xref: /titanic_52/usr/src/uts/common/io/scsi/targets/sd.c (revision 91cfa10a8e55050a5103c4b2e83b0bf8d783a7cb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * SCSI disk target driver.
30  */
31 #include <sys/scsi/scsi.h>
32 #include <sys/dkbad.h>
33 #include <sys/dklabel.h>
34 #include <sys/dkio.h>
35 #include <sys/fdio.h>
36 #include <sys/cdio.h>
37 #include <sys/mhd.h>
38 #include <sys/vtoc.h>
39 #include <sys/dktp/fdisk.h>
40 #include <sys/kstat.h>
41 #include <sys/vtrace.h>
42 #include <sys/note.h>
43 #include <sys/thread.h>
44 #include <sys/proc.h>
45 #include <sys/efi_partition.h>
46 #include <sys/var.h>
47 #include <sys/aio_req.h>
48 
49 #ifdef __lock_lint
50 #define	_LP64
51 #define	__amd64
52 #endif
53 
54 #if (defined(__fibre))
55 /* Note: is there a leadville version of the following? */
56 #include <sys/fc4/fcal_linkapp.h>
57 #endif
58 #include <sys/taskq.h>
59 #include <sys/uuid.h>
60 #include <sys/byteorder.h>
61 #include <sys/sdt.h>
62 
63 #include "sd_xbuf.h"
64 
65 #include <sys/scsi/targets/sddef.h>
66 
67 
68 /*
69  * Loadable module info.
70  */
71 #if (defined(__fibre))
72 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver %I%"
73 char _depends_on[]	= "misc/scsi drv/fcp";
74 #else
75 #define	SD_MODULE_NAME	"SCSI Disk Driver %I%"
76 char _depends_on[]	= "misc/scsi";
77 #endif
78 
79 /*
80  * Define the interconnect type, to allow the driver to distinguish
81  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
82  *
83  * This is really for backward compatability. In the future, the driver
84  * should actually check the "interconnect-type" property as reported by
85  * the HBA; however at present this property is not defined by all HBAs,
86  * so we will use this #define (1) to permit the driver to run in
87  * backward-compatability mode; and (2) to print a notification message
88  * if an FC HBA does not support the "interconnect-type" property.  The
89  * behavior of the driver will be to assume parallel SCSI behaviors unless
90  * the "interconnect-type" property is defined by the HBA **AND** has a
91  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
92  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
93  * Channel behaviors (as per the old ssd).  (Note that the
94  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
95  * will result in the driver assuming parallel SCSI behaviors.)
96  *
97  * (see common/sys/scsi/impl/services.h)
98  *
99  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
100  * since some FC HBAs may already support that, and there is some code in
101  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
102  * default would confuse that code, and besides things should work fine
103  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
104  * "interconnect_type" property.
105  *
106  * Notes for off-by-1 workaround:
107  * -----------------------------
108  *
109  *    SCSI READ_CAPACITY command returns the LBA number of the
110  *    last logical block, but sd once treated this number as
111  *    disks' capacity on x86 platform. And LBAs are addressed
112  *    based 0. So the last block was lost on x86 platform.
113  *
114  *    Now, we remove this workaround. In order for present sd
115  *    driver to work with disks which are labeled/partitioned
116  *    via previous sd, we add workaround as follows:
117  *
118  *    1) Locate backup EFI label: sd searches the next to last
119  *       block for legacy backup EFI label. If fails, it will
120  *       turn to the last block for backup EFI label;
121  *    2) Clear backup EFI label: sd first search the last block
122  *       for backup EFI label, and will search the next to last
123  *       block only if failed for the last block.
124  *    3) Calculate geometry: refer to sd_convert_geometry(), If
125  *       capacity increasing by 1 causes disks' capacity to cross
126  *       over the limits in table CHS_values, geometry info will
127  *       change. This will raise an issue: In case that primary
128  *       VTOC label is destroyed, format commandline can restore
129  *       it via backup VTOC labels. And format locates backup VTOC
130  *       labels by use of geometry from sd driver. So changing
131  *       geometry will prevent format from finding backup VTOC
132  *       labels. To eliminate this side effect for compatibility,
133  *       sd uses (capacity -1) to calculate geometry;
134  *    4) 1TB disks: some important data structures use 32-bit
135  *       signed long/int (for example, daddr_t), so that sd doesn't
136  *       support a disk with capacity larger than 1TB on 32-bit
137  *       platform. However, for exactly 1TB disk, it was treated as
138  *       (1T - 512)B in the past, and could have valid solaris
139  *       partitions. To workaround this, if an exactly 1TB disk has
140  *       solaris fdisk partition, it will be allowed to work with sd.
141  */
142 #if (defined(__fibre))
143 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
144 #else
145 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
146 #endif
147 
148 /*
149  * The name of the driver, established from the module name in _init.
150  */
151 static	char *sd_label			= NULL;
152 
153 /*
154  * Driver name is unfortunately prefixed on some driver.conf properties.
155  */
156 #if (defined(__fibre))
157 #define	sd_max_xfer_size		ssd_max_xfer_size
158 #define	sd_config_list			ssd_config_list
159 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
160 static	char *sd_config_list		= "ssd-config-list";
161 #else
162 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
163 static	char *sd_config_list		= "sd-config-list";
164 #endif
165 
166 /*
167  * Driver global variables
168  */
169 
170 #if (defined(__fibre))
171 /*
172  * These #defines are to avoid namespace collisions that occur because this
173  * code is currently used to compile two seperate driver modules: sd and ssd.
174  * All global variables need to be treated this way (even if declared static)
175  * in order to allow the debugger to resolve the names properly.
176  * It is anticipated that in the near future the ssd module will be obsoleted,
177  * at which time this namespace issue should go away.
178  */
179 #define	sd_state			ssd_state
180 #define	sd_io_time			ssd_io_time
181 #define	sd_failfast_enable		ssd_failfast_enable
182 #define	sd_ua_retry_count		ssd_ua_retry_count
183 #define	sd_report_pfa			ssd_report_pfa
184 #define	sd_max_throttle			ssd_max_throttle
185 #define	sd_min_throttle			ssd_min_throttle
186 #define	sd_rot_delay			ssd_rot_delay
187 
188 #define	sd_retry_on_reservation_conflict	\
189 					ssd_retry_on_reservation_conflict
190 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
191 #define	sd_resv_conflict_name		ssd_resv_conflict_name
192 
193 #define	sd_component_mask		ssd_component_mask
194 #define	sd_level_mask			ssd_level_mask
195 #define	sd_debug_un			ssd_debug_un
196 #define	sd_error_level			ssd_error_level
197 
198 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
199 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
200 
201 #define	sd_tr				ssd_tr
202 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
203 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
204 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
205 #define	sd_check_media_time		ssd_check_media_time
206 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
207 #define	sd_label_mutex			ssd_label_mutex
208 #define	sd_detach_mutex			ssd_detach_mutex
209 #define	sd_log_buf			ssd_log_buf
210 #define	sd_log_mutex			ssd_log_mutex
211 
212 #define	sd_disk_table			ssd_disk_table
213 #define	sd_disk_table_size		ssd_disk_table_size
214 #define	sd_sense_mutex			ssd_sense_mutex
215 #define	sd_cdbtab			ssd_cdbtab
216 
217 #define	sd_cb_ops			ssd_cb_ops
218 #define	sd_ops				ssd_ops
219 #define	sd_additional_codes		ssd_additional_codes
220 
221 #define	sd_minor_data			ssd_minor_data
222 #define	sd_minor_data_efi		ssd_minor_data_efi
223 
224 #define	sd_tq				ssd_tq
225 #define	sd_wmr_tq			ssd_wmr_tq
226 #define	sd_taskq_name			ssd_taskq_name
227 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
228 #define	sd_taskq_minalloc		ssd_taskq_minalloc
229 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
230 
231 #define	sd_dump_format_string		ssd_dump_format_string
232 
233 #define	sd_iostart_chain		ssd_iostart_chain
234 #define	sd_iodone_chain			ssd_iodone_chain
235 
236 #define	sd_pm_idletime			ssd_pm_idletime
237 
238 #define	sd_force_pm_supported		ssd_force_pm_supported
239 
240 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
241 
242 #endif
243 
244 
245 #ifdef	SDDEBUG
246 int	sd_force_pm_supported		= 0;
247 #endif	/* SDDEBUG */
248 
249 void *sd_state				= NULL;
250 int sd_io_time				= SD_IO_TIME;
251 int sd_failfast_enable			= 1;
252 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
253 int sd_report_pfa			= 1;
254 int sd_max_throttle			= SD_MAX_THROTTLE;
255 int sd_min_throttle			= SD_MIN_THROTTLE;
256 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
257 int sd_qfull_throttle_enable		= TRUE;
258 
259 int sd_retry_on_reservation_conflict	= 1;
260 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
261 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
262 
263 static int sd_dtype_optical_bind	= -1;
264 
265 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
266 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
267 
268 /*
269  * Global data for debug logging. To enable debug printing, sd_component_mask
270  * and sd_level_mask should be set to the desired bit patterns as outlined in
271  * sddef.h.
272  */
273 uint_t	sd_component_mask		= 0x0;
274 uint_t	sd_level_mask			= 0x0;
275 struct	sd_lun *sd_debug_un		= NULL;
276 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
277 
278 /* Note: these may go away in the future... */
279 static uint32_t	sd_xbuf_active_limit	= 512;
280 static uint32_t sd_xbuf_reserve_limit	= 16;
281 
282 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
283 
284 /*
285  * Timer value used to reset the throttle after it has been reduced
286  * (typically in response to TRAN_BUSY or STATUS_QFULL)
287  */
288 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
289 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
290 
291 /*
292  * Interval value associated with the media change scsi watch.
293  */
294 static int sd_check_media_time		= 3000000;
295 
296 /*
297  * Wait value used for in progress operations during a DDI_SUSPEND
298  */
299 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
300 
301 /*
302  * sd_label_mutex protects a static buffer used in the disk label
303  * component of the driver
304  */
305 static kmutex_t sd_label_mutex;
306 
307 /*
308  * sd_detach_mutex protects un_layer_count, un_detach_count, and
309  * un_opens_in_progress in the sd_lun structure.
310  */
311 static kmutex_t sd_detach_mutex;
312 
313 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
314 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
315 
316 /*
317  * Global buffer and mutex for debug logging
318  */
319 static char	sd_log_buf[1024];
320 static kmutex_t	sd_log_mutex;
321 
322 /*
323  * Structs and globals for recording attached lun information.
324  * This maintains a chain. Each node in the chain represents a SCSI controller.
325  * The structure records the number of luns attached to each target connected
326  * with the controller.
327  * For parallel scsi device only.
328  */
329 struct sd_scsi_hba_tgt_lun {
330 	struct sd_scsi_hba_tgt_lun	*next;
331 	dev_info_t			*pdip;
332 	int				nlun[NTARGETS_WIDE];
333 };
334 
335 /*
336  * Flag to indicate the lun is attached or detached
337  */
338 #define	SD_SCSI_LUN_ATTACH	0
339 #define	SD_SCSI_LUN_DETACH	1
340 
341 static kmutex_t	sd_scsi_target_lun_mutex;
342 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
343 
344 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
345     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
346 
347 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
348     sd_scsi_target_lun_head))
349 
350 /*
351  * "Smart" Probe Caching structs, globals, #defines, etc.
352  * For parallel scsi and non-self-identify device only.
353  */
354 
355 /*
356  * The following resources and routines are implemented to support
357  * "smart" probing, which caches the scsi_probe() results in an array,
358  * in order to help avoid long probe times.
359  */
360 struct sd_scsi_probe_cache {
361 	struct	sd_scsi_probe_cache	*next;
362 	dev_info_t	*pdip;
363 	int		cache[NTARGETS_WIDE];
364 };
365 
366 static kmutex_t	sd_scsi_probe_cache_mutex;
367 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
368 
369 /*
370  * Really we only need protection on the head of the linked list, but
371  * better safe than sorry.
372  */
373 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
374     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
375 
376 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
377     sd_scsi_probe_cache_head))
378 
379 
380 /*
381  * Vendor specific data name property declarations
382  */
383 
384 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
385 
386 static sd_tunables seagate_properties = {
387 	SEAGATE_THROTTLE_VALUE,
388 	0,
389 	0,
390 	0,
391 	0,
392 	0,
393 	0,
394 	0,
395 	0
396 };
397 
398 
399 static sd_tunables fujitsu_properties = {
400 	FUJITSU_THROTTLE_VALUE,
401 	0,
402 	0,
403 	0,
404 	0,
405 	0,
406 	0,
407 	0,
408 	0
409 };
410 
411 static sd_tunables ibm_properties = {
412 	IBM_THROTTLE_VALUE,
413 	0,
414 	0,
415 	0,
416 	0,
417 	0,
418 	0,
419 	0,
420 	0
421 };
422 
423 static sd_tunables purple_properties = {
424 	PURPLE_THROTTLE_VALUE,
425 	0,
426 	0,
427 	PURPLE_BUSY_RETRIES,
428 	PURPLE_RESET_RETRY_COUNT,
429 	PURPLE_RESERVE_RELEASE_TIME,
430 	0,
431 	0,
432 	0
433 };
434 
435 static sd_tunables sve_properties = {
436 	SVE_THROTTLE_VALUE,
437 	0,
438 	0,
439 	SVE_BUSY_RETRIES,
440 	SVE_RESET_RETRY_COUNT,
441 	SVE_RESERVE_RELEASE_TIME,
442 	SVE_MIN_THROTTLE_VALUE,
443 	SVE_DISKSORT_DISABLED_FLAG,
444 	0
445 };
446 
447 static sd_tunables maserati_properties = {
448 	0,
449 	0,
450 	0,
451 	0,
452 	0,
453 	0,
454 	0,
455 	MASERATI_DISKSORT_DISABLED_FLAG,
456 	MASERATI_LUN_RESET_ENABLED_FLAG
457 };
458 
459 static sd_tunables pirus_properties = {
460 	PIRUS_THROTTLE_VALUE,
461 	0,
462 	PIRUS_NRR_COUNT,
463 	PIRUS_BUSY_RETRIES,
464 	PIRUS_RESET_RETRY_COUNT,
465 	0,
466 	PIRUS_MIN_THROTTLE_VALUE,
467 	PIRUS_DISKSORT_DISABLED_FLAG,
468 	PIRUS_LUN_RESET_ENABLED_FLAG
469 };
470 
471 #endif
472 
473 #if (defined(__sparc) && !defined(__fibre)) || \
474 	(defined(__i386) || defined(__amd64))
475 
476 
477 static sd_tunables elite_properties = {
478 	ELITE_THROTTLE_VALUE,
479 	0,
480 	0,
481 	0,
482 	0,
483 	0,
484 	0,
485 	0,
486 	0
487 };
488 
489 static sd_tunables st31200n_properties = {
490 	ST31200N_THROTTLE_VALUE,
491 	0,
492 	0,
493 	0,
494 	0,
495 	0,
496 	0,
497 	0,
498 	0
499 };
500 
501 #endif /* Fibre or not */
502 
503 static sd_tunables lsi_properties_scsi = {
504 	LSI_THROTTLE_VALUE,
505 	0,
506 	LSI_NOTREADY_RETRIES,
507 	0,
508 	0,
509 	0,
510 	0,
511 	0,
512 	0
513 };
514 
515 static sd_tunables symbios_properties = {
516 	SYMBIOS_THROTTLE_VALUE,
517 	0,
518 	SYMBIOS_NOTREADY_RETRIES,
519 	0,
520 	0,
521 	0,
522 	0,
523 	0,
524 	0
525 };
526 
527 static sd_tunables lsi_properties = {
528 	0,
529 	0,
530 	LSI_NOTREADY_RETRIES,
531 	0,
532 	0,
533 	0,
534 	0,
535 	0,
536 	0
537 };
538 
539 static sd_tunables lsi_oem_properties = {
540 	0,
541 	0,
542 	LSI_OEM_NOTREADY_RETRIES,
543 	0,
544 	0,
545 	0,
546 	0,
547 	0,
548 	0
549 };
550 
551 
552 
553 #if (defined(SD_PROP_TST))
554 
555 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
556 #define	SD_TST_THROTTLE_VAL	16
557 #define	SD_TST_NOTREADY_VAL	12
558 #define	SD_TST_BUSY_VAL		60
559 #define	SD_TST_RST_RETRY_VAL	36
560 #define	SD_TST_RSV_REL_TIME	60
561 
562 static sd_tunables tst_properties = {
563 	SD_TST_THROTTLE_VAL,
564 	SD_TST_CTYPE_VAL,
565 	SD_TST_NOTREADY_VAL,
566 	SD_TST_BUSY_VAL,
567 	SD_TST_RST_RETRY_VAL,
568 	SD_TST_RSV_REL_TIME,
569 	0,
570 	0,
571 	0
572 };
573 #endif
574 
575 /* This is similiar to the ANSI toupper implementation */
576 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
577 
578 /*
579  * Static Driver Configuration Table
580  *
581  * This is the table of disks which need throttle adjustment (or, perhaps
582  * something else as defined by the flags at a future time.)  device_id
583  * is a string consisting of concatenated vid (vendor), pid (product/model)
584  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
585  * the parts of the string are as defined by the sizes in the scsi_inquiry
586  * structure.  Device type is searched as far as the device_id string is
587  * defined.  Flags defines which values are to be set in the driver from the
588  * properties list.
589  *
590  * Entries below which begin and end with a "*" are a special case.
591  * These do not have a specific vendor, and the string which follows
592  * can appear anywhere in the 16 byte PID portion of the inquiry data.
593  *
594  * Entries below which begin and end with a " " (blank) are a special
595  * case. The comparison function will treat multiple consecutive blanks
596  * as equivalent to a single blank. For example, this causes a
597  * sd_disk_table entry of " NEC CDROM " to match a device's id string
598  * of  "NEC       CDROM".
599  *
600  * Note: The MD21 controller type has been obsoleted.
601  *	 ST318202F is a Legacy device
602  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
603  *	 made with an FC connection. The entries here are a legacy.
604  */
605 static sd_disk_config_t sd_disk_table[] = {
606 #if defined(__fibre) || defined(__i386) || defined(__amd64)
607 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
608 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
609 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
610 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
611 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
612 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
613 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
614 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
615 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
616 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
617 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
618 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
619 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
620 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
621 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
622 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
623 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
624 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
625 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
626 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
627 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
628 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
629 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
630 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
631 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
632 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
633 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
634 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
635 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
636 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
637 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
638 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
639 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
640 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
641 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
642 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
643 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
644 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
645 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
646 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
647 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
648 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
649 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
650 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
651 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
652 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
653 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
654 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
655 			SD_CONF_BSET_BSY_RETRY_COUNT|
656 			SD_CONF_BSET_RST_RETRIES|
657 			SD_CONF_BSET_RSV_REL_TIME,
658 		&purple_properties },
659 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
660 		SD_CONF_BSET_BSY_RETRY_COUNT|
661 		SD_CONF_BSET_RST_RETRIES|
662 		SD_CONF_BSET_RSV_REL_TIME|
663 		SD_CONF_BSET_MIN_THROTTLE|
664 		SD_CONF_BSET_DISKSORT_DISABLED,
665 		&sve_properties },
666 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
667 			SD_CONF_BSET_BSY_RETRY_COUNT|
668 			SD_CONF_BSET_RST_RETRIES|
669 			SD_CONF_BSET_RSV_REL_TIME,
670 		&purple_properties },
671 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
672 		SD_CONF_BSET_LUN_RESET_ENABLED,
673 		&maserati_properties },
674 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
675 		SD_CONF_BSET_NRR_COUNT|
676 		SD_CONF_BSET_BSY_RETRY_COUNT|
677 		SD_CONF_BSET_RST_RETRIES|
678 		SD_CONF_BSET_MIN_THROTTLE|
679 		SD_CONF_BSET_DISKSORT_DISABLED|
680 		SD_CONF_BSET_LUN_RESET_ENABLED,
681 		&pirus_properties },
682 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
683 		SD_CONF_BSET_NRR_COUNT|
684 		SD_CONF_BSET_BSY_RETRY_COUNT|
685 		SD_CONF_BSET_RST_RETRIES|
686 		SD_CONF_BSET_MIN_THROTTLE|
687 		SD_CONF_BSET_DISKSORT_DISABLED|
688 		SD_CONF_BSET_LUN_RESET_ENABLED,
689 		&pirus_properties },
690 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
691 		SD_CONF_BSET_NRR_COUNT|
692 		SD_CONF_BSET_BSY_RETRY_COUNT|
693 		SD_CONF_BSET_RST_RETRIES|
694 		SD_CONF_BSET_MIN_THROTTLE|
695 		SD_CONF_BSET_DISKSORT_DISABLED|
696 		SD_CONF_BSET_LUN_RESET_ENABLED,
697 		&pirus_properties },
698 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
699 		SD_CONF_BSET_NRR_COUNT|
700 		SD_CONF_BSET_BSY_RETRY_COUNT|
701 		SD_CONF_BSET_RST_RETRIES|
702 		SD_CONF_BSET_MIN_THROTTLE|
703 		SD_CONF_BSET_DISKSORT_DISABLED|
704 		SD_CONF_BSET_LUN_RESET_ENABLED,
705 		&pirus_properties },
706 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
707 		SD_CONF_BSET_NRR_COUNT|
708 		SD_CONF_BSET_BSY_RETRY_COUNT|
709 		SD_CONF_BSET_RST_RETRIES|
710 		SD_CONF_BSET_MIN_THROTTLE|
711 		SD_CONF_BSET_DISKSORT_DISABLED|
712 		SD_CONF_BSET_LUN_RESET_ENABLED,
713 		&pirus_properties },
714 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
715 		SD_CONF_BSET_NRR_COUNT|
716 		SD_CONF_BSET_BSY_RETRY_COUNT|
717 		SD_CONF_BSET_RST_RETRIES|
718 		SD_CONF_BSET_MIN_THROTTLE|
719 		SD_CONF_BSET_DISKSORT_DISABLED|
720 		SD_CONF_BSET_LUN_RESET_ENABLED,
721 		&pirus_properties },
722 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
723 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
724 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
725 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
726 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
727 #endif /* fibre or NON-sparc platforms */
728 #if ((defined(__sparc) && !defined(__fibre)) ||\
729 	(defined(__i386) || defined(__amd64)))
730 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
731 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
732 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
733 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
734 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
735 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
736 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
737 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
738 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
739 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
740 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
741 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
742 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
743 	    &symbios_properties },
744 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
745 	    &lsi_properties_scsi },
746 #if defined(__i386) || defined(__amd64)
747 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
748 				    | SD_CONF_BSET_READSUB_BCD
749 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
750 				    | SD_CONF_BSET_NO_READ_HEADER
751 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
752 
753 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
754 				    | SD_CONF_BSET_READSUB_BCD
755 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
756 				    | SD_CONF_BSET_NO_READ_HEADER
757 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
758 #endif /* __i386 || __amd64 */
759 #endif /* sparc NON-fibre or NON-sparc platforms */
760 
761 #if (defined(SD_PROP_TST))
762 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
763 				| SD_CONF_BSET_CTYPE
764 				| SD_CONF_BSET_NRR_COUNT
765 				| SD_CONF_BSET_FAB_DEVID
766 				| SD_CONF_BSET_NOCACHE
767 				| SD_CONF_BSET_BSY_RETRY_COUNT
768 				| SD_CONF_BSET_PLAYMSF_BCD
769 				| SD_CONF_BSET_READSUB_BCD
770 				| SD_CONF_BSET_READ_TOC_TRK_BCD
771 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
772 				| SD_CONF_BSET_NO_READ_HEADER
773 				| SD_CONF_BSET_READ_CD_XD4
774 				| SD_CONF_BSET_RST_RETRIES
775 				| SD_CONF_BSET_RSV_REL_TIME
776 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
777 #endif
778 };
779 
780 static const int sd_disk_table_size =
781 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
782 
783 
784 /*
785  * Return codes of sd_uselabel().
786  */
787 #define	SD_LABEL_IS_VALID		0
788 #define	SD_LABEL_IS_INVALID		1
789 
790 #define	SD_INTERCONNECT_PARALLEL	0
791 #define	SD_INTERCONNECT_FABRIC		1
792 #define	SD_INTERCONNECT_FIBRE		2
793 #define	SD_INTERCONNECT_SSA		3
794 #define	SD_INTERCONNECT_SATA		4
795 #define	SD_IS_PARALLEL_SCSI(un)		\
796 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
797 #define	SD_IS_SERIAL(un)		\
798 	((un)->un_interconnect_type == SD_INTERCONNECT_SATA)
799 
800 /*
801  * Definitions used by device id registration routines
802  */
803 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
804 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
805 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
806 #define	WD_NODE			7	/* the whole disk minor */
807 
808 static kmutex_t sd_sense_mutex = {0};
809 
810 /*
811  * Macros for updates of the driver state
812  */
813 #define	New_state(un, s)        \
814 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
815 #define	Restore_state(un)	\
816 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
817 
818 static struct sd_cdbinfo sd_cdbtab[] = {
819 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
820 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
821 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
822 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
823 };
824 
825 /*
826  * Specifies the number of seconds that must have elapsed since the last
827  * cmd. has completed for a device to be declared idle to the PM framework.
828  */
829 static int sd_pm_idletime = 1;
830 
831 /*
832  * Internal function prototypes
833  */
834 
835 #if (defined(__fibre))
836 /*
837  * These #defines are to avoid namespace collisions that occur because this
838  * code is currently used to compile two seperate driver modules: sd and ssd.
839  * All function names need to be treated this way (even if declared static)
840  * in order to allow the debugger to resolve the names properly.
841  * It is anticipated that in the near future the ssd module will be obsoleted,
842  * at which time this ugliness should go away.
843  */
844 #define	sd_log_trace			ssd_log_trace
845 #define	sd_log_info			ssd_log_info
846 #define	sd_log_err			ssd_log_err
847 #define	sdprobe				ssdprobe
848 #define	sdinfo				ssdinfo
849 #define	sd_prop_op			ssd_prop_op
850 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
851 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
852 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
853 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
854 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
855 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
856 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
857 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
858 #define	sd_spin_up_unit			ssd_spin_up_unit
859 #define	sd_enable_descr_sense		ssd_enable_descr_sense
860 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
861 #define	sd_set_mmc_caps			ssd_set_mmc_caps
862 #define	sd_read_unit_properties		ssd_read_unit_properties
863 #define	sd_process_sdconf_file		ssd_process_sdconf_file
864 #define	sd_process_sdconf_table		ssd_process_sdconf_table
865 #define	sd_sdconf_id_match		ssd_sdconf_id_match
866 #define	sd_blank_cmp			ssd_blank_cmp
867 #define	sd_chk_vers1_data		ssd_chk_vers1_data
868 #define	sd_set_vers1_properties		ssd_set_vers1_properties
869 #define	sd_validate_geometry		ssd_validate_geometry
870 
871 #if defined(_SUNOS_VTOC_16)
872 #define	sd_convert_geometry		ssd_convert_geometry
873 #endif
874 
875 #define	sd_resync_geom_caches		ssd_resync_geom_caches
876 #define	sd_read_fdisk			ssd_read_fdisk
877 #define	sd_get_physical_geometry	ssd_get_physical_geometry
878 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
879 #define	sd_update_block_info		ssd_update_block_info
880 #define	sd_swap_efi_gpt			ssd_swap_efi_gpt
881 #define	sd_swap_efi_gpe			ssd_swap_efi_gpe
882 #define	sd_validate_efi			ssd_validate_efi
883 #define	sd_use_efi			ssd_use_efi
884 #define	sd_uselabel			ssd_uselabel
885 #define	sd_build_default_label		ssd_build_default_label
886 #define	sd_has_max_chs_vals		ssd_has_max_chs_vals
887 #define	sd_inq_fill			ssd_inq_fill
888 #define	sd_register_devid		ssd_register_devid
889 #define	sd_get_devid_block		ssd_get_devid_block
890 #define	sd_get_devid			ssd_get_devid
891 #define	sd_create_devid			ssd_create_devid
892 #define	sd_write_deviceid		ssd_write_deviceid
893 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
894 #define	sd_setup_pm			ssd_setup_pm
895 #define	sd_create_pm_components		ssd_create_pm_components
896 #define	sd_ddi_suspend			ssd_ddi_suspend
897 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
898 #define	sd_ddi_resume			ssd_ddi_resume
899 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
900 #define	sdpower				ssdpower
901 #define	sdattach			ssdattach
902 #define	sddetach			ssddetach
903 #define	sd_unit_attach			ssd_unit_attach
904 #define	sd_unit_detach			ssd_unit_detach
905 #define	sd_set_unit_attributes		ssd_set_unit_attributes
906 #define	sd_create_minor_nodes		ssd_create_minor_nodes
907 #define	sd_create_errstats		ssd_create_errstats
908 #define	sd_set_errstats			ssd_set_errstats
909 #define	sd_set_pstats			ssd_set_pstats
910 #define	sddump				ssddump
911 #define	sd_scsi_poll			ssd_scsi_poll
912 #define	sd_send_polled_RQS		ssd_send_polled_RQS
913 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
914 #define	sd_init_event_callbacks		ssd_init_event_callbacks
915 #define	sd_event_callback		ssd_event_callback
916 #define	sd_cache_control		ssd_cache_control
917 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
918 #define	sd_make_device			ssd_make_device
919 #define	sdopen				ssdopen
920 #define	sdclose				ssdclose
921 #define	sd_ready_and_valid		ssd_ready_and_valid
922 #define	sdmin				ssdmin
923 #define	sdread				ssdread
924 #define	sdwrite				ssdwrite
925 #define	sdaread				ssdaread
926 #define	sdawrite			ssdawrite
927 #define	sdstrategy			ssdstrategy
928 #define	sdioctl				ssdioctl
929 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
930 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
931 #define	sd_checksum_iostart		ssd_checksum_iostart
932 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
933 #define	sd_pm_iostart			ssd_pm_iostart
934 #define	sd_core_iostart			ssd_core_iostart
935 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
936 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
937 #define	sd_checksum_iodone		ssd_checksum_iodone
938 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
939 #define	sd_pm_iodone			ssd_pm_iodone
940 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
941 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
942 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
943 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
944 #define	sd_buf_iodone			ssd_buf_iodone
945 #define	sd_uscsi_strategy		ssd_uscsi_strategy
946 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
947 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
948 #define	sd_uscsi_iodone			ssd_uscsi_iodone
949 #define	sd_xbuf_strategy		ssd_xbuf_strategy
950 #define	sd_xbuf_init			ssd_xbuf_init
951 #define	sd_pm_entry			ssd_pm_entry
952 #define	sd_pm_exit			ssd_pm_exit
953 
954 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
955 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
956 
957 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
958 #define	sdintr				ssdintr
959 #define	sd_start_cmds			ssd_start_cmds
960 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
961 #define	sd_bioclone_alloc		ssd_bioclone_alloc
962 #define	sd_bioclone_free		ssd_bioclone_free
963 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
964 #define	sd_shadow_buf_free		ssd_shadow_buf_free
965 #define	sd_print_transport_rejected_message	\
966 					ssd_print_transport_rejected_message
967 #define	sd_retry_command		ssd_retry_command
968 #define	sd_set_retry_bp			ssd_set_retry_bp
969 #define	sd_send_request_sense_command	ssd_send_request_sense_command
970 #define	sd_start_retry_command		ssd_start_retry_command
971 #define	sd_start_direct_priority_command	\
972 					ssd_start_direct_priority_command
973 #define	sd_return_failed_command	ssd_return_failed_command
974 #define	sd_return_failed_command_no_restart	\
975 					ssd_return_failed_command_no_restart
976 #define	sd_return_command		ssd_return_command
977 #define	sd_sync_with_callback		ssd_sync_with_callback
978 #define	sdrunout			ssdrunout
979 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
980 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
981 #define	sd_reduce_throttle		ssd_reduce_throttle
982 #define	sd_restore_throttle		ssd_restore_throttle
983 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
984 #define	sd_init_cdb_limits		ssd_init_cdb_limits
985 #define	sd_pkt_status_good		ssd_pkt_status_good
986 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
987 #define	sd_pkt_status_busy		ssd_pkt_status_busy
988 #define	sd_pkt_status_reservation_conflict	\
989 					ssd_pkt_status_reservation_conflict
990 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
991 #define	sd_handle_request_sense		ssd_handle_request_sense
992 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
993 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
994 #define	sd_validate_sense_data		ssd_validate_sense_data
995 #define	sd_decode_sense			ssd_decode_sense
996 #define	sd_print_sense_msg		ssd_print_sense_msg
997 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
998 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
999 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
1000 #define	sd_sense_key_medium_or_hardware_error	\
1001 					ssd_sense_key_medium_or_hardware_error
1002 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
1003 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
1004 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
1005 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
1006 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
1007 #define	sd_sense_key_default		ssd_sense_key_default
1008 #define	sd_print_retry_msg		ssd_print_retry_msg
1009 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
1010 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
1011 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
1012 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
1013 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
1014 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
1015 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
1016 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
1017 #define	sd_pkt_reason_default		ssd_pkt_reason_default
1018 #define	sd_reset_target			ssd_reset_target
1019 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
1020 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
1021 #define	sd_taskq_create			ssd_taskq_create
1022 #define	sd_taskq_delete			ssd_taskq_delete
1023 #define	sd_media_change_task		ssd_media_change_task
1024 #define	sd_handle_mchange		ssd_handle_mchange
1025 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
1026 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
1027 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
1028 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
1029 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
1030 					sd_send_scsi_feature_GET_CONFIGURATION
1031 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
1032 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
1033 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
1034 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
1035 					ssd_send_scsi_PERSISTENT_RESERVE_IN
1036 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
1037 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
1038 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
1039 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
1040 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
1041 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
1042 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
1043 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
1044 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
1045 #define	sd_alloc_rqs			ssd_alloc_rqs
1046 #define	sd_free_rqs			ssd_free_rqs
1047 #define	sd_dump_memory			ssd_dump_memory
1048 #define	sd_get_media_info		ssd_get_media_info
1049 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1050 #define	sd_dkio_get_geometry		ssd_dkio_get_geometry
1051 #define	sd_dkio_set_geometry		ssd_dkio_set_geometry
1052 #define	sd_dkio_get_partition		ssd_dkio_get_partition
1053 #define	sd_dkio_set_partition		ssd_dkio_set_partition
1054 #define	sd_dkio_partition		ssd_dkio_partition
1055 #define	sd_dkio_get_vtoc		ssd_dkio_get_vtoc
1056 #define	sd_dkio_get_efi			ssd_dkio_get_efi
1057 #define	sd_build_user_vtoc		ssd_build_user_vtoc
1058 #define	sd_dkio_set_vtoc		ssd_dkio_set_vtoc
1059 #define	sd_dkio_set_efi			ssd_dkio_set_efi
1060 #define	sd_build_label_vtoc		ssd_build_label_vtoc
1061 #define	sd_write_label			ssd_write_label
1062 #define	sd_clear_vtoc			ssd_clear_vtoc
1063 #define	sd_clear_efi			ssd_clear_efi
1064 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1065 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1066 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1067 #define	sd_dkio_get_mboot		ssd_dkio_get_mboot
1068 #define	sd_dkio_set_mboot		ssd_dkio_set_mboot
1069 #define	sd_setup_default_geometry	ssd_setup_default_geometry
1070 #define	sd_update_fdisk_and_vtoc	ssd_update_fdisk_and_vtoc
1071 #define	sd_check_mhd			ssd_check_mhd
1072 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1073 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1074 #define	sd_sname			ssd_sname
1075 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1076 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1077 #define	sd_take_ownership		ssd_take_ownership
1078 #define	sd_reserve_release		ssd_reserve_release
1079 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1080 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1081 #define	sd_persistent_reservation_in_read_keys	\
1082 					ssd_persistent_reservation_in_read_keys
1083 #define	sd_persistent_reservation_in_read_resv	\
1084 					ssd_persistent_reservation_in_read_resv
1085 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1086 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1087 #define	sd_mhdioc_release		ssd_mhdioc_release
1088 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1089 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1090 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1091 #define	sr_change_blkmode		ssr_change_blkmode
1092 #define	sr_change_speed			ssr_change_speed
1093 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1094 #define	sr_pause_resume			ssr_pause_resume
1095 #define	sr_play_msf			ssr_play_msf
1096 #define	sr_play_trkind			ssr_play_trkind
1097 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1098 #define	sr_read_subchannel		ssr_read_subchannel
1099 #define	sr_read_tocentry		ssr_read_tocentry
1100 #define	sr_read_tochdr			ssr_read_tochdr
1101 #define	sr_read_cdda			ssr_read_cdda
1102 #define	sr_read_cdxa			ssr_read_cdxa
1103 #define	sr_read_mode1			ssr_read_mode1
1104 #define	sr_read_mode2			ssr_read_mode2
1105 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1106 #define	sr_sector_mode			ssr_sector_mode
1107 #define	sr_eject			ssr_eject
1108 #define	sr_ejected			ssr_ejected
1109 #define	sr_check_wp			ssr_check_wp
1110 #define	sd_check_media			ssd_check_media
1111 #define	sd_media_watch_cb		ssd_media_watch_cb
1112 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1113 #define	sr_volume_ctrl			ssr_volume_ctrl
1114 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1115 #define	sd_log_page_supported		ssd_log_page_supported
1116 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1117 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1118 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1119 #define	sd_range_lock			ssd_range_lock
1120 #define	sd_get_range			ssd_get_range
1121 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1122 #define	sd_range_unlock			ssd_range_unlock
1123 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1124 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1125 
1126 #define	sd_iostart_chain		ssd_iostart_chain
1127 #define	sd_iodone_chain			ssd_iodone_chain
1128 #define	sd_initpkt_map			ssd_initpkt_map
1129 #define	sd_destroypkt_map		ssd_destroypkt_map
1130 #define	sd_chain_type_map		ssd_chain_type_map
1131 #define	sd_chain_index_map		ssd_chain_index_map
1132 
1133 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1134 #define	sd_failfast_flushq		ssd_failfast_flushq
1135 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1136 
1137 #define	sd_is_lsi			ssd_is_lsi
1138 
1139 #endif	/* #if (defined(__fibre)) */
1140 
1141 
1142 int _init(void);
1143 int _fini(void);
1144 int _info(struct modinfo *modinfop);
1145 
1146 /*PRINTFLIKE3*/
1147 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1148 /*PRINTFLIKE3*/
1149 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1150 /*PRINTFLIKE3*/
1151 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1152 
1153 static int sdprobe(dev_info_t *devi);
1154 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1155     void **result);
1156 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1157     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1158 
1159 /*
1160  * Smart probe for parallel scsi
1161  */
1162 static void sd_scsi_probe_cache_init(void);
1163 static void sd_scsi_probe_cache_fini(void);
1164 static void sd_scsi_clear_probe_cache(void);
1165 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1166 
1167 /*
1168  * Attached luns on target for parallel scsi
1169  */
1170 static void sd_scsi_target_lun_init(void);
1171 static void sd_scsi_target_lun_fini(void);
1172 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1173 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1174 
1175 static int	sd_spin_up_unit(struct sd_lun *un);
1176 #ifdef _LP64
1177 static void	sd_enable_descr_sense(struct sd_lun *un);
1178 static void	sd_reenable_dsense_task(void *arg);
1179 #endif /* _LP64 */
1180 
1181 static void	sd_set_mmc_caps(struct sd_lun *un);
1182 
1183 static void sd_read_unit_properties(struct sd_lun *un);
1184 static int  sd_process_sdconf_file(struct sd_lun *un);
1185 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1186     int *data_list, sd_tunables *values);
1187 static void sd_process_sdconf_table(struct sd_lun *un);
1188 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1189 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1190 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1191 	int list_len, char *dataname_ptr);
1192 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1193     sd_tunables *prop_list);
1194 static int  sd_validate_geometry(struct sd_lun *un, int path_flag);
1195 
1196 #if defined(_SUNOS_VTOC_16)
1197 static void sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g);
1198 #endif
1199 
1200 static void sd_resync_geom_caches(struct sd_lun *un, uint64_t capacity,
1201 	int lbasize, int path_flag);
1202 static int  sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize,
1203 	int path_flag);
1204 static void sd_get_physical_geometry(struct sd_lun *un,
1205 	struct geom_cache *pgeom_p, uint64_t capacity, int lbasize,
1206 	int path_flag);
1207 static void sd_get_virtual_geometry(struct sd_lun *un, int capacity,
1208 	int lbasize);
1209 static int  sd_uselabel(struct sd_lun *un, struct dk_label *l, int path_flag);
1210 static void sd_swap_efi_gpt(efi_gpt_t *);
1211 static void sd_swap_efi_gpe(int nparts, efi_gpe_t *);
1212 static int sd_validate_efi(efi_gpt_t *);
1213 static int sd_use_efi(struct sd_lun *, int);
1214 static void sd_build_default_label(struct sd_lun *un);
1215 
1216 #if defined(_FIRMWARE_NEEDS_FDISK)
1217 static int  sd_has_max_chs_vals(struct ipart *fdp);
1218 #endif
1219 static void sd_inq_fill(char *p, int l, char *s);
1220 
1221 
1222 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi,
1223     int reservation_flag);
1224 static daddr_t  sd_get_devid_block(struct sd_lun *un);
1225 static int  sd_get_devid(struct sd_lun *un);
1226 static int  sd_get_serialnum(struct sd_lun *un, uchar_t *wwn, int *len);
1227 static ddi_devid_t sd_create_devid(struct sd_lun *un);
1228 static int  sd_write_deviceid(struct sd_lun *un);
1229 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1230 static int  sd_check_vpd_page_support(struct sd_lun *un);
1231 
1232 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi);
1233 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1234 
1235 static int  sd_ddi_suspend(dev_info_t *devi);
1236 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1237 static int  sd_ddi_resume(dev_info_t *devi);
1238 static int  sd_ddi_pm_resume(struct sd_lun *un);
1239 static int  sdpower(dev_info_t *devi, int component, int level);
1240 
1241 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1242 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1243 static int  sd_unit_attach(dev_info_t *devi);
1244 static int  sd_unit_detach(dev_info_t *devi);
1245 
1246 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1247 static int  sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi);
1248 static void sd_create_errstats(struct sd_lun *un, int instance);
1249 static void sd_set_errstats(struct sd_lun *un);
1250 static void sd_set_pstats(struct sd_lun *un);
1251 
1252 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1253 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1254 static int  sd_send_polled_RQS(struct sd_lun *un);
1255 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1256 
1257 #if (defined(__fibre))
1258 /*
1259  * Event callbacks (photon)
1260  */
1261 static void sd_init_event_callbacks(struct sd_lun *un);
1262 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1263 #endif
1264 
1265 /*
1266  * Defines for sd_cache_control
1267  */
1268 
1269 #define	SD_CACHE_ENABLE		1
1270 #define	SD_CACHE_DISABLE	0
1271 #define	SD_CACHE_NOCHANGE	-1
1272 
1273 static int   sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag);
1274 static int   sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled);
1275 static dev_t sd_make_device(dev_info_t *devi);
1276 
1277 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1278 	uint64_t capacity);
1279 
1280 /*
1281  * Driver entry point functions.
1282  */
1283 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1284 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1285 static int  sd_ready_and_valid(struct sd_lun *un);
1286 
1287 static void sdmin(struct buf *bp);
1288 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1289 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1290 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1291 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1292 
1293 static int sdstrategy(struct buf *bp);
1294 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1295 
1296 /*
1297  * Function prototypes for layering functions in the iostart chain.
1298  */
1299 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1300 	struct buf *bp);
1301 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1302 	struct buf *bp);
1303 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1304 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1305 	struct buf *bp);
1306 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1307 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1308 
1309 /*
1310  * Function prototypes for layering functions in the iodone chain.
1311  */
1312 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1313 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1314 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1315 	struct buf *bp);
1316 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1317 	struct buf *bp);
1318 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1319 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1320 	struct buf *bp);
1321 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1322 
1323 /*
1324  * Prototypes for functions to support buf(9S) based IO.
1325  */
1326 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1327 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1328 static void sd_destroypkt_for_buf(struct buf *);
1329 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1330 	struct buf *bp, int flags,
1331 	int (*callback)(caddr_t), caddr_t callback_arg,
1332 	diskaddr_t lba, uint32_t blockcount);
1333 #if defined(__i386) || defined(__amd64)
1334 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1335 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1336 #endif /* defined(__i386) || defined(__amd64) */
1337 
1338 /*
1339  * Prototypes for functions to support USCSI IO.
1340  */
1341 static int sd_uscsi_strategy(struct buf *bp);
1342 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1343 static void sd_destroypkt_for_uscsi(struct buf *);
1344 
1345 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1346 	uchar_t chain_type, void *pktinfop);
1347 
1348 static int  sd_pm_entry(struct sd_lun *un);
1349 static void sd_pm_exit(struct sd_lun *un);
1350 
1351 static void sd_pm_idletimeout_handler(void *arg);
1352 
1353 /*
1354  * sd_core internal functions (used at the sd_core_io layer).
1355  */
1356 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1357 static void sdintr(struct scsi_pkt *pktp);
1358 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1359 
1360 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1361 	enum uio_seg dataspace, int path_flag);
1362 
1363 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1364 	daddr_t blkno, int (*func)(struct buf *));
1365 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1366 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1367 static void sd_bioclone_free(struct buf *bp);
1368 static void sd_shadow_buf_free(struct buf *bp);
1369 
1370 static void sd_print_transport_rejected_message(struct sd_lun *un,
1371 	struct sd_xbuf *xp, int code);
1372 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1373     void *arg, int code);
1374 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1375     void *arg, int code);
1376 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1377     void *arg, int code);
1378 
1379 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1380 	int retry_check_flag,
1381 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1382 		int c),
1383 	void *user_arg, int failure_code,  clock_t retry_delay,
1384 	void (*statp)(kstat_io_t *));
1385 
1386 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1387 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1388 
1389 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1390 	struct scsi_pkt *pktp);
1391 static void sd_start_retry_command(void *arg);
1392 static void sd_start_direct_priority_command(void *arg);
1393 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1394 	int errcode);
1395 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1396 	struct buf *bp, int errcode);
1397 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1398 static void sd_sync_with_callback(struct sd_lun *un);
1399 static int sdrunout(caddr_t arg);
1400 
1401 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1402 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1403 
1404 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1405 static void sd_restore_throttle(void *arg);
1406 
1407 static void sd_init_cdb_limits(struct sd_lun *un);
1408 
1409 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1410 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1411 
1412 /*
1413  * Error handling functions
1414  */
1415 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1416 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1417 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1418 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1419 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1420 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1421 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1422 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1423 
1424 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1425 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1426 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1427 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1428 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1429 	struct sd_xbuf *xp);
1430 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1431 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1432 
1433 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1434 	void *arg, int code);
1435 
1436 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1437 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1438 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1439 	uint8_t *sense_datap,
1440 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1441 static void sd_sense_key_not_ready(struct sd_lun *un,
1442 	uint8_t *sense_datap,
1443 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1444 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1445 	uint8_t *sense_datap,
1446 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1447 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1448 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1449 static void sd_sense_key_unit_attention(struct sd_lun *un,
1450 	uint8_t *sense_datap,
1451 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1452 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1453 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1454 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1455 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1456 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1457 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1458 static void sd_sense_key_default(struct sd_lun *un,
1459 	uint8_t *sense_datap,
1460 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1461 
1462 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1463 	void *arg, int flag);
1464 
1465 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1466 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1467 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1468 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1469 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1470 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1471 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1472 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1473 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1474 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1475 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1476 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1477 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1478 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1479 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1480 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1481 
1482 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1483 
1484 static void sd_start_stop_unit_callback(void *arg);
1485 static void sd_start_stop_unit_task(void *arg);
1486 
1487 static void sd_taskq_create(void);
1488 static void sd_taskq_delete(void);
1489 static void sd_media_change_task(void *arg);
1490 
1491 static int sd_handle_mchange(struct sd_lun *un);
1492 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag);
1493 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp,
1494 	uint32_t *lbap, int path_flag);
1495 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
1496 	uint32_t *lbap, int path_flag);
1497 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag,
1498 	int path_flag);
1499 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr,
1500 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1501 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag);
1502 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un,
1503 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1504 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un,
1505 	uchar_t usr_cmd, uchar_t *usr_bufp);
1506 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1507 	struct dk_callback *dkc);
1508 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1509 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un,
1510 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1511 	uchar_t *bufaddr, uint_t buflen);
1512 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
1513 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1514 	uchar_t *bufaddr, uint_t buflen, char feature);
1515 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize,
1516 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1517 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize,
1518 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1519 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
1520 	size_t buflen, daddr_t start_block, int path_flag);
1521 #define	sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag)	\
1522 	sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \
1523 	path_flag)
1524 #define	sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag)	\
1525 	sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\
1526 	path_flag)
1527 
1528 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr,
1529 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1530 	uint16_t param_ptr, int path_flag);
1531 
1532 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1533 static void sd_free_rqs(struct sd_lun *un);
1534 
1535 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1536 	uchar_t *data, int len, int fmt);
1537 static void sd_panic_for_res_conflict(struct sd_lun *un);
1538 
1539 /*
1540  * Disk Ioctl Function Prototypes
1541  */
1542 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1543 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1544 static int sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag,
1545 	int geom_validated);
1546 static int sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag);
1547 static int sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag,
1548 	int geom_validated);
1549 static int sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag);
1550 static int sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag,
1551 	int geom_validated);
1552 static int sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag);
1553 static int sd_dkio_partition(dev_t dev, caddr_t arg, int flag);
1554 static void sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1555 static int sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag);
1556 static int sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag);
1557 static int sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1558 static int sd_write_label(dev_t dev);
1559 static int sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl);
1560 static void sd_clear_vtoc(struct sd_lun *un);
1561 static void sd_clear_efi(struct sd_lun *un);
1562 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1563 static int sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag);
1564 static int sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag);
1565 static void sd_setup_default_geometry(struct sd_lun *un);
1566 #if defined(__i386) || defined(__amd64)
1567 static int sd_update_fdisk_and_vtoc(struct sd_lun *un);
1568 #endif
1569 
1570 /*
1571  * Multi-host Ioctl Prototypes
1572  */
1573 static int sd_check_mhd(dev_t dev, int interval);
1574 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1575 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1576 static char *sd_sname(uchar_t status);
1577 static void sd_mhd_resvd_recover(void *arg);
1578 static void sd_resv_reclaim_thread();
1579 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1580 static int sd_reserve_release(dev_t dev, int cmd);
1581 static void sd_rmv_resv_reclaim_req(dev_t dev);
1582 static void sd_mhd_reset_notify_cb(caddr_t arg);
1583 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1584 	mhioc_inkeys_t *usrp, int flag);
1585 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1586 	mhioc_inresvs_t *usrp, int flag);
1587 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1588 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1589 static int sd_mhdioc_release(dev_t dev);
1590 static int sd_mhdioc_register_devid(dev_t dev);
1591 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1592 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1593 
1594 /*
1595  * SCSI removable prototypes
1596  */
1597 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1598 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1599 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1600 static int sr_pause_resume(dev_t dev, int mode);
1601 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1602 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1603 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1604 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1605 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1606 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1607 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1608 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1609 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1610 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1611 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1612 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1613 static int sr_eject(dev_t dev);
1614 static void sr_ejected(register struct sd_lun *un);
1615 static int sr_check_wp(dev_t dev);
1616 static int sd_check_media(dev_t dev, enum dkio_state state);
1617 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1618 static void sd_delayed_cv_broadcast(void *arg);
1619 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1620 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1621 
1622 static int sd_log_page_supported(struct sd_lun *un, int log_page);
1623 
1624 /*
1625  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1626  */
1627 static void sd_check_for_writable_cd(struct sd_lun *un);
1628 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1629 static void sd_wm_cache_destructor(void *wm, void *un);
1630 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1631 	daddr_t endb, ushort_t typ);
1632 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1633 	daddr_t endb);
1634 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1635 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1636 static void sd_read_modify_write_task(void * arg);
1637 static int
1638 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1639 	struct buf **bpp);
1640 
1641 
1642 /*
1643  * Function prototypes for failfast support.
1644  */
1645 static void sd_failfast_flushq(struct sd_lun *un);
1646 static int sd_failfast_flushq_callback(struct buf *bp);
1647 
1648 /*
1649  * Function prototypes to check for lsi devices
1650  */
1651 static void sd_is_lsi(struct sd_lun *un);
1652 
1653 /*
1654  * Function prototypes for x86 support
1655  */
1656 #if defined(__i386) || defined(__amd64)
1657 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1658 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1659 #endif
1660 
1661 /*
1662  * Constants for failfast support:
1663  *
1664  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1665  * failfast processing being performed.
1666  *
1667  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1668  * failfast processing on all bufs with B_FAILFAST set.
1669  */
1670 
1671 #define	SD_FAILFAST_INACTIVE		0
1672 #define	SD_FAILFAST_ACTIVE		1
1673 
1674 /*
1675  * Bitmask to control behavior of buf(9S) flushes when a transition to
1676  * the failfast state occurs. Optional bits include:
1677  *
1678  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1679  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1680  * be flushed.
1681  *
1682  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1683  * driver, in addition to the regular wait queue. This includes the xbuf
1684  * queues. When clear, only the driver's wait queue will be flushed.
1685  */
1686 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1687 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1688 
1689 /*
1690  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1691  * to flush all queues within the driver.
1692  */
1693 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1694 
1695 
1696 /*
1697  * SD Testing Fault Injection
1698  */
1699 #ifdef SD_FAULT_INJECTION
1700 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1701 static void sd_faultinjection(struct scsi_pkt *pktp);
1702 static void sd_injection_log(char *buf, struct sd_lun *un);
1703 #endif
1704 
1705 /*
1706  * Device driver ops vector
1707  */
1708 static struct cb_ops sd_cb_ops = {
1709 	sdopen,			/* open */
1710 	sdclose,		/* close */
1711 	sdstrategy,		/* strategy */
1712 	nodev,			/* print */
1713 	sddump,			/* dump */
1714 	sdread,			/* read */
1715 	sdwrite,		/* write */
1716 	sdioctl,		/* ioctl */
1717 	nodev,			/* devmap */
1718 	nodev,			/* mmap */
1719 	nodev,			/* segmap */
1720 	nochpoll,		/* poll */
1721 	sd_prop_op,		/* cb_prop_op */
1722 	0,			/* streamtab  */
1723 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1724 	CB_REV,			/* cb_rev */
1725 	sdaread, 		/* async I/O read entry point */
1726 	sdawrite		/* async I/O write entry point */
1727 };
1728 
1729 static struct dev_ops sd_ops = {
1730 	DEVO_REV,		/* devo_rev, */
1731 	0,			/* refcnt  */
1732 	sdinfo,			/* info */
1733 	nulldev,		/* identify */
1734 	sdprobe,		/* probe */
1735 	sdattach,		/* attach */
1736 	sddetach,		/* detach */
1737 	nodev,			/* reset */
1738 	&sd_cb_ops,		/* driver operations */
1739 	NULL,			/* bus operations */
1740 	sdpower			/* power */
1741 };
1742 
1743 
1744 /*
1745  * This is the loadable module wrapper.
1746  */
1747 #include <sys/modctl.h>
1748 
1749 static struct modldrv modldrv = {
1750 	&mod_driverops,		/* Type of module. This one is a driver */
1751 	SD_MODULE_NAME,		/* Module name. */
1752 	&sd_ops			/* driver ops */
1753 };
1754 
1755 
1756 static struct modlinkage modlinkage = {
1757 	MODREV_1,
1758 	&modldrv,
1759 	NULL
1760 };
1761 
1762 
1763 static struct scsi_asq_key_strings sd_additional_codes[] = {
1764 	0x81, 0, "Logical Unit is Reserved",
1765 	0x85, 0, "Audio Address Not Valid",
1766 	0xb6, 0, "Media Load Mechanism Failed",
1767 	0xB9, 0, "Audio Play Operation Aborted",
1768 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1769 	0x53, 2, "Medium removal prevented",
1770 	0x6f, 0, "Authentication failed during key exchange",
1771 	0x6f, 1, "Key not present",
1772 	0x6f, 2, "Key not established",
1773 	0x6f, 3, "Read without proper authentication",
1774 	0x6f, 4, "Mismatched region to this logical unit",
1775 	0x6f, 5, "Region reset count error",
1776 	0xffff, 0x0, NULL
1777 };
1778 
1779 
1780 /*
1781  * Struct for passing printing information for sense data messages
1782  */
1783 struct sd_sense_info {
1784 	int	ssi_severity;
1785 	int	ssi_pfa_flag;
1786 };
1787 
1788 /*
1789  * Table of function pointers for iostart-side routines. Seperate "chains"
1790  * of layered function calls are formed by placing the function pointers
1791  * sequentially in the desired order. Functions are called according to an
1792  * incrementing table index ordering. The last function in each chain must
1793  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1794  * in the sd_iodone_chain[] array.
1795  *
1796  * Note: It may seem more natural to organize both the iostart and iodone
1797  * functions together, into an array of structures (or some similar
1798  * organization) with a common index, rather than two seperate arrays which
1799  * must be maintained in synchronization. The purpose of this division is
1800  * to achiece improved performance: individual arrays allows for more
1801  * effective cache line utilization on certain platforms.
1802  */
1803 
1804 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1805 
1806 
1807 static sd_chain_t sd_iostart_chain[] = {
1808 
1809 	/* Chain for buf IO for disk drive targets (PM enabled) */
1810 	sd_mapblockaddr_iostart,	/* Index: 0 */
1811 	sd_pm_iostart,			/* Index: 1 */
1812 	sd_core_iostart,		/* Index: 2 */
1813 
1814 	/* Chain for buf IO for disk drive targets (PM disabled) */
1815 	sd_mapblockaddr_iostart,	/* Index: 3 */
1816 	sd_core_iostart,		/* Index: 4 */
1817 
1818 	/* Chain for buf IO for removable-media targets (PM enabled) */
1819 	sd_mapblockaddr_iostart,	/* Index: 5 */
1820 	sd_mapblocksize_iostart,	/* Index: 6 */
1821 	sd_pm_iostart,			/* Index: 7 */
1822 	sd_core_iostart,		/* Index: 8 */
1823 
1824 	/* Chain for buf IO for removable-media targets (PM disabled) */
1825 	sd_mapblockaddr_iostart,	/* Index: 9 */
1826 	sd_mapblocksize_iostart,	/* Index: 10 */
1827 	sd_core_iostart,		/* Index: 11 */
1828 
1829 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1830 	sd_mapblockaddr_iostart,	/* Index: 12 */
1831 	sd_checksum_iostart,		/* Index: 13 */
1832 	sd_pm_iostart,			/* Index: 14 */
1833 	sd_core_iostart,		/* Index: 15 */
1834 
1835 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1836 	sd_mapblockaddr_iostart,	/* Index: 16 */
1837 	sd_checksum_iostart,		/* Index: 17 */
1838 	sd_core_iostart,		/* Index: 18 */
1839 
1840 	/* Chain for USCSI commands (all targets) */
1841 	sd_pm_iostart,			/* Index: 19 */
1842 	sd_core_iostart,		/* Index: 20 */
1843 
1844 	/* Chain for checksumming USCSI commands (all targets) */
1845 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1846 	sd_pm_iostart,			/* Index: 22 */
1847 	sd_core_iostart,		/* Index: 23 */
1848 
1849 	/* Chain for "direct" USCSI commands (all targets) */
1850 	sd_core_iostart,		/* Index: 24 */
1851 
1852 	/* Chain for "direct priority" USCSI commands (all targets) */
1853 	sd_core_iostart,		/* Index: 25 */
1854 };
1855 
1856 /*
1857  * Macros to locate the first function of each iostart chain in the
1858  * sd_iostart_chain[] array. These are located by the index in the array.
1859  */
1860 #define	SD_CHAIN_DISK_IOSTART			0
1861 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1862 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1863 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1864 #define	SD_CHAIN_CHKSUM_IOSTART			12
1865 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1866 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1867 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1868 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1869 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1870 
1871 
1872 /*
1873  * Table of function pointers for the iodone-side routines for the driver-
1874  * internal layering mechanism.  The calling sequence for iodone routines
1875  * uses a decrementing table index, so the last routine called in a chain
1876  * must be at the lowest array index location for that chain.  The last
1877  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1878  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1879  * of the functions in an iodone side chain must correspond to the ordering
1880  * of the iostart routines for that chain.  Note that there is no iodone
1881  * side routine that corresponds to sd_core_iostart(), so there is no
1882  * entry in the table for this.
1883  */
1884 
1885 static sd_chain_t sd_iodone_chain[] = {
1886 
1887 	/* Chain for buf IO for disk drive targets (PM enabled) */
1888 	sd_buf_iodone,			/* Index: 0 */
1889 	sd_mapblockaddr_iodone,		/* Index: 1 */
1890 	sd_pm_iodone,			/* Index: 2 */
1891 
1892 	/* Chain for buf IO for disk drive targets (PM disabled) */
1893 	sd_buf_iodone,			/* Index: 3 */
1894 	sd_mapblockaddr_iodone,		/* Index: 4 */
1895 
1896 	/* Chain for buf IO for removable-media targets (PM enabled) */
1897 	sd_buf_iodone,			/* Index: 5 */
1898 	sd_mapblockaddr_iodone,		/* Index: 6 */
1899 	sd_mapblocksize_iodone,		/* Index: 7 */
1900 	sd_pm_iodone,			/* Index: 8 */
1901 
1902 	/* Chain for buf IO for removable-media targets (PM disabled) */
1903 	sd_buf_iodone,			/* Index: 9 */
1904 	sd_mapblockaddr_iodone,		/* Index: 10 */
1905 	sd_mapblocksize_iodone,		/* Index: 11 */
1906 
1907 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1908 	sd_buf_iodone,			/* Index: 12 */
1909 	sd_mapblockaddr_iodone,		/* Index: 13 */
1910 	sd_checksum_iodone,		/* Index: 14 */
1911 	sd_pm_iodone,			/* Index: 15 */
1912 
1913 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1914 	sd_buf_iodone,			/* Index: 16 */
1915 	sd_mapblockaddr_iodone,		/* Index: 17 */
1916 	sd_checksum_iodone,		/* Index: 18 */
1917 
1918 	/* Chain for USCSI commands (non-checksum targets) */
1919 	sd_uscsi_iodone,		/* Index: 19 */
1920 	sd_pm_iodone,			/* Index: 20 */
1921 
1922 	/* Chain for USCSI commands (checksum targets) */
1923 	sd_uscsi_iodone,		/* Index: 21 */
1924 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1925 	sd_pm_iodone,			/* Index: 22 */
1926 
1927 	/* Chain for "direct" USCSI commands (all targets) */
1928 	sd_uscsi_iodone,		/* Index: 24 */
1929 
1930 	/* Chain for "direct priority" USCSI commands (all targets) */
1931 	sd_uscsi_iodone,		/* Index: 25 */
1932 };
1933 
1934 
1935 /*
1936  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1937  * each iodone-side chain. These are located by the array index, but as the
1938  * iodone side functions are called in a decrementing-index order, the
1939  * highest index number in each chain must be specified (as these correspond
1940  * to the first function in the iodone chain that will be called by the core
1941  * at IO completion time).
1942  */
1943 
1944 #define	SD_CHAIN_DISK_IODONE			2
1945 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1946 #define	SD_CHAIN_RMMEDIA_IODONE			8
1947 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1948 #define	SD_CHAIN_CHKSUM_IODONE			15
1949 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1950 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1951 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1952 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1953 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1954 
1955 
1956 
1957 
1958 /*
1959  * Array to map a layering chain index to the appropriate initpkt routine.
1960  * The redundant entries are present so that the index used for accessing
1961  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1962  * with this table as well.
1963  */
1964 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1965 
1966 static sd_initpkt_t	sd_initpkt_map[] = {
1967 
1968 	/* Chain for buf IO for disk drive targets (PM enabled) */
1969 	sd_initpkt_for_buf,		/* Index: 0 */
1970 	sd_initpkt_for_buf,		/* Index: 1 */
1971 	sd_initpkt_for_buf,		/* Index: 2 */
1972 
1973 	/* Chain for buf IO for disk drive targets (PM disabled) */
1974 	sd_initpkt_for_buf,		/* Index: 3 */
1975 	sd_initpkt_for_buf,		/* Index: 4 */
1976 
1977 	/* Chain for buf IO for removable-media targets (PM enabled) */
1978 	sd_initpkt_for_buf,		/* Index: 5 */
1979 	sd_initpkt_for_buf,		/* Index: 6 */
1980 	sd_initpkt_for_buf,		/* Index: 7 */
1981 	sd_initpkt_for_buf,		/* Index: 8 */
1982 
1983 	/* Chain for buf IO for removable-media targets (PM disabled) */
1984 	sd_initpkt_for_buf,		/* Index: 9 */
1985 	sd_initpkt_for_buf,		/* Index: 10 */
1986 	sd_initpkt_for_buf,		/* Index: 11 */
1987 
1988 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1989 	sd_initpkt_for_buf,		/* Index: 12 */
1990 	sd_initpkt_for_buf,		/* Index: 13 */
1991 	sd_initpkt_for_buf,		/* Index: 14 */
1992 	sd_initpkt_for_buf,		/* Index: 15 */
1993 
1994 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1995 	sd_initpkt_for_buf,		/* Index: 16 */
1996 	sd_initpkt_for_buf,		/* Index: 17 */
1997 	sd_initpkt_for_buf,		/* Index: 18 */
1998 
1999 	/* Chain for USCSI commands (non-checksum targets) */
2000 	sd_initpkt_for_uscsi,		/* Index: 19 */
2001 	sd_initpkt_for_uscsi,		/* Index: 20 */
2002 
2003 	/* Chain for USCSI commands (checksum targets) */
2004 	sd_initpkt_for_uscsi,		/* Index: 21 */
2005 	sd_initpkt_for_uscsi,		/* Index: 22 */
2006 	sd_initpkt_for_uscsi,		/* Index: 22 */
2007 
2008 	/* Chain for "direct" USCSI commands (all targets) */
2009 	sd_initpkt_for_uscsi,		/* Index: 24 */
2010 
2011 	/* Chain for "direct priority" USCSI commands (all targets) */
2012 	sd_initpkt_for_uscsi,		/* Index: 25 */
2013 
2014 };
2015 
2016 
2017 /*
2018  * Array to map a layering chain index to the appropriate destroypktpkt routine.
2019  * The redundant entries are present so that the index used for accessing
2020  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2021  * with this table as well.
2022  */
2023 typedef void (*sd_destroypkt_t)(struct buf *);
2024 
2025 static sd_destroypkt_t	sd_destroypkt_map[] = {
2026 
2027 	/* Chain for buf IO for disk drive targets (PM enabled) */
2028 	sd_destroypkt_for_buf,		/* Index: 0 */
2029 	sd_destroypkt_for_buf,		/* Index: 1 */
2030 	sd_destroypkt_for_buf,		/* Index: 2 */
2031 
2032 	/* Chain for buf IO for disk drive targets (PM disabled) */
2033 	sd_destroypkt_for_buf,		/* Index: 3 */
2034 	sd_destroypkt_for_buf,		/* Index: 4 */
2035 
2036 	/* Chain for buf IO for removable-media targets (PM enabled) */
2037 	sd_destroypkt_for_buf,		/* Index: 5 */
2038 	sd_destroypkt_for_buf,		/* Index: 6 */
2039 	sd_destroypkt_for_buf,		/* Index: 7 */
2040 	sd_destroypkt_for_buf,		/* Index: 8 */
2041 
2042 	/* Chain for buf IO for removable-media targets (PM disabled) */
2043 	sd_destroypkt_for_buf,		/* Index: 9 */
2044 	sd_destroypkt_for_buf,		/* Index: 10 */
2045 	sd_destroypkt_for_buf,		/* Index: 11 */
2046 
2047 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2048 	sd_destroypkt_for_buf,		/* Index: 12 */
2049 	sd_destroypkt_for_buf,		/* Index: 13 */
2050 	sd_destroypkt_for_buf,		/* Index: 14 */
2051 	sd_destroypkt_for_buf,		/* Index: 15 */
2052 
2053 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2054 	sd_destroypkt_for_buf,		/* Index: 16 */
2055 	sd_destroypkt_for_buf,		/* Index: 17 */
2056 	sd_destroypkt_for_buf,		/* Index: 18 */
2057 
2058 	/* Chain for USCSI commands (non-checksum targets) */
2059 	sd_destroypkt_for_uscsi,	/* Index: 19 */
2060 	sd_destroypkt_for_uscsi,	/* Index: 20 */
2061 
2062 	/* Chain for USCSI commands (checksum targets) */
2063 	sd_destroypkt_for_uscsi,	/* Index: 21 */
2064 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2065 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2066 
2067 	/* Chain for "direct" USCSI commands (all targets) */
2068 	sd_destroypkt_for_uscsi,	/* Index: 24 */
2069 
2070 	/* Chain for "direct priority" USCSI commands (all targets) */
2071 	sd_destroypkt_for_uscsi,	/* Index: 25 */
2072 
2073 };
2074 
2075 
2076 
2077 /*
2078  * Array to map a layering chain index to the appropriate chain "type".
2079  * The chain type indicates a specific property/usage of the chain.
2080  * The redundant entries are present so that the index used for accessing
2081  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2082  * with this table as well.
2083  */
2084 
2085 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
2086 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
2087 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
2088 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
2089 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
2090 						/* (for error recovery) */
2091 
2092 static int sd_chain_type_map[] = {
2093 
2094 	/* Chain for buf IO for disk drive targets (PM enabled) */
2095 	SD_CHAIN_BUFIO,			/* Index: 0 */
2096 	SD_CHAIN_BUFIO,			/* Index: 1 */
2097 	SD_CHAIN_BUFIO,			/* Index: 2 */
2098 
2099 	/* Chain for buf IO for disk drive targets (PM disabled) */
2100 	SD_CHAIN_BUFIO,			/* Index: 3 */
2101 	SD_CHAIN_BUFIO,			/* Index: 4 */
2102 
2103 	/* Chain for buf IO for removable-media targets (PM enabled) */
2104 	SD_CHAIN_BUFIO,			/* Index: 5 */
2105 	SD_CHAIN_BUFIO,			/* Index: 6 */
2106 	SD_CHAIN_BUFIO,			/* Index: 7 */
2107 	SD_CHAIN_BUFIO,			/* Index: 8 */
2108 
2109 	/* Chain for buf IO for removable-media targets (PM disabled) */
2110 	SD_CHAIN_BUFIO,			/* Index: 9 */
2111 	SD_CHAIN_BUFIO,			/* Index: 10 */
2112 	SD_CHAIN_BUFIO,			/* Index: 11 */
2113 
2114 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2115 	SD_CHAIN_BUFIO,			/* Index: 12 */
2116 	SD_CHAIN_BUFIO,			/* Index: 13 */
2117 	SD_CHAIN_BUFIO,			/* Index: 14 */
2118 	SD_CHAIN_BUFIO,			/* Index: 15 */
2119 
2120 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2121 	SD_CHAIN_BUFIO,			/* Index: 16 */
2122 	SD_CHAIN_BUFIO,			/* Index: 17 */
2123 	SD_CHAIN_BUFIO,			/* Index: 18 */
2124 
2125 	/* Chain for USCSI commands (non-checksum targets) */
2126 	SD_CHAIN_USCSI,			/* Index: 19 */
2127 	SD_CHAIN_USCSI,			/* Index: 20 */
2128 
2129 	/* Chain for USCSI commands (checksum targets) */
2130 	SD_CHAIN_USCSI,			/* Index: 21 */
2131 	SD_CHAIN_USCSI,			/* Index: 22 */
2132 	SD_CHAIN_USCSI,			/* Index: 22 */
2133 
2134 	/* Chain for "direct" USCSI commands (all targets) */
2135 	SD_CHAIN_DIRECT,		/* Index: 24 */
2136 
2137 	/* Chain for "direct priority" USCSI commands (all targets) */
2138 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2139 };
2140 
2141 
2142 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2143 #define	SD_IS_BUFIO(xp)			\
2144 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2145 
2146 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2147 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2148 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2149 
2150 
2151 
2152 /*
2153  * Struct, array, and macros to map a specific chain to the appropriate
2154  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2155  *
2156  * The sd_chain_index_map[] array is used at attach time to set the various
2157  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2158  * chain to be used with the instance. This allows different instances to use
2159  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2160  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2161  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2162  * dynamically & without the use of locking; and (2) a layer may update the
2163  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2164  * to allow for deferred processing of an IO within the same chain from a
2165  * different execution context.
2166  */
2167 
2168 struct sd_chain_index {
2169 	int	sci_iostart_index;
2170 	int	sci_iodone_index;
2171 };
2172 
2173 static struct sd_chain_index	sd_chain_index_map[] = {
2174 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2175 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2176 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2177 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2178 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2179 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2180 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2181 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2182 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2183 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2184 };
2185 
2186 
2187 /*
2188  * The following are indexes into the sd_chain_index_map[] array.
2189  */
2190 
2191 /* un->un_buf_chain_type must be set to one of these */
2192 #define	SD_CHAIN_INFO_DISK		0
2193 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2194 #define	SD_CHAIN_INFO_RMMEDIA		2
2195 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2196 #define	SD_CHAIN_INFO_CHKSUM		4
2197 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2198 
2199 /* un->un_uscsi_chain_type must be set to one of these */
2200 #define	SD_CHAIN_INFO_USCSI_CMD		6
2201 /* USCSI with PM disabled is the same as DIRECT */
2202 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2203 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2204 
2205 /* un->un_direct_chain_type must be set to one of these */
2206 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2207 
2208 /* un->un_priority_chain_type must be set to one of these */
2209 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2210 
2211 /* size for devid inquiries */
2212 #define	MAX_INQUIRY_SIZE		0xF0
2213 
2214 /*
2215  * Macros used by functions to pass a given buf(9S) struct along to the
2216  * next function in the layering chain for further processing.
2217  *
2218  * In the following macros, passing more than three arguments to the called
2219  * routines causes the optimizer for the SPARC compiler to stop doing tail
2220  * call elimination which results in significant performance degradation.
2221  */
2222 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2223 	((*(sd_iostart_chain[index]))(index, un, bp))
2224 
2225 #define	SD_BEGIN_IODONE(index, un, bp)	\
2226 	((*(sd_iodone_chain[index]))(index, un, bp))
2227 
2228 #define	SD_NEXT_IOSTART(index, un, bp)				\
2229 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2230 
2231 #define	SD_NEXT_IODONE(index, un, bp)				\
2232 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2233 
2234 /*
2235  *    Function: _init
2236  *
2237  * Description: This is the driver _init(9E) entry point.
2238  *
2239  * Return Code: Returns the value from mod_install(9F) or
2240  *		ddi_soft_state_init(9F) as appropriate.
2241  *
2242  *     Context: Called when driver module loaded.
2243  */
2244 
2245 int
2246 _init(void)
2247 {
2248 	int	err;
2249 
2250 	/* establish driver name from module name */
2251 	sd_label = mod_modname(&modlinkage);
2252 
2253 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2254 		SD_MAXUNIT);
2255 
2256 	if (err != 0) {
2257 		return (err);
2258 	}
2259 
2260 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2261 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2262 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2263 
2264 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2265 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2266 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2267 
2268 	/*
2269 	 * it's ok to init here even for fibre device
2270 	 */
2271 	sd_scsi_probe_cache_init();
2272 
2273 	sd_scsi_target_lun_init();
2274 
2275 	/*
2276 	 * Creating taskq before mod_install ensures that all callers (threads)
2277 	 * that enter the module after a successfull mod_install encounter
2278 	 * a valid taskq.
2279 	 */
2280 	sd_taskq_create();
2281 
2282 	err = mod_install(&modlinkage);
2283 	if (err != 0) {
2284 		/* delete taskq if install fails */
2285 		sd_taskq_delete();
2286 
2287 		mutex_destroy(&sd_detach_mutex);
2288 		mutex_destroy(&sd_log_mutex);
2289 		mutex_destroy(&sd_label_mutex);
2290 
2291 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2292 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2293 		cv_destroy(&sd_tr.srq_inprocess_cv);
2294 
2295 		sd_scsi_probe_cache_fini();
2296 
2297 		sd_scsi_target_lun_fini();
2298 
2299 		ddi_soft_state_fini(&sd_state);
2300 		return (err);
2301 	}
2302 
2303 	return (err);
2304 }
2305 
2306 
2307 /*
2308  *    Function: _fini
2309  *
2310  * Description: This is the driver _fini(9E) entry point.
2311  *
2312  * Return Code: Returns the value from mod_remove(9F)
2313  *
2314  *     Context: Called when driver module is unloaded.
2315  */
2316 
2317 int
2318 _fini(void)
2319 {
2320 	int err;
2321 
2322 	if ((err = mod_remove(&modlinkage)) != 0) {
2323 		return (err);
2324 	}
2325 
2326 	sd_taskq_delete();
2327 
2328 	mutex_destroy(&sd_detach_mutex);
2329 	mutex_destroy(&sd_log_mutex);
2330 	mutex_destroy(&sd_label_mutex);
2331 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2332 
2333 	sd_scsi_probe_cache_fini();
2334 
2335 	sd_scsi_target_lun_fini();
2336 
2337 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2338 	cv_destroy(&sd_tr.srq_inprocess_cv);
2339 
2340 	ddi_soft_state_fini(&sd_state);
2341 
2342 	return (err);
2343 }
2344 
2345 
2346 /*
2347  *    Function: _info
2348  *
2349  * Description: This is the driver _info(9E) entry point.
2350  *
2351  *   Arguments: modinfop - pointer to the driver modinfo structure
2352  *
2353  * Return Code: Returns the value from mod_info(9F).
2354  *
2355  *     Context: Kernel thread context
2356  */
2357 
2358 int
2359 _info(struct modinfo *modinfop)
2360 {
2361 	return (mod_info(&modlinkage, modinfop));
2362 }
2363 
2364 
2365 /*
2366  * The following routines implement the driver message logging facility.
2367  * They provide component- and level- based debug output filtering.
2368  * Output may also be restricted to messages for a single instance by
2369  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2370  * to NULL, then messages for all instances are printed.
2371  *
2372  * These routines have been cloned from each other due to the language
2373  * constraints of macros and variable argument list processing.
2374  */
2375 
2376 
2377 /*
2378  *    Function: sd_log_err
2379  *
2380  * Description: This routine is called by the SD_ERROR macro for debug
2381  *		logging of error conditions.
2382  *
2383  *   Arguments: comp - driver component being logged
2384  *		dev  - pointer to driver info structure
2385  *		fmt  - error string and format to be logged
2386  */
2387 
2388 static void
2389 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2390 {
2391 	va_list		ap;
2392 	dev_info_t	*dev;
2393 
2394 	ASSERT(un != NULL);
2395 	dev = SD_DEVINFO(un);
2396 	ASSERT(dev != NULL);
2397 
2398 	/*
2399 	 * Filter messages based on the global component and level masks.
2400 	 * Also print if un matches the value of sd_debug_un, or if
2401 	 * sd_debug_un is set to NULL.
2402 	 */
2403 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2404 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2405 		mutex_enter(&sd_log_mutex);
2406 		va_start(ap, fmt);
2407 		(void) vsprintf(sd_log_buf, fmt, ap);
2408 		va_end(ap);
2409 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2410 		mutex_exit(&sd_log_mutex);
2411 	}
2412 #ifdef SD_FAULT_INJECTION
2413 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2414 	if (un->sd_injection_mask & comp) {
2415 		mutex_enter(&sd_log_mutex);
2416 		va_start(ap, fmt);
2417 		(void) vsprintf(sd_log_buf, fmt, ap);
2418 		va_end(ap);
2419 		sd_injection_log(sd_log_buf, un);
2420 		mutex_exit(&sd_log_mutex);
2421 	}
2422 #endif
2423 }
2424 
2425 
2426 /*
2427  *    Function: sd_log_info
2428  *
2429  * Description: This routine is called by the SD_INFO macro for debug
2430  *		logging of general purpose informational conditions.
2431  *
2432  *   Arguments: comp - driver component being logged
2433  *		dev  - pointer to driver info structure
2434  *		fmt  - info string and format to be logged
2435  */
2436 
2437 static void
2438 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2439 {
2440 	va_list		ap;
2441 	dev_info_t	*dev;
2442 
2443 	ASSERT(un != NULL);
2444 	dev = SD_DEVINFO(un);
2445 	ASSERT(dev != NULL);
2446 
2447 	/*
2448 	 * Filter messages based on the global component and level masks.
2449 	 * Also print if un matches the value of sd_debug_un, or if
2450 	 * sd_debug_un is set to NULL.
2451 	 */
2452 	if ((sd_component_mask & component) &&
2453 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2454 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2455 		mutex_enter(&sd_log_mutex);
2456 		va_start(ap, fmt);
2457 		(void) vsprintf(sd_log_buf, fmt, ap);
2458 		va_end(ap);
2459 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2460 		mutex_exit(&sd_log_mutex);
2461 	}
2462 #ifdef SD_FAULT_INJECTION
2463 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2464 	if (un->sd_injection_mask & component) {
2465 		mutex_enter(&sd_log_mutex);
2466 		va_start(ap, fmt);
2467 		(void) vsprintf(sd_log_buf, fmt, ap);
2468 		va_end(ap);
2469 		sd_injection_log(sd_log_buf, un);
2470 		mutex_exit(&sd_log_mutex);
2471 	}
2472 #endif
2473 }
2474 
2475 
2476 /*
2477  *    Function: sd_log_trace
2478  *
2479  * Description: This routine is called by the SD_TRACE macro for debug
2480  *		logging of trace conditions (i.e. function entry/exit).
2481  *
2482  *   Arguments: comp - driver component being logged
2483  *		dev  - pointer to driver info structure
2484  *		fmt  - trace string and format to be logged
2485  */
2486 
2487 static void
2488 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2489 {
2490 	va_list		ap;
2491 	dev_info_t	*dev;
2492 
2493 	ASSERT(un != NULL);
2494 	dev = SD_DEVINFO(un);
2495 	ASSERT(dev != NULL);
2496 
2497 	/*
2498 	 * Filter messages based on the global component and level masks.
2499 	 * Also print if un matches the value of sd_debug_un, or if
2500 	 * sd_debug_un is set to NULL.
2501 	 */
2502 	if ((sd_component_mask & component) &&
2503 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2504 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2505 		mutex_enter(&sd_log_mutex);
2506 		va_start(ap, fmt);
2507 		(void) vsprintf(sd_log_buf, fmt, ap);
2508 		va_end(ap);
2509 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2510 		mutex_exit(&sd_log_mutex);
2511 	}
2512 #ifdef SD_FAULT_INJECTION
2513 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2514 	if (un->sd_injection_mask & component) {
2515 		mutex_enter(&sd_log_mutex);
2516 		va_start(ap, fmt);
2517 		(void) vsprintf(sd_log_buf, fmt, ap);
2518 		va_end(ap);
2519 		sd_injection_log(sd_log_buf, un);
2520 		mutex_exit(&sd_log_mutex);
2521 	}
2522 #endif
2523 }
2524 
2525 
2526 /*
2527  *    Function: sdprobe
2528  *
2529  * Description: This is the driver probe(9e) entry point function.
2530  *
2531  *   Arguments: devi - opaque device info handle
2532  *
2533  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2534  *              DDI_PROBE_FAILURE: If the probe failed.
2535  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2536  *				   but may be present in the future.
2537  */
2538 
2539 static int
2540 sdprobe(dev_info_t *devi)
2541 {
2542 	struct scsi_device	*devp;
2543 	int			rval;
2544 	int			instance;
2545 
2546 	/*
2547 	 * if it wasn't for pln, sdprobe could actually be nulldev
2548 	 * in the "__fibre" case.
2549 	 */
2550 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2551 		return (DDI_PROBE_DONTCARE);
2552 	}
2553 
2554 	devp = ddi_get_driver_private(devi);
2555 
2556 	if (devp == NULL) {
2557 		/* Ooops... nexus driver is mis-configured... */
2558 		return (DDI_PROBE_FAILURE);
2559 	}
2560 
2561 	instance = ddi_get_instance(devi);
2562 
2563 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2564 		return (DDI_PROBE_PARTIAL);
2565 	}
2566 
2567 	/*
2568 	 * Call the SCSA utility probe routine to see if we actually
2569 	 * have a target at this SCSI nexus.
2570 	 */
2571 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2572 	case SCSIPROBE_EXISTS:
2573 		switch (devp->sd_inq->inq_dtype) {
2574 		case DTYPE_DIRECT:
2575 			rval = DDI_PROBE_SUCCESS;
2576 			break;
2577 		case DTYPE_RODIRECT:
2578 			/* CDs etc. Can be removable media */
2579 			rval = DDI_PROBE_SUCCESS;
2580 			break;
2581 		case DTYPE_OPTICAL:
2582 			/*
2583 			 * Rewritable optical driver HP115AA
2584 			 * Can also be removable media
2585 			 */
2586 
2587 			/*
2588 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2589 			 * pre solaris 9 sparc sd behavior is required
2590 			 *
2591 			 * If first time through and sd_dtype_optical_bind
2592 			 * has not been set in /etc/system check properties
2593 			 */
2594 
2595 			if (sd_dtype_optical_bind  < 0) {
2596 			    sd_dtype_optical_bind = ddi_prop_get_int
2597 				(DDI_DEV_T_ANY,	devi,	0,
2598 				"optical-device-bind",	1);
2599 			}
2600 
2601 			if (sd_dtype_optical_bind == 0) {
2602 				rval = DDI_PROBE_FAILURE;
2603 			} else {
2604 				rval = DDI_PROBE_SUCCESS;
2605 			}
2606 			break;
2607 
2608 		case DTYPE_NOTPRESENT:
2609 		default:
2610 			rval = DDI_PROBE_FAILURE;
2611 			break;
2612 		}
2613 		break;
2614 	default:
2615 		rval = DDI_PROBE_PARTIAL;
2616 		break;
2617 	}
2618 
2619 	/*
2620 	 * This routine checks for resource allocation prior to freeing,
2621 	 * so it will take care of the "smart probing" case where a
2622 	 * scsi_probe() may or may not have been issued and will *not*
2623 	 * free previously-freed resources.
2624 	 */
2625 	scsi_unprobe(devp);
2626 	return (rval);
2627 }
2628 
2629 
2630 /*
2631  *    Function: sdinfo
2632  *
2633  * Description: This is the driver getinfo(9e) entry point function.
2634  * 		Given the device number, return the devinfo pointer from
2635  *		the scsi_device structure or the instance number
2636  *		associated with the dev_t.
2637  *
2638  *   Arguments: dip     - pointer to device info structure
2639  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2640  *			  DDI_INFO_DEVT2INSTANCE)
2641  *		arg     - driver dev_t
2642  *		resultp - user buffer for request response
2643  *
2644  * Return Code: DDI_SUCCESS
2645  *              DDI_FAILURE
2646  */
2647 /* ARGSUSED */
2648 static int
2649 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2650 {
2651 	struct sd_lun	*un;
2652 	dev_t		dev;
2653 	int		instance;
2654 	int		error;
2655 
2656 	switch (infocmd) {
2657 	case DDI_INFO_DEVT2DEVINFO:
2658 		dev = (dev_t)arg;
2659 		instance = SDUNIT(dev);
2660 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2661 			return (DDI_FAILURE);
2662 		}
2663 		*result = (void *) SD_DEVINFO(un);
2664 		error = DDI_SUCCESS;
2665 		break;
2666 	case DDI_INFO_DEVT2INSTANCE:
2667 		dev = (dev_t)arg;
2668 		instance = SDUNIT(dev);
2669 		*result = (void *)(uintptr_t)instance;
2670 		error = DDI_SUCCESS;
2671 		break;
2672 	default:
2673 		error = DDI_FAILURE;
2674 	}
2675 	return (error);
2676 }
2677 
2678 /*
2679  *    Function: sd_prop_op
2680  *
2681  * Description: This is the driver prop_op(9e) entry point function.
2682  *		Return the number of blocks for the partition in question
2683  *		or forward the request to the property facilities.
2684  *
2685  *   Arguments: dev       - device number
2686  *		dip       - pointer to device info structure
2687  *		prop_op   - property operator
2688  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2689  *		name      - pointer to property name
2690  *		valuep    - pointer or address of the user buffer
2691  *		lengthp   - property length
2692  *
2693  * Return Code: DDI_PROP_SUCCESS
2694  *              DDI_PROP_NOT_FOUND
2695  *              DDI_PROP_UNDEFINED
2696  *              DDI_PROP_NO_MEMORY
2697  *              DDI_PROP_BUF_TOO_SMALL
2698  */
2699 
2700 static int
2701 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2702 	char *name, caddr_t valuep, int *lengthp)
2703 {
2704 	int		instance = ddi_get_instance(dip);
2705 	struct sd_lun	*un;
2706 	uint64_t	nblocks64;
2707 
2708 	/*
2709 	 * Our dynamic properties are all device specific and size oriented.
2710 	 * Requests issued under conditions where size is valid are passed
2711 	 * to ddi_prop_op_nblocks with the size information, otherwise the
2712 	 * request is passed to ddi_prop_op. Size depends on valid geometry.
2713 	 */
2714 	un = ddi_get_soft_state(sd_state, instance);
2715 	if ((dev == DDI_DEV_T_ANY) || (un == NULL) ||
2716 	    (un->un_f_geometry_is_valid == FALSE)) {
2717 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2718 		    name, valuep, lengthp));
2719 	} else {
2720 		/* get nblocks value */
2721 		ASSERT(!mutex_owned(SD_MUTEX(un)));
2722 		mutex_enter(SD_MUTEX(un));
2723 		nblocks64 = (ulong_t)un->un_map[SDPART(dev)].dkl_nblk;
2724 		mutex_exit(SD_MUTEX(un));
2725 
2726 		return (ddi_prop_op_nblocks(dev, dip, prop_op, mod_flags,
2727 		    name, valuep, lengthp, nblocks64));
2728 	}
2729 }
2730 
2731 /*
2732  * The following functions are for smart probing:
2733  * sd_scsi_probe_cache_init()
2734  * sd_scsi_probe_cache_fini()
2735  * sd_scsi_clear_probe_cache()
2736  * sd_scsi_probe_with_cache()
2737  */
2738 
2739 /*
2740  *    Function: sd_scsi_probe_cache_init
2741  *
2742  * Description: Initializes the probe response cache mutex and head pointer.
2743  *
2744  *     Context: Kernel thread context
2745  */
2746 
2747 static void
2748 sd_scsi_probe_cache_init(void)
2749 {
2750 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2751 	sd_scsi_probe_cache_head = NULL;
2752 }
2753 
2754 
2755 /*
2756  *    Function: sd_scsi_probe_cache_fini
2757  *
2758  * Description: Frees all resources associated with the probe response cache.
2759  *
2760  *     Context: Kernel thread context
2761  */
2762 
2763 static void
2764 sd_scsi_probe_cache_fini(void)
2765 {
2766 	struct sd_scsi_probe_cache *cp;
2767 	struct sd_scsi_probe_cache *ncp;
2768 
2769 	/* Clean up our smart probing linked list */
2770 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2771 		ncp = cp->next;
2772 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2773 	}
2774 	sd_scsi_probe_cache_head = NULL;
2775 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2776 }
2777 
2778 
2779 /*
2780  *    Function: sd_scsi_clear_probe_cache
2781  *
2782  * Description: This routine clears the probe response cache. This is
2783  *		done when open() returns ENXIO so that when deferred
2784  *		attach is attempted (possibly after a device has been
2785  *		turned on) we will retry the probe. Since we don't know
2786  *		which target we failed to open, we just clear the
2787  *		entire cache.
2788  *
2789  *     Context: Kernel thread context
2790  */
2791 
2792 static void
2793 sd_scsi_clear_probe_cache(void)
2794 {
2795 	struct sd_scsi_probe_cache	*cp;
2796 	int				i;
2797 
2798 	mutex_enter(&sd_scsi_probe_cache_mutex);
2799 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2800 		/*
2801 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2802 		 * force probing to be performed the next time
2803 		 * sd_scsi_probe_with_cache is called.
2804 		 */
2805 		for (i = 0; i < NTARGETS_WIDE; i++) {
2806 			cp->cache[i] = SCSIPROBE_EXISTS;
2807 		}
2808 	}
2809 	mutex_exit(&sd_scsi_probe_cache_mutex);
2810 }
2811 
2812 
2813 /*
2814  *    Function: sd_scsi_probe_with_cache
2815  *
2816  * Description: This routine implements support for a scsi device probe
2817  *		with cache. The driver maintains a cache of the target
2818  *		responses to scsi probes. If we get no response from a
2819  *		target during a probe inquiry, we remember that, and we
2820  *		avoid additional calls to scsi_probe on non-zero LUNs
2821  *		on the same target until the cache is cleared. By doing
2822  *		so we avoid the 1/4 sec selection timeout for nonzero
2823  *		LUNs. lun0 of a target is always probed.
2824  *
2825  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2826  *              waitfunc - indicates what the allocator routines should
2827  *			   do when resources are not available. This value
2828  *			   is passed on to scsi_probe() when that routine
2829  *			   is called.
2830  *
2831  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2832  *		otherwise the value returned by scsi_probe(9F).
2833  *
2834  *     Context: Kernel thread context
2835  */
2836 
2837 static int
2838 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2839 {
2840 	struct sd_scsi_probe_cache	*cp;
2841 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2842 	int		lun, tgt;
2843 
2844 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2845 	    SCSI_ADDR_PROP_LUN, 0);
2846 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2847 	    SCSI_ADDR_PROP_TARGET, -1);
2848 
2849 	/* Make sure caching enabled and target in range */
2850 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2851 		/* do it the old way (no cache) */
2852 		return (scsi_probe(devp, waitfn));
2853 	}
2854 
2855 	mutex_enter(&sd_scsi_probe_cache_mutex);
2856 
2857 	/* Find the cache for this scsi bus instance */
2858 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2859 		if (cp->pdip == pdip) {
2860 			break;
2861 		}
2862 	}
2863 
2864 	/* If we can't find a cache for this pdip, create one */
2865 	if (cp == NULL) {
2866 		int i;
2867 
2868 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2869 		    KM_SLEEP);
2870 		cp->pdip = pdip;
2871 		cp->next = sd_scsi_probe_cache_head;
2872 		sd_scsi_probe_cache_head = cp;
2873 		for (i = 0; i < NTARGETS_WIDE; i++) {
2874 			cp->cache[i] = SCSIPROBE_EXISTS;
2875 		}
2876 	}
2877 
2878 	mutex_exit(&sd_scsi_probe_cache_mutex);
2879 
2880 	/* Recompute the cache for this target if LUN zero */
2881 	if (lun == 0) {
2882 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2883 	}
2884 
2885 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2886 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2887 		return (SCSIPROBE_NORESP);
2888 	}
2889 
2890 	/* Do the actual probe; save & return the result */
2891 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2892 }
2893 
2894 
2895 /*
2896  *    Function: sd_scsi_target_lun_init
2897  *
2898  * Description: Initializes the attached lun chain mutex and head pointer.
2899  *
2900  *     Context: Kernel thread context
2901  */
2902 
2903 static void
2904 sd_scsi_target_lun_init(void)
2905 {
2906 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
2907 	sd_scsi_target_lun_head = NULL;
2908 }
2909 
2910 
2911 /*
2912  *    Function: sd_scsi_target_lun_fini
2913  *
2914  * Description: Frees all resources associated with the attached lun
2915  *              chain
2916  *
2917  *     Context: Kernel thread context
2918  */
2919 
2920 static void
2921 sd_scsi_target_lun_fini(void)
2922 {
2923 	struct sd_scsi_hba_tgt_lun	*cp;
2924 	struct sd_scsi_hba_tgt_lun	*ncp;
2925 
2926 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
2927 		ncp = cp->next;
2928 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
2929 	}
2930 	sd_scsi_target_lun_head = NULL;
2931 	mutex_destroy(&sd_scsi_target_lun_mutex);
2932 }
2933 
2934 
2935 /*
2936  *    Function: sd_scsi_get_target_lun_count
2937  *
2938  * Description: This routine will check in the attached lun chain to see
2939  * 		how many luns are attached on the required SCSI controller
2940  * 		and target. Currently, some capabilities like tagged queue
2941  *		are supported per target based by HBA. So all luns in a
2942  *		target have the same capabilities. Based on this assumption,
2943  * 		sd should only set these capabilities once per target. This
2944  *		function is called when sd needs to decide how many luns
2945  *		already attached on a target.
2946  *
2947  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
2948  *			  controller device.
2949  *              target	- The target ID on the controller's SCSI bus.
2950  *
2951  * Return Code: The number of luns attached on the required target and
2952  *		controller.
2953  *		-1 if target ID is not in parallel SCSI scope or the given
2954  * 		dip is not in the chain.
2955  *
2956  *     Context: Kernel thread context
2957  */
2958 
2959 static int
2960 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
2961 {
2962 	struct sd_scsi_hba_tgt_lun	*cp;
2963 
2964 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
2965 		return (-1);
2966 	}
2967 
2968 	mutex_enter(&sd_scsi_target_lun_mutex);
2969 
2970 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2971 		if (cp->pdip == dip) {
2972 			break;
2973 		}
2974 	}
2975 
2976 	mutex_exit(&sd_scsi_target_lun_mutex);
2977 
2978 	if (cp == NULL) {
2979 		return (-1);
2980 	}
2981 
2982 	return (cp->nlun[target]);
2983 }
2984 
2985 
2986 /*
2987  *    Function: sd_scsi_update_lun_on_target
2988  *
2989  * Description: This routine is used to update the attached lun chain when a
2990  *		lun is attached or detached on a target.
2991  *
2992  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
2993  *                        controller device.
2994  *              target  - The target ID on the controller's SCSI bus.
2995  *		flag	- Indicate the lun is attached or detached.
2996  *
2997  *     Context: Kernel thread context
2998  */
2999 
3000 static void
3001 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
3002 {
3003 	struct sd_scsi_hba_tgt_lun	*cp;
3004 
3005 	mutex_enter(&sd_scsi_target_lun_mutex);
3006 
3007 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
3008 		if (cp->pdip == dip) {
3009 			break;
3010 		}
3011 	}
3012 
3013 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
3014 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
3015 		    KM_SLEEP);
3016 		cp->pdip = dip;
3017 		cp->next = sd_scsi_target_lun_head;
3018 		sd_scsi_target_lun_head = cp;
3019 	}
3020 
3021 	mutex_exit(&sd_scsi_target_lun_mutex);
3022 
3023 	if (cp != NULL) {
3024 		if (flag == SD_SCSI_LUN_ATTACH) {
3025 			cp->nlun[target] ++;
3026 		} else {
3027 			cp->nlun[target] --;
3028 		}
3029 	}
3030 }
3031 
3032 
3033 /*
3034  *    Function: sd_spin_up_unit
3035  *
3036  * Description: Issues the following commands to spin-up the device:
3037  *		START STOP UNIT, and INQUIRY.
3038  *
3039  *   Arguments: un - driver soft state (unit) structure
3040  *
3041  * Return Code: 0 - success
3042  *		EIO - failure
3043  *		EACCES - reservation conflict
3044  *
3045  *     Context: Kernel thread context
3046  */
3047 
3048 static int
3049 sd_spin_up_unit(struct sd_lun *un)
3050 {
3051 	size_t	resid		= 0;
3052 	int	has_conflict	= FALSE;
3053 	uchar_t *bufaddr;
3054 
3055 	ASSERT(un != NULL);
3056 
3057 	/*
3058 	 * Send a throwaway START UNIT command.
3059 	 *
3060 	 * If we fail on this, we don't care presently what precisely
3061 	 * is wrong.  EMC's arrays will also fail this with a check
3062 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
3063 	 * we don't want to fail the attach because it may become
3064 	 * "active" later.
3065 	 */
3066 	if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT)
3067 	    == EACCES)
3068 		has_conflict = TRUE;
3069 
3070 	/*
3071 	 * Send another INQUIRY command to the target. This is necessary for
3072 	 * non-removable media direct access devices because their INQUIRY data
3073 	 * may not be fully qualified until they are spun up (perhaps via the
3074 	 * START command above).  Note: This seems to be needed for some
3075 	 * legacy devices only.) The INQUIRY command should succeed even if a
3076 	 * Reservation Conflict is present.
3077 	 */
3078 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
3079 	if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) {
3080 		kmem_free(bufaddr, SUN_INQSIZE);
3081 		return (EIO);
3082 	}
3083 
3084 	/*
3085 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
3086 	 * Note that this routine does not return a failure here even if the
3087 	 * INQUIRY command did not return any data.  This is a legacy behavior.
3088 	 */
3089 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
3090 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
3091 	}
3092 
3093 	kmem_free(bufaddr, SUN_INQSIZE);
3094 
3095 	/* If we hit a reservation conflict above, tell the caller. */
3096 	if (has_conflict == TRUE) {
3097 		return (EACCES);
3098 	}
3099 
3100 	return (0);
3101 }
3102 
3103 #ifdef _LP64
3104 /*
3105  *    Function: sd_enable_descr_sense
3106  *
3107  * Description: This routine attempts to select descriptor sense format
3108  *		using the Control mode page.  Devices that support 64 bit
3109  *		LBAs (for >2TB luns) should also implement descriptor
3110  *		sense data so we will call this function whenever we see
3111  *		a lun larger than 2TB.  If for some reason the device
3112  *		supports 64 bit LBAs but doesn't support descriptor sense
3113  *		presumably the mode select will fail.  Everything will
3114  *		continue to work normally except that we will not get
3115  *		complete sense data for commands that fail with an LBA
3116  *		larger than 32 bits.
3117  *
3118  *   Arguments: un - driver soft state (unit) structure
3119  *
3120  *     Context: Kernel thread context only
3121  */
3122 
3123 static void
3124 sd_enable_descr_sense(struct sd_lun *un)
3125 {
3126 	uchar_t			*header;
3127 	struct mode_control_scsi3 *ctrl_bufp;
3128 	size_t			buflen;
3129 	size_t			bd_len;
3130 
3131 	/*
3132 	 * Read MODE SENSE page 0xA, Control Mode Page
3133 	 */
3134 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3135 	    sizeof (struct mode_control_scsi3);
3136 	header = kmem_zalloc(buflen, KM_SLEEP);
3137 	if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
3138 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) {
3139 		SD_ERROR(SD_LOG_COMMON, un,
3140 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3141 		goto eds_exit;
3142 	}
3143 
3144 	/*
3145 	 * Determine size of Block Descriptors in order to locate
3146 	 * the mode page data. ATAPI devices return 0, SCSI devices
3147 	 * should return MODE_BLK_DESC_LENGTH.
3148 	 */
3149 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3150 
3151 	ctrl_bufp = (struct mode_control_scsi3 *)
3152 	    (header + MODE_HEADER_LENGTH + bd_len);
3153 
3154 	/*
3155 	 * Clear PS bit for MODE SELECT
3156 	 */
3157 	ctrl_bufp->mode_page.ps = 0;
3158 
3159 	/*
3160 	 * Set D_SENSE to enable descriptor sense format.
3161 	 */
3162 	ctrl_bufp->d_sense = 1;
3163 
3164 	/*
3165 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3166 	 */
3167 	if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
3168 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) {
3169 		SD_INFO(SD_LOG_COMMON, un,
3170 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3171 		goto eds_exit;
3172 	}
3173 
3174 eds_exit:
3175 	kmem_free(header, buflen);
3176 }
3177 
3178 /*
3179  *    Function: sd_reenable_dsense_task
3180  *
3181  * Description: Re-enable descriptor sense after device or bus reset
3182  *
3183  *     Context: Executes in a taskq() thread context
3184  */
3185 static void
3186 sd_reenable_dsense_task(void *arg)
3187 {
3188 	struct	sd_lun	*un = arg;
3189 
3190 	ASSERT(un != NULL);
3191 	sd_enable_descr_sense(un);
3192 }
3193 #endif /* _LP64 */
3194 
3195 /*
3196  *    Function: sd_set_mmc_caps
3197  *
3198  * Description: This routine determines if the device is MMC compliant and if
3199  *		the device supports CDDA via a mode sense of the CDVD
3200  *		capabilities mode page. Also checks if the device is a
3201  *		dvdram writable device.
3202  *
3203  *   Arguments: un - driver soft state (unit) structure
3204  *
3205  *     Context: Kernel thread context only
3206  */
3207 
3208 static void
3209 sd_set_mmc_caps(struct sd_lun *un)
3210 {
3211 	struct mode_header_grp2		*sense_mhp;
3212 	uchar_t				*sense_page;
3213 	caddr_t				buf;
3214 	int				bd_len;
3215 	int				status;
3216 	struct uscsi_cmd		com;
3217 	int				rtn;
3218 	uchar_t				*out_data_rw, *out_data_hd;
3219 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3220 
3221 	ASSERT(un != NULL);
3222 
3223 	/*
3224 	 * The flags which will be set in this function are - mmc compliant,
3225 	 * dvdram writable device, cdda support. Initialize them to FALSE
3226 	 * and if a capability is detected - it will be set to TRUE.
3227 	 */
3228 	un->un_f_mmc_cap = FALSE;
3229 	un->un_f_dvdram_writable_device = FALSE;
3230 	un->un_f_cfg_cdda = FALSE;
3231 
3232 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3233 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3234 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3235 
3236 	if (status != 0) {
3237 		/* command failed; just return */
3238 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3239 		return;
3240 	}
3241 	/*
3242 	 * If the mode sense request for the CDROM CAPABILITIES
3243 	 * page (0x2A) succeeds the device is assumed to be MMC.
3244 	 */
3245 	un->un_f_mmc_cap = TRUE;
3246 
3247 	/* Get to the page data */
3248 	sense_mhp = (struct mode_header_grp2 *)buf;
3249 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3250 	    sense_mhp->bdesc_length_lo;
3251 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3252 		/*
3253 		 * We did not get back the expected block descriptor
3254 		 * length so we cannot determine if the device supports
3255 		 * CDDA. However, we still indicate the device is MMC
3256 		 * according to the successful response to the page
3257 		 * 0x2A mode sense request.
3258 		 */
3259 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3260 		    "sd_set_mmc_caps: Mode Sense returned "
3261 		    "invalid block descriptor length\n");
3262 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3263 		return;
3264 	}
3265 
3266 	/* See if read CDDA is supported */
3267 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3268 	    bd_len);
3269 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3270 
3271 	/* See if writing DVD RAM is supported. */
3272 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3273 	if (un->un_f_dvdram_writable_device == TRUE) {
3274 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3275 		return;
3276 	}
3277 
3278 	/*
3279 	 * If the device presents DVD or CD capabilities in the mode
3280 	 * page, we can return here since a RRD will not have
3281 	 * these capabilities.
3282 	 */
3283 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3284 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3285 		return;
3286 	}
3287 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3288 
3289 	/*
3290 	 * If un->un_f_dvdram_writable_device is still FALSE,
3291 	 * check for a Removable Rigid Disk (RRD).  A RRD
3292 	 * device is identified by the features RANDOM_WRITABLE and
3293 	 * HARDWARE_DEFECT_MANAGEMENT.
3294 	 */
3295 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3296 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3297 
3298 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3299 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3300 	    RANDOM_WRITABLE);
3301 	if (rtn != 0) {
3302 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3303 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3304 		return;
3305 	}
3306 
3307 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3308 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3309 
3310 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3311 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3312 	    HARDWARE_DEFECT_MANAGEMENT);
3313 	if (rtn == 0) {
3314 		/*
3315 		 * We have good information, check for random writable
3316 		 * and hardware defect features.
3317 		 */
3318 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3319 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3320 			un->un_f_dvdram_writable_device = TRUE;
3321 		}
3322 	}
3323 
3324 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3325 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3326 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3327 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3328 }
3329 
3330 /*
3331  *    Function: sd_check_for_writable_cd
3332  *
3333  * Description: This routine determines if the media in the device is
3334  *		writable or not. It uses the get configuration command (0x46)
3335  *		to determine if the media is writable
3336  *
3337  *   Arguments: un - driver soft state (unit) structure
3338  *
3339  *     Context: Never called at interrupt context.
3340  */
3341 
3342 static void
3343 sd_check_for_writable_cd(struct sd_lun *un)
3344 {
3345 	struct uscsi_cmd		com;
3346 	uchar_t				*out_data;
3347 	uchar_t				*rqbuf;
3348 	int				rtn;
3349 	uchar_t				*out_data_rw, *out_data_hd;
3350 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3351 	struct mode_header_grp2		*sense_mhp;
3352 	uchar_t				*sense_page;
3353 	caddr_t				buf;
3354 	int				bd_len;
3355 	int				status;
3356 
3357 	ASSERT(un != NULL);
3358 	ASSERT(mutex_owned(SD_MUTEX(un)));
3359 
3360 	/*
3361 	 * Initialize the writable media to false, if configuration info.
3362 	 * tells us otherwise then only we will set it.
3363 	 */
3364 	un->un_f_mmc_writable_media = FALSE;
3365 	mutex_exit(SD_MUTEX(un));
3366 
3367 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3368 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3369 
3370 	rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH,
3371 	    out_data, SD_PROFILE_HEADER_LEN);
3372 
3373 	mutex_enter(SD_MUTEX(un));
3374 	if (rtn == 0) {
3375 		/*
3376 		 * We have good information, check for writable DVD.
3377 		 */
3378 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3379 			un->un_f_mmc_writable_media = TRUE;
3380 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3381 			kmem_free(rqbuf, SENSE_LENGTH);
3382 			return;
3383 		}
3384 	}
3385 
3386 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3387 	kmem_free(rqbuf, SENSE_LENGTH);
3388 
3389 	/*
3390 	 * Determine if this is a RRD type device.
3391 	 */
3392 	mutex_exit(SD_MUTEX(un));
3393 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3394 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3395 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3396 	mutex_enter(SD_MUTEX(un));
3397 	if (status != 0) {
3398 		/* command failed; just return */
3399 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3400 		return;
3401 	}
3402 
3403 	/* Get to the page data */
3404 	sense_mhp = (struct mode_header_grp2 *)buf;
3405 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3406 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3407 		/*
3408 		 * We did not get back the expected block descriptor length so
3409 		 * we cannot check the mode page.
3410 		 */
3411 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3412 		    "sd_check_for_writable_cd: Mode Sense returned "
3413 		    "invalid block descriptor length\n");
3414 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3415 		return;
3416 	}
3417 
3418 	/*
3419 	 * If the device presents DVD or CD capabilities in the mode
3420 	 * page, we can return here since a RRD device will not have
3421 	 * these capabilities.
3422 	 */
3423 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3424 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3425 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3426 		return;
3427 	}
3428 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3429 
3430 	/*
3431 	 * If un->un_f_mmc_writable_media is still FALSE,
3432 	 * check for RRD type media.  A RRD device is identified
3433 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3434 	 */
3435 	mutex_exit(SD_MUTEX(un));
3436 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3437 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3438 
3439 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3440 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3441 	    RANDOM_WRITABLE);
3442 	if (rtn != 0) {
3443 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3444 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3445 		mutex_enter(SD_MUTEX(un));
3446 		return;
3447 	}
3448 
3449 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3450 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3451 
3452 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3453 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3454 	    HARDWARE_DEFECT_MANAGEMENT);
3455 	mutex_enter(SD_MUTEX(un));
3456 	if (rtn == 0) {
3457 		/*
3458 		 * We have good information, check for random writable
3459 		 * and hardware defect features as current.
3460 		 */
3461 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3462 		    (out_data_rw[10] & 0x1) &&
3463 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3464 		    (out_data_hd[10] & 0x1)) {
3465 			un->un_f_mmc_writable_media = TRUE;
3466 		}
3467 	}
3468 
3469 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3470 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3471 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3472 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3473 }
3474 
3475 /*
3476  *    Function: sd_read_unit_properties
3477  *
3478  * Description: The following implements a property lookup mechanism.
3479  *		Properties for particular disks (keyed on vendor, model
3480  *		and rev numbers) are sought in the sd.conf file via
3481  *		sd_process_sdconf_file(), and if not found there, are
3482  *		looked for in a list hardcoded in this driver via
3483  *		sd_process_sdconf_table() Once located the properties
3484  *		are used to update the driver unit structure.
3485  *
3486  *   Arguments: un - driver soft state (unit) structure
3487  */
3488 
3489 static void
3490 sd_read_unit_properties(struct sd_lun *un)
3491 {
3492 	/*
3493 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3494 	 * the "sd-config-list" property (from the sd.conf file) or if
3495 	 * there was not a match for the inquiry vid/pid. If this event
3496 	 * occurs the static driver configuration table is searched for
3497 	 * a match.
3498 	 */
3499 	ASSERT(un != NULL);
3500 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3501 		sd_process_sdconf_table(un);
3502 	}
3503 
3504 	/* check for LSI device */
3505 	sd_is_lsi(un);
3506 
3507 
3508 }
3509 
3510 
3511 /*
3512  *    Function: sd_process_sdconf_file
3513  *
3514  * Description: Use ddi_getlongprop to obtain the properties from the
3515  *		driver's config file (ie, sd.conf) and update the driver
3516  *		soft state structure accordingly.
3517  *
3518  *   Arguments: un - driver soft state (unit) structure
3519  *
3520  * Return Code: SD_SUCCESS - The properties were successfully set according
3521  *			     to the driver configuration file.
3522  *		SD_FAILURE - The driver config list was not obtained or
3523  *			     there was no vid/pid match. This indicates that
3524  *			     the static config table should be used.
3525  *
3526  * The config file has a property, "sd-config-list", which consists of
3527  * one or more duplets as follows:
3528  *
3529  *  sd-config-list=
3530  *	<duplet>,
3531  *	[<duplet>,]
3532  *	[<duplet>];
3533  *
3534  * The structure of each duplet is as follows:
3535  *
3536  *  <duplet>:= <vid+pid>,<data-property-name_list>
3537  *
3538  * The first entry of the duplet is the device ID string (the concatenated
3539  * vid & pid; not to be confused with a device_id).  This is defined in
3540  * the same way as in the sd_disk_table.
3541  *
3542  * The second part of the duplet is a string that identifies a
3543  * data-property-name-list. The data-property-name-list is defined as
3544  * follows:
3545  *
3546  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3547  *
3548  * The syntax of <data-property-name> depends on the <version> field.
3549  *
3550  * If version = SD_CONF_VERSION_1 we have the following syntax:
3551  *
3552  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3553  *
3554  * where the prop0 value will be used to set prop0 if bit0 set in the
3555  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3556  *
3557  */
3558 
3559 static int
3560 sd_process_sdconf_file(struct sd_lun *un)
3561 {
3562 	char	*config_list = NULL;
3563 	int	config_list_len;
3564 	int	len;
3565 	int	dupletlen = 0;
3566 	char	*vidptr;
3567 	int	vidlen;
3568 	char	*dnlist_ptr;
3569 	char	*dataname_ptr;
3570 	int	dnlist_len;
3571 	int	dataname_len;
3572 	int	*data_list;
3573 	int	data_list_len;
3574 	int	rval = SD_FAILURE;
3575 	int	i;
3576 
3577 	ASSERT(un != NULL);
3578 
3579 	/* Obtain the configuration list associated with the .conf file */
3580 	if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS,
3581 	    sd_config_list, (caddr_t)&config_list, &config_list_len)
3582 	    != DDI_PROP_SUCCESS) {
3583 		return (SD_FAILURE);
3584 	}
3585 
3586 	/*
3587 	 * Compare vids in each duplet to the inquiry vid - if a match is
3588 	 * made, get the data value and update the soft state structure
3589 	 * accordingly.
3590 	 *
3591 	 * Note: This algorithm is complex and difficult to maintain. It should
3592 	 * be replaced with a more robust implementation.
3593 	 */
3594 	for (len = config_list_len, vidptr = config_list; len > 0;
3595 	    vidptr += dupletlen, len -= dupletlen) {
3596 		/*
3597 		 * Note: The assumption here is that each vid entry is on
3598 		 * a unique line from its associated duplet.
3599 		 */
3600 		vidlen = dupletlen = (int)strlen(vidptr);
3601 		if ((vidlen == 0) ||
3602 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3603 			dupletlen++;
3604 			continue;
3605 		}
3606 
3607 		/*
3608 		 * dnlist contains 1 or more blank separated
3609 		 * data-property-name entries
3610 		 */
3611 		dnlist_ptr = vidptr + vidlen + 1;
3612 		dnlist_len = (int)strlen(dnlist_ptr);
3613 		dupletlen += dnlist_len + 2;
3614 
3615 		/*
3616 		 * Set a pointer for the first data-property-name
3617 		 * entry in the list
3618 		 */
3619 		dataname_ptr = dnlist_ptr;
3620 		dataname_len = 0;
3621 
3622 		/*
3623 		 * Loop through all data-property-name entries in the
3624 		 * data-property-name-list setting the properties for each.
3625 		 */
3626 		while (dataname_len < dnlist_len) {
3627 			int version;
3628 
3629 			/*
3630 			 * Determine the length of the current
3631 			 * data-property-name entry by indexing until a
3632 			 * blank or NULL is encountered. When the space is
3633 			 * encountered reset it to a NULL for compliance
3634 			 * with ddi_getlongprop().
3635 			 */
3636 			for (i = 0; ((dataname_ptr[i] != ' ') &&
3637 			    (dataname_ptr[i] != '\0')); i++) {
3638 				;
3639 			}
3640 
3641 			dataname_len += i;
3642 			/* If not null terminated, Make it so */
3643 			if (dataname_ptr[i] == ' ') {
3644 				dataname_ptr[i] = '\0';
3645 			}
3646 			dataname_len++;
3647 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3648 			    "sd_process_sdconf_file: disk:%s, data:%s\n",
3649 			    vidptr, dataname_ptr);
3650 
3651 			/* Get the data list */
3652 			if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0,
3653 			    dataname_ptr, (caddr_t)&data_list, &data_list_len)
3654 			    != DDI_PROP_SUCCESS) {
3655 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3656 				    "sd_process_sdconf_file: data property (%s)"
3657 				    " has no value\n", dataname_ptr);
3658 				dataname_ptr = dnlist_ptr + dataname_len;
3659 				continue;
3660 			}
3661 
3662 			version = data_list[0];
3663 
3664 			if (version == SD_CONF_VERSION_1) {
3665 				sd_tunables values;
3666 
3667 				/* Set the properties */
3668 				if (sd_chk_vers1_data(un, data_list[1],
3669 				    &data_list[2], data_list_len, dataname_ptr)
3670 				    == SD_SUCCESS) {
3671 					sd_get_tunables_from_conf(un,
3672 					    data_list[1], &data_list[2],
3673 					    &values);
3674 					sd_set_vers1_properties(un,
3675 					    data_list[1], &values);
3676 					rval = SD_SUCCESS;
3677 				} else {
3678 					rval = SD_FAILURE;
3679 				}
3680 			} else {
3681 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3682 				    "data property %s version 0x%x is invalid.",
3683 				    dataname_ptr, version);
3684 				rval = SD_FAILURE;
3685 			}
3686 			kmem_free(data_list, data_list_len);
3687 			dataname_ptr = dnlist_ptr + dataname_len;
3688 		}
3689 	}
3690 
3691 	/* free up the memory allocated by ddi_getlongprop */
3692 	if (config_list) {
3693 		kmem_free(config_list, config_list_len);
3694 	}
3695 
3696 	return (rval);
3697 }
3698 
3699 /*
3700  *    Function: sd_get_tunables_from_conf()
3701  *
3702  *
3703  *    This function reads the data list from the sd.conf file and pulls
3704  *    the values that can have numeric values as arguments and places
3705  *    the values in the apropriate sd_tunables member.
3706  *    Since the order of the data list members varies across platforms
3707  *    This function reads them from the data list in a platform specific
3708  *    order and places them into the correct sd_tunable member that is
3709  *    a consistant across all platforms.
3710  */
3711 static void
3712 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3713     sd_tunables *values)
3714 {
3715 	int i;
3716 	int mask;
3717 
3718 	bzero(values, sizeof (sd_tunables));
3719 
3720 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3721 
3722 		mask = 1 << i;
3723 		if (mask > flags) {
3724 			break;
3725 		}
3726 
3727 		switch (mask & flags) {
3728 		case 0:	/* This mask bit not set in flags */
3729 			continue;
3730 		case SD_CONF_BSET_THROTTLE:
3731 			values->sdt_throttle = data_list[i];
3732 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3733 			    "sd_get_tunables_from_conf: throttle = %d\n",
3734 			    values->sdt_throttle);
3735 			break;
3736 		case SD_CONF_BSET_CTYPE:
3737 			values->sdt_ctype = data_list[i];
3738 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3739 			    "sd_get_tunables_from_conf: ctype = %d\n",
3740 			    values->sdt_ctype);
3741 			break;
3742 		case SD_CONF_BSET_NRR_COUNT:
3743 			values->sdt_not_rdy_retries = data_list[i];
3744 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3745 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
3746 			    values->sdt_not_rdy_retries);
3747 			break;
3748 		case SD_CONF_BSET_BSY_RETRY_COUNT:
3749 			values->sdt_busy_retries = data_list[i];
3750 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3751 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
3752 			    values->sdt_busy_retries);
3753 			break;
3754 		case SD_CONF_BSET_RST_RETRIES:
3755 			values->sdt_reset_retries = data_list[i];
3756 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3757 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
3758 			    values->sdt_reset_retries);
3759 			break;
3760 		case SD_CONF_BSET_RSV_REL_TIME:
3761 			values->sdt_reserv_rel_time = data_list[i];
3762 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3763 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
3764 			    values->sdt_reserv_rel_time);
3765 			break;
3766 		case SD_CONF_BSET_MIN_THROTTLE:
3767 			values->sdt_min_throttle = data_list[i];
3768 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3769 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
3770 			    values->sdt_min_throttle);
3771 			break;
3772 		case SD_CONF_BSET_DISKSORT_DISABLED:
3773 			values->sdt_disk_sort_dis = data_list[i];
3774 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3775 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
3776 			    values->sdt_disk_sort_dis);
3777 			break;
3778 		case SD_CONF_BSET_LUN_RESET_ENABLED:
3779 			values->sdt_lun_reset_enable = data_list[i];
3780 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3781 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
3782 			    "\n", values->sdt_lun_reset_enable);
3783 			break;
3784 		}
3785 	}
3786 }
3787 
3788 /*
3789  *    Function: sd_process_sdconf_table
3790  *
3791  * Description: Search the static configuration table for a match on the
3792  *		inquiry vid/pid and update the driver soft state structure
3793  *		according to the table property values for the device.
3794  *
3795  *		The form of a configuration table entry is:
3796  *		  <vid+pid>,<flags>,<property-data>
3797  *		  "SEAGATE ST42400N",1,63,0,0			(Fibre)
3798  *		  "SEAGATE ST42400N",1,63,0,0,0,0		(Sparc)
3799  *		  "SEAGATE ST42400N",1,63,0,0,0,0,0,0,0,0,0,0	(Intel)
3800  *
3801  *   Arguments: un - driver soft state (unit) structure
3802  */
3803 
3804 static void
3805 sd_process_sdconf_table(struct sd_lun *un)
3806 {
3807 	char	*id = NULL;
3808 	int	table_index;
3809 	int	idlen;
3810 
3811 	ASSERT(un != NULL);
3812 	for (table_index = 0; table_index < sd_disk_table_size;
3813 	    table_index++) {
3814 		id = sd_disk_table[table_index].device_id;
3815 		idlen = strlen(id);
3816 		if (idlen == 0) {
3817 			continue;
3818 		}
3819 
3820 		/*
3821 		 * The static configuration table currently does not
3822 		 * implement version 10 properties. Additionally,
3823 		 * multiple data-property-name entries are not
3824 		 * implemented in the static configuration table.
3825 		 */
3826 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
3827 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3828 			    "sd_process_sdconf_table: disk %s\n", id);
3829 			sd_set_vers1_properties(un,
3830 			    sd_disk_table[table_index].flags,
3831 			    sd_disk_table[table_index].properties);
3832 			break;
3833 		}
3834 	}
3835 }
3836 
3837 
3838 /*
3839  *    Function: sd_sdconf_id_match
3840  *
3841  * Description: This local function implements a case sensitive vid/pid
3842  *		comparison as well as the boundary cases of wild card and
3843  *		multiple blanks.
3844  *
3845  *		Note: An implicit assumption made here is that the scsi
3846  *		inquiry structure will always keep the vid, pid and
3847  *		revision strings in consecutive sequence, so they can be
3848  *		read as a single string. If this assumption is not the
3849  *		case, a separate string, to be used for the check, needs
3850  *		to be built with these strings concatenated.
3851  *
3852  *   Arguments: un - driver soft state (unit) structure
3853  *		id - table or config file vid/pid
3854  *		idlen  - length of the vid/pid (bytes)
3855  *
3856  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3857  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3858  */
3859 
3860 static int
3861 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
3862 {
3863 	struct scsi_inquiry	*sd_inq;
3864 	int 			rval = SD_SUCCESS;
3865 
3866 	ASSERT(un != NULL);
3867 	sd_inq = un->un_sd->sd_inq;
3868 	ASSERT(id != NULL);
3869 
3870 	/*
3871 	 * We use the inq_vid as a pointer to a buffer containing the
3872 	 * vid and pid and use the entire vid/pid length of the table
3873 	 * entry for the comparison. This works because the inq_pid
3874 	 * data member follows inq_vid in the scsi_inquiry structure.
3875 	 */
3876 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
3877 		/*
3878 		 * The user id string is compared to the inquiry vid/pid
3879 		 * using a case insensitive comparison and ignoring
3880 		 * multiple spaces.
3881 		 */
3882 		rval = sd_blank_cmp(un, id, idlen);
3883 		if (rval != SD_SUCCESS) {
3884 			/*
3885 			 * User id strings that start and end with a "*"
3886 			 * are a special case. These do not have a
3887 			 * specific vendor, and the product string can
3888 			 * appear anywhere in the 16 byte PID portion of
3889 			 * the inquiry data. This is a simple strstr()
3890 			 * type search for the user id in the inquiry data.
3891 			 */
3892 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
3893 				char	*pidptr = &id[1];
3894 				int	i;
3895 				int	j;
3896 				int	pidstrlen = idlen - 2;
3897 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
3898 				    pidstrlen;
3899 
3900 				if (j < 0) {
3901 					return (SD_FAILURE);
3902 				}
3903 				for (i = 0; i < j; i++) {
3904 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
3905 					    pidptr, pidstrlen) == 0) {
3906 						rval = SD_SUCCESS;
3907 						break;
3908 					}
3909 				}
3910 			}
3911 		}
3912 	}
3913 	return (rval);
3914 }
3915 
3916 
3917 /*
3918  *    Function: sd_blank_cmp
3919  *
3920  * Description: If the id string starts and ends with a space, treat
3921  *		multiple consecutive spaces as equivalent to a single
3922  *		space. For example, this causes a sd_disk_table entry
3923  *		of " NEC CDROM " to match a device's id string of
3924  *		"NEC       CDROM".
3925  *
3926  *		Note: The success exit condition for this routine is if
3927  *		the pointer to the table entry is '\0' and the cnt of
3928  *		the inquiry length is zero. This will happen if the inquiry
3929  *		string returned by the device is padded with spaces to be
3930  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
3931  *		SCSI spec states that the inquiry string is to be padded with
3932  *		spaces.
3933  *
3934  *   Arguments: un - driver soft state (unit) structure
3935  *		id - table or config file vid/pid
3936  *		idlen  - length of the vid/pid (bytes)
3937  *
3938  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3939  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3940  */
3941 
3942 static int
3943 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
3944 {
3945 	char		*p1;
3946 	char		*p2;
3947 	int		cnt;
3948 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
3949 	    sizeof (SD_INQUIRY(un)->inq_pid);
3950 
3951 	ASSERT(un != NULL);
3952 	p2 = un->un_sd->sd_inq->inq_vid;
3953 	ASSERT(id != NULL);
3954 	p1 = id;
3955 
3956 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
3957 		/*
3958 		 * Note: string p1 is terminated by a NUL but string p2
3959 		 * isn't.  The end of p2 is determined by cnt.
3960 		 */
3961 		for (;;) {
3962 			/* skip over any extra blanks in both strings */
3963 			while ((*p1 != '\0') && (*p1 == ' ')) {
3964 				p1++;
3965 			}
3966 			while ((cnt != 0) && (*p2 == ' ')) {
3967 				p2++;
3968 				cnt--;
3969 			}
3970 
3971 			/* compare the two strings */
3972 			if ((cnt == 0) ||
3973 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
3974 				break;
3975 			}
3976 			while ((cnt > 0) &&
3977 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
3978 				p1++;
3979 				p2++;
3980 				cnt--;
3981 			}
3982 		}
3983 	}
3984 
3985 	/* return SD_SUCCESS if both strings match */
3986 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
3987 }
3988 
3989 
3990 /*
3991  *    Function: sd_chk_vers1_data
3992  *
3993  * Description: Verify the version 1 device properties provided by the
3994  *		user via the configuration file
3995  *
3996  *   Arguments: un	     - driver soft state (unit) structure
3997  *		flags	     - integer mask indicating properties to be set
3998  *		prop_list    - integer list of property values
3999  *		list_len     - length of user provided data
4000  *
4001  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
4002  *		SD_FAILURE - Indicates the user provided data is invalid
4003  */
4004 
4005 static int
4006 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
4007     int list_len, char *dataname_ptr)
4008 {
4009 	int i;
4010 	int mask = 1;
4011 	int index = 0;
4012 
4013 	ASSERT(un != NULL);
4014 
4015 	/* Check for a NULL property name and list */
4016 	if (dataname_ptr == NULL) {
4017 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4018 		    "sd_chk_vers1_data: NULL data property name.");
4019 		return (SD_FAILURE);
4020 	}
4021 	if (prop_list == NULL) {
4022 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4023 		    "sd_chk_vers1_data: %s NULL data property list.",
4024 		    dataname_ptr);
4025 		return (SD_FAILURE);
4026 	}
4027 
4028 	/* Display a warning if undefined bits are set in the flags */
4029 	if (flags & ~SD_CONF_BIT_MASK) {
4030 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4031 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
4032 		    "Properties not set.",
4033 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
4034 		return (SD_FAILURE);
4035 	}
4036 
4037 	/*
4038 	 * Verify the length of the list by identifying the highest bit set
4039 	 * in the flags and validating that the property list has a length
4040 	 * up to the index of this bit.
4041 	 */
4042 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4043 		if (flags & mask) {
4044 			index++;
4045 		}
4046 		mask = 1 << i;
4047 	}
4048 	if ((list_len / sizeof (int)) < (index + 2)) {
4049 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4050 		    "sd_chk_vers1_data: "
4051 		    "Data property list %s size is incorrect. "
4052 		    "Properties not set.", dataname_ptr);
4053 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
4054 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
4055 		return (SD_FAILURE);
4056 	}
4057 	return (SD_SUCCESS);
4058 }
4059 
4060 
4061 /*
4062  *    Function: sd_set_vers1_properties
4063  *
4064  * Description: Set version 1 device properties based on a property list
4065  *		retrieved from the driver configuration file or static
4066  *		configuration table. Version 1 properties have the format:
4067  *
4068  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
4069  *
4070  *		where the prop0 value will be used to set prop0 if bit0
4071  *		is set in the flags
4072  *
4073  *   Arguments: un	     - driver soft state (unit) structure
4074  *		flags	     - integer mask indicating properties to be set
4075  *		prop_list    - integer list of property values
4076  */
4077 
4078 static void
4079 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
4080 {
4081 	ASSERT(un != NULL);
4082 
4083 	/*
4084 	 * Set the flag to indicate cache is to be disabled. An attempt
4085 	 * to disable the cache via sd_cache_control() will be made
4086 	 * later during attach once the basic initialization is complete.
4087 	 */
4088 	if (flags & SD_CONF_BSET_NOCACHE) {
4089 		un->un_f_opt_disable_cache = TRUE;
4090 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4091 		    "sd_set_vers1_properties: caching disabled flag set\n");
4092 	}
4093 
4094 	/* CD-specific configuration parameters */
4095 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4096 		un->un_f_cfg_playmsf_bcd = TRUE;
4097 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4098 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4099 	}
4100 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4101 		un->un_f_cfg_readsub_bcd = TRUE;
4102 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4103 		    "sd_set_vers1_properties: readsub_bcd set\n");
4104 	}
4105 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4106 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4107 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4108 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4109 	}
4110 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4111 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4112 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4113 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4114 	}
4115 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4116 		un->un_f_cfg_no_read_header = TRUE;
4117 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4118 			    "sd_set_vers1_properties: no_read_header set\n");
4119 	}
4120 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4121 		un->un_f_cfg_read_cd_xd4 = TRUE;
4122 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4123 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4124 	}
4125 
4126 	/* Support for devices which do not have valid/unique serial numbers */
4127 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4128 		un->un_f_opt_fab_devid = TRUE;
4129 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4130 		    "sd_set_vers1_properties: fab_devid bit set\n");
4131 	}
4132 
4133 	/* Support for user throttle configuration */
4134 	if (flags & SD_CONF_BSET_THROTTLE) {
4135 		ASSERT(prop_list != NULL);
4136 		un->un_saved_throttle = un->un_throttle =
4137 		    prop_list->sdt_throttle;
4138 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4139 		    "sd_set_vers1_properties: throttle set to %d\n",
4140 		    prop_list->sdt_throttle);
4141 	}
4142 
4143 	/* Set the per disk retry count according to the conf file or table. */
4144 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4145 		ASSERT(prop_list != NULL);
4146 		if (prop_list->sdt_not_rdy_retries) {
4147 			un->un_notready_retry_count =
4148 				prop_list->sdt_not_rdy_retries;
4149 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4150 			    "sd_set_vers1_properties: not ready retry count"
4151 			    " set to %d\n", un->un_notready_retry_count);
4152 		}
4153 	}
4154 
4155 	/* The controller type is reported for generic disk driver ioctls */
4156 	if (flags & SD_CONF_BSET_CTYPE) {
4157 		ASSERT(prop_list != NULL);
4158 		switch (prop_list->sdt_ctype) {
4159 		case CTYPE_CDROM:
4160 			un->un_ctype = prop_list->sdt_ctype;
4161 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4162 			    "sd_set_vers1_properties: ctype set to "
4163 			    "CTYPE_CDROM\n");
4164 			break;
4165 		case CTYPE_CCS:
4166 			un->un_ctype = prop_list->sdt_ctype;
4167 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4168 				"sd_set_vers1_properties: ctype set to "
4169 				"CTYPE_CCS\n");
4170 			break;
4171 		case CTYPE_ROD:		/* RW optical */
4172 			un->un_ctype = prop_list->sdt_ctype;
4173 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4174 			    "sd_set_vers1_properties: ctype set to "
4175 			    "CTYPE_ROD\n");
4176 			break;
4177 		default:
4178 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4179 			    "sd_set_vers1_properties: Could not set "
4180 			    "invalid ctype value (%d)",
4181 			    prop_list->sdt_ctype);
4182 		}
4183 	}
4184 
4185 	/* Purple failover timeout */
4186 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4187 		ASSERT(prop_list != NULL);
4188 		un->un_busy_retry_count =
4189 			prop_list->sdt_busy_retries;
4190 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4191 		    "sd_set_vers1_properties: "
4192 		    "busy retry count set to %d\n",
4193 		    un->un_busy_retry_count);
4194 	}
4195 
4196 	/* Purple reset retry count */
4197 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4198 		ASSERT(prop_list != NULL);
4199 		un->un_reset_retry_count =
4200 			prop_list->sdt_reset_retries;
4201 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4202 		    "sd_set_vers1_properties: "
4203 		    "reset retry count set to %d\n",
4204 		    un->un_reset_retry_count);
4205 	}
4206 
4207 	/* Purple reservation release timeout */
4208 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4209 		ASSERT(prop_list != NULL);
4210 		un->un_reserve_release_time =
4211 			prop_list->sdt_reserv_rel_time;
4212 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4213 		    "sd_set_vers1_properties: "
4214 		    "reservation release timeout set to %d\n",
4215 		    un->un_reserve_release_time);
4216 	}
4217 
4218 	/*
4219 	 * Driver flag telling the driver to verify that no commands are pending
4220 	 * for a device before issuing a Test Unit Ready. This is a workaround
4221 	 * for a firmware bug in some Seagate eliteI drives.
4222 	 */
4223 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4224 		un->un_f_cfg_tur_check = TRUE;
4225 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4226 		    "sd_set_vers1_properties: tur queue check set\n");
4227 	}
4228 
4229 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4230 		un->un_min_throttle = prop_list->sdt_min_throttle;
4231 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4232 		    "sd_set_vers1_properties: min throttle set to %d\n",
4233 		    un->un_min_throttle);
4234 	}
4235 
4236 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4237 		un->un_f_disksort_disabled =
4238 		    (prop_list->sdt_disk_sort_dis != 0) ?
4239 		    TRUE : FALSE;
4240 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4241 		    "sd_set_vers1_properties: disksort disabled "
4242 		    "flag set to %d\n",
4243 		    prop_list->sdt_disk_sort_dis);
4244 	}
4245 
4246 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4247 		un->un_f_lun_reset_enabled =
4248 		    (prop_list->sdt_lun_reset_enable != 0) ?
4249 		    TRUE : FALSE;
4250 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4251 		    "sd_set_vers1_properties: lun reset enabled "
4252 		    "flag set to %d\n",
4253 		    prop_list->sdt_lun_reset_enable);
4254 	}
4255 
4256 	/*
4257 	 * Validate the throttle values.
4258 	 * If any of the numbers are invalid, set everything to defaults.
4259 	 */
4260 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4261 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4262 	    (un->un_min_throttle > un->un_throttle)) {
4263 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4264 		un->un_min_throttle = sd_min_throttle;
4265 	}
4266 }
4267 
4268 /*
4269  *   Function: sd_is_lsi()
4270  *
4271  *   Description: Check for lsi devices, step throught the static device
4272  *	table to match vid/pid.
4273  *
4274  *   Args: un - ptr to sd_lun
4275  *
4276  *   Notes:  When creating new LSI property, need to add the new LSI property
4277  *		to this function.
4278  */
4279 static void
4280 sd_is_lsi(struct sd_lun *un)
4281 {
4282 	char	*id = NULL;
4283 	int	table_index;
4284 	int	idlen;
4285 	void	*prop;
4286 
4287 	ASSERT(un != NULL);
4288 	for (table_index = 0; table_index < sd_disk_table_size;
4289 	    table_index++) {
4290 		id = sd_disk_table[table_index].device_id;
4291 		idlen = strlen(id);
4292 		if (idlen == 0) {
4293 			continue;
4294 		}
4295 
4296 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4297 			prop = sd_disk_table[table_index].properties;
4298 			if (prop == &lsi_properties ||
4299 			    prop == &lsi_oem_properties ||
4300 			    prop == &lsi_properties_scsi ||
4301 			    prop == &symbios_properties) {
4302 				un->un_f_cfg_is_lsi = TRUE;
4303 			}
4304 			break;
4305 		}
4306 	}
4307 }
4308 
4309 
4310 /*
4311  * The following routines support reading and interpretation of disk labels,
4312  * including Solaris BE (8-slice) vtoc's, Solaris LE (16-slice) vtoc's, and
4313  * fdisk tables.
4314  */
4315 
4316 /*
4317  *    Function: sd_validate_geometry
4318  *
4319  * Description: Read the label from the disk (if present). Update the unit's
4320  *		geometry and vtoc information from the data in the label.
4321  *		Verify that the label is valid.
4322  *
4323  *   Arguments: un - driver soft state (unit) structure
4324  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4325  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4326  *			to use the USCSI "direct" chain and bypass the normal
4327  *			command waitq.
4328  *
4329  * Return Code: 0 - Successful completion
4330  *		EINVAL  - Invalid value in un->un_tgt_blocksize or
4331  *			  un->un_blockcount; or label on disk is corrupted
4332  *			  or unreadable.
4333  *		EACCES  - Reservation conflict at the device.
4334  *		ENOMEM  - Resource allocation error
4335  *		ENOTSUP - geometry not applicable
4336  *
4337  *     Context: Kernel thread only (can sleep).
4338  */
4339 
4340 static int
4341 sd_validate_geometry(struct sd_lun *un, int path_flag)
4342 {
4343 	static	char		labelstring[128];
4344 	static	char		buf[256];
4345 	char	*label		= NULL;
4346 	int	label_error = 0;
4347 	int	gvalid		= un->un_f_geometry_is_valid;
4348 	int	lbasize;
4349 	uint64_t	capacity;
4350 	int	count;
4351 #if defined(__i386) || defined(__amd64)
4352 	int forced_under_1t = 0;
4353 #endif
4354 
4355 	ASSERT(un != NULL);
4356 	ASSERT(mutex_owned(SD_MUTEX(un)));
4357 
4358 	/*
4359 	 * If the required values are not valid, then try getting them
4360 	 * once via read capacity. If that fails, then fail this call.
4361 	 * This is necessary with the new mpxio failover behavior in
4362 	 * the T300 where we can get an attach for the inactive path
4363 	 * before the active path. The inactive path fails commands with
4364 	 * sense data of 02,04,88 which happens to the read capacity
4365 	 * before mpxio has had sufficient knowledge to know if it should
4366 	 * force a fail over or not. (Which it won't do at attach anyhow).
4367 	 * If the read capacity at attach time fails, un_tgt_blocksize and
4368 	 * un_blockcount won't be valid.
4369 	 */
4370 	if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
4371 	    (un->un_f_blockcount_is_valid != TRUE)) {
4372 		uint64_t	cap;
4373 		uint32_t	lbasz;
4374 		int		rval;
4375 
4376 		mutex_exit(SD_MUTEX(un));
4377 		rval = sd_send_scsi_READ_CAPACITY(un, &cap,
4378 		    &lbasz, SD_PATH_DIRECT);
4379 		mutex_enter(SD_MUTEX(un));
4380 		if (rval == 0) {
4381 			/*
4382 			 * The following relies on
4383 			 * sd_send_scsi_READ_CAPACITY never
4384 			 * returning 0 for capacity and/or lbasize.
4385 			 */
4386 			sd_update_block_info(un, lbasz, cap);
4387 		}
4388 
4389 		if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
4390 		    (un->un_f_blockcount_is_valid != TRUE)) {
4391 			return (EINVAL);
4392 		}
4393 	}
4394 
4395 	/*
4396 	 * Copy the lbasize and capacity so that if they're reset while we're
4397 	 * not holding the SD_MUTEX, we will continue to use valid values
4398 	 * after the SD_MUTEX is reacquired. (4119659)
4399 	 */
4400 	lbasize  = un->un_tgt_blocksize;
4401 	capacity = un->un_blockcount;
4402 
4403 #if defined(_SUNOS_VTOC_16)
4404 	/*
4405 	 * Set up the "whole disk" fdisk partition; this should always
4406 	 * exist, regardless of whether the disk contains an fdisk table
4407 	 * or vtoc.
4408 	 */
4409 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
4410 	un->un_map[P0_RAW_DISK].dkl_nblk  = capacity;
4411 #endif
4412 
4413 	/*
4414 	 * Refresh the logical and physical geometry caches.
4415 	 * (data from MODE SENSE format/rigid disk geometry pages,
4416 	 * and scsi_ifgetcap("geometry").
4417 	 */
4418 	sd_resync_geom_caches(un, capacity, lbasize, path_flag);
4419 
4420 	label_error = sd_use_efi(un, path_flag);
4421 	if (label_error == 0) {
4422 		/* found a valid EFI label */
4423 		SD_TRACE(SD_LOG_IO_PARTITION, un,
4424 			"sd_validate_geometry: found EFI label\n");
4425 		un->un_solaris_offset = 0;
4426 		un->un_solaris_size = capacity;
4427 		return (ENOTSUP);
4428 	}
4429 	if (un->un_blockcount > DK_MAX_BLOCKS) {
4430 		if (label_error == ESRCH) {
4431 			/*
4432 			 * they've configured a LUN over 1TB, but used
4433 			 * format.dat to restrict format's view of the
4434 			 * capacity to be under 1TB
4435 			 */
4436 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4437 "is >1TB and has a VTOC label: use format(1M) to either decrease the");
4438 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
4439 "size to be < 1TB or relabel the disk with an EFI label");
4440 #if defined(__i386) || defined(__amd64)
4441 			forced_under_1t = 1;
4442 #endif
4443 		} else {
4444 			/* unlabeled disk over 1TB */
4445 #if defined(__i386) || defined(__amd64)
4446 			/*
4447 			 * Refer to comments on off-by-1 at the head of the file
4448 			 * A 1TB disk was treated as (1T - 512)B in the past,
4449 			 * thus, it might have valid solaris partition. We
4450 			 * will return ENOTSUP later only if this disk has no
4451 			 * valid solaris partition.
4452 			 */
4453 			if ((un->un_tgt_blocksize != un->un_sys_blocksize) ||
4454 			    (un->un_blockcount - 1 > DK_MAX_BLOCKS) ||
4455 			    un->un_f_has_removable_media ||
4456 			    un->un_f_is_hotpluggable)
4457 #endif
4458 				return (ENOTSUP);
4459 		}
4460 	}
4461 	label_error = 0;
4462 
4463 	/*
4464 	 * at this point it is either labeled with a VTOC or it is
4465 	 * under 1TB (<= 1TB actually for off-by-1)
4466 	 */
4467 	if (un->un_f_vtoc_label_supported) {
4468 		struct	dk_label *dkl;
4469 		offset_t dkl1;
4470 		offset_t label_addr, real_addr;
4471 		int	rval;
4472 		size_t	buffer_size;
4473 
4474 		/*
4475 		 * Note: This will set up un->un_solaris_size and
4476 		 * un->un_solaris_offset.
4477 		 */
4478 		switch (sd_read_fdisk(un, capacity, lbasize, path_flag)) {
4479 		case SD_CMD_RESERVATION_CONFLICT:
4480 			ASSERT(mutex_owned(SD_MUTEX(un)));
4481 			return (EACCES);
4482 		case SD_CMD_FAILURE:
4483 			ASSERT(mutex_owned(SD_MUTEX(un)));
4484 			/*
4485 			 * A multisession audio cd can have an unreadable
4486 			 * fdisk sector, but there could be readable data
4487 			 * in a separate session. Accept this and let
4488 			 * the code build a default disk label later on.
4489 			 */
4490 			if (ISCD(un))
4491 				break;
4492 			return (ENOMEM);
4493 		}
4494 
4495 		if (un->un_solaris_size <= DK_LABEL_LOC) {
4496 
4497 #if defined(__i386) || defined(__amd64)
4498 			/*
4499 			 * Refer to comments on off-by-1 at the head of the file
4500 			 * This is for 1TB disk only. Since that there is no
4501 			 * solaris partitions, return ENOTSUP as we do for
4502 			 * >1TB disk.
4503 			 */
4504 			if (un->un_blockcount > DK_MAX_BLOCKS)
4505 				return (ENOTSUP);
4506 #endif
4507 			/*
4508 			 * Found fdisk table but no Solaris partition entry,
4509 			 * so don't call sd_uselabel() and don't create
4510 			 * a default label.
4511 			 */
4512 			label_error = 0;
4513 			un->un_f_geometry_is_valid = TRUE;
4514 			goto no_solaris_partition;
4515 		}
4516 		label_addr = (daddr_t)(un->un_solaris_offset + DK_LABEL_LOC);
4517 
4518 #if defined(__i386) || defined(__amd64)
4519 		/*
4520 		 * Refer to comments on off-by-1 at the head of the file
4521 		 * Now, this 1TB disk has valid solaris partition. It
4522 		 * must be created by previous sd driver, we have to
4523 		 * treat it as (1T-512)B.
4524 		 */
4525 		if ((un->un_blockcount > DK_MAX_BLOCKS) &&
4526 		    (forced_under_1t != 1)) {
4527 			un->un_f_capacity_adjusted = 1;
4528 			un->un_blockcount = DK_MAX_BLOCKS;
4529 			un->un_map[P0_RAW_DISK].dkl_nblk  = DK_MAX_BLOCKS;
4530 
4531 			/*
4532 			 * Refer to sd_read_fdisk, when there is no
4533 			 * fdisk partition table, un_solaris_size is
4534 			 * set to disk's capacity. In this case, we
4535 			 * need to adjust it
4536 			 */
4537 			if (un->un_solaris_size > DK_MAX_BLOCKS)
4538 				un->un_solaris_size = DK_MAX_BLOCKS;
4539 			sd_resync_geom_caches(un, DK_MAX_BLOCKS,
4540 			    lbasize, path_flag);
4541 		}
4542 #endif
4543 
4544 		/*
4545 		 * sys_blocksize != tgt_blocksize, need to re-adjust
4546 		 * blkno and save the index to beginning of dk_label
4547 		 */
4548 		real_addr = SD_SYS2TGTBLOCK(un, label_addr);
4549 		buffer_size = SD_REQBYTES2TGTBYTES(un,
4550 		    sizeof (struct dk_label));
4551 
4552 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_validate_geometry: "
4553 		    "label_addr: 0x%x allocation size: 0x%x\n",
4554 		    label_addr, buffer_size);
4555 		dkl = kmem_zalloc(buffer_size, KM_NOSLEEP);
4556 		if (dkl == NULL) {
4557 			return (ENOMEM);
4558 		}
4559 
4560 		mutex_exit(SD_MUTEX(un));
4561 		rval = sd_send_scsi_READ(un, dkl, buffer_size, real_addr,
4562 		    path_flag);
4563 		mutex_enter(SD_MUTEX(un));
4564 
4565 		switch (rval) {
4566 		case 0:
4567 			/*
4568 			 * sd_uselabel will establish that the geometry
4569 			 * is valid.
4570 			 * For sys_blocksize != tgt_blocksize, need
4571 			 * to index into the beginning of dk_label
4572 			 */
4573 			dkl1 = (daddr_t)dkl
4574 				+ SD_TGTBYTEOFFSET(un, label_addr, real_addr);
4575 			if (sd_uselabel(un, (struct dk_label *)(uintptr_t)dkl1,
4576 			    path_flag) != SD_LABEL_IS_VALID) {
4577 				label_error = EINVAL;
4578 			}
4579 			break;
4580 		case EACCES:
4581 			label_error = EACCES;
4582 			break;
4583 		default:
4584 			label_error = EINVAL;
4585 			break;
4586 		}
4587 
4588 		kmem_free(dkl, buffer_size);
4589 
4590 #if defined(_SUNOS_VTOC_8)
4591 		label = (char *)un->un_asciilabel;
4592 #elif defined(_SUNOS_VTOC_16)
4593 		label = (char *)un->un_vtoc.v_asciilabel;
4594 #else
4595 #error "No VTOC format defined."
4596 #endif
4597 	}
4598 
4599 	/*
4600 	 * If a valid label was not found, AND if no reservation conflict
4601 	 * was detected, then go ahead and create a default label (4069506).
4602 	 */
4603 	if (un->un_f_default_vtoc_supported && (label_error != EACCES)) {
4604 		if (un->un_f_geometry_is_valid == FALSE) {
4605 			sd_build_default_label(un);
4606 		}
4607 		label_error = 0;
4608 	}
4609 
4610 no_solaris_partition:
4611 	if ((!un->un_f_has_removable_media ||
4612 	    (un->un_f_has_removable_media &&
4613 		un->un_mediastate == DKIO_EJECTED)) &&
4614 		(un->un_state == SD_STATE_NORMAL && !gvalid)) {
4615 		/*
4616 		 * Print out a message indicating who and what we are.
4617 		 * We do this only when we happen to really validate the
4618 		 * geometry. We may call sd_validate_geometry() at other
4619 		 * times, e.g., ioctl()'s like Get VTOC in which case we
4620 		 * don't want to print the label.
4621 		 * If the geometry is valid, print the label string,
4622 		 * else print vendor and product info, if available
4623 		 */
4624 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
4625 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "?<%s>\n", label);
4626 		} else {
4627 			mutex_enter(&sd_label_mutex);
4628 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
4629 			    labelstring);
4630 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
4631 			    &labelstring[64]);
4632 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
4633 			    labelstring, &labelstring[64]);
4634 			if (un->un_f_blockcount_is_valid == TRUE) {
4635 				(void) sprintf(&buf[strlen(buf)],
4636 				    ", %llu %u byte blocks\n",
4637 				    (longlong_t)un->un_blockcount,
4638 				    un->un_tgt_blocksize);
4639 			} else {
4640 				(void) sprintf(&buf[strlen(buf)],
4641 				    ", (unknown capacity)\n");
4642 			}
4643 			SD_INFO(SD_LOG_ATTACH_DETACH, un, buf);
4644 			mutex_exit(&sd_label_mutex);
4645 		}
4646 	}
4647 
4648 #if defined(_SUNOS_VTOC_16)
4649 	/*
4650 	 * If we have valid geometry, set up the remaining fdisk partitions.
4651 	 * Note that dkl_cylno is not used for the fdisk map entries, so
4652 	 * we set it to an entirely bogus value.
4653 	 */
4654 	for (count = 0; count < FD_NUMPART; count++) {
4655 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
4656 		un->un_map[FDISK_P1 + count].dkl_nblk =
4657 		    un->un_fmap[count].fmap_nblk;
4658 
4659 		un->un_offset[FDISK_P1 + count] =
4660 		    un->un_fmap[count].fmap_start;
4661 	}
4662 #endif
4663 
4664 	for (count = 0; count < NDKMAP; count++) {
4665 #if defined(_SUNOS_VTOC_8)
4666 		struct dk_map *lp  = &un->un_map[count];
4667 		un->un_offset[count] =
4668 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
4669 #elif defined(_SUNOS_VTOC_16)
4670 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
4671 
4672 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
4673 #else
4674 #error "No VTOC format defined."
4675 #endif
4676 	}
4677 
4678 	/*
4679 	 * For VTOC labeled disk, create and set the partition stats
4680 	 * at attach time, update the stats according to dynamic
4681 	 * partition changes during running time.
4682 	 */
4683 	if (label_error == 0 && un->un_f_pkstats_enabled) {
4684 		sd_set_pstats(un);
4685 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_validate_geometry: "
4686 		    "un:0x%p pstats created and set, or updated\n", un);
4687 	}
4688 
4689 	return (label_error);
4690 }
4691 
4692 
4693 #if defined(_SUNOS_VTOC_16)
4694 /*
4695  * Macro: MAX_BLKS
4696  *
4697  *	This macro is used for table entries where we need to have the largest
4698  *	possible sector value for that head & SPT (sectors per track)
4699  *	combination.  Other entries for some smaller disk sizes are set by
4700  *	convention to match those used by X86 BIOS usage.
4701  */
4702 #define	MAX_BLKS(heads, spt)	UINT16_MAX * heads * spt, heads, spt
4703 
4704 /*
4705  *    Function: sd_convert_geometry
4706  *
4707  * Description: Convert physical geometry into a dk_geom structure. In
4708  *		other words, make sure we don't wrap 16-bit values.
4709  *		e.g. converting from geom_cache to dk_geom
4710  *
4711  *     Context: Kernel thread only
4712  */
4713 static void
4714 sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g)
4715 {
4716 	int i;
4717 	static const struct chs_values {
4718 		uint_t max_cap;		/* Max Capacity for this HS. */
4719 		uint_t nhead;		/* Heads to use. */
4720 		uint_t nsect;		/* SPT to use. */
4721 	} CHS_values[] = {
4722 		{0x00200000,  64, 32},		/* 1GB or smaller disk. */
4723 		{0x01000000, 128, 32},		/* 8GB or smaller disk. */
4724 		{MAX_BLKS(255,  63)},		/* 502.02GB or smaller disk. */
4725 		{MAX_BLKS(255, 126)},		/* .98TB or smaller disk. */
4726 		{DK_MAX_BLOCKS, 255, 189}	/* Max size is just under 1TB */
4727 	};
4728 
4729 	/* Unlabeled SCSI floppy device */
4730 	if (capacity <= 0x1000) {
4731 		un_g->dkg_nhead = 2;
4732 		un_g->dkg_ncyl = 80;
4733 		un_g->dkg_nsect = capacity / (un_g->dkg_nhead * un_g->dkg_ncyl);
4734 		return;
4735 	}
4736 
4737 	/*
4738 	 * For all devices we calculate cylinders using the
4739 	 * heads and sectors we assign based on capacity of the
4740 	 * device.  The table is designed to be compatible with the
4741 	 * way other operating systems lay out fdisk tables for X86
4742 	 * and to insure that the cylinders never exceed 65535 to
4743 	 * prevent problems with X86 ioctls that report geometry.
4744 	 * We use SPT that are multiples of 63, since other OSes that
4745 	 * are not limited to 16-bits for cylinders stop at 63 SPT
4746 	 * we make do by using multiples of 63 SPT.
4747 	 *
4748 	 * Note than capacities greater than or equal to 1TB will simply
4749 	 * get the largest geometry from the table. This should be okay
4750 	 * since disks this large shouldn't be using CHS values anyway.
4751 	 */
4752 	for (i = 0; CHS_values[i].max_cap < capacity &&
4753 	    CHS_values[i].max_cap != DK_MAX_BLOCKS; i++)
4754 		;
4755 
4756 	un_g->dkg_nhead = CHS_values[i].nhead;
4757 	un_g->dkg_nsect = CHS_values[i].nsect;
4758 }
4759 #endif
4760 
4761 
4762 /*
4763  *    Function: sd_resync_geom_caches
4764  *
4765  * Description: (Re)initialize both geometry caches: the virtual geometry
4766  *		information is extracted from the HBA (the "geometry"
4767  *		capability), and the physical geometry cache data is
4768  *		generated by issuing MODE SENSE commands.
4769  *
4770  *   Arguments: un - driver soft state (unit) structure
4771  *		capacity - disk capacity in #blocks
4772  *		lbasize - disk block size in bytes
4773  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4774  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4775  *			to use the USCSI "direct" chain and bypass the normal
4776  *			command waitq.
4777  *
4778  *     Context: Kernel thread only (can sleep).
4779  */
4780 
4781 static void
4782 sd_resync_geom_caches(struct sd_lun *un, uint64_t capacity, int lbasize,
4783 	int path_flag)
4784 {
4785 	struct 	geom_cache 	pgeom;
4786 	struct 	geom_cache	*pgeom_p = &pgeom;
4787 	int 	spc;
4788 	unsigned short nhead;
4789 	unsigned short nsect;
4790 
4791 	ASSERT(un != NULL);
4792 	ASSERT(mutex_owned(SD_MUTEX(un)));
4793 
4794 	/*
4795 	 * Ask the controller for its logical geometry.
4796 	 * Note: if the HBA does not support scsi_ifgetcap("geometry"),
4797 	 * then the lgeom cache will be invalid.
4798 	 */
4799 	sd_get_virtual_geometry(un, capacity, lbasize);
4800 
4801 	/*
4802 	 * Initialize the pgeom cache from lgeom, so that if MODE SENSE
4803 	 * doesn't work, DKIOCG_PHYSGEOM can return reasonable values.
4804 	 */
4805 	if (un->un_lgeom.g_nsect == 0 || un->un_lgeom.g_nhead == 0) {
4806 		/*
4807 		 * Note: Perhaps this needs to be more adaptive? The rationale
4808 		 * is that, if there's no HBA geometry from the HBA driver, any
4809 		 * guess is good, since this is the physical geometry. If MODE
4810 		 * SENSE fails this gives a max cylinder size for non-LBA access
4811 		 */
4812 		nhead = 255;
4813 		nsect = 63;
4814 	} else {
4815 		nhead = un->un_lgeom.g_nhead;
4816 		nsect = un->un_lgeom.g_nsect;
4817 	}
4818 
4819 	if (ISCD(un)) {
4820 		pgeom_p->g_nhead = 1;
4821 		pgeom_p->g_nsect = nsect * nhead;
4822 	} else {
4823 		pgeom_p->g_nhead = nhead;
4824 		pgeom_p->g_nsect = nsect;
4825 	}
4826 
4827 	spc = pgeom_p->g_nhead * pgeom_p->g_nsect;
4828 	pgeom_p->g_capacity = capacity;
4829 	pgeom_p->g_ncyl = pgeom_p->g_capacity / spc;
4830 	pgeom_p->g_acyl = 0;
4831 
4832 	/*
4833 	 * Retrieve fresh geometry data from the hardware, stash it
4834 	 * here temporarily before we rebuild the incore label.
4835 	 *
4836 	 * We want to use the MODE SENSE commands to derive the
4837 	 * physical geometry of the device, but if either command
4838 	 * fails, the logical geometry is used as the fallback for
4839 	 * disk label geometry.
4840 	 */
4841 	mutex_exit(SD_MUTEX(un));
4842 	sd_get_physical_geometry(un, pgeom_p, capacity, lbasize, path_flag);
4843 	mutex_enter(SD_MUTEX(un));
4844 
4845 	/*
4846 	 * Now update the real copy while holding the mutex. This
4847 	 * way the global copy is never in an inconsistent state.
4848 	 */
4849 	bcopy(pgeom_p, &un->un_pgeom,  sizeof (un->un_pgeom));
4850 
4851 	SD_INFO(SD_LOG_COMMON, un, "sd_resync_geom_caches: "
4852 	    "(cached from lgeom)\n");
4853 	SD_INFO(SD_LOG_COMMON, un,
4854 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4855 	    un->un_pgeom.g_ncyl, un->un_pgeom.g_acyl,
4856 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
4857 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
4858 	    "intrlv: %d; rpm: %d\n", un->un_pgeom.g_secsize,
4859 	    un->un_pgeom.g_capacity, un->un_pgeom.g_intrlv,
4860 	    un->un_pgeom.g_rpm);
4861 }
4862 
4863 
4864 /*
4865  *    Function: sd_read_fdisk
4866  *
4867  * Description: utility routine to read the fdisk table.
4868  *
4869  *   Arguments: un - driver soft state (unit) structure
4870  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4871  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4872  *			to use the USCSI "direct" chain and bypass the normal
4873  *			command waitq.
4874  *
4875  * Return Code: SD_CMD_SUCCESS
4876  *		SD_CMD_FAILURE
4877  *
4878  *     Context: Kernel thread only (can sleep).
4879  */
4880 /* ARGSUSED */
4881 static int
4882 sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize, int path_flag)
4883 {
4884 #if defined(_NO_FDISK_PRESENT)
4885 
4886 	un->un_solaris_offset = 0;
4887 	un->un_solaris_size = capacity;
4888 	bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4889 	return (SD_CMD_SUCCESS);
4890 
4891 #elif defined(_FIRMWARE_NEEDS_FDISK)
4892 
4893 	struct ipart	*fdp;
4894 	struct mboot	*mbp;
4895 	struct ipart	fdisk[FD_NUMPART];
4896 	int		i;
4897 	char		sigbuf[2];
4898 	caddr_t		bufp;
4899 	int		uidx;
4900 	int		rval;
4901 	int		lba = 0;
4902 	uint_t		solaris_offset;	/* offset to solaris part. */
4903 	daddr_t		solaris_size;	/* size of solaris partition */
4904 	uint32_t	blocksize;
4905 
4906 	ASSERT(un != NULL);
4907 	ASSERT(mutex_owned(SD_MUTEX(un)));
4908 	ASSERT(un->un_f_tgt_blocksize_is_valid == TRUE);
4909 
4910 	blocksize = un->un_tgt_blocksize;
4911 
4912 	/*
4913 	 * Start off assuming no fdisk table
4914 	 */
4915 	solaris_offset = 0;
4916 	solaris_size   = capacity;
4917 
4918 	mutex_exit(SD_MUTEX(un));
4919 	bufp = kmem_zalloc(blocksize, KM_SLEEP);
4920 	rval = sd_send_scsi_READ(un, bufp, blocksize, 0, path_flag);
4921 	mutex_enter(SD_MUTEX(un));
4922 
4923 	if (rval != 0) {
4924 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4925 		    "sd_read_fdisk: fdisk read err\n");
4926 		bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4927 		rval = SD_CMD_FAILURE;
4928 		goto done;
4929 	}
4930 
4931 	mbp = (struct mboot *)bufp;
4932 
4933 	/*
4934 	 * The fdisk table does not begin on a 4-byte boundary within the
4935 	 * master boot record, so we copy it to an aligned structure to avoid
4936 	 * alignment exceptions on some processors.
4937 	 */
4938 	bcopy(&mbp->parts[0], fdisk, sizeof (fdisk));
4939 
4940 	/*
4941 	 * Check for lba support before verifying sig; sig might not be
4942 	 * there, say on a blank disk, but the max_chs mark may still
4943 	 * be present.
4944 	 *
4945 	 * Note: LBA support and BEFs are an x86-only concept but this
4946 	 * code should work OK on SPARC as well.
4947 	 */
4948 
4949 	/*
4950 	 * First, check for lba-access-ok on root node (or prom root node)
4951 	 * if present there, don't need to search fdisk table.
4952 	 */
4953 	if (ddi_getprop(DDI_DEV_T_ANY, ddi_root_node(), 0,
4954 	    "lba-access-ok", 0) != 0) {
4955 		/* All drives do LBA; don't search fdisk table */
4956 		lba = 1;
4957 	} else {
4958 		/* Okay, look for mark in fdisk table */
4959 		for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
4960 			/* accumulate "lba" value from all partitions */
4961 			lba = (lba || sd_has_max_chs_vals(fdp));
4962 		}
4963 	}
4964 
4965 	if (lba != 0) {
4966 		dev_t dev = sd_make_device(SD_DEVINFO(un));
4967 
4968 		if (ddi_getprop(dev, SD_DEVINFO(un), DDI_PROP_DONTPASS,
4969 		    "lba-access-ok", 0) == 0) {
4970 			/* not found; create it */
4971 			if (ddi_prop_create(dev, SD_DEVINFO(un), 0,
4972 			    "lba-access-ok", (caddr_t)NULL, 0) !=
4973 			    DDI_PROP_SUCCESS) {
4974 				SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4975 				    "sd_read_fdisk: Can't create lba property "
4976 				    "for instance %d\n",
4977 				    ddi_get_instance(SD_DEVINFO(un)));
4978 			}
4979 		}
4980 	}
4981 
4982 	bcopy(&mbp->signature, sigbuf, sizeof (sigbuf));
4983 
4984 	/*
4985 	 * Endian-independent signature check
4986 	 */
4987 	if (((sigbuf[1] & 0xFF) != ((MBB_MAGIC >> 8) & 0xFF)) ||
4988 	    (sigbuf[0] != (MBB_MAGIC & 0xFF))) {
4989 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4990 		    "sd_read_fdisk: no fdisk\n");
4991 		bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4992 		rval = SD_CMD_SUCCESS;
4993 		goto done;
4994 	}
4995 
4996 #ifdef SDDEBUG
4997 	if (sd_level_mask & SD_LOGMASK_INFO) {
4998 		fdp = fdisk;
4999 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_read_fdisk:\n");
5000 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "         relsect    "
5001 		    "numsect         sysid       bootid\n");
5002 		for (i = 0; i < FD_NUMPART; i++, fdp++) {
5003 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5004 			    "    %d:  %8d   %8d     0x%08x     0x%08x\n",
5005 			    i, fdp->relsect, fdp->numsect,
5006 			    fdp->systid, fdp->bootid);
5007 		}
5008 	}
5009 #endif
5010 
5011 	/*
5012 	 * Try to find the unix partition
5013 	 */
5014 	uidx = -1;
5015 	solaris_offset = 0;
5016 	solaris_size   = 0;
5017 
5018 	for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
5019 		int	relsect;
5020 		int	numsect;
5021 
5022 		if (fdp->numsect == 0) {
5023 			un->un_fmap[i].fmap_start = 0;
5024 			un->un_fmap[i].fmap_nblk  = 0;
5025 			continue;
5026 		}
5027 
5028 		/*
5029 		 * Data in the fdisk table is little-endian.
5030 		 */
5031 		relsect = LE_32(fdp->relsect);
5032 		numsect = LE_32(fdp->numsect);
5033 
5034 		un->un_fmap[i].fmap_start = relsect;
5035 		un->un_fmap[i].fmap_nblk  = numsect;
5036 
5037 		if (fdp->systid != SUNIXOS &&
5038 		    fdp->systid != SUNIXOS2 &&
5039 		    fdp->systid != EFI_PMBR) {
5040 			continue;
5041 		}
5042 
5043 		/*
5044 		 * use the last active solaris partition id found
5045 		 * (there should only be 1 active partition id)
5046 		 *
5047 		 * if there are no active solaris partition id
5048 		 * then use the first inactive solaris partition id
5049 		 */
5050 		if ((uidx == -1) || (fdp->bootid == ACTIVE)) {
5051 			uidx = i;
5052 			solaris_offset = relsect;
5053 			solaris_size   = numsect;
5054 		}
5055 	}
5056 
5057 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk 0x%x 0x%lx",
5058 	    un->un_solaris_offset, un->un_solaris_size);
5059 
5060 	rval = SD_CMD_SUCCESS;
5061 
5062 done:
5063 
5064 	/*
5065 	 * Clear the VTOC info, only if the Solaris partition entry
5066 	 * has moved, changed size, been deleted, or if the size of
5067 	 * the partition is too small to even fit the label sector.
5068 	 */
5069 	if ((un->un_solaris_offset != solaris_offset) ||
5070 	    (un->un_solaris_size != solaris_size) ||
5071 	    solaris_size <= DK_LABEL_LOC) {
5072 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk moved 0x%x 0x%lx",
5073 			solaris_offset, solaris_size);
5074 		bzero(&un->un_g, sizeof (struct dk_geom));
5075 		bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
5076 		bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
5077 		un->un_f_geometry_is_valid = FALSE;
5078 	}
5079 	un->un_solaris_offset = solaris_offset;
5080 	un->un_solaris_size = solaris_size;
5081 	kmem_free(bufp, blocksize);
5082 	return (rval);
5083 
5084 #else	/* #elif defined(_FIRMWARE_NEEDS_FDISK) */
5085 #error "fdisk table presence undetermined for this platform."
5086 #endif	/* #if defined(_NO_FDISK_PRESENT) */
5087 }
5088 
5089 
5090 /*
5091  *    Function: sd_get_physical_geometry
5092  *
5093  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
5094  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
5095  *		target, and use this information to initialize the physical
5096  *		geometry cache specified by pgeom_p.
5097  *
5098  *		MODE SENSE is an optional command, so failure in this case
5099  *		does not necessarily denote an error. We want to use the
5100  *		MODE SENSE commands to derive the physical geometry of the
5101  *		device, but if either command fails, the logical geometry is
5102  *		used as the fallback for disk label geometry.
5103  *
5104  *		This requires that un->un_blockcount and un->un_tgt_blocksize
5105  *		have already been initialized for the current target and
5106  *		that the current values be passed as args so that we don't
5107  *		end up ever trying to use -1 as a valid value. This could
5108  *		happen if either value is reset while we're not holding
5109  *		the mutex.
5110  *
5111  *   Arguments: un - driver soft state (unit) structure
5112  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
5113  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
5114  *			to use the USCSI "direct" chain and bypass the normal
5115  *			command waitq.
5116  *
5117  *     Context: Kernel thread only (can sleep).
5118  */
5119 
5120 static void
5121 sd_get_physical_geometry(struct sd_lun *un, struct geom_cache *pgeom_p,
5122 	uint64_t capacity, int lbasize, int path_flag)
5123 {
5124 	struct	mode_format	*page3p;
5125 	struct	mode_geometry	*page4p;
5126 	struct	mode_header	*headerp;
5127 	int	sector_size;
5128 	int	nsect;
5129 	int	nhead;
5130 	int	ncyl;
5131 	int	intrlv;
5132 	int	spc;
5133 	int	modesense_capacity;
5134 	int	rpm;
5135 	int	bd_len;
5136 	int	mode_header_length;
5137 	uchar_t	*p3bufp;
5138 	uchar_t	*p4bufp;
5139 	int	cdbsize;
5140 
5141 	ASSERT(un != NULL);
5142 	ASSERT(!(mutex_owned(SD_MUTEX(un))));
5143 
5144 	if (un->un_f_blockcount_is_valid != TRUE) {
5145 		return;
5146 	}
5147 
5148 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
5149 		return;
5150 	}
5151 
5152 	if (lbasize == 0) {
5153 		if (ISCD(un)) {
5154 			lbasize = 2048;
5155 		} else {
5156 			lbasize = un->un_sys_blocksize;
5157 		}
5158 	}
5159 	pgeom_p->g_secsize = (unsigned short)lbasize;
5160 
5161 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
5162 
5163 	/*
5164 	 * Retrieve MODE SENSE page 3 - Format Device Page
5165 	 */
5166 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
5167 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp,
5168 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag)
5169 	    != 0) {
5170 		SD_ERROR(SD_LOG_COMMON, un,
5171 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
5172 		goto page3_exit;
5173 	}
5174 
5175 	/*
5176 	 * Determine size of Block Descriptors in order to locate the mode
5177 	 * page data.  ATAPI devices return 0, SCSI devices should return
5178 	 * MODE_BLK_DESC_LENGTH.
5179 	 */
5180 	headerp = (struct mode_header *)p3bufp;
5181 	if (un->un_f_cfg_is_atapi == TRUE) {
5182 		struct mode_header_grp2 *mhp =
5183 		    (struct mode_header_grp2 *)headerp;
5184 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
5185 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
5186 	} else {
5187 		mode_header_length = MODE_HEADER_LENGTH;
5188 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
5189 	}
5190 
5191 	if (bd_len > MODE_BLK_DESC_LENGTH) {
5192 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
5193 		    "received unexpected bd_len of %d, page3\n", bd_len);
5194 		goto page3_exit;
5195 	}
5196 
5197 	page3p = (struct mode_format *)
5198 	    ((caddr_t)headerp + mode_header_length + bd_len);
5199 
5200 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
5201 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
5202 		    "mode sense pg3 code mismatch %d\n",
5203 		    page3p->mode_page.code);
5204 		goto page3_exit;
5205 	}
5206 
5207 	/*
5208 	 * Use this physical geometry data only if BOTH MODE SENSE commands
5209 	 * complete successfully; otherwise, revert to the logical geometry.
5210 	 * So, we need to save everything in temporary variables.
5211 	 */
5212 	sector_size = BE_16(page3p->data_bytes_sect);
5213 
5214 	/*
5215 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
5216 	 */
5217 	if (sector_size == 0) {
5218 		sector_size = (ISCD(un)) ? 2048 : un->un_sys_blocksize;
5219 	} else {
5220 		sector_size &= ~(un->un_sys_blocksize - 1);
5221 	}
5222 
5223 	nsect  = BE_16(page3p->sect_track);
5224 	intrlv = BE_16(page3p->interleave);
5225 
5226 	SD_INFO(SD_LOG_COMMON, un,
5227 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
5228 	SD_INFO(SD_LOG_COMMON, un,
5229 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
5230 	    page3p->mode_page.code, nsect, sector_size);
5231 	SD_INFO(SD_LOG_COMMON, un,
5232 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
5233 	    BE_16(page3p->track_skew),
5234 	    BE_16(page3p->cylinder_skew));
5235 
5236 
5237 	/*
5238 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
5239 	 */
5240 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
5241 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp,
5242 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag)
5243 	    != 0) {
5244 		SD_ERROR(SD_LOG_COMMON, un,
5245 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
5246 		goto page4_exit;
5247 	}
5248 
5249 	/*
5250 	 * Determine size of Block Descriptors in order to locate the mode
5251 	 * page data.  ATAPI devices return 0, SCSI devices should return
5252 	 * MODE_BLK_DESC_LENGTH.
5253 	 */
5254 	headerp = (struct mode_header *)p4bufp;
5255 	if (un->un_f_cfg_is_atapi == TRUE) {
5256 		struct mode_header_grp2 *mhp =
5257 		    (struct mode_header_grp2 *)headerp;
5258 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
5259 	} else {
5260 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
5261 	}
5262 
5263 	if (bd_len > MODE_BLK_DESC_LENGTH) {
5264 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
5265 		    "received unexpected bd_len of %d, page4\n", bd_len);
5266 		goto page4_exit;
5267 	}
5268 
5269 	page4p = (struct mode_geometry *)
5270 	    ((caddr_t)headerp + mode_header_length + bd_len);
5271 
5272 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
5273 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
5274 		    "mode sense pg4 code mismatch %d\n",
5275 		    page4p->mode_page.code);
5276 		goto page4_exit;
5277 	}
5278 
5279 	/*
5280 	 * Stash the data now, after we know that both commands completed.
5281 	 */
5282 
5283 	mutex_enter(SD_MUTEX(un));
5284 
5285 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
5286 	spc   = nhead * nsect;
5287 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
5288 	rpm   = BE_16(page4p->rpm);
5289 
5290 	modesense_capacity = spc * ncyl;
5291 
5292 	SD_INFO(SD_LOG_COMMON, un,
5293 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
5294 	SD_INFO(SD_LOG_COMMON, un,
5295 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
5296 	SD_INFO(SD_LOG_COMMON, un,
5297 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
5298 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
5299 	    (void *)pgeom_p, capacity);
5300 
5301 	/*
5302 	 * Compensate if the drive's geometry is not rectangular, i.e.,
5303 	 * the product of C * H * S returned by MODE SENSE >= that returned
5304 	 * by read capacity. This is an idiosyncrasy of the original x86
5305 	 * disk subsystem.
5306 	 */
5307 	if (modesense_capacity >= capacity) {
5308 		SD_INFO(SD_LOG_COMMON, un,
5309 		    "sd_get_physical_geometry: adjusting acyl; "
5310 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
5311 		    (modesense_capacity - capacity + spc - 1) / spc);
5312 		if (sector_size != 0) {
5313 			/* 1243403: NEC D38x7 drives don't support sec size */
5314 			pgeom_p->g_secsize = (unsigned short)sector_size;
5315 		}
5316 		pgeom_p->g_nsect    = (unsigned short)nsect;
5317 		pgeom_p->g_nhead    = (unsigned short)nhead;
5318 		pgeom_p->g_capacity = capacity;
5319 		pgeom_p->g_acyl	    =
5320 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
5321 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
5322 	}
5323 
5324 	pgeom_p->g_rpm    = (unsigned short)rpm;
5325 	pgeom_p->g_intrlv = (unsigned short)intrlv;
5326 
5327 	SD_INFO(SD_LOG_COMMON, un,
5328 	    "sd_get_physical_geometry: mode sense geometry:\n");
5329 	SD_INFO(SD_LOG_COMMON, un,
5330 	    "   nsect: %d; sector size: %d; interlv: %d\n",
5331 	    nsect, sector_size, intrlv);
5332 	SD_INFO(SD_LOG_COMMON, un,
5333 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
5334 	    nhead, ncyl, rpm, modesense_capacity);
5335 	SD_INFO(SD_LOG_COMMON, un,
5336 	    "sd_get_physical_geometry: (cached)\n");
5337 	SD_INFO(SD_LOG_COMMON, un,
5338 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5339 	    un->un_pgeom.g_ncyl,  un->un_pgeom.g_acyl,
5340 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
5341 	SD_INFO(SD_LOG_COMMON, un,
5342 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
5343 	    un->un_pgeom.g_secsize, un->un_pgeom.g_capacity,
5344 	    un->un_pgeom.g_intrlv, un->un_pgeom.g_rpm);
5345 
5346 	mutex_exit(SD_MUTEX(un));
5347 
5348 page4_exit:
5349 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
5350 page3_exit:
5351 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
5352 }
5353 
5354 
5355 /*
5356  *    Function: sd_get_virtual_geometry
5357  *
5358  * Description: Ask the controller to tell us about the target device.
5359  *
5360  *   Arguments: un - pointer to softstate
5361  *		capacity - disk capacity in #blocks
5362  *		lbasize - disk block size in bytes
5363  *
5364  *     Context: Kernel thread only
5365  */
5366 
5367 static void
5368 sd_get_virtual_geometry(struct sd_lun *un, int capacity, int lbasize)
5369 {
5370 	struct	geom_cache 	*lgeom_p = &un->un_lgeom;
5371 	uint_t	geombuf;
5372 	int	spc;
5373 
5374 	ASSERT(un != NULL);
5375 	ASSERT(mutex_owned(SD_MUTEX(un)));
5376 
5377 	mutex_exit(SD_MUTEX(un));
5378 
5379 	/* Set sector size, and total number of sectors */
5380 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
5381 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
5382 
5383 	/* Let the HBA tell us its geometry */
5384 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
5385 
5386 	mutex_enter(SD_MUTEX(un));
5387 
5388 	/* A value of -1 indicates an undefined "geometry" property */
5389 	if (geombuf == (-1)) {
5390 		return;
5391 	}
5392 
5393 	/* Initialize the logical geometry cache. */
5394 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
5395 	lgeom_p->g_nsect   = geombuf & 0xffff;
5396 	lgeom_p->g_secsize = un->un_sys_blocksize;
5397 
5398 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
5399 
5400 	/*
5401 	 * Note: The driver originally converted the capacity value from
5402 	 * target blocks to system blocks. However, the capacity value passed
5403 	 * to this routine is already in terms of system blocks (this scaling
5404 	 * is done when the READ CAPACITY command is issued and processed).
5405 	 * This 'error' may have gone undetected because the usage of g_ncyl
5406 	 * (which is based upon g_capacity) is very limited within the driver
5407 	 */
5408 	lgeom_p->g_capacity = capacity;
5409 
5410 	/*
5411 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
5412 	 * hba may return zero values if the device has been removed.
5413 	 */
5414 	if (spc == 0) {
5415 		lgeom_p->g_ncyl = 0;
5416 	} else {
5417 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
5418 	}
5419 	lgeom_p->g_acyl = 0;
5420 
5421 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
5422 	SD_INFO(SD_LOG_COMMON, un,
5423 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5424 	    un->un_lgeom.g_ncyl,  un->un_lgeom.g_acyl,
5425 	    un->un_lgeom.g_nhead, un->un_lgeom.g_nsect);
5426 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
5427 	    "intrlv: %d; rpm: %d\n", un->un_lgeom.g_secsize,
5428 	    un->un_lgeom.g_capacity, un->un_lgeom.g_intrlv, un->un_lgeom.g_rpm);
5429 }
5430 
5431 
5432 /*
5433  *    Function: sd_update_block_info
5434  *
5435  * Description: Calculate a byte count to sector count bitshift value
5436  *		from sector size.
5437  *
5438  *   Arguments: un: unit struct.
5439  *		lbasize: new target sector size
5440  *		capacity: new target capacity, ie. block count
5441  *
5442  *     Context: Kernel thread context
5443  */
5444 
5445 static void
5446 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
5447 {
5448 	if (lbasize != 0) {
5449 		un->un_tgt_blocksize = lbasize;
5450 		un->un_f_tgt_blocksize_is_valid	= TRUE;
5451 	}
5452 
5453 	if (capacity != 0) {
5454 		un->un_blockcount		= capacity;
5455 		un->un_f_blockcount_is_valid	= TRUE;
5456 	}
5457 }
5458 
5459 
5460 static void
5461 sd_swap_efi_gpt(efi_gpt_t *e)
5462 {
5463 	_NOTE(ASSUMING_PROTECTED(*e))
5464 	e->efi_gpt_Signature = LE_64(e->efi_gpt_Signature);
5465 	e->efi_gpt_Revision = LE_32(e->efi_gpt_Revision);
5466 	e->efi_gpt_HeaderSize = LE_32(e->efi_gpt_HeaderSize);
5467 	e->efi_gpt_HeaderCRC32 = LE_32(e->efi_gpt_HeaderCRC32);
5468 	e->efi_gpt_MyLBA = LE_64(e->efi_gpt_MyLBA);
5469 	e->efi_gpt_AlternateLBA = LE_64(e->efi_gpt_AlternateLBA);
5470 	e->efi_gpt_FirstUsableLBA = LE_64(e->efi_gpt_FirstUsableLBA);
5471 	e->efi_gpt_LastUsableLBA = LE_64(e->efi_gpt_LastUsableLBA);
5472 	UUID_LE_CONVERT(e->efi_gpt_DiskGUID, e->efi_gpt_DiskGUID);
5473 	e->efi_gpt_PartitionEntryLBA = LE_64(e->efi_gpt_PartitionEntryLBA);
5474 	e->efi_gpt_NumberOfPartitionEntries =
5475 	    LE_32(e->efi_gpt_NumberOfPartitionEntries);
5476 	e->efi_gpt_SizeOfPartitionEntry =
5477 	    LE_32(e->efi_gpt_SizeOfPartitionEntry);
5478 	e->efi_gpt_PartitionEntryArrayCRC32 =
5479 	    LE_32(e->efi_gpt_PartitionEntryArrayCRC32);
5480 }
5481 
5482 static void
5483 sd_swap_efi_gpe(int nparts, efi_gpe_t *p)
5484 {
5485 	int i;
5486 
5487 	_NOTE(ASSUMING_PROTECTED(*p))
5488 	for (i = 0; i < nparts; i++) {
5489 		UUID_LE_CONVERT(p[i].efi_gpe_PartitionTypeGUID,
5490 		    p[i].efi_gpe_PartitionTypeGUID);
5491 		p[i].efi_gpe_StartingLBA = LE_64(p[i].efi_gpe_StartingLBA);
5492 		p[i].efi_gpe_EndingLBA = LE_64(p[i].efi_gpe_EndingLBA);
5493 		/* PartitionAttrs */
5494 	}
5495 }
5496 
5497 static int
5498 sd_validate_efi(efi_gpt_t *labp)
5499 {
5500 	if (labp->efi_gpt_Signature != EFI_SIGNATURE)
5501 		return (EINVAL);
5502 	/* at least 96 bytes in this version of the spec. */
5503 	if (sizeof (efi_gpt_t) - sizeof (labp->efi_gpt_Reserved2) >
5504 	    labp->efi_gpt_HeaderSize)
5505 		return (EINVAL);
5506 	/* this should be 128 bytes */
5507 	if (labp->efi_gpt_SizeOfPartitionEntry != sizeof (efi_gpe_t))
5508 		return (EINVAL);
5509 	return (0);
5510 }
5511 
5512 static int
5513 sd_use_efi(struct sd_lun *un, int path_flag)
5514 {
5515 	int		i;
5516 	int		rval = 0;
5517 	efi_gpe_t	*partitions;
5518 	uchar_t		*buf;
5519 	uint_t		lbasize;
5520 	uint64_t	cap = 0;
5521 	uint_t		nparts;
5522 	diskaddr_t	gpe_lba;
5523 	struct uuid	uuid_type_reserved = EFI_RESERVED;
5524 
5525 	ASSERT(mutex_owned(SD_MUTEX(un)));
5526 	lbasize = un->un_tgt_blocksize;
5527 	un->un_reserved = -1;
5528 
5529 	mutex_exit(SD_MUTEX(un));
5530 
5531 	buf = kmem_zalloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
5532 
5533 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
5534 		rval = EINVAL;
5535 		goto done_err;
5536 	}
5537 
5538 	rval = sd_send_scsi_READ(un, buf, lbasize, 0, path_flag);
5539 	if (rval) {
5540 		goto done_err;
5541 	}
5542 	if (((struct dk_label *)buf)->dkl_magic == DKL_MAGIC) {
5543 		/* not ours */
5544 		rval = ESRCH;
5545 		goto done_err;
5546 	}
5547 
5548 	rval = sd_send_scsi_READ(un, buf, lbasize, 1, path_flag);
5549 	if (rval) {
5550 		goto done_err;
5551 	}
5552 	sd_swap_efi_gpt((efi_gpt_t *)buf);
5553 
5554 	if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0) {
5555 		/*
5556 		 * Couldn't read the primary, try the backup.  Our
5557 		 * capacity at this point could be based on CHS, so
5558 		 * check what the device reports.
5559 		 */
5560 		rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
5561 		    path_flag);
5562 		if (rval) {
5563 			goto done_err;
5564 		}
5565 
5566 		/*
5567 		 * The MMC standard allows READ CAPACITY to be
5568 		 * inaccurate by a bounded amount (in the interest of
5569 		 * response latency).  As a result, failed READs are
5570 		 * commonplace (due to the reading of metadata and not
5571 		 * data). Depending on the per-Vendor/drive Sense data,
5572 		 * the failed READ can cause many (unnecessary) retries.
5573 		 */
5574 
5575 		/*
5576 		 * Refer to comments related to off-by-1 at the
5577 		 * header of this file. Search the next to last
5578 		 * block for backup EFI label.
5579 		 */
5580 		if ((rval = sd_send_scsi_READ(un, buf, lbasize,
5581 		    cap - 2, (ISCD(un)) ? SD_PATH_DIRECT_PRIORITY :
5582 			path_flag)) != 0) {
5583 				goto done_err;
5584 		}
5585 
5586 		sd_swap_efi_gpt((efi_gpt_t *)buf);
5587 		if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0) {
5588 			if ((rval = sd_send_scsi_READ(un, buf, lbasize,
5589 			    cap - 1, (ISCD(un)) ? SD_PATH_DIRECT_PRIORITY :
5590 			    path_flag)) != 0) {
5591 				goto done_err;
5592 			}
5593 			sd_swap_efi_gpt((efi_gpt_t *)buf);
5594 			if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0)
5595 				goto done_err;
5596 		}
5597 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5598 		    "primary label corrupt; using backup\n");
5599 	}
5600 
5601 	if (cap == 0)
5602 		rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
5603 		    path_flag);
5604 
5605 	nparts = ((efi_gpt_t *)buf)->efi_gpt_NumberOfPartitionEntries;
5606 	gpe_lba = ((efi_gpt_t *)buf)->efi_gpt_PartitionEntryLBA;
5607 
5608 	rval = sd_send_scsi_READ(un, buf, EFI_MIN_ARRAY_SIZE, gpe_lba,
5609 	    path_flag);
5610 	if (rval) {
5611 		goto done_err;
5612 	}
5613 	partitions = (efi_gpe_t *)buf;
5614 
5615 	if (nparts > MAXPART) {
5616 		nparts = MAXPART;
5617 	}
5618 	sd_swap_efi_gpe(nparts, partitions);
5619 
5620 	mutex_enter(SD_MUTEX(un));
5621 
5622 	/* Fill in partition table. */
5623 	for (i = 0; i < nparts; i++) {
5624 		if (partitions->efi_gpe_StartingLBA != 0 ||
5625 		    partitions->efi_gpe_EndingLBA != 0) {
5626 			un->un_map[i].dkl_cylno =
5627 			    partitions->efi_gpe_StartingLBA;
5628 			un->un_map[i].dkl_nblk =
5629 			    partitions->efi_gpe_EndingLBA -
5630 			    partitions->efi_gpe_StartingLBA + 1;
5631 			un->un_offset[i] =
5632 			    partitions->efi_gpe_StartingLBA;
5633 		}
5634 		if (un->un_reserved == -1) {
5635 			if (bcmp(&partitions->efi_gpe_PartitionTypeGUID,
5636 			    &uuid_type_reserved, sizeof (struct uuid)) == 0) {
5637 				un->un_reserved = i;
5638 			}
5639 		}
5640 		if (i == WD_NODE) {
5641 			/*
5642 			 * minor number 7 corresponds to the whole disk
5643 			 */
5644 			un->un_map[i].dkl_cylno = 0;
5645 			un->un_map[i].dkl_nblk = un->un_blockcount;
5646 			un->un_offset[i] = 0;
5647 		}
5648 		partitions++;
5649 	}
5650 	un->un_solaris_offset = 0;
5651 	un->un_solaris_size = cap;
5652 	un->un_f_geometry_is_valid = TRUE;
5653 
5654 	/* clear the vtoc label */
5655 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
5656 
5657 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5658 
5659 	/*
5660 	 * For EFI labeled disk, create and set the partition stats
5661 	 * at attach time, update the stats according to dynamic
5662 	 * partition changes during running time.
5663 	 */
5664 	if (un->un_f_pkstats_enabled) {
5665 		sd_set_pstats(un);
5666 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_use_efi: "
5667 		    "un:0x%p pstats created and set, or updated\n", un);
5668 	}
5669 	return (0);
5670 
5671 done_err:
5672 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5673 	mutex_enter(SD_MUTEX(un));
5674 	/*
5675 	 * if we didn't find something that could look like a VTOC
5676 	 * and the disk is over 1TB, we know there isn't a valid label.
5677 	 * Otherwise let sd_uselabel decide what to do.  We only
5678 	 * want to invalidate this if we're certain the label isn't
5679 	 * valid because sd_prop_op will now fail, which in turn
5680 	 * causes things like opens and stats on the partition to fail.
5681 	 */
5682 	if ((un->un_blockcount > DK_MAX_BLOCKS) && (rval != ESRCH)) {
5683 		un->un_f_geometry_is_valid = FALSE;
5684 	}
5685 	return (rval);
5686 }
5687 
5688 
5689 /*
5690  *    Function: sd_uselabel
5691  *
5692  * Description: Validate the disk label and update the relevant data (geometry,
5693  *		partition, vtoc, and capacity data) in the sd_lun struct.
5694  *		Marks the geometry of the unit as being valid.
5695  *
5696  *   Arguments: un: unit struct.
5697  *		dk_label: disk label
5698  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
5699  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
5700  *			to use the USCSI "direct" chain and bypass the normal
5701  *			command waitq.
5702  *
5703  * Return Code: SD_LABEL_IS_VALID: Label read from disk is OK; geometry,
5704  *		partition, vtoc, and capacity data are good.
5705  *
5706  *		SD_LABEL_IS_INVALID: Magic number or checksum error in the
5707  *		label; or computed capacity does not jibe with capacity
5708  *		reported from the READ CAPACITY command.
5709  *
5710  *     Context: Kernel thread only (can sleep).
5711  */
5712 
5713 static int
5714 sd_uselabel(struct sd_lun *un, struct dk_label *labp, int path_flag)
5715 {
5716 	short	*sp;
5717 	short	sum;
5718 	short	count;
5719 	int	label_error = SD_LABEL_IS_VALID;
5720 	int	i;
5721 	int	capacity;
5722 	int	part_end;
5723 	int	track_capacity;
5724 	int	err;
5725 #if defined(_SUNOS_VTOC_16)
5726 	struct	dkl_partition	*vpartp;
5727 #endif
5728 	ASSERT(un != NULL);
5729 	ASSERT(mutex_owned(SD_MUTEX(un)));
5730 
5731 	/* Validate the magic number of the label. */
5732 	if (labp->dkl_magic != DKL_MAGIC) {
5733 #if defined(__sparc)
5734 		if ((un->un_state == SD_STATE_NORMAL) &&
5735 			un->un_f_vtoc_errlog_supported) {
5736 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5737 			    "Corrupt label; wrong magic number\n");
5738 		}
5739 #endif
5740 		return (SD_LABEL_IS_INVALID);
5741 	}
5742 
5743 	/* Validate the checksum of the label. */
5744 	sp  = (short *)labp;
5745 	sum = 0;
5746 	count = sizeof (struct dk_label) / sizeof (short);
5747 	while (count--)	 {
5748 		sum ^= *sp++;
5749 	}
5750 
5751 	if (sum != 0) {
5752 #if	defined(_SUNOS_VTOC_16)
5753 		if ((un->un_state == SD_STATE_NORMAL) && !ISCD(un)) {
5754 #elif defined(_SUNOS_VTOC_8)
5755 		if ((un->un_state == SD_STATE_NORMAL) &&
5756 		    un->un_f_vtoc_errlog_supported) {
5757 #endif
5758 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5759 			    "Corrupt label - label checksum failed\n");
5760 		}
5761 		return (SD_LABEL_IS_INVALID);
5762 	}
5763 
5764 
5765 	/*
5766 	 * Fill in geometry structure with data from label.
5767 	 */
5768 	bzero(&un->un_g, sizeof (struct dk_geom));
5769 	un->un_g.dkg_ncyl   = labp->dkl_ncyl;
5770 	un->un_g.dkg_acyl   = labp->dkl_acyl;
5771 	un->un_g.dkg_bcyl   = 0;
5772 	un->un_g.dkg_nhead  = labp->dkl_nhead;
5773 	un->un_g.dkg_nsect  = labp->dkl_nsect;
5774 	un->un_g.dkg_intrlv = labp->dkl_intrlv;
5775 
5776 #if defined(_SUNOS_VTOC_8)
5777 	un->un_g.dkg_gap1   = labp->dkl_gap1;
5778 	un->un_g.dkg_gap2   = labp->dkl_gap2;
5779 	un->un_g.dkg_bhead  = labp->dkl_bhead;
5780 #endif
5781 #if defined(_SUNOS_VTOC_16)
5782 	un->un_dkg_skew = labp->dkl_skew;
5783 #endif
5784 
5785 #if defined(__i386) || defined(__amd64)
5786 	un->un_g.dkg_apc = labp->dkl_apc;
5787 #endif
5788 
5789 	/*
5790 	 * Currently we rely on the values in the label being accurate. If
5791 	 * dlk_rpm or dlk_pcly are zero in the label, use a default value.
5792 	 *
5793 	 * Note: In the future a MODE SENSE may be used to retrieve this data,
5794 	 * although this command is optional in SCSI-2.
5795 	 */
5796 	un->un_g.dkg_rpm  = (labp->dkl_rpm  != 0) ? labp->dkl_rpm  : 3600;
5797 	un->un_g.dkg_pcyl = (labp->dkl_pcyl != 0) ? labp->dkl_pcyl :
5798 	    (un->un_g.dkg_ncyl + un->un_g.dkg_acyl);
5799 
5800 	/*
5801 	 * The Read and Write reinstruct values may not be valid
5802 	 * for older disks.
5803 	 */
5804 	un->un_g.dkg_read_reinstruct  = labp->dkl_read_reinstruct;
5805 	un->un_g.dkg_write_reinstruct = labp->dkl_write_reinstruct;
5806 
5807 	/* Fill in partition table. */
5808 #if defined(_SUNOS_VTOC_8)
5809 	for (i = 0; i < NDKMAP; i++) {
5810 		un->un_map[i].dkl_cylno = labp->dkl_map[i].dkl_cylno;
5811 		un->un_map[i].dkl_nblk  = labp->dkl_map[i].dkl_nblk;
5812 	}
5813 #endif
5814 #if  defined(_SUNOS_VTOC_16)
5815 	vpartp		= labp->dkl_vtoc.v_part;
5816 	track_capacity	= labp->dkl_nhead * labp->dkl_nsect;
5817 
5818 	/* Prevent divide by zero */
5819 	if (track_capacity == 0) {
5820 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5821 		    "Corrupt label - zero nhead or nsect value\n");
5822 
5823 		return (SD_LABEL_IS_INVALID);
5824 	}
5825 
5826 	for (i = 0; i < NDKMAP; i++, vpartp++) {
5827 		un->un_map[i].dkl_cylno = vpartp->p_start / track_capacity;
5828 		un->un_map[i].dkl_nblk  = vpartp->p_size;
5829 	}
5830 #endif
5831 
5832 	/* Fill in VTOC Structure. */
5833 	bcopy(&labp->dkl_vtoc, &un->un_vtoc, sizeof (struct dk_vtoc));
5834 #if defined(_SUNOS_VTOC_8)
5835 	/*
5836 	 * The 8-slice vtoc does not include the ascii label; save it into
5837 	 * the device's soft state structure here.
5838 	 */
5839 	bcopy(labp->dkl_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
5840 #endif
5841 
5842 	/* Now look for a valid capacity. */
5843 	track_capacity	= (un->un_g.dkg_nhead * un->un_g.dkg_nsect);
5844 	capacity	= (un->un_g.dkg_ncyl  * track_capacity);
5845 
5846 	if (un->un_g.dkg_acyl) {
5847 #if defined(__i386) || defined(__amd64)
5848 		/* we may have > 1 alts cylinder */
5849 		capacity += (track_capacity * un->un_g.dkg_acyl);
5850 #else
5851 		capacity += track_capacity;
5852 #endif
5853 	}
5854 
5855 	/*
5856 	 * Force check here to ensure the computed capacity is valid.
5857 	 * If capacity is zero, it indicates an invalid label and
5858 	 * we should abort updating the relevant data then.
5859 	 */
5860 	if (capacity == 0) {
5861 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5862 		    "Corrupt label - no valid capacity could be retrieved\n");
5863 
5864 		return (SD_LABEL_IS_INVALID);
5865 	}
5866 
5867 	/* Mark the geometry as valid. */
5868 	un->un_f_geometry_is_valid = TRUE;
5869 
5870 	/*
5871 	 * At this point, un->un_blockcount should contain valid data from
5872 	 * the READ CAPACITY command.
5873 	 */
5874 	if (un->un_f_blockcount_is_valid != TRUE) {
5875 		/*
5876 		 * We have a situation where the target didn't give us a good
5877 		 * READ CAPACITY value, yet there appears to be a valid label.
5878 		 * In this case, we'll fake the capacity.
5879 		 */
5880 		un->un_blockcount = capacity;
5881 		un->un_f_blockcount_is_valid = TRUE;
5882 		goto done;
5883 	}
5884 
5885 
5886 	if ((capacity <= un->un_blockcount) ||
5887 	    (un->un_state != SD_STATE_NORMAL)) {
5888 #if defined(_SUNOS_VTOC_8)
5889 		/*
5890 		 * We can't let this happen on drives that are subdivided
5891 		 * into logical disks (i.e., that have an fdisk table).
5892 		 * The un_blockcount field should always hold the full media
5893 		 * size in sectors, period.  This code would overwrite
5894 		 * un_blockcount with the size of the Solaris fdisk partition.
5895 		 */
5896 		SD_ERROR(SD_LOG_COMMON, un,
5897 		    "sd_uselabel: Label %d blocks; Drive %d blocks\n",
5898 		    capacity, un->un_blockcount);
5899 		un->un_blockcount = capacity;
5900 		un->un_f_blockcount_is_valid = TRUE;
5901 #endif	/* defined(_SUNOS_VTOC_8) */
5902 		goto done;
5903 	}
5904 
5905 	if (ISCD(un)) {
5906 		/* For CDROMs, we trust that the data in the label is OK. */
5907 #if defined(_SUNOS_VTOC_8)
5908 		for (i = 0; i < NDKMAP; i++) {
5909 			part_end = labp->dkl_nhead * labp->dkl_nsect *
5910 			    labp->dkl_map[i].dkl_cylno +
5911 			    labp->dkl_map[i].dkl_nblk  - 1;
5912 
5913 			if ((labp->dkl_map[i].dkl_nblk) &&
5914 			    (part_end > un->un_blockcount)) {
5915 				un->un_f_geometry_is_valid = FALSE;
5916 				break;
5917 			}
5918 		}
5919 #endif
5920 #if defined(_SUNOS_VTOC_16)
5921 		vpartp = &(labp->dkl_vtoc.v_part[0]);
5922 		for (i = 0; i < NDKMAP; i++, vpartp++) {
5923 			part_end = vpartp->p_start + vpartp->p_size;
5924 			if ((vpartp->p_size > 0) &&
5925 			    (part_end > un->un_blockcount)) {
5926 				un->un_f_geometry_is_valid = FALSE;
5927 				break;
5928 			}
5929 		}
5930 #endif
5931 	} else {
5932 		uint64_t t_capacity;
5933 		uint32_t t_lbasize;
5934 
5935 		mutex_exit(SD_MUTEX(un));
5936 		err = sd_send_scsi_READ_CAPACITY(un, &t_capacity, &t_lbasize,
5937 		    path_flag);
5938 		ASSERT(t_capacity <= DK_MAX_BLOCKS);
5939 		mutex_enter(SD_MUTEX(un));
5940 
5941 		if (err == 0) {
5942 			sd_update_block_info(un, t_lbasize, t_capacity);
5943 		}
5944 
5945 		if (capacity > un->un_blockcount) {
5946 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5947 			    "Corrupt label - bad geometry\n");
5948 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
5949 			    "Label says %u blocks; Drive says %llu blocks\n",
5950 			    capacity, (unsigned long long)un->un_blockcount);
5951 			un->un_f_geometry_is_valid = FALSE;
5952 			label_error = SD_LABEL_IS_INVALID;
5953 		}
5954 	}
5955 
5956 done:
5957 
5958 	SD_INFO(SD_LOG_COMMON, un, "sd_uselabel: (label geometry)\n");
5959 	SD_INFO(SD_LOG_COMMON, un,
5960 	    "   ncyl: %d; acyl: %d; nhead: %d; nsect: %d\n",
5961 	    un->un_g.dkg_ncyl,  un->un_g.dkg_acyl,
5962 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
5963 	SD_INFO(SD_LOG_COMMON, un,
5964 	    "   lbasize: %d; capacity: %d; intrlv: %d; rpm: %d\n",
5965 	    un->un_tgt_blocksize, un->un_blockcount,
5966 	    un->un_g.dkg_intrlv, un->un_g.dkg_rpm);
5967 	SD_INFO(SD_LOG_COMMON, un, "   wrt_reinstr: %d; rd_reinstr: %d\n",
5968 	    un->un_g.dkg_write_reinstruct, un->un_g.dkg_read_reinstruct);
5969 
5970 	ASSERT(mutex_owned(SD_MUTEX(un)));
5971 
5972 	return (label_error);
5973 }
5974 
5975 
5976 /*
5977  *    Function: sd_build_default_label
5978  *
5979  * Description: Generate a default label for those devices that do not have
5980  *		one, e.g., new media, removable cartridges, etc..
5981  *
5982  *     Context: Kernel thread only
5983  */
5984 
5985 static void
5986 sd_build_default_label(struct sd_lun *un)
5987 {
5988 #if defined(_SUNOS_VTOC_16)
5989 	uint_t	phys_spc;
5990 	uint_t	disksize;
5991 	struct	dk_geom un_g;
5992 	uint64_t capacity;
5993 #endif
5994 
5995 	ASSERT(un != NULL);
5996 	ASSERT(mutex_owned(SD_MUTEX(un)));
5997 
5998 #if defined(_SUNOS_VTOC_8)
5999 	/*
6000 	 * Note: This is a legacy check for non-removable devices on VTOC_8
6001 	 * only. This may be a valid check for VTOC_16 as well.
6002 	 * Once we understand why there is this difference between SPARC and
6003 	 * x86 platform, we could remove this legacy check.
6004 	 */
6005 	ASSERT(un->un_f_default_vtoc_supported);
6006 #endif
6007 
6008 	bzero(&un->un_g, sizeof (struct dk_geom));
6009 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
6010 	bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
6011 
6012 #if defined(_SUNOS_VTOC_8)
6013 
6014 	/*
6015 	 * It's a REMOVABLE media, therefore no label (on sparc, anyway).
6016 	 * But it is still necessary to set up various geometry information,
6017 	 * and we are doing this here.
6018 	 */
6019 
6020 	/*
6021 	 * For the rpm, we use the minimum for the disk.  For the head, cyl,
6022 	 * and number of sector per track, if the capacity <= 1GB, head = 64,
6023 	 * sect = 32.  else head = 255, sect 63 Note: the capacity should be
6024 	 * equal to C*H*S values.  This will cause some truncation of size due
6025 	 * to round off errors. For CD-ROMs, this truncation can have adverse
6026 	 * side effects, so returning ncyl and nhead as 1. The nsect will
6027 	 * overflow for most of CD-ROMs as nsect is of type ushort. (4190569)
6028 	 */
6029 	if (ISCD(un)) {
6030 		/*
6031 		 * Preserve the old behavior for non-writable
6032 		 * medias. Since dkg_nsect is a ushort, it
6033 		 * will lose bits as cdroms have more than
6034 		 * 65536 sectors. So if we recalculate
6035 		 * capacity, it will become much shorter.
6036 		 * But the dkg_* information is not
6037 		 * used for CDROMs so it is OK. But for
6038 		 * Writable CDs we need this information
6039 		 * to be valid (for newfs say). So we
6040 		 * make nsect and nhead > 1 that way
6041 		 * nsect can still stay within ushort limit
6042 		 * without losing any bits.
6043 		 */
6044 		if (un->un_f_mmc_writable_media == TRUE) {
6045 			un->un_g.dkg_nhead = 64;
6046 			un->un_g.dkg_nsect = 32;
6047 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
6048 			un->un_blockcount = un->un_g.dkg_ncyl *
6049 			    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
6050 		} else {
6051 			un->un_g.dkg_ncyl  = 1;
6052 			un->un_g.dkg_nhead = 1;
6053 			un->un_g.dkg_nsect = un->un_blockcount;
6054 		}
6055 	} else {
6056 		if (un->un_blockcount <= 0x1000) {
6057 			/* unlabeled SCSI floppy device */
6058 			un->un_g.dkg_nhead = 2;
6059 			un->un_g.dkg_ncyl = 80;
6060 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
6061 		} else if (un->un_blockcount <= 0x200000) {
6062 			un->un_g.dkg_nhead = 64;
6063 			un->un_g.dkg_nsect = 32;
6064 			un->un_g.dkg_ncyl  = un->un_blockcount / (64 * 32);
6065 		} else {
6066 			un->un_g.dkg_nhead = 255;
6067 			un->un_g.dkg_nsect = 63;
6068 			un->un_g.dkg_ncyl  = un->un_blockcount / (255 * 63);
6069 		}
6070 		un->un_blockcount =
6071 		    un->un_g.dkg_ncyl * un->un_g.dkg_nhead * un->un_g.dkg_nsect;
6072 	}
6073 
6074 	un->un_g.dkg_acyl	= 0;
6075 	un->un_g.dkg_bcyl	= 0;
6076 	un->un_g.dkg_rpm	= 200;
6077 	un->un_asciilabel[0]	= '\0';
6078 	un->un_g.dkg_pcyl	= un->un_g.dkg_ncyl;
6079 
6080 	un->un_map[0].dkl_cylno = 0;
6081 	un->un_map[0].dkl_nblk  = un->un_blockcount;
6082 	un->un_map[2].dkl_cylno = 0;
6083 	un->un_map[2].dkl_nblk  = un->un_blockcount;
6084 
6085 #elif defined(_SUNOS_VTOC_16)
6086 
6087 	if (un->un_solaris_size == 0) {
6088 		/*
6089 		 * Got fdisk table but no solaris entry therefore
6090 		 * don't create a default label
6091 		 */
6092 		un->un_f_geometry_is_valid = TRUE;
6093 		return;
6094 	}
6095 
6096 	/*
6097 	 * For CDs we continue to use the physical geometry to calculate
6098 	 * number of cylinders. All other devices must convert the
6099 	 * physical geometry (geom_cache) to values that will fit
6100 	 * in a dk_geom structure.
6101 	 */
6102 	if (ISCD(un)) {
6103 		phys_spc = un->un_pgeom.g_nhead * un->un_pgeom.g_nsect;
6104 	} else {
6105 		/* Convert physical geometry to disk geometry */
6106 		bzero(&un_g, sizeof (struct dk_geom));
6107 
6108 		/*
6109 		 * Refer to comments related to off-by-1 at the
6110 		 * header of this file.
6111 		 * Before caculating geometry, capacity should be
6112 		 * decreased by 1. That un_f_capacity_adjusted is
6113 		 * TRUE means that we are treating a 1TB disk as
6114 		 * (1T - 512)B. And the capacity of disks is already
6115 		 * decreased by 1.
6116 		 */
6117 		if (!un->un_f_capacity_adjusted &&
6118 		    !un->un_f_has_removable_media &&
6119 		    !un->un_f_is_hotpluggable &&
6120 			un->un_tgt_blocksize == un->un_sys_blocksize)
6121 			capacity = un->un_blockcount - 1;
6122 		else
6123 			capacity = un->un_blockcount;
6124 
6125 		sd_convert_geometry(capacity, &un_g);
6126 		bcopy(&un_g, &un->un_g, sizeof (un->un_g));
6127 		phys_spc = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
6128 	}
6129 
6130 	ASSERT(phys_spc != 0);
6131 	un->un_g.dkg_pcyl = un->un_solaris_size / phys_spc;
6132 	un->un_g.dkg_acyl = DK_ACYL;
6133 	un->un_g.dkg_ncyl = un->un_g.dkg_pcyl - DK_ACYL;
6134 	disksize = un->un_g.dkg_ncyl * phys_spc;
6135 
6136 	if (ISCD(un)) {
6137 		/*
6138 		 * CD's don't use the "heads * sectors * cyls"-type of
6139 		 * geometry, but instead use the entire capacity of the media.
6140 		 */
6141 		disksize = un->un_solaris_size;
6142 		un->un_g.dkg_nhead = 1;
6143 		un->un_g.dkg_nsect = 1;
6144 		un->un_g.dkg_rpm =
6145 		    (un->un_pgeom.g_rpm == 0) ? 200 : un->un_pgeom.g_rpm;
6146 
6147 		un->un_vtoc.v_part[0].p_start = 0;
6148 		un->un_vtoc.v_part[0].p_size  = disksize;
6149 		un->un_vtoc.v_part[0].p_tag   = V_BACKUP;
6150 		un->un_vtoc.v_part[0].p_flag  = V_UNMNT;
6151 
6152 		un->un_map[0].dkl_cylno = 0;
6153 		un->un_map[0].dkl_nblk  = disksize;
6154 		un->un_offset[0] = 0;
6155 
6156 	} else {
6157 		/*
6158 		 * Hard disks and removable media cartridges
6159 		 */
6160 		un->un_g.dkg_rpm =
6161 		    (un->un_pgeom.g_rpm == 0) ? 3600: un->un_pgeom.g_rpm;
6162 		un->un_vtoc.v_sectorsz = un->un_sys_blocksize;
6163 
6164 		/* Add boot slice */
6165 		un->un_vtoc.v_part[8].p_start = 0;
6166 		un->un_vtoc.v_part[8].p_size  = phys_spc;
6167 		un->un_vtoc.v_part[8].p_tag   = V_BOOT;
6168 		un->un_vtoc.v_part[8].p_flag  = V_UNMNT;
6169 
6170 		un->un_map[8].dkl_cylno = 0;
6171 		un->un_map[8].dkl_nblk  = phys_spc;
6172 		un->un_offset[8] = 0;
6173 	}
6174 
6175 	un->un_g.dkg_apc = 0;
6176 	un->un_vtoc.v_nparts = V_NUMPAR;
6177 	un->un_vtoc.v_version = V_VERSION;
6178 
6179 	/* Add backup slice */
6180 	un->un_vtoc.v_part[2].p_start = 0;
6181 	un->un_vtoc.v_part[2].p_size  = disksize;
6182 	un->un_vtoc.v_part[2].p_tag   = V_BACKUP;
6183 	un->un_vtoc.v_part[2].p_flag  = V_UNMNT;
6184 
6185 	un->un_map[2].dkl_cylno = 0;
6186 	un->un_map[2].dkl_nblk  = disksize;
6187 	un->un_offset[2] = 0;
6188 
6189 	(void) sprintf(un->un_vtoc.v_asciilabel, "DEFAULT cyl %d alt %d"
6190 	    " hd %d sec %d", un->un_g.dkg_ncyl, un->un_g.dkg_acyl,
6191 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
6192 
6193 #else
6194 #error "No VTOC format defined."
6195 #endif
6196 
6197 	un->un_g.dkg_read_reinstruct  = 0;
6198 	un->un_g.dkg_write_reinstruct = 0;
6199 
6200 	un->un_g.dkg_intrlv = 1;
6201 
6202 	un->un_vtoc.v_sanity  = VTOC_SANE;
6203 
6204 	un->un_f_geometry_is_valid = TRUE;
6205 
6206 	SD_INFO(SD_LOG_COMMON, un,
6207 	    "sd_build_default_label: Default label created: "
6208 	    "cyl: %d\tacyl: %d\tnhead: %d\tnsect: %d\tcap: %d\n",
6209 	    un->un_g.dkg_ncyl, un->un_g.dkg_acyl, un->un_g.dkg_nhead,
6210 	    un->un_g.dkg_nsect, un->un_blockcount);
6211 }
6212 
6213 
6214 #if defined(_FIRMWARE_NEEDS_FDISK)
6215 /*
6216  * Max CHS values, as they are encoded into bytes, for 1022/254/63
6217  */
6218 #define	LBA_MAX_SECT	(63 | ((1022 & 0x300) >> 2))
6219 #define	LBA_MAX_CYL	(1022 & 0xFF)
6220 #define	LBA_MAX_HEAD	(254)
6221 
6222 
6223 /*
6224  *    Function: sd_has_max_chs_vals
6225  *
6226  * Description: Return TRUE if Cylinder-Head-Sector values are all at maximum.
6227  *
6228  *   Arguments: fdp - ptr to CHS info
6229  *
6230  * Return Code: True or false
6231  *
6232  *     Context: Any.
6233  */
6234 
6235 static int
6236 sd_has_max_chs_vals(struct ipart *fdp)
6237 {
6238 	return ((fdp->begcyl  == LBA_MAX_CYL)	&&
6239 	    (fdp->beghead == LBA_MAX_HEAD)	&&
6240 	    (fdp->begsect == LBA_MAX_SECT)	&&
6241 	    (fdp->endcyl  == LBA_MAX_CYL)	&&
6242 	    (fdp->endhead == LBA_MAX_HEAD)	&&
6243 	    (fdp->endsect == LBA_MAX_SECT));
6244 }
6245 #endif
6246 
6247 
6248 /*
6249  *    Function: sd_inq_fill
6250  *
6251  * Description: Print a piece of inquiry data, cleaned up for non-printable
6252  *		characters and stopping at the first space character after
6253  *		the beginning of the passed string;
6254  *
6255  *   Arguments: p - source string
6256  *		l - maximum length to copy
6257  *		s - destination string
6258  *
6259  *     Context: Any.
6260  */
6261 
6262 static void
6263 sd_inq_fill(char *p, int l, char *s)
6264 {
6265 	unsigned i = 0;
6266 	char c;
6267 
6268 	while (i++ < l) {
6269 		if ((c = *p++) < ' ' || c >= 0x7F) {
6270 			c = '*';
6271 		} else if (i != 1 && c == ' ') {
6272 			break;
6273 		}
6274 		*s++ = c;
6275 	}
6276 	*s++ = 0;
6277 }
6278 
6279 
6280 /*
6281  *    Function: sd_register_devid
6282  *
6283  * Description: This routine will obtain the device id information from the
6284  *		target, obtain the serial number, and register the device
6285  *		id with the ddi framework.
6286  *
6287  *   Arguments: devi - the system's dev_info_t for the device.
6288  *		un - driver soft state (unit) structure
6289  *		reservation_flag - indicates if a reservation conflict
6290  *		occurred during attach
6291  *
6292  *     Context: Kernel Thread
6293  */
6294 static void
6295 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag)
6296 {
6297 	int		rval		= 0;
6298 	uchar_t		*inq80		= NULL;
6299 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
6300 	size_t		inq80_resid	= 0;
6301 	uchar_t		*inq83		= NULL;
6302 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
6303 	size_t		inq83_resid	= 0;
6304 
6305 	ASSERT(un != NULL);
6306 	ASSERT(mutex_owned(SD_MUTEX(un)));
6307 	ASSERT((SD_DEVINFO(un)) == devi);
6308 
6309 	/*
6310 	 * This is the case of antiquated Sun disk drives that have the
6311 	 * FAB_DEVID property set in the disk_table.  These drives
6312 	 * manage the devid's by storing them in last 2 available sectors
6313 	 * on the drive and have them fabricated by the ddi layer by calling
6314 	 * ddi_devid_init and passing the DEVID_FAB flag.
6315 	 */
6316 	if (un->un_f_opt_fab_devid == TRUE) {
6317 		/*
6318 		 * Depending on EINVAL isn't reliable, since a reserved disk
6319 		 * may result in invalid geometry, so check to make sure a
6320 		 * reservation conflict did not occur during attach.
6321 		 */
6322 		if ((sd_get_devid(un) == EINVAL) &&
6323 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
6324 			/*
6325 			 * The devid is invalid AND there is no reservation
6326 			 * conflict.  Fabricate a new devid.
6327 			 */
6328 			(void) sd_create_devid(un);
6329 		}
6330 
6331 		/* Register the devid if it exists */
6332 		if (un->un_devid != NULL) {
6333 			(void) ddi_devid_register(SD_DEVINFO(un),
6334 			    un->un_devid);
6335 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6336 			    "sd_register_devid: Devid Fabricated\n");
6337 		}
6338 		return;
6339 	}
6340 
6341 	/*
6342 	 * We check the availibility of the World Wide Name (0x83) and Unit
6343 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
6344 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
6345 	 * 0x83 is availible, that is the best choice.  Our next choice is
6346 	 * 0x80.  If neither are availible, we munge the devid from the device
6347 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
6348 	 * to fabricate a devid for non-Sun qualified disks.
6349 	 */
6350 	if (sd_check_vpd_page_support(un) == 0) {
6351 		/* collect page 80 data if available */
6352 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
6353 
6354 			mutex_exit(SD_MUTEX(un));
6355 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
6356 			rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len,
6357 			    0x01, 0x80, &inq80_resid);
6358 
6359 			if (rval != 0) {
6360 				kmem_free(inq80, inq80_len);
6361 				inq80 = NULL;
6362 				inq80_len = 0;
6363 			}
6364 			mutex_enter(SD_MUTEX(un));
6365 		}
6366 
6367 		/* collect page 83 data if available */
6368 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
6369 			mutex_exit(SD_MUTEX(un));
6370 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
6371 			rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len,
6372 			    0x01, 0x83, &inq83_resid);
6373 
6374 			if (rval != 0) {
6375 				kmem_free(inq83, inq83_len);
6376 				inq83 = NULL;
6377 				inq83_len = 0;
6378 			}
6379 			mutex_enter(SD_MUTEX(un));
6380 		}
6381 	}
6382 
6383 	/* encode best devid possible based on data available */
6384 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
6385 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
6386 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
6387 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
6388 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
6389 
6390 		/* devid successfully encoded, register devid */
6391 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
6392 
6393 	} else {
6394 		/*
6395 		 * Unable to encode a devid based on data available.
6396 		 * This is not a Sun qualified disk.  Older Sun disk
6397 		 * drives that have the SD_FAB_DEVID property
6398 		 * set in the disk_table and non Sun qualified
6399 		 * disks are treated in the same manner.  These
6400 		 * drives manage the devid's by storing them in
6401 		 * last 2 available sectors on the drive and
6402 		 * have them fabricated by the ddi layer by
6403 		 * calling ddi_devid_init and passing the
6404 		 * DEVID_FAB flag.
6405 		 * Create a fabricate devid only if there's no
6406 		 * fabricate devid existed.
6407 		 */
6408 		if (sd_get_devid(un) == EINVAL) {
6409 			(void) sd_create_devid(un);
6410 		}
6411 		un->un_f_opt_fab_devid = TRUE;
6412 
6413 		/* Register the devid if it exists */
6414 		if (un->un_devid != NULL) {
6415 			(void) ddi_devid_register(SD_DEVINFO(un),
6416 			    un->un_devid);
6417 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6418 			    "sd_register_devid: devid fabricated using "
6419 			    "ddi framework\n");
6420 		}
6421 	}
6422 
6423 	/* clean up resources */
6424 	if (inq80 != NULL) {
6425 		kmem_free(inq80, inq80_len);
6426 	}
6427 	if (inq83 != NULL) {
6428 		kmem_free(inq83, inq83_len);
6429 	}
6430 }
6431 
6432 static daddr_t
6433 sd_get_devid_block(struct sd_lun *un)
6434 {
6435 	daddr_t			spc, blk, head, cyl;
6436 
6437 	if ((un->un_f_geometry_is_valid == FALSE) ||
6438 	    (un->un_solaris_size < DK_LABEL_LOC))
6439 		return (-1);
6440 
6441 	if (un->un_vtoc.v_sanity != VTOC_SANE) {
6442 		/* EFI labeled */
6443 		if (un->un_reserved != -1) {
6444 			blk = un->un_map[un->un_reserved].dkl_cylno;
6445 		} else {
6446 			return (-1);
6447 		}
6448 	} else {
6449 		/* SMI labeled */
6450 		/* this geometry doesn't allow us to write a devid */
6451 		if (un->un_g.dkg_acyl < 2) {
6452 			return (-1);
6453 		}
6454 
6455 		/*
6456 		 * Subtract 2 guarantees that the next to last cylinder
6457 		 * is used
6458 		 */
6459 		cyl  = un->un_g.dkg_ncyl  + un->un_g.dkg_acyl - 2;
6460 		spc  = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
6461 		head = un->un_g.dkg_nhead - 1;
6462 		blk  = (cyl * (spc - un->un_g.dkg_apc)) +
6463 		    (head * un->un_g.dkg_nsect) + 1;
6464 	}
6465 	return (blk);
6466 }
6467 
6468 /*
6469  *    Function: sd_get_devid
6470  *
6471  * Description: This routine will return 0 if a valid device id has been
6472  *		obtained from the target and stored in the soft state. If a
6473  *		valid device id has not been previously read and stored, a
6474  *		read attempt will be made.
6475  *
6476  *   Arguments: un - driver soft state (unit) structure
6477  *
6478  * Return Code: 0 if we successfully get the device id
6479  *
6480  *     Context: Kernel Thread
6481  */
6482 
6483 static int
6484 sd_get_devid(struct sd_lun *un)
6485 {
6486 	struct dk_devid		*dkdevid;
6487 	ddi_devid_t		tmpid;
6488 	uint_t			*ip;
6489 	size_t			sz;
6490 	daddr_t			blk;
6491 	int			status;
6492 	int			chksum;
6493 	int			i;
6494 	size_t			buffer_size;
6495 
6496 	ASSERT(un != NULL);
6497 	ASSERT(mutex_owned(SD_MUTEX(un)));
6498 
6499 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
6500 	    un);
6501 
6502 	if (un->un_devid != NULL) {
6503 		return (0);
6504 	}
6505 
6506 	blk = sd_get_devid_block(un);
6507 	if (blk < 0)
6508 		return (EINVAL);
6509 
6510 	/*
6511 	 * Read and verify device id, stored in the reserved cylinders at the
6512 	 * end of the disk. Backup label is on the odd sectors of the last
6513 	 * track of the last cylinder. Device id will be on track of the next
6514 	 * to last cylinder.
6515 	 */
6516 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
6517 	mutex_exit(SD_MUTEX(un));
6518 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
6519 	status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk,
6520 	    SD_PATH_DIRECT);
6521 	if (status != 0) {
6522 		goto error;
6523 	}
6524 
6525 	/* Validate the revision */
6526 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
6527 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
6528 		status = EINVAL;
6529 		goto error;
6530 	}
6531 
6532 	/* Calculate the checksum */
6533 	chksum = 0;
6534 	ip = (uint_t *)dkdevid;
6535 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
6536 	    i++) {
6537 		chksum ^= ip[i];
6538 	}
6539 
6540 	/* Compare the checksums */
6541 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
6542 		status = EINVAL;
6543 		goto error;
6544 	}
6545 
6546 	/* Validate the device id */
6547 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
6548 		status = EINVAL;
6549 		goto error;
6550 	}
6551 
6552 	/*
6553 	 * Store the device id in the driver soft state
6554 	 */
6555 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
6556 	tmpid = kmem_alloc(sz, KM_SLEEP);
6557 
6558 	mutex_enter(SD_MUTEX(un));
6559 
6560 	un->un_devid = tmpid;
6561 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
6562 
6563 	kmem_free(dkdevid, buffer_size);
6564 
6565 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
6566 
6567 	return (status);
6568 error:
6569 	mutex_enter(SD_MUTEX(un));
6570 	kmem_free(dkdevid, buffer_size);
6571 	return (status);
6572 }
6573 
6574 
6575 /*
6576  *    Function: sd_create_devid
6577  *
6578  * Description: This routine will fabricate the device id and write it
6579  *		to the disk.
6580  *
6581  *   Arguments: un - driver soft state (unit) structure
6582  *
6583  * Return Code: value of the fabricated device id
6584  *
6585  *     Context: Kernel Thread
6586  */
6587 
6588 static ddi_devid_t
6589 sd_create_devid(struct sd_lun *un)
6590 {
6591 	ASSERT(un != NULL);
6592 
6593 	/* Fabricate the devid */
6594 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
6595 	    == DDI_FAILURE) {
6596 		return (NULL);
6597 	}
6598 
6599 	/* Write the devid to disk */
6600 	if (sd_write_deviceid(un) != 0) {
6601 		ddi_devid_free(un->un_devid);
6602 		un->un_devid = NULL;
6603 	}
6604 
6605 	return (un->un_devid);
6606 }
6607 
6608 
6609 /*
6610  *    Function: sd_write_deviceid
6611  *
6612  * Description: This routine will write the device id to the disk
6613  *		reserved sector.
6614  *
6615  *   Arguments: un - driver soft state (unit) structure
6616  *
6617  * Return Code: EINVAL
6618  *		value returned by sd_send_scsi_cmd
6619  *
6620  *     Context: Kernel Thread
6621  */
6622 
6623 static int
6624 sd_write_deviceid(struct sd_lun *un)
6625 {
6626 	struct dk_devid		*dkdevid;
6627 	daddr_t			blk;
6628 	uint_t			*ip, chksum;
6629 	int			status;
6630 	int			i;
6631 
6632 	ASSERT(mutex_owned(SD_MUTEX(un)));
6633 
6634 	blk = sd_get_devid_block(un);
6635 	if (blk < 0)
6636 		return (-1);
6637 	mutex_exit(SD_MUTEX(un));
6638 
6639 	/* Allocate the buffer */
6640 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
6641 
6642 	/* Fill in the revision */
6643 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
6644 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
6645 
6646 	/* Copy in the device id */
6647 	mutex_enter(SD_MUTEX(un));
6648 	bcopy(un->un_devid, &dkdevid->dkd_devid,
6649 	    ddi_devid_sizeof(un->un_devid));
6650 	mutex_exit(SD_MUTEX(un));
6651 
6652 	/* Calculate the checksum */
6653 	chksum = 0;
6654 	ip = (uint_t *)dkdevid;
6655 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
6656 	    i++) {
6657 		chksum ^= ip[i];
6658 	}
6659 
6660 	/* Fill-in checksum */
6661 	DKD_FORMCHKSUM(chksum, dkdevid);
6662 
6663 	/* Write the reserved sector */
6664 	status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk,
6665 	    SD_PATH_DIRECT);
6666 
6667 	kmem_free(dkdevid, un->un_sys_blocksize);
6668 
6669 	mutex_enter(SD_MUTEX(un));
6670 	return (status);
6671 }
6672 
6673 
6674 /*
6675  *    Function: sd_check_vpd_page_support
6676  *
6677  * Description: This routine sends an inquiry command with the EVPD bit set and
6678  *		a page code of 0x00 to the device. It is used to determine which
6679  *		vital product pages are availible to find the devid. We are
6680  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
6681  *		device does not support that command.
6682  *
6683  *   Arguments: un  - driver soft state (unit) structure
6684  *
6685  * Return Code: 0 - success
6686  *		1 - check condition
6687  *
6688  *     Context: This routine can sleep.
6689  */
6690 
6691 static int
6692 sd_check_vpd_page_support(struct sd_lun *un)
6693 {
6694 	uchar_t	*page_list	= NULL;
6695 	uchar_t	page_length	= 0xff;	/* Use max possible length */
6696 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
6697 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
6698 	int    	rval		= 0;
6699 	int	counter;
6700 
6701 	ASSERT(un != NULL);
6702 	ASSERT(mutex_owned(SD_MUTEX(un)));
6703 
6704 	mutex_exit(SD_MUTEX(un));
6705 
6706 	/*
6707 	 * We'll set the page length to the maximum to save figuring it out
6708 	 * with an additional call.
6709 	 */
6710 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
6711 
6712 	rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd,
6713 	    page_code, NULL);
6714 
6715 	mutex_enter(SD_MUTEX(un));
6716 
6717 	/*
6718 	 * Now we must validate that the device accepted the command, as some
6719 	 * drives do not support it.  If the drive does support it, we will
6720 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
6721 	 * not, we return -1.
6722 	 */
6723 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
6724 		/* Loop to find one of the 2 pages we need */
6725 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
6726 
6727 		/*
6728 		 * Pages are returned in ascending order, and 0x83 is what we
6729 		 * are hoping for.
6730 		 */
6731 		while ((page_list[counter] <= 0x83) &&
6732 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
6733 		    VPD_HEAD_OFFSET))) {
6734 			/*
6735 			 * Add 3 because page_list[3] is the number of
6736 			 * pages minus 3
6737 			 */
6738 
6739 			switch (page_list[counter]) {
6740 			case 0x00:
6741 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
6742 				break;
6743 			case 0x80:
6744 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
6745 				break;
6746 			case 0x81:
6747 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
6748 				break;
6749 			case 0x82:
6750 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
6751 				break;
6752 			case 0x83:
6753 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
6754 				break;
6755 			}
6756 			counter++;
6757 		}
6758 
6759 	} else {
6760 		rval = -1;
6761 
6762 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6763 		    "sd_check_vpd_page_support: This drive does not implement "
6764 		    "VPD pages.\n");
6765 	}
6766 
6767 	kmem_free(page_list, page_length);
6768 
6769 	return (rval);
6770 }
6771 
6772 
6773 /*
6774  *    Function: sd_setup_pm
6775  *
6776  * Description: Initialize Power Management on the device
6777  *
6778  *     Context: Kernel Thread
6779  */
6780 
6781 static void
6782 sd_setup_pm(struct sd_lun *un, dev_info_t *devi)
6783 {
6784 	uint_t	log_page_size;
6785 	uchar_t	*log_page_data;
6786 	int	rval;
6787 
6788 	/*
6789 	 * Since we are called from attach, holding a mutex for
6790 	 * un is unnecessary. Because some of the routines called
6791 	 * from here require SD_MUTEX to not be held, assert this
6792 	 * right up front.
6793 	 */
6794 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6795 	/*
6796 	 * Since the sd device does not have the 'reg' property,
6797 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
6798 	 * The following code is to tell cpr that this device
6799 	 * DOES need to be suspended and resumed.
6800 	 */
6801 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
6802 	    "pm-hardware-state", "needs-suspend-resume");
6803 
6804 	/*
6805 	 * This complies with the new power management framework
6806 	 * for certain desktop machines. Create the pm_components
6807 	 * property as a string array property.
6808 	 */
6809 	if (un->un_f_pm_supported) {
6810 		/*
6811 		 * not all devices have a motor, try it first.
6812 		 * some devices may return ILLEGAL REQUEST, some
6813 		 * will hang
6814 		 * The following START_STOP_UNIT is used to check if target
6815 		 * device has a motor.
6816 		 */
6817 		un->un_f_start_stop_supported = TRUE;
6818 		if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
6819 		    SD_PATH_DIRECT) != 0) {
6820 			un->un_f_start_stop_supported = FALSE;
6821 		}
6822 
6823 		/*
6824 		 * create pm properties anyways otherwise the parent can't
6825 		 * go to sleep
6826 		 */
6827 		(void) sd_create_pm_components(devi, un);
6828 		un->un_f_pm_is_enabled = TRUE;
6829 		return;
6830 	}
6831 
6832 	if (!un->un_f_log_sense_supported) {
6833 		un->un_power_level = SD_SPINDLE_ON;
6834 		un->un_f_pm_is_enabled = FALSE;
6835 		return;
6836 	}
6837 
6838 	rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE);
6839 
6840 #ifdef	SDDEBUG
6841 	if (sd_force_pm_supported) {
6842 		/* Force a successful result */
6843 		rval = 1;
6844 	}
6845 #endif
6846 
6847 	/*
6848 	 * If the start-stop cycle counter log page is not supported
6849 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
6850 	 * then we should not create the pm_components property.
6851 	 */
6852 	if (rval == -1) {
6853 		/*
6854 		 * Error.
6855 		 * Reading log sense failed, most likely this is
6856 		 * an older drive that does not support log sense.
6857 		 * If this fails auto-pm is not supported.
6858 		 */
6859 		un->un_power_level = SD_SPINDLE_ON;
6860 		un->un_f_pm_is_enabled = FALSE;
6861 
6862 	} else if (rval == 0) {
6863 		/*
6864 		 * Page not found.
6865 		 * The start stop cycle counter is implemented as page
6866 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
6867 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
6868 		 */
6869 		if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) {
6870 			/*
6871 			 * Page found, use this one.
6872 			 */
6873 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
6874 			un->un_f_pm_is_enabled = TRUE;
6875 		} else {
6876 			/*
6877 			 * Error or page not found.
6878 			 * auto-pm is not supported for this device.
6879 			 */
6880 			un->un_power_level = SD_SPINDLE_ON;
6881 			un->un_f_pm_is_enabled = FALSE;
6882 		}
6883 	} else {
6884 		/*
6885 		 * Page found, use it.
6886 		 */
6887 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
6888 		un->un_f_pm_is_enabled = TRUE;
6889 	}
6890 
6891 
6892 	if (un->un_f_pm_is_enabled == TRUE) {
6893 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6894 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6895 
6896 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
6897 		    log_page_size, un->un_start_stop_cycle_page,
6898 		    0x01, 0, SD_PATH_DIRECT);
6899 #ifdef	SDDEBUG
6900 		if (sd_force_pm_supported) {
6901 			/* Force a successful result */
6902 			rval = 0;
6903 		}
6904 #endif
6905 
6906 		/*
6907 		 * If the Log sense for Page( Start/stop cycle counter page)
6908 		 * succeeds, then power managment is supported and we can
6909 		 * enable auto-pm.
6910 		 */
6911 		if (rval == 0)  {
6912 			(void) sd_create_pm_components(devi, un);
6913 		} else {
6914 			un->un_power_level = SD_SPINDLE_ON;
6915 			un->un_f_pm_is_enabled = FALSE;
6916 		}
6917 
6918 		kmem_free(log_page_data, log_page_size);
6919 	}
6920 }
6921 
6922 
6923 /*
6924  *    Function: sd_create_pm_components
6925  *
6926  * Description: Initialize PM property.
6927  *
6928  *     Context: Kernel thread context
6929  */
6930 
6931 static void
6932 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
6933 {
6934 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
6935 
6936 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6937 
6938 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6939 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
6940 		/*
6941 		 * When components are initially created they are idle,
6942 		 * power up any non-removables.
6943 		 * Note: the return value of pm_raise_power can't be used
6944 		 * for determining if PM should be enabled for this device.
6945 		 * Even if you check the return values and remove this
6946 		 * property created above, the PM framework will not honor the
6947 		 * change after the first call to pm_raise_power. Hence,
6948 		 * removal of that property does not help if pm_raise_power
6949 		 * fails. In the case of removable media, the start/stop
6950 		 * will fail if the media is not present.
6951 		 */
6952 		if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
6953 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
6954 			mutex_enter(SD_MUTEX(un));
6955 			un->un_power_level = SD_SPINDLE_ON;
6956 			mutex_enter(&un->un_pm_mutex);
6957 			/* Set to on and not busy. */
6958 			un->un_pm_count = 0;
6959 		} else {
6960 			mutex_enter(SD_MUTEX(un));
6961 			un->un_power_level = SD_SPINDLE_OFF;
6962 			mutex_enter(&un->un_pm_mutex);
6963 			/* Set to off. */
6964 			un->un_pm_count = -1;
6965 		}
6966 		mutex_exit(&un->un_pm_mutex);
6967 		mutex_exit(SD_MUTEX(un));
6968 	} else {
6969 		un->un_power_level = SD_SPINDLE_ON;
6970 		un->un_f_pm_is_enabled = FALSE;
6971 	}
6972 }
6973 
6974 
6975 /*
6976  *    Function: sd_ddi_suspend
6977  *
6978  * Description: Performs system power-down operations. This includes
6979  *		setting the drive state to indicate its suspended so
6980  *		that no new commands will be accepted. Also, wait for
6981  *		all commands that are in transport or queued to a timer
6982  *		for retry to complete. All timeout threads are cancelled.
6983  *
6984  * Return Code: DDI_FAILURE or DDI_SUCCESS
6985  *
6986  *     Context: Kernel thread context
6987  */
6988 
6989 static int
6990 sd_ddi_suspend(dev_info_t *devi)
6991 {
6992 	struct	sd_lun	*un;
6993 	clock_t		wait_cmds_complete;
6994 
6995 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6996 	if (un == NULL) {
6997 		return (DDI_FAILURE);
6998 	}
6999 
7000 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
7001 
7002 	mutex_enter(SD_MUTEX(un));
7003 
7004 	/* Return success if the device is already suspended. */
7005 	if (un->un_state == SD_STATE_SUSPENDED) {
7006 		mutex_exit(SD_MUTEX(un));
7007 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
7008 		    "device already suspended, exiting\n");
7009 		return (DDI_SUCCESS);
7010 	}
7011 
7012 	/* Return failure if the device is being used by HA */
7013 	if (un->un_resvd_status &
7014 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
7015 		mutex_exit(SD_MUTEX(un));
7016 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
7017 		    "device in use by HA, exiting\n");
7018 		return (DDI_FAILURE);
7019 	}
7020 
7021 	/*
7022 	 * Return failure if the device is in a resource wait
7023 	 * or power changing state.
7024 	 */
7025 	if ((un->un_state == SD_STATE_RWAIT) ||
7026 	    (un->un_state == SD_STATE_PM_CHANGING)) {
7027 		mutex_exit(SD_MUTEX(un));
7028 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
7029 		    "device in resource wait state, exiting\n");
7030 		return (DDI_FAILURE);
7031 	}
7032 
7033 
7034 	un->un_save_state = un->un_last_state;
7035 	New_state(un, SD_STATE_SUSPENDED);
7036 
7037 	/*
7038 	 * Wait for all commands that are in transport or queued to a timer
7039 	 * for retry to complete.
7040 	 *
7041 	 * While waiting, no new commands will be accepted or sent because of
7042 	 * the new state we set above.
7043 	 *
7044 	 * Wait till current operation has completed. If we are in the resource
7045 	 * wait state (with an intr outstanding) then we need to wait till the
7046 	 * intr completes and starts the next cmd. We want to wait for
7047 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
7048 	 */
7049 	wait_cmds_complete = ddi_get_lbolt() +
7050 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
7051 
7052 	while (un->un_ncmds_in_transport != 0) {
7053 		/*
7054 		 * Fail if commands do not finish in the specified time.
7055 		 */
7056 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
7057 		    wait_cmds_complete) == -1) {
7058 			/*
7059 			 * Undo the state changes made above. Everything
7060 			 * must go back to it's original value.
7061 			 */
7062 			Restore_state(un);
7063 			un->un_last_state = un->un_save_state;
7064 			/* Wake up any threads that might be waiting. */
7065 			cv_broadcast(&un->un_suspend_cv);
7066 			mutex_exit(SD_MUTEX(un));
7067 			SD_ERROR(SD_LOG_IO_PM, un,
7068 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
7069 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
7070 			return (DDI_FAILURE);
7071 		}
7072 	}
7073 
7074 	/*
7075 	 * Cancel SCSI watch thread and timeouts, if any are active
7076 	 */
7077 
7078 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
7079 		opaque_t temp_token = un->un_swr_token;
7080 		mutex_exit(SD_MUTEX(un));
7081 		scsi_watch_suspend(temp_token);
7082 		mutex_enter(SD_MUTEX(un));
7083 	}
7084 
7085 	if (un->un_reset_throttle_timeid != NULL) {
7086 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7087 		un->un_reset_throttle_timeid = NULL;
7088 		mutex_exit(SD_MUTEX(un));
7089 		(void) untimeout(temp_id);
7090 		mutex_enter(SD_MUTEX(un));
7091 	}
7092 
7093 	if (un->un_dcvb_timeid != NULL) {
7094 		timeout_id_t temp_id = un->un_dcvb_timeid;
7095 		un->un_dcvb_timeid = NULL;
7096 		mutex_exit(SD_MUTEX(un));
7097 		(void) untimeout(temp_id);
7098 		mutex_enter(SD_MUTEX(un));
7099 	}
7100 
7101 	mutex_enter(&un->un_pm_mutex);
7102 	if (un->un_pm_timeid != NULL) {
7103 		timeout_id_t temp_id = un->un_pm_timeid;
7104 		un->un_pm_timeid = NULL;
7105 		mutex_exit(&un->un_pm_mutex);
7106 		mutex_exit(SD_MUTEX(un));
7107 		(void) untimeout(temp_id);
7108 		mutex_enter(SD_MUTEX(un));
7109 	} else {
7110 		mutex_exit(&un->un_pm_mutex);
7111 	}
7112 
7113 	if (un->un_retry_timeid != NULL) {
7114 		timeout_id_t temp_id = un->un_retry_timeid;
7115 		un->un_retry_timeid = NULL;
7116 		mutex_exit(SD_MUTEX(un));
7117 		(void) untimeout(temp_id);
7118 		mutex_enter(SD_MUTEX(un));
7119 	}
7120 
7121 	if (un->un_direct_priority_timeid != NULL) {
7122 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7123 		un->un_direct_priority_timeid = NULL;
7124 		mutex_exit(SD_MUTEX(un));
7125 		(void) untimeout(temp_id);
7126 		mutex_enter(SD_MUTEX(un));
7127 	}
7128 
7129 	if (un->un_f_is_fibre == TRUE) {
7130 		/*
7131 		 * Remove callbacks for insert and remove events
7132 		 */
7133 		if (un->un_insert_event != NULL) {
7134 			mutex_exit(SD_MUTEX(un));
7135 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
7136 			mutex_enter(SD_MUTEX(un));
7137 			un->un_insert_event = NULL;
7138 		}
7139 
7140 		if (un->un_remove_event != NULL) {
7141 			mutex_exit(SD_MUTEX(un));
7142 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
7143 			mutex_enter(SD_MUTEX(un));
7144 			un->un_remove_event = NULL;
7145 		}
7146 	}
7147 
7148 	mutex_exit(SD_MUTEX(un));
7149 
7150 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
7151 
7152 	return (DDI_SUCCESS);
7153 }
7154 
7155 
7156 /*
7157  *    Function: sd_ddi_pm_suspend
7158  *
7159  * Description: Set the drive state to low power.
7160  *		Someone else is required to actually change the drive
7161  *		power level.
7162  *
7163  *   Arguments: un - driver soft state (unit) structure
7164  *
7165  * Return Code: DDI_FAILURE or DDI_SUCCESS
7166  *
7167  *     Context: Kernel thread context
7168  */
7169 
7170 static int
7171 sd_ddi_pm_suspend(struct sd_lun *un)
7172 {
7173 	ASSERT(un != NULL);
7174 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
7175 
7176 	ASSERT(!mutex_owned(SD_MUTEX(un)));
7177 	mutex_enter(SD_MUTEX(un));
7178 
7179 	/*
7180 	 * Exit if power management is not enabled for this device, or if
7181 	 * the device is being used by HA.
7182 	 */
7183 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
7184 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
7185 		mutex_exit(SD_MUTEX(un));
7186 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
7187 		return (DDI_SUCCESS);
7188 	}
7189 
7190 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
7191 	    un->un_ncmds_in_driver);
7192 
7193 	/*
7194 	 * See if the device is not busy, ie.:
7195 	 *    - we have no commands in the driver for this device
7196 	 *    - not waiting for resources
7197 	 */
7198 	if ((un->un_ncmds_in_driver == 0) &&
7199 	    (un->un_state != SD_STATE_RWAIT)) {
7200 		/*
7201 		 * The device is not busy, so it is OK to go to low power state.
7202 		 * Indicate low power, but rely on someone else to actually
7203 		 * change it.
7204 		 */
7205 		mutex_enter(&un->un_pm_mutex);
7206 		un->un_pm_count = -1;
7207 		mutex_exit(&un->un_pm_mutex);
7208 		un->un_power_level = SD_SPINDLE_OFF;
7209 	}
7210 
7211 	mutex_exit(SD_MUTEX(un));
7212 
7213 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
7214 
7215 	return (DDI_SUCCESS);
7216 }
7217 
7218 
7219 /*
7220  *    Function: sd_ddi_resume
7221  *
7222  * Description: Performs system power-up operations..
7223  *
7224  * Return Code: DDI_SUCCESS
7225  *		DDI_FAILURE
7226  *
7227  *     Context: Kernel thread context
7228  */
7229 
7230 static int
7231 sd_ddi_resume(dev_info_t *devi)
7232 {
7233 	struct	sd_lun	*un;
7234 
7235 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
7236 	if (un == NULL) {
7237 		return (DDI_FAILURE);
7238 	}
7239 
7240 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
7241 
7242 	mutex_enter(SD_MUTEX(un));
7243 	Restore_state(un);
7244 
7245 	/*
7246 	 * Restore the state which was saved to give the
7247 	 * the right state in un_last_state
7248 	 */
7249 	un->un_last_state = un->un_save_state;
7250 	/*
7251 	 * Note: throttle comes back at full.
7252 	 * Also note: this MUST be done before calling pm_raise_power
7253 	 * otherwise the system can get hung in biowait. The scenario where
7254 	 * this'll happen is under cpr suspend. Writing of the system
7255 	 * state goes through sddump, which writes 0 to un_throttle. If
7256 	 * writing the system state then fails, example if the partition is
7257 	 * too small, then cpr attempts a resume. If throttle isn't restored
7258 	 * from the saved value until after calling pm_raise_power then
7259 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
7260 	 * in biowait.
7261 	 */
7262 	un->un_throttle = un->un_saved_throttle;
7263 
7264 	/*
7265 	 * The chance of failure is very rare as the only command done in power
7266 	 * entry point is START command when you transition from 0->1 or
7267 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
7268 	 * which suspend was done. Ignore the return value as the resume should
7269 	 * not be failed. In the case of removable media the media need not be
7270 	 * inserted and hence there is a chance that raise power will fail with
7271 	 * media not present.
7272 	 */
7273 	if (un->un_f_attach_spinup) {
7274 		mutex_exit(SD_MUTEX(un));
7275 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
7276 		mutex_enter(SD_MUTEX(un));
7277 	}
7278 
7279 	/*
7280 	 * Don't broadcast to the suspend cv and therefore possibly
7281 	 * start I/O until after power has been restored.
7282 	 */
7283 	cv_broadcast(&un->un_suspend_cv);
7284 	cv_broadcast(&un->un_state_cv);
7285 
7286 	/* restart thread */
7287 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
7288 		scsi_watch_resume(un->un_swr_token);
7289 	}
7290 
7291 #if (defined(__fibre))
7292 	if (un->un_f_is_fibre == TRUE) {
7293 		/*
7294 		 * Add callbacks for insert and remove events
7295 		 */
7296 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
7297 			sd_init_event_callbacks(un);
7298 		}
7299 	}
7300 #endif
7301 
7302 	/*
7303 	 * Transport any pending commands to the target.
7304 	 *
7305 	 * If this is a low-activity device commands in queue will have to wait
7306 	 * until new commands come in, which may take awhile. Also, we
7307 	 * specifically don't check un_ncmds_in_transport because we know that
7308 	 * there really are no commands in progress after the unit was
7309 	 * suspended and we could have reached the throttle level, been
7310 	 * suspended, and have no new commands coming in for awhile. Highly
7311 	 * unlikely, but so is the low-activity disk scenario.
7312 	 */
7313 	ddi_xbuf_dispatch(un->un_xbuf_attr);
7314 
7315 	sd_start_cmds(un, NULL);
7316 	mutex_exit(SD_MUTEX(un));
7317 
7318 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
7319 
7320 	return (DDI_SUCCESS);
7321 }
7322 
7323 
7324 /*
7325  *    Function: sd_ddi_pm_resume
7326  *
7327  * Description: Set the drive state to powered on.
7328  *		Someone else is required to actually change the drive
7329  *		power level.
7330  *
7331  *   Arguments: un - driver soft state (unit) structure
7332  *
7333  * Return Code: DDI_SUCCESS
7334  *
7335  *     Context: Kernel thread context
7336  */
7337 
7338 static int
7339 sd_ddi_pm_resume(struct sd_lun *un)
7340 {
7341 	ASSERT(un != NULL);
7342 
7343 	ASSERT(!mutex_owned(SD_MUTEX(un)));
7344 	mutex_enter(SD_MUTEX(un));
7345 	un->un_power_level = SD_SPINDLE_ON;
7346 
7347 	ASSERT(!mutex_owned(&un->un_pm_mutex));
7348 	mutex_enter(&un->un_pm_mutex);
7349 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
7350 		un->un_pm_count++;
7351 		ASSERT(un->un_pm_count == 0);
7352 		/*
7353 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
7354 		 * un_suspend_cv is for a system resume, not a power management
7355 		 * device resume. (4297749)
7356 		 *	 cv_broadcast(&un->un_suspend_cv);
7357 		 */
7358 	}
7359 	mutex_exit(&un->un_pm_mutex);
7360 	mutex_exit(SD_MUTEX(un));
7361 
7362 	return (DDI_SUCCESS);
7363 }
7364 
7365 
7366 /*
7367  *    Function: sd_pm_idletimeout_handler
7368  *
7369  * Description: A timer routine that's active only while a device is busy.
7370  *		The purpose is to extend slightly the pm framework's busy
7371  *		view of the device to prevent busy/idle thrashing for
7372  *		back-to-back commands. Do this by comparing the current time
7373  *		to the time at which the last command completed and when the
7374  *		difference is greater than sd_pm_idletime, call
7375  *		pm_idle_component. In addition to indicating idle to the pm
7376  *		framework, update the chain type to again use the internal pm
7377  *		layers of the driver.
7378  *
7379  *   Arguments: arg - driver soft state (unit) structure
7380  *
7381  *     Context: Executes in a timeout(9F) thread context
7382  */
7383 
7384 static void
7385 sd_pm_idletimeout_handler(void *arg)
7386 {
7387 	struct sd_lun *un = arg;
7388 
7389 	time_t	now;
7390 
7391 	mutex_enter(&sd_detach_mutex);
7392 	if (un->un_detach_count != 0) {
7393 		/* Abort if the instance is detaching */
7394 		mutex_exit(&sd_detach_mutex);
7395 		return;
7396 	}
7397 	mutex_exit(&sd_detach_mutex);
7398 
7399 	now = ddi_get_time();
7400 	/*
7401 	 * Grab both mutexes, in the proper order, since we're accessing
7402 	 * both PM and softstate variables.
7403 	 */
7404 	mutex_enter(SD_MUTEX(un));
7405 	mutex_enter(&un->un_pm_mutex);
7406 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
7407 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
7408 		/*
7409 		 * Update the chain types.
7410 		 * This takes affect on the next new command received.
7411 		 */
7412 		if (un->un_f_non_devbsize_supported) {
7413 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7414 		} else {
7415 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7416 		}
7417 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7418 
7419 		SD_TRACE(SD_LOG_IO_PM, un,
7420 		    "sd_pm_idletimeout_handler: idling device\n");
7421 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7422 		un->un_pm_idle_timeid = NULL;
7423 	} else {
7424 		un->un_pm_idle_timeid =
7425 			timeout(sd_pm_idletimeout_handler, un,
7426 			(drv_usectohz((clock_t)300000))); /* 300 ms. */
7427 	}
7428 	mutex_exit(&un->un_pm_mutex);
7429 	mutex_exit(SD_MUTEX(un));
7430 }
7431 
7432 
7433 /*
7434  *    Function: sd_pm_timeout_handler
7435  *
7436  * Description: Callback to tell framework we are idle.
7437  *
7438  *     Context: timeout(9f) thread context.
7439  */
7440 
7441 static void
7442 sd_pm_timeout_handler(void *arg)
7443 {
7444 	struct sd_lun *un = arg;
7445 
7446 	(void) pm_idle_component(SD_DEVINFO(un), 0);
7447 	mutex_enter(&un->un_pm_mutex);
7448 	un->un_pm_timeid = NULL;
7449 	mutex_exit(&un->un_pm_mutex);
7450 }
7451 
7452 
7453 /*
7454  *    Function: sdpower
7455  *
7456  * Description: PM entry point.
7457  *
7458  * Return Code: DDI_SUCCESS
7459  *		DDI_FAILURE
7460  *
7461  *     Context: Kernel thread context
7462  */
7463 
7464 static int
7465 sdpower(dev_info_t *devi, int component, int level)
7466 {
7467 	struct sd_lun	*un;
7468 	int		instance;
7469 	int		rval = DDI_SUCCESS;
7470 	uint_t		i, log_page_size, maxcycles, ncycles;
7471 	uchar_t		*log_page_data;
7472 	int		log_sense_page;
7473 	int		medium_present;
7474 	time_t		intvlp;
7475 	dev_t		dev;
7476 	struct pm_trans_data	sd_pm_tran_data;
7477 	uchar_t		save_state;
7478 	int		sval;
7479 	uchar_t		state_before_pm;
7480 	int		got_semaphore_here;
7481 
7482 	instance = ddi_get_instance(devi);
7483 
7484 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
7485 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
7486 	    component != 0) {
7487 		return (DDI_FAILURE);
7488 	}
7489 
7490 	dev = sd_make_device(SD_DEVINFO(un));
7491 
7492 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
7493 
7494 	/*
7495 	 * Must synchronize power down with close.
7496 	 * Attempt to decrement/acquire the open/close semaphore,
7497 	 * but do NOT wait on it. If it's not greater than zero,
7498 	 * ie. it can't be decremented without waiting, then
7499 	 * someone else, either open or close, already has it
7500 	 * and the try returns 0. Use that knowledge here to determine
7501 	 * if it's OK to change the device power level.
7502 	 * Also, only increment it on exit if it was decremented, ie. gotten,
7503 	 * here.
7504 	 */
7505 	got_semaphore_here = sema_tryp(&un->un_semoclose);
7506 
7507 	mutex_enter(SD_MUTEX(un));
7508 
7509 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
7510 	    un->un_ncmds_in_driver);
7511 
7512 	/*
7513 	 * If un_ncmds_in_driver is non-zero it indicates commands are
7514 	 * already being processed in the driver, or if the semaphore was
7515 	 * not gotten here it indicates an open or close is being processed.
7516 	 * At the same time somebody is requesting to go low power which
7517 	 * can't happen, therefore we need to return failure.
7518 	 */
7519 	if ((level == SD_SPINDLE_OFF) &&
7520 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
7521 		mutex_exit(SD_MUTEX(un));
7522 
7523 		if (got_semaphore_here != 0) {
7524 			sema_v(&un->un_semoclose);
7525 		}
7526 		SD_TRACE(SD_LOG_IO_PM, un,
7527 		    "sdpower: exit, device has queued cmds.\n");
7528 		return (DDI_FAILURE);
7529 	}
7530 
7531 	/*
7532 	 * if it is OFFLINE that means the disk is completely dead
7533 	 * in our case we have to put the disk in on or off by sending commands
7534 	 * Of course that will fail anyway so return back here.
7535 	 *
7536 	 * Power changes to a device that's OFFLINE or SUSPENDED
7537 	 * are not allowed.
7538 	 */
7539 	if ((un->un_state == SD_STATE_OFFLINE) ||
7540 	    (un->un_state == SD_STATE_SUSPENDED)) {
7541 		mutex_exit(SD_MUTEX(un));
7542 
7543 		if (got_semaphore_here != 0) {
7544 			sema_v(&un->un_semoclose);
7545 		}
7546 		SD_TRACE(SD_LOG_IO_PM, un,
7547 		    "sdpower: exit, device is off-line.\n");
7548 		return (DDI_FAILURE);
7549 	}
7550 
7551 	/*
7552 	 * Change the device's state to indicate it's power level
7553 	 * is being changed. Do this to prevent a power off in the
7554 	 * middle of commands, which is especially bad on devices
7555 	 * that are really powered off instead of just spun down.
7556 	 */
7557 	state_before_pm = un->un_state;
7558 	un->un_state = SD_STATE_PM_CHANGING;
7559 
7560 	mutex_exit(SD_MUTEX(un));
7561 
7562 	/*
7563 	 * If "pm-capable" property is set to TRUE by HBA drivers,
7564 	 * bypass the following checking, otherwise, check the log
7565 	 * sense information for this device
7566 	 */
7567 	if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) {
7568 		/*
7569 		 * Get the log sense information to understand whether the
7570 		 * the powercycle counts have gone beyond the threshhold.
7571 		 */
7572 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
7573 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
7574 
7575 		mutex_enter(SD_MUTEX(un));
7576 		log_sense_page = un->un_start_stop_cycle_page;
7577 		mutex_exit(SD_MUTEX(un));
7578 
7579 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
7580 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
7581 #ifdef	SDDEBUG
7582 		if (sd_force_pm_supported) {
7583 			/* Force a successful result */
7584 			rval = 0;
7585 		}
7586 #endif
7587 		if (rval != 0) {
7588 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
7589 			    "Log Sense Failed\n");
7590 			kmem_free(log_page_data, log_page_size);
7591 			/* Cannot support power management on those drives */
7592 
7593 			if (got_semaphore_here != 0) {
7594 				sema_v(&un->un_semoclose);
7595 			}
7596 			/*
7597 			 * On exit put the state back to it's original value
7598 			 * and broadcast to anyone waiting for the power
7599 			 * change completion.
7600 			 */
7601 			mutex_enter(SD_MUTEX(un));
7602 			un->un_state = state_before_pm;
7603 			cv_broadcast(&un->un_suspend_cv);
7604 			mutex_exit(SD_MUTEX(un));
7605 			SD_TRACE(SD_LOG_IO_PM, un,
7606 			    "sdpower: exit, Log Sense Failed.\n");
7607 			return (DDI_FAILURE);
7608 		}
7609 
7610 		/*
7611 		 * From the page data - Convert the essential information to
7612 		 * pm_trans_data
7613 		 */
7614 		maxcycles =
7615 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
7616 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
7617 
7618 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
7619 
7620 		ncycles =
7621 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
7622 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
7623 
7624 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
7625 
7626 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
7627 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
7628 			    log_page_data[8+i];
7629 		}
7630 
7631 		kmem_free(log_page_data, log_page_size);
7632 
7633 		/*
7634 		 * Call pm_trans_check routine to get the Ok from
7635 		 * the global policy
7636 		 */
7637 
7638 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
7639 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
7640 
7641 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
7642 #ifdef	SDDEBUG
7643 		if (sd_force_pm_supported) {
7644 			/* Force a successful result */
7645 			rval = 1;
7646 		}
7647 #endif
7648 		switch (rval) {
7649 		case 0:
7650 			/*
7651 			 * Not Ok to Power cycle or error in parameters passed
7652 			 * Would have given the advised time to consider power
7653 			 * cycle. Based on the new intvlp parameter we are
7654 			 * supposed to pretend we are busy so that pm framework
7655 			 * will never call our power entry point. Because of
7656 			 * that install a timeout handler and wait for the
7657 			 * recommended time to elapse so that power management
7658 			 * can be effective again.
7659 			 *
7660 			 * To effect this behavior, call pm_busy_component to
7661 			 * indicate to the framework this device is busy.
7662 			 * By not adjusting un_pm_count the rest of PM in
7663 			 * the driver will function normally, and independant
7664 			 * of this but because the framework is told the device
7665 			 * is busy it won't attempt powering down until it gets
7666 			 * a matching idle. The timeout handler sends this.
7667 			 * Note: sd_pm_entry can't be called here to do this
7668 			 * because sdpower may have been called as a result
7669 			 * of a call to pm_raise_power from within sd_pm_entry.
7670 			 *
7671 			 * If a timeout handler is already active then
7672 			 * don't install another.
7673 			 */
7674 			mutex_enter(&un->un_pm_mutex);
7675 			if (un->un_pm_timeid == NULL) {
7676 				un->un_pm_timeid =
7677 				    timeout(sd_pm_timeout_handler,
7678 				    un, intvlp * drv_usectohz(1000000));
7679 				mutex_exit(&un->un_pm_mutex);
7680 				(void) pm_busy_component(SD_DEVINFO(un), 0);
7681 			} else {
7682 				mutex_exit(&un->un_pm_mutex);
7683 			}
7684 			if (got_semaphore_here != 0) {
7685 				sema_v(&un->un_semoclose);
7686 			}
7687 			/*
7688 			 * On exit put the state back to it's original value
7689 			 * and broadcast to anyone waiting for the power
7690 			 * change completion.
7691 			 */
7692 			mutex_enter(SD_MUTEX(un));
7693 			un->un_state = state_before_pm;
7694 			cv_broadcast(&un->un_suspend_cv);
7695 			mutex_exit(SD_MUTEX(un));
7696 
7697 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
7698 			    "trans check Failed, not ok to power cycle.\n");
7699 			return (DDI_FAILURE);
7700 
7701 		case -1:
7702 			if (got_semaphore_here != 0) {
7703 				sema_v(&un->un_semoclose);
7704 			}
7705 			/*
7706 			 * On exit put the state back to it's original value
7707 			 * and broadcast to anyone waiting for the power
7708 			 * change completion.
7709 			 */
7710 			mutex_enter(SD_MUTEX(un));
7711 			un->un_state = state_before_pm;
7712 			cv_broadcast(&un->un_suspend_cv);
7713 			mutex_exit(SD_MUTEX(un));
7714 			SD_TRACE(SD_LOG_IO_PM, un,
7715 			    "sdpower: exit, trans check command Failed.\n");
7716 			return (DDI_FAILURE);
7717 		}
7718 	}
7719 
7720 	if (level == SD_SPINDLE_OFF) {
7721 		/*
7722 		 * Save the last state... if the STOP FAILS we need it
7723 		 * for restoring
7724 		 */
7725 		mutex_enter(SD_MUTEX(un));
7726 		save_state = un->un_last_state;
7727 		/*
7728 		 * There must not be any cmds. getting processed
7729 		 * in the driver when we get here. Power to the
7730 		 * device is potentially going off.
7731 		 */
7732 		ASSERT(un->un_ncmds_in_driver == 0);
7733 		mutex_exit(SD_MUTEX(un));
7734 
7735 		/*
7736 		 * For now suspend the device completely before spindle is
7737 		 * turned off
7738 		 */
7739 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
7740 			if (got_semaphore_here != 0) {
7741 				sema_v(&un->un_semoclose);
7742 			}
7743 			/*
7744 			 * On exit put the state back to it's original value
7745 			 * and broadcast to anyone waiting for the power
7746 			 * change completion.
7747 			 */
7748 			mutex_enter(SD_MUTEX(un));
7749 			un->un_state = state_before_pm;
7750 			cv_broadcast(&un->un_suspend_cv);
7751 			mutex_exit(SD_MUTEX(un));
7752 			SD_TRACE(SD_LOG_IO_PM, un,
7753 			    "sdpower: exit, PM suspend Failed.\n");
7754 			return (DDI_FAILURE);
7755 		}
7756 	}
7757 
7758 	/*
7759 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
7760 	 * close, or strategy. Dump no long uses this routine, it uses it's
7761 	 * own code so it can be done in polled mode.
7762 	 */
7763 
7764 	medium_present = TRUE;
7765 
7766 	/*
7767 	 * When powering up, issue a TUR in case the device is at unit
7768 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
7769 	 * a deadlock on un_pm_busy_cv will occur.
7770 	 */
7771 	if (level == SD_SPINDLE_ON) {
7772 		(void) sd_send_scsi_TEST_UNIT_READY(un,
7773 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
7774 	}
7775 
7776 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
7777 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
7778 
7779 	sval = sd_send_scsi_START_STOP_UNIT(un,
7780 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
7781 	    SD_PATH_DIRECT);
7782 	/* Command failed, check for media present. */
7783 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
7784 		medium_present = FALSE;
7785 	}
7786 
7787 	/*
7788 	 * The conditions of interest here are:
7789 	 *   if a spindle off with media present fails,
7790 	 *	then restore the state and return an error.
7791 	 *   else if a spindle on fails,
7792 	 *	then return an error (there's no state to restore).
7793 	 * In all other cases we setup for the new state
7794 	 * and return success.
7795 	 */
7796 	switch (level) {
7797 	case SD_SPINDLE_OFF:
7798 		if ((medium_present == TRUE) && (sval != 0)) {
7799 			/* The stop command from above failed */
7800 			rval = DDI_FAILURE;
7801 			/*
7802 			 * The stop command failed, and we have media
7803 			 * present. Put the level back by calling the
7804 			 * sd_pm_resume() and set the state back to
7805 			 * it's previous value.
7806 			 */
7807 			(void) sd_ddi_pm_resume(un);
7808 			mutex_enter(SD_MUTEX(un));
7809 			un->un_last_state = save_state;
7810 			mutex_exit(SD_MUTEX(un));
7811 			break;
7812 		}
7813 		/*
7814 		 * The stop command from above succeeded.
7815 		 */
7816 		if (un->un_f_monitor_media_state) {
7817 			/*
7818 			 * Terminate watch thread in case of removable media
7819 			 * devices going into low power state. This is as per
7820 			 * the requirements of pm framework, otherwise commands
7821 			 * will be generated for the device (through watch
7822 			 * thread), even when the device is in low power state.
7823 			 */
7824 			mutex_enter(SD_MUTEX(un));
7825 			un->un_f_watcht_stopped = FALSE;
7826 			if (un->un_swr_token != NULL) {
7827 				opaque_t temp_token = un->un_swr_token;
7828 				un->un_f_watcht_stopped = TRUE;
7829 				un->un_swr_token = NULL;
7830 				mutex_exit(SD_MUTEX(un));
7831 				(void) scsi_watch_request_terminate(temp_token,
7832 				    SCSI_WATCH_TERMINATE_WAIT);
7833 			} else {
7834 				mutex_exit(SD_MUTEX(un));
7835 			}
7836 		}
7837 		break;
7838 
7839 	default:	/* The level requested is spindle on... */
7840 		/*
7841 		 * Legacy behavior: return success on a failed spinup
7842 		 * if there is no media in the drive.
7843 		 * Do this by looking at medium_present here.
7844 		 */
7845 		if ((sval != 0) && medium_present) {
7846 			/* The start command from above failed */
7847 			rval = DDI_FAILURE;
7848 			break;
7849 		}
7850 		/*
7851 		 * The start command from above succeeded
7852 		 * Resume the devices now that we have
7853 		 * started the disks
7854 		 */
7855 		(void) sd_ddi_pm_resume(un);
7856 
7857 		/*
7858 		 * Resume the watch thread since it was suspended
7859 		 * when the device went into low power mode.
7860 		 */
7861 		if (un->un_f_monitor_media_state) {
7862 			mutex_enter(SD_MUTEX(un));
7863 			if (un->un_f_watcht_stopped == TRUE) {
7864 				opaque_t temp_token;
7865 
7866 				un->un_f_watcht_stopped = FALSE;
7867 				mutex_exit(SD_MUTEX(un));
7868 				temp_token = scsi_watch_request_submit(
7869 				    SD_SCSI_DEVP(un),
7870 				    sd_check_media_time,
7871 				    SENSE_LENGTH, sd_media_watch_cb,
7872 				    (caddr_t)dev);
7873 				mutex_enter(SD_MUTEX(un));
7874 				un->un_swr_token = temp_token;
7875 			}
7876 			mutex_exit(SD_MUTEX(un));
7877 		}
7878 	}
7879 	if (got_semaphore_here != 0) {
7880 		sema_v(&un->un_semoclose);
7881 	}
7882 	/*
7883 	 * On exit put the state back to it's original value
7884 	 * and broadcast to anyone waiting for the power
7885 	 * change completion.
7886 	 */
7887 	mutex_enter(SD_MUTEX(un));
7888 	un->un_state = state_before_pm;
7889 	cv_broadcast(&un->un_suspend_cv);
7890 	mutex_exit(SD_MUTEX(un));
7891 
7892 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
7893 
7894 	return (rval);
7895 }
7896 
7897 
7898 
7899 /*
7900  *    Function: sdattach
7901  *
7902  * Description: Driver's attach(9e) entry point function.
7903  *
7904  *   Arguments: devi - opaque device info handle
7905  *		cmd  - attach  type
7906  *
7907  * Return Code: DDI_SUCCESS
7908  *		DDI_FAILURE
7909  *
7910  *     Context: Kernel thread context
7911  */
7912 
7913 static int
7914 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
7915 {
7916 	switch (cmd) {
7917 	case DDI_ATTACH:
7918 		return (sd_unit_attach(devi));
7919 	case DDI_RESUME:
7920 		return (sd_ddi_resume(devi));
7921 	default:
7922 		break;
7923 	}
7924 	return (DDI_FAILURE);
7925 }
7926 
7927 
7928 /*
7929  *    Function: sddetach
7930  *
7931  * Description: Driver's detach(9E) entry point function.
7932  *
7933  *   Arguments: devi - opaque device info handle
7934  *		cmd  - detach  type
7935  *
7936  * Return Code: DDI_SUCCESS
7937  *		DDI_FAILURE
7938  *
7939  *     Context: Kernel thread context
7940  */
7941 
7942 static int
7943 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
7944 {
7945 	switch (cmd) {
7946 	case DDI_DETACH:
7947 		return (sd_unit_detach(devi));
7948 	case DDI_SUSPEND:
7949 		return (sd_ddi_suspend(devi));
7950 	default:
7951 		break;
7952 	}
7953 	return (DDI_FAILURE);
7954 }
7955 
7956 
7957 /*
7958  *     Function: sd_sync_with_callback
7959  *
7960  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
7961  *		 state while the callback routine is active.
7962  *
7963  *    Arguments: un: softstate structure for the instance
7964  *
7965  *	Context: Kernel thread context
7966  */
7967 
7968 static void
7969 sd_sync_with_callback(struct sd_lun *un)
7970 {
7971 	ASSERT(un != NULL);
7972 
7973 	mutex_enter(SD_MUTEX(un));
7974 
7975 	ASSERT(un->un_in_callback >= 0);
7976 
7977 	while (un->un_in_callback > 0) {
7978 		mutex_exit(SD_MUTEX(un));
7979 		delay(2);
7980 		mutex_enter(SD_MUTEX(un));
7981 	}
7982 
7983 	mutex_exit(SD_MUTEX(un));
7984 }
7985 
7986 /*
7987  *    Function: sd_unit_attach
7988  *
7989  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
7990  *		the soft state structure for the device and performs
7991  *		all necessary structure and device initializations.
7992  *
7993  *   Arguments: devi: the system's dev_info_t for the device.
7994  *
7995  * Return Code: DDI_SUCCESS if attach is successful.
7996  *		DDI_FAILURE if any part of the attach fails.
7997  *
7998  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
7999  *		Kernel thread context only.  Can sleep.
8000  */
8001 
8002 static int
8003 sd_unit_attach(dev_info_t *devi)
8004 {
8005 	struct	scsi_device	*devp;
8006 	struct	sd_lun		*un;
8007 	char			*variantp;
8008 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
8009 	int	instance;
8010 	int	rval;
8011 	int	wc_enabled;
8012 	int	tgt;
8013 	uint64_t	capacity;
8014 	uint_t		lbasize;
8015 	dev_info_t	*pdip = ddi_get_parent(devi);
8016 
8017 	/*
8018 	 * Retrieve the target driver's private data area. This was set
8019 	 * up by the HBA.
8020 	 */
8021 	devp = ddi_get_driver_private(devi);
8022 
8023 	/*
8024 	 * Retrieve the target ID of the device.
8025 	 */
8026 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
8027 	    SCSI_ADDR_PROP_TARGET, -1);
8028 
8029 	/*
8030 	 * Since we have no idea what state things were left in by the last
8031 	 * user of the device, set up some 'default' settings, ie. turn 'em
8032 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
8033 	 * Do this before the scsi_probe, which sends an inquiry.
8034 	 * This is a fix for bug (4430280).
8035 	 * Of special importance is wide-xfer. The drive could have been left
8036 	 * in wide transfer mode by the last driver to communicate with it,
8037 	 * this includes us. If that's the case, and if the following is not
8038 	 * setup properly or we don't re-negotiate with the drive prior to
8039 	 * transferring data to/from the drive, it causes bus parity errors,
8040 	 * data overruns, and unexpected interrupts. This first occurred when
8041 	 * the fix for bug (4378686) was made.
8042 	 */
8043 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
8044 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
8045 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
8046 
8047 	/*
8048 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
8049 	 * on a target. Setting it per lun instance actually sets the
8050 	 * capability of this target, which affects those luns already
8051 	 * attached on the same target. So during attach, we can only disable
8052 	 * this capability only when no other lun has been attached on this
8053 	 * target. By doing this, we assume a target has the same tagged-qing
8054 	 * capability for every lun. The condition can be removed when HBA
8055 	 * is changed to support per lun based tagged-qing capability.
8056 	 */
8057 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
8058 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
8059 	}
8060 
8061 	/*
8062 	 * Use scsi_probe() to issue an INQUIRY command to the device.
8063 	 * This call will allocate and fill in the scsi_inquiry structure
8064 	 * and point the sd_inq member of the scsi_device structure to it.
8065 	 * If the attach succeeds, then this memory will not be de-allocated
8066 	 * (via scsi_unprobe()) until the instance is detached.
8067 	 */
8068 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
8069 		goto probe_failed;
8070 	}
8071 
8072 	/*
8073 	 * Check the device type as specified in the inquiry data and
8074 	 * claim it if it is of a type that we support.
8075 	 */
8076 	switch (devp->sd_inq->inq_dtype) {
8077 	case DTYPE_DIRECT:
8078 		break;
8079 	case DTYPE_RODIRECT:
8080 		break;
8081 	case DTYPE_OPTICAL:
8082 		break;
8083 	case DTYPE_NOTPRESENT:
8084 	default:
8085 		/* Unsupported device type; fail the attach. */
8086 		goto probe_failed;
8087 	}
8088 
8089 	/*
8090 	 * Allocate the soft state structure for this unit.
8091 	 *
8092 	 * We rely upon this memory being set to all zeroes by
8093 	 * ddi_soft_state_zalloc().  We assume that any member of the
8094 	 * soft state structure that is not explicitly initialized by
8095 	 * this routine will have a value of zero.
8096 	 */
8097 	instance = ddi_get_instance(devp->sd_dev);
8098 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
8099 		goto probe_failed;
8100 	}
8101 
8102 	/*
8103 	 * Retrieve a pointer to the newly-allocated soft state.
8104 	 *
8105 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
8106 	 * was successful, unless something has gone horribly wrong and the
8107 	 * ddi's soft state internals are corrupt (in which case it is
8108 	 * probably better to halt here than just fail the attach....)
8109 	 */
8110 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
8111 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
8112 		    instance);
8113 		/*NOTREACHED*/
8114 	}
8115 
8116 	/*
8117 	 * Link the back ptr of the driver soft state to the scsi_device
8118 	 * struct for this lun.
8119 	 * Save a pointer to the softstate in the driver-private area of
8120 	 * the scsi_device struct.
8121 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
8122 	 * we first set un->un_sd below.
8123 	 */
8124 	un->un_sd = devp;
8125 	devp->sd_private = (opaque_t)un;
8126 
8127 	/*
8128 	 * The following must be after devp is stored in the soft state struct.
8129 	 */
8130 #ifdef SDDEBUG
8131 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8132 	    "%s_unit_attach: un:0x%p instance:%d\n",
8133 	    ddi_driver_name(devi), un, instance);
8134 #endif
8135 
8136 	/*
8137 	 * Set up the device type and node type (for the minor nodes).
8138 	 * By default we assume that the device can at least support the
8139 	 * Common Command Set. Call it a CD-ROM if it reports itself
8140 	 * as a RODIRECT device.
8141 	 */
8142 	switch (devp->sd_inq->inq_dtype) {
8143 	case DTYPE_RODIRECT:
8144 		un->un_node_type = DDI_NT_CD_CHAN;
8145 		un->un_ctype	 = CTYPE_CDROM;
8146 		break;
8147 	case DTYPE_OPTICAL:
8148 		un->un_node_type = DDI_NT_BLOCK_CHAN;
8149 		un->un_ctype	 = CTYPE_ROD;
8150 		break;
8151 	default:
8152 		un->un_node_type = DDI_NT_BLOCK_CHAN;
8153 		un->un_ctype	 = CTYPE_CCS;
8154 		break;
8155 	}
8156 
8157 	/*
8158 	 * Try to read the interconnect type from the HBA.
8159 	 *
8160 	 * Note: This driver is currently compiled as two binaries, a parallel
8161 	 * scsi version (sd) and a fibre channel version (ssd). All functional
8162 	 * differences are determined at compile time. In the future a single
8163 	 * binary will be provided and the inteconnect type will be used to
8164 	 * differentiate between fibre and parallel scsi behaviors. At that time
8165 	 * it will be necessary for all fibre channel HBAs to support this
8166 	 * property.
8167 	 *
8168 	 * set un_f_is_fiber to TRUE ( default fiber )
8169 	 */
8170 	un->un_f_is_fibre = TRUE;
8171 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
8172 	case INTERCONNECT_SSA:
8173 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
8174 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8175 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
8176 		break;
8177 	case INTERCONNECT_PARALLEL:
8178 		un->un_f_is_fibre = FALSE;
8179 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
8180 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8181 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
8182 		break;
8183 	case INTERCONNECT_SATA:
8184 		un->un_f_is_fibre = FALSE;
8185 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
8186 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8187 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
8188 		break;
8189 	case INTERCONNECT_FIBRE:
8190 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
8191 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8192 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
8193 		break;
8194 	case INTERCONNECT_FABRIC:
8195 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
8196 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
8197 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8198 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
8199 		break;
8200 	default:
8201 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
8202 		/*
8203 		 * The HBA does not support the "interconnect-type" property
8204 		 * (or did not provide a recognized type).
8205 		 *
8206 		 * Note: This will be obsoleted when a single fibre channel
8207 		 * and parallel scsi driver is delivered. In the meantime the
8208 		 * interconnect type will be set to the platform default.If that
8209 		 * type is not parallel SCSI, it means that we should be
8210 		 * assuming "ssd" semantics. However, here this also means that
8211 		 * the FC HBA is not supporting the "interconnect-type" property
8212 		 * like we expect it to, so log this occurrence.
8213 		 */
8214 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
8215 		if (!SD_IS_PARALLEL_SCSI(un)) {
8216 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8217 			    "sd_unit_attach: un:0x%p Assuming "
8218 			    "INTERCONNECT_FIBRE\n", un);
8219 		} else {
8220 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8221 			    "sd_unit_attach: un:0x%p Assuming "
8222 			    "INTERCONNECT_PARALLEL\n", un);
8223 			un->un_f_is_fibre = FALSE;
8224 		}
8225 #else
8226 		/*
8227 		 * Note: This source will be implemented when a single fibre
8228 		 * channel and parallel scsi driver is delivered. The default
8229 		 * will be to assume that if a device does not support the
8230 		 * "interconnect-type" property it is a parallel SCSI HBA and
8231 		 * we will set the interconnect type for parallel scsi.
8232 		 */
8233 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
8234 		un->un_f_is_fibre = FALSE;
8235 #endif
8236 		break;
8237 	}
8238 
8239 	if (un->un_f_is_fibre == TRUE) {
8240 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
8241 			SCSI_VERSION_3) {
8242 			switch (un->un_interconnect_type) {
8243 			case SD_INTERCONNECT_FIBRE:
8244 			case SD_INTERCONNECT_SSA:
8245 				un->un_node_type = DDI_NT_BLOCK_WWN;
8246 				break;
8247 			default:
8248 				break;
8249 			}
8250 		}
8251 	}
8252 
8253 	/*
8254 	 * Initialize the Request Sense command for the target
8255 	 */
8256 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
8257 		goto alloc_rqs_failed;
8258 	}
8259 
8260 	/*
8261 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
8262 	 * with seperate binary for sd and ssd.
8263 	 *
8264 	 * x86 has 1 binary, un_retry_count is set base on connection type.
8265 	 * The hardcoded values will go away when Sparc uses 1 binary
8266 	 * for sd and ssd.  This hardcoded values need to match
8267 	 * SD_RETRY_COUNT in sddef.h
8268 	 * The value used is base on interconnect type.
8269 	 * fibre = 3, parallel = 5
8270 	 */
8271 #if defined(__i386) || defined(__amd64)
8272 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
8273 #else
8274 	un->un_retry_count = SD_RETRY_COUNT;
8275 #endif
8276 
8277 	/*
8278 	 * Set the per disk retry count to the default number of retries
8279 	 * for disks and CDROMs. This value can be overridden by the
8280 	 * disk property list or an entry in sd.conf.
8281 	 */
8282 	un->un_notready_retry_count =
8283 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
8284 			: DISK_NOT_READY_RETRY_COUNT(un);
8285 
8286 	/*
8287 	 * Set the busy retry count to the default value of un_retry_count.
8288 	 * This can be overridden by entries in sd.conf or the device
8289 	 * config table.
8290 	 */
8291 	un->un_busy_retry_count = un->un_retry_count;
8292 
8293 	/*
8294 	 * Init the reset threshold for retries.  This number determines
8295 	 * how many retries must be performed before a reset can be issued
8296 	 * (for certain error conditions). This can be overridden by entries
8297 	 * in sd.conf or the device config table.
8298 	 */
8299 	un->un_reset_retry_count = (un->un_retry_count / 2);
8300 
8301 	/*
8302 	 * Set the victim_retry_count to the default un_retry_count
8303 	 */
8304 	un->un_victim_retry_count = (2 * un->un_retry_count);
8305 
8306 	/*
8307 	 * Set the reservation release timeout to the default value of
8308 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
8309 	 * device config table.
8310 	 */
8311 	un->un_reserve_release_time = 5;
8312 
8313 	/*
8314 	 * Set up the default maximum transfer size. Note that this may
8315 	 * get updated later in the attach, when setting up default wide
8316 	 * operations for disks.
8317 	 */
8318 #if defined(__i386) || defined(__amd64)
8319 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
8320 #else
8321 	un->un_max_xfer_size = (uint_t)maxphys;
8322 #endif
8323 
8324 	/*
8325 	 * Get "allow bus device reset" property (defaults to "enabled" if
8326 	 * the property was not defined). This is to disable bus resets for
8327 	 * certain kinds of error recovery. Note: In the future when a run-time
8328 	 * fibre check is available the soft state flag should default to
8329 	 * enabled.
8330 	 */
8331 	if (un->un_f_is_fibre == TRUE) {
8332 		un->un_f_allow_bus_device_reset = TRUE;
8333 	} else {
8334 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
8335 			"allow-bus-device-reset", 1) != 0) {
8336 			un->un_f_allow_bus_device_reset = TRUE;
8337 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8338 			"sd_unit_attach: un:0x%p Bus device reset enabled\n",
8339 				un);
8340 		} else {
8341 			un->un_f_allow_bus_device_reset = FALSE;
8342 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8343 			"sd_unit_attach: un:0x%p Bus device reset disabled\n",
8344 				un);
8345 		}
8346 	}
8347 
8348 	/*
8349 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
8350 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
8351 	 *
8352 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
8353 	 * property. The new "variant" property with a value of "atapi" has been
8354 	 * introduced so that future 'variants' of standard SCSI behavior (like
8355 	 * atapi) could be specified by the underlying HBA drivers by supplying
8356 	 * a new value for the "variant" property, instead of having to define a
8357 	 * new property.
8358 	 */
8359 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
8360 		un->un_f_cfg_is_atapi = TRUE;
8361 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8362 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
8363 	}
8364 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
8365 	    &variantp) == DDI_PROP_SUCCESS) {
8366 		if (strcmp(variantp, "atapi") == 0) {
8367 			un->un_f_cfg_is_atapi = TRUE;
8368 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8369 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
8370 		}
8371 		ddi_prop_free(variantp);
8372 	}
8373 
8374 	un->un_cmd_timeout	= SD_IO_TIME;
8375 
8376 	/* Info on current states, statuses, etc. (Updated frequently) */
8377 	un->un_state		= SD_STATE_NORMAL;
8378 	un->un_last_state	= SD_STATE_NORMAL;
8379 
8380 	/* Control & status info for command throttling */
8381 	un->un_throttle		= sd_max_throttle;
8382 	un->un_saved_throttle	= sd_max_throttle;
8383 	un->un_min_throttle	= sd_min_throttle;
8384 
8385 	if (un->un_f_is_fibre == TRUE) {
8386 		un->un_f_use_adaptive_throttle = TRUE;
8387 	} else {
8388 		un->un_f_use_adaptive_throttle = FALSE;
8389 	}
8390 
8391 	/* Removable media support. */
8392 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
8393 	un->un_mediastate		= DKIO_NONE;
8394 	un->un_specified_mediastate	= DKIO_NONE;
8395 
8396 	/* CVs for suspend/resume (PM or DR) */
8397 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
8398 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
8399 
8400 	/* Power management support. */
8401 	un->un_power_level = SD_SPINDLE_UNINIT;
8402 
8403 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
8404 	un->un_f_wcc_inprog = 0;
8405 
8406 	/*
8407 	 * The open/close semaphore is used to serialize threads executing
8408 	 * in the driver's open & close entry point routines for a given
8409 	 * instance.
8410 	 */
8411 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
8412 
8413 	/*
8414 	 * The conf file entry and softstate variable is a forceful override,
8415 	 * meaning a non-zero value must be entered to change the default.
8416 	 */
8417 	un->un_f_disksort_disabled = FALSE;
8418 
8419 	/*
8420 	 * Retrieve the properties from the static driver table or the driver
8421 	 * configuration file (.conf) for this unit and update the soft state
8422 	 * for the device as needed for the indicated properties.
8423 	 * Note: the property configuration needs to occur here as some of the
8424 	 * following routines may have dependancies on soft state flags set
8425 	 * as part of the driver property configuration.
8426 	 */
8427 	sd_read_unit_properties(un);
8428 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8429 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
8430 
8431 	/*
8432 	 * Only if a device has "hotpluggable" property, it is
8433 	 * treated as hotpluggable device. Otherwise, it is
8434 	 * regarded as non-hotpluggable one.
8435 	 */
8436 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
8437 	    -1) != -1) {
8438 		un->un_f_is_hotpluggable = TRUE;
8439 	}
8440 
8441 	/*
8442 	 * set unit's attributes(flags) according to "hotpluggable" and
8443 	 * RMB bit in INQUIRY data.
8444 	 */
8445 	sd_set_unit_attributes(un, devi);
8446 
8447 	/*
8448 	 * By default, we mark the capacity, lbasize, and geometry
8449 	 * as invalid. Only if we successfully read a valid capacity
8450 	 * will we update the un_blockcount and un_tgt_blocksize with the
8451 	 * valid values (the geometry will be validated later).
8452 	 */
8453 	un->un_f_blockcount_is_valid	= FALSE;
8454 	un->un_f_tgt_blocksize_is_valid	= FALSE;
8455 	un->un_f_geometry_is_valid	= FALSE;
8456 
8457 	/*
8458 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
8459 	 * otherwise.
8460 	 */
8461 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
8462 	un->un_blockcount = 0;
8463 
8464 	/*
8465 	 * Set up the per-instance info needed to determine the correct
8466 	 * CDBs and other info for issuing commands to the target.
8467 	 */
8468 	sd_init_cdb_limits(un);
8469 
8470 	/*
8471 	 * Set up the IO chains to use, based upon the target type.
8472 	 */
8473 	if (un->un_f_non_devbsize_supported) {
8474 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
8475 	} else {
8476 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
8477 	}
8478 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
8479 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
8480 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
8481 
8482 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
8483 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
8484 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
8485 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
8486 
8487 
8488 	if (ISCD(un)) {
8489 		un->un_additional_codes = sd_additional_codes;
8490 	} else {
8491 		un->un_additional_codes = NULL;
8492 	}
8493 
8494 	/*
8495 	 * Create the kstats here so they can be available for attach-time
8496 	 * routines that send commands to the unit (either polled or via
8497 	 * sd_send_scsi_cmd).
8498 	 *
8499 	 * Note: This is a critical sequence that needs to be maintained:
8500 	 *	1) Instantiate the kstats here, before any routines using the
8501 	 *	   iopath (i.e. sd_send_scsi_cmd).
8502 	 *	2) Instantiate and initialize the partition stats
8503 	 *	   (sd_set_pstats) in sd_use_efi() and sd_validate_geometry(),
8504 	 *	   see detailed comments there.
8505 	 *	3) Initialize the error stats (sd_set_errstats), following
8506 	 *	   sd_validate_geometry(),sd_register_devid(),
8507 	 *	   and sd_cache_control().
8508 	 */
8509 
8510 	un->un_stats = kstat_create(sd_label, instance,
8511 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
8512 	if (un->un_stats != NULL) {
8513 		un->un_stats->ks_lock = SD_MUTEX(un);
8514 		kstat_install(un->un_stats);
8515 	}
8516 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8517 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
8518 
8519 	sd_create_errstats(un, instance);
8520 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8521 	    "sd_unit_attach: un:0x%p errstats created\n", un);
8522 
8523 	/*
8524 	 * The following if/else code was relocated here from below as part
8525 	 * of the fix for bug (4430280). However with the default setup added
8526 	 * on entry to this routine, it's no longer absolutely necessary for
8527 	 * this to be before the call to sd_spin_up_unit.
8528 	 */
8529 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
8530 		/*
8531 		 * If SCSI-2 tagged queueing is supported by the target
8532 		 * and by the host adapter then we will enable it.
8533 		 */
8534 		un->un_tagflags = 0;
8535 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8536 		    (devp->sd_inq->inq_cmdque) &&
8537 		    (un->un_f_arq_enabled == TRUE)) {
8538 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
8539 			    1, 1) == 1) {
8540 				un->un_tagflags = FLAG_STAG;
8541 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8542 				    "sd_unit_attach: un:0x%p tag queueing "
8543 				    "enabled\n", un);
8544 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
8545 			    "untagged-qing", 0) == 1) {
8546 				un->un_f_opt_queueing = TRUE;
8547 				un->un_saved_throttle = un->un_throttle =
8548 				    min(un->un_throttle, 3);
8549 			} else {
8550 				un->un_f_opt_queueing = FALSE;
8551 				un->un_saved_throttle = un->un_throttle = 1;
8552 			}
8553 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
8554 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
8555 			/* The Host Adapter supports internal queueing. */
8556 			un->un_f_opt_queueing = TRUE;
8557 			un->un_saved_throttle = un->un_throttle =
8558 			    min(un->un_throttle, 3);
8559 		} else {
8560 			un->un_f_opt_queueing = FALSE;
8561 			un->un_saved_throttle = un->un_throttle = 1;
8562 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8563 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
8564 		}
8565 
8566 		/*
8567 		 * Enable large transfers for SATA/SAS drives
8568 		 */
8569 		if (SD_IS_SERIAL(un)) {
8570 			un->un_max_xfer_size =
8571 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8572 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
8573 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8574 			    "sd_unit_attach: un:0x%p max transfer "
8575 			    "size=0x%x\n", un, un->un_max_xfer_size);
8576 
8577 		}
8578 
8579 		/* Setup or tear down default wide operations for disks */
8580 
8581 		/*
8582 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
8583 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
8584 		 * system and be set to different values. In the future this
8585 		 * code may need to be updated when the ssd module is
8586 		 * obsoleted and removed from the system. (4299588)
8587 		 */
8588 		if (SD_IS_PARALLEL_SCSI(un) &&
8589 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8590 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
8591 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8592 			    1, 1) == 1) {
8593 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8594 				    "sd_unit_attach: un:0x%p Wide Transfer "
8595 				    "enabled\n", un);
8596 			}
8597 
8598 			/*
8599 			 * If tagged queuing has also been enabled, then
8600 			 * enable large xfers
8601 			 */
8602 			if (un->un_saved_throttle == sd_max_throttle) {
8603 				un->un_max_xfer_size =
8604 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8605 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
8606 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8607 				    "sd_unit_attach: un:0x%p max transfer "
8608 				    "size=0x%x\n", un, un->un_max_xfer_size);
8609 			}
8610 		} else {
8611 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8612 			    0, 1) == 1) {
8613 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8614 				    "sd_unit_attach: un:0x%p "
8615 				    "Wide Transfer disabled\n", un);
8616 			}
8617 		}
8618 	} else {
8619 		un->un_tagflags = FLAG_STAG;
8620 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
8621 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
8622 	}
8623 
8624 	/*
8625 	 * If this target supports LUN reset, try to enable it.
8626 	 */
8627 	if (un->un_f_lun_reset_enabled) {
8628 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
8629 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8630 			    "un:0x%p lun_reset capability set\n", un);
8631 		} else {
8632 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8633 			    "un:0x%p lun-reset capability not set\n", un);
8634 		}
8635 	}
8636 
8637 	/*
8638 	 * At this point in the attach, we have enough info in the
8639 	 * soft state to be able to issue commands to the target.
8640 	 *
8641 	 * All command paths used below MUST issue their commands as
8642 	 * SD_PATH_DIRECT. This is important as intermediate layers
8643 	 * are not all initialized yet (such as PM).
8644 	 */
8645 
8646 	/*
8647 	 * Send a TEST UNIT READY command to the device. This should clear
8648 	 * any outstanding UNIT ATTENTION that may be present.
8649 	 *
8650 	 * Note: Don't check for success, just track if there is a reservation,
8651 	 * this is a throw away command to clear any unit attentions.
8652 	 *
8653 	 * Note: This MUST be the first command issued to the target during
8654 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
8655 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
8656 	 * with attempts at spinning up a device with no media.
8657 	 */
8658 	if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) {
8659 		reservation_flag = SD_TARGET_IS_RESERVED;
8660 	}
8661 
8662 	/*
8663 	 * If the device is NOT a removable media device, attempt to spin
8664 	 * it up (using the START_STOP_UNIT command) and read its capacity
8665 	 * (using the READ CAPACITY command).  Note, however, that either
8666 	 * of these could fail and in some cases we would continue with
8667 	 * the attach despite the failure (see below).
8668 	 */
8669 	if (un->un_f_descr_format_supported) {
8670 		switch (sd_spin_up_unit(un)) {
8671 		case 0:
8672 			/*
8673 			 * Spin-up was successful; now try to read the
8674 			 * capacity.  If successful then save the results
8675 			 * and mark the capacity & lbasize as valid.
8676 			 */
8677 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8678 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
8679 
8680 			switch (sd_send_scsi_READ_CAPACITY(un, &capacity,
8681 			    &lbasize, SD_PATH_DIRECT)) {
8682 			case 0: {
8683 				if (capacity > DK_MAX_BLOCKS) {
8684 #ifdef _LP64
8685 					if (capacity + 1 >
8686 					    SD_GROUP1_MAX_ADDRESS) {
8687 						/*
8688 						 * Enable descriptor format
8689 						 * sense data so that we can
8690 						 * get 64 bit sense data
8691 						 * fields.
8692 						 */
8693 						sd_enable_descr_sense(un);
8694 					}
8695 #else
8696 					/* 32-bit kernels can't handle this */
8697 					scsi_log(SD_DEVINFO(un),
8698 					    sd_label, CE_WARN,
8699 					    "disk has %llu blocks, which "
8700 					    "is too large for a 32-bit "
8701 					    "kernel", capacity);
8702 
8703 #if defined(__i386) || defined(__amd64)
8704 					/*
8705 					 * Refer to comments related to off-by-1
8706 					 * at the header of this file.
8707 					 * 1TB disk was treated as (1T - 512)B
8708 					 * in the past, so that it might has
8709 					 * valid VTOC and solaris partitions,
8710 					 * we have to allow it to continue to
8711 					 * work.
8712 					 */
8713 					if (capacity -1 > DK_MAX_BLOCKS)
8714 #endif
8715 					goto spinup_failed;
8716 #endif
8717 				}
8718 
8719 				/*
8720 				 * Here it's not necessary to check the case:
8721 				 * the capacity of the device is bigger than
8722 				 * what the max hba cdb can support. Because
8723 				 * sd_send_scsi_READ_CAPACITY will retrieve
8724 				 * the capacity by sending USCSI command, which
8725 				 * is constrained by the max hba cdb. Actually,
8726 				 * sd_send_scsi_READ_CAPACITY will return
8727 				 * EINVAL when using bigger cdb than required
8728 				 * cdb length. Will handle this case in
8729 				 * "case EINVAL".
8730 				 */
8731 
8732 				/*
8733 				 * The following relies on
8734 				 * sd_send_scsi_READ_CAPACITY never
8735 				 * returning 0 for capacity and/or lbasize.
8736 				 */
8737 				sd_update_block_info(un, lbasize, capacity);
8738 
8739 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8740 				    "sd_unit_attach: un:0x%p capacity = %ld "
8741 				    "blocks; lbasize= %ld.\n", un,
8742 				    un->un_blockcount, un->un_tgt_blocksize);
8743 
8744 				break;
8745 			}
8746 			case EINVAL:
8747 				/*
8748 				 * In the case where the max-cdb-length property
8749 				 * is smaller than the required CDB length for
8750 				 * a SCSI device, a target driver can fail to
8751 				 * attach to that device.
8752 				 */
8753 				scsi_log(SD_DEVINFO(un),
8754 				    sd_label, CE_WARN,
8755 				    "disk capacity is too large "
8756 				    "for current cdb length");
8757 				goto spinup_failed;
8758 			case EACCES:
8759 				/*
8760 				 * Should never get here if the spin-up
8761 				 * succeeded, but code it in anyway.
8762 				 * From here, just continue with the attach...
8763 				 */
8764 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8765 				    "sd_unit_attach: un:0x%p "
8766 				    "sd_send_scsi_READ_CAPACITY "
8767 				    "returned reservation conflict\n", un);
8768 				reservation_flag = SD_TARGET_IS_RESERVED;
8769 				break;
8770 			default:
8771 				/*
8772 				 * Likewise, should never get here if the
8773 				 * spin-up succeeded. Just continue with
8774 				 * the attach...
8775 				 */
8776 				break;
8777 			}
8778 			break;
8779 		case EACCES:
8780 			/*
8781 			 * Device is reserved by another host.  In this case
8782 			 * we could not spin it up or read the capacity, but
8783 			 * we continue with the attach anyway.
8784 			 */
8785 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8786 			    "sd_unit_attach: un:0x%p spin-up reservation "
8787 			    "conflict.\n", un);
8788 			reservation_flag = SD_TARGET_IS_RESERVED;
8789 			break;
8790 		default:
8791 			/* Fail the attach if the spin-up failed. */
8792 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8793 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
8794 			goto spinup_failed;
8795 		}
8796 	}
8797 
8798 	/*
8799 	 * Check to see if this is a MMC drive
8800 	 */
8801 	if (ISCD(un)) {
8802 		sd_set_mmc_caps(un);
8803 	}
8804 
8805 	/*
8806 	 * Create the minor nodes for the device.
8807 	 * Note: If we want to support fdisk on both sparc and intel, this will
8808 	 * have to separate out the notion that VTOC8 is always sparc, and
8809 	 * VTOC16 is always intel (tho these can be the defaults).  The vtoc
8810 	 * type will have to be determined at run-time, and the fdisk
8811 	 * partitioning will have to have been read & set up before we
8812 	 * create the minor nodes. (any other inits (such as kstats) that
8813 	 * also ought to be done before creating the minor nodes?) (Doesn't
8814 	 * setting up the minor nodes kind of imply that we're ready to
8815 	 * handle an open from userland?)
8816 	 */
8817 	if (sd_create_minor_nodes(un, devi) != DDI_SUCCESS) {
8818 		goto create_minor_nodes_failed;
8819 	}
8820 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8821 	    "sd_unit_attach: un:0x%p minor nodes created\n", un);
8822 
8823 	/*
8824 	 * Add a zero-length attribute to tell the world we support
8825 	 * kernel ioctls (for layered drivers)
8826 	 */
8827 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8828 	    DDI_KERNEL_IOCTL, NULL, 0);
8829 
8830 	/*
8831 	 * Add a boolean property to tell the world we support
8832 	 * the B_FAILFAST flag (for layered drivers)
8833 	 */
8834 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8835 	    "ddi-failfast-supported", NULL, 0);
8836 
8837 	/*
8838 	 * Initialize power management
8839 	 */
8840 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
8841 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
8842 	sd_setup_pm(un, devi);
8843 	if (un->un_f_pm_is_enabled == FALSE) {
8844 		/*
8845 		 * For performance, point to a jump table that does
8846 		 * not include pm.
8847 		 * The direct and priority chains don't change with PM.
8848 		 *
8849 		 * Note: this is currently done based on individual device
8850 		 * capabilities. When an interface for determining system
8851 		 * power enabled state becomes available, or when additional
8852 		 * layers are added to the command chain, these values will
8853 		 * have to be re-evaluated for correctness.
8854 		 */
8855 		if (un->un_f_non_devbsize_supported) {
8856 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
8857 		} else {
8858 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
8859 		}
8860 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8861 	}
8862 
8863 	/*
8864 	 * This property is set to 0 by HA software to avoid retries
8865 	 * on a reserved disk. (The preferred property name is
8866 	 * "retry-on-reservation-conflict") (1189689)
8867 	 *
8868 	 * Note: The use of a global here can have unintended consequences. A
8869 	 * per instance variable is preferrable to match the capabilities of
8870 	 * different underlying hba's (4402600)
8871 	 */
8872 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
8873 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
8874 	    sd_retry_on_reservation_conflict);
8875 	if (sd_retry_on_reservation_conflict != 0) {
8876 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
8877 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
8878 		    sd_retry_on_reservation_conflict);
8879 	}
8880 
8881 	/* Set up options for QFULL handling. */
8882 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8883 	    "qfull-retries", -1)) != -1) {
8884 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
8885 		    rval, 1);
8886 	}
8887 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8888 	    "qfull-retry-interval", -1)) != -1) {
8889 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
8890 		    rval, 1);
8891 	}
8892 
8893 	/*
8894 	 * This just prints a message that announces the existence of the
8895 	 * device. The message is always printed in the system logfile, but
8896 	 * only appears on the console if the system is booted with the
8897 	 * -v (verbose) argument.
8898 	 */
8899 	ddi_report_dev(devi);
8900 
8901 	/*
8902 	 * The framework calls driver attach routines single-threaded
8903 	 * for a given instance.  However we still acquire SD_MUTEX here
8904 	 * because this required for calling the sd_validate_geometry()
8905 	 * and sd_register_devid() functions.
8906 	 */
8907 	mutex_enter(SD_MUTEX(un));
8908 	un->un_f_geometry_is_valid = FALSE;
8909 	un->un_mediastate = DKIO_NONE;
8910 	un->un_reserved = -1;
8911 
8912 	/*
8913 	 * Read and validate the device's geometry (ie, disk label)
8914 	 * A new unformatted drive will not have a valid geometry, but
8915 	 * the driver needs to successfully attach to this device so
8916 	 * the drive can be formatted via ioctls.
8917 	 */
8918 	if (((sd_validate_geometry(un, SD_PATH_DIRECT) ==
8919 	    ENOTSUP)) &&
8920 	    (un->un_blockcount < DK_MAX_BLOCKS)) {
8921 		/*
8922 		 * We found a small disk with an EFI label on it;
8923 		 * we need to fix up the minor nodes accordingly.
8924 		 */
8925 		ddi_remove_minor_node(devi, "h");
8926 		ddi_remove_minor_node(devi, "h,raw");
8927 		(void) ddi_create_minor_node(devi, "wd",
8928 		    S_IFBLK,
8929 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8930 		    un->un_node_type, NULL);
8931 		(void) ddi_create_minor_node(devi, "wd,raw",
8932 		    S_IFCHR,
8933 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8934 		    un->un_node_type, NULL);
8935 	}
8936 #if defined(__i386) || defined(__amd64)
8937 	else if (un->un_f_capacity_adjusted == 1) {
8938 		/*
8939 		 * Refer to comments related to off-by-1 at the
8940 		 * header of this file.
8941 		 * Adjust minor node for 1TB disk.
8942 		 */
8943 		ddi_remove_minor_node(devi, "wd");
8944 		ddi_remove_minor_node(devi, "wd,raw");
8945 		(void) ddi_create_minor_node(devi, "h",
8946 		    S_IFBLK,
8947 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8948 		    un->un_node_type, NULL);
8949 		(void) ddi_create_minor_node(devi, "h,raw",
8950 		    S_IFCHR,
8951 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8952 		    un->un_node_type, NULL);
8953 	}
8954 #endif
8955 	/*
8956 	 * Read and initialize the devid for the unit.
8957 	 */
8958 	ASSERT(un->un_errstats != NULL);
8959 	if (un->un_f_devid_supported) {
8960 		sd_register_devid(un, devi, reservation_flag);
8961 	}
8962 	mutex_exit(SD_MUTEX(un));
8963 
8964 #if (defined(__fibre))
8965 	/*
8966 	 * Register callbacks for fibre only.  You can't do this soley
8967 	 * on the basis of the devid_type because this is hba specific.
8968 	 * We need to query our hba capabilities to find out whether to
8969 	 * register or not.
8970 	 */
8971 	if (un->un_f_is_fibre) {
8972 	    if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
8973 		sd_init_event_callbacks(un);
8974 		SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8975 		    "sd_unit_attach: un:0x%p event callbacks inserted", un);
8976 	    }
8977 	}
8978 #endif
8979 
8980 	if (un->un_f_opt_disable_cache == TRUE) {
8981 		/*
8982 		 * Disable both read cache and write cache.  This is
8983 		 * the historic behavior of the keywords in the config file.
8984 		 */
8985 		if (sd_cache_control(un, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
8986 		    0) {
8987 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8988 			    "sd_unit_attach: un:0x%p Could not disable "
8989 			    "caching", un);
8990 			goto devid_failed;
8991 		}
8992 	}
8993 
8994 	/*
8995 	 * Check the value of the WCE bit now and
8996 	 * set un_f_write_cache_enabled accordingly.
8997 	 */
8998 	(void) sd_get_write_cache_enabled(un, &wc_enabled);
8999 	mutex_enter(SD_MUTEX(un));
9000 	un->un_f_write_cache_enabled = (wc_enabled != 0);
9001 	mutex_exit(SD_MUTEX(un));
9002 
9003 	/*
9004 	 * Set the pstat and error stat values here, so data obtained during the
9005 	 * previous attach-time routines is available.
9006 	 *
9007 	 * Note: This is a critical sequence that needs to be maintained:
9008 	 *	1) Instantiate the kstats before any routines using the iopath
9009 	 *	   (i.e. sd_send_scsi_cmd).
9010 	 *	2) Instantiate and initialize the partition stats
9011 	 *	   (sd_set_pstats) in sd_use_efi() and sd_validate_geometry(),
9012 	 *	   see detailed comments there.
9013 	 *	3) Initialize the error stats (sd_set_errstats), following
9014 	 *	   sd_validate_geometry(),sd_register_devid(),
9015 	 *	   and sd_cache_control().
9016 	 */
9017 	sd_set_errstats(un);
9018 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
9019 	    "sd_unit_attach: un:0x%p errstats set\n", un);
9020 
9021 	/*
9022 	 * Find out what type of reservation this disk supports.
9023 	 */
9024 	switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) {
9025 	case 0:
9026 		/*
9027 		 * SCSI-3 reservations are supported.
9028 		 */
9029 		un->un_reservation_type = SD_SCSI3_RESERVATION;
9030 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
9031 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
9032 		break;
9033 	case ENOTSUP:
9034 		/*
9035 		 * The PERSISTENT RESERVE IN command would not be recognized by
9036 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
9037 		 */
9038 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
9039 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
9040 		un->un_reservation_type = SD_SCSI2_RESERVATION;
9041 		break;
9042 	default:
9043 		/*
9044 		 * default to SCSI-3 reservations
9045 		 */
9046 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
9047 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
9048 		un->un_reservation_type = SD_SCSI3_RESERVATION;
9049 		break;
9050 	}
9051 
9052 	/*
9053 	 * After successfully attaching an instance, we record the information
9054 	 * of how many luns have been attached on the relative target and
9055 	 * controller for parallel SCSI. This information is used when sd tries
9056 	 * to set the tagged queuing capability in HBA.
9057 	 */
9058 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
9059 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
9060 	}
9061 
9062 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
9063 	    "sd_unit_attach: un:0x%p exit success\n", un);
9064 
9065 	return (DDI_SUCCESS);
9066 
9067 	/*
9068 	 * An error occurred during the attach; clean up & return failure.
9069 	 */
9070 
9071 devid_failed:
9072 
9073 setup_pm_failed:
9074 	ddi_remove_minor_node(devi, NULL);
9075 
9076 create_minor_nodes_failed:
9077 	/*
9078 	 * Cleanup from the scsi_ifsetcap() calls (437868)
9079 	 */
9080 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
9081 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
9082 
9083 	/*
9084 	 * Refer to the comments of setting tagged-qing in the beginning of
9085 	 * sd_unit_attach. We can only disable tagged queuing when there is
9086 	 * no lun attached on the target.
9087 	 */
9088 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
9089 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
9090 	}
9091 
9092 	if (un->un_f_is_fibre == FALSE) {
9093 	    (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
9094 	}
9095 
9096 spinup_failed:
9097 
9098 	mutex_enter(SD_MUTEX(un));
9099 
9100 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
9101 	if (un->un_direct_priority_timeid != NULL) {
9102 		timeout_id_t temp_id = un->un_direct_priority_timeid;
9103 		un->un_direct_priority_timeid = NULL;
9104 		mutex_exit(SD_MUTEX(un));
9105 		(void) untimeout(temp_id);
9106 		mutex_enter(SD_MUTEX(un));
9107 	}
9108 
9109 	/* Cancel any pending start/stop timeouts */
9110 	if (un->un_startstop_timeid != NULL) {
9111 		timeout_id_t temp_id = un->un_startstop_timeid;
9112 		un->un_startstop_timeid = NULL;
9113 		mutex_exit(SD_MUTEX(un));
9114 		(void) untimeout(temp_id);
9115 		mutex_enter(SD_MUTEX(un));
9116 	}
9117 
9118 	/* Cancel any pending reset-throttle timeouts */
9119 	if (un->un_reset_throttle_timeid != NULL) {
9120 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
9121 		un->un_reset_throttle_timeid = NULL;
9122 		mutex_exit(SD_MUTEX(un));
9123 		(void) untimeout(temp_id);
9124 		mutex_enter(SD_MUTEX(un));
9125 	}
9126 
9127 	/* Cancel any pending retry timeouts */
9128 	if (un->un_retry_timeid != NULL) {
9129 		timeout_id_t temp_id = un->un_retry_timeid;
9130 		un->un_retry_timeid = NULL;
9131 		mutex_exit(SD_MUTEX(un));
9132 		(void) untimeout(temp_id);
9133 		mutex_enter(SD_MUTEX(un));
9134 	}
9135 
9136 	/* Cancel any pending delayed cv broadcast timeouts */
9137 	if (un->un_dcvb_timeid != NULL) {
9138 		timeout_id_t temp_id = un->un_dcvb_timeid;
9139 		un->un_dcvb_timeid = NULL;
9140 		mutex_exit(SD_MUTEX(un));
9141 		(void) untimeout(temp_id);
9142 		mutex_enter(SD_MUTEX(un));
9143 	}
9144 
9145 	mutex_exit(SD_MUTEX(un));
9146 
9147 	/* There should not be any in-progress I/O so ASSERT this check */
9148 	ASSERT(un->un_ncmds_in_transport == 0);
9149 	ASSERT(un->un_ncmds_in_driver == 0);
9150 
9151 	/* Do not free the softstate if the callback routine is active */
9152 	sd_sync_with_callback(un);
9153 
9154 	/*
9155 	 * Partition stats apparently are not used with removables. These would
9156 	 * not have been created during attach, so no need to clean them up...
9157 	 */
9158 	if (un->un_stats != NULL) {
9159 		kstat_delete(un->un_stats);
9160 		un->un_stats = NULL;
9161 	}
9162 	if (un->un_errstats != NULL) {
9163 		kstat_delete(un->un_errstats);
9164 		un->un_errstats = NULL;
9165 	}
9166 
9167 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
9168 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
9169 
9170 	ddi_prop_remove_all(devi);
9171 	sema_destroy(&un->un_semoclose);
9172 	cv_destroy(&un->un_state_cv);
9173 
9174 getrbuf_failed:
9175 
9176 	sd_free_rqs(un);
9177 
9178 alloc_rqs_failed:
9179 
9180 	devp->sd_private = NULL;
9181 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
9182 
9183 get_softstate_failed:
9184 	/*
9185 	 * Note: the man pages are unclear as to whether or not doing a
9186 	 * ddi_soft_state_free(sd_state, instance) is the right way to
9187 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
9188 	 * ddi_get_soft_state() fails.  The implication seems to be
9189 	 * that the get_soft_state cannot fail if the zalloc succeeds.
9190 	 */
9191 	ddi_soft_state_free(sd_state, instance);
9192 
9193 probe_failed:
9194 	scsi_unprobe(devp);
9195 #ifdef SDDEBUG
9196 	if ((sd_component_mask & SD_LOG_ATTACH_DETACH) &&
9197 	    (sd_level_mask & SD_LOGMASK_TRACE)) {
9198 		cmn_err(CE_CONT, "sd_unit_attach: un:0x%p exit failure\n",
9199 		    (void *)un);
9200 	}
9201 #endif
9202 	return (DDI_FAILURE);
9203 }
9204 
9205 
9206 /*
9207  *    Function: sd_unit_detach
9208  *
9209  * Description: Performs DDI_DETACH processing for sddetach().
9210  *
9211  * Return Code: DDI_SUCCESS
9212  *		DDI_FAILURE
9213  *
9214  *     Context: Kernel thread context
9215  */
9216 
9217 static int
9218 sd_unit_detach(dev_info_t *devi)
9219 {
9220 	struct scsi_device	*devp;
9221 	struct sd_lun		*un;
9222 	int			i;
9223 	int			tgt;
9224 	dev_t			dev;
9225 	dev_info_t		*pdip = ddi_get_parent(devi);
9226 	int			instance = ddi_get_instance(devi);
9227 
9228 	mutex_enter(&sd_detach_mutex);
9229 
9230 	/*
9231 	 * Fail the detach for any of the following:
9232 	 *  - Unable to get the sd_lun struct for the instance
9233 	 *  - A layered driver has an outstanding open on the instance
9234 	 *  - Another thread is already detaching this instance
9235 	 *  - Another thread is currently performing an open
9236 	 */
9237 	devp = ddi_get_driver_private(devi);
9238 	if ((devp == NULL) ||
9239 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
9240 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
9241 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
9242 		mutex_exit(&sd_detach_mutex);
9243 		return (DDI_FAILURE);
9244 	}
9245 
9246 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
9247 
9248 	/*
9249 	 * Mark this instance as currently in a detach, to inhibit any
9250 	 * opens from a layered driver.
9251 	 */
9252 	un->un_detach_count++;
9253 	mutex_exit(&sd_detach_mutex);
9254 
9255 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
9256 	    SCSI_ADDR_PROP_TARGET, -1);
9257 
9258 	dev = sd_make_device(SD_DEVINFO(un));
9259 
9260 #ifndef lint
9261 	_NOTE(COMPETING_THREADS_NOW);
9262 #endif
9263 
9264 	mutex_enter(SD_MUTEX(un));
9265 
9266 	/*
9267 	 * Fail the detach if there are any outstanding layered
9268 	 * opens on this device.
9269 	 */
9270 	for (i = 0; i < NDKMAP; i++) {
9271 		if (un->un_ocmap.lyropen[i] != 0) {
9272 			goto err_notclosed;
9273 		}
9274 	}
9275 
9276 	/*
9277 	 * Verify there are NO outstanding commands issued to this device.
9278 	 * ie, un_ncmds_in_transport == 0.
9279 	 * It's possible to have outstanding commands through the physio
9280 	 * code path, even though everything's closed.
9281 	 */
9282 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
9283 	    (un->un_direct_priority_timeid != NULL) ||
9284 	    (un->un_state == SD_STATE_RWAIT)) {
9285 		mutex_exit(SD_MUTEX(un));
9286 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9287 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
9288 		goto err_stillbusy;
9289 	}
9290 
9291 	/*
9292 	 * If we have the device reserved, release the reservation.
9293 	 */
9294 	if ((un->un_resvd_status & SD_RESERVE) &&
9295 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
9296 		mutex_exit(SD_MUTEX(un));
9297 		/*
9298 		 * Note: sd_reserve_release sends a command to the device
9299 		 * via the sd_ioctlcmd() path, and can sleep.
9300 		 */
9301 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
9302 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9303 			    "sd_dr_detach: Cannot release reservation \n");
9304 		}
9305 	} else {
9306 		mutex_exit(SD_MUTEX(un));
9307 	}
9308 
9309 	/*
9310 	 * Untimeout any reserve recover, throttle reset, restart unit
9311 	 * and delayed broadcast timeout threads. Protect the timeout pointer
9312 	 * from getting nulled by their callback functions.
9313 	 */
9314 	mutex_enter(SD_MUTEX(un));
9315 	if (un->un_resvd_timeid != NULL) {
9316 		timeout_id_t temp_id = un->un_resvd_timeid;
9317 		un->un_resvd_timeid = NULL;
9318 		mutex_exit(SD_MUTEX(un));
9319 		(void) untimeout(temp_id);
9320 		mutex_enter(SD_MUTEX(un));
9321 	}
9322 
9323 	if (un->un_reset_throttle_timeid != NULL) {
9324 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
9325 		un->un_reset_throttle_timeid = NULL;
9326 		mutex_exit(SD_MUTEX(un));
9327 		(void) untimeout(temp_id);
9328 		mutex_enter(SD_MUTEX(un));
9329 	}
9330 
9331 	if (un->un_startstop_timeid != NULL) {
9332 		timeout_id_t temp_id = un->un_startstop_timeid;
9333 		un->un_startstop_timeid = NULL;
9334 		mutex_exit(SD_MUTEX(un));
9335 		(void) untimeout(temp_id);
9336 		mutex_enter(SD_MUTEX(un));
9337 	}
9338 
9339 	if (un->un_dcvb_timeid != NULL) {
9340 		timeout_id_t temp_id = un->un_dcvb_timeid;
9341 		un->un_dcvb_timeid = NULL;
9342 		mutex_exit(SD_MUTEX(un));
9343 		(void) untimeout(temp_id);
9344 	} else {
9345 		mutex_exit(SD_MUTEX(un));
9346 	}
9347 
9348 	/* Remove any pending reservation reclaim requests for this device */
9349 	sd_rmv_resv_reclaim_req(dev);
9350 
9351 	mutex_enter(SD_MUTEX(un));
9352 
9353 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
9354 	if (un->un_direct_priority_timeid != NULL) {
9355 		timeout_id_t temp_id = un->un_direct_priority_timeid;
9356 		un->un_direct_priority_timeid = NULL;
9357 		mutex_exit(SD_MUTEX(un));
9358 		(void) untimeout(temp_id);
9359 		mutex_enter(SD_MUTEX(un));
9360 	}
9361 
9362 	/* Cancel any active multi-host disk watch thread requests */
9363 	if (un->un_mhd_token != NULL) {
9364 		mutex_exit(SD_MUTEX(un));
9365 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
9366 		if (scsi_watch_request_terminate(un->un_mhd_token,
9367 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
9368 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9369 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
9370 			/*
9371 			 * Note: We are returning here after having removed
9372 			 * some driver timeouts above. This is consistent with
9373 			 * the legacy implementation but perhaps the watch
9374 			 * terminate call should be made with the wait flag set.
9375 			 */
9376 			goto err_stillbusy;
9377 		}
9378 		mutex_enter(SD_MUTEX(un));
9379 		un->un_mhd_token = NULL;
9380 	}
9381 
9382 	if (un->un_swr_token != NULL) {
9383 		mutex_exit(SD_MUTEX(un));
9384 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
9385 		if (scsi_watch_request_terminate(un->un_swr_token,
9386 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
9387 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9388 			    "sd_dr_detach: Cannot cancel swr watch request\n");
9389 			/*
9390 			 * Note: We are returning here after having removed
9391 			 * some driver timeouts above. This is consistent with
9392 			 * the legacy implementation but perhaps the watch
9393 			 * terminate call should be made with the wait flag set.
9394 			 */
9395 			goto err_stillbusy;
9396 		}
9397 		mutex_enter(SD_MUTEX(un));
9398 		un->un_swr_token = NULL;
9399 	}
9400 
9401 	mutex_exit(SD_MUTEX(un));
9402 
9403 	/*
9404 	 * Clear any scsi_reset_notifies. We clear the reset notifies
9405 	 * if we have not registered one.
9406 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
9407 	 */
9408 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
9409 	    sd_mhd_reset_notify_cb, (caddr_t)un);
9410 
9411 	/*
9412 	 * protect the timeout pointers from getting nulled by
9413 	 * their callback functions during the cancellation process.
9414 	 * In such a scenario untimeout can be invoked with a null value.
9415 	 */
9416 	_NOTE(NO_COMPETING_THREADS_NOW);
9417 
9418 	mutex_enter(&un->un_pm_mutex);
9419 	if (un->un_pm_idle_timeid != NULL) {
9420 		timeout_id_t temp_id = un->un_pm_idle_timeid;
9421 		un->un_pm_idle_timeid = NULL;
9422 		mutex_exit(&un->un_pm_mutex);
9423 
9424 		/*
9425 		 * Timeout is active; cancel it.
9426 		 * Note that it'll never be active on a device
9427 		 * that does not support PM therefore we don't
9428 		 * have to check before calling pm_idle_component.
9429 		 */
9430 		(void) untimeout(temp_id);
9431 		(void) pm_idle_component(SD_DEVINFO(un), 0);
9432 		mutex_enter(&un->un_pm_mutex);
9433 	}
9434 
9435 	/*
9436 	 * Check whether there is already a timeout scheduled for power
9437 	 * management. If yes then don't lower the power here, that's.
9438 	 * the timeout handler's job.
9439 	 */
9440 	if (un->un_pm_timeid != NULL) {
9441 		timeout_id_t temp_id = un->un_pm_timeid;
9442 		un->un_pm_timeid = NULL;
9443 		mutex_exit(&un->un_pm_mutex);
9444 		/*
9445 		 * Timeout is active; cancel it.
9446 		 * Note that it'll never be active on a device
9447 		 * that does not support PM therefore we don't
9448 		 * have to check before calling pm_idle_component.
9449 		 */
9450 		(void) untimeout(temp_id);
9451 		(void) pm_idle_component(SD_DEVINFO(un), 0);
9452 
9453 	} else {
9454 		mutex_exit(&un->un_pm_mutex);
9455 		if ((un->un_f_pm_is_enabled == TRUE) &&
9456 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
9457 		    DDI_SUCCESS)) {
9458 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9459 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
9460 			/*
9461 			 * Fix for bug: 4297749, item # 13
9462 			 * The above test now includes a check to see if PM is
9463 			 * supported by this device before call
9464 			 * pm_lower_power().
9465 			 * Note, the following is not dead code. The call to
9466 			 * pm_lower_power above will generate a call back into
9467 			 * our sdpower routine which might result in a timeout
9468 			 * handler getting activated. Therefore the following
9469 			 * code is valid and necessary.
9470 			 */
9471 			mutex_enter(&un->un_pm_mutex);
9472 			if (un->un_pm_timeid != NULL) {
9473 				timeout_id_t temp_id = un->un_pm_timeid;
9474 				un->un_pm_timeid = NULL;
9475 				mutex_exit(&un->un_pm_mutex);
9476 				(void) untimeout(temp_id);
9477 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9478 			} else {
9479 				mutex_exit(&un->un_pm_mutex);
9480 			}
9481 		}
9482 	}
9483 
9484 	/*
9485 	 * Cleanup from the scsi_ifsetcap() calls (437868)
9486 	 * Relocated here from above to be after the call to
9487 	 * pm_lower_power, which was getting errors.
9488 	 */
9489 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
9490 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
9491 
9492 	/*
9493 	 * Currently, tagged queuing is supported per target based by HBA.
9494 	 * Setting this per lun instance actually sets the capability of this
9495 	 * target in HBA, which affects those luns already attached on the
9496 	 * same target. So during detach, we can only disable this capability
9497 	 * only when this is the only lun left on this target. By doing
9498 	 * this, we assume a target has the same tagged queuing capability
9499 	 * for every lun. The condition can be removed when HBA is changed to
9500 	 * support per lun based tagged queuing capability.
9501 	 */
9502 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
9503 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
9504 	}
9505 
9506 	if (un->un_f_is_fibre == FALSE) {
9507 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
9508 	}
9509 
9510 	/*
9511 	 * Remove any event callbacks, fibre only
9512 	 */
9513 	if (un->un_f_is_fibre == TRUE) {
9514 		if ((un->un_insert_event != NULL) &&
9515 			(ddi_remove_event_handler(un->un_insert_cb_id) !=
9516 				DDI_SUCCESS)) {
9517 			/*
9518 			 * Note: We are returning here after having done
9519 			 * substantial cleanup above. This is consistent
9520 			 * with the legacy implementation but this may not
9521 			 * be the right thing to do.
9522 			 */
9523 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9524 				"sd_dr_detach: Cannot cancel insert event\n");
9525 			goto err_remove_event;
9526 		}
9527 		un->un_insert_event = NULL;
9528 
9529 		if ((un->un_remove_event != NULL) &&
9530 			(ddi_remove_event_handler(un->un_remove_cb_id) !=
9531 				DDI_SUCCESS)) {
9532 			/*
9533 			 * Note: We are returning here after having done
9534 			 * substantial cleanup above. This is consistent
9535 			 * with the legacy implementation but this may not
9536 			 * be the right thing to do.
9537 			 */
9538 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9539 				"sd_dr_detach: Cannot cancel remove event\n");
9540 			goto err_remove_event;
9541 		}
9542 		un->un_remove_event = NULL;
9543 	}
9544 
9545 	/* Do not free the softstate if the callback routine is active */
9546 	sd_sync_with_callback(un);
9547 
9548 	/*
9549 	 * Hold the detach mutex here, to make sure that no other threads ever
9550 	 * can access a (partially) freed soft state structure.
9551 	 */
9552 	mutex_enter(&sd_detach_mutex);
9553 
9554 	/*
9555 	 * Clean up the soft state struct.
9556 	 * Cleanup is done in reverse order of allocs/inits.
9557 	 * At this point there should be no competing threads anymore.
9558 	 */
9559 
9560 	/* Unregister and free device id. */
9561 	ddi_devid_unregister(devi);
9562 	if (un->un_devid) {
9563 		ddi_devid_free(un->un_devid);
9564 		un->un_devid = NULL;
9565 	}
9566 
9567 	/*
9568 	 * Destroy wmap cache if it exists.
9569 	 */
9570 	if (un->un_wm_cache != NULL) {
9571 		kmem_cache_destroy(un->un_wm_cache);
9572 		un->un_wm_cache = NULL;
9573 	}
9574 
9575 	/* Remove minor nodes */
9576 	ddi_remove_minor_node(devi, NULL);
9577 
9578 	/*
9579 	 * kstat cleanup is done in detach for all device types (4363169).
9580 	 * We do not want to fail detach if the device kstats are not deleted
9581 	 * since there is a confusion about the devo_refcnt for the device.
9582 	 * We just delete the kstats and let detach complete successfully.
9583 	 */
9584 	if (un->un_stats != NULL) {
9585 		kstat_delete(un->un_stats);
9586 		un->un_stats = NULL;
9587 	}
9588 	if (un->un_errstats != NULL) {
9589 		kstat_delete(un->un_errstats);
9590 		un->un_errstats = NULL;
9591 	}
9592 
9593 	/* Remove partition stats */
9594 	if (un->un_f_pkstats_enabled) {
9595 		for (i = 0; i < NSDMAP; i++) {
9596 			if (un->un_pstats[i] != NULL) {
9597 				kstat_delete(un->un_pstats[i]);
9598 				un->un_pstats[i] = NULL;
9599 			}
9600 		}
9601 	}
9602 
9603 	/* Remove xbuf registration */
9604 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
9605 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
9606 
9607 	/* Remove driver properties */
9608 	ddi_prop_remove_all(devi);
9609 
9610 	mutex_destroy(&un->un_pm_mutex);
9611 	cv_destroy(&un->un_pm_busy_cv);
9612 
9613 	cv_destroy(&un->un_wcc_cv);
9614 
9615 	/* Open/close semaphore */
9616 	sema_destroy(&un->un_semoclose);
9617 
9618 	/* Removable media condvar. */
9619 	cv_destroy(&un->un_state_cv);
9620 
9621 	/* Suspend/resume condvar. */
9622 	cv_destroy(&un->un_suspend_cv);
9623 	cv_destroy(&un->un_disk_busy_cv);
9624 
9625 	sd_free_rqs(un);
9626 
9627 	/* Free up soft state */
9628 	devp->sd_private = NULL;
9629 	bzero(un, sizeof (struct sd_lun));
9630 	ddi_soft_state_free(sd_state, instance);
9631 
9632 	mutex_exit(&sd_detach_mutex);
9633 
9634 	/* This frees up the INQUIRY data associated with the device. */
9635 	scsi_unprobe(devp);
9636 
9637 	/*
9638 	 * After successfully detaching an instance, we update the information
9639 	 * of how many luns have been attached in the relative target and
9640 	 * controller for parallel SCSI. This information is used when sd tries
9641 	 * to set the tagged queuing capability in HBA.
9642 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
9643 	 * check if the device is parallel SCSI. However, we don't need to
9644 	 * check here because we've already checked during attach. No device
9645 	 * that is not parallel SCSI is in the chain.
9646 	 */
9647 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
9648 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
9649 	}
9650 
9651 	return (DDI_SUCCESS);
9652 
9653 err_notclosed:
9654 	mutex_exit(SD_MUTEX(un));
9655 
9656 err_stillbusy:
9657 	_NOTE(NO_COMPETING_THREADS_NOW);
9658 
9659 err_remove_event:
9660 	mutex_enter(&sd_detach_mutex);
9661 	un->un_detach_count--;
9662 	mutex_exit(&sd_detach_mutex);
9663 
9664 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
9665 	return (DDI_FAILURE);
9666 }
9667 
9668 
9669 /*
9670  * Driver minor node structure and data table
9671  */
9672 struct driver_minor_data {
9673 	char	*name;
9674 	minor_t	minor;
9675 	int	type;
9676 };
9677 
9678 static struct driver_minor_data sd_minor_data[] = {
9679 	{"a", 0, S_IFBLK},
9680 	{"b", 1, S_IFBLK},
9681 	{"c", 2, S_IFBLK},
9682 	{"d", 3, S_IFBLK},
9683 	{"e", 4, S_IFBLK},
9684 	{"f", 5, S_IFBLK},
9685 	{"g", 6, S_IFBLK},
9686 	{"h", 7, S_IFBLK},
9687 #if defined(_SUNOS_VTOC_16)
9688 	{"i", 8, S_IFBLK},
9689 	{"j", 9, S_IFBLK},
9690 	{"k", 10, S_IFBLK},
9691 	{"l", 11, S_IFBLK},
9692 	{"m", 12, S_IFBLK},
9693 	{"n", 13, S_IFBLK},
9694 	{"o", 14, S_IFBLK},
9695 	{"p", 15, S_IFBLK},
9696 #endif			/* defined(_SUNOS_VTOC_16) */
9697 #if defined(_FIRMWARE_NEEDS_FDISK)
9698 	{"q", 16, S_IFBLK},
9699 	{"r", 17, S_IFBLK},
9700 	{"s", 18, S_IFBLK},
9701 	{"t", 19, S_IFBLK},
9702 	{"u", 20, S_IFBLK},
9703 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9704 	{"a,raw", 0, S_IFCHR},
9705 	{"b,raw", 1, S_IFCHR},
9706 	{"c,raw", 2, S_IFCHR},
9707 	{"d,raw", 3, S_IFCHR},
9708 	{"e,raw", 4, S_IFCHR},
9709 	{"f,raw", 5, S_IFCHR},
9710 	{"g,raw", 6, S_IFCHR},
9711 	{"h,raw", 7, S_IFCHR},
9712 #if defined(_SUNOS_VTOC_16)
9713 	{"i,raw", 8, S_IFCHR},
9714 	{"j,raw", 9, S_IFCHR},
9715 	{"k,raw", 10, S_IFCHR},
9716 	{"l,raw", 11, S_IFCHR},
9717 	{"m,raw", 12, S_IFCHR},
9718 	{"n,raw", 13, S_IFCHR},
9719 	{"o,raw", 14, S_IFCHR},
9720 	{"p,raw", 15, S_IFCHR},
9721 #endif			/* defined(_SUNOS_VTOC_16) */
9722 #if defined(_FIRMWARE_NEEDS_FDISK)
9723 	{"q,raw", 16, S_IFCHR},
9724 	{"r,raw", 17, S_IFCHR},
9725 	{"s,raw", 18, S_IFCHR},
9726 	{"t,raw", 19, S_IFCHR},
9727 	{"u,raw", 20, S_IFCHR},
9728 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9729 	{0}
9730 };
9731 
9732 static struct driver_minor_data sd_minor_data_efi[] = {
9733 	{"a", 0, S_IFBLK},
9734 	{"b", 1, S_IFBLK},
9735 	{"c", 2, S_IFBLK},
9736 	{"d", 3, S_IFBLK},
9737 	{"e", 4, S_IFBLK},
9738 	{"f", 5, S_IFBLK},
9739 	{"g", 6, S_IFBLK},
9740 	{"wd", 7, S_IFBLK},
9741 #if defined(_FIRMWARE_NEEDS_FDISK)
9742 	{"q", 16, S_IFBLK},
9743 	{"r", 17, S_IFBLK},
9744 	{"s", 18, S_IFBLK},
9745 	{"t", 19, S_IFBLK},
9746 	{"u", 20, S_IFBLK},
9747 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9748 	{"a,raw", 0, S_IFCHR},
9749 	{"b,raw", 1, S_IFCHR},
9750 	{"c,raw", 2, S_IFCHR},
9751 	{"d,raw", 3, S_IFCHR},
9752 	{"e,raw", 4, S_IFCHR},
9753 	{"f,raw", 5, S_IFCHR},
9754 	{"g,raw", 6, S_IFCHR},
9755 	{"wd,raw", 7, S_IFCHR},
9756 #if defined(_FIRMWARE_NEEDS_FDISK)
9757 	{"q,raw", 16, S_IFCHR},
9758 	{"r,raw", 17, S_IFCHR},
9759 	{"s,raw", 18, S_IFCHR},
9760 	{"t,raw", 19, S_IFCHR},
9761 	{"u,raw", 20, S_IFCHR},
9762 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9763 	{0}
9764 };
9765 
9766 
9767 /*
9768  *    Function: sd_create_minor_nodes
9769  *
9770  * Description: Create the minor device nodes for the instance.
9771  *
9772  *   Arguments: un - driver soft state (unit) structure
9773  *		devi - pointer to device info structure
9774  *
9775  * Return Code: DDI_SUCCESS
9776  *		DDI_FAILURE
9777  *
9778  *     Context: Kernel thread context
9779  */
9780 
9781 static int
9782 sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi)
9783 {
9784 	struct driver_minor_data	*dmdp;
9785 	struct scsi_device		*devp;
9786 	int				instance;
9787 	char				name[48];
9788 
9789 	ASSERT(un != NULL);
9790 	devp = ddi_get_driver_private(devi);
9791 	instance = ddi_get_instance(devp->sd_dev);
9792 
9793 	/*
9794 	 * Create all the minor nodes for this target.
9795 	 */
9796 	if (un->un_blockcount > DK_MAX_BLOCKS)
9797 		dmdp = sd_minor_data_efi;
9798 	else
9799 		dmdp = sd_minor_data;
9800 	while (dmdp->name != NULL) {
9801 
9802 		(void) sprintf(name, "%s", dmdp->name);
9803 
9804 		if (ddi_create_minor_node(devi, name, dmdp->type,
9805 		    (instance << SDUNIT_SHIFT) | dmdp->minor,
9806 		    un->un_node_type, NULL) == DDI_FAILURE) {
9807 			/*
9808 			 * Clean up any nodes that may have been created, in
9809 			 * case this fails in the middle of the loop.
9810 			 */
9811 			ddi_remove_minor_node(devi, NULL);
9812 			return (DDI_FAILURE);
9813 		}
9814 		dmdp++;
9815 	}
9816 
9817 	return (DDI_SUCCESS);
9818 }
9819 
9820 
9821 /*
9822  *    Function: sd_create_errstats
9823  *
9824  * Description: This routine instantiates the device error stats.
9825  *
9826  *		Note: During attach the stats are instantiated first so they are
9827  *		available for attach-time routines that utilize the driver
9828  *		iopath to send commands to the device. The stats are initialized
9829  *		separately so data obtained during some attach-time routines is
9830  *		available. (4362483)
9831  *
9832  *   Arguments: un - driver soft state (unit) structure
9833  *		instance - driver instance
9834  *
9835  *     Context: Kernel thread context
9836  */
9837 
9838 static void
9839 sd_create_errstats(struct sd_lun *un, int instance)
9840 {
9841 	struct	sd_errstats	*stp;
9842 	char	kstatmodule_err[KSTAT_STRLEN];
9843 	char	kstatname[KSTAT_STRLEN];
9844 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
9845 
9846 	ASSERT(un != NULL);
9847 
9848 	if (un->un_errstats != NULL) {
9849 		return;
9850 	}
9851 
9852 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
9853 	    "%serr", sd_label);
9854 	(void) snprintf(kstatname, sizeof (kstatname),
9855 	    "%s%d,err", sd_label, instance);
9856 
9857 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
9858 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
9859 
9860 	if (un->un_errstats == NULL) {
9861 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9862 		    "sd_create_errstats: Failed kstat_create\n");
9863 		return;
9864 	}
9865 
9866 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9867 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
9868 	    KSTAT_DATA_UINT32);
9869 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
9870 	    KSTAT_DATA_UINT32);
9871 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
9872 	    KSTAT_DATA_UINT32);
9873 	kstat_named_init(&stp->sd_vid,		"Vendor",
9874 	    KSTAT_DATA_CHAR);
9875 	kstat_named_init(&stp->sd_pid,		"Product",
9876 	    KSTAT_DATA_CHAR);
9877 	kstat_named_init(&stp->sd_revision,	"Revision",
9878 	    KSTAT_DATA_CHAR);
9879 	kstat_named_init(&stp->sd_serial,	"Serial No",
9880 	    KSTAT_DATA_CHAR);
9881 	kstat_named_init(&stp->sd_capacity,	"Size",
9882 	    KSTAT_DATA_ULONGLONG);
9883 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
9884 	    KSTAT_DATA_UINT32);
9885 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
9886 	    KSTAT_DATA_UINT32);
9887 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
9888 	    KSTAT_DATA_UINT32);
9889 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
9890 	    KSTAT_DATA_UINT32);
9891 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
9892 	    KSTAT_DATA_UINT32);
9893 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
9894 	    KSTAT_DATA_UINT32);
9895 
9896 	un->un_errstats->ks_private = un;
9897 	un->un_errstats->ks_update  = nulldev;
9898 
9899 	kstat_install(un->un_errstats);
9900 }
9901 
9902 
9903 /*
9904  *    Function: sd_set_errstats
9905  *
9906  * Description: This routine sets the value of the vendor id, product id,
9907  *		revision, serial number, and capacity device error stats.
9908  *
9909  *		Note: During attach the stats are instantiated first so they are
9910  *		available for attach-time routines that utilize the driver
9911  *		iopath to send commands to the device. The stats are initialized
9912  *		separately so data obtained during some attach-time routines is
9913  *		available. (4362483)
9914  *
9915  *   Arguments: un - driver soft state (unit) structure
9916  *
9917  *     Context: Kernel thread context
9918  */
9919 
9920 static void
9921 sd_set_errstats(struct sd_lun *un)
9922 {
9923 	struct	sd_errstats	*stp;
9924 
9925 	ASSERT(un != NULL);
9926 	ASSERT(un->un_errstats != NULL);
9927 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9928 	ASSERT(stp != NULL);
9929 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
9930 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
9931 	(void) strncpy(stp->sd_revision.value.c,
9932 	    un->un_sd->sd_inq->inq_revision, 4);
9933 
9934 	/*
9935 	 * All the errstats are persistent across detach/attach,
9936 	 * so reset all the errstats here in case of the hot
9937 	 * replacement of disk drives, except for not changed
9938 	 * Sun qualified drives.
9939 	 */
9940 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
9941 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9942 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
9943 		stp->sd_softerrs.value.ui32 = 0;
9944 		stp->sd_harderrs.value.ui32 = 0;
9945 		stp->sd_transerrs.value.ui32 = 0;
9946 		stp->sd_rq_media_err.value.ui32 = 0;
9947 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
9948 		stp->sd_rq_nodev_err.value.ui32 = 0;
9949 		stp->sd_rq_recov_err.value.ui32 = 0;
9950 		stp->sd_rq_illrq_err.value.ui32 = 0;
9951 		stp->sd_rq_pfa_err.value.ui32 = 0;
9952 	}
9953 
9954 	/*
9955 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
9956 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
9957 	 * (4376302))
9958 	 */
9959 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
9960 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9961 		    sizeof (SD_INQUIRY(un)->inq_serial));
9962 	}
9963 
9964 	if (un->un_f_blockcount_is_valid != TRUE) {
9965 		/*
9966 		 * Set capacity error stat to 0 for no media. This ensures
9967 		 * a valid capacity is displayed in response to 'iostat -E'
9968 		 * when no media is present in the device.
9969 		 */
9970 		stp->sd_capacity.value.ui64 = 0;
9971 	} else {
9972 		/*
9973 		 * Multiply un_blockcount by un->un_sys_blocksize to get
9974 		 * capacity.
9975 		 *
9976 		 * Note: for non-512 blocksize devices "un_blockcount" has been
9977 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
9978 		 * (un_tgt_blocksize / un->un_sys_blocksize).
9979 		 */
9980 		stp->sd_capacity.value.ui64 = (uint64_t)
9981 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
9982 	}
9983 }
9984 
9985 
9986 /*
9987  *    Function: sd_set_pstats
9988  *
9989  * Description: This routine instantiates and initializes the partition
9990  *              stats for each partition with more than zero blocks.
9991  *		(4363169)
9992  *
9993  *   Arguments: un - driver soft state (unit) structure
9994  *
9995  *     Context: Kernel thread context
9996  */
9997 
9998 static void
9999 sd_set_pstats(struct sd_lun *un)
10000 {
10001 	char	kstatname[KSTAT_STRLEN];
10002 	int	instance;
10003 	int	i;
10004 
10005 	ASSERT(un != NULL);
10006 
10007 	instance = ddi_get_instance(SD_DEVINFO(un));
10008 
10009 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
10010 	for (i = 0; i < NSDMAP; i++) {
10011 		if ((un->un_pstats[i] == NULL) &&
10012 		    (un->un_map[i].dkl_nblk != 0)) {
10013 			(void) snprintf(kstatname, sizeof (kstatname),
10014 			    "%s%d,%s", sd_label, instance,
10015 			    sd_minor_data[i].name);
10016 			un->un_pstats[i] = kstat_create(sd_label,
10017 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
10018 			    1, KSTAT_FLAG_PERSISTENT);
10019 			if (un->un_pstats[i] != NULL) {
10020 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
10021 				kstat_install(un->un_pstats[i]);
10022 			}
10023 		}
10024 	}
10025 }
10026 
10027 
10028 #if (defined(__fibre))
10029 /*
10030  *    Function: sd_init_event_callbacks
10031  *
10032  * Description: This routine initializes the insertion and removal event
10033  *		callbacks. (fibre only)
10034  *
10035  *   Arguments: un - driver soft state (unit) structure
10036  *
10037  *     Context: Kernel thread context
10038  */
10039 
10040 static void
10041 sd_init_event_callbacks(struct sd_lun *un)
10042 {
10043 	ASSERT(un != NULL);
10044 
10045 	if ((un->un_insert_event == NULL) &&
10046 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
10047 	    &un->un_insert_event) == DDI_SUCCESS)) {
10048 		/*
10049 		 * Add the callback for an insertion event
10050 		 */
10051 		(void) ddi_add_event_handler(SD_DEVINFO(un),
10052 		    un->un_insert_event, sd_event_callback, (void *)un,
10053 		    &(un->un_insert_cb_id));
10054 	}
10055 
10056 	if ((un->un_remove_event == NULL) &&
10057 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
10058 	    &un->un_remove_event) == DDI_SUCCESS)) {
10059 		/*
10060 		 * Add the callback for a removal event
10061 		 */
10062 		(void) ddi_add_event_handler(SD_DEVINFO(un),
10063 		    un->un_remove_event, sd_event_callback, (void *)un,
10064 		    &(un->un_remove_cb_id));
10065 	}
10066 }
10067 
10068 
10069 /*
10070  *    Function: sd_event_callback
10071  *
10072  * Description: This routine handles insert/remove events (photon). The
10073  *		state is changed to OFFLINE which can be used to supress
10074  *		error msgs. (fibre only)
10075  *
10076  *   Arguments: un - driver soft state (unit) structure
10077  *
10078  *     Context: Callout thread context
10079  */
10080 /* ARGSUSED */
10081 static void
10082 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
10083     void *bus_impldata)
10084 {
10085 	struct sd_lun *un = (struct sd_lun *)arg;
10086 
10087 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
10088 	if (event == un->un_insert_event) {
10089 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
10090 		mutex_enter(SD_MUTEX(un));
10091 		if (un->un_state == SD_STATE_OFFLINE) {
10092 			if (un->un_last_state != SD_STATE_SUSPENDED) {
10093 				un->un_state = un->un_last_state;
10094 			} else {
10095 				/*
10096 				 * We have gone through SUSPEND/RESUME while
10097 				 * we were offline. Restore the last state
10098 				 */
10099 				un->un_state = un->un_save_state;
10100 			}
10101 		}
10102 		mutex_exit(SD_MUTEX(un));
10103 
10104 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
10105 	} else if (event == un->un_remove_event) {
10106 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
10107 		mutex_enter(SD_MUTEX(un));
10108 		/*
10109 		 * We need to handle an event callback that occurs during
10110 		 * the suspend operation, since we don't prevent it.
10111 		 */
10112 		if (un->un_state != SD_STATE_OFFLINE) {
10113 			if (un->un_state != SD_STATE_SUSPENDED) {
10114 				New_state(un, SD_STATE_OFFLINE);
10115 			} else {
10116 				un->un_last_state = SD_STATE_OFFLINE;
10117 			}
10118 		}
10119 		mutex_exit(SD_MUTEX(un));
10120 	} else {
10121 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
10122 		    "!Unknown event\n");
10123 	}
10124 
10125 }
10126 #endif
10127 
10128 /*
10129  *    Function: sd_cache_control()
10130  *
10131  * Description: This routine is the driver entry point for setting
10132  *		read and write caching by modifying the WCE (write cache
10133  *		enable) and RCD (read cache disable) bits of mode
10134  *		page 8 (MODEPAGE_CACHING).
10135  *
10136  *   Arguments: un - driver soft state (unit) structure
10137  *		rcd_flag - flag for controlling the read cache
10138  *		wce_flag - flag for controlling the write cache
10139  *
10140  * Return Code: EIO
10141  *		code returned by sd_send_scsi_MODE_SENSE and
10142  *		sd_send_scsi_MODE_SELECT
10143  *
10144  *     Context: Kernel Thread
10145  */
10146 
10147 static int
10148 sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag)
10149 {
10150 	struct mode_caching	*mode_caching_page;
10151 	uchar_t			*header;
10152 	size_t			buflen;
10153 	int			hdrlen;
10154 	int			bd_len;
10155 	int			rval = 0;
10156 	struct mode_header_grp2	*mhp;
10157 
10158 	ASSERT(un != NULL);
10159 
10160 	/*
10161 	 * Do a test unit ready, otherwise a mode sense may not work if this
10162 	 * is the first command sent to the device after boot.
10163 	 */
10164 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
10165 
10166 	if (un->un_f_cfg_is_atapi == TRUE) {
10167 		hdrlen = MODE_HEADER_LENGTH_GRP2;
10168 	} else {
10169 		hdrlen = MODE_HEADER_LENGTH;
10170 	}
10171 
10172 	/*
10173 	 * Allocate memory for the retrieved mode page and its headers.  Set
10174 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
10175 	 * we get all of the mode sense data otherwise, the mode select
10176 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
10177 	 */
10178 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
10179 		sizeof (struct mode_cache_scsi3);
10180 
10181 	header = kmem_zalloc(buflen, KM_SLEEP);
10182 
10183 	/* Get the information from the device. */
10184 	if (un->un_f_cfg_is_atapi == TRUE) {
10185 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
10186 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
10187 	} else {
10188 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
10189 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
10190 	}
10191 	if (rval != 0) {
10192 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
10193 		    "sd_cache_control: Mode Sense Failed\n");
10194 		kmem_free(header, buflen);
10195 		return (rval);
10196 	}
10197 
10198 	/*
10199 	 * Determine size of Block Descriptors in order to locate
10200 	 * the mode page data. ATAPI devices return 0, SCSI devices
10201 	 * should return MODE_BLK_DESC_LENGTH.
10202 	 */
10203 	if (un->un_f_cfg_is_atapi == TRUE) {
10204 		mhp	= (struct mode_header_grp2 *)header;
10205 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
10206 	} else {
10207 		bd_len  = ((struct mode_header *)header)->bdesc_length;
10208 	}
10209 
10210 	if (bd_len > MODE_BLK_DESC_LENGTH) {
10211 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10212 		    "sd_cache_control: Mode Sense returned invalid "
10213 		    "block descriptor length\n");
10214 		kmem_free(header, buflen);
10215 		return (EIO);
10216 	}
10217 
10218 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
10219 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
10220 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
10221 		    " caching page code mismatch %d\n",
10222 		    mode_caching_page->mode_page.code);
10223 		kmem_free(header, buflen);
10224 		return (EIO);
10225 	}
10226 
10227 	/* Check the relevant bits on successful mode sense. */
10228 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
10229 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
10230 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
10231 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
10232 
10233 		size_t sbuflen;
10234 		uchar_t save_pg;
10235 
10236 		/*
10237 		 * Construct select buffer length based on the
10238 		 * length of the sense data returned.
10239 		 */
10240 		sbuflen =  hdrlen + MODE_BLK_DESC_LENGTH +
10241 				sizeof (struct mode_page) +
10242 				(int)mode_caching_page->mode_page.length;
10243 
10244 		/*
10245 		 * Set the caching bits as requested.
10246 		 */
10247 		if (rcd_flag == SD_CACHE_ENABLE)
10248 			mode_caching_page->rcd = 0;
10249 		else if (rcd_flag == SD_CACHE_DISABLE)
10250 			mode_caching_page->rcd = 1;
10251 
10252 		if (wce_flag == SD_CACHE_ENABLE)
10253 			mode_caching_page->wce = 1;
10254 		else if (wce_flag == SD_CACHE_DISABLE)
10255 			mode_caching_page->wce = 0;
10256 
10257 		/*
10258 		 * Save the page if the mode sense says the
10259 		 * drive supports it.
10260 		 */
10261 		save_pg = mode_caching_page->mode_page.ps ?
10262 				SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
10263 
10264 		/* Clear reserved bits before mode select. */
10265 		mode_caching_page->mode_page.ps = 0;
10266 
10267 		/*
10268 		 * Clear out mode header for mode select.
10269 		 * The rest of the retrieved page will be reused.
10270 		 */
10271 		bzero(header, hdrlen);
10272 
10273 		if (un->un_f_cfg_is_atapi == TRUE) {
10274 			mhp = (struct mode_header_grp2 *)header;
10275 			mhp->bdesc_length_hi = bd_len >> 8;
10276 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
10277 		} else {
10278 			((struct mode_header *)header)->bdesc_length = bd_len;
10279 		}
10280 
10281 		/* Issue mode select to change the cache settings */
10282 		if (un->un_f_cfg_is_atapi == TRUE) {
10283 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header,
10284 			    sbuflen, save_pg, SD_PATH_DIRECT);
10285 		} else {
10286 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
10287 			    sbuflen, save_pg, SD_PATH_DIRECT);
10288 		}
10289 	}
10290 
10291 	kmem_free(header, buflen);
10292 	return (rval);
10293 }
10294 
10295 
10296 /*
10297  *    Function: sd_get_write_cache_enabled()
10298  *
10299  * Description: This routine is the driver entry point for determining if
10300  *		write caching is enabled.  It examines the WCE (write cache
10301  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
10302  *
10303  *   Arguments: un - driver soft state (unit) structure
10304  *   		is_enabled - pointer to int where write cache enabled state
10305  *   			is returned (non-zero -> write cache enabled)
10306  *
10307  *
10308  * Return Code: EIO
10309  *		code returned by sd_send_scsi_MODE_SENSE
10310  *
10311  *     Context: Kernel Thread
10312  *
10313  * NOTE: If ioctl is added to disable write cache, this sequence should
10314  * be followed so that no locking is required for accesses to
10315  * un->un_f_write_cache_enabled:
10316  * 	do mode select to clear wce
10317  * 	do synchronize cache to flush cache
10318  * 	set un->un_f_write_cache_enabled = FALSE
10319  *
10320  * Conversely, an ioctl to enable the write cache should be done
10321  * in this order:
10322  * 	set un->un_f_write_cache_enabled = TRUE
10323  * 	do mode select to set wce
10324  */
10325 
10326 static int
10327 sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled)
10328 {
10329 	struct mode_caching	*mode_caching_page;
10330 	uchar_t			*header;
10331 	size_t			buflen;
10332 	int			hdrlen;
10333 	int			bd_len;
10334 	int			rval = 0;
10335 
10336 	ASSERT(un != NULL);
10337 	ASSERT(is_enabled != NULL);
10338 
10339 	/* in case of error, flag as enabled */
10340 	*is_enabled = TRUE;
10341 
10342 	/*
10343 	 * Do a test unit ready, otherwise a mode sense may not work if this
10344 	 * is the first command sent to the device after boot.
10345 	 */
10346 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
10347 
10348 	if (un->un_f_cfg_is_atapi == TRUE) {
10349 		hdrlen = MODE_HEADER_LENGTH_GRP2;
10350 	} else {
10351 		hdrlen = MODE_HEADER_LENGTH;
10352 	}
10353 
10354 	/*
10355 	 * Allocate memory for the retrieved mode page and its headers.  Set
10356 	 * a pointer to the page itself.
10357 	 */
10358 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
10359 	header = kmem_zalloc(buflen, KM_SLEEP);
10360 
10361 	/* Get the information from the device. */
10362 	if (un->un_f_cfg_is_atapi == TRUE) {
10363 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
10364 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
10365 	} else {
10366 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
10367 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
10368 	}
10369 	if (rval != 0) {
10370 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
10371 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
10372 		kmem_free(header, buflen);
10373 		return (rval);
10374 	}
10375 
10376 	/*
10377 	 * Determine size of Block Descriptors in order to locate
10378 	 * the mode page data. ATAPI devices return 0, SCSI devices
10379 	 * should return MODE_BLK_DESC_LENGTH.
10380 	 */
10381 	if (un->un_f_cfg_is_atapi == TRUE) {
10382 		struct mode_header_grp2	*mhp;
10383 		mhp	= (struct mode_header_grp2 *)header;
10384 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
10385 	} else {
10386 		bd_len  = ((struct mode_header *)header)->bdesc_length;
10387 	}
10388 
10389 	if (bd_len > MODE_BLK_DESC_LENGTH) {
10390 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10391 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
10392 		    "block descriptor length\n");
10393 		kmem_free(header, buflen);
10394 		return (EIO);
10395 	}
10396 
10397 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
10398 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
10399 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
10400 		    " caching page code mismatch %d\n",
10401 		    mode_caching_page->mode_page.code);
10402 		kmem_free(header, buflen);
10403 		return (EIO);
10404 	}
10405 	*is_enabled = mode_caching_page->wce;
10406 
10407 	kmem_free(header, buflen);
10408 	return (0);
10409 }
10410 
10411 
10412 /*
10413  *    Function: sd_make_device
10414  *
10415  * Description: Utility routine to return the Solaris device number from
10416  *		the data in the device's dev_info structure.
10417  *
10418  * Return Code: The Solaris device number
10419  *
10420  *     Context: Any
10421  */
10422 
10423 static dev_t
10424 sd_make_device(dev_info_t *devi)
10425 {
10426 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
10427 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
10428 }
10429 
10430 
10431 /*
10432  *    Function: sd_pm_entry
10433  *
10434  * Description: Called at the start of a new command to manage power
10435  *		and busy status of a device. This includes determining whether
10436  *		the current power state of the device is sufficient for
10437  *		performing the command or whether it must be changed.
10438  *		The PM framework is notified appropriately.
10439  *		Only with a return status of DDI_SUCCESS will the
10440  *		component be busy to the framework.
10441  *
10442  *		All callers of sd_pm_entry must check the return status
10443  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
10444  *		of DDI_FAILURE indicates the device failed to power up.
10445  *		In this case un_pm_count has been adjusted so the result
10446  *		on exit is still powered down, ie. count is less than 0.
10447  *		Calling sd_pm_exit with this count value hits an ASSERT.
10448  *
10449  * Return Code: DDI_SUCCESS or DDI_FAILURE
10450  *
10451  *     Context: Kernel thread context.
10452  */
10453 
10454 static int
10455 sd_pm_entry(struct sd_lun *un)
10456 {
10457 	int return_status = DDI_SUCCESS;
10458 
10459 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10460 	ASSERT(!mutex_owned(&un->un_pm_mutex));
10461 
10462 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
10463 
10464 	if (un->un_f_pm_is_enabled == FALSE) {
10465 		SD_TRACE(SD_LOG_IO_PM, un,
10466 		    "sd_pm_entry: exiting, PM not enabled\n");
10467 		return (return_status);
10468 	}
10469 
10470 	/*
10471 	 * Just increment a counter if PM is enabled. On the transition from
10472 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
10473 	 * the count with each IO and mark the device as idle when the count
10474 	 * hits 0.
10475 	 *
10476 	 * If the count is less than 0 the device is powered down. If a powered
10477 	 * down device is successfully powered up then the count must be
10478 	 * incremented to reflect the power up. Note that it'll get incremented
10479 	 * a second time to become busy.
10480 	 *
10481 	 * Because the following has the potential to change the device state
10482 	 * and must release the un_pm_mutex to do so, only one thread can be
10483 	 * allowed through at a time.
10484 	 */
10485 
10486 	mutex_enter(&un->un_pm_mutex);
10487 	while (un->un_pm_busy == TRUE) {
10488 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
10489 	}
10490 	un->un_pm_busy = TRUE;
10491 
10492 	if (un->un_pm_count < 1) {
10493 
10494 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
10495 
10496 		/*
10497 		 * Indicate we are now busy so the framework won't attempt to
10498 		 * power down the device. This call will only fail if either
10499 		 * we passed a bad component number or the device has no
10500 		 * components. Neither of these should ever happen.
10501 		 */
10502 		mutex_exit(&un->un_pm_mutex);
10503 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
10504 		ASSERT(return_status == DDI_SUCCESS);
10505 
10506 		mutex_enter(&un->un_pm_mutex);
10507 
10508 		if (un->un_pm_count < 0) {
10509 			mutex_exit(&un->un_pm_mutex);
10510 
10511 			SD_TRACE(SD_LOG_IO_PM, un,
10512 			    "sd_pm_entry: power up component\n");
10513 
10514 			/*
10515 			 * pm_raise_power will cause sdpower to be called
10516 			 * which brings the device power level to the
10517 			 * desired state, ON in this case. If successful,
10518 			 * un_pm_count and un_power_level will be updated
10519 			 * appropriately.
10520 			 */
10521 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
10522 			    SD_SPINDLE_ON);
10523 
10524 			mutex_enter(&un->un_pm_mutex);
10525 
10526 			if (return_status != DDI_SUCCESS) {
10527 				/*
10528 				 * Power up failed.
10529 				 * Idle the device and adjust the count
10530 				 * so the result on exit is that we're
10531 				 * still powered down, ie. count is less than 0.
10532 				 */
10533 				SD_TRACE(SD_LOG_IO_PM, un,
10534 				    "sd_pm_entry: power up failed,"
10535 				    " idle the component\n");
10536 
10537 				(void) pm_idle_component(SD_DEVINFO(un), 0);
10538 				un->un_pm_count--;
10539 			} else {
10540 				/*
10541 				 * Device is powered up, verify the
10542 				 * count is non-negative.
10543 				 * This is debug only.
10544 				 */
10545 				ASSERT(un->un_pm_count == 0);
10546 			}
10547 		}
10548 
10549 		if (return_status == DDI_SUCCESS) {
10550 			/*
10551 			 * For performance, now that the device has been tagged
10552 			 * as busy, and it's known to be powered up, update the
10553 			 * chain types to use jump tables that do not include
10554 			 * pm. This significantly lowers the overhead and
10555 			 * therefore improves performance.
10556 			 */
10557 
10558 			mutex_exit(&un->un_pm_mutex);
10559 			mutex_enter(SD_MUTEX(un));
10560 			SD_TRACE(SD_LOG_IO_PM, un,
10561 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
10562 			    un->un_uscsi_chain_type);
10563 
10564 			if (un->un_f_non_devbsize_supported) {
10565 				un->un_buf_chain_type =
10566 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
10567 			} else {
10568 				un->un_buf_chain_type =
10569 				    SD_CHAIN_INFO_DISK_NO_PM;
10570 			}
10571 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
10572 
10573 			SD_TRACE(SD_LOG_IO_PM, un,
10574 			    "             changed  uscsi_chain_type to   %d\n",
10575 			    un->un_uscsi_chain_type);
10576 			mutex_exit(SD_MUTEX(un));
10577 			mutex_enter(&un->un_pm_mutex);
10578 
10579 			if (un->un_pm_idle_timeid == NULL) {
10580 				/* 300 ms. */
10581 				un->un_pm_idle_timeid =
10582 				    timeout(sd_pm_idletimeout_handler, un,
10583 				    (drv_usectohz((clock_t)300000)));
10584 				/*
10585 				 * Include an extra call to busy which keeps the
10586 				 * device busy with-respect-to the PM layer
10587 				 * until the timer fires, at which time it'll
10588 				 * get the extra idle call.
10589 				 */
10590 				(void) pm_busy_component(SD_DEVINFO(un), 0);
10591 			}
10592 		}
10593 	}
10594 	un->un_pm_busy = FALSE;
10595 	/* Next... */
10596 	cv_signal(&un->un_pm_busy_cv);
10597 
10598 	un->un_pm_count++;
10599 
10600 	SD_TRACE(SD_LOG_IO_PM, un,
10601 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
10602 
10603 	mutex_exit(&un->un_pm_mutex);
10604 
10605 	return (return_status);
10606 }
10607 
10608 
10609 /*
10610  *    Function: sd_pm_exit
10611  *
10612  * Description: Called at the completion of a command to manage busy
10613  *		status for the device. If the device becomes idle the
10614  *		PM framework is notified.
10615  *
10616  *     Context: Kernel thread context
10617  */
10618 
10619 static void
10620 sd_pm_exit(struct sd_lun *un)
10621 {
10622 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10623 	ASSERT(!mutex_owned(&un->un_pm_mutex));
10624 
10625 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
10626 
10627 	/*
10628 	 * After attach the following flag is only read, so don't
10629 	 * take the penalty of acquiring a mutex for it.
10630 	 */
10631 	if (un->un_f_pm_is_enabled == TRUE) {
10632 
10633 		mutex_enter(&un->un_pm_mutex);
10634 		un->un_pm_count--;
10635 
10636 		SD_TRACE(SD_LOG_IO_PM, un,
10637 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
10638 
10639 		ASSERT(un->un_pm_count >= 0);
10640 		if (un->un_pm_count == 0) {
10641 			mutex_exit(&un->un_pm_mutex);
10642 
10643 			SD_TRACE(SD_LOG_IO_PM, un,
10644 			    "sd_pm_exit: idle component\n");
10645 
10646 			(void) pm_idle_component(SD_DEVINFO(un), 0);
10647 
10648 		} else {
10649 			mutex_exit(&un->un_pm_mutex);
10650 		}
10651 	}
10652 
10653 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
10654 }
10655 
10656 
10657 /*
10658  *    Function: sdopen
10659  *
10660  * Description: Driver's open(9e) entry point function.
10661  *
10662  *   Arguments: dev_i   - pointer to device number
10663  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
10664  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10665  *		cred_p  - user credential pointer
10666  *
10667  * Return Code: EINVAL
10668  *		ENXIO
10669  *		EIO
10670  *		EROFS
10671  *		EBUSY
10672  *
10673  *     Context: Kernel thread context
10674  */
10675 /* ARGSUSED */
10676 static int
10677 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
10678 {
10679 	struct sd_lun	*un;
10680 	int		nodelay;
10681 	int		part;
10682 	uint64_t	partmask;
10683 	int		instance;
10684 	dev_t		dev;
10685 	int		rval = EIO;
10686 
10687 	/* Validate the open type */
10688 	if (otyp >= OTYPCNT) {
10689 		return (EINVAL);
10690 	}
10691 
10692 	dev = *dev_p;
10693 	instance = SDUNIT(dev);
10694 	mutex_enter(&sd_detach_mutex);
10695 
10696 	/*
10697 	 * Fail the open if there is no softstate for the instance, or
10698 	 * if another thread somewhere is trying to detach the instance.
10699 	 */
10700 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
10701 	    (un->un_detach_count != 0)) {
10702 		mutex_exit(&sd_detach_mutex);
10703 		/*
10704 		 * The probe cache only needs to be cleared when open (9e) fails
10705 		 * with ENXIO (4238046).
10706 		 */
10707 		/*
10708 		 * un-conditionally clearing probe cache is ok with
10709 		 * separate sd/ssd binaries
10710 		 * x86 platform can be an issue with both parallel
10711 		 * and fibre in 1 binary
10712 		 */
10713 		sd_scsi_clear_probe_cache();
10714 		return (ENXIO);
10715 	}
10716 
10717 	/*
10718 	 * The un_layer_count is to prevent another thread in specfs from
10719 	 * trying to detach the instance, which can happen when we are
10720 	 * called from a higher-layer driver instead of thru specfs.
10721 	 * This will not be needed when DDI provides a layered driver
10722 	 * interface that allows specfs to know that an instance is in
10723 	 * use by a layered driver & should not be detached.
10724 	 *
10725 	 * Note: the semantics for layered driver opens are exactly one
10726 	 * close for every open.
10727 	 */
10728 	if (otyp == OTYP_LYR) {
10729 		un->un_layer_count++;
10730 	}
10731 
10732 	/*
10733 	 * Keep a count of the current # of opens in progress. This is because
10734 	 * some layered drivers try to call us as a regular open. This can
10735 	 * cause problems that we cannot prevent, however by keeping this count
10736 	 * we can at least keep our open and detach routines from racing against
10737 	 * each other under such conditions.
10738 	 */
10739 	un->un_opens_in_progress++;
10740 	mutex_exit(&sd_detach_mutex);
10741 
10742 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
10743 	part	 = SDPART(dev);
10744 	partmask = 1 << part;
10745 
10746 	/*
10747 	 * We use a semaphore here in order to serialize
10748 	 * open and close requests on the device.
10749 	 */
10750 	sema_p(&un->un_semoclose);
10751 
10752 	mutex_enter(SD_MUTEX(un));
10753 
10754 	/*
10755 	 * All device accesses go thru sdstrategy() where we check
10756 	 * on suspend status but there could be a scsi_poll command,
10757 	 * which bypasses sdstrategy(), so we need to check pm
10758 	 * status.
10759 	 */
10760 
10761 	if (!nodelay) {
10762 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10763 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10764 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10765 		}
10766 
10767 		mutex_exit(SD_MUTEX(un));
10768 		if (sd_pm_entry(un) != DDI_SUCCESS) {
10769 			rval = EIO;
10770 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
10771 			    "sdopen: sd_pm_entry failed\n");
10772 			goto open_failed_with_pm;
10773 		}
10774 		mutex_enter(SD_MUTEX(un));
10775 	}
10776 
10777 	/* check for previous exclusive open */
10778 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
10779 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10780 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
10781 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
10782 
10783 	if (un->un_exclopen & (partmask)) {
10784 		goto excl_open_fail;
10785 	}
10786 
10787 	if (flag & FEXCL) {
10788 		int i;
10789 		if (un->un_ocmap.lyropen[part]) {
10790 			goto excl_open_fail;
10791 		}
10792 		for (i = 0; i < (OTYPCNT - 1); i++) {
10793 			if (un->un_ocmap.regopen[i] & (partmask)) {
10794 				goto excl_open_fail;
10795 			}
10796 		}
10797 	}
10798 
10799 	/*
10800 	 * Check the write permission if this is a removable media device,
10801 	 * NDELAY has not been set, and writable permission is requested.
10802 	 *
10803 	 * Note: If NDELAY was set and this is write-protected media the WRITE
10804 	 * attempt will fail with EIO as part of the I/O processing. This is a
10805 	 * more permissive implementation that allows the open to succeed and
10806 	 * WRITE attempts to fail when appropriate.
10807 	 */
10808 	if (un->un_f_chk_wp_open) {
10809 		if ((flag & FWRITE) && (!nodelay)) {
10810 			mutex_exit(SD_MUTEX(un));
10811 			/*
10812 			 * Defer the check for write permission on writable
10813 			 * DVD drive till sdstrategy and will not fail open even
10814 			 * if FWRITE is set as the device can be writable
10815 			 * depending upon the media and the media can change
10816 			 * after the call to open().
10817 			 */
10818 			if (un->un_f_dvdram_writable_device == FALSE) {
10819 				if (ISCD(un) || sr_check_wp(dev)) {
10820 				rval = EROFS;
10821 				mutex_enter(SD_MUTEX(un));
10822 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10823 				    "write to cd or write protected media\n");
10824 				goto open_fail;
10825 				}
10826 			}
10827 			mutex_enter(SD_MUTEX(un));
10828 		}
10829 	}
10830 
10831 	/*
10832 	 * If opening in NDELAY/NONBLOCK mode, just return.
10833 	 * Check if disk is ready and has a valid geometry later.
10834 	 */
10835 	if (!nodelay) {
10836 		mutex_exit(SD_MUTEX(un));
10837 		rval = sd_ready_and_valid(un);
10838 		mutex_enter(SD_MUTEX(un));
10839 		/*
10840 		 * Fail if device is not ready or if the number of disk
10841 		 * blocks is zero or negative for non CD devices.
10842 		 */
10843 		if ((rval != SD_READY_VALID) ||
10844 		    (!ISCD(un) && un->un_map[part].dkl_nblk <= 0)) {
10845 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
10846 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10847 			    "device not ready or invalid disk block value\n");
10848 			goto open_fail;
10849 		}
10850 #if defined(__i386) || defined(__amd64)
10851 	} else {
10852 		uchar_t *cp;
10853 		/*
10854 		 * x86 requires special nodelay handling, so that p0 is
10855 		 * always defined and accessible.
10856 		 * Invalidate geometry only if device is not already open.
10857 		 */
10858 		cp = &un->un_ocmap.chkd[0];
10859 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10860 			if (*cp != (uchar_t)0) {
10861 			    break;
10862 			}
10863 			cp++;
10864 		}
10865 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10866 			un->un_f_geometry_is_valid = FALSE;
10867 		}
10868 
10869 #endif
10870 	}
10871 
10872 	if (otyp == OTYP_LYR) {
10873 		un->un_ocmap.lyropen[part]++;
10874 	} else {
10875 		un->un_ocmap.regopen[otyp] |= partmask;
10876 	}
10877 
10878 	/* Set up open and exclusive open flags */
10879 	if (flag & FEXCL) {
10880 		un->un_exclopen |= (partmask);
10881 	}
10882 
10883 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10884 	    "open of part %d type %d\n", part, otyp);
10885 
10886 	mutex_exit(SD_MUTEX(un));
10887 	if (!nodelay) {
10888 		sd_pm_exit(un);
10889 	}
10890 
10891 	sema_v(&un->un_semoclose);
10892 
10893 	mutex_enter(&sd_detach_mutex);
10894 	un->un_opens_in_progress--;
10895 	mutex_exit(&sd_detach_mutex);
10896 
10897 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
10898 	return (DDI_SUCCESS);
10899 
10900 excl_open_fail:
10901 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
10902 	rval = EBUSY;
10903 
10904 open_fail:
10905 	mutex_exit(SD_MUTEX(un));
10906 
10907 	/*
10908 	 * On a failed open we must exit the pm management.
10909 	 */
10910 	if (!nodelay) {
10911 		sd_pm_exit(un);
10912 	}
10913 open_failed_with_pm:
10914 	sema_v(&un->un_semoclose);
10915 
10916 	mutex_enter(&sd_detach_mutex);
10917 	un->un_opens_in_progress--;
10918 	if (otyp == OTYP_LYR) {
10919 		un->un_layer_count--;
10920 	}
10921 	mutex_exit(&sd_detach_mutex);
10922 
10923 	return (rval);
10924 }
10925 
10926 
10927 /*
10928  *    Function: sdclose
10929  *
10930  * Description: Driver's close(9e) entry point function.
10931  *
10932  *   Arguments: dev    - device number
10933  *		flag   - file status flag, informational only
10934  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10935  *		cred_p - user credential pointer
10936  *
10937  * Return Code: ENXIO
10938  *
10939  *     Context: Kernel thread context
10940  */
10941 /* ARGSUSED */
10942 static int
10943 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
10944 {
10945 	struct sd_lun	*un;
10946 	uchar_t		*cp;
10947 	int		part;
10948 	int		nodelay;
10949 	int		rval = 0;
10950 
10951 	/* Validate the open type */
10952 	if (otyp >= OTYPCNT) {
10953 		return (ENXIO);
10954 	}
10955 
10956 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10957 		return (ENXIO);
10958 	}
10959 
10960 	part = SDPART(dev);
10961 	nodelay = flag & (FNDELAY | FNONBLOCK);
10962 
10963 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10964 	    "sdclose: close of part %d type %d\n", part, otyp);
10965 
10966 	/*
10967 	 * We use a semaphore here in order to serialize
10968 	 * open and close requests on the device.
10969 	 */
10970 	sema_p(&un->un_semoclose);
10971 
10972 	mutex_enter(SD_MUTEX(un));
10973 
10974 	/* Don't proceed if power is being changed. */
10975 	while (un->un_state == SD_STATE_PM_CHANGING) {
10976 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10977 	}
10978 
10979 	if (un->un_exclopen & (1 << part)) {
10980 		un->un_exclopen &= ~(1 << part);
10981 	}
10982 
10983 	/* Update the open partition map */
10984 	if (otyp == OTYP_LYR) {
10985 		un->un_ocmap.lyropen[part] -= 1;
10986 	} else {
10987 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
10988 	}
10989 
10990 	cp = &un->un_ocmap.chkd[0];
10991 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10992 		if (*cp != NULL) {
10993 			break;
10994 		}
10995 		cp++;
10996 	}
10997 
10998 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10999 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
11000 
11001 		/*
11002 		 * We avoid persistance upon the last close, and set
11003 		 * the throttle back to the maximum.
11004 		 */
11005 		un->un_throttle = un->un_saved_throttle;
11006 
11007 		if (un->un_state == SD_STATE_OFFLINE) {
11008 			if (un->un_f_is_fibre == FALSE) {
11009 				scsi_log(SD_DEVINFO(un), sd_label,
11010 					CE_WARN, "offline\n");
11011 			}
11012 			un->un_f_geometry_is_valid = FALSE;
11013 
11014 		} else {
11015 			/*
11016 			 * Flush any outstanding writes in NVRAM cache.
11017 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
11018 			 * cmd, it may not work for non-Pluto devices.
11019 			 * SYNCHRONIZE CACHE is not required for removables,
11020 			 * except DVD-RAM drives.
11021 			 *
11022 			 * Also note: because SYNCHRONIZE CACHE is currently
11023 			 * the only command issued here that requires the
11024 			 * drive be powered up, only do the power up before
11025 			 * sending the Sync Cache command. If additional
11026 			 * commands are added which require a powered up
11027 			 * drive, the following sequence may have to change.
11028 			 *
11029 			 * And finally, note that parallel SCSI on SPARC
11030 			 * only issues a Sync Cache to DVD-RAM, a newly
11031 			 * supported device.
11032 			 */
11033 #if defined(__i386) || defined(__amd64)
11034 			if (un->un_f_sync_cache_supported ||
11035 			    un->un_f_dvdram_writable_device == TRUE) {
11036 #else
11037 			if (un->un_f_dvdram_writable_device == TRUE) {
11038 #endif
11039 				mutex_exit(SD_MUTEX(un));
11040 				if (sd_pm_entry(un) == DDI_SUCCESS) {
11041 					rval =
11042 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
11043 					    NULL);
11044 					/* ignore error if not supported */
11045 					if (rval == ENOTSUP) {
11046 						rval = 0;
11047 					} else if (rval != 0) {
11048 						rval = EIO;
11049 					}
11050 					sd_pm_exit(un);
11051 				} else {
11052 					rval = EIO;
11053 				}
11054 				mutex_enter(SD_MUTEX(un));
11055 			}
11056 
11057 			/*
11058 			 * For devices which supports DOOR_LOCK, send an ALLOW
11059 			 * MEDIA REMOVAL command, but don't get upset if it
11060 			 * fails. We need to raise the power of the drive before
11061 			 * we can call sd_send_scsi_DOORLOCK()
11062 			 */
11063 			if (un->un_f_doorlock_supported) {
11064 				mutex_exit(SD_MUTEX(un));
11065 				if (sd_pm_entry(un) == DDI_SUCCESS) {
11066 					rval = sd_send_scsi_DOORLOCK(un,
11067 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
11068 
11069 					sd_pm_exit(un);
11070 					if (ISCD(un) && (rval != 0) &&
11071 					    (nodelay != 0)) {
11072 						rval = ENXIO;
11073 					}
11074 				} else {
11075 					rval = EIO;
11076 				}
11077 				mutex_enter(SD_MUTEX(un));
11078 			}
11079 
11080 			/*
11081 			 * If a device has removable media, invalidate all
11082 			 * parameters related to media, such as geometry,
11083 			 * blocksize, and blockcount.
11084 			 */
11085 			if (un->un_f_has_removable_media) {
11086 				sr_ejected(un);
11087 			}
11088 
11089 			/*
11090 			 * Destroy the cache (if it exists) which was
11091 			 * allocated for the write maps since this is
11092 			 * the last close for this media.
11093 			 */
11094 			if (un->un_wm_cache) {
11095 				/*
11096 				 * Check if there are pending commands.
11097 				 * and if there are give a warning and
11098 				 * do not destroy the cache.
11099 				 */
11100 				if (un->un_ncmds_in_driver > 0) {
11101 					scsi_log(SD_DEVINFO(un),
11102 					    sd_label, CE_WARN,
11103 					    "Unable to clean up memory "
11104 					    "because of pending I/O\n");
11105 				} else {
11106 					kmem_cache_destroy(
11107 					    un->un_wm_cache);
11108 					un->un_wm_cache = NULL;
11109 				}
11110 			}
11111 		}
11112 	}
11113 
11114 	mutex_exit(SD_MUTEX(un));
11115 	sema_v(&un->un_semoclose);
11116 
11117 	if (otyp == OTYP_LYR) {
11118 		mutex_enter(&sd_detach_mutex);
11119 		/*
11120 		 * The detach routine may run when the layer count
11121 		 * drops to zero.
11122 		 */
11123 		un->un_layer_count--;
11124 		mutex_exit(&sd_detach_mutex);
11125 	}
11126 
11127 	return (rval);
11128 }
11129 
11130 
11131 /*
11132  *    Function: sd_ready_and_valid
11133  *
11134  * Description: Test if device is ready and has a valid geometry.
11135  *
11136  *   Arguments: dev - device number
11137  *		un  - driver soft state (unit) structure
11138  *
11139  * Return Code: SD_READY_VALID		ready and valid label
11140  *		SD_READY_NOT_VALID	ready, geom ops never applicable
11141  *		SD_NOT_READY_VALID	not ready, no label
11142  *		SD_RESERVED_BY_OTHERS	reservation conflict
11143  *
11144  *     Context: Never called at interrupt context.
11145  */
11146 
11147 static int
11148 sd_ready_and_valid(struct sd_lun *un)
11149 {
11150 	struct sd_errstats	*stp;
11151 	uint64_t		capacity;
11152 	uint_t			lbasize;
11153 	int			rval = SD_READY_VALID;
11154 	char			name_str[48];
11155 
11156 	ASSERT(un != NULL);
11157 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11158 
11159 	mutex_enter(SD_MUTEX(un));
11160 	/*
11161 	 * If a device has removable media, we must check if media is
11162 	 * ready when checking if this device is ready and valid.
11163 	 */
11164 	if (un->un_f_has_removable_media) {
11165 		mutex_exit(SD_MUTEX(un));
11166 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
11167 			rval = SD_NOT_READY_VALID;
11168 			mutex_enter(SD_MUTEX(un));
11169 			goto done;
11170 		}
11171 
11172 		mutex_enter(SD_MUTEX(un));
11173 		if ((un->un_f_geometry_is_valid == FALSE) ||
11174 		    (un->un_f_blockcount_is_valid == FALSE) ||
11175 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
11176 
11177 			/* capacity has to be read every open. */
11178 			mutex_exit(SD_MUTEX(un));
11179 			if (sd_send_scsi_READ_CAPACITY(un, &capacity,
11180 			    &lbasize, SD_PATH_DIRECT) != 0) {
11181 				mutex_enter(SD_MUTEX(un));
11182 				un->un_f_geometry_is_valid = FALSE;
11183 				rval = SD_NOT_READY_VALID;
11184 				goto done;
11185 			} else {
11186 				mutex_enter(SD_MUTEX(un));
11187 				sd_update_block_info(un, lbasize, capacity);
11188 			}
11189 		}
11190 
11191 		/*
11192 		 * Check if the media in the device is writable or not.
11193 		 */
11194 		if ((un->un_f_geometry_is_valid == FALSE) && ISCD(un)) {
11195 			sd_check_for_writable_cd(un);
11196 		}
11197 
11198 	} else {
11199 		/*
11200 		 * Do a test unit ready to clear any unit attention from non-cd
11201 		 * devices.
11202 		 */
11203 		mutex_exit(SD_MUTEX(un));
11204 		(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
11205 		mutex_enter(SD_MUTEX(un));
11206 	}
11207 
11208 
11209 	/*
11210 	 * If this is a non 512 block device, allocate space for
11211 	 * the wmap cache. This is being done here since every time
11212 	 * a media is changed this routine will be called and the
11213 	 * block size is a function of media rather than device.
11214 	 */
11215 	if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) {
11216 		if (!(un->un_wm_cache)) {
11217 			(void) snprintf(name_str, sizeof (name_str),
11218 			    "%s%d_cache",
11219 			    ddi_driver_name(SD_DEVINFO(un)),
11220 			    ddi_get_instance(SD_DEVINFO(un)));
11221 			un->un_wm_cache = kmem_cache_create(
11222 			    name_str, sizeof (struct sd_w_map),
11223 			    8, sd_wm_cache_constructor,
11224 			    sd_wm_cache_destructor, NULL,
11225 			    (void *)un, NULL, 0);
11226 			if (!(un->un_wm_cache)) {
11227 					rval = ENOMEM;
11228 					goto done;
11229 			}
11230 		}
11231 	}
11232 
11233 	if (un->un_state == SD_STATE_NORMAL) {
11234 		/*
11235 		 * If the target is not yet ready here (defined by a TUR
11236 		 * failure), invalidate the geometry and print an 'offline'
11237 		 * message. This is a legacy message, as the state of the
11238 		 * target is not actually changed to SD_STATE_OFFLINE.
11239 		 *
11240 		 * If the TUR fails for EACCES (Reservation Conflict),
11241 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
11242 		 * reservation conflict. If the TUR fails for other
11243 		 * reasons, SD_NOT_READY_VALID will be returned.
11244 		 */
11245 		int err;
11246 
11247 		mutex_exit(SD_MUTEX(un));
11248 		err = sd_send_scsi_TEST_UNIT_READY(un, 0);
11249 		mutex_enter(SD_MUTEX(un));
11250 
11251 		if (err != 0) {
11252 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
11253 			    "offline or reservation conflict\n");
11254 			un->un_f_geometry_is_valid = FALSE;
11255 			if (err == EACCES) {
11256 				rval = SD_RESERVED_BY_OTHERS;
11257 			} else {
11258 				rval = SD_NOT_READY_VALID;
11259 			}
11260 			goto done;
11261 		}
11262 	}
11263 
11264 	if (un->un_f_format_in_progress == FALSE) {
11265 		/*
11266 		 * Note: sd_validate_geometry may return TRUE, but that does
11267 		 * not necessarily mean un_f_geometry_is_valid == TRUE!
11268 		 */
11269 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
11270 		if (rval == ENOTSUP) {
11271 			if (un->un_f_geometry_is_valid == TRUE)
11272 				rval = 0;
11273 			else {
11274 				rval = SD_READY_NOT_VALID;
11275 				goto done;
11276 			}
11277 		}
11278 		if (rval != 0) {
11279 			/*
11280 			 * We don't check the validity of geometry for
11281 			 * CDROMs. Also we assume we have a good label
11282 			 * even if sd_validate_geometry returned ENOMEM.
11283 			 */
11284 			if (!ISCD(un) && rval != ENOMEM) {
11285 				rval = SD_NOT_READY_VALID;
11286 				goto done;
11287 			}
11288 		}
11289 	}
11290 
11291 	/*
11292 	 * If this device supports DOOR_LOCK command, try and send
11293 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
11294 	 * if it fails. For a CD, however, it is an error
11295 	 */
11296 	if (un->un_f_doorlock_supported) {
11297 		mutex_exit(SD_MUTEX(un));
11298 		if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
11299 		    SD_PATH_DIRECT) != 0) && ISCD(un)) {
11300 			rval = SD_NOT_READY_VALID;
11301 			mutex_enter(SD_MUTEX(un));
11302 			goto done;
11303 		}
11304 		mutex_enter(SD_MUTEX(un));
11305 	}
11306 
11307 	/* The state has changed, inform the media watch routines */
11308 	un->un_mediastate = DKIO_INSERTED;
11309 	cv_broadcast(&un->un_state_cv);
11310 	rval = SD_READY_VALID;
11311 
11312 done:
11313 
11314 	/*
11315 	 * Initialize the capacity kstat value, if no media previously
11316 	 * (capacity kstat is 0) and a media has been inserted
11317 	 * (un_blockcount > 0).
11318 	 */
11319 	if (un->un_errstats != NULL) {
11320 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
11321 		if ((stp->sd_capacity.value.ui64 == 0) &&
11322 		    (un->un_f_blockcount_is_valid == TRUE)) {
11323 			stp->sd_capacity.value.ui64 =
11324 			    (uint64_t)((uint64_t)un->un_blockcount *
11325 			    un->un_sys_blocksize);
11326 		}
11327 	}
11328 
11329 	mutex_exit(SD_MUTEX(un));
11330 	return (rval);
11331 }
11332 
11333 
11334 /*
11335  *    Function: sdmin
11336  *
11337  * Description: Routine to limit the size of a data transfer. Used in
11338  *		conjunction with physio(9F).
11339  *
11340  *   Arguments: bp - pointer to the indicated buf(9S) struct.
11341  *
11342  *     Context: Kernel thread context.
11343  */
11344 
11345 static void
11346 sdmin(struct buf *bp)
11347 {
11348 	struct sd_lun	*un;
11349 	int		instance;
11350 
11351 	instance = SDUNIT(bp->b_edev);
11352 
11353 	un = ddi_get_soft_state(sd_state, instance);
11354 	ASSERT(un != NULL);
11355 
11356 	if (bp->b_bcount > un->un_max_xfer_size) {
11357 		bp->b_bcount = un->un_max_xfer_size;
11358 	}
11359 }
11360 
11361 
11362 /*
11363  *    Function: sdread
11364  *
11365  * Description: Driver's read(9e) entry point function.
11366  *
11367  *   Arguments: dev   - device number
11368  *		uio   - structure pointer describing where data is to be stored
11369  *			in user's space
11370  *		cred_p  - user credential pointer
11371  *
11372  * Return Code: ENXIO
11373  *		EIO
11374  *		EINVAL
11375  *		value returned by physio
11376  *
11377  *     Context: Kernel thread context.
11378  */
11379 /* ARGSUSED */
11380 static int
11381 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
11382 {
11383 	struct sd_lun	*un = NULL;
11384 	int		secmask;
11385 	int		err;
11386 
11387 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11388 		return (ENXIO);
11389 	}
11390 
11391 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11392 
11393 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11394 		mutex_enter(SD_MUTEX(un));
11395 		/*
11396 		 * Because the call to sd_ready_and_valid will issue I/O we
11397 		 * must wait here if either the device is suspended or
11398 		 * if it's power level is changing.
11399 		 */
11400 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11401 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11402 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11403 		}
11404 		un->un_ncmds_in_driver++;
11405 		mutex_exit(SD_MUTEX(un));
11406 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11407 			mutex_enter(SD_MUTEX(un));
11408 			un->un_ncmds_in_driver--;
11409 			ASSERT(un->un_ncmds_in_driver >= 0);
11410 			mutex_exit(SD_MUTEX(un));
11411 			return (EIO);
11412 		}
11413 		mutex_enter(SD_MUTEX(un));
11414 		un->un_ncmds_in_driver--;
11415 		ASSERT(un->un_ncmds_in_driver >= 0);
11416 		mutex_exit(SD_MUTEX(un));
11417 	}
11418 
11419 	/*
11420 	 * Read requests are restricted to multiples of the system block size.
11421 	 */
11422 	secmask = un->un_sys_blocksize - 1;
11423 
11424 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11425 		SD_ERROR(SD_LOG_READ_WRITE, un,
11426 		    "sdread: file offset not modulo %d\n",
11427 		    un->un_sys_blocksize);
11428 		err = EINVAL;
11429 	} else if (uio->uio_iov->iov_len & (secmask)) {
11430 		SD_ERROR(SD_LOG_READ_WRITE, un,
11431 		    "sdread: transfer length not modulo %d\n",
11432 		    un->un_sys_blocksize);
11433 		err = EINVAL;
11434 	} else {
11435 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
11436 	}
11437 	return (err);
11438 }
11439 
11440 
11441 /*
11442  *    Function: sdwrite
11443  *
11444  * Description: Driver's write(9e) entry point function.
11445  *
11446  *   Arguments: dev   - device number
11447  *		uio   - structure pointer describing where data is stored in
11448  *			user's space
11449  *		cred_p  - user credential pointer
11450  *
11451  * Return Code: ENXIO
11452  *		EIO
11453  *		EINVAL
11454  *		value returned by physio
11455  *
11456  *     Context: Kernel thread context.
11457  */
11458 /* ARGSUSED */
11459 static int
11460 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
11461 {
11462 	struct sd_lun	*un = NULL;
11463 	int		secmask;
11464 	int		err;
11465 
11466 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11467 		return (ENXIO);
11468 	}
11469 
11470 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11471 
11472 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11473 		mutex_enter(SD_MUTEX(un));
11474 		/*
11475 		 * Because the call to sd_ready_and_valid will issue I/O we
11476 		 * must wait here if either the device is suspended or
11477 		 * if it's power level is changing.
11478 		 */
11479 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11480 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11481 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11482 		}
11483 		un->un_ncmds_in_driver++;
11484 		mutex_exit(SD_MUTEX(un));
11485 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11486 			mutex_enter(SD_MUTEX(un));
11487 			un->un_ncmds_in_driver--;
11488 			ASSERT(un->un_ncmds_in_driver >= 0);
11489 			mutex_exit(SD_MUTEX(un));
11490 			return (EIO);
11491 		}
11492 		mutex_enter(SD_MUTEX(un));
11493 		un->un_ncmds_in_driver--;
11494 		ASSERT(un->un_ncmds_in_driver >= 0);
11495 		mutex_exit(SD_MUTEX(un));
11496 	}
11497 
11498 	/*
11499 	 * Write requests are restricted to multiples of the system block size.
11500 	 */
11501 	secmask = un->un_sys_blocksize - 1;
11502 
11503 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11504 		SD_ERROR(SD_LOG_READ_WRITE, un,
11505 		    "sdwrite: file offset not modulo %d\n",
11506 		    un->un_sys_blocksize);
11507 		err = EINVAL;
11508 	} else if (uio->uio_iov->iov_len & (secmask)) {
11509 		SD_ERROR(SD_LOG_READ_WRITE, un,
11510 		    "sdwrite: transfer length not modulo %d\n",
11511 		    un->un_sys_blocksize);
11512 		err = EINVAL;
11513 	} else {
11514 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
11515 	}
11516 	return (err);
11517 }
11518 
11519 
11520 /*
11521  *    Function: sdaread
11522  *
11523  * Description: Driver's aread(9e) entry point function.
11524  *
11525  *   Arguments: dev   - device number
11526  *		aio   - structure pointer describing where data is to be stored
11527  *		cred_p  - user credential pointer
11528  *
11529  * Return Code: ENXIO
11530  *		EIO
11531  *		EINVAL
11532  *		value returned by aphysio
11533  *
11534  *     Context: Kernel thread context.
11535  */
11536 /* ARGSUSED */
11537 static int
11538 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11539 {
11540 	struct sd_lun	*un = NULL;
11541 	struct uio	*uio = aio->aio_uio;
11542 	int		secmask;
11543 	int		err;
11544 
11545 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11546 		return (ENXIO);
11547 	}
11548 
11549 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11550 
11551 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11552 		mutex_enter(SD_MUTEX(un));
11553 		/*
11554 		 * Because the call to sd_ready_and_valid will issue I/O we
11555 		 * must wait here if either the device is suspended or
11556 		 * if it's power level is changing.
11557 		 */
11558 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11559 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11560 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11561 		}
11562 		un->un_ncmds_in_driver++;
11563 		mutex_exit(SD_MUTEX(un));
11564 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11565 			mutex_enter(SD_MUTEX(un));
11566 			un->un_ncmds_in_driver--;
11567 			ASSERT(un->un_ncmds_in_driver >= 0);
11568 			mutex_exit(SD_MUTEX(un));
11569 			return (EIO);
11570 		}
11571 		mutex_enter(SD_MUTEX(un));
11572 		un->un_ncmds_in_driver--;
11573 		ASSERT(un->un_ncmds_in_driver >= 0);
11574 		mutex_exit(SD_MUTEX(un));
11575 	}
11576 
11577 	/*
11578 	 * Read requests are restricted to multiples of the system block size.
11579 	 */
11580 	secmask = un->un_sys_blocksize - 1;
11581 
11582 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11583 		SD_ERROR(SD_LOG_READ_WRITE, un,
11584 		    "sdaread: file offset not modulo %d\n",
11585 		    un->un_sys_blocksize);
11586 		err = EINVAL;
11587 	} else if (uio->uio_iov->iov_len & (secmask)) {
11588 		SD_ERROR(SD_LOG_READ_WRITE, un,
11589 		    "sdaread: transfer length not modulo %d\n",
11590 		    un->un_sys_blocksize);
11591 		err = EINVAL;
11592 	} else {
11593 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
11594 	}
11595 	return (err);
11596 }
11597 
11598 
11599 /*
11600  *    Function: sdawrite
11601  *
11602  * Description: Driver's awrite(9e) entry point function.
11603  *
11604  *   Arguments: dev   - device number
11605  *		aio   - structure pointer describing where data is stored
11606  *		cred_p  - user credential pointer
11607  *
11608  * Return Code: ENXIO
11609  *		EIO
11610  *		EINVAL
11611  *		value returned by aphysio
11612  *
11613  *     Context: Kernel thread context.
11614  */
11615 /* ARGSUSED */
11616 static int
11617 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11618 {
11619 	struct sd_lun	*un = NULL;
11620 	struct uio	*uio = aio->aio_uio;
11621 	int		secmask;
11622 	int		err;
11623 
11624 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11625 		return (ENXIO);
11626 	}
11627 
11628 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11629 
11630 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11631 		mutex_enter(SD_MUTEX(un));
11632 		/*
11633 		 * Because the call to sd_ready_and_valid will issue I/O we
11634 		 * must wait here if either the device is suspended or
11635 		 * if it's power level is changing.
11636 		 */
11637 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11638 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11639 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11640 		}
11641 		un->un_ncmds_in_driver++;
11642 		mutex_exit(SD_MUTEX(un));
11643 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11644 			mutex_enter(SD_MUTEX(un));
11645 			un->un_ncmds_in_driver--;
11646 			ASSERT(un->un_ncmds_in_driver >= 0);
11647 			mutex_exit(SD_MUTEX(un));
11648 			return (EIO);
11649 		}
11650 		mutex_enter(SD_MUTEX(un));
11651 		un->un_ncmds_in_driver--;
11652 		ASSERT(un->un_ncmds_in_driver >= 0);
11653 		mutex_exit(SD_MUTEX(un));
11654 	}
11655 
11656 	/*
11657 	 * Write requests are restricted to multiples of the system block size.
11658 	 */
11659 	secmask = un->un_sys_blocksize - 1;
11660 
11661 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11662 		SD_ERROR(SD_LOG_READ_WRITE, un,
11663 		    "sdawrite: file offset not modulo %d\n",
11664 		    un->un_sys_blocksize);
11665 		err = EINVAL;
11666 	} else if (uio->uio_iov->iov_len & (secmask)) {
11667 		SD_ERROR(SD_LOG_READ_WRITE, un,
11668 		    "sdawrite: transfer length not modulo %d\n",
11669 		    un->un_sys_blocksize);
11670 		err = EINVAL;
11671 	} else {
11672 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
11673 	}
11674 	return (err);
11675 }
11676 
11677 
11678 
11679 
11680 
11681 /*
11682  * Driver IO processing follows the following sequence:
11683  *
11684  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
11685  *         |                |                     ^
11686  *         v                v                     |
11687  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
11688  *         |                |                     |                   |
11689  *         v                |                     |                   |
11690  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
11691  *         |                |                     ^                   ^
11692  *         v                v                     |                   |
11693  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
11694  *         |                |                     |                   |
11695  *     +---+                |                     +------------+      +-------+
11696  *     |                    |                                  |              |
11697  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11698  *     |                    v                                  |              |
11699  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
11700  *     |                    |                                  ^              |
11701  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11702  *     |                    v                                  |              |
11703  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
11704  *     |                    |                                  ^              |
11705  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11706  *     |                    v                                  |              |
11707  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
11708  *     |                    |                                  ^              |
11709  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
11710  *     |                    v                                  |              |
11711  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
11712  *     |                    |                                  ^              |
11713  *     |                    |                                  |              |
11714  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
11715  *                          |                           ^
11716  *                          v                           |
11717  *                   sd_core_iostart()                  |
11718  *                          |                           |
11719  *                          |                           +------>(*destroypkt)()
11720  *                          +-> sd_start_cmds() <-+     |           |
11721  *                          |                     |     |           v
11722  *                          |                     |     |  scsi_destroy_pkt(9F)
11723  *                          |                     |     |
11724  *                          +->(*initpkt)()       +- sdintr()
11725  *                          |  |                        |  |
11726  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
11727  *                          |  +-> scsi_setup_cdb(9F)   |
11728  *                          |                           |
11729  *                          +--> scsi_transport(9F)     |
11730  *                                     |                |
11731  *                                     +----> SCSA ---->+
11732  *
11733  *
11734  * This code is based upon the following presumtions:
11735  *
11736  *   - iostart and iodone functions operate on buf(9S) structures. These
11737  *     functions perform the necessary operations on the buf(9S) and pass
11738  *     them along to the next function in the chain by using the macros
11739  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
11740  *     (for iodone side functions).
11741  *
11742  *   - The iostart side functions may sleep. The iodone side functions
11743  *     are called under interrupt context and may NOT sleep. Therefore
11744  *     iodone side functions also may not call iostart side functions.
11745  *     (NOTE: iostart side functions should NOT sleep for memory, as
11746  *     this could result in deadlock.)
11747  *
11748  *   - An iostart side function may call its corresponding iodone side
11749  *     function directly (if necessary).
11750  *
11751  *   - In the event of an error, an iostart side function can return a buf(9S)
11752  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
11753  *     b_error in the usual way of course).
11754  *
11755  *   - The taskq mechanism may be used by the iodone side functions to dispatch
11756  *     requests to the iostart side functions.  The iostart side functions in
11757  *     this case would be called under the context of a taskq thread, so it's
11758  *     OK for them to block/sleep/spin in this case.
11759  *
11760  *   - iostart side functions may allocate "shadow" buf(9S) structs and
11761  *     pass them along to the next function in the chain.  The corresponding
11762  *     iodone side functions must coalesce the "shadow" bufs and return
11763  *     the "original" buf to the next higher layer.
11764  *
11765  *   - The b_private field of the buf(9S) struct holds a pointer to
11766  *     an sd_xbuf struct, which contains information needed to
11767  *     construct the scsi_pkt for the command.
11768  *
11769  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
11770  *     layer must acquire & release the SD_MUTEX(un) as needed.
11771  */
11772 
11773 
11774 /*
11775  * Create taskq for all targets in the system. This is created at
11776  * _init(9E) and destroyed at _fini(9E).
11777  *
11778  * Note: here we set the minalloc to a reasonably high number to ensure that
11779  * we will have an adequate supply of task entries available at interrupt time.
11780  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
11781  * sd_create_taskq().  Since we do not want to sleep for allocations at
11782  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
11783  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
11784  * requests any one instant in time.
11785  */
11786 #define	SD_TASKQ_NUMTHREADS	8
11787 #define	SD_TASKQ_MINALLOC	256
11788 #define	SD_TASKQ_MAXALLOC	256
11789 
11790 static taskq_t	*sd_tq = NULL;
11791 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
11792 
11793 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
11794 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
11795 
11796 /*
11797  * The following task queue is being created for the write part of
11798  * read-modify-write of non-512 block size devices.
11799  * Limit the number of threads to 1 for now. This number has been choosen
11800  * considering the fact that it applies only to dvd ram drives/MO drives
11801  * currently. Performance for which is not main criteria at this stage.
11802  * Note: It needs to be explored if we can use a single taskq in future
11803  */
11804 #define	SD_WMR_TASKQ_NUMTHREADS	1
11805 static taskq_t	*sd_wmr_tq = NULL;
11806 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
11807 
11808 /*
11809  *    Function: sd_taskq_create
11810  *
11811  * Description: Create taskq thread(s) and preallocate task entries
11812  *
11813  * Return Code: Returns a pointer to the allocated taskq_t.
11814  *
11815  *     Context: Can sleep. Requires blockable context.
11816  *
11817  *       Notes: - The taskq() facility currently is NOT part of the DDI.
11818  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
11819  *		- taskq_create() will block for memory, also it will panic
11820  *		  if it cannot create the requested number of threads.
11821  *		- Currently taskq_create() creates threads that cannot be
11822  *		  swapped.
11823  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
11824  *		  supply of taskq entries at interrupt time (ie, so that we
11825  *		  do not have to sleep for memory)
11826  */
11827 
11828 static void
11829 sd_taskq_create(void)
11830 {
11831 	char	taskq_name[TASKQ_NAMELEN];
11832 
11833 	ASSERT(sd_tq == NULL);
11834 	ASSERT(sd_wmr_tq == NULL);
11835 
11836 	(void) snprintf(taskq_name, sizeof (taskq_name),
11837 	    "%s_drv_taskq", sd_label);
11838 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
11839 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11840 	    TASKQ_PREPOPULATE));
11841 
11842 	(void) snprintf(taskq_name, sizeof (taskq_name),
11843 	    "%s_rmw_taskq", sd_label);
11844 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
11845 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11846 	    TASKQ_PREPOPULATE));
11847 }
11848 
11849 
11850 /*
11851  *    Function: sd_taskq_delete
11852  *
11853  * Description: Complementary cleanup routine for sd_taskq_create().
11854  *
11855  *     Context: Kernel thread context.
11856  */
11857 
11858 static void
11859 sd_taskq_delete(void)
11860 {
11861 	ASSERT(sd_tq != NULL);
11862 	ASSERT(sd_wmr_tq != NULL);
11863 	taskq_destroy(sd_tq);
11864 	taskq_destroy(sd_wmr_tq);
11865 	sd_tq = NULL;
11866 	sd_wmr_tq = NULL;
11867 }
11868 
11869 
11870 /*
11871  *    Function: sdstrategy
11872  *
11873  * Description: Driver's strategy (9E) entry point function.
11874  *
11875  *   Arguments: bp - pointer to buf(9S)
11876  *
11877  * Return Code: Always returns zero
11878  *
11879  *     Context: Kernel thread context.
11880  */
11881 
11882 static int
11883 sdstrategy(struct buf *bp)
11884 {
11885 	struct sd_lun *un;
11886 
11887 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11888 	if (un == NULL) {
11889 		bioerror(bp, EIO);
11890 		bp->b_resid = bp->b_bcount;
11891 		biodone(bp);
11892 		return (0);
11893 	}
11894 	/* As was done in the past, fail new cmds. if state is dumping. */
11895 	if (un->un_state == SD_STATE_DUMPING) {
11896 		bioerror(bp, ENXIO);
11897 		bp->b_resid = bp->b_bcount;
11898 		biodone(bp);
11899 		return (0);
11900 	}
11901 
11902 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11903 
11904 	/*
11905 	 * Commands may sneak in while we released the mutex in
11906 	 * DDI_SUSPEND, we should block new commands. However, old
11907 	 * commands that are still in the driver at this point should
11908 	 * still be allowed to drain.
11909 	 */
11910 	mutex_enter(SD_MUTEX(un));
11911 	/*
11912 	 * Must wait here if either the device is suspended or
11913 	 * if it's power level is changing.
11914 	 */
11915 	while ((un->un_state == SD_STATE_SUSPENDED) ||
11916 	    (un->un_state == SD_STATE_PM_CHANGING)) {
11917 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11918 	}
11919 
11920 	un->un_ncmds_in_driver++;
11921 
11922 	/*
11923 	 * atapi: Since we are running the CD for now in PIO mode we need to
11924 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11925 	 * the HBA's init_pkt routine.
11926 	 */
11927 	if (un->un_f_cfg_is_atapi == TRUE) {
11928 		mutex_exit(SD_MUTEX(un));
11929 		bp_mapin(bp);
11930 		mutex_enter(SD_MUTEX(un));
11931 	}
11932 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
11933 	    un->un_ncmds_in_driver);
11934 
11935 	mutex_exit(SD_MUTEX(un));
11936 
11937 	/*
11938 	 * This will (eventually) allocate the sd_xbuf area and
11939 	 * call sd_xbuf_strategy().  We just want to return the
11940 	 * result of ddi_xbuf_qstrategy so that we have an opt-
11941 	 * imized tail call which saves us a stack frame.
11942 	 */
11943 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
11944 }
11945 
11946 
11947 /*
11948  *    Function: sd_xbuf_strategy
11949  *
11950  * Description: Function for initiating IO operations via the
11951  *		ddi_xbuf_qstrategy() mechanism.
11952  *
11953  *     Context: Kernel thread context.
11954  */
11955 
11956 static void
11957 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11958 {
11959 	struct sd_lun *un = arg;
11960 
11961 	ASSERT(bp != NULL);
11962 	ASSERT(xp != NULL);
11963 	ASSERT(un != NULL);
11964 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11965 
11966 	/*
11967 	 * Initialize the fields in the xbuf and save a pointer to the
11968 	 * xbuf in bp->b_private.
11969 	 */
11970 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11971 
11972 	/* Send the buf down the iostart chain */
11973 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11974 }
11975 
11976 
11977 /*
11978  *    Function: sd_xbuf_init
11979  *
11980  * Description: Prepare the given sd_xbuf struct for use.
11981  *
11982  *   Arguments: un - ptr to softstate
11983  *		bp - ptr to associated buf(9S)
11984  *		xp - ptr to associated sd_xbuf
11985  *		chain_type - IO chain type to use:
11986  *			SD_CHAIN_NULL
11987  *			SD_CHAIN_BUFIO
11988  *			SD_CHAIN_USCSI
11989  *			SD_CHAIN_DIRECT
11990  *			SD_CHAIN_DIRECT_PRIORITY
11991  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11992  *			initialization; may be NULL if none.
11993  *
11994  *     Context: Kernel thread context
11995  */
11996 
11997 static void
11998 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11999 	uchar_t chain_type, void *pktinfop)
12000 {
12001 	int index;
12002 
12003 	ASSERT(un != NULL);
12004 	ASSERT(bp != NULL);
12005 	ASSERT(xp != NULL);
12006 
12007 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
12008 	    bp, chain_type);
12009 
12010 	xp->xb_un	= un;
12011 	xp->xb_pktp	= NULL;
12012 	xp->xb_pktinfo	= pktinfop;
12013 	xp->xb_private	= bp->b_private;
12014 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
12015 
12016 	/*
12017 	 * Set up the iostart and iodone chain indexes in the xbuf, based
12018 	 * upon the specified chain type to use.
12019 	 */
12020 	switch (chain_type) {
12021 	case SD_CHAIN_NULL:
12022 		/*
12023 		 * Fall thru to just use the values for the buf type, even
12024 		 * tho for the NULL chain these values will never be used.
12025 		 */
12026 		/* FALLTHRU */
12027 	case SD_CHAIN_BUFIO:
12028 		index = un->un_buf_chain_type;
12029 		break;
12030 	case SD_CHAIN_USCSI:
12031 		index = un->un_uscsi_chain_type;
12032 		break;
12033 	case SD_CHAIN_DIRECT:
12034 		index = un->un_direct_chain_type;
12035 		break;
12036 	case SD_CHAIN_DIRECT_PRIORITY:
12037 		index = un->un_priority_chain_type;
12038 		break;
12039 	default:
12040 		/* We're really broken if we ever get here... */
12041 		panic("sd_xbuf_init: illegal chain type!");
12042 		/*NOTREACHED*/
12043 	}
12044 
12045 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
12046 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
12047 
12048 	/*
12049 	 * It might be a bit easier to simply bzero the entire xbuf above,
12050 	 * but it turns out that since we init a fair number of members anyway,
12051 	 * we save a fair number cycles by doing explicit assignment of zero.
12052 	 */
12053 	xp->xb_pkt_flags	= 0;
12054 	xp->xb_dma_resid	= 0;
12055 	xp->xb_retry_count	= 0;
12056 	xp->xb_victim_retry_count = 0;
12057 	xp->xb_ua_retry_count	= 0;
12058 	xp->xb_sense_bp		= NULL;
12059 	xp->xb_sense_status	= 0;
12060 	xp->xb_sense_state	= 0;
12061 	xp->xb_sense_resid	= 0;
12062 
12063 	bp->b_private	= xp;
12064 	bp->b_flags	&= ~(B_DONE | B_ERROR);
12065 	bp->b_resid	= 0;
12066 	bp->av_forw	= NULL;
12067 	bp->av_back	= NULL;
12068 	bioerror(bp, 0);
12069 
12070 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
12071 }
12072 
12073 
12074 /*
12075  *    Function: sd_uscsi_strategy
12076  *
12077  * Description: Wrapper for calling into the USCSI chain via physio(9F)
12078  *
12079  *   Arguments: bp - buf struct ptr
12080  *
12081  * Return Code: Always returns 0
12082  *
12083  *     Context: Kernel thread context
12084  */
12085 
12086 static int
12087 sd_uscsi_strategy(struct buf *bp)
12088 {
12089 	struct sd_lun		*un;
12090 	struct sd_uscsi_info	*uip;
12091 	struct sd_xbuf		*xp;
12092 	uchar_t			chain_type;
12093 
12094 	ASSERT(bp != NULL);
12095 
12096 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
12097 	if (un == NULL) {
12098 		bioerror(bp, EIO);
12099 		bp->b_resid = bp->b_bcount;
12100 		biodone(bp);
12101 		return (0);
12102 	}
12103 
12104 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12105 
12106 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
12107 
12108 	mutex_enter(SD_MUTEX(un));
12109 	/*
12110 	 * atapi: Since we are running the CD for now in PIO mode we need to
12111 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
12112 	 * the HBA's init_pkt routine.
12113 	 */
12114 	if (un->un_f_cfg_is_atapi == TRUE) {
12115 		mutex_exit(SD_MUTEX(un));
12116 		bp_mapin(bp);
12117 		mutex_enter(SD_MUTEX(un));
12118 	}
12119 	un->un_ncmds_in_driver++;
12120 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
12121 	    un->un_ncmds_in_driver);
12122 	mutex_exit(SD_MUTEX(un));
12123 
12124 	/*
12125 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
12126 	 */
12127 	ASSERT(bp->b_private != NULL);
12128 	uip = (struct sd_uscsi_info *)bp->b_private;
12129 
12130 	switch (uip->ui_flags) {
12131 	case SD_PATH_DIRECT:
12132 		chain_type = SD_CHAIN_DIRECT;
12133 		break;
12134 	case SD_PATH_DIRECT_PRIORITY:
12135 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
12136 		break;
12137 	default:
12138 		chain_type = SD_CHAIN_USCSI;
12139 		break;
12140 	}
12141 
12142 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12143 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
12144 
12145 	/* Use the index obtained within xbuf_init */
12146 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
12147 
12148 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
12149 
12150 	return (0);
12151 }
12152 
12153 /*
12154  *    Function: sd_send_scsi_cmd
12155  *
12156  * Description: Runs a USCSI command for user (when called thru sdioctl),
12157  *		or for the driver
12158  *
12159  *   Arguments: dev - the dev_t for the device
12160  *		incmd - ptr to a valid uscsi_cmd struct
12161  *		flag - bit flag, indicating open settings, 32/64 bit type
12162  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
12163  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
12164  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
12165  *			to use the USCSI "direct" chain and bypass the normal
12166  *			command waitq.
12167  *
12168  * Return Code: 0 -  successful completion of the given command
12169  *		EIO - scsi_uscsi_handle_command() failed
12170  *		ENXIO  - soft state not found for specified dev
12171  *		EINVAL
12172  *		EFAULT - copyin/copyout error
12173  *		return code of scsi_uscsi_handle_command():
12174  *			EIO
12175  *			ENXIO
12176  *			EACCES
12177  *
12178  *     Context: Waits for command to complete. Can sleep.
12179  */
12180 
12181 static int
12182 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
12183 	enum uio_seg dataspace, int path_flag)
12184 {
12185 	struct sd_uscsi_info	*uip;
12186 	struct uscsi_cmd	*uscmd;
12187 	struct sd_lun	*un;
12188 	int	format = 0;
12189 	int	rval;
12190 
12191 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
12192 	if (un == NULL) {
12193 		return (ENXIO);
12194 	}
12195 
12196 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12197 
12198 #ifdef SDDEBUG
12199 	switch (dataspace) {
12200 	case UIO_USERSPACE:
12201 		SD_TRACE(SD_LOG_IO, un,
12202 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un);
12203 		break;
12204 	case UIO_SYSSPACE:
12205 		SD_TRACE(SD_LOG_IO, un,
12206 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un);
12207 		break;
12208 	default:
12209 		SD_TRACE(SD_LOG_IO, un,
12210 		    "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un);
12211 		break;
12212 	}
12213 #endif
12214 
12215 	rval = scsi_uscsi_alloc_and_copyin((intptr_t)incmd, flag,
12216 	    SD_ADDRESS(un), &uscmd);
12217 	if (rval != 0) {
12218 		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
12219 		    "scsi_uscsi_alloc_and_copyin failed\n", un);
12220 		return (rval);
12221 	}
12222 
12223 	if ((uscmd->uscsi_cdb != NULL) &&
12224 	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
12225 		mutex_enter(SD_MUTEX(un));
12226 		un->un_f_format_in_progress = TRUE;
12227 		mutex_exit(SD_MUTEX(un));
12228 		format = 1;
12229 	}
12230 
12231 	/*
12232 	 * Allocate an sd_uscsi_info struct and fill it with the info
12233 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
12234 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
12235 	 * since we allocate the buf here in this function, we do not
12236 	 * need to preserve the prior contents of b_private.
12237 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
12238 	 */
12239 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
12240 	uip->ui_flags = path_flag;
12241 	uip->ui_cmdp = uscmd;
12242 
12243 	/*
12244 	 * Commands sent with priority are intended for error recovery
12245 	 * situations, and do not have retries performed.
12246 	 */
12247 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
12248 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
12249 	}
12250 	uscmd->uscsi_flags &= ~USCSI_NOINTR;
12251 
12252 	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
12253 	    sd_uscsi_strategy, NULL, uip);
12254 
12255 #ifdef SDDEBUG
12256 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12257 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
12258 	    uscmd->uscsi_status, uscmd->uscsi_resid);
12259 	if (uscmd->uscsi_bufaddr != NULL) {
12260 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12261 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
12262 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
12263 		if (dataspace == UIO_SYSSPACE) {
12264 			SD_DUMP_MEMORY(un, SD_LOG_IO,
12265 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
12266 			    uscmd->uscsi_buflen, SD_LOG_HEX);
12267 		}
12268 	}
12269 #endif
12270 
12271 	if (format == 1) {
12272 		mutex_enter(SD_MUTEX(un));
12273 		un->un_f_format_in_progress = FALSE;
12274 		mutex_exit(SD_MUTEX(un));
12275 	}
12276 
12277 	(void) scsi_uscsi_copyout_and_free((intptr_t)incmd, uscmd);
12278 	kmem_free(uip, sizeof (struct sd_uscsi_info));
12279 
12280 	return (rval);
12281 }
12282 
12283 
12284 /*
12285  *    Function: sd_buf_iodone
12286  *
12287  * Description: Frees the sd_xbuf & returns the buf to its originator.
12288  *
12289  *     Context: May be called from interrupt context.
12290  */
12291 /* ARGSUSED */
12292 static void
12293 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
12294 {
12295 	struct sd_xbuf *xp;
12296 
12297 	ASSERT(un != NULL);
12298 	ASSERT(bp != NULL);
12299 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12300 
12301 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
12302 
12303 	xp = SD_GET_XBUF(bp);
12304 	ASSERT(xp != NULL);
12305 
12306 	mutex_enter(SD_MUTEX(un));
12307 
12308 	/*
12309 	 * Grab time when the cmd completed.
12310 	 * This is used for determining if the system has been
12311 	 * idle long enough to make it idle to the PM framework.
12312 	 * This is for lowering the overhead, and therefore improving
12313 	 * performance per I/O operation.
12314 	 */
12315 	un->un_pm_idle_time = ddi_get_time();
12316 
12317 	un->un_ncmds_in_driver--;
12318 	ASSERT(un->un_ncmds_in_driver >= 0);
12319 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
12320 	    un->un_ncmds_in_driver);
12321 
12322 	mutex_exit(SD_MUTEX(un));
12323 
12324 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
12325 	biodone(bp);				/* bp is gone after this */
12326 
12327 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
12328 }
12329 
12330 
12331 /*
12332  *    Function: sd_uscsi_iodone
12333  *
12334  * Description: Frees the sd_xbuf & returns the buf to its originator.
12335  *
12336  *     Context: May be called from interrupt context.
12337  */
12338 /* ARGSUSED */
12339 static void
12340 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12341 {
12342 	struct sd_xbuf *xp;
12343 
12344 	ASSERT(un != NULL);
12345 	ASSERT(bp != NULL);
12346 
12347 	xp = SD_GET_XBUF(bp);
12348 	ASSERT(xp != NULL);
12349 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12350 
12351 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
12352 
12353 	bp->b_private = xp->xb_private;
12354 
12355 	mutex_enter(SD_MUTEX(un));
12356 
12357 	/*
12358 	 * Grab time when the cmd completed.
12359 	 * This is used for determining if the system has been
12360 	 * idle long enough to make it idle to the PM framework.
12361 	 * This is for lowering the overhead, and therefore improving
12362 	 * performance per I/O operation.
12363 	 */
12364 	un->un_pm_idle_time = ddi_get_time();
12365 
12366 	un->un_ncmds_in_driver--;
12367 	ASSERT(un->un_ncmds_in_driver >= 0);
12368 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
12369 	    un->un_ncmds_in_driver);
12370 
12371 	mutex_exit(SD_MUTEX(un));
12372 
12373 	kmem_free(xp, sizeof (struct sd_xbuf));
12374 	biodone(bp);
12375 
12376 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
12377 }
12378 
12379 
12380 /*
12381  *    Function: sd_mapblockaddr_iostart
12382  *
12383  * Description: Verify request lies withing the partition limits for
12384  *		the indicated minor device.  Issue "overrun" buf if
12385  *		request would exceed partition range.  Converts
12386  *		partition-relative block address to absolute.
12387  *
12388  *     Context: Can sleep
12389  *
12390  *      Issues: This follows what the old code did, in terms of accessing
12391  *		some of the partition info in the unit struct without holding
12392  *		the mutext.  This is a general issue, if the partition info
12393  *		can be altered while IO is in progress... as soon as we send
12394  *		a buf, its partitioning can be invalid before it gets to the
12395  *		device.  Probably the right fix is to move partitioning out
12396  *		of the driver entirely.
12397  */
12398 
12399 static void
12400 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
12401 {
12402 	daddr_t	nblocks;	/* #blocks in the given partition */
12403 	daddr_t	blocknum;	/* Block number specified by the buf */
12404 	size_t	requested_nblocks;
12405 	size_t	available_nblocks;
12406 	int	partition;
12407 	diskaddr_t	partition_offset;
12408 	struct sd_xbuf *xp;
12409 
12410 
12411 	ASSERT(un != NULL);
12412 	ASSERT(bp != NULL);
12413 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12414 
12415 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12416 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
12417 
12418 	xp = SD_GET_XBUF(bp);
12419 	ASSERT(xp != NULL);
12420 
12421 	/*
12422 	 * If the geometry is not indicated as valid, attempt to access
12423 	 * the unit & verify the geometry/label. This can be the case for
12424 	 * removable-media devices, of if the device was opened in
12425 	 * NDELAY/NONBLOCK mode.
12426 	 */
12427 	if ((un->un_f_geometry_is_valid != TRUE) &&
12428 	    (sd_ready_and_valid(un) != SD_READY_VALID)) {
12429 		/*
12430 		 * For removable devices it is possible to start an I/O
12431 		 * without a media by opening the device in nodelay mode.
12432 		 * Also for writable CDs there can be many scenarios where
12433 		 * there is no geometry yet but volume manager is trying to
12434 		 * issue a read() just because it can see TOC on the CD. So
12435 		 * do not print a message for removables.
12436 		 */
12437 		if (!un->un_f_has_removable_media) {
12438 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12439 			    "i/o to invalid geometry\n");
12440 		}
12441 		bioerror(bp, EIO);
12442 		bp->b_resid = bp->b_bcount;
12443 		SD_BEGIN_IODONE(index, un, bp);
12444 		return;
12445 	}
12446 
12447 	partition = SDPART(bp->b_edev);
12448 
12449 	/* #blocks in partition */
12450 	nblocks = un->un_map[partition].dkl_nblk;    /* #blocks in partition */
12451 
12452 	/* Use of a local variable potentially improves performance slightly */
12453 	partition_offset = un->un_offset[partition];
12454 
12455 	/*
12456 	 * blocknum is the starting block number of the request. At this
12457 	 * point it is still relative to the start of the minor device.
12458 	 */
12459 	blocknum = xp->xb_blkno;
12460 
12461 	/*
12462 	 * Legacy: If the starting block number is one past the last block
12463 	 * in the partition, do not set B_ERROR in the buf.
12464 	 */
12465 	if (blocknum == nblocks)  {
12466 		goto error_exit;
12467 	}
12468 
12469 	/*
12470 	 * Confirm that the first block of the request lies within the
12471 	 * partition limits. Also the requested number of bytes must be
12472 	 * a multiple of the system block size.
12473 	 */
12474 	if ((blocknum < 0) || (blocknum >= nblocks) ||
12475 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
12476 		bp->b_flags |= B_ERROR;
12477 		goto error_exit;
12478 	}
12479 
12480 	/*
12481 	 * If the requsted # blocks exceeds the available # blocks, that
12482 	 * is an overrun of the partition.
12483 	 */
12484 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
12485 	available_nblocks = (size_t)(nblocks - blocknum);
12486 	ASSERT(nblocks >= blocknum);
12487 
12488 	if (requested_nblocks > available_nblocks) {
12489 		/*
12490 		 * Allocate an "overrun" buf to allow the request to proceed
12491 		 * for the amount of space available in the partition. The
12492 		 * amount not transferred will be added into the b_resid
12493 		 * when the operation is complete. The overrun buf
12494 		 * replaces the original buf here, and the original buf
12495 		 * is saved inside the overrun buf, for later use.
12496 		 */
12497 		size_t resid = SD_SYSBLOCKS2BYTES(un,
12498 		    (offset_t)(requested_nblocks - available_nblocks));
12499 		size_t count = bp->b_bcount - resid;
12500 		/*
12501 		 * Note: count is an unsigned entity thus it'll NEVER
12502 		 * be less than 0 so ASSERT the original values are
12503 		 * correct.
12504 		 */
12505 		ASSERT(bp->b_bcount >= resid);
12506 
12507 		bp = sd_bioclone_alloc(bp, count, blocknum,
12508 			(int (*)(struct buf *)) sd_mapblockaddr_iodone);
12509 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12510 		ASSERT(xp != NULL);
12511 	}
12512 
12513 	/* At this point there should be no residual for this buf. */
12514 	ASSERT(bp->b_resid == 0);
12515 
12516 	/* Convert the block number to an absolute address. */
12517 	xp->xb_blkno += partition_offset;
12518 
12519 	SD_NEXT_IOSTART(index, un, bp);
12520 
12521 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12522 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12523 
12524 	return;
12525 
12526 error_exit:
12527 	bp->b_resid = bp->b_bcount;
12528 	SD_BEGIN_IODONE(index, un, bp);
12529 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12530 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12531 }
12532 
12533 
12534 /*
12535  *    Function: sd_mapblockaddr_iodone
12536  *
12537  * Description: Completion-side processing for partition management.
12538  *
12539  *     Context: May be called under interrupt context
12540  */
12541 
12542 static void
12543 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12544 {
12545 	/* int	partition; */	/* Not used, see below. */
12546 	ASSERT(un != NULL);
12547 	ASSERT(bp != NULL);
12548 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12549 
12550 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12551 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12552 
12553 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12554 		/*
12555 		 * We have an "overrun" buf to deal with...
12556 		 */
12557 		struct sd_xbuf	*xp;
12558 		struct buf	*obp;	/* ptr to the original buf */
12559 
12560 		xp = SD_GET_XBUF(bp);
12561 		ASSERT(xp != NULL);
12562 
12563 		/* Retrieve the pointer to the original buf */
12564 		obp = (struct buf *)xp->xb_private;
12565 		ASSERT(obp != NULL);
12566 
12567 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12568 		bioerror(obp, bp->b_error);
12569 
12570 		sd_bioclone_free(bp);
12571 
12572 		/*
12573 		 * Get back the original buf.
12574 		 * Note that since the restoration of xb_blkno below
12575 		 * was removed, the sd_xbuf is not needed.
12576 		 */
12577 		bp = obp;
12578 		/*
12579 		 * xp = SD_GET_XBUF(bp);
12580 		 * ASSERT(xp != NULL);
12581 		 */
12582 	}
12583 
12584 	/*
12585 	 * Convert sd->xb_blkno back to a minor-device relative value.
12586 	 * Note: this has been commented out, as it is not needed in the
12587 	 * current implementation of the driver (ie, since this function
12588 	 * is at the top of the layering chains, so the info will be
12589 	 * discarded) and it is in the "hot" IO path.
12590 	 *
12591 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
12592 	 * xp->xb_blkno -= un->un_offset[partition];
12593 	 */
12594 
12595 	SD_NEXT_IODONE(index, un, bp);
12596 
12597 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12598 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12599 }
12600 
12601 
12602 /*
12603  *    Function: sd_mapblocksize_iostart
12604  *
12605  * Description: Convert between system block size (un->un_sys_blocksize)
12606  *		and target block size (un->un_tgt_blocksize).
12607  *
12608  *     Context: Can sleep to allocate resources.
12609  *
12610  * Assumptions: A higher layer has already performed any partition validation,
12611  *		and converted the xp->xb_blkno to an absolute value relative
12612  *		to the start of the device.
12613  *
12614  *		It is also assumed that the higher layer has implemented
12615  *		an "overrun" mechanism for the case where the request would
12616  *		read/write beyond the end of a partition.  In this case we
12617  *		assume (and ASSERT) that bp->b_resid == 0.
12618  *
12619  *		Note: The implementation for this routine assumes the target
12620  *		block size remains constant between allocation and transport.
12621  */
12622 
12623 static void
12624 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12625 {
12626 	struct sd_mapblocksize_info	*bsp;
12627 	struct sd_xbuf			*xp;
12628 	offset_t first_byte;
12629 	daddr_t	start_block, end_block;
12630 	daddr_t	request_bytes;
12631 	ushort_t is_aligned = FALSE;
12632 
12633 	ASSERT(un != NULL);
12634 	ASSERT(bp != NULL);
12635 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12636 	ASSERT(bp->b_resid == 0);
12637 
12638 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12639 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12640 
12641 	/*
12642 	 * For a non-writable CD, a write request is an error
12643 	 */
12644 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12645 	    (un->un_f_mmc_writable_media == FALSE)) {
12646 		bioerror(bp, EIO);
12647 		bp->b_resid = bp->b_bcount;
12648 		SD_BEGIN_IODONE(index, un, bp);
12649 		return;
12650 	}
12651 
12652 	/*
12653 	 * We do not need a shadow buf if the device is using
12654 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12655 	 * In this case there is no layer-private data block allocated.
12656 	 */
12657 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12658 	    (bp->b_bcount == 0)) {
12659 		goto done;
12660 	}
12661 
12662 #if defined(__i386) || defined(__amd64)
12663 	/* We do not support non-block-aligned transfers for ROD devices */
12664 	ASSERT(!ISROD(un));
12665 #endif
12666 
12667 	xp = SD_GET_XBUF(bp);
12668 	ASSERT(xp != NULL);
12669 
12670 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12671 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12672 	    un->un_tgt_blocksize, un->un_sys_blocksize);
12673 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12674 	    "request start block:0x%x\n", xp->xb_blkno);
12675 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12676 	    "request len:0x%x\n", bp->b_bcount);
12677 
12678 	/*
12679 	 * Allocate the layer-private data area for the mapblocksize layer.
12680 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12681 	 * struct to store the pointer to their layer-private data block, but
12682 	 * each layer also has the responsibility of restoring the prior
12683 	 * contents of xb_private before returning the buf/xbuf to the
12684 	 * higher layer that sent it.
12685 	 *
12686 	 * Here we save the prior contents of xp->xb_private into the
12687 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12688 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12689 	 * the layer-private area and returning the buf/xbuf to the layer
12690 	 * that sent it.
12691 	 *
12692 	 * Note that here we use kmem_zalloc for the allocation as there are
12693 	 * parts of the mapblocksize code that expect certain fields to be
12694 	 * zero unless explicitly set to a required value.
12695 	 */
12696 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12697 	bsp->mbs_oprivate = xp->xb_private;
12698 	xp->xb_private = bsp;
12699 
12700 	/*
12701 	 * This treats the data on the disk (target) as an array of bytes.
12702 	 * first_byte is the byte offset, from the beginning of the device,
12703 	 * to the location of the request. This is converted from a
12704 	 * un->un_sys_blocksize block address to a byte offset, and then back
12705 	 * to a block address based upon a un->un_tgt_blocksize block size.
12706 	 *
12707 	 * xp->xb_blkno should be absolute upon entry into this function,
12708 	 * but, but it is based upon partitions that use the "system"
12709 	 * block size. It must be adjusted to reflect the block size of
12710 	 * the target.
12711 	 *
12712 	 * Note that end_block is actually the block that follows the last
12713 	 * block of the request, but that's what is needed for the computation.
12714 	 */
12715 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12716 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12717 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
12718 	    un->un_tgt_blocksize;
12719 
12720 	/* request_bytes is rounded up to a multiple of the target block size */
12721 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12722 
12723 	/*
12724 	 * See if the starting address of the request and the request
12725 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12726 	 * then we do not need to allocate a shadow buf to handle the request.
12727 	 */
12728 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
12729 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12730 		is_aligned = TRUE;
12731 	}
12732 
12733 	if ((bp->b_flags & B_READ) == 0) {
12734 		/*
12735 		 * Lock the range for a write operation. An aligned request is
12736 		 * considered a simple write; otherwise the request must be a
12737 		 * read-modify-write.
12738 		 */
12739 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
12740 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
12741 	}
12742 
12743 	/*
12744 	 * Alloc a shadow buf if the request is not aligned. Also, this is
12745 	 * where the READ command is generated for a read-modify-write. (The
12746 	 * write phase is deferred until after the read completes.)
12747 	 */
12748 	if (is_aligned == FALSE) {
12749 
12750 		struct sd_mapblocksize_info	*shadow_bsp;
12751 		struct sd_xbuf	*shadow_xp;
12752 		struct buf	*shadow_bp;
12753 
12754 		/*
12755 		 * Allocate the shadow buf and it associated xbuf. Note that
12756 		 * after this call the xb_blkno value in both the original
12757 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
12758 		 * same: absolute relative to the start of the device, and
12759 		 * adjusted for the target block size. The b_blkno in the
12760 		 * shadow buf will also be set to this value. We should never
12761 		 * change b_blkno in the original bp however.
12762 		 *
12763 		 * Note also that the shadow buf will always need to be a
12764 		 * READ command, regardless of whether the incoming command
12765 		 * is a READ or a WRITE.
12766 		 */
12767 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
12768 		    xp->xb_blkno,
12769 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
12770 
12771 		shadow_xp = SD_GET_XBUF(shadow_bp);
12772 
12773 		/*
12774 		 * Allocate the layer-private data for the shadow buf.
12775 		 * (No need to preserve xb_private in the shadow xbuf.)
12776 		 */
12777 		shadow_xp->xb_private = shadow_bsp =
12778 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12779 
12780 		/*
12781 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
12782 		 * to figure out where the start of the user data is (based upon
12783 		 * the system block size) in the data returned by the READ
12784 		 * command (which will be based upon the target blocksize). Note
12785 		 * that this is only really used if the request is unaligned.
12786 		 */
12787 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
12788 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
12789 		ASSERT((bsp->mbs_copy_offset >= 0) &&
12790 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
12791 
12792 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
12793 
12794 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
12795 
12796 		/* Transfer the wmap (if any) to the shadow buf */
12797 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
12798 		bsp->mbs_wmp = NULL;
12799 
12800 		/*
12801 		 * The shadow buf goes on from here in place of the
12802 		 * original buf.
12803 		 */
12804 		shadow_bsp->mbs_orig_bp = bp;
12805 		bp = shadow_bp;
12806 	}
12807 
12808 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12809 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
12810 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12811 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
12812 	    request_bytes);
12813 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12814 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
12815 
12816 done:
12817 	SD_NEXT_IOSTART(index, un, bp);
12818 
12819 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12820 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
12821 }
12822 
12823 
12824 /*
12825  *    Function: sd_mapblocksize_iodone
12826  *
12827  * Description: Completion side processing for block-size mapping.
12828  *
12829  *     Context: May be called under interrupt context
12830  */
12831 
12832 static void
12833 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
12834 {
12835 	struct sd_mapblocksize_info	*bsp;
12836 	struct sd_xbuf	*xp;
12837 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
12838 	struct buf	*orig_bp;	/* ptr to the original buf */
12839 	offset_t	shadow_end;
12840 	offset_t	request_end;
12841 	offset_t	shadow_start;
12842 	ssize_t		copy_offset;
12843 	size_t		copy_length;
12844 	size_t		shortfall;
12845 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
12846 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
12847 
12848 	ASSERT(un != NULL);
12849 	ASSERT(bp != NULL);
12850 
12851 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12852 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
12853 
12854 	/*
12855 	 * There is no shadow buf or layer-private data if the target is
12856 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
12857 	 */
12858 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12859 	    (bp->b_bcount == 0)) {
12860 		goto exit;
12861 	}
12862 
12863 	xp = SD_GET_XBUF(bp);
12864 	ASSERT(xp != NULL);
12865 
12866 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
12867 	bsp = xp->xb_private;
12868 
12869 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
12870 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
12871 
12872 	if (is_write) {
12873 		/*
12874 		 * For a WRITE request we must free up the block range that
12875 		 * we have locked up.  This holds regardless of whether this is
12876 		 * an aligned write request or a read-modify-write request.
12877 		 */
12878 		sd_range_unlock(un, bsp->mbs_wmp);
12879 		bsp->mbs_wmp = NULL;
12880 	}
12881 
12882 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
12883 		/*
12884 		 * An aligned read or write command will have no shadow buf;
12885 		 * there is not much else to do with it.
12886 		 */
12887 		goto done;
12888 	}
12889 
12890 	orig_bp = bsp->mbs_orig_bp;
12891 	ASSERT(orig_bp != NULL);
12892 	orig_xp = SD_GET_XBUF(orig_bp);
12893 	ASSERT(orig_xp != NULL);
12894 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12895 
12896 	if (!is_write && has_wmap) {
12897 		/*
12898 		 * A READ with a wmap means this is the READ phase of a
12899 		 * read-modify-write. If an error occurred on the READ then
12900 		 * we do not proceed with the WRITE phase or copy any data.
12901 		 * Just release the write maps and return with an error.
12902 		 */
12903 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
12904 			orig_bp->b_resid = orig_bp->b_bcount;
12905 			bioerror(orig_bp, bp->b_error);
12906 			sd_range_unlock(un, bsp->mbs_wmp);
12907 			goto freebuf_done;
12908 		}
12909 	}
12910 
12911 	/*
12912 	 * Here is where we set up to copy the data from the shadow buf
12913 	 * into the space associated with the original buf.
12914 	 *
12915 	 * To deal with the conversion between block sizes, these
12916 	 * computations treat the data as an array of bytes, with the
12917 	 * first byte (byte 0) corresponding to the first byte in the
12918 	 * first block on the disk.
12919 	 */
12920 
12921 	/*
12922 	 * shadow_start and shadow_len indicate the location and size of
12923 	 * the data returned with the shadow IO request.
12924 	 */
12925 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12926 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
12927 
12928 	/*
12929 	 * copy_offset gives the offset (in bytes) from the start of the first
12930 	 * block of the READ request to the beginning of the data.  We retrieve
12931 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
12932 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
12933 	 * data to be copied (in bytes).
12934 	 */
12935 	copy_offset  = bsp->mbs_copy_offset;
12936 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
12937 	copy_length  = orig_bp->b_bcount;
12938 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
12939 
12940 	/*
12941 	 * Set up the resid and error fields of orig_bp as appropriate.
12942 	 */
12943 	if (shadow_end >= request_end) {
12944 		/* We got all the requested data; set resid to zero */
12945 		orig_bp->b_resid = 0;
12946 	} else {
12947 		/*
12948 		 * We failed to get enough data to fully satisfy the original
12949 		 * request. Just copy back whatever data we got and set
12950 		 * up the residual and error code as required.
12951 		 *
12952 		 * 'shortfall' is the amount by which the data received with the
12953 		 * shadow buf has "fallen short" of the requested amount.
12954 		 */
12955 		shortfall = (size_t)(request_end - shadow_end);
12956 
12957 		if (shortfall > orig_bp->b_bcount) {
12958 			/*
12959 			 * We did not get enough data to even partially
12960 			 * fulfill the original request.  The residual is
12961 			 * equal to the amount requested.
12962 			 */
12963 			orig_bp->b_resid = orig_bp->b_bcount;
12964 		} else {
12965 			/*
12966 			 * We did not get all the data that we requested
12967 			 * from the device, but we will try to return what
12968 			 * portion we did get.
12969 			 */
12970 			orig_bp->b_resid = shortfall;
12971 		}
12972 		ASSERT(copy_length >= orig_bp->b_resid);
12973 		copy_length  -= orig_bp->b_resid;
12974 	}
12975 
12976 	/* Propagate the error code from the shadow buf to the original buf */
12977 	bioerror(orig_bp, bp->b_error);
12978 
12979 	if (is_write) {
12980 		goto freebuf_done;	/* No data copying for a WRITE */
12981 	}
12982 
12983 	if (has_wmap) {
12984 		/*
12985 		 * This is a READ command from the READ phase of a
12986 		 * read-modify-write request. We have to copy the data given
12987 		 * by the user OVER the data returned by the READ command,
12988 		 * then convert the command from a READ to a WRITE and send
12989 		 * it back to the target.
12990 		 */
12991 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
12992 		    copy_length);
12993 
12994 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
12995 
12996 		/*
12997 		 * Dispatch the WRITE command to the taskq thread, which
12998 		 * will in turn send the command to the target. When the
12999 		 * WRITE command completes, we (sd_mapblocksize_iodone())
13000 		 * will get called again as part of the iodone chain
13001 		 * processing for it. Note that we will still be dealing
13002 		 * with the shadow buf at that point.
13003 		 */
13004 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
13005 		    KM_NOSLEEP) != 0) {
13006 			/*
13007 			 * Dispatch was successful so we are done. Return
13008 			 * without going any higher up the iodone chain. Do
13009 			 * not free up any layer-private data until after the
13010 			 * WRITE completes.
13011 			 */
13012 			return;
13013 		}
13014 
13015 		/*
13016 		 * Dispatch of the WRITE command failed; set up the error
13017 		 * condition and send this IO back up the iodone chain.
13018 		 */
13019 		bioerror(orig_bp, EIO);
13020 		orig_bp->b_resid = orig_bp->b_bcount;
13021 
13022 	} else {
13023 		/*
13024 		 * This is a regular READ request (ie, not a RMW). Copy the
13025 		 * data from the shadow buf into the original buf. The
13026 		 * copy_offset compensates for any "misalignment" between the
13027 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
13028 		 * original buf (with its un->un_sys_blocksize blocks).
13029 		 */
13030 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
13031 		    copy_length);
13032 	}
13033 
13034 freebuf_done:
13035 
13036 	/*
13037 	 * At this point we still have both the shadow buf AND the original
13038 	 * buf to deal with, as well as the layer-private data area in each.
13039 	 * Local variables are as follows:
13040 	 *
13041 	 * bp -- points to shadow buf
13042 	 * xp -- points to xbuf of shadow buf
13043 	 * bsp -- points to layer-private data area of shadow buf
13044 	 * orig_bp -- points to original buf
13045 	 *
13046 	 * First free the shadow buf and its associated xbuf, then free the
13047 	 * layer-private data area from the shadow buf. There is no need to
13048 	 * restore xb_private in the shadow xbuf.
13049 	 */
13050 	sd_shadow_buf_free(bp);
13051 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13052 
13053 	/*
13054 	 * Now update the local variables to point to the original buf, xbuf,
13055 	 * and layer-private area.
13056 	 */
13057 	bp = orig_bp;
13058 	xp = SD_GET_XBUF(bp);
13059 	ASSERT(xp != NULL);
13060 	ASSERT(xp == orig_xp);
13061 	bsp = xp->xb_private;
13062 	ASSERT(bsp != NULL);
13063 
13064 done:
13065 	/*
13066 	 * Restore xb_private to whatever it was set to by the next higher
13067 	 * layer in the chain, then free the layer-private data area.
13068 	 */
13069 	xp->xb_private = bsp->mbs_oprivate;
13070 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13071 
13072 exit:
13073 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
13074 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
13075 
13076 	SD_NEXT_IODONE(index, un, bp);
13077 }
13078 
13079 
13080 /*
13081  *    Function: sd_checksum_iostart
13082  *
13083  * Description: A stub function for a layer that's currently not used.
13084  *		For now just a placeholder.
13085  *
13086  *     Context: Kernel thread context
13087  */
13088 
13089 static void
13090 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
13091 {
13092 	ASSERT(un != NULL);
13093 	ASSERT(bp != NULL);
13094 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13095 	SD_NEXT_IOSTART(index, un, bp);
13096 }
13097 
13098 
13099 /*
13100  *    Function: sd_checksum_iodone
13101  *
13102  * Description: A stub function for a layer that's currently not used.
13103  *		For now just a placeholder.
13104  *
13105  *     Context: May be called under interrupt context
13106  */
13107 
13108 static void
13109 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
13110 {
13111 	ASSERT(un != NULL);
13112 	ASSERT(bp != NULL);
13113 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13114 	SD_NEXT_IODONE(index, un, bp);
13115 }
13116 
13117 
13118 /*
13119  *    Function: sd_checksum_uscsi_iostart
13120  *
13121  * Description: A stub function for a layer that's currently not used.
13122  *		For now just a placeholder.
13123  *
13124  *     Context: Kernel thread context
13125  */
13126 
13127 static void
13128 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
13129 {
13130 	ASSERT(un != NULL);
13131 	ASSERT(bp != NULL);
13132 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13133 	SD_NEXT_IOSTART(index, un, bp);
13134 }
13135 
13136 
13137 /*
13138  *    Function: sd_checksum_uscsi_iodone
13139  *
13140  * Description: A stub function for a layer that's currently not used.
13141  *		For now just a placeholder.
13142  *
13143  *     Context: May be called under interrupt context
13144  */
13145 
13146 static void
13147 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
13148 {
13149 	ASSERT(un != NULL);
13150 	ASSERT(bp != NULL);
13151 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13152 	SD_NEXT_IODONE(index, un, bp);
13153 }
13154 
13155 
13156 /*
13157  *    Function: sd_pm_iostart
13158  *
13159  * Description: iostart-side routine for Power mangement.
13160  *
13161  *     Context: Kernel thread context
13162  */
13163 
13164 static void
13165 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
13166 {
13167 	ASSERT(un != NULL);
13168 	ASSERT(bp != NULL);
13169 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13170 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13171 
13172 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
13173 
13174 	if (sd_pm_entry(un) != DDI_SUCCESS) {
13175 		/*
13176 		 * Set up to return the failed buf back up the 'iodone'
13177 		 * side of the calling chain.
13178 		 */
13179 		bioerror(bp, EIO);
13180 		bp->b_resid = bp->b_bcount;
13181 
13182 		SD_BEGIN_IODONE(index, un, bp);
13183 
13184 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13185 		return;
13186 	}
13187 
13188 	SD_NEXT_IOSTART(index, un, bp);
13189 
13190 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13191 }
13192 
13193 
13194 /*
13195  *    Function: sd_pm_iodone
13196  *
13197  * Description: iodone-side routine for power mangement.
13198  *
13199  *     Context: may be called from interrupt context
13200  */
13201 
13202 static void
13203 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
13204 {
13205 	ASSERT(un != NULL);
13206 	ASSERT(bp != NULL);
13207 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13208 
13209 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
13210 
13211 	/*
13212 	 * After attach the following flag is only read, so don't
13213 	 * take the penalty of acquiring a mutex for it.
13214 	 */
13215 	if (un->un_f_pm_is_enabled == TRUE) {
13216 		sd_pm_exit(un);
13217 	}
13218 
13219 	SD_NEXT_IODONE(index, un, bp);
13220 
13221 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
13222 }
13223 
13224 
13225 /*
13226  *    Function: sd_core_iostart
13227  *
13228  * Description: Primary driver function for enqueuing buf(9S) structs from
13229  *		the system and initiating IO to the target device
13230  *
13231  *     Context: Kernel thread context. Can sleep.
13232  *
13233  * Assumptions:  - The given xp->xb_blkno is absolute
13234  *		   (ie, relative to the start of the device).
13235  *		 - The IO is to be done using the native blocksize of
13236  *		   the device, as specified in un->un_tgt_blocksize.
13237  */
13238 /* ARGSUSED */
13239 static void
13240 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
13241 {
13242 	struct sd_xbuf *xp;
13243 
13244 	ASSERT(un != NULL);
13245 	ASSERT(bp != NULL);
13246 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13247 	ASSERT(bp->b_resid == 0);
13248 
13249 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
13250 
13251 	xp = SD_GET_XBUF(bp);
13252 	ASSERT(xp != NULL);
13253 
13254 	mutex_enter(SD_MUTEX(un));
13255 
13256 	/*
13257 	 * If we are currently in the failfast state, fail any new IO
13258 	 * that has B_FAILFAST set, then return.
13259 	 */
13260 	if ((bp->b_flags & B_FAILFAST) &&
13261 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
13262 		mutex_exit(SD_MUTEX(un));
13263 		bioerror(bp, EIO);
13264 		bp->b_resid = bp->b_bcount;
13265 		SD_BEGIN_IODONE(index, un, bp);
13266 		return;
13267 	}
13268 
13269 	if (SD_IS_DIRECT_PRIORITY(xp)) {
13270 		/*
13271 		 * Priority command -- transport it immediately.
13272 		 *
13273 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
13274 		 * because all direct priority commands should be associated
13275 		 * with error recovery actions which we don't want to retry.
13276 		 */
13277 		sd_start_cmds(un, bp);
13278 	} else {
13279 		/*
13280 		 * Normal command -- add it to the wait queue, then start
13281 		 * transporting commands from the wait queue.
13282 		 */
13283 		sd_add_buf_to_waitq(un, bp);
13284 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13285 		sd_start_cmds(un, NULL);
13286 	}
13287 
13288 	mutex_exit(SD_MUTEX(un));
13289 
13290 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
13291 }
13292 
13293 
13294 /*
13295  *    Function: sd_init_cdb_limits
13296  *
13297  * Description: This is to handle scsi_pkt initialization differences
13298  *		between the driver platforms.
13299  *
13300  *		Legacy behaviors:
13301  *
13302  *		If the block number or the sector count exceeds the
13303  *		capabilities of a Group 0 command, shift over to a
13304  *		Group 1 command. We don't blindly use Group 1
13305  *		commands because a) some drives (CDC Wren IVs) get a
13306  *		bit confused, and b) there is probably a fair amount
13307  *		of speed difference for a target to receive and decode
13308  *		a 10 byte command instead of a 6 byte command.
13309  *
13310  *		The xfer time difference of 6 vs 10 byte CDBs is
13311  *		still significant so this code is still worthwhile.
13312  *		10 byte CDBs are very inefficient with the fas HBA driver
13313  *		and older disks. Each CDB byte took 1 usec with some
13314  *		popular disks.
13315  *
13316  *     Context: Must be called at attach time
13317  */
13318 
13319 static void
13320 sd_init_cdb_limits(struct sd_lun *un)
13321 {
13322 	int hba_cdb_limit;
13323 
13324 	/*
13325 	 * Use CDB_GROUP1 commands for most devices except for
13326 	 * parallel SCSI fixed drives in which case we get better
13327 	 * performance using CDB_GROUP0 commands (where applicable).
13328 	 */
13329 	un->un_mincdb = SD_CDB_GROUP1;
13330 #if !defined(__fibre)
13331 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
13332 	    !un->un_f_has_removable_media) {
13333 		un->un_mincdb = SD_CDB_GROUP0;
13334 	}
13335 #endif
13336 
13337 	/*
13338 	 * Try to read the max-cdb-length supported by HBA.
13339 	 */
13340 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
13341 	if (0 >= un->un_max_hba_cdb) {
13342 		un->un_max_hba_cdb = CDB_GROUP4;
13343 		hba_cdb_limit = SD_CDB_GROUP4;
13344 	} else if (0 < un->un_max_hba_cdb &&
13345 	    un->un_max_hba_cdb < CDB_GROUP1) {
13346 		hba_cdb_limit = SD_CDB_GROUP0;
13347 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
13348 	    un->un_max_hba_cdb < CDB_GROUP5) {
13349 		hba_cdb_limit = SD_CDB_GROUP1;
13350 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
13351 	    un->un_max_hba_cdb < CDB_GROUP4) {
13352 		hba_cdb_limit = SD_CDB_GROUP5;
13353 	} else {
13354 		hba_cdb_limit = SD_CDB_GROUP4;
13355 	}
13356 
13357 	/*
13358 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
13359 	 * commands for fixed disks unless we are building for a 32 bit
13360 	 * kernel.
13361 	 */
13362 #ifdef _LP64
13363 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13364 	    min(hba_cdb_limit, SD_CDB_GROUP4);
13365 #else
13366 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13367 	    min(hba_cdb_limit, SD_CDB_GROUP1);
13368 #endif
13369 
13370 	/*
13371 	 * x86 systems require the PKT_DMA_PARTIAL flag
13372 	 */
13373 #if defined(__x86)
13374 	un->un_pkt_flags = PKT_DMA_PARTIAL;
13375 #else
13376 	un->un_pkt_flags = 0;
13377 #endif
13378 
13379 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
13380 	    ? sizeof (struct scsi_arq_status) : 1);
13381 	un->un_cmd_timeout = (ushort_t)sd_io_time;
13382 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
13383 }
13384 
13385 
13386 /*
13387  *    Function: sd_initpkt_for_buf
13388  *
13389  * Description: Allocate and initialize for transport a scsi_pkt struct,
13390  *		based upon the info specified in the given buf struct.
13391  *
13392  *		Assumes the xb_blkno in the request is absolute (ie,
13393  *		relative to the start of the device (NOT partition!).
13394  *		Also assumes that the request is using the native block
13395  *		size of the device (as returned by the READ CAPACITY
13396  *		command).
13397  *
13398  * Return Code: SD_PKT_ALLOC_SUCCESS
13399  *		SD_PKT_ALLOC_FAILURE
13400  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13401  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13402  *
13403  *     Context: Kernel thread and may be called from software interrupt context
13404  *		as part of a sdrunout callback. This function may not block or
13405  *		call routines that block
13406  */
13407 
13408 static int
13409 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
13410 {
13411 	struct sd_xbuf	*xp;
13412 	struct scsi_pkt *pktp = NULL;
13413 	struct sd_lun	*un;
13414 	size_t		blockcount;
13415 	daddr_t		startblock;
13416 	int		rval;
13417 	int		cmd_flags;
13418 
13419 	ASSERT(bp != NULL);
13420 	ASSERT(pktpp != NULL);
13421 	xp = SD_GET_XBUF(bp);
13422 	ASSERT(xp != NULL);
13423 	un = SD_GET_UN(bp);
13424 	ASSERT(un != NULL);
13425 	ASSERT(mutex_owned(SD_MUTEX(un)));
13426 	ASSERT(bp->b_resid == 0);
13427 
13428 	SD_TRACE(SD_LOG_IO_CORE, un,
13429 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
13430 
13431 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13432 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
13433 		/*
13434 		 * Already have a scsi_pkt -- just need DMA resources.
13435 		 * We must recompute the CDB in case the mapping returns
13436 		 * a nonzero pkt_resid.
13437 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
13438 		 * that is being retried, the unmap/remap of the DMA resouces
13439 		 * will result in the entire transfer starting over again
13440 		 * from the very first block.
13441 		 */
13442 		ASSERT(xp->xb_pktp != NULL);
13443 		pktp = xp->xb_pktp;
13444 	} else {
13445 		pktp = NULL;
13446 	}
13447 #endif /* __i386 || __amd64 */
13448 
13449 	startblock = xp->xb_blkno;	/* Absolute block num. */
13450 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
13451 
13452 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13453 
13454 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
13455 
13456 #else
13457 
13458 	cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags;
13459 
13460 #endif
13461 
13462 	/*
13463 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
13464 	 * call scsi_init_pkt, and build the CDB.
13465 	 */
13466 	rval = sd_setup_rw_pkt(un, &pktp, bp,
13467 	    cmd_flags, sdrunout, (caddr_t)un,
13468 	    startblock, blockcount);
13469 
13470 	if (rval == 0) {
13471 		/*
13472 		 * Success.
13473 		 *
13474 		 * If partial DMA is being used and required for this transfer.
13475 		 * set it up here.
13476 		 */
13477 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
13478 		    (pktp->pkt_resid != 0)) {
13479 
13480 			/*
13481 			 * Save the CDB length and pkt_resid for the
13482 			 * next xfer
13483 			 */
13484 			xp->xb_dma_resid = pktp->pkt_resid;
13485 
13486 			/* rezero resid */
13487 			pktp->pkt_resid = 0;
13488 
13489 		} else {
13490 			xp->xb_dma_resid = 0;
13491 		}
13492 
13493 		pktp->pkt_flags = un->un_tagflags;
13494 		pktp->pkt_time  = un->un_cmd_timeout;
13495 		pktp->pkt_comp  = sdintr;
13496 
13497 		pktp->pkt_private = bp;
13498 		*pktpp = pktp;
13499 
13500 		SD_TRACE(SD_LOG_IO_CORE, un,
13501 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
13502 
13503 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13504 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
13505 #endif
13506 
13507 		return (SD_PKT_ALLOC_SUCCESS);
13508 
13509 	}
13510 
13511 	/*
13512 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
13513 	 * from sd_setup_rw_pkt.
13514 	 */
13515 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
13516 
13517 	if (rval == SD_PKT_ALLOC_FAILURE) {
13518 		*pktpp = NULL;
13519 		/*
13520 		 * Set the driver state to RWAIT to indicate the driver
13521 		 * is waiting on resource allocations. The driver will not
13522 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13523 		 */
13524 		New_state(un, SD_STATE_RWAIT);
13525 
13526 		SD_ERROR(SD_LOG_IO_CORE, un,
13527 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13528 
13529 		if ((bp->b_flags & B_ERROR) != 0) {
13530 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13531 		}
13532 		return (SD_PKT_ALLOC_FAILURE);
13533 	} else {
13534 		/*
13535 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13536 		 *
13537 		 * This should never happen.  Maybe someone messed with the
13538 		 * kernel's minphys?
13539 		 */
13540 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13541 		    "Request rejected: too large for CDB: "
13542 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13543 		SD_ERROR(SD_LOG_IO_CORE, un,
13544 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13545 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13546 
13547 	}
13548 }
13549 
13550 
13551 /*
13552  *    Function: sd_destroypkt_for_buf
13553  *
13554  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13555  *
13556  *     Context: Kernel thread or interrupt context
13557  */
13558 
13559 static void
13560 sd_destroypkt_for_buf(struct buf *bp)
13561 {
13562 	ASSERT(bp != NULL);
13563 	ASSERT(SD_GET_UN(bp) != NULL);
13564 
13565 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13566 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13567 
13568 	ASSERT(SD_GET_PKTP(bp) != NULL);
13569 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13570 
13571 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13572 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13573 }
13574 
13575 /*
13576  *    Function: sd_setup_rw_pkt
13577  *
13578  * Description: Determines appropriate CDB group for the requested LBA
13579  *		and transfer length, calls scsi_init_pkt, and builds
13580  *		the CDB.  Do not use for partial DMA transfers except
13581  *		for the initial transfer since the CDB size must
13582  *		remain constant.
13583  *
13584  *     Context: Kernel thread and may be called from software interrupt
13585  *		context as part of a sdrunout callback. This function may not
13586  *		block or call routines that block
13587  */
13588 
13589 
13590 int
13591 sd_setup_rw_pkt(struct sd_lun *un,
13592     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13593     int (*callback)(caddr_t), caddr_t callback_arg,
13594     diskaddr_t lba, uint32_t blockcount)
13595 {
13596 	struct scsi_pkt *return_pktp;
13597 	union scsi_cdb *cdbp;
13598 	struct sd_cdbinfo *cp = NULL;
13599 	int i;
13600 
13601 	/*
13602 	 * See which size CDB to use, based upon the request.
13603 	 */
13604 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13605 
13606 		/*
13607 		 * Check lba and block count against sd_cdbtab limits.
13608 		 * In the partial DMA case, we have to use the same size
13609 		 * CDB for all the transfers.  Check lba + blockcount
13610 		 * against the max LBA so we know that segment of the
13611 		 * transfer can use the CDB we select.
13612 		 */
13613 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13614 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13615 
13616 			/*
13617 			 * The command will fit into the CDB type
13618 			 * specified by sd_cdbtab[i].
13619 			 */
13620 			cp = sd_cdbtab + i;
13621 
13622 			/*
13623 			 * Call scsi_init_pkt so we can fill in the
13624 			 * CDB.
13625 			 */
13626 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13627 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13628 			    flags, callback, callback_arg);
13629 
13630 			if (return_pktp != NULL) {
13631 
13632 				/*
13633 				 * Return new value of pkt
13634 				 */
13635 				*pktpp = return_pktp;
13636 
13637 				/*
13638 				 * To be safe, zero the CDB insuring there is
13639 				 * no leftover data from a previous command.
13640 				 */
13641 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13642 
13643 				/*
13644 				 * Handle partial DMA mapping
13645 				 */
13646 				if (return_pktp->pkt_resid != 0) {
13647 
13648 					/*
13649 					 * Not going to xfer as many blocks as
13650 					 * originally expected
13651 					 */
13652 					blockcount -=
13653 					    SD_BYTES2TGTBLOCKS(un,
13654 						return_pktp->pkt_resid);
13655 				}
13656 
13657 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13658 
13659 				/*
13660 				 * Set command byte based on the CDB
13661 				 * type we matched.
13662 				 */
13663 				cdbp->scc_cmd = cp->sc_grpmask |
13664 				    ((bp->b_flags & B_READ) ?
13665 					SCMD_READ : SCMD_WRITE);
13666 
13667 				SD_FILL_SCSI1_LUN(un, return_pktp);
13668 
13669 				/*
13670 				 * Fill in LBA and length
13671 				 */
13672 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13673 				    (cp->sc_grpcode == CDB_GROUP4) ||
13674 				    (cp->sc_grpcode == CDB_GROUP0) ||
13675 				    (cp->sc_grpcode == CDB_GROUP5));
13676 
13677 				if (cp->sc_grpcode == CDB_GROUP1) {
13678 					FORMG1ADDR(cdbp, lba);
13679 					FORMG1COUNT(cdbp, blockcount);
13680 					return (0);
13681 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13682 					FORMG4LONGADDR(cdbp, lba);
13683 					FORMG4COUNT(cdbp, blockcount);
13684 					return (0);
13685 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13686 					FORMG0ADDR(cdbp, lba);
13687 					FORMG0COUNT(cdbp, blockcount);
13688 					return (0);
13689 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13690 					FORMG5ADDR(cdbp, lba);
13691 					FORMG5COUNT(cdbp, blockcount);
13692 					return (0);
13693 				}
13694 
13695 				/*
13696 				 * It should be impossible to not match one
13697 				 * of the CDB types above, so we should never
13698 				 * reach this point.  Set the CDB command byte
13699 				 * to test-unit-ready to avoid writing
13700 				 * to somewhere we don't intend.
13701 				 */
13702 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13703 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13704 			} else {
13705 				/*
13706 				 * Couldn't get scsi_pkt
13707 				 */
13708 				return (SD_PKT_ALLOC_FAILURE);
13709 			}
13710 		}
13711 	}
13712 
13713 	/*
13714 	 * None of the available CDB types were suitable.  This really
13715 	 * should never happen:  on a 64 bit system we support
13716 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13717 	 * and on a 32 bit system we will refuse to bind to a device
13718 	 * larger than 2TB so addresses will never be larger than 32 bits.
13719 	 */
13720 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13721 }
13722 
13723 #if defined(__i386) || defined(__amd64)
13724 /*
13725  *    Function: sd_setup_next_rw_pkt
13726  *
13727  * Description: Setup packet for partial DMA transfers, except for the
13728  * 		initial transfer.  sd_setup_rw_pkt should be used for
13729  *		the initial transfer.
13730  *
13731  *     Context: Kernel thread and may be called from interrupt context.
13732  */
13733 
13734 int
13735 sd_setup_next_rw_pkt(struct sd_lun *un,
13736     struct scsi_pkt *pktp, struct buf *bp,
13737     diskaddr_t lba, uint32_t blockcount)
13738 {
13739 	uchar_t com;
13740 	union scsi_cdb *cdbp;
13741 	uchar_t cdb_group_id;
13742 
13743 	ASSERT(pktp != NULL);
13744 	ASSERT(pktp->pkt_cdbp != NULL);
13745 
13746 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
13747 	com = cdbp->scc_cmd;
13748 	cdb_group_id = CDB_GROUPID(com);
13749 
13750 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
13751 	    (cdb_group_id == CDB_GROUPID_1) ||
13752 	    (cdb_group_id == CDB_GROUPID_4) ||
13753 	    (cdb_group_id == CDB_GROUPID_5));
13754 
13755 	/*
13756 	 * Move pkt to the next portion of the xfer.
13757 	 * func is NULL_FUNC so we do not have to release
13758 	 * the disk mutex here.
13759 	 */
13760 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
13761 	    NULL_FUNC, NULL) == pktp) {
13762 		/* Success.  Handle partial DMA */
13763 		if (pktp->pkt_resid != 0) {
13764 			blockcount -=
13765 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
13766 		}
13767 
13768 		cdbp->scc_cmd = com;
13769 		SD_FILL_SCSI1_LUN(un, pktp);
13770 		if (cdb_group_id == CDB_GROUPID_1) {
13771 			FORMG1ADDR(cdbp, lba);
13772 			FORMG1COUNT(cdbp, blockcount);
13773 			return (0);
13774 		} else if (cdb_group_id == CDB_GROUPID_4) {
13775 			FORMG4LONGADDR(cdbp, lba);
13776 			FORMG4COUNT(cdbp, blockcount);
13777 			return (0);
13778 		} else if (cdb_group_id == CDB_GROUPID_0) {
13779 			FORMG0ADDR(cdbp, lba);
13780 			FORMG0COUNT(cdbp, blockcount);
13781 			return (0);
13782 		} else if (cdb_group_id == CDB_GROUPID_5) {
13783 			FORMG5ADDR(cdbp, lba);
13784 			FORMG5COUNT(cdbp, blockcount);
13785 			return (0);
13786 		}
13787 
13788 		/* Unreachable */
13789 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13790 	}
13791 
13792 	/*
13793 	 * Error setting up next portion of cmd transfer.
13794 	 * Something is definitely very wrong and this
13795 	 * should not happen.
13796 	 */
13797 	return (SD_PKT_ALLOC_FAILURE);
13798 }
13799 #endif /* defined(__i386) || defined(__amd64) */
13800 
13801 /*
13802  *    Function: sd_initpkt_for_uscsi
13803  *
13804  * Description: Allocate and initialize for transport a scsi_pkt struct,
13805  *		based upon the info specified in the given uscsi_cmd struct.
13806  *
13807  * Return Code: SD_PKT_ALLOC_SUCCESS
13808  *		SD_PKT_ALLOC_FAILURE
13809  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13810  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13811  *
13812  *     Context: Kernel thread and may be called from software interrupt context
13813  *		as part of a sdrunout callback. This function may not block or
13814  *		call routines that block
13815  */
13816 
13817 static int
13818 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
13819 {
13820 	struct uscsi_cmd *uscmd;
13821 	struct sd_xbuf	*xp;
13822 	struct scsi_pkt	*pktp;
13823 	struct sd_lun	*un;
13824 	uint32_t	flags = 0;
13825 
13826 	ASSERT(bp != NULL);
13827 	ASSERT(pktpp != NULL);
13828 	xp = SD_GET_XBUF(bp);
13829 	ASSERT(xp != NULL);
13830 	un = SD_GET_UN(bp);
13831 	ASSERT(un != NULL);
13832 	ASSERT(mutex_owned(SD_MUTEX(un)));
13833 
13834 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13835 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13836 	ASSERT(uscmd != NULL);
13837 
13838 	SD_TRACE(SD_LOG_IO_CORE, un,
13839 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
13840 
13841 	/*
13842 	 * Allocate the scsi_pkt for the command.
13843 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
13844 	 *	 during scsi_init_pkt time and will continue to use the
13845 	 *	 same path as long as the same scsi_pkt is used without
13846 	 *	 intervening scsi_dma_free(). Since uscsi command does
13847 	 *	 not call scsi_dmafree() before retry failed command, it
13848 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
13849 	 *	 set such that scsi_vhci can use other available path for
13850 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
13851 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
13852 	 */
13853 	pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
13854 	    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
13855 	    sizeof (struct scsi_arq_status), 0,
13856 	    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
13857 	    sdrunout, (caddr_t)un);
13858 
13859 	if (pktp == NULL) {
13860 		*pktpp = NULL;
13861 		/*
13862 		 * Set the driver state to RWAIT to indicate the driver
13863 		 * is waiting on resource allocations. The driver will not
13864 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13865 		 */
13866 		New_state(un, SD_STATE_RWAIT);
13867 
13868 		SD_ERROR(SD_LOG_IO_CORE, un,
13869 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
13870 
13871 		if ((bp->b_flags & B_ERROR) != 0) {
13872 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13873 		}
13874 		return (SD_PKT_ALLOC_FAILURE);
13875 	}
13876 
13877 	/*
13878 	 * We do not do DMA breakup for USCSI commands, so return failure
13879 	 * here if all the needed DMA resources were not allocated.
13880 	 */
13881 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
13882 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
13883 		scsi_destroy_pkt(pktp);
13884 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
13885 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
13886 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
13887 	}
13888 
13889 	/* Init the cdb from the given uscsi struct */
13890 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
13891 	    uscmd->uscsi_cdb[0], 0, 0, 0);
13892 
13893 	SD_FILL_SCSI1_LUN(un, pktp);
13894 
13895 	/*
13896 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
13897 	 * for listing of the supported flags.
13898 	 */
13899 
13900 	if (uscmd->uscsi_flags & USCSI_SILENT) {
13901 		flags |= FLAG_SILENT;
13902 	}
13903 
13904 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
13905 		flags |= FLAG_DIAGNOSE;
13906 	}
13907 
13908 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
13909 		flags |= FLAG_ISOLATE;
13910 	}
13911 
13912 	if (un->un_f_is_fibre == FALSE) {
13913 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
13914 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
13915 		}
13916 	}
13917 
13918 	/*
13919 	 * Set the pkt flags here so we save time later.
13920 	 * Note: These flags are NOT in the uscsi man page!!!
13921 	 */
13922 	if (uscmd->uscsi_flags & USCSI_HEAD) {
13923 		flags |= FLAG_HEAD;
13924 	}
13925 
13926 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
13927 		flags |= FLAG_NOINTR;
13928 	}
13929 
13930 	/*
13931 	 * For tagged queueing, things get a bit complicated.
13932 	 * Check first for head of queue and last for ordered queue.
13933 	 * If neither head nor order, use the default driver tag flags.
13934 	 */
13935 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
13936 		if (uscmd->uscsi_flags & USCSI_HTAG) {
13937 			flags |= FLAG_HTAG;
13938 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
13939 			flags |= FLAG_OTAG;
13940 		} else {
13941 			flags |= un->un_tagflags & FLAG_TAGMASK;
13942 		}
13943 	}
13944 
13945 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
13946 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
13947 	}
13948 
13949 	pktp->pkt_flags = flags;
13950 
13951 	/* Copy the caller's CDB into the pkt... */
13952 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
13953 
13954 	if (uscmd->uscsi_timeout == 0) {
13955 		pktp->pkt_time = un->un_uscsi_timeout;
13956 	} else {
13957 		pktp->pkt_time = uscmd->uscsi_timeout;
13958 	}
13959 
13960 	/* need it later to identify USCSI request in sdintr */
13961 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
13962 
13963 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
13964 
13965 	pktp->pkt_private = bp;
13966 	pktp->pkt_comp = sdintr;
13967 	*pktpp = pktp;
13968 
13969 	SD_TRACE(SD_LOG_IO_CORE, un,
13970 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
13971 
13972 	return (SD_PKT_ALLOC_SUCCESS);
13973 }
13974 
13975 
13976 /*
13977  *    Function: sd_destroypkt_for_uscsi
13978  *
13979  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
13980  *		IOs.. Also saves relevant info into the associated uscsi_cmd
13981  *		struct.
13982  *
13983  *     Context: May be called under interrupt context
13984  */
13985 
13986 static void
13987 sd_destroypkt_for_uscsi(struct buf *bp)
13988 {
13989 	struct uscsi_cmd *uscmd;
13990 	struct sd_xbuf	*xp;
13991 	struct scsi_pkt	*pktp;
13992 	struct sd_lun	*un;
13993 
13994 	ASSERT(bp != NULL);
13995 	xp = SD_GET_XBUF(bp);
13996 	ASSERT(xp != NULL);
13997 	un = SD_GET_UN(bp);
13998 	ASSERT(un != NULL);
13999 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14000 	pktp = SD_GET_PKTP(bp);
14001 	ASSERT(pktp != NULL);
14002 
14003 	SD_TRACE(SD_LOG_IO_CORE, un,
14004 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
14005 
14006 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
14007 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
14008 	ASSERT(uscmd != NULL);
14009 
14010 	/* Save the status and the residual into the uscsi_cmd struct */
14011 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
14012 	uscmd->uscsi_resid  = bp->b_resid;
14013 
14014 	/*
14015 	 * If enabled, copy any saved sense data into the area specified
14016 	 * by the uscsi command.
14017 	 */
14018 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
14019 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
14020 		/*
14021 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
14022 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
14023 		 */
14024 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
14025 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
14026 		bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, SENSE_LENGTH);
14027 	}
14028 
14029 	/* We are done with the scsi_pkt; free it now */
14030 	ASSERT(SD_GET_PKTP(bp) != NULL);
14031 	scsi_destroy_pkt(SD_GET_PKTP(bp));
14032 
14033 	SD_TRACE(SD_LOG_IO_CORE, un,
14034 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
14035 }
14036 
14037 
14038 /*
14039  *    Function: sd_bioclone_alloc
14040  *
14041  * Description: Allocate a buf(9S) and init it as per the given buf
14042  *		and the various arguments.  The associated sd_xbuf
14043  *		struct is (nearly) duplicated.  The struct buf *bp
14044  *		argument is saved in new_xp->xb_private.
14045  *
14046  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14047  *		datalen - size of data area for the shadow bp
14048  *		blkno - starting LBA
14049  *		func - function pointer for b_iodone in the shadow buf. (May
14050  *			be NULL if none.)
14051  *
14052  * Return Code: Pointer to allocates buf(9S) struct
14053  *
14054  *     Context: Can sleep.
14055  */
14056 
14057 static struct buf *
14058 sd_bioclone_alloc(struct buf *bp, size_t datalen,
14059 	daddr_t blkno, int (*func)(struct buf *))
14060 {
14061 	struct	sd_lun	*un;
14062 	struct	sd_xbuf	*xp;
14063 	struct	sd_xbuf	*new_xp;
14064 	struct	buf	*new_bp;
14065 
14066 	ASSERT(bp != NULL);
14067 	xp = SD_GET_XBUF(bp);
14068 	ASSERT(xp != NULL);
14069 	un = SD_GET_UN(bp);
14070 	ASSERT(un != NULL);
14071 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14072 
14073 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
14074 	    NULL, KM_SLEEP);
14075 
14076 	new_bp->b_lblkno	= blkno;
14077 
14078 	/*
14079 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14080 	 * original xbuf into it.
14081 	 */
14082 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14083 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14084 
14085 	/*
14086 	 * The given bp is automatically saved in the xb_private member
14087 	 * of the new xbuf.  Callers are allowed to depend on this.
14088 	 */
14089 	new_xp->xb_private = bp;
14090 
14091 	new_bp->b_private  = new_xp;
14092 
14093 	return (new_bp);
14094 }
14095 
14096 /*
14097  *    Function: sd_shadow_buf_alloc
14098  *
14099  * Description: Allocate a buf(9S) and init it as per the given buf
14100  *		and the various arguments.  The associated sd_xbuf
14101  *		struct is (nearly) duplicated.  The struct buf *bp
14102  *		argument is saved in new_xp->xb_private.
14103  *
14104  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14105  *		datalen - size of data area for the shadow bp
14106  *		bflags - B_READ or B_WRITE (pseudo flag)
14107  *		blkno - starting LBA
14108  *		func - function pointer for b_iodone in the shadow buf. (May
14109  *			be NULL if none.)
14110  *
14111  * Return Code: Pointer to allocates buf(9S) struct
14112  *
14113  *     Context: Can sleep.
14114  */
14115 
14116 static struct buf *
14117 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
14118 	daddr_t blkno, int (*func)(struct buf *))
14119 {
14120 	struct	sd_lun	*un;
14121 	struct	sd_xbuf	*xp;
14122 	struct	sd_xbuf	*new_xp;
14123 	struct	buf	*new_bp;
14124 
14125 	ASSERT(bp != NULL);
14126 	xp = SD_GET_XBUF(bp);
14127 	ASSERT(xp != NULL);
14128 	un = SD_GET_UN(bp);
14129 	ASSERT(un != NULL);
14130 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14131 
14132 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
14133 		bp_mapin(bp);
14134 	}
14135 
14136 	bflags &= (B_READ | B_WRITE);
14137 #if defined(__i386) || defined(__amd64)
14138 	new_bp = getrbuf(KM_SLEEP);
14139 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
14140 	new_bp->b_bcount = datalen;
14141 	new_bp->b_flags = bflags |
14142 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
14143 #else
14144 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
14145 	    datalen, bflags, SLEEP_FUNC, NULL);
14146 #endif
14147 	new_bp->av_forw	= NULL;
14148 	new_bp->av_back	= NULL;
14149 	new_bp->b_dev	= bp->b_dev;
14150 	new_bp->b_blkno	= blkno;
14151 	new_bp->b_iodone = func;
14152 	new_bp->b_edev	= bp->b_edev;
14153 	new_bp->b_resid	= 0;
14154 
14155 	/* We need to preserve the B_FAILFAST flag */
14156 	if (bp->b_flags & B_FAILFAST) {
14157 		new_bp->b_flags |= B_FAILFAST;
14158 	}
14159 
14160 	/*
14161 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14162 	 * original xbuf into it.
14163 	 */
14164 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14165 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14166 
14167 	/* Need later to copy data between the shadow buf & original buf! */
14168 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
14169 
14170 	/*
14171 	 * The given bp is automatically saved in the xb_private member
14172 	 * of the new xbuf.  Callers are allowed to depend on this.
14173 	 */
14174 	new_xp->xb_private = bp;
14175 
14176 	new_bp->b_private  = new_xp;
14177 
14178 	return (new_bp);
14179 }
14180 
14181 /*
14182  *    Function: sd_bioclone_free
14183  *
14184  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
14185  *		in the larger than partition operation.
14186  *
14187  *     Context: May be called under interrupt context
14188  */
14189 
14190 static void
14191 sd_bioclone_free(struct buf *bp)
14192 {
14193 	struct sd_xbuf	*xp;
14194 
14195 	ASSERT(bp != NULL);
14196 	xp = SD_GET_XBUF(bp);
14197 	ASSERT(xp != NULL);
14198 
14199 	/*
14200 	 * Call bp_mapout() before freeing the buf,  in case a lower
14201 	 * layer or HBA  had done a bp_mapin().  we must do this here
14202 	 * as we are the "originator" of the shadow buf.
14203 	 */
14204 	bp_mapout(bp);
14205 
14206 	/*
14207 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14208 	 * never gets confused by a stale value in this field. (Just a little
14209 	 * extra defensiveness here.)
14210 	 */
14211 	bp->b_iodone = NULL;
14212 
14213 	freerbuf(bp);
14214 
14215 	kmem_free(xp, sizeof (struct sd_xbuf));
14216 }
14217 
14218 /*
14219  *    Function: sd_shadow_buf_free
14220  *
14221  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
14222  *
14223  *     Context: May be called under interrupt context
14224  */
14225 
14226 static void
14227 sd_shadow_buf_free(struct buf *bp)
14228 {
14229 	struct sd_xbuf	*xp;
14230 
14231 	ASSERT(bp != NULL);
14232 	xp = SD_GET_XBUF(bp);
14233 	ASSERT(xp != NULL);
14234 
14235 #if defined(__sparc)
14236 	/*
14237 	 * Call bp_mapout() before freeing the buf,  in case a lower
14238 	 * layer or HBA  had done a bp_mapin().  we must do this here
14239 	 * as we are the "originator" of the shadow buf.
14240 	 */
14241 	bp_mapout(bp);
14242 #endif
14243 
14244 	/*
14245 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14246 	 * never gets confused by a stale value in this field. (Just a little
14247 	 * extra defensiveness here.)
14248 	 */
14249 	bp->b_iodone = NULL;
14250 
14251 #if defined(__i386) || defined(__amd64)
14252 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
14253 	freerbuf(bp);
14254 #else
14255 	scsi_free_consistent_buf(bp);
14256 #endif
14257 
14258 	kmem_free(xp, sizeof (struct sd_xbuf));
14259 }
14260 
14261 
14262 /*
14263  *    Function: sd_print_transport_rejected_message
14264  *
14265  * Description: This implements the ludicrously complex rules for printing
14266  *		a "transport rejected" message.  This is to address the
14267  *		specific problem of having a flood of this error message
14268  *		produced when a failover occurs.
14269  *
14270  *     Context: Any.
14271  */
14272 
14273 static void
14274 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
14275 	int code)
14276 {
14277 	ASSERT(un != NULL);
14278 	ASSERT(mutex_owned(SD_MUTEX(un)));
14279 	ASSERT(xp != NULL);
14280 
14281 	/*
14282 	 * Print the "transport rejected" message under the following
14283 	 * conditions:
14284 	 *
14285 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
14286 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
14287 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
14288 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
14289 	 *   scsi_transport(9F) (which indicates that the target might have
14290 	 *   gone off-line).  This uses the un->un_tran_fatal_count
14291 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
14292 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
14293 	 *   from scsi_transport().
14294 	 *
14295 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
14296 	 * the preceeding cases in order for the message to be printed.
14297 	 */
14298 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
14299 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
14300 		    (code != TRAN_FATAL_ERROR) ||
14301 		    (un->un_tran_fatal_count == 1)) {
14302 			switch (code) {
14303 			case TRAN_BADPKT:
14304 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14305 				    "transport rejected bad packet\n");
14306 				break;
14307 			case TRAN_FATAL_ERROR:
14308 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14309 				    "transport rejected fatal error\n");
14310 				break;
14311 			default:
14312 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14313 				    "transport rejected (%d)\n", code);
14314 				break;
14315 			}
14316 		}
14317 	}
14318 }
14319 
14320 
14321 /*
14322  *    Function: sd_add_buf_to_waitq
14323  *
14324  * Description: Add the given buf(9S) struct to the wait queue for the
14325  *		instance.  If sorting is enabled, then the buf is added
14326  *		to the queue via an elevator sort algorithm (a la
14327  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
14328  *		If sorting is not enabled, then the buf is just added
14329  *		to the end of the wait queue.
14330  *
14331  * Return Code: void
14332  *
14333  *     Context: Does not sleep/block, therefore technically can be called
14334  *		from any context.  However if sorting is enabled then the
14335  *		execution time is indeterminate, and may take long if
14336  *		the wait queue grows large.
14337  */
14338 
14339 static void
14340 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
14341 {
14342 	struct buf *ap;
14343 
14344 	ASSERT(bp != NULL);
14345 	ASSERT(un != NULL);
14346 	ASSERT(mutex_owned(SD_MUTEX(un)));
14347 
14348 	/* If the queue is empty, add the buf as the only entry & return. */
14349 	if (un->un_waitq_headp == NULL) {
14350 		ASSERT(un->un_waitq_tailp == NULL);
14351 		un->un_waitq_headp = un->un_waitq_tailp = bp;
14352 		bp->av_forw = NULL;
14353 		return;
14354 	}
14355 
14356 	ASSERT(un->un_waitq_tailp != NULL);
14357 
14358 	/*
14359 	 * If sorting is disabled, just add the buf to the tail end of
14360 	 * the wait queue and return.
14361 	 */
14362 	if (un->un_f_disksort_disabled) {
14363 		un->un_waitq_tailp->av_forw = bp;
14364 		un->un_waitq_tailp = bp;
14365 		bp->av_forw = NULL;
14366 		return;
14367 	}
14368 
14369 	/*
14370 	 * Sort thru the list of requests currently on the wait queue
14371 	 * and add the new buf request at the appropriate position.
14372 	 *
14373 	 * The un->un_waitq_headp is an activity chain pointer on which
14374 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
14375 	 * first queue holds those requests which are positioned after
14376 	 * the current SD_GET_BLKNO() (in the first request); the second holds
14377 	 * requests which came in after their SD_GET_BLKNO() number was passed.
14378 	 * Thus we implement a one way scan, retracting after reaching
14379 	 * the end of the drive to the first request on the second
14380 	 * queue, at which time it becomes the first queue.
14381 	 * A one-way scan is natural because of the way UNIX read-ahead
14382 	 * blocks are allocated.
14383 	 *
14384 	 * If we lie after the first request, then we must locate the
14385 	 * second request list and add ourselves to it.
14386 	 */
14387 	ap = un->un_waitq_headp;
14388 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
14389 		while (ap->av_forw != NULL) {
14390 			/*
14391 			 * Look for an "inversion" in the (normally
14392 			 * ascending) block numbers. This indicates
14393 			 * the start of the second request list.
14394 			 */
14395 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
14396 				/*
14397 				 * Search the second request list for the
14398 				 * first request at a larger block number.
14399 				 * We go before that; however if there is
14400 				 * no such request, we go at the end.
14401 				 */
14402 				do {
14403 					if (SD_GET_BLKNO(bp) <
14404 					    SD_GET_BLKNO(ap->av_forw)) {
14405 						goto insert;
14406 					}
14407 					ap = ap->av_forw;
14408 				} while (ap->av_forw != NULL);
14409 				goto insert;		/* after last */
14410 			}
14411 			ap = ap->av_forw;
14412 		}
14413 
14414 		/*
14415 		 * No inversions... we will go after the last, and
14416 		 * be the first request in the second request list.
14417 		 */
14418 		goto insert;
14419 	}
14420 
14421 	/*
14422 	 * Request is at/after the current request...
14423 	 * sort in the first request list.
14424 	 */
14425 	while (ap->av_forw != NULL) {
14426 		/*
14427 		 * We want to go after the current request (1) if
14428 		 * there is an inversion after it (i.e. it is the end
14429 		 * of the first request list), or (2) if the next
14430 		 * request is a larger block no. than our request.
14431 		 */
14432 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
14433 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
14434 			goto insert;
14435 		}
14436 		ap = ap->av_forw;
14437 	}
14438 
14439 	/*
14440 	 * Neither a second list nor a larger request, therefore
14441 	 * we go at the end of the first list (which is the same
14442 	 * as the end of the whole schebang).
14443 	 */
14444 insert:
14445 	bp->av_forw = ap->av_forw;
14446 	ap->av_forw = bp;
14447 
14448 	/*
14449 	 * If we inserted onto the tail end of the waitq, make sure the
14450 	 * tail pointer is updated.
14451 	 */
14452 	if (ap == un->un_waitq_tailp) {
14453 		un->un_waitq_tailp = bp;
14454 	}
14455 }
14456 
14457 
14458 /*
14459  *    Function: sd_start_cmds
14460  *
14461  * Description: Remove and transport cmds from the driver queues.
14462  *
14463  *   Arguments: un - pointer to the unit (soft state) struct for the target.
14464  *
14465  *		immed_bp - ptr to a buf to be transported immediately. Only
14466  *		the immed_bp is transported; bufs on the waitq are not
14467  *		processed and the un_retry_bp is not checked.  If immed_bp is
14468  *		NULL, then normal queue processing is performed.
14469  *
14470  *     Context: May be called from kernel thread context, interrupt context,
14471  *		or runout callback context. This function may not block or
14472  *		call routines that block.
14473  */
14474 
14475 static void
14476 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
14477 {
14478 	struct	sd_xbuf	*xp;
14479 	struct	buf	*bp;
14480 	void	(*statp)(kstat_io_t *);
14481 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14482 	void	(*saved_statp)(kstat_io_t *);
14483 #endif
14484 	int	rval;
14485 
14486 	ASSERT(un != NULL);
14487 	ASSERT(mutex_owned(SD_MUTEX(un)));
14488 	ASSERT(un->un_ncmds_in_transport >= 0);
14489 	ASSERT(un->un_throttle >= 0);
14490 
14491 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
14492 
14493 	do {
14494 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14495 		saved_statp = NULL;
14496 #endif
14497 
14498 		/*
14499 		 * If we are syncing or dumping, fail the command to
14500 		 * avoid recursively calling back into scsi_transport().
14501 		 * The dump I/O itself uses a separate code path so this
14502 		 * only prevents non-dump I/O from being sent while dumping.
14503 		 * File system sync takes place before dumping begins.
14504 		 * During panic, filesystem I/O is allowed provided
14505 		 * un_in_callback is <= 1.  This is to prevent recursion
14506 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
14507 		 * sd_start_cmds and so on.  See panic.c for more information
14508 		 * about the states the system can be in during panic.
14509 		 */
14510 		if ((un->un_state == SD_STATE_DUMPING) ||
14511 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
14512 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14513 			    "sd_start_cmds: panicking\n");
14514 			goto exit;
14515 		}
14516 
14517 		if ((bp = immed_bp) != NULL) {
14518 			/*
14519 			 * We have a bp that must be transported immediately.
14520 			 * It's OK to transport the immed_bp here without doing
14521 			 * the throttle limit check because the immed_bp is
14522 			 * always used in a retry/recovery case. This means
14523 			 * that we know we are not at the throttle limit by
14524 			 * virtue of the fact that to get here we must have
14525 			 * already gotten a command back via sdintr(). This also
14526 			 * relies on (1) the command on un_retry_bp preventing
14527 			 * further commands from the waitq from being issued;
14528 			 * and (2) the code in sd_retry_command checking the
14529 			 * throttle limit before issuing a delayed or immediate
14530 			 * retry. This holds even if the throttle limit is
14531 			 * currently ratcheted down from its maximum value.
14532 			 */
14533 			statp = kstat_runq_enter;
14534 			if (bp == un->un_retry_bp) {
14535 				ASSERT((un->un_retry_statp == NULL) ||
14536 				    (un->un_retry_statp == kstat_waitq_enter) ||
14537 				    (un->un_retry_statp ==
14538 				    kstat_runq_back_to_waitq));
14539 				/*
14540 				 * If the waitq kstat was incremented when
14541 				 * sd_set_retry_bp() queued this bp for a retry,
14542 				 * then we must set up statp so that the waitq
14543 				 * count will get decremented correctly below.
14544 				 * Also we must clear un->un_retry_statp to
14545 				 * ensure that we do not act on a stale value
14546 				 * in this field.
14547 				 */
14548 				if ((un->un_retry_statp == kstat_waitq_enter) ||
14549 				    (un->un_retry_statp ==
14550 				    kstat_runq_back_to_waitq)) {
14551 					statp = kstat_waitq_to_runq;
14552 				}
14553 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14554 				saved_statp = un->un_retry_statp;
14555 #endif
14556 				un->un_retry_statp = NULL;
14557 
14558 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14559 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14560 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
14561 				    un, un->un_retry_bp, un->un_throttle,
14562 				    un->un_ncmds_in_transport);
14563 			} else {
14564 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14565 				    "processing priority bp:0x%p\n", bp);
14566 			}
14567 
14568 		} else if ((bp = un->un_waitq_headp) != NULL) {
14569 			/*
14570 			 * A command on the waitq is ready to go, but do not
14571 			 * send it if:
14572 			 *
14573 			 * (1) the throttle limit has been reached, or
14574 			 * (2) a retry is pending, or
14575 			 * (3) a START_STOP_UNIT callback pending, or
14576 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14577 			 *	command is pending.
14578 			 *
14579 			 * For all of these conditions, IO processing will
14580 			 * restart after the condition is cleared.
14581 			 */
14582 			if (un->un_ncmds_in_transport >= un->un_throttle) {
14583 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14584 				    "sd_start_cmds: exiting, "
14585 				    "throttle limit reached!\n");
14586 				goto exit;
14587 			}
14588 			if (un->un_retry_bp != NULL) {
14589 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14590 				    "sd_start_cmds: exiting, retry pending!\n");
14591 				goto exit;
14592 			}
14593 			if (un->un_startstop_timeid != NULL) {
14594 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14595 				    "sd_start_cmds: exiting, "
14596 				    "START_STOP pending!\n");
14597 				goto exit;
14598 			}
14599 			if (un->un_direct_priority_timeid != NULL) {
14600 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14601 				    "sd_start_cmds: exiting, "
14602 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14603 				goto exit;
14604 			}
14605 
14606 			/* Dequeue the command */
14607 			un->un_waitq_headp = bp->av_forw;
14608 			if (un->un_waitq_headp == NULL) {
14609 				un->un_waitq_tailp = NULL;
14610 			}
14611 			bp->av_forw = NULL;
14612 			statp = kstat_waitq_to_runq;
14613 			SD_TRACE(SD_LOG_IO_CORE, un,
14614 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14615 
14616 		} else {
14617 			/* No work to do so bail out now */
14618 			SD_TRACE(SD_LOG_IO_CORE, un,
14619 			    "sd_start_cmds: no more work, exiting!\n");
14620 			goto exit;
14621 		}
14622 
14623 		/*
14624 		 * Reset the state to normal. This is the mechanism by which
14625 		 * the state transitions from either SD_STATE_RWAIT or
14626 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14627 		 * If state is SD_STATE_PM_CHANGING then this command is
14628 		 * part of the device power control and the state must
14629 		 * not be put back to normal. Doing so would would
14630 		 * allow new commands to proceed when they shouldn't,
14631 		 * the device may be going off.
14632 		 */
14633 		if ((un->un_state != SD_STATE_SUSPENDED) &&
14634 		    (un->un_state != SD_STATE_PM_CHANGING)) {
14635 			New_state(un, SD_STATE_NORMAL);
14636 		    }
14637 
14638 		xp = SD_GET_XBUF(bp);
14639 		ASSERT(xp != NULL);
14640 
14641 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14642 		/*
14643 		 * Allocate the scsi_pkt if we need one, or attach DMA
14644 		 * resources if we have a scsi_pkt that needs them. The
14645 		 * latter should only occur for commands that are being
14646 		 * retried.
14647 		 */
14648 		if ((xp->xb_pktp == NULL) ||
14649 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14650 #else
14651 		if (xp->xb_pktp == NULL) {
14652 #endif
14653 			/*
14654 			 * There is no scsi_pkt allocated for this buf. Call
14655 			 * the initpkt function to allocate & init one.
14656 			 *
14657 			 * The scsi_init_pkt runout callback functionality is
14658 			 * implemented as follows:
14659 			 *
14660 			 * 1) The initpkt function always calls
14661 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14662 			 *    callback routine.
14663 			 * 2) A successful packet allocation is initialized and
14664 			 *    the I/O is transported.
14665 			 * 3) The I/O associated with an allocation resource
14666 			 *    failure is left on its queue to be retried via
14667 			 *    runout or the next I/O.
14668 			 * 4) The I/O associated with a DMA error is removed
14669 			 *    from the queue and failed with EIO. Processing of
14670 			 *    the transport queues is also halted to be
14671 			 *    restarted via runout or the next I/O.
14672 			 * 5) The I/O associated with a CDB size or packet
14673 			 *    size error is removed from the queue and failed
14674 			 *    with EIO. Processing of the transport queues is
14675 			 *    continued.
14676 			 *
14677 			 * Note: there is no interface for canceling a runout
14678 			 * callback. To prevent the driver from detaching or
14679 			 * suspending while a runout is pending the driver
14680 			 * state is set to SD_STATE_RWAIT
14681 			 *
14682 			 * Note: using the scsi_init_pkt callback facility can
14683 			 * result in an I/O request persisting at the head of
14684 			 * the list which cannot be satisfied even after
14685 			 * multiple retries. In the future the driver may
14686 			 * implement some kind of maximum runout count before
14687 			 * failing an I/O.
14688 			 *
14689 			 * Note: the use of funcp below may seem superfluous,
14690 			 * but it helps warlock figure out the correct
14691 			 * initpkt function calls (see [s]sd.wlcmd).
14692 			 */
14693 			struct scsi_pkt	*pktp;
14694 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
14695 
14696 			ASSERT(bp != un->un_rqs_bp);
14697 
14698 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
14699 			switch ((*funcp)(bp, &pktp)) {
14700 			case  SD_PKT_ALLOC_SUCCESS:
14701 				xp->xb_pktp = pktp;
14702 				SD_TRACE(SD_LOG_IO_CORE, un,
14703 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
14704 				    pktp);
14705 				goto got_pkt;
14706 
14707 			case SD_PKT_ALLOC_FAILURE:
14708 				/*
14709 				 * Temporary (hopefully) resource depletion.
14710 				 * Since retries and RQS commands always have a
14711 				 * scsi_pkt allocated, these cases should never
14712 				 * get here. So the only cases this needs to
14713 				 * handle is a bp from the waitq (which we put
14714 				 * back onto the waitq for sdrunout), or a bp
14715 				 * sent as an immed_bp (which we just fail).
14716 				 */
14717 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14718 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
14719 
14720 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14721 
14722 				if (bp == immed_bp) {
14723 					/*
14724 					 * If SD_XB_DMA_FREED is clear, then
14725 					 * this is a failure to allocate a
14726 					 * scsi_pkt, and we must fail the
14727 					 * command.
14728 					 */
14729 					if ((xp->xb_pkt_flags &
14730 					    SD_XB_DMA_FREED) == 0) {
14731 						break;
14732 					}
14733 
14734 					/*
14735 					 * If this immediate command is NOT our
14736 					 * un_retry_bp, then we must fail it.
14737 					 */
14738 					if (bp != un->un_retry_bp) {
14739 						break;
14740 					}
14741 
14742 					/*
14743 					 * We get here if this cmd is our
14744 					 * un_retry_bp that was DMAFREED, but
14745 					 * scsi_init_pkt() failed to reallocate
14746 					 * DMA resources when we attempted to
14747 					 * retry it. This can happen when an
14748 					 * mpxio failover is in progress, but
14749 					 * we don't want to just fail the
14750 					 * command in this case.
14751 					 *
14752 					 * Use timeout(9F) to restart it after
14753 					 * a 100ms delay.  We don't want to
14754 					 * let sdrunout() restart it, because
14755 					 * sdrunout() is just supposed to start
14756 					 * commands that are sitting on the
14757 					 * wait queue.  The un_retry_bp stays
14758 					 * set until the command completes, but
14759 					 * sdrunout can be called many times
14760 					 * before that happens.  Since sdrunout
14761 					 * cannot tell if the un_retry_bp is
14762 					 * already in the transport, it could
14763 					 * end up calling scsi_transport() for
14764 					 * the un_retry_bp multiple times.
14765 					 *
14766 					 * Also: don't schedule the callback
14767 					 * if some other callback is already
14768 					 * pending.
14769 					 */
14770 					if (un->un_retry_statp == NULL) {
14771 						/*
14772 						 * restore the kstat pointer to
14773 						 * keep kstat counts coherent
14774 						 * when we do retry the command.
14775 						 */
14776 						un->un_retry_statp =
14777 						    saved_statp;
14778 					}
14779 
14780 					if ((un->un_startstop_timeid == NULL) &&
14781 					    (un->un_retry_timeid == NULL) &&
14782 					    (un->un_direct_priority_timeid ==
14783 					    NULL)) {
14784 
14785 						un->un_retry_timeid =
14786 						    timeout(
14787 						    sd_start_retry_command,
14788 						    un, SD_RESTART_TIMEOUT);
14789 					}
14790 					goto exit;
14791 				}
14792 
14793 #else
14794 				if (bp == immed_bp) {
14795 					break;	/* Just fail the command */
14796 				}
14797 #endif
14798 
14799 				/* Add the buf back to the head of the waitq */
14800 				bp->av_forw = un->un_waitq_headp;
14801 				un->un_waitq_headp = bp;
14802 				if (un->un_waitq_tailp == NULL) {
14803 					un->un_waitq_tailp = bp;
14804 				}
14805 				goto exit;
14806 
14807 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
14808 				/*
14809 				 * HBA DMA resource failure. Fail the command
14810 				 * and continue processing of the queues.
14811 				 */
14812 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14813 				    "sd_start_cmds: "
14814 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
14815 				break;
14816 
14817 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
14818 				/*
14819 				 * Note:x86: Partial DMA mapping not supported
14820 				 * for USCSI commands, and all the needed DMA
14821 				 * resources were not allocated.
14822 				 */
14823 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14824 				    "sd_start_cmds: "
14825 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
14826 				break;
14827 
14828 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
14829 				/*
14830 				 * Note:x86: Request cannot fit into CDB based
14831 				 * on lba and len.
14832 				 */
14833 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14834 				    "sd_start_cmds: "
14835 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
14836 				break;
14837 
14838 			default:
14839 				/* Should NEVER get here! */
14840 				panic("scsi_initpkt error");
14841 				/*NOTREACHED*/
14842 			}
14843 
14844 			/*
14845 			 * Fatal error in allocating a scsi_pkt for this buf.
14846 			 * Update kstats & return the buf with an error code.
14847 			 * We must use sd_return_failed_command_no_restart() to
14848 			 * avoid a recursive call back into sd_start_cmds().
14849 			 * However this also means that we must keep processing
14850 			 * the waitq here in order to avoid stalling.
14851 			 */
14852 			if (statp == kstat_waitq_to_runq) {
14853 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
14854 			}
14855 			sd_return_failed_command_no_restart(un, bp, EIO);
14856 			if (bp == immed_bp) {
14857 				/* immed_bp is gone by now, so clear this */
14858 				immed_bp = NULL;
14859 			}
14860 			continue;
14861 		}
14862 got_pkt:
14863 		if (bp == immed_bp) {
14864 			/* goto the head of the class.... */
14865 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
14866 		}
14867 
14868 		un->un_ncmds_in_transport++;
14869 		SD_UPDATE_KSTATS(un, statp, bp);
14870 
14871 		/*
14872 		 * Call scsi_transport() to send the command to the target.
14873 		 * According to SCSA architecture, we must drop the mutex here
14874 		 * before calling scsi_transport() in order to avoid deadlock.
14875 		 * Note that the scsi_pkt's completion routine can be executed
14876 		 * (from interrupt context) even before the call to
14877 		 * scsi_transport() returns.
14878 		 */
14879 		SD_TRACE(SD_LOG_IO_CORE, un,
14880 		    "sd_start_cmds: calling scsi_transport()\n");
14881 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
14882 
14883 		mutex_exit(SD_MUTEX(un));
14884 		rval = scsi_transport(xp->xb_pktp);
14885 		mutex_enter(SD_MUTEX(un));
14886 
14887 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14888 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
14889 
14890 		switch (rval) {
14891 		case TRAN_ACCEPT:
14892 			/* Clear this with every pkt accepted by the HBA */
14893 			un->un_tran_fatal_count = 0;
14894 			break;	/* Success; try the next cmd (if any) */
14895 
14896 		case TRAN_BUSY:
14897 			un->un_ncmds_in_transport--;
14898 			ASSERT(un->un_ncmds_in_transport >= 0);
14899 
14900 			/*
14901 			 * Don't retry request sense, the sense data
14902 			 * is lost when another request is sent.
14903 			 * Free up the rqs buf and retry
14904 			 * the original failed cmd.  Update kstat.
14905 			 */
14906 			if (bp == un->un_rqs_bp) {
14907 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14908 				bp = sd_mark_rqs_idle(un, xp);
14909 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
14910 					NULL, NULL, EIO, SD_BSY_TIMEOUT / 500,
14911 					kstat_waitq_enter);
14912 				goto exit;
14913 			}
14914 
14915 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14916 			/*
14917 			 * Free the DMA resources for the  scsi_pkt. This will
14918 			 * allow mpxio to select another path the next time
14919 			 * we call scsi_transport() with this scsi_pkt.
14920 			 * See sdintr() for the rationalization behind this.
14921 			 */
14922 			if ((un->un_f_is_fibre == TRUE) &&
14923 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14924 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
14925 				scsi_dmafree(xp->xb_pktp);
14926 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14927 			}
14928 #endif
14929 
14930 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
14931 				/*
14932 				 * Commands that are SD_PATH_DIRECT_PRIORITY
14933 				 * are for error recovery situations. These do
14934 				 * not use the normal command waitq, so if they
14935 				 * get a TRAN_BUSY we cannot put them back onto
14936 				 * the waitq for later retry. One possible
14937 				 * problem is that there could already be some
14938 				 * other command on un_retry_bp that is waiting
14939 				 * for this one to complete, so we would be
14940 				 * deadlocked if we put this command back onto
14941 				 * the waitq for later retry (since un_retry_bp
14942 				 * must complete before the driver gets back to
14943 				 * commands on the waitq).
14944 				 *
14945 				 * To avoid deadlock we must schedule a callback
14946 				 * that will restart this command after a set
14947 				 * interval.  This should keep retrying for as
14948 				 * long as the underlying transport keeps
14949 				 * returning TRAN_BUSY (just like for other
14950 				 * commands).  Use the same timeout interval as
14951 				 * for the ordinary TRAN_BUSY retry.
14952 				 */
14953 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14954 				    "sd_start_cmds: scsi_transport() returned "
14955 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
14956 
14957 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14958 				un->un_direct_priority_timeid =
14959 				    timeout(sd_start_direct_priority_command,
14960 				    bp, SD_BSY_TIMEOUT / 500);
14961 
14962 				goto exit;
14963 			}
14964 
14965 			/*
14966 			 * For TRAN_BUSY, we want to reduce the throttle value,
14967 			 * unless we are retrying a command.
14968 			 */
14969 			if (bp != un->un_retry_bp) {
14970 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
14971 			}
14972 
14973 			/*
14974 			 * Set up the bp to be tried again 10 ms later.
14975 			 * Note:x86: Is there a timeout value in the sd_lun
14976 			 * for this condition?
14977 			 */
14978 			sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500,
14979 				kstat_runq_back_to_waitq);
14980 			goto exit;
14981 
14982 		case TRAN_FATAL_ERROR:
14983 			un->un_tran_fatal_count++;
14984 			/* FALLTHRU */
14985 
14986 		case TRAN_BADPKT:
14987 		default:
14988 			un->un_ncmds_in_transport--;
14989 			ASSERT(un->un_ncmds_in_transport >= 0);
14990 
14991 			/*
14992 			 * If this is our REQUEST SENSE command with a
14993 			 * transport error, we must get back the pointers
14994 			 * to the original buf, and mark the REQUEST
14995 			 * SENSE command as "available".
14996 			 */
14997 			if (bp == un->un_rqs_bp) {
14998 				bp = sd_mark_rqs_idle(un, xp);
14999 				xp = SD_GET_XBUF(bp);
15000 			} else {
15001 				/*
15002 				 * Legacy behavior: do not update transport
15003 				 * error count for request sense commands.
15004 				 */
15005 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
15006 			}
15007 
15008 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15009 			sd_print_transport_rejected_message(un, xp, rval);
15010 
15011 			/*
15012 			 * We must use sd_return_failed_command_no_restart() to
15013 			 * avoid a recursive call back into sd_start_cmds().
15014 			 * However this also means that we must keep processing
15015 			 * the waitq here in order to avoid stalling.
15016 			 */
15017 			sd_return_failed_command_no_restart(un, bp, EIO);
15018 
15019 			/*
15020 			 * Notify any threads waiting in sd_ddi_suspend() that
15021 			 * a command completion has occurred.
15022 			 */
15023 			if (un->un_state == SD_STATE_SUSPENDED) {
15024 				cv_broadcast(&un->un_disk_busy_cv);
15025 			}
15026 
15027 			if (bp == immed_bp) {
15028 				/* immed_bp is gone by now, so clear this */
15029 				immed_bp = NULL;
15030 			}
15031 			break;
15032 		}
15033 
15034 	} while (immed_bp == NULL);
15035 
15036 exit:
15037 	ASSERT(mutex_owned(SD_MUTEX(un)));
15038 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
15039 }
15040 
15041 
15042 /*
15043  *    Function: sd_return_command
15044  *
15045  * Description: Returns a command to its originator (with or without an
15046  *		error).  Also starts commands waiting to be transported
15047  *		to the target.
15048  *
15049  *     Context: May be called from interrupt, kernel, or timeout context
15050  */
15051 
15052 static void
15053 sd_return_command(struct sd_lun *un, struct buf *bp)
15054 {
15055 	struct sd_xbuf *xp;
15056 #if defined(__i386) || defined(__amd64)
15057 	struct scsi_pkt *pktp;
15058 #endif
15059 
15060 	ASSERT(bp != NULL);
15061 	ASSERT(un != NULL);
15062 	ASSERT(mutex_owned(SD_MUTEX(un)));
15063 	ASSERT(bp != un->un_rqs_bp);
15064 	xp = SD_GET_XBUF(bp);
15065 	ASSERT(xp != NULL);
15066 
15067 #if defined(__i386) || defined(__amd64)
15068 	pktp = SD_GET_PKTP(bp);
15069 #endif
15070 
15071 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
15072 
15073 #if defined(__i386) || defined(__amd64)
15074 	/*
15075 	 * Note:x86: check for the "sdrestart failed" case.
15076 	 */
15077 	if (((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
15078 		(geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
15079 		(xp->xb_pktp->pkt_resid == 0)) {
15080 
15081 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
15082 			/*
15083 			 * Successfully set up next portion of cmd
15084 			 * transfer, try sending it
15085 			 */
15086 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15087 			    NULL, NULL, 0, (clock_t)0, NULL);
15088 			sd_start_cmds(un, NULL);
15089 			return;	/* Note:x86: need a return here? */
15090 		}
15091 	}
15092 #endif
15093 
15094 	/*
15095 	 * If this is the failfast bp, clear it from un_failfast_bp. This
15096 	 * can happen if upon being re-tried the failfast bp either
15097 	 * succeeded or encountered another error (possibly even a different
15098 	 * error than the one that precipitated the failfast state, but in
15099 	 * that case it would have had to exhaust retries as well). Regardless,
15100 	 * this should not occur whenever the instance is in the active
15101 	 * failfast state.
15102 	 */
15103 	if (bp == un->un_failfast_bp) {
15104 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15105 		un->un_failfast_bp = NULL;
15106 	}
15107 
15108 	/*
15109 	 * Clear the failfast state upon successful completion of ANY cmd.
15110 	 */
15111 	if (bp->b_error == 0) {
15112 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15113 	}
15114 
15115 	/*
15116 	 * This is used if the command was retried one or more times. Show that
15117 	 * we are done with it, and allow processing of the waitq to resume.
15118 	 */
15119 	if (bp == un->un_retry_bp) {
15120 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15121 		    "sd_return_command: un:0x%p: "
15122 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15123 		un->un_retry_bp = NULL;
15124 		un->un_retry_statp = NULL;
15125 	}
15126 
15127 	SD_UPDATE_RDWR_STATS(un, bp);
15128 	SD_UPDATE_PARTITION_STATS(un, bp);
15129 
15130 	switch (un->un_state) {
15131 	case SD_STATE_SUSPENDED:
15132 		/*
15133 		 * Notify any threads waiting in sd_ddi_suspend() that
15134 		 * a command completion has occurred.
15135 		 */
15136 		cv_broadcast(&un->un_disk_busy_cv);
15137 		break;
15138 	default:
15139 		sd_start_cmds(un, NULL);
15140 		break;
15141 	}
15142 
15143 	/* Return this command up the iodone chain to its originator. */
15144 	mutex_exit(SD_MUTEX(un));
15145 
15146 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15147 	xp->xb_pktp = NULL;
15148 
15149 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15150 
15151 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15152 	mutex_enter(SD_MUTEX(un));
15153 
15154 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
15155 }
15156 
15157 
15158 /*
15159  *    Function: sd_return_failed_command
15160  *
15161  * Description: Command completion when an error occurred.
15162  *
15163  *     Context: May be called from interrupt context
15164  */
15165 
15166 static void
15167 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
15168 {
15169 	ASSERT(bp != NULL);
15170 	ASSERT(un != NULL);
15171 	ASSERT(mutex_owned(SD_MUTEX(un)));
15172 
15173 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15174 	    "sd_return_failed_command: entry\n");
15175 
15176 	/*
15177 	 * b_resid could already be nonzero due to a partial data
15178 	 * transfer, so do not change it here.
15179 	 */
15180 	SD_BIOERROR(bp, errcode);
15181 
15182 	sd_return_command(un, bp);
15183 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15184 	    "sd_return_failed_command: exit\n");
15185 }
15186 
15187 
15188 /*
15189  *    Function: sd_return_failed_command_no_restart
15190  *
15191  * Description: Same as sd_return_failed_command, but ensures that no
15192  *		call back into sd_start_cmds will be issued.
15193  *
15194  *     Context: May be called from interrupt context
15195  */
15196 
15197 static void
15198 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
15199 	int errcode)
15200 {
15201 	struct sd_xbuf *xp;
15202 
15203 	ASSERT(bp != NULL);
15204 	ASSERT(un != NULL);
15205 	ASSERT(mutex_owned(SD_MUTEX(un)));
15206 	xp = SD_GET_XBUF(bp);
15207 	ASSERT(xp != NULL);
15208 	ASSERT(errcode != 0);
15209 
15210 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15211 	    "sd_return_failed_command_no_restart: entry\n");
15212 
15213 	/*
15214 	 * b_resid could already be nonzero due to a partial data
15215 	 * transfer, so do not change it here.
15216 	 */
15217 	SD_BIOERROR(bp, errcode);
15218 
15219 	/*
15220 	 * If this is the failfast bp, clear it. This can happen if the
15221 	 * failfast bp encounterd a fatal error when we attempted to
15222 	 * re-try it (such as a scsi_transport(9F) failure).  However
15223 	 * we should NOT be in an active failfast state if the failfast
15224 	 * bp is not NULL.
15225 	 */
15226 	if (bp == un->un_failfast_bp) {
15227 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15228 		un->un_failfast_bp = NULL;
15229 	}
15230 
15231 	if (bp == un->un_retry_bp) {
15232 		/*
15233 		 * This command was retried one or more times. Show that we are
15234 		 * done with it, and allow processing of the waitq to resume.
15235 		 */
15236 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15237 		    "sd_return_failed_command_no_restart: "
15238 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15239 		un->un_retry_bp = NULL;
15240 		un->un_retry_statp = NULL;
15241 	}
15242 
15243 	SD_UPDATE_RDWR_STATS(un, bp);
15244 	SD_UPDATE_PARTITION_STATS(un, bp);
15245 
15246 	mutex_exit(SD_MUTEX(un));
15247 
15248 	if (xp->xb_pktp != NULL) {
15249 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15250 		xp->xb_pktp = NULL;
15251 	}
15252 
15253 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15254 
15255 	mutex_enter(SD_MUTEX(un));
15256 
15257 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15258 	    "sd_return_failed_command_no_restart: exit\n");
15259 }
15260 
15261 
15262 /*
15263  *    Function: sd_retry_command
15264  *
15265  * Description: queue up a command for retry, or (optionally) fail it
15266  *		if retry counts are exhausted.
15267  *
15268  *   Arguments: un - Pointer to the sd_lun struct for the target.
15269  *
15270  *		bp - Pointer to the buf for the command to be retried.
15271  *
15272  *		retry_check_flag - Flag to see which (if any) of the retry
15273  *		   counts should be decremented/checked. If the indicated
15274  *		   retry count is exhausted, then the command will not be
15275  *		   retried; it will be failed instead. This should use a
15276  *		   value equal to one of the following:
15277  *
15278  *			SD_RETRIES_NOCHECK
15279  *			SD_RESD_RETRIES_STANDARD
15280  *			SD_RETRIES_VICTIM
15281  *
15282  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
15283  *		   if the check should be made to see of FLAG_ISOLATE is set
15284  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
15285  *		   not retried, it is simply failed.
15286  *
15287  *		user_funcp - Ptr to function to call before dispatching the
15288  *		   command. May be NULL if no action needs to be performed.
15289  *		   (Primarily intended for printing messages.)
15290  *
15291  *		user_arg - Optional argument to be passed along to
15292  *		   the user_funcp call.
15293  *
15294  *		failure_code - errno return code to set in the bp if the
15295  *		   command is going to be failed.
15296  *
15297  *		retry_delay - Retry delay interval in (clock_t) units. May
15298  *		   be zero which indicates that the retry should be retried
15299  *		   immediately (ie, without an intervening delay).
15300  *
15301  *		statp - Ptr to kstat function to be updated if the command
15302  *		   is queued for a delayed retry. May be NULL if no kstat
15303  *		   update is desired.
15304  *
15305  *     Context: May be called from interupt context.
15306  */
15307 
15308 static void
15309 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
15310 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
15311 	code), void *user_arg, int failure_code,  clock_t retry_delay,
15312 	void (*statp)(kstat_io_t *))
15313 {
15314 	struct sd_xbuf	*xp;
15315 	struct scsi_pkt	*pktp;
15316 
15317 	ASSERT(un != NULL);
15318 	ASSERT(mutex_owned(SD_MUTEX(un)));
15319 	ASSERT(bp != NULL);
15320 	xp = SD_GET_XBUF(bp);
15321 	ASSERT(xp != NULL);
15322 	pktp = SD_GET_PKTP(bp);
15323 	ASSERT(pktp != NULL);
15324 
15325 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15326 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
15327 
15328 	/*
15329 	 * If we are syncing or dumping, fail the command to avoid
15330 	 * recursively calling back into scsi_transport().
15331 	 */
15332 	if (ddi_in_panic()) {
15333 		goto fail_command_no_log;
15334 	}
15335 
15336 	/*
15337 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
15338 	 * log an error and fail the command.
15339 	 */
15340 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15341 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
15342 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
15343 		sd_dump_memory(un, SD_LOG_IO, "CDB",
15344 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15345 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15346 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15347 		goto fail_command;
15348 	}
15349 
15350 	/*
15351 	 * If we are suspended, then put the command onto head of the
15352 	 * wait queue since we don't want to start more commands.
15353 	 */
15354 	switch (un->un_state) {
15355 	case SD_STATE_SUSPENDED:
15356 	case SD_STATE_DUMPING:
15357 		bp->av_forw = un->un_waitq_headp;
15358 		un->un_waitq_headp = bp;
15359 		if (un->un_waitq_tailp == NULL) {
15360 			un->un_waitq_tailp = bp;
15361 		}
15362 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
15363 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
15364 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
15365 		return;
15366 	default:
15367 		break;
15368 	}
15369 
15370 	/*
15371 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
15372 	 * is set; if it is then we do not want to retry the command.
15373 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
15374 	 */
15375 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
15376 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
15377 			goto fail_command;
15378 		}
15379 	}
15380 
15381 
15382 	/*
15383 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
15384 	 * command timeout or a selection timeout has occurred. This means
15385 	 * that we were unable to establish an kind of communication with
15386 	 * the target, and subsequent retries and/or commands are likely
15387 	 * to encounter similar results and take a long time to complete.
15388 	 *
15389 	 * If this is a failfast error condition, we need to update the
15390 	 * failfast state, even if this bp does not have B_FAILFAST set.
15391 	 */
15392 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
15393 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
15394 			ASSERT(un->un_failfast_bp == NULL);
15395 			/*
15396 			 * If we are already in the active failfast state, and
15397 			 * another failfast error condition has been detected,
15398 			 * then fail this command if it has B_FAILFAST set.
15399 			 * If B_FAILFAST is clear, then maintain the legacy
15400 			 * behavior of retrying heroically, even tho this will
15401 			 * take a lot more time to fail the command.
15402 			 */
15403 			if (bp->b_flags & B_FAILFAST) {
15404 				goto fail_command;
15405 			}
15406 		} else {
15407 			/*
15408 			 * We're not in the active failfast state, but we
15409 			 * have a failfast error condition, so we must begin
15410 			 * transition to the next state. We do this regardless
15411 			 * of whether or not this bp has B_FAILFAST set.
15412 			 */
15413 			if (un->un_failfast_bp == NULL) {
15414 				/*
15415 				 * This is the first bp to meet a failfast
15416 				 * condition so save it on un_failfast_bp &
15417 				 * do normal retry processing. Do not enter
15418 				 * active failfast state yet. This marks
15419 				 * entry into the "failfast pending" state.
15420 				 */
15421 				un->un_failfast_bp = bp;
15422 
15423 			} else if (un->un_failfast_bp == bp) {
15424 				/*
15425 				 * This is the second time *this* bp has
15426 				 * encountered a failfast error condition,
15427 				 * so enter active failfast state & flush
15428 				 * queues as appropriate.
15429 				 */
15430 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
15431 				un->un_failfast_bp = NULL;
15432 				sd_failfast_flushq(un);
15433 
15434 				/*
15435 				 * Fail this bp now if B_FAILFAST set;
15436 				 * otherwise continue with retries. (It would
15437 				 * be pretty ironic if this bp succeeded on a
15438 				 * subsequent retry after we just flushed all
15439 				 * the queues).
15440 				 */
15441 				if (bp->b_flags & B_FAILFAST) {
15442 					goto fail_command;
15443 				}
15444 
15445 #if !defined(lint) && !defined(__lint)
15446 			} else {
15447 				/*
15448 				 * If neither of the preceeding conditionals
15449 				 * was true, it means that there is some
15450 				 * *other* bp that has met an inital failfast
15451 				 * condition and is currently either being
15452 				 * retried or is waiting to be retried. In
15453 				 * that case we should perform normal retry
15454 				 * processing on *this* bp, since there is a
15455 				 * chance that the current failfast condition
15456 				 * is transient and recoverable. If that does
15457 				 * not turn out to be the case, then retries
15458 				 * will be cleared when the wait queue is
15459 				 * flushed anyway.
15460 				 */
15461 #endif
15462 			}
15463 		}
15464 	} else {
15465 		/*
15466 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
15467 		 * likely were able to at least establish some level of
15468 		 * communication with the target and subsequent commands
15469 		 * and/or retries are likely to get through to the target,
15470 		 * In this case we want to be aggressive about clearing
15471 		 * the failfast state. Note that this does not affect
15472 		 * the "failfast pending" condition.
15473 		 */
15474 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15475 	}
15476 
15477 
15478 	/*
15479 	 * Check the specified retry count to see if we can still do
15480 	 * any retries with this pkt before we should fail it.
15481 	 */
15482 	switch (retry_check_flag & SD_RETRIES_MASK) {
15483 	case SD_RETRIES_VICTIM:
15484 		/*
15485 		 * Check the victim retry count. If exhausted, then fall
15486 		 * thru & check against the standard retry count.
15487 		 */
15488 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
15489 			/* Increment count & proceed with the retry */
15490 			xp->xb_victim_retry_count++;
15491 			break;
15492 		}
15493 		/* Victim retries exhausted, fall back to std. retries... */
15494 		/* FALLTHRU */
15495 
15496 	case SD_RETRIES_STANDARD:
15497 		if (xp->xb_retry_count >= un->un_retry_count) {
15498 			/* Retries exhausted, fail the command */
15499 			SD_TRACE(SD_LOG_IO_CORE, un,
15500 			    "sd_retry_command: retries exhausted!\n");
15501 			/*
15502 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
15503 			 * commands with nonzero pkt_resid.
15504 			 */
15505 			if ((pktp->pkt_reason == CMD_CMPLT) &&
15506 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
15507 			    (pktp->pkt_resid != 0)) {
15508 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
15509 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
15510 					SD_UPDATE_B_RESID(bp, pktp);
15511 				}
15512 			}
15513 			goto fail_command;
15514 		}
15515 		xp->xb_retry_count++;
15516 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15517 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15518 		break;
15519 
15520 	case SD_RETRIES_UA:
15521 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
15522 			/* Retries exhausted, fail the command */
15523 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15524 			    "Unit Attention retries exhausted. "
15525 			    "Check the target.\n");
15526 			goto fail_command;
15527 		}
15528 		xp->xb_ua_retry_count++;
15529 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15530 		    "sd_retry_command: retry count:%d\n",
15531 			xp->xb_ua_retry_count);
15532 		break;
15533 
15534 	case SD_RETRIES_BUSY:
15535 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
15536 			/* Retries exhausted, fail the command */
15537 			SD_TRACE(SD_LOG_IO_CORE, un,
15538 			    "sd_retry_command: retries exhausted!\n");
15539 			goto fail_command;
15540 		}
15541 		xp->xb_retry_count++;
15542 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15543 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15544 		break;
15545 
15546 	case SD_RETRIES_NOCHECK:
15547 	default:
15548 		/* No retry count to check. Just proceed with the retry */
15549 		break;
15550 	}
15551 
15552 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15553 
15554 	/*
15555 	 * If we were given a zero timeout, we must attempt to retry the
15556 	 * command immediately (ie, without a delay).
15557 	 */
15558 	if (retry_delay == 0) {
15559 		/*
15560 		 * Check some limiting conditions to see if we can actually
15561 		 * do the immediate retry.  If we cannot, then we must
15562 		 * fall back to queueing up a delayed retry.
15563 		 */
15564 		if (un->un_ncmds_in_transport >= un->un_throttle) {
15565 			/*
15566 			 * We are at the throttle limit for the target,
15567 			 * fall back to delayed retry.
15568 			 */
15569 			retry_delay = SD_BSY_TIMEOUT;
15570 			statp = kstat_waitq_enter;
15571 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15572 			    "sd_retry_command: immed. retry hit "
15573 			    "throttle!\n");
15574 		} else {
15575 			/*
15576 			 * We're clear to proceed with the immediate retry.
15577 			 * First call the user-provided function (if any)
15578 			 */
15579 			if (user_funcp != NULL) {
15580 				(*user_funcp)(un, bp, user_arg,
15581 				    SD_IMMEDIATE_RETRY_ISSUED);
15582 #ifdef __lock_lint
15583 				sd_print_incomplete_msg(un, bp, user_arg,
15584 				    SD_IMMEDIATE_RETRY_ISSUED);
15585 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
15586 				    SD_IMMEDIATE_RETRY_ISSUED);
15587 				sd_print_sense_failed_msg(un, bp, user_arg,
15588 				    SD_IMMEDIATE_RETRY_ISSUED);
15589 #endif
15590 			}
15591 
15592 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15593 			    "sd_retry_command: issuing immediate retry\n");
15594 
15595 			/*
15596 			 * Call sd_start_cmds() to transport the command to
15597 			 * the target.
15598 			 */
15599 			sd_start_cmds(un, bp);
15600 
15601 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15602 			    "sd_retry_command exit\n");
15603 			return;
15604 		}
15605 	}
15606 
15607 	/*
15608 	 * Set up to retry the command after a delay.
15609 	 * First call the user-provided function (if any)
15610 	 */
15611 	if (user_funcp != NULL) {
15612 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15613 	}
15614 
15615 	sd_set_retry_bp(un, bp, retry_delay, statp);
15616 
15617 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15618 	return;
15619 
15620 fail_command:
15621 
15622 	if (user_funcp != NULL) {
15623 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15624 	}
15625 
15626 fail_command_no_log:
15627 
15628 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15629 	    "sd_retry_command: returning failed command\n");
15630 
15631 	sd_return_failed_command(un, bp, failure_code);
15632 
15633 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15634 }
15635 
15636 
15637 /*
15638  *    Function: sd_set_retry_bp
15639  *
15640  * Description: Set up the given bp for retry.
15641  *
15642  *   Arguments: un - ptr to associated softstate
15643  *		bp - ptr to buf(9S) for the command
15644  *		retry_delay - time interval before issuing retry (may be 0)
15645  *		statp - optional pointer to kstat function
15646  *
15647  *     Context: May be called under interrupt context
15648  */
15649 
15650 static void
15651 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
15652 	void (*statp)(kstat_io_t *))
15653 {
15654 	ASSERT(un != NULL);
15655 	ASSERT(mutex_owned(SD_MUTEX(un)));
15656 	ASSERT(bp != NULL);
15657 
15658 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15659 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
15660 
15661 	/*
15662 	 * Indicate that the command is being retried. This will not allow any
15663 	 * other commands on the wait queue to be transported to the target
15664 	 * until this command has been completed (success or failure). The
15665 	 * "retry command" is not transported to the target until the given
15666 	 * time delay expires, unless the user specified a 0 retry_delay.
15667 	 *
15668 	 * Note: the timeout(9F) callback routine is what actually calls
15669 	 * sd_start_cmds() to transport the command, with the exception of a
15670 	 * zero retry_delay. The only current implementor of a zero retry delay
15671 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
15672 	 */
15673 	if (un->un_retry_bp == NULL) {
15674 		ASSERT(un->un_retry_statp == NULL);
15675 		un->un_retry_bp = bp;
15676 
15677 		/*
15678 		 * If the user has not specified a delay the command should
15679 		 * be queued and no timeout should be scheduled.
15680 		 */
15681 		if (retry_delay == 0) {
15682 			/*
15683 			 * Save the kstat pointer that will be used in the
15684 			 * call to SD_UPDATE_KSTATS() below, so that
15685 			 * sd_start_cmds() can correctly decrement the waitq
15686 			 * count when it is time to transport this command.
15687 			 */
15688 			un->un_retry_statp = statp;
15689 			goto done;
15690 		}
15691 	}
15692 
15693 	if (un->un_retry_bp == bp) {
15694 		/*
15695 		 * Save the kstat pointer that will be used in the call to
15696 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
15697 		 * correctly decrement the waitq count when it is time to
15698 		 * transport this command.
15699 		 */
15700 		un->un_retry_statp = statp;
15701 
15702 		/*
15703 		 * Schedule a timeout if:
15704 		 *   1) The user has specified a delay.
15705 		 *   2) There is not a START_STOP_UNIT callback pending.
15706 		 *
15707 		 * If no delay has been specified, then it is up to the caller
15708 		 * to ensure that IO processing continues without stalling.
15709 		 * Effectively, this means that the caller will issue the
15710 		 * required call to sd_start_cmds(). The START_STOP_UNIT
15711 		 * callback does this after the START STOP UNIT command has
15712 		 * completed. In either of these cases we should not schedule
15713 		 * a timeout callback here.  Also don't schedule the timeout if
15714 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
15715 		 */
15716 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
15717 		    (un->un_direct_priority_timeid == NULL)) {
15718 			un->un_retry_timeid =
15719 			    timeout(sd_start_retry_command, un, retry_delay);
15720 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15721 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
15722 			    " bp:0x%p un_retry_timeid:0x%p\n",
15723 			    un, bp, un->un_retry_timeid);
15724 		}
15725 	} else {
15726 		/*
15727 		 * We only get in here if there is already another command
15728 		 * waiting to be retried.  In this case, we just put the
15729 		 * given command onto the wait queue, so it can be transported
15730 		 * after the current retry command has completed.
15731 		 *
15732 		 * Also we have to make sure that if the command at the head
15733 		 * of the wait queue is the un_failfast_bp, that we do not
15734 		 * put ahead of it any other commands that are to be retried.
15735 		 */
15736 		if ((un->un_failfast_bp != NULL) &&
15737 		    (un->un_failfast_bp == un->un_waitq_headp)) {
15738 			/*
15739 			 * Enqueue this command AFTER the first command on
15740 			 * the wait queue (which is also un_failfast_bp).
15741 			 */
15742 			bp->av_forw = un->un_waitq_headp->av_forw;
15743 			un->un_waitq_headp->av_forw = bp;
15744 			if (un->un_waitq_headp == un->un_waitq_tailp) {
15745 				un->un_waitq_tailp = bp;
15746 			}
15747 		} else {
15748 			/* Enqueue this command at the head of the waitq. */
15749 			bp->av_forw = un->un_waitq_headp;
15750 			un->un_waitq_headp = bp;
15751 			if (un->un_waitq_tailp == NULL) {
15752 				un->un_waitq_tailp = bp;
15753 			}
15754 		}
15755 
15756 		if (statp == NULL) {
15757 			statp = kstat_waitq_enter;
15758 		}
15759 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15760 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
15761 	}
15762 
15763 done:
15764 	if (statp != NULL) {
15765 		SD_UPDATE_KSTATS(un, statp, bp);
15766 	}
15767 
15768 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15769 	    "sd_set_retry_bp: exit un:0x%p\n", un);
15770 }
15771 
15772 
15773 /*
15774  *    Function: sd_start_retry_command
15775  *
15776  * Description: Start the command that has been waiting on the target's
15777  *		retry queue.  Called from timeout(9F) context after the
15778  *		retry delay interval has expired.
15779  *
15780  *   Arguments: arg - pointer to associated softstate for the device.
15781  *
15782  *     Context: timeout(9F) thread context.  May not sleep.
15783  */
15784 
15785 static void
15786 sd_start_retry_command(void *arg)
15787 {
15788 	struct sd_lun *un = arg;
15789 
15790 	ASSERT(un != NULL);
15791 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15792 
15793 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15794 	    "sd_start_retry_command: entry\n");
15795 
15796 	mutex_enter(SD_MUTEX(un));
15797 
15798 	un->un_retry_timeid = NULL;
15799 
15800 	if (un->un_retry_bp != NULL) {
15801 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15802 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
15803 		    un, un->un_retry_bp);
15804 		sd_start_cmds(un, un->un_retry_bp);
15805 	}
15806 
15807 	mutex_exit(SD_MUTEX(un));
15808 
15809 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15810 	    "sd_start_retry_command: exit\n");
15811 }
15812 
15813 
15814 /*
15815  *    Function: sd_start_direct_priority_command
15816  *
15817  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
15818  *		received TRAN_BUSY when we called scsi_transport() to send it
15819  *		to the underlying HBA. This function is called from timeout(9F)
15820  *		context after the delay interval has expired.
15821  *
15822  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
15823  *
15824  *     Context: timeout(9F) thread context.  May not sleep.
15825  */
15826 
15827 static void
15828 sd_start_direct_priority_command(void *arg)
15829 {
15830 	struct buf	*priority_bp = arg;
15831 	struct sd_lun	*un;
15832 
15833 	ASSERT(priority_bp != NULL);
15834 	un = SD_GET_UN(priority_bp);
15835 	ASSERT(un != NULL);
15836 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15837 
15838 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15839 	    "sd_start_direct_priority_command: entry\n");
15840 
15841 	mutex_enter(SD_MUTEX(un));
15842 	un->un_direct_priority_timeid = NULL;
15843 	sd_start_cmds(un, priority_bp);
15844 	mutex_exit(SD_MUTEX(un));
15845 
15846 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15847 	    "sd_start_direct_priority_command: exit\n");
15848 }
15849 
15850 
15851 /*
15852  *    Function: sd_send_request_sense_command
15853  *
15854  * Description: Sends a REQUEST SENSE command to the target
15855  *
15856  *     Context: May be called from interrupt context.
15857  */
15858 
15859 static void
15860 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
15861 	struct scsi_pkt *pktp)
15862 {
15863 	ASSERT(bp != NULL);
15864 	ASSERT(un != NULL);
15865 	ASSERT(mutex_owned(SD_MUTEX(un)));
15866 
15867 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
15868 	    "entry: buf:0x%p\n", bp);
15869 
15870 	/*
15871 	 * If we are syncing or dumping, then fail the command to avoid a
15872 	 * recursive callback into scsi_transport(). Also fail the command
15873 	 * if we are suspended (legacy behavior).
15874 	 */
15875 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
15876 	    (un->un_state == SD_STATE_DUMPING)) {
15877 		sd_return_failed_command(un, bp, EIO);
15878 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15879 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
15880 		return;
15881 	}
15882 
15883 	/*
15884 	 * Retry the failed command and don't issue the request sense if:
15885 	 *    1) the sense buf is busy
15886 	 *    2) we have 1 or more outstanding commands on the target
15887 	 *    (the sense data will be cleared or invalidated any way)
15888 	 *
15889 	 * Note: There could be an issue with not checking a retry limit here,
15890 	 * the problem is determining which retry limit to check.
15891 	 */
15892 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
15893 		/* Don't retry if the command is flagged as non-retryable */
15894 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15895 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15896 			    NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter);
15897 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15898 			    "sd_send_request_sense_command: "
15899 			    "at full throttle, retrying exit\n");
15900 		} else {
15901 			sd_return_failed_command(un, bp, EIO);
15902 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15903 			    "sd_send_request_sense_command: "
15904 			    "at full throttle, non-retryable exit\n");
15905 		}
15906 		return;
15907 	}
15908 
15909 	sd_mark_rqs_busy(un, bp);
15910 	sd_start_cmds(un, un->un_rqs_bp);
15911 
15912 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15913 	    "sd_send_request_sense_command: exit\n");
15914 }
15915 
15916 
15917 /*
15918  *    Function: sd_mark_rqs_busy
15919  *
15920  * Description: Indicate that the request sense bp for this instance is
15921  *		in use.
15922  *
15923  *     Context: May be called under interrupt context
15924  */
15925 
15926 static void
15927 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
15928 {
15929 	struct sd_xbuf	*sense_xp;
15930 
15931 	ASSERT(un != NULL);
15932 	ASSERT(bp != NULL);
15933 	ASSERT(mutex_owned(SD_MUTEX(un)));
15934 	ASSERT(un->un_sense_isbusy == 0);
15935 
15936 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
15937 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
15938 
15939 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
15940 	ASSERT(sense_xp != NULL);
15941 
15942 	SD_INFO(SD_LOG_IO, un,
15943 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
15944 
15945 	ASSERT(sense_xp->xb_pktp != NULL);
15946 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
15947 	    == (FLAG_SENSING | FLAG_HEAD));
15948 
15949 	un->un_sense_isbusy = 1;
15950 	un->un_rqs_bp->b_resid = 0;
15951 	sense_xp->xb_pktp->pkt_resid  = 0;
15952 	sense_xp->xb_pktp->pkt_reason = 0;
15953 
15954 	/* So we can get back the bp at interrupt time! */
15955 	sense_xp->xb_sense_bp = bp;
15956 
15957 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
15958 
15959 	/*
15960 	 * Mark this buf as awaiting sense data. (This is already set in
15961 	 * the pkt_flags for the RQS packet.)
15962 	 */
15963 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
15964 
15965 	sense_xp->xb_retry_count	= 0;
15966 	sense_xp->xb_victim_retry_count = 0;
15967 	sense_xp->xb_ua_retry_count	= 0;
15968 	sense_xp->xb_dma_resid  = 0;
15969 
15970 	/* Clean up the fields for auto-request sense */
15971 	sense_xp->xb_sense_status = 0;
15972 	sense_xp->xb_sense_state  = 0;
15973 	sense_xp->xb_sense_resid  = 0;
15974 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
15975 
15976 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
15977 }
15978 
15979 
15980 /*
15981  *    Function: sd_mark_rqs_idle
15982  *
15983  * Description: SD_MUTEX must be held continuously through this routine
15984  *		to prevent reuse of the rqs struct before the caller can
15985  *		complete it's processing.
15986  *
15987  * Return Code: Pointer to the RQS buf
15988  *
15989  *     Context: May be called under interrupt context
15990  */
15991 
15992 static struct buf *
15993 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
15994 {
15995 	struct buf *bp;
15996 	ASSERT(un != NULL);
15997 	ASSERT(sense_xp != NULL);
15998 	ASSERT(mutex_owned(SD_MUTEX(un)));
15999 	ASSERT(un->un_sense_isbusy != 0);
16000 
16001 	un->un_sense_isbusy = 0;
16002 	bp = sense_xp->xb_sense_bp;
16003 	sense_xp->xb_sense_bp = NULL;
16004 
16005 	/* This pkt is no longer interested in getting sense data */
16006 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
16007 
16008 	return (bp);
16009 }
16010 
16011 
16012 
16013 /*
16014  *    Function: sd_alloc_rqs
16015  *
16016  * Description: Set up the unit to receive auto request sense data
16017  *
16018  * Return Code: DDI_SUCCESS or DDI_FAILURE
16019  *
16020  *     Context: Called under attach(9E) context
16021  */
16022 
16023 static int
16024 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
16025 {
16026 	struct sd_xbuf *xp;
16027 
16028 	ASSERT(un != NULL);
16029 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16030 	ASSERT(un->un_rqs_bp == NULL);
16031 	ASSERT(un->un_rqs_pktp == NULL);
16032 
16033 	/*
16034 	 * First allocate the required buf and scsi_pkt structs, then set up
16035 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
16036 	 */
16037 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
16038 	    SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
16039 	if (un->un_rqs_bp == NULL) {
16040 		return (DDI_FAILURE);
16041 	}
16042 
16043 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
16044 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
16045 
16046 	if (un->un_rqs_pktp == NULL) {
16047 		sd_free_rqs(un);
16048 		return (DDI_FAILURE);
16049 	}
16050 
16051 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
16052 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
16053 	    SCMD_REQUEST_SENSE, 0, SENSE_LENGTH, 0);
16054 
16055 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
16056 
16057 	/* Set up the other needed members in the ARQ scsi_pkt. */
16058 	un->un_rqs_pktp->pkt_comp   = sdintr;
16059 	un->un_rqs_pktp->pkt_time   = sd_io_time;
16060 	un->un_rqs_pktp->pkt_flags |=
16061 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
16062 
16063 	/*
16064 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
16065 	 * provide any intpkt, destroypkt routines as we take care of
16066 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
16067 	 */
16068 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
16069 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
16070 	xp->xb_pktp = un->un_rqs_pktp;
16071 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
16072 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
16073 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
16074 
16075 	/*
16076 	 * Save the pointer to the request sense private bp so it can
16077 	 * be retrieved in sdintr.
16078 	 */
16079 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
16080 	ASSERT(un->un_rqs_bp->b_private == xp);
16081 
16082 	/*
16083 	 * See if the HBA supports auto-request sense for the specified
16084 	 * target/lun. If it does, then try to enable it (if not already
16085 	 * enabled).
16086 	 *
16087 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
16088 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
16089 	 * return success.  However, in both of these cases ARQ is always
16090 	 * enabled and scsi_ifgetcap will always return true. The best approach
16091 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
16092 	 *
16093 	 * The 3rd case is the HBA (adp) always return enabled on
16094 	 * scsi_ifgetgetcap even when it's not enable, the best approach
16095 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
16096 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
16097 	 */
16098 
16099 	if (un->un_f_is_fibre == TRUE) {
16100 		un->un_f_arq_enabled = TRUE;
16101 	} else {
16102 #if defined(__i386) || defined(__amd64)
16103 		/*
16104 		 * Circumvent the Adaptec bug, remove this code when
16105 		 * the bug is fixed
16106 		 */
16107 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
16108 #endif
16109 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
16110 		case 0:
16111 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16112 				"sd_alloc_rqs: HBA supports ARQ\n");
16113 			/*
16114 			 * ARQ is supported by this HBA but currently is not
16115 			 * enabled. Attempt to enable it and if successful then
16116 			 * mark this instance as ARQ enabled.
16117 			 */
16118 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
16119 				== 1) {
16120 				/* Successfully enabled ARQ in the HBA */
16121 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
16122 					"sd_alloc_rqs: ARQ enabled\n");
16123 				un->un_f_arq_enabled = TRUE;
16124 			} else {
16125 				/* Could not enable ARQ in the HBA */
16126 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
16127 				"sd_alloc_rqs: failed ARQ enable\n");
16128 				un->un_f_arq_enabled = FALSE;
16129 			}
16130 			break;
16131 		case 1:
16132 			/*
16133 			 * ARQ is supported by this HBA and is already enabled.
16134 			 * Just mark ARQ as enabled for this instance.
16135 			 */
16136 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16137 				"sd_alloc_rqs: ARQ already enabled\n");
16138 			un->un_f_arq_enabled = TRUE;
16139 			break;
16140 		default:
16141 			/*
16142 			 * ARQ is not supported by this HBA; disable it for this
16143 			 * instance.
16144 			 */
16145 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16146 				"sd_alloc_rqs: HBA does not support ARQ\n");
16147 			un->un_f_arq_enabled = FALSE;
16148 			break;
16149 		}
16150 	}
16151 
16152 	return (DDI_SUCCESS);
16153 }
16154 
16155 
16156 /*
16157  *    Function: sd_free_rqs
16158  *
16159  * Description: Cleanup for the pre-instance RQS command.
16160  *
16161  *     Context: Kernel thread context
16162  */
16163 
16164 static void
16165 sd_free_rqs(struct sd_lun *un)
16166 {
16167 	ASSERT(un != NULL);
16168 
16169 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
16170 
16171 	/*
16172 	 * If consistent memory is bound to a scsi_pkt, the pkt
16173 	 * has to be destroyed *before* freeing the consistent memory.
16174 	 * Don't change the sequence of this operations.
16175 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
16176 	 * after it was freed in scsi_free_consistent_buf().
16177 	 */
16178 	if (un->un_rqs_pktp != NULL) {
16179 		scsi_destroy_pkt(un->un_rqs_pktp);
16180 		un->un_rqs_pktp = NULL;
16181 	}
16182 
16183 	if (un->un_rqs_bp != NULL) {
16184 		kmem_free(SD_GET_XBUF(un->un_rqs_bp), sizeof (struct sd_xbuf));
16185 		scsi_free_consistent_buf(un->un_rqs_bp);
16186 		un->un_rqs_bp = NULL;
16187 	}
16188 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
16189 }
16190 
16191 
16192 
16193 /*
16194  *    Function: sd_reduce_throttle
16195  *
16196  * Description: Reduces the maximun # of outstanding commands on a
16197  *		target to the current number of outstanding commands.
16198  *		Queues a tiemout(9F) callback to restore the limit
16199  *		after a specified interval has elapsed.
16200  *		Typically used when we get a TRAN_BUSY return code
16201  *		back from scsi_transport().
16202  *
16203  *   Arguments: un - ptr to the sd_lun softstate struct
16204  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
16205  *
16206  *     Context: May be called from interrupt context
16207  */
16208 
16209 static void
16210 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
16211 {
16212 	ASSERT(un != NULL);
16213 	ASSERT(mutex_owned(SD_MUTEX(un)));
16214 	ASSERT(un->un_ncmds_in_transport >= 0);
16215 
16216 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16217 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
16218 	    un, un->un_throttle, un->un_ncmds_in_transport);
16219 
16220 	if (un->un_throttle > 1) {
16221 		if (un->un_f_use_adaptive_throttle == TRUE) {
16222 			switch (throttle_type) {
16223 			case SD_THROTTLE_TRAN_BUSY:
16224 				if (un->un_busy_throttle == 0) {
16225 					un->un_busy_throttle = un->un_throttle;
16226 				}
16227 				break;
16228 			case SD_THROTTLE_QFULL:
16229 				un->un_busy_throttle = 0;
16230 				break;
16231 			default:
16232 				ASSERT(FALSE);
16233 			}
16234 
16235 			if (un->un_ncmds_in_transport > 0) {
16236 			    un->un_throttle = un->un_ncmds_in_transport;
16237 			}
16238 
16239 		} else {
16240 			if (un->un_ncmds_in_transport == 0) {
16241 				un->un_throttle = 1;
16242 			} else {
16243 				un->un_throttle = un->un_ncmds_in_transport;
16244 			}
16245 		}
16246 	}
16247 
16248 	/* Reschedule the timeout if none is currently active */
16249 	if (un->un_reset_throttle_timeid == NULL) {
16250 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
16251 		    un, SD_THROTTLE_RESET_INTERVAL);
16252 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16253 		    "sd_reduce_throttle: timeout scheduled!\n");
16254 	}
16255 
16256 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16257 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16258 }
16259 
16260 
16261 
16262 /*
16263  *    Function: sd_restore_throttle
16264  *
16265  * Description: Callback function for timeout(9F).  Resets the current
16266  *		value of un->un_throttle to its default.
16267  *
16268  *   Arguments: arg - pointer to associated softstate for the device.
16269  *
16270  *     Context: May be called from interrupt context
16271  */
16272 
16273 static void
16274 sd_restore_throttle(void *arg)
16275 {
16276 	struct sd_lun	*un = arg;
16277 
16278 	ASSERT(un != NULL);
16279 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16280 
16281 	mutex_enter(SD_MUTEX(un));
16282 
16283 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16284 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16285 
16286 	un->un_reset_throttle_timeid = NULL;
16287 
16288 	if (un->un_f_use_adaptive_throttle == TRUE) {
16289 		/*
16290 		 * If un_busy_throttle is nonzero, then it contains the
16291 		 * value that un_throttle was when we got a TRAN_BUSY back
16292 		 * from scsi_transport(). We want to revert back to this
16293 		 * value.
16294 		 *
16295 		 * In the QFULL case, the throttle limit will incrementally
16296 		 * increase until it reaches max throttle.
16297 		 */
16298 		if (un->un_busy_throttle > 0) {
16299 			un->un_throttle = un->un_busy_throttle;
16300 			un->un_busy_throttle = 0;
16301 		} else {
16302 			/*
16303 			 * increase throttle by 10% open gate slowly, schedule
16304 			 * another restore if saved throttle has not been
16305 			 * reached
16306 			 */
16307 			short throttle;
16308 			if (sd_qfull_throttle_enable) {
16309 				throttle = un->un_throttle +
16310 				    max((un->un_throttle / 10), 1);
16311 				un->un_throttle =
16312 				    (throttle < un->un_saved_throttle) ?
16313 				    throttle : un->un_saved_throttle;
16314 				if (un->un_throttle < un->un_saved_throttle) {
16315 				    un->un_reset_throttle_timeid =
16316 					timeout(sd_restore_throttle,
16317 					un, SD_QFULL_THROTTLE_RESET_INTERVAL);
16318 				}
16319 			}
16320 		}
16321 
16322 		/*
16323 		 * If un_throttle has fallen below the low-water mark, we
16324 		 * restore the maximum value here (and allow it to ratchet
16325 		 * down again if necessary).
16326 		 */
16327 		if (un->un_throttle < un->un_min_throttle) {
16328 			un->un_throttle = un->un_saved_throttle;
16329 		}
16330 	} else {
16331 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16332 		    "restoring limit from 0x%x to 0x%x\n",
16333 		    un->un_throttle, un->un_saved_throttle);
16334 		un->un_throttle = un->un_saved_throttle;
16335 	}
16336 
16337 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16338 	    "sd_restore_throttle: calling sd_start_cmds!\n");
16339 
16340 	sd_start_cmds(un, NULL);
16341 
16342 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16343 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
16344 	    un, un->un_throttle);
16345 
16346 	mutex_exit(SD_MUTEX(un));
16347 
16348 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
16349 }
16350 
16351 /*
16352  *    Function: sdrunout
16353  *
16354  * Description: Callback routine for scsi_init_pkt when a resource allocation
16355  *		fails.
16356  *
16357  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
16358  *		soft state instance.
16359  *
16360  * Return Code: The scsi_init_pkt routine allows for the callback function to
16361  *		return a 0 indicating the callback should be rescheduled or a 1
16362  *		indicating not to reschedule. This routine always returns 1
16363  *		because the driver always provides a callback function to
16364  *		scsi_init_pkt. This results in a callback always being scheduled
16365  *		(via the scsi_init_pkt callback implementation) if a resource
16366  *		failure occurs.
16367  *
16368  *     Context: This callback function may not block or call routines that block
16369  *
16370  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
16371  *		request persisting at the head of the list which cannot be
16372  *		satisfied even after multiple retries. In the future the driver
16373  *		may implement some time of maximum runout count before failing
16374  *		an I/O.
16375  */
16376 
16377 static int
16378 sdrunout(caddr_t arg)
16379 {
16380 	struct sd_lun	*un = (struct sd_lun *)arg;
16381 
16382 	ASSERT(un != NULL);
16383 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16384 
16385 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
16386 
16387 	mutex_enter(SD_MUTEX(un));
16388 	sd_start_cmds(un, NULL);
16389 	mutex_exit(SD_MUTEX(un));
16390 	/*
16391 	 * This callback routine always returns 1 (i.e. do not reschedule)
16392 	 * because we always specify sdrunout as the callback handler for
16393 	 * scsi_init_pkt inside the call to sd_start_cmds.
16394 	 */
16395 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
16396 	return (1);
16397 }
16398 
16399 
16400 /*
16401  *    Function: sdintr
16402  *
16403  * Description: Completion callback routine for scsi_pkt(9S) structs
16404  *		sent to the HBA driver via scsi_transport(9F).
16405  *
16406  *     Context: Interrupt context
16407  */
16408 
16409 static void
16410 sdintr(struct scsi_pkt *pktp)
16411 {
16412 	struct buf	*bp;
16413 	struct sd_xbuf	*xp;
16414 	struct sd_lun	*un;
16415 
16416 	ASSERT(pktp != NULL);
16417 	bp = (struct buf *)pktp->pkt_private;
16418 	ASSERT(bp != NULL);
16419 	xp = SD_GET_XBUF(bp);
16420 	ASSERT(xp != NULL);
16421 	ASSERT(xp->xb_pktp != NULL);
16422 	un = SD_GET_UN(bp);
16423 	ASSERT(un != NULL);
16424 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16425 
16426 #ifdef SD_FAULT_INJECTION
16427 
16428 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
16429 	/* SD FaultInjection */
16430 	sd_faultinjection(pktp);
16431 
16432 #endif /* SD_FAULT_INJECTION */
16433 
16434 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
16435 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
16436 
16437 	mutex_enter(SD_MUTEX(un));
16438 
16439 	/* Reduce the count of the #commands currently in transport */
16440 	un->un_ncmds_in_transport--;
16441 	ASSERT(un->un_ncmds_in_transport >= 0);
16442 
16443 	/* Increment counter to indicate that the callback routine is active */
16444 	un->un_in_callback++;
16445 
16446 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
16447 
16448 #ifdef	SDDEBUG
16449 	if (bp == un->un_retry_bp) {
16450 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
16451 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
16452 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
16453 	}
16454 #endif
16455 
16456 	/*
16457 	 * If pkt_reason is CMD_DEV_GONE, just fail the command
16458 	 */
16459 	if (pktp->pkt_reason == CMD_DEV_GONE) {
16460 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16461 			    "Device is gone\n");
16462 		sd_return_failed_command(un, bp, EIO);
16463 		goto exit;
16464 	}
16465 
16466 	/*
16467 	 * First see if the pkt has auto-request sense data with it....
16468 	 * Look at the packet state first so we don't take a performance
16469 	 * hit looking at the arq enabled flag unless absolutely necessary.
16470 	 */
16471 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
16472 	    (un->un_f_arq_enabled == TRUE)) {
16473 		/*
16474 		 * The HBA did an auto request sense for this command so check
16475 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16476 		 * driver command that should not be retried.
16477 		 */
16478 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16479 			/*
16480 			 * Save the relevant sense info into the xp for the
16481 			 * original cmd.
16482 			 */
16483 			struct scsi_arq_status *asp;
16484 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16485 			xp->xb_sense_status =
16486 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
16487 			xp->xb_sense_state  = asp->sts_rqpkt_state;
16488 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16489 			bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16490 			    min(sizeof (struct scsi_extended_sense),
16491 			    SENSE_LENGTH));
16492 
16493 			/* fail the command */
16494 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16495 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
16496 			sd_return_failed_command(un, bp, EIO);
16497 			goto exit;
16498 		}
16499 
16500 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16501 		/*
16502 		 * We want to either retry or fail this command, so free
16503 		 * the DMA resources here.  If we retry the command then
16504 		 * the DMA resources will be reallocated in sd_start_cmds().
16505 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
16506 		 * causes the *entire* transfer to start over again from the
16507 		 * beginning of the request, even for PARTIAL chunks that
16508 		 * have already transferred successfully.
16509 		 */
16510 		if ((un->un_f_is_fibre == TRUE) &&
16511 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16512 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16513 			scsi_dmafree(pktp);
16514 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16515 		}
16516 #endif
16517 
16518 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16519 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
16520 
16521 		sd_handle_auto_request_sense(un, bp, xp, pktp);
16522 		goto exit;
16523 	}
16524 
16525 	/* Next see if this is the REQUEST SENSE pkt for the instance */
16526 	if (pktp->pkt_flags & FLAG_SENSING)  {
16527 		/* This pktp is from the unit's REQUEST_SENSE command */
16528 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16529 		    "sdintr: sd_handle_request_sense\n");
16530 		sd_handle_request_sense(un, bp, xp, pktp);
16531 		goto exit;
16532 	}
16533 
16534 	/*
16535 	 * Check to see if the command successfully completed as requested;
16536 	 * this is the most common case (and also the hot performance path).
16537 	 *
16538 	 * Requirements for successful completion are:
16539 	 * pkt_reason is CMD_CMPLT and packet status is status good.
16540 	 * In addition:
16541 	 * - A residual of zero indicates successful completion no matter what
16542 	 *   the command is.
16543 	 * - If the residual is not zero and the command is not a read or
16544 	 *   write, then it's still defined as successful completion. In other
16545 	 *   words, if the command is a read or write the residual must be
16546 	 *   zero for successful completion.
16547 	 * - If the residual is not zero and the command is a read or
16548 	 *   write, and it's a USCSICMD, then it's still defined as
16549 	 *   successful completion.
16550 	 */
16551 	if ((pktp->pkt_reason == CMD_CMPLT) &&
16552 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
16553 
16554 		/*
16555 		 * Since this command is returned with a good status, we
16556 		 * can reset the count for Sonoma failover.
16557 		 */
16558 		un->un_sonoma_failure_count = 0;
16559 
16560 		/*
16561 		 * Return all USCSI commands on good status
16562 		 */
16563 		if (pktp->pkt_resid == 0) {
16564 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16565 			    "sdintr: returning command for resid == 0\n");
16566 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
16567 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
16568 			SD_UPDATE_B_RESID(bp, pktp);
16569 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16570 			    "sdintr: returning command for resid != 0\n");
16571 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16572 			SD_UPDATE_B_RESID(bp, pktp);
16573 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16574 				"sdintr: returning uscsi command\n");
16575 		} else {
16576 			goto not_successful;
16577 		}
16578 		sd_return_command(un, bp);
16579 
16580 		/*
16581 		 * Decrement counter to indicate that the callback routine
16582 		 * is done.
16583 		 */
16584 		un->un_in_callback--;
16585 		ASSERT(un->un_in_callback >= 0);
16586 		mutex_exit(SD_MUTEX(un));
16587 
16588 		return;
16589 	}
16590 
16591 not_successful:
16592 
16593 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16594 	/*
16595 	 * The following is based upon knowledge of the underlying transport
16596 	 * and its use of DMA resources.  This code should be removed when
16597 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
16598 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
16599 	 * and sd_start_cmds().
16600 	 *
16601 	 * Free any DMA resources associated with this command if there
16602 	 * is a chance it could be retried or enqueued for later retry.
16603 	 * If we keep the DMA binding then mpxio cannot reissue the
16604 	 * command on another path whenever a path failure occurs.
16605 	 *
16606 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
16607 	 * causes the *entire* transfer to start over again from the
16608 	 * beginning of the request, even for PARTIAL chunks that
16609 	 * have already transferred successfully.
16610 	 *
16611 	 * This is only done for non-uscsi commands (and also skipped for the
16612 	 * driver's internal RQS command). Also just do this for Fibre Channel
16613 	 * devices as these are the only ones that support mpxio.
16614 	 */
16615 	if ((un->un_f_is_fibre == TRUE) &&
16616 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16617 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16618 		scsi_dmafree(pktp);
16619 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16620 	}
16621 #endif
16622 
16623 	/*
16624 	 * The command did not successfully complete as requested so check
16625 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16626 	 * driver command that should not be retried so just return. If
16627 	 * FLAG_DIAGNOSE is not set the error will be processed below.
16628 	 */
16629 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16630 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16631 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
16632 		/*
16633 		 * Issue a request sense if a check condition caused the error
16634 		 * (we handle the auto request sense case above), otherwise
16635 		 * just fail the command.
16636 		 */
16637 		if ((pktp->pkt_reason == CMD_CMPLT) &&
16638 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
16639 			sd_send_request_sense_command(un, bp, pktp);
16640 		} else {
16641 			sd_return_failed_command(un, bp, EIO);
16642 		}
16643 		goto exit;
16644 	}
16645 
16646 	/*
16647 	 * The command did not successfully complete as requested so process
16648 	 * the error, retry, and/or attempt recovery.
16649 	 */
16650 	switch (pktp->pkt_reason) {
16651 	case CMD_CMPLT:
16652 		switch (SD_GET_PKT_STATUS(pktp)) {
16653 		case STATUS_GOOD:
16654 			/*
16655 			 * The command completed successfully with a non-zero
16656 			 * residual
16657 			 */
16658 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16659 			    "sdintr: STATUS_GOOD \n");
16660 			sd_pkt_status_good(un, bp, xp, pktp);
16661 			break;
16662 
16663 		case STATUS_CHECK:
16664 		case STATUS_TERMINATED:
16665 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16666 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
16667 			sd_pkt_status_check_condition(un, bp, xp, pktp);
16668 			break;
16669 
16670 		case STATUS_BUSY:
16671 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16672 			    "sdintr: STATUS_BUSY\n");
16673 			sd_pkt_status_busy(un, bp, xp, pktp);
16674 			break;
16675 
16676 		case STATUS_RESERVATION_CONFLICT:
16677 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16678 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
16679 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16680 			break;
16681 
16682 		case STATUS_QFULL:
16683 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16684 			    "sdintr: STATUS_QFULL\n");
16685 			sd_pkt_status_qfull(un, bp, xp, pktp);
16686 			break;
16687 
16688 		case STATUS_MET:
16689 		case STATUS_INTERMEDIATE:
16690 		case STATUS_SCSI2:
16691 		case STATUS_INTERMEDIATE_MET:
16692 		case STATUS_ACA_ACTIVE:
16693 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16694 			    "Unexpected SCSI status received: 0x%x\n",
16695 			    SD_GET_PKT_STATUS(pktp));
16696 			sd_return_failed_command(un, bp, EIO);
16697 			break;
16698 
16699 		default:
16700 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16701 			    "Invalid SCSI status received: 0x%x\n",
16702 			    SD_GET_PKT_STATUS(pktp));
16703 			sd_return_failed_command(un, bp, EIO);
16704 			break;
16705 
16706 		}
16707 		break;
16708 
16709 	case CMD_INCOMPLETE:
16710 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16711 		    "sdintr:  CMD_INCOMPLETE\n");
16712 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
16713 		break;
16714 	case CMD_TRAN_ERR:
16715 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16716 		    "sdintr: CMD_TRAN_ERR\n");
16717 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
16718 		break;
16719 	case CMD_RESET:
16720 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16721 		    "sdintr: CMD_RESET \n");
16722 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
16723 		break;
16724 	case CMD_ABORTED:
16725 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16726 		    "sdintr: CMD_ABORTED \n");
16727 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
16728 		break;
16729 	case CMD_TIMEOUT:
16730 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16731 		    "sdintr: CMD_TIMEOUT\n");
16732 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
16733 		break;
16734 	case CMD_UNX_BUS_FREE:
16735 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16736 		    "sdintr: CMD_UNX_BUS_FREE \n");
16737 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
16738 		break;
16739 	case CMD_TAG_REJECT:
16740 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16741 		    "sdintr: CMD_TAG_REJECT\n");
16742 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
16743 		break;
16744 	default:
16745 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16746 		    "sdintr: default\n");
16747 		sd_pkt_reason_default(un, bp, xp, pktp);
16748 		break;
16749 	}
16750 
16751 exit:
16752 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
16753 
16754 	/* Decrement counter to indicate that the callback routine is done. */
16755 	un->un_in_callback--;
16756 	ASSERT(un->un_in_callback >= 0);
16757 
16758 	/*
16759 	 * At this point, the pkt has been dispatched, ie, it is either
16760 	 * being re-tried or has been returned to its caller and should
16761 	 * not be referenced.
16762 	 */
16763 
16764 	mutex_exit(SD_MUTEX(un));
16765 }
16766 
16767 
16768 /*
16769  *    Function: sd_print_incomplete_msg
16770  *
16771  * Description: Prints the error message for a CMD_INCOMPLETE error.
16772  *
16773  *   Arguments: un - ptr to associated softstate for the device.
16774  *		bp - ptr to the buf(9S) for the command.
16775  *		arg - message string ptr
16776  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
16777  *			or SD_NO_RETRY_ISSUED.
16778  *
16779  *     Context: May be called under interrupt context
16780  */
16781 
16782 static void
16783 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
16784 {
16785 	struct scsi_pkt	*pktp;
16786 	char	*msgp;
16787 	char	*cmdp = arg;
16788 
16789 	ASSERT(un != NULL);
16790 	ASSERT(mutex_owned(SD_MUTEX(un)));
16791 	ASSERT(bp != NULL);
16792 	ASSERT(arg != NULL);
16793 	pktp = SD_GET_PKTP(bp);
16794 	ASSERT(pktp != NULL);
16795 
16796 	switch (code) {
16797 	case SD_DELAYED_RETRY_ISSUED:
16798 	case SD_IMMEDIATE_RETRY_ISSUED:
16799 		msgp = "retrying";
16800 		break;
16801 	case SD_NO_RETRY_ISSUED:
16802 	default:
16803 		msgp = "giving up";
16804 		break;
16805 	}
16806 
16807 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16808 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16809 		    "incomplete %s- %s\n", cmdp, msgp);
16810 	}
16811 }
16812 
16813 
16814 
16815 /*
16816  *    Function: sd_pkt_status_good
16817  *
16818  * Description: Processing for a STATUS_GOOD code in pkt_status.
16819  *
16820  *     Context: May be called under interrupt context
16821  */
16822 
16823 static void
16824 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
16825 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16826 {
16827 	char	*cmdp;
16828 
16829 	ASSERT(un != NULL);
16830 	ASSERT(mutex_owned(SD_MUTEX(un)));
16831 	ASSERT(bp != NULL);
16832 	ASSERT(xp != NULL);
16833 	ASSERT(pktp != NULL);
16834 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
16835 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
16836 	ASSERT(pktp->pkt_resid != 0);
16837 
16838 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
16839 
16840 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16841 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
16842 	case SCMD_READ:
16843 		cmdp = "read";
16844 		break;
16845 	case SCMD_WRITE:
16846 		cmdp = "write";
16847 		break;
16848 	default:
16849 		SD_UPDATE_B_RESID(bp, pktp);
16850 		sd_return_command(un, bp);
16851 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16852 		return;
16853 	}
16854 
16855 	/*
16856 	 * See if we can retry the read/write, preferrably immediately.
16857 	 * If retries are exhaused, then sd_retry_command() will update
16858 	 * the b_resid count.
16859 	 */
16860 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
16861 	    cmdp, EIO, (clock_t)0, NULL);
16862 
16863 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16864 }
16865 
16866 
16867 
16868 
16869 
16870 /*
16871  *    Function: sd_handle_request_sense
16872  *
16873  * Description: Processing for non-auto Request Sense command.
16874  *
16875  *   Arguments: un - ptr to associated softstate
16876  *		sense_bp - ptr to buf(9S) for the RQS command
16877  *		sense_xp - ptr to the sd_xbuf for the RQS command
16878  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
16879  *
16880  *     Context: May be called under interrupt context
16881  */
16882 
16883 static void
16884 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
16885 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
16886 {
16887 	struct buf	*cmd_bp;	/* buf for the original command */
16888 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
16889 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
16890 
16891 	ASSERT(un != NULL);
16892 	ASSERT(mutex_owned(SD_MUTEX(un)));
16893 	ASSERT(sense_bp != NULL);
16894 	ASSERT(sense_xp != NULL);
16895 	ASSERT(sense_pktp != NULL);
16896 
16897 	/*
16898 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
16899 	 * RQS command and not the original command.
16900 	 */
16901 	ASSERT(sense_pktp == un->un_rqs_pktp);
16902 	ASSERT(sense_bp   == un->un_rqs_bp);
16903 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
16904 	    (FLAG_SENSING | FLAG_HEAD));
16905 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
16906 	    FLAG_SENSING) == FLAG_SENSING);
16907 
16908 	/* These are the bp, xp, and pktp for the original command */
16909 	cmd_bp = sense_xp->xb_sense_bp;
16910 	cmd_xp = SD_GET_XBUF(cmd_bp);
16911 	cmd_pktp = SD_GET_PKTP(cmd_bp);
16912 
16913 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
16914 		/*
16915 		 * The REQUEST SENSE command failed.  Release the REQUEST
16916 		 * SENSE command for re-use, get back the bp for the original
16917 		 * command, and attempt to re-try the original command if
16918 		 * FLAG_DIAGNOSE is not set in the original packet.
16919 		 */
16920 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16921 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16922 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
16923 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
16924 			    NULL, NULL, EIO, (clock_t)0, NULL);
16925 			return;
16926 		}
16927 	}
16928 
16929 	/*
16930 	 * Save the relevant sense info into the xp for the original cmd.
16931 	 *
16932 	 * Note: if the request sense failed the state info will be zero
16933 	 * as set in sd_mark_rqs_busy()
16934 	 */
16935 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
16936 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
16937 	cmd_xp->xb_sense_resid  = sense_pktp->pkt_resid;
16938 	bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, SENSE_LENGTH);
16939 
16940 	/*
16941 	 *  Free up the RQS command....
16942 	 *  NOTE:
16943 	 *	Must do this BEFORE calling sd_validate_sense_data!
16944 	 *	sd_validate_sense_data may return the original command in
16945 	 *	which case the pkt will be freed and the flags can no
16946 	 *	longer be touched.
16947 	 *	SD_MUTEX is held through this process until the command
16948 	 *	is dispatched based upon the sense data, so there are
16949 	 *	no race conditions.
16950 	 */
16951 	(void) sd_mark_rqs_idle(un, sense_xp);
16952 
16953 	/*
16954 	 * For a retryable command see if we have valid sense data, if so then
16955 	 * turn it over to sd_decode_sense() to figure out the right course of
16956 	 * action. Just fail a non-retryable command.
16957 	 */
16958 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16959 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp) ==
16960 		    SD_SENSE_DATA_IS_VALID) {
16961 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
16962 		}
16963 	} else {
16964 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
16965 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
16966 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
16967 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
16968 		sd_return_failed_command(un, cmd_bp, EIO);
16969 	}
16970 }
16971 
16972 
16973 
16974 
16975 /*
16976  *    Function: sd_handle_auto_request_sense
16977  *
16978  * Description: Processing for auto-request sense information.
16979  *
16980  *   Arguments: un - ptr to associated softstate
16981  *		bp - ptr to buf(9S) for the command
16982  *		xp - ptr to the sd_xbuf for the command
16983  *		pktp - ptr to the scsi_pkt(9S) for the command
16984  *
16985  *     Context: May be called under interrupt context
16986  */
16987 
16988 static void
16989 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
16990 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16991 {
16992 	struct scsi_arq_status *asp;
16993 
16994 	ASSERT(un != NULL);
16995 	ASSERT(mutex_owned(SD_MUTEX(un)));
16996 	ASSERT(bp != NULL);
16997 	ASSERT(xp != NULL);
16998 	ASSERT(pktp != NULL);
16999 	ASSERT(pktp != un->un_rqs_pktp);
17000 	ASSERT(bp   != un->un_rqs_bp);
17001 
17002 	/*
17003 	 * For auto-request sense, we get a scsi_arq_status back from
17004 	 * the HBA, with the sense data in the sts_sensedata member.
17005 	 * The pkt_scbp of the packet points to this scsi_arq_status.
17006 	 */
17007 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
17008 
17009 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
17010 		/*
17011 		 * The auto REQUEST SENSE failed; see if we can re-try
17012 		 * the original command.
17013 		 */
17014 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17015 		    "auto request sense failed (reason=%s)\n",
17016 		    scsi_rname(asp->sts_rqpkt_reason));
17017 
17018 		sd_reset_target(un, pktp);
17019 
17020 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17021 		    NULL, NULL, EIO, (clock_t)0, NULL);
17022 		return;
17023 	}
17024 
17025 	/* Save the relevant sense info into the xp for the original cmd. */
17026 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
17027 	xp->xb_sense_state  = asp->sts_rqpkt_state;
17028 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
17029 	bcopy(&asp->sts_sensedata, xp->xb_sense_data,
17030 	    min(sizeof (struct scsi_extended_sense), SENSE_LENGTH));
17031 
17032 	/*
17033 	 * See if we have valid sense data, if so then turn it over to
17034 	 * sd_decode_sense() to figure out the right course of action.
17035 	 */
17036 	if (sd_validate_sense_data(un, bp, xp) == SD_SENSE_DATA_IS_VALID) {
17037 		sd_decode_sense(un, bp, xp, pktp);
17038 	}
17039 }
17040 
17041 
17042 /*
17043  *    Function: sd_print_sense_failed_msg
17044  *
17045  * Description: Print log message when RQS has failed.
17046  *
17047  *   Arguments: un - ptr to associated softstate
17048  *		bp - ptr to buf(9S) for the command
17049  *		arg - generic message string ptr
17050  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17051  *			or SD_NO_RETRY_ISSUED
17052  *
17053  *     Context: May be called from interrupt context
17054  */
17055 
17056 static void
17057 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
17058 	int code)
17059 {
17060 	char	*msgp = arg;
17061 
17062 	ASSERT(un != NULL);
17063 	ASSERT(mutex_owned(SD_MUTEX(un)));
17064 	ASSERT(bp != NULL);
17065 
17066 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
17067 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
17068 	}
17069 }
17070 
17071 
17072 /*
17073  *    Function: sd_validate_sense_data
17074  *
17075  * Description: Check the given sense data for validity.
17076  *		If the sense data is not valid, the command will
17077  *		be either failed or retried!
17078  *
17079  * Return Code: SD_SENSE_DATA_IS_INVALID
17080  *		SD_SENSE_DATA_IS_VALID
17081  *
17082  *     Context: May be called from interrupt context
17083  */
17084 
17085 static int
17086 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp)
17087 {
17088 	struct scsi_extended_sense *esp;
17089 	struct	scsi_pkt *pktp;
17090 	size_t	actual_len;
17091 	char	*msgp = NULL;
17092 
17093 	ASSERT(un != NULL);
17094 	ASSERT(mutex_owned(SD_MUTEX(un)));
17095 	ASSERT(bp != NULL);
17096 	ASSERT(bp != un->un_rqs_bp);
17097 	ASSERT(xp != NULL);
17098 
17099 	pktp = SD_GET_PKTP(bp);
17100 	ASSERT(pktp != NULL);
17101 
17102 	/*
17103 	 * Check the status of the RQS command (auto or manual).
17104 	 */
17105 	switch (xp->xb_sense_status & STATUS_MASK) {
17106 	case STATUS_GOOD:
17107 		break;
17108 
17109 	case STATUS_RESERVATION_CONFLICT:
17110 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
17111 		return (SD_SENSE_DATA_IS_INVALID);
17112 
17113 	case STATUS_BUSY:
17114 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17115 		    "Busy Status on REQUEST SENSE\n");
17116 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
17117 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
17118 		return (SD_SENSE_DATA_IS_INVALID);
17119 
17120 	case STATUS_QFULL:
17121 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17122 		    "QFULL Status on REQUEST SENSE\n");
17123 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
17124 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
17125 		return (SD_SENSE_DATA_IS_INVALID);
17126 
17127 	case STATUS_CHECK:
17128 	case STATUS_TERMINATED:
17129 		msgp = "Check Condition on REQUEST SENSE\n";
17130 		goto sense_failed;
17131 
17132 	default:
17133 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
17134 		goto sense_failed;
17135 	}
17136 
17137 	/*
17138 	 * See if we got the minimum required amount of sense data.
17139 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
17140 	 * or less.
17141 	 */
17142 	actual_len = (int)(SENSE_LENGTH - xp->xb_sense_resid);
17143 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
17144 	    (actual_len == 0)) {
17145 		msgp = "Request Sense couldn't get sense data\n";
17146 		goto sense_failed;
17147 	}
17148 
17149 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
17150 		msgp = "Not enough sense information\n";
17151 		goto sense_failed;
17152 	}
17153 
17154 	/*
17155 	 * We require the extended sense data
17156 	 */
17157 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
17158 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
17159 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17160 			static char tmp[8];
17161 			static char buf[148];
17162 			char *p = (char *)(xp->xb_sense_data);
17163 			int i;
17164 
17165 			mutex_enter(&sd_sense_mutex);
17166 			(void) strcpy(buf, "undecodable sense information:");
17167 			for (i = 0; i < actual_len; i++) {
17168 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
17169 				(void) strcpy(&buf[strlen(buf)], tmp);
17170 			}
17171 			i = strlen(buf);
17172 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
17173 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
17174 			mutex_exit(&sd_sense_mutex);
17175 		}
17176 		/* Note: Legacy behavior, fail the command with no retry */
17177 		sd_return_failed_command(un, bp, EIO);
17178 		return (SD_SENSE_DATA_IS_INVALID);
17179 	}
17180 
17181 	/*
17182 	 * Check that es_code is valid (es_class concatenated with es_code
17183 	 * make up the "response code" field.  es_class will always be 7, so
17184 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
17185 	 * format.
17186 	 */
17187 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
17188 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
17189 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
17190 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
17191 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
17192 		goto sense_failed;
17193 	}
17194 
17195 	return (SD_SENSE_DATA_IS_VALID);
17196 
17197 sense_failed:
17198 	/*
17199 	 * If the request sense failed (for whatever reason), attempt
17200 	 * to retry the original command.
17201 	 */
17202 #if defined(__i386) || defined(__amd64)
17203 	/*
17204 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
17205 	 * sddef.h for Sparc platform, and x86 uses 1 binary
17206 	 * for both SCSI/FC.
17207 	 * The SD_RETRY_DELAY value need to be adjusted here
17208 	 * when SD_RETRY_DELAY change in sddef.h
17209 	 */
17210 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17211 	    sd_print_sense_failed_msg, msgp, EIO,
17212 		un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
17213 #else
17214 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17215 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
17216 #endif
17217 
17218 	return (SD_SENSE_DATA_IS_INVALID);
17219 }
17220 
17221 
17222 
17223 /*
17224  *    Function: sd_decode_sense
17225  *
17226  * Description: Take recovery action(s) when SCSI Sense Data is received.
17227  *
17228  *     Context: Interrupt context.
17229  */
17230 
17231 static void
17232 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17233 	struct scsi_pkt *pktp)
17234 {
17235 	uint8_t sense_key;
17236 
17237 	ASSERT(un != NULL);
17238 	ASSERT(mutex_owned(SD_MUTEX(un)));
17239 	ASSERT(bp != NULL);
17240 	ASSERT(bp != un->un_rqs_bp);
17241 	ASSERT(xp != NULL);
17242 	ASSERT(pktp != NULL);
17243 
17244 	sense_key = scsi_sense_key(xp->xb_sense_data);
17245 
17246 	switch (sense_key) {
17247 	case KEY_NO_SENSE:
17248 		sd_sense_key_no_sense(un, bp, xp, pktp);
17249 		break;
17250 	case KEY_RECOVERABLE_ERROR:
17251 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
17252 		    bp, xp, pktp);
17253 		break;
17254 	case KEY_NOT_READY:
17255 		sd_sense_key_not_ready(un, xp->xb_sense_data,
17256 		    bp, xp, pktp);
17257 		break;
17258 	case KEY_MEDIUM_ERROR:
17259 	case KEY_HARDWARE_ERROR:
17260 		sd_sense_key_medium_or_hardware_error(un,
17261 		    xp->xb_sense_data, bp, xp, pktp);
17262 		break;
17263 	case KEY_ILLEGAL_REQUEST:
17264 		sd_sense_key_illegal_request(un, bp, xp, pktp);
17265 		break;
17266 	case KEY_UNIT_ATTENTION:
17267 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
17268 		    bp, xp, pktp);
17269 		break;
17270 	case KEY_WRITE_PROTECT:
17271 	case KEY_VOLUME_OVERFLOW:
17272 	case KEY_MISCOMPARE:
17273 		sd_sense_key_fail_command(un, bp, xp, pktp);
17274 		break;
17275 	case KEY_BLANK_CHECK:
17276 		sd_sense_key_blank_check(un, bp, xp, pktp);
17277 		break;
17278 	case KEY_ABORTED_COMMAND:
17279 		sd_sense_key_aborted_command(un, bp, xp, pktp);
17280 		break;
17281 	case KEY_VENDOR_UNIQUE:
17282 	case KEY_COPY_ABORTED:
17283 	case KEY_EQUAL:
17284 	case KEY_RESERVED:
17285 	default:
17286 		sd_sense_key_default(un, xp->xb_sense_data,
17287 		    bp, xp, pktp);
17288 		break;
17289 	}
17290 }
17291 
17292 
17293 /*
17294  *    Function: sd_dump_memory
17295  *
17296  * Description: Debug logging routine to print the contents of a user provided
17297  *		buffer. The output of the buffer is broken up into 256 byte
17298  *		segments due to a size constraint of the scsi_log.
17299  *		implementation.
17300  *
17301  *   Arguments: un - ptr to softstate
17302  *		comp - component mask
17303  *		title - "title" string to preceed data when printed
17304  *		data - ptr to data block to be printed
17305  *		len - size of data block to be printed
17306  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
17307  *
17308  *     Context: May be called from interrupt context
17309  */
17310 
17311 #define	SD_DUMP_MEMORY_BUF_SIZE	256
17312 
17313 static char *sd_dump_format_string[] = {
17314 		" 0x%02x",
17315 		" %c"
17316 };
17317 
17318 static void
17319 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
17320     int len, int fmt)
17321 {
17322 	int	i, j;
17323 	int	avail_count;
17324 	int	start_offset;
17325 	int	end_offset;
17326 	size_t	entry_len;
17327 	char	*bufp;
17328 	char	*local_buf;
17329 	char	*format_string;
17330 
17331 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
17332 
17333 	/*
17334 	 * In the debug version of the driver, this function is called from a
17335 	 * number of places which are NOPs in the release driver.
17336 	 * The debug driver therefore has additional methods of filtering
17337 	 * debug output.
17338 	 */
17339 #ifdef SDDEBUG
17340 	/*
17341 	 * In the debug version of the driver we can reduce the amount of debug
17342 	 * messages by setting sd_error_level to something other than
17343 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
17344 	 * sd_component_mask.
17345 	 */
17346 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
17347 	    (sd_error_level != SCSI_ERR_ALL)) {
17348 		return;
17349 	}
17350 	if (((sd_component_mask & comp) == 0) ||
17351 	    (sd_error_level != SCSI_ERR_ALL)) {
17352 		return;
17353 	}
17354 #else
17355 	if (sd_error_level != SCSI_ERR_ALL) {
17356 		return;
17357 	}
17358 #endif
17359 
17360 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
17361 	bufp = local_buf;
17362 	/*
17363 	 * Available length is the length of local_buf[], minus the
17364 	 * length of the title string, minus one for the ":", minus
17365 	 * one for the newline, minus one for the NULL terminator.
17366 	 * This gives the #bytes available for holding the printed
17367 	 * values from the given data buffer.
17368 	 */
17369 	if (fmt == SD_LOG_HEX) {
17370 		format_string = sd_dump_format_string[0];
17371 	} else /* SD_LOG_CHAR */ {
17372 		format_string = sd_dump_format_string[1];
17373 	}
17374 	/*
17375 	 * Available count is the number of elements from the given
17376 	 * data buffer that we can fit into the available length.
17377 	 * This is based upon the size of the format string used.
17378 	 * Make one entry and find it's size.
17379 	 */
17380 	(void) sprintf(bufp, format_string, data[0]);
17381 	entry_len = strlen(bufp);
17382 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
17383 
17384 	j = 0;
17385 	while (j < len) {
17386 		bufp = local_buf;
17387 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
17388 		start_offset = j;
17389 
17390 		end_offset = start_offset + avail_count;
17391 
17392 		(void) sprintf(bufp, "%s:", title);
17393 		bufp += strlen(bufp);
17394 		for (i = start_offset; ((i < end_offset) && (j < len));
17395 		    i++, j++) {
17396 			(void) sprintf(bufp, format_string, data[i]);
17397 			bufp += entry_len;
17398 		}
17399 		(void) sprintf(bufp, "\n");
17400 
17401 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
17402 	}
17403 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
17404 }
17405 
17406 /*
17407  *    Function: sd_print_sense_msg
17408  *
17409  * Description: Log a message based upon the given sense data.
17410  *
17411  *   Arguments: un - ptr to associated softstate
17412  *		bp - ptr to buf(9S) for the command
17413  *		arg - ptr to associate sd_sense_info struct
17414  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17415  *			or SD_NO_RETRY_ISSUED
17416  *
17417  *     Context: May be called from interrupt context
17418  */
17419 
17420 static void
17421 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17422 {
17423 	struct sd_xbuf	*xp;
17424 	struct scsi_pkt	*pktp;
17425 	uint8_t *sensep;
17426 	daddr_t request_blkno;
17427 	diskaddr_t err_blkno;
17428 	int severity;
17429 	int pfa_flag;
17430 	extern struct scsi_key_strings scsi_cmds[];
17431 
17432 	ASSERT(un != NULL);
17433 	ASSERT(mutex_owned(SD_MUTEX(un)));
17434 	ASSERT(bp != NULL);
17435 	xp = SD_GET_XBUF(bp);
17436 	ASSERT(xp != NULL);
17437 	pktp = SD_GET_PKTP(bp);
17438 	ASSERT(pktp != NULL);
17439 	ASSERT(arg != NULL);
17440 
17441 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
17442 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
17443 
17444 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
17445 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
17446 		severity = SCSI_ERR_RETRYABLE;
17447 	}
17448 
17449 	/* Use absolute block number for the request block number */
17450 	request_blkno = xp->xb_blkno;
17451 
17452 	/*
17453 	 * Now try to get the error block number from the sense data
17454 	 */
17455 	sensep = xp->xb_sense_data;
17456 
17457 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
17458 		(uint64_t *)&err_blkno)) {
17459 		/*
17460 		 * We retrieved the error block number from the information
17461 		 * portion of the sense data.
17462 		 *
17463 		 * For USCSI commands we are better off using the error
17464 		 * block no. as the requested block no. (This is the best
17465 		 * we can estimate.)
17466 		 */
17467 		if ((SD_IS_BUFIO(xp) == FALSE) &&
17468 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
17469 			request_blkno = err_blkno;
17470 		}
17471 	} else {
17472 		/*
17473 		 * Without the es_valid bit set (for fixed format) or an
17474 		 * information descriptor (for descriptor format) we cannot
17475 		 * be certain of the error blkno, so just use the
17476 		 * request_blkno.
17477 		 */
17478 		err_blkno = (diskaddr_t)request_blkno;
17479 	}
17480 
17481 	/*
17482 	 * The following will log the buffer contents for the release driver
17483 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
17484 	 * level is set to verbose.
17485 	 */
17486 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
17487 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17488 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
17489 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
17490 
17491 	if (pfa_flag == FALSE) {
17492 		/* This is normally only set for USCSI */
17493 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
17494 			return;
17495 		}
17496 
17497 		if ((SD_IS_BUFIO(xp) == TRUE) &&
17498 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
17499 		    (severity < sd_error_level))) {
17500 			return;
17501 		}
17502 	}
17503 
17504 	/*
17505 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
17506 	 */
17507 	if ((SD_IS_LSI(un)) &&
17508 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
17509 	    (scsi_sense_asc(sensep) == 0x94) &&
17510 	    (scsi_sense_ascq(sensep) == 0x01)) {
17511 		un->un_sonoma_failure_count++;
17512 		if (un->un_sonoma_failure_count > 1) {
17513 			return;
17514 		}
17515 	}
17516 
17517 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
17518 	    request_blkno, err_blkno, scsi_cmds,
17519 	    (struct scsi_extended_sense *)sensep,
17520 	    un->un_additional_codes, NULL);
17521 }
17522 
17523 /*
17524  *    Function: sd_sense_key_no_sense
17525  *
17526  * Description: Recovery action when sense data was not received.
17527  *
17528  *     Context: May be called from interrupt context
17529  */
17530 
17531 static void
17532 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
17533 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17534 {
17535 	struct sd_sense_info	si;
17536 
17537 	ASSERT(un != NULL);
17538 	ASSERT(mutex_owned(SD_MUTEX(un)));
17539 	ASSERT(bp != NULL);
17540 	ASSERT(xp != NULL);
17541 	ASSERT(pktp != NULL);
17542 
17543 	si.ssi_severity = SCSI_ERR_FATAL;
17544 	si.ssi_pfa_flag = FALSE;
17545 
17546 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17547 
17548 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17549 		&si, EIO, (clock_t)0, NULL);
17550 }
17551 
17552 
17553 /*
17554  *    Function: sd_sense_key_recoverable_error
17555  *
17556  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
17557  *
17558  *     Context: May be called from interrupt context
17559  */
17560 
17561 static void
17562 sd_sense_key_recoverable_error(struct sd_lun *un,
17563 	uint8_t *sense_datap,
17564 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17565 {
17566 	struct sd_sense_info	si;
17567 	uint8_t asc = scsi_sense_asc(sense_datap);
17568 
17569 	ASSERT(un != NULL);
17570 	ASSERT(mutex_owned(SD_MUTEX(un)));
17571 	ASSERT(bp != NULL);
17572 	ASSERT(xp != NULL);
17573 	ASSERT(pktp != NULL);
17574 
17575 	/*
17576 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
17577 	 */
17578 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
17579 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17580 		si.ssi_severity = SCSI_ERR_INFO;
17581 		si.ssi_pfa_flag = TRUE;
17582 	} else {
17583 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
17584 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
17585 		si.ssi_severity = SCSI_ERR_RECOVERED;
17586 		si.ssi_pfa_flag = FALSE;
17587 	}
17588 
17589 	if (pktp->pkt_resid == 0) {
17590 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17591 		sd_return_command(un, bp);
17592 		return;
17593 	}
17594 
17595 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17596 	    &si, EIO, (clock_t)0, NULL);
17597 }
17598 
17599 
17600 
17601 
17602 /*
17603  *    Function: sd_sense_key_not_ready
17604  *
17605  * Description: Recovery actions for a SCSI "Not Ready" sense key.
17606  *
17607  *     Context: May be called from interrupt context
17608  */
17609 
17610 static void
17611 sd_sense_key_not_ready(struct sd_lun *un,
17612 	uint8_t *sense_datap,
17613 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17614 {
17615 	struct sd_sense_info	si;
17616 	uint8_t asc = scsi_sense_asc(sense_datap);
17617 	uint8_t ascq = scsi_sense_ascq(sense_datap);
17618 
17619 	ASSERT(un != NULL);
17620 	ASSERT(mutex_owned(SD_MUTEX(un)));
17621 	ASSERT(bp != NULL);
17622 	ASSERT(xp != NULL);
17623 	ASSERT(pktp != NULL);
17624 
17625 	si.ssi_severity = SCSI_ERR_FATAL;
17626 	si.ssi_pfa_flag = FALSE;
17627 
17628 	/*
17629 	 * Update error stats after first NOT READY error. Disks may have
17630 	 * been powered down and may need to be restarted.  For CDROMs,
17631 	 * report NOT READY errors only if media is present.
17632 	 */
17633 	if ((ISCD(un) && (un->un_f_geometry_is_valid == TRUE)) ||
17634 	    (xp->xb_retry_count > 0)) {
17635 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17636 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
17637 	}
17638 
17639 	/*
17640 	 * Just fail if the "not ready" retry limit has been reached.
17641 	 */
17642 	if (xp->xb_retry_count >= un->un_notready_retry_count) {
17643 		/* Special check for error message printing for removables. */
17644 		if (un->un_f_has_removable_media && (asc == 0x04) &&
17645 		    (ascq >= 0x04)) {
17646 			si.ssi_severity = SCSI_ERR_ALL;
17647 		}
17648 		goto fail_command;
17649 	}
17650 
17651 	/*
17652 	 * Check the ASC and ASCQ in the sense data as needed, to determine
17653 	 * what to do.
17654 	 */
17655 	switch (asc) {
17656 	case 0x04:	/* LOGICAL UNIT NOT READY */
17657 		/*
17658 		 * disk drives that don't spin up result in a very long delay
17659 		 * in format without warning messages. We will log a message
17660 		 * if the error level is set to verbose.
17661 		 */
17662 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17663 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17664 			    "logical unit not ready, resetting disk\n");
17665 		}
17666 
17667 		/*
17668 		 * There are different requirements for CDROMs and disks for
17669 		 * the number of retries.  If a CD-ROM is giving this, it is
17670 		 * probably reading TOC and is in the process of getting
17671 		 * ready, so we should keep on trying for a long time to make
17672 		 * sure that all types of media are taken in account (for
17673 		 * some media the drive takes a long time to read TOC).  For
17674 		 * disks we do not want to retry this too many times as this
17675 		 * can cause a long hang in format when the drive refuses to
17676 		 * spin up (a very common failure).
17677 		 */
17678 		switch (ascq) {
17679 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
17680 			/*
17681 			 * Disk drives frequently refuse to spin up which
17682 			 * results in a very long hang in format without
17683 			 * warning messages.
17684 			 *
17685 			 * Note: This code preserves the legacy behavior of
17686 			 * comparing xb_retry_count against zero for fibre
17687 			 * channel targets instead of comparing against the
17688 			 * un_reset_retry_count value.  The reason for this
17689 			 * discrepancy has been so utterly lost beneath the
17690 			 * Sands of Time that even Indiana Jones could not
17691 			 * find it.
17692 			 */
17693 			if (un->un_f_is_fibre == TRUE) {
17694 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17695 					(xp->xb_retry_count > 0)) &&
17696 					(un->un_startstop_timeid == NULL)) {
17697 					scsi_log(SD_DEVINFO(un), sd_label,
17698 					CE_WARN, "logical unit not ready, "
17699 					"resetting disk\n");
17700 					sd_reset_target(un, pktp);
17701 				}
17702 			} else {
17703 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17704 					(xp->xb_retry_count >
17705 					un->un_reset_retry_count)) &&
17706 					(un->un_startstop_timeid == NULL)) {
17707 					scsi_log(SD_DEVINFO(un), sd_label,
17708 					CE_WARN, "logical unit not ready, "
17709 					"resetting disk\n");
17710 					sd_reset_target(un, pktp);
17711 				}
17712 			}
17713 			break;
17714 
17715 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
17716 			/*
17717 			 * If the target is in the process of becoming
17718 			 * ready, just proceed with the retry. This can
17719 			 * happen with CD-ROMs that take a long time to
17720 			 * read TOC after a power cycle or reset.
17721 			 */
17722 			goto do_retry;
17723 
17724 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
17725 			break;
17726 
17727 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
17728 			/*
17729 			 * Retries cannot help here so just fail right away.
17730 			 */
17731 			goto fail_command;
17732 
17733 		case 0x88:
17734 			/*
17735 			 * Vendor-unique code for T3/T4: it indicates a
17736 			 * path problem in a mutipathed config, but as far as
17737 			 * the target driver is concerned it equates to a fatal
17738 			 * error, so we should just fail the command right away
17739 			 * (without printing anything to the console). If this
17740 			 * is not a T3/T4, fall thru to the default recovery
17741 			 * action.
17742 			 * T3/T4 is FC only, don't need to check is_fibre
17743 			 */
17744 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
17745 				sd_return_failed_command(un, bp, EIO);
17746 				return;
17747 			}
17748 			/* FALLTHRU */
17749 
17750 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
17751 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
17752 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
17753 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
17754 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
17755 		default:    /* Possible future codes in SCSI spec? */
17756 			/*
17757 			 * For removable-media devices, do not retry if
17758 			 * ASCQ > 2 as these result mostly from USCSI commands
17759 			 * on MMC devices issued to check status of an
17760 			 * operation initiated in immediate mode.  Also for
17761 			 * ASCQ >= 4 do not print console messages as these
17762 			 * mainly represent a user-initiated operation
17763 			 * instead of a system failure.
17764 			 */
17765 			if (un->un_f_has_removable_media) {
17766 				si.ssi_severity = SCSI_ERR_ALL;
17767 				goto fail_command;
17768 			}
17769 			break;
17770 		}
17771 
17772 		/*
17773 		 * As part of our recovery attempt for the NOT READY
17774 		 * condition, we issue a START STOP UNIT command. However
17775 		 * we want to wait for a short delay before attempting this
17776 		 * as there may still be more commands coming back from the
17777 		 * target with the check condition. To do this we use
17778 		 * timeout(9F) to call sd_start_stop_unit_callback() after
17779 		 * the delay interval expires. (sd_start_stop_unit_callback()
17780 		 * dispatches sd_start_stop_unit_task(), which will issue
17781 		 * the actual START STOP UNIT command. The delay interval
17782 		 * is one-half of the delay that we will use to retry the
17783 		 * command that generated the NOT READY condition.
17784 		 *
17785 		 * Note that we could just dispatch sd_start_stop_unit_task()
17786 		 * from here and allow it to sleep for the delay interval,
17787 		 * but then we would be tying up the taskq thread
17788 		 * uncesessarily for the duration of the delay.
17789 		 *
17790 		 * Do not issue the START STOP UNIT if the current command
17791 		 * is already a START STOP UNIT.
17792 		 */
17793 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
17794 			break;
17795 		}
17796 
17797 		/*
17798 		 * Do not schedule the timeout if one is already pending.
17799 		 */
17800 		if (un->un_startstop_timeid != NULL) {
17801 			SD_INFO(SD_LOG_ERROR, un,
17802 			    "sd_sense_key_not_ready: restart already issued to"
17803 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
17804 			    ddi_get_instance(SD_DEVINFO(un)));
17805 			break;
17806 		}
17807 
17808 		/*
17809 		 * Schedule the START STOP UNIT command, then queue the command
17810 		 * for a retry.
17811 		 *
17812 		 * Note: A timeout is not scheduled for this retry because we
17813 		 * want the retry to be serial with the START_STOP_UNIT. The
17814 		 * retry will be started when the START_STOP_UNIT is completed
17815 		 * in sd_start_stop_unit_task.
17816 		 */
17817 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
17818 		    un, SD_BSY_TIMEOUT / 2);
17819 		xp->xb_retry_count++;
17820 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
17821 		return;
17822 
17823 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
17824 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17825 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17826 			    "unit does not respond to selection\n");
17827 		}
17828 		break;
17829 
17830 	case 0x3A:	/* MEDIUM NOT PRESENT */
17831 		if (sd_error_level >= SCSI_ERR_FATAL) {
17832 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17833 			    "Caddy not inserted in drive\n");
17834 		}
17835 
17836 		sr_ejected(un);
17837 		un->un_mediastate = DKIO_EJECTED;
17838 		/* The state has changed, inform the media watch routines */
17839 		cv_broadcast(&un->un_state_cv);
17840 		/* Just fail if no media is present in the drive. */
17841 		goto fail_command;
17842 
17843 	default:
17844 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17845 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
17846 			    "Unit not Ready. Additional sense code 0x%x\n",
17847 			    asc);
17848 		}
17849 		break;
17850 	}
17851 
17852 do_retry:
17853 
17854 	/*
17855 	 * Retry the command, as some targets may report NOT READY for
17856 	 * several seconds after being reset.
17857 	 */
17858 	xp->xb_retry_count++;
17859 	si.ssi_severity = SCSI_ERR_RETRYABLE;
17860 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17861 	    &si, EIO, SD_BSY_TIMEOUT, NULL);
17862 
17863 	return;
17864 
17865 fail_command:
17866 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17867 	sd_return_failed_command(un, bp, EIO);
17868 }
17869 
17870 
17871 
17872 /*
17873  *    Function: sd_sense_key_medium_or_hardware_error
17874  *
17875  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
17876  *		sense key.
17877  *
17878  *     Context: May be called from interrupt context
17879  */
17880 
17881 static void
17882 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
17883 	uint8_t *sense_datap,
17884 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17885 {
17886 	struct sd_sense_info	si;
17887 	uint8_t sense_key = scsi_sense_key(sense_datap);
17888 	uint8_t asc = scsi_sense_asc(sense_datap);
17889 
17890 	ASSERT(un != NULL);
17891 	ASSERT(mutex_owned(SD_MUTEX(un)));
17892 	ASSERT(bp != NULL);
17893 	ASSERT(xp != NULL);
17894 	ASSERT(pktp != NULL);
17895 
17896 	si.ssi_severity = SCSI_ERR_FATAL;
17897 	si.ssi_pfa_flag = FALSE;
17898 
17899 	if (sense_key == KEY_MEDIUM_ERROR) {
17900 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
17901 	}
17902 
17903 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17904 
17905 	if ((un->un_reset_retry_count != 0) &&
17906 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
17907 		mutex_exit(SD_MUTEX(un));
17908 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
17909 		if (un->un_f_allow_bus_device_reset == TRUE) {
17910 
17911 			boolean_t try_resetting_target = B_TRUE;
17912 
17913 			/*
17914 			 * We need to be able to handle specific ASC when we are
17915 			 * handling a KEY_HARDWARE_ERROR. In particular
17916 			 * taking the default action of resetting the target may
17917 			 * not be the appropriate way to attempt recovery.
17918 			 * Resetting a target because of a single LUN failure
17919 			 * victimizes all LUNs on that target.
17920 			 *
17921 			 * This is true for the LSI arrays, if an LSI
17922 			 * array controller returns an ASC of 0x84 (LUN Dead) we
17923 			 * should trust it.
17924 			 */
17925 
17926 			if (sense_key == KEY_HARDWARE_ERROR) {
17927 				switch (asc) {
17928 				case 0x84:
17929 					if (SD_IS_LSI(un)) {
17930 						try_resetting_target = B_FALSE;
17931 					}
17932 					break;
17933 				default:
17934 					break;
17935 				}
17936 			}
17937 
17938 			if (try_resetting_target == B_TRUE) {
17939 				int reset_retval = 0;
17940 				if (un->un_f_lun_reset_enabled == TRUE) {
17941 					SD_TRACE(SD_LOG_IO_CORE, un,
17942 					    "sd_sense_key_medium_or_hardware_"
17943 					    "error: issuing RESET_LUN\n");
17944 					reset_retval =
17945 					    scsi_reset(SD_ADDRESS(un),
17946 					    RESET_LUN);
17947 				}
17948 				if (reset_retval == 0) {
17949 					SD_TRACE(SD_LOG_IO_CORE, un,
17950 					    "sd_sense_key_medium_or_hardware_"
17951 					    "error: issuing RESET_TARGET\n");
17952 					(void) scsi_reset(SD_ADDRESS(un),
17953 					    RESET_TARGET);
17954 				}
17955 			}
17956 		}
17957 		mutex_enter(SD_MUTEX(un));
17958 	}
17959 
17960 	/*
17961 	 * This really ought to be a fatal error, but we will retry anyway
17962 	 * as some drives report this as a spurious error.
17963 	 */
17964 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17965 	    &si, EIO, (clock_t)0, NULL);
17966 }
17967 
17968 
17969 
17970 /*
17971  *    Function: sd_sense_key_illegal_request
17972  *
17973  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
17974  *
17975  *     Context: May be called from interrupt context
17976  */
17977 
17978 static void
17979 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
17980 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17981 {
17982 	struct sd_sense_info	si;
17983 
17984 	ASSERT(un != NULL);
17985 	ASSERT(mutex_owned(SD_MUTEX(un)));
17986 	ASSERT(bp != NULL);
17987 	ASSERT(xp != NULL);
17988 	ASSERT(pktp != NULL);
17989 
17990 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17991 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
17992 
17993 	si.ssi_severity = SCSI_ERR_INFO;
17994 	si.ssi_pfa_flag = FALSE;
17995 
17996 	/* Pointless to retry if the target thinks it's an illegal request */
17997 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17998 	sd_return_failed_command(un, bp, EIO);
17999 }
18000 
18001 
18002 
18003 
18004 /*
18005  *    Function: sd_sense_key_unit_attention
18006  *
18007  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
18008  *
18009  *     Context: May be called from interrupt context
18010  */
18011 
18012 static void
18013 sd_sense_key_unit_attention(struct sd_lun *un,
18014 	uint8_t *sense_datap,
18015 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18016 {
18017 	/*
18018 	 * For UNIT ATTENTION we allow retries for one minute. Devices
18019 	 * like Sonoma can return UNIT ATTENTION close to a minute
18020 	 * under certain conditions.
18021 	 */
18022 	int	retry_check_flag = SD_RETRIES_UA;
18023 	boolean_t	kstat_updated = B_FALSE;
18024 	struct	sd_sense_info		si;
18025 	uint8_t asc = scsi_sense_asc(sense_datap);
18026 
18027 	ASSERT(un != NULL);
18028 	ASSERT(mutex_owned(SD_MUTEX(un)));
18029 	ASSERT(bp != NULL);
18030 	ASSERT(xp != NULL);
18031 	ASSERT(pktp != NULL);
18032 
18033 	si.ssi_severity = SCSI_ERR_INFO;
18034 	si.ssi_pfa_flag = FALSE;
18035 
18036 
18037 	switch (asc) {
18038 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
18039 		if (sd_report_pfa != 0) {
18040 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
18041 			si.ssi_pfa_flag = TRUE;
18042 			retry_check_flag = SD_RETRIES_STANDARD;
18043 			goto do_retry;
18044 		}
18045 
18046 		break;
18047 
18048 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
18049 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
18050 			un->un_resvd_status |=
18051 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
18052 		}
18053 #ifdef _LP64
18054 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
18055 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
18056 			    un, KM_NOSLEEP) == 0) {
18057 				/*
18058 				 * If we can't dispatch the task we'll just
18059 				 * live without descriptor sense.  We can
18060 				 * try again on the next "unit attention"
18061 				 */
18062 				SD_ERROR(SD_LOG_ERROR, un,
18063 				    "sd_sense_key_unit_attention: "
18064 				    "Could not dispatch "
18065 				    "sd_reenable_dsense_task\n");
18066 			}
18067 		}
18068 #endif /* _LP64 */
18069 		/* FALLTHRU */
18070 
18071 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
18072 		if (!un->un_f_has_removable_media) {
18073 			break;
18074 		}
18075 
18076 		/*
18077 		 * When we get a unit attention from a removable-media device,
18078 		 * it may be in a state that will take a long time to recover
18079 		 * (e.g., from a reset).  Since we are executing in interrupt
18080 		 * context here, we cannot wait around for the device to come
18081 		 * back. So hand this command off to sd_media_change_task()
18082 		 * for deferred processing under taskq thread context. (Note
18083 		 * that the command still may be failed if a problem is
18084 		 * encountered at a later time.)
18085 		 */
18086 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
18087 		    KM_NOSLEEP) == 0) {
18088 			/*
18089 			 * Cannot dispatch the request so fail the command.
18090 			 */
18091 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
18092 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18093 			si.ssi_severity = SCSI_ERR_FATAL;
18094 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18095 			sd_return_failed_command(un, bp, EIO);
18096 		}
18097 
18098 		/*
18099 		 * If failed to dispatch sd_media_change_task(), we already
18100 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
18101 		 * we should update kstat later if it encounters an error. So,
18102 		 * we update kstat_updated flag here.
18103 		 */
18104 		kstat_updated = B_TRUE;
18105 
18106 		/*
18107 		 * Either the command has been successfully dispatched to a
18108 		 * task Q for retrying, or the dispatch failed. In either case
18109 		 * do NOT retry again by calling sd_retry_command. This sets up
18110 		 * two retries of the same command and when one completes and
18111 		 * frees the resources the other will access freed memory,
18112 		 * a bad thing.
18113 		 */
18114 		return;
18115 
18116 	default:
18117 		break;
18118 	}
18119 
18120 	/*
18121 	 * Update kstat if we haven't done that.
18122 	 */
18123 	if (!kstat_updated) {
18124 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18125 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18126 	}
18127 
18128 do_retry:
18129 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
18130 	    EIO, SD_UA_RETRY_DELAY, NULL);
18131 }
18132 
18133 
18134 
18135 /*
18136  *    Function: sd_sense_key_fail_command
18137  *
18138  * Description: Use to fail a command when we don't like the sense key that
18139  *		was returned.
18140  *
18141  *     Context: May be called from interrupt context
18142  */
18143 
18144 static void
18145 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
18146 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18147 {
18148 	struct sd_sense_info	si;
18149 
18150 	ASSERT(un != NULL);
18151 	ASSERT(mutex_owned(SD_MUTEX(un)));
18152 	ASSERT(bp != NULL);
18153 	ASSERT(xp != NULL);
18154 	ASSERT(pktp != NULL);
18155 
18156 	si.ssi_severity = SCSI_ERR_FATAL;
18157 	si.ssi_pfa_flag = FALSE;
18158 
18159 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18160 	sd_return_failed_command(un, bp, EIO);
18161 }
18162 
18163 
18164 
18165 /*
18166  *    Function: sd_sense_key_blank_check
18167  *
18168  * Description: Recovery actions for a SCSI "Blank Check" sense key.
18169  *		Has no monetary connotation.
18170  *
18171  *     Context: May be called from interrupt context
18172  */
18173 
18174 static void
18175 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
18176 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18177 {
18178 	struct sd_sense_info	si;
18179 
18180 	ASSERT(un != NULL);
18181 	ASSERT(mutex_owned(SD_MUTEX(un)));
18182 	ASSERT(bp != NULL);
18183 	ASSERT(xp != NULL);
18184 	ASSERT(pktp != NULL);
18185 
18186 	/*
18187 	 * Blank check is not fatal for removable devices, therefore
18188 	 * it does not require a console message.
18189 	 */
18190 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
18191 	    SCSI_ERR_FATAL;
18192 	si.ssi_pfa_flag = FALSE;
18193 
18194 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18195 	sd_return_failed_command(un, bp, EIO);
18196 }
18197 
18198 
18199 
18200 
18201 /*
18202  *    Function: sd_sense_key_aborted_command
18203  *
18204  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
18205  *
18206  *     Context: May be called from interrupt context
18207  */
18208 
18209 static void
18210 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
18211 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18212 {
18213 	struct sd_sense_info	si;
18214 
18215 	ASSERT(un != NULL);
18216 	ASSERT(mutex_owned(SD_MUTEX(un)));
18217 	ASSERT(bp != NULL);
18218 	ASSERT(xp != NULL);
18219 	ASSERT(pktp != NULL);
18220 
18221 	si.ssi_severity = SCSI_ERR_FATAL;
18222 	si.ssi_pfa_flag = FALSE;
18223 
18224 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18225 
18226 	/*
18227 	 * This really ought to be a fatal error, but we will retry anyway
18228 	 * as some drives report this as a spurious error.
18229 	 */
18230 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18231 	    &si, EIO, (clock_t)0, NULL);
18232 }
18233 
18234 
18235 
18236 /*
18237  *    Function: sd_sense_key_default
18238  *
18239  * Description: Default recovery action for several SCSI sense keys (basically
18240  *		attempts a retry).
18241  *
18242  *     Context: May be called from interrupt context
18243  */
18244 
18245 static void
18246 sd_sense_key_default(struct sd_lun *un,
18247 	uint8_t *sense_datap,
18248 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18249 {
18250 	struct sd_sense_info	si;
18251 	uint8_t sense_key = scsi_sense_key(sense_datap);
18252 
18253 	ASSERT(un != NULL);
18254 	ASSERT(mutex_owned(SD_MUTEX(un)));
18255 	ASSERT(bp != NULL);
18256 	ASSERT(xp != NULL);
18257 	ASSERT(pktp != NULL);
18258 
18259 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18260 
18261 	/*
18262 	 * Undecoded sense key.	Attempt retries and hope that will fix
18263 	 * the problem.  Otherwise, we're dead.
18264 	 */
18265 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
18266 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18267 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
18268 	}
18269 
18270 	si.ssi_severity = SCSI_ERR_FATAL;
18271 	si.ssi_pfa_flag = FALSE;
18272 
18273 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18274 	    &si, EIO, (clock_t)0, NULL);
18275 }
18276 
18277 
18278 
18279 /*
18280  *    Function: sd_print_retry_msg
18281  *
18282  * Description: Print a message indicating the retry action being taken.
18283  *
18284  *   Arguments: un - ptr to associated softstate
18285  *		bp - ptr to buf(9S) for the command
18286  *		arg - not used.
18287  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18288  *			or SD_NO_RETRY_ISSUED
18289  *
18290  *     Context: May be called from interrupt context
18291  */
18292 /* ARGSUSED */
18293 static void
18294 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
18295 {
18296 	struct sd_xbuf	*xp;
18297 	struct scsi_pkt *pktp;
18298 	char *reasonp;
18299 	char *msgp;
18300 
18301 	ASSERT(un != NULL);
18302 	ASSERT(mutex_owned(SD_MUTEX(un)));
18303 	ASSERT(bp != NULL);
18304 	pktp = SD_GET_PKTP(bp);
18305 	ASSERT(pktp != NULL);
18306 	xp = SD_GET_XBUF(bp);
18307 	ASSERT(xp != NULL);
18308 
18309 	ASSERT(!mutex_owned(&un->un_pm_mutex));
18310 	mutex_enter(&un->un_pm_mutex);
18311 	if ((un->un_state == SD_STATE_SUSPENDED) ||
18312 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
18313 	    (pktp->pkt_flags & FLAG_SILENT)) {
18314 		mutex_exit(&un->un_pm_mutex);
18315 		goto update_pkt_reason;
18316 	}
18317 	mutex_exit(&un->un_pm_mutex);
18318 
18319 	/*
18320 	 * Suppress messages if they are all the same pkt_reason; with
18321 	 * TQ, many (up to 256) are returned with the same pkt_reason.
18322 	 * If we are in panic, then suppress the retry messages.
18323 	 */
18324 	switch (flag) {
18325 	case SD_NO_RETRY_ISSUED:
18326 		msgp = "giving up";
18327 		break;
18328 	case SD_IMMEDIATE_RETRY_ISSUED:
18329 	case SD_DELAYED_RETRY_ISSUED:
18330 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
18331 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
18332 		    (sd_error_level != SCSI_ERR_ALL))) {
18333 			return;
18334 		}
18335 		msgp = "retrying command";
18336 		break;
18337 	default:
18338 		goto update_pkt_reason;
18339 	}
18340 
18341 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
18342 	    scsi_rname(pktp->pkt_reason));
18343 
18344 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18345 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
18346 
18347 update_pkt_reason:
18348 	/*
18349 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
18350 	 * This is to prevent multiple console messages for the same failure
18351 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
18352 	 * when the command is retried successfully because there still may be
18353 	 * more commands coming back with the same value of pktp->pkt_reason.
18354 	 */
18355 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
18356 		un->un_last_pkt_reason = pktp->pkt_reason;
18357 	}
18358 }
18359 
18360 
18361 /*
18362  *    Function: sd_print_cmd_incomplete_msg
18363  *
18364  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
18365  *
18366  *   Arguments: un - ptr to associated softstate
18367  *		bp - ptr to buf(9S) for the command
18368  *		arg - passed to sd_print_retry_msg()
18369  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18370  *			or SD_NO_RETRY_ISSUED
18371  *
18372  *     Context: May be called from interrupt context
18373  */
18374 
18375 static void
18376 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
18377 	int code)
18378 {
18379 	dev_info_t	*dip;
18380 
18381 	ASSERT(un != NULL);
18382 	ASSERT(mutex_owned(SD_MUTEX(un)));
18383 	ASSERT(bp != NULL);
18384 
18385 	switch (code) {
18386 	case SD_NO_RETRY_ISSUED:
18387 		/* Command was failed. Someone turned off this target? */
18388 		if (un->un_state != SD_STATE_OFFLINE) {
18389 			/*
18390 			 * Suppress message if we are detaching and
18391 			 * device has been disconnected
18392 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
18393 			 * private interface and not part of the DDI
18394 			 */
18395 			dip = un->un_sd->sd_dev;
18396 			if (!(DEVI_IS_DETACHING(dip) &&
18397 			    DEVI_IS_DEVICE_REMOVED(dip))) {
18398 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18399 				"disk not responding to selection\n");
18400 			}
18401 			New_state(un, SD_STATE_OFFLINE);
18402 		}
18403 		break;
18404 
18405 	case SD_DELAYED_RETRY_ISSUED:
18406 	case SD_IMMEDIATE_RETRY_ISSUED:
18407 	default:
18408 		/* Command was successfully queued for retry */
18409 		sd_print_retry_msg(un, bp, arg, code);
18410 		break;
18411 	}
18412 }
18413 
18414 
18415 /*
18416  *    Function: sd_pkt_reason_cmd_incomplete
18417  *
18418  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
18419  *
18420  *     Context: May be called from interrupt context
18421  */
18422 
18423 static void
18424 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
18425 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18426 {
18427 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
18428 
18429 	ASSERT(un != NULL);
18430 	ASSERT(mutex_owned(SD_MUTEX(un)));
18431 	ASSERT(bp != NULL);
18432 	ASSERT(xp != NULL);
18433 	ASSERT(pktp != NULL);
18434 
18435 	/* Do not do a reset if selection did not complete */
18436 	/* Note: Should this not just check the bit? */
18437 	if (pktp->pkt_state != STATE_GOT_BUS) {
18438 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18439 		sd_reset_target(un, pktp);
18440 	}
18441 
18442 	/*
18443 	 * If the target was not successfully selected, then set
18444 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
18445 	 * with the target, and further retries and/or commands are
18446 	 * likely to take a long time.
18447 	 */
18448 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
18449 		flag |= SD_RETRIES_FAILFAST;
18450 	}
18451 
18452 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18453 
18454 	sd_retry_command(un, bp, flag,
18455 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18456 }
18457 
18458 
18459 
18460 /*
18461  *    Function: sd_pkt_reason_cmd_tran_err
18462  *
18463  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
18464  *
18465  *     Context: May be called from interrupt context
18466  */
18467 
18468 static void
18469 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
18470 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18471 {
18472 	ASSERT(un != NULL);
18473 	ASSERT(mutex_owned(SD_MUTEX(un)));
18474 	ASSERT(bp != NULL);
18475 	ASSERT(xp != NULL);
18476 	ASSERT(pktp != NULL);
18477 
18478 	/*
18479 	 * Do not reset if we got a parity error, or if
18480 	 * selection did not complete.
18481 	 */
18482 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18483 	/* Note: Should this not just check the bit for pkt_state? */
18484 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
18485 	    (pktp->pkt_state != STATE_GOT_BUS)) {
18486 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18487 		sd_reset_target(un, pktp);
18488 	}
18489 
18490 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18491 
18492 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18493 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18494 }
18495 
18496 
18497 
18498 /*
18499  *    Function: sd_pkt_reason_cmd_reset
18500  *
18501  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
18502  *
18503  *     Context: May be called from interrupt context
18504  */
18505 
18506 static void
18507 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
18508 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18509 {
18510 	ASSERT(un != NULL);
18511 	ASSERT(mutex_owned(SD_MUTEX(un)));
18512 	ASSERT(bp != NULL);
18513 	ASSERT(xp != NULL);
18514 	ASSERT(pktp != NULL);
18515 
18516 	/* The target may still be running the command, so try to reset. */
18517 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18518 	sd_reset_target(un, pktp);
18519 
18520 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18521 
18522 	/*
18523 	 * If pkt_reason is CMD_RESET chances are that this pkt got
18524 	 * reset because another target on this bus caused it. The target
18525 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18526 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18527 	 */
18528 
18529 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18530 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18531 }
18532 
18533 
18534 
18535 
18536 /*
18537  *    Function: sd_pkt_reason_cmd_aborted
18538  *
18539  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
18540  *
18541  *     Context: May be called from interrupt context
18542  */
18543 
18544 static void
18545 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
18546 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18547 {
18548 	ASSERT(un != NULL);
18549 	ASSERT(mutex_owned(SD_MUTEX(un)));
18550 	ASSERT(bp != NULL);
18551 	ASSERT(xp != NULL);
18552 	ASSERT(pktp != NULL);
18553 
18554 	/* The target may still be running the command, so try to reset. */
18555 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18556 	sd_reset_target(un, pktp);
18557 
18558 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18559 
18560 	/*
18561 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
18562 	 * aborted because another target on this bus caused it. The target
18563 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18564 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18565 	 */
18566 
18567 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18568 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18569 }
18570 
18571 
18572 
18573 /*
18574  *    Function: sd_pkt_reason_cmd_timeout
18575  *
18576  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
18577  *
18578  *     Context: May be called from interrupt context
18579  */
18580 
18581 static void
18582 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
18583 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18584 {
18585 	ASSERT(un != NULL);
18586 	ASSERT(mutex_owned(SD_MUTEX(un)));
18587 	ASSERT(bp != NULL);
18588 	ASSERT(xp != NULL);
18589 	ASSERT(pktp != NULL);
18590 
18591 
18592 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18593 	sd_reset_target(un, pktp);
18594 
18595 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18596 
18597 	/*
18598 	 * A command timeout indicates that we could not establish
18599 	 * communication with the target, so set SD_RETRIES_FAILFAST
18600 	 * as further retries/commands are likely to take a long time.
18601 	 */
18602 	sd_retry_command(un, bp,
18603 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
18604 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18605 }
18606 
18607 
18608 
18609 /*
18610  *    Function: sd_pkt_reason_cmd_unx_bus_free
18611  *
18612  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
18613  *
18614  *     Context: May be called from interrupt context
18615  */
18616 
18617 static void
18618 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
18619 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18620 {
18621 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
18622 
18623 	ASSERT(un != NULL);
18624 	ASSERT(mutex_owned(SD_MUTEX(un)));
18625 	ASSERT(bp != NULL);
18626 	ASSERT(xp != NULL);
18627 	ASSERT(pktp != NULL);
18628 
18629 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18630 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18631 
18632 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
18633 	    sd_print_retry_msg : NULL;
18634 
18635 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18636 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18637 }
18638 
18639 
18640 /*
18641  *    Function: sd_pkt_reason_cmd_tag_reject
18642  *
18643  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
18644  *
18645  *     Context: May be called from interrupt context
18646  */
18647 
18648 static void
18649 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
18650 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18651 {
18652 	ASSERT(un != NULL);
18653 	ASSERT(mutex_owned(SD_MUTEX(un)));
18654 	ASSERT(bp != NULL);
18655 	ASSERT(xp != NULL);
18656 	ASSERT(pktp != NULL);
18657 
18658 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18659 	pktp->pkt_flags = 0;
18660 	un->un_tagflags = 0;
18661 	if (un->un_f_opt_queueing == TRUE) {
18662 		un->un_throttle = min(un->un_throttle, 3);
18663 	} else {
18664 		un->un_throttle = 1;
18665 	}
18666 	mutex_exit(SD_MUTEX(un));
18667 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
18668 	mutex_enter(SD_MUTEX(un));
18669 
18670 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18671 
18672 	/* Legacy behavior not to check retry counts here. */
18673 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
18674 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18675 }
18676 
18677 
18678 /*
18679  *    Function: sd_pkt_reason_default
18680  *
18681  * Description: Default recovery actions for SCSA pkt_reason values that
18682  *		do not have more explicit recovery actions.
18683  *
18684  *     Context: May be called from interrupt context
18685  */
18686 
18687 static void
18688 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
18689 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18690 {
18691 	ASSERT(un != NULL);
18692 	ASSERT(mutex_owned(SD_MUTEX(un)));
18693 	ASSERT(bp != NULL);
18694 	ASSERT(xp != NULL);
18695 	ASSERT(pktp != NULL);
18696 
18697 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18698 	sd_reset_target(un, pktp);
18699 
18700 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18701 
18702 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18703 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18704 }
18705 
18706 
18707 
18708 /*
18709  *    Function: sd_pkt_status_check_condition
18710  *
18711  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
18712  *
18713  *     Context: May be called from interrupt context
18714  */
18715 
18716 static void
18717 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
18718 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18719 {
18720 	ASSERT(un != NULL);
18721 	ASSERT(mutex_owned(SD_MUTEX(un)));
18722 	ASSERT(bp != NULL);
18723 	ASSERT(xp != NULL);
18724 	ASSERT(pktp != NULL);
18725 
18726 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
18727 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
18728 
18729 	/*
18730 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
18731 	 * command will be retried after the request sense). Otherwise, retry
18732 	 * the command. Note: we are issuing the request sense even though the
18733 	 * retry limit may have been reached for the failed command.
18734 	 */
18735 	if (un->un_f_arq_enabled == FALSE) {
18736 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18737 		    "no ARQ, sending request sense command\n");
18738 		sd_send_request_sense_command(un, bp, pktp);
18739 	} else {
18740 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18741 		    "ARQ,retrying request sense command\n");
18742 #if defined(__i386) || defined(__amd64)
18743 		/*
18744 		 * The SD_RETRY_DELAY value need to be adjusted here
18745 		 * when SD_RETRY_DELAY change in sddef.h
18746 		 */
18747 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18748 			un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
18749 			NULL);
18750 #else
18751 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
18752 		    EIO, SD_RETRY_DELAY, NULL);
18753 #endif
18754 	}
18755 
18756 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
18757 }
18758 
18759 
18760 /*
18761  *    Function: sd_pkt_status_busy
18762  *
18763  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
18764  *
18765  *     Context: May be called from interrupt context
18766  */
18767 
18768 static void
18769 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
18770 	struct scsi_pkt *pktp)
18771 {
18772 	ASSERT(un != NULL);
18773 	ASSERT(mutex_owned(SD_MUTEX(un)));
18774 	ASSERT(bp != NULL);
18775 	ASSERT(xp != NULL);
18776 	ASSERT(pktp != NULL);
18777 
18778 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18779 	    "sd_pkt_status_busy: entry\n");
18780 
18781 	/* If retries are exhausted, just fail the command. */
18782 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
18783 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18784 		    "device busy too long\n");
18785 		sd_return_failed_command(un, bp, EIO);
18786 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18787 		    "sd_pkt_status_busy: exit\n");
18788 		return;
18789 	}
18790 	xp->xb_retry_count++;
18791 
18792 	/*
18793 	 * Try to reset the target. However, we do not want to perform
18794 	 * more than one reset if the device continues to fail. The reset
18795 	 * will be performed when the retry count reaches the reset
18796 	 * threshold.  This threshold should be set such that at least
18797 	 * one retry is issued before the reset is performed.
18798 	 */
18799 	if (xp->xb_retry_count ==
18800 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
18801 		int rval = 0;
18802 		mutex_exit(SD_MUTEX(un));
18803 		if (un->un_f_allow_bus_device_reset == TRUE) {
18804 			/*
18805 			 * First try to reset the LUN; if we cannot then
18806 			 * try to reset the target.
18807 			 */
18808 			if (un->un_f_lun_reset_enabled == TRUE) {
18809 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18810 				    "sd_pkt_status_busy: RESET_LUN\n");
18811 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18812 			}
18813 			if (rval == 0) {
18814 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18815 				    "sd_pkt_status_busy: RESET_TARGET\n");
18816 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18817 			}
18818 		}
18819 		if (rval == 0) {
18820 			/*
18821 			 * If the RESET_LUN and/or RESET_TARGET failed,
18822 			 * try RESET_ALL
18823 			 */
18824 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18825 			    "sd_pkt_status_busy: RESET_ALL\n");
18826 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
18827 		}
18828 		mutex_enter(SD_MUTEX(un));
18829 		if (rval == 0) {
18830 			/*
18831 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
18832 			 * At this point we give up & fail the command.
18833 			 */
18834 			sd_return_failed_command(un, bp, EIO);
18835 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18836 			    "sd_pkt_status_busy: exit (failed cmd)\n");
18837 			return;
18838 		}
18839 	}
18840 
18841 	/*
18842 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
18843 	 * we have already checked the retry counts above.
18844 	 */
18845 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
18846 	    EIO, SD_BSY_TIMEOUT, NULL);
18847 
18848 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18849 	    "sd_pkt_status_busy: exit\n");
18850 }
18851 
18852 
18853 /*
18854  *    Function: sd_pkt_status_reservation_conflict
18855  *
18856  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
18857  *		command status.
18858  *
18859  *     Context: May be called from interrupt context
18860  */
18861 
18862 static void
18863 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
18864 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18865 {
18866 	ASSERT(un != NULL);
18867 	ASSERT(mutex_owned(SD_MUTEX(un)));
18868 	ASSERT(bp != NULL);
18869 	ASSERT(xp != NULL);
18870 	ASSERT(pktp != NULL);
18871 
18872 	/*
18873 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
18874 	 * conflict could be due to various reasons like incorrect keys, not
18875 	 * registered or not reserved etc. So, we return EACCES to the caller.
18876 	 */
18877 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
18878 		int cmd = SD_GET_PKT_OPCODE(pktp);
18879 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
18880 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
18881 			sd_return_failed_command(un, bp, EACCES);
18882 			return;
18883 		}
18884 	}
18885 
18886 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
18887 
18888 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
18889 		if (sd_failfast_enable != 0) {
18890 			/* By definition, we must panic here.... */
18891 			sd_panic_for_res_conflict(un);
18892 			/*NOTREACHED*/
18893 		}
18894 		SD_ERROR(SD_LOG_IO, un,
18895 		    "sd_handle_resv_conflict: Disk Reserved\n");
18896 		sd_return_failed_command(un, bp, EACCES);
18897 		return;
18898 	}
18899 
18900 	/*
18901 	 * 1147670: retry only if sd_retry_on_reservation_conflict
18902 	 * property is set (default is 1). Retries will not succeed
18903 	 * on a disk reserved by another initiator. HA systems
18904 	 * may reset this via sd.conf to avoid these retries.
18905 	 *
18906 	 * Note: The legacy return code for this failure is EIO, however EACCES
18907 	 * seems more appropriate for a reservation conflict.
18908 	 */
18909 	if (sd_retry_on_reservation_conflict == 0) {
18910 		SD_ERROR(SD_LOG_IO, un,
18911 		    "sd_handle_resv_conflict: Device Reserved\n");
18912 		sd_return_failed_command(un, bp, EIO);
18913 		return;
18914 	}
18915 
18916 	/*
18917 	 * Retry the command if we can.
18918 	 *
18919 	 * Note: The legacy return code for this failure is EIO, however EACCES
18920 	 * seems more appropriate for a reservation conflict.
18921 	 */
18922 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18923 	    (clock_t)2, NULL);
18924 }
18925 
18926 
18927 
18928 /*
18929  *    Function: sd_pkt_status_qfull
18930  *
18931  * Description: Handle a QUEUE FULL condition from the target.  This can
18932  *		occur if the HBA does not handle the queue full condition.
18933  *		(Basically this means third-party HBAs as Sun HBAs will
18934  *		handle the queue full condition.)  Note that if there are
18935  *		some commands already in the transport, then the queue full
18936  *		has occurred because the queue for this nexus is actually
18937  *		full. If there are no commands in the transport, then the
18938  *		queue full is resulting from some other initiator or lun
18939  *		consuming all the resources at the target.
18940  *
18941  *     Context: May be called from interrupt context
18942  */
18943 
18944 static void
18945 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
18946 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18947 {
18948 	ASSERT(un != NULL);
18949 	ASSERT(mutex_owned(SD_MUTEX(un)));
18950 	ASSERT(bp != NULL);
18951 	ASSERT(xp != NULL);
18952 	ASSERT(pktp != NULL);
18953 
18954 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18955 	    "sd_pkt_status_qfull: entry\n");
18956 
18957 	/*
18958 	 * Just lower the QFULL throttle and retry the command.  Note that
18959 	 * we do not limit the number of retries here.
18960 	 */
18961 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
18962 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
18963 	    SD_RESTART_TIMEOUT, NULL);
18964 
18965 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18966 	    "sd_pkt_status_qfull: exit\n");
18967 }
18968 
18969 
18970 /*
18971  *    Function: sd_reset_target
18972  *
18973  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
18974  *		RESET_TARGET, or RESET_ALL.
18975  *
18976  *     Context: May be called under interrupt context.
18977  */
18978 
18979 static void
18980 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
18981 {
18982 	int rval = 0;
18983 
18984 	ASSERT(un != NULL);
18985 	ASSERT(mutex_owned(SD_MUTEX(un)));
18986 	ASSERT(pktp != NULL);
18987 
18988 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
18989 
18990 	/*
18991 	 * No need to reset if the transport layer has already done so.
18992 	 */
18993 	if ((pktp->pkt_statistics &
18994 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
18995 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18996 		    "sd_reset_target: no reset\n");
18997 		return;
18998 	}
18999 
19000 	mutex_exit(SD_MUTEX(un));
19001 
19002 	if (un->un_f_allow_bus_device_reset == TRUE) {
19003 		if (un->un_f_lun_reset_enabled == TRUE) {
19004 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19005 			    "sd_reset_target: RESET_LUN\n");
19006 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19007 		}
19008 		if (rval == 0) {
19009 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19010 			    "sd_reset_target: RESET_TARGET\n");
19011 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19012 		}
19013 	}
19014 
19015 	if (rval == 0) {
19016 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19017 		    "sd_reset_target: RESET_ALL\n");
19018 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
19019 	}
19020 
19021 	mutex_enter(SD_MUTEX(un));
19022 
19023 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
19024 }
19025 
19026 
19027 /*
19028  *    Function: sd_media_change_task
19029  *
19030  * Description: Recovery action for CDROM to become available.
19031  *
19032  *     Context: Executes in a taskq() thread context
19033  */
19034 
19035 static void
19036 sd_media_change_task(void *arg)
19037 {
19038 	struct	scsi_pkt	*pktp = arg;
19039 	struct	sd_lun		*un;
19040 	struct	buf		*bp;
19041 	struct	sd_xbuf		*xp;
19042 	int	err		= 0;
19043 	int	retry_count	= 0;
19044 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
19045 	struct	sd_sense_info	si;
19046 
19047 	ASSERT(pktp != NULL);
19048 	bp = (struct buf *)pktp->pkt_private;
19049 	ASSERT(bp != NULL);
19050 	xp = SD_GET_XBUF(bp);
19051 	ASSERT(xp != NULL);
19052 	un = SD_GET_UN(bp);
19053 	ASSERT(un != NULL);
19054 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19055 	ASSERT(un->un_f_monitor_media_state);
19056 
19057 	si.ssi_severity = SCSI_ERR_INFO;
19058 	si.ssi_pfa_flag = FALSE;
19059 
19060 	/*
19061 	 * When a reset is issued on a CDROM, it takes a long time to
19062 	 * recover. First few attempts to read capacity and other things
19063 	 * related to handling unit attention fail (with a ASC 0x4 and
19064 	 * ASCQ 0x1). In that case we want to do enough retries and we want
19065 	 * to limit the retries in other cases of genuine failures like
19066 	 * no media in drive.
19067 	 */
19068 	while (retry_count++ < retry_limit) {
19069 		if ((err = sd_handle_mchange(un)) == 0) {
19070 			break;
19071 		}
19072 		if (err == EAGAIN) {
19073 			retry_limit = SD_UNIT_ATTENTION_RETRY;
19074 		}
19075 		/* Sleep for 0.5 sec. & try again */
19076 		delay(drv_usectohz(500000));
19077 	}
19078 
19079 	/*
19080 	 * Dispatch (retry or fail) the original command here,
19081 	 * along with appropriate console messages....
19082 	 *
19083 	 * Must grab the mutex before calling sd_retry_command,
19084 	 * sd_print_sense_msg and sd_return_failed_command.
19085 	 */
19086 	mutex_enter(SD_MUTEX(un));
19087 	if (err != SD_CMD_SUCCESS) {
19088 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
19089 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
19090 		si.ssi_severity = SCSI_ERR_FATAL;
19091 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
19092 		sd_return_failed_command(un, bp, EIO);
19093 	} else {
19094 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
19095 		    &si, EIO, (clock_t)0, NULL);
19096 	}
19097 	mutex_exit(SD_MUTEX(un));
19098 }
19099 
19100 
19101 
19102 /*
19103  *    Function: sd_handle_mchange
19104  *
19105  * Description: Perform geometry validation & other recovery when CDROM
19106  *		has been removed from drive.
19107  *
19108  * Return Code: 0 for success
19109  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
19110  *		sd_send_scsi_READ_CAPACITY()
19111  *
19112  *     Context: Executes in a taskq() thread context
19113  */
19114 
19115 static int
19116 sd_handle_mchange(struct sd_lun *un)
19117 {
19118 	uint64_t	capacity;
19119 	uint32_t	lbasize;
19120 	int		rval;
19121 
19122 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19123 	ASSERT(un->un_f_monitor_media_state);
19124 
19125 	if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
19126 	    SD_PATH_DIRECT_PRIORITY)) != 0) {
19127 		return (rval);
19128 	}
19129 
19130 	mutex_enter(SD_MUTEX(un));
19131 	sd_update_block_info(un, lbasize, capacity);
19132 
19133 	if (un->un_errstats != NULL) {
19134 		struct	sd_errstats *stp =
19135 		    (struct sd_errstats *)un->un_errstats->ks_data;
19136 		stp->sd_capacity.value.ui64 = (uint64_t)
19137 		    ((uint64_t)un->un_blockcount *
19138 		    (uint64_t)un->un_tgt_blocksize);
19139 	}
19140 
19141 	/*
19142 	 * Note: Maybe let the strategy/partitioning chain worry about getting
19143 	 * valid geometry.
19144 	 */
19145 	un->un_f_geometry_is_valid = FALSE;
19146 	(void) sd_validate_geometry(un, SD_PATH_DIRECT_PRIORITY);
19147 	if (un->un_f_geometry_is_valid == FALSE) {
19148 		mutex_exit(SD_MUTEX(un));
19149 		return (EIO);
19150 	}
19151 
19152 	mutex_exit(SD_MUTEX(un));
19153 
19154 	/*
19155 	 * Try to lock the door
19156 	 */
19157 	return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
19158 	    SD_PATH_DIRECT_PRIORITY));
19159 }
19160 
19161 
19162 /*
19163  *    Function: sd_send_scsi_DOORLOCK
19164  *
19165  * Description: Issue the scsi DOOR LOCK command
19166  *
19167  *   Arguments: un    - pointer to driver soft state (unit) structure for
19168  *			this target.
19169  *		flag  - SD_REMOVAL_ALLOW
19170  *			SD_REMOVAL_PREVENT
19171  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19172  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19173  *			to use the USCSI "direct" chain and bypass the normal
19174  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19175  *			command is issued as part of an error recovery action.
19176  *
19177  * Return Code: 0   - Success
19178  *		errno return code from sd_send_scsi_cmd()
19179  *
19180  *     Context: Can sleep.
19181  */
19182 
19183 static int
19184 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag)
19185 {
19186 	union scsi_cdb		cdb;
19187 	struct uscsi_cmd	ucmd_buf;
19188 	struct scsi_extended_sense	sense_buf;
19189 	int			status;
19190 
19191 	ASSERT(un != NULL);
19192 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19193 
19194 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
19195 
19196 	/* already determined doorlock is not supported, fake success */
19197 	if (un->un_f_doorlock_supported == FALSE) {
19198 		return (0);
19199 	}
19200 
19201 	/*
19202 	 * If we are ejecting and see an SD_REMOVAL_PREVENT
19203 	 * ignore the command so we can complete the eject
19204 	 * operation.
19205 	 */
19206 	if (flag == SD_REMOVAL_PREVENT) {
19207 		mutex_enter(SD_MUTEX(un));
19208 		if (un->un_f_ejecting == TRUE) {
19209 			mutex_exit(SD_MUTEX(un));
19210 			return (EAGAIN);
19211 		}
19212 		mutex_exit(SD_MUTEX(un));
19213 	}
19214 
19215 	bzero(&cdb, sizeof (cdb));
19216 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19217 
19218 	cdb.scc_cmd = SCMD_DOORLOCK;
19219 	cdb.cdb_opaque[4] = (uchar_t)flag;
19220 
19221 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19222 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19223 	ucmd_buf.uscsi_bufaddr	= NULL;
19224 	ucmd_buf.uscsi_buflen	= 0;
19225 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19226 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19227 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19228 	ucmd_buf.uscsi_timeout	= 15;
19229 
19230 	SD_TRACE(SD_LOG_IO, un,
19231 	    "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n");
19232 
19233 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19234 	    UIO_SYSSPACE, path_flag);
19235 
19236 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
19237 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19238 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
19239 		/* fake success and skip subsequent doorlock commands */
19240 		un->un_f_doorlock_supported = FALSE;
19241 		return (0);
19242 	}
19243 
19244 	return (status);
19245 }
19246 
19247 /*
19248  *    Function: sd_send_scsi_READ_CAPACITY
19249  *
19250  * Description: This routine uses the scsi READ CAPACITY command to determine
19251  *		the device capacity in number of blocks and the device native
19252  *		block size. If this function returns a failure, then the
19253  *		values in *capp and *lbap are undefined.  If the capacity
19254  *		returned is 0xffffffff then the lun is too large for a
19255  *		normal READ CAPACITY command and the results of a
19256  *		READ CAPACITY 16 will be used instead.
19257  *
19258  *   Arguments: un   - ptr to soft state struct for the target
19259  *		capp - ptr to unsigned 64-bit variable to receive the
19260  *			capacity value from the command.
19261  *		lbap - ptr to unsigned 32-bit varaible to receive the
19262  *			block size value from the command
19263  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19264  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19265  *			to use the USCSI "direct" chain and bypass the normal
19266  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19267  *			command is issued as part of an error recovery action.
19268  *
19269  * Return Code: 0   - Success
19270  *		EIO - IO error
19271  *		EACCES - Reservation conflict detected
19272  *		EAGAIN - Device is becoming ready
19273  *		errno return code from sd_send_scsi_cmd()
19274  *
19275  *     Context: Can sleep.  Blocks until command completes.
19276  */
19277 
19278 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
19279 
19280 static int
19281 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap,
19282 	int path_flag)
19283 {
19284 	struct	scsi_extended_sense	sense_buf;
19285 	struct	uscsi_cmd	ucmd_buf;
19286 	union	scsi_cdb	cdb;
19287 	uint32_t		*capacity_buf;
19288 	uint64_t		capacity;
19289 	uint32_t		lbasize;
19290 	int			status;
19291 
19292 	ASSERT(un != NULL);
19293 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19294 	ASSERT(capp != NULL);
19295 	ASSERT(lbap != NULL);
19296 
19297 	SD_TRACE(SD_LOG_IO, un,
19298 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19299 
19300 	/*
19301 	 * First send a READ_CAPACITY command to the target.
19302 	 * (This command is mandatory under SCSI-2.)
19303 	 *
19304 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
19305 	 * Medium Indicator bit is cleared.  The address field must be
19306 	 * zero if the PMI bit is zero.
19307 	 */
19308 	bzero(&cdb, sizeof (cdb));
19309 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19310 
19311 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
19312 
19313 	cdb.scc_cmd = SCMD_READ_CAPACITY;
19314 
19315 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19316 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19317 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
19318 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
19319 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19320 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19321 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19322 	ucmd_buf.uscsi_timeout	= 60;
19323 
19324 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19325 	    UIO_SYSSPACE, path_flag);
19326 
19327 	switch (status) {
19328 	case 0:
19329 		/* Return failure if we did not get valid capacity data. */
19330 		if (ucmd_buf.uscsi_resid != 0) {
19331 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19332 			return (EIO);
19333 		}
19334 
19335 		/*
19336 		 * Read capacity and block size from the READ CAPACITY 10 data.
19337 		 * This data may be adjusted later due to device specific
19338 		 * issues.
19339 		 *
19340 		 * According to the SCSI spec, the READ CAPACITY 10
19341 		 * command returns the following:
19342 		 *
19343 		 *  bytes 0-3: Maximum logical block address available.
19344 		 *		(MSB in byte:0 & LSB in byte:3)
19345 		 *
19346 		 *  bytes 4-7: Block length in bytes
19347 		 *		(MSB in byte:4 & LSB in byte:7)
19348 		 *
19349 		 */
19350 		capacity = BE_32(capacity_buf[0]);
19351 		lbasize = BE_32(capacity_buf[1]);
19352 
19353 		/*
19354 		 * Done with capacity_buf
19355 		 */
19356 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19357 
19358 		/*
19359 		 * if the reported capacity is set to all 0xf's, then
19360 		 * this disk is too large and requires SBC-2 commands.
19361 		 * Reissue the request using READ CAPACITY 16.
19362 		 */
19363 		if (capacity == 0xffffffff) {
19364 			status = sd_send_scsi_READ_CAPACITY_16(un, &capacity,
19365 			    &lbasize, path_flag);
19366 			if (status != 0) {
19367 				return (status);
19368 			}
19369 		}
19370 		break;	/* Success! */
19371 	case EIO:
19372 		switch (ucmd_buf.uscsi_status) {
19373 		case STATUS_RESERVATION_CONFLICT:
19374 			status = EACCES;
19375 			break;
19376 		case STATUS_CHECK:
19377 			/*
19378 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19379 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19380 			 */
19381 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19382 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
19383 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
19384 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19385 				return (EAGAIN);
19386 			}
19387 			break;
19388 		default:
19389 			break;
19390 		}
19391 		/* FALLTHRU */
19392 	default:
19393 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19394 		return (status);
19395 	}
19396 
19397 	/*
19398 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
19399 	 * (2352 and 0 are common) so for these devices always force the value
19400 	 * to 2048 as required by the ATAPI specs.
19401 	 */
19402 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
19403 		lbasize = 2048;
19404 	}
19405 
19406 	/*
19407 	 * Get the maximum LBA value from the READ CAPACITY data.
19408 	 * Here we assume that the Partial Medium Indicator (PMI) bit
19409 	 * was cleared when issuing the command. This means that the LBA
19410 	 * returned from the device is the LBA of the last logical block
19411 	 * on the logical unit.  The actual logical block count will be
19412 	 * this value plus one.
19413 	 *
19414 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
19415 	 * so scale the capacity value to reflect this.
19416 	 */
19417 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
19418 
19419 #if defined(__i386) || defined(__amd64)
19420 	/*
19421 	 * Refer to comments related to off-by-1 at the
19422 	 * header of this file.
19423 	 * Treat 1TB disk as (1T - 512)B.
19424 	 */
19425 	if (un->un_f_capacity_adjusted == 1)
19426 	    capacity = DK_MAX_BLOCKS;
19427 #endif
19428 
19429 	/*
19430 	 * Copy the values from the READ CAPACITY command into the space
19431 	 * provided by the caller.
19432 	 */
19433 	*capp = capacity;
19434 	*lbap = lbasize;
19435 
19436 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
19437 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19438 
19439 	/*
19440 	 * Both the lbasize and capacity from the device must be nonzero,
19441 	 * otherwise we assume that the values are not valid and return
19442 	 * failure to the caller. (4203735)
19443 	 */
19444 	if ((capacity == 0) || (lbasize == 0)) {
19445 		return (EIO);
19446 	}
19447 
19448 	return (0);
19449 }
19450 
19451 /*
19452  *    Function: sd_send_scsi_READ_CAPACITY_16
19453  *
19454  * Description: This routine uses the scsi READ CAPACITY 16 command to
19455  *		determine the device capacity in number of blocks and the
19456  *		device native block size.  If this function returns a failure,
19457  *		then the values in *capp and *lbap are undefined.
19458  *		This routine should always be called by
19459  *		sd_send_scsi_READ_CAPACITY which will appy any device
19460  *		specific adjustments to capacity and lbasize.
19461  *
19462  *   Arguments: un   - ptr to soft state struct for the target
19463  *		capp - ptr to unsigned 64-bit variable to receive the
19464  *			capacity value from the command.
19465  *		lbap - ptr to unsigned 32-bit varaible to receive the
19466  *			block size value from the command
19467  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19468  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19469  *			to use the USCSI "direct" chain and bypass the normal
19470  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
19471  *			this command is issued as part of an error recovery
19472  *			action.
19473  *
19474  * Return Code: 0   - Success
19475  *		EIO - IO error
19476  *		EACCES - Reservation conflict detected
19477  *		EAGAIN - Device is becoming ready
19478  *		errno return code from sd_send_scsi_cmd()
19479  *
19480  *     Context: Can sleep.  Blocks until command completes.
19481  */
19482 
19483 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
19484 
19485 static int
19486 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
19487 	uint32_t *lbap, int path_flag)
19488 {
19489 	struct	scsi_extended_sense	sense_buf;
19490 	struct	uscsi_cmd	ucmd_buf;
19491 	union	scsi_cdb	cdb;
19492 	uint64_t		*capacity16_buf;
19493 	uint64_t		capacity;
19494 	uint32_t		lbasize;
19495 	int			status;
19496 
19497 	ASSERT(un != NULL);
19498 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19499 	ASSERT(capp != NULL);
19500 	ASSERT(lbap != NULL);
19501 
19502 	SD_TRACE(SD_LOG_IO, un,
19503 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19504 
19505 	/*
19506 	 * First send a READ_CAPACITY_16 command to the target.
19507 	 *
19508 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
19509 	 * Medium Indicator bit is cleared.  The address field must be
19510 	 * zero if the PMI bit is zero.
19511 	 */
19512 	bzero(&cdb, sizeof (cdb));
19513 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19514 
19515 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
19516 
19517 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19518 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
19519 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
19520 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
19521 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19522 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19523 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19524 	ucmd_buf.uscsi_timeout	= 60;
19525 
19526 	/*
19527 	 * Read Capacity (16) is a Service Action In command.  One
19528 	 * command byte (0x9E) is overloaded for multiple operations,
19529 	 * with the second CDB byte specifying the desired operation
19530 	 */
19531 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
19532 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
19533 
19534 	/*
19535 	 * Fill in allocation length field
19536 	 */
19537 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
19538 
19539 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19540 	    UIO_SYSSPACE, path_flag);
19541 
19542 	switch (status) {
19543 	case 0:
19544 		/* Return failure if we did not get valid capacity data. */
19545 		if (ucmd_buf.uscsi_resid > 20) {
19546 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19547 			return (EIO);
19548 		}
19549 
19550 		/*
19551 		 * Read capacity and block size from the READ CAPACITY 10 data.
19552 		 * This data may be adjusted later due to device specific
19553 		 * issues.
19554 		 *
19555 		 * According to the SCSI spec, the READ CAPACITY 10
19556 		 * command returns the following:
19557 		 *
19558 		 *  bytes 0-7: Maximum logical block address available.
19559 		 *		(MSB in byte:0 & LSB in byte:7)
19560 		 *
19561 		 *  bytes 8-11: Block length in bytes
19562 		 *		(MSB in byte:8 & LSB in byte:11)
19563 		 *
19564 		 */
19565 		capacity = BE_64(capacity16_buf[0]);
19566 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
19567 
19568 		/*
19569 		 * Done with capacity16_buf
19570 		 */
19571 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19572 
19573 		/*
19574 		 * if the reported capacity is set to all 0xf's, then
19575 		 * this disk is too large.  This could only happen with
19576 		 * a device that supports LBAs larger than 64 bits which
19577 		 * are not defined by any current T10 standards.
19578 		 */
19579 		if (capacity == 0xffffffffffffffff) {
19580 			return (EIO);
19581 		}
19582 		break;	/* Success! */
19583 	case EIO:
19584 		switch (ucmd_buf.uscsi_status) {
19585 		case STATUS_RESERVATION_CONFLICT:
19586 			status = EACCES;
19587 			break;
19588 		case STATUS_CHECK:
19589 			/*
19590 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19591 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19592 			 */
19593 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19594 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
19595 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
19596 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19597 				return (EAGAIN);
19598 			}
19599 			break;
19600 		default:
19601 			break;
19602 		}
19603 		/* FALLTHRU */
19604 	default:
19605 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19606 		return (status);
19607 	}
19608 
19609 	*capp = capacity;
19610 	*lbap = lbasize;
19611 
19612 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
19613 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19614 
19615 	return (0);
19616 }
19617 
19618 
19619 /*
19620  *    Function: sd_send_scsi_START_STOP_UNIT
19621  *
19622  * Description: Issue a scsi START STOP UNIT command to the target.
19623  *
19624  *   Arguments: un    - pointer to driver soft state (unit) structure for
19625  *			this target.
19626  *		flag  - SD_TARGET_START
19627  *			SD_TARGET_STOP
19628  *			SD_TARGET_EJECT
19629  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19630  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19631  *			to use the USCSI "direct" chain and bypass the normal
19632  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19633  *			command is issued as part of an error recovery action.
19634  *
19635  * Return Code: 0   - Success
19636  *		EIO - IO error
19637  *		EACCES - Reservation conflict detected
19638  *		ENXIO  - Not Ready, medium not present
19639  *		errno return code from sd_send_scsi_cmd()
19640  *
19641  *     Context: Can sleep.
19642  */
19643 
19644 static int
19645 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag)
19646 {
19647 	struct	scsi_extended_sense	sense_buf;
19648 	union scsi_cdb		cdb;
19649 	struct uscsi_cmd	ucmd_buf;
19650 	int			status;
19651 
19652 	ASSERT(un != NULL);
19653 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19654 
19655 	SD_TRACE(SD_LOG_IO, un,
19656 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
19657 
19658 	if (un->un_f_check_start_stop &&
19659 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
19660 	    (un->un_f_start_stop_supported != TRUE)) {
19661 		return (0);
19662 	}
19663 
19664 	/*
19665 	 * If we are performing an eject operation and
19666 	 * we receive any command other than SD_TARGET_EJECT
19667 	 * we should immediately return.
19668 	 */
19669 	if (flag != SD_TARGET_EJECT) {
19670 		mutex_enter(SD_MUTEX(un));
19671 		if (un->un_f_ejecting == TRUE) {
19672 			mutex_exit(SD_MUTEX(un));
19673 			return (EAGAIN);
19674 		}
19675 		mutex_exit(SD_MUTEX(un));
19676 	}
19677 
19678 	bzero(&cdb, sizeof (cdb));
19679 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19680 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19681 
19682 	cdb.scc_cmd = SCMD_START_STOP;
19683 	cdb.cdb_opaque[4] = (uchar_t)flag;
19684 
19685 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19686 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19687 	ucmd_buf.uscsi_bufaddr	= NULL;
19688 	ucmd_buf.uscsi_buflen	= 0;
19689 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19690 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19691 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19692 	ucmd_buf.uscsi_timeout	= 200;
19693 
19694 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19695 	    UIO_SYSSPACE, path_flag);
19696 
19697 	switch (status) {
19698 	case 0:
19699 		break;	/* Success! */
19700 	case EIO:
19701 		switch (ucmd_buf.uscsi_status) {
19702 		case STATUS_RESERVATION_CONFLICT:
19703 			status = EACCES;
19704 			break;
19705 		case STATUS_CHECK:
19706 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
19707 				switch (scsi_sense_key(
19708 						(uint8_t *)&sense_buf)) {
19709 				case KEY_ILLEGAL_REQUEST:
19710 					status = ENOTSUP;
19711 					break;
19712 				case KEY_NOT_READY:
19713 					if (scsi_sense_asc(
19714 						    (uint8_t *)&sense_buf)
19715 					    == 0x3A) {
19716 						status = ENXIO;
19717 					}
19718 					break;
19719 				default:
19720 					break;
19721 				}
19722 			}
19723 			break;
19724 		default:
19725 			break;
19726 		}
19727 		break;
19728 	default:
19729 		break;
19730 	}
19731 
19732 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
19733 
19734 	return (status);
19735 }
19736 
19737 
19738 /*
19739  *    Function: sd_start_stop_unit_callback
19740  *
19741  * Description: timeout(9F) callback to begin recovery process for a
19742  *		device that has spun down.
19743  *
19744  *   Arguments: arg - pointer to associated softstate struct.
19745  *
19746  *     Context: Executes in a timeout(9F) thread context
19747  */
19748 
19749 static void
19750 sd_start_stop_unit_callback(void *arg)
19751 {
19752 	struct sd_lun	*un = arg;
19753 	ASSERT(un != NULL);
19754 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19755 
19756 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
19757 
19758 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
19759 }
19760 
19761 
19762 /*
19763  *    Function: sd_start_stop_unit_task
19764  *
19765  * Description: Recovery procedure when a drive is spun down.
19766  *
19767  *   Arguments: arg - pointer to associated softstate struct.
19768  *
19769  *     Context: Executes in a taskq() thread context
19770  */
19771 
19772 static void
19773 sd_start_stop_unit_task(void *arg)
19774 {
19775 	struct sd_lun	*un = arg;
19776 
19777 	ASSERT(un != NULL);
19778 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19779 
19780 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
19781 
19782 	/*
19783 	 * Some unformatted drives report not ready error, no need to
19784 	 * restart if format has been initiated.
19785 	 */
19786 	mutex_enter(SD_MUTEX(un));
19787 	if (un->un_f_format_in_progress == TRUE) {
19788 		mutex_exit(SD_MUTEX(un));
19789 		return;
19790 	}
19791 	mutex_exit(SD_MUTEX(un));
19792 
19793 	/*
19794 	 * When a START STOP command is issued from here, it is part of a
19795 	 * failure recovery operation and must be issued before any other
19796 	 * commands, including any pending retries. Thus it must be sent
19797 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
19798 	 * succeeds or not, we will start I/O after the attempt.
19799 	 */
19800 	(void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
19801 	    SD_PATH_DIRECT_PRIORITY);
19802 
19803 	/*
19804 	 * The above call blocks until the START_STOP_UNIT command completes.
19805 	 * Now that it has completed, we must re-try the original IO that
19806 	 * received the NOT READY condition in the first place. There are
19807 	 * three possible conditions here:
19808 	 *
19809 	 *  (1) The original IO is on un_retry_bp.
19810 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
19811 	 *	is NULL.
19812 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
19813 	 *	points to some other, unrelated bp.
19814 	 *
19815 	 * For each case, we must call sd_start_cmds() with un_retry_bp
19816 	 * as the argument. If un_retry_bp is NULL, this will initiate
19817 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
19818 	 * then this will process the bp on un_retry_bp. That may or may not
19819 	 * be the original IO, but that does not matter: the important thing
19820 	 * is to keep the IO processing going at this point.
19821 	 *
19822 	 * Note: This is a very specific error recovery sequence associated
19823 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
19824 	 * serialize the I/O with completion of the spin-up.
19825 	 */
19826 	mutex_enter(SD_MUTEX(un));
19827 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19828 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
19829 	    un, un->un_retry_bp);
19830 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
19831 	sd_start_cmds(un, un->un_retry_bp);
19832 	mutex_exit(SD_MUTEX(un));
19833 
19834 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
19835 }
19836 
19837 
19838 /*
19839  *    Function: sd_send_scsi_INQUIRY
19840  *
19841  * Description: Issue the scsi INQUIRY command.
19842  *
19843  *   Arguments: un
19844  *		bufaddr
19845  *		buflen
19846  *		evpd
19847  *		page_code
19848  *		page_length
19849  *
19850  * Return Code: 0   - Success
19851  *		errno return code from sd_send_scsi_cmd()
19852  *
19853  *     Context: Can sleep. Does not return until command is completed.
19854  */
19855 
19856 static int
19857 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen,
19858 	uchar_t evpd, uchar_t page_code, size_t *residp)
19859 {
19860 	union scsi_cdb		cdb;
19861 	struct uscsi_cmd	ucmd_buf;
19862 	int			status;
19863 
19864 	ASSERT(un != NULL);
19865 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19866 	ASSERT(bufaddr != NULL);
19867 
19868 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
19869 
19870 	bzero(&cdb, sizeof (cdb));
19871 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19872 	bzero(bufaddr, buflen);
19873 
19874 	cdb.scc_cmd = SCMD_INQUIRY;
19875 	cdb.cdb_opaque[1] = evpd;
19876 	cdb.cdb_opaque[2] = page_code;
19877 	FORMG0COUNT(&cdb, buflen);
19878 
19879 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19880 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19881 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19882 	ucmd_buf.uscsi_buflen	= buflen;
19883 	ucmd_buf.uscsi_rqbuf	= NULL;
19884 	ucmd_buf.uscsi_rqlen	= 0;
19885 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
19886 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
19887 
19888 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19889 	    UIO_SYSSPACE, SD_PATH_DIRECT);
19890 
19891 	if ((status == 0) && (residp != NULL)) {
19892 		*residp = ucmd_buf.uscsi_resid;
19893 	}
19894 
19895 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
19896 
19897 	return (status);
19898 }
19899 
19900 
19901 /*
19902  *    Function: sd_send_scsi_TEST_UNIT_READY
19903  *
19904  * Description: Issue the scsi TEST UNIT READY command.
19905  *		This routine can be told to set the flag USCSI_DIAGNOSE to
19906  *		prevent retrying failed commands. Use this when the intent
19907  *		is either to check for device readiness, to clear a Unit
19908  *		Attention, or to clear any outstanding sense data.
19909  *		However under specific conditions the expected behavior
19910  *		is for retries to bring a device ready, so use the flag
19911  *		with caution.
19912  *
19913  *   Arguments: un
19914  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
19915  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
19916  *			0: dont check for media present, do retries on cmd.
19917  *
19918  * Return Code: 0   - Success
19919  *		EIO - IO error
19920  *		EACCES - Reservation conflict detected
19921  *		ENXIO  - Not Ready, medium not present
19922  *		errno return code from sd_send_scsi_cmd()
19923  *
19924  *     Context: Can sleep. Does not return until command is completed.
19925  */
19926 
19927 static int
19928 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag)
19929 {
19930 	struct	scsi_extended_sense	sense_buf;
19931 	union scsi_cdb		cdb;
19932 	struct uscsi_cmd	ucmd_buf;
19933 	int			status;
19934 
19935 	ASSERT(un != NULL);
19936 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19937 
19938 	SD_TRACE(SD_LOG_IO, un,
19939 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
19940 
19941 	/*
19942 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
19943 	 * timeouts when they receive a TUR and the queue is not empty. Check
19944 	 * the configuration flag set during attach (indicating the drive has
19945 	 * this firmware bug) and un_ncmds_in_transport before issuing the
19946 	 * TUR. If there are
19947 	 * pending commands return success, this is a bit arbitrary but is ok
19948 	 * for non-removables (i.e. the eliteI disks) and non-clustering
19949 	 * configurations.
19950 	 */
19951 	if (un->un_f_cfg_tur_check == TRUE) {
19952 		mutex_enter(SD_MUTEX(un));
19953 		if (un->un_ncmds_in_transport != 0) {
19954 			mutex_exit(SD_MUTEX(un));
19955 			return (0);
19956 		}
19957 		mutex_exit(SD_MUTEX(un));
19958 	}
19959 
19960 	bzero(&cdb, sizeof (cdb));
19961 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19962 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19963 
19964 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
19965 
19966 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19967 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19968 	ucmd_buf.uscsi_bufaddr	= NULL;
19969 	ucmd_buf.uscsi_buflen	= 0;
19970 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19971 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19972 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19973 
19974 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
19975 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
19976 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
19977 	}
19978 	ucmd_buf.uscsi_timeout	= 60;
19979 
19980 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19981 	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
19982 	    SD_PATH_STANDARD));
19983 
19984 	switch (status) {
19985 	case 0:
19986 		break;	/* Success! */
19987 	case EIO:
19988 		switch (ucmd_buf.uscsi_status) {
19989 		case STATUS_RESERVATION_CONFLICT:
19990 			status = EACCES;
19991 			break;
19992 		case STATUS_CHECK:
19993 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
19994 				break;
19995 			}
19996 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19997 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
19998 				KEY_NOT_READY) &&
19999 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
20000 				status = ENXIO;
20001 			}
20002 			break;
20003 		default:
20004 			break;
20005 		}
20006 		break;
20007 	default:
20008 		break;
20009 	}
20010 
20011 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
20012 
20013 	return (status);
20014 }
20015 
20016 
20017 /*
20018  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
20019  *
20020  * Description: Issue the scsi PERSISTENT RESERVE IN command.
20021  *
20022  *   Arguments: un
20023  *
20024  * Return Code: 0   - Success
20025  *		EACCES
20026  *		ENOTSUP
20027  *		errno return code from sd_send_scsi_cmd()
20028  *
20029  *     Context: Can sleep. Does not return until command is completed.
20030  */
20031 
20032 static int
20033 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t  usr_cmd,
20034 	uint16_t data_len, uchar_t *data_bufp)
20035 {
20036 	struct scsi_extended_sense	sense_buf;
20037 	union scsi_cdb		cdb;
20038 	struct uscsi_cmd	ucmd_buf;
20039 	int			status;
20040 	int			no_caller_buf = FALSE;
20041 
20042 	ASSERT(un != NULL);
20043 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20044 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
20045 
20046 	SD_TRACE(SD_LOG_IO, un,
20047 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
20048 
20049 	bzero(&cdb, sizeof (cdb));
20050 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20051 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20052 	if (data_bufp == NULL) {
20053 		/* Allocate a default buf if the caller did not give one */
20054 		ASSERT(data_len == 0);
20055 		data_len  = MHIOC_RESV_KEY_SIZE;
20056 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
20057 		no_caller_buf = TRUE;
20058 	}
20059 
20060 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
20061 	cdb.cdb_opaque[1] = usr_cmd;
20062 	FORMG1COUNT(&cdb, data_len);
20063 
20064 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20065 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20066 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
20067 	ucmd_buf.uscsi_buflen	= data_len;
20068 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20069 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20070 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20071 	ucmd_buf.uscsi_timeout	= 60;
20072 
20073 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
20074 	    UIO_SYSSPACE, SD_PATH_STANDARD);
20075 
20076 	switch (status) {
20077 	case 0:
20078 		break;	/* Success! */
20079 	case EIO:
20080 		switch (ucmd_buf.uscsi_status) {
20081 		case STATUS_RESERVATION_CONFLICT:
20082 			status = EACCES;
20083 			break;
20084 		case STATUS_CHECK:
20085 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20086 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20087 				KEY_ILLEGAL_REQUEST)) {
20088 				status = ENOTSUP;
20089 			}
20090 			break;
20091 		default:
20092 			break;
20093 		}
20094 		break;
20095 	default:
20096 		break;
20097 	}
20098 
20099 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
20100 
20101 	if (no_caller_buf == TRUE) {
20102 		kmem_free(data_bufp, data_len);
20103 	}
20104 
20105 	return (status);
20106 }
20107 
20108 
20109 /*
20110  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
20111  *
20112  * Description: This routine is the driver entry point for handling CD-ROM
20113  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
20114  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
20115  *		device.
20116  *
20117  *   Arguments: un  -   Pointer to soft state struct for the target.
20118  *		usr_cmd SCSI-3 reservation facility command (one of
20119  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
20120  *			SD_SCSI3_PREEMPTANDABORT)
20121  *		usr_bufp - user provided pointer register, reserve descriptor or
20122  *			preempt and abort structure (mhioc_register_t,
20123  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
20124  *
20125  * Return Code: 0   - Success
20126  *		EACCES
20127  *		ENOTSUP
20128  *		errno return code from sd_send_scsi_cmd()
20129  *
20130  *     Context: Can sleep. Does not return until command is completed.
20131  */
20132 
20133 static int
20134 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd,
20135 	uchar_t	*usr_bufp)
20136 {
20137 	struct scsi_extended_sense	sense_buf;
20138 	union scsi_cdb		cdb;
20139 	struct uscsi_cmd	ucmd_buf;
20140 	int			status;
20141 	uchar_t			data_len = sizeof (sd_prout_t);
20142 	sd_prout_t		*prp;
20143 
20144 	ASSERT(un != NULL);
20145 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20146 	ASSERT(data_len == 24);	/* required by scsi spec */
20147 
20148 	SD_TRACE(SD_LOG_IO, un,
20149 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
20150 
20151 	if (usr_bufp == NULL) {
20152 		return (EINVAL);
20153 	}
20154 
20155 	bzero(&cdb, sizeof (cdb));
20156 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20157 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20158 	prp = kmem_zalloc(data_len, KM_SLEEP);
20159 
20160 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
20161 	cdb.cdb_opaque[1] = usr_cmd;
20162 	FORMG1COUNT(&cdb, data_len);
20163 
20164 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20165 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20166 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
20167 	ucmd_buf.uscsi_buflen	= data_len;
20168 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20169 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20170 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20171 	ucmd_buf.uscsi_timeout	= 60;
20172 
20173 	switch (usr_cmd) {
20174 	case SD_SCSI3_REGISTER: {
20175 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
20176 
20177 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20178 		bcopy(ptr->newkey.key, prp->service_key,
20179 		    MHIOC_RESV_KEY_SIZE);
20180 		prp->aptpl = ptr->aptpl;
20181 		break;
20182 	}
20183 	case SD_SCSI3_RESERVE:
20184 	case SD_SCSI3_RELEASE: {
20185 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
20186 
20187 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20188 		prp->scope_address = BE_32(ptr->scope_specific_addr);
20189 		cdb.cdb_opaque[2] = ptr->type;
20190 		break;
20191 	}
20192 	case SD_SCSI3_PREEMPTANDABORT: {
20193 		mhioc_preemptandabort_t *ptr =
20194 		    (mhioc_preemptandabort_t *)usr_bufp;
20195 
20196 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20197 		bcopy(ptr->victim_key.key, prp->service_key,
20198 		    MHIOC_RESV_KEY_SIZE);
20199 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
20200 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
20201 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
20202 		break;
20203 	}
20204 	case SD_SCSI3_REGISTERANDIGNOREKEY:
20205 	{
20206 		mhioc_registerandignorekey_t *ptr;
20207 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
20208 		bcopy(ptr->newkey.key,
20209 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
20210 		prp->aptpl = ptr->aptpl;
20211 		break;
20212 	}
20213 	default:
20214 		ASSERT(FALSE);
20215 		break;
20216 	}
20217 
20218 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
20219 	    UIO_SYSSPACE, SD_PATH_STANDARD);
20220 
20221 	switch (status) {
20222 	case 0:
20223 		break;	/* Success! */
20224 	case EIO:
20225 		switch (ucmd_buf.uscsi_status) {
20226 		case STATUS_RESERVATION_CONFLICT:
20227 			status = EACCES;
20228 			break;
20229 		case STATUS_CHECK:
20230 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20231 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20232 				KEY_ILLEGAL_REQUEST)) {
20233 				status = ENOTSUP;
20234 			}
20235 			break;
20236 		default:
20237 			break;
20238 		}
20239 		break;
20240 	default:
20241 		break;
20242 	}
20243 
20244 	kmem_free(prp, data_len);
20245 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
20246 	return (status);
20247 }
20248 
20249 
20250 /*
20251  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
20252  *
20253  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
20254  *
20255  *   Arguments: un - pointer to the target's soft state struct
20256  *
20257  * Return Code: 0 - success
20258  *		errno-type error code
20259  *
20260  *     Context: kernel thread context only.
20261  */
20262 
20263 static int
20264 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
20265 {
20266 	struct sd_uscsi_info	*uip;
20267 	struct uscsi_cmd	*uscmd;
20268 	union scsi_cdb		*cdb;
20269 	struct buf		*bp;
20270 	int			rval = 0;
20271 
20272 	SD_TRACE(SD_LOG_IO, un,
20273 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
20274 
20275 	ASSERT(un != NULL);
20276 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20277 
20278 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
20279 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
20280 
20281 	/*
20282 	 * First get some memory for the uscsi_cmd struct and cdb
20283 	 * and initialize for SYNCHRONIZE_CACHE cmd.
20284 	 */
20285 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
20286 	uscmd->uscsi_cdblen = CDB_GROUP1;
20287 	uscmd->uscsi_cdb = (caddr_t)cdb;
20288 	uscmd->uscsi_bufaddr = NULL;
20289 	uscmd->uscsi_buflen = 0;
20290 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
20291 	uscmd->uscsi_rqlen = SENSE_LENGTH;
20292 	uscmd->uscsi_rqresid = SENSE_LENGTH;
20293 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
20294 	uscmd->uscsi_timeout = sd_io_time;
20295 
20296 	/*
20297 	 * Allocate an sd_uscsi_info struct and fill it with the info
20298 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
20299 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
20300 	 * since we allocate the buf here in this function, we do not
20301 	 * need to preserve the prior contents of b_private.
20302 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
20303 	 */
20304 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
20305 	uip->ui_flags = SD_PATH_DIRECT;
20306 	uip->ui_cmdp  = uscmd;
20307 
20308 	bp = getrbuf(KM_SLEEP);
20309 	bp->b_private = uip;
20310 
20311 	/*
20312 	 * Setup buffer to carry uscsi request.
20313 	 */
20314 	bp->b_flags  = B_BUSY;
20315 	bp->b_bcount = 0;
20316 	bp->b_blkno  = 0;
20317 
20318 	if (dkc != NULL) {
20319 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
20320 		uip->ui_dkc = *dkc;
20321 	}
20322 
20323 	bp->b_edev = SD_GET_DEV(un);
20324 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
20325 
20326 	(void) sd_uscsi_strategy(bp);
20327 
20328 	/*
20329 	 * If synchronous request, wait for completion
20330 	 * If async just return and let b_iodone callback
20331 	 * cleanup.
20332 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
20333 	 * but it was also incremented in sd_uscsi_strategy(), so
20334 	 * we should be ok.
20335 	 */
20336 	if (dkc == NULL) {
20337 		(void) biowait(bp);
20338 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
20339 	}
20340 
20341 	return (rval);
20342 }
20343 
20344 
20345 static int
20346 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
20347 {
20348 	struct sd_uscsi_info *uip;
20349 	struct uscsi_cmd *uscmd;
20350 	uint8_t *sense_buf;
20351 	struct sd_lun *un;
20352 	int status;
20353 
20354 	uip = (struct sd_uscsi_info *)(bp->b_private);
20355 	ASSERT(uip != NULL);
20356 
20357 	uscmd = uip->ui_cmdp;
20358 	ASSERT(uscmd != NULL);
20359 
20360 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
20361 	ASSERT(sense_buf != NULL);
20362 
20363 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
20364 	ASSERT(un != NULL);
20365 
20366 	status = geterror(bp);
20367 	switch (status) {
20368 	case 0:
20369 		break;	/* Success! */
20370 	case EIO:
20371 		switch (uscmd->uscsi_status) {
20372 		case STATUS_RESERVATION_CONFLICT:
20373 			/* Ignore reservation conflict */
20374 			status = 0;
20375 			goto done;
20376 
20377 		case STATUS_CHECK:
20378 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
20379 			    (scsi_sense_key(sense_buf) ==
20380 				KEY_ILLEGAL_REQUEST)) {
20381 				/* Ignore Illegal Request error */
20382 				mutex_enter(SD_MUTEX(un));
20383 				un->un_f_sync_cache_supported = FALSE;
20384 				mutex_exit(SD_MUTEX(un));
20385 				status = ENOTSUP;
20386 				goto done;
20387 			}
20388 			break;
20389 		default:
20390 			break;
20391 		}
20392 		/* FALLTHRU */
20393 	default:
20394 		/*
20395 		 * Don't log an error message if this device
20396 		 * has removable media.
20397 		 */
20398 		if (!un->un_f_has_removable_media) {
20399 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
20400 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
20401 		}
20402 		break;
20403 	}
20404 
20405 done:
20406 	if (uip->ui_dkc.dkc_callback != NULL) {
20407 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
20408 	}
20409 
20410 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
20411 	freerbuf(bp);
20412 	kmem_free(uip, sizeof (struct sd_uscsi_info));
20413 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
20414 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
20415 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
20416 
20417 	return (status);
20418 }
20419 
20420 
20421 /*
20422  *    Function: sd_send_scsi_GET_CONFIGURATION
20423  *
20424  * Description: Issues the get configuration command to the device.
20425  *		Called from sd_check_for_writable_cd & sd_get_media_info
20426  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
20427  *   Arguments: un
20428  *		ucmdbuf
20429  *		rqbuf
20430  *		rqbuflen
20431  *		bufaddr
20432  *		buflen
20433  *
20434  * Return Code: 0   - Success
20435  *		errno return code from sd_send_scsi_cmd()
20436  *
20437  *     Context: Can sleep. Does not return until command is completed.
20438  *
20439  */
20440 
20441 static int
20442 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf,
20443 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen)
20444 {
20445 	char	cdb[CDB_GROUP1];
20446 	int	status;
20447 
20448 	ASSERT(un != NULL);
20449 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20450 	ASSERT(bufaddr != NULL);
20451 	ASSERT(ucmdbuf != NULL);
20452 	ASSERT(rqbuf != NULL);
20453 
20454 	SD_TRACE(SD_LOG_IO, un,
20455 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
20456 
20457 	bzero(cdb, sizeof (cdb));
20458 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20459 	bzero(rqbuf, rqbuflen);
20460 	bzero(bufaddr, buflen);
20461 
20462 	/*
20463 	 * Set up cdb field for the get configuration command.
20464 	 */
20465 	cdb[0] = SCMD_GET_CONFIGURATION;
20466 	cdb[1] = 0x02;  /* Requested Type */
20467 	cdb[8] = SD_PROFILE_HEADER_LEN;
20468 	ucmdbuf->uscsi_cdb = cdb;
20469 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20470 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20471 	ucmdbuf->uscsi_buflen = buflen;
20472 	ucmdbuf->uscsi_timeout = sd_io_time;
20473 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20474 	ucmdbuf->uscsi_rqlen = rqbuflen;
20475 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20476 
20477 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL,
20478 	    UIO_SYSSPACE, SD_PATH_STANDARD);
20479 
20480 	switch (status) {
20481 	case 0:
20482 		break;  /* Success! */
20483 	case EIO:
20484 		switch (ucmdbuf->uscsi_status) {
20485 		case STATUS_RESERVATION_CONFLICT:
20486 			status = EACCES;
20487 			break;
20488 		default:
20489 			break;
20490 		}
20491 		break;
20492 	default:
20493 		break;
20494 	}
20495 
20496 	if (status == 0) {
20497 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20498 		    "sd_send_scsi_GET_CONFIGURATION: data",
20499 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20500 	}
20501 
20502 	SD_TRACE(SD_LOG_IO, un,
20503 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
20504 
20505 	return (status);
20506 }
20507 
20508 /*
20509  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
20510  *
20511  * Description: Issues the get configuration command to the device to
20512  *              retrieve a specfic feature. Called from
20513  *		sd_check_for_writable_cd & sd_set_mmc_caps.
20514  *   Arguments: un
20515  *              ucmdbuf
20516  *              rqbuf
20517  *              rqbuflen
20518  *              bufaddr
20519  *              buflen
20520  *		feature
20521  *
20522  * Return Code: 0   - Success
20523  *              errno return code from sd_send_scsi_cmd()
20524  *
20525  *     Context: Can sleep. Does not return until command is completed.
20526  *
20527  */
20528 static int
20529 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
20530 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
20531 	uchar_t *bufaddr, uint_t buflen, char feature)
20532 {
20533 	char    cdb[CDB_GROUP1];
20534 	int	status;
20535 
20536 	ASSERT(un != NULL);
20537 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20538 	ASSERT(bufaddr != NULL);
20539 	ASSERT(ucmdbuf != NULL);
20540 	ASSERT(rqbuf != NULL);
20541 
20542 	SD_TRACE(SD_LOG_IO, un,
20543 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
20544 
20545 	bzero(cdb, sizeof (cdb));
20546 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20547 	bzero(rqbuf, rqbuflen);
20548 	bzero(bufaddr, buflen);
20549 
20550 	/*
20551 	 * Set up cdb field for the get configuration command.
20552 	 */
20553 	cdb[0] = SCMD_GET_CONFIGURATION;
20554 	cdb[1] = 0x02;  /* Requested Type */
20555 	cdb[3] = feature;
20556 	cdb[8] = buflen;
20557 	ucmdbuf->uscsi_cdb = cdb;
20558 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20559 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20560 	ucmdbuf->uscsi_buflen = buflen;
20561 	ucmdbuf->uscsi_timeout = sd_io_time;
20562 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20563 	ucmdbuf->uscsi_rqlen = rqbuflen;
20564 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20565 
20566 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL,
20567 	    UIO_SYSSPACE, SD_PATH_STANDARD);
20568 
20569 	switch (status) {
20570 	case 0:
20571 		break;  /* Success! */
20572 	case EIO:
20573 		switch (ucmdbuf->uscsi_status) {
20574 		case STATUS_RESERVATION_CONFLICT:
20575 			status = EACCES;
20576 			break;
20577 		default:
20578 			break;
20579 		}
20580 		break;
20581 	default:
20582 		break;
20583 	}
20584 
20585 	if (status == 0) {
20586 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20587 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
20588 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20589 	}
20590 
20591 	SD_TRACE(SD_LOG_IO, un,
20592 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
20593 
20594 	return (status);
20595 }
20596 
20597 
20598 /*
20599  *    Function: sd_send_scsi_MODE_SENSE
20600  *
20601  * Description: Utility function for issuing a scsi MODE SENSE command.
20602  *		Note: This routine uses a consistent implementation for Group0,
20603  *		Group1, and Group2 commands across all platforms. ATAPI devices
20604  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20605  *
20606  *   Arguments: un - pointer to the softstate struct for the target.
20607  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20608  *			  CDB_GROUP[1|2] (10 byte).
20609  *		bufaddr - buffer for page data retrieved from the target.
20610  *		buflen - size of page to be retrieved.
20611  *		page_code - page code of data to be retrieved from the target.
20612  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20613  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20614  *			to use the USCSI "direct" chain and bypass the normal
20615  *			command waitq.
20616  *
20617  * Return Code: 0   - Success
20618  *		errno return code from sd_send_scsi_cmd()
20619  *
20620  *     Context: Can sleep. Does not return until command is completed.
20621  */
20622 
20623 static int
20624 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
20625 	size_t buflen,  uchar_t page_code, int path_flag)
20626 {
20627 	struct	scsi_extended_sense	sense_buf;
20628 	union scsi_cdb		cdb;
20629 	struct uscsi_cmd	ucmd_buf;
20630 	int			status;
20631 	int			headlen;
20632 
20633 	ASSERT(un != NULL);
20634 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20635 	ASSERT(bufaddr != NULL);
20636 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20637 	    (cdbsize == CDB_GROUP2));
20638 
20639 	SD_TRACE(SD_LOG_IO, un,
20640 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
20641 
20642 	bzero(&cdb, sizeof (cdb));
20643 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20644 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20645 	bzero(bufaddr, buflen);
20646 
20647 	if (cdbsize == CDB_GROUP0) {
20648 		cdb.scc_cmd = SCMD_MODE_SENSE;
20649 		cdb.cdb_opaque[2] = page_code;
20650 		FORMG0COUNT(&cdb, buflen);
20651 		headlen = MODE_HEADER_LENGTH;
20652 	} else {
20653 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
20654 		cdb.cdb_opaque[2] = page_code;
20655 		FORMG1COUNT(&cdb, buflen);
20656 		headlen = MODE_HEADER_LENGTH_GRP2;
20657 	}
20658 
20659 	ASSERT(headlen <= buflen);
20660 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20661 
20662 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20663 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20664 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20665 	ucmd_buf.uscsi_buflen	= buflen;
20666 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20667 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20668 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20669 	ucmd_buf.uscsi_timeout	= 60;
20670 
20671 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
20672 	    UIO_SYSSPACE, path_flag);
20673 
20674 	switch (status) {
20675 	case 0:
20676 		/*
20677 		 * sr_check_wp() uses 0x3f page code and check the header of
20678 		 * mode page to determine if target device is write-protected.
20679 		 * But some USB devices return 0 bytes for 0x3f page code. For
20680 		 * this case, make sure that mode page header is returned at
20681 		 * least.
20682 		 */
20683 		if (buflen - ucmd_buf.uscsi_resid <  headlen)
20684 			status = EIO;
20685 		break;	/* Success! */
20686 	case EIO:
20687 		switch (ucmd_buf.uscsi_status) {
20688 		case STATUS_RESERVATION_CONFLICT:
20689 			status = EACCES;
20690 			break;
20691 		default:
20692 			break;
20693 		}
20694 		break;
20695 	default:
20696 		break;
20697 	}
20698 
20699 	if (status == 0) {
20700 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
20701 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20702 	}
20703 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
20704 
20705 	return (status);
20706 }
20707 
20708 
20709 /*
20710  *    Function: sd_send_scsi_MODE_SELECT
20711  *
20712  * Description: Utility function for issuing a scsi MODE SELECT command.
20713  *		Note: This routine uses a consistent implementation for Group0,
20714  *		Group1, and Group2 commands across all platforms. ATAPI devices
20715  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20716  *
20717  *   Arguments: un - pointer to the softstate struct for the target.
20718  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20719  *			  CDB_GROUP[1|2] (10 byte).
20720  *		bufaddr - buffer for page data retrieved from the target.
20721  *		buflen - size of page to be retrieved.
20722  *		save_page - boolean to determin if SP bit should be set.
20723  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20724  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20725  *			to use the USCSI "direct" chain and bypass the normal
20726  *			command waitq.
20727  *
20728  * Return Code: 0   - Success
20729  *		errno return code from sd_send_scsi_cmd()
20730  *
20731  *     Context: Can sleep. Does not return until command is completed.
20732  */
20733 
20734 static int
20735 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
20736 	size_t buflen,  uchar_t save_page, int path_flag)
20737 {
20738 	struct	scsi_extended_sense	sense_buf;
20739 	union scsi_cdb		cdb;
20740 	struct uscsi_cmd	ucmd_buf;
20741 	int			status;
20742 
20743 	ASSERT(un != NULL);
20744 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20745 	ASSERT(bufaddr != NULL);
20746 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20747 	    (cdbsize == CDB_GROUP2));
20748 
20749 	SD_TRACE(SD_LOG_IO, un,
20750 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
20751 
20752 	bzero(&cdb, sizeof (cdb));
20753 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20754 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20755 
20756 	/* Set the PF bit for many third party drives */
20757 	cdb.cdb_opaque[1] = 0x10;
20758 
20759 	/* Set the savepage(SP) bit if given */
20760 	if (save_page == SD_SAVE_PAGE) {
20761 		cdb.cdb_opaque[1] |= 0x01;
20762 	}
20763 
20764 	if (cdbsize == CDB_GROUP0) {
20765 		cdb.scc_cmd = SCMD_MODE_SELECT;
20766 		FORMG0COUNT(&cdb, buflen);
20767 	} else {
20768 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
20769 		FORMG1COUNT(&cdb, buflen);
20770 	}
20771 
20772 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20773 
20774 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20775 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20776 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20777 	ucmd_buf.uscsi_buflen	= buflen;
20778 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20779 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20780 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20781 	ucmd_buf.uscsi_timeout	= 60;
20782 
20783 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
20784 	    UIO_SYSSPACE, path_flag);
20785 
20786 	switch (status) {
20787 	case 0:
20788 		break;	/* Success! */
20789 	case EIO:
20790 		switch (ucmd_buf.uscsi_status) {
20791 		case STATUS_RESERVATION_CONFLICT:
20792 			status = EACCES;
20793 			break;
20794 		default:
20795 			break;
20796 		}
20797 		break;
20798 	default:
20799 		break;
20800 	}
20801 
20802 	if (status == 0) {
20803 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
20804 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20805 	}
20806 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
20807 
20808 	return (status);
20809 }
20810 
20811 
20812 /*
20813  *    Function: sd_send_scsi_RDWR
20814  *
20815  * Description: Issue a scsi READ or WRITE command with the given parameters.
20816  *
20817  *   Arguments: un:      Pointer to the sd_lun struct for the target.
20818  *		cmd:	 SCMD_READ or SCMD_WRITE
20819  *		bufaddr: Address of caller's buffer to receive the RDWR data
20820  *		buflen:  Length of caller's buffer receive the RDWR data.
20821  *		start_block: Block number for the start of the RDWR operation.
20822  *			 (Assumes target-native block size.)
20823  *		residp:  Pointer to variable to receive the redisual of the
20824  *			 RDWR operation (may be NULL of no residual requested).
20825  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20826  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20827  *			to use the USCSI "direct" chain and bypass the normal
20828  *			command waitq.
20829  *
20830  * Return Code: 0   - Success
20831  *		errno return code from sd_send_scsi_cmd()
20832  *
20833  *     Context: Can sleep. Does not return until command is completed.
20834  */
20835 
20836 static int
20837 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
20838 	size_t buflen, daddr_t start_block, int path_flag)
20839 {
20840 	struct	scsi_extended_sense	sense_buf;
20841 	union scsi_cdb		cdb;
20842 	struct uscsi_cmd	ucmd_buf;
20843 	uint32_t		block_count;
20844 	int			status;
20845 	int			cdbsize;
20846 	uchar_t			flag;
20847 
20848 	ASSERT(un != NULL);
20849 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20850 	ASSERT(bufaddr != NULL);
20851 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
20852 
20853 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
20854 
20855 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
20856 		return (EINVAL);
20857 	}
20858 
20859 	mutex_enter(SD_MUTEX(un));
20860 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
20861 	mutex_exit(SD_MUTEX(un));
20862 
20863 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
20864 
20865 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
20866 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
20867 	    bufaddr, buflen, start_block, block_count);
20868 
20869 	bzero(&cdb, sizeof (cdb));
20870 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20871 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20872 
20873 	/* Compute CDB size to use */
20874 	if (start_block > 0xffffffff)
20875 		cdbsize = CDB_GROUP4;
20876 	else if ((start_block & 0xFFE00000) ||
20877 	    (un->un_f_cfg_is_atapi == TRUE))
20878 		cdbsize = CDB_GROUP1;
20879 	else
20880 		cdbsize = CDB_GROUP0;
20881 
20882 	switch (cdbsize) {
20883 	case CDB_GROUP0:	/* 6-byte CDBs */
20884 		cdb.scc_cmd = cmd;
20885 		FORMG0ADDR(&cdb, start_block);
20886 		FORMG0COUNT(&cdb, block_count);
20887 		break;
20888 	case CDB_GROUP1:	/* 10-byte CDBs */
20889 		cdb.scc_cmd = cmd | SCMD_GROUP1;
20890 		FORMG1ADDR(&cdb, start_block);
20891 		FORMG1COUNT(&cdb, block_count);
20892 		break;
20893 	case CDB_GROUP4:	/* 16-byte CDBs */
20894 		cdb.scc_cmd = cmd | SCMD_GROUP4;
20895 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
20896 		FORMG4COUNT(&cdb, block_count);
20897 		break;
20898 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
20899 	default:
20900 		/* All others reserved */
20901 		return (EINVAL);
20902 	}
20903 
20904 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
20905 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20906 
20907 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20908 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20909 	ucmd_buf.uscsi_bufaddr	= bufaddr;
20910 	ucmd_buf.uscsi_buflen	= buflen;
20911 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20912 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20913 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
20914 	ucmd_buf.uscsi_timeout	= 60;
20915 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
20916 	    UIO_SYSSPACE, path_flag);
20917 	switch (status) {
20918 	case 0:
20919 		break;	/* Success! */
20920 	case EIO:
20921 		switch (ucmd_buf.uscsi_status) {
20922 		case STATUS_RESERVATION_CONFLICT:
20923 			status = EACCES;
20924 			break;
20925 		default:
20926 			break;
20927 		}
20928 		break;
20929 	default:
20930 		break;
20931 	}
20932 
20933 	if (status == 0) {
20934 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
20935 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20936 	}
20937 
20938 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
20939 
20940 	return (status);
20941 }
20942 
20943 
20944 /*
20945  *    Function: sd_send_scsi_LOG_SENSE
20946  *
20947  * Description: Issue a scsi LOG_SENSE command with the given parameters.
20948  *
20949  *   Arguments: un:      Pointer to the sd_lun struct for the target.
20950  *
20951  * Return Code: 0   - Success
20952  *		errno return code from sd_send_scsi_cmd()
20953  *
20954  *     Context: Can sleep. Does not return until command is completed.
20955  */
20956 
20957 static int
20958 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen,
20959 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
20960 	int path_flag)
20961 
20962 {
20963 	struct	scsi_extended_sense	sense_buf;
20964 	union scsi_cdb		cdb;
20965 	struct uscsi_cmd	ucmd_buf;
20966 	int			status;
20967 
20968 	ASSERT(un != NULL);
20969 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20970 
20971 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
20972 
20973 	bzero(&cdb, sizeof (cdb));
20974 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20975 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20976 
20977 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
20978 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
20979 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
20980 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
20981 	FORMG1COUNT(&cdb, buflen);
20982 
20983 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20984 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20985 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20986 	ucmd_buf.uscsi_buflen	= buflen;
20987 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20988 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20989 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20990 	ucmd_buf.uscsi_timeout	= 60;
20991 
20992 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
20993 	    UIO_SYSSPACE, path_flag);
20994 
20995 	switch (status) {
20996 	case 0:
20997 		break;
20998 	case EIO:
20999 		switch (ucmd_buf.uscsi_status) {
21000 		case STATUS_RESERVATION_CONFLICT:
21001 			status = EACCES;
21002 			break;
21003 		case STATUS_CHECK:
21004 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
21005 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
21006 				KEY_ILLEGAL_REQUEST) &&
21007 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
21008 				/*
21009 				 * ASC 0x24: INVALID FIELD IN CDB
21010 				 */
21011 				switch (page_code) {
21012 				case START_STOP_CYCLE_PAGE:
21013 					/*
21014 					 * The start stop cycle counter is
21015 					 * implemented as page 0x31 in earlier
21016 					 * generation disks. In new generation
21017 					 * disks the start stop cycle counter is
21018 					 * implemented as page 0xE. To properly
21019 					 * handle this case if an attempt for
21020 					 * log page 0xE is made and fails we
21021 					 * will try again using page 0x31.
21022 					 *
21023 					 * Network storage BU committed to
21024 					 * maintain the page 0x31 for this
21025 					 * purpose and will not have any other
21026 					 * page implemented with page code 0x31
21027 					 * until all disks transition to the
21028 					 * standard page.
21029 					 */
21030 					mutex_enter(SD_MUTEX(un));
21031 					un->un_start_stop_cycle_page =
21032 					    START_STOP_CYCLE_VU_PAGE;
21033 					cdb.cdb_opaque[2] =
21034 					    (char)(page_control << 6) |
21035 					    un->un_start_stop_cycle_page;
21036 					mutex_exit(SD_MUTEX(un));
21037 					status = sd_send_scsi_cmd(
21038 					    SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
21039 					    UIO_SYSSPACE, path_flag);
21040 
21041 					break;
21042 				case TEMPERATURE_PAGE:
21043 					status = ENOTTY;
21044 					break;
21045 				default:
21046 					break;
21047 				}
21048 			}
21049 			break;
21050 		default:
21051 			break;
21052 		}
21053 		break;
21054 	default:
21055 		break;
21056 	}
21057 
21058 	if (status == 0) {
21059 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
21060 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21061 	}
21062 
21063 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
21064 
21065 	return (status);
21066 }
21067 
21068 
21069 /*
21070  *    Function: sdioctl
21071  *
21072  * Description: Driver's ioctl(9e) entry point function.
21073  *
21074  *   Arguments: dev     - device number
21075  *		cmd     - ioctl operation to be performed
21076  *		arg     - user argument, contains data to be set or reference
21077  *			  parameter for get
21078  *		flag    - bit flag, indicating open settings, 32/64 bit type
21079  *		cred_p  - user credential pointer
21080  *		rval_p  - calling process return value (OPT)
21081  *
21082  * Return Code: EINVAL
21083  *		ENOTTY
21084  *		ENXIO
21085  *		EIO
21086  *		EFAULT
21087  *		ENOTSUP
21088  *		EPERM
21089  *
21090  *     Context: Called from the device switch at normal priority.
21091  */
21092 
21093 static int
21094 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
21095 {
21096 	struct sd_lun	*un = NULL;
21097 	int		geom_validated = FALSE;
21098 	int		err = 0;
21099 	int		i = 0;
21100 	cred_t		*cr;
21101 
21102 	/*
21103 	 * All device accesses go thru sdstrategy where we check on suspend
21104 	 * status
21105 	 */
21106 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21107 		return (ENXIO);
21108 	}
21109 
21110 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21111 
21112 	/*
21113 	 * Moved this wait from sd_uscsi_strategy to here for
21114 	 * reasons of deadlock prevention. Internal driver commands,
21115 	 * specifically those to change a devices power level, result
21116 	 * in a call to sd_uscsi_strategy.
21117 	 */
21118 	mutex_enter(SD_MUTEX(un));
21119 	while ((un->un_state == SD_STATE_SUSPENDED) ||
21120 	    (un->un_state == SD_STATE_PM_CHANGING)) {
21121 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
21122 	}
21123 	/*
21124 	 * Twiddling the counter here protects commands from now
21125 	 * through to the top of sd_uscsi_strategy. Without the
21126 	 * counter inc. a power down, for example, could get in
21127 	 * after the above check for state is made and before
21128 	 * execution gets to the top of sd_uscsi_strategy.
21129 	 * That would cause problems.
21130 	 */
21131 	un->un_ncmds_in_driver++;
21132 
21133 	if ((un->un_f_geometry_is_valid == FALSE) &&
21134 	    (flag & (FNDELAY | FNONBLOCK))) {
21135 		switch (cmd) {
21136 		case CDROMPAUSE:
21137 		case CDROMRESUME:
21138 		case CDROMPLAYMSF:
21139 		case CDROMPLAYTRKIND:
21140 		case CDROMREADTOCHDR:
21141 		case CDROMREADTOCENTRY:
21142 		case CDROMSTOP:
21143 		case CDROMSTART:
21144 		case CDROMVOLCTRL:
21145 		case CDROMSUBCHNL:
21146 		case CDROMREADMODE2:
21147 		case CDROMREADMODE1:
21148 		case CDROMREADOFFSET:
21149 		case CDROMSBLKMODE:
21150 		case CDROMGBLKMODE:
21151 		case CDROMGDRVSPEED:
21152 		case CDROMSDRVSPEED:
21153 		case CDROMCDDA:
21154 		case CDROMCDXA:
21155 		case CDROMSUBCODE:
21156 			if (!ISCD(un)) {
21157 				un->un_ncmds_in_driver--;
21158 				ASSERT(un->un_ncmds_in_driver >= 0);
21159 				mutex_exit(SD_MUTEX(un));
21160 				return (ENOTTY);
21161 			}
21162 			break;
21163 		case FDEJECT:
21164 		case DKIOCEJECT:
21165 		case CDROMEJECT:
21166 			if (!un->un_f_eject_media_supported) {
21167 				un->un_ncmds_in_driver--;
21168 				ASSERT(un->un_ncmds_in_driver >= 0);
21169 				mutex_exit(SD_MUTEX(un));
21170 				return (ENOTTY);
21171 			}
21172 			break;
21173 		case DKIOCSVTOC:
21174 		case DKIOCSETEFI:
21175 		case DKIOCSMBOOT:
21176 		case DKIOCFLUSHWRITECACHE:
21177 			mutex_exit(SD_MUTEX(un));
21178 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
21179 			if (err != 0) {
21180 				mutex_enter(SD_MUTEX(un));
21181 				un->un_ncmds_in_driver--;
21182 				ASSERT(un->un_ncmds_in_driver >= 0);
21183 				mutex_exit(SD_MUTEX(un));
21184 				return (EIO);
21185 			}
21186 			mutex_enter(SD_MUTEX(un));
21187 			/* FALLTHROUGH */
21188 		case DKIOCREMOVABLE:
21189 		case DKIOCHOTPLUGGABLE:
21190 		case DKIOCINFO:
21191 		case DKIOCGMEDIAINFO:
21192 		case MHIOCENFAILFAST:
21193 		case MHIOCSTATUS:
21194 		case MHIOCTKOWN:
21195 		case MHIOCRELEASE:
21196 		case MHIOCGRP_INKEYS:
21197 		case MHIOCGRP_INRESV:
21198 		case MHIOCGRP_REGISTER:
21199 		case MHIOCGRP_RESERVE:
21200 		case MHIOCGRP_PREEMPTANDABORT:
21201 		case MHIOCGRP_REGISTERANDIGNOREKEY:
21202 		case CDROMCLOSETRAY:
21203 		case USCSICMD:
21204 			goto skip_ready_valid;
21205 		default:
21206 			break;
21207 		}
21208 
21209 		mutex_exit(SD_MUTEX(un));
21210 		err = sd_ready_and_valid(un);
21211 		mutex_enter(SD_MUTEX(un));
21212 		if (err == SD_READY_NOT_VALID) {
21213 			switch (cmd) {
21214 			case DKIOCGAPART:
21215 			case DKIOCGGEOM:
21216 			case DKIOCSGEOM:
21217 			case DKIOCGVTOC:
21218 			case DKIOCSVTOC:
21219 			case DKIOCSAPART:
21220 			case DKIOCG_PHYGEOM:
21221 			case DKIOCG_VIRTGEOM:
21222 				err = ENOTSUP;
21223 				un->un_ncmds_in_driver--;
21224 				ASSERT(un->un_ncmds_in_driver >= 0);
21225 				mutex_exit(SD_MUTEX(un));
21226 				return (err);
21227 			}
21228 		}
21229 		if (err != SD_READY_VALID) {
21230 			switch (cmd) {
21231 			case DKIOCSTATE:
21232 			case CDROMGDRVSPEED:
21233 			case CDROMSDRVSPEED:
21234 			case FDEJECT:	/* for eject command */
21235 			case DKIOCEJECT:
21236 			case CDROMEJECT:
21237 			case DKIOCGETEFI:
21238 			case DKIOCSGEOM:
21239 			case DKIOCREMOVABLE:
21240 			case DKIOCHOTPLUGGABLE:
21241 			case DKIOCSAPART:
21242 			case DKIOCSETEFI:
21243 				break;
21244 			default:
21245 				if (un->un_f_has_removable_media) {
21246 					err = ENXIO;
21247 				} else {
21248 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
21249 					if (err == SD_RESERVED_BY_OTHERS) {
21250 						err = EACCES;
21251 					} else {
21252 						err = EIO;
21253 					}
21254 				}
21255 				un->un_ncmds_in_driver--;
21256 				ASSERT(un->un_ncmds_in_driver >= 0);
21257 				mutex_exit(SD_MUTEX(un));
21258 				return (err);
21259 			}
21260 		}
21261 		geom_validated = TRUE;
21262 	}
21263 	if ((un->un_f_geometry_is_valid == TRUE) &&
21264 	    (un->un_solaris_size > 0)) {
21265 		/*
21266 		 * the "geometry_is_valid" flag could be true if we
21267 		 * have an fdisk table but no Solaris partition
21268 		 */
21269 		if (un->un_vtoc.v_sanity != VTOC_SANE) {
21270 			/* it is EFI, so return ENOTSUP for these */
21271 			switch (cmd) {
21272 			case DKIOCGAPART:
21273 			case DKIOCGGEOM:
21274 			case DKIOCGVTOC:
21275 			case DKIOCSVTOC:
21276 			case DKIOCSAPART:
21277 				err = ENOTSUP;
21278 				un->un_ncmds_in_driver--;
21279 				ASSERT(un->un_ncmds_in_driver >= 0);
21280 				mutex_exit(SD_MUTEX(un));
21281 				return (err);
21282 			}
21283 		}
21284 	}
21285 
21286 skip_ready_valid:
21287 	mutex_exit(SD_MUTEX(un));
21288 
21289 	switch (cmd) {
21290 	case DKIOCINFO:
21291 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
21292 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
21293 		break;
21294 
21295 	case DKIOCGMEDIAINFO:
21296 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
21297 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
21298 		break;
21299 
21300 	case DKIOCGGEOM:
21301 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGGEOM\n");
21302 		err = sd_dkio_get_geometry(dev, (caddr_t)arg, flag,
21303 		    geom_validated);
21304 		break;
21305 
21306 	case DKIOCSGEOM:
21307 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSGEOM\n");
21308 		err = sd_dkio_set_geometry(dev, (caddr_t)arg, flag);
21309 		break;
21310 
21311 	case DKIOCGAPART:
21312 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGAPART\n");
21313 		err = sd_dkio_get_partition(dev, (caddr_t)arg, flag,
21314 		    geom_validated);
21315 		break;
21316 
21317 	case DKIOCSAPART:
21318 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSAPART\n");
21319 		err = sd_dkio_set_partition(dev, (caddr_t)arg, flag);
21320 		break;
21321 
21322 	case DKIOCGVTOC:
21323 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGVTOC\n");
21324 		err = sd_dkio_get_vtoc(dev, (caddr_t)arg, flag,
21325 		    geom_validated);
21326 		break;
21327 
21328 	case DKIOCGETEFI:
21329 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGETEFI\n");
21330 		err = sd_dkio_get_efi(dev, (caddr_t)arg, flag);
21331 		break;
21332 
21333 	case DKIOCPARTITION:
21334 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTITION\n");
21335 		err = sd_dkio_partition(dev, (caddr_t)arg, flag);
21336 		break;
21337 
21338 	case DKIOCSVTOC:
21339 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSVTOC\n");
21340 		err = sd_dkio_set_vtoc(dev, (caddr_t)arg, flag);
21341 		break;
21342 
21343 	case DKIOCSETEFI:
21344 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSETEFI\n");
21345 		err = sd_dkio_set_efi(dev, (caddr_t)arg, flag);
21346 		break;
21347 
21348 	case DKIOCGMBOOT:
21349 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMBOOT\n");
21350 		err = sd_dkio_get_mboot(dev, (caddr_t)arg, flag);
21351 		break;
21352 
21353 	case DKIOCSMBOOT:
21354 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSMBOOT\n");
21355 		err = sd_dkio_set_mboot(dev, (caddr_t)arg, flag);
21356 		break;
21357 
21358 	case DKIOCLOCK:
21359 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
21360 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
21361 		    SD_PATH_STANDARD);
21362 		break;
21363 
21364 	case DKIOCUNLOCK:
21365 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
21366 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
21367 		    SD_PATH_STANDARD);
21368 		break;
21369 
21370 	case DKIOCSTATE: {
21371 		enum dkio_state		state;
21372 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
21373 
21374 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
21375 			err = EFAULT;
21376 		} else {
21377 			err = sd_check_media(dev, state);
21378 			if (err == 0) {
21379 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
21380 				    sizeof (int), flag) != 0)
21381 					err = EFAULT;
21382 			}
21383 		}
21384 		break;
21385 	}
21386 
21387 	case DKIOCREMOVABLE:
21388 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
21389 		i = un->un_f_has_removable_media ? 1 : 0;
21390 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21391 			err = EFAULT;
21392 		} else {
21393 			err = 0;
21394 		}
21395 		break;
21396 
21397 	case DKIOCHOTPLUGGABLE:
21398 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
21399 		i = un->un_f_is_hotpluggable ? 1 : 0;
21400 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21401 			err = EFAULT;
21402 		} else {
21403 			err = 0;
21404 		}
21405 		break;
21406 
21407 	case DKIOCGTEMPERATURE:
21408 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
21409 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
21410 		break;
21411 
21412 	case MHIOCENFAILFAST:
21413 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
21414 		if ((err = drv_priv(cred_p)) == 0) {
21415 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
21416 		}
21417 		break;
21418 
21419 	case MHIOCTKOWN:
21420 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
21421 		if ((err = drv_priv(cred_p)) == 0) {
21422 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
21423 		}
21424 		break;
21425 
21426 	case MHIOCRELEASE:
21427 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
21428 		if ((err = drv_priv(cred_p)) == 0) {
21429 			err = sd_mhdioc_release(dev);
21430 		}
21431 		break;
21432 
21433 	case MHIOCSTATUS:
21434 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
21435 		if ((err = drv_priv(cred_p)) == 0) {
21436 			switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) {
21437 			case 0:
21438 				err = 0;
21439 				break;
21440 			case EACCES:
21441 				*rval_p = 1;
21442 				err = 0;
21443 				break;
21444 			default:
21445 				err = EIO;
21446 				break;
21447 			}
21448 		}
21449 		break;
21450 
21451 	case MHIOCQRESERVE:
21452 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
21453 		if ((err = drv_priv(cred_p)) == 0) {
21454 			err = sd_reserve_release(dev, SD_RESERVE);
21455 		}
21456 		break;
21457 
21458 	case MHIOCREREGISTERDEVID:
21459 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
21460 		if (drv_priv(cred_p) == EPERM) {
21461 			err = EPERM;
21462 		} else if (!un->un_f_devid_supported) {
21463 			err = ENOTTY;
21464 		} else {
21465 			err = sd_mhdioc_register_devid(dev);
21466 		}
21467 		break;
21468 
21469 	case MHIOCGRP_INKEYS:
21470 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
21471 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21472 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21473 				err = ENOTSUP;
21474 			} else {
21475 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
21476 				    flag);
21477 			}
21478 		}
21479 		break;
21480 
21481 	case MHIOCGRP_INRESV:
21482 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
21483 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21484 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21485 				err = ENOTSUP;
21486 			} else {
21487 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
21488 			}
21489 		}
21490 		break;
21491 
21492 	case MHIOCGRP_REGISTER:
21493 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
21494 		if ((err = drv_priv(cred_p)) != EPERM) {
21495 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21496 				err = ENOTSUP;
21497 			} else if (arg != NULL) {
21498 				mhioc_register_t reg;
21499 				if (ddi_copyin((void *)arg, &reg,
21500 				    sizeof (mhioc_register_t), flag) != 0) {
21501 					err = EFAULT;
21502 				} else {
21503 					err =
21504 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21505 					    un, SD_SCSI3_REGISTER,
21506 					    (uchar_t *)&reg);
21507 				}
21508 			}
21509 		}
21510 		break;
21511 
21512 	case MHIOCGRP_RESERVE:
21513 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
21514 		if ((err = drv_priv(cred_p)) != EPERM) {
21515 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21516 				err = ENOTSUP;
21517 			} else if (arg != NULL) {
21518 				mhioc_resv_desc_t resv_desc;
21519 				if (ddi_copyin((void *)arg, &resv_desc,
21520 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
21521 					err = EFAULT;
21522 				} else {
21523 					err =
21524 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21525 					    un, SD_SCSI3_RESERVE,
21526 					    (uchar_t *)&resv_desc);
21527 				}
21528 			}
21529 		}
21530 		break;
21531 
21532 	case MHIOCGRP_PREEMPTANDABORT:
21533 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
21534 		if ((err = drv_priv(cred_p)) != EPERM) {
21535 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21536 				err = ENOTSUP;
21537 			} else if (arg != NULL) {
21538 				mhioc_preemptandabort_t preempt_abort;
21539 				if (ddi_copyin((void *)arg, &preempt_abort,
21540 				    sizeof (mhioc_preemptandabort_t),
21541 				    flag) != 0) {
21542 					err = EFAULT;
21543 				} else {
21544 					err =
21545 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21546 					    un, SD_SCSI3_PREEMPTANDABORT,
21547 					    (uchar_t *)&preempt_abort);
21548 				}
21549 			}
21550 		}
21551 		break;
21552 
21553 	case MHIOCGRP_REGISTERANDIGNOREKEY:
21554 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
21555 		if ((err = drv_priv(cred_p)) != EPERM) {
21556 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21557 				err = ENOTSUP;
21558 			} else if (arg != NULL) {
21559 				mhioc_registerandignorekey_t r_and_i;
21560 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
21561 				    sizeof (mhioc_registerandignorekey_t),
21562 				    flag) != 0) {
21563 					err = EFAULT;
21564 				} else {
21565 					err =
21566 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21567 					    un, SD_SCSI3_REGISTERANDIGNOREKEY,
21568 					    (uchar_t *)&r_and_i);
21569 				}
21570 			}
21571 		}
21572 		break;
21573 
21574 	case USCSICMD:
21575 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
21576 		cr = ddi_get_cred();
21577 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
21578 			err = EPERM;
21579 		} else {
21580 			enum uio_seg	uioseg;
21581 			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
21582 			    UIO_USERSPACE;
21583 			if (un->un_f_format_in_progress == TRUE) {
21584 				err = EAGAIN;
21585 				break;
21586 			}
21587 			err = sd_send_scsi_cmd(dev, (struct uscsi_cmd *)arg,
21588 			    flag, uioseg, SD_PATH_STANDARD);
21589 		}
21590 		break;
21591 
21592 	case CDROMPAUSE:
21593 	case CDROMRESUME:
21594 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
21595 		if (!ISCD(un)) {
21596 			err = ENOTTY;
21597 		} else {
21598 			err = sr_pause_resume(dev, cmd);
21599 		}
21600 		break;
21601 
21602 	case CDROMPLAYMSF:
21603 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
21604 		if (!ISCD(un)) {
21605 			err = ENOTTY;
21606 		} else {
21607 			err = sr_play_msf(dev, (caddr_t)arg, flag);
21608 		}
21609 		break;
21610 
21611 	case CDROMPLAYTRKIND:
21612 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
21613 #if defined(__i386) || defined(__amd64)
21614 		/*
21615 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
21616 		 */
21617 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21618 #else
21619 		if (!ISCD(un)) {
21620 #endif
21621 			err = ENOTTY;
21622 		} else {
21623 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
21624 		}
21625 		break;
21626 
21627 	case CDROMREADTOCHDR:
21628 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
21629 		if (!ISCD(un)) {
21630 			err = ENOTTY;
21631 		} else {
21632 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
21633 		}
21634 		break;
21635 
21636 	case CDROMREADTOCENTRY:
21637 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
21638 		if (!ISCD(un)) {
21639 			err = ENOTTY;
21640 		} else {
21641 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
21642 		}
21643 		break;
21644 
21645 	case CDROMSTOP:
21646 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
21647 		if (!ISCD(un)) {
21648 			err = ENOTTY;
21649 		} else {
21650 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP,
21651 			    SD_PATH_STANDARD);
21652 		}
21653 		break;
21654 
21655 	case CDROMSTART:
21656 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
21657 		if (!ISCD(un)) {
21658 			err = ENOTTY;
21659 		} else {
21660 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
21661 			    SD_PATH_STANDARD);
21662 		}
21663 		break;
21664 
21665 	case CDROMCLOSETRAY:
21666 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
21667 		if (!ISCD(un)) {
21668 			err = ENOTTY;
21669 		} else {
21670 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE,
21671 			    SD_PATH_STANDARD);
21672 		}
21673 		break;
21674 
21675 	case FDEJECT:	/* for eject command */
21676 	case DKIOCEJECT:
21677 	case CDROMEJECT:
21678 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
21679 		if (!un->un_f_eject_media_supported) {
21680 			err = ENOTTY;
21681 		} else {
21682 			err = sr_eject(dev);
21683 		}
21684 		break;
21685 
21686 	case CDROMVOLCTRL:
21687 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
21688 		if (!ISCD(un)) {
21689 			err = ENOTTY;
21690 		} else {
21691 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
21692 		}
21693 		break;
21694 
21695 	case CDROMSUBCHNL:
21696 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
21697 		if (!ISCD(un)) {
21698 			err = ENOTTY;
21699 		} else {
21700 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
21701 		}
21702 		break;
21703 
21704 	case CDROMREADMODE2:
21705 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
21706 		if (!ISCD(un)) {
21707 			err = ENOTTY;
21708 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21709 			/*
21710 			 * If the drive supports READ CD, use that instead of
21711 			 * switching the LBA size via a MODE SELECT
21712 			 * Block Descriptor
21713 			 */
21714 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
21715 		} else {
21716 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
21717 		}
21718 		break;
21719 
21720 	case CDROMREADMODE1:
21721 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
21722 		if (!ISCD(un)) {
21723 			err = ENOTTY;
21724 		} else {
21725 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
21726 		}
21727 		break;
21728 
21729 	case CDROMREADOFFSET:
21730 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
21731 		if (!ISCD(un)) {
21732 			err = ENOTTY;
21733 		} else {
21734 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
21735 			    flag);
21736 		}
21737 		break;
21738 
21739 	case CDROMSBLKMODE:
21740 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
21741 		/*
21742 		 * There is no means of changing block size in case of atapi
21743 		 * drives, thus return ENOTTY if drive type is atapi
21744 		 */
21745 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21746 			err = ENOTTY;
21747 		} else if (un->un_f_mmc_cap == TRUE) {
21748 
21749 			/*
21750 			 * MMC Devices do not support changing the
21751 			 * logical block size
21752 			 *
21753 			 * Note: EINVAL is being returned instead of ENOTTY to
21754 			 * maintain consistancy with the original mmc
21755 			 * driver update.
21756 			 */
21757 			err = EINVAL;
21758 		} else {
21759 			mutex_enter(SD_MUTEX(un));
21760 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
21761 			    (un->un_ncmds_in_transport > 0)) {
21762 				mutex_exit(SD_MUTEX(un));
21763 				err = EINVAL;
21764 			} else {
21765 				mutex_exit(SD_MUTEX(un));
21766 				err = sr_change_blkmode(dev, cmd, arg, flag);
21767 			}
21768 		}
21769 		break;
21770 
21771 	case CDROMGBLKMODE:
21772 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
21773 		if (!ISCD(un)) {
21774 			err = ENOTTY;
21775 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
21776 		    (un->un_f_blockcount_is_valid != FALSE)) {
21777 			/*
21778 			 * Drive is an ATAPI drive so return target block
21779 			 * size for ATAPI drives since we cannot change the
21780 			 * blocksize on ATAPI drives. Used primarily to detect
21781 			 * if an ATAPI cdrom is present.
21782 			 */
21783 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
21784 			    sizeof (int), flag) != 0) {
21785 				err = EFAULT;
21786 			} else {
21787 				err = 0;
21788 			}
21789 
21790 		} else {
21791 			/*
21792 			 * Drive supports changing block sizes via a Mode
21793 			 * Select.
21794 			 */
21795 			err = sr_change_blkmode(dev, cmd, arg, flag);
21796 		}
21797 		break;
21798 
21799 	case CDROMGDRVSPEED:
21800 	case CDROMSDRVSPEED:
21801 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
21802 		if (!ISCD(un)) {
21803 			err = ENOTTY;
21804 		} else if (un->un_f_mmc_cap == TRUE) {
21805 			/*
21806 			 * Note: In the future the driver implementation
21807 			 * for getting and
21808 			 * setting cd speed should entail:
21809 			 * 1) If non-mmc try the Toshiba mode page
21810 			 *    (sr_change_speed)
21811 			 * 2) If mmc but no support for Real Time Streaming try
21812 			 *    the SET CD SPEED (0xBB) command
21813 			 *   (sr_atapi_change_speed)
21814 			 * 3) If mmc and support for Real Time Streaming
21815 			 *    try the GET PERFORMANCE and SET STREAMING
21816 			 *    commands (not yet implemented, 4380808)
21817 			 */
21818 			/*
21819 			 * As per recent MMC spec, CD-ROM speed is variable
21820 			 * and changes with LBA. Since there is no such
21821 			 * things as drive speed now, fail this ioctl.
21822 			 *
21823 			 * Note: EINVAL is returned for consistancy of original
21824 			 * implementation which included support for getting
21825 			 * the drive speed of mmc devices but not setting
21826 			 * the drive speed. Thus EINVAL would be returned
21827 			 * if a set request was made for an mmc device.
21828 			 * We no longer support get or set speed for
21829 			 * mmc but need to remain consistant with regard
21830 			 * to the error code returned.
21831 			 */
21832 			err = EINVAL;
21833 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21834 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
21835 		} else {
21836 			err = sr_change_speed(dev, cmd, arg, flag);
21837 		}
21838 		break;
21839 
21840 	case CDROMCDDA:
21841 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
21842 		if (!ISCD(un)) {
21843 			err = ENOTTY;
21844 		} else {
21845 			err = sr_read_cdda(dev, (void *)arg, flag);
21846 		}
21847 		break;
21848 
21849 	case CDROMCDXA:
21850 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
21851 		if (!ISCD(un)) {
21852 			err = ENOTTY;
21853 		} else {
21854 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
21855 		}
21856 		break;
21857 
21858 	case CDROMSUBCODE:
21859 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
21860 		if (!ISCD(un)) {
21861 			err = ENOTTY;
21862 		} else {
21863 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
21864 		}
21865 		break;
21866 
21867 	case DKIOCPARTINFO: {
21868 		/*
21869 		 * Return parameters describing the selected disk slice.
21870 		 * Note: this ioctl is for the intel platform only
21871 		 */
21872 #if defined(__i386) || defined(__amd64)
21873 		int part;
21874 
21875 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
21876 		part = SDPART(dev);
21877 
21878 		/* don't check un_solaris_size for pN */
21879 		if (part < P0_RAW_DISK && un->un_solaris_size == 0) {
21880 			err = EIO;
21881 		} else {
21882 			struct part_info p;
21883 
21884 			p.p_start = (daddr_t)un->un_offset[part];
21885 			p.p_length = (int)un->un_map[part].dkl_nblk;
21886 #ifdef _MULTI_DATAMODEL
21887 			switch (ddi_model_convert_from(flag & FMODELS)) {
21888 			case DDI_MODEL_ILP32:
21889 			{
21890 				struct part_info32 p32;
21891 
21892 				p32.p_start = (daddr32_t)p.p_start;
21893 				p32.p_length = p.p_length;
21894 				if (ddi_copyout(&p32, (void *)arg,
21895 				    sizeof (p32), flag))
21896 					err = EFAULT;
21897 				break;
21898 			}
21899 
21900 			case DDI_MODEL_NONE:
21901 			{
21902 				if (ddi_copyout(&p, (void *)arg, sizeof (p),
21903 				    flag))
21904 					err = EFAULT;
21905 				break;
21906 			}
21907 			}
21908 #else /* ! _MULTI_DATAMODEL */
21909 			if (ddi_copyout(&p, (void *)arg, sizeof (p), flag))
21910 				err = EFAULT;
21911 #endif /* _MULTI_DATAMODEL */
21912 		}
21913 #else
21914 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
21915 		err = ENOTTY;
21916 #endif
21917 		break;
21918 	}
21919 
21920 	case DKIOCG_PHYGEOM: {
21921 		/* Return the driver's notion of the media physical geometry */
21922 #if defined(__i386) || defined(__amd64)
21923 		uint64_t	capacity;
21924 		struct dk_geom	disk_geom;
21925 		struct dk_geom	*dkgp = &disk_geom;
21926 
21927 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
21928 		mutex_enter(SD_MUTEX(un));
21929 
21930 		if (un->un_g.dkg_nhead != 0 &&
21931 		    un->un_g.dkg_nsect != 0) {
21932 			/*
21933 			 * We succeeded in getting a geometry, but
21934 			 * right now it is being reported as just the
21935 			 * Solaris fdisk partition, just like for
21936 			 * DKIOCGGEOM. We need to change that to be
21937 			 * correct for the entire disk now.
21938 			 */
21939 			bcopy(&un->un_g, dkgp, sizeof (*dkgp));
21940 			dkgp->dkg_acyl = 0;
21941 			dkgp->dkg_ncyl = un->un_blockcount /
21942 			    (dkgp->dkg_nhead * dkgp->dkg_nsect);
21943 		} else {
21944 			bzero(dkgp, sizeof (struct dk_geom));
21945 			/*
21946 			 * This disk does not have a Solaris VTOC
21947 			 * so we must present a physical geometry
21948 			 * that will remain consistent regardless
21949 			 * of how the disk is used. This will ensure
21950 			 * that the geometry does not change regardless
21951 			 * of the fdisk partition type (ie. EFI, FAT32,
21952 			 * Solaris, etc).
21953 			 */
21954 			if (ISCD(un)) {
21955 				dkgp->dkg_nhead = un->un_pgeom.g_nhead;
21956 				dkgp->dkg_nsect = un->un_pgeom.g_nsect;
21957 				dkgp->dkg_ncyl = un->un_pgeom.g_ncyl;
21958 				dkgp->dkg_acyl = un->un_pgeom.g_acyl;
21959 			} else {
21960 				/*
21961 				 * Invalid un_blockcount can generate invalid
21962 				 * dk_geom and may result in division by zero
21963 				 * system failure. Should make sure blockcount
21964 				 * is valid before using it here.
21965 				 */
21966 				if (un->un_f_blockcount_is_valid == FALSE) {
21967 					mutex_exit(SD_MUTEX(un));
21968 					err = EIO;
21969 
21970 					break;
21971 				}
21972 
21973 				/*
21974 				 * Refer to comments related to off-by-1 at the
21975 				 * header of this file
21976 				 */
21977 				if (!un->un_f_capacity_adjusted &&
21978 					!un->un_f_has_removable_media &&
21979 				    !un->un_f_is_hotpluggable &&
21980 					(un->un_tgt_blocksize ==
21981 					un->un_sys_blocksize))
21982 					capacity = un->un_blockcount - 1;
21983 				else
21984 					capacity = un->un_blockcount;
21985 
21986 				sd_convert_geometry(capacity, dkgp);
21987 				dkgp->dkg_acyl = 0;
21988 				dkgp->dkg_ncyl = capacity /
21989 				    (dkgp->dkg_nhead * dkgp->dkg_nsect);
21990 			}
21991 		}
21992 		dkgp->dkg_pcyl = dkgp->dkg_ncyl + dkgp->dkg_acyl;
21993 
21994 		if (ddi_copyout(dkgp, (void *)arg,
21995 		    sizeof (struct dk_geom), flag)) {
21996 			mutex_exit(SD_MUTEX(un));
21997 			err = EFAULT;
21998 		} else {
21999 			mutex_exit(SD_MUTEX(un));
22000 			err = 0;
22001 		}
22002 #else
22003 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
22004 		err = ENOTTY;
22005 #endif
22006 		break;
22007 	}
22008 
22009 	case DKIOCG_VIRTGEOM: {
22010 		/* Return the driver's notion of the media's logical geometry */
22011 #if defined(__i386) || defined(__amd64)
22012 		struct dk_geom	disk_geom;
22013 		struct dk_geom	*dkgp = &disk_geom;
22014 
22015 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
22016 		mutex_enter(SD_MUTEX(un));
22017 		/*
22018 		 * If there is no HBA geometry available, or
22019 		 * if the HBA returned us something that doesn't
22020 		 * really fit into an Int 13/function 8 geometry
22021 		 * result, just fail the ioctl.  See PSARC 1998/313.
22022 		 */
22023 		if (un->un_lgeom.g_nhead == 0 ||
22024 		    un->un_lgeom.g_nsect == 0 ||
22025 		    un->un_lgeom.g_ncyl > 1024) {
22026 			mutex_exit(SD_MUTEX(un));
22027 			err = EINVAL;
22028 		} else {
22029 			dkgp->dkg_ncyl	= un->un_lgeom.g_ncyl;
22030 			dkgp->dkg_acyl	= un->un_lgeom.g_acyl;
22031 			dkgp->dkg_pcyl	= dkgp->dkg_ncyl + dkgp->dkg_acyl;
22032 			dkgp->dkg_nhead	= un->un_lgeom.g_nhead;
22033 			dkgp->dkg_nsect	= un->un_lgeom.g_nsect;
22034 
22035 			if (ddi_copyout(dkgp, (void *)arg,
22036 			    sizeof (struct dk_geom), flag)) {
22037 				mutex_exit(SD_MUTEX(un));
22038 				err = EFAULT;
22039 			} else {
22040 				mutex_exit(SD_MUTEX(un));
22041 				err = 0;
22042 			}
22043 		}
22044 #else
22045 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
22046 		err = ENOTTY;
22047 #endif
22048 		break;
22049 	}
22050 #ifdef SDDEBUG
22051 /* RESET/ABORTS testing ioctls */
22052 	case DKIOCRESET: {
22053 		int	reset_level;
22054 
22055 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
22056 			err = EFAULT;
22057 		} else {
22058 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
22059 			    "reset_level = 0x%lx\n", reset_level);
22060 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
22061 				err = 0;
22062 			} else {
22063 				err = EIO;
22064 			}
22065 		}
22066 		break;
22067 	}
22068 
22069 	case DKIOCABORT:
22070 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
22071 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
22072 			err = 0;
22073 		} else {
22074 			err = EIO;
22075 		}
22076 		break;
22077 #endif
22078 
22079 #ifdef SD_FAULT_INJECTION
22080 /* SDIOC FaultInjection testing ioctls */
22081 	case SDIOCSTART:
22082 	case SDIOCSTOP:
22083 	case SDIOCINSERTPKT:
22084 	case SDIOCINSERTXB:
22085 	case SDIOCINSERTUN:
22086 	case SDIOCINSERTARQ:
22087 	case SDIOCPUSH:
22088 	case SDIOCRETRIEVE:
22089 	case SDIOCRUN:
22090 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
22091 		    "SDIOC detected cmd:0x%X:\n", cmd);
22092 		/* call error generator */
22093 		sd_faultinjection_ioctl(cmd, arg, un);
22094 		err = 0;
22095 		break;
22096 
22097 #endif /* SD_FAULT_INJECTION */
22098 
22099 	case DKIOCFLUSHWRITECACHE:
22100 		{
22101 			struct dk_callback *dkc = (struct dk_callback *)arg;
22102 
22103 			mutex_enter(SD_MUTEX(un));
22104 			if (!un->un_f_sync_cache_supported ||
22105 			    !un->un_f_write_cache_enabled) {
22106 				err = un->un_f_sync_cache_supported ?
22107 					0 : ENOTSUP;
22108 				mutex_exit(SD_MUTEX(un));
22109 				if ((flag & FKIOCTL) && dkc != NULL &&
22110 				    dkc->dkc_callback != NULL) {
22111 					(*dkc->dkc_callback)(dkc->dkc_cookie,
22112 					    err);
22113 					/*
22114 					 * Did callback and reported error.
22115 					 * Since we did a callback, ioctl
22116 					 * should return 0.
22117 					 */
22118 					err = 0;
22119 				}
22120 				break;
22121 			}
22122 			mutex_exit(SD_MUTEX(un));
22123 
22124 			if ((flag & FKIOCTL) && dkc != NULL &&
22125 			    dkc->dkc_callback != NULL) {
22126 				/* async SYNC CACHE request */
22127 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
22128 			} else {
22129 				/* synchronous SYNC CACHE request */
22130 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
22131 			}
22132 		}
22133 		break;
22134 
22135 	case DKIOCGETWCE: {
22136 
22137 		int wce;
22138 
22139 		if ((err = sd_get_write_cache_enabled(un, &wce)) != 0) {
22140 			break;
22141 		}
22142 
22143 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
22144 			err = EFAULT;
22145 		}
22146 		break;
22147 	}
22148 
22149 	case DKIOCSETWCE: {
22150 
22151 		int wce, sync_supported;
22152 
22153 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
22154 			err = EFAULT;
22155 			break;
22156 		}
22157 
22158 		/*
22159 		 * Synchronize multiple threads trying to enable
22160 		 * or disable the cache via the un_f_wcc_cv
22161 		 * condition variable.
22162 		 */
22163 		mutex_enter(SD_MUTEX(un));
22164 
22165 		/*
22166 		 * Don't allow the cache to be enabled if the
22167 		 * config file has it disabled.
22168 		 */
22169 		if (un->un_f_opt_disable_cache && wce) {
22170 			mutex_exit(SD_MUTEX(un));
22171 			err = EINVAL;
22172 			break;
22173 		}
22174 
22175 		/*
22176 		 * Wait for write cache change in progress
22177 		 * bit to be clear before proceeding.
22178 		 */
22179 		while (un->un_f_wcc_inprog)
22180 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
22181 
22182 		un->un_f_wcc_inprog = 1;
22183 
22184 		if (un->un_f_write_cache_enabled && wce == 0) {
22185 			/*
22186 			 * Disable the write cache.  Don't clear
22187 			 * un_f_write_cache_enabled until after
22188 			 * the mode select and flush are complete.
22189 			 */
22190 			sync_supported = un->un_f_sync_cache_supported;
22191 			mutex_exit(SD_MUTEX(un));
22192 			if ((err = sd_cache_control(un, SD_CACHE_NOCHANGE,
22193 			    SD_CACHE_DISABLE)) == 0 && sync_supported) {
22194 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
22195 			}
22196 
22197 			mutex_enter(SD_MUTEX(un));
22198 			if (err == 0) {
22199 				un->un_f_write_cache_enabled = 0;
22200 			}
22201 
22202 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
22203 			/*
22204 			 * Set un_f_write_cache_enabled first, so there is
22205 			 * no window where the cache is enabled, but the
22206 			 * bit says it isn't.
22207 			 */
22208 			un->un_f_write_cache_enabled = 1;
22209 			mutex_exit(SD_MUTEX(un));
22210 
22211 			err = sd_cache_control(un, SD_CACHE_NOCHANGE,
22212 				SD_CACHE_ENABLE);
22213 
22214 			mutex_enter(SD_MUTEX(un));
22215 
22216 			if (err) {
22217 				un->un_f_write_cache_enabled = 0;
22218 			}
22219 		}
22220 
22221 		un->un_f_wcc_inprog = 0;
22222 		cv_broadcast(&un->un_wcc_cv);
22223 		mutex_exit(SD_MUTEX(un));
22224 		break;
22225 	}
22226 
22227 	default:
22228 		err = ENOTTY;
22229 		break;
22230 	}
22231 	mutex_enter(SD_MUTEX(un));
22232 	un->un_ncmds_in_driver--;
22233 	ASSERT(un->un_ncmds_in_driver >= 0);
22234 	mutex_exit(SD_MUTEX(un));
22235 
22236 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
22237 	return (err);
22238 }
22239 
22240 
22241 /*
22242  *    Function: sd_dkio_ctrl_info
22243  *
22244  * Description: This routine is the driver entry point for handling controller
22245  *		information ioctl requests (DKIOCINFO).
22246  *
22247  *   Arguments: dev  - the device number
22248  *		arg  - pointer to user provided dk_cinfo structure
22249  *		       specifying the controller type and attributes.
22250  *		flag - this argument is a pass through to ddi_copyxxx()
22251  *		       directly from the mode argument of ioctl().
22252  *
22253  * Return Code: 0
22254  *		EFAULT
22255  *		ENXIO
22256  */
22257 
22258 static int
22259 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
22260 {
22261 	struct sd_lun	*un = NULL;
22262 	struct dk_cinfo	*info;
22263 	dev_info_t	*pdip;
22264 	int		lun, tgt;
22265 
22266 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22267 		return (ENXIO);
22268 	}
22269 
22270 	info = (struct dk_cinfo *)
22271 		kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
22272 
22273 	switch (un->un_ctype) {
22274 	case CTYPE_CDROM:
22275 		info->dki_ctype = DKC_CDROM;
22276 		break;
22277 	default:
22278 		info->dki_ctype = DKC_SCSI_CCS;
22279 		break;
22280 	}
22281 	pdip = ddi_get_parent(SD_DEVINFO(un));
22282 	info->dki_cnum = ddi_get_instance(pdip);
22283 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
22284 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
22285 	} else {
22286 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
22287 		    DK_DEVLEN - 1);
22288 	}
22289 
22290 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22291 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
22292 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22293 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
22294 
22295 	/* Unit Information */
22296 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
22297 	info->dki_slave = ((tgt << 3) | lun);
22298 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
22299 	    DK_DEVLEN - 1);
22300 	info->dki_flags = DKI_FMTVOL;
22301 	info->dki_partition = SDPART(dev);
22302 
22303 	/* Max Transfer size of this device in blocks */
22304 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
22305 	info->dki_addr = 0;
22306 	info->dki_space = 0;
22307 	info->dki_prio = 0;
22308 	info->dki_vec = 0;
22309 
22310 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
22311 		kmem_free(info, sizeof (struct dk_cinfo));
22312 		return (EFAULT);
22313 	} else {
22314 		kmem_free(info, sizeof (struct dk_cinfo));
22315 		return (0);
22316 	}
22317 }
22318 
22319 
22320 /*
22321  *    Function: sd_get_media_info
22322  *
22323  * Description: This routine is the driver entry point for handling ioctl
22324  *		requests for the media type or command set profile used by the
22325  *		drive to operate on the media (DKIOCGMEDIAINFO).
22326  *
22327  *   Arguments: dev	- the device number
22328  *		arg	- pointer to user provided dk_minfo structure
22329  *			  specifying the media type, logical block size and
22330  *			  drive capacity.
22331  *		flag	- this argument is a pass through to ddi_copyxxx()
22332  *			  directly from the mode argument of ioctl().
22333  *
22334  * Return Code: 0
22335  *		EACCESS
22336  *		EFAULT
22337  *		ENXIO
22338  *		EIO
22339  */
22340 
22341 static int
22342 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
22343 {
22344 	struct sd_lun		*un = NULL;
22345 	struct uscsi_cmd	com;
22346 	struct scsi_inquiry	*sinq;
22347 	struct dk_minfo		media_info;
22348 	u_longlong_t		media_capacity;
22349 	uint64_t		capacity;
22350 	uint_t			lbasize;
22351 	uchar_t			*out_data;
22352 	uchar_t			*rqbuf;
22353 	int			rval = 0;
22354 	int			rtn;
22355 
22356 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
22357 	    (un->un_state == SD_STATE_OFFLINE)) {
22358 		return (ENXIO);
22359 	}
22360 
22361 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
22362 
22363 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
22364 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
22365 
22366 	/* Issue a TUR to determine if the drive is ready with media present */
22367 	rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA);
22368 	if (rval == ENXIO) {
22369 		goto done;
22370 	}
22371 
22372 	/* Now get configuration data */
22373 	if (ISCD(un)) {
22374 		media_info.dki_media_type = DK_CDROM;
22375 
22376 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
22377 		if (un->un_f_mmc_cap == TRUE) {
22378 			rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf,
22379 				SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN);
22380 
22381 			if (rtn) {
22382 				/*
22383 				 * Failed for other than an illegal request
22384 				 * or command not supported
22385 				 */
22386 				if ((com.uscsi_status == STATUS_CHECK) &&
22387 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
22388 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
22389 					    (rqbuf[12] != 0x20)) {
22390 						rval = EIO;
22391 						goto done;
22392 					}
22393 				}
22394 			} else {
22395 				/*
22396 				 * The GET CONFIGURATION command succeeded
22397 				 * so set the media type according to the
22398 				 * returned data
22399 				 */
22400 				media_info.dki_media_type = out_data[6];
22401 				media_info.dki_media_type <<= 8;
22402 				media_info.dki_media_type |= out_data[7];
22403 			}
22404 		}
22405 	} else {
22406 		/*
22407 		 * The profile list is not available, so we attempt to identify
22408 		 * the media type based on the inquiry data
22409 		 */
22410 		sinq = un->un_sd->sd_inq;
22411 		if (sinq->inq_qual == 0) {
22412 			/* This is a direct access device */
22413 			media_info.dki_media_type = DK_FIXED_DISK;
22414 
22415 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
22416 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
22417 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
22418 					media_info.dki_media_type = DK_ZIP;
22419 				} else if (
22420 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
22421 					media_info.dki_media_type = DK_JAZ;
22422 				}
22423 			}
22424 		} else {
22425 			/* Not a CD or direct access so return unknown media */
22426 			media_info.dki_media_type = DK_UNKNOWN;
22427 		}
22428 	}
22429 
22430 	/* Now read the capacity so we can provide the lbasize and capacity */
22431 	switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
22432 	    SD_PATH_DIRECT)) {
22433 	case 0:
22434 		break;
22435 	case EACCES:
22436 		rval = EACCES;
22437 		goto done;
22438 	default:
22439 		rval = EIO;
22440 		goto done;
22441 	}
22442 
22443 	media_info.dki_lbsize = lbasize;
22444 	media_capacity = capacity;
22445 
22446 	/*
22447 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
22448 	 * un->un_sys_blocksize chunks. So we need to convert it into
22449 	 * cap.lbasize chunks.
22450 	 */
22451 	media_capacity *= un->un_sys_blocksize;
22452 	media_capacity /= lbasize;
22453 	media_info.dki_capacity = media_capacity;
22454 
22455 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
22456 		rval = EFAULT;
22457 		/* Put goto. Anybody might add some code below in future */
22458 		goto done;
22459 	}
22460 done:
22461 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
22462 	kmem_free(rqbuf, SENSE_LENGTH);
22463 	return (rval);
22464 }
22465 
22466 
22467 /*
22468  *    Function: sd_dkio_get_geometry
22469  *
22470  * Description: This routine is the driver entry point for handling user
22471  *		requests to get the device geometry (DKIOCGGEOM).
22472  *
22473  *   Arguments: dev  - the device number
22474  *		arg  - pointer to user provided dk_geom structure specifying
22475  *			the controller's notion of the current geometry.
22476  *		flag - this argument is a pass through to ddi_copyxxx()
22477  *		       directly from the mode argument of ioctl().
22478  *		geom_validated - flag indicating if the device geometry has been
22479  *				 previously validated in the sdioctl routine.
22480  *
22481  * Return Code: 0
22482  *		EFAULT
22483  *		ENXIO
22484  *		EIO
22485  */
22486 
22487 static int
22488 sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag, int geom_validated)
22489 {
22490 	struct sd_lun	*un = NULL;
22491 	struct dk_geom	*tmp_geom = NULL;
22492 	int		rval = 0;
22493 
22494 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22495 		return (ENXIO);
22496 	}
22497 
22498 	if (geom_validated == FALSE) {
22499 		/*
22500 		 * sd_validate_geometry does not spin a disk up
22501 		 * if it was spun down. We need to make sure it
22502 		 * is ready.
22503 		 */
22504 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22505 			return (rval);
22506 		}
22507 		mutex_enter(SD_MUTEX(un));
22508 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
22509 		mutex_exit(SD_MUTEX(un));
22510 	}
22511 	if (rval)
22512 		return (rval);
22513 
22514 	/*
22515 	 * It is possible that un_solaris_size is 0(uninitialized)
22516 	 * after sd_unit_attach. Reservation conflict may cause the
22517 	 * above situation. Thus, the zero check of un_solaris_size
22518 	 * should occur after the sd_validate_geometry() call.
22519 	 */
22520 #if defined(__i386) || defined(__amd64)
22521 	if (un->un_solaris_size == 0) {
22522 		return (EIO);
22523 	}
22524 #endif
22525 
22526 	/*
22527 	 * Make a local copy of the soft state geometry to avoid some potential
22528 	 * race conditions associated with holding the mutex and updating the
22529 	 * write_reinstruct value
22530 	 */
22531 	tmp_geom = kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
22532 	mutex_enter(SD_MUTEX(un));
22533 	bcopy(&un->un_g, tmp_geom, sizeof (struct dk_geom));
22534 	mutex_exit(SD_MUTEX(un));
22535 
22536 	if (tmp_geom->dkg_write_reinstruct == 0) {
22537 		tmp_geom->dkg_write_reinstruct =
22538 		    (int)((int)(tmp_geom->dkg_nsect * tmp_geom->dkg_rpm *
22539 		    sd_rot_delay) / (int)60000);
22540 	}
22541 
22542 	rval = ddi_copyout(tmp_geom, (void *)arg, sizeof (struct dk_geom),
22543 	    flag);
22544 	if (rval != 0) {
22545 		rval = EFAULT;
22546 	}
22547 
22548 	kmem_free(tmp_geom, sizeof (struct dk_geom));
22549 	return (rval);
22550 
22551 }
22552 
22553 
22554 /*
22555  *    Function: sd_dkio_set_geometry
22556  *
22557  * Description: This routine is the driver entry point for handling user
22558  *		requests to set the device geometry (DKIOCSGEOM). The actual
22559  *		device geometry is not updated, just the driver "notion" of it.
22560  *
22561  *   Arguments: dev  - the device number
22562  *		arg  - pointer to user provided dk_geom structure used to set
22563  *			the controller's notion of the current geometry.
22564  *		flag - this argument is a pass through to ddi_copyxxx()
22565  *		       directly from the mode argument of ioctl().
22566  *
22567  * Return Code: 0
22568  *		EFAULT
22569  *		ENXIO
22570  *		EIO
22571  */
22572 
22573 static int
22574 sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag)
22575 {
22576 	struct sd_lun	*un = NULL;
22577 	struct dk_geom	*tmp_geom;
22578 	struct dk_map	*lp;
22579 	int		rval = 0;
22580 	int		i;
22581 
22582 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22583 		return (ENXIO);
22584 	}
22585 
22586 	/*
22587 	 * Make sure there is no reservation conflict on the lun.
22588 	 */
22589 	if (sd_send_scsi_TEST_UNIT_READY(un, 0) == EACCES) {
22590 		return (EACCES);
22591 	}
22592 
22593 #if defined(__i386) || defined(__amd64)
22594 	if (un->un_solaris_size == 0) {
22595 		return (EIO);
22596 	}
22597 #endif
22598 
22599 	/*
22600 	 * We need to copy the user specified geometry into local
22601 	 * storage and then update the softstate. We don't want to hold
22602 	 * the mutex and copyin directly from the user to the soft state
22603 	 */
22604 	tmp_geom = (struct dk_geom *)
22605 	    kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
22606 	rval = ddi_copyin(arg, tmp_geom, sizeof (struct dk_geom), flag);
22607 	if (rval != 0) {
22608 		kmem_free(tmp_geom, sizeof (struct dk_geom));
22609 		return (EFAULT);
22610 	}
22611 
22612 	mutex_enter(SD_MUTEX(un));
22613 	bcopy(tmp_geom, &un->un_g, sizeof (struct dk_geom));
22614 	for (i = 0; i < NDKMAP; i++) {
22615 		lp  = &un->un_map[i];
22616 		un->un_offset[i] =
22617 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
22618 #if defined(__i386) || defined(__amd64)
22619 		un->un_offset[i] += un->un_solaris_offset;
22620 #endif
22621 	}
22622 	un->un_f_geometry_is_valid = FALSE;
22623 	mutex_exit(SD_MUTEX(un));
22624 	kmem_free(tmp_geom, sizeof (struct dk_geom));
22625 
22626 	return (rval);
22627 }
22628 
22629 
22630 /*
22631  *    Function: sd_dkio_get_partition
22632  *
22633  * Description: This routine is the driver entry point for handling user
22634  *		requests to get the partition table (DKIOCGAPART).
22635  *
22636  *   Arguments: dev  - the device number
22637  *		arg  - pointer to user provided dk_allmap structure specifying
22638  *			the controller's notion of the current partition table.
22639  *		flag - this argument is a pass through to ddi_copyxxx()
22640  *		       directly from the mode argument of ioctl().
22641  *		geom_validated - flag indicating if the device geometry has been
22642  *				 previously validated in the sdioctl routine.
22643  *
22644  * Return Code: 0
22645  *		EFAULT
22646  *		ENXIO
22647  *		EIO
22648  */
22649 
22650 static int
22651 sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag, int geom_validated)
22652 {
22653 	struct sd_lun	*un = NULL;
22654 	int		rval = 0;
22655 	int		size;
22656 
22657 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22658 		return (ENXIO);
22659 	}
22660 
22661 	/*
22662 	 * Make sure the geometry is valid before getting the partition
22663 	 * information.
22664 	 */
22665 	mutex_enter(SD_MUTEX(un));
22666 	if (geom_validated == FALSE) {
22667 		/*
22668 		 * sd_validate_geometry does not spin a disk up
22669 		 * if it was spun down. We need to make sure it
22670 		 * is ready before validating the geometry.
22671 		 */
22672 		mutex_exit(SD_MUTEX(un));
22673 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22674 			return (rval);
22675 		}
22676 		mutex_enter(SD_MUTEX(un));
22677 
22678 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
22679 			mutex_exit(SD_MUTEX(un));
22680 			return (rval);
22681 		}
22682 	}
22683 	mutex_exit(SD_MUTEX(un));
22684 
22685 	/*
22686 	 * It is possible that un_solaris_size is 0(uninitialized)
22687 	 * after sd_unit_attach. Reservation conflict may cause the
22688 	 * above situation. Thus, the zero check of un_solaris_size
22689 	 * should occur after the sd_validate_geometry() call.
22690 	 */
22691 #if defined(__i386) || defined(__amd64)
22692 	if (un->un_solaris_size == 0) {
22693 		return (EIO);
22694 	}
22695 #endif
22696 
22697 #ifdef _MULTI_DATAMODEL
22698 	switch (ddi_model_convert_from(flag & FMODELS)) {
22699 	case DDI_MODEL_ILP32: {
22700 		struct dk_map32 dk_map32[NDKMAP];
22701 		int		i;
22702 
22703 		for (i = 0; i < NDKMAP; i++) {
22704 			dk_map32[i].dkl_cylno = un->un_map[i].dkl_cylno;
22705 			dk_map32[i].dkl_nblk  = un->un_map[i].dkl_nblk;
22706 		}
22707 		size = NDKMAP * sizeof (struct dk_map32);
22708 		rval = ddi_copyout(dk_map32, (void *)arg, size, flag);
22709 		if (rval != 0) {
22710 			rval = EFAULT;
22711 		}
22712 		break;
22713 	}
22714 	case DDI_MODEL_NONE:
22715 		size = NDKMAP * sizeof (struct dk_map);
22716 		rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
22717 		if (rval != 0) {
22718 			rval = EFAULT;
22719 		}
22720 		break;
22721 	}
22722 #else /* ! _MULTI_DATAMODEL */
22723 	size = NDKMAP * sizeof (struct dk_map);
22724 	rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
22725 	if (rval != 0) {
22726 		rval = EFAULT;
22727 	}
22728 #endif /* _MULTI_DATAMODEL */
22729 	return (rval);
22730 }
22731 
22732 
22733 /*
22734  *    Function: sd_dkio_set_partition
22735  *
22736  * Description: This routine is the driver entry point for handling user
22737  *		requests to set the partition table (DKIOCSAPART). The actual
22738  *		device partition is not updated.
22739  *
22740  *   Arguments: dev  - the device number
22741  *		arg  - pointer to user provided dk_allmap structure used to set
22742  *			the controller's notion of the partition table.
22743  *		flag - this argument is a pass through to ddi_copyxxx()
22744  *		       directly from the mode argument of ioctl().
22745  *
22746  * Return Code: 0
22747  *		EINVAL
22748  *		EFAULT
22749  *		ENXIO
22750  *		EIO
22751  */
22752 
22753 static int
22754 sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag)
22755 {
22756 	struct sd_lun	*un = NULL;
22757 	struct dk_map	dk_map[NDKMAP];
22758 	struct dk_map	*lp;
22759 	int		rval = 0;
22760 	int		size;
22761 	int		i;
22762 #if defined(_SUNOS_VTOC_16)
22763 	struct dkl_partition	*vp;
22764 #endif
22765 
22766 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22767 		return (ENXIO);
22768 	}
22769 
22770 	/*
22771 	 * Set the map for all logical partitions.  We lock
22772 	 * the priority just to make sure an interrupt doesn't
22773 	 * come in while the map is half updated.
22774 	 */
22775 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_solaris_size))
22776 	mutex_enter(SD_MUTEX(un));
22777 	if (un->un_blockcount > DK_MAX_BLOCKS) {
22778 		mutex_exit(SD_MUTEX(un));
22779 		return (ENOTSUP);
22780 	}
22781 	mutex_exit(SD_MUTEX(un));
22782 
22783 	/*
22784 	 * Make sure there is no reservation conflict on the lun.
22785 	 */
22786 	if (sd_send_scsi_TEST_UNIT_READY(un, 0) == EACCES) {
22787 		return (EACCES);
22788 	}
22789 
22790 #if defined(__i386) || defined(__amd64)
22791 	if (un->un_solaris_size == 0) {
22792 		return (EIO);
22793 	}
22794 #endif
22795 
22796 #ifdef _MULTI_DATAMODEL
22797 	switch (ddi_model_convert_from(flag & FMODELS)) {
22798 	case DDI_MODEL_ILP32: {
22799 		struct dk_map32 dk_map32[NDKMAP];
22800 
22801 		size = NDKMAP * sizeof (struct dk_map32);
22802 		rval = ddi_copyin((void *)arg, dk_map32, size, flag);
22803 		if (rval != 0) {
22804 			return (EFAULT);
22805 		}
22806 		for (i = 0; i < NDKMAP; i++) {
22807 			dk_map[i].dkl_cylno = dk_map32[i].dkl_cylno;
22808 			dk_map[i].dkl_nblk  = dk_map32[i].dkl_nblk;
22809 		}
22810 		break;
22811 	}
22812 	case DDI_MODEL_NONE:
22813 		size = NDKMAP * sizeof (struct dk_map);
22814 		rval = ddi_copyin((void *)arg, dk_map, size, flag);
22815 		if (rval != 0) {
22816 			return (EFAULT);
22817 		}
22818 		break;
22819 	}
22820 #else /* ! _MULTI_DATAMODEL */
22821 	size = NDKMAP * sizeof (struct dk_map);
22822 	rval = ddi_copyin((void *)arg, dk_map, size, flag);
22823 	if (rval != 0) {
22824 		return (EFAULT);
22825 	}
22826 #endif /* _MULTI_DATAMODEL */
22827 
22828 	mutex_enter(SD_MUTEX(un));
22829 	/* Note: The size used in this bcopy is set based upon the data model */
22830 	bcopy(dk_map, un->un_map, size);
22831 #if defined(_SUNOS_VTOC_16)
22832 	vp = (struct dkl_partition *)&(un->un_vtoc);
22833 #endif	/* defined(_SUNOS_VTOC_16) */
22834 	for (i = 0; i < NDKMAP; i++) {
22835 		lp  = &un->un_map[i];
22836 		un->un_offset[i] =
22837 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
22838 #if defined(_SUNOS_VTOC_16)
22839 		vp->p_start = un->un_offset[i];
22840 		vp->p_size = lp->dkl_nblk;
22841 		vp++;
22842 #endif	/* defined(_SUNOS_VTOC_16) */
22843 #if defined(__i386) || defined(__amd64)
22844 		un->un_offset[i] += un->un_solaris_offset;
22845 #endif
22846 	}
22847 	mutex_exit(SD_MUTEX(un));
22848 	return (rval);
22849 }
22850 
22851 
22852 /*
22853  *    Function: sd_dkio_get_vtoc
22854  *
22855  * Description: This routine is the driver entry point for handling user
22856  *		requests to get the current volume table of contents
22857  *		(DKIOCGVTOC).
22858  *
22859  *   Arguments: dev  - the device number
22860  *		arg  - pointer to user provided vtoc structure specifying
22861  *			the current vtoc.
22862  *		flag - this argument is a pass through to ddi_copyxxx()
22863  *		       directly from the mode argument of ioctl().
22864  *		geom_validated - flag indicating if the device geometry has been
22865  *				 previously validated in the sdioctl routine.
22866  *
22867  * Return Code: 0
22868  *		EFAULT
22869  *		ENXIO
22870  *		EIO
22871  */
22872 
22873 static int
22874 sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag, int geom_validated)
22875 {
22876 	struct sd_lun	*un = NULL;
22877 #if defined(_SUNOS_VTOC_8)
22878 	struct vtoc	user_vtoc;
22879 #endif	/* defined(_SUNOS_VTOC_8) */
22880 	int		rval = 0;
22881 
22882 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22883 		return (ENXIO);
22884 	}
22885 
22886 	mutex_enter(SD_MUTEX(un));
22887 	if (geom_validated == FALSE) {
22888 		/*
22889 		 * sd_validate_geometry does not spin a disk up
22890 		 * if it was spun down. We need to make sure it
22891 		 * is ready.
22892 		 */
22893 		mutex_exit(SD_MUTEX(un));
22894 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22895 			return (rval);
22896 		}
22897 		mutex_enter(SD_MUTEX(un));
22898 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
22899 			mutex_exit(SD_MUTEX(un));
22900 			return (rval);
22901 		}
22902 	}
22903 
22904 #if defined(_SUNOS_VTOC_8)
22905 	sd_build_user_vtoc(un, &user_vtoc);
22906 	mutex_exit(SD_MUTEX(un));
22907 
22908 #ifdef _MULTI_DATAMODEL
22909 	switch (ddi_model_convert_from(flag & FMODELS)) {
22910 	case DDI_MODEL_ILP32: {
22911 		struct vtoc32 user_vtoc32;
22912 
22913 		vtoctovtoc32(user_vtoc, user_vtoc32);
22914 		if (ddi_copyout(&user_vtoc32, (void *)arg,
22915 		    sizeof (struct vtoc32), flag)) {
22916 			return (EFAULT);
22917 		}
22918 		break;
22919 	}
22920 
22921 	case DDI_MODEL_NONE:
22922 		if (ddi_copyout(&user_vtoc, (void *)arg,
22923 		    sizeof (struct vtoc), flag)) {
22924 			return (EFAULT);
22925 		}
22926 		break;
22927 	}
22928 #else /* ! _MULTI_DATAMODEL */
22929 	if (ddi_copyout(&user_vtoc, (void *)arg, sizeof (struct vtoc), flag)) {
22930 		return (EFAULT);
22931 	}
22932 #endif /* _MULTI_DATAMODEL */
22933 
22934 #elif defined(_SUNOS_VTOC_16)
22935 	mutex_exit(SD_MUTEX(un));
22936 
22937 #ifdef _MULTI_DATAMODEL
22938 	/*
22939 	 * The un_vtoc structure is a "struct dk_vtoc"  which is always
22940 	 * 32-bit to maintain compatibility with existing on-disk
22941 	 * structures.  Thus, we need to convert the structure when copying
22942 	 * it out to a datamodel-dependent "struct vtoc" in a 64-bit
22943 	 * program.  If the target is a 32-bit program, then no conversion
22944 	 * is necessary.
22945 	 */
22946 	/* LINTED: logical expression always true: op "||" */
22947 	ASSERT(sizeof (un->un_vtoc) == sizeof (struct vtoc32));
22948 	switch (ddi_model_convert_from(flag & FMODELS)) {
22949 	case DDI_MODEL_ILP32:
22950 		if (ddi_copyout(&(un->un_vtoc), (void *)arg,
22951 		    sizeof (un->un_vtoc), flag)) {
22952 			return (EFAULT);
22953 		}
22954 		break;
22955 
22956 	case DDI_MODEL_NONE: {
22957 		struct vtoc user_vtoc;
22958 
22959 		vtoc32tovtoc(un->un_vtoc, user_vtoc);
22960 		if (ddi_copyout(&user_vtoc, (void *)arg,
22961 		    sizeof (struct vtoc), flag)) {
22962 			return (EFAULT);
22963 		}
22964 		break;
22965 	}
22966 	}
22967 #else /* ! _MULTI_DATAMODEL */
22968 	if (ddi_copyout(&(un->un_vtoc), (void *)arg, sizeof (un->un_vtoc),
22969 	    flag)) {
22970 		return (EFAULT);
22971 	}
22972 #endif /* _MULTI_DATAMODEL */
22973 #else
22974 #error "No VTOC format defined."
22975 #endif
22976 
22977 	return (rval);
22978 }
22979 
22980 static int
22981 sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag)
22982 {
22983 	struct sd_lun	*un = NULL;
22984 	dk_efi_t	user_efi;
22985 	int		rval = 0;
22986 	void		*buffer;
22987 
22988 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
22989 		return (ENXIO);
22990 
22991 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
22992 		return (EFAULT);
22993 
22994 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
22995 
22996 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
22997 	    (user_efi.dki_length > un->un_max_xfer_size))
22998 		return (EINVAL);
22999 
23000 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
23001 	rval = sd_send_scsi_READ(un, buffer, user_efi.dki_length,
23002 	    user_efi.dki_lba, SD_PATH_DIRECT);
23003 	if (rval == 0 && ddi_copyout(buffer, user_efi.dki_data,
23004 	    user_efi.dki_length, flag) != 0)
23005 		rval = EFAULT;
23006 
23007 	kmem_free(buffer, user_efi.dki_length);
23008 	return (rval);
23009 }
23010 
23011 #if defined(_SUNOS_VTOC_8)
23012 /*
23013  *    Function: sd_build_user_vtoc
23014  *
23015  * Description: This routine populates a pass by reference variable with the
23016  *		current volume table of contents.
23017  *
23018  *   Arguments: un - driver soft state (unit) structure
23019  *		user_vtoc - pointer to vtoc structure to be populated
23020  */
23021 
23022 static void
23023 sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
23024 {
23025 	struct dk_map2		*lpart;
23026 	struct dk_map		*lmap;
23027 	struct partition	*vpart;
23028 	int			nblks;
23029 	int			i;
23030 
23031 	ASSERT(mutex_owned(SD_MUTEX(un)));
23032 
23033 	/*
23034 	 * Return vtoc structure fields in the provided VTOC area, addressed
23035 	 * by *vtoc.
23036 	 */
23037 	bzero(user_vtoc, sizeof (struct vtoc));
23038 	user_vtoc->v_bootinfo[0] = un->un_vtoc.v_bootinfo[0];
23039 	user_vtoc->v_bootinfo[1] = un->un_vtoc.v_bootinfo[1];
23040 	user_vtoc->v_bootinfo[2] = un->un_vtoc.v_bootinfo[2];
23041 	user_vtoc->v_sanity	= VTOC_SANE;
23042 	user_vtoc->v_version	= un->un_vtoc.v_version;
23043 	bcopy(un->un_vtoc.v_volume, user_vtoc->v_volume, LEN_DKL_VVOL);
23044 	user_vtoc->v_sectorsz = un->un_sys_blocksize;
23045 	user_vtoc->v_nparts = un->un_vtoc.v_nparts;
23046 	bcopy(un->un_vtoc.v_reserved, user_vtoc->v_reserved,
23047 	    sizeof (un->un_vtoc.v_reserved));
23048 	/*
23049 	 * Convert partitioning information.
23050 	 *
23051 	 * Note the conversion from starting cylinder number
23052 	 * to starting sector number.
23053 	 */
23054 	lmap = un->un_map;
23055 	lpart = (struct dk_map2 *)un->un_vtoc.v_part;
23056 	vpart = user_vtoc->v_part;
23057 
23058 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
23059 
23060 	for (i = 0; i < V_NUMPAR; i++) {
23061 		vpart->p_tag	= lpart->p_tag;
23062 		vpart->p_flag	= lpart->p_flag;
23063 		vpart->p_start	= lmap->dkl_cylno * nblks;
23064 		vpart->p_size	= lmap->dkl_nblk;
23065 		lmap++;
23066 		lpart++;
23067 		vpart++;
23068 
23069 		/* (4364927) */
23070 		user_vtoc->timestamp[i] = (time_t)un->un_vtoc.v_timestamp[i];
23071 	}
23072 
23073 	bcopy(un->un_asciilabel, user_vtoc->v_asciilabel, LEN_DKL_ASCII);
23074 }
23075 #endif
23076 
23077 static int
23078 sd_dkio_partition(dev_t dev, caddr_t arg, int flag)
23079 {
23080 	struct sd_lun		*un = NULL;
23081 	struct partition64	p64;
23082 	int			rval = 0;
23083 	uint_t			nparts;
23084 	efi_gpe_t		*partitions;
23085 	efi_gpt_t		*buffer;
23086 	diskaddr_t		gpe_lba;
23087 
23088 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23089 		return (ENXIO);
23090 	}
23091 
23092 	if (ddi_copyin((const void *)arg, &p64,
23093 	    sizeof (struct partition64), flag)) {
23094 		return (EFAULT);
23095 	}
23096 
23097 	buffer = kmem_alloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
23098 	rval = sd_send_scsi_READ(un, buffer, DEV_BSIZE,
23099 		1, SD_PATH_DIRECT);
23100 	if (rval != 0)
23101 		goto done_error;
23102 
23103 	sd_swap_efi_gpt(buffer);
23104 
23105 	if ((rval = sd_validate_efi(buffer)) != 0)
23106 		goto done_error;
23107 
23108 	nparts = buffer->efi_gpt_NumberOfPartitionEntries;
23109 	gpe_lba = buffer->efi_gpt_PartitionEntryLBA;
23110 	if (p64.p_partno > nparts) {
23111 		/* couldn't find it */
23112 		rval = ESRCH;
23113 		goto done_error;
23114 	}
23115 	/*
23116 	 * if we're dealing with a partition that's out of the normal
23117 	 * 16K block, adjust accordingly
23118 	 */
23119 	gpe_lba += p64.p_partno / sizeof (efi_gpe_t);
23120 	rval = sd_send_scsi_READ(un, buffer, EFI_MIN_ARRAY_SIZE,
23121 			gpe_lba, SD_PATH_DIRECT);
23122 	if (rval) {
23123 		goto done_error;
23124 	}
23125 	partitions = (efi_gpe_t *)buffer;
23126 
23127 	sd_swap_efi_gpe(nparts, partitions);
23128 
23129 	partitions += p64.p_partno;
23130 	bcopy(&partitions->efi_gpe_PartitionTypeGUID, &p64.p_type,
23131 	    sizeof (struct uuid));
23132 	p64.p_start = partitions->efi_gpe_StartingLBA;
23133 	p64.p_size = partitions->efi_gpe_EndingLBA -
23134 			p64.p_start + 1;
23135 
23136 	if (ddi_copyout(&p64, (void *)arg, sizeof (struct partition64), flag))
23137 		rval = EFAULT;
23138 
23139 done_error:
23140 	kmem_free(buffer, EFI_MIN_ARRAY_SIZE);
23141 	return (rval);
23142 }
23143 
23144 
23145 /*
23146  *    Function: sd_dkio_set_vtoc
23147  *
23148  * Description: This routine is the driver entry point for handling user
23149  *		requests to set the current volume table of contents
23150  *		(DKIOCSVTOC).
23151  *
23152  *   Arguments: dev  - the device number
23153  *		arg  - pointer to user provided vtoc structure used to set the
23154  *			current vtoc.
23155  *		flag - this argument is a pass through to ddi_copyxxx()
23156  *		       directly from the mode argument of ioctl().
23157  *
23158  * Return Code: 0
23159  *		EFAULT
23160  *		ENXIO
23161  *		EINVAL
23162  *		ENOTSUP
23163  */
23164 
23165 static int
23166 sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag)
23167 {
23168 	struct sd_lun	*un = NULL;
23169 	struct vtoc	user_vtoc;
23170 	int		rval = 0;
23171 
23172 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23173 		return (ENXIO);
23174 	}
23175 
23176 #if defined(__i386) || defined(__amd64)
23177 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
23178 		return (EINVAL);
23179 	}
23180 #endif
23181 
23182 #ifdef _MULTI_DATAMODEL
23183 	switch (ddi_model_convert_from(flag & FMODELS)) {
23184 	case DDI_MODEL_ILP32: {
23185 		struct vtoc32 user_vtoc32;
23186 
23187 		if (ddi_copyin((const void *)arg, &user_vtoc32,
23188 		    sizeof (struct vtoc32), flag)) {
23189 			return (EFAULT);
23190 		}
23191 		vtoc32tovtoc(user_vtoc32, user_vtoc);
23192 		break;
23193 	}
23194 
23195 	case DDI_MODEL_NONE:
23196 		if (ddi_copyin((const void *)arg, &user_vtoc,
23197 		    sizeof (struct vtoc), flag)) {
23198 			return (EFAULT);
23199 		}
23200 		break;
23201 	}
23202 #else /* ! _MULTI_DATAMODEL */
23203 	if (ddi_copyin((const void *)arg, &user_vtoc,
23204 	    sizeof (struct vtoc), flag)) {
23205 		return (EFAULT);
23206 	}
23207 #endif /* _MULTI_DATAMODEL */
23208 
23209 	mutex_enter(SD_MUTEX(un));
23210 	if (un->un_blockcount > DK_MAX_BLOCKS) {
23211 		mutex_exit(SD_MUTEX(un));
23212 		return (ENOTSUP);
23213 	}
23214 	if (un->un_g.dkg_ncyl == 0) {
23215 		mutex_exit(SD_MUTEX(un));
23216 		return (EINVAL);
23217 	}
23218 
23219 	mutex_exit(SD_MUTEX(un));
23220 	sd_clear_efi(un);
23221 	ddi_remove_minor_node(SD_DEVINFO(un), "wd");
23222 	ddi_remove_minor_node(SD_DEVINFO(un), "wd,raw");
23223 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h",
23224 	    S_IFBLK, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23225 	    un->un_node_type, NULL);
23226 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h,raw",
23227 	    S_IFCHR, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23228 	    un->un_node_type, NULL);
23229 	mutex_enter(SD_MUTEX(un));
23230 
23231 	if ((rval = sd_build_label_vtoc(un, &user_vtoc)) == 0) {
23232 		if ((rval = sd_write_label(dev)) == 0) {
23233 			if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT))
23234 			    != 0) {
23235 				SD_ERROR(SD_LOG_IOCTL_DKIO, un,
23236 				    "sd_dkio_set_vtoc: "
23237 				    "Failed validate geometry\n");
23238 			}
23239 		}
23240 	}
23241 
23242 	/*
23243 	 * If sd_build_label_vtoc, or sd_write_label failed above write the
23244 	 * devid anyway, what can it hurt? Also preserve the device id by
23245 	 * writing to the disk acyl for the case where a devid has been
23246 	 * fabricated.
23247 	 */
23248 	if (un->un_f_devid_supported &&
23249 	    (un->un_f_opt_fab_devid == TRUE)) {
23250 		if (un->un_devid == NULL) {
23251 			sd_register_devid(un, SD_DEVINFO(un),
23252 			    SD_TARGET_IS_UNRESERVED);
23253 		} else {
23254 			/*
23255 			 * The device id for this disk has been
23256 			 * fabricated. Fabricated device id's are
23257 			 * managed by storing them in the last 2
23258 			 * available sectors on the drive. The device
23259 			 * id must be preserved by writing it back out
23260 			 * to this location.
23261 			 */
23262 			if (sd_write_deviceid(un) != 0) {
23263 				ddi_devid_free(un->un_devid);
23264 				un->un_devid = NULL;
23265 			}
23266 		}
23267 	}
23268 	mutex_exit(SD_MUTEX(un));
23269 	return (rval);
23270 }
23271 
23272 
23273 /*
23274  *    Function: sd_build_label_vtoc
23275  *
23276  * Description: This routine updates the driver soft state current volume table
23277  *		of contents based on a user specified vtoc.
23278  *
23279  *   Arguments: un - driver soft state (unit) structure
23280  *		user_vtoc - pointer to vtoc structure specifying vtoc to be used
23281  *			    to update the driver soft state.
23282  *
23283  * Return Code: 0
23284  *		EINVAL
23285  */
23286 
23287 static int
23288 sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
23289 {
23290 	struct dk_map		*lmap;
23291 	struct partition	*vpart;
23292 	int			nblks;
23293 #if defined(_SUNOS_VTOC_8)
23294 	int			ncyl;
23295 	struct dk_map2		*lpart;
23296 #endif	/* defined(_SUNOS_VTOC_8) */
23297 	int			i;
23298 
23299 	ASSERT(mutex_owned(SD_MUTEX(un)));
23300 
23301 	/* Sanity-check the vtoc */
23302 	if (user_vtoc->v_sanity != VTOC_SANE ||
23303 	    user_vtoc->v_sectorsz != un->un_sys_blocksize ||
23304 	    user_vtoc->v_nparts != V_NUMPAR) {
23305 		return (EINVAL);
23306 	}
23307 
23308 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
23309 	if (nblks == 0) {
23310 		return (EINVAL);
23311 	}
23312 
23313 #if defined(_SUNOS_VTOC_8)
23314 	vpart = user_vtoc->v_part;
23315 	for (i = 0; i < V_NUMPAR; i++) {
23316 		if ((vpart->p_start % nblks) != 0) {
23317 			return (EINVAL);
23318 		}
23319 		ncyl = vpart->p_start / nblks;
23320 		ncyl += vpart->p_size / nblks;
23321 		if ((vpart->p_size % nblks) != 0) {
23322 			ncyl++;
23323 		}
23324 		if (ncyl > (int)un->un_g.dkg_ncyl) {
23325 			return (EINVAL);
23326 		}
23327 		vpart++;
23328 	}
23329 #endif	/* defined(_SUNOS_VTOC_8) */
23330 
23331 	/* Put appropriate vtoc structure fields into the disk label */
23332 #if defined(_SUNOS_VTOC_16)
23333 	/*
23334 	 * The vtoc is always a 32bit data structure to maintain the
23335 	 * on-disk format. Convert "in place" instead of bcopying it.
23336 	 */
23337 	vtoctovtoc32((*user_vtoc), (*((struct vtoc32 *)&(un->un_vtoc))));
23338 
23339 	/*
23340 	 * in the 16-slice vtoc, starting sectors are expressed in
23341 	 * numbers *relative* to the start of the Solaris fdisk partition.
23342 	 */
23343 	lmap = un->un_map;
23344 	vpart = user_vtoc->v_part;
23345 
23346 	for (i = 0; i < (int)user_vtoc->v_nparts; i++, lmap++, vpart++) {
23347 		lmap->dkl_cylno = vpart->p_start / nblks;
23348 		lmap->dkl_nblk = vpart->p_size;
23349 	}
23350 
23351 #elif defined(_SUNOS_VTOC_8)
23352 
23353 	un->un_vtoc.v_bootinfo[0] = (uint32_t)user_vtoc->v_bootinfo[0];
23354 	un->un_vtoc.v_bootinfo[1] = (uint32_t)user_vtoc->v_bootinfo[1];
23355 	un->un_vtoc.v_bootinfo[2] = (uint32_t)user_vtoc->v_bootinfo[2];
23356 
23357 	un->un_vtoc.v_sanity = (uint32_t)user_vtoc->v_sanity;
23358 	un->un_vtoc.v_version = (uint32_t)user_vtoc->v_version;
23359 
23360 	bcopy(user_vtoc->v_volume, un->un_vtoc.v_volume, LEN_DKL_VVOL);
23361 
23362 	un->un_vtoc.v_nparts = user_vtoc->v_nparts;
23363 
23364 	bcopy(user_vtoc->v_reserved, un->un_vtoc.v_reserved,
23365 	    sizeof (un->un_vtoc.v_reserved));
23366 
23367 	/*
23368 	 * Note the conversion from starting sector number
23369 	 * to starting cylinder number.
23370 	 * Return error if division results in a remainder.
23371 	 */
23372 	lmap = un->un_map;
23373 	lpart = un->un_vtoc.v_part;
23374 	vpart = user_vtoc->v_part;
23375 
23376 	for (i = 0; i < (int)user_vtoc->v_nparts; i++) {
23377 		lpart->p_tag  = vpart->p_tag;
23378 		lpart->p_flag = vpart->p_flag;
23379 		lmap->dkl_cylno = vpart->p_start / nblks;
23380 		lmap->dkl_nblk = vpart->p_size;
23381 
23382 		lmap++;
23383 		lpart++;
23384 		vpart++;
23385 
23386 		/* (4387723) */
23387 #ifdef _LP64
23388 		if (user_vtoc->timestamp[i] > TIME32_MAX) {
23389 			un->un_vtoc.v_timestamp[i] = TIME32_MAX;
23390 		} else {
23391 			un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
23392 		}
23393 #else
23394 		un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
23395 #endif
23396 	}
23397 
23398 	bcopy(user_vtoc->v_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
23399 #else
23400 #error "No VTOC format defined."
23401 #endif
23402 	return (0);
23403 }
23404 
23405 /*
23406  *    Function: sd_clear_efi
23407  *
23408  * Description: This routine clears all EFI labels.
23409  *
23410  *   Arguments: un - driver soft state (unit) structure
23411  *
23412  * Return Code: void
23413  */
23414 
23415 static void
23416 sd_clear_efi(struct sd_lun *un)
23417 {
23418 	efi_gpt_t	*gpt;
23419 	uint_t		lbasize;
23420 	uint64_t	cap;
23421 	int rval;
23422 
23423 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23424 
23425 	mutex_enter(SD_MUTEX(un));
23426 	un->un_reserved = -1;
23427 	mutex_exit(SD_MUTEX(un));
23428 	gpt = kmem_alloc(sizeof (efi_gpt_t), KM_SLEEP);
23429 
23430 	if (sd_send_scsi_READ(un, gpt, DEV_BSIZE, 1, SD_PATH_DIRECT) != 0) {
23431 		goto done;
23432 	}
23433 
23434 	sd_swap_efi_gpt(gpt);
23435 	rval = sd_validate_efi(gpt);
23436 	if (rval == 0) {
23437 		/* clear primary */
23438 		bzero(gpt, sizeof (efi_gpt_t));
23439 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE, 1,
23440 			SD_PATH_DIRECT))) {
23441 			SD_INFO(SD_LOG_IO_PARTITION, un,
23442 				"sd_clear_efi: clear primary label failed\n");
23443 		}
23444 	}
23445 	/* the backup */
23446 	rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
23447 	    SD_PATH_DIRECT);
23448 	if (rval) {
23449 		goto done;
23450 	}
23451 	/*
23452 	 * The MMC standard allows READ CAPACITY to be
23453 	 * inaccurate by a bounded amount (in the interest of
23454 	 * response latency).  As a result, failed READs are
23455 	 * commonplace (due to the reading of metadata and not
23456 	 * data). Depending on the per-Vendor/drive Sense data,
23457 	 * the failed READ can cause many (unnecessary) retries.
23458 	 */
23459 	if ((rval = sd_send_scsi_READ(un, gpt, lbasize,
23460 	    cap - 1, ISCD(un) ? SD_PATH_DIRECT_PRIORITY :
23461 		SD_PATH_DIRECT)) != 0) {
23462 		goto done;
23463 	}
23464 	sd_swap_efi_gpt(gpt);
23465 	rval = sd_validate_efi(gpt);
23466 	if (rval == 0) {
23467 		/* clear backup */
23468 		SD_TRACE(SD_LOG_IOCTL, un, "sd_clear_efi clear backup@%lu\n",
23469 			cap-1);
23470 		bzero(gpt, sizeof (efi_gpt_t));
23471 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE,
23472 		    cap-1, SD_PATH_DIRECT))) {
23473 			SD_INFO(SD_LOG_IO_PARTITION, un,
23474 				"sd_clear_efi: clear backup label failed\n");
23475 		}
23476 	} else {
23477 		/*
23478 		 * Refer to comments related to off-by-1 at the
23479 		 * header of this file
23480 		 */
23481 		if ((rval = sd_send_scsi_READ(un, gpt, lbasize,
23482 		    cap - 2, ISCD(un) ? SD_PATH_DIRECT_PRIORITY :
23483 			SD_PATH_DIRECT)) != 0) {
23484 			goto done;
23485 		}
23486 		sd_swap_efi_gpt(gpt);
23487 		rval = sd_validate_efi(gpt);
23488 		if (rval == 0) {
23489 			/* clear legacy backup EFI label */
23490 			SD_TRACE(SD_LOG_IOCTL, un,
23491 			    "sd_clear_efi clear backup@%lu\n", cap-2);
23492 			bzero(gpt, sizeof (efi_gpt_t));
23493 			if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE,
23494 			    cap-2, SD_PATH_DIRECT))) {
23495 				SD_INFO(SD_LOG_IO_PARTITION,
23496 				    un, "sd_clear_efi: "
23497 				    " clear legacy backup label failed\n");
23498 			}
23499 		}
23500 	}
23501 
23502 done:
23503 	kmem_free(gpt, sizeof (efi_gpt_t));
23504 }
23505 
23506 /*
23507  *    Function: sd_set_vtoc
23508  *
23509  * Description: This routine writes data to the appropriate positions
23510  *
23511  *   Arguments: un - driver soft state (unit) structure
23512  *              dkl  - the data to be written
23513  *
23514  * Return: void
23515  */
23516 
23517 static int
23518 sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl)
23519 {
23520 	void			*shadow_buf;
23521 	uint_t			label_addr;
23522 	int			sec;
23523 	int			blk;
23524 	int			head;
23525 	int			cyl;
23526 	int			rval;
23527 
23528 #if defined(__i386) || defined(__amd64)
23529 	label_addr = un->un_solaris_offset + DK_LABEL_LOC;
23530 #else
23531 	/* Write the primary label at block 0 of the solaris partition. */
23532 	label_addr = 0;
23533 #endif
23534 
23535 	if (NOT_DEVBSIZE(un)) {
23536 		shadow_buf = kmem_zalloc(un->un_tgt_blocksize, KM_SLEEP);
23537 		/*
23538 		 * Read the target's first block.
23539 		 */
23540 		if ((rval = sd_send_scsi_READ(un, shadow_buf,
23541 		    un->un_tgt_blocksize, label_addr,
23542 		    SD_PATH_STANDARD)) != 0) {
23543 			goto exit;
23544 		}
23545 		/*
23546 		 * Copy the contents of the label into the shadow buffer
23547 		 * which is of the size of target block size.
23548 		 */
23549 		bcopy(dkl, shadow_buf, sizeof (struct dk_label));
23550 	}
23551 
23552 	/* Write the primary label */
23553 	if (NOT_DEVBSIZE(un)) {
23554 		rval = sd_send_scsi_WRITE(un, shadow_buf, un->un_tgt_blocksize,
23555 		    label_addr, SD_PATH_STANDARD);
23556 	} else {
23557 		rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
23558 		    label_addr, SD_PATH_STANDARD);
23559 	}
23560 	if (rval != 0) {
23561 		return (rval);
23562 	}
23563 
23564 	/*
23565 	 * Calculate where the backup labels go.  They are always on
23566 	 * the last alternate cylinder, but some older drives put them
23567 	 * on head 2 instead of the last head.	They are always on the
23568 	 * first 5 odd sectors of the appropriate track.
23569 	 *
23570 	 * We have no choice at this point, but to believe that the
23571 	 * disk label is valid.	 Use the geometry of the disk
23572 	 * as described in the label.
23573 	 */
23574 	cyl  = dkl->dkl_ncyl  + dkl->dkl_acyl - 1;
23575 	head = dkl->dkl_nhead - 1;
23576 
23577 	/*
23578 	 * Write and verify the backup labels. Make sure we don't try to
23579 	 * write past the last cylinder.
23580 	 */
23581 	for (sec = 1; ((sec < 5 * 2 + 1) && (sec < dkl->dkl_nsect)); sec += 2) {
23582 		blk = (daddr_t)(
23583 		    (cyl * ((dkl->dkl_nhead * dkl->dkl_nsect) - dkl->dkl_apc)) +
23584 		    (head * dkl->dkl_nsect) + sec);
23585 #if defined(__i386) || defined(__amd64)
23586 		blk += un->un_solaris_offset;
23587 #endif
23588 		if (NOT_DEVBSIZE(un)) {
23589 			uint64_t	tblk;
23590 			/*
23591 			 * Need to read the block first for read modify write.
23592 			 */
23593 			tblk = (uint64_t)blk;
23594 			blk = (int)((tblk * un->un_sys_blocksize) /
23595 			    un->un_tgt_blocksize);
23596 			if ((rval = sd_send_scsi_READ(un, shadow_buf,
23597 			    un->un_tgt_blocksize, blk,
23598 			    SD_PATH_STANDARD)) != 0) {
23599 				goto exit;
23600 			}
23601 			/*
23602 			 * Modify the shadow buffer with the label.
23603 			 */
23604 			bcopy(dkl, shadow_buf, sizeof (struct dk_label));
23605 			rval = sd_send_scsi_WRITE(un, shadow_buf,
23606 			    un->un_tgt_blocksize, blk, SD_PATH_STANDARD);
23607 		} else {
23608 			rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
23609 			    blk, SD_PATH_STANDARD);
23610 			SD_INFO(SD_LOG_IO_PARTITION, un,
23611 			"sd_set_vtoc: wrote backup label %d\n", blk);
23612 		}
23613 		if (rval != 0) {
23614 			goto exit;
23615 		}
23616 	}
23617 exit:
23618 	if (NOT_DEVBSIZE(un)) {
23619 		kmem_free(shadow_buf, un->un_tgt_blocksize);
23620 	}
23621 	return (rval);
23622 }
23623 
23624 /*
23625  *    Function: sd_clear_vtoc
23626  *
23627  * Description: This routine clears out the VTOC labels.
23628  *
23629  *   Arguments: un - driver soft state (unit) structure
23630  *
23631  * Return: void
23632  */
23633 
23634 static void
23635 sd_clear_vtoc(struct sd_lun *un)
23636 {
23637 	struct dk_label		*dkl;
23638 
23639 	mutex_exit(SD_MUTEX(un));
23640 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
23641 	mutex_enter(SD_MUTEX(un));
23642 	/*
23643 	 * sd_set_vtoc uses these fields in order to figure out
23644 	 * where to overwrite the backup labels
23645 	 */
23646 	dkl->dkl_apc    = un->un_g.dkg_apc;
23647 	dkl->dkl_ncyl   = un->un_g.dkg_ncyl;
23648 	dkl->dkl_acyl   = un->un_g.dkg_acyl;
23649 	dkl->dkl_nhead  = un->un_g.dkg_nhead;
23650 	dkl->dkl_nsect  = un->un_g.dkg_nsect;
23651 	mutex_exit(SD_MUTEX(un));
23652 	(void) sd_set_vtoc(un, dkl);
23653 	kmem_free(dkl, sizeof (struct dk_label));
23654 
23655 	mutex_enter(SD_MUTEX(un));
23656 }
23657 
23658 /*
23659  *    Function: sd_write_label
23660  *
23661  * Description: This routine will validate and write the driver soft state vtoc
23662  *		contents to the device.
23663  *
23664  *   Arguments: dev - the device number
23665  *
23666  * Return Code: the code returned by sd_send_scsi_cmd()
23667  *		0
23668  *		EINVAL
23669  *		ENXIO
23670  *		ENOMEM
23671  */
23672 
23673 static int
23674 sd_write_label(dev_t dev)
23675 {
23676 	struct sd_lun		*un;
23677 	struct dk_label		*dkl;
23678 	short			sum;
23679 	short			*sp;
23680 	int			i;
23681 	int			rval;
23682 
23683 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
23684 	    (un->un_state == SD_STATE_OFFLINE)) {
23685 		return (ENXIO);
23686 	}
23687 	ASSERT(mutex_owned(SD_MUTEX(un)));
23688 	mutex_exit(SD_MUTEX(un));
23689 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
23690 	mutex_enter(SD_MUTEX(un));
23691 
23692 	bcopy(&un->un_vtoc, &dkl->dkl_vtoc, sizeof (struct dk_vtoc));
23693 	dkl->dkl_rpm	= un->un_g.dkg_rpm;
23694 	dkl->dkl_pcyl	= un->un_g.dkg_pcyl;
23695 	dkl->dkl_apc	= un->un_g.dkg_apc;
23696 	dkl->dkl_intrlv = un->un_g.dkg_intrlv;
23697 	dkl->dkl_ncyl	= un->un_g.dkg_ncyl;
23698 	dkl->dkl_acyl	= un->un_g.dkg_acyl;
23699 	dkl->dkl_nhead	= un->un_g.dkg_nhead;
23700 	dkl->dkl_nsect	= un->un_g.dkg_nsect;
23701 
23702 #if defined(_SUNOS_VTOC_8)
23703 	dkl->dkl_obs1	= un->un_g.dkg_obs1;
23704 	dkl->dkl_obs2	= un->un_g.dkg_obs2;
23705 	dkl->dkl_obs3	= un->un_g.dkg_obs3;
23706 	for (i = 0; i < NDKMAP; i++) {
23707 		dkl->dkl_map[i].dkl_cylno = un->un_map[i].dkl_cylno;
23708 		dkl->dkl_map[i].dkl_nblk  = un->un_map[i].dkl_nblk;
23709 	}
23710 	bcopy(un->un_asciilabel, dkl->dkl_asciilabel, LEN_DKL_ASCII);
23711 #elif defined(_SUNOS_VTOC_16)
23712 	dkl->dkl_skew	= un->un_dkg_skew;
23713 #else
23714 #error "No VTOC format defined."
23715 #endif
23716 
23717 	dkl->dkl_magic			= DKL_MAGIC;
23718 	dkl->dkl_write_reinstruct	= un->un_g.dkg_write_reinstruct;
23719 	dkl->dkl_read_reinstruct	= un->un_g.dkg_read_reinstruct;
23720 
23721 	/* Construct checksum for the new disk label */
23722 	sum = 0;
23723 	sp = (short *)dkl;
23724 	i = sizeof (struct dk_label) / sizeof (short);
23725 	while (i--) {
23726 		sum ^= *sp++;
23727 	}
23728 	dkl->dkl_cksum = sum;
23729 
23730 	mutex_exit(SD_MUTEX(un));
23731 
23732 	rval = sd_set_vtoc(un, dkl);
23733 exit:
23734 	kmem_free(dkl, sizeof (struct dk_label));
23735 	mutex_enter(SD_MUTEX(un));
23736 	return (rval);
23737 }
23738 
23739 static int
23740 sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag)
23741 {
23742 	struct sd_lun	*un = NULL;
23743 	dk_efi_t	user_efi;
23744 	int		rval = 0;
23745 	void		*buffer;
23746 	int		valid_efi;
23747 
23748 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
23749 		return (ENXIO);
23750 
23751 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
23752 		return (EFAULT);
23753 
23754 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
23755 
23756 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
23757 	    (user_efi.dki_length > un->un_max_xfer_size))
23758 		return (EINVAL);
23759 
23760 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
23761 	if (ddi_copyin(user_efi.dki_data, buffer, user_efi.dki_length, flag)) {
23762 		rval = EFAULT;
23763 	} else {
23764 		/*
23765 		 * let's clear the vtoc labels and clear the softstate
23766 		 * vtoc.
23767 		 */
23768 		mutex_enter(SD_MUTEX(un));
23769 		if (un->un_vtoc.v_sanity == VTOC_SANE) {
23770 			SD_TRACE(SD_LOG_IO_PARTITION, un,
23771 				"sd_dkio_set_efi: CLEAR VTOC\n");
23772 			sd_clear_vtoc(un);
23773 			bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
23774 			mutex_exit(SD_MUTEX(un));
23775 			ddi_remove_minor_node(SD_DEVINFO(un), "h");
23776 			ddi_remove_minor_node(SD_DEVINFO(un), "h,raw");
23777 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd",
23778 			    S_IFBLK,
23779 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23780 			    un->un_node_type, NULL);
23781 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd,raw",
23782 			    S_IFCHR,
23783 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23784 			    un->un_node_type, NULL);
23785 		} else
23786 			mutex_exit(SD_MUTEX(un));
23787 		rval = sd_send_scsi_WRITE(un, buffer, user_efi.dki_length,
23788 		    user_efi.dki_lba, SD_PATH_DIRECT);
23789 		if (rval == 0) {
23790 			mutex_enter(SD_MUTEX(un));
23791 
23792 			/*
23793 			 * Set the un_reserved for valid efi label.
23794 			 * Function clear_efi in fdisk and efi_write in
23795 			 * libefi both change efi label on disk in 3 steps
23796 			 * 1. Change primary gpt and gpe
23797 			 * 2. Change backup gpe
23798 			 * 3. Change backup gpt, which is one block
23799 			 * We only reread the efi label after the 3rd step,
23800 			 * or there will be warning "primary label corrupt".
23801 			 */
23802 			if (user_efi.dki_length == un->un_tgt_blocksize) {
23803 				un->un_f_geometry_is_valid = FALSE;
23804 				valid_efi = sd_use_efi(un, SD_PATH_DIRECT);
23805 				if ((valid_efi == 0) &&
23806 				    un->un_f_devid_supported &&
23807 				    (un->un_f_opt_fab_devid == TRUE)) {
23808 					if (un->un_devid == NULL) {
23809 						sd_register_devid(un,
23810 						    SD_DEVINFO(un),
23811 						    SD_TARGET_IS_UNRESERVED);
23812 					} else {
23813 						/*
23814 						 * The device id for this disk
23815 						 * has been fabricated. The
23816 						 * device id must be preserved
23817 						 * by writing it back out to
23818 						 * disk.
23819 						 */
23820 						if (sd_write_deviceid(un)
23821 						    != 0) {
23822 							ddi_devid_free(
23823 							    un->un_devid);
23824 							un->un_devid = NULL;
23825 						}
23826 					}
23827 				}
23828 			}
23829 
23830 			mutex_exit(SD_MUTEX(un));
23831 		}
23832 	}
23833 	kmem_free(buffer, user_efi.dki_length);
23834 	return (rval);
23835 }
23836 
23837 /*
23838  *    Function: sd_dkio_get_mboot
23839  *
23840  * Description: This routine is the driver entry point for handling user
23841  *		requests to get the current device mboot (DKIOCGMBOOT)
23842  *
23843  *   Arguments: dev  - the device number
23844  *		arg  - pointer to user provided mboot structure specifying
23845  *			the current mboot.
23846  *		flag - this argument is a pass through to ddi_copyxxx()
23847  *		       directly from the mode argument of ioctl().
23848  *
23849  * Return Code: 0
23850  *		EINVAL
23851  *		EFAULT
23852  *		ENXIO
23853  */
23854 
23855 static int
23856 sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag)
23857 {
23858 	struct sd_lun	*un;
23859 	struct mboot	*mboot;
23860 	int		rval;
23861 	size_t		buffer_size;
23862 
23863 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
23864 	    (un->un_state == SD_STATE_OFFLINE)) {
23865 		return (ENXIO);
23866 	}
23867 
23868 	if (!un->un_f_mboot_supported || arg == NULL) {
23869 		return (EINVAL);
23870 	}
23871 
23872 	/*
23873 	 * Read the mboot block, located at absolute block 0 on the target.
23874 	 */
23875 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct mboot));
23876 
23877 	SD_TRACE(SD_LOG_IO_PARTITION, un,
23878 	    "sd_dkio_get_mboot: allocation size: 0x%x\n", buffer_size);
23879 
23880 	mboot = kmem_zalloc(buffer_size, KM_SLEEP);
23881 	if ((rval = sd_send_scsi_READ(un, mboot, buffer_size, 0,
23882 	    SD_PATH_STANDARD)) == 0) {
23883 		if (ddi_copyout(mboot, (void *)arg,
23884 		    sizeof (struct mboot), flag) != 0) {
23885 			rval = EFAULT;
23886 		}
23887 	}
23888 	kmem_free(mboot, buffer_size);
23889 	return (rval);
23890 }
23891 
23892 
23893 /*
23894  *    Function: sd_dkio_set_mboot
23895  *
23896  * Description: This routine is the driver entry point for handling user
23897  *		requests to validate and set the device master boot
23898  *		(DKIOCSMBOOT).
23899  *
23900  *   Arguments: dev  - the device number
23901  *		arg  - pointer to user provided mboot structure used to set the
23902  *			master boot.
23903  *		flag - this argument is a pass through to ddi_copyxxx()
23904  *		       directly from the mode argument of ioctl().
23905  *
23906  * Return Code: 0
23907  *		EINVAL
23908  *		EFAULT
23909  *		ENXIO
23910  */
23911 
23912 static int
23913 sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag)
23914 {
23915 	struct sd_lun	*un = NULL;
23916 	struct mboot	*mboot = NULL;
23917 	int		rval;
23918 	ushort_t	magic;
23919 
23920 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23921 		return (ENXIO);
23922 	}
23923 
23924 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23925 
23926 	if (!un->un_f_mboot_supported) {
23927 		return (EINVAL);
23928 	}
23929 
23930 	if (arg == NULL) {
23931 		return (EINVAL);
23932 	}
23933 
23934 	mboot = kmem_zalloc(sizeof (struct mboot), KM_SLEEP);
23935 
23936 	if (ddi_copyin((const void *)arg, mboot,
23937 	    sizeof (struct mboot), flag) != 0) {
23938 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23939 		return (EFAULT);
23940 	}
23941 
23942 	/* Is this really a master boot record? */
23943 	magic = LE_16(mboot->signature);
23944 	if (magic != MBB_MAGIC) {
23945 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23946 		return (EINVAL);
23947 	}
23948 
23949 	rval = sd_send_scsi_WRITE(un, mboot, un->un_sys_blocksize, 0,
23950 	    SD_PATH_STANDARD);
23951 
23952 	mutex_enter(SD_MUTEX(un));
23953 #if defined(__i386) || defined(__amd64)
23954 	if (rval == 0) {
23955 		/*
23956 		 * mboot has been written successfully.
23957 		 * update the fdisk and vtoc tables in memory
23958 		 */
23959 		rval = sd_update_fdisk_and_vtoc(un);
23960 		if ((un->un_f_geometry_is_valid == FALSE) || (rval != 0)) {
23961 			mutex_exit(SD_MUTEX(un));
23962 			kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23963 			return (rval);
23964 		}
23965 	}
23966 
23967 #ifdef __lock_lint
23968 	sd_setup_default_geometry(un);
23969 #endif
23970 
23971 #else
23972 	if (rval == 0) {
23973 		/*
23974 		 * mboot has been written successfully.
23975 		 * set up the default geometry and VTOC
23976 		 */
23977 		if (un->un_blockcount <= DK_MAX_BLOCKS)
23978 			sd_setup_default_geometry(un);
23979 	}
23980 #endif
23981 	mutex_exit(SD_MUTEX(un));
23982 	kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23983 	return (rval);
23984 }
23985 
23986 
23987 /*
23988  *    Function: sd_setup_default_geometry
23989  *
23990  * Description: This local utility routine sets the default geometry as part of
23991  *		setting the device mboot.
23992  *
23993  *   Arguments: un - driver soft state (unit) structure
23994  *
23995  * Note: This may be redundant with sd_build_default_label.
23996  */
23997 
23998 static void
23999 sd_setup_default_geometry(struct sd_lun *un)
24000 {
24001 	/* zero out the soft state geometry and partition table. */
24002 	bzero(&un->un_g, sizeof (struct dk_geom));
24003 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
24004 	bzero(un->un_map, NDKMAP * (sizeof (struct dk_map)));
24005 	un->un_asciilabel[0] = '\0';
24006 
24007 	/*
24008 	 * For the rpm, we use the minimum for the disk.
24009 	 * For the head, cyl and number of sector per track,
24010 	 * if the capacity <= 1GB, head = 64, sect = 32.
24011 	 * else head = 255, sect 63
24012 	 * Note: the capacity should be equal to C*H*S values.
24013 	 * This will cause some truncation of size due to
24014 	 * round off errors. For CD-ROMs, this truncation can
24015 	 * have adverse side effects, so returning ncyl and
24016 	 * nhead as 1. The nsect will overflow for most of
24017 	 * CD-ROMs as nsect is of type ushort.
24018 	 */
24019 	if (ISCD(un)) {
24020 		un->un_g.dkg_ncyl = 1;
24021 		un->un_g.dkg_nhead = 1;
24022 		un->un_g.dkg_nsect = un->un_blockcount;
24023 	} else {
24024 		if (un->un_blockcount <= 0x1000) {
24025 			/* Needed for unlabeled SCSI floppies. */
24026 			un->un_g.dkg_nhead = 2;
24027 			un->un_g.dkg_ncyl = 80;
24028 			un->un_g.dkg_pcyl = 80;
24029 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
24030 		} else if (un->un_blockcount <= 0x200000) {
24031 			un->un_g.dkg_nhead = 64;
24032 			un->un_g.dkg_nsect = 32;
24033 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
24034 		} else {
24035 			un->un_g.dkg_nhead = 255;
24036 			un->un_g.dkg_nsect = 63;
24037 			un->un_g.dkg_ncyl = un->un_blockcount / (255 * 63);
24038 		}
24039 		un->un_blockcount = un->un_g.dkg_ncyl *
24040 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
24041 	}
24042 	un->un_g.dkg_acyl = 0;
24043 	un->un_g.dkg_bcyl = 0;
24044 	un->un_g.dkg_intrlv = 1;
24045 	un->un_g.dkg_rpm = 200;
24046 	un->un_g.dkg_read_reinstruct = 0;
24047 	un->un_g.dkg_write_reinstruct = 0;
24048 	if (un->un_g.dkg_pcyl == 0) {
24049 		un->un_g.dkg_pcyl = un->un_g.dkg_ncyl + un->un_g.dkg_acyl;
24050 	}
24051 
24052 	un->un_map['a'-'a'].dkl_cylno = 0;
24053 	un->un_map['a'-'a'].dkl_nblk = un->un_blockcount;
24054 	un->un_map['c'-'a'].dkl_cylno = 0;
24055 	un->un_map['c'-'a'].dkl_nblk = un->un_blockcount;
24056 	un->un_f_geometry_is_valid = FALSE;
24057 }
24058 
24059 
24060 #if defined(__i386) || defined(__amd64)
24061 /*
24062  *    Function: sd_update_fdisk_and_vtoc
24063  *
24064  * Description: This local utility routine updates the device fdisk and vtoc
24065  *		as part of setting the device mboot.
24066  *
24067  *   Arguments: un - driver soft state (unit) structure
24068  *
24069  * Return Code: 0 for success or errno-type return code.
24070  *
24071  *    Note:x86: This looks like a duplicate of sd_validate_geometry(), but
24072  *		these did exist seperately in x86 sd.c!!!
24073  */
24074 
24075 static int
24076 sd_update_fdisk_and_vtoc(struct sd_lun *un)
24077 {
24078 	static char	labelstring[128];
24079 	static char	buf[256];
24080 	char		*label = 0;
24081 	int		count;
24082 	int		label_rc = 0;
24083 	int		gvalid = un->un_f_geometry_is_valid;
24084 	int		fdisk_rval;
24085 	int		lbasize;
24086 	int		capacity;
24087 
24088 	ASSERT(mutex_owned(SD_MUTEX(un)));
24089 
24090 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
24091 		return (EINVAL);
24092 	}
24093 
24094 	if (un->un_f_blockcount_is_valid == FALSE) {
24095 		return (EINVAL);
24096 	}
24097 
24098 #if defined(_SUNOS_VTOC_16)
24099 	/*
24100 	 * Set up the "whole disk" fdisk partition; this should always
24101 	 * exist, regardless of whether the disk contains an fdisk table
24102 	 * or vtoc.
24103 	 */
24104 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
24105 	un->un_map[P0_RAW_DISK].dkl_nblk = un->un_blockcount;
24106 #endif	/* defined(_SUNOS_VTOC_16) */
24107 
24108 	/*
24109 	 * copy the lbasize and capacity so that if they're
24110 	 * reset while we're not holding the SD_MUTEX(un), we will
24111 	 * continue to use valid values after the SD_MUTEX(un) is
24112 	 * reacquired.
24113 	 */
24114 	lbasize  = un->un_tgt_blocksize;
24115 	capacity = un->un_blockcount;
24116 
24117 	/*
24118 	 * refresh the logical and physical geometry caches.
24119 	 * (data from mode sense format/rigid disk geometry pages,
24120 	 * and scsi_ifgetcap("geometry").
24121 	 */
24122 	sd_resync_geom_caches(un, capacity, lbasize, SD_PATH_DIRECT);
24123 
24124 	/*
24125 	 * Only DIRECT ACCESS devices will have Sun labels.
24126 	 * CD's supposedly have a Sun label, too
24127 	 */
24128 	if (un->un_f_vtoc_label_supported) {
24129 		fdisk_rval = sd_read_fdisk(un, capacity, lbasize,
24130 		    SD_PATH_DIRECT);
24131 		if (fdisk_rval == SD_CMD_FAILURE) {
24132 			ASSERT(mutex_owned(SD_MUTEX(un)));
24133 			return (EIO);
24134 		}
24135 
24136 		if (fdisk_rval == SD_CMD_RESERVATION_CONFLICT) {
24137 			ASSERT(mutex_owned(SD_MUTEX(un)));
24138 			return (EACCES);
24139 		}
24140 
24141 		if (un->un_solaris_size <= DK_LABEL_LOC) {
24142 			/*
24143 			 * Found fdisk table but no Solaris partition entry,
24144 			 * so don't call sd_uselabel() and don't create
24145 			 * a default label.
24146 			 */
24147 			label_rc = 0;
24148 			un->un_f_geometry_is_valid = TRUE;
24149 			goto no_solaris_partition;
24150 		}
24151 
24152 #if defined(_SUNOS_VTOC_8)
24153 		label = (char *)un->un_asciilabel;
24154 #elif defined(_SUNOS_VTOC_16)
24155 		label = (char *)un->un_vtoc.v_asciilabel;
24156 #else
24157 #error "No VTOC format defined."
24158 #endif
24159 	} else if (capacity < 0) {
24160 		ASSERT(mutex_owned(SD_MUTEX(un)));
24161 		return (EINVAL);
24162 	}
24163 
24164 	/*
24165 	 * For Removable media We reach here if we have found a
24166 	 * SOLARIS PARTITION.
24167 	 * If un_f_geometry_is_valid is FALSE it indicates that the SOLARIS
24168 	 * PARTITION has changed from the previous one, hence we will setup a
24169 	 * default VTOC in this case.
24170 	 */
24171 	if (un->un_f_geometry_is_valid == FALSE) {
24172 		sd_build_default_label(un);
24173 		label_rc = 0;
24174 	}
24175 
24176 no_solaris_partition:
24177 	if ((!un->un_f_has_removable_media ||
24178 	    (un->un_f_has_removable_media &&
24179 	    un->un_mediastate == DKIO_EJECTED)) &&
24180 		(un->un_state == SD_STATE_NORMAL && !gvalid)) {
24181 		/*
24182 		 * Print out a message indicating who and what we are.
24183 		 * We do this only when we happen to really validate the
24184 		 * geometry. We may call sd_validate_geometry() at other
24185 		 * times, ioctl()'s like Get VTOC in which case we
24186 		 * don't want to print the label.
24187 		 * If the geometry is valid, print the label string,
24188 		 * else print vendor and product info, if available
24189 		 */
24190 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
24191 			SD_INFO(SD_LOG_IOCTL_DKIO, un, "?<%s>\n", label);
24192 		} else {
24193 			mutex_enter(&sd_label_mutex);
24194 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
24195 			    labelstring);
24196 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
24197 			    &labelstring[64]);
24198 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
24199 			    labelstring, &labelstring[64]);
24200 			if (un->un_f_blockcount_is_valid == TRUE) {
24201 				(void) sprintf(&buf[strlen(buf)],
24202 				    ", %" PRIu64 " %u byte blocks\n",
24203 				    un->un_blockcount,
24204 				    un->un_tgt_blocksize);
24205 			} else {
24206 				(void) sprintf(&buf[strlen(buf)],
24207 				    ", (unknown capacity)\n");
24208 			}
24209 			SD_INFO(SD_LOG_IOCTL_DKIO, un, buf);
24210 			mutex_exit(&sd_label_mutex);
24211 		}
24212 	}
24213 
24214 #if defined(_SUNOS_VTOC_16)
24215 	/*
24216 	 * If we have valid geometry, set up the remaining fdisk partitions.
24217 	 * Note that dkl_cylno is not used for the fdisk map entries, so
24218 	 * we set it to an entirely bogus value.
24219 	 */
24220 	for (count = 0; count < FD_NUMPART; count++) {
24221 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
24222 		un->un_map[FDISK_P1 + count].dkl_nblk =
24223 		    un->un_fmap[count].fmap_nblk;
24224 		un->un_offset[FDISK_P1 + count] =
24225 		    un->un_fmap[count].fmap_start;
24226 	}
24227 #endif
24228 
24229 	for (count = 0; count < NDKMAP; count++) {
24230 #if defined(_SUNOS_VTOC_8)
24231 		struct dk_map *lp  = &un->un_map[count];
24232 		un->un_offset[count] =
24233 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
24234 #elif defined(_SUNOS_VTOC_16)
24235 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
24236 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
24237 #else
24238 #error "No VTOC format defined."
24239 #endif
24240 	}
24241 
24242 	ASSERT(mutex_owned(SD_MUTEX(un)));
24243 	return (label_rc);
24244 }
24245 #endif
24246 
24247 
24248 /*
24249  *    Function: sd_check_media
24250  *
24251  * Description: This utility routine implements the functionality for the
24252  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
24253  *		driver state changes from that specified by the user
24254  *		(inserted or ejected). For example, if the user specifies
24255  *		DKIO_EJECTED and the current media state is inserted this
24256  *		routine will immediately return DKIO_INSERTED. However, if the
24257  *		current media state is not inserted the user thread will be
24258  *		blocked until the drive state changes. If DKIO_NONE is specified
24259  *		the user thread will block until a drive state change occurs.
24260  *
24261  *   Arguments: dev  - the device number
24262  *		state  - user pointer to a dkio_state, updated with the current
24263  *			drive state at return.
24264  *
24265  * Return Code: ENXIO
24266  *		EIO
24267  *		EAGAIN
24268  *		EINTR
24269  */
24270 
24271 static int
24272 sd_check_media(dev_t dev, enum dkio_state state)
24273 {
24274 	struct sd_lun		*un = NULL;
24275 	enum dkio_state		prev_state;
24276 	opaque_t		token = NULL;
24277 	int			rval = 0;
24278 
24279 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24280 		return (ENXIO);
24281 	}
24282 
24283 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
24284 
24285 	mutex_enter(SD_MUTEX(un));
24286 
24287 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
24288 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
24289 
24290 	prev_state = un->un_mediastate;
24291 
24292 	/* is there anything to do? */
24293 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
24294 		/*
24295 		 * submit the request to the scsi_watch service;
24296 		 * scsi_media_watch_cb() does the real work
24297 		 */
24298 		mutex_exit(SD_MUTEX(un));
24299 
24300 		/*
24301 		 * This change handles the case where a scsi watch request is
24302 		 * added to a device that is powered down. To accomplish this
24303 		 * we power up the device before adding the scsi watch request,
24304 		 * since the scsi watch sends a TUR directly to the device
24305 		 * which the device cannot handle if it is powered down.
24306 		 */
24307 		if (sd_pm_entry(un) != DDI_SUCCESS) {
24308 			mutex_enter(SD_MUTEX(un));
24309 			goto done;
24310 		}
24311 
24312 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
24313 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
24314 		    (caddr_t)dev);
24315 
24316 		sd_pm_exit(un);
24317 
24318 		mutex_enter(SD_MUTEX(un));
24319 		if (token == NULL) {
24320 			rval = EAGAIN;
24321 			goto done;
24322 		}
24323 
24324 		/*
24325 		 * This is a special case IOCTL that doesn't return
24326 		 * until the media state changes. Routine sdpower
24327 		 * knows about and handles this so don't count it
24328 		 * as an active cmd in the driver, which would
24329 		 * keep the device busy to the pm framework.
24330 		 * If the count isn't decremented the device can't
24331 		 * be powered down.
24332 		 */
24333 		un->un_ncmds_in_driver--;
24334 		ASSERT(un->un_ncmds_in_driver >= 0);
24335 
24336 		/*
24337 		 * if a prior request had been made, this will be the same
24338 		 * token, as scsi_watch was designed that way.
24339 		 */
24340 		un->un_swr_token = token;
24341 		un->un_specified_mediastate = state;
24342 
24343 		/*
24344 		 * now wait for media change
24345 		 * we will not be signalled unless mediastate == state but it is
24346 		 * still better to test for this condition, since there is a
24347 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
24348 		 */
24349 		SD_TRACE(SD_LOG_COMMON, un,
24350 		    "sd_check_media: waiting for media state change\n");
24351 		while (un->un_mediastate == state) {
24352 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
24353 				SD_TRACE(SD_LOG_COMMON, un,
24354 				    "sd_check_media: waiting for media state "
24355 				    "was interrupted\n");
24356 				un->un_ncmds_in_driver++;
24357 				rval = EINTR;
24358 				goto done;
24359 			}
24360 			SD_TRACE(SD_LOG_COMMON, un,
24361 			    "sd_check_media: received signal, state=%x\n",
24362 			    un->un_mediastate);
24363 		}
24364 		/*
24365 		 * Inc the counter to indicate the device once again
24366 		 * has an active outstanding cmd.
24367 		 */
24368 		un->un_ncmds_in_driver++;
24369 	}
24370 
24371 	/* invalidate geometry */
24372 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
24373 		sr_ejected(un);
24374 	}
24375 
24376 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
24377 		uint64_t	capacity;
24378 		uint_t		lbasize;
24379 
24380 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
24381 		mutex_exit(SD_MUTEX(un));
24382 		/*
24383 		 * Since the following routines use SD_PATH_DIRECT, we must
24384 		 * call PM directly before the upcoming disk accesses. This
24385 		 * may cause the disk to be power/spin up.
24386 		 */
24387 
24388 		if (sd_pm_entry(un) == DDI_SUCCESS) {
24389 			rval = sd_send_scsi_READ_CAPACITY(un,
24390 			    &capacity,
24391 			    &lbasize, SD_PATH_DIRECT);
24392 			if (rval != 0) {
24393 				sd_pm_exit(un);
24394 				mutex_enter(SD_MUTEX(un));
24395 				goto done;
24396 			}
24397 		} else {
24398 			rval = EIO;
24399 			mutex_enter(SD_MUTEX(un));
24400 			goto done;
24401 		}
24402 		mutex_enter(SD_MUTEX(un));
24403 
24404 		sd_update_block_info(un, lbasize, capacity);
24405 
24406 		un->un_f_geometry_is_valid	= FALSE;
24407 		(void) sd_validate_geometry(un, SD_PATH_DIRECT);
24408 
24409 		mutex_exit(SD_MUTEX(un));
24410 		rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
24411 		    SD_PATH_DIRECT);
24412 		sd_pm_exit(un);
24413 
24414 		mutex_enter(SD_MUTEX(un));
24415 	}
24416 done:
24417 	un->un_f_watcht_stopped = FALSE;
24418 	if (un->un_swr_token) {
24419 		/*
24420 		 * Use of this local token and the mutex ensures that we avoid
24421 		 * some race conditions associated with terminating the
24422 		 * scsi watch.
24423 		 */
24424 		token = un->un_swr_token;
24425 		un->un_swr_token = (opaque_t)NULL;
24426 		mutex_exit(SD_MUTEX(un));
24427 		(void) scsi_watch_request_terminate(token,
24428 		    SCSI_WATCH_TERMINATE_WAIT);
24429 		mutex_enter(SD_MUTEX(un));
24430 	}
24431 
24432 	/*
24433 	 * Update the capacity kstat value, if no media previously
24434 	 * (capacity kstat is 0) and a media has been inserted
24435 	 * (un_f_blockcount_is_valid == TRUE)
24436 	 */
24437 	if (un->un_errstats) {
24438 		struct sd_errstats	*stp = NULL;
24439 
24440 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
24441 		if ((stp->sd_capacity.value.ui64 == 0) &&
24442 		    (un->un_f_blockcount_is_valid == TRUE)) {
24443 			stp->sd_capacity.value.ui64 =
24444 			    (uint64_t)((uint64_t)un->un_blockcount *
24445 			    un->un_sys_blocksize);
24446 		}
24447 	}
24448 	mutex_exit(SD_MUTEX(un));
24449 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
24450 	return (rval);
24451 }
24452 
24453 
24454 /*
24455  *    Function: sd_delayed_cv_broadcast
24456  *
24457  * Description: Delayed cv_broadcast to allow for target to recover from media
24458  *		insertion.
24459  *
24460  *   Arguments: arg - driver soft state (unit) structure
24461  */
24462 
24463 static void
24464 sd_delayed_cv_broadcast(void *arg)
24465 {
24466 	struct sd_lun *un = arg;
24467 
24468 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
24469 
24470 	mutex_enter(SD_MUTEX(un));
24471 	un->un_dcvb_timeid = NULL;
24472 	cv_broadcast(&un->un_state_cv);
24473 	mutex_exit(SD_MUTEX(un));
24474 }
24475 
24476 
24477 /*
24478  *    Function: sd_media_watch_cb
24479  *
24480  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
24481  *		routine processes the TUR sense data and updates the driver
24482  *		state if a transition has occurred. The user thread
24483  *		(sd_check_media) is then signalled.
24484  *
24485  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24486  *			among multiple watches that share this callback function
24487  *		resultp - scsi watch facility result packet containing scsi
24488  *			  packet, status byte and sense data
24489  *
24490  * Return Code: 0 for success, -1 for failure
24491  */
24492 
24493 static int
24494 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
24495 {
24496 	struct sd_lun			*un;
24497 	struct scsi_status		*statusp = resultp->statusp;
24498 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
24499 	enum dkio_state			state = DKIO_NONE;
24500 	dev_t				dev = (dev_t)arg;
24501 	uchar_t				actual_sense_length;
24502 	uint8_t				skey, asc, ascq;
24503 
24504 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24505 		return (-1);
24506 	}
24507 	actual_sense_length = resultp->actual_sense_length;
24508 
24509 	mutex_enter(SD_MUTEX(un));
24510 	SD_TRACE(SD_LOG_COMMON, un,
24511 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
24512 	    *((char *)statusp), (void *)sensep, actual_sense_length);
24513 
24514 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
24515 		un->un_mediastate = DKIO_DEV_GONE;
24516 		cv_broadcast(&un->un_state_cv);
24517 		mutex_exit(SD_MUTEX(un));
24518 
24519 		return (0);
24520 	}
24521 
24522 	/*
24523 	 * If there was a check condition then sensep points to valid sense data
24524 	 * If status was not a check condition but a reservation or busy status
24525 	 * then the new state is DKIO_NONE
24526 	 */
24527 	if (sensep != NULL) {
24528 		skey = scsi_sense_key(sensep);
24529 		asc = scsi_sense_asc(sensep);
24530 		ascq = scsi_sense_ascq(sensep);
24531 
24532 		SD_INFO(SD_LOG_COMMON, un,
24533 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
24534 		    skey, asc, ascq);
24535 		/* This routine only uses up to 13 bytes of sense data. */
24536 		if (actual_sense_length >= 13) {
24537 			if (skey == KEY_UNIT_ATTENTION) {
24538 				if (asc == 0x28) {
24539 					state = DKIO_INSERTED;
24540 				}
24541 			} else {
24542 				/*
24543 				 * if 02/04/02  means that the host
24544 				 * should send start command. Explicitly
24545 				 * leave the media state as is
24546 				 * (inserted) as the media is inserted
24547 				 * and host has stopped device for PM
24548 				 * reasons. Upon next true read/write
24549 				 * to this media will bring the
24550 				 * device to the right state good for
24551 				 * media access.
24552 				 */
24553 				if ((skey == KEY_NOT_READY) &&
24554 				    (asc == 0x3a)) {
24555 					state = DKIO_EJECTED;
24556 				}
24557 
24558 				/*
24559 				 * If the drivge is busy with an operation
24560 				 * or long write, keep the media in an
24561 				 * inserted state.
24562 				 */
24563 
24564 				if ((skey == KEY_NOT_READY) &&
24565 				    (asc == 0x04) &&
24566 				    ((ascq == 0x02) ||
24567 				    (ascq == 0x07) ||
24568 				    (ascq == 0x08))) {
24569 					state = DKIO_INSERTED;
24570 				}
24571 			}
24572 		}
24573 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
24574 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
24575 		state = DKIO_INSERTED;
24576 	}
24577 
24578 	SD_TRACE(SD_LOG_COMMON, un,
24579 	    "sd_media_watch_cb: state=%x, specified=%x\n",
24580 	    state, un->un_specified_mediastate);
24581 
24582 	/*
24583 	 * now signal the waiting thread if this is *not* the specified state;
24584 	 * delay the signal if the state is DKIO_INSERTED to allow the target
24585 	 * to recover
24586 	 */
24587 	if (state != un->un_specified_mediastate) {
24588 		un->un_mediastate = state;
24589 		if (state == DKIO_INSERTED) {
24590 			/*
24591 			 * delay the signal to give the drive a chance
24592 			 * to do what it apparently needs to do
24593 			 */
24594 			SD_TRACE(SD_LOG_COMMON, un,
24595 			    "sd_media_watch_cb: delayed cv_broadcast\n");
24596 			if (un->un_dcvb_timeid == NULL) {
24597 				un->un_dcvb_timeid =
24598 				    timeout(sd_delayed_cv_broadcast, un,
24599 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
24600 			}
24601 		} else {
24602 			SD_TRACE(SD_LOG_COMMON, un,
24603 			    "sd_media_watch_cb: immediate cv_broadcast\n");
24604 			cv_broadcast(&un->un_state_cv);
24605 		}
24606 	}
24607 	mutex_exit(SD_MUTEX(un));
24608 	return (0);
24609 }
24610 
24611 
24612 /*
24613  *    Function: sd_dkio_get_temp
24614  *
24615  * Description: This routine is the driver entry point for handling ioctl
24616  *		requests to get the disk temperature.
24617  *
24618  *   Arguments: dev  - the device number
24619  *		arg  - pointer to user provided dk_temperature structure.
24620  *		flag - this argument is a pass through to ddi_copyxxx()
24621  *		       directly from the mode argument of ioctl().
24622  *
24623  * Return Code: 0
24624  *		EFAULT
24625  *		ENXIO
24626  *		EAGAIN
24627  */
24628 
24629 static int
24630 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
24631 {
24632 	struct sd_lun		*un = NULL;
24633 	struct dk_temperature	*dktemp = NULL;
24634 	uchar_t			*temperature_page;
24635 	int			rval = 0;
24636 	int			path_flag = SD_PATH_STANDARD;
24637 
24638 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24639 		return (ENXIO);
24640 	}
24641 
24642 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
24643 
24644 	/* copyin the disk temp argument to get the user flags */
24645 	if (ddi_copyin((void *)arg, dktemp,
24646 	    sizeof (struct dk_temperature), flag) != 0) {
24647 		rval = EFAULT;
24648 		goto done;
24649 	}
24650 
24651 	/* Initialize the temperature to invalid. */
24652 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24653 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24654 
24655 	/*
24656 	 * Note: Investigate removing the "bypass pm" semantic.
24657 	 * Can we just bypass PM always?
24658 	 */
24659 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
24660 		path_flag = SD_PATH_DIRECT;
24661 		ASSERT(!mutex_owned(&un->un_pm_mutex));
24662 		mutex_enter(&un->un_pm_mutex);
24663 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
24664 			/*
24665 			 * If DKT_BYPASS_PM is set, and the drive happens to be
24666 			 * in low power mode, we can not wake it up, Need to
24667 			 * return EAGAIN.
24668 			 */
24669 			mutex_exit(&un->un_pm_mutex);
24670 			rval = EAGAIN;
24671 			goto done;
24672 		} else {
24673 			/*
24674 			 * Indicate to PM the device is busy. This is required
24675 			 * to avoid a race - i.e. the ioctl is issuing a
24676 			 * command and the pm framework brings down the device
24677 			 * to low power mode (possible power cut-off on some
24678 			 * platforms).
24679 			 */
24680 			mutex_exit(&un->un_pm_mutex);
24681 			if (sd_pm_entry(un) != DDI_SUCCESS) {
24682 				rval = EAGAIN;
24683 				goto done;
24684 			}
24685 		}
24686 	}
24687 
24688 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
24689 
24690 	if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page,
24691 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) {
24692 		goto done2;
24693 	}
24694 
24695 	/*
24696 	 * For the current temperature verify that the parameter length is 0x02
24697 	 * and the parameter code is 0x00
24698 	 */
24699 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
24700 	    (temperature_page[5] == 0x00)) {
24701 		if (temperature_page[9] == 0xFF) {
24702 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24703 		} else {
24704 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
24705 		}
24706 	}
24707 
24708 	/*
24709 	 * For the reference temperature verify that the parameter
24710 	 * length is 0x02 and the parameter code is 0x01
24711 	 */
24712 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
24713 	    (temperature_page[11] == 0x01)) {
24714 		if (temperature_page[15] == 0xFF) {
24715 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24716 		} else {
24717 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
24718 		}
24719 	}
24720 
24721 	/* Do the copyout regardless of the temperature commands status. */
24722 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
24723 	    flag) != 0) {
24724 		rval = EFAULT;
24725 	}
24726 
24727 done2:
24728 	if (path_flag == SD_PATH_DIRECT) {
24729 		sd_pm_exit(un);
24730 	}
24731 
24732 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
24733 done:
24734 	if (dktemp != NULL) {
24735 		kmem_free(dktemp, sizeof (struct dk_temperature));
24736 	}
24737 
24738 	return (rval);
24739 }
24740 
24741 
24742 /*
24743  *    Function: sd_log_page_supported
24744  *
24745  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
24746  *		supported log pages.
24747  *
24748  *   Arguments: un -
24749  *		log_page -
24750  *
24751  * Return Code: -1 - on error (log sense is optional and may not be supported).
24752  *		0  - log page not found.
24753  *  		1  - log page found.
24754  */
24755 
24756 static int
24757 sd_log_page_supported(struct sd_lun *un, int log_page)
24758 {
24759 	uchar_t *log_page_data;
24760 	int	i;
24761 	int	match = 0;
24762 	int	log_size;
24763 
24764 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
24765 
24766 	if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0,
24767 	    SD_PATH_DIRECT) != 0) {
24768 		SD_ERROR(SD_LOG_COMMON, un,
24769 		    "sd_log_page_supported: failed log page retrieval\n");
24770 		kmem_free(log_page_data, 0xFF);
24771 		return (-1);
24772 	}
24773 	log_size = log_page_data[3];
24774 
24775 	/*
24776 	 * The list of supported log pages start from the fourth byte. Check
24777 	 * until we run out of log pages or a match is found.
24778 	 */
24779 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
24780 		if (log_page_data[i] == log_page) {
24781 			match++;
24782 		}
24783 	}
24784 	kmem_free(log_page_data, 0xFF);
24785 	return (match);
24786 }
24787 
24788 
24789 /*
24790  *    Function: sd_mhdioc_failfast
24791  *
24792  * Description: This routine is the driver entry point for handling ioctl
24793  *		requests to enable/disable the multihost failfast option.
24794  *		(MHIOCENFAILFAST)
24795  *
24796  *   Arguments: dev	- the device number
24797  *		arg	- user specified probing interval.
24798  *		flag	- this argument is a pass through to ddi_copyxxx()
24799  *			  directly from the mode argument of ioctl().
24800  *
24801  * Return Code: 0
24802  *		EFAULT
24803  *		ENXIO
24804  */
24805 
24806 static int
24807 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
24808 {
24809 	struct sd_lun	*un = NULL;
24810 	int		mh_time;
24811 	int		rval = 0;
24812 
24813 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24814 		return (ENXIO);
24815 	}
24816 
24817 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
24818 		return (EFAULT);
24819 
24820 	if (mh_time) {
24821 		mutex_enter(SD_MUTEX(un));
24822 		un->un_resvd_status |= SD_FAILFAST;
24823 		mutex_exit(SD_MUTEX(un));
24824 		/*
24825 		 * If mh_time is INT_MAX, then this ioctl is being used for
24826 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
24827 		 */
24828 		if (mh_time != INT_MAX) {
24829 			rval = sd_check_mhd(dev, mh_time);
24830 		}
24831 	} else {
24832 		(void) sd_check_mhd(dev, 0);
24833 		mutex_enter(SD_MUTEX(un));
24834 		un->un_resvd_status &= ~SD_FAILFAST;
24835 		mutex_exit(SD_MUTEX(un));
24836 	}
24837 	return (rval);
24838 }
24839 
24840 
24841 /*
24842  *    Function: sd_mhdioc_takeown
24843  *
24844  * Description: This routine is the driver entry point for handling ioctl
24845  *		requests to forcefully acquire exclusive access rights to the
24846  *		multihost disk (MHIOCTKOWN).
24847  *
24848  *   Arguments: dev	- the device number
24849  *		arg	- user provided structure specifying the delay
24850  *			  parameters in milliseconds
24851  *		flag	- this argument is a pass through to ddi_copyxxx()
24852  *			  directly from the mode argument of ioctl().
24853  *
24854  * Return Code: 0
24855  *		EFAULT
24856  *		ENXIO
24857  */
24858 
24859 static int
24860 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
24861 {
24862 	struct sd_lun		*un = NULL;
24863 	struct mhioctkown	*tkown = NULL;
24864 	int			rval = 0;
24865 
24866 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24867 		return (ENXIO);
24868 	}
24869 
24870 	if (arg != NULL) {
24871 		tkown = (struct mhioctkown *)
24872 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
24873 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
24874 		if (rval != 0) {
24875 			rval = EFAULT;
24876 			goto error;
24877 		}
24878 	}
24879 
24880 	rval = sd_take_ownership(dev, tkown);
24881 	mutex_enter(SD_MUTEX(un));
24882 	if (rval == 0) {
24883 		un->un_resvd_status |= SD_RESERVE;
24884 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
24885 			sd_reinstate_resv_delay =
24886 			    tkown->reinstate_resv_delay * 1000;
24887 		} else {
24888 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
24889 		}
24890 		/*
24891 		 * Give the scsi_watch routine interval set by
24892 		 * the MHIOCENFAILFAST ioctl precedence here.
24893 		 */
24894 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
24895 			mutex_exit(SD_MUTEX(un));
24896 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
24897 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
24898 			    "sd_mhdioc_takeown : %d\n",
24899 			    sd_reinstate_resv_delay);
24900 		} else {
24901 			mutex_exit(SD_MUTEX(un));
24902 		}
24903 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
24904 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24905 	} else {
24906 		un->un_resvd_status &= ~SD_RESERVE;
24907 		mutex_exit(SD_MUTEX(un));
24908 	}
24909 
24910 error:
24911 	if (tkown != NULL) {
24912 		kmem_free(tkown, sizeof (struct mhioctkown));
24913 	}
24914 	return (rval);
24915 }
24916 
24917 
24918 /*
24919  *    Function: sd_mhdioc_release
24920  *
24921  * Description: This routine is the driver entry point for handling ioctl
24922  *		requests to release exclusive access rights to the multihost
24923  *		disk (MHIOCRELEASE).
24924  *
24925  *   Arguments: dev	- the device number
24926  *
24927  * Return Code: 0
24928  *		ENXIO
24929  */
24930 
24931 static int
24932 sd_mhdioc_release(dev_t dev)
24933 {
24934 	struct sd_lun		*un = NULL;
24935 	timeout_id_t		resvd_timeid_save;
24936 	int			resvd_status_save;
24937 	int			rval = 0;
24938 
24939 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24940 		return (ENXIO);
24941 	}
24942 
24943 	mutex_enter(SD_MUTEX(un));
24944 	resvd_status_save = un->un_resvd_status;
24945 	un->un_resvd_status &=
24946 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
24947 	if (un->un_resvd_timeid) {
24948 		resvd_timeid_save = un->un_resvd_timeid;
24949 		un->un_resvd_timeid = NULL;
24950 		mutex_exit(SD_MUTEX(un));
24951 		(void) untimeout(resvd_timeid_save);
24952 	} else {
24953 		mutex_exit(SD_MUTEX(un));
24954 	}
24955 
24956 	/*
24957 	 * destroy any pending timeout thread that may be attempting to
24958 	 * reinstate reservation on this device.
24959 	 */
24960 	sd_rmv_resv_reclaim_req(dev);
24961 
24962 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
24963 		mutex_enter(SD_MUTEX(un));
24964 		if ((un->un_mhd_token) &&
24965 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
24966 			mutex_exit(SD_MUTEX(un));
24967 			(void) sd_check_mhd(dev, 0);
24968 		} else {
24969 			mutex_exit(SD_MUTEX(un));
24970 		}
24971 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
24972 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24973 	} else {
24974 		/*
24975 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
24976 		 */
24977 		mutex_enter(SD_MUTEX(un));
24978 		un->un_resvd_status = resvd_status_save;
24979 		mutex_exit(SD_MUTEX(un));
24980 	}
24981 	return (rval);
24982 }
24983 
24984 
24985 /*
24986  *    Function: sd_mhdioc_register_devid
24987  *
24988  * Description: This routine is the driver entry point for handling ioctl
24989  *		requests to register the device id (MHIOCREREGISTERDEVID).
24990  *
24991  *		Note: The implementation for this ioctl has been updated to
24992  *		be consistent with the original PSARC case (1999/357)
24993  *		(4375899, 4241671, 4220005)
24994  *
24995  *   Arguments: dev	- the device number
24996  *
24997  * Return Code: 0
24998  *		ENXIO
24999  */
25000 
25001 static int
25002 sd_mhdioc_register_devid(dev_t dev)
25003 {
25004 	struct sd_lun	*un = NULL;
25005 	int		rval = 0;
25006 
25007 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25008 		return (ENXIO);
25009 	}
25010 
25011 	ASSERT(!mutex_owned(SD_MUTEX(un)));
25012 
25013 	mutex_enter(SD_MUTEX(un));
25014 
25015 	/* If a devid already exists, de-register it */
25016 	if (un->un_devid != NULL) {
25017 		ddi_devid_unregister(SD_DEVINFO(un));
25018 		/*
25019 		 * After unregister devid, needs to free devid memory
25020 		 */
25021 		ddi_devid_free(un->un_devid);
25022 		un->un_devid = NULL;
25023 	}
25024 
25025 	/* Check for reservation conflict */
25026 	mutex_exit(SD_MUTEX(un));
25027 	rval = sd_send_scsi_TEST_UNIT_READY(un, 0);
25028 	mutex_enter(SD_MUTEX(un));
25029 
25030 	switch (rval) {
25031 	case 0:
25032 		sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
25033 		break;
25034 	case EACCES:
25035 		break;
25036 	default:
25037 		rval = EIO;
25038 	}
25039 
25040 	mutex_exit(SD_MUTEX(un));
25041 	return (rval);
25042 }
25043 
25044 
25045 /*
25046  *    Function: sd_mhdioc_inkeys
25047  *
25048  * Description: This routine is the driver entry point for handling ioctl
25049  *		requests to issue the SCSI-3 Persistent In Read Keys command
25050  *		to the device (MHIOCGRP_INKEYS).
25051  *
25052  *   Arguments: dev	- the device number
25053  *		arg	- user provided in_keys structure
25054  *		flag	- this argument is a pass through to ddi_copyxxx()
25055  *			  directly from the mode argument of ioctl().
25056  *
25057  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
25058  *		ENXIO
25059  *		EFAULT
25060  */
25061 
25062 static int
25063 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
25064 {
25065 	struct sd_lun		*un;
25066 	mhioc_inkeys_t		inkeys;
25067 	int			rval = 0;
25068 
25069 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25070 		return (ENXIO);
25071 	}
25072 
25073 #ifdef _MULTI_DATAMODEL
25074 	switch (ddi_model_convert_from(flag & FMODELS)) {
25075 	case DDI_MODEL_ILP32: {
25076 		struct mhioc_inkeys32	inkeys32;
25077 
25078 		if (ddi_copyin(arg, &inkeys32,
25079 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
25080 			return (EFAULT);
25081 		}
25082 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
25083 		if ((rval = sd_persistent_reservation_in_read_keys(un,
25084 		    &inkeys, flag)) != 0) {
25085 			return (rval);
25086 		}
25087 		inkeys32.generation = inkeys.generation;
25088 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
25089 		    flag) != 0) {
25090 			return (EFAULT);
25091 		}
25092 		break;
25093 	}
25094 	case DDI_MODEL_NONE:
25095 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
25096 		    flag) != 0) {
25097 			return (EFAULT);
25098 		}
25099 		if ((rval = sd_persistent_reservation_in_read_keys(un,
25100 		    &inkeys, flag)) != 0) {
25101 			return (rval);
25102 		}
25103 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
25104 		    flag) != 0) {
25105 			return (EFAULT);
25106 		}
25107 		break;
25108 	}
25109 
25110 #else /* ! _MULTI_DATAMODEL */
25111 
25112 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
25113 		return (EFAULT);
25114 	}
25115 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
25116 	if (rval != 0) {
25117 		return (rval);
25118 	}
25119 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
25120 		return (EFAULT);
25121 	}
25122 
25123 #endif /* _MULTI_DATAMODEL */
25124 
25125 	return (rval);
25126 }
25127 
25128 
25129 /*
25130  *    Function: sd_mhdioc_inresv
25131  *
25132  * Description: This routine is the driver entry point for handling ioctl
25133  *		requests to issue the SCSI-3 Persistent In Read Reservations
25134  *		command to the device (MHIOCGRP_INKEYS).
25135  *
25136  *   Arguments: dev	- the device number
25137  *		arg	- user provided in_resv structure
25138  *		flag	- this argument is a pass through to ddi_copyxxx()
25139  *			  directly from the mode argument of ioctl().
25140  *
25141  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
25142  *		ENXIO
25143  *		EFAULT
25144  */
25145 
25146 static int
25147 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
25148 {
25149 	struct sd_lun		*un;
25150 	mhioc_inresvs_t		inresvs;
25151 	int			rval = 0;
25152 
25153 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25154 		return (ENXIO);
25155 	}
25156 
25157 #ifdef _MULTI_DATAMODEL
25158 
25159 	switch (ddi_model_convert_from(flag & FMODELS)) {
25160 	case DDI_MODEL_ILP32: {
25161 		struct mhioc_inresvs32	inresvs32;
25162 
25163 		if (ddi_copyin(arg, &inresvs32,
25164 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
25165 			return (EFAULT);
25166 		}
25167 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
25168 		if ((rval = sd_persistent_reservation_in_read_resv(un,
25169 		    &inresvs, flag)) != 0) {
25170 			return (rval);
25171 		}
25172 		inresvs32.generation = inresvs.generation;
25173 		if (ddi_copyout(&inresvs32, arg,
25174 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
25175 			return (EFAULT);
25176 		}
25177 		break;
25178 	}
25179 	case DDI_MODEL_NONE:
25180 		if (ddi_copyin(arg, &inresvs,
25181 		    sizeof (mhioc_inresvs_t), flag) != 0) {
25182 			return (EFAULT);
25183 		}
25184 		if ((rval = sd_persistent_reservation_in_read_resv(un,
25185 		    &inresvs, flag)) != 0) {
25186 			return (rval);
25187 		}
25188 		if (ddi_copyout(&inresvs, arg,
25189 		    sizeof (mhioc_inresvs_t), flag) != 0) {
25190 			return (EFAULT);
25191 		}
25192 		break;
25193 	}
25194 
25195 #else /* ! _MULTI_DATAMODEL */
25196 
25197 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
25198 		return (EFAULT);
25199 	}
25200 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
25201 	if (rval != 0) {
25202 		return (rval);
25203 	}
25204 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
25205 		return (EFAULT);
25206 	}
25207 
25208 #endif /* ! _MULTI_DATAMODEL */
25209 
25210 	return (rval);
25211 }
25212 
25213 
25214 /*
25215  * The following routines support the clustering functionality described below
25216  * and implement lost reservation reclaim functionality.
25217  *
25218  * Clustering
25219  * ----------
25220  * The clustering code uses two different, independent forms of SCSI
25221  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
25222  * Persistent Group Reservations. For any particular disk, it will use either
25223  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
25224  *
25225  * SCSI-2
25226  * The cluster software takes ownership of a multi-hosted disk by issuing the
25227  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
25228  * MHIOCRELEASE ioctl.Closely related is the MHIOCENFAILFAST ioctl -- a cluster,
25229  * just after taking ownership of the disk with the MHIOCTKOWN ioctl then issues
25230  * the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the driver. The
25231  * meaning of failfast is that if the driver (on this host) ever encounters the
25232  * scsi error return code RESERVATION_CONFLICT from the device, it should
25233  * immediately panic the host. The motivation for this ioctl is that if this
25234  * host does encounter reservation conflict, the underlying cause is that some
25235  * other host of the cluster has decided that this host is no longer in the
25236  * cluster and has seized control of the disks for itself. Since this host is no
25237  * longer in the cluster, it ought to panic itself. The MHIOCENFAILFAST ioctl
25238  * does two things:
25239  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
25240  *      error to panic the host
25241  *      (b) it sets up a periodic timer to test whether this host still has
25242  *      "access" (in that no other host has reserved the device):  if the
25243  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
25244  *      purpose of that periodic timer is to handle scenarios where the host is
25245  *      otherwise temporarily quiescent, temporarily doing no real i/o.
25246  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
25247  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
25248  * the device itself.
25249  *
25250  * SCSI-3 PGR
25251  * A direct semantic implementation of the SCSI-3 Persistent Reservation
25252  * facility is supported through the shared multihost disk ioctls
25253  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
25254  * MHIOCGRP_PREEMPTANDABORT)
25255  *
25256  * Reservation Reclaim:
25257  * --------------------
25258  * To support the lost reservation reclaim operations this driver creates a
25259  * single thread to handle reinstating reservations on all devices that have
25260  * lost reservations sd_resv_reclaim_requests are logged for all devices that
25261  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
25262  * and the reservation reclaim thread loops through the requests to regain the
25263  * lost reservations.
25264  */
25265 
25266 /*
25267  *    Function: sd_check_mhd()
25268  *
25269  * Description: This function sets up and submits a scsi watch request or
25270  *		terminates an existing watch request. This routine is used in
25271  *		support of reservation reclaim.
25272  *
25273  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
25274  *			 among multiple watches that share the callback function
25275  *		interval - the number of microseconds specifying the watch
25276  *			   interval for issuing TEST UNIT READY commands. If
25277  *			   set to 0 the watch should be terminated. If the
25278  *			   interval is set to 0 and if the device is required
25279  *			   to hold reservation while disabling failfast, the
25280  *			   watch is restarted with an interval of
25281  *			   reinstate_resv_delay.
25282  *
25283  * Return Code: 0	   - Successful submit/terminate of scsi watch request
25284  *		ENXIO      - Indicates an invalid device was specified
25285  *		EAGAIN     - Unable to submit the scsi watch request
25286  */
25287 
25288 static int
25289 sd_check_mhd(dev_t dev, int interval)
25290 {
25291 	struct sd_lun	*un;
25292 	opaque_t	token;
25293 
25294 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25295 		return (ENXIO);
25296 	}
25297 
25298 	/* is this a watch termination request? */
25299 	if (interval == 0) {
25300 		mutex_enter(SD_MUTEX(un));
25301 		/* if there is an existing watch task then terminate it */
25302 		if (un->un_mhd_token) {
25303 			token = un->un_mhd_token;
25304 			un->un_mhd_token = NULL;
25305 			mutex_exit(SD_MUTEX(un));
25306 			(void) scsi_watch_request_terminate(token,
25307 			    SCSI_WATCH_TERMINATE_WAIT);
25308 			mutex_enter(SD_MUTEX(un));
25309 		} else {
25310 			mutex_exit(SD_MUTEX(un));
25311 			/*
25312 			 * Note: If we return here we don't check for the
25313 			 * failfast case. This is the original legacy
25314 			 * implementation but perhaps we should be checking
25315 			 * the failfast case.
25316 			 */
25317 			return (0);
25318 		}
25319 		/*
25320 		 * If the device is required to hold reservation while
25321 		 * disabling failfast, we need to restart the scsi_watch
25322 		 * routine with an interval of reinstate_resv_delay.
25323 		 */
25324 		if (un->un_resvd_status & SD_RESERVE) {
25325 			interval = sd_reinstate_resv_delay/1000;
25326 		} else {
25327 			/* no failfast so bail */
25328 			mutex_exit(SD_MUTEX(un));
25329 			return (0);
25330 		}
25331 		mutex_exit(SD_MUTEX(un));
25332 	}
25333 
25334 	/*
25335 	 * adjust minimum time interval to 1 second,
25336 	 * and convert from msecs to usecs
25337 	 */
25338 	if (interval > 0 && interval < 1000) {
25339 		interval = 1000;
25340 	}
25341 	interval *= 1000;
25342 
25343 	/*
25344 	 * submit the request to the scsi_watch service
25345 	 */
25346 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
25347 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
25348 	if (token == NULL) {
25349 		return (EAGAIN);
25350 	}
25351 
25352 	/*
25353 	 * save token for termination later on
25354 	 */
25355 	mutex_enter(SD_MUTEX(un));
25356 	un->un_mhd_token = token;
25357 	mutex_exit(SD_MUTEX(un));
25358 	return (0);
25359 }
25360 
25361 
25362 /*
25363  *    Function: sd_mhd_watch_cb()
25364  *
25365  * Description: This function is the call back function used by the scsi watch
25366  *		facility. The scsi watch facility sends the "Test Unit Ready"
25367  *		and processes the status. If applicable (i.e. a "Unit Attention"
25368  *		status and automatic "Request Sense" not used) the scsi watch
25369  *		facility will send a "Request Sense" and retrieve the sense data
25370  *		to be passed to this callback function. In either case the
25371  *		automatic "Request Sense" or the facility submitting one, this
25372  *		callback is passed the status and sense data.
25373  *
25374  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
25375  *			among multiple watches that share this callback function
25376  *		resultp - scsi watch facility result packet containing scsi
25377  *			  packet, status byte and sense data
25378  *
25379  * Return Code: 0 - continue the watch task
25380  *		non-zero - terminate the watch task
25381  */
25382 
25383 static int
25384 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
25385 {
25386 	struct sd_lun			*un;
25387 	struct scsi_status		*statusp;
25388 	uint8_t				*sensep;
25389 	struct scsi_pkt			*pkt;
25390 	uchar_t				actual_sense_length;
25391 	dev_t  				dev = (dev_t)arg;
25392 
25393 	ASSERT(resultp != NULL);
25394 	statusp			= resultp->statusp;
25395 	sensep			= (uint8_t *)resultp->sensep;
25396 	pkt			= resultp->pkt;
25397 	actual_sense_length	= resultp->actual_sense_length;
25398 
25399 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25400 		return (ENXIO);
25401 	}
25402 
25403 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
25404 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
25405 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
25406 
25407 	/* Begin processing of the status and/or sense data */
25408 	if (pkt->pkt_reason != CMD_CMPLT) {
25409 		/* Handle the incomplete packet */
25410 		sd_mhd_watch_incomplete(un, pkt);
25411 		return (0);
25412 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
25413 		if (*((unsigned char *)statusp)
25414 		    == STATUS_RESERVATION_CONFLICT) {
25415 			/*
25416 			 * Handle a reservation conflict by panicking if
25417 			 * configured for failfast or by logging the conflict
25418 			 * and updating the reservation status
25419 			 */
25420 			mutex_enter(SD_MUTEX(un));
25421 			if ((un->un_resvd_status & SD_FAILFAST) &&
25422 			    (sd_failfast_enable)) {
25423 				sd_panic_for_res_conflict(un);
25424 				/*NOTREACHED*/
25425 			}
25426 			SD_INFO(SD_LOG_IOCTL_MHD, un,
25427 			    "sd_mhd_watch_cb: Reservation Conflict\n");
25428 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
25429 			mutex_exit(SD_MUTEX(un));
25430 		}
25431 	}
25432 
25433 	if (sensep != NULL) {
25434 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
25435 			mutex_enter(SD_MUTEX(un));
25436 			if ((scsi_sense_asc(sensep) ==
25437 			    SD_SCSI_RESET_SENSE_CODE) &&
25438 			    (un->un_resvd_status & SD_RESERVE)) {
25439 				/*
25440 				 * The additional sense code indicates a power
25441 				 * on or bus device reset has occurred; update
25442 				 * the reservation status.
25443 				 */
25444 				un->un_resvd_status |=
25445 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25446 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25447 				    "sd_mhd_watch_cb: Lost Reservation\n");
25448 			}
25449 		} else {
25450 			return (0);
25451 		}
25452 	} else {
25453 		mutex_enter(SD_MUTEX(un));
25454 	}
25455 
25456 	if ((un->un_resvd_status & SD_RESERVE) &&
25457 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
25458 		if (un->un_resvd_status & SD_WANT_RESERVE) {
25459 			/*
25460 			 * A reset occurred in between the last probe and this
25461 			 * one so if a timeout is pending cancel it.
25462 			 */
25463 			if (un->un_resvd_timeid) {
25464 				timeout_id_t temp_id = un->un_resvd_timeid;
25465 				un->un_resvd_timeid = NULL;
25466 				mutex_exit(SD_MUTEX(un));
25467 				(void) untimeout(temp_id);
25468 				mutex_enter(SD_MUTEX(un));
25469 			}
25470 			un->un_resvd_status &= ~SD_WANT_RESERVE;
25471 		}
25472 		if (un->un_resvd_timeid == 0) {
25473 			/* Schedule a timeout to handle the lost reservation */
25474 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
25475 			    (void *)dev,
25476 			    drv_usectohz(sd_reinstate_resv_delay));
25477 		}
25478 	}
25479 	mutex_exit(SD_MUTEX(un));
25480 	return (0);
25481 }
25482 
25483 
25484 /*
25485  *    Function: sd_mhd_watch_incomplete()
25486  *
25487  * Description: This function is used to find out why a scsi pkt sent by the
25488  *		scsi watch facility was not completed. Under some scenarios this
25489  *		routine will return. Otherwise it will send a bus reset to see
25490  *		if the drive is still online.
25491  *
25492  *   Arguments: un  - driver soft state (unit) structure
25493  *		pkt - incomplete scsi pkt
25494  */
25495 
25496 static void
25497 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
25498 {
25499 	int	be_chatty;
25500 	int	perr;
25501 
25502 	ASSERT(pkt != NULL);
25503 	ASSERT(un != NULL);
25504 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
25505 	perr		= (pkt->pkt_statistics & STAT_PERR);
25506 
25507 	mutex_enter(SD_MUTEX(un));
25508 	if (un->un_state == SD_STATE_DUMPING) {
25509 		mutex_exit(SD_MUTEX(un));
25510 		return;
25511 	}
25512 
25513 	switch (pkt->pkt_reason) {
25514 	case CMD_UNX_BUS_FREE:
25515 		/*
25516 		 * If we had a parity error that caused the target to drop BSY*,
25517 		 * don't be chatty about it.
25518 		 */
25519 		if (perr && be_chatty) {
25520 			be_chatty = 0;
25521 		}
25522 		break;
25523 	case CMD_TAG_REJECT:
25524 		/*
25525 		 * The SCSI-2 spec states that a tag reject will be sent by the
25526 		 * target if tagged queuing is not supported. A tag reject may
25527 		 * also be sent during certain initialization periods or to
25528 		 * control internal resources. For the latter case the target
25529 		 * may also return Queue Full.
25530 		 *
25531 		 * If this driver receives a tag reject from a target that is
25532 		 * going through an init period or controlling internal
25533 		 * resources tagged queuing will be disabled. This is a less
25534 		 * than optimal behavior but the driver is unable to determine
25535 		 * the target state and assumes tagged queueing is not supported
25536 		 */
25537 		pkt->pkt_flags = 0;
25538 		un->un_tagflags = 0;
25539 
25540 		if (un->un_f_opt_queueing == TRUE) {
25541 			un->un_throttle = min(un->un_throttle, 3);
25542 		} else {
25543 			un->un_throttle = 1;
25544 		}
25545 		mutex_exit(SD_MUTEX(un));
25546 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
25547 		mutex_enter(SD_MUTEX(un));
25548 		break;
25549 	case CMD_INCOMPLETE:
25550 		/*
25551 		 * The transport stopped with an abnormal state, fallthrough and
25552 		 * reset the target and/or bus unless selection did not complete
25553 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
25554 		 * go through a target/bus reset
25555 		 */
25556 		if (pkt->pkt_state == STATE_GOT_BUS) {
25557 			break;
25558 		}
25559 		/*FALLTHROUGH*/
25560 
25561 	case CMD_TIMEOUT:
25562 	default:
25563 		/*
25564 		 * The lun may still be running the command, so a lun reset
25565 		 * should be attempted. If the lun reset fails or cannot be
25566 		 * issued, than try a target reset. Lastly try a bus reset.
25567 		 */
25568 		if ((pkt->pkt_statistics &
25569 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
25570 			int reset_retval = 0;
25571 			mutex_exit(SD_MUTEX(un));
25572 			if (un->un_f_allow_bus_device_reset == TRUE) {
25573 				if (un->un_f_lun_reset_enabled == TRUE) {
25574 					reset_retval =
25575 					    scsi_reset(SD_ADDRESS(un),
25576 					    RESET_LUN);
25577 				}
25578 				if (reset_retval == 0) {
25579 					reset_retval =
25580 					    scsi_reset(SD_ADDRESS(un),
25581 					    RESET_TARGET);
25582 				}
25583 			}
25584 			if (reset_retval == 0) {
25585 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
25586 			}
25587 			mutex_enter(SD_MUTEX(un));
25588 		}
25589 		break;
25590 	}
25591 
25592 	/* A device/bus reset has occurred; update the reservation status. */
25593 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
25594 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
25595 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25596 			un->un_resvd_status |=
25597 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25598 			SD_INFO(SD_LOG_IOCTL_MHD, un,
25599 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
25600 		}
25601 	}
25602 
25603 	/*
25604 	 * The disk has been turned off; Update the device state.
25605 	 *
25606 	 * Note: Should we be offlining the disk here?
25607 	 */
25608 	if (pkt->pkt_state == STATE_GOT_BUS) {
25609 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
25610 		    "Disk not responding to selection\n");
25611 		if (un->un_state != SD_STATE_OFFLINE) {
25612 			New_state(un, SD_STATE_OFFLINE);
25613 		}
25614 	} else if (be_chatty) {
25615 		/*
25616 		 * suppress messages if they are all the same pkt reason;
25617 		 * with TQ, many (up to 256) are returned with the same
25618 		 * pkt_reason
25619 		 */
25620 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
25621 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25622 			    "sd_mhd_watch_incomplete: "
25623 			    "SCSI transport failed: reason '%s'\n",
25624 			    scsi_rname(pkt->pkt_reason));
25625 		}
25626 	}
25627 	un->un_last_pkt_reason = pkt->pkt_reason;
25628 	mutex_exit(SD_MUTEX(un));
25629 }
25630 
25631 
25632 /*
25633  *    Function: sd_sname()
25634  *
25635  * Description: This is a simple little routine to return a string containing
25636  *		a printable description of command status byte for use in
25637  *		logging.
25638  *
25639  *   Arguments: status - pointer to a status byte
25640  *
25641  * Return Code: char * - string containing status description.
25642  */
25643 
25644 static char *
25645 sd_sname(uchar_t status)
25646 {
25647 	switch (status & STATUS_MASK) {
25648 	case STATUS_GOOD:
25649 		return ("good status");
25650 	case STATUS_CHECK:
25651 		return ("check condition");
25652 	case STATUS_MET:
25653 		return ("condition met");
25654 	case STATUS_BUSY:
25655 		return ("busy");
25656 	case STATUS_INTERMEDIATE:
25657 		return ("intermediate");
25658 	case STATUS_INTERMEDIATE_MET:
25659 		return ("intermediate - condition met");
25660 	case STATUS_RESERVATION_CONFLICT:
25661 		return ("reservation_conflict");
25662 	case STATUS_TERMINATED:
25663 		return ("command terminated");
25664 	case STATUS_QFULL:
25665 		return ("queue full");
25666 	default:
25667 		return ("<unknown status>");
25668 	}
25669 }
25670 
25671 
25672 /*
25673  *    Function: sd_mhd_resvd_recover()
25674  *
25675  * Description: This function adds a reservation entry to the
25676  *		sd_resv_reclaim_request list and signals the reservation
25677  *		reclaim thread that there is work pending. If the reservation
25678  *		reclaim thread has not been previously created this function
25679  *		will kick it off.
25680  *
25681  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
25682  *			among multiple watches that share this callback function
25683  *
25684  *     Context: This routine is called by timeout() and is run in interrupt
25685  *		context. It must not sleep or call other functions which may
25686  *		sleep.
25687  */
25688 
25689 static void
25690 sd_mhd_resvd_recover(void *arg)
25691 {
25692 	dev_t			dev = (dev_t)arg;
25693 	struct sd_lun		*un;
25694 	struct sd_thr_request	*sd_treq = NULL;
25695 	struct sd_thr_request	*sd_cur = NULL;
25696 	struct sd_thr_request	*sd_prev = NULL;
25697 	int			already_there = 0;
25698 
25699 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25700 		return;
25701 	}
25702 
25703 	mutex_enter(SD_MUTEX(un));
25704 	un->un_resvd_timeid = NULL;
25705 	if (un->un_resvd_status & SD_WANT_RESERVE) {
25706 		/*
25707 		 * There was a reset so don't issue the reserve, allow the
25708 		 * sd_mhd_watch_cb callback function to notice this and
25709 		 * reschedule the timeout for reservation.
25710 		 */
25711 		mutex_exit(SD_MUTEX(un));
25712 		return;
25713 	}
25714 	mutex_exit(SD_MUTEX(un));
25715 
25716 	/*
25717 	 * Add this device to the sd_resv_reclaim_request list and the
25718 	 * sd_resv_reclaim_thread should take care of the rest.
25719 	 *
25720 	 * Note: We can't sleep in this context so if the memory allocation
25721 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
25722 	 * reschedule the timeout for reservation.  (4378460)
25723 	 */
25724 	sd_treq = (struct sd_thr_request *)
25725 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
25726 	if (sd_treq == NULL) {
25727 		return;
25728 	}
25729 
25730 	sd_treq->sd_thr_req_next = NULL;
25731 	sd_treq->dev = dev;
25732 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25733 	if (sd_tr.srq_thr_req_head == NULL) {
25734 		sd_tr.srq_thr_req_head = sd_treq;
25735 	} else {
25736 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
25737 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
25738 			if (sd_cur->dev == dev) {
25739 				/*
25740 				 * already in Queue so don't log
25741 				 * another request for the device
25742 				 */
25743 				already_there = 1;
25744 				break;
25745 			}
25746 			sd_prev = sd_cur;
25747 		}
25748 		if (!already_there) {
25749 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
25750 			    "logging request for %lx\n", dev);
25751 			sd_prev->sd_thr_req_next = sd_treq;
25752 		} else {
25753 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
25754 		}
25755 	}
25756 
25757 	/*
25758 	 * Create a kernel thread to do the reservation reclaim and free up this
25759 	 * thread. We cannot block this thread while we go away to do the
25760 	 * reservation reclaim
25761 	 */
25762 	if (sd_tr.srq_resv_reclaim_thread == NULL)
25763 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
25764 		    sd_resv_reclaim_thread, NULL,
25765 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
25766 
25767 	/* Tell the reservation reclaim thread that it has work to do */
25768 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
25769 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25770 }
25771 
25772 /*
25773  *    Function: sd_resv_reclaim_thread()
25774  *
25775  * Description: This function implements the reservation reclaim operations
25776  *
25777  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
25778  *		      among multiple watches that share this callback function
25779  */
25780 
25781 static void
25782 sd_resv_reclaim_thread()
25783 {
25784 	struct sd_lun		*un;
25785 	struct sd_thr_request	*sd_mhreq;
25786 
25787 	/* Wait for work */
25788 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25789 	if (sd_tr.srq_thr_req_head == NULL) {
25790 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
25791 		    &sd_tr.srq_resv_reclaim_mutex);
25792 	}
25793 
25794 	/* Loop while we have work */
25795 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
25796 		un = ddi_get_soft_state(sd_state,
25797 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
25798 		if (un == NULL) {
25799 			/*
25800 			 * softstate structure is NULL so just
25801 			 * dequeue the request and continue
25802 			 */
25803 			sd_tr.srq_thr_req_head =
25804 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25805 			kmem_free(sd_tr.srq_thr_cur_req,
25806 			    sizeof (struct sd_thr_request));
25807 			continue;
25808 		}
25809 
25810 		/* dequeue the request */
25811 		sd_mhreq = sd_tr.srq_thr_cur_req;
25812 		sd_tr.srq_thr_req_head =
25813 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25814 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25815 
25816 		/*
25817 		 * Reclaim reservation only if SD_RESERVE is still set. There
25818 		 * may have been a call to MHIOCRELEASE before we got here.
25819 		 */
25820 		mutex_enter(SD_MUTEX(un));
25821 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25822 			/*
25823 			 * Note: The SD_LOST_RESERVE flag is cleared before
25824 			 * reclaiming the reservation. If this is done after the
25825 			 * call to sd_reserve_release a reservation loss in the
25826 			 * window between pkt completion of reserve cmd and
25827 			 * mutex_enter below may not be recognized
25828 			 */
25829 			un->un_resvd_status &= ~SD_LOST_RESERVE;
25830 			mutex_exit(SD_MUTEX(un));
25831 
25832 			if (sd_reserve_release(sd_mhreq->dev,
25833 			    SD_RESERVE) == 0) {
25834 				mutex_enter(SD_MUTEX(un));
25835 				un->un_resvd_status |= SD_RESERVE;
25836 				mutex_exit(SD_MUTEX(un));
25837 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25838 				    "sd_resv_reclaim_thread: "
25839 				    "Reservation Recovered\n");
25840 			} else {
25841 				mutex_enter(SD_MUTEX(un));
25842 				un->un_resvd_status |= SD_LOST_RESERVE;
25843 				mutex_exit(SD_MUTEX(un));
25844 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25845 				    "sd_resv_reclaim_thread: Failed "
25846 				    "Reservation Recovery\n");
25847 			}
25848 		} else {
25849 			mutex_exit(SD_MUTEX(un));
25850 		}
25851 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25852 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
25853 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25854 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
25855 		/*
25856 		 * wakeup the destroy thread if anyone is waiting on
25857 		 * us to complete.
25858 		 */
25859 		cv_signal(&sd_tr.srq_inprocess_cv);
25860 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
25861 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
25862 	}
25863 
25864 	/*
25865 	 * cleanup the sd_tr structure now that this thread will not exist
25866 	 */
25867 	ASSERT(sd_tr.srq_thr_req_head == NULL);
25868 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
25869 	sd_tr.srq_resv_reclaim_thread = NULL;
25870 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25871 	thread_exit();
25872 }
25873 
25874 
25875 /*
25876  *    Function: sd_rmv_resv_reclaim_req()
25877  *
25878  * Description: This function removes any pending reservation reclaim requests
25879  *		for the specified device.
25880  *
25881  *   Arguments: dev - the device 'dev_t'
25882  */
25883 
25884 static void
25885 sd_rmv_resv_reclaim_req(dev_t dev)
25886 {
25887 	struct sd_thr_request *sd_mhreq;
25888 	struct sd_thr_request *sd_prev;
25889 
25890 	/* Remove a reservation reclaim request from the list */
25891 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25892 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
25893 		/*
25894 		 * We are attempting to reinstate reservation for
25895 		 * this device. We wait for sd_reserve_release()
25896 		 * to return before we return.
25897 		 */
25898 		cv_wait(&sd_tr.srq_inprocess_cv,
25899 		    &sd_tr.srq_resv_reclaim_mutex);
25900 	} else {
25901 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
25902 		if (sd_mhreq && sd_mhreq->dev == dev) {
25903 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
25904 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25905 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25906 			return;
25907 		}
25908 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
25909 			if (sd_mhreq && sd_mhreq->dev == dev) {
25910 				break;
25911 			}
25912 			sd_prev = sd_mhreq;
25913 		}
25914 		if (sd_mhreq != NULL) {
25915 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
25916 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25917 		}
25918 	}
25919 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25920 }
25921 
25922 
25923 /*
25924  *    Function: sd_mhd_reset_notify_cb()
25925  *
25926  * Description: This is a call back function for scsi_reset_notify. This
25927  *		function updates the softstate reserved status and logs the
25928  *		reset. The driver scsi watch facility callback function
25929  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
25930  *		will reclaim the reservation.
25931  *
25932  *   Arguments: arg  - driver soft state (unit) structure
25933  */
25934 
25935 static void
25936 sd_mhd_reset_notify_cb(caddr_t arg)
25937 {
25938 	struct sd_lun *un = (struct sd_lun *)arg;
25939 
25940 	mutex_enter(SD_MUTEX(un));
25941 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25942 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
25943 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25944 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
25945 	}
25946 	mutex_exit(SD_MUTEX(un));
25947 }
25948 
25949 
25950 /*
25951  *    Function: sd_take_ownership()
25952  *
25953  * Description: This routine implements an algorithm to achieve a stable
25954  *		reservation on disks which don't implement priority reserve,
25955  *		and makes sure that other host lose re-reservation attempts.
25956  *		This algorithm contains of a loop that keeps issuing the RESERVE
25957  *		for some period of time (min_ownership_delay, default 6 seconds)
25958  *		During that loop, it looks to see if there has been a bus device
25959  *		reset or bus reset (both of which cause an existing reservation
25960  *		to be lost). If the reservation is lost issue RESERVE until a
25961  *		period of min_ownership_delay with no resets has gone by, or
25962  *		until max_ownership_delay has expired. This loop ensures that
25963  *		the host really did manage to reserve the device, in spite of
25964  *		resets. The looping for min_ownership_delay (default six
25965  *		seconds) is important to early generation clustering products,
25966  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
25967  *		MHIOCENFAILFAST periodic timer of two seconds. By having
25968  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
25969  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
25970  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
25971  *		have already noticed, via the MHIOCENFAILFAST polling, that it
25972  *		no longer "owns" the disk and will have panicked itself.  Thus,
25973  *		the host issuing the MHIOCTKOWN is assured (with timing
25974  *		dependencies) that by the time it actually starts to use the
25975  *		disk for real work, the old owner is no longer accessing it.
25976  *
25977  *		min_ownership_delay is the minimum amount of time for which the
25978  *		disk must be reserved continuously devoid of resets before the
25979  *		MHIOCTKOWN ioctl will return success.
25980  *
25981  *		max_ownership_delay indicates the amount of time by which the
25982  *		take ownership should succeed or timeout with an error.
25983  *
25984  *   Arguments: dev - the device 'dev_t'
25985  *		*p  - struct containing timing info.
25986  *
25987  * Return Code: 0 for success or error code
25988  */
25989 
25990 static int
25991 sd_take_ownership(dev_t dev, struct mhioctkown *p)
25992 {
25993 	struct sd_lun	*un;
25994 	int		rval;
25995 	int		err;
25996 	int		reservation_count   = 0;
25997 	int		min_ownership_delay =  6000000; /* in usec */
25998 	int		max_ownership_delay = 30000000; /* in usec */
25999 	clock_t		start_time;	/* starting time of this algorithm */
26000 	clock_t		end_time;	/* time limit for giving up */
26001 	clock_t		ownership_time;	/* time limit for stable ownership */
26002 	clock_t		current_time;
26003 	clock_t		previous_current_time;
26004 
26005 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26006 		return (ENXIO);
26007 	}
26008 
26009 	/*
26010 	 * Attempt a device reservation. A priority reservation is requested.
26011 	 */
26012 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
26013 	    != SD_SUCCESS) {
26014 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26015 		    "sd_take_ownership: return(1)=%d\n", rval);
26016 		return (rval);
26017 	}
26018 
26019 	/* Update the softstate reserved status to indicate the reservation */
26020 	mutex_enter(SD_MUTEX(un));
26021 	un->un_resvd_status |= SD_RESERVE;
26022 	un->un_resvd_status &=
26023 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
26024 	mutex_exit(SD_MUTEX(un));
26025 
26026 	if (p != NULL) {
26027 		if (p->min_ownership_delay != 0) {
26028 			min_ownership_delay = p->min_ownership_delay * 1000;
26029 		}
26030 		if (p->max_ownership_delay != 0) {
26031 			max_ownership_delay = p->max_ownership_delay * 1000;
26032 		}
26033 	}
26034 	SD_INFO(SD_LOG_IOCTL_MHD, un,
26035 	    "sd_take_ownership: min, max delays: %d, %d\n",
26036 	    min_ownership_delay, max_ownership_delay);
26037 
26038 	start_time = ddi_get_lbolt();
26039 	current_time	= start_time;
26040 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
26041 	end_time	= start_time + drv_usectohz(max_ownership_delay);
26042 
26043 	while (current_time - end_time < 0) {
26044 		delay(drv_usectohz(500000));
26045 
26046 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
26047 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
26048 				mutex_enter(SD_MUTEX(un));
26049 				rval = (un->un_resvd_status &
26050 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
26051 				mutex_exit(SD_MUTEX(un));
26052 				break;
26053 			}
26054 		}
26055 		previous_current_time = current_time;
26056 		current_time = ddi_get_lbolt();
26057 		mutex_enter(SD_MUTEX(un));
26058 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
26059 			ownership_time = ddi_get_lbolt() +
26060 			    drv_usectohz(min_ownership_delay);
26061 			reservation_count = 0;
26062 		} else {
26063 			reservation_count++;
26064 		}
26065 		un->un_resvd_status |= SD_RESERVE;
26066 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
26067 		mutex_exit(SD_MUTEX(un));
26068 
26069 		SD_INFO(SD_LOG_IOCTL_MHD, un,
26070 		    "sd_take_ownership: ticks for loop iteration=%ld, "
26071 		    "reservation=%s\n", (current_time - previous_current_time),
26072 		    reservation_count ? "ok" : "reclaimed");
26073 
26074 		if (current_time - ownership_time >= 0 &&
26075 		    reservation_count >= 4) {
26076 			rval = 0; /* Achieved a stable ownership */
26077 			break;
26078 		}
26079 		if (current_time - end_time >= 0) {
26080 			rval = EACCES; /* No ownership in max possible time */
26081 			break;
26082 		}
26083 	}
26084 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
26085 	    "sd_take_ownership: return(2)=%d\n", rval);
26086 	return (rval);
26087 }
26088 
26089 
26090 /*
26091  *    Function: sd_reserve_release()
26092  *
26093  * Description: This function builds and sends scsi RESERVE, RELEASE, and
26094  *		PRIORITY RESERVE commands based on a user specified command type
26095  *
26096  *   Arguments: dev - the device 'dev_t'
26097  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
26098  *		      SD_RESERVE, SD_RELEASE
26099  *
26100  * Return Code: 0 or Error Code
26101  */
26102 
26103 static int
26104 sd_reserve_release(dev_t dev, int cmd)
26105 {
26106 	struct uscsi_cmd	*com = NULL;
26107 	struct sd_lun		*un = NULL;
26108 	char			cdb[CDB_GROUP0];
26109 	int			rval;
26110 
26111 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
26112 	    (cmd == SD_PRIORITY_RESERVE));
26113 
26114 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26115 		return (ENXIO);
26116 	}
26117 
26118 	/* instantiate and initialize the command and cdb */
26119 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26120 	bzero(cdb, CDB_GROUP0);
26121 	com->uscsi_flags   = USCSI_SILENT;
26122 	com->uscsi_timeout = un->un_reserve_release_time;
26123 	com->uscsi_cdblen  = CDB_GROUP0;
26124 	com->uscsi_cdb	   = cdb;
26125 	if (cmd == SD_RELEASE) {
26126 		cdb[0] = SCMD_RELEASE;
26127 	} else {
26128 		cdb[0] = SCMD_RESERVE;
26129 	}
26130 
26131 	/* Send the command. */
26132 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26133 	    SD_PATH_STANDARD);
26134 
26135 	/*
26136 	 * "break" a reservation that is held by another host, by issuing a
26137 	 * reset if priority reserve is desired, and we could not get the
26138 	 * device.
26139 	 */
26140 	if ((cmd == SD_PRIORITY_RESERVE) &&
26141 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
26142 		/*
26143 		 * First try to reset the LUN. If we cannot, then try a target
26144 		 * reset, followed by a bus reset if the target reset fails.
26145 		 */
26146 		int reset_retval = 0;
26147 		if (un->un_f_lun_reset_enabled == TRUE) {
26148 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
26149 		}
26150 		if (reset_retval == 0) {
26151 			/* The LUN reset either failed or was not issued */
26152 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26153 		}
26154 		if ((reset_retval == 0) &&
26155 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
26156 			rval = EIO;
26157 			kmem_free(com, sizeof (*com));
26158 			return (rval);
26159 		}
26160 
26161 		bzero(com, sizeof (struct uscsi_cmd));
26162 		com->uscsi_flags   = USCSI_SILENT;
26163 		com->uscsi_cdb	   = cdb;
26164 		com->uscsi_cdblen  = CDB_GROUP0;
26165 		com->uscsi_timeout = 5;
26166 
26167 		/*
26168 		 * Reissue the last reserve command, this time without request
26169 		 * sense.  Assume that it is just a regular reserve command.
26170 		 */
26171 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26172 		    SD_PATH_STANDARD);
26173 	}
26174 
26175 	/* Return an error if still getting a reservation conflict. */
26176 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
26177 		rval = EACCES;
26178 	}
26179 
26180 	kmem_free(com, sizeof (*com));
26181 	return (rval);
26182 }
26183 
26184 
26185 #define	SD_NDUMP_RETRIES	12
26186 /*
26187  *	System Crash Dump routine
26188  */
26189 
26190 static int
26191 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
26192 {
26193 	int		instance;
26194 	int		partition;
26195 	int		i;
26196 	int		err;
26197 	struct sd_lun	*un;
26198 	struct dk_map	*lp;
26199 	struct scsi_pkt *wr_pktp;
26200 	struct buf	*wr_bp;
26201 	struct buf	wr_buf;
26202 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
26203 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
26204 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
26205 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
26206 	size_t		io_start_offset;
26207 	int		doing_rmw = FALSE;
26208 	int		rval;
26209 #if defined(__i386) || defined(__amd64)
26210 	ssize_t dma_resid;
26211 	daddr_t oblkno;
26212 #endif
26213 
26214 	instance = SDUNIT(dev);
26215 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
26216 	    (!un->un_f_geometry_is_valid) || ISCD(un)) {
26217 		return (ENXIO);
26218 	}
26219 
26220 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
26221 
26222 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
26223 
26224 	partition = SDPART(dev);
26225 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
26226 
26227 	/* Validate blocks to dump at against partition size. */
26228 	lp = &un->un_map[partition];
26229 	if ((blkno + nblk) > lp->dkl_nblk) {
26230 		SD_TRACE(SD_LOG_DUMP, un,
26231 		    "sddump: dump range larger than partition: "
26232 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
26233 		    blkno, nblk, lp->dkl_nblk);
26234 		return (EINVAL);
26235 	}
26236 
26237 	mutex_enter(&un->un_pm_mutex);
26238 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
26239 		struct scsi_pkt *start_pktp;
26240 
26241 		mutex_exit(&un->un_pm_mutex);
26242 
26243 		/*
26244 		 * use pm framework to power on HBA 1st
26245 		 */
26246 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
26247 
26248 		/*
26249 		 * Dump no long uses sdpower to power on a device, it's
26250 		 * in-line here so it can be done in polled mode.
26251 		 */
26252 
26253 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
26254 
26255 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
26256 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
26257 
26258 		if (start_pktp == NULL) {
26259 			/* We were not given a SCSI packet, fail. */
26260 			return (EIO);
26261 		}
26262 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
26263 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
26264 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
26265 		start_pktp->pkt_flags = FLAG_NOINTR;
26266 
26267 		mutex_enter(SD_MUTEX(un));
26268 		SD_FILL_SCSI1_LUN(un, start_pktp);
26269 		mutex_exit(SD_MUTEX(un));
26270 		/*
26271 		 * Scsi_poll returns 0 (success) if the command completes and
26272 		 * the status block is STATUS_GOOD.
26273 		 */
26274 		if (sd_scsi_poll(un, start_pktp) != 0) {
26275 			scsi_destroy_pkt(start_pktp);
26276 			return (EIO);
26277 		}
26278 		scsi_destroy_pkt(start_pktp);
26279 		(void) sd_ddi_pm_resume(un);
26280 	} else {
26281 		mutex_exit(&un->un_pm_mutex);
26282 	}
26283 
26284 	mutex_enter(SD_MUTEX(un));
26285 	un->un_throttle = 0;
26286 
26287 	/*
26288 	 * The first time through, reset the specific target device.
26289 	 * However, when cpr calls sddump we know that sd is in a
26290 	 * a good state so no bus reset is required.
26291 	 * Clear sense data via Request Sense cmd.
26292 	 * In sddump we don't care about allow_bus_device_reset anymore
26293 	 */
26294 
26295 	if ((un->un_state != SD_STATE_SUSPENDED) &&
26296 	    (un->un_state != SD_STATE_DUMPING)) {
26297 
26298 		New_state(un, SD_STATE_DUMPING);
26299 
26300 		if (un->un_f_is_fibre == FALSE) {
26301 			mutex_exit(SD_MUTEX(un));
26302 			/*
26303 			 * Attempt a bus reset for parallel scsi.
26304 			 *
26305 			 * Note: A bus reset is required because on some host
26306 			 * systems (i.e. E420R) a bus device reset is
26307 			 * insufficient to reset the state of the target.
26308 			 *
26309 			 * Note: Don't issue the reset for fibre-channel,
26310 			 * because this tends to hang the bus (loop) for
26311 			 * too long while everyone is logging out and in
26312 			 * and the deadman timer for dumping will fire
26313 			 * before the dump is complete.
26314 			 */
26315 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
26316 				mutex_enter(SD_MUTEX(un));
26317 				Restore_state(un);
26318 				mutex_exit(SD_MUTEX(un));
26319 				return (EIO);
26320 			}
26321 
26322 			/* Delay to give the device some recovery time. */
26323 			drv_usecwait(10000);
26324 
26325 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
26326 				SD_INFO(SD_LOG_DUMP, un,
26327 					"sddump: sd_send_polled_RQS failed\n");
26328 			}
26329 			mutex_enter(SD_MUTEX(un));
26330 		}
26331 	}
26332 
26333 	/*
26334 	 * Convert the partition-relative block number to a
26335 	 * disk physical block number.
26336 	 */
26337 	blkno += un->un_offset[partition];
26338 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
26339 
26340 
26341 	/*
26342 	 * Check if the device has a non-512 block size.
26343 	 */
26344 	wr_bp = NULL;
26345 	if (NOT_DEVBSIZE(un)) {
26346 		tgt_byte_offset = blkno * un->un_sys_blocksize;
26347 		tgt_byte_count = nblk * un->un_sys_blocksize;
26348 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
26349 		    (tgt_byte_count % un->un_tgt_blocksize)) {
26350 			doing_rmw = TRUE;
26351 			/*
26352 			 * Calculate the block number and number of block
26353 			 * in terms of the media block size.
26354 			 */
26355 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
26356 			tgt_nblk =
26357 			    ((tgt_byte_offset + tgt_byte_count +
26358 				(un->un_tgt_blocksize - 1)) /
26359 				un->un_tgt_blocksize) - tgt_blkno;
26360 
26361 			/*
26362 			 * Invoke the routine which is going to do read part
26363 			 * of read-modify-write.
26364 			 * Note that this routine returns a pointer to
26365 			 * a valid bp in wr_bp.
26366 			 */
26367 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
26368 			    &wr_bp);
26369 			if (err) {
26370 				mutex_exit(SD_MUTEX(un));
26371 				return (err);
26372 			}
26373 			/*
26374 			 * Offset is being calculated as -
26375 			 * (original block # * system block size) -
26376 			 * (new block # * target block size)
26377 			 */
26378 			io_start_offset =
26379 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
26380 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
26381 
26382 			ASSERT((io_start_offset >= 0) &&
26383 			    (io_start_offset < un->un_tgt_blocksize));
26384 			/*
26385 			 * Do the modify portion of read modify write.
26386 			 */
26387 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
26388 			    (size_t)nblk * un->un_sys_blocksize);
26389 		} else {
26390 			doing_rmw = FALSE;
26391 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
26392 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
26393 		}
26394 
26395 		/* Convert blkno and nblk to target blocks */
26396 		blkno = tgt_blkno;
26397 		nblk = tgt_nblk;
26398 	} else {
26399 		wr_bp = &wr_buf;
26400 		bzero(wr_bp, sizeof (struct buf));
26401 		wr_bp->b_flags		= B_BUSY;
26402 		wr_bp->b_un.b_addr	= addr;
26403 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
26404 		wr_bp->b_resid		= 0;
26405 	}
26406 
26407 	mutex_exit(SD_MUTEX(un));
26408 
26409 	/*
26410 	 * Obtain a SCSI packet for the write command.
26411 	 * It should be safe to call the allocator here without
26412 	 * worrying about being locked for DVMA mapping because
26413 	 * the address we're passed is already a DVMA mapping
26414 	 *
26415 	 * We are also not going to worry about semaphore ownership
26416 	 * in the dump buffer. Dumping is single threaded at present.
26417 	 */
26418 
26419 	wr_pktp = NULL;
26420 
26421 #if defined(__i386) || defined(__amd64)
26422 	dma_resid = wr_bp->b_bcount;
26423 	oblkno = blkno;
26424 	while (dma_resid != 0) {
26425 #endif
26426 
26427 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26428 		wr_bp->b_flags &= ~B_ERROR;
26429 
26430 #if defined(__i386) || defined(__amd64)
26431 		blkno = oblkno +
26432 			((wr_bp->b_bcount - dma_resid) /
26433 			    un->un_tgt_blocksize);
26434 		nblk = dma_resid / un->un_tgt_blocksize;
26435 
26436 		if (wr_pktp) {
26437 			/* Partial DMA transfers after initial transfer */
26438 			rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
26439 			    blkno, nblk);
26440 		} else {
26441 			/* Initial transfer */
26442 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26443 			    un->un_pkt_flags, NULL_FUNC, NULL,
26444 			    blkno, nblk);
26445 		}
26446 #else
26447 		rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26448 		    0, NULL_FUNC, NULL, blkno, nblk);
26449 #endif
26450 
26451 		if (rval == 0) {
26452 			/* We were given a SCSI packet, continue. */
26453 			break;
26454 		}
26455 
26456 		if (i == 0) {
26457 			if (wr_bp->b_flags & B_ERROR) {
26458 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26459 				    "no resources for dumping; "
26460 				    "error code: 0x%x, retrying",
26461 				    geterror(wr_bp));
26462 			} else {
26463 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26464 				    "no resources for dumping; retrying");
26465 			}
26466 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
26467 			if (wr_bp->b_flags & B_ERROR) {
26468 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26469 				    "no resources for dumping; error code: "
26470 				    "0x%x, retrying\n", geterror(wr_bp));
26471 			}
26472 		} else {
26473 			if (wr_bp->b_flags & B_ERROR) {
26474 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26475 				    "no resources for dumping; "
26476 				    "error code: 0x%x, retries failed, "
26477 				    "giving up.\n", geterror(wr_bp));
26478 			} else {
26479 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26480 				    "no resources for dumping; "
26481 				    "retries failed, giving up.\n");
26482 			}
26483 			mutex_enter(SD_MUTEX(un));
26484 			Restore_state(un);
26485 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
26486 				mutex_exit(SD_MUTEX(un));
26487 				scsi_free_consistent_buf(wr_bp);
26488 			} else {
26489 				mutex_exit(SD_MUTEX(un));
26490 			}
26491 			return (EIO);
26492 		}
26493 		drv_usecwait(10000);
26494 	}
26495 
26496 #if defined(__i386) || defined(__amd64)
26497 	/*
26498 	 * save the resid from PARTIAL_DMA
26499 	 */
26500 	dma_resid = wr_pktp->pkt_resid;
26501 	if (dma_resid != 0)
26502 		nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
26503 	wr_pktp->pkt_resid = 0;
26504 #endif
26505 
26506 	/* SunBug 1222170 */
26507 	wr_pktp->pkt_flags = FLAG_NOINTR;
26508 
26509 	err = EIO;
26510 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26511 
26512 		/*
26513 		 * Scsi_poll returns 0 (success) if the command completes and
26514 		 * the status block is STATUS_GOOD.  We should only check
26515 		 * errors if this condition is not true.  Even then we should
26516 		 * send our own request sense packet only if we have a check
26517 		 * condition and auto request sense has not been performed by
26518 		 * the hba.
26519 		 */
26520 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
26521 
26522 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
26523 		    (wr_pktp->pkt_resid == 0)) {
26524 			err = SD_SUCCESS;
26525 			break;
26526 		}
26527 
26528 		/*
26529 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
26530 		 */
26531 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
26532 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26533 			    "Device is gone\n");
26534 			break;
26535 		}
26536 
26537 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
26538 			SD_INFO(SD_LOG_DUMP, un,
26539 			    "sddump: write failed with CHECK, try # %d\n", i);
26540 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
26541 				(void) sd_send_polled_RQS(un);
26542 			}
26543 
26544 			continue;
26545 		}
26546 
26547 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
26548 			int reset_retval = 0;
26549 
26550 			SD_INFO(SD_LOG_DUMP, un,
26551 			    "sddump: write failed with BUSY, try # %d\n", i);
26552 
26553 			if (un->un_f_lun_reset_enabled == TRUE) {
26554 				reset_retval = scsi_reset(SD_ADDRESS(un),
26555 				    RESET_LUN);
26556 			}
26557 			if (reset_retval == 0) {
26558 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26559 			}
26560 			(void) sd_send_polled_RQS(un);
26561 
26562 		} else {
26563 			SD_INFO(SD_LOG_DUMP, un,
26564 			    "sddump: write failed with 0x%x, try # %d\n",
26565 			    SD_GET_PKT_STATUS(wr_pktp), i);
26566 			mutex_enter(SD_MUTEX(un));
26567 			sd_reset_target(un, wr_pktp);
26568 			mutex_exit(SD_MUTEX(un));
26569 		}
26570 
26571 		/*
26572 		 * If we are not getting anywhere with lun/target resets,
26573 		 * let's reset the bus.
26574 		 */
26575 		if (i == SD_NDUMP_RETRIES/2) {
26576 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26577 			(void) sd_send_polled_RQS(un);
26578 		}
26579 
26580 	}
26581 #if defined(__i386) || defined(__amd64)
26582 	}	/* dma_resid */
26583 #endif
26584 
26585 	scsi_destroy_pkt(wr_pktp);
26586 	mutex_enter(SD_MUTEX(un));
26587 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
26588 		mutex_exit(SD_MUTEX(un));
26589 		scsi_free_consistent_buf(wr_bp);
26590 	} else {
26591 		mutex_exit(SD_MUTEX(un));
26592 	}
26593 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
26594 	return (err);
26595 }
26596 
26597 /*
26598  *    Function: sd_scsi_poll()
26599  *
26600  * Description: This is a wrapper for the scsi_poll call.
26601  *
26602  *   Arguments: sd_lun - The unit structure
26603  *              scsi_pkt - The scsi packet being sent to the device.
26604  *
26605  * Return Code: 0 - Command completed successfully with good status
26606  *             -1 - Command failed.  This could indicate a check condition
26607  *                  or other status value requiring recovery action.
26608  *
26609  */
26610 
26611 static int
26612 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
26613 {
26614 	int status;
26615 
26616 	ASSERT(un != NULL);
26617 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26618 	ASSERT(pktp != NULL);
26619 
26620 	status = SD_SUCCESS;
26621 
26622 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
26623 		pktp->pkt_flags |= un->un_tagflags;
26624 		pktp->pkt_flags &= ~FLAG_NODISCON;
26625 	}
26626 
26627 	status = sd_ddi_scsi_poll(pktp);
26628 	/*
26629 	 * Scsi_poll returns 0 (success) if the command completes and the
26630 	 * status block is STATUS_GOOD.  We should only check errors if this
26631 	 * condition is not true.  Even then we should send our own request
26632 	 * sense packet only if we have a check condition and auto
26633 	 * request sense has not been performed by the hba.
26634 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
26635 	 */
26636 	if ((status != SD_SUCCESS) &&
26637 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
26638 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
26639 	    (pktp->pkt_reason != CMD_DEV_GONE))
26640 		(void) sd_send_polled_RQS(un);
26641 
26642 	return (status);
26643 }
26644 
26645 /*
26646  *    Function: sd_send_polled_RQS()
26647  *
26648  * Description: This sends the request sense command to a device.
26649  *
26650  *   Arguments: sd_lun - The unit structure
26651  *
26652  * Return Code: 0 - Command completed successfully with good status
26653  *             -1 - Command failed.
26654  *
26655  */
26656 
26657 static int
26658 sd_send_polled_RQS(struct sd_lun *un)
26659 {
26660 	int	ret_val;
26661 	struct	scsi_pkt	*rqs_pktp;
26662 	struct	buf		*rqs_bp;
26663 
26664 	ASSERT(un != NULL);
26665 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26666 
26667 	ret_val = SD_SUCCESS;
26668 
26669 	rqs_pktp = un->un_rqs_pktp;
26670 	rqs_bp	 = un->un_rqs_bp;
26671 
26672 	mutex_enter(SD_MUTEX(un));
26673 
26674 	if (un->un_sense_isbusy) {
26675 		ret_val = SD_FAILURE;
26676 		mutex_exit(SD_MUTEX(un));
26677 		return (ret_val);
26678 	}
26679 
26680 	/*
26681 	 * If the request sense buffer (and packet) is not in use,
26682 	 * let's set the un_sense_isbusy and send our packet
26683 	 */
26684 	un->un_sense_isbusy 	= 1;
26685 	rqs_pktp->pkt_resid  	= 0;
26686 	rqs_pktp->pkt_reason 	= 0;
26687 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
26688 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
26689 
26690 	mutex_exit(SD_MUTEX(un));
26691 
26692 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
26693 	    " 0x%p\n", rqs_bp->b_un.b_addr);
26694 
26695 	/*
26696 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
26697 	 * axle - it has a call into us!
26698 	 */
26699 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
26700 		SD_INFO(SD_LOG_COMMON, un,
26701 		    "sd_send_polled_RQS: RQS failed\n");
26702 	}
26703 
26704 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
26705 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
26706 
26707 	mutex_enter(SD_MUTEX(un));
26708 	un->un_sense_isbusy = 0;
26709 	mutex_exit(SD_MUTEX(un));
26710 
26711 	return (ret_val);
26712 }
26713 
26714 /*
26715  * Defines needed for localized version of the scsi_poll routine.
26716  */
26717 #define	SD_CSEC		10000			/* usecs */
26718 #define	SD_SEC_TO_CSEC	(1000000/SD_CSEC)
26719 
26720 
26721 /*
26722  *    Function: sd_ddi_scsi_poll()
26723  *
26724  * Description: Localized version of the scsi_poll routine.  The purpose is to
26725  *		send a scsi_pkt to a device as a polled command.  This version
26726  *		is to ensure more robust handling of transport errors.
26727  *		Specifically this routine cures not ready, coming ready
26728  *		transition for power up and reset of sonoma's.  This can take
26729  *		up to 45 seconds for power-on and 20 seconds for reset of a
26730  * 		sonoma lun.
26731  *
26732  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
26733  *
26734  * Return Code: 0 - Command completed successfully with good status
26735  *             -1 - Command failed.
26736  *
26737  */
26738 
26739 static int
26740 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
26741 {
26742 	int busy_count;
26743 	int timeout;
26744 	int rval = SD_FAILURE;
26745 	int savef;
26746 	uint8_t *sensep;
26747 	long savet;
26748 	void (*savec)();
26749 	/*
26750 	 * The following is defined in machdep.c and is used in determining if
26751 	 * the scsi transport system will do polled I/O instead of interrupt
26752 	 * I/O when called from xx_dump().
26753 	 */
26754 	extern int do_polled_io;
26755 
26756 	/*
26757 	 * save old flags in pkt, to restore at end
26758 	 */
26759 	savef = pkt->pkt_flags;
26760 	savec = pkt->pkt_comp;
26761 	savet = pkt->pkt_time;
26762 
26763 	pkt->pkt_flags |= FLAG_NOINTR;
26764 
26765 	/*
26766 	 * XXX there is nothing in the SCSA spec that states that we should not
26767 	 * do a callback for polled cmds; however, removing this will break sd
26768 	 * and probably other target drivers
26769 	 */
26770 	pkt->pkt_comp = NULL;
26771 
26772 	/*
26773 	 * we don't like a polled command without timeout.
26774 	 * 60 seconds seems long enough.
26775 	 */
26776 	if (pkt->pkt_time == 0) {
26777 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
26778 	}
26779 
26780 	/*
26781 	 * Send polled cmd.
26782 	 *
26783 	 * We do some error recovery for various errors.  Tran_busy,
26784 	 * queue full, and non-dispatched commands are retried every 10 msec.
26785 	 * as they are typically transient failures.  Busy status and Not
26786 	 * Ready are retried every second as this status takes a while to
26787 	 * change.  Unit attention is retried for pkt_time (60) times
26788 	 * with no delay.
26789 	 */
26790 	timeout = pkt->pkt_time * SD_SEC_TO_CSEC;
26791 
26792 	for (busy_count = 0; busy_count < timeout; busy_count++) {
26793 		int rc;
26794 		int poll_delay;
26795 
26796 		/*
26797 		 * Initialize pkt status variables.
26798 		 */
26799 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
26800 
26801 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
26802 			if (rc != TRAN_BUSY) {
26803 				/* Transport failed - give up. */
26804 				break;
26805 			} else {
26806 				/* Transport busy - try again. */
26807 				poll_delay = 1 * SD_CSEC; /* 10 msec */
26808 			}
26809 		} else {
26810 			/*
26811 			 * Transport accepted - check pkt status.
26812 			 */
26813 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
26814 			if (pkt->pkt_reason == CMD_CMPLT &&
26815 			    rc == STATUS_CHECK &&
26816 			    pkt->pkt_state & STATE_ARQ_DONE) {
26817 				struct scsi_arq_status *arqstat =
26818 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
26819 
26820 				sensep = (uint8_t *)&arqstat->sts_sensedata;
26821 			} else {
26822 				sensep = NULL;
26823 			}
26824 
26825 			if ((pkt->pkt_reason == CMD_CMPLT) &&
26826 			    (rc == STATUS_GOOD)) {
26827 				/* No error - we're done */
26828 				rval = SD_SUCCESS;
26829 				break;
26830 
26831 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
26832 				/* Lost connection - give up */
26833 				break;
26834 
26835 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
26836 			    (pkt->pkt_state == 0)) {
26837 				/* Pkt not dispatched - try again. */
26838 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
26839 
26840 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26841 			    (rc == STATUS_QFULL)) {
26842 				/* Queue full - try again. */
26843 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
26844 
26845 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26846 			    (rc == STATUS_BUSY)) {
26847 				/* Busy - try again. */
26848 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
26849 				busy_count += (SD_SEC_TO_CSEC - 1);
26850 
26851 			} else if ((sensep != NULL) &&
26852 			    (scsi_sense_key(sensep) ==
26853 				KEY_UNIT_ATTENTION)) {
26854 				/* Unit Attention - try again */
26855 				busy_count += (SD_SEC_TO_CSEC - 1); /* 1 */
26856 				continue;
26857 
26858 			} else if ((sensep != NULL) &&
26859 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
26860 			    (scsi_sense_asc(sensep) == 0x04) &&
26861 			    (scsi_sense_ascq(sensep) == 0x01)) {
26862 				/* Not ready -> ready - try again. */
26863 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
26864 				busy_count += (SD_SEC_TO_CSEC - 1);
26865 
26866 			} else {
26867 				/* BAD status - give up. */
26868 				break;
26869 			}
26870 		}
26871 
26872 		if ((curthread->t_flag & T_INTR_THREAD) == 0 &&
26873 		    !do_polled_io) {
26874 			delay(drv_usectohz(poll_delay));
26875 		} else {
26876 			/* we busy wait during cpr_dump or interrupt threads */
26877 			drv_usecwait(poll_delay);
26878 		}
26879 	}
26880 
26881 	pkt->pkt_flags = savef;
26882 	pkt->pkt_comp = savec;
26883 	pkt->pkt_time = savet;
26884 	return (rval);
26885 }
26886 
26887 
26888 /*
26889  *    Function: sd_persistent_reservation_in_read_keys
26890  *
26891  * Description: This routine is the driver entry point for handling CD-ROM
26892  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
26893  *		by sending the SCSI-3 PRIN commands to the device.
26894  *		Processes the read keys command response by copying the
26895  *		reservation key information into the user provided buffer.
26896  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
26897  *
26898  *   Arguments: un   -  Pointer to soft state struct for the target.
26899  *		usrp -	user provided pointer to multihost Persistent In Read
26900  *			Keys structure (mhioc_inkeys_t)
26901  *		flag -	this argument is a pass through to ddi_copyxxx()
26902  *			directly from the mode argument of ioctl().
26903  *
26904  * Return Code: 0   - Success
26905  *		EACCES
26906  *		ENOTSUP
26907  *		errno return code from sd_send_scsi_cmd()
26908  *
26909  *     Context: Can sleep. Does not return until command is completed.
26910  */
26911 
26912 static int
26913 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
26914     mhioc_inkeys_t *usrp, int flag)
26915 {
26916 #ifdef _MULTI_DATAMODEL
26917 	struct mhioc_key_list32	li32;
26918 #endif
26919 	sd_prin_readkeys_t	*in;
26920 	mhioc_inkeys_t		*ptr;
26921 	mhioc_key_list_t	li;
26922 	uchar_t			*data_bufp;
26923 	int 			data_len;
26924 	int			rval;
26925 	size_t			copysz;
26926 
26927 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
26928 		return (EINVAL);
26929 	}
26930 	bzero(&li, sizeof (mhioc_key_list_t));
26931 
26932 	/*
26933 	 * Get the listsize from user
26934 	 */
26935 #ifdef _MULTI_DATAMODEL
26936 
26937 	switch (ddi_model_convert_from(flag & FMODELS)) {
26938 	case DDI_MODEL_ILP32:
26939 		copysz = sizeof (struct mhioc_key_list32);
26940 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
26941 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26942 			    "sd_persistent_reservation_in_read_keys: "
26943 			    "failed ddi_copyin: mhioc_key_list32_t\n");
26944 			rval = EFAULT;
26945 			goto done;
26946 		}
26947 		li.listsize = li32.listsize;
26948 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
26949 		break;
26950 
26951 	case DDI_MODEL_NONE:
26952 		copysz = sizeof (mhioc_key_list_t);
26953 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26954 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26955 			    "sd_persistent_reservation_in_read_keys: "
26956 			    "failed ddi_copyin: mhioc_key_list_t\n");
26957 			rval = EFAULT;
26958 			goto done;
26959 		}
26960 		break;
26961 	}
26962 
26963 #else /* ! _MULTI_DATAMODEL */
26964 	copysz = sizeof (mhioc_key_list_t);
26965 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26966 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26967 		    "sd_persistent_reservation_in_read_keys: "
26968 		    "failed ddi_copyin: mhioc_key_list_t\n");
26969 		rval = EFAULT;
26970 		goto done;
26971 	}
26972 #endif
26973 
26974 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
26975 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
26976 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26977 
26978 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS,
26979 	    data_len, data_bufp)) != 0) {
26980 		goto done;
26981 	}
26982 	in = (sd_prin_readkeys_t *)data_bufp;
26983 	ptr->generation = BE_32(in->generation);
26984 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
26985 
26986 	/*
26987 	 * Return the min(listsize, listlen) keys
26988 	 */
26989 #ifdef _MULTI_DATAMODEL
26990 
26991 	switch (ddi_model_convert_from(flag & FMODELS)) {
26992 	case DDI_MODEL_ILP32:
26993 		li32.listlen = li.listlen;
26994 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
26995 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26996 			    "sd_persistent_reservation_in_read_keys: "
26997 			    "failed ddi_copyout: mhioc_key_list32_t\n");
26998 			rval = EFAULT;
26999 			goto done;
27000 		}
27001 		break;
27002 
27003 	case DDI_MODEL_NONE:
27004 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
27005 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27006 			    "sd_persistent_reservation_in_read_keys: "
27007 			    "failed ddi_copyout: mhioc_key_list_t\n");
27008 			rval = EFAULT;
27009 			goto done;
27010 		}
27011 		break;
27012 	}
27013 
27014 #else /* ! _MULTI_DATAMODEL */
27015 
27016 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
27017 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
27018 		    "sd_persistent_reservation_in_read_keys: "
27019 		    "failed ddi_copyout: mhioc_key_list_t\n");
27020 		rval = EFAULT;
27021 		goto done;
27022 	}
27023 
27024 #endif /* _MULTI_DATAMODEL */
27025 
27026 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
27027 	    li.listsize * MHIOC_RESV_KEY_SIZE);
27028 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
27029 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
27030 		    "sd_persistent_reservation_in_read_keys: "
27031 		    "failed ddi_copyout: keylist\n");
27032 		rval = EFAULT;
27033 	}
27034 done:
27035 	kmem_free(data_bufp, data_len);
27036 	return (rval);
27037 }
27038 
27039 
27040 /*
27041  *    Function: sd_persistent_reservation_in_read_resv
27042  *
27043  * Description: This routine is the driver entry point for handling CD-ROM
27044  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
27045  *		by sending the SCSI-3 PRIN commands to the device.
27046  *		Process the read persistent reservations command response by
27047  *		copying the reservation information into the user provided
27048  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
27049  *
27050  *   Arguments: un   -  Pointer to soft state struct for the target.
27051  *		usrp -	user provided pointer to multihost Persistent In Read
27052  *			Keys structure (mhioc_inkeys_t)
27053  *		flag -	this argument is a pass through to ddi_copyxxx()
27054  *			directly from the mode argument of ioctl().
27055  *
27056  * Return Code: 0   - Success
27057  *		EACCES
27058  *		ENOTSUP
27059  *		errno return code from sd_send_scsi_cmd()
27060  *
27061  *     Context: Can sleep. Does not return until command is completed.
27062  */
27063 
27064 static int
27065 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
27066     mhioc_inresvs_t *usrp, int flag)
27067 {
27068 #ifdef _MULTI_DATAMODEL
27069 	struct mhioc_resv_desc_list32 resvlist32;
27070 #endif
27071 	sd_prin_readresv_t	*in;
27072 	mhioc_inresvs_t		*ptr;
27073 	sd_readresv_desc_t	*readresv_ptr;
27074 	mhioc_resv_desc_list_t	resvlist;
27075 	mhioc_resv_desc_t 	resvdesc;
27076 	uchar_t			*data_bufp;
27077 	int 			data_len;
27078 	int			rval;
27079 	int			i;
27080 	size_t			copysz;
27081 	mhioc_resv_desc_t	*bufp;
27082 
27083 	if ((ptr = usrp) == NULL) {
27084 		return (EINVAL);
27085 	}
27086 
27087 	/*
27088 	 * Get the listsize from user
27089 	 */
27090 #ifdef _MULTI_DATAMODEL
27091 	switch (ddi_model_convert_from(flag & FMODELS)) {
27092 	case DDI_MODEL_ILP32:
27093 		copysz = sizeof (struct mhioc_resv_desc_list32);
27094 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
27095 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27096 			    "sd_persistent_reservation_in_read_resv: "
27097 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
27098 			rval = EFAULT;
27099 			goto done;
27100 		}
27101 		resvlist.listsize = resvlist32.listsize;
27102 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
27103 		break;
27104 
27105 	case DDI_MODEL_NONE:
27106 		copysz = sizeof (mhioc_resv_desc_list_t);
27107 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
27108 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27109 			    "sd_persistent_reservation_in_read_resv: "
27110 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
27111 			rval = EFAULT;
27112 			goto done;
27113 		}
27114 		break;
27115 	}
27116 #else /* ! _MULTI_DATAMODEL */
27117 	copysz = sizeof (mhioc_resv_desc_list_t);
27118 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
27119 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
27120 		    "sd_persistent_reservation_in_read_resv: "
27121 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
27122 		rval = EFAULT;
27123 		goto done;
27124 	}
27125 #endif /* ! _MULTI_DATAMODEL */
27126 
27127 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
27128 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
27129 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
27130 
27131 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV,
27132 	    data_len, data_bufp)) != 0) {
27133 		goto done;
27134 	}
27135 	in = (sd_prin_readresv_t *)data_bufp;
27136 	ptr->generation = BE_32(in->generation);
27137 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
27138 
27139 	/*
27140 	 * Return the min(listsize, listlen( keys
27141 	 */
27142 #ifdef _MULTI_DATAMODEL
27143 
27144 	switch (ddi_model_convert_from(flag & FMODELS)) {
27145 	case DDI_MODEL_ILP32:
27146 		resvlist32.listlen = resvlist.listlen;
27147 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
27148 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27149 			    "sd_persistent_reservation_in_read_resv: "
27150 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
27151 			rval = EFAULT;
27152 			goto done;
27153 		}
27154 		break;
27155 
27156 	case DDI_MODEL_NONE:
27157 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
27158 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27159 			    "sd_persistent_reservation_in_read_resv: "
27160 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
27161 			rval = EFAULT;
27162 			goto done;
27163 		}
27164 		break;
27165 	}
27166 
27167 #else /* ! _MULTI_DATAMODEL */
27168 
27169 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
27170 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
27171 		    "sd_persistent_reservation_in_read_resv: "
27172 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
27173 		rval = EFAULT;
27174 		goto done;
27175 	}
27176 
27177 #endif /* ! _MULTI_DATAMODEL */
27178 
27179 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
27180 	bufp = resvlist.list;
27181 	copysz = sizeof (mhioc_resv_desc_t);
27182 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
27183 	    i++, readresv_ptr++, bufp++) {
27184 
27185 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
27186 		    MHIOC_RESV_KEY_SIZE);
27187 		resvdesc.type  = readresv_ptr->type;
27188 		resvdesc.scope = readresv_ptr->scope;
27189 		resvdesc.scope_specific_addr =
27190 		    BE_32(readresv_ptr->scope_specific_addr);
27191 
27192 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
27193 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27194 			    "sd_persistent_reservation_in_read_resv: "
27195 			    "failed ddi_copyout: resvlist\n");
27196 			rval = EFAULT;
27197 			goto done;
27198 		}
27199 	}
27200 done:
27201 	kmem_free(data_bufp, data_len);
27202 	return (rval);
27203 }
27204 
27205 
27206 /*
27207  *    Function: sr_change_blkmode()
27208  *
27209  * Description: This routine is the driver entry point for handling CD-ROM
27210  *		block mode ioctl requests. Support for returning and changing
27211  *		the current block size in use by the device is implemented. The
27212  *		LBA size is changed via a MODE SELECT Block Descriptor.
27213  *
27214  *		This routine issues a mode sense with an allocation length of
27215  *		12 bytes for the mode page header and a single block descriptor.
27216  *
27217  *   Arguments: dev - the device 'dev_t'
27218  *		cmd - the request type; one of CDROMGBLKMODE (get) or
27219  *		      CDROMSBLKMODE (set)
27220  *		data - current block size or requested block size
27221  *		flag - this argument is a pass through to ddi_copyxxx() directly
27222  *		       from the mode argument of ioctl().
27223  *
27224  * Return Code: the code returned by sd_send_scsi_cmd()
27225  *		EINVAL if invalid arguments are provided
27226  *		EFAULT if ddi_copyxxx() fails
27227  *		ENXIO if fail ddi_get_soft_state
27228  *		EIO if invalid mode sense block descriptor length
27229  *
27230  */
27231 
27232 static int
27233 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
27234 {
27235 	struct sd_lun			*un = NULL;
27236 	struct mode_header		*sense_mhp, *select_mhp;
27237 	struct block_descriptor		*sense_desc, *select_desc;
27238 	int				current_bsize;
27239 	int				rval = EINVAL;
27240 	uchar_t				*sense = NULL;
27241 	uchar_t				*select = NULL;
27242 
27243 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
27244 
27245 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27246 		return (ENXIO);
27247 	}
27248 
27249 	/*
27250 	 * The block length is changed via the Mode Select block descriptor, the
27251 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
27252 	 * required as part of this routine. Therefore the mode sense allocation
27253 	 * length is specified to be the length of a mode page header and a
27254 	 * block descriptor.
27255 	 */
27256 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
27257 
27258 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
27259 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) {
27260 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27261 		    "sr_change_blkmode: Mode Sense Failed\n");
27262 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27263 		return (rval);
27264 	}
27265 
27266 	/* Check the block descriptor len to handle only 1 block descriptor */
27267 	sense_mhp = (struct mode_header *)sense;
27268 	if ((sense_mhp->bdesc_length == 0) ||
27269 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
27270 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27271 		    "sr_change_blkmode: Mode Sense returned invalid block"
27272 		    " descriptor length\n");
27273 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27274 		return (EIO);
27275 	}
27276 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
27277 	current_bsize = ((sense_desc->blksize_hi << 16) |
27278 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
27279 
27280 	/* Process command */
27281 	switch (cmd) {
27282 	case CDROMGBLKMODE:
27283 		/* Return the block size obtained during the mode sense */
27284 		if (ddi_copyout(&current_bsize, (void *)data,
27285 		    sizeof (int), flag) != 0)
27286 			rval = EFAULT;
27287 		break;
27288 	case CDROMSBLKMODE:
27289 		/* Validate the requested block size */
27290 		switch (data) {
27291 		case CDROM_BLK_512:
27292 		case CDROM_BLK_1024:
27293 		case CDROM_BLK_2048:
27294 		case CDROM_BLK_2056:
27295 		case CDROM_BLK_2336:
27296 		case CDROM_BLK_2340:
27297 		case CDROM_BLK_2352:
27298 		case CDROM_BLK_2368:
27299 		case CDROM_BLK_2448:
27300 		case CDROM_BLK_2646:
27301 		case CDROM_BLK_2647:
27302 			break;
27303 		default:
27304 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27305 			    "sr_change_blkmode: "
27306 			    "Block Size '%ld' Not Supported\n", data);
27307 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27308 			return (EINVAL);
27309 		}
27310 
27311 		/*
27312 		 * The current block size matches the requested block size so
27313 		 * there is no need to send the mode select to change the size
27314 		 */
27315 		if (current_bsize == data) {
27316 			break;
27317 		}
27318 
27319 		/* Build the select data for the requested block size */
27320 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
27321 		select_mhp = (struct mode_header *)select;
27322 		select_desc =
27323 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
27324 		/*
27325 		 * The LBA size is changed via the block descriptor, so the
27326 		 * descriptor is built according to the user data
27327 		 */
27328 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
27329 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
27330 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
27331 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
27332 
27333 		/* Send the mode select for the requested block size */
27334 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
27335 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
27336 		    SD_PATH_STANDARD)) != 0) {
27337 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27338 			    "sr_change_blkmode: Mode Select Failed\n");
27339 			/*
27340 			 * The mode select failed for the requested block size,
27341 			 * so reset the data for the original block size and
27342 			 * send it to the target. The error is indicated by the
27343 			 * return value for the failed mode select.
27344 			 */
27345 			select_desc->blksize_hi  = sense_desc->blksize_hi;
27346 			select_desc->blksize_mid = sense_desc->blksize_mid;
27347 			select_desc->blksize_lo  = sense_desc->blksize_lo;
27348 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
27349 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
27350 			    SD_PATH_STANDARD);
27351 		} else {
27352 			ASSERT(!mutex_owned(SD_MUTEX(un)));
27353 			mutex_enter(SD_MUTEX(un));
27354 			sd_update_block_info(un, (uint32_t)data, 0);
27355 
27356 			mutex_exit(SD_MUTEX(un));
27357 		}
27358 		break;
27359 	default:
27360 		/* should not reach here, but check anyway */
27361 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27362 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
27363 		rval = EINVAL;
27364 		break;
27365 	}
27366 
27367 	if (select) {
27368 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
27369 	}
27370 	if (sense) {
27371 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27372 	}
27373 	return (rval);
27374 }
27375 
27376 
27377 /*
27378  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
27379  * implement driver support for getting and setting the CD speed. The command
27380  * set used will be based on the device type. If the device has not been
27381  * identified as MMC the Toshiba vendor specific mode page will be used. If
27382  * the device is MMC but does not support the Real Time Streaming feature
27383  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
27384  * be used to read the speed.
27385  */
27386 
27387 /*
27388  *    Function: sr_change_speed()
27389  *
27390  * Description: This routine is the driver entry point for handling CD-ROM
27391  *		drive speed ioctl requests for devices supporting the Toshiba
27392  *		vendor specific drive speed mode page. Support for returning
27393  *		and changing the current drive speed in use by the device is
27394  *		implemented.
27395  *
27396  *   Arguments: dev - the device 'dev_t'
27397  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
27398  *		      CDROMSDRVSPEED (set)
27399  *		data - current drive speed or requested drive speed
27400  *		flag - this argument is a pass through to ddi_copyxxx() directly
27401  *		       from the mode argument of ioctl().
27402  *
27403  * Return Code: the code returned by sd_send_scsi_cmd()
27404  *		EINVAL if invalid arguments are provided
27405  *		EFAULT if ddi_copyxxx() fails
27406  *		ENXIO if fail ddi_get_soft_state
27407  *		EIO if invalid mode sense block descriptor length
27408  */
27409 
27410 static int
27411 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27412 {
27413 	struct sd_lun			*un = NULL;
27414 	struct mode_header		*sense_mhp, *select_mhp;
27415 	struct mode_speed		*sense_page, *select_page;
27416 	int				current_speed;
27417 	int				rval = EINVAL;
27418 	int				bd_len;
27419 	uchar_t				*sense = NULL;
27420 	uchar_t				*select = NULL;
27421 
27422 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27423 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27424 		return (ENXIO);
27425 	}
27426 
27427 	/*
27428 	 * Note: The drive speed is being modified here according to a Toshiba
27429 	 * vendor specific mode page (0x31).
27430 	 */
27431 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27432 
27433 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
27434 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
27435 		SD_PATH_STANDARD)) != 0) {
27436 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27437 		    "sr_change_speed: Mode Sense Failed\n");
27438 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27439 		return (rval);
27440 	}
27441 	sense_mhp  = (struct mode_header *)sense;
27442 
27443 	/* Check the block descriptor len to handle only 1 block descriptor */
27444 	bd_len = sense_mhp->bdesc_length;
27445 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27446 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27447 		    "sr_change_speed: Mode Sense returned invalid block "
27448 		    "descriptor length\n");
27449 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27450 		return (EIO);
27451 	}
27452 
27453 	sense_page = (struct mode_speed *)
27454 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
27455 	current_speed = sense_page->speed;
27456 
27457 	/* Process command */
27458 	switch (cmd) {
27459 	case CDROMGDRVSPEED:
27460 		/* Return the drive speed obtained during the mode sense */
27461 		if (current_speed == 0x2) {
27462 			current_speed = CDROM_TWELVE_SPEED;
27463 		}
27464 		if (ddi_copyout(&current_speed, (void *)data,
27465 		    sizeof (int), flag) != 0) {
27466 			rval = EFAULT;
27467 		}
27468 		break;
27469 	case CDROMSDRVSPEED:
27470 		/* Validate the requested drive speed */
27471 		switch ((uchar_t)data) {
27472 		case CDROM_TWELVE_SPEED:
27473 			data = 0x2;
27474 			/*FALLTHROUGH*/
27475 		case CDROM_NORMAL_SPEED:
27476 		case CDROM_DOUBLE_SPEED:
27477 		case CDROM_QUAD_SPEED:
27478 		case CDROM_MAXIMUM_SPEED:
27479 			break;
27480 		default:
27481 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27482 			    "sr_change_speed: "
27483 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
27484 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27485 			return (EINVAL);
27486 		}
27487 
27488 		/*
27489 		 * The current drive speed matches the requested drive speed so
27490 		 * there is no need to send the mode select to change the speed
27491 		 */
27492 		if (current_speed == data) {
27493 			break;
27494 		}
27495 
27496 		/* Build the select data for the requested drive speed */
27497 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27498 		select_mhp = (struct mode_header *)select;
27499 		select_mhp->bdesc_length = 0;
27500 		select_page =
27501 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27502 		select_page =
27503 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27504 		select_page->mode_page.code = CDROM_MODE_SPEED;
27505 		select_page->mode_page.length = 2;
27506 		select_page->speed = (uchar_t)data;
27507 
27508 		/* Send the mode select for the requested block size */
27509 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
27510 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27511 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
27512 			/*
27513 			 * The mode select failed for the requested drive speed,
27514 			 * so reset the data for the original drive speed and
27515 			 * send it to the target. The error is indicated by the
27516 			 * return value for the failed mode select.
27517 			 */
27518 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27519 			    "sr_drive_speed: Mode Select Failed\n");
27520 			select_page->speed = sense_page->speed;
27521 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
27522 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27523 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27524 		}
27525 		break;
27526 	default:
27527 		/* should not reach here, but check anyway */
27528 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27529 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
27530 		rval = EINVAL;
27531 		break;
27532 	}
27533 
27534 	if (select) {
27535 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
27536 	}
27537 	if (sense) {
27538 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27539 	}
27540 
27541 	return (rval);
27542 }
27543 
27544 
27545 /*
27546  *    Function: sr_atapi_change_speed()
27547  *
27548  * Description: This routine is the driver entry point for handling CD-ROM
27549  *		drive speed ioctl requests for MMC devices that do not support
27550  *		the Real Time Streaming feature (0x107).
27551  *
27552  *		Note: This routine will use the SET SPEED command which may not
27553  *		be supported by all devices.
27554  *
27555  *   Arguments: dev- the device 'dev_t'
27556  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
27557  *		     CDROMSDRVSPEED (set)
27558  *		data- current drive speed or requested drive speed
27559  *		flag- this argument is a pass through to ddi_copyxxx() directly
27560  *		      from the mode argument of ioctl().
27561  *
27562  * Return Code: the code returned by sd_send_scsi_cmd()
27563  *		EINVAL if invalid arguments are provided
27564  *		EFAULT if ddi_copyxxx() fails
27565  *		ENXIO if fail ddi_get_soft_state
27566  *		EIO if invalid mode sense block descriptor length
27567  */
27568 
27569 static int
27570 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27571 {
27572 	struct sd_lun			*un;
27573 	struct uscsi_cmd		*com = NULL;
27574 	struct mode_header_grp2		*sense_mhp;
27575 	uchar_t				*sense_page;
27576 	uchar_t				*sense = NULL;
27577 	char				cdb[CDB_GROUP5];
27578 	int				bd_len;
27579 	int				current_speed = 0;
27580 	int				max_speed = 0;
27581 	int				rval;
27582 
27583 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27584 
27585 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27586 		return (ENXIO);
27587 	}
27588 
27589 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
27590 
27591 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
27592 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
27593 	    SD_PATH_STANDARD)) != 0) {
27594 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27595 		    "sr_atapi_change_speed: Mode Sense Failed\n");
27596 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27597 		return (rval);
27598 	}
27599 
27600 	/* Check the block descriptor len to handle only 1 block descriptor */
27601 	sense_mhp = (struct mode_header_grp2 *)sense;
27602 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
27603 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27604 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27605 		    "sr_atapi_change_speed: Mode Sense returned invalid "
27606 		    "block descriptor length\n");
27607 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27608 		return (EIO);
27609 	}
27610 
27611 	/* Calculate the current and maximum drive speeds */
27612 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
27613 	current_speed = (sense_page[14] << 8) | sense_page[15];
27614 	max_speed = (sense_page[8] << 8) | sense_page[9];
27615 
27616 	/* Process the command */
27617 	switch (cmd) {
27618 	case CDROMGDRVSPEED:
27619 		current_speed /= SD_SPEED_1X;
27620 		if (ddi_copyout(&current_speed, (void *)data,
27621 		    sizeof (int), flag) != 0)
27622 			rval = EFAULT;
27623 		break;
27624 	case CDROMSDRVSPEED:
27625 		/* Convert the speed code to KB/sec */
27626 		switch ((uchar_t)data) {
27627 		case CDROM_NORMAL_SPEED:
27628 			current_speed = SD_SPEED_1X;
27629 			break;
27630 		case CDROM_DOUBLE_SPEED:
27631 			current_speed = 2 * SD_SPEED_1X;
27632 			break;
27633 		case CDROM_QUAD_SPEED:
27634 			current_speed = 4 * SD_SPEED_1X;
27635 			break;
27636 		case CDROM_TWELVE_SPEED:
27637 			current_speed = 12 * SD_SPEED_1X;
27638 			break;
27639 		case CDROM_MAXIMUM_SPEED:
27640 			current_speed = 0xffff;
27641 			break;
27642 		default:
27643 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27644 			    "sr_atapi_change_speed: invalid drive speed %d\n",
27645 			    (uchar_t)data);
27646 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27647 			return (EINVAL);
27648 		}
27649 
27650 		/* Check the request against the drive's max speed. */
27651 		if (current_speed != 0xffff) {
27652 			if (current_speed > max_speed) {
27653 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27654 				return (EINVAL);
27655 			}
27656 		}
27657 
27658 		/*
27659 		 * Build and send the SET SPEED command
27660 		 *
27661 		 * Note: The SET SPEED (0xBB) command used in this routine is
27662 		 * obsolete per the SCSI MMC spec but still supported in the
27663 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27664 		 * therefore the command is still implemented in this routine.
27665 		 */
27666 		bzero(cdb, sizeof (cdb));
27667 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
27668 		cdb[2] = (uchar_t)(current_speed >> 8);
27669 		cdb[3] = (uchar_t)current_speed;
27670 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27671 		com->uscsi_cdb	   = (caddr_t)cdb;
27672 		com->uscsi_cdblen  = CDB_GROUP5;
27673 		com->uscsi_bufaddr = NULL;
27674 		com->uscsi_buflen  = 0;
27675 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
27676 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
27677 		break;
27678 	default:
27679 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27680 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
27681 		rval = EINVAL;
27682 	}
27683 
27684 	if (sense) {
27685 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27686 	}
27687 	if (com) {
27688 		kmem_free(com, sizeof (*com));
27689 	}
27690 	return (rval);
27691 }
27692 
27693 
27694 /*
27695  *    Function: sr_pause_resume()
27696  *
27697  * Description: This routine is the driver entry point for handling CD-ROM
27698  *		pause/resume ioctl requests. This only affects the audio play
27699  *		operation.
27700  *
27701  *   Arguments: dev - the device 'dev_t'
27702  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
27703  *		      for setting the resume bit of the cdb.
27704  *
27705  * Return Code: the code returned by sd_send_scsi_cmd()
27706  *		EINVAL if invalid mode specified
27707  *
27708  */
27709 
27710 static int
27711 sr_pause_resume(dev_t dev, int cmd)
27712 {
27713 	struct sd_lun		*un;
27714 	struct uscsi_cmd	*com;
27715 	char			cdb[CDB_GROUP1];
27716 	int			rval;
27717 
27718 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27719 		return (ENXIO);
27720 	}
27721 
27722 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27723 	bzero(cdb, CDB_GROUP1);
27724 	cdb[0] = SCMD_PAUSE_RESUME;
27725 	switch (cmd) {
27726 	case CDROMRESUME:
27727 		cdb[8] = 1;
27728 		break;
27729 	case CDROMPAUSE:
27730 		cdb[8] = 0;
27731 		break;
27732 	default:
27733 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
27734 		    " Command '%x' Not Supported\n", cmd);
27735 		rval = EINVAL;
27736 		goto done;
27737 	}
27738 
27739 	com->uscsi_cdb    = cdb;
27740 	com->uscsi_cdblen = CDB_GROUP1;
27741 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27742 
27743 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27744 	    SD_PATH_STANDARD);
27745 
27746 done:
27747 	kmem_free(com, sizeof (*com));
27748 	return (rval);
27749 }
27750 
27751 
27752 /*
27753  *    Function: sr_play_msf()
27754  *
27755  * Description: This routine is the driver entry point for handling CD-ROM
27756  *		ioctl requests to output the audio signals at the specified
27757  *		starting address and continue the audio play until the specified
27758  *		ending address (CDROMPLAYMSF) The address is in Minute Second
27759  *		Frame (MSF) format.
27760  *
27761  *   Arguments: dev	- the device 'dev_t'
27762  *		data	- pointer to user provided audio msf structure,
27763  *		          specifying start/end addresses.
27764  *		flag	- this argument is a pass through to ddi_copyxxx()
27765  *		          directly from the mode argument of ioctl().
27766  *
27767  * Return Code: the code returned by sd_send_scsi_cmd()
27768  *		EFAULT if ddi_copyxxx() fails
27769  *		ENXIO if fail ddi_get_soft_state
27770  *		EINVAL if data pointer is NULL
27771  */
27772 
27773 static int
27774 sr_play_msf(dev_t dev, caddr_t data, int flag)
27775 {
27776 	struct sd_lun		*un;
27777 	struct uscsi_cmd	*com;
27778 	struct cdrom_msf	msf_struct;
27779 	struct cdrom_msf	*msf = &msf_struct;
27780 	char			cdb[CDB_GROUP1];
27781 	int			rval;
27782 
27783 	if (data == NULL) {
27784 		return (EINVAL);
27785 	}
27786 
27787 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27788 		return (ENXIO);
27789 	}
27790 
27791 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
27792 		return (EFAULT);
27793 	}
27794 
27795 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27796 	bzero(cdb, CDB_GROUP1);
27797 	cdb[0] = SCMD_PLAYAUDIO_MSF;
27798 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
27799 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
27800 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
27801 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
27802 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
27803 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
27804 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
27805 	} else {
27806 		cdb[3] = msf->cdmsf_min0;
27807 		cdb[4] = msf->cdmsf_sec0;
27808 		cdb[5] = msf->cdmsf_frame0;
27809 		cdb[6] = msf->cdmsf_min1;
27810 		cdb[7] = msf->cdmsf_sec1;
27811 		cdb[8] = msf->cdmsf_frame1;
27812 	}
27813 	com->uscsi_cdb    = cdb;
27814 	com->uscsi_cdblen = CDB_GROUP1;
27815 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27816 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27817 	    SD_PATH_STANDARD);
27818 	kmem_free(com, sizeof (*com));
27819 	return (rval);
27820 }
27821 
27822 
27823 /*
27824  *    Function: sr_play_trkind()
27825  *
27826  * Description: This routine is the driver entry point for handling CD-ROM
27827  *		ioctl requests to output the audio signals at the specified
27828  *		starting address and continue the audio play until the specified
27829  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
27830  *		format.
27831  *
27832  *   Arguments: dev	- the device 'dev_t'
27833  *		data	- pointer to user provided audio track/index structure,
27834  *		          specifying start/end addresses.
27835  *		flag	- this argument is a pass through to ddi_copyxxx()
27836  *		          directly from the mode argument of ioctl().
27837  *
27838  * Return Code: the code returned by sd_send_scsi_cmd()
27839  *		EFAULT if ddi_copyxxx() fails
27840  *		ENXIO if fail ddi_get_soft_state
27841  *		EINVAL if data pointer is NULL
27842  */
27843 
27844 static int
27845 sr_play_trkind(dev_t dev, caddr_t data, int flag)
27846 {
27847 	struct cdrom_ti		ti_struct;
27848 	struct cdrom_ti		*ti = &ti_struct;
27849 	struct uscsi_cmd	*com = NULL;
27850 	char			cdb[CDB_GROUP1];
27851 	int			rval;
27852 
27853 	if (data == NULL) {
27854 		return (EINVAL);
27855 	}
27856 
27857 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
27858 		return (EFAULT);
27859 	}
27860 
27861 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27862 	bzero(cdb, CDB_GROUP1);
27863 	cdb[0] = SCMD_PLAYAUDIO_TI;
27864 	cdb[4] = ti->cdti_trk0;
27865 	cdb[5] = ti->cdti_ind0;
27866 	cdb[7] = ti->cdti_trk1;
27867 	cdb[8] = ti->cdti_ind1;
27868 	com->uscsi_cdb    = cdb;
27869 	com->uscsi_cdblen = CDB_GROUP1;
27870 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27871 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27872 	    SD_PATH_STANDARD);
27873 	kmem_free(com, sizeof (*com));
27874 	return (rval);
27875 }
27876 
27877 
27878 /*
27879  *    Function: sr_read_all_subcodes()
27880  *
27881  * Description: This routine is the driver entry point for handling CD-ROM
27882  *		ioctl requests to return raw subcode data while the target is
27883  *		playing audio (CDROMSUBCODE).
27884  *
27885  *   Arguments: dev	- the device 'dev_t'
27886  *		data	- pointer to user provided cdrom subcode structure,
27887  *		          specifying the transfer length and address.
27888  *		flag	- this argument is a pass through to ddi_copyxxx()
27889  *		          directly from the mode argument of ioctl().
27890  *
27891  * Return Code: the code returned by sd_send_scsi_cmd()
27892  *		EFAULT if ddi_copyxxx() fails
27893  *		ENXIO if fail ddi_get_soft_state
27894  *		EINVAL if data pointer is NULL
27895  */
27896 
27897 static int
27898 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
27899 {
27900 	struct sd_lun		*un = NULL;
27901 	struct uscsi_cmd	*com = NULL;
27902 	struct cdrom_subcode	*subcode = NULL;
27903 	int			rval;
27904 	size_t			buflen;
27905 	char			cdb[CDB_GROUP5];
27906 
27907 #ifdef _MULTI_DATAMODEL
27908 	/* To support ILP32 applications in an LP64 world */
27909 	struct cdrom_subcode32		cdrom_subcode32;
27910 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
27911 #endif
27912 	if (data == NULL) {
27913 		return (EINVAL);
27914 	}
27915 
27916 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27917 		return (ENXIO);
27918 	}
27919 
27920 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
27921 
27922 #ifdef _MULTI_DATAMODEL
27923 	switch (ddi_model_convert_from(flag & FMODELS)) {
27924 	case DDI_MODEL_ILP32:
27925 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
27926 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27927 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27928 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27929 			return (EFAULT);
27930 		}
27931 		/* Convert the ILP32 uscsi data from the application to LP64 */
27932 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
27933 		break;
27934 	case DDI_MODEL_NONE:
27935 		if (ddi_copyin(data, subcode,
27936 		    sizeof (struct cdrom_subcode), flag)) {
27937 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27938 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27939 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27940 			return (EFAULT);
27941 		}
27942 		break;
27943 	}
27944 #else /* ! _MULTI_DATAMODEL */
27945 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
27946 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27947 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
27948 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27949 		return (EFAULT);
27950 	}
27951 #endif /* _MULTI_DATAMODEL */
27952 
27953 	/*
27954 	 * Since MMC-2 expects max 3 bytes for length, check if the
27955 	 * length input is greater than 3 bytes
27956 	 */
27957 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
27958 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27959 		    "sr_read_all_subcodes: "
27960 		    "cdrom transfer length too large: %d (limit %d)\n",
27961 		    subcode->cdsc_length, 0xFFFFFF);
27962 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27963 		return (EINVAL);
27964 	}
27965 
27966 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
27967 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27968 	bzero(cdb, CDB_GROUP5);
27969 
27970 	if (un->un_f_mmc_cap == TRUE) {
27971 		cdb[0] = (char)SCMD_READ_CD;
27972 		cdb[2] = (char)0xff;
27973 		cdb[3] = (char)0xff;
27974 		cdb[4] = (char)0xff;
27975 		cdb[5] = (char)0xff;
27976 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27977 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27978 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
27979 		cdb[10] = 1;
27980 	} else {
27981 		/*
27982 		 * Note: A vendor specific command (0xDF) is being used her to
27983 		 * request a read of all subcodes.
27984 		 */
27985 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
27986 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
27987 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27988 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27989 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
27990 	}
27991 	com->uscsi_cdb	   = cdb;
27992 	com->uscsi_cdblen  = CDB_GROUP5;
27993 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
27994 	com->uscsi_buflen  = buflen;
27995 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27996 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27997 	    SD_PATH_STANDARD);
27998 	kmem_free(subcode, sizeof (struct cdrom_subcode));
27999 	kmem_free(com, sizeof (*com));
28000 	return (rval);
28001 }
28002 
28003 
28004 /*
28005  *    Function: sr_read_subchannel()
28006  *
28007  * Description: This routine is the driver entry point for handling CD-ROM
28008  *		ioctl requests to return the Q sub-channel data of the CD
28009  *		current position block. (CDROMSUBCHNL) The data includes the
28010  *		track number, index number, absolute CD-ROM address (LBA or MSF
28011  *		format per the user) , track relative CD-ROM address (LBA or MSF
28012  *		format per the user), control data and audio status.
28013  *
28014  *   Arguments: dev	- the device 'dev_t'
28015  *		data	- pointer to user provided cdrom sub-channel structure
28016  *		flag	- this argument is a pass through to ddi_copyxxx()
28017  *		          directly from the mode argument of ioctl().
28018  *
28019  * Return Code: the code returned by sd_send_scsi_cmd()
28020  *		EFAULT if ddi_copyxxx() fails
28021  *		ENXIO if fail ddi_get_soft_state
28022  *		EINVAL if data pointer is NULL
28023  */
28024 
28025 static int
28026 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
28027 {
28028 	struct sd_lun		*un;
28029 	struct uscsi_cmd	*com;
28030 	struct cdrom_subchnl	subchanel;
28031 	struct cdrom_subchnl	*subchnl = &subchanel;
28032 	char			cdb[CDB_GROUP1];
28033 	caddr_t			buffer;
28034 	int			rval;
28035 
28036 	if (data == NULL) {
28037 		return (EINVAL);
28038 	}
28039 
28040 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28041 	    (un->un_state == SD_STATE_OFFLINE)) {
28042 		return (ENXIO);
28043 	}
28044 
28045 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
28046 		return (EFAULT);
28047 	}
28048 
28049 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
28050 	bzero(cdb, CDB_GROUP1);
28051 	cdb[0] = SCMD_READ_SUBCHANNEL;
28052 	/* Set the MSF bit based on the user requested address format */
28053 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
28054 	/*
28055 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
28056 	 * returned
28057 	 */
28058 	cdb[2] = 0x40;
28059 	/*
28060 	 * Set byte 3 to specify the return data format. A value of 0x01
28061 	 * indicates that the CD-ROM current position should be returned.
28062 	 */
28063 	cdb[3] = 0x01;
28064 	cdb[8] = 0x10;
28065 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28066 	com->uscsi_cdb	   = cdb;
28067 	com->uscsi_cdblen  = CDB_GROUP1;
28068 	com->uscsi_bufaddr = buffer;
28069 	com->uscsi_buflen  = 16;
28070 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28071 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
28072 	    SD_PATH_STANDARD);
28073 	if (rval != 0) {
28074 		kmem_free(buffer, 16);
28075 		kmem_free(com, sizeof (*com));
28076 		return (rval);
28077 	}
28078 
28079 	/* Process the returned Q sub-channel data */
28080 	subchnl->cdsc_audiostatus = buffer[1];
28081 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
28082 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
28083 	subchnl->cdsc_trk	= buffer[6];
28084 	subchnl->cdsc_ind	= buffer[7];
28085 	if (subchnl->cdsc_format & CDROM_LBA) {
28086 		subchnl->cdsc_absaddr.lba =
28087 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
28088 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
28089 		subchnl->cdsc_reladdr.lba =
28090 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
28091 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
28092 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
28093 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
28094 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
28095 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
28096 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
28097 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
28098 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
28099 	} else {
28100 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
28101 		subchnl->cdsc_absaddr.msf.second = buffer[10];
28102 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
28103 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
28104 		subchnl->cdsc_reladdr.msf.second = buffer[14];
28105 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
28106 	}
28107 	kmem_free(buffer, 16);
28108 	kmem_free(com, sizeof (*com));
28109 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
28110 	    != 0) {
28111 		return (EFAULT);
28112 	}
28113 	return (rval);
28114 }
28115 
28116 
28117 /*
28118  *    Function: sr_read_tocentry()
28119  *
28120  * Description: This routine is the driver entry point for handling CD-ROM
28121  *		ioctl requests to read from the Table of Contents (TOC)
28122  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
28123  *		fields, the starting address (LBA or MSF format per the user)
28124  *		and the data mode if the user specified track is a data track.
28125  *
28126  *		Note: The READ HEADER (0x44) command used in this routine is
28127  *		obsolete per the SCSI MMC spec but still supported in the
28128  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
28129  *		therefore the command is still implemented in this routine.
28130  *
28131  *   Arguments: dev	- the device 'dev_t'
28132  *		data	- pointer to user provided toc entry structure,
28133  *			  specifying the track # and the address format
28134  *			  (LBA or MSF).
28135  *		flag	- this argument is a pass through to ddi_copyxxx()
28136  *		          directly from the mode argument of ioctl().
28137  *
28138  * Return Code: the code returned by sd_send_scsi_cmd()
28139  *		EFAULT if ddi_copyxxx() fails
28140  *		ENXIO if fail ddi_get_soft_state
28141  *		EINVAL if data pointer is NULL
28142  */
28143 
28144 static int
28145 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
28146 {
28147 	struct sd_lun		*un = NULL;
28148 	struct uscsi_cmd	*com;
28149 	struct cdrom_tocentry	toc_entry;
28150 	struct cdrom_tocentry	*entry = &toc_entry;
28151 	caddr_t			buffer;
28152 	int			rval;
28153 	char			cdb[CDB_GROUP1];
28154 
28155 	if (data == NULL) {
28156 		return (EINVAL);
28157 	}
28158 
28159 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28160 	    (un->un_state == SD_STATE_OFFLINE)) {
28161 		return (ENXIO);
28162 	}
28163 
28164 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
28165 		return (EFAULT);
28166 	}
28167 
28168 	/* Validate the requested track and address format */
28169 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
28170 		return (EINVAL);
28171 	}
28172 
28173 	if (entry->cdte_track == 0) {
28174 		return (EINVAL);
28175 	}
28176 
28177 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
28178 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28179 	bzero(cdb, CDB_GROUP1);
28180 
28181 	cdb[0] = SCMD_READ_TOC;
28182 	/* Set the MSF bit based on the user requested address format  */
28183 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
28184 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
28185 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
28186 	} else {
28187 		cdb[6] = entry->cdte_track;
28188 	}
28189 
28190 	/*
28191 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
28192 	 * (4 byte TOC response header + 8 byte track descriptor)
28193 	 */
28194 	cdb[8] = 12;
28195 	com->uscsi_cdb	   = cdb;
28196 	com->uscsi_cdblen  = CDB_GROUP1;
28197 	com->uscsi_bufaddr = buffer;
28198 	com->uscsi_buflen  = 0x0C;
28199 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
28200 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
28201 	    SD_PATH_STANDARD);
28202 	if (rval != 0) {
28203 		kmem_free(buffer, 12);
28204 		kmem_free(com, sizeof (*com));
28205 		return (rval);
28206 	}
28207 
28208 	/* Process the toc entry */
28209 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
28210 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
28211 	if (entry->cdte_format & CDROM_LBA) {
28212 		entry->cdte_addr.lba =
28213 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
28214 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
28215 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
28216 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
28217 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
28218 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
28219 		/*
28220 		 * Send a READ TOC command using the LBA address format to get
28221 		 * the LBA for the track requested so it can be used in the
28222 		 * READ HEADER request
28223 		 *
28224 		 * Note: The MSF bit of the READ HEADER command specifies the
28225 		 * output format. The block address specified in that command
28226 		 * must be in LBA format.
28227 		 */
28228 		cdb[1] = 0;
28229 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
28230 		    SD_PATH_STANDARD);
28231 		if (rval != 0) {
28232 			kmem_free(buffer, 12);
28233 			kmem_free(com, sizeof (*com));
28234 			return (rval);
28235 		}
28236 	} else {
28237 		entry->cdte_addr.msf.minute	= buffer[9];
28238 		entry->cdte_addr.msf.second	= buffer[10];
28239 		entry->cdte_addr.msf.frame	= buffer[11];
28240 		/*
28241 		 * Send a READ TOC command using the LBA address format to get
28242 		 * the LBA for the track requested so it can be used in the
28243 		 * READ HEADER request
28244 		 *
28245 		 * Note: The MSF bit of the READ HEADER command specifies the
28246 		 * output format. The block address specified in that command
28247 		 * must be in LBA format.
28248 		 */
28249 		cdb[1] = 0;
28250 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
28251 		    SD_PATH_STANDARD);
28252 		if (rval != 0) {
28253 			kmem_free(buffer, 12);
28254 			kmem_free(com, sizeof (*com));
28255 			return (rval);
28256 		}
28257 	}
28258 
28259 	/*
28260 	 * Build and send the READ HEADER command to determine the data mode of
28261 	 * the user specified track.
28262 	 */
28263 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
28264 	    (entry->cdte_track != CDROM_LEADOUT)) {
28265 		bzero(cdb, CDB_GROUP1);
28266 		cdb[0] = SCMD_READ_HEADER;
28267 		cdb[2] = buffer[8];
28268 		cdb[3] = buffer[9];
28269 		cdb[4] = buffer[10];
28270 		cdb[5] = buffer[11];
28271 		cdb[8] = 0x08;
28272 		com->uscsi_buflen = 0x08;
28273 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
28274 		    SD_PATH_STANDARD);
28275 		if (rval == 0) {
28276 			entry->cdte_datamode = buffer[0];
28277 		} else {
28278 			/*
28279 			 * READ HEADER command failed, since this is
28280 			 * obsoleted in one spec, its better to return
28281 			 * -1 for an invlid track so that we can still
28282 			 * recieve the rest of the TOC data.
28283 			 */
28284 			entry->cdte_datamode = (uchar_t)-1;
28285 		}
28286 	} else {
28287 		entry->cdte_datamode = (uchar_t)-1;
28288 	}
28289 
28290 	kmem_free(buffer, 12);
28291 	kmem_free(com, sizeof (*com));
28292 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
28293 		return (EFAULT);
28294 
28295 	return (rval);
28296 }
28297 
28298 
28299 /*
28300  *    Function: sr_read_tochdr()
28301  *
28302  * Description: This routine is the driver entry point for handling CD-ROM
28303  * 		ioctl requests to read the Table of Contents (TOC) header
28304  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
28305  *		and ending track numbers
28306  *
28307  *   Arguments: dev	- the device 'dev_t'
28308  *		data	- pointer to user provided toc header structure,
28309  *			  specifying the starting and ending track numbers.
28310  *		flag	- this argument is a pass through to ddi_copyxxx()
28311  *			  directly from the mode argument of ioctl().
28312  *
28313  * Return Code: the code returned by sd_send_scsi_cmd()
28314  *		EFAULT if ddi_copyxxx() fails
28315  *		ENXIO if fail ddi_get_soft_state
28316  *		EINVAL if data pointer is NULL
28317  */
28318 
28319 static int
28320 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
28321 {
28322 	struct sd_lun		*un;
28323 	struct uscsi_cmd	*com;
28324 	struct cdrom_tochdr	toc_header;
28325 	struct cdrom_tochdr	*hdr = &toc_header;
28326 	char			cdb[CDB_GROUP1];
28327 	int			rval;
28328 	caddr_t			buffer;
28329 
28330 	if (data == NULL) {
28331 		return (EINVAL);
28332 	}
28333 
28334 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28335 	    (un->un_state == SD_STATE_OFFLINE)) {
28336 		return (ENXIO);
28337 	}
28338 
28339 	buffer = kmem_zalloc(4, KM_SLEEP);
28340 	bzero(cdb, CDB_GROUP1);
28341 	cdb[0] = SCMD_READ_TOC;
28342 	/*
28343 	 * Specifying a track number of 0x00 in the READ TOC command indicates
28344 	 * that the TOC header should be returned
28345 	 */
28346 	cdb[6] = 0x00;
28347 	/*
28348 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
28349 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
28350 	 */
28351 	cdb[8] = 0x04;
28352 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28353 	com->uscsi_cdb	   = cdb;
28354 	com->uscsi_cdblen  = CDB_GROUP1;
28355 	com->uscsi_bufaddr = buffer;
28356 	com->uscsi_buflen  = 0x04;
28357 	com->uscsi_timeout = 300;
28358 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28359 
28360 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
28361 	    SD_PATH_STANDARD);
28362 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
28363 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
28364 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
28365 	} else {
28366 		hdr->cdth_trk0 = buffer[2];
28367 		hdr->cdth_trk1 = buffer[3];
28368 	}
28369 	kmem_free(buffer, 4);
28370 	kmem_free(com, sizeof (*com));
28371 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
28372 		return (EFAULT);
28373 	}
28374 	return (rval);
28375 }
28376 
28377 
28378 /*
28379  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
28380  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
28381  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
28382  * digital audio and extended architecture digital audio. These modes are
28383  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
28384  * MMC specs.
28385  *
28386  * In addition to support for the various data formats these routines also
28387  * include support for devices that implement only the direct access READ
28388  * commands (0x08, 0x28), devices that implement the READ_CD commands
28389  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
28390  * READ CDXA commands (0xD8, 0xDB)
28391  */
28392 
28393 /*
28394  *    Function: sr_read_mode1()
28395  *
28396  * Description: This routine is the driver entry point for handling CD-ROM
28397  *		ioctl read mode1 requests (CDROMREADMODE1).
28398  *
28399  *   Arguments: dev	- the device 'dev_t'
28400  *		data	- pointer to user provided cd read structure specifying
28401  *			  the lba buffer address and length.
28402  *		flag	- this argument is a pass through to ddi_copyxxx()
28403  *			  directly from the mode argument of ioctl().
28404  *
28405  * Return Code: the code returned by sd_send_scsi_cmd()
28406  *		EFAULT if ddi_copyxxx() fails
28407  *		ENXIO if fail ddi_get_soft_state
28408  *		EINVAL if data pointer is NULL
28409  */
28410 
28411 static int
28412 sr_read_mode1(dev_t dev, caddr_t data, int flag)
28413 {
28414 	struct sd_lun		*un;
28415 	struct cdrom_read	mode1_struct;
28416 	struct cdrom_read	*mode1 = &mode1_struct;
28417 	int			rval;
28418 #ifdef _MULTI_DATAMODEL
28419 	/* To support ILP32 applications in an LP64 world */
28420 	struct cdrom_read32	cdrom_read32;
28421 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28422 #endif /* _MULTI_DATAMODEL */
28423 
28424 	if (data == NULL) {
28425 		return (EINVAL);
28426 	}
28427 
28428 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28429 	    (un->un_state == SD_STATE_OFFLINE)) {
28430 		return (ENXIO);
28431 	}
28432 
28433 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28434 	    "sd_read_mode1: entry: un:0x%p\n", un);
28435 
28436 #ifdef _MULTI_DATAMODEL
28437 	switch (ddi_model_convert_from(flag & FMODELS)) {
28438 	case DDI_MODEL_ILP32:
28439 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28440 			return (EFAULT);
28441 		}
28442 		/* Convert the ILP32 uscsi data from the application to LP64 */
28443 		cdrom_read32tocdrom_read(cdrd32, mode1);
28444 		break;
28445 	case DDI_MODEL_NONE:
28446 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28447 			return (EFAULT);
28448 		}
28449 	}
28450 #else /* ! _MULTI_DATAMODEL */
28451 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28452 		return (EFAULT);
28453 	}
28454 #endif /* _MULTI_DATAMODEL */
28455 
28456 	rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr,
28457 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
28458 
28459 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28460 	    "sd_read_mode1: exit: un:0x%p\n", un);
28461 
28462 	return (rval);
28463 }
28464 
28465 
28466 /*
28467  *    Function: sr_read_cd_mode2()
28468  *
28469  * Description: This routine is the driver entry point for handling CD-ROM
28470  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28471  *		support the READ CD (0xBE) command or the 1st generation
28472  *		READ CD (0xD4) command.
28473  *
28474  *   Arguments: dev	- the device 'dev_t'
28475  *		data	- pointer to user provided cd read structure specifying
28476  *			  the lba buffer address and length.
28477  *		flag	- this argument is a pass through to ddi_copyxxx()
28478  *			  directly from the mode argument of ioctl().
28479  *
28480  * Return Code: the code returned by sd_send_scsi_cmd()
28481  *		EFAULT if ddi_copyxxx() fails
28482  *		ENXIO if fail ddi_get_soft_state
28483  *		EINVAL if data pointer is NULL
28484  */
28485 
28486 static int
28487 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
28488 {
28489 	struct sd_lun		*un;
28490 	struct uscsi_cmd	*com;
28491 	struct cdrom_read	mode2_struct;
28492 	struct cdrom_read	*mode2 = &mode2_struct;
28493 	uchar_t			cdb[CDB_GROUP5];
28494 	int			nblocks;
28495 	int			rval;
28496 #ifdef _MULTI_DATAMODEL
28497 	/*  To support ILP32 applications in an LP64 world */
28498 	struct cdrom_read32	cdrom_read32;
28499 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28500 #endif /* _MULTI_DATAMODEL */
28501 
28502 	if (data == NULL) {
28503 		return (EINVAL);
28504 	}
28505 
28506 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28507 	    (un->un_state == SD_STATE_OFFLINE)) {
28508 		return (ENXIO);
28509 	}
28510 
28511 #ifdef _MULTI_DATAMODEL
28512 	switch (ddi_model_convert_from(flag & FMODELS)) {
28513 	case DDI_MODEL_ILP32:
28514 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28515 			return (EFAULT);
28516 		}
28517 		/* Convert the ILP32 uscsi data from the application to LP64 */
28518 		cdrom_read32tocdrom_read(cdrd32, mode2);
28519 		break;
28520 	case DDI_MODEL_NONE:
28521 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28522 			return (EFAULT);
28523 		}
28524 		break;
28525 	}
28526 
28527 #else /* ! _MULTI_DATAMODEL */
28528 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28529 		return (EFAULT);
28530 	}
28531 #endif /* _MULTI_DATAMODEL */
28532 
28533 	bzero(cdb, sizeof (cdb));
28534 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
28535 		/* Read command supported by 1st generation atapi drives */
28536 		cdb[0] = SCMD_READ_CDD4;
28537 	} else {
28538 		/* Universal CD Access Command */
28539 		cdb[0] = SCMD_READ_CD;
28540 	}
28541 
28542 	/*
28543 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
28544 	 */
28545 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
28546 
28547 	/* set the start address */
28548 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
28549 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
28550 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28551 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
28552 
28553 	/* set the transfer length */
28554 	nblocks = mode2->cdread_buflen / 2336;
28555 	cdb[6] = (uchar_t)(nblocks >> 16);
28556 	cdb[7] = (uchar_t)(nblocks >> 8);
28557 	cdb[8] = (uchar_t)nblocks;
28558 
28559 	/* set the filter bits */
28560 	cdb[9] = CDROM_READ_CD_USERDATA;
28561 
28562 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28563 	com->uscsi_cdb = (caddr_t)cdb;
28564 	com->uscsi_cdblen = sizeof (cdb);
28565 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28566 	com->uscsi_buflen = mode2->cdread_buflen;
28567 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28568 
28569 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28570 	    SD_PATH_STANDARD);
28571 	kmem_free(com, sizeof (*com));
28572 	return (rval);
28573 }
28574 
28575 
28576 /*
28577  *    Function: sr_read_mode2()
28578  *
28579  * Description: This routine is the driver entry point for handling CD-ROM
28580  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28581  *		do not support the READ CD (0xBE) command.
28582  *
28583  *   Arguments: dev	- the device 'dev_t'
28584  *		data	- pointer to user provided cd read structure specifying
28585  *			  the lba buffer address and length.
28586  *		flag	- this argument is a pass through to ddi_copyxxx()
28587  *			  directly from the mode argument of ioctl().
28588  *
28589  * Return Code: the code returned by sd_send_scsi_cmd()
28590  *		EFAULT if ddi_copyxxx() fails
28591  *		ENXIO if fail ddi_get_soft_state
28592  *		EINVAL if data pointer is NULL
28593  *		EIO if fail to reset block size
28594  *		EAGAIN if commands are in progress in the driver
28595  */
28596 
28597 static int
28598 sr_read_mode2(dev_t dev, caddr_t data, int flag)
28599 {
28600 	struct sd_lun		*un;
28601 	struct cdrom_read	mode2_struct;
28602 	struct cdrom_read	*mode2 = &mode2_struct;
28603 	int			rval;
28604 	uint32_t		restore_blksize;
28605 	struct uscsi_cmd	*com;
28606 	uchar_t			cdb[CDB_GROUP0];
28607 	int			nblocks;
28608 
28609 #ifdef _MULTI_DATAMODEL
28610 	/* To support ILP32 applications in an LP64 world */
28611 	struct cdrom_read32	cdrom_read32;
28612 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28613 #endif /* _MULTI_DATAMODEL */
28614 
28615 	if (data == NULL) {
28616 		return (EINVAL);
28617 	}
28618 
28619 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28620 	    (un->un_state == SD_STATE_OFFLINE)) {
28621 		return (ENXIO);
28622 	}
28623 
28624 	/*
28625 	 * Because this routine will update the device and driver block size
28626 	 * being used we want to make sure there are no commands in progress.
28627 	 * If commands are in progress the user will have to try again.
28628 	 *
28629 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
28630 	 * in sdioctl to protect commands from sdioctl through to the top of
28631 	 * sd_uscsi_strategy. See sdioctl for details.
28632 	 */
28633 	mutex_enter(SD_MUTEX(un));
28634 	if (un->un_ncmds_in_driver != 1) {
28635 		mutex_exit(SD_MUTEX(un));
28636 		return (EAGAIN);
28637 	}
28638 	mutex_exit(SD_MUTEX(un));
28639 
28640 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28641 	    "sd_read_mode2: entry: un:0x%p\n", un);
28642 
28643 #ifdef _MULTI_DATAMODEL
28644 	switch (ddi_model_convert_from(flag & FMODELS)) {
28645 	case DDI_MODEL_ILP32:
28646 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28647 			return (EFAULT);
28648 		}
28649 		/* Convert the ILP32 uscsi data from the application to LP64 */
28650 		cdrom_read32tocdrom_read(cdrd32, mode2);
28651 		break;
28652 	case DDI_MODEL_NONE:
28653 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28654 			return (EFAULT);
28655 		}
28656 		break;
28657 	}
28658 #else /* ! _MULTI_DATAMODEL */
28659 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
28660 		return (EFAULT);
28661 	}
28662 #endif /* _MULTI_DATAMODEL */
28663 
28664 	/* Store the current target block size for restoration later */
28665 	restore_blksize = un->un_tgt_blocksize;
28666 
28667 	/* Change the device and soft state target block size to 2336 */
28668 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
28669 		rval = EIO;
28670 		goto done;
28671 	}
28672 
28673 
28674 	bzero(cdb, sizeof (cdb));
28675 
28676 	/* set READ operation */
28677 	cdb[0] = SCMD_READ;
28678 
28679 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
28680 	mode2->cdread_lba >>= 2;
28681 
28682 	/* set the start address */
28683 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
28684 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28685 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
28686 
28687 	/* set the transfer length */
28688 	nblocks = mode2->cdread_buflen / 2336;
28689 	cdb[4] = (uchar_t)nblocks & 0xFF;
28690 
28691 	/* build command */
28692 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28693 	com->uscsi_cdb = (caddr_t)cdb;
28694 	com->uscsi_cdblen = sizeof (cdb);
28695 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28696 	com->uscsi_buflen = mode2->cdread_buflen;
28697 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28698 
28699 	/*
28700 	 * Issue SCSI command with user space address for read buffer.
28701 	 *
28702 	 * This sends the command through main channel in the driver.
28703 	 *
28704 	 * Since this is accessed via an IOCTL call, we go through the
28705 	 * standard path, so that if the device was powered down, then
28706 	 * it would be 'awakened' to handle the command.
28707 	 */
28708 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28709 	    SD_PATH_STANDARD);
28710 
28711 	kmem_free(com, sizeof (*com));
28712 
28713 	/* Restore the device and soft state target block size */
28714 	if (sr_sector_mode(dev, restore_blksize) != 0) {
28715 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28716 		    "can't do switch back to mode 1\n");
28717 		/*
28718 		 * If sd_send_scsi_READ succeeded we still need to report
28719 		 * an error because we failed to reset the block size
28720 		 */
28721 		if (rval == 0) {
28722 			rval = EIO;
28723 		}
28724 	}
28725 
28726 done:
28727 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28728 	    "sd_read_mode2: exit: un:0x%p\n", un);
28729 
28730 	return (rval);
28731 }
28732 
28733 
28734 /*
28735  *    Function: sr_sector_mode()
28736  *
28737  * Description: This utility function is used by sr_read_mode2 to set the target
28738  *		block size based on the user specified size. This is a legacy
28739  *		implementation based upon a vendor specific mode page
28740  *
28741  *   Arguments: dev	- the device 'dev_t'
28742  *		data	- flag indicating if block size is being set to 2336 or
28743  *			  512.
28744  *
28745  * Return Code: the code returned by sd_send_scsi_cmd()
28746  *		EFAULT if ddi_copyxxx() fails
28747  *		ENXIO if fail ddi_get_soft_state
28748  *		EINVAL if data pointer is NULL
28749  */
28750 
28751 static int
28752 sr_sector_mode(dev_t dev, uint32_t blksize)
28753 {
28754 	struct sd_lun	*un;
28755 	uchar_t		*sense;
28756 	uchar_t		*select;
28757 	int		rval;
28758 
28759 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28760 	    (un->un_state == SD_STATE_OFFLINE)) {
28761 		return (ENXIO);
28762 	}
28763 
28764 	sense = kmem_zalloc(20, KM_SLEEP);
28765 
28766 	/* Note: This is a vendor specific mode page (0x81) */
28767 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81,
28768 	    SD_PATH_STANDARD)) != 0) {
28769 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28770 		    "sr_sector_mode: Mode Sense failed\n");
28771 		kmem_free(sense, 20);
28772 		return (rval);
28773 	}
28774 	select = kmem_zalloc(20, KM_SLEEP);
28775 	select[3] = 0x08;
28776 	select[10] = ((blksize >> 8) & 0xff);
28777 	select[11] = (blksize & 0xff);
28778 	select[12] = 0x01;
28779 	select[13] = 0x06;
28780 	select[14] = sense[14];
28781 	select[15] = sense[15];
28782 	if (blksize == SD_MODE2_BLKSIZE) {
28783 		select[14] |= 0x01;
28784 	}
28785 
28786 	if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20,
28787 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
28788 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28789 		    "sr_sector_mode: Mode Select failed\n");
28790 	} else {
28791 		/*
28792 		 * Only update the softstate block size if we successfully
28793 		 * changed the device block mode.
28794 		 */
28795 		mutex_enter(SD_MUTEX(un));
28796 		sd_update_block_info(un, blksize, 0);
28797 		mutex_exit(SD_MUTEX(un));
28798 	}
28799 	kmem_free(sense, 20);
28800 	kmem_free(select, 20);
28801 	return (rval);
28802 }
28803 
28804 
28805 /*
28806  *    Function: sr_read_cdda()
28807  *
28808  * Description: This routine is the driver entry point for handling CD-ROM
28809  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
28810  *		the target supports CDDA these requests are handled via a vendor
28811  *		specific command (0xD8) If the target does not support CDDA
28812  *		these requests are handled via the READ CD command (0xBE).
28813  *
28814  *   Arguments: dev	- the device 'dev_t'
28815  *		data	- pointer to user provided CD-DA structure specifying
28816  *			  the track starting address, transfer length, and
28817  *			  subcode options.
28818  *		flag	- this argument is a pass through to ddi_copyxxx()
28819  *			  directly from the mode argument of ioctl().
28820  *
28821  * Return Code: the code returned by sd_send_scsi_cmd()
28822  *		EFAULT if ddi_copyxxx() fails
28823  *		ENXIO if fail ddi_get_soft_state
28824  *		EINVAL if invalid arguments are provided
28825  *		ENOTTY
28826  */
28827 
28828 static int
28829 sr_read_cdda(dev_t dev, caddr_t data, int flag)
28830 {
28831 	struct sd_lun			*un;
28832 	struct uscsi_cmd		*com;
28833 	struct cdrom_cdda		*cdda;
28834 	int				rval;
28835 	size_t				buflen;
28836 	char				cdb[CDB_GROUP5];
28837 
28838 #ifdef _MULTI_DATAMODEL
28839 	/* To support ILP32 applications in an LP64 world */
28840 	struct cdrom_cdda32	cdrom_cdda32;
28841 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
28842 #endif /* _MULTI_DATAMODEL */
28843 
28844 	if (data == NULL) {
28845 		return (EINVAL);
28846 	}
28847 
28848 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28849 		return (ENXIO);
28850 	}
28851 
28852 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
28853 
28854 #ifdef _MULTI_DATAMODEL
28855 	switch (ddi_model_convert_from(flag & FMODELS)) {
28856 	case DDI_MODEL_ILP32:
28857 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
28858 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28859 			    "sr_read_cdda: ddi_copyin Failed\n");
28860 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28861 			return (EFAULT);
28862 		}
28863 		/* Convert the ILP32 uscsi data from the application to LP64 */
28864 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
28865 		break;
28866 	case DDI_MODEL_NONE:
28867 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28868 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28869 			    "sr_read_cdda: ddi_copyin Failed\n");
28870 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28871 			return (EFAULT);
28872 		}
28873 		break;
28874 	}
28875 #else /* ! _MULTI_DATAMODEL */
28876 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28877 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28878 		    "sr_read_cdda: ddi_copyin Failed\n");
28879 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28880 		return (EFAULT);
28881 	}
28882 #endif /* _MULTI_DATAMODEL */
28883 
28884 	/*
28885 	 * Since MMC-2 expects max 3 bytes for length, check if the
28886 	 * length input is greater than 3 bytes
28887 	 */
28888 	if ((cdda->cdda_length & 0xFF000000) != 0) {
28889 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
28890 		    "cdrom transfer length too large: %d (limit %d)\n",
28891 		    cdda->cdda_length, 0xFFFFFF);
28892 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28893 		return (EINVAL);
28894 	}
28895 
28896 	switch (cdda->cdda_subcode) {
28897 	case CDROM_DA_NO_SUBCODE:
28898 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
28899 		break;
28900 	case CDROM_DA_SUBQ:
28901 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
28902 		break;
28903 	case CDROM_DA_ALL_SUBCODE:
28904 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
28905 		break;
28906 	case CDROM_DA_SUBCODE_ONLY:
28907 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
28908 		break;
28909 	default:
28910 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28911 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
28912 		    cdda->cdda_subcode);
28913 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28914 		return (EINVAL);
28915 	}
28916 
28917 	/* Build and send the command */
28918 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28919 	bzero(cdb, CDB_GROUP5);
28920 
28921 	if (un->un_f_cfg_cdda == TRUE) {
28922 		cdb[0] = (char)SCMD_READ_CD;
28923 		cdb[1] = 0x04;
28924 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28925 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28926 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28927 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28928 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28929 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28930 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
28931 		cdb[9] = 0x10;
28932 		switch (cdda->cdda_subcode) {
28933 		case CDROM_DA_NO_SUBCODE :
28934 			cdb[10] = 0x0;
28935 			break;
28936 		case CDROM_DA_SUBQ :
28937 			cdb[10] = 0x2;
28938 			break;
28939 		case CDROM_DA_ALL_SUBCODE :
28940 			cdb[10] = 0x1;
28941 			break;
28942 		case CDROM_DA_SUBCODE_ONLY :
28943 			/* FALLTHROUGH */
28944 		default :
28945 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28946 			kmem_free(com, sizeof (*com));
28947 			return (ENOTTY);
28948 		}
28949 	} else {
28950 		cdb[0] = (char)SCMD_READ_CDDA;
28951 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28952 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28953 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28954 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28955 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
28956 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28957 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28958 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
28959 		cdb[10] = cdda->cdda_subcode;
28960 	}
28961 
28962 	com->uscsi_cdb = cdb;
28963 	com->uscsi_cdblen = CDB_GROUP5;
28964 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
28965 	com->uscsi_buflen = buflen;
28966 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28967 
28968 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28969 	    SD_PATH_STANDARD);
28970 
28971 	kmem_free(cdda, sizeof (struct cdrom_cdda));
28972 	kmem_free(com, sizeof (*com));
28973 	return (rval);
28974 }
28975 
28976 
28977 /*
28978  *    Function: sr_read_cdxa()
28979  *
28980  * Description: This routine is the driver entry point for handling CD-ROM
28981  *		ioctl requests to return CD-XA (Extended Architecture) data.
28982  *		(CDROMCDXA).
28983  *
28984  *   Arguments: dev	- the device 'dev_t'
28985  *		data	- pointer to user provided CD-XA structure specifying
28986  *			  the data starting address, transfer length, and format
28987  *		flag	- this argument is a pass through to ddi_copyxxx()
28988  *			  directly from the mode argument of ioctl().
28989  *
28990  * Return Code: the code returned by sd_send_scsi_cmd()
28991  *		EFAULT if ddi_copyxxx() fails
28992  *		ENXIO if fail ddi_get_soft_state
28993  *		EINVAL if data pointer is NULL
28994  */
28995 
28996 static int
28997 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
28998 {
28999 	struct sd_lun		*un;
29000 	struct uscsi_cmd	*com;
29001 	struct cdrom_cdxa	*cdxa;
29002 	int			rval;
29003 	size_t			buflen;
29004 	char			cdb[CDB_GROUP5];
29005 	uchar_t			read_flags;
29006 
29007 #ifdef _MULTI_DATAMODEL
29008 	/* To support ILP32 applications in an LP64 world */
29009 	struct cdrom_cdxa32		cdrom_cdxa32;
29010 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
29011 #endif /* _MULTI_DATAMODEL */
29012 
29013 	if (data == NULL) {
29014 		return (EINVAL);
29015 	}
29016 
29017 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
29018 		return (ENXIO);
29019 	}
29020 
29021 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
29022 
29023 #ifdef _MULTI_DATAMODEL
29024 	switch (ddi_model_convert_from(flag & FMODELS)) {
29025 	case DDI_MODEL_ILP32:
29026 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
29027 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29028 			return (EFAULT);
29029 		}
29030 		/*
29031 		 * Convert the ILP32 uscsi data from the
29032 		 * application to LP64 for internal use.
29033 		 */
29034 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
29035 		break;
29036 	case DDI_MODEL_NONE:
29037 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
29038 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29039 			return (EFAULT);
29040 		}
29041 		break;
29042 	}
29043 #else /* ! _MULTI_DATAMODEL */
29044 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
29045 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29046 		return (EFAULT);
29047 	}
29048 #endif /* _MULTI_DATAMODEL */
29049 
29050 	/*
29051 	 * Since MMC-2 expects max 3 bytes for length, check if the
29052 	 * length input is greater than 3 bytes
29053 	 */
29054 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
29055 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
29056 		    "cdrom transfer length too large: %d (limit %d)\n",
29057 		    cdxa->cdxa_length, 0xFFFFFF);
29058 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29059 		return (EINVAL);
29060 	}
29061 
29062 	switch (cdxa->cdxa_format) {
29063 	case CDROM_XA_DATA:
29064 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
29065 		read_flags = 0x10;
29066 		break;
29067 	case CDROM_XA_SECTOR_DATA:
29068 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
29069 		read_flags = 0xf8;
29070 		break;
29071 	case CDROM_XA_DATA_W_ERROR:
29072 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
29073 		read_flags = 0xfc;
29074 		break;
29075 	default:
29076 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29077 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
29078 		    cdxa->cdxa_format);
29079 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29080 		return (EINVAL);
29081 	}
29082 
29083 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29084 	bzero(cdb, CDB_GROUP5);
29085 	if (un->un_f_mmc_cap == TRUE) {
29086 		cdb[0] = (char)SCMD_READ_CD;
29087 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
29088 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
29089 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
29090 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
29091 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
29092 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
29093 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
29094 		cdb[9] = (char)read_flags;
29095 	} else {
29096 		/*
29097 		 * Note: A vendor specific command (0xDB) is being used her to
29098 		 * request a read of all subcodes.
29099 		 */
29100 		cdb[0] = (char)SCMD_READ_CDXA;
29101 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
29102 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
29103 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
29104 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
29105 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
29106 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
29107 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
29108 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
29109 		cdb[10] = cdxa->cdxa_format;
29110 	}
29111 	com->uscsi_cdb	   = cdb;
29112 	com->uscsi_cdblen  = CDB_GROUP5;
29113 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
29114 	com->uscsi_buflen  = buflen;
29115 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29116 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
29117 	    SD_PATH_STANDARD);
29118 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29119 	kmem_free(com, sizeof (*com));
29120 	return (rval);
29121 }
29122 
29123 
29124 /*
29125  *    Function: sr_eject()
29126  *
29127  * Description: This routine is the driver entry point for handling CD-ROM
29128  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
29129  *
29130  *   Arguments: dev	- the device 'dev_t'
29131  *
29132  * Return Code: the code returned by sd_send_scsi_cmd()
29133  */
29134 
29135 static int
29136 sr_eject(dev_t dev)
29137 {
29138 	struct sd_lun	*un;
29139 	int		rval;
29140 
29141 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29142 	    (un->un_state == SD_STATE_OFFLINE)) {
29143 		return (ENXIO);
29144 	}
29145 
29146 	/*
29147 	 * To prevent race conditions with the eject
29148 	 * command, keep track of an eject command as
29149 	 * it progresses. If we are already handling
29150 	 * an eject command in the driver for the given
29151 	 * unit and another request to eject is received
29152 	 * immediately return EAGAIN so we don't lose
29153 	 * the command if the current eject command fails.
29154 	 */
29155 	mutex_enter(SD_MUTEX(un));
29156 	if (un->un_f_ejecting == TRUE) {
29157 		mutex_exit(SD_MUTEX(un));
29158 		return (EAGAIN);
29159 	}
29160 	un->un_f_ejecting = TRUE;
29161 	mutex_exit(SD_MUTEX(un));
29162 
29163 	if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
29164 	    SD_PATH_STANDARD)) != 0) {
29165 		mutex_enter(SD_MUTEX(un));
29166 		un->un_f_ejecting = FALSE;
29167 		mutex_exit(SD_MUTEX(un));
29168 		return (rval);
29169 	}
29170 
29171 	rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT,
29172 	    SD_PATH_STANDARD);
29173 
29174 	if (rval == 0) {
29175 		mutex_enter(SD_MUTEX(un));
29176 		sr_ejected(un);
29177 		un->un_mediastate = DKIO_EJECTED;
29178 		un->un_f_ejecting = FALSE;
29179 		cv_broadcast(&un->un_state_cv);
29180 		mutex_exit(SD_MUTEX(un));
29181 	} else {
29182 		mutex_enter(SD_MUTEX(un));
29183 		un->un_f_ejecting = FALSE;
29184 		mutex_exit(SD_MUTEX(un));
29185 	}
29186 	return (rval);
29187 }
29188 
29189 
29190 /*
29191  *    Function: sr_ejected()
29192  *
29193  * Description: This routine updates the soft state structure to invalidate the
29194  *		geometry information after the media has been ejected or a
29195  *		media eject has been detected.
29196  *
29197  *   Arguments: un - driver soft state (unit) structure
29198  */
29199 
29200 static void
29201 sr_ejected(struct sd_lun *un)
29202 {
29203 	struct sd_errstats *stp;
29204 
29205 	ASSERT(un != NULL);
29206 	ASSERT(mutex_owned(SD_MUTEX(un)));
29207 
29208 	un->un_f_blockcount_is_valid	= FALSE;
29209 	un->un_f_tgt_blocksize_is_valid	= FALSE;
29210 	un->un_f_geometry_is_valid	= FALSE;
29211 
29212 	if (un->un_errstats != NULL) {
29213 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
29214 		stp->sd_capacity.value.ui64 = 0;
29215 	}
29216 }
29217 
29218 
29219 /*
29220  *    Function: sr_check_wp()
29221  *
29222  * Description: This routine checks the write protection of a removable
29223  *      media disk and hotpluggable devices via the write protect bit of
29224  *      the Mode Page Header device specific field. Some devices choke
29225  *      on unsupported mode page. In order to workaround this issue,
29226  *      this routine has been implemented to use 0x3f mode page(request
29227  *      for all pages) for all device types.
29228  *
29229  *   Arguments: dev		- the device 'dev_t'
29230  *
29231  * Return Code: int indicating if the device is write protected (1) or not (0)
29232  *
29233  *     Context: Kernel thread.
29234  *
29235  */
29236 
29237 static int
29238 sr_check_wp(dev_t dev)
29239 {
29240 	struct sd_lun	*un;
29241 	uchar_t		device_specific;
29242 	uchar_t		*sense;
29243 	int		hdrlen;
29244 	int		rval = FALSE;
29245 
29246 	/*
29247 	 * Note: The return codes for this routine should be reworked to
29248 	 * properly handle the case of a NULL softstate.
29249 	 */
29250 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
29251 		return (FALSE);
29252 	}
29253 
29254 	if (un->un_f_cfg_is_atapi == TRUE) {
29255 		/*
29256 		 * The mode page contents are not required; set the allocation
29257 		 * length for the mode page header only
29258 		 */
29259 		hdrlen = MODE_HEADER_LENGTH_GRP2;
29260 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
29261 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen,
29262 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
29263 			goto err_exit;
29264 		device_specific =
29265 		    ((struct mode_header_grp2 *)sense)->device_specific;
29266 	} else {
29267 		hdrlen = MODE_HEADER_LENGTH;
29268 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
29269 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen,
29270 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
29271 			goto err_exit;
29272 		device_specific =
29273 		    ((struct mode_header *)sense)->device_specific;
29274 	}
29275 
29276 	/*
29277 	 * Write protect mode sense failed; not all disks
29278 	 * understand this query. Return FALSE assuming that
29279 	 * these devices are not writable.
29280 	 */
29281 	if (device_specific & WRITE_PROTECT) {
29282 		rval = TRUE;
29283 	}
29284 
29285 err_exit:
29286 	kmem_free(sense, hdrlen);
29287 	return (rval);
29288 }
29289 
29290 /*
29291  *    Function: sr_volume_ctrl()
29292  *
29293  * Description: This routine is the driver entry point for handling CD-ROM
29294  *		audio output volume ioctl requests. (CDROMVOLCTRL)
29295  *
29296  *   Arguments: dev	- the device 'dev_t'
29297  *		data	- pointer to user audio volume control structure
29298  *		flag	- this argument is a pass through to ddi_copyxxx()
29299  *			  directly from the mode argument of ioctl().
29300  *
29301  * Return Code: the code returned by sd_send_scsi_cmd()
29302  *		EFAULT if ddi_copyxxx() fails
29303  *		ENXIO if fail ddi_get_soft_state
29304  *		EINVAL if data pointer is NULL
29305  *
29306  */
29307 
29308 static int
29309 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
29310 {
29311 	struct sd_lun		*un;
29312 	struct cdrom_volctrl    volume;
29313 	struct cdrom_volctrl    *vol = &volume;
29314 	uchar_t			*sense_page;
29315 	uchar_t			*select_page;
29316 	uchar_t			*sense;
29317 	uchar_t			*select;
29318 	int			sense_buflen;
29319 	int			select_buflen;
29320 	int			rval;
29321 
29322 	if (data == NULL) {
29323 		return (EINVAL);
29324 	}
29325 
29326 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29327 	    (un->un_state == SD_STATE_OFFLINE)) {
29328 		return (ENXIO);
29329 	}
29330 
29331 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
29332 		return (EFAULT);
29333 	}
29334 
29335 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29336 		struct mode_header_grp2		*sense_mhp;
29337 		struct mode_header_grp2		*select_mhp;
29338 		int				bd_len;
29339 
29340 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
29341 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
29342 		    MODEPAGE_AUDIO_CTRL_LEN;
29343 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29344 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29345 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
29346 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29347 		    SD_PATH_STANDARD)) != 0) {
29348 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
29349 			    "sr_volume_ctrl: Mode Sense Failed\n");
29350 			kmem_free(sense, sense_buflen);
29351 			kmem_free(select, select_buflen);
29352 			return (rval);
29353 		}
29354 		sense_mhp = (struct mode_header_grp2 *)sense;
29355 		select_mhp = (struct mode_header_grp2 *)select;
29356 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
29357 		    sense_mhp->bdesc_length_lo;
29358 		if (bd_len > MODE_BLK_DESC_LENGTH) {
29359 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29360 			    "sr_volume_ctrl: Mode Sense returned invalid "
29361 			    "block descriptor length\n");
29362 			kmem_free(sense, sense_buflen);
29363 			kmem_free(select, select_buflen);
29364 			return (EIO);
29365 		}
29366 		sense_page = (uchar_t *)
29367 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
29368 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
29369 		select_mhp->length_msb = 0;
29370 		select_mhp->length_lsb = 0;
29371 		select_mhp->bdesc_length_hi = 0;
29372 		select_mhp->bdesc_length_lo = 0;
29373 	} else {
29374 		struct mode_header		*sense_mhp, *select_mhp;
29375 
29376 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29377 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29378 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29379 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29380 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
29381 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29382 		    SD_PATH_STANDARD)) != 0) {
29383 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29384 			    "sr_volume_ctrl: Mode Sense Failed\n");
29385 			kmem_free(sense, sense_buflen);
29386 			kmem_free(select, select_buflen);
29387 			return (rval);
29388 		}
29389 		sense_mhp  = (struct mode_header *)sense;
29390 		select_mhp = (struct mode_header *)select;
29391 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
29392 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29393 			    "sr_volume_ctrl: Mode Sense returned invalid "
29394 			    "block descriptor length\n");
29395 			kmem_free(sense, sense_buflen);
29396 			kmem_free(select, select_buflen);
29397 			return (EIO);
29398 		}
29399 		sense_page = (uchar_t *)
29400 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
29401 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
29402 		select_mhp->length = 0;
29403 		select_mhp->bdesc_length = 0;
29404 	}
29405 	/*
29406 	 * Note: An audio control data structure could be created and overlayed
29407 	 * on the following in place of the array indexing method implemented.
29408 	 */
29409 
29410 	/* Build the select data for the user volume data */
29411 	select_page[0] = MODEPAGE_AUDIO_CTRL;
29412 	select_page[1] = 0xE;
29413 	/* Set the immediate bit */
29414 	select_page[2] = 0x04;
29415 	/* Zero out reserved fields */
29416 	select_page[3] = 0x00;
29417 	select_page[4] = 0x00;
29418 	/* Return sense data for fields not to be modified */
29419 	select_page[5] = sense_page[5];
29420 	select_page[6] = sense_page[6];
29421 	select_page[7] = sense_page[7];
29422 	/* Set the user specified volume levels for channel 0 and 1 */
29423 	select_page[8] = 0x01;
29424 	select_page[9] = vol->channel0;
29425 	select_page[10] = 0x02;
29426 	select_page[11] = vol->channel1;
29427 	/* Channel 2 and 3 are currently unsupported so return the sense data */
29428 	select_page[12] = sense_page[12];
29429 	select_page[13] = sense_page[13];
29430 	select_page[14] = sense_page[14];
29431 	select_page[15] = sense_page[15];
29432 
29433 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29434 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select,
29435 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29436 	} else {
29437 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
29438 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29439 	}
29440 
29441 	kmem_free(sense, sense_buflen);
29442 	kmem_free(select, select_buflen);
29443 	return (rval);
29444 }
29445 
29446 
29447 /*
29448  *    Function: sr_read_sony_session_offset()
29449  *
29450  * Description: This routine is the driver entry point for handling CD-ROM
29451  *		ioctl requests for session offset information. (CDROMREADOFFSET)
29452  *		The address of the first track in the last session of a
29453  *		multi-session CD-ROM is returned
29454  *
29455  *		Note: This routine uses a vendor specific key value in the
29456  *		command control field without implementing any vendor check here
29457  *		or in the ioctl routine.
29458  *
29459  *   Arguments: dev	- the device 'dev_t'
29460  *		data	- pointer to an int to hold the requested address
29461  *		flag	- this argument is a pass through to ddi_copyxxx()
29462  *			  directly from the mode argument of ioctl().
29463  *
29464  * Return Code: the code returned by sd_send_scsi_cmd()
29465  *		EFAULT if ddi_copyxxx() fails
29466  *		ENXIO if fail ddi_get_soft_state
29467  *		EINVAL if data pointer is NULL
29468  */
29469 
29470 static int
29471 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
29472 {
29473 	struct sd_lun		*un;
29474 	struct uscsi_cmd	*com;
29475 	caddr_t			buffer;
29476 	char			cdb[CDB_GROUP1];
29477 	int			session_offset = 0;
29478 	int			rval;
29479 
29480 	if (data == NULL) {
29481 		return (EINVAL);
29482 	}
29483 
29484 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29485 	    (un->un_state == SD_STATE_OFFLINE)) {
29486 		return (ENXIO);
29487 	}
29488 
29489 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
29490 	bzero(cdb, CDB_GROUP1);
29491 	cdb[0] = SCMD_READ_TOC;
29492 	/*
29493 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
29494 	 * (4 byte TOC response header + 8 byte response data)
29495 	 */
29496 	cdb[8] = SONY_SESSION_OFFSET_LEN;
29497 	/* Byte 9 is the control byte. A vendor specific value is used */
29498 	cdb[9] = SONY_SESSION_OFFSET_KEY;
29499 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29500 	com->uscsi_cdb = cdb;
29501 	com->uscsi_cdblen = CDB_GROUP1;
29502 	com->uscsi_bufaddr = buffer;
29503 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
29504 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29505 
29506 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
29507 	    SD_PATH_STANDARD);
29508 	if (rval != 0) {
29509 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29510 		kmem_free(com, sizeof (*com));
29511 		return (rval);
29512 	}
29513 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
29514 		session_offset =
29515 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
29516 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
29517 		/*
29518 		 * Offset returned offset in current lbasize block's. Convert to
29519 		 * 2k block's to return to the user
29520 		 */
29521 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
29522 			session_offset >>= 2;
29523 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
29524 			session_offset >>= 1;
29525 		}
29526 	}
29527 
29528 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
29529 		rval = EFAULT;
29530 	}
29531 
29532 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29533 	kmem_free(com, sizeof (*com));
29534 	return (rval);
29535 }
29536 
29537 
29538 /*
29539  *    Function: sd_wm_cache_constructor()
29540  *
29541  * Description: Cache Constructor for the wmap cache for the read/modify/write
29542  * 		devices.
29543  *
29544  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29545  *		un	- sd_lun structure for the device.
29546  *		flag	- the km flags passed to constructor
29547  *
29548  * Return Code: 0 on success.
29549  *		-1 on failure.
29550  */
29551 
29552 /*ARGSUSED*/
29553 static int
29554 sd_wm_cache_constructor(void *wm, void *un, int flags)
29555 {
29556 	bzero(wm, sizeof (struct sd_w_map));
29557 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
29558 	return (0);
29559 }
29560 
29561 
29562 /*
29563  *    Function: sd_wm_cache_destructor()
29564  *
29565  * Description: Cache destructor for the wmap cache for the read/modify/write
29566  * 		devices.
29567  *
29568  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29569  *		un	- sd_lun structure for the device.
29570  */
29571 /*ARGSUSED*/
29572 static void
29573 sd_wm_cache_destructor(void *wm, void *un)
29574 {
29575 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
29576 }
29577 
29578 
29579 /*
29580  *    Function: sd_range_lock()
29581  *
29582  * Description: Lock the range of blocks specified as parameter to ensure
29583  *		that read, modify write is atomic and no other i/o writes
29584  *		to the same location. The range is specified in terms
29585  *		of start and end blocks. Block numbers are the actual
29586  *		media block numbers and not system.
29587  *
29588  *   Arguments: un	- sd_lun structure for the device.
29589  *		startb - The starting block number
29590  *		endb - The end block number
29591  *		typ - type of i/o - simple/read_modify_write
29592  *
29593  * Return Code: wm  - pointer to the wmap structure.
29594  *
29595  *     Context: This routine can sleep.
29596  */
29597 
29598 static struct sd_w_map *
29599 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
29600 {
29601 	struct sd_w_map *wmp = NULL;
29602 	struct sd_w_map *sl_wmp = NULL;
29603 	struct sd_w_map *tmp_wmp;
29604 	wm_state state = SD_WM_CHK_LIST;
29605 
29606 
29607 	ASSERT(un != NULL);
29608 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29609 
29610 	mutex_enter(SD_MUTEX(un));
29611 
29612 	while (state != SD_WM_DONE) {
29613 
29614 		switch (state) {
29615 		case SD_WM_CHK_LIST:
29616 			/*
29617 			 * This is the starting state. Check the wmap list
29618 			 * to see if the range is currently available.
29619 			 */
29620 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
29621 				/*
29622 				 * If this is a simple write and no rmw
29623 				 * i/o is pending then try to lock the
29624 				 * range as the range should be available.
29625 				 */
29626 				state = SD_WM_LOCK_RANGE;
29627 			} else {
29628 				tmp_wmp = sd_get_range(un, startb, endb);
29629 				if (tmp_wmp != NULL) {
29630 					if ((wmp != NULL) && ONLIST(un, wmp)) {
29631 						/*
29632 						 * Should not keep onlist wmps
29633 						 * while waiting this macro
29634 						 * will also do wmp = NULL;
29635 						 */
29636 						FREE_ONLIST_WMAP(un, wmp);
29637 					}
29638 					/*
29639 					 * sl_wmp is the wmap on which wait
29640 					 * is done, since the tmp_wmp points
29641 					 * to the inuse wmap, set sl_wmp to
29642 					 * tmp_wmp and change the state to sleep
29643 					 */
29644 					sl_wmp = tmp_wmp;
29645 					state = SD_WM_WAIT_MAP;
29646 				} else {
29647 					state = SD_WM_LOCK_RANGE;
29648 				}
29649 
29650 			}
29651 			break;
29652 
29653 		case SD_WM_LOCK_RANGE:
29654 			ASSERT(un->un_wm_cache);
29655 			/*
29656 			 * The range need to be locked, try to get a wmap.
29657 			 * First attempt it with NO_SLEEP, want to avoid a sleep
29658 			 * if possible as we will have to release the sd mutex
29659 			 * if we have to sleep.
29660 			 */
29661 			if (wmp == NULL)
29662 				wmp = kmem_cache_alloc(un->un_wm_cache,
29663 				    KM_NOSLEEP);
29664 			if (wmp == NULL) {
29665 				mutex_exit(SD_MUTEX(un));
29666 				_NOTE(DATA_READABLE_WITHOUT_LOCK
29667 				    (sd_lun::un_wm_cache))
29668 				wmp = kmem_cache_alloc(un->un_wm_cache,
29669 				    KM_SLEEP);
29670 				mutex_enter(SD_MUTEX(un));
29671 				/*
29672 				 * we released the mutex so recheck and go to
29673 				 * check list state.
29674 				 */
29675 				state = SD_WM_CHK_LIST;
29676 			} else {
29677 				/*
29678 				 * We exit out of state machine since we
29679 				 * have the wmap. Do the housekeeping first.
29680 				 * place the wmap on the wmap list if it is not
29681 				 * on it already and then set the state to done.
29682 				 */
29683 				wmp->wm_start = startb;
29684 				wmp->wm_end = endb;
29685 				wmp->wm_flags = typ | SD_WM_BUSY;
29686 				if (typ & SD_WTYPE_RMW) {
29687 					un->un_rmw_count++;
29688 				}
29689 				/*
29690 				 * If not already on the list then link
29691 				 */
29692 				if (!ONLIST(un, wmp)) {
29693 					wmp->wm_next = un->un_wm;
29694 					wmp->wm_prev = NULL;
29695 					if (wmp->wm_next)
29696 						wmp->wm_next->wm_prev = wmp;
29697 					un->un_wm = wmp;
29698 				}
29699 				state = SD_WM_DONE;
29700 			}
29701 			break;
29702 
29703 		case SD_WM_WAIT_MAP:
29704 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
29705 			/*
29706 			 * Wait is done on sl_wmp, which is set in the
29707 			 * check_list state.
29708 			 */
29709 			sl_wmp->wm_wanted_count++;
29710 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
29711 			sl_wmp->wm_wanted_count--;
29712 			/*
29713 			 * We can reuse the memory from the completed sl_wmp
29714 			 * lock range for our new lock, but only if noone is
29715 			 * waiting for it.
29716 			 */
29717 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
29718 			if (sl_wmp->wm_wanted_count == 0) {
29719 				if (wmp != NULL)
29720 					CHK_N_FREEWMP(un, wmp);
29721 				wmp = sl_wmp;
29722 			}
29723 			sl_wmp = NULL;
29724 			/*
29725 			 * After waking up, need to recheck for availability of
29726 			 * range.
29727 			 */
29728 			state = SD_WM_CHK_LIST;
29729 			break;
29730 
29731 		default:
29732 			panic("sd_range_lock: "
29733 			    "Unknown state %d in sd_range_lock", state);
29734 			/*NOTREACHED*/
29735 		} /* switch(state) */
29736 
29737 	} /* while(state != SD_WM_DONE) */
29738 
29739 	mutex_exit(SD_MUTEX(un));
29740 
29741 	ASSERT(wmp != NULL);
29742 
29743 	return (wmp);
29744 }
29745 
29746 
29747 /*
29748  *    Function: sd_get_range()
29749  *
29750  * Description: Find if there any overlapping I/O to this one
29751  *		Returns the write-map of 1st such I/O, NULL otherwise.
29752  *
29753  *   Arguments: un	- sd_lun structure for the device.
29754  *		startb - The starting block number
29755  *		endb - The end block number
29756  *
29757  * Return Code: wm  - pointer to the wmap structure.
29758  */
29759 
29760 static struct sd_w_map *
29761 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
29762 {
29763 	struct sd_w_map *wmp;
29764 
29765 	ASSERT(un != NULL);
29766 
29767 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
29768 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
29769 			continue;
29770 		}
29771 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
29772 			break;
29773 		}
29774 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
29775 			break;
29776 		}
29777 	}
29778 
29779 	return (wmp);
29780 }
29781 
29782 
29783 /*
29784  *    Function: sd_free_inlist_wmap()
29785  *
29786  * Description: Unlink and free a write map struct.
29787  *
29788  *   Arguments: un      - sd_lun structure for the device.
29789  *		wmp	- sd_w_map which needs to be unlinked.
29790  */
29791 
29792 static void
29793 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
29794 {
29795 	ASSERT(un != NULL);
29796 
29797 	if (un->un_wm == wmp) {
29798 		un->un_wm = wmp->wm_next;
29799 	} else {
29800 		wmp->wm_prev->wm_next = wmp->wm_next;
29801 	}
29802 
29803 	if (wmp->wm_next) {
29804 		wmp->wm_next->wm_prev = wmp->wm_prev;
29805 	}
29806 
29807 	wmp->wm_next = wmp->wm_prev = NULL;
29808 
29809 	kmem_cache_free(un->un_wm_cache, wmp);
29810 }
29811 
29812 
29813 /*
29814  *    Function: sd_range_unlock()
29815  *
29816  * Description: Unlock the range locked by wm.
29817  *		Free write map if nobody else is waiting on it.
29818  *
29819  *   Arguments: un      - sd_lun structure for the device.
29820  *              wmp     - sd_w_map which needs to be unlinked.
29821  */
29822 
29823 static void
29824 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
29825 {
29826 	ASSERT(un != NULL);
29827 	ASSERT(wm != NULL);
29828 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29829 
29830 	mutex_enter(SD_MUTEX(un));
29831 
29832 	if (wm->wm_flags & SD_WTYPE_RMW) {
29833 		un->un_rmw_count--;
29834 	}
29835 
29836 	if (wm->wm_wanted_count) {
29837 		wm->wm_flags = 0;
29838 		/*
29839 		 * Broadcast that the wmap is available now.
29840 		 */
29841 		cv_broadcast(&wm->wm_avail);
29842 	} else {
29843 		/*
29844 		 * If no one is waiting on the map, it should be free'ed.
29845 		 */
29846 		sd_free_inlist_wmap(un, wm);
29847 	}
29848 
29849 	mutex_exit(SD_MUTEX(un));
29850 }
29851 
29852 
29853 /*
29854  *    Function: sd_read_modify_write_task
29855  *
29856  * Description: Called from a taskq thread to initiate the write phase of
29857  *		a read-modify-write request.  This is used for targets where
29858  *		un->un_sys_blocksize != un->un_tgt_blocksize.
29859  *
29860  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
29861  *
29862  *     Context: Called under taskq thread context.
29863  */
29864 
29865 static void
29866 sd_read_modify_write_task(void *arg)
29867 {
29868 	struct sd_mapblocksize_info	*bsp;
29869 	struct buf	*bp;
29870 	struct sd_xbuf	*xp;
29871 	struct sd_lun	*un;
29872 
29873 	bp = arg;	/* The bp is given in arg */
29874 	ASSERT(bp != NULL);
29875 
29876 	/* Get the pointer to the layer-private data struct */
29877 	xp = SD_GET_XBUF(bp);
29878 	ASSERT(xp != NULL);
29879 	bsp = xp->xb_private;
29880 	ASSERT(bsp != NULL);
29881 
29882 	un = SD_GET_UN(bp);
29883 	ASSERT(un != NULL);
29884 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29885 
29886 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29887 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
29888 
29889 	/*
29890 	 * This is the write phase of a read-modify-write request, called
29891 	 * under the context of a taskq thread in response to the completion
29892 	 * of the read portion of the rmw request completing under interrupt
29893 	 * context. The write request must be sent from here down the iostart
29894 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
29895 	 * we use the layer index saved in the layer-private data area.
29896 	 */
29897 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
29898 
29899 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29900 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
29901 }
29902 
29903 
29904 /*
29905  *    Function: sddump_do_read_of_rmw()
29906  *
29907  * Description: This routine will be called from sddump, If sddump is called
29908  *		with an I/O which not aligned on device blocksize boundary
29909  *		then the write has to be converted to read-modify-write.
29910  *		Do the read part here in order to keep sddump simple.
29911  *		Note - That the sd_mutex is held across the call to this
29912  *		routine.
29913  *
29914  *   Arguments: un	- sd_lun
29915  *		blkno	- block number in terms of media block size.
29916  *		nblk	- number of blocks.
29917  *		bpp	- pointer to pointer to the buf structure. On return
29918  *			from this function, *bpp points to the valid buffer
29919  *			to which the write has to be done.
29920  *
29921  * Return Code: 0 for success or errno-type return code
29922  */
29923 
29924 static int
29925 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
29926 	struct buf **bpp)
29927 {
29928 	int err;
29929 	int i;
29930 	int rval;
29931 	struct buf *bp;
29932 	struct scsi_pkt *pkt = NULL;
29933 	uint32_t target_blocksize;
29934 
29935 	ASSERT(un != NULL);
29936 	ASSERT(mutex_owned(SD_MUTEX(un)));
29937 
29938 	target_blocksize = un->un_tgt_blocksize;
29939 
29940 	mutex_exit(SD_MUTEX(un));
29941 
29942 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
29943 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
29944 	if (bp == NULL) {
29945 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29946 		    "no resources for dumping; giving up");
29947 		err = ENOMEM;
29948 		goto done;
29949 	}
29950 
29951 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
29952 	    blkno, nblk);
29953 	if (rval != 0) {
29954 		scsi_free_consistent_buf(bp);
29955 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29956 		    "no resources for dumping; giving up");
29957 		err = ENOMEM;
29958 		goto done;
29959 	}
29960 
29961 	pkt->pkt_flags |= FLAG_NOINTR;
29962 
29963 	err = EIO;
29964 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
29965 
29966 		/*
29967 		 * Scsi_poll returns 0 (success) if the command completes and
29968 		 * the status block is STATUS_GOOD.  We should only check
29969 		 * errors if this condition is not true.  Even then we should
29970 		 * send our own request sense packet only if we have a check
29971 		 * condition and auto request sense has not been performed by
29972 		 * the hba.
29973 		 */
29974 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
29975 
29976 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
29977 			err = 0;
29978 			break;
29979 		}
29980 
29981 		/*
29982 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
29983 		 * no need to read RQS data.
29984 		 */
29985 		if (pkt->pkt_reason == CMD_DEV_GONE) {
29986 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29987 			    "Device is gone\n");
29988 			break;
29989 		}
29990 
29991 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
29992 			SD_INFO(SD_LOG_DUMP, un,
29993 			    "sddump: read failed with CHECK, try # %d\n", i);
29994 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
29995 				(void) sd_send_polled_RQS(un);
29996 			}
29997 
29998 			continue;
29999 		}
30000 
30001 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
30002 			int reset_retval = 0;
30003 
30004 			SD_INFO(SD_LOG_DUMP, un,
30005 			    "sddump: read failed with BUSY, try # %d\n", i);
30006 
30007 			if (un->un_f_lun_reset_enabled == TRUE) {
30008 				reset_retval = scsi_reset(SD_ADDRESS(un),
30009 				    RESET_LUN);
30010 			}
30011 			if (reset_retval == 0) {
30012 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
30013 			}
30014 			(void) sd_send_polled_RQS(un);
30015 
30016 		} else {
30017 			SD_INFO(SD_LOG_DUMP, un,
30018 			    "sddump: read failed with 0x%x, try # %d\n",
30019 			    SD_GET_PKT_STATUS(pkt), i);
30020 			mutex_enter(SD_MUTEX(un));
30021 			sd_reset_target(un, pkt);
30022 			mutex_exit(SD_MUTEX(un));
30023 		}
30024 
30025 		/*
30026 		 * If we are not getting anywhere with lun/target resets,
30027 		 * let's reset the bus.
30028 		 */
30029 		if (i > SD_NDUMP_RETRIES/2) {
30030 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
30031 			(void) sd_send_polled_RQS(un);
30032 		}
30033 
30034 	}
30035 	scsi_destroy_pkt(pkt);
30036 
30037 	if (err != 0) {
30038 		scsi_free_consistent_buf(bp);
30039 		*bpp = NULL;
30040 	} else {
30041 		*bpp = bp;
30042 	}
30043 
30044 done:
30045 	mutex_enter(SD_MUTEX(un));
30046 	return (err);
30047 }
30048 
30049 
30050 /*
30051  *    Function: sd_failfast_flushq
30052  *
30053  * Description: Take all bp's on the wait queue that have B_FAILFAST set
30054  *		in b_flags and move them onto the failfast queue, then kick
30055  *		off a thread to return all bp's on the failfast queue to
30056  *		their owners with an error set.
30057  *
30058  *   Arguments: un - pointer to the soft state struct for the instance.
30059  *
30060  *     Context: may execute in interrupt context.
30061  */
30062 
30063 static void
30064 sd_failfast_flushq(struct sd_lun *un)
30065 {
30066 	struct buf *bp;
30067 	struct buf *next_waitq_bp;
30068 	struct buf *prev_waitq_bp = NULL;
30069 
30070 	ASSERT(un != NULL);
30071 	ASSERT(mutex_owned(SD_MUTEX(un)));
30072 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
30073 	ASSERT(un->un_failfast_bp == NULL);
30074 
30075 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
30076 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
30077 
30078 	/*
30079 	 * Check if we should flush all bufs when entering failfast state, or
30080 	 * just those with B_FAILFAST set.
30081 	 */
30082 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
30083 		/*
30084 		 * Move *all* bp's on the wait queue to the failfast flush
30085 		 * queue, including those that do NOT have B_FAILFAST set.
30086 		 */
30087 		if (un->un_failfast_headp == NULL) {
30088 			ASSERT(un->un_failfast_tailp == NULL);
30089 			un->un_failfast_headp = un->un_waitq_headp;
30090 		} else {
30091 			ASSERT(un->un_failfast_tailp != NULL);
30092 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
30093 		}
30094 
30095 		un->un_failfast_tailp = un->un_waitq_tailp;
30096 
30097 		/* update kstat for each bp moved out of the waitq */
30098 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
30099 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
30100 		}
30101 
30102 		/* empty the waitq */
30103 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
30104 
30105 	} else {
30106 		/*
30107 		 * Go thru the wait queue, pick off all entries with
30108 		 * B_FAILFAST set, and move these onto the failfast queue.
30109 		 */
30110 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
30111 			/*
30112 			 * Save the pointer to the next bp on the wait queue,
30113 			 * so we get to it on the next iteration of this loop.
30114 			 */
30115 			next_waitq_bp = bp->av_forw;
30116 
30117 			/*
30118 			 * If this bp from the wait queue does NOT have
30119 			 * B_FAILFAST set, just move on to the next element
30120 			 * in the wait queue. Note, this is the only place
30121 			 * where it is correct to set prev_waitq_bp.
30122 			 */
30123 			if ((bp->b_flags & B_FAILFAST) == 0) {
30124 				prev_waitq_bp = bp;
30125 				continue;
30126 			}
30127 
30128 			/*
30129 			 * Remove the bp from the wait queue.
30130 			 */
30131 			if (bp == un->un_waitq_headp) {
30132 				/* The bp is the first element of the waitq. */
30133 				un->un_waitq_headp = next_waitq_bp;
30134 				if (un->un_waitq_headp == NULL) {
30135 					/* The wait queue is now empty */
30136 					un->un_waitq_tailp = NULL;
30137 				}
30138 			} else {
30139 				/*
30140 				 * The bp is either somewhere in the middle
30141 				 * or at the end of the wait queue.
30142 				 */
30143 				ASSERT(un->un_waitq_headp != NULL);
30144 				ASSERT(prev_waitq_bp != NULL);
30145 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
30146 				    == 0);
30147 				if (bp == un->un_waitq_tailp) {
30148 					/* bp is the last entry on the waitq. */
30149 					ASSERT(next_waitq_bp == NULL);
30150 					un->un_waitq_tailp = prev_waitq_bp;
30151 				}
30152 				prev_waitq_bp->av_forw = next_waitq_bp;
30153 			}
30154 			bp->av_forw = NULL;
30155 
30156 			/*
30157 			 * update kstat since the bp is moved out of
30158 			 * the waitq
30159 			 */
30160 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
30161 
30162 			/*
30163 			 * Now put the bp onto the failfast queue.
30164 			 */
30165 			if (un->un_failfast_headp == NULL) {
30166 				/* failfast queue is currently empty */
30167 				ASSERT(un->un_failfast_tailp == NULL);
30168 				un->un_failfast_headp =
30169 				    un->un_failfast_tailp = bp;
30170 			} else {
30171 				/* Add the bp to the end of the failfast q */
30172 				ASSERT(un->un_failfast_tailp != NULL);
30173 				ASSERT(un->un_failfast_tailp->b_flags &
30174 				    B_FAILFAST);
30175 				un->un_failfast_tailp->av_forw = bp;
30176 				un->un_failfast_tailp = bp;
30177 			}
30178 		}
30179 	}
30180 
30181 	/*
30182 	 * Now return all bp's on the failfast queue to their owners.
30183 	 */
30184 	while ((bp = un->un_failfast_headp) != NULL) {
30185 
30186 		un->un_failfast_headp = bp->av_forw;
30187 		if (un->un_failfast_headp == NULL) {
30188 			un->un_failfast_tailp = NULL;
30189 		}
30190 
30191 		/*
30192 		 * We want to return the bp with a failure error code, but
30193 		 * we do not want a call to sd_start_cmds() to occur here,
30194 		 * so use sd_return_failed_command_no_restart() instead of
30195 		 * sd_return_failed_command().
30196 		 */
30197 		sd_return_failed_command_no_restart(un, bp, EIO);
30198 	}
30199 
30200 	/* Flush the xbuf queues if required. */
30201 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
30202 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
30203 	}
30204 
30205 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
30206 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
30207 }
30208 
30209 
30210 /*
30211  *    Function: sd_failfast_flushq_callback
30212  *
30213  * Description: Return TRUE if the given bp meets the criteria for failfast
30214  *		flushing. Used with ddi_xbuf_flushq(9F).
30215  *
30216  *   Arguments: bp - ptr to buf struct to be examined.
30217  *
30218  *     Context: Any
30219  */
30220 
30221 static int
30222 sd_failfast_flushq_callback(struct buf *bp)
30223 {
30224 	/*
30225 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
30226 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
30227 	 */
30228 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
30229 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
30230 }
30231 
30232 
30233 
30234 #if defined(__i386) || defined(__amd64)
30235 /*
30236  * Function: sd_setup_next_xfer
30237  *
30238  * Description: Prepare next I/O operation using DMA_PARTIAL
30239  *
30240  */
30241 
30242 static int
30243 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
30244     struct scsi_pkt *pkt, struct sd_xbuf *xp)
30245 {
30246 	ssize_t	num_blks_not_xfered;
30247 	daddr_t	strt_blk_num;
30248 	ssize_t	bytes_not_xfered;
30249 	int	rval;
30250 
30251 	ASSERT(pkt->pkt_resid == 0);
30252 
30253 	/*
30254 	 * Calculate next block number and amount to be transferred.
30255 	 *
30256 	 * How much data NOT transfered to the HBA yet.
30257 	 */
30258 	bytes_not_xfered = xp->xb_dma_resid;
30259 
30260 	/*
30261 	 * figure how many blocks NOT transfered to the HBA yet.
30262 	 */
30263 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
30264 
30265 	/*
30266 	 * set starting block number to the end of what WAS transfered.
30267 	 */
30268 	strt_blk_num = xp->xb_blkno +
30269 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
30270 
30271 	/*
30272 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
30273 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
30274 	 * the disk mutex here.
30275 	 */
30276 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
30277 	    strt_blk_num, num_blks_not_xfered);
30278 
30279 	if (rval == 0) {
30280 
30281 		/*
30282 		 * Success.
30283 		 *
30284 		 * Adjust things if there are still more blocks to be
30285 		 * transfered.
30286 		 */
30287 		xp->xb_dma_resid = pkt->pkt_resid;
30288 		pkt->pkt_resid = 0;
30289 
30290 		return (1);
30291 	}
30292 
30293 	/*
30294 	 * There's really only one possible return value from
30295 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
30296 	 * returns NULL.
30297 	 */
30298 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
30299 
30300 	bp->b_resid = bp->b_bcount;
30301 	bp->b_flags |= B_ERROR;
30302 
30303 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
30304 	    "Error setting up next portion of DMA transfer\n");
30305 
30306 	return (0);
30307 }
30308 #endif
30309 
30310 /*
30311  *    Function: sd_panic_for_res_conflict
30312  *
30313  * Description: Call panic with a string formated with "Reservation Conflict"
30314  *		and a human readable identifier indicating the SD instance
30315  *		that experienced the reservation conflict.
30316  *
30317  *   Arguments: un - pointer to the soft state struct for the instance.
30318  *
30319  *     Context: may execute in interrupt context.
30320  */
30321 
30322 #define	SD_RESV_CONFLICT_FMT_LEN 40
30323 void
30324 sd_panic_for_res_conflict(struct sd_lun *un)
30325 {
30326 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
30327 	char path_str[MAXPATHLEN];
30328 
30329 	(void) snprintf(panic_str, sizeof (panic_str),
30330 	    "Reservation Conflict\nDisk: %s",
30331 	    ddi_pathname(SD_DEVINFO(un), path_str));
30332 
30333 	panic(panic_str);
30334 }
30335 
30336 /*
30337  * Note: The following sd_faultinjection_ioctl( ) routines implement
30338  * driver support for handling fault injection for error analysis
30339  * causing faults in multiple layers of the driver.
30340  *
30341  */
30342 
30343 #ifdef SD_FAULT_INJECTION
30344 static uint_t   sd_fault_injection_on = 0;
30345 
30346 /*
30347  *    Function: sd_faultinjection_ioctl()
30348  *
30349  * Description: This routine is the driver entry point for handling
30350  *              faultinjection ioctls to inject errors into the
30351  *              layer model
30352  *
30353  *   Arguments: cmd	- the ioctl cmd recieved
30354  *		arg	- the arguments from user and returns
30355  */
30356 
30357 static void
30358 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
30359 
30360 	uint_t i;
30361 	uint_t rval;
30362 
30363 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
30364 
30365 	mutex_enter(SD_MUTEX(un));
30366 
30367 	switch (cmd) {
30368 	case SDIOCRUN:
30369 		/* Allow pushed faults to be injected */
30370 		SD_INFO(SD_LOG_SDTEST, un,
30371 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
30372 
30373 		sd_fault_injection_on = 1;
30374 
30375 		SD_INFO(SD_LOG_IOERR, un,
30376 		    "sd_faultinjection_ioctl: run finished\n");
30377 		break;
30378 
30379 	case SDIOCSTART:
30380 		/* Start Injection Session */
30381 		SD_INFO(SD_LOG_SDTEST, un,
30382 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
30383 
30384 		sd_fault_injection_on = 0;
30385 		un->sd_injection_mask = 0xFFFFFFFF;
30386 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30387 			un->sd_fi_fifo_pkt[i] = NULL;
30388 			un->sd_fi_fifo_xb[i] = NULL;
30389 			un->sd_fi_fifo_un[i] = NULL;
30390 			un->sd_fi_fifo_arq[i] = NULL;
30391 		}
30392 		un->sd_fi_fifo_start = 0;
30393 		un->sd_fi_fifo_end = 0;
30394 
30395 		mutex_enter(&(un->un_fi_mutex));
30396 		un->sd_fi_log[0] = '\0';
30397 		un->sd_fi_buf_len = 0;
30398 		mutex_exit(&(un->un_fi_mutex));
30399 
30400 		SD_INFO(SD_LOG_IOERR, un,
30401 		    "sd_faultinjection_ioctl: start finished\n");
30402 		break;
30403 
30404 	case SDIOCSTOP:
30405 		/* Stop Injection Session */
30406 		SD_INFO(SD_LOG_SDTEST, un,
30407 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
30408 		sd_fault_injection_on = 0;
30409 		un->sd_injection_mask = 0x0;
30410 
30411 		/* Empty stray or unuseds structs from fifo */
30412 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30413 			if (un->sd_fi_fifo_pkt[i] != NULL) {
30414 				kmem_free(un->sd_fi_fifo_pkt[i],
30415 				    sizeof (struct sd_fi_pkt));
30416 			}
30417 			if (un->sd_fi_fifo_xb[i] != NULL) {
30418 				kmem_free(un->sd_fi_fifo_xb[i],
30419 				    sizeof (struct sd_fi_xb));
30420 			}
30421 			if (un->sd_fi_fifo_un[i] != NULL) {
30422 				kmem_free(un->sd_fi_fifo_un[i],
30423 				    sizeof (struct sd_fi_un));
30424 			}
30425 			if (un->sd_fi_fifo_arq[i] != NULL) {
30426 				kmem_free(un->sd_fi_fifo_arq[i],
30427 				    sizeof (struct sd_fi_arq));
30428 			}
30429 			un->sd_fi_fifo_pkt[i] = NULL;
30430 			un->sd_fi_fifo_un[i] = NULL;
30431 			un->sd_fi_fifo_xb[i] = NULL;
30432 			un->sd_fi_fifo_arq[i] = NULL;
30433 		}
30434 		un->sd_fi_fifo_start = 0;
30435 		un->sd_fi_fifo_end = 0;
30436 
30437 		SD_INFO(SD_LOG_IOERR, un,
30438 		    "sd_faultinjection_ioctl: stop finished\n");
30439 		break;
30440 
30441 	case SDIOCINSERTPKT:
30442 		/* Store a packet struct to be pushed onto fifo */
30443 		SD_INFO(SD_LOG_SDTEST, un,
30444 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
30445 
30446 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30447 
30448 		sd_fault_injection_on = 0;
30449 
30450 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
30451 		if (un->sd_fi_fifo_pkt[i] != NULL) {
30452 			kmem_free(un->sd_fi_fifo_pkt[i],
30453 			    sizeof (struct sd_fi_pkt));
30454 		}
30455 		if (arg != NULL) {
30456 			un->sd_fi_fifo_pkt[i] =
30457 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
30458 			if (un->sd_fi_fifo_pkt[i] == NULL) {
30459 				/* Alloc failed don't store anything */
30460 				break;
30461 			}
30462 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
30463 			    sizeof (struct sd_fi_pkt), 0);
30464 			if (rval == -1) {
30465 				kmem_free(un->sd_fi_fifo_pkt[i],
30466 				    sizeof (struct sd_fi_pkt));
30467 				un->sd_fi_fifo_pkt[i] = NULL;
30468 			}
30469 		} else {
30470 			SD_INFO(SD_LOG_IOERR, un,
30471 			    "sd_faultinjection_ioctl: pkt null\n");
30472 		}
30473 		break;
30474 
30475 	case SDIOCINSERTXB:
30476 		/* Store a xb struct to be pushed onto fifo */
30477 		SD_INFO(SD_LOG_SDTEST, un,
30478 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
30479 
30480 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30481 
30482 		sd_fault_injection_on = 0;
30483 
30484 		if (un->sd_fi_fifo_xb[i] != NULL) {
30485 			kmem_free(un->sd_fi_fifo_xb[i],
30486 			    sizeof (struct sd_fi_xb));
30487 			un->sd_fi_fifo_xb[i] = NULL;
30488 		}
30489 		if (arg != NULL) {
30490 			un->sd_fi_fifo_xb[i] =
30491 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
30492 			if (un->sd_fi_fifo_xb[i] == NULL) {
30493 				/* Alloc failed don't store anything */
30494 				break;
30495 			}
30496 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
30497 			    sizeof (struct sd_fi_xb), 0);
30498 
30499 			if (rval == -1) {
30500 				kmem_free(un->sd_fi_fifo_xb[i],
30501 				    sizeof (struct sd_fi_xb));
30502 				un->sd_fi_fifo_xb[i] = NULL;
30503 			}
30504 		} else {
30505 			SD_INFO(SD_LOG_IOERR, un,
30506 			    "sd_faultinjection_ioctl: xb null\n");
30507 		}
30508 		break;
30509 
30510 	case SDIOCINSERTUN:
30511 		/* Store a un struct to be pushed onto fifo */
30512 		SD_INFO(SD_LOG_SDTEST, un,
30513 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
30514 
30515 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30516 
30517 		sd_fault_injection_on = 0;
30518 
30519 		if (un->sd_fi_fifo_un[i] != NULL) {
30520 			kmem_free(un->sd_fi_fifo_un[i],
30521 			    sizeof (struct sd_fi_un));
30522 			un->sd_fi_fifo_un[i] = NULL;
30523 		}
30524 		if (arg != NULL) {
30525 			un->sd_fi_fifo_un[i] =
30526 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
30527 			if (un->sd_fi_fifo_un[i] == NULL) {
30528 				/* Alloc failed don't store anything */
30529 				break;
30530 			}
30531 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
30532 			    sizeof (struct sd_fi_un), 0);
30533 			if (rval == -1) {
30534 				kmem_free(un->sd_fi_fifo_un[i],
30535 				    sizeof (struct sd_fi_un));
30536 				un->sd_fi_fifo_un[i] = NULL;
30537 			}
30538 
30539 		} else {
30540 			SD_INFO(SD_LOG_IOERR, un,
30541 			    "sd_faultinjection_ioctl: un null\n");
30542 		}
30543 
30544 		break;
30545 
30546 	case SDIOCINSERTARQ:
30547 		/* Store a arq struct to be pushed onto fifo */
30548 		SD_INFO(SD_LOG_SDTEST, un,
30549 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
30550 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30551 
30552 		sd_fault_injection_on = 0;
30553 
30554 		if (un->sd_fi_fifo_arq[i] != NULL) {
30555 			kmem_free(un->sd_fi_fifo_arq[i],
30556 			    sizeof (struct sd_fi_arq));
30557 			un->sd_fi_fifo_arq[i] = NULL;
30558 		}
30559 		if (arg != NULL) {
30560 			un->sd_fi_fifo_arq[i] =
30561 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
30562 			if (un->sd_fi_fifo_arq[i] == NULL) {
30563 				/* Alloc failed don't store anything */
30564 				break;
30565 			}
30566 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
30567 			    sizeof (struct sd_fi_arq), 0);
30568 			if (rval == -1) {
30569 				kmem_free(un->sd_fi_fifo_arq[i],
30570 				    sizeof (struct sd_fi_arq));
30571 				un->sd_fi_fifo_arq[i] = NULL;
30572 			}
30573 
30574 		} else {
30575 			SD_INFO(SD_LOG_IOERR, un,
30576 			    "sd_faultinjection_ioctl: arq null\n");
30577 		}
30578 
30579 		break;
30580 
30581 	case SDIOCPUSH:
30582 		/* Push stored xb, pkt, un, and arq onto fifo */
30583 		sd_fault_injection_on = 0;
30584 
30585 		if (arg != NULL) {
30586 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
30587 			if (rval != -1 &&
30588 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30589 				un->sd_fi_fifo_end += i;
30590 			}
30591 		} else {
30592 			SD_INFO(SD_LOG_IOERR, un,
30593 			    "sd_faultinjection_ioctl: push arg null\n");
30594 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30595 				un->sd_fi_fifo_end++;
30596 			}
30597 		}
30598 		SD_INFO(SD_LOG_IOERR, un,
30599 		    "sd_faultinjection_ioctl: push to end=%d\n",
30600 		    un->sd_fi_fifo_end);
30601 		break;
30602 
30603 	case SDIOCRETRIEVE:
30604 		/* Return buffer of log from Injection session */
30605 		SD_INFO(SD_LOG_SDTEST, un,
30606 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
30607 
30608 		sd_fault_injection_on = 0;
30609 
30610 		mutex_enter(&(un->un_fi_mutex));
30611 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
30612 		    un->sd_fi_buf_len+1, 0);
30613 		mutex_exit(&(un->un_fi_mutex));
30614 
30615 		if (rval == -1) {
30616 			/*
30617 			 * arg is possibly invalid setting
30618 			 * it to NULL for return
30619 			 */
30620 			arg = NULL;
30621 		}
30622 		break;
30623 	}
30624 
30625 	mutex_exit(SD_MUTEX(un));
30626 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
30627 			    " exit\n");
30628 }
30629 
30630 
30631 /*
30632  *    Function: sd_injection_log()
30633  *
30634  * Description: This routine adds buff to the already existing injection log
30635  *              for retrieval via faultinjection_ioctl for use in fault
30636  *              detection and recovery
30637  *
30638  *   Arguments: buf - the string to add to the log
30639  */
30640 
30641 static void
30642 sd_injection_log(char *buf, struct sd_lun *un)
30643 {
30644 	uint_t len;
30645 
30646 	ASSERT(un != NULL);
30647 	ASSERT(buf != NULL);
30648 
30649 	mutex_enter(&(un->un_fi_mutex));
30650 
30651 	len = min(strlen(buf), 255);
30652 	/* Add logged value to Injection log to be returned later */
30653 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
30654 		uint_t	offset = strlen((char *)un->sd_fi_log);
30655 		char *destp = (char *)un->sd_fi_log + offset;
30656 		int i;
30657 		for (i = 0; i < len; i++) {
30658 			*destp++ = *buf++;
30659 		}
30660 		un->sd_fi_buf_len += len;
30661 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
30662 	}
30663 
30664 	mutex_exit(&(un->un_fi_mutex));
30665 }
30666 
30667 
30668 /*
30669  *    Function: sd_faultinjection()
30670  *
30671  * Description: This routine takes the pkt and changes its
30672  *		content based on error injection scenerio.
30673  *
30674  *   Arguments: pktp	- packet to be changed
30675  */
30676 
30677 static void
30678 sd_faultinjection(struct scsi_pkt *pktp)
30679 {
30680 	uint_t i;
30681 	struct sd_fi_pkt *fi_pkt;
30682 	struct sd_fi_xb *fi_xb;
30683 	struct sd_fi_un *fi_un;
30684 	struct sd_fi_arq *fi_arq;
30685 	struct buf *bp;
30686 	struct sd_xbuf *xb;
30687 	struct sd_lun *un;
30688 
30689 	ASSERT(pktp != NULL);
30690 
30691 	/* pull bp xb and un from pktp */
30692 	bp = (struct buf *)pktp->pkt_private;
30693 	xb = SD_GET_XBUF(bp);
30694 	un = SD_GET_UN(bp);
30695 
30696 	ASSERT(un != NULL);
30697 
30698 	mutex_enter(SD_MUTEX(un));
30699 
30700 	SD_TRACE(SD_LOG_SDTEST, un,
30701 	    "sd_faultinjection: entry Injection from sdintr\n");
30702 
30703 	/* if injection is off return */
30704 	if (sd_fault_injection_on == 0 ||
30705 		un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
30706 		mutex_exit(SD_MUTEX(un));
30707 		return;
30708 	}
30709 
30710 
30711 	/* take next set off fifo */
30712 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
30713 
30714 	fi_pkt = un->sd_fi_fifo_pkt[i];
30715 	fi_xb = un->sd_fi_fifo_xb[i];
30716 	fi_un = un->sd_fi_fifo_un[i];
30717 	fi_arq = un->sd_fi_fifo_arq[i];
30718 
30719 
30720 	/* set variables accordingly */
30721 	/* set pkt if it was on fifo */
30722 	if (fi_pkt != NULL) {
30723 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
30724 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
30725 		SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
30726 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
30727 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
30728 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
30729 
30730 	}
30731 
30732 	/* set xb if it was on fifo */
30733 	if (fi_xb != NULL) {
30734 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
30735 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
30736 		SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
30737 		SD_CONDSET(xb, xb, xb_victim_retry_count,
30738 		    "xb_victim_retry_count");
30739 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
30740 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
30741 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
30742 
30743 		/* copy in block data from sense */
30744 		if (fi_xb->xb_sense_data[0] != -1) {
30745 			bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
30746 			    SENSE_LENGTH);
30747 		}
30748 
30749 		/* copy in extended sense codes */
30750 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code,
30751 		    "es_code");
30752 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key,
30753 		    "es_key");
30754 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code,
30755 		    "es_add_code");
30756 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb,
30757 		    es_qual_code, "es_qual_code");
30758 	}
30759 
30760 	/* set un if it was on fifo */
30761 	if (fi_un != NULL) {
30762 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
30763 		SD_CONDSET(un, un, un_ctype, "un_ctype");
30764 		SD_CONDSET(un, un, un_reset_retry_count,
30765 		    "un_reset_retry_count");
30766 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
30767 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
30768 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
30769 		SD_CONDSET(un, un, un_f_geometry_is_valid,
30770 		    "un_f_geometry_is_valid");
30771 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
30772 		    "un_f_allow_bus_device_reset");
30773 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
30774 
30775 	}
30776 
30777 	/* copy in auto request sense if it was on fifo */
30778 	if (fi_arq != NULL) {
30779 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
30780 	}
30781 
30782 	/* free structs */
30783 	if (un->sd_fi_fifo_pkt[i] != NULL) {
30784 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
30785 	}
30786 	if (un->sd_fi_fifo_xb[i] != NULL) {
30787 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
30788 	}
30789 	if (un->sd_fi_fifo_un[i] != NULL) {
30790 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
30791 	}
30792 	if (un->sd_fi_fifo_arq[i] != NULL) {
30793 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
30794 	}
30795 
30796 	/*
30797 	 * kmem_free does not gurantee to set to NULL
30798 	 * since we uses these to determine if we set
30799 	 * values or not lets confirm they are always
30800 	 * NULL after free
30801 	 */
30802 	un->sd_fi_fifo_pkt[i] = NULL;
30803 	un->sd_fi_fifo_un[i] = NULL;
30804 	un->sd_fi_fifo_xb[i] = NULL;
30805 	un->sd_fi_fifo_arq[i] = NULL;
30806 
30807 	un->sd_fi_fifo_start++;
30808 
30809 	mutex_exit(SD_MUTEX(un));
30810 
30811 	SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
30812 }
30813 
30814 #endif /* SD_FAULT_INJECTION */
30815 
30816 /*
30817  * This routine is invoked in sd_unit_attach(). Before calling it, the
30818  * properties in conf file should be processed already, and "hotpluggable"
30819  * property was processed also.
30820  *
30821  * The sd driver distinguishes 3 different type of devices: removable media,
30822  * non-removable media, and hotpluggable. Below the differences are defined:
30823  *
30824  * 1. Device ID
30825  *
30826  *     The device ID of a device is used to identify this device. Refer to
30827  *     ddi_devid_register(9F).
30828  *
30829  *     For a non-removable media disk device which can provide 0x80 or 0x83
30830  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
30831  *     device ID is created to identify this device. For other non-removable
30832  *     media devices, a default device ID is created only if this device has
30833  *     at least 2 alter cylinders. Otherwise, this device has no devid.
30834  *
30835  *     -------------------------------------------------------
30836  *     removable media   hotpluggable  | Can Have Device ID
30837  *     -------------------------------------------------------
30838  *         false             false     |     Yes
30839  *         false             true      |     Yes
30840  *         true                x       |     No
30841  *     ------------------------------------------------------
30842  *
30843  *
30844  * 2. SCSI group 4 commands
30845  *
30846  *     In SCSI specs, only some commands in group 4 command set can use
30847  *     8-byte addresses that can be used to access >2TB storage spaces.
30848  *     Other commands have no such capability. Without supporting group4,
30849  *     it is impossible to make full use of storage spaces of a disk with
30850  *     capacity larger than 2TB.
30851  *
30852  *     -----------------------------------------------
30853  *     removable media   hotpluggable   LP64  |  Group
30854  *     -----------------------------------------------
30855  *           false          false       false |   1
30856  *           false          false       true  |   4
30857  *           false          true        false |   1
30858  *           false          true        true  |   4
30859  *           true             x           x   |   5
30860  *     -----------------------------------------------
30861  *
30862  *
30863  * 3. Check for VTOC Label
30864  *
30865  *     If a direct-access disk has no EFI label, sd will check if it has a
30866  *     valid VTOC label. Now, sd also does that check for removable media
30867  *     and hotpluggable devices.
30868  *
30869  *     --------------------------------------------------------------
30870  *     Direct-Access   removable media    hotpluggable |  Check Label
30871  *     -------------------------------------------------------------
30872  *         false          false           false        |   No
30873  *         false          false           true         |   No
30874  *         false          true            false        |   Yes
30875  *         false          true            true         |   Yes
30876  *         true            x                x          |   Yes
30877  *     --------------------------------------------------------------
30878  *
30879  *
30880  * 4. Building default VTOC label
30881  *
30882  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
30883  *     If those devices have no valid VTOC label, sd(7d) will attempt to
30884  *     create default VTOC for them. Currently sd creates default VTOC label
30885  *     for all devices on x86 platform (VTOC_16), but only for removable
30886  *     media devices on SPARC (VTOC_8).
30887  *
30888  *     -----------------------------------------------------------
30889  *       removable media hotpluggable platform   |   Default Label
30890  *     -----------------------------------------------------------
30891  *             false          false    sparc     |     No
30892  *             false          true      x86      |     Yes
30893  *             false          true     sparc     |     Yes
30894  *             true             x        x       |     Yes
30895  *     ----------------------------------------------------------
30896  *
30897  *
30898  * 5. Supported blocksizes of target devices
30899  *
30900  *     Sd supports non-512-byte blocksize for removable media devices only.
30901  *     For other devices, only 512-byte blocksize is supported. This may be
30902  *     changed in near future because some RAID devices require non-512-byte
30903  *     blocksize
30904  *
30905  *     -----------------------------------------------------------
30906  *     removable media    hotpluggable    | non-512-byte blocksize
30907  *     -----------------------------------------------------------
30908  *           false          false         |   No
30909  *           false          true          |   No
30910  *           true             x           |   Yes
30911  *     -----------------------------------------------------------
30912  *
30913  *
30914  * 6. Automatic mount & unmount
30915  *
30916  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
30917  *     if a device is removable media device. It return 1 for removable media
30918  *     devices, and 0 for others.
30919  *
30920  *     The automatic mounting subsystem should distinguish between the types
30921  *     of devices and apply automounting policies to each.
30922  *
30923  *
30924  * 7. fdisk partition management
30925  *
30926  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
30927  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
30928  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
30929  *     fdisk partitions on both x86 and SPARC platform.
30930  *
30931  *     -----------------------------------------------------------
30932  *       platform   removable media  USB/1394  |  fdisk supported
30933  *     -----------------------------------------------------------
30934  *        x86         X               X        |       true
30935  *     ------------------------------------------------------------
30936  *        sparc       X               X        |       false
30937  *     ------------------------------------------------------------
30938  *
30939  *
30940  * 8. MBOOT/MBR
30941  *
30942  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
30943  *     read/write mboot for removable media devices on sparc platform.
30944  *
30945  *     -----------------------------------------------------------
30946  *       platform   removable media  USB/1394  |  mboot supported
30947  *     -----------------------------------------------------------
30948  *        x86         X               X        |       true
30949  *     ------------------------------------------------------------
30950  *        sparc      false           false     |       false
30951  *        sparc      false           true      |       true
30952  *        sparc      true            false     |       true
30953  *        sparc      true            true      |       true
30954  *     ------------------------------------------------------------
30955  *
30956  *
30957  * 9.  error handling during opening device
30958  *
30959  *     If failed to open a disk device, an errno is returned. For some kinds
30960  *     of errors, different errno is returned depending on if this device is
30961  *     a removable media device. This brings USB/1394 hard disks in line with
30962  *     expected hard disk behavior. It is not expected that this breaks any
30963  *     application.
30964  *
30965  *     ------------------------------------------------------
30966  *       removable media    hotpluggable   |  errno
30967  *     ------------------------------------------------------
30968  *             false          false        |   EIO
30969  *             false          true         |   EIO
30970  *             true             x          |   ENXIO
30971  *     ------------------------------------------------------
30972  *
30973  *
30974  * 11. ioctls: DKIOCEJECT, CDROMEJECT
30975  *
30976  *     These IOCTLs are applicable only to removable media devices.
30977  *
30978  *     -----------------------------------------------------------
30979  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
30980  *     -----------------------------------------------------------
30981  *             false          false        |     No
30982  *             false          true         |     No
30983  *             true            x           |     Yes
30984  *     -----------------------------------------------------------
30985  *
30986  *
30987  * 12. Kstats for partitions
30988  *
30989  *     sd creates partition kstat for non-removable media devices. USB and
30990  *     Firewire hard disks now have partition kstats
30991  *
30992  *      ------------------------------------------------------
30993  *       removable media    hotplugable    |   kstat
30994  *      ------------------------------------------------------
30995  *             false          false        |    Yes
30996  *             false          true         |    Yes
30997  *             true             x          |    No
30998  *       ------------------------------------------------------
30999  *
31000  *
31001  * 13. Removable media & hotpluggable properties
31002  *
31003  *     Sd driver creates a "removable-media" property for removable media
31004  *     devices. Parent nexus drivers create a "hotpluggable" property if
31005  *     it supports hotplugging.
31006  *
31007  *     ---------------------------------------------------------------------
31008  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
31009  *     ---------------------------------------------------------------------
31010  *       false            false       |    No                   No
31011  *       false            true        |    No                   Yes
31012  *       true             false       |    Yes                  No
31013  *       true             true        |    Yes                  Yes
31014  *     ---------------------------------------------------------------------
31015  *
31016  *
31017  * 14. Power Management
31018  *
31019  *     sd only power manages removable media devices or devices that support
31020  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
31021  *
31022  *     A parent nexus that supports hotplugging can also set "pm-capable"
31023  *     if the disk can be power managed.
31024  *
31025  *     ------------------------------------------------------------
31026  *       removable media hotpluggable pm-capable  |   power manage
31027  *     ------------------------------------------------------------
31028  *             false          false     false     |     No
31029  *             false          false     true      |     Yes
31030  *             false          true      false     |     No
31031  *             false          true      true      |     Yes
31032  *             true             x        x        |     Yes
31033  *     ------------------------------------------------------------
31034  *
31035  *      USB and firewire hard disks can now be power managed independently
31036  *      of the framebuffer
31037  *
31038  *
31039  * 15. Support for USB disks with capacity larger than 1TB
31040  *
31041  *     Currently, sd doesn't permit a fixed disk device with capacity
31042  *     larger than 1TB to be used in a 32-bit operating system environment.
31043  *     However, sd doesn't do that for removable media devices. Instead, it
31044  *     assumes that removable media devices cannot have a capacity larger
31045  *     than 1TB. Therefore, using those devices on 32-bit system is partially
31046  *     supported, which can cause some unexpected results.
31047  *
31048  *     ---------------------------------------------------------------------
31049  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
31050  *     ---------------------------------------------------------------------
31051  *             false          false  |   true         |     no
31052  *             false          true   |   true         |     no
31053  *             true           false  |   true         |     Yes
31054  *             true           true   |   true         |     Yes
31055  *     ---------------------------------------------------------------------
31056  *
31057  *
31058  * 16. Check write-protection at open time
31059  *
31060  *     When a removable media device is being opened for writing without NDELAY
31061  *     flag, sd will check if this device is writable. If attempting to open
31062  *     without NDELAY flag a write-protected device, this operation will abort.
31063  *
31064  *     ------------------------------------------------------------
31065  *       removable media    USB/1394   |   WP Check
31066  *     ------------------------------------------------------------
31067  *             false          false    |     No
31068  *             false          true     |     No
31069  *             true           false    |     Yes
31070  *             true           true     |     Yes
31071  *     ------------------------------------------------------------
31072  *
31073  *
31074  * 17. syslog when corrupted VTOC is encountered
31075  *
31076  *      Currently, if an invalid VTOC is encountered, sd only print syslog
31077  *      for fixed SCSI disks.
31078  *     ------------------------------------------------------------
31079  *       removable media    USB/1394   |   print syslog
31080  *     ------------------------------------------------------------
31081  *             false          false    |     Yes
31082  *             false          true     |     No
31083  *             true           false    |     No
31084  *             true           true     |     No
31085  *     ------------------------------------------------------------
31086  */
31087 static void
31088 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
31089 {
31090 	int	pm_capable_prop;
31091 
31092 	ASSERT(un->un_sd);
31093 	ASSERT(un->un_sd->sd_inq);
31094 
31095 #if defined(_SUNOS_VTOC_16)
31096 	/*
31097 	 * For VTOC_16 devices, the default label will be created for all
31098 	 * devices. (see sd_build_default_label)
31099 	 */
31100 	un->un_f_default_vtoc_supported = TRUE;
31101 #endif
31102 
31103 	/*
31104 	 * Enable SYNC CACHE support for all devices.
31105 	 */
31106 	un->un_f_sync_cache_supported = TRUE;
31107 
31108 	if (un->un_sd->sd_inq->inq_rmb) {
31109 		/*
31110 		 * The media of this device is removable. And for this kind
31111 		 * of devices, it is possible to change medium after opening
31112 		 * devices. Thus we should support this operation.
31113 		 */
31114 		un->un_f_has_removable_media = TRUE;
31115 
31116 #if defined(_SUNOS_VTOC_8)
31117 		/*
31118 		 * Note: currently, for VTOC_8 devices, default label is
31119 		 * created for removable and hotpluggable devices only.
31120 		 */
31121 		un->un_f_default_vtoc_supported = TRUE;
31122 #endif
31123 		/*
31124 		 * support non-512-byte blocksize of removable media devices
31125 		 */
31126 		un->un_f_non_devbsize_supported = TRUE;
31127 
31128 		/*
31129 		 * Assume that all removable media devices support DOOR_LOCK
31130 		 */
31131 		un->un_f_doorlock_supported = TRUE;
31132 
31133 		/*
31134 		 * For a removable media device, it is possible to be opened
31135 		 * with NDELAY flag when there is no media in drive, in this
31136 		 * case we don't care if device is writable. But if without
31137 		 * NDELAY flag, we need to check if media is write-protected.
31138 		 */
31139 		un->un_f_chk_wp_open = TRUE;
31140 
31141 		/*
31142 		 * need to start a SCSI watch thread to monitor media state,
31143 		 * when media is being inserted or ejected, notify syseventd.
31144 		 */
31145 		un->un_f_monitor_media_state = TRUE;
31146 
31147 		/*
31148 		 * Some devices don't support START_STOP_UNIT command.
31149 		 * Therefore, we'd better check if a device supports it
31150 		 * before sending it.
31151 		 */
31152 		un->un_f_check_start_stop = TRUE;
31153 
31154 		/*
31155 		 * support eject media ioctl:
31156 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
31157 		 */
31158 		un->un_f_eject_media_supported = TRUE;
31159 
31160 		/*
31161 		 * Because many removable-media devices don't support
31162 		 * LOG_SENSE, we couldn't use this command to check if
31163 		 * a removable media device support power-management.
31164 		 * We assume that they support power-management via
31165 		 * START_STOP_UNIT command and can be spun up and down
31166 		 * without limitations.
31167 		 */
31168 		un->un_f_pm_supported = TRUE;
31169 
31170 		/*
31171 		 * Need to create a zero length (Boolean) property
31172 		 * removable-media for the removable media devices.
31173 		 * Note that the return value of the property is not being
31174 		 * checked, since if unable to create the property
31175 		 * then do not want the attach to fail altogether. Consistent
31176 		 * with other property creation in attach.
31177 		 */
31178 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
31179 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
31180 
31181 	} else {
31182 		/*
31183 		 * create device ID for device
31184 		 */
31185 		un->un_f_devid_supported = TRUE;
31186 
31187 		/*
31188 		 * Spin up non-removable-media devices once it is attached
31189 		 */
31190 		un->un_f_attach_spinup = TRUE;
31191 
31192 		/*
31193 		 * According to SCSI specification, Sense data has two kinds of
31194 		 * format: fixed format, and descriptor format. At present, we
31195 		 * don't support descriptor format sense data for removable
31196 		 * media.
31197 		 */
31198 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
31199 			un->un_f_descr_format_supported = TRUE;
31200 		}
31201 
31202 		/*
31203 		 * kstats are created only for non-removable media devices.
31204 		 *
31205 		 * Set this in sd.conf to 0 in order to disable kstats.  The
31206 		 * default is 1, so they are enabled by default.
31207 		 */
31208 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
31209 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
31210 			"enable-partition-kstats", 1));
31211 
31212 		/*
31213 		 * Check if HBA has set the "pm-capable" property.
31214 		 * If "pm-capable" exists and is non-zero then we can
31215 		 * power manage the device without checking the start/stop
31216 		 * cycle count log sense page.
31217 		 *
31218 		 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
31219 		 * then we should not power manage the device.
31220 		 *
31221 		 * If "pm-capable" doesn't exist then pm_capable_prop will
31222 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
31223 		 * sd will check the start/stop cycle count log sense page
31224 		 * and power manage the device if the cycle count limit has
31225 		 * not been exceeded.
31226 		 */
31227 		pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
31228 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
31229 		if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
31230 			un->un_f_log_sense_supported = TRUE;
31231 		} else {
31232 			/*
31233 			 * pm-capable property exists.
31234 			 *
31235 			 * Convert "TRUE" values for pm_capable_prop to
31236 			 * SD_PM_CAPABLE_TRUE (1) to make it easier to check
31237 			 * later. "TRUE" values are any values except
31238 			 * SD_PM_CAPABLE_FALSE (0) and
31239 			 * SD_PM_CAPABLE_UNDEFINED (-1)
31240 			 */
31241 			if (pm_capable_prop == SD_PM_CAPABLE_FALSE) {
31242 				un->un_f_log_sense_supported = FALSE;
31243 			} else {
31244 				un->un_f_pm_supported = TRUE;
31245 			}
31246 
31247 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
31248 			    "sd_unit_attach: un:0x%p pm-capable "
31249 			    "property set to %d.\n", un, un->un_f_pm_supported);
31250 		}
31251 	}
31252 
31253 	if (un->un_f_is_hotpluggable) {
31254 #if defined(_SUNOS_VTOC_8)
31255 		/*
31256 		 * Note: currently, for VTOC_8 devices, default label is
31257 		 * created for removable and hotpluggable devices only.
31258 		 */
31259 		un->un_f_default_vtoc_supported = TRUE;
31260 #endif
31261 
31262 		/*
31263 		 * Have to watch hotpluggable devices as well, since
31264 		 * that's the only way for userland applications to
31265 		 * detect hot removal while device is busy/mounted.
31266 		 */
31267 		un->un_f_monitor_media_state = TRUE;
31268 
31269 		un->un_f_check_start_stop = TRUE;
31270 
31271 	}
31272 
31273 	/*
31274 	 * By default, only DIRECT ACCESS devices and CDs will have Sun
31275 	 * labels.
31276 	 */
31277 	if ((SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) ||
31278 	    (un->un_sd->sd_inq->inq_rmb)) {
31279 		/*
31280 		 * Direct access devices have disk label
31281 		 */
31282 		un->un_f_vtoc_label_supported = TRUE;
31283 	}
31284 
31285 	/*
31286 	 * Fdisk partitions are supported for all direct access devices on
31287 	 * x86 platform, and just for removable media and hotpluggable
31288 	 * devices on SPARC platform. Later, we will set the following flag
31289 	 * to FALSE if current device is not removable media or hotpluggable
31290 	 * device and if sd works on SAPRC platform.
31291 	 */
31292 	if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
31293 		un->un_f_mboot_supported = TRUE;
31294 	}
31295 
31296 	if (!un->un_f_is_hotpluggable &&
31297 	    !un->un_sd->sd_inq->inq_rmb) {
31298 
31299 #if defined(_SUNOS_VTOC_8)
31300 		/*
31301 		 * Don't support fdisk on fixed disk
31302 		 */
31303 		un->un_f_mboot_supported = FALSE;
31304 #endif
31305 
31306 		/*
31307 		 * For fixed disk, if its VTOC is not valid, we will write
31308 		 * errlog into system log
31309 		 */
31310 		if (un->un_f_vtoc_label_supported)
31311 			un->un_f_vtoc_errlog_supported = TRUE;
31312 	}
31313 }
31314