutex_exit(SD_MUTEX(un)); 10918 if (err != 0) 10919 return (err); 10920 } 10921 10922 /* 10923 * Read requests are restricted to multiples of the system block size. 10924 */ 10925 if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR && 10926 !un->un_f_enable_rmw) 10927 secmask = un->un_tgt_blocksize - 1; 10928 else 10929 secmask = DEV_BSIZE - 1; 10930 10931 if (uio->uio_loffset & ((offset_t)(secmask))) { 10932 SD_ERROR(SD_LOG_READ_WRITE, un, 10933 "sdread: file offset not modulo %d\n", 10934 secmask + 1); 10935 err = EINVAL; 10936 } else if (uio->uio_iov->iov_len & (secmask)) { 10937 SD_ERROR(SD_LOG_READ_WRITE, un, 10938 "sdread: transfer length not modulo %d\n", 10939 secmask + 1); 10940 err = EINVAL; 10941 } else { 10942 err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio); 10943 } 10944 10945 return (err); 10946 } 10947 10948 10949 /* 10950 * Function: sdwrite 10951 * 10952 * Description: Driver's write(9e) entry point function. 10953 * 10954 * Arguments: dev - device number 10955 * uio - structure pointer describing where data is stored in 10956 * user's space 10957 * cred_p - user credential pointer 10958 * 10959 * Return Code: ENXIO 10960 * EIO 10961 * EINVAL 10962 * value returned by physio 10963 * 10964 * Context: Kernel thread context. 10965 */ 10966 /* ARGSUSED */ 10967 static int 10968 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p) 10969 { 10970 struct sd_lun *un = NULL; 10971 int secmask; 10972 int err = 0; 10973 sd_ssc_t *ssc; 10974 10975 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10976 return (ENXIO); 10977 } 10978 10979 ASSERT(!mutex_owned(SD_MUTEX(un))); 10980 10981 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 10982 mutex_enter(SD_MUTEX(un)); 10983 /* 10984 * Because the call to sd_ready_and_valid will issue I/O we 10985 * must wait here if either the device is suspended or 10986 * if it's power level is changing. 10987 */ 10988 while ((un->un_state == SD_STATE_SUSPENDED) || 10989 (un->un_state == SD_STATE_PM_CHANGING)) { 10990 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10991 } 10992 un->un_ncmds_in_driver++; 10993 mutex_exit(SD_MUTEX(un)); 10994 10995 /* Initialize sd_ssc_t for internal uscsi commands */ 10996 ssc = sd_ssc_init(un); 10997 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) { 10998 err = EIO; 10999 } else { 11000 err = 0; 11001 } 11002 sd_ssc_fini(ssc); 11003 11004 mutex_enter(SD_MUTEX(un)); 11005 un->un_ncmds_in_driver--; 11006 ASSERT(un->un_ncmds_in_driver >= 0); 11007 mutex_exit(SD_MUTEX(un)); 11008 if (err != 0) 11009 return (err); 11010 } 11011 11012 /* 11013 * Write requests are restricted to multiples of the system block size. 11014 */ 11015 if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR && 11016 !un->un_f_enable_rmw) 11017 secmask = un->un_tgt_blocksize - 1; 11018 else 11019 secmask = DEV_BSIZE - 1; 11020 11021 if (uio->uio_loffset & ((offset_t)(secmask))) { 11022 SD_ERROR(SD_LOG_READ_WRITE, un, 11023 "sdwrite: file offset not modulo %d\n", 11024 secmask + 1); 11025 err = EINVAL; 11026 } else if (uio->uio_iov->iov_len & (secmask)) { 11027 SD_ERROR(SD_LOG_READ_WRITE, un, 11028 "sdwrite: transfer length not modulo %d\n", 11029 secmask + 1); 11030 err = EINVAL; 11031 } else { 11032 err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio); 11033 } 11034 11035 return (err); 11036 } 11037 11038 11039 /* 11040 * Function: sdaread 11041 * 11042 * Description: Driver's aread(9e) entry point function. 11043 * 11044 * Arguments: dev - device number 11045 * aio - structure pointer describing where data is to be stored 11046 * cred_p - user credential pointer 11047 * 11048 * Return Code: ENXIO 11049 * EIO 11050 * EINVAL 11051 * value returned by aphysio 11052 * 11053 * Context: Kernel thread context. 11054 */ 11055 /* ARGSUSED */ 11056 static int 11057 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p) 11058 { 11059 struct sd_lun *un = NULL; 11060 struct uio *uio = aio->aio_uio; 11061 int secmask; 11062 int err = 0; 11063 sd_ssc_t *ssc; 11064 11065 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 11066 return (ENXIO); 11067 } 11068 11069 ASSERT(!mutex_owned(SD_MUTEX(un))); 11070 11071 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 11072 mutex_enter(SD_MUTEX(un)); 11073 /* 11074 * Because the call to sd_ready_and_valid will issue I/O we 11075 * must wait here if either the device is suspended or 11076 * if it's power level is changing. 11077 */ 11078 while ((un->un_state == SD_STATE_SUSPENDED) || 11079 (un->un_state == SD_STATE_PM_CHANGING)) { 11080 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11081 } 11082 un->un_ncmds_in_driver++; 11083 mutex_exit(SD_MUTEX(un)); 11084 11085 /* Initialize sd_ssc_t for internal uscsi commands */ 11086 ssc = sd_ssc_init(un); 11087 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) { 11088 err = EIO; 11089 } else { 11090 err = 0; 11091 } 11092 sd_ssc_fini(ssc); 11093 11094 mutex_enter(SD_MUTEX(un)); 11095 un->un_ncmds_in_driver--; 11096 ASSERT(un->un_ncmds_in_driver >= 0); 11097 mutex_exit(SD_MUTEX(un)); 11098 if (err != 0) 11099 return (err); 11100 } 11101 11102 /* 11103 * Read requests are restricted to multiples of the system block size. 11104 */ 11105 if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR && 11106 !un->un_f_enable_rmw) 11107 secmask = un->un_tgt_blocksize - 1; 11108 else 11109 secmask = DEV_BSIZE - 1; 11110 11111 if (uio->uio_loffset & ((offset_t)(secmask))) { 11112 SD_ERROR(SD_LOG_READ_WRITE, un, 11113 "sdaread: file offset not modulo %d\n", 11114 secmask + 1); 11115 err = EINVAL; 11116 } else if (uio->uio_iov->iov_len & (secmask)) { 11117 SD_ERROR(SD_LOG_READ_WRITE, un, 11118 "sdaread: transfer length not modulo %d\n", 11119 secmask + 1); 11120 err = EINVAL; 11121 } else { 11122 err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio); 11123 } 11124 11125 return (err); 11126 } 11127 11128 11129 /* 11130 * Function: sdawrite 11131 * 11132 * Description: Driver's awrite(9e) entry point function. 11133 * 11134 * Arguments: dev - device number 11135 * aio - structure pointer describing where data is stored 11136 * cred_p - user credential pointer 11137 * 11138 * Return Code: ENXIO 11139 * EIO 11140 * EINVAL 11141 * value returned by aphysio 11142 * 11143 * Context: Kernel thread context. 11144 */ 11145 /* ARGSUSED */ 11146 static int 11147 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p) 11148 { 11149 struct sd_lun *un = NULL; 11150 struct uio *uio = aio->aio_uio; 11151 int secmask; 11152 int err = 0; 11153 sd_ssc_t *ssc; 11154 11155 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 11156 return (ENXIO); 11157 } 11158 11159 ASSERT(!mutex_owned(SD_MUTEX(un))); 11160 11161 if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) { 11162 mutex_enter(SD_MUTEX(un)); 11163 /* 11164 * Because the call to sd_ready_and_valid will issue I/O we 11165 * must wait here if either the device is suspended or 11166 * if it's power level is changing. 11167 */ 11168 while ((un->un_state == SD_STATE_SUSPENDED) || 11169 (un->un_state == SD_STATE_PM_CHANGING)) { 11170 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11171 } 11172 un->un_ncmds_in_driver++; 11173 mutex_exit(SD_MUTEX(un)); 11174 11175 /* Initialize sd_ssc_t for internal uscsi commands */ 11176 ssc = sd_ssc_init(un); 11177 if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) { 11178 err = EIO; 11179 } else { 11180 err = 0; 11181 } 11182 sd_ssc_fini(ssc); 11183 11184 mutex_enter(SD_MUTEX(un)); 11185 un->un_ncmds_in_driver--; 11186 ASSERT(un->un_ncmds_in_driver >= 0); 11187 mutex_exit(SD_MUTEX(un)); 11188 if (err != 0) 11189 return (err); 11190 } 11191 11192 /* 11193 * Write requests are restricted to multiples of the system block size. 11194 */ 11195 if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR && 11196 !un->un_f_enable_rmw) 11197 secmask = un->un_tgt_blocksize - 1; 11198 else 11199 secmask = DEV_BSIZE - 1; 11200 11201 if (uio->uio_loffset & ((offset_t)(secmask))) { 11202 SD_ERROR(SD_LOG_READ_WRITE, un, 11203 "sdawrite: file offset not modulo %d\n", 11204 secmask + 1); 11205 err = EINVAL; 11206 } else if (uio->uio_iov->iov_len & (secmask)) { 11207 SD_ERROR(SD_LOG_READ_WRITE, un, 11208 "sdawrite: transfer length not modulo %d\n", 11209 secmask + 1); 11210 err = EINVAL; 11211 } else { 11212 err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio); 11213 } 11214 11215 return (err); 11216 } 11217 11218 11219 11220 11221 11222 /* 11223 * Driver IO processing follows the following sequence: 11224 * 11225 * sdioctl(9E) sdstrategy(9E) biodone(9F) 11226 * | | ^ 11227 * v v | 11228 * sd_send_scsi_cmd() ddi_xbuf_qstrategy() +-------------------+ 11229 * | | | | 11230 * v | | | 11231 * sd_uscsi_strategy() sd_xbuf_strategy() sd_buf_iodone() sd_uscsi_iodone() 11232 * | | ^ ^ 11233 * v v | | 11234 * SD_BEGIN_IOSTART() SD_BEGIN_IOSTART() | | 11235 * | | | | 11236 * +---+ | +------------+ +-------+ 11237 * | | | | 11238 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 11239 * | v | | 11240 * | sd_mapblockaddr_iostart() sd_mapblockaddr_iodone() | 11241 * | | ^ | 11242 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 11243 * | v | | 11244 * | sd_mapblocksize_iostart() sd_mapblocksize_iodone() | 11245 * | | ^ | 11246 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 11247 * | v | | 11248 * | sd_checksum_iostart() sd_checksum_iodone() | 11249 * | | ^ | 11250 * +-> SD_NEXT_IOSTART()| SD_NEXT_IODONE()+------------->+ 11251 * | v | | 11252 * | sd_pm_iostart() sd_pm_iodone() | 11253 * | | ^ | 11254 * | | | | 11255 * +-> SD_NEXT_IOSTART()| SD_BEGIN_IODONE()--+--------------+ 11256 * | ^ 11257 * v | 11258 * sd_core_iostart() | 11259 * | | 11260 * | +------>(*destroypkt)() 11261 * +-> sd_start_cmds() <-+ | | 11262 * | | | v 11263 * | | | scsi_destroy_pkt(9F) 11264 * | | | 11265 * +->(*initpkt)() +- sdintr() 11266 * | | | | 11267 * | +-> scsi_init_pkt(9F) | +-> sd_handle_xxx() 11268 * | +-> scsi_setup_cdb(9F) | 11269 * | | 11270 * +--> scsi_transport(9F) | 11271 * | | 11272 * +----> SCSA ---->+ 11273 * 11274 * 11275 * This code is based upon the following presumptions: 11276 * 11277 * - iostart and iodone functions operate on buf(9S) structures. These 11278 * functions perform the necessary operations on the buf(9S) and pass 11279 * them along to the next function in the chain by using the macros 11280 * SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE() 11281 * (for iodone side functions). 11282 * 11283 * - The iostart side functions may sleep. The iodone side functions 11284 * are called under interrupt context and may NOT sleep. Therefore 11285 * iodone side functions also may not call iostart side functions. 11286 * (NOTE: iostart side functions should NOT sleep for memory, as 11287 * this could result in deadlock.) 11288 * 11289 * - An iostart side function may call its corresponding iodone side 11290 * function directly (if necessary). 11291 * 11292 * - In the event of an error, an iostart side function can return a buf(9S) 11293 * to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and 11294 * b_error in the usual way of course). 11295 * 11296 * - The taskq mechanism may be used by the iodone side functions to dispatch 11297 * requests to the iostart side functions. The iostart side functions in 11298 * this case would be called under the context of a taskq thread, so it's 11299 * OK for them to block/sleep/spin in this case. 11300 * 11301 * - iostart side functions may allocate "shadow" buf(9S) structs and 11302 * pass them along to the next function in the chain. The corresponding 11303 * iodone side functions must coalesce the "shadow" bufs and return 11304 * the "original" buf to the next higher layer. 11305 * 11306 * - The b_private field of the buf(9S) struct holds a pointer to 11307 * an sd_xbuf struct, which contains information needed to 11308 * construct the scsi_pkt for the command. 11309 * 11310 * - The SD_MUTEX(un) is NOT held across calls to the next layer. Each 11311 * layer must acquire & release the SD_MUTEX(un) as needed. 11312 */ 11313 11314 11315 /* 11316 * Create taskq for all targets in the system. This is created at 11317 * _init(9E) and destroyed at _fini(9E). 11318 * 11319 * Note: here we set the minalloc to a reasonably high number to ensure that 11320 * we will have an adequate supply of task entries available at interrupt time. 11321 * This is used in conjunction with the TASKQ_PREPOPULATE flag in 11322 * sd_create_taskq(). Since we do not want to sleep for allocations at 11323 * interrupt time, set maxalloc equal to minalloc. That way we will just fail 11324 * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq 11325 * requests any one instant in time. 11326 */ 11327 #define SD_TASKQ_NUMTHREADS 8 11328 #define SD_TASKQ_MINALLOC 256 11329 #define SD_TASKQ_MAXALLOC 256 11330 11331 static taskq_t *sd_tq = NULL; 11332 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq)) 11333 11334 static int sd_taskq_minalloc = SD_TASKQ_MINALLOC; 11335 static int sd_taskq_maxalloc = SD_TASKQ_MAXALLOC; 11336 11337 /* 11338 * The following task queue is being created for the write part of 11339 * read-modify-write of non-512 block size devices. 11340 * Limit the number of threads to 1 for now. This number has been chosen 11341 * considering the fact that it applies only to dvd ram drives/MO drives 11342 * currently. Performance for which is not main criteria at this stage. 11343 * Note: It needs to be explored if we can use a single taskq in future 11344 */ 11345 #define SD_WMR_TASKQ_NUMTHREADS 1 11346 static taskq_t *sd_wmr_tq = NULL; 11347 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq)) 11348 11349 /* 11350 * Function: sd_taskq_create 11351 * 11352 * Description: Create taskq thread(s) and preallocate task entries 11353 * 11354 * Return Code: Returns a pointer to the allocated taskq_t. 11355 * 11356 * Context: Can sleep. Requires blockable context. 11357 * 11358 * Notes: - The taskq() facility currently is NOT part of the DDI. 11359 * (definitely NOT recommeded for 3rd-party drivers!) :-) 11360 * - taskq_create() will block for memory, also it will panic 11361 * if it cannot create the requested number of threads. 11362 * - Currently taskq_create() creates threads that cannot be 11363 * swapped. 11364 * - We use TASKQ_PREPOPULATE to ensure we have an adequate 11365 * supply of taskq entries at interrupt time (ie, so that we 11366 * do not have to sleep for memory) 11367 */ 11368 11369 static void 11370 sd_taskq_create(void) 11371 { 11372 char taskq_name[TASKQ_NAMELEN]; 11373 11374 ASSERT(sd_tq == NULL); 11375 ASSERT(sd_wmr_tq == NULL); 11376 11377 (void) snprintf(taskq_name, sizeof (taskq_name), 11378 "%s_drv_taskq", sd_label); 11379 sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS, 11380 (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc, 11381 TASKQ_PREPOPULATE)); 11382 11383 (void) snprintf(taskq_name, sizeof (taskq_name), 11384 "%s_rmw_taskq", sd_label); 11385 sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS, 11386 (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc, 11387 TASKQ_PREPOPULATE)); 11388 } 11389 11390 11391 /* 11392 * Function: sd_taskq_delete 11393 * 11394 * Description: Complementary cleanup routine for sd_taskq_create(). 11395 * 11396 * Context: Kernel thread context. 11397 */ 11398 11399 static void 11400 sd_taskq_delete(void) 11401 { 11402 ASSERT(sd_tq != NULL); 11403 ASSERT(sd_wmr_tq != NULL); 11404 taskq_destroy(sd_tq); 11405 taskq_destroy(sd_wmr_tq); 11406 sd_tq = NULL; 11407 sd_wmr_tq = NULL; 11408 } 11409 11410 11411 /* 11412 * Function: sdstrategy 11413 * 11414 * Description: Driver's strategy (9E) entry point function. 11415 * 11416 * Arguments: bp - pointer to buf(9S) 11417 * 11418 * Return Code: Always returns zero 11419 * 11420 * Context: Kernel thread context. 11421 */ 11422 11423 static int 11424 sdstrategy(struct buf *bp) 11425 { 11426 struct sd_lun *un; 11427 11428 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 11429 if (un == NULL) { 11430 bioerror(bp, EIO); 11431 bp->b_resid = bp->b_bcount; 11432 biodone(bp); 11433 return (0); 11434 } 11435 11436 /* As was done in the past, fail new cmds. if state is dumping. */ 11437 if (un->un_state == SD_STATE_DUMPING) { 11438 bioerror(bp, ENXIO); 11439 bp->b_resid = bp->b_bcount; 11440 biodone(bp); 11441 return (0); 11442 } 11443 11444 ASSERT(!mutex_owned(SD_MUTEX(un))); 11445 11446 /* 11447 * Commands may sneak in while we released the mutex in 11448 * DDI_SUSPEND, we should block new commands. However, old 11449 * commands that are still in the driver at this point should 11450 * still be allowed to drain. 11451 */ 11452 mutex_enter(SD_MUTEX(un)); 11453 /* 11454 * Must wait here if either the device is suspended or 11455 * if it's power level is changing. 11456 */ 11457 while ((un->un_state == SD_STATE_SUSPENDED) || 11458 (un->un_state == SD_STATE_PM_CHANGING)) { 11459 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11460 } 11461 11462 un->un_ncmds_in_driver++; 11463 11464 /* 11465 * atapi: Since we are running the CD for now in PIO mode we need to 11466 * call bp_mapin here to avoid bp_mapin called interrupt context under 11467 * the HBA's init_pkt routine. 11468 */ 11469 if (un->un_f_cfg_is_atapi == TRUE) { 11470 mutex_exit(SD_MUTEX(un)); 11471 bp_mapin(bp); 11472 mutex_enter(SD_MUTEX(un)); 11473 } 11474 SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n", 11475 un->un_ncmds_in_driver); 11476 11477 if (bp->b_flags & B_WRITE) 11478 un->un_f_sync_cache_required = TRUE; 11479 11480 mutex_exit(SD_MUTEX(un)); 11481 11482 /* 11483 * This will (eventually) allocate the sd_xbuf area and 11484 * call sd_xbuf_strategy(). We just want to return the 11485 * result of ddi_xbuf_qstrategy so that we have an opt- 11486 * imized tail call which saves us a stack frame. 11487 */ 11488 return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr)); 11489 } 11490 11491 11492 /* 11493 * Function: sd_xbuf_strategy 11494 * 11495 * Description: Function for initiating IO operations via the 11496 * ddi_xbuf_qstrategy() mechanism. 11497 * 11498 * Context: Kernel thread context. 11499 */ 11500 11501 static void 11502 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg) 11503 { 11504 struct sd_lun *un = arg; 11505 11506 ASSERT(bp != NULL); 11507 ASSERT(xp != NULL); 11508 ASSERT(un != NULL); 11509 ASSERT(!mutex_owned(SD_MUTEX(un))); 11510 11511 /* 11512 * Initialize the fields in the xbuf and save a pointer to the 11513 * xbuf in bp->b_private. 11514 */ 11515 sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL); 11516 11517 /* Send the buf down the iostart chain */ 11518 SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp); 11519 } 11520 11521 11522 /* 11523 * Function: sd_xbuf_init 11524 * 11525 * Description: Prepare the given sd_xbuf struct for use. 11526 * 11527 * Arguments: un - ptr to softstate 11528 * bp - ptr to associated buf(9S) 11529 * xp - ptr to associated sd_xbuf 11530 * chain_type - IO chain type to use: 11531 * SD_CHAIN_NULL 11532 * SD_CHAIN_BUFIO 11533 * SD_CHAIN_USCSI 11534 * SD_CHAIN_DIRECT 11535 * SD_CHAIN_DIRECT_PRIORITY 11536 * pktinfop - ptr to private data struct for scsi_pkt(9S) 11537 * initialization; may be NULL if none. 11538 * 11539 * Context: Kernel thread context 11540 */ 11541 11542 static void 11543 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 11544 uchar_t chain_type, void *pktinfop) 11545 { 11546 int index; 11547 11548 ASSERT(un != NULL); 11549 ASSERT(bp != NULL); 11550 ASSERT(xp != NULL); 11551 11552 SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n", 11553 bp, chain_type); 11554 11555 xp->xb_un = un; 11556 xp->xb_pktp = NULL; 11557 xp->xb_pktinfo = pktinfop; 11558 xp->xb_private = bp->b_private; 11559 xp->xb_blkno = (daddr_t)bp->b_blkno; 11560 11561 /* 11562 * Set up the iostart and iodone chain indexes in the xbuf, based 11563 * upon the specified chain type to use. 11564 */ 11565 switch (chain_type) { 11566 case SD_CHAIN_NULL: 11567 /* 11568 * Fall thru to just use the values for the buf type, even 11569 * tho for the NULL chain these values will never be used. 11570 */ 11571 /* FALLTHRU */ 11572 case SD_CHAIN_BUFIO: 11573 index = un->un_buf_chain_type; 11574 if ((!un->un_f_has_removable_media) && 11575 (un->un_tgt_blocksize != 0) && 11576 (un->un_tgt_blocksize != DEV_BSIZE || 11577 un->un_f_enable_rmw)) { 11578 int secmask = 0, blknomask = 0; 11579 if (un->un_f_enable_rmw) { 11580 blknomask = 11581 (un->un_phy_blocksize / DEV_BSIZE) - 1; 11582 secmask = un->un_phy_blocksize - 1; 11583 } else { 11584 blknomask = 11585 (un->un_tgt_blocksize / DEV_BSIZE) - 1; 11586 secmask = un->un_tgt_blocksize - 1; 11587 } 11588 11589 if ((bp->b_lblkno & (blknomask)) || 11590 (bp->b_bcount & (secmask))) { 11591 if ((un->un_f_rmw_type != 11592 SD_RMW_TYPE_RETURN_ERROR) || 11593 un->un_f_enable_rmw) { 11594 if (un->un_f_pm_is_enabled == FALSE) 11595 index = 11596 SD_CHAIN_INFO_MSS_DSK_NO_PM; 11597 else 11598 index = 11599 SD_CHAIN_INFO_MSS_DISK; 11600 } 11601 } 11602 } 11603 break; 11604 case SD_CHAIN_USCSI: 11605 index = un->un_uscsi_chain_type; 11606 break; 11607 case SD_CHAIN_DIRECT: 11608 index = un->un_direct_chain_type; 11609 break; 11610 case SD_CHAIN_DIRECT_PRIORITY: 11611 index = un->un_priority_chain_type; 11612 break; 11613 default: 11614 /* We're really broken if we ever get here... */ 11615 panic("sd_xbuf_init: illegal chain type!"); 11616 /*NOTREACHED*/ 11617 } 11618 11619 xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index; 11620 xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index; 11621 11622 /* 11623 * It might be a bit easier to simply bzero the entire xbuf above, 11624 * but it turns out that since we init a fair number of members anyway, 11625 * we save a fair number cycles by doing explicit assignment of zero. 11626 */ 11627 xp->xb_pkt_flags = 0; 11628 xp->xb_dma_resid = 0; 11629 xp->xb_retry_count = 0; 11630 xp->xb_victim_retry_count = 0; 11631 xp->xb_ua_retry_count = 0; 11632 xp->xb_nr_retry_count = 0; 11633 xp->xb_sense_bp = NULL; 11634 xp->xb_sense_status = 0; 11635 xp->xb_sense_state = 0; 11636 xp->xb_sense_resid = 0; 11637 xp->xb_ena = 0; 11638 11639 bp->b_private = xp; 11640 bp->b_flags &= ~(B_DONE | B_ERROR); 11641 bp->b_resid = 0; 11642 bp->av_forw = NULL; 11643 bp->av_back = NULL; 11644 bioerror(bp, 0); 11645 11646 SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n"); 11647 } 11648 11649 11650 /* 11651 * Function: sd_uscsi_strategy 11652 * 11653 * Description: Wrapper for calling into the USCSI chain via physio(9F) 11654 * 11655 * Arguments: bp - buf struct ptr 11656 * 11657 * Return Code: Always returns 0 11658 * 11659 * Context: Kernel thread context 11660 */ 11661 11662 static int 11663 sd_uscsi_strategy(struct buf *bp) 11664 { 11665 struct sd_lun *un; 11666 struct sd_uscsi_info *uip; 11667 struct sd_xbuf *xp; 11668 uchar_t chain_type; 11669 uchar_t cmd; 11670 11671 ASSERT(bp != NULL); 11672 11673 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 11674 if (un == NULL) { 11675 bioerror(bp, EIO); 11676 bp->b_resid = bp->b_bcount; 11677 biodone(bp); 11678 return (0); 11679 } 11680 11681 ASSERT(!mutex_owned(SD_MUTEX(un))); 11682 11683 SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp); 11684 11685 /* 11686 * A pointer to a struct sd_uscsi_info is expected in bp->b_private 11687 */ 11688 ASSERT(bp->b_private != NULL); 11689 uip = (struct sd_uscsi_info *)bp->b_private; 11690 cmd = ((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_cdb[0]; 11691 11692 mutex_enter(SD_MUTEX(un)); 11693 /* 11694 * atapi: Since we are running the CD for now in PIO mode we need to 11695 * call bp_mapin here to avoid bp_mapin called interrupt context under 11696 * the HBA's init_pkt routine. 11697 */ 11698 if (un->un_f_cfg_is_atapi == TRUE) { 11699 mutex_exit(SD_MUTEX(un)); 11700 bp_mapin(bp); 11701 mutex_enter(SD_MUTEX(un)); 11702 } 11703 un->un_ncmds_in_driver++; 11704 SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n", 11705 un->un_ncmds_in_driver); 11706 11707 if ((bp->b_flags & B_WRITE) && (bp->b_bcount != 0) && 11708 (cmd != SCMD_MODE_SELECT) && (cmd != SCMD_MODE_SELECT_G1)) 11709 un->un_f_sync_cache_required = TRUE; 11710 11711 mutex_exit(SD_MUTEX(un)); 11712 11713 switch (uip->ui_flags) { 11714 case SD_PATH_DIRECT: 11715 chain_type = SD_CHAIN_DIRECT; 11716 break; 11717 case SD_PATH_DIRECT_PRIORITY: 11718 chain_type = SD_CHAIN_DIRECT_PRIORITY; 11719 break; 11720 default: 11721 chain_type = SD_CHAIN_USCSI; 11722 break; 11723 } 11724 11725 /* 11726 * We may allocate extra buf for external USCSI commands. If the 11727 * application asks for bigger than 20-byte sense data via USCSI, 11728 * SCSA layer will allocate 252 bytes sense buf for that command. 11729 */ 11730 if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen > 11731 SENSE_LENGTH) { 11732 xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH + 11733 MAX_SENSE_LENGTH, KM_SLEEP); 11734 } else { 11735 xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP); 11736 } 11737 11738 sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp); 11739 11740 /* Use the index obtained within xbuf_init */ 11741 SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp); 11742 11743 SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp); 11744 11745 return (0); 11746 } 11747 11748 /* 11749 * Function: sd_send_scsi_cmd 11750 * 11751 * Description: Runs a USCSI command for user (when called thru sdioctl), 11752 * or for the driver 11753 * 11754 * Arguments: dev - the dev_t for the device 11755 * incmd - ptr to a valid uscsi_cmd struct 11756 * flag - bit flag, indicating open settings, 32/64 bit type 11757 * dataspace - UIO_USERSPACE or UIO_SYSSPACE 11758 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 11759 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 11760 * to use the USCSI "direct" chain and bypass the normal 11761 * command waitq. 11762 * 11763 * Return Code: 0 - successful completion of the given command 11764 * EIO - scsi_uscsi_handle_command() failed 11765 * ENXIO - soft state not found for specified dev 11766 * EINVAL 11767 * EFAULT - copyin/copyout error 11768 * return code of scsi_uscsi_handle_command(): 11769 * EIO 11770 * ENXIO 11771 * EACCES 11772 * 11773 * Context: Waits for command to complete. Can sleep. 11774 */ 11775 11776 static int 11777 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag, 11778 enum uio_seg dataspace, int path_flag) 11779 { 11780 struct sd_lun *un; 11781 sd_ssc_t *ssc; 11782 int rval; 11783 11784 un = ddi_get_soft_state(sd_state, SDUNIT(dev)); 11785 if (un == NULL) { 11786 return (ENXIO); 11787 } 11788 11789 /* 11790 * Using sd_ssc_send to handle uscsi cmd 11791 */ 11792 ssc = sd_ssc_init(un); 11793 rval = sd_ssc_send(ssc, incmd, flag, dataspace, path_flag); 11794 sd_ssc_fini(ssc); 11795 11796 return (rval); 11797 } 11798 11799 /* 11800 * Function: sd_ssc_init 11801 * 11802 * Description: Uscsi end-user call this function to initialize necessary 11803 * fields, such as uscsi_cmd and sd_uscsi_info struct. 11804 * 11805 * The return value of sd_send_scsi_cmd will be treated as a 11806 * fault in various conditions. Even it is not Zero, some 11807 * callers may ignore the return value. That is to say, we can 11808 * not make an accurate assessment in sdintr, since if a 11809 * command is failed in sdintr it does not mean the caller of 11810 * sd_send_scsi_cmd will treat it as a real failure. 11811 * 11812 * To avoid printing too many error logs for a failed uscsi 11813 * packet that the caller may not treat it as a failure, the 11814 * sd will keep silent for handling all uscsi commands. 11815 * 11816 * During detach->attach and attach-open, for some types of 11817 * problems, the driver should be providing information about 11818 * the problem encountered. Device use USCSI_SILENT, which 11819 * suppresses all driver information. The result is that no 11820 * information about the problem is available. Being 11821 * completely silent during this time is inappropriate. The 11822 * driver needs a more selective filter than USCSI_SILENT, so 11823 * that information related to faults is provided. 11824 * 11825 * To make the accurate accessment, the caller of 11826 * sd_send_scsi_USCSI_CMD should take the ownership and 11827 * get necessary information to print error messages. 11828 * 11829 * If we want to print necessary info of uscsi command, we need to 11830 * keep the uscsi_cmd and sd_uscsi_info till we can make the 11831 * assessment. We use sd_ssc_init to alloc necessary 11832 * structs for sending an uscsi command and we are also 11833 * responsible for free the memory by calling 11834 * sd_ssc_fini. 11835 * 11836 * The calling secquences will look like: 11837 * sd_ssc_init-> 11838 * 11839 * ... 11840 * 11841 * sd_send_scsi_USCSI_CMD-> 11842 * sd_ssc_send-> - - - sdintr 11843 * ... 11844 * 11845 * if we think the return value should be treated as a 11846 * failure, we make the accessment here and print out 11847 * necessary by retrieving uscsi_cmd and sd_uscsi_info' 11848 * 11849 * ... 11850 * 11851 * sd_ssc_fini 11852 * 11853 * 11854 * Arguments: un - pointer to driver soft state (unit) structure for this 11855 * target. 11856 * 11857 * Return code: sd_ssc_t - pointer to allocated sd_ssc_t struct, it contains 11858 * uscsi_cmd and sd_uscsi_info. 11859 * NULL - if can not alloc memory for sd_ssc_t struct 11860 * 11861 * Context: Kernel Thread. 11862 */ 11863 static sd_ssc_t * 11864 sd_ssc_init(struct sd_lun *un) 11865 { 11866 sd_ssc_t *ssc; 11867 struct uscsi_cmd *ucmdp; 11868 struct sd_uscsi_info *uip; 11869 11870 ASSERT(un != NULL); 11871 ASSERT(!mutex_owned(SD_MUTEX(un))); 11872 11873 /* 11874 * Allocate sd_ssc_t structure 11875 */ 11876 ssc = kmem_zalloc(sizeof (sd_ssc_t), KM_SLEEP); 11877 11878 /* 11879 * Allocate uscsi_cmd by calling scsi_uscsi_alloc common routine 11880 */ 11881 ucmdp = scsi_uscsi_alloc(); 11882 11883 /* 11884 * Allocate sd_uscsi_info structure 11885 */ 11886 uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP); 11887 11888 ssc->ssc_uscsi_cmd = ucmdp; 11889 ssc->ssc_uscsi_info = uip; 11890 ssc->ssc_un = un; 11891 11892 return (ssc); 11893 } 11894 11895 /* 11896 * Function: sd_ssc_fini 11897 * 11898 * Description: To free sd_ssc_t and it's hanging off 11899 * 11900 * Arguments: ssc - struct pointer of sd_ssc_t. 11901 */ 11902 static void 11903 sd_ssc_fini(sd_ssc_t *ssc) 11904 { 11905 scsi_uscsi_free(ssc->ssc_uscsi_cmd); 11906 11907 if (ssc->ssc_uscsi_info != NULL) { 11908 kmem_free(ssc->ssc_uscsi_info, sizeof (struct sd_uscsi_info)); 11909 ssc->ssc_uscsi_info = NULL; 11910 } 11911 11912 kmem_free(ssc, sizeof (sd_ssc_t)); 11913 ssc = NULL; 11914 } 11915 11916 /* 11917 * Function: sd_ssc_send 11918 * 11919 * Description: Runs a USCSI command for user when called through sdioctl, 11920 * or for the driver. 11921 * 11922 * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and 11923 * sd_uscsi_info in. 11924 * incmd - ptr to a valid uscsi_cmd struct 11925 * flag - bit flag, indicating open settings, 32/64 bit type 11926 * dataspace - UIO_USERSPACE or UIO_SYSSPACE 11927 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 11928 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 11929 * to use the USCSI "direct" chain and bypass the normal 11930 * command waitq. 11931 * 11932 * Return Code: 0 - successful completion of the given command 11933 * EIO - scsi_uscsi_handle_command() failed 11934 * ENXIO - soft state not found for specified dev 11935 * ECANCELED - command cancelled due to low power 11936 * EINVAL 11937 * EFAULT - copyin/copyout error 11938 * return code of scsi_uscsi_handle_command(): 11939 * EIO 11940 * ENXIO 11941 * EACCES 11942 * 11943 * Context: Kernel Thread; 11944 * Waits for command to complete. Can sleep. 11945 */ 11946 static int 11947 sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, int flag, 11948 enum uio_seg dataspace, int path_flag) 11949 { 11950 struct sd_uscsi_info *uip; 11951 struct uscsi_cmd *uscmd; 11952 struct sd_lun *un; 11953 dev_t dev; 11954 11955 int format = 0; 11956 int rval; 11957 11958 ASSERT(ssc != NULL); 11959 un = ssc->ssc_un; 11960 ASSERT(un != NULL); 11961 uscmd = ssc->ssc_uscsi_cmd; 11962 ASSERT(uscmd != NULL); 11963 ASSERT(!mutex_owned(SD_MUTEX(un))); 11964 if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) { 11965 /* 11966 * If enter here, it indicates that the previous uscsi 11967 * command has not been processed by sd_ssc_assessment. 11968 * This is violating our rules of FMA telemetry processing. 11969 * We should print out this message and the last undisposed 11970 * uscsi command. 11971 */ 11972 if (uscmd->uscsi_cdb != NULL) { 11973 SD_INFO(SD_LOG_SDTEST, un, 11974 "sd_ssc_send is missing the alternative " 11975 "sd_ssc_assessment when running command 0x%x.\n", 11976 uscmd->uscsi_cdb[0]); 11977 } 11978 /* 11979 * Set the ssc_flags to SSC_FLAGS_UNKNOWN, which should be 11980 * the initial status. 11981 */ 11982 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 11983 } 11984 11985 /* 11986 * We need to make sure sd_ssc_send will have sd_ssc_assessment 11987 * followed to avoid missing FMA telemetries. 11988 */ 11989 ssc->ssc_flags |= SSC_FLAGS_NEED_ASSESSMENT; 11990 11991 /* 11992 * if USCSI_PMFAILFAST is set and un is in low power, fail the 11993 * command immediately. 11994 */ 11995 mutex_enter(SD_MUTEX(un)); 11996 mutex_enter(&un->un_pm_mutex); 11997 if ((uscmd->uscsi_flags & USCSI_PMFAILFAST) && 11998 SD_DEVICE_IS_IN_LOW_POWER(un)) { 11999 SD_TRACE(SD_LOG_IO, un, "sd_ssc_send:" 12000 "un:0x%p is in low power\n", un); 12001 mutex_exit(&un->un_pm_mutex); 12002 mutex_exit(SD_MUTEX(un)); 12003 return (ECANCELED); 12004 } 12005 mutex_exit(&un->un_pm_mutex); 12006 mutex_exit(SD_MUTEX(un)); 12007 12008 #ifdef SDDEBUG 12009 switch (dataspace) { 12010 case UIO_USERSPACE: 12011 SD_TRACE(SD_LOG_IO, un, 12012 "sd_ssc_send: entry: un:0x%p UIO_USERSPACE\n", un); 12013 break; 12014 case UIO_SYSSPACE: 12015 SD_TRACE(SD_LOG_IO, un, 12016 "sd_ssc_send: entry: un:0x%p UIO_SYSSPACE\n", un); 12017 break; 12018 default: 12019 SD_TRACE(SD_LOG_IO, un, 12020 "sd_ssc_send: entry: un:0x%p UNEXPECTED SPACE\n", un); 12021 break; 12022 } 12023 #endif 12024 12025 rval = scsi_uscsi_copyin((intptr_t)incmd, flag, 12026 SD_ADDRESS(un), &uscmd); 12027 if (rval != 0) { 12028 SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: " 12029 "scsi_uscsi_alloc_and_copyin failed\n", un); 12030 return (rval); 12031 } 12032 12033 if ((uscmd->uscsi_cdb != NULL) && 12034 (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) { 12035 mutex_enter(SD_MUTEX(un)); 12036 un->un_f_format_in_progress = TRUE; 12037 mutex_exit(SD_MUTEX(un)); 12038 format = 1; 12039 } 12040 12041 /* 12042 * Allocate an sd_uscsi_info struct and fill it with the info 12043 * needed by sd_initpkt_for_uscsi(). Then put the pointer into 12044 * b_private in the buf for sd_initpkt_for_uscsi(). Note that 12045 * since we allocate the buf here in this function, we do not 12046 * need to preserve the prior contents of b_private. 12047 * The sd_uscsi_info struct is also used by sd_uscsi_strategy() 12048 */ 12049 uip = ssc->ssc_uscsi_info; 12050 uip->ui_flags = path_flag; 12051 uip->ui_cmdp = uscmd; 12052 12053 /* 12054 * Commands sent with priority are intended for error recovery 12055 * situations, and do not have retries performed. 12056 */ 12057 if (path_flag == SD_PATH_DIRECT_PRIORITY) { 12058 uscmd->uscsi_flags |= USCSI_DIAGNOSE; 12059 } 12060 uscmd->uscsi_flags &= ~USCSI_NOINTR; 12061 12062 dev = SD_GET_DEV(un); 12063 rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd, 12064 sd_uscsi_strategy, NULL, uip); 12065 12066 /* 12067 * mark ssc_flags right after handle_cmd to make sure 12068 * the uscsi has been sent 12069 */ 12070 ssc->ssc_flags |= SSC_FLAGS_CMD_ISSUED; 12071 12072 #ifdef SDDEBUG 12073 SD_INFO(SD_LOG_IO, un, "sd_ssc_send: " 12074 "uscsi_status: 0x%02x uscsi_resid:0x%x\n", 12075 uscmd->uscsi_status, uscmd->uscsi_resid); 12076 if (uscmd->uscsi_bufaddr != NULL) { 12077 SD_INFO(SD_LOG_IO, un, "sd_ssc_send: " 12078 "uscmd->uscsi_bufaddr: 0x%p uscmd->uscsi_buflen:%d\n", 12079 uscmd->uscsi_bufaddr, uscmd->uscsi_buflen); 12080 if (dataspace == UIO_SYSSPACE) { 12081 SD_DUMP_MEMORY(un, SD_LOG_IO, 12082 "data", (uchar_t *)uscmd->uscsi_bufaddr, 12083 uscmd->uscsi_buflen, SD_LOG_HEX); 12084 } 12085 } 12086 #endif 12087 12088 if (format == 1) { 12089 mutex_enter(SD_MUTEX(un)); 12090 un->un_f_format_in_progress = FALSE; 12091 mutex_exit(SD_MUTEX(un)); 12092 } 12093 12094 (void) scsi_uscsi_copyout((intptr_t)incmd, uscmd); 12095 12096 return (rval); 12097 } 12098 12099 /* 12100 * Function: sd_ssc_print 12101 * 12102 * Description: Print information available to the console. 12103 * 12104 * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and 12105 * sd_uscsi_info in. 12106 * sd_severity - log level. 12107 * Context: Kernel thread or interrupt context. 12108 */ 12109 static void 12110 sd_ssc_print(sd_ssc_t *ssc, int sd_severity) 12111 { 12112 struct uscsi_cmd *ucmdp; 12113 struct scsi_device *devp; 12114 dev_info_t *devinfo; 12115 uchar_t *sensep; 12116 int senlen; 12117 union scsi_cdb *cdbp; 12118 uchar_t com; 12119 extern struct scsi_key_strings scsi_cmds[]; 12120 12121 ASSERT(ssc != NULL); 12122 ASSERT(ssc->ssc_un != NULL); 12123 12124 if (SD_FM_LOG(ssc->ssc_un) != SD_FM_LOG_EREPORT) 12125 return; 12126 ucmdp = ssc->ssc_uscsi_cmd; 12127 devp = SD_SCSI_DEVP(ssc->ssc_un); 12128 devinfo = SD_DEVINFO(ssc->ssc_un); 12129 ASSERT(ucmdp != NULL); 12130 ASSERT(devp != NULL); 12131 ASSERT(devinfo != NULL); 12132 sensep = (uint8_t *)ucmdp->uscsi_rqbuf; 12133 senlen = ucmdp->uscsi_rqlen - ucmdp->uscsi_rqresid; 12134 cdbp = (union scsi_cdb *)ucmdp->uscsi_cdb; 12135 12136 /* In certain case (like DOORLOCK), the cdb could be NULL. */ 12137 if (cdbp == NULL) 12138 return; 12139 /* We don't print log if no sense data available. */ 12140 if (senlen == 0) 12141 sensep = NULL; 12142 com = cdbp->scc_cmd; 12143 scsi_generic_errmsg(devp, sd_label, sd_severity, 0, 0, com, 12144 scsi_cmds, sensep, ssc->ssc_un->un_additional_codes, NULL); 12145 } 12146 12147 /* 12148 * Function: sd_ssc_assessment 12149 * 12150 * Description: We use this function to make an assessment at the point 12151 * where SD driver may encounter a potential error. 12152 * 12153 * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and 12154 * sd_uscsi_info in. 12155 * tp_assess - a hint of strategy for ereport posting. 12156 * Possible values of tp_assess include: 12157 * SD_FMT_IGNORE - we don't post any ereport because we're 12158 * sure that it is ok to ignore the underlying problems. 12159 * SD_FMT_IGNORE_COMPROMISE - we don't post any ereport for now 12160 * but it might be not correct to ignore the underlying hardware 12161 * error. 12162 * SD_FMT_STATUS_CHECK - we will post an ereport with the 12163 * payload driver-assessment of value "fail" or 12164 * "fatal"(depending on what information we have here). This 12165 * assessment value is usually set when SD driver think there 12166 * is a potential error occurred(Typically, when return value 12167 * of the SCSI command is EIO). 12168 * SD_FMT_STANDARD - we will post an ereport with the payload 12169 * driver-assessment of value "info". This assessment value is 12170 * set when the SCSI command returned successfully and with 12171 * sense data sent back. 12172 * 12173 * Context: Kernel thread. 12174 */ 12175 static void 12176 sd_ssc_assessment(sd_ssc_t *ssc, enum sd_type_assessment tp_assess) 12177 { 12178 int senlen = 0; 12179 struct uscsi_cmd *ucmdp = NULL; 12180 struct sd_lun *un; 12181 12182 ASSERT(ssc != NULL); 12183 un = ssc->ssc_un; 12184 ASSERT(un != NULL); 12185 ucmdp = ssc->ssc_uscsi_cmd; 12186 ASSERT(ucmdp != NULL); 12187 12188 if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) { 12189 ssc->ssc_flags &= ~SSC_FLAGS_NEED_ASSESSMENT; 12190 } else { 12191 /* 12192 * If enter here, it indicates that we have a wrong 12193 * calling sequence of sd_ssc_send and sd_ssc_assessment, 12194 * both of which should be called in a pair in case of 12195 * loss of FMA telemetries. 12196 */ 12197 if (ucmdp->uscsi_cdb != NULL) { 12198 SD_INFO(SD_LOG_SDTEST, un, 12199 "sd_ssc_assessment is missing the " 12200 "alternative sd_ssc_send when running 0x%x, " 12201 "or there are superfluous sd_ssc_assessment for " 12202 "the same sd_ssc_send.\n", 12203 ucmdp->uscsi_cdb[0]); 12204 } 12205 /* 12206 * Set the ssc_flags to the initial value to avoid passing 12207 * down dirty flags to the following sd_ssc_send function. 12208 */ 12209 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 12210 return; 12211 } 12212 12213 /* 12214 * Only handle an issued command which is waiting for assessment. 12215 * A command which is not issued will not have 12216 * SSC_FLAGS_INVALID_DATA set, so it'ok we just return here. 12217 */ 12218 if (!(ssc->ssc_flags & SSC_FLAGS_CMD_ISSUED)) { 12219 sd_ssc_print(ssc, SCSI_ERR_INFO); 12220 return; 12221 } else { 12222 /* 12223 * For an issued command, we should clear this flag in 12224 * order to make the sd_ssc_t structure be used off 12225 * multiple uscsi commands. 12226 */ 12227 ssc->ssc_flags &= ~SSC_FLAGS_CMD_ISSUED; 12228 } 12229 12230 /* 12231 * We will not deal with non-retryable(flag USCSI_DIAGNOSE set) 12232 * commands here. And we should clear the ssc_flags before return. 12233 */ 12234 if (ucmdp->uscsi_flags & USCSI_DIAGNOSE) { 12235 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 12236 return; 12237 } 12238 12239 switch (tp_assess) { 12240 case SD_FMT_IGNORE: 12241 case SD_FMT_IGNORE_COMPROMISE: 12242 break; 12243 case SD_FMT_STATUS_CHECK: 12244 /* 12245 * For a failed command(including the succeeded command 12246 * with invalid data sent back). 12247 */ 12248 sd_ssc_post(ssc, SD_FM_DRV_FATAL); 12249 break; 12250 case SD_FMT_STANDARD: 12251 /* 12252 * Always for the succeeded commands probably with sense 12253 * data sent back. 12254 * Limitation: 12255 * We can only handle a succeeded command with sense 12256 * data sent back when auto-request-sense is enabled. 12257 */ 12258 senlen = ssc->ssc_uscsi_cmd->uscsi_rqlen - 12259 ssc->ssc_uscsi_cmd->uscsi_rqresid; 12260 if ((ssc->ssc_uscsi_info->ui_pkt_state & STATE_ARQ_DONE) && 12261 (un->un_f_arq_enabled == TRUE) && 12262 senlen > 0 && 12263 ssc->ssc_uscsi_cmd->uscsi_rqbuf != NULL) { 12264 sd_ssc_post(ssc, SD_FM_DRV_NOTICE); 12265 } 12266 break; 12267 default: 12268 /* 12269 * Should not have other type of assessment. 12270 */ 12271 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 12272 "sd_ssc_assessment got wrong " 12273 "sd_type_assessment %d.\n", tp_assess); 12274 break; 12275 } 12276 /* 12277 * Clear up the ssc_flags before return. 12278 */ 12279 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 12280 } 12281 12282 /* 12283 * Function: sd_ssc_post 12284 * 12285 * Description: 1. read the driver property to get fm-scsi-log flag. 12286 * 2. print log if fm_log_capable is non-zero. 12287 * 3. call sd_ssc_ereport_post to post ereport if possible. 12288 * 12289 * Context: May be called from kernel thread or interrupt context. 12290 */ 12291 static void 12292 sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess) 12293 { 12294 struct sd_lun *un; 12295 int sd_severity; 12296 12297 ASSERT(ssc != NULL); 12298 un = ssc->ssc_un; 12299 ASSERT(un != NULL); 12300 12301 /* 12302 * We may enter here from sd_ssc_assessment(for USCSI command) or 12303 * by directly called from sdintr context. 12304 * We don't handle a non-disk drive(CD-ROM, removable media). 12305 * Clear the ssc_flags before return in case we've set 12306 * SSC_FLAGS_INVALID_XXX which should be skipped for a non-disk 12307 * driver. 12308 */ 12309 if (ISCD(un) || un->un_f_has_removable_media) { 12310 ssc->ssc_flags = SSC_FLAGS_UNKNOWN; 12311 return; 12312 } 12313 12314 switch (sd_assess) { 12315 case SD_FM_DRV_FATAL: 12316 sd_severity = SCSI_ERR_FATAL; 12317 break; 12318 case SD_FM_DRV_RECOVERY: 12319 sd_severity = SCSI_ERR_RECOVERED; 12320 break; 12321 case SD_FM_DRV_RETRY: 12322 sd_severity = SCSI_ERR_RETRYABLE; 12323 break; 12324 case SD_FM_DRV_NOTICE: 12325 sd_severity = SCSI_ERR_INFO; 12326 break; 12327 default: 12328 sd_severity = SCSI_ERR_UNKNOWN; 12329 } 12330 /* print log */ 12331 sd_ssc_print(ssc, sd_severity); 12332 12333 /* always post ereport */ 12334 sd_ssc_ereport_post(ssc, sd_assess); 12335 } 12336 12337 /* 12338 * Function: sd_ssc_set_info 12339 * 12340 * Description: Mark ssc_flags and set ssc_info which would be the 12341 * payload of uderr ereport. This function will cause 12342 * sd_ssc_ereport_post to post uderr ereport only. 12343 * Besides, when ssc_flags == SSC_FLAGS_INVALID_DATA(USCSI), 12344 * the function will also call SD_ERROR or scsi_log for a 12345 * CDROM/removable-media/DDI_FM_NOT_CAPABLE device. 12346 * 12347 * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and 12348 * sd_uscsi_info in. 12349 * ssc_flags - indicate the sub-category of a uderr. 12350 * comp - this argument is meaningful only when 12351 * ssc_flags == SSC_FLAGS_INVALID_DATA, and its possible 12352 * values include: 12353 * > 0, SD_ERROR is used with comp as the driver logging 12354 * component; 12355 * = 0, scsi-log is used to log error telemetries; 12356 * < 0, no log available for this telemetry. 12357 * 12358 * Context: Kernel thread or interrupt context 12359 */ 12360 static void 12361 sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp, const char *fmt, ...) 12362 { 12363 va_list ap; 12364 12365 ASSERT(ssc != NULL); 12366 ASSERT(ssc->ssc_un != NULL); 12367 12368 ssc->ssc_flags |= ssc_flags; 12369 va_start(ap, fmt); 12370 (void) vsnprintf(ssc->ssc_info, sizeof (ssc->ssc_info), fmt, ap); 12371 va_end(ap); 12372 12373 /* 12374 * If SSC_FLAGS_INVALID_DATA is set, it should be a uscsi command 12375 * with invalid data sent back. For non-uscsi command, the 12376 * following code will be bypassed. 12377 */ 12378 if (ssc_flags & SSC_FLAGS_INVALID_DATA) { 12379 if (SD_FM_LOG(ssc->ssc_un) == SD_FM_LOG_NSUP) { 12380 /* 12381 * If the error belong to certain component and we 12382 * do not want it to show up on the console, we 12383 * will use SD_ERROR, otherwise scsi_log is 12384 * preferred. 12385 */ 12386 if (comp > 0) { 12387 SD_ERROR(comp, ssc->ssc_un, ssc->ssc_info); 12388 } else if (comp == 0) { 12389 scsi_log(SD_DEVINFO(ssc->ssc_un), sd_label, 12390 CE_WARN, ssc->ssc_info); 12391 } 12392 } 12393 } 12394 } 12395 12396 /* 12397 * Function: sd_buf_iodone 12398 * 12399 * Description: Frees the sd_xbuf & returns the buf to its originator. 12400 * 12401 * Context: May be called from interrupt context. 12402 */ 12403 /* ARGSUSED */ 12404 static void 12405 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp) 12406 { 12407 struct sd_xbuf *xp; 12408 12409 ASSERT(un != NULL); 12410 ASSERT(bp != NULL); 12411 ASSERT(!mutex_owned(SD_MUTEX(un))); 12412 12413 SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n"); 12414 12415 xp = SD_GET_XBUF(bp); 12416 ASSERT(xp != NULL); 12417 12418 /* xbuf is gone after this */ 12419 if (ddi_xbuf_done(bp, un->un_xbuf_attr)) { 12420 mutex_enter(SD_MUTEX(un)); 12421 12422 /* 12423 * Grab time when the cmd completed. 12424 * This is used for determining if the system has been 12425 * idle long enough to make it idle to the PM framework. 12426 * This is for lowering the overhead, and therefore improving 12427 * performance per I/O operation. 12428 */ 12429 un->un_pm_idle_time = ddi_get_time(); 12430 12431 un->un_ncmds_in_driver--; 12432 ASSERT(un->un_ncmds_in_driver >= 0); 12433 SD_INFO(SD_LOG_IO, un, 12434 "sd_buf_iodone: un_ncmds_in_driver = %ld\n", 12435 un->un_ncmds_in_driver); 12436 12437 mutex_exit(SD_MUTEX(un)); 12438 } 12439 12440 biodone(bp); /* bp is gone after this */ 12441 12442 SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n"); 12443 } 12444 12445 12446 /* 12447 * Function: sd_uscsi_iodone 12448 * 12449 * Description: Frees the sd_xbuf & returns the buf to its originator. 12450 * 12451 * Context: May be called from interrupt context. 12452 */ 12453 /* ARGSUSED */ 12454 static void 12455 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp) 12456 { 12457 struct sd_xbuf *xp; 12458 12459 ASSERT(un != NULL); 12460 ASSERT(bp != NULL); 12461 12462 xp = SD_GET_XBUF(bp); 12463 ASSERT(xp != NULL); 12464 ASSERT(!mutex_owned(SD_MUTEX(un))); 12465 12466 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n"); 12467 12468 bp->b_private = xp->xb_private; 12469 12470 mutex_enter(SD_MUTEX(un)); 12471 12472 /* 12473 * Grab time when the cmd completed. 12474 * This is used for determining if the system has been 12475 * idle long enough to make it idle to the PM framework. 12476 * This is for lowering the overhead, and therefore improving 12477 * performance per I/O operation. 12478 */ 12479 un->un_pm_idle_time = ddi_get_time(); 12480 12481 un->un_ncmds_in_driver--; 12482 ASSERT(un->un_ncmds_in_driver >= 0); 12483 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n", 12484 un->un_ncmds_in_driver); 12485 12486 mutex_exit(SD_MUTEX(un)); 12487 12488 if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen > 12489 SENSE_LENGTH) { 12490 kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH + 12491 MAX_SENSE_LENGTH); 12492 } else { 12493 kmem_free(xp, sizeof (struct sd_xbuf)); 12494 } 12495 12496 biodone(bp); 12497 12498 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n"); 12499 } 12500 12501 12502 /* 12503 * Function: sd_mapblockaddr_iostart 12504 * 12505 * Description: Verify request lies within the partition limits for 12506 * the indicated minor device. Issue "overrun" buf if 12507 * request would exceed partition range. Converts 12508 * partition-relative block address to absolute. 12509 * 12510 * Upon exit of this function: 12511 * 1.I/O is aligned 12512 * xp->xb_blkno represents the absolute sector address 12513 * 2.I/O is misaligned 12514 * xp->xb_blkno represents the absolute logical block address 12515 * based on DEV_BSIZE. The logical block address will be 12516 * converted to physical sector address in sd_mapblocksize_\ 12517 * iostart. 12518 * 3.I/O is misaligned but is aligned in "overrun" buf 12519 * xp->xb_blkno represents the absolute logical block address 12520 * based on DEV_BSIZE. The logical block address will be 12521 * converted to physical sector address in sd_mapblocksize_\ 12522 * iostart. But no RMW will be issued in this case. 12523 * 12524 * Context: Can sleep 12525 * 12526 * Issues: This follows what the old code did, in terms of accessing 12527 * some of the partition info in the unit struct without holding 12528 * the mutext. This is a general issue, if the partition info 12529 * can be altered while IO is in progress... as soon as we send 12530 * a buf, its partitioning can be invalid before it gets to the 12531 * device. Probably the right fix is to move partitioning out 12532 * of the driver entirely. 12533 */ 12534 12535 static void 12536 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp) 12537 { 12538 diskaddr_t nblocks; /* #blocks in the given partition */ 12539 daddr_t blocknum; /* Block number specified by the buf */ 12540 size_t requested_nblocks; 12541 size_t available_nblocks; 12542 int partition; 12543 diskaddr_t partition_offset; 12544 struct sd_xbuf *xp; 12545 int secmask = 0, blknomask = 0; 12546 ushort_t is_aligned = TRUE; 12547 12548 ASSERT(un != NULL); 12549 ASSERT(bp != NULL); 12550 ASSERT(!mutex_owned(SD_MUTEX(un))); 12551 12552 SD_TRACE(SD_LOG_IO_PARTITION, un, 12553 "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp); 12554 12555 xp = SD_GET_XBUF(bp); 12556 ASSERT(xp != NULL); 12557 12558 /* 12559 * If the geometry is not indicated as valid, attempt to access 12560 * the unit & verify the geometry/label. This can be the case for 12561 * removable-media devices, of if the device was opened in 12562 * NDELAY/NONBLOCK mode. 12563 */ 12564 partition = SDPART(bp->b_edev); 12565 12566 if (!SD_IS_VALID_LABEL(un)) { 12567 sd_ssc_t *ssc; 12568 /* 12569 * Initialize sd_ssc_t for internal uscsi commands 12570 * In case of potential porformance issue, we need 12571 * to alloc memory only if there is invalid label 12572 */ 12573 ssc = sd_ssc_init(un); 12574 12575 if (sd_ready_and_valid(ssc, partition) != SD_READY_VALID) { 12576 /* 12577 * For removable devices it is possible to start an 12578 * I/O without a media by opening the device in nodelay 12579 * mode. Also for writable CDs there can be many 12580 * scenarios where there is no geometry yet but volume 12581 * manager is trying to issue a read() just because 12582 * it can see TOC on the CD. So do not print a message 12583 * for removables. 12584 */ 12585 if (!un->un_f_has_removable_media) { 12586 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 12587 "i/o to invalid geometry\n"); 12588 } 12589 bioerror(bp, EIO); 12590 bp->b_resid = bp->b_bcount; 12591 SD_BEGIN_IODONE(index, un, bp); 12592 12593 sd_ssc_fini(ssc); 12594 return; 12595 } 12596 sd_ssc_fini(ssc); 12597 } 12598 12599 nblocks = 0; 12600 (void) cmlb_partinfo(un->un_cmlbhandle, partition, 12601 &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT); 12602 12603 if (un->un_f_enable_rmw) { 12604 blknomask = (un->un_phy_blocksize / DEV_BSIZE) - 1; 12605 secmask = un->un_phy_blocksize - 1; 12606 } else { 12607 blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1; 12608 secmask = un->un_tgt_blocksize - 1; 12609 } 12610 12611 if ((bp->b_lblkno & (blknomask)) || (bp->b_bcount & (secmask))) { 12612 is_aligned = FALSE; 12613 } 12614 12615 if (!(NOT_DEVBSIZE(un)) || un->un_f_enable_rmw) { 12616 /* 12617 * If I/O is aligned, no need to involve RMW(Read Modify Write) 12618 * Convert the logical block number to target's physical sector 12619 * number. 12620 */ 12621 if (is_aligned) { 12622 xp->xb_blkno = SD_SYS2TGTBLOCK(un, xp->xb_blkno); 12623 } else { 12624 switch (un->un_f_rmw_type) { 12625 case SD_RMW_TYPE_RETURN_ERROR: 12626 if (un->un_f_enable_rmw) 12627 break; 12628 else { 12629 bp->b_flags |= B_ERROR; 12630 goto error_exit; 12631 } 12632 12633 case SD_RMW_TYPE_DEFAULT: 12634 mutex_enter(SD_MUTEX(un)); 12635 if (!un->un_f_enable_rmw && 12636 un->un_rmw_msg_timeid == NULL) { 12637 scsi_log(SD_DEVINFO(un), sd_label, 12638 CE_WARN, "I/O request is not " 12639 "aligned with %d disk sector size. " 12640 "It is handled through Read Modify " 12641 "Write but the performance is " 12642 "very low.\n", 12643 un->un_tgt_blocksize); 12644 un->un_rmw_msg_timeid = 12645 timeout(sd_rmw_msg_print_handler, 12646 un, SD_RMW_MSG_PRINT_TIMEOUT); 12647 } else { 12648 un->un_rmw_incre_count ++; 12649 } 12650 mutex_exit(SD_MUTEX(un)); 12651 break; 12652 12653 case SD_RMW_TYPE_NO_WARNING: 12654 default: 12655 break; 12656 } 12657 12658 nblocks = SD_TGT2SYSBLOCK(un, nblocks); 12659 partition_offset = SD_TGT2SYSBLOCK(un, 12660 partition_offset); 12661 } 12662 } 12663 12664 /* 12665 * blocknum is the starting block number of the request. At this 12666 * point it is still relative to the start of the minor device. 12667 */ 12668 blocknum = xp->xb_blkno; 12669 12670 /* 12671 * Legacy: If the starting block number is one past the last block 12672 * in the partition, do not set B_ERROR in the buf. 12673 */ 12674 if (blocknum == nblocks) { 12675 goto error_exit; 12676 } 12677 12678 /* 12679 * Confirm that the first block of the request lies within the 12680 * partition limits. Also the requested number of bytes must be 12681 * a multiple of the system block size. 12682 */ 12683 if ((blocknum < 0) || (blocknum >= nblocks) || 12684 ((bp->b_bcount & (DEV_BSIZE - 1)) != 0)) { 12685 bp->b_flags |= B_ERROR; 12686 goto error_exit; 12687 } 12688 12689 /* 12690 * If the requsted # blocks exceeds the available # blocks, that 12691 * is an overrun of the partition. 12692 */ 12693 if ((!NOT_DEVBSIZE(un)) && is_aligned) { 12694 requested_nblocks = SD_BYTES2TGTBLOCKS(un, bp->b_bcount); 12695 } else { 12696 requested_nblocks = SD_BYTES2SYSBLOCKS(bp->b_bcount); 12697 } 12698 12699 available_nblocks = (size_t)(nblocks - blocknum); 12700 ASSERT(nblocks >= blocknum); 12701 12702 if (requested_nblocks > available_nblocks) { 12703 size_t resid; 12704 12705 /* 12706 * Allocate an "overrun" buf to allow the request to proceed 12707 * for the amount of space available in the partition. The 12708 * amount not transferred will be added into the b_resid 12709 * when the operation is complete. The overrun buf 12710 * replaces the original buf here, and the original buf 12711 * is saved inside the overrun buf, for later use. 12712 */ 12713 if ((!NOT_DEVBSIZE(un)) && is_aligned) { 12714 resid = SD_TGTBLOCKS2BYTES(un, 12715 (offset_t)(requested_nblocks - available_nblocks)); 12716 } else { 12717 resid = SD_SYSBLOCKS2BYTES( 12718 (offset_t)(requested_nblocks - available_nblocks)); 12719 } 12720 12721 size_t count = bp->b_bcount - resid; 12722 /* 12723 * Note: count is an unsigned entity thus it'll NEVER 12724 * be less than 0 so ASSERT the original values are 12725 * correct. 12726 */ 12727 ASSERT(bp->b_bcount >= resid); 12728 12729 bp = sd_bioclone_alloc(bp, count, blocknum, 12730 (int (*)(struct buf *)) sd_mapblockaddr_iodone); 12731 xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */ 12732 ASSERT(xp != NULL); 12733 } 12734 12735 /* At this point there should be no residual for this buf. */ 12736 ASSERT(bp->b_resid == 0); 12737 12738 /* Convert the block number to an absolute address. */ 12739 xp->xb_blkno += partition_offset; 12740 12741 SD_NEXT_IOSTART(index, un, bp); 12742 12743 SD_TRACE(SD_LOG_IO_PARTITION, un, 12744 "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp); 12745 12746 return; 12747 12748 error_exit: 12749 bp->b_resid = bp->b_bcount; 12750 SD_BEGIN_IODONE(index, un, bp); 12751 SD_TRACE(SD_LOG_IO_PARTITION, un, 12752 "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp); 12753 } 12754 12755 12756 /* 12757 * Function: sd_mapblockaddr_iodone 12758 * 12759 * Description: Completion-side processing for partition management. 12760 * 12761 * Context: May be called under interrupt context 12762 */ 12763 12764 static void 12765 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp) 12766 { 12767 /* int partition; */ /* Not used, see below. */ 12768 ASSERT(un != NULL); 12769 ASSERT(bp != NULL); 12770 ASSERT(!mutex_owned(SD_MUTEX(un))); 12771 12772 SD_TRACE(SD_LOG_IO_PARTITION, un, 12773 "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp); 12774 12775 if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) { 12776 /* 12777 * We have an "overrun" buf to deal with... 12778 */ 12779 struct sd_xbuf *xp; 12780 struct buf *obp; /* ptr to the original buf */ 12781 12782 xp = SD_GET_XBUF(bp); 12783 ASSERT(xp != NULL); 12784 12785 /* Retrieve the pointer to the original buf */ 12786 obp = (struct buf *)xp->xb_private; 12787 ASSERT(obp != NULL); 12788 12789 obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid); 12790 bioerror(obp, bp->b_error); 12791 12792 sd_bioclone_free(bp); 12793 12794 /* 12795 * Get back the original buf. 12796 * Note that since the restoration of xb_blkno below 12797 * was removed, the sd_xbuf is not needed. 12798 */ 12799 bp = obp; 12800 /* 12801 * xp = SD_GET_XBUF(bp); 12802 * ASSERT(xp != NULL); 12803 */ 12804 } 12805 12806 /* 12807 * Convert sd->xb_blkno back to a minor-device relative value. 12808 * Note: this has been commented out, as it is not needed in the 12809 * current implementation of the driver (ie, since this function 12810 * is at the top of the layering chains, so the info will be 12811 * discarded) and it is in the "hot" IO path. 12812 * 12813 * partition = getminor(bp->b_edev) & SDPART_MASK; 12814 * xp->xb_blkno -= un->un_offset[partition]; 12815 */ 12816 12817 SD_NEXT_IODONE(index, un, bp); 12818 12819 SD_TRACE(SD_LOG_IO_PARTITION, un, 12820 "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp); 12821 } 12822 12823 12824 /* 12825 * Function: sd_mapblocksize_iostart 12826 * 12827 * Description: Convert between system block size (un->un_sys_blocksize) 12828 * and target block size (un->un_tgt_blocksize). 12829 * 12830 * Context: Can sleep to allocate resources. 12831 * 12832 * Assumptions: A higher layer has already performed any partition validation, 12833 * and converted the xp->xb_blkno to an absolute value relative 12834 * to the start of the device. 12835 * 12836 * It is also assumed that the higher layer has implemented 12837 * an "overrun" mechanism for the case where the request would 12838 * read/write beyond the end of a partition. In this case we 12839 * assume (and ASSERT) that bp->b_resid == 0. 12840 * 12841 * Note: The implementation for this routine assumes the target 12842 * block size remains constant between allocation and transport. 12843 */ 12844 12845 static void 12846 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp) 12847 { 12848 struct sd_mapblocksize_info *bsp; 12849 struct sd_xbuf *xp; 12850 offset_t first_byte; 12851 daddr_t start_block, end_block; 12852 daddr_t request_bytes; 12853 ushort_t is_aligned = FALSE; 12854 12855 ASSERT(un != NULL); 12856 ASSERT(bp != NULL); 12857 ASSERT(!mutex_owned(SD_MUTEX(un))); 12858 ASSERT(bp->b_resid == 0); 12859 12860 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 12861 "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp); 12862 12863 /* 12864 * For a non-writable CD, a write request is an error 12865 */ 12866 if (ISCD(un) && ((bp->b_flags & B_READ) == 0) && 12867 (un->un_f_mmc_writable_media == FALSE)) { 12868 bioerror(bp, EIO); 12869 bp->b_resid = bp->b_bcount; 12870 SD_BEGIN_IODONE(index, un, bp); 12871 return; 12872 } 12873 12874 /* 12875 * We do not need a shadow buf if the device is using 12876 * un->un_sys_blocksize as its block size or if bcount == 0. 12877 * In this case there is no layer-private data block allocated. 12878 */ 12879 if ((un->un_tgt_blocksize == DEV_BSIZE && !un->un_f_enable_rmw) || 12880 (bp->b_bcount == 0)) { 12881 goto done; 12882 } 12883 12884 #if defined(__i386) || defined(__amd64) 12885 /* We do not support non-block-aligned transfers for ROD devices */ 12886 ASSERT(!ISROD(un)); 12887 #endif 12888 12889 xp = SD_GET_XBUF(bp); 12890 ASSERT(xp != NULL); 12891 12892 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 12893 "tgt_blocksize:0x%x sys_blocksize: 0x%x\n", 12894 un->un_tgt_blocksize, DEV_BSIZE); 12895 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 12896 "request start block:0x%x\n", xp->xb_blkno); 12897 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 12898 "request len:0x%x\n", bp->b_bcount); 12899 12900 /* 12901 * Allocate the layer-private data area for the mapblocksize layer. 12902 * Layers are allowed to use the xp_private member of the sd_xbuf 12903 * struct to store the pointer to their layer-private data block, but 12904 * each layer also has the responsibility of restoring the prior 12905 * contents of xb_private before returning the buf/xbuf to the 12906 * higher layer that sent it. 12907 * 12908 * Here we save the prior contents of xp->xb_private into the 12909 * bsp->mbs_oprivate field of our layer-private data area. This value 12910 * is restored by sd_mapblocksize_iodone() just prior to freeing up 12911 * the layer-private area and returning the buf/xbuf to the layer 12912 * that sent it. 12913 * 12914 * Note that here we use kmem_zalloc for the allocation as there are 12915 * parts of the mapblocksize code that expect certain fields to be 12916 * zero unless explicitly set to a required value. 12917 */ 12918 bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP); 12919 bsp->mbs_oprivate = xp->xb_private; 12920 xp->xb_private = bsp; 12921 12922 /* 12923 * This treats the data on the disk (target) as an array of bytes. 12924 * first_byte is the byte offset, from the beginning of the device, 12925 * to the location of the request. This is converted from a 12926 * un->un_sys_blocksize block address to a byte offset, and then back 12927 * to a block address based upon a un->un_tgt_blocksize block size. 12928 * 12929 * xp->xb_blkno should be absolute upon entry into this function, 12930 * but, but it is based upon partitions that use the "system" 12931 * block size. It must be adjusted to reflect the block size of 12932 * the target. 12933 * 12934 * Note that end_block is actually the block that follows the last 12935 * block of the request, but that's what is needed for the computation. 12936 */ 12937 first_byte = SD_SYSBLOCKS2BYTES((offset_t)xp->xb_blkno); 12938 if (un->un_f_enable_rmw) { 12939 start_block = xp->xb_blkno = 12940 (first_byte / un->un_phy_blocksize) * 12941 (un->un_phy_blocksize / DEV_BSIZE); 12942 end_block = ((first_byte + bp->b_bcount + 12943 un->un_phy_blocksize - 1) / un->un_phy_blocksize) * 12944 (un->un_phy_blocksize / DEV_BSIZE); 12945 } else { 12946 start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize; 12947 end_block = (first_byte + bp->b_bcount + 12948 un->un_tgt_blocksize - 1) / un->un_tgt_blocksize; 12949 } 12950 12951 /* request_bytes is rounded up to a multiple of the target block size */ 12952 request_bytes = (end_block - start_block) * un->un_tgt_blocksize; 12953 12954 /* 12955 * See if the starting address of the request and the request 12956 * length are aligned on a un->un_tgt_blocksize boundary. If aligned 12957 * then we do not need to allocate a shadow buf to handle the request. 12958 */ 12959 if (un->un_f_enable_rmw) { 12960 if (((first_byte % un->un_phy_blocksize) == 0) && 12961 ((bp->b_bcount % un->un_phy_blocksize) == 0)) { 12962 is_aligned = TRUE; 12963 } 12964 } else { 12965 if (((first_byte % un->un_tgt_blocksize) == 0) && 12966 ((bp->b_bcount % un->un_tgt_blocksize) == 0)) { 12967 is_aligned = TRUE; 12968 } 12969 } 12970 12971 if ((bp->b_flags & B_READ) == 0) { 12972 /* 12973 * Lock the range for a write operation. An aligned request is 12974 * considered a simple write; otherwise the request must be a 12975 * read-modify-write. 12976 */ 12977 bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1, 12978 (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW); 12979 } 12980 12981 /* 12982 * Alloc a shadow buf if the request is not aligned. Also, this is 12983 * where the READ command is generated for a read-modify-write. (The 12984 * write phase is deferred until after the read completes.) 12985 */ 12986 if (is_aligned == FALSE) { 12987 12988 struct sd_mapblocksize_info *shadow_bsp; 12989 struct sd_xbuf *shadow_xp; 12990 struct buf *shadow_bp; 12991 12992 /* 12993 * Allocate the shadow buf and it associated xbuf. Note that 12994 * after this call the xb_blkno value in both the original 12995 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the 12996 * same: absolute relative to the start of the device, and 12997 * adjusted for the target block size. The b_blkno in the 12998 * shadow buf will also be set to this value. We should never 12999 * change b_blkno in the original bp however. 13000 * 13001 * Note also that the shadow buf will always need to be a 13002 * READ command, regardless of whether the incoming command 13003 * is a READ or a WRITE. 13004 */ 13005 shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ, 13006 xp->xb_blkno, 13007 (int (*)(struct buf *)) sd_mapblocksize_iodone); 13008 13009 shadow_xp = SD_GET_XBUF(shadow_bp); 13010 13011 /* 13012 * Allocate the layer-private data for the shadow buf. 13013 * (No need to preserve xb_private in the shadow xbuf.) 13014 */ 13015 shadow_xp->xb_private = shadow_bsp = 13016 kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP); 13017 13018 /* 13019 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone 13020 * to figure out where the start of the user data is (based upon 13021 * the system block size) in the data returned by the READ 13022 * command (which will be based upon the target blocksize). Note 13023 * that this is only really used if the request is unaligned. 13024 */ 13025 if (un->un_f_enable_rmw) { 13026 bsp->mbs_copy_offset = (ssize_t)(first_byte - 13027 ((offset_t)xp->xb_blkno * un->un_sys_blocksize)); 13028 ASSERT((bsp->mbs_copy_offset >= 0) && 13029 (bsp->mbs_copy_offset < un->un_phy_blocksize)); 13030 } else { 13031 bsp->mbs_copy_offset = (ssize_t)(first_byte - 13032 ((offset_t)xp->xb_blkno * un->un_tgt_blocksize)); 13033 ASSERT((bsp->mbs_copy_offset >= 0) && 13034 (bsp->mbs_copy_offset < un->un_tgt_blocksize)); 13035 } 13036 13037 shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset; 13038 13039 shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index; 13040 13041 /* Transfer the wmap (if any) to the shadow buf */ 13042 shadow_bsp->mbs_wmp = bsp->mbs_wmp; 13043 bsp->mbs_wmp = NULL; 13044 13045 /* 13046 * The shadow buf goes on from here in place of the 13047 * original buf. 13048 */ 13049 shadow_bsp->mbs_orig_bp = bp; 13050 bp = shadow_bp; 13051 } 13052 13053 SD_INFO(SD_LOG_IO_RMMEDIA, un, 13054 "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno); 13055 SD_INFO(SD_LOG_IO_RMMEDIA, un, 13056 "sd_mapblocksize_iostart: tgt request len:0x%x\n", 13057 request_bytes); 13058 SD_INFO(SD_LOG_IO_RMMEDIA, un, 13059 "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp); 13060 13061 done: 13062 SD_NEXT_IOSTART(index, un, bp); 13063 13064 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 13065 "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp); 13066 } 13067 13068 13069 /* 13070 * Function: sd_mapblocksize_iodone 13071 * 13072 * Description: Completion side processing for block-size mapping. 13073 * 13074 * Context: May be called under interrupt context 13075 */ 13076 13077 static void 13078 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp) 13079 { 13080 struct sd_mapblocksize_info *bsp; 13081 struct sd_xbuf *xp; 13082 struct sd_xbuf *orig_xp; /* sd_xbuf for the original buf */ 13083 struct buf *orig_bp; /* ptr to the original buf */ 13084 offset_t shadow_end; 13085 offset_t request_end; 13086 offset_t shadow_start; 13087 ssize_t copy_offset; 13088 size_t copy_length; 13089 size_t shortfall; 13090 uint_t is_write; /* TRUE if this bp is a WRITE */ 13091 uint_t has_wmap; /* TRUE is this bp has a wmap */ 13092 13093 ASSERT(un != NULL); 13094 ASSERT(bp != NULL); 13095 13096 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 13097 "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp); 13098 13099 /* 13100 * There is no shadow buf or layer-private data if the target is 13101 * using un->un_sys_blocksize as its block size or if bcount == 0. 13102 */ 13103 if ((un->un_tgt_blocksize == DEV_BSIZE && !un->un_f_enable_rmw) || 13104 (bp->b_bcount == 0)) { 13105 goto exit; 13106 } 13107 13108 xp = SD_GET_XBUF(bp); 13109 ASSERT(xp != NULL); 13110 13111 /* Retrieve the pointer to the layer-private data area from the xbuf. */ 13112 bsp = xp->xb_private; 13113 13114 is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE; 13115 has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE; 13116 13117 if (is_write) { 13118 /* 13119 * For a WRITE request we must free up the block range that 13120 * we have locked up. This holds regardless of whether this is 13121 * an aligned write request or a read-modify-write request. 13122 */ 13123 sd_range_unlock(un, bsp->mbs_wmp); 13124 bsp->mbs_wmp = NULL; 13125 } 13126 13127 if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) { 13128 /* 13129 * An aligned read or write command will have no shadow buf; 13130 * there is not much else to do with it. 13131 */ 13132 goto done; 13133 } 13134 13135 orig_bp = bsp->mbs_orig_bp; 13136 ASSERT(orig_bp != NULL); 13137 orig_xp = SD_GET_XBUF(orig_bp); 13138 ASSERT(orig_xp != NULL); 13139 ASSERT(!mutex_owned(SD_MUTEX(un))); 13140 13141 if (!is_write && has_wmap) { 13142 /* 13143 * A READ with a wmap means this is the READ phase of a 13144 * read-modify-write. If an error occurred on the READ then 13145 * we do not proceed with the WRITE phase or copy any data. 13146 * Just release the write maps and return with an error. 13147 */ 13148 if ((bp->b_resid != 0) || (bp->b_error != 0)) { 13149 orig_bp->b_resid = orig_bp->b_bcount; 13150 bioerror(orig_bp, bp->b_error); 13151 sd_range_unlock(un, bsp->mbs_wmp); 13152 goto freebuf_done; 13153 } 13154 } 13155 13156 /* 13157 * Here is where we set up to copy the data from the shadow buf 13158 * into the space associated with the original buf. 13159 * 13160 * To deal with the conversion between block sizes, these 13161 * computations treat the data as an array of bytes, with the 13162 * first byte (byte 0) corresponding to the first byte in the 13163 * first block on the disk. 13164 */ 13165 13166 /* 13167 * shadow_start and shadow_len indicate the location and size of 13168 * the data returned with the shadow IO request. 13169 */ 13170 if (un->un_f_enable_rmw) { 13171 shadow_start = SD_SYSBLOCKS2BYTES((offset_t)xp->xb_blkno); 13172 } else { 13173 shadow_start = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno); 13174 } 13175 shadow_end = shadow_start + bp->b_bcount - bp->b_resid; 13176 13177 /* 13178 * copy_offset gives the offset (in bytes) from the start of the first 13179 * block of the READ request to the beginning of the data. We retrieve 13180 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved 13181 * there by sd_mapblockize_iostart(). copy_length gives the amount of 13182 * data to be copied (in bytes). 13183 */ 13184 copy_offset = bsp->mbs_copy_offset; 13185 if (un->un_f_enable_rmw) { 13186 ASSERT((copy_offset >= 0) && 13187 (copy_offset < un->un_phy_blocksize)); 13188 } else { 13189 ASSERT((copy_offset >= 0) && 13190 (copy_offset < un->un_tgt_blocksize)); 13191 } 13192 13193 copy_length = orig_bp->b_bcount; 13194 request_end = shadow_start + copy_offset + orig_bp->b_bcount; 13195 13196 /* 13197 * Set up the resid and error fields of orig_bp as appropriate. 13198 */ 13199 if (shadow_end >= request_end) { 13200 /* We got all the requested data; set resid to zero */ 13201 orig_bp->b_resid = 0; 13202 } else { 13203 /* 13204 * We failed to get enough data to fully satisfy the original 13205 * request. Just copy back whatever data we got and set 13206 * up the residual and error code as required. 13207 * 13208 * 'shortfall' is the amount by which the data received with the 13209 * shadow buf has "fallen short" of the requested amount. 13210 */ 13211 shortfall = (size_t)(request_end - shadow_end); 13212 13213 if (shortfall > orig_bp->b_bcount) { 13214 /* 13215 * We did not get enough data to even partially 13216 * fulfill the original request. The residual is 13217 * equal to the amount requested. 13218 */ 13219 orig_bp->b_resid = orig_bp->b_bcount; 13220 } else { 13221 /* 13222 * We did not get all the data that we requested 13223 * from the device, but we will try to return what 13224 * portion we did get. 13225 */ 13226 orig_bp->b_resid = shortfall; 13227 } 13228 ASSERT(copy_length >= orig_bp->b_resid); 13229 copy_length -= orig_bp->b_resid; 13230 } 13231 13232 /* Propagate the error code from the shadow buf to the original buf */ 13233 bioerror(orig_bp, bp->b_error); 13234 13235 if (is_write) { 13236 goto freebuf_done; /* No data copying for a WRITE */ 13237 } 13238 13239 if (has_wmap) { 13240 /* 13241 * This is a READ command from the READ phase of a 13242 * read-modify-write request. We have to copy the data given 13243 * by the user OVER the data returned by the READ command, 13244 * then convert the command from a READ to a WRITE and send 13245 * it back to the target. 13246 */ 13247 bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset, 13248 copy_length); 13249 13250 bp->b_flags &= ~((int)B_READ); /* Convert to a WRITE */ 13251 13252 /* 13253 * Dispatch the WRITE command to the taskq thread, which 13254 * will in turn send the command to the target. When the 13255 * WRITE command completes, we (sd_mapblocksize_iodone()) 13256 * will get called again as part of the iodone chain 13257 * processing for it. Note that we will still be dealing 13258 * with the shadow buf at that point. 13259 */ 13260 if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp, 13261 KM_NOSLEEP) != 0) { 13262 /* 13263 * Dispatch was successful so we are done. Return 13264 * without going any higher up the iodone chain. Do 13265 * not free up any layer-private data until after the 13266 * WRITE completes. 13267 */ 13268 return; 13269 } 13270 13271 /* 13272 * Dispatch of the WRITE command failed; set up the error 13273 * condition and send this IO back up the iodone chain. 13274 */ 13275 bioerror(orig_bp, EIO); 13276 orig_bp->b_resid = orig_bp->b_bcount; 13277 13278 } else { 13279 /* 13280 * This is a regular READ request (ie, not a RMW). Copy the 13281 * data from the shadow buf into the original buf. The 13282 * copy_offset compensates for any "misalignment" between the 13283 * shadow buf (with its un->un_tgt_blocksize blocks) and the 13284 * original buf (with its un->un_sys_blocksize blocks). 13285 */ 13286 bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr, 13287 copy_length); 13288 } 13289 13290 freebuf_done: 13291 13292 /* 13293 * At this point we still have both the shadow buf AND the original 13294 * buf to deal with, as well as the layer-private data area in each. 13295 * Local variables are as follows: 13296 * 13297 * bp -- points to shadow buf 13298 * xp -- points to xbuf of shadow buf 13299 * bsp -- points to layer-private data area of shadow buf 13300 * orig_bp -- points to original buf 13301 * 13302 * First free the shadow buf and its associated xbuf, then free the 13303 * layer-private data area from the shadow buf. There is no need to 13304 * restore xb_private in the shadow xbuf. 13305 */ 13306 sd_shadow_buf_free(bp); 13307 kmem_free(bsp, sizeof (struct sd_mapblocksize_info)); 13308 13309 /* 13310 * Now update the local variables to point to the original buf, xbuf, 13311 * and layer-private area. 13312 */ 13313 bp = orig_bp; 13314 xp = SD_GET_XBUF(bp); 13315 ASSERT(xp != NULL); 13316 ASSERT(xp == orig_xp); 13317 bsp = xp->xb_private; 13318 ASSERT(bsp != NULL); 13319 13320 done: 13321 /* 13322 * Restore xb_private to whatever it was set to by the next higher 13323 * layer in the chain, then free the layer-private data area. 13324 */ 13325 xp->xb_private = bsp->mbs_oprivate; 13326 kmem_free(bsp, sizeof (struct sd_mapblocksize_info)); 13327 13328 exit: 13329 SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp), 13330 "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp); 13331 13332 SD_NEXT_IODONE(index, un, bp); 13333 } 13334 13335 13336 /* 13337 * Function: sd_checksum_iostart 13338 * 13339 * Description: A stub function for a layer that's currently not used. 13340 * For now just a placeholder. 13341 * 13342 * Context: Kernel thread context 13343 */ 13344 13345 static void 13346 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp) 13347 { 13348 ASSERT(un != NULL); 13349 ASSERT(bp != NULL); 13350 ASSERT(!mutex_owned(SD_MUTEX(un))); 13351 SD_NEXT_IOSTART(index, un, bp); 13352 } 13353 13354 13355 /* 13356 * Function: sd_checksum_iodone 13357 * 13358 * Description: A stub function for a layer that's currently not used. 13359 * For now just a placeholder. 13360 * 13361 * Context: May be called under interrupt context 13362 */ 13363 13364 static void 13365 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp) 13366 { 13367 ASSERT(un != NULL); 13368 ASSERT(bp != NULL); 13369 ASSERT(!mutex_owned(SD_MUTEX(un))); 13370 SD_NEXT_IODONE(index, un, bp); 13371 } 13372 13373 13374 /* 13375 * Function: sd_checksum_uscsi_iostart 13376 * 13377 * Description: A stub function for a layer that's currently not used. 13378 * For now just a placeholder. 13379 * 13380 * Context: Kernel thread context 13381 */ 13382 13383 static void 13384 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp) 13385 { 13386 ASSERT(un != NULL); 13387 ASSERT(bp != NULL); 13388 ASSERT(!mutex_owned(SD_MUTEX(un))); 13389 SD_NEXT_IOSTART(index, un, bp); 13390 } 13391 13392 13393 /* 13394 * Function: sd_checksum_uscsi_iodone 13395 * 13396 * Description: A stub function for a layer that's currently not used. 13397 * For now just a placeholder. 13398 * 13399 * Context: May be called under interrupt context 13400 */ 13401 13402 static void 13403 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp) 13404 { 13405 ASSERT(un != NULL); 13406 ASSERT(bp != NULL); 13407 ASSERT(!mutex_owned(SD_MUTEX(un))); 13408 SD_NEXT_IODONE(index, un, bp); 13409 } 13410 13411 13412 /* 13413 * Function: sd_pm_iostart 13414 * 13415 * Description: iostart-side routine for Power mangement. 13416 * 13417 * Context: Kernel thread context 13418 */ 13419 13420 static void 13421 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp) 13422 { 13423 ASSERT(un != NULL); 13424 ASSERT(bp != NULL); 13425 ASSERT(!mutex_owned(SD_MUTEX(un))); 13426 ASSERT(!mutex_owned(&un->un_pm_mutex)); 13427 13428 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n"); 13429 13430 if (sd_pm_entry(un) != DDI_SUCCESS) { 13431 /* 13432 * Set up to return the failed buf back up the 'iodone' 13433 * side of the calling chain. 13434 */ 13435 bioerror(bp, EIO); 13436 bp->b_resid = bp->b_bcount; 13437 13438 SD_BEGIN_IODONE(index, un, bp); 13439 13440 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n"); 13441 return; 13442 } 13443 13444 SD_NEXT_IOSTART(index, un, bp); 13445 13446 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n"); 13447 } 13448 13449 13450 /* 13451 * Function: sd_pm_iodone 13452 * 13453 * Description: iodone-side routine for power mangement. 13454 * 13455 * Context: may be called from interrupt context 13456 */ 13457 13458 static void 13459 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp) 13460 { 13461 ASSERT(un != NULL); 13462 ASSERT(bp != NULL); 13463 ASSERT(!mutex_owned(&un->un_pm_mutex)); 13464 13465 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n"); 13466 13467 /* 13468 * After attach the following flag is only read, so don't 13469 * take the penalty of acquiring a mutex for it. 13470 */ 13471 if (un->un_f_pm_is_enabled == TRUE) { 13472 sd_pm_exit(un); 13473 } 13474 13475 SD_NEXT_IODONE(index, un, bp); 13476 13477 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n"); 13478 } 13479 13480 13481 /* 13482 * Function: sd_core_iostart 13483 * 13484 * Description: Primary driver function for enqueuing buf(9S) structs from 13485 * the system and initiating IO to the target device 13486 * 13487 * Context: Kernel thread context. Can sleep. 13488 * 13489 * Assumptions: - The given xp->xb_blkno is absolute 13490 * (ie, relative to the start of the device). 13491 * - The IO is to be done using the native blocksize of 13492 * the device, as specified in un->un_tgt_blocksize. 13493 */ 13494 /* ARGSUSED */ 13495 static void 13496 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp) 13497 { 13498 struct sd_xbuf *xp; 13499 13500 ASSERT(un != NULL); 13501 ASSERT(bp != NULL); 13502 ASSERT(!mutex_owned(SD_MUTEX(un))); 13503 ASSERT(bp->b_resid == 0); 13504 13505 SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp); 13506 13507 xp = SD_GET_XBUF(bp); 13508 ASSERT(xp != NULL); 13509 13510 mutex_enter(SD_MUTEX(un)); 13511 13512 /* 13513 * If we are currently in the failfast state, fail any new IO 13514 * that has B_FAILFAST set, then return. 13515 */ 13516 if ((bp->b_flags & B_FAILFAST) && 13517 (un->un_failfast_state == SD_FAILFAST_ACTIVE)) { 13518 mutex_exit(SD_MUTEX(un)); 13519 bioerror(bp, EIO); 13520 bp->b_resid = bp->b_bcount; 13521 SD_BEGIN_IODONE(index, un, bp); 13522 return; 13523 } 13524 13525 if (SD_IS_DIRECT_PRIORITY(xp)) { 13526 /* 13527 * Priority command -- transport it immediately. 13528 * 13529 * Note: We may want to assert that USCSI_DIAGNOSE is set, 13530 * because all direct priority commands should be associated 13531 * with error recovery actions which we don't want to retry. 13532 */ 13533 sd_start_cmds(un, bp); 13534 } else { 13535 /* 13536 * Normal command -- add it to the wait queue, then start 13537 * transporting commands from the wait queue. 13538 */ 13539 sd_add_buf_to_waitq(un, bp); 13540 SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp); 13541 sd_start_cmds(un, NULL); 13542 } 13543 13544 mutex_exit(SD_MUTEX(un)); 13545 13546 SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp); 13547 } 13548 13549 13550 /* 13551 * Function: sd_init_cdb_limits 13552 * 13553 * Description: This is to handle scsi_pkt initialization differences 13554 * between the driver platforms. 13555 * 13556 * Legacy behaviors: 13557 * 13558 * If the block number or the sector count exceeds the 13559 * capabilities of a Group 0 command, shift over to a 13560 * Group 1 command. We don't blindly use Group 1 13561 * commands because a) some drives (CDC Wren IVs) get a 13562 * bit confused, and b) there is probably a fair amount 13563 * of speed difference for a target to receive and decode 13564 * a 10 byte command instead of a 6 byte command. 13565 * 13566 * The xfer time difference of 6 vs 10 byte CDBs is 13567 * still significant so this code is still worthwhile. 13568 * 10 byte CDBs are very inefficient with the fas HBA driver 13569 * and older disks. Each CDB byte took 1 usec with some 13570 * popular disks. 13571 * 13572 * Context: Must be called at attach time 13573 */ 13574 13575 static void 13576 sd_init_cdb_limits(struct sd_lun *un) 13577 { 13578 int hba_cdb_limit; 13579 13580 /* 13581 * Use CDB_GROUP1 commands for most devices except for 13582 * parallel SCSI fixed drives in which case we get better 13583 * performance using CDB_GROUP0 commands (where applicable). 13584 */ 13585 un->un_mincdb = SD_CDB_GROUP1; 13586 #if !defined(__fibre) 13587 if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) && 13588 !un->un_f_has_removable_media) { 13589 un->un_mincdb = SD_CDB_GROUP0; 13590 } 13591 #endif 13592 13593 /* 13594 * Try to read the max-cdb-length supported by HBA. 13595 */ 13596 un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1); 13597 if (0 >= un->un_max_hba_cdb) { 13598 un->un_max_hba_cdb = CDB_GROUP4; 13599 hba_cdb_limit = SD_CDB_GROUP4; 13600 } else if (0 < un->un_max_hba_cdb && 13601 un->un_max_hba_cdb < CDB_GROUP1) { 13602 hba_cdb_limit = SD_CDB_GROUP0; 13603 } else if (CDB_GROUP1 <= un->un_max_hba_cdb && 13604 un->un_max_hba_cdb < CDB_GROUP5) { 13605 hba_cdb_limit = SD_CDB_GROUP1; 13606 } else if (CDB_GROUP5 <= un->un_max_hba_cdb && 13607 un->un_max_hba_cdb < CDB_GROUP4) { 13608 hba_cdb_limit = SD_CDB_GROUP5; 13609 } else { 13610 hba_cdb_limit = SD_CDB_GROUP4; 13611 } 13612 13613 /* 13614 * Use CDB_GROUP5 commands for removable devices. Use CDB_GROUP4 13615 * commands for fixed disks unless we are building for a 32 bit 13616 * kernel. 13617 */ 13618 #ifdef _LP64 13619 un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 : 13620 min(hba_cdb_limit, SD_CDB_GROUP4); 13621 #else 13622 un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 : 13623 min(hba_cdb_limit, SD_CDB_GROUP1); 13624 #endif 13625 13626 un->un_status_len = (int)((un->un_f_arq_enabled == TRUE) 13627 ? sizeof (struct scsi_arq_status) : 1); 13628 un->un_cmd_timeout = (ushort_t)sd_io_time; 13629 un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout; 13630 } 13631 13632 13633 /* 13634 * Function: sd_initpkt_for_buf 13635 * 13636 * Description: Allocate and initialize for transport a scsi_pkt struct, 13637 * based upon the info specified in the given buf struct. 13638 * 13639 * Assumes the xb_blkno in the request is absolute (ie, 13640 * relative to the start of the device (NOT partition!). 13641 * Also assumes that the request is using the native block 13642 * size of the device (as returned by the READ CAPACITY 13643 * command). 13644 * 13645 * Return Code: SD_PKT_ALLOC_SUCCESS 13646 * SD_PKT_ALLOC_FAILURE 13647 * SD_PKT_ALLOC_FAILURE_NO_DMA 13648 * SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL 13649 * 13650 * Context: Kernel thread and may be called from software interrupt context 13651 * as part of a sdrunout callback. This function may not block or 13652 * call routines that block 13653 */ 13654 13655 static int 13656 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp) 13657 { 13658 struct sd_xbuf *xp; 13659 struct scsi_pkt *pktp = NULL; 13660 struct sd_lun *un; 13661 size_t blockcount; 13662 daddr_t startblock; 13663 int rval; 13664 int cmd_flags; 13665 13666 ASSERT(bp != NULL); 13667 ASSERT(pktpp != NULL); 13668 xp = SD_GET_XBUF(bp); 13669 ASSERT(xp != NULL); 13670 un = SD_GET_UN(bp); 13671 ASSERT(un != NULL); 13672 ASSERT(mutex_owned(SD_MUTEX(un))); 13673 ASSERT(bp->b_resid == 0); 13674 13675 SD_TRACE(SD_LOG_IO_CORE, un, 13676 "sd_initpkt_for_buf: entry: buf:0x%p\n", bp); 13677 13678 mutex_exit(SD_MUTEX(un)); 13679 13680 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 13681 if (xp->xb_pkt_flags & SD_XB_DMA_FREED) { 13682 /* 13683 * Already have a scsi_pkt -- just need DMA resources. 13684 * We must recompute the CDB in case the mapping returns 13685 * a nonzero pkt_resid. 13686 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer 13687 * that is being retried, the unmap/remap of the DMA resouces 13688 * will result in the entire transfer starting over again 13689 * from the very first block. 13690 */ 13691 ASSERT(xp->xb_pktp != NULL); 13692 pktp = xp->xb_pktp; 13693 } else { 13694 pktp = NULL; 13695 } 13696 #endif /* __i386 || __amd64 */ 13697 13698 startblock = xp->xb_blkno; /* Absolute block num. */ 13699 blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount); 13700 13701 cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK); 13702 13703 /* 13704 * sd_setup_rw_pkt will determine the appropriate CDB group to use, 13705 * call scsi_init_pkt, and build the CDB. 13706 */ 13707 rval = sd_setup_rw_pkt(un, &pktp, bp, 13708 cmd_flags, sdrunout, (caddr_t)un, 13709 startblock, blockcount); 13710 13711 if (rval == 0) { 13712 /* 13713 * Success. 13714 * 13715 * If partial DMA is being used and required for this transfer. 13716 * set it up here. 13717 */ 13718 if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 && 13719 (pktp->pkt_resid != 0)) { 13720 13721 /* 13722 * Save the CDB length and pkt_resid for the 13723 * next xfer 13724 */ 13725 xp->xb_dma_resid = pktp->pkt_resid; 13726 13727 /* rezero resid */ 13728 pktp->pkt_resid = 0; 13729 13730 } else { 13731 xp->xb_dma_resid = 0; 13732 } 13733 13734 pktp->pkt_flags = un->un_tagflags; 13735 pktp->pkt_time = un->un_cmd_timeout; 13736 pktp->pkt_comp = sdintr; 13737 13738 pktp->pkt_private = bp; 13739 *pktpp = pktp; 13740 13741 SD_TRACE(SD_LOG_IO_CORE, un, 13742 "sd_initpkt_for_buf: exit: buf:0x%p\n", bp); 13743 13744 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 13745 xp->xb_pkt_flags &= ~SD_XB_DMA_FREED; 13746 #endif 13747 13748 mutex_enter(SD_MUTEX(un)); 13749 return (SD_PKT_ALLOC_SUCCESS); 13750 13751 } 13752 13753 /* 13754 * SD_PKT_ALLOC_FAILURE is the only expected failure code 13755 * from sd_setup_rw_pkt. 13756 */ 13757 ASSERT(rval == SD_PKT_ALLOC_FAILURE); 13758 13759 if (rval == SD_PKT_ALLOC_FAILURE) { 13760 *pktpp = NULL; 13761 /* 13762 * Set the driver state to RWAIT to indicate the driver 13763 * is waiting on resource allocations. The driver will not 13764 * suspend, pm_suspend, or detatch while the state is RWAIT. 13765 */ 13766 mutex_enter(SD_MUTEX(un)); 13767 New_state(un, SD_STATE_RWAIT); 13768 13769 SD_ERROR(SD_LOG_IO_CORE, un, 13770 "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp); 13771 13772 if ((bp->b_flags & B_ERROR) != 0) { 13773 return (SD_PKT_ALLOC_FAILURE_NO_DMA); 13774 } 13775 return (SD_PKT_ALLOC_FAILURE); 13776 } else { 13777 /* 13778 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL 13779 * 13780 * This should never happen. Maybe someone messed with the 13781 * kernel's minphys? 13782 */ 13783 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 13784 "Request rejected: too large for CDB: " 13785 "lba:0x%08lx len:0x%08lx\n", startblock, blockcount); 13786 SD_ERROR(SD_LOG_IO_CORE, un, 13787 "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp); 13788 mutex_enter(SD_MUTEX(un)); 13789 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13790 13791 } 13792 } 13793 13794 13795 /* 13796 * Function: sd_destroypkt_for_buf 13797 * 13798 * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing). 13799 * 13800 * Context: Kernel thread or interrupt context 13801 */ 13802 13803 static void 13804 sd_destroypkt_for_buf(struct buf *bp) 13805 { 13806 ASSERT(bp != NULL); 13807 ASSERT(SD_GET_UN(bp) != NULL); 13808 13809 SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp), 13810 "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp); 13811 13812 ASSERT(SD_GET_PKTP(bp) != NULL); 13813 scsi_destroy_pkt(SD_GET_PKTP(bp)); 13814 13815 SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp), 13816 "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp); 13817 } 13818 13819 /* 13820 * Function: sd_setup_rw_pkt 13821 * 13822 * Description: Determines appropriate CDB group for the requested LBA 13823 * and transfer length, calls scsi_init_pkt, and builds 13824 * the CDB. Do not use for partial DMA transfers except 13825 * for the initial transfer since the CDB size must 13826 * remain constant. 13827 * 13828 * Context: Kernel thread and may be called from software interrupt 13829 * context as part of a sdrunout callback. This function may not 13830 * block or call routines that block 13831 */ 13832 13833 13834 int 13835 sd_setup_rw_pkt(struct sd_lun *un, 13836 struct scsi_pkt **pktpp, struct buf *bp, int flags, 13837 int (*callback)(caddr_t), caddr_t callback_arg, 13838 diskaddr_t lba, uint32_t blockcount) 13839 { 13840 struct scsi_pkt *return_pktp; 13841 union scsi_cdb *cdbp; 13842 struct sd_cdbinfo *cp = NULL; 13843 int i; 13844 13845 /* 13846 * See which size CDB to use, based upon the request. 13847 */ 13848 for (i = un->un_mincdb; i <= un->un_maxcdb; i++) { 13849 13850 /* 13851 * Check lba and block count against sd_cdbtab limits. 13852 * In the partial DMA case, we have to use the same size 13853 * CDB for all the transfers. Check lba + blockcount 13854 * against the max LBA so we know that segment of the 13855 * transfer can use the CDB we select. 13856 */ 13857 if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) && 13858 (blockcount <= sd_cdbtab[i].sc_maxlen)) { 13859 13860 /* 13861 * The command will fit into the CDB type 13862 * specified by sd_cdbtab[i]. 13863 */ 13864 cp = sd_cdbtab + i; 13865 13866 /* 13867 * Call scsi_init_pkt so we can fill in the 13868 * CDB. 13869 */ 13870 return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp, 13871 bp, cp->sc_grpcode, un->un_status_len, 0, 13872 flags, callback, callback_arg); 13873 13874 if (return_pktp != NULL) { 13875 13876 /* 13877 * Return new value of pkt 13878 */ 13879 *pktpp = return_pktp; 13880 13881 /* 13882 * To be safe, zero the CDB insuring there is 13883 * no leftover data from a previous command. 13884 */ 13885 bzero(return_pktp->pkt_cdbp, cp->sc_grpcode); 13886 13887 /* 13888 * Handle partial DMA mapping 13889 */ 13890 if (return_pktp->pkt_resid != 0) { 13891 13892 /* 13893 * Not going to xfer as many blocks as 13894 * originally expected 13895 */ 13896 blockcount -= 13897 SD_BYTES2TGTBLOCKS(un, 13898 return_pktp->pkt_resid); 13899 } 13900 13901 cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp; 13902 13903 /* 13904 * Set command byte based on the CDB 13905 * type we matched. 13906 */ 13907 cdbp->scc_cmd = cp->sc_grpmask | 13908 ((bp->b_flags & B_READ) ? 13909 SCMD_READ : SCMD_WRITE); 13910 13911 SD_FILL_SCSI1_LUN(un, return_pktp); 13912 13913 /* 13914 * Fill in LBA and length 13915 */ 13916 ASSERT((cp->sc_grpcode == CDB_GROUP1) || 13917 (cp->sc_grpcode == CDB_GROUP4) || 13918 (cp->sc_grpcode == CDB_GROUP0) || 13919 (cp->sc_grpcode == CDB_GROUP5)); 13920 13921 if (cp->sc_grpcode == CDB_GROUP1) { 13922 FORMG1ADDR(cdbp, lba); 13923 FORMG1COUNT(cdbp, blockcount); 13924 return (0); 13925 } else if (cp->sc_grpcode == CDB_GROUP4) { 13926 FORMG4LONGADDR(cdbp, lba); 13927 FORMG4COUNT(cdbp, blockcount); 13928 return (0); 13929 } else if (cp->sc_grpcode == CDB_GROUP0) { 13930 FORMG0ADDR(cdbp, lba); 13931 FORMG0COUNT(cdbp, blockcount); 13932 return (0); 13933 } else if (cp->sc_grpcode == CDB_GROUP5) { 13934 FORMG5ADDR(cdbp, lba); 13935 FORMG5COUNT(cdbp, blockcount); 13936 return (0); 13937 } 13938 13939 /* 13940 * It should be impossible to not match one 13941 * of the CDB types above, so we should never 13942 * reach this point. Set the CDB command byte 13943 * to test-unit-ready to avoid writing 13944 * to somewhere we don't intend. 13945 */ 13946 cdbp->scc_cmd = SCMD_TEST_UNIT_READY; 13947 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13948 } else { 13949 /* 13950 * Couldn't get scsi_pkt 13951 */ 13952 return (SD_PKT_ALLOC_FAILURE); 13953 } 13954 } 13955 } 13956 13957 /* 13958 * None of the available CDB types were suitable. This really 13959 * should never happen: on a 64 bit system we support 13960 * READ16/WRITE16 which will hold an entire 64 bit disk address 13961 * and on a 32 bit system we will refuse to bind to a device 13962 * larger than 2TB so addresses will never be larger than 32 bits. 13963 */ 13964 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13965 } 13966 13967 /* 13968 * Function: sd_setup_next_rw_pkt 13969 * 13970 * Description: Setup packet for partial DMA transfers, except for the 13971 * initial transfer. sd_setup_rw_pkt should be used for 13972 * the initial transfer. 13973 * 13974 * Context: Kernel thread and may be called from interrupt context. 13975 */ 13976 13977 int 13978 sd_setup_next_rw_pkt(struct sd_lun *un, 13979 struct scsi_pkt *pktp, struct buf *bp, 13980 diskaddr_t lba, uint32_t blockcount) 13981 { 13982 uchar_t com; 13983 union scsi_cdb *cdbp; 13984 uchar_t cdb_group_id; 13985 13986 ASSERT(pktp != NULL); 13987 ASSERT(pktp->pkt_cdbp != NULL); 13988 13989 cdbp = (union scsi_cdb *)pktp->pkt_cdbp; 13990 com = cdbp->scc_cmd; 13991 cdb_group_id = CDB_GROUPID(com); 13992 13993 ASSERT((cdb_group_id == CDB_GROUPID_0) || 13994 (cdb_group_id == CDB_GROUPID_1) || 13995 (cdb_group_id == CDB_GROUPID_4) || 13996 (cdb_group_id == CDB_GROUPID_5)); 13997 13998 /* 13999 * Move pkt to the next portion of the xfer. 14000 * func is NULL_FUNC so we do not have to release 14001 * the disk mutex here. 14002 */ 14003 if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0, 14004 NULL_FUNC, NULL) == pktp) { 14005 /* Success. Handle partial DMA */ 14006 if (pktp->pkt_resid != 0) { 14007 blockcount -= 14008 SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid); 14009 } 14010 14011 cdbp->scc_cmd = com; 14012 SD_FILL_SCSI1_LUN(un, pktp); 14013 if (cdb_group_id == CDB_GROUPID_1) { 14014 FORMG1ADDR(cdbp, lba); 14015 FORMG1COUNT(cdbp, blockcount); 14016 return (0); 14017 } else if (cdb_group_id == CDB_GROUPID_4) { 14018 FORMG4LONGADDR(cdbp, lba); 14019 FORMG4COUNT(cdbp, blockcount); 14020 return (0); 14021 } else if (cdb_group_id == CDB_GROUPID_0) { 14022 FORMG0ADDR(cdbp, lba); 14023 FORMG0COUNT(cdbp, blockcount); 14024 return (0); 14025 } else if (cdb_group_id == CDB_GROUPID_5) { 14026 FORMG5ADDR(cdbp, lba); 14027 FORMG5COUNT(cdbp, blockcount); 14028 return (0); 14029 } 14030 14031 /* Unreachable */ 14032 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 14033 } 14034 14035 /* 14036 * Error setting up next portion of cmd transfer. 14037 * Something is definitely very wrong and this 14038 * should not happen. 14039 */ 14040 return (SD_PKT_ALLOC_FAILURE); 14041 } 14042 14043 /* 14044 * Function: sd_initpkt_for_uscsi 14045 * 14046 * Description: Allocate and initialize for transport a scsi_pkt struct, 14047 * based upon the info specified in the given uscsi_cmd struct. 14048 * 14049 * Return Code: SD_PKT_ALLOC_SUCCESS 14050 * SD_PKT_ALLOC_FAILURE 14051 * SD_PKT_ALLOC_FAILURE_NO_DMA 14052 * SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL 14053 * 14054 * Context: Kernel thread and may be called from software interrupt context 14055 * as part of a sdrunout callback. This function may not block or 14056 * call routines that block 14057 */ 14058 14059 static int 14060 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp) 14061 { 14062 struct uscsi_cmd *uscmd; 14063 struct sd_xbuf *xp; 14064 struct scsi_pkt *pktp; 14065 struct sd_lun *un; 14066 uint32_t flags = 0; 14067 14068 ASSERT(bp != NULL); 14069 ASSERT(pktpp != NULL); 14070 xp = SD_GET_XBUF(bp); 14071 ASSERT(xp != NULL); 14072 un = SD_GET_UN(bp); 14073 ASSERT(un != NULL); 14074 ASSERT(mutex_owned(SD_MUTEX(un))); 14075 14076 /* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */ 14077 uscmd = (struct uscsi_cmd *)xp->xb_pktinfo; 14078 ASSERT(uscmd != NULL); 14079 14080 SD_TRACE(SD_LOG_IO_CORE, un, 14081 "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp); 14082 14083 /* 14084 * Allocate the scsi_pkt for the command. 14085 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path 14086 * during scsi_init_pkt time and will continue to use the 14087 * same path as long as the same scsi_pkt is used without 14088 * intervening scsi_dma_free(). Since uscsi command does 14089 * not call scsi_dmafree() before retry failed command, it 14090 * is necessary to make sure PKT_DMA_PARTIAL flag is NOT 14091 * set such that scsi_vhci can use other available path for 14092 * retry. Besides, ucsci command does not allow DMA breakup, 14093 * so there is no need to set PKT_DMA_PARTIAL flag. 14094 */ 14095 if (uscmd->uscsi_rqlen > SENSE_LENGTH) { 14096 pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, 14097 ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen, 14098 ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status) 14099 - sizeof (struct scsi_extended_sense)), 0, 14100 (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ, 14101 sdrunout, (caddr_t)un); 14102 } else { 14103 pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, 14104 ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen, 14105 sizeof (struct scsi_arq_status), 0, 14106 (un->un_pkt_flags & ~PKT_DMA_PARTIAL), 14107 sdrunout, (caddr_t)un); 14108 } 14109 14110 if (pktp == NULL) { 14111 *pktpp = NULL; 14112 /* 14113 * Set the driver state to RWAIT to indicate the driver 14114 * is waiting on resource allocations. The driver will not 14115 * suspend, pm_suspend, or detatch while the state is RWAIT. 14116 */ 14117 New_state(un, SD_STATE_RWAIT); 14118 14119 SD_ERROR(SD_LOG_IO_CORE, un, 14120 "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp); 14121 14122 if ((bp->b_flags & B_ERROR) != 0) { 14123 return (SD_PKT_ALLOC_FAILURE_NO_DMA); 14124 } 14125 return (SD_PKT_ALLOC_FAILURE); 14126 } 14127 14128 /* 14129 * We do not do DMA breakup for USCSI commands, so return failure 14130 * here if all the needed DMA resources were not allocated. 14131 */ 14132 if ((un->un_pkt_flags & PKT_DMA_PARTIAL) && 14133 (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) { 14134 scsi_destroy_pkt(pktp); 14135 SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: " 14136 "No partial DMA for USCSI. exit: buf:0x%p\n", bp); 14137 return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL); 14138 } 14139 14140 /* Init the cdb from the given uscsi struct */ 14141 (void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp, 14142 uscmd->uscsi_cdb[0], 0, 0, 0); 14143 14144 SD_FILL_SCSI1_LUN(un, pktp); 14145 14146 /* 14147 * Set up the optional USCSI flags. See the uscsi (7I) man page 14148 * for listing of the supported flags. 14149 */ 14150 14151 if (uscmd->uscsi_flags & USCSI_SILENT) { 14152 flags |= FLAG_SILENT; 14153 } 14154 14155 if (uscmd->uscsi_flags & USCSI_DIAGNOSE) { 14156 flags |= FLAG_DIAGNOSE; 14157 } 14158 14159 if (uscmd->uscsi_flags & USCSI_ISOLATE) { 14160 flags |= FLAG_ISOLATE; 14161 } 14162 14163 if (un->un_f_is_fibre == FALSE) { 14164 if (uscmd->uscsi_flags & USCSI_RENEGOT) { 14165 flags |= FLAG_RENEGOTIATE_WIDE_SYNC; 14166 } 14167 } 14168 14169 /* 14170 * Set the pkt flags here so we save time later. 14171 * Note: These flags are NOT in the uscsi man page!!! 14172 */ 14173 if (uscmd->uscsi_flags & USCSI_HEAD) { 14174 flags |= FLAG_HEAD; 14175 } 14176 14177 if (uscmd->uscsi_flags & USCSI_NOINTR) { 14178 flags |= FLAG_NOINTR; 14179 } 14180 14181 /* 14182 * For tagged queueing, things get a bit complicated. 14183 * Check first for head of queue and last for ordered queue. 14184 * If neither head nor order, use the default driver tag flags. 14185 */ 14186 if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) { 14187 if (uscmd->uscsi_flags & USCSI_HTAG) { 14188 flags |= FLAG_HTAG; 14189 } else if (uscmd->uscsi_flags & USCSI_OTAG) { 14190 flags |= FLAG_OTAG; 14191 } else { 14192 flags |= un->un_tagflags & FLAG_TAGMASK; 14193 } 14194 } 14195 14196 if (uscmd->uscsi_flags & USCSI_NODISCON) { 14197 flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON; 14198 } 14199 14200 pktp->pkt_flags = flags; 14201 14202 /* Transfer uscsi information to scsi_pkt */ 14203 (void) scsi_uscsi_pktinit(uscmd, pktp); 14204 14205 /* Copy the caller's CDB into the pkt... */ 14206 bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen); 14207 14208 if (uscmd->uscsi_timeout == 0) { 14209 pktp->pkt_time = un->un_uscsi_timeout; 14210 } else { 14211 pktp->pkt_time = uscmd->uscsi_timeout; 14212 } 14213 14214 /* need it later to identify USCSI request in sdintr */ 14215 xp->xb_pkt_flags |= SD_XB_USCSICMD; 14216 14217 xp->xb_sense_resid = uscmd->uscsi_rqresid; 14218 14219 pktp->pkt_private = bp; 14220 pktp->pkt_comp = sdintr; 14221 *pktpp = pktp; 14222 14223 SD_TRACE(SD_LOG_IO_CORE, un, 14224 "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp); 14225 14226 return (SD_PKT_ALLOC_SUCCESS); 14227 } 14228 14229 14230 /* 14231 * Function: sd_destroypkt_for_uscsi 14232 * 14233 * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi 14234 * IOs.. Also saves relevant info into the associated uscsi_cmd 14235 * struct. 14236 * 14237 * Context: May be called under interrupt context 14238 */ 14239 14240 static void 14241 sd_destroypkt_for_uscsi(struct buf *bp) 14242 { 14243 struct uscsi_cmd *uscmd; 14244 struct sd_xbuf *xp; 14245 struct scsi_pkt *pktp; 14246 struct sd_lun *un; 14247 struct sd_uscsi_info *suip; 14248 14249 ASSERT(bp != NULL); 14250 xp = SD_GET_XBUF(bp); 14251 ASSERT(xp != NULL); 14252 un = SD_GET_UN(bp); 14253 ASSERT(un != NULL); 14254 ASSERT(!mutex_owned(SD_MUTEX(un))); 14255 pktp = SD_GET_PKTP(bp); 14256 ASSERT(pktp != NULL); 14257 14258 SD_TRACE(SD_LOG_IO_CORE, un, 14259 "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp); 14260 14261 /* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */ 14262 uscmd = (struct uscsi_cmd *)xp->xb_pktinfo; 14263 ASSERT(uscmd != NULL); 14264 14265 /* Save the status and the residual into the uscsi_cmd struct */ 14266 uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK); 14267 uscmd->uscsi_resid = bp->b_resid; 14268 14269 /* Transfer scsi_pkt information to uscsi */ 14270 (void) scsi_uscsi_pktfini(pktp, uscmd); 14271 14272 /* 14273 * If enabled, copy any saved sense data into the area specified 14274 * by the uscsi command. 14275 */ 14276 if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) && 14277 (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) { 14278 /* 14279 * Note: uscmd->uscsi_rqbuf should always point to a buffer 14280 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd()) 14281 */ 14282 uscmd->uscsi_rqstatus = xp->xb_sense_status; 14283 uscmd->uscsi_rqresid = xp->xb_sense_resid; 14284 if (uscmd->uscsi_rqlen > SENSE_LENGTH) { 14285 bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, 14286 MAX_SENSE_LENGTH); 14287 } else { 14288 bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, 14289 SENSE_LENGTH); 14290 } 14291 } 14292 /* 14293 * The following assignments are for SCSI FMA. 14294 */ 14295 ASSERT(xp->xb_private != NULL); 14296 suip = (struct sd_uscsi_info *)xp->xb_private; 14297 suip->ui_pkt_reason = pktp->pkt_reason; 14298 suip->ui_pkt_state = pktp->pkt_state; 14299 suip->ui_pkt_statistics = pktp->pkt_statistics; 14300 suip->ui_lba = (uint64_t)SD_GET_BLKNO(bp); 14301 14302 /* We are done with the scsi_pkt; free it now */ 14303 ASSERT(SD_GET_PKTP(bp) != NULL); 14304 scsi_destroy_pkt(SD_GET_PKTP(bp)); 14305 14306 SD_TRACE(SD_LOG_IO_CORE, un, 14307 "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp); 14308 } 14309 14310 14311 /* 14312 * Function: sd_bioclone_alloc 14313 * 14314 * Description: Allocate a buf(9S) and init it as per the given buf 14315 * and the various arguments. The associated sd_xbuf 14316 * struct is (nearly) duplicated. The struct buf *bp 14317 * argument is saved in new_xp->xb_private. 14318 * 14319 * Arguments: bp - ptr the the buf(9S) to be "shadowed" 14320 * datalen - size of data area for the shadow bp 14321 * blkno - starting LBA 14322 * func - function pointer for b_iodone in the shadow buf. (May 14323 * be NULL if none.) 14324 * 14325 * Return Code: Pointer to allocates buf(9S) struct 14326 * 14327 * Context: Can sleep. 14328 */ 14329 14330 static struct buf * 14331 sd_bioclone_alloc(struct buf *bp, size_t datalen, 14332 daddr_t blkno, int (*func)(struct buf *)) 14333 { 14334 struct sd_lun *un; 14335 struct sd_xbuf *xp; 14336 struct sd_xbuf *new_xp; 14337 struct buf *new_bp; 14338 14339 ASSERT(bp != NULL); 14340 xp = SD_GET_XBUF(bp); 14341 ASSERT(xp != NULL); 14342 un = SD_GET_UN(bp); 14343 ASSERT(un != NULL); 14344 ASSERT(!mutex_owned(SD_MUTEX(un))); 14345 14346 new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func, 14347 NULL, KM_SLEEP); 14348 14349 new_bp->b_lblkno = blkno; 14350 14351 /* 14352 * Allocate an xbuf for the shadow bp and copy the contents of the 14353 * original xbuf into it. 14354 */ 14355 new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 14356 bcopy(xp, new_xp, sizeof (struct sd_xbuf)); 14357 14358 /* 14359 * The given bp is automatically saved in the xb_private member 14360 * of the new xbuf. Callers are allowed to depend on this. 14361 */ 14362 new_xp->xb_private = bp; 14363 14364 new_bp->b_private = new_xp; 14365 14366 return (new_bp); 14367 } 14368 14369 /* 14370 * Function: sd_shadow_buf_alloc 14371 * 14372 * Description: Allocate a buf(9S) and init it as per the given buf 14373 * and the various arguments. The associated sd_xbuf 14374 * struct is (nearly) duplicated. The struct buf *bp 14375 * argument is saved in new_xp->xb_private. 14376 * 14377 * Arguments: bp - ptr the the buf(9S) to be "shadowed" 14378 * datalen - size of data area for the shadow bp 14379 * bflags - B_READ or B_WRITE (pseudo flag) 14380 * blkno - starting LBA 14381 * func - function pointer for b_iodone in the shadow buf. (May 14382 * be NULL if none.) 14383 * 14384 * Return Code: Pointer to allocates buf(9S) struct 14385 * 14386 * Context: Can sleep. 14387 */ 14388 14389 static struct buf * 14390 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags, 14391 daddr_t blkno, int (*func)(struct buf *)) 14392 { 14393 struct sd_lun *un; 14394 struct sd_xbuf *xp; 14395 struct sd_xbuf *new_xp; 14396 struct buf *new_bp; 14397 14398 ASSERT(bp != NULL); 14399 xp = SD_GET_XBUF(bp); 14400 ASSERT(xp != NULL); 14401 un = SD_GET_UN(bp); 14402 ASSERT(un != NULL); 14403 ASSERT(!mutex_owned(SD_MUTEX(un))); 14404 14405 if (bp->b_flags & (B_PAGEIO | B_PHYS)) { 14406 bp_mapin(bp); 14407 } 14408 14409 bflags &= (B_READ | B_WRITE); 14410 #if defined(__i386) || defined(__amd64) 14411 new_bp = getrbuf(KM_SLEEP); 14412 new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP); 14413 new_bp->b_bcount = datalen; 14414 new_bp->b_flags = bflags | 14415 (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW)); 14416 #else 14417 new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL, 14418 datalen, bflags, SLEEP_FUNC, NULL); 14419 #endif 14420 new_bp->av_forw = NULL; 14421 new_bp->av_back = NULL; 14422 new_bp->b_dev = bp->b_dev; 14423 new_bp->b_blkno = blkno; 14424 new_bp->b_iodone = func; 14425 new_bp->b_edev = bp->b_edev; 14426 new_bp->b_resid = 0; 14427 14428 /* We need to preserve the B_FAILFAST flag */ 14429 if (bp->b_flags & B_FAILFAST) { 14430 new_bp->b_flags |= B_FAILFAST; 14431 } 14432 14433 /* 14434 * Allocate an xbuf for the shadow bp and copy the contents of the 14435 * original xbuf into it. 14436 */ 14437 new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 14438 bcopy(xp, new_xp, sizeof (struct sd_xbuf)); 14439 14440 /* Need later to copy data between the shadow buf & original buf! */ 14441 new_xp->xb_pkt_flags |= PKT_CONSISTENT; 14442 14443 /* 14444 * The given bp is automatically saved in the xb_private member 14445 * of the new xbuf. Callers are allowed to depend on this. 14446 */ 14447 new_xp->xb_private = bp; 14448 14449 new_bp->b_private = new_xp; 14450 14451 return (new_bp); 14452 } 14453 14454 /* 14455 * Function: sd_bioclone_free 14456 * 14457 * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations 14458 * in the larger than partition operation. 14459 * 14460 * Context: May be called under interrupt context 14461 */ 14462 14463 static void 14464 sd_bioclone_free(struct buf *bp) 14465 { 14466 struct sd_xbuf *xp; 14467 14468 ASSERT(bp != NULL); 14469 xp = SD_GET_XBUF(bp); 14470 ASSERT(xp != NULL); 14471 14472 /* 14473 * Call bp_mapout() before freeing the buf, in case a lower 14474 * layer or HBA had done a bp_mapin(). we must do this here 14475 * as we are the "originator" of the shadow buf. 14476 */ 14477 bp_mapout(bp); 14478 14479 /* 14480 * Null out b_iodone before freeing the bp, to ensure that the driver 14481 * never gets confused by a stale value in this field. (Just a little 14482 * extra defensiveness here.) 14483 */ 14484 bp->b_iodone = NULL; 14485 14486 freerbuf(bp); 14487 14488 kmem_free(xp, sizeof (struct sd_xbuf)); 14489 } 14490 14491 /* 14492 * Function: sd_shadow_buf_free 14493 * 14494 * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations. 14495 * 14496 * Context: May be called under interrupt context 14497 */ 14498 14499 static void 14500 sd_shadow_buf_free(struct buf *bp) 14501 { 14502 struct sd_xbuf *xp; 14503 14504 ASSERT(bp != NULL); 14505 xp = SD_GET_XBUF(bp); 14506 ASSERT(xp != NULL); 14507 14508 #if defined(__sparc) 14509 /* 14510 * Call bp_mapout() before freeing the buf, in case a lower 14511 * layer or HBA had done a bp_mapin(). we must do this here 14512 * as we are the "originator" of the shadow buf. 14513 */ 14514 bp_mapout(bp); 14515 #endif 14516 14517 /* 14518 * Null out b_iodone before freeing the bp, to ensure that the driver 14519 * never gets confused by a stale value in this field. (Just a little 14520 * extra defensiveness here.) 14521 */ 14522 bp->b_iodone = NULL; 14523 14524 #if defined(__i386) || defined(__amd64) 14525 kmem_free(bp->b_un.b_addr, bp->b_bcount); 14526 freerbuf(bp); 14527 #else 14528 scsi_free_consistent_buf(bp); 14529 #endif 14530 14531 kmem_free(xp, sizeof (struct sd_xbuf)); 14532 } 14533 14534 14535 /* 14536 * Function: sd_print_transport_rejected_message 14537 * 14538 * Description: This implements the ludicrously complex rules for printing 14539 * a "transport rejected" message. This is to address the 14540 * specific problem of having a flood of this error message 14541 * produced when a failover occurs. 14542 * 14543 * Context: Any. 14544 */ 14545 14546 static void 14547 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp, 14548 int code) 14549 { 14550 ASSERT(un != NULL); 14551 ASSERT(mutex_owned(SD_MUTEX(un))); 14552 ASSERT(xp != NULL); 14553 14554 /* 14555 * Print the "transport rejected" message under the following 14556 * conditions: 14557 * 14558 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set 14559 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR. 14560 * - If the error code IS a TRAN_FATAL_ERROR, then the message is 14561 * printed the FIRST time a TRAN_FATAL_ERROR is returned from 14562 * scsi_transport(9F) (which indicates that the target might have 14563 * gone off-line). This uses the un->un_tran_fatal_count 14564 * count, which is incremented whenever a TRAN_FATAL_ERROR is 14565 * received, and reset to zero whenver a TRAN_ACCEPT is returned 14566 * from scsi_transport(). 14567 * 14568 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of 14569 * the preceeding cases in order for the message to be printed. 14570 */ 14571 if (((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) && 14572 (SD_FM_LOG(un) == SD_FM_LOG_NSUP)) { 14573 if ((sd_level_mask & SD_LOGMASK_DIAG) || 14574 (code != TRAN_FATAL_ERROR) || 14575 (un->un_tran_fatal_count == 1)) { 14576 switch (code) { 14577 case TRAN_BADPKT: 14578 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 14579 "transport rejected bad packet\n"); 14580 break; 14581 case TRAN_FATAL_ERROR: 14582 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 14583 "transport rejected fatal error\n"); 14584 break; 14585 default: 14586 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 14587 "transport rejected (%d)\n", code); 14588 break; 14589 } 14590 } 14591 } 14592 } 14593 14594 14595 /* 14596 * Function: sd_add_buf_to_waitq 14597 * 14598 * Description: Add the given buf(9S) struct to the wait queue for the 14599 * instance. If sorting is enabled, then the buf is added 14600 * to the queue via an elevator sort algorithm (a la 14601 * disksort(9F)). The SD_GET_BLKNO(bp) is used as the sort key. 14602 * If sorting is not enabled, then the buf is just added 14603 * to the end of the wait queue. 14604 * 14605 * Return Code: void 14606 * 14607 * Context: Does not sleep/block, therefore technically can be called 14608 * from any context. However if sorting is enabled then the 14609 * execution time is indeterminate, and may take long if 14610 * the wait queue grows large. 14611 */ 14612 14613 static void 14614 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp) 14615 { 14616 struct buf *ap; 14617 14618 ASSERT(bp != NULL); 14619 ASSERT(un != NULL); 14620 ASSERT(mutex_owned(SD_MUTEX(un))); 14621 14622 /* If the queue is empty, add the buf as the only entry & return. */ 14623 if (un->un_waitq_headp == NULL) { 14624 ASSERT(un->un_waitq_tailp == NULL); 14625 un->un_waitq_headp = un->un_waitq_tailp = bp; 14626 bp->av_forw = NULL; 14627 return; 14628 } 14629 14630 ASSERT(un->un_waitq_tailp != NULL); 14631 14632 /* 14633 * If sorting is disabled, just add the buf to the tail end of 14634 * the wait queue and return. 14635 */ 14636 if (un->un_f_disksort_disabled || un->un_f_enable_rmw) { 14637 un->un_waitq_tailp->av_forw = bp; 14638 un->un_waitq_tailp = bp; 14639 bp->av_forw = NULL; 14640 return; 14641 } 14642 14643 /* 14644 * Sort thru the list of requests currently on the wait queue 14645 * and add the new buf request at the appropriate position. 14646 * 14647 * The un->un_waitq_headp is an activity chain pointer on which 14648 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The 14649 * first queue holds those requests which are positioned after 14650 * the current SD_GET_BLKNO() (in the first request); the second holds 14651 * requests which came in after their SD_GET_BLKNO() number was passed. 14652 * Thus we implement a one way scan, retracting after reaching 14653 * the end of the drive to the first request on the second 14654 * queue, at which time it becomes the first queue. 14655 * A one-way scan is natural because of the way UNIX read-ahead 14656 * blocks are allocated. 14657 * 14658 * If we lie after the first request, then we must locate the 14659 * second request list and add ourselves to it. 14660 */ 14661 ap = un->un_waitq_headp; 14662 if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) { 14663 while (ap->av_forw != NULL) { 14664 /* 14665 * Look for an "inversion" in the (normally 14666 * ascending) block numbers. This indicates 14667 * the start of the second request list. 14668 */ 14669 if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) { 14670 /* 14671 * Search the second request list for the 14672 * first request at a larger block number. 14673 * We go before that; however if there is 14674 * no such request, we go at the end. 14675 */ 14676 do { 14677 if (SD_GET_BLKNO(bp) < 14678 SD_GET_BLKNO(ap->av_forw)) { 14679 goto insert; 14680 } 14681 ap = ap->av_forw; 14682 } while (ap->av_forw != NULL); 14683 goto insert; /* after last */ 14684 } 14685 ap = ap->av_forw; 14686 } 14687 14688 /* 14689 * No inversions... we will go after the last, and 14690 * be the first request in the second request list. 14691 */ 14692 goto insert; 14693 } 14694 14695 /* 14696 * Request is at/after the current request... 14697 * sort in the first request list. 14698 */ 14699 while (ap->av_forw != NULL) { 14700 /* 14701 * We want to go after the current request (1) if 14702 * there is an inversion after it (i.e. it is the end 14703 * of the first request list), or (2) if the next 14704 * request is a larger block no. than our request. 14705 */ 14706 if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) || 14707 (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) { 14708 goto insert; 14709 } 14710 ap = ap->av_forw; 14711 } 14712 14713 /* 14714 * Neither a second list nor a larger request, therefore 14715 * we go at the end of the first list (which is the same 14716 * as the end of the whole schebang). 14717 */ 14718 insert: 14719 bp->av_forw = ap->av_forw; 14720 ap->av_forw = bp; 14721 14722 /* 14723 * If we inserted onto the tail end of the waitq, make sure the 14724 * tail pointer is updated. 14725 */ 14726 if (ap == un->un_waitq_tailp) { 14727 un->un_waitq_tailp = bp; 14728 } 14729 } 14730 14731 14732 /* 14733 * Function: sd_start_cmds 14734 * 14735 * Description: Remove and transport cmds from the driver queues. 14736 * 14737 * Arguments: un - pointer to the unit (soft state) struct for the target. 14738 * 14739 * immed_bp - ptr to a buf to be transported immediately. Only 14740 * the immed_bp is transported; bufs on the waitq are not 14741 * processed and the un_retry_bp is not checked. If immed_bp is 14742 * NULL, then normal queue processing is performed. 14743 * 14744 * Context: May be called from kernel thread context, interrupt context, 14745 * or runout callback context. This function may not block or 14746 * call routines that block. 14747 */ 14748 14749 static void 14750 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp) 14751 { 14752 struct sd_xbuf *xp; 14753 struct buf *bp; 14754 void (*statp)(kstat_io_t *); 14755 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14756 void (*saved_statp)(kstat_io_t *); 14757 #endif 14758 int rval; 14759 struct sd_fm_internal *sfip = NULL; 14760 14761 ASSERT(un != NULL); 14762 ASSERT(mutex_owned(SD_MUTEX(un))); 14763 ASSERT(un->un_ncmds_in_transport >= 0); 14764 ASSERT(un->un_throttle >= 0); 14765 14766 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n"); 14767 14768 do { 14769 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14770 saved_statp = NULL; 14771 #endif 14772 14773 /* 14774 * If we are syncing or dumping, fail the command to 14775 * avoid recursively calling back into scsi_transport(). 14776 * The dump I/O itself uses a separate code path so this 14777 * only prevents non-dump I/O from being sent while dumping. 14778 * File system sync takes place before dumping begins. 14779 * During panic, filesystem I/O is allowed provided 14780 * un_in_callback is <= 1. This is to prevent recursion 14781 * such as sd_start_cmds -> scsi_transport -> sdintr -> 14782 * sd_start_cmds and so on. See panic.c for more information 14783 * about the states the system can be in during panic. 14784 */ 14785 if ((un->un_state == SD_STATE_DUMPING) || 14786 (ddi_in_panic() && (un->un_in_callback > 1))) { 14787 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14788 "sd_start_cmds: panicking\n"); 14789 goto exit; 14790 } 14791 14792 if ((bp = immed_bp) != NULL) { 14793 /* 14794 * We have a bp that must be transported immediately. 14795 * It's OK to transport the immed_bp here without doing 14796 * the throttle limit check because the immed_bp is 14797 * always used in a retry/recovery case. This means 14798 * that we know we are not at the throttle limit by 14799 * virtue of the fact that to get here we must have 14800 * already gotten a command back via sdintr(). This also 14801 * relies on (1) the command on un_retry_bp preventing 14802 * further commands from the waitq from being issued; 14803 * and (2) the code in sd_retry_command checking the 14804 * throttle limit before issuing a delayed or immediate 14805 * retry. This holds even if the throttle limit is 14806 * currently ratcheted down from its maximum value. 14807 */ 14808 statp = kstat_runq_enter; 14809 if (bp == un->un_retry_bp) { 14810 ASSERT((un->un_retry_statp == NULL) || 14811 (un->un_retry_statp == kstat_waitq_enter) || 14812 (un->un_retry_statp == 14813 kstat_runq_back_to_waitq)); 14814 /* 14815 * If the waitq kstat was incremented when 14816 * sd_set_retry_bp() queued this bp for a retry, 14817 * then we must set up statp so that the waitq 14818 * count will get decremented correctly below. 14819 * Also we must clear un->un_retry_statp to 14820 * ensure that we do not act on a stale value 14821 * in this field. 14822 */ 14823 if ((un->un_retry_statp == kstat_waitq_enter) || 14824 (un->un_retry_statp == 14825 kstat_runq_back_to_waitq)) { 14826 statp = kstat_waitq_to_runq; 14827 } 14828 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14829 saved_statp = un->un_retry_statp; 14830 #endif 14831 un->un_retry_statp = NULL; 14832 14833 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 14834 "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p " 14835 "un_throttle:%d un_ncmds_in_transport:%d\n", 14836 un, un->un_retry_bp, un->un_throttle, 14837 un->un_ncmds_in_transport); 14838 } else { 14839 SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: " 14840 "processing priority bp:0x%p\n", bp); 14841 } 14842 14843 } else if ((bp = un->un_waitq_headp) != NULL) { 14844 /* 14845 * A command on the waitq is ready to go, but do not 14846 * send it if: 14847 * 14848 * (1) the throttle limit has been reached, or 14849 * (2) a retry is pending, or 14850 * (3) a START_STOP_UNIT callback pending, or 14851 * (4) a callback for a SD_PATH_DIRECT_PRIORITY 14852 * command is pending. 14853 * 14854 * For all of these conditions, IO processing will 14855 * restart after the condition is cleared. 14856 */ 14857 if (un->un_ncmds_in_transport >= un->un_throttle) { 14858 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14859 "sd_start_cmds: exiting, " 14860 "throttle limit reached!\n"); 14861 goto exit; 14862 } 14863 if (un->un_retry_bp != NULL) { 14864 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14865 "sd_start_cmds: exiting, retry pending!\n"); 14866 goto exit; 14867 } 14868 if (un->un_startstop_timeid != NULL) { 14869 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14870 "sd_start_cmds: exiting, " 14871 "START_STOP pending!\n"); 14872 goto exit; 14873 } 14874 if (un->un_direct_priority_timeid != NULL) { 14875 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14876 "sd_start_cmds: exiting, " 14877 "SD_PATH_DIRECT_PRIORITY cmd. pending!\n"); 14878 goto exit; 14879 } 14880 14881 /* Dequeue the command */ 14882 un->un_waitq_headp = bp->av_forw; 14883 if (un->un_waitq_headp == NULL) { 14884 un->un_waitq_tailp = NULL; 14885 } 14886 bp->av_forw = NULL; 14887 statp = kstat_waitq_to_runq; 14888 SD_TRACE(SD_LOG_IO_CORE, un, 14889 "sd_start_cmds: processing waitq bp:0x%p\n", bp); 14890 14891 } else { 14892 /* No work to do so bail out now */ 14893 SD_TRACE(SD_LOG_IO_CORE, un, 14894 "sd_start_cmds: no more work, exiting!\n"); 14895 goto exit; 14896 } 14897 14898 /* 14899 * Reset the state to normal. This is the mechanism by which 14900 * the state transitions from either SD_STATE_RWAIT or 14901 * SD_STATE_OFFLINE to SD_STATE_NORMAL. 14902 * If state is SD_STATE_PM_CHANGING then this command is 14903 * part of the device power control and the state must 14904 * not be put back to normal. Doing so would would 14905 * allow new commands to proceed when they shouldn't, 14906 * the device may be going off. 14907 */ 14908 if ((un->un_state != SD_STATE_SUSPENDED) && 14909 (un->un_state != SD_STATE_PM_CHANGING)) { 14910 New_state(un, SD_STATE_NORMAL); 14911 } 14912 14913 xp = SD_GET_XBUF(bp); 14914 ASSERT(xp != NULL); 14915 14916 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14917 /* 14918 * Allocate the scsi_pkt if we need one, or attach DMA 14919 * resources if we have a scsi_pkt that needs them. The 14920 * latter should only occur for commands that are being 14921 * retried. 14922 */ 14923 if ((xp->xb_pktp == NULL) || 14924 ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) { 14925 #else 14926 if (xp->xb_pktp == NULL) { 14927 #endif 14928 /* 14929 * There is no scsi_pkt allocated for this buf. Call 14930 * the initpkt function to allocate & init one. 14931 * 14932 * The scsi_init_pkt runout callback functionality is 14933 * implemented as follows: 14934 * 14935 * 1) The initpkt function always calls 14936 * scsi_init_pkt(9F) with sdrunout specified as the 14937 * callback routine. 14938 * 2) A successful packet allocation is initialized and 14939 * the I/O is transported. 14940 * 3) The I/O associated with an allocation resource 14941 * failure is left on its queue to be retried via 14942 * runout or the next I/O. 14943 * 4) The I/O associated with a DMA error is removed 14944 * from the queue and failed with EIO. Processing of 14945 * the transport queues is also halted to be 14946 * restarted via runout or the next I/O. 14947 * 5) The I/O associated with a CDB size or packet 14948 * size error is removed from the queue and failed 14949 * with EIO. Processing of the transport queues is 14950 * continued. 14951 * 14952 * Note: there is no interface for canceling a runout 14953 * callback. To prevent the driver from detaching or 14954 * suspending while a runout is pending the driver 14955 * state is set to SD_STATE_RWAIT 14956 * 14957 * Note: using the scsi_init_pkt callback facility can 14958 * result in an I/O request persisting at the head of 14959 * the list which cannot be satisfied even after 14960 * multiple retries. In the future the driver may 14961 * implement some kind of maximum runout count before 14962 * failing an I/O. 14963 * 14964 * Note: the use of funcp below may seem superfluous, 14965 * but it helps warlock figure out the correct 14966 * initpkt function calls (see [s]sd.wlcmd). 14967 */ 14968 struct scsi_pkt *pktp; 14969 int (*funcp)(struct buf *bp, struct scsi_pkt **pktp); 14970 14971 ASSERT(bp != un->un_rqs_bp); 14972 14973 funcp = sd_initpkt_map[xp->xb_chain_iostart]; 14974 switch ((*funcp)(bp, &pktp)) { 14975 case SD_PKT_ALLOC_SUCCESS: 14976 xp->xb_pktp = pktp; 14977 SD_TRACE(SD_LOG_IO_CORE, un, 14978 "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n", 14979 pktp); 14980 goto got_pkt; 14981 14982 case SD_PKT_ALLOC_FAILURE: 14983 /* 14984 * Temporary (hopefully) resource depletion. 14985 * Since retries and RQS commands always have a 14986 * scsi_pkt allocated, these cases should never 14987 * get here. So the only cases this needs to 14988 * handle is a bp from the waitq (which we put 14989 * back onto the waitq for sdrunout), or a bp 14990 * sent as an immed_bp (which we just fail). 14991 */ 14992 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14993 "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n"); 14994 14995 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14996 14997 if (bp == immed_bp) { 14998 /* 14999 * If SD_XB_DMA_FREED is clear, then 15000 * this is a failure to allocate a 15001 * scsi_pkt, and we must fail the 15002 * command. 15003 */ 15004 if ((xp->xb_pkt_flags & 15005 SD_XB_DMA_FREED) == 0) { 15006 break; 15007 } 15008 15009 /* 15010 * If this immediate command is NOT our 15011 * un_retry_bp, then we must fail it. 15012 */ 15013 if (bp != un->un_retry_bp) { 15014 break; 15015 } 15016 15017 /* 15018 * We get here if this cmd is our 15019 * un_retry_bp that was DMAFREED, but 15020 * scsi_init_pkt() failed to reallocate 15021 * DMA resources when we attempted to 15022 * retry it. This can happen when an 15023 * mpxio failover is in progress, but 15024 * we don't want to just fail the 15025 * command in this case. 15026 * 15027 * Use timeout(9F) to restart it after 15028 * a 100ms delay. We don't want to 15029 * let sdrunout() restart it, because 15030 * sdrunout() is just supposed to start 15031 * commands that are sitting on the 15032 * wait queue. The un_retry_bp stays 15033 * set until the command completes, but 15034 * sdrunout can be called many times 15035 * before that happens. Since sdrunout 15036 * cannot tell if the un_retry_bp is 15037 * already in the transport, it could 15038 * end up calling scsi_transport() for 15039 * the un_retry_bp multiple times. 15040 * 15041 * Also: don't schedule the callback 15042 * if some other callback is already 15043 * pending. 15044 */ 15045 if (un->un_retry_statp == NULL) { 15046 /* 15047 * restore the kstat pointer to 15048 * keep kstat counts coherent 15049 * when we do retry the command. 15050 */ 15051 un->un_retry_statp = 15052 saved_statp; 15053 } 15054 15055 if ((un->un_startstop_timeid == NULL) && 15056 (un->un_retry_timeid == NULL) && 15057 (un->un_direct_priority_timeid == 15058 NULL)) { 15059 15060 un->un_retry_timeid = 15061 timeout( 15062 sd_start_retry_command, 15063 un, SD_RESTART_TIMEOUT); 15064 } 15065 goto exit; 15066 } 15067 15068 #else 15069 if (bp == immed_bp) { 15070 break; /* Just fail the command */ 15071 } 15072 #endif 15073 15074 /* Add the buf back to the head of the waitq */ 15075 bp->av_forw = un->un_waitq_headp; 15076 un->un_waitq_headp = bp; 15077 if (un->un_waitq_tailp == NULL) { 15078 un->un_waitq_tailp = bp; 15079 } 15080 goto exit; 15081 15082 case SD_PKT_ALLOC_FAILURE_NO_DMA: 15083 /* 15084 * HBA DMA resource failure. Fail the command 15085 * and continue processing of the queues. 15086 */ 15087 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15088 "sd_start_cmds: " 15089 "SD_PKT_ALLOC_FAILURE_NO_DMA\n"); 15090 break; 15091 15092 case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL: 15093 /* 15094 * Note:x86: Partial DMA mapping not supported 15095 * for USCSI commands, and all the needed DMA 15096 * resources were not allocated. 15097 */ 15098 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15099 "sd_start_cmds: " 15100 "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n"); 15101 break; 15102 15103 case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL: 15104 /* 15105 * Note:x86: Request cannot fit into CDB based 15106 * on lba and len. 15107 */ 15108 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15109 "sd_start_cmds: " 15110 "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n"); 15111 break; 15112 15113 default: 15114 /* Should NEVER get here! */ 15115 panic("scsi_initpkt error"); 15116 /*NOTREACHED*/ 15117 } 15118 15119 /* 15120 * Fatal error in allocating a scsi_pkt for this buf. 15121 * Update kstats & return the buf with an error code. 15122 * We must use sd_return_failed_command_no_restart() to 15123 * avoid a recursive call back into sd_start_cmds(). 15124 * However this also means that we must keep processing 15125 * the waitq here in order to avoid stalling. 15126 */ 15127 if (statp == kstat_waitq_to_runq) { 15128 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 15129 } 15130 sd_return_failed_command_no_restart(un, bp, EIO); 15131 if (bp == immed_bp) { 15132 /* immed_bp is gone by now, so clear this */ 15133 immed_bp = NULL; 15134 } 15135 continue; 15136 } 15137 got_pkt: 15138 if (bp == immed_bp) { 15139 /* goto the head of the class.... */ 15140 xp->xb_pktp->pkt_flags |= FLAG_HEAD; 15141 } 15142 15143 un->un_ncmds_in_transport++; 15144 SD_UPDATE_KSTATS(un, statp, bp); 15145 15146 /* 15147 * Call scsi_transport() to send the command to the target. 15148 * According to SCSA architecture, we must drop the mutex here 15149 * before calling scsi_transport() in order to avoid deadlock. 15150 * Note that the scsi_pkt's completion routine can be executed 15151 * (from interrupt context) even before the call to 15152 * scsi_transport() returns. 15153 */ 15154 SD_TRACE(SD_LOG_IO_CORE, un, 15155 "sd_start_cmds: calling scsi_transport()\n"); 15156 DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp); 15157 15158 mutex_exit(SD_MUTEX(un)); 15159 rval = scsi_transport(xp->xb_pktp); 15160 mutex_enter(SD_MUTEX(un)); 15161 15162 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15163 "sd_start_cmds: scsi_transport() returned %d\n", rval); 15164 15165 switch (rval) { 15166 case TRAN_ACCEPT: 15167 /* Clear this with every pkt accepted by the HBA */ 15168 un->un_tran_fatal_count = 0; 15169 break; /* Success; try the next cmd (if any) */ 15170 15171 case TRAN_BUSY: 15172 un->un_ncmds_in_transport--; 15173 ASSERT(un->un_ncmds_in_transport >= 0); 15174 15175 /* 15176 * Don't retry request sense, the sense data 15177 * is lost when another request is sent. 15178 * Free up the rqs buf and retry 15179 * the original failed cmd. Update kstat. 15180 */ 15181 if (bp == un->un_rqs_bp) { 15182 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 15183 bp = sd_mark_rqs_idle(un, xp); 15184 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 15185 NULL, NULL, EIO, un->un_busy_timeout / 500, 15186 kstat_waitq_enter); 15187 goto exit; 15188 } 15189 15190 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 15191 /* 15192 * Free the DMA resources for the scsi_pkt. This will 15193 * allow mpxio to select another path the next time 15194 * we call scsi_transport() with this scsi_pkt. 15195 * See sdintr() for the rationalization behind this. 15196 */ 15197 if ((un->un_f_is_fibre == TRUE) && 15198 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 15199 ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) { 15200 scsi_dmafree(xp->xb_pktp); 15201 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 15202 } 15203 #endif 15204 15205 if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) { 15206 /* 15207 * Commands that are SD_PATH_DIRECT_PRIORITY 15208 * are for error recovery situations. These do 15209 * not use the normal command waitq, so if they 15210 * get a TRAN_BUSY we cannot put them back onto 15211 * the waitq for later retry. One possible 15212 * problem is that there could already be some 15213 * other command on un_retry_bp that is waiting 15214 * for this one to complete, so we would be 15215 * deadlocked if we put this command back onto 15216 * the waitq for later retry (since un_retry_bp 15217 * must complete before the driver gets back to 15218 * commands on the waitq). 15219 * 15220 * To avoid deadlock we must schedule a callback 15221 * that will restart this command after a set 15222 * interval. This should keep retrying for as 15223 * long as the underlying transport keeps 15224 * returning TRAN_BUSY (just like for other 15225 * commands). Use the same timeout interval as 15226 * for the ordinary TRAN_BUSY retry. 15227 */ 15228 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15229 "sd_start_cmds: scsi_transport() returned " 15230 "TRAN_BUSY for DIRECT_PRIORITY cmd!\n"); 15231 15232 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 15233 un->un_direct_priority_timeid = 15234 timeout(sd_start_direct_priority_command, 15235 bp, un->un_busy_timeout / 500); 15236 15237 goto exit; 15238 } 15239 15240 /* 15241 * For TRAN_BUSY, we want to reduce the throttle value, 15242 * unless we are retrying a command. 15243 */ 15244 if (bp != un->un_retry_bp) { 15245 sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY); 15246 } 15247 15248 /* 15249 * Set up the bp to be tried again 10 ms later. 15250 * Note:x86: Is there a timeout value in the sd_lun 15251 * for this condition? 15252 */ 15253 sd_set_retry_bp(un, bp, un->un_busy_timeout / 500, 15254 kstat_runq_back_to_waitq); 15255 goto exit; 15256 15257 case TRAN_FATAL_ERROR: 15258 un->un_tran_fatal_count++; 15259 /* FALLTHRU */ 15260 15261 case TRAN_BADPKT: 15262 default: 15263 un->un_ncmds_in_transport--; 15264 ASSERT(un->un_ncmds_in_transport >= 0); 15265 15266 /* 15267 * If this is our REQUEST SENSE command with a 15268 * transport error, we must get back the pointers 15269 * to the original buf, and mark the REQUEST 15270 * SENSE command as "available". 15271 */ 15272 if (bp == un->un_rqs_bp) { 15273 bp = sd_mark_rqs_idle(un, xp); 15274 xp = SD_GET_XBUF(bp); 15275 } else { 15276 /* 15277 * Legacy behavior: do not update transport 15278 * error count for request sense commands. 15279 */ 15280 SD_UPDATE_ERRSTATS(un, sd_transerrs); 15281 } 15282 15283 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 15284 sd_print_transport_rejected_message(un, xp, rval); 15285 15286 /* 15287 * This command will be terminated by SD driver due 15288 * to a fatal transport error. We should post 15289 * ereport.io.scsi.cmd.disk.tran with driver-assessment 15290 * of "fail" for any command to indicate this 15291 * situation. 15292 */ 15293 if (xp->xb_ena > 0) { 15294 ASSERT(un->un_fm_private != NULL); 15295 sfip = un->un_fm_private; 15296 sfip->fm_ssc.ssc_flags |= SSC_FLAGS_TRAN_ABORT; 15297 sd_ssc_extract_info(&sfip->fm_ssc, un, 15298 xp->xb_pktp, bp, xp); 15299 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL); 15300 } 15301 15302 /* 15303 * We must use sd_return_failed_command_no_restart() to 15304 * avoid a recursive call back into sd_start_cmds(). 15305 * However this also means that we must keep processing 15306 * the waitq here in order to avoid stalling. 15307 */ 15308 sd_return_failed_command_no_restart(un, bp, EIO); 15309 15310 /* 15311 * Notify any threads waiting in sd_ddi_suspend() that 15312 * a command completion has occurred. 15313 */ 15314 if (un->un_state == SD_STATE_SUSPENDED) { 15315 cv_broadcast(&un->un_disk_busy_cv); 15316 } 15317 15318 if (bp == immed_bp) { 15319 /* immed_bp is gone by now, so clear this */ 15320 immed_bp = NULL; 15321 } 15322 break; 15323 } 15324 15325 } while (immed_bp == NULL); 15326 15327 exit: 15328 ASSERT(mutex_owned(SD_MUTEX(un))); 15329 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n"); 15330 } 15331 15332 15333 /* 15334 * Function: sd_return_command 15335 * 15336 * Description: Returns a command to its originator (with or without an 15337 * error). Also starts commands waiting to be transported 15338 * to the target. 15339 * 15340 * Context: May be called from interrupt, kernel, or timeout context 15341 */ 15342 15343 static void 15344 sd_return_command(struct sd_lun *un, struct buf *bp) 15345 { 15346 struct sd_xbuf *xp; 15347 struct scsi_pkt *pktp; 15348 struct sd_fm_internal *sfip; 15349 15350 ASSERT(bp != NULL); 15351 ASSERT(un != NULL); 15352 ASSERT(mutex_owned(SD_MUTEX(un))); 15353 ASSERT(bp != un->un_rqs_bp); 15354 xp = SD_GET_XBUF(bp); 15355 ASSERT(xp != NULL); 15356 15357 pktp = SD_GET_PKTP(bp); 15358 sfip = (struct sd_fm_internal *)un->un_fm_private; 15359 ASSERT(sfip != NULL); 15360 15361 SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n"); 15362 15363 /* 15364 * Note: check for the "sdrestart failed" case. 15365 */ 15366 if ((un->un_partial_dma_supported == 1) && 15367 ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) && 15368 (geterror(bp) == 0) && (xp->xb_dma_resid != 0) && 15369 (xp->xb_pktp->pkt_resid == 0)) { 15370 15371 if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) { 15372 /* 15373 * Successfully set up next portion of cmd 15374 * transfer, try sending it 15375 */ 15376 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, 15377 NULL, NULL, 0, (clock_t)0, NULL); 15378 sd_start_cmds(un, NULL); 15379 return; /* Note:x86: need a return here? */ 15380 } 15381 } 15382 15383 /* 15384 * If this is the failfast bp, clear it from un_failfast_bp. This 15385 * can happen if upon being re-tried the failfast bp either 15386 * succeeded or encountered another error (possibly even a different 15387 * error than the one that precipitated the failfast state, but in 15388 * that case it would have had to exhaust retries as well). Regardless, 15389 * this should not occur whenever the instance is in the active 15390 * failfast state. 15391 */ 15392 if (bp == un->un_failfast_bp) { 15393 ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE); 15394 un->un_failfast_bp = NULL; 15395 } 15396 15397 /* 15398 * Clear the failfast state upon successful completion of ANY cmd. 15399 */ 15400 if (bp->b_error == 0) { 15401 un->un_failfast_state = SD_FAILFAST_INACTIVE; 15402 /* 15403 * If this is a successful command, but used to be retried, 15404 * we will take it as a recovered command and post an 15405 * ereport with driver-assessment of "recovered". 15406 */ 15407 if (xp->xb_ena > 0) { 15408 sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp); 15409 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RECOVERY); 15410 } 15411 } else { 15412 /* 15413 * If this is a failed non-USCSI command we will post an 15414 * ereport with driver-assessment set accordingly("fail" or 15415 * "fatal"). 15416 */ 15417 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 15418 sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp); 15419 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL); 15420 } 15421 } 15422 15423 /* 15424 * This is used if the command was retried one or more times. Show that 15425 * we are done with it, and allow processing of the waitq to resume. 15426 */ 15427 if (bp == un->un_retry_bp) { 15428 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15429 "sd_return_command: un:0x%p: " 15430 "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp); 15431 un->un_retry_bp = NULL; 15432 un->un_retry_statp = NULL; 15433 } 15434 15435 SD_UPDATE_RDWR_STATS(un, bp); 15436 SD_UPDATE_PARTITION_STATS(un, bp); 15437 15438 switch (un->un_state) { 15439 case SD_STATE_SUSPENDED: 15440 /* 15441 * Notify any threads waiting in sd_ddi_suspend() that 15442 * a command completion has occurred. 15443 */ 15444 cv_broadcast(&un->un_disk_busy_cv); 15445 break; 15446 default: 15447 sd_start_cmds(un, NULL); 15448 break; 15449 } 15450 15451 /* Return this command up the iodone chain to its originator. */ 15452 mutex_exit(SD_MUTEX(un)); 15453 15454 (*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp); 15455 xp->xb_pktp = NULL; 15456 15457 SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp); 15458 15459 ASSERT(!mutex_owned(SD_MUTEX(un))); 15460 mutex_enter(SD_MUTEX(un)); 15461 15462 SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n"); 15463 } 15464 15465 15466 /* 15467 * Function: sd_return_failed_command 15468 * 15469 * Description: Command completion when an error occurred. 15470 * 15471 * Context: May be called from interrupt context 15472 */ 15473 15474 static void 15475 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode) 15476 { 15477 ASSERT(bp != NULL); 15478 ASSERT(un != NULL); 15479 ASSERT(mutex_owned(SD_MUTEX(un))); 15480 15481 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15482 "sd_return_failed_command: entry\n"); 15483 15484 /* 15485 * b_resid could already be nonzero due to a partial data 15486 * transfer, so do not change it here. 15487 */ 15488 SD_BIOERROR(bp, errcode); 15489 15490 sd_return_command(un, bp); 15491 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15492 "sd_return_failed_command: exit\n"); 15493 } 15494 15495 15496 /* 15497 * Function: sd_return_failed_command_no_restart 15498 * 15499 * Description: Same as sd_return_failed_command, but ensures that no 15500 * call back into sd_start_cmds will be issued. 15501 * 15502 * Context: May be called from interrupt context 15503 */ 15504 15505 static void 15506 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp, 15507 int errcode) 15508 { 15509 struct sd_xbuf *xp; 15510 15511 ASSERT(bp != NULL); 15512 ASSERT(un != NULL); 15513 ASSERT(mutex_owned(SD_MUTEX(un))); 15514 xp = SD_GET_XBUF(bp); 15515 ASSERT(xp != NULL); 15516 ASSERT(errcode != 0); 15517 15518 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15519 "sd_return_failed_command_no_restart: entry\n"); 15520 15521 /* 15522 * b_resid could already be nonzero due to a partial data 15523 * transfer, so do not change it here. 15524 */ 15525 SD_BIOERROR(bp, errcode); 15526 15527 /* 15528 * If this is the failfast bp, clear it. This can happen if the 15529 * failfast bp encounterd a fatal error when we attempted to 15530 * re-try it (such as a scsi_transport(9F) failure). However 15531 * we should NOT be in an active failfast state if the failfast 15532 * bp is not NULL. 15533 */ 15534 if (bp == un->un_failfast_bp) { 15535 ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE); 15536 un->un_failfast_bp = NULL; 15537 } 15538 15539 if (bp == un->un_retry_bp) { 15540 /* 15541 * This command was retried one or more times. Show that we are 15542 * done with it, and allow processing of the waitq to resume. 15543 */ 15544 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15545 "sd_return_failed_command_no_restart: " 15546 " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp); 15547 un->un_retry_bp = NULL; 15548 un->un_retry_statp = NULL; 15549 } 15550 15551 SD_UPDATE_RDWR_STATS(un, bp); 15552 SD_UPDATE_PARTITION_STATS(un, bp); 15553 15554 mutex_exit(SD_MUTEX(un)); 15555 15556 if (xp->xb_pktp != NULL) { 15557 (*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp); 15558 xp->xb_pktp = NULL; 15559 } 15560 15561 SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp); 15562 15563 mutex_enter(SD_MUTEX(un)); 15564 15565 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15566 "sd_return_failed_command_no_restart: exit\n"); 15567 } 15568 15569 15570 /* 15571 * Function: sd_retry_command 15572 * 15573 * Description: queue up a command for retry, or (optionally) fail it 15574 * if retry counts are exhausted. 15575 * 15576 * Arguments: un - Pointer to the sd_lun struct for the target. 15577 * 15578 * bp - Pointer to the buf for the command to be retried. 15579 * 15580 * retry_check_flag - Flag to see which (if any) of the retry 15581 * counts should be decremented/checked. If the indicated 15582 * retry count is exhausted, then the command will not be 15583 * retried; it will be failed instead. This should use a 15584 * value equal to one of the following: 15585 * 15586 * SD_RETRIES_NOCHECK 15587 * SD_RESD_RETRIES_STANDARD 15588 * SD_RETRIES_VICTIM 15589 * 15590 * Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE 15591 * if the check should be made to see of FLAG_ISOLATE is set 15592 * in the pkt. If FLAG_ISOLATE is set, then the command is 15593 * not retried, it is simply failed. 15594 * 15595 * user_funcp - Ptr to function to call before dispatching the 15596 * command. May be NULL if no action needs to be performed. 15597 * (Primarily intended for printing messages.) 15598 * 15599 * user_arg - Optional argument to be passed along to 15600 * the user_funcp call. 15601 * 15602 * failure_code - errno return code to set in the bp if the 15603 * command is going to be failed. 15604 * 15605 * retry_delay - Retry delay interval in (clock_t) units. May 15606 * be zero which indicates that the retry should be retried 15607 * immediately (ie, without an intervening delay). 15608 * 15609 * statp - Ptr to kstat function to be updated if the command 15610 * is queued for a delayed retry. May be NULL if no kstat 15611 * update is desired. 15612 * 15613 * Context: May be called from interrupt context. 15614 */ 15615 15616 static void 15617 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag, 15618 void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int 15619 code), void *user_arg, int failure_code, clock_t retry_delay, 15620 void (*statp)(kstat_io_t *)) 15621 { 15622 struct sd_xbuf *xp; 15623 struct scsi_pkt *pktp; 15624 struct sd_fm_internal *sfip; 15625 15626 ASSERT(un != NULL); 15627 ASSERT(mutex_owned(SD_MUTEX(un))); 15628 ASSERT(bp != NULL); 15629 xp = SD_GET_XBUF(bp); 15630 ASSERT(xp != NULL); 15631 pktp = SD_GET_PKTP(bp); 15632 ASSERT(pktp != NULL); 15633 15634 sfip = (struct sd_fm_internal *)un->un_fm_private; 15635 ASSERT(sfip != NULL); 15636 15637 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 15638 "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp); 15639 15640 /* 15641 * If we are syncing or dumping, fail the command to avoid 15642 * recursively calling back into scsi_transport(). 15643 */ 15644 if (ddi_in_panic()) { 15645 goto fail_command_no_log; 15646 } 15647 15648 /* 15649 * We should never be be retrying a command with FLAG_DIAGNOSE set, so 15650 * log an error and fail the command. 15651 */ 15652 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 15653 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 15654 "ERROR, retrying FLAG_DIAGNOSE command.\n"); 15655 sd_dump_memory(un, SD_LOG_IO, "CDB", 15656 (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 15657 sd_dump_memory(un, SD_LOG_IO, "Sense Data", 15658 (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX); 15659 goto fail_command; 15660 } 15661 15662 /* 15663 * If we are suspended, then put the command onto head of the 15664 * wait queue since we don't want to start more commands, and 15665 * clear the un_retry_bp. Next time when we are resumed, will 15666 * handle the command in the wait queue. 15667 */ 15668 switch (un->un_state) { 15669 case SD_STATE_SUSPENDED: 15670 case SD_STATE_DUMPING: 15671 bp->av_forw = un->un_waitq_headp; 15672 un->un_waitq_headp = bp; 15673 if (un->un_waitq_tailp == NULL) { 15674 un->un_waitq_tailp = bp; 15675 } 15676 if (bp == un->un_retry_bp) { 15677 un->un_retry_bp = NULL; 15678 un->un_retry_statp = NULL; 15679 } 15680 SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp); 15681 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: " 15682 "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp); 15683 return; 15684 default: 15685 break; 15686 } 15687 15688 /* 15689 * If the caller wants us to check FLAG_ISOLATE, then see if that 15690 * is set; if it is then we do not want to retry the command. 15691 * Normally, FLAG_ISOLATE is only used with USCSI cmds. 15692 */ 15693 if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) { 15694 if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) { 15695 goto fail_command; 15696 } 15697 } 15698 15699 15700 /* 15701 * If SD_RETRIES_FAILFAST is set, it indicates that either a 15702 * command timeout or a selection timeout has occurred. This means 15703 * that we were unable to establish an kind of communication with 15704 * the target, and subsequent retries and/or commands are likely 15705 * to encounter similar results and take a long time to complete. 15706 * 15707 * If this is a failfast error condition, we need to update the 15708 * failfast state, even if this bp does not have B_FAILFAST set. 15709 */ 15710 if (retry_check_flag & SD_RETRIES_FAILFAST) { 15711 if (un->un_failfast_state == SD_FAILFAST_ACTIVE) { 15712 ASSERT(un->un_failfast_bp == NULL); 15713 /* 15714 * If we are already in the active failfast state, and 15715 * another failfast error condition has been detected, 15716 * then fail this command if it has B_FAILFAST set. 15717 * If B_FAILFAST is clear, then maintain the legacy 15718 * behavior of retrying heroically, even tho this will 15719 * take a lot more time to fail the command. 15720 */ 15721 if (bp->b_flags & B_FAILFAST) { 15722 goto fail_command; 15723 } 15724 } else { 15725 /* 15726 * We're not in the active failfast state, but we 15727 * have a failfast error condition, so we must begin 15728 * transition to the next state. We do this regardless 15729 * of whether or not this bp has B_FAILFAST set. 15730 */ 15731 if (un->un_failfast_bp == NULL) { 15732 /* 15733 * This is the first bp to meet a failfast 15734 * condition so save it on un_failfast_bp & 15735 * do normal retry processing. Do not enter 15736 * active failfast state yet. This marks 15737 * entry into the "failfast pending" state. 15738 */ 15739 un->un_failfast_bp = bp; 15740 15741 } else if (un->un_failfast_bp == bp) { 15742 /* 15743 * This is the second time *this* bp has 15744 * encountered a failfast error condition, 15745 * so enter active failfast state & flush 15746 * queues as appropriate. 15747 */ 15748 un->un_failfast_state = SD_FAILFAST_ACTIVE; 15749 un->un_failfast_bp = NULL; 15750 sd_failfast_flushq(un); 15751 15752 /* 15753 * Fail this bp now if B_FAILFAST set; 15754 * otherwise continue with retries. (It would 15755 * be pretty ironic if this bp succeeded on a 15756 * subsequent retry after we just flushed all 15757 * the queues). 15758 */ 15759 if (bp->b_flags & B_FAILFAST) { 15760 goto fail_command; 15761 } 15762 15763 #if !defined(lint) && !defined(__lint) 15764 } else { 15765 /* 15766 * If neither of the preceeding conditionals 15767 * was true, it means that there is some 15768 * *other* bp that has met an inital failfast 15769 * condition and is currently either being 15770 * retried or is waiting to be retried. In 15771 * that case we should perform normal retry 15772 * processing on *this* bp, since there is a 15773 * chance that the current failfast condition 15774 * is transient and recoverable. If that does 15775 * not turn out to be the case, then retries 15776 * will be cleared when the wait queue is 15777 * flushed anyway. 15778 */ 15779 #endif 15780 } 15781 } 15782 } else { 15783 /* 15784 * SD_RETRIES_FAILFAST is clear, which indicates that we 15785 * likely were able to at least establish some level of 15786 * communication with the target and subsequent commands 15787 * and/or retries are likely to get through to the target, 15788 * In this case we want to be aggressive about clearing 15789 * the failfast state. Note that this does not affect 15790 * the "failfast pending" condition. 15791 */ 15792 un->un_failfast_state = SD_FAILFAST_INACTIVE; 15793 } 15794 15795 15796 /* 15797 * Check the specified retry count to see if we can still do 15798 * any retries with this pkt before we should fail it. 15799 */ 15800 switch (retry_check_flag & SD_RETRIES_MASK) { 15801 case SD_RETRIES_VICTIM: 15802 /* 15803 * Check the victim retry count. If exhausted, then fall 15804 * thru & check against the standard retry count. 15805 */ 15806 if (xp->xb_victim_retry_count < un->un_victim_retry_count) { 15807 /* Increment count & proceed with the retry */ 15808 xp->xb_victim_retry_count++; 15809 break; 15810 } 15811 /* Victim retries exhausted, fall back to std. retries... */ 15812 /* FALLTHRU */ 15813 15814 case SD_RETRIES_STANDARD: 15815 if (xp->xb_retry_count >= un->un_retry_count) { 15816 /* Retries exhausted, fail the command */ 15817 SD_TRACE(SD_LOG_IO_CORE, un, 15818 "sd_retry_command: retries exhausted!\n"); 15819 /* 15820 * update b_resid for failed SCMD_READ & SCMD_WRITE 15821 * commands with nonzero pkt_resid. 15822 */ 15823 if ((pktp->pkt_reason == CMD_CMPLT) && 15824 (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) && 15825 (pktp->pkt_resid != 0)) { 15826 uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F; 15827 if ((op == SCMD_READ) || (op == SCMD_WRITE)) { 15828 SD_UPDATE_B_RESID(bp, pktp); 15829 } 15830 } 15831 goto fail_command; 15832 } 15833 xp->xb_retry_count++; 15834 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15835 "sd_retry_command: retry count:%d\n", xp->xb_retry_count); 15836 break; 15837 15838 case SD_RETRIES_UA: 15839 if (xp->xb_ua_retry_count >= sd_ua_retry_count) { 15840 /* Retries exhausted, fail the command */ 15841 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 15842 "Unit Attention retries exhausted. " 15843 "Check the target.\n"); 15844 goto fail_command; 15845 } 15846 xp->xb_ua_retry_count++; 15847 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15848 "sd_retry_command: retry count:%d\n", 15849 xp->xb_ua_retry_count); 15850 break; 15851 15852 case SD_RETRIES_BUSY: 15853 if (xp->xb_retry_count >= un->un_busy_retry_count) { 15854 /* Retries exhausted, fail the command */ 15855 SD_TRACE(SD_LOG_IO_CORE, un, 15856 "sd_retry_command: retries exhausted!\n"); 15857 goto fail_command; 15858 } 15859 xp->xb_retry_count++; 15860 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15861 "sd_retry_command: retry count:%d\n", xp->xb_retry_count); 15862 break; 15863 15864 case SD_RETRIES_NOCHECK: 15865 default: 15866 /* No retry count to check. Just proceed with the retry */ 15867 break; 15868 } 15869 15870 xp->xb_pktp->pkt_flags |= FLAG_HEAD; 15871 15872 /* 15873 * If this is a non-USCSI command being retried 15874 * during execution last time, we should post an ereport with 15875 * driver-assessment of the value "retry". 15876 * For partial DMA, request sense and STATUS_QFULL, there are no 15877 * hardware errors, we bypass ereport posting. 15878 */ 15879 if (failure_code != 0) { 15880 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 15881 sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp); 15882 sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RETRY); 15883 } 15884 } 15885 15886 /* 15887 * If we were given a zero timeout, we must attempt to retry the 15888 * command immediately (ie, without a delay). 15889 */ 15890 if (retry_delay == 0) { 15891 /* 15892 * Check some limiting conditions to see if we can actually 15893 * do the immediate retry. If we cannot, then we must 15894 * fall back to queueing up a delayed retry. 15895 */ 15896 if (un->un_ncmds_in_transport >= un->un_throttle) { 15897 /* 15898 * We are at the throttle limit for the target, 15899 * fall back to delayed retry. 15900 */ 15901 retry_delay = un->un_busy_timeout; 15902 statp = kstat_waitq_enter; 15903 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15904 "sd_retry_command: immed. retry hit " 15905 "throttle!\n"); 15906 } else { 15907 /* 15908 * We're clear to proceed with the immediate retry. 15909 * First call the user-provided function (if any) 15910 */ 15911 if (user_funcp != NULL) { 15912 (*user_funcp)(un, bp, user_arg, 15913 SD_IMMEDIATE_RETRY_ISSUED); 15914 #ifdef __lock_lint 15915 sd_print_incomplete_msg(un, bp, user_arg, 15916 SD_IMMEDIATE_RETRY_ISSUED); 15917 sd_print_cmd_incomplete_msg(un, bp, user_arg, 15918 SD_IMMEDIATE_RETRY_ISSUED); 15919 sd_print_sense_failed_msg(un, bp, user_arg, 15920 SD_IMMEDIATE_RETRY_ISSUED); 15921 #endif 15922 } 15923 15924 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15925 "sd_retry_command: issuing immediate retry\n"); 15926 15927 /* 15928 * Call sd_start_cmds() to transport the command to 15929 * the target. 15930 */ 15931 sd_start_cmds(un, bp); 15932 15933 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15934 "sd_retry_command exit\n"); 15935 return; 15936 } 15937 } 15938 15939 /* 15940 * Set up to retry the command after a delay. 15941 * First call the user-provided function (if any) 15942 */ 15943 if (user_funcp != NULL) { 15944 (*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED); 15945 } 15946 15947 sd_set_retry_bp(un, bp, retry_delay, statp); 15948 15949 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n"); 15950 return; 15951 15952 fail_command: 15953 15954 if (user_funcp != NULL) { 15955 (*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED); 15956 } 15957 15958 fail_command_no_log: 15959 15960 SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15961 "sd_retry_command: returning failed command\n"); 15962 15963 sd_return_failed_command(un, bp, failure_code); 15964 15965 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n"); 15966 } 15967 15968 15969 /* 15970 * Function: sd_set_retry_bp 15971 * 15972 * Description: Set up the given bp for retry. 15973 * 15974 * Arguments: un - ptr to associated softstate 15975 * bp - ptr to buf(9S) for the command 15976 * retry_delay - time interval before issuing retry (may be 0) 15977 * statp - optional pointer to kstat function 15978 * 15979 * Context: May be called under interrupt context 15980 */ 15981 15982 static void 15983 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay, 15984 void (*statp)(kstat_io_t *)) 15985 { 15986 ASSERT(un != NULL); 15987 ASSERT(mutex_owned(SD_MUTEX(un))); 15988 ASSERT(bp != NULL); 15989 15990 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 15991 "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp); 15992 15993 /* 15994 * Indicate that the command is being retried. This will not allow any 15995 * other commands on the wait queue to be transported to the target 15996 * until this command has been completed (success or failure). The 15997 * "retry command" is not transported to the target until the given 15998 * time delay expires, unless the user specified a 0 retry_delay. 15999 * 16000 * Note: the timeout(9F) callback routine is what actually calls 16001 * sd_start_cmds() to transport the command, with the exception of a 16002 * zero retry_delay. The only current implementor of a zero retry delay 16003 * is the case where a START_STOP_UNIT is sent to spin-up a device. 16004 */ 16005 if (un->un_retry_bp == NULL) { 16006 ASSERT(un->un_retry_statp == NULL); 16007 un->un_retry_bp = bp; 16008 16009 /* 16010 * If the user has not specified a delay the command should 16011 * be queued and no timeout should be scheduled. 16012 */ 16013 if (retry_delay == 0) { 16014 /* 16015 * Save the kstat pointer that will be used in the 16016 * call to SD_UPDATE_KSTATS() below, so that 16017 * sd_start_cmds() can correctly decrement the waitq 16018 * count when it is time to transport this command. 16019 */ 16020 un->un_retry_statp = statp; 16021 goto done; 16022 } 16023 } 16024 16025 if (un->un_retry_bp == bp) { 16026 /* 16027 * Save the kstat pointer that will be used in the call to 16028 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can 16029 * correctly decrement the waitq count when it is time to 16030 * transport this command. 16031 */ 16032 un->un_retry_statp = statp; 16033 16034 /* 16035 * Schedule a timeout if: 16036 * 1) The user has specified a delay. 16037 * 2) There is not a START_STOP_UNIT callback pending. 16038 * 16039 * If no delay has been specified, then it is up to the caller 16040 * to ensure that IO processing continues without stalling. 16041 * Effectively, this means that the caller will issue the 16042 * required call to sd_start_cmds(). The START_STOP_UNIT 16043 * callback does this after the START STOP UNIT command has 16044 * completed. In either of these cases we should not schedule 16045 * a timeout callback here. Also don't schedule the timeout if 16046 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart. 16047 */ 16048 if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) && 16049 (un->un_direct_priority_timeid == NULL)) { 16050 un->un_retry_timeid = 16051 timeout(sd_start_retry_command, un, retry_delay); 16052 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16053 "sd_set_retry_bp: setting timeout: un: 0x%p" 16054 " bp:0x%p un_retry_timeid:0x%p\n", 16055 un, bp, un->un_retry_timeid); 16056 } 16057 } else { 16058 /* 16059 * We only get in here if there is already another command 16060 * waiting to be retried. In this case, we just put the 16061 * given command onto the wait queue, so it can be transported 16062 * after the current retry command has completed. 16063 * 16064 * Also we have to make sure that if the command at the head 16065 * of the wait queue is the un_failfast_bp, that we do not 16066 * put ahead of it any other commands that are to be retried. 16067 */ 16068 if ((un->un_failfast_bp != NULL) && 16069 (un->un_failfast_bp == un->un_waitq_headp)) { 16070 /* 16071 * Enqueue this command AFTER the first command on 16072 * the wait queue (which is also un_failfast_bp). 16073 */ 16074 bp->av_forw = un->un_waitq_headp->av_forw; 16075 un->un_waitq_headp->av_forw = bp; 16076 if (un->un_waitq_headp == un->un_waitq_tailp) { 16077 un->un_waitq_tailp = bp; 16078 } 16079 } else { 16080 /* Enqueue this command at the head of the waitq. */ 16081 bp->av_forw = un->un_waitq_headp; 16082 un->un_waitq_headp = bp; 16083 if (un->un_waitq_tailp == NULL) { 16084 un->un_waitq_tailp = bp; 16085 } 16086 } 16087 16088 if (statp == NULL) { 16089 statp = kstat_waitq_enter; 16090 } 16091 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16092 "sd_set_retry_bp: un:0x%p already delayed retry\n", un); 16093 } 16094 16095 done: 16096 if (statp != NULL) { 16097 SD_UPDATE_KSTATS(un, statp, bp); 16098 } 16099 16100 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16101 "sd_set_retry_bp: exit un:0x%p\n", un); 16102 } 16103 16104 16105 /* 16106 * Function: sd_start_retry_command 16107 * 16108 * Description: Start the command that has been waiting on the target's 16109 * retry queue. Called from timeout(9F) context after the 16110 * retry delay interval has expired. 16111 * 16112 * Arguments: arg - pointer to associated softstate for the device. 16113 * 16114 * Context: timeout(9F) thread context. May not sleep. 16115 */ 16116 16117 static void 16118 sd_start_retry_command(void *arg) 16119 { 16120 struct sd_lun *un = arg; 16121 16122 ASSERT(un != NULL); 16123 ASSERT(!mutex_owned(SD_MUTEX(un))); 16124 16125 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16126 "sd_start_retry_command: entry\n"); 16127 16128 mutex_enter(SD_MUTEX(un)); 16129 16130 un->un_retry_timeid = NULL; 16131 16132 if (un->un_retry_bp != NULL) { 16133 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16134 "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n", 16135 un, un->un_retry_bp); 16136 sd_start_cmds(un, un->un_retry_bp); 16137 } 16138 16139 mutex_exit(SD_MUTEX(un)); 16140 16141 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16142 "sd_start_retry_command: exit\n"); 16143 } 16144 16145 /* 16146 * Function: sd_rmw_msg_print_handler 16147 * 16148 * Description: If RMW mode is enabled and warning message is triggered 16149 * print I/O count during a fixed interval. 16150 * 16151 * Arguments: arg - pointer to associated softstate for the device. 16152 * 16153 * Context: timeout(9F) thread context. May not sleep. 16154 */ 16155 static void 16156 sd_rmw_msg_print_handler(void *arg) 16157 { 16158 struct sd_lun *un = arg; 16159 16160 ASSERT(un != NULL); 16161 ASSERT(!mutex_owned(SD_MUTEX(un))); 16162 16163 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16164 "sd_rmw_msg_print_handler: entry\n"); 16165 16166 mutex_enter(SD_MUTEX(un)); 16167 16168 if (un->un_rmw_incre_count > 0) { 16169 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16170 "%"PRIu64" I/O requests are not aligned with %d disk " 16171 "sector size in %ld seconds. They are handled through " 16172 "Read Modify Write but the performance is very low!\n", 16173 un->un_rmw_incre_count, un->un_tgt_blocksize, 16174 drv_hztousec(SD_RMW_MSG_PRINT_TIMEOUT) / 1000000); 16175 un->un_rmw_incre_count = 0; 16176 un->un_rmw_msg_timeid = timeout(sd_rmw_msg_print_handler, 16177 un, SD_RMW_MSG_PRINT_TIMEOUT); 16178 } else { 16179 un->un_rmw_msg_timeid = NULL; 16180 } 16181 16182 mutex_exit(SD_MUTEX(un)); 16183 16184 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16185 "sd_rmw_msg_print_handler: exit\n"); 16186 } 16187 16188 /* 16189 * Function: sd_start_direct_priority_command 16190 * 16191 * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had 16192 * received TRAN_BUSY when we called scsi_transport() to send it 16193 * to the underlying HBA. This function is called from timeout(9F) 16194 * context after the delay interval has expired. 16195 * 16196 * Arguments: arg - pointer to associated buf(9S) to be restarted. 16197 * 16198 * Context: timeout(9F) thread context. May not sleep. 16199 */ 16200 16201 static void 16202 sd_start_direct_priority_command(void *arg) 16203 { 16204 struct buf *priority_bp = arg; 16205 struct sd_lun *un; 16206 16207 ASSERT(priority_bp != NULL); 16208 un = SD_GET_UN(priority_bp); 16209 ASSERT(un != NULL); 16210 ASSERT(!mutex_owned(SD_MUTEX(un))); 16211 16212 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16213 "sd_start_direct_priority_command: entry\n"); 16214 16215 mutex_enter(SD_MUTEX(un)); 16216 un->un_direct_priority_timeid = NULL; 16217 sd_start_cmds(un, priority_bp); 16218 mutex_exit(SD_MUTEX(un)); 16219 16220 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16221 "sd_start_direct_priority_command: exit\n"); 16222 } 16223 16224 16225 /* 16226 * Function: sd_send_request_sense_command 16227 * 16228 * Description: Sends a REQUEST SENSE command to the target 16229 * 16230 * Context: May be called from interrupt context. 16231 */ 16232 16233 static void 16234 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp, 16235 struct scsi_pkt *pktp) 16236 { 16237 ASSERT(bp != NULL); 16238 ASSERT(un != NULL); 16239 ASSERT(mutex_owned(SD_MUTEX(un))); 16240 16241 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: " 16242 "entry: buf:0x%p\n", bp); 16243 16244 /* 16245 * If we are syncing or dumping, then fail the command to avoid a 16246 * recursive callback into scsi_transport(). Also fail the command 16247 * if we are suspended (legacy behavior). 16248 */ 16249 if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) || 16250 (un->un_state == SD_STATE_DUMPING)) { 16251 sd_return_failed_command(un, bp, EIO); 16252 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16253 "sd_send_request_sense_command: syncing/dumping, exit\n"); 16254 return; 16255 } 16256 16257 /* 16258 * Retry the failed command and don't issue the request sense if: 16259 * 1) the sense buf is busy 16260 * 2) we have 1 or more outstanding commands on the target 16261 * (the sense data will be cleared or invalidated any way) 16262 * 16263 * Note: There could be an issue with not checking a retry limit here, 16264 * the problem is determining which retry limit to check. 16265 */ 16266 if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) { 16267 /* Don't retry if the command is flagged as non-retryable */ 16268 if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 16269 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, 16270 NULL, NULL, 0, un->un_busy_timeout, 16271 kstat_waitq_enter); 16272 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16273 "sd_send_request_sense_command: " 16274 "at full throttle, retrying exit\n"); 16275 } else { 16276 sd_return_failed_command(un, bp, EIO); 16277 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16278 "sd_send_request_sense_command: " 16279 "at full throttle, non-retryable exit\n"); 16280 } 16281 return; 16282 } 16283 16284 sd_mark_rqs_busy(un, bp); 16285 sd_start_cmds(un, un->un_rqs_bp); 16286 16287 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16288 "sd_send_request_sense_command: exit\n"); 16289 } 16290 16291 16292 /* 16293 * Function: sd_mark_rqs_busy 16294 * 16295 * Description: Indicate that the request sense bp for this instance is 16296 * in use. 16297 * 16298 * Context: May be called under interrupt context 16299 */ 16300 16301 static void 16302 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp) 16303 { 16304 struct sd_xbuf *sense_xp; 16305 16306 ASSERT(un != NULL); 16307 ASSERT(bp != NULL); 16308 ASSERT(mutex_owned(SD_MUTEX(un))); 16309 ASSERT(un->un_sense_isbusy == 0); 16310 16311 SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: " 16312 "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un); 16313 16314 sense_xp = SD_GET_XBUF(un->un_rqs_bp); 16315 ASSERT(sense_xp != NULL); 16316 16317 SD_INFO(SD_LOG_IO, un, 16318 "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp); 16319 16320 ASSERT(sense_xp->xb_pktp != NULL); 16321 ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) 16322 == (FLAG_SENSING | FLAG_HEAD)); 16323 16324 un->un_sense_isbusy = 1; 16325 un->un_rqs_bp->b_resid = 0; 16326 sense_xp->xb_pktp->pkt_resid = 0; 16327 sense_xp->xb_pktp->pkt_reason = 0; 16328 16329 /* So we can get back the bp at interrupt time! */ 16330 sense_xp->xb_sense_bp = bp; 16331 16332 bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH); 16333 16334 /* 16335 * Mark this buf as awaiting sense data. (This is already set in 16336 * the pkt_flags for the RQS packet.) 16337 */ 16338 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING; 16339 16340 /* Request sense down same path */ 16341 if (scsi_pkt_allocated_correctly((SD_GET_XBUF(bp))->xb_pktp) && 16342 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance) 16343 sense_xp->xb_pktp->pkt_path_instance = 16344 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance; 16345 16346 sense_xp->xb_retry_count = 0; 16347 sense_xp->xb_victim_retry_count = 0; 16348 sense_xp->xb_ua_retry_count = 0; 16349 sense_xp->xb_nr_retry_count = 0; 16350 sense_xp->xb_dma_resid = 0; 16351 16352 /* Clean up the fields for auto-request sense */ 16353 sense_xp->xb_sense_status = 0; 16354 sense_xp->xb_sense_state = 0; 16355 sense_xp->xb_sense_resid = 0; 16356 bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data)); 16357 16358 SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n"); 16359 } 16360 16361 16362 /* 16363 * Function: sd_mark_rqs_idle 16364 * 16365 * Description: SD_MUTEX must be held continuously through this routine 16366 * to prevent reuse of the rqs struct before the caller can 16367 * complete it's processing. 16368 * 16369 * Return Code: Pointer to the RQS buf 16370 * 16371 * Context: May be called under interrupt context 16372 */ 16373 16374 static struct buf * 16375 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp) 16376 { 16377 struct buf *bp; 16378 ASSERT(un != NULL); 16379 ASSERT(sense_xp != NULL); 16380 ASSERT(mutex_owned(SD_MUTEX(un))); 16381 ASSERT(un->un_sense_isbusy != 0); 16382 16383 un->un_sense_isbusy = 0; 16384 bp = sense_xp->xb_sense_bp; 16385 sense_xp->xb_sense_bp = NULL; 16386 16387 /* This pkt is no longer interested in getting sense data */ 16388 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING; 16389 16390 return (bp); 16391 } 16392 16393 16394 16395 /* 16396 * Function: sd_alloc_rqs 16397 * 16398 * Description: Set up the unit to receive auto request sense data 16399 * 16400 * Return Code: DDI_SUCCESS or DDI_FAILURE 16401 * 16402 * Context: Called under attach(9E) context 16403 */ 16404 16405 static int 16406 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un) 16407 { 16408 struct sd_xbuf *xp; 16409 16410 ASSERT(un != NULL); 16411 ASSERT(!mutex_owned(SD_MUTEX(un))); 16412 ASSERT(un->un_rqs_bp == NULL); 16413 ASSERT(un->un_rqs_pktp == NULL); 16414 16415 /* 16416 * First allocate the required buf and scsi_pkt structs, then set up 16417 * the CDB in the scsi_pkt for a REQUEST SENSE command. 16418 */ 16419 un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL, 16420 MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL); 16421 if (un->un_rqs_bp == NULL) { 16422 return (DDI_FAILURE); 16423 } 16424 16425 un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp, 16426 CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL); 16427 16428 if (un->un_rqs_pktp == NULL) { 16429 sd_free_rqs(un); 16430 return (DDI_FAILURE); 16431 } 16432 16433 /* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */ 16434 (void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp, 16435 SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0); 16436 16437 SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp); 16438 16439 /* Set up the other needed members in the ARQ scsi_pkt. */ 16440 un->un_rqs_pktp->pkt_comp = sdintr; 16441 un->un_rqs_pktp->pkt_time = sd_io_time; 16442 un->un_rqs_pktp->pkt_flags |= 16443 (FLAG_SENSING | FLAG_HEAD); /* (1222170) */ 16444 16445 /* 16446 * Allocate & init the sd_xbuf struct for the RQS command. Do not 16447 * provide any intpkt, destroypkt routines as we take care of 16448 * scsi_pkt allocation/freeing here and in sd_free_rqs(). 16449 */ 16450 xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 16451 sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL); 16452 xp->xb_pktp = un->un_rqs_pktp; 16453 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16454 "sd_alloc_rqs: un 0x%p, rqs xp 0x%p, pkt 0x%p, buf 0x%p\n", 16455 un, xp, un->un_rqs_pktp, un->un_rqs_bp); 16456 16457 /* 16458 * Save the pointer to the request sense private bp so it can 16459 * be retrieved in sdintr. 16460 */ 16461 un->un_rqs_pktp->pkt_private = un->un_rqs_bp; 16462 ASSERT(un->un_rqs_bp->b_private == xp); 16463 16464 /* 16465 * See if the HBA supports auto-request sense for the specified 16466 * target/lun. If it does, then try to enable it (if not already 16467 * enabled). 16468 * 16469 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return 16470 * failure, while for other HBAs (pln) scsi_ifsetcap will always 16471 * return success. However, in both of these cases ARQ is always 16472 * enabled and scsi_ifgetcap will always return true. The best approach 16473 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap(). 16474 * 16475 * The 3rd case is the HBA (adp) always return enabled on 16476 * scsi_ifgetgetcap even when it's not enable, the best approach 16477 * is issue a scsi_ifsetcap then a scsi_ifgetcap 16478 * Note: this case is to circumvent the Adaptec bug. (x86 only) 16479 */ 16480 16481 if (un->un_f_is_fibre == TRUE) { 16482 un->un_f_arq_enabled = TRUE; 16483 } else { 16484 #if defined(__i386) || defined(__amd64) 16485 /* 16486 * Circumvent the Adaptec bug, remove this code when 16487 * the bug is fixed 16488 */ 16489 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1); 16490 #endif 16491 switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) { 16492 case 0: 16493 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16494 "sd_alloc_rqs: HBA supports ARQ\n"); 16495 /* 16496 * ARQ is supported by this HBA but currently is not 16497 * enabled. Attempt to enable it and if successful then 16498 * mark this instance as ARQ enabled. 16499 */ 16500 if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1) 16501 == 1) { 16502 /* Successfully enabled ARQ in the HBA */ 16503 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16504 "sd_alloc_rqs: ARQ enabled\n"); 16505 un->un_f_arq_enabled = TRUE; 16506 } else { 16507 /* Could not enable ARQ in the HBA */ 16508 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16509 "sd_alloc_rqs: failed ARQ enable\n"); 16510 un->un_f_arq_enabled = FALSE; 16511 } 16512 break; 16513 case 1: 16514 /* 16515 * ARQ is supported by this HBA and is already enabled. 16516 * Just mark ARQ as enabled for this instance. 16517 */ 16518 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16519 "sd_alloc_rqs: ARQ already enabled\n"); 16520 un->un_f_arq_enabled = TRUE; 16521 break; 16522 default: 16523 /* 16524 * ARQ is not supported by this HBA; disable it for this 16525 * instance. 16526 */ 16527 SD_INFO(SD_LOG_ATTACH_DETACH, un, 16528 "sd_alloc_rqs: HBA does not support ARQ\n"); 16529 un->un_f_arq_enabled = FALSE; 16530 break; 16531 } 16532 } 16533 16534 return (DDI_SUCCESS); 16535 } 16536 16537 16538 /* 16539 * Function: sd_free_rqs 16540 * 16541 * Description: Cleanup for the pre-instance RQS command. 16542 * 16543 * Context: Kernel thread context 16544 */ 16545 16546 static void 16547 sd_free_rqs(struct sd_lun *un) 16548 { 16549 ASSERT(un != NULL); 16550 16551 SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n"); 16552 16553 /* 16554 * If consistent memory is bound to a scsi_pkt, the pkt 16555 * has to be destroyed *before* freeing the consistent memory. 16556 * Don't change the sequence of this operations. 16557 * scsi_destroy_pkt() might access memory, which isn't allowed, 16558 * after it was freed in scsi_free_consistent_buf(). 16559 */ 16560 if (un->un_rqs_pktp != NULL) { 16561 scsi_destroy_pkt(un->un_rqs_pktp); 16562 un->un_rqs_pktp = NULL; 16563 } 16564 16565 if (un->un_rqs_bp != NULL) { 16566 struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp); 16567 if (xp != NULL) { 16568 kmem_free(xp, sizeof (struct sd_xbuf)); 16569 } 16570 scsi_free_consistent_buf(un->un_rqs_bp); 16571 un->un_rqs_bp = NULL; 16572 } 16573 SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n"); 16574 } 16575 16576 16577 16578 /* 16579 * Function: sd_reduce_throttle 16580 * 16581 * Description: Reduces the maximum # of outstanding commands on a 16582 * target to the current number of outstanding commands. 16583 * Queues a tiemout(9F) callback to restore the limit 16584 * after a specified interval has elapsed. 16585 * Typically used when we get a TRAN_BUSY return code 16586 * back from scsi_transport(). 16587 * 16588 * Arguments: un - ptr to the sd_lun softstate struct 16589 * throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL 16590 * 16591 * Context: May be called from interrupt context 16592 */ 16593 16594 static void 16595 sd_reduce_throttle(struct sd_lun *un, int throttle_type) 16596 { 16597 ASSERT(un != NULL); 16598 ASSERT(mutex_owned(SD_MUTEX(un))); 16599 ASSERT(un->un_ncmds_in_transport >= 0); 16600 16601 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: " 16602 "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n", 16603 un, un->un_throttle, un->un_ncmds_in_transport); 16604 16605 if (un->un_throttle > 1) { 16606 if (un->un_f_use_adaptive_throttle == TRUE) { 16607 switch (throttle_type) { 16608 case SD_THROTTLE_TRAN_BUSY: 16609 if (un->un_busy_throttle == 0) { 16610 un->un_busy_throttle = un->un_throttle; 16611 } 16612 break; 16613 case SD_THROTTLE_QFULL: 16614 un->un_busy_throttle = 0; 16615 break; 16616 default: 16617 ASSERT(FALSE); 16618 } 16619 16620 if (un->un_ncmds_in_transport > 0) { 16621 un->un_throttle = un->un_ncmds_in_transport; 16622 } 16623 16624 } else { 16625 if (un->un_ncmds_in_transport == 0) { 16626 un->un_throttle = 1; 16627 } else { 16628 un->un_throttle = un->un_ncmds_in_transport; 16629 } 16630 } 16631 } 16632 16633 /* Reschedule the timeout if none is currently active */ 16634 if (un->un_reset_throttle_timeid == NULL) { 16635 un->un_reset_throttle_timeid = timeout(sd_restore_throttle, 16636 un, SD_THROTTLE_RESET_INTERVAL); 16637 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16638 "sd_reduce_throttle: timeout scheduled!\n"); 16639 } 16640 16641 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: " 16642 "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle); 16643 } 16644 16645 16646 16647 /* 16648 * Function: sd_restore_throttle 16649 * 16650 * Description: Callback function for timeout(9F). Resets the current 16651 * value of un->un_throttle to its default. 16652 * 16653 * Arguments: arg - pointer to associated softstate for the device. 16654 * 16655 * Context: May be called from interrupt context 16656 */ 16657 16658 static void 16659 sd_restore_throttle(void *arg) 16660 { 16661 struct sd_lun *un = arg; 16662 16663 ASSERT(un != NULL); 16664 ASSERT(!mutex_owned(SD_MUTEX(un))); 16665 16666 mutex_enter(SD_MUTEX(un)); 16667 16668 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: " 16669 "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle); 16670 16671 un->un_reset_throttle_timeid = NULL; 16672 16673 if (un->un_f_use_adaptive_throttle == TRUE) { 16674 /* 16675 * If un_busy_throttle is nonzero, then it contains the 16676 * value that un_throttle was when we got a TRAN_BUSY back 16677 * from scsi_transport(). We want to revert back to this 16678 * value. 16679 * 16680 * In the QFULL case, the throttle limit will incrementally 16681 * increase until it reaches max throttle. 16682 */ 16683 if (un->un_busy_throttle > 0) { 16684 un->un_throttle = un->un_busy_throttle; 16685 un->un_busy_throttle = 0; 16686 } else { 16687 /* 16688 * increase throttle by 10% open gate slowly, schedule 16689 * another restore if saved throttle has not been 16690 * reached 16691 */ 16692 short throttle; 16693 if (sd_qfull_throttle_enable) { 16694 throttle = un->un_throttle + 16695 max((un->un_throttle / 10), 1); 16696 un->un_throttle = 16697 (throttle < un->un_saved_throttle) ? 16698 throttle : un->un_saved_throttle; 16699 if (un->un_throttle < un->un_saved_throttle) { 16700 un->un_reset_throttle_timeid = 16701 timeout(sd_restore_throttle, 16702 un, 16703 SD_QFULL_THROTTLE_RESET_INTERVAL); 16704 } 16705 } 16706 } 16707 16708 /* 16709 * If un_throttle has fallen below the low-water mark, we 16710 * restore the maximum value here (and allow it to ratchet 16711 * down again if necessary). 16712 */ 16713 if (un->un_throttle < un->un_min_throttle) { 16714 un->un_throttle = un->un_saved_throttle; 16715 } 16716 } else { 16717 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: " 16718 "restoring limit from 0x%x to 0x%x\n", 16719 un->un_throttle, un->un_saved_throttle); 16720 un->un_throttle = un->un_saved_throttle; 16721 } 16722 16723 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 16724 "sd_restore_throttle: calling sd_start_cmds!\n"); 16725 16726 sd_start_cmds(un, NULL); 16727 16728 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 16729 "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n", 16730 un, un->un_throttle); 16731 16732 mutex_exit(SD_MUTEX(un)); 16733 16734 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n"); 16735 } 16736 16737 /* 16738 * Function: sdrunout 16739 * 16740 * Description: Callback routine for scsi_init_pkt when a resource allocation 16741 * fails. 16742 * 16743 * Arguments: arg - a pointer to the sd_lun unit struct for the particular 16744 * soft state instance. 16745 * 16746 * Return Code: The scsi_init_pkt routine allows for the callback function to 16747 * return a 0 indicating the callback should be rescheduled or a 1 16748 * indicating not to reschedule. This routine always returns 1 16749 * because the driver always provides a callback function to 16750 * scsi_init_pkt. This results in a callback always being scheduled 16751 * (via the scsi_init_pkt callback implementation) if a resource 16752 * failure occurs. 16753 * 16754 * Context: This callback function may not block or call routines that block 16755 * 16756 * Note: Using the scsi_init_pkt callback facility can result in an I/O 16757 * request persisting at the head of the list which cannot be 16758 * satisfied even after multiple retries. In the future the driver 16759 * may implement some time of maximum runout count before failing 16760 * an I/O. 16761 */ 16762 16763 static int 16764 sdrunout(caddr_t arg) 16765 { 16766 struct sd_lun *un = (struct sd_lun *)arg; 16767 16768 ASSERT(un != NULL); 16769 ASSERT(!mutex_owned(SD_MUTEX(un))); 16770 16771 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n"); 16772 16773 mutex_enter(SD_MUTEX(un)); 16774 sd_start_cmds(un, NULL); 16775 mutex_exit(SD_MUTEX(un)); 16776 /* 16777 * This callback routine always returns 1 (i.e. do not reschedule) 16778 * because we always specify sdrunout as the callback handler for 16779 * scsi_init_pkt inside the call to sd_start_cmds. 16780 */ 16781 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n"); 16782 return (1); 16783 } 16784 16785 16786 /* 16787 * Function: sdintr 16788 * 16789 * Description: Completion callback routine for scsi_pkt(9S) structs 16790 * sent to the HBA driver via scsi_transport(9F). 16791 * 16792 * Context: Interrupt context 16793 */ 16794 16795 static void 16796 sdintr(struct scsi_pkt *pktp) 16797 { 16798 struct buf *bp; 16799 struct sd_xbuf *xp; 16800 struct sd_lun *un; 16801 size_t actual_len; 16802 sd_ssc_t *sscp; 16803 16804 ASSERT(pktp != NULL); 16805 bp = (struct buf *)pktp->pkt_private; 16806 ASSERT(bp != NULL); 16807 xp = SD_GET_XBUF(bp); 16808 ASSERT(xp != NULL); 16809 ASSERT(xp->xb_pktp != NULL); 16810 un = SD_GET_UN(bp); 16811 ASSERT(un != NULL); 16812 ASSERT(!mutex_owned(SD_MUTEX(un))); 16813 16814 #ifdef SD_FAULT_INJECTION 16815 16816 SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n"); 16817 /* SD FaultInjection */ 16818 sd_faultinjection(pktp); 16819 16820 #endif /* SD_FAULT_INJECTION */ 16821 16822 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p," 16823 " xp:0x%p, un:0x%p\n", bp, xp, un); 16824 16825 mutex_enter(SD_MUTEX(un)); 16826 16827 ASSERT(un->un_fm_private != NULL); 16828 sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc; 16829 ASSERT(sscp != NULL); 16830 16831 /* Reduce the count of the #commands currently in transport */ 16832 un->un_ncmds_in_transport--; 16833 ASSERT(un->un_ncmds_in_transport >= 0); 16834 16835 /* Increment counter to indicate that the callback routine is active */ 16836 un->un_in_callback++; 16837 16838 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 16839 16840 #ifdef SDDEBUG 16841 if (bp == un->un_retry_bp) { 16842 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: " 16843 "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n", 16844 un, un->un_retry_bp, un->un_ncmds_in_transport); 16845 } 16846 #endif 16847 16848 /* 16849 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media 16850 * state if needed. 16851 */ 16852 if (pktp->pkt_reason == CMD_DEV_GONE) { 16853 /* Prevent multiple console messages for the same failure. */ 16854 if (un->un_last_pkt_reason != CMD_DEV_GONE) { 16855 un->un_last_pkt_reason = CMD_DEV_GONE; 16856 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16857 "Command failed to complete...Device is gone\n"); 16858 } 16859 if (un->un_mediastate != DKIO_DEV_GONE) { 16860 un->un_mediastate = DKIO_DEV_GONE; 16861 cv_broadcast(&un->un_state_cv); 16862 } 16863 /* 16864 * If the command happens to be the REQUEST SENSE command, 16865 * free up the rqs buf and fail the original command. 16866 */ 16867 if (bp == un->un_rqs_bp) { 16868 bp = sd_mark_rqs_idle(un, xp); 16869 } 16870 sd_return_failed_command(un, bp, EIO); 16871 goto exit; 16872 } 16873 16874 if (pktp->pkt_state & STATE_XARQ_DONE) { 16875 SD_TRACE(SD_LOG_COMMON, un, 16876 "sdintr: extra sense data received. pkt=%p\n", pktp); 16877 } 16878 16879 /* 16880 * First see if the pkt has auto-request sense data with it.... 16881 * Look at the packet state first so we don't take a performance 16882 * hit looking at the arq enabled flag unless absolutely necessary. 16883 */ 16884 if ((pktp->pkt_state & STATE_ARQ_DONE) && 16885 (un->un_f_arq_enabled == TRUE)) { 16886 /* 16887 * The HBA did an auto request sense for this command so check 16888 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal 16889 * driver command that should not be retried. 16890 */ 16891 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 16892 /* 16893 * Save the relevant sense info into the xp for the 16894 * original cmd. 16895 */ 16896 struct scsi_arq_status *asp; 16897 asp = (struct scsi_arq_status *)(pktp->pkt_scbp); 16898 xp->xb_sense_status = 16899 *((uchar_t *)(&(asp->sts_rqpkt_status))); 16900 xp->xb_sense_state = asp->sts_rqpkt_state; 16901 xp->xb_sense_resid = asp->sts_rqpkt_resid; 16902 if (pktp->pkt_state & STATE_XARQ_DONE) { 16903 actual_len = MAX_SENSE_LENGTH - 16904 xp->xb_sense_resid; 16905 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 16906 MAX_SENSE_LENGTH); 16907 } else { 16908 if (xp->xb_sense_resid > SENSE_LENGTH) { 16909 actual_len = MAX_SENSE_LENGTH - 16910 xp->xb_sense_resid; 16911 } else { 16912 actual_len = SENSE_LENGTH - 16913 xp->xb_sense_resid; 16914 } 16915 if (xp->xb_pkt_flags & SD_XB_USCSICMD) { 16916 if ((((struct uscsi_cmd *) 16917 (xp->xb_pktinfo))->uscsi_rqlen) > 16918 actual_len) { 16919 xp->xb_sense_resid = 16920 (((struct uscsi_cmd *) 16921 (xp->xb_pktinfo))-> 16922 uscsi_rqlen) - actual_len; 16923 } else { 16924 xp->xb_sense_resid = 0; 16925 } 16926 } 16927 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 16928 SENSE_LENGTH); 16929 } 16930 16931 /* fail the command */ 16932 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16933 "sdintr: arq done and FLAG_DIAGNOSE set\n"); 16934 sd_return_failed_command(un, bp, EIO); 16935 goto exit; 16936 } 16937 16938 #if (defined(__i386) || defined(__amd64)) /* DMAFREE for x86 only */ 16939 /* 16940 * We want to either retry or fail this command, so free 16941 * the DMA resources here. If we retry the command then 16942 * the DMA resources will be reallocated in sd_start_cmds(). 16943 * Note that when PKT_DMA_PARTIAL is used, this reallocation 16944 * causes the *entire* transfer to start over again from the 16945 * beginning of the request, even for PARTIAL chunks that 16946 * have already transferred successfully. 16947 */ 16948 if ((un->un_f_is_fibre == TRUE) && 16949 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 16950 ((pktp->pkt_flags & FLAG_SENSING) == 0)) { 16951 scsi_dmafree(pktp); 16952 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 16953 } 16954 #endif 16955 16956 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16957 "sdintr: arq done, sd_handle_auto_request_sense\n"); 16958 16959 sd_handle_auto_request_sense(un, bp, xp, pktp); 16960 goto exit; 16961 } 16962 16963 /* Next see if this is the REQUEST SENSE pkt for the instance */ 16964 if (pktp->pkt_flags & FLAG_SENSING) { 16965 /* This pktp is from the unit's REQUEST_SENSE command */ 16966 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16967 "sdintr: sd_handle_request_sense\n"); 16968 sd_handle_request_sense(un, bp, xp, pktp); 16969 goto exit; 16970 } 16971 16972 /* 16973 * Check to see if the command successfully completed as requested; 16974 * this is the most common case (and also the hot performance path). 16975 * 16976 * Requirements for successful completion are: 16977 * pkt_reason is CMD_CMPLT and packet status is status good. 16978 * In addition: 16979 * - A residual of zero indicates successful completion no matter what 16980 * the command is. 16981 * - If the residual is not zero and the command is not a read or 16982 * write, then it's still defined as successful completion. In other 16983 * words, if the command is a read or write the residual must be 16984 * zero for successful completion. 16985 * - If the residual is not zero and the command is a read or 16986 * write, and it's a USCSICMD, then it's still defined as 16987 * successful completion. 16988 */ 16989 if ((pktp->pkt_reason == CMD_CMPLT) && 16990 (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) { 16991 16992 /* 16993 * Since this command is returned with a good status, we 16994 * can reset the count for Sonoma failover. 16995 */ 16996 un->un_sonoma_failure_count = 0; 16997 16998 /* 16999 * Return all USCSI commands on good status 17000 */ 17001 if (pktp->pkt_resid == 0) { 17002 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17003 "sdintr: returning command for resid == 0\n"); 17004 } else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) && 17005 ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) { 17006 SD_UPDATE_B_RESID(bp, pktp); 17007 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17008 "sdintr: returning command for resid != 0\n"); 17009 } else if (xp->xb_pkt_flags & SD_XB_USCSICMD) { 17010 SD_UPDATE_B_RESID(bp, pktp); 17011 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17012 "sdintr: returning uscsi command\n"); 17013 } else { 17014 goto not_successful; 17015 } 17016 sd_return_command(un, bp); 17017 17018 /* 17019 * Decrement counter to indicate that the callback routine 17020 * is done. 17021 */ 17022 un->un_in_callback--; 17023 ASSERT(un->un_in_callback >= 0); 17024 mutex_exit(SD_MUTEX(un)); 17025 17026 return; 17027 } 17028 17029 not_successful: 17030 17031 #if (defined(__i386) || defined(__amd64)) /* DMAFREE for x86 only */ 17032 /* 17033 * The following is based upon knowledge of the underlying transport 17034 * and its use of DMA resources. This code should be removed when 17035 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor 17036 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf() 17037 * and sd_start_cmds(). 17038 * 17039 * Free any DMA resources associated with this command if there 17040 * is a chance it could be retried or enqueued for later retry. 17041 * If we keep the DMA binding then mpxio cannot reissue the 17042 * command on another path whenever a path failure occurs. 17043 * 17044 * Note that when PKT_DMA_PARTIAL is used, free/reallocation 17045 * causes the *entire* transfer to start over again from the 17046 * beginning of the request, even for PARTIAL chunks that 17047 * have already transferred successfully. 17048 * 17049 * This is only done for non-uscsi commands (and also skipped for the 17050 * driver's internal RQS command). Also just do this for Fibre Channel 17051 * devices as these are the only ones that support mpxio. 17052 */ 17053 if ((un->un_f_is_fibre == TRUE) && 17054 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 17055 ((pktp->pkt_flags & FLAG_SENSING) == 0)) { 17056 scsi_dmafree(pktp); 17057 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 17058 } 17059 #endif 17060 17061 /* 17062 * The command did not successfully complete as requested so check 17063 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal 17064 * driver command that should not be retried so just return. If 17065 * FLAG_DIAGNOSE is not set the error will be processed below. 17066 */ 17067 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 17068 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17069 "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n"); 17070 /* 17071 * Issue a request sense if a check condition caused the error 17072 * (we handle the auto request sense case above), otherwise 17073 * just fail the command. 17074 */ 17075 if ((pktp->pkt_reason == CMD_CMPLT) && 17076 (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) { 17077 sd_send_request_sense_command(un, bp, pktp); 17078 } else { 17079 sd_return_failed_command(un, bp, EIO); 17080 } 17081 goto exit; 17082 } 17083 17084 /* 17085 * The command did not successfully complete as requested so process 17086 * the error, retry, and/or attempt recovery. 17087 */ 17088 switch (pktp->pkt_reason) { 17089 case CMD_CMPLT: 17090 switch (SD_GET_PKT_STATUS(pktp)) { 17091 case STATUS_GOOD: 17092 /* 17093 * The command completed successfully with a non-zero 17094 * residual 17095 */ 17096 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17097 "sdintr: STATUS_GOOD \n"); 17098 sd_pkt_status_good(un, bp, xp, pktp); 17099 break; 17100 17101 case STATUS_CHECK: 17102 case STATUS_TERMINATED: 17103 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17104 "sdintr: STATUS_TERMINATED | STATUS_CHECK\n"); 17105 sd_pkt_status_check_condition(un, bp, xp, pktp); 17106 break; 17107 17108 case STATUS_BUSY: 17109 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17110 "sdintr: STATUS_BUSY\n"); 17111 sd_pkt_status_busy(un, bp, xp, pktp); 17112 break; 17113 17114 case STATUS_RESERVATION_CONFLICT: 17115 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17116 "sdintr: STATUS_RESERVATION_CONFLICT\n"); 17117 sd_pkt_status_reservation_conflict(un, bp, xp, pktp); 17118 break; 17119 17120 case STATUS_QFULL: 17121 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17122 "sdintr: STATUS_QFULL\n"); 17123 sd_pkt_status_qfull(un, bp, xp, pktp); 17124 break; 17125 17126 case STATUS_MET: 17127 case STATUS_INTERMEDIATE: 17128 case STATUS_SCSI2: 17129 case STATUS_INTERMEDIATE_MET: 17130 case STATUS_ACA_ACTIVE: 17131 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17132 "Unexpected SCSI status received: 0x%x\n", 17133 SD_GET_PKT_STATUS(pktp)); 17134 /* 17135 * Mark the ssc_flags when detected invalid status 17136 * code for non-USCSI command. 17137 */ 17138 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17139 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS, 17140 0, "stat-code"); 17141 } 17142 sd_return_failed_command(un, bp, EIO); 17143 break; 17144 17145 default: 17146 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17147 "Invalid SCSI status received: 0x%x\n", 17148 SD_GET_PKT_STATUS(pktp)); 17149 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17150 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS, 17151 0, "stat-code"); 17152 } 17153 sd_return_failed_command(un, bp, EIO); 17154 break; 17155 17156 } 17157 break; 17158 17159 case CMD_INCOMPLETE: 17160 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17161 "sdintr: CMD_INCOMPLETE\n"); 17162 sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp); 17163 break; 17164 case CMD_TRAN_ERR: 17165 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17166 "sdintr: CMD_TRAN_ERR\n"); 17167 sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp); 17168 break; 17169 case CMD_RESET: 17170 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17171 "sdintr: CMD_RESET \n"); 17172 sd_pkt_reason_cmd_reset(un, bp, xp, pktp); 17173 break; 17174 case CMD_ABORTED: 17175 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17176 "sdintr: CMD_ABORTED \n"); 17177 sd_pkt_reason_cmd_aborted(un, bp, xp, pktp); 17178 break; 17179 case CMD_TIMEOUT: 17180 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17181 "sdintr: CMD_TIMEOUT\n"); 17182 sd_pkt_reason_cmd_timeout(un, bp, xp, pktp); 17183 break; 17184 case CMD_UNX_BUS_FREE: 17185 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17186 "sdintr: CMD_UNX_BUS_FREE \n"); 17187 sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp); 17188 break; 17189 case CMD_TAG_REJECT: 17190 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17191 "sdintr: CMD_TAG_REJECT\n"); 17192 sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp); 17193 break; 17194 default: 17195 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 17196 "sdintr: default\n"); 17197 /* 17198 * Mark the ssc_flags for detecting invliad pkt_reason. 17199 */ 17200 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17201 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_PKT_REASON, 17202 0, "pkt-reason"); 17203 } 17204 sd_pkt_reason_default(un, bp, xp, pktp); 17205 break; 17206 } 17207 17208 exit: 17209 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n"); 17210 17211 /* Decrement counter to indicate that the callback routine is done. */ 17212 un->un_in_callback--; 17213 ASSERT(un->un_in_callback >= 0); 17214 17215 /* 17216 * At this point, the pkt has been dispatched, ie, it is either 17217 * being re-tried or has been returned to its caller and should 17218 * not be referenced. 17219 */ 17220 17221 mutex_exit(SD_MUTEX(un)); 17222 } 17223 17224 17225 /* 17226 * Function: sd_print_incomplete_msg 17227 * 17228 * Description: Prints the error message for a CMD_INCOMPLETE error. 17229 * 17230 * Arguments: un - ptr to associated softstate for the device. 17231 * bp - ptr to the buf(9S) for the command. 17232 * arg - message string ptr 17233 * code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED, 17234 * or SD_NO_RETRY_ISSUED. 17235 * 17236 * Context: May be called under interrupt context 17237 */ 17238 17239 static void 17240 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code) 17241 { 17242 struct scsi_pkt *pktp; 17243 char *msgp; 17244 char *cmdp = arg; 17245 17246 ASSERT(un != NULL); 17247 ASSERT(mutex_owned(SD_MUTEX(un))); 17248 ASSERT(bp != NULL); 17249 ASSERT(arg != NULL); 17250 pktp = SD_GET_PKTP(bp); 17251 ASSERT(pktp != NULL); 17252 17253 switch (code) { 17254 case SD_DELAYED_RETRY_ISSUED: 17255 case SD_IMMEDIATE_RETRY_ISSUED: 17256 msgp = "retrying"; 17257 break; 17258 case SD_NO_RETRY_ISSUED: 17259 default: 17260 msgp = "giving up"; 17261 break; 17262 } 17263 17264 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 17265 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17266 "incomplete %s- %s\n", cmdp, msgp); 17267 } 17268 } 17269 17270 17271 17272 /* 17273 * Function: sd_pkt_status_good 17274 * 17275 * Description: Processing for a STATUS_GOOD code in pkt_status. 17276 * 17277 * Context: May be called under interrupt context 17278 */ 17279 17280 static void 17281 sd_pkt_status_good(struct sd_lun *un, struct buf *bp, 17282 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17283 { 17284 char *cmdp; 17285 17286 ASSERT(un != NULL); 17287 ASSERT(mutex_owned(SD_MUTEX(un))); 17288 ASSERT(bp != NULL); 17289 ASSERT(xp != NULL); 17290 ASSERT(pktp != NULL); 17291 ASSERT(pktp->pkt_reason == CMD_CMPLT); 17292 ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD); 17293 ASSERT(pktp->pkt_resid != 0); 17294 17295 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n"); 17296 17297 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17298 switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) { 17299 case SCMD_READ: 17300 cmdp = "read"; 17301 break; 17302 case SCMD_WRITE: 17303 cmdp = "write"; 17304 break; 17305 default: 17306 SD_UPDATE_B_RESID(bp, pktp); 17307 sd_return_command(un, bp); 17308 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n"); 17309 return; 17310 } 17311 17312 /* 17313 * See if we can retry the read/write, preferrably immediately. 17314 * If retries are exhaused, then sd_retry_command() will update 17315 * the b_resid count. 17316 */ 17317 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg, 17318 cmdp, EIO, (clock_t)0, NULL); 17319 17320 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n"); 17321 } 17322 17323 17324 17325 17326 17327 /* 17328 * Function: sd_handle_request_sense 17329 * 17330 * Description: Processing for non-auto Request Sense command. 17331 * 17332 * Arguments: un - ptr to associated softstate 17333 * sense_bp - ptr to buf(9S) for the RQS command 17334 * sense_xp - ptr to the sd_xbuf for the RQS command 17335 * sense_pktp - ptr to the scsi_pkt(9S) for the RQS command 17336 * 17337 * Context: May be called under interrupt context 17338 */ 17339 17340 static void 17341 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp, 17342 struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp) 17343 { 17344 struct buf *cmd_bp; /* buf for the original command */ 17345 struct sd_xbuf *cmd_xp; /* sd_xbuf for the original command */ 17346 struct scsi_pkt *cmd_pktp; /* pkt for the original command */ 17347 size_t actual_len; /* actual sense data length */ 17348 17349 ASSERT(un != NULL); 17350 ASSERT(mutex_owned(SD_MUTEX(un))); 17351 ASSERT(sense_bp != NULL); 17352 ASSERT(sense_xp != NULL); 17353 ASSERT(sense_pktp != NULL); 17354 17355 /* 17356 * Note the sense_bp, sense_xp, and sense_pktp here are for the 17357 * RQS command and not the original command. 17358 */ 17359 ASSERT(sense_pktp == un->un_rqs_pktp); 17360 ASSERT(sense_bp == un->un_rqs_bp); 17361 ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) == 17362 (FLAG_SENSING | FLAG_HEAD)); 17363 ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) & 17364 FLAG_SENSING) == FLAG_SENSING); 17365 17366 /* These are the bp, xp, and pktp for the original command */ 17367 cmd_bp = sense_xp->xb_sense_bp; 17368 cmd_xp = SD_GET_XBUF(cmd_bp); 17369 cmd_pktp = SD_GET_PKTP(cmd_bp); 17370 17371 if (sense_pktp->pkt_reason != CMD_CMPLT) { 17372 /* 17373 * The REQUEST SENSE command failed. Release the REQUEST 17374 * SENSE command for re-use, get back the bp for the original 17375 * command, and attempt to re-try the original command if 17376 * FLAG_DIAGNOSE is not set in the original packet. 17377 */ 17378 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17379 if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 17380 cmd_bp = sd_mark_rqs_idle(un, sense_xp); 17381 sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD, 17382 NULL, NULL, EIO, (clock_t)0, NULL); 17383 return; 17384 } 17385 } 17386 17387 /* 17388 * Save the relevant sense info into the xp for the original cmd. 17389 * 17390 * Note: if the request sense failed the state info will be zero 17391 * as set in sd_mark_rqs_busy() 17392 */ 17393 cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp); 17394 cmd_xp->xb_sense_state = sense_pktp->pkt_state; 17395 actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid; 17396 if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) && 17397 (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen > 17398 SENSE_LENGTH)) { 17399 bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, 17400 MAX_SENSE_LENGTH); 17401 cmd_xp->xb_sense_resid = sense_pktp->pkt_resid; 17402 } else { 17403 bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, 17404 SENSE_LENGTH); 17405 if (actual_len < SENSE_LENGTH) { 17406 cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len; 17407 } else { 17408 cmd_xp->xb_sense_resid = 0; 17409 } 17410 } 17411 17412 /* 17413 * Free up the RQS command.... 17414 * NOTE: 17415 * Must do this BEFORE calling sd_validate_sense_data! 17416 * sd_validate_sense_data may return the original command in 17417 * which case the pkt will be freed and the flags can no 17418 * longer be touched. 17419 * SD_MUTEX is held through this process until the command 17420 * is dispatched based upon the sense data, so there are 17421 * no race conditions. 17422 */ 17423 (void) sd_mark_rqs_idle(un, sense_xp); 17424 17425 /* 17426 * For a retryable command see if we have valid sense data, if so then 17427 * turn it over to sd_decode_sense() to figure out the right course of 17428 * action. Just fail a non-retryable command. 17429 */ 17430 if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 17431 if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) == 17432 SD_SENSE_DATA_IS_VALID) { 17433 sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp); 17434 } 17435 } else { 17436 SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB", 17437 (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 17438 SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data", 17439 (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX); 17440 sd_return_failed_command(un, cmd_bp, EIO); 17441 } 17442 } 17443 17444 17445 17446 17447 /* 17448 * Function: sd_handle_auto_request_sense 17449 * 17450 * Description: Processing for auto-request sense information. 17451 * 17452 * Arguments: un - ptr to associated softstate 17453 * bp - ptr to buf(9S) for the command 17454 * xp - ptr to the sd_xbuf for the command 17455 * pktp - ptr to the scsi_pkt(9S) for the command 17456 * 17457 * Context: May be called under interrupt context 17458 */ 17459 17460 static void 17461 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp, 17462 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17463 { 17464 struct scsi_arq_status *asp; 17465 size_t actual_len; 17466 17467 ASSERT(un != NULL); 17468 ASSERT(mutex_owned(SD_MUTEX(un))); 17469 ASSERT(bp != NULL); 17470 ASSERT(xp != NULL); 17471 ASSERT(pktp != NULL); 17472 ASSERT(pktp != un->un_rqs_pktp); 17473 ASSERT(bp != un->un_rqs_bp); 17474 17475 /* 17476 * For auto-request sense, we get a scsi_arq_status back from 17477 * the HBA, with the sense data in the sts_sensedata member. 17478 * The pkt_scbp of the packet points to this scsi_arq_status. 17479 */ 17480 asp = (struct scsi_arq_status *)(pktp->pkt_scbp); 17481 17482 if (asp->sts_rqpkt_reason != CMD_CMPLT) { 17483 /* 17484 * The auto REQUEST SENSE failed; see if we can re-try 17485 * the original command. 17486 */ 17487 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17488 "auto request sense failed (reason=%s)\n", 17489 scsi_rname(asp->sts_rqpkt_reason)); 17490 17491 sd_reset_target(un, pktp); 17492 17493 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 17494 NULL, NULL, EIO, (clock_t)0, NULL); 17495 return; 17496 } 17497 17498 /* Save the relevant sense info into the xp for the original cmd. */ 17499 xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status))); 17500 xp->xb_sense_state = asp->sts_rqpkt_state; 17501 xp->xb_sense_resid = asp->sts_rqpkt_resid; 17502 if (xp->xb_sense_state & STATE_XARQ_DONE) { 17503 actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid; 17504 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 17505 MAX_SENSE_LENGTH); 17506 } else { 17507 if (xp->xb_sense_resid > SENSE_LENGTH) { 17508 actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid; 17509 } else { 17510 actual_len = SENSE_LENGTH - xp->xb_sense_resid; 17511 } 17512 if (xp->xb_pkt_flags & SD_XB_USCSICMD) { 17513 if ((((struct uscsi_cmd *) 17514 (xp->xb_pktinfo))->uscsi_rqlen) > actual_len) { 17515 xp->xb_sense_resid = (((struct uscsi_cmd *) 17516 (xp->xb_pktinfo))->uscsi_rqlen) - 17517 actual_len; 17518 } else { 17519 xp->xb_sense_resid = 0; 17520 } 17521 } 17522 bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH); 17523 } 17524 17525 /* 17526 * See if we have valid sense data, if so then turn it over to 17527 * sd_decode_sense() to figure out the right course of action. 17528 */ 17529 if (sd_validate_sense_data(un, bp, xp, actual_len) == 17530 SD_SENSE_DATA_IS_VALID) { 17531 sd_decode_sense(un, bp, xp, pktp); 17532 } 17533 } 17534 17535 17536 /* 17537 * Function: sd_print_sense_failed_msg 17538 * 17539 * Description: Print log message when RQS has failed. 17540 * 17541 * Arguments: un - ptr to associated softstate 17542 * bp - ptr to buf(9S) for the command 17543 * arg - generic message string ptr 17544 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 17545 * or SD_NO_RETRY_ISSUED 17546 * 17547 * Context: May be called from interrupt context 17548 */ 17549 17550 static void 17551 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg, 17552 int code) 17553 { 17554 char *msgp = arg; 17555 17556 ASSERT(un != NULL); 17557 ASSERT(mutex_owned(SD_MUTEX(un))); 17558 ASSERT(bp != NULL); 17559 17560 if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) { 17561 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp); 17562 } 17563 } 17564 17565 17566 /* 17567 * Function: sd_validate_sense_data 17568 * 17569 * Description: Check the given sense data for validity. 17570 * If the sense data is not valid, the command will 17571 * be either failed or retried! 17572 * 17573 * Return Code: SD_SENSE_DATA_IS_INVALID 17574 * SD_SENSE_DATA_IS_VALID 17575 * 17576 * Context: May be called from interrupt context 17577 */ 17578 17579 static int 17580 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 17581 size_t actual_len) 17582 { 17583 struct scsi_extended_sense *esp; 17584 struct scsi_pkt *pktp; 17585 char *msgp = NULL; 17586 sd_ssc_t *sscp; 17587 17588 ASSERT(un != NULL); 17589 ASSERT(mutex_owned(SD_MUTEX(un))); 17590 ASSERT(bp != NULL); 17591 ASSERT(bp != un->un_rqs_bp); 17592 ASSERT(xp != NULL); 17593 ASSERT(un->un_fm_private != NULL); 17594 17595 pktp = SD_GET_PKTP(bp); 17596 ASSERT(pktp != NULL); 17597 17598 sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc; 17599 ASSERT(sscp != NULL); 17600 17601 /* 17602 * Check the status of the RQS command (auto or manual). 17603 */ 17604 switch (xp->xb_sense_status & STATUS_MASK) { 17605 case STATUS_GOOD: 17606 break; 17607 17608 case STATUS_RESERVATION_CONFLICT: 17609 sd_pkt_status_reservation_conflict(un, bp, xp, pktp); 17610 return (SD_SENSE_DATA_IS_INVALID); 17611 17612 case STATUS_BUSY: 17613 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17614 "Busy Status on REQUEST SENSE\n"); 17615 sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL, 17616 NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter); 17617 return (SD_SENSE_DATA_IS_INVALID); 17618 17619 case STATUS_QFULL: 17620 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17621 "QFULL Status on REQUEST SENSE\n"); 17622 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, 17623 NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter); 17624 return (SD_SENSE_DATA_IS_INVALID); 17625 17626 case STATUS_CHECK: 17627 case STATUS_TERMINATED: 17628 msgp = "Check Condition on REQUEST SENSE\n"; 17629 goto sense_failed; 17630 17631 default: 17632 msgp = "Not STATUS_GOOD on REQUEST_SENSE\n"; 17633 goto sense_failed; 17634 } 17635 17636 /* 17637 * See if we got the minimum required amount of sense data. 17638 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes 17639 * or less. 17640 */ 17641 if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) || 17642 (actual_len == 0)) { 17643 msgp = "Request Sense couldn't get sense data\n"; 17644 goto sense_failed; 17645 } 17646 17647 if (actual_len < SUN_MIN_SENSE_LENGTH) { 17648 msgp = "Not enough sense information\n"; 17649 /* Mark the ssc_flags for detecting invalid sense data */ 17650 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17651 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0, 17652 "sense-data"); 17653 } 17654 goto sense_failed; 17655 } 17656 17657 /* 17658 * We require the extended sense data 17659 */ 17660 esp = (struct scsi_extended_sense *)xp->xb_sense_data; 17661 if (esp->es_class != CLASS_EXTENDED_SENSE) { 17662 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 17663 static char tmp[8]; 17664 static char buf[148]; 17665 char *p = (char *)(xp->xb_sense_data); 17666 int i; 17667 17668 mutex_enter(&sd_sense_mutex); 17669 (void) strcpy(buf, "undecodable sense information:"); 17670 for (i = 0; i < actual_len; i++) { 17671 (void) sprintf(tmp, " 0x%x", *(p++)&0xff); 17672 (void) strcpy(&buf[strlen(buf)], tmp); 17673 } 17674 i = strlen(buf); 17675 (void) strcpy(&buf[i], "-(assumed fatal)\n"); 17676 17677 if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) { 17678 scsi_log(SD_DEVINFO(un), sd_label, 17679 CE_WARN, buf); 17680 } 17681 mutex_exit(&sd_sense_mutex); 17682 } 17683 17684 /* Mark the ssc_flags for detecting invalid sense data */ 17685 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17686 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0, 17687 "sense-data"); 17688 } 17689 17690 /* Note: Legacy behavior, fail the command with no retry */ 17691 sd_return_failed_command(un, bp, EIO); 17692 return (SD_SENSE_DATA_IS_INVALID); 17693 } 17694 17695 /* 17696 * Check that es_code is valid (es_class concatenated with es_code 17697 * make up the "response code" field. es_class will always be 7, so 17698 * make sure es_code is 0, 1, 2, 3 or 0xf. es_code will indicate the 17699 * format. 17700 */ 17701 if ((esp->es_code != CODE_FMT_FIXED_CURRENT) && 17702 (esp->es_code != CODE_FMT_FIXED_DEFERRED) && 17703 (esp->es_code != CODE_FMT_DESCR_CURRENT) && 17704 (esp->es_code != CODE_FMT_DESCR_DEFERRED) && 17705 (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) { 17706 /* Mark the ssc_flags for detecting invalid sense data */ 17707 if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) { 17708 sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0, 17709 "sense-data"); 17710 } 17711 goto sense_failed; 17712 } 17713 17714 return (SD_SENSE_DATA_IS_VALID); 17715 17716 sense_failed: 17717 /* 17718 * If the request sense failed (for whatever reason), attempt 17719 * to retry the original command. 17720 */ 17721 #if defined(__i386) || defined(__amd64) 17722 /* 17723 * SD_RETRY_DELAY is conditionally compile (#if fibre) in 17724 * sddef.h for Sparc platform, and x86 uses 1 binary 17725 * for both SCSI/FC. 17726 * The SD_RETRY_DELAY value need to be adjusted here 17727 * when SD_RETRY_DELAY change in sddef.h 17728 */ 17729 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 17730 sd_print_sense_failed_msg, msgp, EIO, 17731 un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL); 17732 #else 17733 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 17734 sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL); 17735 #endif 17736 17737 return (SD_SENSE_DATA_IS_INVALID); 17738 } 17739 17740 /* 17741 * Function: sd_decode_sense 17742 * 17743 * Description: Take recovery action(s) when SCSI Sense Data is received. 17744 * 17745 * Context: Interrupt context. 17746 */ 17747 17748 static void 17749 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 17750 struct scsi_pkt *pktp) 17751 { 17752 uint8_t sense_key; 17753 17754 ASSERT(un != NULL); 17755 ASSERT(mutex_owned(SD_MUTEX(un))); 17756 ASSERT(bp != NULL); 17757 ASSERT(bp != un->un_rqs_bp); 17758 ASSERT(xp != NULL); 17759 ASSERT(pktp != NULL); 17760 17761 sense_key = scsi_sense_key(xp->xb_sense_data); 17762 17763 switch (sense_key) { 17764 case KEY_NO_SENSE: 17765 sd_sense_key_no_sense(un, bp, xp, pktp); 17766 break; 17767 case KEY_RECOVERABLE_ERROR: 17768 sd_sense_key_recoverable_error(un, xp->xb_sense_data, 17769 bp, xp, pktp); 17770 break; 17771 case KEY_NOT_READY: 17772 sd_sense_key_not_ready(un, xp->xb_sense_data, 17773 bp, xp, pktp); 17774 break; 17775 case KEY_MEDIUM_ERROR: 17776 case KEY_HARDWARE_ERROR: 17777 sd_sense_key_medium_or_hardware_error(un, 17778 xp->xb_sense_data, bp, xp, pktp); 17779 break; 17780 case KEY_ILLEGAL_REQUEST: 17781 sd_sense_key_illegal_request(un, bp, xp, pktp); 17782 break; 17783 case KEY_UNIT_ATTENTION: 17784 sd_sense_key_unit_attention(un, xp->xb_sense_data, 17785 bp, xp, pktp); 17786 break; 17787 case KEY_WRITE_PROTECT: 17788 case KEY_VOLUME_OVERFLOW: 17789 case KEY_MISCOMPARE: 17790 sd_sense_key_fail_command(un, bp, xp, pktp); 17791 break; 17792 case KEY_BLANK_CHECK: 17793 sd_sense_key_blank_check(un, bp, xp, pktp); 17794 break; 17795 case KEY_ABORTED_COMMAND: 17796 sd_sense_key_aborted_command(un, bp, xp, pktp); 17797 break; 17798 case KEY_VENDOR_UNIQUE: 17799 case KEY_COPY_ABORTED: 17800 case KEY_EQUAL: 17801 case KEY_RESERVED: 17802 default: 17803 sd_sense_key_default(un, xp->xb_sense_data, 17804 bp, xp, pktp); 17805 break; 17806 } 17807 } 17808 17809 17810 /* 17811 * Function: sd_dump_memory 17812 * 17813 * Description: Debug logging routine to print the contents of a user provided 17814 * buffer. The output of the buffer is broken up into 256 byte 17815 * segments due to a size constraint of the scsi_log. 17816 * implementation. 17817 * 17818 * Arguments: un - ptr to softstate 17819 * comp - component mask 17820 * title - "title" string to preceed data when printed 17821 * data - ptr to data block to be printed 17822 * len - size of data block to be printed 17823 * fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c) 17824 * 17825 * Context: May be called from interrupt context 17826 */ 17827 17828 #define SD_DUMP_MEMORY_BUF_SIZE 256 17829 17830 static char *sd_dump_format_string[] = { 17831 " 0x%02x", 17832 " %c" 17833 }; 17834 17835 static void 17836 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data, 17837 int len, int fmt) 17838 { 17839 int i, j; 17840 int avail_count; 17841 int start_offset; 17842 int end_offset; 17843 size_t entry_len; 17844 char *bufp; 17845 char *local_buf; 17846 char *format_string; 17847 17848 ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR)); 17849 17850 /* 17851 * In the debug version of the driver, this function is called from a 17852 * number of places which are NOPs in the release driver. 17853 * The debug driver therefore has additional methods of filtering 17854 * debug output. 17855 */ 17856 #ifdef SDDEBUG 17857 /* 17858 * In the debug version of the driver we can reduce the amount of debug 17859 * messages by setting sd_error_level to something other than 17860 * SCSI_ERR_ALL and clearing bits in sd_level_mask and 17861 * sd_component_mask. 17862 */ 17863 if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) || 17864 (sd_error_level != SCSI_ERR_ALL)) { 17865 return; 17866 } 17867 if (((sd_component_mask & comp) == 0) || 17868 (sd_error_level != SCSI_ERR_ALL)) { 17869 return; 17870 } 17871 #else 17872 if (sd_error_level != SCSI_ERR_ALL) { 17873 return; 17874 } 17875 #endif 17876 17877 local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP); 17878 bufp = local_buf; 17879 /* 17880 * Available length is the length of local_buf[], minus the 17881 * length of the title string, minus one for the ":", minus 17882 * one for the newline, minus one for the NULL terminator. 17883 * This gives the #bytes available for holding the printed 17884 * values from the given data buffer. 17885 */ 17886 if (fmt == SD_LOG_HEX) { 17887 format_string = sd_dump_format_string[0]; 17888 } else /* SD_LOG_CHAR */ { 17889 format_string = sd_dump_format_string[1]; 17890 } 17891 /* 17892 * Available count is the number of elements from the given 17893 * data buffer that we can fit into the available length. 17894 * This is based upon the size of the format string used. 17895 * Make one entry and find it's size. 17896 */ 17897 (void) sprintf(bufp, format_string, data[0]); 17898 entry_len = strlen(bufp); 17899 avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len; 17900 17901 j = 0; 17902 while (j < len) { 17903 bufp = local_buf; 17904 bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE); 17905 start_offset = j; 17906 17907 end_offset = start_offset + avail_count; 17908 17909 (void) sprintf(bufp, "%s:", title); 17910 bufp += strlen(bufp); 17911 for (i = start_offset; ((i < end_offset) && (j < len)); 17912 i++, j++) { 17913 (void) sprintf(bufp, format_string, data[i]); 17914 bufp += entry_len; 17915 } 17916 (void) sprintf(bufp, "\n"); 17917 17918 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf); 17919 } 17920 kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE); 17921 } 17922 17923 /* 17924 * Function: sd_print_sense_msg 17925 * 17926 * Description: Log a message based upon the given sense data. 17927 * 17928 * Arguments: un - ptr to associated softstate 17929 * bp - ptr to buf(9S) for the command 17930 * arg - ptr to associate sd_sense_info struct 17931 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 17932 * or SD_NO_RETRY_ISSUED 17933 * 17934 * Context: May be called from interrupt context 17935 */ 17936 17937 static void 17938 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code) 17939 { 17940 struct sd_xbuf *xp; 17941 struct scsi_pkt *pktp; 17942 uint8_t *sensep; 17943 daddr_t request_blkno; 17944 diskaddr_t err_blkno; 17945 int severity; 17946 int pfa_flag; 17947 extern struct scsi_key_strings scsi_cmds[]; 17948 17949 ASSERT(un != NULL); 17950 ASSERT(mutex_owned(SD_MUTEX(un))); 17951 ASSERT(bp != NULL); 17952 xp = SD_GET_XBUF(bp); 17953 ASSERT(xp != NULL); 17954 pktp = SD_GET_PKTP(bp); 17955 ASSERT(pktp != NULL); 17956 ASSERT(arg != NULL); 17957 17958 severity = ((struct sd_sense_info *)(arg))->ssi_severity; 17959 pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag; 17960 17961 if ((code == SD_DELAYED_RETRY_ISSUED) || 17962 (code == SD_IMMEDIATE_RETRY_ISSUED)) { 17963 severity = SCSI_ERR_RETRYABLE; 17964 } 17965 17966 /* Use absolute block number for the request block number */ 17967 request_blkno = xp->xb_blkno; 17968 17969 /* 17970 * Now try to get the error block number from the sense data 17971 */ 17972 sensep = xp->xb_sense_data; 17973 17974 if (scsi_sense_info_uint64(sensep, SENSE_LENGTH, 17975 (uint64_t *)&err_blkno)) { 17976 /* 17977 * We retrieved the error block number from the information 17978 * portion of the sense data. 17979 * 17980 * For USCSI commands we are better off using the error 17981 * block no. as the requested block no. (This is the best 17982 * we can estimate.) 17983 */ 17984 if ((SD_IS_BUFIO(xp) == FALSE) && 17985 ((pktp->pkt_flags & FLAG_SILENT) == 0)) { 17986 request_blkno = err_blkno; 17987 } 17988 } else { 17989 /* 17990 * Without the es_valid bit set (for fixed format) or an 17991 * information descriptor (for descriptor format) we cannot 17992 * be certain of the error blkno, so just use the 17993 * request_blkno. 17994 */ 17995 err_blkno = (diskaddr_t)request_blkno; 17996 } 17997 17998 /* 17999 * The following will log the buffer contents for the release driver 18000 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error 18001 * level is set to verbose. 18002 */ 18003 sd_dump_memory(un, SD_LOG_IO, "Failed CDB", 18004 (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 18005 sd_dump_memory(un, SD_LOG_IO, "Sense Data", 18006 (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX); 18007 18008 if (pfa_flag == FALSE) { 18009 /* This is normally only set for USCSI */ 18010 if ((pktp->pkt_flags & FLAG_SILENT) != 0) { 18011 return; 18012 } 18013 18014 if ((SD_IS_BUFIO(xp) == TRUE) && 18015 (((sd_level_mask & SD_LOGMASK_DIAG) == 0) && 18016 (severity < sd_error_level))) { 18017 return; 18018 } 18019 } 18020 /* 18021 * Check for Sonoma Failover and keep a count of how many failed I/O's 18022 */ 18023 if ((SD_IS_LSI(un)) && 18024 (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) && 18025 (scsi_sense_asc(sensep) == 0x94) && 18026 (scsi_sense_ascq(sensep) == 0x01)) { 18027 un->un_sonoma_failure_count++; 18028 if (un->un_sonoma_failure_count > 1) { 18029 return; 18030 } 18031 } 18032 18033 if (SD_FM_LOG(un) == SD_FM_LOG_NSUP || 18034 ((scsi_sense_key(sensep) == KEY_RECOVERABLE_ERROR) && 18035 (pktp->pkt_resid == 0))) { 18036 scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity, 18037 request_blkno, err_blkno, scsi_cmds, 18038 (struct scsi_extended_sense *)sensep, 18039 un->un_additional_codes, NULL); 18040 } 18041 } 18042 18043 /* 18044 * Function: sd_sense_key_no_sense 18045 * 18046 * Description: Recovery action when sense data was not received. 18047 * 18048 * Context: May be called from interrupt context 18049 */ 18050 18051 static void 18052 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp, 18053 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18054 { 18055 struct sd_sense_info si; 18056 18057 ASSERT(un != NULL); 18058 ASSERT(mutex_owned(SD_MUTEX(un))); 18059 ASSERT(bp != NULL); 18060 ASSERT(xp != NULL); 18061 ASSERT(pktp != NULL); 18062 18063 si.ssi_severity = SCSI_ERR_FATAL; 18064 si.ssi_pfa_flag = FALSE; 18065 18066 SD_UPDATE_ERRSTATS(un, sd_softerrs); 18067 18068 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18069 &si, EIO, (clock_t)0, NULL); 18070 } 18071 18072 18073 /* 18074 * Function: sd_sense_key_recoverable_error 18075 * 18076 * Description: Recovery actions for a SCSI "Recovered Error" sense key. 18077 * 18078 * Context: May be called from interrupt context 18079 */ 18080 18081 static void 18082 sd_sense_key_recoverable_error(struct sd_lun *un, 18083 uint8_t *sense_datap, 18084 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18085 { 18086 struct sd_sense_info si; 18087 uint8_t asc = scsi_sense_asc(sense_datap); 18088 18089 ASSERT(un != NULL); 18090 ASSERT(mutex_owned(SD_MUTEX(un))); 18091 ASSERT(bp != NULL); 18092 ASSERT(xp != NULL); 18093 ASSERT(pktp != NULL); 18094 18095 /* 18096 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED 18097 */ 18098 if ((asc == 0x5D) && (sd_report_pfa != 0)) { 18099 SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err); 18100 si.ssi_severity = SCSI_ERR_INFO; 18101 si.ssi_pfa_flag = TRUE; 18102 } else { 18103 SD_UPDATE_ERRSTATS(un, sd_softerrs); 18104 SD_UPDATE_ERRSTATS(un, sd_rq_recov_err); 18105 si.ssi_severity = SCSI_ERR_RECOVERED; 18106 si.ssi_pfa_flag = FALSE; 18107 } 18108 18109 if (pktp->pkt_resid == 0) { 18110 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18111 sd_return_command(un, bp); 18112 return; 18113 } 18114 18115 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18116 &si, EIO, (clock_t)0, NULL); 18117 } 18118 18119 18120 18121 18122 /* 18123 * Function: sd_sense_key_not_ready 18124 * 18125 * Description: Recovery actions for a SCSI "Not Ready" sense key. 18126 * 18127 * Context: May be called from interrupt context 18128 */ 18129 18130 static void 18131 sd_sense_key_not_ready(struct sd_lun *un, 18132 uint8_t *sense_datap, 18133 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18134 { 18135 struct sd_sense_info si; 18136 uint8_t asc = scsi_sense_asc(sense_datap); 18137 uint8_t ascq = scsi_sense_ascq(sense_datap); 18138 18139 ASSERT(un != NULL); 18140 ASSERT(mutex_owned(SD_MUTEX(un))); 18141 ASSERT(bp != NULL); 18142 ASSERT(xp != NULL); 18143 ASSERT(pktp != NULL); 18144 18145 si.ssi_severity = SCSI_ERR_FATAL; 18146 si.ssi_pfa_flag = FALSE; 18147 18148 /* 18149 * Update error stats after first NOT READY error. Disks may have 18150 * been powered down and may need to be restarted. For CDROMs, 18151 * report NOT READY errors only if media is present. 18152 */ 18153 if ((ISCD(un) && (asc == 0x3A)) || 18154 (xp->xb_nr_retry_count > 0)) { 18155 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18156 SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err); 18157 } 18158 18159 /* 18160 * Just fail if the "not ready" retry limit has been reached. 18161 */ 18162 if (xp->xb_nr_retry_count >= un->un_notready_retry_count) { 18163 /* Special check for error message printing for removables. */ 18164 if (un->un_f_has_removable_media && (asc == 0x04) && 18165 (ascq >= 0x04)) { 18166 si.ssi_severity = SCSI_ERR_ALL; 18167 } 18168 goto fail_command; 18169 } 18170 18171 /* 18172 * Check the ASC and ASCQ in the sense data as needed, to determine 18173 * what to do. 18174 */ 18175 switch (asc) { 18176 case 0x04: /* LOGICAL UNIT NOT READY */ 18177 /* 18178 * disk drives that don't spin up result in a very long delay 18179 * in format without warning messages. We will log a message 18180 * if the error level is set to verbose. 18181 */ 18182 if (sd_error_level < SCSI_ERR_RETRYABLE) { 18183 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18184 "logical unit not ready, resetting disk\n"); 18185 } 18186 18187 /* 18188 * There are different requirements for CDROMs and disks for 18189 * the number of retries. If a CD-ROM is giving this, it is 18190 * probably reading TOC and is in the process of getting 18191 * ready, so we should keep on trying for a long time to make 18192 * sure that all types of media are taken in account (for 18193 * some media the drive takes a long time to read TOC). For 18194 * disks we do not want to retry this too many times as this 18195 * can cause a long hang in format when the drive refuses to 18196 * spin up (a very common failure). 18197 */ 18198 switch (ascq) { 18199 case 0x00: /* LUN NOT READY, CAUSE NOT REPORTABLE */ 18200 /* 18201 * Disk drives frequently refuse to spin up which 18202 * results in a very long hang in format without 18203 * warning messages. 18204 * 18205 * Note: This code preserves the legacy behavior of 18206 * comparing xb_nr_retry_count against zero for fibre 18207 * channel targets instead of comparing against the 18208 * un_reset_retry_count value. The reason for this 18209 * discrepancy has been so utterly lost beneath the 18210 * Sands of Time that even Indiana Jones could not 18211 * find it. 18212 */ 18213 if (un->un_f_is_fibre == TRUE) { 18214 if (((sd_level_mask & SD_LOGMASK_DIAG) || 18215 (xp->xb_nr_retry_count > 0)) && 18216 (un->un_startstop_timeid == NULL)) { 18217 scsi_log(SD_DEVINFO(un), sd_label, 18218 CE_WARN, "logical unit not ready, " 18219 "resetting disk\n"); 18220 sd_reset_target(un, pktp); 18221 } 18222 } else { 18223 if (((sd_level_mask & SD_LOGMASK_DIAG) || 18224 (xp->xb_nr_retry_count > 18225 un->un_reset_retry_count)) && 18226 (un->un_startstop_timeid == NULL)) { 18227 scsi_log(SD_DEVINFO(un), sd_label, 18228 CE_WARN, "logical unit not ready, " 18229 "resetting disk\n"); 18230 sd_reset_target(un, pktp); 18231 } 18232 } 18233 break; 18234 18235 case 0x01: /* LUN IS IN PROCESS OF BECOMING READY */ 18236 /* 18237 * If the target is in the process of becoming 18238 * ready, just proceed with the retry. This can 18239 * happen with CD-ROMs that take a long time to 18240 * read TOC after a power cycle or reset. 18241 */ 18242 goto do_retry; 18243 18244 case 0x02: /* LUN NOT READY, INITITIALIZING CMD REQUIRED */ 18245 break; 18246 18247 case 0x03: /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */ 18248 /* 18249 * Retries cannot help here so just fail right away. 18250 */ 18251 goto fail_command; 18252 18253 case 0x88: 18254 /* 18255 * Vendor-unique code for T3/T4: it indicates a 18256 * path problem in a mutipathed config, but as far as 18257 * the target driver is concerned it equates to a fatal 18258 * error, so we should just fail the command right away 18259 * (without printing anything to the console). If this 18260 * is not a T3/T4, fall thru to the default recovery 18261 * action. 18262 * T3/T4 is FC only, don't need to check is_fibre 18263 */ 18264 if (SD_IS_T3(un) || SD_IS_T4(un)) { 18265 sd_return_failed_command(un, bp, EIO); 18266 return; 18267 } 18268 /* FALLTHRU */ 18269 18270 case 0x04: /* LUN NOT READY, FORMAT IN PROGRESS */ 18271 case 0x05: /* LUN NOT READY, REBUILD IN PROGRESS */ 18272 case 0x06: /* LUN NOT READY, RECALCULATION IN PROGRESS */ 18273 case 0x07: /* LUN NOT READY, OPERATION IN PROGRESS */ 18274 case 0x08: /* LUN NOT READY, LONG WRITE IN PROGRESS */ 18275 default: /* Possible future codes in SCSI spec? */ 18276 /* 18277 * For removable-media devices, do not retry if 18278 * ASCQ > 2 as these result mostly from USCSI commands 18279 * on MMC devices issued to check status of an 18280 * operation initiated in immediate mode. Also for 18281 * ASCQ >= 4 do not print console messages as these 18282 * mainly represent a user-initiated operation 18283 * instead of a system failure. 18284 */ 18285 if (un->un_f_has_removable_media) { 18286 si.ssi_severity = SCSI_ERR_ALL; 18287 goto fail_command; 18288 } 18289 break; 18290 } 18291 18292 /* 18293 * As part of our recovery attempt for the NOT READY 18294 * condition, we issue a START STOP UNIT command. However 18295 * we want to wait for a short delay before attempting this 18296 * as there may still be more commands coming back from the 18297 * target with the check condition. To do this we use 18298 * timeout(9F) to call sd_start_stop_unit_callback() after 18299 * the delay interval expires. (sd_start_stop_unit_callback() 18300 * dispatches sd_start_stop_unit_task(), which will issue 18301 * the actual START STOP UNIT command. The delay interval 18302 * is one-half of the delay that we will use to retry the 18303 * command that generated the NOT READY condition. 18304 * 18305 * Note that we could just dispatch sd_start_stop_unit_task() 18306 * from here and allow it to sleep for the delay interval, 18307 * but then we would be tying up the taskq thread 18308 * uncesessarily for the duration of the delay. 18309 * 18310 * Do not issue the START STOP UNIT if the current command 18311 * is already a START STOP UNIT. 18312 */ 18313 if (pktp->pkt_cdbp[0] == SCMD_START_STOP) { 18314 break; 18315 } 18316 18317 /* 18318 * Do not schedule the timeout if one is already pending. 18319 */ 18320 if (un->un_startstop_timeid != NULL) { 18321 SD_INFO(SD_LOG_ERROR, un, 18322 "sd_sense_key_not_ready: restart already issued to" 18323 " %s%d\n", ddi_driver_name(SD_DEVINFO(un)), 18324 ddi_get_instance(SD_DEVINFO(un))); 18325 break; 18326 } 18327 18328 /* 18329 * Schedule the START STOP UNIT command, then queue the command 18330 * for a retry. 18331 * 18332 * Note: A timeout is not scheduled for this retry because we 18333 * want the retry to be serial with the START_STOP_UNIT. The 18334 * retry will be started when the START_STOP_UNIT is completed 18335 * in sd_start_stop_unit_task. 18336 */ 18337 un->un_startstop_timeid = timeout(sd_start_stop_unit_callback, 18338 un, un->un_busy_timeout / 2); 18339 xp->xb_nr_retry_count++; 18340 sd_set_retry_bp(un, bp, 0, kstat_waitq_enter); 18341 return; 18342 18343 case 0x05: /* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */ 18344 if (sd_error_level < SCSI_ERR_RETRYABLE) { 18345 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18346 "unit does not respond to selection\n"); 18347 } 18348 break; 18349 18350 case 0x3A: /* MEDIUM NOT PRESENT */ 18351 if (sd_error_level >= SCSI_ERR_FATAL) { 18352 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18353 "Caddy not inserted in drive\n"); 18354 } 18355 18356 sr_ejected(un); 18357 un->un_mediastate = DKIO_EJECTED; 18358 /* The state has changed, inform the media watch routines */ 18359 cv_broadcast(&un->un_state_cv); 18360 /* Just fail if no media is present in the drive. */ 18361 goto fail_command; 18362 18363 default: 18364 if (sd_error_level < SCSI_ERR_RETRYABLE) { 18365 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 18366 "Unit not Ready. Additional sense code 0x%x\n", 18367 asc); 18368 } 18369 break; 18370 } 18371 18372 do_retry: 18373 18374 /* 18375 * Retry the command, as some targets may report NOT READY for 18376 * several seconds after being reset. 18377 */ 18378 xp->xb_nr_retry_count++; 18379 si.ssi_severity = SCSI_ERR_RETRYABLE; 18380 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg, 18381 &si, EIO, un->un_busy_timeout, NULL); 18382 18383 return; 18384 18385 fail_command: 18386 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18387 sd_return_failed_command(un, bp, EIO); 18388 } 18389 18390 18391 18392 /* 18393 * Function: sd_sense_key_medium_or_hardware_error 18394 * 18395 * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error" 18396 * sense key. 18397 * 18398 * Context: May be called from interrupt context 18399 */ 18400 18401 static void 18402 sd_sense_key_medium_or_hardware_error(struct sd_lun *un, 18403 uint8_t *sense_datap, 18404 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18405 { 18406 struct sd_sense_info si; 18407 uint8_t sense_key = scsi_sense_key(sense_datap); 18408 uint8_t asc = scsi_sense_asc(sense_datap); 18409 18410 ASSERT(un != NULL); 18411 ASSERT(mutex_owned(SD_MUTEX(un))); 18412 ASSERT(bp != NULL); 18413 ASSERT(xp != NULL); 18414 ASSERT(pktp != NULL); 18415 18416 si.ssi_severity = SCSI_ERR_FATAL; 18417 si.ssi_pfa_flag = FALSE; 18418 18419 if (sense_key == KEY_MEDIUM_ERROR) { 18420 SD_UPDATE_ERRSTATS(un, sd_rq_media_err); 18421 } 18422 18423 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18424 18425 if ((un->un_reset_retry_count != 0) && 18426 (xp->xb_retry_count == un->un_reset_retry_count)) { 18427 mutex_exit(SD_MUTEX(un)); 18428 /* Do NOT do a RESET_ALL here: too intrusive. (4112858) */ 18429 if (un->un_f_allow_bus_device_reset == TRUE) { 18430 18431 boolean_t try_resetting_target = B_TRUE; 18432 18433 /* 18434 * We need to be able to handle specific ASC when we are 18435 * handling a KEY_HARDWARE_ERROR. In particular 18436 * taking the default action of resetting the target may 18437 * not be the appropriate way to attempt recovery. 18438 * Resetting a target because of a single LUN failure 18439 * victimizes all LUNs on that target. 18440 * 18441 * This is true for the LSI arrays, if an LSI 18442 * array controller returns an ASC of 0x84 (LUN Dead) we 18443 * should trust it. 18444 */ 18445 18446 if (sense_key == KEY_HARDWARE_ERROR) { 18447 switch (asc) { 18448 case 0x84: 18449 if (SD_IS_LSI(un)) { 18450 try_resetting_target = B_FALSE; 18451 } 18452 break; 18453 default: 18454 break; 18455 } 18456 } 18457 18458 if (try_resetting_target == B_TRUE) { 18459 int reset_retval = 0; 18460 if (un->un_f_lun_reset_enabled == TRUE) { 18461 SD_TRACE(SD_LOG_IO_CORE, un, 18462 "sd_sense_key_medium_or_hardware_" 18463 "error: issuing RESET_LUN\n"); 18464 reset_retval = 18465 scsi_reset(SD_ADDRESS(un), 18466 RESET_LUN); 18467 } 18468 if (reset_retval == 0) { 18469 SD_TRACE(SD_LOG_IO_CORE, un, 18470 "sd_sense_key_medium_or_hardware_" 18471 "error: issuing RESET_TARGET\n"); 18472 (void) scsi_reset(SD_ADDRESS(un), 18473 RESET_TARGET); 18474 } 18475 } 18476 } 18477 mutex_enter(SD_MUTEX(un)); 18478 } 18479 18480 /* 18481 * This really ought to be a fatal error, but we will retry anyway 18482 * as some drives report this as a spurious error. 18483 */ 18484 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18485 &si, EIO, (clock_t)0, NULL); 18486 } 18487 18488 18489 18490 /* 18491 * Function: sd_sense_key_illegal_request 18492 * 18493 * Description: Recovery actions for a SCSI "Illegal Request" sense key. 18494 * 18495 * Context: May be called from interrupt context 18496 */ 18497 18498 static void 18499 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp, 18500 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18501 { 18502 struct sd_sense_info si; 18503 18504 ASSERT(un != NULL); 18505 ASSERT(mutex_owned(SD_MUTEX(un))); 18506 ASSERT(bp != NULL); 18507 ASSERT(xp != NULL); 18508 ASSERT(pktp != NULL); 18509 18510 SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err); 18511 18512 si.ssi_severity = SCSI_ERR_INFO; 18513 si.ssi_pfa_flag = FALSE; 18514 18515 /* Pointless to retry if the target thinks it's an illegal request */ 18516 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18517 sd_return_failed_command(un, bp, EIO); 18518 } 18519 18520 18521 18522 18523 /* 18524 * Function: sd_sense_key_unit_attention 18525 * 18526 * Description: Recovery actions for a SCSI "Unit Attention" sense key. 18527 * 18528 * Context: May be called from interrupt context 18529 */ 18530 18531 static void 18532 sd_sense_key_unit_attention(struct sd_lun *un, 18533 uint8_t *sense_datap, 18534 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18535 { 18536 /* 18537 * For UNIT ATTENTION we allow retries for one minute. Devices 18538 * like Sonoma can return UNIT ATTENTION close to a minute 18539 * under certain conditions. 18540 */ 18541 int retry_check_flag = SD_RETRIES_UA; 18542 boolean_t kstat_updated = B_FALSE; 18543 struct sd_sense_info si; 18544 uint8_t asc = scsi_sense_asc(sense_datap); 18545 uint8_t ascq = scsi_sense_ascq(sense_datap); 18546 18547 ASSERT(un != NULL); 18548 ASSERT(mutex_owned(SD_MUTEX(un))); 18549 ASSERT(bp != NULL); 18550 ASSERT(xp != NULL); 18551 ASSERT(pktp != NULL); 18552 18553 si.ssi_severity = SCSI_ERR_INFO; 18554 si.ssi_pfa_flag = FALSE; 18555 18556 18557 switch (asc) { 18558 case 0x5D: /* FAILURE PREDICTION THRESHOLD EXCEEDED */ 18559 if (sd_report_pfa != 0) { 18560 SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err); 18561 si.ssi_pfa_flag = TRUE; 18562 retry_check_flag = SD_RETRIES_STANDARD; 18563 goto do_retry; 18564 } 18565 18566 break; 18567 18568 case 0x29: /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */ 18569 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 18570 un->un_resvd_status |= 18571 (SD_LOST_RESERVE | SD_WANT_RESERVE); 18572 } 18573 #ifdef _LP64 18574 if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) { 18575 if (taskq_dispatch(sd_tq, sd_reenable_dsense_task, 18576 un, KM_NOSLEEP) == 0) { 18577 /* 18578 * If we can't dispatch the task we'll just 18579 * live without descriptor sense. We can 18580 * try again on the next "unit attention" 18581 */ 18582 SD_ERROR(SD_LOG_ERROR, un, 18583 "sd_sense_key_unit_attention: " 18584 "Could not dispatch " 18585 "sd_reenable_dsense_task\n"); 18586 } 18587 } 18588 #endif /* _LP64 */ 18589 /* FALLTHRU */ 18590 18591 case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */ 18592 if (!un->un_f_has_removable_media) { 18593 break; 18594 } 18595 18596 /* 18597 * When we get a unit attention from a removable-media device, 18598 * it may be in a state that will take a long time to recover 18599 * (e.g., from a reset). Since we are executing in interrupt 18600 * context here, we cannot wait around for the device to come 18601 * back. So hand this command off to sd_media_change_task() 18602 * for deferred processing under taskq thread context. (Note 18603 * that the command still may be failed if a problem is 18604 * encountered at a later time.) 18605 */ 18606 if (taskq_dispatch(sd_tq, sd_media_change_task, pktp, 18607 KM_NOSLEEP) == 0) { 18608 /* 18609 * Cannot dispatch the request so fail the command. 18610 */ 18611 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18612 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 18613 si.ssi_severity = SCSI_ERR_FATAL; 18614 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18615 sd_return_failed_command(un, bp, EIO); 18616 } 18617 18618 /* 18619 * If failed to dispatch sd_media_change_task(), we already 18620 * updated kstat. If succeed to dispatch sd_media_change_task(), 18621 * we should update kstat later if it encounters an error. So, 18622 * we update kstat_updated flag here. 18623 */ 18624 kstat_updated = B_TRUE; 18625 18626 /* 18627 * Either the command has been successfully dispatched to a 18628 * task Q for retrying, or the dispatch failed. In either case 18629 * do NOT retry again by calling sd_retry_command. This sets up 18630 * two retries of the same command and when one completes and 18631 * frees the resources the other will access freed memory, 18632 * a bad thing. 18633 */ 18634 return; 18635 18636 default: 18637 break; 18638 } 18639 18640 /* 18641 * ASC ASCQ 18642 * 2A 09 Capacity data has changed 18643 * 2A 01 Mode parameters changed 18644 * 3F 0E Reported luns data has changed 18645 * Arrays that support logical unit expansion should report 18646 * capacity changes(2Ah/09). Mode parameters changed and 18647 * reported luns data has changed are the approximation. 18648 */ 18649 if (((asc == 0x2a) && (ascq == 0x09)) || 18650 ((asc == 0x2a) && (ascq == 0x01)) || 18651 ((asc == 0x3f) && (ascq == 0x0e))) { 18652 if (taskq_dispatch(sd_tq, sd_target_change_task, un, 18653 KM_NOSLEEP) == 0) { 18654 SD_ERROR(SD_LOG_ERROR, un, 18655 "sd_sense_key_unit_attention: " 18656 "Could not dispatch sd_target_change_task\n"); 18657 } 18658 } 18659 18660 /* 18661 * Update kstat if we haven't done that. 18662 */ 18663 if (!kstat_updated) { 18664 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18665 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 18666 } 18667 18668 do_retry: 18669 sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si, 18670 EIO, SD_UA_RETRY_DELAY, NULL); 18671 } 18672 18673 18674 18675 /* 18676 * Function: sd_sense_key_fail_command 18677 * 18678 * Description: Use to fail a command when we don't like the sense key that 18679 * was returned. 18680 * 18681 * Context: May be called from interrupt context 18682 */ 18683 18684 static void 18685 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp, 18686 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18687 { 18688 struct sd_sense_info si; 18689 18690 ASSERT(un != NULL); 18691 ASSERT(mutex_owned(SD_MUTEX(un))); 18692 ASSERT(bp != NULL); 18693 ASSERT(xp != NULL); 18694 ASSERT(pktp != NULL); 18695 18696 si.ssi_severity = SCSI_ERR_FATAL; 18697 si.ssi_pfa_flag = FALSE; 18698 18699 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18700 sd_return_failed_command(un, bp, EIO); 18701 } 18702 18703 18704 18705 /* 18706 * Function: sd_sense_key_blank_check 18707 * 18708 * Description: Recovery actions for a SCSI "Blank Check" sense key. 18709 * Has no monetary connotation. 18710 * 18711 * Context: May be called from interrupt context 18712 */ 18713 18714 static void 18715 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp, 18716 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18717 { 18718 struct sd_sense_info si; 18719 18720 ASSERT(un != NULL); 18721 ASSERT(mutex_owned(SD_MUTEX(un))); 18722 ASSERT(bp != NULL); 18723 ASSERT(xp != NULL); 18724 ASSERT(pktp != NULL); 18725 18726 /* 18727 * Blank check is not fatal for removable devices, therefore 18728 * it does not require a console message. 18729 */ 18730 si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL : 18731 SCSI_ERR_FATAL; 18732 si.ssi_pfa_flag = FALSE; 18733 18734 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18735 sd_return_failed_command(un, bp, EIO); 18736 } 18737 18738 18739 18740 18741 /* 18742 * Function: sd_sense_key_aborted_command 18743 * 18744 * Description: Recovery actions for a SCSI "Aborted Command" sense key. 18745 * 18746 * Context: May be called from interrupt context 18747 */ 18748 18749 static void 18750 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp, 18751 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18752 { 18753 struct sd_sense_info si; 18754 18755 ASSERT(un != NULL); 18756 ASSERT(mutex_owned(SD_MUTEX(un))); 18757 ASSERT(bp != NULL); 18758 ASSERT(xp != NULL); 18759 ASSERT(pktp != NULL); 18760 18761 si.ssi_severity = SCSI_ERR_FATAL; 18762 si.ssi_pfa_flag = FALSE; 18763 18764 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18765 18766 /* 18767 * This really ought to be a fatal error, but we will retry anyway 18768 * as some drives report this as a spurious error. 18769 */ 18770 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18771 &si, EIO, drv_usectohz(100000), NULL); 18772 } 18773 18774 18775 18776 /* 18777 * Function: sd_sense_key_default 18778 * 18779 * Description: Default recovery action for several SCSI sense keys (basically 18780 * attempts a retry). 18781 * 18782 * Context: May be called from interrupt context 18783 */ 18784 18785 static void 18786 sd_sense_key_default(struct sd_lun *un, 18787 uint8_t *sense_datap, 18788 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18789 { 18790 struct sd_sense_info si; 18791 uint8_t sense_key = scsi_sense_key(sense_datap); 18792 18793 ASSERT(un != NULL); 18794 ASSERT(mutex_owned(SD_MUTEX(un))); 18795 ASSERT(bp != NULL); 18796 ASSERT(xp != NULL); 18797 ASSERT(pktp != NULL); 18798 18799 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18800 18801 /* 18802 * Undecoded sense key. Attempt retries and hope that will fix 18803 * the problem. Otherwise, we're dead. 18804 */ 18805 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 18806 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18807 "Unhandled Sense Key '%s'\n", sense_keys[sense_key]); 18808 } 18809 18810 si.ssi_severity = SCSI_ERR_FATAL; 18811 si.ssi_pfa_flag = FALSE; 18812 18813 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18814 &si, EIO, (clock_t)0, NULL); 18815 } 18816 18817 18818 18819 /* 18820 * Function: sd_print_retry_msg 18821 * 18822 * Description: Print a message indicating the retry action being taken. 18823 * 18824 * Arguments: un - ptr to associated softstate 18825 * bp - ptr to buf(9S) for the command 18826 * arg - not used. 18827 * flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 18828 * or SD_NO_RETRY_ISSUED 18829 * 18830 * Context: May be called from interrupt context 18831 */ 18832 /* ARGSUSED */ 18833 static void 18834 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag) 18835 { 18836 struct sd_xbuf *xp; 18837 struct scsi_pkt *pktp; 18838 char *reasonp; 18839 char *msgp; 18840 18841 ASSERT(un != NULL); 18842 ASSERT(mutex_owned(SD_MUTEX(un))); 18843 ASSERT(bp != NULL); 18844 pktp = SD_GET_PKTP(bp); 18845 ASSERT(pktp != NULL); 18846 xp = SD_GET_XBUF(bp); 18847 ASSERT(xp != NULL); 18848 18849 ASSERT(!mutex_owned(&un->un_pm_mutex)); 18850 mutex_enter(&un->un_pm_mutex); 18851 if ((un->un_state == SD_STATE_SUSPENDED) || 18852 (SD_DEVICE_IS_IN_LOW_POWER(un)) || 18853 (pktp->pkt_flags & FLAG_SILENT)) { 18854 mutex_exit(&un->un_pm_mutex); 18855 goto update_pkt_reason; 18856 } 18857 mutex_exit(&un->un_pm_mutex); 18858 18859 /* 18860 * Suppress messages if they are all the same pkt_reason; with 18861 * TQ, many (up to 256) are returned with the same pkt_reason. 18862 * If we are in panic, then suppress the retry messages. 18863 */ 18864 switch (flag) { 18865 case SD_NO_RETRY_ISSUED: 18866 msgp = "giving up"; 18867 break; 18868 case SD_IMMEDIATE_RETRY_ISSUED: 18869 case SD_DELAYED_RETRY_ISSUED: 18870 if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) || 18871 ((pktp->pkt_reason == un->un_last_pkt_reason) && 18872 (sd_error_level != SCSI_ERR_ALL))) { 18873 return; 18874 } 18875 msgp = "retrying command"; 18876 break; 18877 default: 18878 goto update_pkt_reason; 18879 } 18880 18881 reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" : 18882 scsi_rname(pktp->pkt_reason)); 18883 18884 if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) { 18885 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18886 "SCSI transport failed: reason '%s': %s\n", reasonp, msgp); 18887 } 18888 18889 update_pkt_reason: 18890 /* 18891 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason. 18892 * This is to prevent multiple console messages for the same failure 18893 * condition. Note that un->un_last_pkt_reason is NOT restored if & 18894 * when the command is retried successfully because there still may be 18895 * more commands coming back with the same value of pktp->pkt_reason. 18896 */ 18897 if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) { 18898 un->un_last_pkt_reason = pktp->pkt_reason; 18899 } 18900 } 18901 18902 18903 /* 18904 * Function: sd_print_cmd_incomplete_msg 18905 * 18906 * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason. 18907 * 18908 * Arguments: un - ptr to associated softstate 18909 * bp - ptr to buf(9S) for the command 18910 * arg - passed to sd_print_retry_msg() 18911 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 18912 * or SD_NO_RETRY_ISSUED 18913 * 18914 * Context: May be called from interrupt context 18915 */ 18916 18917 static void 18918 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, 18919 int code) 18920 { 18921 dev_info_t *dip; 18922 18923 ASSERT(un != NULL); 18924 ASSERT(mutex_owned(SD_MUTEX(un))); 18925 ASSERT(bp != NULL); 18926 18927 switch (code) { 18928 case SD_NO_RETRY_ISSUED: 18929 /* Command was failed. Someone turned off this target? */ 18930 if (un->un_state != SD_STATE_OFFLINE) { 18931 /* 18932 * Suppress message if we are detaching and 18933 * device has been disconnected 18934 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation 18935 * private interface and not part of the DDI 18936 */ 18937 dip = un->un_sd->sd_dev; 18938 if (!(DEVI_IS_DETACHING(dip) && 18939 DEVI_IS_DEVICE_REMOVED(dip))) { 18940 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18941 "disk not responding to selection\n"); 18942 } 18943 New_state(un, SD_STATE_OFFLINE); 18944 } 18945 break; 18946 18947 case SD_DELAYED_RETRY_ISSUED: 18948 case SD_IMMEDIATE_RETRY_ISSUED: 18949 default: 18950 /* Command was successfully queued for retry */ 18951 sd_print_retry_msg(un, bp, arg, code); 18952 break; 18953 } 18954 } 18955 18956 18957 /* 18958 * Function: sd_pkt_reason_cmd_incomplete 18959 * 18960 * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason. 18961 * 18962 * Context: May be called from interrupt context 18963 */ 18964 18965 static void 18966 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp, 18967 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18968 { 18969 int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE; 18970 18971 ASSERT(un != NULL); 18972 ASSERT(mutex_owned(SD_MUTEX(un))); 18973 ASSERT(bp != NULL); 18974 ASSERT(xp != NULL); 18975 ASSERT(pktp != NULL); 18976 18977 /* Do not do a reset if selection did not complete */ 18978 /* Note: Should this not just check the bit? */ 18979 if (pktp->pkt_state != STATE_GOT_BUS) { 18980 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18981 sd_reset_target(un, pktp); 18982 } 18983 18984 /* 18985 * If the target was not successfully selected, then set 18986 * SD_RETRIES_FAILFAST to indicate that we lost communication 18987 * with the target, and further retries and/or commands are 18988 * likely to take a long time. 18989 */ 18990 if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) { 18991 flag |= SD_RETRIES_FAILFAST; 18992 } 18993 18994 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18995 18996 sd_retry_command(un, bp, flag, 18997 sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18998 } 18999 19000 19001 19002 /* 19003 * Function: sd_pkt_reason_cmd_tran_err 19004 * 19005 * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason. 19006 * 19007 * Context: May be called from interrupt context 19008 */ 19009 19010 static void 19011 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp, 19012 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19013 { 19014 ASSERT(un != NULL); 19015 ASSERT(mutex_owned(SD_MUTEX(un))); 19016 ASSERT(bp != NULL); 19017 ASSERT(xp != NULL); 19018 ASSERT(pktp != NULL); 19019 19020 /* 19021 * Do not reset if we got a parity error, or if 19022 * selection did not complete. 19023 */ 19024 SD_UPDATE_ERRSTATS(un, sd_harderrs); 19025 /* Note: Should this not just check the bit for pkt_state? */ 19026 if (((pktp->pkt_statistics & STAT_PERR) == 0) && 19027 (pktp->pkt_state != STATE_GOT_BUS)) { 19028 SD_UPDATE_ERRSTATS(un, sd_transerrs); 19029 sd_reset_target(un, pktp); 19030 } 19031 19032 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19033 19034 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 19035 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19036 } 19037 19038 19039 19040 /* 19041 * Function: sd_pkt_reason_cmd_reset 19042 * 19043 * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason. 19044 * 19045 * Context: May be called from interrupt context 19046 */ 19047 19048 static void 19049 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp, 19050 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19051 { 19052 ASSERT(un != NULL); 19053 ASSERT(mutex_owned(SD_MUTEX(un))); 19054 ASSERT(bp != NULL); 19055 ASSERT(xp != NULL); 19056 ASSERT(pktp != NULL); 19057 19058 /* The target may still be running the command, so try to reset. */ 19059 SD_UPDATE_ERRSTATS(un, sd_transerrs); 19060 sd_reset_target(un, pktp); 19061 19062 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19063 19064 /* 19065 * If pkt_reason is CMD_RESET chances are that this pkt got 19066 * reset because another target on this bus caused it. The target 19067 * that caused it should get CMD_TIMEOUT with pkt_statistics 19068 * of STAT_TIMEOUT/STAT_DEV_RESET. 19069 */ 19070 19071 sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE), 19072 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19073 } 19074 19075 19076 19077 19078 /* 19079 * Function: sd_pkt_reason_cmd_aborted 19080 * 19081 * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason. 19082 * 19083 * Context: May be called from interrupt context 19084 */ 19085 19086 static void 19087 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp, 19088 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19089 { 19090 ASSERT(un != NULL); 19091 ASSERT(mutex_owned(SD_MUTEX(un))); 19092 ASSERT(bp != NULL); 19093 ASSERT(xp != NULL); 19094 ASSERT(pktp != NULL); 19095 19096 /* The target may still be running the command, so try to reset. */ 19097 SD_UPDATE_ERRSTATS(un, sd_transerrs); 19098 sd_reset_target(un, pktp); 19099 19100 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19101 19102 /* 19103 * If pkt_reason is CMD_ABORTED chances are that this pkt got 19104 * aborted because another target on this bus caused it. The target 19105 * that caused it should get CMD_TIMEOUT with pkt_statistics 19106 * of STAT_TIMEOUT/STAT_DEV_RESET. 19107 */ 19108 19109 sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE), 19110 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19111 } 19112 19113 19114 19115 /* 19116 * Function: sd_pkt_reason_cmd_timeout 19117 * 19118 * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason. 19119 * 19120 * Context: May be called from interrupt context 19121 */ 19122 19123 static void 19124 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp, 19125 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19126 { 19127 ASSERT(un != NULL); 19128 ASSERT(mutex_owned(SD_MUTEX(un))); 19129 ASSERT(bp != NULL); 19130 ASSERT(xp != NULL); 19131 ASSERT(pktp != NULL); 19132 19133 19134 SD_UPDATE_ERRSTATS(un, sd_transerrs); 19135 sd_reset_target(un, pktp); 19136 19137 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19138 19139 /* 19140 * A command timeout indicates that we could not establish 19141 * communication with the target, so set SD_RETRIES_FAILFAST 19142 * as further retries/commands are likely to take a long time. 19143 */ 19144 sd_retry_command(un, bp, 19145 (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST), 19146 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19147 } 19148 19149 19150 19151 /* 19152 * Function: sd_pkt_reason_cmd_unx_bus_free 19153 * 19154 * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason. 19155 * 19156 * Context: May be called from interrupt context 19157 */ 19158 19159 static void 19160 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp, 19161 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19162 { 19163 void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code); 19164 19165 ASSERT(un != NULL); 19166 ASSERT(mutex_owned(SD_MUTEX(un))); 19167 ASSERT(bp != NULL); 19168 ASSERT(xp != NULL); 19169 ASSERT(pktp != NULL); 19170 19171 SD_UPDATE_ERRSTATS(un, sd_harderrs); 19172 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19173 19174 funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ? 19175 sd_print_retry_msg : NULL; 19176 19177 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 19178 funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19179 } 19180 19181 19182 /* 19183 * Function: sd_pkt_reason_cmd_tag_reject 19184 * 19185 * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason. 19186 * 19187 * Context: May be called from interrupt context 19188 */ 19189 19190 static void 19191 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp, 19192 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19193 { 19194 ASSERT(un != NULL); 19195 ASSERT(mutex_owned(SD_MUTEX(un))); 19196 ASSERT(bp != NULL); 19197 ASSERT(xp != NULL); 19198 ASSERT(pktp != NULL); 19199 19200 SD_UPDATE_ERRSTATS(un, sd_harderrs); 19201 pktp->pkt_flags = 0; 19202 un->un_tagflags = 0; 19203 if (un->un_f_opt_queueing == TRUE) { 19204 un->un_throttle = min(un->un_throttle, 3); 19205 } else { 19206 un->un_throttle = 1; 19207 } 19208 mutex_exit(SD_MUTEX(un)); 19209 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 19210 mutex_enter(SD_MUTEX(un)); 19211 19212 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19213 19214 /* Legacy behavior not to check retry counts here. */ 19215 sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE), 19216 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19217 } 19218 19219 19220 /* 19221 * Function: sd_pkt_reason_default 19222 * 19223 * Description: Default recovery actions for SCSA pkt_reason values that 19224 * do not have more explicit recovery actions. 19225 * 19226 * Context: May be called from interrupt context 19227 */ 19228 19229 static void 19230 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp, 19231 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19232 { 19233 ASSERT(un != NULL); 19234 ASSERT(mutex_owned(SD_MUTEX(un))); 19235 ASSERT(bp != NULL); 19236 ASSERT(xp != NULL); 19237 ASSERT(pktp != NULL); 19238 19239 SD_UPDATE_ERRSTATS(un, sd_transerrs); 19240 sd_reset_target(un, pktp); 19241 19242 SD_UPDATE_RESERVATION_STATUS(un, pktp); 19243 19244 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 19245 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 19246 } 19247 19248 19249 19250 /* 19251 * Function: sd_pkt_status_check_condition 19252 * 19253 * Description: Recovery actions for a "STATUS_CHECK" SCSI command status. 19254 * 19255 * Context: May be called from interrupt context 19256 */ 19257 19258 static void 19259 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp, 19260 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19261 { 19262 ASSERT(un != NULL); 19263 ASSERT(mutex_owned(SD_MUTEX(un))); 19264 ASSERT(bp != NULL); 19265 ASSERT(xp != NULL); 19266 ASSERT(pktp != NULL); 19267 19268 SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: " 19269 "entry: buf:0x%p xp:0x%p\n", bp, xp); 19270 19271 /* 19272 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the 19273 * command will be retried after the request sense). Otherwise, retry 19274 * the command. Note: we are issuing the request sense even though the 19275 * retry limit may have been reached for the failed command. 19276 */ 19277 if (un->un_f_arq_enabled == FALSE) { 19278 SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: " 19279 "no ARQ, sending request sense command\n"); 19280 sd_send_request_sense_command(un, bp, pktp); 19281 } else { 19282 SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: " 19283 "ARQ,retrying request sense command\n"); 19284 #if defined(__i386) || defined(__amd64) 19285 /* 19286 * The SD_RETRY_DELAY value need to be adjusted here 19287 * when SD_RETRY_DELAY change in sddef.h 19288 */ 19289 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO, 19290 un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, 19291 NULL); 19292 #else 19293 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, 19294 EIO, SD_RETRY_DELAY, NULL); 19295 #endif 19296 } 19297 19298 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n"); 19299 } 19300 19301 19302 /* 19303 * Function: sd_pkt_status_busy 19304 * 19305 * Description: Recovery actions for a "STATUS_BUSY" SCSI command status. 19306 * 19307 * Context: May be called from interrupt context 19308 */ 19309 19310 static void 19311 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 19312 struct scsi_pkt *pktp) 19313 { 19314 ASSERT(un != NULL); 19315 ASSERT(mutex_owned(SD_MUTEX(un))); 19316 ASSERT(bp != NULL); 19317 ASSERT(xp != NULL); 19318 ASSERT(pktp != NULL); 19319 19320 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19321 "sd_pkt_status_busy: entry\n"); 19322 19323 /* If retries are exhausted, just fail the command. */ 19324 if (xp->xb_retry_count >= un->un_busy_retry_count) { 19325 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 19326 "device busy too long\n"); 19327 sd_return_failed_command(un, bp, EIO); 19328 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19329 "sd_pkt_status_busy: exit\n"); 19330 return; 19331 } 19332 xp->xb_retry_count++; 19333 19334 /* 19335 * Try to reset the target. However, we do not want to perform 19336 * more than one reset if the device continues to fail. The reset 19337 * will be performed when the retry count reaches the reset 19338 * threshold. This threshold should be set such that at least 19339 * one retry is issued before the reset is performed. 19340 */ 19341 if (xp->xb_retry_count == 19342 ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) { 19343 int rval = 0; 19344 mutex_exit(SD_MUTEX(un)); 19345 if (un->un_f_allow_bus_device_reset == TRUE) { 19346 /* 19347 * First try to reset the LUN; if we cannot then 19348 * try to reset the target. 19349 */ 19350 if (un->un_f_lun_reset_enabled == TRUE) { 19351 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19352 "sd_pkt_status_busy: RESET_LUN\n"); 19353 rval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 19354 } 19355 if (rval == 0) { 19356 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19357 "sd_pkt_status_busy: RESET_TARGET\n"); 19358 rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 19359 } 19360 } 19361 if (rval == 0) { 19362 /* 19363 * If the RESET_LUN and/or RESET_TARGET failed, 19364 * try RESET_ALL 19365 */ 19366 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19367 "sd_pkt_status_busy: RESET_ALL\n"); 19368 rval = scsi_reset(SD_ADDRESS(un), RESET_ALL); 19369 } 19370 mutex_enter(SD_MUTEX(un)); 19371 if (rval == 0) { 19372 /* 19373 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed. 19374 * At this point we give up & fail the command. 19375 */ 19376 sd_return_failed_command(un, bp, EIO); 19377 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19378 "sd_pkt_status_busy: exit (failed cmd)\n"); 19379 return; 19380 } 19381 } 19382 19383 /* 19384 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as 19385 * we have already checked the retry counts above. 19386 */ 19387 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 19388 EIO, un->un_busy_timeout, NULL); 19389 19390 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19391 "sd_pkt_status_busy: exit\n"); 19392 } 19393 19394 19395 /* 19396 * Function: sd_pkt_status_reservation_conflict 19397 * 19398 * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI 19399 * command status. 19400 * 19401 * Context: May be called from interrupt context 19402 */ 19403 19404 static void 19405 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp, 19406 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19407 { 19408 ASSERT(un != NULL); 19409 ASSERT(mutex_owned(SD_MUTEX(un))); 19410 ASSERT(bp != NULL); 19411 ASSERT(xp != NULL); 19412 ASSERT(pktp != NULL); 19413 19414 /* 19415 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation 19416 * conflict could be due to various reasons like incorrect keys, not 19417 * registered or not reserved etc. So, we return EACCES to the caller. 19418 */ 19419 if (un->un_reservation_type == SD_SCSI3_RESERVATION) { 19420 int cmd = SD_GET_PKT_OPCODE(pktp); 19421 if ((cmd == SCMD_PERSISTENT_RESERVE_IN) || 19422 (cmd == SCMD_PERSISTENT_RESERVE_OUT)) { 19423 sd_return_failed_command(un, bp, EACCES); 19424 return; 19425 } 19426 } 19427 19428 un->un_resvd_status |= SD_RESERVATION_CONFLICT; 19429 19430 if ((un->un_resvd_status & SD_FAILFAST) != 0) { 19431 if (sd_failfast_enable != 0) { 19432 /* By definition, we must panic here.... */ 19433 sd_panic_for_res_conflict(un); 19434 /*NOTREACHED*/ 19435 } 19436 SD_ERROR(SD_LOG_IO, un, 19437 "sd_handle_resv_conflict: Disk Reserved\n"); 19438 sd_return_failed_command(un, bp, EACCES); 19439 return; 19440 } 19441 19442 /* 19443 * 1147670: retry only if sd_retry_on_reservation_conflict 19444 * property is set (default is 1). Retries will not succeed 19445 * on a disk reserved by another initiator. HA systems 19446 * may reset this via sd.conf to avoid these retries. 19447 * 19448 * Note: The legacy return code for this failure is EIO, however EACCES 19449 * seems more appropriate for a reservation conflict. 19450 */ 19451 if (sd_retry_on_reservation_conflict == 0) { 19452 SD_ERROR(SD_LOG_IO, un, 19453 "sd_handle_resv_conflict: Device Reserved\n"); 19454 sd_return_failed_command(un, bp, EIO); 19455 return; 19456 } 19457 19458 /* 19459 * Retry the command if we can. 19460 * 19461 * Note: The legacy return code for this failure is EIO, however EACCES 19462 * seems more appropriate for a reservation conflict. 19463 */ 19464 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO, 19465 (clock_t)2, NULL); 19466 } 19467 19468 19469 19470 /* 19471 * Function: sd_pkt_status_qfull 19472 * 19473 * Description: Handle a QUEUE FULL condition from the target. This can 19474 * occur if the HBA does not handle the queue full condition. 19475 * (Basically this means third-party HBAs as Sun HBAs will 19476 * handle the queue full condition.) Note that if there are 19477 * some commands already in the transport, then the queue full 19478 * has occurred because the queue for this nexus is actually 19479 * full. If there are no commands in the transport, then the 19480 * queue full is resulting from some other initiator or lun 19481 * consuming all the resources at the target. 19482 * 19483 * Context: May be called from interrupt context 19484 */ 19485 19486 static void 19487 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp, 19488 struct sd_xbuf *xp, struct scsi_pkt *pktp) 19489 { 19490 ASSERT(un != NULL); 19491 ASSERT(mutex_owned(SD_MUTEX(un))); 19492 ASSERT(bp != NULL); 19493 ASSERT(xp != NULL); 19494 ASSERT(pktp != NULL); 19495 19496 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19497 "sd_pkt_status_qfull: entry\n"); 19498 19499 /* 19500 * Just lower the QFULL throttle and retry the command. Note that 19501 * we do not limit the number of retries here. 19502 */ 19503 sd_reduce_throttle(un, SD_THROTTLE_QFULL); 19504 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0, 19505 SD_RESTART_TIMEOUT, NULL); 19506 19507 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19508 "sd_pkt_status_qfull: exit\n"); 19509 } 19510 19511 19512 /* 19513 * Function: sd_reset_target 19514 * 19515 * Description: Issue a scsi_reset(9F), with either RESET_LUN, 19516 * RESET_TARGET, or RESET_ALL. 19517 * 19518 * Context: May be called under interrupt context. 19519 */ 19520 19521 static void 19522 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp) 19523 { 19524 int rval = 0; 19525 19526 ASSERT(un != NULL); 19527 ASSERT(mutex_owned(SD_MUTEX(un))); 19528 ASSERT(pktp != NULL); 19529 19530 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n"); 19531 19532 /* 19533 * No need to reset if the transport layer has already done so. 19534 */ 19535 if ((pktp->pkt_statistics & 19536 (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) { 19537 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19538 "sd_reset_target: no reset\n"); 19539 return; 19540 } 19541 19542 mutex_exit(SD_MUTEX(un)); 19543 19544 if (un->un_f_allow_bus_device_reset == TRUE) { 19545 if (un->un_f_lun_reset_enabled == TRUE) { 19546 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19547 "sd_reset_target: RESET_LUN\n"); 19548 rval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 19549 } 19550 if (rval == 0) { 19551 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19552 "sd_reset_target: RESET_TARGET\n"); 19553 rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 19554 } 19555 } 19556 19557 if (rval == 0) { 19558 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19559 "sd_reset_target: RESET_ALL\n"); 19560 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 19561 } 19562 19563 mutex_enter(SD_MUTEX(un)); 19564 19565 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n"); 19566 } 19567 19568 /* 19569 * Function: sd_target_change_task 19570 * 19571 * Description: Handle dynamic target change 19572 * 19573 * Context: Executes in a taskq() thread context 19574 */ 19575 static void 19576 sd_target_change_task(void *arg) 19577 { 19578 struct sd_lun *un = arg; 19579 uint64_t capacity; 19580 diskaddr_t label_cap; 19581 uint_t lbasize; 19582 sd_ssc_t *ssc; 19583 19584 ASSERT(un != NULL); 19585 ASSERT(!mutex_owned(SD_MUTEX(un))); 19586 19587 if ((un->un_f_blockcount_is_valid == FALSE) || 19588 (un->un_f_tgt_blocksize_is_valid == FALSE)) { 19589 return; 19590 } 19591 19592 ssc = sd_ssc_init(un); 19593 19594 if (sd_send_scsi_READ_CAPACITY(ssc, &capacity, 19595 &lbasize, SD_PATH_DIRECT) != 0) { 19596 SD_ERROR(SD_LOG_ERROR, un, 19597 "sd_target_change_task: fail to read capacity\n"); 19598 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 19599 goto task_exit; 19600 } 19601 19602 mutex_enter(SD_MUTEX(un)); 19603 if (capacity <= un->un_blockcount) { 19604 mutex_exit(SD_MUTEX(un)); 19605 goto task_exit; 19606 } 19607 19608 sd_update_block_info(un, lbasize, capacity); 19609 mutex_exit(SD_MUTEX(un)); 19610 19611 /* 19612 * If lun is EFI labeled and lun capacity is greater than the 19613 * capacity contained in the label, log a sys event. 19614 */ 19615 if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap, 19616 (void*)SD_PATH_DIRECT) == 0) { 19617 mutex_enter(SD_MUTEX(un)); 19618 if (un->un_f_blockcount_is_valid && 19619 un->un_blockcount > label_cap) { 19620 mutex_exit(SD_MUTEX(un)); 19621 sd_log_lun_expansion_event(un, KM_SLEEP); 19622 } else { 19623 mutex_exit(SD_MUTEX(un)); 19624 } 19625 } 19626 19627 task_exit: 19628 sd_ssc_fini(ssc); 19629 } 19630 19631 19632 /* 19633 * Function: sd_log_dev_status_event 19634 * 19635 * Description: Log EC_dev_status sysevent 19636 * 19637 * Context: Never called from interrupt context 19638 */ 19639 static void 19640 sd_log_dev_status_event(struct sd_lun *un, char *esc, int km_flag) 19641 { 19642 int err; 19643 char *path; 19644 nvlist_t *attr_list; 19645 19646 /* Allocate and build sysevent attribute list */ 19647 err = nvlist_alloc(&attr_list, NV_UNIQUE_NAME_TYPE, km_flag); 19648 if (err != 0) { 19649 SD_ERROR(SD_LOG_ERROR, un, 19650 "sd_log_dev_status_event: fail to allocate space\n"); 19651 return; 19652 } 19653 19654 path = kmem_alloc(MAXPATHLEN, km_flag); 19655 if (path == NULL) { 19656 nvlist_free(attr_list); 19657 SD_ERROR(SD_LOG_ERROR, un, 19658 "sd_log_dev_status_event: fail to allocate space\n"); 19659 return; 19660 } 19661 /* 19662 * Add path attribute to identify the lun. 19663 * We are using minor node 'a' as the sysevent attribute. 19664 */ 19665 (void) snprintf(path, MAXPATHLEN, "/devices"); 19666 (void) ddi_pathname(SD_DEVINFO(un), path + strlen(path)); 19667 (void) snprintf(path + strlen(path), MAXPATHLEN - strlen(path), 19668 ":a"); 19669 19670 err = nvlist_add_string(attr_list, DEV_PHYS_PATH, path); 19671 if (err != 0) { 19672 nvlist_free(attr_list); 19673 kmem_free(path, MAXPATHLEN); 19674 SD_ERROR(SD_LOG_ERROR, un, 19675 "sd_log_dev_status_event: fail to add attribute\n"); 19676 return; 19677 } 19678 19679 /* Log dynamic lun expansion sysevent */ 19680 err = ddi_log_sysevent(SD_DEVINFO(un), SUNW_VENDOR, EC_DEV_STATUS, 19681 esc, attr_list, NULL, km_flag); 19682 if (err != DDI_SUCCESS) { 19683 SD_ERROR(SD_LOG_ERROR, un, 19684 "sd_log_dev_status_event: fail to log sysevent\n"); 19685 } 19686 19687 nvlist_free(attr_list); 19688 kmem_free(path, MAXPATHLEN); 19689 } 19690 19691 19692 /* 19693 * Function: sd_log_lun_expansion_event 19694 * 19695 * Description: Log lun expansion sys event 19696 * 19697 * Context: Never called from interrupt context 19698 */ 19699 static void 19700 sd_log_lun_expansion_event(struct sd_lun *un, int km_flag) 19701 { 19702 sd_log_dev_status_event(un, ESC_DEV_DLE, km_flag); 19703 } 19704 19705 19706 /* 19707 * Function: sd_log_eject_request_event 19708 * 19709 * Description: Log eject request sysevent 19710 * 19711 * Context: Never called from interrupt context 19712 */ 19713 static void 19714 sd_log_eject_request_event(struct sd_lun *un, int km_flag) 19715 { 19716 sd_log_dev_status_event(un, ESC_DEV_EJECT_REQUEST, km_flag); 19717 } 19718 19719 19720 /* 19721 * Function: sd_media_change_task 19722 * 19723 * Description: Recovery action for CDROM to become available. 19724 * 19725 * Context: Executes in a taskq() thread context 19726 */ 19727 19728 static void 19729 sd_media_change_task(void *arg) 19730 { 19731 struct scsi_pkt *pktp = arg; 19732 struct sd_lun *un; 19733 struct buf *bp; 19734 struct sd_xbuf *xp; 19735 int err = 0; 19736 int retry_count = 0; 19737 int retry_limit = SD_UNIT_ATTENTION_RETRY/10; 19738 struct sd_sense_info si; 19739 19740 ASSERT(pktp != NULL); 19741 bp = (struct buf *)pktp->pkt_private; 19742 ASSERT(bp != NULL); 19743 xp = SD_GET_XBUF(bp); 19744 ASSERT(xp != NULL); 19745 un = SD_GET_UN(bp); 19746 ASSERT(un != NULL); 19747 ASSERT(!mutex_owned(SD_MUTEX(un))); 19748 ASSERT(un->un_f_monitor_media_state); 19749 19750 si.ssi_severity = SCSI_ERR_INFO; 19751 si.ssi_pfa_flag = FALSE; 19752 19753 /* 19754 * When a reset is issued on a CDROM, it takes a long time to 19755 * recover. First few attempts to read capacity and other things 19756 * related to handling unit attention fail (with a ASC 0x4 and 19757 * ASCQ 0x1). In that case we want to do enough retries and we want 19758 * to limit the retries in other cases of genuine failures like 19759 * no media in drive. 19760 */ 19761 while (retry_count++ < retry_limit) { 19762 if ((err = sd_handle_mchange(un)) == 0) { 19763 break; 19764 } 19765 if (err == EAGAIN) { 19766 retry_limit = SD_UNIT_ATTENTION_RETRY; 19767 } 19768 /* Sleep for 0.5 sec. & try again */ 19769 delay(drv_usectohz(500000)); 19770 } 19771 19772 /* 19773 * Dispatch (retry or fail) the original command here, 19774 * along with appropriate console messages.... 19775 * 19776 * Must grab the mutex before calling sd_retry_command, 19777 * sd_print_sense_msg and sd_return_failed_command. 19778 */ 19779 mutex_enter(SD_MUTEX(un)); 19780 if (err != SD_CMD_SUCCESS) { 19781 SD_UPDATE_ERRSTATS(un, sd_harderrs); 19782 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 19783 si.ssi_severity = SCSI_ERR_FATAL; 19784 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 19785 sd_return_failed_command(un, bp, EIO); 19786 } else { 19787 sd_retry_command(un, bp, SD_RETRIES_UA, sd_print_sense_msg, 19788 &si, EIO, (clock_t)0, NULL); 19789 } 19790 mutex_exit(SD_MUTEX(un)); 19791 } 19792 19793 19794 19795 /* 19796 * Function: sd_handle_mchange 19797 * 19798 * Description: Perform geometry validation & other recovery when CDROM 19799 * has been removed from drive. 19800 * 19801 * Return Code: 0 for success 19802 * errno-type return code of either sd_send_scsi_DOORLOCK() or 19803 * sd_send_scsi_READ_CAPACITY() 19804 * 19805 * Context: Executes in a taskq() thread context 19806 */ 19807 19808 static int 19809 sd_handle_mchange(struct sd_lun *un) 19810 { 19811 uint64_t capacity; 19812 uint32_t lbasize; 19813 int rval; 19814 sd_ssc_t *ssc; 19815 19816 ASSERT(!mutex_owned(SD_MUTEX(un))); 19817 ASSERT(un->un_f_monitor_media_state); 19818 19819 ssc = sd_ssc_init(un); 19820 rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize, 19821 SD_PATH_DIRECT_PRIORITY); 19822 19823 if (rval != 0) 19824 goto failed; 19825 19826 mutex_enter(SD_MUTEX(un)); 19827 sd_update_block_info(un, lbasize, capacity); 19828 19829 if (un->un_errstats != NULL) { 19830 struct sd_errstats *stp = 19831 (struct sd_errstats *)un->un_errstats->ks_data; 19832 stp->sd_capacity.value.ui64 = (uint64_t) 19833 ((uint64_t)un->un_blockcount * 19834 (uint64_t)un->un_tgt_blocksize); 19835 } 19836 19837 /* 19838 * Check if the media in the device is writable or not 19839 */ 19840 if (ISCD(un)) { 19841 sd_check_for_writable_cd(ssc, SD_PATH_DIRECT_PRIORITY); 19842 } 19843 19844 /* 19845 * Note: Maybe let the strategy/partitioning chain worry about getting 19846 * valid geometry. 19847 */ 19848 mutex_exit(SD_MUTEX(un)); 19849 cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY); 19850 19851 19852 if (cmlb_validate(un->un_cmlbhandle, 0, 19853 (void *)SD_PATH_DIRECT_PRIORITY) != 0) { 19854 sd_ssc_fini(ssc); 19855 return (EIO); 19856 } else { 19857 if (un->un_f_pkstats_enabled) { 19858 sd_set_pstats(un); 19859 SD_TRACE(SD_LOG_IO_PARTITION, un, 19860 "sd_handle_mchange: un:0x%p pstats created and " 19861 "set\n", un); 19862 } 19863 } 19864 19865 /* 19866 * Try to lock the door 19867 */ 19868 rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT, 19869 SD_PATH_DIRECT_PRIORITY); 19870 failed: 19871 if (rval != 0) 19872 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 19873 sd_ssc_fini(ssc); 19874 return (rval); 19875 } 19876 19877 19878 /* 19879 * Function: sd_send_scsi_DOORLOCK 19880 * 19881 * Description: Issue the scsi DOOR LOCK command 19882 * 19883 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 19884 * structure for this target. 19885 * flag - SD_REMOVAL_ALLOW 19886 * SD_REMOVAL_PREVENT 19887 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 19888 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 19889 * to use the USCSI "direct" chain and bypass the normal 19890 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 19891 * command is issued as part of an error recovery action. 19892 * 19893 * Return Code: 0 - Success 19894 * errno return code from sd_ssc_send() 19895 * 19896 * Context: Can sleep. 19897 */ 19898 19899 static int 19900 sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag) 19901 { 19902 struct scsi_extended_sense sense_buf; 19903 union scsi_cdb cdb; 19904 struct uscsi_cmd ucmd_buf; 19905 int status; 19906 struct sd_lun *un; 19907 19908 ASSERT(ssc != NULL); 19909 un = ssc->ssc_un; 19910 ASSERT(un != NULL); 19911 ASSERT(!mutex_owned(SD_MUTEX(un))); 19912 19913 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un); 19914 19915 /* already determined doorlock is not supported, fake success */ 19916 if (un->un_f_doorlock_supported == FALSE) { 19917 return (0); 19918 } 19919 19920 /* 19921 * If we are ejecting and see an SD_REMOVAL_PREVENT 19922 * ignore the command so we can complete the eject 19923 * operation. 19924 */ 19925 if (flag == SD_REMOVAL_PREVENT) { 19926 mutex_enter(SD_MUTEX(un)); 19927 if (un->un_f_ejecting == TRUE) { 19928 mutex_exit(SD_MUTEX(un)); 19929 return (EAGAIN); 19930 } 19931 mutex_exit(SD_MUTEX(un)); 19932 } 19933 19934 bzero(&cdb, sizeof (cdb)); 19935 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19936 19937 cdb.scc_cmd = SCMD_DOORLOCK; 19938 cdb.cdb_opaque[4] = (uchar_t)flag; 19939 19940 ucmd_buf.uscsi_cdb = (char *)&cdb; 19941 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 19942 ucmd_buf.uscsi_bufaddr = NULL; 19943 ucmd_buf.uscsi_buflen = 0; 19944 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19945 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 19946 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 19947 ucmd_buf.uscsi_timeout = 15; 19948 19949 SD_TRACE(SD_LOG_IO, un, 19950 "sd_send_scsi_DOORLOCK: returning sd_ssc_send\n"); 19951 19952 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 19953 UIO_SYSSPACE, path_flag); 19954 19955 if (status == 0) 19956 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 19957 19958 if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) && 19959 (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 19960 (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) { 19961 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 19962 19963 /* fake success and skip subsequent doorlock commands */ 19964 un->un_f_doorlock_supported = FALSE; 19965 return (0); 19966 } 19967 19968 return (status); 19969 } 19970 19971 /* 19972 * Function: sd_send_scsi_READ_CAPACITY 19973 * 19974 * Description: This routine uses the scsi READ CAPACITY command to determine 19975 * the device capacity in number of blocks and the device native 19976 * block size. If this function returns a failure, then the 19977 * values in *capp and *lbap are undefined. If the capacity 19978 * returned is 0xffffffff then the lun is too large for a 19979 * normal READ CAPACITY command and the results of a 19980 * READ CAPACITY 16 will be used instead. 19981 * 19982 * Arguments: ssc - ssc contains ptr to soft state struct for the target 19983 * capp - ptr to unsigned 64-bit variable to receive the 19984 * capacity value from the command. 19985 * lbap - ptr to unsigned 32-bit varaible to receive the 19986 * block size value from the command 19987 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 19988 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 19989 * to use the USCSI "direct" chain and bypass the normal 19990 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 19991 * command is issued as part of an error recovery action. 19992 * 19993 * Return Code: 0 - Success 19994 * EIO - IO error 19995 * EACCES - Reservation conflict detected 19996 * EAGAIN - Device is becoming ready 19997 * errno return code from sd_ssc_send() 19998 * 19999 * Context: Can sleep. Blocks until command completes. 20000 */ 20001 20002 #define SD_CAPACITY_SIZE sizeof (struct scsi_capacity) 20003 20004 static int 20005 sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, uint32_t *lbap, 20006 int path_flag) 20007 { 20008 struct scsi_extended_sense sense_buf; 20009 struct uscsi_cmd ucmd_buf; 20010 union scsi_cdb cdb; 20011 uint32_t *capacity_buf; 20012 uint64_t capacity; 20013 uint32_t lbasize; 20014 uint32_t pbsize; 20015 int status; 20016 struct sd_lun *un; 20017 20018 ASSERT(ssc != NULL); 20019 20020 un = ssc->ssc_un; 20021 ASSERT(un != NULL); 20022 ASSERT(!mutex_owned(SD_MUTEX(un))); 20023 ASSERT(capp != NULL); 20024 ASSERT(lbap != NULL); 20025 20026 SD_TRACE(SD_LOG_IO, un, 20027 "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un); 20028 20029 /* 20030 * First send a READ_CAPACITY command to the target. 20031 * (This command is mandatory under SCSI-2.) 20032 * 20033 * Set up the CDB for the READ_CAPACITY command. The Partial 20034 * Medium Indicator bit is cleared. The address field must be 20035 * zero if the PMI bit is zero. 20036 */ 20037 bzero(&cdb, sizeof (cdb)); 20038 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20039 20040 capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP); 20041 20042 cdb.scc_cmd = SCMD_READ_CAPACITY; 20043 20044 ucmd_buf.uscsi_cdb = (char *)&cdb; 20045 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 20046 ucmd_buf.uscsi_bufaddr = (caddr_t)capacity_buf; 20047 ucmd_buf.uscsi_buflen = SD_CAPACITY_SIZE; 20048 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20049 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 20050 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 20051 ucmd_buf.uscsi_timeout = 60; 20052 20053 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20054 UIO_SYSSPACE, path_flag); 20055 20056 switch (status) { 20057 case 0: 20058 /* Return failure if we did not get valid capacity data. */ 20059 if (ucmd_buf.uscsi_resid != 0) { 20060 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 20061 "sd_send_scsi_READ_CAPACITY received invalid " 20062 "capacity data"); 20063 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 20064 return (EIO); 20065 } 20066 /* 20067 * Read capacity and block size from the READ CAPACITY 10 data. 20068 * This data may be adjusted later due to device specific 20069 * issues. 20070 * 20071 * According to the SCSI spec, the READ CAPACITY 10 20072 * command returns the following: 20073 * 20074 * bytes 0-3: Maximum logical block address available. 20075 * (MSB in byte:0 & LSB in byte:3) 20076 * 20077 * bytes 4-7: Block length in bytes 20078 * (MSB in byte:4 & LSB in byte:7) 20079 * 20080 */ 20081 capacity = BE_32(capacity_buf[0]); 20082 lbasize = BE_32(capacity_buf[1]); 20083 20084 /* 20085 * Done with capacity_buf 20086 */ 20087 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 20088 20089 /* 20090 * if the reported capacity is set to all 0xf's, then 20091 * this disk is too large and requires SBC-2 commands. 20092 * Reissue the request using READ CAPACITY 16. 20093 */ 20094 if (capacity == 0xffffffff) { 20095 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 20096 status = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, 20097 &lbasize, &pbsize, path_flag); 20098 if (status != 0) { 20099 return (status); 20100 } else { 20101 goto rc16_done; 20102 } 20103 } 20104 break; /* Success! */ 20105 case EIO: 20106 switch (ucmd_buf.uscsi_status) { 20107 case STATUS_RESERVATION_CONFLICT: 20108 status = EACCES; 20109 break; 20110 case STATUS_CHECK: 20111 /* 20112 * Check condition; look for ASC/ASCQ of 0x04/0x01 20113 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY) 20114 */ 20115 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20116 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) && 20117 (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) { 20118 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 20119 return (EAGAIN); 20120 } 20121 break; 20122 default: 20123 break; 20124 } 20125 /* FALLTHRU */ 20126 default: 20127 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 20128 return (status); 20129 } 20130 20131 /* 20132 * Some ATAPI CD-ROM drives report inaccurate LBA size values 20133 * (2352 and 0 are common) so for these devices always force the value 20134 * to 2048 as required by the ATAPI specs. 20135 */ 20136 if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) { 20137 lbasize = 2048; 20138 } 20139 20140 /* 20141 * Get the maximum LBA value from the READ CAPACITY data. 20142 * Here we assume that the Partial Medium Indicator (PMI) bit 20143 * was cleared when issuing the command. This means that the LBA 20144 * returned from the device is the LBA of the last logical block 20145 * on the logical unit. The actual logical block count will be 20146 * this value plus one. 20147 */ 20148 capacity += 1; 20149 20150 /* 20151 * Currently, for removable media, the capacity is saved in terms 20152 * of un->un_sys_blocksize, so scale the capacity value to reflect this. 20153 */ 20154 if (un->un_f_has_removable_media) 20155 capacity *= (lbasize / un->un_sys_blocksize); 20156 20157 rc16_done: 20158 20159 /* 20160 * Copy the values from the READ CAPACITY command into the space 20161 * provided by the caller. 20162 */ 20163 *capp = capacity; 20164 *lbap = lbasize; 20165 20166 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: " 20167 "capacity:0x%llx lbasize:0x%x\n", capacity, lbasize); 20168 20169 /* 20170 * Both the lbasize and capacity from the device must be nonzero, 20171 * otherwise we assume that the values are not valid and return 20172 * failure to the caller. (4203735) 20173 */ 20174 if ((capacity == 0) || (lbasize == 0)) { 20175 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 20176 "sd_send_scsi_READ_CAPACITY received invalid value " 20177 "capacity %llu lbasize %d", capacity, lbasize); 20178 return (EIO); 20179 } 20180 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20181 return (0); 20182 } 20183 20184 /* 20185 * Function: sd_send_scsi_READ_CAPACITY_16 20186 * 20187 * Description: This routine uses the scsi READ CAPACITY 16 command to 20188 * determine the device capacity in number of blocks and the 20189 * device native block size. If this function returns a failure, 20190 * then the values in *capp and *lbap are undefined. 20191 * This routine should be called by sd_send_scsi_READ_CAPACITY 20192 * which will apply any device specific adjustments to capacity 20193 * and lbasize. One exception is it is also called by 20194 * sd_get_media_info_ext. In that function, there is no need to 20195 * adjust the capacity and lbasize. 20196 * 20197 * Arguments: ssc - ssc contains ptr to soft state struct for the target 20198 * capp - ptr to unsigned 64-bit variable to receive the 20199 * capacity value from the command. 20200 * lbap - ptr to unsigned 32-bit varaible to receive the 20201 * block size value from the command 20202 * psp - ptr to unsigned 32-bit variable to receive the 20203 * physical block size value from the command 20204 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 20205 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 20206 * to use the USCSI "direct" chain and bypass the normal 20207 * command waitq. SD_PATH_DIRECT_PRIORITY is used when 20208 * this command is issued as part of an error recovery 20209 * action. 20210 * 20211 * Return Code: 0 - Success 20212 * EIO - IO error 20213 * EACCES - Reservation conflict detected 20214 * EAGAIN - Device is becoming ready 20215 * errno return code from sd_ssc_send() 20216 * 20217 * Context: Can sleep. Blocks until command completes. 20218 */ 20219 20220 #define SD_CAPACITY_16_SIZE sizeof (struct scsi_capacity_16) 20221 20222 static int 20223 sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp, 20224 uint32_t *lbap, uint32_t *psp, int path_flag) 20225 { 20226 struct scsi_extended_sense sense_buf; 20227 struct uscsi_cmd ucmd_buf; 20228 union scsi_cdb cdb; 20229 uint64_t *capacity16_buf; 20230 uint64_t capacity; 20231 uint32_t lbasize; 20232 uint32_t pbsize; 20233 uint32_t lbpb_exp; 20234 int status; 20235 struct sd_lun *un; 20236 20237 ASSERT(ssc != NULL); 20238 20239 un = ssc->ssc_un; 20240 ASSERT(un != NULL); 20241 ASSERT(!mutex_owned(SD_MUTEX(un))); 20242 ASSERT(capp != NULL); 20243 ASSERT(lbap != NULL); 20244 20245 SD_TRACE(SD_LOG_IO, un, 20246 "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un); 20247 20248 /* 20249 * First send a READ_CAPACITY_16 command to the target. 20250 * 20251 * Set up the CDB for the READ_CAPACITY_16 command. The Partial 20252 * Medium Indicator bit is cleared. The address field must be 20253 * zero if the PMI bit is zero. 20254 */ 20255 bzero(&cdb, sizeof (cdb)); 20256 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20257 20258 capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP); 20259 20260 ucmd_buf.uscsi_cdb = (char *)&cdb; 20261 ucmd_buf.uscsi_cdblen = CDB_GROUP4; 20262 ucmd_buf.uscsi_bufaddr = (caddr_t)capacity16_buf; 20263 ucmd_buf.uscsi_buflen = SD_CAPACITY_16_SIZE; 20264 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20265 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 20266 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 20267 ucmd_buf.uscsi_timeout = 60; 20268 20269 /* 20270 * Read Capacity (16) is a Service Action In command. One 20271 * command byte (0x9E) is overloaded for multiple operations, 20272 * with the second CDB byte specifying the desired operation 20273 */ 20274 cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4; 20275 cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4; 20276 20277 /* 20278 * Fill in allocation length field 20279 */ 20280 FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen); 20281 20282 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20283 UIO_SYSSPACE, path_flag); 20284 20285 switch (status) { 20286 case 0: 20287 /* Return failure if we did not get valid capacity data. */ 20288 if (ucmd_buf.uscsi_resid > 20) { 20289 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 20290 "sd_send_scsi_READ_CAPACITY_16 received invalid " 20291 "capacity data"); 20292 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 20293 return (EIO); 20294 } 20295 20296 /* 20297 * Read capacity and block size from the READ CAPACITY 16 data. 20298 * This data may be adjusted later due to device specific 20299 * issues. 20300 * 20301 * According to the SCSI spec, the READ CAPACITY 16 20302 * command returns the following: 20303 * 20304 * bytes 0-7: Maximum logical block address available. 20305 * (MSB in byte:0 & LSB in byte:7) 20306 * 20307 * bytes 8-11: Block length in bytes 20308 * (MSB in byte:8 & LSB in byte:11) 20309 * 20310 * byte 13: LOGICAL BLOCKS PER PHYSICAL BLOCK EXPONENT 20311 */ 20312 capacity = BE_64(capacity16_buf[0]); 20313 lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]); 20314 lbpb_exp = (BE_64(capacity16_buf[1]) >> 16) & 0x0f; 20315 20316 pbsize = lbasize << lbpb_exp; 20317 20318 /* 20319 * Done with capacity16_buf 20320 */ 20321 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 20322 20323 /* 20324 * if the reported capacity is set to all 0xf's, then 20325 * this disk is too large. This could only happen with 20326 * a device that supports LBAs larger than 64 bits which 20327 * are not defined by any current T10 standards. 20328 */ 20329 if (capacity == 0xffffffffffffffff) { 20330 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 20331 "disk is too large"); 20332 return (EIO); 20333 } 20334 break; /* Success! */ 20335 case EIO: 20336 switch (ucmd_buf.uscsi_status) { 20337 case STATUS_RESERVATION_CONFLICT: 20338 status = EACCES; 20339 break; 20340 case STATUS_CHECK: 20341 /* 20342 * Check condition; look for ASC/ASCQ of 0x04/0x01 20343 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY) 20344 */ 20345 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20346 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) && 20347 (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) { 20348 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 20349 return (EAGAIN); 20350 } 20351 break; 20352 default: 20353 break; 20354 } 20355 /* FALLTHRU */ 20356 default: 20357 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 20358 return (status); 20359 } 20360 20361 /* 20362 * Some ATAPI CD-ROM drives report inaccurate LBA size values 20363 * (2352 and 0 are common) so for these devices always force the value 20364 * to 2048 as required by the ATAPI specs. 20365 */ 20366 if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) { 20367 lbasize = 2048; 20368 } 20369 20370 /* 20371 * Get the maximum LBA value from the READ CAPACITY 16 data. 20372 * Here we assume that the Partial Medium Indicator (PMI) bit 20373 * was cleared when issuing the command. This means that the LBA 20374 * returned from the device is the LBA of the last logical block 20375 * on the logical unit. The actual logical block count will be 20376 * this value plus one. 20377 */ 20378 capacity += 1; 20379 20380 /* 20381 * Currently, for removable media, the capacity is saved in terms 20382 * of un->un_sys_blocksize, so scale the capacity value to reflect this. 20383 */ 20384 if (un->un_f_has_removable_media) 20385 capacity *= (lbasize / un->un_sys_blocksize); 20386 20387 *capp = capacity; 20388 *lbap = lbasize; 20389 *psp = pbsize; 20390 20391 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: " 20392 "capacity:0x%llx lbasize:0x%x, pbsize: 0x%x\n", 20393 capacity, lbasize, pbsize); 20394 20395 if ((capacity == 0) || (lbasize == 0) || (pbsize == 0)) { 20396 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 20397 "sd_send_scsi_READ_CAPACITY_16 received invalid value " 20398 "capacity %llu lbasize %d pbsize %d", capacity, lbasize); 20399 return (EIO); 20400 } 20401 20402 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20403 return (0); 20404 } 20405 20406 20407 /* 20408 * Function: sd_send_scsi_START_STOP_UNIT 20409 * 20410 * Description: Issue a scsi START STOP UNIT command to the target. 20411 * 20412 * Arguments: ssc - ssc contatins pointer to driver soft state (unit) 20413 * structure for this target. 20414 * pc_flag - SD_POWER_CONDITION 20415 * SD_START_STOP 20416 * flag - SD_TARGET_START 20417 * SD_TARGET_STOP 20418 * SD_TARGET_EJECT 20419 * SD_TARGET_CLOSE 20420 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 20421 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 20422 * to use the USCSI "direct" chain and bypass the normal 20423 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 20424 * command is issued as part of an error recovery action. 20425 * 20426 * Return Code: 0 - Success 20427 * EIO - IO error 20428 * EACCES - Reservation conflict detected 20429 * ENXIO - Not Ready, medium not present 20430 * errno return code from sd_ssc_send() 20431 * 20432 * Context: Can sleep. 20433 */ 20434 20435 static int 20436 sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag, int flag, 20437 int path_flag) 20438 { 20439 struct scsi_extended_sense sense_buf; 20440 union scsi_cdb cdb; 20441 struct uscsi_cmd ucmd_buf; 20442 int status; 20443 struct sd_lun *un; 20444 20445 ASSERT(ssc != NULL); 20446 un = ssc->ssc_un; 20447 ASSERT(un != NULL); 20448 ASSERT(!mutex_owned(SD_MUTEX(un))); 20449 20450 SD_TRACE(SD_LOG_IO, un, 20451 "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un); 20452 20453 if (un->un_f_check_start_stop && 20454 (pc_flag == SD_START_STOP) && 20455 ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) && 20456 (un->un_f_start_stop_supported != TRUE)) { 20457 return (0); 20458 } 20459 20460 /* 20461 * If we are performing an eject operation and 20462 * we receive any command other than SD_TARGET_EJECT 20463 * we should immediately return. 20464 */ 20465 if (flag != SD_TARGET_EJECT) { 20466 mutex_enter(SD_MUTEX(un)); 20467 if (un->un_f_ejecting == TRUE) { 20468 mutex_exit(SD_MUTEX(un)); 20469 return (EAGAIN); 20470 } 20471 mutex_exit(SD_MUTEX(un)); 20472 } 20473 20474 bzero(&cdb, sizeof (cdb)); 20475 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20476 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20477 20478 cdb.scc_cmd = SCMD_START_STOP; 20479 cdb.cdb_opaque[4] = (pc_flag == SD_POWER_CONDITION) ? 20480 (uchar_t)(flag << 4) : (uchar_t)flag; 20481 20482 ucmd_buf.uscsi_cdb = (char *)&cdb; 20483 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 20484 ucmd_buf.uscsi_bufaddr = NULL; 20485 ucmd_buf.uscsi_buflen = 0; 20486 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20487 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20488 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 20489 ucmd_buf.uscsi_timeout = 200; 20490 20491 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20492 UIO_SYSSPACE, path_flag); 20493 20494 switch (status) { 20495 case 0: 20496 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20497 break; /* Success! */ 20498 case EIO: 20499 switch (ucmd_buf.uscsi_status) { 20500 case STATUS_RESERVATION_CONFLICT: 20501 status = EACCES; 20502 break; 20503 case STATUS_CHECK: 20504 if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) { 20505 switch (scsi_sense_key( 20506 (uint8_t *)&sense_buf)) { 20507 case KEY_ILLEGAL_REQUEST: 20508 status = ENOTSUP; 20509 break; 20510 case KEY_NOT_READY: 20511 if (scsi_sense_asc( 20512 (uint8_t *)&sense_buf) 20513 == 0x3A) { 20514 status = ENXIO; 20515 } 20516 break; 20517 default: 20518 break; 20519 } 20520 } 20521 break; 20522 default: 20523 break; 20524 } 20525 break; 20526 default: 20527 break; 20528 } 20529 20530 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n"); 20531 20532 return (status); 20533 } 20534 20535 20536 /* 20537 * Function: sd_start_stop_unit_callback 20538 * 20539 * Description: timeout(9F) callback to begin recovery process for a 20540 * device that has spun down. 20541 * 20542 * Arguments: arg - pointer to associated softstate struct. 20543 * 20544 * Context: Executes in a timeout(9F) thread context 20545 */ 20546 20547 static void 20548 sd_start_stop_unit_callback(void *arg) 20549 { 20550 struct sd_lun *un = arg; 20551 ASSERT(un != NULL); 20552 ASSERT(!mutex_owned(SD_MUTEX(un))); 20553 20554 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n"); 20555 20556 (void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP); 20557 } 20558 20559 20560 /* 20561 * Function: sd_start_stop_unit_task 20562 * 20563 * Description: Recovery procedure when a drive is spun down. 20564 * 20565 * Arguments: arg - pointer to associated softstate struct. 20566 * 20567 * Context: Executes in a taskq() thread context 20568 */ 20569 20570 static void 20571 sd_start_stop_unit_task(void *arg) 20572 { 20573 struct sd_lun *un = arg; 20574 sd_ssc_t *ssc; 20575 int power_level; 20576 int rval; 20577 20578 ASSERT(un != NULL); 20579 ASSERT(!mutex_owned(SD_MUTEX(un))); 20580 20581 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n"); 20582 20583 /* 20584 * Some unformatted drives report not ready error, no need to 20585 * restart if format has been initiated. 20586 */ 20587 mutex_enter(SD_MUTEX(un)); 20588 if (un->un_f_format_in_progress == TRUE) { 20589 mutex_exit(SD_MUTEX(un)); 20590 return; 20591 } 20592 mutex_exit(SD_MUTEX(un)); 20593 20594 ssc = sd_ssc_init(un); 20595 /* 20596 * When a START STOP command is issued from here, it is part of a 20597 * failure recovery operation and must be issued before any other 20598 * commands, including any pending retries. Thus it must be sent 20599 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up 20600 * succeeds or not, we will start I/O after the attempt. 20601 * If power condition is supported and the current power level 20602 * is capable of performing I/O, we should set the power condition 20603 * to that level. Otherwise, set the power condition to ACTIVE. 20604 */ 20605 if (un->un_f_power_condition_supported) { 20606 mutex_enter(SD_MUTEX(un)); 20607 ASSERT(SD_PM_IS_LEVEL_VALID(un, un->un_power_level)); 20608 power_level = sd_pwr_pc.ran_perf[un->un_power_level] 20609 > 0 ? un->un_power_level : SD_SPINDLE_ACTIVE; 20610 mutex_exit(SD_MUTEX(un)); 20611 rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION, 20612 sd_pl2pc[power_level], SD_PATH_DIRECT_PRIORITY); 20613 } else { 20614 rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 20615 SD_TARGET_START, SD_PATH_DIRECT_PRIORITY); 20616 } 20617 20618 if (rval != 0) 20619 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 20620 sd_ssc_fini(ssc); 20621 /* 20622 * The above call blocks until the START_STOP_UNIT command completes. 20623 * Now that it has completed, we must re-try the original IO that 20624 * received the NOT READY condition in the first place. There are 20625 * three possible conditions here: 20626 * 20627 * (1) The original IO is on un_retry_bp. 20628 * (2) The original IO is on the regular wait queue, and un_retry_bp 20629 * is NULL. 20630 * (3) The original IO is on the regular wait queue, and un_retry_bp 20631 * points to some other, unrelated bp. 20632 * 20633 * For each case, we must call sd_start_cmds() with un_retry_bp 20634 * as the argument. If un_retry_bp is NULL, this will initiate 20635 * processing of the regular wait queue. If un_retry_bp is not NULL, 20636 * then this will process the bp on un_retry_bp. That may or may not 20637 * be the original IO, but that does not matter: the important thing 20638 * is to keep the IO processing going at this point. 20639 * 20640 * Note: This is a very specific error recovery sequence associated 20641 * with a drive that is not spun up. We attempt a START_STOP_UNIT and 20642 * serialize the I/O with completion of the spin-up. 20643 */ 20644 mutex_enter(SD_MUTEX(un)); 20645 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 20646 "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n", 20647 un, un->un_retry_bp); 20648 un->un_startstop_timeid = NULL; /* Timeout is no longer pending */ 20649 sd_start_cmds(un, un->un_retry_bp); 20650 mutex_exit(SD_MUTEX(un)); 20651 20652 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n"); 20653 } 20654 20655 20656 /* 20657 * Function: sd_send_scsi_INQUIRY 20658 * 20659 * Description: Issue the scsi INQUIRY command. 20660 * 20661 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 20662 * structure for this target. 20663 * bufaddr 20664 * buflen 20665 * evpd 20666 * page_code 20667 * page_length 20668 * 20669 * Return Code: 0 - Success 20670 * errno return code from sd_ssc_send() 20671 * 20672 * Context: Can sleep. Does not return until command is completed. 20673 */ 20674 20675 static int 20676 sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, size_t buflen, 20677 uchar_t evpd, uchar_t page_code, size_t *residp) 20678 { 20679 union scsi_cdb cdb; 20680 struct uscsi_cmd ucmd_buf; 20681 int status; 20682 struct sd_lun *un; 20683 20684 ASSERT(ssc != NULL); 20685 un = ssc->ssc_un; 20686 ASSERT(un != NULL); 20687 ASSERT(!mutex_owned(SD_MUTEX(un))); 20688 ASSERT(bufaddr != NULL); 20689 20690 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un); 20691 20692 bzero(&cdb, sizeof (cdb)); 20693 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20694 bzero(bufaddr, buflen); 20695 20696 cdb.scc_cmd = SCMD_INQUIRY; 20697 cdb.cdb_opaque[1] = evpd; 20698 cdb.cdb_opaque[2] = page_code; 20699 FORMG0COUNT(&cdb, buflen); 20700 20701 ucmd_buf.uscsi_cdb = (char *)&cdb; 20702 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 20703 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 20704 ucmd_buf.uscsi_buflen = buflen; 20705 ucmd_buf.uscsi_rqbuf = NULL; 20706 ucmd_buf.uscsi_rqlen = 0; 20707 ucmd_buf.uscsi_flags = USCSI_READ | USCSI_SILENT; 20708 ucmd_buf.uscsi_timeout = 200; /* Excessive legacy value */ 20709 20710 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20711 UIO_SYSSPACE, SD_PATH_DIRECT); 20712 20713 /* 20714 * Only handle status == 0, the upper-level caller 20715 * will put different assessment based on the context. 20716 */ 20717 if (status == 0) 20718 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20719 20720 if ((status == 0) && (residp != NULL)) { 20721 *residp = ucmd_buf.uscsi_resid; 20722 } 20723 20724 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n"); 20725 20726 return (status); 20727 } 20728 20729 20730 /* 20731 * Function: sd_send_scsi_TEST_UNIT_READY 20732 * 20733 * Description: Issue the scsi TEST UNIT READY command. 20734 * This routine can be told to set the flag USCSI_DIAGNOSE to 20735 * prevent retrying failed commands. Use this when the intent 20736 * is either to check for device readiness, to clear a Unit 20737 * Attention, or to clear any outstanding sense data. 20738 * However under specific conditions the expected behavior 20739 * is for retries to bring a device ready, so use the flag 20740 * with caution. 20741 * 20742 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 20743 * structure for this target. 20744 * flag: SD_CHECK_FOR_MEDIA: return ENXIO if no media present 20745 * SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE. 20746 * 0: dont check for media present, do retries on cmd. 20747 * 20748 * Return Code: 0 - Success 20749 * EIO - IO error 20750 * EACCES - Reservation conflict detected 20751 * ENXIO - Not Ready, medium not present 20752 * errno return code from sd_ssc_send() 20753 * 20754 * Context: Can sleep. Does not return until command is completed. 20755 */ 20756 20757 static int 20758 sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag) 20759 { 20760 struct scsi_extended_sense sense_buf; 20761 union scsi_cdb cdb; 20762 struct uscsi_cmd ucmd_buf; 20763 int status; 20764 struct sd_lun *un; 20765 20766 ASSERT(ssc != NULL); 20767 un = ssc->ssc_un; 20768 ASSERT(un != NULL); 20769 ASSERT(!mutex_owned(SD_MUTEX(un))); 20770 20771 SD_TRACE(SD_LOG_IO, un, 20772 "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un); 20773 20774 /* 20775 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect 20776 * timeouts when they receive a TUR and the queue is not empty. Check 20777 * the configuration flag set during attach (indicating the drive has 20778 * this firmware bug) and un_ncmds_in_transport before issuing the 20779 * TUR. If there are 20780 * pending commands return success, this is a bit arbitrary but is ok 20781 * for non-removables (i.e. the eliteI disks) and non-clustering 20782 * configurations. 20783 */ 20784 if (un->un_f_cfg_tur_check == TRUE) { 20785 mutex_enter(SD_MUTEX(un)); 20786 if (un->un_ncmds_in_transport != 0) { 20787 mutex_exit(SD_MUTEX(un)); 20788 return (0); 20789 } 20790 mutex_exit(SD_MUTEX(un)); 20791 } 20792 20793 bzero(&cdb, sizeof (cdb)); 20794 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20795 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20796 20797 cdb.scc_cmd = SCMD_TEST_UNIT_READY; 20798 20799 ucmd_buf.uscsi_cdb = (char *)&cdb; 20800 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 20801 ucmd_buf.uscsi_bufaddr = NULL; 20802 ucmd_buf.uscsi_buflen = 0; 20803 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20804 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20805 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 20806 20807 /* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */ 20808 if ((flag & SD_DONT_RETRY_TUR) != 0) { 20809 ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE; 20810 } 20811 ucmd_buf.uscsi_timeout = 60; 20812 20813 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20814 UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT : 20815 SD_PATH_STANDARD)); 20816 20817 switch (status) { 20818 case 0: 20819 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20820 break; /* Success! */ 20821 case EIO: 20822 switch (ucmd_buf.uscsi_status) { 20823 case STATUS_RESERVATION_CONFLICT: 20824 status = EACCES; 20825 break; 20826 case STATUS_CHECK: 20827 if ((flag & SD_CHECK_FOR_MEDIA) == 0) { 20828 break; 20829 } 20830 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20831 (scsi_sense_key((uint8_t *)&sense_buf) == 20832 KEY_NOT_READY) && 20833 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) { 20834 status = ENXIO; 20835 } 20836 break; 20837 default: 20838 break; 20839 } 20840 break; 20841 default: 20842 break; 20843 } 20844 20845 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n"); 20846 20847 return (status); 20848 } 20849 20850 /* 20851 * Function: sd_send_scsi_PERSISTENT_RESERVE_IN 20852 * 20853 * Description: Issue the scsi PERSISTENT RESERVE IN command. 20854 * 20855 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 20856 * structure for this target. 20857 * 20858 * Return Code: 0 - Success 20859 * EACCES 20860 * ENOTSUP 20861 * errno return code from sd_ssc_send() 20862 * 20863 * Context: Can sleep. Does not return until command is completed. 20864 */ 20865 20866 static int 20867 sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, uchar_t usr_cmd, 20868 uint16_t data_len, uchar_t *data_bufp) 20869 { 20870 struct scsi_extended_sense sense_buf; 20871 union scsi_cdb cdb; 20872 struct uscsi_cmd ucmd_buf; 20873 int status; 20874 int no_caller_buf = FALSE; 20875 struct sd_lun *un; 20876 20877 ASSERT(ssc != NULL); 20878 un = ssc->ssc_un; 20879 ASSERT(un != NULL); 20880 ASSERT(!mutex_owned(SD_MUTEX(un))); 20881 ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV)); 20882 20883 SD_TRACE(SD_LOG_IO, un, 20884 "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un); 20885 20886 bzero(&cdb, sizeof (cdb)); 20887 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20888 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20889 if (data_bufp == NULL) { 20890 /* Allocate a default buf if the caller did not give one */ 20891 ASSERT(data_len == 0); 20892 data_len = MHIOC_RESV_KEY_SIZE; 20893 data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP); 20894 no_caller_buf = TRUE; 20895 } 20896 20897 cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN; 20898 cdb.cdb_opaque[1] = usr_cmd; 20899 FORMG1COUNT(&cdb, data_len); 20900 20901 ucmd_buf.uscsi_cdb = (char *)&cdb; 20902 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 20903 ucmd_buf.uscsi_bufaddr = (caddr_t)data_bufp; 20904 ucmd_buf.uscsi_buflen = data_len; 20905 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20906 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20907 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 20908 ucmd_buf.uscsi_timeout = 60; 20909 20910 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 20911 UIO_SYSSPACE, SD_PATH_STANDARD); 20912 20913 switch (status) { 20914 case 0: 20915 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 20916 20917 break; /* Success! */ 20918 case EIO: 20919 switch (ucmd_buf.uscsi_status) { 20920 case STATUS_RESERVATION_CONFLICT: 20921 status = EACCES; 20922 break; 20923 case STATUS_CHECK: 20924 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20925 (scsi_sense_key((uint8_t *)&sense_buf) == 20926 KEY_ILLEGAL_REQUEST)) { 20927 status = ENOTSUP; 20928 } 20929 break; 20930 default: 20931 break; 20932 } 20933 break; 20934 default: 20935 break; 20936 } 20937 20938 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n"); 20939 20940 if (no_caller_buf == TRUE) { 20941 kmem_free(data_bufp, data_len); 20942 } 20943 20944 return (status); 20945 } 20946 20947 20948 /* 20949 * Function: sd_send_scsi_PERSISTENT_RESERVE_OUT 20950 * 20951 * Description: This routine is the driver entry point for handling CD-ROM 20952 * multi-host persistent reservation requests (MHIOCGRP_INKEYS, 20953 * MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the 20954 * device. 20955 * 20956 * Arguments: ssc - ssc contains un - pointer to soft state struct 20957 * for the target. 20958 * usr_cmd SCSI-3 reservation facility command (one of 20959 * SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE, 20960 * SD_SCSI3_PREEMPTANDABORT, SD_SCSI3_CLEAR) 20961 * usr_bufp - user provided pointer register, reserve descriptor or 20962 * preempt and abort structure (mhioc_register_t, 20963 * mhioc_resv_desc_t, mhioc_preemptandabort_t) 20964 * 20965 * Return Code: 0 - Success 20966 * EACCES 20967 * ENOTSUP 20968 * errno return code from sd_ssc_send() 20969 * 20970 * Context: Can sleep. Does not return until command is completed. 20971 */ 20972 20973 static int 20974 sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, uchar_t usr_cmd, 20975 uchar_t *usr_bufp) 20976 { 20977 struct scsi_extended_sense sense_buf; 20978 union scsi_cdb cdb; 20979 struct uscsi_cmd ucmd_buf; 20980 int status; 20981 uchar_t data_len = sizeof (sd_prout_t); 20982 sd_prout_t *prp; 20983 struct sd_lun *un; 20984 20985 ASSERT(ssc != NULL); 20986 un = ssc->ssc_un; 20987 ASSERT(un != NULL); 20988 ASSERT(!mutex_owned(SD_MUTEX(un))); 20989 ASSERT(data_len == 24); /* required by scsi spec */ 20990 20991 SD_TRACE(SD_LOG_IO, un, 20992 "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un); 20993 20994 if (usr_bufp == NULL) { 20995 return (EINVAL); 20996 } 20997 20998 bzero(&cdb, sizeof (cdb)); 20999 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21000 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 21001 prp = kmem_zalloc(data_len, KM_SLEEP); 21002 21003 cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT; 21004 cdb.cdb_opaque[1] = usr_cmd; 21005 FORMG1COUNT(&cdb, data_len); 21006 21007 ucmd_buf.uscsi_cdb = (char *)&cdb; 21008 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 21009 ucmd_buf.uscsi_bufaddr = (caddr_t)prp; 21010 ucmd_buf.uscsi_buflen = data_len; 21011 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 21012 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 21013 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT; 21014 ucmd_buf.uscsi_timeout = 60; 21015 21016 switch (usr_cmd) { 21017 case SD_SCSI3_REGISTER: { 21018 mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp; 21019 21020 bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 21021 bcopy(ptr->newkey.key, prp->service_key, 21022 MHIOC_RESV_KEY_SIZE); 21023 prp->aptpl = ptr->aptpl; 21024 break; 21025 } 21026 case SD_SCSI3_CLEAR: { 21027 mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp; 21028 21029 bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 21030 break; 21031 } 21032 case SD_SCSI3_RESERVE: 21033 case SD_SCSI3_RELEASE: { 21034 mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp; 21035 21036 bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 21037 prp->scope_address = BE_32(ptr->scope_specific_addr); 21038 cdb.cdb_opaque[2] = ptr->type; 21039 break; 21040 } 21041 case SD_SCSI3_PREEMPTANDABORT: { 21042 mhioc_preemptandabort_t *ptr = 21043 (mhioc_preemptandabort_t *)usr_bufp; 21044 21045 bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 21046 bcopy(ptr->victim_key.key, prp->service_key, 21047 MHIOC_RESV_KEY_SIZE); 21048 prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr); 21049 cdb.cdb_opaque[2] = ptr->resvdesc.type; 21050 ucmd_buf.uscsi_flags |= USCSI_HEAD; 21051 break; 21052 } 21053 case SD_SCSI3_REGISTERANDIGNOREKEY: 21054 { 21055 mhioc_registerandignorekey_t *ptr; 21056 ptr = (mhioc_registerandignorekey_t *)usr_bufp; 21057 bcopy(ptr->newkey.key, 21058 prp->service_key, MHIOC_RESV_KEY_SIZE); 21059 prp->aptpl = ptr->aptpl; 21060 break; 21061 } 21062 default: 21063 ASSERT(FALSE); 21064 break; 21065 } 21066 21067 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 21068 UIO_SYSSPACE, SD_PATH_STANDARD); 21069 21070 switch (status) { 21071 case 0: 21072 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21073 break; /* Success! */ 21074 case EIO: 21075 switch (ucmd_buf.uscsi_status) { 21076 case STATUS_RESERVATION_CONFLICT: 21077 status = EACCES; 21078 break; 21079 case STATUS_CHECK: 21080 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 21081 (scsi_sense_key((uint8_t *)&sense_buf) == 21082 KEY_ILLEGAL_REQUEST)) { 21083 status = ENOTSUP; 21084 } 21085 break; 21086 default: 21087 break; 21088 } 21089 break; 21090 default: 21091 break; 21092 } 21093 21094 kmem_free(prp, data_len); 21095 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n"); 21096 return (status); 21097 } 21098 21099 21100 /* 21101 * Function: sd_send_scsi_SYNCHRONIZE_CACHE 21102 * 21103 * Description: Issues a scsi SYNCHRONIZE CACHE command to the target 21104 * 21105 * Arguments: un - pointer to the target's soft state struct 21106 * dkc - pointer to the callback structure 21107 * 21108 * Return Code: 0 - success 21109 * errno-type error code 21110 * 21111 * Context: kernel thread context only. 21112 * 21113 * _______________________________________________________________ 21114 * | dkc_flag & | dkc_callback | DKIOCFLUSHWRITECACHE | 21115 * |FLUSH_VOLATILE| | operation | 21116 * |______________|______________|_________________________________| 21117 * | 0 | NULL | Synchronous flush on both | 21118 * | | | volatile and non-volatile cache | 21119 * |______________|______________|_________________________________| 21120 * | 1 | NULL | Synchronous flush on volatile | 21121 * | | | cache; disk drivers may suppress| 21122 * | | | flush if disk table indicates | 21123 * | | | non-volatile cache | 21124 * |______________|______________|_________________________________| 21125 * | 0 | !NULL | Asynchronous flush on both | 21126 * | | | volatile and non-volatile cache;| 21127 * |______________|______________|_________________________________| 21128 * | 1 | !NULL | Asynchronous flush on volatile | 21129 * | | | cache; disk drivers may suppress| 21130 * | | | flush if disk table indicates | 21131 * | | | non-volatile cache | 21132 * |______________|______________|_________________________________| 21133 * 21134 */ 21135 21136 static int 21137 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc) 21138 { 21139 struct sd_uscsi_info *uip; 21140 struct uscsi_cmd *uscmd; 21141 union scsi_cdb *cdb; 21142 struct buf *bp; 21143 int rval = 0; 21144 int is_async; 21145 21146 SD_TRACE(SD_LOG_IO, un, 21147 "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un); 21148 21149 ASSERT(un != NULL); 21150 ASSERT(!mutex_owned(SD_MUTEX(un))); 21151 21152 if (dkc == NULL || dkc->dkc_callback == NULL) { 21153 is_async = FALSE; 21154 } else { 21155 is_async = TRUE; 21156 } 21157 21158 mutex_enter(SD_MUTEX(un)); 21159 /* check whether cache flush should be suppressed */ 21160 if (un->un_f_suppress_cache_flush == TRUE) { 21161 mutex_exit(SD_MUTEX(un)); 21162 /* 21163 * suppress the cache flush if the device is told to do 21164 * so by sd.conf or disk table 21165 */ 21166 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \ 21167 skip the cache flush since suppress_cache_flush is %d!\n", 21168 un->un_f_suppress_cache_flush); 21169 21170 if (is_async == TRUE) { 21171 /* invoke callback for asynchronous flush */ 21172 (*dkc->dkc_callback)(dkc->dkc_cookie, 0); 21173 } 21174 return (rval); 21175 } 21176 mutex_exit(SD_MUTEX(un)); 21177 21178 /* 21179 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be 21180 * set properly 21181 */ 21182 cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP); 21183 cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE; 21184 21185 mutex_enter(SD_MUTEX(un)); 21186 if (dkc != NULL && un->un_f_sync_nv_supported && 21187 (dkc->dkc_flag & FLUSH_VOLATILE)) { 21188 /* 21189 * if the device supports SYNC_NV bit, turn on 21190 * the SYNC_NV bit to only flush volatile cache 21191 */ 21192 cdb->cdb_un.tag |= SD_SYNC_NV_BIT; 21193 } 21194 mutex_exit(SD_MUTEX(un)); 21195 21196 /* 21197 * First get some memory for the uscsi_cmd struct and cdb 21198 * and initialize for SYNCHRONIZE_CACHE cmd. 21199 */ 21200 uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP); 21201 uscmd->uscsi_cdblen = CDB_GROUP1; 21202 uscmd->uscsi_cdb = (caddr_t)cdb; 21203 uscmd->uscsi_bufaddr = NULL; 21204 uscmd->uscsi_buflen = 0; 21205 uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 21206 uscmd->uscsi_rqlen = SENSE_LENGTH; 21207 uscmd->uscsi_rqresid = SENSE_LENGTH; 21208 uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 21209 uscmd->uscsi_timeout = sd_io_time; 21210 21211 /* 21212 * Allocate an sd_uscsi_info struct and fill it with the info 21213 * needed by sd_initpkt_for_uscsi(). Then put the pointer into 21214 * b_private in the buf for sd_initpkt_for_uscsi(). Note that 21215 * since we allocate the buf here in this function, we do not 21216 * need to preserve the prior contents of b_private. 21217 * The sd_uscsi_info struct is also used by sd_uscsi_strategy() 21218 */ 21219 uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP); 21220 uip->ui_flags = SD_PATH_DIRECT; 21221 uip->ui_cmdp = uscmd; 21222 21223 bp = getrbuf(KM_SLEEP); 21224 bp->b_private = uip; 21225 21226 /* 21227 * Setup buffer to carry uscsi request. 21228 */ 21229 bp->b_flags = B_BUSY; 21230 bp->b_bcount = 0; 21231 bp->b_blkno = 0; 21232 21233 if (is_async == TRUE) { 21234 bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone; 21235 uip->ui_dkc = *dkc; 21236 } 21237 21238 bp->b_edev = SD_GET_DEV(un); 21239 bp->b_dev = cmpdev(bp->b_edev); /* maybe unnecessary? */ 21240 21241 /* 21242 * Unset un_f_sync_cache_required flag 21243 */ 21244 mutex_enter(SD_MUTEX(un)); 21245 un->un_f_sync_cache_required = FALSE; 21246 mutex_exit(SD_MUTEX(un)); 21247 21248 (void) sd_uscsi_strategy(bp); 21249 21250 /* 21251 * If synchronous request, wait for completion 21252 * If async just return and let b_iodone callback 21253 * cleanup. 21254 * NOTE: On return, u_ncmds_in_driver will be decremented, 21255 * but it was also incremented in sd_uscsi_strategy(), so 21256 * we should be ok. 21257 */ 21258 if (is_async == FALSE) { 21259 (void) biowait(bp); 21260 rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp); 21261 } 21262 21263 return (rval); 21264 } 21265 21266 21267 static int 21268 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp) 21269 { 21270 struct sd_uscsi_info *uip; 21271 struct uscsi_cmd *uscmd; 21272 uint8_t *sense_buf; 21273 struct sd_lun *un; 21274 int status; 21275 union scsi_cdb *cdb; 21276 21277 uip = (struct sd_uscsi_info *)(bp->b_private); 21278 ASSERT(uip != NULL); 21279 21280 uscmd = uip->ui_cmdp; 21281 ASSERT(uscmd != NULL); 21282 21283 sense_buf = (uint8_t *)uscmd->uscsi_rqbuf; 21284 ASSERT(sense_buf != NULL); 21285 21286 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 21287 ASSERT(un != NULL); 21288 21289 cdb = (union scsi_cdb *)uscmd->uscsi_cdb; 21290 21291 status = geterror(bp); 21292 switch (status) { 21293 case 0: 21294 break; /* Success! */ 21295 case EIO: 21296 switch (uscmd->uscsi_status) { 21297 case STATUS_RESERVATION_CONFLICT: 21298 /* Ignore reservation conflict */ 21299 status = 0; 21300 goto done; 21301 21302 case STATUS_CHECK: 21303 if ((uscmd->uscsi_rqstatus == STATUS_GOOD) && 21304 (scsi_sense_key(sense_buf) == 21305 KEY_ILLEGAL_REQUEST)) { 21306 /* Ignore Illegal Request error */ 21307 if (cdb->cdb_un.tag&SD_SYNC_NV_BIT) { 21308 mutex_enter(SD_MUTEX(un)); 21309 un->un_f_sync_nv_supported = FALSE; 21310 mutex_exit(SD_MUTEX(un)); 21311 status = 0; 21312 SD_TRACE(SD_LOG_IO, un, 21313 "un_f_sync_nv_supported \ 21314 is set to false.\n"); 21315 goto done; 21316 } 21317 21318 mutex_enter(SD_MUTEX(un)); 21319 un->un_f_sync_cache_supported = FALSE; 21320 mutex_exit(SD_MUTEX(un)); 21321 SD_TRACE(SD_LOG_IO, un, 21322 "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \ 21323 un_f_sync_cache_supported set to false \ 21324 with asc = %x, ascq = %x\n", 21325 scsi_sense_asc(sense_buf), 21326 scsi_sense_ascq(sense_buf)); 21327 status = ENOTSUP; 21328 goto done; 21329 } 21330 break; 21331 default: 21332 break; 21333 } 21334 /* FALLTHRU */ 21335 default: 21336 /* 21337 * Turn on the un_f_sync_cache_required flag 21338 * since the SYNC CACHE command failed 21339 */ 21340 mutex_enter(SD_MUTEX(un)); 21341 un->un_f_sync_cache_required = TRUE; 21342 mutex_exit(SD_MUTEX(un)); 21343 21344 /* 21345 * Don't log an error message if this device 21346 * has removable media. 21347 */ 21348 if (!un->un_f_has_removable_media) { 21349 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 21350 "SYNCHRONIZE CACHE command failed (%d)\n", status); 21351 } 21352 break; 21353 } 21354 21355 done: 21356 if (uip->ui_dkc.dkc_callback != NULL) { 21357 (*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status); 21358 } 21359 21360 ASSERT((bp->b_flags & B_REMAPPED) == 0); 21361 freerbuf(bp); 21362 kmem_free(uip, sizeof (struct sd_uscsi_info)); 21363 kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH); 21364 kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen); 21365 kmem_free(uscmd, sizeof (struct uscsi_cmd)); 21366 21367 return (status); 21368 } 21369 21370 21371 /* 21372 * Function: sd_send_scsi_GET_CONFIGURATION 21373 * 21374 * Description: Issues the get configuration command to the device. 21375 * Called from sd_check_for_writable_cd & sd_get_media_info 21376 * caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN 21377 * Arguments: ssc 21378 * ucmdbuf 21379 * rqbuf 21380 * rqbuflen 21381 * bufaddr 21382 * buflen 21383 * path_flag 21384 * 21385 * Return Code: 0 - Success 21386 * errno return code from sd_ssc_send() 21387 * 21388 * Context: Can sleep. Does not return until command is completed. 21389 * 21390 */ 21391 21392 static int 21393 sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, struct uscsi_cmd *ucmdbuf, 21394 uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen, 21395 int path_flag) 21396 { 21397 char cdb[CDB_GROUP1]; 21398 int status; 21399 struct sd_lun *un; 21400 21401 ASSERT(ssc != NULL); 21402 un = ssc->ssc_un; 21403 ASSERT(un != NULL); 21404 ASSERT(!mutex_owned(SD_MUTEX(un))); 21405 ASSERT(bufaddr != NULL); 21406 ASSERT(ucmdbuf != NULL); 21407 ASSERT(rqbuf != NULL); 21408 21409 SD_TRACE(SD_LOG_IO, un, 21410 "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un); 21411 21412 bzero(cdb, sizeof (cdb)); 21413 bzero(ucmdbuf, sizeof (struct uscsi_cmd)); 21414 bzero(rqbuf, rqbuflen); 21415 bzero(bufaddr, buflen); 21416 21417 /* 21418 * Set up cdb field for the get configuration command. 21419 */ 21420 cdb[0] = SCMD_GET_CONFIGURATION; 21421 cdb[1] = 0x02; /* Requested Type */ 21422 cdb[8] = SD_PROFILE_HEADER_LEN; 21423 ucmdbuf->uscsi_cdb = cdb; 21424 ucmdbuf->uscsi_cdblen = CDB_GROUP1; 21425 ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr; 21426 ucmdbuf->uscsi_buflen = buflen; 21427 ucmdbuf->uscsi_timeout = sd_io_time; 21428 ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf; 21429 ucmdbuf->uscsi_rqlen = rqbuflen; 21430 ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ; 21431 21432 status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL, 21433 UIO_SYSSPACE, path_flag); 21434 21435 switch (status) { 21436 case 0: 21437 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21438 break; /* Success! */ 21439 case EIO: 21440 switch (ucmdbuf->uscsi_status) { 21441 case STATUS_RESERVATION_CONFLICT: 21442 status = EACCES; 21443 break; 21444 default: 21445 break; 21446 } 21447 break; 21448 default: 21449 break; 21450 } 21451 21452 if (status == 0) { 21453 SD_DUMP_MEMORY(un, SD_LOG_IO, 21454 "sd_send_scsi_GET_CONFIGURATION: data", 21455 (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX); 21456 } 21457 21458 SD_TRACE(SD_LOG_IO, un, 21459 "sd_send_scsi_GET_CONFIGURATION: exit\n"); 21460 21461 return (status); 21462 } 21463 21464 /* 21465 * Function: sd_send_scsi_feature_GET_CONFIGURATION 21466 * 21467 * Description: Issues the get configuration command to the device to 21468 * retrieve a specific feature. Called from 21469 * sd_check_for_writable_cd & sd_set_mmc_caps. 21470 * Arguments: ssc 21471 * ucmdbuf 21472 * rqbuf 21473 * rqbuflen 21474 * bufaddr 21475 * buflen 21476 * feature 21477 * 21478 * Return Code: 0 - Success 21479 * errno return code from sd_ssc_send() 21480 * 21481 * Context: Can sleep. Does not return until command is completed. 21482 * 21483 */ 21484 static int 21485 sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc, 21486 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 21487 uchar_t *bufaddr, uint_t buflen, char feature, int path_flag) 21488 { 21489 char cdb[CDB_GROUP1]; 21490 int status; 21491 struct sd_lun *un; 21492 21493 ASSERT(ssc != NULL); 21494 un = ssc->ssc_un; 21495 ASSERT(un != NULL); 21496 ASSERT(!mutex_owned(SD_MUTEX(un))); 21497 ASSERT(bufaddr != NULL); 21498 ASSERT(ucmdbuf != NULL); 21499 ASSERT(rqbuf != NULL); 21500 21501 SD_TRACE(SD_LOG_IO, un, 21502 "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un); 21503 21504 bzero(cdb, sizeof (cdb)); 21505 bzero(ucmdbuf, sizeof (struct uscsi_cmd)); 21506 bzero(rqbuf, rqbuflen); 21507 bzero(bufaddr, buflen); 21508 21509 /* 21510 * Set up cdb field for the get configuration command. 21511 */ 21512 cdb[0] = SCMD_GET_CONFIGURATION; 21513 cdb[1] = 0x02; /* Requested Type */ 21514 cdb[3] = feature; 21515 cdb[8] = buflen; 21516 ucmdbuf->uscsi_cdb = cdb; 21517 ucmdbuf->uscsi_cdblen = CDB_GROUP1; 21518 ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr; 21519 ucmdbuf->uscsi_buflen = buflen; 21520 ucmdbuf->uscsi_timeout = sd_io_time; 21521 ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf; 21522 ucmdbuf->uscsi_rqlen = rqbuflen; 21523 ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ; 21524 21525 status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL, 21526 UIO_SYSSPACE, path_flag); 21527 21528 switch (status) { 21529 case 0: 21530 21531 break; /* Success! */ 21532 case EIO: 21533 switch (ucmdbuf->uscsi_status) { 21534 case STATUS_RESERVATION_CONFLICT: 21535 status = EACCES; 21536 break; 21537 default: 21538 break; 21539 } 21540 break; 21541 default: 21542 break; 21543 } 21544 21545 if (status == 0) { 21546 SD_DUMP_MEMORY(un, SD_LOG_IO, 21547 "sd_send_scsi_feature_GET_CONFIGURATION: data", 21548 (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX); 21549 } 21550 21551 SD_TRACE(SD_LOG_IO, un, 21552 "sd_send_scsi_feature_GET_CONFIGURATION: exit\n"); 21553 21554 return (status); 21555 } 21556 21557 21558 /* 21559 * Function: sd_send_scsi_MODE_SENSE 21560 * 21561 * Description: Utility function for issuing a scsi MODE SENSE command. 21562 * Note: This routine uses a consistent implementation for Group0, 21563 * Group1, and Group2 commands across all platforms. ATAPI devices 21564 * use Group 1 Read/Write commands and Group 2 Mode Sense/Select 21565 * 21566 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 21567 * structure for this target. 21568 * cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or 21569 * CDB_GROUP[1|2] (10 byte). 21570 * bufaddr - buffer for page data retrieved from the target. 21571 * buflen - size of page to be retrieved. 21572 * page_code - page code of data to be retrieved from the target. 21573 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 21574 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 21575 * to use the USCSI "direct" chain and bypass the normal 21576 * command waitq. 21577 * 21578 * Return Code: 0 - Success 21579 * errno return code from sd_ssc_send() 21580 * 21581 * Context: Can sleep. Does not return until command is completed. 21582 */ 21583 21584 static int 21585 sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr, 21586 size_t buflen, uchar_t page_code, int path_flag) 21587 { 21588 struct scsi_extended_sense sense_buf; 21589 union scsi_cdb cdb; 21590 struct uscsi_cmd ucmd_buf; 21591 int status; 21592 int headlen; 21593 struct sd_lun *un; 21594 21595 ASSERT(ssc != NULL); 21596 un = ssc->ssc_un; 21597 ASSERT(un != NULL); 21598 ASSERT(!mutex_owned(SD_MUTEX(un))); 21599 ASSERT(bufaddr != NULL); 21600 ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) || 21601 (cdbsize == CDB_GROUP2)); 21602 21603 SD_TRACE(SD_LOG_IO, un, 21604 "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un); 21605 21606 bzero(&cdb, sizeof (cdb)); 21607 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21608 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 21609 bzero(bufaddr, buflen); 21610 21611 if (cdbsize == CDB_GROUP0) { 21612 cdb.scc_cmd = SCMD_MODE_SENSE; 21613 cdb.cdb_opaque[2] = page_code; 21614 FORMG0COUNT(&cdb, buflen); 21615 headlen = MODE_HEADER_LENGTH; 21616 } else { 21617 cdb.scc_cmd = SCMD_MODE_SENSE_G1; 21618 cdb.cdb_opaque[2] = page_code; 21619 FORMG1COUNT(&cdb, buflen); 21620 headlen = MODE_HEADER_LENGTH_GRP2; 21621 } 21622 21623 ASSERT(headlen <= buflen); 21624 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 21625 21626 ucmd_buf.uscsi_cdb = (char *)&cdb; 21627 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 21628 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 21629 ucmd_buf.uscsi_buflen = buflen; 21630 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 21631 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 21632 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 21633 ucmd_buf.uscsi_timeout = 60; 21634 21635 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 21636 UIO_SYSSPACE, path_flag); 21637 21638 switch (status) { 21639 case 0: 21640 /* 21641 * sr_check_wp() uses 0x3f page code and check the header of 21642 * mode page to determine if target device is write-protected. 21643 * But some USB devices return 0 bytes for 0x3f page code. For 21644 * this case, make sure that mode page header is returned at 21645 * least. 21646 */ 21647 if (buflen - ucmd_buf.uscsi_resid < headlen) { 21648 status = EIO; 21649 sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1, 21650 "mode page header is not returned"); 21651 } 21652 break; /* Success! */ 21653 case EIO: 21654 switch (ucmd_buf.uscsi_status) { 21655 case STATUS_RESERVATION_CONFLICT: 21656 status = EACCES; 21657 break; 21658 default: 21659 break; 21660 } 21661 break; 21662 default: 21663 break; 21664 } 21665 21666 if (status == 0) { 21667 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data", 21668 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 21669 } 21670 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n"); 21671 21672 return (status); 21673 } 21674 21675 21676 /* 21677 * Function: sd_send_scsi_MODE_SELECT 21678 * 21679 * Description: Utility function for issuing a scsi MODE SELECT command. 21680 * Note: This routine uses a consistent implementation for Group0, 21681 * Group1, and Group2 commands across all platforms. ATAPI devices 21682 * use Group 1 Read/Write commands and Group 2 Mode Sense/Select 21683 * 21684 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 21685 * structure for this target. 21686 * cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or 21687 * CDB_GROUP[1|2] (10 byte). 21688 * bufaddr - buffer for page data retrieved from the target. 21689 * buflen - size of page to be retrieved. 21690 * save_page - boolean to determin if SP bit should be set. 21691 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 21692 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 21693 * to use the USCSI "direct" chain and bypass the normal 21694 * command waitq. 21695 * 21696 * Return Code: 0 - Success 21697 * errno return code from sd_ssc_send() 21698 * 21699 * Context: Can sleep. Does not return until command is completed. 21700 */ 21701 21702 static int 21703 sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr, 21704 size_t buflen, uchar_t save_page, int path_flag) 21705 { 21706 struct scsi_extended_sense sense_buf; 21707 union scsi_cdb cdb; 21708 struct uscsi_cmd ucmd_buf; 21709 int status; 21710 struct sd_lun *un; 21711 21712 ASSERT(ssc != NULL); 21713 un = ssc->ssc_un; 21714 ASSERT(un != NULL); 21715 ASSERT(!mutex_owned(SD_MUTEX(un))); 21716 ASSERT(bufaddr != NULL); 21717 ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) || 21718 (cdbsize == CDB_GROUP2)); 21719 21720 SD_TRACE(SD_LOG_IO, un, 21721 "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un); 21722 21723 bzero(&cdb, sizeof (cdb)); 21724 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21725 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 21726 21727 /* Set the PF bit for many third party drives */ 21728 cdb.cdb_opaque[1] = 0x10; 21729 21730 /* Set the savepage(SP) bit if given */ 21731 if (save_page == SD_SAVE_PAGE) { 21732 cdb.cdb_opaque[1] |= 0x01; 21733 } 21734 21735 if (cdbsize == CDB_GROUP0) { 21736 cdb.scc_cmd = SCMD_MODE_SELECT; 21737 FORMG0COUNT(&cdb, buflen); 21738 } else { 21739 cdb.scc_cmd = SCMD_MODE_SELECT_G1; 21740 FORMG1COUNT(&cdb, buflen); 21741 } 21742 21743 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 21744 21745 ucmd_buf.uscsi_cdb = (char *)&cdb; 21746 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 21747 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 21748 ucmd_buf.uscsi_buflen = buflen; 21749 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 21750 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 21751 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT; 21752 ucmd_buf.uscsi_timeout = 60; 21753 21754 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 21755 UIO_SYSSPACE, path_flag); 21756 21757 switch (status) { 21758 case 0: 21759 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21760 break; /* Success! */ 21761 case EIO: 21762 switch (ucmd_buf.uscsi_status) { 21763 case STATUS_RESERVATION_CONFLICT: 21764 status = EACCES; 21765 break; 21766 default: 21767 break; 21768 } 21769 break; 21770 default: 21771 break; 21772 } 21773 21774 if (status == 0) { 21775 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data", 21776 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 21777 } 21778 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n"); 21779 21780 return (status); 21781 } 21782 21783 21784 /* 21785 * Function: sd_send_scsi_RDWR 21786 * 21787 * Description: Issue a scsi READ or WRITE command with the given parameters. 21788 * 21789 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 21790 * structure for this target. 21791 * cmd: SCMD_READ or SCMD_WRITE 21792 * bufaddr: Address of caller's buffer to receive the RDWR data 21793 * buflen: Length of caller's buffer receive the RDWR data. 21794 * start_block: Block number for the start of the RDWR operation. 21795 * (Assumes target-native block size.) 21796 * residp: Pointer to variable to receive the redisual of the 21797 * RDWR operation (may be NULL of no residual requested). 21798 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 21799 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 21800 * to use the USCSI "direct" chain and bypass the normal 21801 * command waitq. 21802 * 21803 * Return Code: 0 - Success 21804 * errno return code from sd_ssc_send() 21805 * 21806 * Context: Can sleep. Does not return until command is completed. 21807 */ 21808 21809 static int 21810 sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr, 21811 size_t buflen, daddr_t start_block, int path_flag) 21812 { 21813 struct scsi_extended_sense sense_buf; 21814 union scsi_cdb cdb; 21815 struct uscsi_cmd ucmd_buf; 21816 uint32_t block_count; 21817 int status; 21818 int cdbsize; 21819 uchar_t flag; 21820 struct sd_lun *un; 21821 21822 ASSERT(ssc != NULL); 21823 un = ssc->ssc_un; 21824 ASSERT(un != NULL); 21825 ASSERT(!mutex_owned(SD_MUTEX(un))); 21826 ASSERT(bufaddr != NULL); 21827 ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE)); 21828 21829 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un); 21830 21831 if (un->un_f_tgt_blocksize_is_valid != TRUE) { 21832 return (EINVAL); 21833 } 21834 21835 mutex_enter(SD_MUTEX(un)); 21836 block_count = SD_BYTES2TGTBLOCKS(un, buflen); 21837 mutex_exit(SD_MUTEX(un)); 21838 21839 flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE; 21840 21841 SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: " 21842 "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n", 21843 bufaddr, buflen, start_block, block_count); 21844 21845 bzero(&cdb, sizeof (cdb)); 21846 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21847 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 21848 21849 /* Compute CDB size to use */ 21850 if (start_block > 0xffffffff) 21851 cdbsize = CDB_GROUP4; 21852 else if ((start_block & 0xFFE00000) || 21853 (un->un_f_cfg_is_atapi == TRUE)) 21854 cdbsize = CDB_GROUP1; 21855 else 21856 cdbsize = CDB_GROUP0; 21857 21858 switch (cdbsize) { 21859 case CDB_GROUP0: /* 6-byte CDBs */ 21860 cdb.scc_cmd = cmd; 21861 FORMG0ADDR(&cdb, start_block); 21862 FORMG0COUNT(&cdb, block_count); 21863 break; 21864 case CDB_GROUP1: /* 10-byte CDBs */ 21865 cdb.scc_cmd = cmd | SCMD_GROUP1; 21866 FORMG1ADDR(&cdb, start_block); 21867 FORMG1COUNT(&cdb, block_count); 21868 break; 21869 case CDB_GROUP4: /* 16-byte CDBs */ 21870 cdb.scc_cmd = cmd | SCMD_GROUP4; 21871 FORMG4LONGADDR(&cdb, (uint64_t)start_block); 21872 FORMG4COUNT(&cdb, block_count); 21873 break; 21874 case CDB_GROUP5: /* 12-byte CDBs (currently unsupported) */ 21875 default: 21876 /* All others reserved */ 21877 return (EINVAL); 21878 } 21879 21880 /* Set LUN bit(s) in CDB if this is a SCSI-1 device */ 21881 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 21882 21883 ucmd_buf.uscsi_cdb = (char *)&cdb; 21884 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 21885 ucmd_buf.uscsi_bufaddr = bufaddr; 21886 ucmd_buf.uscsi_buflen = buflen; 21887 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 21888 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 21889 ucmd_buf.uscsi_flags = flag | USCSI_RQENABLE | USCSI_SILENT; 21890 ucmd_buf.uscsi_timeout = 60; 21891 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 21892 UIO_SYSSPACE, path_flag); 21893 21894 switch (status) { 21895 case 0: 21896 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 21897 break; /* Success! */ 21898 case EIO: 21899 switch (ucmd_buf.uscsi_status) { 21900 case STATUS_RESERVATION_CONFLICT: 21901 status = EACCES; 21902 break; 21903 default: 21904 break; 21905 } 21906 break; 21907 default: 21908 break; 21909 } 21910 21911 if (status == 0) { 21912 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data", 21913 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 21914 } 21915 21916 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n"); 21917 21918 return (status); 21919 } 21920 21921 21922 /* 21923 * Function: sd_send_scsi_LOG_SENSE 21924 * 21925 * Description: Issue a scsi LOG_SENSE command with the given parameters. 21926 * 21927 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 21928 * structure for this target. 21929 * 21930 * Return Code: 0 - Success 21931 * errno return code from sd_ssc_send() 21932 * 21933 * Context: Can sleep. Does not return until command is completed. 21934 */ 21935 21936 static int 21937 sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, uint16_t buflen, 21938 uchar_t page_code, uchar_t page_control, uint16_t param_ptr, 21939 int path_flag) 21940 21941 { 21942 struct scsi_extended_sense sense_buf; 21943 union scsi_cdb cdb; 21944 struct uscsi_cmd ucmd_buf; 21945 int status; 21946 struct sd_lun *un; 21947 21948 ASSERT(ssc != NULL); 21949 un = ssc->ssc_un; 21950 ASSERT(un != NULL); 21951 ASSERT(!mutex_owned(SD_MUTEX(un))); 21952 21953 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un); 21954 21955 bzero(&cdb, sizeof (cdb)); 21956 bzero(&ucmd_buf, sizeof (ucmd_buf)); 21957 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 21958 21959 cdb.scc_cmd = SCMD_LOG_SENSE_G1; 21960 cdb.cdb_opaque[2] = (page_control << 6) | page_code; 21961 cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8); 21962 cdb.cdb_opaque[6] = (uchar_t)(param_ptr & 0x00FF); 21963 FORMG1COUNT(&cdb, buflen); 21964 21965 ucmd_buf.uscsi_cdb = (char *)&cdb; 21966 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 21967 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 21968 ucmd_buf.uscsi_buflen = buflen; 21969 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 21970 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 21971 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 21972 ucmd_buf.uscsi_timeout = 60; 21973 21974 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 21975 UIO_SYSSPACE, path_flag); 21976 21977 switch (status) { 21978 case 0: 21979 break; 21980 case EIO: 21981 switch (ucmd_buf.uscsi_status) { 21982 case STATUS_RESERVATION_CONFLICT: 21983 status = EACCES; 21984 break; 21985 case STATUS_CHECK: 21986 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 21987 (scsi_sense_key((uint8_t *)&sense_buf) == 21988 KEY_ILLEGAL_REQUEST) && 21989 (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) { 21990 /* 21991 * ASC 0x24: INVALID FIELD IN CDB 21992 */ 21993 switch (page_code) { 21994 case START_STOP_CYCLE_PAGE: 21995 /* 21996 * The start stop cycle counter is 21997 * implemented as page 0x31 in earlier 21998 * generation disks. In new generation 21999 * disks the start stop cycle counter is 22000 * implemented as page 0xE. To properly 22001 * handle this case if an attempt for 22002 * log page 0xE is made and fails we 22003 * will try again using page 0x31. 22004 * 22005 * Network storage BU committed to 22006 * maintain the page 0x31 for this 22007 * purpose and will not have any other 22008 * page implemented with page code 0x31 22009 * until all disks transition to the 22010 * standard page. 22011 */ 22012 mutex_enter(SD_MUTEX(un)); 22013 un->un_start_stop_cycle_page = 22014 START_STOP_CYCLE_VU_PAGE; 22015 cdb.cdb_opaque[2] = 22016 (char)(page_control << 6) | 22017 un->un_start_stop_cycle_page; 22018 mutex_exit(SD_MUTEX(un)); 22019 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 22020 status = sd_ssc_send( 22021 ssc, &ucmd_buf, FKIOCTL, 22022 UIO_SYSSPACE, path_flag); 22023 22024 break; 22025 case TEMPERATURE_PAGE: 22026 status = ENOTTY; 22027 break; 22028 default: 22029 break; 22030 } 22031 } 22032 break; 22033 default: 22034 break; 22035 } 22036 break; 22037 default: 22038 break; 22039 } 22040 22041 if (status == 0) { 22042 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 22043 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data", 22044 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 22045 } 22046 22047 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n"); 22048 22049 return (status); 22050 } 22051 22052 22053 /* 22054 * Function: sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION 22055 * 22056 * Description: Issue the scsi GET EVENT STATUS NOTIFICATION command. 22057 * 22058 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 22059 * structure for this target. 22060 * bufaddr 22061 * buflen 22062 * class_req 22063 * 22064 * Return Code: 0 - Success 22065 * errno return code from sd_ssc_send() 22066 * 22067 * Context: Can sleep. Does not return until command is completed. 22068 */ 22069 22070 static int 22071 sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(sd_ssc_t *ssc, uchar_t *bufaddr, 22072 size_t buflen, uchar_t class_req) 22073 { 22074 union scsi_cdb cdb; 22075 struct uscsi_cmd ucmd_buf; 22076 int status; 22077 struct sd_lun *un; 22078 22079 ASSERT(ssc != NULL); 22080 un = ssc->ssc_un; 22081 ASSERT(un != NULL); 22082 ASSERT(!mutex_owned(SD_MUTEX(un))); 22083 ASSERT(bufaddr != NULL); 22084 22085 SD_TRACE(SD_LOG_IO, un, 22086 "sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION: entry: un:0x%p\n", un); 22087 22088 bzero(&cdb, sizeof (cdb)); 22089 bzero(&ucmd_buf, sizeof (ucmd_buf)); 22090 bzero(bufaddr, buflen); 22091 22092 cdb.scc_cmd = SCMD_GET_EVENT_STATUS_NOTIFICATION; 22093 cdb.cdb_opaque[1] = 1; /* polled */ 22094 cdb.cdb_opaque[4] = class_req; 22095 FORMG1COUNT(&cdb, buflen); 22096 22097 ucmd_buf.uscsi_cdb = (char *)&cdb; 22098 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 22099 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 22100 ucmd_buf.uscsi_buflen = buflen; 22101 ucmd_buf.uscsi_rqbuf = NULL; 22102 ucmd_buf.uscsi_rqlen = 0; 22103 ucmd_buf.uscsi_flags = USCSI_READ | USCSI_SILENT; 22104 ucmd_buf.uscsi_timeout = 60; 22105 22106 status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL, 22107 UIO_SYSSPACE, SD_PATH_DIRECT); 22108 22109 /* 22110 * Only handle status == 0, the upper-level caller 22111 * will put different assessment based on the context. 22112 */ 22113 if (status == 0) { 22114 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 22115 22116 if (ucmd_buf.uscsi_resid != 0) { 22117 status = EIO; 22118 } 22119 } 22120 22121 SD_TRACE(SD_LOG_IO, un, 22122 "sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION: exit\n"); 22123 22124 return (status); 22125 } 22126 22127 22128 static boolean_t 22129 sd_gesn_media_data_valid(uchar_t *data) 22130 { 22131 uint16_t len; 22132 22133 len = (data[1] << 8) | data[0]; 22134 return ((len >= 6) && 22135 ((data[2] & SD_GESN_HEADER_NEA) == 0) && 22136 ((data[2] & SD_GESN_HEADER_CLASS) == SD_GESN_MEDIA_CLASS) && 22137 ((data[3] & (1 << SD_GESN_MEDIA_CLASS)) != 0)); 22138 } 22139 22140 22141 /* 22142 * Function: sdioctl 22143 * 22144 * Description: Driver's ioctl(9e) entry point function. 22145 * 22146 * Arguments: dev - device number 22147 * cmd - ioctl operation to be performed 22148 * arg - user argument, contains data to be set or reference 22149 * parameter for get 22150 * flag - bit flag, indicating open settings, 32/64 bit type 22151 * cred_p - user credential pointer 22152 * rval_p - calling process return value (OPT) 22153 * 22154 * Return Code: EINVAL 22155 * ENOTTY 22156 * ENXIO 22157 * EIO 22158 * EFAULT 22159 * ENOTSUP 22160 * EPERM 22161 * 22162 * Context: Called from the device switch at normal priority. 22163 */ 22164 22165 static int 22166 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p) 22167 { 22168 struct sd_lun *un = NULL; 22169 int err = 0; 22170 int i = 0; 22171 cred_t *cr; 22172 int tmprval = EINVAL; 22173 boolean_t is_valid; 22174 sd_ssc_t *ssc; 22175 22176 /* 22177 * All device accesses go thru sdstrategy where we check on suspend 22178 * status 22179 */ 22180 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22181 return (ENXIO); 22182 } 22183 22184 ASSERT(!mutex_owned(SD_MUTEX(un))); 22185 22186 /* Initialize sd_ssc_t for internal uscsi commands */ 22187 ssc = sd_ssc_init(un); 22188 22189 is_valid = SD_IS_VALID_LABEL(un); 22190 22191 /* 22192 * Moved this wait from sd_uscsi_strategy to here for 22193 * reasons of deadlock prevention. Internal driver commands, 22194 * specifically those to change a devices power level, result 22195 * in a call to sd_uscsi_strategy. 22196 */ 22197 mutex_enter(SD_MUTEX(un)); 22198 while ((un->un_state == SD_STATE_SUSPENDED) || 22199 (un->un_state == SD_STATE_PM_CHANGING)) { 22200 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 22201 } 22202 /* 22203 * Twiddling the counter here protects commands from now 22204 * through to the top of sd_uscsi_strategy. Without the 22205 * counter inc. a power down, for example, could get in 22206 * after the above check for state is made and before 22207 * execution gets to the top of sd_uscsi_strategy. 22208 * That would cause problems. 22209 */ 22210 un->un_ncmds_in_driver++; 22211 22212 if (!is_valid && 22213 (flag & (FNDELAY | FNONBLOCK))) { 22214 switch (cmd) { 22215 case DKIOCGGEOM: /* SD_PATH_DIRECT */ 22216 case DKIOCGVTOC: 22217 case DKIOCGEXTVTOC: 22218 case DKIOCGAPART: 22219 case DKIOCPARTINFO: 22220 case DKIOCEXTPARTINFO: 22221 case DKIOCSGEOM: 22222 case DKIOCSAPART: 22223 case DKIOCGETEFI: 22224 case DKIOCPARTITION: 22225 case DKIOCSVTOC: 22226 case DKIOCSEXTVTOC: 22227 case DKIOCSETEFI: 22228 case DKIOCGMBOOT: 22229 case DKIOCSMBOOT: 22230 case DKIOCG_PHYGEOM: 22231 case DKIOCG_VIRTGEOM: 22232 #if defined(__i386) || defined(__amd64) 22233 case DKIOCSETEXTPART: 22234 #endif 22235 /* let cmlb handle it */ 22236 goto skip_ready_valid; 22237 22238 case CDROMPAUSE: 22239 case CDROMRESUME: 22240 case CDROMPLAYMSF: 22241 case CDROMPLAYTRKIND: 22242 case CDROMREADTOCHDR: 22243 case CDROMREADTOCENTRY: 22244 case CDROMSTOP: 22245 case CDROMSTART: 22246 case CDROMVOLCTRL: 22247 case CDROMSUBCHNL: 22248 case CDROMREADMODE2: 22249 case CDROMREADMODE1: 22250 case CDROMREADOFFSET: 22251 case CDROMSBLKMODE: 22252 case CDROMGBLKMODE: 22253 case CDROMGDRVSPEED: 22254 case CDROMSDRVSPEED: 22255 case CDROMCDDA: 22256 case CDROMCDXA: 22257 case CDROMSUBCODE: 22258 if (!ISCD(un)) { 22259 un->un_ncmds_in_driver--; 22260 ASSERT(un->un_ncmds_in_driver >= 0); 22261 mutex_exit(SD_MUTEX(un)); 22262 err = ENOTTY; 22263 goto done_without_assess; 22264 } 22265 break; 22266 case FDEJECT: 22267 case DKIOCEJECT: 22268 case CDROMEJECT: 22269 if (!un->un_f_eject_media_supported) { 22270 un->un_ncmds_in_driver--; 22271 ASSERT(un->un_ncmds_in_driver >= 0); 22272 mutex_exit(SD_MUTEX(un)); 22273 err = ENOTTY; 22274 goto done_without_assess; 22275 } 22276 break; 22277 case DKIOCFLUSHWRITECACHE: 22278 mutex_exit(SD_MUTEX(un)); 22279 err = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 22280 if (err != 0) { 22281 mutex_enter(SD_MUTEX(un)); 22282 un->un_ncmds_in_driver--; 22283 ASSERT(un->un_ncmds_in_driver >= 0); 22284 mutex_exit(SD_MUTEX(un)); 22285 err = EIO; 22286 goto done_quick_assess; 22287 } 22288 mutex_enter(SD_MUTEX(un)); 22289 /* FALLTHROUGH */ 22290 case DKIOCREMOVABLE: 22291 case DKIOCHOTPLUGGABLE: 22292 case DKIOCINFO: 22293 case DKIOCGMEDIAINFO: 22294 case DKIOCGMEDIAINFOEXT: 22295 case MHIOCENFAILFAST: 22296 case MHIOCSTATUS: 22297 case MHIOCTKOWN: 22298 case MHIOCRELEASE: 22299 case MHIOCGRP_INKEYS: 22300 case MHIOCGRP_INRESV: 22301 case MHIOCGRP_REGISTER: 22302 case MHIOCGRP_CLEAR: 22303 case MHIOCGRP_RESERVE: 22304 case MHIOCGRP_PREEMPTANDABORT: 22305 case MHIOCGRP_REGISTERANDIGNOREKEY: 22306 case CDROMCLOSETRAY: 22307 case USCSICMD: 22308 goto skip_ready_valid; 22309 default: 22310 break; 22311 } 22312 22313 mutex_exit(SD_MUTEX(un)); 22314 err = sd_ready_and_valid(ssc, SDPART(dev)); 22315 mutex_enter(SD_MUTEX(un)); 22316 22317 if (err != SD_READY_VALID) { 22318 switch (cmd) { 22319 case DKIOCSTATE: 22320 case CDROMGDRVSPEED: 22321 case CDROMSDRVSPEED: 22322 case FDEJECT: /* for eject command */ 22323 case DKIOCEJECT: 22324 case CDROMEJECT: 22325 case DKIOCREMOVABLE: 22326 case DKIOCHOTPLUGGABLE: 22327 break; 22328 default: 22329 if (un->un_f_has_removable_media) { 22330 err = ENXIO; 22331 } else { 22332 /* Do not map SD_RESERVED_BY_OTHERS to EIO */ 22333 if (err == SD_RESERVED_BY_OTHERS) { 22334 err = EACCES; 22335 } else { 22336 err = EIO; 22337 } 22338 } 22339 un->un_ncmds_in_driver--; 22340 ASSERT(un->un_ncmds_in_driver >= 0); 22341 mutex_exit(SD_MUTEX(un)); 22342 22343 goto done_without_assess; 22344 } 22345 } 22346 } 22347 22348 skip_ready_valid: 22349 mutex_exit(SD_MUTEX(un)); 22350 22351 switch (cmd) { 22352 case DKIOCINFO: 22353 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n"); 22354 err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag); 22355 break; 22356 22357 case DKIOCGMEDIAINFO: 22358 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n"); 22359 err = sd_get_media_info(dev, (caddr_t)arg, flag); 22360 break; 22361 22362 case DKIOCGMEDIAINFOEXT: 22363 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFOEXT\n"); 22364 err = sd_get_media_info_ext(dev, (caddr_t)arg, flag); 22365 break; 22366 22367 case DKIOCGGEOM: 22368 case DKIOCGVTOC: 22369 case DKIOCGEXTVTOC: 22370 case DKIOCGAPART: 22371 case DKIOCPARTINFO: 22372 case DKIOCEXTPARTINFO: 22373 case DKIOCSGEOM: 22374 case DKIOCSAPART: 22375 case DKIOCGETEFI: 22376 case DKIOCPARTITION: 22377 case DKIOCSVTOC: 22378 case DKIOCSEXTVTOC: 22379 case DKIOCSETEFI: 22380 case DKIOCGMBOOT: 22381 case DKIOCSMBOOT: 22382 case DKIOCG_PHYGEOM: 22383 case DKIOCG_VIRTGEOM: 22384 #if defined(__i386) || defined(__amd64) 22385 case DKIOCSETEXTPART: 22386 #endif 22387 SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd); 22388 22389 /* TUR should spin up */ 22390 22391 if (un->un_f_has_removable_media) 22392 err = sd_send_scsi_TEST_UNIT_READY(ssc, 22393 SD_CHECK_FOR_MEDIA); 22394 22395 else 22396 err = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 22397 22398 if (err != 0) 22399 goto done_with_assess; 22400 22401 err = cmlb_ioctl(un->un_cmlbhandle, dev, 22402 cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT); 22403 22404 if ((err == 0) && 22405 ((cmd == DKIOCSETEFI) || 22406 (un->un_f_pkstats_enabled) && 22407 (cmd == DKIOCSAPART || cmd == DKIOCSVTOC || 22408 cmd == DKIOCSEXTVTOC))) { 22409 22410 tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT, 22411 (void *)SD_PATH_DIRECT); 22412 if ((tmprval == 0) && un->un_f_pkstats_enabled) { 22413 sd_set_pstats(un); 22414 SD_TRACE(SD_LOG_IO_PARTITION, un, 22415 "sd_ioctl: un:0x%p pstats created and " 22416 "set\n", un); 22417 } 22418 } 22419 22420 if ((cmd == DKIOCSVTOC || cmd == DKIOCSEXTVTOC) || 22421 ((cmd == DKIOCSETEFI) && (tmprval == 0))) { 22422 22423 mutex_enter(SD_MUTEX(un)); 22424 if (un->un_f_devid_supported && 22425 (un->un_f_opt_fab_devid == TRUE)) { 22426 if (un->un_devid == NULL) { 22427 sd_register_devid(ssc, SD_DEVINFO(un), 22428 SD_TARGET_IS_UNRESERVED); 22429 } else { 22430 /* 22431 * The device id for this disk 22432 * has been fabricated. The 22433 * device id must be preserved 22434 * by writing it back out to 22435 * disk. 22436 */ 22437 if (sd_write_deviceid(ssc) != 0) { 22438 ddi_devid_free(un->un_devid); 22439 un->un_devid = NULL; 22440 } 22441 } 22442 } 22443 mutex_exit(SD_MUTEX(un)); 22444 } 22445 22446 break; 22447 22448 case DKIOCLOCK: 22449 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n"); 22450 err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT, 22451 SD_PATH_STANDARD); 22452 goto done_with_assess; 22453 22454 case DKIOCUNLOCK: 22455 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n"); 22456 err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW, 22457 SD_PATH_STANDARD); 22458 goto done_with_assess; 22459 22460 case DKIOCSTATE: { 22461 enum dkio_state state; 22462 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n"); 22463 22464 if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) { 22465 err = EFAULT; 22466 } else { 22467 err = sd_check_media(dev, state); 22468 if (err == 0) { 22469 if (ddi_copyout(&un->un_mediastate, (void *)arg, 22470 sizeof (int), flag) != 0) 22471 err = EFAULT; 22472 } 22473 } 22474 break; 22475 } 22476 22477 case DKIOCREMOVABLE: 22478 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n"); 22479 i = un->un_f_has_removable_media ? 1 : 0; 22480 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) { 22481 err = EFAULT; 22482 } else { 22483 err = 0; 22484 } 22485 break; 22486 22487 case DKIOCHOTPLUGGABLE: 22488 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n"); 22489 i = un->un_f_is_hotpluggable ? 1 : 0; 22490 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) { 22491 err = EFAULT; 22492 } else { 22493 err = 0; 22494 } 22495 break; 22496 22497 case DKIOCREADONLY: 22498 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREADONLY\n"); 22499 i = 0; 22500 if ((ISCD(un) && !un->un_f_mmc_writable_media) || 22501 (sr_check_wp(dev) != 0)) { 22502 i = 1; 22503 } 22504 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) { 22505 err = EFAULT; 22506 } else { 22507 err = 0; 22508 } 22509 break; 22510 22511 case DKIOCGTEMPERATURE: 22512 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n"); 22513 err = sd_dkio_get_temp(dev, (caddr_t)arg, flag); 22514 break; 22515 22516 case MHIOCENFAILFAST: 22517 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n"); 22518 if ((err = drv_priv(cred_p)) == 0) { 22519 err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag); 22520 } 22521 break; 22522 22523 case MHIOCTKOWN: 22524 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n"); 22525 if ((err = drv_priv(cred_p)) == 0) { 22526 err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag); 22527 } 22528 break; 22529 22530 case MHIOCRELEASE: 22531 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n"); 22532 if ((err = drv_priv(cred_p)) == 0) { 22533 err = sd_mhdioc_release(dev); 22534 } 22535 break; 22536 22537 case MHIOCSTATUS: 22538 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n"); 22539 if ((err = drv_priv(cred_p)) == 0) { 22540 switch (sd_send_scsi_TEST_UNIT_READY(ssc, 0)) { 22541 case 0: 22542 err = 0; 22543 break; 22544 case EACCES: 22545 *rval_p = 1; 22546 err = 0; 22547 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 22548 break; 22549 default: 22550 err = EIO; 22551 goto done_with_assess; 22552 } 22553 } 22554 break; 22555 22556 case MHIOCQRESERVE: 22557 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n"); 22558 if ((err = drv_priv(cred_p)) == 0) { 22559 err = sd_reserve_release(dev, SD_RESERVE); 22560 } 22561 break; 22562 22563 case MHIOCREREGISTERDEVID: 22564 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n"); 22565 if (drv_priv(cred_p) == EPERM) { 22566 err = EPERM; 22567 } else if (!un->un_f_devid_supported) { 22568 err = ENOTTY; 22569 } else { 22570 err = sd_mhdioc_register_devid(dev); 22571 } 22572 break; 22573 22574 case MHIOCGRP_INKEYS: 22575 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n"); 22576 if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) { 22577 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22578 err = ENOTSUP; 22579 } else { 22580 err = sd_mhdioc_inkeys(dev, (caddr_t)arg, 22581 flag); 22582 } 22583 } 22584 break; 22585 22586 case MHIOCGRP_INRESV: 22587 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n"); 22588 if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) { 22589 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22590 err = ENOTSUP; 22591 } else { 22592 err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag); 22593 } 22594 } 22595 break; 22596 22597 case MHIOCGRP_REGISTER: 22598 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n"); 22599 if ((err = drv_priv(cred_p)) != EPERM) { 22600 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22601 err = ENOTSUP; 22602 } else if (arg != NULL) { 22603 mhioc_register_t reg; 22604 if (ddi_copyin((void *)arg, ®, 22605 sizeof (mhioc_register_t), flag) != 0) { 22606 err = EFAULT; 22607 } else { 22608 err = 22609 sd_send_scsi_PERSISTENT_RESERVE_OUT( 22610 ssc, SD_SCSI3_REGISTER, 22611 (uchar_t *)®); 22612 if (err != 0) 22613 goto done_with_assess; 22614 } 22615 } 22616 } 22617 break; 22618 22619 case MHIOCGRP_CLEAR: 22620 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_CLEAR\n"); 22621 if ((err = drv_priv(cred_p)) != EPERM) { 22622 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22623 err = ENOTSUP; 22624 } else if (arg != NULL) { 22625 mhioc_register_t reg; 22626 if (ddi_copyin((void *)arg, ®, 22627 sizeof (mhioc_register_t), flag) != 0) { 22628 err = EFAULT; 22629 } else { 22630 err = 22631 sd_send_scsi_PERSISTENT_RESERVE_OUT( 22632 ssc, SD_SCSI3_CLEAR, 22633 (uchar_t *)®); 22634 if (err != 0) 22635 goto done_with_assess; 22636 } 22637 } 22638 } 22639 break; 22640 22641 case MHIOCGRP_RESERVE: 22642 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n"); 22643 if ((err = drv_priv(cred_p)) != EPERM) { 22644 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22645 err = ENOTSUP; 22646 } else if (arg != NULL) { 22647 mhioc_resv_desc_t resv_desc; 22648 if (ddi_copyin((void *)arg, &resv_desc, 22649 sizeof (mhioc_resv_desc_t), flag) != 0) { 22650 err = EFAULT; 22651 } else { 22652 err = 22653 sd_send_scsi_PERSISTENT_RESERVE_OUT( 22654 ssc, SD_SCSI3_RESERVE, 22655 (uchar_t *)&resv_desc); 22656 if (err != 0) 22657 goto done_with_assess; 22658 } 22659 } 22660 } 22661 break; 22662 22663 case MHIOCGRP_PREEMPTANDABORT: 22664 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n"); 22665 if ((err = drv_priv(cred_p)) != EPERM) { 22666 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22667 err = ENOTSUP; 22668 } else if (arg != NULL) { 22669 mhioc_preemptandabort_t preempt_abort; 22670 if (ddi_copyin((void *)arg, &preempt_abort, 22671 sizeof (mhioc_preemptandabort_t), 22672 flag) != 0) { 22673 err = EFAULT; 22674 } else { 22675 err = 22676 sd_send_scsi_PERSISTENT_RESERVE_OUT( 22677 ssc, SD_SCSI3_PREEMPTANDABORT, 22678 (uchar_t *)&preempt_abort); 22679 if (err != 0) 22680 goto done_with_assess; 22681 } 22682 } 22683 } 22684 break; 22685 22686 case MHIOCGRP_REGISTERANDIGNOREKEY: 22687 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n"); 22688 if ((err = drv_priv(cred_p)) != EPERM) { 22689 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 22690 err = ENOTSUP; 22691 } else if (arg != NULL) { 22692 mhioc_registerandignorekey_t r_and_i; 22693 if (ddi_copyin((void *)arg, (void *)&r_and_i, 22694 sizeof (mhioc_registerandignorekey_t), 22695 flag) != 0) { 22696 err = EFAULT; 22697 } else { 22698 err = 22699 sd_send_scsi_PERSISTENT_RESERVE_OUT( 22700 ssc, SD_SCSI3_REGISTERANDIGNOREKEY, 22701 (uchar_t *)&r_and_i); 22702 if (err != 0) 22703 goto done_with_assess; 22704 } 22705 } 22706 } 22707 break; 22708 22709 case USCSICMD: 22710 SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n"); 22711 cr = ddi_get_cred(); 22712 if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) { 22713 err = EPERM; 22714 } else { 22715 enum uio_seg uioseg; 22716 22717 uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE : 22718 UIO_USERSPACE; 22719 if (un->un_f_format_in_progress == TRUE) { 22720 err = EAGAIN; 22721 break; 22722 } 22723 22724 err = sd_ssc_send(ssc, 22725 (struct uscsi_cmd *)arg, 22726 flag, uioseg, SD_PATH_STANDARD); 22727 if (err != 0) 22728 goto done_with_assess; 22729 else 22730 sd_ssc_assessment(ssc, SD_FMT_STANDARD); 22731 } 22732 break; 22733 22734 case CDROMPAUSE: 22735 case CDROMRESUME: 22736 SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n"); 22737 if (!ISCD(un)) { 22738 err = ENOTTY; 22739 } else { 22740 err = sr_pause_resume(dev, cmd); 22741 } 22742 break; 22743 22744 case CDROMPLAYMSF: 22745 SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n"); 22746 if (!ISCD(un)) { 22747 err = ENOTTY; 22748 } else { 22749 err = sr_play_msf(dev, (caddr_t)arg, flag); 22750 } 22751 break; 22752 22753 case CDROMPLAYTRKIND: 22754 SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n"); 22755 #if defined(__i386) || defined(__amd64) 22756 /* 22757 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead 22758 */ 22759 if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) { 22760 #else 22761 if (!ISCD(un)) { 22762 #endif 22763 err = ENOTTY; 22764 } else { 22765 err = sr_play_trkind(dev, (caddr_t)arg, flag); 22766 } 22767 break; 22768 22769 case CDROMREADTOCHDR: 22770 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n"); 22771 if (!ISCD(un)) { 22772 err = ENOTTY; 22773 } else { 22774 err = sr_read_tochdr(dev, (caddr_t)arg, flag); 22775 } 22776 break; 22777 22778 case CDROMREADTOCENTRY: 22779 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n"); 22780 if (!ISCD(un)) { 22781 err = ENOTTY; 22782 } else { 22783 err = sr_read_tocentry(dev, (caddr_t)arg, flag); 22784 } 22785 break; 22786 22787 case CDROMSTOP: 22788 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n"); 22789 if (!ISCD(un)) { 22790 err = ENOTTY; 22791 } else { 22792 err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 22793 SD_TARGET_STOP, SD_PATH_STANDARD); 22794 goto done_with_assess; 22795 } 22796 break; 22797 22798 case CDROMSTART: 22799 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n"); 22800 if (!ISCD(un)) { 22801 err = ENOTTY; 22802 } else { 22803 err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 22804 SD_TARGET_START, SD_PATH_STANDARD); 22805 goto done_with_assess; 22806 } 22807 break; 22808 22809 case CDROMCLOSETRAY: 22810 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n"); 22811 if (!ISCD(un)) { 22812 err = ENOTTY; 22813 } else { 22814 err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 22815 SD_TARGET_CLOSE, SD_PATH_STANDARD); 22816 goto done_with_assess; 22817 } 22818 break; 22819 22820 case FDEJECT: /* for eject command */ 22821 case DKIOCEJECT: 22822 case CDROMEJECT: 22823 SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n"); 22824 if (!un->un_f_eject_media_supported) { 22825 err = ENOTTY; 22826 } else { 22827 err = sr_eject(dev); 22828 } 22829 break; 22830 22831 case CDROMVOLCTRL: 22832 SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n"); 22833 if (!ISCD(un)) { 22834 err = ENOTTY; 22835 } else { 22836 err = sr_volume_ctrl(dev, (caddr_t)arg, flag); 22837 } 22838 break; 22839 22840 case CDROMSUBCHNL: 22841 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n"); 22842 if (!ISCD(un)) { 22843 err = ENOTTY; 22844 } else { 22845 err = sr_read_subchannel(dev, (caddr_t)arg, flag); 22846 } 22847 break; 22848 22849 case CDROMREADMODE2: 22850 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n"); 22851 if (!ISCD(un)) { 22852 err = ENOTTY; 22853 } else if (un->un_f_cfg_is_atapi == TRUE) { 22854 /* 22855 * If the drive supports READ CD, use that instead of 22856 * switching the LBA size via a MODE SELECT 22857 * Block Descriptor 22858 */ 22859 err = sr_read_cd_mode2(dev, (caddr_t)arg, flag); 22860 } else { 22861 err = sr_read_mode2(dev, (caddr_t)arg, flag); 22862 } 22863 break; 22864 22865 case CDROMREADMODE1: 22866 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n"); 22867 if (!ISCD(un)) { 22868 err = ENOTTY; 22869 } else { 22870 err = sr_read_mode1(dev, (caddr_t)arg, flag); 22871 } 22872 break; 22873 22874 case CDROMREADOFFSET: 22875 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n"); 22876 if (!ISCD(un)) { 22877 err = ENOTTY; 22878 } else { 22879 err = sr_read_sony_session_offset(dev, (caddr_t)arg, 22880 flag); 22881 } 22882 break; 22883 22884 case CDROMSBLKMODE: 22885 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n"); 22886 /* 22887 * There is no means of changing block size in case of atapi 22888 * drives, thus return ENOTTY if drive type is atapi 22889 */ 22890 if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) { 22891 err = ENOTTY; 22892 } else if (un->un_f_mmc_cap == TRUE) { 22893 22894 /* 22895 * MMC Devices do not support changing the 22896 * logical block size 22897 * 22898 * Note: EINVAL is being returned instead of ENOTTY to 22899 * maintain consistancy with the original mmc 22900 * driver update. 22901 */ 22902 err = EINVAL; 22903 } else { 22904 mutex_enter(SD_MUTEX(un)); 22905 if ((!(un->un_exclopen & (1<<SDPART(dev)))) || 22906 (un->un_ncmds_in_transport > 0)) { 22907 mutex_exit(SD_MUTEX(un)); 22908 err = EINVAL; 22909 } else { 22910 mutex_exit(SD_MUTEX(un)); 22911 err = sr_change_blkmode(dev, cmd, arg, flag); 22912 } 22913 } 22914 break; 22915 22916 case CDROMGBLKMODE: 22917 SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n"); 22918 if (!ISCD(un)) { 22919 err = ENOTTY; 22920 } else if ((un->un_f_cfg_is_atapi != FALSE) && 22921 (un->un_f_blockcount_is_valid != FALSE)) { 22922 /* 22923 * Drive is an ATAPI drive so return target block 22924 * size for ATAPI drives since we cannot change the 22925 * blocksize on ATAPI drives. Used primarily to detect 22926 * if an ATAPI cdrom is present. 22927 */ 22928 if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg, 22929 sizeof (int), flag) != 0) { 22930 err = EFAULT; 22931 } else { 22932 err = 0; 22933 } 22934 22935 } else { 22936 /* 22937 * Drive supports changing block sizes via a Mode 22938 * Select. 22939 */ 22940 err = sr_change_blkmode(dev, cmd, arg, flag); 22941 } 22942 break; 22943 22944 case CDROMGDRVSPEED: 22945 case CDROMSDRVSPEED: 22946 SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n"); 22947 if (!ISCD(un)) { 22948 err = ENOTTY; 22949 } else if (un->un_f_mmc_cap == TRUE) { 22950 /* 22951 * Note: In the future the driver implementation 22952 * for getting and 22953 * setting cd speed should entail: 22954 * 1) If non-mmc try the Toshiba mode page 22955 * (sr_change_speed) 22956 * 2) If mmc but no support for Real Time Streaming try 22957 * the SET CD SPEED (0xBB) command 22958 * (sr_atapi_change_speed) 22959 * 3) If mmc and support for Real Time Streaming 22960 * try the GET PERFORMANCE and SET STREAMING 22961 * commands (not yet implemented, 4380808) 22962 */ 22963 /* 22964 * As per recent MMC spec, CD-ROM speed is variable 22965 * and changes with LBA. Since there is no such 22966 * things as drive speed now, fail this ioctl. 22967 * 22968 * Note: EINVAL is returned for consistancy of original 22969 * implementation which included support for getting 22970 * the drive speed of mmc devices but not setting 22971 * the drive speed. Thus EINVAL would be returned 22972 * if a set request was made for an mmc device. 22973 * We no longer support get or set speed for 22974 * mmc but need to remain consistent with regard 22975 * to the error code returned. 22976 */ 22977 err = EINVAL; 22978 } else if (un->un_f_cfg_is_atapi == TRUE) { 22979 err = sr_atapi_change_speed(dev, cmd, arg, flag); 22980 } else { 22981 err = sr_change_speed(dev, cmd, arg, flag); 22982 } 22983 break; 22984 22985 case CDROMCDDA: 22986 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n"); 22987 if (!ISCD(un)) { 22988 err = ENOTTY; 22989 } else { 22990 err = sr_read_cdda(dev, (void *)arg, flag); 22991 } 22992 break; 22993 22994 case CDROMCDXA: 22995 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n"); 22996 if (!ISCD(un)) { 22997 err = ENOTTY; 22998 } else { 22999 err = sr_read_cdxa(dev, (caddr_t)arg, flag); 23000 } 23001 break; 23002 23003 case CDROMSUBCODE: 23004 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n"); 23005 if (!ISCD(un)) { 23006 err = ENOTTY; 23007 } else { 23008 err = sr_read_all_subcodes(dev, (caddr_t)arg, flag); 23009 } 23010 break; 23011 23012 23013 #ifdef SDDEBUG 23014 /* RESET/ABORTS testing ioctls */ 23015 case DKIOCRESET: { 23016 int reset_level; 23017 23018 if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) { 23019 err = EFAULT; 23020 } else { 23021 SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: " 23022 "reset_level = 0x%lx\n", reset_level); 23023 if (scsi_reset(SD_ADDRESS(un), reset_level)) { 23024 err = 0; 23025 } else { 23026 err = EIO; 23027 } 23028 } 23029 break; 23030 } 23031 23032 case DKIOCABORT: 23033 SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n"); 23034 if (scsi_abort(SD_ADDRESS(un), NULL)) { 23035 err = 0; 23036 } else { 23037 err = EIO; 23038 } 23039 break; 23040 #endif 23041 23042 #ifdef SD_FAULT_INJECTION 23043 /* SDIOC FaultInjection testing ioctls */ 23044 case SDIOCSTART: 23045 case SDIOCSTOP: 23046 case SDIOCINSERTPKT: 23047 case SDIOCINSERTXB: 23048 case SDIOCINSERTUN: 23049 case SDIOCINSERTARQ: 23050 case SDIOCPUSH: 23051 case SDIOCRETRIEVE: 23052 case SDIOCRUN: 23053 SD_INFO(SD_LOG_SDTEST, un, "sdioctl:" 23054 "SDIOC detected cmd:0x%X:\n", cmd); 23055 /* call error generator */ 23056 sd_faultinjection_ioctl(cmd, arg, un); 23057 err = 0; 23058 break; 23059 23060 #endif /* SD_FAULT_INJECTION */ 23061 23062 case DKIOCFLUSHWRITECACHE: 23063 { 23064 struct dk_callback *dkc = (struct dk_callback *)arg; 23065 23066 mutex_enter(SD_MUTEX(un)); 23067 if (!un->un_f_sync_cache_supported || 23068 !un->un_f_write_cache_enabled) { 23069 err = un->un_f_sync_cache_supported ? 23070 0 : ENOTSUP; 23071 mutex_exit(SD_MUTEX(un)); 23072 if ((flag & FKIOCTL) && dkc != NULL && 23073 dkc->dkc_callback != NULL) { 23074 (*dkc->dkc_callback)(dkc->dkc_cookie, 23075 err); 23076 /* 23077 * Did callback and reported error. 23078 * Since we did a callback, ioctl 23079 * should return 0. 23080 */ 23081 err = 0; 23082 } 23083 break; 23084 } 23085 mutex_exit(SD_MUTEX(un)); 23086 23087 if ((flag & FKIOCTL) && dkc != NULL && 23088 dkc->dkc_callback != NULL) { 23089 /* async SYNC CACHE request */ 23090 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc); 23091 } else { 23092 /* synchronous SYNC CACHE request */ 23093 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL); 23094 } 23095 } 23096 break; 23097 23098 case DKIOCGETWCE: { 23099 23100 int wce; 23101 23102 if ((err = sd_get_write_cache_enabled(ssc, &wce)) != 0) { 23103 break; 23104 } 23105 23106 if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) { 23107 err = EFAULT; 23108 } 23109 break; 23110 } 23111 23112 case DKIOCSETWCE: { 23113 23114 int wce, sync_supported; 23115 int cur_wce = 0; 23116 23117 if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) { 23118 err = EFAULT; 23119 break; 23120 } 23121 23122 /* 23123 * Synchronize multiple threads trying to enable 23124 * or disable the cache via the un_f_wcc_cv 23125 * condition variable. 23126 */ 23127 mutex_enter(SD_MUTEX(un)); 23128 23129 /* 23130 * Don't allow the cache to be enabled if the 23131 * config file has it disabled. 23132 */ 23133 if (un->un_f_opt_disable_cache && wce) { 23134 mutex_exit(SD_MUTEX(un)); 23135 err = EINVAL; 23136 break; 23137 } 23138 23139 /* 23140 * Wait for write cache change in progress 23141 * bit to be clear before proceeding. 23142 */ 23143 while (un->un_f_wcc_inprog) 23144 cv_wait(&un->un_wcc_cv, SD_MUTEX(un)); 23145 23146 un->un_f_wcc_inprog = 1; 23147 23148 mutex_exit(SD_MUTEX(un)); 23149 23150 /* 23151 * Get the current write cache state 23152 */ 23153 if ((err = sd_get_write_cache_enabled(ssc, &cur_wce)) != 0) { 23154 mutex_enter(SD_MUTEX(un)); 23155 un->un_f_wcc_inprog = 0; 23156 cv_broadcast(&un->un_wcc_cv); 23157 mutex_exit(SD_MUTEX(un)); 23158 break; 23159 } 23160 23161 mutex_enter(SD_MUTEX(un)); 23162 un->un_f_write_cache_enabled = (cur_wce != 0); 23163 23164 if (un->un_f_write_cache_enabled && wce == 0) { 23165 /* 23166 * Disable the write cache. Don't clear 23167 * un_f_write_cache_enabled until after 23168 * the mode select and flush are complete. 23169 */ 23170 sync_supported = un->un_f_sync_cache_supported; 23171 23172 /* 23173 * If cache flush is suppressed, we assume that the 23174 * controller firmware will take care of managing the 23175 * write cache for us: no need to explicitly 23176 * disable it. 23177 */ 23178 if (!un->un_f_suppress_cache_flush) { 23179 mutex_exit(SD_MUTEX(un)); 23180 if ((err = sd_cache_control(ssc, 23181 SD_CACHE_NOCHANGE, 23182 SD_CACHE_DISABLE)) == 0 && 23183 sync_supported) { 23184 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, 23185 NULL); 23186 } 23187 } else { 23188 mutex_exit(SD_MUTEX(un)); 23189 } 23190 23191 mutex_enter(SD_MUTEX(un)); 23192 if (err == 0) { 23193 un->un_f_write_cache_enabled = 0; 23194 } 23195 23196 } else if (!un->un_f_write_cache_enabled && wce != 0) { 23197 /* 23198 * Set un_f_write_cache_enabled first, so there is 23199 * no window where the cache is enabled, but the 23200 * bit says it isn't. 23201 */ 23202 un->un_f_write_cache_enabled = 1; 23203 23204 /* 23205 * If cache flush is suppressed, we assume that the 23206 * controller firmware will take care of managing the 23207 * write cache for us: no need to explicitly 23208 * enable it. 23209 */ 23210 if (!un->un_f_suppress_cache_flush) { 23211 mutex_exit(SD_MUTEX(un)); 23212 err = sd_cache_control(ssc, SD_CACHE_NOCHANGE, 23213 SD_CACHE_ENABLE); 23214 } else { 23215 mutex_exit(SD_MUTEX(un)); 23216 } 23217 23218 mutex_enter(SD_MUTEX(un)); 23219 23220 if (err) { 23221 un->un_f_write_cache_enabled = 0; 23222 } 23223 } 23224 23225 un->un_f_wcc_inprog = 0; 23226 cv_broadcast(&un->un_wcc_cv); 23227 mutex_exit(SD_MUTEX(un)); 23228 break; 23229 } 23230 23231 default: 23232 err = ENOTTY; 23233 break; 23234 } 23235 mutex_enter(SD_MUTEX(un)); 23236 un->un_ncmds_in_driver--; 23237 ASSERT(un->un_ncmds_in_driver >= 0); 23238 mutex_exit(SD_MUTEX(un)); 23239 23240 23241 done_without_assess: 23242 sd_ssc_fini(ssc); 23243 23244 SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err); 23245 return (err); 23246 23247 done_with_assess: 23248 mutex_enter(SD_MUTEX(un)); 23249 un->un_ncmds_in_driver--; 23250 ASSERT(un->un_ncmds_in_driver >= 0); 23251 mutex_exit(SD_MUTEX(un)); 23252 23253 done_quick_assess: 23254 if (err != 0) 23255 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23256 /* Uninitialize sd_ssc_t pointer */ 23257 sd_ssc_fini(ssc); 23258 23259 SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err); 23260 return (err); 23261 } 23262 23263 23264 /* 23265 * Function: sd_dkio_ctrl_info 23266 * 23267 * Description: This routine is the driver entry point for handling controller 23268 * information ioctl requests (DKIOCINFO). 23269 * 23270 * Arguments: dev - the device number 23271 * arg - pointer to user provided dk_cinfo structure 23272 * specifying the controller type and attributes. 23273 * flag - this argument is a pass through to ddi_copyxxx() 23274 * directly from the mode argument of ioctl(). 23275 * 23276 * Return Code: 0 23277 * EFAULT 23278 * ENXIO 23279 */ 23280 23281 static int 23282 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag) 23283 { 23284 struct sd_lun *un = NULL; 23285 struct dk_cinfo *info; 23286 dev_info_t *pdip; 23287 int lun, tgt; 23288 23289 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23290 return (ENXIO); 23291 } 23292 23293 info = (struct dk_cinfo *) 23294 kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP); 23295 23296 switch (un->un_ctype) { 23297 case CTYPE_CDROM: 23298 info->dki_ctype = DKC_CDROM; 23299 break; 23300 default: 23301 info->dki_ctype = DKC_SCSI_CCS; 23302 break; 23303 } 23304 pdip = ddi_get_parent(SD_DEVINFO(un)); 23305 info->dki_cnum = ddi_get_instance(pdip); 23306 if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) { 23307 (void) strcpy(info->dki_cname, ddi_get_name(pdip)); 23308 } else { 23309 (void) strncpy(info->dki_cname, ddi_node_name(pdip), 23310 DK_DEVLEN - 1); 23311 } 23312 23313 lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 23314 DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0); 23315 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 23316 DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0); 23317 23318 /* Unit Information */ 23319 info->dki_unit = ddi_get_instance(SD_DEVINFO(un)); 23320 info->dki_slave = ((tgt << 3) | lun); 23321 (void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)), 23322 DK_DEVLEN - 1); 23323 info->dki_flags = DKI_FMTVOL; 23324 info->dki_partition = SDPART(dev); 23325 23326 /* Max Transfer size of this device in blocks */ 23327 info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize; 23328 info->dki_addr = 0; 23329 info->dki_space = 0; 23330 info->dki_prio = 0; 23331 info->dki_vec = 0; 23332 23333 if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) { 23334 kmem_free(info, sizeof (struct dk_cinfo)); 23335 return (EFAULT); 23336 } else { 23337 kmem_free(info, sizeof (struct dk_cinfo)); 23338 return (0); 23339 } 23340 } 23341 23342 /* 23343 * Function: sd_get_media_info_com 23344 * 23345 * Description: This routine returns the information required to populate 23346 * the fields for the dk_minfo/dk_minfo_ext structures. 23347 * 23348 * Arguments: dev - the device number 23349 * dki_media_type - media_type 23350 * dki_lbsize - logical block size 23351 * dki_capacity - capacity in blocks 23352 * dki_pbsize - physical block size (if requested) 23353 * 23354 * Return Code: 0 23355 * EACCESS 23356 * EFAULT 23357 * ENXIO 23358 * EIO 23359 */ 23360 static int 23361 sd_get_media_info_com(dev_t dev, uint_t *dki_media_type, uint_t *dki_lbsize, 23362 diskaddr_t *dki_capacity, uint_t *dki_pbsize) 23363 { 23364 struct sd_lun *un = NULL; 23365 struct uscsi_cmd com; 23366 struct scsi_inquiry *sinq; 23367 u_longlong_t media_capacity; 23368 uint64_t capacity; 23369 uint_t lbasize; 23370 uint_t pbsize; 23371 uchar_t *out_data; 23372 uchar_t *rqbuf; 23373 int rval = 0; 23374 int rtn; 23375 sd_ssc_t *ssc; 23376 23377 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 23378 (un->un_state == SD_STATE_OFFLINE)) { 23379 return (ENXIO); 23380 } 23381 23382 SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info_com: entry\n"); 23383 23384 out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP); 23385 rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 23386 ssc = sd_ssc_init(un); 23387 23388 /* Issue a TUR to determine if the drive is ready with media present */ 23389 rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_CHECK_FOR_MEDIA); 23390 if (rval == ENXIO) { 23391 goto done; 23392 } else if (rval != 0) { 23393 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23394 } 23395 23396 /* Now get configuration data */ 23397 if (ISCD(un)) { 23398 *dki_media_type = DK_CDROM; 23399 23400 /* Allow SCMD_GET_CONFIGURATION to MMC devices only */ 23401 if (un->un_f_mmc_cap == TRUE) { 23402 rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, 23403 SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN, 23404 SD_PATH_STANDARD); 23405 23406 if (rtn) { 23407 /* 23408 * We ignore all failures for CD and need to 23409 * put the assessment before processing code 23410 * to avoid missing assessment for FMA. 23411 */ 23412 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23413 /* 23414 * Failed for other than an illegal request 23415 * or command not supported 23416 */ 23417 if ((com.uscsi_status == STATUS_CHECK) && 23418 (com.uscsi_rqstatus == STATUS_GOOD)) { 23419 if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) || 23420 (rqbuf[12] != 0x20)) { 23421 rval = EIO; 23422 goto no_assessment; 23423 } 23424 } 23425 } else { 23426 /* 23427 * The GET CONFIGURATION command succeeded 23428 * so set the media type according to the 23429 * returned data 23430 */ 23431 *dki_media_type = out_data[6]; 23432 *dki_media_type <<= 8; 23433 *dki_media_type |= out_data[7]; 23434 } 23435 } 23436 } else { 23437 /* 23438 * The profile list is not available, so we attempt to identify 23439 * the media type based on the inquiry data 23440 */ 23441 sinq = un->un_sd->sd_inq; 23442 if ((sinq->inq_dtype == DTYPE_DIRECT) || 23443 (sinq->inq_dtype == DTYPE_OPTICAL)) { 23444 /* This is a direct access device or optical disk */ 23445 *dki_media_type = DK_FIXED_DISK; 23446 23447 if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) || 23448 (bcmp(sinq->inq_vid, "iomega", 6) == 0)) { 23449 if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) { 23450 *dki_media_type = DK_ZIP; 23451 } else if ( 23452 (bcmp(sinq->inq_pid, "jaz", 3) == 0)) { 23453 *dki_media_type = DK_JAZ; 23454 } 23455 } 23456 } else { 23457 /* 23458 * Not a CD, direct access or optical disk so return 23459 * unknown media 23460 */ 23461 *dki_media_type = DK_UNKNOWN; 23462 } 23463 } 23464 23465 /* 23466 * Now read the capacity so we can provide the lbasize, 23467 * pbsize and capacity. 23468 */ 23469 if (dki_pbsize && un->un_f_descr_format_supported) 23470 rval = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, &lbasize, 23471 &pbsize, SD_PATH_DIRECT); 23472 23473 if (dki_pbsize == NULL || rval != 0 || 23474 !un->un_f_descr_format_supported) { 23475 rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize, 23476 SD_PATH_DIRECT); 23477 23478 switch (rval) { 23479 case 0: 23480 if (un->un_f_enable_rmw && 23481 un->un_phy_blocksize != 0) { 23482 pbsize = un->un_phy_blocksize; 23483 } else { 23484 pbsize = lbasize; 23485 } 23486 media_capacity = capacity; 23487 23488 /* 23489 * sd_send_scsi_READ_CAPACITY() reports capacity in 23490 * un->un_sys_blocksize chunks. So we need to convert 23491 * it into cap.lbsize chunks. 23492 */ 23493 if (un->un_f_has_removable_media) { 23494 media_capacity *= un->un_sys_blocksize; 23495 media_capacity /= lbasize; 23496 } 23497 break; 23498 case EACCES: 23499 rval = EACCES; 23500 goto done; 23501 default: 23502 rval = EIO; 23503 goto done; 23504 } 23505 } else { 23506 if (un->un_f_enable_rmw && 23507 !ISP2(pbsize % DEV_BSIZE)) { 23508 pbsize = SSD_SECSIZE; 23509 } else if (!ISP2(lbasize % DEV_BSIZE) || 23510 !ISP2(pbsize % DEV_BSIZE)) { 23511 pbsize = lbasize = DEV_BSIZE; 23512 } 23513 media_capacity = capacity; 23514 } 23515 23516 /* 23517 * If lun is expanded dynamically, update the un structure. 23518 */ 23519 mutex_enter(SD_MUTEX(un)); 23520 if ((un->un_f_blockcount_is_valid == TRUE) && 23521 (un->un_f_tgt_blocksize_is_valid == TRUE) && 23522 (capacity > un->un_blockcount)) { 23523 un->un_f_expnevent = B_FALSE; 23524 sd_update_block_info(un, lbasize, capacity); 23525 } 23526 mutex_exit(SD_MUTEX(un)); 23527 23528 *dki_lbsize = lbasize; 23529 *dki_capacity = media_capacity; 23530 if (dki_pbsize) 23531 *dki_pbsize = pbsize; 23532 23533 done: 23534 if (rval != 0) { 23535 if (rval == EIO) 23536 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 23537 else 23538 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23539 } 23540 no_assessment: 23541 sd_ssc_fini(ssc); 23542 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 23543 kmem_free(rqbuf, SENSE_LENGTH); 23544 return (rval); 23545 } 23546 23547 /* 23548 * Function: sd_get_media_info 23549 * 23550 * Description: This routine is the driver entry point for handling ioctl 23551 * requests for the media type or command set profile used by the 23552 * drive to operate on the media (DKIOCGMEDIAINFO). 23553 * 23554 * Arguments: dev - the device number 23555 * arg - pointer to user provided dk_minfo structure 23556 * specifying the media type, logical block size and 23557 * drive capacity. 23558 * flag - this argument is a pass through to ddi_copyxxx() 23559 * directly from the mode argument of ioctl(). 23560 * 23561 * Return Code: returns the value from sd_get_media_info_com 23562 */ 23563 static int 23564 sd_get_media_info(dev_t dev, caddr_t arg, int flag) 23565 { 23566 struct dk_minfo mi; 23567 int rval; 23568 23569 rval = sd_get_media_info_com(dev, &mi.dki_media_type, 23570 &mi.dki_lbsize, &mi.dki_capacity, NULL); 23571 23572 if (rval) 23573 return (rval); 23574 if (ddi_copyout(&mi, arg, sizeof (struct dk_minfo), flag)) 23575 rval = EFAULT; 23576 return (rval); 23577 } 23578 23579 /* 23580 * Function: sd_get_media_info_ext 23581 * 23582 * Description: This routine is the driver entry point for handling ioctl 23583 * requests for the media type or command set profile used by the 23584 * drive to operate on the media (DKIOCGMEDIAINFOEXT). The 23585 * difference this ioctl and DKIOCGMEDIAINFO is the return value 23586 * of this ioctl contains both logical block size and physical 23587 * block size. 23588 * 23589 * 23590 * Arguments: dev - the device number 23591 * arg - pointer to user provided dk_minfo_ext structure 23592 * specifying the media type, logical block size, 23593 * physical block size and disk capacity. 23594 * flag - this argument is a pass through to ddi_copyxxx() 23595 * directly from the mode argument of ioctl(). 23596 * 23597 * Return Code: returns the value from sd_get_media_info_com 23598 */ 23599 static int 23600 sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag) 23601 { 23602 struct dk_minfo_ext mie; 23603 int rval = 0; 23604 23605 rval = sd_get_media_info_com(dev, &mie.dki_media_type, 23606 &mie.dki_lbsize, &mie.dki_capacity, &mie.dki_pbsize); 23607 23608 if (rval) 23609 return (rval); 23610 if (ddi_copyout(&mie, arg, sizeof (struct dk_minfo_ext), flag)) 23611 rval = EFAULT; 23612 return (rval); 23613 23614 } 23615 23616 /* 23617 * Function: sd_watch_request_submit 23618 * 23619 * Description: Call scsi_watch_request_submit or scsi_mmc_watch_request_submit 23620 * depending on which is supported by device. 23621 */ 23622 static opaque_t 23623 sd_watch_request_submit(struct sd_lun *un) 23624 { 23625 dev_t dev; 23626 23627 /* All submissions are unified to use same device number */ 23628 dev = sd_make_device(SD_DEVINFO(un)); 23629 23630 if (un->un_f_mmc_cap && un->un_f_mmc_gesn_polling) { 23631 return (scsi_mmc_watch_request_submit(SD_SCSI_DEVP(un), 23632 sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb, 23633 (caddr_t)dev)); 23634 } else { 23635 return (scsi_watch_request_submit(SD_SCSI_DEVP(un), 23636 sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb, 23637 (caddr_t)dev)); 23638 } 23639 } 23640 23641 23642 /* 23643 * Function: sd_check_media 23644 * 23645 * Description: This utility routine implements the functionality for the 23646 * DKIOCSTATE ioctl. This ioctl blocks the user thread until the 23647 * driver state changes from that specified by the user 23648 * (inserted or ejected). For example, if the user specifies 23649 * DKIO_EJECTED and the current media state is inserted this 23650 * routine will immediately return DKIO_INSERTED. However, if the 23651 * current media state is not inserted the user thread will be 23652 * blocked until the drive state changes. If DKIO_NONE is specified 23653 * the user thread will block until a drive state change occurs. 23654 * 23655 * Arguments: dev - the device number 23656 * state - user pointer to a dkio_state, updated with the current 23657 * drive state at return. 23658 * 23659 * Return Code: ENXIO 23660 * EIO 23661 * EAGAIN 23662 * EINTR 23663 */ 23664 23665 static int 23666 sd_check_media(dev_t dev, enum dkio_state state) 23667 { 23668 struct sd_lun *un = NULL; 23669 enum dkio_state prev_state; 23670 opaque_t token = NULL; 23671 int rval = 0; 23672 sd_ssc_t *ssc; 23673 23674 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23675 return (ENXIO); 23676 } 23677 23678 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n"); 23679 23680 ssc = sd_ssc_init(un); 23681 23682 mutex_enter(SD_MUTEX(un)); 23683 23684 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: " 23685 "state=%x, mediastate=%x\n", state, un->un_mediastate); 23686 23687 prev_state = un->un_mediastate; 23688 23689 /* is there anything to do? */ 23690 if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) { 23691 /* 23692 * submit the request to the scsi_watch service; 23693 * scsi_media_watch_cb() does the real work 23694 */ 23695 mutex_exit(SD_MUTEX(un)); 23696 23697 /* 23698 * This change handles the case where a scsi watch request is 23699 * added to a device that is powered down. To accomplish this 23700 * we power up the device before adding the scsi watch request, 23701 * since the scsi watch sends a TUR directly to the device 23702 * which the device cannot handle if it is powered down. 23703 */ 23704 if (sd_pm_entry(un) != DDI_SUCCESS) { 23705 mutex_enter(SD_MUTEX(un)); 23706 goto done; 23707 } 23708 23709 token = sd_watch_request_submit(un); 23710 23711 sd_pm_exit(un); 23712 23713 mutex_enter(SD_MUTEX(un)); 23714 if (token == NULL) { 23715 rval = EAGAIN; 23716 goto done; 23717 } 23718 23719 /* 23720 * This is a special case IOCTL that doesn't return 23721 * until the media state changes. Routine sdpower 23722 * knows about and handles this so don't count it 23723 * as an active cmd in the driver, which would 23724 * keep the device busy to the pm framework. 23725 * If the count isn't decremented the device can't 23726 * be powered down. 23727 */ 23728 un->un_ncmds_in_driver--; 23729 ASSERT(un->un_ncmds_in_driver >= 0); 23730 23731 /* 23732 * if a prior request had been made, this will be the same 23733 * token, as scsi_watch was designed that way. 23734 */ 23735 un->un_swr_token = token; 23736 un->un_specified_mediastate = state; 23737 23738 /* 23739 * now wait for media change 23740 * we will not be signalled unless mediastate == state but it is 23741 * still better to test for this condition, since there is a 23742 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED 23743 */ 23744 SD_TRACE(SD_LOG_COMMON, un, 23745 "sd_check_media: waiting for media state change\n"); 23746 while (un->un_mediastate == state) { 23747 if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) { 23748 SD_TRACE(SD_LOG_COMMON, un, 23749 "sd_check_media: waiting for media state " 23750 "was interrupted\n"); 23751 un->un_ncmds_in_driver++; 23752 rval = EINTR; 23753 goto done; 23754 } 23755 SD_TRACE(SD_LOG_COMMON, un, 23756 "sd_check_media: received signal, state=%x\n", 23757 un->un_mediastate); 23758 } 23759 /* 23760 * Inc the counter to indicate the device once again 23761 * has an active outstanding cmd. 23762 */ 23763 un->un_ncmds_in_driver++; 23764 } 23765 23766 /* invalidate geometry */ 23767 if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) { 23768 sr_ejected(un); 23769 } 23770 23771 if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) { 23772 uint64_t capacity; 23773 uint_t lbasize; 23774 23775 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n"); 23776 mutex_exit(SD_MUTEX(un)); 23777 /* 23778 * Since the following routines use SD_PATH_DIRECT, we must 23779 * call PM directly before the upcoming disk accesses. This 23780 * may cause the disk to be power/spin up. 23781 */ 23782 23783 if (sd_pm_entry(un) == DDI_SUCCESS) { 23784 rval = sd_send_scsi_READ_CAPACITY(ssc, 23785 &capacity, &lbasize, SD_PATH_DIRECT); 23786 if (rval != 0) { 23787 sd_pm_exit(un); 23788 if (rval == EIO) 23789 sd_ssc_assessment(ssc, 23790 SD_FMT_STATUS_CHECK); 23791 else 23792 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23793 mutex_enter(SD_MUTEX(un)); 23794 goto done; 23795 } 23796 } else { 23797 rval = EIO; 23798 mutex_enter(SD_MUTEX(un)); 23799 goto done; 23800 } 23801 mutex_enter(SD_MUTEX(un)); 23802 23803 sd_update_block_info(un, lbasize, capacity); 23804 23805 /* 23806 * Check if the media in the device is writable or not 23807 */ 23808 if (ISCD(un)) { 23809 sd_check_for_writable_cd(ssc, SD_PATH_DIRECT); 23810 } 23811 23812 mutex_exit(SD_MUTEX(un)); 23813 cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT); 23814 if ((cmlb_validate(un->un_cmlbhandle, 0, 23815 (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) { 23816 sd_set_pstats(un); 23817 SD_TRACE(SD_LOG_IO_PARTITION, un, 23818 "sd_check_media: un:0x%p pstats created and " 23819 "set\n", un); 23820 } 23821 23822 rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT, 23823 SD_PATH_DIRECT); 23824 23825 sd_pm_exit(un); 23826 23827 if (rval != 0) { 23828 if (rval == EIO) 23829 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 23830 else 23831 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 23832 } 23833 23834 mutex_enter(SD_MUTEX(un)); 23835 } 23836 done: 23837 sd_ssc_fini(ssc); 23838 un->un_f_watcht_stopped = FALSE; 23839 if (token != NULL && un->un_swr_token != NULL) { 23840 /* 23841 * Use of this local token and the mutex ensures that we avoid 23842 * some race conditions associated with terminating the 23843 * scsi watch. 23844 */ 23845 token = un->un_swr_token; 23846 mutex_exit(SD_MUTEX(un)); 23847 (void) scsi_watch_request_terminate(token, 23848 SCSI_WATCH_TERMINATE_WAIT); 23849 if (scsi_watch_get_ref_count(token) == 0) { 23850 mutex_enter(SD_MUTEX(un)); 23851 un->un_swr_token = (opaque_t)NULL; 23852 } else { 23853 mutex_enter(SD_MUTEX(un)); 23854 } 23855 } 23856 23857 /* 23858 * Update the capacity kstat value, if no media previously 23859 * (capacity kstat is 0) and a media has been inserted 23860 * (un_f_blockcount_is_valid == TRUE) 23861 */ 23862 if (un->un_errstats) { 23863 struct sd_errstats *stp = NULL; 23864 23865 stp = (struct sd_errstats *)un->un_errstats->ks_data; 23866 if ((stp->sd_capacity.value.ui64 == 0) && 23867 (un->un_f_blockcount_is_valid == TRUE)) { 23868 stp->sd_capacity.value.ui64 = 23869 (uint64_t)((uint64_t)un->un_blockcount * 23870 un->un_sys_blocksize); 23871 } 23872 } 23873 mutex_exit(SD_MUTEX(un)); 23874 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n"); 23875 return (rval); 23876 } 23877 23878 23879 /* 23880 * Function: sd_delayed_cv_broadcast 23881 * 23882 * Description: Delayed cv_broadcast to allow for target to recover from media 23883 * insertion. 23884 * 23885 * Arguments: arg - driver soft state (unit) structure 23886 */ 23887 23888 static void 23889 sd_delayed_cv_broadcast(void *arg) 23890 { 23891 struct sd_lun *un = arg; 23892 23893 SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n"); 23894 23895 mutex_enter(SD_MUTEX(un)); 23896 un->un_dcvb_timeid = NULL; 23897 cv_broadcast(&un->un_state_cv); 23898 mutex_exit(SD_MUTEX(un)); 23899 } 23900 23901 23902 /* 23903 * Function: sd_media_watch_cb 23904 * 23905 * Description: Callback routine used for support of the DKIOCSTATE ioctl. This 23906 * routine processes the TUR sense data and updates the driver 23907 * state if a transition has occurred. The user thread 23908 * (sd_check_media) is then signalled. 23909 * 23910 * Arguments: arg - the device 'dev_t' is used for context to discriminate 23911 * among multiple watches that share this callback function 23912 * resultp - scsi watch facility result packet containing scsi 23913 * packet, status byte and sense data 23914 * 23915 * Return Code: 0 for success, -1 for failure 23916 */ 23917 23918 static int 23919 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp) 23920 { 23921 struct sd_lun *un; 23922 struct scsi_status *statusp = resultp->statusp; 23923 uint8_t *sensep = (uint8_t *)resultp->sensep; 23924 enum dkio_state state = DKIO_NONE; 23925 dev_t dev = (dev_t)arg; 23926 uchar_t actual_sense_length; 23927 uint8_t skey, asc, ascq; 23928 23929 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23930 return (-1); 23931 } 23932 actual_sense_length = resultp->actual_sense_length; 23933 23934 mutex_enter(SD_MUTEX(un)); 23935 SD_TRACE(SD_LOG_COMMON, un, 23936 "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n", 23937 *((char *)statusp), (void *)sensep, actual_sense_length); 23938 23939 if (resultp->pkt->pkt_reason == CMD_DEV_GONE) { 23940 un->un_mediastate = DKIO_DEV_GONE; 23941 cv_broadcast(&un->un_state_cv); 23942 mutex_exit(SD_MUTEX(un)); 23943 23944 return (0); 23945 } 23946 23947 if (un->un_f_mmc_cap && un->un_f_mmc_gesn_polling) { 23948 if (sd_gesn_media_data_valid(resultp->mmc_data)) { 23949 if ((resultp->mmc_data[5] & 23950 SD_GESN_MEDIA_EVENT_STATUS_PRESENT) != 0) { 23951 state = DKIO_INSERTED; 23952 } else { 23953 state = DKIO_EJECTED; 23954 } 23955 if ((resultp->mmc_data[4] & SD_GESN_MEDIA_EVENT_CODE) == 23956 SD_GESN_MEDIA_EVENT_EJECTREQUEST) { 23957 sd_log_eject_request_event(un, KM_NOSLEEP); 23958 } 23959 } 23960 } else if (sensep != NULL) { 23961 /* 23962 * If there was a check condition then sensep points to valid 23963 * sense data. If status was not a check condition but a 23964 * reservation or busy status then the new state is DKIO_NONE. 23965 */ 23966 skey = scsi_sense_key(sensep); 23967 asc = scsi_sense_asc(sensep); 23968 ascq = scsi_sense_ascq(sensep); 23969 23970 SD_INFO(SD_LOG_COMMON, un, 23971 "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n", 23972 skey, asc, ascq); 23973 /* This routine only uses up to 13 bytes of sense data. */ 23974 if (actual_sense_length >= 13) { 23975 if (skey == KEY_UNIT_ATTENTION) { 23976 if (asc == 0x28) { 23977 state = DKIO_INSERTED; 23978 } 23979 } else if (skey == KEY_NOT_READY) { 23980 /* 23981 * Sense data of 02/06/00 means that the 23982 * drive could not read the media (No 23983 * reference position found). In this case 23984 * to prevent a hang on the DKIOCSTATE IOCTL 23985 * we set the media state to DKIO_INSERTED. 23986 */ 23987 if (asc == 0x06 && ascq == 0x00) 23988 state = DKIO_INSERTED; 23989 23990 /* 23991 * if 02/04/02 means that the host 23992 * should send start command. Explicitly 23993 * leave the media state as is 23994 * (inserted) as the media is inserted 23995 * and host has stopped device for PM 23996 * reasons. Upon next true read/write 23997 * to this media will bring the 23998 * device to the right state good for 23999 * media access. 24000 */ 24001 if (asc == 0x3a) { 24002 state = DKIO_EJECTED; 24003 } else { 24004 /* 24005 * If the drive is busy with an 24006 * operation or long write, keep the 24007 * media in an inserted state. 24008 */ 24009 24010 if ((asc == 0x04) && 24011 ((ascq == 0x02) || 24012 (ascq == 0x07) || 24013 (ascq == 0x08))) { 24014 state = DKIO_INSERTED; 24015 } 24016 } 24017 } else if (skey == KEY_NO_SENSE) { 24018 if ((asc == 0x00) && (ascq == 0x00)) { 24019 /* 24020 * Sense Data 00/00/00 does not provide 24021 * any information about the state of 24022 * the media. Ignore it. 24023 */ 24024 mutex_exit(SD_MUTEX(un)); 24025 return (0); 24026 } 24027 } 24028 } 24029 } else if ((*((char *)statusp) == STATUS_GOOD) && 24030 (resultp->pkt->pkt_reason == CMD_CMPLT)) { 24031 state = DKIO_INSERTED; 24032 } 24033 24034 SD_TRACE(SD_LOG_COMMON, un, 24035 "sd_media_watch_cb: state=%x, specified=%x\n", 24036 state, un->un_specified_mediastate); 24037 24038 /* 24039 * now signal the waiting thread if this is *not* the specified state; 24040 * delay the signal if the state is DKIO_INSERTED to allow the target 24041 * to recover 24042 */ 24043 if (state != un->un_specified_mediastate) { 24044 un->un_mediastate = state; 24045 if (state == DKIO_INSERTED) { 24046 /* 24047 * delay the signal to give the drive a chance 24048 * to do what it apparently needs to do 24049 */ 24050 SD_TRACE(SD_LOG_COMMON, un, 24051 "sd_media_watch_cb: delayed cv_broadcast\n"); 24052 if (un->un_dcvb_timeid == NULL) { 24053 un->un_dcvb_timeid = 24054 timeout(sd_delayed_cv_broadcast, un, 24055 drv_usectohz((clock_t)MEDIA_ACCESS_DELAY)); 24056 } 24057 } else { 24058 SD_TRACE(SD_LOG_COMMON, un, 24059 "sd_media_watch_cb: immediate cv_broadcast\n"); 24060 cv_broadcast(&un->un_state_cv); 24061 } 24062 } 24063 mutex_exit(SD_MUTEX(un)); 24064 return (0); 24065 } 24066 24067 24068 /* 24069 * Function: sd_dkio_get_temp 24070 * 24071 * Description: This routine is the driver entry point for handling ioctl 24072 * requests to get the disk temperature. 24073 * 24074 * Arguments: dev - the device number 24075 * arg - pointer to user provided dk_temperature structure. 24076 * flag - this argument is a pass through to ddi_copyxxx() 24077 * directly from the mode argument of ioctl(). 24078 * 24079 * Return Code: 0 24080 * EFAULT 24081 * ENXIO 24082 * EAGAIN 24083 */ 24084 24085 static int 24086 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag) 24087 { 24088 struct sd_lun *un = NULL; 24089 struct dk_temperature *dktemp = NULL; 24090 uchar_t *temperature_page; 24091 int rval = 0; 24092 int path_flag = SD_PATH_STANDARD; 24093 sd_ssc_t *ssc; 24094 24095 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24096 return (ENXIO); 24097 } 24098 24099 ssc = sd_ssc_init(un); 24100 dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP); 24101 24102 /* copyin the disk temp argument to get the user flags */ 24103 if (ddi_copyin((void *)arg, dktemp, 24104 sizeof (struct dk_temperature), flag) != 0) { 24105 rval = EFAULT; 24106 goto done; 24107 } 24108 24109 /* Initialize the temperature to invalid. */ 24110 dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP; 24111 dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP; 24112 24113 /* 24114 * Note: Investigate removing the "bypass pm" semantic. 24115 * Can we just bypass PM always? 24116 */ 24117 if (dktemp->dkt_flags & DKT_BYPASS_PM) { 24118 path_flag = SD_PATH_DIRECT; 24119 ASSERT(!mutex_owned(&un->un_pm_mutex)); 24120 mutex_enter(&un->un_pm_mutex); 24121 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 24122 /* 24123 * If DKT_BYPASS_PM is set, and the drive happens to be 24124 * in low power mode, we can not wake it up, Need to 24125 * return EAGAIN. 24126 */ 24127 mutex_exit(&un->un_pm_mutex); 24128 rval = EAGAIN; 24129 goto done; 24130 } else { 24131 /* 24132 * Indicate to PM the device is busy. This is required 24133 * to avoid a race - i.e. the ioctl is issuing a 24134 * command and the pm framework brings down the device 24135 * to low power mode (possible power cut-off on some 24136 * platforms). 24137 */ 24138 mutex_exit(&un->un_pm_mutex); 24139 if (sd_pm_entry(un) != DDI_SUCCESS) { 24140 rval = EAGAIN; 24141 goto done; 24142 } 24143 } 24144 } 24145 24146 temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP); 24147 24148 rval = sd_send_scsi_LOG_SENSE(ssc, temperature_page, 24149 TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag); 24150 if (rval != 0) 24151 goto done2; 24152 24153 /* 24154 * For the current temperature verify that the parameter length is 0x02 24155 * and the parameter code is 0x00 24156 */ 24157 if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) && 24158 (temperature_page[5] == 0x00)) { 24159 if (temperature_page[9] == 0xFF) { 24160 dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP; 24161 } else { 24162 dktemp->dkt_cur_temp = (short)(temperature_page[9]); 24163 } 24164 } 24165 24166 /* 24167 * For the reference temperature verify that the parameter 24168 * length is 0x02 and the parameter code is 0x01 24169 */ 24170 if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) && 24171 (temperature_page[11] == 0x01)) { 24172 if (temperature_page[15] == 0xFF) { 24173 dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP; 24174 } else { 24175 dktemp->dkt_ref_temp = (short)(temperature_page[15]); 24176 } 24177 } 24178 24179 /* Do the copyout regardless of the temperature commands status. */ 24180 if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature), 24181 flag) != 0) { 24182 rval = EFAULT; 24183 goto done1; 24184 } 24185 24186 done2: 24187 if (rval != 0) { 24188 if (rval == EIO) 24189 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 24190 else 24191 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 24192 } 24193 done1: 24194 if (path_flag == SD_PATH_DIRECT) { 24195 sd_pm_exit(un); 24196 } 24197 24198 kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE); 24199 done: 24200 sd_ssc_fini(ssc); 24201 if (dktemp != NULL) { 24202 kmem_free(dktemp, sizeof (struct dk_temperature)); 24203 } 24204 24205 return (rval); 24206 } 24207 24208 24209 /* 24210 * Function: sd_log_page_supported 24211 * 24212 * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of 24213 * supported log pages. 24214 * 24215 * Arguments: ssc - ssc contains pointer to driver soft state (unit) 24216 * structure for this target. 24217 * log_page - 24218 * 24219 * Return Code: -1 - on error (log sense is optional and may not be supported). 24220 * 0 - log page not found. 24221 * 1 - log page found. 24222 */ 24223 24224 static int 24225 sd_log_page_supported(sd_ssc_t *ssc, int log_page) 24226 { 24227 uchar_t *log_page_data; 24228 int i; 24229 int match = 0; 24230 int log_size; 24231 int status = 0; 24232 struct sd_lun *un; 24233 24234 ASSERT(ssc != NULL); 24235 un = ssc->ssc_un; 24236 ASSERT(un != NULL); 24237 24238 log_page_data = kmem_zalloc(0xFF, KM_SLEEP); 24239 24240 status = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 0xFF, 0, 0x01, 0, 24241 SD_PATH_DIRECT); 24242 24243 if (status != 0) { 24244 if (status == EIO) { 24245 /* 24246 * Some disks do not support log sense, we 24247 * should ignore this kind of error(sense key is 24248 * 0x5 - illegal request). 24249 */ 24250 uint8_t *sensep; 24251 int senlen; 24252 24253 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf; 24254 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen - 24255 ssc->ssc_uscsi_cmd->uscsi_rqresid); 24256 24257 if (senlen > 0 && 24258 scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) { 24259 sd_ssc_assessment(ssc, 24260 SD_FMT_IGNORE_COMPROMISE); 24261 } else { 24262 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 24263 } 24264 } else { 24265 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 24266 } 24267 24268 SD_ERROR(SD_LOG_COMMON, un, 24269 "sd_log_page_supported: failed log page retrieval\n"); 24270 kmem_free(log_page_data, 0xFF); 24271 return (-1); 24272 } 24273 24274 log_size = log_page_data[3]; 24275 24276 /* 24277 * The list of supported log pages start from the fourth byte. Check 24278 * until we run out of log pages or a match is found. 24279 */ 24280 for (i = 4; (i < (log_size + 4)) && !match; i++) { 24281 if (log_page_data[i] == log_page) { 24282 match++; 24283 } 24284 } 24285 kmem_free(log_page_data, 0xFF); 24286 return (match); 24287 } 24288 24289 24290 /* 24291 * Function: sd_mhdioc_failfast 24292 * 24293 * Description: This routine is the driver entry point for handling ioctl 24294 * requests to enable/disable the multihost failfast option. 24295 * (MHIOCENFAILFAST) 24296 * 24297 * Arguments: dev - the device number 24298 * arg - user specified probing interval. 24299 * flag - this argument is a pass through to ddi_copyxxx() 24300 * directly from the mode argument of ioctl(). 24301 * 24302 * Return Code: 0 24303 * EFAULT 24304 * ENXIO 24305 */ 24306 24307 static int 24308 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag) 24309 { 24310 struct sd_lun *un = NULL; 24311 int mh_time; 24312 int rval = 0; 24313 24314 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24315 return (ENXIO); 24316 } 24317 24318 if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag)) 24319 return (EFAULT); 24320 24321 if (mh_time) { 24322 mutex_enter(SD_MUTEX(un)); 24323 un->un_resvd_status |= SD_FAILFAST; 24324 mutex_exit(SD_MUTEX(un)); 24325 /* 24326 * If mh_time is INT_MAX, then this ioctl is being used for 24327 * SCSI-3 PGR purposes, and we don't need to spawn watch thread. 24328 */ 24329 if (mh_time != INT_MAX) { 24330 rval = sd_check_mhd(dev, mh_time); 24331 } 24332 } else { 24333 (void) sd_check_mhd(dev, 0); 24334 mutex_enter(SD_MUTEX(un)); 24335 un->un_resvd_status &= ~SD_FAILFAST; 24336 mutex_exit(SD_MUTEX(un)); 24337 } 24338 return (rval); 24339 } 24340 24341 24342 /* 24343 * Function: sd_mhdioc_takeown 24344 * 24345 * Description: This routine is the driver entry point for handling ioctl 24346 * requests to forcefully acquire exclusive access rights to the 24347 * multihost disk (MHIOCTKOWN). 24348 * 24349 * Arguments: dev - the device number 24350 * arg - user provided structure specifying the delay 24351 * parameters in milliseconds 24352 * flag - this argument is a pass through to ddi_copyxxx() 24353 * directly from the mode argument of ioctl(). 24354 * 24355 * Return Code: 0 24356 * EFAULT 24357 * ENXIO 24358 */ 24359 24360 static int 24361 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag) 24362 { 24363 struct sd_lun *un = NULL; 24364 struct mhioctkown *tkown = NULL; 24365 int rval = 0; 24366 24367 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24368 return (ENXIO); 24369 } 24370 24371 if (arg != NULL) { 24372 tkown = (struct mhioctkown *) 24373 kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP); 24374 rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag); 24375 if (rval != 0) { 24376 rval = EFAULT; 24377 goto error; 24378 } 24379 } 24380 24381 rval = sd_take_ownership(dev, tkown); 24382 mutex_enter(SD_MUTEX(un)); 24383 if (rval == 0) { 24384 un->un_resvd_status |= SD_RESERVE; 24385 if (tkown != NULL && tkown->reinstate_resv_delay != 0) { 24386 sd_reinstate_resv_delay = 24387 tkown->reinstate_resv_delay * 1000; 24388 } else { 24389 sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY; 24390 } 24391 /* 24392 * Give the scsi_watch routine interval set by 24393 * the MHIOCENFAILFAST ioctl precedence here. 24394 */ 24395 if ((un->un_resvd_status & SD_FAILFAST) == 0) { 24396 mutex_exit(SD_MUTEX(un)); 24397 (void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000); 24398 SD_TRACE(SD_LOG_IOCTL_MHD, un, 24399 "sd_mhdioc_takeown : %d\n", 24400 sd_reinstate_resv_delay); 24401 } else { 24402 mutex_exit(SD_MUTEX(un)); 24403 } 24404 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY, 24405 sd_mhd_reset_notify_cb, (caddr_t)un); 24406 } else { 24407 un->un_resvd_status &= ~SD_RESERVE; 24408 mutex_exit(SD_MUTEX(un)); 24409 } 24410 24411 error: 24412 if (tkown != NULL) { 24413 kmem_free(tkown, sizeof (struct mhioctkown)); 24414 } 24415 return (rval); 24416 } 24417 24418 24419 /* 24420 * Function: sd_mhdioc_release 24421 * 24422 * Description: This routine is the driver entry point for handling ioctl 24423 * requests to release exclusive access rights to the multihost 24424 * disk (MHIOCRELEASE). 24425 * 24426 * Arguments: dev - the device number 24427 * 24428 * Return Code: 0 24429 * ENXIO 24430 */ 24431 24432 static int 24433 sd_mhdioc_release(dev_t dev) 24434 { 24435 struct sd_lun *un = NULL; 24436 timeout_id_t resvd_timeid_save; 24437 int resvd_status_save; 24438 int rval = 0; 24439 24440 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24441 return (ENXIO); 24442 } 24443 24444 mutex_enter(SD_MUTEX(un)); 24445 resvd_status_save = un->un_resvd_status; 24446 un->un_resvd_status &= 24447 ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE); 24448 if (un->un_resvd_timeid) { 24449 resvd_timeid_save = un->un_resvd_timeid; 24450 un->un_resvd_timeid = NULL; 24451 mutex_exit(SD_MUTEX(un)); 24452 (void) untimeout(resvd_timeid_save); 24453 } else { 24454 mutex_exit(SD_MUTEX(un)); 24455 } 24456 24457 /* 24458 * destroy any pending timeout thread that may be attempting to 24459 * reinstate reservation on this device. 24460 */ 24461 sd_rmv_resv_reclaim_req(dev); 24462 24463 if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) { 24464 mutex_enter(SD_MUTEX(un)); 24465 if ((un->un_mhd_token) && 24466 ((un->un_resvd_status & SD_FAILFAST) == 0)) { 24467 mutex_exit(SD_MUTEX(un)); 24468 (void) sd_check_mhd(dev, 0); 24469 } else { 24470 mutex_exit(SD_MUTEX(un)); 24471 } 24472 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL, 24473 sd_mhd_reset_notify_cb, (caddr_t)un); 24474 } else { 24475 /* 24476 * sd_mhd_watch_cb will restart the resvd recover timeout thread 24477 */ 24478 mutex_enter(SD_MUTEX(un)); 24479 un->un_resvd_status = resvd_status_save; 24480 mutex_exit(SD_MUTEX(un)); 24481 } 24482 return (rval); 24483 } 24484 24485 24486 /* 24487 * Function: sd_mhdioc_register_devid 24488 * 24489 * Description: This routine is the driver entry point for handling ioctl 24490 * requests to register the device id (MHIOCREREGISTERDEVID). 24491 * 24492 * Note: The implementation for this ioctl has been updated to 24493 * be consistent with the original PSARC case (1999/357) 24494 * (4375899, 4241671, 4220005) 24495 * 24496 * Arguments: dev - the device number 24497 * 24498 * Return Code: 0 24499 * ENXIO 24500 */ 24501 24502 static int 24503 sd_mhdioc_register_devid(dev_t dev) 24504 { 24505 struct sd_lun *un = NULL; 24506 int rval = 0; 24507 sd_ssc_t *ssc; 24508 24509 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24510 return (ENXIO); 24511 } 24512 24513 ASSERT(!mutex_owned(SD_MUTEX(un))); 24514 24515 mutex_enter(SD_MUTEX(un)); 24516 24517 /* If a devid already exists, de-register it */ 24518 if (un->un_devid != NULL) { 24519 ddi_devid_unregister(SD_DEVINFO(un)); 24520 /* 24521 * After unregister devid, needs to free devid memory 24522 */ 24523 ddi_devid_free(un->un_devid); 24524 un->un_devid = NULL; 24525 } 24526 24527 /* Check for reservation conflict */ 24528 mutex_exit(SD_MUTEX(un)); 24529 ssc = sd_ssc_init(un); 24530 rval = sd_send_scsi_TEST_UNIT_READY(ssc, 0); 24531 mutex_enter(SD_MUTEX(un)); 24532 24533 switch (rval) { 24534 case 0: 24535 sd_register_devid(ssc, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED); 24536 break; 24537 case EACCES: 24538 break; 24539 default: 24540 rval = EIO; 24541 } 24542 24543 mutex_exit(SD_MUTEX(un)); 24544 if (rval != 0) { 24545 if (rval == EIO) 24546 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 24547 else 24548 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 24549 } 24550 sd_ssc_fini(ssc); 24551 return (rval); 24552 } 24553 24554 24555 /* 24556 * Function: sd_mhdioc_inkeys 24557 * 24558 * Description: This routine is the driver entry point for handling ioctl 24559 * requests to issue the SCSI-3 Persistent In Read Keys command 24560 * to the device (MHIOCGRP_INKEYS). 24561 * 24562 * Arguments: dev - the device number 24563 * arg - user provided in_keys structure 24564 * flag - this argument is a pass through to ddi_copyxxx() 24565 * directly from the mode argument of ioctl(). 24566 * 24567 * Return Code: code returned by sd_persistent_reservation_in_read_keys() 24568 * ENXIO 24569 * EFAULT 24570 */ 24571 24572 static int 24573 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag) 24574 { 24575 struct sd_lun *un; 24576 mhioc_inkeys_t inkeys; 24577 int rval = 0; 24578 24579 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24580 return (ENXIO); 24581 } 24582 24583 #ifdef _MULTI_DATAMODEL 24584 switch (ddi_model_convert_from(flag & FMODELS)) { 24585 case DDI_MODEL_ILP32: { 24586 struct mhioc_inkeys32 inkeys32; 24587 24588 if (ddi_copyin(arg, &inkeys32, 24589 sizeof (struct mhioc_inkeys32), flag) != 0) { 24590 return (EFAULT); 24591 } 24592 inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li; 24593 if ((rval = sd_persistent_reservation_in_read_keys(un, 24594 &inkeys, flag)) != 0) { 24595 return (rval); 24596 } 24597 inkeys32.generation = inkeys.generation; 24598 if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32), 24599 flag) != 0) { 24600 return (EFAULT); 24601 } 24602 break; 24603 } 24604 case DDI_MODEL_NONE: 24605 if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), 24606 flag) != 0) { 24607 return (EFAULT); 24608 } 24609 if ((rval = sd_persistent_reservation_in_read_keys(un, 24610 &inkeys, flag)) != 0) { 24611 return (rval); 24612 } 24613 if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), 24614 flag) != 0) { 24615 return (EFAULT); 24616 } 24617 break; 24618 } 24619 24620 #else /* ! _MULTI_DATAMODEL */ 24621 24622 if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) { 24623 return (EFAULT); 24624 } 24625 rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag); 24626 if (rval != 0) { 24627 return (rval); 24628 } 24629 if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) { 24630 return (EFAULT); 24631 } 24632 24633 #endif /* _MULTI_DATAMODEL */ 24634 24635 return (rval); 24636 } 24637 24638 24639 /* 24640 * Function: sd_mhdioc_inresv 24641 * 24642 * Description: This routine is the driver entry point for handling ioctl 24643 * requests to issue the SCSI-3 Persistent In Read Reservations 24644 * command to the device (MHIOCGRP_INKEYS). 24645 * 24646 * Arguments: dev - the device number 24647 * arg - user provided in_resv structure 24648 * flag - this argument is a pass through to ddi_copyxxx() 24649 * directly from the mode argument of ioctl(). 24650 * 24651 * Return Code: code returned by sd_persistent_reservation_in_read_resv() 24652 * ENXIO 24653 * EFAULT 24654 */ 24655 24656 static int 24657 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag) 24658 { 24659 struct sd_lun *un; 24660 mhioc_inresvs_t inresvs; 24661 int rval = 0; 24662 24663 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24664 return (ENXIO); 24665 } 24666 24667 #ifdef _MULTI_DATAMODEL 24668 24669 switch (ddi_model_convert_from(flag & FMODELS)) { 24670 case DDI_MODEL_ILP32: { 24671 struct mhioc_inresvs32 inresvs32; 24672 24673 if (ddi_copyin(arg, &inresvs32, 24674 sizeof (struct mhioc_inresvs32), flag) != 0) { 24675 return (EFAULT); 24676 } 24677 inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li; 24678 if ((rval = sd_persistent_reservation_in_read_resv(un, 24679 &inresvs, flag)) != 0) { 24680 return (rval); 24681 } 24682 inresvs32.generation = inresvs.generation; 24683 if (ddi_copyout(&inresvs32, arg, 24684 sizeof (struct mhioc_inresvs32), flag) != 0) { 24685 return (EFAULT); 24686 } 24687 break; 24688 } 24689 case DDI_MODEL_NONE: 24690 if (ddi_copyin(arg, &inresvs, 24691 sizeof (mhioc_inresvs_t), flag) != 0) { 24692 return (EFAULT); 24693 } 24694 if ((rval = sd_persistent_reservation_in_read_resv(un, 24695 &inresvs, flag)) != 0) { 24696 return (rval); 24697 } 24698 if (ddi_copyout(&inresvs, arg, 24699 sizeof (mhioc_inresvs_t), flag) != 0) { 24700 return (EFAULT); 24701 } 24702 break; 24703 } 24704 24705 #else /* ! _MULTI_DATAMODEL */ 24706 24707 if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) { 24708 return (EFAULT); 24709 } 24710 rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag); 24711 if (rval != 0) { 24712 return (rval); 24713 } 24714 if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) { 24715 return (EFAULT); 24716 } 24717 24718 #endif /* ! _MULTI_DATAMODEL */ 24719 24720 return (rval); 24721 } 24722 24723 24724 /* 24725 * The following routines support the clustering functionality described below 24726 * and implement lost reservation reclaim functionality. 24727 * 24728 * Clustering 24729 * ---------- 24730 * The clustering code uses two different, independent forms of SCSI 24731 * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3 24732 * Persistent Group Reservations. For any particular disk, it will use either 24733 * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk. 24734 * 24735 * SCSI-2 24736 * The cluster software takes ownership of a multi-hosted disk by issuing the 24737 * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the 24738 * MHIOCRELEASE ioctl. Closely related is the MHIOCENFAILFAST ioctl -- a 24739 * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl 24740 * then issues the MHIOCENFAILFAST ioctl. This ioctl "enables failfast" in the 24741 * driver. The meaning of failfast is that if the driver (on this host) ever 24742 * encounters the scsi error return code RESERVATION_CONFLICT from the device, 24743 * it should immediately panic the host. The motivation for this ioctl is that 24744 * if this host does encounter reservation conflict, the underlying cause is 24745 * that some other host of the cluster has decided that this host is no longer 24746 * in the cluster and has seized control of the disks for itself. Since this 24747 * host is no longer in the cluster, it ought to panic itself. The 24748 * MHIOCENFAILFAST ioctl does two things: 24749 * (a) it sets a flag that will cause any returned RESERVATION_CONFLICT 24750 * error to panic the host 24751 * (b) it sets up a periodic timer to test whether this host still has 24752 * "access" (in that no other host has reserved the device): if the 24753 * periodic timer gets RESERVATION_CONFLICT, the host is panicked. The 24754 * purpose of that periodic timer is to handle scenarios where the host is 24755 * otherwise temporarily quiescent, temporarily doing no real i/o. 24756 * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host, 24757 * by issuing a SCSI Bus Device Reset. It will then issue a SCSI Reserve for 24758 * the device itself. 24759 * 24760 * SCSI-3 PGR 24761 * A direct semantic implementation of the SCSI-3 Persistent Reservation 24762 * facility is supported through the shared multihost disk ioctls 24763 * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE, 24764 * MHIOCGRP_PREEMPTANDABORT, MHIOCGRP_CLEAR) 24765 * 24766 * Reservation Reclaim: 24767 * -------------------- 24768 * To support the lost reservation reclaim operations this driver creates a 24769 * single thread to handle reinstating reservations on all devices that have 24770 * lost reservations sd_resv_reclaim_requests are logged for all devices that 24771 * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb 24772 * and the reservation reclaim thread loops through the requests to regain the 24773 * lost reservations. 24774 */ 24775 24776 /* 24777 * Function: sd_check_mhd() 24778 * 24779 * Description: This function sets up and submits a scsi watch request or 24780 * terminates an existing watch request. This routine is used in 24781 * support of reservation reclaim. 24782 * 24783 * Arguments: dev - the device 'dev_t' is used for context to discriminate 24784 * among multiple watches that share the callback function 24785 * interval - the number of microseconds specifying the watch 24786 * interval for issuing TEST UNIT READY commands. If 24787 * set to 0 the watch should be terminated. If the 24788 * interval is set to 0 and if the device is required 24789 * to hold reservation while disabling failfast, the 24790 * watch is restarted with an interval of 24791 * reinstate_resv_delay. 24792 * 24793 * Return Code: 0 - Successful submit/terminate of scsi watch request 24794 * ENXIO - Indicates an invalid device was specified 24795 * EAGAIN - Unable to submit the scsi watch request 24796 */ 24797 24798 static int 24799 sd_check_mhd(dev_t dev, int interval) 24800 { 24801 struct sd_lun *un; 24802 opaque_t token; 24803 24804 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24805 return (ENXIO); 24806 } 24807 24808 /* is this a watch termination request? */ 24809 if (interval == 0) { 24810 mutex_enter(SD_MUTEX(un)); 24811 /* if there is an existing watch task then terminate it */ 24812 if (un->un_mhd_token) { 24813 token = un->un_mhd_token; 24814 un->un_mhd_token = NULL; 24815 mutex_exit(SD_MUTEX(un)); 24816 (void) scsi_watch_request_terminate(token, 24817 SCSI_WATCH_TERMINATE_ALL_WAIT); 24818 mutex_enter(SD_MUTEX(un)); 24819 } else { 24820 mutex_exit(SD_MUTEX(un)); 24821 /* 24822 * Note: If we return here we don't check for the 24823 * failfast case. This is the original legacy 24824 * implementation but perhaps we should be checking 24825 * the failfast case. 24826 */ 24827 return (0); 24828 } 24829 /* 24830 * If the device is required to hold reservation while 24831 * disabling failfast, we need to restart the scsi_watch 24832 * routine with an interval of reinstate_resv_delay. 24833 */ 24834 if (un->un_resvd_status & SD_RESERVE) { 24835 interval = sd_reinstate_resv_delay/1000; 24836 } else { 24837 /* no failfast so bail */ 24838 mutex_exit(SD_MUTEX(un)); 24839 return (0); 24840 } 24841 mutex_exit(SD_MUTEX(un)); 24842 } 24843 24844 /* 24845 * adjust minimum time interval to 1 second, 24846 * and convert from msecs to usecs 24847 */ 24848 if (interval > 0 && interval < 1000) { 24849 interval = 1000; 24850 } 24851 interval *= 1000; 24852 24853 /* 24854 * submit the request to the scsi_watch service 24855 */ 24856 token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval, 24857 SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev); 24858 if (token == NULL) { 24859 return (EAGAIN); 24860 } 24861 24862 /* 24863 * save token for termination later on 24864 */ 24865 mutex_enter(SD_MUTEX(un)); 24866 un->un_mhd_token = token; 24867 mutex_exit(SD_MUTEX(un)); 24868 return (0); 24869 } 24870 24871 24872 /* 24873 * Function: sd_mhd_watch_cb() 24874 * 24875 * Description: This function is the call back function used by the scsi watch 24876 * facility. The scsi watch facility sends the "Test Unit Ready" 24877 * and processes the status. If applicable (i.e. a "Unit Attention" 24878 * status and automatic "Request Sense" not used) the scsi watch 24879 * facility will send a "Request Sense" and retrieve the sense data 24880 * to be passed to this callback function. In either case the 24881 * automatic "Request Sense" or the facility submitting one, this 24882 * callback is passed the status and sense data. 24883 * 24884 * Arguments: arg - the device 'dev_t' is used for context to discriminate 24885 * among multiple watches that share this callback function 24886 * resultp - scsi watch facility result packet containing scsi 24887 * packet, status byte and sense data 24888 * 24889 * Return Code: 0 - continue the watch task 24890 * non-zero - terminate the watch task 24891 */ 24892 24893 static int 24894 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp) 24895 { 24896 struct sd_lun *un; 24897 struct scsi_status *statusp; 24898 uint8_t *sensep; 24899 struct scsi_pkt *pkt; 24900 uchar_t actual_sense_length; 24901 dev_t dev = (dev_t)arg; 24902 24903 ASSERT(resultp != NULL); 24904 statusp = resultp->statusp; 24905 sensep = (uint8_t *)resultp->sensep; 24906 pkt = resultp->pkt; 24907 actual_sense_length = resultp->actual_sense_length; 24908 24909 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24910 return (ENXIO); 24911 } 24912 24913 SD_TRACE(SD_LOG_IOCTL_MHD, un, 24914 "sd_mhd_watch_cb: reason '%s', status '%s'\n", 24915 scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp))); 24916 24917 /* Begin processing of the status and/or sense data */ 24918 if (pkt->pkt_reason != CMD_CMPLT) { 24919 /* Handle the incomplete packet */ 24920 sd_mhd_watch_incomplete(un, pkt); 24921 return (0); 24922 } else if (*((unsigned char *)statusp) != STATUS_GOOD) { 24923 if (*((unsigned char *)statusp) 24924 == STATUS_RESERVATION_CONFLICT) { 24925 /* 24926 * Handle a reservation conflict by panicking if 24927 * configured for failfast or by logging the conflict 24928 * and updating the reservation status 24929 */ 24930 mutex_enter(SD_MUTEX(un)); 24931 if ((un->un_resvd_status & SD_FAILFAST) && 24932 (sd_failfast_enable)) { 24933 sd_panic_for_res_conflict(un); 24934 /*NOTREACHED*/ 24935 } 24936 SD_INFO(SD_LOG_IOCTL_MHD, un, 24937 "sd_mhd_watch_cb: Reservation Conflict\n"); 24938 un->un_resvd_status |= SD_RESERVATION_CONFLICT; 24939 mutex_exit(SD_MUTEX(un)); 24940 } 24941 } 24942 24943 if (sensep != NULL) { 24944 if (actual_sense_length >= (SENSE_LENGTH - 2)) { 24945 mutex_enter(SD_MUTEX(un)); 24946 if ((scsi_sense_asc(sensep) == 24947 SD_SCSI_RESET_SENSE_CODE) && 24948 (un->un_resvd_status & SD_RESERVE)) { 24949 /* 24950 * The additional sense code indicates a power 24951 * on or bus device reset has occurred; update 24952 * the reservation status. 24953 */ 24954 un->un_resvd_status |= 24955 (SD_LOST_RESERVE | SD_WANT_RESERVE); 24956 SD_INFO(SD_LOG_IOCTL_MHD, un, 24957 "sd_mhd_watch_cb: Lost Reservation\n"); 24958 } 24959 } else { 24960 return (0); 24961 } 24962 } else { 24963 mutex_enter(SD_MUTEX(un)); 24964 } 24965 24966 if ((un->un_resvd_status & SD_RESERVE) && 24967 (un->un_resvd_status & SD_LOST_RESERVE)) { 24968 if (un->un_resvd_status & SD_WANT_RESERVE) { 24969 /* 24970 * A reset occurred in between the last probe and this 24971 * one so if a timeout is pending cancel it. 24972 */ 24973 if (un->un_resvd_timeid) { 24974 timeout_id_t temp_id = un->un_resvd_timeid; 24975 un->un_resvd_timeid = NULL; 24976 mutex_exit(SD_MUTEX(un)); 24977 (void) untimeout(temp_id); 24978 mutex_enter(SD_MUTEX(un)); 24979 } 24980 un->un_resvd_status &= ~SD_WANT_RESERVE; 24981 } 24982 if (un->un_resvd_timeid == 0) { 24983 /* Schedule a timeout to handle the lost reservation */ 24984 un->un_resvd_timeid = timeout(sd_mhd_resvd_recover, 24985 (void *)dev, 24986 drv_usectohz(sd_reinstate_resv_delay)); 24987 } 24988 } 24989 mutex_exit(SD_MUTEX(un)); 24990 return (0); 24991 } 24992 24993 24994 /* 24995 * Function: sd_mhd_watch_incomplete() 24996 * 24997 * Description: This function is used to find out why a scsi pkt sent by the 24998 * scsi watch facility was not completed. Under some scenarios this 24999 * routine will return. Otherwise it will send a bus reset to see 25000 * if the drive is still online. 25001 * 25002 * Arguments: un - driver soft state (unit) structure 25003 * pkt - incomplete scsi pkt 25004 */ 25005 25006 static void 25007 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt) 25008 { 25009 int be_chatty; 25010 int perr; 25011 25012 ASSERT(pkt != NULL); 25013 ASSERT(un != NULL); 25014 be_chatty = (!(pkt->pkt_flags & FLAG_SILENT)); 25015 perr = (pkt->pkt_statistics & STAT_PERR); 25016 25017 mutex_enter(SD_MUTEX(un)); 25018 if (un->un_state == SD_STATE_DUMPING) { 25019 mutex_exit(SD_MUTEX(un)); 25020 return; 25021 } 25022 25023 switch (pkt->pkt_reason) { 25024 case CMD_UNX_BUS_FREE: 25025 /* 25026 * If we had a parity error that caused the target to drop BSY*, 25027 * don't be chatty about it. 25028 */ 25029 if (perr && be_chatty) { 25030 be_chatty = 0; 25031 } 25032 break; 25033 case CMD_TAG_REJECT: 25034 /* 25035 * The SCSI-2 spec states that a tag reject will be sent by the 25036 * target if tagged queuing is not supported. A tag reject may 25037 * also be sent during certain initialization periods or to 25038 * control internal resources. For the latter case the target 25039 * may also return Queue Full. 25040 * 25041 * If this driver receives a tag reject from a target that is 25042 * going through an init period or controlling internal 25043 * resources tagged queuing will be disabled. This is a less 25044 * than optimal behavior but the driver is unable to determine 25045 * the target state and assumes tagged queueing is not supported 25046 */ 25047 pkt->pkt_flags = 0; 25048 un->un_tagflags = 0; 25049 25050 if (un->un_f_opt_queueing == TRUE) { 25051 un->un_throttle = min(un->un_throttle, 3); 25052 } else { 25053 un->un_throttle = 1; 25054 } 25055 mutex_exit(SD_MUTEX(un)); 25056 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 25057 mutex_enter(SD_MUTEX(un)); 25058 break; 25059 case CMD_INCOMPLETE: 25060 /* 25061 * The transport stopped with an abnormal state, fallthrough and 25062 * reset the target and/or bus unless selection did not complete 25063 * (indicated by STATE_GOT_BUS) in which case we don't want to 25064 * go through a target/bus reset 25065 */ 25066 if (pkt->pkt_state == STATE_GOT_BUS) { 25067 break; 25068 } 25069 /*FALLTHROUGH*/ 25070 25071 case CMD_TIMEOUT: 25072 default: 25073 /* 25074 * The lun may still be running the command, so a lun reset 25075 * should be attempted. If the lun reset fails or cannot be 25076 * issued, than try a target reset. Lastly try a bus reset. 25077 */ 25078 if ((pkt->pkt_statistics & 25079 (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) { 25080 int reset_retval = 0; 25081 mutex_exit(SD_MUTEX(un)); 25082 if (un->un_f_allow_bus_device_reset == TRUE) { 25083 if (un->un_f_lun_reset_enabled == TRUE) { 25084 reset_retval = 25085 scsi_reset(SD_ADDRESS(un), 25086 RESET_LUN); 25087 } 25088 if (reset_retval == 0) { 25089 reset_retval = 25090 scsi_reset(SD_ADDRESS(un), 25091 RESET_TARGET); 25092 } 25093 } 25094 if (reset_retval == 0) { 25095 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 25096 } 25097 mutex_enter(SD_MUTEX(un)); 25098 } 25099 break; 25100 } 25101 25102 /* A device/bus reset has occurred; update the reservation status. */ 25103 if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics & 25104 (STAT_BUS_RESET | STAT_DEV_RESET))) { 25105 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 25106 un->un_resvd_status |= 25107 (SD_LOST_RESERVE | SD_WANT_RESERVE); 25108 SD_INFO(SD_LOG_IOCTL_MHD, un, 25109 "sd_mhd_watch_incomplete: Lost Reservation\n"); 25110 } 25111 } 25112 25113 /* 25114 * The disk has been turned off; Update the device state. 25115 * 25116 * Note: Should we be offlining the disk here? 25117 */ 25118 if (pkt->pkt_state == STATE_GOT_BUS) { 25119 SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: " 25120 "Disk not responding to selection\n"); 25121 if (un->un_state != SD_STATE_OFFLINE) { 25122 New_state(un, SD_STATE_OFFLINE); 25123 } 25124 } else if (be_chatty) { 25125 /* 25126 * suppress messages if they are all the same pkt reason; 25127 * with TQ, many (up to 256) are returned with the same 25128 * pkt_reason 25129 */ 25130 if (pkt->pkt_reason != un->un_last_pkt_reason) { 25131 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25132 "sd_mhd_watch_incomplete: " 25133 "SCSI transport failed: reason '%s'\n", 25134 scsi_rname(pkt->pkt_reason)); 25135 } 25136 } 25137 un->un_last_pkt_reason = pkt->pkt_reason; 25138 mutex_exit(SD_MUTEX(un)); 25139 } 25140 25141 25142 /* 25143 * Function: sd_sname() 25144 * 25145 * Description: This is a simple little routine to return a string containing 25146 * a printable description of command status byte for use in 25147 * logging. 25148 * 25149 * Arguments: status - pointer to a status byte 25150 * 25151 * Return Code: char * - string containing status description. 25152 */ 25153 25154 static char * 25155 sd_sname(uchar_t status) 25156 { 25157 switch (status & STATUS_MASK) { 25158 case STATUS_GOOD: 25159 return ("good status"); 25160 case STATUS_CHECK: 25161 return ("check condition"); 25162 case STATUS_MET: 25163 return ("condition met"); 25164 case STATUS_BUSY: 25165 return ("busy"); 25166 case STATUS_INTERMEDIATE: 25167 return ("intermediate"); 25168 case STATUS_INTERMEDIATE_MET: 25169 return ("intermediate - condition met"); 25170 case STATUS_RESERVATION_CONFLICT: 25171 return ("reservation_conflict"); 25172 case STATUS_TERMINATED: 25173 return ("command terminated"); 25174 case STATUS_QFULL: 25175 return ("queue full"); 25176 default: 25177 return ("<unknown status>"); 25178 } 25179 } 25180 25181 25182 /* 25183 * Function: sd_mhd_resvd_recover() 25184 * 25185 * Description: This function adds a reservation entry to the 25186 * sd_resv_reclaim_request list and signals the reservation 25187 * reclaim thread that there is work pending. If the reservation 25188 * reclaim thread has not been previously created this function 25189 * will kick it off. 25190 * 25191 * Arguments: arg - the device 'dev_t' is used for context to discriminate 25192 * among multiple watches that share this callback function 25193 * 25194 * Context: This routine is called by timeout() and is run in interrupt 25195 * context. It must not sleep or call other functions which may 25196 * sleep. 25197 */ 25198 25199 static void 25200 sd_mhd_resvd_recover(void *arg) 25201 { 25202 dev_t dev = (dev_t)arg; 25203 struct sd_lun *un; 25204 struct sd_thr_request *sd_treq = NULL; 25205 struct sd_thr_request *sd_cur = NULL; 25206 struct sd_thr_request *sd_prev = NULL; 25207 int already_there = 0; 25208 25209 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25210 return; 25211 } 25212 25213 mutex_enter(SD_MUTEX(un)); 25214 un->un_resvd_timeid = NULL; 25215 if (un->un_resvd_status & SD_WANT_RESERVE) { 25216 /* 25217 * There was a reset so don't issue the reserve, allow the 25218 * sd_mhd_watch_cb callback function to notice this and 25219 * reschedule the timeout for reservation. 25220 */ 25221 mutex_exit(SD_MUTEX(un)); 25222 return; 25223 } 25224 mutex_exit(SD_MUTEX(un)); 25225 25226 /* 25227 * Add this device to the sd_resv_reclaim_request list and the 25228 * sd_resv_reclaim_thread should take care of the rest. 25229 * 25230 * Note: We can't sleep in this context so if the memory allocation 25231 * fails allow the sd_mhd_watch_cb callback function to notice this and 25232 * reschedule the timeout for reservation. (4378460) 25233 */ 25234 sd_treq = (struct sd_thr_request *) 25235 kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP); 25236 if (sd_treq == NULL) { 25237 return; 25238 } 25239 25240 sd_treq->sd_thr_req_next = NULL; 25241 sd_treq->dev = dev; 25242 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25243 if (sd_tr.srq_thr_req_head == NULL) { 25244 sd_tr.srq_thr_req_head = sd_treq; 25245 } else { 25246 sd_cur = sd_prev = sd_tr.srq_thr_req_head; 25247 for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) { 25248 if (sd_cur->dev == dev) { 25249 /* 25250 * already in Queue so don't log 25251 * another request for the device 25252 */ 25253 already_there = 1; 25254 break; 25255 } 25256 sd_prev = sd_cur; 25257 } 25258 if (!already_there) { 25259 SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: " 25260 "logging request for %lx\n", dev); 25261 sd_prev->sd_thr_req_next = sd_treq; 25262 } else { 25263 kmem_free(sd_treq, sizeof (struct sd_thr_request)); 25264 } 25265 } 25266 25267 /* 25268 * Create a kernel thread to do the reservation reclaim and free up this 25269 * thread. We cannot block this thread while we go away to do the 25270 * reservation reclaim 25271 */ 25272 if (sd_tr.srq_resv_reclaim_thread == NULL) 25273 sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0, 25274 sd_resv_reclaim_thread, NULL, 25275 0, &p0, TS_RUN, v.v_maxsyspri - 2); 25276 25277 /* Tell the reservation reclaim thread that it has work to do */ 25278 cv_signal(&sd_tr.srq_resv_reclaim_cv); 25279 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25280 } 25281 25282 /* 25283 * Function: sd_resv_reclaim_thread() 25284 * 25285 * Description: This function implements the reservation reclaim operations 25286 * 25287 * Arguments: arg - the device 'dev_t' is used for context to discriminate 25288 * among multiple watches that share this callback function 25289 */ 25290 25291 static void 25292 sd_resv_reclaim_thread() 25293 { 25294 struct sd_lun *un; 25295 struct sd_thr_request *sd_mhreq; 25296 25297 /* Wait for work */ 25298 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25299 if (sd_tr.srq_thr_req_head == NULL) { 25300 cv_wait(&sd_tr.srq_resv_reclaim_cv, 25301 &sd_tr.srq_resv_reclaim_mutex); 25302 } 25303 25304 /* Loop while we have work */ 25305 while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) { 25306 un = ddi_get_soft_state(sd_state, 25307 SDUNIT(sd_tr.srq_thr_cur_req->dev)); 25308 if (un == NULL) { 25309 /* 25310 * softstate structure is NULL so just 25311 * dequeue the request and continue 25312 */ 25313 sd_tr.srq_thr_req_head = 25314 sd_tr.srq_thr_cur_req->sd_thr_req_next; 25315 kmem_free(sd_tr.srq_thr_cur_req, 25316 sizeof (struct sd_thr_request)); 25317 continue; 25318 } 25319 25320 /* dequeue the request */ 25321 sd_mhreq = sd_tr.srq_thr_cur_req; 25322 sd_tr.srq_thr_req_head = 25323 sd_tr.srq_thr_cur_req->sd_thr_req_next; 25324 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25325 25326 /* 25327 * Reclaim reservation only if SD_RESERVE is still set. There 25328 * may have been a call to MHIOCRELEASE before we got here. 25329 */ 25330 mutex_enter(SD_MUTEX(un)); 25331 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 25332 /* 25333 * Note: The SD_LOST_RESERVE flag is cleared before 25334 * reclaiming the reservation. If this is done after the 25335 * call to sd_reserve_release a reservation loss in the 25336 * window between pkt completion of reserve cmd and 25337 * mutex_enter below may not be recognized 25338 */ 25339 un->un_resvd_status &= ~SD_LOST_RESERVE; 25340 mutex_exit(SD_MUTEX(un)); 25341 25342 if (sd_reserve_release(sd_mhreq->dev, 25343 SD_RESERVE) == 0) { 25344 mutex_enter(SD_MUTEX(un)); 25345 un->un_resvd_status |= SD_RESERVE; 25346 mutex_exit(SD_MUTEX(un)); 25347 SD_INFO(SD_LOG_IOCTL_MHD, un, 25348 "sd_resv_reclaim_thread: " 25349 "Reservation Recovered\n"); 25350 } else { 25351 mutex_enter(SD_MUTEX(un)); 25352 un->un_resvd_status |= SD_LOST_RESERVE; 25353 mutex_exit(SD_MUTEX(un)); 25354 SD_INFO(SD_LOG_IOCTL_MHD, un, 25355 "sd_resv_reclaim_thread: Failed " 25356 "Reservation Recovery\n"); 25357 } 25358 } else { 25359 mutex_exit(SD_MUTEX(un)); 25360 } 25361 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25362 ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req); 25363 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 25364 sd_mhreq = sd_tr.srq_thr_cur_req = NULL; 25365 /* 25366 * wakeup the destroy thread if anyone is waiting on 25367 * us to complete. 25368 */ 25369 cv_signal(&sd_tr.srq_inprocess_cv); 25370 SD_TRACE(SD_LOG_IOCTL_MHD, un, 25371 "sd_resv_reclaim_thread: cv_signalling current request \n"); 25372 } 25373 25374 /* 25375 * cleanup the sd_tr structure now that this thread will not exist 25376 */ 25377 ASSERT(sd_tr.srq_thr_req_head == NULL); 25378 ASSERT(sd_tr.srq_thr_cur_req == NULL); 25379 sd_tr.srq_resv_reclaim_thread = NULL; 25380 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25381 thread_exit(); 25382 } 25383 25384 25385 /* 25386 * Function: sd_rmv_resv_reclaim_req() 25387 * 25388 * Description: This function removes any pending reservation reclaim requests 25389 * for the specified device. 25390 * 25391 * Arguments: dev - the device 'dev_t' 25392 */ 25393 25394 static void 25395 sd_rmv_resv_reclaim_req(dev_t dev) 25396 { 25397 struct sd_thr_request *sd_mhreq; 25398 struct sd_thr_request *sd_prev; 25399 25400 /* Remove a reservation reclaim request from the list */ 25401 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25402 if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) { 25403 /* 25404 * We are attempting to reinstate reservation for 25405 * this device. We wait for sd_reserve_release() 25406 * to return before we return. 25407 */ 25408 cv_wait(&sd_tr.srq_inprocess_cv, 25409 &sd_tr.srq_resv_reclaim_mutex); 25410 } else { 25411 sd_prev = sd_mhreq = sd_tr.srq_thr_req_head; 25412 if (sd_mhreq && sd_mhreq->dev == dev) { 25413 sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next; 25414 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 25415 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25416 return; 25417 } 25418 for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) { 25419 if (sd_mhreq && sd_mhreq->dev == dev) { 25420 break; 25421 } 25422 sd_prev = sd_mhreq; 25423 } 25424 if (sd_mhreq != NULL) { 25425 sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next; 25426 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 25427 } 25428 } 25429 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25430 } 25431 25432 25433 /* 25434 * Function: sd_mhd_reset_notify_cb() 25435 * 25436 * Description: This is a call back function for scsi_reset_notify. This 25437 * function updates the softstate reserved status and logs the 25438 * reset. The driver scsi watch facility callback function 25439 * (sd_mhd_watch_cb) and reservation reclaim thread functionality 25440 * will reclaim the reservation. 25441 * 25442 * Arguments: arg - driver soft state (unit) structure 25443 */ 25444 25445 static void 25446 sd_mhd_reset_notify_cb(caddr_t arg) 25447 { 25448 struct sd_lun *un = (struct sd_lun *)arg; 25449 25450 mutex_enter(SD_MUTEX(un)); 25451 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 25452 un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE); 25453 SD_INFO(SD_LOG_IOCTL_MHD, un, 25454 "sd_mhd_reset_notify_cb: Lost Reservation\n"); 25455 } 25456 mutex_exit(SD_MUTEX(un)); 25457 } 25458 25459 25460 /* 25461 * Function: sd_take_ownership() 25462 * 25463 * Description: This routine implements an algorithm to achieve a stable 25464 * reservation on disks which don't implement priority reserve, 25465 * and makes sure that other host lose re-reservation attempts. 25466 * This algorithm contains of a loop that keeps issuing the RESERVE 25467 * for some period of time (min_ownership_delay, default 6 seconds) 25468 * During that loop, it looks to see if there has been a bus device 25469 * reset or bus reset (both of which cause an existing reservation 25470 * to be lost). If the reservation is lost issue RESERVE until a 25471 * period of min_ownership_delay with no resets has gone by, or 25472 * until max_ownership_delay has expired. This loop ensures that 25473 * the host really did manage to reserve the device, in spite of 25474 * resets. The looping for min_ownership_delay (default six 25475 * seconds) is important to early generation clustering products, 25476 * Solstice HA 1.x and Sun Cluster 2.x. Those products use an 25477 * MHIOCENFAILFAST periodic timer of two seconds. By having 25478 * MHIOCTKOWN issue Reserves in a loop for six seconds, and having 25479 * MHIOCENFAILFAST poll every two seconds, the idea is that by the 25480 * time the MHIOCTKOWN ioctl returns, the other host (if any) will 25481 * have already noticed, via the MHIOCENFAILFAST polling, that it 25482 * no longer "owns" the disk and will have panicked itself. Thus, 25483 * the host issuing the MHIOCTKOWN is assured (with timing 25484 * dependencies) that by the time it actually starts to use the 25485 * disk for real work, the old owner is no longer accessing it. 25486 * 25487 * min_ownership_delay is the minimum amount of time for which the 25488 * disk must be reserved continuously devoid of resets before the 25489 * MHIOCTKOWN ioctl will return success. 25490 * 25491 * max_ownership_delay indicates the amount of time by which the 25492 * take ownership should succeed or timeout with an error. 25493 * 25494 * Arguments: dev - the device 'dev_t' 25495 * *p - struct containing timing info. 25496 * 25497 * Return Code: 0 for success or error code 25498 */ 25499 25500 static int 25501 sd_take_ownership(dev_t dev, struct mhioctkown *p) 25502 { 25503 struct sd_lun *un; 25504 int rval; 25505 int err; 25506 int reservation_count = 0; 25507 int min_ownership_delay = 6000000; /* in usec */ 25508 int max_ownership_delay = 30000000; /* in usec */ 25509 clock_t start_time; /* starting time of this algorithm */ 25510 clock_t end_time; /* time limit for giving up */ 25511 clock_t ownership_time; /* time limit for stable ownership */ 25512 clock_t current_time; 25513 clock_t previous_current_time; 25514 25515 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25516 return (ENXIO); 25517 } 25518 25519 /* 25520 * Attempt a device reservation. A priority reservation is requested. 25521 */ 25522 if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE)) 25523 != SD_SUCCESS) { 25524 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25525 "sd_take_ownership: return(1)=%d\n", rval); 25526 return (rval); 25527 } 25528 25529 /* Update the softstate reserved status to indicate the reservation */ 25530 mutex_enter(SD_MUTEX(un)); 25531 un->un_resvd_status |= SD_RESERVE; 25532 un->un_resvd_status &= 25533 ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT); 25534 mutex_exit(SD_MUTEX(un)); 25535 25536 if (p != NULL) { 25537 if (p->min_ownership_delay != 0) { 25538 min_ownership_delay = p->min_ownership_delay * 1000; 25539 } 25540 if (p->max_ownership_delay != 0) { 25541 max_ownership_delay = p->max_ownership_delay * 1000; 25542 } 25543 } 25544 SD_INFO(SD_LOG_IOCTL_MHD, un, 25545 "sd_take_ownership: min, max delays: %d, %d\n", 25546 min_ownership_delay, max_ownership_delay); 25547 25548 start_time = ddi_get_lbolt(); 25549 current_time = start_time; 25550 ownership_time = current_time + drv_usectohz(min_ownership_delay); 25551 end_time = start_time + drv_usectohz(max_ownership_delay); 25552 25553 while (current_time - end_time < 0) { 25554 delay(drv_usectohz(500000)); 25555 25556 if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) { 25557 if ((sd_reserve_release(dev, SD_RESERVE)) != 0) { 25558 mutex_enter(SD_MUTEX(un)); 25559 rval = (un->un_resvd_status & 25560 SD_RESERVATION_CONFLICT) ? EACCES : EIO; 25561 mutex_exit(SD_MUTEX(un)); 25562 break; 25563 } 25564 } 25565 previous_current_time = current_time; 25566 current_time = ddi_get_lbolt(); 25567 mutex_enter(SD_MUTEX(un)); 25568 if (err || (un->un_resvd_status & SD_LOST_RESERVE)) { 25569 ownership_time = ddi_get_lbolt() + 25570 drv_usectohz(min_ownership_delay); 25571 reservation_count = 0; 25572 } else { 25573 reservation_count++; 25574 } 25575 un->un_resvd_status |= SD_RESERVE; 25576 un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE); 25577 mutex_exit(SD_MUTEX(un)); 25578 25579 SD_INFO(SD_LOG_IOCTL_MHD, un, 25580 "sd_take_ownership: ticks for loop iteration=%ld, " 25581 "reservation=%s\n", (current_time - previous_current_time), 25582 reservation_count ? "ok" : "reclaimed"); 25583 25584 if (current_time - ownership_time >= 0 && 25585 reservation_count >= 4) { 25586 rval = 0; /* Achieved a stable ownership */ 25587 break; 25588 } 25589 if (current_time - end_time >= 0) { 25590 rval = EACCES; /* No ownership in max possible time */ 25591 break; 25592 } 25593 } 25594 SD_TRACE(SD_LOG_IOCTL_MHD, un, 25595 "sd_take_ownership: return(2)=%d\n", rval); 25596 return (rval); 25597 } 25598 25599 25600 /* 25601 * Function: sd_reserve_release() 25602 * 25603 * Description: This function builds and sends scsi RESERVE, RELEASE, and 25604 * PRIORITY RESERVE commands based on a user specified command type 25605 * 25606 * Arguments: dev - the device 'dev_t' 25607 * cmd - user specified command type; one of SD_PRIORITY_RESERVE, 25608 * SD_RESERVE, SD_RELEASE 25609 * 25610 * Return Code: 0 or Error Code 25611 */ 25612 25613 static int 25614 sd_reserve_release(dev_t dev, int cmd) 25615 { 25616 struct uscsi_cmd *com = NULL; 25617 struct sd_lun *un = NULL; 25618 char cdb[CDB_GROUP0]; 25619 int rval; 25620 25621 ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) || 25622 (cmd == SD_PRIORITY_RESERVE)); 25623 25624 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25625 return (ENXIO); 25626 } 25627 25628 /* instantiate and initialize the command and cdb */ 25629 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 25630 bzero(cdb, CDB_GROUP0); 25631 com->uscsi_flags = USCSI_SILENT; 25632 com->uscsi_timeout = un->un_reserve_release_time; 25633 com->uscsi_cdblen = CDB_GROUP0; 25634 com->uscsi_cdb = cdb; 25635 if (cmd == SD_RELEASE) { 25636 cdb[0] = SCMD_RELEASE; 25637 } else { 25638 cdb[0] = SCMD_RESERVE; 25639 } 25640 25641 /* Send the command. */ 25642 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 25643 SD_PATH_STANDARD); 25644 25645 /* 25646 * "break" a reservation that is held by another host, by issuing a 25647 * reset if priority reserve is desired, and we could not get the 25648 * device. 25649 */ 25650 if ((cmd == SD_PRIORITY_RESERVE) && 25651 (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) { 25652 /* 25653 * First try to reset the LUN. If we cannot, then try a target 25654 * reset, followed by a bus reset if the target reset fails. 25655 */ 25656 int reset_retval = 0; 25657 if (un->un_f_lun_reset_enabled == TRUE) { 25658 reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 25659 } 25660 if (reset_retval == 0) { 25661 /* The LUN reset either failed or was not issued */ 25662 reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 25663 } 25664 if ((reset_retval == 0) && 25665 (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) { 25666 rval = EIO; 25667 kmem_free(com, sizeof (*com)); 25668 return (rval); 25669 } 25670 25671 bzero(com, sizeof (struct uscsi_cmd)); 25672 com->uscsi_flags = USCSI_SILENT; 25673 com->uscsi_cdb = cdb; 25674 com->uscsi_cdblen = CDB_GROUP0; 25675 com->uscsi_timeout = 5; 25676 25677 /* 25678 * Reissue the last reserve command, this time without request 25679 * sense. Assume that it is just a regular reserve command. 25680 */ 25681 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 25682 SD_PATH_STANDARD); 25683 } 25684 25685 /* Return an error if still getting a reservation conflict. */ 25686 if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) { 25687 rval = EACCES; 25688 } 25689 25690 kmem_free(com, sizeof (*com)); 25691 return (rval); 25692 } 25693 25694 25695 #define SD_NDUMP_RETRIES 12 25696 /* 25697 * System Crash Dump routine 25698 */ 25699 25700 static int 25701 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk) 25702 { 25703 int instance; 25704 int partition; 25705 int i; 25706 int err; 25707 struct sd_lun *un; 25708 struct scsi_pkt *wr_pktp; 25709 struct buf *wr_bp; 25710 struct buf wr_buf; 25711 daddr_t tgt_byte_offset; /* rmw - byte offset for target */ 25712 daddr_t tgt_blkno; /* rmw - blkno for target */ 25713 size_t tgt_byte_count; /* rmw - # of bytes to xfer */ 25714 size_t tgt_nblk; /* rmw - # of tgt blks to xfer */ 25715 size_t io_start_offset; 25716 int doing_rmw = FALSE; 25717 int rval; 25718 ssize_t dma_resid; 25719 daddr_t oblkno; 25720 diskaddr_t nblks = 0; 25721 diskaddr_t start_block; 25722 25723 instance = SDUNIT(dev); 25724 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 25725 !SD_IS_VALID_LABEL(un) || ISCD(un)) { 25726 return (ENXIO); 25727 } 25728 25729 _NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un)) 25730 25731 SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n"); 25732 25733 partition = SDPART(dev); 25734 SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition); 25735 25736 if (!(NOT_DEVBSIZE(un))) { 25737 int secmask = 0; 25738 int blknomask = 0; 25739 25740 blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1; 25741 secmask = un->un_tgt_blocksize - 1; 25742 25743 if (blkno & blknomask) { 25744 SD_TRACE(SD_LOG_DUMP, un, 25745 "sddump: dump start block not modulo %d\n", 25746 un->un_tgt_blocksize); 25747 return (EINVAL); 25748 } 25749 25750 if ((nblk * DEV_BSIZE) & secmask) { 25751 SD_TRACE(SD_LOG_DUMP, un, 25752 "sddump: dump length not modulo %d\n", 25753 un->un_tgt_blocksize); 25754 return (EINVAL); 25755 } 25756 25757 } 25758 25759 /* Validate blocks to dump at against partition size. */ 25760 25761 (void) cmlb_partinfo(un->un_cmlbhandle, partition, 25762 &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT); 25763 25764 if (NOT_DEVBSIZE(un)) { 25765 if ((blkno + nblk) > nblks) { 25766 SD_TRACE(SD_LOG_DUMP, un, 25767 "sddump: dump range larger than partition: " 25768 "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n", 25769 blkno, nblk, nblks); 25770 return (EINVAL); 25771 } 25772 } else { 25773 if (((blkno / (un->un_tgt_blocksize / DEV_BSIZE)) + 25774 (nblk / (un->un_tgt_blocksize / DEV_BSIZE))) > nblks) { 25775 SD_TRACE(SD_LOG_DUMP, un, 25776 "sddump: dump range larger than partition: " 25777 "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n", 25778 blkno, nblk, nblks); 25779 return (EINVAL); 25780 } 25781 } 25782 25783 mutex_enter(&un->un_pm_mutex); 25784 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 25785 struct scsi_pkt *start_pktp; 25786 25787 mutex_exit(&un->un_pm_mutex); 25788 25789 /* 25790 * use pm framework to power on HBA 1st 25791 */ 25792 (void) pm_raise_power(SD_DEVINFO(un), 0, 25793 SD_PM_STATE_ACTIVE(un)); 25794 25795 /* 25796 * Dump no long uses sdpower to power on a device, it's 25797 * in-line here so it can be done in polled mode. 25798 */ 25799 25800 SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n"); 25801 25802 start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL, 25803 CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL); 25804 25805 if (start_pktp == NULL) { 25806 /* We were not given a SCSI packet, fail. */ 25807 return (EIO); 25808 } 25809 bzero(start_pktp->pkt_cdbp, CDB_GROUP0); 25810 start_pktp->pkt_cdbp[0] = SCMD_START_STOP; 25811 start_pktp->pkt_cdbp[4] = SD_TARGET_START; 25812 start_pktp->pkt_flags = FLAG_NOINTR; 25813 25814 mutex_enter(SD_MUTEX(un)); 25815 SD_FILL_SCSI1_LUN(un, start_pktp); 25816 mutex_exit(SD_MUTEX(un)); 25817 /* 25818 * Scsi_poll returns 0 (success) if the command completes and 25819 * the status block is STATUS_GOOD. 25820 */ 25821 if (sd_scsi_poll(un, start_pktp) != 0) { 25822 scsi_destroy_pkt(start_pktp); 25823 return (EIO); 25824 } 25825 scsi_destroy_pkt(start_pktp); 25826 (void) sd_pm_state_change(un, SD_PM_STATE_ACTIVE(un), 25827 SD_PM_STATE_CHANGE); 25828 } else { 25829 mutex_exit(&un->un_pm_mutex); 25830 } 25831 25832 mutex_enter(SD_MUTEX(un)); 25833 un->un_throttle = 0; 25834 25835 /* 25836 * The first time through, reset the specific target device. 25837 * However, when cpr calls sddump we know that sd is in a 25838 * a good state so no bus reset is required. 25839 * Clear sense data via Request Sense cmd. 25840 * In sddump we don't care about allow_bus_device_reset anymore 25841 */ 25842 25843 if ((un->un_state != SD_STATE_SUSPENDED) && 25844 (un->un_state != SD_STATE_DUMPING)) { 25845 25846 New_state(un, SD_STATE_DUMPING); 25847 25848 if (un->un_f_is_fibre == FALSE) { 25849 mutex_exit(SD_MUTEX(un)); 25850 /* 25851 * Attempt a bus reset for parallel scsi. 25852 * 25853 * Note: A bus reset is required because on some host 25854 * systems (i.e. E420R) a bus device reset is 25855 * insufficient to reset the state of the target. 25856 * 25857 * Note: Don't issue the reset for fibre-channel, 25858 * because this tends to hang the bus (loop) for 25859 * too long while everyone is logging out and in 25860 * and the deadman timer for dumping will fire 25861 * before the dump is complete. 25862 */ 25863 if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) { 25864 mutex_enter(SD_MUTEX(un)); 25865 Restore_state(un); 25866 mutex_exit(SD_MUTEX(un)); 25867 return (EIO); 25868 } 25869 25870 /* Delay to give the device some recovery time. */ 25871 drv_usecwait(10000); 25872 25873 if (sd_send_polled_RQS(un) == SD_FAILURE) { 25874 SD_INFO(SD_LOG_DUMP, un, 25875 "sddump: sd_send_polled_RQS failed\n"); 25876 } 25877 mutex_enter(SD_MUTEX(un)); 25878 } 25879 } 25880 25881 /* 25882 * Convert the partition-relative block number to a 25883 * disk physical block number. 25884 */ 25885 if (NOT_DEVBSIZE(un)) { 25886 blkno += start_block; 25887 } else { 25888 blkno = blkno / (un->un_tgt_blocksize / DEV_BSIZE); 25889 blkno += start_block; 25890 } 25891 25892 SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno); 25893 25894 25895 /* 25896 * Check if the device has a non-512 block size. 25897 */ 25898 wr_bp = NULL; 25899 if (NOT_DEVBSIZE(un)) { 25900 tgt_byte_offset = blkno * un->un_sys_blocksize; 25901 tgt_byte_count = nblk * un->un_sys_blocksize; 25902 if ((tgt_byte_offset % un->un_tgt_blocksize) || 25903 (tgt_byte_count % un->un_tgt_blocksize)) { 25904 doing_rmw = TRUE; 25905 /* 25906 * Calculate the block number and number of block 25907 * in terms of the media block size. 25908 */ 25909 tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize; 25910 tgt_nblk = 25911 ((tgt_byte_offset + tgt_byte_count + 25912 (un->un_tgt_blocksize - 1)) / 25913 un->un_tgt_blocksize) - tgt_blkno; 25914 25915 /* 25916 * Invoke the routine which is going to do read part 25917 * of read-modify-write. 25918 * Note that this routine returns a pointer to 25919 * a valid bp in wr_bp. 25920 */ 25921 err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk, 25922 &wr_bp); 25923 if (err) { 25924 mutex_exit(SD_MUTEX(un)); 25925 return (err); 25926 } 25927 /* 25928 * Offset is being calculated as - 25929 * (original block # * system block size) - 25930 * (new block # * target block size) 25931 */ 25932 io_start_offset = 25933 ((uint64_t)(blkno * un->un_sys_blocksize)) - 25934 ((uint64_t)(tgt_blkno * un->un_tgt_blocksize)); 25935 25936 ASSERT((io_start_offset >= 0) && 25937 (io_start_offset < un->un_tgt_blocksize)); 25938 /* 25939 * Do the modify portion of read modify write. 25940 */ 25941 bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset], 25942 (size_t)nblk * un->un_sys_blocksize); 25943 } else { 25944 doing_rmw = FALSE; 25945 tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize; 25946 tgt_nblk = tgt_byte_count / un->un_tgt_blocksize; 25947 } 25948 25949 /* Convert blkno and nblk to target blocks */ 25950 blkno = tgt_blkno; 25951 nblk = tgt_nblk; 25952 } else { 25953 wr_bp = &wr_buf; 25954 bzero(wr_bp, sizeof (struct buf)); 25955 wr_bp->b_flags = B_BUSY; 25956 wr_bp->b_un.b_addr = addr; 25957 wr_bp->b_bcount = nblk << DEV_BSHIFT; 25958 wr_bp->b_resid = 0; 25959 } 25960 25961 mutex_exit(SD_MUTEX(un)); 25962 25963 /* 25964 * Obtain a SCSI packet for the write command. 25965 * It should be safe to call the allocator here without 25966 * worrying about being locked for DVMA mapping because 25967 * the address we're passed is already a DVMA mapping 25968 * 25969 * We are also not going to worry about semaphore ownership 25970 * in the dump buffer. Dumping is single threaded at present. 25971 */ 25972 25973 wr_pktp = NULL; 25974 25975 dma_resid = wr_bp->b_bcount; 25976 oblkno = blkno; 25977 25978 if (!(NOT_DEVBSIZE(un))) { 25979 nblk = nblk / (un->un_tgt_blocksize / DEV_BSIZE); 25980 } 25981 25982 while (dma_resid != 0) { 25983 25984 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 25985 wr_bp->b_flags &= ~B_ERROR; 25986 25987 if (un->un_partial_dma_supported == 1) { 25988 blkno = oblkno + 25989 ((wr_bp->b_bcount - dma_resid) / 25990 un->un_tgt_blocksize); 25991 nblk = dma_resid / un->un_tgt_blocksize; 25992 25993 if (wr_pktp) { 25994 /* 25995 * Partial DMA transfers after initial transfer 25996 */ 25997 rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp, 25998 blkno, nblk); 25999 } else { 26000 /* Initial transfer */ 26001 rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp, 26002 un->un_pkt_flags, NULL_FUNC, NULL, 26003 blkno, nblk); 26004 } 26005 } else { 26006 rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp, 26007 0, NULL_FUNC, NULL, blkno, nblk); 26008 } 26009 26010 if (rval == 0) { 26011 /* We were given a SCSI packet, continue. */ 26012 break; 26013 } 26014 26015 if (i == 0) { 26016 if (wr_bp->b_flags & B_ERROR) { 26017 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26018 "no resources for dumping; " 26019 "error code: 0x%x, retrying", 26020 geterror(wr_bp)); 26021 } else { 26022 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26023 "no resources for dumping; retrying"); 26024 } 26025 } else if (i != (SD_NDUMP_RETRIES - 1)) { 26026 if (wr_bp->b_flags & B_ERROR) { 26027 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 26028 "no resources for dumping; error code: " 26029 "0x%x, retrying\n", geterror(wr_bp)); 26030 } 26031 } else { 26032 if (wr_bp->b_flags & B_ERROR) { 26033 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 26034 "no resources for dumping; " 26035 "error code: 0x%x, retries failed, " 26036 "giving up.\n", geterror(wr_bp)); 26037 } else { 26038 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 26039 "no resources for dumping; " 26040 "retries failed, giving up.\n"); 26041 } 26042 mutex_enter(SD_MUTEX(un)); 26043 Restore_state(un); 26044 if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) { 26045 mutex_exit(SD_MUTEX(un)); 26046 scsi_free_consistent_buf(wr_bp); 26047 } else { 26048 mutex_exit(SD_MUTEX(un)); 26049 } 26050 return (EIO); 26051 } 26052 drv_usecwait(10000); 26053 } 26054 26055 if (un->un_partial_dma_supported == 1) { 26056 /* 26057 * save the resid from PARTIAL_DMA 26058 */ 26059 dma_resid = wr_pktp->pkt_resid; 26060 if (dma_resid != 0) 26061 nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid); 26062 wr_pktp->pkt_resid = 0; 26063 } else { 26064 dma_resid = 0; 26065 } 26066 26067 /* SunBug 1222170 */ 26068 wr_pktp->pkt_flags = FLAG_NOINTR; 26069 26070 err = EIO; 26071 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 26072 26073 /* 26074 * Scsi_poll returns 0 (success) if the command completes and 26075 * the status block is STATUS_GOOD. We should only check 26076 * errors if this condition is not true. Even then we should 26077 * send our own request sense packet only if we have a check 26078 * condition and auto request sense has not been performed by 26079 * the hba. 26080 */ 26081 SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n"); 26082 26083 if ((sd_scsi_poll(un, wr_pktp) == 0) && 26084 (wr_pktp->pkt_resid == 0)) { 26085 err = SD_SUCCESS; 26086 break; 26087 } 26088 26089 /* 26090 * Check CMD_DEV_GONE 1st, give up if device is gone. 26091 */ 26092 if (wr_pktp->pkt_reason == CMD_DEV_GONE) { 26093 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26094 "Error while dumping state...Device is gone\n"); 26095 break; 26096 } 26097 26098 if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) { 26099 SD_INFO(SD_LOG_DUMP, un, 26100 "sddump: write failed with CHECK, try # %d\n", i); 26101 if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) { 26102 (void) sd_send_polled_RQS(un); 26103 } 26104 26105 continue; 26106 } 26107 26108 if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) { 26109 int reset_retval = 0; 26110 26111 SD_INFO(SD_LOG_DUMP, un, 26112 "sddump: write failed with BUSY, try # %d\n", i); 26113 26114 if (un->un_f_lun_reset_enabled == TRUE) { 26115 reset_retval = scsi_reset(SD_ADDRESS(un), 26116 RESET_LUN); 26117 } 26118 if (reset_retval == 0) { 26119 (void) scsi_reset(SD_ADDRESS(un), RESET_TARGET); 26120 } 26121 (void) sd_send_polled_RQS(un); 26122 26123 } else { 26124 SD_INFO(SD_LOG_DUMP, un, 26125 "sddump: write failed with 0x%x, try # %d\n", 26126 SD_GET_PKT_STATUS(wr_pktp), i); 26127 mutex_enter(SD_MUTEX(un)); 26128 sd_reset_target(un, wr_pktp); 26129 mutex_exit(SD_MUTEX(un)); 26130 } 26131 26132 /* 26133 * If we are not getting anywhere with lun/target resets, 26134 * let's reset the bus. 26135 */ 26136 if (i == SD_NDUMP_RETRIES/2) { 26137 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 26138 (void) sd_send_polled_RQS(un); 26139 } 26140 } 26141 } 26142 26143 scsi_destroy_pkt(wr_pktp); 26144 mutex_enter(SD_MUTEX(un)); 26145 if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) { 26146 mutex_exit(SD_MUTEX(un)); 26147 scsi_free_consistent_buf(wr_bp); 26148 } else { 26149 mutex_exit(SD_MUTEX(un)); 26150 } 26151 SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err); 26152 return (err); 26153 } 26154 26155 /* 26156 * Function: sd_scsi_poll() 26157 * 26158 * Description: This is a wrapper for the scsi_poll call. 26159 * 26160 * Arguments: sd_lun - The unit structure 26161 * scsi_pkt - The scsi packet being sent to the device. 26162 * 26163 * Return Code: 0 - Command completed successfully with good status 26164 * -1 - Command failed. This could indicate a check condition 26165 * or other status value requiring recovery action. 26166 * 26167 * NOTE: This code is only called off sddump(). 26168 */ 26169 26170 static int 26171 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp) 26172 { 26173 int status; 26174 26175 ASSERT(un != NULL); 26176 ASSERT(!mutex_owned(SD_MUTEX(un))); 26177 ASSERT(pktp != NULL); 26178 26179 status = SD_SUCCESS; 26180 26181 if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) { 26182 pktp->pkt_flags |= un->un_tagflags; 26183 pktp->pkt_flags &= ~FLAG_NODISCON; 26184 } 26185 26186 status = sd_ddi_scsi_poll(pktp); 26187 /* 26188 * Scsi_poll returns 0 (success) if the command completes and the 26189 * status block is STATUS_GOOD. We should only check errors if this 26190 * condition is not true. Even then we should send our own request 26191 * sense packet only if we have a check condition and auto 26192 * request sense has not been performed by the hba. 26193 * Don't get RQS data if pkt_reason is CMD_DEV_GONE. 26194 */ 26195 if ((status != SD_SUCCESS) && 26196 (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) && 26197 (pktp->pkt_state & STATE_ARQ_DONE) == 0 && 26198 (pktp->pkt_reason != CMD_DEV_GONE)) 26199 (void) sd_send_polled_RQS(un); 26200 26201 return (status); 26202 } 26203 26204 /* 26205 * Function: sd_send_polled_RQS() 26206 * 26207 * Description: This sends the request sense command to a device. 26208 * 26209 * Arguments: sd_lun - The unit structure 26210 * 26211 * Return Code: 0 - Command completed successfully with good status 26212 * -1 - Command failed. 26213 * 26214 */ 26215 26216 static int 26217 sd_send_polled_RQS(struct sd_lun *un) 26218 { 26219 int ret_val; 26220 struct scsi_pkt *rqs_pktp; 26221 struct buf *rqs_bp; 26222 26223 ASSERT(un != NULL); 26224 ASSERT(!mutex_owned(SD_MUTEX(un))); 26225 26226 ret_val = SD_SUCCESS; 26227 26228 rqs_pktp = un->un_rqs_pktp; 26229 rqs_bp = un->un_rqs_bp; 26230 26231 mutex_enter(SD_MUTEX(un)); 26232 26233 if (un->un_sense_isbusy) { 26234 ret_val = SD_FAILURE; 26235 mutex_exit(SD_MUTEX(un)); 26236 return (ret_val); 26237 } 26238 26239 /* 26240 * If the request sense buffer (and packet) is not in use, 26241 * let's set the un_sense_isbusy and send our packet 26242 */ 26243 un->un_sense_isbusy = 1; 26244 rqs_pktp->pkt_resid = 0; 26245 rqs_pktp->pkt_reason = 0; 26246 rqs_pktp->pkt_flags |= FLAG_NOINTR; 26247 bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH); 26248 26249 mutex_exit(SD_MUTEX(un)); 26250 26251 SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at" 26252 " 0x%p\n", rqs_bp->b_un.b_addr); 26253 26254 /* 26255 * Can't send this to sd_scsi_poll, we wrap ourselves around the 26256 * axle - it has a call into us! 26257 */ 26258 if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) { 26259 SD_INFO(SD_LOG_COMMON, un, 26260 "sd_send_polled_RQS: RQS failed\n"); 26261 } 26262 26263 SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:", 26264 (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX); 26265 26266 mutex_enter(SD_MUTEX(un)); 26267 un->un_sense_isbusy = 0; 26268 mutex_exit(SD_MUTEX(un)); 26269 26270 return (ret_val); 26271 } 26272 26273 /* 26274 * Defines needed for localized version of the scsi_poll routine. 26275 */ 26276 #define CSEC 10000 /* usecs */ 26277 #define SEC_TO_CSEC (1000000/CSEC) 26278 26279 /* 26280 * Function: sd_ddi_scsi_poll() 26281 * 26282 * Description: Localized version of the scsi_poll routine. The purpose is to 26283 * send a scsi_pkt to a device as a polled command. This version 26284 * is to ensure more robust handling of transport errors. 26285 * Specifically this routine cures not ready, coming ready 26286 * transition for power up and reset of sonoma's. This can take 26287 * up to 45 seconds for power-on and 20 seconds for reset of a 26288 * sonoma lun. 26289 * 26290 * Arguments: scsi_pkt - The scsi_pkt being sent to a device 26291 * 26292 * Return Code: 0 - Command completed successfully with good status 26293 * -1 - Command failed. 26294 * 26295 * NOTE: This code is almost identical to scsi_poll, however before 6668774 can 26296 * be fixed (removing this code), we need to determine how to handle the 26297 * KEY_UNIT_ATTENTION condition below in conditions not as limited as sddump(). 26298 * 26299 * NOTE: This code is only called off sddump(). 26300 */ 26301 static int 26302 sd_ddi_scsi_poll(struct scsi_pkt *pkt) 26303 { 26304 int rval = -1; 26305 int savef; 26306 long savet; 26307 void (*savec)(); 26308 int timeout; 26309 int busy_count; 26310 int poll_delay; 26311 int rc; 26312 uint8_t *sensep; 26313 struct scsi_arq_status *arqstat; 26314 extern int do_polled_io; 26315 26316 ASSERT(pkt->pkt_scbp); 26317 26318 /* 26319 * save old flags.. 26320 */ 26321 savef = pkt->pkt_flags; 26322 savec = pkt->pkt_comp; 26323 savet = pkt->pkt_time; 26324 26325 pkt->pkt_flags |= FLAG_NOINTR; 26326 26327 /* 26328 * XXX there is nothing in the SCSA spec that states that we should not 26329 * do a callback for polled cmds; however, removing this will break sd 26330 * and probably other target drivers 26331 */ 26332 pkt->pkt_comp = NULL; 26333 26334 /* 26335 * we don't like a polled command without timeout. 26336 * 60 seconds seems long enough. 26337 */ 26338 if (pkt->pkt_time == 0) 26339 pkt->pkt_time = SCSI_POLL_TIMEOUT; 26340 26341 /* 26342 * Send polled cmd. 26343 * 26344 * We do some error recovery for various errors. Tran_busy, 26345 * queue full, and non-dispatched commands are retried every 10 msec. 26346 * as they are typically transient failures. Busy status and Not 26347 * Ready are retried every second as this status takes a while to 26348 * change. 26349 */ 26350 timeout = pkt->pkt_time * SEC_TO_CSEC; 26351 26352 for (busy_count = 0; busy_count < timeout; busy_count++) { 26353 /* 26354 * Initialize pkt status variables. 26355 */ 26356 *pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0; 26357 26358 if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) { 26359 if (rc != TRAN_BUSY) { 26360 /* Transport failed - give up. */ 26361 break; 26362 } else { 26363 /* Transport busy - try again. */ 26364 poll_delay = 1 * CSEC; /* 10 msec. */ 26365 } 26366 } else { 26367 /* 26368 * Transport accepted - check pkt status. 26369 */ 26370 rc = (*pkt->pkt_scbp) & STATUS_MASK; 26371 if ((pkt->pkt_reason == CMD_CMPLT) && 26372 (rc == STATUS_CHECK) && 26373 (pkt->pkt_state & STATE_ARQ_DONE)) { 26374 arqstat = 26375 (struct scsi_arq_status *)(pkt->pkt_scbp); 26376 sensep = (uint8_t *)&arqstat->sts_sensedata; 26377 } else { 26378 sensep = NULL; 26379 } 26380 26381 if ((pkt->pkt_reason == CMD_CMPLT) && 26382 (rc == STATUS_GOOD)) { 26383 /* No error - we're done */ 26384 rval = 0; 26385 break; 26386 26387 } else if (pkt->pkt_reason == CMD_DEV_GONE) { 26388 /* Lost connection - give up */ 26389 break; 26390 26391 } else if ((pkt->pkt_reason == CMD_INCOMPLETE) && 26392 (pkt->pkt_state == 0)) { 26393 /* Pkt not dispatched - try again. */ 26394 poll_delay = 1 * CSEC; /* 10 msec. */ 26395 26396 } else if ((pkt->pkt_reason == CMD_CMPLT) && 26397 (rc == STATUS_QFULL)) { 26398 /* Queue full - try again. */ 26399 poll_delay = 1 * CSEC; /* 10 msec. */ 26400 26401 } else if ((pkt->pkt_reason == CMD_CMPLT) && 26402 (rc == STATUS_BUSY)) { 26403 /* Busy - try again. */ 26404 poll_delay = 100 * CSEC; /* 1 sec. */ 26405 busy_count += (SEC_TO_CSEC - 1); 26406 26407 } else if ((sensep != NULL) && 26408 (scsi_sense_key(sensep) == KEY_UNIT_ATTENTION)) { 26409 /* 26410 * Unit Attention - try again. 26411 * Pretend it took 1 sec. 26412 * NOTE: 'continue' avoids poll_delay 26413 */ 26414 busy_count += (SEC_TO_CSEC - 1); 26415 continue; 26416 26417 } else if ((sensep != NULL) && 26418 (scsi_sense_key(sensep) == KEY_NOT_READY) && 26419 (scsi_sense_asc(sensep) == 0x04) && 26420 (scsi_sense_ascq(sensep) == 0x01)) { 26421 /* 26422 * Not ready -> ready - try again. 26423 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY 26424 * ...same as STATUS_BUSY 26425 */ 26426 poll_delay = 100 * CSEC; /* 1 sec. */ 26427 busy_count += (SEC_TO_CSEC - 1); 26428 26429 } else { 26430 /* BAD status - give up. */ 26431 break; 26432 } 26433 } 26434 26435 if (((curthread->t_flag & T_INTR_THREAD) == 0) && 26436 !do_polled_io) { 26437 delay(drv_usectohz(poll_delay)); 26438 } else { 26439 /* we busy wait during cpr_dump or interrupt threads */ 26440 drv_usecwait(poll_delay); 26441 } 26442 } 26443 26444 pkt->pkt_flags = savef; 26445 pkt->pkt_comp = savec; 26446 pkt->pkt_time = savet; 26447 26448 /* return on error */ 26449 if (rval) 26450 return (rval); 26451 26452 /* 26453 * This is not a performance critical code path. 26454 * 26455 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync() 26456 * issues associated with looking at DMA memory prior to 26457 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return. 26458 */ 26459 scsi_sync_pkt(pkt); 26460 return (0); 26461 } 26462 26463 26464 26465 /* 26466 * Function: sd_persistent_reservation_in_read_keys 26467 * 26468 * Description: This routine is the driver entry point for handling CD-ROM 26469 * multi-host persistent reservation requests (MHIOCGRP_INKEYS) 26470 * by sending the SCSI-3 PRIN commands to the device. 26471 * Processes the read keys command response by copying the 26472 * reservation key information into the user provided buffer. 26473 * Support for the 32/64 bit _MULTI_DATAMODEL is implemented. 26474 * 26475 * Arguments: un - Pointer to soft state struct for the target. 26476 * usrp - user provided pointer to multihost Persistent In Read 26477 * Keys structure (mhioc_inkeys_t) 26478 * flag - this argument is a pass through to ddi_copyxxx() 26479 * directly from the mode argument of ioctl(). 26480 * 26481 * Return Code: 0 - Success 26482 * EACCES 26483 * ENOTSUP 26484 * errno return code from sd_send_scsi_cmd() 26485 * 26486 * Context: Can sleep. Does not return until command is completed. 26487 */ 26488 26489 static int 26490 sd_persistent_reservation_in_read_keys(struct sd_lun *un, 26491 mhioc_inkeys_t *usrp, int flag) 26492 { 26493 #ifdef _MULTI_DATAMODEL 26494 struct mhioc_key_list32 li32; 26495 #endif 26496 sd_prin_readkeys_t *in; 26497 mhioc_inkeys_t *ptr; 26498 mhioc_key_list_t li; 26499 uchar_t *data_bufp; 26500 int data_len; 26501 int rval = 0; 26502 size_t copysz; 26503 sd_ssc_t *ssc; 26504 26505 if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) { 26506 return (EINVAL); 26507 } 26508 bzero(&li, sizeof (mhioc_key_list_t)); 26509 26510 ssc = sd_ssc_init(un); 26511 26512 /* 26513 * Get the listsize from user 26514 */ 26515 #ifdef _MULTI_DATAMODEL 26516 26517 switch (ddi_model_convert_from(flag & FMODELS)) { 26518 case DDI_MODEL_ILP32: 26519 copysz = sizeof (struct mhioc_key_list32); 26520 if (ddi_copyin(ptr->li, &li32, copysz, flag)) { 26521 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26522 "sd_persistent_reservation_in_read_keys: " 26523 "failed ddi_copyin: mhioc_key_list32_t\n"); 26524 rval = EFAULT; 26525 goto done; 26526 } 26527 li.listsize = li32.listsize; 26528 li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list; 26529 break; 26530 26531 case DDI_MODEL_NONE: 26532 copysz = sizeof (mhioc_key_list_t); 26533 if (ddi_copyin(ptr->li, &li, copysz, flag)) { 26534 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26535 "sd_persistent_reservation_in_read_keys: " 26536 "failed ddi_copyin: mhioc_key_list_t\n"); 26537 rval = EFAULT; 26538 goto done; 26539 } 26540 break; 26541 } 26542 26543 #else /* ! _MULTI_DATAMODEL */ 26544 copysz = sizeof (mhioc_key_list_t); 26545 if (ddi_copyin(ptr->li, &li, copysz, flag)) { 26546 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26547 "sd_persistent_reservation_in_read_keys: " 26548 "failed ddi_copyin: mhioc_key_list_t\n"); 26549 rval = EFAULT; 26550 goto done; 26551 } 26552 #endif 26553 26554 data_len = li.listsize * MHIOC_RESV_KEY_SIZE; 26555 data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t)); 26556 data_bufp = kmem_zalloc(data_len, KM_SLEEP); 26557 26558 rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 26559 data_len, data_bufp); 26560 if (rval != 0) { 26561 if (rval == EIO) 26562 sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE); 26563 else 26564 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 26565 goto done; 26566 } 26567 in = (sd_prin_readkeys_t *)data_bufp; 26568 ptr->generation = BE_32(in->generation); 26569 li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE; 26570 26571 /* 26572 * Return the min(listsize, listlen) keys 26573 */ 26574 #ifdef _MULTI_DATAMODEL 26575 26576 switch (ddi_model_convert_from(flag & FMODELS)) { 26577 case DDI_MODEL_ILP32: 26578 li32.listlen = li.listlen; 26579 if (ddi_copyout(&li32, ptr->li, copysz, flag)) { 26580 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26581 "sd_persistent_reservation_in_read_keys: " 26582 "failed ddi_copyout: mhioc_key_list32_t\n"); 26583 rval = EFAULT; 26584 goto done; 26585 } 26586 break; 26587 26588 case DDI_MODEL_NONE: 26589 if (ddi_copyout(&li, ptr->li, copysz, flag)) { 26590 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26591 "sd_persistent_reservation_in_read_keys: " 26592 "failed ddi_copyout: mhioc_key_list_t\n"); 26593 rval = EFAULT; 26594 goto done; 26595 } 26596 break; 26597 } 26598 26599 #else /* ! _MULTI_DATAMODEL */ 26600 26601 if (ddi_copyout(&li, ptr->li, copysz, flag)) { 26602 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26603 "sd_persistent_reservation_in_read_keys: " 26604 "failed ddi_copyout: mhioc_key_list_t\n"); 26605 rval = EFAULT; 26606 goto done; 26607 } 26608 26609 #endif /* _MULTI_DATAMODEL */ 26610 26611 copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE, 26612 li.listsize * MHIOC_RESV_KEY_SIZE); 26613 if (ddi_copyout(&in->keylist, li.list, copysz, flag)) { 26614 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26615 "sd_persistent_reservation_in_read_keys: " 26616 "failed ddi_copyout: keylist\n"); 26617 rval = EFAULT; 26618 } 26619 done: 26620 sd_ssc_fini(ssc); 26621 kmem_free(data_bufp, data_len); 26622 return (rval); 26623 } 26624 26625 26626 /* 26627 * Function: sd_persistent_reservation_in_read_resv 26628 * 26629 * Description: This routine is the driver entry point for handling CD-ROM 26630 * multi-host persistent reservation requests (MHIOCGRP_INRESV) 26631 * by sending the SCSI-3 PRIN commands to the device. 26632 * Process the read persistent reservations command response by 26633 * copying the reservation information into the user provided 26634 * buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented. 26635 * 26636 * Arguments: un - Pointer to soft state struct for the target. 26637 * usrp - user provided pointer to multihost Persistent In Read 26638 * Keys structure (mhioc_inkeys_t) 26639 * flag - this argument is a pass through to ddi_copyxxx() 26640 * directly from the mode argument of ioctl(). 26641 * 26642 * Return Code: 0 - Success 26643 * EACCES 26644 * ENOTSUP 26645 * errno return code from sd_send_scsi_cmd() 26646 * 26647 * Context: Can sleep. Does not return until command is completed. 26648 */ 26649 26650 static int 26651 sd_persistent_reservation_in_read_resv(struct sd_lun *un, 26652 mhioc_inresvs_t *usrp, int flag) 26653 { 26654 #ifdef _MULTI_DATAMODEL 26655 struct mhioc_resv_desc_list32 resvlist32; 26656 #endif 26657 sd_prin_readresv_t *in; 26658 mhioc_inresvs_t *ptr; 26659 sd_readresv_desc_t *readresv_ptr; 26660 mhioc_resv_desc_list_t resvlist; 26661 mhioc_resv_desc_t resvdesc; 26662 uchar_t *data_bufp = NULL; 26663 int data_len; 26664 int rval = 0; 26665 int i; 26666 size_t copysz; 26667 mhioc_resv_desc_t *bufp; 26668 sd_ssc_t *ssc; 26669 26670 if ((ptr = usrp) == NULL) { 26671 return (EINVAL); 26672 } 26673 26674 ssc = sd_ssc_init(un); 26675 26676 /* 26677 * Get the listsize from user 26678 */ 26679 #ifdef _MULTI_DATAMODEL 26680 switch (ddi_model_convert_from(flag & FMODELS)) { 26681 case DDI_MODEL_ILP32: 26682 copysz = sizeof (struct mhioc_resv_desc_list32); 26683 if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) { 26684 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26685 "sd_persistent_reservation_in_read_resv: " 26686 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 26687 rval = EFAULT; 26688 goto done; 26689 } 26690 resvlist.listsize = resvlist32.listsize; 26691 resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list; 26692 break; 26693 26694 case DDI_MODEL_NONE: 26695 copysz = sizeof (mhioc_resv_desc_list_t); 26696 if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) { 26697 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26698 "sd_persistent_reservation_in_read_resv: " 26699 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 26700 rval = EFAULT; 26701 goto done; 26702 } 26703 break; 26704 } 26705 #else /* ! _MULTI_DATAMODEL */ 26706 copysz = sizeof (mhioc_resv_desc_list_t); 26707 if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) { 26708 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26709 "sd_persistent_reservation_in_read_resv: " 26710 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 26711 rval = EFAULT; 26712 goto done; 26713 } 26714 #endif /* ! _MULTI_DATAMODEL */ 26715 26716 data_len = resvlist.listsize * SCSI3_RESV_DESC_LEN; 26717 data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t)); 26718 data_bufp = kmem_zalloc(data_len, KM_SLEEP); 26719 26720 rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_RESV, 26721 data_len, data_bufp); 26722 if (rval != 0) { 26723 if (rval == EIO) 26724 sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE); 26725 else 26726 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 26727 goto done; 26728 } 26729 in = (sd_prin_readresv_t *)data_bufp; 26730 ptr->generation = BE_32(in->generation); 26731 resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN; 26732 26733 /* 26734 * Return the min(listsize, listlen( keys 26735 */ 26736 #ifdef _MULTI_DATAMODEL 26737 26738 switch (ddi_model_convert_from(flag & FMODELS)) { 26739 case DDI_MODEL_ILP32: 26740 resvlist32.listlen = resvlist.listlen; 26741 if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) { 26742 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26743 "sd_persistent_reservation_in_read_resv: " 26744 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 26745 rval = EFAULT; 26746 goto done; 26747 } 26748 break; 26749 26750 case DDI_MODEL_NONE: 26751 if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) { 26752 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26753 "sd_persistent_reservation_in_read_resv: " 26754 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 26755 rval = EFAULT; 26756 goto done; 26757 } 26758 break; 26759 } 26760 26761 #else /* ! _MULTI_DATAMODEL */ 26762 26763 if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) { 26764 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26765 "sd_persistent_reservation_in_read_resv: " 26766 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 26767 rval = EFAULT; 26768 goto done; 26769 } 26770 26771 #endif /* ! _MULTI_DATAMODEL */ 26772 26773 readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc; 26774 bufp = resvlist.list; 26775 copysz = sizeof (mhioc_resv_desc_t); 26776 for (i = 0; i < min(resvlist.listlen, resvlist.listsize); 26777 i++, readresv_ptr++, bufp++) { 26778 26779 bcopy(&readresv_ptr->resvkey, &resvdesc.key, 26780 MHIOC_RESV_KEY_SIZE); 26781 resvdesc.type = readresv_ptr->type; 26782 resvdesc.scope = readresv_ptr->scope; 26783 resvdesc.scope_specific_addr = 26784 BE_32(readresv_ptr->scope_specific_addr); 26785 26786 if (ddi_copyout(&resvdesc, bufp, copysz, flag)) { 26787 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26788 "sd_persistent_reservation_in_read_resv: " 26789 "failed ddi_copyout: resvlist\n"); 26790 rval = EFAULT; 26791 goto done; 26792 } 26793 } 26794 done: 26795 sd_ssc_fini(ssc); 26796 /* only if data_bufp is allocated, we need to free it */ 26797 if (data_bufp) { 26798 kmem_free(data_bufp, data_len); 26799 } 26800 return (rval); 26801 } 26802 26803 26804 /* 26805 * Function: sr_change_blkmode() 26806 * 26807 * Description: This routine is the driver entry point for handling CD-ROM 26808 * block mode ioctl requests. Support for returning and changing 26809 * the current block size in use by the device is implemented. The 26810 * LBA size is changed via a MODE SELECT Block Descriptor. 26811 * 26812 * This routine issues a mode sense with an allocation length of 26813 * 12 bytes for the mode page header and a single block descriptor. 26814 * 26815 * Arguments: dev - the device 'dev_t' 26816 * cmd - the request type; one of CDROMGBLKMODE (get) or 26817 * CDROMSBLKMODE (set) 26818 * data - current block size or requested block size 26819 * flag - this argument is a pass through to ddi_copyxxx() directly 26820 * from the mode argument of ioctl(). 26821 * 26822 * Return Code: the code returned by sd_send_scsi_cmd() 26823 * EINVAL if invalid arguments are provided 26824 * EFAULT if ddi_copyxxx() fails 26825 * ENXIO if fail ddi_get_soft_state 26826 * EIO if invalid mode sense block descriptor length 26827 * 26828 */ 26829 26830 static int 26831 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag) 26832 { 26833 struct sd_lun *un = NULL; 26834 struct mode_header *sense_mhp, *select_mhp; 26835 struct block_descriptor *sense_desc, *select_desc; 26836 int current_bsize; 26837 int rval = EINVAL; 26838 uchar_t *sense = NULL; 26839 uchar_t *select = NULL; 26840 sd_ssc_t *ssc; 26841 26842 ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE)); 26843 26844 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 26845 return (ENXIO); 26846 } 26847 26848 /* 26849 * The block length is changed via the Mode Select block descriptor, the 26850 * "Read/Write Error Recovery" mode page (0x1) contents are not actually 26851 * required as part of this routine. Therefore the mode sense allocation 26852 * length is specified to be the length of a mode page header and a 26853 * block descriptor. 26854 */ 26855 sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP); 26856 26857 ssc = sd_ssc_init(un); 26858 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 26859 BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD); 26860 sd_ssc_fini(ssc); 26861 if (rval != 0) { 26862 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26863 "sr_change_blkmode: Mode Sense Failed\n"); 26864 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 26865 return (rval); 26866 } 26867 26868 /* Check the block descriptor len to handle only 1 block descriptor */ 26869 sense_mhp = (struct mode_header *)sense; 26870 if ((sense_mhp->bdesc_length == 0) || 26871 (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) { 26872 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26873 "sr_change_blkmode: Mode Sense returned invalid block" 26874 " descriptor length\n"); 26875 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 26876 return (EIO); 26877 } 26878 sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH); 26879 current_bsize = ((sense_desc->blksize_hi << 16) | 26880 (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo); 26881 26882 /* Process command */ 26883 switch (cmd) { 26884 case CDROMGBLKMODE: 26885 /* Return the block size obtained during the mode sense */ 26886 if (ddi_copyout(¤t_bsize, (void *)data, 26887 sizeof (int), flag) != 0) 26888 rval = EFAULT; 26889 break; 26890 case CDROMSBLKMODE: 26891 /* Validate the requested block size */ 26892 switch (data) { 26893 case CDROM_BLK_512: 26894 case CDROM_BLK_1024: 26895 case CDROM_BLK_2048: 26896 case CDROM_BLK_2056: 26897 case CDROM_BLK_2336: 26898 case CDROM_BLK_2340: 26899 case CDROM_BLK_2352: 26900 case CDROM_BLK_2368: 26901 case CDROM_BLK_2448: 26902 case CDROM_BLK_2646: 26903 case CDROM_BLK_2647: 26904 break; 26905 default: 26906 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26907 "sr_change_blkmode: " 26908 "Block Size '%ld' Not Supported\n", data); 26909 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 26910 return (EINVAL); 26911 } 26912 26913 /* 26914 * The current block size matches the requested block size so 26915 * there is no need to send the mode select to change the size 26916 */ 26917 if (current_bsize == data) { 26918 break; 26919 } 26920 26921 /* Build the select data for the requested block size */ 26922 select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP); 26923 select_mhp = (struct mode_header *)select; 26924 select_desc = 26925 (struct block_descriptor *)(select + MODE_HEADER_LENGTH); 26926 /* 26927 * The LBA size is changed via the block descriptor, so the 26928 * descriptor is built according to the user data 26929 */ 26930 select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH; 26931 select_desc->blksize_hi = (char)(((data) & 0x00ff0000) >> 16); 26932 select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8); 26933 select_desc->blksize_lo = (char)((data) & 0x000000ff); 26934 26935 /* Send the mode select for the requested block size */ 26936 ssc = sd_ssc_init(un); 26937 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, 26938 select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE, 26939 SD_PATH_STANDARD); 26940 sd_ssc_fini(ssc); 26941 if (rval != 0) { 26942 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26943 "sr_change_blkmode: Mode Select Failed\n"); 26944 /* 26945 * The mode select failed for the requested block size, 26946 * so reset the data for the original block size and 26947 * send it to the target. The error is indicated by the 26948 * return value for the failed mode select. 26949 */ 26950 select_desc->blksize_hi = sense_desc->blksize_hi; 26951 select_desc->blksize_mid = sense_desc->blksize_mid; 26952 select_desc->blksize_lo = sense_desc->blksize_lo; 26953 ssc = sd_ssc_init(un); 26954 (void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, 26955 select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE, 26956 SD_PATH_STANDARD); 26957 sd_ssc_fini(ssc); 26958 } else { 26959 ASSERT(!mutex_owned(SD_MUTEX(un))); 26960 mutex_enter(SD_MUTEX(un)); 26961 sd_update_block_info(un, (uint32_t)data, 0); 26962 mutex_exit(SD_MUTEX(un)); 26963 } 26964 break; 26965 default: 26966 /* should not reach here, but check anyway */ 26967 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26968 "sr_change_blkmode: Command '%x' Not Supported\n", cmd); 26969 rval = EINVAL; 26970 break; 26971 } 26972 26973 if (select) { 26974 kmem_free(select, BUFLEN_CHG_BLK_MODE); 26975 } 26976 if (sense) { 26977 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 26978 } 26979 return (rval); 26980 } 26981 26982 26983 /* 26984 * Note: The following sr_change_speed() and sr_atapi_change_speed() routines 26985 * implement driver support for getting and setting the CD speed. The command 26986 * set used will be based on the device type. If the device has not been 26987 * identified as MMC the Toshiba vendor specific mode page will be used. If 26988 * the device is MMC but does not support the Real Time Streaming feature 26989 * the SET CD SPEED command will be used to set speed and mode page 0x2A will 26990 * be used to read the speed. 26991 */ 26992 26993 /* 26994 * Function: sr_change_speed() 26995 * 26996 * Description: This routine is the driver entry point for handling CD-ROM 26997 * drive speed ioctl requests for devices supporting the Toshiba 26998 * vendor specific drive speed mode page. Support for returning 26999 * and changing the current drive speed in use by the device is 27000 * implemented. 27001 * 27002 * Arguments: dev - the device 'dev_t' 27003 * cmd - the request type; one of CDROMGDRVSPEED (get) or 27004 * CDROMSDRVSPEED (set) 27005 * data - current drive speed or requested drive speed 27006 * flag - this argument is a pass through to ddi_copyxxx() directly 27007 * from the mode argument of ioctl(). 27008 * 27009 * Return Code: the code returned by sd_send_scsi_cmd() 27010 * EINVAL if invalid arguments are provided 27011 * EFAULT if ddi_copyxxx() fails 27012 * ENXIO if fail ddi_get_soft_state 27013 * EIO if invalid mode sense block descriptor length 27014 */ 27015 27016 static int 27017 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag) 27018 { 27019 struct sd_lun *un = NULL; 27020 struct mode_header *sense_mhp, *select_mhp; 27021 struct mode_speed *sense_page, *select_page; 27022 int current_speed; 27023 int rval = EINVAL; 27024 int bd_len; 27025 uchar_t *sense = NULL; 27026 uchar_t *select = NULL; 27027 sd_ssc_t *ssc; 27028 27029 ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED)); 27030 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27031 return (ENXIO); 27032 } 27033 27034 /* 27035 * Note: The drive speed is being modified here according to a Toshiba 27036 * vendor specific mode page (0x31). 27037 */ 27038 sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP); 27039 27040 ssc = sd_ssc_init(un); 27041 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 27042 BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED, 27043 SD_PATH_STANDARD); 27044 sd_ssc_fini(ssc); 27045 if (rval != 0) { 27046 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27047 "sr_change_speed: Mode Sense Failed\n"); 27048 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 27049 return (rval); 27050 } 27051 sense_mhp = (struct mode_header *)sense; 27052 27053 /* Check the block descriptor len to handle only 1 block descriptor */ 27054 bd_len = sense_mhp->bdesc_length; 27055 if (bd_len > MODE_BLK_DESC_LENGTH) { 27056 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27057 "sr_change_speed: Mode Sense returned invalid block " 27058 "descriptor length\n"); 27059 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 27060 return (EIO); 27061 } 27062 27063 sense_page = (struct mode_speed *) 27064 (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length); 27065 current_speed = sense_page->speed; 27066 27067 /* Process command */ 27068 switch (cmd) { 27069 case CDROMGDRVSPEED: 27070 /* Return the drive speed obtained during the mode sense */ 27071 if (current_speed == 0x2) { 27072 current_speed = CDROM_TWELVE_SPEED; 27073 } 27074 if (ddi_copyout(¤t_speed, (void *)data, 27075 sizeof (int), flag) != 0) { 27076 rval = EFAULT; 27077 } 27078 break; 27079 case CDROMSDRVSPEED: 27080 /* Validate the requested drive speed */ 27081 switch ((uchar_t)data) { 27082 case CDROM_TWELVE_SPEED: 27083 data = 0x2; 27084 /*FALLTHROUGH*/ 27085 case CDROM_NORMAL_SPEED: 27086 case CDROM_DOUBLE_SPEED: 27087 case CDROM_QUAD_SPEED: 27088 case CDROM_MAXIMUM_SPEED: 27089 break; 27090 default: 27091 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27092 "sr_change_speed: " 27093 "Drive Speed '%d' Not Supported\n", (uchar_t)data); 27094 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 27095 return (EINVAL); 27096 } 27097 27098 /* 27099 * The current drive speed matches the requested drive speed so 27100 * there is no need to send the mode select to change the speed 27101 */ 27102 if (current_speed == data) { 27103 break; 27104 } 27105 27106 /* Build the select data for the requested drive speed */ 27107 select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP); 27108 select_mhp = (struct mode_header *)select; 27109 select_mhp->bdesc_length = 0; 27110 select_page = 27111 (struct mode_speed *)(select + MODE_HEADER_LENGTH); 27112 select_page = 27113 (struct mode_speed *)(select + MODE_HEADER_LENGTH); 27114 select_page->mode_page.code = CDROM_MODE_SPEED; 27115 select_page->mode_page.length = 2; 27116 select_page->speed = (uchar_t)data; 27117 27118 /* Send the mode select for the requested block size */ 27119 ssc = sd_ssc_init(un); 27120 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 27121 MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH, 27122 SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 27123 sd_ssc_fini(ssc); 27124 if (rval != 0) { 27125 /* 27126 * The mode select failed for the requested drive speed, 27127 * so reset the data for the original drive speed and 27128 * send it to the target. The error is indicated by the 27129 * return value for the failed mode select. 27130 */ 27131 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27132 "sr_drive_speed: Mode Select Failed\n"); 27133 select_page->speed = sense_page->speed; 27134 ssc = sd_ssc_init(un); 27135 (void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 27136 MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH, 27137 SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 27138 sd_ssc_fini(ssc); 27139 } 27140 break; 27141 default: 27142 /* should not reach here, but check anyway */ 27143 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27144 "sr_change_speed: Command '%x' Not Supported\n", cmd); 27145 rval = EINVAL; 27146 break; 27147 } 27148 27149 if (select) { 27150 kmem_free(select, BUFLEN_MODE_CDROM_SPEED); 27151 } 27152 if (sense) { 27153 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 27154 } 27155 27156 return (rval); 27157 } 27158 27159 27160 /* 27161 * Function: sr_atapi_change_speed() 27162 * 27163 * Description: This routine is the driver entry point for handling CD-ROM 27164 * drive speed ioctl requests for MMC devices that do not support 27165 * the Real Time Streaming feature (0x107). 27166 * 27167 * Note: This routine will use the SET SPEED command which may not 27168 * be supported by all devices. 27169 * 27170 * Arguments: dev- the device 'dev_t' 27171 * cmd- the request type; one of CDROMGDRVSPEED (get) or 27172 * CDROMSDRVSPEED (set) 27173 * data- current drive speed or requested drive speed 27174 * flag- this argument is a pass through to ddi_copyxxx() directly 27175 * from the mode argument of ioctl(). 27176 * 27177 * Return Code: the code returned by sd_send_scsi_cmd() 27178 * EINVAL if invalid arguments are provided 27179 * EFAULT if ddi_copyxxx() fails 27180 * ENXIO if fail ddi_get_soft_state 27181 * EIO if invalid mode sense block descriptor length 27182 */ 27183 27184 static int 27185 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag) 27186 { 27187 struct sd_lun *un; 27188 struct uscsi_cmd *com = NULL; 27189 struct mode_header_grp2 *sense_mhp; 27190 uchar_t *sense_page; 27191 uchar_t *sense = NULL; 27192 char cdb[CDB_GROUP5]; 27193 int bd_len; 27194 int current_speed = 0; 27195 int max_speed = 0; 27196 int rval; 27197 sd_ssc_t *ssc; 27198 27199 ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED)); 27200 27201 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27202 return (ENXIO); 27203 } 27204 27205 sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 27206 27207 ssc = sd_ssc_init(un); 27208 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, 27209 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, 27210 SD_PATH_STANDARD); 27211 sd_ssc_fini(ssc); 27212 if (rval != 0) { 27213 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27214 "sr_atapi_change_speed: Mode Sense Failed\n"); 27215 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27216 return (rval); 27217 } 27218 27219 /* Check the block descriptor len to handle only 1 block descriptor */ 27220 sense_mhp = (struct mode_header_grp2 *)sense; 27221 bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo; 27222 if (bd_len > MODE_BLK_DESC_LENGTH) { 27223 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27224 "sr_atapi_change_speed: Mode Sense returned invalid " 27225 "block descriptor length\n"); 27226 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27227 return (EIO); 27228 } 27229 27230 /* Calculate the current and maximum drive speeds */ 27231 sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len); 27232 current_speed = (sense_page[14] << 8) | sense_page[15]; 27233 max_speed = (sense_page[8] << 8) | sense_page[9]; 27234 27235 /* Process the command */ 27236 switch (cmd) { 27237 case CDROMGDRVSPEED: 27238 current_speed /= SD_SPEED_1X; 27239 if (ddi_copyout(¤t_speed, (void *)data, 27240 sizeof (int), flag) != 0) 27241 rval = EFAULT; 27242 break; 27243 case CDROMSDRVSPEED: 27244 /* Convert the speed code to KB/sec */ 27245 switch ((uchar_t)data) { 27246 case CDROM_NORMAL_SPEED: 27247 current_speed = SD_SPEED_1X; 27248 break; 27249 case CDROM_DOUBLE_SPEED: 27250 current_speed = 2 * SD_SPEED_1X; 27251 break; 27252 case CDROM_QUAD_SPEED: 27253 current_speed = 4 * SD_SPEED_1X; 27254 break; 27255 case CDROM_TWELVE_SPEED: 27256 current_speed = 12 * SD_SPEED_1X; 27257 break; 27258 case CDROM_MAXIMUM_SPEED: 27259 current_speed = 0xffff; 27260 break; 27261 default: 27262 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27263 "sr_atapi_change_speed: invalid drive speed %d\n", 27264 (uchar_t)data); 27265 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27266 return (EINVAL); 27267 } 27268 27269 /* Check the request against the drive's max speed. */ 27270 if (current_speed != 0xffff) { 27271 if (current_speed > max_speed) { 27272 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27273 return (EINVAL); 27274 } 27275 } 27276 27277 /* 27278 * Build and send the SET SPEED command 27279 * 27280 * Note: The SET SPEED (0xBB) command used in this routine is 27281 * obsolete per the SCSI MMC spec but still supported in the 27282 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI 27283 * therefore the command is still implemented in this routine. 27284 */ 27285 bzero(cdb, sizeof (cdb)); 27286 cdb[0] = (char)SCMD_SET_CDROM_SPEED; 27287 cdb[2] = (uchar_t)(current_speed >> 8); 27288 cdb[3] = (uchar_t)current_speed; 27289 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27290 com->uscsi_cdb = (caddr_t)cdb; 27291 com->uscsi_cdblen = CDB_GROUP5; 27292 com->uscsi_bufaddr = NULL; 27293 com->uscsi_buflen = 0; 27294 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27295 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD); 27296 break; 27297 default: 27298 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27299 "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd); 27300 rval = EINVAL; 27301 } 27302 27303 if (sense) { 27304 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27305 } 27306 if (com) { 27307 kmem_free(com, sizeof (*com)); 27308 } 27309 return (rval); 27310 } 27311 27312 27313 /* 27314 * Function: sr_pause_resume() 27315 * 27316 * Description: This routine is the driver entry point for handling CD-ROM 27317 * pause/resume ioctl requests. This only affects the audio play 27318 * operation. 27319 * 27320 * Arguments: dev - the device 'dev_t' 27321 * cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used 27322 * for setting the resume bit of the cdb. 27323 * 27324 * Return Code: the code returned by sd_send_scsi_cmd() 27325 * EINVAL if invalid mode specified 27326 * 27327 */ 27328 27329 static int 27330 sr_pause_resume(dev_t dev, int cmd) 27331 { 27332 struct sd_lun *un; 27333 struct uscsi_cmd *com; 27334 char cdb[CDB_GROUP1]; 27335 int rval; 27336 27337 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27338 return (ENXIO); 27339 } 27340 27341 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27342 bzero(cdb, CDB_GROUP1); 27343 cdb[0] = SCMD_PAUSE_RESUME; 27344 switch (cmd) { 27345 case CDROMRESUME: 27346 cdb[8] = 1; 27347 break; 27348 case CDROMPAUSE: 27349 cdb[8] = 0; 27350 break; 27351 default: 27352 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:" 27353 " Command '%x' Not Supported\n", cmd); 27354 rval = EINVAL; 27355 goto done; 27356 } 27357 27358 com->uscsi_cdb = cdb; 27359 com->uscsi_cdblen = CDB_GROUP1; 27360 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27361 27362 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27363 SD_PATH_STANDARD); 27364 27365 done: 27366 kmem_free(com, sizeof (*com)); 27367 return (rval); 27368 } 27369 27370 27371 /* 27372 * Function: sr_play_msf() 27373 * 27374 * Description: This routine is the driver entry point for handling CD-ROM 27375 * ioctl requests to output the audio signals at the specified 27376 * starting address and continue the audio play until the specified 27377 * ending address (CDROMPLAYMSF) The address is in Minute Second 27378 * Frame (MSF) format. 27379 * 27380 * Arguments: dev - the device 'dev_t' 27381 * data - pointer to user provided audio msf structure, 27382 * specifying start/end addresses. 27383 * flag - this argument is a pass through to ddi_copyxxx() 27384 * directly from the mode argument of ioctl(). 27385 * 27386 * Return Code: the code returned by sd_send_scsi_cmd() 27387 * EFAULT if ddi_copyxxx() fails 27388 * ENXIO if fail ddi_get_soft_state 27389 * EINVAL if data pointer is NULL 27390 */ 27391 27392 static int 27393 sr_play_msf(dev_t dev, caddr_t data, int flag) 27394 { 27395 struct sd_lun *un; 27396 struct uscsi_cmd *com; 27397 struct cdrom_msf msf_struct; 27398 struct cdrom_msf *msf = &msf_struct; 27399 char cdb[CDB_GROUP1]; 27400 int rval; 27401 27402 if (data == NULL) { 27403 return (EINVAL); 27404 } 27405 27406 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27407 return (ENXIO); 27408 } 27409 27410 if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) { 27411 return (EFAULT); 27412 } 27413 27414 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27415 bzero(cdb, CDB_GROUP1); 27416 cdb[0] = SCMD_PLAYAUDIO_MSF; 27417 if (un->un_f_cfg_playmsf_bcd == TRUE) { 27418 cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0); 27419 cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0); 27420 cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0); 27421 cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1); 27422 cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1); 27423 cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1); 27424 } else { 27425 cdb[3] = msf->cdmsf_min0; 27426 cdb[4] = msf->cdmsf_sec0; 27427 cdb[5] = msf->cdmsf_frame0; 27428 cdb[6] = msf->cdmsf_min1; 27429 cdb[7] = msf->cdmsf_sec1; 27430 cdb[8] = msf->cdmsf_frame1; 27431 } 27432 com->uscsi_cdb = cdb; 27433 com->uscsi_cdblen = CDB_GROUP1; 27434 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27435 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27436 SD_PATH_STANDARD); 27437 kmem_free(com, sizeof (*com)); 27438 return (rval); 27439 } 27440 27441 27442 /* 27443 * Function: sr_play_trkind() 27444 * 27445 * Description: This routine is the driver entry point for handling CD-ROM 27446 * ioctl requests to output the audio signals at the specified 27447 * starting address and continue the audio play until the specified 27448 * ending address (CDROMPLAYTRKIND). The address is in Track Index 27449 * format. 27450 * 27451 * Arguments: dev - the device 'dev_t' 27452 * data - pointer to user provided audio track/index structure, 27453 * specifying start/end addresses. 27454 * flag - this argument is a pass through to ddi_copyxxx() 27455 * directly from the mode argument of ioctl(). 27456 * 27457 * Return Code: the code returned by sd_send_scsi_cmd() 27458 * EFAULT if ddi_copyxxx() fails 27459 * ENXIO if fail ddi_get_soft_state 27460 * EINVAL if data pointer is NULL 27461 */ 27462 27463 static int 27464 sr_play_trkind(dev_t dev, caddr_t data, int flag) 27465 { 27466 struct cdrom_ti ti_struct; 27467 struct cdrom_ti *ti = &ti_struct; 27468 struct uscsi_cmd *com = NULL; 27469 char cdb[CDB_GROUP1]; 27470 int rval; 27471 27472 if (data == NULL) { 27473 return (EINVAL); 27474 } 27475 27476 if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) { 27477 return (EFAULT); 27478 } 27479 27480 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27481 bzero(cdb, CDB_GROUP1); 27482 cdb[0] = SCMD_PLAYAUDIO_TI; 27483 cdb[4] = ti->cdti_trk0; 27484 cdb[5] = ti->cdti_ind0; 27485 cdb[7] = ti->cdti_trk1; 27486 cdb[8] = ti->cdti_ind1; 27487 com->uscsi_cdb = cdb; 27488 com->uscsi_cdblen = CDB_GROUP1; 27489 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27490 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27491 SD_PATH_STANDARD); 27492 kmem_free(com, sizeof (*com)); 27493 return (rval); 27494 } 27495 27496 27497 /* 27498 * Function: sr_read_all_subcodes() 27499 * 27500 * Description: This routine is the driver entry point for handling CD-ROM 27501 * ioctl requests to return raw subcode data while the target is 27502 * playing audio (CDROMSUBCODE). 27503 * 27504 * Arguments: dev - the device 'dev_t' 27505 * data - pointer to user provided cdrom subcode structure, 27506 * specifying the transfer length and address. 27507 * flag - this argument is a pass through to ddi_copyxxx() 27508 * directly from the mode argument of ioctl(). 27509 * 27510 * Return Code: the code returned by sd_send_scsi_cmd() 27511 * EFAULT if ddi_copyxxx() fails 27512 * ENXIO if fail ddi_get_soft_state 27513 * EINVAL if data pointer is NULL 27514 */ 27515 27516 static int 27517 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag) 27518 { 27519 struct sd_lun *un = NULL; 27520 struct uscsi_cmd *com = NULL; 27521 struct cdrom_subcode *subcode = NULL; 27522 int rval; 27523 size_t buflen; 27524 char cdb[CDB_GROUP5]; 27525 27526 #ifdef _MULTI_DATAMODEL 27527 /* To support ILP32 applications in an LP64 world */ 27528 struct cdrom_subcode32 cdrom_subcode32; 27529 struct cdrom_subcode32 *cdsc32 = &cdrom_subcode32; 27530 #endif 27531 if (data == NULL) { 27532 return (EINVAL); 27533 } 27534 27535 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27536 return (ENXIO); 27537 } 27538 27539 subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP); 27540 27541 #ifdef _MULTI_DATAMODEL 27542 switch (ddi_model_convert_from(flag & FMODELS)) { 27543 case DDI_MODEL_ILP32: 27544 if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) { 27545 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27546 "sr_read_all_subcodes: ddi_copyin Failed\n"); 27547 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27548 return (EFAULT); 27549 } 27550 /* Convert the ILP32 uscsi data from the application to LP64 */ 27551 cdrom_subcode32tocdrom_subcode(cdsc32, subcode); 27552 break; 27553 case DDI_MODEL_NONE: 27554 if (ddi_copyin(data, subcode, 27555 sizeof (struct cdrom_subcode), flag)) { 27556 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27557 "sr_read_all_subcodes: ddi_copyin Failed\n"); 27558 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27559 return (EFAULT); 27560 } 27561 break; 27562 } 27563 #else /* ! _MULTI_DATAMODEL */ 27564 if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) { 27565 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27566 "sr_read_all_subcodes: ddi_copyin Failed\n"); 27567 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27568 return (EFAULT); 27569 } 27570 #endif /* _MULTI_DATAMODEL */ 27571 27572 /* 27573 * Since MMC-2 expects max 3 bytes for length, check if the 27574 * length input is greater than 3 bytes 27575 */ 27576 if ((subcode->cdsc_length & 0xFF000000) != 0) { 27577 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27578 "sr_read_all_subcodes: " 27579 "cdrom transfer length too large: %d (limit %d)\n", 27580 subcode->cdsc_length, 0xFFFFFF); 27581 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27582 return (EINVAL); 27583 } 27584 27585 buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length; 27586 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27587 bzero(cdb, CDB_GROUP5); 27588 27589 if (un->un_f_mmc_cap == TRUE) { 27590 cdb[0] = (char)SCMD_READ_CD; 27591 cdb[2] = (char)0xff; 27592 cdb[3] = (char)0xff; 27593 cdb[4] = (char)0xff; 27594 cdb[5] = (char)0xff; 27595 cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16); 27596 cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8); 27597 cdb[8] = ((subcode->cdsc_length) & 0x000000ff); 27598 cdb[10] = 1; 27599 } else { 27600 /* 27601 * Note: A vendor specific command (0xDF) is being used her to 27602 * request a read of all subcodes. 27603 */ 27604 cdb[0] = (char)SCMD_READ_ALL_SUBCODES; 27605 cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24); 27606 cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16); 27607 cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8); 27608 cdb[9] = ((subcode->cdsc_length) & 0x000000ff); 27609 } 27610 com->uscsi_cdb = cdb; 27611 com->uscsi_cdblen = CDB_GROUP5; 27612 com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr; 27613 com->uscsi_buflen = buflen; 27614 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 27615 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 27616 SD_PATH_STANDARD); 27617 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27618 kmem_free(com, sizeof (*com)); 27619 return (rval); 27620 } 27621 27622 27623 /* 27624 * Function: sr_read_subchannel() 27625 * 27626 * Description: This routine is the driver entry point for handling CD-ROM 27627 * ioctl requests to return the Q sub-channel data of the CD 27628 * current position block. (CDROMSUBCHNL) The data includes the 27629 * track number, index number, absolute CD-ROM address (LBA or MSF 27630 * format per the user) , track relative CD-ROM address (LBA or MSF 27631 * format per the user), control data and audio status. 27632 * 27633 * Arguments: dev - the device 'dev_t' 27634 * data - pointer to user provided cdrom sub-channel structure 27635 * flag - this argument is a pass through to ddi_copyxxx() 27636 * directly from the mode argument of ioctl(). 27637 * 27638 * Return Code: the code returned by sd_send_scsi_cmd() 27639 * EFAULT if ddi_copyxxx() fails 27640 * ENXIO if fail ddi_get_soft_state 27641 * EINVAL if data pointer is NULL 27642 */ 27643 27644 static int 27645 sr_read_subchannel(dev_t dev, caddr_t data, int flag) 27646 { 27647 struct sd_lun *un; 27648 struct uscsi_cmd *com; 27649 struct cdrom_subchnl subchanel; 27650 struct cdrom_subchnl *subchnl = &subchanel; 27651 char cdb[CDB_GROUP1]; 27652 caddr_t buffer; 27653 int rval; 27654 27655 if (data == NULL) { 27656 return (EINVAL); 27657 } 27658 27659 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27660 (un->un_state == SD_STATE_OFFLINE)) { 27661 return (ENXIO); 27662 } 27663 27664 if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) { 27665 return (EFAULT); 27666 } 27667 27668 buffer = kmem_zalloc((size_t)16, KM_SLEEP); 27669 bzero(cdb, CDB_GROUP1); 27670 cdb[0] = SCMD_READ_SUBCHANNEL; 27671 /* Set the MSF bit based on the user requested address format */ 27672 cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02; 27673 /* 27674 * Set the Q bit in byte 2 to indicate that Q sub-channel data be 27675 * returned 27676 */ 27677 cdb[2] = 0x40; 27678 /* 27679 * Set byte 3 to specify the return data format. A value of 0x01 27680 * indicates that the CD-ROM current position should be returned. 27681 */ 27682 cdb[3] = 0x01; 27683 cdb[8] = 0x10; 27684 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27685 com->uscsi_cdb = cdb; 27686 com->uscsi_cdblen = CDB_GROUP1; 27687 com->uscsi_bufaddr = buffer; 27688 com->uscsi_buflen = 16; 27689 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 27690 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27691 SD_PATH_STANDARD); 27692 if (rval != 0) { 27693 kmem_free(buffer, 16); 27694 kmem_free(com, sizeof (*com)); 27695 return (rval); 27696 } 27697 27698 /* Process the returned Q sub-channel data */ 27699 subchnl->cdsc_audiostatus = buffer[1]; 27700 subchnl->cdsc_adr = (buffer[5] & 0xF0); 27701 subchnl->cdsc_ctrl = (buffer[5] & 0x0F); 27702 subchnl->cdsc_trk = buffer[6]; 27703 subchnl->cdsc_ind = buffer[7]; 27704 if (subchnl->cdsc_format & CDROM_LBA) { 27705 subchnl->cdsc_absaddr.lba = 27706 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 27707 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 27708 subchnl->cdsc_reladdr.lba = 27709 ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) + 27710 ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]); 27711 } else if (un->un_f_cfg_readsub_bcd == TRUE) { 27712 subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]); 27713 subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]); 27714 subchnl->cdsc_absaddr.msf.frame = BCD_TO_BYTE(buffer[11]); 27715 subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]); 27716 subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]); 27717 subchnl->cdsc_reladdr.msf.frame = BCD_TO_BYTE(buffer[15]); 27718 } else { 27719 subchnl->cdsc_absaddr.msf.minute = buffer[9]; 27720 subchnl->cdsc_absaddr.msf.second = buffer[10]; 27721 subchnl->cdsc_absaddr.msf.frame = buffer[11]; 27722 subchnl->cdsc_reladdr.msf.minute = buffer[13]; 27723 subchnl->cdsc_reladdr.msf.second = buffer[14]; 27724 subchnl->cdsc_reladdr.msf.frame = buffer[15]; 27725 } 27726 kmem_free(buffer, 16); 27727 kmem_free(com, sizeof (*com)); 27728 if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag) 27729 != 0) { 27730 return (EFAULT); 27731 } 27732 return (rval); 27733 } 27734 27735 27736 /* 27737 * Function: sr_read_tocentry() 27738 * 27739 * Description: This routine is the driver entry point for handling CD-ROM 27740 * ioctl requests to read from the Table of Contents (TOC) 27741 * (CDROMREADTOCENTRY). This routine provides the ADR and CTRL 27742 * fields, the starting address (LBA or MSF format per the user) 27743 * and the data mode if the user specified track is a data track. 27744 * 27745 * Note: The READ HEADER (0x44) command used in this routine is 27746 * obsolete per the SCSI MMC spec but still supported in the 27747 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI 27748 * therefore the command is still implemented in this routine. 27749 * 27750 * Arguments: dev - the device 'dev_t' 27751 * data - pointer to user provided toc entry structure, 27752 * specifying the track # and the address format 27753 * (LBA or MSF). 27754 * flag - this argument is a pass through to ddi_copyxxx() 27755 * directly from the mode argument of ioctl(). 27756 * 27757 * Return Code: the code returned by sd_send_scsi_cmd() 27758 * EFAULT if ddi_copyxxx() fails 27759 * ENXIO if fail ddi_get_soft_state 27760 * EINVAL if data pointer is NULL 27761 */ 27762 27763 static int 27764 sr_read_tocentry(dev_t dev, caddr_t data, int flag) 27765 { 27766 struct sd_lun *un = NULL; 27767 struct uscsi_cmd *com; 27768 struct cdrom_tocentry toc_entry; 27769 struct cdrom_tocentry *entry = &toc_entry; 27770 caddr_t buffer; 27771 int rval; 27772 char cdb[CDB_GROUP1]; 27773 27774 if (data == NULL) { 27775 return (EINVAL); 27776 } 27777 27778 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27779 (un->un_state == SD_STATE_OFFLINE)) { 27780 return (ENXIO); 27781 } 27782 27783 if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) { 27784 return (EFAULT); 27785 } 27786 27787 /* Validate the requested track and address format */ 27788 if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) { 27789 return (EINVAL); 27790 } 27791 27792 if (entry->cdte_track == 0) { 27793 return (EINVAL); 27794 } 27795 27796 buffer = kmem_zalloc((size_t)12, KM_SLEEP); 27797 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27798 bzero(cdb, CDB_GROUP1); 27799 27800 cdb[0] = SCMD_READ_TOC; 27801 /* Set the MSF bit based on the user requested address format */ 27802 cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2); 27803 if (un->un_f_cfg_read_toc_trk_bcd == TRUE) { 27804 cdb[6] = BYTE_TO_BCD(entry->cdte_track); 27805 } else { 27806 cdb[6] = entry->cdte_track; 27807 } 27808 27809 /* 27810 * Bytes 7 & 8 are the 12 byte allocation length for a single entry. 27811 * (4 byte TOC response header + 8 byte track descriptor) 27812 */ 27813 cdb[8] = 12; 27814 com->uscsi_cdb = cdb; 27815 com->uscsi_cdblen = CDB_GROUP1; 27816 com->uscsi_bufaddr = buffer; 27817 com->uscsi_buflen = 0x0C; 27818 com->uscsi_flags = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ); 27819 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27820 SD_PATH_STANDARD); 27821 if (rval != 0) { 27822 kmem_free(buffer, 12); 27823 kmem_free(com, sizeof (*com)); 27824 return (rval); 27825 } 27826 27827 /* Process the toc entry */ 27828 entry->cdte_adr = (buffer[5] & 0xF0) >> 4; 27829 entry->cdte_ctrl = (buffer[5] & 0x0F); 27830 if (entry->cdte_format & CDROM_LBA) { 27831 entry->cdte_addr.lba = 27832 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 27833 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 27834 } else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) { 27835 entry->cdte_addr.msf.minute = BCD_TO_BYTE(buffer[9]); 27836 entry->cdte_addr.msf.second = BCD_TO_BYTE(buffer[10]); 27837 entry->cdte_addr.msf.frame = BCD_TO_BYTE(buffer[11]); 27838 /* 27839 * Send a READ TOC command using the LBA address format to get 27840 * the LBA for the track requested so it can be used in the 27841 * READ HEADER request 27842 * 27843 * Note: The MSF bit of the READ HEADER command specifies the 27844 * output format. The block address specified in that command 27845 * must be in LBA format. 27846 */ 27847 cdb[1] = 0; 27848 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27849 SD_PATH_STANDARD); 27850 if (rval != 0) { 27851 kmem_free(buffer, 12); 27852 kmem_free(com, sizeof (*com)); 27853 return (rval); 27854 } 27855 } else { 27856 entry->cdte_addr.msf.minute = buffer[9]; 27857 entry->cdte_addr.msf.second = buffer[10]; 27858 entry->cdte_addr.msf.frame = buffer[11]; 27859 /* 27860 * Send a READ TOC command using the LBA address format to get 27861 * the LBA for the track requested so it can be used in the 27862 * READ HEADER request 27863 * 27864 * Note: The MSF bit of the READ HEADER command specifies the 27865 * output format. The block address specified in that command 27866 * must be in LBA format. 27867 */ 27868 cdb[1] = 0; 27869 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27870 SD_PATH_STANDARD); 27871 if (rval != 0) { 27872 kmem_free(buffer, 12); 27873 kmem_free(com, sizeof (*com)); 27874 return (rval); 27875 } 27876 } 27877 27878 /* 27879 * Build and send the READ HEADER command to determine the data mode of 27880 * the user specified track. 27881 */ 27882 if ((entry->cdte_ctrl & CDROM_DATA_TRACK) && 27883 (entry->cdte_track != CDROM_LEADOUT)) { 27884 bzero(cdb, CDB_GROUP1); 27885 cdb[0] = SCMD_READ_HEADER; 27886 cdb[2] = buffer[8]; 27887 cdb[3] = buffer[9]; 27888 cdb[4] = buffer[10]; 27889 cdb[5] = buffer[11]; 27890 cdb[8] = 0x08; 27891 com->uscsi_buflen = 0x08; 27892 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27893 SD_PATH_STANDARD); 27894 if (rval == 0) { 27895 entry->cdte_datamode = buffer[0]; 27896 } else { 27897 /* 27898 * READ HEADER command failed, since this is 27899 * obsoleted in one spec, its better to return 27900 * -1 for an invlid track so that we can still 27901 * receive the rest of the TOC data. 27902 */ 27903 entry->cdte_datamode = (uchar_t)-1; 27904 } 27905 } else { 27906 entry->cdte_datamode = (uchar_t)-1; 27907 } 27908 27909 kmem_free(buffer, 12); 27910 kmem_free(com, sizeof (*com)); 27911 if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0) 27912 return (EFAULT); 27913 27914 return (rval); 27915 } 27916 27917 27918 /* 27919 * Function: sr_read_tochdr() 27920 * 27921 * Description: This routine is the driver entry point for handling CD-ROM 27922 * ioctl requests to read the Table of Contents (TOC) header 27923 * (CDROMREADTOHDR). The TOC header consists of the disk starting 27924 * and ending track numbers 27925 * 27926 * Arguments: dev - the device 'dev_t' 27927 * data - pointer to user provided toc header structure, 27928 * specifying the starting and ending track numbers. 27929 * flag - this argument is a pass through to ddi_copyxxx() 27930 * directly from the mode argument of ioctl(). 27931 * 27932 * Return Code: the code returned by sd_send_scsi_cmd() 27933 * EFAULT if ddi_copyxxx() fails 27934 * ENXIO if fail ddi_get_soft_state 27935 * EINVAL if data pointer is NULL 27936 */ 27937 27938 static int 27939 sr_read_tochdr(dev_t dev, caddr_t data, int flag) 27940 { 27941 struct sd_lun *un; 27942 struct uscsi_cmd *com; 27943 struct cdrom_tochdr toc_header; 27944 struct cdrom_tochdr *hdr = &toc_header; 27945 char cdb[CDB_GROUP1]; 27946 int rval; 27947 caddr_t buffer; 27948 27949 if (data == NULL) { 27950 return (EINVAL); 27951 } 27952 27953 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27954 (un->un_state == SD_STATE_OFFLINE)) { 27955 return (ENXIO); 27956 } 27957 27958 buffer = kmem_zalloc(4, KM_SLEEP); 27959 bzero(cdb, CDB_GROUP1); 27960 cdb[0] = SCMD_READ_TOC; 27961 /* 27962 * Specifying a track number of 0x00 in the READ TOC command indicates 27963 * that the TOC header should be returned 27964 */ 27965 cdb[6] = 0x00; 27966 /* 27967 * Bytes 7 & 8 are the 4 byte allocation length for TOC header. 27968 * (2 byte data len + 1 byte starting track # + 1 byte ending track #) 27969 */ 27970 cdb[8] = 0x04; 27971 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27972 com->uscsi_cdb = cdb; 27973 com->uscsi_cdblen = CDB_GROUP1; 27974 com->uscsi_bufaddr = buffer; 27975 com->uscsi_buflen = 0x04; 27976 com->uscsi_timeout = 300; 27977 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 27978 27979 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 27980 SD_PATH_STANDARD); 27981 if (un->un_f_cfg_read_toc_trk_bcd == TRUE) { 27982 hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]); 27983 hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]); 27984 } else { 27985 hdr->cdth_trk0 = buffer[2]; 27986 hdr->cdth_trk1 = buffer[3]; 27987 } 27988 kmem_free(buffer, 4); 27989 kmem_free(com, sizeof (*com)); 27990 if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) { 27991 return (EFAULT); 27992 } 27993 return (rval); 27994 } 27995 27996 27997 /* 27998 * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(), 27999 * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for 28000 * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data, 28001 * digital audio and extended architecture digital audio. These modes are 28002 * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3 28003 * MMC specs. 28004 * 28005 * In addition to support for the various data formats these routines also 28006 * include support for devices that implement only the direct access READ 28007 * commands (0x08, 0x28), devices that implement the READ_CD commands 28008 * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and 28009 * READ CDXA commands (0xD8, 0xDB) 28010 */ 28011 28012 /* 28013 * Function: sr_read_mode1() 28014 * 28015 * Description: This routine is the driver entry point for handling CD-ROM 28016 * ioctl read mode1 requests (CDROMREADMODE1). 28017 * 28018 * Arguments: dev - the device 'dev_t' 28019 * data - pointer to user provided cd read structure specifying 28020 * the lba buffer address and length. 28021 * flag - this argument is a pass through to ddi_copyxxx() 28022 * directly from the mode argument of ioctl(). 28023 * 28024 * Return Code: the code returned by sd_send_scsi_cmd() 28025 * EFAULT if ddi_copyxxx() fails 28026 * ENXIO if fail ddi_get_soft_state 28027 * EINVAL if data pointer is NULL 28028 */ 28029 28030 static int 28031 sr_read_mode1(dev_t dev, caddr_t data, int flag) 28032 { 28033 struct sd_lun *un; 28034 struct cdrom_read mode1_struct; 28035 struct cdrom_read *mode1 = &mode1_struct; 28036 int rval; 28037 sd_ssc_t *ssc; 28038 28039 #ifdef _MULTI_DATAMODEL 28040 /* To support ILP32 applications in an LP64 world */ 28041 struct cdrom_read32 cdrom_read32; 28042 struct cdrom_read32 *cdrd32 = &cdrom_read32; 28043 #endif /* _MULTI_DATAMODEL */ 28044 28045 if (data == NULL) { 28046 return (EINVAL); 28047 } 28048 28049 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28050 (un->un_state == SD_STATE_OFFLINE)) { 28051 return (ENXIO); 28052 } 28053 28054 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28055 "sd_read_mode1: entry: un:0x%p\n", un); 28056 28057 #ifdef _MULTI_DATAMODEL 28058 switch (ddi_model_convert_from(flag & FMODELS)) { 28059 case DDI_MODEL_ILP32: 28060 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 28061 return (EFAULT); 28062 } 28063 /* Convert the ILP32 uscsi data from the application to LP64 */ 28064 cdrom_read32tocdrom_read(cdrd32, mode1); 28065 break; 28066 case DDI_MODEL_NONE: 28067 if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) { 28068 return (EFAULT); 28069 } 28070 } 28071 #else /* ! _MULTI_DATAMODEL */ 28072 if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) { 28073 return (EFAULT); 28074 } 28075 #endif /* _MULTI_DATAMODEL */ 28076 28077 ssc = sd_ssc_init(un); 28078 rval = sd_send_scsi_READ(ssc, mode1->cdread_bufaddr, 28079 mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD); 28080 sd_ssc_fini(ssc); 28081 28082 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28083 "sd_read_mode1: exit: un:0x%p\n", un); 28084 28085 return (rval); 28086 } 28087 28088 28089 /* 28090 * Function: sr_read_cd_mode2() 28091 * 28092 * Description: This routine is the driver entry point for handling CD-ROM 28093 * ioctl read mode2 requests (CDROMREADMODE2) for devices that 28094 * support the READ CD (0xBE) command or the 1st generation 28095 * READ CD (0xD4) command. 28096 * 28097 * Arguments: dev - the device 'dev_t' 28098 * data - pointer to user provided cd read structure specifying 28099 * the lba buffer address and length. 28100 * flag - this argument is a pass through to ddi_copyxxx() 28101 * directly from the mode argument of ioctl(). 28102 * 28103 * Return Code: the code returned by sd_send_scsi_cmd() 28104 * EFAULT if ddi_copyxxx() fails 28105 * ENXIO if fail ddi_get_soft_state 28106 * EINVAL if data pointer is NULL 28107 */ 28108 28109 static int 28110 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag) 28111 { 28112 struct sd_lun *un; 28113 struct uscsi_cmd *com; 28114 struct cdrom_read mode2_struct; 28115 struct cdrom_read *mode2 = &mode2_struct; 28116 uchar_t cdb[CDB_GROUP5]; 28117 int nblocks; 28118 int rval; 28119 #ifdef _MULTI_DATAMODEL 28120 /* To support ILP32 applications in an LP64 world */ 28121 struct cdrom_read32 cdrom_read32; 28122 struct cdrom_read32 *cdrd32 = &cdrom_read32; 28123 #endif /* _MULTI_DATAMODEL */ 28124 28125 if (data == NULL) { 28126 return (EINVAL); 28127 } 28128 28129 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28130 (un->un_state == SD_STATE_OFFLINE)) { 28131 return (ENXIO); 28132 } 28133 28134 #ifdef _MULTI_DATAMODEL 28135 switch (ddi_model_convert_from(flag & FMODELS)) { 28136 case DDI_MODEL_ILP32: 28137 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 28138 return (EFAULT); 28139 } 28140 /* Convert the ILP32 uscsi data from the application to LP64 */ 28141 cdrom_read32tocdrom_read(cdrd32, mode2); 28142 break; 28143 case DDI_MODEL_NONE: 28144 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 28145 return (EFAULT); 28146 } 28147 break; 28148 } 28149 28150 #else /* ! _MULTI_DATAMODEL */ 28151 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 28152 return (EFAULT); 28153 } 28154 #endif /* _MULTI_DATAMODEL */ 28155 28156 bzero(cdb, sizeof (cdb)); 28157 if (un->un_f_cfg_read_cd_xd4 == TRUE) { 28158 /* Read command supported by 1st generation atapi drives */ 28159 cdb[0] = SCMD_READ_CDD4; 28160 } else { 28161 /* Universal CD Access Command */ 28162 cdb[0] = SCMD_READ_CD; 28163 } 28164 28165 /* 28166 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book 28167 */ 28168 cdb[1] = CDROM_SECTOR_TYPE_MODE2; 28169 28170 /* set the start address */ 28171 cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF); 28172 cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF); 28173 cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF); 28174 cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF); 28175 28176 /* set the transfer length */ 28177 nblocks = mode2->cdread_buflen / 2336; 28178 cdb[6] = (uchar_t)(nblocks >> 16); 28179 cdb[7] = (uchar_t)(nblocks >> 8); 28180 cdb[8] = (uchar_t)nblocks; 28181 28182 /* set the filter bits */ 28183 cdb[9] = CDROM_READ_CD_USERDATA; 28184 28185 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28186 com->uscsi_cdb = (caddr_t)cdb; 28187 com->uscsi_cdblen = sizeof (cdb); 28188 com->uscsi_bufaddr = mode2->cdread_bufaddr; 28189 com->uscsi_buflen = mode2->cdread_buflen; 28190 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28191 28192 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 28193 SD_PATH_STANDARD); 28194 kmem_free(com, sizeof (*com)); 28195 return (rval); 28196 } 28197 28198 28199 /* 28200 * Function: sr_read_mode2() 28201 * 28202 * Description: This routine is the driver entry point for handling CD-ROM 28203 * ioctl read mode2 requests (CDROMREADMODE2) for devices that 28204 * do not support the READ CD (0xBE) command. 28205 * 28206 * Arguments: dev - the device 'dev_t' 28207 * data - pointer to user provided cd read structure specifying 28208 * the lba buffer address and length. 28209 * flag - this argument is a pass through to ddi_copyxxx() 28210 * directly from the mode argument of ioctl(). 28211 * 28212 * Return Code: the code returned by sd_send_scsi_cmd() 28213 * EFAULT if ddi_copyxxx() fails 28214 * ENXIO if fail ddi_get_soft_state 28215 * EINVAL if data pointer is NULL 28216 * EIO if fail to reset block size 28217 * EAGAIN if commands are in progress in the driver 28218 */ 28219 28220 static int 28221 sr_read_mode2(dev_t dev, caddr_t data, int flag) 28222 { 28223 struct sd_lun *un; 28224 struct cdrom_read mode2_struct; 28225 struct cdrom_read *mode2 = &mode2_struct; 28226 int rval; 28227 uint32_t restore_blksize; 28228 struct uscsi_cmd *com; 28229 uchar_t cdb[CDB_GROUP0]; 28230 int nblocks; 28231 28232 #ifdef _MULTI_DATAMODEL 28233 /* To support ILP32 applications in an LP64 world */ 28234 struct cdrom_read32 cdrom_read32; 28235 struct cdrom_read32 *cdrd32 = &cdrom_read32; 28236 #endif /* _MULTI_DATAMODEL */ 28237 28238 if (data == NULL) { 28239 return (EINVAL); 28240 } 28241 28242 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28243 (un->un_state == SD_STATE_OFFLINE)) { 28244 return (ENXIO); 28245 } 28246 28247 /* 28248 * Because this routine will update the device and driver block size 28249 * being used we want to make sure there are no commands in progress. 28250 * If commands are in progress the user will have to try again. 28251 * 28252 * We check for 1 instead of 0 because we increment un_ncmds_in_driver 28253 * in sdioctl to protect commands from sdioctl through to the top of 28254 * sd_uscsi_strategy. See sdioctl for details. 28255 */ 28256 mutex_enter(SD_MUTEX(un)); 28257 if (un->un_ncmds_in_driver != 1) { 28258 mutex_exit(SD_MUTEX(un)); 28259 return (EAGAIN); 28260 } 28261 mutex_exit(SD_MUTEX(un)); 28262 28263 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28264 "sd_read_mode2: entry: un:0x%p\n", un); 28265 28266 #ifdef _MULTI_DATAMODEL 28267 switch (ddi_model_convert_from(flag & FMODELS)) { 28268 case DDI_MODEL_ILP32: 28269 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 28270 return (EFAULT); 28271 } 28272 /* Convert the ILP32 uscsi data from the application to LP64 */ 28273 cdrom_read32tocdrom_read(cdrd32, mode2); 28274 break; 28275 case DDI_MODEL_NONE: 28276 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 28277 return (EFAULT); 28278 } 28279 break; 28280 } 28281 #else /* ! _MULTI_DATAMODEL */ 28282 if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) { 28283 return (EFAULT); 28284 } 28285 #endif /* _MULTI_DATAMODEL */ 28286 28287 /* Store the current target block size for restoration later */ 28288 restore_blksize = un->un_tgt_blocksize; 28289 28290 /* Change the device and soft state target block size to 2336 */ 28291 if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) { 28292 rval = EIO; 28293 goto done; 28294 } 28295 28296 28297 bzero(cdb, sizeof (cdb)); 28298 28299 /* set READ operation */ 28300 cdb[0] = SCMD_READ; 28301 28302 /* adjust lba for 2kbyte blocks from 512 byte blocks */ 28303 mode2->cdread_lba >>= 2; 28304 28305 /* set the start address */ 28306 cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F); 28307 cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF); 28308 cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF); 28309 28310 /* set the transfer length */ 28311 nblocks = mode2->cdread_buflen / 2336; 28312 cdb[4] = (uchar_t)nblocks & 0xFF; 28313 28314 /* build command */ 28315 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28316 com->uscsi_cdb = (caddr_t)cdb; 28317 com->uscsi_cdblen = sizeof (cdb); 28318 com->uscsi_bufaddr = mode2->cdread_bufaddr; 28319 com->uscsi_buflen = mode2->cdread_buflen; 28320 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28321 28322 /* 28323 * Issue SCSI command with user space address for read buffer. 28324 * 28325 * This sends the command through main channel in the driver. 28326 * 28327 * Since this is accessed via an IOCTL call, we go through the 28328 * standard path, so that if the device was powered down, then 28329 * it would be 'awakened' to handle the command. 28330 */ 28331 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 28332 SD_PATH_STANDARD); 28333 28334 kmem_free(com, sizeof (*com)); 28335 28336 /* Restore the device and soft state target block size */ 28337 if (sr_sector_mode(dev, restore_blksize) != 0) { 28338 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28339 "can't do switch back to mode 1\n"); 28340 /* 28341 * If sd_send_scsi_READ succeeded we still need to report 28342 * an error because we failed to reset the block size 28343 */ 28344 if (rval == 0) { 28345 rval = EIO; 28346 } 28347 } 28348 28349 done: 28350 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28351 "sd_read_mode2: exit: un:0x%p\n", un); 28352 28353 return (rval); 28354 } 28355 28356 28357 /* 28358 * Function: sr_sector_mode() 28359 * 28360 * Description: This utility function is used by sr_read_mode2 to set the target 28361 * block size based on the user specified size. This is a legacy 28362 * implementation based upon a vendor specific mode page 28363 * 28364 * Arguments: dev - the device 'dev_t' 28365 * data - flag indicating if block size is being set to 2336 or 28366 * 512. 28367 * 28368 * Return Code: the code returned by sd_send_scsi_cmd() 28369 * EFAULT if ddi_copyxxx() fails 28370 * ENXIO if fail ddi_get_soft_state 28371 * EINVAL if data pointer is NULL 28372 */ 28373 28374 static int 28375 sr_sector_mode(dev_t dev, uint32_t blksize) 28376 { 28377 struct sd_lun *un; 28378 uchar_t *sense; 28379 uchar_t *select; 28380 int rval; 28381 sd_ssc_t *ssc; 28382 28383 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28384 (un->un_state == SD_STATE_OFFLINE)) { 28385 return (ENXIO); 28386 } 28387 28388 sense = kmem_zalloc(20, KM_SLEEP); 28389 28390 /* Note: This is a vendor specific mode page (0x81) */ 28391 ssc = sd_ssc_init(un); 28392 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 20, 0x81, 28393 SD_PATH_STANDARD); 28394 sd_ssc_fini(ssc); 28395 if (rval != 0) { 28396 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 28397 "sr_sector_mode: Mode Sense failed\n"); 28398 kmem_free(sense, 20); 28399 return (rval); 28400 } 28401 select = kmem_zalloc(20, KM_SLEEP); 28402 select[3] = 0x08; 28403 select[10] = ((blksize >> 8) & 0xff); 28404 select[11] = (blksize & 0xff); 28405 select[12] = 0x01; 28406 select[13] = 0x06; 28407 select[14] = sense[14]; 28408 select[15] = sense[15]; 28409 if (blksize == SD_MODE2_BLKSIZE) { 28410 select[14] |= 0x01; 28411 } 28412 28413 ssc = sd_ssc_init(un); 28414 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 20, 28415 SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 28416 sd_ssc_fini(ssc); 28417 if (rval != 0) { 28418 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 28419 "sr_sector_mode: Mode Select failed\n"); 28420 } else { 28421 /* 28422 * Only update the softstate block size if we successfully 28423 * changed the device block mode. 28424 */ 28425 mutex_enter(SD_MUTEX(un)); 28426 sd_update_block_info(un, blksize, 0); 28427 mutex_exit(SD_MUTEX(un)); 28428 } 28429 kmem_free(sense, 20); 28430 kmem_free(select, 20); 28431 return (rval); 28432 } 28433 28434 28435 /* 28436 * Function: sr_read_cdda() 28437 * 28438 * Description: This routine is the driver entry point for handling CD-ROM 28439 * ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If 28440 * the target supports CDDA these requests are handled via a vendor 28441 * specific command (0xD8) If the target does not support CDDA 28442 * these requests are handled via the READ CD command (0xBE). 28443 * 28444 * Arguments: dev - the device 'dev_t' 28445 * data - pointer to user provided CD-DA structure specifying 28446 * the track starting address, transfer length, and 28447 * subcode options. 28448 * flag - this argument is a pass through to ddi_copyxxx() 28449 * directly from the mode argument of ioctl(). 28450 * 28451 * Return Code: the code returned by sd_send_scsi_cmd() 28452 * EFAULT if ddi_copyxxx() fails 28453 * ENXIO if fail ddi_get_soft_state 28454 * EINVAL if invalid arguments are provided 28455 * ENOTTY 28456 */ 28457 28458 static int 28459 sr_read_cdda(dev_t dev, caddr_t data, int flag) 28460 { 28461 struct sd_lun *un; 28462 struct uscsi_cmd *com; 28463 struct cdrom_cdda *cdda; 28464 int rval; 28465 size_t buflen; 28466 char cdb[CDB_GROUP5]; 28467 28468 #ifdef _MULTI_DATAMODEL 28469 /* To support ILP32 applications in an LP64 world */ 28470 struct cdrom_cdda32 cdrom_cdda32; 28471 struct cdrom_cdda32 *cdda32 = &cdrom_cdda32; 28472 #endif /* _MULTI_DATAMODEL */ 28473 28474 if (data == NULL) { 28475 return (EINVAL); 28476 } 28477 28478 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 28479 return (ENXIO); 28480 } 28481 28482 cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP); 28483 28484 #ifdef _MULTI_DATAMODEL 28485 switch (ddi_model_convert_from(flag & FMODELS)) { 28486 case DDI_MODEL_ILP32: 28487 if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) { 28488 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28489 "sr_read_cdda: ddi_copyin Failed\n"); 28490 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28491 return (EFAULT); 28492 } 28493 /* Convert the ILP32 uscsi data from the application to LP64 */ 28494 cdrom_cdda32tocdrom_cdda(cdda32, cdda); 28495 break; 28496 case DDI_MODEL_NONE: 28497 if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) { 28498 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28499 "sr_read_cdda: ddi_copyin Failed\n"); 28500 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28501 return (EFAULT); 28502 } 28503 break; 28504 } 28505 #else /* ! _MULTI_DATAMODEL */ 28506 if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) { 28507 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28508 "sr_read_cdda: ddi_copyin Failed\n"); 28509 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28510 return (EFAULT); 28511 } 28512 #endif /* _MULTI_DATAMODEL */ 28513 28514 /* 28515 * Since MMC-2 expects max 3 bytes for length, check if the 28516 * length input is greater than 3 bytes 28517 */ 28518 if ((cdda->cdda_length & 0xFF000000) != 0) { 28519 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: " 28520 "cdrom transfer length too large: %d (limit %d)\n", 28521 cdda->cdda_length, 0xFFFFFF); 28522 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28523 return (EINVAL); 28524 } 28525 28526 switch (cdda->cdda_subcode) { 28527 case CDROM_DA_NO_SUBCODE: 28528 buflen = CDROM_BLK_2352 * cdda->cdda_length; 28529 break; 28530 case CDROM_DA_SUBQ: 28531 buflen = CDROM_BLK_2368 * cdda->cdda_length; 28532 break; 28533 case CDROM_DA_ALL_SUBCODE: 28534 buflen = CDROM_BLK_2448 * cdda->cdda_length; 28535 break; 28536 case CDROM_DA_SUBCODE_ONLY: 28537 buflen = CDROM_BLK_SUBCODE * cdda->cdda_length; 28538 break; 28539 default: 28540 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28541 "sr_read_cdda: Subcode '0x%x' Not Supported\n", 28542 cdda->cdda_subcode); 28543 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28544 return (EINVAL); 28545 } 28546 28547 /* Build and send the command */ 28548 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28549 bzero(cdb, CDB_GROUP5); 28550 28551 if (un->un_f_cfg_cdda == TRUE) { 28552 cdb[0] = (char)SCMD_READ_CD; 28553 cdb[1] = 0x04; 28554 cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24); 28555 cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16); 28556 cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8); 28557 cdb[5] = ((cdda->cdda_addr) & 0x000000ff); 28558 cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16); 28559 cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8); 28560 cdb[8] = ((cdda->cdda_length) & 0x000000ff); 28561 cdb[9] = 0x10; 28562 switch (cdda->cdda_subcode) { 28563 case CDROM_DA_NO_SUBCODE : 28564 cdb[10] = 0x0; 28565 break; 28566 case CDROM_DA_SUBQ : 28567 cdb[10] = 0x2; 28568 break; 28569 case CDROM_DA_ALL_SUBCODE : 28570 cdb[10] = 0x1; 28571 break; 28572 case CDROM_DA_SUBCODE_ONLY : 28573 /* FALLTHROUGH */ 28574 default : 28575 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28576 kmem_free(com, sizeof (*com)); 28577 return (ENOTTY); 28578 } 28579 } else { 28580 cdb[0] = (char)SCMD_READ_CDDA; 28581 cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24); 28582 cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16); 28583 cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8); 28584 cdb[5] = ((cdda->cdda_addr) & 0x000000ff); 28585 cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24); 28586 cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16); 28587 cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8); 28588 cdb[9] = ((cdda->cdda_length) & 0x000000ff); 28589 cdb[10] = cdda->cdda_subcode; 28590 } 28591 28592 com->uscsi_cdb = cdb; 28593 com->uscsi_cdblen = CDB_GROUP5; 28594 com->uscsi_bufaddr = (caddr_t)cdda->cdda_data; 28595 com->uscsi_buflen = buflen; 28596 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28597 28598 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 28599 SD_PATH_STANDARD); 28600 28601 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28602 kmem_free(com, sizeof (*com)); 28603 return (rval); 28604 } 28605 28606 28607 /* 28608 * Function: sr_read_cdxa() 28609 * 28610 * Description: This routine is the driver entry point for handling CD-ROM 28611 * ioctl requests to return CD-XA (Extended Architecture) data. 28612 * (CDROMCDXA). 28613 * 28614 * Arguments: dev - the device 'dev_t' 28615 * data - pointer to user provided CD-XA structure specifying 28616 * the data starting address, transfer length, and format 28617 * flag - this argument is a pass through to ddi_copyxxx() 28618 * directly from the mode argument of ioctl(). 28619 * 28620 * Return Code: the code returned by sd_send_scsi_cmd() 28621 * EFAULT if ddi_copyxxx() fails 28622 * ENXIO if fail ddi_get_soft_state 28623 * EINVAL if data pointer is NULL 28624 */ 28625 28626 static int 28627 sr_read_cdxa(dev_t dev, caddr_t data, int flag) 28628 { 28629 struct sd_lun *un; 28630 struct uscsi_cmd *com; 28631 struct cdrom_cdxa *cdxa; 28632 int rval; 28633 size_t buflen; 28634 char cdb[CDB_GROUP5]; 28635 uchar_t read_flags; 28636 28637 #ifdef _MULTI_DATAMODEL 28638 /* To support ILP32 applications in an LP64 world */ 28639 struct cdrom_cdxa32 cdrom_cdxa32; 28640 struct cdrom_cdxa32 *cdxa32 = &cdrom_cdxa32; 28641 #endif /* _MULTI_DATAMODEL */ 28642 28643 if (data == NULL) { 28644 return (EINVAL); 28645 } 28646 28647 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 28648 return (ENXIO); 28649 } 28650 28651 cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP); 28652 28653 #ifdef _MULTI_DATAMODEL 28654 switch (ddi_model_convert_from(flag & FMODELS)) { 28655 case DDI_MODEL_ILP32: 28656 if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) { 28657 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28658 return (EFAULT); 28659 } 28660 /* 28661 * Convert the ILP32 uscsi data from the 28662 * application to LP64 for internal use. 28663 */ 28664 cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa); 28665 break; 28666 case DDI_MODEL_NONE: 28667 if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) { 28668 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28669 return (EFAULT); 28670 } 28671 break; 28672 } 28673 #else /* ! _MULTI_DATAMODEL */ 28674 if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) { 28675 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28676 return (EFAULT); 28677 } 28678 #endif /* _MULTI_DATAMODEL */ 28679 28680 /* 28681 * Since MMC-2 expects max 3 bytes for length, check if the 28682 * length input is greater than 3 bytes 28683 */ 28684 if ((cdxa->cdxa_length & 0xFF000000) != 0) { 28685 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: " 28686 "cdrom transfer length too large: %d (limit %d)\n", 28687 cdxa->cdxa_length, 0xFFFFFF); 28688 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28689 return (EINVAL); 28690 } 28691 28692 switch (cdxa->cdxa_format) { 28693 case CDROM_XA_DATA: 28694 buflen = CDROM_BLK_2048 * cdxa->cdxa_length; 28695 read_flags = 0x10; 28696 break; 28697 case CDROM_XA_SECTOR_DATA: 28698 buflen = CDROM_BLK_2352 * cdxa->cdxa_length; 28699 read_flags = 0xf8; 28700 break; 28701 case CDROM_XA_DATA_W_ERROR: 28702 buflen = CDROM_BLK_2646 * cdxa->cdxa_length; 28703 read_flags = 0xfc; 28704 break; 28705 default: 28706 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28707 "sr_read_cdxa: Format '0x%x' Not Supported\n", 28708 cdxa->cdxa_format); 28709 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28710 return (EINVAL); 28711 } 28712 28713 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28714 bzero(cdb, CDB_GROUP5); 28715 if (un->un_f_mmc_cap == TRUE) { 28716 cdb[0] = (char)SCMD_READ_CD; 28717 cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24); 28718 cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16); 28719 cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8); 28720 cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff); 28721 cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16); 28722 cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8); 28723 cdb[8] = ((cdxa->cdxa_length) & 0x000000ff); 28724 cdb[9] = (char)read_flags; 28725 } else { 28726 /* 28727 * Note: A vendor specific command (0xDB) is being used her to 28728 * request a read of all subcodes. 28729 */ 28730 cdb[0] = (char)SCMD_READ_CDXA; 28731 cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24); 28732 cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16); 28733 cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8); 28734 cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff); 28735 cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24); 28736 cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16); 28737 cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8); 28738 cdb[9] = ((cdxa->cdxa_length) & 0x000000ff); 28739 cdb[10] = cdxa->cdxa_format; 28740 } 28741 com->uscsi_cdb = cdb; 28742 com->uscsi_cdblen = CDB_GROUP5; 28743 com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data; 28744 com->uscsi_buflen = buflen; 28745 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28746 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE, 28747 SD_PATH_STANDARD); 28748 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28749 kmem_free(com, sizeof (*com)); 28750 return (rval); 28751 } 28752 28753 28754 /* 28755 * Function: sr_eject() 28756 * 28757 * Description: This routine is the driver entry point for handling CD-ROM 28758 * eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT) 28759 * 28760 * Arguments: dev - the device 'dev_t' 28761 * 28762 * Return Code: the code returned by sd_send_scsi_cmd() 28763 */ 28764 28765 static int 28766 sr_eject(dev_t dev) 28767 { 28768 struct sd_lun *un; 28769 int rval; 28770 sd_ssc_t *ssc; 28771 28772 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28773 (un->un_state == SD_STATE_OFFLINE)) { 28774 return (ENXIO); 28775 } 28776 28777 /* 28778 * To prevent race conditions with the eject 28779 * command, keep track of an eject command as 28780 * it progresses. If we are already handling 28781 * an eject command in the driver for the given 28782 * unit and another request to eject is received 28783 * immediately return EAGAIN so we don't lose 28784 * the command if the current eject command fails. 28785 */ 28786 mutex_enter(SD_MUTEX(un)); 28787 if (un->un_f_ejecting == TRUE) { 28788 mutex_exit(SD_MUTEX(un)); 28789 return (EAGAIN); 28790 } 28791 un->un_f_ejecting = TRUE; 28792 mutex_exit(SD_MUTEX(un)); 28793 28794 ssc = sd_ssc_init(un); 28795 rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW, 28796 SD_PATH_STANDARD); 28797 sd_ssc_fini(ssc); 28798 28799 if (rval != 0) { 28800 mutex_enter(SD_MUTEX(un)); 28801 un->un_f_ejecting = FALSE; 28802 mutex_exit(SD_MUTEX(un)); 28803 return (rval); 28804 } 28805 28806 ssc = sd_ssc_init(un); 28807 rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP, 28808 SD_TARGET_EJECT, SD_PATH_STANDARD); 28809 sd_ssc_fini(ssc); 28810 28811 if (rval == 0) { 28812 mutex_enter(SD_MUTEX(un)); 28813 sr_ejected(un); 28814 un->un_mediastate = DKIO_EJECTED; 28815 un->un_f_ejecting = FALSE; 28816 cv_broadcast(&un->un_state_cv); 28817 mutex_exit(SD_MUTEX(un)); 28818 } else { 28819 mutex_enter(SD_MUTEX(un)); 28820 un->un_f_ejecting = FALSE; 28821 mutex_exit(SD_MUTEX(un)); 28822 } 28823 return (rval); 28824 } 28825 28826 28827 /* 28828 * Function: sr_ejected() 28829 * 28830 * Description: This routine updates the soft state structure to invalidate the 28831 * geometry information after the media has been ejected or a 28832 * media eject has been detected. 28833 * 28834 * Arguments: un - driver soft state (unit) structure 28835 */ 28836 28837 static void 28838 sr_ejected(struct sd_lun *un) 28839 { 28840 struct sd_errstats *stp; 28841 28842 ASSERT(un != NULL); 28843 ASSERT(mutex_owned(SD_MUTEX(un))); 28844 28845 un->un_f_blockcount_is_valid = FALSE; 28846 un->un_f_tgt_blocksize_is_valid = FALSE; 28847 mutex_exit(SD_MUTEX(un)); 28848 cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY); 28849 mutex_enter(SD_MUTEX(un)); 28850 28851 if (un->un_errstats != NULL) { 28852 stp = (struct sd_errstats *)un->un_errstats->ks_data; 28853 stp->sd_capacity.value.ui64 = 0; 28854 } 28855 } 28856 28857 28858 /* 28859 * Function: sr_check_wp() 28860 * 28861 * Description: This routine checks the write protection of a removable 28862 * media disk and hotpluggable devices via the write protect bit of 28863 * the Mode Page Header device specific field. Some devices choke 28864 * on unsupported mode page. In order to workaround this issue, 28865 * this routine has been implemented to use 0x3f mode page(request 28866 * for all pages) for all device types. 28867 * 28868 * Arguments: dev - the device 'dev_t' 28869 * 28870 * Return Code: int indicating if the device is write protected (1) or not (0) 28871 * 28872 * Context: Kernel thread. 28873 * 28874 */ 28875 28876 static int 28877 sr_check_wp(dev_t dev) 28878 { 28879 struct sd_lun *un; 28880 uchar_t device_specific; 28881 uchar_t *sense; 28882 int hdrlen; 28883 int rval = FALSE; 28884 int status; 28885 sd_ssc_t *ssc; 28886 28887 /* 28888 * Note: The return codes for this routine should be reworked to 28889 * properly handle the case of a NULL softstate. 28890 */ 28891 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 28892 return (FALSE); 28893 } 28894 28895 if (un->un_f_cfg_is_atapi == TRUE) { 28896 /* 28897 * The mode page contents are not required; set the allocation 28898 * length for the mode page header only 28899 */ 28900 hdrlen = MODE_HEADER_LENGTH_GRP2; 28901 sense = kmem_zalloc(hdrlen, KM_SLEEP); 28902 ssc = sd_ssc_init(un); 28903 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, hdrlen, 28904 MODEPAGE_ALLPAGES, SD_PATH_STANDARD); 28905 sd_ssc_fini(ssc); 28906 if (status != 0) 28907 goto err_exit; 28908 device_specific = 28909 ((struct mode_header_grp2 *)sense)->device_specific; 28910 } else { 28911 hdrlen = MODE_HEADER_LENGTH; 28912 sense = kmem_zalloc(hdrlen, KM_SLEEP); 28913 ssc = sd_ssc_init(un); 28914 status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, hdrlen, 28915 MODEPAGE_ALLPAGES, SD_PATH_STANDARD); 28916 sd_ssc_fini(ssc); 28917 if (status != 0) 28918 goto err_exit; 28919 device_specific = 28920 ((struct mode_header *)sense)->device_specific; 28921 } 28922 28923 28924 /* 28925 * Write protect mode sense failed; not all disks 28926 * understand this query. Return FALSE assuming that 28927 * these devices are not writable. 28928 */ 28929 if (device_specific & WRITE_PROTECT) { 28930 rval = TRUE; 28931 } 28932 28933 err_exit: 28934 kmem_free(sense, hdrlen); 28935 return (rval); 28936 } 28937 28938 /* 28939 * Function: sr_volume_ctrl() 28940 * 28941 * Description: This routine is the driver entry point for handling CD-ROM 28942 * audio output volume ioctl requests. (CDROMVOLCTRL) 28943 * 28944 * Arguments: dev - the device 'dev_t' 28945 * data - pointer to user audio volume control structure 28946 * flag - this argument is a pass through to ddi_copyxxx() 28947 * directly from the mode argument of ioctl(). 28948 * 28949 * Return Code: the code returned by sd_send_scsi_cmd() 28950 * EFAULT if ddi_copyxxx() fails 28951 * ENXIO if fail ddi_get_soft_state 28952 * EINVAL if data pointer is NULL 28953 * 28954 */ 28955 28956 static int 28957 sr_volume_ctrl(dev_t dev, caddr_t data, int flag) 28958 { 28959 struct sd_lun *un; 28960 struct cdrom_volctrl volume; 28961 struct cdrom_volctrl *vol = &volume; 28962 uchar_t *sense_page; 28963 uchar_t *select_page; 28964 uchar_t *sense; 28965 uchar_t *select; 28966 int sense_buflen; 28967 int select_buflen; 28968 int rval; 28969 sd_ssc_t *ssc; 28970 28971 if (data == NULL) { 28972 return (EINVAL); 28973 } 28974 28975 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28976 (un->un_state == SD_STATE_OFFLINE)) { 28977 return (ENXIO); 28978 } 28979 28980 if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) { 28981 return (EFAULT); 28982 } 28983 28984 if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) { 28985 struct mode_header_grp2 *sense_mhp; 28986 struct mode_header_grp2 *select_mhp; 28987 int bd_len; 28988 28989 sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN; 28990 select_buflen = MODE_HEADER_LENGTH_GRP2 + 28991 MODEPAGE_AUDIO_CTRL_LEN; 28992 sense = kmem_zalloc(sense_buflen, KM_SLEEP); 28993 select = kmem_zalloc(select_buflen, KM_SLEEP); 28994 ssc = sd_ssc_init(un); 28995 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, 28996 sense_buflen, MODEPAGE_AUDIO_CTRL, 28997 SD_PATH_STANDARD); 28998 sd_ssc_fini(ssc); 28999 29000 if (rval != 0) { 29001 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 29002 "sr_volume_ctrl: Mode Sense Failed\n"); 29003 kmem_free(sense, sense_buflen); 29004 kmem_free(select, select_buflen); 29005 return (rval); 29006 } 29007 sense_mhp = (struct mode_header_grp2 *)sense; 29008 select_mhp = (struct mode_header_grp2 *)select; 29009 bd_len = (sense_mhp->bdesc_length_hi << 8) | 29010 sense_mhp->bdesc_length_lo; 29011 if (bd_len > MODE_BLK_DESC_LENGTH) { 29012 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29013 "sr_volume_ctrl: Mode Sense returned invalid " 29014 "block descriptor length\n"); 29015 kmem_free(sense, sense_buflen); 29016 kmem_free(select, select_buflen); 29017 return (EIO); 29018 } 29019 sense_page = (uchar_t *) 29020 (sense + MODE_HEADER_LENGTH_GRP2 + bd_len); 29021 select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2); 29022 select_mhp->length_msb = 0; 29023 select_mhp->length_lsb = 0; 29024 select_mhp->bdesc_length_hi = 0; 29025 select_mhp->bdesc_length_lo = 0; 29026 } else { 29027 struct mode_header *sense_mhp, *select_mhp; 29028 29029 sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN; 29030 select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN; 29031 sense = kmem_zalloc(sense_buflen, KM_SLEEP); 29032 select = kmem_zalloc(select_buflen, KM_SLEEP); 29033 ssc = sd_ssc_init(un); 29034 rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 29035 sense_buflen, MODEPAGE_AUDIO_CTRL, 29036 SD_PATH_STANDARD); 29037 sd_ssc_fini(ssc); 29038 29039 if (rval != 0) { 29040 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29041 "sr_volume_ctrl: Mode Sense Failed\n"); 29042 kmem_free(sense, sense_buflen); 29043 kmem_free(select, select_buflen); 29044 return (rval); 29045 } 29046 sense_mhp = (struct mode_header *)sense; 29047 select_mhp = (struct mode_header *)select; 29048 if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) { 29049 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29050 "sr_volume_ctrl: Mode Sense returned invalid " 29051 "block descriptor length\n"); 29052 kmem_free(sense, sense_buflen); 29053 kmem_free(select, select_buflen); 29054 return (EIO); 29055 } 29056 sense_page = (uchar_t *) 29057 (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length); 29058 select_page = (uchar_t *)(select + MODE_HEADER_LENGTH); 29059 select_mhp->length = 0; 29060 select_mhp->bdesc_length = 0; 29061 } 29062 /* 29063 * Note: An audio control data structure could be created and overlayed 29064 * on the following in place of the array indexing method implemented. 29065 */ 29066 29067 /* Build the select data for the user volume data */ 29068 select_page[0] = MODEPAGE_AUDIO_CTRL; 29069 select_page[1] = 0xE; 29070 /* Set the immediate bit */ 29071 select_page[2] = 0x04; 29072 /* Zero out reserved fields */ 29073 select_page[3] = 0x00; 29074 select_page[4] = 0x00; 29075 /* Return sense data for fields not to be modified */ 29076 select_page[5] = sense_page[5]; 29077 select_page[6] = sense_page[6]; 29078 select_page[7] = sense_page[7]; 29079 /* Set the user specified volume levels for channel 0 and 1 */ 29080 select_page[8] = 0x01; 29081 select_page[9] = vol->channel0; 29082 select_page[10] = 0x02; 29083 select_page[11] = vol->channel1; 29084 /* Channel 2 and 3 are currently unsupported so return the sense data */ 29085 select_page[12] = sense_page[12]; 29086 select_page[13] = sense_page[13]; 29087 select_page[14] = sense_page[14]; 29088 select_page[15] = sense_page[15]; 29089 29090 ssc = sd_ssc_init(un); 29091 if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) { 29092 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, select, 29093 select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 29094 } else { 29095 rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 29096 select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 29097 } 29098 sd_ssc_fini(ssc); 29099 29100 kmem_free(sense, sense_buflen); 29101 kmem_free(select, select_buflen); 29102 return (rval); 29103 } 29104 29105 29106 /* 29107 * Function: sr_read_sony_session_offset() 29108 * 29109 * Description: This routine is the driver entry point for handling CD-ROM 29110 * ioctl requests for session offset information. (CDROMREADOFFSET) 29111 * The address of the first track in the last session of a 29112 * multi-session CD-ROM is returned 29113 * 29114 * Note: This routine uses a vendor specific key value in the 29115 * command control field without implementing any vendor check here 29116 * or in the ioctl routine. 29117 * 29118 * Arguments: dev - the device 'dev_t' 29119 * data - pointer to an int to hold the requested address 29120 * flag - this argument is a pass through to ddi_copyxxx() 29121 * directly from the mode argument of ioctl(). 29122 * 29123 * Return Code: the code returned by sd_send_scsi_cmd() 29124 * EFAULT if ddi_copyxxx() fails 29125 * ENXIO if fail ddi_get_soft_state 29126 * EINVAL if data pointer is NULL 29127 */ 29128 29129 static int 29130 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag) 29131 { 29132 struct sd_lun *un; 29133 struct uscsi_cmd *com; 29134 caddr_t buffer; 29135 char cdb[CDB_GROUP1]; 29136 int session_offset = 0; 29137 int rval; 29138 29139 if (data == NULL) { 29140 return (EINVAL); 29141 } 29142 29143 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 29144 (un->un_state == SD_STATE_OFFLINE)) { 29145 return (ENXIO); 29146 } 29147 29148 buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP); 29149 bzero(cdb, CDB_GROUP1); 29150 cdb[0] = SCMD_READ_TOC; 29151 /* 29152 * Bytes 7 & 8 are the 12 byte allocation length for a single entry. 29153 * (4 byte TOC response header + 8 byte response data) 29154 */ 29155 cdb[8] = SONY_SESSION_OFFSET_LEN; 29156 /* Byte 9 is the control byte. A vendor specific value is used */ 29157 cdb[9] = SONY_SESSION_OFFSET_KEY; 29158 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 29159 com->uscsi_cdb = cdb; 29160 com->uscsi_cdblen = CDB_GROUP1; 29161 com->uscsi_bufaddr = buffer; 29162 com->uscsi_buflen = SONY_SESSION_OFFSET_LEN; 29163 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 29164 29165 rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE, 29166 SD_PATH_STANDARD); 29167 if (rval != 0) { 29168 kmem_free(buffer, SONY_SESSION_OFFSET_LEN); 29169 kmem_free(com, sizeof (*com)); 29170 return (rval); 29171 } 29172 if (buffer[1] == SONY_SESSION_OFFSET_VALID) { 29173 session_offset = 29174 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 29175 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 29176 /* 29177 * Offset returned offset in current lbasize block's. Convert to 29178 * 2k block's to return to the user 29179 */ 29180 if (un->un_tgt_blocksize == CDROM_BLK_512) { 29181 session_offset >>= 2; 29182 } else if (un->un_tgt_blocksize == CDROM_BLK_1024) { 29183 session_offset >>= 1; 29184 } 29185 } 29186 29187 if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) { 29188 rval = EFAULT; 29189 } 29190 29191 kmem_free(buffer, SONY_SESSION_OFFSET_LEN); 29192 kmem_free(com, sizeof (*com)); 29193 return (rval); 29194 } 29195 29196 29197 /* 29198 * Function: sd_wm_cache_constructor() 29199 * 29200 * Description: Cache Constructor for the wmap cache for the read/modify/write 29201 * devices. 29202 * 29203 * Arguments: wm - A pointer to the sd_w_map to be initialized. 29204 * un - sd_lun structure for the device. 29205 * flag - the km flags passed to constructor 29206 * 29207 * Return Code: 0 on success. 29208 * -1 on failure. 29209 */ 29210 29211 /*ARGSUSED*/ 29212 static int 29213 sd_wm_cache_constructor(void *wm, void *un, int flags) 29214 { 29215 bzero(wm, sizeof (struct sd_w_map)); 29216 cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL); 29217 return (0); 29218 } 29219 29220 29221 /* 29222 * Function: sd_wm_cache_destructor() 29223 * 29224 * Description: Cache destructor for the wmap cache for the read/modify/write 29225 * devices. 29226 * 29227 * Arguments: wm - A pointer to the sd_w_map to be initialized. 29228 * un - sd_lun structure for the device. 29229 */ 29230 /*ARGSUSED*/ 29231 static void 29232 sd_wm_cache_destructor(void *wm, void *un) 29233 { 29234 cv_destroy(&((struct sd_w_map *)wm)->wm_avail); 29235 } 29236 29237 29238 /* 29239 * Function: sd_range_lock() 29240 * 29241 * Description: Lock the range of blocks specified as parameter to ensure 29242 * that read, modify write is atomic and no other i/o writes 29243 * to the same location. The range is specified in terms 29244 * of start and end blocks. Block numbers are the actual 29245 * media block numbers and not system. 29246 * 29247 * Arguments: un - sd_lun structure for the device. 29248 * startb - The starting block number 29249 * endb - The end block number 29250 * typ - type of i/o - simple/read_modify_write 29251 * 29252 * Return Code: wm - pointer to the wmap structure. 29253 * 29254 * Context: This routine can sleep. 29255 */ 29256 29257 static struct sd_w_map * 29258 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ) 29259 { 29260 struct sd_w_map *wmp = NULL; 29261 struct sd_w_map *sl_wmp = NULL; 29262 struct sd_w_map *tmp_wmp; 29263 wm_state state = SD_WM_CHK_LIST; 29264 29265 29266 ASSERT(un != NULL); 29267 ASSERT(!mutex_owned(SD_MUTEX(un))); 29268 29269 mutex_enter(SD_MUTEX(un)); 29270 29271 while (state != SD_WM_DONE) { 29272 29273 switch (state) { 29274 case SD_WM_CHK_LIST: 29275 /* 29276 * This is the starting state. Check the wmap list 29277 * to see if the range is currently available. 29278 */ 29279 if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) { 29280 /* 29281 * If this is a simple write and no rmw 29282 * i/o is pending then try to lock the 29283 * range as the range should be available. 29284 */ 29285 state = SD_WM_LOCK_RANGE; 29286 } else { 29287 tmp_wmp = sd_get_range(un, startb, endb); 29288 if (tmp_wmp != NULL) { 29289 if ((wmp != NULL) && ONLIST(un, wmp)) { 29290 /* 29291 * Should not keep onlist wmps 29292 * while waiting this macro 29293 * will also do wmp = NULL; 29294 */ 29295 FREE_ONLIST_WMAP(un, wmp); 29296 } 29297 /* 29298 * sl_wmp is the wmap on which wait 29299 * is done, since the tmp_wmp points 29300 * to the inuse wmap, set sl_wmp to 29301 * tmp_wmp and change the state to sleep 29302 */ 29303 sl_wmp = tmp_wmp; 29304 state = SD_WM_WAIT_MAP; 29305 } else { 29306 state = SD_WM_LOCK_RANGE; 29307 } 29308 29309 } 29310 break; 29311 29312 case SD_WM_LOCK_RANGE: 29313 ASSERT(un->un_wm_cache); 29314 /* 29315 * The range need to be locked, try to get a wmap. 29316 * First attempt it with NO_SLEEP, want to avoid a sleep 29317 * if possible as we will have to release the sd mutex 29318 * if we have to sleep. 29319 */ 29320 if (wmp == NULL) 29321 wmp = kmem_cache_alloc(un->un_wm_cache, 29322 KM_NOSLEEP); 29323 if (wmp == NULL) { 29324 mutex_exit(SD_MUTEX(un)); 29325 _NOTE(DATA_READABLE_WITHOUT_LOCK 29326 (sd_lun::un_wm_cache)) 29327 wmp = kmem_cache_alloc(un->un_wm_cache, 29328 KM_SLEEP); 29329 mutex_enter(SD_MUTEX(un)); 29330 /* 29331 * we released the mutex so recheck and go to 29332 * check list state. 29333 */ 29334 state = SD_WM_CHK_LIST; 29335 } else { 29336 /* 29337 * We exit out of state machine since we 29338 * have the wmap. Do the housekeeping first. 29339 * place the wmap on the wmap list if it is not 29340 * on it already and then set the state to done. 29341 */ 29342 wmp->wm_start = startb; 29343 wmp->wm_end = endb; 29344 wmp->wm_flags = typ | SD_WM_BUSY; 29345 if (typ & SD_WTYPE_RMW) { 29346 un->un_rmw_count++; 29347 } 29348 /* 29349 * If not already on the list then link 29350 */ 29351 if (!ONLIST(un, wmp)) { 29352 wmp->wm_next = un->un_wm; 29353 wmp->wm_prev = NULL; 29354 if (wmp->wm_next) 29355 wmp->wm_next->wm_prev = wmp; 29356 un->un_wm = wmp; 29357 } 29358 state = SD_WM_DONE; 29359 } 29360 break; 29361 29362 case SD_WM_WAIT_MAP: 29363 ASSERT(sl_wmp->wm_flags & SD_WM_BUSY); 29364 /* 29365 * Wait is done on sl_wmp, which is set in the 29366 * check_list state. 29367 */ 29368 sl_wmp->wm_wanted_count++; 29369 cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un)); 29370 sl_wmp->wm_wanted_count--; 29371 /* 29372 * We can reuse the memory from the completed sl_wmp 29373 * lock range for our new lock, but only if noone is 29374 * waiting for it. 29375 */ 29376 ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY)); 29377 if (sl_wmp->wm_wanted_count == 0) { 29378 if (wmp != NULL) 29379 CHK_N_FREEWMP(un, wmp); 29380 wmp = sl_wmp; 29381 } 29382 sl_wmp = NULL; 29383 /* 29384 * After waking up, need to recheck for availability of 29385 * range. 29386 */ 29387 state = SD_WM_CHK_LIST; 29388 break; 29389 29390 default: 29391 panic("sd_range_lock: " 29392 "Unknown state %d in sd_range_lock", state); 29393 /*NOTREACHED*/ 29394 } /* switch(state) */ 29395 29396 } /* while(state != SD_WM_DONE) */ 29397 29398 mutex_exit(SD_MUTEX(un)); 29399 29400 ASSERT(wmp != NULL); 29401 29402 return (wmp); 29403 } 29404 29405 29406 /* 29407 * Function: sd_get_range() 29408 * 29409 * Description: Find if there any overlapping I/O to this one 29410 * Returns the write-map of 1st such I/O, NULL otherwise. 29411 * 29412 * Arguments: un - sd_lun structure for the device. 29413 * startb - The starting block number 29414 * endb - The end block number 29415 * 29416 * Return Code: wm - pointer to the wmap structure. 29417 */ 29418 29419 static struct sd_w_map * 29420 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb) 29421 { 29422 struct sd_w_map *wmp; 29423 29424 ASSERT(un != NULL); 29425 29426 for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) { 29427 if (!(wmp->wm_flags & SD_WM_BUSY)) { 29428 continue; 29429 } 29430 if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) { 29431 break; 29432 } 29433 if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) { 29434 break; 29435 } 29436 } 29437 29438 return (wmp); 29439 } 29440 29441 29442 /* 29443 * Function: sd_free_inlist_wmap() 29444 * 29445 * Description: Unlink and free a write map struct. 29446 * 29447 * Arguments: un - sd_lun structure for the device. 29448 * wmp - sd_w_map which needs to be unlinked. 29449 */ 29450 29451 static void 29452 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp) 29453 { 29454 ASSERT(un != NULL); 29455 29456 if (un->un_wm == wmp) { 29457 un->un_wm = wmp->wm_next; 29458 } else { 29459 wmp->wm_prev->wm_next = wmp->wm_next; 29460 } 29461 29462 if (wmp->wm_next) { 29463 wmp->wm_next->wm_prev = wmp->wm_prev; 29464 } 29465 29466 wmp->wm_next = wmp->wm_prev = NULL; 29467 29468 kmem_cache_free(un->un_wm_cache, wmp); 29469 } 29470 29471 29472 /* 29473 * Function: sd_range_unlock() 29474 * 29475 * Description: Unlock the range locked by wm. 29476 * Free write map if nobody else is waiting on it. 29477 * 29478 * Arguments: un - sd_lun structure for the device. 29479 * wmp - sd_w_map which needs to be unlinked. 29480 */ 29481 29482 static void 29483 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm) 29484 { 29485 ASSERT(un != NULL); 29486 ASSERT(wm != NULL); 29487 ASSERT(!mutex_owned(SD_MUTEX(un))); 29488 29489 mutex_enter(SD_MUTEX(un)); 29490 29491 if (wm->wm_flags & SD_WTYPE_RMW) { 29492 un->un_rmw_count--; 29493 } 29494 29495 if (wm->wm_wanted_count) { 29496 wm->wm_flags = 0; 29497 /* 29498 * Broadcast that the wmap is available now. 29499 */ 29500 cv_broadcast(&wm->wm_avail); 29501 } else { 29502 /* 29503 * If no one is waiting on the map, it should be free'ed. 29504 */ 29505 sd_free_inlist_wmap(un, wm); 29506 } 29507 29508 mutex_exit(SD_MUTEX(un)); 29509 } 29510 29511 29512 /* 29513 * Function: sd_read_modify_write_task 29514 * 29515 * Description: Called from a taskq thread to initiate the write phase of 29516 * a read-modify-write request. This is used for targets where 29517 * un->un_sys_blocksize != un->un_tgt_blocksize. 29518 * 29519 * Arguments: arg - a pointer to the buf(9S) struct for the write command. 29520 * 29521 * Context: Called under taskq thread context. 29522 */ 29523 29524 static void 29525 sd_read_modify_write_task(void *arg) 29526 { 29527 struct sd_mapblocksize_info *bsp; 29528 struct buf *bp; 29529 struct sd_xbuf *xp; 29530 struct sd_lun *un; 29531 29532 bp = arg; /* The bp is given in arg */ 29533 ASSERT(bp != NULL); 29534 29535 /* Get the pointer to the layer-private data struct */ 29536 xp = SD_GET_XBUF(bp); 29537 ASSERT(xp != NULL); 29538 bsp = xp->xb_private; 29539 ASSERT(bsp != NULL); 29540 29541 un = SD_GET_UN(bp); 29542 ASSERT(un != NULL); 29543 ASSERT(!mutex_owned(SD_MUTEX(un))); 29544 29545 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 29546 "sd_read_modify_write_task: entry: buf:0x%p\n", bp); 29547 29548 /* 29549 * This is the write phase of a read-modify-write request, called 29550 * under the context of a taskq thread in response to the completion 29551 * of the read portion of the rmw request completing under interrupt 29552 * context. The write request must be sent from here down the iostart 29553 * chain as if it were being sent from sd_mapblocksize_iostart(), so 29554 * we use the layer index saved in the layer-private data area. 29555 */ 29556 SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp); 29557 29558 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 29559 "sd_read_modify_write_task: exit: buf:0x%p\n", bp); 29560 } 29561 29562 29563 /* 29564 * Function: sddump_do_read_of_rmw() 29565 * 29566 * Description: This routine will be called from sddump, If sddump is called 29567 * with an I/O which not aligned on device blocksize boundary 29568 * then the write has to be converted to read-modify-write. 29569 * Do the read part here in order to keep sddump simple. 29570 * Note - That the sd_mutex is held across the call to this 29571 * routine. 29572 * 29573 * Arguments: un - sd_lun 29574 * blkno - block number in terms of media block size. 29575 * nblk - number of blocks. 29576 * bpp - pointer to pointer to the buf structure. On return 29577 * from this function, *bpp points to the valid buffer 29578 * to which the write has to be done. 29579 * 29580 * Return Code: 0 for success or errno-type return code 29581 */ 29582 29583 static int 29584 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk, 29585 struct buf **bpp) 29586 { 29587 int err; 29588 int i; 29589 int rval; 29590 struct buf *bp; 29591 struct scsi_pkt *pkt = NULL; 29592 uint32_t target_blocksize; 29593 29594 ASSERT(un != NULL); 29595 ASSERT(mutex_owned(SD_MUTEX(un))); 29596 29597 target_blocksize = un->un_tgt_blocksize; 29598 29599 mutex_exit(SD_MUTEX(un)); 29600 29601 bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL, 29602 (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL); 29603 if (bp == NULL) { 29604 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29605 "no resources for dumping; giving up"); 29606 err = ENOMEM; 29607 goto done; 29608 } 29609 29610 rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL, 29611 blkno, nblk); 29612 if (rval != 0) { 29613 scsi_free_consistent_buf(bp); 29614 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29615 "no resources for dumping; giving up"); 29616 err = ENOMEM; 29617 goto done; 29618 } 29619 29620 pkt->pkt_flags |= FLAG_NOINTR; 29621 29622 err = EIO; 29623 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 29624 29625 /* 29626 * Scsi_poll returns 0 (success) if the command completes and 29627 * the status block is STATUS_GOOD. We should only check 29628 * errors if this condition is not true. Even then we should 29629 * send our own request sense packet only if we have a check 29630 * condition and auto request sense has not been performed by 29631 * the hba. 29632 */ 29633 SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n"); 29634 29635 if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) { 29636 err = 0; 29637 break; 29638 } 29639 29640 /* 29641 * Check CMD_DEV_GONE 1st, give up if device is gone, 29642 * no need to read RQS data. 29643 */ 29644 if (pkt->pkt_reason == CMD_DEV_GONE) { 29645 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29646 "Error while dumping state with rmw..." 29647 "Device is gone\n"); 29648 break; 29649 } 29650 29651 if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) { 29652 SD_INFO(SD_LOG_DUMP, un, 29653 "sddump: read failed with CHECK, try # %d\n", i); 29654 if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) { 29655 (void) sd_send_polled_RQS(un); 29656 } 29657 29658 continue; 29659 } 29660 29661 if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) { 29662 int reset_retval = 0; 29663 29664 SD_INFO(SD_LOG_DUMP, un, 29665 "sddump: read failed with BUSY, try # %d\n", i); 29666 29667 if (un->un_f_lun_reset_enabled == TRUE) { 29668 reset_retval = scsi_reset(SD_ADDRESS(un), 29669 RESET_LUN); 29670 } 29671 if (reset_retval == 0) { 29672 (void) scsi_reset(SD_ADDRESS(un), RESET_TARGET); 29673 } 29674 (void) sd_send_polled_RQS(un); 29675 29676 } else { 29677 SD_INFO(SD_LOG_DUMP, un, 29678 "sddump: read failed with 0x%x, try # %d\n", 29679 SD_GET_PKT_STATUS(pkt), i); 29680 mutex_enter(SD_MUTEX(un)); 29681 sd_reset_target(un, pkt); 29682 mutex_exit(SD_MUTEX(un)); 29683 } 29684 29685 /* 29686 * If we are not getting anywhere with lun/target resets, 29687 * let's reset the bus. 29688 */ 29689 if (i > SD_NDUMP_RETRIES/2) { 29690 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 29691 (void) sd_send_polled_RQS(un); 29692 } 29693 29694 } 29695 scsi_destroy_pkt(pkt); 29696 29697 if (err != 0) { 29698 scsi_free_consistent_buf(bp); 29699 *bpp = NULL; 29700 } else { 29701 *bpp = bp; 29702 } 29703 29704 done: 29705 mutex_enter(SD_MUTEX(un)); 29706 return (err); 29707 } 29708 29709 29710 /* 29711 * Function: sd_failfast_flushq 29712 * 29713 * Description: Take all bp's on the wait queue that have B_FAILFAST set 29714 * in b_flags and move them onto the failfast queue, then kick 29715 * off a thread to return all bp's on the failfast queue to 29716 * their owners with an error set. 29717 * 29718 * Arguments: un - pointer to the soft state struct for the instance. 29719 * 29720 * Context: may execute in interrupt context. 29721 */ 29722 29723 static void 29724 sd_failfast_flushq(struct sd_lun *un) 29725 { 29726 struct buf *bp; 29727 struct buf *next_waitq_bp; 29728 struct buf *prev_waitq_bp = NULL; 29729 29730 ASSERT(un != NULL); 29731 ASSERT(mutex_owned(SD_MUTEX(un))); 29732 ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE); 29733 ASSERT(un->un_failfast_bp == NULL); 29734 29735 SD_TRACE(SD_LOG_IO_FAILFAST, un, 29736 "sd_failfast_flushq: entry: un:0x%p\n", un); 29737 29738 /* 29739 * Check if we should flush all bufs when entering failfast state, or 29740 * just those with B_FAILFAST set. 29741 */ 29742 if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) { 29743 /* 29744 * Move *all* bp's on the wait queue to the failfast flush 29745 * queue, including those that do NOT have B_FAILFAST set. 29746 */ 29747 if (un->un_failfast_headp == NULL) { 29748 ASSERT(un->un_failfast_tailp == NULL); 29749 un->un_failfast_headp = un->un_waitq_headp; 29750 } else { 29751 ASSERT(un->un_failfast_tailp != NULL); 29752 un->un_failfast_tailp->av_forw = un->un_waitq_headp; 29753 } 29754 29755 un->un_failfast_tailp = un->un_waitq_tailp; 29756 29757 /* update kstat for each bp moved out of the waitq */ 29758 for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) { 29759 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 29760 } 29761 29762 /* empty the waitq */ 29763 un->un_waitq_headp = un->un_waitq_tailp = NULL; 29764 29765 } else { 29766 /* 29767 * Go thru the wait queue, pick off all entries with 29768 * B_FAILFAST set, and move these onto the failfast queue. 29769 */ 29770 for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) { 29771 /* 29772 * Save the pointer to the next bp on the wait queue, 29773 * so we get to it on the next iteration of this loop. 29774 */ 29775 next_waitq_bp = bp->av_forw; 29776 29777 /* 29778 * If this bp from the wait queue does NOT have 29779 * B_FAILFAST set, just move on to the next element 29780 * in the wait queue. Note, this is the only place 29781 * where it is correct to set prev_waitq_bp. 29782 */ 29783 if ((bp->b_flags & B_FAILFAST) == 0) { 29784 prev_waitq_bp = bp; 29785 continue; 29786 } 29787 29788 /* 29789 * Remove the bp from the wait queue. 29790 */ 29791 if (bp == un->un_waitq_headp) { 29792 /* The bp is the first element of the waitq. */ 29793 un->un_waitq_headp = next_waitq_bp; 29794 if (un->un_waitq_headp == NULL) { 29795 /* The wait queue is now empty */ 29796 un->un_waitq_tailp = NULL; 29797 } 29798 } else { 29799 /* 29800 * The bp is either somewhere in the middle 29801 * or at the end of the wait queue. 29802 */ 29803 ASSERT(un->un_waitq_headp != NULL); 29804 ASSERT(prev_waitq_bp != NULL); 29805 ASSERT((prev_waitq_bp->b_flags & B_FAILFAST) 29806 == 0); 29807 if (bp == un->un_waitq_tailp) { 29808 /* bp is the last entry on the waitq. */ 29809 ASSERT(next_waitq_bp == NULL); 29810 un->un_waitq_tailp = prev_waitq_bp; 29811 } 29812 prev_waitq_bp->av_forw = next_waitq_bp; 29813 } 29814 bp->av_forw = NULL; 29815 29816 /* 29817 * update kstat since the bp is moved out of 29818 * the waitq 29819 */ 29820 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 29821 29822 /* 29823 * Now put the bp onto the failfast queue. 29824 */ 29825 if (un->un_failfast_headp == NULL) { 29826 /* failfast queue is currently empty */ 29827 ASSERT(un->un_failfast_tailp == NULL); 29828 un->un_failfast_headp = 29829 un->un_failfast_tailp = bp; 29830 } else { 29831 /* Add the bp to the end of the failfast q */ 29832 ASSERT(un->un_failfast_tailp != NULL); 29833 ASSERT(un->un_failfast_tailp->b_flags & 29834 B_FAILFAST); 29835 un->un_failfast_tailp->av_forw = bp; 29836 un->un_failfast_tailp = bp; 29837 } 29838 } 29839 } 29840 29841 /* 29842 * Now return all bp's on the failfast queue to their owners. 29843 */ 29844 while ((bp = un->un_failfast_headp) != NULL) { 29845 29846 un->un_failfast_headp = bp->av_forw; 29847 if (un->un_failfast_headp == NULL) { 29848 un->un_failfast_tailp = NULL; 29849 } 29850 29851 /* 29852 * We want to return the bp with a failure error code, but 29853 * we do not want a call to sd_start_cmds() to occur here, 29854 * so use sd_return_failed_command_no_restart() instead of 29855 * sd_return_failed_command(). 29856 */ 29857 sd_return_failed_command_no_restart(un, bp, EIO); 29858 } 29859 29860 /* Flush the xbuf queues if required. */ 29861 if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) { 29862 ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback); 29863 } 29864 29865 SD_TRACE(SD_LOG_IO_FAILFAST, un, 29866 "sd_failfast_flushq: exit: un:0x%p\n", un); 29867 } 29868 29869 29870 /* 29871 * Function: sd_failfast_flushq_callback 29872 * 29873 * Description: Return TRUE if the given bp meets the criteria for failfast 29874 * flushing. Used with ddi_xbuf_flushq(9F). 29875 * 29876 * Arguments: bp - ptr to buf struct to be examined. 29877 * 29878 * Context: Any 29879 */ 29880 29881 static int 29882 sd_failfast_flushq_callback(struct buf *bp) 29883 { 29884 /* 29885 * Return TRUE if (1) we want to flush ALL bufs when the failfast 29886 * state is entered; OR (2) the given bp has B_FAILFAST set. 29887 */ 29888 return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) || 29889 (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE); 29890 } 29891 29892 29893 29894 /* 29895 * Function: sd_setup_next_xfer 29896 * 29897 * Description: Prepare next I/O operation using DMA_PARTIAL 29898 * 29899 */ 29900 29901 static int 29902 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp, 29903 struct scsi_pkt *pkt, struct sd_xbuf *xp) 29904 { 29905 ssize_t num_blks_not_xfered; 29906 daddr_t strt_blk_num; 29907 ssize_t bytes_not_xfered; 29908 int rval; 29909 29910 ASSERT(pkt->pkt_resid == 0); 29911 29912 /* 29913 * Calculate next block number and amount to be transferred. 29914 * 29915 * How much data NOT transfered to the HBA yet. 29916 */ 29917 bytes_not_xfered = xp->xb_dma_resid; 29918 29919 /* 29920 * figure how many blocks NOT transfered to the HBA yet. 29921 */ 29922 num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered); 29923 29924 /* 29925 * set starting block number to the end of what WAS transfered. 29926 */ 29927 strt_blk_num = xp->xb_blkno + 29928 SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered); 29929 29930 /* 29931 * Move pkt to the next portion of the xfer. sd_setup_next_rw_pkt 29932 * will call scsi_initpkt with NULL_FUNC so we do not have to release 29933 * the disk mutex here. 29934 */ 29935 rval = sd_setup_next_rw_pkt(un, pkt, bp, 29936 strt_blk_num, num_blks_not_xfered); 29937 29938 if (rval == 0) { 29939 29940 /* 29941 * Success. 29942 * 29943 * Adjust things if there are still more blocks to be 29944 * transfered. 29945 */ 29946 xp->xb_dma_resid = pkt->pkt_resid; 29947 pkt->pkt_resid = 0; 29948 29949 return (1); 29950 } 29951 29952 /* 29953 * There's really only one possible return value from 29954 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt 29955 * returns NULL. 29956 */ 29957 ASSERT(rval == SD_PKT_ALLOC_FAILURE); 29958 29959 bp->b_resid = bp->b_bcount; 29960 bp->b_flags |= B_ERROR; 29961 29962 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29963 "Error setting up next portion of DMA transfer\n"); 29964 29965 return (0); 29966 } 29967 29968 /* 29969 * Function: sd_panic_for_res_conflict 29970 * 29971 * Description: Call panic with a string formatted with "Reservation Conflict" 29972 * and a human readable identifier indicating the SD instance 29973 * that experienced the reservation conflict. 29974 * 29975 * Arguments: un - pointer to the soft state struct for the instance. 29976 * 29977 * Context: may execute in interrupt context. 29978 */ 29979 29980 #define SD_RESV_CONFLICT_FMT_LEN 40 29981 void 29982 sd_panic_for_res_conflict(struct sd_lun *un) 29983 { 29984 char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN]; 29985 char path_str[MAXPATHLEN]; 29986 29987 (void) snprintf(panic_str, sizeof (panic_str), 29988 "Reservation Conflict\nDisk: %s", 29989 ddi_pathname(SD_DEVINFO(un), path_str)); 29990 29991 panic(panic_str); 29992 } 29993 29994 /* 29995 * Note: The following sd_faultinjection_ioctl( ) routines implement 29996 * driver support for handling fault injection for error analysis 29997 * causing faults in multiple layers of the driver. 29998 * 29999 */ 30000 30001 #ifdef SD_FAULT_INJECTION 30002 static uint_t sd_fault_injection_on = 0; 30003 30004 /* 30005 * Function: sd_faultinjection_ioctl() 30006 * 30007 * Description: This routine is the driver entry point for handling 30008 * faultinjection ioctls to inject errors into the 30009 * layer model 30010 * 30011 * Arguments: cmd - the ioctl cmd received 30012 * arg - the arguments from user and returns 30013 */ 30014 30015 static void 30016 sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un) { 30017 30018 uint_t i = 0; 30019 uint_t rval; 30020 30021 SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n"); 30022 30023 mutex_enter(SD_MUTEX(un)); 30024 30025 switch (cmd) { 30026 case SDIOCRUN: 30027 /* Allow pushed faults to be injected */ 30028 SD_INFO(SD_LOG_SDTEST, un, 30029 "sd_faultinjection_ioctl: Injecting Fault Run\n"); 30030 30031 sd_fault_injection_on = 1; 30032 30033 SD_INFO(SD_LOG_IOERR, un, 30034 "sd_faultinjection_ioctl: run finished\n"); 30035 break; 30036 30037 case SDIOCSTART: 30038 /* Start Injection Session */ 30039 SD_INFO(SD_LOG_SDTEST, un, 30040 "sd_faultinjection_ioctl: Injecting Fault Start\n"); 30041 30042 sd_fault_injection_on = 0; 30043 un->sd_injection_mask = 0xFFFFFFFF; 30044 for (i = 0; i < SD_FI_MAX_ERROR; i++) { 30045 un->sd_fi_fifo_pkt[i] = NULL; 30046 un->sd_fi_fifo_xb[i] = NULL; 30047 un->sd_fi_fifo_un[i] = NULL; 30048 un->sd_fi_fifo_arq[i] = NULL; 30049 } 30050 un->sd_fi_fifo_start = 0; 30051 un->sd_fi_fifo_end = 0; 30052 30053 mutex_enter(&(un->un_fi_mutex)); 30054 un->sd_fi_log[0] = '\0'; 30055 un->sd_fi_buf_len = 0; 30056 mutex_exit(&(un->un_fi_mutex)); 30057 30058 SD_INFO(SD_LOG_IOERR, un, 30059 "sd_faultinjection_ioctl: start finished\n"); 30060 break; 30061 30062 case SDIOCSTOP: 30063 /* Stop Injection Session */ 30064 SD_INFO(SD_LOG_SDTEST, un, 30065 "sd_faultinjection_ioctl: Injecting Fault Stop\n"); 30066 sd_fault_injection_on = 0; 30067 un->sd_injection_mask = 0x0; 30068 30069 /* Empty stray or unuseds structs from fifo */ 30070 for (i = 0; i < SD_FI_MAX_ERROR; i++) { 30071 if (un->sd_fi_fifo_pkt[i] != NULL) { 30072 kmem_free(un->sd_fi_fifo_pkt[i], 30073 sizeof (struct sd_fi_pkt)); 30074 } 30075 if (un->sd_fi_fifo_xb[i] != NULL) { 30076 kmem_free(un->sd_fi_fifo_xb[i], 30077 sizeof (struct sd_fi_xb)); 30078 } 30079 if (un->sd_fi_fifo_un[i] != NULL) { 30080 kmem_free(un->sd_fi_fifo_un[i], 30081 sizeof (struct sd_fi_un)); 30082 } 30083 if (un->sd_fi_fifo_arq[i] != NULL) { 30084 kmem_free(un->sd_fi_fifo_arq[i], 30085 sizeof (struct sd_fi_arq)); 30086 } 30087 un->sd_fi_fifo_pkt[i] = NULL; 30088 un->sd_fi_fifo_un[i] = NULL; 30089 un->sd_fi_fifo_xb[i] = NULL; 30090 un->sd_fi_fifo_arq[i] = NULL; 30091 } 30092 un->sd_fi_fifo_start = 0; 30093 un->sd_fi_fifo_end = 0; 30094 30095 SD_INFO(SD_LOG_IOERR, un, 30096 "sd_faultinjection_ioctl: stop finished\n"); 30097 break; 30098 30099 case SDIOCINSERTPKT: 30100 /* Store a packet struct to be pushed onto fifo */ 30101 SD_INFO(SD_LOG_SDTEST, un, 30102 "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n"); 30103 30104 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30105 30106 sd_fault_injection_on = 0; 30107 30108 /* No more that SD_FI_MAX_ERROR allowed in Queue */ 30109 if (un->sd_fi_fifo_pkt[i] != NULL) { 30110 kmem_free(un->sd_fi_fifo_pkt[i], 30111 sizeof (struct sd_fi_pkt)); 30112 } 30113 if (arg != NULL) { 30114 un->sd_fi_fifo_pkt[i] = 30115 kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP); 30116 if (un->sd_fi_fifo_pkt[i] == NULL) { 30117 /* Alloc failed don't store anything */ 30118 break; 30119 } 30120 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i], 30121 sizeof (struct sd_fi_pkt), 0); 30122 if (rval == -1) { 30123 kmem_free(un->sd_fi_fifo_pkt[i], 30124 sizeof (struct sd_fi_pkt)); 30125 un->sd_fi_fifo_pkt[i] = NULL; 30126 } 30127 } else { 30128 SD_INFO(SD_LOG_IOERR, un, 30129 "sd_faultinjection_ioctl: pkt null\n"); 30130 } 30131 break; 30132 30133 case SDIOCINSERTXB: 30134 /* Store a xb struct to be pushed onto fifo */ 30135 SD_INFO(SD_LOG_SDTEST, un, 30136 "sd_faultinjection_ioctl: Injecting Fault Insert XB\n"); 30137 30138 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30139 30140 sd_fault_injection_on = 0; 30141 30142 if (un->sd_fi_fifo_xb[i] != NULL) { 30143 kmem_free(un->sd_fi_fifo_xb[i], 30144 sizeof (struct sd_fi_xb)); 30145 un->sd_fi_fifo_xb[i] = NULL; 30146 } 30147 if (arg != NULL) { 30148 un->sd_fi_fifo_xb[i] = 30149 kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP); 30150 if (un->sd_fi_fifo_xb[i] == NULL) { 30151 /* Alloc failed don't store anything */ 30152 break; 30153 } 30154 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i], 30155 sizeof (struct sd_fi_xb), 0); 30156 30157 if (rval == -1) { 30158 kmem_free(un->sd_fi_fifo_xb[i], 30159 sizeof (struct sd_fi_xb)); 30160 un->sd_fi_fifo_xb[i] = NULL; 30161 } 30162 } else { 30163 SD_INFO(SD_LOG_IOERR, un, 30164 "sd_faultinjection_ioctl: xb null\n"); 30165 } 30166 break; 30167 30168 case SDIOCINSERTUN: 30169 /* Store a un struct to be pushed onto fifo */ 30170 SD_INFO(SD_LOG_SDTEST, un, 30171 "sd_faultinjection_ioctl: Injecting Fault Insert UN\n"); 30172 30173 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30174 30175 sd_fault_injection_on = 0; 30176 30177 if (un->sd_fi_fifo_un[i] != NULL) { 30178 kmem_free(un->sd_fi_fifo_un[i], 30179 sizeof (struct sd_fi_un)); 30180 un->sd_fi_fifo_un[i] = NULL; 30181 } 30182 if (arg != NULL) { 30183 un->sd_fi_fifo_un[i] = 30184 kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP); 30185 if (un->sd_fi_fifo_un[i] == NULL) { 30186 /* Alloc failed don't store anything */ 30187 break; 30188 } 30189 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i], 30190 sizeof (struct sd_fi_un), 0); 30191 if (rval == -1) { 30192 kmem_free(un->sd_fi_fifo_un[i], 30193 sizeof (struct sd_fi_un)); 30194 un->sd_fi_fifo_un[i] = NULL; 30195 } 30196 30197 } else { 30198 SD_INFO(SD_LOG_IOERR, un, 30199 "sd_faultinjection_ioctl: un null\n"); 30200 } 30201 30202 break; 30203 30204 case SDIOCINSERTARQ: 30205 /* Store a arq struct to be pushed onto fifo */ 30206 SD_INFO(SD_LOG_SDTEST, un, 30207 "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n"); 30208 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30209 30210 sd_fault_injection_on = 0; 30211 30212 if (un->sd_fi_fifo_arq[i] != NULL) { 30213 kmem_free(un->sd_fi_fifo_arq[i], 30214 sizeof (struct sd_fi_arq)); 30215 un->sd_fi_fifo_arq[i] = NULL; 30216 } 30217 if (arg != NULL) { 30218 un->sd_fi_fifo_arq[i] = 30219 kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP); 30220 if (un->sd_fi_fifo_arq[i] == NULL) { 30221 /* Alloc failed don't store anything */ 30222 break; 30223 } 30224 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i], 30225 sizeof (struct sd_fi_arq), 0); 30226 if (rval == -1) { 30227 kmem_free(un->sd_fi_fifo_arq[i], 30228 sizeof (struct sd_fi_arq)); 30229 un->sd_fi_fifo_arq[i] = NULL; 30230 } 30231 30232 } else { 30233 SD_INFO(SD_LOG_IOERR, un, 30234 "sd_faultinjection_ioctl: arq null\n"); 30235 } 30236 30237 break; 30238 30239 case SDIOCPUSH: 30240 /* Push stored xb, pkt, un, and arq onto fifo */ 30241 sd_fault_injection_on = 0; 30242 30243 if (arg != NULL) { 30244 rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0); 30245 if (rval != -1 && 30246 un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) { 30247 un->sd_fi_fifo_end += i; 30248 } 30249 } else { 30250 SD_INFO(SD_LOG_IOERR, un, 30251 "sd_faultinjection_ioctl: push arg null\n"); 30252 if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) { 30253 un->sd_fi_fifo_end++; 30254 } 30255 } 30256 SD_INFO(SD_LOG_IOERR, un, 30257 "sd_faultinjection_ioctl: push to end=%d\n", 30258 un->sd_fi_fifo_end); 30259 break; 30260 30261 case SDIOCRETRIEVE: 30262 /* Return buffer of log from Injection session */ 30263 SD_INFO(SD_LOG_SDTEST, un, 30264 "sd_faultinjection_ioctl: Injecting Fault Retreive"); 30265 30266 sd_fault_injection_on = 0; 30267 30268 mutex_enter(&(un->un_fi_mutex)); 30269 rval = ddi_copyout(un->sd_fi_log, (void *)arg, 30270 un->sd_fi_buf_len+1, 0); 30271 mutex_exit(&(un->un_fi_mutex)); 30272 30273 if (rval == -1) { 30274 /* 30275 * arg is possibly invalid setting 30276 * it to NULL for return 30277 */ 30278 arg = NULL; 30279 } 30280 break; 30281 } 30282 30283 mutex_exit(SD_MUTEX(un)); 30284 SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:" 30285 " exit\n"); 30286 } 30287 30288 30289 /* 30290 * Function: sd_injection_log() 30291 * 30292 * Description: This routine adds buff to the already existing injection log 30293 * for retrieval via faultinjection_ioctl for use in fault 30294 * detection and recovery 30295 * 30296 * Arguments: buf - the string to add to the log 30297 */ 30298 30299 static void 30300 sd_injection_log(char *buf, struct sd_lun *un) 30301 { 30302 uint_t len; 30303 30304 ASSERT(un != NULL); 30305 ASSERT(buf != NULL); 30306 30307 mutex_enter(&(un->un_fi_mutex)); 30308 30309 len = min(strlen(buf), 255); 30310 /* Add logged value to Injection log to be returned later */ 30311 if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) { 30312 uint_t offset = strlen((char *)un->sd_fi_log); 30313 char *destp = (char *)un->sd_fi_log + offset; 30314 int i; 30315 for (i = 0; i < len; i++) { 30316 *destp++ = *buf++; 30317 } 30318 un->sd_fi_buf_len += len; 30319 un->sd_fi_log[un->sd_fi_buf_len] = '\0'; 30320 } 30321 30322 mutex_exit(&(un->un_fi_mutex)); 30323 } 30324 30325 30326 /* 30327 * Function: sd_faultinjection() 30328 * 30329 * Description: This routine takes the pkt and changes its 30330 * content based on error injection scenerio. 30331 * 30332 * Arguments: pktp - packet to be changed 30333 */ 30334 30335 static void 30336 sd_faultinjection(struct scsi_pkt *pktp) 30337 { 30338 uint_t i; 30339 struct sd_fi_pkt *fi_pkt; 30340 struct sd_fi_xb *fi_xb; 30341 struct sd_fi_un *fi_un; 30342 struct sd_fi_arq *fi_arq; 30343 struct buf *bp; 30344 struct sd_xbuf *xb; 30345 struct sd_lun *un; 30346 30347 ASSERT(pktp != NULL); 30348 30349 /* pull bp xb and un from pktp */ 30350 bp = (struct buf *)pktp->pkt_private; 30351 xb = SD_GET_XBUF(bp); 30352 un = SD_GET_UN(bp); 30353 30354 ASSERT(un != NULL); 30355 30356 mutex_enter(SD_MUTEX(un)); 30357 30358 SD_TRACE(SD_LOG_SDTEST, un, 30359 "sd_faultinjection: entry Injection from sdintr\n"); 30360 30361 /* if injection is off return */ 30362 if (sd_fault_injection_on == 0 || 30363 un->sd_fi_fifo_start == un->sd_fi_fifo_end) { 30364 mutex_exit(SD_MUTEX(un)); 30365 return; 30366 } 30367 30368 SD_INFO(SD_LOG_SDTEST, un, 30369 "sd_faultinjection: is working for copying\n"); 30370 30371 /* take next set off fifo */ 30372 i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR; 30373 30374 fi_pkt = un->sd_fi_fifo_pkt[i]; 30375 fi_xb = un->sd_fi_fifo_xb[i]; 30376 fi_un = un->sd_fi_fifo_un[i]; 30377 fi_arq = un->sd_fi_fifo_arq[i]; 30378 30379 30380 /* set variables accordingly */ 30381 /* set pkt if it was on fifo */ 30382 if (fi_pkt != NULL) { 30383 SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags"); 30384 SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp"); 30385 if (fi_pkt->pkt_cdbp != 0xff) 30386 SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp"); 30387 SD_CONDSET(pktp, pkt, pkt_state, "pkt_state"); 30388 SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics"); 30389 SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason"); 30390 30391 } 30392 /* set xb if it was on fifo */ 30393 if (fi_xb != NULL) { 30394 SD_CONDSET(xb, xb, xb_blkno, "xb_blkno"); 30395 SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid"); 30396 if (fi_xb->xb_retry_count != 0) 30397 SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count"); 30398 SD_CONDSET(xb, xb, xb_victim_retry_count, 30399 "xb_victim_retry_count"); 30400 SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status"); 30401 SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state"); 30402 SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid"); 30403 30404 /* copy in block data from sense */ 30405 /* 30406 * if (fi_xb->xb_sense_data[0] != -1) { 30407 * bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, 30408 * SENSE_LENGTH); 30409 * } 30410 */ 30411 bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, SENSE_LENGTH); 30412 30413 /* copy in extended sense codes */ 30414 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data), 30415 xb, es_code, "es_code"); 30416 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data), 30417 xb, es_key, "es_key"); 30418 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data), 30419 xb, es_add_code, "es_add_code"); 30420 SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data), 30421 xb, es_qual_code, "es_qual_code"); 30422 struct scsi_extended_sense *esp; 30423 esp = (struct scsi_extended_sense *)xb->xb_sense_data; 30424 esp->es_class = CLASS_EXTENDED_SENSE; 30425 } 30426 30427 /* set un if it was on fifo */ 30428 if (fi_un != NULL) { 30429 SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb"); 30430 SD_CONDSET(un, un, un_ctype, "un_ctype"); 30431 SD_CONDSET(un, un, un_reset_retry_count, 30432 "un_reset_retry_count"); 30433 SD_CONDSET(un, un, un_reservation_type, "un_reservation_type"); 30434 SD_CONDSET(un, un, un_resvd_status, "un_resvd_status"); 30435 SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled"); 30436 SD_CONDSET(un, un, un_f_allow_bus_device_reset, 30437 "un_f_allow_bus_device_reset"); 30438 SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing"); 30439 30440 } 30441 30442 /* copy in auto request sense if it was on fifo */ 30443 if (fi_arq != NULL) { 30444 bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq)); 30445 } 30446 30447 /* free structs */ 30448 if (un->sd_fi_fifo_pkt[i] != NULL) { 30449 kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt)); 30450 } 30451 if (un->sd_fi_fifo_xb[i] != NULL) { 30452 kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb)); 30453 } 30454 if (un->sd_fi_fifo_un[i] != NULL) { 30455 kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un)); 30456 } 30457 if (un->sd_fi_fifo_arq[i] != NULL) { 30458 kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq)); 30459 } 30460 30461 /* 30462 * kmem_free does not gurantee to set to NULL 30463 * since we uses these to determine if we set 30464 * values or not lets confirm they are always 30465 * NULL after free 30466 */ 30467 un->sd_fi_fifo_pkt[i] = NULL; 30468 un->sd_fi_fifo_un[i] = NULL; 30469 un->sd_fi_fifo_xb[i] = NULL; 30470 un->sd_fi_fifo_arq[i] = NULL; 30471 30472 un->sd_fi_fifo_start++; 30473 30474 mutex_exit(SD_MUTEX(un)); 30475 30476 SD_INFO(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n"); 30477 } 30478 30479 #endif /* SD_FAULT_INJECTION */ 30480 30481 /* 30482 * This routine is invoked in sd_unit_attach(). Before calling it, the 30483 * properties in conf file should be processed already, and "hotpluggable" 30484 * property was processed also. 30485 * 30486 * The sd driver distinguishes 3 different type of devices: removable media, 30487 * non-removable media, and hotpluggable. Below the differences are defined: 30488 * 30489 * 1. Device ID 30490 * 30491 * The device ID of a device is used to identify this device. Refer to 30492 * ddi_devid_register(9F). 30493 * 30494 * For a non-removable media disk device which can provide 0x80 or 0x83 30495 * VPD page (refer to INQUIRY command of SCSI SPC specification), a unique 30496 * device ID is created to identify this device. For other non-removable 30497 * media devices, a default device ID is created only if this device has 30498 * at least 2 alter cylinders. Otherwise, this device has no devid. 30499 * 30500 * ------------------------------------------------------- 30501 * removable media hotpluggable | Can Have Device ID 30502 * ------------------------------------------------------- 30503 * false false | Yes 30504 * false true | Yes 30505 * true x | No 30506 * ------------------------------------------------------ 30507 * 30508 * 30509 * 2. SCSI group 4 commands 30510 * 30511 * In SCSI specs, only some commands in group 4 command set can use 30512 * 8-byte addresses that can be used to access >2TB storage spaces. 30513 * Other commands have no such capability. Without supporting group4, 30514 * it is impossible to make full use of storage spaces of a disk with 30515 * capacity larger than 2TB. 30516 * 30517 * ----------------------------------------------- 30518 * removable media hotpluggable LP64 | Group 30519 * ----------------------------------------------- 30520 * false false false | 1 30521 * false false true | 4 30522 * false true false | 1 30523 * false true true | 4 30524 * true x x | 5 30525 * ----------------------------------------------- 30526 * 30527 * 30528 * 3. Check for VTOC Label 30529 * 30530 * If a direct-access disk has no EFI label, sd will check if it has a 30531 * valid VTOC label. Now, sd also does that check for removable media 30532 * and hotpluggable devices. 30533 * 30534 * -------------------------------------------------------------- 30535 * Direct-Access removable media hotpluggable | Check Label 30536 * ------------------------------------------------------------- 30537 * false false false | No 30538 * false false true | No 30539 * false true false | Yes 30540 * false true true | Yes 30541 * true x x | Yes 30542 * -------------------------------------------------------------- 30543 * 30544 * 30545 * 4. Building default VTOC label 30546 * 30547 * As section 3 says, sd checks if some kinds of devices have VTOC label. 30548 * If those devices have no valid VTOC label, sd(7d) will attempt to 30549 * create default VTOC for them. Currently sd creates default VTOC label 30550 * for all devices on x86 platform (VTOC_16), but only for removable 30551 * media devices on SPARC (VTOC_8). 30552 * 30553 * ----------------------------------------------------------- 30554 * removable media hotpluggable platform | Default Label 30555 * ----------------------------------------------------------- 30556 * false false sparc | No 30557 * false true x86 | Yes 30558 * false true sparc | Yes 30559 * true x x | Yes 30560 * ---------------------------------------------------------- 30561 * 30562 * 30563 * 5. Supported blocksizes of target devices 30564 * 30565 * Sd supports non-512-byte blocksize for removable media devices only. 30566 * For other devices, only 512-byte blocksize is supported. This may be 30567 * changed in near future because some RAID devices require non-512-byte 30568 * blocksize 30569 * 30570 * ----------------------------------------------------------- 30571 * removable media hotpluggable | non-512-byte blocksize 30572 * ----------------------------------------------------------- 30573 * false false | No 30574 * false true | No 30575 * true x | Yes 30576 * ----------------------------------------------------------- 30577 * 30578 * 30579 * 6. Automatic mount & unmount 30580 * 30581 * Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query 30582 * if a device is removable media device. It return 1 for removable media 30583 * devices, and 0 for others. 30584 * 30585 * The automatic mounting subsystem should distinguish between the types 30586 * of devices and apply automounting policies to each. 30587 * 30588 * 30589 * 7. fdisk partition management 30590 * 30591 * Fdisk is traditional partition method on x86 platform. Sd(7d) driver 30592 * just supports fdisk partitions on x86 platform. On sparc platform, sd 30593 * doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize 30594 * fdisk partitions on both x86 and SPARC platform. 30595 * 30596 * ----------------------------------------------------------- 30597 * platform removable media USB/1394 | fdisk supported 30598 * ----------------------------------------------------------- 30599 * x86 X X | true 30600 * ------------------------------------------------------------ 30601 * sparc X X | false 30602 * ------------------------------------------------------------ 30603 * 30604 * 30605 * 8. MBOOT/MBR 30606 * 30607 * Although sd(7d) doesn't support fdisk on SPARC platform, it does support 30608 * read/write mboot for removable media devices on sparc platform. 30609 * 30610 * ----------------------------------------------------------- 30611 * platform removable media USB/1394 | mboot supported 30612 * ----------------------------------------------------------- 30613 * x86 X X | true 30614 * ------------------------------------------------------------ 30615 * sparc false false | false 30616 * sparc false true | true 30617 * sparc true false | true 30618 * sparc true true | true 30619 * ------------------------------------------------------------ 30620 * 30621 * 30622 * 9. error handling during opening device 30623 * 30624 * If failed to open a disk device, an errno is returned. For some kinds 30625 * of errors, different errno is returned depending on if this device is 30626 * a removable media device. This brings USB/1394 hard disks in line with 30627 * expected hard disk behavior. It is not expected that this breaks any 30628 * application. 30629 * 30630 * ------------------------------------------------------ 30631 * removable media hotpluggable | errno 30632 * ------------------------------------------------------ 30633 * false false | EIO 30634 * false true | EIO 30635 * true x | ENXIO 30636 * ------------------------------------------------------ 30637 * 30638 * 30639 * 11. ioctls: DKIOCEJECT, CDROMEJECT 30640 * 30641 * These IOCTLs are applicable only to removable media devices. 30642 * 30643 * ----------------------------------------------------------- 30644 * removable media hotpluggable |DKIOCEJECT, CDROMEJECT 30645 * ----------------------------------------------------------- 30646 * false false | No 30647 * false true | No 30648 * true x | Yes 30649 * ----------------------------------------------------------- 30650 * 30651 * 30652 * 12. Kstats for partitions 30653 * 30654 * sd creates partition kstat for non-removable media devices. USB and 30655 * Firewire hard disks now have partition kstats 30656 * 30657 * ------------------------------------------------------ 30658 * removable media hotpluggable | kstat 30659 * ------------------------------------------------------ 30660 * false false | Yes 30661 * false true | Yes 30662 * true x | No 30663 * ------------------------------------------------------ 30664 * 30665 * 30666 * 13. Removable media & hotpluggable properties 30667 * 30668 * Sd driver creates a "removable-media" property for removable media 30669 * devices. Parent nexus drivers create a "hotpluggable" property if 30670 * it supports hotplugging. 30671 * 30672 * --------------------------------------------------------------------- 30673 * removable media hotpluggable | "removable-media" " hotpluggable" 30674 * --------------------------------------------------------------------- 30675 * false false | No No 30676 * false true | No Yes 30677 * true false | Yes No 30678 * true true | Yes Yes 30679 * --------------------------------------------------------------------- 30680 * 30681 * 30682 * 14. Power Management 30683 * 30684 * sd only power manages removable media devices or devices that support 30685 * LOG_SENSE or have a "pm-capable" property (PSARC/2002/250) 30686 * 30687 * A parent nexus that supports hotplugging can also set "pm-capable" 30688 * if the disk can be power managed. 30689 * 30690 * ------------------------------------------------------------ 30691 * removable media hotpluggable pm-capable | power manage 30692 * ------------------------------------------------------------ 30693 * false false false | No 30694 * false false true | Yes 30695 * false true false | No 30696 * false true true | Yes 30697 * true x x | Yes 30698 * ------------------------------------------------------------ 30699 * 30700 * USB and firewire hard disks can now be power managed independently 30701 * of the framebuffer 30702 * 30703 * 30704 * 15. Support for USB disks with capacity larger than 1TB 30705 * 30706 * Currently, sd doesn't permit a fixed disk device with capacity 30707 * larger than 1TB to be used in a 32-bit operating system environment. 30708 * However, sd doesn't do that for removable media devices. Instead, it 30709 * assumes that removable media devices cannot have a capacity larger 30710 * than 1TB. Therefore, using those devices on 32-bit system is partially 30711 * supported, which can cause some unexpected results. 30712 * 30713 * --------------------------------------------------------------------- 30714 * removable media USB/1394 | Capacity > 1TB | Used in 32-bit env 30715 * --------------------------------------------------------------------- 30716 * false false | true | no 30717 * false true | true | no 30718 * true false | true | Yes 30719 * true true | true | Yes 30720 * --------------------------------------------------------------------- 30721 * 30722 * 30723 * 16. Check write-protection at open time 30724 * 30725 * When a removable media device is being opened for writing without NDELAY 30726 * flag, sd will check if this device is writable. If attempting to open 30727 * without NDELAY flag a write-protected device, this operation will abort. 30728 * 30729 * ------------------------------------------------------------ 30730 * removable media USB/1394 | WP Check 30731 * ------------------------------------------------------------ 30732 * false false | No 30733 * false true | No 30734 * true false | Yes 30735 * true true | Yes 30736 * ------------------------------------------------------------ 30737 * 30738 * 30739 * 17. syslog when corrupted VTOC is encountered 30740 * 30741 * Currently, if an invalid VTOC is encountered, sd only print syslog 30742 * for fixed SCSI disks. 30743 * ------------------------------------------------------------ 30744 * removable media USB/1394 | print syslog 30745 * ------------------------------------------------------------ 30746 * false false | Yes 30747 * false true | No 30748 * true false | No 30749 * true true | No 30750 * ------------------------------------------------------------ 30751 */ 30752 static void 30753 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi) 30754 { 30755 int pm_cap; 30756 30757 ASSERT(un->un_sd); 30758 ASSERT(un->un_sd->sd_inq); 30759 30760 /* 30761 * Enable SYNC CACHE support for all devices. 30762 */ 30763 un->un_f_sync_cache_supported = TRUE; 30764 30765 /* 30766 * Set the sync cache required flag to false. 30767 * This would ensure that there is no SYNC CACHE 30768 * sent when there are no writes 30769 */ 30770 un->un_f_sync_cache_required = FALSE; 30771 30772 if (un->un_sd->sd_inq->inq_rmb) { 30773 /* 30774 * The media of this device is removable. And for this kind 30775 * of devices, it is possible to change medium after opening 30776 * devices. Thus we should support this operation. 30777 */ 30778 un->un_f_has_removable_media = TRUE; 30779 30780 /* 30781 * support non-512-byte blocksize of removable media devices 30782 */ 30783 un->un_f_non_devbsize_supported = TRUE; 30784 30785 /* 30786 * Assume that all removable media devices support DOOR_LOCK 30787 */ 30788 un->un_f_doorlock_supported = TRUE; 30789 30790 /* 30791 * For a removable media device, it is possible to be opened 30792 * with NDELAY flag when there is no media in drive, in this 30793 * case we don't care if device is writable. But if without 30794 * NDELAY flag, we need to check if media is write-protected. 30795 */ 30796 un->un_f_chk_wp_open = TRUE; 30797 30798 /* 30799 * need to start a SCSI watch thread to monitor media state, 30800 * when media is being inserted or ejected, notify syseventd. 30801 */ 30802 un->un_f_monitor_media_state = TRUE; 30803 30804 /* 30805 * Some devices don't support START_STOP_UNIT command. 30806 * Therefore, we'd better check if a device supports it 30807 * before sending it. 30808 */ 30809 un->un_f_check_start_stop = TRUE; 30810 30811 /* 30812 * support eject media ioctl: 30813 * FDEJECT, DKIOCEJECT, CDROMEJECT 30814 */ 30815 un->un_f_eject_media_supported = TRUE; 30816 30817 /* 30818 * Because many removable-media devices don't support 30819 * LOG_SENSE, we couldn't use this command to check if 30820 * a removable media device support power-management. 30821 * We assume that they support power-management via 30822 * START_STOP_UNIT command and can be spun up and down 30823 * without limitations. 30824 */ 30825 un->un_f_pm_supported = TRUE; 30826 30827 /* 30828 * Need to create a zero length (Boolean) property 30829 * removable-media for the removable media devices. 30830 * Note that the return value of the property is not being 30831 * checked, since if unable to create the property 30832 * then do not want the attach to fail altogether. Consistent 30833 * with other property creation in attach. 30834 */ 30835 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, 30836 DDI_PROP_CANSLEEP, "removable-media", NULL, 0); 30837 30838 } else { 30839 /* 30840 * create device ID for device 30841 */ 30842 un->un_f_devid_supported = TRUE; 30843 30844 /* 30845 * Spin up non-removable-media devices once it is attached 30846 */ 30847 un->un_f_attach_spinup = TRUE; 30848 30849 /* 30850 * According to SCSI specification, Sense data has two kinds of 30851 * format: fixed format, and descriptor format. At present, we 30852 * don't support descriptor format sense data for removable 30853 * media. 30854 */ 30855 if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) { 30856 un->un_f_descr_format_supported = TRUE; 30857 } 30858 30859 /* 30860 * kstats are created only for non-removable media devices. 30861 * 30862 * Set this in sd.conf to 0 in order to disable kstats. The 30863 * default is 1, so they are enabled by default. 30864 */ 30865 un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY, 30866 SD_DEVINFO(un), DDI_PROP_DONTPASS, 30867 "enable-partition-kstats", 1)); 30868 30869 /* 30870 * Check if HBA has set the "pm-capable" property. 30871 * If "pm-capable" exists and is non-zero then we can 30872 * power manage the device without checking the start/stop 30873 * cycle count log sense page. 30874 * 30875 * If "pm-capable" exists and is set to be false (0), 30876 * then we should not power manage the device. 30877 * 30878 * If "pm-capable" doesn't exist then pm_cap will 30879 * be set to SD_PM_CAPABLE_UNDEFINED (-1). In this case, 30880 * sd will check the start/stop cycle count log sense page 30881 * and power manage the device if the cycle count limit has 30882 * not been exceeded. 30883 */ 30884 pm_cap = ddi_prop_get_int(DDI_DEV_T_ANY, devi, 30885 DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED); 30886 if (SD_PM_CAPABLE_IS_UNDEFINED(pm_cap)) { 30887 un->un_f_log_sense_supported = TRUE; 30888 if (!un->un_f_power_condition_disabled && 30889 SD_INQUIRY(un)->inq_ansi == 6) { 30890 un->un_f_power_condition_supported = TRUE; 30891 } 30892 } else { 30893 /* 30894 * pm-capable property exists. 30895 * 30896 * Convert "TRUE" values for pm_cap to 30897 * SD_PM_CAPABLE_IS_TRUE to make it easier to check 30898 * later. "TRUE" values are any values defined in 30899 * inquiry.h. 30900 */ 30901 if (SD_PM_CAPABLE_IS_FALSE(pm_cap)) { 30902 un->un_f_log_sense_supported = FALSE; 30903 } else { 30904 /* SD_PM_CAPABLE_IS_TRUE case */ 30905 un->un_f_pm_supported = TRUE; 30906 if (!un->un_f_power_condition_disabled && 30907 SD_PM_CAPABLE_IS_SPC_4(pm_cap)) { 30908 un->un_f_power_condition_supported = 30909 TRUE; 30910 } 30911 if (SD_PM_CAP_LOG_SUPPORTED(pm_cap)) { 30912 un->un_f_log_sense_supported = TRUE; 30913 un->un_f_pm_log_sense_smart = 30914 SD_PM_CAP_SMART_LOG(pm_cap); 30915 } 30916 } 30917 30918 SD_INFO(SD_LOG_ATTACH_DETACH, un, 30919 "sd_unit_attach: un:0x%p pm-capable " 30920 "property set to %d.\n", un, un->un_f_pm_supported); 30921 } 30922 } 30923 30924 if (un->un_f_is_hotpluggable) { 30925 30926 /* 30927 * Have to watch hotpluggable devices as well, since 30928 * that's the only way for userland applications to 30929 * detect hot removal while device is busy/mounted. 30930 */ 30931 un->un_f_monitor_media_state = TRUE; 30932 30933 un->un_f_check_start_stop = TRUE; 30934 30935 } 30936 } 30937 30938 /* 30939 * sd_tg_rdwr: 30940 * Provides rdwr access for cmlb via sd_tgops. The start_block is 30941 * in sys block size, req_length in bytes. 30942 * 30943 */ 30944 static int 30945 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr, 30946 diskaddr_t start_block, size_t reqlength, void *tg_cookie) 30947 { 30948 struct sd_lun *un; 30949 int path_flag = (int)(uintptr_t)tg_cookie; 30950 char *dkl = NULL; 30951 diskaddr_t real_addr = start_block; 30952 diskaddr_t first_byte, end_block; 30953 30954 size_t buffer_size = reqlength; 30955 int rval = 0; 30956 diskaddr_t cap; 30957 uint32_t lbasize; 30958 sd_ssc_t *ssc; 30959 30960 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 30961 if (un == NULL) 30962 return (ENXIO); 30963 30964 if (cmd != TG_READ && cmd != TG_WRITE) 30965 return (EINVAL); 30966 30967 ssc = sd_ssc_init(un); 30968 mutex_enter(SD_MUTEX(un)); 30969 if (un->un_f_tgt_blocksize_is_valid == FALSE) { 30970 mutex_exit(SD_MUTEX(un)); 30971 rval = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap, 30972 &lbasize, path_flag); 30973 if (rval != 0) 30974 goto done1; 30975 mutex_enter(SD_MUTEX(un)); 30976 sd_update_block_info(un, lbasize, cap); 30977 if ((un->un_f_tgt_blocksize_is_valid == FALSE)) { 30978 mutex_exit(SD_MUTEX(un)); 30979 rval = EIO; 30980 goto done; 30981 } 30982 } 30983 30984 if (NOT_DEVBSIZE(un)) { 30985 /* 30986 * sys_blocksize != tgt_blocksize, need to re-adjust 30987 * blkno and save the index to beginning of dk_label 30988 */ 30989 first_byte = SD_SYSBLOCKS2BYTES(start_block); 30990 real_addr = first_byte / un->un_tgt_blocksize; 30991 30992 end_block = (first_byte + reqlength + 30993 un->un_tgt_blocksize - 1) / un->un_tgt_blocksize; 30994 30995 /* round up buffer size to multiple of target block size */ 30996 buffer_size = (end_block - real_addr) * un->un_tgt_blocksize; 30997 30998 SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr", 30999 "label_addr: 0x%x allocation size: 0x%x\n", 31000 real_addr, buffer_size); 31001 31002 if (((first_byte % un->un_tgt_blocksize) != 0) || 31003 (reqlength % un->un_tgt_blocksize) != 0) 31004 /* the request is not aligned */ 31005 dkl = kmem_zalloc(buffer_size, KM_SLEEP); 31006 } 31007 31008 /* 31009 * The MMC standard allows READ CAPACITY to be 31010 * inaccurate by a bounded amount (in the interest of 31011 * response latency). As a result, failed READs are 31012 * commonplace (due to the reading of metadata and not 31013 * data). Depending on the per-Vendor/drive Sense data, 31014 * the failed READ can cause many (unnecessary) retries. 31015 */ 31016 31017 if (ISCD(un) && (cmd == TG_READ) && 31018 (un->un_f_blockcount_is_valid == TRUE) && 31019 ((start_block == (un->un_blockcount - 1))|| 31020 (start_block == (un->un_blockcount - 2)))) { 31021 path_flag = SD_PATH_DIRECT_PRIORITY; 31022 } 31023 31024 mutex_exit(SD_MUTEX(un)); 31025 if (cmd == TG_READ) { 31026 rval = sd_send_scsi_READ(ssc, (dkl != NULL)? dkl: bufaddr, 31027 buffer_size, real_addr, path_flag); 31028 if (dkl != NULL) 31029 bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block, 31030 real_addr), bufaddr, reqlength); 31031 } else { 31032 if (dkl) { 31033 rval = sd_send_scsi_READ(ssc, dkl, buffer_size, 31034 real_addr, path_flag); 31035 if (rval) { 31036 goto done1; 31037 } 31038 bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block, 31039 real_addr), reqlength); 31040 } 31041 rval = sd_send_scsi_WRITE(ssc, (dkl != NULL)? dkl: bufaddr, 31042 buffer_size, real_addr, path_flag); 31043 } 31044 31045 done1: 31046 if (dkl != NULL) 31047 kmem_free(dkl, buffer_size); 31048 31049 if (rval != 0) { 31050 if (rval == EIO) 31051 sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK); 31052 else 31053 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 31054 } 31055 done: 31056 sd_ssc_fini(ssc); 31057 return (rval); 31058 } 31059 31060 31061 static int 31062 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie) 31063 { 31064 31065 struct sd_lun *un; 31066 diskaddr_t cap; 31067 uint32_t lbasize; 31068 int path_flag = (int)(uintptr_t)tg_cookie; 31069 int ret = 0; 31070 31071 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 31072 if (un == NULL) 31073 return (ENXIO); 31074 31075 switch (cmd) { 31076 case TG_GETPHYGEOM: 31077 case TG_GETVIRTGEOM: 31078 case TG_GETCAPACITY: 31079 case TG_GETBLOCKSIZE: 31080 mutex_enter(SD_MUTEX(un)); 31081 31082 if ((un->un_f_blockcount_is_valid == TRUE) && 31083 (un->un_f_tgt_blocksize_is_valid == TRUE)) { 31084 cap = un->un_blockcount; 31085 lbasize = un->un_tgt_blocksize; 31086 mutex_exit(SD_MUTEX(un)); 31087 } else { 31088 sd_ssc_t *ssc; 31089 mutex_exit(SD_MUTEX(un)); 31090 ssc = sd_ssc_init(un); 31091 ret = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap, 31092 &lbasize, path_flag); 31093 if (ret != 0) { 31094 if (ret == EIO) 31095 sd_ssc_assessment(ssc, 31096 SD_FMT_STATUS_CHECK); 31097 else 31098 sd_ssc_assessment(ssc, 31099 SD_FMT_IGNORE); 31100 sd_ssc_fini(ssc); 31101 return (ret); 31102 } 31103 sd_ssc_fini(ssc); 31104 mutex_enter(SD_MUTEX(un)); 31105 sd_update_block_info(un, lbasize, cap); 31106 if ((un->un_f_blockcount_is_valid == FALSE) || 31107 (un->un_f_tgt_blocksize_is_valid == FALSE)) { 31108 mutex_exit(SD_MUTEX(un)); 31109 return (EIO); 31110 } 31111 mutex_exit(SD_MUTEX(un)); 31112 } 31113 31114 if (cmd == TG_GETCAPACITY) { 31115 *(diskaddr_t *)arg = cap; 31116 return (0); 31117 } 31118 31119 if (cmd == TG_GETBLOCKSIZE) { 31120 *(uint32_t *)arg = lbasize; 31121 return (0); 31122 } 31123 31124 if (cmd == TG_GETPHYGEOM) 31125 ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg, 31126 cap, lbasize, path_flag); 31127 else 31128 /* TG_GETVIRTGEOM */ 31129 ret = sd_get_virtual_geometry(un, 31130 (cmlb_geom_t *)arg, cap, lbasize); 31131 31132 return (ret); 31133 31134 case TG_GETATTR: 31135 mutex_enter(SD_MUTEX(un)); 31136 ((tg_attribute_t *)arg)->media_is_writable = 31137 un->un_f_mmc_writable_media; 31138 ((tg_attribute_t *)arg)->media_is_solid_state = 31139 un->un_f_is_solid_state; 31140 mutex_exit(SD_MUTEX(un)); 31141 return (0); 31142 default: 31143 return (ENOTTY); 31144 31145 } 31146 } 31147 31148 /* 31149 * Function: sd_ssc_ereport_post 31150 * 31151 * Description: Will be called when SD driver need to post an ereport. 31152 * 31153 * Context: Kernel thread or interrupt context. 31154 */ 31155 31156 #define DEVID_IF_KNOWN(d) "devid", DATA_TYPE_STRING, (d) ? (d) : "unknown" 31157 31158 static void 31159 sd_ssc_ereport_post(sd_ssc_t *ssc, enum sd_driver_assessment drv_assess) 31160 { 31161 int uscsi_path_instance = 0; 31162 uchar_t uscsi_pkt_reason; 31163 uint32_t uscsi_pkt_state; 31164 uint32_t uscsi_pkt_statistics; 31165 uint64_t uscsi_ena; 31166 uchar_t op_code; 31167 uint8_t *sensep; 31168 union scsi_cdb *cdbp; 31169 uint_t cdblen = 0; 31170 uint_t senlen = 0; 31171 struct sd_lun *un; 31172 dev_info_t *dip; 31173 char *devid; 31174 int ssc_invalid_flags = SSC_FLAGS_INVALID_PKT_REASON | 31175 SSC_FLAGS_INVALID_STATUS | 31176 SSC_FLAGS_INVALID_SENSE | 31177 SSC_FLAGS_INVALID_DATA; 31178 char assessment[16]; 31179 31180 ASSERT(ssc != NULL); 31181 ASSERT(ssc->ssc_uscsi_cmd != NULL); 31182 ASSERT(ssc->ssc_uscsi_info != NULL); 31183 31184 un = ssc->ssc_un; 31185 ASSERT(un != NULL); 31186 31187 dip = un->un_sd->sd_dev; 31188 31189 /* 31190 * Get the devid: 31191 * devid will only be passed to non-transport error reports. 31192 */ 31193 devid = DEVI(dip)->devi_devid_str; 31194 31195 /* 31196 * If we are syncing or dumping, the command will not be executed 31197 * so we bypass this situation. 31198 */ 31199 if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) || 31200 (un->un_state == SD_STATE_DUMPING)) 31201 return; 31202 31203 uscsi_pkt_reason = ssc->ssc_uscsi_info->ui_pkt_reason; 31204 uscsi_path_instance = ssc->ssc_uscsi_cmd->uscsi_path_instance; 31205 uscsi_pkt_state = ssc->ssc_uscsi_info->ui_pkt_state; 31206 uscsi_pkt_statistics = ssc->ssc_uscsi_info->ui_pkt_statistics; 31207 uscsi_ena = ssc->ssc_uscsi_info->ui_ena; 31208 31209 sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf; 31210 cdbp = (union scsi_cdb *)ssc->ssc_uscsi_cmd->uscsi_cdb; 31211 31212 /* In rare cases, EG:DOORLOCK, the cdb could be NULL */ 31213 if (cdbp == NULL) { 31214 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 31215 "sd_ssc_ereport_post meet empty cdb\n"); 31216 return; 31217 } 31218 31219 op_code = cdbp->scc_cmd; 31220 31221 cdblen = (int)ssc->ssc_uscsi_cmd->uscsi_cdblen; 31222 senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen - 31223 ssc->ssc_uscsi_cmd->uscsi_rqresid); 31224 31225 if (senlen > 0) 31226 ASSERT(sensep != NULL); 31227 31228 /* 31229 * Initialize drv_assess to corresponding values. 31230 * SD_FM_DRV_FATAL will be mapped to "fail" or "fatal" depending 31231 * on the sense-key returned back. 31232 */ 31233 switch (drv_assess) { 31234 case SD_FM_DRV_RECOVERY: 31235 (void) sprintf(assessment, "%s", "recovered"); 31236 break; 31237 case SD_FM_DRV_RETRY: 31238 (void) sprintf(assessment, "%s", "retry"); 31239 break; 31240 case SD_FM_DRV_NOTICE: 31241 (void) sprintf(assessment, "%s", "info"); 31242 break; 31243 case SD_FM_DRV_FATAL: 31244 default: 31245 (void) sprintf(assessment, "%s", "unknown"); 31246 } 31247 /* 31248 * If drv_assess == SD_FM_DRV_RECOVERY, this should be a recovered 31249 * command, we will post ereport.io.scsi.cmd.disk.recovered. 31250 * driver-assessment will always be "recovered" here. 31251 */ 31252 if (drv_assess == SD_FM_DRV_RECOVERY) { 31253 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, NULL, 31254 "cmd.disk.recovered", uscsi_ena, devid, NULL, 31255 DDI_NOSLEEP, NULL, 31256 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31257 DEVID_IF_KNOWN(devid), 31258 "driver-assessment", DATA_TYPE_STRING, assessment, 31259 "op-code", DATA_TYPE_UINT8, op_code, 31260 "cdb", DATA_TYPE_UINT8_ARRAY, 31261 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 31262 "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason, 31263 "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state, 31264 "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics, 31265 NULL); 31266 return; 31267 } 31268 31269 /* 31270 * If there is un-expected/un-decodable data, we should post 31271 * ereport.io.scsi.cmd.disk.dev.uderr. 31272 * driver-assessment will be set based on parameter drv_assess. 31273 * SSC_FLAGS_INVALID_SENSE - invalid sense data sent back. 31274 * SSC_FLAGS_INVALID_PKT_REASON - invalid pkt-reason encountered. 31275 * SSC_FLAGS_INVALID_STATUS - invalid stat-code encountered. 31276 * SSC_FLAGS_INVALID_DATA - invalid data sent back. 31277 */ 31278 if (ssc->ssc_flags & ssc_invalid_flags) { 31279 if (ssc->ssc_flags & SSC_FLAGS_INVALID_SENSE) { 31280 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, 31281 NULL, "cmd.disk.dev.uderr", uscsi_ena, devid, 31282 NULL, DDI_NOSLEEP, NULL, 31283 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31284 DEVID_IF_KNOWN(devid), 31285 "driver-assessment", DATA_TYPE_STRING, 31286 drv_assess == SD_FM_DRV_FATAL ? 31287 "fail" : assessment, 31288 "op-code", DATA_TYPE_UINT8, op_code, 31289 "cdb", DATA_TYPE_UINT8_ARRAY, 31290 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 31291 "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason, 31292 "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state, 31293 "pkt-stats", DATA_TYPE_UINT32, 31294 uscsi_pkt_statistics, 31295 "stat-code", DATA_TYPE_UINT8, 31296 ssc->ssc_uscsi_cmd->uscsi_status, 31297 "un-decode-info", DATA_TYPE_STRING, 31298 ssc->ssc_info, 31299 "un-decode-value", DATA_TYPE_UINT8_ARRAY, 31300 senlen, sensep, 31301 NULL); 31302 } else { 31303 /* 31304 * For other type of invalid data, the 31305 * un-decode-value field would be empty because the 31306 * un-decodable content could be seen from upper 31307 * level payload or inside un-decode-info. 31308 */ 31309 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, 31310 NULL, 31311 "cmd.disk.dev.uderr", uscsi_ena, devid, 31312 NULL, DDI_NOSLEEP, NULL, 31313 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31314 DEVID_IF_KNOWN(devid), 31315 "driver-assessment", DATA_TYPE_STRING, 31316 drv_assess == SD_FM_DRV_FATAL ? 31317 "fail" : assessment, 31318 "op-code", DATA_TYPE_UINT8, op_code, 31319 "cdb", DATA_TYPE_UINT8_ARRAY, 31320 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 31321 "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason, 31322 "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state, 31323 "pkt-stats", DATA_TYPE_UINT32, 31324 uscsi_pkt_statistics, 31325 "stat-code", DATA_TYPE_UINT8, 31326 ssc->ssc_uscsi_cmd->uscsi_status, 31327 "un-decode-info", DATA_TYPE_STRING, 31328 ssc->ssc_info, 31329 "un-decode-value", DATA_TYPE_UINT8_ARRAY, 31330 0, NULL, 31331 NULL); 31332 } 31333 ssc->ssc_flags &= ~ssc_invalid_flags; 31334 return; 31335 } 31336 31337 if (uscsi_pkt_reason != CMD_CMPLT || 31338 (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)) { 31339 /* 31340 * pkt-reason != CMD_CMPLT or SSC_FLAGS_TRAN_ABORT was 31341 * set inside sd_start_cmds due to errors(bad packet or 31342 * fatal transport error), we should take it as a 31343 * transport error, so we post ereport.io.scsi.cmd.disk.tran. 31344 * driver-assessment will be set based on drv_assess. 31345 * We will set devid to NULL because it is a transport 31346 * error. 31347 */ 31348 if (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT) 31349 ssc->ssc_flags &= ~SSC_FLAGS_TRAN_ABORT; 31350 31351 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, NULL, 31352 "cmd.disk.tran", uscsi_ena, NULL, NULL, DDI_NOSLEEP, NULL, 31353 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31354 DEVID_IF_KNOWN(devid), 31355 "driver-assessment", DATA_TYPE_STRING, 31356 drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment, 31357 "op-code", DATA_TYPE_UINT8, op_code, 31358 "cdb", DATA_TYPE_UINT8_ARRAY, 31359 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 31360 "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason, 31361 "pkt-state", DATA_TYPE_UINT8, uscsi_pkt_state, 31362 "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics, 31363 NULL); 31364 } else { 31365 /* 31366 * If we got here, we have a completed command, and we need 31367 * to further investigate the sense data to see what kind 31368 * of ereport we should post. 31369 * Post ereport.io.scsi.cmd.disk.dev.rqs.merr 31370 * if sense-key == 0x3. 31371 * Post ereport.io.scsi.cmd.disk.dev.rqs.derr otherwise. 31372 * driver-assessment will be set based on the parameter 31373 * drv_assess. 31374 */ 31375 if (senlen > 0) { 31376 /* 31377 * Here we have sense data available. 31378 */ 31379 uint8_t sense_key; 31380 sense_key = scsi_sense_key(sensep); 31381 if (sense_key == 0x3) { 31382 /* 31383 * sense-key == 0x3(medium error), 31384 * driver-assessment should be "fatal" if 31385 * drv_assess is SD_FM_DRV_FATAL. 31386 */ 31387 scsi_fm_ereport_post(un->un_sd, 31388 uscsi_path_instance, NULL, 31389 "cmd.disk.dev.rqs.merr", 31390 uscsi_ena, devid, NULL, DDI_NOSLEEP, NULL, 31391 FM_VERSION, DATA_TYPE_UINT8, 31392 FM_EREPORT_VERS0, 31393 DEVID_IF_KNOWN(devid), 31394 "driver-assessment", 31395 DATA_TYPE_STRING, 31396 drv_assess == SD_FM_DRV_FATAL ? 31397 "fatal" : assessment, 31398 "op-code", 31399 DATA_TYPE_UINT8, op_code, 31400 "cdb", 31401 DATA_TYPE_UINT8_ARRAY, cdblen, 31402 ssc->ssc_uscsi_cmd->uscsi_cdb, 31403 "pkt-reason", 31404 DATA_TYPE_UINT8, uscsi_pkt_reason, 31405 "pkt-state", 31406 DATA_TYPE_UINT8, uscsi_pkt_state, 31407 "pkt-stats", 31408 DATA_TYPE_UINT32, 31409 uscsi_pkt_statistics, 31410 "stat-code", 31411 DATA_TYPE_UINT8, 31412 ssc->ssc_uscsi_cmd->uscsi_status, 31413 "key", 31414 DATA_TYPE_UINT8, 31415 scsi_sense_key(sensep), 31416 "asc", 31417 DATA_TYPE_UINT8, 31418 scsi_sense_asc(sensep), 31419 "ascq", 31420 DATA_TYPE_UINT8, 31421 scsi_sense_ascq(sensep), 31422 "sense-data", 31423 DATA_TYPE_UINT8_ARRAY, 31424 senlen, sensep, 31425 "lba", 31426 DATA_TYPE_UINT64, 31427 ssc->ssc_uscsi_info->ui_lba, 31428 NULL); 31429 } else { 31430 /* 31431 * if sense-key == 0x4(hardware 31432 * error), driver-assessment should 31433 * be "fatal" if drv_assess is 31434 * SD_FM_DRV_FATAL. 31435 */ 31436 scsi_fm_ereport_post(un->un_sd, 31437 uscsi_path_instance, NULL, 31438 "cmd.disk.dev.rqs.derr", 31439 uscsi_ena, devid, 31440 NULL, DDI_NOSLEEP, NULL, 31441 FM_VERSION, 31442 DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31443 DEVID_IF_KNOWN(devid), 31444 "driver-assessment", 31445 DATA_TYPE_STRING, 31446 drv_assess == SD_FM_DRV_FATAL ? 31447 (sense_key == 0x4 ? 31448 "fatal" : "fail") : assessment, 31449 "op-code", 31450 DATA_TYPE_UINT8, op_code, 31451 "cdb", 31452 DATA_TYPE_UINT8_ARRAY, cdblen, 31453 ssc->ssc_uscsi_cmd->uscsi_cdb, 31454 "pkt-reason", 31455 DATA_TYPE_UINT8, uscsi_pkt_reason, 31456 "pkt-state", 31457 DATA_TYPE_UINT8, uscsi_pkt_state, 31458 "pkt-stats", 31459 DATA_TYPE_UINT32, 31460 uscsi_pkt_statistics, 31461 "stat-code", 31462 DATA_TYPE_UINT8, 31463 ssc->ssc_uscsi_cmd->uscsi_status, 31464 "key", 31465 DATA_TYPE_UINT8, 31466 scsi_sense_key(sensep), 31467 "asc", 31468 DATA_TYPE_UINT8, 31469 scsi_sense_asc(sensep), 31470 "ascq", 31471 DATA_TYPE_UINT8, 31472 scsi_sense_ascq(sensep), 31473 "sense-data", 31474 DATA_TYPE_UINT8_ARRAY, 31475 senlen, sensep, 31476 NULL); 31477 } 31478 } else { 31479 /* 31480 * For stat_code == STATUS_GOOD, this is not a 31481 * hardware error. 31482 */ 31483 if (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) 31484 return; 31485 31486 /* 31487 * Post ereport.io.scsi.cmd.disk.dev.serr if we got the 31488 * stat-code but with sense data unavailable. 31489 * driver-assessment will be set based on parameter 31490 * drv_assess. 31491 */ 31492 scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, 31493 NULL, 31494 "cmd.disk.dev.serr", uscsi_ena, 31495 devid, NULL, DDI_NOSLEEP, NULL, 31496 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, 31497 DEVID_IF_KNOWN(devid), 31498 "driver-assessment", DATA_TYPE_STRING, 31499 drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment, 31500 "op-code", DATA_TYPE_UINT8, op_code, 31501 "cdb", 31502 DATA_TYPE_UINT8_ARRAY, 31503 cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb, 31504 "pkt-reason", 31505 DATA_TYPE_UINT8, uscsi_pkt_reason, 31506 "pkt-state", 31507 DATA_TYPE_UINT8, uscsi_pkt_state, 31508 "pkt-stats", 31509 DATA_TYPE_UINT32, uscsi_pkt_statistics, 31510 "stat-code", 31511 DATA_TYPE_UINT8, 31512 ssc->ssc_uscsi_cmd->uscsi_status, 31513 NULL); 31514 } 31515 } 31516 } 31517 31518 /* 31519 * Function: sd_ssc_extract_info 31520 * 31521 * Description: Extract information available to help generate ereport. 31522 * 31523 * Context: Kernel thread or interrupt context. 31524 */ 31525 static void 31526 sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, struct scsi_pkt *pktp, 31527 struct buf *bp, struct sd_xbuf *xp) 31528 { 31529 size_t senlen = 0; 31530 union scsi_cdb *cdbp; 31531 int path_instance; 31532 /* 31533 * Need scsi_cdb_size array to determine the cdb length. 31534 */ 31535 extern uchar_t scsi_cdb_size[]; 31536 31537 ASSERT(un != NULL); 31538 ASSERT(pktp != NULL); 31539 ASSERT(bp != NULL); 31540 ASSERT(xp != NULL); 31541 ASSERT(ssc != NULL); 31542 ASSERT(mutex_owned(SD_MUTEX(un))); 31543 31544 /* 31545 * Transfer the cdb buffer pointer here. 31546 */ 31547 cdbp = (union scsi_cdb *)pktp->pkt_cdbp; 31548 31549 ssc->ssc_uscsi_cmd->uscsi_cdblen = scsi_cdb_size[GETGROUP(cdbp)]; 31550 ssc->ssc_uscsi_cmd->uscsi_cdb = (caddr_t)cdbp; 31551 31552 /* 31553 * Transfer the sense data buffer pointer if sense data is available, 31554 * calculate the sense data length first. 31555 */ 31556 if ((xp->xb_sense_state & STATE_XARQ_DONE) || 31557 (xp->xb_sense_state & STATE_ARQ_DONE)) { 31558 /* 31559 * For arq case, we will enter here. 31560 */ 31561 if (xp->xb_sense_state & STATE_XARQ_DONE) { 31562 senlen = MAX_SENSE_LENGTH - xp->xb_sense_resid; 31563 } else { 31564 senlen = SENSE_LENGTH; 31565 } 31566 } else { 31567 /* 31568 * For non-arq case, we will enter this branch. 31569 */ 31570 if (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK && 31571 (xp->xb_sense_state & STATE_XFERRED_DATA)) { 31572 senlen = SENSE_LENGTH - xp->xb_sense_resid; 31573 } 31574 31575 } 31576 31577 ssc->ssc_uscsi_cmd->uscsi_rqlen = (senlen & 0xff); 31578 ssc->ssc_uscsi_cmd->uscsi_rqresid = 0; 31579 ssc->ssc_uscsi_cmd->uscsi_rqbuf = (caddr_t)xp->xb_sense_data; 31580 31581 ssc->ssc_uscsi_cmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK); 31582 31583 /* 31584 * Only transfer path_instance when scsi_pkt was properly allocated. 31585 */ 31586 path_instance = pktp->pkt_path_instance; 31587 if (scsi_pkt_allocated_correctly(pktp) && path_instance) 31588 ssc->ssc_uscsi_cmd->uscsi_path_instance = path_instance; 31589 else 31590 ssc->ssc_uscsi_cmd->uscsi_path_instance = 0; 31591 31592 /* 31593 * Copy in the other fields we may need when posting ereport. 31594 */ 31595 ssc->ssc_uscsi_info->ui_pkt_reason = pktp->pkt_reason; 31596 ssc->ssc_uscsi_info->ui_pkt_state = pktp->pkt_state; 31597 ssc->ssc_uscsi_info->ui_pkt_statistics = pktp->pkt_statistics; 31598 ssc->ssc_uscsi_info->ui_lba = (uint64_t)SD_GET_BLKNO(bp); 31599 31600 /* 31601 * For partially read/write command, we will not create ena 31602 * in case of a successful command be reconized as recovered. 31603 */ 31604 if ((pktp->pkt_reason == CMD_CMPLT) && 31605 (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) && 31606 (senlen == 0)) { 31607 return; 31608 } 31609 31610 /* 31611 * To associate ereports of a single command execution flow, we 31612 * need a shared ena for a specific command. 31613 */ 31614 if (xp->xb_ena == 0) 31615 xp->xb_ena = fm_ena_generate(0, FM_ENA_FMT1); 31616 ssc->ssc_uscsi_info->ui_ena = xp->xb_ena; 31617 } 31618 31619 31620 /* 31621 * Function: sd_check_solid_state 31622 * 31623 * Description: Query the optional INQUIRY VPD page 0xb1. If the device 31624 * supports VPD page 0xb1, sd examines the MEDIUM ROTATION 31625 * RATE. If the MEDIUM ROTATION RATE is 1, sd assumes the 31626 * device is a solid state drive. 31627 * 31628 * Context: Kernel thread or interrupt context. 31629 */ 31630 31631 static void 31632 sd_check_solid_state(sd_ssc_t *ssc) 31633 { 31634 int rval = 0; 31635 uchar_t *inqb1 = NULL; 31636 size_t inqb1_len = MAX_INQUIRY_SIZE; 31637 size_t inqb1_resid = 0; 31638 struct sd_lun *un; 31639 31640 ASSERT(ssc != NULL); 31641 un = ssc->ssc_un; 31642 ASSERT(un != NULL); 31643 ASSERT(!mutex_owned(SD_MUTEX(un))); 31644 31645 mutex_enter(SD_MUTEX(un)); 31646 un->un_f_is_solid_state = FALSE; 31647 31648 if (ISCD(un)) { 31649 mutex_exit(SD_MUTEX(un)); 31650 return; 31651 } 31652 31653 if (sd_check_vpd_page_support(ssc) == 0 && 31654 un->un_vpd_page_mask & SD_VPD_DEV_CHARACTER_PG) { 31655 mutex_exit(SD_MUTEX(un)); 31656 /* collect page b1 data */ 31657 inqb1 = kmem_zalloc(inqb1_len, KM_SLEEP); 31658 31659 rval = sd_send_scsi_INQUIRY(ssc, inqb1, inqb1_len, 31660 0x01, 0xB1, &inqb1_resid); 31661 31662 if (rval == 0 && (inqb1_len - inqb1_resid > 5)) { 31663 SD_TRACE(SD_LOG_COMMON, un, 31664 "sd_check_solid_state: \ 31665 successfully get VPD page: %x \ 31666 PAGE LENGTH: %x BYTE 4: %x \ 31667 BYTE 5: %x", inqb1[1], inqb1[3], inqb1[4], 31668 inqb1[5]); 31669 31670 mutex_enter(SD_MUTEX(un)); 31671 /* 31672 * Check the MEDIUM ROTATION RATE. If it is set 31673 * to 1, the device is a solid state drive. 31674 */ 31675 if (inqb1[4] == 0 && inqb1[5] == 1) { 31676 un->un_f_is_solid_state = TRUE; 31677 } 31678 mutex_exit(SD_MUTEX(un)); 31679 } else if (rval != 0) { 31680 sd_ssc_assessment(ssc, SD_FMT_IGNORE); 31681 } 31682 31683 kmem_free(inqb1, inqb1_len); 31684 } else { 31685 mutex_exit(SD_MUTEX(un)); 31686 } 31687 } 31688 31689 /* 31690 * Function: sd_check_emulation_mode 31691 * 31692 * Description: Check whether the SSD is at emulation mode 31693 * by issuing READ_CAPACITY_16 to see whether 31694 * we can get physical block size of the drive. 31695 * 31696 * Context: Kernel thread or interrupt context. 31697 */ 31698 31699 static void 31700 sd_check_emulation_mode(sd_ssc_t *ssc) 31701 { 31702 int rval = 0; 31703 uint64_t capacity; 31704 uint_t lbasize; 31705 uint_t pbsize; 31706 int i; 31707 int devid_len; 31708 struct sd_lun *un; 31709 31710 ASSERT(ssc != NULL); 31711 un = ssc->ssc_un; 31712 ASSERT(un != NULL); 31713 ASSERT(!mutex_owned(SD_MUTEX(un))); 31714 31715 mutex_enter(SD_MUTEX(un)); 31716 if (ISCD(un)) { 31717 mutex_exit(SD_MUTEX(un)); 31718 return; 31719 } 31720 31721 if (un->un_f_descr_format_supported) { 31722 mutex_exit(SD_MUTEX(un)); 31723 rval = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, &lbasize, 31724 &pbsize, SD_PATH_DIRECT); 31725 mutex_enter(SD_MUTEX(un)); 31726 31727 if (rval != 0) { 31728 un->un_phy_blocksize = DEV_BSIZE; 31729 } else { 31730 if (!ISP2(pbsize % DEV_BSIZE) || pbsize == 0) { 31731 un->un_phy_blocksize = DEV_BSIZE; 31732 } else { 31733 un->un_phy_blocksize = pbsize; 31734 } 31735 } 31736 } 31737 31738 for (i = 0; i < sd_flash_dev_table_size; i++) { 31739 devid_len = (int)strlen(sd_flash_dev_table[i]); 31740 if (sd_sdconf_id_match(un, sd_flash_dev_table[i], devid_len) 31741 == SD_SUCCESS) { 31742 un->un_phy_blocksize = SSD_SECSIZE; 31743 if (un->un_f_is_solid_state && 31744 un->un_phy_blocksize != un->un_tgt_blocksize) 31745 un->un_f_enable_rmw = TRUE; 31746 } 31747 } 31748 31749 mutex_exit(SD_MUTEX(un)); 31750 } 31751