xref: /titanic_52/usr/src/uts/common/io/scsi/targets/sd.c (revision c7e4935f5b755b4bbeaec416f1ad24337aeac7a4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * SCSI disk target driver.
30  */
31 #include <sys/scsi/scsi.h>
32 #include <sys/dkbad.h>
33 #include <sys/dklabel.h>
34 #include <sys/dkio.h>
35 #include <sys/fdio.h>
36 #include <sys/cdio.h>
37 #include <sys/mhd.h>
38 #include <sys/vtoc.h>
39 #include <sys/dktp/fdisk.h>
40 #include <sys/kstat.h>
41 #include <sys/vtrace.h>
42 #include <sys/note.h>
43 #include <sys/thread.h>
44 #include <sys/proc.h>
45 #include <sys/efi_partition.h>
46 #include <sys/var.h>
47 #include <sys/aio_req.h>
48 
49 #ifdef __lock_lint
50 #define	_LP64
51 #define	__amd64
52 #endif
53 
54 #if (defined(__fibre))
55 /* Note: is there a leadville version of the following? */
56 #include <sys/fc4/fcal_linkapp.h>
57 #endif
58 #include <sys/taskq.h>
59 #include <sys/uuid.h>
60 #include <sys/byteorder.h>
61 #include <sys/sdt.h>
62 
63 #include "sd_xbuf.h"
64 
65 #include <sys/scsi/targets/sddef.h>
66 #include <sys/cmlb.h>
67 
68 
69 /*
70  * Loadable module info.
71  */
72 #if (defined(__fibre))
73 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver %I%"
74 char _depends_on[]	= "misc/scsi misc/cmlb drv/fcp";
75 #else
76 #define	SD_MODULE_NAME	"SCSI Disk Driver %I%"
77 char _depends_on[]	= "misc/scsi misc/cmlb";
78 #endif
79 
80 /*
81  * Define the interconnect type, to allow the driver to distinguish
82  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
83  *
84  * This is really for backward compatability. In the future, the driver
85  * should actually check the "interconnect-type" property as reported by
86  * the HBA; however at present this property is not defined by all HBAs,
87  * so we will use this #define (1) to permit the driver to run in
88  * backward-compatability mode; and (2) to print a notification message
89  * if an FC HBA does not support the "interconnect-type" property.  The
90  * behavior of the driver will be to assume parallel SCSI behaviors unless
91  * the "interconnect-type" property is defined by the HBA **AND** has a
92  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
93  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
94  * Channel behaviors (as per the old ssd).  (Note that the
95  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
96  * will result in the driver assuming parallel SCSI behaviors.)
97  *
98  * (see common/sys/scsi/impl/services.h)
99  *
100  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
101  * since some FC HBAs may already support that, and there is some code in
102  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
103  * default would confuse that code, and besides things should work fine
104  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
105  * "interconnect_type" property.
106  *
107  */
108 #if (defined(__fibre))
109 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
110 #else
111 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
112 #endif
113 
114 /*
115  * The name of the driver, established from the module name in _init.
116  */
117 static	char *sd_label			= NULL;
118 
119 /*
120  * Driver name is unfortunately prefixed on some driver.conf properties.
121  */
122 #if (defined(__fibre))
123 #define	sd_max_xfer_size		ssd_max_xfer_size
124 #define	sd_config_list			ssd_config_list
125 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
126 static	char *sd_config_list		= "ssd-config-list";
127 #else
128 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
129 static	char *sd_config_list		= "sd-config-list";
130 #endif
131 
132 /*
133  * Driver global variables
134  */
135 
136 #if (defined(__fibre))
137 /*
138  * These #defines are to avoid namespace collisions that occur because this
139  * code is currently used to compile two seperate driver modules: sd and ssd.
140  * All global variables need to be treated this way (even if declared static)
141  * in order to allow the debugger to resolve the names properly.
142  * It is anticipated that in the near future the ssd module will be obsoleted,
143  * at which time this namespace issue should go away.
144  */
145 #define	sd_state			ssd_state
146 #define	sd_io_time			ssd_io_time
147 #define	sd_failfast_enable		ssd_failfast_enable
148 #define	sd_ua_retry_count		ssd_ua_retry_count
149 #define	sd_report_pfa			ssd_report_pfa
150 #define	sd_max_throttle			ssd_max_throttle
151 #define	sd_min_throttle			ssd_min_throttle
152 #define	sd_rot_delay			ssd_rot_delay
153 
154 #define	sd_retry_on_reservation_conflict	\
155 					ssd_retry_on_reservation_conflict
156 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
157 #define	sd_resv_conflict_name		ssd_resv_conflict_name
158 
159 #define	sd_component_mask		ssd_component_mask
160 #define	sd_level_mask			ssd_level_mask
161 #define	sd_debug_un			ssd_debug_un
162 #define	sd_error_level			ssd_error_level
163 
164 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
165 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
166 
167 #define	sd_tr				ssd_tr
168 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
169 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
170 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
171 #define	sd_check_media_time		ssd_check_media_time
172 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
173 #define	sd_label_mutex			ssd_label_mutex
174 #define	sd_detach_mutex			ssd_detach_mutex
175 #define	sd_log_buf			ssd_log_buf
176 #define	sd_log_mutex			ssd_log_mutex
177 
178 #define	sd_disk_table			ssd_disk_table
179 #define	sd_disk_table_size		ssd_disk_table_size
180 #define	sd_sense_mutex			ssd_sense_mutex
181 #define	sd_cdbtab			ssd_cdbtab
182 
183 #define	sd_cb_ops			ssd_cb_ops
184 #define	sd_ops				ssd_ops
185 #define	sd_additional_codes		ssd_additional_codes
186 #define	sd_tgops			ssd_tgops
187 
188 #define	sd_minor_data			ssd_minor_data
189 #define	sd_minor_data_efi		ssd_minor_data_efi
190 
191 #define	sd_tq				ssd_tq
192 #define	sd_wmr_tq			ssd_wmr_tq
193 #define	sd_taskq_name			ssd_taskq_name
194 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
195 #define	sd_taskq_minalloc		ssd_taskq_minalloc
196 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
197 
198 #define	sd_dump_format_string		ssd_dump_format_string
199 
200 #define	sd_iostart_chain		ssd_iostart_chain
201 #define	sd_iodone_chain			ssd_iodone_chain
202 
203 #define	sd_pm_idletime			ssd_pm_idletime
204 
205 #define	sd_force_pm_supported		ssd_force_pm_supported
206 
207 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
208 
209 #endif
210 
211 
212 #ifdef	SDDEBUG
213 int	sd_force_pm_supported		= 0;
214 #endif	/* SDDEBUG */
215 
216 void *sd_state				= NULL;
217 int sd_io_time				= SD_IO_TIME;
218 int sd_failfast_enable			= 1;
219 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
220 int sd_report_pfa			= 1;
221 int sd_max_throttle			= SD_MAX_THROTTLE;
222 int sd_min_throttle			= SD_MIN_THROTTLE;
223 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
224 int sd_qfull_throttle_enable		= TRUE;
225 
226 int sd_retry_on_reservation_conflict	= 1;
227 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
228 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
229 
230 static int sd_dtype_optical_bind	= -1;
231 
232 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
233 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
234 
235 /*
236  * Global data for debug logging. To enable debug printing, sd_component_mask
237  * and sd_level_mask should be set to the desired bit patterns as outlined in
238  * sddef.h.
239  */
240 uint_t	sd_component_mask		= 0x0;
241 uint_t	sd_level_mask			= 0x0;
242 struct	sd_lun *sd_debug_un		= NULL;
243 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
244 
245 /* Note: these may go away in the future... */
246 static uint32_t	sd_xbuf_active_limit	= 512;
247 static uint32_t sd_xbuf_reserve_limit	= 16;
248 
249 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
250 
251 /*
252  * Timer value used to reset the throttle after it has been reduced
253  * (typically in response to TRAN_BUSY or STATUS_QFULL)
254  */
255 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
256 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
257 
258 /*
259  * Interval value associated with the media change scsi watch.
260  */
261 static int sd_check_media_time		= 3000000;
262 
263 /*
264  * Wait value used for in progress operations during a DDI_SUSPEND
265  */
266 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
267 
268 /*
269  * sd_label_mutex protects a static buffer used in the disk label
270  * component of the driver
271  */
272 static kmutex_t sd_label_mutex;
273 
274 /*
275  * sd_detach_mutex protects un_layer_count, un_detach_count, and
276  * un_opens_in_progress in the sd_lun structure.
277  */
278 static kmutex_t sd_detach_mutex;
279 
280 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
281 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
282 
283 /*
284  * Global buffer and mutex for debug logging
285  */
286 static char	sd_log_buf[1024];
287 static kmutex_t	sd_log_mutex;
288 
289 /*
290  * Structs and globals for recording attached lun information.
291  * This maintains a chain. Each node in the chain represents a SCSI controller.
292  * The structure records the number of luns attached to each target connected
293  * with the controller.
294  * For parallel scsi device only.
295  */
296 struct sd_scsi_hba_tgt_lun {
297 	struct sd_scsi_hba_tgt_lun	*next;
298 	dev_info_t			*pdip;
299 	int				nlun[NTARGETS_WIDE];
300 };
301 
302 /*
303  * Flag to indicate the lun is attached or detached
304  */
305 #define	SD_SCSI_LUN_ATTACH	0
306 #define	SD_SCSI_LUN_DETACH	1
307 
308 static kmutex_t	sd_scsi_target_lun_mutex;
309 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
310 
311 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
312     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
313 
314 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
315     sd_scsi_target_lun_head))
316 
317 /*
318  * "Smart" Probe Caching structs, globals, #defines, etc.
319  * For parallel scsi and non-self-identify device only.
320  */
321 
322 /*
323  * The following resources and routines are implemented to support
324  * "smart" probing, which caches the scsi_probe() results in an array,
325  * in order to help avoid long probe times.
326  */
327 struct sd_scsi_probe_cache {
328 	struct	sd_scsi_probe_cache	*next;
329 	dev_info_t	*pdip;
330 	int		cache[NTARGETS_WIDE];
331 };
332 
333 static kmutex_t	sd_scsi_probe_cache_mutex;
334 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
335 
336 /*
337  * Really we only need protection on the head of the linked list, but
338  * better safe than sorry.
339  */
340 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
341     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
342 
343 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
344     sd_scsi_probe_cache_head))
345 
346 
347 /*
348  * Vendor specific data name property declarations
349  */
350 
351 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
352 
353 static sd_tunables seagate_properties = {
354 	SEAGATE_THROTTLE_VALUE,
355 	0,
356 	0,
357 	0,
358 	0,
359 	0,
360 	0,
361 	0,
362 	0
363 };
364 
365 
366 static sd_tunables fujitsu_properties = {
367 	FUJITSU_THROTTLE_VALUE,
368 	0,
369 	0,
370 	0,
371 	0,
372 	0,
373 	0,
374 	0,
375 	0
376 };
377 
378 static sd_tunables ibm_properties = {
379 	IBM_THROTTLE_VALUE,
380 	0,
381 	0,
382 	0,
383 	0,
384 	0,
385 	0,
386 	0,
387 	0
388 };
389 
390 static sd_tunables purple_properties = {
391 	PURPLE_THROTTLE_VALUE,
392 	0,
393 	0,
394 	PURPLE_BUSY_RETRIES,
395 	PURPLE_RESET_RETRY_COUNT,
396 	PURPLE_RESERVE_RELEASE_TIME,
397 	0,
398 	0,
399 	0
400 };
401 
402 static sd_tunables sve_properties = {
403 	SVE_THROTTLE_VALUE,
404 	0,
405 	0,
406 	SVE_BUSY_RETRIES,
407 	SVE_RESET_RETRY_COUNT,
408 	SVE_RESERVE_RELEASE_TIME,
409 	SVE_MIN_THROTTLE_VALUE,
410 	SVE_DISKSORT_DISABLED_FLAG,
411 	0
412 };
413 
414 static sd_tunables maserati_properties = {
415 	0,
416 	0,
417 	0,
418 	0,
419 	0,
420 	0,
421 	0,
422 	MASERATI_DISKSORT_DISABLED_FLAG,
423 	MASERATI_LUN_RESET_ENABLED_FLAG
424 };
425 
426 static sd_tunables pirus_properties = {
427 	PIRUS_THROTTLE_VALUE,
428 	0,
429 	PIRUS_NRR_COUNT,
430 	PIRUS_BUSY_RETRIES,
431 	PIRUS_RESET_RETRY_COUNT,
432 	0,
433 	PIRUS_MIN_THROTTLE_VALUE,
434 	PIRUS_DISKSORT_DISABLED_FLAG,
435 	PIRUS_LUN_RESET_ENABLED_FLAG
436 };
437 
438 #endif
439 
440 #if (defined(__sparc) && !defined(__fibre)) || \
441 	(defined(__i386) || defined(__amd64))
442 
443 
444 static sd_tunables elite_properties = {
445 	ELITE_THROTTLE_VALUE,
446 	0,
447 	0,
448 	0,
449 	0,
450 	0,
451 	0,
452 	0,
453 	0
454 };
455 
456 static sd_tunables st31200n_properties = {
457 	ST31200N_THROTTLE_VALUE,
458 	0,
459 	0,
460 	0,
461 	0,
462 	0,
463 	0,
464 	0,
465 	0
466 };
467 
468 #endif /* Fibre or not */
469 
470 static sd_tunables lsi_properties_scsi = {
471 	LSI_THROTTLE_VALUE,
472 	0,
473 	LSI_NOTREADY_RETRIES,
474 	0,
475 	0,
476 	0,
477 	0,
478 	0,
479 	0
480 };
481 
482 static sd_tunables symbios_properties = {
483 	SYMBIOS_THROTTLE_VALUE,
484 	0,
485 	SYMBIOS_NOTREADY_RETRIES,
486 	0,
487 	0,
488 	0,
489 	0,
490 	0,
491 	0
492 };
493 
494 static sd_tunables lsi_properties = {
495 	0,
496 	0,
497 	LSI_NOTREADY_RETRIES,
498 	0,
499 	0,
500 	0,
501 	0,
502 	0,
503 	0
504 };
505 
506 static sd_tunables lsi_oem_properties = {
507 	0,
508 	0,
509 	LSI_OEM_NOTREADY_RETRIES,
510 	0,
511 	0,
512 	0,
513 	0,
514 	0,
515 	0
516 };
517 
518 
519 
520 #if (defined(SD_PROP_TST))
521 
522 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
523 #define	SD_TST_THROTTLE_VAL	16
524 #define	SD_TST_NOTREADY_VAL	12
525 #define	SD_TST_BUSY_VAL		60
526 #define	SD_TST_RST_RETRY_VAL	36
527 #define	SD_TST_RSV_REL_TIME	60
528 
529 static sd_tunables tst_properties = {
530 	SD_TST_THROTTLE_VAL,
531 	SD_TST_CTYPE_VAL,
532 	SD_TST_NOTREADY_VAL,
533 	SD_TST_BUSY_VAL,
534 	SD_TST_RST_RETRY_VAL,
535 	SD_TST_RSV_REL_TIME,
536 	0,
537 	0,
538 	0
539 };
540 #endif
541 
542 /* This is similiar to the ANSI toupper implementation */
543 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
544 
545 /*
546  * Static Driver Configuration Table
547  *
548  * This is the table of disks which need throttle adjustment (or, perhaps
549  * something else as defined by the flags at a future time.)  device_id
550  * is a string consisting of concatenated vid (vendor), pid (product/model)
551  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
552  * the parts of the string are as defined by the sizes in the scsi_inquiry
553  * structure.  Device type is searched as far as the device_id string is
554  * defined.  Flags defines which values are to be set in the driver from the
555  * properties list.
556  *
557  * Entries below which begin and end with a "*" are a special case.
558  * These do not have a specific vendor, and the string which follows
559  * can appear anywhere in the 16 byte PID portion of the inquiry data.
560  *
561  * Entries below which begin and end with a " " (blank) are a special
562  * case. The comparison function will treat multiple consecutive blanks
563  * as equivalent to a single blank. For example, this causes a
564  * sd_disk_table entry of " NEC CDROM " to match a device's id string
565  * of  "NEC       CDROM".
566  *
567  * Note: The MD21 controller type has been obsoleted.
568  *	 ST318202F is a Legacy device
569  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
570  *	 made with an FC connection. The entries here are a legacy.
571  */
572 static sd_disk_config_t sd_disk_table[] = {
573 #if defined(__fibre) || defined(__i386) || defined(__amd64)
574 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
575 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
576 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
577 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
578 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
579 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
580 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
581 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
582 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
583 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
584 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
585 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
586 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
587 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
588 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
589 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
590 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
591 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
592 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
593 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
594 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
595 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
596 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
597 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
598 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
599 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
600 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
601 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
602 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
603 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
604 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
605 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
606 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
607 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
608 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
609 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
610 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
611 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
612 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
613 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
614 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
615 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
616 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
617 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
618 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
619 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
620 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
621 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
622 			SD_CONF_BSET_BSY_RETRY_COUNT|
623 			SD_CONF_BSET_RST_RETRIES|
624 			SD_CONF_BSET_RSV_REL_TIME,
625 		&purple_properties },
626 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
627 		SD_CONF_BSET_BSY_RETRY_COUNT|
628 		SD_CONF_BSET_RST_RETRIES|
629 		SD_CONF_BSET_RSV_REL_TIME|
630 		SD_CONF_BSET_MIN_THROTTLE|
631 		SD_CONF_BSET_DISKSORT_DISABLED,
632 		&sve_properties },
633 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
634 			SD_CONF_BSET_BSY_RETRY_COUNT|
635 			SD_CONF_BSET_RST_RETRIES|
636 			SD_CONF_BSET_RSV_REL_TIME,
637 		&purple_properties },
638 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
639 		SD_CONF_BSET_LUN_RESET_ENABLED,
640 		&maserati_properties },
641 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
642 		SD_CONF_BSET_NRR_COUNT|
643 		SD_CONF_BSET_BSY_RETRY_COUNT|
644 		SD_CONF_BSET_RST_RETRIES|
645 		SD_CONF_BSET_MIN_THROTTLE|
646 		SD_CONF_BSET_DISKSORT_DISABLED|
647 		SD_CONF_BSET_LUN_RESET_ENABLED,
648 		&pirus_properties },
649 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
650 		SD_CONF_BSET_NRR_COUNT|
651 		SD_CONF_BSET_BSY_RETRY_COUNT|
652 		SD_CONF_BSET_RST_RETRIES|
653 		SD_CONF_BSET_MIN_THROTTLE|
654 		SD_CONF_BSET_DISKSORT_DISABLED|
655 		SD_CONF_BSET_LUN_RESET_ENABLED,
656 		&pirus_properties },
657 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
658 		SD_CONF_BSET_NRR_COUNT|
659 		SD_CONF_BSET_BSY_RETRY_COUNT|
660 		SD_CONF_BSET_RST_RETRIES|
661 		SD_CONF_BSET_MIN_THROTTLE|
662 		SD_CONF_BSET_DISKSORT_DISABLED|
663 		SD_CONF_BSET_LUN_RESET_ENABLED,
664 		&pirus_properties },
665 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
666 		SD_CONF_BSET_NRR_COUNT|
667 		SD_CONF_BSET_BSY_RETRY_COUNT|
668 		SD_CONF_BSET_RST_RETRIES|
669 		SD_CONF_BSET_MIN_THROTTLE|
670 		SD_CONF_BSET_DISKSORT_DISABLED|
671 		SD_CONF_BSET_LUN_RESET_ENABLED,
672 		&pirus_properties },
673 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
674 		SD_CONF_BSET_NRR_COUNT|
675 		SD_CONF_BSET_BSY_RETRY_COUNT|
676 		SD_CONF_BSET_RST_RETRIES|
677 		SD_CONF_BSET_MIN_THROTTLE|
678 		SD_CONF_BSET_DISKSORT_DISABLED|
679 		SD_CONF_BSET_LUN_RESET_ENABLED,
680 		&pirus_properties },
681 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
682 		SD_CONF_BSET_NRR_COUNT|
683 		SD_CONF_BSET_BSY_RETRY_COUNT|
684 		SD_CONF_BSET_RST_RETRIES|
685 		SD_CONF_BSET_MIN_THROTTLE|
686 		SD_CONF_BSET_DISKSORT_DISABLED|
687 		SD_CONF_BSET_LUN_RESET_ENABLED,
688 		&pirus_properties },
689 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
690 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
691 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
692 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
693 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
694 #endif /* fibre or NON-sparc platforms */
695 #if ((defined(__sparc) && !defined(__fibre)) ||\
696 	(defined(__i386) || defined(__amd64)))
697 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
698 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
699 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
700 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
701 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
702 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
703 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
704 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
705 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
706 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
707 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
708 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
709 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
710 	    &symbios_properties },
711 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
712 	    &lsi_properties_scsi },
713 #if defined(__i386) || defined(__amd64)
714 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
715 				    | SD_CONF_BSET_READSUB_BCD
716 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
717 				    | SD_CONF_BSET_NO_READ_HEADER
718 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
719 
720 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
721 				    | SD_CONF_BSET_READSUB_BCD
722 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
723 				    | SD_CONF_BSET_NO_READ_HEADER
724 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
725 #endif /* __i386 || __amd64 */
726 #endif /* sparc NON-fibre or NON-sparc platforms */
727 
728 #if (defined(SD_PROP_TST))
729 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
730 				| SD_CONF_BSET_CTYPE
731 				| SD_CONF_BSET_NRR_COUNT
732 				| SD_CONF_BSET_FAB_DEVID
733 				| SD_CONF_BSET_NOCACHE
734 				| SD_CONF_BSET_BSY_RETRY_COUNT
735 				| SD_CONF_BSET_PLAYMSF_BCD
736 				| SD_CONF_BSET_READSUB_BCD
737 				| SD_CONF_BSET_READ_TOC_TRK_BCD
738 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
739 				| SD_CONF_BSET_NO_READ_HEADER
740 				| SD_CONF_BSET_READ_CD_XD4
741 				| SD_CONF_BSET_RST_RETRIES
742 				| SD_CONF_BSET_RSV_REL_TIME
743 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
744 #endif
745 };
746 
747 static const int sd_disk_table_size =
748 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
749 
750 
751 
752 #define	SD_INTERCONNECT_PARALLEL	0
753 #define	SD_INTERCONNECT_FABRIC		1
754 #define	SD_INTERCONNECT_FIBRE		2
755 #define	SD_INTERCONNECT_SSA		3
756 #define	SD_INTERCONNECT_SATA		4
757 #define	SD_IS_PARALLEL_SCSI(un)		\
758 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
759 #define	SD_IS_SERIAL(un)		\
760 	((un)->un_interconnect_type == SD_INTERCONNECT_SATA)
761 
762 /*
763  * Definitions used by device id registration routines
764  */
765 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
766 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
767 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
768 
769 static kmutex_t sd_sense_mutex = {0};
770 
771 /*
772  * Macros for updates of the driver state
773  */
774 #define	New_state(un, s)        \
775 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
776 #define	Restore_state(un)	\
777 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
778 
779 static struct sd_cdbinfo sd_cdbtab[] = {
780 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
781 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
782 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
783 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
784 };
785 
786 /*
787  * Specifies the number of seconds that must have elapsed since the last
788  * cmd. has completed for a device to be declared idle to the PM framework.
789  */
790 static int sd_pm_idletime = 1;
791 
792 /*
793  * Internal function prototypes
794  */
795 
796 #if (defined(__fibre))
797 /*
798  * These #defines are to avoid namespace collisions that occur because this
799  * code is currently used to compile two seperate driver modules: sd and ssd.
800  * All function names need to be treated this way (even if declared static)
801  * in order to allow the debugger to resolve the names properly.
802  * It is anticipated that in the near future the ssd module will be obsoleted,
803  * at which time this ugliness should go away.
804  */
805 #define	sd_log_trace			ssd_log_trace
806 #define	sd_log_info			ssd_log_info
807 #define	sd_log_err			ssd_log_err
808 #define	sdprobe				ssdprobe
809 #define	sdinfo				ssdinfo
810 #define	sd_prop_op			ssd_prop_op
811 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
812 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
813 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
814 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
815 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
816 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
817 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
818 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
819 #define	sd_spin_up_unit			ssd_spin_up_unit
820 #define	sd_enable_descr_sense		ssd_enable_descr_sense
821 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
822 #define	sd_set_mmc_caps			ssd_set_mmc_caps
823 #define	sd_read_unit_properties		ssd_read_unit_properties
824 #define	sd_process_sdconf_file		ssd_process_sdconf_file
825 #define	sd_process_sdconf_table		ssd_process_sdconf_table
826 #define	sd_sdconf_id_match		ssd_sdconf_id_match
827 #define	sd_blank_cmp			ssd_blank_cmp
828 #define	sd_chk_vers1_data		ssd_chk_vers1_data
829 #define	sd_set_vers1_properties		ssd_set_vers1_properties
830 
831 #define	sd_get_physical_geometry	ssd_get_physical_geometry
832 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
833 #define	sd_update_block_info		ssd_update_block_info
834 #define	sd_register_devid		ssd_register_devid
835 #define	sd_get_devid			ssd_get_devid
836 #define	sd_create_devid			ssd_create_devid
837 #define	sd_write_deviceid		ssd_write_deviceid
838 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
839 #define	sd_setup_pm			ssd_setup_pm
840 #define	sd_create_pm_components		ssd_create_pm_components
841 #define	sd_ddi_suspend			ssd_ddi_suspend
842 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
843 #define	sd_ddi_resume			ssd_ddi_resume
844 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
845 #define	sdpower				ssdpower
846 #define	sdattach			ssdattach
847 #define	sddetach			ssddetach
848 #define	sd_unit_attach			ssd_unit_attach
849 #define	sd_unit_detach			ssd_unit_detach
850 #define	sd_set_unit_attributes		ssd_set_unit_attributes
851 #define	sd_create_errstats		ssd_create_errstats
852 #define	sd_set_errstats			ssd_set_errstats
853 #define	sd_set_pstats			ssd_set_pstats
854 #define	sddump				ssddump
855 #define	sd_scsi_poll			ssd_scsi_poll
856 #define	sd_send_polled_RQS		ssd_send_polled_RQS
857 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
858 #define	sd_init_event_callbacks		ssd_init_event_callbacks
859 #define	sd_event_callback		ssd_event_callback
860 #define	sd_cache_control		ssd_cache_control
861 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
862 #define	sd_make_device			ssd_make_device
863 #define	sdopen				ssdopen
864 #define	sdclose				ssdclose
865 #define	sd_ready_and_valid		ssd_ready_and_valid
866 #define	sdmin				ssdmin
867 #define	sdread				ssdread
868 #define	sdwrite				ssdwrite
869 #define	sdaread				ssdaread
870 #define	sdawrite			ssdawrite
871 #define	sdstrategy			ssdstrategy
872 #define	sdioctl				ssdioctl
873 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
874 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
875 #define	sd_checksum_iostart		ssd_checksum_iostart
876 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
877 #define	sd_pm_iostart			ssd_pm_iostart
878 #define	sd_core_iostart			ssd_core_iostart
879 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
880 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
881 #define	sd_checksum_iodone		ssd_checksum_iodone
882 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
883 #define	sd_pm_iodone			ssd_pm_iodone
884 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
885 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
886 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
887 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
888 #define	sd_buf_iodone			ssd_buf_iodone
889 #define	sd_uscsi_strategy		ssd_uscsi_strategy
890 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
891 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
892 #define	sd_uscsi_iodone			ssd_uscsi_iodone
893 #define	sd_xbuf_strategy		ssd_xbuf_strategy
894 #define	sd_xbuf_init			ssd_xbuf_init
895 #define	sd_pm_entry			ssd_pm_entry
896 #define	sd_pm_exit			ssd_pm_exit
897 
898 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
899 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
900 
901 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
902 #define	sdintr				ssdintr
903 #define	sd_start_cmds			ssd_start_cmds
904 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
905 #define	sd_bioclone_alloc		ssd_bioclone_alloc
906 #define	sd_bioclone_free		ssd_bioclone_free
907 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
908 #define	sd_shadow_buf_free		ssd_shadow_buf_free
909 #define	sd_print_transport_rejected_message	\
910 					ssd_print_transport_rejected_message
911 #define	sd_retry_command		ssd_retry_command
912 #define	sd_set_retry_bp			ssd_set_retry_bp
913 #define	sd_send_request_sense_command	ssd_send_request_sense_command
914 #define	sd_start_retry_command		ssd_start_retry_command
915 #define	sd_start_direct_priority_command	\
916 					ssd_start_direct_priority_command
917 #define	sd_return_failed_command	ssd_return_failed_command
918 #define	sd_return_failed_command_no_restart	\
919 					ssd_return_failed_command_no_restart
920 #define	sd_return_command		ssd_return_command
921 #define	sd_sync_with_callback		ssd_sync_with_callback
922 #define	sdrunout			ssdrunout
923 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
924 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
925 #define	sd_reduce_throttle		ssd_reduce_throttle
926 #define	sd_restore_throttle		ssd_restore_throttle
927 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
928 #define	sd_init_cdb_limits		ssd_init_cdb_limits
929 #define	sd_pkt_status_good		ssd_pkt_status_good
930 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
931 #define	sd_pkt_status_busy		ssd_pkt_status_busy
932 #define	sd_pkt_status_reservation_conflict	\
933 					ssd_pkt_status_reservation_conflict
934 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
935 #define	sd_handle_request_sense		ssd_handle_request_sense
936 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
937 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
938 #define	sd_validate_sense_data		ssd_validate_sense_data
939 #define	sd_decode_sense			ssd_decode_sense
940 #define	sd_print_sense_msg		ssd_print_sense_msg
941 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
942 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
943 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
944 #define	sd_sense_key_medium_or_hardware_error	\
945 					ssd_sense_key_medium_or_hardware_error
946 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
947 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
948 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
949 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
950 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
951 #define	sd_sense_key_default		ssd_sense_key_default
952 #define	sd_print_retry_msg		ssd_print_retry_msg
953 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
954 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
955 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
956 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
957 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
958 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
959 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
960 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
961 #define	sd_pkt_reason_default		ssd_pkt_reason_default
962 #define	sd_reset_target			ssd_reset_target
963 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
964 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
965 #define	sd_taskq_create			ssd_taskq_create
966 #define	sd_taskq_delete			ssd_taskq_delete
967 #define	sd_media_change_task		ssd_media_change_task
968 #define	sd_handle_mchange		ssd_handle_mchange
969 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
970 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
971 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
972 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
973 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
974 					sd_send_scsi_feature_GET_CONFIGURATION
975 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
976 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
977 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
978 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
979 					ssd_send_scsi_PERSISTENT_RESERVE_IN
980 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
981 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
982 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
983 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
984 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
985 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
986 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
987 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
988 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
989 #define	sd_alloc_rqs			ssd_alloc_rqs
990 #define	sd_free_rqs			ssd_free_rqs
991 #define	sd_dump_memory			ssd_dump_memory
992 #define	sd_get_media_info		ssd_get_media_info
993 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
994 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
995 #define	sd_setup_next_xfer		ssd_setup_next_xfer
996 #define	sd_dkio_get_temp		ssd_dkio_get_temp
997 #define	sd_check_mhd			ssd_check_mhd
998 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
999 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1000 #define	sd_sname			ssd_sname
1001 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1002 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1003 #define	sd_take_ownership		ssd_take_ownership
1004 #define	sd_reserve_release		ssd_reserve_release
1005 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1006 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1007 #define	sd_persistent_reservation_in_read_keys	\
1008 					ssd_persistent_reservation_in_read_keys
1009 #define	sd_persistent_reservation_in_read_resv	\
1010 					ssd_persistent_reservation_in_read_resv
1011 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1012 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1013 #define	sd_mhdioc_release		ssd_mhdioc_release
1014 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1015 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1016 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1017 #define	sr_change_blkmode		ssr_change_blkmode
1018 #define	sr_change_speed			ssr_change_speed
1019 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1020 #define	sr_pause_resume			ssr_pause_resume
1021 #define	sr_play_msf			ssr_play_msf
1022 #define	sr_play_trkind			ssr_play_trkind
1023 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1024 #define	sr_read_subchannel		ssr_read_subchannel
1025 #define	sr_read_tocentry		ssr_read_tocentry
1026 #define	sr_read_tochdr			ssr_read_tochdr
1027 #define	sr_read_cdda			ssr_read_cdda
1028 #define	sr_read_cdxa			ssr_read_cdxa
1029 #define	sr_read_mode1			ssr_read_mode1
1030 #define	sr_read_mode2			ssr_read_mode2
1031 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1032 #define	sr_sector_mode			ssr_sector_mode
1033 #define	sr_eject			ssr_eject
1034 #define	sr_ejected			ssr_ejected
1035 #define	sr_check_wp			ssr_check_wp
1036 #define	sd_check_media			ssd_check_media
1037 #define	sd_media_watch_cb		ssd_media_watch_cb
1038 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1039 #define	sr_volume_ctrl			ssr_volume_ctrl
1040 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1041 #define	sd_log_page_supported		ssd_log_page_supported
1042 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1043 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1044 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1045 #define	sd_range_lock			ssd_range_lock
1046 #define	sd_get_range			ssd_get_range
1047 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1048 #define	sd_range_unlock			ssd_range_unlock
1049 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1050 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1051 
1052 #define	sd_iostart_chain		ssd_iostart_chain
1053 #define	sd_iodone_chain			ssd_iodone_chain
1054 #define	sd_initpkt_map			ssd_initpkt_map
1055 #define	sd_destroypkt_map		ssd_destroypkt_map
1056 #define	sd_chain_type_map		ssd_chain_type_map
1057 #define	sd_chain_index_map		ssd_chain_index_map
1058 
1059 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1060 #define	sd_failfast_flushq		ssd_failfast_flushq
1061 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1062 
1063 #define	sd_is_lsi			ssd_is_lsi
1064 #define	sd_tg_rdwr			ssd_tg_rdwr
1065 #define	sd_tg_getinfo			ssd_tg_getinfo
1066 
1067 #endif	/* #if (defined(__fibre)) */
1068 
1069 
1070 int _init(void);
1071 int _fini(void);
1072 int _info(struct modinfo *modinfop);
1073 
1074 /*PRINTFLIKE3*/
1075 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1076 /*PRINTFLIKE3*/
1077 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1078 /*PRINTFLIKE3*/
1079 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1080 
1081 static int sdprobe(dev_info_t *devi);
1082 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1083     void **result);
1084 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1085     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1086 
1087 /*
1088  * Smart probe for parallel scsi
1089  */
1090 static void sd_scsi_probe_cache_init(void);
1091 static void sd_scsi_probe_cache_fini(void);
1092 static void sd_scsi_clear_probe_cache(void);
1093 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1094 
1095 /*
1096  * Attached luns on target for parallel scsi
1097  */
1098 static void sd_scsi_target_lun_init(void);
1099 static void sd_scsi_target_lun_fini(void);
1100 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1101 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1102 
1103 static int	sd_spin_up_unit(struct sd_lun *un);
1104 #ifdef _LP64
1105 static void	sd_enable_descr_sense(struct sd_lun *un);
1106 static void	sd_reenable_dsense_task(void *arg);
1107 #endif /* _LP64 */
1108 
1109 static void	sd_set_mmc_caps(struct sd_lun *un);
1110 
1111 static void sd_read_unit_properties(struct sd_lun *un);
1112 static int  sd_process_sdconf_file(struct sd_lun *un);
1113 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1114     int *data_list, sd_tunables *values);
1115 static void sd_process_sdconf_table(struct sd_lun *un);
1116 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1117 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1118 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1119 	int list_len, char *dataname_ptr);
1120 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1121     sd_tunables *prop_list);
1122 
1123 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi,
1124     int reservation_flag);
1125 static int  sd_get_devid(struct sd_lun *un);
1126 static int  sd_get_serialnum(struct sd_lun *un, uchar_t *wwn, int *len);
1127 static ddi_devid_t sd_create_devid(struct sd_lun *un);
1128 static int  sd_write_deviceid(struct sd_lun *un);
1129 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1130 static int  sd_check_vpd_page_support(struct sd_lun *un);
1131 
1132 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi);
1133 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1134 
1135 static int  sd_ddi_suspend(dev_info_t *devi);
1136 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1137 static int  sd_ddi_resume(dev_info_t *devi);
1138 static int  sd_ddi_pm_resume(struct sd_lun *un);
1139 static int  sdpower(dev_info_t *devi, int component, int level);
1140 
1141 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1142 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1143 static int  sd_unit_attach(dev_info_t *devi);
1144 static int  sd_unit_detach(dev_info_t *devi);
1145 
1146 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1147 static void sd_create_errstats(struct sd_lun *un, int instance);
1148 static void sd_set_errstats(struct sd_lun *un);
1149 static void sd_set_pstats(struct sd_lun *un);
1150 
1151 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1152 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1153 static int  sd_send_polled_RQS(struct sd_lun *un);
1154 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1155 
1156 #if (defined(__fibre))
1157 /*
1158  * Event callbacks (photon)
1159  */
1160 static void sd_init_event_callbacks(struct sd_lun *un);
1161 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1162 #endif
1163 
1164 /*
1165  * Defines for sd_cache_control
1166  */
1167 
1168 #define	SD_CACHE_ENABLE		1
1169 #define	SD_CACHE_DISABLE	0
1170 #define	SD_CACHE_NOCHANGE	-1
1171 
1172 static int   sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag);
1173 static int   sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled);
1174 static dev_t sd_make_device(dev_info_t *devi);
1175 
1176 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1177 	uint64_t capacity);
1178 
1179 /*
1180  * Driver entry point functions.
1181  */
1182 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1183 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1184 static int  sd_ready_and_valid(struct sd_lun *un);
1185 
1186 static void sdmin(struct buf *bp);
1187 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1188 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1189 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1190 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1191 
1192 static int sdstrategy(struct buf *bp);
1193 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1194 
1195 /*
1196  * Function prototypes for layering functions in the iostart chain.
1197  */
1198 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1199 	struct buf *bp);
1200 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1201 	struct buf *bp);
1202 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1203 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1204 	struct buf *bp);
1205 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1206 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1207 
1208 /*
1209  * Function prototypes for layering functions in the iodone chain.
1210  */
1211 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1212 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1213 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1214 	struct buf *bp);
1215 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1216 	struct buf *bp);
1217 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1218 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1219 	struct buf *bp);
1220 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1221 
1222 /*
1223  * Prototypes for functions to support buf(9S) based IO.
1224  */
1225 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1226 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1227 static void sd_destroypkt_for_buf(struct buf *);
1228 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1229 	struct buf *bp, int flags,
1230 	int (*callback)(caddr_t), caddr_t callback_arg,
1231 	diskaddr_t lba, uint32_t blockcount);
1232 #if defined(__i386) || defined(__amd64)
1233 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1234 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1235 #endif /* defined(__i386) || defined(__amd64) */
1236 
1237 /*
1238  * Prototypes for functions to support USCSI IO.
1239  */
1240 static int sd_uscsi_strategy(struct buf *bp);
1241 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1242 static void sd_destroypkt_for_uscsi(struct buf *);
1243 
1244 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1245 	uchar_t chain_type, void *pktinfop);
1246 
1247 static int  sd_pm_entry(struct sd_lun *un);
1248 static void sd_pm_exit(struct sd_lun *un);
1249 
1250 static void sd_pm_idletimeout_handler(void *arg);
1251 
1252 /*
1253  * sd_core internal functions (used at the sd_core_io layer).
1254  */
1255 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1256 static void sdintr(struct scsi_pkt *pktp);
1257 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1258 
1259 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1260 	enum uio_seg dataspace, int path_flag);
1261 
1262 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1263 	daddr_t blkno, int (*func)(struct buf *));
1264 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1265 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1266 static void sd_bioclone_free(struct buf *bp);
1267 static void sd_shadow_buf_free(struct buf *bp);
1268 
1269 static void sd_print_transport_rejected_message(struct sd_lun *un,
1270 	struct sd_xbuf *xp, int code);
1271 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1272     void *arg, int code);
1273 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1274     void *arg, int code);
1275 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1276     void *arg, int code);
1277 
1278 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1279 	int retry_check_flag,
1280 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1281 		int c),
1282 	void *user_arg, int failure_code,  clock_t retry_delay,
1283 	void (*statp)(kstat_io_t *));
1284 
1285 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1286 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1287 
1288 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1289 	struct scsi_pkt *pktp);
1290 static void sd_start_retry_command(void *arg);
1291 static void sd_start_direct_priority_command(void *arg);
1292 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1293 	int errcode);
1294 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1295 	struct buf *bp, int errcode);
1296 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1297 static void sd_sync_with_callback(struct sd_lun *un);
1298 static int sdrunout(caddr_t arg);
1299 
1300 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1301 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1302 
1303 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1304 static void sd_restore_throttle(void *arg);
1305 
1306 static void sd_init_cdb_limits(struct sd_lun *un);
1307 
1308 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1309 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1310 
1311 /*
1312  * Error handling functions
1313  */
1314 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1315 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1316 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1317 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1318 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1319 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1320 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1321 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1322 
1323 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1324 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1325 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1326 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1327 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1328 	struct sd_xbuf *xp);
1329 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1330 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1331 
1332 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1333 	void *arg, int code);
1334 
1335 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1336 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1337 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1338 	uint8_t *sense_datap,
1339 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1340 static void sd_sense_key_not_ready(struct sd_lun *un,
1341 	uint8_t *sense_datap,
1342 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1343 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1344 	uint8_t *sense_datap,
1345 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1346 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1347 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1348 static void sd_sense_key_unit_attention(struct sd_lun *un,
1349 	uint8_t *sense_datap,
1350 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1351 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1352 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1353 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1354 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1355 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1356 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1357 static void sd_sense_key_default(struct sd_lun *un,
1358 	uint8_t *sense_datap,
1359 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1360 
1361 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1362 	void *arg, int flag);
1363 
1364 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1365 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1366 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1367 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1368 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1369 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1370 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1371 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1372 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1373 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1374 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1375 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1376 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1377 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1378 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1379 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1380 
1381 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1382 
1383 static void sd_start_stop_unit_callback(void *arg);
1384 static void sd_start_stop_unit_task(void *arg);
1385 
1386 static void sd_taskq_create(void);
1387 static void sd_taskq_delete(void);
1388 static void sd_media_change_task(void *arg);
1389 
1390 static int sd_handle_mchange(struct sd_lun *un);
1391 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag);
1392 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp,
1393 	uint32_t *lbap, int path_flag);
1394 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
1395 	uint32_t *lbap, int path_flag);
1396 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag,
1397 	int path_flag);
1398 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr,
1399 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1400 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag);
1401 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un,
1402 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1403 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un,
1404 	uchar_t usr_cmd, uchar_t *usr_bufp);
1405 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1406 	struct dk_callback *dkc);
1407 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1408 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un,
1409 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1410 	uchar_t *bufaddr, uint_t buflen, int path_flag);
1411 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
1412 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1413 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1414 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize,
1415 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1416 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize,
1417 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1418 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
1419 	size_t buflen, daddr_t start_block, int path_flag);
1420 #define	sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag)	\
1421 	sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \
1422 	path_flag)
1423 #define	sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag)	\
1424 	sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\
1425 	path_flag)
1426 
1427 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr,
1428 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1429 	uint16_t param_ptr, int path_flag);
1430 
1431 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1432 static void sd_free_rqs(struct sd_lun *un);
1433 
1434 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1435 	uchar_t *data, int len, int fmt);
1436 static void sd_panic_for_res_conflict(struct sd_lun *un);
1437 
1438 /*
1439  * Disk Ioctl Function Prototypes
1440  */
1441 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1442 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1443 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1444 
1445 /*
1446  * Multi-host Ioctl Prototypes
1447  */
1448 static int sd_check_mhd(dev_t dev, int interval);
1449 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1450 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1451 static char *sd_sname(uchar_t status);
1452 static void sd_mhd_resvd_recover(void *arg);
1453 static void sd_resv_reclaim_thread();
1454 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1455 static int sd_reserve_release(dev_t dev, int cmd);
1456 static void sd_rmv_resv_reclaim_req(dev_t dev);
1457 static void sd_mhd_reset_notify_cb(caddr_t arg);
1458 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1459 	mhioc_inkeys_t *usrp, int flag);
1460 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1461 	mhioc_inresvs_t *usrp, int flag);
1462 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1463 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1464 static int sd_mhdioc_release(dev_t dev);
1465 static int sd_mhdioc_register_devid(dev_t dev);
1466 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1467 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1468 
1469 /*
1470  * SCSI removable prototypes
1471  */
1472 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1473 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1474 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1475 static int sr_pause_resume(dev_t dev, int mode);
1476 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1477 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1478 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1479 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1480 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1481 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1482 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1483 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1484 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1485 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1486 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1487 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1488 static int sr_eject(dev_t dev);
1489 static void sr_ejected(register struct sd_lun *un);
1490 static int sr_check_wp(dev_t dev);
1491 static int sd_check_media(dev_t dev, enum dkio_state state);
1492 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1493 static void sd_delayed_cv_broadcast(void *arg);
1494 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1495 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1496 
1497 static int sd_log_page_supported(struct sd_lun *un, int log_page);
1498 
1499 /*
1500  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1501  */
1502 static void sd_check_for_writable_cd(struct sd_lun *un, int path_flag);
1503 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1504 static void sd_wm_cache_destructor(void *wm, void *un);
1505 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1506 	daddr_t endb, ushort_t typ);
1507 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1508 	daddr_t endb);
1509 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1510 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1511 static void sd_read_modify_write_task(void * arg);
1512 static int
1513 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1514 	struct buf **bpp);
1515 
1516 
1517 /*
1518  * Function prototypes for failfast support.
1519  */
1520 static void sd_failfast_flushq(struct sd_lun *un);
1521 static int sd_failfast_flushq_callback(struct buf *bp);
1522 
1523 /*
1524  * Function prototypes to check for lsi devices
1525  */
1526 static void sd_is_lsi(struct sd_lun *un);
1527 
1528 /*
1529  * Function prototypes for x86 support
1530  */
1531 #if defined(__i386) || defined(__amd64)
1532 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1533 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1534 #endif
1535 
1536 
1537 /* Function prototypes for cmlb */
1538 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1539     diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1540 
1541 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1542 
1543 /*
1544  * Constants for failfast support:
1545  *
1546  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1547  * failfast processing being performed.
1548  *
1549  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1550  * failfast processing on all bufs with B_FAILFAST set.
1551  */
1552 
1553 #define	SD_FAILFAST_INACTIVE		0
1554 #define	SD_FAILFAST_ACTIVE		1
1555 
1556 /*
1557  * Bitmask to control behavior of buf(9S) flushes when a transition to
1558  * the failfast state occurs. Optional bits include:
1559  *
1560  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1561  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1562  * be flushed.
1563  *
1564  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1565  * driver, in addition to the regular wait queue. This includes the xbuf
1566  * queues. When clear, only the driver's wait queue will be flushed.
1567  */
1568 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1569 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1570 
1571 /*
1572  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1573  * to flush all queues within the driver.
1574  */
1575 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1576 
1577 
1578 /*
1579  * SD Testing Fault Injection
1580  */
1581 #ifdef SD_FAULT_INJECTION
1582 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1583 static void sd_faultinjection(struct scsi_pkt *pktp);
1584 static void sd_injection_log(char *buf, struct sd_lun *un);
1585 #endif
1586 
1587 /*
1588  * Device driver ops vector
1589  */
1590 static struct cb_ops sd_cb_ops = {
1591 	sdopen,			/* open */
1592 	sdclose,		/* close */
1593 	sdstrategy,		/* strategy */
1594 	nodev,			/* print */
1595 	sddump,			/* dump */
1596 	sdread,			/* read */
1597 	sdwrite,		/* write */
1598 	sdioctl,		/* ioctl */
1599 	nodev,			/* devmap */
1600 	nodev,			/* mmap */
1601 	nodev,			/* segmap */
1602 	nochpoll,		/* poll */
1603 	sd_prop_op,		/* cb_prop_op */
1604 	0,			/* streamtab  */
1605 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1606 	CB_REV,			/* cb_rev */
1607 	sdaread, 		/* async I/O read entry point */
1608 	sdawrite		/* async I/O write entry point */
1609 };
1610 
1611 static struct dev_ops sd_ops = {
1612 	DEVO_REV,		/* devo_rev, */
1613 	0,			/* refcnt  */
1614 	sdinfo,			/* info */
1615 	nulldev,		/* identify */
1616 	sdprobe,		/* probe */
1617 	sdattach,		/* attach */
1618 	sddetach,		/* detach */
1619 	nodev,			/* reset */
1620 	&sd_cb_ops,		/* driver operations */
1621 	NULL,			/* bus operations */
1622 	sdpower			/* power */
1623 };
1624 
1625 
1626 /*
1627  * This is the loadable module wrapper.
1628  */
1629 #include <sys/modctl.h>
1630 
1631 static struct modldrv modldrv = {
1632 	&mod_driverops,		/* Type of module. This one is a driver */
1633 	SD_MODULE_NAME,		/* Module name. */
1634 	&sd_ops			/* driver ops */
1635 };
1636 
1637 
1638 static struct modlinkage modlinkage = {
1639 	MODREV_1,
1640 	&modldrv,
1641 	NULL
1642 };
1643 
1644 static cmlb_tg_ops_t sd_tgops = {
1645 	TG_DK_OPS_VERSION_1,
1646 	sd_tg_rdwr,
1647 	sd_tg_getinfo
1648 	};
1649 
1650 static struct scsi_asq_key_strings sd_additional_codes[] = {
1651 	0x81, 0, "Logical Unit is Reserved",
1652 	0x85, 0, "Audio Address Not Valid",
1653 	0xb6, 0, "Media Load Mechanism Failed",
1654 	0xB9, 0, "Audio Play Operation Aborted",
1655 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1656 	0x53, 2, "Medium removal prevented",
1657 	0x6f, 0, "Authentication failed during key exchange",
1658 	0x6f, 1, "Key not present",
1659 	0x6f, 2, "Key not established",
1660 	0x6f, 3, "Read without proper authentication",
1661 	0x6f, 4, "Mismatched region to this logical unit",
1662 	0x6f, 5, "Region reset count error",
1663 	0xffff, 0x0, NULL
1664 };
1665 
1666 
1667 /*
1668  * Struct for passing printing information for sense data messages
1669  */
1670 struct sd_sense_info {
1671 	int	ssi_severity;
1672 	int	ssi_pfa_flag;
1673 };
1674 
1675 /*
1676  * Table of function pointers for iostart-side routines. Seperate "chains"
1677  * of layered function calls are formed by placing the function pointers
1678  * sequentially in the desired order. Functions are called according to an
1679  * incrementing table index ordering. The last function in each chain must
1680  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1681  * in the sd_iodone_chain[] array.
1682  *
1683  * Note: It may seem more natural to organize both the iostart and iodone
1684  * functions together, into an array of structures (or some similar
1685  * organization) with a common index, rather than two seperate arrays which
1686  * must be maintained in synchronization. The purpose of this division is
1687  * to achiece improved performance: individual arrays allows for more
1688  * effective cache line utilization on certain platforms.
1689  */
1690 
1691 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1692 
1693 
1694 static sd_chain_t sd_iostart_chain[] = {
1695 
1696 	/* Chain for buf IO for disk drive targets (PM enabled) */
1697 	sd_mapblockaddr_iostart,	/* Index: 0 */
1698 	sd_pm_iostart,			/* Index: 1 */
1699 	sd_core_iostart,		/* Index: 2 */
1700 
1701 	/* Chain for buf IO for disk drive targets (PM disabled) */
1702 	sd_mapblockaddr_iostart,	/* Index: 3 */
1703 	sd_core_iostart,		/* Index: 4 */
1704 
1705 	/* Chain for buf IO for removable-media targets (PM enabled) */
1706 	sd_mapblockaddr_iostart,	/* Index: 5 */
1707 	sd_mapblocksize_iostart,	/* Index: 6 */
1708 	sd_pm_iostart,			/* Index: 7 */
1709 	sd_core_iostart,		/* Index: 8 */
1710 
1711 	/* Chain for buf IO for removable-media targets (PM disabled) */
1712 	sd_mapblockaddr_iostart,	/* Index: 9 */
1713 	sd_mapblocksize_iostart,	/* Index: 10 */
1714 	sd_core_iostart,		/* Index: 11 */
1715 
1716 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1717 	sd_mapblockaddr_iostart,	/* Index: 12 */
1718 	sd_checksum_iostart,		/* Index: 13 */
1719 	sd_pm_iostart,			/* Index: 14 */
1720 	sd_core_iostart,		/* Index: 15 */
1721 
1722 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1723 	sd_mapblockaddr_iostart,	/* Index: 16 */
1724 	sd_checksum_iostart,		/* Index: 17 */
1725 	sd_core_iostart,		/* Index: 18 */
1726 
1727 	/* Chain for USCSI commands (all targets) */
1728 	sd_pm_iostart,			/* Index: 19 */
1729 	sd_core_iostart,		/* Index: 20 */
1730 
1731 	/* Chain for checksumming USCSI commands (all targets) */
1732 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1733 	sd_pm_iostart,			/* Index: 22 */
1734 	sd_core_iostart,		/* Index: 23 */
1735 
1736 	/* Chain for "direct" USCSI commands (all targets) */
1737 	sd_core_iostart,		/* Index: 24 */
1738 
1739 	/* Chain for "direct priority" USCSI commands (all targets) */
1740 	sd_core_iostart,		/* Index: 25 */
1741 };
1742 
1743 /*
1744  * Macros to locate the first function of each iostart chain in the
1745  * sd_iostart_chain[] array. These are located by the index in the array.
1746  */
1747 #define	SD_CHAIN_DISK_IOSTART			0
1748 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1749 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1750 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1751 #define	SD_CHAIN_CHKSUM_IOSTART			12
1752 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1753 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1754 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1755 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1756 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1757 
1758 
1759 /*
1760  * Table of function pointers for the iodone-side routines for the driver-
1761  * internal layering mechanism.  The calling sequence for iodone routines
1762  * uses a decrementing table index, so the last routine called in a chain
1763  * must be at the lowest array index location for that chain.  The last
1764  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1765  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1766  * of the functions in an iodone side chain must correspond to the ordering
1767  * of the iostart routines for that chain.  Note that there is no iodone
1768  * side routine that corresponds to sd_core_iostart(), so there is no
1769  * entry in the table for this.
1770  */
1771 
1772 static sd_chain_t sd_iodone_chain[] = {
1773 
1774 	/* Chain for buf IO for disk drive targets (PM enabled) */
1775 	sd_buf_iodone,			/* Index: 0 */
1776 	sd_mapblockaddr_iodone,		/* Index: 1 */
1777 	sd_pm_iodone,			/* Index: 2 */
1778 
1779 	/* Chain for buf IO for disk drive targets (PM disabled) */
1780 	sd_buf_iodone,			/* Index: 3 */
1781 	sd_mapblockaddr_iodone,		/* Index: 4 */
1782 
1783 	/* Chain for buf IO for removable-media targets (PM enabled) */
1784 	sd_buf_iodone,			/* Index: 5 */
1785 	sd_mapblockaddr_iodone,		/* Index: 6 */
1786 	sd_mapblocksize_iodone,		/* Index: 7 */
1787 	sd_pm_iodone,			/* Index: 8 */
1788 
1789 	/* Chain for buf IO for removable-media targets (PM disabled) */
1790 	sd_buf_iodone,			/* Index: 9 */
1791 	sd_mapblockaddr_iodone,		/* Index: 10 */
1792 	sd_mapblocksize_iodone,		/* Index: 11 */
1793 
1794 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1795 	sd_buf_iodone,			/* Index: 12 */
1796 	sd_mapblockaddr_iodone,		/* Index: 13 */
1797 	sd_checksum_iodone,		/* Index: 14 */
1798 	sd_pm_iodone,			/* Index: 15 */
1799 
1800 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1801 	sd_buf_iodone,			/* Index: 16 */
1802 	sd_mapblockaddr_iodone,		/* Index: 17 */
1803 	sd_checksum_iodone,		/* Index: 18 */
1804 
1805 	/* Chain for USCSI commands (non-checksum targets) */
1806 	sd_uscsi_iodone,		/* Index: 19 */
1807 	sd_pm_iodone,			/* Index: 20 */
1808 
1809 	/* Chain for USCSI commands (checksum targets) */
1810 	sd_uscsi_iodone,		/* Index: 21 */
1811 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1812 	sd_pm_iodone,			/* Index: 22 */
1813 
1814 	/* Chain for "direct" USCSI commands (all targets) */
1815 	sd_uscsi_iodone,		/* Index: 24 */
1816 
1817 	/* Chain for "direct priority" USCSI commands (all targets) */
1818 	sd_uscsi_iodone,		/* Index: 25 */
1819 };
1820 
1821 
1822 /*
1823  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1824  * each iodone-side chain. These are located by the array index, but as the
1825  * iodone side functions are called in a decrementing-index order, the
1826  * highest index number in each chain must be specified (as these correspond
1827  * to the first function in the iodone chain that will be called by the core
1828  * at IO completion time).
1829  */
1830 
1831 #define	SD_CHAIN_DISK_IODONE			2
1832 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1833 #define	SD_CHAIN_RMMEDIA_IODONE			8
1834 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1835 #define	SD_CHAIN_CHKSUM_IODONE			15
1836 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1837 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1838 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1839 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1840 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1841 
1842 
1843 
1844 
1845 /*
1846  * Array to map a layering chain index to the appropriate initpkt routine.
1847  * The redundant entries are present so that the index used for accessing
1848  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1849  * with this table as well.
1850  */
1851 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1852 
1853 static sd_initpkt_t	sd_initpkt_map[] = {
1854 
1855 	/* Chain for buf IO for disk drive targets (PM enabled) */
1856 	sd_initpkt_for_buf,		/* Index: 0 */
1857 	sd_initpkt_for_buf,		/* Index: 1 */
1858 	sd_initpkt_for_buf,		/* Index: 2 */
1859 
1860 	/* Chain for buf IO for disk drive targets (PM disabled) */
1861 	sd_initpkt_for_buf,		/* Index: 3 */
1862 	sd_initpkt_for_buf,		/* Index: 4 */
1863 
1864 	/* Chain for buf IO for removable-media targets (PM enabled) */
1865 	sd_initpkt_for_buf,		/* Index: 5 */
1866 	sd_initpkt_for_buf,		/* Index: 6 */
1867 	sd_initpkt_for_buf,		/* Index: 7 */
1868 	sd_initpkt_for_buf,		/* Index: 8 */
1869 
1870 	/* Chain for buf IO for removable-media targets (PM disabled) */
1871 	sd_initpkt_for_buf,		/* Index: 9 */
1872 	sd_initpkt_for_buf,		/* Index: 10 */
1873 	sd_initpkt_for_buf,		/* Index: 11 */
1874 
1875 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1876 	sd_initpkt_for_buf,		/* Index: 12 */
1877 	sd_initpkt_for_buf,		/* Index: 13 */
1878 	sd_initpkt_for_buf,		/* Index: 14 */
1879 	sd_initpkt_for_buf,		/* Index: 15 */
1880 
1881 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1882 	sd_initpkt_for_buf,		/* Index: 16 */
1883 	sd_initpkt_for_buf,		/* Index: 17 */
1884 	sd_initpkt_for_buf,		/* Index: 18 */
1885 
1886 	/* Chain for USCSI commands (non-checksum targets) */
1887 	sd_initpkt_for_uscsi,		/* Index: 19 */
1888 	sd_initpkt_for_uscsi,		/* Index: 20 */
1889 
1890 	/* Chain for USCSI commands (checksum targets) */
1891 	sd_initpkt_for_uscsi,		/* Index: 21 */
1892 	sd_initpkt_for_uscsi,		/* Index: 22 */
1893 	sd_initpkt_for_uscsi,		/* Index: 22 */
1894 
1895 	/* Chain for "direct" USCSI commands (all targets) */
1896 	sd_initpkt_for_uscsi,		/* Index: 24 */
1897 
1898 	/* Chain for "direct priority" USCSI commands (all targets) */
1899 	sd_initpkt_for_uscsi,		/* Index: 25 */
1900 
1901 };
1902 
1903 
1904 /*
1905  * Array to map a layering chain index to the appropriate destroypktpkt routine.
1906  * The redundant entries are present so that the index used for accessing
1907  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1908  * with this table as well.
1909  */
1910 typedef void (*sd_destroypkt_t)(struct buf *);
1911 
1912 static sd_destroypkt_t	sd_destroypkt_map[] = {
1913 
1914 	/* Chain for buf IO for disk drive targets (PM enabled) */
1915 	sd_destroypkt_for_buf,		/* Index: 0 */
1916 	sd_destroypkt_for_buf,		/* Index: 1 */
1917 	sd_destroypkt_for_buf,		/* Index: 2 */
1918 
1919 	/* Chain for buf IO for disk drive targets (PM disabled) */
1920 	sd_destroypkt_for_buf,		/* Index: 3 */
1921 	sd_destroypkt_for_buf,		/* Index: 4 */
1922 
1923 	/* Chain for buf IO for removable-media targets (PM enabled) */
1924 	sd_destroypkt_for_buf,		/* Index: 5 */
1925 	sd_destroypkt_for_buf,		/* Index: 6 */
1926 	sd_destroypkt_for_buf,		/* Index: 7 */
1927 	sd_destroypkt_for_buf,		/* Index: 8 */
1928 
1929 	/* Chain for buf IO for removable-media targets (PM disabled) */
1930 	sd_destroypkt_for_buf,		/* Index: 9 */
1931 	sd_destroypkt_for_buf,		/* Index: 10 */
1932 	sd_destroypkt_for_buf,		/* Index: 11 */
1933 
1934 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1935 	sd_destroypkt_for_buf,		/* Index: 12 */
1936 	sd_destroypkt_for_buf,		/* Index: 13 */
1937 	sd_destroypkt_for_buf,		/* Index: 14 */
1938 	sd_destroypkt_for_buf,		/* Index: 15 */
1939 
1940 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1941 	sd_destroypkt_for_buf,		/* Index: 16 */
1942 	sd_destroypkt_for_buf,		/* Index: 17 */
1943 	sd_destroypkt_for_buf,		/* Index: 18 */
1944 
1945 	/* Chain for USCSI commands (non-checksum targets) */
1946 	sd_destroypkt_for_uscsi,	/* Index: 19 */
1947 	sd_destroypkt_for_uscsi,	/* Index: 20 */
1948 
1949 	/* Chain for USCSI commands (checksum targets) */
1950 	sd_destroypkt_for_uscsi,	/* Index: 21 */
1951 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1952 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1953 
1954 	/* Chain for "direct" USCSI commands (all targets) */
1955 	sd_destroypkt_for_uscsi,	/* Index: 24 */
1956 
1957 	/* Chain for "direct priority" USCSI commands (all targets) */
1958 	sd_destroypkt_for_uscsi,	/* Index: 25 */
1959 
1960 };
1961 
1962 
1963 
1964 /*
1965  * Array to map a layering chain index to the appropriate chain "type".
1966  * The chain type indicates a specific property/usage of the chain.
1967  * The redundant entries are present so that the index used for accessing
1968  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1969  * with this table as well.
1970  */
1971 
1972 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
1973 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
1974 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
1975 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
1976 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
1977 						/* (for error recovery) */
1978 
1979 static int sd_chain_type_map[] = {
1980 
1981 	/* Chain for buf IO for disk drive targets (PM enabled) */
1982 	SD_CHAIN_BUFIO,			/* Index: 0 */
1983 	SD_CHAIN_BUFIO,			/* Index: 1 */
1984 	SD_CHAIN_BUFIO,			/* Index: 2 */
1985 
1986 	/* Chain for buf IO for disk drive targets (PM disabled) */
1987 	SD_CHAIN_BUFIO,			/* Index: 3 */
1988 	SD_CHAIN_BUFIO,			/* Index: 4 */
1989 
1990 	/* Chain for buf IO for removable-media targets (PM enabled) */
1991 	SD_CHAIN_BUFIO,			/* Index: 5 */
1992 	SD_CHAIN_BUFIO,			/* Index: 6 */
1993 	SD_CHAIN_BUFIO,			/* Index: 7 */
1994 	SD_CHAIN_BUFIO,			/* Index: 8 */
1995 
1996 	/* Chain for buf IO for removable-media targets (PM disabled) */
1997 	SD_CHAIN_BUFIO,			/* Index: 9 */
1998 	SD_CHAIN_BUFIO,			/* Index: 10 */
1999 	SD_CHAIN_BUFIO,			/* Index: 11 */
2000 
2001 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2002 	SD_CHAIN_BUFIO,			/* Index: 12 */
2003 	SD_CHAIN_BUFIO,			/* Index: 13 */
2004 	SD_CHAIN_BUFIO,			/* Index: 14 */
2005 	SD_CHAIN_BUFIO,			/* Index: 15 */
2006 
2007 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2008 	SD_CHAIN_BUFIO,			/* Index: 16 */
2009 	SD_CHAIN_BUFIO,			/* Index: 17 */
2010 	SD_CHAIN_BUFIO,			/* Index: 18 */
2011 
2012 	/* Chain for USCSI commands (non-checksum targets) */
2013 	SD_CHAIN_USCSI,			/* Index: 19 */
2014 	SD_CHAIN_USCSI,			/* Index: 20 */
2015 
2016 	/* Chain for USCSI commands (checksum targets) */
2017 	SD_CHAIN_USCSI,			/* Index: 21 */
2018 	SD_CHAIN_USCSI,			/* Index: 22 */
2019 	SD_CHAIN_USCSI,			/* Index: 22 */
2020 
2021 	/* Chain for "direct" USCSI commands (all targets) */
2022 	SD_CHAIN_DIRECT,		/* Index: 24 */
2023 
2024 	/* Chain for "direct priority" USCSI commands (all targets) */
2025 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2026 };
2027 
2028 
2029 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2030 #define	SD_IS_BUFIO(xp)			\
2031 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2032 
2033 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2034 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2035 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2036 
2037 
2038 
2039 /*
2040  * Struct, array, and macros to map a specific chain to the appropriate
2041  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2042  *
2043  * The sd_chain_index_map[] array is used at attach time to set the various
2044  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2045  * chain to be used with the instance. This allows different instances to use
2046  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2047  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2048  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2049  * dynamically & without the use of locking; and (2) a layer may update the
2050  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2051  * to allow for deferred processing of an IO within the same chain from a
2052  * different execution context.
2053  */
2054 
2055 struct sd_chain_index {
2056 	int	sci_iostart_index;
2057 	int	sci_iodone_index;
2058 };
2059 
2060 static struct sd_chain_index	sd_chain_index_map[] = {
2061 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2062 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2063 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2064 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2065 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2066 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2067 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2068 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2069 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2070 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2071 };
2072 
2073 
2074 /*
2075  * The following are indexes into the sd_chain_index_map[] array.
2076  */
2077 
2078 /* un->un_buf_chain_type must be set to one of these */
2079 #define	SD_CHAIN_INFO_DISK		0
2080 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2081 #define	SD_CHAIN_INFO_RMMEDIA		2
2082 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2083 #define	SD_CHAIN_INFO_CHKSUM		4
2084 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2085 
2086 /* un->un_uscsi_chain_type must be set to one of these */
2087 #define	SD_CHAIN_INFO_USCSI_CMD		6
2088 /* USCSI with PM disabled is the same as DIRECT */
2089 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2090 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2091 
2092 /* un->un_direct_chain_type must be set to one of these */
2093 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2094 
2095 /* un->un_priority_chain_type must be set to one of these */
2096 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2097 
2098 /* size for devid inquiries */
2099 #define	MAX_INQUIRY_SIZE		0xF0
2100 
2101 /*
2102  * Macros used by functions to pass a given buf(9S) struct along to the
2103  * next function in the layering chain for further processing.
2104  *
2105  * In the following macros, passing more than three arguments to the called
2106  * routines causes the optimizer for the SPARC compiler to stop doing tail
2107  * call elimination which results in significant performance degradation.
2108  */
2109 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2110 	((*(sd_iostart_chain[index]))(index, un, bp))
2111 
2112 #define	SD_BEGIN_IODONE(index, un, bp)	\
2113 	((*(sd_iodone_chain[index]))(index, un, bp))
2114 
2115 #define	SD_NEXT_IOSTART(index, un, bp)				\
2116 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2117 
2118 #define	SD_NEXT_IODONE(index, un, bp)				\
2119 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2120 
2121 /*
2122  *    Function: _init
2123  *
2124  * Description: This is the driver _init(9E) entry point.
2125  *
2126  * Return Code: Returns the value from mod_install(9F) or
2127  *		ddi_soft_state_init(9F) as appropriate.
2128  *
2129  *     Context: Called when driver module loaded.
2130  */
2131 
2132 int
2133 _init(void)
2134 {
2135 	int	err;
2136 
2137 	/* establish driver name from module name */
2138 	sd_label = mod_modname(&modlinkage);
2139 
2140 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2141 		SD_MAXUNIT);
2142 
2143 	if (err != 0) {
2144 		return (err);
2145 	}
2146 
2147 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2148 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2149 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2150 
2151 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2152 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2153 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2154 
2155 	/*
2156 	 * it's ok to init here even for fibre device
2157 	 */
2158 	sd_scsi_probe_cache_init();
2159 
2160 	sd_scsi_target_lun_init();
2161 
2162 	/*
2163 	 * Creating taskq before mod_install ensures that all callers (threads)
2164 	 * that enter the module after a successfull mod_install encounter
2165 	 * a valid taskq.
2166 	 */
2167 	sd_taskq_create();
2168 
2169 	err = mod_install(&modlinkage);
2170 	if (err != 0) {
2171 		/* delete taskq if install fails */
2172 		sd_taskq_delete();
2173 
2174 		mutex_destroy(&sd_detach_mutex);
2175 		mutex_destroy(&sd_log_mutex);
2176 		mutex_destroy(&sd_label_mutex);
2177 
2178 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2179 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2180 		cv_destroy(&sd_tr.srq_inprocess_cv);
2181 
2182 		sd_scsi_probe_cache_fini();
2183 
2184 		sd_scsi_target_lun_fini();
2185 
2186 		ddi_soft_state_fini(&sd_state);
2187 		return (err);
2188 	}
2189 
2190 	return (err);
2191 }
2192 
2193 
2194 /*
2195  *    Function: _fini
2196  *
2197  * Description: This is the driver _fini(9E) entry point.
2198  *
2199  * Return Code: Returns the value from mod_remove(9F)
2200  *
2201  *     Context: Called when driver module is unloaded.
2202  */
2203 
2204 int
2205 _fini(void)
2206 {
2207 	int err;
2208 
2209 	if ((err = mod_remove(&modlinkage)) != 0) {
2210 		return (err);
2211 	}
2212 
2213 	sd_taskq_delete();
2214 
2215 	mutex_destroy(&sd_detach_mutex);
2216 	mutex_destroy(&sd_log_mutex);
2217 	mutex_destroy(&sd_label_mutex);
2218 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2219 
2220 	sd_scsi_probe_cache_fini();
2221 
2222 	sd_scsi_target_lun_fini();
2223 
2224 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2225 	cv_destroy(&sd_tr.srq_inprocess_cv);
2226 
2227 	ddi_soft_state_fini(&sd_state);
2228 
2229 	return (err);
2230 }
2231 
2232 
2233 /*
2234  *    Function: _info
2235  *
2236  * Description: This is the driver _info(9E) entry point.
2237  *
2238  *   Arguments: modinfop - pointer to the driver modinfo structure
2239  *
2240  * Return Code: Returns the value from mod_info(9F).
2241  *
2242  *     Context: Kernel thread context
2243  */
2244 
2245 int
2246 _info(struct modinfo *modinfop)
2247 {
2248 	return (mod_info(&modlinkage, modinfop));
2249 }
2250 
2251 
2252 /*
2253  * The following routines implement the driver message logging facility.
2254  * They provide component- and level- based debug output filtering.
2255  * Output may also be restricted to messages for a single instance by
2256  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2257  * to NULL, then messages for all instances are printed.
2258  *
2259  * These routines have been cloned from each other due to the language
2260  * constraints of macros and variable argument list processing.
2261  */
2262 
2263 
2264 /*
2265  *    Function: sd_log_err
2266  *
2267  * Description: This routine is called by the SD_ERROR macro for debug
2268  *		logging of error conditions.
2269  *
2270  *   Arguments: comp - driver component being logged
2271  *		dev  - pointer to driver info structure
2272  *		fmt  - error string and format to be logged
2273  */
2274 
2275 static void
2276 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2277 {
2278 	va_list		ap;
2279 	dev_info_t	*dev;
2280 
2281 	ASSERT(un != NULL);
2282 	dev = SD_DEVINFO(un);
2283 	ASSERT(dev != NULL);
2284 
2285 	/*
2286 	 * Filter messages based on the global component and level masks.
2287 	 * Also print if un matches the value of sd_debug_un, or if
2288 	 * sd_debug_un is set to NULL.
2289 	 */
2290 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2291 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2292 		mutex_enter(&sd_log_mutex);
2293 		va_start(ap, fmt);
2294 		(void) vsprintf(sd_log_buf, fmt, ap);
2295 		va_end(ap);
2296 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2297 		mutex_exit(&sd_log_mutex);
2298 	}
2299 #ifdef SD_FAULT_INJECTION
2300 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2301 	if (un->sd_injection_mask & comp) {
2302 		mutex_enter(&sd_log_mutex);
2303 		va_start(ap, fmt);
2304 		(void) vsprintf(sd_log_buf, fmt, ap);
2305 		va_end(ap);
2306 		sd_injection_log(sd_log_buf, un);
2307 		mutex_exit(&sd_log_mutex);
2308 	}
2309 #endif
2310 }
2311 
2312 
2313 /*
2314  *    Function: sd_log_info
2315  *
2316  * Description: This routine is called by the SD_INFO macro for debug
2317  *		logging of general purpose informational conditions.
2318  *
2319  *   Arguments: comp - driver component being logged
2320  *		dev  - pointer to driver info structure
2321  *		fmt  - info string and format to be logged
2322  */
2323 
2324 static void
2325 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2326 {
2327 	va_list		ap;
2328 	dev_info_t	*dev;
2329 
2330 	ASSERT(un != NULL);
2331 	dev = SD_DEVINFO(un);
2332 	ASSERT(dev != NULL);
2333 
2334 	/*
2335 	 * Filter messages based on the global component and level masks.
2336 	 * Also print if un matches the value of sd_debug_un, or if
2337 	 * sd_debug_un is set to NULL.
2338 	 */
2339 	if ((sd_component_mask & component) &&
2340 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2341 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2342 		mutex_enter(&sd_log_mutex);
2343 		va_start(ap, fmt);
2344 		(void) vsprintf(sd_log_buf, fmt, ap);
2345 		va_end(ap);
2346 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2347 		mutex_exit(&sd_log_mutex);
2348 	}
2349 #ifdef SD_FAULT_INJECTION
2350 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2351 	if (un->sd_injection_mask & component) {
2352 		mutex_enter(&sd_log_mutex);
2353 		va_start(ap, fmt);
2354 		(void) vsprintf(sd_log_buf, fmt, ap);
2355 		va_end(ap);
2356 		sd_injection_log(sd_log_buf, un);
2357 		mutex_exit(&sd_log_mutex);
2358 	}
2359 #endif
2360 }
2361 
2362 
2363 /*
2364  *    Function: sd_log_trace
2365  *
2366  * Description: This routine is called by the SD_TRACE macro for debug
2367  *		logging of trace conditions (i.e. function entry/exit).
2368  *
2369  *   Arguments: comp - driver component being logged
2370  *		dev  - pointer to driver info structure
2371  *		fmt  - trace string and format to be logged
2372  */
2373 
2374 static void
2375 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2376 {
2377 	va_list		ap;
2378 	dev_info_t	*dev;
2379 
2380 	ASSERT(un != NULL);
2381 	dev = SD_DEVINFO(un);
2382 	ASSERT(dev != NULL);
2383 
2384 	/*
2385 	 * Filter messages based on the global component and level masks.
2386 	 * Also print if un matches the value of sd_debug_un, or if
2387 	 * sd_debug_un is set to NULL.
2388 	 */
2389 	if ((sd_component_mask & component) &&
2390 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2391 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2392 		mutex_enter(&sd_log_mutex);
2393 		va_start(ap, fmt);
2394 		(void) vsprintf(sd_log_buf, fmt, ap);
2395 		va_end(ap);
2396 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2397 		mutex_exit(&sd_log_mutex);
2398 	}
2399 #ifdef SD_FAULT_INJECTION
2400 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2401 	if (un->sd_injection_mask & component) {
2402 		mutex_enter(&sd_log_mutex);
2403 		va_start(ap, fmt);
2404 		(void) vsprintf(sd_log_buf, fmt, ap);
2405 		va_end(ap);
2406 		sd_injection_log(sd_log_buf, un);
2407 		mutex_exit(&sd_log_mutex);
2408 	}
2409 #endif
2410 }
2411 
2412 
2413 /*
2414  *    Function: sdprobe
2415  *
2416  * Description: This is the driver probe(9e) entry point function.
2417  *
2418  *   Arguments: devi - opaque device info handle
2419  *
2420  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2421  *              DDI_PROBE_FAILURE: If the probe failed.
2422  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2423  *				   but may be present in the future.
2424  */
2425 
2426 static int
2427 sdprobe(dev_info_t *devi)
2428 {
2429 	struct scsi_device	*devp;
2430 	int			rval;
2431 	int			instance;
2432 
2433 	/*
2434 	 * if it wasn't for pln, sdprobe could actually be nulldev
2435 	 * in the "__fibre" case.
2436 	 */
2437 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2438 		return (DDI_PROBE_DONTCARE);
2439 	}
2440 
2441 	devp = ddi_get_driver_private(devi);
2442 
2443 	if (devp == NULL) {
2444 		/* Ooops... nexus driver is mis-configured... */
2445 		return (DDI_PROBE_FAILURE);
2446 	}
2447 
2448 	instance = ddi_get_instance(devi);
2449 
2450 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2451 		return (DDI_PROBE_PARTIAL);
2452 	}
2453 
2454 	/*
2455 	 * Call the SCSA utility probe routine to see if we actually
2456 	 * have a target at this SCSI nexus.
2457 	 */
2458 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2459 	case SCSIPROBE_EXISTS:
2460 		switch (devp->sd_inq->inq_dtype) {
2461 		case DTYPE_DIRECT:
2462 			rval = DDI_PROBE_SUCCESS;
2463 			break;
2464 		case DTYPE_RODIRECT:
2465 			/* CDs etc. Can be removable media */
2466 			rval = DDI_PROBE_SUCCESS;
2467 			break;
2468 		case DTYPE_OPTICAL:
2469 			/*
2470 			 * Rewritable optical driver HP115AA
2471 			 * Can also be removable media
2472 			 */
2473 
2474 			/*
2475 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2476 			 * pre solaris 9 sparc sd behavior is required
2477 			 *
2478 			 * If first time through and sd_dtype_optical_bind
2479 			 * has not been set in /etc/system check properties
2480 			 */
2481 
2482 			if (sd_dtype_optical_bind  < 0) {
2483 			    sd_dtype_optical_bind = ddi_prop_get_int
2484 				(DDI_DEV_T_ANY,	devi,	0,
2485 				"optical-device-bind",	1);
2486 			}
2487 
2488 			if (sd_dtype_optical_bind == 0) {
2489 				rval = DDI_PROBE_FAILURE;
2490 			} else {
2491 				rval = DDI_PROBE_SUCCESS;
2492 			}
2493 			break;
2494 
2495 		case DTYPE_NOTPRESENT:
2496 		default:
2497 			rval = DDI_PROBE_FAILURE;
2498 			break;
2499 		}
2500 		break;
2501 	default:
2502 		rval = DDI_PROBE_PARTIAL;
2503 		break;
2504 	}
2505 
2506 	/*
2507 	 * This routine checks for resource allocation prior to freeing,
2508 	 * so it will take care of the "smart probing" case where a
2509 	 * scsi_probe() may or may not have been issued and will *not*
2510 	 * free previously-freed resources.
2511 	 */
2512 	scsi_unprobe(devp);
2513 	return (rval);
2514 }
2515 
2516 
2517 /*
2518  *    Function: sdinfo
2519  *
2520  * Description: This is the driver getinfo(9e) entry point function.
2521  * 		Given the device number, return the devinfo pointer from
2522  *		the scsi_device structure or the instance number
2523  *		associated with the dev_t.
2524  *
2525  *   Arguments: dip     - pointer to device info structure
2526  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2527  *			  DDI_INFO_DEVT2INSTANCE)
2528  *		arg     - driver dev_t
2529  *		resultp - user buffer for request response
2530  *
2531  * Return Code: DDI_SUCCESS
2532  *              DDI_FAILURE
2533  */
2534 /* ARGSUSED */
2535 static int
2536 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2537 {
2538 	struct sd_lun	*un;
2539 	dev_t		dev;
2540 	int		instance;
2541 	int		error;
2542 
2543 	switch (infocmd) {
2544 	case DDI_INFO_DEVT2DEVINFO:
2545 		dev = (dev_t)arg;
2546 		instance = SDUNIT(dev);
2547 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2548 			return (DDI_FAILURE);
2549 		}
2550 		*result = (void *) SD_DEVINFO(un);
2551 		error = DDI_SUCCESS;
2552 		break;
2553 	case DDI_INFO_DEVT2INSTANCE:
2554 		dev = (dev_t)arg;
2555 		instance = SDUNIT(dev);
2556 		*result = (void *)(uintptr_t)instance;
2557 		error = DDI_SUCCESS;
2558 		break;
2559 	default:
2560 		error = DDI_FAILURE;
2561 	}
2562 	return (error);
2563 }
2564 
2565 /*
2566  *    Function: sd_prop_op
2567  *
2568  * Description: This is the driver prop_op(9e) entry point function.
2569  *		Return the number of blocks for the partition in question
2570  *		or forward the request to the property facilities.
2571  *
2572  *   Arguments: dev       - device number
2573  *		dip       - pointer to device info structure
2574  *		prop_op   - property operator
2575  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2576  *		name      - pointer to property name
2577  *		valuep    - pointer or address of the user buffer
2578  *		lengthp   - property length
2579  *
2580  * Return Code: DDI_PROP_SUCCESS
2581  *              DDI_PROP_NOT_FOUND
2582  *              DDI_PROP_UNDEFINED
2583  *              DDI_PROP_NO_MEMORY
2584  *              DDI_PROP_BUF_TOO_SMALL
2585  */
2586 
2587 static int
2588 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2589 	char *name, caddr_t valuep, int *lengthp)
2590 {
2591 	int		instance = ddi_get_instance(dip);
2592 	struct sd_lun	*un;
2593 	uint64_t	nblocks64;
2594 
2595 	/*
2596 	 * Our dynamic properties are all device specific and size oriented.
2597 	 * Requests issued under conditions where size is valid are passed
2598 	 * to ddi_prop_op_nblocks with the size information, otherwise the
2599 	 * request is passed to ddi_prop_op. Size depends on valid geometry.
2600 	 */
2601 	un = ddi_get_soft_state(sd_state, instance);
2602 	if ((dev == DDI_DEV_T_ANY) || (un == NULL) ||
2603 	    !SD_IS_VALID_LABEL(un)) {
2604 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2605 		    name, valuep, lengthp));
2606 	} else {
2607 		/* get nblocks value */
2608 		ASSERT(!mutex_owned(SD_MUTEX(un)));
2609 
2610 		(void) cmlb_partinfo(un->un_cmlbhandle, SDPART(dev),
2611 		    (diskaddr_t *)&nblocks64, NULL, NULL, NULL,
2612 		    (void *)SD_PATH_DIRECT);
2613 
2614 		return (ddi_prop_op_nblocks(dev, dip, prop_op, mod_flags,
2615 		    name, valuep, lengthp, nblocks64));
2616 	}
2617 }
2618 
2619 /*
2620  * The following functions are for smart probing:
2621  * sd_scsi_probe_cache_init()
2622  * sd_scsi_probe_cache_fini()
2623  * sd_scsi_clear_probe_cache()
2624  * sd_scsi_probe_with_cache()
2625  */
2626 
2627 /*
2628  *    Function: sd_scsi_probe_cache_init
2629  *
2630  * Description: Initializes the probe response cache mutex and head pointer.
2631  *
2632  *     Context: Kernel thread context
2633  */
2634 
2635 static void
2636 sd_scsi_probe_cache_init(void)
2637 {
2638 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2639 	sd_scsi_probe_cache_head = NULL;
2640 }
2641 
2642 
2643 /*
2644  *    Function: sd_scsi_probe_cache_fini
2645  *
2646  * Description: Frees all resources associated with the probe response cache.
2647  *
2648  *     Context: Kernel thread context
2649  */
2650 
2651 static void
2652 sd_scsi_probe_cache_fini(void)
2653 {
2654 	struct sd_scsi_probe_cache *cp;
2655 	struct sd_scsi_probe_cache *ncp;
2656 
2657 	/* Clean up our smart probing linked list */
2658 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2659 		ncp = cp->next;
2660 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2661 	}
2662 	sd_scsi_probe_cache_head = NULL;
2663 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2664 }
2665 
2666 
2667 /*
2668  *    Function: sd_scsi_clear_probe_cache
2669  *
2670  * Description: This routine clears the probe response cache. This is
2671  *		done when open() returns ENXIO so that when deferred
2672  *		attach is attempted (possibly after a device has been
2673  *		turned on) we will retry the probe. Since we don't know
2674  *		which target we failed to open, we just clear the
2675  *		entire cache.
2676  *
2677  *     Context: Kernel thread context
2678  */
2679 
2680 static void
2681 sd_scsi_clear_probe_cache(void)
2682 {
2683 	struct sd_scsi_probe_cache	*cp;
2684 	int				i;
2685 
2686 	mutex_enter(&sd_scsi_probe_cache_mutex);
2687 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2688 		/*
2689 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2690 		 * force probing to be performed the next time
2691 		 * sd_scsi_probe_with_cache is called.
2692 		 */
2693 		for (i = 0; i < NTARGETS_WIDE; i++) {
2694 			cp->cache[i] = SCSIPROBE_EXISTS;
2695 		}
2696 	}
2697 	mutex_exit(&sd_scsi_probe_cache_mutex);
2698 }
2699 
2700 
2701 /*
2702  *    Function: sd_scsi_probe_with_cache
2703  *
2704  * Description: This routine implements support for a scsi device probe
2705  *		with cache. The driver maintains a cache of the target
2706  *		responses to scsi probes. If we get no response from a
2707  *		target during a probe inquiry, we remember that, and we
2708  *		avoid additional calls to scsi_probe on non-zero LUNs
2709  *		on the same target until the cache is cleared. By doing
2710  *		so we avoid the 1/4 sec selection timeout for nonzero
2711  *		LUNs. lun0 of a target is always probed.
2712  *
2713  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2714  *              waitfunc - indicates what the allocator routines should
2715  *			   do when resources are not available. This value
2716  *			   is passed on to scsi_probe() when that routine
2717  *			   is called.
2718  *
2719  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2720  *		otherwise the value returned by scsi_probe(9F).
2721  *
2722  *     Context: Kernel thread context
2723  */
2724 
2725 static int
2726 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2727 {
2728 	struct sd_scsi_probe_cache	*cp;
2729 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2730 	int		lun, tgt;
2731 
2732 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2733 	    SCSI_ADDR_PROP_LUN, 0);
2734 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2735 	    SCSI_ADDR_PROP_TARGET, -1);
2736 
2737 	/* Make sure caching enabled and target in range */
2738 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2739 		/* do it the old way (no cache) */
2740 		return (scsi_probe(devp, waitfn));
2741 	}
2742 
2743 	mutex_enter(&sd_scsi_probe_cache_mutex);
2744 
2745 	/* Find the cache for this scsi bus instance */
2746 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2747 		if (cp->pdip == pdip) {
2748 			break;
2749 		}
2750 	}
2751 
2752 	/* If we can't find a cache for this pdip, create one */
2753 	if (cp == NULL) {
2754 		int i;
2755 
2756 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2757 		    KM_SLEEP);
2758 		cp->pdip = pdip;
2759 		cp->next = sd_scsi_probe_cache_head;
2760 		sd_scsi_probe_cache_head = cp;
2761 		for (i = 0; i < NTARGETS_WIDE; i++) {
2762 			cp->cache[i] = SCSIPROBE_EXISTS;
2763 		}
2764 	}
2765 
2766 	mutex_exit(&sd_scsi_probe_cache_mutex);
2767 
2768 	/* Recompute the cache for this target if LUN zero */
2769 	if (lun == 0) {
2770 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2771 	}
2772 
2773 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2774 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2775 		return (SCSIPROBE_NORESP);
2776 	}
2777 
2778 	/* Do the actual probe; save & return the result */
2779 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2780 }
2781 
2782 
2783 /*
2784  *    Function: sd_scsi_target_lun_init
2785  *
2786  * Description: Initializes the attached lun chain mutex and head pointer.
2787  *
2788  *     Context: Kernel thread context
2789  */
2790 
2791 static void
2792 sd_scsi_target_lun_init(void)
2793 {
2794 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
2795 	sd_scsi_target_lun_head = NULL;
2796 }
2797 
2798 
2799 /*
2800  *    Function: sd_scsi_target_lun_fini
2801  *
2802  * Description: Frees all resources associated with the attached lun
2803  *              chain
2804  *
2805  *     Context: Kernel thread context
2806  */
2807 
2808 static void
2809 sd_scsi_target_lun_fini(void)
2810 {
2811 	struct sd_scsi_hba_tgt_lun	*cp;
2812 	struct sd_scsi_hba_tgt_lun	*ncp;
2813 
2814 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
2815 		ncp = cp->next;
2816 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
2817 	}
2818 	sd_scsi_target_lun_head = NULL;
2819 	mutex_destroy(&sd_scsi_target_lun_mutex);
2820 }
2821 
2822 
2823 /*
2824  *    Function: sd_scsi_get_target_lun_count
2825  *
2826  * Description: This routine will check in the attached lun chain to see
2827  * 		how many luns are attached on the required SCSI controller
2828  * 		and target. Currently, some capabilities like tagged queue
2829  *		are supported per target based by HBA. So all luns in a
2830  *		target have the same capabilities. Based on this assumption,
2831  * 		sd should only set these capabilities once per target. This
2832  *		function is called when sd needs to decide how many luns
2833  *		already attached on a target.
2834  *
2835  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
2836  *			  controller device.
2837  *              target	- The target ID on the controller's SCSI bus.
2838  *
2839  * Return Code: The number of luns attached on the required target and
2840  *		controller.
2841  *		-1 if target ID is not in parallel SCSI scope or the given
2842  * 		dip is not in the chain.
2843  *
2844  *     Context: Kernel thread context
2845  */
2846 
2847 static int
2848 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
2849 {
2850 	struct sd_scsi_hba_tgt_lun	*cp;
2851 
2852 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
2853 		return (-1);
2854 	}
2855 
2856 	mutex_enter(&sd_scsi_target_lun_mutex);
2857 
2858 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2859 		if (cp->pdip == dip) {
2860 			break;
2861 		}
2862 	}
2863 
2864 	mutex_exit(&sd_scsi_target_lun_mutex);
2865 
2866 	if (cp == NULL) {
2867 		return (-1);
2868 	}
2869 
2870 	return (cp->nlun[target]);
2871 }
2872 
2873 
2874 /*
2875  *    Function: sd_scsi_update_lun_on_target
2876  *
2877  * Description: This routine is used to update the attached lun chain when a
2878  *		lun is attached or detached on a target.
2879  *
2880  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
2881  *                        controller device.
2882  *              target  - The target ID on the controller's SCSI bus.
2883  *		flag	- Indicate the lun is attached or detached.
2884  *
2885  *     Context: Kernel thread context
2886  */
2887 
2888 static void
2889 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
2890 {
2891 	struct sd_scsi_hba_tgt_lun	*cp;
2892 
2893 	mutex_enter(&sd_scsi_target_lun_mutex);
2894 
2895 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2896 		if (cp->pdip == dip) {
2897 			break;
2898 		}
2899 	}
2900 
2901 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
2902 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
2903 		    KM_SLEEP);
2904 		cp->pdip = dip;
2905 		cp->next = sd_scsi_target_lun_head;
2906 		sd_scsi_target_lun_head = cp;
2907 	}
2908 
2909 	mutex_exit(&sd_scsi_target_lun_mutex);
2910 
2911 	if (cp != NULL) {
2912 		if (flag == SD_SCSI_LUN_ATTACH) {
2913 			cp->nlun[target] ++;
2914 		} else {
2915 			cp->nlun[target] --;
2916 		}
2917 	}
2918 }
2919 
2920 
2921 /*
2922  *    Function: sd_spin_up_unit
2923  *
2924  * Description: Issues the following commands to spin-up the device:
2925  *		START STOP UNIT, and INQUIRY.
2926  *
2927  *   Arguments: un - driver soft state (unit) structure
2928  *
2929  * Return Code: 0 - success
2930  *		EIO - failure
2931  *		EACCES - reservation conflict
2932  *
2933  *     Context: Kernel thread context
2934  */
2935 
2936 static int
2937 sd_spin_up_unit(struct sd_lun *un)
2938 {
2939 	size_t	resid		= 0;
2940 	int	has_conflict	= FALSE;
2941 	uchar_t *bufaddr;
2942 
2943 	ASSERT(un != NULL);
2944 
2945 	/*
2946 	 * Send a throwaway START UNIT command.
2947 	 *
2948 	 * If we fail on this, we don't care presently what precisely
2949 	 * is wrong.  EMC's arrays will also fail this with a check
2950 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
2951 	 * we don't want to fail the attach because it may become
2952 	 * "active" later.
2953 	 */
2954 	if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT)
2955 	    == EACCES)
2956 		has_conflict = TRUE;
2957 
2958 	/*
2959 	 * Send another INQUIRY command to the target. This is necessary for
2960 	 * non-removable media direct access devices because their INQUIRY data
2961 	 * may not be fully qualified until they are spun up (perhaps via the
2962 	 * START command above).  Note: This seems to be needed for some
2963 	 * legacy devices only.) The INQUIRY command should succeed even if a
2964 	 * Reservation Conflict is present.
2965 	 */
2966 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
2967 	if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) {
2968 		kmem_free(bufaddr, SUN_INQSIZE);
2969 		return (EIO);
2970 	}
2971 
2972 	/*
2973 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
2974 	 * Note that this routine does not return a failure here even if the
2975 	 * INQUIRY command did not return any data.  This is a legacy behavior.
2976 	 */
2977 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
2978 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
2979 	}
2980 
2981 	kmem_free(bufaddr, SUN_INQSIZE);
2982 
2983 	/* If we hit a reservation conflict above, tell the caller. */
2984 	if (has_conflict == TRUE) {
2985 		return (EACCES);
2986 	}
2987 
2988 	return (0);
2989 }
2990 
2991 #ifdef _LP64
2992 /*
2993  *    Function: sd_enable_descr_sense
2994  *
2995  * Description: This routine attempts to select descriptor sense format
2996  *		using the Control mode page.  Devices that support 64 bit
2997  *		LBAs (for >2TB luns) should also implement descriptor
2998  *		sense data so we will call this function whenever we see
2999  *		a lun larger than 2TB.  If for some reason the device
3000  *		supports 64 bit LBAs but doesn't support descriptor sense
3001  *		presumably the mode select will fail.  Everything will
3002  *		continue to work normally except that we will not get
3003  *		complete sense data for commands that fail with an LBA
3004  *		larger than 32 bits.
3005  *
3006  *   Arguments: un - driver soft state (unit) structure
3007  *
3008  *     Context: Kernel thread context only
3009  */
3010 
3011 static void
3012 sd_enable_descr_sense(struct sd_lun *un)
3013 {
3014 	uchar_t			*header;
3015 	struct mode_control_scsi3 *ctrl_bufp;
3016 	size_t			buflen;
3017 	size_t			bd_len;
3018 
3019 	/*
3020 	 * Read MODE SENSE page 0xA, Control Mode Page
3021 	 */
3022 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3023 	    sizeof (struct mode_control_scsi3);
3024 	header = kmem_zalloc(buflen, KM_SLEEP);
3025 	if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
3026 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) {
3027 		SD_ERROR(SD_LOG_COMMON, un,
3028 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3029 		goto eds_exit;
3030 	}
3031 
3032 	/*
3033 	 * Determine size of Block Descriptors in order to locate
3034 	 * the mode page data. ATAPI devices return 0, SCSI devices
3035 	 * should return MODE_BLK_DESC_LENGTH.
3036 	 */
3037 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3038 
3039 	ctrl_bufp = (struct mode_control_scsi3 *)
3040 	    (header + MODE_HEADER_LENGTH + bd_len);
3041 
3042 	/*
3043 	 * Clear PS bit for MODE SELECT
3044 	 */
3045 	ctrl_bufp->mode_page.ps = 0;
3046 
3047 	/*
3048 	 * Set D_SENSE to enable descriptor sense format.
3049 	 */
3050 	ctrl_bufp->d_sense = 1;
3051 
3052 	/*
3053 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3054 	 */
3055 	if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
3056 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) {
3057 		SD_INFO(SD_LOG_COMMON, un,
3058 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3059 		goto eds_exit;
3060 	}
3061 
3062 eds_exit:
3063 	kmem_free(header, buflen);
3064 }
3065 
3066 /*
3067  *    Function: sd_reenable_dsense_task
3068  *
3069  * Description: Re-enable descriptor sense after device or bus reset
3070  *
3071  *     Context: Executes in a taskq() thread context
3072  */
3073 static void
3074 sd_reenable_dsense_task(void *arg)
3075 {
3076 	struct	sd_lun	*un = arg;
3077 
3078 	ASSERT(un != NULL);
3079 	sd_enable_descr_sense(un);
3080 }
3081 #endif /* _LP64 */
3082 
3083 /*
3084  *    Function: sd_set_mmc_caps
3085  *
3086  * Description: This routine determines if the device is MMC compliant and if
3087  *		the device supports CDDA via a mode sense of the CDVD
3088  *		capabilities mode page. Also checks if the device is a
3089  *		dvdram writable device.
3090  *
3091  *   Arguments: un - driver soft state (unit) structure
3092  *
3093  *     Context: Kernel thread context only
3094  */
3095 
3096 static void
3097 sd_set_mmc_caps(struct sd_lun *un)
3098 {
3099 	struct mode_header_grp2		*sense_mhp;
3100 	uchar_t				*sense_page;
3101 	caddr_t				buf;
3102 	int				bd_len;
3103 	int				status;
3104 	struct uscsi_cmd		com;
3105 	int				rtn;
3106 	uchar_t				*out_data_rw, *out_data_hd;
3107 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3108 
3109 	ASSERT(un != NULL);
3110 
3111 	/*
3112 	 * The flags which will be set in this function are - mmc compliant,
3113 	 * dvdram writable device, cdda support. Initialize them to FALSE
3114 	 * and if a capability is detected - it will be set to TRUE.
3115 	 */
3116 	un->un_f_mmc_cap = FALSE;
3117 	un->un_f_dvdram_writable_device = FALSE;
3118 	un->un_f_cfg_cdda = FALSE;
3119 
3120 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3121 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3122 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3123 
3124 	if (status != 0) {
3125 		/* command failed; just return */
3126 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3127 		return;
3128 	}
3129 	/*
3130 	 * If the mode sense request for the CDROM CAPABILITIES
3131 	 * page (0x2A) succeeds the device is assumed to be MMC.
3132 	 */
3133 	un->un_f_mmc_cap = TRUE;
3134 
3135 	/* Get to the page data */
3136 	sense_mhp = (struct mode_header_grp2 *)buf;
3137 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3138 	    sense_mhp->bdesc_length_lo;
3139 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3140 		/*
3141 		 * We did not get back the expected block descriptor
3142 		 * length so we cannot determine if the device supports
3143 		 * CDDA. However, we still indicate the device is MMC
3144 		 * according to the successful response to the page
3145 		 * 0x2A mode sense request.
3146 		 */
3147 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3148 		    "sd_set_mmc_caps: Mode Sense returned "
3149 		    "invalid block descriptor length\n");
3150 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3151 		return;
3152 	}
3153 
3154 	/* See if read CDDA is supported */
3155 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3156 	    bd_len);
3157 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3158 
3159 	/* See if writing DVD RAM is supported. */
3160 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3161 	if (un->un_f_dvdram_writable_device == TRUE) {
3162 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3163 		return;
3164 	}
3165 
3166 	/*
3167 	 * If the device presents DVD or CD capabilities in the mode
3168 	 * page, we can return here since a RRD will not have
3169 	 * these capabilities.
3170 	 */
3171 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3172 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3173 		return;
3174 	}
3175 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3176 
3177 	/*
3178 	 * If un->un_f_dvdram_writable_device is still FALSE,
3179 	 * check for a Removable Rigid Disk (RRD).  A RRD
3180 	 * device is identified by the features RANDOM_WRITABLE and
3181 	 * HARDWARE_DEFECT_MANAGEMENT.
3182 	 */
3183 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3184 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3185 
3186 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3187 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3188 	    RANDOM_WRITABLE, SD_PATH_STANDARD);
3189 	if (rtn != 0) {
3190 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3191 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3192 		return;
3193 	}
3194 
3195 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3196 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3197 
3198 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3199 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3200 	    HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3201 	if (rtn == 0) {
3202 		/*
3203 		 * We have good information, check for random writable
3204 		 * and hardware defect features.
3205 		 */
3206 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3207 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3208 			un->un_f_dvdram_writable_device = TRUE;
3209 		}
3210 	}
3211 
3212 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3213 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3214 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3215 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3216 }
3217 
3218 /*
3219  *    Function: sd_check_for_writable_cd
3220  *
3221  * Description: This routine determines if the media in the device is
3222  *		writable or not. It uses the get configuration command (0x46)
3223  *		to determine if the media is writable
3224  *
3225  *   Arguments: un - driver soft state (unit) structure
3226  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3227  *                           chain and the normal command waitq, or
3228  *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3229  *                           "direct" chain and bypass the normal command
3230  *                           waitq.
3231  *
3232  *     Context: Never called at interrupt context.
3233  */
3234 
3235 static void
3236 sd_check_for_writable_cd(struct sd_lun *un, int path_flag)
3237 {
3238 	struct uscsi_cmd		com;
3239 	uchar_t				*out_data;
3240 	uchar_t				*rqbuf;
3241 	int				rtn;
3242 	uchar_t				*out_data_rw, *out_data_hd;
3243 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3244 	struct mode_header_grp2		*sense_mhp;
3245 	uchar_t				*sense_page;
3246 	caddr_t				buf;
3247 	int				bd_len;
3248 	int				status;
3249 
3250 	ASSERT(un != NULL);
3251 	ASSERT(mutex_owned(SD_MUTEX(un)));
3252 
3253 	/*
3254 	 * Initialize the writable media to false, if configuration info.
3255 	 * tells us otherwise then only we will set it.
3256 	 */
3257 	un->un_f_mmc_writable_media = FALSE;
3258 	mutex_exit(SD_MUTEX(un));
3259 
3260 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3261 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3262 
3263 	rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH,
3264 	    out_data, SD_PROFILE_HEADER_LEN, path_flag);
3265 
3266 	mutex_enter(SD_MUTEX(un));
3267 	if (rtn == 0) {
3268 		/*
3269 		 * We have good information, check for writable DVD.
3270 		 */
3271 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3272 			un->un_f_mmc_writable_media = TRUE;
3273 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3274 			kmem_free(rqbuf, SENSE_LENGTH);
3275 			return;
3276 		}
3277 	}
3278 
3279 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3280 	kmem_free(rqbuf, SENSE_LENGTH);
3281 
3282 	/*
3283 	 * Determine if this is a RRD type device.
3284 	 */
3285 	mutex_exit(SD_MUTEX(un));
3286 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3287 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3288 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3289 	mutex_enter(SD_MUTEX(un));
3290 	if (status != 0) {
3291 		/* command failed; just return */
3292 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3293 		return;
3294 	}
3295 
3296 	/* Get to the page data */
3297 	sense_mhp = (struct mode_header_grp2 *)buf;
3298 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3299 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3300 		/*
3301 		 * We did not get back the expected block descriptor length so
3302 		 * we cannot check the mode page.
3303 		 */
3304 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3305 		    "sd_check_for_writable_cd: Mode Sense returned "
3306 		    "invalid block descriptor length\n");
3307 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3308 		return;
3309 	}
3310 
3311 	/*
3312 	 * If the device presents DVD or CD capabilities in the mode
3313 	 * page, we can return here since a RRD device will not have
3314 	 * these capabilities.
3315 	 */
3316 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3317 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3318 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3319 		return;
3320 	}
3321 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3322 
3323 	/*
3324 	 * If un->un_f_mmc_writable_media is still FALSE,
3325 	 * check for RRD type media.  A RRD device is identified
3326 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3327 	 */
3328 	mutex_exit(SD_MUTEX(un));
3329 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3330 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3331 
3332 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3333 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3334 	    RANDOM_WRITABLE, path_flag);
3335 	if (rtn != 0) {
3336 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3337 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3338 		mutex_enter(SD_MUTEX(un));
3339 		return;
3340 	}
3341 
3342 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3343 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3344 
3345 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3346 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3347 	    HARDWARE_DEFECT_MANAGEMENT, path_flag);
3348 	mutex_enter(SD_MUTEX(un));
3349 	if (rtn == 0) {
3350 		/*
3351 		 * We have good information, check for random writable
3352 		 * and hardware defect features as current.
3353 		 */
3354 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3355 		    (out_data_rw[10] & 0x1) &&
3356 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3357 		    (out_data_hd[10] & 0x1)) {
3358 			un->un_f_mmc_writable_media = TRUE;
3359 		}
3360 	}
3361 
3362 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3363 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3364 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3365 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3366 }
3367 
3368 /*
3369  *    Function: sd_read_unit_properties
3370  *
3371  * Description: The following implements a property lookup mechanism.
3372  *		Properties for particular disks (keyed on vendor, model
3373  *		and rev numbers) are sought in the sd.conf file via
3374  *		sd_process_sdconf_file(), and if not found there, are
3375  *		looked for in a list hardcoded in this driver via
3376  *		sd_process_sdconf_table() Once located the properties
3377  *		are used to update the driver unit structure.
3378  *
3379  *   Arguments: un - driver soft state (unit) structure
3380  */
3381 
3382 static void
3383 sd_read_unit_properties(struct sd_lun *un)
3384 {
3385 	/*
3386 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3387 	 * the "sd-config-list" property (from the sd.conf file) or if
3388 	 * there was not a match for the inquiry vid/pid. If this event
3389 	 * occurs the static driver configuration table is searched for
3390 	 * a match.
3391 	 */
3392 	ASSERT(un != NULL);
3393 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3394 		sd_process_sdconf_table(un);
3395 	}
3396 
3397 	/* check for LSI device */
3398 	sd_is_lsi(un);
3399 
3400 
3401 }
3402 
3403 
3404 /*
3405  *    Function: sd_process_sdconf_file
3406  *
3407  * Description: Use ddi_getlongprop to obtain the properties from the
3408  *		driver's config file (ie, sd.conf) and update the driver
3409  *		soft state structure accordingly.
3410  *
3411  *   Arguments: un - driver soft state (unit) structure
3412  *
3413  * Return Code: SD_SUCCESS - The properties were successfully set according
3414  *			     to the driver configuration file.
3415  *		SD_FAILURE - The driver config list was not obtained or
3416  *			     there was no vid/pid match. This indicates that
3417  *			     the static config table should be used.
3418  *
3419  * The config file has a property, "sd-config-list", which consists of
3420  * one or more duplets as follows:
3421  *
3422  *  sd-config-list=
3423  *	<duplet>,
3424  *	[<duplet>,]
3425  *	[<duplet>];
3426  *
3427  * The structure of each duplet is as follows:
3428  *
3429  *  <duplet>:= <vid+pid>,<data-property-name_list>
3430  *
3431  * The first entry of the duplet is the device ID string (the concatenated
3432  * vid & pid; not to be confused with a device_id).  This is defined in
3433  * the same way as in the sd_disk_table.
3434  *
3435  * The second part of the duplet is a string that identifies a
3436  * data-property-name-list. The data-property-name-list is defined as
3437  * follows:
3438  *
3439  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3440  *
3441  * The syntax of <data-property-name> depends on the <version> field.
3442  *
3443  * If version = SD_CONF_VERSION_1 we have the following syntax:
3444  *
3445  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3446  *
3447  * where the prop0 value will be used to set prop0 if bit0 set in the
3448  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3449  *
3450  */
3451 
3452 static int
3453 sd_process_sdconf_file(struct sd_lun *un)
3454 {
3455 	char	*config_list = NULL;
3456 	int	config_list_len;
3457 	int	len;
3458 	int	dupletlen = 0;
3459 	char	*vidptr;
3460 	int	vidlen;
3461 	char	*dnlist_ptr;
3462 	char	*dataname_ptr;
3463 	int	dnlist_len;
3464 	int	dataname_len;
3465 	int	*data_list;
3466 	int	data_list_len;
3467 	int	rval = SD_FAILURE;
3468 	int	i;
3469 
3470 	ASSERT(un != NULL);
3471 
3472 	/* Obtain the configuration list associated with the .conf file */
3473 	if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS,
3474 	    sd_config_list, (caddr_t)&config_list, &config_list_len)
3475 	    != DDI_PROP_SUCCESS) {
3476 		return (SD_FAILURE);
3477 	}
3478 
3479 	/*
3480 	 * Compare vids in each duplet to the inquiry vid - if a match is
3481 	 * made, get the data value and update the soft state structure
3482 	 * accordingly.
3483 	 *
3484 	 * Note: This algorithm is complex and difficult to maintain. It should
3485 	 * be replaced with a more robust implementation.
3486 	 */
3487 	for (len = config_list_len, vidptr = config_list; len > 0;
3488 	    vidptr += dupletlen, len -= dupletlen) {
3489 		/*
3490 		 * Note: The assumption here is that each vid entry is on
3491 		 * a unique line from its associated duplet.
3492 		 */
3493 		vidlen = dupletlen = (int)strlen(vidptr);
3494 		if ((vidlen == 0) ||
3495 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3496 			dupletlen++;
3497 			continue;
3498 		}
3499 
3500 		/*
3501 		 * dnlist contains 1 or more blank separated
3502 		 * data-property-name entries
3503 		 */
3504 		dnlist_ptr = vidptr + vidlen + 1;
3505 		dnlist_len = (int)strlen(dnlist_ptr);
3506 		dupletlen += dnlist_len + 2;
3507 
3508 		/*
3509 		 * Set a pointer for the first data-property-name
3510 		 * entry in the list
3511 		 */
3512 		dataname_ptr = dnlist_ptr;
3513 		dataname_len = 0;
3514 
3515 		/*
3516 		 * Loop through all data-property-name entries in the
3517 		 * data-property-name-list setting the properties for each.
3518 		 */
3519 		while (dataname_len < dnlist_len) {
3520 			int version;
3521 
3522 			/*
3523 			 * Determine the length of the current
3524 			 * data-property-name entry by indexing until a
3525 			 * blank or NULL is encountered. When the space is
3526 			 * encountered reset it to a NULL for compliance
3527 			 * with ddi_getlongprop().
3528 			 */
3529 			for (i = 0; ((dataname_ptr[i] != ' ') &&
3530 			    (dataname_ptr[i] != '\0')); i++) {
3531 				;
3532 			}
3533 
3534 			dataname_len += i;
3535 			/* If not null terminated, Make it so */
3536 			if (dataname_ptr[i] == ' ') {
3537 				dataname_ptr[i] = '\0';
3538 			}
3539 			dataname_len++;
3540 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3541 			    "sd_process_sdconf_file: disk:%s, data:%s\n",
3542 			    vidptr, dataname_ptr);
3543 
3544 			/* Get the data list */
3545 			if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0,
3546 			    dataname_ptr, (caddr_t)&data_list, &data_list_len)
3547 			    != DDI_PROP_SUCCESS) {
3548 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3549 				    "sd_process_sdconf_file: data property (%s)"
3550 				    " has no value\n", dataname_ptr);
3551 				dataname_ptr = dnlist_ptr + dataname_len;
3552 				continue;
3553 			}
3554 
3555 			version = data_list[0];
3556 
3557 			if (version == SD_CONF_VERSION_1) {
3558 				sd_tunables values;
3559 
3560 				/* Set the properties */
3561 				if (sd_chk_vers1_data(un, data_list[1],
3562 				    &data_list[2], data_list_len, dataname_ptr)
3563 				    == SD_SUCCESS) {
3564 					sd_get_tunables_from_conf(un,
3565 					    data_list[1], &data_list[2],
3566 					    &values);
3567 					sd_set_vers1_properties(un,
3568 					    data_list[1], &values);
3569 					rval = SD_SUCCESS;
3570 				} else {
3571 					rval = SD_FAILURE;
3572 				}
3573 			} else {
3574 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3575 				    "data property %s version 0x%x is invalid.",
3576 				    dataname_ptr, version);
3577 				rval = SD_FAILURE;
3578 			}
3579 			kmem_free(data_list, data_list_len);
3580 			dataname_ptr = dnlist_ptr + dataname_len;
3581 		}
3582 	}
3583 
3584 	/* free up the memory allocated by ddi_getlongprop */
3585 	if (config_list) {
3586 		kmem_free(config_list, config_list_len);
3587 	}
3588 
3589 	return (rval);
3590 }
3591 
3592 /*
3593  *    Function: sd_get_tunables_from_conf()
3594  *
3595  *
3596  *    This function reads the data list from the sd.conf file and pulls
3597  *    the values that can have numeric values as arguments and places
3598  *    the values in the apropriate sd_tunables member.
3599  *    Since the order of the data list members varies across platforms
3600  *    This function reads them from the data list in a platform specific
3601  *    order and places them into the correct sd_tunable member that is
3602  *    a consistant across all platforms.
3603  */
3604 static void
3605 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3606     sd_tunables *values)
3607 {
3608 	int i;
3609 	int mask;
3610 
3611 	bzero(values, sizeof (sd_tunables));
3612 
3613 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3614 
3615 		mask = 1 << i;
3616 		if (mask > flags) {
3617 			break;
3618 		}
3619 
3620 		switch (mask & flags) {
3621 		case 0:	/* This mask bit not set in flags */
3622 			continue;
3623 		case SD_CONF_BSET_THROTTLE:
3624 			values->sdt_throttle = data_list[i];
3625 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3626 			    "sd_get_tunables_from_conf: throttle = %d\n",
3627 			    values->sdt_throttle);
3628 			break;
3629 		case SD_CONF_BSET_CTYPE:
3630 			values->sdt_ctype = data_list[i];
3631 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3632 			    "sd_get_tunables_from_conf: ctype = %d\n",
3633 			    values->sdt_ctype);
3634 			break;
3635 		case SD_CONF_BSET_NRR_COUNT:
3636 			values->sdt_not_rdy_retries = data_list[i];
3637 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3638 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
3639 			    values->sdt_not_rdy_retries);
3640 			break;
3641 		case SD_CONF_BSET_BSY_RETRY_COUNT:
3642 			values->sdt_busy_retries = data_list[i];
3643 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3644 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
3645 			    values->sdt_busy_retries);
3646 			break;
3647 		case SD_CONF_BSET_RST_RETRIES:
3648 			values->sdt_reset_retries = data_list[i];
3649 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3650 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
3651 			    values->sdt_reset_retries);
3652 			break;
3653 		case SD_CONF_BSET_RSV_REL_TIME:
3654 			values->sdt_reserv_rel_time = data_list[i];
3655 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3656 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
3657 			    values->sdt_reserv_rel_time);
3658 			break;
3659 		case SD_CONF_BSET_MIN_THROTTLE:
3660 			values->sdt_min_throttle = data_list[i];
3661 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3662 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
3663 			    values->sdt_min_throttle);
3664 			break;
3665 		case SD_CONF_BSET_DISKSORT_DISABLED:
3666 			values->sdt_disk_sort_dis = data_list[i];
3667 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3668 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
3669 			    values->sdt_disk_sort_dis);
3670 			break;
3671 		case SD_CONF_BSET_LUN_RESET_ENABLED:
3672 			values->sdt_lun_reset_enable = data_list[i];
3673 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3674 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
3675 			    "\n", values->sdt_lun_reset_enable);
3676 			break;
3677 		}
3678 	}
3679 }
3680 
3681 /*
3682  *    Function: sd_process_sdconf_table
3683  *
3684  * Description: Search the static configuration table for a match on the
3685  *		inquiry vid/pid and update the driver soft state structure
3686  *		according to the table property values for the device.
3687  *
3688  *		The form of a configuration table entry is:
3689  *		  <vid+pid>,<flags>,<property-data>
3690  *		  "SEAGATE ST42400N",1,63,0,0			(Fibre)
3691  *		  "SEAGATE ST42400N",1,63,0,0,0,0		(Sparc)
3692  *		  "SEAGATE ST42400N",1,63,0,0,0,0,0,0,0,0,0,0	(Intel)
3693  *
3694  *   Arguments: un - driver soft state (unit) structure
3695  */
3696 
3697 static void
3698 sd_process_sdconf_table(struct sd_lun *un)
3699 {
3700 	char	*id = NULL;
3701 	int	table_index;
3702 	int	idlen;
3703 
3704 	ASSERT(un != NULL);
3705 	for (table_index = 0; table_index < sd_disk_table_size;
3706 	    table_index++) {
3707 		id = sd_disk_table[table_index].device_id;
3708 		idlen = strlen(id);
3709 		if (idlen == 0) {
3710 			continue;
3711 		}
3712 
3713 		/*
3714 		 * The static configuration table currently does not
3715 		 * implement version 10 properties. Additionally,
3716 		 * multiple data-property-name entries are not
3717 		 * implemented in the static configuration table.
3718 		 */
3719 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
3720 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3721 			    "sd_process_sdconf_table: disk %s\n", id);
3722 			sd_set_vers1_properties(un,
3723 			    sd_disk_table[table_index].flags,
3724 			    sd_disk_table[table_index].properties);
3725 			break;
3726 		}
3727 	}
3728 }
3729 
3730 
3731 /*
3732  *    Function: sd_sdconf_id_match
3733  *
3734  * Description: This local function implements a case sensitive vid/pid
3735  *		comparison as well as the boundary cases of wild card and
3736  *		multiple blanks.
3737  *
3738  *		Note: An implicit assumption made here is that the scsi
3739  *		inquiry structure will always keep the vid, pid and
3740  *		revision strings in consecutive sequence, so they can be
3741  *		read as a single string. If this assumption is not the
3742  *		case, a separate string, to be used for the check, needs
3743  *		to be built with these strings concatenated.
3744  *
3745  *   Arguments: un - driver soft state (unit) structure
3746  *		id - table or config file vid/pid
3747  *		idlen  - length of the vid/pid (bytes)
3748  *
3749  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3750  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3751  */
3752 
3753 static int
3754 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
3755 {
3756 	struct scsi_inquiry	*sd_inq;
3757 	int 			rval = SD_SUCCESS;
3758 
3759 	ASSERT(un != NULL);
3760 	sd_inq = un->un_sd->sd_inq;
3761 	ASSERT(id != NULL);
3762 
3763 	/*
3764 	 * We use the inq_vid as a pointer to a buffer containing the
3765 	 * vid and pid and use the entire vid/pid length of the table
3766 	 * entry for the comparison. This works because the inq_pid
3767 	 * data member follows inq_vid in the scsi_inquiry structure.
3768 	 */
3769 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
3770 		/*
3771 		 * The user id string is compared to the inquiry vid/pid
3772 		 * using a case insensitive comparison and ignoring
3773 		 * multiple spaces.
3774 		 */
3775 		rval = sd_blank_cmp(un, id, idlen);
3776 		if (rval != SD_SUCCESS) {
3777 			/*
3778 			 * User id strings that start and end with a "*"
3779 			 * are a special case. These do not have a
3780 			 * specific vendor, and the product string can
3781 			 * appear anywhere in the 16 byte PID portion of
3782 			 * the inquiry data. This is a simple strstr()
3783 			 * type search for the user id in the inquiry data.
3784 			 */
3785 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
3786 				char	*pidptr = &id[1];
3787 				int	i;
3788 				int	j;
3789 				int	pidstrlen = idlen - 2;
3790 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
3791 				    pidstrlen;
3792 
3793 				if (j < 0) {
3794 					return (SD_FAILURE);
3795 				}
3796 				for (i = 0; i < j; i++) {
3797 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
3798 					    pidptr, pidstrlen) == 0) {
3799 						rval = SD_SUCCESS;
3800 						break;
3801 					}
3802 				}
3803 			}
3804 		}
3805 	}
3806 	return (rval);
3807 }
3808 
3809 
3810 /*
3811  *    Function: sd_blank_cmp
3812  *
3813  * Description: If the id string starts and ends with a space, treat
3814  *		multiple consecutive spaces as equivalent to a single
3815  *		space. For example, this causes a sd_disk_table entry
3816  *		of " NEC CDROM " to match a device's id string of
3817  *		"NEC       CDROM".
3818  *
3819  *		Note: The success exit condition for this routine is if
3820  *		the pointer to the table entry is '\0' and the cnt of
3821  *		the inquiry length is zero. This will happen if the inquiry
3822  *		string returned by the device is padded with spaces to be
3823  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
3824  *		SCSI spec states that the inquiry string is to be padded with
3825  *		spaces.
3826  *
3827  *   Arguments: un - driver soft state (unit) structure
3828  *		id - table or config file vid/pid
3829  *		idlen  - length of the vid/pid (bytes)
3830  *
3831  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3832  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3833  */
3834 
3835 static int
3836 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
3837 {
3838 	char		*p1;
3839 	char		*p2;
3840 	int		cnt;
3841 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
3842 	    sizeof (SD_INQUIRY(un)->inq_pid);
3843 
3844 	ASSERT(un != NULL);
3845 	p2 = un->un_sd->sd_inq->inq_vid;
3846 	ASSERT(id != NULL);
3847 	p1 = id;
3848 
3849 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
3850 		/*
3851 		 * Note: string p1 is terminated by a NUL but string p2
3852 		 * isn't.  The end of p2 is determined by cnt.
3853 		 */
3854 		for (;;) {
3855 			/* skip over any extra blanks in both strings */
3856 			while ((*p1 != '\0') && (*p1 == ' ')) {
3857 				p1++;
3858 			}
3859 			while ((cnt != 0) && (*p2 == ' ')) {
3860 				p2++;
3861 				cnt--;
3862 			}
3863 
3864 			/* compare the two strings */
3865 			if ((cnt == 0) ||
3866 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
3867 				break;
3868 			}
3869 			while ((cnt > 0) &&
3870 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
3871 				p1++;
3872 				p2++;
3873 				cnt--;
3874 			}
3875 		}
3876 	}
3877 
3878 	/* return SD_SUCCESS if both strings match */
3879 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
3880 }
3881 
3882 
3883 /*
3884  *    Function: sd_chk_vers1_data
3885  *
3886  * Description: Verify the version 1 device properties provided by the
3887  *		user via the configuration file
3888  *
3889  *   Arguments: un	     - driver soft state (unit) structure
3890  *		flags	     - integer mask indicating properties to be set
3891  *		prop_list    - integer list of property values
3892  *		list_len     - length of user provided data
3893  *
3894  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
3895  *		SD_FAILURE - Indicates the user provided data is invalid
3896  */
3897 
3898 static int
3899 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
3900     int list_len, char *dataname_ptr)
3901 {
3902 	int i;
3903 	int mask = 1;
3904 	int index = 0;
3905 
3906 	ASSERT(un != NULL);
3907 
3908 	/* Check for a NULL property name and list */
3909 	if (dataname_ptr == NULL) {
3910 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3911 		    "sd_chk_vers1_data: NULL data property name.");
3912 		return (SD_FAILURE);
3913 	}
3914 	if (prop_list == NULL) {
3915 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3916 		    "sd_chk_vers1_data: %s NULL data property list.",
3917 		    dataname_ptr);
3918 		return (SD_FAILURE);
3919 	}
3920 
3921 	/* Display a warning if undefined bits are set in the flags */
3922 	if (flags & ~SD_CONF_BIT_MASK) {
3923 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3924 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
3925 		    "Properties not set.",
3926 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
3927 		return (SD_FAILURE);
3928 	}
3929 
3930 	/*
3931 	 * Verify the length of the list by identifying the highest bit set
3932 	 * in the flags and validating that the property list has a length
3933 	 * up to the index of this bit.
3934 	 */
3935 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3936 		if (flags & mask) {
3937 			index++;
3938 		}
3939 		mask = 1 << i;
3940 	}
3941 	if ((list_len / sizeof (int)) < (index + 2)) {
3942 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3943 		    "sd_chk_vers1_data: "
3944 		    "Data property list %s size is incorrect. "
3945 		    "Properties not set.", dataname_ptr);
3946 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
3947 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
3948 		return (SD_FAILURE);
3949 	}
3950 	return (SD_SUCCESS);
3951 }
3952 
3953 
3954 /*
3955  *    Function: sd_set_vers1_properties
3956  *
3957  * Description: Set version 1 device properties based on a property list
3958  *		retrieved from the driver configuration file or static
3959  *		configuration table. Version 1 properties have the format:
3960  *
3961  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3962  *
3963  *		where the prop0 value will be used to set prop0 if bit0
3964  *		is set in the flags
3965  *
3966  *   Arguments: un	     - driver soft state (unit) structure
3967  *		flags	     - integer mask indicating properties to be set
3968  *		prop_list    - integer list of property values
3969  */
3970 
3971 static void
3972 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
3973 {
3974 	ASSERT(un != NULL);
3975 
3976 	/*
3977 	 * Set the flag to indicate cache is to be disabled. An attempt
3978 	 * to disable the cache via sd_cache_control() will be made
3979 	 * later during attach once the basic initialization is complete.
3980 	 */
3981 	if (flags & SD_CONF_BSET_NOCACHE) {
3982 		un->un_f_opt_disable_cache = TRUE;
3983 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3984 		    "sd_set_vers1_properties: caching disabled flag set\n");
3985 	}
3986 
3987 	/* CD-specific configuration parameters */
3988 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
3989 		un->un_f_cfg_playmsf_bcd = TRUE;
3990 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3991 		    "sd_set_vers1_properties: playmsf_bcd set\n");
3992 	}
3993 	if (flags & SD_CONF_BSET_READSUB_BCD) {
3994 		un->un_f_cfg_readsub_bcd = TRUE;
3995 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3996 		    "sd_set_vers1_properties: readsub_bcd set\n");
3997 	}
3998 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
3999 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4000 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4001 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4002 	}
4003 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4004 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4005 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4006 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4007 	}
4008 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4009 		un->un_f_cfg_no_read_header = TRUE;
4010 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4011 			    "sd_set_vers1_properties: no_read_header set\n");
4012 	}
4013 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4014 		un->un_f_cfg_read_cd_xd4 = TRUE;
4015 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4016 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4017 	}
4018 
4019 	/* Support for devices which do not have valid/unique serial numbers */
4020 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4021 		un->un_f_opt_fab_devid = TRUE;
4022 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4023 		    "sd_set_vers1_properties: fab_devid bit set\n");
4024 	}
4025 
4026 	/* Support for user throttle configuration */
4027 	if (flags & SD_CONF_BSET_THROTTLE) {
4028 		ASSERT(prop_list != NULL);
4029 		un->un_saved_throttle = un->un_throttle =
4030 		    prop_list->sdt_throttle;
4031 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4032 		    "sd_set_vers1_properties: throttle set to %d\n",
4033 		    prop_list->sdt_throttle);
4034 	}
4035 
4036 	/* Set the per disk retry count according to the conf file or table. */
4037 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4038 		ASSERT(prop_list != NULL);
4039 		if (prop_list->sdt_not_rdy_retries) {
4040 			un->un_notready_retry_count =
4041 				prop_list->sdt_not_rdy_retries;
4042 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4043 			    "sd_set_vers1_properties: not ready retry count"
4044 			    " set to %d\n", un->un_notready_retry_count);
4045 		}
4046 	}
4047 
4048 	/* The controller type is reported for generic disk driver ioctls */
4049 	if (flags & SD_CONF_BSET_CTYPE) {
4050 		ASSERT(prop_list != NULL);
4051 		switch (prop_list->sdt_ctype) {
4052 		case CTYPE_CDROM:
4053 			un->un_ctype = prop_list->sdt_ctype;
4054 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4055 			    "sd_set_vers1_properties: ctype set to "
4056 			    "CTYPE_CDROM\n");
4057 			break;
4058 		case CTYPE_CCS:
4059 			un->un_ctype = prop_list->sdt_ctype;
4060 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4061 				"sd_set_vers1_properties: ctype set to "
4062 				"CTYPE_CCS\n");
4063 			break;
4064 		case CTYPE_ROD:		/* RW optical */
4065 			un->un_ctype = prop_list->sdt_ctype;
4066 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4067 			    "sd_set_vers1_properties: ctype set to "
4068 			    "CTYPE_ROD\n");
4069 			break;
4070 		default:
4071 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4072 			    "sd_set_vers1_properties: Could not set "
4073 			    "invalid ctype value (%d)",
4074 			    prop_list->sdt_ctype);
4075 		}
4076 	}
4077 
4078 	/* Purple failover timeout */
4079 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4080 		ASSERT(prop_list != NULL);
4081 		un->un_busy_retry_count =
4082 			prop_list->sdt_busy_retries;
4083 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4084 		    "sd_set_vers1_properties: "
4085 		    "busy retry count set to %d\n",
4086 		    un->un_busy_retry_count);
4087 	}
4088 
4089 	/* Purple reset retry count */
4090 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4091 		ASSERT(prop_list != NULL);
4092 		un->un_reset_retry_count =
4093 			prop_list->sdt_reset_retries;
4094 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4095 		    "sd_set_vers1_properties: "
4096 		    "reset retry count set to %d\n",
4097 		    un->un_reset_retry_count);
4098 	}
4099 
4100 	/* Purple reservation release timeout */
4101 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4102 		ASSERT(prop_list != NULL);
4103 		un->un_reserve_release_time =
4104 			prop_list->sdt_reserv_rel_time;
4105 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4106 		    "sd_set_vers1_properties: "
4107 		    "reservation release timeout set to %d\n",
4108 		    un->un_reserve_release_time);
4109 	}
4110 
4111 	/*
4112 	 * Driver flag telling the driver to verify that no commands are pending
4113 	 * for a device before issuing a Test Unit Ready. This is a workaround
4114 	 * for a firmware bug in some Seagate eliteI drives.
4115 	 */
4116 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4117 		un->un_f_cfg_tur_check = TRUE;
4118 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4119 		    "sd_set_vers1_properties: tur queue check set\n");
4120 	}
4121 
4122 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4123 		un->un_min_throttle = prop_list->sdt_min_throttle;
4124 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4125 		    "sd_set_vers1_properties: min throttle set to %d\n",
4126 		    un->un_min_throttle);
4127 	}
4128 
4129 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4130 		un->un_f_disksort_disabled =
4131 		    (prop_list->sdt_disk_sort_dis != 0) ?
4132 		    TRUE : FALSE;
4133 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4134 		    "sd_set_vers1_properties: disksort disabled "
4135 		    "flag set to %d\n",
4136 		    prop_list->sdt_disk_sort_dis);
4137 	}
4138 
4139 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4140 		un->un_f_lun_reset_enabled =
4141 		    (prop_list->sdt_lun_reset_enable != 0) ?
4142 		    TRUE : FALSE;
4143 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4144 		    "sd_set_vers1_properties: lun reset enabled "
4145 		    "flag set to %d\n",
4146 		    prop_list->sdt_lun_reset_enable);
4147 	}
4148 
4149 	/*
4150 	 * Validate the throttle values.
4151 	 * If any of the numbers are invalid, set everything to defaults.
4152 	 */
4153 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4154 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4155 	    (un->un_min_throttle > un->un_throttle)) {
4156 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4157 		un->un_min_throttle = sd_min_throttle;
4158 	}
4159 }
4160 
4161 /*
4162  *   Function: sd_is_lsi()
4163  *
4164  *   Description: Check for lsi devices, step throught the static device
4165  *	table to match vid/pid.
4166  *
4167  *   Args: un - ptr to sd_lun
4168  *
4169  *   Notes:  When creating new LSI property, need to add the new LSI property
4170  *		to this function.
4171  */
4172 static void
4173 sd_is_lsi(struct sd_lun *un)
4174 {
4175 	char	*id = NULL;
4176 	int	table_index;
4177 	int	idlen;
4178 	void	*prop;
4179 
4180 	ASSERT(un != NULL);
4181 	for (table_index = 0; table_index < sd_disk_table_size;
4182 	    table_index++) {
4183 		id = sd_disk_table[table_index].device_id;
4184 		idlen = strlen(id);
4185 		if (idlen == 0) {
4186 			continue;
4187 		}
4188 
4189 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4190 			prop = sd_disk_table[table_index].properties;
4191 			if (prop == &lsi_properties ||
4192 			    prop == &lsi_oem_properties ||
4193 			    prop == &lsi_properties_scsi ||
4194 			    prop == &symbios_properties) {
4195 				un->un_f_cfg_is_lsi = TRUE;
4196 			}
4197 			break;
4198 		}
4199 	}
4200 }
4201 
4202 /*
4203  *    Function: sd_get_physical_geometry
4204  *
4205  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4206  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4207  *		target, and use this information to initialize the physical
4208  *		geometry cache specified by pgeom_p.
4209  *
4210  *		MODE SENSE is an optional command, so failure in this case
4211  *		does not necessarily denote an error. We want to use the
4212  *		MODE SENSE commands to derive the physical geometry of the
4213  *		device, but if either command fails, the logical geometry is
4214  *		used as the fallback for disk label geometry in cmlb.
4215  *
4216  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4217  *		have already been initialized for the current target and
4218  *		that the current values be passed as args so that we don't
4219  *		end up ever trying to use -1 as a valid value. This could
4220  *		happen if either value is reset while we're not holding
4221  *		the mutex.
4222  *
4223  *   Arguments: un - driver soft state (unit) structure
4224  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4225  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4226  *			to use the USCSI "direct" chain and bypass the normal
4227  *			command waitq.
4228  *
4229  *     Context: Kernel thread only (can sleep).
4230  */
4231 
4232 static int
4233 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4234 	diskaddr_t capacity, int lbasize, int path_flag)
4235 {
4236 	struct	mode_format	*page3p;
4237 	struct	mode_geometry	*page4p;
4238 	struct	mode_header	*headerp;
4239 	int	sector_size;
4240 	int	nsect;
4241 	int	nhead;
4242 	int	ncyl;
4243 	int	intrlv;
4244 	int	spc;
4245 	diskaddr_t	modesense_capacity;
4246 	int	rpm;
4247 	int	bd_len;
4248 	int	mode_header_length;
4249 	uchar_t	*p3bufp;
4250 	uchar_t	*p4bufp;
4251 	int	cdbsize;
4252 	int 	ret = EIO;
4253 
4254 	ASSERT(un != NULL);
4255 
4256 	if (lbasize == 0) {
4257 		if (ISCD(un)) {
4258 			lbasize = 2048;
4259 		} else {
4260 			lbasize = un->un_sys_blocksize;
4261 		}
4262 	}
4263 	pgeom_p->g_secsize = (unsigned short)lbasize;
4264 
4265 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4266 
4267 	/*
4268 	 * Retrieve MODE SENSE page 3 - Format Device Page
4269 	 */
4270 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4271 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp,
4272 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag)
4273 	    != 0) {
4274 		SD_ERROR(SD_LOG_COMMON, un,
4275 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4276 		goto page3_exit;
4277 	}
4278 
4279 	/*
4280 	 * Determine size of Block Descriptors in order to locate the mode
4281 	 * page data.  ATAPI devices return 0, SCSI devices should return
4282 	 * MODE_BLK_DESC_LENGTH.
4283 	 */
4284 	headerp = (struct mode_header *)p3bufp;
4285 	if (un->un_f_cfg_is_atapi == TRUE) {
4286 		struct mode_header_grp2 *mhp =
4287 		    (struct mode_header_grp2 *)headerp;
4288 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4289 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4290 	} else {
4291 		mode_header_length = MODE_HEADER_LENGTH;
4292 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4293 	}
4294 
4295 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4296 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4297 		    "received unexpected bd_len of %d, page3\n", bd_len);
4298 		goto page3_exit;
4299 	}
4300 
4301 	page3p = (struct mode_format *)
4302 	    ((caddr_t)headerp + mode_header_length + bd_len);
4303 
4304 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4305 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4306 		    "mode sense pg3 code mismatch %d\n",
4307 		    page3p->mode_page.code);
4308 		goto page3_exit;
4309 	}
4310 
4311 	/*
4312 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4313 	 * complete successfully; otherwise, revert to the logical geometry.
4314 	 * So, we need to save everything in temporary variables.
4315 	 */
4316 	sector_size = BE_16(page3p->data_bytes_sect);
4317 
4318 	/*
4319 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4320 	 */
4321 	if (sector_size == 0) {
4322 		sector_size = (ISCD(un)) ? 2048 : un->un_sys_blocksize;
4323 	} else {
4324 		sector_size &= ~(un->un_sys_blocksize - 1);
4325 	}
4326 
4327 	nsect  = BE_16(page3p->sect_track);
4328 	intrlv = BE_16(page3p->interleave);
4329 
4330 	SD_INFO(SD_LOG_COMMON, un,
4331 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4332 	SD_INFO(SD_LOG_COMMON, un,
4333 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4334 	    page3p->mode_page.code, nsect, sector_size);
4335 	SD_INFO(SD_LOG_COMMON, un,
4336 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4337 	    BE_16(page3p->track_skew),
4338 	    BE_16(page3p->cylinder_skew));
4339 
4340 
4341 	/*
4342 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4343 	 */
4344 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4345 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp,
4346 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag)
4347 	    != 0) {
4348 		SD_ERROR(SD_LOG_COMMON, un,
4349 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4350 		goto page4_exit;
4351 	}
4352 
4353 	/*
4354 	 * Determine size of Block Descriptors in order to locate the mode
4355 	 * page data.  ATAPI devices return 0, SCSI devices should return
4356 	 * MODE_BLK_DESC_LENGTH.
4357 	 */
4358 	headerp = (struct mode_header *)p4bufp;
4359 	if (un->un_f_cfg_is_atapi == TRUE) {
4360 		struct mode_header_grp2 *mhp =
4361 		    (struct mode_header_grp2 *)headerp;
4362 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4363 	} else {
4364 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4365 	}
4366 
4367 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4368 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4369 		    "received unexpected bd_len of %d, page4\n", bd_len);
4370 		goto page4_exit;
4371 	}
4372 
4373 	page4p = (struct mode_geometry *)
4374 	    ((caddr_t)headerp + mode_header_length + bd_len);
4375 
4376 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
4377 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4378 		    "mode sense pg4 code mismatch %d\n",
4379 		    page4p->mode_page.code);
4380 		goto page4_exit;
4381 	}
4382 
4383 	/*
4384 	 * Stash the data now, after we know that both commands completed.
4385 	 */
4386 
4387 
4388 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
4389 	spc   = nhead * nsect;
4390 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
4391 	rpm   = BE_16(page4p->rpm);
4392 
4393 	modesense_capacity = spc * ncyl;
4394 
4395 	SD_INFO(SD_LOG_COMMON, un,
4396 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
4397 	SD_INFO(SD_LOG_COMMON, un,
4398 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
4399 	SD_INFO(SD_LOG_COMMON, un,
4400 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
4401 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
4402 	    (void *)pgeom_p, capacity);
4403 
4404 	/*
4405 	 * Compensate if the drive's geometry is not rectangular, i.e.,
4406 	 * the product of C * H * S returned by MODE SENSE >= that returned
4407 	 * by read capacity. This is an idiosyncrasy of the original x86
4408 	 * disk subsystem.
4409 	 */
4410 	if (modesense_capacity >= capacity) {
4411 		SD_INFO(SD_LOG_COMMON, un,
4412 		    "sd_get_physical_geometry: adjusting acyl; "
4413 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
4414 		    (modesense_capacity - capacity + spc - 1) / spc);
4415 		if (sector_size != 0) {
4416 			/* 1243403: NEC D38x7 drives don't support sec size */
4417 			pgeom_p->g_secsize = (unsigned short)sector_size;
4418 		}
4419 		pgeom_p->g_nsect    = (unsigned short)nsect;
4420 		pgeom_p->g_nhead    = (unsigned short)nhead;
4421 		pgeom_p->g_capacity = capacity;
4422 		pgeom_p->g_acyl	    =
4423 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
4424 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
4425 	}
4426 
4427 	pgeom_p->g_rpm    = (unsigned short)rpm;
4428 	pgeom_p->g_intrlv = (unsigned short)intrlv;
4429 	ret = 0;
4430 
4431 	SD_INFO(SD_LOG_COMMON, un,
4432 	    "sd_get_physical_geometry: mode sense geometry:\n");
4433 	SD_INFO(SD_LOG_COMMON, un,
4434 	    "   nsect: %d; sector size: %d; interlv: %d\n",
4435 	    nsect, sector_size, intrlv);
4436 	SD_INFO(SD_LOG_COMMON, un,
4437 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
4438 	    nhead, ncyl, rpm, modesense_capacity);
4439 	SD_INFO(SD_LOG_COMMON, un,
4440 	    "sd_get_physical_geometry: (cached)\n");
4441 	SD_INFO(SD_LOG_COMMON, un,
4442 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4443 	    pgeom_p->g_ncyl,  pgeom_p->g_acyl,
4444 	    pgeom_p->g_nhead, pgeom_p->g_nsect);
4445 	SD_INFO(SD_LOG_COMMON, un,
4446 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
4447 	    pgeom_p->g_secsize, pgeom_p->g_capacity,
4448 	    pgeom_p->g_intrlv, pgeom_p->g_rpm);
4449 
4450 page4_exit:
4451 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
4452 page3_exit:
4453 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
4454 
4455 	return (ret);
4456 }
4457 
4458 /*
4459  *    Function: sd_get_virtual_geometry
4460  *
4461  * Description: Ask the controller to tell us about the target device.
4462  *
4463  *   Arguments: un - pointer to softstate
4464  *		capacity - disk capacity in #blocks
4465  *		lbasize - disk block size in bytes
4466  *
4467  *     Context: Kernel thread only
4468  */
4469 
4470 static int
4471 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
4472     diskaddr_t capacity, int lbasize)
4473 {
4474 	uint_t	geombuf;
4475 	int	spc;
4476 
4477 	ASSERT(un != NULL);
4478 
4479 	/* Set sector size, and total number of sectors */
4480 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
4481 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
4482 
4483 	/* Let the HBA tell us its geometry */
4484 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
4485 
4486 	/* A value of -1 indicates an undefined "geometry" property */
4487 	if (geombuf == (-1)) {
4488 		return (EINVAL);
4489 	}
4490 
4491 	/* Initialize the logical geometry cache. */
4492 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
4493 	lgeom_p->g_nsect   = geombuf & 0xffff;
4494 	lgeom_p->g_secsize = un->un_sys_blocksize;
4495 
4496 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
4497 
4498 	/*
4499 	 * Note: The driver originally converted the capacity value from
4500 	 * target blocks to system blocks. However, the capacity value passed
4501 	 * to this routine is already in terms of system blocks (this scaling
4502 	 * is done when the READ CAPACITY command is issued and processed).
4503 	 * This 'error' may have gone undetected because the usage of g_ncyl
4504 	 * (which is based upon g_capacity) is very limited within the driver
4505 	 */
4506 	lgeom_p->g_capacity = capacity;
4507 
4508 	/*
4509 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
4510 	 * hba may return zero values if the device has been removed.
4511 	 */
4512 	if (spc == 0) {
4513 		lgeom_p->g_ncyl = 0;
4514 	} else {
4515 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
4516 	}
4517 	lgeom_p->g_acyl = 0;
4518 
4519 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
4520 	return (0);
4521 
4522 }
4523 /*
4524  *    Function: sd_update_block_info
4525  *
4526  * Description: Calculate a byte count to sector count bitshift value
4527  *		from sector size.
4528  *
4529  *   Arguments: un: unit struct.
4530  *		lbasize: new target sector size
4531  *		capacity: new target capacity, ie. block count
4532  *
4533  *     Context: Kernel thread context
4534  */
4535 
4536 static void
4537 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
4538 {
4539 	if (lbasize != 0) {
4540 		un->un_tgt_blocksize = lbasize;
4541 		un->un_f_tgt_blocksize_is_valid	= TRUE;
4542 	}
4543 
4544 	if (capacity != 0) {
4545 		un->un_blockcount		= capacity;
4546 		un->un_f_blockcount_is_valid	= TRUE;
4547 	}
4548 }
4549 
4550 
4551 /*
4552  *    Function: sd_register_devid
4553  *
4554  * Description: This routine will obtain the device id information from the
4555  *		target, obtain the serial number, and register the device
4556  *		id with the ddi framework.
4557  *
4558  *   Arguments: devi - the system's dev_info_t for the device.
4559  *		un - driver soft state (unit) structure
4560  *		reservation_flag - indicates if a reservation conflict
4561  *		occurred during attach
4562  *
4563  *     Context: Kernel Thread
4564  */
4565 static void
4566 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag)
4567 {
4568 	int		rval		= 0;
4569 	uchar_t		*inq80		= NULL;
4570 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
4571 	size_t		inq80_resid	= 0;
4572 	uchar_t		*inq83		= NULL;
4573 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
4574 	size_t		inq83_resid	= 0;
4575 
4576 	ASSERT(un != NULL);
4577 	ASSERT(mutex_owned(SD_MUTEX(un)));
4578 	ASSERT((SD_DEVINFO(un)) == devi);
4579 
4580 	/*
4581 	 * This is the case of antiquated Sun disk drives that have the
4582 	 * FAB_DEVID property set in the disk_table.  These drives
4583 	 * manage the devid's by storing them in last 2 available sectors
4584 	 * on the drive and have them fabricated by the ddi layer by calling
4585 	 * ddi_devid_init and passing the DEVID_FAB flag.
4586 	 */
4587 	if (un->un_f_opt_fab_devid == TRUE) {
4588 		/*
4589 		 * Depending on EINVAL isn't reliable, since a reserved disk
4590 		 * may result in invalid geometry, so check to make sure a
4591 		 * reservation conflict did not occur during attach.
4592 		 */
4593 		if ((sd_get_devid(un) == EINVAL) &&
4594 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
4595 			/*
4596 			 * The devid is invalid AND there is no reservation
4597 			 * conflict.  Fabricate a new devid.
4598 			 */
4599 			(void) sd_create_devid(un);
4600 		}
4601 
4602 		/* Register the devid if it exists */
4603 		if (un->un_devid != NULL) {
4604 			(void) ddi_devid_register(SD_DEVINFO(un),
4605 			    un->un_devid);
4606 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4607 			    "sd_register_devid: Devid Fabricated\n");
4608 		}
4609 		return;
4610 	}
4611 
4612 	/*
4613 	 * We check the availibility of the World Wide Name (0x83) and Unit
4614 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
4615 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
4616 	 * 0x83 is availible, that is the best choice.  Our next choice is
4617 	 * 0x80.  If neither are availible, we munge the devid from the device
4618 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
4619 	 * to fabricate a devid for non-Sun qualified disks.
4620 	 */
4621 	if (sd_check_vpd_page_support(un) == 0) {
4622 		/* collect page 80 data if available */
4623 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
4624 
4625 			mutex_exit(SD_MUTEX(un));
4626 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
4627 			rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len,
4628 			    0x01, 0x80, &inq80_resid);
4629 
4630 			if (rval != 0) {
4631 				kmem_free(inq80, inq80_len);
4632 				inq80 = NULL;
4633 				inq80_len = 0;
4634 			}
4635 			mutex_enter(SD_MUTEX(un));
4636 		}
4637 
4638 		/* collect page 83 data if available */
4639 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
4640 			mutex_exit(SD_MUTEX(un));
4641 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
4642 			rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len,
4643 			    0x01, 0x83, &inq83_resid);
4644 
4645 			if (rval != 0) {
4646 				kmem_free(inq83, inq83_len);
4647 				inq83 = NULL;
4648 				inq83_len = 0;
4649 			}
4650 			mutex_enter(SD_MUTEX(un));
4651 		}
4652 	}
4653 
4654 	/* encode best devid possible based on data available */
4655 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
4656 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
4657 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
4658 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
4659 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
4660 
4661 		/* devid successfully encoded, register devid */
4662 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
4663 
4664 	} else {
4665 		/*
4666 		 * Unable to encode a devid based on data available.
4667 		 * This is not a Sun qualified disk.  Older Sun disk
4668 		 * drives that have the SD_FAB_DEVID property
4669 		 * set in the disk_table and non Sun qualified
4670 		 * disks are treated in the same manner.  These
4671 		 * drives manage the devid's by storing them in
4672 		 * last 2 available sectors on the drive and
4673 		 * have them fabricated by the ddi layer by
4674 		 * calling ddi_devid_init and passing the
4675 		 * DEVID_FAB flag.
4676 		 * Create a fabricate devid only if there's no
4677 		 * fabricate devid existed.
4678 		 */
4679 		if (sd_get_devid(un) == EINVAL) {
4680 			(void) sd_create_devid(un);
4681 		}
4682 		un->un_f_opt_fab_devid = TRUE;
4683 
4684 		/* Register the devid if it exists */
4685 		if (un->un_devid != NULL) {
4686 			(void) ddi_devid_register(SD_DEVINFO(un),
4687 			    un->un_devid);
4688 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4689 			    "sd_register_devid: devid fabricated using "
4690 			    "ddi framework\n");
4691 		}
4692 	}
4693 
4694 	/* clean up resources */
4695 	if (inq80 != NULL) {
4696 		kmem_free(inq80, inq80_len);
4697 	}
4698 	if (inq83 != NULL) {
4699 		kmem_free(inq83, inq83_len);
4700 	}
4701 }
4702 
4703 
4704 
4705 /*
4706  *    Function: sd_get_devid
4707  *
4708  * Description: This routine will return 0 if a valid device id has been
4709  *		obtained from the target and stored in the soft state. If a
4710  *		valid device id has not been previously read and stored, a
4711  *		read attempt will be made.
4712  *
4713  *   Arguments: un - driver soft state (unit) structure
4714  *
4715  * Return Code: 0 if we successfully get the device id
4716  *
4717  *     Context: Kernel Thread
4718  */
4719 
4720 static int
4721 sd_get_devid(struct sd_lun *un)
4722 {
4723 	struct dk_devid		*dkdevid;
4724 	ddi_devid_t		tmpid;
4725 	uint_t			*ip;
4726 	size_t			sz;
4727 	diskaddr_t		blk;
4728 	int			status;
4729 	int			chksum;
4730 	int			i;
4731 	size_t			buffer_size;
4732 
4733 	ASSERT(un != NULL);
4734 	ASSERT(mutex_owned(SD_MUTEX(un)));
4735 
4736 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
4737 	    un);
4738 
4739 	if (un->un_devid != NULL) {
4740 		return (0);
4741 	}
4742 
4743 	mutex_exit(SD_MUTEX(un));
4744 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
4745 	    (void *)SD_PATH_DIRECT) != 0) {
4746 		mutex_enter(SD_MUTEX(un));
4747 		return (EINVAL);
4748 	}
4749 
4750 	/*
4751 	 * Read and verify device id, stored in the reserved cylinders at the
4752 	 * end of the disk. Backup label is on the odd sectors of the last
4753 	 * track of the last cylinder. Device id will be on track of the next
4754 	 * to last cylinder.
4755 	 */
4756 	mutex_enter(SD_MUTEX(un));
4757 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
4758 	mutex_exit(SD_MUTEX(un));
4759 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
4760 	status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk,
4761 	    SD_PATH_DIRECT);
4762 	if (status != 0) {
4763 		goto error;
4764 	}
4765 
4766 	/* Validate the revision */
4767 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
4768 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
4769 		status = EINVAL;
4770 		goto error;
4771 	}
4772 
4773 	/* Calculate the checksum */
4774 	chksum = 0;
4775 	ip = (uint_t *)dkdevid;
4776 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
4777 	    i++) {
4778 		chksum ^= ip[i];
4779 	}
4780 
4781 	/* Compare the checksums */
4782 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
4783 		status = EINVAL;
4784 		goto error;
4785 	}
4786 
4787 	/* Validate the device id */
4788 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
4789 		status = EINVAL;
4790 		goto error;
4791 	}
4792 
4793 	/*
4794 	 * Store the device id in the driver soft state
4795 	 */
4796 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
4797 	tmpid = kmem_alloc(sz, KM_SLEEP);
4798 
4799 	mutex_enter(SD_MUTEX(un));
4800 
4801 	un->un_devid = tmpid;
4802 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
4803 
4804 	kmem_free(dkdevid, buffer_size);
4805 
4806 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
4807 
4808 	return (status);
4809 error:
4810 	mutex_enter(SD_MUTEX(un));
4811 	kmem_free(dkdevid, buffer_size);
4812 	return (status);
4813 }
4814 
4815 
4816 /*
4817  *    Function: sd_create_devid
4818  *
4819  * Description: This routine will fabricate the device id and write it
4820  *		to the disk.
4821  *
4822  *   Arguments: un - driver soft state (unit) structure
4823  *
4824  * Return Code: value of the fabricated device id
4825  *
4826  *     Context: Kernel Thread
4827  */
4828 
4829 static ddi_devid_t
4830 sd_create_devid(struct sd_lun *un)
4831 {
4832 	ASSERT(un != NULL);
4833 
4834 	/* Fabricate the devid */
4835 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
4836 	    == DDI_FAILURE) {
4837 		return (NULL);
4838 	}
4839 
4840 	/* Write the devid to disk */
4841 	if (sd_write_deviceid(un) != 0) {
4842 		ddi_devid_free(un->un_devid);
4843 		un->un_devid = NULL;
4844 	}
4845 
4846 	return (un->un_devid);
4847 }
4848 
4849 
4850 /*
4851  *    Function: sd_write_deviceid
4852  *
4853  * Description: This routine will write the device id to the disk
4854  *		reserved sector.
4855  *
4856  *   Arguments: un - driver soft state (unit) structure
4857  *
4858  * Return Code: EINVAL
4859  *		value returned by sd_send_scsi_cmd
4860  *
4861  *     Context: Kernel Thread
4862  */
4863 
4864 static int
4865 sd_write_deviceid(struct sd_lun *un)
4866 {
4867 	struct dk_devid		*dkdevid;
4868 	diskaddr_t		blk;
4869 	uint_t			*ip, chksum;
4870 	int			status;
4871 	int			i;
4872 
4873 	ASSERT(mutex_owned(SD_MUTEX(un)));
4874 
4875 	mutex_exit(SD_MUTEX(un));
4876 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
4877 	    (void *)SD_PATH_DIRECT) != 0) {
4878 		mutex_enter(SD_MUTEX(un));
4879 		return (-1);
4880 	}
4881 
4882 
4883 	/* Allocate the buffer */
4884 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
4885 
4886 	/* Fill in the revision */
4887 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
4888 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
4889 
4890 	/* Copy in the device id */
4891 	mutex_enter(SD_MUTEX(un));
4892 	bcopy(un->un_devid, &dkdevid->dkd_devid,
4893 	    ddi_devid_sizeof(un->un_devid));
4894 	mutex_exit(SD_MUTEX(un));
4895 
4896 	/* Calculate the checksum */
4897 	chksum = 0;
4898 	ip = (uint_t *)dkdevid;
4899 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
4900 	    i++) {
4901 		chksum ^= ip[i];
4902 	}
4903 
4904 	/* Fill-in checksum */
4905 	DKD_FORMCHKSUM(chksum, dkdevid);
4906 
4907 	/* Write the reserved sector */
4908 	status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk,
4909 	    SD_PATH_DIRECT);
4910 
4911 	kmem_free(dkdevid, un->un_sys_blocksize);
4912 
4913 	mutex_enter(SD_MUTEX(un));
4914 	return (status);
4915 }
4916 
4917 
4918 /*
4919  *    Function: sd_check_vpd_page_support
4920  *
4921  * Description: This routine sends an inquiry command with the EVPD bit set and
4922  *		a page code of 0x00 to the device. It is used to determine which
4923  *		vital product pages are availible to find the devid. We are
4924  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
4925  *		device does not support that command.
4926  *
4927  *   Arguments: un  - driver soft state (unit) structure
4928  *
4929  * Return Code: 0 - success
4930  *		1 - check condition
4931  *
4932  *     Context: This routine can sleep.
4933  */
4934 
4935 static int
4936 sd_check_vpd_page_support(struct sd_lun *un)
4937 {
4938 	uchar_t	*page_list	= NULL;
4939 	uchar_t	page_length	= 0xff;	/* Use max possible length */
4940 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
4941 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
4942 	int    	rval		= 0;
4943 	int	counter;
4944 
4945 	ASSERT(un != NULL);
4946 	ASSERT(mutex_owned(SD_MUTEX(un)));
4947 
4948 	mutex_exit(SD_MUTEX(un));
4949 
4950 	/*
4951 	 * We'll set the page length to the maximum to save figuring it out
4952 	 * with an additional call.
4953 	 */
4954 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
4955 
4956 	rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd,
4957 	    page_code, NULL);
4958 
4959 	mutex_enter(SD_MUTEX(un));
4960 
4961 	/*
4962 	 * Now we must validate that the device accepted the command, as some
4963 	 * drives do not support it.  If the drive does support it, we will
4964 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
4965 	 * not, we return -1.
4966 	 */
4967 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
4968 		/* Loop to find one of the 2 pages we need */
4969 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
4970 
4971 		/*
4972 		 * Pages are returned in ascending order, and 0x83 is what we
4973 		 * are hoping for.
4974 		 */
4975 		while ((page_list[counter] <= 0x83) &&
4976 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
4977 		    VPD_HEAD_OFFSET))) {
4978 			/*
4979 			 * Add 3 because page_list[3] is the number of
4980 			 * pages minus 3
4981 			 */
4982 
4983 			switch (page_list[counter]) {
4984 			case 0x00:
4985 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
4986 				break;
4987 			case 0x80:
4988 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
4989 				break;
4990 			case 0x81:
4991 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
4992 				break;
4993 			case 0x82:
4994 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
4995 				break;
4996 			case 0x83:
4997 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
4998 				break;
4999 			}
5000 			counter++;
5001 		}
5002 
5003 	} else {
5004 		rval = -1;
5005 
5006 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
5007 		    "sd_check_vpd_page_support: This drive does not implement "
5008 		    "VPD pages.\n");
5009 	}
5010 
5011 	kmem_free(page_list, page_length);
5012 
5013 	return (rval);
5014 }
5015 
5016 
5017 /*
5018  *    Function: sd_setup_pm
5019  *
5020  * Description: Initialize Power Management on the device
5021  *
5022  *     Context: Kernel Thread
5023  */
5024 
5025 static void
5026 sd_setup_pm(struct sd_lun *un, dev_info_t *devi)
5027 {
5028 	uint_t	log_page_size;
5029 	uchar_t	*log_page_data;
5030 	int	rval;
5031 
5032 	/*
5033 	 * Since we are called from attach, holding a mutex for
5034 	 * un is unnecessary. Because some of the routines called
5035 	 * from here require SD_MUTEX to not be held, assert this
5036 	 * right up front.
5037 	 */
5038 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5039 	/*
5040 	 * Since the sd device does not have the 'reg' property,
5041 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5042 	 * The following code is to tell cpr that this device
5043 	 * DOES need to be suspended and resumed.
5044 	 */
5045 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5046 	    "pm-hardware-state", "needs-suspend-resume");
5047 
5048 	/*
5049 	 * This complies with the new power management framework
5050 	 * for certain desktop machines. Create the pm_components
5051 	 * property as a string array property.
5052 	 */
5053 	if (un->un_f_pm_supported) {
5054 		/*
5055 		 * not all devices have a motor, try it first.
5056 		 * some devices may return ILLEGAL REQUEST, some
5057 		 * will hang
5058 		 * The following START_STOP_UNIT is used to check if target
5059 		 * device has a motor.
5060 		 */
5061 		un->un_f_start_stop_supported = TRUE;
5062 		if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
5063 		    SD_PATH_DIRECT) != 0) {
5064 			un->un_f_start_stop_supported = FALSE;
5065 		}
5066 
5067 		/*
5068 		 * create pm properties anyways otherwise the parent can't
5069 		 * go to sleep
5070 		 */
5071 		(void) sd_create_pm_components(devi, un);
5072 		un->un_f_pm_is_enabled = TRUE;
5073 		return;
5074 	}
5075 
5076 	if (!un->un_f_log_sense_supported) {
5077 		un->un_power_level = SD_SPINDLE_ON;
5078 		un->un_f_pm_is_enabled = FALSE;
5079 		return;
5080 	}
5081 
5082 	rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE);
5083 
5084 #ifdef	SDDEBUG
5085 	if (sd_force_pm_supported) {
5086 		/* Force a successful result */
5087 		rval = 1;
5088 	}
5089 #endif
5090 
5091 	/*
5092 	 * If the start-stop cycle counter log page is not supported
5093 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
5094 	 * then we should not create the pm_components property.
5095 	 */
5096 	if (rval == -1) {
5097 		/*
5098 		 * Error.
5099 		 * Reading log sense failed, most likely this is
5100 		 * an older drive that does not support log sense.
5101 		 * If this fails auto-pm is not supported.
5102 		 */
5103 		un->un_power_level = SD_SPINDLE_ON;
5104 		un->un_f_pm_is_enabled = FALSE;
5105 
5106 	} else if (rval == 0) {
5107 		/*
5108 		 * Page not found.
5109 		 * The start stop cycle counter is implemented as page
5110 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
5111 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
5112 		 */
5113 		if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) {
5114 			/*
5115 			 * Page found, use this one.
5116 			 */
5117 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
5118 			un->un_f_pm_is_enabled = TRUE;
5119 		} else {
5120 			/*
5121 			 * Error or page not found.
5122 			 * auto-pm is not supported for this device.
5123 			 */
5124 			un->un_power_level = SD_SPINDLE_ON;
5125 			un->un_f_pm_is_enabled = FALSE;
5126 		}
5127 	} else {
5128 		/*
5129 		 * Page found, use it.
5130 		 */
5131 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
5132 		un->un_f_pm_is_enabled = TRUE;
5133 	}
5134 
5135 
5136 	if (un->un_f_pm_is_enabled == TRUE) {
5137 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5138 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5139 
5140 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
5141 		    log_page_size, un->un_start_stop_cycle_page,
5142 		    0x01, 0, SD_PATH_DIRECT);
5143 #ifdef	SDDEBUG
5144 		if (sd_force_pm_supported) {
5145 			/* Force a successful result */
5146 			rval = 0;
5147 		}
5148 #endif
5149 
5150 		/*
5151 		 * If the Log sense for Page( Start/stop cycle counter page)
5152 		 * succeeds, then power managment is supported and we can
5153 		 * enable auto-pm.
5154 		 */
5155 		if (rval == 0)  {
5156 			(void) sd_create_pm_components(devi, un);
5157 		} else {
5158 			un->un_power_level = SD_SPINDLE_ON;
5159 			un->un_f_pm_is_enabled = FALSE;
5160 		}
5161 
5162 		kmem_free(log_page_data, log_page_size);
5163 	}
5164 }
5165 
5166 
5167 /*
5168  *    Function: sd_create_pm_components
5169  *
5170  * Description: Initialize PM property.
5171  *
5172  *     Context: Kernel thread context
5173  */
5174 
5175 static void
5176 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
5177 {
5178 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
5179 
5180 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5181 
5182 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
5183 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
5184 		/*
5185 		 * When components are initially created they are idle,
5186 		 * power up any non-removables.
5187 		 * Note: the return value of pm_raise_power can't be used
5188 		 * for determining if PM should be enabled for this device.
5189 		 * Even if you check the return values and remove this
5190 		 * property created above, the PM framework will not honor the
5191 		 * change after the first call to pm_raise_power. Hence,
5192 		 * removal of that property does not help if pm_raise_power
5193 		 * fails. In the case of removable media, the start/stop
5194 		 * will fail if the media is not present.
5195 		 */
5196 		if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
5197 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
5198 			mutex_enter(SD_MUTEX(un));
5199 			un->un_power_level = SD_SPINDLE_ON;
5200 			mutex_enter(&un->un_pm_mutex);
5201 			/* Set to on and not busy. */
5202 			un->un_pm_count = 0;
5203 		} else {
5204 			mutex_enter(SD_MUTEX(un));
5205 			un->un_power_level = SD_SPINDLE_OFF;
5206 			mutex_enter(&un->un_pm_mutex);
5207 			/* Set to off. */
5208 			un->un_pm_count = -1;
5209 		}
5210 		mutex_exit(&un->un_pm_mutex);
5211 		mutex_exit(SD_MUTEX(un));
5212 	} else {
5213 		un->un_power_level = SD_SPINDLE_ON;
5214 		un->un_f_pm_is_enabled = FALSE;
5215 	}
5216 }
5217 
5218 
5219 /*
5220  *    Function: sd_ddi_suspend
5221  *
5222  * Description: Performs system power-down operations. This includes
5223  *		setting the drive state to indicate its suspended so
5224  *		that no new commands will be accepted. Also, wait for
5225  *		all commands that are in transport or queued to a timer
5226  *		for retry to complete. All timeout threads are cancelled.
5227  *
5228  * Return Code: DDI_FAILURE or DDI_SUCCESS
5229  *
5230  *     Context: Kernel thread context
5231  */
5232 
5233 static int
5234 sd_ddi_suspend(dev_info_t *devi)
5235 {
5236 	struct	sd_lun	*un;
5237 	clock_t		wait_cmds_complete;
5238 
5239 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5240 	if (un == NULL) {
5241 		return (DDI_FAILURE);
5242 	}
5243 
5244 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
5245 
5246 	mutex_enter(SD_MUTEX(un));
5247 
5248 	/* Return success if the device is already suspended. */
5249 	if (un->un_state == SD_STATE_SUSPENDED) {
5250 		mutex_exit(SD_MUTEX(un));
5251 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5252 		    "device already suspended, exiting\n");
5253 		return (DDI_SUCCESS);
5254 	}
5255 
5256 	/* Return failure if the device is being used by HA */
5257 	if (un->un_resvd_status &
5258 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
5259 		mutex_exit(SD_MUTEX(un));
5260 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5261 		    "device in use by HA, exiting\n");
5262 		return (DDI_FAILURE);
5263 	}
5264 
5265 	/*
5266 	 * Return failure if the device is in a resource wait
5267 	 * or power changing state.
5268 	 */
5269 	if ((un->un_state == SD_STATE_RWAIT) ||
5270 	    (un->un_state == SD_STATE_PM_CHANGING)) {
5271 		mutex_exit(SD_MUTEX(un));
5272 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5273 		    "device in resource wait state, exiting\n");
5274 		return (DDI_FAILURE);
5275 	}
5276 
5277 
5278 	un->un_save_state = un->un_last_state;
5279 	New_state(un, SD_STATE_SUSPENDED);
5280 
5281 	/*
5282 	 * Wait for all commands that are in transport or queued to a timer
5283 	 * for retry to complete.
5284 	 *
5285 	 * While waiting, no new commands will be accepted or sent because of
5286 	 * the new state we set above.
5287 	 *
5288 	 * Wait till current operation has completed. If we are in the resource
5289 	 * wait state (with an intr outstanding) then we need to wait till the
5290 	 * intr completes and starts the next cmd. We want to wait for
5291 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
5292 	 */
5293 	wait_cmds_complete = ddi_get_lbolt() +
5294 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
5295 
5296 	while (un->un_ncmds_in_transport != 0) {
5297 		/*
5298 		 * Fail if commands do not finish in the specified time.
5299 		 */
5300 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
5301 		    wait_cmds_complete) == -1) {
5302 			/*
5303 			 * Undo the state changes made above. Everything
5304 			 * must go back to it's original value.
5305 			 */
5306 			Restore_state(un);
5307 			un->un_last_state = un->un_save_state;
5308 			/* Wake up any threads that might be waiting. */
5309 			cv_broadcast(&un->un_suspend_cv);
5310 			mutex_exit(SD_MUTEX(un));
5311 			SD_ERROR(SD_LOG_IO_PM, un,
5312 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
5313 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
5314 			return (DDI_FAILURE);
5315 		}
5316 	}
5317 
5318 	/*
5319 	 * Cancel SCSI watch thread and timeouts, if any are active
5320 	 */
5321 
5322 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
5323 		opaque_t temp_token = un->un_swr_token;
5324 		mutex_exit(SD_MUTEX(un));
5325 		scsi_watch_suspend(temp_token);
5326 		mutex_enter(SD_MUTEX(un));
5327 	}
5328 
5329 	if (un->un_reset_throttle_timeid != NULL) {
5330 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
5331 		un->un_reset_throttle_timeid = NULL;
5332 		mutex_exit(SD_MUTEX(un));
5333 		(void) untimeout(temp_id);
5334 		mutex_enter(SD_MUTEX(un));
5335 	}
5336 
5337 	if (un->un_dcvb_timeid != NULL) {
5338 		timeout_id_t temp_id = un->un_dcvb_timeid;
5339 		un->un_dcvb_timeid = NULL;
5340 		mutex_exit(SD_MUTEX(un));
5341 		(void) untimeout(temp_id);
5342 		mutex_enter(SD_MUTEX(un));
5343 	}
5344 
5345 	mutex_enter(&un->un_pm_mutex);
5346 	if (un->un_pm_timeid != NULL) {
5347 		timeout_id_t temp_id = un->un_pm_timeid;
5348 		un->un_pm_timeid = NULL;
5349 		mutex_exit(&un->un_pm_mutex);
5350 		mutex_exit(SD_MUTEX(un));
5351 		(void) untimeout(temp_id);
5352 		mutex_enter(SD_MUTEX(un));
5353 	} else {
5354 		mutex_exit(&un->un_pm_mutex);
5355 	}
5356 
5357 	if (un->un_retry_timeid != NULL) {
5358 		timeout_id_t temp_id = un->un_retry_timeid;
5359 		un->un_retry_timeid = NULL;
5360 		mutex_exit(SD_MUTEX(un));
5361 		(void) untimeout(temp_id);
5362 		mutex_enter(SD_MUTEX(un));
5363 	}
5364 
5365 	if (un->un_direct_priority_timeid != NULL) {
5366 		timeout_id_t temp_id = un->un_direct_priority_timeid;
5367 		un->un_direct_priority_timeid = NULL;
5368 		mutex_exit(SD_MUTEX(un));
5369 		(void) untimeout(temp_id);
5370 		mutex_enter(SD_MUTEX(un));
5371 	}
5372 
5373 	if (un->un_f_is_fibre == TRUE) {
5374 		/*
5375 		 * Remove callbacks for insert and remove events
5376 		 */
5377 		if (un->un_insert_event != NULL) {
5378 			mutex_exit(SD_MUTEX(un));
5379 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
5380 			mutex_enter(SD_MUTEX(un));
5381 			un->un_insert_event = NULL;
5382 		}
5383 
5384 		if (un->un_remove_event != NULL) {
5385 			mutex_exit(SD_MUTEX(un));
5386 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
5387 			mutex_enter(SD_MUTEX(un));
5388 			un->un_remove_event = NULL;
5389 		}
5390 	}
5391 
5392 	mutex_exit(SD_MUTEX(un));
5393 
5394 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
5395 
5396 	return (DDI_SUCCESS);
5397 }
5398 
5399 
5400 /*
5401  *    Function: sd_ddi_pm_suspend
5402  *
5403  * Description: Set the drive state to low power.
5404  *		Someone else is required to actually change the drive
5405  *		power level.
5406  *
5407  *   Arguments: un - driver soft state (unit) structure
5408  *
5409  * Return Code: DDI_FAILURE or DDI_SUCCESS
5410  *
5411  *     Context: Kernel thread context
5412  */
5413 
5414 static int
5415 sd_ddi_pm_suspend(struct sd_lun *un)
5416 {
5417 	ASSERT(un != NULL);
5418 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
5419 
5420 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5421 	mutex_enter(SD_MUTEX(un));
5422 
5423 	/*
5424 	 * Exit if power management is not enabled for this device, or if
5425 	 * the device is being used by HA.
5426 	 */
5427 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
5428 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
5429 		mutex_exit(SD_MUTEX(un));
5430 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
5431 		return (DDI_SUCCESS);
5432 	}
5433 
5434 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
5435 	    un->un_ncmds_in_driver);
5436 
5437 	/*
5438 	 * See if the device is not busy, ie.:
5439 	 *    - we have no commands in the driver for this device
5440 	 *    - not waiting for resources
5441 	 */
5442 	if ((un->un_ncmds_in_driver == 0) &&
5443 	    (un->un_state != SD_STATE_RWAIT)) {
5444 		/*
5445 		 * The device is not busy, so it is OK to go to low power state.
5446 		 * Indicate low power, but rely on someone else to actually
5447 		 * change it.
5448 		 */
5449 		mutex_enter(&un->un_pm_mutex);
5450 		un->un_pm_count = -1;
5451 		mutex_exit(&un->un_pm_mutex);
5452 		un->un_power_level = SD_SPINDLE_OFF;
5453 	}
5454 
5455 	mutex_exit(SD_MUTEX(un));
5456 
5457 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
5458 
5459 	return (DDI_SUCCESS);
5460 }
5461 
5462 
5463 /*
5464  *    Function: sd_ddi_resume
5465  *
5466  * Description: Performs system power-up operations..
5467  *
5468  * Return Code: DDI_SUCCESS
5469  *		DDI_FAILURE
5470  *
5471  *     Context: Kernel thread context
5472  */
5473 
5474 static int
5475 sd_ddi_resume(dev_info_t *devi)
5476 {
5477 	struct	sd_lun	*un;
5478 
5479 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5480 	if (un == NULL) {
5481 		return (DDI_FAILURE);
5482 	}
5483 
5484 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
5485 
5486 	mutex_enter(SD_MUTEX(un));
5487 	Restore_state(un);
5488 
5489 	/*
5490 	 * Restore the state which was saved to give the
5491 	 * the right state in un_last_state
5492 	 */
5493 	un->un_last_state = un->un_save_state;
5494 	/*
5495 	 * Note: throttle comes back at full.
5496 	 * Also note: this MUST be done before calling pm_raise_power
5497 	 * otherwise the system can get hung in biowait. The scenario where
5498 	 * this'll happen is under cpr suspend. Writing of the system
5499 	 * state goes through sddump, which writes 0 to un_throttle. If
5500 	 * writing the system state then fails, example if the partition is
5501 	 * too small, then cpr attempts a resume. If throttle isn't restored
5502 	 * from the saved value until after calling pm_raise_power then
5503 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
5504 	 * in biowait.
5505 	 */
5506 	un->un_throttle = un->un_saved_throttle;
5507 
5508 	/*
5509 	 * The chance of failure is very rare as the only command done in power
5510 	 * entry point is START command when you transition from 0->1 or
5511 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
5512 	 * which suspend was done. Ignore the return value as the resume should
5513 	 * not be failed. In the case of removable media the media need not be
5514 	 * inserted and hence there is a chance that raise power will fail with
5515 	 * media not present.
5516 	 */
5517 	if (un->un_f_attach_spinup) {
5518 		mutex_exit(SD_MUTEX(un));
5519 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
5520 		mutex_enter(SD_MUTEX(un));
5521 	}
5522 
5523 	/*
5524 	 * Don't broadcast to the suspend cv and therefore possibly
5525 	 * start I/O until after power has been restored.
5526 	 */
5527 	cv_broadcast(&un->un_suspend_cv);
5528 	cv_broadcast(&un->un_state_cv);
5529 
5530 	/* restart thread */
5531 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
5532 		scsi_watch_resume(un->un_swr_token);
5533 	}
5534 
5535 #if (defined(__fibre))
5536 	if (un->un_f_is_fibre == TRUE) {
5537 		/*
5538 		 * Add callbacks for insert and remove events
5539 		 */
5540 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
5541 			sd_init_event_callbacks(un);
5542 		}
5543 	}
5544 #endif
5545 
5546 	/*
5547 	 * Transport any pending commands to the target.
5548 	 *
5549 	 * If this is a low-activity device commands in queue will have to wait
5550 	 * until new commands come in, which may take awhile. Also, we
5551 	 * specifically don't check un_ncmds_in_transport because we know that
5552 	 * there really are no commands in progress after the unit was
5553 	 * suspended and we could have reached the throttle level, been
5554 	 * suspended, and have no new commands coming in for awhile. Highly
5555 	 * unlikely, but so is the low-activity disk scenario.
5556 	 */
5557 	ddi_xbuf_dispatch(un->un_xbuf_attr);
5558 
5559 	sd_start_cmds(un, NULL);
5560 	mutex_exit(SD_MUTEX(un));
5561 
5562 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
5563 
5564 	return (DDI_SUCCESS);
5565 }
5566 
5567 
5568 /*
5569  *    Function: sd_ddi_pm_resume
5570  *
5571  * Description: Set the drive state to powered on.
5572  *		Someone else is required to actually change the drive
5573  *		power level.
5574  *
5575  *   Arguments: un - driver soft state (unit) structure
5576  *
5577  * Return Code: DDI_SUCCESS
5578  *
5579  *     Context: Kernel thread context
5580  */
5581 
5582 static int
5583 sd_ddi_pm_resume(struct sd_lun *un)
5584 {
5585 	ASSERT(un != NULL);
5586 
5587 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5588 	mutex_enter(SD_MUTEX(un));
5589 	un->un_power_level = SD_SPINDLE_ON;
5590 
5591 	ASSERT(!mutex_owned(&un->un_pm_mutex));
5592 	mutex_enter(&un->un_pm_mutex);
5593 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
5594 		un->un_pm_count++;
5595 		ASSERT(un->un_pm_count == 0);
5596 		/*
5597 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
5598 		 * un_suspend_cv is for a system resume, not a power management
5599 		 * device resume. (4297749)
5600 		 *	 cv_broadcast(&un->un_suspend_cv);
5601 		 */
5602 	}
5603 	mutex_exit(&un->un_pm_mutex);
5604 	mutex_exit(SD_MUTEX(un));
5605 
5606 	return (DDI_SUCCESS);
5607 }
5608 
5609 
5610 /*
5611  *    Function: sd_pm_idletimeout_handler
5612  *
5613  * Description: A timer routine that's active only while a device is busy.
5614  *		The purpose is to extend slightly the pm framework's busy
5615  *		view of the device to prevent busy/idle thrashing for
5616  *		back-to-back commands. Do this by comparing the current time
5617  *		to the time at which the last command completed and when the
5618  *		difference is greater than sd_pm_idletime, call
5619  *		pm_idle_component. In addition to indicating idle to the pm
5620  *		framework, update the chain type to again use the internal pm
5621  *		layers of the driver.
5622  *
5623  *   Arguments: arg - driver soft state (unit) structure
5624  *
5625  *     Context: Executes in a timeout(9F) thread context
5626  */
5627 
5628 static void
5629 sd_pm_idletimeout_handler(void *arg)
5630 {
5631 	struct sd_lun *un = arg;
5632 
5633 	time_t	now;
5634 
5635 	mutex_enter(&sd_detach_mutex);
5636 	if (un->un_detach_count != 0) {
5637 		/* Abort if the instance is detaching */
5638 		mutex_exit(&sd_detach_mutex);
5639 		return;
5640 	}
5641 	mutex_exit(&sd_detach_mutex);
5642 
5643 	now = ddi_get_time();
5644 	/*
5645 	 * Grab both mutexes, in the proper order, since we're accessing
5646 	 * both PM and softstate variables.
5647 	 */
5648 	mutex_enter(SD_MUTEX(un));
5649 	mutex_enter(&un->un_pm_mutex);
5650 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
5651 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
5652 		/*
5653 		 * Update the chain types.
5654 		 * This takes affect on the next new command received.
5655 		 */
5656 		if (un->un_f_non_devbsize_supported) {
5657 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
5658 		} else {
5659 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
5660 		}
5661 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
5662 
5663 		SD_TRACE(SD_LOG_IO_PM, un,
5664 		    "sd_pm_idletimeout_handler: idling device\n");
5665 		(void) pm_idle_component(SD_DEVINFO(un), 0);
5666 		un->un_pm_idle_timeid = NULL;
5667 	} else {
5668 		un->un_pm_idle_timeid =
5669 			timeout(sd_pm_idletimeout_handler, un,
5670 			(drv_usectohz((clock_t)300000))); /* 300 ms. */
5671 	}
5672 	mutex_exit(&un->un_pm_mutex);
5673 	mutex_exit(SD_MUTEX(un));
5674 }
5675 
5676 
5677 /*
5678  *    Function: sd_pm_timeout_handler
5679  *
5680  * Description: Callback to tell framework we are idle.
5681  *
5682  *     Context: timeout(9f) thread context.
5683  */
5684 
5685 static void
5686 sd_pm_timeout_handler(void *arg)
5687 {
5688 	struct sd_lun *un = arg;
5689 
5690 	(void) pm_idle_component(SD_DEVINFO(un), 0);
5691 	mutex_enter(&un->un_pm_mutex);
5692 	un->un_pm_timeid = NULL;
5693 	mutex_exit(&un->un_pm_mutex);
5694 }
5695 
5696 
5697 /*
5698  *    Function: sdpower
5699  *
5700  * Description: PM entry point.
5701  *
5702  * Return Code: DDI_SUCCESS
5703  *		DDI_FAILURE
5704  *
5705  *     Context: Kernel thread context
5706  */
5707 
5708 static int
5709 sdpower(dev_info_t *devi, int component, int level)
5710 {
5711 	struct sd_lun	*un;
5712 	int		instance;
5713 	int		rval = DDI_SUCCESS;
5714 	uint_t		i, log_page_size, maxcycles, ncycles;
5715 	uchar_t		*log_page_data;
5716 	int		log_sense_page;
5717 	int		medium_present;
5718 	time_t		intvlp;
5719 	dev_t		dev;
5720 	struct pm_trans_data	sd_pm_tran_data;
5721 	uchar_t		save_state;
5722 	int		sval;
5723 	uchar_t		state_before_pm;
5724 	int		got_semaphore_here;
5725 
5726 	instance = ddi_get_instance(devi);
5727 
5728 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
5729 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
5730 	    component != 0) {
5731 		return (DDI_FAILURE);
5732 	}
5733 
5734 	dev = sd_make_device(SD_DEVINFO(un));
5735 
5736 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
5737 
5738 	/*
5739 	 * Must synchronize power down with close.
5740 	 * Attempt to decrement/acquire the open/close semaphore,
5741 	 * but do NOT wait on it. If it's not greater than zero,
5742 	 * ie. it can't be decremented without waiting, then
5743 	 * someone else, either open or close, already has it
5744 	 * and the try returns 0. Use that knowledge here to determine
5745 	 * if it's OK to change the device power level.
5746 	 * Also, only increment it on exit if it was decremented, ie. gotten,
5747 	 * here.
5748 	 */
5749 	got_semaphore_here = sema_tryp(&un->un_semoclose);
5750 
5751 	mutex_enter(SD_MUTEX(un));
5752 
5753 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
5754 	    un->un_ncmds_in_driver);
5755 
5756 	/*
5757 	 * If un_ncmds_in_driver is non-zero it indicates commands are
5758 	 * already being processed in the driver, or if the semaphore was
5759 	 * not gotten here it indicates an open or close is being processed.
5760 	 * At the same time somebody is requesting to go low power which
5761 	 * can't happen, therefore we need to return failure.
5762 	 */
5763 	if ((level == SD_SPINDLE_OFF) &&
5764 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
5765 		mutex_exit(SD_MUTEX(un));
5766 
5767 		if (got_semaphore_here != 0) {
5768 			sema_v(&un->un_semoclose);
5769 		}
5770 		SD_TRACE(SD_LOG_IO_PM, un,
5771 		    "sdpower: exit, device has queued cmds.\n");
5772 		return (DDI_FAILURE);
5773 	}
5774 
5775 	/*
5776 	 * if it is OFFLINE that means the disk is completely dead
5777 	 * in our case we have to put the disk in on or off by sending commands
5778 	 * Of course that will fail anyway so return back here.
5779 	 *
5780 	 * Power changes to a device that's OFFLINE or SUSPENDED
5781 	 * are not allowed.
5782 	 */
5783 	if ((un->un_state == SD_STATE_OFFLINE) ||
5784 	    (un->un_state == SD_STATE_SUSPENDED)) {
5785 		mutex_exit(SD_MUTEX(un));
5786 
5787 		if (got_semaphore_here != 0) {
5788 			sema_v(&un->un_semoclose);
5789 		}
5790 		SD_TRACE(SD_LOG_IO_PM, un,
5791 		    "sdpower: exit, device is off-line.\n");
5792 		return (DDI_FAILURE);
5793 	}
5794 
5795 	/*
5796 	 * Change the device's state to indicate it's power level
5797 	 * is being changed. Do this to prevent a power off in the
5798 	 * middle of commands, which is especially bad on devices
5799 	 * that are really powered off instead of just spun down.
5800 	 */
5801 	state_before_pm = un->un_state;
5802 	un->un_state = SD_STATE_PM_CHANGING;
5803 
5804 	mutex_exit(SD_MUTEX(un));
5805 
5806 	/*
5807 	 * If "pm-capable" property is set to TRUE by HBA drivers,
5808 	 * bypass the following checking, otherwise, check the log
5809 	 * sense information for this device
5810 	 */
5811 	if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) {
5812 		/*
5813 		 * Get the log sense information to understand whether the
5814 		 * the powercycle counts have gone beyond the threshhold.
5815 		 */
5816 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5817 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5818 
5819 		mutex_enter(SD_MUTEX(un));
5820 		log_sense_page = un->un_start_stop_cycle_page;
5821 		mutex_exit(SD_MUTEX(un));
5822 
5823 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
5824 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
5825 #ifdef	SDDEBUG
5826 		if (sd_force_pm_supported) {
5827 			/* Force a successful result */
5828 			rval = 0;
5829 		}
5830 #endif
5831 		if (rval != 0) {
5832 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5833 			    "Log Sense Failed\n");
5834 			kmem_free(log_page_data, log_page_size);
5835 			/* Cannot support power management on those drives */
5836 
5837 			if (got_semaphore_here != 0) {
5838 				sema_v(&un->un_semoclose);
5839 			}
5840 			/*
5841 			 * On exit put the state back to it's original value
5842 			 * and broadcast to anyone waiting for the power
5843 			 * change completion.
5844 			 */
5845 			mutex_enter(SD_MUTEX(un));
5846 			un->un_state = state_before_pm;
5847 			cv_broadcast(&un->un_suspend_cv);
5848 			mutex_exit(SD_MUTEX(un));
5849 			SD_TRACE(SD_LOG_IO_PM, un,
5850 			    "sdpower: exit, Log Sense Failed.\n");
5851 			return (DDI_FAILURE);
5852 		}
5853 
5854 		/*
5855 		 * From the page data - Convert the essential information to
5856 		 * pm_trans_data
5857 		 */
5858 		maxcycles =
5859 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
5860 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
5861 
5862 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
5863 
5864 		ncycles =
5865 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
5866 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
5867 
5868 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
5869 
5870 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
5871 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
5872 			    log_page_data[8+i];
5873 		}
5874 
5875 		kmem_free(log_page_data, log_page_size);
5876 
5877 		/*
5878 		 * Call pm_trans_check routine to get the Ok from
5879 		 * the global policy
5880 		 */
5881 
5882 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
5883 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
5884 
5885 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
5886 #ifdef	SDDEBUG
5887 		if (sd_force_pm_supported) {
5888 			/* Force a successful result */
5889 			rval = 1;
5890 		}
5891 #endif
5892 		switch (rval) {
5893 		case 0:
5894 			/*
5895 			 * Not Ok to Power cycle or error in parameters passed
5896 			 * Would have given the advised time to consider power
5897 			 * cycle. Based on the new intvlp parameter we are
5898 			 * supposed to pretend we are busy so that pm framework
5899 			 * will never call our power entry point. Because of
5900 			 * that install a timeout handler and wait for the
5901 			 * recommended time to elapse so that power management
5902 			 * can be effective again.
5903 			 *
5904 			 * To effect this behavior, call pm_busy_component to
5905 			 * indicate to the framework this device is busy.
5906 			 * By not adjusting un_pm_count the rest of PM in
5907 			 * the driver will function normally, and independant
5908 			 * of this but because the framework is told the device
5909 			 * is busy it won't attempt powering down until it gets
5910 			 * a matching idle. The timeout handler sends this.
5911 			 * Note: sd_pm_entry can't be called here to do this
5912 			 * because sdpower may have been called as a result
5913 			 * of a call to pm_raise_power from within sd_pm_entry.
5914 			 *
5915 			 * If a timeout handler is already active then
5916 			 * don't install another.
5917 			 */
5918 			mutex_enter(&un->un_pm_mutex);
5919 			if (un->un_pm_timeid == NULL) {
5920 				un->un_pm_timeid =
5921 				    timeout(sd_pm_timeout_handler,
5922 				    un, intvlp * drv_usectohz(1000000));
5923 				mutex_exit(&un->un_pm_mutex);
5924 				(void) pm_busy_component(SD_DEVINFO(un), 0);
5925 			} else {
5926 				mutex_exit(&un->un_pm_mutex);
5927 			}
5928 			if (got_semaphore_here != 0) {
5929 				sema_v(&un->un_semoclose);
5930 			}
5931 			/*
5932 			 * On exit put the state back to it's original value
5933 			 * and broadcast to anyone waiting for the power
5934 			 * change completion.
5935 			 */
5936 			mutex_enter(SD_MUTEX(un));
5937 			un->un_state = state_before_pm;
5938 			cv_broadcast(&un->un_suspend_cv);
5939 			mutex_exit(SD_MUTEX(un));
5940 
5941 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
5942 			    "trans check Failed, not ok to power cycle.\n");
5943 			return (DDI_FAILURE);
5944 
5945 		case -1:
5946 			if (got_semaphore_here != 0) {
5947 				sema_v(&un->un_semoclose);
5948 			}
5949 			/*
5950 			 * On exit put the state back to it's original value
5951 			 * and broadcast to anyone waiting for the power
5952 			 * change completion.
5953 			 */
5954 			mutex_enter(SD_MUTEX(un));
5955 			un->un_state = state_before_pm;
5956 			cv_broadcast(&un->un_suspend_cv);
5957 			mutex_exit(SD_MUTEX(un));
5958 			SD_TRACE(SD_LOG_IO_PM, un,
5959 			    "sdpower: exit, trans check command Failed.\n");
5960 			return (DDI_FAILURE);
5961 		}
5962 	}
5963 
5964 	if (level == SD_SPINDLE_OFF) {
5965 		/*
5966 		 * Save the last state... if the STOP FAILS we need it
5967 		 * for restoring
5968 		 */
5969 		mutex_enter(SD_MUTEX(un));
5970 		save_state = un->un_last_state;
5971 		/*
5972 		 * There must not be any cmds. getting processed
5973 		 * in the driver when we get here. Power to the
5974 		 * device is potentially going off.
5975 		 */
5976 		ASSERT(un->un_ncmds_in_driver == 0);
5977 		mutex_exit(SD_MUTEX(un));
5978 
5979 		/*
5980 		 * For now suspend the device completely before spindle is
5981 		 * turned off
5982 		 */
5983 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
5984 			if (got_semaphore_here != 0) {
5985 				sema_v(&un->un_semoclose);
5986 			}
5987 			/*
5988 			 * On exit put the state back to it's original value
5989 			 * and broadcast to anyone waiting for the power
5990 			 * change completion.
5991 			 */
5992 			mutex_enter(SD_MUTEX(un));
5993 			un->un_state = state_before_pm;
5994 			cv_broadcast(&un->un_suspend_cv);
5995 			mutex_exit(SD_MUTEX(un));
5996 			SD_TRACE(SD_LOG_IO_PM, un,
5997 			    "sdpower: exit, PM suspend Failed.\n");
5998 			return (DDI_FAILURE);
5999 		}
6000 	}
6001 
6002 	/*
6003 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6004 	 * close, or strategy. Dump no long uses this routine, it uses it's
6005 	 * own code so it can be done in polled mode.
6006 	 */
6007 
6008 	medium_present = TRUE;
6009 
6010 	/*
6011 	 * When powering up, issue a TUR in case the device is at unit
6012 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
6013 	 * a deadlock on un_pm_busy_cv will occur.
6014 	 */
6015 	if (level == SD_SPINDLE_ON) {
6016 		(void) sd_send_scsi_TEST_UNIT_READY(un,
6017 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6018 	}
6019 
6020 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6021 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6022 
6023 	sval = sd_send_scsi_START_STOP_UNIT(un,
6024 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
6025 	    SD_PATH_DIRECT);
6026 	/* Command failed, check for media present. */
6027 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
6028 		medium_present = FALSE;
6029 	}
6030 
6031 	/*
6032 	 * The conditions of interest here are:
6033 	 *   if a spindle off with media present fails,
6034 	 *	then restore the state and return an error.
6035 	 *   else if a spindle on fails,
6036 	 *	then return an error (there's no state to restore).
6037 	 * In all other cases we setup for the new state
6038 	 * and return success.
6039 	 */
6040 	switch (level) {
6041 	case SD_SPINDLE_OFF:
6042 		if ((medium_present == TRUE) && (sval != 0)) {
6043 			/* The stop command from above failed */
6044 			rval = DDI_FAILURE;
6045 			/*
6046 			 * The stop command failed, and we have media
6047 			 * present. Put the level back by calling the
6048 			 * sd_pm_resume() and set the state back to
6049 			 * it's previous value.
6050 			 */
6051 			(void) sd_ddi_pm_resume(un);
6052 			mutex_enter(SD_MUTEX(un));
6053 			un->un_last_state = save_state;
6054 			mutex_exit(SD_MUTEX(un));
6055 			break;
6056 		}
6057 		/*
6058 		 * The stop command from above succeeded.
6059 		 */
6060 		if (un->un_f_monitor_media_state) {
6061 			/*
6062 			 * Terminate watch thread in case of removable media
6063 			 * devices going into low power state. This is as per
6064 			 * the requirements of pm framework, otherwise commands
6065 			 * will be generated for the device (through watch
6066 			 * thread), even when the device is in low power state.
6067 			 */
6068 			mutex_enter(SD_MUTEX(un));
6069 			un->un_f_watcht_stopped = FALSE;
6070 			if (un->un_swr_token != NULL) {
6071 				opaque_t temp_token = un->un_swr_token;
6072 				un->un_f_watcht_stopped = TRUE;
6073 				un->un_swr_token = NULL;
6074 				mutex_exit(SD_MUTEX(un));
6075 				(void) scsi_watch_request_terminate(temp_token,
6076 				    SCSI_WATCH_TERMINATE_WAIT);
6077 			} else {
6078 				mutex_exit(SD_MUTEX(un));
6079 			}
6080 		}
6081 		break;
6082 
6083 	default:	/* The level requested is spindle on... */
6084 		/*
6085 		 * Legacy behavior: return success on a failed spinup
6086 		 * if there is no media in the drive.
6087 		 * Do this by looking at medium_present here.
6088 		 */
6089 		if ((sval != 0) && medium_present) {
6090 			/* The start command from above failed */
6091 			rval = DDI_FAILURE;
6092 			break;
6093 		}
6094 		/*
6095 		 * The start command from above succeeded
6096 		 * Resume the devices now that we have
6097 		 * started the disks
6098 		 */
6099 		(void) sd_ddi_pm_resume(un);
6100 
6101 		/*
6102 		 * Resume the watch thread since it was suspended
6103 		 * when the device went into low power mode.
6104 		 */
6105 		if (un->un_f_monitor_media_state) {
6106 			mutex_enter(SD_MUTEX(un));
6107 			if (un->un_f_watcht_stopped == TRUE) {
6108 				opaque_t temp_token;
6109 
6110 				un->un_f_watcht_stopped = FALSE;
6111 				mutex_exit(SD_MUTEX(un));
6112 				temp_token = scsi_watch_request_submit(
6113 				    SD_SCSI_DEVP(un),
6114 				    sd_check_media_time,
6115 				    SENSE_LENGTH, sd_media_watch_cb,
6116 				    (caddr_t)dev);
6117 				mutex_enter(SD_MUTEX(un));
6118 				un->un_swr_token = temp_token;
6119 			}
6120 			mutex_exit(SD_MUTEX(un));
6121 		}
6122 	}
6123 	if (got_semaphore_here != 0) {
6124 		sema_v(&un->un_semoclose);
6125 	}
6126 	/*
6127 	 * On exit put the state back to it's original value
6128 	 * and broadcast to anyone waiting for the power
6129 	 * change completion.
6130 	 */
6131 	mutex_enter(SD_MUTEX(un));
6132 	un->un_state = state_before_pm;
6133 	cv_broadcast(&un->un_suspend_cv);
6134 	mutex_exit(SD_MUTEX(un));
6135 
6136 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
6137 
6138 	return (rval);
6139 }
6140 
6141 
6142 
6143 /*
6144  *    Function: sdattach
6145  *
6146  * Description: Driver's attach(9e) entry point function.
6147  *
6148  *   Arguments: devi - opaque device info handle
6149  *		cmd  - attach  type
6150  *
6151  * Return Code: DDI_SUCCESS
6152  *		DDI_FAILURE
6153  *
6154  *     Context: Kernel thread context
6155  */
6156 
6157 static int
6158 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
6159 {
6160 	switch (cmd) {
6161 	case DDI_ATTACH:
6162 		return (sd_unit_attach(devi));
6163 	case DDI_RESUME:
6164 		return (sd_ddi_resume(devi));
6165 	default:
6166 		break;
6167 	}
6168 	return (DDI_FAILURE);
6169 }
6170 
6171 
6172 /*
6173  *    Function: sddetach
6174  *
6175  * Description: Driver's detach(9E) entry point function.
6176  *
6177  *   Arguments: devi - opaque device info handle
6178  *		cmd  - detach  type
6179  *
6180  * Return Code: DDI_SUCCESS
6181  *		DDI_FAILURE
6182  *
6183  *     Context: Kernel thread context
6184  */
6185 
6186 static int
6187 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
6188 {
6189 	switch (cmd) {
6190 	case DDI_DETACH:
6191 		return (sd_unit_detach(devi));
6192 	case DDI_SUSPEND:
6193 		return (sd_ddi_suspend(devi));
6194 	default:
6195 		break;
6196 	}
6197 	return (DDI_FAILURE);
6198 }
6199 
6200 
6201 /*
6202  *     Function: sd_sync_with_callback
6203  *
6204  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
6205  *		 state while the callback routine is active.
6206  *
6207  *    Arguments: un: softstate structure for the instance
6208  *
6209  *	Context: Kernel thread context
6210  */
6211 
6212 static void
6213 sd_sync_with_callback(struct sd_lun *un)
6214 {
6215 	ASSERT(un != NULL);
6216 
6217 	mutex_enter(SD_MUTEX(un));
6218 
6219 	ASSERT(un->un_in_callback >= 0);
6220 
6221 	while (un->un_in_callback > 0) {
6222 		mutex_exit(SD_MUTEX(un));
6223 		delay(2);
6224 		mutex_enter(SD_MUTEX(un));
6225 	}
6226 
6227 	mutex_exit(SD_MUTEX(un));
6228 }
6229 
6230 /*
6231  *    Function: sd_unit_attach
6232  *
6233  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
6234  *		the soft state structure for the device and performs
6235  *		all necessary structure and device initializations.
6236  *
6237  *   Arguments: devi: the system's dev_info_t for the device.
6238  *
6239  * Return Code: DDI_SUCCESS if attach is successful.
6240  *		DDI_FAILURE if any part of the attach fails.
6241  *
6242  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
6243  *		Kernel thread context only.  Can sleep.
6244  */
6245 
6246 static int
6247 sd_unit_attach(dev_info_t *devi)
6248 {
6249 	struct	scsi_device	*devp;
6250 	struct	sd_lun		*un;
6251 	char			*variantp;
6252 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
6253 	int	instance;
6254 	int	rval;
6255 	int	wc_enabled;
6256 	int	tgt;
6257 	uint64_t	capacity;
6258 	uint_t		lbasize = 0;
6259 	dev_info_t	*pdip = ddi_get_parent(devi);
6260 	int		offbyone = 0;
6261 	int		geom_label_valid = 0;
6262 
6263 	/*
6264 	 * Retrieve the target driver's private data area. This was set
6265 	 * up by the HBA.
6266 	 */
6267 	devp = ddi_get_driver_private(devi);
6268 
6269 	/*
6270 	 * Retrieve the target ID of the device.
6271 	 */
6272 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6273 	    SCSI_ADDR_PROP_TARGET, -1);
6274 
6275 	/*
6276 	 * Since we have no idea what state things were left in by the last
6277 	 * user of the device, set up some 'default' settings, ie. turn 'em
6278 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
6279 	 * Do this before the scsi_probe, which sends an inquiry.
6280 	 * This is a fix for bug (4430280).
6281 	 * Of special importance is wide-xfer. The drive could have been left
6282 	 * in wide transfer mode by the last driver to communicate with it,
6283 	 * this includes us. If that's the case, and if the following is not
6284 	 * setup properly or we don't re-negotiate with the drive prior to
6285 	 * transferring data to/from the drive, it causes bus parity errors,
6286 	 * data overruns, and unexpected interrupts. This first occurred when
6287 	 * the fix for bug (4378686) was made.
6288 	 */
6289 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
6290 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
6291 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
6292 
6293 	/*
6294 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
6295 	 * on a target. Setting it per lun instance actually sets the
6296 	 * capability of this target, which affects those luns already
6297 	 * attached on the same target. So during attach, we can only disable
6298 	 * this capability only when no other lun has been attached on this
6299 	 * target. By doing this, we assume a target has the same tagged-qing
6300 	 * capability for every lun. The condition can be removed when HBA
6301 	 * is changed to support per lun based tagged-qing capability.
6302 	 */
6303 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
6304 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
6305 	}
6306 
6307 	/*
6308 	 * Use scsi_probe() to issue an INQUIRY command to the device.
6309 	 * This call will allocate and fill in the scsi_inquiry structure
6310 	 * and point the sd_inq member of the scsi_device structure to it.
6311 	 * If the attach succeeds, then this memory will not be de-allocated
6312 	 * (via scsi_unprobe()) until the instance is detached.
6313 	 */
6314 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
6315 		goto probe_failed;
6316 	}
6317 
6318 	/*
6319 	 * Check the device type as specified in the inquiry data and
6320 	 * claim it if it is of a type that we support.
6321 	 */
6322 	switch (devp->sd_inq->inq_dtype) {
6323 	case DTYPE_DIRECT:
6324 		break;
6325 	case DTYPE_RODIRECT:
6326 		break;
6327 	case DTYPE_OPTICAL:
6328 		break;
6329 	case DTYPE_NOTPRESENT:
6330 	default:
6331 		/* Unsupported device type; fail the attach. */
6332 		goto probe_failed;
6333 	}
6334 
6335 	/*
6336 	 * Allocate the soft state structure for this unit.
6337 	 *
6338 	 * We rely upon this memory being set to all zeroes by
6339 	 * ddi_soft_state_zalloc().  We assume that any member of the
6340 	 * soft state structure that is not explicitly initialized by
6341 	 * this routine will have a value of zero.
6342 	 */
6343 	instance = ddi_get_instance(devp->sd_dev);
6344 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
6345 		goto probe_failed;
6346 	}
6347 
6348 	/*
6349 	 * Retrieve a pointer to the newly-allocated soft state.
6350 	 *
6351 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
6352 	 * was successful, unless something has gone horribly wrong and the
6353 	 * ddi's soft state internals are corrupt (in which case it is
6354 	 * probably better to halt here than just fail the attach....)
6355 	 */
6356 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
6357 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
6358 		    instance);
6359 		/*NOTREACHED*/
6360 	}
6361 
6362 	/*
6363 	 * Link the back ptr of the driver soft state to the scsi_device
6364 	 * struct for this lun.
6365 	 * Save a pointer to the softstate in the driver-private area of
6366 	 * the scsi_device struct.
6367 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
6368 	 * we first set un->un_sd below.
6369 	 */
6370 	un->un_sd = devp;
6371 	devp->sd_private = (opaque_t)un;
6372 
6373 	/*
6374 	 * The following must be after devp is stored in the soft state struct.
6375 	 */
6376 #ifdef SDDEBUG
6377 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6378 	    "%s_unit_attach: un:0x%p instance:%d\n",
6379 	    ddi_driver_name(devi), un, instance);
6380 #endif
6381 
6382 	/*
6383 	 * Set up the device type and node type (for the minor nodes).
6384 	 * By default we assume that the device can at least support the
6385 	 * Common Command Set. Call it a CD-ROM if it reports itself
6386 	 * as a RODIRECT device.
6387 	 */
6388 	switch (devp->sd_inq->inq_dtype) {
6389 	case DTYPE_RODIRECT:
6390 		un->un_node_type = DDI_NT_CD_CHAN;
6391 		un->un_ctype	 = CTYPE_CDROM;
6392 		break;
6393 	case DTYPE_OPTICAL:
6394 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6395 		un->un_ctype	 = CTYPE_ROD;
6396 		break;
6397 	default:
6398 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6399 		un->un_ctype	 = CTYPE_CCS;
6400 		break;
6401 	}
6402 
6403 	/*
6404 	 * Try to read the interconnect type from the HBA.
6405 	 *
6406 	 * Note: This driver is currently compiled as two binaries, a parallel
6407 	 * scsi version (sd) and a fibre channel version (ssd). All functional
6408 	 * differences are determined at compile time. In the future a single
6409 	 * binary will be provided and the inteconnect type will be used to
6410 	 * differentiate between fibre and parallel scsi behaviors. At that time
6411 	 * it will be necessary for all fibre channel HBAs to support this
6412 	 * property.
6413 	 *
6414 	 * set un_f_is_fiber to TRUE ( default fiber )
6415 	 */
6416 	un->un_f_is_fibre = TRUE;
6417 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
6418 	case INTERCONNECT_SSA:
6419 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
6420 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6421 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
6422 		break;
6423 	case INTERCONNECT_PARALLEL:
6424 		un->un_f_is_fibre = FALSE;
6425 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6426 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6427 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
6428 		break;
6429 	case INTERCONNECT_SATA:
6430 		un->un_f_is_fibre = FALSE;
6431 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
6432 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6433 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
6434 		break;
6435 	case INTERCONNECT_FIBRE:
6436 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
6437 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6438 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
6439 		break;
6440 	case INTERCONNECT_FABRIC:
6441 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
6442 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
6443 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6444 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
6445 		break;
6446 	default:
6447 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
6448 		/*
6449 		 * The HBA does not support the "interconnect-type" property
6450 		 * (or did not provide a recognized type).
6451 		 *
6452 		 * Note: This will be obsoleted when a single fibre channel
6453 		 * and parallel scsi driver is delivered. In the meantime the
6454 		 * interconnect type will be set to the platform default.If that
6455 		 * type is not parallel SCSI, it means that we should be
6456 		 * assuming "ssd" semantics. However, here this also means that
6457 		 * the FC HBA is not supporting the "interconnect-type" property
6458 		 * like we expect it to, so log this occurrence.
6459 		 */
6460 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
6461 		if (!SD_IS_PARALLEL_SCSI(un)) {
6462 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6463 			    "sd_unit_attach: un:0x%p Assuming "
6464 			    "INTERCONNECT_FIBRE\n", un);
6465 		} else {
6466 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6467 			    "sd_unit_attach: un:0x%p Assuming "
6468 			    "INTERCONNECT_PARALLEL\n", un);
6469 			un->un_f_is_fibre = FALSE;
6470 		}
6471 #else
6472 		/*
6473 		 * Note: This source will be implemented when a single fibre
6474 		 * channel and parallel scsi driver is delivered. The default
6475 		 * will be to assume that if a device does not support the
6476 		 * "interconnect-type" property it is a parallel SCSI HBA and
6477 		 * we will set the interconnect type for parallel scsi.
6478 		 */
6479 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6480 		un->un_f_is_fibre = FALSE;
6481 #endif
6482 		break;
6483 	}
6484 
6485 	if (un->un_f_is_fibre == TRUE) {
6486 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
6487 			SCSI_VERSION_3) {
6488 			switch (un->un_interconnect_type) {
6489 			case SD_INTERCONNECT_FIBRE:
6490 			case SD_INTERCONNECT_SSA:
6491 				un->un_node_type = DDI_NT_BLOCK_WWN;
6492 				break;
6493 			default:
6494 				break;
6495 			}
6496 		}
6497 	}
6498 
6499 	/*
6500 	 * Initialize the Request Sense command for the target
6501 	 */
6502 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
6503 		goto alloc_rqs_failed;
6504 	}
6505 
6506 	/*
6507 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
6508 	 * with seperate binary for sd and ssd.
6509 	 *
6510 	 * x86 has 1 binary, un_retry_count is set base on connection type.
6511 	 * The hardcoded values will go away when Sparc uses 1 binary
6512 	 * for sd and ssd.  This hardcoded values need to match
6513 	 * SD_RETRY_COUNT in sddef.h
6514 	 * The value used is base on interconnect type.
6515 	 * fibre = 3, parallel = 5
6516 	 */
6517 #if defined(__i386) || defined(__amd64)
6518 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
6519 #else
6520 	un->un_retry_count = SD_RETRY_COUNT;
6521 #endif
6522 
6523 	/*
6524 	 * Set the per disk retry count to the default number of retries
6525 	 * for disks and CDROMs. This value can be overridden by the
6526 	 * disk property list or an entry in sd.conf.
6527 	 */
6528 	un->un_notready_retry_count =
6529 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
6530 			: DISK_NOT_READY_RETRY_COUNT(un);
6531 
6532 	/*
6533 	 * Set the busy retry count to the default value of un_retry_count.
6534 	 * This can be overridden by entries in sd.conf or the device
6535 	 * config table.
6536 	 */
6537 	un->un_busy_retry_count = un->un_retry_count;
6538 
6539 	/*
6540 	 * Init the reset threshold for retries.  This number determines
6541 	 * how many retries must be performed before a reset can be issued
6542 	 * (for certain error conditions). This can be overridden by entries
6543 	 * in sd.conf or the device config table.
6544 	 */
6545 	un->un_reset_retry_count = (un->un_retry_count / 2);
6546 
6547 	/*
6548 	 * Set the victim_retry_count to the default un_retry_count
6549 	 */
6550 	un->un_victim_retry_count = (2 * un->un_retry_count);
6551 
6552 	/*
6553 	 * Set the reservation release timeout to the default value of
6554 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
6555 	 * device config table.
6556 	 */
6557 	un->un_reserve_release_time = 5;
6558 
6559 	/*
6560 	 * Set up the default maximum transfer size. Note that this may
6561 	 * get updated later in the attach, when setting up default wide
6562 	 * operations for disks.
6563 	 */
6564 #if defined(__i386) || defined(__amd64)
6565 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
6566 #else
6567 	un->un_max_xfer_size = (uint_t)maxphys;
6568 #endif
6569 
6570 	/*
6571 	 * Get "allow bus device reset" property (defaults to "enabled" if
6572 	 * the property was not defined). This is to disable bus resets for
6573 	 * certain kinds of error recovery. Note: In the future when a run-time
6574 	 * fibre check is available the soft state flag should default to
6575 	 * enabled.
6576 	 */
6577 	if (un->un_f_is_fibre == TRUE) {
6578 		un->un_f_allow_bus_device_reset = TRUE;
6579 	} else {
6580 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6581 			"allow-bus-device-reset", 1) != 0) {
6582 			un->un_f_allow_bus_device_reset = TRUE;
6583 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6584 			"sd_unit_attach: un:0x%p Bus device reset enabled\n",
6585 				un);
6586 		} else {
6587 			un->un_f_allow_bus_device_reset = FALSE;
6588 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6589 			"sd_unit_attach: un:0x%p Bus device reset disabled\n",
6590 				un);
6591 		}
6592 	}
6593 
6594 	/*
6595 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
6596 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
6597 	 *
6598 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
6599 	 * property. The new "variant" property with a value of "atapi" has been
6600 	 * introduced so that future 'variants' of standard SCSI behavior (like
6601 	 * atapi) could be specified by the underlying HBA drivers by supplying
6602 	 * a new value for the "variant" property, instead of having to define a
6603 	 * new property.
6604 	 */
6605 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
6606 		un->un_f_cfg_is_atapi = TRUE;
6607 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6608 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
6609 	}
6610 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
6611 	    &variantp) == DDI_PROP_SUCCESS) {
6612 		if (strcmp(variantp, "atapi") == 0) {
6613 			un->un_f_cfg_is_atapi = TRUE;
6614 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6615 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
6616 		}
6617 		ddi_prop_free(variantp);
6618 	}
6619 
6620 	un->un_cmd_timeout	= SD_IO_TIME;
6621 
6622 	/* Info on current states, statuses, etc. (Updated frequently) */
6623 	un->un_state		= SD_STATE_NORMAL;
6624 	un->un_last_state	= SD_STATE_NORMAL;
6625 
6626 	/* Control & status info for command throttling */
6627 	un->un_throttle		= sd_max_throttle;
6628 	un->un_saved_throttle	= sd_max_throttle;
6629 	un->un_min_throttle	= sd_min_throttle;
6630 
6631 	if (un->un_f_is_fibre == TRUE) {
6632 		un->un_f_use_adaptive_throttle = TRUE;
6633 	} else {
6634 		un->un_f_use_adaptive_throttle = FALSE;
6635 	}
6636 
6637 	/* Removable media support. */
6638 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
6639 	un->un_mediastate		= DKIO_NONE;
6640 	un->un_specified_mediastate	= DKIO_NONE;
6641 
6642 	/* CVs for suspend/resume (PM or DR) */
6643 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
6644 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
6645 
6646 	/* Power management support. */
6647 	un->un_power_level = SD_SPINDLE_UNINIT;
6648 
6649 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
6650 	un->un_f_wcc_inprog = 0;
6651 
6652 	/*
6653 	 * The open/close semaphore is used to serialize threads executing
6654 	 * in the driver's open & close entry point routines for a given
6655 	 * instance.
6656 	 */
6657 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
6658 
6659 	/*
6660 	 * The conf file entry and softstate variable is a forceful override,
6661 	 * meaning a non-zero value must be entered to change the default.
6662 	 */
6663 	un->un_f_disksort_disabled = FALSE;
6664 
6665 	/*
6666 	 * Retrieve the properties from the static driver table or the driver
6667 	 * configuration file (.conf) for this unit and update the soft state
6668 	 * for the device as needed for the indicated properties.
6669 	 * Note: the property configuration needs to occur here as some of the
6670 	 * following routines may have dependancies on soft state flags set
6671 	 * as part of the driver property configuration.
6672 	 */
6673 	sd_read_unit_properties(un);
6674 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6675 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
6676 
6677 	/*
6678 	 * Only if a device has "hotpluggable" property, it is
6679 	 * treated as hotpluggable device. Otherwise, it is
6680 	 * regarded as non-hotpluggable one.
6681 	 */
6682 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
6683 	    -1) != -1) {
6684 		un->un_f_is_hotpluggable = TRUE;
6685 	}
6686 
6687 	/*
6688 	 * set unit's attributes(flags) according to "hotpluggable" and
6689 	 * RMB bit in INQUIRY data.
6690 	 */
6691 	sd_set_unit_attributes(un, devi);
6692 
6693 	/*
6694 	 * By default, we mark the capacity, lbasize, and geometry
6695 	 * as invalid. Only if we successfully read a valid capacity
6696 	 * will we update the un_blockcount and un_tgt_blocksize with the
6697 	 * valid values (the geometry will be validated later).
6698 	 */
6699 	un->un_f_blockcount_is_valid	= FALSE;
6700 	un->un_f_tgt_blocksize_is_valid	= FALSE;
6701 
6702 	/*
6703 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
6704 	 * otherwise.
6705 	 */
6706 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
6707 	un->un_blockcount = 0;
6708 
6709 	/*
6710 	 * Set up the per-instance info needed to determine the correct
6711 	 * CDBs and other info for issuing commands to the target.
6712 	 */
6713 	sd_init_cdb_limits(un);
6714 
6715 	/*
6716 	 * Set up the IO chains to use, based upon the target type.
6717 	 */
6718 	if (un->un_f_non_devbsize_supported) {
6719 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6720 	} else {
6721 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6722 	}
6723 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
6724 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
6725 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
6726 
6727 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
6728 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
6729 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
6730 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
6731 
6732 
6733 	if (ISCD(un)) {
6734 		un->un_additional_codes = sd_additional_codes;
6735 	} else {
6736 		un->un_additional_codes = NULL;
6737 	}
6738 
6739 	/*
6740 	 * Create the kstats here so they can be available for attach-time
6741 	 * routines that send commands to the unit (either polled or via
6742 	 * sd_send_scsi_cmd).
6743 	 *
6744 	 * Note: This is a critical sequence that needs to be maintained:
6745 	 *	1) Instantiate the kstats here, before any routines using the
6746 	 *	   iopath (i.e. sd_send_scsi_cmd).
6747 	 *	2) Instantiate and initialize the partition stats
6748 	 *	   (sd_set_pstats).
6749 	 *	3) Initialize the error stats (sd_set_errstats), following
6750 	 *	   sd_validate_geometry(),sd_register_devid(),
6751 	 *	   and sd_cache_control().
6752 	 */
6753 
6754 	un->un_stats = kstat_create(sd_label, instance,
6755 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
6756 	if (un->un_stats != NULL) {
6757 		un->un_stats->ks_lock = SD_MUTEX(un);
6758 		kstat_install(un->un_stats);
6759 	}
6760 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6761 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
6762 
6763 	sd_create_errstats(un, instance);
6764 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6765 	    "sd_unit_attach: un:0x%p errstats created\n", un);
6766 
6767 	/*
6768 	 * The following if/else code was relocated here from below as part
6769 	 * of the fix for bug (4430280). However with the default setup added
6770 	 * on entry to this routine, it's no longer absolutely necessary for
6771 	 * this to be before the call to sd_spin_up_unit.
6772 	 */
6773 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
6774 		/*
6775 		 * If SCSI-2 tagged queueing is supported by the target
6776 		 * and by the host adapter then we will enable it.
6777 		 */
6778 		un->un_tagflags = 0;
6779 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
6780 		    (devp->sd_inq->inq_cmdque) &&
6781 		    (un->un_f_arq_enabled == TRUE)) {
6782 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
6783 			    1, 1) == 1) {
6784 				un->un_tagflags = FLAG_STAG;
6785 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6786 				    "sd_unit_attach: un:0x%p tag queueing "
6787 				    "enabled\n", un);
6788 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
6789 			    "untagged-qing", 0) == 1) {
6790 				un->un_f_opt_queueing = TRUE;
6791 				un->un_saved_throttle = un->un_throttle =
6792 				    min(un->un_throttle, 3);
6793 			} else {
6794 				un->un_f_opt_queueing = FALSE;
6795 				un->un_saved_throttle = un->un_throttle = 1;
6796 			}
6797 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
6798 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
6799 			/* The Host Adapter supports internal queueing. */
6800 			un->un_f_opt_queueing = TRUE;
6801 			un->un_saved_throttle = un->un_throttle =
6802 			    min(un->un_throttle, 3);
6803 		} else {
6804 			un->un_f_opt_queueing = FALSE;
6805 			un->un_saved_throttle = un->un_throttle = 1;
6806 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6807 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
6808 		}
6809 
6810 		/*
6811 		 * Enable large transfers for SATA/SAS drives
6812 		 */
6813 		if (SD_IS_SERIAL(un)) {
6814 			un->un_max_xfer_size =
6815 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
6816 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
6817 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6818 			    "sd_unit_attach: un:0x%p max transfer "
6819 			    "size=0x%x\n", un, un->un_max_xfer_size);
6820 
6821 		}
6822 
6823 		/* Setup or tear down default wide operations for disks */
6824 
6825 		/*
6826 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
6827 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
6828 		 * system and be set to different values. In the future this
6829 		 * code may need to be updated when the ssd module is
6830 		 * obsoleted and removed from the system. (4299588)
6831 		 */
6832 		if (SD_IS_PARALLEL_SCSI(un) &&
6833 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
6834 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
6835 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
6836 			    1, 1) == 1) {
6837 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6838 				    "sd_unit_attach: un:0x%p Wide Transfer "
6839 				    "enabled\n", un);
6840 			}
6841 
6842 			/*
6843 			 * If tagged queuing has also been enabled, then
6844 			 * enable large xfers
6845 			 */
6846 			if (un->un_saved_throttle == sd_max_throttle) {
6847 				un->un_max_xfer_size =
6848 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
6849 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
6850 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6851 				    "sd_unit_attach: un:0x%p max transfer "
6852 				    "size=0x%x\n", un, un->un_max_xfer_size);
6853 			}
6854 		} else {
6855 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
6856 			    0, 1) == 1) {
6857 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6858 				    "sd_unit_attach: un:0x%p "
6859 				    "Wide Transfer disabled\n", un);
6860 			}
6861 		}
6862 	} else {
6863 		un->un_tagflags = FLAG_STAG;
6864 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
6865 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
6866 	}
6867 
6868 	/*
6869 	 * If this target supports LUN reset, try to enable it.
6870 	 */
6871 	if (un->un_f_lun_reset_enabled) {
6872 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
6873 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
6874 			    "un:0x%p lun_reset capability set\n", un);
6875 		} else {
6876 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
6877 			    "un:0x%p lun-reset capability not set\n", un);
6878 		}
6879 	}
6880 
6881 	/*
6882 	 * At this point in the attach, we have enough info in the
6883 	 * soft state to be able to issue commands to the target.
6884 	 *
6885 	 * All command paths used below MUST issue their commands as
6886 	 * SD_PATH_DIRECT. This is important as intermediate layers
6887 	 * are not all initialized yet (such as PM).
6888 	 */
6889 
6890 	/*
6891 	 * Send a TEST UNIT READY command to the device. This should clear
6892 	 * any outstanding UNIT ATTENTION that may be present.
6893 	 *
6894 	 * Note: Don't check for success, just track if there is a reservation,
6895 	 * this is a throw away command to clear any unit attentions.
6896 	 *
6897 	 * Note: This MUST be the first command issued to the target during
6898 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
6899 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
6900 	 * with attempts at spinning up a device with no media.
6901 	 */
6902 	if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) {
6903 		reservation_flag = SD_TARGET_IS_RESERVED;
6904 	}
6905 
6906 	/*
6907 	 * If the device is NOT a removable media device, attempt to spin
6908 	 * it up (using the START_STOP_UNIT command) and read its capacity
6909 	 * (using the READ CAPACITY command).  Note, however, that either
6910 	 * of these could fail and in some cases we would continue with
6911 	 * the attach despite the failure (see below).
6912 	 */
6913 	if (un->un_f_descr_format_supported) {
6914 		switch (sd_spin_up_unit(un)) {
6915 		case 0:
6916 			/*
6917 			 * Spin-up was successful; now try to read the
6918 			 * capacity.  If successful then save the results
6919 			 * and mark the capacity & lbasize as valid.
6920 			 */
6921 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6922 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
6923 
6924 			switch (sd_send_scsi_READ_CAPACITY(un, &capacity,
6925 			    &lbasize, SD_PATH_DIRECT)) {
6926 			case 0: {
6927 				if (capacity > DK_MAX_BLOCKS) {
6928 #ifdef _LP64
6929 					if (capacity + 1 >
6930 					    SD_GROUP1_MAX_ADDRESS) {
6931 						/*
6932 						 * Enable descriptor format
6933 						 * sense data so that we can
6934 						 * get 64 bit sense data
6935 						 * fields.
6936 						 */
6937 						sd_enable_descr_sense(un);
6938 					}
6939 #else
6940 					/* 32-bit kernels can't handle this */
6941 					scsi_log(SD_DEVINFO(un),
6942 					    sd_label, CE_WARN,
6943 					    "disk has %llu blocks, which "
6944 					    "is too large for a 32-bit "
6945 					    "kernel", capacity);
6946 
6947 #if defined(__i386) || defined(__amd64)
6948 					/*
6949 					 * 1TB disk was treated as (1T - 512)B
6950 					 * in the past, so that it might have
6951 					 * valid VTOC and solaris partitions,
6952 					 * we have to allow it to continue to
6953 					 * work.
6954 					 */
6955 					if (capacity -1 > DK_MAX_BLOCKS)
6956 #endif
6957 					goto spinup_failed;
6958 #endif
6959 				}
6960 
6961 				/*
6962 				 * Here it's not necessary to check the case:
6963 				 * the capacity of the device is bigger than
6964 				 * what the max hba cdb can support. Because
6965 				 * sd_send_scsi_READ_CAPACITY will retrieve
6966 				 * the capacity by sending USCSI command, which
6967 				 * is constrained by the max hba cdb. Actually,
6968 				 * sd_send_scsi_READ_CAPACITY will return
6969 				 * EINVAL when using bigger cdb than required
6970 				 * cdb length. Will handle this case in
6971 				 * "case EINVAL".
6972 				 */
6973 
6974 				/*
6975 				 * The following relies on
6976 				 * sd_send_scsi_READ_CAPACITY never
6977 				 * returning 0 for capacity and/or lbasize.
6978 				 */
6979 				sd_update_block_info(un, lbasize, capacity);
6980 
6981 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6982 				    "sd_unit_attach: un:0x%p capacity = %ld "
6983 				    "blocks; lbasize= %ld.\n", un,
6984 				    un->un_blockcount, un->un_tgt_blocksize);
6985 
6986 				break;
6987 			}
6988 			case EINVAL:
6989 				/*
6990 				 * In the case where the max-cdb-length property
6991 				 * is smaller than the required CDB length for
6992 				 * a SCSI device, a target driver can fail to
6993 				 * attach to that device.
6994 				 */
6995 				scsi_log(SD_DEVINFO(un),
6996 				    sd_label, CE_WARN,
6997 				    "disk capacity is too large "
6998 				    "for current cdb length");
6999 				goto spinup_failed;
7000 			case EACCES:
7001 				/*
7002 				 * Should never get here if the spin-up
7003 				 * succeeded, but code it in anyway.
7004 				 * From here, just continue with the attach...
7005 				 */
7006 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7007 				    "sd_unit_attach: un:0x%p "
7008 				    "sd_send_scsi_READ_CAPACITY "
7009 				    "returned reservation conflict\n", un);
7010 				reservation_flag = SD_TARGET_IS_RESERVED;
7011 				break;
7012 			default:
7013 				/*
7014 				 * Likewise, should never get here if the
7015 				 * spin-up succeeded. Just continue with
7016 				 * the attach...
7017 				 */
7018 				break;
7019 			}
7020 			break;
7021 		case EACCES:
7022 			/*
7023 			 * Device is reserved by another host.  In this case
7024 			 * we could not spin it up or read the capacity, but
7025 			 * we continue with the attach anyway.
7026 			 */
7027 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7028 			    "sd_unit_attach: un:0x%p spin-up reservation "
7029 			    "conflict.\n", un);
7030 			reservation_flag = SD_TARGET_IS_RESERVED;
7031 			break;
7032 		default:
7033 			/* Fail the attach if the spin-up failed. */
7034 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7035 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
7036 			goto spinup_failed;
7037 		}
7038 	}
7039 
7040 	/*
7041 	 * Check to see if this is a MMC drive
7042 	 */
7043 	if (ISCD(un)) {
7044 		sd_set_mmc_caps(un);
7045 	}
7046 
7047 
7048 	/*
7049 	 * Add a zero-length attribute to tell the world we support
7050 	 * kernel ioctls (for layered drivers)
7051 	 */
7052 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7053 	    DDI_KERNEL_IOCTL, NULL, 0);
7054 
7055 	/*
7056 	 * Add a boolean property to tell the world we support
7057 	 * the B_FAILFAST flag (for layered drivers)
7058 	 */
7059 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7060 	    "ddi-failfast-supported", NULL, 0);
7061 
7062 	/*
7063 	 * Initialize power management
7064 	 */
7065 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
7066 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
7067 	sd_setup_pm(un, devi);
7068 	if (un->un_f_pm_is_enabled == FALSE) {
7069 		/*
7070 		 * For performance, point to a jump table that does
7071 		 * not include pm.
7072 		 * The direct and priority chains don't change with PM.
7073 		 *
7074 		 * Note: this is currently done based on individual device
7075 		 * capabilities. When an interface for determining system
7076 		 * power enabled state becomes available, or when additional
7077 		 * layers are added to the command chain, these values will
7078 		 * have to be re-evaluated for correctness.
7079 		 */
7080 		if (un->un_f_non_devbsize_supported) {
7081 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
7082 		} else {
7083 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
7084 		}
7085 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
7086 	}
7087 
7088 	/*
7089 	 * This property is set to 0 by HA software to avoid retries
7090 	 * on a reserved disk. (The preferred property name is
7091 	 * "retry-on-reservation-conflict") (1189689)
7092 	 *
7093 	 * Note: The use of a global here can have unintended consequences. A
7094 	 * per instance variable is preferrable to match the capabilities of
7095 	 * different underlying hba's (4402600)
7096 	 */
7097 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
7098 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
7099 	    sd_retry_on_reservation_conflict);
7100 	if (sd_retry_on_reservation_conflict != 0) {
7101 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
7102 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
7103 		    sd_retry_on_reservation_conflict);
7104 	}
7105 
7106 	/* Set up options for QFULL handling. */
7107 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7108 	    "qfull-retries", -1)) != -1) {
7109 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
7110 		    rval, 1);
7111 	}
7112 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7113 	    "qfull-retry-interval", -1)) != -1) {
7114 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
7115 		    rval, 1);
7116 	}
7117 
7118 	/*
7119 	 * This just prints a message that announces the existence of the
7120 	 * device. The message is always printed in the system logfile, but
7121 	 * only appears on the console if the system is booted with the
7122 	 * -v (verbose) argument.
7123 	 */
7124 	ddi_report_dev(devi);
7125 
7126 	un->un_mediastate = DKIO_NONE;
7127 
7128 	cmlb_alloc_handle(&un->un_cmlbhandle);
7129 
7130 #if defined(__i386) || defined(__amd64)
7131 	/*
7132 	 * On x86, compensate for off-by-1 legacy error
7133 	 */
7134 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
7135 	    (lbasize == un->un_sys_blocksize))
7136 		offbyone = CMLB_OFF_BY_ONE;
7137 #endif
7138 
7139 	if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
7140 	    un->un_f_has_removable_media, un->un_f_is_hotpluggable,
7141 	    un->un_node_type, offbyone, un->un_cmlbhandle,
7142 	    (void *)SD_PATH_DIRECT) != 0) {
7143 		goto cmlb_attach_failed;
7144 	}
7145 
7146 
7147 	/*
7148 	 * Read and validate the device's geometry (ie, disk label)
7149 	 * A new unformatted drive will not have a valid geometry, but
7150 	 * the driver needs to successfully attach to this device so
7151 	 * the drive can be formatted via ioctls.
7152 	 */
7153 	geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
7154 	    (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
7155 
7156 	mutex_enter(SD_MUTEX(un));
7157 
7158 	/*
7159 	 * Read and initialize the devid for the unit.
7160 	 */
7161 	ASSERT(un->un_errstats != NULL);
7162 	if (un->un_f_devid_supported) {
7163 		sd_register_devid(un, devi, reservation_flag);
7164 	}
7165 	mutex_exit(SD_MUTEX(un));
7166 
7167 #if (defined(__fibre))
7168 	/*
7169 	 * Register callbacks for fibre only.  You can't do this soley
7170 	 * on the basis of the devid_type because this is hba specific.
7171 	 * We need to query our hba capabilities to find out whether to
7172 	 * register or not.
7173 	 */
7174 	if (un->un_f_is_fibre) {
7175 	    if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
7176 		sd_init_event_callbacks(un);
7177 		SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7178 		    "sd_unit_attach: un:0x%p event callbacks inserted", un);
7179 	    }
7180 	}
7181 #endif
7182 
7183 	if (un->un_f_opt_disable_cache == TRUE) {
7184 		/*
7185 		 * Disable both read cache and write cache.  This is
7186 		 * the historic behavior of the keywords in the config file.
7187 		 */
7188 		if (sd_cache_control(un, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
7189 		    0) {
7190 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7191 			    "sd_unit_attach: un:0x%p Could not disable "
7192 			    "caching", un);
7193 			goto devid_failed;
7194 		}
7195 	}
7196 
7197 	/*
7198 	 * Check the value of the WCE bit now and
7199 	 * set un_f_write_cache_enabled accordingly.
7200 	 */
7201 	(void) sd_get_write_cache_enabled(un, &wc_enabled);
7202 	mutex_enter(SD_MUTEX(un));
7203 	un->un_f_write_cache_enabled = (wc_enabled != 0);
7204 	mutex_exit(SD_MUTEX(un));
7205 
7206 	/*
7207 	 * Set the pstat and error stat values here, so data obtained during the
7208 	 * previous attach-time routines is available.
7209 	 *
7210 	 * Note: This is a critical sequence that needs to be maintained:
7211 	 *	1) Instantiate the kstats before any routines using the iopath
7212 	 *	   (i.e. sd_send_scsi_cmd).
7213 	 *	2) Initialize the error stats (sd_set_errstats) and partition
7214 	 *	   stats (sd_set_pstats)here, following
7215 	 *	   cmlb_validate_geometry(), sd_register_devid(), and
7216 	 *	   sd_cache_control().
7217 	 */
7218 
7219 	if (un->un_f_pkstats_enabled && geom_label_valid) {
7220 		sd_set_pstats(un);
7221 		SD_TRACE(SD_LOG_IO_PARTITION, un,
7222 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
7223 	}
7224 
7225 	sd_set_errstats(un);
7226 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7227 	    "sd_unit_attach: un:0x%p errstats set\n", un);
7228 
7229 	/*
7230 	 * Find out what type of reservation this disk supports.
7231 	 */
7232 	switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) {
7233 	case 0:
7234 		/*
7235 		 * SCSI-3 reservations are supported.
7236 		 */
7237 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7238 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7239 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
7240 		break;
7241 	case ENOTSUP:
7242 		/*
7243 		 * The PERSISTENT RESERVE IN command would not be recognized by
7244 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
7245 		 */
7246 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7247 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
7248 		un->un_reservation_type = SD_SCSI2_RESERVATION;
7249 		break;
7250 	default:
7251 		/*
7252 		 * default to SCSI-3 reservations
7253 		 */
7254 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7255 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
7256 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7257 		break;
7258 	}
7259 
7260 	/*
7261 	 * After successfully attaching an instance, we record the information
7262 	 * of how many luns have been attached on the relative target and
7263 	 * controller for parallel SCSI. This information is used when sd tries
7264 	 * to set the tagged queuing capability in HBA.
7265 	 */
7266 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
7267 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
7268 	}
7269 
7270 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7271 	    "sd_unit_attach: un:0x%p exit success\n", un);
7272 
7273 	return (DDI_SUCCESS);
7274 
7275 	/*
7276 	 * An error occurred during the attach; clean up & return failure.
7277 	 */
7278 
7279 devid_failed:
7280 
7281 setup_pm_failed:
7282 	ddi_remove_minor_node(devi, NULL);
7283 
7284 cmlb_attach_failed:
7285 	/*
7286 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7287 	 */
7288 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7289 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7290 
7291 	/*
7292 	 * Refer to the comments of setting tagged-qing in the beginning of
7293 	 * sd_unit_attach. We can only disable tagged queuing when there is
7294 	 * no lun attached on the target.
7295 	 */
7296 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
7297 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7298 	}
7299 
7300 	if (un->un_f_is_fibre == FALSE) {
7301 	    (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7302 	}
7303 
7304 spinup_failed:
7305 
7306 	mutex_enter(SD_MUTEX(un));
7307 
7308 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
7309 	if (un->un_direct_priority_timeid != NULL) {
7310 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7311 		un->un_direct_priority_timeid = NULL;
7312 		mutex_exit(SD_MUTEX(un));
7313 		(void) untimeout(temp_id);
7314 		mutex_enter(SD_MUTEX(un));
7315 	}
7316 
7317 	/* Cancel any pending start/stop timeouts */
7318 	if (un->un_startstop_timeid != NULL) {
7319 		timeout_id_t temp_id = un->un_startstop_timeid;
7320 		un->un_startstop_timeid = NULL;
7321 		mutex_exit(SD_MUTEX(un));
7322 		(void) untimeout(temp_id);
7323 		mutex_enter(SD_MUTEX(un));
7324 	}
7325 
7326 	/* Cancel any pending reset-throttle timeouts */
7327 	if (un->un_reset_throttle_timeid != NULL) {
7328 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7329 		un->un_reset_throttle_timeid = NULL;
7330 		mutex_exit(SD_MUTEX(un));
7331 		(void) untimeout(temp_id);
7332 		mutex_enter(SD_MUTEX(un));
7333 	}
7334 
7335 	/* Cancel any pending retry timeouts */
7336 	if (un->un_retry_timeid != NULL) {
7337 		timeout_id_t temp_id = un->un_retry_timeid;
7338 		un->un_retry_timeid = NULL;
7339 		mutex_exit(SD_MUTEX(un));
7340 		(void) untimeout(temp_id);
7341 		mutex_enter(SD_MUTEX(un));
7342 	}
7343 
7344 	/* Cancel any pending delayed cv broadcast timeouts */
7345 	if (un->un_dcvb_timeid != NULL) {
7346 		timeout_id_t temp_id = un->un_dcvb_timeid;
7347 		un->un_dcvb_timeid = NULL;
7348 		mutex_exit(SD_MUTEX(un));
7349 		(void) untimeout(temp_id);
7350 		mutex_enter(SD_MUTEX(un));
7351 	}
7352 
7353 	mutex_exit(SD_MUTEX(un));
7354 
7355 	/* There should not be any in-progress I/O so ASSERT this check */
7356 	ASSERT(un->un_ncmds_in_transport == 0);
7357 	ASSERT(un->un_ncmds_in_driver == 0);
7358 
7359 	/* Do not free the softstate if the callback routine is active */
7360 	sd_sync_with_callback(un);
7361 
7362 	/*
7363 	 * Partition stats apparently are not used with removables. These would
7364 	 * not have been created during attach, so no need to clean them up...
7365 	 */
7366 	if (un->un_stats != NULL) {
7367 		kstat_delete(un->un_stats);
7368 		un->un_stats = NULL;
7369 	}
7370 	if (un->un_errstats != NULL) {
7371 		kstat_delete(un->un_errstats);
7372 		un->un_errstats = NULL;
7373 	}
7374 
7375 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
7376 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
7377 
7378 	ddi_prop_remove_all(devi);
7379 	sema_destroy(&un->un_semoclose);
7380 	cv_destroy(&un->un_state_cv);
7381 
7382 getrbuf_failed:
7383 
7384 	sd_free_rqs(un);
7385 
7386 alloc_rqs_failed:
7387 
7388 	devp->sd_private = NULL;
7389 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
7390 
7391 get_softstate_failed:
7392 	/*
7393 	 * Note: the man pages are unclear as to whether or not doing a
7394 	 * ddi_soft_state_free(sd_state, instance) is the right way to
7395 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
7396 	 * ddi_get_soft_state() fails.  The implication seems to be
7397 	 * that the get_soft_state cannot fail if the zalloc succeeds.
7398 	 */
7399 	ddi_soft_state_free(sd_state, instance);
7400 
7401 probe_failed:
7402 	scsi_unprobe(devp);
7403 #ifdef SDDEBUG
7404 	if ((sd_component_mask & SD_LOG_ATTACH_DETACH) &&
7405 	    (sd_level_mask & SD_LOGMASK_TRACE)) {
7406 		cmn_err(CE_CONT, "sd_unit_attach: un:0x%p exit failure\n",
7407 		    (void *)un);
7408 	}
7409 #endif
7410 	return (DDI_FAILURE);
7411 }
7412 
7413 
7414 /*
7415  *    Function: sd_unit_detach
7416  *
7417  * Description: Performs DDI_DETACH processing for sddetach().
7418  *
7419  * Return Code: DDI_SUCCESS
7420  *		DDI_FAILURE
7421  *
7422  *     Context: Kernel thread context
7423  */
7424 
7425 static int
7426 sd_unit_detach(dev_info_t *devi)
7427 {
7428 	struct scsi_device	*devp;
7429 	struct sd_lun		*un;
7430 	int			i;
7431 	int			tgt;
7432 	dev_t			dev;
7433 	dev_info_t		*pdip = ddi_get_parent(devi);
7434 	int			instance = ddi_get_instance(devi);
7435 
7436 	mutex_enter(&sd_detach_mutex);
7437 
7438 	/*
7439 	 * Fail the detach for any of the following:
7440 	 *  - Unable to get the sd_lun struct for the instance
7441 	 *  - A layered driver has an outstanding open on the instance
7442 	 *  - Another thread is already detaching this instance
7443 	 *  - Another thread is currently performing an open
7444 	 */
7445 	devp = ddi_get_driver_private(devi);
7446 	if ((devp == NULL) ||
7447 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
7448 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
7449 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
7450 		mutex_exit(&sd_detach_mutex);
7451 		return (DDI_FAILURE);
7452 	}
7453 
7454 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
7455 
7456 	/*
7457 	 * Mark this instance as currently in a detach, to inhibit any
7458 	 * opens from a layered driver.
7459 	 */
7460 	un->un_detach_count++;
7461 	mutex_exit(&sd_detach_mutex);
7462 
7463 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7464 	    SCSI_ADDR_PROP_TARGET, -1);
7465 
7466 	dev = sd_make_device(SD_DEVINFO(un));
7467 
7468 #ifndef lint
7469 	_NOTE(COMPETING_THREADS_NOW);
7470 #endif
7471 
7472 	mutex_enter(SD_MUTEX(un));
7473 
7474 	/*
7475 	 * Fail the detach if there are any outstanding layered
7476 	 * opens on this device.
7477 	 */
7478 	for (i = 0; i < NDKMAP; i++) {
7479 		if (un->un_ocmap.lyropen[i] != 0) {
7480 			goto err_notclosed;
7481 		}
7482 	}
7483 
7484 	/*
7485 	 * Verify there are NO outstanding commands issued to this device.
7486 	 * ie, un_ncmds_in_transport == 0.
7487 	 * It's possible to have outstanding commands through the physio
7488 	 * code path, even though everything's closed.
7489 	 */
7490 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
7491 	    (un->un_direct_priority_timeid != NULL) ||
7492 	    (un->un_state == SD_STATE_RWAIT)) {
7493 		mutex_exit(SD_MUTEX(un));
7494 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7495 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
7496 		goto err_stillbusy;
7497 	}
7498 
7499 	/*
7500 	 * If we have the device reserved, release the reservation.
7501 	 */
7502 	if ((un->un_resvd_status & SD_RESERVE) &&
7503 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
7504 		mutex_exit(SD_MUTEX(un));
7505 		/*
7506 		 * Note: sd_reserve_release sends a command to the device
7507 		 * via the sd_ioctlcmd() path, and can sleep.
7508 		 */
7509 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
7510 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7511 			    "sd_dr_detach: Cannot release reservation \n");
7512 		}
7513 	} else {
7514 		mutex_exit(SD_MUTEX(un));
7515 	}
7516 
7517 	/*
7518 	 * Untimeout any reserve recover, throttle reset, restart unit
7519 	 * and delayed broadcast timeout threads. Protect the timeout pointer
7520 	 * from getting nulled by their callback functions.
7521 	 */
7522 	mutex_enter(SD_MUTEX(un));
7523 	if (un->un_resvd_timeid != NULL) {
7524 		timeout_id_t temp_id = un->un_resvd_timeid;
7525 		un->un_resvd_timeid = NULL;
7526 		mutex_exit(SD_MUTEX(un));
7527 		(void) untimeout(temp_id);
7528 		mutex_enter(SD_MUTEX(un));
7529 	}
7530 
7531 	if (un->un_reset_throttle_timeid != NULL) {
7532 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7533 		un->un_reset_throttle_timeid = NULL;
7534 		mutex_exit(SD_MUTEX(un));
7535 		(void) untimeout(temp_id);
7536 		mutex_enter(SD_MUTEX(un));
7537 	}
7538 
7539 	if (un->un_startstop_timeid != NULL) {
7540 		timeout_id_t temp_id = un->un_startstop_timeid;
7541 		un->un_startstop_timeid = NULL;
7542 		mutex_exit(SD_MUTEX(un));
7543 		(void) untimeout(temp_id);
7544 		mutex_enter(SD_MUTEX(un));
7545 	}
7546 
7547 	if (un->un_dcvb_timeid != NULL) {
7548 		timeout_id_t temp_id = un->un_dcvb_timeid;
7549 		un->un_dcvb_timeid = NULL;
7550 		mutex_exit(SD_MUTEX(un));
7551 		(void) untimeout(temp_id);
7552 	} else {
7553 		mutex_exit(SD_MUTEX(un));
7554 	}
7555 
7556 	/* Remove any pending reservation reclaim requests for this device */
7557 	sd_rmv_resv_reclaim_req(dev);
7558 
7559 	mutex_enter(SD_MUTEX(un));
7560 
7561 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
7562 	if (un->un_direct_priority_timeid != NULL) {
7563 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7564 		un->un_direct_priority_timeid = NULL;
7565 		mutex_exit(SD_MUTEX(un));
7566 		(void) untimeout(temp_id);
7567 		mutex_enter(SD_MUTEX(un));
7568 	}
7569 
7570 	/* Cancel any active multi-host disk watch thread requests */
7571 	if (un->un_mhd_token != NULL) {
7572 		mutex_exit(SD_MUTEX(un));
7573 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
7574 		if (scsi_watch_request_terminate(un->un_mhd_token,
7575 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
7576 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7577 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
7578 			/*
7579 			 * Note: We are returning here after having removed
7580 			 * some driver timeouts above. This is consistent with
7581 			 * the legacy implementation but perhaps the watch
7582 			 * terminate call should be made with the wait flag set.
7583 			 */
7584 			goto err_stillbusy;
7585 		}
7586 		mutex_enter(SD_MUTEX(un));
7587 		un->un_mhd_token = NULL;
7588 	}
7589 
7590 	if (un->un_swr_token != NULL) {
7591 		mutex_exit(SD_MUTEX(un));
7592 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
7593 		if (scsi_watch_request_terminate(un->un_swr_token,
7594 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
7595 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7596 			    "sd_dr_detach: Cannot cancel swr watch request\n");
7597 			/*
7598 			 * Note: We are returning here after having removed
7599 			 * some driver timeouts above. This is consistent with
7600 			 * the legacy implementation but perhaps the watch
7601 			 * terminate call should be made with the wait flag set.
7602 			 */
7603 			goto err_stillbusy;
7604 		}
7605 		mutex_enter(SD_MUTEX(un));
7606 		un->un_swr_token = NULL;
7607 	}
7608 
7609 	mutex_exit(SD_MUTEX(un));
7610 
7611 	/*
7612 	 * Clear any scsi_reset_notifies. We clear the reset notifies
7613 	 * if we have not registered one.
7614 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
7615 	 */
7616 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
7617 	    sd_mhd_reset_notify_cb, (caddr_t)un);
7618 
7619 	/*
7620 	 * protect the timeout pointers from getting nulled by
7621 	 * their callback functions during the cancellation process.
7622 	 * In such a scenario untimeout can be invoked with a null value.
7623 	 */
7624 	_NOTE(NO_COMPETING_THREADS_NOW);
7625 
7626 	mutex_enter(&un->un_pm_mutex);
7627 	if (un->un_pm_idle_timeid != NULL) {
7628 		timeout_id_t temp_id = un->un_pm_idle_timeid;
7629 		un->un_pm_idle_timeid = NULL;
7630 		mutex_exit(&un->un_pm_mutex);
7631 
7632 		/*
7633 		 * Timeout is active; cancel it.
7634 		 * Note that it'll never be active on a device
7635 		 * that does not support PM therefore we don't
7636 		 * have to check before calling pm_idle_component.
7637 		 */
7638 		(void) untimeout(temp_id);
7639 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7640 		mutex_enter(&un->un_pm_mutex);
7641 	}
7642 
7643 	/*
7644 	 * Check whether there is already a timeout scheduled for power
7645 	 * management. If yes then don't lower the power here, that's.
7646 	 * the timeout handler's job.
7647 	 */
7648 	if (un->un_pm_timeid != NULL) {
7649 		timeout_id_t temp_id = un->un_pm_timeid;
7650 		un->un_pm_timeid = NULL;
7651 		mutex_exit(&un->un_pm_mutex);
7652 		/*
7653 		 * Timeout is active; cancel it.
7654 		 * Note that it'll never be active on a device
7655 		 * that does not support PM therefore we don't
7656 		 * have to check before calling pm_idle_component.
7657 		 */
7658 		(void) untimeout(temp_id);
7659 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7660 
7661 	} else {
7662 		mutex_exit(&un->un_pm_mutex);
7663 		if ((un->un_f_pm_is_enabled == TRUE) &&
7664 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
7665 		    DDI_SUCCESS)) {
7666 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7667 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
7668 			/*
7669 			 * Fix for bug: 4297749, item # 13
7670 			 * The above test now includes a check to see if PM is
7671 			 * supported by this device before call
7672 			 * pm_lower_power().
7673 			 * Note, the following is not dead code. The call to
7674 			 * pm_lower_power above will generate a call back into
7675 			 * our sdpower routine which might result in a timeout
7676 			 * handler getting activated. Therefore the following
7677 			 * code is valid and necessary.
7678 			 */
7679 			mutex_enter(&un->un_pm_mutex);
7680 			if (un->un_pm_timeid != NULL) {
7681 				timeout_id_t temp_id = un->un_pm_timeid;
7682 				un->un_pm_timeid = NULL;
7683 				mutex_exit(&un->un_pm_mutex);
7684 				(void) untimeout(temp_id);
7685 				(void) pm_idle_component(SD_DEVINFO(un), 0);
7686 			} else {
7687 				mutex_exit(&un->un_pm_mutex);
7688 			}
7689 		}
7690 	}
7691 
7692 	/*
7693 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7694 	 * Relocated here from above to be after the call to
7695 	 * pm_lower_power, which was getting errors.
7696 	 */
7697 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7698 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7699 
7700 	/*
7701 	 * Currently, tagged queuing is supported per target based by HBA.
7702 	 * Setting this per lun instance actually sets the capability of this
7703 	 * target in HBA, which affects those luns already attached on the
7704 	 * same target. So during detach, we can only disable this capability
7705 	 * only when this is the only lun left on this target. By doing
7706 	 * this, we assume a target has the same tagged queuing capability
7707 	 * for every lun. The condition can be removed when HBA is changed to
7708 	 * support per lun based tagged queuing capability.
7709 	 */
7710 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
7711 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7712 	}
7713 
7714 	if (un->un_f_is_fibre == FALSE) {
7715 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7716 	}
7717 
7718 	/*
7719 	 * Remove any event callbacks, fibre only
7720 	 */
7721 	if (un->un_f_is_fibre == TRUE) {
7722 		if ((un->un_insert_event != NULL) &&
7723 			(ddi_remove_event_handler(un->un_insert_cb_id) !=
7724 				DDI_SUCCESS)) {
7725 			/*
7726 			 * Note: We are returning here after having done
7727 			 * substantial cleanup above. This is consistent
7728 			 * with the legacy implementation but this may not
7729 			 * be the right thing to do.
7730 			 */
7731 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7732 				"sd_dr_detach: Cannot cancel insert event\n");
7733 			goto err_remove_event;
7734 		}
7735 		un->un_insert_event = NULL;
7736 
7737 		if ((un->un_remove_event != NULL) &&
7738 			(ddi_remove_event_handler(un->un_remove_cb_id) !=
7739 				DDI_SUCCESS)) {
7740 			/*
7741 			 * Note: We are returning here after having done
7742 			 * substantial cleanup above. This is consistent
7743 			 * with the legacy implementation but this may not
7744 			 * be the right thing to do.
7745 			 */
7746 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7747 				"sd_dr_detach: Cannot cancel remove event\n");
7748 			goto err_remove_event;
7749 		}
7750 		un->un_remove_event = NULL;
7751 	}
7752 
7753 	/* Do not free the softstate if the callback routine is active */
7754 	sd_sync_with_callback(un);
7755 
7756 	cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
7757 	cmlb_free_handle(&un->un_cmlbhandle);
7758 
7759 	/*
7760 	 * Hold the detach mutex here, to make sure that no other threads ever
7761 	 * can access a (partially) freed soft state structure.
7762 	 */
7763 	mutex_enter(&sd_detach_mutex);
7764 
7765 	/*
7766 	 * Clean up the soft state struct.
7767 	 * Cleanup is done in reverse order of allocs/inits.
7768 	 * At this point there should be no competing threads anymore.
7769 	 */
7770 
7771 	/* Unregister and free device id. */
7772 	ddi_devid_unregister(devi);
7773 	if (un->un_devid) {
7774 		ddi_devid_free(un->un_devid);
7775 		un->un_devid = NULL;
7776 	}
7777 
7778 	/*
7779 	 * Destroy wmap cache if it exists.
7780 	 */
7781 	if (un->un_wm_cache != NULL) {
7782 		kmem_cache_destroy(un->un_wm_cache);
7783 		un->un_wm_cache = NULL;
7784 	}
7785 
7786 	/*
7787 	 * kstat cleanup is done in detach for all device types (4363169).
7788 	 * We do not want to fail detach if the device kstats are not deleted
7789 	 * since there is a confusion about the devo_refcnt for the device.
7790 	 * We just delete the kstats and let detach complete successfully.
7791 	 */
7792 	if (un->un_stats != NULL) {
7793 		kstat_delete(un->un_stats);
7794 		un->un_stats = NULL;
7795 	}
7796 	if (un->un_errstats != NULL) {
7797 		kstat_delete(un->un_errstats);
7798 		un->un_errstats = NULL;
7799 	}
7800 
7801 	/* Remove partition stats */
7802 	if (un->un_f_pkstats_enabled) {
7803 		for (i = 0; i < NSDMAP; i++) {
7804 			if (un->un_pstats[i] != NULL) {
7805 				kstat_delete(un->un_pstats[i]);
7806 				un->un_pstats[i] = NULL;
7807 			}
7808 		}
7809 	}
7810 
7811 	/* Remove xbuf registration */
7812 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
7813 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
7814 
7815 	/* Remove driver properties */
7816 	ddi_prop_remove_all(devi);
7817 
7818 	mutex_destroy(&un->un_pm_mutex);
7819 	cv_destroy(&un->un_pm_busy_cv);
7820 
7821 	cv_destroy(&un->un_wcc_cv);
7822 
7823 	/* Open/close semaphore */
7824 	sema_destroy(&un->un_semoclose);
7825 
7826 	/* Removable media condvar. */
7827 	cv_destroy(&un->un_state_cv);
7828 
7829 	/* Suspend/resume condvar. */
7830 	cv_destroy(&un->un_suspend_cv);
7831 	cv_destroy(&un->un_disk_busy_cv);
7832 
7833 	sd_free_rqs(un);
7834 
7835 	/* Free up soft state */
7836 	devp->sd_private = NULL;
7837 
7838 	bzero(un, sizeof (struct sd_lun));
7839 	ddi_soft_state_free(sd_state, instance);
7840 
7841 	mutex_exit(&sd_detach_mutex);
7842 
7843 	/* This frees up the INQUIRY data associated with the device. */
7844 	scsi_unprobe(devp);
7845 
7846 	/*
7847 	 * After successfully detaching an instance, we update the information
7848 	 * of how many luns have been attached in the relative target and
7849 	 * controller for parallel SCSI. This information is used when sd tries
7850 	 * to set the tagged queuing capability in HBA.
7851 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
7852 	 * check if the device is parallel SCSI. However, we don't need to
7853 	 * check here because we've already checked during attach. No device
7854 	 * that is not parallel SCSI is in the chain.
7855 	 */
7856 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
7857 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
7858 	}
7859 
7860 	return (DDI_SUCCESS);
7861 
7862 err_notclosed:
7863 	mutex_exit(SD_MUTEX(un));
7864 
7865 err_stillbusy:
7866 	_NOTE(NO_COMPETING_THREADS_NOW);
7867 
7868 err_remove_event:
7869 	mutex_enter(&sd_detach_mutex);
7870 	un->un_detach_count--;
7871 	mutex_exit(&sd_detach_mutex);
7872 
7873 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
7874 	return (DDI_FAILURE);
7875 }
7876 
7877 
7878 /*
7879  *    Function: sd_create_errstats
7880  *
7881  * Description: This routine instantiates the device error stats.
7882  *
7883  *		Note: During attach the stats are instantiated first so they are
7884  *		available for attach-time routines that utilize the driver
7885  *		iopath to send commands to the device. The stats are initialized
7886  *		separately so data obtained during some attach-time routines is
7887  *		available. (4362483)
7888  *
7889  *   Arguments: un - driver soft state (unit) structure
7890  *		instance - driver instance
7891  *
7892  *     Context: Kernel thread context
7893  */
7894 
7895 static void
7896 sd_create_errstats(struct sd_lun *un, int instance)
7897 {
7898 	struct	sd_errstats	*stp;
7899 	char	kstatmodule_err[KSTAT_STRLEN];
7900 	char	kstatname[KSTAT_STRLEN];
7901 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
7902 
7903 	ASSERT(un != NULL);
7904 
7905 	if (un->un_errstats != NULL) {
7906 		return;
7907 	}
7908 
7909 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
7910 	    "%serr", sd_label);
7911 	(void) snprintf(kstatname, sizeof (kstatname),
7912 	    "%s%d,err", sd_label, instance);
7913 
7914 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
7915 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
7916 
7917 	if (un->un_errstats == NULL) {
7918 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7919 		    "sd_create_errstats: Failed kstat_create\n");
7920 		return;
7921 	}
7922 
7923 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
7924 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
7925 	    KSTAT_DATA_UINT32);
7926 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
7927 	    KSTAT_DATA_UINT32);
7928 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
7929 	    KSTAT_DATA_UINT32);
7930 	kstat_named_init(&stp->sd_vid,		"Vendor",
7931 	    KSTAT_DATA_CHAR);
7932 	kstat_named_init(&stp->sd_pid,		"Product",
7933 	    KSTAT_DATA_CHAR);
7934 	kstat_named_init(&stp->sd_revision,	"Revision",
7935 	    KSTAT_DATA_CHAR);
7936 	kstat_named_init(&stp->sd_serial,	"Serial No",
7937 	    KSTAT_DATA_CHAR);
7938 	kstat_named_init(&stp->sd_capacity,	"Size",
7939 	    KSTAT_DATA_ULONGLONG);
7940 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
7941 	    KSTAT_DATA_UINT32);
7942 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
7943 	    KSTAT_DATA_UINT32);
7944 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
7945 	    KSTAT_DATA_UINT32);
7946 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
7947 	    KSTAT_DATA_UINT32);
7948 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
7949 	    KSTAT_DATA_UINT32);
7950 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
7951 	    KSTAT_DATA_UINT32);
7952 
7953 	un->un_errstats->ks_private = un;
7954 	un->un_errstats->ks_update  = nulldev;
7955 
7956 	kstat_install(un->un_errstats);
7957 }
7958 
7959 
7960 /*
7961  *    Function: sd_set_errstats
7962  *
7963  * Description: This routine sets the value of the vendor id, product id,
7964  *		revision, serial number, and capacity device error stats.
7965  *
7966  *		Note: During attach the stats are instantiated first so they are
7967  *		available for attach-time routines that utilize the driver
7968  *		iopath to send commands to the device. The stats are initialized
7969  *		separately so data obtained during some attach-time routines is
7970  *		available. (4362483)
7971  *
7972  *   Arguments: un - driver soft state (unit) structure
7973  *
7974  *     Context: Kernel thread context
7975  */
7976 
7977 static void
7978 sd_set_errstats(struct sd_lun *un)
7979 {
7980 	struct	sd_errstats	*stp;
7981 
7982 	ASSERT(un != NULL);
7983 	ASSERT(un->un_errstats != NULL);
7984 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
7985 	ASSERT(stp != NULL);
7986 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
7987 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
7988 	(void) strncpy(stp->sd_revision.value.c,
7989 	    un->un_sd->sd_inq->inq_revision, 4);
7990 
7991 	/*
7992 	 * All the errstats are persistent across detach/attach,
7993 	 * so reset all the errstats here in case of the hot
7994 	 * replacement of disk drives, except for not changed
7995 	 * Sun qualified drives.
7996 	 */
7997 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
7998 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
7999 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
8000 		stp->sd_softerrs.value.ui32 = 0;
8001 		stp->sd_harderrs.value.ui32 = 0;
8002 		stp->sd_transerrs.value.ui32 = 0;
8003 		stp->sd_rq_media_err.value.ui32 = 0;
8004 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
8005 		stp->sd_rq_nodev_err.value.ui32 = 0;
8006 		stp->sd_rq_recov_err.value.ui32 = 0;
8007 		stp->sd_rq_illrq_err.value.ui32 = 0;
8008 		stp->sd_rq_pfa_err.value.ui32 = 0;
8009 	}
8010 
8011 	/*
8012 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
8013 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
8014 	 * (4376302))
8015 	 */
8016 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
8017 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8018 		    sizeof (SD_INQUIRY(un)->inq_serial));
8019 	}
8020 
8021 	if (un->un_f_blockcount_is_valid != TRUE) {
8022 		/*
8023 		 * Set capacity error stat to 0 for no media. This ensures
8024 		 * a valid capacity is displayed in response to 'iostat -E'
8025 		 * when no media is present in the device.
8026 		 */
8027 		stp->sd_capacity.value.ui64 = 0;
8028 	} else {
8029 		/*
8030 		 * Multiply un_blockcount by un->un_sys_blocksize to get
8031 		 * capacity.
8032 		 *
8033 		 * Note: for non-512 blocksize devices "un_blockcount" has been
8034 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
8035 		 * (un_tgt_blocksize / un->un_sys_blocksize).
8036 		 */
8037 		stp->sd_capacity.value.ui64 = (uint64_t)
8038 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
8039 	}
8040 }
8041 
8042 
8043 /*
8044  *    Function: sd_set_pstats
8045  *
8046  * Description: This routine instantiates and initializes the partition
8047  *              stats for each partition with more than zero blocks.
8048  *		(4363169)
8049  *
8050  *   Arguments: un - driver soft state (unit) structure
8051  *
8052  *     Context: Kernel thread context
8053  */
8054 
8055 static void
8056 sd_set_pstats(struct sd_lun *un)
8057 {
8058 	char	kstatname[KSTAT_STRLEN];
8059 	int	instance;
8060 	int	i;
8061 	diskaddr_t	nblks = 0;
8062 	char	*partname = NULL;
8063 
8064 	ASSERT(un != NULL);
8065 
8066 	instance = ddi_get_instance(SD_DEVINFO(un));
8067 
8068 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
8069 	for (i = 0; i < NSDMAP; i++) {
8070 
8071 		if (cmlb_partinfo(un->un_cmlbhandle, i,
8072 		    &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
8073 			continue;
8074 		mutex_enter(SD_MUTEX(un));
8075 
8076 		if ((un->un_pstats[i] == NULL) &&
8077 		    (nblks != 0)) {
8078 
8079 			(void) snprintf(kstatname, sizeof (kstatname),
8080 			    "%s%d,%s", sd_label, instance,
8081 			    partname);
8082 
8083 			un->un_pstats[i] = kstat_create(sd_label,
8084 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
8085 			    1, KSTAT_FLAG_PERSISTENT);
8086 			if (un->un_pstats[i] != NULL) {
8087 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
8088 				kstat_install(un->un_pstats[i]);
8089 			}
8090 		}
8091 		mutex_exit(SD_MUTEX(un));
8092 	}
8093 }
8094 
8095 
8096 #if (defined(__fibre))
8097 /*
8098  *    Function: sd_init_event_callbacks
8099  *
8100  * Description: This routine initializes the insertion and removal event
8101  *		callbacks. (fibre only)
8102  *
8103  *   Arguments: un - driver soft state (unit) structure
8104  *
8105  *     Context: Kernel thread context
8106  */
8107 
8108 static void
8109 sd_init_event_callbacks(struct sd_lun *un)
8110 {
8111 	ASSERT(un != NULL);
8112 
8113 	if ((un->un_insert_event == NULL) &&
8114 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
8115 	    &un->un_insert_event) == DDI_SUCCESS)) {
8116 		/*
8117 		 * Add the callback for an insertion event
8118 		 */
8119 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8120 		    un->un_insert_event, sd_event_callback, (void *)un,
8121 		    &(un->un_insert_cb_id));
8122 	}
8123 
8124 	if ((un->un_remove_event == NULL) &&
8125 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
8126 	    &un->un_remove_event) == DDI_SUCCESS)) {
8127 		/*
8128 		 * Add the callback for a removal event
8129 		 */
8130 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8131 		    un->un_remove_event, sd_event_callback, (void *)un,
8132 		    &(un->un_remove_cb_id));
8133 	}
8134 }
8135 
8136 
8137 /*
8138  *    Function: sd_event_callback
8139  *
8140  * Description: This routine handles insert/remove events (photon). The
8141  *		state is changed to OFFLINE which can be used to supress
8142  *		error msgs. (fibre only)
8143  *
8144  *   Arguments: un - driver soft state (unit) structure
8145  *
8146  *     Context: Callout thread context
8147  */
8148 /* ARGSUSED */
8149 static void
8150 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
8151     void *bus_impldata)
8152 {
8153 	struct sd_lun *un = (struct sd_lun *)arg;
8154 
8155 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
8156 	if (event == un->un_insert_event) {
8157 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
8158 		mutex_enter(SD_MUTEX(un));
8159 		if (un->un_state == SD_STATE_OFFLINE) {
8160 			if (un->un_last_state != SD_STATE_SUSPENDED) {
8161 				un->un_state = un->un_last_state;
8162 			} else {
8163 				/*
8164 				 * We have gone through SUSPEND/RESUME while
8165 				 * we were offline. Restore the last state
8166 				 */
8167 				un->un_state = un->un_save_state;
8168 			}
8169 		}
8170 		mutex_exit(SD_MUTEX(un));
8171 
8172 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
8173 	} else if (event == un->un_remove_event) {
8174 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
8175 		mutex_enter(SD_MUTEX(un));
8176 		/*
8177 		 * We need to handle an event callback that occurs during
8178 		 * the suspend operation, since we don't prevent it.
8179 		 */
8180 		if (un->un_state != SD_STATE_OFFLINE) {
8181 			if (un->un_state != SD_STATE_SUSPENDED) {
8182 				New_state(un, SD_STATE_OFFLINE);
8183 			} else {
8184 				un->un_last_state = SD_STATE_OFFLINE;
8185 			}
8186 		}
8187 		mutex_exit(SD_MUTEX(un));
8188 	} else {
8189 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
8190 		    "!Unknown event\n");
8191 	}
8192 
8193 }
8194 #endif
8195 
8196 /*
8197  *    Function: sd_cache_control()
8198  *
8199  * Description: This routine is the driver entry point for setting
8200  *		read and write caching by modifying the WCE (write cache
8201  *		enable) and RCD (read cache disable) bits of mode
8202  *		page 8 (MODEPAGE_CACHING).
8203  *
8204  *   Arguments: un - driver soft state (unit) structure
8205  *		rcd_flag - flag for controlling the read cache
8206  *		wce_flag - flag for controlling the write cache
8207  *
8208  * Return Code: EIO
8209  *		code returned by sd_send_scsi_MODE_SENSE and
8210  *		sd_send_scsi_MODE_SELECT
8211  *
8212  *     Context: Kernel Thread
8213  */
8214 
8215 static int
8216 sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag)
8217 {
8218 	struct mode_caching	*mode_caching_page;
8219 	uchar_t			*header;
8220 	size_t			buflen;
8221 	int			hdrlen;
8222 	int			bd_len;
8223 	int			rval = 0;
8224 	struct mode_header_grp2	*mhp;
8225 
8226 	ASSERT(un != NULL);
8227 
8228 	/*
8229 	 * Do a test unit ready, otherwise a mode sense may not work if this
8230 	 * is the first command sent to the device after boot.
8231 	 */
8232 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
8233 
8234 	if (un->un_f_cfg_is_atapi == TRUE) {
8235 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8236 	} else {
8237 		hdrlen = MODE_HEADER_LENGTH;
8238 	}
8239 
8240 	/*
8241 	 * Allocate memory for the retrieved mode page and its headers.  Set
8242 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
8243 	 * we get all of the mode sense data otherwise, the mode select
8244 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
8245 	 */
8246 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
8247 		sizeof (struct mode_cache_scsi3);
8248 
8249 	header = kmem_zalloc(buflen, KM_SLEEP);
8250 
8251 	/* Get the information from the device. */
8252 	if (un->un_f_cfg_is_atapi == TRUE) {
8253 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
8254 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8255 	} else {
8256 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
8257 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8258 	}
8259 	if (rval != 0) {
8260 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8261 		    "sd_cache_control: Mode Sense Failed\n");
8262 		kmem_free(header, buflen);
8263 		return (rval);
8264 	}
8265 
8266 	/*
8267 	 * Determine size of Block Descriptors in order to locate
8268 	 * the mode page data. ATAPI devices return 0, SCSI devices
8269 	 * should return MODE_BLK_DESC_LENGTH.
8270 	 */
8271 	if (un->un_f_cfg_is_atapi == TRUE) {
8272 		mhp	= (struct mode_header_grp2 *)header;
8273 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8274 	} else {
8275 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8276 	}
8277 
8278 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8279 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8280 		    "sd_cache_control: Mode Sense returned invalid "
8281 		    "block descriptor length\n");
8282 		kmem_free(header, buflen);
8283 		return (EIO);
8284 	}
8285 
8286 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8287 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8288 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8289 		    " caching page code mismatch %d\n",
8290 		    mode_caching_page->mode_page.code);
8291 		kmem_free(header, buflen);
8292 		return (EIO);
8293 	}
8294 
8295 	/* Check the relevant bits on successful mode sense. */
8296 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
8297 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
8298 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
8299 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
8300 
8301 		size_t sbuflen;
8302 		uchar_t save_pg;
8303 
8304 		/*
8305 		 * Construct select buffer length based on the
8306 		 * length of the sense data returned.
8307 		 */
8308 		sbuflen =  hdrlen + MODE_BLK_DESC_LENGTH +
8309 				sizeof (struct mode_page) +
8310 				(int)mode_caching_page->mode_page.length;
8311 
8312 		/*
8313 		 * Set the caching bits as requested.
8314 		 */
8315 		if (rcd_flag == SD_CACHE_ENABLE)
8316 			mode_caching_page->rcd = 0;
8317 		else if (rcd_flag == SD_CACHE_DISABLE)
8318 			mode_caching_page->rcd = 1;
8319 
8320 		if (wce_flag == SD_CACHE_ENABLE)
8321 			mode_caching_page->wce = 1;
8322 		else if (wce_flag == SD_CACHE_DISABLE)
8323 			mode_caching_page->wce = 0;
8324 
8325 		/*
8326 		 * Save the page if the mode sense says the
8327 		 * drive supports it.
8328 		 */
8329 		save_pg = mode_caching_page->mode_page.ps ?
8330 				SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
8331 
8332 		/* Clear reserved bits before mode select. */
8333 		mode_caching_page->mode_page.ps = 0;
8334 
8335 		/*
8336 		 * Clear out mode header for mode select.
8337 		 * The rest of the retrieved page will be reused.
8338 		 */
8339 		bzero(header, hdrlen);
8340 
8341 		if (un->un_f_cfg_is_atapi == TRUE) {
8342 			mhp = (struct mode_header_grp2 *)header;
8343 			mhp->bdesc_length_hi = bd_len >> 8;
8344 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
8345 		} else {
8346 			((struct mode_header *)header)->bdesc_length = bd_len;
8347 		}
8348 
8349 		/* Issue mode select to change the cache settings */
8350 		if (un->un_f_cfg_is_atapi == TRUE) {
8351 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header,
8352 			    sbuflen, save_pg, SD_PATH_DIRECT);
8353 		} else {
8354 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
8355 			    sbuflen, save_pg, SD_PATH_DIRECT);
8356 		}
8357 	}
8358 
8359 	kmem_free(header, buflen);
8360 	return (rval);
8361 }
8362 
8363 
8364 /*
8365  *    Function: sd_get_write_cache_enabled()
8366  *
8367  * Description: This routine is the driver entry point for determining if
8368  *		write caching is enabled.  It examines the WCE (write cache
8369  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
8370  *
8371  *   Arguments: un - driver soft state (unit) structure
8372  *		is_enabled - pointer to int where write cache enabled state
8373  *		is returned (non-zero -> write cache enabled)
8374  *
8375  *
8376  * Return Code: EIO
8377  *		code returned by sd_send_scsi_MODE_SENSE
8378  *
8379  *     Context: Kernel Thread
8380  *
8381  * NOTE: If ioctl is added to disable write cache, this sequence should
8382  * be followed so that no locking is required for accesses to
8383  * un->un_f_write_cache_enabled:
8384  * 	do mode select to clear wce
8385  * 	do synchronize cache to flush cache
8386  * 	set un->un_f_write_cache_enabled = FALSE
8387  *
8388  * Conversely, an ioctl to enable the write cache should be done
8389  * in this order:
8390  * 	set un->un_f_write_cache_enabled = TRUE
8391  * 	do mode select to set wce
8392  */
8393 
8394 static int
8395 sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled)
8396 {
8397 	struct mode_caching	*mode_caching_page;
8398 	uchar_t			*header;
8399 	size_t			buflen;
8400 	int			hdrlen;
8401 	int			bd_len;
8402 	int			rval = 0;
8403 
8404 	ASSERT(un != NULL);
8405 	ASSERT(is_enabled != NULL);
8406 
8407 	/* in case of error, flag as enabled */
8408 	*is_enabled = TRUE;
8409 
8410 	/*
8411 	 * Do a test unit ready, otherwise a mode sense may not work if this
8412 	 * is the first command sent to the device after boot.
8413 	 */
8414 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
8415 
8416 	if (un->un_f_cfg_is_atapi == TRUE) {
8417 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8418 	} else {
8419 		hdrlen = MODE_HEADER_LENGTH;
8420 	}
8421 
8422 	/*
8423 	 * Allocate memory for the retrieved mode page and its headers.  Set
8424 	 * a pointer to the page itself.
8425 	 */
8426 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
8427 	header = kmem_zalloc(buflen, KM_SLEEP);
8428 
8429 	/* Get the information from the device. */
8430 	if (un->un_f_cfg_is_atapi == TRUE) {
8431 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
8432 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8433 	} else {
8434 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
8435 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8436 	}
8437 	if (rval != 0) {
8438 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8439 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
8440 		kmem_free(header, buflen);
8441 		return (rval);
8442 	}
8443 
8444 	/*
8445 	 * Determine size of Block Descriptors in order to locate
8446 	 * the mode page data. ATAPI devices return 0, SCSI devices
8447 	 * should return MODE_BLK_DESC_LENGTH.
8448 	 */
8449 	if (un->un_f_cfg_is_atapi == TRUE) {
8450 		struct mode_header_grp2	*mhp;
8451 		mhp	= (struct mode_header_grp2 *)header;
8452 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8453 	} else {
8454 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8455 	}
8456 
8457 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8458 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8459 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
8460 		    "block descriptor length\n");
8461 		kmem_free(header, buflen);
8462 		return (EIO);
8463 	}
8464 
8465 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8466 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8467 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8468 		    " caching page code mismatch %d\n",
8469 		    mode_caching_page->mode_page.code);
8470 		kmem_free(header, buflen);
8471 		return (EIO);
8472 	}
8473 	*is_enabled = mode_caching_page->wce;
8474 
8475 	kmem_free(header, buflen);
8476 	return (0);
8477 }
8478 
8479 
8480 /*
8481  *    Function: sd_make_device
8482  *
8483  * Description: Utility routine to return the Solaris device number from
8484  *		the data in the device's dev_info structure.
8485  *
8486  * Return Code: The Solaris device number
8487  *
8488  *     Context: Any
8489  */
8490 
8491 static dev_t
8492 sd_make_device(dev_info_t *devi)
8493 {
8494 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
8495 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
8496 }
8497 
8498 
8499 /*
8500  *    Function: sd_pm_entry
8501  *
8502  * Description: Called at the start of a new command to manage power
8503  *		and busy status of a device. This includes determining whether
8504  *		the current power state of the device is sufficient for
8505  *		performing the command or whether it must be changed.
8506  *		The PM framework is notified appropriately.
8507  *		Only with a return status of DDI_SUCCESS will the
8508  *		component be busy to the framework.
8509  *
8510  *		All callers of sd_pm_entry must check the return status
8511  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
8512  *		of DDI_FAILURE indicates the device failed to power up.
8513  *		In this case un_pm_count has been adjusted so the result
8514  *		on exit is still powered down, ie. count is less than 0.
8515  *		Calling sd_pm_exit with this count value hits an ASSERT.
8516  *
8517  * Return Code: DDI_SUCCESS or DDI_FAILURE
8518  *
8519  *     Context: Kernel thread context.
8520  */
8521 
8522 static int
8523 sd_pm_entry(struct sd_lun *un)
8524 {
8525 	int return_status = DDI_SUCCESS;
8526 
8527 	ASSERT(!mutex_owned(SD_MUTEX(un)));
8528 	ASSERT(!mutex_owned(&un->un_pm_mutex));
8529 
8530 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
8531 
8532 	if (un->un_f_pm_is_enabled == FALSE) {
8533 		SD_TRACE(SD_LOG_IO_PM, un,
8534 		    "sd_pm_entry: exiting, PM not enabled\n");
8535 		return (return_status);
8536 	}
8537 
8538 	/*
8539 	 * Just increment a counter if PM is enabled. On the transition from
8540 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
8541 	 * the count with each IO and mark the device as idle when the count
8542 	 * hits 0.
8543 	 *
8544 	 * If the count is less than 0 the device is powered down. If a powered
8545 	 * down device is successfully powered up then the count must be
8546 	 * incremented to reflect the power up. Note that it'll get incremented
8547 	 * a second time to become busy.
8548 	 *
8549 	 * Because the following has the potential to change the device state
8550 	 * and must release the un_pm_mutex to do so, only one thread can be
8551 	 * allowed through at a time.
8552 	 */
8553 
8554 	mutex_enter(&un->un_pm_mutex);
8555 	while (un->un_pm_busy == TRUE) {
8556 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
8557 	}
8558 	un->un_pm_busy = TRUE;
8559 
8560 	if (un->un_pm_count < 1) {
8561 
8562 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
8563 
8564 		/*
8565 		 * Indicate we are now busy so the framework won't attempt to
8566 		 * power down the device. This call will only fail if either
8567 		 * we passed a bad component number or the device has no
8568 		 * components. Neither of these should ever happen.
8569 		 */
8570 		mutex_exit(&un->un_pm_mutex);
8571 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
8572 		ASSERT(return_status == DDI_SUCCESS);
8573 
8574 		mutex_enter(&un->un_pm_mutex);
8575 
8576 		if (un->un_pm_count < 0) {
8577 			mutex_exit(&un->un_pm_mutex);
8578 
8579 			SD_TRACE(SD_LOG_IO_PM, un,
8580 			    "sd_pm_entry: power up component\n");
8581 
8582 			/*
8583 			 * pm_raise_power will cause sdpower to be called
8584 			 * which brings the device power level to the
8585 			 * desired state, ON in this case. If successful,
8586 			 * un_pm_count and un_power_level will be updated
8587 			 * appropriately.
8588 			 */
8589 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
8590 			    SD_SPINDLE_ON);
8591 
8592 			mutex_enter(&un->un_pm_mutex);
8593 
8594 			if (return_status != DDI_SUCCESS) {
8595 				/*
8596 				 * Power up failed.
8597 				 * Idle the device and adjust the count
8598 				 * so the result on exit is that we're
8599 				 * still powered down, ie. count is less than 0.
8600 				 */
8601 				SD_TRACE(SD_LOG_IO_PM, un,
8602 				    "sd_pm_entry: power up failed,"
8603 				    " idle the component\n");
8604 
8605 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8606 				un->un_pm_count--;
8607 			} else {
8608 				/*
8609 				 * Device is powered up, verify the
8610 				 * count is non-negative.
8611 				 * This is debug only.
8612 				 */
8613 				ASSERT(un->un_pm_count == 0);
8614 			}
8615 		}
8616 
8617 		if (return_status == DDI_SUCCESS) {
8618 			/*
8619 			 * For performance, now that the device has been tagged
8620 			 * as busy, and it's known to be powered up, update the
8621 			 * chain types to use jump tables that do not include
8622 			 * pm. This significantly lowers the overhead and
8623 			 * therefore improves performance.
8624 			 */
8625 
8626 			mutex_exit(&un->un_pm_mutex);
8627 			mutex_enter(SD_MUTEX(un));
8628 			SD_TRACE(SD_LOG_IO_PM, un,
8629 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
8630 			    un->un_uscsi_chain_type);
8631 
8632 			if (un->un_f_non_devbsize_supported) {
8633 				un->un_buf_chain_type =
8634 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
8635 			} else {
8636 				un->un_buf_chain_type =
8637 				    SD_CHAIN_INFO_DISK_NO_PM;
8638 			}
8639 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8640 
8641 			SD_TRACE(SD_LOG_IO_PM, un,
8642 			    "             changed  uscsi_chain_type to   %d\n",
8643 			    un->un_uscsi_chain_type);
8644 			mutex_exit(SD_MUTEX(un));
8645 			mutex_enter(&un->un_pm_mutex);
8646 
8647 			if (un->un_pm_idle_timeid == NULL) {
8648 				/* 300 ms. */
8649 				un->un_pm_idle_timeid =
8650 				    timeout(sd_pm_idletimeout_handler, un,
8651 				    (drv_usectohz((clock_t)300000)));
8652 				/*
8653 				 * Include an extra call to busy which keeps the
8654 				 * device busy with-respect-to the PM layer
8655 				 * until the timer fires, at which time it'll
8656 				 * get the extra idle call.
8657 				 */
8658 				(void) pm_busy_component(SD_DEVINFO(un), 0);
8659 			}
8660 		}
8661 	}
8662 	un->un_pm_busy = FALSE;
8663 	/* Next... */
8664 	cv_signal(&un->un_pm_busy_cv);
8665 
8666 	un->un_pm_count++;
8667 
8668 	SD_TRACE(SD_LOG_IO_PM, un,
8669 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
8670 
8671 	mutex_exit(&un->un_pm_mutex);
8672 
8673 	return (return_status);
8674 }
8675 
8676 
8677 /*
8678  *    Function: sd_pm_exit
8679  *
8680  * Description: Called at the completion of a command to manage busy
8681  *		status for the device. If the device becomes idle the
8682  *		PM framework is notified.
8683  *
8684  *     Context: Kernel thread context
8685  */
8686 
8687 static void
8688 sd_pm_exit(struct sd_lun *un)
8689 {
8690 	ASSERT(!mutex_owned(SD_MUTEX(un)));
8691 	ASSERT(!mutex_owned(&un->un_pm_mutex));
8692 
8693 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
8694 
8695 	/*
8696 	 * After attach the following flag is only read, so don't
8697 	 * take the penalty of acquiring a mutex for it.
8698 	 */
8699 	if (un->un_f_pm_is_enabled == TRUE) {
8700 
8701 		mutex_enter(&un->un_pm_mutex);
8702 		un->un_pm_count--;
8703 
8704 		SD_TRACE(SD_LOG_IO_PM, un,
8705 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
8706 
8707 		ASSERT(un->un_pm_count >= 0);
8708 		if (un->un_pm_count == 0) {
8709 			mutex_exit(&un->un_pm_mutex);
8710 
8711 			SD_TRACE(SD_LOG_IO_PM, un,
8712 			    "sd_pm_exit: idle component\n");
8713 
8714 			(void) pm_idle_component(SD_DEVINFO(un), 0);
8715 
8716 		} else {
8717 			mutex_exit(&un->un_pm_mutex);
8718 		}
8719 	}
8720 
8721 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
8722 }
8723 
8724 
8725 /*
8726  *    Function: sdopen
8727  *
8728  * Description: Driver's open(9e) entry point function.
8729  *
8730  *   Arguments: dev_i   - pointer to device number
8731  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
8732  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
8733  *		cred_p  - user credential pointer
8734  *
8735  * Return Code: EINVAL
8736  *		ENXIO
8737  *		EIO
8738  *		EROFS
8739  *		EBUSY
8740  *
8741  *     Context: Kernel thread context
8742  */
8743 /* ARGSUSED */
8744 static int
8745 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
8746 {
8747 	struct sd_lun	*un;
8748 	int		nodelay;
8749 	int		part;
8750 	uint64_t	partmask;
8751 	int		instance;
8752 	dev_t		dev;
8753 	int		rval = EIO;
8754 	diskaddr_t	nblks = 0;
8755 
8756 	/* Validate the open type */
8757 	if (otyp >= OTYPCNT) {
8758 		return (EINVAL);
8759 	}
8760 
8761 	dev = *dev_p;
8762 	instance = SDUNIT(dev);
8763 	mutex_enter(&sd_detach_mutex);
8764 
8765 	/*
8766 	 * Fail the open if there is no softstate for the instance, or
8767 	 * if another thread somewhere is trying to detach the instance.
8768 	 */
8769 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
8770 	    (un->un_detach_count != 0)) {
8771 		mutex_exit(&sd_detach_mutex);
8772 		/*
8773 		 * The probe cache only needs to be cleared when open (9e) fails
8774 		 * with ENXIO (4238046).
8775 		 */
8776 		/*
8777 		 * un-conditionally clearing probe cache is ok with
8778 		 * separate sd/ssd binaries
8779 		 * x86 platform can be an issue with both parallel
8780 		 * and fibre in 1 binary
8781 		 */
8782 		sd_scsi_clear_probe_cache();
8783 		return (ENXIO);
8784 	}
8785 
8786 	/*
8787 	 * The un_layer_count is to prevent another thread in specfs from
8788 	 * trying to detach the instance, which can happen when we are
8789 	 * called from a higher-layer driver instead of thru specfs.
8790 	 * This will not be needed when DDI provides a layered driver
8791 	 * interface that allows specfs to know that an instance is in
8792 	 * use by a layered driver & should not be detached.
8793 	 *
8794 	 * Note: the semantics for layered driver opens are exactly one
8795 	 * close for every open.
8796 	 */
8797 	if (otyp == OTYP_LYR) {
8798 		un->un_layer_count++;
8799 	}
8800 
8801 	/*
8802 	 * Keep a count of the current # of opens in progress. This is because
8803 	 * some layered drivers try to call us as a regular open. This can
8804 	 * cause problems that we cannot prevent, however by keeping this count
8805 	 * we can at least keep our open and detach routines from racing against
8806 	 * each other under such conditions.
8807 	 */
8808 	un->un_opens_in_progress++;
8809 	mutex_exit(&sd_detach_mutex);
8810 
8811 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
8812 	part	 = SDPART(dev);
8813 	partmask = 1 << part;
8814 
8815 	/*
8816 	 * We use a semaphore here in order to serialize
8817 	 * open and close requests on the device.
8818 	 */
8819 	sema_p(&un->un_semoclose);
8820 
8821 	mutex_enter(SD_MUTEX(un));
8822 
8823 	/*
8824 	 * All device accesses go thru sdstrategy() where we check
8825 	 * on suspend status but there could be a scsi_poll command,
8826 	 * which bypasses sdstrategy(), so we need to check pm
8827 	 * status.
8828 	 */
8829 
8830 	if (!nodelay) {
8831 		while ((un->un_state == SD_STATE_SUSPENDED) ||
8832 		    (un->un_state == SD_STATE_PM_CHANGING)) {
8833 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
8834 		}
8835 
8836 		mutex_exit(SD_MUTEX(un));
8837 		if (sd_pm_entry(un) != DDI_SUCCESS) {
8838 			rval = EIO;
8839 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
8840 			    "sdopen: sd_pm_entry failed\n");
8841 			goto open_failed_with_pm;
8842 		}
8843 		mutex_enter(SD_MUTEX(un));
8844 	}
8845 
8846 	/* check for previous exclusive open */
8847 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
8848 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
8849 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
8850 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
8851 
8852 	if (un->un_exclopen & (partmask)) {
8853 		goto excl_open_fail;
8854 	}
8855 
8856 	if (flag & FEXCL) {
8857 		int i;
8858 		if (un->un_ocmap.lyropen[part]) {
8859 			goto excl_open_fail;
8860 		}
8861 		for (i = 0; i < (OTYPCNT - 1); i++) {
8862 			if (un->un_ocmap.regopen[i] & (partmask)) {
8863 				goto excl_open_fail;
8864 			}
8865 		}
8866 	}
8867 
8868 	/*
8869 	 * Check the write permission if this is a removable media device,
8870 	 * NDELAY has not been set, and writable permission is requested.
8871 	 *
8872 	 * Note: If NDELAY was set and this is write-protected media the WRITE
8873 	 * attempt will fail with EIO as part of the I/O processing. This is a
8874 	 * more permissive implementation that allows the open to succeed and
8875 	 * WRITE attempts to fail when appropriate.
8876 	 */
8877 	if (un->un_f_chk_wp_open) {
8878 		if ((flag & FWRITE) && (!nodelay)) {
8879 			mutex_exit(SD_MUTEX(un));
8880 			/*
8881 			 * Defer the check for write permission on writable
8882 			 * DVD drive till sdstrategy and will not fail open even
8883 			 * if FWRITE is set as the device can be writable
8884 			 * depending upon the media and the media can change
8885 			 * after the call to open().
8886 			 */
8887 			if (un->un_f_dvdram_writable_device == FALSE) {
8888 				if (ISCD(un) || sr_check_wp(dev)) {
8889 				rval = EROFS;
8890 				mutex_enter(SD_MUTEX(un));
8891 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
8892 				    "write to cd or write protected media\n");
8893 				goto open_fail;
8894 				}
8895 			}
8896 			mutex_enter(SD_MUTEX(un));
8897 		}
8898 	}
8899 
8900 	/*
8901 	 * If opening in NDELAY/NONBLOCK mode, just return.
8902 	 * Check if disk is ready and has a valid geometry later.
8903 	 */
8904 	if (!nodelay) {
8905 		mutex_exit(SD_MUTEX(un));
8906 		rval = sd_ready_and_valid(un);
8907 		mutex_enter(SD_MUTEX(un));
8908 		/*
8909 		 * Fail if device is not ready or if the number of disk
8910 		 * blocks is zero or negative for non CD devices.
8911 		 */
8912 
8913 		nblks = 0;
8914 
8915 		if (rval == SD_READY_VALID && (!ISCD(un))) {
8916 			/* if cmlb_partinfo fails, nblks remains 0 */
8917 			mutex_exit(SD_MUTEX(un));
8918 			(void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
8919 			    NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
8920 			mutex_enter(SD_MUTEX(un));
8921 		}
8922 
8923 		if ((rval != SD_READY_VALID) ||
8924 		    (!ISCD(un) && nblks <= 0)) {
8925 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
8926 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
8927 			    "device not ready or invalid disk block value\n");
8928 			goto open_fail;
8929 		}
8930 #if defined(__i386) || defined(__amd64)
8931 	} else {
8932 		uchar_t *cp;
8933 		/*
8934 		 * x86 requires special nodelay handling, so that p0 is
8935 		 * always defined and accessible.
8936 		 * Invalidate geometry only if device is not already open.
8937 		 */
8938 		cp = &un->un_ocmap.chkd[0];
8939 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
8940 			if (*cp != (uchar_t)0) {
8941 			    break;
8942 			}
8943 			cp++;
8944 		}
8945 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
8946 			mutex_exit(SD_MUTEX(un));
8947 			cmlb_invalidate(un->un_cmlbhandle,
8948 			    (void *)SD_PATH_DIRECT);
8949 			mutex_enter(SD_MUTEX(un));
8950 		}
8951 
8952 #endif
8953 	}
8954 
8955 	if (otyp == OTYP_LYR) {
8956 		un->un_ocmap.lyropen[part]++;
8957 	} else {
8958 		un->un_ocmap.regopen[otyp] |= partmask;
8959 	}
8960 
8961 	/* Set up open and exclusive open flags */
8962 	if (flag & FEXCL) {
8963 		un->un_exclopen |= (partmask);
8964 	}
8965 
8966 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
8967 	    "open of part %d type %d\n", part, otyp);
8968 
8969 	mutex_exit(SD_MUTEX(un));
8970 	if (!nodelay) {
8971 		sd_pm_exit(un);
8972 	}
8973 
8974 	sema_v(&un->un_semoclose);
8975 
8976 	mutex_enter(&sd_detach_mutex);
8977 	un->un_opens_in_progress--;
8978 	mutex_exit(&sd_detach_mutex);
8979 
8980 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
8981 	return (DDI_SUCCESS);
8982 
8983 excl_open_fail:
8984 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
8985 	rval = EBUSY;
8986 
8987 open_fail:
8988 	mutex_exit(SD_MUTEX(un));
8989 
8990 	/*
8991 	 * On a failed open we must exit the pm management.
8992 	 */
8993 	if (!nodelay) {
8994 		sd_pm_exit(un);
8995 	}
8996 open_failed_with_pm:
8997 	sema_v(&un->un_semoclose);
8998 
8999 	mutex_enter(&sd_detach_mutex);
9000 	un->un_opens_in_progress--;
9001 	if (otyp == OTYP_LYR) {
9002 		un->un_layer_count--;
9003 	}
9004 	mutex_exit(&sd_detach_mutex);
9005 
9006 	return (rval);
9007 }
9008 
9009 
9010 /*
9011  *    Function: sdclose
9012  *
9013  * Description: Driver's close(9e) entry point function.
9014  *
9015  *   Arguments: dev    - device number
9016  *		flag   - file status flag, informational only
9017  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9018  *		cred_p - user credential pointer
9019  *
9020  * Return Code: ENXIO
9021  *
9022  *     Context: Kernel thread context
9023  */
9024 /* ARGSUSED */
9025 static int
9026 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
9027 {
9028 	struct sd_lun	*un;
9029 	uchar_t		*cp;
9030 	int		part;
9031 	int		nodelay;
9032 	int		rval = 0;
9033 
9034 	/* Validate the open type */
9035 	if (otyp >= OTYPCNT) {
9036 		return (ENXIO);
9037 	}
9038 
9039 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9040 		return (ENXIO);
9041 	}
9042 
9043 	part = SDPART(dev);
9044 	nodelay = flag & (FNDELAY | FNONBLOCK);
9045 
9046 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9047 	    "sdclose: close of part %d type %d\n", part, otyp);
9048 
9049 	/*
9050 	 * We use a semaphore here in order to serialize
9051 	 * open and close requests on the device.
9052 	 */
9053 	sema_p(&un->un_semoclose);
9054 
9055 	mutex_enter(SD_MUTEX(un));
9056 
9057 	/* Don't proceed if power is being changed. */
9058 	while (un->un_state == SD_STATE_PM_CHANGING) {
9059 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9060 	}
9061 
9062 	if (un->un_exclopen & (1 << part)) {
9063 		un->un_exclopen &= ~(1 << part);
9064 	}
9065 
9066 	/* Update the open partition map */
9067 	if (otyp == OTYP_LYR) {
9068 		un->un_ocmap.lyropen[part] -= 1;
9069 	} else {
9070 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
9071 	}
9072 
9073 	cp = &un->un_ocmap.chkd[0];
9074 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9075 		if (*cp != NULL) {
9076 			break;
9077 		}
9078 		cp++;
9079 	}
9080 
9081 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9082 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
9083 
9084 		/*
9085 		 * We avoid persistance upon the last close, and set
9086 		 * the throttle back to the maximum.
9087 		 */
9088 		un->un_throttle = un->un_saved_throttle;
9089 
9090 		if (un->un_state == SD_STATE_OFFLINE) {
9091 			if (un->un_f_is_fibre == FALSE) {
9092 				scsi_log(SD_DEVINFO(un), sd_label,
9093 					CE_WARN, "offline\n");
9094 			}
9095 			mutex_exit(SD_MUTEX(un));
9096 			cmlb_invalidate(un->un_cmlbhandle,
9097 			    (void *)SD_PATH_DIRECT);
9098 			mutex_enter(SD_MUTEX(un));
9099 
9100 		} else {
9101 			/*
9102 			 * Flush any outstanding writes in NVRAM cache.
9103 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
9104 			 * cmd, it may not work for non-Pluto devices.
9105 			 * SYNCHRONIZE CACHE is not required for removables,
9106 			 * except DVD-RAM drives.
9107 			 *
9108 			 * Also note: because SYNCHRONIZE CACHE is currently
9109 			 * the only command issued here that requires the
9110 			 * drive be powered up, only do the power up before
9111 			 * sending the Sync Cache command. If additional
9112 			 * commands are added which require a powered up
9113 			 * drive, the following sequence may have to change.
9114 			 *
9115 			 * And finally, note that parallel SCSI on SPARC
9116 			 * only issues a Sync Cache to DVD-RAM, a newly
9117 			 * supported device.
9118 			 */
9119 #if defined(__i386) || defined(__amd64)
9120 			if (un->un_f_sync_cache_supported ||
9121 			    un->un_f_dvdram_writable_device == TRUE) {
9122 #else
9123 			if (un->un_f_dvdram_writable_device == TRUE) {
9124 #endif
9125 				mutex_exit(SD_MUTEX(un));
9126 				if (sd_pm_entry(un) == DDI_SUCCESS) {
9127 					rval =
9128 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
9129 					    NULL);
9130 					/* ignore error if not supported */
9131 					if (rval == ENOTSUP) {
9132 						rval = 0;
9133 					} else if (rval != 0) {
9134 						rval = EIO;
9135 					}
9136 					sd_pm_exit(un);
9137 				} else {
9138 					rval = EIO;
9139 				}
9140 				mutex_enter(SD_MUTEX(un));
9141 			}
9142 
9143 			/*
9144 			 * For devices which supports DOOR_LOCK, send an ALLOW
9145 			 * MEDIA REMOVAL command, but don't get upset if it
9146 			 * fails. We need to raise the power of the drive before
9147 			 * we can call sd_send_scsi_DOORLOCK()
9148 			 */
9149 			if (un->un_f_doorlock_supported) {
9150 				mutex_exit(SD_MUTEX(un));
9151 				if (sd_pm_entry(un) == DDI_SUCCESS) {
9152 					rval = sd_send_scsi_DOORLOCK(un,
9153 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
9154 
9155 					sd_pm_exit(un);
9156 					if (ISCD(un) && (rval != 0) &&
9157 					    (nodelay != 0)) {
9158 						rval = ENXIO;
9159 					}
9160 				} else {
9161 					rval = EIO;
9162 				}
9163 				mutex_enter(SD_MUTEX(un));
9164 			}
9165 
9166 			/*
9167 			 * If a device has removable media, invalidate all
9168 			 * parameters related to media, such as geometry,
9169 			 * blocksize, and blockcount.
9170 			 */
9171 			if (un->un_f_has_removable_media) {
9172 				sr_ejected(un);
9173 			}
9174 
9175 			/*
9176 			 * Destroy the cache (if it exists) which was
9177 			 * allocated for the write maps since this is
9178 			 * the last close for this media.
9179 			 */
9180 			if (un->un_wm_cache) {
9181 				/*
9182 				 * Check if there are pending commands.
9183 				 * and if there are give a warning and
9184 				 * do not destroy the cache.
9185 				 */
9186 				if (un->un_ncmds_in_driver > 0) {
9187 					scsi_log(SD_DEVINFO(un),
9188 					    sd_label, CE_WARN,
9189 					    "Unable to clean up memory "
9190 					    "because of pending I/O\n");
9191 				} else {
9192 					kmem_cache_destroy(
9193 					    un->un_wm_cache);
9194 					un->un_wm_cache = NULL;
9195 				}
9196 			}
9197 			mutex_exit(SD_MUTEX(un));
9198 			(void) cmlb_close(un->un_cmlbhandle,
9199 			    (void *)SD_PATH_DIRECT);
9200 			mutex_enter(SD_MUTEX(un));
9201 
9202 		}
9203 	}
9204 
9205 	mutex_exit(SD_MUTEX(un));
9206 	sema_v(&un->un_semoclose);
9207 
9208 	if (otyp == OTYP_LYR) {
9209 		mutex_enter(&sd_detach_mutex);
9210 		/*
9211 		 * The detach routine may run when the layer count
9212 		 * drops to zero.
9213 		 */
9214 		un->un_layer_count--;
9215 		mutex_exit(&sd_detach_mutex);
9216 	}
9217 
9218 	return (rval);
9219 }
9220 
9221 
9222 /*
9223  *    Function: sd_ready_and_valid
9224  *
9225  * Description: Test if device is ready and has a valid geometry.
9226  *
9227  *   Arguments: dev - device number
9228  *		un  - driver soft state (unit) structure
9229  *
9230  * Return Code: SD_READY_VALID		ready and valid label
9231  *		SD_NOT_READY_VALID	not ready, no label
9232  *		SD_RESERVED_BY_OTHERS	reservation conflict
9233  *
9234  *     Context: Never called at interrupt context.
9235  */
9236 
9237 static int
9238 sd_ready_and_valid(struct sd_lun *un)
9239 {
9240 	struct sd_errstats	*stp;
9241 	uint64_t		capacity;
9242 	uint_t			lbasize;
9243 	int			rval = SD_READY_VALID;
9244 	char			name_str[48];
9245 	int			is_valid;
9246 
9247 	ASSERT(un != NULL);
9248 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9249 
9250 	mutex_enter(SD_MUTEX(un));
9251 	/*
9252 	 * If a device has removable media, we must check if media is
9253 	 * ready when checking if this device is ready and valid.
9254 	 */
9255 	if (un->un_f_has_removable_media) {
9256 		mutex_exit(SD_MUTEX(un));
9257 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
9258 			rval = SD_NOT_READY_VALID;
9259 			mutex_enter(SD_MUTEX(un));
9260 			goto done;
9261 		}
9262 
9263 		is_valid = SD_IS_VALID_LABEL(un);
9264 		mutex_enter(SD_MUTEX(un));
9265 		if (!is_valid ||
9266 		    (un->un_f_blockcount_is_valid == FALSE) ||
9267 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
9268 
9269 			/* capacity has to be read every open. */
9270 			mutex_exit(SD_MUTEX(un));
9271 			if (sd_send_scsi_READ_CAPACITY(un, &capacity,
9272 			    &lbasize, SD_PATH_DIRECT) != 0) {
9273 				cmlb_invalidate(un->un_cmlbhandle,
9274 				    (void *)SD_PATH_DIRECT);
9275 				mutex_enter(SD_MUTEX(un));
9276 				rval = SD_NOT_READY_VALID;
9277 				goto done;
9278 			} else {
9279 				mutex_enter(SD_MUTEX(un));
9280 				sd_update_block_info(un, lbasize, capacity);
9281 			}
9282 		}
9283 
9284 		/*
9285 		 * Check if the media in the device is writable or not.
9286 		 */
9287 		if (!is_valid && ISCD(un)) {
9288 			sd_check_for_writable_cd(un, SD_PATH_DIRECT);
9289 		}
9290 
9291 	} else {
9292 		/*
9293 		 * Do a test unit ready to clear any unit attention from non-cd
9294 		 * devices.
9295 		 */
9296 		mutex_exit(SD_MUTEX(un));
9297 		(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
9298 		mutex_enter(SD_MUTEX(un));
9299 	}
9300 
9301 
9302 	/*
9303 	 * If this is a non 512 block device, allocate space for
9304 	 * the wmap cache. This is being done here since every time
9305 	 * a media is changed this routine will be called and the
9306 	 * block size is a function of media rather than device.
9307 	 */
9308 	if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) {
9309 		if (!(un->un_wm_cache)) {
9310 			(void) snprintf(name_str, sizeof (name_str),
9311 			    "%s%d_cache",
9312 			    ddi_driver_name(SD_DEVINFO(un)),
9313 			    ddi_get_instance(SD_DEVINFO(un)));
9314 			un->un_wm_cache = kmem_cache_create(
9315 			    name_str, sizeof (struct sd_w_map),
9316 			    8, sd_wm_cache_constructor,
9317 			    sd_wm_cache_destructor, NULL,
9318 			    (void *)un, NULL, 0);
9319 			if (!(un->un_wm_cache)) {
9320 					rval = ENOMEM;
9321 					goto done;
9322 			}
9323 		}
9324 	}
9325 
9326 	if (un->un_state == SD_STATE_NORMAL) {
9327 		/*
9328 		 * If the target is not yet ready here (defined by a TUR
9329 		 * failure), invalidate the geometry and print an 'offline'
9330 		 * message. This is a legacy message, as the state of the
9331 		 * target is not actually changed to SD_STATE_OFFLINE.
9332 		 *
9333 		 * If the TUR fails for EACCES (Reservation Conflict),
9334 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
9335 		 * reservation conflict. If the TUR fails for other
9336 		 * reasons, SD_NOT_READY_VALID will be returned.
9337 		 */
9338 		int err;
9339 
9340 		mutex_exit(SD_MUTEX(un));
9341 		err = sd_send_scsi_TEST_UNIT_READY(un, 0);
9342 		mutex_enter(SD_MUTEX(un));
9343 
9344 		if (err != 0) {
9345 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9346 			    "offline or reservation conflict\n");
9347 			mutex_exit(SD_MUTEX(un));
9348 			cmlb_invalidate(un->un_cmlbhandle,
9349 			    (void *)SD_PATH_DIRECT);
9350 			mutex_enter(SD_MUTEX(un));
9351 			if (err == EACCES) {
9352 				rval = SD_RESERVED_BY_OTHERS;
9353 			} else {
9354 				rval = SD_NOT_READY_VALID;
9355 			}
9356 			goto done;
9357 		}
9358 	}
9359 
9360 	if (un->un_f_format_in_progress == FALSE) {
9361 		mutex_exit(SD_MUTEX(un));
9362 		if (cmlb_validate(un->un_cmlbhandle, 0,
9363 		    (void *)SD_PATH_DIRECT) != 0) {
9364 			rval = SD_NOT_READY_VALID;
9365 			mutex_enter(SD_MUTEX(un));
9366 			goto done;
9367 		}
9368 		if (un->un_f_pkstats_enabled) {
9369 			sd_set_pstats(un);
9370 			SD_TRACE(SD_LOG_IO_PARTITION, un,
9371 			    "sd_ready_and_valid: un:0x%p pstats created and "
9372 			    "set\n", un);
9373 		}
9374 		mutex_enter(SD_MUTEX(un));
9375 	}
9376 
9377 	/*
9378 	 * If this device supports DOOR_LOCK command, try and send
9379 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
9380 	 * if it fails. For a CD, however, it is an error
9381 	 */
9382 	if (un->un_f_doorlock_supported) {
9383 		mutex_exit(SD_MUTEX(un));
9384 		if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
9385 		    SD_PATH_DIRECT) != 0) && ISCD(un)) {
9386 			rval = SD_NOT_READY_VALID;
9387 			mutex_enter(SD_MUTEX(un));
9388 			goto done;
9389 		}
9390 		mutex_enter(SD_MUTEX(un));
9391 	}
9392 
9393 	/* The state has changed, inform the media watch routines */
9394 	un->un_mediastate = DKIO_INSERTED;
9395 	cv_broadcast(&un->un_state_cv);
9396 	rval = SD_READY_VALID;
9397 
9398 done:
9399 
9400 	/*
9401 	 * Initialize the capacity kstat value, if no media previously
9402 	 * (capacity kstat is 0) and a media has been inserted
9403 	 * (un_blockcount > 0).
9404 	 */
9405 	if (un->un_errstats != NULL) {
9406 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
9407 		if ((stp->sd_capacity.value.ui64 == 0) &&
9408 		    (un->un_f_blockcount_is_valid == TRUE)) {
9409 			stp->sd_capacity.value.ui64 =
9410 			    (uint64_t)((uint64_t)un->un_blockcount *
9411 			    un->un_sys_blocksize);
9412 		}
9413 	}
9414 
9415 	mutex_exit(SD_MUTEX(un));
9416 	return (rval);
9417 }
9418 
9419 
9420 /*
9421  *    Function: sdmin
9422  *
9423  * Description: Routine to limit the size of a data transfer. Used in
9424  *		conjunction with physio(9F).
9425  *
9426  *   Arguments: bp - pointer to the indicated buf(9S) struct.
9427  *
9428  *     Context: Kernel thread context.
9429  */
9430 
9431 static void
9432 sdmin(struct buf *bp)
9433 {
9434 	struct sd_lun	*un;
9435 	int		instance;
9436 
9437 	instance = SDUNIT(bp->b_edev);
9438 
9439 	un = ddi_get_soft_state(sd_state, instance);
9440 	ASSERT(un != NULL);
9441 
9442 	if (bp->b_bcount > un->un_max_xfer_size) {
9443 		bp->b_bcount = un->un_max_xfer_size;
9444 	}
9445 }
9446 
9447 
9448 /*
9449  *    Function: sdread
9450  *
9451  * Description: Driver's read(9e) entry point function.
9452  *
9453  *   Arguments: dev   - device number
9454  *		uio   - structure pointer describing where data is to be stored
9455  *			in user's space
9456  *		cred_p  - user credential pointer
9457  *
9458  * Return Code: ENXIO
9459  *		EIO
9460  *		EINVAL
9461  *		value returned by physio
9462  *
9463  *     Context: Kernel thread context.
9464  */
9465 /* ARGSUSED */
9466 static int
9467 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
9468 {
9469 	struct sd_lun	*un = NULL;
9470 	int		secmask;
9471 	int		err;
9472 
9473 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9474 		return (ENXIO);
9475 	}
9476 
9477 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9478 
9479 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9480 		mutex_enter(SD_MUTEX(un));
9481 		/*
9482 		 * Because the call to sd_ready_and_valid will issue I/O we
9483 		 * must wait here if either the device is suspended or
9484 		 * if it's power level is changing.
9485 		 */
9486 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9487 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9488 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9489 		}
9490 		un->un_ncmds_in_driver++;
9491 		mutex_exit(SD_MUTEX(un));
9492 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9493 			mutex_enter(SD_MUTEX(un));
9494 			un->un_ncmds_in_driver--;
9495 			ASSERT(un->un_ncmds_in_driver >= 0);
9496 			mutex_exit(SD_MUTEX(un));
9497 			return (EIO);
9498 		}
9499 		mutex_enter(SD_MUTEX(un));
9500 		un->un_ncmds_in_driver--;
9501 		ASSERT(un->un_ncmds_in_driver >= 0);
9502 		mutex_exit(SD_MUTEX(un));
9503 	}
9504 
9505 	/*
9506 	 * Read requests are restricted to multiples of the system block size.
9507 	 */
9508 	secmask = un->un_sys_blocksize - 1;
9509 
9510 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9511 		SD_ERROR(SD_LOG_READ_WRITE, un,
9512 		    "sdread: file offset not modulo %d\n",
9513 		    un->un_sys_blocksize);
9514 		err = EINVAL;
9515 	} else if (uio->uio_iov->iov_len & (secmask)) {
9516 		SD_ERROR(SD_LOG_READ_WRITE, un,
9517 		    "sdread: transfer length not modulo %d\n",
9518 		    un->un_sys_blocksize);
9519 		err = EINVAL;
9520 	} else {
9521 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
9522 	}
9523 	return (err);
9524 }
9525 
9526 
9527 /*
9528  *    Function: sdwrite
9529  *
9530  * Description: Driver's write(9e) entry point function.
9531  *
9532  *   Arguments: dev   - device number
9533  *		uio   - structure pointer describing where data is stored in
9534  *			user's space
9535  *		cred_p  - user credential pointer
9536  *
9537  * Return Code: ENXIO
9538  *		EIO
9539  *		EINVAL
9540  *		value returned by physio
9541  *
9542  *     Context: Kernel thread context.
9543  */
9544 /* ARGSUSED */
9545 static int
9546 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
9547 {
9548 	struct sd_lun	*un = NULL;
9549 	int		secmask;
9550 	int		err;
9551 
9552 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9553 		return (ENXIO);
9554 	}
9555 
9556 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9557 
9558 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9559 		mutex_enter(SD_MUTEX(un));
9560 		/*
9561 		 * Because the call to sd_ready_and_valid will issue I/O we
9562 		 * must wait here if either the device is suspended or
9563 		 * if it's power level is changing.
9564 		 */
9565 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9566 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9567 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9568 		}
9569 		un->un_ncmds_in_driver++;
9570 		mutex_exit(SD_MUTEX(un));
9571 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9572 			mutex_enter(SD_MUTEX(un));
9573 			un->un_ncmds_in_driver--;
9574 			ASSERT(un->un_ncmds_in_driver >= 0);
9575 			mutex_exit(SD_MUTEX(un));
9576 			return (EIO);
9577 		}
9578 		mutex_enter(SD_MUTEX(un));
9579 		un->un_ncmds_in_driver--;
9580 		ASSERT(un->un_ncmds_in_driver >= 0);
9581 		mutex_exit(SD_MUTEX(un));
9582 	}
9583 
9584 	/*
9585 	 * Write requests are restricted to multiples of the system block size.
9586 	 */
9587 	secmask = un->un_sys_blocksize - 1;
9588 
9589 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9590 		SD_ERROR(SD_LOG_READ_WRITE, un,
9591 		    "sdwrite: file offset not modulo %d\n",
9592 		    un->un_sys_blocksize);
9593 		err = EINVAL;
9594 	} else if (uio->uio_iov->iov_len & (secmask)) {
9595 		SD_ERROR(SD_LOG_READ_WRITE, un,
9596 		    "sdwrite: transfer length not modulo %d\n",
9597 		    un->un_sys_blocksize);
9598 		err = EINVAL;
9599 	} else {
9600 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
9601 	}
9602 	return (err);
9603 }
9604 
9605 
9606 /*
9607  *    Function: sdaread
9608  *
9609  * Description: Driver's aread(9e) entry point function.
9610  *
9611  *   Arguments: dev   - device number
9612  *		aio   - structure pointer describing where data is to be stored
9613  *		cred_p  - user credential pointer
9614  *
9615  * Return Code: ENXIO
9616  *		EIO
9617  *		EINVAL
9618  *		value returned by aphysio
9619  *
9620  *     Context: Kernel thread context.
9621  */
9622 /* ARGSUSED */
9623 static int
9624 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
9625 {
9626 	struct sd_lun	*un = NULL;
9627 	struct uio	*uio = aio->aio_uio;
9628 	int		secmask;
9629 	int		err;
9630 
9631 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9632 		return (ENXIO);
9633 	}
9634 
9635 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9636 
9637 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9638 		mutex_enter(SD_MUTEX(un));
9639 		/*
9640 		 * Because the call to sd_ready_and_valid will issue I/O we
9641 		 * must wait here if either the device is suspended or
9642 		 * if it's power level is changing.
9643 		 */
9644 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9645 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9646 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9647 		}
9648 		un->un_ncmds_in_driver++;
9649 		mutex_exit(SD_MUTEX(un));
9650 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9651 			mutex_enter(SD_MUTEX(un));
9652 			un->un_ncmds_in_driver--;
9653 			ASSERT(un->un_ncmds_in_driver >= 0);
9654 			mutex_exit(SD_MUTEX(un));
9655 			return (EIO);
9656 		}
9657 		mutex_enter(SD_MUTEX(un));
9658 		un->un_ncmds_in_driver--;
9659 		ASSERT(un->un_ncmds_in_driver >= 0);
9660 		mutex_exit(SD_MUTEX(un));
9661 	}
9662 
9663 	/*
9664 	 * Read requests are restricted to multiples of the system block size.
9665 	 */
9666 	secmask = un->un_sys_blocksize - 1;
9667 
9668 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9669 		SD_ERROR(SD_LOG_READ_WRITE, un,
9670 		    "sdaread: file offset not modulo %d\n",
9671 		    un->un_sys_blocksize);
9672 		err = EINVAL;
9673 	} else if (uio->uio_iov->iov_len & (secmask)) {
9674 		SD_ERROR(SD_LOG_READ_WRITE, un,
9675 		    "sdaread: transfer length not modulo %d\n",
9676 		    un->un_sys_blocksize);
9677 		err = EINVAL;
9678 	} else {
9679 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
9680 	}
9681 	return (err);
9682 }
9683 
9684 
9685 /*
9686  *    Function: sdawrite
9687  *
9688  * Description: Driver's awrite(9e) entry point function.
9689  *
9690  *   Arguments: dev   - device number
9691  *		aio   - structure pointer describing where data is stored
9692  *		cred_p  - user credential pointer
9693  *
9694  * Return Code: ENXIO
9695  *		EIO
9696  *		EINVAL
9697  *		value returned by aphysio
9698  *
9699  *     Context: Kernel thread context.
9700  */
9701 /* ARGSUSED */
9702 static int
9703 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
9704 {
9705 	struct sd_lun	*un = NULL;
9706 	struct uio	*uio = aio->aio_uio;
9707 	int		secmask;
9708 	int		err;
9709 
9710 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9711 		return (ENXIO);
9712 	}
9713 
9714 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9715 
9716 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9717 		mutex_enter(SD_MUTEX(un));
9718 		/*
9719 		 * Because the call to sd_ready_and_valid will issue I/O we
9720 		 * must wait here if either the device is suspended or
9721 		 * if it's power level is changing.
9722 		 */
9723 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9724 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9725 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9726 		}
9727 		un->un_ncmds_in_driver++;
9728 		mutex_exit(SD_MUTEX(un));
9729 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9730 			mutex_enter(SD_MUTEX(un));
9731 			un->un_ncmds_in_driver--;
9732 			ASSERT(un->un_ncmds_in_driver >= 0);
9733 			mutex_exit(SD_MUTEX(un));
9734 			return (EIO);
9735 		}
9736 		mutex_enter(SD_MUTEX(un));
9737 		un->un_ncmds_in_driver--;
9738 		ASSERT(un->un_ncmds_in_driver >= 0);
9739 		mutex_exit(SD_MUTEX(un));
9740 	}
9741 
9742 	/*
9743 	 * Write requests are restricted to multiples of the system block size.
9744 	 */
9745 	secmask = un->un_sys_blocksize - 1;
9746 
9747 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9748 		SD_ERROR(SD_LOG_READ_WRITE, un,
9749 		    "sdawrite: file offset not modulo %d\n",
9750 		    un->un_sys_blocksize);
9751 		err = EINVAL;
9752 	} else if (uio->uio_iov->iov_len & (secmask)) {
9753 		SD_ERROR(SD_LOG_READ_WRITE, un,
9754 		    "sdawrite: transfer length not modulo %d\n",
9755 		    un->un_sys_blocksize);
9756 		err = EINVAL;
9757 	} else {
9758 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
9759 	}
9760 	return (err);
9761 }
9762 
9763 
9764 
9765 
9766 
9767 /*
9768  * Driver IO processing follows the following sequence:
9769  *
9770  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
9771  *         |                |                     ^
9772  *         v                v                     |
9773  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
9774  *         |                |                     |                   |
9775  *         v                |                     |                   |
9776  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
9777  *         |                |                     ^                   ^
9778  *         v                v                     |                   |
9779  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
9780  *         |                |                     |                   |
9781  *     +---+                |                     +------------+      +-------+
9782  *     |                    |                                  |              |
9783  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
9784  *     |                    v                                  |              |
9785  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
9786  *     |                    |                                  ^              |
9787  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
9788  *     |                    v                                  |              |
9789  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
9790  *     |                    |                                  ^              |
9791  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
9792  *     |                    v                                  |              |
9793  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
9794  *     |                    |                                  ^              |
9795  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
9796  *     |                    v                                  |              |
9797  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
9798  *     |                    |                                  ^              |
9799  *     |                    |                                  |              |
9800  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
9801  *                          |                           ^
9802  *                          v                           |
9803  *                   sd_core_iostart()                  |
9804  *                          |                           |
9805  *                          |                           +------>(*destroypkt)()
9806  *                          +-> sd_start_cmds() <-+     |           |
9807  *                          |                     |     |           v
9808  *                          |                     |     |  scsi_destroy_pkt(9F)
9809  *                          |                     |     |
9810  *                          +->(*initpkt)()       +- sdintr()
9811  *                          |  |                        |  |
9812  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
9813  *                          |  +-> scsi_setup_cdb(9F)   |
9814  *                          |                           |
9815  *                          +--> scsi_transport(9F)     |
9816  *                                     |                |
9817  *                                     +----> SCSA ---->+
9818  *
9819  *
9820  * This code is based upon the following presumtions:
9821  *
9822  *   - iostart and iodone functions operate on buf(9S) structures. These
9823  *     functions perform the necessary operations on the buf(9S) and pass
9824  *     them along to the next function in the chain by using the macros
9825  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
9826  *     (for iodone side functions).
9827  *
9828  *   - The iostart side functions may sleep. The iodone side functions
9829  *     are called under interrupt context and may NOT sleep. Therefore
9830  *     iodone side functions also may not call iostart side functions.
9831  *     (NOTE: iostart side functions should NOT sleep for memory, as
9832  *     this could result in deadlock.)
9833  *
9834  *   - An iostart side function may call its corresponding iodone side
9835  *     function directly (if necessary).
9836  *
9837  *   - In the event of an error, an iostart side function can return a buf(9S)
9838  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
9839  *     b_error in the usual way of course).
9840  *
9841  *   - The taskq mechanism may be used by the iodone side functions to dispatch
9842  *     requests to the iostart side functions.  The iostart side functions in
9843  *     this case would be called under the context of a taskq thread, so it's
9844  *     OK for them to block/sleep/spin in this case.
9845  *
9846  *   - iostart side functions may allocate "shadow" buf(9S) structs and
9847  *     pass them along to the next function in the chain.  The corresponding
9848  *     iodone side functions must coalesce the "shadow" bufs and return
9849  *     the "original" buf to the next higher layer.
9850  *
9851  *   - The b_private field of the buf(9S) struct holds a pointer to
9852  *     an sd_xbuf struct, which contains information needed to
9853  *     construct the scsi_pkt for the command.
9854  *
9855  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
9856  *     layer must acquire & release the SD_MUTEX(un) as needed.
9857  */
9858 
9859 
9860 /*
9861  * Create taskq for all targets in the system. This is created at
9862  * _init(9E) and destroyed at _fini(9E).
9863  *
9864  * Note: here we set the minalloc to a reasonably high number to ensure that
9865  * we will have an adequate supply of task entries available at interrupt time.
9866  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
9867  * sd_create_taskq().  Since we do not want to sleep for allocations at
9868  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
9869  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
9870  * requests any one instant in time.
9871  */
9872 #define	SD_TASKQ_NUMTHREADS	8
9873 #define	SD_TASKQ_MINALLOC	256
9874 #define	SD_TASKQ_MAXALLOC	256
9875 
9876 static taskq_t	*sd_tq = NULL;
9877 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
9878 
9879 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
9880 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
9881 
9882 /*
9883  * The following task queue is being created for the write part of
9884  * read-modify-write of non-512 block size devices.
9885  * Limit the number of threads to 1 for now. This number has been choosen
9886  * considering the fact that it applies only to dvd ram drives/MO drives
9887  * currently. Performance for which is not main criteria at this stage.
9888  * Note: It needs to be explored if we can use a single taskq in future
9889  */
9890 #define	SD_WMR_TASKQ_NUMTHREADS	1
9891 static taskq_t	*sd_wmr_tq = NULL;
9892 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
9893 
9894 /*
9895  *    Function: sd_taskq_create
9896  *
9897  * Description: Create taskq thread(s) and preallocate task entries
9898  *
9899  * Return Code: Returns a pointer to the allocated taskq_t.
9900  *
9901  *     Context: Can sleep. Requires blockable context.
9902  *
9903  *       Notes: - The taskq() facility currently is NOT part of the DDI.
9904  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
9905  *		- taskq_create() will block for memory, also it will panic
9906  *		  if it cannot create the requested number of threads.
9907  *		- Currently taskq_create() creates threads that cannot be
9908  *		  swapped.
9909  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
9910  *		  supply of taskq entries at interrupt time (ie, so that we
9911  *		  do not have to sleep for memory)
9912  */
9913 
9914 static void
9915 sd_taskq_create(void)
9916 {
9917 	char	taskq_name[TASKQ_NAMELEN];
9918 
9919 	ASSERT(sd_tq == NULL);
9920 	ASSERT(sd_wmr_tq == NULL);
9921 
9922 	(void) snprintf(taskq_name, sizeof (taskq_name),
9923 	    "%s_drv_taskq", sd_label);
9924 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
9925 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
9926 	    TASKQ_PREPOPULATE));
9927 
9928 	(void) snprintf(taskq_name, sizeof (taskq_name),
9929 	    "%s_rmw_taskq", sd_label);
9930 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
9931 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
9932 	    TASKQ_PREPOPULATE));
9933 }
9934 
9935 
9936 /*
9937  *    Function: sd_taskq_delete
9938  *
9939  * Description: Complementary cleanup routine for sd_taskq_create().
9940  *
9941  *     Context: Kernel thread context.
9942  */
9943 
9944 static void
9945 sd_taskq_delete(void)
9946 {
9947 	ASSERT(sd_tq != NULL);
9948 	ASSERT(sd_wmr_tq != NULL);
9949 	taskq_destroy(sd_tq);
9950 	taskq_destroy(sd_wmr_tq);
9951 	sd_tq = NULL;
9952 	sd_wmr_tq = NULL;
9953 }
9954 
9955 
9956 /*
9957  *    Function: sdstrategy
9958  *
9959  * Description: Driver's strategy (9E) entry point function.
9960  *
9961  *   Arguments: bp - pointer to buf(9S)
9962  *
9963  * Return Code: Always returns zero
9964  *
9965  *     Context: Kernel thread context.
9966  */
9967 
9968 static int
9969 sdstrategy(struct buf *bp)
9970 {
9971 	struct sd_lun *un;
9972 
9973 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
9974 	if (un == NULL) {
9975 		bioerror(bp, EIO);
9976 		bp->b_resid = bp->b_bcount;
9977 		biodone(bp);
9978 		return (0);
9979 	}
9980 	/* As was done in the past, fail new cmds. if state is dumping. */
9981 	if (un->un_state == SD_STATE_DUMPING) {
9982 		bioerror(bp, ENXIO);
9983 		bp->b_resid = bp->b_bcount;
9984 		biodone(bp);
9985 		return (0);
9986 	}
9987 
9988 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9989 
9990 	/*
9991 	 * Commands may sneak in while we released the mutex in
9992 	 * DDI_SUSPEND, we should block new commands. However, old
9993 	 * commands that are still in the driver at this point should
9994 	 * still be allowed to drain.
9995 	 */
9996 	mutex_enter(SD_MUTEX(un));
9997 	/*
9998 	 * Must wait here if either the device is suspended or
9999 	 * if it's power level is changing.
10000 	 */
10001 	while ((un->un_state == SD_STATE_SUSPENDED) ||
10002 	    (un->un_state == SD_STATE_PM_CHANGING)) {
10003 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10004 	}
10005 
10006 	un->un_ncmds_in_driver++;
10007 
10008 	/*
10009 	 * atapi: Since we are running the CD for now in PIO mode we need to
10010 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10011 	 * the HBA's init_pkt routine.
10012 	 */
10013 	if (un->un_f_cfg_is_atapi == TRUE) {
10014 		mutex_exit(SD_MUTEX(un));
10015 		bp_mapin(bp);
10016 		mutex_enter(SD_MUTEX(un));
10017 	}
10018 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
10019 	    un->un_ncmds_in_driver);
10020 
10021 	mutex_exit(SD_MUTEX(un));
10022 
10023 	/*
10024 	 * This will (eventually) allocate the sd_xbuf area and
10025 	 * call sd_xbuf_strategy().  We just want to return the
10026 	 * result of ddi_xbuf_qstrategy so that we have an opt-
10027 	 * imized tail call which saves us a stack frame.
10028 	 */
10029 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
10030 }
10031 
10032 
10033 /*
10034  *    Function: sd_xbuf_strategy
10035  *
10036  * Description: Function for initiating IO operations via the
10037  *		ddi_xbuf_qstrategy() mechanism.
10038  *
10039  *     Context: Kernel thread context.
10040  */
10041 
10042 static void
10043 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
10044 {
10045 	struct sd_lun *un = arg;
10046 
10047 	ASSERT(bp != NULL);
10048 	ASSERT(xp != NULL);
10049 	ASSERT(un != NULL);
10050 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10051 
10052 	/*
10053 	 * Initialize the fields in the xbuf and save a pointer to the
10054 	 * xbuf in bp->b_private.
10055 	 */
10056 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
10057 
10058 	/* Send the buf down the iostart chain */
10059 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
10060 }
10061 
10062 
10063 /*
10064  *    Function: sd_xbuf_init
10065  *
10066  * Description: Prepare the given sd_xbuf struct for use.
10067  *
10068  *   Arguments: un - ptr to softstate
10069  *		bp - ptr to associated buf(9S)
10070  *		xp - ptr to associated sd_xbuf
10071  *		chain_type - IO chain type to use:
10072  *			SD_CHAIN_NULL
10073  *			SD_CHAIN_BUFIO
10074  *			SD_CHAIN_USCSI
10075  *			SD_CHAIN_DIRECT
10076  *			SD_CHAIN_DIRECT_PRIORITY
10077  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
10078  *			initialization; may be NULL if none.
10079  *
10080  *     Context: Kernel thread context
10081  */
10082 
10083 static void
10084 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
10085 	uchar_t chain_type, void *pktinfop)
10086 {
10087 	int index;
10088 
10089 	ASSERT(un != NULL);
10090 	ASSERT(bp != NULL);
10091 	ASSERT(xp != NULL);
10092 
10093 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
10094 	    bp, chain_type);
10095 
10096 	xp->xb_un	= un;
10097 	xp->xb_pktp	= NULL;
10098 	xp->xb_pktinfo	= pktinfop;
10099 	xp->xb_private	= bp->b_private;
10100 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
10101 
10102 	/*
10103 	 * Set up the iostart and iodone chain indexes in the xbuf, based
10104 	 * upon the specified chain type to use.
10105 	 */
10106 	switch (chain_type) {
10107 	case SD_CHAIN_NULL:
10108 		/*
10109 		 * Fall thru to just use the values for the buf type, even
10110 		 * tho for the NULL chain these values will never be used.
10111 		 */
10112 		/* FALLTHRU */
10113 	case SD_CHAIN_BUFIO:
10114 		index = un->un_buf_chain_type;
10115 		break;
10116 	case SD_CHAIN_USCSI:
10117 		index = un->un_uscsi_chain_type;
10118 		break;
10119 	case SD_CHAIN_DIRECT:
10120 		index = un->un_direct_chain_type;
10121 		break;
10122 	case SD_CHAIN_DIRECT_PRIORITY:
10123 		index = un->un_priority_chain_type;
10124 		break;
10125 	default:
10126 		/* We're really broken if we ever get here... */
10127 		panic("sd_xbuf_init: illegal chain type!");
10128 		/*NOTREACHED*/
10129 	}
10130 
10131 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
10132 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
10133 
10134 	/*
10135 	 * It might be a bit easier to simply bzero the entire xbuf above,
10136 	 * but it turns out that since we init a fair number of members anyway,
10137 	 * we save a fair number cycles by doing explicit assignment of zero.
10138 	 */
10139 	xp->xb_pkt_flags	= 0;
10140 	xp->xb_dma_resid	= 0;
10141 	xp->xb_retry_count	= 0;
10142 	xp->xb_victim_retry_count = 0;
10143 	xp->xb_ua_retry_count	= 0;
10144 	xp->xb_sense_bp		= NULL;
10145 	xp->xb_sense_status	= 0;
10146 	xp->xb_sense_state	= 0;
10147 	xp->xb_sense_resid	= 0;
10148 
10149 	bp->b_private	= xp;
10150 	bp->b_flags	&= ~(B_DONE | B_ERROR);
10151 	bp->b_resid	= 0;
10152 	bp->av_forw	= NULL;
10153 	bp->av_back	= NULL;
10154 	bioerror(bp, 0);
10155 
10156 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
10157 }
10158 
10159 
10160 /*
10161  *    Function: sd_uscsi_strategy
10162  *
10163  * Description: Wrapper for calling into the USCSI chain via physio(9F)
10164  *
10165  *   Arguments: bp - buf struct ptr
10166  *
10167  * Return Code: Always returns 0
10168  *
10169  *     Context: Kernel thread context
10170  */
10171 
10172 static int
10173 sd_uscsi_strategy(struct buf *bp)
10174 {
10175 	struct sd_lun		*un;
10176 	struct sd_uscsi_info	*uip;
10177 	struct sd_xbuf		*xp;
10178 	uchar_t			chain_type;
10179 
10180 	ASSERT(bp != NULL);
10181 
10182 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10183 	if (un == NULL) {
10184 		bioerror(bp, EIO);
10185 		bp->b_resid = bp->b_bcount;
10186 		biodone(bp);
10187 		return (0);
10188 	}
10189 
10190 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10191 
10192 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
10193 
10194 	mutex_enter(SD_MUTEX(un));
10195 	/*
10196 	 * atapi: Since we are running the CD for now in PIO mode we need to
10197 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10198 	 * the HBA's init_pkt routine.
10199 	 */
10200 	if (un->un_f_cfg_is_atapi == TRUE) {
10201 		mutex_exit(SD_MUTEX(un));
10202 		bp_mapin(bp);
10203 		mutex_enter(SD_MUTEX(un));
10204 	}
10205 	un->un_ncmds_in_driver++;
10206 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
10207 	    un->un_ncmds_in_driver);
10208 	mutex_exit(SD_MUTEX(un));
10209 
10210 	/*
10211 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
10212 	 */
10213 	ASSERT(bp->b_private != NULL);
10214 	uip = (struct sd_uscsi_info *)bp->b_private;
10215 
10216 	switch (uip->ui_flags) {
10217 	case SD_PATH_DIRECT:
10218 		chain_type = SD_CHAIN_DIRECT;
10219 		break;
10220 	case SD_PATH_DIRECT_PRIORITY:
10221 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
10222 		break;
10223 	default:
10224 		chain_type = SD_CHAIN_USCSI;
10225 		break;
10226 	}
10227 
10228 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
10229 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
10230 
10231 	/* Use the index obtained within xbuf_init */
10232 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
10233 
10234 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
10235 
10236 	return (0);
10237 }
10238 
10239 /*
10240  *    Function: sd_send_scsi_cmd
10241  *
10242  * Description: Runs a USCSI command for user (when called thru sdioctl),
10243  *		or for the driver
10244  *
10245  *   Arguments: dev - the dev_t for the device
10246  *		incmd - ptr to a valid uscsi_cmd struct
10247  *		flag - bit flag, indicating open settings, 32/64 bit type
10248  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
10249  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
10250  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
10251  *			to use the USCSI "direct" chain and bypass the normal
10252  *			command waitq.
10253  *
10254  * Return Code: 0 -  successful completion of the given command
10255  *		EIO - scsi_uscsi_handle_command() failed
10256  *		ENXIO  - soft state not found for specified dev
10257  *		EINVAL
10258  *		EFAULT - copyin/copyout error
10259  *		return code of scsi_uscsi_handle_command():
10260  *			EIO
10261  *			ENXIO
10262  *			EACCES
10263  *
10264  *     Context: Waits for command to complete. Can sleep.
10265  */
10266 
10267 static int
10268 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
10269 	enum uio_seg dataspace, int path_flag)
10270 {
10271 	struct sd_uscsi_info	*uip;
10272 	struct uscsi_cmd	*uscmd;
10273 	struct sd_lun	*un;
10274 	int	format = 0;
10275 	int	rval;
10276 
10277 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
10278 	if (un == NULL) {
10279 		return (ENXIO);
10280 	}
10281 
10282 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10283 
10284 #ifdef SDDEBUG
10285 	switch (dataspace) {
10286 	case UIO_USERSPACE:
10287 		SD_TRACE(SD_LOG_IO, un,
10288 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un);
10289 		break;
10290 	case UIO_SYSSPACE:
10291 		SD_TRACE(SD_LOG_IO, un,
10292 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un);
10293 		break;
10294 	default:
10295 		SD_TRACE(SD_LOG_IO, un,
10296 		    "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un);
10297 		break;
10298 	}
10299 #endif
10300 
10301 	rval = scsi_uscsi_alloc_and_copyin((intptr_t)incmd, flag,
10302 	    SD_ADDRESS(un), &uscmd);
10303 	if (rval != 0) {
10304 		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
10305 		    "scsi_uscsi_alloc_and_copyin failed\n", un);
10306 		return (rval);
10307 	}
10308 
10309 	if ((uscmd->uscsi_cdb != NULL) &&
10310 	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
10311 		mutex_enter(SD_MUTEX(un));
10312 		un->un_f_format_in_progress = TRUE;
10313 		mutex_exit(SD_MUTEX(un));
10314 		format = 1;
10315 	}
10316 
10317 	/*
10318 	 * Allocate an sd_uscsi_info struct and fill it with the info
10319 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
10320 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
10321 	 * since we allocate the buf here in this function, we do not
10322 	 * need to preserve the prior contents of b_private.
10323 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
10324 	 */
10325 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
10326 	uip->ui_flags = path_flag;
10327 	uip->ui_cmdp = uscmd;
10328 
10329 	/*
10330 	 * Commands sent with priority are intended for error recovery
10331 	 * situations, and do not have retries performed.
10332 	 */
10333 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
10334 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
10335 	}
10336 	uscmd->uscsi_flags &= ~USCSI_NOINTR;
10337 
10338 	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
10339 	    sd_uscsi_strategy, NULL, uip);
10340 
10341 #ifdef SDDEBUG
10342 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
10343 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
10344 	    uscmd->uscsi_status, uscmd->uscsi_resid);
10345 	if (uscmd->uscsi_bufaddr != NULL) {
10346 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
10347 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
10348 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
10349 		if (dataspace == UIO_SYSSPACE) {
10350 			SD_DUMP_MEMORY(un, SD_LOG_IO,
10351 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
10352 			    uscmd->uscsi_buflen, SD_LOG_HEX);
10353 		}
10354 	}
10355 #endif
10356 
10357 	if (format == 1) {
10358 		mutex_enter(SD_MUTEX(un));
10359 		un->un_f_format_in_progress = FALSE;
10360 		mutex_exit(SD_MUTEX(un));
10361 	}
10362 
10363 	(void) scsi_uscsi_copyout_and_free((intptr_t)incmd, uscmd);
10364 	kmem_free(uip, sizeof (struct sd_uscsi_info));
10365 
10366 	return (rval);
10367 }
10368 
10369 
10370 /*
10371  *    Function: sd_buf_iodone
10372  *
10373  * Description: Frees the sd_xbuf & returns the buf to its originator.
10374  *
10375  *     Context: May be called from interrupt context.
10376  */
10377 /* ARGSUSED */
10378 static void
10379 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
10380 {
10381 	struct sd_xbuf *xp;
10382 
10383 	ASSERT(un != NULL);
10384 	ASSERT(bp != NULL);
10385 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10386 
10387 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
10388 
10389 	xp = SD_GET_XBUF(bp);
10390 	ASSERT(xp != NULL);
10391 
10392 	mutex_enter(SD_MUTEX(un));
10393 
10394 	/*
10395 	 * Grab time when the cmd completed.
10396 	 * This is used for determining if the system has been
10397 	 * idle long enough to make it idle to the PM framework.
10398 	 * This is for lowering the overhead, and therefore improving
10399 	 * performance per I/O operation.
10400 	 */
10401 	un->un_pm_idle_time = ddi_get_time();
10402 
10403 	un->un_ncmds_in_driver--;
10404 	ASSERT(un->un_ncmds_in_driver >= 0);
10405 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
10406 	    un->un_ncmds_in_driver);
10407 
10408 	mutex_exit(SD_MUTEX(un));
10409 
10410 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
10411 	biodone(bp);				/* bp is gone after this */
10412 
10413 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
10414 }
10415 
10416 
10417 /*
10418  *    Function: sd_uscsi_iodone
10419  *
10420  * Description: Frees the sd_xbuf & returns the buf to its originator.
10421  *
10422  *     Context: May be called from interrupt context.
10423  */
10424 /* ARGSUSED */
10425 static void
10426 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
10427 {
10428 	struct sd_xbuf *xp;
10429 
10430 	ASSERT(un != NULL);
10431 	ASSERT(bp != NULL);
10432 
10433 	xp = SD_GET_XBUF(bp);
10434 	ASSERT(xp != NULL);
10435 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10436 
10437 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
10438 
10439 	bp->b_private = xp->xb_private;
10440 
10441 	mutex_enter(SD_MUTEX(un));
10442 
10443 	/*
10444 	 * Grab time when the cmd completed.
10445 	 * This is used for determining if the system has been
10446 	 * idle long enough to make it idle to the PM framework.
10447 	 * This is for lowering the overhead, and therefore improving
10448 	 * performance per I/O operation.
10449 	 */
10450 	un->un_pm_idle_time = ddi_get_time();
10451 
10452 	un->un_ncmds_in_driver--;
10453 	ASSERT(un->un_ncmds_in_driver >= 0);
10454 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
10455 	    un->un_ncmds_in_driver);
10456 
10457 	mutex_exit(SD_MUTEX(un));
10458 
10459 	kmem_free(xp, sizeof (struct sd_xbuf));
10460 	biodone(bp);
10461 
10462 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
10463 }
10464 
10465 
10466 /*
10467  *    Function: sd_mapblockaddr_iostart
10468  *
10469  * Description: Verify request lies withing the partition limits for
10470  *		the indicated minor device.  Issue "overrun" buf if
10471  *		request would exceed partition range.  Converts
10472  *		partition-relative block address to absolute.
10473  *
10474  *     Context: Can sleep
10475  *
10476  *      Issues: This follows what the old code did, in terms of accessing
10477  *		some of the partition info in the unit struct without holding
10478  *		the mutext.  This is a general issue, if the partition info
10479  *		can be altered while IO is in progress... as soon as we send
10480  *		a buf, its partitioning can be invalid before it gets to the
10481  *		device.  Probably the right fix is to move partitioning out
10482  *		of the driver entirely.
10483  */
10484 
10485 static void
10486 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
10487 {
10488 	diskaddr_t	nblocks;	/* #blocks in the given partition */
10489 	daddr_t	blocknum;	/* Block number specified by the buf */
10490 	size_t	requested_nblocks;
10491 	size_t	available_nblocks;
10492 	int	partition;
10493 	diskaddr_t	partition_offset;
10494 	struct sd_xbuf *xp;
10495 
10496 
10497 	ASSERT(un != NULL);
10498 	ASSERT(bp != NULL);
10499 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10500 
10501 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10502 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
10503 
10504 	xp = SD_GET_XBUF(bp);
10505 	ASSERT(xp != NULL);
10506 
10507 	/*
10508 	 * If the geometry is not indicated as valid, attempt to access
10509 	 * the unit & verify the geometry/label. This can be the case for
10510 	 * removable-media devices, of if the device was opened in
10511 	 * NDELAY/NONBLOCK mode.
10512 	 */
10513 	if (!SD_IS_VALID_LABEL(un) &&
10514 	    (sd_ready_and_valid(un) != SD_READY_VALID)) {
10515 		/*
10516 		 * For removable devices it is possible to start an I/O
10517 		 * without a media by opening the device in nodelay mode.
10518 		 * Also for writable CDs there can be many scenarios where
10519 		 * there is no geometry yet but volume manager is trying to
10520 		 * issue a read() just because it can see TOC on the CD. So
10521 		 * do not print a message for removables.
10522 		 */
10523 		if (!un->un_f_has_removable_media) {
10524 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10525 			    "i/o to invalid geometry\n");
10526 		}
10527 		bioerror(bp, EIO);
10528 		bp->b_resid = bp->b_bcount;
10529 		SD_BEGIN_IODONE(index, un, bp);
10530 		return;
10531 	}
10532 
10533 	partition = SDPART(bp->b_edev);
10534 
10535 	nblocks = 0;
10536 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
10537 	    &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
10538 
10539 	/*
10540 	 * blocknum is the starting block number of the request. At this
10541 	 * point it is still relative to the start of the minor device.
10542 	 */
10543 	blocknum = xp->xb_blkno;
10544 
10545 	/*
10546 	 * Legacy: If the starting block number is one past the last block
10547 	 * in the partition, do not set B_ERROR in the buf.
10548 	 */
10549 	if (blocknum == nblocks)  {
10550 		goto error_exit;
10551 	}
10552 
10553 	/*
10554 	 * Confirm that the first block of the request lies within the
10555 	 * partition limits. Also the requested number of bytes must be
10556 	 * a multiple of the system block size.
10557 	 */
10558 	if ((blocknum < 0) || (blocknum >= nblocks) ||
10559 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
10560 		bp->b_flags |= B_ERROR;
10561 		goto error_exit;
10562 	}
10563 
10564 	/*
10565 	 * If the requsted # blocks exceeds the available # blocks, that
10566 	 * is an overrun of the partition.
10567 	 */
10568 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
10569 	available_nblocks = (size_t)(nblocks - blocknum);
10570 	ASSERT(nblocks >= blocknum);
10571 
10572 	if (requested_nblocks > available_nblocks) {
10573 		/*
10574 		 * Allocate an "overrun" buf to allow the request to proceed
10575 		 * for the amount of space available in the partition. The
10576 		 * amount not transferred will be added into the b_resid
10577 		 * when the operation is complete. The overrun buf
10578 		 * replaces the original buf here, and the original buf
10579 		 * is saved inside the overrun buf, for later use.
10580 		 */
10581 		size_t resid = SD_SYSBLOCKS2BYTES(un,
10582 		    (offset_t)(requested_nblocks - available_nblocks));
10583 		size_t count = bp->b_bcount - resid;
10584 		/*
10585 		 * Note: count is an unsigned entity thus it'll NEVER
10586 		 * be less than 0 so ASSERT the original values are
10587 		 * correct.
10588 		 */
10589 		ASSERT(bp->b_bcount >= resid);
10590 
10591 		bp = sd_bioclone_alloc(bp, count, blocknum,
10592 			(int (*)(struct buf *)) sd_mapblockaddr_iodone);
10593 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
10594 		ASSERT(xp != NULL);
10595 	}
10596 
10597 	/* At this point there should be no residual for this buf. */
10598 	ASSERT(bp->b_resid == 0);
10599 
10600 	/* Convert the block number to an absolute address. */
10601 	xp->xb_blkno += partition_offset;
10602 
10603 	SD_NEXT_IOSTART(index, un, bp);
10604 
10605 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10606 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
10607 
10608 	return;
10609 
10610 error_exit:
10611 	bp->b_resid = bp->b_bcount;
10612 	SD_BEGIN_IODONE(index, un, bp);
10613 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10614 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
10615 }
10616 
10617 
10618 /*
10619  *    Function: sd_mapblockaddr_iodone
10620  *
10621  * Description: Completion-side processing for partition management.
10622  *
10623  *     Context: May be called under interrupt context
10624  */
10625 
10626 static void
10627 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
10628 {
10629 	/* int	partition; */	/* Not used, see below. */
10630 	ASSERT(un != NULL);
10631 	ASSERT(bp != NULL);
10632 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10633 
10634 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10635 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
10636 
10637 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
10638 		/*
10639 		 * We have an "overrun" buf to deal with...
10640 		 */
10641 		struct sd_xbuf	*xp;
10642 		struct buf	*obp;	/* ptr to the original buf */
10643 
10644 		xp = SD_GET_XBUF(bp);
10645 		ASSERT(xp != NULL);
10646 
10647 		/* Retrieve the pointer to the original buf */
10648 		obp = (struct buf *)xp->xb_private;
10649 		ASSERT(obp != NULL);
10650 
10651 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
10652 		bioerror(obp, bp->b_error);
10653 
10654 		sd_bioclone_free(bp);
10655 
10656 		/*
10657 		 * Get back the original buf.
10658 		 * Note that since the restoration of xb_blkno below
10659 		 * was removed, the sd_xbuf is not needed.
10660 		 */
10661 		bp = obp;
10662 		/*
10663 		 * xp = SD_GET_XBUF(bp);
10664 		 * ASSERT(xp != NULL);
10665 		 */
10666 	}
10667 
10668 	/*
10669 	 * Convert sd->xb_blkno back to a minor-device relative value.
10670 	 * Note: this has been commented out, as it is not needed in the
10671 	 * current implementation of the driver (ie, since this function
10672 	 * is at the top of the layering chains, so the info will be
10673 	 * discarded) and it is in the "hot" IO path.
10674 	 *
10675 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
10676 	 * xp->xb_blkno -= un->un_offset[partition];
10677 	 */
10678 
10679 	SD_NEXT_IODONE(index, un, bp);
10680 
10681 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10682 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
10683 }
10684 
10685 
10686 /*
10687  *    Function: sd_mapblocksize_iostart
10688  *
10689  * Description: Convert between system block size (un->un_sys_blocksize)
10690  *		and target block size (un->un_tgt_blocksize).
10691  *
10692  *     Context: Can sleep to allocate resources.
10693  *
10694  * Assumptions: A higher layer has already performed any partition validation,
10695  *		and converted the xp->xb_blkno to an absolute value relative
10696  *		to the start of the device.
10697  *
10698  *		It is also assumed that the higher layer has implemented
10699  *		an "overrun" mechanism for the case where the request would
10700  *		read/write beyond the end of a partition.  In this case we
10701  *		assume (and ASSERT) that bp->b_resid == 0.
10702  *
10703  *		Note: The implementation for this routine assumes the target
10704  *		block size remains constant between allocation and transport.
10705  */
10706 
10707 static void
10708 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
10709 {
10710 	struct sd_mapblocksize_info	*bsp;
10711 	struct sd_xbuf			*xp;
10712 	offset_t first_byte;
10713 	daddr_t	start_block, end_block;
10714 	daddr_t	request_bytes;
10715 	ushort_t is_aligned = FALSE;
10716 
10717 	ASSERT(un != NULL);
10718 	ASSERT(bp != NULL);
10719 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10720 	ASSERT(bp->b_resid == 0);
10721 
10722 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
10723 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
10724 
10725 	/*
10726 	 * For a non-writable CD, a write request is an error
10727 	 */
10728 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
10729 	    (un->un_f_mmc_writable_media == FALSE)) {
10730 		bioerror(bp, EIO);
10731 		bp->b_resid = bp->b_bcount;
10732 		SD_BEGIN_IODONE(index, un, bp);
10733 		return;
10734 	}
10735 
10736 	/*
10737 	 * We do not need a shadow buf if the device is using
10738 	 * un->un_sys_blocksize as its block size or if bcount == 0.
10739 	 * In this case there is no layer-private data block allocated.
10740 	 */
10741 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
10742 	    (bp->b_bcount == 0)) {
10743 		goto done;
10744 	}
10745 
10746 #if defined(__i386) || defined(__amd64)
10747 	/* We do not support non-block-aligned transfers for ROD devices */
10748 	ASSERT(!ISROD(un));
10749 #endif
10750 
10751 	xp = SD_GET_XBUF(bp);
10752 	ASSERT(xp != NULL);
10753 
10754 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
10755 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
10756 	    un->un_tgt_blocksize, un->un_sys_blocksize);
10757 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
10758 	    "request start block:0x%x\n", xp->xb_blkno);
10759 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
10760 	    "request len:0x%x\n", bp->b_bcount);
10761 
10762 	/*
10763 	 * Allocate the layer-private data area for the mapblocksize layer.
10764 	 * Layers are allowed to use the xp_private member of the sd_xbuf
10765 	 * struct to store the pointer to their layer-private data block, but
10766 	 * each layer also has the responsibility of restoring the prior
10767 	 * contents of xb_private before returning the buf/xbuf to the
10768 	 * higher layer that sent it.
10769 	 *
10770 	 * Here we save the prior contents of xp->xb_private into the
10771 	 * bsp->mbs_oprivate field of our layer-private data area. This value
10772 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
10773 	 * the layer-private area and returning the buf/xbuf to the layer
10774 	 * that sent it.
10775 	 *
10776 	 * Note that here we use kmem_zalloc for the allocation as there are
10777 	 * parts of the mapblocksize code that expect certain fields to be
10778 	 * zero unless explicitly set to a required value.
10779 	 */
10780 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
10781 	bsp->mbs_oprivate = xp->xb_private;
10782 	xp->xb_private = bsp;
10783 
10784 	/*
10785 	 * This treats the data on the disk (target) as an array of bytes.
10786 	 * first_byte is the byte offset, from the beginning of the device,
10787 	 * to the location of the request. This is converted from a
10788 	 * un->un_sys_blocksize block address to a byte offset, and then back
10789 	 * to a block address based upon a un->un_tgt_blocksize block size.
10790 	 *
10791 	 * xp->xb_blkno should be absolute upon entry into this function,
10792 	 * but, but it is based upon partitions that use the "system"
10793 	 * block size. It must be adjusted to reflect the block size of
10794 	 * the target.
10795 	 *
10796 	 * Note that end_block is actually the block that follows the last
10797 	 * block of the request, but that's what is needed for the computation.
10798 	 */
10799 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
10800 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
10801 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
10802 	    un->un_tgt_blocksize;
10803 
10804 	/* request_bytes is rounded up to a multiple of the target block size */
10805 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
10806 
10807 	/*
10808 	 * See if the starting address of the request and the request
10809 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
10810 	 * then we do not need to allocate a shadow buf to handle the request.
10811 	 */
10812 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
10813 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
10814 		is_aligned = TRUE;
10815 	}
10816 
10817 	if ((bp->b_flags & B_READ) == 0) {
10818 		/*
10819 		 * Lock the range for a write operation. An aligned request is
10820 		 * considered a simple write; otherwise the request must be a
10821 		 * read-modify-write.
10822 		 */
10823 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
10824 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
10825 	}
10826 
10827 	/*
10828 	 * Alloc a shadow buf if the request is not aligned. Also, this is
10829 	 * where the READ command is generated for a read-modify-write. (The
10830 	 * write phase is deferred until after the read completes.)
10831 	 */
10832 	if (is_aligned == FALSE) {
10833 
10834 		struct sd_mapblocksize_info	*shadow_bsp;
10835 		struct sd_xbuf	*shadow_xp;
10836 		struct buf	*shadow_bp;
10837 
10838 		/*
10839 		 * Allocate the shadow buf and it associated xbuf. Note that
10840 		 * after this call the xb_blkno value in both the original
10841 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
10842 		 * same: absolute relative to the start of the device, and
10843 		 * adjusted for the target block size. The b_blkno in the
10844 		 * shadow buf will also be set to this value. We should never
10845 		 * change b_blkno in the original bp however.
10846 		 *
10847 		 * Note also that the shadow buf will always need to be a
10848 		 * READ command, regardless of whether the incoming command
10849 		 * is a READ or a WRITE.
10850 		 */
10851 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
10852 		    xp->xb_blkno,
10853 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
10854 
10855 		shadow_xp = SD_GET_XBUF(shadow_bp);
10856 
10857 		/*
10858 		 * Allocate the layer-private data for the shadow buf.
10859 		 * (No need to preserve xb_private in the shadow xbuf.)
10860 		 */
10861 		shadow_xp->xb_private = shadow_bsp =
10862 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
10863 
10864 		/*
10865 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
10866 		 * to figure out where the start of the user data is (based upon
10867 		 * the system block size) in the data returned by the READ
10868 		 * command (which will be based upon the target blocksize). Note
10869 		 * that this is only really used if the request is unaligned.
10870 		 */
10871 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
10872 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
10873 		ASSERT((bsp->mbs_copy_offset >= 0) &&
10874 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
10875 
10876 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
10877 
10878 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
10879 
10880 		/* Transfer the wmap (if any) to the shadow buf */
10881 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
10882 		bsp->mbs_wmp = NULL;
10883 
10884 		/*
10885 		 * The shadow buf goes on from here in place of the
10886 		 * original buf.
10887 		 */
10888 		shadow_bsp->mbs_orig_bp = bp;
10889 		bp = shadow_bp;
10890 	}
10891 
10892 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
10893 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
10894 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
10895 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
10896 	    request_bytes);
10897 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
10898 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
10899 
10900 done:
10901 	SD_NEXT_IOSTART(index, un, bp);
10902 
10903 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
10904 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
10905 }
10906 
10907 
10908 /*
10909  *    Function: sd_mapblocksize_iodone
10910  *
10911  * Description: Completion side processing for block-size mapping.
10912  *
10913  *     Context: May be called under interrupt context
10914  */
10915 
10916 static void
10917 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
10918 {
10919 	struct sd_mapblocksize_info	*bsp;
10920 	struct sd_xbuf	*xp;
10921 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
10922 	struct buf	*orig_bp;	/* ptr to the original buf */
10923 	offset_t	shadow_end;
10924 	offset_t	request_end;
10925 	offset_t	shadow_start;
10926 	ssize_t		copy_offset;
10927 	size_t		copy_length;
10928 	size_t		shortfall;
10929 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
10930 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
10931 
10932 	ASSERT(un != NULL);
10933 	ASSERT(bp != NULL);
10934 
10935 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
10936 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
10937 
10938 	/*
10939 	 * There is no shadow buf or layer-private data if the target is
10940 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
10941 	 */
10942 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
10943 	    (bp->b_bcount == 0)) {
10944 		goto exit;
10945 	}
10946 
10947 	xp = SD_GET_XBUF(bp);
10948 	ASSERT(xp != NULL);
10949 
10950 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
10951 	bsp = xp->xb_private;
10952 
10953 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
10954 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
10955 
10956 	if (is_write) {
10957 		/*
10958 		 * For a WRITE request we must free up the block range that
10959 		 * we have locked up.  This holds regardless of whether this is
10960 		 * an aligned write request or a read-modify-write request.
10961 		 */
10962 		sd_range_unlock(un, bsp->mbs_wmp);
10963 		bsp->mbs_wmp = NULL;
10964 	}
10965 
10966 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
10967 		/*
10968 		 * An aligned read or write command will have no shadow buf;
10969 		 * there is not much else to do with it.
10970 		 */
10971 		goto done;
10972 	}
10973 
10974 	orig_bp = bsp->mbs_orig_bp;
10975 	ASSERT(orig_bp != NULL);
10976 	orig_xp = SD_GET_XBUF(orig_bp);
10977 	ASSERT(orig_xp != NULL);
10978 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10979 
10980 	if (!is_write && has_wmap) {
10981 		/*
10982 		 * A READ with a wmap means this is the READ phase of a
10983 		 * read-modify-write. If an error occurred on the READ then
10984 		 * we do not proceed with the WRITE phase or copy any data.
10985 		 * Just release the write maps and return with an error.
10986 		 */
10987 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
10988 			orig_bp->b_resid = orig_bp->b_bcount;
10989 			bioerror(orig_bp, bp->b_error);
10990 			sd_range_unlock(un, bsp->mbs_wmp);
10991 			goto freebuf_done;
10992 		}
10993 	}
10994 
10995 	/*
10996 	 * Here is where we set up to copy the data from the shadow buf
10997 	 * into the space associated with the original buf.
10998 	 *
10999 	 * To deal with the conversion between block sizes, these
11000 	 * computations treat the data as an array of bytes, with the
11001 	 * first byte (byte 0) corresponding to the first byte in the
11002 	 * first block on the disk.
11003 	 */
11004 
11005 	/*
11006 	 * shadow_start and shadow_len indicate the location and size of
11007 	 * the data returned with the shadow IO request.
11008 	 */
11009 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
11010 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
11011 
11012 	/*
11013 	 * copy_offset gives the offset (in bytes) from the start of the first
11014 	 * block of the READ request to the beginning of the data.  We retrieve
11015 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
11016 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
11017 	 * data to be copied (in bytes).
11018 	 */
11019 	copy_offset  = bsp->mbs_copy_offset;
11020 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
11021 	copy_length  = orig_bp->b_bcount;
11022 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
11023 
11024 	/*
11025 	 * Set up the resid and error fields of orig_bp as appropriate.
11026 	 */
11027 	if (shadow_end >= request_end) {
11028 		/* We got all the requested data; set resid to zero */
11029 		orig_bp->b_resid = 0;
11030 	} else {
11031 		/*
11032 		 * We failed to get enough data to fully satisfy the original
11033 		 * request. Just copy back whatever data we got and set
11034 		 * up the residual and error code as required.
11035 		 *
11036 		 * 'shortfall' is the amount by which the data received with the
11037 		 * shadow buf has "fallen short" of the requested amount.
11038 		 */
11039 		shortfall = (size_t)(request_end - shadow_end);
11040 
11041 		if (shortfall > orig_bp->b_bcount) {
11042 			/*
11043 			 * We did not get enough data to even partially
11044 			 * fulfill the original request.  The residual is
11045 			 * equal to the amount requested.
11046 			 */
11047 			orig_bp->b_resid = orig_bp->b_bcount;
11048 		} else {
11049 			/*
11050 			 * We did not get all the data that we requested
11051 			 * from the device, but we will try to return what
11052 			 * portion we did get.
11053 			 */
11054 			orig_bp->b_resid = shortfall;
11055 		}
11056 		ASSERT(copy_length >= orig_bp->b_resid);
11057 		copy_length  -= orig_bp->b_resid;
11058 	}
11059 
11060 	/* Propagate the error code from the shadow buf to the original buf */
11061 	bioerror(orig_bp, bp->b_error);
11062 
11063 	if (is_write) {
11064 		goto freebuf_done;	/* No data copying for a WRITE */
11065 	}
11066 
11067 	if (has_wmap) {
11068 		/*
11069 		 * This is a READ command from the READ phase of a
11070 		 * read-modify-write request. We have to copy the data given
11071 		 * by the user OVER the data returned by the READ command,
11072 		 * then convert the command from a READ to a WRITE and send
11073 		 * it back to the target.
11074 		 */
11075 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
11076 		    copy_length);
11077 
11078 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
11079 
11080 		/*
11081 		 * Dispatch the WRITE command to the taskq thread, which
11082 		 * will in turn send the command to the target. When the
11083 		 * WRITE command completes, we (sd_mapblocksize_iodone())
11084 		 * will get called again as part of the iodone chain
11085 		 * processing for it. Note that we will still be dealing
11086 		 * with the shadow buf at that point.
11087 		 */
11088 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
11089 		    KM_NOSLEEP) != 0) {
11090 			/*
11091 			 * Dispatch was successful so we are done. Return
11092 			 * without going any higher up the iodone chain. Do
11093 			 * not free up any layer-private data until after the
11094 			 * WRITE completes.
11095 			 */
11096 			return;
11097 		}
11098 
11099 		/*
11100 		 * Dispatch of the WRITE command failed; set up the error
11101 		 * condition and send this IO back up the iodone chain.
11102 		 */
11103 		bioerror(orig_bp, EIO);
11104 		orig_bp->b_resid = orig_bp->b_bcount;
11105 
11106 	} else {
11107 		/*
11108 		 * This is a regular READ request (ie, not a RMW). Copy the
11109 		 * data from the shadow buf into the original buf. The
11110 		 * copy_offset compensates for any "misalignment" between the
11111 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
11112 		 * original buf (with its un->un_sys_blocksize blocks).
11113 		 */
11114 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
11115 		    copy_length);
11116 	}
11117 
11118 freebuf_done:
11119 
11120 	/*
11121 	 * At this point we still have both the shadow buf AND the original
11122 	 * buf to deal with, as well as the layer-private data area in each.
11123 	 * Local variables are as follows:
11124 	 *
11125 	 * bp -- points to shadow buf
11126 	 * xp -- points to xbuf of shadow buf
11127 	 * bsp -- points to layer-private data area of shadow buf
11128 	 * orig_bp -- points to original buf
11129 	 *
11130 	 * First free the shadow buf and its associated xbuf, then free the
11131 	 * layer-private data area from the shadow buf. There is no need to
11132 	 * restore xb_private in the shadow xbuf.
11133 	 */
11134 	sd_shadow_buf_free(bp);
11135 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
11136 
11137 	/*
11138 	 * Now update the local variables to point to the original buf, xbuf,
11139 	 * and layer-private area.
11140 	 */
11141 	bp = orig_bp;
11142 	xp = SD_GET_XBUF(bp);
11143 	ASSERT(xp != NULL);
11144 	ASSERT(xp == orig_xp);
11145 	bsp = xp->xb_private;
11146 	ASSERT(bsp != NULL);
11147 
11148 done:
11149 	/*
11150 	 * Restore xb_private to whatever it was set to by the next higher
11151 	 * layer in the chain, then free the layer-private data area.
11152 	 */
11153 	xp->xb_private = bsp->mbs_oprivate;
11154 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
11155 
11156 exit:
11157 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
11158 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
11159 
11160 	SD_NEXT_IODONE(index, un, bp);
11161 }
11162 
11163 
11164 /*
11165  *    Function: sd_checksum_iostart
11166  *
11167  * Description: A stub function for a layer that's currently not used.
11168  *		For now just a placeholder.
11169  *
11170  *     Context: Kernel thread context
11171  */
11172 
11173 static void
11174 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
11175 {
11176 	ASSERT(un != NULL);
11177 	ASSERT(bp != NULL);
11178 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11179 	SD_NEXT_IOSTART(index, un, bp);
11180 }
11181 
11182 
11183 /*
11184  *    Function: sd_checksum_iodone
11185  *
11186  * Description: A stub function for a layer that's currently not used.
11187  *		For now just a placeholder.
11188  *
11189  *     Context: May be called under interrupt context
11190  */
11191 
11192 static void
11193 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
11194 {
11195 	ASSERT(un != NULL);
11196 	ASSERT(bp != NULL);
11197 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11198 	SD_NEXT_IODONE(index, un, bp);
11199 }
11200 
11201 
11202 /*
11203  *    Function: sd_checksum_uscsi_iostart
11204  *
11205  * Description: A stub function for a layer that's currently not used.
11206  *		For now just a placeholder.
11207  *
11208  *     Context: Kernel thread context
11209  */
11210 
11211 static void
11212 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
11213 {
11214 	ASSERT(un != NULL);
11215 	ASSERT(bp != NULL);
11216 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11217 	SD_NEXT_IOSTART(index, un, bp);
11218 }
11219 
11220 
11221 /*
11222  *    Function: sd_checksum_uscsi_iodone
11223  *
11224  * Description: A stub function for a layer that's currently not used.
11225  *		For now just a placeholder.
11226  *
11227  *     Context: May be called under interrupt context
11228  */
11229 
11230 static void
11231 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
11232 {
11233 	ASSERT(un != NULL);
11234 	ASSERT(bp != NULL);
11235 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11236 	SD_NEXT_IODONE(index, un, bp);
11237 }
11238 
11239 
11240 /*
11241  *    Function: sd_pm_iostart
11242  *
11243  * Description: iostart-side routine for Power mangement.
11244  *
11245  *     Context: Kernel thread context
11246  */
11247 
11248 static void
11249 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
11250 {
11251 	ASSERT(un != NULL);
11252 	ASSERT(bp != NULL);
11253 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11254 	ASSERT(!mutex_owned(&un->un_pm_mutex));
11255 
11256 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
11257 
11258 	if (sd_pm_entry(un) != DDI_SUCCESS) {
11259 		/*
11260 		 * Set up to return the failed buf back up the 'iodone'
11261 		 * side of the calling chain.
11262 		 */
11263 		bioerror(bp, EIO);
11264 		bp->b_resid = bp->b_bcount;
11265 
11266 		SD_BEGIN_IODONE(index, un, bp);
11267 
11268 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
11269 		return;
11270 	}
11271 
11272 	SD_NEXT_IOSTART(index, un, bp);
11273 
11274 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
11275 }
11276 
11277 
11278 /*
11279  *    Function: sd_pm_iodone
11280  *
11281  * Description: iodone-side routine for power mangement.
11282  *
11283  *     Context: may be called from interrupt context
11284  */
11285 
11286 static void
11287 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
11288 {
11289 	ASSERT(un != NULL);
11290 	ASSERT(bp != NULL);
11291 	ASSERT(!mutex_owned(&un->un_pm_mutex));
11292 
11293 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
11294 
11295 	/*
11296 	 * After attach the following flag is only read, so don't
11297 	 * take the penalty of acquiring a mutex for it.
11298 	 */
11299 	if (un->un_f_pm_is_enabled == TRUE) {
11300 		sd_pm_exit(un);
11301 	}
11302 
11303 	SD_NEXT_IODONE(index, un, bp);
11304 
11305 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
11306 }
11307 
11308 
11309 /*
11310  *    Function: sd_core_iostart
11311  *
11312  * Description: Primary driver function for enqueuing buf(9S) structs from
11313  *		the system and initiating IO to the target device
11314  *
11315  *     Context: Kernel thread context. Can sleep.
11316  *
11317  * Assumptions:  - The given xp->xb_blkno is absolute
11318  *		   (ie, relative to the start of the device).
11319  *		 - The IO is to be done using the native blocksize of
11320  *		   the device, as specified in un->un_tgt_blocksize.
11321  */
11322 /* ARGSUSED */
11323 static void
11324 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
11325 {
11326 	struct sd_xbuf *xp;
11327 
11328 	ASSERT(un != NULL);
11329 	ASSERT(bp != NULL);
11330 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11331 	ASSERT(bp->b_resid == 0);
11332 
11333 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
11334 
11335 	xp = SD_GET_XBUF(bp);
11336 	ASSERT(xp != NULL);
11337 
11338 	mutex_enter(SD_MUTEX(un));
11339 
11340 	/*
11341 	 * If we are currently in the failfast state, fail any new IO
11342 	 * that has B_FAILFAST set, then return.
11343 	 */
11344 	if ((bp->b_flags & B_FAILFAST) &&
11345 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
11346 		mutex_exit(SD_MUTEX(un));
11347 		bioerror(bp, EIO);
11348 		bp->b_resid = bp->b_bcount;
11349 		SD_BEGIN_IODONE(index, un, bp);
11350 		return;
11351 	}
11352 
11353 	if (SD_IS_DIRECT_PRIORITY(xp)) {
11354 		/*
11355 		 * Priority command -- transport it immediately.
11356 		 *
11357 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
11358 		 * because all direct priority commands should be associated
11359 		 * with error recovery actions which we don't want to retry.
11360 		 */
11361 		sd_start_cmds(un, bp);
11362 	} else {
11363 		/*
11364 		 * Normal command -- add it to the wait queue, then start
11365 		 * transporting commands from the wait queue.
11366 		 */
11367 		sd_add_buf_to_waitq(un, bp);
11368 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
11369 		sd_start_cmds(un, NULL);
11370 	}
11371 
11372 	mutex_exit(SD_MUTEX(un));
11373 
11374 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
11375 }
11376 
11377 
11378 /*
11379  *    Function: sd_init_cdb_limits
11380  *
11381  * Description: This is to handle scsi_pkt initialization differences
11382  *		between the driver platforms.
11383  *
11384  *		Legacy behaviors:
11385  *
11386  *		If the block number or the sector count exceeds the
11387  *		capabilities of a Group 0 command, shift over to a
11388  *		Group 1 command. We don't blindly use Group 1
11389  *		commands because a) some drives (CDC Wren IVs) get a
11390  *		bit confused, and b) there is probably a fair amount
11391  *		of speed difference for a target to receive and decode
11392  *		a 10 byte command instead of a 6 byte command.
11393  *
11394  *		The xfer time difference of 6 vs 10 byte CDBs is
11395  *		still significant so this code is still worthwhile.
11396  *		10 byte CDBs are very inefficient with the fas HBA driver
11397  *		and older disks. Each CDB byte took 1 usec with some
11398  *		popular disks.
11399  *
11400  *     Context: Must be called at attach time
11401  */
11402 
11403 static void
11404 sd_init_cdb_limits(struct sd_lun *un)
11405 {
11406 	int hba_cdb_limit;
11407 
11408 	/*
11409 	 * Use CDB_GROUP1 commands for most devices except for
11410 	 * parallel SCSI fixed drives in which case we get better
11411 	 * performance using CDB_GROUP0 commands (where applicable).
11412 	 */
11413 	un->un_mincdb = SD_CDB_GROUP1;
11414 #if !defined(__fibre)
11415 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
11416 	    !un->un_f_has_removable_media) {
11417 		un->un_mincdb = SD_CDB_GROUP0;
11418 	}
11419 #endif
11420 
11421 	/*
11422 	 * Try to read the max-cdb-length supported by HBA.
11423 	 */
11424 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
11425 	if (0 >= un->un_max_hba_cdb) {
11426 		un->un_max_hba_cdb = CDB_GROUP4;
11427 		hba_cdb_limit = SD_CDB_GROUP4;
11428 	} else if (0 < un->un_max_hba_cdb &&
11429 	    un->un_max_hba_cdb < CDB_GROUP1) {
11430 		hba_cdb_limit = SD_CDB_GROUP0;
11431 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
11432 	    un->un_max_hba_cdb < CDB_GROUP5) {
11433 		hba_cdb_limit = SD_CDB_GROUP1;
11434 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
11435 	    un->un_max_hba_cdb < CDB_GROUP4) {
11436 		hba_cdb_limit = SD_CDB_GROUP5;
11437 	} else {
11438 		hba_cdb_limit = SD_CDB_GROUP4;
11439 	}
11440 
11441 	/*
11442 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
11443 	 * commands for fixed disks unless we are building for a 32 bit
11444 	 * kernel.
11445 	 */
11446 #ifdef _LP64
11447 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
11448 	    min(hba_cdb_limit, SD_CDB_GROUP4);
11449 #else
11450 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
11451 	    min(hba_cdb_limit, SD_CDB_GROUP1);
11452 #endif
11453 
11454 	/*
11455 	 * x86 systems require the PKT_DMA_PARTIAL flag
11456 	 */
11457 #if defined(__x86)
11458 	un->un_pkt_flags = PKT_DMA_PARTIAL;
11459 #else
11460 	un->un_pkt_flags = 0;
11461 #endif
11462 
11463 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
11464 	    ? sizeof (struct scsi_arq_status) : 1);
11465 	un->un_cmd_timeout = (ushort_t)sd_io_time;
11466 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
11467 }
11468 
11469 
11470 /*
11471  *    Function: sd_initpkt_for_buf
11472  *
11473  * Description: Allocate and initialize for transport a scsi_pkt struct,
11474  *		based upon the info specified in the given buf struct.
11475  *
11476  *		Assumes the xb_blkno in the request is absolute (ie,
11477  *		relative to the start of the device (NOT partition!).
11478  *		Also assumes that the request is using the native block
11479  *		size of the device (as returned by the READ CAPACITY
11480  *		command).
11481  *
11482  * Return Code: SD_PKT_ALLOC_SUCCESS
11483  *		SD_PKT_ALLOC_FAILURE
11484  *		SD_PKT_ALLOC_FAILURE_NO_DMA
11485  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11486  *
11487  *     Context: Kernel thread and may be called from software interrupt context
11488  *		as part of a sdrunout callback. This function may not block or
11489  *		call routines that block
11490  */
11491 
11492 static int
11493 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
11494 {
11495 	struct sd_xbuf	*xp;
11496 	struct scsi_pkt *pktp = NULL;
11497 	struct sd_lun	*un;
11498 	size_t		blockcount;
11499 	daddr_t		startblock;
11500 	int		rval;
11501 	int		cmd_flags;
11502 
11503 	ASSERT(bp != NULL);
11504 	ASSERT(pktpp != NULL);
11505 	xp = SD_GET_XBUF(bp);
11506 	ASSERT(xp != NULL);
11507 	un = SD_GET_UN(bp);
11508 	ASSERT(un != NULL);
11509 	ASSERT(mutex_owned(SD_MUTEX(un)));
11510 	ASSERT(bp->b_resid == 0);
11511 
11512 	SD_TRACE(SD_LOG_IO_CORE, un,
11513 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
11514 
11515 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11516 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
11517 		/*
11518 		 * Already have a scsi_pkt -- just need DMA resources.
11519 		 * We must recompute the CDB in case the mapping returns
11520 		 * a nonzero pkt_resid.
11521 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
11522 		 * that is being retried, the unmap/remap of the DMA resouces
11523 		 * will result in the entire transfer starting over again
11524 		 * from the very first block.
11525 		 */
11526 		ASSERT(xp->xb_pktp != NULL);
11527 		pktp = xp->xb_pktp;
11528 	} else {
11529 		pktp = NULL;
11530 	}
11531 #endif /* __i386 || __amd64 */
11532 
11533 	startblock = xp->xb_blkno;	/* Absolute block num. */
11534 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
11535 
11536 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11537 
11538 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
11539 
11540 #else
11541 
11542 	cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags;
11543 
11544 #endif
11545 
11546 	/*
11547 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
11548 	 * call scsi_init_pkt, and build the CDB.
11549 	 */
11550 	rval = sd_setup_rw_pkt(un, &pktp, bp,
11551 	    cmd_flags, sdrunout, (caddr_t)un,
11552 	    startblock, blockcount);
11553 
11554 	if (rval == 0) {
11555 		/*
11556 		 * Success.
11557 		 *
11558 		 * If partial DMA is being used and required for this transfer.
11559 		 * set it up here.
11560 		 */
11561 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
11562 		    (pktp->pkt_resid != 0)) {
11563 
11564 			/*
11565 			 * Save the CDB length and pkt_resid for the
11566 			 * next xfer
11567 			 */
11568 			xp->xb_dma_resid = pktp->pkt_resid;
11569 
11570 			/* rezero resid */
11571 			pktp->pkt_resid = 0;
11572 
11573 		} else {
11574 			xp->xb_dma_resid = 0;
11575 		}
11576 
11577 		pktp->pkt_flags = un->un_tagflags;
11578 		pktp->pkt_time  = un->un_cmd_timeout;
11579 		pktp->pkt_comp  = sdintr;
11580 
11581 		pktp->pkt_private = bp;
11582 		*pktpp = pktp;
11583 
11584 		SD_TRACE(SD_LOG_IO_CORE, un,
11585 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
11586 
11587 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11588 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
11589 #endif
11590 
11591 		return (SD_PKT_ALLOC_SUCCESS);
11592 
11593 	}
11594 
11595 	/*
11596 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
11597 	 * from sd_setup_rw_pkt.
11598 	 */
11599 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
11600 
11601 	if (rval == SD_PKT_ALLOC_FAILURE) {
11602 		*pktpp = NULL;
11603 		/*
11604 		 * Set the driver state to RWAIT to indicate the driver
11605 		 * is waiting on resource allocations. The driver will not
11606 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
11607 		 */
11608 		New_state(un, SD_STATE_RWAIT);
11609 
11610 		SD_ERROR(SD_LOG_IO_CORE, un,
11611 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
11612 
11613 		if ((bp->b_flags & B_ERROR) != 0) {
11614 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
11615 		}
11616 		return (SD_PKT_ALLOC_FAILURE);
11617 	} else {
11618 		/*
11619 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11620 		 *
11621 		 * This should never happen.  Maybe someone messed with the
11622 		 * kernel's minphys?
11623 		 */
11624 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
11625 		    "Request rejected: too large for CDB: "
11626 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
11627 		SD_ERROR(SD_LOG_IO_CORE, un,
11628 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
11629 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
11630 
11631 	}
11632 }
11633 
11634 
11635 /*
11636  *    Function: sd_destroypkt_for_buf
11637  *
11638  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
11639  *
11640  *     Context: Kernel thread or interrupt context
11641  */
11642 
11643 static void
11644 sd_destroypkt_for_buf(struct buf *bp)
11645 {
11646 	ASSERT(bp != NULL);
11647 	ASSERT(SD_GET_UN(bp) != NULL);
11648 
11649 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
11650 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
11651 
11652 	ASSERT(SD_GET_PKTP(bp) != NULL);
11653 	scsi_destroy_pkt(SD_GET_PKTP(bp));
11654 
11655 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
11656 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
11657 }
11658 
11659 /*
11660  *    Function: sd_setup_rw_pkt
11661  *
11662  * Description: Determines appropriate CDB group for the requested LBA
11663  *		and transfer length, calls scsi_init_pkt, and builds
11664  *		the CDB.  Do not use for partial DMA transfers except
11665  *		for the initial transfer since the CDB size must
11666  *		remain constant.
11667  *
11668  *     Context: Kernel thread and may be called from software interrupt
11669  *		context as part of a sdrunout callback. This function may not
11670  *		block or call routines that block
11671  */
11672 
11673 
11674 int
11675 sd_setup_rw_pkt(struct sd_lun *un,
11676     struct scsi_pkt **pktpp, struct buf *bp, int flags,
11677     int (*callback)(caddr_t), caddr_t callback_arg,
11678     diskaddr_t lba, uint32_t blockcount)
11679 {
11680 	struct scsi_pkt *return_pktp;
11681 	union scsi_cdb *cdbp;
11682 	struct sd_cdbinfo *cp = NULL;
11683 	int i;
11684 
11685 	/*
11686 	 * See which size CDB to use, based upon the request.
11687 	 */
11688 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
11689 
11690 		/*
11691 		 * Check lba and block count against sd_cdbtab limits.
11692 		 * In the partial DMA case, we have to use the same size
11693 		 * CDB for all the transfers.  Check lba + blockcount
11694 		 * against the max LBA so we know that segment of the
11695 		 * transfer can use the CDB we select.
11696 		 */
11697 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
11698 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
11699 
11700 			/*
11701 			 * The command will fit into the CDB type
11702 			 * specified by sd_cdbtab[i].
11703 			 */
11704 			cp = sd_cdbtab + i;
11705 
11706 			/*
11707 			 * Call scsi_init_pkt so we can fill in the
11708 			 * CDB.
11709 			 */
11710 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
11711 			    bp, cp->sc_grpcode, un->un_status_len, 0,
11712 			    flags, callback, callback_arg);
11713 
11714 			if (return_pktp != NULL) {
11715 
11716 				/*
11717 				 * Return new value of pkt
11718 				 */
11719 				*pktpp = return_pktp;
11720 
11721 				/*
11722 				 * To be safe, zero the CDB insuring there is
11723 				 * no leftover data from a previous command.
11724 				 */
11725 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
11726 
11727 				/*
11728 				 * Handle partial DMA mapping
11729 				 */
11730 				if (return_pktp->pkt_resid != 0) {
11731 
11732 					/*
11733 					 * Not going to xfer as many blocks as
11734 					 * originally expected
11735 					 */
11736 					blockcount -=
11737 					    SD_BYTES2TGTBLOCKS(un,
11738 						return_pktp->pkt_resid);
11739 				}
11740 
11741 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
11742 
11743 				/*
11744 				 * Set command byte based on the CDB
11745 				 * type we matched.
11746 				 */
11747 				cdbp->scc_cmd = cp->sc_grpmask |
11748 				    ((bp->b_flags & B_READ) ?
11749 					SCMD_READ : SCMD_WRITE);
11750 
11751 				SD_FILL_SCSI1_LUN(un, return_pktp);
11752 
11753 				/*
11754 				 * Fill in LBA and length
11755 				 */
11756 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
11757 				    (cp->sc_grpcode == CDB_GROUP4) ||
11758 				    (cp->sc_grpcode == CDB_GROUP0) ||
11759 				    (cp->sc_grpcode == CDB_GROUP5));
11760 
11761 				if (cp->sc_grpcode == CDB_GROUP1) {
11762 					FORMG1ADDR(cdbp, lba);
11763 					FORMG1COUNT(cdbp, blockcount);
11764 					return (0);
11765 				} else if (cp->sc_grpcode == CDB_GROUP4) {
11766 					FORMG4LONGADDR(cdbp, lba);
11767 					FORMG4COUNT(cdbp, blockcount);
11768 					return (0);
11769 				} else if (cp->sc_grpcode == CDB_GROUP0) {
11770 					FORMG0ADDR(cdbp, lba);
11771 					FORMG0COUNT(cdbp, blockcount);
11772 					return (0);
11773 				} else if (cp->sc_grpcode == CDB_GROUP5) {
11774 					FORMG5ADDR(cdbp, lba);
11775 					FORMG5COUNT(cdbp, blockcount);
11776 					return (0);
11777 				}
11778 
11779 				/*
11780 				 * It should be impossible to not match one
11781 				 * of the CDB types above, so we should never
11782 				 * reach this point.  Set the CDB command byte
11783 				 * to test-unit-ready to avoid writing
11784 				 * to somewhere we don't intend.
11785 				 */
11786 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
11787 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
11788 			} else {
11789 				/*
11790 				 * Couldn't get scsi_pkt
11791 				 */
11792 				return (SD_PKT_ALLOC_FAILURE);
11793 			}
11794 		}
11795 	}
11796 
11797 	/*
11798 	 * None of the available CDB types were suitable.  This really
11799 	 * should never happen:  on a 64 bit system we support
11800 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
11801 	 * and on a 32 bit system we will refuse to bind to a device
11802 	 * larger than 2TB so addresses will never be larger than 32 bits.
11803 	 */
11804 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
11805 }
11806 
11807 #if defined(__i386) || defined(__amd64)
11808 /*
11809  *    Function: sd_setup_next_rw_pkt
11810  *
11811  * Description: Setup packet for partial DMA transfers, except for the
11812  * 		initial transfer.  sd_setup_rw_pkt should be used for
11813  *		the initial transfer.
11814  *
11815  *     Context: Kernel thread and may be called from interrupt context.
11816  */
11817 
11818 int
11819 sd_setup_next_rw_pkt(struct sd_lun *un,
11820     struct scsi_pkt *pktp, struct buf *bp,
11821     diskaddr_t lba, uint32_t blockcount)
11822 {
11823 	uchar_t com;
11824 	union scsi_cdb *cdbp;
11825 	uchar_t cdb_group_id;
11826 
11827 	ASSERT(pktp != NULL);
11828 	ASSERT(pktp->pkt_cdbp != NULL);
11829 
11830 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
11831 	com = cdbp->scc_cmd;
11832 	cdb_group_id = CDB_GROUPID(com);
11833 
11834 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
11835 	    (cdb_group_id == CDB_GROUPID_1) ||
11836 	    (cdb_group_id == CDB_GROUPID_4) ||
11837 	    (cdb_group_id == CDB_GROUPID_5));
11838 
11839 	/*
11840 	 * Move pkt to the next portion of the xfer.
11841 	 * func is NULL_FUNC so we do not have to release
11842 	 * the disk mutex here.
11843 	 */
11844 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
11845 	    NULL_FUNC, NULL) == pktp) {
11846 		/* Success.  Handle partial DMA */
11847 		if (pktp->pkt_resid != 0) {
11848 			blockcount -=
11849 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
11850 		}
11851 
11852 		cdbp->scc_cmd = com;
11853 		SD_FILL_SCSI1_LUN(un, pktp);
11854 		if (cdb_group_id == CDB_GROUPID_1) {
11855 			FORMG1ADDR(cdbp, lba);
11856 			FORMG1COUNT(cdbp, blockcount);
11857 			return (0);
11858 		} else if (cdb_group_id == CDB_GROUPID_4) {
11859 			FORMG4LONGADDR(cdbp, lba);
11860 			FORMG4COUNT(cdbp, blockcount);
11861 			return (0);
11862 		} else if (cdb_group_id == CDB_GROUPID_0) {
11863 			FORMG0ADDR(cdbp, lba);
11864 			FORMG0COUNT(cdbp, blockcount);
11865 			return (0);
11866 		} else if (cdb_group_id == CDB_GROUPID_5) {
11867 			FORMG5ADDR(cdbp, lba);
11868 			FORMG5COUNT(cdbp, blockcount);
11869 			return (0);
11870 		}
11871 
11872 		/* Unreachable */
11873 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
11874 	}
11875 
11876 	/*
11877 	 * Error setting up next portion of cmd transfer.
11878 	 * Something is definitely very wrong and this
11879 	 * should not happen.
11880 	 */
11881 	return (SD_PKT_ALLOC_FAILURE);
11882 }
11883 #endif /* defined(__i386) || defined(__amd64) */
11884 
11885 /*
11886  *    Function: sd_initpkt_for_uscsi
11887  *
11888  * Description: Allocate and initialize for transport a scsi_pkt struct,
11889  *		based upon the info specified in the given uscsi_cmd struct.
11890  *
11891  * Return Code: SD_PKT_ALLOC_SUCCESS
11892  *		SD_PKT_ALLOC_FAILURE
11893  *		SD_PKT_ALLOC_FAILURE_NO_DMA
11894  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11895  *
11896  *     Context: Kernel thread and may be called from software interrupt context
11897  *		as part of a sdrunout callback. This function may not block or
11898  *		call routines that block
11899  */
11900 
11901 static int
11902 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
11903 {
11904 	struct uscsi_cmd *uscmd;
11905 	struct sd_xbuf	*xp;
11906 	struct scsi_pkt	*pktp;
11907 	struct sd_lun	*un;
11908 	uint32_t	flags = 0;
11909 
11910 	ASSERT(bp != NULL);
11911 	ASSERT(pktpp != NULL);
11912 	xp = SD_GET_XBUF(bp);
11913 	ASSERT(xp != NULL);
11914 	un = SD_GET_UN(bp);
11915 	ASSERT(un != NULL);
11916 	ASSERT(mutex_owned(SD_MUTEX(un)));
11917 
11918 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
11919 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
11920 	ASSERT(uscmd != NULL);
11921 
11922 	SD_TRACE(SD_LOG_IO_CORE, un,
11923 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
11924 
11925 	/*
11926 	 * Allocate the scsi_pkt for the command.
11927 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
11928 	 *	 during scsi_init_pkt time and will continue to use the
11929 	 *	 same path as long as the same scsi_pkt is used without
11930 	 *	 intervening scsi_dma_free(). Since uscsi command does
11931 	 *	 not call scsi_dmafree() before retry failed command, it
11932 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
11933 	 *	 set such that scsi_vhci can use other available path for
11934 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
11935 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
11936 	 */
11937 	pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
11938 	    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
11939 	    sizeof (struct scsi_arq_status), 0,
11940 	    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
11941 	    sdrunout, (caddr_t)un);
11942 
11943 	if (pktp == NULL) {
11944 		*pktpp = NULL;
11945 		/*
11946 		 * Set the driver state to RWAIT to indicate the driver
11947 		 * is waiting on resource allocations. The driver will not
11948 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
11949 		 */
11950 		New_state(un, SD_STATE_RWAIT);
11951 
11952 		SD_ERROR(SD_LOG_IO_CORE, un,
11953 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
11954 
11955 		if ((bp->b_flags & B_ERROR) != 0) {
11956 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
11957 		}
11958 		return (SD_PKT_ALLOC_FAILURE);
11959 	}
11960 
11961 	/*
11962 	 * We do not do DMA breakup for USCSI commands, so return failure
11963 	 * here if all the needed DMA resources were not allocated.
11964 	 */
11965 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
11966 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
11967 		scsi_destroy_pkt(pktp);
11968 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
11969 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
11970 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
11971 	}
11972 
11973 	/* Init the cdb from the given uscsi struct */
11974 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
11975 	    uscmd->uscsi_cdb[0], 0, 0, 0);
11976 
11977 	SD_FILL_SCSI1_LUN(un, pktp);
11978 
11979 	/*
11980 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
11981 	 * for listing of the supported flags.
11982 	 */
11983 
11984 	if (uscmd->uscsi_flags & USCSI_SILENT) {
11985 		flags |= FLAG_SILENT;
11986 	}
11987 
11988 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
11989 		flags |= FLAG_DIAGNOSE;
11990 	}
11991 
11992 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
11993 		flags |= FLAG_ISOLATE;
11994 	}
11995 
11996 	if (un->un_f_is_fibre == FALSE) {
11997 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
11998 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
11999 		}
12000 	}
12001 
12002 	/*
12003 	 * Set the pkt flags here so we save time later.
12004 	 * Note: These flags are NOT in the uscsi man page!!!
12005 	 */
12006 	if (uscmd->uscsi_flags & USCSI_HEAD) {
12007 		flags |= FLAG_HEAD;
12008 	}
12009 
12010 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
12011 		flags |= FLAG_NOINTR;
12012 	}
12013 
12014 	/*
12015 	 * For tagged queueing, things get a bit complicated.
12016 	 * Check first for head of queue and last for ordered queue.
12017 	 * If neither head nor order, use the default driver tag flags.
12018 	 */
12019 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
12020 		if (uscmd->uscsi_flags & USCSI_HTAG) {
12021 			flags |= FLAG_HTAG;
12022 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
12023 			flags |= FLAG_OTAG;
12024 		} else {
12025 			flags |= un->un_tagflags & FLAG_TAGMASK;
12026 		}
12027 	}
12028 
12029 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
12030 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
12031 	}
12032 
12033 	pktp->pkt_flags = flags;
12034 
12035 	/* Copy the caller's CDB into the pkt... */
12036 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
12037 
12038 	if (uscmd->uscsi_timeout == 0) {
12039 		pktp->pkt_time = un->un_uscsi_timeout;
12040 	} else {
12041 		pktp->pkt_time = uscmd->uscsi_timeout;
12042 	}
12043 
12044 	/* need it later to identify USCSI request in sdintr */
12045 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
12046 
12047 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
12048 
12049 	pktp->pkt_private = bp;
12050 	pktp->pkt_comp = sdintr;
12051 	*pktpp = pktp;
12052 
12053 	SD_TRACE(SD_LOG_IO_CORE, un,
12054 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
12055 
12056 	return (SD_PKT_ALLOC_SUCCESS);
12057 }
12058 
12059 
12060 /*
12061  *    Function: sd_destroypkt_for_uscsi
12062  *
12063  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
12064  *		IOs.. Also saves relevant info into the associated uscsi_cmd
12065  *		struct.
12066  *
12067  *     Context: May be called under interrupt context
12068  */
12069 
12070 static void
12071 sd_destroypkt_for_uscsi(struct buf *bp)
12072 {
12073 	struct uscsi_cmd *uscmd;
12074 	struct sd_xbuf	*xp;
12075 	struct scsi_pkt	*pktp;
12076 	struct sd_lun	*un;
12077 
12078 	ASSERT(bp != NULL);
12079 	xp = SD_GET_XBUF(bp);
12080 	ASSERT(xp != NULL);
12081 	un = SD_GET_UN(bp);
12082 	ASSERT(un != NULL);
12083 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12084 	pktp = SD_GET_PKTP(bp);
12085 	ASSERT(pktp != NULL);
12086 
12087 	SD_TRACE(SD_LOG_IO_CORE, un,
12088 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
12089 
12090 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
12091 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
12092 	ASSERT(uscmd != NULL);
12093 
12094 	/* Save the status and the residual into the uscsi_cmd struct */
12095 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
12096 	uscmd->uscsi_resid  = bp->b_resid;
12097 
12098 	/*
12099 	 * If enabled, copy any saved sense data into the area specified
12100 	 * by the uscsi command.
12101 	 */
12102 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
12103 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
12104 		/*
12105 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
12106 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
12107 		 */
12108 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
12109 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
12110 		bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, SENSE_LENGTH);
12111 	}
12112 
12113 	/* We are done with the scsi_pkt; free it now */
12114 	ASSERT(SD_GET_PKTP(bp) != NULL);
12115 	scsi_destroy_pkt(SD_GET_PKTP(bp));
12116 
12117 	SD_TRACE(SD_LOG_IO_CORE, un,
12118 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
12119 }
12120 
12121 
12122 /*
12123  *    Function: sd_bioclone_alloc
12124  *
12125  * Description: Allocate a buf(9S) and init it as per the given buf
12126  *		and the various arguments.  The associated sd_xbuf
12127  *		struct is (nearly) duplicated.  The struct buf *bp
12128  *		argument is saved in new_xp->xb_private.
12129  *
12130  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
12131  *		datalen - size of data area for the shadow bp
12132  *		blkno - starting LBA
12133  *		func - function pointer for b_iodone in the shadow buf. (May
12134  *			be NULL if none.)
12135  *
12136  * Return Code: Pointer to allocates buf(9S) struct
12137  *
12138  *     Context: Can sleep.
12139  */
12140 
12141 static struct buf *
12142 sd_bioclone_alloc(struct buf *bp, size_t datalen,
12143 	daddr_t blkno, int (*func)(struct buf *))
12144 {
12145 	struct	sd_lun	*un;
12146 	struct	sd_xbuf	*xp;
12147 	struct	sd_xbuf	*new_xp;
12148 	struct	buf	*new_bp;
12149 
12150 	ASSERT(bp != NULL);
12151 	xp = SD_GET_XBUF(bp);
12152 	ASSERT(xp != NULL);
12153 	un = SD_GET_UN(bp);
12154 	ASSERT(un != NULL);
12155 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12156 
12157 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
12158 	    NULL, KM_SLEEP);
12159 
12160 	new_bp->b_lblkno	= blkno;
12161 
12162 	/*
12163 	 * Allocate an xbuf for the shadow bp and copy the contents of the
12164 	 * original xbuf into it.
12165 	 */
12166 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12167 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
12168 
12169 	/*
12170 	 * The given bp is automatically saved in the xb_private member
12171 	 * of the new xbuf.  Callers are allowed to depend on this.
12172 	 */
12173 	new_xp->xb_private = bp;
12174 
12175 	new_bp->b_private  = new_xp;
12176 
12177 	return (new_bp);
12178 }
12179 
12180 /*
12181  *    Function: sd_shadow_buf_alloc
12182  *
12183  * Description: Allocate a buf(9S) and init it as per the given buf
12184  *		and the various arguments.  The associated sd_xbuf
12185  *		struct is (nearly) duplicated.  The struct buf *bp
12186  *		argument is saved in new_xp->xb_private.
12187  *
12188  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
12189  *		datalen - size of data area for the shadow bp
12190  *		bflags - B_READ or B_WRITE (pseudo flag)
12191  *		blkno - starting LBA
12192  *		func - function pointer for b_iodone in the shadow buf. (May
12193  *			be NULL if none.)
12194  *
12195  * Return Code: Pointer to allocates buf(9S) struct
12196  *
12197  *     Context: Can sleep.
12198  */
12199 
12200 static struct buf *
12201 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
12202 	daddr_t blkno, int (*func)(struct buf *))
12203 {
12204 	struct	sd_lun	*un;
12205 	struct	sd_xbuf	*xp;
12206 	struct	sd_xbuf	*new_xp;
12207 	struct	buf	*new_bp;
12208 
12209 	ASSERT(bp != NULL);
12210 	xp = SD_GET_XBUF(bp);
12211 	ASSERT(xp != NULL);
12212 	un = SD_GET_UN(bp);
12213 	ASSERT(un != NULL);
12214 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12215 
12216 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
12217 		bp_mapin(bp);
12218 	}
12219 
12220 	bflags &= (B_READ | B_WRITE);
12221 #if defined(__i386) || defined(__amd64)
12222 	new_bp = getrbuf(KM_SLEEP);
12223 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
12224 	new_bp->b_bcount = datalen;
12225 	new_bp->b_flags = bflags |
12226 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
12227 #else
12228 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
12229 	    datalen, bflags, SLEEP_FUNC, NULL);
12230 #endif
12231 	new_bp->av_forw	= NULL;
12232 	new_bp->av_back	= NULL;
12233 	new_bp->b_dev	= bp->b_dev;
12234 	new_bp->b_blkno	= blkno;
12235 	new_bp->b_iodone = func;
12236 	new_bp->b_edev	= bp->b_edev;
12237 	new_bp->b_resid	= 0;
12238 
12239 	/* We need to preserve the B_FAILFAST flag */
12240 	if (bp->b_flags & B_FAILFAST) {
12241 		new_bp->b_flags |= B_FAILFAST;
12242 	}
12243 
12244 	/*
12245 	 * Allocate an xbuf for the shadow bp and copy the contents of the
12246 	 * original xbuf into it.
12247 	 */
12248 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12249 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
12250 
12251 	/* Need later to copy data between the shadow buf & original buf! */
12252 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
12253 
12254 	/*
12255 	 * The given bp is automatically saved in the xb_private member
12256 	 * of the new xbuf.  Callers are allowed to depend on this.
12257 	 */
12258 	new_xp->xb_private = bp;
12259 
12260 	new_bp->b_private  = new_xp;
12261 
12262 	return (new_bp);
12263 }
12264 
12265 /*
12266  *    Function: sd_bioclone_free
12267  *
12268  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
12269  *		in the larger than partition operation.
12270  *
12271  *     Context: May be called under interrupt context
12272  */
12273 
12274 static void
12275 sd_bioclone_free(struct buf *bp)
12276 {
12277 	struct sd_xbuf	*xp;
12278 
12279 	ASSERT(bp != NULL);
12280 	xp = SD_GET_XBUF(bp);
12281 	ASSERT(xp != NULL);
12282 
12283 	/*
12284 	 * Call bp_mapout() before freeing the buf,  in case a lower
12285 	 * layer or HBA  had done a bp_mapin().  we must do this here
12286 	 * as we are the "originator" of the shadow buf.
12287 	 */
12288 	bp_mapout(bp);
12289 
12290 	/*
12291 	 * Null out b_iodone before freeing the bp, to ensure that the driver
12292 	 * never gets confused by a stale value in this field. (Just a little
12293 	 * extra defensiveness here.)
12294 	 */
12295 	bp->b_iodone = NULL;
12296 
12297 	freerbuf(bp);
12298 
12299 	kmem_free(xp, sizeof (struct sd_xbuf));
12300 }
12301 
12302 /*
12303  *    Function: sd_shadow_buf_free
12304  *
12305  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
12306  *
12307  *     Context: May be called under interrupt context
12308  */
12309 
12310 static void
12311 sd_shadow_buf_free(struct buf *bp)
12312 {
12313 	struct sd_xbuf	*xp;
12314 
12315 	ASSERT(bp != NULL);
12316 	xp = SD_GET_XBUF(bp);
12317 	ASSERT(xp != NULL);
12318 
12319 #if defined(__sparc)
12320 	/*
12321 	 * Call bp_mapout() before freeing the buf,  in case a lower
12322 	 * layer or HBA  had done a bp_mapin().  we must do this here
12323 	 * as we are the "originator" of the shadow buf.
12324 	 */
12325 	bp_mapout(bp);
12326 #endif
12327 
12328 	/*
12329 	 * Null out b_iodone before freeing the bp, to ensure that the driver
12330 	 * never gets confused by a stale value in this field. (Just a little
12331 	 * extra defensiveness here.)
12332 	 */
12333 	bp->b_iodone = NULL;
12334 
12335 #if defined(__i386) || defined(__amd64)
12336 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
12337 	freerbuf(bp);
12338 #else
12339 	scsi_free_consistent_buf(bp);
12340 #endif
12341 
12342 	kmem_free(xp, sizeof (struct sd_xbuf));
12343 }
12344 
12345 
12346 /*
12347  *    Function: sd_print_transport_rejected_message
12348  *
12349  * Description: This implements the ludicrously complex rules for printing
12350  *		a "transport rejected" message.  This is to address the
12351  *		specific problem of having a flood of this error message
12352  *		produced when a failover occurs.
12353  *
12354  *     Context: Any.
12355  */
12356 
12357 static void
12358 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
12359 	int code)
12360 {
12361 	ASSERT(un != NULL);
12362 	ASSERT(mutex_owned(SD_MUTEX(un)));
12363 	ASSERT(xp != NULL);
12364 
12365 	/*
12366 	 * Print the "transport rejected" message under the following
12367 	 * conditions:
12368 	 *
12369 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
12370 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
12371 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
12372 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
12373 	 *   scsi_transport(9F) (which indicates that the target might have
12374 	 *   gone off-line).  This uses the un->un_tran_fatal_count
12375 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
12376 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
12377 	 *   from scsi_transport().
12378 	 *
12379 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
12380 	 * the preceeding cases in order for the message to be printed.
12381 	 */
12382 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
12383 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
12384 		    (code != TRAN_FATAL_ERROR) ||
12385 		    (un->un_tran_fatal_count == 1)) {
12386 			switch (code) {
12387 			case TRAN_BADPKT:
12388 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12389 				    "transport rejected bad packet\n");
12390 				break;
12391 			case TRAN_FATAL_ERROR:
12392 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12393 				    "transport rejected fatal error\n");
12394 				break;
12395 			default:
12396 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12397 				    "transport rejected (%d)\n", code);
12398 				break;
12399 			}
12400 		}
12401 	}
12402 }
12403 
12404 
12405 /*
12406  *    Function: sd_add_buf_to_waitq
12407  *
12408  * Description: Add the given buf(9S) struct to the wait queue for the
12409  *		instance.  If sorting is enabled, then the buf is added
12410  *		to the queue via an elevator sort algorithm (a la
12411  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
12412  *		If sorting is not enabled, then the buf is just added
12413  *		to the end of the wait queue.
12414  *
12415  * Return Code: void
12416  *
12417  *     Context: Does not sleep/block, therefore technically can be called
12418  *		from any context.  However if sorting is enabled then the
12419  *		execution time is indeterminate, and may take long if
12420  *		the wait queue grows large.
12421  */
12422 
12423 static void
12424 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
12425 {
12426 	struct buf *ap;
12427 
12428 	ASSERT(bp != NULL);
12429 	ASSERT(un != NULL);
12430 	ASSERT(mutex_owned(SD_MUTEX(un)));
12431 
12432 	/* If the queue is empty, add the buf as the only entry & return. */
12433 	if (un->un_waitq_headp == NULL) {
12434 		ASSERT(un->un_waitq_tailp == NULL);
12435 		un->un_waitq_headp = un->un_waitq_tailp = bp;
12436 		bp->av_forw = NULL;
12437 		return;
12438 	}
12439 
12440 	ASSERT(un->un_waitq_tailp != NULL);
12441 
12442 	/*
12443 	 * If sorting is disabled, just add the buf to the tail end of
12444 	 * the wait queue and return.
12445 	 */
12446 	if (un->un_f_disksort_disabled) {
12447 		un->un_waitq_tailp->av_forw = bp;
12448 		un->un_waitq_tailp = bp;
12449 		bp->av_forw = NULL;
12450 		return;
12451 	}
12452 
12453 	/*
12454 	 * Sort thru the list of requests currently on the wait queue
12455 	 * and add the new buf request at the appropriate position.
12456 	 *
12457 	 * The un->un_waitq_headp is an activity chain pointer on which
12458 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
12459 	 * first queue holds those requests which are positioned after
12460 	 * the current SD_GET_BLKNO() (in the first request); the second holds
12461 	 * requests which came in after their SD_GET_BLKNO() number was passed.
12462 	 * Thus we implement a one way scan, retracting after reaching
12463 	 * the end of the drive to the first request on the second
12464 	 * queue, at which time it becomes the first queue.
12465 	 * A one-way scan is natural because of the way UNIX read-ahead
12466 	 * blocks are allocated.
12467 	 *
12468 	 * If we lie after the first request, then we must locate the
12469 	 * second request list and add ourselves to it.
12470 	 */
12471 	ap = un->un_waitq_headp;
12472 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
12473 		while (ap->av_forw != NULL) {
12474 			/*
12475 			 * Look for an "inversion" in the (normally
12476 			 * ascending) block numbers. This indicates
12477 			 * the start of the second request list.
12478 			 */
12479 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
12480 				/*
12481 				 * Search the second request list for the
12482 				 * first request at a larger block number.
12483 				 * We go before that; however if there is
12484 				 * no such request, we go at the end.
12485 				 */
12486 				do {
12487 					if (SD_GET_BLKNO(bp) <
12488 					    SD_GET_BLKNO(ap->av_forw)) {
12489 						goto insert;
12490 					}
12491 					ap = ap->av_forw;
12492 				} while (ap->av_forw != NULL);
12493 				goto insert;		/* after last */
12494 			}
12495 			ap = ap->av_forw;
12496 		}
12497 
12498 		/*
12499 		 * No inversions... we will go after the last, and
12500 		 * be the first request in the second request list.
12501 		 */
12502 		goto insert;
12503 	}
12504 
12505 	/*
12506 	 * Request is at/after the current request...
12507 	 * sort in the first request list.
12508 	 */
12509 	while (ap->av_forw != NULL) {
12510 		/*
12511 		 * We want to go after the current request (1) if
12512 		 * there is an inversion after it (i.e. it is the end
12513 		 * of the first request list), or (2) if the next
12514 		 * request is a larger block no. than our request.
12515 		 */
12516 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
12517 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
12518 			goto insert;
12519 		}
12520 		ap = ap->av_forw;
12521 	}
12522 
12523 	/*
12524 	 * Neither a second list nor a larger request, therefore
12525 	 * we go at the end of the first list (which is the same
12526 	 * as the end of the whole schebang).
12527 	 */
12528 insert:
12529 	bp->av_forw = ap->av_forw;
12530 	ap->av_forw = bp;
12531 
12532 	/*
12533 	 * If we inserted onto the tail end of the waitq, make sure the
12534 	 * tail pointer is updated.
12535 	 */
12536 	if (ap == un->un_waitq_tailp) {
12537 		un->un_waitq_tailp = bp;
12538 	}
12539 }
12540 
12541 
12542 /*
12543  *    Function: sd_start_cmds
12544  *
12545  * Description: Remove and transport cmds from the driver queues.
12546  *
12547  *   Arguments: un - pointer to the unit (soft state) struct for the target.
12548  *
12549  *		immed_bp - ptr to a buf to be transported immediately. Only
12550  *		the immed_bp is transported; bufs on the waitq are not
12551  *		processed and the un_retry_bp is not checked.  If immed_bp is
12552  *		NULL, then normal queue processing is performed.
12553  *
12554  *     Context: May be called from kernel thread context, interrupt context,
12555  *		or runout callback context. This function may not block or
12556  *		call routines that block.
12557  */
12558 
12559 static void
12560 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
12561 {
12562 	struct	sd_xbuf	*xp;
12563 	struct	buf	*bp;
12564 	void	(*statp)(kstat_io_t *);
12565 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12566 	void	(*saved_statp)(kstat_io_t *);
12567 #endif
12568 	int	rval;
12569 
12570 	ASSERT(un != NULL);
12571 	ASSERT(mutex_owned(SD_MUTEX(un)));
12572 	ASSERT(un->un_ncmds_in_transport >= 0);
12573 	ASSERT(un->un_throttle >= 0);
12574 
12575 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
12576 
12577 	do {
12578 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12579 		saved_statp = NULL;
12580 #endif
12581 
12582 		/*
12583 		 * If we are syncing or dumping, fail the command to
12584 		 * avoid recursively calling back into scsi_transport().
12585 		 * The dump I/O itself uses a separate code path so this
12586 		 * only prevents non-dump I/O from being sent while dumping.
12587 		 * File system sync takes place before dumping begins.
12588 		 * During panic, filesystem I/O is allowed provided
12589 		 * un_in_callback is <= 1.  This is to prevent recursion
12590 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
12591 		 * sd_start_cmds and so on.  See panic.c for more information
12592 		 * about the states the system can be in during panic.
12593 		 */
12594 		if ((un->un_state == SD_STATE_DUMPING) ||
12595 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
12596 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12597 			    "sd_start_cmds: panicking\n");
12598 			goto exit;
12599 		}
12600 
12601 		if ((bp = immed_bp) != NULL) {
12602 			/*
12603 			 * We have a bp that must be transported immediately.
12604 			 * It's OK to transport the immed_bp here without doing
12605 			 * the throttle limit check because the immed_bp is
12606 			 * always used in a retry/recovery case. This means
12607 			 * that we know we are not at the throttle limit by
12608 			 * virtue of the fact that to get here we must have
12609 			 * already gotten a command back via sdintr(). This also
12610 			 * relies on (1) the command on un_retry_bp preventing
12611 			 * further commands from the waitq from being issued;
12612 			 * and (2) the code in sd_retry_command checking the
12613 			 * throttle limit before issuing a delayed or immediate
12614 			 * retry. This holds even if the throttle limit is
12615 			 * currently ratcheted down from its maximum value.
12616 			 */
12617 			statp = kstat_runq_enter;
12618 			if (bp == un->un_retry_bp) {
12619 				ASSERT((un->un_retry_statp == NULL) ||
12620 				    (un->un_retry_statp == kstat_waitq_enter) ||
12621 				    (un->un_retry_statp ==
12622 				    kstat_runq_back_to_waitq));
12623 				/*
12624 				 * If the waitq kstat was incremented when
12625 				 * sd_set_retry_bp() queued this bp for a retry,
12626 				 * then we must set up statp so that the waitq
12627 				 * count will get decremented correctly below.
12628 				 * Also we must clear un->un_retry_statp to
12629 				 * ensure that we do not act on a stale value
12630 				 * in this field.
12631 				 */
12632 				if ((un->un_retry_statp == kstat_waitq_enter) ||
12633 				    (un->un_retry_statp ==
12634 				    kstat_runq_back_to_waitq)) {
12635 					statp = kstat_waitq_to_runq;
12636 				}
12637 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12638 				saved_statp = un->un_retry_statp;
12639 #endif
12640 				un->un_retry_statp = NULL;
12641 
12642 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
12643 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
12644 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
12645 				    un, un->un_retry_bp, un->un_throttle,
12646 				    un->un_ncmds_in_transport);
12647 			} else {
12648 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
12649 				    "processing priority bp:0x%p\n", bp);
12650 			}
12651 
12652 		} else if ((bp = un->un_waitq_headp) != NULL) {
12653 			/*
12654 			 * A command on the waitq is ready to go, but do not
12655 			 * send it if:
12656 			 *
12657 			 * (1) the throttle limit has been reached, or
12658 			 * (2) a retry is pending, or
12659 			 * (3) a START_STOP_UNIT callback pending, or
12660 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
12661 			 *	command is pending.
12662 			 *
12663 			 * For all of these conditions, IO processing will
12664 			 * restart after the condition is cleared.
12665 			 */
12666 			if (un->un_ncmds_in_transport >= un->un_throttle) {
12667 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12668 				    "sd_start_cmds: exiting, "
12669 				    "throttle limit reached!\n");
12670 				goto exit;
12671 			}
12672 			if (un->un_retry_bp != NULL) {
12673 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12674 				    "sd_start_cmds: exiting, retry pending!\n");
12675 				goto exit;
12676 			}
12677 			if (un->un_startstop_timeid != NULL) {
12678 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12679 				    "sd_start_cmds: exiting, "
12680 				    "START_STOP pending!\n");
12681 				goto exit;
12682 			}
12683 			if (un->un_direct_priority_timeid != NULL) {
12684 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12685 				    "sd_start_cmds: exiting, "
12686 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
12687 				goto exit;
12688 			}
12689 
12690 			/* Dequeue the command */
12691 			un->un_waitq_headp = bp->av_forw;
12692 			if (un->un_waitq_headp == NULL) {
12693 				un->un_waitq_tailp = NULL;
12694 			}
12695 			bp->av_forw = NULL;
12696 			statp = kstat_waitq_to_runq;
12697 			SD_TRACE(SD_LOG_IO_CORE, un,
12698 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
12699 
12700 		} else {
12701 			/* No work to do so bail out now */
12702 			SD_TRACE(SD_LOG_IO_CORE, un,
12703 			    "sd_start_cmds: no more work, exiting!\n");
12704 			goto exit;
12705 		}
12706 
12707 		/*
12708 		 * Reset the state to normal. This is the mechanism by which
12709 		 * the state transitions from either SD_STATE_RWAIT or
12710 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
12711 		 * If state is SD_STATE_PM_CHANGING then this command is
12712 		 * part of the device power control and the state must
12713 		 * not be put back to normal. Doing so would would
12714 		 * allow new commands to proceed when they shouldn't,
12715 		 * the device may be going off.
12716 		 */
12717 		if ((un->un_state != SD_STATE_SUSPENDED) &&
12718 		    (un->un_state != SD_STATE_PM_CHANGING)) {
12719 			New_state(un, SD_STATE_NORMAL);
12720 		    }
12721 
12722 		xp = SD_GET_XBUF(bp);
12723 		ASSERT(xp != NULL);
12724 
12725 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12726 		/*
12727 		 * Allocate the scsi_pkt if we need one, or attach DMA
12728 		 * resources if we have a scsi_pkt that needs them. The
12729 		 * latter should only occur for commands that are being
12730 		 * retried.
12731 		 */
12732 		if ((xp->xb_pktp == NULL) ||
12733 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
12734 #else
12735 		if (xp->xb_pktp == NULL) {
12736 #endif
12737 			/*
12738 			 * There is no scsi_pkt allocated for this buf. Call
12739 			 * the initpkt function to allocate & init one.
12740 			 *
12741 			 * The scsi_init_pkt runout callback functionality is
12742 			 * implemented as follows:
12743 			 *
12744 			 * 1) The initpkt function always calls
12745 			 *    scsi_init_pkt(9F) with sdrunout specified as the
12746 			 *    callback routine.
12747 			 * 2) A successful packet allocation is initialized and
12748 			 *    the I/O is transported.
12749 			 * 3) The I/O associated with an allocation resource
12750 			 *    failure is left on its queue to be retried via
12751 			 *    runout or the next I/O.
12752 			 * 4) The I/O associated with a DMA error is removed
12753 			 *    from the queue and failed with EIO. Processing of
12754 			 *    the transport queues is also halted to be
12755 			 *    restarted via runout or the next I/O.
12756 			 * 5) The I/O associated with a CDB size or packet
12757 			 *    size error is removed from the queue and failed
12758 			 *    with EIO. Processing of the transport queues is
12759 			 *    continued.
12760 			 *
12761 			 * Note: there is no interface for canceling a runout
12762 			 * callback. To prevent the driver from detaching or
12763 			 * suspending while a runout is pending the driver
12764 			 * state is set to SD_STATE_RWAIT
12765 			 *
12766 			 * Note: using the scsi_init_pkt callback facility can
12767 			 * result in an I/O request persisting at the head of
12768 			 * the list which cannot be satisfied even after
12769 			 * multiple retries. In the future the driver may
12770 			 * implement some kind of maximum runout count before
12771 			 * failing an I/O.
12772 			 *
12773 			 * Note: the use of funcp below may seem superfluous,
12774 			 * but it helps warlock figure out the correct
12775 			 * initpkt function calls (see [s]sd.wlcmd).
12776 			 */
12777 			struct scsi_pkt	*pktp;
12778 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
12779 
12780 			ASSERT(bp != un->un_rqs_bp);
12781 
12782 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
12783 			switch ((*funcp)(bp, &pktp)) {
12784 			case  SD_PKT_ALLOC_SUCCESS:
12785 				xp->xb_pktp = pktp;
12786 				SD_TRACE(SD_LOG_IO_CORE, un,
12787 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
12788 				    pktp);
12789 				goto got_pkt;
12790 
12791 			case SD_PKT_ALLOC_FAILURE:
12792 				/*
12793 				 * Temporary (hopefully) resource depletion.
12794 				 * Since retries and RQS commands always have a
12795 				 * scsi_pkt allocated, these cases should never
12796 				 * get here. So the only cases this needs to
12797 				 * handle is a bp from the waitq (which we put
12798 				 * back onto the waitq for sdrunout), or a bp
12799 				 * sent as an immed_bp (which we just fail).
12800 				 */
12801 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12802 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
12803 
12804 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12805 
12806 				if (bp == immed_bp) {
12807 					/*
12808 					 * If SD_XB_DMA_FREED is clear, then
12809 					 * this is a failure to allocate a
12810 					 * scsi_pkt, and we must fail the
12811 					 * command.
12812 					 */
12813 					if ((xp->xb_pkt_flags &
12814 					    SD_XB_DMA_FREED) == 0) {
12815 						break;
12816 					}
12817 
12818 					/*
12819 					 * If this immediate command is NOT our
12820 					 * un_retry_bp, then we must fail it.
12821 					 */
12822 					if (bp != un->un_retry_bp) {
12823 						break;
12824 					}
12825 
12826 					/*
12827 					 * We get here if this cmd is our
12828 					 * un_retry_bp that was DMAFREED, but
12829 					 * scsi_init_pkt() failed to reallocate
12830 					 * DMA resources when we attempted to
12831 					 * retry it. This can happen when an
12832 					 * mpxio failover is in progress, but
12833 					 * we don't want to just fail the
12834 					 * command in this case.
12835 					 *
12836 					 * Use timeout(9F) to restart it after
12837 					 * a 100ms delay.  We don't want to
12838 					 * let sdrunout() restart it, because
12839 					 * sdrunout() is just supposed to start
12840 					 * commands that are sitting on the
12841 					 * wait queue.  The un_retry_bp stays
12842 					 * set until the command completes, but
12843 					 * sdrunout can be called many times
12844 					 * before that happens.  Since sdrunout
12845 					 * cannot tell if the un_retry_bp is
12846 					 * already in the transport, it could
12847 					 * end up calling scsi_transport() for
12848 					 * the un_retry_bp multiple times.
12849 					 *
12850 					 * Also: don't schedule the callback
12851 					 * if some other callback is already
12852 					 * pending.
12853 					 */
12854 					if (un->un_retry_statp == NULL) {
12855 						/*
12856 						 * restore the kstat pointer to
12857 						 * keep kstat counts coherent
12858 						 * when we do retry the command.
12859 						 */
12860 						un->un_retry_statp =
12861 						    saved_statp;
12862 					}
12863 
12864 					if ((un->un_startstop_timeid == NULL) &&
12865 					    (un->un_retry_timeid == NULL) &&
12866 					    (un->un_direct_priority_timeid ==
12867 					    NULL)) {
12868 
12869 						un->un_retry_timeid =
12870 						    timeout(
12871 						    sd_start_retry_command,
12872 						    un, SD_RESTART_TIMEOUT);
12873 					}
12874 					goto exit;
12875 				}
12876 
12877 #else
12878 				if (bp == immed_bp) {
12879 					break;	/* Just fail the command */
12880 				}
12881 #endif
12882 
12883 				/* Add the buf back to the head of the waitq */
12884 				bp->av_forw = un->un_waitq_headp;
12885 				un->un_waitq_headp = bp;
12886 				if (un->un_waitq_tailp == NULL) {
12887 					un->un_waitq_tailp = bp;
12888 				}
12889 				goto exit;
12890 
12891 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
12892 				/*
12893 				 * HBA DMA resource failure. Fail the command
12894 				 * and continue processing of the queues.
12895 				 */
12896 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12897 				    "sd_start_cmds: "
12898 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
12899 				break;
12900 
12901 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
12902 				/*
12903 				 * Note:x86: Partial DMA mapping not supported
12904 				 * for USCSI commands, and all the needed DMA
12905 				 * resources were not allocated.
12906 				 */
12907 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12908 				    "sd_start_cmds: "
12909 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
12910 				break;
12911 
12912 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
12913 				/*
12914 				 * Note:x86: Request cannot fit into CDB based
12915 				 * on lba and len.
12916 				 */
12917 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12918 				    "sd_start_cmds: "
12919 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
12920 				break;
12921 
12922 			default:
12923 				/* Should NEVER get here! */
12924 				panic("scsi_initpkt error");
12925 				/*NOTREACHED*/
12926 			}
12927 
12928 			/*
12929 			 * Fatal error in allocating a scsi_pkt for this buf.
12930 			 * Update kstats & return the buf with an error code.
12931 			 * We must use sd_return_failed_command_no_restart() to
12932 			 * avoid a recursive call back into sd_start_cmds().
12933 			 * However this also means that we must keep processing
12934 			 * the waitq here in order to avoid stalling.
12935 			 */
12936 			if (statp == kstat_waitq_to_runq) {
12937 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
12938 			}
12939 			sd_return_failed_command_no_restart(un, bp, EIO);
12940 			if (bp == immed_bp) {
12941 				/* immed_bp is gone by now, so clear this */
12942 				immed_bp = NULL;
12943 			}
12944 			continue;
12945 		}
12946 got_pkt:
12947 		if (bp == immed_bp) {
12948 			/* goto the head of the class.... */
12949 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
12950 		}
12951 
12952 		un->un_ncmds_in_transport++;
12953 		SD_UPDATE_KSTATS(un, statp, bp);
12954 
12955 		/*
12956 		 * Call scsi_transport() to send the command to the target.
12957 		 * According to SCSA architecture, we must drop the mutex here
12958 		 * before calling scsi_transport() in order to avoid deadlock.
12959 		 * Note that the scsi_pkt's completion routine can be executed
12960 		 * (from interrupt context) even before the call to
12961 		 * scsi_transport() returns.
12962 		 */
12963 		SD_TRACE(SD_LOG_IO_CORE, un,
12964 		    "sd_start_cmds: calling scsi_transport()\n");
12965 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
12966 
12967 		mutex_exit(SD_MUTEX(un));
12968 		rval = scsi_transport(xp->xb_pktp);
12969 		mutex_enter(SD_MUTEX(un));
12970 
12971 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12972 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
12973 
12974 		switch (rval) {
12975 		case TRAN_ACCEPT:
12976 			/* Clear this with every pkt accepted by the HBA */
12977 			un->un_tran_fatal_count = 0;
12978 			break;	/* Success; try the next cmd (if any) */
12979 
12980 		case TRAN_BUSY:
12981 			un->un_ncmds_in_transport--;
12982 			ASSERT(un->un_ncmds_in_transport >= 0);
12983 
12984 			/*
12985 			 * Don't retry request sense, the sense data
12986 			 * is lost when another request is sent.
12987 			 * Free up the rqs buf and retry
12988 			 * the original failed cmd.  Update kstat.
12989 			 */
12990 			if (bp == un->un_rqs_bp) {
12991 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
12992 				bp = sd_mark_rqs_idle(un, xp);
12993 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
12994 					NULL, NULL, EIO, SD_BSY_TIMEOUT / 500,
12995 					kstat_waitq_enter);
12996 				goto exit;
12997 			}
12998 
12999 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13000 			/*
13001 			 * Free the DMA resources for the  scsi_pkt. This will
13002 			 * allow mpxio to select another path the next time
13003 			 * we call scsi_transport() with this scsi_pkt.
13004 			 * See sdintr() for the rationalization behind this.
13005 			 */
13006 			if ((un->un_f_is_fibre == TRUE) &&
13007 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
13008 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
13009 				scsi_dmafree(xp->xb_pktp);
13010 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
13011 			}
13012 #endif
13013 
13014 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
13015 				/*
13016 				 * Commands that are SD_PATH_DIRECT_PRIORITY
13017 				 * are for error recovery situations. These do
13018 				 * not use the normal command waitq, so if they
13019 				 * get a TRAN_BUSY we cannot put them back onto
13020 				 * the waitq for later retry. One possible
13021 				 * problem is that there could already be some
13022 				 * other command on un_retry_bp that is waiting
13023 				 * for this one to complete, so we would be
13024 				 * deadlocked if we put this command back onto
13025 				 * the waitq for later retry (since un_retry_bp
13026 				 * must complete before the driver gets back to
13027 				 * commands on the waitq).
13028 				 *
13029 				 * To avoid deadlock we must schedule a callback
13030 				 * that will restart this command after a set
13031 				 * interval.  This should keep retrying for as
13032 				 * long as the underlying transport keeps
13033 				 * returning TRAN_BUSY (just like for other
13034 				 * commands).  Use the same timeout interval as
13035 				 * for the ordinary TRAN_BUSY retry.
13036 				 */
13037 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13038 				    "sd_start_cmds: scsi_transport() returned "
13039 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
13040 
13041 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13042 				un->un_direct_priority_timeid =
13043 				    timeout(sd_start_direct_priority_command,
13044 				    bp, SD_BSY_TIMEOUT / 500);
13045 
13046 				goto exit;
13047 			}
13048 
13049 			/*
13050 			 * For TRAN_BUSY, we want to reduce the throttle value,
13051 			 * unless we are retrying a command.
13052 			 */
13053 			if (bp != un->un_retry_bp) {
13054 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
13055 			}
13056 
13057 			/*
13058 			 * Set up the bp to be tried again 10 ms later.
13059 			 * Note:x86: Is there a timeout value in the sd_lun
13060 			 * for this condition?
13061 			 */
13062 			sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500,
13063 				kstat_runq_back_to_waitq);
13064 			goto exit;
13065 
13066 		case TRAN_FATAL_ERROR:
13067 			un->un_tran_fatal_count++;
13068 			/* FALLTHRU */
13069 
13070 		case TRAN_BADPKT:
13071 		default:
13072 			un->un_ncmds_in_transport--;
13073 			ASSERT(un->un_ncmds_in_transport >= 0);
13074 
13075 			/*
13076 			 * If this is our REQUEST SENSE command with a
13077 			 * transport error, we must get back the pointers
13078 			 * to the original buf, and mark the REQUEST
13079 			 * SENSE command as "available".
13080 			 */
13081 			if (bp == un->un_rqs_bp) {
13082 				bp = sd_mark_rqs_idle(un, xp);
13083 				xp = SD_GET_XBUF(bp);
13084 			} else {
13085 				/*
13086 				 * Legacy behavior: do not update transport
13087 				 * error count for request sense commands.
13088 				 */
13089 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
13090 			}
13091 
13092 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13093 			sd_print_transport_rejected_message(un, xp, rval);
13094 
13095 			/*
13096 			 * We must use sd_return_failed_command_no_restart() to
13097 			 * avoid a recursive call back into sd_start_cmds().
13098 			 * However this also means that we must keep processing
13099 			 * the waitq here in order to avoid stalling.
13100 			 */
13101 			sd_return_failed_command_no_restart(un, bp, EIO);
13102 
13103 			/*
13104 			 * Notify any threads waiting in sd_ddi_suspend() that
13105 			 * a command completion has occurred.
13106 			 */
13107 			if (un->un_state == SD_STATE_SUSPENDED) {
13108 				cv_broadcast(&un->un_disk_busy_cv);
13109 			}
13110 
13111 			if (bp == immed_bp) {
13112 				/* immed_bp is gone by now, so clear this */
13113 				immed_bp = NULL;
13114 			}
13115 			break;
13116 		}
13117 
13118 	} while (immed_bp == NULL);
13119 
13120 exit:
13121 	ASSERT(mutex_owned(SD_MUTEX(un)));
13122 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
13123 }
13124 
13125 
13126 /*
13127  *    Function: sd_return_command
13128  *
13129  * Description: Returns a command to its originator (with or without an
13130  *		error).  Also starts commands waiting to be transported
13131  *		to the target.
13132  *
13133  *     Context: May be called from interrupt, kernel, or timeout context
13134  */
13135 
13136 static void
13137 sd_return_command(struct sd_lun *un, struct buf *bp)
13138 {
13139 	struct sd_xbuf *xp;
13140 #if defined(__i386) || defined(__amd64)
13141 	struct scsi_pkt *pktp;
13142 #endif
13143 
13144 	ASSERT(bp != NULL);
13145 	ASSERT(un != NULL);
13146 	ASSERT(mutex_owned(SD_MUTEX(un)));
13147 	ASSERT(bp != un->un_rqs_bp);
13148 	xp = SD_GET_XBUF(bp);
13149 	ASSERT(xp != NULL);
13150 
13151 #if defined(__i386) || defined(__amd64)
13152 	pktp = SD_GET_PKTP(bp);
13153 #endif
13154 
13155 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
13156 
13157 #if defined(__i386) || defined(__amd64)
13158 	/*
13159 	 * Note:x86: check for the "sdrestart failed" case.
13160 	 */
13161 	if (((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
13162 		(geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
13163 		(xp->xb_pktp->pkt_resid == 0)) {
13164 
13165 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
13166 			/*
13167 			 * Successfully set up next portion of cmd
13168 			 * transfer, try sending it
13169 			 */
13170 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
13171 			    NULL, NULL, 0, (clock_t)0, NULL);
13172 			sd_start_cmds(un, NULL);
13173 			return;	/* Note:x86: need a return here? */
13174 		}
13175 	}
13176 #endif
13177 
13178 	/*
13179 	 * If this is the failfast bp, clear it from un_failfast_bp. This
13180 	 * can happen if upon being re-tried the failfast bp either
13181 	 * succeeded or encountered another error (possibly even a different
13182 	 * error than the one that precipitated the failfast state, but in
13183 	 * that case it would have had to exhaust retries as well). Regardless,
13184 	 * this should not occur whenever the instance is in the active
13185 	 * failfast state.
13186 	 */
13187 	if (bp == un->un_failfast_bp) {
13188 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
13189 		un->un_failfast_bp = NULL;
13190 	}
13191 
13192 	/*
13193 	 * Clear the failfast state upon successful completion of ANY cmd.
13194 	 */
13195 	if (bp->b_error == 0) {
13196 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
13197 	}
13198 
13199 	/*
13200 	 * This is used if the command was retried one or more times. Show that
13201 	 * we are done with it, and allow processing of the waitq to resume.
13202 	 */
13203 	if (bp == un->un_retry_bp) {
13204 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13205 		    "sd_return_command: un:0x%p: "
13206 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
13207 		un->un_retry_bp = NULL;
13208 		un->un_retry_statp = NULL;
13209 	}
13210 
13211 	SD_UPDATE_RDWR_STATS(un, bp);
13212 	SD_UPDATE_PARTITION_STATS(un, bp);
13213 
13214 	switch (un->un_state) {
13215 	case SD_STATE_SUSPENDED:
13216 		/*
13217 		 * Notify any threads waiting in sd_ddi_suspend() that
13218 		 * a command completion has occurred.
13219 		 */
13220 		cv_broadcast(&un->un_disk_busy_cv);
13221 		break;
13222 	default:
13223 		sd_start_cmds(un, NULL);
13224 		break;
13225 	}
13226 
13227 	/* Return this command up the iodone chain to its originator. */
13228 	mutex_exit(SD_MUTEX(un));
13229 
13230 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
13231 	xp->xb_pktp = NULL;
13232 
13233 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
13234 
13235 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13236 	mutex_enter(SD_MUTEX(un));
13237 
13238 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
13239 }
13240 
13241 
13242 /*
13243  *    Function: sd_return_failed_command
13244  *
13245  * Description: Command completion when an error occurred.
13246  *
13247  *     Context: May be called from interrupt context
13248  */
13249 
13250 static void
13251 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
13252 {
13253 	ASSERT(bp != NULL);
13254 	ASSERT(un != NULL);
13255 	ASSERT(mutex_owned(SD_MUTEX(un)));
13256 
13257 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13258 	    "sd_return_failed_command: entry\n");
13259 
13260 	/*
13261 	 * b_resid could already be nonzero due to a partial data
13262 	 * transfer, so do not change it here.
13263 	 */
13264 	SD_BIOERROR(bp, errcode);
13265 
13266 	sd_return_command(un, bp);
13267 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13268 	    "sd_return_failed_command: exit\n");
13269 }
13270 
13271 
13272 /*
13273  *    Function: sd_return_failed_command_no_restart
13274  *
13275  * Description: Same as sd_return_failed_command, but ensures that no
13276  *		call back into sd_start_cmds will be issued.
13277  *
13278  *     Context: May be called from interrupt context
13279  */
13280 
13281 static void
13282 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
13283 	int errcode)
13284 {
13285 	struct sd_xbuf *xp;
13286 
13287 	ASSERT(bp != NULL);
13288 	ASSERT(un != NULL);
13289 	ASSERT(mutex_owned(SD_MUTEX(un)));
13290 	xp = SD_GET_XBUF(bp);
13291 	ASSERT(xp != NULL);
13292 	ASSERT(errcode != 0);
13293 
13294 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13295 	    "sd_return_failed_command_no_restart: entry\n");
13296 
13297 	/*
13298 	 * b_resid could already be nonzero due to a partial data
13299 	 * transfer, so do not change it here.
13300 	 */
13301 	SD_BIOERROR(bp, errcode);
13302 
13303 	/*
13304 	 * If this is the failfast bp, clear it. This can happen if the
13305 	 * failfast bp encounterd a fatal error when we attempted to
13306 	 * re-try it (such as a scsi_transport(9F) failure).  However
13307 	 * we should NOT be in an active failfast state if the failfast
13308 	 * bp is not NULL.
13309 	 */
13310 	if (bp == un->un_failfast_bp) {
13311 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
13312 		un->un_failfast_bp = NULL;
13313 	}
13314 
13315 	if (bp == un->un_retry_bp) {
13316 		/*
13317 		 * This command was retried one or more times. Show that we are
13318 		 * done with it, and allow processing of the waitq to resume.
13319 		 */
13320 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13321 		    "sd_return_failed_command_no_restart: "
13322 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
13323 		un->un_retry_bp = NULL;
13324 		un->un_retry_statp = NULL;
13325 	}
13326 
13327 	SD_UPDATE_RDWR_STATS(un, bp);
13328 	SD_UPDATE_PARTITION_STATS(un, bp);
13329 
13330 	mutex_exit(SD_MUTEX(un));
13331 
13332 	if (xp->xb_pktp != NULL) {
13333 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
13334 		xp->xb_pktp = NULL;
13335 	}
13336 
13337 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
13338 
13339 	mutex_enter(SD_MUTEX(un));
13340 
13341 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13342 	    "sd_return_failed_command_no_restart: exit\n");
13343 }
13344 
13345 
13346 /*
13347  *    Function: sd_retry_command
13348  *
13349  * Description: queue up a command for retry, or (optionally) fail it
13350  *		if retry counts are exhausted.
13351  *
13352  *   Arguments: un - Pointer to the sd_lun struct for the target.
13353  *
13354  *		bp - Pointer to the buf for the command to be retried.
13355  *
13356  *		retry_check_flag - Flag to see which (if any) of the retry
13357  *		   counts should be decremented/checked. If the indicated
13358  *		   retry count is exhausted, then the command will not be
13359  *		   retried; it will be failed instead. This should use a
13360  *		   value equal to one of the following:
13361  *
13362  *			SD_RETRIES_NOCHECK
13363  *			SD_RESD_RETRIES_STANDARD
13364  *			SD_RETRIES_VICTIM
13365  *
13366  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
13367  *		   if the check should be made to see of FLAG_ISOLATE is set
13368  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
13369  *		   not retried, it is simply failed.
13370  *
13371  *		user_funcp - Ptr to function to call before dispatching the
13372  *		   command. May be NULL if no action needs to be performed.
13373  *		   (Primarily intended for printing messages.)
13374  *
13375  *		user_arg - Optional argument to be passed along to
13376  *		   the user_funcp call.
13377  *
13378  *		failure_code - errno return code to set in the bp if the
13379  *		   command is going to be failed.
13380  *
13381  *		retry_delay - Retry delay interval in (clock_t) units. May
13382  *		   be zero which indicates that the retry should be retried
13383  *		   immediately (ie, without an intervening delay).
13384  *
13385  *		statp - Ptr to kstat function to be updated if the command
13386  *		   is queued for a delayed retry. May be NULL if no kstat
13387  *		   update is desired.
13388  *
13389  *     Context: May be called from interupt context.
13390  */
13391 
13392 static void
13393 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
13394 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
13395 	code), void *user_arg, int failure_code,  clock_t retry_delay,
13396 	void (*statp)(kstat_io_t *))
13397 {
13398 	struct sd_xbuf	*xp;
13399 	struct scsi_pkt	*pktp;
13400 
13401 	ASSERT(un != NULL);
13402 	ASSERT(mutex_owned(SD_MUTEX(un)));
13403 	ASSERT(bp != NULL);
13404 	xp = SD_GET_XBUF(bp);
13405 	ASSERT(xp != NULL);
13406 	pktp = SD_GET_PKTP(bp);
13407 	ASSERT(pktp != NULL);
13408 
13409 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
13410 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
13411 
13412 	/*
13413 	 * If we are syncing or dumping, fail the command to avoid
13414 	 * recursively calling back into scsi_transport().
13415 	 */
13416 	if (ddi_in_panic()) {
13417 		goto fail_command_no_log;
13418 	}
13419 
13420 	/*
13421 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
13422 	 * log an error and fail the command.
13423 	 */
13424 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
13425 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
13426 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
13427 		sd_dump_memory(un, SD_LOG_IO, "CDB",
13428 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
13429 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
13430 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
13431 		goto fail_command;
13432 	}
13433 
13434 	/*
13435 	 * If we are suspended, then put the command onto head of the
13436 	 * wait queue since we don't want to start more commands.
13437 	 */
13438 	switch (un->un_state) {
13439 	case SD_STATE_SUSPENDED:
13440 	case SD_STATE_DUMPING:
13441 		bp->av_forw = un->un_waitq_headp;
13442 		un->un_waitq_headp = bp;
13443 		if (un->un_waitq_tailp == NULL) {
13444 			un->un_waitq_tailp = bp;
13445 		}
13446 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13447 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
13448 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
13449 		return;
13450 	default:
13451 		break;
13452 	}
13453 
13454 	/*
13455 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
13456 	 * is set; if it is then we do not want to retry the command.
13457 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
13458 	 */
13459 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
13460 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
13461 			goto fail_command;
13462 		}
13463 	}
13464 
13465 
13466 	/*
13467 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
13468 	 * command timeout or a selection timeout has occurred. This means
13469 	 * that we were unable to establish an kind of communication with
13470 	 * the target, and subsequent retries and/or commands are likely
13471 	 * to encounter similar results and take a long time to complete.
13472 	 *
13473 	 * If this is a failfast error condition, we need to update the
13474 	 * failfast state, even if this bp does not have B_FAILFAST set.
13475 	 */
13476 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
13477 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
13478 			ASSERT(un->un_failfast_bp == NULL);
13479 			/*
13480 			 * If we are already in the active failfast state, and
13481 			 * another failfast error condition has been detected,
13482 			 * then fail this command if it has B_FAILFAST set.
13483 			 * If B_FAILFAST is clear, then maintain the legacy
13484 			 * behavior of retrying heroically, even tho this will
13485 			 * take a lot more time to fail the command.
13486 			 */
13487 			if (bp->b_flags & B_FAILFAST) {
13488 				goto fail_command;
13489 			}
13490 		} else {
13491 			/*
13492 			 * We're not in the active failfast state, but we
13493 			 * have a failfast error condition, so we must begin
13494 			 * transition to the next state. We do this regardless
13495 			 * of whether or not this bp has B_FAILFAST set.
13496 			 */
13497 			if (un->un_failfast_bp == NULL) {
13498 				/*
13499 				 * This is the first bp to meet a failfast
13500 				 * condition so save it on un_failfast_bp &
13501 				 * do normal retry processing. Do not enter
13502 				 * active failfast state yet. This marks
13503 				 * entry into the "failfast pending" state.
13504 				 */
13505 				un->un_failfast_bp = bp;
13506 
13507 			} else if (un->un_failfast_bp == bp) {
13508 				/*
13509 				 * This is the second time *this* bp has
13510 				 * encountered a failfast error condition,
13511 				 * so enter active failfast state & flush
13512 				 * queues as appropriate.
13513 				 */
13514 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
13515 				un->un_failfast_bp = NULL;
13516 				sd_failfast_flushq(un);
13517 
13518 				/*
13519 				 * Fail this bp now if B_FAILFAST set;
13520 				 * otherwise continue with retries. (It would
13521 				 * be pretty ironic if this bp succeeded on a
13522 				 * subsequent retry after we just flushed all
13523 				 * the queues).
13524 				 */
13525 				if (bp->b_flags & B_FAILFAST) {
13526 					goto fail_command;
13527 				}
13528 
13529 #if !defined(lint) && !defined(__lint)
13530 			} else {
13531 				/*
13532 				 * If neither of the preceeding conditionals
13533 				 * was true, it means that there is some
13534 				 * *other* bp that has met an inital failfast
13535 				 * condition and is currently either being
13536 				 * retried or is waiting to be retried. In
13537 				 * that case we should perform normal retry
13538 				 * processing on *this* bp, since there is a
13539 				 * chance that the current failfast condition
13540 				 * is transient and recoverable. If that does
13541 				 * not turn out to be the case, then retries
13542 				 * will be cleared when the wait queue is
13543 				 * flushed anyway.
13544 				 */
13545 #endif
13546 			}
13547 		}
13548 	} else {
13549 		/*
13550 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
13551 		 * likely were able to at least establish some level of
13552 		 * communication with the target and subsequent commands
13553 		 * and/or retries are likely to get through to the target,
13554 		 * In this case we want to be aggressive about clearing
13555 		 * the failfast state. Note that this does not affect
13556 		 * the "failfast pending" condition.
13557 		 */
13558 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
13559 	}
13560 
13561 
13562 	/*
13563 	 * Check the specified retry count to see if we can still do
13564 	 * any retries with this pkt before we should fail it.
13565 	 */
13566 	switch (retry_check_flag & SD_RETRIES_MASK) {
13567 	case SD_RETRIES_VICTIM:
13568 		/*
13569 		 * Check the victim retry count. If exhausted, then fall
13570 		 * thru & check against the standard retry count.
13571 		 */
13572 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
13573 			/* Increment count & proceed with the retry */
13574 			xp->xb_victim_retry_count++;
13575 			break;
13576 		}
13577 		/* Victim retries exhausted, fall back to std. retries... */
13578 		/* FALLTHRU */
13579 
13580 	case SD_RETRIES_STANDARD:
13581 		if (xp->xb_retry_count >= un->un_retry_count) {
13582 			/* Retries exhausted, fail the command */
13583 			SD_TRACE(SD_LOG_IO_CORE, un,
13584 			    "sd_retry_command: retries exhausted!\n");
13585 			/*
13586 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
13587 			 * commands with nonzero pkt_resid.
13588 			 */
13589 			if ((pktp->pkt_reason == CMD_CMPLT) &&
13590 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
13591 			    (pktp->pkt_resid != 0)) {
13592 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
13593 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
13594 					SD_UPDATE_B_RESID(bp, pktp);
13595 				}
13596 			}
13597 			goto fail_command;
13598 		}
13599 		xp->xb_retry_count++;
13600 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13601 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
13602 		break;
13603 
13604 	case SD_RETRIES_UA:
13605 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
13606 			/* Retries exhausted, fail the command */
13607 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13608 			    "Unit Attention retries exhausted. "
13609 			    "Check the target.\n");
13610 			goto fail_command;
13611 		}
13612 		xp->xb_ua_retry_count++;
13613 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13614 		    "sd_retry_command: retry count:%d\n",
13615 			xp->xb_ua_retry_count);
13616 		break;
13617 
13618 	case SD_RETRIES_BUSY:
13619 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
13620 			/* Retries exhausted, fail the command */
13621 			SD_TRACE(SD_LOG_IO_CORE, un,
13622 			    "sd_retry_command: retries exhausted!\n");
13623 			goto fail_command;
13624 		}
13625 		xp->xb_retry_count++;
13626 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13627 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
13628 		break;
13629 
13630 	case SD_RETRIES_NOCHECK:
13631 	default:
13632 		/* No retry count to check. Just proceed with the retry */
13633 		break;
13634 	}
13635 
13636 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
13637 
13638 	/*
13639 	 * If we were given a zero timeout, we must attempt to retry the
13640 	 * command immediately (ie, without a delay).
13641 	 */
13642 	if (retry_delay == 0) {
13643 		/*
13644 		 * Check some limiting conditions to see if we can actually
13645 		 * do the immediate retry.  If we cannot, then we must
13646 		 * fall back to queueing up a delayed retry.
13647 		 */
13648 		if (un->un_ncmds_in_transport >= un->un_throttle) {
13649 			/*
13650 			 * We are at the throttle limit for the target,
13651 			 * fall back to delayed retry.
13652 			 */
13653 			retry_delay = SD_BSY_TIMEOUT;
13654 			statp = kstat_waitq_enter;
13655 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13656 			    "sd_retry_command: immed. retry hit "
13657 			    "throttle!\n");
13658 		} else {
13659 			/*
13660 			 * We're clear to proceed with the immediate retry.
13661 			 * First call the user-provided function (if any)
13662 			 */
13663 			if (user_funcp != NULL) {
13664 				(*user_funcp)(un, bp, user_arg,
13665 				    SD_IMMEDIATE_RETRY_ISSUED);
13666 #ifdef __lock_lint
13667 				sd_print_incomplete_msg(un, bp, user_arg,
13668 				    SD_IMMEDIATE_RETRY_ISSUED);
13669 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
13670 				    SD_IMMEDIATE_RETRY_ISSUED);
13671 				sd_print_sense_failed_msg(un, bp, user_arg,
13672 				    SD_IMMEDIATE_RETRY_ISSUED);
13673 #endif
13674 			}
13675 
13676 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13677 			    "sd_retry_command: issuing immediate retry\n");
13678 
13679 			/*
13680 			 * Call sd_start_cmds() to transport the command to
13681 			 * the target.
13682 			 */
13683 			sd_start_cmds(un, bp);
13684 
13685 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13686 			    "sd_retry_command exit\n");
13687 			return;
13688 		}
13689 	}
13690 
13691 	/*
13692 	 * Set up to retry the command after a delay.
13693 	 * First call the user-provided function (if any)
13694 	 */
13695 	if (user_funcp != NULL) {
13696 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
13697 	}
13698 
13699 	sd_set_retry_bp(un, bp, retry_delay, statp);
13700 
13701 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
13702 	return;
13703 
13704 fail_command:
13705 
13706 	if (user_funcp != NULL) {
13707 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
13708 	}
13709 
13710 fail_command_no_log:
13711 
13712 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13713 	    "sd_retry_command: returning failed command\n");
13714 
13715 	sd_return_failed_command(un, bp, failure_code);
13716 
13717 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
13718 }
13719 
13720 
13721 /*
13722  *    Function: sd_set_retry_bp
13723  *
13724  * Description: Set up the given bp for retry.
13725  *
13726  *   Arguments: un - ptr to associated softstate
13727  *		bp - ptr to buf(9S) for the command
13728  *		retry_delay - time interval before issuing retry (may be 0)
13729  *		statp - optional pointer to kstat function
13730  *
13731  *     Context: May be called under interrupt context
13732  */
13733 
13734 static void
13735 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
13736 	void (*statp)(kstat_io_t *))
13737 {
13738 	ASSERT(un != NULL);
13739 	ASSERT(mutex_owned(SD_MUTEX(un)));
13740 	ASSERT(bp != NULL);
13741 
13742 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
13743 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
13744 
13745 	/*
13746 	 * Indicate that the command is being retried. This will not allow any
13747 	 * other commands on the wait queue to be transported to the target
13748 	 * until this command has been completed (success or failure). The
13749 	 * "retry command" is not transported to the target until the given
13750 	 * time delay expires, unless the user specified a 0 retry_delay.
13751 	 *
13752 	 * Note: the timeout(9F) callback routine is what actually calls
13753 	 * sd_start_cmds() to transport the command, with the exception of a
13754 	 * zero retry_delay. The only current implementor of a zero retry delay
13755 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
13756 	 */
13757 	if (un->un_retry_bp == NULL) {
13758 		ASSERT(un->un_retry_statp == NULL);
13759 		un->un_retry_bp = bp;
13760 
13761 		/*
13762 		 * If the user has not specified a delay the command should
13763 		 * be queued and no timeout should be scheduled.
13764 		 */
13765 		if (retry_delay == 0) {
13766 			/*
13767 			 * Save the kstat pointer that will be used in the
13768 			 * call to SD_UPDATE_KSTATS() below, so that
13769 			 * sd_start_cmds() can correctly decrement the waitq
13770 			 * count when it is time to transport this command.
13771 			 */
13772 			un->un_retry_statp = statp;
13773 			goto done;
13774 		}
13775 	}
13776 
13777 	if (un->un_retry_bp == bp) {
13778 		/*
13779 		 * Save the kstat pointer that will be used in the call to
13780 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
13781 		 * correctly decrement the waitq count when it is time to
13782 		 * transport this command.
13783 		 */
13784 		un->un_retry_statp = statp;
13785 
13786 		/*
13787 		 * Schedule a timeout if:
13788 		 *   1) The user has specified a delay.
13789 		 *   2) There is not a START_STOP_UNIT callback pending.
13790 		 *
13791 		 * If no delay has been specified, then it is up to the caller
13792 		 * to ensure that IO processing continues without stalling.
13793 		 * Effectively, this means that the caller will issue the
13794 		 * required call to sd_start_cmds(). The START_STOP_UNIT
13795 		 * callback does this after the START STOP UNIT command has
13796 		 * completed. In either of these cases we should not schedule
13797 		 * a timeout callback here.  Also don't schedule the timeout if
13798 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
13799 		 */
13800 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
13801 		    (un->un_direct_priority_timeid == NULL)) {
13802 			un->un_retry_timeid =
13803 			    timeout(sd_start_retry_command, un, retry_delay);
13804 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13805 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
13806 			    " bp:0x%p un_retry_timeid:0x%p\n",
13807 			    un, bp, un->un_retry_timeid);
13808 		}
13809 	} else {
13810 		/*
13811 		 * We only get in here if there is already another command
13812 		 * waiting to be retried.  In this case, we just put the
13813 		 * given command onto the wait queue, so it can be transported
13814 		 * after the current retry command has completed.
13815 		 *
13816 		 * Also we have to make sure that if the command at the head
13817 		 * of the wait queue is the un_failfast_bp, that we do not
13818 		 * put ahead of it any other commands that are to be retried.
13819 		 */
13820 		if ((un->un_failfast_bp != NULL) &&
13821 		    (un->un_failfast_bp == un->un_waitq_headp)) {
13822 			/*
13823 			 * Enqueue this command AFTER the first command on
13824 			 * the wait queue (which is also un_failfast_bp).
13825 			 */
13826 			bp->av_forw = un->un_waitq_headp->av_forw;
13827 			un->un_waitq_headp->av_forw = bp;
13828 			if (un->un_waitq_headp == un->un_waitq_tailp) {
13829 				un->un_waitq_tailp = bp;
13830 			}
13831 		} else {
13832 			/* Enqueue this command at the head of the waitq. */
13833 			bp->av_forw = un->un_waitq_headp;
13834 			un->un_waitq_headp = bp;
13835 			if (un->un_waitq_tailp == NULL) {
13836 				un->un_waitq_tailp = bp;
13837 			}
13838 		}
13839 
13840 		if (statp == NULL) {
13841 			statp = kstat_waitq_enter;
13842 		}
13843 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13844 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
13845 	}
13846 
13847 done:
13848 	if (statp != NULL) {
13849 		SD_UPDATE_KSTATS(un, statp, bp);
13850 	}
13851 
13852 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13853 	    "sd_set_retry_bp: exit un:0x%p\n", un);
13854 }
13855 
13856 
13857 /*
13858  *    Function: sd_start_retry_command
13859  *
13860  * Description: Start the command that has been waiting on the target's
13861  *		retry queue.  Called from timeout(9F) context after the
13862  *		retry delay interval has expired.
13863  *
13864  *   Arguments: arg - pointer to associated softstate for the device.
13865  *
13866  *     Context: timeout(9F) thread context.  May not sleep.
13867  */
13868 
13869 static void
13870 sd_start_retry_command(void *arg)
13871 {
13872 	struct sd_lun *un = arg;
13873 
13874 	ASSERT(un != NULL);
13875 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13876 
13877 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13878 	    "sd_start_retry_command: entry\n");
13879 
13880 	mutex_enter(SD_MUTEX(un));
13881 
13882 	un->un_retry_timeid = NULL;
13883 
13884 	if (un->un_retry_bp != NULL) {
13885 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13886 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
13887 		    un, un->un_retry_bp);
13888 		sd_start_cmds(un, un->un_retry_bp);
13889 	}
13890 
13891 	mutex_exit(SD_MUTEX(un));
13892 
13893 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13894 	    "sd_start_retry_command: exit\n");
13895 }
13896 
13897 
13898 /*
13899  *    Function: sd_start_direct_priority_command
13900  *
13901  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
13902  *		received TRAN_BUSY when we called scsi_transport() to send it
13903  *		to the underlying HBA. This function is called from timeout(9F)
13904  *		context after the delay interval has expired.
13905  *
13906  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
13907  *
13908  *     Context: timeout(9F) thread context.  May not sleep.
13909  */
13910 
13911 static void
13912 sd_start_direct_priority_command(void *arg)
13913 {
13914 	struct buf	*priority_bp = arg;
13915 	struct sd_lun	*un;
13916 
13917 	ASSERT(priority_bp != NULL);
13918 	un = SD_GET_UN(priority_bp);
13919 	ASSERT(un != NULL);
13920 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13921 
13922 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13923 	    "sd_start_direct_priority_command: entry\n");
13924 
13925 	mutex_enter(SD_MUTEX(un));
13926 	un->un_direct_priority_timeid = NULL;
13927 	sd_start_cmds(un, priority_bp);
13928 	mutex_exit(SD_MUTEX(un));
13929 
13930 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13931 	    "sd_start_direct_priority_command: exit\n");
13932 }
13933 
13934 
13935 /*
13936  *    Function: sd_send_request_sense_command
13937  *
13938  * Description: Sends a REQUEST SENSE command to the target
13939  *
13940  *     Context: May be called from interrupt context.
13941  */
13942 
13943 static void
13944 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
13945 	struct scsi_pkt *pktp)
13946 {
13947 	ASSERT(bp != NULL);
13948 	ASSERT(un != NULL);
13949 	ASSERT(mutex_owned(SD_MUTEX(un)));
13950 
13951 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
13952 	    "entry: buf:0x%p\n", bp);
13953 
13954 	/*
13955 	 * If we are syncing or dumping, then fail the command to avoid a
13956 	 * recursive callback into scsi_transport(). Also fail the command
13957 	 * if we are suspended (legacy behavior).
13958 	 */
13959 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
13960 	    (un->un_state == SD_STATE_DUMPING)) {
13961 		sd_return_failed_command(un, bp, EIO);
13962 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13963 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
13964 		return;
13965 	}
13966 
13967 	/*
13968 	 * Retry the failed command and don't issue the request sense if:
13969 	 *    1) the sense buf is busy
13970 	 *    2) we have 1 or more outstanding commands on the target
13971 	 *    (the sense data will be cleared or invalidated any way)
13972 	 *
13973 	 * Note: There could be an issue with not checking a retry limit here,
13974 	 * the problem is determining which retry limit to check.
13975 	 */
13976 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
13977 		/* Don't retry if the command is flagged as non-retryable */
13978 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
13979 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
13980 			    NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter);
13981 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13982 			    "sd_send_request_sense_command: "
13983 			    "at full throttle, retrying exit\n");
13984 		} else {
13985 			sd_return_failed_command(un, bp, EIO);
13986 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13987 			    "sd_send_request_sense_command: "
13988 			    "at full throttle, non-retryable exit\n");
13989 		}
13990 		return;
13991 	}
13992 
13993 	sd_mark_rqs_busy(un, bp);
13994 	sd_start_cmds(un, un->un_rqs_bp);
13995 
13996 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13997 	    "sd_send_request_sense_command: exit\n");
13998 }
13999 
14000 
14001 /*
14002  *    Function: sd_mark_rqs_busy
14003  *
14004  * Description: Indicate that the request sense bp for this instance is
14005  *		in use.
14006  *
14007  *     Context: May be called under interrupt context
14008  */
14009 
14010 static void
14011 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
14012 {
14013 	struct sd_xbuf	*sense_xp;
14014 
14015 	ASSERT(un != NULL);
14016 	ASSERT(bp != NULL);
14017 	ASSERT(mutex_owned(SD_MUTEX(un)));
14018 	ASSERT(un->un_sense_isbusy == 0);
14019 
14020 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
14021 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
14022 
14023 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
14024 	ASSERT(sense_xp != NULL);
14025 
14026 	SD_INFO(SD_LOG_IO, un,
14027 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
14028 
14029 	ASSERT(sense_xp->xb_pktp != NULL);
14030 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
14031 	    == (FLAG_SENSING | FLAG_HEAD));
14032 
14033 	un->un_sense_isbusy = 1;
14034 	un->un_rqs_bp->b_resid = 0;
14035 	sense_xp->xb_pktp->pkt_resid  = 0;
14036 	sense_xp->xb_pktp->pkt_reason = 0;
14037 
14038 	/* So we can get back the bp at interrupt time! */
14039 	sense_xp->xb_sense_bp = bp;
14040 
14041 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
14042 
14043 	/*
14044 	 * Mark this buf as awaiting sense data. (This is already set in
14045 	 * the pkt_flags for the RQS packet.)
14046 	 */
14047 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
14048 
14049 	sense_xp->xb_retry_count	= 0;
14050 	sense_xp->xb_victim_retry_count = 0;
14051 	sense_xp->xb_ua_retry_count	= 0;
14052 	sense_xp->xb_dma_resid  = 0;
14053 
14054 	/* Clean up the fields for auto-request sense */
14055 	sense_xp->xb_sense_status = 0;
14056 	sense_xp->xb_sense_state  = 0;
14057 	sense_xp->xb_sense_resid  = 0;
14058 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
14059 
14060 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
14061 }
14062 
14063 
14064 /*
14065  *    Function: sd_mark_rqs_idle
14066  *
14067  * Description: SD_MUTEX must be held continuously through this routine
14068  *		to prevent reuse of the rqs struct before the caller can
14069  *		complete it's processing.
14070  *
14071  * Return Code: Pointer to the RQS buf
14072  *
14073  *     Context: May be called under interrupt context
14074  */
14075 
14076 static struct buf *
14077 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
14078 {
14079 	struct buf *bp;
14080 	ASSERT(un != NULL);
14081 	ASSERT(sense_xp != NULL);
14082 	ASSERT(mutex_owned(SD_MUTEX(un)));
14083 	ASSERT(un->un_sense_isbusy != 0);
14084 
14085 	un->un_sense_isbusy = 0;
14086 	bp = sense_xp->xb_sense_bp;
14087 	sense_xp->xb_sense_bp = NULL;
14088 
14089 	/* This pkt is no longer interested in getting sense data */
14090 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
14091 
14092 	return (bp);
14093 }
14094 
14095 
14096 
14097 /*
14098  *    Function: sd_alloc_rqs
14099  *
14100  * Description: Set up the unit to receive auto request sense data
14101  *
14102  * Return Code: DDI_SUCCESS or DDI_FAILURE
14103  *
14104  *     Context: Called under attach(9E) context
14105  */
14106 
14107 static int
14108 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
14109 {
14110 	struct sd_xbuf *xp;
14111 
14112 	ASSERT(un != NULL);
14113 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14114 	ASSERT(un->un_rqs_bp == NULL);
14115 	ASSERT(un->un_rqs_pktp == NULL);
14116 
14117 	/*
14118 	 * First allocate the required buf and scsi_pkt structs, then set up
14119 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
14120 	 */
14121 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
14122 	    SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
14123 	if (un->un_rqs_bp == NULL) {
14124 		return (DDI_FAILURE);
14125 	}
14126 
14127 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
14128 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
14129 
14130 	if (un->un_rqs_pktp == NULL) {
14131 		sd_free_rqs(un);
14132 		return (DDI_FAILURE);
14133 	}
14134 
14135 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
14136 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
14137 	    SCMD_REQUEST_SENSE, 0, SENSE_LENGTH, 0);
14138 
14139 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
14140 
14141 	/* Set up the other needed members in the ARQ scsi_pkt. */
14142 	un->un_rqs_pktp->pkt_comp   = sdintr;
14143 	un->un_rqs_pktp->pkt_time   = sd_io_time;
14144 	un->un_rqs_pktp->pkt_flags |=
14145 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
14146 
14147 	/*
14148 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
14149 	 * provide any intpkt, destroypkt routines as we take care of
14150 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
14151 	 */
14152 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14153 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
14154 	xp->xb_pktp = un->un_rqs_pktp;
14155 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
14156 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
14157 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
14158 
14159 	/*
14160 	 * Save the pointer to the request sense private bp so it can
14161 	 * be retrieved in sdintr.
14162 	 */
14163 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
14164 	ASSERT(un->un_rqs_bp->b_private == xp);
14165 
14166 	/*
14167 	 * See if the HBA supports auto-request sense for the specified
14168 	 * target/lun. If it does, then try to enable it (if not already
14169 	 * enabled).
14170 	 *
14171 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
14172 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
14173 	 * return success.  However, in both of these cases ARQ is always
14174 	 * enabled and scsi_ifgetcap will always return true. The best approach
14175 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
14176 	 *
14177 	 * The 3rd case is the HBA (adp) always return enabled on
14178 	 * scsi_ifgetgetcap even when it's not enable, the best approach
14179 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
14180 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
14181 	 */
14182 
14183 	if (un->un_f_is_fibre == TRUE) {
14184 		un->un_f_arq_enabled = TRUE;
14185 	} else {
14186 #if defined(__i386) || defined(__amd64)
14187 		/*
14188 		 * Circumvent the Adaptec bug, remove this code when
14189 		 * the bug is fixed
14190 		 */
14191 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
14192 #endif
14193 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
14194 		case 0:
14195 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14196 				"sd_alloc_rqs: HBA supports ARQ\n");
14197 			/*
14198 			 * ARQ is supported by this HBA but currently is not
14199 			 * enabled. Attempt to enable it and if successful then
14200 			 * mark this instance as ARQ enabled.
14201 			 */
14202 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
14203 				== 1) {
14204 				/* Successfully enabled ARQ in the HBA */
14205 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
14206 					"sd_alloc_rqs: ARQ enabled\n");
14207 				un->un_f_arq_enabled = TRUE;
14208 			} else {
14209 				/* Could not enable ARQ in the HBA */
14210 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
14211 				"sd_alloc_rqs: failed ARQ enable\n");
14212 				un->un_f_arq_enabled = FALSE;
14213 			}
14214 			break;
14215 		case 1:
14216 			/*
14217 			 * ARQ is supported by this HBA and is already enabled.
14218 			 * Just mark ARQ as enabled for this instance.
14219 			 */
14220 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14221 				"sd_alloc_rqs: ARQ already enabled\n");
14222 			un->un_f_arq_enabled = TRUE;
14223 			break;
14224 		default:
14225 			/*
14226 			 * ARQ is not supported by this HBA; disable it for this
14227 			 * instance.
14228 			 */
14229 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14230 				"sd_alloc_rqs: HBA does not support ARQ\n");
14231 			un->un_f_arq_enabled = FALSE;
14232 			break;
14233 		}
14234 	}
14235 
14236 	return (DDI_SUCCESS);
14237 }
14238 
14239 
14240 /*
14241  *    Function: sd_free_rqs
14242  *
14243  * Description: Cleanup for the pre-instance RQS command.
14244  *
14245  *     Context: Kernel thread context
14246  */
14247 
14248 static void
14249 sd_free_rqs(struct sd_lun *un)
14250 {
14251 	ASSERT(un != NULL);
14252 
14253 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
14254 
14255 	/*
14256 	 * If consistent memory is bound to a scsi_pkt, the pkt
14257 	 * has to be destroyed *before* freeing the consistent memory.
14258 	 * Don't change the sequence of this operations.
14259 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
14260 	 * after it was freed in scsi_free_consistent_buf().
14261 	 */
14262 	if (un->un_rqs_pktp != NULL) {
14263 		scsi_destroy_pkt(un->un_rqs_pktp);
14264 		un->un_rqs_pktp = NULL;
14265 	}
14266 
14267 	if (un->un_rqs_bp != NULL) {
14268 		kmem_free(SD_GET_XBUF(un->un_rqs_bp), sizeof (struct sd_xbuf));
14269 		scsi_free_consistent_buf(un->un_rqs_bp);
14270 		un->un_rqs_bp = NULL;
14271 	}
14272 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
14273 }
14274 
14275 
14276 
14277 /*
14278  *    Function: sd_reduce_throttle
14279  *
14280  * Description: Reduces the maximun # of outstanding commands on a
14281  *		target to the current number of outstanding commands.
14282  *		Queues a tiemout(9F) callback to restore the limit
14283  *		after a specified interval has elapsed.
14284  *		Typically used when we get a TRAN_BUSY return code
14285  *		back from scsi_transport().
14286  *
14287  *   Arguments: un - ptr to the sd_lun softstate struct
14288  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
14289  *
14290  *     Context: May be called from interrupt context
14291  */
14292 
14293 static void
14294 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
14295 {
14296 	ASSERT(un != NULL);
14297 	ASSERT(mutex_owned(SD_MUTEX(un)));
14298 	ASSERT(un->un_ncmds_in_transport >= 0);
14299 
14300 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
14301 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
14302 	    un, un->un_throttle, un->un_ncmds_in_transport);
14303 
14304 	if (un->un_throttle > 1) {
14305 		if (un->un_f_use_adaptive_throttle == TRUE) {
14306 			switch (throttle_type) {
14307 			case SD_THROTTLE_TRAN_BUSY:
14308 				if (un->un_busy_throttle == 0) {
14309 					un->un_busy_throttle = un->un_throttle;
14310 				}
14311 				break;
14312 			case SD_THROTTLE_QFULL:
14313 				un->un_busy_throttle = 0;
14314 				break;
14315 			default:
14316 				ASSERT(FALSE);
14317 			}
14318 
14319 			if (un->un_ncmds_in_transport > 0) {
14320 			    un->un_throttle = un->un_ncmds_in_transport;
14321 			}
14322 
14323 		} else {
14324 			if (un->un_ncmds_in_transport == 0) {
14325 				un->un_throttle = 1;
14326 			} else {
14327 				un->un_throttle = un->un_ncmds_in_transport;
14328 			}
14329 		}
14330 	}
14331 
14332 	/* Reschedule the timeout if none is currently active */
14333 	if (un->un_reset_throttle_timeid == NULL) {
14334 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
14335 		    un, SD_THROTTLE_RESET_INTERVAL);
14336 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14337 		    "sd_reduce_throttle: timeout scheduled!\n");
14338 	}
14339 
14340 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
14341 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
14342 }
14343 
14344 
14345 
14346 /*
14347  *    Function: sd_restore_throttle
14348  *
14349  * Description: Callback function for timeout(9F).  Resets the current
14350  *		value of un->un_throttle to its default.
14351  *
14352  *   Arguments: arg - pointer to associated softstate for the device.
14353  *
14354  *     Context: May be called from interrupt context
14355  */
14356 
14357 static void
14358 sd_restore_throttle(void *arg)
14359 {
14360 	struct sd_lun	*un = arg;
14361 
14362 	ASSERT(un != NULL);
14363 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14364 
14365 	mutex_enter(SD_MUTEX(un));
14366 
14367 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
14368 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
14369 
14370 	un->un_reset_throttle_timeid = NULL;
14371 
14372 	if (un->un_f_use_adaptive_throttle == TRUE) {
14373 		/*
14374 		 * If un_busy_throttle is nonzero, then it contains the
14375 		 * value that un_throttle was when we got a TRAN_BUSY back
14376 		 * from scsi_transport(). We want to revert back to this
14377 		 * value.
14378 		 *
14379 		 * In the QFULL case, the throttle limit will incrementally
14380 		 * increase until it reaches max throttle.
14381 		 */
14382 		if (un->un_busy_throttle > 0) {
14383 			un->un_throttle = un->un_busy_throttle;
14384 			un->un_busy_throttle = 0;
14385 		} else {
14386 			/*
14387 			 * increase throttle by 10% open gate slowly, schedule
14388 			 * another restore if saved throttle has not been
14389 			 * reached
14390 			 */
14391 			short throttle;
14392 			if (sd_qfull_throttle_enable) {
14393 				throttle = un->un_throttle +
14394 				    max((un->un_throttle / 10), 1);
14395 				un->un_throttle =
14396 				    (throttle < un->un_saved_throttle) ?
14397 				    throttle : un->un_saved_throttle;
14398 				if (un->un_throttle < un->un_saved_throttle) {
14399 				    un->un_reset_throttle_timeid =
14400 					timeout(sd_restore_throttle,
14401 					un, SD_QFULL_THROTTLE_RESET_INTERVAL);
14402 				}
14403 			}
14404 		}
14405 
14406 		/*
14407 		 * If un_throttle has fallen below the low-water mark, we
14408 		 * restore the maximum value here (and allow it to ratchet
14409 		 * down again if necessary).
14410 		 */
14411 		if (un->un_throttle < un->un_min_throttle) {
14412 			un->un_throttle = un->un_saved_throttle;
14413 		}
14414 	} else {
14415 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
14416 		    "restoring limit from 0x%x to 0x%x\n",
14417 		    un->un_throttle, un->un_saved_throttle);
14418 		un->un_throttle = un->un_saved_throttle;
14419 	}
14420 
14421 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14422 	    "sd_restore_throttle: calling sd_start_cmds!\n");
14423 
14424 	sd_start_cmds(un, NULL);
14425 
14426 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14427 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
14428 	    un, un->un_throttle);
14429 
14430 	mutex_exit(SD_MUTEX(un));
14431 
14432 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
14433 }
14434 
14435 /*
14436  *    Function: sdrunout
14437  *
14438  * Description: Callback routine for scsi_init_pkt when a resource allocation
14439  *		fails.
14440  *
14441  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
14442  *		soft state instance.
14443  *
14444  * Return Code: The scsi_init_pkt routine allows for the callback function to
14445  *		return a 0 indicating the callback should be rescheduled or a 1
14446  *		indicating not to reschedule. This routine always returns 1
14447  *		because the driver always provides a callback function to
14448  *		scsi_init_pkt. This results in a callback always being scheduled
14449  *		(via the scsi_init_pkt callback implementation) if a resource
14450  *		failure occurs.
14451  *
14452  *     Context: This callback function may not block or call routines that block
14453  *
14454  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
14455  *		request persisting at the head of the list which cannot be
14456  *		satisfied even after multiple retries. In the future the driver
14457  *		may implement some time of maximum runout count before failing
14458  *		an I/O.
14459  */
14460 
14461 static int
14462 sdrunout(caddr_t arg)
14463 {
14464 	struct sd_lun	*un = (struct sd_lun *)arg;
14465 
14466 	ASSERT(un != NULL);
14467 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14468 
14469 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
14470 
14471 	mutex_enter(SD_MUTEX(un));
14472 	sd_start_cmds(un, NULL);
14473 	mutex_exit(SD_MUTEX(un));
14474 	/*
14475 	 * This callback routine always returns 1 (i.e. do not reschedule)
14476 	 * because we always specify sdrunout as the callback handler for
14477 	 * scsi_init_pkt inside the call to sd_start_cmds.
14478 	 */
14479 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
14480 	return (1);
14481 }
14482 
14483 
14484 /*
14485  *    Function: sdintr
14486  *
14487  * Description: Completion callback routine for scsi_pkt(9S) structs
14488  *		sent to the HBA driver via scsi_transport(9F).
14489  *
14490  *     Context: Interrupt context
14491  */
14492 
14493 static void
14494 sdintr(struct scsi_pkt *pktp)
14495 {
14496 	struct buf	*bp;
14497 	struct sd_xbuf	*xp;
14498 	struct sd_lun	*un;
14499 
14500 	ASSERT(pktp != NULL);
14501 	bp = (struct buf *)pktp->pkt_private;
14502 	ASSERT(bp != NULL);
14503 	xp = SD_GET_XBUF(bp);
14504 	ASSERT(xp != NULL);
14505 	ASSERT(xp->xb_pktp != NULL);
14506 	un = SD_GET_UN(bp);
14507 	ASSERT(un != NULL);
14508 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14509 
14510 #ifdef SD_FAULT_INJECTION
14511 
14512 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
14513 	/* SD FaultInjection */
14514 	sd_faultinjection(pktp);
14515 
14516 #endif /* SD_FAULT_INJECTION */
14517 
14518 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
14519 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
14520 
14521 	mutex_enter(SD_MUTEX(un));
14522 
14523 	/* Reduce the count of the #commands currently in transport */
14524 	un->un_ncmds_in_transport--;
14525 	ASSERT(un->un_ncmds_in_transport >= 0);
14526 
14527 	/* Increment counter to indicate that the callback routine is active */
14528 	un->un_in_callback++;
14529 
14530 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14531 
14532 #ifdef	SDDEBUG
14533 	if (bp == un->un_retry_bp) {
14534 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
14535 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
14536 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
14537 	}
14538 #endif
14539 
14540 	/*
14541 	 * If pkt_reason is CMD_DEV_GONE, just fail the command
14542 	 */
14543 	if (pktp->pkt_reason == CMD_DEV_GONE) {
14544 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
14545 			    "Device is gone\n");
14546 		sd_return_failed_command(un, bp, EIO);
14547 		goto exit;
14548 	}
14549 
14550 	/*
14551 	 * First see if the pkt has auto-request sense data with it....
14552 	 * Look at the packet state first so we don't take a performance
14553 	 * hit looking at the arq enabled flag unless absolutely necessary.
14554 	 */
14555 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
14556 	    (un->un_f_arq_enabled == TRUE)) {
14557 		/*
14558 		 * The HBA did an auto request sense for this command so check
14559 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
14560 		 * driver command that should not be retried.
14561 		 */
14562 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14563 			/*
14564 			 * Save the relevant sense info into the xp for the
14565 			 * original cmd.
14566 			 */
14567 			struct scsi_arq_status *asp;
14568 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
14569 			xp->xb_sense_status =
14570 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
14571 			xp->xb_sense_state  = asp->sts_rqpkt_state;
14572 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
14573 			bcopy(&asp->sts_sensedata, xp->xb_sense_data,
14574 			    min(sizeof (struct scsi_extended_sense),
14575 			    SENSE_LENGTH));
14576 
14577 			/* fail the command */
14578 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14579 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
14580 			sd_return_failed_command(un, bp, EIO);
14581 			goto exit;
14582 		}
14583 
14584 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
14585 		/*
14586 		 * We want to either retry or fail this command, so free
14587 		 * the DMA resources here.  If we retry the command then
14588 		 * the DMA resources will be reallocated in sd_start_cmds().
14589 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
14590 		 * causes the *entire* transfer to start over again from the
14591 		 * beginning of the request, even for PARTIAL chunks that
14592 		 * have already transferred successfully.
14593 		 */
14594 		if ((un->un_f_is_fibre == TRUE) &&
14595 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14596 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
14597 			scsi_dmafree(pktp);
14598 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14599 		}
14600 #endif
14601 
14602 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14603 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
14604 
14605 		sd_handle_auto_request_sense(un, bp, xp, pktp);
14606 		goto exit;
14607 	}
14608 
14609 	/* Next see if this is the REQUEST SENSE pkt for the instance */
14610 	if (pktp->pkt_flags & FLAG_SENSING)  {
14611 		/* This pktp is from the unit's REQUEST_SENSE command */
14612 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14613 		    "sdintr: sd_handle_request_sense\n");
14614 		sd_handle_request_sense(un, bp, xp, pktp);
14615 		goto exit;
14616 	}
14617 
14618 	/*
14619 	 * Check to see if the command successfully completed as requested;
14620 	 * this is the most common case (and also the hot performance path).
14621 	 *
14622 	 * Requirements for successful completion are:
14623 	 * pkt_reason is CMD_CMPLT and packet status is status good.
14624 	 * In addition:
14625 	 * - A residual of zero indicates successful completion no matter what
14626 	 *   the command is.
14627 	 * - If the residual is not zero and the command is not a read or
14628 	 *   write, then it's still defined as successful completion. In other
14629 	 *   words, if the command is a read or write the residual must be
14630 	 *   zero for successful completion.
14631 	 * - If the residual is not zero and the command is a read or
14632 	 *   write, and it's a USCSICMD, then it's still defined as
14633 	 *   successful completion.
14634 	 */
14635 	if ((pktp->pkt_reason == CMD_CMPLT) &&
14636 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
14637 
14638 		/*
14639 		 * Since this command is returned with a good status, we
14640 		 * can reset the count for Sonoma failover.
14641 		 */
14642 		un->un_sonoma_failure_count = 0;
14643 
14644 		/*
14645 		 * Return all USCSI commands on good status
14646 		 */
14647 		if (pktp->pkt_resid == 0) {
14648 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14649 			    "sdintr: returning command for resid == 0\n");
14650 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
14651 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
14652 			SD_UPDATE_B_RESID(bp, pktp);
14653 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14654 			    "sdintr: returning command for resid != 0\n");
14655 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
14656 			SD_UPDATE_B_RESID(bp, pktp);
14657 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14658 				"sdintr: returning uscsi command\n");
14659 		} else {
14660 			goto not_successful;
14661 		}
14662 		sd_return_command(un, bp);
14663 
14664 		/*
14665 		 * Decrement counter to indicate that the callback routine
14666 		 * is done.
14667 		 */
14668 		un->un_in_callback--;
14669 		ASSERT(un->un_in_callback >= 0);
14670 		mutex_exit(SD_MUTEX(un));
14671 
14672 		return;
14673 	}
14674 
14675 not_successful:
14676 
14677 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
14678 	/*
14679 	 * The following is based upon knowledge of the underlying transport
14680 	 * and its use of DMA resources.  This code should be removed when
14681 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
14682 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
14683 	 * and sd_start_cmds().
14684 	 *
14685 	 * Free any DMA resources associated with this command if there
14686 	 * is a chance it could be retried or enqueued for later retry.
14687 	 * If we keep the DMA binding then mpxio cannot reissue the
14688 	 * command on another path whenever a path failure occurs.
14689 	 *
14690 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
14691 	 * causes the *entire* transfer to start over again from the
14692 	 * beginning of the request, even for PARTIAL chunks that
14693 	 * have already transferred successfully.
14694 	 *
14695 	 * This is only done for non-uscsi commands (and also skipped for the
14696 	 * driver's internal RQS command). Also just do this for Fibre Channel
14697 	 * devices as these are the only ones that support mpxio.
14698 	 */
14699 	if ((un->un_f_is_fibre == TRUE) &&
14700 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14701 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
14702 		scsi_dmafree(pktp);
14703 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14704 	}
14705 #endif
14706 
14707 	/*
14708 	 * The command did not successfully complete as requested so check
14709 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
14710 	 * driver command that should not be retried so just return. If
14711 	 * FLAG_DIAGNOSE is not set the error will be processed below.
14712 	 */
14713 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14714 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14715 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
14716 		/*
14717 		 * Issue a request sense if a check condition caused the error
14718 		 * (we handle the auto request sense case above), otherwise
14719 		 * just fail the command.
14720 		 */
14721 		if ((pktp->pkt_reason == CMD_CMPLT) &&
14722 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
14723 			sd_send_request_sense_command(un, bp, pktp);
14724 		} else {
14725 			sd_return_failed_command(un, bp, EIO);
14726 		}
14727 		goto exit;
14728 	}
14729 
14730 	/*
14731 	 * The command did not successfully complete as requested so process
14732 	 * the error, retry, and/or attempt recovery.
14733 	 */
14734 	switch (pktp->pkt_reason) {
14735 	case CMD_CMPLT:
14736 		switch (SD_GET_PKT_STATUS(pktp)) {
14737 		case STATUS_GOOD:
14738 			/*
14739 			 * The command completed successfully with a non-zero
14740 			 * residual
14741 			 */
14742 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14743 			    "sdintr: STATUS_GOOD \n");
14744 			sd_pkt_status_good(un, bp, xp, pktp);
14745 			break;
14746 
14747 		case STATUS_CHECK:
14748 		case STATUS_TERMINATED:
14749 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14750 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
14751 			sd_pkt_status_check_condition(un, bp, xp, pktp);
14752 			break;
14753 
14754 		case STATUS_BUSY:
14755 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14756 			    "sdintr: STATUS_BUSY\n");
14757 			sd_pkt_status_busy(un, bp, xp, pktp);
14758 			break;
14759 
14760 		case STATUS_RESERVATION_CONFLICT:
14761 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14762 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
14763 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
14764 			break;
14765 
14766 		case STATUS_QFULL:
14767 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14768 			    "sdintr: STATUS_QFULL\n");
14769 			sd_pkt_status_qfull(un, bp, xp, pktp);
14770 			break;
14771 
14772 		case STATUS_MET:
14773 		case STATUS_INTERMEDIATE:
14774 		case STATUS_SCSI2:
14775 		case STATUS_INTERMEDIATE_MET:
14776 		case STATUS_ACA_ACTIVE:
14777 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
14778 			    "Unexpected SCSI status received: 0x%x\n",
14779 			    SD_GET_PKT_STATUS(pktp));
14780 			sd_return_failed_command(un, bp, EIO);
14781 			break;
14782 
14783 		default:
14784 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
14785 			    "Invalid SCSI status received: 0x%x\n",
14786 			    SD_GET_PKT_STATUS(pktp));
14787 			sd_return_failed_command(un, bp, EIO);
14788 			break;
14789 
14790 		}
14791 		break;
14792 
14793 	case CMD_INCOMPLETE:
14794 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14795 		    "sdintr:  CMD_INCOMPLETE\n");
14796 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
14797 		break;
14798 	case CMD_TRAN_ERR:
14799 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14800 		    "sdintr: CMD_TRAN_ERR\n");
14801 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
14802 		break;
14803 	case CMD_RESET:
14804 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14805 		    "sdintr: CMD_RESET \n");
14806 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
14807 		break;
14808 	case CMD_ABORTED:
14809 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14810 		    "sdintr: CMD_ABORTED \n");
14811 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
14812 		break;
14813 	case CMD_TIMEOUT:
14814 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14815 		    "sdintr: CMD_TIMEOUT\n");
14816 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
14817 		break;
14818 	case CMD_UNX_BUS_FREE:
14819 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14820 		    "sdintr: CMD_UNX_BUS_FREE \n");
14821 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
14822 		break;
14823 	case CMD_TAG_REJECT:
14824 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14825 		    "sdintr: CMD_TAG_REJECT\n");
14826 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
14827 		break;
14828 	default:
14829 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14830 		    "sdintr: default\n");
14831 		sd_pkt_reason_default(un, bp, xp, pktp);
14832 		break;
14833 	}
14834 
14835 exit:
14836 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
14837 
14838 	/* Decrement counter to indicate that the callback routine is done. */
14839 	un->un_in_callback--;
14840 	ASSERT(un->un_in_callback >= 0);
14841 
14842 	/*
14843 	 * At this point, the pkt has been dispatched, ie, it is either
14844 	 * being re-tried or has been returned to its caller and should
14845 	 * not be referenced.
14846 	 */
14847 
14848 	mutex_exit(SD_MUTEX(un));
14849 }
14850 
14851 
14852 /*
14853  *    Function: sd_print_incomplete_msg
14854  *
14855  * Description: Prints the error message for a CMD_INCOMPLETE error.
14856  *
14857  *   Arguments: un - ptr to associated softstate for the device.
14858  *		bp - ptr to the buf(9S) for the command.
14859  *		arg - message string ptr
14860  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
14861  *			or SD_NO_RETRY_ISSUED.
14862  *
14863  *     Context: May be called under interrupt context
14864  */
14865 
14866 static void
14867 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
14868 {
14869 	struct scsi_pkt	*pktp;
14870 	char	*msgp;
14871 	char	*cmdp = arg;
14872 
14873 	ASSERT(un != NULL);
14874 	ASSERT(mutex_owned(SD_MUTEX(un)));
14875 	ASSERT(bp != NULL);
14876 	ASSERT(arg != NULL);
14877 	pktp = SD_GET_PKTP(bp);
14878 	ASSERT(pktp != NULL);
14879 
14880 	switch (code) {
14881 	case SD_DELAYED_RETRY_ISSUED:
14882 	case SD_IMMEDIATE_RETRY_ISSUED:
14883 		msgp = "retrying";
14884 		break;
14885 	case SD_NO_RETRY_ISSUED:
14886 	default:
14887 		msgp = "giving up";
14888 		break;
14889 	}
14890 
14891 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
14892 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14893 		    "incomplete %s- %s\n", cmdp, msgp);
14894 	}
14895 }
14896 
14897 
14898 
14899 /*
14900  *    Function: sd_pkt_status_good
14901  *
14902  * Description: Processing for a STATUS_GOOD code in pkt_status.
14903  *
14904  *     Context: May be called under interrupt context
14905  */
14906 
14907 static void
14908 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
14909 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
14910 {
14911 	char	*cmdp;
14912 
14913 	ASSERT(un != NULL);
14914 	ASSERT(mutex_owned(SD_MUTEX(un)));
14915 	ASSERT(bp != NULL);
14916 	ASSERT(xp != NULL);
14917 	ASSERT(pktp != NULL);
14918 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
14919 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
14920 	ASSERT(pktp->pkt_resid != 0);
14921 
14922 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
14923 
14924 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
14925 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
14926 	case SCMD_READ:
14927 		cmdp = "read";
14928 		break;
14929 	case SCMD_WRITE:
14930 		cmdp = "write";
14931 		break;
14932 	default:
14933 		SD_UPDATE_B_RESID(bp, pktp);
14934 		sd_return_command(un, bp);
14935 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
14936 		return;
14937 	}
14938 
14939 	/*
14940 	 * See if we can retry the read/write, preferrably immediately.
14941 	 * If retries are exhaused, then sd_retry_command() will update
14942 	 * the b_resid count.
14943 	 */
14944 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
14945 	    cmdp, EIO, (clock_t)0, NULL);
14946 
14947 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
14948 }
14949 
14950 
14951 
14952 
14953 
14954 /*
14955  *    Function: sd_handle_request_sense
14956  *
14957  * Description: Processing for non-auto Request Sense command.
14958  *
14959  *   Arguments: un - ptr to associated softstate
14960  *		sense_bp - ptr to buf(9S) for the RQS command
14961  *		sense_xp - ptr to the sd_xbuf for the RQS command
14962  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
14963  *
14964  *     Context: May be called under interrupt context
14965  */
14966 
14967 static void
14968 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
14969 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
14970 {
14971 	struct buf	*cmd_bp;	/* buf for the original command */
14972 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
14973 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
14974 
14975 	ASSERT(un != NULL);
14976 	ASSERT(mutex_owned(SD_MUTEX(un)));
14977 	ASSERT(sense_bp != NULL);
14978 	ASSERT(sense_xp != NULL);
14979 	ASSERT(sense_pktp != NULL);
14980 
14981 	/*
14982 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
14983 	 * RQS command and not the original command.
14984 	 */
14985 	ASSERT(sense_pktp == un->un_rqs_pktp);
14986 	ASSERT(sense_bp   == un->un_rqs_bp);
14987 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
14988 	    (FLAG_SENSING | FLAG_HEAD));
14989 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
14990 	    FLAG_SENSING) == FLAG_SENSING);
14991 
14992 	/* These are the bp, xp, and pktp for the original command */
14993 	cmd_bp = sense_xp->xb_sense_bp;
14994 	cmd_xp = SD_GET_XBUF(cmd_bp);
14995 	cmd_pktp = SD_GET_PKTP(cmd_bp);
14996 
14997 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
14998 		/*
14999 		 * The REQUEST SENSE command failed.  Release the REQUEST
15000 		 * SENSE command for re-use, get back the bp for the original
15001 		 * command, and attempt to re-try the original command if
15002 		 * FLAG_DIAGNOSE is not set in the original packet.
15003 		 */
15004 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
15005 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15006 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
15007 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
15008 			    NULL, NULL, EIO, (clock_t)0, NULL);
15009 			return;
15010 		}
15011 	}
15012 
15013 	/*
15014 	 * Save the relevant sense info into the xp for the original cmd.
15015 	 *
15016 	 * Note: if the request sense failed the state info will be zero
15017 	 * as set in sd_mark_rqs_busy()
15018 	 */
15019 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
15020 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
15021 	cmd_xp->xb_sense_resid  = sense_pktp->pkt_resid;
15022 	bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, SENSE_LENGTH);
15023 
15024 	/*
15025 	 *  Free up the RQS command....
15026 	 *  NOTE:
15027 	 *	Must do this BEFORE calling sd_validate_sense_data!
15028 	 *	sd_validate_sense_data may return the original command in
15029 	 *	which case the pkt will be freed and the flags can no
15030 	 *	longer be touched.
15031 	 *	SD_MUTEX is held through this process until the command
15032 	 *	is dispatched based upon the sense data, so there are
15033 	 *	no race conditions.
15034 	 */
15035 	(void) sd_mark_rqs_idle(un, sense_xp);
15036 
15037 	/*
15038 	 * For a retryable command see if we have valid sense data, if so then
15039 	 * turn it over to sd_decode_sense() to figure out the right course of
15040 	 * action. Just fail a non-retryable command.
15041 	 */
15042 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15043 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp) ==
15044 		    SD_SENSE_DATA_IS_VALID) {
15045 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
15046 		}
15047 	} else {
15048 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
15049 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15050 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
15051 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15052 		sd_return_failed_command(un, cmd_bp, EIO);
15053 	}
15054 }
15055 
15056 
15057 
15058 
15059 /*
15060  *    Function: sd_handle_auto_request_sense
15061  *
15062  * Description: Processing for auto-request sense information.
15063  *
15064  *   Arguments: un - ptr to associated softstate
15065  *		bp - ptr to buf(9S) for the command
15066  *		xp - ptr to the sd_xbuf for the command
15067  *		pktp - ptr to the scsi_pkt(9S) for the command
15068  *
15069  *     Context: May be called under interrupt context
15070  */
15071 
15072 static void
15073 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
15074 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15075 {
15076 	struct scsi_arq_status *asp;
15077 
15078 	ASSERT(un != NULL);
15079 	ASSERT(mutex_owned(SD_MUTEX(un)));
15080 	ASSERT(bp != NULL);
15081 	ASSERT(xp != NULL);
15082 	ASSERT(pktp != NULL);
15083 	ASSERT(pktp != un->un_rqs_pktp);
15084 	ASSERT(bp   != un->un_rqs_bp);
15085 
15086 	/*
15087 	 * For auto-request sense, we get a scsi_arq_status back from
15088 	 * the HBA, with the sense data in the sts_sensedata member.
15089 	 * The pkt_scbp of the packet points to this scsi_arq_status.
15090 	 */
15091 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
15092 
15093 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
15094 		/*
15095 		 * The auto REQUEST SENSE failed; see if we can re-try
15096 		 * the original command.
15097 		 */
15098 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15099 		    "auto request sense failed (reason=%s)\n",
15100 		    scsi_rname(asp->sts_rqpkt_reason));
15101 
15102 		sd_reset_target(un, pktp);
15103 
15104 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15105 		    NULL, NULL, EIO, (clock_t)0, NULL);
15106 		return;
15107 	}
15108 
15109 	/* Save the relevant sense info into the xp for the original cmd. */
15110 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
15111 	xp->xb_sense_state  = asp->sts_rqpkt_state;
15112 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
15113 	bcopy(&asp->sts_sensedata, xp->xb_sense_data,
15114 	    min(sizeof (struct scsi_extended_sense), SENSE_LENGTH));
15115 
15116 	/*
15117 	 * See if we have valid sense data, if so then turn it over to
15118 	 * sd_decode_sense() to figure out the right course of action.
15119 	 */
15120 	if (sd_validate_sense_data(un, bp, xp) == SD_SENSE_DATA_IS_VALID) {
15121 		sd_decode_sense(un, bp, xp, pktp);
15122 	}
15123 }
15124 
15125 
15126 /*
15127  *    Function: sd_print_sense_failed_msg
15128  *
15129  * Description: Print log message when RQS has failed.
15130  *
15131  *   Arguments: un - ptr to associated softstate
15132  *		bp - ptr to buf(9S) for the command
15133  *		arg - generic message string ptr
15134  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
15135  *			or SD_NO_RETRY_ISSUED
15136  *
15137  *     Context: May be called from interrupt context
15138  */
15139 
15140 static void
15141 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
15142 	int code)
15143 {
15144 	char	*msgp = arg;
15145 
15146 	ASSERT(un != NULL);
15147 	ASSERT(mutex_owned(SD_MUTEX(un)));
15148 	ASSERT(bp != NULL);
15149 
15150 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
15151 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
15152 	}
15153 }
15154 
15155 
15156 /*
15157  *    Function: sd_validate_sense_data
15158  *
15159  * Description: Check the given sense data for validity.
15160  *		If the sense data is not valid, the command will
15161  *		be either failed or retried!
15162  *
15163  * Return Code: SD_SENSE_DATA_IS_INVALID
15164  *		SD_SENSE_DATA_IS_VALID
15165  *
15166  *     Context: May be called from interrupt context
15167  */
15168 
15169 static int
15170 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp)
15171 {
15172 	struct scsi_extended_sense *esp;
15173 	struct	scsi_pkt *pktp;
15174 	size_t	actual_len;
15175 	char	*msgp = NULL;
15176 
15177 	ASSERT(un != NULL);
15178 	ASSERT(mutex_owned(SD_MUTEX(un)));
15179 	ASSERT(bp != NULL);
15180 	ASSERT(bp != un->un_rqs_bp);
15181 	ASSERT(xp != NULL);
15182 
15183 	pktp = SD_GET_PKTP(bp);
15184 	ASSERT(pktp != NULL);
15185 
15186 	/*
15187 	 * Check the status of the RQS command (auto or manual).
15188 	 */
15189 	switch (xp->xb_sense_status & STATUS_MASK) {
15190 	case STATUS_GOOD:
15191 		break;
15192 
15193 	case STATUS_RESERVATION_CONFLICT:
15194 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
15195 		return (SD_SENSE_DATA_IS_INVALID);
15196 
15197 	case STATUS_BUSY:
15198 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15199 		    "Busy Status on REQUEST SENSE\n");
15200 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
15201 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
15202 		return (SD_SENSE_DATA_IS_INVALID);
15203 
15204 	case STATUS_QFULL:
15205 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15206 		    "QFULL Status on REQUEST SENSE\n");
15207 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
15208 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
15209 		return (SD_SENSE_DATA_IS_INVALID);
15210 
15211 	case STATUS_CHECK:
15212 	case STATUS_TERMINATED:
15213 		msgp = "Check Condition on REQUEST SENSE\n";
15214 		goto sense_failed;
15215 
15216 	default:
15217 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
15218 		goto sense_failed;
15219 	}
15220 
15221 	/*
15222 	 * See if we got the minimum required amount of sense data.
15223 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
15224 	 * or less.
15225 	 */
15226 	actual_len = (int)(SENSE_LENGTH - xp->xb_sense_resid);
15227 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
15228 	    (actual_len == 0)) {
15229 		msgp = "Request Sense couldn't get sense data\n";
15230 		goto sense_failed;
15231 	}
15232 
15233 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
15234 		msgp = "Not enough sense information\n";
15235 		goto sense_failed;
15236 	}
15237 
15238 	/*
15239 	 * We require the extended sense data
15240 	 */
15241 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
15242 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
15243 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
15244 			static char tmp[8];
15245 			static char buf[148];
15246 			char *p = (char *)(xp->xb_sense_data);
15247 			int i;
15248 
15249 			mutex_enter(&sd_sense_mutex);
15250 			(void) strcpy(buf, "undecodable sense information:");
15251 			for (i = 0; i < actual_len; i++) {
15252 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
15253 				(void) strcpy(&buf[strlen(buf)], tmp);
15254 			}
15255 			i = strlen(buf);
15256 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
15257 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
15258 			mutex_exit(&sd_sense_mutex);
15259 		}
15260 		/* Note: Legacy behavior, fail the command with no retry */
15261 		sd_return_failed_command(un, bp, EIO);
15262 		return (SD_SENSE_DATA_IS_INVALID);
15263 	}
15264 
15265 	/*
15266 	 * Check that es_code is valid (es_class concatenated with es_code
15267 	 * make up the "response code" field.  es_class will always be 7, so
15268 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
15269 	 * format.
15270 	 */
15271 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
15272 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
15273 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
15274 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
15275 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
15276 		goto sense_failed;
15277 	}
15278 
15279 	return (SD_SENSE_DATA_IS_VALID);
15280 
15281 sense_failed:
15282 	/*
15283 	 * If the request sense failed (for whatever reason), attempt
15284 	 * to retry the original command.
15285 	 */
15286 #if defined(__i386) || defined(__amd64)
15287 	/*
15288 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
15289 	 * sddef.h for Sparc platform, and x86 uses 1 binary
15290 	 * for both SCSI/FC.
15291 	 * The SD_RETRY_DELAY value need to be adjusted here
15292 	 * when SD_RETRY_DELAY change in sddef.h
15293 	 */
15294 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15295 	    sd_print_sense_failed_msg, msgp, EIO,
15296 		un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
15297 #else
15298 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15299 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
15300 #endif
15301 
15302 	return (SD_SENSE_DATA_IS_INVALID);
15303 }
15304 
15305 
15306 
15307 /*
15308  *    Function: sd_decode_sense
15309  *
15310  * Description: Take recovery action(s) when SCSI Sense Data is received.
15311  *
15312  *     Context: Interrupt context.
15313  */
15314 
15315 static void
15316 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
15317 	struct scsi_pkt *pktp)
15318 {
15319 	uint8_t sense_key;
15320 
15321 	ASSERT(un != NULL);
15322 	ASSERT(mutex_owned(SD_MUTEX(un)));
15323 	ASSERT(bp != NULL);
15324 	ASSERT(bp != un->un_rqs_bp);
15325 	ASSERT(xp != NULL);
15326 	ASSERT(pktp != NULL);
15327 
15328 	sense_key = scsi_sense_key(xp->xb_sense_data);
15329 
15330 	switch (sense_key) {
15331 	case KEY_NO_SENSE:
15332 		sd_sense_key_no_sense(un, bp, xp, pktp);
15333 		break;
15334 	case KEY_RECOVERABLE_ERROR:
15335 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
15336 		    bp, xp, pktp);
15337 		break;
15338 	case KEY_NOT_READY:
15339 		sd_sense_key_not_ready(un, xp->xb_sense_data,
15340 		    bp, xp, pktp);
15341 		break;
15342 	case KEY_MEDIUM_ERROR:
15343 	case KEY_HARDWARE_ERROR:
15344 		sd_sense_key_medium_or_hardware_error(un,
15345 		    xp->xb_sense_data, bp, xp, pktp);
15346 		break;
15347 	case KEY_ILLEGAL_REQUEST:
15348 		sd_sense_key_illegal_request(un, bp, xp, pktp);
15349 		break;
15350 	case KEY_UNIT_ATTENTION:
15351 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
15352 		    bp, xp, pktp);
15353 		break;
15354 	case KEY_WRITE_PROTECT:
15355 	case KEY_VOLUME_OVERFLOW:
15356 	case KEY_MISCOMPARE:
15357 		sd_sense_key_fail_command(un, bp, xp, pktp);
15358 		break;
15359 	case KEY_BLANK_CHECK:
15360 		sd_sense_key_blank_check(un, bp, xp, pktp);
15361 		break;
15362 	case KEY_ABORTED_COMMAND:
15363 		sd_sense_key_aborted_command(un, bp, xp, pktp);
15364 		break;
15365 	case KEY_VENDOR_UNIQUE:
15366 	case KEY_COPY_ABORTED:
15367 	case KEY_EQUAL:
15368 	case KEY_RESERVED:
15369 	default:
15370 		sd_sense_key_default(un, xp->xb_sense_data,
15371 		    bp, xp, pktp);
15372 		break;
15373 	}
15374 }
15375 
15376 
15377 /*
15378  *    Function: sd_dump_memory
15379  *
15380  * Description: Debug logging routine to print the contents of a user provided
15381  *		buffer. The output of the buffer is broken up into 256 byte
15382  *		segments due to a size constraint of the scsi_log.
15383  *		implementation.
15384  *
15385  *   Arguments: un - ptr to softstate
15386  *		comp - component mask
15387  *		title - "title" string to preceed data when printed
15388  *		data - ptr to data block to be printed
15389  *		len - size of data block to be printed
15390  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
15391  *
15392  *     Context: May be called from interrupt context
15393  */
15394 
15395 #define	SD_DUMP_MEMORY_BUF_SIZE	256
15396 
15397 static char *sd_dump_format_string[] = {
15398 		" 0x%02x",
15399 		" %c"
15400 };
15401 
15402 static void
15403 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
15404     int len, int fmt)
15405 {
15406 	int	i, j;
15407 	int	avail_count;
15408 	int	start_offset;
15409 	int	end_offset;
15410 	size_t	entry_len;
15411 	char	*bufp;
15412 	char	*local_buf;
15413 	char	*format_string;
15414 
15415 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
15416 
15417 	/*
15418 	 * In the debug version of the driver, this function is called from a
15419 	 * number of places which are NOPs in the release driver.
15420 	 * The debug driver therefore has additional methods of filtering
15421 	 * debug output.
15422 	 */
15423 #ifdef SDDEBUG
15424 	/*
15425 	 * In the debug version of the driver we can reduce the amount of debug
15426 	 * messages by setting sd_error_level to something other than
15427 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
15428 	 * sd_component_mask.
15429 	 */
15430 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
15431 	    (sd_error_level != SCSI_ERR_ALL)) {
15432 		return;
15433 	}
15434 	if (((sd_component_mask & comp) == 0) ||
15435 	    (sd_error_level != SCSI_ERR_ALL)) {
15436 		return;
15437 	}
15438 #else
15439 	if (sd_error_level != SCSI_ERR_ALL) {
15440 		return;
15441 	}
15442 #endif
15443 
15444 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
15445 	bufp = local_buf;
15446 	/*
15447 	 * Available length is the length of local_buf[], minus the
15448 	 * length of the title string, minus one for the ":", minus
15449 	 * one for the newline, minus one for the NULL terminator.
15450 	 * This gives the #bytes available for holding the printed
15451 	 * values from the given data buffer.
15452 	 */
15453 	if (fmt == SD_LOG_HEX) {
15454 		format_string = sd_dump_format_string[0];
15455 	} else /* SD_LOG_CHAR */ {
15456 		format_string = sd_dump_format_string[1];
15457 	}
15458 	/*
15459 	 * Available count is the number of elements from the given
15460 	 * data buffer that we can fit into the available length.
15461 	 * This is based upon the size of the format string used.
15462 	 * Make one entry and find it's size.
15463 	 */
15464 	(void) sprintf(bufp, format_string, data[0]);
15465 	entry_len = strlen(bufp);
15466 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
15467 
15468 	j = 0;
15469 	while (j < len) {
15470 		bufp = local_buf;
15471 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
15472 		start_offset = j;
15473 
15474 		end_offset = start_offset + avail_count;
15475 
15476 		(void) sprintf(bufp, "%s:", title);
15477 		bufp += strlen(bufp);
15478 		for (i = start_offset; ((i < end_offset) && (j < len));
15479 		    i++, j++) {
15480 			(void) sprintf(bufp, format_string, data[i]);
15481 			bufp += entry_len;
15482 		}
15483 		(void) sprintf(bufp, "\n");
15484 
15485 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
15486 	}
15487 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
15488 }
15489 
15490 /*
15491  *    Function: sd_print_sense_msg
15492  *
15493  * Description: Log a message based upon the given sense data.
15494  *
15495  *   Arguments: un - ptr to associated softstate
15496  *		bp - ptr to buf(9S) for the command
15497  *		arg - ptr to associate sd_sense_info struct
15498  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
15499  *			or SD_NO_RETRY_ISSUED
15500  *
15501  *     Context: May be called from interrupt context
15502  */
15503 
15504 static void
15505 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
15506 {
15507 	struct sd_xbuf	*xp;
15508 	struct scsi_pkt	*pktp;
15509 	uint8_t *sensep;
15510 	daddr_t request_blkno;
15511 	diskaddr_t err_blkno;
15512 	int severity;
15513 	int pfa_flag;
15514 	extern struct scsi_key_strings scsi_cmds[];
15515 
15516 	ASSERT(un != NULL);
15517 	ASSERT(mutex_owned(SD_MUTEX(un)));
15518 	ASSERT(bp != NULL);
15519 	xp = SD_GET_XBUF(bp);
15520 	ASSERT(xp != NULL);
15521 	pktp = SD_GET_PKTP(bp);
15522 	ASSERT(pktp != NULL);
15523 	ASSERT(arg != NULL);
15524 
15525 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
15526 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
15527 
15528 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
15529 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
15530 		severity = SCSI_ERR_RETRYABLE;
15531 	}
15532 
15533 	/* Use absolute block number for the request block number */
15534 	request_blkno = xp->xb_blkno;
15535 
15536 	/*
15537 	 * Now try to get the error block number from the sense data
15538 	 */
15539 	sensep = xp->xb_sense_data;
15540 
15541 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
15542 		(uint64_t *)&err_blkno)) {
15543 		/*
15544 		 * We retrieved the error block number from the information
15545 		 * portion of the sense data.
15546 		 *
15547 		 * For USCSI commands we are better off using the error
15548 		 * block no. as the requested block no. (This is the best
15549 		 * we can estimate.)
15550 		 */
15551 		if ((SD_IS_BUFIO(xp) == FALSE) &&
15552 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
15553 			request_blkno = err_blkno;
15554 		}
15555 	} else {
15556 		/*
15557 		 * Without the es_valid bit set (for fixed format) or an
15558 		 * information descriptor (for descriptor format) we cannot
15559 		 * be certain of the error blkno, so just use the
15560 		 * request_blkno.
15561 		 */
15562 		err_blkno = (diskaddr_t)request_blkno;
15563 	}
15564 
15565 	/*
15566 	 * The following will log the buffer contents for the release driver
15567 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
15568 	 * level is set to verbose.
15569 	 */
15570 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
15571 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15572 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15573 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
15574 
15575 	if (pfa_flag == FALSE) {
15576 		/* This is normally only set for USCSI */
15577 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
15578 			return;
15579 		}
15580 
15581 		if ((SD_IS_BUFIO(xp) == TRUE) &&
15582 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
15583 		    (severity < sd_error_level))) {
15584 			return;
15585 		}
15586 	}
15587 
15588 	/*
15589 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
15590 	 */
15591 	if ((SD_IS_LSI(un)) &&
15592 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
15593 	    (scsi_sense_asc(sensep) == 0x94) &&
15594 	    (scsi_sense_ascq(sensep) == 0x01)) {
15595 		un->un_sonoma_failure_count++;
15596 		if (un->un_sonoma_failure_count > 1) {
15597 			return;
15598 		}
15599 	}
15600 
15601 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
15602 	    request_blkno, err_blkno, scsi_cmds,
15603 	    (struct scsi_extended_sense *)sensep,
15604 	    un->un_additional_codes, NULL);
15605 }
15606 
15607 /*
15608  *    Function: sd_sense_key_no_sense
15609  *
15610  * Description: Recovery action when sense data was not received.
15611  *
15612  *     Context: May be called from interrupt context
15613  */
15614 
15615 static void
15616 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
15617 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15618 {
15619 	struct sd_sense_info	si;
15620 
15621 	ASSERT(un != NULL);
15622 	ASSERT(mutex_owned(SD_MUTEX(un)));
15623 	ASSERT(bp != NULL);
15624 	ASSERT(xp != NULL);
15625 	ASSERT(pktp != NULL);
15626 
15627 	si.ssi_severity = SCSI_ERR_FATAL;
15628 	si.ssi_pfa_flag = FALSE;
15629 
15630 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
15631 
15632 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
15633 		&si, EIO, (clock_t)0, NULL);
15634 }
15635 
15636 
15637 /*
15638  *    Function: sd_sense_key_recoverable_error
15639  *
15640  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
15641  *
15642  *     Context: May be called from interrupt context
15643  */
15644 
15645 static void
15646 sd_sense_key_recoverable_error(struct sd_lun *un,
15647 	uint8_t *sense_datap,
15648 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
15649 {
15650 	struct sd_sense_info	si;
15651 	uint8_t asc = scsi_sense_asc(sense_datap);
15652 
15653 	ASSERT(un != NULL);
15654 	ASSERT(mutex_owned(SD_MUTEX(un)));
15655 	ASSERT(bp != NULL);
15656 	ASSERT(xp != NULL);
15657 	ASSERT(pktp != NULL);
15658 
15659 	/*
15660 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
15661 	 */
15662 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
15663 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
15664 		si.ssi_severity = SCSI_ERR_INFO;
15665 		si.ssi_pfa_flag = TRUE;
15666 	} else {
15667 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
15668 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
15669 		si.ssi_severity = SCSI_ERR_RECOVERED;
15670 		si.ssi_pfa_flag = FALSE;
15671 	}
15672 
15673 	if (pktp->pkt_resid == 0) {
15674 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
15675 		sd_return_command(un, bp);
15676 		return;
15677 	}
15678 
15679 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
15680 	    &si, EIO, (clock_t)0, NULL);
15681 }
15682 
15683 
15684 
15685 
15686 /*
15687  *    Function: sd_sense_key_not_ready
15688  *
15689  * Description: Recovery actions for a SCSI "Not Ready" sense key.
15690  *
15691  *     Context: May be called from interrupt context
15692  */
15693 
15694 static void
15695 sd_sense_key_not_ready(struct sd_lun *un,
15696 	uint8_t *sense_datap,
15697 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
15698 {
15699 	struct sd_sense_info	si;
15700 	uint8_t asc = scsi_sense_asc(sense_datap);
15701 	uint8_t ascq = scsi_sense_ascq(sense_datap);
15702 
15703 	ASSERT(un != NULL);
15704 	ASSERT(mutex_owned(SD_MUTEX(un)));
15705 	ASSERT(bp != NULL);
15706 	ASSERT(xp != NULL);
15707 	ASSERT(pktp != NULL);
15708 
15709 	si.ssi_severity = SCSI_ERR_FATAL;
15710 	si.ssi_pfa_flag = FALSE;
15711 
15712 	/*
15713 	 * Update error stats after first NOT READY error. Disks may have
15714 	 * been powered down and may need to be restarted.  For CDROMs,
15715 	 * report NOT READY errors only if media is present.
15716 	 */
15717 	if ((ISCD(un) && (asc == 0x3A)) ||
15718 	    (xp->xb_retry_count > 0)) {
15719 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
15720 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
15721 	}
15722 
15723 	/*
15724 	 * Just fail if the "not ready" retry limit has been reached.
15725 	 */
15726 	if (xp->xb_retry_count >= un->un_notready_retry_count) {
15727 		/* Special check for error message printing for removables. */
15728 		if (un->un_f_has_removable_media && (asc == 0x04) &&
15729 		    (ascq >= 0x04)) {
15730 			si.ssi_severity = SCSI_ERR_ALL;
15731 		}
15732 		goto fail_command;
15733 	}
15734 
15735 	/*
15736 	 * Check the ASC and ASCQ in the sense data as needed, to determine
15737 	 * what to do.
15738 	 */
15739 	switch (asc) {
15740 	case 0x04:	/* LOGICAL UNIT NOT READY */
15741 		/*
15742 		 * disk drives that don't spin up result in a very long delay
15743 		 * in format without warning messages. We will log a message
15744 		 * if the error level is set to verbose.
15745 		 */
15746 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
15747 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15748 			    "logical unit not ready, resetting disk\n");
15749 		}
15750 
15751 		/*
15752 		 * There are different requirements for CDROMs and disks for
15753 		 * the number of retries.  If a CD-ROM is giving this, it is
15754 		 * probably reading TOC and is in the process of getting
15755 		 * ready, so we should keep on trying for a long time to make
15756 		 * sure that all types of media are taken in account (for
15757 		 * some media the drive takes a long time to read TOC).  For
15758 		 * disks we do not want to retry this too many times as this
15759 		 * can cause a long hang in format when the drive refuses to
15760 		 * spin up (a very common failure).
15761 		 */
15762 		switch (ascq) {
15763 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
15764 			/*
15765 			 * Disk drives frequently refuse to spin up which
15766 			 * results in a very long hang in format without
15767 			 * warning messages.
15768 			 *
15769 			 * Note: This code preserves the legacy behavior of
15770 			 * comparing xb_retry_count against zero for fibre
15771 			 * channel targets instead of comparing against the
15772 			 * un_reset_retry_count value.  The reason for this
15773 			 * discrepancy has been so utterly lost beneath the
15774 			 * Sands of Time that even Indiana Jones could not
15775 			 * find it.
15776 			 */
15777 			if (un->un_f_is_fibre == TRUE) {
15778 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
15779 					(xp->xb_retry_count > 0)) &&
15780 					(un->un_startstop_timeid == NULL)) {
15781 					scsi_log(SD_DEVINFO(un), sd_label,
15782 					CE_WARN, "logical unit not ready, "
15783 					"resetting disk\n");
15784 					sd_reset_target(un, pktp);
15785 				}
15786 			} else {
15787 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
15788 					(xp->xb_retry_count >
15789 					un->un_reset_retry_count)) &&
15790 					(un->un_startstop_timeid == NULL)) {
15791 					scsi_log(SD_DEVINFO(un), sd_label,
15792 					CE_WARN, "logical unit not ready, "
15793 					"resetting disk\n");
15794 					sd_reset_target(un, pktp);
15795 				}
15796 			}
15797 			break;
15798 
15799 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
15800 			/*
15801 			 * If the target is in the process of becoming
15802 			 * ready, just proceed with the retry. This can
15803 			 * happen with CD-ROMs that take a long time to
15804 			 * read TOC after a power cycle or reset.
15805 			 */
15806 			goto do_retry;
15807 
15808 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
15809 			break;
15810 
15811 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
15812 			/*
15813 			 * Retries cannot help here so just fail right away.
15814 			 */
15815 			goto fail_command;
15816 
15817 		case 0x88:
15818 			/*
15819 			 * Vendor-unique code for T3/T4: it indicates a
15820 			 * path problem in a mutipathed config, but as far as
15821 			 * the target driver is concerned it equates to a fatal
15822 			 * error, so we should just fail the command right away
15823 			 * (without printing anything to the console). If this
15824 			 * is not a T3/T4, fall thru to the default recovery
15825 			 * action.
15826 			 * T3/T4 is FC only, don't need to check is_fibre
15827 			 */
15828 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
15829 				sd_return_failed_command(un, bp, EIO);
15830 				return;
15831 			}
15832 			/* FALLTHRU */
15833 
15834 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
15835 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
15836 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
15837 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
15838 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
15839 		default:    /* Possible future codes in SCSI spec? */
15840 			/*
15841 			 * For removable-media devices, do not retry if
15842 			 * ASCQ > 2 as these result mostly from USCSI commands
15843 			 * on MMC devices issued to check status of an
15844 			 * operation initiated in immediate mode.  Also for
15845 			 * ASCQ >= 4 do not print console messages as these
15846 			 * mainly represent a user-initiated operation
15847 			 * instead of a system failure.
15848 			 */
15849 			if (un->un_f_has_removable_media) {
15850 				si.ssi_severity = SCSI_ERR_ALL;
15851 				goto fail_command;
15852 			}
15853 			break;
15854 		}
15855 
15856 		/*
15857 		 * As part of our recovery attempt for the NOT READY
15858 		 * condition, we issue a START STOP UNIT command. However
15859 		 * we want to wait for a short delay before attempting this
15860 		 * as there may still be more commands coming back from the
15861 		 * target with the check condition. To do this we use
15862 		 * timeout(9F) to call sd_start_stop_unit_callback() after
15863 		 * the delay interval expires. (sd_start_stop_unit_callback()
15864 		 * dispatches sd_start_stop_unit_task(), which will issue
15865 		 * the actual START STOP UNIT command. The delay interval
15866 		 * is one-half of the delay that we will use to retry the
15867 		 * command that generated the NOT READY condition.
15868 		 *
15869 		 * Note that we could just dispatch sd_start_stop_unit_task()
15870 		 * from here and allow it to sleep for the delay interval,
15871 		 * but then we would be tying up the taskq thread
15872 		 * uncesessarily for the duration of the delay.
15873 		 *
15874 		 * Do not issue the START STOP UNIT if the current command
15875 		 * is already a START STOP UNIT.
15876 		 */
15877 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
15878 			break;
15879 		}
15880 
15881 		/*
15882 		 * Do not schedule the timeout if one is already pending.
15883 		 */
15884 		if (un->un_startstop_timeid != NULL) {
15885 			SD_INFO(SD_LOG_ERROR, un,
15886 			    "sd_sense_key_not_ready: restart already issued to"
15887 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
15888 			    ddi_get_instance(SD_DEVINFO(un)));
15889 			break;
15890 		}
15891 
15892 		/*
15893 		 * Schedule the START STOP UNIT command, then queue the command
15894 		 * for a retry.
15895 		 *
15896 		 * Note: A timeout is not scheduled for this retry because we
15897 		 * want the retry to be serial with the START_STOP_UNIT. The
15898 		 * retry will be started when the START_STOP_UNIT is completed
15899 		 * in sd_start_stop_unit_task.
15900 		 */
15901 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
15902 		    un, SD_BSY_TIMEOUT / 2);
15903 		xp->xb_retry_count++;
15904 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
15905 		return;
15906 
15907 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
15908 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
15909 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15910 			    "unit does not respond to selection\n");
15911 		}
15912 		break;
15913 
15914 	case 0x3A:	/* MEDIUM NOT PRESENT */
15915 		if (sd_error_level >= SCSI_ERR_FATAL) {
15916 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15917 			    "Caddy not inserted in drive\n");
15918 		}
15919 
15920 		sr_ejected(un);
15921 		un->un_mediastate = DKIO_EJECTED;
15922 		/* The state has changed, inform the media watch routines */
15923 		cv_broadcast(&un->un_state_cv);
15924 		/* Just fail if no media is present in the drive. */
15925 		goto fail_command;
15926 
15927 	default:
15928 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
15929 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
15930 			    "Unit not Ready. Additional sense code 0x%x\n",
15931 			    asc);
15932 		}
15933 		break;
15934 	}
15935 
15936 do_retry:
15937 
15938 	/*
15939 	 * Retry the command, as some targets may report NOT READY for
15940 	 * several seconds after being reset.
15941 	 */
15942 	xp->xb_retry_count++;
15943 	si.ssi_severity = SCSI_ERR_RETRYABLE;
15944 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
15945 	    &si, EIO, SD_BSY_TIMEOUT, NULL);
15946 
15947 	return;
15948 
15949 fail_command:
15950 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
15951 	sd_return_failed_command(un, bp, EIO);
15952 }
15953 
15954 
15955 
15956 /*
15957  *    Function: sd_sense_key_medium_or_hardware_error
15958  *
15959  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
15960  *		sense key.
15961  *
15962  *     Context: May be called from interrupt context
15963  */
15964 
15965 static void
15966 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
15967 	uint8_t *sense_datap,
15968 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
15969 {
15970 	struct sd_sense_info	si;
15971 	uint8_t sense_key = scsi_sense_key(sense_datap);
15972 	uint8_t asc = scsi_sense_asc(sense_datap);
15973 
15974 	ASSERT(un != NULL);
15975 	ASSERT(mutex_owned(SD_MUTEX(un)));
15976 	ASSERT(bp != NULL);
15977 	ASSERT(xp != NULL);
15978 	ASSERT(pktp != NULL);
15979 
15980 	si.ssi_severity = SCSI_ERR_FATAL;
15981 	si.ssi_pfa_flag = FALSE;
15982 
15983 	if (sense_key == KEY_MEDIUM_ERROR) {
15984 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
15985 	}
15986 
15987 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
15988 
15989 	if ((un->un_reset_retry_count != 0) &&
15990 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
15991 		mutex_exit(SD_MUTEX(un));
15992 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
15993 		if (un->un_f_allow_bus_device_reset == TRUE) {
15994 
15995 			boolean_t try_resetting_target = B_TRUE;
15996 
15997 			/*
15998 			 * We need to be able to handle specific ASC when we are
15999 			 * handling a KEY_HARDWARE_ERROR. In particular
16000 			 * taking the default action of resetting the target may
16001 			 * not be the appropriate way to attempt recovery.
16002 			 * Resetting a target because of a single LUN failure
16003 			 * victimizes all LUNs on that target.
16004 			 *
16005 			 * This is true for the LSI arrays, if an LSI
16006 			 * array controller returns an ASC of 0x84 (LUN Dead) we
16007 			 * should trust it.
16008 			 */
16009 
16010 			if (sense_key == KEY_HARDWARE_ERROR) {
16011 				switch (asc) {
16012 				case 0x84:
16013 					if (SD_IS_LSI(un)) {
16014 						try_resetting_target = B_FALSE;
16015 					}
16016 					break;
16017 				default:
16018 					break;
16019 				}
16020 			}
16021 
16022 			if (try_resetting_target == B_TRUE) {
16023 				int reset_retval = 0;
16024 				if (un->un_f_lun_reset_enabled == TRUE) {
16025 					SD_TRACE(SD_LOG_IO_CORE, un,
16026 					    "sd_sense_key_medium_or_hardware_"
16027 					    "error: issuing RESET_LUN\n");
16028 					reset_retval =
16029 					    scsi_reset(SD_ADDRESS(un),
16030 					    RESET_LUN);
16031 				}
16032 				if (reset_retval == 0) {
16033 					SD_TRACE(SD_LOG_IO_CORE, un,
16034 					    "sd_sense_key_medium_or_hardware_"
16035 					    "error: issuing RESET_TARGET\n");
16036 					(void) scsi_reset(SD_ADDRESS(un),
16037 					    RESET_TARGET);
16038 				}
16039 			}
16040 		}
16041 		mutex_enter(SD_MUTEX(un));
16042 	}
16043 
16044 	/*
16045 	 * This really ought to be a fatal error, but we will retry anyway
16046 	 * as some drives report this as a spurious error.
16047 	 */
16048 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16049 	    &si, EIO, (clock_t)0, NULL);
16050 }
16051 
16052 
16053 
16054 /*
16055  *    Function: sd_sense_key_illegal_request
16056  *
16057  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
16058  *
16059  *     Context: May be called from interrupt context
16060  */
16061 
16062 static void
16063 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
16064 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16065 {
16066 	struct sd_sense_info	si;
16067 
16068 	ASSERT(un != NULL);
16069 	ASSERT(mutex_owned(SD_MUTEX(un)));
16070 	ASSERT(bp != NULL);
16071 	ASSERT(xp != NULL);
16072 	ASSERT(pktp != NULL);
16073 
16074 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
16075 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
16076 
16077 	si.ssi_severity = SCSI_ERR_INFO;
16078 	si.ssi_pfa_flag = FALSE;
16079 
16080 	/* Pointless to retry if the target thinks it's an illegal request */
16081 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16082 	sd_return_failed_command(un, bp, EIO);
16083 }
16084 
16085 
16086 
16087 
16088 /*
16089  *    Function: sd_sense_key_unit_attention
16090  *
16091  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
16092  *
16093  *     Context: May be called from interrupt context
16094  */
16095 
16096 static void
16097 sd_sense_key_unit_attention(struct sd_lun *un,
16098 	uint8_t *sense_datap,
16099 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16100 {
16101 	/*
16102 	 * For UNIT ATTENTION we allow retries for one minute. Devices
16103 	 * like Sonoma can return UNIT ATTENTION close to a minute
16104 	 * under certain conditions.
16105 	 */
16106 	int	retry_check_flag = SD_RETRIES_UA;
16107 	boolean_t	kstat_updated = B_FALSE;
16108 	struct	sd_sense_info		si;
16109 	uint8_t asc = scsi_sense_asc(sense_datap);
16110 
16111 	ASSERT(un != NULL);
16112 	ASSERT(mutex_owned(SD_MUTEX(un)));
16113 	ASSERT(bp != NULL);
16114 	ASSERT(xp != NULL);
16115 	ASSERT(pktp != NULL);
16116 
16117 	si.ssi_severity = SCSI_ERR_INFO;
16118 	si.ssi_pfa_flag = FALSE;
16119 
16120 
16121 	switch (asc) {
16122 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
16123 		if (sd_report_pfa != 0) {
16124 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
16125 			si.ssi_pfa_flag = TRUE;
16126 			retry_check_flag = SD_RETRIES_STANDARD;
16127 			goto do_retry;
16128 		}
16129 
16130 		break;
16131 
16132 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
16133 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
16134 			un->un_resvd_status |=
16135 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
16136 		}
16137 #ifdef _LP64
16138 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
16139 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
16140 			    un, KM_NOSLEEP) == 0) {
16141 				/*
16142 				 * If we can't dispatch the task we'll just
16143 				 * live without descriptor sense.  We can
16144 				 * try again on the next "unit attention"
16145 				 */
16146 				SD_ERROR(SD_LOG_ERROR, un,
16147 				    "sd_sense_key_unit_attention: "
16148 				    "Could not dispatch "
16149 				    "sd_reenable_dsense_task\n");
16150 			}
16151 		}
16152 #endif /* _LP64 */
16153 		/* FALLTHRU */
16154 
16155 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
16156 		if (!un->un_f_has_removable_media) {
16157 			break;
16158 		}
16159 
16160 		/*
16161 		 * When we get a unit attention from a removable-media device,
16162 		 * it may be in a state that will take a long time to recover
16163 		 * (e.g., from a reset).  Since we are executing in interrupt
16164 		 * context here, we cannot wait around for the device to come
16165 		 * back. So hand this command off to sd_media_change_task()
16166 		 * for deferred processing under taskq thread context. (Note
16167 		 * that the command still may be failed if a problem is
16168 		 * encountered at a later time.)
16169 		 */
16170 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
16171 		    KM_NOSLEEP) == 0) {
16172 			/*
16173 			 * Cannot dispatch the request so fail the command.
16174 			 */
16175 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
16176 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
16177 			si.ssi_severity = SCSI_ERR_FATAL;
16178 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16179 			sd_return_failed_command(un, bp, EIO);
16180 		}
16181 
16182 		/*
16183 		 * If failed to dispatch sd_media_change_task(), we already
16184 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
16185 		 * we should update kstat later if it encounters an error. So,
16186 		 * we update kstat_updated flag here.
16187 		 */
16188 		kstat_updated = B_TRUE;
16189 
16190 		/*
16191 		 * Either the command has been successfully dispatched to a
16192 		 * task Q for retrying, or the dispatch failed. In either case
16193 		 * do NOT retry again by calling sd_retry_command. This sets up
16194 		 * two retries of the same command and when one completes and
16195 		 * frees the resources the other will access freed memory,
16196 		 * a bad thing.
16197 		 */
16198 		return;
16199 
16200 	default:
16201 		break;
16202 	}
16203 
16204 	/*
16205 	 * Update kstat if we haven't done that.
16206 	 */
16207 	if (!kstat_updated) {
16208 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16209 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
16210 	}
16211 
16212 do_retry:
16213 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
16214 	    EIO, SD_UA_RETRY_DELAY, NULL);
16215 }
16216 
16217 
16218 
16219 /*
16220  *    Function: sd_sense_key_fail_command
16221  *
16222  * Description: Use to fail a command when we don't like the sense key that
16223  *		was returned.
16224  *
16225  *     Context: May be called from interrupt context
16226  */
16227 
16228 static void
16229 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
16230 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16231 {
16232 	struct sd_sense_info	si;
16233 
16234 	ASSERT(un != NULL);
16235 	ASSERT(mutex_owned(SD_MUTEX(un)));
16236 	ASSERT(bp != NULL);
16237 	ASSERT(xp != NULL);
16238 	ASSERT(pktp != NULL);
16239 
16240 	si.ssi_severity = SCSI_ERR_FATAL;
16241 	si.ssi_pfa_flag = FALSE;
16242 
16243 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16244 	sd_return_failed_command(un, bp, EIO);
16245 }
16246 
16247 
16248 
16249 /*
16250  *    Function: sd_sense_key_blank_check
16251  *
16252  * Description: Recovery actions for a SCSI "Blank Check" sense key.
16253  *		Has no monetary connotation.
16254  *
16255  *     Context: May be called from interrupt context
16256  */
16257 
16258 static void
16259 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
16260 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16261 {
16262 	struct sd_sense_info	si;
16263 
16264 	ASSERT(un != NULL);
16265 	ASSERT(mutex_owned(SD_MUTEX(un)));
16266 	ASSERT(bp != NULL);
16267 	ASSERT(xp != NULL);
16268 	ASSERT(pktp != NULL);
16269 
16270 	/*
16271 	 * Blank check is not fatal for removable devices, therefore
16272 	 * it does not require a console message.
16273 	 */
16274 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
16275 	    SCSI_ERR_FATAL;
16276 	si.ssi_pfa_flag = FALSE;
16277 
16278 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16279 	sd_return_failed_command(un, bp, EIO);
16280 }
16281 
16282 
16283 
16284 
16285 /*
16286  *    Function: sd_sense_key_aborted_command
16287  *
16288  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
16289  *
16290  *     Context: May be called from interrupt context
16291  */
16292 
16293 static void
16294 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
16295 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16296 {
16297 	struct sd_sense_info	si;
16298 
16299 	ASSERT(un != NULL);
16300 	ASSERT(mutex_owned(SD_MUTEX(un)));
16301 	ASSERT(bp != NULL);
16302 	ASSERT(xp != NULL);
16303 	ASSERT(pktp != NULL);
16304 
16305 	si.ssi_severity = SCSI_ERR_FATAL;
16306 	si.ssi_pfa_flag = FALSE;
16307 
16308 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16309 
16310 	/*
16311 	 * This really ought to be a fatal error, but we will retry anyway
16312 	 * as some drives report this as a spurious error.
16313 	 */
16314 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16315 	    &si, EIO, (clock_t)0, NULL);
16316 }
16317 
16318 
16319 
16320 /*
16321  *    Function: sd_sense_key_default
16322  *
16323  * Description: Default recovery action for several SCSI sense keys (basically
16324  *		attempts a retry).
16325  *
16326  *     Context: May be called from interrupt context
16327  */
16328 
16329 static void
16330 sd_sense_key_default(struct sd_lun *un,
16331 	uint8_t *sense_datap,
16332 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16333 {
16334 	struct sd_sense_info	si;
16335 	uint8_t sense_key = scsi_sense_key(sense_datap);
16336 
16337 	ASSERT(un != NULL);
16338 	ASSERT(mutex_owned(SD_MUTEX(un)));
16339 	ASSERT(bp != NULL);
16340 	ASSERT(xp != NULL);
16341 	ASSERT(pktp != NULL);
16342 
16343 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16344 
16345 	/*
16346 	 * Undecoded sense key.	Attempt retries and hope that will fix
16347 	 * the problem.  Otherwise, we're dead.
16348 	 */
16349 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16350 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16351 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
16352 	}
16353 
16354 	si.ssi_severity = SCSI_ERR_FATAL;
16355 	si.ssi_pfa_flag = FALSE;
16356 
16357 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16358 	    &si, EIO, (clock_t)0, NULL);
16359 }
16360 
16361 
16362 
16363 /*
16364  *    Function: sd_print_retry_msg
16365  *
16366  * Description: Print a message indicating the retry action being taken.
16367  *
16368  *   Arguments: un - ptr to associated softstate
16369  *		bp - ptr to buf(9S) for the command
16370  *		arg - not used.
16371  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16372  *			or SD_NO_RETRY_ISSUED
16373  *
16374  *     Context: May be called from interrupt context
16375  */
16376 /* ARGSUSED */
16377 static void
16378 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
16379 {
16380 	struct sd_xbuf	*xp;
16381 	struct scsi_pkt *pktp;
16382 	char *reasonp;
16383 	char *msgp;
16384 
16385 	ASSERT(un != NULL);
16386 	ASSERT(mutex_owned(SD_MUTEX(un)));
16387 	ASSERT(bp != NULL);
16388 	pktp = SD_GET_PKTP(bp);
16389 	ASSERT(pktp != NULL);
16390 	xp = SD_GET_XBUF(bp);
16391 	ASSERT(xp != NULL);
16392 
16393 	ASSERT(!mutex_owned(&un->un_pm_mutex));
16394 	mutex_enter(&un->un_pm_mutex);
16395 	if ((un->un_state == SD_STATE_SUSPENDED) ||
16396 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
16397 	    (pktp->pkt_flags & FLAG_SILENT)) {
16398 		mutex_exit(&un->un_pm_mutex);
16399 		goto update_pkt_reason;
16400 	}
16401 	mutex_exit(&un->un_pm_mutex);
16402 
16403 	/*
16404 	 * Suppress messages if they are all the same pkt_reason; with
16405 	 * TQ, many (up to 256) are returned with the same pkt_reason.
16406 	 * If we are in panic, then suppress the retry messages.
16407 	 */
16408 	switch (flag) {
16409 	case SD_NO_RETRY_ISSUED:
16410 		msgp = "giving up";
16411 		break;
16412 	case SD_IMMEDIATE_RETRY_ISSUED:
16413 	case SD_DELAYED_RETRY_ISSUED:
16414 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
16415 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
16416 		    (sd_error_level != SCSI_ERR_ALL))) {
16417 			return;
16418 		}
16419 		msgp = "retrying command";
16420 		break;
16421 	default:
16422 		goto update_pkt_reason;
16423 	}
16424 
16425 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
16426 	    scsi_rname(pktp->pkt_reason));
16427 
16428 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16429 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
16430 
16431 update_pkt_reason:
16432 	/*
16433 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
16434 	 * This is to prevent multiple console messages for the same failure
16435 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
16436 	 * when the command is retried successfully because there still may be
16437 	 * more commands coming back with the same value of pktp->pkt_reason.
16438 	 */
16439 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
16440 		un->un_last_pkt_reason = pktp->pkt_reason;
16441 	}
16442 }
16443 
16444 
16445 /*
16446  *    Function: sd_print_cmd_incomplete_msg
16447  *
16448  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
16449  *
16450  *   Arguments: un - ptr to associated softstate
16451  *		bp - ptr to buf(9S) for the command
16452  *		arg - passed to sd_print_retry_msg()
16453  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16454  *			or SD_NO_RETRY_ISSUED
16455  *
16456  *     Context: May be called from interrupt context
16457  */
16458 
16459 static void
16460 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
16461 	int code)
16462 {
16463 	dev_info_t	*dip;
16464 
16465 	ASSERT(un != NULL);
16466 	ASSERT(mutex_owned(SD_MUTEX(un)));
16467 	ASSERT(bp != NULL);
16468 
16469 	switch (code) {
16470 	case SD_NO_RETRY_ISSUED:
16471 		/* Command was failed. Someone turned off this target? */
16472 		if (un->un_state != SD_STATE_OFFLINE) {
16473 			/*
16474 			 * Suppress message if we are detaching and
16475 			 * device has been disconnected
16476 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
16477 			 * private interface and not part of the DDI
16478 			 */
16479 			dip = un->un_sd->sd_dev;
16480 			if (!(DEVI_IS_DETACHING(dip) &&
16481 			    DEVI_IS_DEVICE_REMOVED(dip))) {
16482 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16483 				"disk not responding to selection\n");
16484 			}
16485 			New_state(un, SD_STATE_OFFLINE);
16486 		}
16487 		break;
16488 
16489 	case SD_DELAYED_RETRY_ISSUED:
16490 	case SD_IMMEDIATE_RETRY_ISSUED:
16491 	default:
16492 		/* Command was successfully queued for retry */
16493 		sd_print_retry_msg(un, bp, arg, code);
16494 		break;
16495 	}
16496 }
16497 
16498 
16499 /*
16500  *    Function: sd_pkt_reason_cmd_incomplete
16501  *
16502  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
16503  *
16504  *     Context: May be called from interrupt context
16505  */
16506 
16507 static void
16508 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
16509 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16510 {
16511 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
16512 
16513 	ASSERT(un != NULL);
16514 	ASSERT(mutex_owned(SD_MUTEX(un)));
16515 	ASSERT(bp != NULL);
16516 	ASSERT(xp != NULL);
16517 	ASSERT(pktp != NULL);
16518 
16519 	/* Do not do a reset if selection did not complete */
16520 	/* Note: Should this not just check the bit? */
16521 	if (pktp->pkt_state != STATE_GOT_BUS) {
16522 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
16523 		sd_reset_target(un, pktp);
16524 	}
16525 
16526 	/*
16527 	 * If the target was not successfully selected, then set
16528 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
16529 	 * with the target, and further retries and/or commands are
16530 	 * likely to take a long time.
16531 	 */
16532 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
16533 		flag |= SD_RETRIES_FAILFAST;
16534 	}
16535 
16536 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16537 
16538 	sd_retry_command(un, bp, flag,
16539 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16540 }
16541 
16542 
16543 
16544 /*
16545  *    Function: sd_pkt_reason_cmd_tran_err
16546  *
16547  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
16548  *
16549  *     Context: May be called from interrupt context
16550  */
16551 
16552 static void
16553 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
16554 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16555 {
16556 	ASSERT(un != NULL);
16557 	ASSERT(mutex_owned(SD_MUTEX(un)));
16558 	ASSERT(bp != NULL);
16559 	ASSERT(xp != NULL);
16560 	ASSERT(pktp != NULL);
16561 
16562 	/*
16563 	 * Do not reset if we got a parity error, or if
16564 	 * selection did not complete.
16565 	 */
16566 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16567 	/* Note: Should this not just check the bit for pkt_state? */
16568 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
16569 	    (pktp->pkt_state != STATE_GOT_BUS)) {
16570 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
16571 		sd_reset_target(un, pktp);
16572 	}
16573 
16574 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16575 
16576 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
16577 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16578 }
16579 
16580 
16581 
16582 /*
16583  *    Function: sd_pkt_reason_cmd_reset
16584  *
16585  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
16586  *
16587  *     Context: May be called from interrupt context
16588  */
16589 
16590 static void
16591 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
16592 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16593 {
16594 	ASSERT(un != NULL);
16595 	ASSERT(mutex_owned(SD_MUTEX(un)));
16596 	ASSERT(bp != NULL);
16597 	ASSERT(xp != NULL);
16598 	ASSERT(pktp != NULL);
16599 
16600 	/* The target may still be running the command, so try to reset. */
16601 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
16602 	sd_reset_target(un, pktp);
16603 
16604 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16605 
16606 	/*
16607 	 * If pkt_reason is CMD_RESET chances are that this pkt got
16608 	 * reset because another target on this bus caused it. The target
16609 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
16610 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
16611 	 */
16612 
16613 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
16614 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16615 }
16616 
16617 
16618 
16619 
16620 /*
16621  *    Function: sd_pkt_reason_cmd_aborted
16622  *
16623  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
16624  *
16625  *     Context: May be called from interrupt context
16626  */
16627 
16628 static void
16629 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
16630 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16631 {
16632 	ASSERT(un != NULL);
16633 	ASSERT(mutex_owned(SD_MUTEX(un)));
16634 	ASSERT(bp != NULL);
16635 	ASSERT(xp != NULL);
16636 	ASSERT(pktp != NULL);
16637 
16638 	/* The target may still be running the command, so try to reset. */
16639 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
16640 	sd_reset_target(un, pktp);
16641 
16642 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16643 
16644 	/*
16645 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
16646 	 * aborted because another target on this bus caused it. The target
16647 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
16648 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
16649 	 */
16650 
16651 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
16652 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16653 }
16654 
16655 
16656 
16657 /*
16658  *    Function: sd_pkt_reason_cmd_timeout
16659  *
16660  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
16661  *
16662  *     Context: May be called from interrupt context
16663  */
16664 
16665 static void
16666 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
16667 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16668 {
16669 	ASSERT(un != NULL);
16670 	ASSERT(mutex_owned(SD_MUTEX(un)));
16671 	ASSERT(bp != NULL);
16672 	ASSERT(xp != NULL);
16673 	ASSERT(pktp != NULL);
16674 
16675 
16676 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
16677 	sd_reset_target(un, pktp);
16678 
16679 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16680 
16681 	/*
16682 	 * A command timeout indicates that we could not establish
16683 	 * communication with the target, so set SD_RETRIES_FAILFAST
16684 	 * as further retries/commands are likely to take a long time.
16685 	 */
16686 	sd_retry_command(un, bp,
16687 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
16688 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16689 }
16690 
16691 
16692 
16693 /*
16694  *    Function: sd_pkt_reason_cmd_unx_bus_free
16695  *
16696  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
16697  *
16698  *     Context: May be called from interrupt context
16699  */
16700 
16701 static void
16702 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
16703 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16704 {
16705 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
16706 
16707 	ASSERT(un != NULL);
16708 	ASSERT(mutex_owned(SD_MUTEX(un)));
16709 	ASSERT(bp != NULL);
16710 	ASSERT(xp != NULL);
16711 	ASSERT(pktp != NULL);
16712 
16713 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16714 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16715 
16716 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
16717 	    sd_print_retry_msg : NULL;
16718 
16719 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
16720 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16721 }
16722 
16723 
16724 /*
16725  *    Function: sd_pkt_reason_cmd_tag_reject
16726  *
16727  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
16728  *
16729  *     Context: May be called from interrupt context
16730  */
16731 
16732 static void
16733 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
16734 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16735 {
16736 	ASSERT(un != NULL);
16737 	ASSERT(mutex_owned(SD_MUTEX(un)));
16738 	ASSERT(bp != NULL);
16739 	ASSERT(xp != NULL);
16740 	ASSERT(pktp != NULL);
16741 
16742 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16743 	pktp->pkt_flags = 0;
16744 	un->un_tagflags = 0;
16745 	if (un->un_f_opt_queueing == TRUE) {
16746 		un->un_throttle = min(un->un_throttle, 3);
16747 	} else {
16748 		un->un_throttle = 1;
16749 	}
16750 	mutex_exit(SD_MUTEX(un));
16751 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
16752 	mutex_enter(SD_MUTEX(un));
16753 
16754 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16755 
16756 	/* Legacy behavior not to check retry counts here. */
16757 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
16758 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16759 }
16760 
16761 
16762 /*
16763  *    Function: sd_pkt_reason_default
16764  *
16765  * Description: Default recovery actions for SCSA pkt_reason values that
16766  *		do not have more explicit recovery actions.
16767  *
16768  *     Context: May be called from interrupt context
16769  */
16770 
16771 static void
16772 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
16773 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16774 {
16775 	ASSERT(un != NULL);
16776 	ASSERT(mutex_owned(SD_MUTEX(un)));
16777 	ASSERT(bp != NULL);
16778 	ASSERT(xp != NULL);
16779 	ASSERT(pktp != NULL);
16780 
16781 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
16782 	sd_reset_target(un, pktp);
16783 
16784 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16785 
16786 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
16787 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16788 }
16789 
16790 
16791 
16792 /*
16793  *    Function: sd_pkt_status_check_condition
16794  *
16795  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
16796  *
16797  *     Context: May be called from interrupt context
16798  */
16799 
16800 static void
16801 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
16802 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16803 {
16804 	ASSERT(un != NULL);
16805 	ASSERT(mutex_owned(SD_MUTEX(un)));
16806 	ASSERT(bp != NULL);
16807 	ASSERT(xp != NULL);
16808 	ASSERT(pktp != NULL);
16809 
16810 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
16811 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
16812 
16813 	/*
16814 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
16815 	 * command will be retried after the request sense). Otherwise, retry
16816 	 * the command. Note: we are issuing the request sense even though the
16817 	 * retry limit may have been reached for the failed command.
16818 	 */
16819 	if (un->un_f_arq_enabled == FALSE) {
16820 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
16821 		    "no ARQ, sending request sense command\n");
16822 		sd_send_request_sense_command(un, bp, pktp);
16823 	} else {
16824 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
16825 		    "ARQ,retrying request sense command\n");
16826 #if defined(__i386) || defined(__amd64)
16827 		/*
16828 		 * The SD_RETRY_DELAY value need to be adjusted here
16829 		 * when SD_RETRY_DELAY change in sddef.h
16830 		 */
16831 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
16832 			un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
16833 			NULL);
16834 #else
16835 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
16836 		    EIO, SD_RETRY_DELAY, NULL);
16837 #endif
16838 	}
16839 
16840 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
16841 }
16842 
16843 
16844 /*
16845  *    Function: sd_pkt_status_busy
16846  *
16847  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
16848  *
16849  *     Context: May be called from interrupt context
16850  */
16851 
16852 static void
16853 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
16854 	struct scsi_pkt *pktp)
16855 {
16856 	ASSERT(un != NULL);
16857 	ASSERT(mutex_owned(SD_MUTEX(un)));
16858 	ASSERT(bp != NULL);
16859 	ASSERT(xp != NULL);
16860 	ASSERT(pktp != NULL);
16861 
16862 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16863 	    "sd_pkt_status_busy: entry\n");
16864 
16865 	/* If retries are exhausted, just fail the command. */
16866 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
16867 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16868 		    "device busy too long\n");
16869 		sd_return_failed_command(un, bp, EIO);
16870 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16871 		    "sd_pkt_status_busy: exit\n");
16872 		return;
16873 	}
16874 	xp->xb_retry_count++;
16875 
16876 	/*
16877 	 * Try to reset the target. However, we do not want to perform
16878 	 * more than one reset if the device continues to fail. The reset
16879 	 * will be performed when the retry count reaches the reset
16880 	 * threshold.  This threshold should be set such that at least
16881 	 * one retry is issued before the reset is performed.
16882 	 */
16883 	if (xp->xb_retry_count ==
16884 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
16885 		int rval = 0;
16886 		mutex_exit(SD_MUTEX(un));
16887 		if (un->un_f_allow_bus_device_reset == TRUE) {
16888 			/*
16889 			 * First try to reset the LUN; if we cannot then
16890 			 * try to reset the target.
16891 			 */
16892 			if (un->un_f_lun_reset_enabled == TRUE) {
16893 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16894 				    "sd_pkt_status_busy: RESET_LUN\n");
16895 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
16896 			}
16897 			if (rval == 0) {
16898 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16899 				    "sd_pkt_status_busy: RESET_TARGET\n");
16900 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
16901 			}
16902 		}
16903 		if (rval == 0) {
16904 			/*
16905 			 * If the RESET_LUN and/or RESET_TARGET failed,
16906 			 * try RESET_ALL
16907 			 */
16908 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16909 			    "sd_pkt_status_busy: RESET_ALL\n");
16910 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
16911 		}
16912 		mutex_enter(SD_MUTEX(un));
16913 		if (rval == 0) {
16914 			/*
16915 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
16916 			 * At this point we give up & fail the command.
16917 			 */
16918 			sd_return_failed_command(un, bp, EIO);
16919 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16920 			    "sd_pkt_status_busy: exit (failed cmd)\n");
16921 			return;
16922 		}
16923 	}
16924 
16925 	/*
16926 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
16927 	 * we have already checked the retry counts above.
16928 	 */
16929 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
16930 	    EIO, SD_BSY_TIMEOUT, NULL);
16931 
16932 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16933 	    "sd_pkt_status_busy: exit\n");
16934 }
16935 
16936 
16937 /*
16938  *    Function: sd_pkt_status_reservation_conflict
16939  *
16940  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
16941  *		command status.
16942  *
16943  *     Context: May be called from interrupt context
16944  */
16945 
16946 static void
16947 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
16948 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16949 {
16950 	ASSERT(un != NULL);
16951 	ASSERT(mutex_owned(SD_MUTEX(un)));
16952 	ASSERT(bp != NULL);
16953 	ASSERT(xp != NULL);
16954 	ASSERT(pktp != NULL);
16955 
16956 	/*
16957 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
16958 	 * conflict could be due to various reasons like incorrect keys, not
16959 	 * registered or not reserved etc. So, we return EACCES to the caller.
16960 	 */
16961 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
16962 		int cmd = SD_GET_PKT_OPCODE(pktp);
16963 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
16964 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
16965 			sd_return_failed_command(un, bp, EACCES);
16966 			return;
16967 		}
16968 	}
16969 
16970 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
16971 
16972 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
16973 		if (sd_failfast_enable != 0) {
16974 			/* By definition, we must panic here.... */
16975 			sd_panic_for_res_conflict(un);
16976 			/*NOTREACHED*/
16977 		}
16978 		SD_ERROR(SD_LOG_IO, un,
16979 		    "sd_handle_resv_conflict: Disk Reserved\n");
16980 		sd_return_failed_command(un, bp, EACCES);
16981 		return;
16982 	}
16983 
16984 	/*
16985 	 * 1147670: retry only if sd_retry_on_reservation_conflict
16986 	 * property is set (default is 1). Retries will not succeed
16987 	 * on a disk reserved by another initiator. HA systems
16988 	 * may reset this via sd.conf to avoid these retries.
16989 	 *
16990 	 * Note: The legacy return code for this failure is EIO, however EACCES
16991 	 * seems more appropriate for a reservation conflict.
16992 	 */
16993 	if (sd_retry_on_reservation_conflict == 0) {
16994 		SD_ERROR(SD_LOG_IO, un,
16995 		    "sd_handle_resv_conflict: Device Reserved\n");
16996 		sd_return_failed_command(un, bp, EIO);
16997 		return;
16998 	}
16999 
17000 	/*
17001 	 * Retry the command if we can.
17002 	 *
17003 	 * Note: The legacy return code for this failure is EIO, however EACCES
17004 	 * seems more appropriate for a reservation conflict.
17005 	 */
17006 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
17007 	    (clock_t)2, NULL);
17008 }
17009 
17010 
17011 
17012 /*
17013  *    Function: sd_pkt_status_qfull
17014  *
17015  * Description: Handle a QUEUE FULL condition from the target.  This can
17016  *		occur if the HBA does not handle the queue full condition.
17017  *		(Basically this means third-party HBAs as Sun HBAs will
17018  *		handle the queue full condition.)  Note that if there are
17019  *		some commands already in the transport, then the queue full
17020  *		has occurred because the queue for this nexus is actually
17021  *		full. If there are no commands in the transport, then the
17022  *		queue full is resulting from some other initiator or lun
17023  *		consuming all the resources at the target.
17024  *
17025  *     Context: May be called from interrupt context
17026  */
17027 
17028 static void
17029 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
17030 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17031 {
17032 	ASSERT(un != NULL);
17033 	ASSERT(mutex_owned(SD_MUTEX(un)));
17034 	ASSERT(bp != NULL);
17035 	ASSERT(xp != NULL);
17036 	ASSERT(pktp != NULL);
17037 
17038 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17039 	    "sd_pkt_status_qfull: entry\n");
17040 
17041 	/*
17042 	 * Just lower the QFULL throttle and retry the command.  Note that
17043 	 * we do not limit the number of retries here.
17044 	 */
17045 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
17046 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
17047 	    SD_RESTART_TIMEOUT, NULL);
17048 
17049 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17050 	    "sd_pkt_status_qfull: exit\n");
17051 }
17052 
17053 
17054 /*
17055  *    Function: sd_reset_target
17056  *
17057  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
17058  *		RESET_TARGET, or RESET_ALL.
17059  *
17060  *     Context: May be called under interrupt context.
17061  */
17062 
17063 static void
17064 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
17065 {
17066 	int rval = 0;
17067 
17068 	ASSERT(un != NULL);
17069 	ASSERT(mutex_owned(SD_MUTEX(un)));
17070 	ASSERT(pktp != NULL);
17071 
17072 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
17073 
17074 	/*
17075 	 * No need to reset if the transport layer has already done so.
17076 	 */
17077 	if ((pktp->pkt_statistics &
17078 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
17079 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17080 		    "sd_reset_target: no reset\n");
17081 		return;
17082 	}
17083 
17084 	mutex_exit(SD_MUTEX(un));
17085 
17086 	if (un->un_f_allow_bus_device_reset == TRUE) {
17087 		if (un->un_f_lun_reset_enabled == TRUE) {
17088 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17089 			    "sd_reset_target: RESET_LUN\n");
17090 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
17091 		}
17092 		if (rval == 0) {
17093 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17094 			    "sd_reset_target: RESET_TARGET\n");
17095 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
17096 		}
17097 	}
17098 
17099 	if (rval == 0) {
17100 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17101 		    "sd_reset_target: RESET_ALL\n");
17102 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
17103 	}
17104 
17105 	mutex_enter(SD_MUTEX(un));
17106 
17107 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
17108 }
17109 
17110 
17111 /*
17112  *    Function: sd_media_change_task
17113  *
17114  * Description: Recovery action for CDROM to become available.
17115  *
17116  *     Context: Executes in a taskq() thread context
17117  */
17118 
17119 static void
17120 sd_media_change_task(void *arg)
17121 {
17122 	struct	scsi_pkt	*pktp = arg;
17123 	struct	sd_lun		*un;
17124 	struct	buf		*bp;
17125 	struct	sd_xbuf		*xp;
17126 	int	err		= 0;
17127 	int	retry_count	= 0;
17128 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
17129 	struct	sd_sense_info	si;
17130 
17131 	ASSERT(pktp != NULL);
17132 	bp = (struct buf *)pktp->pkt_private;
17133 	ASSERT(bp != NULL);
17134 	xp = SD_GET_XBUF(bp);
17135 	ASSERT(xp != NULL);
17136 	un = SD_GET_UN(bp);
17137 	ASSERT(un != NULL);
17138 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17139 	ASSERT(un->un_f_monitor_media_state);
17140 
17141 	si.ssi_severity = SCSI_ERR_INFO;
17142 	si.ssi_pfa_flag = FALSE;
17143 
17144 	/*
17145 	 * When a reset is issued on a CDROM, it takes a long time to
17146 	 * recover. First few attempts to read capacity and other things
17147 	 * related to handling unit attention fail (with a ASC 0x4 and
17148 	 * ASCQ 0x1). In that case we want to do enough retries and we want
17149 	 * to limit the retries in other cases of genuine failures like
17150 	 * no media in drive.
17151 	 */
17152 	while (retry_count++ < retry_limit) {
17153 		if ((err = sd_handle_mchange(un)) == 0) {
17154 			break;
17155 		}
17156 		if (err == EAGAIN) {
17157 			retry_limit = SD_UNIT_ATTENTION_RETRY;
17158 		}
17159 		/* Sleep for 0.5 sec. & try again */
17160 		delay(drv_usectohz(500000));
17161 	}
17162 
17163 	/*
17164 	 * Dispatch (retry or fail) the original command here,
17165 	 * along with appropriate console messages....
17166 	 *
17167 	 * Must grab the mutex before calling sd_retry_command,
17168 	 * sd_print_sense_msg and sd_return_failed_command.
17169 	 */
17170 	mutex_enter(SD_MUTEX(un));
17171 	if (err != SD_CMD_SUCCESS) {
17172 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17173 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17174 		si.ssi_severity = SCSI_ERR_FATAL;
17175 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17176 		sd_return_failed_command(un, bp, EIO);
17177 	} else {
17178 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17179 		    &si, EIO, (clock_t)0, NULL);
17180 	}
17181 	mutex_exit(SD_MUTEX(un));
17182 }
17183 
17184 
17185 
17186 /*
17187  *    Function: sd_handle_mchange
17188  *
17189  * Description: Perform geometry validation & other recovery when CDROM
17190  *		has been removed from drive.
17191  *
17192  * Return Code: 0 for success
17193  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
17194  *		sd_send_scsi_READ_CAPACITY()
17195  *
17196  *     Context: Executes in a taskq() thread context
17197  */
17198 
17199 static int
17200 sd_handle_mchange(struct sd_lun *un)
17201 {
17202 	uint64_t	capacity;
17203 	uint32_t	lbasize;
17204 	int		rval;
17205 
17206 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17207 	ASSERT(un->un_f_monitor_media_state);
17208 
17209 	if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
17210 	    SD_PATH_DIRECT_PRIORITY)) != 0) {
17211 		return (rval);
17212 	}
17213 
17214 	mutex_enter(SD_MUTEX(un));
17215 	sd_update_block_info(un, lbasize, capacity);
17216 
17217 	if (un->un_errstats != NULL) {
17218 		struct	sd_errstats *stp =
17219 		    (struct sd_errstats *)un->un_errstats->ks_data;
17220 		stp->sd_capacity.value.ui64 = (uint64_t)
17221 		    ((uint64_t)un->un_blockcount *
17222 		    (uint64_t)un->un_tgt_blocksize);
17223 	}
17224 
17225 
17226 	/*
17227 	 * Check if the media in the device is writable or not
17228 	 */
17229 	sd_check_for_writable_cd(un, SD_PATH_DIRECT_PRIORITY);
17230 
17231 	/*
17232 	 * Note: Maybe let the strategy/partitioning chain worry about getting
17233 	 * valid geometry.
17234 	 */
17235 	mutex_exit(SD_MUTEX(un));
17236 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
17237 
17238 
17239 	if (cmlb_validate(un->un_cmlbhandle, 0,
17240 	    (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
17241 		return (EIO);
17242 	} else {
17243 		if (un->un_f_pkstats_enabled) {
17244 			sd_set_pstats(un);
17245 			SD_TRACE(SD_LOG_IO_PARTITION, un,
17246 			    "sd_handle_mchange: un:0x%p pstats created and "
17247 			    "set\n", un);
17248 		}
17249 	}
17250 
17251 
17252 	/*
17253 	 * Try to lock the door
17254 	 */
17255 	return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
17256 	    SD_PATH_DIRECT_PRIORITY));
17257 }
17258 
17259 
17260 /*
17261  *    Function: sd_send_scsi_DOORLOCK
17262  *
17263  * Description: Issue the scsi DOOR LOCK command
17264  *
17265  *   Arguments: un    - pointer to driver soft state (unit) structure for
17266  *			this target.
17267  *		flag  - SD_REMOVAL_ALLOW
17268  *			SD_REMOVAL_PREVENT
17269  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17270  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17271  *			to use the USCSI "direct" chain and bypass the normal
17272  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17273  *			command is issued as part of an error recovery action.
17274  *
17275  * Return Code: 0   - Success
17276  *		errno return code from sd_send_scsi_cmd()
17277  *
17278  *     Context: Can sleep.
17279  */
17280 
17281 static int
17282 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag)
17283 {
17284 	union scsi_cdb		cdb;
17285 	struct uscsi_cmd	ucmd_buf;
17286 	struct scsi_extended_sense	sense_buf;
17287 	int			status;
17288 
17289 	ASSERT(un != NULL);
17290 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17291 
17292 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
17293 
17294 	/* already determined doorlock is not supported, fake success */
17295 	if (un->un_f_doorlock_supported == FALSE) {
17296 		return (0);
17297 	}
17298 
17299 	/*
17300 	 * If we are ejecting and see an SD_REMOVAL_PREVENT
17301 	 * ignore the command so we can complete the eject
17302 	 * operation.
17303 	 */
17304 	if (flag == SD_REMOVAL_PREVENT) {
17305 		mutex_enter(SD_MUTEX(un));
17306 		if (un->un_f_ejecting == TRUE) {
17307 			mutex_exit(SD_MUTEX(un));
17308 			return (EAGAIN);
17309 		}
17310 		mutex_exit(SD_MUTEX(un));
17311 	}
17312 
17313 	bzero(&cdb, sizeof (cdb));
17314 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17315 
17316 	cdb.scc_cmd = SCMD_DOORLOCK;
17317 	cdb.cdb_opaque[4] = (uchar_t)flag;
17318 
17319 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17320 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
17321 	ucmd_buf.uscsi_bufaddr	= NULL;
17322 	ucmd_buf.uscsi_buflen	= 0;
17323 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17324 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17325 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
17326 	ucmd_buf.uscsi_timeout	= 15;
17327 
17328 	SD_TRACE(SD_LOG_IO, un,
17329 	    "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n");
17330 
17331 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17332 	    UIO_SYSSPACE, path_flag);
17333 
17334 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
17335 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17336 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
17337 		/* fake success and skip subsequent doorlock commands */
17338 		un->un_f_doorlock_supported = FALSE;
17339 		return (0);
17340 	}
17341 
17342 	return (status);
17343 }
17344 
17345 /*
17346  *    Function: sd_send_scsi_READ_CAPACITY
17347  *
17348  * Description: This routine uses the scsi READ CAPACITY command to determine
17349  *		the device capacity in number of blocks and the device native
17350  *		block size. If this function returns a failure, then the
17351  *		values in *capp and *lbap are undefined.  If the capacity
17352  *		returned is 0xffffffff then the lun is too large for a
17353  *		normal READ CAPACITY command and the results of a
17354  *		READ CAPACITY 16 will be used instead.
17355  *
17356  *   Arguments: un   - ptr to soft state struct for the target
17357  *		capp - ptr to unsigned 64-bit variable to receive the
17358  *			capacity value from the command.
17359  *		lbap - ptr to unsigned 32-bit varaible to receive the
17360  *			block size value from the command
17361  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17362  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17363  *			to use the USCSI "direct" chain and bypass the normal
17364  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17365  *			command is issued as part of an error recovery action.
17366  *
17367  * Return Code: 0   - Success
17368  *		EIO - IO error
17369  *		EACCES - Reservation conflict detected
17370  *		EAGAIN - Device is becoming ready
17371  *		errno return code from sd_send_scsi_cmd()
17372  *
17373  *     Context: Can sleep.  Blocks until command completes.
17374  */
17375 
17376 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
17377 
17378 static int
17379 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap,
17380 	int path_flag)
17381 {
17382 	struct	scsi_extended_sense	sense_buf;
17383 	struct	uscsi_cmd	ucmd_buf;
17384 	union	scsi_cdb	cdb;
17385 	uint32_t		*capacity_buf;
17386 	uint64_t		capacity;
17387 	uint32_t		lbasize;
17388 	int			status;
17389 
17390 	ASSERT(un != NULL);
17391 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17392 	ASSERT(capp != NULL);
17393 	ASSERT(lbap != NULL);
17394 
17395 	SD_TRACE(SD_LOG_IO, un,
17396 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
17397 
17398 	/*
17399 	 * First send a READ_CAPACITY command to the target.
17400 	 * (This command is mandatory under SCSI-2.)
17401 	 *
17402 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
17403 	 * Medium Indicator bit is cleared.  The address field must be
17404 	 * zero if the PMI bit is zero.
17405 	 */
17406 	bzero(&cdb, sizeof (cdb));
17407 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17408 
17409 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
17410 
17411 	cdb.scc_cmd = SCMD_READ_CAPACITY;
17412 
17413 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17414 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
17415 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
17416 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
17417 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17418 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17419 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
17420 	ucmd_buf.uscsi_timeout	= 60;
17421 
17422 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17423 	    UIO_SYSSPACE, path_flag);
17424 
17425 	switch (status) {
17426 	case 0:
17427 		/* Return failure if we did not get valid capacity data. */
17428 		if (ucmd_buf.uscsi_resid != 0) {
17429 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17430 			return (EIO);
17431 		}
17432 
17433 		/*
17434 		 * Read capacity and block size from the READ CAPACITY 10 data.
17435 		 * This data may be adjusted later due to device specific
17436 		 * issues.
17437 		 *
17438 		 * According to the SCSI spec, the READ CAPACITY 10
17439 		 * command returns the following:
17440 		 *
17441 		 *  bytes 0-3: Maximum logical block address available.
17442 		 *		(MSB in byte:0 & LSB in byte:3)
17443 		 *
17444 		 *  bytes 4-7: Block length in bytes
17445 		 *		(MSB in byte:4 & LSB in byte:7)
17446 		 *
17447 		 */
17448 		capacity = BE_32(capacity_buf[0]);
17449 		lbasize = BE_32(capacity_buf[1]);
17450 
17451 		/*
17452 		 * Done with capacity_buf
17453 		 */
17454 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17455 
17456 		/*
17457 		 * if the reported capacity is set to all 0xf's, then
17458 		 * this disk is too large and requires SBC-2 commands.
17459 		 * Reissue the request using READ CAPACITY 16.
17460 		 */
17461 		if (capacity == 0xffffffff) {
17462 			status = sd_send_scsi_READ_CAPACITY_16(un, &capacity,
17463 			    &lbasize, path_flag);
17464 			if (status != 0) {
17465 				return (status);
17466 			}
17467 		}
17468 		break;	/* Success! */
17469 	case EIO:
17470 		switch (ucmd_buf.uscsi_status) {
17471 		case STATUS_RESERVATION_CONFLICT:
17472 			status = EACCES;
17473 			break;
17474 		case STATUS_CHECK:
17475 			/*
17476 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
17477 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
17478 			 */
17479 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17480 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
17481 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
17482 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17483 				return (EAGAIN);
17484 			}
17485 			break;
17486 		default:
17487 			break;
17488 		}
17489 		/* FALLTHRU */
17490 	default:
17491 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17492 		return (status);
17493 	}
17494 
17495 	/*
17496 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
17497 	 * (2352 and 0 are common) so for these devices always force the value
17498 	 * to 2048 as required by the ATAPI specs.
17499 	 */
17500 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
17501 		lbasize = 2048;
17502 	}
17503 
17504 	/*
17505 	 * Get the maximum LBA value from the READ CAPACITY data.
17506 	 * Here we assume that the Partial Medium Indicator (PMI) bit
17507 	 * was cleared when issuing the command. This means that the LBA
17508 	 * returned from the device is the LBA of the last logical block
17509 	 * on the logical unit.  The actual logical block count will be
17510 	 * this value plus one.
17511 	 *
17512 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
17513 	 * so scale the capacity value to reflect this.
17514 	 */
17515 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
17516 
17517 	/*
17518 	 * Copy the values from the READ CAPACITY command into the space
17519 	 * provided by the caller.
17520 	 */
17521 	*capp = capacity;
17522 	*lbap = lbasize;
17523 
17524 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
17525 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
17526 
17527 	/*
17528 	 * Both the lbasize and capacity from the device must be nonzero,
17529 	 * otherwise we assume that the values are not valid and return
17530 	 * failure to the caller. (4203735)
17531 	 */
17532 	if ((capacity == 0) || (lbasize == 0)) {
17533 		return (EIO);
17534 	}
17535 
17536 	return (0);
17537 }
17538 
17539 /*
17540  *    Function: sd_send_scsi_READ_CAPACITY_16
17541  *
17542  * Description: This routine uses the scsi READ CAPACITY 16 command to
17543  *		determine the device capacity in number of blocks and the
17544  *		device native block size.  If this function returns a failure,
17545  *		then the values in *capp and *lbap are undefined.
17546  *		This routine should always be called by
17547  *		sd_send_scsi_READ_CAPACITY which will appy any device
17548  *		specific adjustments to capacity and lbasize.
17549  *
17550  *   Arguments: un   - ptr to soft state struct for the target
17551  *		capp - ptr to unsigned 64-bit variable to receive the
17552  *			capacity value from the command.
17553  *		lbap - ptr to unsigned 32-bit varaible to receive the
17554  *			block size value from the command
17555  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17556  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17557  *			to use the USCSI "direct" chain and bypass the normal
17558  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
17559  *			this command is issued as part of an error recovery
17560  *			action.
17561  *
17562  * Return Code: 0   - Success
17563  *		EIO - IO error
17564  *		EACCES - Reservation conflict detected
17565  *		EAGAIN - Device is becoming ready
17566  *		errno return code from sd_send_scsi_cmd()
17567  *
17568  *     Context: Can sleep.  Blocks until command completes.
17569  */
17570 
17571 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
17572 
17573 static int
17574 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
17575 	uint32_t *lbap, int path_flag)
17576 {
17577 	struct	scsi_extended_sense	sense_buf;
17578 	struct	uscsi_cmd	ucmd_buf;
17579 	union	scsi_cdb	cdb;
17580 	uint64_t		*capacity16_buf;
17581 	uint64_t		capacity;
17582 	uint32_t		lbasize;
17583 	int			status;
17584 
17585 	ASSERT(un != NULL);
17586 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17587 	ASSERT(capp != NULL);
17588 	ASSERT(lbap != NULL);
17589 
17590 	SD_TRACE(SD_LOG_IO, un,
17591 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
17592 
17593 	/*
17594 	 * First send a READ_CAPACITY_16 command to the target.
17595 	 *
17596 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
17597 	 * Medium Indicator bit is cleared.  The address field must be
17598 	 * zero if the PMI bit is zero.
17599 	 */
17600 	bzero(&cdb, sizeof (cdb));
17601 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17602 
17603 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
17604 
17605 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17606 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
17607 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
17608 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
17609 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17610 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17611 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
17612 	ucmd_buf.uscsi_timeout	= 60;
17613 
17614 	/*
17615 	 * Read Capacity (16) is a Service Action In command.  One
17616 	 * command byte (0x9E) is overloaded for multiple operations,
17617 	 * with the second CDB byte specifying the desired operation
17618 	 */
17619 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
17620 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
17621 
17622 	/*
17623 	 * Fill in allocation length field
17624 	 */
17625 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
17626 
17627 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17628 	    UIO_SYSSPACE, path_flag);
17629 
17630 	switch (status) {
17631 	case 0:
17632 		/* Return failure if we did not get valid capacity data. */
17633 		if (ucmd_buf.uscsi_resid > 20) {
17634 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
17635 			return (EIO);
17636 		}
17637 
17638 		/*
17639 		 * Read capacity and block size from the READ CAPACITY 10 data.
17640 		 * This data may be adjusted later due to device specific
17641 		 * issues.
17642 		 *
17643 		 * According to the SCSI spec, the READ CAPACITY 10
17644 		 * command returns the following:
17645 		 *
17646 		 *  bytes 0-7: Maximum logical block address available.
17647 		 *		(MSB in byte:0 & LSB in byte:7)
17648 		 *
17649 		 *  bytes 8-11: Block length in bytes
17650 		 *		(MSB in byte:8 & LSB in byte:11)
17651 		 *
17652 		 */
17653 		capacity = BE_64(capacity16_buf[0]);
17654 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
17655 
17656 		/*
17657 		 * Done with capacity16_buf
17658 		 */
17659 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
17660 
17661 		/*
17662 		 * if the reported capacity is set to all 0xf's, then
17663 		 * this disk is too large.  This could only happen with
17664 		 * a device that supports LBAs larger than 64 bits which
17665 		 * are not defined by any current T10 standards.
17666 		 */
17667 		if (capacity == 0xffffffffffffffff) {
17668 			return (EIO);
17669 		}
17670 		break;	/* Success! */
17671 	case EIO:
17672 		switch (ucmd_buf.uscsi_status) {
17673 		case STATUS_RESERVATION_CONFLICT:
17674 			status = EACCES;
17675 			break;
17676 		case STATUS_CHECK:
17677 			/*
17678 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
17679 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
17680 			 */
17681 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17682 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
17683 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
17684 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
17685 				return (EAGAIN);
17686 			}
17687 			break;
17688 		default:
17689 			break;
17690 		}
17691 		/* FALLTHRU */
17692 	default:
17693 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
17694 		return (status);
17695 	}
17696 
17697 	*capp = capacity;
17698 	*lbap = lbasize;
17699 
17700 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
17701 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
17702 
17703 	return (0);
17704 }
17705 
17706 
17707 /*
17708  *    Function: sd_send_scsi_START_STOP_UNIT
17709  *
17710  * Description: Issue a scsi START STOP UNIT command to the target.
17711  *
17712  *   Arguments: un    - pointer to driver soft state (unit) structure for
17713  *			this target.
17714  *		flag  - SD_TARGET_START
17715  *			SD_TARGET_STOP
17716  *			SD_TARGET_EJECT
17717  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17718  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17719  *			to use the USCSI "direct" chain and bypass the normal
17720  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17721  *			command is issued as part of an error recovery action.
17722  *
17723  * Return Code: 0   - Success
17724  *		EIO - IO error
17725  *		EACCES - Reservation conflict detected
17726  *		ENXIO  - Not Ready, medium not present
17727  *		errno return code from sd_send_scsi_cmd()
17728  *
17729  *     Context: Can sleep.
17730  */
17731 
17732 static int
17733 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag)
17734 {
17735 	struct	scsi_extended_sense	sense_buf;
17736 	union scsi_cdb		cdb;
17737 	struct uscsi_cmd	ucmd_buf;
17738 	int			status;
17739 
17740 	ASSERT(un != NULL);
17741 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17742 
17743 	SD_TRACE(SD_LOG_IO, un,
17744 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
17745 
17746 	if (un->un_f_check_start_stop &&
17747 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
17748 	    (un->un_f_start_stop_supported != TRUE)) {
17749 		return (0);
17750 	}
17751 
17752 	/*
17753 	 * If we are performing an eject operation and
17754 	 * we receive any command other than SD_TARGET_EJECT
17755 	 * we should immediately return.
17756 	 */
17757 	if (flag != SD_TARGET_EJECT) {
17758 		mutex_enter(SD_MUTEX(un));
17759 		if (un->un_f_ejecting == TRUE) {
17760 			mutex_exit(SD_MUTEX(un));
17761 			return (EAGAIN);
17762 		}
17763 		mutex_exit(SD_MUTEX(un));
17764 	}
17765 
17766 	bzero(&cdb, sizeof (cdb));
17767 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17768 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
17769 
17770 	cdb.scc_cmd = SCMD_START_STOP;
17771 	cdb.cdb_opaque[4] = (uchar_t)flag;
17772 
17773 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17774 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
17775 	ucmd_buf.uscsi_bufaddr	= NULL;
17776 	ucmd_buf.uscsi_buflen	= 0;
17777 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17778 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
17779 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
17780 	ucmd_buf.uscsi_timeout	= 200;
17781 
17782 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17783 	    UIO_SYSSPACE, path_flag);
17784 
17785 	switch (status) {
17786 	case 0:
17787 		break;	/* Success! */
17788 	case EIO:
17789 		switch (ucmd_buf.uscsi_status) {
17790 		case STATUS_RESERVATION_CONFLICT:
17791 			status = EACCES;
17792 			break;
17793 		case STATUS_CHECK:
17794 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
17795 				switch (scsi_sense_key(
17796 						(uint8_t *)&sense_buf)) {
17797 				case KEY_ILLEGAL_REQUEST:
17798 					status = ENOTSUP;
17799 					break;
17800 				case KEY_NOT_READY:
17801 					if (scsi_sense_asc(
17802 						    (uint8_t *)&sense_buf)
17803 					    == 0x3A) {
17804 						status = ENXIO;
17805 					}
17806 					break;
17807 				default:
17808 					break;
17809 				}
17810 			}
17811 			break;
17812 		default:
17813 			break;
17814 		}
17815 		break;
17816 	default:
17817 		break;
17818 	}
17819 
17820 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
17821 
17822 	return (status);
17823 }
17824 
17825 
17826 /*
17827  *    Function: sd_start_stop_unit_callback
17828  *
17829  * Description: timeout(9F) callback to begin recovery process for a
17830  *		device that has spun down.
17831  *
17832  *   Arguments: arg - pointer to associated softstate struct.
17833  *
17834  *     Context: Executes in a timeout(9F) thread context
17835  */
17836 
17837 static void
17838 sd_start_stop_unit_callback(void *arg)
17839 {
17840 	struct sd_lun	*un = arg;
17841 	ASSERT(un != NULL);
17842 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17843 
17844 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
17845 
17846 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
17847 }
17848 
17849 
17850 /*
17851  *    Function: sd_start_stop_unit_task
17852  *
17853  * Description: Recovery procedure when a drive is spun down.
17854  *
17855  *   Arguments: arg - pointer to associated softstate struct.
17856  *
17857  *     Context: Executes in a taskq() thread context
17858  */
17859 
17860 static void
17861 sd_start_stop_unit_task(void *arg)
17862 {
17863 	struct sd_lun	*un = arg;
17864 
17865 	ASSERT(un != NULL);
17866 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17867 
17868 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
17869 
17870 	/*
17871 	 * Some unformatted drives report not ready error, no need to
17872 	 * restart if format has been initiated.
17873 	 */
17874 	mutex_enter(SD_MUTEX(un));
17875 	if (un->un_f_format_in_progress == TRUE) {
17876 		mutex_exit(SD_MUTEX(un));
17877 		return;
17878 	}
17879 	mutex_exit(SD_MUTEX(un));
17880 
17881 	/*
17882 	 * When a START STOP command is issued from here, it is part of a
17883 	 * failure recovery operation and must be issued before any other
17884 	 * commands, including any pending retries. Thus it must be sent
17885 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
17886 	 * succeeds or not, we will start I/O after the attempt.
17887 	 */
17888 	(void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
17889 	    SD_PATH_DIRECT_PRIORITY);
17890 
17891 	/*
17892 	 * The above call blocks until the START_STOP_UNIT command completes.
17893 	 * Now that it has completed, we must re-try the original IO that
17894 	 * received the NOT READY condition in the first place. There are
17895 	 * three possible conditions here:
17896 	 *
17897 	 *  (1) The original IO is on un_retry_bp.
17898 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
17899 	 *	is NULL.
17900 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
17901 	 *	points to some other, unrelated bp.
17902 	 *
17903 	 * For each case, we must call sd_start_cmds() with un_retry_bp
17904 	 * as the argument. If un_retry_bp is NULL, this will initiate
17905 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
17906 	 * then this will process the bp on un_retry_bp. That may or may not
17907 	 * be the original IO, but that does not matter: the important thing
17908 	 * is to keep the IO processing going at this point.
17909 	 *
17910 	 * Note: This is a very specific error recovery sequence associated
17911 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
17912 	 * serialize the I/O with completion of the spin-up.
17913 	 */
17914 	mutex_enter(SD_MUTEX(un));
17915 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17916 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
17917 	    un, un->un_retry_bp);
17918 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
17919 	sd_start_cmds(un, un->un_retry_bp);
17920 	mutex_exit(SD_MUTEX(un));
17921 
17922 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
17923 }
17924 
17925 
17926 /*
17927  *    Function: sd_send_scsi_INQUIRY
17928  *
17929  * Description: Issue the scsi INQUIRY command.
17930  *
17931  *   Arguments: un
17932  *		bufaddr
17933  *		buflen
17934  *		evpd
17935  *		page_code
17936  *		page_length
17937  *
17938  * Return Code: 0   - Success
17939  *		errno return code from sd_send_scsi_cmd()
17940  *
17941  *     Context: Can sleep. Does not return until command is completed.
17942  */
17943 
17944 static int
17945 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen,
17946 	uchar_t evpd, uchar_t page_code, size_t *residp)
17947 {
17948 	union scsi_cdb		cdb;
17949 	struct uscsi_cmd	ucmd_buf;
17950 	int			status;
17951 
17952 	ASSERT(un != NULL);
17953 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17954 	ASSERT(bufaddr != NULL);
17955 
17956 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
17957 
17958 	bzero(&cdb, sizeof (cdb));
17959 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17960 	bzero(bufaddr, buflen);
17961 
17962 	cdb.scc_cmd = SCMD_INQUIRY;
17963 	cdb.cdb_opaque[1] = evpd;
17964 	cdb.cdb_opaque[2] = page_code;
17965 	FORMG0COUNT(&cdb, buflen);
17966 
17967 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17968 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
17969 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
17970 	ucmd_buf.uscsi_buflen	= buflen;
17971 	ucmd_buf.uscsi_rqbuf	= NULL;
17972 	ucmd_buf.uscsi_rqlen	= 0;
17973 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
17974 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
17975 
17976 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17977 	    UIO_SYSSPACE, SD_PATH_DIRECT);
17978 
17979 	if ((status == 0) && (residp != NULL)) {
17980 		*residp = ucmd_buf.uscsi_resid;
17981 	}
17982 
17983 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
17984 
17985 	return (status);
17986 }
17987 
17988 
17989 /*
17990  *    Function: sd_send_scsi_TEST_UNIT_READY
17991  *
17992  * Description: Issue the scsi TEST UNIT READY command.
17993  *		This routine can be told to set the flag USCSI_DIAGNOSE to
17994  *		prevent retrying failed commands. Use this when the intent
17995  *		is either to check for device readiness, to clear a Unit
17996  *		Attention, or to clear any outstanding sense data.
17997  *		However under specific conditions the expected behavior
17998  *		is for retries to bring a device ready, so use the flag
17999  *		with caution.
18000  *
18001  *   Arguments: un
18002  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
18003  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
18004  *			0: dont check for media present, do retries on cmd.
18005  *
18006  * Return Code: 0   - Success
18007  *		EIO - IO error
18008  *		EACCES - Reservation conflict detected
18009  *		ENXIO  - Not Ready, medium not present
18010  *		errno return code from sd_send_scsi_cmd()
18011  *
18012  *     Context: Can sleep. Does not return until command is completed.
18013  */
18014 
18015 static int
18016 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag)
18017 {
18018 	struct	scsi_extended_sense	sense_buf;
18019 	union scsi_cdb		cdb;
18020 	struct uscsi_cmd	ucmd_buf;
18021 	int			status;
18022 
18023 	ASSERT(un != NULL);
18024 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18025 
18026 	SD_TRACE(SD_LOG_IO, un,
18027 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
18028 
18029 	/*
18030 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
18031 	 * timeouts when they receive a TUR and the queue is not empty. Check
18032 	 * the configuration flag set during attach (indicating the drive has
18033 	 * this firmware bug) and un_ncmds_in_transport before issuing the
18034 	 * TUR. If there are
18035 	 * pending commands return success, this is a bit arbitrary but is ok
18036 	 * for non-removables (i.e. the eliteI disks) and non-clustering
18037 	 * configurations.
18038 	 */
18039 	if (un->un_f_cfg_tur_check == TRUE) {
18040 		mutex_enter(SD_MUTEX(un));
18041 		if (un->un_ncmds_in_transport != 0) {
18042 			mutex_exit(SD_MUTEX(un));
18043 			return (0);
18044 		}
18045 		mutex_exit(SD_MUTEX(un));
18046 	}
18047 
18048 	bzero(&cdb, sizeof (cdb));
18049 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18050 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18051 
18052 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
18053 
18054 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18055 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18056 	ucmd_buf.uscsi_bufaddr	= NULL;
18057 	ucmd_buf.uscsi_buflen	= 0;
18058 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18059 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18060 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18061 
18062 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
18063 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
18064 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
18065 	}
18066 	ucmd_buf.uscsi_timeout	= 60;
18067 
18068 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18069 	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
18070 	    SD_PATH_STANDARD));
18071 
18072 	switch (status) {
18073 	case 0:
18074 		break;	/* Success! */
18075 	case EIO:
18076 		switch (ucmd_buf.uscsi_status) {
18077 		case STATUS_RESERVATION_CONFLICT:
18078 			status = EACCES;
18079 			break;
18080 		case STATUS_CHECK:
18081 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
18082 				break;
18083 			}
18084 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18085 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18086 				KEY_NOT_READY) &&
18087 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
18088 				status = ENXIO;
18089 			}
18090 			break;
18091 		default:
18092 			break;
18093 		}
18094 		break;
18095 	default:
18096 		break;
18097 	}
18098 
18099 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
18100 
18101 	return (status);
18102 }
18103 
18104 
18105 /*
18106  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
18107  *
18108  * Description: Issue the scsi PERSISTENT RESERVE IN command.
18109  *
18110  *   Arguments: un
18111  *
18112  * Return Code: 0   - Success
18113  *		EACCES
18114  *		ENOTSUP
18115  *		errno return code from sd_send_scsi_cmd()
18116  *
18117  *     Context: Can sleep. Does not return until command is completed.
18118  */
18119 
18120 static int
18121 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t  usr_cmd,
18122 	uint16_t data_len, uchar_t *data_bufp)
18123 {
18124 	struct scsi_extended_sense	sense_buf;
18125 	union scsi_cdb		cdb;
18126 	struct uscsi_cmd	ucmd_buf;
18127 	int			status;
18128 	int			no_caller_buf = FALSE;
18129 
18130 	ASSERT(un != NULL);
18131 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18132 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
18133 
18134 	SD_TRACE(SD_LOG_IO, un,
18135 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
18136 
18137 	bzero(&cdb, sizeof (cdb));
18138 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18139 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18140 	if (data_bufp == NULL) {
18141 		/* Allocate a default buf if the caller did not give one */
18142 		ASSERT(data_len == 0);
18143 		data_len  = MHIOC_RESV_KEY_SIZE;
18144 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
18145 		no_caller_buf = TRUE;
18146 	}
18147 
18148 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
18149 	cdb.cdb_opaque[1] = usr_cmd;
18150 	FORMG1COUNT(&cdb, data_len);
18151 
18152 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18153 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18154 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
18155 	ucmd_buf.uscsi_buflen	= data_len;
18156 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18157 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18158 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18159 	ucmd_buf.uscsi_timeout	= 60;
18160 
18161 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18162 	    UIO_SYSSPACE, SD_PATH_STANDARD);
18163 
18164 	switch (status) {
18165 	case 0:
18166 		break;	/* Success! */
18167 	case EIO:
18168 		switch (ucmd_buf.uscsi_status) {
18169 		case STATUS_RESERVATION_CONFLICT:
18170 			status = EACCES;
18171 			break;
18172 		case STATUS_CHECK:
18173 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18174 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18175 				KEY_ILLEGAL_REQUEST)) {
18176 				status = ENOTSUP;
18177 			}
18178 			break;
18179 		default:
18180 			break;
18181 		}
18182 		break;
18183 	default:
18184 		break;
18185 	}
18186 
18187 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
18188 
18189 	if (no_caller_buf == TRUE) {
18190 		kmem_free(data_bufp, data_len);
18191 	}
18192 
18193 	return (status);
18194 }
18195 
18196 
18197 /*
18198  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
18199  *
18200  * Description: This routine is the driver entry point for handling CD-ROM
18201  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
18202  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
18203  *		device.
18204  *
18205  *   Arguments: un  -   Pointer to soft state struct for the target.
18206  *		usr_cmd SCSI-3 reservation facility command (one of
18207  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
18208  *			SD_SCSI3_PREEMPTANDABORT)
18209  *		usr_bufp - user provided pointer register, reserve descriptor or
18210  *			preempt and abort structure (mhioc_register_t,
18211  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
18212  *
18213  * Return Code: 0   - Success
18214  *		EACCES
18215  *		ENOTSUP
18216  *		errno return code from sd_send_scsi_cmd()
18217  *
18218  *     Context: Can sleep. Does not return until command is completed.
18219  */
18220 
18221 static int
18222 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd,
18223 	uchar_t	*usr_bufp)
18224 {
18225 	struct scsi_extended_sense	sense_buf;
18226 	union scsi_cdb		cdb;
18227 	struct uscsi_cmd	ucmd_buf;
18228 	int			status;
18229 	uchar_t			data_len = sizeof (sd_prout_t);
18230 	sd_prout_t		*prp;
18231 
18232 	ASSERT(un != NULL);
18233 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18234 	ASSERT(data_len == 24);	/* required by scsi spec */
18235 
18236 	SD_TRACE(SD_LOG_IO, un,
18237 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
18238 
18239 	if (usr_bufp == NULL) {
18240 		return (EINVAL);
18241 	}
18242 
18243 	bzero(&cdb, sizeof (cdb));
18244 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18245 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18246 	prp = kmem_zalloc(data_len, KM_SLEEP);
18247 
18248 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
18249 	cdb.cdb_opaque[1] = usr_cmd;
18250 	FORMG1COUNT(&cdb, data_len);
18251 
18252 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18253 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18254 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
18255 	ucmd_buf.uscsi_buflen	= data_len;
18256 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18257 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18258 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
18259 	ucmd_buf.uscsi_timeout	= 60;
18260 
18261 	switch (usr_cmd) {
18262 	case SD_SCSI3_REGISTER: {
18263 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
18264 
18265 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18266 		bcopy(ptr->newkey.key, prp->service_key,
18267 		    MHIOC_RESV_KEY_SIZE);
18268 		prp->aptpl = ptr->aptpl;
18269 		break;
18270 	}
18271 	case SD_SCSI3_RESERVE:
18272 	case SD_SCSI3_RELEASE: {
18273 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
18274 
18275 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18276 		prp->scope_address = BE_32(ptr->scope_specific_addr);
18277 		cdb.cdb_opaque[2] = ptr->type;
18278 		break;
18279 	}
18280 	case SD_SCSI3_PREEMPTANDABORT: {
18281 		mhioc_preemptandabort_t *ptr =
18282 		    (mhioc_preemptandabort_t *)usr_bufp;
18283 
18284 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18285 		bcopy(ptr->victim_key.key, prp->service_key,
18286 		    MHIOC_RESV_KEY_SIZE);
18287 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
18288 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
18289 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
18290 		break;
18291 	}
18292 	case SD_SCSI3_REGISTERANDIGNOREKEY:
18293 	{
18294 		mhioc_registerandignorekey_t *ptr;
18295 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
18296 		bcopy(ptr->newkey.key,
18297 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
18298 		prp->aptpl = ptr->aptpl;
18299 		break;
18300 	}
18301 	default:
18302 		ASSERT(FALSE);
18303 		break;
18304 	}
18305 
18306 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18307 	    UIO_SYSSPACE, SD_PATH_STANDARD);
18308 
18309 	switch (status) {
18310 	case 0:
18311 		break;	/* Success! */
18312 	case EIO:
18313 		switch (ucmd_buf.uscsi_status) {
18314 		case STATUS_RESERVATION_CONFLICT:
18315 			status = EACCES;
18316 			break;
18317 		case STATUS_CHECK:
18318 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18319 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18320 				KEY_ILLEGAL_REQUEST)) {
18321 				status = ENOTSUP;
18322 			}
18323 			break;
18324 		default:
18325 			break;
18326 		}
18327 		break;
18328 	default:
18329 		break;
18330 	}
18331 
18332 	kmem_free(prp, data_len);
18333 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
18334 	return (status);
18335 }
18336 
18337 
18338 /*
18339  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
18340  *
18341  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
18342  *
18343  *   Arguments: un - pointer to the target's soft state struct
18344  *
18345  * Return Code: 0 - success
18346  *		errno-type error code
18347  *
18348  *     Context: kernel thread context only.
18349  */
18350 
18351 static int
18352 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
18353 {
18354 	struct sd_uscsi_info	*uip;
18355 	struct uscsi_cmd	*uscmd;
18356 	union scsi_cdb		*cdb;
18357 	struct buf		*bp;
18358 	int			rval = 0;
18359 
18360 	SD_TRACE(SD_LOG_IO, un,
18361 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
18362 
18363 	ASSERT(un != NULL);
18364 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18365 
18366 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
18367 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
18368 
18369 	/*
18370 	 * First get some memory for the uscsi_cmd struct and cdb
18371 	 * and initialize for SYNCHRONIZE_CACHE cmd.
18372 	 */
18373 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
18374 	uscmd->uscsi_cdblen = CDB_GROUP1;
18375 	uscmd->uscsi_cdb = (caddr_t)cdb;
18376 	uscmd->uscsi_bufaddr = NULL;
18377 	uscmd->uscsi_buflen = 0;
18378 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
18379 	uscmd->uscsi_rqlen = SENSE_LENGTH;
18380 	uscmd->uscsi_rqresid = SENSE_LENGTH;
18381 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
18382 	uscmd->uscsi_timeout = sd_io_time;
18383 
18384 	/*
18385 	 * Allocate an sd_uscsi_info struct and fill it with the info
18386 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
18387 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
18388 	 * since we allocate the buf here in this function, we do not
18389 	 * need to preserve the prior contents of b_private.
18390 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
18391 	 */
18392 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
18393 	uip->ui_flags = SD_PATH_DIRECT;
18394 	uip->ui_cmdp  = uscmd;
18395 
18396 	bp = getrbuf(KM_SLEEP);
18397 	bp->b_private = uip;
18398 
18399 	/*
18400 	 * Setup buffer to carry uscsi request.
18401 	 */
18402 	bp->b_flags  = B_BUSY;
18403 	bp->b_bcount = 0;
18404 	bp->b_blkno  = 0;
18405 
18406 	if (dkc != NULL) {
18407 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
18408 		uip->ui_dkc = *dkc;
18409 	}
18410 
18411 	bp->b_edev = SD_GET_DEV(un);
18412 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
18413 
18414 	(void) sd_uscsi_strategy(bp);
18415 
18416 	/*
18417 	 * If synchronous request, wait for completion
18418 	 * If async just return and let b_iodone callback
18419 	 * cleanup.
18420 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
18421 	 * but it was also incremented in sd_uscsi_strategy(), so
18422 	 * we should be ok.
18423 	 */
18424 	if (dkc == NULL) {
18425 		(void) biowait(bp);
18426 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
18427 	}
18428 
18429 	return (rval);
18430 }
18431 
18432 
18433 static int
18434 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
18435 {
18436 	struct sd_uscsi_info *uip;
18437 	struct uscsi_cmd *uscmd;
18438 	uint8_t *sense_buf;
18439 	struct sd_lun *un;
18440 	int status;
18441 
18442 	uip = (struct sd_uscsi_info *)(bp->b_private);
18443 	ASSERT(uip != NULL);
18444 
18445 	uscmd = uip->ui_cmdp;
18446 	ASSERT(uscmd != NULL);
18447 
18448 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
18449 	ASSERT(sense_buf != NULL);
18450 
18451 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
18452 	ASSERT(un != NULL);
18453 
18454 	status = geterror(bp);
18455 	switch (status) {
18456 	case 0:
18457 		break;	/* Success! */
18458 	case EIO:
18459 		switch (uscmd->uscsi_status) {
18460 		case STATUS_RESERVATION_CONFLICT:
18461 			/* Ignore reservation conflict */
18462 			status = 0;
18463 			goto done;
18464 
18465 		case STATUS_CHECK:
18466 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
18467 			    (scsi_sense_key(sense_buf) ==
18468 				KEY_ILLEGAL_REQUEST)) {
18469 				/* Ignore Illegal Request error */
18470 				mutex_enter(SD_MUTEX(un));
18471 				un->un_f_sync_cache_supported = FALSE;
18472 				mutex_exit(SD_MUTEX(un));
18473 				status = ENOTSUP;
18474 				goto done;
18475 			}
18476 			break;
18477 		default:
18478 			break;
18479 		}
18480 		/* FALLTHRU */
18481 	default:
18482 		/*
18483 		 * Don't log an error message if this device
18484 		 * has removable media.
18485 		 */
18486 		if (!un->un_f_has_removable_media) {
18487 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18488 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
18489 		}
18490 		break;
18491 	}
18492 
18493 done:
18494 	if (uip->ui_dkc.dkc_callback != NULL) {
18495 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
18496 	}
18497 
18498 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
18499 	freerbuf(bp);
18500 	kmem_free(uip, sizeof (struct sd_uscsi_info));
18501 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
18502 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
18503 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
18504 
18505 	return (status);
18506 }
18507 
18508 
18509 /*
18510  *    Function: sd_send_scsi_GET_CONFIGURATION
18511  *
18512  * Description: Issues the get configuration command to the device.
18513  *		Called from sd_check_for_writable_cd & sd_get_media_info
18514  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
18515  *   Arguments: un
18516  *		ucmdbuf
18517  *		rqbuf
18518  *		rqbuflen
18519  *		bufaddr
18520  *		buflen
18521  *		path_flag
18522  *
18523  * Return Code: 0   - Success
18524  *		errno return code from sd_send_scsi_cmd()
18525  *
18526  *     Context: Can sleep. Does not return until command is completed.
18527  *
18528  */
18529 
18530 static int
18531 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf,
18532 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
18533 	int path_flag)
18534 {
18535 	char	cdb[CDB_GROUP1];
18536 	int	status;
18537 
18538 	ASSERT(un != NULL);
18539 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18540 	ASSERT(bufaddr != NULL);
18541 	ASSERT(ucmdbuf != NULL);
18542 	ASSERT(rqbuf != NULL);
18543 
18544 	SD_TRACE(SD_LOG_IO, un,
18545 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
18546 
18547 	bzero(cdb, sizeof (cdb));
18548 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
18549 	bzero(rqbuf, rqbuflen);
18550 	bzero(bufaddr, buflen);
18551 
18552 	/*
18553 	 * Set up cdb field for the get configuration command.
18554 	 */
18555 	cdb[0] = SCMD_GET_CONFIGURATION;
18556 	cdb[1] = 0x02;  /* Requested Type */
18557 	cdb[8] = SD_PROFILE_HEADER_LEN;
18558 	ucmdbuf->uscsi_cdb = cdb;
18559 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
18560 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
18561 	ucmdbuf->uscsi_buflen = buflen;
18562 	ucmdbuf->uscsi_timeout = sd_io_time;
18563 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
18564 	ucmdbuf->uscsi_rqlen = rqbuflen;
18565 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
18566 
18567 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL,
18568 	    UIO_SYSSPACE, path_flag);
18569 
18570 	switch (status) {
18571 	case 0:
18572 		break;  /* Success! */
18573 	case EIO:
18574 		switch (ucmdbuf->uscsi_status) {
18575 		case STATUS_RESERVATION_CONFLICT:
18576 			status = EACCES;
18577 			break;
18578 		default:
18579 			break;
18580 		}
18581 		break;
18582 	default:
18583 		break;
18584 	}
18585 
18586 	if (status == 0) {
18587 		SD_DUMP_MEMORY(un, SD_LOG_IO,
18588 		    "sd_send_scsi_GET_CONFIGURATION: data",
18589 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
18590 	}
18591 
18592 	SD_TRACE(SD_LOG_IO, un,
18593 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
18594 
18595 	return (status);
18596 }
18597 
18598 /*
18599  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
18600  *
18601  * Description: Issues the get configuration command to the device to
18602  *              retrieve a specfic feature. Called from
18603  *		sd_check_for_writable_cd & sd_set_mmc_caps.
18604  *   Arguments: un
18605  *              ucmdbuf
18606  *              rqbuf
18607  *              rqbuflen
18608  *              bufaddr
18609  *              buflen
18610  *		feature
18611  *
18612  * Return Code: 0   - Success
18613  *              errno return code from sd_send_scsi_cmd()
18614  *
18615  *     Context: Can sleep. Does not return until command is completed.
18616  *
18617  */
18618 static int
18619 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
18620 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
18621 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag)
18622 {
18623 	char    cdb[CDB_GROUP1];
18624 	int	status;
18625 
18626 	ASSERT(un != NULL);
18627 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18628 	ASSERT(bufaddr != NULL);
18629 	ASSERT(ucmdbuf != NULL);
18630 	ASSERT(rqbuf != NULL);
18631 
18632 	SD_TRACE(SD_LOG_IO, un,
18633 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
18634 
18635 	bzero(cdb, sizeof (cdb));
18636 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
18637 	bzero(rqbuf, rqbuflen);
18638 	bzero(bufaddr, buflen);
18639 
18640 	/*
18641 	 * Set up cdb field for the get configuration command.
18642 	 */
18643 	cdb[0] = SCMD_GET_CONFIGURATION;
18644 	cdb[1] = 0x02;  /* Requested Type */
18645 	cdb[3] = feature;
18646 	cdb[8] = buflen;
18647 	ucmdbuf->uscsi_cdb = cdb;
18648 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
18649 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
18650 	ucmdbuf->uscsi_buflen = buflen;
18651 	ucmdbuf->uscsi_timeout = sd_io_time;
18652 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
18653 	ucmdbuf->uscsi_rqlen = rqbuflen;
18654 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
18655 
18656 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL,
18657 	    UIO_SYSSPACE, path_flag);
18658 
18659 	switch (status) {
18660 	case 0:
18661 		break;  /* Success! */
18662 	case EIO:
18663 		switch (ucmdbuf->uscsi_status) {
18664 		case STATUS_RESERVATION_CONFLICT:
18665 			status = EACCES;
18666 			break;
18667 		default:
18668 			break;
18669 		}
18670 		break;
18671 	default:
18672 		break;
18673 	}
18674 
18675 	if (status == 0) {
18676 		SD_DUMP_MEMORY(un, SD_LOG_IO,
18677 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
18678 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
18679 	}
18680 
18681 	SD_TRACE(SD_LOG_IO, un,
18682 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
18683 
18684 	return (status);
18685 }
18686 
18687 
18688 /*
18689  *    Function: sd_send_scsi_MODE_SENSE
18690  *
18691  * Description: Utility function for issuing a scsi MODE SENSE command.
18692  *		Note: This routine uses a consistent implementation for Group0,
18693  *		Group1, and Group2 commands across all platforms. ATAPI devices
18694  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
18695  *
18696  *   Arguments: un - pointer to the softstate struct for the target.
18697  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
18698  *			  CDB_GROUP[1|2] (10 byte).
18699  *		bufaddr - buffer for page data retrieved from the target.
18700  *		buflen - size of page to be retrieved.
18701  *		page_code - page code of data to be retrieved from the target.
18702  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18703  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18704  *			to use the USCSI "direct" chain and bypass the normal
18705  *			command waitq.
18706  *
18707  * Return Code: 0   - Success
18708  *		errno return code from sd_send_scsi_cmd()
18709  *
18710  *     Context: Can sleep. Does not return until command is completed.
18711  */
18712 
18713 static int
18714 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
18715 	size_t buflen,  uchar_t page_code, int path_flag)
18716 {
18717 	struct	scsi_extended_sense	sense_buf;
18718 	union scsi_cdb		cdb;
18719 	struct uscsi_cmd	ucmd_buf;
18720 	int			status;
18721 	int			headlen;
18722 
18723 	ASSERT(un != NULL);
18724 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18725 	ASSERT(bufaddr != NULL);
18726 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
18727 	    (cdbsize == CDB_GROUP2));
18728 
18729 	SD_TRACE(SD_LOG_IO, un,
18730 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
18731 
18732 	bzero(&cdb, sizeof (cdb));
18733 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18734 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18735 	bzero(bufaddr, buflen);
18736 
18737 	if (cdbsize == CDB_GROUP0) {
18738 		cdb.scc_cmd = SCMD_MODE_SENSE;
18739 		cdb.cdb_opaque[2] = page_code;
18740 		FORMG0COUNT(&cdb, buflen);
18741 		headlen = MODE_HEADER_LENGTH;
18742 	} else {
18743 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
18744 		cdb.cdb_opaque[2] = page_code;
18745 		FORMG1COUNT(&cdb, buflen);
18746 		headlen = MODE_HEADER_LENGTH_GRP2;
18747 	}
18748 
18749 	ASSERT(headlen <= buflen);
18750 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
18751 
18752 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18753 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
18754 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
18755 	ucmd_buf.uscsi_buflen	= buflen;
18756 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18757 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18758 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18759 	ucmd_buf.uscsi_timeout	= 60;
18760 
18761 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18762 	    UIO_SYSSPACE, path_flag);
18763 
18764 	switch (status) {
18765 	case 0:
18766 		/*
18767 		 * sr_check_wp() uses 0x3f page code and check the header of
18768 		 * mode page to determine if target device is write-protected.
18769 		 * But some USB devices return 0 bytes for 0x3f page code. For
18770 		 * this case, make sure that mode page header is returned at
18771 		 * least.
18772 		 */
18773 		if (buflen - ucmd_buf.uscsi_resid <  headlen)
18774 			status = EIO;
18775 		break;	/* Success! */
18776 	case EIO:
18777 		switch (ucmd_buf.uscsi_status) {
18778 		case STATUS_RESERVATION_CONFLICT:
18779 			status = EACCES;
18780 			break;
18781 		default:
18782 			break;
18783 		}
18784 		break;
18785 	default:
18786 		break;
18787 	}
18788 
18789 	if (status == 0) {
18790 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
18791 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
18792 	}
18793 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
18794 
18795 	return (status);
18796 }
18797 
18798 
18799 /*
18800  *    Function: sd_send_scsi_MODE_SELECT
18801  *
18802  * Description: Utility function for issuing a scsi MODE SELECT command.
18803  *		Note: This routine uses a consistent implementation for Group0,
18804  *		Group1, and Group2 commands across all platforms. ATAPI devices
18805  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
18806  *
18807  *   Arguments: un - pointer to the softstate struct for the target.
18808  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
18809  *			  CDB_GROUP[1|2] (10 byte).
18810  *		bufaddr - buffer for page data retrieved from the target.
18811  *		buflen - size of page to be retrieved.
18812  *		save_page - boolean to determin if SP bit should be set.
18813  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18814  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18815  *			to use the USCSI "direct" chain and bypass the normal
18816  *			command waitq.
18817  *
18818  * Return Code: 0   - Success
18819  *		errno return code from sd_send_scsi_cmd()
18820  *
18821  *     Context: Can sleep. Does not return until command is completed.
18822  */
18823 
18824 static int
18825 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
18826 	size_t buflen,  uchar_t save_page, int path_flag)
18827 {
18828 	struct	scsi_extended_sense	sense_buf;
18829 	union scsi_cdb		cdb;
18830 	struct uscsi_cmd	ucmd_buf;
18831 	int			status;
18832 
18833 	ASSERT(un != NULL);
18834 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18835 	ASSERT(bufaddr != NULL);
18836 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
18837 	    (cdbsize == CDB_GROUP2));
18838 
18839 	SD_TRACE(SD_LOG_IO, un,
18840 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
18841 
18842 	bzero(&cdb, sizeof (cdb));
18843 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18844 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18845 
18846 	/* Set the PF bit for many third party drives */
18847 	cdb.cdb_opaque[1] = 0x10;
18848 
18849 	/* Set the savepage(SP) bit if given */
18850 	if (save_page == SD_SAVE_PAGE) {
18851 		cdb.cdb_opaque[1] |= 0x01;
18852 	}
18853 
18854 	if (cdbsize == CDB_GROUP0) {
18855 		cdb.scc_cmd = SCMD_MODE_SELECT;
18856 		FORMG0COUNT(&cdb, buflen);
18857 	} else {
18858 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
18859 		FORMG1COUNT(&cdb, buflen);
18860 	}
18861 
18862 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
18863 
18864 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18865 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
18866 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
18867 	ucmd_buf.uscsi_buflen	= buflen;
18868 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18869 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18870 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
18871 	ucmd_buf.uscsi_timeout	= 60;
18872 
18873 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18874 	    UIO_SYSSPACE, path_flag);
18875 
18876 	switch (status) {
18877 	case 0:
18878 		break;	/* Success! */
18879 	case EIO:
18880 		switch (ucmd_buf.uscsi_status) {
18881 		case STATUS_RESERVATION_CONFLICT:
18882 			status = EACCES;
18883 			break;
18884 		default:
18885 			break;
18886 		}
18887 		break;
18888 	default:
18889 		break;
18890 	}
18891 
18892 	if (status == 0) {
18893 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
18894 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
18895 	}
18896 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
18897 
18898 	return (status);
18899 }
18900 
18901 
18902 /*
18903  *    Function: sd_send_scsi_RDWR
18904  *
18905  * Description: Issue a scsi READ or WRITE command with the given parameters.
18906  *
18907  *   Arguments: un:      Pointer to the sd_lun struct for the target.
18908  *		cmd:	 SCMD_READ or SCMD_WRITE
18909  *		bufaddr: Address of caller's buffer to receive the RDWR data
18910  *		buflen:  Length of caller's buffer receive the RDWR data.
18911  *		start_block: Block number for the start of the RDWR operation.
18912  *			 (Assumes target-native block size.)
18913  *		residp:  Pointer to variable to receive the redisual of the
18914  *			 RDWR operation (may be NULL of no residual requested).
18915  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18916  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18917  *			to use the USCSI "direct" chain and bypass the normal
18918  *			command waitq.
18919  *
18920  * Return Code: 0   - Success
18921  *		errno return code from sd_send_scsi_cmd()
18922  *
18923  *     Context: Can sleep. Does not return until command is completed.
18924  */
18925 
18926 static int
18927 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
18928 	size_t buflen, daddr_t start_block, int path_flag)
18929 {
18930 	struct	scsi_extended_sense	sense_buf;
18931 	union scsi_cdb		cdb;
18932 	struct uscsi_cmd	ucmd_buf;
18933 	uint32_t		block_count;
18934 	int			status;
18935 	int			cdbsize;
18936 	uchar_t			flag;
18937 
18938 	ASSERT(un != NULL);
18939 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18940 	ASSERT(bufaddr != NULL);
18941 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
18942 
18943 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
18944 
18945 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
18946 		return (EINVAL);
18947 	}
18948 
18949 	mutex_enter(SD_MUTEX(un));
18950 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
18951 	mutex_exit(SD_MUTEX(un));
18952 
18953 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
18954 
18955 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
18956 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
18957 	    bufaddr, buflen, start_block, block_count);
18958 
18959 	bzero(&cdb, sizeof (cdb));
18960 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18961 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18962 
18963 	/* Compute CDB size to use */
18964 	if (start_block > 0xffffffff)
18965 		cdbsize = CDB_GROUP4;
18966 	else if ((start_block & 0xFFE00000) ||
18967 	    (un->un_f_cfg_is_atapi == TRUE))
18968 		cdbsize = CDB_GROUP1;
18969 	else
18970 		cdbsize = CDB_GROUP0;
18971 
18972 	switch (cdbsize) {
18973 	case CDB_GROUP0:	/* 6-byte CDBs */
18974 		cdb.scc_cmd = cmd;
18975 		FORMG0ADDR(&cdb, start_block);
18976 		FORMG0COUNT(&cdb, block_count);
18977 		break;
18978 	case CDB_GROUP1:	/* 10-byte CDBs */
18979 		cdb.scc_cmd = cmd | SCMD_GROUP1;
18980 		FORMG1ADDR(&cdb, start_block);
18981 		FORMG1COUNT(&cdb, block_count);
18982 		break;
18983 	case CDB_GROUP4:	/* 16-byte CDBs */
18984 		cdb.scc_cmd = cmd | SCMD_GROUP4;
18985 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
18986 		FORMG4COUNT(&cdb, block_count);
18987 		break;
18988 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
18989 	default:
18990 		/* All others reserved */
18991 		return (EINVAL);
18992 	}
18993 
18994 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
18995 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
18996 
18997 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18998 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
18999 	ucmd_buf.uscsi_bufaddr	= bufaddr;
19000 	ucmd_buf.uscsi_buflen	= buflen;
19001 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19002 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19003 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
19004 	ucmd_buf.uscsi_timeout	= 60;
19005 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19006 	    UIO_SYSSPACE, path_flag);
19007 	switch (status) {
19008 	case 0:
19009 		break;	/* Success! */
19010 	case EIO:
19011 		switch (ucmd_buf.uscsi_status) {
19012 		case STATUS_RESERVATION_CONFLICT:
19013 			status = EACCES;
19014 			break;
19015 		default:
19016 			break;
19017 		}
19018 		break;
19019 	default:
19020 		break;
19021 	}
19022 
19023 	if (status == 0) {
19024 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
19025 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19026 	}
19027 
19028 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
19029 
19030 	return (status);
19031 }
19032 
19033 
19034 /*
19035  *    Function: sd_send_scsi_LOG_SENSE
19036  *
19037  * Description: Issue a scsi LOG_SENSE command with the given parameters.
19038  *
19039  *   Arguments: un:      Pointer to the sd_lun struct for the target.
19040  *
19041  * Return Code: 0   - Success
19042  *		errno return code from sd_send_scsi_cmd()
19043  *
19044  *     Context: Can sleep. Does not return until command is completed.
19045  */
19046 
19047 static int
19048 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen,
19049 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
19050 	int path_flag)
19051 
19052 {
19053 	struct	scsi_extended_sense	sense_buf;
19054 	union scsi_cdb		cdb;
19055 	struct uscsi_cmd	ucmd_buf;
19056 	int			status;
19057 
19058 	ASSERT(un != NULL);
19059 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19060 
19061 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
19062 
19063 	bzero(&cdb, sizeof (cdb));
19064 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19065 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19066 
19067 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
19068 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
19069 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
19070 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
19071 	FORMG1COUNT(&cdb, buflen);
19072 
19073 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19074 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19075 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19076 	ucmd_buf.uscsi_buflen	= buflen;
19077 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19078 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19079 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19080 	ucmd_buf.uscsi_timeout	= 60;
19081 
19082 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19083 	    UIO_SYSSPACE, path_flag);
19084 
19085 	switch (status) {
19086 	case 0:
19087 		break;
19088 	case EIO:
19089 		switch (ucmd_buf.uscsi_status) {
19090 		case STATUS_RESERVATION_CONFLICT:
19091 			status = EACCES;
19092 			break;
19093 		case STATUS_CHECK:
19094 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19095 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
19096 				KEY_ILLEGAL_REQUEST) &&
19097 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
19098 				/*
19099 				 * ASC 0x24: INVALID FIELD IN CDB
19100 				 */
19101 				switch (page_code) {
19102 				case START_STOP_CYCLE_PAGE:
19103 					/*
19104 					 * The start stop cycle counter is
19105 					 * implemented as page 0x31 in earlier
19106 					 * generation disks. In new generation
19107 					 * disks the start stop cycle counter is
19108 					 * implemented as page 0xE. To properly
19109 					 * handle this case if an attempt for
19110 					 * log page 0xE is made and fails we
19111 					 * will try again using page 0x31.
19112 					 *
19113 					 * Network storage BU committed to
19114 					 * maintain the page 0x31 for this
19115 					 * purpose and will not have any other
19116 					 * page implemented with page code 0x31
19117 					 * until all disks transition to the
19118 					 * standard page.
19119 					 */
19120 					mutex_enter(SD_MUTEX(un));
19121 					un->un_start_stop_cycle_page =
19122 					    START_STOP_CYCLE_VU_PAGE;
19123 					cdb.cdb_opaque[2] =
19124 					    (char)(page_control << 6) |
19125 					    un->un_start_stop_cycle_page;
19126 					mutex_exit(SD_MUTEX(un));
19127 					status = sd_send_scsi_cmd(
19128 					    SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19129 					    UIO_SYSSPACE, path_flag);
19130 
19131 					break;
19132 				case TEMPERATURE_PAGE:
19133 					status = ENOTTY;
19134 					break;
19135 				default:
19136 					break;
19137 				}
19138 			}
19139 			break;
19140 		default:
19141 			break;
19142 		}
19143 		break;
19144 	default:
19145 		break;
19146 	}
19147 
19148 	if (status == 0) {
19149 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
19150 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19151 	}
19152 
19153 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
19154 
19155 	return (status);
19156 }
19157 
19158 
19159 /*
19160  *    Function: sdioctl
19161  *
19162  * Description: Driver's ioctl(9e) entry point function.
19163  *
19164  *   Arguments: dev     - device number
19165  *		cmd     - ioctl operation to be performed
19166  *		arg     - user argument, contains data to be set or reference
19167  *			  parameter for get
19168  *		flag    - bit flag, indicating open settings, 32/64 bit type
19169  *		cred_p  - user credential pointer
19170  *		rval_p  - calling process return value (OPT)
19171  *
19172  * Return Code: EINVAL
19173  *		ENOTTY
19174  *		ENXIO
19175  *		EIO
19176  *		EFAULT
19177  *		ENOTSUP
19178  *		EPERM
19179  *
19180  *     Context: Called from the device switch at normal priority.
19181  */
19182 
19183 static int
19184 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
19185 {
19186 	struct sd_lun	*un = NULL;
19187 	int		err = 0;
19188 	int		i = 0;
19189 	cred_t		*cr;
19190 	int		tmprval = EINVAL;
19191 	int 		is_valid;
19192 
19193 	/*
19194 	 * All device accesses go thru sdstrategy where we check on suspend
19195 	 * status
19196 	 */
19197 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
19198 		return (ENXIO);
19199 	}
19200 
19201 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19202 
19203 
19204 	is_valid = SD_IS_VALID_LABEL(un);
19205 
19206 	/*
19207 	 * Moved this wait from sd_uscsi_strategy to here for
19208 	 * reasons of deadlock prevention. Internal driver commands,
19209 	 * specifically those to change a devices power level, result
19210 	 * in a call to sd_uscsi_strategy.
19211 	 */
19212 	mutex_enter(SD_MUTEX(un));
19213 	while ((un->un_state == SD_STATE_SUSPENDED) ||
19214 	    (un->un_state == SD_STATE_PM_CHANGING)) {
19215 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
19216 	}
19217 	/*
19218 	 * Twiddling the counter here protects commands from now
19219 	 * through to the top of sd_uscsi_strategy. Without the
19220 	 * counter inc. a power down, for example, could get in
19221 	 * after the above check for state is made and before
19222 	 * execution gets to the top of sd_uscsi_strategy.
19223 	 * That would cause problems.
19224 	 */
19225 	un->un_ncmds_in_driver++;
19226 
19227 	if (!is_valid &&
19228 	    (flag & (FNDELAY | FNONBLOCK))) {
19229 		switch (cmd) {
19230 		case DKIOCGGEOM:	/* SD_PATH_DIRECT */
19231 		case DKIOCGVTOC:
19232 		case DKIOCGAPART:
19233 		case DKIOCPARTINFO:
19234 		case DKIOCSGEOM:
19235 		case DKIOCSAPART:
19236 		case DKIOCGETEFI:
19237 		case DKIOCPARTITION:
19238 		case DKIOCSVTOC:
19239 		case DKIOCSETEFI:
19240 		case DKIOCGMBOOT:
19241 		case DKIOCSMBOOT:
19242 		case DKIOCG_PHYGEOM:
19243 		case DKIOCG_VIRTGEOM:
19244 			/* let cmlb handle it */
19245 			goto skip_ready_valid;
19246 
19247 		case CDROMPAUSE:
19248 		case CDROMRESUME:
19249 		case CDROMPLAYMSF:
19250 		case CDROMPLAYTRKIND:
19251 		case CDROMREADTOCHDR:
19252 		case CDROMREADTOCENTRY:
19253 		case CDROMSTOP:
19254 		case CDROMSTART:
19255 		case CDROMVOLCTRL:
19256 		case CDROMSUBCHNL:
19257 		case CDROMREADMODE2:
19258 		case CDROMREADMODE1:
19259 		case CDROMREADOFFSET:
19260 		case CDROMSBLKMODE:
19261 		case CDROMGBLKMODE:
19262 		case CDROMGDRVSPEED:
19263 		case CDROMSDRVSPEED:
19264 		case CDROMCDDA:
19265 		case CDROMCDXA:
19266 		case CDROMSUBCODE:
19267 			if (!ISCD(un)) {
19268 				un->un_ncmds_in_driver--;
19269 				ASSERT(un->un_ncmds_in_driver >= 0);
19270 				mutex_exit(SD_MUTEX(un));
19271 				return (ENOTTY);
19272 			}
19273 			break;
19274 		case FDEJECT:
19275 		case DKIOCEJECT:
19276 		case CDROMEJECT:
19277 			if (!un->un_f_eject_media_supported) {
19278 				un->un_ncmds_in_driver--;
19279 				ASSERT(un->un_ncmds_in_driver >= 0);
19280 				mutex_exit(SD_MUTEX(un));
19281 				return (ENOTTY);
19282 			}
19283 			break;
19284 		case DKIOCFLUSHWRITECACHE:
19285 			mutex_exit(SD_MUTEX(un));
19286 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
19287 			if (err != 0) {
19288 				mutex_enter(SD_MUTEX(un));
19289 				un->un_ncmds_in_driver--;
19290 				ASSERT(un->un_ncmds_in_driver >= 0);
19291 				mutex_exit(SD_MUTEX(un));
19292 				return (EIO);
19293 			}
19294 			mutex_enter(SD_MUTEX(un));
19295 			/* FALLTHROUGH */
19296 		case DKIOCREMOVABLE:
19297 		case DKIOCHOTPLUGGABLE:
19298 		case DKIOCINFO:
19299 		case DKIOCGMEDIAINFO:
19300 		case MHIOCENFAILFAST:
19301 		case MHIOCSTATUS:
19302 		case MHIOCTKOWN:
19303 		case MHIOCRELEASE:
19304 		case MHIOCGRP_INKEYS:
19305 		case MHIOCGRP_INRESV:
19306 		case MHIOCGRP_REGISTER:
19307 		case MHIOCGRP_RESERVE:
19308 		case MHIOCGRP_PREEMPTANDABORT:
19309 		case MHIOCGRP_REGISTERANDIGNOREKEY:
19310 		case CDROMCLOSETRAY:
19311 		case USCSICMD:
19312 			goto skip_ready_valid;
19313 		default:
19314 			break;
19315 		}
19316 
19317 		mutex_exit(SD_MUTEX(un));
19318 		err = sd_ready_and_valid(un);
19319 		mutex_enter(SD_MUTEX(un));
19320 
19321 		if (err != SD_READY_VALID) {
19322 			switch (cmd) {
19323 			case DKIOCSTATE:
19324 			case CDROMGDRVSPEED:
19325 			case CDROMSDRVSPEED:
19326 			case FDEJECT:	/* for eject command */
19327 			case DKIOCEJECT:
19328 			case CDROMEJECT:
19329 			case DKIOCREMOVABLE:
19330 			case DKIOCHOTPLUGGABLE:
19331 				break;
19332 			default:
19333 				if (un->un_f_has_removable_media) {
19334 					err = ENXIO;
19335 				} else {
19336 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
19337 					if (err == SD_RESERVED_BY_OTHERS) {
19338 						err = EACCES;
19339 					} else {
19340 						err = EIO;
19341 					}
19342 				}
19343 				un->un_ncmds_in_driver--;
19344 				ASSERT(un->un_ncmds_in_driver >= 0);
19345 				mutex_exit(SD_MUTEX(un));
19346 				return (err);
19347 			}
19348 		}
19349 	}
19350 
19351 skip_ready_valid:
19352 	mutex_exit(SD_MUTEX(un));
19353 
19354 	switch (cmd) {
19355 	case DKIOCINFO:
19356 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
19357 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
19358 		break;
19359 
19360 	case DKIOCGMEDIAINFO:
19361 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
19362 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
19363 		break;
19364 
19365 	case DKIOCGGEOM:
19366 	case DKIOCGVTOC:
19367 	case DKIOCGAPART:
19368 	case DKIOCPARTINFO:
19369 	case DKIOCSGEOM:
19370 	case DKIOCSAPART:
19371 	case DKIOCGETEFI:
19372 	case DKIOCPARTITION:
19373 	case DKIOCSVTOC:
19374 	case DKIOCSETEFI:
19375 	case DKIOCGMBOOT:
19376 	case DKIOCSMBOOT:
19377 	case DKIOCG_PHYGEOM:
19378 	case DKIOCG_VIRTGEOM:
19379 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
19380 
19381 		/* TUR should spin up */
19382 
19383 		if (un->un_f_has_removable_media)
19384 			err = sd_send_scsi_TEST_UNIT_READY(un,
19385 			    SD_CHECK_FOR_MEDIA);
19386 		else
19387 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
19388 
19389 		if (err != 0)
19390 			break;
19391 
19392 		err = cmlb_ioctl(un->un_cmlbhandle, dev,
19393 		    cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
19394 
19395 		if ((err == 0) &&
19396 		    ((cmd == DKIOCSETEFI) ||
19397 		    (un->un_f_pkstats_enabled) &&
19398 		    (cmd == DKIOCSAPART || cmd == DKIOCSVTOC))) {
19399 
19400 			tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
19401 			    (void *)SD_PATH_DIRECT);
19402 			if ((tmprval == 0) && un->un_f_pkstats_enabled) {
19403 				sd_set_pstats(un);
19404 				SD_TRACE(SD_LOG_IO_PARTITION, un,
19405 				    "sd_ioctl: un:0x%p pstats created and "
19406 				    "set\n", un);
19407 			}
19408 		}
19409 
19410 		if ((cmd == DKIOCSVTOC) ||
19411 		    ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
19412 
19413 			mutex_enter(SD_MUTEX(un));
19414 			if (un->un_f_devid_supported &&
19415 			    (un->un_f_opt_fab_devid == TRUE)) {
19416 				if (un->un_devid == NULL) {
19417 					sd_register_devid(un, SD_DEVINFO(un),
19418 					    SD_TARGET_IS_UNRESERVED);
19419 				} else {
19420 					/*
19421 					 * The device id for this disk
19422 					 * has been fabricated. The
19423 					 * device id must be preserved
19424 					 * by writing it back out to
19425 					 * disk.
19426 					 */
19427 					if (sd_write_deviceid(un) != 0) {
19428 						ddi_devid_free(un->un_devid);
19429 						un->un_devid = NULL;
19430 					}
19431 				}
19432 			}
19433 			mutex_exit(SD_MUTEX(un));
19434 		}
19435 
19436 		break;
19437 
19438 	case DKIOCLOCK:
19439 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
19440 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
19441 		    SD_PATH_STANDARD);
19442 		break;
19443 
19444 	case DKIOCUNLOCK:
19445 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
19446 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
19447 		    SD_PATH_STANDARD);
19448 		break;
19449 
19450 	case DKIOCSTATE: {
19451 		enum dkio_state		state;
19452 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
19453 
19454 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
19455 			err = EFAULT;
19456 		} else {
19457 			err = sd_check_media(dev, state);
19458 			if (err == 0) {
19459 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
19460 				    sizeof (int), flag) != 0)
19461 					err = EFAULT;
19462 			}
19463 		}
19464 		break;
19465 	}
19466 
19467 	case DKIOCREMOVABLE:
19468 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
19469 		i = un->un_f_has_removable_media ? 1 : 0;
19470 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
19471 			err = EFAULT;
19472 		} else {
19473 			err = 0;
19474 		}
19475 		break;
19476 
19477 	case DKIOCHOTPLUGGABLE:
19478 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
19479 		i = un->un_f_is_hotpluggable ? 1 : 0;
19480 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
19481 			err = EFAULT;
19482 		} else {
19483 			err = 0;
19484 		}
19485 		break;
19486 
19487 	case DKIOCGTEMPERATURE:
19488 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
19489 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
19490 		break;
19491 
19492 	case MHIOCENFAILFAST:
19493 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
19494 		if ((err = drv_priv(cred_p)) == 0) {
19495 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
19496 		}
19497 		break;
19498 
19499 	case MHIOCTKOWN:
19500 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
19501 		if ((err = drv_priv(cred_p)) == 0) {
19502 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
19503 		}
19504 		break;
19505 
19506 	case MHIOCRELEASE:
19507 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
19508 		if ((err = drv_priv(cred_p)) == 0) {
19509 			err = sd_mhdioc_release(dev);
19510 		}
19511 		break;
19512 
19513 	case MHIOCSTATUS:
19514 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
19515 		if ((err = drv_priv(cred_p)) == 0) {
19516 			switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) {
19517 			case 0:
19518 				err = 0;
19519 				break;
19520 			case EACCES:
19521 				*rval_p = 1;
19522 				err = 0;
19523 				break;
19524 			default:
19525 				err = EIO;
19526 				break;
19527 			}
19528 		}
19529 		break;
19530 
19531 	case MHIOCQRESERVE:
19532 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
19533 		if ((err = drv_priv(cred_p)) == 0) {
19534 			err = sd_reserve_release(dev, SD_RESERVE);
19535 		}
19536 		break;
19537 
19538 	case MHIOCREREGISTERDEVID:
19539 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
19540 		if (drv_priv(cred_p) == EPERM) {
19541 			err = EPERM;
19542 		} else if (!un->un_f_devid_supported) {
19543 			err = ENOTTY;
19544 		} else {
19545 			err = sd_mhdioc_register_devid(dev);
19546 		}
19547 		break;
19548 
19549 	case MHIOCGRP_INKEYS:
19550 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
19551 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
19552 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19553 				err = ENOTSUP;
19554 			} else {
19555 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
19556 				    flag);
19557 			}
19558 		}
19559 		break;
19560 
19561 	case MHIOCGRP_INRESV:
19562 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
19563 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
19564 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19565 				err = ENOTSUP;
19566 			} else {
19567 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
19568 			}
19569 		}
19570 		break;
19571 
19572 	case MHIOCGRP_REGISTER:
19573 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
19574 		if ((err = drv_priv(cred_p)) != EPERM) {
19575 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19576 				err = ENOTSUP;
19577 			} else if (arg != NULL) {
19578 				mhioc_register_t reg;
19579 				if (ddi_copyin((void *)arg, &reg,
19580 				    sizeof (mhioc_register_t), flag) != 0) {
19581 					err = EFAULT;
19582 				} else {
19583 					err =
19584 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
19585 					    un, SD_SCSI3_REGISTER,
19586 					    (uchar_t *)&reg);
19587 				}
19588 			}
19589 		}
19590 		break;
19591 
19592 	case MHIOCGRP_RESERVE:
19593 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
19594 		if ((err = drv_priv(cred_p)) != EPERM) {
19595 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19596 				err = ENOTSUP;
19597 			} else if (arg != NULL) {
19598 				mhioc_resv_desc_t resv_desc;
19599 				if (ddi_copyin((void *)arg, &resv_desc,
19600 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
19601 					err = EFAULT;
19602 				} else {
19603 					err =
19604 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
19605 					    un, SD_SCSI3_RESERVE,
19606 					    (uchar_t *)&resv_desc);
19607 				}
19608 			}
19609 		}
19610 		break;
19611 
19612 	case MHIOCGRP_PREEMPTANDABORT:
19613 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
19614 		if ((err = drv_priv(cred_p)) != EPERM) {
19615 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19616 				err = ENOTSUP;
19617 			} else if (arg != NULL) {
19618 				mhioc_preemptandabort_t preempt_abort;
19619 				if (ddi_copyin((void *)arg, &preempt_abort,
19620 				    sizeof (mhioc_preemptandabort_t),
19621 				    flag) != 0) {
19622 					err = EFAULT;
19623 				} else {
19624 					err =
19625 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
19626 					    un, SD_SCSI3_PREEMPTANDABORT,
19627 					    (uchar_t *)&preempt_abort);
19628 				}
19629 			}
19630 		}
19631 		break;
19632 
19633 	case MHIOCGRP_REGISTERANDIGNOREKEY:
19634 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
19635 		if ((err = drv_priv(cred_p)) != EPERM) {
19636 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19637 				err = ENOTSUP;
19638 			} else if (arg != NULL) {
19639 				mhioc_registerandignorekey_t r_and_i;
19640 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
19641 				    sizeof (mhioc_registerandignorekey_t),
19642 				    flag) != 0) {
19643 					err = EFAULT;
19644 				} else {
19645 					err =
19646 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
19647 					    un, SD_SCSI3_REGISTERANDIGNOREKEY,
19648 					    (uchar_t *)&r_and_i);
19649 				}
19650 			}
19651 		}
19652 		break;
19653 
19654 	case USCSICMD:
19655 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
19656 		cr = ddi_get_cred();
19657 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
19658 			err = EPERM;
19659 		} else {
19660 			enum uio_seg	uioseg;
19661 			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
19662 			    UIO_USERSPACE;
19663 			if (un->un_f_format_in_progress == TRUE) {
19664 				err = EAGAIN;
19665 				break;
19666 			}
19667 			err = sd_send_scsi_cmd(dev, (struct uscsi_cmd *)arg,
19668 			    flag, uioseg, SD_PATH_STANDARD);
19669 		}
19670 		break;
19671 
19672 	case CDROMPAUSE:
19673 	case CDROMRESUME:
19674 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
19675 		if (!ISCD(un)) {
19676 			err = ENOTTY;
19677 		} else {
19678 			err = sr_pause_resume(dev, cmd);
19679 		}
19680 		break;
19681 
19682 	case CDROMPLAYMSF:
19683 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
19684 		if (!ISCD(un)) {
19685 			err = ENOTTY;
19686 		} else {
19687 			err = sr_play_msf(dev, (caddr_t)arg, flag);
19688 		}
19689 		break;
19690 
19691 	case CDROMPLAYTRKIND:
19692 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
19693 #if defined(__i386) || defined(__amd64)
19694 		/*
19695 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
19696 		 */
19697 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
19698 #else
19699 		if (!ISCD(un)) {
19700 #endif
19701 			err = ENOTTY;
19702 		} else {
19703 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
19704 		}
19705 		break;
19706 
19707 	case CDROMREADTOCHDR:
19708 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
19709 		if (!ISCD(un)) {
19710 			err = ENOTTY;
19711 		} else {
19712 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
19713 		}
19714 		break;
19715 
19716 	case CDROMREADTOCENTRY:
19717 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
19718 		if (!ISCD(un)) {
19719 			err = ENOTTY;
19720 		} else {
19721 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
19722 		}
19723 		break;
19724 
19725 	case CDROMSTOP:
19726 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
19727 		if (!ISCD(un)) {
19728 			err = ENOTTY;
19729 		} else {
19730 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP,
19731 			    SD_PATH_STANDARD);
19732 		}
19733 		break;
19734 
19735 	case CDROMSTART:
19736 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
19737 		if (!ISCD(un)) {
19738 			err = ENOTTY;
19739 		} else {
19740 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
19741 			    SD_PATH_STANDARD);
19742 		}
19743 		break;
19744 
19745 	case CDROMCLOSETRAY:
19746 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
19747 		if (!ISCD(un)) {
19748 			err = ENOTTY;
19749 		} else {
19750 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE,
19751 			    SD_PATH_STANDARD);
19752 		}
19753 		break;
19754 
19755 	case FDEJECT:	/* for eject command */
19756 	case DKIOCEJECT:
19757 	case CDROMEJECT:
19758 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
19759 		if (!un->un_f_eject_media_supported) {
19760 			err = ENOTTY;
19761 		} else {
19762 			err = sr_eject(dev);
19763 		}
19764 		break;
19765 
19766 	case CDROMVOLCTRL:
19767 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
19768 		if (!ISCD(un)) {
19769 			err = ENOTTY;
19770 		} else {
19771 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
19772 		}
19773 		break;
19774 
19775 	case CDROMSUBCHNL:
19776 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
19777 		if (!ISCD(un)) {
19778 			err = ENOTTY;
19779 		} else {
19780 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
19781 		}
19782 		break;
19783 
19784 	case CDROMREADMODE2:
19785 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
19786 		if (!ISCD(un)) {
19787 			err = ENOTTY;
19788 		} else if (un->un_f_cfg_is_atapi == TRUE) {
19789 			/*
19790 			 * If the drive supports READ CD, use that instead of
19791 			 * switching the LBA size via a MODE SELECT
19792 			 * Block Descriptor
19793 			 */
19794 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
19795 		} else {
19796 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
19797 		}
19798 		break;
19799 
19800 	case CDROMREADMODE1:
19801 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
19802 		if (!ISCD(un)) {
19803 			err = ENOTTY;
19804 		} else {
19805 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
19806 		}
19807 		break;
19808 
19809 	case CDROMREADOFFSET:
19810 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
19811 		if (!ISCD(un)) {
19812 			err = ENOTTY;
19813 		} else {
19814 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
19815 			    flag);
19816 		}
19817 		break;
19818 
19819 	case CDROMSBLKMODE:
19820 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
19821 		/*
19822 		 * There is no means of changing block size in case of atapi
19823 		 * drives, thus return ENOTTY if drive type is atapi
19824 		 */
19825 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
19826 			err = ENOTTY;
19827 		} else if (un->un_f_mmc_cap == TRUE) {
19828 
19829 			/*
19830 			 * MMC Devices do not support changing the
19831 			 * logical block size
19832 			 *
19833 			 * Note: EINVAL is being returned instead of ENOTTY to
19834 			 * maintain consistancy with the original mmc
19835 			 * driver update.
19836 			 */
19837 			err = EINVAL;
19838 		} else {
19839 			mutex_enter(SD_MUTEX(un));
19840 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
19841 			    (un->un_ncmds_in_transport > 0)) {
19842 				mutex_exit(SD_MUTEX(un));
19843 				err = EINVAL;
19844 			} else {
19845 				mutex_exit(SD_MUTEX(un));
19846 				err = sr_change_blkmode(dev, cmd, arg, flag);
19847 			}
19848 		}
19849 		break;
19850 
19851 	case CDROMGBLKMODE:
19852 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
19853 		if (!ISCD(un)) {
19854 			err = ENOTTY;
19855 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
19856 		    (un->un_f_blockcount_is_valid != FALSE)) {
19857 			/*
19858 			 * Drive is an ATAPI drive so return target block
19859 			 * size for ATAPI drives since we cannot change the
19860 			 * blocksize on ATAPI drives. Used primarily to detect
19861 			 * if an ATAPI cdrom is present.
19862 			 */
19863 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
19864 			    sizeof (int), flag) != 0) {
19865 				err = EFAULT;
19866 			} else {
19867 				err = 0;
19868 			}
19869 
19870 		} else {
19871 			/*
19872 			 * Drive supports changing block sizes via a Mode
19873 			 * Select.
19874 			 */
19875 			err = sr_change_blkmode(dev, cmd, arg, flag);
19876 		}
19877 		break;
19878 
19879 	case CDROMGDRVSPEED:
19880 	case CDROMSDRVSPEED:
19881 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
19882 		if (!ISCD(un)) {
19883 			err = ENOTTY;
19884 		} else if (un->un_f_mmc_cap == TRUE) {
19885 			/*
19886 			 * Note: In the future the driver implementation
19887 			 * for getting and
19888 			 * setting cd speed should entail:
19889 			 * 1) If non-mmc try the Toshiba mode page
19890 			 *    (sr_change_speed)
19891 			 * 2) If mmc but no support for Real Time Streaming try
19892 			 *    the SET CD SPEED (0xBB) command
19893 			 *   (sr_atapi_change_speed)
19894 			 * 3) If mmc and support for Real Time Streaming
19895 			 *    try the GET PERFORMANCE and SET STREAMING
19896 			 *    commands (not yet implemented, 4380808)
19897 			 */
19898 			/*
19899 			 * As per recent MMC spec, CD-ROM speed is variable
19900 			 * and changes with LBA. Since there is no such
19901 			 * things as drive speed now, fail this ioctl.
19902 			 *
19903 			 * Note: EINVAL is returned for consistancy of original
19904 			 * implementation which included support for getting
19905 			 * the drive speed of mmc devices but not setting
19906 			 * the drive speed. Thus EINVAL would be returned
19907 			 * if a set request was made for an mmc device.
19908 			 * We no longer support get or set speed for
19909 			 * mmc but need to remain consistant with regard
19910 			 * to the error code returned.
19911 			 */
19912 			err = EINVAL;
19913 		} else if (un->un_f_cfg_is_atapi == TRUE) {
19914 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
19915 		} else {
19916 			err = sr_change_speed(dev, cmd, arg, flag);
19917 		}
19918 		break;
19919 
19920 	case CDROMCDDA:
19921 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
19922 		if (!ISCD(un)) {
19923 			err = ENOTTY;
19924 		} else {
19925 			err = sr_read_cdda(dev, (void *)arg, flag);
19926 		}
19927 		break;
19928 
19929 	case CDROMCDXA:
19930 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
19931 		if (!ISCD(un)) {
19932 			err = ENOTTY;
19933 		} else {
19934 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
19935 		}
19936 		break;
19937 
19938 	case CDROMSUBCODE:
19939 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
19940 		if (!ISCD(un)) {
19941 			err = ENOTTY;
19942 		} else {
19943 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
19944 		}
19945 		break;
19946 
19947 
19948 #ifdef SDDEBUG
19949 /* RESET/ABORTS testing ioctls */
19950 	case DKIOCRESET: {
19951 		int	reset_level;
19952 
19953 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
19954 			err = EFAULT;
19955 		} else {
19956 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
19957 			    "reset_level = 0x%lx\n", reset_level);
19958 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
19959 				err = 0;
19960 			} else {
19961 				err = EIO;
19962 			}
19963 		}
19964 		break;
19965 	}
19966 
19967 	case DKIOCABORT:
19968 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
19969 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
19970 			err = 0;
19971 		} else {
19972 			err = EIO;
19973 		}
19974 		break;
19975 #endif
19976 
19977 #ifdef SD_FAULT_INJECTION
19978 /* SDIOC FaultInjection testing ioctls */
19979 	case SDIOCSTART:
19980 	case SDIOCSTOP:
19981 	case SDIOCINSERTPKT:
19982 	case SDIOCINSERTXB:
19983 	case SDIOCINSERTUN:
19984 	case SDIOCINSERTARQ:
19985 	case SDIOCPUSH:
19986 	case SDIOCRETRIEVE:
19987 	case SDIOCRUN:
19988 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
19989 		    "SDIOC detected cmd:0x%X:\n", cmd);
19990 		/* call error generator */
19991 		sd_faultinjection_ioctl(cmd, arg, un);
19992 		err = 0;
19993 		break;
19994 
19995 #endif /* SD_FAULT_INJECTION */
19996 
19997 	case DKIOCFLUSHWRITECACHE:
19998 		{
19999 			struct dk_callback *dkc = (struct dk_callback *)arg;
20000 
20001 			mutex_enter(SD_MUTEX(un));
20002 			if (!un->un_f_sync_cache_supported ||
20003 			    !un->un_f_write_cache_enabled) {
20004 				err = un->un_f_sync_cache_supported ?
20005 					0 : ENOTSUP;
20006 				mutex_exit(SD_MUTEX(un));
20007 				if ((flag & FKIOCTL) && dkc != NULL &&
20008 				    dkc->dkc_callback != NULL) {
20009 					(*dkc->dkc_callback)(dkc->dkc_cookie,
20010 					    err);
20011 					/*
20012 					 * Did callback and reported error.
20013 					 * Since we did a callback, ioctl
20014 					 * should return 0.
20015 					 */
20016 					err = 0;
20017 				}
20018 				break;
20019 			}
20020 			mutex_exit(SD_MUTEX(un));
20021 
20022 			if ((flag & FKIOCTL) && dkc != NULL &&
20023 			    dkc->dkc_callback != NULL) {
20024 				/* async SYNC CACHE request */
20025 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
20026 			} else {
20027 				/* synchronous SYNC CACHE request */
20028 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
20029 			}
20030 		}
20031 		break;
20032 
20033 	case DKIOCGETWCE: {
20034 
20035 		int wce;
20036 
20037 		if ((err = sd_get_write_cache_enabled(un, &wce)) != 0) {
20038 			break;
20039 		}
20040 
20041 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
20042 			err = EFAULT;
20043 		}
20044 		break;
20045 	}
20046 
20047 	case DKIOCSETWCE: {
20048 
20049 		int wce, sync_supported;
20050 
20051 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
20052 			err = EFAULT;
20053 			break;
20054 		}
20055 
20056 		/*
20057 		 * Synchronize multiple threads trying to enable
20058 		 * or disable the cache via the un_f_wcc_cv
20059 		 * condition variable.
20060 		 */
20061 		mutex_enter(SD_MUTEX(un));
20062 
20063 		/*
20064 		 * Don't allow the cache to be enabled if the
20065 		 * config file has it disabled.
20066 		 */
20067 		if (un->un_f_opt_disable_cache && wce) {
20068 			mutex_exit(SD_MUTEX(un));
20069 			err = EINVAL;
20070 			break;
20071 		}
20072 
20073 		/*
20074 		 * Wait for write cache change in progress
20075 		 * bit to be clear before proceeding.
20076 		 */
20077 		while (un->un_f_wcc_inprog)
20078 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
20079 
20080 		un->un_f_wcc_inprog = 1;
20081 
20082 		if (un->un_f_write_cache_enabled && wce == 0) {
20083 			/*
20084 			 * Disable the write cache.  Don't clear
20085 			 * un_f_write_cache_enabled until after
20086 			 * the mode select and flush are complete.
20087 			 */
20088 			sync_supported = un->un_f_sync_cache_supported;
20089 			mutex_exit(SD_MUTEX(un));
20090 			if ((err = sd_cache_control(un, SD_CACHE_NOCHANGE,
20091 			    SD_CACHE_DISABLE)) == 0 && sync_supported) {
20092 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
20093 			}
20094 
20095 			mutex_enter(SD_MUTEX(un));
20096 			if (err == 0) {
20097 				un->un_f_write_cache_enabled = 0;
20098 			}
20099 
20100 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
20101 			/*
20102 			 * Set un_f_write_cache_enabled first, so there is
20103 			 * no window where the cache is enabled, but the
20104 			 * bit says it isn't.
20105 			 */
20106 			un->un_f_write_cache_enabled = 1;
20107 			mutex_exit(SD_MUTEX(un));
20108 
20109 			err = sd_cache_control(un, SD_CACHE_NOCHANGE,
20110 				SD_CACHE_ENABLE);
20111 
20112 			mutex_enter(SD_MUTEX(un));
20113 
20114 			if (err) {
20115 				un->un_f_write_cache_enabled = 0;
20116 			}
20117 		}
20118 
20119 		un->un_f_wcc_inprog = 0;
20120 		cv_broadcast(&un->un_wcc_cv);
20121 		mutex_exit(SD_MUTEX(un));
20122 		break;
20123 	}
20124 
20125 	default:
20126 		err = ENOTTY;
20127 		break;
20128 	}
20129 	mutex_enter(SD_MUTEX(un));
20130 	un->un_ncmds_in_driver--;
20131 	ASSERT(un->un_ncmds_in_driver >= 0);
20132 	mutex_exit(SD_MUTEX(un));
20133 
20134 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
20135 	return (err);
20136 }
20137 
20138 
20139 /*
20140  *    Function: sd_dkio_ctrl_info
20141  *
20142  * Description: This routine is the driver entry point for handling controller
20143  *		information ioctl requests (DKIOCINFO).
20144  *
20145  *   Arguments: dev  - the device number
20146  *		arg  - pointer to user provided dk_cinfo structure
20147  *		       specifying the controller type and attributes.
20148  *		flag - this argument is a pass through to ddi_copyxxx()
20149  *		       directly from the mode argument of ioctl().
20150  *
20151  * Return Code: 0
20152  *		EFAULT
20153  *		ENXIO
20154  */
20155 
20156 static int
20157 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
20158 {
20159 	struct sd_lun	*un = NULL;
20160 	struct dk_cinfo	*info;
20161 	dev_info_t	*pdip;
20162 	int		lun, tgt;
20163 
20164 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20165 		return (ENXIO);
20166 	}
20167 
20168 	info = (struct dk_cinfo *)
20169 		kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
20170 
20171 	switch (un->un_ctype) {
20172 	case CTYPE_CDROM:
20173 		info->dki_ctype = DKC_CDROM;
20174 		break;
20175 	default:
20176 		info->dki_ctype = DKC_SCSI_CCS;
20177 		break;
20178 	}
20179 	pdip = ddi_get_parent(SD_DEVINFO(un));
20180 	info->dki_cnum = ddi_get_instance(pdip);
20181 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
20182 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
20183 	} else {
20184 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
20185 		    DK_DEVLEN - 1);
20186 	}
20187 
20188 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
20189 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
20190 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
20191 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
20192 
20193 	/* Unit Information */
20194 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
20195 	info->dki_slave = ((tgt << 3) | lun);
20196 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
20197 	    DK_DEVLEN - 1);
20198 	info->dki_flags = DKI_FMTVOL;
20199 	info->dki_partition = SDPART(dev);
20200 
20201 	/* Max Transfer size of this device in blocks */
20202 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
20203 	info->dki_addr = 0;
20204 	info->dki_space = 0;
20205 	info->dki_prio = 0;
20206 	info->dki_vec = 0;
20207 
20208 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
20209 		kmem_free(info, sizeof (struct dk_cinfo));
20210 		return (EFAULT);
20211 	} else {
20212 		kmem_free(info, sizeof (struct dk_cinfo));
20213 		return (0);
20214 	}
20215 }
20216 
20217 
20218 /*
20219  *    Function: sd_get_media_info
20220  *
20221  * Description: This routine is the driver entry point for handling ioctl
20222  *		requests for the media type or command set profile used by the
20223  *		drive to operate on the media (DKIOCGMEDIAINFO).
20224  *
20225  *   Arguments: dev	- the device number
20226  *		arg	- pointer to user provided dk_minfo structure
20227  *			  specifying the media type, logical block size and
20228  *			  drive capacity.
20229  *		flag	- this argument is a pass through to ddi_copyxxx()
20230  *			  directly from the mode argument of ioctl().
20231  *
20232  * Return Code: 0
20233  *		EACCESS
20234  *		EFAULT
20235  *		ENXIO
20236  *		EIO
20237  */
20238 
20239 static int
20240 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
20241 {
20242 	struct sd_lun		*un = NULL;
20243 	struct uscsi_cmd	com;
20244 	struct scsi_inquiry	*sinq;
20245 	struct dk_minfo		media_info;
20246 	u_longlong_t		media_capacity;
20247 	uint64_t		capacity;
20248 	uint_t			lbasize;
20249 	uchar_t			*out_data;
20250 	uchar_t			*rqbuf;
20251 	int			rval = 0;
20252 	int			rtn;
20253 
20254 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
20255 	    (un->un_state == SD_STATE_OFFLINE)) {
20256 		return (ENXIO);
20257 	}
20258 
20259 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
20260 
20261 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
20262 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
20263 
20264 	/* Issue a TUR to determine if the drive is ready with media present */
20265 	rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA);
20266 	if (rval == ENXIO) {
20267 		goto done;
20268 	}
20269 
20270 	/* Now get configuration data */
20271 	if (ISCD(un)) {
20272 		media_info.dki_media_type = DK_CDROM;
20273 
20274 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
20275 		if (un->un_f_mmc_cap == TRUE) {
20276 			rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf,
20277 				SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
20278 				SD_PATH_STANDARD);
20279 
20280 			if (rtn) {
20281 				/*
20282 				 * Failed for other than an illegal request
20283 				 * or command not supported
20284 				 */
20285 				if ((com.uscsi_status == STATUS_CHECK) &&
20286 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
20287 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
20288 					    (rqbuf[12] != 0x20)) {
20289 						rval = EIO;
20290 						goto done;
20291 					}
20292 				}
20293 			} else {
20294 				/*
20295 				 * The GET CONFIGURATION command succeeded
20296 				 * so set the media type according to the
20297 				 * returned data
20298 				 */
20299 				media_info.dki_media_type = out_data[6];
20300 				media_info.dki_media_type <<= 8;
20301 				media_info.dki_media_type |= out_data[7];
20302 			}
20303 		}
20304 	} else {
20305 		/*
20306 		 * The profile list is not available, so we attempt to identify
20307 		 * the media type based on the inquiry data
20308 		 */
20309 		sinq = un->un_sd->sd_inq;
20310 		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
20311 		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
20312 			/* This is a direct access device  or optical disk */
20313 			media_info.dki_media_type = DK_FIXED_DISK;
20314 
20315 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
20316 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
20317 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
20318 					media_info.dki_media_type = DK_ZIP;
20319 				} else if (
20320 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
20321 					media_info.dki_media_type = DK_JAZ;
20322 				}
20323 			}
20324 		} else {
20325 			/*
20326 			 * Not a CD, direct access or optical disk so return
20327 			 * unknown media
20328 			 */
20329 			media_info.dki_media_type = DK_UNKNOWN;
20330 		}
20331 	}
20332 
20333 	/* Now read the capacity so we can provide the lbasize and capacity */
20334 	switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
20335 	    SD_PATH_DIRECT)) {
20336 	case 0:
20337 		break;
20338 	case EACCES:
20339 		rval = EACCES;
20340 		goto done;
20341 	default:
20342 		rval = EIO;
20343 		goto done;
20344 	}
20345 
20346 	media_info.dki_lbsize = lbasize;
20347 	media_capacity = capacity;
20348 
20349 	/*
20350 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
20351 	 * un->un_sys_blocksize chunks. So we need to convert it into
20352 	 * cap.lbasize chunks.
20353 	 */
20354 	media_capacity *= un->un_sys_blocksize;
20355 	media_capacity /= lbasize;
20356 	media_info.dki_capacity = media_capacity;
20357 
20358 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
20359 		rval = EFAULT;
20360 		/* Put goto. Anybody might add some code below in future */
20361 		goto done;
20362 	}
20363 done:
20364 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
20365 	kmem_free(rqbuf, SENSE_LENGTH);
20366 	return (rval);
20367 }
20368 
20369 
20370 /*
20371  *    Function: sd_check_media
20372  *
20373  * Description: This utility routine implements the functionality for the
20374  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
20375  *		driver state changes from that specified by the user
20376  *		(inserted or ejected). For example, if the user specifies
20377  *		DKIO_EJECTED and the current media state is inserted this
20378  *		routine will immediately return DKIO_INSERTED. However, if the
20379  *		current media state is not inserted the user thread will be
20380  *		blocked until the drive state changes. If DKIO_NONE is specified
20381  *		the user thread will block until a drive state change occurs.
20382  *
20383  *   Arguments: dev  - the device number
20384  *		state  - user pointer to a dkio_state, updated with the current
20385  *			drive state at return.
20386  *
20387  * Return Code: ENXIO
20388  *		EIO
20389  *		EAGAIN
20390  *		EINTR
20391  */
20392 
20393 static int
20394 sd_check_media(dev_t dev, enum dkio_state state)
20395 {
20396 	struct sd_lun		*un = NULL;
20397 	enum dkio_state		prev_state;
20398 	opaque_t		token = NULL;
20399 	int			rval = 0;
20400 
20401 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20402 		return (ENXIO);
20403 	}
20404 
20405 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
20406 
20407 	mutex_enter(SD_MUTEX(un));
20408 
20409 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
20410 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
20411 
20412 	prev_state = un->un_mediastate;
20413 
20414 	/* is there anything to do? */
20415 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
20416 		/*
20417 		 * submit the request to the scsi_watch service;
20418 		 * scsi_media_watch_cb() does the real work
20419 		 */
20420 		mutex_exit(SD_MUTEX(un));
20421 
20422 		/*
20423 		 * This change handles the case where a scsi watch request is
20424 		 * added to a device that is powered down. To accomplish this
20425 		 * we power up the device before adding the scsi watch request,
20426 		 * since the scsi watch sends a TUR directly to the device
20427 		 * which the device cannot handle if it is powered down.
20428 		 */
20429 		if (sd_pm_entry(un) != DDI_SUCCESS) {
20430 			mutex_enter(SD_MUTEX(un));
20431 			goto done;
20432 		}
20433 
20434 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
20435 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
20436 		    (caddr_t)dev);
20437 
20438 		sd_pm_exit(un);
20439 
20440 		mutex_enter(SD_MUTEX(un));
20441 		if (token == NULL) {
20442 			rval = EAGAIN;
20443 			goto done;
20444 		}
20445 
20446 		/*
20447 		 * This is a special case IOCTL that doesn't return
20448 		 * until the media state changes. Routine sdpower
20449 		 * knows about and handles this so don't count it
20450 		 * as an active cmd in the driver, which would
20451 		 * keep the device busy to the pm framework.
20452 		 * If the count isn't decremented the device can't
20453 		 * be powered down.
20454 		 */
20455 		un->un_ncmds_in_driver--;
20456 		ASSERT(un->un_ncmds_in_driver >= 0);
20457 
20458 		/*
20459 		 * if a prior request had been made, this will be the same
20460 		 * token, as scsi_watch was designed that way.
20461 		 */
20462 		un->un_swr_token = token;
20463 		un->un_specified_mediastate = state;
20464 
20465 		/*
20466 		 * now wait for media change
20467 		 * we will not be signalled unless mediastate == state but it is
20468 		 * still better to test for this condition, since there is a
20469 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
20470 		 */
20471 		SD_TRACE(SD_LOG_COMMON, un,
20472 		    "sd_check_media: waiting for media state change\n");
20473 		while (un->un_mediastate == state) {
20474 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
20475 				SD_TRACE(SD_LOG_COMMON, un,
20476 				    "sd_check_media: waiting for media state "
20477 				    "was interrupted\n");
20478 				un->un_ncmds_in_driver++;
20479 				rval = EINTR;
20480 				goto done;
20481 			}
20482 			SD_TRACE(SD_LOG_COMMON, un,
20483 			    "sd_check_media: received signal, state=%x\n",
20484 			    un->un_mediastate);
20485 		}
20486 		/*
20487 		 * Inc the counter to indicate the device once again
20488 		 * has an active outstanding cmd.
20489 		 */
20490 		un->un_ncmds_in_driver++;
20491 	}
20492 
20493 	/* invalidate geometry */
20494 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
20495 		sr_ejected(un);
20496 	}
20497 
20498 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
20499 		uint64_t	capacity;
20500 		uint_t		lbasize;
20501 
20502 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
20503 		mutex_exit(SD_MUTEX(un));
20504 		/*
20505 		 * Since the following routines use SD_PATH_DIRECT, we must
20506 		 * call PM directly before the upcoming disk accesses. This
20507 		 * may cause the disk to be power/spin up.
20508 		 */
20509 
20510 		if (sd_pm_entry(un) == DDI_SUCCESS) {
20511 			rval = sd_send_scsi_READ_CAPACITY(un,
20512 			    &capacity,
20513 			    &lbasize, SD_PATH_DIRECT);
20514 			if (rval != 0) {
20515 				sd_pm_exit(un);
20516 				mutex_enter(SD_MUTEX(un));
20517 				goto done;
20518 			}
20519 		} else {
20520 			rval = EIO;
20521 			mutex_enter(SD_MUTEX(un));
20522 			goto done;
20523 		}
20524 		mutex_enter(SD_MUTEX(un));
20525 
20526 		sd_update_block_info(un, lbasize, capacity);
20527 
20528 		/*
20529 		 *  Check if the media in the device is writable or not
20530 		 */
20531 		sd_check_for_writable_cd(un, SD_PATH_DIRECT);
20532 
20533 		mutex_exit(SD_MUTEX(un));
20534 		cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
20535 		if ((cmlb_validate(un->un_cmlbhandle, 0,
20536 		    (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
20537 			sd_set_pstats(un);
20538 			SD_TRACE(SD_LOG_IO_PARTITION, un,
20539 			    "sd_check_media: un:0x%p pstats created and "
20540 			    "set\n", un);
20541 		}
20542 
20543 		rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
20544 		    SD_PATH_DIRECT);
20545 		sd_pm_exit(un);
20546 
20547 		mutex_enter(SD_MUTEX(un));
20548 	}
20549 done:
20550 	un->un_f_watcht_stopped = FALSE;
20551 	if (un->un_swr_token) {
20552 		/*
20553 		 * Use of this local token and the mutex ensures that we avoid
20554 		 * some race conditions associated with terminating the
20555 		 * scsi watch.
20556 		 */
20557 		token = un->un_swr_token;
20558 		un->un_swr_token = (opaque_t)NULL;
20559 		mutex_exit(SD_MUTEX(un));
20560 		(void) scsi_watch_request_terminate(token,
20561 		    SCSI_WATCH_TERMINATE_WAIT);
20562 		mutex_enter(SD_MUTEX(un));
20563 	}
20564 
20565 	/*
20566 	 * Update the capacity kstat value, if no media previously
20567 	 * (capacity kstat is 0) and a media has been inserted
20568 	 * (un_f_blockcount_is_valid == TRUE)
20569 	 */
20570 	if (un->un_errstats) {
20571 		struct sd_errstats	*stp = NULL;
20572 
20573 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
20574 		if ((stp->sd_capacity.value.ui64 == 0) &&
20575 		    (un->un_f_blockcount_is_valid == TRUE)) {
20576 			stp->sd_capacity.value.ui64 =
20577 			    (uint64_t)((uint64_t)un->un_blockcount *
20578 			    un->un_sys_blocksize);
20579 		}
20580 	}
20581 	mutex_exit(SD_MUTEX(un));
20582 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
20583 	return (rval);
20584 }
20585 
20586 
20587 /*
20588  *    Function: sd_delayed_cv_broadcast
20589  *
20590  * Description: Delayed cv_broadcast to allow for target to recover from media
20591  *		insertion.
20592  *
20593  *   Arguments: arg - driver soft state (unit) structure
20594  */
20595 
20596 static void
20597 sd_delayed_cv_broadcast(void *arg)
20598 {
20599 	struct sd_lun *un = arg;
20600 
20601 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
20602 
20603 	mutex_enter(SD_MUTEX(un));
20604 	un->un_dcvb_timeid = NULL;
20605 	cv_broadcast(&un->un_state_cv);
20606 	mutex_exit(SD_MUTEX(un));
20607 }
20608 
20609 
20610 /*
20611  *    Function: sd_media_watch_cb
20612  *
20613  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
20614  *		routine processes the TUR sense data and updates the driver
20615  *		state if a transition has occurred. The user thread
20616  *		(sd_check_media) is then signalled.
20617  *
20618  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
20619  *			among multiple watches that share this callback function
20620  *		resultp - scsi watch facility result packet containing scsi
20621  *			  packet, status byte and sense data
20622  *
20623  * Return Code: 0 for success, -1 for failure
20624  */
20625 
20626 static int
20627 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
20628 {
20629 	struct sd_lun			*un;
20630 	struct scsi_status		*statusp = resultp->statusp;
20631 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
20632 	enum dkio_state			state = DKIO_NONE;
20633 	dev_t				dev = (dev_t)arg;
20634 	uchar_t				actual_sense_length;
20635 	uint8_t				skey, asc, ascq;
20636 
20637 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20638 		return (-1);
20639 	}
20640 	actual_sense_length = resultp->actual_sense_length;
20641 
20642 	mutex_enter(SD_MUTEX(un));
20643 	SD_TRACE(SD_LOG_COMMON, un,
20644 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
20645 	    *((char *)statusp), (void *)sensep, actual_sense_length);
20646 
20647 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
20648 		un->un_mediastate = DKIO_DEV_GONE;
20649 		cv_broadcast(&un->un_state_cv);
20650 		mutex_exit(SD_MUTEX(un));
20651 
20652 		return (0);
20653 	}
20654 
20655 	/*
20656 	 * If there was a check condition then sensep points to valid sense data
20657 	 * If status was not a check condition but a reservation or busy status
20658 	 * then the new state is DKIO_NONE
20659 	 */
20660 	if (sensep != NULL) {
20661 		skey = scsi_sense_key(sensep);
20662 		asc = scsi_sense_asc(sensep);
20663 		ascq = scsi_sense_ascq(sensep);
20664 
20665 		SD_INFO(SD_LOG_COMMON, un,
20666 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
20667 		    skey, asc, ascq);
20668 		/* This routine only uses up to 13 bytes of sense data. */
20669 		if (actual_sense_length >= 13) {
20670 			if (skey == KEY_UNIT_ATTENTION) {
20671 				if (asc == 0x28) {
20672 					state = DKIO_INSERTED;
20673 				}
20674 			} else {
20675 				/*
20676 				 * if 02/04/02  means that the host
20677 				 * should send start command. Explicitly
20678 				 * leave the media state as is
20679 				 * (inserted) as the media is inserted
20680 				 * and host has stopped device for PM
20681 				 * reasons. Upon next true read/write
20682 				 * to this media will bring the
20683 				 * device to the right state good for
20684 				 * media access.
20685 				 */
20686 				if ((skey == KEY_NOT_READY) &&
20687 				    (asc == 0x3a)) {
20688 					state = DKIO_EJECTED;
20689 				}
20690 
20691 				/*
20692 				 * If the drivge is busy with an operation
20693 				 * or long write, keep the media in an
20694 				 * inserted state.
20695 				 */
20696 
20697 				if ((skey == KEY_NOT_READY) &&
20698 				    (asc == 0x04) &&
20699 				    ((ascq == 0x02) ||
20700 				    (ascq == 0x07) ||
20701 				    (ascq == 0x08))) {
20702 					state = DKIO_INSERTED;
20703 				}
20704 			}
20705 		}
20706 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
20707 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
20708 		state = DKIO_INSERTED;
20709 	}
20710 
20711 	SD_TRACE(SD_LOG_COMMON, un,
20712 	    "sd_media_watch_cb: state=%x, specified=%x\n",
20713 	    state, un->un_specified_mediastate);
20714 
20715 	/*
20716 	 * now signal the waiting thread if this is *not* the specified state;
20717 	 * delay the signal if the state is DKIO_INSERTED to allow the target
20718 	 * to recover
20719 	 */
20720 	if (state != un->un_specified_mediastate) {
20721 		un->un_mediastate = state;
20722 		if (state == DKIO_INSERTED) {
20723 			/*
20724 			 * delay the signal to give the drive a chance
20725 			 * to do what it apparently needs to do
20726 			 */
20727 			SD_TRACE(SD_LOG_COMMON, un,
20728 			    "sd_media_watch_cb: delayed cv_broadcast\n");
20729 			if (un->un_dcvb_timeid == NULL) {
20730 				un->un_dcvb_timeid =
20731 				    timeout(sd_delayed_cv_broadcast, un,
20732 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
20733 			}
20734 		} else {
20735 			SD_TRACE(SD_LOG_COMMON, un,
20736 			    "sd_media_watch_cb: immediate cv_broadcast\n");
20737 			cv_broadcast(&un->un_state_cv);
20738 		}
20739 	}
20740 	mutex_exit(SD_MUTEX(un));
20741 	return (0);
20742 }
20743 
20744 
20745 /*
20746  *    Function: sd_dkio_get_temp
20747  *
20748  * Description: This routine is the driver entry point for handling ioctl
20749  *		requests to get the disk temperature.
20750  *
20751  *   Arguments: dev  - the device number
20752  *		arg  - pointer to user provided dk_temperature structure.
20753  *		flag - this argument is a pass through to ddi_copyxxx()
20754  *		       directly from the mode argument of ioctl().
20755  *
20756  * Return Code: 0
20757  *		EFAULT
20758  *		ENXIO
20759  *		EAGAIN
20760  */
20761 
20762 static int
20763 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
20764 {
20765 	struct sd_lun		*un = NULL;
20766 	struct dk_temperature	*dktemp = NULL;
20767 	uchar_t			*temperature_page;
20768 	int			rval = 0;
20769 	int			path_flag = SD_PATH_STANDARD;
20770 
20771 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20772 		return (ENXIO);
20773 	}
20774 
20775 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
20776 
20777 	/* copyin the disk temp argument to get the user flags */
20778 	if (ddi_copyin((void *)arg, dktemp,
20779 	    sizeof (struct dk_temperature), flag) != 0) {
20780 		rval = EFAULT;
20781 		goto done;
20782 	}
20783 
20784 	/* Initialize the temperature to invalid. */
20785 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
20786 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
20787 
20788 	/*
20789 	 * Note: Investigate removing the "bypass pm" semantic.
20790 	 * Can we just bypass PM always?
20791 	 */
20792 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
20793 		path_flag = SD_PATH_DIRECT;
20794 		ASSERT(!mutex_owned(&un->un_pm_mutex));
20795 		mutex_enter(&un->un_pm_mutex);
20796 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
20797 			/*
20798 			 * If DKT_BYPASS_PM is set, and the drive happens to be
20799 			 * in low power mode, we can not wake it up, Need to
20800 			 * return EAGAIN.
20801 			 */
20802 			mutex_exit(&un->un_pm_mutex);
20803 			rval = EAGAIN;
20804 			goto done;
20805 		} else {
20806 			/*
20807 			 * Indicate to PM the device is busy. This is required
20808 			 * to avoid a race - i.e. the ioctl is issuing a
20809 			 * command and the pm framework brings down the device
20810 			 * to low power mode (possible power cut-off on some
20811 			 * platforms).
20812 			 */
20813 			mutex_exit(&un->un_pm_mutex);
20814 			if (sd_pm_entry(un) != DDI_SUCCESS) {
20815 				rval = EAGAIN;
20816 				goto done;
20817 			}
20818 		}
20819 	}
20820 
20821 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
20822 
20823 	if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page,
20824 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) {
20825 		goto done2;
20826 	}
20827 
20828 	/*
20829 	 * For the current temperature verify that the parameter length is 0x02
20830 	 * and the parameter code is 0x00
20831 	 */
20832 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
20833 	    (temperature_page[5] == 0x00)) {
20834 		if (temperature_page[9] == 0xFF) {
20835 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
20836 		} else {
20837 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
20838 		}
20839 	}
20840 
20841 	/*
20842 	 * For the reference temperature verify that the parameter
20843 	 * length is 0x02 and the parameter code is 0x01
20844 	 */
20845 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
20846 	    (temperature_page[11] == 0x01)) {
20847 		if (temperature_page[15] == 0xFF) {
20848 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
20849 		} else {
20850 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
20851 		}
20852 	}
20853 
20854 	/* Do the copyout regardless of the temperature commands status. */
20855 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
20856 	    flag) != 0) {
20857 		rval = EFAULT;
20858 	}
20859 
20860 done2:
20861 	if (path_flag == SD_PATH_DIRECT) {
20862 		sd_pm_exit(un);
20863 	}
20864 
20865 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
20866 done:
20867 	if (dktemp != NULL) {
20868 		kmem_free(dktemp, sizeof (struct dk_temperature));
20869 	}
20870 
20871 	return (rval);
20872 }
20873 
20874 
20875 /*
20876  *    Function: sd_log_page_supported
20877  *
20878  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
20879  *		supported log pages.
20880  *
20881  *   Arguments: un -
20882  *		log_page -
20883  *
20884  * Return Code: -1 - on error (log sense is optional and may not be supported).
20885  *		0  - log page not found.
20886  *  		1  - log page found.
20887  */
20888 
20889 static int
20890 sd_log_page_supported(struct sd_lun *un, int log_page)
20891 {
20892 	uchar_t *log_page_data;
20893 	int	i;
20894 	int	match = 0;
20895 	int	log_size;
20896 
20897 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
20898 
20899 	if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0,
20900 	    SD_PATH_DIRECT) != 0) {
20901 		SD_ERROR(SD_LOG_COMMON, un,
20902 		    "sd_log_page_supported: failed log page retrieval\n");
20903 		kmem_free(log_page_data, 0xFF);
20904 		return (-1);
20905 	}
20906 	log_size = log_page_data[3];
20907 
20908 	/*
20909 	 * The list of supported log pages start from the fourth byte. Check
20910 	 * until we run out of log pages or a match is found.
20911 	 */
20912 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
20913 		if (log_page_data[i] == log_page) {
20914 			match++;
20915 		}
20916 	}
20917 	kmem_free(log_page_data, 0xFF);
20918 	return (match);
20919 }
20920 
20921 
20922 /*
20923  *    Function: sd_mhdioc_failfast
20924  *
20925  * Description: This routine is the driver entry point for handling ioctl
20926  *		requests to enable/disable the multihost failfast option.
20927  *		(MHIOCENFAILFAST)
20928  *
20929  *   Arguments: dev	- the device number
20930  *		arg	- user specified probing interval.
20931  *		flag	- this argument is a pass through to ddi_copyxxx()
20932  *			  directly from the mode argument of ioctl().
20933  *
20934  * Return Code: 0
20935  *		EFAULT
20936  *		ENXIO
20937  */
20938 
20939 static int
20940 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
20941 {
20942 	struct sd_lun	*un = NULL;
20943 	int		mh_time;
20944 	int		rval = 0;
20945 
20946 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20947 		return (ENXIO);
20948 	}
20949 
20950 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
20951 		return (EFAULT);
20952 
20953 	if (mh_time) {
20954 		mutex_enter(SD_MUTEX(un));
20955 		un->un_resvd_status |= SD_FAILFAST;
20956 		mutex_exit(SD_MUTEX(un));
20957 		/*
20958 		 * If mh_time is INT_MAX, then this ioctl is being used for
20959 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
20960 		 */
20961 		if (mh_time != INT_MAX) {
20962 			rval = sd_check_mhd(dev, mh_time);
20963 		}
20964 	} else {
20965 		(void) sd_check_mhd(dev, 0);
20966 		mutex_enter(SD_MUTEX(un));
20967 		un->un_resvd_status &= ~SD_FAILFAST;
20968 		mutex_exit(SD_MUTEX(un));
20969 	}
20970 	return (rval);
20971 }
20972 
20973 
20974 /*
20975  *    Function: sd_mhdioc_takeown
20976  *
20977  * Description: This routine is the driver entry point for handling ioctl
20978  *		requests to forcefully acquire exclusive access rights to the
20979  *		multihost disk (MHIOCTKOWN).
20980  *
20981  *   Arguments: dev	- the device number
20982  *		arg	- user provided structure specifying the delay
20983  *			  parameters in milliseconds
20984  *		flag	- this argument is a pass through to ddi_copyxxx()
20985  *			  directly from the mode argument of ioctl().
20986  *
20987  * Return Code: 0
20988  *		EFAULT
20989  *		ENXIO
20990  */
20991 
20992 static int
20993 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
20994 {
20995 	struct sd_lun		*un = NULL;
20996 	struct mhioctkown	*tkown = NULL;
20997 	int			rval = 0;
20998 
20999 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21000 		return (ENXIO);
21001 	}
21002 
21003 	if (arg != NULL) {
21004 		tkown = (struct mhioctkown *)
21005 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
21006 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
21007 		if (rval != 0) {
21008 			rval = EFAULT;
21009 			goto error;
21010 		}
21011 	}
21012 
21013 	rval = sd_take_ownership(dev, tkown);
21014 	mutex_enter(SD_MUTEX(un));
21015 	if (rval == 0) {
21016 		un->un_resvd_status |= SD_RESERVE;
21017 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
21018 			sd_reinstate_resv_delay =
21019 			    tkown->reinstate_resv_delay * 1000;
21020 		} else {
21021 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
21022 		}
21023 		/*
21024 		 * Give the scsi_watch routine interval set by
21025 		 * the MHIOCENFAILFAST ioctl precedence here.
21026 		 */
21027 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
21028 			mutex_exit(SD_MUTEX(un));
21029 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
21030 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
21031 			    "sd_mhdioc_takeown : %d\n",
21032 			    sd_reinstate_resv_delay);
21033 		} else {
21034 			mutex_exit(SD_MUTEX(un));
21035 		}
21036 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
21037 		    sd_mhd_reset_notify_cb, (caddr_t)un);
21038 	} else {
21039 		un->un_resvd_status &= ~SD_RESERVE;
21040 		mutex_exit(SD_MUTEX(un));
21041 	}
21042 
21043 error:
21044 	if (tkown != NULL) {
21045 		kmem_free(tkown, sizeof (struct mhioctkown));
21046 	}
21047 	return (rval);
21048 }
21049 
21050 
21051 /*
21052  *    Function: sd_mhdioc_release
21053  *
21054  * Description: This routine is the driver entry point for handling ioctl
21055  *		requests to release exclusive access rights to the multihost
21056  *		disk (MHIOCRELEASE).
21057  *
21058  *   Arguments: dev	- the device number
21059  *
21060  * Return Code: 0
21061  *		ENXIO
21062  */
21063 
21064 static int
21065 sd_mhdioc_release(dev_t dev)
21066 {
21067 	struct sd_lun		*un = NULL;
21068 	timeout_id_t		resvd_timeid_save;
21069 	int			resvd_status_save;
21070 	int			rval = 0;
21071 
21072 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21073 		return (ENXIO);
21074 	}
21075 
21076 	mutex_enter(SD_MUTEX(un));
21077 	resvd_status_save = un->un_resvd_status;
21078 	un->un_resvd_status &=
21079 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
21080 	if (un->un_resvd_timeid) {
21081 		resvd_timeid_save = un->un_resvd_timeid;
21082 		un->un_resvd_timeid = NULL;
21083 		mutex_exit(SD_MUTEX(un));
21084 		(void) untimeout(resvd_timeid_save);
21085 	} else {
21086 		mutex_exit(SD_MUTEX(un));
21087 	}
21088 
21089 	/*
21090 	 * destroy any pending timeout thread that may be attempting to
21091 	 * reinstate reservation on this device.
21092 	 */
21093 	sd_rmv_resv_reclaim_req(dev);
21094 
21095 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
21096 		mutex_enter(SD_MUTEX(un));
21097 		if ((un->un_mhd_token) &&
21098 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
21099 			mutex_exit(SD_MUTEX(un));
21100 			(void) sd_check_mhd(dev, 0);
21101 		} else {
21102 			mutex_exit(SD_MUTEX(un));
21103 		}
21104 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
21105 		    sd_mhd_reset_notify_cb, (caddr_t)un);
21106 	} else {
21107 		/*
21108 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
21109 		 */
21110 		mutex_enter(SD_MUTEX(un));
21111 		un->un_resvd_status = resvd_status_save;
21112 		mutex_exit(SD_MUTEX(un));
21113 	}
21114 	return (rval);
21115 }
21116 
21117 
21118 /*
21119  *    Function: sd_mhdioc_register_devid
21120  *
21121  * Description: This routine is the driver entry point for handling ioctl
21122  *		requests to register the device id (MHIOCREREGISTERDEVID).
21123  *
21124  *		Note: The implementation for this ioctl has been updated to
21125  *		be consistent with the original PSARC case (1999/357)
21126  *		(4375899, 4241671, 4220005)
21127  *
21128  *   Arguments: dev	- the device number
21129  *
21130  * Return Code: 0
21131  *		ENXIO
21132  */
21133 
21134 static int
21135 sd_mhdioc_register_devid(dev_t dev)
21136 {
21137 	struct sd_lun	*un = NULL;
21138 	int		rval = 0;
21139 
21140 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21141 		return (ENXIO);
21142 	}
21143 
21144 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21145 
21146 	mutex_enter(SD_MUTEX(un));
21147 
21148 	/* If a devid already exists, de-register it */
21149 	if (un->un_devid != NULL) {
21150 		ddi_devid_unregister(SD_DEVINFO(un));
21151 		/*
21152 		 * After unregister devid, needs to free devid memory
21153 		 */
21154 		ddi_devid_free(un->un_devid);
21155 		un->un_devid = NULL;
21156 	}
21157 
21158 	/* Check for reservation conflict */
21159 	mutex_exit(SD_MUTEX(un));
21160 	rval = sd_send_scsi_TEST_UNIT_READY(un, 0);
21161 	mutex_enter(SD_MUTEX(un));
21162 
21163 	switch (rval) {
21164 	case 0:
21165 		sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
21166 		break;
21167 	case EACCES:
21168 		break;
21169 	default:
21170 		rval = EIO;
21171 	}
21172 
21173 	mutex_exit(SD_MUTEX(un));
21174 	return (rval);
21175 }
21176 
21177 
21178 /*
21179  *    Function: sd_mhdioc_inkeys
21180  *
21181  * Description: This routine is the driver entry point for handling ioctl
21182  *		requests to issue the SCSI-3 Persistent In Read Keys command
21183  *		to the device (MHIOCGRP_INKEYS).
21184  *
21185  *   Arguments: dev	- the device number
21186  *		arg	- user provided in_keys structure
21187  *		flag	- this argument is a pass through to ddi_copyxxx()
21188  *			  directly from the mode argument of ioctl().
21189  *
21190  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
21191  *		ENXIO
21192  *		EFAULT
21193  */
21194 
21195 static int
21196 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
21197 {
21198 	struct sd_lun		*un;
21199 	mhioc_inkeys_t		inkeys;
21200 	int			rval = 0;
21201 
21202 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21203 		return (ENXIO);
21204 	}
21205 
21206 #ifdef _MULTI_DATAMODEL
21207 	switch (ddi_model_convert_from(flag & FMODELS)) {
21208 	case DDI_MODEL_ILP32: {
21209 		struct mhioc_inkeys32	inkeys32;
21210 
21211 		if (ddi_copyin(arg, &inkeys32,
21212 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
21213 			return (EFAULT);
21214 		}
21215 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
21216 		if ((rval = sd_persistent_reservation_in_read_keys(un,
21217 		    &inkeys, flag)) != 0) {
21218 			return (rval);
21219 		}
21220 		inkeys32.generation = inkeys.generation;
21221 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
21222 		    flag) != 0) {
21223 			return (EFAULT);
21224 		}
21225 		break;
21226 	}
21227 	case DDI_MODEL_NONE:
21228 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
21229 		    flag) != 0) {
21230 			return (EFAULT);
21231 		}
21232 		if ((rval = sd_persistent_reservation_in_read_keys(un,
21233 		    &inkeys, flag)) != 0) {
21234 			return (rval);
21235 		}
21236 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
21237 		    flag) != 0) {
21238 			return (EFAULT);
21239 		}
21240 		break;
21241 	}
21242 
21243 #else /* ! _MULTI_DATAMODEL */
21244 
21245 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
21246 		return (EFAULT);
21247 	}
21248 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
21249 	if (rval != 0) {
21250 		return (rval);
21251 	}
21252 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
21253 		return (EFAULT);
21254 	}
21255 
21256 #endif /* _MULTI_DATAMODEL */
21257 
21258 	return (rval);
21259 }
21260 
21261 
21262 /*
21263  *    Function: sd_mhdioc_inresv
21264  *
21265  * Description: This routine is the driver entry point for handling ioctl
21266  *		requests to issue the SCSI-3 Persistent In Read Reservations
21267  *		command to the device (MHIOCGRP_INKEYS).
21268  *
21269  *   Arguments: dev	- the device number
21270  *		arg	- user provided in_resv structure
21271  *		flag	- this argument is a pass through to ddi_copyxxx()
21272  *			  directly from the mode argument of ioctl().
21273  *
21274  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
21275  *		ENXIO
21276  *		EFAULT
21277  */
21278 
21279 static int
21280 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
21281 {
21282 	struct sd_lun		*un;
21283 	mhioc_inresvs_t		inresvs;
21284 	int			rval = 0;
21285 
21286 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21287 		return (ENXIO);
21288 	}
21289 
21290 #ifdef _MULTI_DATAMODEL
21291 
21292 	switch (ddi_model_convert_from(flag & FMODELS)) {
21293 	case DDI_MODEL_ILP32: {
21294 		struct mhioc_inresvs32	inresvs32;
21295 
21296 		if (ddi_copyin(arg, &inresvs32,
21297 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
21298 			return (EFAULT);
21299 		}
21300 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
21301 		if ((rval = sd_persistent_reservation_in_read_resv(un,
21302 		    &inresvs, flag)) != 0) {
21303 			return (rval);
21304 		}
21305 		inresvs32.generation = inresvs.generation;
21306 		if (ddi_copyout(&inresvs32, arg,
21307 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
21308 			return (EFAULT);
21309 		}
21310 		break;
21311 	}
21312 	case DDI_MODEL_NONE:
21313 		if (ddi_copyin(arg, &inresvs,
21314 		    sizeof (mhioc_inresvs_t), flag) != 0) {
21315 			return (EFAULT);
21316 		}
21317 		if ((rval = sd_persistent_reservation_in_read_resv(un,
21318 		    &inresvs, flag)) != 0) {
21319 			return (rval);
21320 		}
21321 		if (ddi_copyout(&inresvs, arg,
21322 		    sizeof (mhioc_inresvs_t), flag) != 0) {
21323 			return (EFAULT);
21324 		}
21325 		break;
21326 	}
21327 
21328 #else /* ! _MULTI_DATAMODEL */
21329 
21330 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
21331 		return (EFAULT);
21332 	}
21333 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
21334 	if (rval != 0) {
21335 		return (rval);
21336 	}
21337 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
21338 		return (EFAULT);
21339 	}
21340 
21341 #endif /* ! _MULTI_DATAMODEL */
21342 
21343 	return (rval);
21344 }
21345 
21346 
21347 /*
21348  * The following routines support the clustering functionality described below
21349  * and implement lost reservation reclaim functionality.
21350  *
21351  * Clustering
21352  * ----------
21353  * The clustering code uses two different, independent forms of SCSI
21354  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
21355  * Persistent Group Reservations. For any particular disk, it will use either
21356  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
21357  *
21358  * SCSI-2
21359  * The cluster software takes ownership of a multi-hosted disk by issuing the
21360  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
21361  * MHIOCRELEASE ioctl.Closely related is the MHIOCENFAILFAST ioctl -- a cluster,
21362  * just after taking ownership of the disk with the MHIOCTKOWN ioctl then issues
21363  * the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the driver. The
21364  * meaning of failfast is that if the driver (on this host) ever encounters the
21365  * scsi error return code RESERVATION_CONFLICT from the device, it should
21366  * immediately panic the host. The motivation for this ioctl is that if this
21367  * host does encounter reservation conflict, the underlying cause is that some
21368  * other host of the cluster has decided that this host is no longer in the
21369  * cluster and has seized control of the disks for itself. Since this host is no
21370  * longer in the cluster, it ought to panic itself. The MHIOCENFAILFAST ioctl
21371  * does two things:
21372  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
21373  *      error to panic the host
21374  *      (b) it sets up a periodic timer to test whether this host still has
21375  *      "access" (in that no other host has reserved the device):  if the
21376  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
21377  *      purpose of that periodic timer is to handle scenarios where the host is
21378  *      otherwise temporarily quiescent, temporarily doing no real i/o.
21379  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
21380  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
21381  * the device itself.
21382  *
21383  * SCSI-3 PGR
21384  * A direct semantic implementation of the SCSI-3 Persistent Reservation
21385  * facility is supported through the shared multihost disk ioctls
21386  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
21387  * MHIOCGRP_PREEMPTANDABORT)
21388  *
21389  * Reservation Reclaim:
21390  * --------------------
21391  * To support the lost reservation reclaim operations this driver creates a
21392  * single thread to handle reinstating reservations on all devices that have
21393  * lost reservations sd_resv_reclaim_requests are logged for all devices that
21394  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
21395  * and the reservation reclaim thread loops through the requests to regain the
21396  * lost reservations.
21397  */
21398 
21399 /*
21400  *    Function: sd_check_mhd()
21401  *
21402  * Description: This function sets up and submits a scsi watch request or
21403  *		terminates an existing watch request. This routine is used in
21404  *		support of reservation reclaim.
21405  *
21406  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
21407  *			 among multiple watches that share the callback function
21408  *		interval - the number of microseconds specifying the watch
21409  *			   interval for issuing TEST UNIT READY commands. If
21410  *			   set to 0 the watch should be terminated. If the
21411  *			   interval is set to 0 and if the device is required
21412  *			   to hold reservation while disabling failfast, the
21413  *			   watch is restarted with an interval of
21414  *			   reinstate_resv_delay.
21415  *
21416  * Return Code: 0	   - Successful submit/terminate of scsi watch request
21417  *		ENXIO      - Indicates an invalid device was specified
21418  *		EAGAIN     - Unable to submit the scsi watch request
21419  */
21420 
21421 static int
21422 sd_check_mhd(dev_t dev, int interval)
21423 {
21424 	struct sd_lun	*un;
21425 	opaque_t	token;
21426 
21427 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21428 		return (ENXIO);
21429 	}
21430 
21431 	/* is this a watch termination request? */
21432 	if (interval == 0) {
21433 		mutex_enter(SD_MUTEX(un));
21434 		/* if there is an existing watch task then terminate it */
21435 		if (un->un_mhd_token) {
21436 			token = un->un_mhd_token;
21437 			un->un_mhd_token = NULL;
21438 			mutex_exit(SD_MUTEX(un));
21439 			(void) scsi_watch_request_terminate(token,
21440 			    SCSI_WATCH_TERMINATE_WAIT);
21441 			mutex_enter(SD_MUTEX(un));
21442 		} else {
21443 			mutex_exit(SD_MUTEX(un));
21444 			/*
21445 			 * Note: If we return here we don't check for the
21446 			 * failfast case. This is the original legacy
21447 			 * implementation but perhaps we should be checking
21448 			 * the failfast case.
21449 			 */
21450 			return (0);
21451 		}
21452 		/*
21453 		 * If the device is required to hold reservation while
21454 		 * disabling failfast, we need to restart the scsi_watch
21455 		 * routine with an interval of reinstate_resv_delay.
21456 		 */
21457 		if (un->un_resvd_status & SD_RESERVE) {
21458 			interval = sd_reinstate_resv_delay/1000;
21459 		} else {
21460 			/* no failfast so bail */
21461 			mutex_exit(SD_MUTEX(un));
21462 			return (0);
21463 		}
21464 		mutex_exit(SD_MUTEX(un));
21465 	}
21466 
21467 	/*
21468 	 * adjust minimum time interval to 1 second,
21469 	 * and convert from msecs to usecs
21470 	 */
21471 	if (interval > 0 && interval < 1000) {
21472 		interval = 1000;
21473 	}
21474 	interval *= 1000;
21475 
21476 	/*
21477 	 * submit the request to the scsi_watch service
21478 	 */
21479 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
21480 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
21481 	if (token == NULL) {
21482 		return (EAGAIN);
21483 	}
21484 
21485 	/*
21486 	 * save token for termination later on
21487 	 */
21488 	mutex_enter(SD_MUTEX(un));
21489 	un->un_mhd_token = token;
21490 	mutex_exit(SD_MUTEX(un));
21491 	return (0);
21492 }
21493 
21494 
21495 /*
21496  *    Function: sd_mhd_watch_cb()
21497  *
21498  * Description: This function is the call back function used by the scsi watch
21499  *		facility. The scsi watch facility sends the "Test Unit Ready"
21500  *		and processes the status. If applicable (i.e. a "Unit Attention"
21501  *		status and automatic "Request Sense" not used) the scsi watch
21502  *		facility will send a "Request Sense" and retrieve the sense data
21503  *		to be passed to this callback function. In either case the
21504  *		automatic "Request Sense" or the facility submitting one, this
21505  *		callback is passed the status and sense data.
21506  *
21507  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
21508  *			among multiple watches that share this callback function
21509  *		resultp - scsi watch facility result packet containing scsi
21510  *			  packet, status byte and sense data
21511  *
21512  * Return Code: 0 - continue the watch task
21513  *		non-zero - terminate the watch task
21514  */
21515 
21516 static int
21517 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
21518 {
21519 	struct sd_lun			*un;
21520 	struct scsi_status		*statusp;
21521 	uint8_t				*sensep;
21522 	struct scsi_pkt			*pkt;
21523 	uchar_t				actual_sense_length;
21524 	dev_t  				dev = (dev_t)arg;
21525 
21526 	ASSERT(resultp != NULL);
21527 	statusp			= resultp->statusp;
21528 	sensep			= (uint8_t *)resultp->sensep;
21529 	pkt			= resultp->pkt;
21530 	actual_sense_length	= resultp->actual_sense_length;
21531 
21532 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21533 		return (ENXIO);
21534 	}
21535 
21536 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
21537 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
21538 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
21539 
21540 	/* Begin processing of the status and/or sense data */
21541 	if (pkt->pkt_reason != CMD_CMPLT) {
21542 		/* Handle the incomplete packet */
21543 		sd_mhd_watch_incomplete(un, pkt);
21544 		return (0);
21545 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
21546 		if (*((unsigned char *)statusp)
21547 		    == STATUS_RESERVATION_CONFLICT) {
21548 			/*
21549 			 * Handle a reservation conflict by panicking if
21550 			 * configured for failfast or by logging the conflict
21551 			 * and updating the reservation status
21552 			 */
21553 			mutex_enter(SD_MUTEX(un));
21554 			if ((un->un_resvd_status & SD_FAILFAST) &&
21555 			    (sd_failfast_enable)) {
21556 				sd_panic_for_res_conflict(un);
21557 				/*NOTREACHED*/
21558 			}
21559 			SD_INFO(SD_LOG_IOCTL_MHD, un,
21560 			    "sd_mhd_watch_cb: Reservation Conflict\n");
21561 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
21562 			mutex_exit(SD_MUTEX(un));
21563 		}
21564 	}
21565 
21566 	if (sensep != NULL) {
21567 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
21568 			mutex_enter(SD_MUTEX(un));
21569 			if ((scsi_sense_asc(sensep) ==
21570 			    SD_SCSI_RESET_SENSE_CODE) &&
21571 			    (un->un_resvd_status & SD_RESERVE)) {
21572 				/*
21573 				 * The additional sense code indicates a power
21574 				 * on or bus device reset has occurred; update
21575 				 * the reservation status.
21576 				 */
21577 				un->un_resvd_status |=
21578 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
21579 				SD_INFO(SD_LOG_IOCTL_MHD, un,
21580 				    "sd_mhd_watch_cb: Lost Reservation\n");
21581 			}
21582 		} else {
21583 			return (0);
21584 		}
21585 	} else {
21586 		mutex_enter(SD_MUTEX(un));
21587 	}
21588 
21589 	if ((un->un_resvd_status & SD_RESERVE) &&
21590 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
21591 		if (un->un_resvd_status & SD_WANT_RESERVE) {
21592 			/*
21593 			 * A reset occurred in between the last probe and this
21594 			 * one so if a timeout is pending cancel it.
21595 			 */
21596 			if (un->un_resvd_timeid) {
21597 				timeout_id_t temp_id = un->un_resvd_timeid;
21598 				un->un_resvd_timeid = NULL;
21599 				mutex_exit(SD_MUTEX(un));
21600 				(void) untimeout(temp_id);
21601 				mutex_enter(SD_MUTEX(un));
21602 			}
21603 			un->un_resvd_status &= ~SD_WANT_RESERVE;
21604 		}
21605 		if (un->un_resvd_timeid == 0) {
21606 			/* Schedule a timeout to handle the lost reservation */
21607 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
21608 			    (void *)dev,
21609 			    drv_usectohz(sd_reinstate_resv_delay));
21610 		}
21611 	}
21612 	mutex_exit(SD_MUTEX(un));
21613 	return (0);
21614 }
21615 
21616 
21617 /*
21618  *    Function: sd_mhd_watch_incomplete()
21619  *
21620  * Description: This function is used to find out why a scsi pkt sent by the
21621  *		scsi watch facility was not completed. Under some scenarios this
21622  *		routine will return. Otherwise it will send a bus reset to see
21623  *		if the drive is still online.
21624  *
21625  *   Arguments: un  - driver soft state (unit) structure
21626  *		pkt - incomplete scsi pkt
21627  */
21628 
21629 static void
21630 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
21631 {
21632 	int	be_chatty;
21633 	int	perr;
21634 
21635 	ASSERT(pkt != NULL);
21636 	ASSERT(un != NULL);
21637 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
21638 	perr		= (pkt->pkt_statistics & STAT_PERR);
21639 
21640 	mutex_enter(SD_MUTEX(un));
21641 	if (un->un_state == SD_STATE_DUMPING) {
21642 		mutex_exit(SD_MUTEX(un));
21643 		return;
21644 	}
21645 
21646 	switch (pkt->pkt_reason) {
21647 	case CMD_UNX_BUS_FREE:
21648 		/*
21649 		 * If we had a parity error that caused the target to drop BSY*,
21650 		 * don't be chatty about it.
21651 		 */
21652 		if (perr && be_chatty) {
21653 			be_chatty = 0;
21654 		}
21655 		break;
21656 	case CMD_TAG_REJECT:
21657 		/*
21658 		 * The SCSI-2 spec states that a tag reject will be sent by the
21659 		 * target if tagged queuing is not supported. A tag reject may
21660 		 * also be sent during certain initialization periods or to
21661 		 * control internal resources. For the latter case the target
21662 		 * may also return Queue Full.
21663 		 *
21664 		 * If this driver receives a tag reject from a target that is
21665 		 * going through an init period or controlling internal
21666 		 * resources tagged queuing will be disabled. This is a less
21667 		 * than optimal behavior but the driver is unable to determine
21668 		 * the target state and assumes tagged queueing is not supported
21669 		 */
21670 		pkt->pkt_flags = 0;
21671 		un->un_tagflags = 0;
21672 
21673 		if (un->un_f_opt_queueing == TRUE) {
21674 			un->un_throttle = min(un->un_throttle, 3);
21675 		} else {
21676 			un->un_throttle = 1;
21677 		}
21678 		mutex_exit(SD_MUTEX(un));
21679 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
21680 		mutex_enter(SD_MUTEX(un));
21681 		break;
21682 	case CMD_INCOMPLETE:
21683 		/*
21684 		 * The transport stopped with an abnormal state, fallthrough and
21685 		 * reset the target and/or bus unless selection did not complete
21686 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
21687 		 * go through a target/bus reset
21688 		 */
21689 		if (pkt->pkt_state == STATE_GOT_BUS) {
21690 			break;
21691 		}
21692 		/*FALLTHROUGH*/
21693 
21694 	case CMD_TIMEOUT:
21695 	default:
21696 		/*
21697 		 * The lun may still be running the command, so a lun reset
21698 		 * should be attempted. If the lun reset fails or cannot be
21699 		 * issued, than try a target reset. Lastly try a bus reset.
21700 		 */
21701 		if ((pkt->pkt_statistics &
21702 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
21703 			int reset_retval = 0;
21704 			mutex_exit(SD_MUTEX(un));
21705 			if (un->un_f_allow_bus_device_reset == TRUE) {
21706 				if (un->un_f_lun_reset_enabled == TRUE) {
21707 					reset_retval =
21708 					    scsi_reset(SD_ADDRESS(un),
21709 					    RESET_LUN);
21710 				}
21711 				if (reset_retval == 0) {
21712 					reset_retval =
21713 					    scsi_reset(SD_ADDRESS(un),
21714 					    RESET_TARGET);
21715 				}
21716 			}
21717 			if (reset_retval == 0) {
21718 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
21719 			}
21720 			mutex_enter(SD_MUTEX(un));
21721 		}
21722 		break;
21723 	}
21724 
21725 	/* A device/bus reset has occurred; update the reservation status. */
21726 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
21727 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
21728 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
21729 			un->un_resvd_status |=
21730 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
21731 			SD_INFO(SD_LOG_IOCTL_MHD, un,
21732 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
21733 		}
21734 	}
21735 
21736 	/*
21737 	 * The disk has been turned off; Update the device state.
21738 	 *
21739 	 * Note: Should we be offlining the disk here?
21740 	 */
21741 	if (pkt->pkt_state == STATE_GOT_BUS) {
21742 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
21743 		    "Disk not responding to selection\n");
21744 		if (un->un_state != SD_STATE_OFFLINE) {
21745 			New_state(un, SD_STATE_OFFLINE);
21746 		}
21747 	} else if (be_chatty) {
21748 		/*
21749 		 * suppress messages if they are all the same pkt reason;
21750 		 * with TQ, many (up to 256) are returned with the same
21751 		 * pkt_reason
21752 		 */
21753 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
21754 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
21755 			    "sd_mhd_watch_incomplete: "
21756 			    "SCSI transport failed: reason '%s'\n",
21757 			    scsi_rname(pkt->pkt_reason));
21758 		}
21759 	}
21760 	un->un_last_pkt_reason = pkt->pkt_reason;
21761 	mutex_exit(SD_MUTEX(un));
21762 }
21763 
21764 
21765 /*
21766  *    Function: sd_sname()
21767  *
21768  * Description: This is a simple little routine to return a string containing
21769  *		a printable description of command status byte for use in
21770  *		logging.
21771  *
21772  *   Arguments: status - pointer to a status byte
21773  *
21774  * Return Code: char * - string containing status description.
21775  */
21776 
21777 static char *
21778 sd_sname(uchar_t status)
21779 {
21780 	switch (status & STATUS_MASK) {
21781 	case STATUS_GOOD:
21782 		return ("good status");
21783 	case STATUS_CHECK:
21784 		return ("check condition");
21785 	case STATUS_MET:
21786 		return ("condition met");
21787 	case STATUS_BUSY:
21788 		return ("busy");
21789 	case STATUS_INTERMEDIATE:
21790 		return ("intermediate");
21791 	case STATUS_INTERMEDIATE_MET:
21792 		return ("intermediate - condition met");
21793 	case STATUS_RESERVATION_CONFLICT:
21794 		return ("reservation_conflict");
21795 	case STATUS_TERMINATED:
21796 		return ("command terminated");
21797 	case STATUS_QFULL:
21798 		return ("queue full");
21799 	default:
21800 		return ("<unknown status>");
21801 	}
21802 }
21803 
21804 
21805 /*
21806  *    Function: sd_mhd_resvd_recover()
21807  *
21808  * Description: This function adds a reservation entry to the
21809  *		sd_resv_reclaim_request list and signals the reservation
21810  *		reclaim thread that there is work pending. If the reservation
21811  *		reclaim thread has not been previously created this function
21812  *		will kick it off.
21813  *
21814  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
21815  *			among multiple watches that share this callback function
21816  *
21817  *     Context: This routine is called by timeout() and is run in interrupt
21818  *		context. It must not sleep or call other functions which may
21819  *		sleep.
21820  */
21821 
21822 static void
21823 sd_mhd_resvd_recover(void *arg)
21824 {
21825 	dev_t			dev = (dev_t)arg;
21826 	struct sd_lun		*un;
21827 	struct sd_thr_request	*sd_treq = NULL;
21828 	struct sd_thr_request	*sd_cur = NULL;
21829 	struct sd_thr_request	*sd_prev = NULL;
21830 	int			already_there = 0;
21831 
21832 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21833 		return;
21834 	}
21835 
21836 	mutex_enter(SD_MUTEX(un));
21837 	un->un_resvd_timeid = NULL;
21838 	if (un->un_resvd_status & SD_WANT_RESERVE) {
21839 		/*
21840 		 * There was a reset so don't issue the reserve, allow the
21841 		 * sd_mhd_watch_cb callback function to notice this and
21842 		 * reschedule the timeout for reservation.
21843 		 */
21844 		mutex_exit(SD_MUTEX(un));
21845 		return;
21846 	}
21847 	mutex_exit(SD_MUTEX(un));
21848 
21849 	/*
21850 	 * Add this device to the sd_resv_reclaim_request list and the
21851 	 * sd_resv_reclaim_thread should take care of the rest.
21852 	 *
21853 	 * Note: We can't sleep in this context so if the memory allocation
21854 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
21855 	 * reschedule the timeout for reservation.  (4378460)
21856 	 */
21857 	sd_treq = (struct sd_thr_request *)
21858 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
21859 	if (sd_treq == NULL) {
21860 		return;
21861 	}
21862 
21863 	sd_treq->sd_thr_req_next = NULL;
21864 	sd_treq->dev = dev;
21865 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
21866 	if (sd_tr.srq_thr_req_head == NULL) {
21867 		sd_tr.srq_thr_req_head = sd_treq;
21868 	} else {
21869 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
21870 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
21871 			if (sd_cur->dev == dev) {
21872 				/*
21873 				 * already in Queue so don't log
21874 				 * another request for the device
21875 				 */
21876 				already_there = 1;
21877 				break;
21878 			}
21879 			sd_prev = sd_cur;
21880 		}
21881 		if (!already_there) {
21882 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
21883 			    "logging request for %lx\n", dev);
21884 			sd_prev->sd_thr_req_next = sd_treq;
21885 		} else {
21886 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
21887 		}
21888 	}
21889 
21890 	/*
21891 	 * Create a kernel thread to do the reservation reclaim and free up this
21892 	 * thread. We cannot block this thread while we go away to do the
21893 	 * reservation reclaim
21894 	 */
21895 	if (sd_tr.srq_resv_reclaim_thread == NULL)
21896 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
21897 		    sd_resv_reclaim_thread, NULL,
21898 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
21899 
21900 	/* Tell the reservation reclaim thread that it has work to do */
21901 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
21902 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
21903 }
21904 
21905 /*
21906  *    Function: sd_resv_reclaim_thread()
21907  *
21908  * Description: This function implements the reservation reclaim operations
21909  *
21910  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
21911  *		      among multiple watches that share this callback function
21912  */
21913 
21914 static void
21915 sd_resv_reclaim_thread()
21916 {
21917 	struct sd_lun		*un;
21918 	struct sd_thr_request	*sd_mhreq;
21919 
21920 	/* Wait for work */
21921 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
21922 	if (sd_tr.srq_thr_req_head == NULL) {
21923 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
21924 		    &sd_tr.srq_resv_reclaim_mutex);
21925 	}
21926 
21927 	/* Loop while we have work */
21928 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
21929 		un = ddi_get_soft_state(sd_state,
21930 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
21931 		if (un == NULL) {
21932 			/*
21933 			 * softstate structure is NULL so just
21934 			 * dequeue the request and continue
21935 			 */
21936 			sd_tr.srq_thr_req_head =
21937 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
21938 			kmem_free(sd_tr.srq_thr_cur_req,
21939 			    sizeof (struct sd_thr_request));
21940 			continue;
21941 		}
21942 
21943 		/* dequeue the request */
21944 		sd_mhreq = sd_tr.srq_thr_cur_req;
21945 		sd_tr.srq_thr_req_head =
21946 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
21947 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
21948 
21949 		/*
21950 		 * Reclaim reservation only if SD_RESERVE is still set. There
21951 		 * may have been a call to MHIOCRELEASE before we got here.
21952 		 */
21953 		mutex_enter(SD_MUTEX(un));
21954 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
21955 			/*
21956 			 * Note: The SD_LOST_RESERVE flag is cleared before
21957 			 * reclaiming the reservation. If this is done after the
21958 			 * call to sd_reserve_release a reservation loss in the
21959 			 * window between pkt completion of reserve cmd and
21960 			 * mutex_enter below may not be recognized
21961 			 */
21962 			un->un_resvd_status &= ~SD_LOST_RESERVE;
21963 			mutex_exit(SD_MUTEX(un));
21964 
21965 			if (sd_reserve_release(sd_mhreq->dev,
21966 			    SD_RESERVE) == 0) {
21967 				mutex_enter(SD_MUTEX(un));
21968 				un->un_resvd_status |= SD_RESERVE;
21969 				mutex_exit(SD_MUTEX(un));
21970 				SD_INFO(SD_LOG_IOCTL_MHD, un,
21971 				    "sd_resv_reclaim_thread: "
21972 				    "Reservation Recovered\n");
21973 			} else {
21974 				mutex_enter(SD_MUTEX(un));
21975 				un->un_resvd_status |= SD_LOST_RESERVE;
21976 				mutex_exit(SD_MUTEX(un));
21977 				SD_INFO(SD_LOG_IOCTL_MHD, un,
21978 				    "sd_resv_reclaim_thread: Failed "
21979 				    "Reservation Recovery\n");
21980 			}
21981 		} else {
21982 			mutex_exit(SD_MUTEX(un));
21983 		}
21984 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
21985 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
21986 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
21987 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
21988 		/*
21989 		 * wakeup the destroy thread if anyone is waiting on
21990 		 * us to complete.
21991 		 */
21992 		cv_signal(&sd_tr.srq_inprocess_cv);
21993 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
21994 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
21995 	}
21996 
21997 	/*
21998 	 * cleanup the sd_tr structure now that this thread will not exist
21999 	 */
22000 	ASSERT(sd_tr.srq_thr_req_head == NULL);
22001 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
22002 	sd_tr.srq_resv_reclaim_thread = NULL;
22003 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22004 	thread_exit();
22005 }
22006 
22007 
22008 /*
22009  *    Function: sd_rmv_resv_reclaim_req()
22010  *
22011  * Description: This function removes any pending reservation reclaim requests
22012  *		for the specified device.
22013  *
22014  *   Arguments: dev - the device 'dev_t'
22015  */
22016 
22017 static void
22018 sd_rmv_resv_reclaim_req(dev_t dev)
22019 {
22020 	struct sd_thr_request *sd_mhreq;
22021 	struct sd_thr_request *sd_prev;
22022 
22023 	/* Remove a reservation reclaim request from the list */
22024 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22025 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
22026 		/*
22027 		 * We are attempting to reinstate reservation for
22028 		 * this device. We wait for sd_reserve_release()
22029 		 * to return before we return.
22030 		 */
22031 		cv_wait(&sd_tr.srq_inprocess_cv,
22032 		    &sd_tr.srq_resv_reclaim_mutex);
22033 	} else {
22034 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
22035 		if (sd_mhreq && sd_mhreq->dev == dev) {
22036 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
22037 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22038 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22039 			return;
22040 		}
22041 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
22042 			if (sd_mhreq && sd_mhreq->dev == dev) {
22043 				break;
22044 			}
22045 			sd_prev = sd_mhreq;
22046 		}
22047 		if (sd_mhreq != NULL) {
22048 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
22049 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22050 		}
22051 	}
22052 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22053 }
22054 
22055 
22056 /*
22057  *    Function: sd_mhd_reset_notify_cb()
22058  *
22059  * Description: This is a call back function for scsi_reset_notify. This
22060  *		function updates the softstate reserved status and logs the
22061  *		reset. The driver scsi watch facility callback function
22062  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
22063  *		will reclaim the reservation.
22064  *
22065  *   Arguments: arg  - driver soft state (unit) structure
22066  */
22067 
22068 static void
22069 sd_mhd_reset_notify_cb(caddr_t arg)
22070 {
22071 	struct sd_lun *un = (struct sd_lun *)arg;
22072 
22073 	mutex_enter(SD_MUTEX(un));
22074 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22075 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
22076 		SD_INFO(SD_LOG_IOCTL_MHD, un,
22077 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
22078 	}
22079 	mutex_exit(SD_MUTEX(un));
22080 }
22081 
22082 
22083 /*
22084  *    Function: sd_take_ownership()
22085  *
22086  * Description: This routine implements an algorithm to achieve a stable
22087  *		reservation on disks which don't implement priority reserve,
22088  *		and makes sure that other host lose re-reservation attempts.
22089  *		This algorithm contains of a loop that keeps issuing the RESERVE
22090  *		for some period of time (min_ownership_delay, default 6 seconds)
22091  *		During that loop, it looks to see if there has been a bus device
22092  *		reset or bus reset (both of which cause an existing reservation
22093  *		to be lost). If the reservation is lost issue RESERVE until a
22094  *		period of min_ownership_delay with no resets has gone by, or
22095  *		until max_ownership_delay has expired. This loop ensures that
22096  *		the host really did manage to reserve the device, in spite of
22097  *		resets. The looping for min_ownership_delay (default six
22098  *		seconds) is important to early generation clustering products,
22099  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
22100  *		MHIOCENFAILFAST periodic timer of two seconds. By having
22101  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
22102  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
22103  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
22104  *		have already noticed, via the MHIOCENFAILFAST polling, that it
22105  *		no longer "owns" the disk and will have panicked itself.  Thus,
22106  *		the host issuing the MHIOCTKOWN is assured (with timing
22107  *		dependencies) that by the time it actually starts to use the
22108  *		disk for real work, the old owner is no longer accessing it.
22109  *
22110  *		min_ownership_delay is the minimum amount of time for which the
22111  *		disk must be reserved continuously devoid of resets before the
22112  *		MHIOCTKOWN ioctl will return success.
22113  *
22114  *		max_ownership_delay indicates the amount of time by which the
22115  *		take ownership should succeed or timeout with an error.
22116  *
22117  *   Arguments: dev - the device 'dev_t'
22118  *		*p  - struct containing timing info.
22119  *
22120  * Return Code: 0 for success or error code
22121  */
22122 
22123 static int
22124 sd_take_ownership(dev_t dev, struct mhioctkown *p)
22125 {
22126 	struct sd_lun	*un;
22127 	int		rval;
22128 	int		err;
22129 	int		reservation_count   = 0;
22130 	int		min_ownership_delay =  6000000; /* in usec */
22131 	int		max_ownership_delay = 30000000; /* in usec */
22132 	clock_t		start_time;	/* starting time of this algorithm */
22133 	clock_t		end_time;	/* time limit for giving up */
22134 	clock_t		ownership_time;	/* time limit for stable ownership */
22135 	clock_t		current_time;
22136 	clock_t		previous_current_time;
22137 
22138 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22139 		return (ENXIO);
22140 	}
22141 
22142 	/*
22143 	 * Attempt a device reservation. A priority reservation is requested.
22144 	 */
22145 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
22146 	    != SD_SUCCESS) {
22147 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
22148 		    "sd_take_ownership: return(1)=%d\n", rval);
22149 		return (rval);
22150 	}
22151 
22152 	/* Update the softstate reserved status to indicate the reservation */
22153 	mutex_enter(SD_MUTEX(un));
22154 	un->un_resvd_status |= SD_RESERVE;
22155 	un->un_resvd_status &=
22156 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
22157 	mutex_exit(SD_MUTEX(un));
22158 
22159 	if (p != NULL) {
22160 		if (p->min_ownership_delay != 0) {
22161 			min_ownership_delay = p->min_ownership_delay * 1000;
22162 		}
22163 		if (p->max_ownership_delay != 0) {
22164 			max_ownership_delay = p->max_ownership_delay * 1000;
22165 		}
22166 	}
22167 	SD_INFO(SD_LOG_IOCTL_MHD, un,
22168 	    "sd_take_ownership: min, max delays: %d, %d\n",
22169 	    min_ownership_delay, max_ownership_delay);
22170 
22171 	start_time = ddi_get_lbolt();
22172 	current_time	= start_time;
22173 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
22174 	end_time	= start_time + drv_usectohz(max_ownership_delay);
22175 
22176 	while (current_time - end_time < 0) {
22177 		delay(drv_usectohz(500000));
22178 
22179 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
22180 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
22181 				mutex_enter(SD_MUTEX(un));
22182 				rval = (un->un_resvd_status &
22183 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
22184 				mutex_exit(SD_MUTEX(un));
22185 				break;
22186 			}
22187 		}
22188 		previous_current_time = current_time;
22189 		current_time = ddi_get_lbolt();
22190 		mutex_enter(SD_MUTEX(un));
22191 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
22192 			ownership_time = ddi_get_lbolt() +
22193 			    drv_usectohz(min_ownership_delay);
22194 			reservation_count = 0;
22195 		} else {
22196 			reservation_count++;
22197 		}
22198 		un->un_resvd_status |= SD_RESERVE;
22199 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
22200 		mutex_exit(SD_MUTEX(un));
22201 
22202 		SD_INFO(SD_LOG_IOCTL_MHD, un,
22203 		    "sd_take_ownership: ticks for loop iteration=%ld, "
22204 		    "reservation=%s\n", (current_time - previous_current_time),
22205 		    reservation_count ? "ok" : "reclaimed");
22206 
22207 		if (current_time - ownership_time >= 0 &&
22208 		    reservation_count >= 4) {
22209 			rval = 0; /* Achieved a stable ownership */
22210 			break;
22211 		}
22212 		if (current_time - end_time >= 0) {
22213 			rval = EACCES; /* No ownership in max possible time */
22214 			break;
22215 		}
22216 	}
22217 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
22218 	    "sd_take_ownership: return(2)=%d\n", rval);
22219 	return (rval);
22220 }
22221 
22222 
22223 /*
22224  *    Function: sd_reserve_release()
22225  *
22226  * Description: This function builds and sends scsi RESERVE, RELEASE, and
22227  *		PRIORITY RESERVE commands based on a user specified command type
22228  *
22229  *   Arguments: dev - the device 'dev_t'
22230  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
22231  *		      SD_RESERVE, SD_RELEASE
22232  *
22233  * Return Code: 0 or Error Code
22234  */
22235 
22236 static int
22237 sd_reserve_release(dev_t dev, int cmd)
22238 {
22239 	struct uscsi_cmd	*com = NULL;
22240 	struct sd_lun		*un = NULL;
22241 	char			cdb[CDB_GROUP0];
22242 	int			rval;
22243 
22244 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
22245 	    (cmd == SD_PRIORITY_RESERVE));
22246 
22247 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22248 		return (ENXIO);
22249 	}
22250 
22251 	/* instantiate and initialize the command and cdb */
22252 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
22253 	bzero(cdb, CDB_GROUP0);
22254 	com->uscsi_flags   = USCSI_SILENT;
22255 	com->uscsi_timeout = un->un_reserve_release_time;
22256 	com->uscsi_cdblen  = CDB_GROUP0;
22257 	com->uscsi_cdb	   = cdb;
22258 	if (cmd == SD_RELEASE) {
22259 		cdb[0] = SCMD_RELEASE;
22260 	} else {
22261 		cdb[0] = SCMD_RESERVE;
22262 	}
22263 
22264 	/* Send the command. */
22265 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
22266 	    SD_PATH_STANDARD);
22267 
22268 	/*
22269 	 * "break" a reservation that is held by another host, by issuing a
22270 	 * reset if priority reserve is desired, and we could not get the
22271 	 * device.
22272 	 */
22273 	if ((cmd == SD_PRIORITY_RESERVE) &&
22274 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
22275 		/*
22276 		 * First try to reset the LUN. If we cannot, then try a target
22277 		 * reset, followed by a bus reset if the target reset fails.
22278 		 */
22279 		int reset_retval = 0;
22280 		if (un->un_f_lun_reset_enabled == TRUE) {
22281 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
22282 		}
22283 		if (reset_retval == 0) {
22284 			/* The LUN reset either failed or was not issued */
22285 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
22286 		}
22287 		if ((reset_retval == 0) &&
22288 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
22289 			rval = EIO;
22290 			kmem_free(com, sizeof (*com));
22291 			return (rval);
22292 		}
22293 
22294 		bzero(com, sizeof (struct uscsi_cmd));
22295 		com->uscsi_flags   = USCSI_SILENT;
22296 		com->uscsi_cdb	   = cdb;
22297 		com->uscsi_cdblen  = CDB_GROUP0;
22298 		com->uscsi_timeout = 5;
22299 
22300 		/*
22301 		 * Reissue the last reserve command, this time without request
22302 		 * sense.  Assume that it is just a regular reserve command.
22303 		 */
22304 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
22305 		    SD_PATH_STANDARD);
22306 	}
22307 
22308 	/* Return an error if still getting a reservation conflict. */
22309 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
22310 		rval = EACCES;
22311 	}
22312 
22313 	kmem_free(com, sizeof (*com));
22314 	return (rval);
22315 }
22316 
22317 
22318 #define	SD_NDUMP_RETRIES	12
22319 /*
22320  *	System Crash Dump routine
22321  */
22322 
22323 static int
22324 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
22325 {
22326 	int		instance;
22327 	int		partition;
22328 	int		i;
22329 	int		err;
22330 	struct sd_lun	*un;
22331 	struct scsi_pkt *wr_pktp;
22332 	struct buf	*wr_bp;
22333 	struct buf	wr_buf;
22334 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
22335 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
22336 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
22337 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
22338 	size_t		io_start_offset;
22339 	int		doing_rmw = FALSE;
22340 	int		rval;
22341 #if defined(__i386) || defined(__amd64)
22342 	ssize_t dma_resid;
22343 	daddr_t oblkno;
22344 #endif
22345 	diskaddr_t	nblks = 0;
22346 	diskaddr_t	start_block;
22347 
22348 	instance = SDUNIT(dev);
22349 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
22350 	    !SD_IS_VALID_LABEL(un) || ISCD(un)) {
22351 		return (ENXIO);
22352 	}
22353 
22354 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
22355 
22356 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
22357 
22358 	partition = SDPART(dev);
22359 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
22360 
22361 	/* Validate blocks to dump at against partition size. */
22362 
22363 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
22364 	    &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
22365 
22366 	if ((blkno + nblk) > nblks) {
22367 		SD_TRACE(SD_LOG_DUMP, un,
22368 		    "sddump: dump range larger than partition: "
22369 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
22370 		    blkno, nblk, nblks);
22371 		return (EINVAL);
22372 	}
22373 
22374 	mutex_enter(&un->un_pm_mutex);
22375 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
22376 		struct scsi_pkt *start_pktp;
22377 
22378 		mutex_exit(&un->un_pm_mutex);
22379 
22380 		/*
22381 		 * use pm framework to power on HBA 1st
22382 		 */
22383 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
22384 
22385 		/*
22386 		 * Dump no long uses sdpower to power on a device, it's
22387 		 * in-line here so it can be done in polled mode.
22388 		 */
22389 
22390 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
22391 
22392 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
22393 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
22394 
22395 		if (start_pktp == NULL) {
22396 			/* We were not given a SCSI packet, fail. */
22397 			return (EIO);
22398 		}
22399 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
22400 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
22401 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
22402 		start_pktp->pkt_flags = FLAG_NOINTR;
22403 
22404 		mutex_enter(SD_MUTEX(un));
22405 		SD_FILL_SCSI1_LUN(un, start_pktp);
22406 		mutex_exit(SD_MUTEX(un));
22407 		/*
22408 		 * Scsi_poll returns 0 (success) if the command completes and
22409 		 * the status block is STATUS_GOOD.
22410 		 */
22411 		if (sd_scsi_poll(un, start_pktp) != 0) {
22412 			scsi_destroy_pkt(start_pktp);
22413 			return (EIO);
22414 		}
22415 		scsi_destroy_pkt(start_pktp);
22416 		(void) sd_ddi_pm_resume(un);
22417 	} else {
22418 		mutex_exit(&un->un_pm_mutex);
22419 	}
22420 
22421 	mutex_enter(SD_MUTEX(un));
22422 	un->un_throttle = 0;
22423 
22424 	/*
22425 	 * The first time through, reset the specific target device.
22426 	 * However, when cpr calls sddump we know that sd is in a
22427 	 * a good state so no bus reset is required.
22428 	 * Clear sense data via Request Sense cmd.
22429 	 * In sddump we don't care about allow_bus_device_reset anymore
22430 	 */
22431 
22432 	if ((un->un_state != SD_STATE_SUSPENDED) &&
22433 	    (un->un_state != SD_STATE_DUMPING)) {
22434 
22435 		New_state(un, SD_STATE_DUMPING);
22436 
22437 		if (un->un_f_is_fibre == FALSE) {
22438 			mutex_exit(SD_MUTEX(un));
22439 			/*
22440 			 * Attempt a bus reset for parallel scsi.
22441 			 *
22442 			 * Note: A bus reset is required because on some host
22443 			 * systems (i.e. E420R) a bus device reset is
22444 			 * insufficient to reset the state of the target.
22445 			 *
22446 			 * Note: Don't issue the reset for fibre-channel,
22447 			 * because this tends to hang the bus (loop) for
22448 			 * too long while everyone is logging out and in
22449 			 * and the deadman timer for dumping will fire
22450 			 * before the dump is complete.
22451 			 */
22452 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
22453 				mutex_enter(SD_MUTEX(un));
22454 				Restore_state(un);
22455 				mutex_exit(SD_MUTEX(un));
22456 				return (EIO);
22457 			}
22458 
22459 			/* Delay to give the device some recovery time. */
22460 			drv_usecwait(10000);
22461 
22462 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
22463 				SD_INFO(SD_LOG_DUMP, un,
22464 					"sddump: sd_send_polled_RQS failed\n");
22465 			}
22466 			mutex_enter(SD_MUTEX(un));
22467 		}
22468 	}
22469 
22470 	/*
22471 	 * Convert the partition-relative block number to a
22472 	 * disk physical block number.
22473 	 */
22474 	blkno += start_block;
22475 
22476 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
22477 
22478 
22479 	/*
22480 	 * Check if the device has a non-512 block size.
22481 	 */
22482 	wr_bp = NULL;
22483 	if (NOT_DEVBSIZE(un)) {
22484 		tgt_byte_offset = blkno * un->un_sys_blocksize;
22485 		tgt_byte_count = nblk * un->un_sys_blocksize;
22486 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
22487 		    (tgt_byte_count % un->un_tgt_blocksize)) {
22488 			doing_rmw = TRUE;
22489 			/*
22490 			 * Calculate the block number and number of block
22491 			 * in terms of the media block size.
22492 			 */
22493 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
22494 			tgt_nblk =
22495 			    ((tgt_byte_offset + tgt_byte_count +
22496 				(un->un_tgt_blocksize - 1)) /
22497 				un->un_tgt_blocksize) - tgt_blkno;
22498 
22499 			/*
22500 			 * Invoke the routine which is going to do read part
22501 			 * of read-modify-write.
22502 			 * Note that this routine returns a pointer to
22503 			 * a valid bp in wr_bp.
22504 			 */
22505 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
22506 			    &wr_bp);
22507 			if (err) {
22508 				mutex_exit(SD_MUTEX(un));
22509 				return (err);
22510 			}
22511 			/*
22512 			 * Offset is being calculated as -
22513 			 * (original block # * system block size) -
22514 			 * (new block # * target block size)
22515 			 */
22516 			io_start_offset =
22517 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
22518 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
22519 
22520 			ASSERT((io_start_offset >= 0) &&
22521 			    (io_start_offset < un->un_tgt_blocksize));
22522 			/*
22523 			 * Do the modify portion of read modify write.
22524 			 */
22525 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
22526 			    (size_t)nblk * un->un_sys_blocksize);
22527 		} else {
22528 			doing_rmw = FALSE;
22529 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
22530 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
22531 		}
22532 
22533 		/* Convert blkno and nblk to target blocks */
22534 		blkno = tgt_blkno;
22535 		nblk = tgt_nblk;
22536 	} else {
22537 		wr_bp = &wr_buf;
22538 		bzero(wr_bp, sizeof (struct buf));
22539 		wr_bp->b_flags		= B_BUSY;
22540 		wr_bp->b_un.b_addr	= addr;
22541 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
22542 		wr_bp->b_resid		= 0;
22543 	}
22544 
22545 	mutex_exit(SD_MUTEX(un));
22546 
22547 	/*
22548 	 * Obtain a SCSI packet for the write command.
22549 	 * It should be safe to call the allocator here without
22550 	 * worrying about being locked for DVMA mapping because
22551 	 * the address we're passed is already a DVMA mapping
22552 	 *
22553 	 * We are also not going to worry about semaphore ownership
22554 	 * in the dump buffer. Dumping is single threaded at present.
22555 	 */
22556 
22557 	wr_pktp = NULL;
22558 
22559 #if defined(__i386) || defined(__amd64)
22560 	dma_resid = wr_bp->b_bcount;
22561 	oblkno = blkno;
22562 	while (dma_resid != 0) {
22563 #endif
22564 
22565 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
22566 		wr_bp->b_flags &= ~B_ERROR;
22567 
22568 #if defined(__i386) || defined(__amd64)
22569 		blkno = oblkno +
22570 			((wr_bp->b_bcount - dma_resid) /
22571 			    un->un_tgt_blocksize);
22572 		nblk = dma_resid / un->un_tgt_blocksize;
22573 
22574 		if (wr_pktp) {
22575 			/* Partial DMA transfers after initial transfer */
22576 			rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
22577 			    blkno, nblk);
22578 		} else {
22579 			/* Initial transfer */
22580 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
22581 			    un->un_pkt_flags, NULL_FUNC, NULL,
22582 			    blkno, nblk);
22583 		}
22584 #else
22585 		rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
22586 		    0, NULL_FUNC, NULL, blkno, nblk);
22587 #endif
22588 
22589 		if (rval == 0) {
22590 			/* We were given a SCSI packet, continue. */
22591 			break;
22592 		}
22593 
22594 		if (i == 0) {
22595 			if (wr_bp->b_flags & B_ERROR) {
22596 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
22597 				    "no resources for dumping; "
22598 				    "error code: 0x%x, retrying",
22599 				    geterror(wr_bp));
22600 			} else {
22601 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
22602 				    "no resources for dumping; retrying");
22603 			}
22604 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
22605 			if (wr_bp->b_flags & B_ERROR) {
22606 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
22607 				    "no resources for dumping; error code: "
22608 				    "0x%x, retrying\n", geterror(wr_bp));
22609 			}
22610 		} else {
22611 			if (wr_bp->b_flags & B_ERROR) {
22612 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
22613 				    "no resources for dumping; "
22614 				    "error code: 0x%x, retries failed, "
22615 				    "giving up.\n", geterror(wr_bp));
22616 			} else {
22617 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
22618 				    "no resources for dumping; "
22619 				    "retries failed, giving up.\n");
22620 			}
22621 			mutex_enter(SD_MUTEX(un));
22622 			Restore_state(un);
22623 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
22624 				mutex_exit(SD_MUTEX(un));
22625 				scsi_free_consistent_buf(wr_bp);
22626 			} else {
22627 				mutex_exit(SD_MUTEX(un));
22628 			}
22629 			return (EIO);
22630 		}
22631 		drv_usecwait(10000);
22632 	}
22633 
22634 #if defined(__i386) || defined(__amd64)
22635 	/*
22636 	 * save the resid from PARTIAL_DMA
22637 	 */
22638 	dma_resid = wr_pktp->pkt_resid;
22639 	if (dma_resid != 0)
22640 		nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
22641 	wr_pktp->pkt_resid = 0;
22642 #endif
22643 
22644 	/* SunBug 1222170 */
22645 	wr_pktp->pkt_flags = FLAG_NOINTR;
22646 
22647 	err = EIO;
22648 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
22649 
22650 		/*
22651 		 * Scsi_poll returns 0 (success) if the command completes and
22652 		 * the status block is STATUS_GOOD.  We should only check
22653 		 * errors if this condition is not true.  Even then we should
22654 		 * send our own request sense packet only if we have a check
22655 		 * condition and auto request sense has not been performed by
22656 		 * the hba.
22657 		 */
22658 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
22659 
22660 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
22661 		    (wr_pktp->pkt_resid == 0)) {
22662 			err = SD_SUCCESS;
22663 			break;
22664 		}
22665 
22666 		/*
22667 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
22668 		 */
22669 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
22670 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
22671 			    "Device is gone\n");
22672 			break;
22673 		}
22674 
22675 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
22676 			SD_INFO(SD_LOG_DUMP, un,
22677 			    "sddump: write failed with CHECK, try # %d\n", i);
22678 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
22679 				(void) sd_send_polled_RQS(un);
22680 			}
22681 
22682 			continue;
22683 		}
22684 
22685 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
22686 			int reset_retval = 0;
22687 
22688 			SD_INFO(SD_LOG_DUMP, un,
22689 			    "sddump: write failed with BUSY, try # %d\n", i);
22690 
22691 			if (un->un_f_lun_reset_enabled == TRUE) {
22692 				reset_retval = scsi_reset(SD_ADDRESS(un),
22693 				    RESET_LUN);
22694 			}
22695 			if (reset_retval == 0) {
22696 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
22697 			}
22698 			(void) sd_send_polled_RQS(un);
22699 
22700 		} else {
22701 			SD_INFO(SD_LOG_DUMP, un,
22702 			    "sddump: write failed with 0x%x, try # %d\n",
22703 			    SD_GET_PKT_STATUS(wr_pktp), i);
22704 			mutex_enter(SD_MUTEX(un));
22705 			sd_reset_target(un, wr_pktp);
22706 			mutex_exit(SD_MUTEX(un));
22707 		}
22708 
22709 		/*
22710 		 * If we are not getting anywhere with lun/target resets,
22711 		 * let's reset the bus.
22712 		 */
22713 		if (i == SD_NDUMP_RETRIES/2) {
22714 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
22715 			(void) sd_send_polled_RQS(un);
22716 		}
22717 
22718 	}
22719 #if defined(__i386) || defined(__amd64)
22720 	}	/* dma_resid */
22721 #endif
22722 
22723 	scsi_destroy_pkt(wr_pktp);
22724 	mutex_enter(SD_MUTEX(un));
22725 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
22726 		mutex_exit(SD_MUTEX(un));
22727 		scsi_free_consistent_buf(wr_bp);
22728 	} else {
22729 		mutex_exit(SD_MUTEX(un));
22730 	}
22731 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
22732 	return (err);
22733 }
22734 
22735 /*
22736  *    Function: sd_scsi_poll()
22737  *
22738  * Description: This is a wrapper for the scsi_poll call.
22739  *
22740  *   Arguments: sd_lun - The unit structure
22741  *              scsi_pkt - The scsi packet being sent to the device.
22742  *
22743  * Return Code: 0 - Command completed successfully with good status
22744  *             -1 - Command failed.  This could indicate a check condition
22745  *                  or other status value requiring recovery action.
22746  *
22747  */
22748 
22749 static int
22750 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
22751 {
22752 	int status;
22753 
22754 	ASSERT(un != NULL);
22755 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22756 	ASSERT(pktp != NULL);
22757 
22758 	status = SD_SUCCESS;
22759 
22760 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
22761 		pktp->pkt_flags |= un->un_tagflags;
22762 		pktp->pkt_flags &= ~FLAG_NODISCON;
22763 	}
22764 
22765 	status = sd_ddi_scsi_poll(pktp);
22766 	/*
22767 	 * Scsi_poll returns 0 (success) if the command completes and the
22768 	 * status block is STATUS_GOOD.  We should only check errors if this
22769 	 * condition is not true.  Even then we should send our own request
22770 	 * sense packet only if we have a check condition and auto
22771 	 * request sense has not been performed by the hba.
22772 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
22773 	 */
22774 	if ((status != SD_SUCCESS) &&
22775 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
22776 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
22777 	    (pktp->pkt_reason != CMD_DEV_GONE))
22778 		(void) sd_send_polled_RQS(un);
22779 
22780 	return (status);
22781 }
22782 
22783 /*
22784  *    Function: sd_send_polled_RQS()
22785  *
22786  * Description: This sends the request sense command to a device.
22787  *
22788  *   Arguments: sd_lun - The unit structure
22789  *
22790  * Return Code: 0 - Command completed successfully with good status
22791  *             -1 - Command failed.
22792  *
22793  */
22794 
22795 static int
22796 sd_send_polled_RQS(struct sd_lun *un)
22797 {
22798 	int	ret_val;
22799 	struct	scsi_pkt	*rqs_pktp;
22800 	struct	buf		*rqs_bp;
22801 
22802 	ASSERT(un != NULL);
22803 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22804 
22805 	ret_val = SD_SUCCESS;
22806 
22807 	rqs_pktp = un->un_rqs_pktp;
22808 	rqs_bp	 = un->un_rqs_bp;
22809 
22810 	mutex_enter(SD_MUTEX(un));
22811 
22812 	if (un->un_sense_isbusy) {
22813 		ret_val = SD_FAILURE;
22814 		mutex_exit(SD_MUTEX(un));
22815 		return (ret_val);
22816 	}
22817 
22818 	/*
22819 	 * If the request sense buffer (and packet) is not in use,
22820 	 * let's set the un_sense_isbusy and send our packet
22821 	 */
22822 	un->un_sense_isbusy 	= 1;
22823 	rqs_pktp->pkt_resid  	= 0;
22824 	rqs_pktp->pkt_reason 	= 0;
22825 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
22826 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
22827 
22828 	mutex_exit(SD_MUTEX(un));
22829 
22830 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
22831 	    " 0x%p\n", rqs_bp->b_un.b_addr);
22832 
22833 	/*
22834 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
22835 	 * axle - it has a call into us!
22836 	 */
22837 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
22838 		SD_INFO(SD_LOG_COMMON, un,
22839 		    "sd_send_polled_RQS: RQS failed\n");
22840 	}
22841 
22842 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
22843 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
22844 
22845 	mutex_enter(SD_MUTEX(un));
22846 	un->un_sense_isbusy = 0;
22847 	mutex_exit(SD_MUTEX(un));
22848 
22849 	return (ret_val);
22850 }
22851 
22852 /*
22853  * Defines needed for localized version of the scsi_poll routine.
22854  */
22855 #define	SD_CSEC		10000			/* usecs */
22856 #define	SD_SEC_TO_CSEC	(1000000/SD_CSEC)
22857 
22858 
22859 /*
22860  *    Function: sd_ddi_scsi_poll()
22861  *
22862  * Description: Localized version of the scsi_poll routine.  The purpose is to
22863  *		send a scsi_pkt to a device as a polled command.  This version
22864  *		is to ensure more robust handling of transport errors.
22865  *		Specifically this routine cures not ready, coming ready
22866  *		transition for power up and reset of sonoma's.  This can take
22867  *		up to 45 seconds for power-on and 20 seconds for reset of a
22868  * 		sonoma lun.
22869  *
22870  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
22871  *
22872  * Return Code: 0 - Command completed successfully with good status
22873  *             -1 - Command failed.
22874  *
22875  */
22876 
22877 static int
22878 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
22879 {
22880 	int busy_count;
22881 	int timeout;
22882 	int rval = SD_FAILURE;
22883 	int savef;
22884 	uint8_t *sensep;
22885 	long savet;
22886 	void (*savec)();
22887 	/*
22888 	 * The following is defined in machdep.c and is used in determining if
22889 	 * the scsi transport system will do polled I/O instead of interrupt
22890 	 * I/O when called from xx_dump().
22891 	 */
22892 	extern int do_polled_io;
22893 
22894 	/*
22895 	 * save old flags in pkt, to restore at end
22896 	 */
22897 	savef = pkt->pkt_flags;
22898 	savec = pkt->pkt_comp;
22899 	savet = pkt->pkt_time;
22900 
22901 	pkt->pkt_flags |= FLAG_NOINTR;
22902 
22903 	/*
22904 	 * XXX there is nothing in the SCSA spec that states that we should not
22905 	 * do a callback for polled cmds; however, removing this will break sd
22906 	 * and probably other target drivers
22907 	 */
22908 	pkt->pkt_comp = NULL;
22909 
22910 	/*
22911 	 * we don't like a polled command without timeout.
22912 	 * 60 seconds seems long enough.
22913 	 */
22914 	if (pkt->pkt_time == 0) {
22915 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
22916 	}
22917 
22918 	/*
22919 	 * Send polled cmd.
22920 	 *
22921 	 * We do some error recovery for various errors.  Tran_busy,
22922 	 * queue full, and non-dispatched commands are retried every 10 msec.
22923 	 * as they are typically transient failures.  Busy status and Not
22924 	 * Ready are retried every second as this status takes a while to
22925 	 * change.  Unit attention is retried for pkt_time (60) times
22926 	 * with no delay.
22927 	 */
22928 	timeout = pkt->pkt_time * SD_SEC_TO_CSEC;
22929 
22930 	for (busy_count = 0; busy_count < timeout; busy_count++) {
22931 		int rc;
22932 		int poll_delay;
22933 
22934 		/*
22935 		 * Initialize pkt status variables.
22936 		 */
22937 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
22938 
22939 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
22940 			if (rc != TRAN_BUSY) {
22941 				/* Transport failed - give up. */
22942 				break;
22943 			} else {
22944 				/* Transport busy - try again. */
22945 				poll_delay = 1 * SD_CSEC; /* 10 msec */
22946 			}
22947 		} else {
22948 			/*
22949 			 * Transport accepted - check pkt status.
22950 			 */
22951 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
22952 			if (pkt->pkt_reason == CMD_CMPLT &&
22953 			    rc == STATUS_CHECK &&
22954 			    pkt->pkt_state & STATE_ARQ_DONE) {
22955 				struct scsi_arq_status *arqstat =
22956 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
22957 
22958 				sensep = (uint8_t *)&arqstat->sts_sensedata;
22959 			} else {
22960 				sensep = NULL;
22961 			}
22962 
22963 			if ((pkt->pkt_reason == CMD_CMPLT) &&
22964 			    (rc == STATUS_GOOD)) {
22965 				/* No error - we're done */
22966 				rval = SD_SUCCESS;
22967 				break;
22968 
22969 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
22970 				/* Lost connection - give up */
22971 				break;
22972 
22973 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
22974 			    (pkt->pkt_state == 0)) {
22975 				/* Pkt not dispatched - try again. */
22976 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
22977 
22978 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
22979 			    (rc == STATUS_QFULL)) {
22980 				/* Queue full - try again. */
22981 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
22982 
22983 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
22984 			    (rc == STATUS_BUSY)) {
22985 				/* Busy - try again. */
22986 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
22987 				busy_count += (SD_SEC_TO_CSEC - 1);
22988 
22989 			} else if ((sensep != NULL) &&
22990 			    (scsi_sense_key(sensep) ==
22991 				KEY_UNIT_ATTENTION)) {
22992 				/* Unit Attention - try again */
22993 				busy_count += (SD_SEC_TO_CSEC - 1); /* 1 */
22994 				continue;
22995 
22996 			} else if ((sensep != NULL) &&
22997 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
22998 			    (scsi_sense_asc(sensep) == 0x04) &&
22999 			    (scsi_sense_ascq(sensep) == 0x01)) {
23000 				/* Not ready -> ready - try again. */
23001 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
23002 				busy_count += (SD_SEC_TO_CSEC - 1);
23003 
23004 			} else {
23005 				/* BAD status - give up. */
23006 				break;
23007 			}
23008 		}
23009 
23010 		if ((curthread->t_flag & T_INTR_THREAD) == 0 &&
23011 		    !do_polled_io) {
23012 			delay(drv_usectohz(poll_delay));
23013 		} else {
23014 			/* we busy wait during cpr_dump or interrupt threads */
23015 			drv_usecwait(poll_delay);
23016 		}
23017 	}
23018 
23019 	pkt->pkt_flags = savef;
23020 	pkt->pkt_comp = savec;
23021 	pkt->pkt_time = savet;
23022 	return (rval);
23023 }
23024 
23025 
23026 /*
23027  *    Function: sd_persistent_reservation_in_read_keys
23028  *
23029  * Description: This routine is the driver entry point for handling CD-ROM
23030  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
23031  *		by sending the SCSI-3 PRIN commands to the device.
23032  *		Processes the read keys command response by copying the
23033  *		reservation key information into the user provided buffer.
23034  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
23035  *
23036  *   Arguments: un   -  Pointer to soft state struct for the target.
23037  *		usrp -	user provided pointer to multihost Persistent In Read
23038  *			Keys structure (mhioc_inkeys_t)
23039  *		flag -	this argument is a pass through to ddi_copyxxx()
23040  *			directly from the mode argument of ioctl().
23041  *
23042  * Return Code: 0   - Success
23043  *		EACCES
23044  *		ENOTSUP
23045  *		errno return code from sd_send_scsi_cmd()
23046  *
23047  *     Context: Can sleep. Does not return until command is completed.
23048  */
23049 
23050 static int
23051 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
23052     mhioc_inkeys_t *usrp, int flag)
23053 {
23054 #ifdef _MULTI_DATAMODEL
23055 	struct mhioc_key_list32	li32;
23056 #endif
23057 	sd_prin_readkeys_t	*in;
23058 	mhioc_inkeys_t		*ptr;
23059 	mhioc_key_list_t	li;
23060 	uchar_t			*data_bufp;
23061 	int 			data_len;
23062 	int			rval;
23063 	size_t			copysz;
23064 
23065 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
23066 		return (EINVAL);
23067 	}
23068 	bzero(&li, sizeof (mhioc_key_list_t));
23069 
23070 	/*
23071 	 * Get the listsize from user
23072 	 */
23073 #ifdef _MULTI_DATAMODEL
23074 
23075 	switch (ddi_model_convert_from(flag & FMODELS)) {
23076 	case DDI_MODEL_ILP32:
23077 		copysz = sizeof (struct mhioc_key_list32);
23078 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
23079 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23080 			    "sd_persistent_reservation_in_read_keys: "
23081 			    "failed ddi_copyin: mhioc_key_list32_t\n");
23082 			rval = EFAULT;
23083 			goto done;
23084 		}
23085 		li.listsize = li32.listsize;
23086 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
23087 		break;
23088 
23089 	case DDI_MODEL_NONE:
23090 		copysz = sizeof (mhioc_key_list_t);
23091 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
23092 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23093 			    "sd_persistent_reservation_in_read_keys: "
23094 			    "failed ddi_copyin: mhioc_key_list_t\n");
23095 			rval = EFAULT;
23096 			goto done;
23097 		}
23098 		break;
23099 	}
23100 
23101 #else /* ! _MULTI_DATAMODEL */
23102 	copysz = sizeof (mhioc_key_list_t);
23103 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
23104 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23105 		    "sd_persistent_reservation_in_read_keys: "
23106 		    "failed ddi_copyin: mhioc_key_list_t\n");
23107 		rval = EFAULT;
23108 		goto done;
23109 	}
23110 #endif
23111 
23112 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
23113 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
23114 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
23115 
23116 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS,
23117 	    data_len, data_bufp)) != 0) {
23118 		goto done;
23119 	}
23120 	in = (sd_prin_readkeys_t *)data_bufp;
23121 	ptr->generation = BE_32(in->generation);
23122 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
23123 
23124 	/*
23125 	 * Return the min(listsize, listlen) keys
23126 	 */
23127 #ifdef _MULTI_DATAMODEL
23128 
23129 	switch (ddi_model_convert_from(flag & FMODELS)) {
23130 	case DDI_MODEL_ILP32:
23131 		li32.listlen = li.listlen;
23132 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
23133 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23134 			    "sd_persistent_reservation_in_read_keys: "
23135 			    "failed ddi_copyout: mhioc_key_list32_t\n");
23136 			rval = EFAULT;
23137 			goto done;
23138 		}
23139 		break;
23140 
23141 	case DDI_MODEL_NONE:
23142 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
23143 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23144 			    "sd_persistent_reservation_in_read_keys: "
23145 			    "failed ddi_copyout: mhioc_key_list_t\n");
23146 			rval = EFAULT;
23147 			goto done;
23148 		}
23149 		break;
23150 	}
23151 
23152 #else /* ! _MULTI_DATAMODEL */
23153 
23154 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
23155 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23156 		    "sd_persistent_reservation_in_read_keys: "
23157 		    "failed ddi_copyout: mhioc_key_list_t\n");
23158 		rval = EFAULT;
23159 		goto done;
23160 	}
23161 
23162 #endif /* _MULTI_DATAMODEL */
23163 
23164 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
23165 	    li.listsize * MHIOC_RESV_KEY_SIZE);
23166 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
23167 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23168 		    "sd_persistent_reservation_in_read_keys: "
23169 		    "failed ddi_copyout: keylist\n");
23170 		rval = EFAULT;
23171 	}
23172 done:
23173 	kmem_free(data_bufp, data_len);
23174 	return (rval);
23175 }
23176 
23177 
23178 /*
23179  *    Function: sd_persistent_reservation_in_read_resv
23180  *
23181  * Description: This routine is the driver entry point for handling CD-ROM
23182  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
23183  *		by sending the SCSI-3 PRIN commands to the device.
23184  *		Process the read persistent reservations command response by
23185  *		copying the reservation information into the user provided
23186  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
23187  *
23188  *   Arguments: un   -  Pointer to soft state struct for the target.
23189  *		usrp -	user provided pointer to multihost Persistent In Read
23190  *			Keys structure (mhioc_inkeys_t)
23191  *		flag -	this argument is a pass through to ddi_copyxxx()
23192  *			directly from the mode argument of ioctl().
23193  *
23194  * Return Code: 0   - Success
23195  *		EACCES
23196  *		ENOTSUP
23197  *		errno return code from sd_send_scsi_cmd()
23198  *
23199  *     Context: Can sleep. Does not return until command is completed.
23200  */
23201 
23202 static int
23203 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
23204     mhioc_inresvs_t *usrp, int flag)
23205 {
23206 #ifdef _MULTI_DATAMODEL
23207 	struct mhioc_resv_desc_list32 resvlist32;
23208 #endif
23209 	sd_prin_readresv_t	*in;
23210 	mhioc_inresvs_t		*ptr;
23211 	sd_readresv_desc_t	*readresv_ptr;
23212 	mhioc_resv_desc_list_t	resvlist;
23213 	mhioc_resv_desc_t 	resvdesc;
23214 	uchar_t			*data_bufp;
23215 	int 			data_len;
23216 	int			rval;
23217 	int			i;
23218 	size_t			copysz;
23219 	mhioc_resv_desc_t	*bufp;
23220 
23221 	if ((ptr = usrp) == NULL) {
23222 		return (EINVAL);
23223 	}
23224 
23225 	/*
23226 	 * Get the listsize from user
23227 	 */
23228 #ifdef _MULTI_DATAMODEL
23229 	switch (ddi_model_convert_from(flag & FMODELS)) {
23230 	case DDI_MODEL_ILP32:
23231 		copysz = sizeof (struct mhioc_resv_desc_list32);
23232 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
23233 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23234 			    "sd_persistent_reservation_in_read_resv: "
23235 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23236 			rval = EFAULT;
23237 			goto done;
23238 		}
23239 		resvlist.listsize = resvlist32.listsize;
23240 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
23241 		break;
23242 
23243 	case DDI_MODEL_NONE:
23244 		copysz = sizeof (mhioc_resv_desc_list_t);
23245 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
23246 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23247 			    "sd_persistent_reservation_in_read_resv: "
23248 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23249 			rval = EFAULT;
23250 			goto done;
23251 		}
23252 		break;
23253 	}
23254 #else /* ! _MULTI_DATAMODEL */
23255 	copysz = sizeof (mhioc_resv_desc_list_t);
23256 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
23257 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23258 		    "sd_persistent_reservation_in_read_resv: "
23259 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23260 		rval = EFAULT;
23261 		goto done;
23262 	}
23263 #endif /* ! _MULTI_DATAMODEL */
23264 
23265 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
23266 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
23267 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
23268 
23269 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV,
23270 	    data_len, data_bufp)) != 0) {
23271 		goto done;
23272 	}
23273 	in = (sd_prin_readresv_t *)data_bufp;
23274 	ptr->generation = BE_32(in->generation);
23275 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
23276 
23277 	/*
23278 	 * Return the min(listsize, listlen( keys
23279 	 */
23280 #ifdef _MULTI_DATAMODEL
23281 
23282 	switch (ddi_model_convert_from(flag & FMODELS)) {
23283 	case DDI_MODEL_ILP32:
23284 		resvlist32.listlen = resvlist.listlen;
23285 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
23286 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23287 			    "sd_persistent_reservation_in_read_resv: "
23288 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23289 			rval = EFAULT;
23290 			goto done;
23291 		}
23292 		break;
23293 
23294 	case DDI_MODEL_NONE:
23295 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
23296 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23297 			    "sd_persistent_reservation_in_read_resv: "
23298 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23299 			rval = EFAULT;
23300 			goto done;
23301 		}
23302 		break;
23303 	}
23304 
23305 #else /* ! _MULTI_DATAMODEL */
23306 
23307 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
23308 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23309 		    "sd_persistent_reservation_in_read_resv: "
23310 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23311 		rval = EFAULT;
23312 		goto done;
23313 	}
23314 
23315 #endif /* ! _MULTI_DATAMODEL */
23316 
23317 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
23318 	bufp = resvlist.list;
23319 	copysz = sizeof (mhioc_resv_desc_t);
23320 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
23321 	    i++, readresv_ptr++, bufp++) {
23322 
23323 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
23324 		    MHIOC_RESV_KEY_SIZE);
23325 		resvdesc.type  = readresv_ptr->type;
23326 		resvdesc.scope = readresv_ptr->scope;
23327 		resvdesc.scope_specific_addr =
23328 		    BE_32(readresv_ptr->scope_specific_addr);
23329 
23330 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
23331 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23332 			    "sd_persistent_reservation_in_read_resv: "
23333 			    "failed ddi_copyout: resvlist\n");
23334 			rval = EFAULT;
23335 			goto done;
23336 		}
23337 	}
23338 done:
23339 	kmem_free(data_bufp, data_len);
23340 	return (rval);
23341 }
23342 
23343 
23344 /*
23345  *    Function: sr_change_blkmode()
23346  *
23347  * Description: This routine is the driver entry point for handling CD-ROM
23348  *		block mode ioctl requests. Support for returning and changing
23349  *		the current block size in use by the device is implemented. The
23350  *		LBA size is changed via a MODE SELECT Block Descriptor.
23351  *
23352  *		This routine issues a mode sense with an allocation length of
23353  *		12 bytes for the mode page header and a single block descriptor.
23354  *
23355  *   Arguments: dev - the device 'dev_t'
23356  *		cmd - the request type; one of CDROMGBLKMODE (get) or
23357  *		      CDROMSBLKMODE (set)
23358  *		data - current block size or requested block size
23359  *		flag - this argument is a pass through to ddi_copyxxx() directly
23360  *		       from the mode argument of ioctl().
23361  *
23362  * Return Code: the code returned by sd_send_scsi_cmd()
23363  *		EINVAL if invalid arguments are provided
23364  *		EFAULT if ddi_copyxxx() fails
23365  *		ENXIO if fail ddi_get_soft_state
23366  *		EIO if invalid mode sense block descriptor length
23367  *
23368  */
23369 
23370 static int
23371 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
23372 {
23373 	struct sd_lun			*un = NULL;
23374 	struct mode_header		*sense_mhp, *select_mhp;
23375 	struct block_descriptor		*sense_desc, *select_desc;
23376 	int				current_bsize;
23377 	int				rval = EINVAL;
23378 	uchar_t				*sense = NULL;
23379 	uchar_t				*select = NULL;
23380 
23381 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
23382 
23383 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23384 		return (ENXIO);
23385 	}
23386 
23387 	/*
23388 	 * The block length is changed via the Mode Select block descriptor, the
23389 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
23390 	 * required as part of this routine. Therefore the mode sense allocation
23391 	 * length is specified to be the length of a mode page header and a
23392 	 * block descriptor.
23393 	 */
23394 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
23395 
23396 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
23397 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) {
23398 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23399 		    "sr_change_blkmode: Mode Sense Failed\n");
23400 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23401 		return (rval);
23402 	}
23403 
23404 	/* Check the block descriptor len to handle only 1 block descriptor */
23405 	sense_mhp = (struct mode_header *)sense;
23406 	if ((sense_mhp->bdesc_length == 0) ||
23407 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
23408 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23409 		    "sr_change_blkmode: Mode Sense returned invalid block"
23410 		    " descriptor length\n");
23411 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23412 		return (EIO);
23413 	}
23414 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
23415 	current_bsize = ((sense_desc->blksize_hi << 16) |
23416 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
23417 
23418 	/* Process command */
23419 	switch (cmd) {
23420 	case CDROMGBLKMODE:
23421 		/* Return the block size obtained during the mode sense */
23422 		if (ddi_copyout(&current_bsize, (void *)data,
23423 		    sizeof (int), flag) != 0)
23424 			rval = EFAULT;
23425 		break;
23426 	case CDROMSBLKMODE:
23427 		/* Validate the requested block size */
23428 		switch (data) {
23429 		case CDROM_BLK_512:
23430 		case CDROM_BLK_1024:
23431 		case CDROM_BLK_2048:
23432 		case CDROM_BLK_2056:
23433 		case CDROM_BLK_2336:
23434 		case CDROM_BLK_2340:
23435 		case CDROM_BLK_2352:
23436 		case CDROM_BLK_2368:
23437 		case CDROM_BLK_2448:
23438 		case CDROM_BLK_2646:
23439 		case CDROM_BLK_2647:
23440 			break;
23441 		default:
23442 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23443 			    "sr_change_blkmode: "
23444 			    "Block Size '%ld' Not Supported\n", data);
23445 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23446 			return (EINVAL);
23447 		}
23448 
23449 		/*
23450 		 * The current block size matches the requested block size so
23451 		 * there is no need to send the mode select to change the size
23452 		 */
23453 		if (current_bsize == data) {
23454 			break;
23455 		}
23456 
23457 		/* Build the select data for the requested block size */
23458 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
23459 		select_mhp = (struct mode_header *)select;
23460 		select_desc =
23461 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
23462 		/*
23463 		 * The LBA size is changed via the block descriptor, so the
23464 		 * descriptor is built according to the user data
23465 		 */
23466 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
23467 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
23468 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
23469 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
23470 
23471 		/* Send the mode select for the requested block size */
23472 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
23473 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
23474 		    SD_PATH_STANDARD)) != 0) {
23475 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23476 			    "sr_change_blkmode: Mode Select Failed\n");
23477 			/*
23478 			 * The mode select failed for the requested block size,
23479 			 * so reset the data for the original block size and
23480 			 * send it to the target. The error is indicated by the
23481 			 * return value for the failed mode select.
23482 			 */
23483 			select_desc->blksize_hi  = sense_desc->blksize_hi;
23484 			select_desc->blksize_mid = sense_desc->blksize_mid;
23485 			select_desc->blksize_lo  = sense_desc->blksize_lo;
23486 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
23487 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
23488 			    SD_PATH_STANDARD);
23489 		} else {
23490 			ASSERT(!mutex_owned(SD_MUTEX(un)));
23491 			mutex_enter(SD_MUTEX(un));
23492 			sd_update_block_info(un, (uint32_t)data, 0);
23493 			mutex_exit(SD_MUTEX(un));
23494 		}
23495 		break;
23496 	default:
23497 		/* should not reach here, but check anyway */
23498 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23499 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
23500 		rval = EINVAL;
23501 		break;
23502 	}
23503 
23504 	if (select) {
23505 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
23506 	}
23507 	if (sense) {
23508 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23509 	}
23510 	return (rval);
23511 }
23512 
23513 
23514 /*
23515  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
23516  * implement driver support for getting and setting the CD speed. The command
23517  * set used will be based on the device type. If the device has not been
23518  * identified as MMC the Toshiba vendor specific mode page will be used. If
23519  * the device is MMC but does not support the Real Time Streaming feature
23520  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
23521  * be used to read the speed.
23522  */
23523 
23524 /*
23525  *    Function: sr_change_speed()
23526  *
23527  * Description: This routine is the driver entry point for handling CD-ROM
23528  *		drive speed ioctl requests for devices supporting the Toshiba
23529  *		vendor specific drive speed mode page. Support for returning
23530  *		and changing the current drive speed in use by the device is
23531  *		implemented.
23532  *
23533  *   Arguments: dev - the device 'dev_t'
23534  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
23535  *		      CDROMSDRVSPEED (set)
23536  *		data - current drive speed or requested drive speed
23537  *		flag - this argument is a pass through to ddi_copyxxx() directly
23538  *		       from the mode argument of ioctl().
23539  *
23540  * Return Code: the code returned by sd_send_scsi_cmd()
23541  *		EINVAL if invalid arguments are provided
23542  *		EFAULT if ddi_copyxxx() fails
23543  *		ENXIO if fail ddi_get_soft_state
23544  *		EIO if invalid mode sense block descriptor length
23545  */
23546 
23547 static int
23548 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
23549 {
23550 	struct sd_lun			*un = NULL;
23551 	struct mode_header		*sense_mhp, *select_mhp;
23552 	struct mode_speed		*sense_page, *select_page;
23553 	int				current_speed;
23554 	int				rval = EINVAL;
23555 	int				bd_len;
23556 	uchar_t				*sense = NULL;
23557 	uchar_t				*select = NULL;
23558 
23559 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
23560 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23561 		return (ENXIO);
23562 	}
23563 
23564 	/*
23565 	 * Note: The drive speed is being modified here according to a Toshiba
23566 	 * vendor specific mode page (0x31).
23567 	 */
23568 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
23569 
23570 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
23571 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
23572 	    SD_PATH_STANDARD)) != 0) {
23573 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23574 		    "sr_change_speed: Mode Sense Failed\n");
23575 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
23576 		return (rval);
23577 	}
23578 	sense_mhp  = (struct mode_header *)sense;
23579 
23580 	/* Check the block descriptor len to handle only 1 block descriptor */
23581 	bd_len = sense_mhp->bdesc_length;
23582 	if (bd_len > MODE_BLK_DESC_LENGTH) {
23583 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23584 		    "sr_change_speed: Mode Sense returned invalid block "
23585 		    "descriptor length\n");
23586 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
23587 		return (EIO);
23588 	}
23589 
23590 	sense_page = (struct mode_speed *)
23591 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
23592 	current_speed = sense_page->speed;
23593 
23594 	/* Process command */
23595 	switch (cmd) {
23596 	case CDROMGDRVSPEED:
23597 		/* Return the drive speed obtained during the mode sense */
23598 		if (current_speed == 0x2) {
23599 			current_speed = CDROM_TWELVE_SPEED;
23600 		}
23601 		if (ddi_copyout(&current_speed, (void *)data,
23602 		    sizeof (int), flag) != 0) {
23603 			rval = EFAULT;
23604 		}
23605 		break;
23606 	case CDROMSDRVSPEED:
23607 		/* Validate the requested drive speed */
23608 		switch ((uchar_t)data) {
23609 		case CDROM_TWELVE_SPEED:
23610 			data = 0x2;
23611 			/*FALLTHROUGH*/
23612 		case CDROM_NORMAL_SPEED:
23613 		case CDROM_DOUBLE_SPEED:
23614 		case CDROM_QUAD_SPEED:
23615 		case CDROM_MAXIMUM_SPEED:
23616 			break;
23617 		default:
23618 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23619 			    "sr_change_speed: "
23620 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
23621 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
23622 			return (EINVAL);
23623 		}
23624 
23625 		/*
23626 		 * The current drive speed matches the requested drive speed so
23627 		 * there is no need to send the mode select to change the speed
23628 		 */
23629 		if (current_speed == data) {
23630 			break;
23631 		}
23632 
23633 		/* Build the select data for the requested drive speed */
23634 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
23635 		select_mhp = (struct mode_header *)select;
23636 		select_mhp->bdesc_length = 0;
23637 		select_page =
23638 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
23639 		select_page =
23640 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
23641 		select_page->mode_page.code = CDROM_MODE_SPEED;
23642 		select_page->mode_page.length = 2;
23643 		select_page->speed = (uchar_t)data;
23644 
23645 		/* Send the mode select for the requested block size */
23646 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
23647 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
23648 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
23649 			/*
23650 			 * The mode select failed for the requested drive speed,
23651 			 * so reset the data for the original drive speed and
23652 			 * send it to the target. The error is indicated by the
23653 			 * return value for the failed mode select.
23654 			 */
23655 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23656 			    "sr_drive_speed: Mode Select Failed\n");
23657 			select_page->speed = sense_page->speed;
23658 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
23659 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
23660 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
23661 		}
23662 		break;
23663 	default:
23664 		/* should not reach here, but check anyway */
23665 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23666 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
23667 		rval = EINVAL;
23668 		break;
23669 	}
23670 
23671 	if (select) {
23672 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
23673 	}
23674 	if (sense) {
23675 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
23676 	}
23677 
23678 	return (rval);
23679 }
23680 
23681 
23682 /*
23683  *    Function: sr_atapi_change_speed()
23684  *
23685  * Description: This routine is the driver entry point for handling CD-ROM
23686  *		drive speed ioctl requests for MMC devices that do not support
23687  *		the Real Time Streaming feature (0x107).
23688  *
23689  *		Note: This routine will use the SET SPEED command which may not
23690  *		be supported by all devices.
23691  *
23692  *   Arguments: dev- the device 'dev_t'
23693  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
23694  *		     CDROMSDRVSPEED (set)
23695  *		data- current drive speed or requested drive speed
23696  *		flag- this argument is a pass through to ddi_copyxxx() directly
23697  *		      from the mode argument of ioctl().
23698  *
23699  * Return Code: the code returned by sd_send_scsi_cmd()
23700  *		EINVAL if invalid arguments are provided
23701  *		EFAULT if ddi_copyxxx() fails
23702  *		ENXIO if fail ddi_get_soft_state
23703  *		EIO if invalid mode sense block descriptor length
23704  */
23705 
23706 static int
23707 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
23708 {
23709 	struct sd_lun			*un;
23710 	struct uscsi_cmd		*com = NULL;
23711 	struct mode_header_grp2		*sense_mhp;
23712 	uchar_t				*sense_page;
23713 	uchar_t				*sense = NULL;
23714 	char				cdb[CDB_GROUP5];
23715 	int				bd_len;
23716 	int				current_speed = 0;
23717 	int				max_speed = 0;
23718 	int				rval;
23719 
23720 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
23721 
23722 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23723 		return (ENXIO);
23724 	}
23725 
23726 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
23727 
23728 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
23729 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
23730 	    SD_PATH_STANDARD)) != 0) {
23731 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23732 		    "sr_atapi_change_speed: Mode Sense Failed\n");
23733 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
23734 		return (rval);
23735 	}
23736 
23737 	/* Check the block descriptor len to handle only 1 block descriptor */
23738 	sense_mhp = (struct mode_header_grp2 *)sense;
23739 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
23740 	if (bd_len > MODE_BLK_DESC_LENGTH) {
23741 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23742 		    "sr_atapi_change_speed: Mode Sense returned invalid "
23743 		    "block descriptor length\n");
23744 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
23745 		return (EIO);
23746 	}
23747 
23748 	/* Calculate the current and maximum drive speeds */
23749 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
23750 	current_speed = (sense_page[14] << 8) | sense_page[15];
23751 	max_speed = (sense_page[8] << 8) | sense_page[9];
23752 
23753 	/* Process the command */
23754 	switch (cmd) {
23755 	case CDROMGDRVSPEED:
23756 		current_speed /= SD_SPEED_1X;
23757 		if (ddi_copyout(&current_speed, (void *)data,
23758 		    sizeof (int), flag) != 0)
23759 			rval = EFAULT;
23760 		break;
23761 	case CDROMSDRVSPEED:
23762 		/* Convert the speed code to KB/sec */
23763 		switch ((uchar_t)data) {
23764 		case CDROM_NORMAL_SPEED:
23765 			current_speed = SD_SPEED_1X;
23766 			break;
23767 		case CDROM_DOUBLE_SPEED:
23768 			current_speed = 2 * SD_SPEED_1X;
23769 			break;
23770 		case CDROM_QUAD_SPEED:
23771 			current_speed = 4 * SD_SPEED_1X;
23772 			break;
23773 		case CDROM_TWELVE_SPEED:
23774 			current_speed = 12 * SD_SPEED_1X;
23775 			break;
23776 		case CDROM_MAXIMUM_SPEED:
23777 			current_speed = 0xffff;
23778 			break;
23779 		default:
23780 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23781 			    "sr_atapi_change_speed: invalid drive speed %d\n",
23782 			    (uchar_t)data);
23783 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
23784 			return (EINVAL);
23785 		}
23786 
23787 		/* Check the request against the drive's max speed. */
23788 		if (current_speed != 0xffff) {
23789 			if (current_speed > max_speed) {
23790 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
23791 				return (EINVAL);
23792 			}
23793 		}
23794 
23795 		/*
23796 		 * Build and send the SET SPEED command
23797 		 *
23798 		 * Note: The SET SPEED (0xBB) command used in this routine is
23799 		 * obsolete per the SCSI MMC spec but still supported in the
23800 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
23801 		 * therefore the command is still implemented in this routine.
23802 		 */
23803 		bzero(cdb, sizeof (cdb));
23804 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
23805 		cdb[2] = (uchar_t)(current_speed >> 8);
23806 		cdb[3] = (uchar_t)current_speed;
23807 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
23808 		com->uscsi_cdb	   = (caddr_t)cdb;
23809 		com->uscsi_cdblen  = CDB_GROUP5;
23810 		com->uscsi_bufaddr = NULL;
23811 		com->uscsi_buflen  = 0;
23812 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
23813 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
23814 		break;
23815 	default:
23816 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23817 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
23818 		rval = EINVAL;
23819 	}
23820 
23821 	if (sense) {
23822 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
23823 	}
23824 	if (com) {
23825 		kmem_free(com, sizeof (*com));
23826 	}
23827 	return (rval);
23828 }
23829 
23830 
23831 /*
23832  *    Function: sr_pause_resume()
23833  *
23834  * Description: This routine is the driver entry point for handling CD-ROM
23835  *		pause/resume ioctl requests. This only affects the audio play
23836  *		operation.
23837  *
23838  *   Arguments: dev - the device 'dev_t'
23839  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
23840  *		      for setting the resume bit of the cdb.
23841  *
23842  * Return Code: the code returned by sd_send_scsi_cmd()
23843  *		EINVAL if invalid mode specified
23844  *
23845  */
23846 
23847 static int
23848 sr_pause_resume(dev_t dev, int cmd)
23849 {
23850 	struct sd_lun		*un;
23851 	struct uscsi_cmd	*com;
23852 	char			cdb[CDB_GROUP1];
23853 	int			rval;
23854 
23855 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23856 		return (ENXIO);
23857 	}
23858 
23859 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
23860 	bzero(cdb, CDB_GROUP1);
23861 	cdb[0] = SCMD_PAUSE_RESUME;
23862 	switch (cmd) {
23863 	case CDROMRESUME:
23864 		cdb[8] = 1;
23865 		break;
23866 	case CDROMPAUSE:
23867 		cdb[8] = 0;
23868 		break;
23869 	default:
23870 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
23871 		    " Command '%x' Not Supported\n", cmd);
23872 		rval = EINVAL;
23873 		goto done;
23874 	}
23875 
23876 	com->uscsi_cdb    = cdb;
23877 	com->uscsi_cdblen = CDB_GROUP1;
23878 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
23879 
23880 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
23881 	    SD_PATH_STANDARD);
23882 
23883 done:
23884 	kmem_free(com, sizeof (*com));
23885 	return (rval);
23886 }
23887 
23888 
23889 /*
23890  *    Function: sr_play_msf()
23891  *
23892  * Description: This routine is the driver entry point for handling CD-ROM
23893  *		ioctl requests to output the audio signals at the specified
23894  *		starting address and continue the audio play until the specified
23895  *		ending address (CDROMPLAYMSF) The address is in Minute Second
23896  *		Frame (MSF) format.
23897  *
23898  *   Arguments: dev	- the device 'dev_t'
23899  *		data	- pointer to user provided audio msf structure,
23900  *		          specifying start/end addresses.
23901  *		flag	- this argument is a pass through to ddi_copyxxx()
23902  *		          directly from the mode argument of ioctl().
23903  *
23904  * Return Code: the code returned by sd_send_scsi_cmd()
23905  *		EFAULT if ddi_copyxxx() fails
23906  *		ENXIO if fail ddi_get_soft_state
23907  *		EINVAL if data pointer is NULL
23908  */
23909 
23910 static int
23911 sr_play_msf(dev_t dev, caddr_t data, int flag)
23912 {
23913 	struct sd_lun		*un;
23914 	struct uscsi_cmd	*com;
23915 	struct cdrom_msf	msf_struct;
23916 	struct cdrom_msf	*msf = &msf_struct;
23917 	char			cdb[CDB_GROUP1];
23918 	int			rval;
23919 
23920 	if (data == NULL) {
23921 		return (EINVAL);
23922 	}
23923 
23924 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23925 		return (ENXIO);
23926 	}
23927 
23928 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
23929 		return (EFAULT);
23930 	}
23931 
23932 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
23933 	bzero(cdb, CDB_GROUP1);
23934 	cdb[0] = SCMD_PLAYAUDIO_MSF;
23935 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
23936 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
23937 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
23938 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
23939 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
23940 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
23941 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
23942 	} else {
23943 		cdb[3] = msf->cdmsf_min0;
23944 		cdb[4] = msf->cdmsf_sec0;
23945 		cdb[5] = msf->cdmsf_frame0;
23946 		cdb[6] = msf->cdmsf_min1;
23947 		cdb[7] = msf->cdmsf_sec1;
23948 		cdb[8] = msf->cdmsf_frame1;
23949 	}
23950 	com->uscsi_cdb    = cdb;
23951 	com->uscsi_cdblen = CDB_GROUP1;
23952 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
23953 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
23954 	    SD_PATH_STANDARD);
23955 	kmem_free(com, sizeof (*com));
23956 	return (rval);
23957 }
23958 
23959 
23960 /*
23961  *    Function: sr_play_trkind()
23962  *
23963  * Description: This routine is the driver entry point for handling CD-ROM
23964  *		ioctl requests to output the audio signals at the specified
23965  *		starting address and continue the audio play until the specified
23966  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
23967  *		format.
23968  *
23969  *   Arguments: dev	- the device 'dev_t'
23970  *		data	- pointer to user provided audio track/index structure,
23971  *		          specifying start/end addresses.
23972  *		flag	- this argument is a pass through to ddi_copyxxx()
23973  *		          directly from the mode argument of ioctl().
23974  *
23975  * Return Code: the code returned by sd_send_scsi_cmd()
23976  *		EFAULT if ddi_copyxxx() fails
23977  *		ENXIO if fail ddi_get_soft_state
23978  *		EINVAL if data pointer is NULL
23979  */
23980 
23981 static int
23982 sr_play_trkind(dev_t dev, caddr_t data, int flag)
23983 {
23984 	struct cdrom_ti		ti_struct;
23985 	struct cdrom_ti		*ti = &ti_struct;
23986 	struct uscsi_cmd	*com = NULL;
23987 	char			cdb[CDB_GROUP1];
23988 	int			rval;
23989 
23990 	if (data == NULL) {
23991 		return (EINVAL);
23992 	}
23993 
23994 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
23995 		return (EFAULT);
23996 	}
23997 
23998 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
23999 	bzero(cdb, CDB_GROUP1);
24000 	cdb[0] = SCMD_PLAYAUDIO_TI;
24001 	cdb[4] = ti->cdti_trk0;
24002 	cdb[5] = ti->cdti_ind0;
24003 	cdb[7] = ti->cdti_trk1;
24004 	cdb[8] = ti->cdti_ind1;
24005 	com->uscsi_cdb    = cdb;
24006 	com->uscsi_cdblen = CDB_GROUP1;
24007 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24008 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24009 	    SD_PATH_STANDARD);
24010 	kmem_free(com, sizeof (*com));
24011 	return (rval);
24012 }
24013 
24014 
24015 /*
24016  *    Function: sr_read_all_subcodes()
24017  *
24018  * Description: This routine is the driver entry point for handling CD-ROM
24019  *		ioctl requests to return raw subcode data while the target is
24020  *		playing audio (CDROMSUBCODE).
24021  *
24022  *   Arguments: dev	- the device 'dev_t'
24023  *		data	- pointer to user provided cdrom subcode structure,
24024  *		          specifying the transfer length and address.
24025  *		flag	- this argument is a pass through to ddi_copyxxx()
24026  *		          directly from the mode argument of ioctl().
24027  *
24028  * Return Code: the code returned by sd_send_scsi_cmd()
24029  *		EFAULT if ddi_copyxxx() fails
24030  *		ENXIO if fail ddi_get_soft_state
24031  *		EINVAL if data pointer is NULL
24032  */
24033 
24034 static int
24035 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
24036 {
24037 	struct sd_lun		*un = NULL;
24038 	struct uscsi_cmd	*com = NULL;
24039 	struct cdrom_subcode	*subcode = NULL;
24040 	int			rval;
24041 	size_t			buflen;
24042 	char			cdb[CDB_GROUP5];
24043 
24044 #ifdef _MULTI_DATAMODEL
24045 	/* To support ILP32 applications in an LP64 world */
24046 	struct cdrom_subcode32		cdrom_subcode32;
24047 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
24048 #endif
24049 	if (data == NULL) {
24050 		return (EINVAL);
24051 	}
24052 
24053 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24054 		return (ENXIO);
24055 	}
24056 
24057 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
24058 
24059 #ifdef _MULTI_DATAMODEL
24060 	switch (ddi_model_convert_from(flag & FMODELS)) {
24061 	case DDI_MODEL_ILP32:
24062 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
24063 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24064 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
24065 			kmem_free(subcode, sizeof (struct cdrom_subcode));
24066 			return (EFAULT);
24067 		}
24068 		/* Convert the ILP32 uscsi data from the application to LP64 */
24069 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
24070 		break;
24071 	case DDI_MODEL_NONE:
24072 		if (ddi_copyin(data, subcode,
24073 		    sizeof (struct cdrom_subcode), flag)) {
24074 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24075 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
24076 			kmem_free(subcode, sizeof (struct cdrom_subcode));
24077 			return (EFAULT);
24078 		}
24079 		break;
24080 	}
24081 #else /* ! _MULTI_DATAMODEL */
24082 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
24083 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24084 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
24085 		kmem_free(subcode, sizeof (struct cdrom_subcode));
24086 		return (EFAULT);
24087 	}
24088 #endif /* _MULTI_DATAMODEL */
24089 
24090 	/*
24091 	 * Since MMC-2 expects max 3 bytes for length, check if the
24092 	 * length input is greater than 3 bytes
24093 	 */
24094 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
24095 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24096 		    "sr_read_all_subcodes: "
24097 		    "cdrom transfer length too large: %d (limit %d)\n",
24098 		    subcode->cdsc_length, 0xFFFFFF);
24099 		kmem_free(subcode, sizeof (struct cdrom_subcode));
24100 		return (EINVAL);
24101 	}
24102 
24103 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
24104 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24105 	bzero(cdb, CDB_GROUP5);
24106 
24107 	if (un->un_f_mmc_cap == TRUE) {
24108 		cdb[0] = (char)SCMD_READ_CD;
24109 		cdb[2] = (char)0xff;
24110 		cdb[3] = (char)0xff;
24111 		cdb[4] = (char)0xff;
24112 		cdb[5] = (char)0xff;
24113 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
24114 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
24115 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
24116 		cdb[10] = 1;
24117 	} else {
24118 		/*
24119 		 * Note: A vendor specific command (0xDF) is being used her to
24120 		 * request a read of all subcodes.
24121 		 */
24122 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
24123 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
24124 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
24125 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
24126 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
24127 	}
24128 	com->uscsi_cdb	   = cdb;
24129 	com->uscsi_cdblen  = CDB_GROUP5;
24130 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
24131 	com->uscsi_buflen  = buflen;
24132 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24133 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
24134 	    SD_PATH_STANDARD);
24135 	kmem_free(subcode, sizeof (struct cdrom_subcode));
24136 	kmem_free(com, sizeof (*com));
24137 	return (rval);
24138 }
24139 
24140 
24141 /*
24142  *    Function: sr_read_subchannel()
24143  *
24144  * Description: This routine is the driver entry point for handling CD-ROM
24145  *		ioctl requests to return the Q sub-channel data of the CD
24146  *		current position block. (CDROMSUBCHNL) The data includes the
24147  *		track number, index number, absolute CD-ROM address (LBA or MSF
24148  *		format per the user) , track relative CD-ROM address (LBA or MSF
24149  *		format per the user), control data and audio status.
24150  *
24151  *   Arguments: dev	- the device 'dev_t'
24152  *		data	- pointer to user provided cdrom sub-channel structure
24153  *		flag	- this argument is a pass through to ddi_copyxxx()
24154  *		          directly from the mode argument of ioctl().
24155  *
24156  * Return Code: the code returned by sd_send_scsi_cmd()
24157  *		EFAULT if ddi_copyxxx() fails
24158  *		ENXIO if fail ddi_get_soft_state
24159  *		EINVAL if data pointer is NULL
24160  */
24161 
24162 static int
24163 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
24164 {
24165 	struct sd_lun		*un;
24166 	struct uscsi_cmd	*com;
24167 	struct cdrom_subchnl	subchanel;
24168 	struct cdrom_subchnl	*subchnl = &subchanel;
24169 	char			cdb[CDB_GROUP1];
24170 	caddr_t			buffer;
24171 	int			rval;
24172 
24173 	if (data == NULL) {
24174 		return (EINVAL);
24175 	}
24176 
24177 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24178 	    (un->un_state == SD_STATE_OFFLINE)) {
24179 		return (ENXIO);
24180 	}
24181 
24182 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
24183 		return (EFAULT);
24184 	}
24185 
24186 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
24187 	bzero(cdb, CDB_GROUP1);
24188 	cdb[0] = SCMD_READ_SUBCHANNEL;
24189 	/* Set the MSF bit based on the user requested address format */
24190 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
24191 	/*
24192 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
24193 	 * returned
24194 	 */
24195 	cdb[2] = 0x40;
24196 	/*
24197 	 * Set byte 3 to specify the return data format. A value of 0x01
24198 	 * indicates that the CD-ROM current position should be returned.
24199 	 */
24200 	cdb[3] = 0x01;
24201 	cdb[8] = 0x10;
24202 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24203 	com->uscsi_cdb	   = cdb;
24204 	com->uscsi_cdblen  = CDB_GROUP1;
24205 	com->uscsi_bufaddr = buffer;
24206 	com->uscsi_buflen  = 16;
24207 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24208 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24209 	    SD_PATH_STANDARD);
24210 	if (rval != 0) {
24211 		kmem_free(buffer, 16);
24212 		kmem_free(com, sizeof (*com));
24213 		return (rval);
24214 	}
24215 
24216 	/* Process the returned Q sub-channel data */
24217 	subchnl->cdsc_audiostatus = buffer[1];
24218 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
24219 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
24220 	subchnl->cdsc_trk	= buffer[6];
24221 	subchnl->cdsc_ind	= buffer[7];
24222 	if (subchnl->cdsc_format & CDROM_LBA) {
24223 		subchnl->cdsc_absaddr.lba =
24224 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
24225 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
24226 		subchnl->cdsc_reladdr.lba =
24227 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
24228 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
24229 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
24230 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
24231 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
24232 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
24233 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
24234 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
24235 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
24236 	} else {
24237 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
24238 		subchnl->cdsc_absaddr.msf.second = buffer[10];
24239 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
24240 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
24241 		subchnl->cdsc_reladdr.msf.second = buffer[14];
24242 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
24243 	}
24244 	kmem_free(buffer, 16);
24245 	kmem_free(com, sizeof (*com));
24246 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
24247 	    != 0) {
24248 		return (EFAULT);
24249 	}
24250 	return (rval);
24251 }
24252 
24253 
24254 /*
24255  *    Function: sr_read_tocentry()
24256  *
24257  * Description: This routine is the driver entry point for handling CD-ROM
24258  *		ioctl requests to read from the Table of Contents (TOC)
24259  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
24260  *		fields, the starting address (LBA or MSF format per the user)
24261  *		and the data mode if the user specified track is a data track.
24262  *
24263  *		Note: The READ HEADER (0x44) command used in this routine is
24264  *		obsolete per the SCSI MMC spec but still supported in the
24265  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
24266  *		therefore the command is still implemented in this routine.
24267  *
24268  *   Arguments: dev	- the device 'dev_t'
24269  *		data	- pointer to user provided toc entry structure,
24270  *			  specifying the track # and the address format
24271  *			  (LBA or MSF).
24272  *		flag	- this argument is a pass through to ddi_copyxxx()
24273  *		          directly from the mode argument of ioctl().
24274  *
24275  * Return Code: the code returned by sd_send_scsi_cmd()
24276  *		EFAULT if ddi_copyxxx() fails
24277  *		ENXIO if fail ddi_get_soft_state
24278  *		EINVAL if data pointer is NULL
24279  */
24280 
24281 static int
24282 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
24283 {
24284 	struct sd_lun		*un = NULL;
24285 	struct uscsi_cmd	*com;
24286 	struct cdrom_tocentry	toc_entry;
24287 	struct cdrom_tocentry	*entry = &toc_entry;
24288 	caddr_t			buffer;
24289 	int			rval;
24290 	char			cdb[CDB_GROUP1];
24291 
24292 	if (data == NULL) {
24293 		return (EINVAL);
24294 	}
24295 
24296 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24297 	    (un->un_state == SD_STATE_OFFLINE)) {
24298 		return (ENXIO);
24299 	}
24300 
24301 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
24302 		return (EFAULT);
24303 	}
24304 
24305 	/* Validate the requested track and address format */
24306 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
24307 		return (EINVAL);
24308 	}
24309 
24310 	if (entry->cdte_track == 0) {
24311 		return (EINVAL);
24312 	}
24313 
24314 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
24315 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24316 	bzero(cdb, CDB_GROUP1);
24317 
24318 	cdb[0] = SCMD_READ_TOC;
24319 	/* Set the MSF bit based on the user requested address format  */
24320 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
24321 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
24322 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
24323 	} else {
24324 		cdb[6] = entry->cdte_track;
24325 	}
24326 
24327 	/*
24328 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
24329 	 * (4 byte TOC response header + 8 byte track descriptor)
24330 	 */
24331 	cdb[8] = 12;
24332 	com->uscsi_cdb	   = cdb;
24333 	com->uscsi_cdblen  = CDB_GROUP1;
24334 	com->uscsi_bufaddr = buffer;
24335 	com->uscsi_buflen  = 0x0C;
24336 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
24337 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24338 	    SD_PATH_STANDARD);
24339 	if (rval != 0) {
24340 		kmem_free(buffer, 12);
24341 		kmem_free(com, sizeof (*com));
24342 		return (rval);
24343 	}
24344 
24345 	/* Process the toc entry */
24346 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
24347 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
24348 	if (entry->cdte_format & CDROM_LBA) {
24349 		entry->cdte_addr.lba =
24350 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
24351 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
24352 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
24353 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
24354 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
24355 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
24356 		/*
24357 		 * Send a READ TOC command using the LBA address format to get
24358 		 * the LBA for the track requested so it can be used in the
24359 		 * READ HEADER request
24360 		 *
24361 		 * Note: The MSF bit of the READ HEADER command specifies the
24362 		 * output format. The block address specified in that command
24363 		 * must be in LBA format.
24364 		 */
24365 		cdb[1] = 0;
24366 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24367 		    SD_PATH_STANDARD);
24368 		if (rval != 0) {
24369 			kmem_free(buffer, 12);
24370 			kmem_free(com, sizeof (*com));
24371 			return (rval);
24372 		}
24373 	} else {
24374 		entry->cdte_addr.msf.minute	= buffer[9];
24375 		entry->cdte_addr.msf.second	= buffer[10];
24376 		entry->cdte_addr.msf.frame	= buffer[11];
24377 		/*
24378 		 * Send a READ TOC command using the LBA address format to get
24379 		 * the LBA for the track requested so it can be used in the
24380 		 * READ HEADER request
24381 		 *
24382 		 * Note: The MSF bit of the READ HEADER command specifies the
24383 		 * output format. The block address specified in that command
24384 		 * must be in LBA format.
24385 		 */
24386 		cdb[1] = 0;
24387 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24388 		    SD_PATH_STANDARD);
24389 		if (rval != 0) {
24390 			kmem_free(buffer, 12);
24391 			kmem_free(com, sizeof (*com));
24392 			return (rval);
24393 		}
24394 	}
24395 
24396 	/*
24397 	 * Build and send the READ HEADER command to determine the data mode of
24398 	 * the user specified track.
24399 	 */
24400 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
24401 	    (entry->cdte_track != CDROM_LEADOUT)) {
24402 		bzero(cdb, CDB_GROUP1);
24403 		cdb[0] = SCMD_READ_HEADER;
24404 		cdb[2] = buffer[8];
24405 		cdb[3] = buffer[9];
24406 		cdb[4] = buffer[10];
24407 		cdb[5] = buffer[11];
24408 		cdb[8] = 0x08;
24409 		com->uscsi_buflen = 0x08;
24410 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24411 		    SD_PATH_STANDARD);
24412 		if (rval == 0) {
24413 			entry->cdte_datamode = buffer[0];
24414 		} else {
24415 			/*
24416 			 * READ HEADER command failed, since this is
24417 			 * obsoleted in one spec, its better to return
24418 			 * -1 for an invlid track so that we can still
24419 			 * recieve the rest of the TOC data.
24420 			 */
24421 			entry->cdte_datamode = (uchar_t)-1;
24422 		}
24423 	} else {
24424 		entry->cdte_datamode = (uchar_t)-1;
24425 	}
24426 
24427 	kmem_free(buffer, 12);
24428 	kmem_free(com, sizeof (*com));
24429 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
24430 		return (EFAULT);
24431 
24432 	return (rval);
24433 }
24434 
24435 
24436 /*
24437  *    Function: sr_read_tochdr()
24438  *
24439  * Description: This routine is the driver entry point for handling CD-ROM
24440  * 		ioctl requests to read the Table of Contents (TOC) header
24441  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
24442  *		and ending track numbers
24443  *
24444  *   Arguments: dev	- the device 'dev_t'
24445  *		data	- pointer to user provided toc header structure,
24446  *			  specifying the starting and ending track numbers.
24447  *		flag	- this argument is a pass through to ddi_copyxxx()
24448  *			  directly from the mode argument of ioctl().
24449  *
24450  * Return Code: the code returned by sd_send_scsi_cmd()
24451  *		EFAULT if ddi_copyxxx() fails
24452  *		ENXIO if fail ddi_get_soft_state
24453  *		EINVAL if data pointer is NULL
24454  */
24455 
24456 static int
24457 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
24458 {
24459 	struct sd_lun		*un;
24460 	struct uscsi_cmd	*com;
24461 	struct cdrom_tochdr	toc_header;
24462 	struct cdrom_tochdr	*hdr = &toc_header;
24463 	char			cdb[CDB_GROUP1];
24464 	int			rval;
24465 	caddr_t			buffer;
24466 
24467 	if (data == NULL) {
24468 		return (EINVAL);
24469 	}
24470 
24471 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24472 	    (un->un_state == SD_STATE_OFFLINE)) {
24473 		return (ENXIO);
24474 	}
24475 
24476 	buffer = kmem_zalloc(4, KM_SLEEP);
24477 	bzero(cdb, CDB_GROUP1);
24478 	cdb[0] = SCMD_READ_TOC;
24479 	/*
24480 	 * Specifying a track number of 0x00 in the READ TOC command indicates
24481 	 * that the TOC header should be returned
24482 	 */
24483 	cdb[6] = 0x00;
24484 	/*
24485 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
24486 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
24487 	 */
24488 	cdb[8] = 0x04;
24489 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24490 	com->uscsi_cdb	   = cdb;
24491 	com->uscsi_cdblen  = CDB_GROUP1;
24492 	com->uscsi_bufaddr = buffer;
24493 	com->uscsi_buflen  = 0x04;
24494 	com->uscsi_timeout = 300;
24495 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24496 
24497 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24498 	    SD_PATH_STANDARD);
24499 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
24500 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
24501 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
24502 	} else {
24503 		hdr->cdth_trk0 = buffer[2];
24504 		hdr->cdth_trk1 = buffer[3];
24505 	}
24506 	kmem_free(buffer, 4);
24507 	kmem_free(com, sizeof (*com));
24508 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
24509 		return (EFAULT);
24510 	}
24511 	return (rval);
24512 }
24513 
24514 
24515 /*
24516  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
24517  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
24518  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
24519  * digital audio and extended architecture digital audio. These modes are
24520  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
24521  * MMC specs.
24522  *
24523  * In addition to support for the various data formats these routines also
24524  * include support for devices that implement only the direct access READ
24525  * commands (0x08, 0x28), devices that implement the READ_CD commands
24526  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
24527  * READ CDXA commands (0xD8, 0xDB)
24528  */
24529 
24530 /*
24531  *    Function: sr_read_mode1()
24532  *
24533  * Description: This routine is the driver entry point for handling CD-ROM
24534  *		ioctl read mode1 requests (CDROMREADMODE1).
24535  *
24536  *   Arguments: dev	- the device 'dev_t'
24537  *		data	- pointer to user provided cd read structure specifying
24538  *			  the lba buffer address and length.
24539  *		flag	- this argument is a pass through to ddi_copyxxx()
24540  *			  directly from the mode argument of ioctl().
24541  *
24542  * Return Code: the code returned by sd_send_scsi_cmd()
24543  *		EFAULT if ddi_copyxxx() fails
24544  *		ENXIO if fail ddi_get_soft_state
24545  *		EINVAL if data pointer is NULL
24546  */
24547 
24548 static int
24549 sr_read_mode1(dev_t dev, caddr_t data, int flag)
24550 {
24551 	struct sd_lun		*un;
24552 	struct cdrom_read	mode1_struct;
24553 	struct cdrom_read	*mode1 = &mode1_struct;
24554 	int			rval;
24555 #ifdef _MULTI_DATAMODEL
24556 	/* To support ILP32 applications in an LP64 world */
24557 	struct cdrom_read32	cdrom_read32;
24558 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
24559 #endif /* _MULTI_DATAMODEL */
24560 
24561 	if (data == NULL) {
24562 		return (EINVAL);
24563 	}
24564 
24565 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24566 	    (un->un_state == SD_STATE_OFFLINE)) {
24567 		return (ENXIO);
24568 	}
24569 
24570 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
24571 	    "sd_read_mode1: entry: un:0x%p\n", un);
24572 
24573 #ifdef _MULTI_DATAMODEL
24574 	switch (ddi_model_convert_from(flag & FMODELS)) {
24575 	case DDI_MODEL_ILP32:
24576 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
24577 			return (EFAULT);
24578 		}
24579 		/* Convert the ILP32 uscsi data from the application to LP64 */
24580 		cdrom_read32tocdrom_read(cdrd32, mode1);
24581 		break;
24582 	case DDI_MODEL_NONE:
24583 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
24584 			return (EFAULT);
24585 		}
24586 	}
24587 #else /* ! _MULTI_DATAMODEL */
24588 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
24589 		return (EFAULT);
24590 	}
24591 #endif /* _MULTI_DATAMODEL */
24592 
24593 	rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr,
24594 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
24595 
24596 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
24597 	    "sd_read_mode1: exit: un:0x%p\n", un);
24598 
24599 	return (rval);
24600 }
24601 
24602 
24603 /*
24604  *    Function: sr_read_cd_mode2()
24605  *
24606  * Description: This routine is the driver entry point for handling CD-ROM
24607  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
24608  *		support the READ CD (0xBE) command or the 1st generation
24609  *		READ CD (0xD4) command.
24610  *
24611  *   Arguments: dev	- the device 'dev_t'
24612  *		data	- pointer to user provided cd read structure specifying
24613  *			  the lba buffer address and length.
24614  *		flag	- this argument is a pass through to ddi_copyxxx()
24615  *			  directly from the mode argument of ioctl().
24616  *
24617  * Return Code: the code returned by sd_send_scsi_cmd()
24618  *		EFAULT if ddi_copyxxx() fails
24619  *		ENXIO if fail ddi_get_soft_state
24620  *		EINVAL if data pointer is NULL
24621  */
24622 
24623 static int
24624 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
24625 {
24626 	struct sd_lun		*un;
24627 	struct uscsi_cmd	*com;
24628 	struct cdrom_read	mode2_struct;
24629 	struct cdrom_read	*mode2 = &mode2_struct;
24630 	uchar_t			cdb[CDB_GROUP5];
24631 	int			nblocks;
24632 	int			rval;
24633 #ifdef _MULTI_DATAMODEL
24634 	/*  To support ILP32 applications in an LP64 world */
24635 	struct cdrom_read32	cdrom_read32;
24636 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
24637 #endif /* _MULTI_DATAMODEL */
24638 
24639 	if (data == NULL) {
24640 		return (EINVAL);
24641 	}
24642 
24643 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24644 	    (un->un_state == SD_STATE_OFFLINE)) {
24645 		return (ENXIO);
24646 	}
24647 
24648 #ifdef _MULTI_DATAMODEL
24649 	switch (ddi_model_convert_from(flag & FMODELS)) {
24650 	case DDI_MODEL_ILP32:
24651 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
24652 			return (EFAULT);
24653 		}
24654 		/* Convert the ILP32 uscsi data from the application to LP64 */
24655 		cdrom_read32tocdrom_read(cdrd32, mode2);
24656 		break;
24657 	case DDI_MODEL_NONE:
24658 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
24659 			return (EFAULT);
24660 		}
24661 		break;
24662 	}
24663 
24664 #else /* ! _MULTI_DATAMODEL */
24665 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
24666 		return (EFAULT);
24667 	}
24668 #endif /* _MULTI_DATAMODEL */
24669 
24670 	bzero(cdb, sizeof (cdb));
24671 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
24672 		/* Read command supported by 1st generation atapi drives */
24673 		cdb[0] = SCMD_READ_CDD4;
24674 	} else {
24675 		/* Universal CD Access Command */
24676 		cdb[0] = SCMD_READ_CD;
24677 	}
24678 
24679 	/*
24680 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
24681 	 */
24682 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
24683 
24684 	/* set the start address */
24685 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
24686 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
24687 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
24688 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
24689 
24690 	/* set the transfer length */
24691 	nblocks = mode2->cdread_buflen / 2336;
24692 	cdb[6] = (uchar_t)(nblocks >> 16);
24693 	cdb[7] = (uchar_t)(nblocks >> 8);
24694 	cdb[8] = (uchar_t)nblocks;
24695 
24696 	/* set the filter bits */
24697 	cdb[9] = CDROM_READ_CD_USERDATA;
24698 
24699 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24700 	com->uscsi_cdb = (caddr_t)cdb;
24701 	com->uscsi_cdblen = sizeof (cdb);
24702 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
24703 	com->uscsi_buflen = mode2->cdread_buflen;
24704 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24705 
24706 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
24707 	    SD_PATH_STANDARD);
24708 	kmem_free(com, sizeof (*com));
24709 	return (rval);
24710 }
24711 
24712 
24713 /*
24714  *    Function: sr_read_mode2()
24715  *
24716  * Description: This routine is the driver entry point for handling CD-ROM
24717  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
24718  *		do not support the READ CD (0xBE) command.
24719  *
24720  *   Arguments: dev	- the device 'dev_t'
24721  *		data	- pointer to user provided cd read structure specifying
24722  *			  the lba buffer address and length.
24723  *		flag	- this argument is a pass through to ddi_copyxxx()
24724  *			  directly from the mode argument of ioctl().
24725  *
24726  * Return Code: the code returned by sd_send_scsi_cmd()
24727  *		EFAULT if ddi_copyxxx() fails
24728  *		ENXIO if fail ddi_get_soft_state
24729  *		EINVAL if data pointer is NULL
24730  *		EIO if fail to reset block size
24731  *		EAGAIN if commands are in progress in the driver
24732  */
24733 
24734 static int
24735 sr_read_mode2(dev_t dev, caddr_t data, int flag)
24736 {
24737 	struct sd_lun		*un;
24738 	struct cdrom_read	mode2_struct;
24739 	struct cdrom_read	*mode2 = &mode2_struct;
24740 	int			rval;
24741 	uint32_t		restore_blksize;
24742 	struct uscsi_cmd	*com;
24743 	uchar_t			cdb[CDB_GROUP0];
24744 	int			nblocks;
24745 
24746 #ifdef _MULTI_DATAMODEL
24747 	/* To support ILP32 applications in an LP64 world */
24748 	struct cdrom_read32	cdrom_read32;
24749 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
24750 #endif /* _MULTI_DATAMODEL */
24751 
24752 	if (data == NULL) {
24753 		return (EINVAL);
24754 	}
24755 
24756 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24757 	    (un->un_state == SD_STATE_OFFLINE)) {
24758 		return (ENXIO);
24759 	}
24760 
24761 	/*
24762 	 * Because this routine will update the device and driver block size
24763 	 * being used we want to make sure there are no commands in progress.
24764 	 * If commands are in progress the user will have to try again.
24765 	 *
24766 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
24767 	 * in sdioctl to protect commands from sdioctl through to the top of
24768 	 * sd_uscsi_strategy. See sdioctl for details.
24769 	 */
24770 	mutex_enter(SD_MUTEX(un));
24771 	if (un->un_ncmds_in_driver != 1) {
24772 		mutex_exit(SD_MUTEX(un));
24773 		return (EAGAIN);
24774 	}
24775 	mutex_exit(SD_MUTEX(un));
24776 
24777 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
24778 	    "sd_read_mode2: entry: un:0x%p\n", un);
24779 
24780 #ifdef _MULTI_DATAMODEL
24781 	switch (ddi_model_convert_from(flag & FMODELS)) {
24782 	case DDI_MODEL_ILP32:
24783 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
24784 			return (EFAULT);
24785 		}
24786 		/* Convert the ILP32 uscsi data from the application to LP64 */
24787 		cdrom_read32tocdrom_read(cdrd32, mode2);
24788 		break;
24789 	case DDI_MODEL_NONE:
24790 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
24791 			return (EFAULT);
24792 		}
24793 		break;
24794 	}
24795 #else /* ! _MULTI_DATAMODEL */
24796 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
24797 		return (EFAULT);
24798 	}
24799 #endif /* _MULTI_DATAMODEL */
24800 
24801 	/* Store the current target block size for restoration later */
24802 	restore_blksize = un->un_tgt_blocksize;
24803 
24804 	/* Change the device and soft state target block size to 2336 */
24805 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
24806 		rval = EIO;
24807 		goto done;
24808 	}
24809 
24810 
24811 	bzero(cdb, sizeof (cdb));
24812 
24813 	/* set READ operation */
24814 	cdb[0] = SCMD_READ;
24815 
24816 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
24817 	mode2->cdread_lba >>= 2;
24818 
24819 	/* set the start address */
24820 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
24821 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
24822 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
24823 
24824 	/* set the transfer length */
24825 	nblocks = mode2->cdread_buflen / 2336;
24826 	cdb[4] = (uchar_t)nblocks & 0xFF;
24827 
24828 	/* build command */
24829 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24830 	com->uscsi_cdb = (caddr_t)cdb;
24831 	com->uscsi_cdblen = sizeof (cdb);
24832 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
24833 	com->uscsi_buflen = mode2->cdread_buflen;
24834 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24835 
24836 	/*
24837 	 * Issue SCSI command with user space address for read buffer.
24838 	 *
24839 	 * This sends the command through main channel in the driver.
24840 	 *
24841 	 * Since this is accessed via an IOCTL call, we go through the
24842 	 * standard path, so that if the device was powered down, then
24843 	 * it would be 'awakened' to handle the command.
24844 	 */
24845 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
24846 	    SD_PATH_STANDARD);
24847 
24848 	kmem_free(com, sizeof (*com));
24849 
24850 	/* Restore the device and soft state target block size */
24851 	if (sr_sector_mode(dev, restore_blksize) != 0) {
24852 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24853 		    "can't do switch back to mode 1\n");
24854 		/*
24855 		 * If sd_send_scsi_READ succeeded we still need to report
24856 		 * an error because we failed to reset the block size
24857 		 */
24858 		if (rval == 0) {
24859 			rval = EIO;
24860 		}
24861 	}
24862 
24863 done:
24864 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
24865 	    "sd_read_mode2: exit: un:0x%p\n", un);
24866 
24867 	return (rval);
24868 }
24869 
24870 
24871 /*
24872  *    Function: sr_sector_mode()
24873  *
24874  * Description: This utility function is used by sr_read_mode2 to set the target
24875  *		block size based on the user specified size. This is a legacy
24876  *		implementation based upon a vendor specific mode page
24877  *
24878  *   Arguments: dev	- the device 'dev_t'
24879  *		data	- flag indicating if block size is being set to 2336 or
24880  *			  512.
24881  *
24882  * Return Code: the code returned by sd_send_scsi_cmd()
24883  *		EFAULT if ddi_copyxxx() fails
24884  *		ENXIO if fail ddi_get_soft_state
24885  *		EINVAL if data pointer is NULL
24886  */
24887 
24888 static int
24889 sr_sector_mode(dev_t dev, uint32_t blksize)
24890 {
24891 	struct sd_lun	*un;
24892 	uchar_t		*sense;
24893 	uchar_t		*select;
24894 	int		rval;
24895 
24896 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24897 	    (un->un_state == SD_STATE_OFFLINE)) {
24898 		return (ENXIO);
24899 	}
24900 
24901 	sense = kmem_zalloc(20, KM_SLEEP);
24902 
24903 	/* Note: This is a vendor specific mode page (0x81) */
24904 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81,
24905 	    SD_PATH_STANDARD)) != 0) {
24906 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
24907 		    "sr_sector_mode: Mode Sense failed\n");
24908 		kmem_free(sense, 20);
24909 		return (rval);
24910 	}
24911 	select = kmem_zalloc(20, KM_SLEEP);
24912 	select[3] = 0x08;
24913 	select[10] = ((blksize >> 8) & 0xff);
24914 	select[11] = (blksize & 0xff);
24915 	select[12] = 0x01;
24916 	select[13] = 0x06;
24917 	select[14] = sense[14];
24918 	select[15] = sense[15];
24919 	if (blksize == SD_MODE2_BLKSIZE) {
24920 		select[14] |= 0x01;
24921 	}
24922 
24923 	if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20,
24924 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
24925 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
24926 		    "sr_sector_mode: Mode Select failed\n");
24927 	} else {
24928 		/*
24929 		 * Only update the softstate block size if we successfully
24930 		 * changed the device block mode.
24931 		 */
24932 		mutex_enter(SD_MUTEX(un));
24933 		sd_update_block_info(un, blksize, 0);
24934 		mutex_exit(SD_MUTEX(un));
24935 	}
24936 	kmem_free(sense, 20);
24937 	kmem_free(select, 20);
24938 	return (rval);
24939 }
24940 
24941 
24942 /*
24943  *    Function: sr_read_cdda()
24944  *
24945  * Description: This routine is the driver entry point for handling CD-ROM
24946  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
24947  *		the target supports CDDA these requests are handled via a vendor
24948  *		specific command (0xD8) If the target does not support CDDA
24949  *		these requests are handled via the READ CD command (0xBE).
24950  *
24951  *   Arguments: dev	- the device 'dev_t'
24952  *		data	- pointer to user provided CD-DA structure specifying
24953  *			  the track starting address, transfer length, and
24954  *			  subcode options.
24955  *		flag	- this argument is a pass through to ddi_copyxxx()
24956  *			  directly from the mode argument of ioctl().
24957  *
24958  * Return Code: the code returned by sd_send_scsi_cmd()
24959  *		EFAULT if ddi_copyxxx() fails
24960  *		ENXIO if fail ddi_get_soft_state
24961  *		EINVAL if invalid arguments are provided
24962  *		ENOTTY
24963  */
24964 
24965 static int
24966 sr_read_cdda(dev_t dev, caddr_t data, int flag)
24967 {
24968 	struct sd_lun			*un;
24969 	struct uscsi_cmd		*com;
24970 	struct cdrom_cdda		*cdda;
24971 	int				rval;
24972 	size_t				buflen;
24973 	char				cdb[CDB_GROUP5];
24974 
24975 #ifdef _MULTI_DATAMODEL
24976 	/* To support ILP32 applications in an LP64 world */
24977 	struct cdrom_cdda32	cdrom_cdda32;
24978 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
24979 #endif /* _MULTI_DATAMODEL */
24980 
24981 	if (data == NULL) {
24982 		return (EINVAL);
24983 	}
24984 
24985 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24986 		return (ENXIO);
24987 	}
24988 
24989 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
24990 
24991 #ifdef _MULTI_DATAMODEL
24992 	switch (ddi_model_convert_from(flag & FMODELS)) {
24993 	case DDI_MODEL_ILP32:
24994 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
24995 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24996 			    "sr_read_cdda: ddi_copyin Failed\n");
24997 			kmem_free(cdda, sizeof (struct cdrom_cdda));
24998 			return (EFAULT);
24999 		}
25000 		/* Convert the ILP32 uscsi data from the application to LP64 */
25001 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
25002 		break;
25003 	case DDI_MODEL_NONE:
25004 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
25005 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25006 			    "sr_read_cdda: ddi_copyin Failed\n");
25007 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25008 			return (EFAULT);
25009 		}
25010 		break;
25011 	}
25012 #else /* ! _MULTI_DATAMODEL */
25013 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
25014 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25015 		    "sr_read_cdda: ddi_copyin Failed\n");
25016 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25017 		return (EFAULT);
25018 	}
25019 #endif /* _MULTI_DATAMODEL */
25020 
25021 	/*
25022 	 * Since MMC-2 expects max 3 bytes for length, check if the
25023 	 * length input is greater than 3 bytes
25024 	 */
25025 	if ((cdda->cdda_length & 0xFF000000) != 0) {
25026 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
25027 		    "cdrom transfer length too large: %d (limit %d)\n",
25028 		    cdda->cdda_length, 0xFFFFFF);
25029 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25030 		return (EINVAL);
25031 	}
25032 
25033 	switch (cdda->cdda_subcode) {
25034 	case CDROM_DA_NO_SUBCODE:
25035 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
25036 		break;
25037 	case CDROM_DA_SUBQ:
25038 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
25039 		break;
25040 	case CDROM_DA_ALL_SUBCODE:
25041 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
25042 		break;
25043 	case CDROM_DA_SUBCODE_ONLY:
25044 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
25045 		break;
25046 	default:
25047 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25048 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
25049 		    cdda->cdda_subcode);
25050 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25051 		return (EINVAL);
25052 	}
25053 
25054 	/* Build and send the command */
25055 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25056 	bzero(cdb, CDB_GROUP5);
25057 
25058 	if (un->un_f_cfg_cdda == TRUE) {
25059 		cdb[0] = (char)SCMD_READ_CD;
25060 		cdb[1] = 0x04;
25061 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
25062 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
25063 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
25064 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
25065 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
25066 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
25067 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
25068 		cdb[9] = 0x10;
25069 		switch (cdda->cdda_subcode) {
25070 		case CDROM_DA_NO_SUBCODE :
25071 			cdb[10] = 0x0;
25072 			break;
25073 		case CDROM_DA_SUBQ :
25074 			cdb[10] = 0x2;
25075 			break;
25076 		case CDROM_DA_ALL_SUBCODE :
25077 			cdb[10] = 0x1;
25078 			break;
25079 		case CDROM_DA_SUBCODE_ONLY :
25080 			/* FALLTHROUGH */
25081 		default :
25082 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25083 			kmem_free(com, sizeof (*com));
25084 			return (ENOTTY);
25085 		}
25086 	} else {
25087 		cdb[0] = (char)SCMD_READ_CDDA;
25088 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
25089 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
25090 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
25091 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
25092 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
25093 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
25094 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
25095 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
25096 		cdb[10] = cdda->cdda_subcode;
25097 	}
25098 
25099 	com->uscsi_cdb = cdb;
25100 	com->uscsi_cdblen = CDB_GROUP5;
25101 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
25102 	com->uscsi_buflen = buflen;
25103 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25104 
25105 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25106 	    SD_PATH_STANDARD);
25107 
25108 	kmem_free(cdda, sizeof (struct cdrom_cdda));
25109 	kmem_free(com, sizeof (*com));
25110 	return (rval);
25111 }
25112 
25113 
25114 /*
25115  *    Function: sr_read_cdxa()
25116  *
25117  * Description: This routine is the driver entry point for handling CD-ROM
25118  *		ioctl requests to return CD-XA (Extended Architecture) data.
25119  *		(CDROMCDXA).
25120  *
25121  *   Arguments: dev	- the device 'dev_t'
25122  *		data	- pointer to user provided CD-XA structure specifying
25123  *			  the data starting address, transfer length, and format
25124  *		flag	- this argument is a pass through to ddi_copyxxx()
25125  *			  directly from the mode argument of ioctl().
25126  *
25127  * Return Code: the code returned by sd_send_scsi_cmd()
25128  *		EFAULT if ddi_copyxxx() fails
25129  *		ENXIO if fail ddi_get_soft_state
25130  *		EINVAL if data pointer is NULL
25131  */
25132 
25133 static int
25134 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
25135 {
25136 	struct sd_lun		*un;
25137 	struct uscsi_cmd	*com;
25138 	struct cdrom_cdxa	*cdxa;
25139 	int			rval;
25140 	size_t			buflen;
25141 	char			cdb[CDB_GROUP5];
25142 	uchar_t			read_flags;
25143 
25144 #ifdef _MULTI_DATAMODEL
25145 	/* To support ILP32 applications in an LP64 world */
25146 	struct cdrom_cdxa32		cdrom_cdxa32;
25147 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
25148 #endif /* _MULTI_DATAMODEL */
25149 
25150 	if (data == NULL) {
25151 		return (EINVAL);
25152 	}
25153 
25154 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25155 		return (ENXIO);
25156 	}
25157 
25158 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
25159 
25160 #ifdef _MULTI_DATAMODEL
25161 	switch (ddi_model_convert_from(flag & FMODELS)) {
25162 	case DDI_MODEL_ILP32:
25163 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
25164 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25165 			return (EFAULT);
25166 		}
25167 		/*
25168 		 * Convert the ILP32 uscsi data from the
25169 		 * application to LP64 for internal use.
25170 		 */
25171 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
25172 		break;
25173 	case DDI_MODEL_NONE:
25174 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
25175 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25176 			return (EFAULT);
25177 		}
25178 		break;
25179 	}
25180 #else /* ! _MULTI_DATAMODEL */
25181 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
25182 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25183 		return (EFAULT);
25184 	}
25185 #endif /* _MULTI_DATAMODEL */
25186 
25187 	/*
25188 	 * Since MMC-2 expects max 3 bytes for length, check if the
25189 	 * length input is greater than 3 bytes
25190 	 */
25191 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
25192 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
25193 		    "cdrom transfer length too large: %d (limit %d)\n",
25194 		    cdxa->cdxa_length, 0xFFFFFF);
25195 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25196 		return (EINVAL);
25197 	}
25198 
25199 	switch (cdxa->cdxa_format) {
25200 	case CDROM_XA_DATA:
25201 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
25202 		read_flags = 0x10;
25203 		break;
25204 	case CDROM_XA_SECTOR_DATA:
25205 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
25206 		read_flags = 0xf8;
25207 		break;
25208 	case CDROM_XA_DATA_W_ERROR:
25209 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
25210 		read_flags = 0xfc;
25211 		break;
25212 	default:
25213 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25214 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
25215 		    cdxa->cdxa_format);
25216 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25217 		return (EINVAL);
25218 	}
25219 
25220 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25221 	bzero(cdb, CDB_GROUP5);
25222 	if (un->un_f_mmc_cap == TRUE) {
25223 		cdb[0] = (char)SCMD_READ_CD;
25224 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
25225 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
25226 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
25227 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
25228 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
25229 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
25230 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
25231 		cdb[9] = (char)read_flags;
25232 	} else {
25233 		/*
25234 		 * Note: A vendor specific command (0xDB) is being used her to
25235 		 * request a read of all subcodes.
25236 		 */
25237 		cdb[0] = (char)SCMD_READ_CDXA;
25238 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
25239 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
25240 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
25241 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
25242 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
25243 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
25244 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
25245 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
25246 		cdb[10] = cdxa->cdxa_format;
25247 	}
25248 	com->uscsi_cdb	   = cdb;
25249 	com->uscsi_cdblen  = CDB_GROUP5;
25250 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
25251 	com->uscsi_buflen  = buflen;
25252 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25253 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25254 	    SD_PATH_STANDARD);
25255 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25256 	kmem_free(com, sizeof (*com));
25257 	return (rval);
25258 }
25259 
25260 
25261 /*
25262  *    Function: sr_eject()
25263  *
25264  * Description: This routine is the driver entry point for handling CD-ROM
25265  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
25266  *
25267  *   Arguments: dev	- the device 'dev_t'
25268  *
25269  * Return Code: the code returned by sd_send_scsi_cmd()
25270  */
25271 
25272 static int
25273 sr_eject(dev_t dev)
25274 {
25275 	struct sd_lun	*un;
25276 	int		rval;
25277 
25278 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25279 	    (un->un_state == SD_STATE_OFFLINE)) {
25280 		return (ENXIO);
25281 	}
25282 
25283 	/*
25284 	 * To prevent race conditions with the eject
25285 	 * command, keep track of an eject command as
25286 	 * it progresses. If we are already handling
25287 	 * an eject command in the driver for the given
25288 	 * unit and another request to eject is received
25289 	 * immediately return EAGAIN so we don't lose
25290 	 * the command if the current eject command fails.
25291 	 */
25292 	mutex_enter(SD_MUTEX(un));
25293 	if (un->un_f_ejecting == TRUE) {
25294 		mutex_exit(SD_MUTEX(un));
25295 		return (EAGAIN);
25296 	}
25297 	un->un_f_ejecting = TRUE;
25298 	mutex_exit(SD_MUTEX(un));
25299 
25300 	if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
25301 	    SD_PATH_STANDARD)) != 0) {
25302 		mutex_enter(SD_MUTEX(un));
25303 		un->un_f_ejecting = FALSE;
25304 		mutex_exit(SD_MUTEX(un));
25305 		return (rval);
25306 	}
25307 
25308 	rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT,
25309 	    SD_PATH_STANDARD);
25310 
25311 	if (rval == 0) {
25312 		mutex_enter(SD_MUTEX(un));
25313 		sr_ejected(un);
25314 		un->un_mediastate = DKIO_EJECTED;
25315 		un->un_f_ejecting = FALSE;
25316 		cv_broadcast(&un->un_state_cv);
25317 		mutex_exit(SD_MUTEX(un));
25318 	} else {
25319 		mutex_enter(SD_MUTEX(un));
25320 		un->un_f_ejecting = FALSE;
25321 		mutex_exit(SD_MUTEX(un));
25322 	}
25323 	return (rval);
25324 }
25325 
25326 
25327 /*
25328  *    Function: sr_ejected()
25329  *
25330  * Description: This routine updates the soft state structure to invalidate the
25331  *		geometry information after the media has been ejected or a
25332  *		media eject has been detected.
25333  *
25334  *   Arguments: un - driver soft state (unit) structure
25335  */
25336 
25337 static void
25338 sr_ejected(struct sd_lun *un)
25339 {
25340 	struct sd_errstats *stp;
25341 
25342 	ASSERT(un != NULL);
25343 	ASSERT(mutex_owned(SD_MUTEX(un)));
25344 
25345 	un->un_f_blockcount_is_valid	= FALSE;
25346 	un->un_f_tgt_blocksize_is_valid	= FALSE;
25347 	mutex_exit(SD_MUTEX(un));
25348 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
25349 	mutex_enter(SD_MUTEX(un));
25350 
25351 	if (un->un_errstats != NULL) {
25352 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
25353 		stp->sd_capacity.value.ui64 = 0;
25354 	}
25355 }
25356 
25357 
25358 /*
25359  *    Function: sr_check_wp()
25360  *
25361  * Description: This routine checks the write protection of a removable
25362  *      media disk and hotpluggable devices via the write protect bit of
25363  *      the Mode Page Header device specific field. Some devices choke
25364  *      on unsupported mode page. In order to workaround this issue,
25365  *      this routine has been implemented to use 0x3f mode page(request
25366  *      for all pages) for all device types.
25367  *
25368  *   Arguments: dev		- the device 'dev_t'
25369  *
25370  * Return Code: int indicating if the device is write protected (1) or not (0)
25371  *
25372  *     Context: Kernel thread.
25373  *
25374  */
25375 
25376 static int
25377 sr_check_wp(dev_t dev)
25378 {
25379 	struct sd_lun	*un;
25380 	uchar_t		device_specific;
25381 	uchar_t		*sense;
25382 	int		hdrlen;
25383 	int		rval = FALSE;
25384 
25385 	/*
25386 	 * Note: The return codes for this routine should be reworked to
25387 	 * properly handle the case of a NULL softstate.
25388 	 */
25389 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25390 		return (FALSE);
25391 	}
25392 
25393 	if (un->un_f_cfg_is_atapi == TRUE) {
25394 		/*
25395 		 * The mode page contents are not required; set the allocation
25396 		 * length for the mode page header only
25397 		 */
25398 		hdrlen = MODE_HEADER_LENGTH_GRP2;
25399 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
25400 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen,
25401 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
25402 			goto err_exit;
25403 		device_specific =
25404 		    ((struct mode_header_grp2 *)sense)->device_specific;
25405 	} else {
25406 		hdrlen = MODE_HEADER_LENGTH;
25407 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
25408 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen,
25409 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
25410 			goto err_exit;
25411 		device_specific =
25412 		    ((struct mode_header *)sense)->device_specific;
25413 	}
25414 
25415 	/*
25416 	 * Write protect mode sense failed; not all disks
25417 	 * understand this query. Return FALSE assuming that
25418 	 * these devices are not writable.
25419 	 */
25420 	if (device_specific & WRITE_PROTECT) {
25421 		rval = TRUE;
25422 	}
25423 
25424 err_exit:
25425 	kmem_free(sense, hdrlen);
25426 	return (rval);
25427 }
25428 
25429 /*
25430  *    Function: sr_volume_ctrl()
25431  *
25432  * Description: This routine is the driver entry point for handling CD-ROM
25433  *		audio output volume ioctl requests. (CDROMVOLCTRL)
25434  *
25435  *   Arguments: dev	- the device 'dev_t'
25436  *		data	- pointer to user audio volume control structure
25437  *		flag	- this argument is a pass through to ddi_copyxxx()
25438  *			  directly from the mode argument of ioctl().
25439  *
25440  * Return Code: the code returned by sd_send_scsi_cmd()
25441  *		EFAULT if ddi_copyxxx() fails
25442  *		ENXIO if fail ddi_get_soft_state
25443  *		EINVAL if data pointer is NULL
25444  *
25445  */
25446 
25447 static int
25448 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
25449 {
25450 	struct sd_lun		*un;
25451 	struct cdrom_volctrl    volume;
25452 	struct cdrom_volctrl    *vol = &volume;
25453 	uchar_t			*sense_page;
25454 	uchar_t			*select_page;
25455 	uchar_t			*sense;
25456 	uchar_t			*select;
25457 	int			sense_buflen;
25458 	int			select_buflen;
25459 	int			rval;
25460 
25461 	if (data == NULL) {
25462 		return (EINVAL);
25463 	}
25464 
25465 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25466 	    (un->un_state == SD_STATE_OFFLINE)) {
25467 		return (ENXIO);
25468 	}
25469 
25470 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
25471 		return (EFAULT);
25472 	}
25473 
25474 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
25475 		struct mode_header_grp2		*sense_mhp;
25476 		struct mode_header_grp2		*select_mhp;
25477 		int				bd_len;
25478 
25479 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
25480 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
25481 		    MODEPAGE_AUDIO_CTRL_LEN;
25482 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
25483 		select = kmem_zalloc(select_buflen, KM_SLEEP);
25484 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
25485 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
25486 		    SD_PATH_STANDARD)) != 0) {
25487 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
25488 			    "sr_volume_ctrl: Mode Sense Failed\n");
25489 			kmem_free(sense, sense_buflen);
25490 			kmem_free(select, select_buflen);
25491 			return (rval);
25492 		}
25493 		sense_mhp = (struct mode_header_grp2 *)sense;
25494 		select_mhp = (struct mode_header_grp2 *)select;
25495 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
25496 		    sense_mhp->bdesc_length_lo;
25497 		if (bd_len > MODE_BLK_DESC_LENGTH) {
25498 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25499 			    "sr_volume_ctrl: Mode Sense returned invalid "
25500 			    "block descriptor length\n");
25501 			kmem_free(sense, sense_buflen);
25502 			kmem_free(select, select_buflen);
25503 			return (EIO);
25504 		}
25505 		sense_page = (uchar_t *)
25506 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
25507 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
25508 		select_mhp->length_msb = 0;
25509 		select_mhp->length_lsb = 0;
25510 		select_mhp->bdesc_length_hi = 0;
25511 		select_mhp->bdesc_length_lo = 0;
25512 	} else {
25513 		struct mode_header		*sense_mhp, *select_mhp;
25514 
25515 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
25516 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
25517 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
25518 		select = kmem_zalloc(select_buflen, KM_SLEEP);
25519 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
25520 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
25521 		    SD_PATH_STANDARD)) != 0) {
25522 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25523 			    "sr_volume_ctrl: Mode Sense Failed\n");
25524 			kmem_free(sense, sense_buflen);
25525 			kmem_free(select, select_buflen);
25526 			return (rval);
25527 		}
25528 		sense_mhp  = (struct mode_header *)sense;
25529 		select_mhp = (struct mode_header *)select;
25530 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
25531 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25532 			    "sr_volume_ctrl: Mode Sense returned invalid "
25533 			    "block descriptor length\n");
25534 			kmem_free(sense, sense_buflen);
25535 			kmem_free(select, select_buflen);
25536 			return (EIO);
25537 		}
25538 		sense_page = (uchar_t *)
25539 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
25540 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
25541 		select_mhp->length = 0;
25542 		select_mhp->bdesc_length = 0;
25543 	}
25544 	/*
25545 	 * Note: An audio control data structure could be created and overlayed
25546 	 * on the following in place of the array indexing method implemented.
25547 	 */
25548 
25549 	/* Build the select data for the user volume data */
25550 	select_page[0] = MODEPAGE_AUDIO_CTRL;
25551 	select_page[1] = 0xE;
25552 	/* Set the immediate bit */
25553 	select_page[2] = 0x04;
25554 	/* Zero out reserved fields */
25555 	select_page[3] = 0x00;
25556 	select_page[4] = 0x00;
25557 	/* Return sense data for fields not to be modified */
25558 	select_page[5] = sense_page[5];
25559 	select_page[6] = sense_page[6];
25560 	select_page[7] = sense_page[7];
25561 	/* Set the user specified volume levels for channel 0 and 1 */
25562 	select_page[8] = 0x01;
25563 	select_page[9] = vol->channel0;
25564 	select_page[10] = 0x02;
25565 	select_page[11] = vol->channel1;
25566 	/* Channel 2 and 3 are currently unsupported so return the sense data */
25567 	select_page[12] = sense_page[12];
25568 	select_page[13] = sense_page[13];
25569 	select_page[14] = sense_page[14];
25570 	select_page[15] = sense_page[15];
25571 
25572 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
25573 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select,
25574 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
25575 	} else {
25576 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
25577 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
25578 	}
25579 
25580 	kmem_free(sense, sense_buflen);
25581 	kmem_free(select, select_buflen);
25582 	return (rval);
25583 }
25584 
25585 
25586 /*
25587  *    Function: sr_read_sony_session_offset()
25588  *
25589  * Description: This routine is the driver entry point for handling CD-ROM
25590  *		ioctl requests for session offset information. (CDROMREADOFFSET)
25591  *		The address of the first track in the last session of a
25592  *		multi-session CD-ROM is returned
25593  *
25594  *		Note: This routine uses a vendor specific key value in the
25595  *		command control field without implementing any vendor check here
25596  *		or in the ioctl routine.
25597  *
25598  *   Arguments: dev	- the device 'dev_t'
25599  *		data	- pointer to an int to hold the requested address
25600  *		flag	- this argument is a pass through to ddi_copyxxx()
25601  *			  directly from the mode argument of ioctl().
25602  *
25603  * Return Code: the code returned by sd_send_scsi_cmd()
25604  *		EFAULT if ddi_copyxxx() fails
25605  *		ENXIO if fail ddi_get_soft_state
25606  *		EINVAL if data pointer is NULL
25607  */
25608 
25609 static int
25610 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
25611 {
25612 	struct sd_lun		*un;
25613 	struct uscsi_cmd	*com;
25614 	caddr_t			buffer;
25615 	char			cdb[CDB_GROUP1];
25616 	int			session_offset = 0;
25617 	int			rval;
25618 
25619 	if (data == NULL) {
25620 		return (EINVAL);
25621 	}
25622 
25623 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25624 	    (un->un_state == SD_STATE_OFFLINE)) {
25625 		return (ENXIO);
25626 	}
25627 
25628 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
25629 	bzero(cdb, CDB_GROUP1);
25630 	cdb[0] = SCMD_READ_TOC;
25631 	/*
25632 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
25633 	 * (4 byte TOC response header + 8 byte response data)
25634 	 */
25635 	cdb[8] = SONY_SESSION_OFFSET_LEN;
25636 	/* Byte 9 is the control byte. A vendor specific value is used */
25637 	cdb[9] = SONY_SESSION_OFFSET_KEY;
25638 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25639 	com->uscsi_cdb = cdb;
25640 	com->uscsi_cdblen = CDB_GROUP1;
25641 	com->uscsi_bufaddr = buffer;
25642 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
25643 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25644 
25645 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25646 	    SD_PATH_STANDARD);
25647 	if (rval != 0) {
25648 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
25649 		kmem_free(com, sizeof (*com));
25650 		return (rval);
25651 	}
25652 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
25653 		session_offset =
25654 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
25655 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
25656 		/*
25657 		 * Offset returned offset in current lbasize block's. Convert to
25658 		 * 2k block's to return to the user
25659 		 */
25660 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
25661 			session_offset >>= 2;
25662 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
25663 			session_offset >>= 1;
25664 		}
25665 	}
25666 
25667 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
25668 		rval = EFAULT;
25669 	}
25670 
25671 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
25672 	kmem_free(com, sizeof (*com));
25673 	return (rval);
25674 }
25675 
25676 
25677 /*
25678  *    Function: sd_wm_cache_constructor()
25679  *
25680  * Description: Cache Constructor for the wmap cache for the read/modify/write
25681  * 		devices.
25682  *
25683  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
25684  *		un	- sd_lun structure for the device.
25685  *		flag	- the km flags passed to constructor
25686  *
25687  * Return Code: 0 on success.
25688  *		-1 on failure.
25689  */
25690 
25691 /*ARGSUSED*/
25692 static int
25693 sd_wm_cache_constructor(void *wm, void *un, int flags)
25694 {
25695 	bzero(wm, sizeof (struct sd_w_map));
25696 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
25697 	return (0);
25698 }
25699 
25700 
25701 /*
25702  *    Function: sd_wm_cache_destructor()
25703  *
25704  * Description: Cache destructor for the wmap cache for the read/modify/write
25705  * 		devices.
25706  *
25707  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
25708  *		un	- sd_lun structure for the device.
25709  */
25710 /*ARGSUSED*/
25711 static void
25712 sd_wm_cache_destructor(void *wm, void *un)
25713 {
25714 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
25715 }
25716 
25717 
25718 /*
25719  *    Function: sd_range_lock()
25720  *
25721  * Description: Lock the range of blocks specified as parameter to ensure
25722  *		that read, modify write is atomic and no other i/o writes
25723  *		to the same location. The range is specified in terms
25724  *		of start and end blocks. Block numbers are the actual
25725  *		media block numbers and not system.
25726  *
25727  *   Arguments: un	- sd_lun structure for the device.
25728  *		startb - The starting block number
25729  *		endb - The end block number
25730  *		typ - type of i/o - simple/read_modify_write
25731  *
25732  * Return Code: wm  - pointer to the wmap structure.
25733  *
25734  *     Context: This routine can sleep.
25735  */
25736 
25737 static struct sd_w_map *
25738 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
25739 {
25740 	struct sd_w_map *wmp = NULL;
25741 	struct sd_w_map *sl_wmp = NULL;
25742 	struct sd_w_map *tmp_wmp;
25743 	wm_state state = SD_WM_CHK_LIST;
25744 
25745 
25746 	ASSERT(un != NULL);
25747 	ASSERT(!mutex_owned(SD_MUTEX(un)));
25748 
25749 	mutex_enter(SD_MUTEX(un));
25750 
25751 	while (state != SD_WM_DONE) {
25752 
25753 		switch (state) {
25754 		case SD_WM_CHK_LIST:
25755 			/*
25756 			 * This is the starting state. Check the wmap list
25757 			 * to see if the range is currently available.
25758 			 */
25759 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
25760 				/*
25761 				 * If this is a simple write and no rmw
25762 				 * i/o is pending then try to lock the
25763 				 * range as the range should be available.
25764 				 */
25765 				state = SD_WM_LOCK_RANGE;
25766 			} else {
25767 				tmp_wmp = sd_get_range(un, startb, endb);
25768 				if (tmp_wmp != NULL) {
25769 					if ((wmp != NULL) && ONLIST(un, wmp)) {
25770 						/*
25771 						 * Should not keep onlist wmps
25772 						 * while waiting this macro
25773 						 * will also do wmp = NULL;
25774 						 */
25775 						FREE_ONLIST_WMAP(un, wmp);
25776 					}
25777 					/*
25778 					 * sl_wmp is the wmap on which wait
25779 					 * is done, since the tmp_wmp points
25780 					 * to the inuse wmap, set sl_wmp to
25781 					 * tmp_wmp and change the state to sleep
25782 					 */
25783 					sl_wmp = tmp_wmp;
25784 					state = SD_WM_WAIT_MAP;
25785 				} else {
25786 					state = SD_WM_LOCK_RANGE;
25787 				}
25788 
25789 			}
25790 			break;
25791 
25792 		case SD_WM_LOCK_RANGE:
25793 			ASSERT(un->un_wm_cache);
25794 			/*
25795 			 * The range need to be locked, try to get a wmap.
25796 			 * First attempt it with NO_SLEEP, want to avoid a sleep
25797 			 * if possible as we will have to release the sd mutex
25798 			 * if we have to sleep.
25799 			 */
25800 			if (wmp == NULL)
25801 				wmp = kmem_cache_alloc(un->un_wm_cache,
25802 				    KM_NOSLEEP);
25803 			if (wmp == NULL) {
25804 				mutex_exit(SD_MUTEX(un));
25805 				_NOTE(DATA_READABLE_WITHOUT_LOCK
25806 				    (sd_lun::un_wm_cache))
25807 				wmp = kmem_cache_alloc(un->un_wm_cache,
25808 				    KM_SLEEP);
25809 				mutex_enter(SD_MUTEX(un));
25810 				/*
25811 				 * we released the mutex so recheck and go to
25812 				 * check list state.
25813 				 */
25814 				state = SD_WM_CHK_LIST;
25815 			} else {
25816 				/*
25817 				 * We exit out of state machine since we
25818 				 * have the wmap. Do the housekeeping first.
25819 				 * place the wmap on the wmap list if it is not
25820 				 * on it already and then set the state to done.
25821 				 */
25822 				wmp->wm_start = startb;
25823 				wmp->wm_end = endb;
25824 				wmp->wm_flags = typ | SD_WM_BUSY;
25825 				if (typ & SD_WTYPE_RMW) {
25826 					un->un_rmw_count++;
25827 				}
25828 				/*
25829 				 * If not already on the list then link
25830 				 */
25831 				if (!ONLIST(un, wmp)) {
25832 					wmp->wm_next = un->un_wm;
25833 					wmp->wm_prev = NULL;
25834 					if (wmp->wm_next)
25835 						wmp->wm_next->wm_prev = wmp;
25836 					un->un_wm = wmp;
25837 				}
25838 				state = SD_WM_DONE;
25839 			}
25840 			break;
25841 
25842 		case SD_WM_WAIT_MAP:
25843 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
25844 			/*
25845 			 * Wait is done on sl_wmp, which is set in the
25846 			 * check_list state.
25847 			 */
25848 			sl_wmp->wm_wanted_count++;
25849 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
25850 			sl_wmp->wm_wanted_count--;
25851 			/*
25852 			 * We can reuse the memory from the completed sl_wmp
25853 			 * lock range for our new lock, but only if noone is
25854 			 * waiting for it.
25855 			 */
25856 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
25857 			if (sl_wmp->wm_wanted_count == 0) {
25858 				if (wmp != NULL)
25859 					CHK_N_FREEWMP(un, wmp);
25860 				wmp = sl_wmp;
25861 			}
25862 			sl_wmp = NULL;
25863 			/*
25864 			 * After waking up, need to recheck for availability of
25865 			 * range.
25866 			 */
25867 			state = SD_WM_CHK_LIST;
25868 			break;
25869 
25870 		default:
25871 			panic("sd_range_lock: "
25872 			    "Unknown state %d in sd_range_lock", state);
25873 			/*NOTREACHED*/
25874 		} /* switch(state) */
25875 
25876 	} /* while(state != SD_WM_DONE) */
25877 
25878 	mutex_exit(SD_MUTEX(un));
25879 
25880 	ASSERT(wmp != NULL);
25881 
25882 	return (wmp);
25883 }
25884 
25885 
25886 /*
25887  *    Function: sd_get_range()
25888  *
25889  * Description: Find if there any overlapping I/O to this one
25890  *		Returns the write-map of 1st such I/O, NULL otherwise.
25891  *
25892  *   Arguments: un	- sd_lun structure for the device.
25893  *		startb - The starting block number
25894  *		endb - The end block number
25895  *
25896  * Return Code: wm  - pointer to the wmap structure.
25897  */
25898 
25899 static struct sd_w_map *
25900 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
25901 {
25902 	struct sd_w_map *wmp;
25903 
25904 	ASSERT(un != NULL);
25905 
25906 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
25907 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
25908 			continue;
25909 		}
25910 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
25911 			break;
25912 		}
25913 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
25914 			break;
25915 		}
25916 	}
25917 
25918 	return (wmp);
25919 }
25920 
25921 
25922 /*
25923  *    Function: sd_free_inlist_wmap()
25924  *
25925  * Description: Unlink and free a write map struct.
25926  *
25927  *   Arguments: un      - sd_lun structure for the device.
25928  *		wmp	- sd_w_map which needs to be unlinked.
25929  */
25930 
25931 static void
25932 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
25933 {
25934 	ASSERT(un != NULL);
25935 
25936 	if (un->un_wm == wmp) {
25937 		un->un_wm = wmp->wm_next;
25938 	} else {
25939 		wmp->wm_prev->wm_next = wmp->wm_next;
25940 	}
25941 
25942 	if (wmp->wm_next) {
25943 		wmp->wm_next->wm_prev = wmp->wm_prev;
25944 	}
25945 
25946 	wmp->wm_next = wmp->wm_prev = NULL;
25947 
25948 	kmem_cache_free(un->un_wm_cache, wmp);
25949 }
25950 
25951 
25952 /*
25953  *    Function: sd_range_unlock()
25954  *
25955  * Description: Unlock the range locked by wm.
25956  *		Free write map if nobody else is waiting on it.
25957  *
25958  *   Arguments: un      - sd_lun structure for the device.
25959  *              wmp     - sd_w_map which needs to be unlinked.
25960  */
25961 
25962 static void
25963 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
25964 {
25965 	ASSERT(un != NULL);
25966 	ASSERT(wm != NULL);
25967 	ASSERT(!mutex_owned(SD_MUTEX(un)));
25968 
25969 	mutex_enter(SD_MUTEX(un));
25970 
25971 	if (wm->wm_flags & SD_WTYPE_RMW) {
25972 		un->un_rmw_count--;
25973 	}
25974 
25975 	if (wm->wm_wanted_count) {
25976 		wm->wm_flags = 0;
25977 		/*
25978 		 * Broadcast that the wmap is available now.
25979 		 */
25980 		cv_broadcast(&wm->wm_avail);
25981 	} else {
25982 		/*
25983 		 * If no one is waiting on the map, it should be free'ed.
25984 		 */
25985 		sd_free_inlist_wmap(un, wm);
25986 	}
25987 
25988 	mutex_exit(SD_MUTEX(un));
25989 }
25990 
25991 
25992 /*
25993  *    Function: sd_read_modify_write_task
25994  *
25995  * Description: Called from a taskq thread to initiate the write phase of
25996  *		a read-modify-write request.  This is used for targets where
25997  *		un->un_sys_blocksize != un->un_tgt_blocksize.
25998  *
25999  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
26000  *
26001  *     Context: Called under taskq thread context.
26002  */
26003 
26004 static void
26005 sd_read_modify_write_task(void *arg)
26006 {
26007 	struct sd_mapblocksize_info	*bsp;
26008 	struct buf	*bp;
26009 	struct sd_xbuf	*xp;
26010 	struct sd_lun	*un;
26011 
26012 	bp = arg;	/* The bp is given in arg */
26013 	ASSERT(bp != NULL);
26014 
26015 	/* Get the pointer to the layer-private data struct */
26016 	xp = SD_GET_XBUF(bp);
26017 	ASSERT(xp != NULL);
26018 	bsp = xp->xb_private;
26019 	ASSERT(bsp != NULL);
26020 
26021 	un = SD_GET_UN(bp);
26022 	ASSERT(un != NULL);
26023 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26024 
26025 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
26026 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
26027 
26028 	/*
26029 	 * This is the write phase of a read-modify-write request, called
26030 	 * under the context of a taskq thread in response to the completion
26031 	 * of the read portion of the rmw request completing under interrupt
26032 	 * context. The write request must be sent from here down the iostart
26033 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
26034 	 * we use the layer index saved in the layer-private data area.
26035 	 */
26036 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
26037 
26038 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
26039 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
26040 }
26041 
26042 
26043 /*
26044  *    Function: sddump_do_read_of_rmw()
26045  *
26046  * Description: This routine will be called from sddump, If sddump is called
26047  *		with an I/O which not aligned on device blocksize boundary
26048  *		then the write has to be converted to read-modify-write.
26049  *		Do the read part here in order to keep sddump simple.
26050  *		Note - That the sd_mutex is held across the call to this
26051  *		routine.
26052  *
26053  *   Arguments: un	- sd_lun
26054  *		blkno	- block number in terms of media block size.
26055  *		nblk	- number of blocks.
26056  *		bpp	- pointer to pointer to the buf structure. On return
26057  *			from this function, *bpp points to the valid buffer
26058  *			to which the write has to be done.
26059  *
26060  * Return Code: 0 for success or errno-type return code
26061  */
26062 
26063 static int
26064 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
26065 	struct buf **bpp)
26066 {
26067 	int err;
26068 	int i;
26069 	int rval;
26070 	struct buf *bp;
26071 	struct scsi_pkt *pkt = NULL;
26072 	uint32_t target_blocksize;
26073 
26074 	ASSERT(un != NULL);
26075 	ASSERT(mutex_owned(SD_MUTEX(un)));
26076 
26077 	target_blocksize = un->un_tgt_blocksize;
26078 
26079 	mutex_exit(SD_MUTEX(un));
26080 
26081 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
26082 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
26083 	if (bp == NULL) {
26084 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26085 		    "no resources for dumping; giving up");
26086 		err = ENOMEM;
26087 		goto done;
26088 	}
26089 
26090 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
26091 	    blkno, nblk);
26092 	if (rval != 0) {
26093 		scsi_free_consistent_buf(bp);
26094 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26095 		    "no resources for dumping; giving up");
26096 		err = ENOMEM;
26097 		goto done;
26098 	}
26099 
26100 	pkt->pkt_flags |= FLAG_NOINTR;
26101 
26102 	err = EIO;
26103 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26104 
26105 		/*
26106 		 * Scsi_poll returns 0 (success) if the command completes and
26107 		 * the status block is STATUS_GOOD.  We should only check
26108 		 * errors if this condition is not true.  Even then we should
26109 		 * send our own request sense packet only if we have a check
26110 		 * condition and auto request sense has not been performed by
26111 		 * the hba.
26112 		 */
26113 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
26114 
26115 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
26116 			err = 0;
26117 			break;
26118 		}
26119 
26120 		/*
26121 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
26122 		 * no need to read RQS data.
26123 		 */
26124 		if (pkt->pkt_reason == CMD_DEV_GONE) {
26125 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26126 			    "Device is gone\n");
26127 			break;
26128 		}
26129 
26130 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
26131 			SD_INFO(SD_LOG_DUMP, un,
26132 			    "sddump: read failed with CHECK, try # %d\n", i);
26133 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
26134 				(void) sd_send_polled_RQS(un);
26135 			}
26136 
26137 			continue;
26138 		}
26139 
26140 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
26141 			int reset_retval = 0;
26142 
26143 			SD_INFO(SD_LOG_DUMP, un,
26144 			    "sddump: read failed with BUSY, try # %d\n", i);
26145 
26146 			if (un->un_f_lun_reset_enabled == TRUE) {
26147 				reset_retval = scsi_reset(SD_ADDRESS(un),
26148 				    RESET_LUN);
26149 			}
26150 			if (reset_retval == 0) {
26151 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26152 			}
26153 			(void) sd_send_polled_RQS(un);
26154 
26155 		} else {
26156 			SD_INFO(SD_LOG_DUMP, un,
26157 			    "sddump: read failed with 0x%x, try # %d\n",
26158 			    SD_GET_PKT_STATUS(pkt), i);
26159 			mutex_enter(SD_MUTEX(un));
26160 			sd_reset_target(un, pkt);
26161 			mutex_exit(SD_MUTEX(un));
26162 		}
26163 
26164 		/*
26165 		 * If we are not getting anywhere with lun/target resets,
26166 		 * let's reset the bus.
26167 		 */
26168 		if (i > SD_NDUMP_RETRIES/2) {
26169 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26170 			(void) sd_send_polled_RQS(un);
26171 		}
26172 
26173 	}
26174 	scsi_destroy_pkt(pkt);
26175 
26176 	if (err != 0) {
26177 		scsi_free_consistent_buf(bp);
26178 		*bpp = NULL;
26179 	} else {
26180 		*bpp = bp;
26181 	}
26182 
26183 done:
26184 	mutex_enter(SD_MUTEX(un));
26185 	return (err);
26186 }
26187 
26188 
26189 /*
26190  *    Function: sd_failfast_flushq
26191  *
26192  * Description: Take all bp's on the wait queue that have B_FAILFAST set
26193  *		in b_flags and move them onto the failfast queue, then kick
26194  *		off a thread to return all bp's on the failfast queue to
26195  *		their owners with an error set.
26196  *
26197  *   Arguments: un - pointer to the soft state struct for the instance.
26198  *
26199  *     Context: may execute in interrupt context.
26200  */
26201 
26202 static void
26203 sd_failfast_flushq(struct sd_lun *un)
26204 {
26205 	struct buf *bp;
26206 	struct buf *next_waitq_bp;
26207 	struct buf *prev_waitq_bp = NULL;
26208 
26209 	ASSERT(un != NULL);
26210 	ASSERT(mutex_owned(SD_MUTEX(un)));
26211 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
26212 	ASSERT(un->un_failfast_bp == NULL);
26213 
26214 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
26215 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
26216 
26217 	/*
26218 	 * Check if we should flush all bufs when entering failfast state, or
26219 	 * just those with B_FAILFAST set.
26220 	 */
26221 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
26222 		/*
26223 		 * Move *all* bp's on the wait queue to the failfast flush
26224 		 * queue, including those that do NOT have B_FAILFAST set.
26225 		 */
26226 		if (un->un_failfast_headp == NULL) {
26227 			ASSERT(un->un_failfast_tailp == NULL);
26228 			un->un_failfast_headp = un->un_waitq_headp;
26229 		} else {
26230 			ASSERT(un->un_failfast_tailp != NULL);
26231 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
26232 		}
26233 
26234 		un->un_failfast_tailp = un->un_waitq_tailp;
26235 
26236 		/* update kstat for each bp moved out of the waitq */
26237 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
26238 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
26239 		}
26240 
26241 		/* empty the waitq */
26242 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
26243 
26244 	} else {
26245 		/*
26246 		 * Go thru the wait queue, pick off all entries with
26247 		 * B_FAILFAST set, and move these onto the failfast queue.
26248 		 */
26249 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
26250 			/*
26251 			 * Save the pointer to the next bp on the wait queue,
26252 			 * so we get to it on the next iteration of this loop.
26253 			 */
26254 			next_waitq_bp = bp->av_forw;
26255 
26256 			/*
26257 			 * If this bp from the wait queue does NOT have
26258 			 * B_FAILFAST set, just move on to the next element
26259 			 * in the wait queue. Note, this is the only place
26260 			 * where it is correct to set prev_waitq_bp.
26261 			 */
26262 			if ((bp->b_flags & B_FAILFAST) == 0) {
26263 				prev_waitq_bp = bp;
26264 				continue;
26265 			}
26266 
26267 			/*
26268 			 * Remove the bp from the wait queue.
26269 			 */
26270 			if (bp == un->un_waitq_headp) {
26271 				/* The bp is the first element of the waitq. */
26272 				un->un_waitq_headp = next_waitq_bp;
26273 				if (un->un_waitq_headp == NULL) {
26274 					/* The wait queue is now empty */
26275 					un->un_waitq_tailp = NULL;
26276 				}
26277 			} else {
26278 				/*
26279 				 * The bp is either somewhere in the middle
26280 				 * or at the end of the wait queue.
26281 				 */
26282 				ASSERT(un->un_waitq_headp != NULL);
26283 				ASSERT(prev_waitq_bp != NULL);
26284 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
26285 				    == 0);
26286 				if (bp == un->un_waitq_tailp) {
26287 					/* bp is the last entry on the waitq. */
26288 					ASSERT(next_waitq_bp == NULL);
26289 					un->un_waitq_tailp = prev_waitq_bp;
26290 				}
26291 				prev_waitq_bp->av_forw = next_waitq_bp;
26292 			}
26293 			bp->av_forw = NULL;
26294 
26295 			/*
26296 			 * update kstat since the bp is moved out of
26297 			 * the waitq
26298 			 */
26299 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
26300 
26301 			/*
26302 			 * Now put the bp onto the failfast queue.
26303 			 */
26304 			if (un->un_failfast_headp == NULL) {
26305 				/* failfast queue is currently empty */
26306 				ASSERT(un->un_failfast_tailp == NULL);
26307 				un->un_failfast_headp =
26308 				    un->un_failfast_tailp = bp;
26309 			} else {
26310 				/* Add the bp to the end of the failfast q */
26311 				ASSERT(un->un_failfast_tailp != NULL);
26312 				ASSERT(un->un_failfast_tailp->b_flags &
26313 				    B_FAILFAST);
26314 				un->un_failfast_tailp->av_forw = bp;
26315 				un->un_failfast_tailp = bp;
26316 			}
26317 		}
26318 	}
26319 
26320 	/*
26321 	 * Now return all bp's on the failfast queue to their owners.
26322 	 */
26323 	while ((bp = un->un_failfast_headp) != NULL) {
26324 
26325 		un->un_failfast_headp = bp->av_forw;
26326 		if (un->un_failfast_headp == NULL) {
26327 			un->un_failfast_tailp = NULL;
26328 		}
26329 
26330 		/*
26331 		 * We want to return the bp with a failure error code, but
26332 		 * we do not want a call to sd_start_cmds() to occur here,
26333 		 * so use sd_return_failed_command_no_restart() instead of
26334 		 * sd_return_failed_command().
26335 		 */
26336 		sd_return_failed_command_no_restart(un, bp, EIO);
26337 	}
26338 
26339 	/* Flush the xbuf queues if required. */
26340 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
26341 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
26342 	}
26343 
26344 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
26345 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
26346 }
26347 
26348 
26349 /*
26350  *    Function: sd_failfast_flushq_callback
26351  *
26352  * Description: Return TRUE if the given bp meets the criteria for failfast
26353  *		flushing. Used with ddi_xbuf_flushq(9F).
26354  *
26355  *   Arguments: bp - ptr to buf struct to be examined.
26356  *
26357  *     Context: Any
26358  */
26359 
26360 static int
26361 sd_failfast_flushq_callback(struct buf *bp)
26362 {
26363 	/*
26364 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
26365 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
26366 	 */
26367 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
26368 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
26369 }
26370 
26371 
26372 
26373 #if defined(__i386) || defined(__amd64)
26374 /*
26375  * Function: sd_setup_next_xfer
26376  *
26377  * Description: Prepare next I/O operation using DMA_PARTIAL
26378  *
26379  */
26380 
26381 static int
26382 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
26383     struct scsi_pkt *pkt, struct sd_xbuf *xp)
26384 {
26385 	ssize_t	num_blks_not_xfered;
26386 	daddr_t	strt_blk_num;
26387 	ssize_t	bytes_not_xfered;
26388 	int	rval;
26389 
26390 	ASSERT(pkt->pkt_resid == 0);
26391 
26392 	/*
26393 	 * Calculate next block number and amount to be transferred.
26394 	 *
26395 	 * How much data NOT transfered to the HBA yet.
26396 	 */
26397 	bytes_not_xfered = xp->xb_dma_resid;
26398 
26399 	/*
26400 	 * figure how many blocks NOT transfered to the HBA yet.
26401 	 */
26402 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
26403 
26404 	/*
26405 	 * set starting block number to the end of what WAS transfered.
26406 	 */
26407 	strt_blk_num = xp->xb_blkno +
26408 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
26409 
26410 	/*
26411 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
26412 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
26413 	 * the disk mutex here.
26414 	 */
26415 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
26416 	    strt_blk_num, num_blks_not_xfered);
26417 
26418 	if (rval == 0) {
26419 
26420 		/*
26421 		 * Success.
26422 		 *
26423 		 * Adjust things if there are still more blocks to be
26424 		 * transfered.
26425 		 */
26426 		xp->xb_dma_resid = pkt->pkt_resid;
26427 		pkt->pkt_resid = 0;
26428 
26429 		return (1);
26430 	}
26431 
26432 	/*
26433 	 * There's really only one possible return value from
26434 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
26435 	 * returns NULL.
26436 	 */
26437 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
26438 
26439 	bp->b_resid = bp->b_bcount;
26440 	bp->b_flags |= B_ERROR;
26441 
26442 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26443 	    "Error setting up next portion of DMA transfer\n");
26444 
26445 	return (0);
26446 }
26447 #endif
26448 
26449 /*
26450  *    Function: sd_panic_for_res_conflict
26451  *
26452  * Description: Call panic with a string formated with "Reservation Conflict"
26453  *		and a human readable identifier indicating the SD instance
26454  *		that experienced the reservation conflict.
26455  *
26456  *   Arguments: un - pointer to the soft state struct for the instance.
26457  *
26458  *     Context: may execute in interrupt context.
26459  */
26460 
26461 #define	SD_RESV_CONFLICT_FMT_LEN 40
26462 void
26463 sd_panic_for_res_conflict(struct sd_lun *un)
26464 {
26465 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
26466 	char path_str[MAXPATHLEN];
26467 
26468 	(void) snprintf(panic_str, sizeof (panic_str),
26469 	    "Reservation Conflict\nDisk: %s",
26470 	    ddi_pathname(SD_DEVINFO(un), path_str));
26471 
26472 	panic(panic_str);
26473 }
26474 
26475 /*
26476  * Note: The following sd_faultinjection_ioctl( ) routines implement
26477  * driver support for handling fault injection for error analysis
26478  * causing faults in multiple layers of the driver.
26479  *
26480  */
26481 
26482 #ifdef SD_FAULT_INJECTION
26483 static uint_t   sd_fault_injection_on = 0;
26484 
26485 /*
26486  *    Function: sd_faultinjection_ioctl()
26487  *
26488  * Description: This routine is the driver entry point for handling
26489  *              faultinjection ioctls to inject errors into the
26490  *              layer model
26491  *
26492  *   Arguments: cmd	- the ioctl cmd recieved
26493  *		arg	- the arguments from user and returns
26494  */
26495 
26496 static void
26497 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
26498 
26499 	uint_t i;
26500 	uint_t rval;
26501 
26502 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
26503 
26504 	mutex_enter(SD_MUTEX(un));
26505 
26506 	switch (cmd) {
26507 	case SDIOCRUN:
26508 		/* Allow pushed faults to be injected */
26509 		SD_INFO(SD_LOG_SDTEST, un,
26510 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
26511 
26512 		sd_fault_injection_on = 1;
26513 
26514 		SD_INFO(SD_LOG_IOERR, un,
26515 		    "sd_faultinjection_ioctl: run finished\n");
26516 		break;
26517 
26518 	case SDIOCSTART:
26519 		/* Start Injection Session */
26520 		SD_INFO(SD_LOG_SDTEST, un,
26521 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
26522 
26523 		sd_fault_injection_on = 0;
26524 		un->sd_injection_mask = 0xFFFFFFFF;
26525 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
26526 			un->sd_fi_fifo_pkt[i] = NULL;
26527 			un->sd_fi_fifo_xb[i] = NULL;
26528 			un->sd_fi_fifo_un[i] = NULL;
26529 			un->sd_fi_fifo_arq[i] = NULL;
26530 		}
26531 		un->sd_fi_fifo_start = 0;
26532 		un->sd_fi_fifo_end = 0;
26533 
26534 		mutex_enter(&(un->un_fi_mutex));
26535 		un->sd_fi_log[0] = '\0';
26536 		un->sd_fi_buf_len = 0;
26537 		mutex_exit(&(un->un_fi_mutex));
26538 
26539 		SD_INFO(SD_LOG_IOERR, un,
26540 		    "sd_faultinjection_ioctl: start finished\n");
26541 		break;
26542 
26543 	case SDIOCSTOP:
26544 		/* Stop Injection Session */
26545 		SD_INFO(SD_LOG_SDTEST, un,
26546 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
26547 		sd_fault_injection_on = 0;
26548 		un->sd_injection_mask = 0x0;
26549 
26550 		/* Empty stray or unuseds structs from fifo */
26551 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
26552 			if (un->sd_fi_fifo_pkt[i] != NULL) {
26553 				kmem_free(un->sd_fi_fifo_pkt[i],
26554 				    sizeof (struct sd_fi_pkt));
26555 			}
26556 			if (un->sd_fi_fifo_xb[i] != NULL) {
26557 				kmem_free(un->sd_fi_fifo_xb[i],
26558 				    sizeof (struct sd_fi_xb));
26559 			}
26560 			if (un->sd_fi_fifo_un[i] != NULL) {
26561 				kmem_free(un->sd_fi_fifo_un[i],
26562 				    sizeof (struct sd_fi_un));
26563 			}
26564 			if (un->sd_fi_fifo_arq[i] != NULL) {
26565 				kmem_free(un->sd_fi_fifo_arq[i],
26566 				    sizeof (struct sd_fi_arq));
26567 			}
26568 			un->sd_fi_fifo_pkt[i] = NULL;
26569 			un->sd_fi_fifo_un[i] = NULL;
26570 			un->sd_fi_fifo_xb[i] = NULL;
26571 			un->sd_fi_fifo_arq[i] = NULL;
26572 		}
26573 		un->sd_fi_fifo_start = 0;
26574 		un->sd_fi_fifo_end = 0;
26575 
26576 		SD_INFO(SD_LOG_IOERR, un,
26577 		    "sd_faultinjection_ioctl: stop finished\n");
26578 		break;
26579 
26580 	case SDIOCINSERTPKT:
26581 		/* Store a packet struct to be pushed onto fifo */
26582 		SD_INFO(SD_LOG_SDTEST, un,
26583 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
26584 
26585 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
26586 
26587 		sd_fault_injection_on = 0;
26588 
26589 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
26590 		if (un->sd_fi_fifo_pkt[i] != NULL) {
26591 			kmem_free(un->sd_fi_fifo_pkt[i],
26592 			    sizeof (struct sd_fi_pkt));
26593 		}
26594 		if (arg != NULL) {
26595 			un->sd_fi_fifo_pkt[i] =
26596 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
26597 			if (un->sd_fi_fifo_pkt[i] == NULL) {
26598 				/* Alloc failed don't store anything */
26599 				break;
26600 			}
26601 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
26602 			    sizeof (struct sd_fi_pkt), 0);
26603 			if (rval == -1) {
26604 				kmem_free(un->sd_fi_fifo_pkt[i],
26605 				    sizeof (struct sd_fi_pkt));
26606 				un->sd_fi_fifo_pkt[i] = NULL;
26607 			}
26608 		} else {
26609 			SD_INFO(SD_LOG_IOERR, un,
26610 			    "sd_faultinjection_ioctl: pkt null\n");
26611 		}
26612 		break;
26613 
26614 	case SDIOCINSERTXB:
26615 		/* Store a xb struct to be pushed onto fifo */
26616 		SD_INFO(SD_LOG_SDTEST, un,
26617 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
26618 
26619 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
26620 
26621 		sd_fault_injection_on = 0;
26622 
26623 		if (un->sd_fi_fifo_xb[i] != NULL) {
26624 			kmem_free(un->sd_fi_fifo_xb[i],
26625 			    sizeof (struct sd_fi_xb));
26626 			un->sd_fi_fifo_xb[i] = NULL;
26627 		}
26628 		if (arg != NULL) {
26629 			un->sd_fi_fifo_xb[i] =
26630 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
26631 			if (un->sd_fi_fifo_xb[i] == NULL) {
26632 				/* Alloc failed don't store anything */
26633 				break;
26634 			}
26635 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
26636 			    sizeof (struct sd_fi_xb), 0);
26637 
26638 			if (rval == -1) {
26639 				kmem_free(un->sd_fi_fifo_xb[i],
26640 				    sizeof (struct sd_fi_xb));
26641 				un->sd_fi_fifo_xb[i] = NULL;
26642 			}
26643 		} else {
26644 			SD_INFO(SD_LOG_IOERR, un,
26645 			    "sd_faultinjection_ioctl: xb null\n");
26646 		}
26647 		break;
26648 
26649 	case SDIOCINSERTUN:
26650 		/* Store a un struct to be pushed onto fifo */
26651 		SD_INFO(SD_LOG_SDTEST, un,
26652 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
26653 
26654 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
26655 
26656 		sd_fault_injection_on = 0;
26657 
26658 		if (un->sd_fi_fifo_un[i] != NULL) {
26659 			kmem_free(un->sd_fi_fifo_un[i],
26660 			    sizeof (struct sd_fi_un));
26661 			un->sd_fi_fifo_un[i] = NULL;
26662 		}
26663 		if (arg != NULL) {
26664 			un->sd_fi_fifo_un[i] =
26665 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
26666 			if (un->sd_fi_fifo_un[i] == NULL) {
26667 				/* Alloc failed don't store anything */
26668 				break;
26669 			}
26670 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
26671 			    sizeof (struct sd_fi_un), 0);
26672 			if (rval == -1) {
26673 				kmem_free(un->sd_fi_fifo_un[i],
26674 				    sizeof (struct sd_fi_un));
26675 				un->sd_fi_fifo_un[i] = NULL;
26676 			}
26677 
26678 		} else {
26679 			SD_INFO(SD_LOG_IOERR, un,
26680 			    "sd_faultinjection_ioctl: un null\n");
26681 		}
26682 
26683 		break;
26684 
26685 	case SDIOCINSERTARQ:
26686 		/* Store a arq struct to be pushed onto fifo */
26687 		SD_INFO(SD_LOG_SDTEST, un,
26688 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
26689 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
26690 
26691 		sd_fault_injection_on = 0;
26692 
26693 		if (un->sd_fi_fifo_arq[i] != NULL) {
26694 			kmem_free(un->sd_fi_fifo_arq[i],
26695 			    sizeof (struct sd_fi_arq));
26696 			un->sd_fi_fifo_arq[i] = NULL;
26697 		}
26698 		if (arg != NULL) {
26699 			un->sd_fi_fifo_arq[i] =
26700 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
26701 			if (un->sd_fi_fifo_arq[i] == NULL) {
26702 				/* Alloc failed don't store anything */
26703 				break;
26704 			}
26705 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
26706 			    sizeof (struct sd_fi_arq), 0);
26707 			if (rval == -1) {
26708 				kmem_free(un->sd_fi_fifo_arq[i],
26709 				    sizeof (struct sd_fi_arq));
26710 				un->sd_fi_fifo_arq[i] = NULL;
26711 			}
26712 
26713 		} else {
26714 			SD_INFO(SD_LOG_IOERR, un,
26715 			    "sd_faultinjection_ioctl: arq null\n");
26716 		}
26717 
26718 		break;
26719 
26720 	case SDIOCPUSH:
26721 		/* Push stored xb, pkt, un, and arq onto fifo */
26722 		sd_fault_injection_on = 0;
26723 
26724 		if (arg != NULL) {
26725 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
26726 			if (rval != -1 &&
26727 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
26728 				un->sd_fi_fifo_end += i;
26729 			}
26730 		} else {
26731 			SD_INFO(SD_LOG_IOERR, un,
26732 			    "sd_faultinjection_ioctl: push arg null\n");
26733 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
26734 				un->sd_fi_fifo_end++;
26735 			}
26736 		}
26737 		SD_INFO(SD_LOG_IOERR, un,
26738 		    "sd_faultinjection_ioctl: push to end=%d\n",
26739 		    un->sd_fi_fifo_end);
26740 		break;
26741 
26742 	case SDIOCRETRIEVE:
26743 		/* Return buffer of log from Injection session */
26744 		SD_INFO(SD_LOG_SDTEST, un,
26745 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
26746 
26747 		sd_fault_injection_on = 0;
26748 
26749 		mutex_enter(&(un->un_fi_mutex));
26750 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
26751 		    un->sd_fi_buf_len+1, 0);
26752 		mutex_exit(&(un->un_fi_mutex));
26753 
26754 		if (rval == -1) {
26755 			/*
26756 			 * arg is possibly invalid setting
26757 			 * it to NULL for return
26758 			 */
26759 			arg = NULL;
26760 		}
26761 		break;
26762 	}
26763 
26764 	mutex_exit(SD_MUTEX(un));
26765 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
26766 			    " exit\n");
26767 }
26768 
26769 
26770 /*
26771  *    Function: sd_injection_log()
26772  *
26773  * Description: This routine adds buff to the already existing injection log
26774  *              for retrieval via faultinjection_ioctl for use in fault
26775  *              detection and recovery
26776  *
26777  *   Arguments: buf - the string to add to the log
26778  */
26779 
26780 static void
26781 sd_injection_log(char *buf, struct sd_lun *un)
26782 {
26783 	uint_t len;
26784 
26785 	ASSERT(un != NULL);
26786 	ASSERT(buf != NULL);
26787 
26788 	mutex_enter(&(un->un_fi_mutex));
26789 
26790 	len = min(strlen(buf), 255);
26791 	/* Add logged value to Injection log to be returned later */
26792 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
26793 		uint_t	offset = strlen((char *)un->sd_fi_log);
26794 		char *destp = (char *)un->sd_fi_log + offset;
26795 		int i;
26796 		for (i = 0; i < len; i++) {
26797 			*destp++ = *buf++;
26798 		}
26799 		un->sd_fi_buf_len += len;
26800 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
26801 	}
26802 
26803 	mutex_exit(&(un->un_fi_mutex));
26804 }
26805 
26806 
26807 /*
26808  *    Function: sd_faultinjection()
26809  *
26810  * Description: This routine takes the pkt and changes its
26811  *		content based on error injection scenerio.
26812  *
26813  *   Arguments: pktp	- packet to be changed
26814  */
26815 
26816 static void
26817 sd_faultinjection(struct scsi_pkt *pktp)
26818 {
26819 	uint_t i;
26820 	struct sd_fi_pkt *fi_pkt;
26821 	struct sd_fi_xb *fi_xb;
26822 	struct sd_fi_un *fi_un;
26823 	struct sd_fi_arq *fi_arq;
26824 	struct buf *bp;
26825 	struct sd_xbuf *xb;
26826 	struct sd_lun *un;
26827 
26828 	ASSERT(pktp != NULL);
26829 
26830 	/* pull bp xb and un from pktp */
26831 	bp = (struct buf *)pktp->pkt_private;
26832 	xb = SD_GET_XBUF(bp);
26833 	un = SD_GET_UN(bp);
26834 
26835 	ASSERT(un != NULL);
26836 
26837 	mutex_enter(SD_MUTEX(un));
26838 
26839 	SD_TRACE(SD_LOG_SDTEST, un,
26840 	    "sd_faultinjection: entry Injection from sdintr\n");
26841 
26842 	/* if injection is off return */
26843 	if (sd_fault_injection_on == 0 ||
26844 		un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
26845 		mutex_exit(SD_MUTEX(un));
26846 		return;
26847 	}
26848 
26849 
26850 	/* take next set off fifo */
26851 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
26852 
26853 	fi_pkt = un->sd_fi_fifo_pkt[i];
26854 	fi_xb = un->sd_fi_fifo_xb[i];
26855 	fi_un = un->sd_fi_fifo_un[i];
26856 	fi_arq = un->sd_fi_fifo_arq[i];
26857 
26858 
26859 	/* set variables accordingly */
26860 	/* set pkt if it was on fifo */
26861 	if (fi_pkt != NULL) {
26862 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
26863 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
26864 		SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
26865 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
26866 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
26867 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
26868 
26869 	}
26870 
26871 	/* set xb if it was on fifo */
26872 	if (fi_xb != NULL) {
26873 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
26874 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
26875 		SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
26876 		SD_CONDSET(xb, xb, xb_victim_retry_count,
26877 		    "xb_victim_retry_count");
26878 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
26879 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
26880 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
26881 
26882 		/* copy in block data from sense */
26883 		if (fi_xb->xb_sense_data[0] != -1) {
26884 			bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
26885 			    SENSE_LENGTH);
26886 		}
26887 
26888 		/* copy in extended sense codes */
26889 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code,
26890 		    "es_code");
26891 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key,
26892 		    "es_key");
26893 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code,
26894 		    "es_add_code");
26895 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb,
26896 		    es_qual_code, "es_qual_code");
26897 	}
26898 
26899 	/* set un if it was on fifo */
26900 	if (fi_un != NULL) {
26901 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
26902 		SD_CONDSET(un, un, un_ctype, "un_ctype");
26903 		SD_CONDSET(un, un, un_reset_retry_count,
26904 		    "un_reset_retry_count");
26905 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
26906 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
26907 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
26908 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
26909 		    "un_f_allow_bus_device_reset");
26910 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
26911 
26912 	}
26913 
26914 	/* copy in auto request sense if it was on fifo */
26915 	if (fi_arq != NULL) {
26916 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
26917 	}
26918 
26919 	/* free structs */
26920 	if (un->sd_fi_fifo_pkt[i] != NULL) {
26921 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
26922 	}
26923 	if (un->sd_fi_fifo_xb[i] != NULL) {
26924 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
26925 	}
26926 	if (un->sd_fi_fifo_un[i] != NULL) {
26927 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
26928 	}
26929 	if (un->sd_fi_fifo_arq[i] != NULL) {
26930 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
26931 	}
26932 
26933 	/*
26934 	 * kmem_free does not gurantee to set to NULL
26935 	 * since we uses these to determine if we set
26936 	 * values or not lets confirm they are always
26937 	 * NULL after free
26938 	 */
26939 	un->sd_fi_fifo_pkt[i] = NULL;
26940 	un->sd_fi_fifo_un[i] = NULL;
26941 	un->sd_fi_fifo_xb[i] = NULL;
26942 	un->sd_fi_fifo_arq[i] = NULL;
26943 
26944 	un->sd_fi_fifo_start++;
26945 
26946 	mutex_exit(SD_MUTEX(un));
26947 
26948 	SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
26949 }
26950 
26951 #endif /* SD_FAULT_INJECTION */
26952 
26953 /*
26954  * This routine is invoked in sd_unit_attach(). Before calling it, the
26955  * properties in conf file should be processed already, and "hotpluggable"
26956  * property was processed also.
26957  *
26958  * The sd driver distinguishes 3 different type of devices: removable media,
26959  * non-removable media, and hotpluggable. Below the differences are defined:
26960  *
26961  * 1. Device ID
26962  *
26963  *     The device ID of a device is used to identify this device. Refer to
26964  *     ddi_devid_register(9F).
26965  *
26966  *     For a non-removable media disk device which can provide 0x80 or 0x83
26967  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
26968  *     device ID is created to identify this device. For other non-removable
26969  *     media devices, a default device ID is created only if this device has
26970  *     at least 2 alter cylinders. Otherwise, this device has no devid.
26971  *
26972  *     -------------------------------------------------------
26973  *     removable media   hotpluggable  | Can Have Device ID
26974  *     -------------------------------------------------------
26975  *         false             false     |     Yes
26976  *         false             true      |     Yes
26977  *         true                x       |     No
26978  *     ------------------------------------------------------
26979  *
26980  *
26981  * 2. SCSI group 4 commands
26982  *
26983  *     In SCSI specs, only some commands in group 4 command set can use
26984  *     8-byte addresses that can be used to access >2TB storage spaces.
26985  *     Other commands have no such capability. Without supporting group4,
26986  *     it is impossible to make full use of storage spaces of a disk with
26987  *     capacity larger than 2TB.
26988  *
26989  *     -----------------------------------------------
26990  *     removable media   hotpluggable   LP64  |  Group
26991  *     -----------------------------------------------
26992  *           false          false       false |   1
26993  *           false          false       true  |   4
26994  *           false          true        false |   1
26995  *           false          true        true  |   4
26996  *           true             x           x   |   5
26997  *     -----------------------------------------------
26998  *
26999  *
27000  * 3. Check for VTOC Label
27001  *
27002  *     If a direct-access disk has no EFI label, sd will check if it has a
27003  *     valid VTOC label. Now, sd also does that check for removable media
27004  *     and hotpluggable devices.
27005  *
27006  *     --------------------------------------------------------------
27007  *     Direct-Access   removable media    hotpluggable |  Check Label
27008  *     -------------------------------------------------------------
27009  *         false          false           false        |   No
27010  *         false          false           true         |   No
27011  *         false          true            false        |   Yes
27012  *         false          true            true         |   Yes
27013  *         true            x                x          |   Yes
27014  *     --------------------------------------------------------------
27015  *
27016  *
27017  * 4. Building default VTOC label
27018  *
27019  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
27020  *     If those devices have no valid VTOC label, sd(7d) will attempt to
27021  *     create default VTOC for them. Currently sd creates default VTOC label
27022  *     for all devices on x86 platform (VTOC_16), but only for removable
27023  *     media devices on SPARC (VTOC_8).
27024  *
27025  *     -----------------------------------------------------------
27026  *       removable media hotpluggable platform   |   Default Label
27027  *     -----------------------------------------------------------
27028  *             false          false    sparc     |     No
27029  *             false          true      x86      |     Yes
27030  *             false          true     sparc     |     Yes
27031  *             true             x        x       |     Yes
27032  *     ----------------------------------------------------------
27033  *
27034  *
27035  * 5. Supported blocksizes of target devices
27036  *
27037  *     Sd supports non-512-byte blocksize for removable media devices only.
27038  *     For other devices, only 512-byte blocksize is supported. This may be
27039  *     changed in near future because some RAID devices require non-512-byte
27040  *     blocksize
27041  *
27042  *     -----------------------------------------------------------
27043  *     removable media    hotpluggable    | non-512-byte blocksize
27044  *     -----------------------------------------------------------
27045  *           false          false         |   No
27046  *           false          true          |   No
27047  *           true             x           |   Yes
27048  *     -----------------------------------------------------------
27049  *
27050  *
27051  * 6. Automatic mount & unmount
27052  *
27053  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
27054  *     if a device is removable media device. It return 1 for removable media
27055  *     devices, and 0 for others.
27056  *
27057  *     The automatic mounting subsystem should distinguish between the types
27058  *     of devices and apply automounting policies to each.
27059  *
27060  *
27061  * 7. fdisk partition management
27062  *
27063  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
27064  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
27065  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
27066  *     fdisk partitions on both x86 and SPARC platform.
27067  *
27068  *     -----------------------------------------------------------
27069  *       platform   removable media  USB/1394  |  fdisk supported
27070  *     -----------------------------------------------------------
27071  *        x86         X               X        |       true
27072  *     ------------------------------------------------------------
27073  *        sparc       X               X        |       false
27074  *     ------------------------------------------------------------
27075  *
27076  *
27077  * 8. MBOOT/MBR
27078  *
27079  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
27080  *     read/write mboot for removable media devices on sparc platform.
27081  *
27082  *     -----------------------------------------------------------
27083  *       platform   removable media  USB/1394  |  mboot supported
27084  *     -----------------------------------------------------------
27085  *        x86         X               X        |       true
27086  *     ------------------------------------------------------------
27087  *        sparc      false           false     |       false
27088  *        sparc      false           true      |       true
27089  *        sparc      true            false     |       true
27090  *        sparc      true            true      |       true
27091  *     ------------------------------------------------------------
27092  *
27093  *
27094  * 9.  error handling during opening device
27095  *
27096  *     If failed to open a disk device, an errno is returned. For some kinds
27097  *     of errors, different errno is returned depending on if this device is
27098  *     a removable media device. This brings USB/1394 hard disks in line with
27099  *     expected hard disk behavior. It is not expected that this breaks any
27100  *     application.
27101  *
27102  *     ------------------------------------------------------
27103  *       removable media    hotpluggable   |  errno
27104  *     ------------------------------------------------------
27105  *             false          false        |   EIO
27106  *             false          true         |   EIO
27107  *             true             x          |   ENXIO
27108  *     ------------------------------------------------------
27109  *
27110  *
27111  * 11. ioctls: DKIOCEJECT, CDROMEJECT
27112  *
27113  *     These IOCTLs are applicable only to removable media devices.
27114  *
27115  *     -----------------------------------------------------------
27116  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
27117  *     -----------------------------------------------------------
27118  *             false          false        |     No
27119  *             false          true         |     No
27120  *             true            x           |     Yes
27121  *     -----------------------------------------------------------
27122  *
27123  *
27124  * 12. Kstats for partitions
27125  *
27126  *     sd creates partition kstat for non-removable media devices. USB and
27127  *     Firewire hard disks now have partition kstats
27128  *
27129  *      ------------------------------------------------------
27130  *       removable media    hotplugable    |   kstat
27131  *      ------------------------------------------------------
27132  *             false          false        |    Yes
27133  *             false          true         |    Yes
27134  *             true             x          |    No
27135  *       ------------------------------------------------------
27136  *
27137  *
27138  * 13. Removable media & hotpluggable properties
27139  *
27140  *     Sd driver creates a "removable-media" property for removable media
27141  *     devices. Parent nexus drivers create a "hotpluggable" property if
27142  *     it supports hotplugging.
27143  *
27144  *     ---------------------------------------------------------------------
27145  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
27146  *     ---------------------------------------------------------------------
27147  *       false            false       |    No                   No
27148  *       false            true        |    No                   Yes
27149  *       true             false       |    Yes                  No
27150  *       true             true        |    Yes                  Yes
27151  *     ---------------------------------------------------------------------
27152  *
27153  *
27154  * 14. Power Management
27155  *
27156  *     sd only power manages removable media devices or devices that support
27157  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
27158  *
27159  *     A parent nexus that supports hotplugging can also set "pm-capable"
27160  *     if the disk can be power managed.
27161  *
27162  *     ------------------------------------------------------------
27163  *       removable media hotpluggable pm-capable  |   power manage
27164  *     ------------------------------------------------------------
27165  *             false          false     false     |     No
27166  *             false          false     true      |     Yes
27167  *             false          true      false     |     No
27168  *             false          true      true      |     Yes
27169  *             true             x        x        |     Yes
27170  *     ------------------------------------------------------------
27171  *
27172  *      USB and firewire hard disks can now be power managed independently
27173  *      of the framebuffer
27174  *
27175  *
27176  * 15. Support for USB disks with capacity larger than 1TB
27177  *
27178  *     Currently, sd doesn't permit a fixed disk device with capacity
27179  *     larger than 1TB to be used in a 32-bit operating system environment.
27180  *     However, sd doesn't do that for removable media devices. Instead, it
27181  *     assumes that removable media devices cannot have a capacity larger
27182  *     than 1TB. Therefore, using those devices on 32-bit system is partially
27183  *     supported, which can cause some unexpected results.
27184  *
27185  *     ---------------------------------------------------------------------
27186  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
27187  *     ---------------------------------------------------------------------
27188  *             false          false  |   true         |     no
27189  *             false          true   |   true         |     no
27190  *             true           false  |   true         |     Yes
27191  *             true           true   |   true         |     Yes
27192  *     ---------------------------------------------------------------------
27193  *
27194  *
27195  * 16. Check write-protection at open time
27196  *
27197  *     When a removable media device is being opened for writing without NDELAY
27198  *     flag, sd will check if this device is writable. If attempting to open
27199  *     without NDELAY flag a write-protected device, this operation will abort.
27200  *
27201  *     ------------------------------------------------------------
27202  *       removable media    USB/1394   |   WP Check
27203  *     ------------------------------------------------------------
27204  *             false          false    |     No
27205  *             false          true     |     No
27206  *             true           false    |     Yes
27207  *             true           true     |     Yes
27208  *     ------------------------------------------------------------
27209  *
27210  *
27211  * 17. syslog when corrupted VTOC is encountered
27212  *
27213  *      Currently, if an invalid VTOC is encountered, sd only print syslog
27214  *      for fixed SCSI disks.
27215  *     ------------------------------------------------------------
27216  *       removable media    USB/1394   |   print syslog
27217  *     ------------------------------------------------------------
27218  *             false          false    |     Yes
27219  *             false          true     |     No
27220  *             true           false    |     No
27221  *             true           true     |     No
27222  *     ------------------------------------------------------------
27223  */
27224 static void
27225 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
27226 {
27227 	int	pm_capable_prop;
27228 
27229 	ASSERT(un->un_sd);
27230 	ASSERT(un->un_sd->sd_inq);
27231 
27232 	/*
27233 	 * Enable SYNC CACHE support for all devices.
27234 	 */
27235 	un->un_f_sync_cache_supported = TRUE;
27236 
27237 	if (un->un_sd->sd_inq->inq_rmb) {
27238 		/*
27239 		 * The media of this device is removable. And for this kind
27240 		 * of devices, it is possible to change medium after opening
27241 		 * devices. Thus we should support this operation.
27242 		 */
27243 		un->un_f_has_removable_media = TRUE;
27244 
27245 		/*
27246 		 * support non-512-byte blocksize of removable media devices
27247 		 */
27248 		un->un_f_non_devbsize_supported = TRUE;
27249 
27250 		/*
27251 		 * Assume that all removable media devices support DOOR_LOCK
27252 		 */
27253 		un->un_f_doorlock_supported = TRUE;
27254 
27255 		/*
27256 		 * For a removable media device, it is possible to be opened
27257 		 * with NDELAY flag when there is no media in drive, in this
27258 		 * case we don't care if device is writable. But if without
27259 		 * NDELAY flag, we need to check if media is write-protected.
27260 		 */
27261 		un->un_f_chk_wp_open = TRUE;
27262 
27263 		/*
27264 		 * need to start a SCSI watch thread to monitor media state,
27265 		 * when media is being inserted or ejected, notify syseventd.
27266 		 */
27267 		un->un_f_monitor_media_state = TRUE;
27268 
27269 		/*
27270 		 * Some devices don't support START_STOP_UNIT command.
27271 		 * Therefore, we'd better check if a device supports it
27272 		 * before sending it.
27273 		 */
27274 		un->un_f_check_start_stop = TRUE;
27275 
27276 		/*
27277 		 * support eject media ioctl:
27278 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
27279 		 */
27280 		un->un_f_eject_media_supported = TRUE;
27281 
27282 		/*
27283 		 * Because many removable-media devices don't support
27284 		 * LOG_SENSE, we couldn't use this command to check if
27285 		 * a removable media device support power-management.
27286 		 * We assume that they support power-management via
27287 		 * START_STOP_UNIT command and can be spun up and down
27288 		 * without limitations.
27289 		 */
27290 		un->un_f_pm_supported = TRUE;
27291 
27292 		/*
27293 		 * Need to create a zero length (Boolean) property
27294 		 * removable-media for the removable media devices.
27295 		 * Note that the return value of the property is not being
27296 		 * checked, since if unable to create the property
27297 		 * then do not want the attach to fail altogether. Consistent
27298 		 * with other property creation in attach.
27299 		 */
27300 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
27301 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
27302 
27303 	} else {
27304 		/*
27305 		 * create device ID for device
27306 		 */
27307 		un->un_f_devid_supported = TRUE;
27308 
27309 		/*
27310 		 * Spin up non-removable-media devices once it is attached
27311 		 */
27312 		un->un_f_attach_spinup = TRUE;
27313 
27314 		/*
27315 		 * According to SCSI specification, Sense data has two kinds of
27316 		 * format: fixed format, and descriptor format. At present, we
27317 		 * don't support descriptor format sense data for removable
27318 		 * media.
27319 		 */
27320 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
27321 			un->un_f_descr_format_supported = TRUE;
27322 		}
27323 
27324 		/*
27325 		 * kstats are created only for non-removable media devices.
27326 		 *
27327 		 * Set this in sd.conf to 0 in order to disable kstats.  The
27328 		 * default is 1, so they are enabled by default.
27329 		 */
27330 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
27331 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
27332 			"enable-partition-kstats", 1));
27333 
27334 		/*
27335 		 * Check if HBA has set the "pm-capable" property.
27336 		 * If "pm-capable" exists and is non-zero then we can
27337 		 * power manage the device without checking the start/stop
27338 		 * cycle count log sense page.
27339 		 *
27340 		 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
27341 		 * then we should not power manage the device.
27342 		 *
27343 		 * If "pm-capable" doesn't exist then pm_capable_prop will
27344 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
27345 		 * sd will check the start/stop cycle count log sense page
27346 		 * and power manage the device if the cycle count limit has
27347 		 * not been exceeded.
27348 		 */
27349 		pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
27350 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
27351 		if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
27352 			un->un_f_log_sense_supported = TRUE;
27353 		} else {
27354 			/*
27355 			 * pm-capable property exists.
27356 			 *
27357 			 * Convert "TRUE" values for pm_capable_prop to
27358 			 * SD_PM_CAPABLE_TRUE (1) to make it easier to check
27359 			 * later. "TRUE" values are any values except
27360 			 * SD_PM_CAPABLE_FALSE (0) and
27361 			 * SD_PM_CAPABLE_UNDEFINED (-1)
27362 			 */
27363 			if (pm_capable_prop == SD_PM_CAPABLE_FALSE) {
27364 				un->un_f_log_sense_supported = FALSE;
27365 			} else {
27366 				un->un_f_pm_supported = TRUE;
27367 			}
27368 
27369 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
27370 			    "sd_unit_attach: un:0x%p pm-capable "
27371 			    "property set to %d.\n", un, un->un_f_pm_supported);
27372 		}
27373 	}
27374 
27375 	if (un->un_f_is_hotpluggable) {
27376 
27377 		/*
27378 		 * Have to watch hotpluggable devices as well, since
27379 		 * that's the only way for userland applications to
27380 		 * detect hot removal while device is busy/mounted.
27381 		 */
27382 		un->un_f_monitor_media_state = TRUE;
27383 
27384 		un->un_f_check_start_stop = TRUE;
27385 
27386 	}
27387 }
27388 
27389 /*
27390  * sd_tg_rdwr:
27391  * Provides rdwr access for cmlb via sd_tgops. The start_block is
27392  * in sys block size, req_length in bytes.
27393  *
27394  */
27395 static int
27396 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
27397     diskaddr_t start_block, size_t reqlength, void *tg_cookie)
27398 {
27399 	struct sd_lun *un;
27400 	int path_flag = (int)(uintptr_t)tg_cookie;
27401 	char *dkl = NULL;
27402 	diskaddr_t real_addr = start_block;
27403 	diskaddr_t first_byte, end_block;
27404 
27405 	size_t	buffer_size = reqlength;
27406 	int rval;
27407 	diskaddr_t	cap;
27408 	uint32_t	lbasize;
27409 
27410 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
27411 	if (un == NULL)
27412 		return (ENXIO);
27413 
27414 	if (cmd != TG_READ && cmd != TG_WRITE)
27415 		return (EINVAL);
27416 
27417 	mutex_enter(SD_MUTEX(un));
27418 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
27419 		mutex_exit(SD_MUTEX(un));
27420 		rval = sd_send_scsi_READ_CAPACITY(un, (uint64_t *)&cap,
27421 		    &lbasize, path_flag);
27422 		if (rval != 0)
27423 			return (rval);
27424 		mutex_enter(SD_MUTEX(un));
27425 		sd_update_block_info(un, lbasize, cap);
27426 		if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
27427 			mutex_exit(SD_MUTEX(un));
27428 			return (EIO);
27429 		}
27430 	}
27431 
27432 	if (NOT_DEVBSIZE(un)) {
27433 		/*
27434 		 * sys_blocksize != tgt_blocksize, need to re-adjust
27435 		 * blkno and save the index to beginning of dk_label
27436 		 */
27437 		first_byte  = SD_SYSBLOCKS2BYTES(un, start_block);
27438 		real_addr = first_byte / un->un_tgt_blocksize;
27439 
27440 		end_block = (first_byte + reqlength +
27441 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
27442 
27443 		/* round up buffer size to multiple of target block size */
27444 		buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
27445 
27446 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
27447 		    "label_addr: 0x%x allocation size: 0x%x\n",
27448 		    real_addr, buffer_size);
27449 
27450 		if (((first_byte % un->un_tgt_blocksize) != 0) ||
27451 		    (reqlength % un->un_tgt_blocksize) != 0)
27452 			/* the request is not aligned */
27453 			dkl = kmem_zalloc(buffer_size, KM_SLEEP);
27454 	}
27455 
27456 	/*
27457 	 * The MMC standard allows READ CAPACITY to be
27458 	 * inaccurate by a bounded amount (in the interest of
27459 	 * response latency).  As a result, failed READs are
27460 	 * commonplace (due to the reading of metadata and not
27461 	 * data). Depending on the per-Vendor/drive Sense data,
27462 	 * the failed READ can cause many (unnecessary) retries.
27463 	 */
27464 
27465 	if (ISCD(un) && (cmd == TG_READ) &&
27466 	    (un->un_f_blockcount_is_valid == TRUE) &&
27467 	    ((start_block == (un->un_blockcount - 1))||
27468 	    (start_block == (un->un_blockcount - 2)))) {
27469 			path_flag = SD_PATH_DIRECT_PRIORITY;
27470 	}
27471 
27472 	mutex_exit(SD_MUTEX(un));
27473 	if (cmd == TG_READ) {
27474 		rval = sd_send_scsi_READ(un, (dkl != NULL)? dkl: bufaddr,
27475 		    buffer_size, real_addr, path_flag);
27476 		if (dkl != NULL)
27477 			bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
27478 			    real_addr), bufaddr, reqlength);
27479 	} else {
27480 		if (dkl) {
27481 			rval = sd_send_scsi_READ(un, dkl, buffer_size,
27482 			    real_addr, path_flag);
27483 			if (rval) {
27484 				kmem_free(dkl, buffer_size);
27485 				return (rval);
27486 			}
27487 			bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
27488 			    real_addr), reqlength);
27489 		}
27490 		rval = sd_send_scsi_WRITE(un, (dkl != NULL)? dkl: bufaddr,
27491 		    buffer_size, real_addr, path_flag);
27492 	}
27493 
27494 	if (dkl != NULL)
27495 		kmem_free(dkl, buffer_size);
27496 
27497 	return (rval);
27498 }
27499 
27500 
27501 static int
27502 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
27503 {
27504 
27505 	struct sd_lun *un;
27506 	diskaddr_t	cap;
27507 	uint32_t	lbasize;
27508 	int		path_flag = (int)(uintptr_t)tg_cookie;
27509 	int		ret = 0;
27510 
27511 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
27512 	if (un == NULL)
27513 		return (ENXIO);
27514 
27515 	switch (cmd) {
27516 	case TG_GETPHYGEOM:
27517 	case TG_GETVIRTGEOM:
27518 	case TG_GETCAPACITY:
27519 	case  TG_GETBLOCKSIZE:
27520 		mutex_enter(SD_MUTEX(un));
27521 
27522 		if ((un->un_f_blockcount_is_valid == TRUE) &&
27523 		    (un->un_f_tgt_blocksize_is_valid == TRUE)) {
27524 			cap = un->un_blockcount;
27525 			lbasize = un->un_tgt_blocksize;
27526 			mutex_exit(SD_MUTEX(un));
27527 		} else {
27528 			mutex_exit(SD_MUTEX(un));
27529 			ret = sd_send_scsi_READ_CAPACITY(un, (uint64_t *)&cap,
27530 			    &lbasize, path_flag);
27531 			if (ret != 0)
27532 				return (ret);
27533 			mutex_enter(SD_MUTEX(un));
27534 			sd_update_block_info(un, lbasize, cap);
27535 			if ((un->un_f_blockcount_is_valid == FALSE) ||
27536 			    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
27537 				mutex_exit(SD_MUTEX(un));
27538 				return (EIO);
27539 			}
27540 			mutex_exit(SD_MUTEX(un));
27541 		}
27542 
27543 		if (cmd == TG_GETCAPACITY) {
27544 			*(diskaddr_t *)arg = cap;
27545 			return (0);
27546 		}
27547 
27548 		if (cmd == TG_GETBLOCKSIZE) {
27549 			*(uint32_t *)arg = lbasize;
27550 			return (0);
27551 		}
27552 
27553 		if (cmd == TG_GETPHYGEOM)
27554 			ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
27555 			    cap, lbasize, path_flag);
27556 		else
27557 			/* TG_GETVIRTGEOM */
27558 			ret = sd_get_virtual_geometry(un,
27559 			    (cmlb_geom_t *)arg, cap, lbasize);
27560 
27561 		return (ret);
27562 
27563 	case TG_GETATTR:
27564 		mutex_enter(SD_MUTEX(un));
27565 		((tg_attribute_t *)arg)->media_is_writable =
27566 		    un->un_f_mmc_writable_media;
27567 		mutex_exit(SD_MUTEX(un));
27568 		return (0);
27569 	default:
27570 		return (ENOTTY);
27571 
27572 	}
27573 
27574 }
27575