xref: /titanic_52/usr/src/uts/common/io/scsi/targets/sd.c (revision 87cd24809d33b40017e71ecba06bd30fc99fac6f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * SCSI disk target driver.
31  */
32 
33 #include <sys/scsi/scsi.h>
34 #include <sys/dkbad.h>
35 #include <sys/dklabel.h>
36 #include <sys/dkio.h>
37 #include <sys/fdio.h>
38 #include <sys/cdio.h>
39 #include <sys/mhd.h>
40 #include <sys/vtoc.h>
41 #include <sys/dktp/fdisk.h>
42 #include <sys/file.h>
43 #include <sys/stat.h>
44 #include <sys/kstat.h>
45 #include <sys/vtrace.h>
46 #include <sys/note.h>
47 #include <sys/thread.h>
48 #include <sys/proc.h>
49 #include <sys/efi_partition.h>
50 #include <sys/var.h>
51 #include <sys/aio_req.h>
52 #if (defined(__fibre))
53 /* Note: is there a leadville version of the following? */
54 #include <sys/fc4/fcal_linkapp.h>
55 #endif
56 #include <sys/taskq.h>
57 #include <sys/uuid.h>
58 #include <sys/byteorder.h>
59 #include <sys/sdt.h>
60 
61 #include "sd_xbuf.h"
62 
63 #include <sys/scsi/targets/sddef.h>
64 
65 
66 /*
67  * Loadable module info.
68  */
69 #if (defined(__fibre))
70 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver %I%"
71 char _depends_on[]	= "misc/scsi drv/fcp";
72 #else
73 #define	SD_MODULE_NAME	"SCSI Disk Driver %I%"
74 char _depends_on[]	= "misc/scsi";
75 #endif
76 
77 /*
78  * Define the interconnect type, to allow the driver to distinguish
79  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
80  *
81  * This is really for backward compatability. In the future, the driver
82  * should actually check the "interconnect-type" property as reported by
83  * the HBA; however at present this property is not defined by all HBAs,
84  * so we will use this #define (1) to permit the driver to run in
85  * backward-compatability mode; and (2) to print a notification message
86  * if an FC HBA does not support the "interconnect-type" property.  The
87  * behavior of the driver will be to assume parallel SCSI behaviors unless
88  * the "interconnect-type" property is defined by the HBA **AND** has a
89  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
90  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
91  * Channel behaviors (as per the old ssd).  (Note that the
92  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
93  * will result in the driver assuming parallel SCSI behaviors.)
94  *
95  * (see common/sys/scsi/impl/services.h)
96  *
97  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
98  * since some FC HBAs may already support that, and there is some code in
99  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
100  * default would confuse that code, and besides things should work fine
101  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
102  * "interconnect_type" property.
103  */
104 #if (defined(__fibre))
105 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
106 #else
107 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
108 #endif
109 
110 /*
111  * The name of the driver, established from the module name in _init.
112  */
113 static	char *sd_label			= NULL;
114 
115 /*
116  * Driver name is unfortunately prefixed on some driver.conf properties.
117  */
118 #if (defined(__fibre))
119 #define	sd_max_xfer_size		ssd_max_xfer_size
120 #define	sd_config_list			ssd_config_list
121 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
122 static	char *sd_config_list		= "ssd-config-list";
123 #else
124 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
125 static	char *sd_config_list		= "sd-config-list";
126 #endif
127 
128 /*
129  * Driver global variables
130  */
131 
132 #if (defined(__fibre))
133 /*
134  * These #defines are to avoid namespace collisions that occur because this
135  * code is currently used to compile two seperate driver modules: sd and ssd.
136  * All global variables need to be treated this way (even if declared static)
137  * in order to allow the debugger to resolve the names properly.
138  * It is anticipated that in the near future the ssd module will be obsoleted,
139  * at which time this namespace issue should go away.
140  */
141 #define	sd_state			ssd_state
142 #define	sd_io_time			ssd_io_time
143 #define	sd_failfast_enable		ssd_failfast_enable
144 #define	sd_ua_retry_count		ssd_ua_retry_count
145 #define	sd_report_pfa			ssd_report_pfa
146 #define	sd_max_throttle			ssd_max_throttle
147 #define	sd_min_throttle			ssd_min_throttle
148 #define	sd_rot_delay			ssd_rot_delay
149 
150 #define	sd_retry_on_reservation_conflict	\
151 					ssd_retry_on_reservation_conflict
152 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
153 #define	sd_resv_conflict_name		ssd_resv_conflict_name
154 
155 #define	sd_component_mask		ssd_component_mask
156 #define	sd_level_mask			ssd_level_mask
157 #define	sd_debug_un			ssd_debug_un
158 #define	sd_error_level			ssd_error_level
159 
160 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
161 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
162 
163 #define	sd_tr				ssd_tr
164 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
165 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
166 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
167 #define	sd_check_media_time		ssd_check_media_time
168 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
169 #define	sd_label_mutex			ssd_label_mutex
170 #define	sd_detach_mutex			ssd_detach_mutex
171 #define	sd_log_buf			ssd_log_buf
172 #define	sd_log_mutex			ssd_log_mutex
173 
174 #define	sd_disk_table			ssd_disk_table
175 #define	sd_disk_table_size		ssd_disk_table_size
176 #define	sd_sense_mutex			ssd_sense_mutex
177 #define	sd_cdbtab			ssd_cdbtab
178 
179 #define	sd_cb_ops			ssd_cb_ops
180 #define	sd_ops				ssd_ops
181 #define	sd_additional_codes		ssd_additional_codes
182 
183 #define	sd_minor_data			ssd_minor_data
184 #define	sd_minor_data_efi		ssd_minor_data_efi
185 
186 #define	sd_tq				ssd_tq
187 #define	sd_wmr_tq			ssd_wmr_tq
188 #define	sd_taskq_name			ssd_taskq_name
189 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
190 #define	sd_taskq_minalloc		ssd_taskq_minalloc
191 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
192 
193 #define	sd_dump_format_string		ssd_dump_format_string
194 
195 #define	sd_iostart_chain		ssd_iostart_chain
196 #define	sd_iodone_chain			ssd_iodone_chain
197 
198 #define	sd_pm_idletime			ssd_pm_idletime
199 
200 #define	sd_force_pm_supported		ssd_force_pm_supported
201 
202 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
203 
204 #endif
205 
206 
207 #ifdef	SDDEBUG
208 int	sd_force_pm_supported		= 0;
209 #endif	/* SDDEBUG */
210 
211 void *sd_state				= NULL;
212 int sd_io_time				= SD_IO_TIME;
213 int sd_failfast_enable			= 1;
214 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
215 int sd_report_pfa			= 1;
216 int sd_max_throttle			= SD_MAX_THROTTLE;
217 int sd_min_throttle			= SD_MIN_THROTTLE;
218 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
219 int sd_qfull_throttle_enable		= TRUE;
220 
221 int sd_retry_on_reservation_conflict	= 1;
222 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
223 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
224 
225 static int sd_dtype_optical_bind	= -1;
226 
227 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
228 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
229 
230 /*
231  * Global data for debug logging. To enable debug printing, sd_component_mask
232  * and sd_level_mask should be set to the desired bit patterns as outlined in
233  * sddef.h.
234  */
235 uint_t	sd_component_mask		= 0x0;
236 uint_t	sd_level_mask			= 0x0;
237 struct	sd_lun *sd_debug_un		= NULL;
238 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
239 
240 /* Note: these may go away in the future... */
241 static uint32_t	sd_xbuf_active_limit	= 512;
242 static uint32_t sd_xbuf_reserve_limit	= 16;
243 
244 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
245 
246 /*
247  * Timer value used to reset the throttle after it has been reduced
248  * (typically in response to TRAN_BUSY or STATUS_QFULL)
249  */
250 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
251 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
252 
253 /*
254  * Interval value associated with the media change scsi watch.
255  */
256 static int sd_check_media_time		= 3000000;
257 
258 /*
259  * Wait value used for in progress operations during a DDI_SUSPEND
260  */
261 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
262 
263 /*
264  * sd_label_mutex protects a static buffer used in the disk label
265  * component of the driver
266  */
267 static kmutex_t sd_label_mutex;
268 
269 /*
270  * sd_detach_mutex protects un_layer_count, un_detach_count, and
271  * un_opens_in_progress in the sd_lun structure.
272  */
273 static kmutex_t sd_detach_mutex;
274 
275 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
276 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
277 
278 /*
279  * Global buffer and mutex for debug logging
280  */
281 static char	sd_log_buf[1024];
282 static kmutex_t	sd_log_mutex;
283 
284 
285 /*
286  * "Smart" Probe Caching structs, globals, #defines, etc.
287  * For parallel scsi and non-self-identify device only.
288  */
289 
290 /*
291  * The following resources and routines are implemented to support
292  * "smart" probing, which caches the scsi_probe() results in an array,
293  * in order to help avoid long probe times.
294  */
295 struct sd_scsi_probe_cache {
296 	struct	sd_scsi_probe_cache	*next;
297 	dev_info_t	*pdip;
298 	int		cache[NTARGETS_WIDE];
299 };
300 
301 static kmutex_t	sd_scsi_probe_cache_mutex;
302 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
303 
304 /*
305  * Really we only need protection on the head of the linked list, but
306  * better safe than sorry.
307  */
308 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
309     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
310 
311 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
312     sd_scsi_probe_cache_head))
313 
314 
315 /*
316  * Vendor specific data name property declarations
317  */
318 
319 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
320 
321 static sd_tunables seagate_properties = {
322 	SEAGATE_THROTTLE_VALUE,
323 	0,
324 	0,
325 	0,
326 	0,
327 	0,
328 	0,
329 	0,
330 	0
331 };
332 
333 
334 static sd_tunables fujitsu_properties = {
335 	FUJITSU_THROTTLE_VALUE,
336 	0,
337 	0,
338 	0,
339 	0,
340 	0,
341 	0,
342 	0,
343 	0
344 };
345 
346 static sd_tunables ibm_properties = {
347 	IBM_THROTTLE_VALUE,
348 	0,
349 	0,
350 	0,
351 	0,
352 	0,
353 	0,
354 	0,
355 	0
356 };
357 
358 static sd_tunables purple_properties = {
359 	PURPLE_THROTTLE_VALUE,
360 	0,
361 	0,
362 	PURPLE_BUSY_RETRIES,
363 	PURPLE_RESET_RETRY_COUNT,
364 	PURPLE_RESERVE_RELEASE_TIME,
365 	0,
366 	0,
367 	0
368 };
369 
370 static sd_tunables sve_properties = {
371 	SVE_THROTTLE_VALUE,
372 	0,
373 	0,
374 	SVE_BUSY_RETRIES,
375 	SVE_RESET_RETRY_COUNT,
376 	SVE_RESERVE_RELEASE_TIME,
377 	SVE_MIN_THROTTLE_VALUE,
378 	SVE_DISKSORT_DISABLED_FLAG,
379 	0
380 };
381 
382 static sd_tunables maserati_properties = {
383 	0,
384 	0,
385 	0,
386 	0,
387 	0,
388 	0,
389 	0,
390 	MASERATI_DISKSORT_DISABLED_FLAG,
391 	MASERATI_LUN_RESET_ENABLED_FLAG
392 };
393 
394 static sd_tunables pirus_properties = {
395 	PIRUS_THROTTLE_VALUE,
396 	0,
397 	PIRUS_NRR_COUNT,
398 	PIRUS_BUSY_RETRIES,
399 	PIRUS_RESET_RETRY_COUNT,
400 	0,
401 	PIRUS_MIN_THROTTLE_VALUE,
402 	PIRUS_DISKSORT_DISABLED_FLAG,
403 	PIRUS_LUN_RESET_ENABLED_FLAG
404 };
405 
406 #endif
407 
408 #if (defined(__sparc) && !defined(__fibre)) || \
409 	(defined(__i386) || defined(__amd64))
410 
411 
412 static sd_tunables elite_properties = {
413 	ELITE_THROTTLE_VALUE,
414 	0,
415 	0,
416 	0,
417 	0,
418 	0,
419 	0,
420 	0,
421 	0
422 };
423 
424 static sd_tunables st31200n_properties = {
425 	ST31200N_THROTTLE_VALUE,
426 	0,
427 	0,
428 	0,
429 	0,
430 	0,
431 	0,
432 	0,
433 	0
434 };
435 
436 #endif /* Fibre or not */
437 
438 static sd_tunables lsi_properties_scsi = {
439 	LSI_THROTTLE_VALUE,
440 	0,
441 	LSI_NOTREADY_RETRIES,
442 	0,
443 	0,
444 	0,
445 	0,
446 	0,
447 	0
448 };
449 
450 static sd_tunables symbios_properties = {
451 	SYMBIOS_THROTTLE_VALUE,
452 	0,
453 	SYMBIOS_NOTREADY_RETRIES,
454 	0,
455 	0,
456 	0,
457 	0,
458 	0,
459 	0
460 };
461 
462 static sd_tunables lsi_properties = {
463 	0,
464 	0,
465 	LSI_NOTREADY_RETRIES,
466 	0,
467 	0,
468 	0,
469 	0,
470 	0,
471 	0
472 };
473 
474 static sd_tunables lsi_oem_properties = {
475 	0,
476 	0,
477 	LSI_OEM_NOTREADY_RETRIES,
478 	0,
479 	0,
480 	0,
481 	0,
482 	0,
483 	0
484 };
485 
486 
487 
488 #if (defined(SD_PROP_TST))
489 
490 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
491 #define	SD_TST_THROTTLE_VAL	16
492 #define	SD_TST_NOTREADY_VAL	12
493 #define	SD_TST_BUSY_VAL		60
494 #define	SD_TST_RST_RETRY_VAL	36
495 #define	SD_TST_RSV_REL_TIME	60
496 
497 static sd_tunables tst_properties = {
498 	SD_TST_THROTTLE_VAL,
499 	SD_TST_CTYPE_VAL,
500 	SD_TST_NOTREADY_VAL,
501 	SD_TST_BUSY_VAL,
502 	SD_TST_RST_RETRY_VAL,
503 	SD_TST_RSV_REL_TIME,
504 	0,
505 	0,
506 	0
507 };
508 #endif
509 
510 /* This is similiar to the ANSI toupper implementation */
511 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
512 
513 /*
514  * Static Driver Configuration Table
515  *
516  * This is the table of disks which need throttle adjustment (or, perhaps
517  * something else as defined by the flags at a future time.)  device_id
518  * is a string consisting of concatenated vid (vendor), pid (product/model)
519  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
520  * the parts of the string are as defined by the sizes in the scsi_inquiry
521  * structure.  Device type is searched as far as the device_id string is
522  * defined.  Flags defines which values are to be set in the driver from the
523  * properties list.
524  *
525  * Entries below which begin and end with a "*" are a special case.
526  * These do not have a specific vendor, and the string which follows
527  * can appear anywhere in the 16 byte PID portion of the inquiry data.
528  *
529  * Entries below which begin and end with a " " (blank) are a special
530  * case. The comparison function will treat multiple consecutive blanks
531  * as equivalent to a single blank. For example, this causes a
532  * sd_disk_table entry of " NEC CDROM " to match a device's id string
533  * of  "NEC       CDROM".
534  *
535  * Note: The MD21 controller type has been obsoleted.
536  *	 ST318202F is a Legacy device
537  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
538  *	 made with an FC connection. The entries here are a legacy.
539  */
540 static sd_disk_config_t sd_disk_table[] = {
541 #if defined(__fibre) || defined(__i386) || defined(__amd64)
542 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
543 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
544 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
545 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
546 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
547 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
548 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
549 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
550 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
551 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
552 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
553 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
554 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
555 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
556 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
557 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
558 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
559 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
560 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
561 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
562 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
563 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
564 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
565 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
566 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
567 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
568 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
569 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
570 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
571 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
572 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
573 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
574 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
575 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
576 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
577 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
578 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
579 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
580 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
581 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
582 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
583 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
584 			SD_CONF_BSET_BSY_RETRY_COUNT|
585 			SD_CONF_BSET_RST_RETRIES|
586 			SD_CONF_BSET_RSV_REL_TIME,
587 		&purple_properties },
588 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
589 		SD_CONF_BSET_BSY_RETRY_COUNT|
590 		SD_CONF_BSET_RST_RETRIES|
591 		SD_CONF_BSET_RSV_REL_TIME|
592 		SD_CONF_BSET_MIN_THROTTLE|
593 		SD_CONF_BSET_DISKSORT_DISABLED,
594 		&sve_properties },
595 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
596 			SD_CONF_BSET_BSY_RETRY_COUNT|
597 			SD_CONF_BSET_RST_RETRIES|
598 			SD_CONF_BSET_RSV_REL_TIME,
599 		&purple_properties },
600 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
601 		SD_CONF_BSET_LUN_RESET_ENABLED,
602 		&maserati_properties },
603 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
604 		SD_CONF_BSET_NRR_COUNT|
605 		SD_CONF_BSET_BSY_RETRY_COUNT|
606 		SD_CONF_BSET_RST_RETRIES|
607 		SD_CONF_BSET_MIN_THROTTLE|
608 		SD_CONF_BSET_DISKSORT_DISABLED|
609 		SD_CONF_BSET_LUN_RESET_ENABLED,
610 		&pirus_properties },
611 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
612 		SD_CONF_BSET_NRR_COUNT|
613 		SD_CONF_BSET_BSY_RETRY_COUNT|
614 		SD_CONF_BSET_RST_RETRIES|
615 		SD_CONF_BSET_MIN_THROTTLE|
616 		SD_CONF_BSET_DISKSORT_DISABLED|
617 		SD_CONF_BSET_LUN_RESET_ENABLED,
618 		&pirus_properties },
619 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
620 		SD_CONF_BSET_NRR_COUNT|
621 		SD_CONF_BSET_BSY_RETRY_COUNT|
622 		SD_CONF_BSET_RST_RETRIES|
623 		SD_CONF_BSET_MIN_THROTTLE|
624 		SD_CONF_BSET_DISKSORT_DISABLED|
625 		SD_CONF_BSET_LUN_RESET_ENABLED,
626 		&pirus_properties },
627 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
628 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
629 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
630 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
631 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
632 #endif /* fibre or NON-sparc platforms */
633 #if ((defined(__sparc) && !defined(__fibre)) ||\
634 	(defined(__i386) || defined(__amd64)))
635 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
636 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
637 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
638 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
639 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
640 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
641 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
642 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
643 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
644 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
645 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
646 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
647 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
648 	    &symbios_properties },
649 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
650 	    &lsi_properties_scsi },
651 #if defined(__i386) || defined(__amd64)
652 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
653 				    | SD_CONF_BSET_READSUB_BCD
654 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
655 				    | SD_CONF_BSET_NO_READ_HEADER
656 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
657 
658 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
659 				    | SD_CONF_BSET_READSUB_BCD
660 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
661 				    | SD_CONF_BSET_NO_READ_HEADER
662 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
663 #endif /* __i386 || __amd64 */
664 #endif /* sparc NON-fibre or NON-sparc platforms */
665 
666 #if (defined(SD_PROP_TST))
667 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
668 				| SD_CONF_BSET_CTYPE
669 				| SD_CONF_BSET_NRR_COUNT
670 				| SD_CONF_BSET_FAB_DEVID
671 				| SD_CONF_BSET_NOCACHE
672 				| SD_CONF_BSET_BSY_RETRY_COUNT
673 				| SD_CONF_BSET_PLAYMSF_BCD
674 				| SD_CONF_BSET_READSUB_BCD
675 				| SD_CONF_BSET_READ_TOC_TRK_BCD
676 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
677 				| SD_CONF_BSET_NO_READ_HEADER
678 				| SD_CONF_BSET_READ_CD_XD4
679 				| SD_CONF_BSET_RST_RETRIES
680 				| SD_CONF_BSET_RSV_REL_TIME
681 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
682 #endif
683 };
684 
685 static const int sd_disk_table_size =
686 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
687 
688 
689 /*
690  * Return codes of sd_uselabel().
691  */
692 #define	SD_LABEL_IS_VALID		0
693 #define	SD_LABEL_IS_INVALID		1
694 
695 #define	SD_INTERCONNECT_PARALLEL	0
696 #define	SD_INTERCONNECT_FABRIC		1
697 #define	SD_INTERCONNECT_FIBRE		2
698 #define	SD_INTERCONNECT_SSA		3
699 #define	SD_IS_PARALLEL_SCSI(un)		\
700 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
701 
702 /*
703  * Definitions used by device id registration routines
704  */
705 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
706 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
707 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
708 #define	WD_NODE			7	/* the whole disk minor */
709 
710 static kmutex_t sd_sense_mutex = {0};
711 
712 /*
713  * Macros for updates of the driver state
714  */
715 #define	New_state(un, s)        \
716 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
717 #define	Restore_state(un)	\
718 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
719 
720 static struct sd_cdbinfo sd_cdbtab[] = {
721 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
722 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
723 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
724 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
725 };
726 
727 /*
728  * Specifies the number of seconds that must have elapsed since the last
729  * cmd. has completed for a device to be declared idle to the PM framework.
730  */
731 static int sd_pm_idletime = 1;
732 
733 /*
734  * Internal function prototypes
735  */
736 
737 #if (defined(__fibre))
738 /*
739  * These #defines are to avoid namespace collisions that occur because this
740  * code is currently used to compile two seperate driver modules: sd and ssd.
741  * All function names need to be treated this way (even if declared static)
742  * in order to allow the debugger to resolve the names properly.
743  * It is anticipated that in the near future the ssd module will be obsoleted,
744  * at which time this ugliness should go away.
745  */
746 #define	sd_log_trace			ssd_log_trace
747 #define	sd_log_info			ssd_log_info
748 #define	sd_log_err			ssd_log_err
749 #define	sdprobe				ssdprobe
750 #define	sdinfo				ssdinfo
751 #define	sd_prop_op			ssd_prop_op
752 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
753 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
754 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
755 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
756 #define	sd_spin_up_unit			ssd_spin_up_unit
757 #define	sd_enable_descr_sense		ssd_enable_descr_sense
758 #define	sd_set_mmc_caps			ssd_set_mmc_caps
759 #define	sd_read_unit_properties		ssd_read_unit_properties
760 #define	sd_process_sdconf_file		ssd_process_sdconf_file
761 #define	sd_process_sdconf_table		ssd_process_sdconf_table
762 #define	sd_sdconf_id_match		ssd_sdconf_id_match
763 #define	sd_blank_cmp			ssd_blank_cmp
764 #define	sd_chk_vers1_data		ssd_chk_vers1_data
765 #define	sd_set_vers1_properties		ssd_set_vers1_properties
766 #define	sd_validate_geometry		ssd_validate_geometry
767 
768 #if defined(_SUNOS_VTOC_16)
769 #define	sd_convert_geometry		ssd_convert_geometry
770 #endif
771 
772 #define	sd_resync_geom_caches		ssd_resync_geom_caches
773 #define	sd_read_fdisk			ssd_read_fdisk
774 #define	sd_get_physical_geometry	ssd_get_physical_geometry
775 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
776 #define	sd_update_block_info		ssd_update_block_info
777 #define	sd_swap_efi_gpt			ssd_swap_efi_gpt
778 #define	sd_swap_efi_gpe			ssd_swap_efi_gpe
779 #define	sd_validate_efi			ssd_validate_efi
780 #define	sd_use_efi			ssd_use_efi
781 #define	sd_uselabel			ssd_uselabel
782 #define	sd_build_default_label		ssd_build_default_label
783 #define	sd_has_max_chs_vals		ssd_has_max_chs_vals
784 #define	sd_inq_fill			ssd_inq_fill
785 #define	sd_register_devid		ssd_register_devid
786 #define	sd_get_devid_block		ssd_get_devid_block
787 #define	sd_get_devid			ssd_get_devid
788 #define	sd_create_devid			ssd_create_devid
789 #define	sd_write_deviceid		ssd_write_deviceid
790 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
791 #define	sd_setup_pm			ssd_setup_pm
792 #define	sd_create_pm_components		ssd_create_pm_components
793 #define	sd_ddi_suspend			ssd_ddi_suspend
794 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
795 #define	sd_ddi_resume			ssd_ddi_resume
796 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
797 #define	sdpower				ssdpower
798 #define	sdattach			ssdattach
799 #define	sddetach			ssddetach
800 #define	sd_unit_attach			ssd_unit_attach
801 #define	sd_unit_detach			ssd_unit_detach
802 #define	sd_create_minor_nodes		ssd_create_minor_nodes
803 #define	sd_create_errstats		ssd_create_errstats
804 #define	sd_set_errstats			ssd_set_errstats
805 #define	sd_set_pstats			ssd_set_pstats
806 #define	sddump				ssddump
807 #define	sd_scsi_poll			ssd_scsi_poll
808 #define	sd_send_polled_RQS		ssd_send_polled_RQS
809 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
810 #define	sd_init_event_callbacks		ssd_init_event_callbacks
811 #define	sd_event_callback		ssd_event_callback
812 #define	sd_disable_caching		ssd_disable_caching
813 #define	sd_make_device			ssd_make_device
814 #define	sdopen				ssdopen
815 #define	sdclose				ssdclose
816 #define	sd_ready_and_valid		ssd_ready_and_valid
817 #define	sdmin				ssdmin
818 #define	sdread				ssdread
819 #define	sdwrite				ssdwrite
820 #define	sdaread				ssdaread
821 #define	sdawrite			ssdawrite
822 #define	sdstrategy			ssdstrategy
823 #define	sdioctl				ssdioctl
824 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
825 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
826 #define	sd_checksum_iostart		ssd_checksum_iostart
827 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
828 #define	sd_pm_iostart			ssd_pm_iostart
829 #define	sd_core_iostart			ssd_core_iostart
830 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
831 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
832 #define	sd_checksum_iodone		ssd_checksum_iodone
833 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
834 #define	sd_pm_iodone			ssd_pm_iodone
835 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
836 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
837 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
838 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
839 #define	sd_buf_iodone			ssd_buf_iodone
840 #define	sd_uscsi_strategy		ssd_uscsi_strategy
841 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
842 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
843 #define	sd_uscsi_iodone			ssd_uscsi_iodone
844 #define	sd_xbuf_strategy		ssd_xbuf_strategy
845 #define	sd_xbuf_init			ssd_xbuf_init
846 #define	sd_pm_entry			ssd_pm_entry
847 #define	sd_pm_exit			ssd_pm_exit
848 
849 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
850 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
851 
852 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
853 #define	sdintr				ssdintr
854 #define	sd_start_cmds			ssd_start_cmds
855 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
856 #define	sd_bioclone_alloc		ssd_bioclone_alloc
857 #define	sd_bioclone_free		ssd_bioclone_free
858 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
859 #define	sd_shadow_buf_free		ssd_shadow_buf_free
860 #define	sd_print_transport_rejected_message	\
861 					ssd_print_transport_rejected_message
862 #define	sd_retry_command		ssd_retry_command
863 #define	sd_set_retry_bp			ssd_set_retry_bp
864 #define	sd_send_request_sense_command	ssd_send_request_sense_command
865 #define	sd_start_retry_command		ssd_start_retry_command
866 #define	sd_start_direct_priority_command	\
867 					ssd_start_direct_priority_command
868 #define	sd_return_failed_command	ssd_return_failed_command
869 #define	sd_return_failed_command_no_restart	\
870 					ssd_return_failed_command_no_restart
871 #define	sd_return_command		ssd_return_command
872 #define	sd_sync_with_callback		ssd_sync_with_callback
873 #define	sdrunout			ssdrunout
874 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
875 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
876 #define	sd_reduce_throttle		ssd_reduce_throttle
877 #define	sd_restore_throttle		ssd_restore_throttle
878 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
879 #define	sd_init_cdb_limits		ssd_init_cdb_limits
880 #define	sd_pkt_status_good		ssd_pkt_status_good
881 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
882 #define	sd_pkt_status_busy		ssd_pkt_status_busy
883 #define	sd_pkt_status_reservation_conflict	\
884 					ssd_pkt_status_reservation_conflict
885 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
886 #define	sd_handle_request_sense		ssd_handle_request_sense
887 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
888 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
889 #define	sd_validate_sense_data		ssd_validate_sense_data
890 #define	sd_decode_sense			ssd_decode_sense
891 #define	sd_print_sense_msg		ssd_print_sense_msg
892 #define	sd_extract_sense_info_descr	ssd_extract_sense_info_descr
893 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
894 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
895 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
896 #define	sd_sense_key_medium_or_hardware_error	\
897 					ssd_sense_key_medium_or_hardware_error
898 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
899 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
900 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
901 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
902 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
903 #define	sd_sense_key_default		ssd_sense_key_default
904 #define	sd_print_retry_msg		ssd_print_retry_msg
905 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
906 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
907 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
908 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
909 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
910 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
911 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
912 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
913 #define	sd_pkt_reason_default		ssd_pkt_reason_default
914 #define	sd_reset_target			ssd_reset_target
915 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
916 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
917 #define	sd_taskq_create			ssd_taskq_create
918 #define	sd_taskq_delete			ssd_taskq_delete
919 #define	sd_media_change_task		ssd_media_change_task
920 #define	sd_handle_mchange		ssd_handle_mchange
921 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
922 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
923 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
924 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
925 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
926 					sd_send_scsi_feature_GET_CONFIGURATION
927 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
928 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
929 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
930 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
931 					ssd_send_scsi_PERSISTENT_RESERVE_IN
932 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
933 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
934 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
935 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
936 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
937 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
938 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
939 #define	sd_alloc_rqs			ssd_alloc_rqs
940 #define	sd_free_rqs			ssd_free_rqs
941 #define	sd_dump_memory			ssd_dump_memory
942 #define	sd_uscsi_ioctl			ssd_uscsi_ioctl
943 #define	sd_get_media_info		ssd_get_media_info
944 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
945 #define	sd_dkio_get_geometry		ssd_dkio_get_geometry
946 #define	sd_dkio_set_geometry		ssd_dkio_set_geometry
947 #define	sd_dkio_get_partition		ssd_dkio_get_partition
948 #define	sd_dkio_set_partition		ssd_dkio_set_partition
949 #define	sd_dkio_partition		ssd_dkio_partition
950 #define	sd_dkio_get_vtoc		ssd_dkio_get_vtoc
951 #define	sd_dkio_get_efi			ssd_dkio_get_efi
952 #define	sd_build_user_vtoc		ssd_build_user_vtoc
953 #define	sd_dkio_set_vtoc		ssd_dkio_set_vtoc
954 #define	sd_dkio_set_efi			ssd_dkio_set_efi
955 #define	sd_build_label_vtoc		ssd_build_label_vtoc
956 #define	sd_write_label			ssd_write_label
957 #define	sd_clear_vtoc			ssd_clear_vtoc
958 #define	sd_clear_efi			ssd_clear_efi
959 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
960 #define	sd_setup_next_xfer		ssd_setup_next_xfer
961 #define	sd_dkio_get_temp		ssd_dkio_get_temp
962 #define	sd_dkio_get_mboot		ssd_dkio_get_mboot
963 #define	sd_dkio_set_mboot		ssd_dkio_set_mboot
964 #define	sd_setup_default_geometry	ssd_setup_default_geometry
965 #define	sd_update_fdisk_and_vtoc	ssd_update_fdisk_and_vtoc
966 #define	sd_check_mhd			ssd_check_mhd
967 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
968 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
969 #define	sd_sname			ssd_sname
970 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
971 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
972 #define	sd_take_ownership		ssd_take_ownership
973 #define	sd_reserve_release		ssd_reserve_release
974 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
975 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
976 #define	sd_persistent_reservation_in_read_keys	\
977 					ssd_persistent_reservation_in_read_keys
978 #define	sd_persistent_reservation_in_read_resv	\
979 					ssd_persistent_reservation_in_read_resv
980 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
981 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
982 #define	sd_mhdioc_release		ssd_mhdioc_release
983 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
984 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
985 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
986 #define	sr_change_blkmode		ssr_change_blkmode
987 #define	sr_change_speed			ssr_change_speed
988 #define	sr_atapi_change_speed		ssr_atapi_change_speed
989 #define	sr_pause_resume			ssr_pause_resume
990 #define	sr_play_msf			ssr_play_msf
991 #define	sr_play_trkind			ssr_play_trkind
992 #define	sr_read_all_subcodes		ssr_read_all_subcodes
993 #define	sr_read_subchannel		ssr_read_subchannel
994 #define	sr_read_tocentry		ssr_read_tocentry
995 #define	sr_read_tochdr			ssr_read_tochdr
996 #define	sr_read_cdda			ssr_read_cdda
997 #define	sr_read_cdxa			ssr_read_cdxa
998 #define	sr_read_mode1			ssr_read_mode1
999 #define	sr_read_mode2			ssr_read_mode2
1000 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1001 #define	sr_sector_mode			ssr_sector_mode
1002 #define	sr_eject			ssr_eject
1003 #define	sr_ejected			ssr_ejected
1004 #define	sr_check_wp			ssr_check_wp
1005 #define	sd_check_media			ssd_check_media
1006 #define	sd_media_watch_cb		ssd_media_watch_cb
1007 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1008 #define	sr_volume_ctrl			ssr_volume_ctrl
1009 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1010 #define	sd_log_page_supported		ssd_log_page_supported
1011 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1012 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1013 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1014 #define	sd_range_lock			ssd_range_lock
1015 #define	sd_get_range			ssd_get_range
1016 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1017 #define	sd_range_unlock			ssd_range_unlock
1018 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1019 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1020 
1021 #define	sd_iostart_chain		ssd_iostart_chain
1022 #define	sd_iodone_chain			ssd_iodone_chain
1023 #define	sd_initpkt_map			ssd_initpkt_map
1024 #define	sd_destroypkt_map		ssd_destroypkt_map
1025 #define	sd_chain_type_map		ssd_chain_type_map
1026 #define	sd_chain_index_map		ssd_chain_index_map
1027 
1028 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1029 #define	sd_failfast_flushq		ssd_failfast_flushq
1030 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1031 
1032 #define	sd_is_lsi			ssd_is_lsi
1033 
1034 #endif	/* #if (defined(__fibre)) */
1035 
1036 
1037 int _init(void);
1038 int _fini(void);
1039 int _info(struct modinfo *modinfop);
1040 
1041 /*PRINTFLIKE3*/
1042 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1043 /*PRINTFLIKE3*/
1044 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1045 /*PRINTFLIKE3*/
1046 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1047 
1048 static int sdprobe(dev_info_t *devi);
1049 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1050     void **result);
1051 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1052     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1053 
1054 /*
1055  * Smart probe for parallel scsi
1056  */
1057 static void sd_scsi_probe_cache_init(void);
1058 static void sd_scsi_probe_cache_fini(void);
1059 static void sd_scsi_clear_probe_cache(void);
1060 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1061 
1062 static int	sd_spin_up_unit(struct sd_lun *un);
1063 #ifdef _LP64
1064 static void	sd_enable_descr_sense(struct sd_lun *un);
1065 #endif /* _LP64 */
1066 static void	sd_set_mmc_caps(struct sd_lun *un);
1067 
1068 static void sd_read_unit_properties(struct sd_lun *un);
1069 static int  sd_process_sdconf_file(struct sd_lun *un);
1070 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1071     int *data_list, sd_tunables *values);
1072 static void sd_process_sdconf_table(struct sd_lun *un);
1073 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1074 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1075 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1076 	int list_len, char *dataname_ptr);
1077 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1078     sd_tunables *prop_list);
1079 static int  sd_validate_geometry(struct sd_lun *un, int path_flag);
1080 
1081 #if defined(_SUNOS_VTOC_16)
1082 static void sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g);
1083 #endif
1084 
1085 static void sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize,
1086 	int path_flag);
1087 static int  sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize,
1088 	int path_flag);
1089 static void sd_get_physical_geometry(struct sd_lun *un,
1090 	struct geom_cache *pgeom_p, int capacity, int lbasize, int path_flag);
1091 static void sd_get_virtual_geometry(struct sd_lun *un, int capacity,
1092 	int lbasize);
1093 static int  sd_uselabel(struct sd_lun *un, struct dk_label *l, int path_flag);
1094 static void sd_swap_efi_gpt(efi_gpt_t *);
1095 static void sd_swap_efi_gpe(int nparts, efi_gpe_t *);
1096 static int sd_validate_efi(efi_gpt_t *);
1097 static int sd_use_efi(struct sd_lun *, int);
1098 static void sd_build_default_label(struct sd_lun *un);
1099 
1100 #if defined(_FIRMWARE_NEEDS_FDISK)
1101 static int  sd_has_max_chs_vals(struct ipart *fdp);
1102 #endif
1103 static void sd_inq_fill(char *p, int l, char *s);
1104 
1105 
1106 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi,
1107     int reservation_flag);
1108 static daddr_t  sd_get_devid_block(struct sd_lun *un);
1109 static int  sd_get_devid(struct sd_lun *un);
1110 static int  sd_get_serialnum(struct sd_lun *un, uchar_t *wwn, int *len);
1111 static ddi_devid_t sd_create_devid(struct sd_lun *un);
1112 static int  sd_write_deviceid(struct sd_lun *un);
1113 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1114 static int  sd_check_vpd_page_support(struct sd_lun *un);
1115 
1116 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi);
1117 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1118 
1119 static int  sd_ddi_suspend(dev_info_t *devi);
1120 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1121 static int  sd_ddi_resume(dev_info_t *devi);
1122 static int  sd_ddi_pm_resume(struct sd_lun *un);
1123 static int  sdpower(dev_info_t *devi, int component, int level);
1124 
1125 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1126 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1127 static int  sd_unit_attach(dev_info_t *devi);
1128 static int  sd_unit_detach(dev_info_t *devi);
1129 
1130 static int  sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi);
1131 static void sd_create_errstats(struct sd_lun *un, int instance);
1132 static void sd_set_errstats(struct sd_lun *un);
1133 static void sd_set_pstats(struct sd_lun *un);
1134 
1135 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1136 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1137 static int  sd_send_polled_RQS(struct sd_lun *un);
1138 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1139 
1140 #if (defined(__fibre))
1141 /*
1142  * Event callbacks (photon)
1143  */
1144 static void sd_init_event_callbacks(struct sd_lun *un);
1145 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1146 #endif
1147 
1148 
1149 static int   sd_disable_caching(struct sd_lun *un);
1150 static dev_t sd_make_device(dev_info_t *devi);
1151 
1152 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1153 	uint64_t capacity);
1154 
1155 /*
1156  * Driver entry point functions.
1157  */
1158 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1159 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1160 static int  sd_ready_and_valid(struct sd_lun *un);
1161 
1162 static void sdmin(struct buf *bp);
1163 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1164 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1165 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1166 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1167 
1168 static int sdstrategy(struct buf *bp);
1169 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1170 
1171 /*
1172  * Function prototypes for layering functions in the iostart chain.
1173  */
1174 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1175 	struct buf *bp);
1176 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1177 	struct buf *bp);
1178 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1179 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1180 	struct buf *bp);
1181 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1182 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1183 
1184 /*
1185  * Function prototypes for layering functions in the iodone chain.
1186  */
1187 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1188 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1189 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1190 	struct buf *bp);
1191 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1192 	struct buf *bp);
1193 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1194 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1195 	struct buf *bp);
1196 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1197 
1198 /*
1199  * Prototypes for functions to support buf(9S) based IO.
1200  */
1201 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1202 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1203 static void sd_destroypkt_for_buf(struct buf *);
1204 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1205 	struct buf *bp, int flags,
1206 	int (*callback)(caddr_t), caddr_t callback_arg,
1207 	diskaddr_t lba, uint32_t blockcount);
1208 #if defined(__i386) || defined(__amd64)
1209 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1210 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1211 #endif /* defined(__i386) || defined(__amd64) */
1212 
1213 /*
1214  * Prototypes for functions to support USCSI IO.
1215  */
1216 static int sd_uscsi_strategy(struct buf *bp);
1217 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1218 static void sd_destroypkt_for_uscsi(struct buf *);
1219 
1220 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1221 	uchar_t chain_type, void *pktinfop);
1222 
1223 static int  sd_pm_entry(struct sd_lun *un);
1224 static void sd_pm_exit(struct sd_lun *un);
1225 
1226 static void sd_pm_idletimeout_handler(void *arg);
1227 
1228 /*
1229  * sd_core internal functions (used at the sd_core_io layer).
1230  */
1231 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1232 static void sdintr(struct scsi_pkt *pktp);
1233 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1234 
1235 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd,
1236 	enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace,
1237 	int path_flag);
1238 
1239 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1240 	daddr_t blkno, int (*func)(struct buf *));
1241 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1242 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1243 static void sd_bioclone_free(struct buf *bp);
1244 static void sd_shadow_buf_free(struct buf *bp);
1245 
1246 static void sd_print_transport_rejected_message(struct sd_lun *un,
1247 	struct sd_xbuf *xp, int code);
1248 
1249 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1250 	int retry_check_flag,
1251 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1252 		int c),
1253 	void *user_arg, int failure_code,  clock_t retry_delay,
1254 	void (*statp)(kstat_io_t *));
1255 
1256 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1257 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1258 
1259 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1260 	struct scsi_pkt *pktp);
1261 static void sd_start_retry_command(void *arg);
1262 static void sd_start_direct_priority_command(void *arg);
1263 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1264 	int errcode);
1265 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1266 	struct buf *bp, int errcode);
1267 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1268 static void sd_sync_with_callback(struct sd_lun *un);
1269 static int sdrunout(caddr_t arg);
1270 
1271 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1272 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1273 
1274 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1275 static void sd_restore_throttle(void *arg);
1276 
1277 static void sd_init_cdb_limits(struct sd_lun *un);
1278 
1279 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1280 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1281 
1282 /*
1283  * Error handling functions
1284  */
1285 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1286 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1287 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1288 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1289 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1290 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1291 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1292 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1293 
1294 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1295 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1296 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1297 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1298 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1299 	struct sd_xbuf *xp);
1300 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1301 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1302 
1303 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1304 	void *arg, int code);
1305 static diskaddr_t sd_extract_sense_info_descr(
1306 	struct scsi_descr_sense_hdr *sdsp);
1307 
1308 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1309 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1310 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1311 	uint8_t asc,
1312 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1313 static void sd_sense_key_not_ready(struct sd_lun *un,
1314 	uint8_t asc, uint8_t ascq,
1315 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1316 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1317 	int sense_key, uint8_t asc,
1318 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1319 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1320 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1321 static void sd_sense_key_unit_attention(struct sd_lun *un,
1322 	uint8_t asc,
1323 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1324 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1325 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1326 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1327 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1328 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1329 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1330 static void sd_sense_key_default(struct sd_lun *un,
1331 	int sense_key,
1332 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1333 
1334 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1335 	void *arg, int flag);
1336 
1337 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1338 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1339 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1340 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1341 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1342 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1343 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1344 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1345 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1346 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1347 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1348 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1349 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1350 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1351 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1352 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1353 
1354 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1355 
1356 static void sd_start_stop_unit_callback(void *arg);
1357 static void sd_start_stop_unit_task(void *arg);
1358 
1359 static void sd_taskq_create(void);
1360 static void sd_taskq_delete(void);
1361 static void sd_media_change_task(void *arg);
1362 
1363 static int sd_handle_mchange(struct sd_lun *un);
1364 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag);
1365 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp,
1366 	uint32_t *lbap, int path_flag);
1367 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
1368 	uint32_t *lbap, int path_flag);
1369 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag,
1370 	int path_flag);
1371 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr,
1372 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1373 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag);
1374 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un,
1375 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1376 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un,
1377 	uchar_t usr_cmd, uchar_t *usr_bufp);
1378 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un);
1379 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un,
1380 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1381 	uchar_t *bufaddr, uint_t buflen);
1382 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
1383 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1384 	uchar_t *bufaddr, uint_t buflen, char feature);
1385 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize,
1386 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1387 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize,
1388 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1389 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
1390 	size_t buflen, daddr_t start_block, int path_flag);
1391 #define	sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag)	\
1392 	sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \
1393 	path_flag)
1394 #define	sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag)	\
1395 	sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\
1396 	path_flag)
1397 
1398 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr,
1399 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1400 	uint16_t param_ptr, int path_flag);
1401 
1402 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1403 static void sd_free_rqs(struct sd_lun *un);
1404 
1405 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1406 	uchar_t *data, int len, int fmt);
1407 
1408 /*
1409  * Disk Ioctl Function Prototypes
1410  */
1411 static int sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag);
1412 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1413 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1414 static int sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag,
1415 	int geom_validated);
1416 static int sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag);
1417 static int sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag,
1418 	int geom_validated);
1419 static int sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag);
1420 static int sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag,
1421 	int geom_validated);
1422 static int sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag);
1423 static int sd_dkio_partition(dev_t dev, caddr_t arg, int flag);
1424 static void sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1425 static int sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag);
1426 static int sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag);
1427 static int sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1428 static int sd_write_label(dev_t dev);
1429 static int sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl);
1430 static void sd_clear_vtoc(struct sd_lun *un);
1431 static void sd_clear_efi(struct sd_lun *un);
1432 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1433 static int sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag);
1434 static int sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag);
1435 static void sd_setup_default_geometry(struct sd_lun *un);
1436 #if defined(__i386) || defined(__amd64)
1437 static int sd_update_fdisk_and_vtoc(struct sd_lun *un);
1438 #endif
1439 
1440 /*
1441  * Multi-host Ioctl Prototypes
1442  */
1443 static int sd_check_mhd(dev_t dev, int interval);
1444 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1445 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1446 static char *sd_sname(uchar_t status);
1447 static void sd_mhd_resvd_recover(void *arg);
1448 static void sd_resv_reclaim_thread();
1449 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1450 static int sd_reserve_release(dev_t dev, int cmd);
1451 static void sd_rmv_resv_reclaim_req(dev_t dev);
1452 static void sd_mhd_reset_notify_cb(caddr_t arg);
1453 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1454 	mhioc_inkeys_t *usrp, int flag);
1455 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1456 	mhioc_inresvs_t *usrp, int flag);
1457 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1458 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1459 static int sd_mhdioc_release(dev_t dev);
1460 static int sd_mhdioc_register_devid(dev_t dev);
1461 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1462 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1463 
1464 /*
1465  * SCSI removable prototypes
1466  */
1467 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1468 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1469 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1470 static int sr_pause_resume(dev_t dev, int mode);
1471 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1472 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1473 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1474 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1475 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1476 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1477 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1478 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1479 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1480 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1481 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1482 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1483 static int sr_eject(dev_t dev);
1484 static void sr_ejected(register struct sd_lun *un);
1485 static int sr_check_wp(dev_t dev);
1486 static int sd_check_media(dev_t dev, enum dkio_state state);
1487 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1488 static void sd_delayed_cv_broadcast(void *arg);
1489 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1490 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1491 
1492 static int sd_log_page_supported(struct sd_lun *un, int log_page);
1493 
1494 /*
1495  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1496  */
1497 static void sd_check_for_writable_cd(struct sd_lun *un);
1498 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1499 static void sd_wm_cache_destructor(void *wm, void *un);
1500 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1501 	daddr_t endb, ushort_t typ);
1502 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1503 	daddr_t endb);
1504 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1505 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1506 static void sd_read_modify_write_task(void * arg);
1507 static int
1508 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1509 	struct buf **bpp);
1510 
1511 
1512 /*
1513  * Function prototypes for failfast support.
1514  */
1515 static void sd_failfast_flushq(struct sd_lun *un);
1516 static int sd_failfast_flushq_callback(struct buf *bp);
1517 
1518 /*
1519  * Function prototypes to check for lsi devices
1520  */
1521 static void sd_is_lsi(struct sd_lun *un);
1522 
1523 /*
1524  * Function prototypes for x86 support
1525  */
1526 #if defined(__i386) || defined(__amd64)
1527 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1528 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1529 #endif
1530 
1531 /*
1532  * Constants for failfast support:
1533  *
1534  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1535  * failfast processing being performed.
1536  *
1537  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1538  * failfast processing on all bufs with B_FAILFAST set.
1539  */
1540 
1541 #define	SD_FAILFAST_INACTIVE		0
1542 #define	SD_FAILFAST_ACTIVE		1
1543 
1544 /*
1545  * Bitmask to control behavior of buf(9S) flushes when a transition to
1546  * the failfast state occurs. Optional bits include:
1547  *
1548  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1549  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1550  * be flushed.
1551  *
1552  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1553  * driver, in addition to the regular wait queue. This includes the xbuf
1554  * queues. When clear, only the driver's wait queue will be flushed.
1555  */
1556 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1557 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1558 
1559 /*
1560  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1561  * to flush all queues within the driver.
1562  */
1563 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1564 
1565 
1566 /*
1567  * SD Testing Fault Injection
1568  */
1569 #ifdef SD_FAULT_INJECTION
1570 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1571 static void sd_faultinjection(struct scsi_pkt *pktp);
1572 static void sd_injection_log(char *buf, struct sd_lun *un);
1573 #endif
1574 
1575 /*
1576  * Device driver ops vector
1577  */
1578 static struct cb_ops sd_cb_ops = {
1579 	sdopen,			/* open */
1580 	sdclose,		/* close */
1581 	sdstrategy,		/* strategy */
1582 	nodev,			/* print */
1583 	sddump,			/* dump */
1584 	sdread,			/* read */
1585 	sdwrite,		/* write */
1586 	sdioctl,		/* ioctl */
1587 	nodev,			/* devmap */
1588 	nodev,			/* mmap */
1589 	nodev,			/* segmap */
1590 	nochpoll,		/* poll */
1591 	sd_prop_op,		/* cb_prop_op */
1592 	0,			/* streamtab  */
1593 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1594 	CB_REV,			/* cb_rev */
1595 	sdaread, 		/* async I/O read entry point */
1596 	sdawrite		/* async I/O write entry point */
1597 };
1598 
1599 static struct dev_ops sd_ops = {
1600 	DEVO_REV,		/* devo_rev, */
1601 	0,			/* refcnt  */
1602 	sdinfo,			/* info */
1603 	nulldev,		/* identify */
1604 	sdprobe,		/* probe */
1605 	sdattach,		/* attach */
1606 	sddetach,		/* detach */
1607 	nodev,			/* reset */
1608 	&sd_cb_ops,		/* driver operations */
1609 	NULL,			/* bus operations */
1610 	sdpower			/* power */
1611 };
1612 
1613 
1614 /*
1615  * This is the loadable module wrapper.
1616  */
1617 #include <sys/modctl.h>
1618 
1619 static struct modldrv modldrv = {
1620 	&mod_driverops,		/* Type of module. This one is a driver */
1621 	SD_MODULE_NAME,		/* Module name. */
1622 	&sd_ops			/* driver ops */
1623 };
1624 
1625 
1626 static struct modlinkage modlinkage = {
1627 	MODREV_1,
1628 	&modldrv,
1629 	NULL
1630 };
1631 
1632 
1633 static struct scsi_asq_key_strings sd_additional_codes[] = {
1634 	0x81, 0, "Logical Unit is Reserved",
1635 	0x85, 0, "Audio Address Not Valid",
1636 	0xb6, 0, "Media Load Mechanism Failed",
1637 	0xB9, 0, "Audio Play Operation Aborted",
1638 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1639 	0x53, 2, "Medium removal prevented",
1640 	0x6f, 0, "Authentication failed during key exchange",
1641 	0x6f, 1, "Key not present",
1642 	0x6f, 2, "Key not established",
1643 	0x6f, 3, "Read without proper authentication",
1644 	0x6f, 4, "Mismatched region to this logical unit",
1645 	0x6f, 5, "Region reset count error",
1646 	0xffff, 0x0, NULL
1647 };
1648 
1649 
1650 /*
1651  * Struct for passing printing information for sense data messages
1652  */
1653 struct sd_sense_info {
1654 	int	ssi_severity;
1655 	int	ssi_pfa_flag;
1656 };
1657 
1658 /*
1659  * Table of function pointers for iostart-side routines. Seperate "chains"
1660  * of layered function calls are formed by placing the function pointers
1661  * sequentially in the desired order. Functions are called according to an
1662  * incrementing table index ordering. The last function in each chain must
1663  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1664  * in the sd_iodone_chain[] array.
1665  *
1666  * Note: It may seem more natural to organize both the iostart and iodone
1667  * functions together, into an array of structures (or some similar
1668  * organization) with a common index, rather than two seperate arrays which
1669  * must be maintained in synchronization. The purpose of this division is
1670  * to achiece improved performance: individual arrays allows for more
1671  * effective cache line utilization on certain platforms.
1672  */
1673 
1674 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1675 
1676 
1677 static sd_chain_t sd_iostart_chain[] = {
1678 
1679 	/* Chain for buf IO for disk drive targets (PM enabled) */
1680 	sd_mapblockaddr_iostart,	/* Index: 0 */
1681 	sd_pm_iostart,			/* Index: 1 */
1682 	sd_core_iostart,		/* Index: 2 */
1683 
1684 	/* Chain for buf IO for disk drive targets (PM disabled) */
1685 	sd_mapblockaddr_iostart,	/* Index: 3 */
1686 	sd_core_iostart,		/* Index: 4 */
1687 
1688 	/* Chain for buf IO for removable-media targets (PM enabled) */
1689 	sd_mapblockaddr_iostart,	/* Index: 5 */
1690 	sd_mapblocksize_iostart,	/* Index: 6 */
1691 	sd_pm_iostart,			/* Index: 7 */
1692 	sd_core_iostart,		/* Index: 8 */
1693 
1694 	/* Chain for buf IO for removable-media targets (PM disabled) */
1695 	sd_mapblockaddr_iostart,	/* Index: 9 */
1696 	sd_mapblocksize_iostart,	/* Index: 10 */
1697 	sd_core_iostart,		/* Index: 11 */
1698 
1699 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1700 	sd_mapblockaddr_iostart,	/* Index: 12 */
1701 	sd_checksum_iostart,		/* Index: 13 */
1702 	sd_pm_iostart,			/* Index: 14 */
1703 	sd_core_iostart,		/* Index: 15 */
1704 
1705 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1706 	sd_mapblockaddr_iostart,	/* Index: 16 */
1707 	sd_checksum_iostart,		/* Index: 17 */
1708 	sd_core_iostart,		/* Index: 18 */
1709 
1710 	/* Chain for USCSI commands (all targets) */
1711 	sd_pm_iostart,			/* Index: 19 */
1712 	sd_core_iostart,		/* Index: 20 */
1713 
1714 	/* Chain for checksumming USCSI commands (all targets) */
1715 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1716 	sd_pm_iostart,			/* Index: 22 */
1717 	sd_core_iostart,		/* Index: 23 */
1718 
1719 	/* Chain for "direct" USCSI commands (all targets) */
1720 	sd_core_iostart,		/* Index: 24 */
1721 
1722 	/* Chain for "direct priority" USCSI commands (all targets) */
1723 	sd_core_iostart,		/* Index: 25 */
1724 };
1725 
1726 /*
1727  * Macros to locate the first function of each iostart chain in the
1728  * sd_iostart_chain[] array. These are located by the index in the array.
1729  */
1730 #define	SD_CHAIN_DISK_IOSTART			0
1731 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1732 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1733 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1734 #define	SD_CHAIN_CHKSUM_IOSTART			12
1735 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1736 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1737 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1738 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1739 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1740 
1741 
1742 /*
1743  * Table of function pointers for the iodone-side routines for the driver-
1744  * internal layering mechanism.  The calling sequence for iodone routines
1745  * uses a decrementing table index, so the last routine called in a chain
1746  * must be at the lowest array index location for that chain.  The last
1747  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1748  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1749  * of the functions in an iodone side chain must correspond to the ordering
1750  * of the iostart routines for that chain.  Note that there is no iodone
1751  * side routine that corresponds to sd_core_iostart(), so there is no
1752  * entry in the table for this.
1753  */
1754 
1755 static sd_chain_t sd_iodone_chain[] = {
1756 
1757 	/* Chain for buf IO for disk drive targets (PM enabled) */
1758 	sd_buf_iodone,			/* Index: 0 */
1759 	sd_mapblockaddr_iodone,		/* Index: 1 */
1760 	sd_pm_iodone,			/* Index: 2 */
1761 
1762 	/* Chain for buf IO for disk drive targets (PM disabled) */
1763 	sd_buf_iodone,			/* Index: 3 */
1764 	sd_mapblockaddr_iodone,		/* Index: 4 */
1765 
1766 	/* Chain for buf IO for removable-media targets (PM enabled) */
1767 	sd_buf_iodone,			/* Index: 5 */
1768 	sd_mapblockaddr_iodone,		/* Index: 6 */
1769 	sd_mapblocksize_iodone,		/* Index: 7 */
1770 	sd_pm_iodone,			/* Index: 8 */
1771 
1772 	/* Chain for buf IO for removable-media targets (PM disabled) */
1773 	sd_buf_iodone,			/* Index: 9 */
1774 	sd_mapblockaddr_iodone,		/* Index: 10 */
1775 	sd_mapblocksize_iodone,		/* Index: 11 */
1776 
1777 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1778 	sd_buf_iodone,			/* Index: 12 */
1779 	sd_mapblockaddr_iodone,		/* Index: 13 */
1780 	sd_checksum_iodone,		/* Index: 14 */
1781 	sd_pm_iodone,			/* Index: 15 */
1782 
1783 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1784 	sd_buf_iodone,			/* Index: 16 */
1785 	sd_mapblockaddr_iodone,		/* Index: 17 */
1786 	sd_checksum_iodone,		/* Index: 18 */
1787 
1788 	/* Chain for USCSI commands (non-checksum targets) */
1789 	sd_uscsi_iodone,		/* Index: 19 */
1790 	sd_pm_iodone,			/* Index: 20 */
1791 
1792 	/* Chain for USCSI commands (checksum targets) */
1793 	sd_uscsi_iodone,		/* Index: 21 */
1794 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1795 	sd_pm_iodone,			/* Index: 22 */
1796 
1797 	/* Chain for "direct" USCSI commands (all targets) */
1798 	sd_uscsi_iodone,		/* Index: 24 */
1799 
1800 	/* Chain for "direct priority" USCSI commands (all targets) */
1801 	sd_uscsi_iodone,		/* Index: 25 */
1802 };
1803 
1804 
1805 /*
1806  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1807  * each iodone-side chain. These are located by the array index, but as the
1808  * iodone side functions are called in a decrementing-index order, the
1809  * highest index number in each chain must be specified (as these correspond
1810  * to the first function in the iodone chain that will be called by the core
1811  * at IO completion time).
1812  */
1813 
1814 #define	SD_CHAIN_DISK_IODONE			2
1815 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1816 #define	SD_CHAIN_RMMEDIA_IODONE			8
1817 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1818 #define	SD_CHAIN_CHKSUM_IODONE			15
1819 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1820 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1821 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1822 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1823 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1824 
1825 
1826 
1827 
1828 /*
1829  * Array to map a layering chain index to the appropriate initpkt routine.
1830  * The redundant entries are present so that the index used for accessing
1831  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1832  * with this table as well.
1833  */
1834 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1835 
1836 static sd_initpkt_t	sd_initpkt_map[] = {
1837 
1838 	/* Chain for buf IO for disk drive targets (PM enabled) */
1839 	sd_initpkt_for_buf,		/* Index: 0 */
1840 	sd_initpkt_for_buf,		/* Index: 1 */
1841 	sd_initpkt_for_buf,		/* Index: 2 */
1842 
1843 	/* Chain for buf IO for disk drive targets (PM disabled) */
1844 	sd_initpkt_for_buf,		/* Index: 3 */
1845 	sd_initpkt_for_buf,		/* Index: 4 */
1846 
1847 	/* Chain for buf IO for removable-media targets (PM enabled) */
1848 	sd_initpkt_for_buf,		/* Index: 5 */
1849 	sd_initpkt_for_buf,		/* Index: 6 */
1850 	sd_initpkt_for_buf,		/* Index: 7 */
1851 	sd_initpkt_for_buf,		/* Index: 8 */
1852 
1853 	/* Chain for buf IO for removable-media targets (PM disabled) */
1854 	sd_initpkt_for_buf,		/* Index: 9 */
1855 	sd_initpkt_for_buf,		/* Index: 10 */
1856 	sd_initpkt_for_buf,		/* Index: 11 */
1857 
1858 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1859 	sd_initpkt_for_buf,		/* Index: 12 */
1860 	sd_initpkt_for_buf,		/* Index: 13 */
1861 	sd_initpkt_for_buf,		/* Index: 14 */
1862 	sd_initpkt_for_buf,		/* Index: 15 */
1863 
1864 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1865 	sd_initpkt_for_buf,		/* Index: 16 */
1866 	sd_initpkt_for_buf,		/* Index: 17 */
1867 	sd_initpkt_for_buf,		/* Index: 18 */
1868 
1869 	/* Chain for USCSI commands (non-checksum targets) */
1870 	sd_initpkt_for_uscsi,		/* Index: 19 */
1871 	sd_initpkt_for_uscsi,		/* Index: 20 */
1872 
1873 	/* Chain for USCSI commands (checksum targets) */
1874 	sd_initpkt_for_uscsi,		/* Index: 21 */
1875 	sd_initpkt_for_uscsi,		/* Index: 22 */
1876 	sd_initpkt_for_uscsi,		/* Index: 22 */
1877 
1878 	/* Chain for "direct" USCSI commands (all targets) */
1879 	sd_initpkt_for_uscsi,		/* Index: 24 */
1880 
1881 	/* Chain for "direct priority" USCSI commands (all targets) */
1882 	sd_initpkt_for_uscsi,		/* Index: 25 */
1883 
1884 };
1885 
1886 
1887 /*
1888  * Array to map a layering chain index to the appropriate destroypktpkt routine.
1889  * The redundant entries are present so that the index used for accessing
1890  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1891  * with this table as well.
1892  */
1893 typedef void (*sd_destroypkt_t)(struct buf *);
1894 
1895 static sd_destroypkt_t	sd_destroypkt_map[] = {
1896 
1897 	/* Chain for buf IO for disk drive targets (PM enabled) */
1898 	sd_destroypkt_for_buf,		/* Index: 0 */
1899 	sd_destroypkt_for_buf,		/* Index: 1 */
1900 	sd_destroypkt_for_buf,		/* Index: 2 */
1901 
1902 	/* Chain for buf IO for disk drive targets (PM disabled) */
1903 	sd_destroypkt_for_buf,		/* Index: 3 */
1904 	sd_destroypkt_for_buf,		/* Index: 4 */
1905 
1906 	/* Chain for buf IO for removable-media targets (PM enabled) */
1907 	sd_destroypkt_for_buf,		/* Index: 5 */
1908 	sd_destroypkt_for_buf,		/* Index: 6 */
1909 	sd_destroypkt_for_buf,		/* Index: 7 */
1910 	sd_destroypkt_for_buf,		/* Index: 8 */
1911 
1912 	/* Chain for buf IO for removable-media targets (PM disabled) */
1913 	sd_destroypkt_for_buf,		/* Index: 9 */
1914 	sd_destroypkt_for_buf,		/* Index: 10 */
1915 	sd_destroypkt_for_buf,		/* Index: 11 */
1916 
1917 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1918 	sd_destroypkt_for_buf,		/* Index: 12 */
1919 	sd_destroypkt_for_buf,		/* Index: 13 */
1920 	sd_destroypkt_for_buf,		/* Index: 14 */
1921 	sd_destroypkt_for_buf,		/* Index: 15 */
1922 
1923 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1924 	sd_destroypkt_for_buf,		/* Index: 16 */
1925 	sd_destroypkt_for_buf,		/* Index: 17 */
1926 	sd_destroypkt_for_buf,		/* Index: 18 */
1927 
1928 	/* Chain for USCSI commands (non-checksum targets) */
1929 	sd_destroypkt_for_uscsi,	/* Index: 19 */
1930 	sd_destroypkt_for_uscsi,	/* Index: 20 */
1931 
1932 	/* Chain for USCSI commands (checksum targets) */
1933 	sd_destroypkt_for_uscsi,	/* Index: 21 */
1934 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1935 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1936 
1937 	/* Chain for "direct" USCSI commands (all targets) */
1938 	sd_destroypkt_for_uscsi,	/* Index: 24 */
1939 
1940 	/* Chain for "direct priority" USCSI commands (all targets) */
1941 	sd_destroypkt_for_uscsi,	/* Index: 25 */
1942 
1943 };
1944 
1945 
1946 
1947 /*
1948  * Array to map a layering chain index to the appropriate chain "type".
1949  * The chain type indicates a specific property/usage of the chain.
1950  * The redundant entries are present so that the index used for accessing
1951  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1952  * with this table as well.
1953  */
1954 
1955 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
1956 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
1957 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
1958 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
1959 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
1960 						/* (for error recovery) */
1961 
1962 static int sd_chain_type_map[] = {
1963 
1964 	/* Chain for buf IO for disk drive targets (PM enabled) */
1965 	SD_CHAIN_BUFIO,			/* Index: 0 */
1966 	SD_CHAIN_BUFIO,			/* Index: 1 */
1967 	SD_CHAIN_BUFIO,			/* Index: 2 */
1968 
1969 	/* Chain for buf IO for disk drive targets (PM disabled) */
1970 	SD_CHAIN_BUFIO,			/* Index: 3 */
1971 	SD_CHAIN_BUFIO,			/* Index: 4 */
1972 
1973 	/* Chain for buf IO for removable-media targets (PM enabled) */
1974 	SD_CHAIN_BUFIO,			/* Index: 5 */
1975 	SD_CHAIN_BUFIO,			/* Index: 6 */
1976 	SD_CHAIN_BUFIO,			/* Index: 7 */
1977 	SD_CHAIN_BUFIO,			/* Index: 8 */
1978 
1979 	/* Chain for buf IO for removable-media targets (PM disabled) */
1980 	SD_CHAIN_BUFIO,			/* Index: 9 */
1981 	SD_CHAIN_BUFIO,			/* Index: 10 */
1982 	SD_CHAIN_BUFIO,			/* Index: 11 */
1983 
1984 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1985 	SD_CHAIN_BUFIO,			/* Index: 12 */
1986 	SD_CHAIN_BUFIO,			/* Index: 13 */
1987 	SD_CHAIN_BUFIO,			/* Index: 14 */
1988 	SD_CHAIN_BUFIO,			/* Index: 15 */
1989 
1990 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1991 	SD_CHAIN_BUFIO,			/* Index: 16 */
1992 	SD_CHAIN_BUFIO,			/* Index: 17 */
1993 	SD_CHAIN_BUFIO,			/* Index: 18 */
1994 
1995 	/* Chain for USCSI commands (non-checksum targets) */
1996 	SD_CHAIN_USCSI,			/* Index: 19 */
1997 	SD_CHAIN_USCSI,			/* Index: 20 */
1998 
1999 	/* Chain for USCSI commands (checksum targets) */
2000 	SD_CHAIN_USCSI,			/* Index: 21 */
2001 	SD_CHAIN_USCSI,			/* Index: 22 */
2002 	SD_CHAIN_USCSI,			/* Index: 22 */
2003 
2004 	/* Chain for "direct" USCSI commands (all targets) */
2005 	SD_CHAIN_DIRECT,		/* Index: 24 */
2006 
2007 	/* Chain for "direct priority" USCSI commands (all targets) */
2008 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2009 };
2010 
2011 
2012 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2013 #define	SD_IS_BUFIO(xp)			\
2014 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2015 
2016 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2017 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2018 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2019 
2020 
2021 
2022 /*
2023  * Struct, array, and macros to map a specific chain to the appropriate
2024  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2025  *
2026  * The sd_chain_index_map[] array is used at attach time to set the various
2027  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2028  * chain to be used with the instance. This allows different instances to use
2029  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2030  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2031  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2032  * dynamically & without the use of locking; and (2) a layer may update the
2033  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2034  * to allow for deferred processing of an IO within the same chain from a
2035  * different execution context.
2036  */
2037 
2038 struct sd_chain_index {
2039 	int	sci_iostart_index;
2040 	int	sci_iodone_index;
2041 };
2042 
2043 static struct sd_chain_index	sd_chain_index_map[] = {
2044 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2045 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2046 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2047 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2048 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2049 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2050 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2051 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2052 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2053 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2054 };
2055 
2056 
2057 /*
2058  * The following are indexes into the sd_chain_index_map[] array.
2059  */
2060 
2061 /* un->un_buf_chain_type must be set to one of these */
2062 #define	SD_CHAIN_INFO_DISK		0
2063 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2064 #define	SD_CHAIN_INFO_RMMEDIA		2
2065 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2066 #define	SD_CHAIN_INFO_CHKSUM		4
2067 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2068 
2069 /* un->un_uscsi_chain_type must be set to one of these */
2070 #define	SD_CHAIN_INFO_USCSI_CMD		6
2071 /* USCSI with PM disabled is the same as DIRECT */
2072 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2073 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2074 
2075 /* un->un_direct_chain_type must be set to one of these */
2076 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2077 
2078 /* un->un_priority_chain_type must be set to one of these */
2079 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2080 
2081 /* size for devid inquiries */
2082 #define	MAX_INQUIRY_SIZE		0xF0
2083 
2084 /*
2085  * Macros used by functions to pass a given buf(9S) struct along to the
2086  * next function in the layering chain for further processing.
2087  *
2088  * In the following macros, passing more than three arguments to the called
2089  * routines causes the optimizer for the SPARC compiler to stop doing tail
2090  * call elimination which results in significant performance degradation.
2091  */
2092 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2093 	((*(sd_iostart_chain[index]))(index, un, bp))
2094 
2095 #define	SD_BEGIN_IODONE(index, un, bp)	\
2096 	((*(sd_iodone_chain[index]))(index, un, bp))
2097 
2098 #define	SD_NEXT_IOSTART(index, un, bp)				\
2099 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2100 
2101 #define	SD_NEXT_IODONE(index, un, bp)				\
2102 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2103 
2104 
2105 /*
2106  *    Function: _init
2107  *
2108  * Description: This is the driver _init(9E) entry point.
2109  *
2110  * Return Code: Returns the value from mod_install(9F) or
2111  *		ddi_soft_state_init(9F) as appropriate.
2112  *
2113  *     Context: Called when driver module loaded.
2114  */
2115 
2116 int
2117 _init(void)
2118 {
2119 	int	err;
2120 
2121 	/* establish driver name from module name */
2122 	sd_label = mod_modname(&modlinkage);
2123 
2124 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2125 		SD_MAXUNIT);
2126 
2127 	if (err != 0) {
2128 		return (err);
2129 	}
2130 
2131 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2132 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2133 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2134 
2135 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2136 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2137 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2138 
2139 	/*
2140 	 * it's ok to init here even for fibre device
2141 	 */
2142 	sd_scsi_probe_cache_init();
2143 
2144 	/*
2145 	 * Creating taskq before mod_install ensures that all callers (threads)
2146 	 * that enter the module after a successfull mod_install encounter
2147 	 * a valid taskq.
2148 	 */
2149 	sd_taskq_create();
2150 
2151 	err = mod_install(&modlinkage);
2152 	if (err != 0) {
2153 		/* delete taskq if install fails */
2154 		sd_taskq_delete();
2155 
2156 		mutex_destroy(&sd_detach_mutex);
2157 		mutex_destroy(&sd_log_mutex);
2158 		mutex_destroy(&sd_label_mutex);
2159 
2160 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2161 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2162 		cv_destroy(&sd_tr.srq_inprocess_cv);
2163 
2164 		sd_scsi_probe_cache_fini();
2165 
2166 		ddi_soft_state_fini(&sd_state);
2167 		return (err);
2168 	}
2169 
2170 	return (err);
2171 }
2172 
2173 
2174 /*
2175  *    Function: _fini
2176  *
2177  * Description: This is the driver _fini(9E) entry point.
2178  *
2179  * Return Code: Returns the value from mod_remove(9F)
2180  *
2181  *     Context: Called when driver module is unloaded.
2182  */
2183 
2184 int
2185 _fini(void)
2186 {
2187 	int err;
2188 
2189 	if ((err = mod_remove(&modlinkage)) != 0) {
2190 		return (err);
2191 	}
2192 
2193 	sd_taskq_delete();
2194 
2195 	mutex_destroy(&sd_detach_mutex);
2196 	mutex_destroy(&sd_log_mutex);
2197 	mutex_destroy(&sd_label_mutex);
2198 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2199 
2200 	sd_scsi_probe_cache_fini();
2201 
2202 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2203 	cv_destroy(&sd_tr.srq_inprocess_cv);
2204 
2205 	ddi_soft_state_fini(&sd_state);
2206 
2207 	return (err);
2208 }
2209 
2210 
2211 /*
2212  *    Function: _info
2213  *
2214  * Description: This is the driver _info(9E) entry point.
2215  *
2216  *   Arguments: modinfop - pointer to the driver modinfo structure
2217  *
2218  * Return Code: Returns the value from mod_info(9F).
2219  *
2220  *     Context: Kernel thread context
2221  */
2222 
2223 int
2224 _info(struct modinfo *modinfop)
2225 {
2226 	return (mod_info(&modlinkage, modinfop));
2227 }
2228 
2229 
2230 /*
2231  * The following routines implement the driver message logging facility.
2232  * They provide component- and level- based debug output filtering.
2233  * Output may also be restricted to messages for a single instance by
2234  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2235  * to NULL, then messages for all instances are printed.
2236  *
2237  * These routines have been cloned from each other due to the language
2238  * constraints of macros and variable argument list processing.
2239  */
2240 
2241 
2242 /*
2243  *    Function: sd_log_err
2244  *
2245  * Description: This routine is called by the SD_ERROR macro for debug
2246  *		logging of error conditions.
2247  *
2248  *   Arguments: comp - driver component being logged
2249  *		dev  - pointer to driver info structure
2250  *		fmt  - error string and format to be logged
2251  */
2252 
2253 static void
2254 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2255 {
2256 	va_list		ap;
2257 	dev_info_t	*dev;
2258 
2259 	ASSERT(un != NULL);
2260 	dev = SD_DEVINFO(un);
2261 	ASSERT(dev != NULL);
2262 
2263 	/*
2264 	 * Filter messages based on the global component and level masks.
2265 	 * Also print if un matches the value of sd_debug_un, or if
2266 	 * sd_debug_un is set to NULL.
2267 	 */
2268 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2269 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2270 		mutex_enter(&sd_log_mutex);
2271 		va_start(ap, fmt);
2272 		(void) vsprintf(sd_log_buf, fmt, ap);
2273 		va_end(ap);
2274 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2275 		mutex_exit(&sd_log_mutex);
2276 	}
2277 #ifdef SD_FAULT_INJECTION
2278 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2279 	if (un->sd_injection_mask & comp) {
2280 		mutex_enter(&sd_log_mutex);
2281 		va_start(ap, fmt);
2282 		(void) vsprintf(sd_log_buf, fmt, ap);
2283 		va_end(ap);
2284 		sd_injection_log(sd_log_buf, un);
2285 		mutex_exit(&sd_log_mutex);
2286 	}
2287 #endif
2288 }
2289 
2290 
2291 /*
2292  *    Function: sd_log_info
2293  *
2294  * Description: This routine is called by the SD_INFO macro for debug
2295  *		logging of general purpose informational conditions.
2296  *
2297  *   Arguments: comp - driver component being logged
2298  *		dev  - pointer to driver info structure
2299  *		fmt  - info string and format to be logged
2300  */
2301 
2302 static void
2303 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2304 {
2305 	va_list		ap;
2306 	dev_info_t	*dev;
2307 
2308 	ASSERT(un != NULL);
2309 	dev = SD_DEVINFO(un);
2310 	ASSERT(dev != NULL);
2311 
2312 	/*
2313 	 * Filter messages based on the global component and level masks.
2314 	 * Also print if un matches the value of sd_debug_un, or if
2315 	 * sd_debug_un is set to NULL.
2316 	 */
2317 	if ((sd_component_mask & component) &&
2318 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2319 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2320 		mutex_enter(&sd_log_mutex);
2321 		va_start(ap, fmt);
2322 		(void) vsprintf(sd_log_buf, fmt, ap);
2323 		va_end(ap);
2324 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2325 		mutex_exit(&sd_log_mutex);
2326 	}
2327 #ifdef SD_FAULT_INJECTION
2328 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2329 	if (un->sd_injection_mask & component) {
2330 		mutex_enter(&sd_log_mutex);
2331 		va_start(ap, fmt);
2332 		(void) vsprintf(sd_log_buf, fmt, ap);
2333 		va_end(ap);
2334 		sd_injection_log(sd_log_buf, un);
2335 		mutex_exit(&sd_log_mutex);
2336 	}
2337 #endif
2338 }
2339 
2340 
2341 /*
2342  *    Function: sd_log_trace
2343  *
2344  * Description: This routine is called by the SD_TRACE macro for debug
2345  *		logging of trace conditions (i.e. function entry/exit).
2346  *
2347  *   Arguments: comp - driver component being logged
2348  *		dev  - pointer to driver info structure
2349  *		fmt  - trace string and format to be logged
2350  */
2351 
2352 static void
2353 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2354 {
2355 	va_list		ap;
2356 	dev_info_t	*dev;
2357 
2358 	ASSERT(un != NULL);
2359 	dev = SD_DEVINFO(un);
2360 	ASSERT(dev != NULL);
2361 
2362 	/*
2363 	 * Filter messages based on the global component and level masks.
2364 	 * Also print if un matches the value of sd_debug_un, or if
2365 	 * sd_debug_un is set to NULL.
2366 	 */
2367 	if ((sd_component_mask & component) &&
2368 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2369 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2370 		mutex_enter(&sd_log_mutex);
2371 		va_start(ap, fmt);
2372 		(void) vsprintf(sd_log_buf, fmt, ap);
2373 		va_end(ap);
2374 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2375 		mutex_exit(&sd_log_mutex);
2376 	}
2377 #ifdef SD_FAULT_INJECTION
2378 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2379 	if (un->sd_injection_mask & component) {
2380 		mutex_enter(&sd_log_mutex);
2381 		va_start(ap, fmt);
2382 		(void) vsprintf(sd_log_buf, fmt, ap);
2383 		va_end(ap);
2384 		sd_injection_log(sd_log_buf, un);
2385 		mutex_exit(&sd_log_mutex);
2386 	}
2387 #endif
2388 }
2389 
2390 
2391 /*
2392  *    Function: sdprobe
2393  *
2394  * Description: This is the driver probe(9e) entry point function.
2395  *
2396  *   Arguments: devi - opaque device info handle
2397  *
2398  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2399  *              DDI_PROBE_FAILURE: If the probe failed.
2400  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2401  *				   but may be present in the future.
2402  */
2403 
2404 static int
2405 sdprobe(dev_info_t *devi)
2406 {
2407 	struct scsi_device	*devp;
2408 	int			rval;
2409 	int			instance;
2410 
2411 	/*
2412 	 * if it wasn't for pln, sdprobe could actually be nulldev
2413 	 * in the "__fibre" case.
2414 	 */
2415 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2416 		return (DDI_PROBE_DONTCARE);
2417 	}
2418 
2419 	devp = ddi_get_driver_private(devi);
2420 
2421 	if (devp == NULL) {
2422 		/* Ooops... nexus driver is mis-configured... */
2423 		return (DDI_PROBE_FAILURE);
2424 	}
2425 
2426 	instance = ddi_get_instance(devi);
2427 
2428 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2429 		return (DDI_PROBE_PARTIAL);
2430 	}
2431 
2432 	/*
2433 	 * Call the SCSA utility probe routine to see if we actually
2434 	 * have a target at this SCSI nexus.
2435 	 */
2436 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2437 	case SCSIPROBE_EXISTS:
2438 		switch (devp->sd_inq->inq_dtype) {
2439 		case DTYPE_DIRECT:
2440 			rval = DDI_PROBE_SUCCESS;
2441 			break;
2442 		case DTYPE_RODIRECT:
2443 			/* CDs etc. Can be removable media */
2444 			rval = DDI_PROBE_SUCCESS;
2445 			break;
2446 		case DTYPE_OPTICAL:
2447 			/*
2448 			 * Rewritable optical driver HP115AA
2449 			 * Can also be removable media
2450 			 */
2451 
2452 			/*
2453 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2454 			 * pre solaris 9 sparc sd behavior is required
2455 			 *
2456 			 * If first time through and sd_dtype_optical_bind
2457 			 * has not been set in /etc/system check properties
2458 			 */
2459 
2460 			if (sd_dtype_optical_bind  < 0) {
2461 			    sd_dtype_optical_bind = ddi_prop_get_int
2462 				(DDI_DEV_T_ANY,	devi,	0,
2463 				"optical-device-bind",	1);
2464 			}
2465 
2466 			if (sd_dtype_optical_bind == 0) {
2467 				rval = DDI_PROBE_FAILURE;
2468 			} else {
2469 				rval = DDI_PROBE_SUCCESS;
2470 			}
2471 			break;
2472 
2473 		case DTYPE_NOTPRESENT:
2474 		default:
2475 			rval = DDI_PROBE_FAILURE;
2476 			break;
2477 		}
2478 		break;
2479 	default:
2480 		rval = DDI_PROBE_PARTIAL;
2481 		break;
2482 	}
2483 
2484 	/*
2485 	 * This routine checks for resource allocation prior to freeing,
2486 	 * so it will take care of the "smart probing" case where a
2487 	 * scsi_probe() may or may not have been issued and will *not*
2488 	 * free previously-freed resources.
2489 	 */
2490 	scsi_unprobe(devp);
2491 	return (rval);
2492 }
2493 
2494 
2495 /*
2496  *    Function: sdinfo
2497  *
2498  * Description: This is the driver getinfo(9e) entry point function.
2499  * 		Given the device number, return the devinfo pointer from
2500  *		the scsi_device structure or the instance number
2501  *		associated with the dev_t.
2502  *
2503  *   Arguments: dip     - pointer to device info structure
2504  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2505  *			  DDI_INFO_DEVT2INSTANCE)
2506  *		arg     - driver dev_t
2507  *		resultp - user buffer for request response
2508  *
2509  * Return Code: DDI_SUCCESS
2510  *              DDI_FAILURE
2511  */
2512 /* ARGSUSED */
2513 static int
2514 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2515 {
2516 	struct sd_lun	*un;
2517 	dev_t		dev;
2518 	int		instance;
2519 	int		error;
2520 
2521 	switch (infocmd) {
2522 	case DDI_INFO_DEVT2DEVINFO:
2523 		dev = (dev_t)arg;
2524 		instance = SDUNIT(dev);
2525 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2526 			return (DDI_FAILURE);
2527 		}
2528 		*result = (void *) SD_DEVINFO(un);
2529 		error = DDI_SUCCESS;
2530 		break;
2531 	case DDI_INFO_DEVT2INSTANCE:
2532 		dev = (dev_t)arg;
2533 		instance = SDUNIT(dev);
2534 		*result = (void *)(uintptr_t)instance;
2535 		error = DDI_SUCCESS;
2536 		break;
2537 	default:
2538 		error = DDI_FAILURE;
2539 	}
2540 	return (error);
2541 }
2542 
2543 /*
2544  *    Function: sd_prop_op
2545  *
2546  * Description: This is the driver prop_op(9e) entry point function.
2547  *		Return the number of blocks for the partition in question
2548  *		or forward the request to the property facilities.
2549  *
2550  *   Arguments: dev       - device number
2551  *		dip       - pointer to device info structure
2552  *		prop_op   - property operator
2553  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2554  *		name      - pointer to property name
2555  *		valuep    - pointer or address of the user buffer
2556  *		lengthp   - property length
2557  *
2558  * Return Code: DDI_PROP_SUCCESS
2559  *              DDI_PROP_NOT_FOUND
2560  *              DDI_PROP_UNDEFINED
2561  *              DDI_PROP_NO_MEMORY
2562  *              DDI_PROP_BUF_TOO_SMALL
2563  */
2564 
2565 static int
2566 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2567 	char *name, caddr_t valuep, int *lengthp)
2568 {
2569 	int		instance = ddi_get_instance(dip);
2570 	struct sd_lun	*un;
2571 	uint64_t	nblocks64;
2572 
2573 	/*
2574 	 * Our dynamic properties are all device specific and size oriented.
2575 	 * Requests issued under conditions where size is valid are passed
2576 	 * to ddi_prop_op_nblocks with the size information, otherwise the
2577 	 * request is passed to ddi_prop_op. Size depends on valid geometry.
2578 	 */
2579 	un = ddi_get_soft_state(sd_state, instance);
2580 	if ((dev == DDI_DEV_T_ANY) || (un == NULL) ||
2581 	    (un->un_f_geometry_is_valid == FALSE)) {
2582 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2583 		    name, valuep, lengthp));
2584 	} else {
2585 		/* get nblocks value */
2586 		ASSERT(!mutex_owned(SD_MUTEX(un)));
2587 		mutex_enter(SD_MUTEX(un));
2588 		nblocks64 = (ulong_t)un->un_map[SDPART(dev)].dkl_nblk;
2589 		mutex_exit(SD_MUTEX(un));
2590 
2591 		return (ddi_prop_op_nblocks(dev, dip, prop_op, mod_flags,
2592 		    name, valuep, lengthp, nblocks64));
2593 	}
2594 }
2595 
2596 /*
2597  * The following functions are for smart probing:
2598  * sd_scsi_probe_cache_init()
2599  * sd_scsi_probe_cache_fini()
2600  * sd_scsi_clear_probe_cache()
2601  * sd_scsi_probe_with_cache()
2602  */
2603 
2604 /*
2605  *    Function: sd_scsi_probe_cache_init
2606  *
2607  * Description: Initializes the probe response cache mutex and head pointer.
2608  *
2609  *     Context: Kernel thread context
2610  */
2611 
2612 static void
2613 sd_scsi_probe_cache_init(void)
2614 {
2615 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2616 	sd_scsi_probe_cache_head = NULL;
2617 }
2618 
2619 
2620 /*
2621  *    Function: sd_scsi_probe_cache_fini
2622  *
2623  * Description: Frees all resources associated with the probe response cache.
2624  *
2625  *     Context: Kernel thread context
2626  */
2627 
2628 static void
2629 sd_scsi_probe_cache_fini(void)
2630 {
2631 	struct sd_scsi_probe_cache *cp;
2632 	struct sd_scsi_probe_cache *ncp;
2633 
2634 	/* Clean up our smart probing linked list */
2635 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2636 		ncp = cp->next;
2637 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2638 	}
2639 	sd_scsi_probe_cache_head = NULL;
2640 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2641 }
2642 
2643 
2644 /*
2645  *    Function: sd_scsi_clear_probe_cache
2646  *
2647  * Description: This routine clears the probe response cache. This is
2648  *		done when open() returns ENXIO so that when deferred
2649  *		attach is attempted (possibly after a device has been
2650  *		turned on) we will retry the probe. Since we don't know
2651  *		which target we failed to open, we just clear the
2652  *		entire cache.
2653  *
2654  *     Context: Kernel thread context
2655  */
2656 
2657 static void
2658 sd_scsi_clear_probe_cache(void)
2659 {
2660 	struct sd_scsi_probe_cache	*cp;
2661 	int				i;
2662 
2663 	mutex_enter(&sd_scsi_probe_cache_mutex);
2664 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2665 		/*
2666 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2667 		 * force probing to be performed the next time
2668 		 * sd_scsi_probe_with_cache is called.
2669 		 */
2670 		for (i = 0; i < NTARGETS_WIDE; i++) {
2671 			cp->cache[i] = SCSIPROBE_EXISTS;
2672 		}
2673 	}
2674 	mutex_exit(&sd_scsi_probe_cache_mutex);
2675 }
2676 
2677 
2678 /*
2679  *    Function: sd_scsi_probe_with_cache
2680  *
2681  * Description: This routine implements support for a scsi device probe
2682  *		with cache. The driver maintains a cache of the target
2683  *		responses to scsi probes. If we get no response from a
2684  *		target during a probe inquiry, we remember that, and we
2685  *		avoid additional calls to scsi_probe on non-zero LUNs
2686  *		on the same target until the cache is cleared. By doing
2687  *		so we avoid the 1/4 sec selection timeout for nonzero
2688  *		LUNs. lun0 of a target is always probed.
2689  *
2690  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2691  *              waitfunc - indicates what the allocator routines should
2692  *			   do when resources are not available. This value
2693  *			   is passed on to scsi_probe() when that routine
2694  *			   is called.
2695  *
2696  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2697  *		otherwise the value returned by scsi_probe(9F).
2698  *
2699  *     Context: Kernel thread context
2700  */
2701 
2702 static int
2703 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2704 {
2705 	struct sd_scsi_probe_cache	*cp;
2706 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2707 	int		lun, tgt;
2708 
2709 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2710 	    SCSI_ADDR_PROP_LUN, 0);
2711 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2712 	    SCSI_ADDR_PROP_TARGET, -1);
2713 
2714 	/* Make sure caching enabled and target in range */
2715 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2716 		/* do it the old way (no cache) */
2717 		return (scsi_probe(devp, waitfn));
2718 	}
2719 
2720 	mutex_enter(&sd_scsi_probe_cache_mutex);
2721 
2722 	/* Find the cache for this scsi bus instance */
2723 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2724 		if (cp->pdip == pdip) {
2725 			break;
2726 		}
2727 	}
2728 
2729 	/* If we can't find a cache for this pdip, create one */
2730 	if (cp == NULL) {
2731 		int i;
2732 
2733 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2734 		    KM_SLEEP);
2735 		cp->pdip = pdip;
2736 		cp->next = sd_scsi_probe_cache_head;
2737 		sd_scsi_probe_cache_head = cp;
2738 		for (i = 0; i < NTARGETS_WIDE; i++) {
2739 			cp->cache[i] = SCSIPROBE_EXISTS;
2740 		}
2741 	}
2742 
2743 	mutex_exit(&sd_scsi_probe_cache_mutex);
2744 
2745 	/* Recompute the cache for this target if LUN zero */
2746 	if (lun == 0) {
2747 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2748 	}
2749 
2750 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2751 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2752 		return (SCSIPROBE_NORESP);
2753 	}
2754 
2755 	/* Do the actual probe; save & return the result */
2756 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2757 }
2758 
2759 
2760 /*
2761  *    Function: sd_spin_up_unit
2762  *
2763  * Description: Issues the following commands to spin-up the device:
2764  *		START STOP UNIT, and INQUIRY.
2765  *
2766  *   Arguments: un - driver soft state (unit) structure
2767  *
2768  * Return Code: 0 - success
2769  *		EIO - failure
2770  *		EACCES - reservation conflict
2771  *
2772  *     Context: Kernel thread context
2773  */
2774 
2775 static int
2776 sd_spin_up_unit(struct sd_lun *un)
2777 {
2778 	size_t	resid		= 0;
2779 	int	has_conflict	= FALSE;
2780 	uchar_t *bufaddr;
2781 
2782 	ASSERT(un != NULL);
2783 
2784 	/*
2785 	 * Send a throwaway START UNIT command.
2786 	 *
2787 	 * If we fail on this, we don't care presently what precisely
2788 	 * is wrong.  EMC's arrays will also fail this with a check
2789 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
2790 	 * we don't want to fail the attach because it may become
2791 	 * "active" later.
2792 	 */
2793 	if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT)
2794 	    == EACCES)
2795 		has_conflict = TRUE;
2796 
2797 	/*
2798 	 * Send another INQUIRY command to the target. This is necessary for
2799 	 * non-removable media direct access devices because their INQUIRY data
2800 	 * may not be fully qualified until they are spun up (perhaps via the
2801 	 * START command above).  Note: This seems to be needed for some
2802 	 * legacy devices only.) The INQUIRY command should succeed even if a
2803 	 * Reservation Conflict is present.
2804 	 */
2805 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
2806 	if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) {
2807 		kmem_free(bufaddr, SUN_INQSIZE);
2808 		return (EIO);
2809 	}
2810 
2811 	/*
2812 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
2813 	 * Note that this routine does not return a failure here even if the
2814 	 * INQUIRY command did not return any data.  This is a legacy behavior.
2815 	 */
2816 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
2817 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
2818 	}
2819 
2820 	kmem_free(bufaddr, SUN_INQSIZE);
2821 
2822 	/* If we hit a reservation conflict above, tell the caller. */
2823 	if (has_conflict == TRUE) {
2824 		return (EACCES);
2825 	}
2826 
2827 	return (0);
2828 }
2829 
2830 #ifdef _LP64
2831 /*
2832  *    Function: sd_enable_descr_sense
2833  *
2834  * Description: This routine attempts to select descriptor sense format
2835  *		using the Control mode page.  Devices that support 64 bit
2836  *		LBAs (for >2TB luns) should also implement descriptor
2837  *		sense data so we will call this function whenever we see
2838  *		a lun larger than 2TB.  If for some reason the device
2839  *		supports 64 bit LBAs but doesn't support descriptor sense
2840  *		presumably the mode select will fail.  Everything will
2841  *		continue to work normally except that we will not get
2842  *		complete sense data for commands that fail with an LBA
2843  *		larger than 32 bits.
2844  *
2845  *   Arguments: un - driver soft state (unit) structure
2846  *
2847  *     Context: Kernel thread context only
2848  */
2849 
2850 static void
2851 sd_enable_descr_sense(struct sd_lun *un)
2852 {
2853 	uchar_t			*header;
2854 	struct mode_control_scsi3 *ctrl_bufp;
2855 	size_t			buflen;
2856 	size_t			bd_len;
2857 
2858 	/*
2859 	 * Read MODE SENSE page 0xA, Control Mode Page
2860 	 */
2861 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
2862 	    sizeof (struct mode_control_scsi3);
2863 	header = kmem_zalloc(buflen, KM_SLEEP);
2864 	if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
2865 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) {
2866 		SD_ERROR(SD_LOG_COMMON, un,
2867 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
2868 		goto eds_exit;
2869 	}
2870 
2871 	/*
2872 	 * Determine size of Block Descriptors in order to locate
2873 	 * the mode page data. ATAPI devices return 0, SCSI devices
2874 	 * should return MODE_BLK_DESC_LENGTH.
2875 	 */
2876 	bd_len  = ((struct mode_header *)header)->bdesc_length;
2877 
2878 	ctrl_bufp = (struct mode_control_scsi3 *)
2879 	    (header + MODE_HEADER_LENGTH + bd_len);
2880 
2881 	/*
2882 	 * Clear PS bit for MODE SELECT
2883 	 */
2884 	ctrl_bufp->mode_page.ps = 0;
2885 
2886 	/*
2887 	 * Set D_SENSE to enable descriptor sense format.
2888 	 */
2889 	ctrl_bufp->d_sense = 1;
2890 
2891 	/*
2892 	 * Use MODE SELECT to commit the change to the D_SENSE bit
2893 	 */
2894 	if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
2895 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) {
2896 		SD_INFO(SD_LOG_COMMON, un,
2897 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
2898 		goto eds_exit;
2899 	}
2900 
2901 eds_exit:
2902 	kmem_free(header, buflen);
2903 }
2904 #endif /* _LP64 */
2905 
2906 
2907 /*
2908  *    Function: sd_set_mmc_caps
2909  *
2910  * Description: This routine determines if the device is MMC compliant and if
2911  *		the device supports CDDA via a mode sense of the CDVD
2912  *		capabilities mode page. Also checks if the device is a
2913  *		dvdram writable device.
2914  *
2915  *   Arguments: un - driver soft state (unit) structure
2916  *
2917  *     Context: Kernel thread context only
2918  */
2919 
2920 static void
2921 sd_set_mmc_caps(struct sd_lun *un)
2922 {
2923 	struct mode_header_grp2		*sense_mhp;
2924 	uchar_t				*sense_page;
2925 	caddr_t				buf;
2926 	int				bd_len;
2927 	int				status;
2928 	struct uscsi_cmd		com;
2929 	int				rtn;
2930 	uchar_t				*out_data_rw, *out_data_hd;
2931 	uchar_t				*rqbuf_rw, *rqbuf_hd;
2932 
2933 	ASSERT(un != NULL);
2934 
2935 	/*
2936 	 * The flags which will be set in this function are - mmc compliant,
2937 	 * dvdram writable device, cdda support. Initialize them to FALSE
2938 	 * and if a capability is detected - it will be set to TRUE.
2939 	 */
2940 	un->un_f_mmc_cap = FALSE;
2941 	un->un_f_dvdram_writable_device = FALSE;
2942 	un->un_f_cfg_cdda = FALSE;
2943 
2944 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
2945 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
2946 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
2947 
2948 	if (status != 0) {
2949 		/* command failed; just return */
2950 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
2951 		return;
2952 	}
2953 	/*
2954 	 * If the mode sense request for the CDROM CAPABILITIES
2955 	 * page (0x2A) succeeds the device is assumed to be MMC.
2956 	 */
2957 	un->un_f_mmc_cap = TRUE;
2958 
2959 	/* Get to the page data */
2960 	sense_mhp = (struct mode_header_grp2 *)buf;
2961 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
2962 	    sense_mhp->bdesc_length_lo;
2963 	if (bd_len > MODE_BLK_DESC_LENGTH) {
2964 		/*
2965 		 * We did not get back the expected block descriptor
2966 		 * length so we cannot determine if the device supports
2967 		 * CDDA. However, we still indicate the device is MMC
2968 		 * according to the successful response to the page
2969 		 * 0x2A mode sense request.
2970 		 */
2971 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
2972 		    "sd_set_mmc_caps: Mode Sense returned "
2973 		    "invalid block descriptor length\n");
2974 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
2975 		return;
2976 	}
2977 
2978 	/* See if read CDDA is supported */
2979 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
2980 	    bd_len);
2981 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
2982 
2983 	/* See if writing DVD RAM is supported. */
2984 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
2985 	if (un->un_f_dvdram_writable_device == TRUE) {
2986 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
2987 		return;
2988 	}
2989 
2990 	/*
2991 	 * If the device presents DVD or CD capabilities in the mode
2992 	 * page, we can return here since a RRD will not have
2993 	 * these capabilities.
2994 	 */
2995 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
2996 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
2997 		return;
2998 	}
2999 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3000 
3001 	/*
3002 	 * If un->un_f_dvdram_writable_device is still FALSE,
3003 	 * check for a Removable Rigid Disk (RRD).  A RRD
3004 	 * device is identified by the features RANDOM_WRITABLE and
3005 	 * HARDWARE_DEFECT_MANAGEMENT.
3006 	 */
3007 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3008 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3009 
3010 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3011 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3012 	    RANDOM_WRITABLE);
3013 	if (rtn != 0) {
3014 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3015 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3016 		return;
3017 	}
3018 
3019 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3020 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3021 
3022 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3023 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3024 	    HARDWARE_DEFECT_MANAGEMENT);
3025 	if (rtn == 0) {
3026 		/*
3027 		 * We have good information, check for random writable
3028 		 * and hardware defect features.
3029 		 */
3030 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3031 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3032 			un->un_f_dvdram_writable_device = TRUE;
3033 		}
3034 	}
3035 
3036 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3037 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3038 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3039 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3040 }
3041 
3042 /*
3043  *    Function: sd_check_for_writable_cd
3044  *
3045  * Description: This routine determines if the media in the device is
3046  *		writable or not. It uses the get configuration command (0x46)
3047  *		to determine if the media is writable
3048  *
3049  *   Arguments: un - driver soft state (unit) structure
3050  *
3051  *     Context: Never called at interrupt context.
3052  */
3053 
3054 static void
3055 sd_check_for_writable_cd(struct sd_lun *un)
3056 {
3057 	struct uscsi_cmd		com;
3058 	uchar_t				*out_data;
3059 	uchar_t				*rqbuf;
3060 	int				rtn;
3061 	uchar_t				*out_data_rw, *out_data_hd;
3062 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3063 	struct mode_header_grp2		*sense_mhp;
3064 	uchar_t				*sense_page;
3065 	caddr_t				buf;
3066 	int				bd_len;
3067 	int				status;
3068 
3069 	ASSERT(un != NULL);
3070 	ASSERT(mutex_owned(SD_MUTEX(un)));
3071 
3072 	/*
3073 	 * Initialize the writable media to false, if configuration info.
3074 	 * tells us otherwise then only we will set it.
3075 	 */
3076 	un->un_f_mmc_writable_media = FALSE;
3077 	mutex_exit(SD_MUTEX(un));
3078 
3079 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3080 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3081 
3082 	rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH,
3083 	    out_data, SD_PROFILE_HEADER_LEN);
3084 
3085 	mutex_enter(SD_MUTEX(un));
3086 	if (rtn == 0) {
3087 		/*
3088 		 * We have good information, check for writable DVD.
3089 		 */
3090 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3091 			un->un_f_mmc_writable_media = TRUE;
3092 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3093 			kmem_free(rqbuf, SENSE_LENGTH);
3094 			return;
3095 		}
3096 	}
3097 
3098 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3099 	kmem_free(rqbuf, SENSE_LENGTH);
3100 
3101 	/*
3102 	 * Determine if this is a RRD type device.
3103 	 */
3104 	mutex_exit(SD_MUTEX(un));
3105 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3106 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3107 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3108 	mutex_enter(SD_MUTEX(un));
3109 	if (status != 0) {
3110 		/* command failed; just return */
3111 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3112 		return;
3113 	}
3114 
3115 	/* Get to the page data */
3116 	sense_mhp = (struct mode_header_grp2 *)buf;
3117 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3118 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3119 		/*
3120 		 * We did not get back the expected block descriptor length so
3121 		 * we cannot check the mode page.
3122 		 */
3123 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3124 		    "sd_check_for_writable_cd: Mode Sense returned "
3125 		    "invalid block descriptor length\n");
3126 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3127 		return;
3128 	}
3129 
3130 	/*
3131 	 * If the device presents DVD or CD capabilities in the mode
3132 	 * page, we can return here since a RRD device will not have
3133 	 * these capabilities.
3134 	 */
3135 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3136 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3137 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3138 		return;
3139 	}
3140 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3141 
3142 	/*
3143 	 * If un->un_f_mmc_writable_media is still FALSE,
3144 	 * check for RRD type media.  A RRD device is identified
3145 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3146 	 */
3147 	mutex_exit(SD_MUTEX(un));
3148 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3149 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3150 
3151 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3152 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3153 	    RANDOM_WRITABLE);
3154 	if (rtn != 0) {
3155 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3156 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3157 		mutex_enter(SD_MUTEX(un));
3158 		return;
3159 	}
3160 
3161 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3162 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3163 
3164 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3165 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3166 	    HARDWARE_DEFECT_MANAGEMENT);
3167 	mutex_enter(SD_MUTEX(un));
3168 	if (rtn == 0) {
3169 		/*
3170 		 * We have good information, check for random writable
3171 		 * and hardware defect features as current.
3172 		 */
3173 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3174 		    (out_data_rw[10] & 0x1) &&
3175 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3176 		    (out_data_hd[10] & 0x1)) {
3177 			un->un_f_mmc_writable_media = TRUE;
3178 		}
3179 	}
3180 
3181 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3182 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3183 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3184 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3185 }
3186 
3187 /*
3188  *    Function: sd_read_unit_properties
3189  *
3190  * Description: The following implements a property lookup mechanism.
3191  *		Properties for particular disks (keyed on vendor, model
3192  *		and rev numbers) are sought in the sd.conf file via
3193  *		sd_process_sdconf_file(), and if not found there, are
3194  *		looked for in a list hardcoded in this driver via
3195  *		sd_process_sdconf_table() Once located the properties
3196  *		are used to update the driver unit structure.
3197  *
3198  *   Arguments: un - driver soft state (unit) structure
3199  */
3200 
3201 static void
3202 sd_read_unit_properties(struct sd_lun *un)
3203 {
3204 	/*
3205 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3206 	 * the "sd-config-list" property (from the sd.conf file) or if
3207 	 * there was not a match for the inquiry vid/pid. If this event
3208 	 * occurs the static driver configuration table is searched for
3209 	 * a match.
3210 	 */
3211 	ASSERT(un != NULL);
3212 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3213 		sd_process_sdconf_table(un);
3214 	}
3215 
3216 	/* check for LSI device */
3217 	sd_is_lsi(un);
3218 
3219 	/*
3220 	 * Set this in sd.conf to 0 in order to disable kstats.  The default
3221 	 * is 1, so they are enabled by default.
3222 	 */
3223 	un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
3224 	    SD_DEVINFO(un), DDI_PROP_DONTPASS, "enable-partition-kstats", 1));
3225 }
3226 
3227 
3228 /*
3229  *    Function: sd_process_sdconf_file
3230  *
3231  * Description: Use ddi_getlongprop to obtain the properties from the
3232  *		driver's config file (ie, sd.conf) and update the driver
3233  *		soft state structure accordingly.
3234  *
3235  *   Arguments: un - driver soft state (unit) structure
3236  *
3237  * Return Code: SD_SUCCESS - The properties were successfully set according
3238  *			     to the driver configuration file.
3239  *		SD_FAILURE - The driver config list was not obtained or
3240  *			     there was no vid/pid match. This indicates that
3241  *			     the static config table should be used.
3242  *
3243  * The config file has a property, "sd-config-list", which consists of
3244  * one or more duplets as follows:
3245  *
3246  *  sd-config-list=
3247  *	<duplet>,
3248  *	[<duplet>,]
3249  *	[<duplet>];
3250  *
3251  * The structure of each duplet is as follows:
3252  *
3253  *  <duplet>:= <vid+pid>,<data-property-name_list>
3254  *
3255  * The first entry of the duplet is the device ID string (the concatenated
3256  * vid & pid; not to be confused with a device_id).  This is defined in
3257  * the same way as in the sd_disk_table.
3258  *
3259  * The second part of the duplet is a string that identifies a
3260  * data-property-name-list. The data-property-name-list is defined as
3261  * follows:
3262  *
3263  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3264  *
3265  * The syntax of <data-property-name> depends on the <version> field.
3266  *
3267  * If version = SD_CONF_VERSION_1 we have the following syntax:
3268  *
3269  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3270  *
3271  * where the prop0 value will be used to set prop0 if bit0 set in the
3272  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3273  *
3274  */
3275 
3276 static int
3277 sd_process_sdconf_file(struct sd_lun *un)
3278 {
3279 	char	*config_list = NULL;
3280 	int	config_list_len;
3281 	int	len;
3282 	int	dupletlen = 0;
3283 	char	*vidptr;
3284 	int	vidlen;
3285 	char	*dnlist_ptr;
3286 	char	*dataname_ptr;
3287 	int	dnlist_len;
3288 	int	dataname_len;
3289 	int	*data_list;
3290 	int	data_list_len;
3291 	int	rval = SD_FAILURE;
3292 	int	i;
3293 
3294 	ASSERT(un != NULL);
3295 
3296 	/* Obtain the configuration list associated with the .conf file */
3297 	if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS,
3298 	    sd_config_list, (caddr_t)&config_list, &config_list_len)
3299 	    != DDI_PROP_SUCCESS) {
3300 		return (SD_FAILURE);
3301 	}
3302 
3303 	/*
3304 	 * Compare vids in each duplet to the inquiry vid - if a match is
3305 	 * made, get the data value and update the soft state structure
3306 	 * accordingly.
3307 	 *
3308 	 * Note: This algorithm is complex and difficult to maintain. It should
3309 	 * be replaced with a more robust implementation.
3310 	 */
3311 	for (len = config_list_len, vidptr = config_list; len > 0;
3312 	    vidptr += dupletlen, len -= dupletlen) {
3313 		/*
3314 		 * Note: The assumption here is that each vid entry is on
3315 		 * a unique line from its associated duplet.
3316 		 */
3317 		vidlen = dupletlen = (int)strlen(vidptr);
3318 		if ((vidlen == 0) ||
3319 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3320 			dupletlen++;
3321 			continue;
3322 		}
3323 
3324 		/*
3325 		 * dnlist contains 1 or more blank separated
3326 		 * data-property-name entries
3327 		 */
3328 		dnlist_ptr = vidptr + vidlen + 1;
3329 		dnlist_len = (int)strlen(dnlist_ptr);
3330 		dupletlen += dnlist_len + 2;
3331 
3332 		/*
3333 		 * Set a pointer for the first data-property-name
3334 		 * entry in the list
3335 		 */
3336 		dataname_ptr = dnlist_ptr;
3337 		dataname_len = 0;
3338 
3339 		/*
3340 		 * Loop through all data-property-name entries in the
3341 		 * data-property-name-list setting the properties for each.
3342 		 */
3343 		while (dataname_len < dnlist_len) {
3344 			int version;
3345 
3346 			/*
3347 			 * Determine the length of the current
3348 			 * data-property-name entry by indexing until a
3349 			 * blank or NULL is encountered. When the space is
3350 			 * encountered reset it to a NULL for compliance
3351 			 * with ddi_getlongprop().
3352 			 */
3353 			for (i = 0; ((dataname_ptr[i] != ' ') &&
3354 			    (dataname_ptr[i] != '\0')); i++) {
3355 				;
3356 			}
3357 
3358 			dataname_len += i;
3359 			/* If not null terminated, Make it so */
3360 			if (dataname_ptr[i] == ' ') {
3361 				dataname_ptr[i] = '\0';
3362 			}
3363 			dataname_len++;
3364 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3365 			    "sd_process_sdconf_file: disk:%s, data:%s\n",
3366 			    vidptr, dataname_ptr);
3367 
3368 			/* Get the data list */
3369 			if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0,
3370 			    dataname_ptr, (caddr_t)&data_list, &data_list_len)
3371 			    != DDI_PROP_SUCCESS) {
3372 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3373 				    "sd_process_sdconf_file: data property (%s)"
3374 				    " has no value\n", dataname_ptr);
3375 				dataname_ptr = dnlist_ptr + dataname_len;
3376 				continue;
3377 			}
3378 
3379 			version = data_list[0];
3380 
3381 			if (version == SD_CONF_VERSION_1) {
3382 				sd_tunables values;
3383 
3384 				/* Set the properties */
3385 				if (sd_chk_vers1_data(un, data_list[1],
3386 				    &data_list[2], data_list_len, dataname_ptr)
3387 				    == SD_SUCCESS) {
3388 					sd_get_tunables_from_conf(un,
3389 					    data_list[1], &data_list[2],
3390 					    &values);
3391 					sd_set_vers1_properties(un,
3392 					    data_list[1], &values);
3393 					rval = SD_SUCCESS;
3394 				} else {
3395 					rval = SD_FAILURE;
3396 				}
3397 			} else {
3398 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3399 				    "data property %s version 0x%x is invalid.",
3400 				    dataname_ptr, version);
3401 				rval = SD_FAILURE;
3402 			}
3403 			kmem_free(data_list, data_list_len);
3404 			dataname_ptr = dnlist_ptr + dataname_len;
3405 		}
3406 	}
3407 
3408 	/* free up the memory allocated by ddi_getlongprop */
3409 	if (config_list) {
3410 		kmem_free(config_list, config_list_len);
3411 	}
3412 
3413 	return (rval);
3414 }
3415 
3416 /*
3417  *    Function: sd_get_tunables_from_conf()
3418  *
3419  *
3420  *    This function reads the data list from the sd.conf file and pulls
3421  *    the values that can have numeric values as arguments and places
3422  *    the values in the apropriate sd_tunables member.
3423  *    Since the order of the data list members varies across platforms
3424  *    This function reads them from the data list in a platform specific
3425  *    order and places them into the correct sd_tunable member that is
3426  *    a consistant across all platforms.
3427  */
3428 static void
3429 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3430     sd_tunables *values)
3431 {
3432 	int i;
3433 	int mask;
3434 
3435 	bzero(values, sizeof (sd_tunables));
3436 
3437 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3438 
3439 		mask = 1 << i;
3440 		if (mask > flags) {
3441 			break;
3442 		}
3443 
3444 		switch (mask & flags) {
3445 		case 0:	/* This mask bit not set in flags */
3446 			continue;
3447 		case SD_CONF_BSET_THROTTLE:
3448 			values->sdt_throttle = data_list[i];
3449 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3450 			    "sd_get_tunables_from_conf: throttle = %d\n",
3451 			    values->sdt_throttle);
3452 			break;
3453 		case SD_CONF_BSET_CTYPE:
3454 			values->sdt_ctype = data_list[i];
3455 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3456 			    "sd_get_tunables_from_conf: ctype = %d\n",
3457 			    values->sdt_ctype);
3458 			break;
3459 		case SD_CONF_BSET_NRR_COUNT:
3460 			values->sdt_not_rdy_retries = data_list[i];
3461 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3462 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
3463 			    values->sdt_not_rdy_retries);
3464 			break;
3465 		case SD_CONF_BSET_BSY_RETRY_COUNT:
3466 			values->sdt_busy_retries = data_list[i];
3467 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3468 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
3469 			    values->sdt_busy_retries);
3470 			break;
3471 		case SD_CONF_BSET_RST_RETRIES:
3472 			values->sdt_reset_retries = data_list[i];
3473 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3474 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
3475 			    values->sdt_reset_retries);
3476 			break;
3477 		case SD_CONF_BSET_RSV_REL_TIME:
3478 			values->sdt_reserv_rel_time = data_list[i];
3479 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3480 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
3481 			    values->sdt_reserv_rel_time);
3482 			break;
3483 		case SD_CONF_BSET_MIN_THROTTLE:
3484 			values->sdt_min_throttle = data_list[i];
3485 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3486 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
3487 			    values->sdt_min_throttle);
3488 			break;
3489 		case SD_CONF_BSET_DISKSORT_DISABLED:
3490 			values->sdt_disk_sort_dis = data_list[i];
3491 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3492 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
3493 			    values->sdt_disk_sort_dis);
3494 			break;
3495 		case SD_CONF_BSET_LUN_RESET_ENABLED:
3496 			values->sdt_lun_reset_enable = data_list[i];
3497 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3498 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
3499 			    "\n", values->sdt_lun_reset_enable);
3500 			break;
3501 		}
3502 	}
3503 }
3504 
3505 /*
3506  *    Function: sd_process_sdconf_table
3507  *
3508  * Description: Search the static configuration table for a match on the
3509  *		inquiry vid/pid and update the driver soft state structure
3510  *		according to the table property values for the device.
3511  *
3512  *		The form of a configuration table entry is:
3513  *		  <vid+pid>,<flags>,<property-data>
3514  *		  "SEAGATE ST42400N",1,63,0,0			(Fibre)
3515  *		  "SEAGATE ST42400N",1,63,0,0,0,0		(Sparc)
3516  *		  "SEAGATE ST42400N",1,63,0,0,0,0,0,0,0,0,0,0	(Intel)
3517  *
3518  *   Arguments: un - driver soft state (unit) structure
3519  */
3520 
3521 static void
3522 sd_process_sdconf_table(struct sd_lun *un)
3523 {
3524 	char	*id = NULL;
3525 	int	table_index;
3526 	int	idlen;
3527 
3528 	ASSERT(un != NULL);
3529 	for (table_index = 0; table_index < sd_disk_table_size;
3530 	    table_index++) {
3531 		id = sd_disk_table[table_index].device_id;
3532 		idlen = strlen(id);
3533 		if (idlen == 0) {
3534 			continue;
3535 		}
3536 
3537 		/*
3538 		 * The static configuration table currently does not
3539 		 * implement version 10 properties. Additionally,
3540 		 * multiple data-property-name entries are not
3541 		 * implemented in the static configuration table.
3542 		 */
3543 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
3544 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3545 			    "sd_process_sdconf_table: disk %s\n", id);
3546 			sd_set_vers1_properties(un,
3547 			    sd_disk_table[table_index].flags,
3548 			    sd_disk_table[table_index].properties);
3549 			break;
3550 		}
3551 	}
3552 }
3553 
3554 
3555 /*
3556  *    Function: sd_sdconf_id_match
3557  *
3558  * Description: This local function implements a case sensitive vid/pid
3559  *		comparison as well as the boundary cases of wild card and
3560  *		multiple blanks.
3561  *
3562  *		Note: An implicit assumption made here is that the scsi
3563  *		inquiry structure will always keep the vid, pid and
3564  *		revision strings in consecutive sequence, so they can be
3565  *		read as a single string. If this assumption is not the
3566  *		case, a separate string, to be used for the check, needs
3567  *		to be built with these strings concatenated.
3568  *
3569  *   Arguments: un - driver soft state (unit) structure
3570  *		id - table or config file vid/pid
3571  *		idlen  - length of the vid/pid (bytes)
3572  *
3573  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3574  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3575  */
3576 
3577 static int
3578 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
3579 {
3580 	struct scsi_inquiry	*sd_inq;
3581 	int 			rval = SD_SUCCESS;
3582 
3583 	ASSERT(un != NULL);
3584 	sd_inq = un->un_sd->sd_inq;
3585 	ASSERT(id != NULL);
3586 
3587 	/*
3588 	 * We use the inq_vid as a pointer to a buffer containing the
3589 	 * vid and pid and use the entire vid/pid length of the table
3590 	 * entry for the comparison. This works because the inq_pid
3591 	 * data member follows inq_vid in the scsi_inquiry structure.
3592 	 */
3593 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
3594 		/*
3595 		 * The user id string is compared to the inquiry vid/pid
3596 		 * using a case insensitive comparison and ignoring
3597 		 * multiple spaces.
3598 		 */
3599 		rval = sd_blank_cmp(un, id, idlen);
3600 		if (rval != SD_SUCCESS) {
3601 			/*
3602 			 * User id strings that start and end with a "*"
3603 			 * are a special case. These do not have a
3604 			 * specific vendor, and the product string can
3605 			 * appear anywhere in the 16 byte PID portion of
3606 			 * the inquiry data. This is a simple strstr()
3607 			 * type search for the user id in the inquiry data.
3608 			 */
3609 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
3610 				char	*pidptr = &id[1];
3611 				int	i;
3612 				int	j;
3613 				int	pidstrlen = idlen - 2;
3614 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
3615 				    pidstrlen;
3616 
3617 				if (j < 0) {
3618 					return (SD_FAILURE);
3619 				}
3620 				for (i = 0; i < j; i++) {
3621 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
3622 					    pidptr, pidstrlen) == 0) {
3623 						rval = SD_SUCCESS;
3624 						break;
3625 					}
3626 				}
3627 			}
3628 		}
3629 	}
3630 	return (rval);
3631 }
3632 
3633 
3634 /*
3635  *    Function: sd_blank_cmp
3636  *
3637  * Description: If the id string starts and ends with a space, treat
3638  *		multiple consecutive spaces as equivalent to a single
3639  *		space. For example, this causes a sd_disk_table entry
3640  *		of " NEC CDROM " to match a device's id string of
3641  *		"NEC       CDROM".
3642  *
3643  *		Note: The success exit condition for this routine is if
3644  *		the pointer to the table entry is '\0' and the cnt of
3645  *		the inquiry length is zero. This will happen if the inquiry
3646  *		string returned by the device is padded with spaces to be
3647  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
3648  *		SCSI spec states that the inquiry string is to be padded with
3649  *		spaces.
3650  *
3651  *   Arguments: un - driver soft state (unit) structure
3652  *		id - table or config file vid/pid
3653  *		idlen  - length of the vid/pid (bytes)
3654  *
3655  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3656  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3657  */
3658 
3659 static int
3660 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
3661 {
3662 	char		*p1;
3663 	char		*p2;
3664 	int		cnt;
3665 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
3666 	    sizeof (SD_INQUIRY(un)->inq_pid);
3667 
3668 	ASSERT(un != NULL);
3669 	p2 = un->un_sd->sd_inq->inq_vid;
3670 	ASSERT(id != NULL);
3671 	p1 = id;
3672 
3673 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
3674 		/*
3675 		 * Note: string p1 is terminated by a NUL but string p2
3676 		 * isn't.  The end of p2 is determined by cnt.
3677 		 */
3678 		for (;;) {
3679 			/* skip over any extra blanks in both strings */
3680 			while ((*p1 != '\0') && (*p1 == ' ')) {
3681 				p1++;
3682 			}
3683 			while ((cnt != 0) && (*p2 == ' ')) {
3684 				p2++;
3685 				cnt--;
3686 			}
3687 
3688 			/* compare the two strings */
3689 			if ((cnt == 0) ||
3690 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
3691 				break;
3692 			}
3693 			while ((cnt > 0) &&
3694 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
3695 				p1++;
3696 				p2++;
3697 				cnt--;
3698 			}
3699 		}
3700 	}
3701 
3702 	/* return SD_SUCCESS if both strings match */
3703 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
3704 }
3705 
3706 
3707 /*
3708  *    Function: sd_chk_vers1_data
3709  *
3710  * Description: Verify the version 1 device properties provided by the
3711  *		user via the configuration file
3712  *
3713  *   Arguments: un	     - driver soft state (unit) structure
3714  *		flags	     - integer mask indicating properties to be set
3715  *		prop_list    - integer list of property values
3716  *		list_len     - length of user provided data
3717  *
3718  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
3719  *		SD_FAILURE - Indicates the user provided data is invalid
3720  */
3721 
3722 static int
3723 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
3724     int list_len, char *dataname_ptr)
3725 {
3726 	int i;
3727 	int mask = 1;
3728 	int index = 0;
3729 
3730 	ASSERT(un != NULL);
3731 
3732 	/* Check for a NULL property name and list */
3733 	if (dataname_ptr == NULL) {
3734 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3735 		    "sd_chk_vers1_data: NULL data property name.");
3736 		return (SD_FAILURE);
3737 	}
3738 	if (prop_list == NULL) {
3739 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3740 		    "sd_chk_vers1_data: %s NULL data property list.",
3741 		    dataname_ptr);
3742 		return (SD_FAILURE);
3743 	}
3744 
3745 	/* Display a warning if undefined bits are set in the flags */
3746 	if (flags & ~SD_CONF_BIT_MASK) {
3747 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3748 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
3749 		    "Properties not set.",
3750 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
3751 		return (SD_FAILURE);
3752 	}
3753 
3754 	/*
3755 	 * Verify the length of the list by identifying the highest bit set
3756 	 * in the flags and validating that the property list has a length
3757 	 * up to the index of this bit.
3758 	 */
3759 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3760 		if (flags & mask) {
3761 			index++;
3762 		}
3763 		mask = 1 << i;
3764 	}
3765 	if ((list_len / sizeof (int)) < (index + 2)) {
3766 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3767 		    "sd_chk_vers1_data: "
3768 		    "Data property list %s size is incorrect. "
3769 		    "Properties not set.", dataname_ptr);
3770 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
3771 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
3772 		return (SD_FAILURE);
3773 	}
3774 	return (SD_SUCCESS);
3775 }
3776 
3777 
3778 /*
3779  *    Function: sd_set_vers1_properties
3780  *
3781  * Description: Set version 1 device properties based on a property list
3782  *		retrieved from the driver configuration file or static
3783  *		configuration table. Version 1 properties have the format:
3784  *
3785  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3786  *
3787  *		where the prop0 value will be used to set prop0 if bit0
3788  *		is set in the flags
3789  *
3790  *   Arguments: un	     - driver soft state (unit) structure
3791  *		flags	     - integer mask indicating properties to be set
3792  *		prop_list    - integer list of property values
3793  */
3794 
3795 static void
3796 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
3797 {
3798 	ASSERT(un != NULL);
3799 
3800 	/*
3801 	 * Set the flag to indicate cache is to be disabled. An attempt
3802 	 * to disable the cache via sd_disable_caching() will be made
3803 	 * later during attach once the basic initialization is complete.
3804 	 */
3805 	if (flags & SD_CONF_BSET_NOCACHE) {
3806 		un->un_f_opt_disable_cache = TRUE;
3807 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3808 		    "sd_set_vers1_properties: caching disabled flag set\n");
3809 	}
3810 
3811 	/* CD-specific configuration parameters */
3812 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
3813 		un->un_f_cfg_playmsf_bcd = TRUE;
3814 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3815 		    "sd_set_vers1_properties: playmsf_bcd set\n");
3816 	}
3817 	if (flags & SD_CONF_BSET_READSUB_BCD) {
3818 		un->un_f_cfg_readsub_bcd = TRUE;
3819 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3820 		    "sd_set_vers1_properties: readsub_bcd set\n");
3821 	}
3822 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
3823 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
3824 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3825 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
3826 	}
3827 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
3828 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
3829 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3830 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
3831 	}
3832 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
3833 		un->un_f_cfg_no_read_header = TRUE;
3834 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3835 			    "sd_set_vers1_properties: no_read_header set\n");
3836 	}
3837 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
3838 		un->un_f_cfg_read_cd_xd4 = TRUE;
3839 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3840 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
3841 	}
3842 
3843 	/* Support for devices which do not have valid/unique serial numbers */
3844 	if (flags & SD_CONF_BSET_FAB_DEVID) {
3845 		un->un_f_opt_fab_devid = TRUE;
3846 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3847 		    "sd_set_vers1_properties: fab_devid bit set\n");
3848 	}
3849 
3850 	/* Support for user throttle configuration */
3851 	if (flags & SD_CONF_BSET_THROTTLE) {
3852 		ASSERT(prop_list != NULL);
3853 		un->un_saved_throttle = un->un_throttle =
3854 		    prop_list->sdt_throttle;
3855 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3856 		    "sd_set_vers1_properties: throttle set to %d\n",
3857 		    prop_list->sdt_throttle);
3858 	}
3859 
3860 	/* Set the per disk retry count according to the conf file or table. */
3861 	if (flags & SD_CONF_BSET_NRR_COUNT) {
3862 		ASSERT(prop_list != NULL);
3863 		if (prop_list->sdt_not_rdy_retries) {
3864 			un->un_notready_retry_count =
3865 				prop_list->sdt_not_rdy_retries;
3866 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3867 			    "sd_set_vers1_properties: not ready retry count"
3868 			    " set to %d\n", un->un_notready_retry_count);
3869 		}
3870 	}
3871 
3872 	/* The controller type is reported for generic disk driver ioctls */
3873 	if (flags & SD_CONF_BSET_CTYPE) {
3874 		ASSERT(prop_list != NULL);
3875 		switch (prop_list->sdt_ctype) {
3876 		case CTYPE_CDROM:
3877 			un->un_ctype = prop_list->sdt_ctype;
3878 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3879 			    "sd_set_vers1_properties: ctype set to "
3880 			    "CTYPE_CDROM\n");
3881 			break;
3882 		case CTYPE_CCS:
3883 			un->un_ctype = prop_list->sdt_ctype;
3884 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3885 				"sd_set_vers1_properties: ctype set to "
3886 				"CTYPE_CCS\n");
3887 			break;
3888 		case CTYPE_ROD:		/* RW optical */
3889 			un->un_ctype = prop_list->sdt_ctype;
3890 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3891 			    "sd_set_vers1_properties: ctype set to "
3892 			    "CTYPE_ROD\n");
3893 			break;
3894 		default:
3895 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3896 			    "sd_set_vers1_properties: Could not set "
3897 			    "invalid ctype value (%d)",
3898 			    prop_list->sdt_ctype);
3899 		}
3900 	}
3901 
3902 	/* Purple failover timeout */
3903 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
3904 		ASSERT(prop_list != NULL);
3905 		un->un_busy_retry_count =
3906 			prop_list->sdt_busy_retries;
3907 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3908 		    "sd_set_vers1_properties: "
3909 		    "busy retry count set to %d\n",
3910 		    un->un_busy_retry_count);
3911 	}
3912 
3913 	/* Purple reset retry count */
3914 	if (flags & SD_CONF_BSET_RST_RETRIES) {
3915 		ASSERT(prop_list != NULL);
3916 		un->un_reset_retry_count =
3917 			prop_list->sdt_reset_retries;
3918 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3919 		    "sd_set_vers1_properties: "
3920 		    "reset retry count set to %d\n",
3921 		    un->un_reset_retry_count);
3922 	}
3923 
3924 	/* Purple reservation release timeout */
3925 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
3926 		ASSERT(prop_list != NULL);
3927 		un->un_reserve_release_time =
3928 			prop_list->sdt_reserv_rel_time;
3929 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3930 		    "sd_set_vers1_properties: "
3931 		    "reservation release timeout set to %d\n",
3932 		    un->un_reserve_release_time);
3933 	}
3934 
3935 	/*
3936 	 * Driver flag telling the driver to verify that no commands are pending
3937 	 * for a device before issuing a Test Unit Ready. This is a workaround
3938 	 * for a firmware bug in some Seagate eliteI drives.
3939 	 */
3940 	if (flags & SD_CONF_BSET_TUR_CHECK) {
3941 		un->un_f_cfg_tur_check = TRUE;
3942 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3943 		    "sd_set_vers1_properties: tur queue check set\n");
3944 	}
3945 
3946 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
3947 		un->un_min_throttle = prop_list->sdt_min_throttle;
3948 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3949 		    "sd_set_vers1_properties: min throttle set to %d\n",
3950 		    un->un_min_throttle);
3951 	}
3952 
3953 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
3954 		un->un_f_disksort_disabled =
3955 		    (prop_list->sdt_disk_sort_dis != 0) ?
3956 		    TRUE : FALSE;
3957 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3958 		    "sd_set_vers1_properties: disksort disabled "
3959 		    "flag set to %d\n",
3960 		    prop_list->sdt_disk_sort_dis);
3961 	}
3962 
3963 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
3964 		un->un_f_lun_reset_enabled =
3965 		    (prop_list->sdt_lun_reset_enable != 0) ?
3966 		    TRUE : FALSE;
3967 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3968 		    "sd_set_vers1_properties: lun reset enabled "
3969 		    "flag set to %d\n",
3970 		    prop_list->sdt_lun_reset_enable);
3971 	}
3972 
3973 	/*
3974 	 * Validate the throttle values.
3975 	 * If any of the numbers are invalid, set everything to defaults.
3976 	 */
3977 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
3978 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
3979 	    (un->un_min_throttle > un->un_throttle)) {
3980 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
3981 		un->un_min_throttle = sd_min_throttle;
3982 	}
3983 }
3984 
3985 /*
3986  *   Function: sd_is_lsi()
3987  *
3988  *   Description: Check for lsi devices, step throught the static device
3989  *	table to match vid/pid.
3990  *
3991  *   Args: un - ptr to sd_lun
3992  *
3993  *   Notes:  When creating new LSI property, need to add the new LSI property
3994  *		to this function.
3995  */
3996 static void
3997 sd_is_lsi(struct sd_lun *un)
3998 {
3999 	char	*id = NULL;
4000 	int	table_index;
4001 	int	idlen;
4002 	void	*prop;
4003 
4004 	ASSERT(un != NULL);
4005 	for (table_index = 0; table_index < sd_disk_table_size;
4006 	    table_index++) {
4007 		id = sd_disk_table[table_index].device_id;
4008 		idlen = strlen(id);
4009 		if (idlen == 0) {
4010 			continue;
4011 		}
4012 
4013 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4014 			prop = sd_disk_table[table_index].properties;
4015 			if (prop == &lsi_properties ||
4016 			    prop == &lsi_oem_properties ||
4017 			    prop == &lsi_properties_scsi ||
4018 			    prop == &symbios_properties) {
4019 				un->un_f_cfg_is_lsi = TRUE;
4020 			}
4021 			break;
4022 		}
4023 	}
4024 }
4025 
4026 
4027 /*
4028  * The following routines support reading and interpretation of disk labels,
4029  * including Solaris BE (8-slice) vtoc's, Solaris LE (16-slice) vtoc's, and
4030  * fdisk tables.
4031  */
4032 
4033 /*
4034  *    Function: sd_validate_geometry
4035  *
4036  * Description: Read the label from the disk (if present). Update the unit's
4037  *		geometry and vtoc information from the data in the label.
4038  *		Verify that the label is valid.
4039  *
4040  *   Arguments: un - driver soft state (unit) structure
4041  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4042  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4043  *			to use the USCSI "direct" chain and bypass the normal
4044  *			command waitq.
4045  *
4046  * Return Code: 0 - Successful completion
4047  *		EINVAL  - Invalid value in un->un_tgt_blocksize or
4048  *			  un->un_blockcount; or label on disk is corrupted
4049  *			  or unreadable.
4050  *		EACCES  - Reservation conflict at the device.
4051  *		ENOMEM  - Resource allocation error
4052  *		ENOTSUP - geometry not applicable
4053  *
4054  *     Context: Kernel thread only (can sleep).
4055  */
4056 
4057 static int
4058 sd_validate_geometry(struct sd_lun *un, int path_flag)
4059 {
4060 	static	char		labelstring[128];
4061 	static	char		buf[256];
4062 	char	*label		= NULL;
4063 	int	label_error	= 0;
4064 	int	gvalid		= un->un_f_geometry_is_valid;
4065 	int	lbasize;
4066 	uint_t	capacity;
4067 	int	count;
4068 
4069 	ASSERT(un != NULL);
4070 	ASSERT(mutex_owned(SD_MUTEX(un)));
4071 
4072 	/*
4073 	 * If the required values are not valid, then try getting them
4074 	 * once via read capacity. If that fails, then fail this call.
4075 	 * This is necessary with the new mpxio failover behavior in
4076 	 * the T300 where we can get an attach for the inactive path
4077 	 * before the active path. The inactive path fails commands with
4078 	 * sense data of 02,04,88 which happens to the read capacity
4079 	 * before mpxio has had sufficient knowledge to know if it should
4080 	 * force a fail over or not. (Which it won't do at attach anyhow).
4081 	 * If the read capacity at attach time fails, un_tgt_blocksize and
4082 	 * un_blockcount won't be valid.
4083 	 */
4084 	if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
4085 	    (un->un_f_blockcount_is_valid != TRUE)) {
4086 		uint64_t	cap;
4087 		uint32_t	lbasz;
4088 		int		rval;
4089 
4090 		mutex_exit(SD_MUTEX(un));
4091 		rval = sd_send_scsi_READ_CAPACITY(un, &cap,
4092 		    &lbasz, SD_PATH_DIRECT);
4093 		mutex_enter(SD_MUTEX(un));
4094 		if (rval == 0) {
4095 			/*
4096 			 * The following relies on
4097 			 * sd_send_scsi_READ_CAPACITY never
4098 			 * returning 0 for capacity and/or lbasize.
4099 			 */
4100 			sd_update_block_info(un, lbasz, cap);
4101 		}
4102 
4103 		if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
4104 		    (un->un_f_blockcount_is_valid != TRUE)) {
4105 			return (EINVAL);
4106 		}
4107 	}
4108 
4109 	/*
4110 	 * Copy the lbasize and capacity so that if they're reset while we're
4111 	 * not holding the SD_MUTEX, we will continue to use valid values
4112 	 * after the SD_MUTEX is reacquired. (4119659)
4113 	 */
4114 	lbasize  = un->un_tgt_blocksize;
4115 	capacity = un->un_blockcount;
4116 
4117 #if defined(_SUNOS_VTOC_16)
4118 	/*
4119 	 * Set up the "whole disk" fdisk partition; this should always
4120 	 * exist, regardless of whether the disk contains an fdisk table
4121 	 * or vtoc.
4122 	 */
4123 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
4124 	un->un_map[P0_RAW_DISK].dkl_nblk  = capacity;
4125 #endif
4126 
4127 	/*
4128 	 * Refresh the logical and physical geometry caches.
4129 	 * (data from MODE SENSE format/rigid disk geometry pages,
4130 	 * and scsi_ifgetcap("geometry").
4131 	 */
4132 	sd_resync_geom_caches(un, capacity, lbasize, path_flag);
4133 
4134 	label_error = sd_use_efi(un, path_flag);
4135 	if (label_error == 0) {
4136 		/* found a valid EFI label */
4137 		SD_TRACE(SD_LOG_IO_PARTITION, un,
4138 			"sd_validate_geometry: found EFI label\n");
4139 		un->un_solaris_offset = 0;
4140 		un->un_solaris_size = capacity;
4141 		return (ENOTSUP);
4142 	}
4143 	if (un->un_blockcount > DK_MAX_BLOCKS) {
4144 		if (label_error == ESRCH) {
4145 			/*
4146 			 * they've configured a LUN over 1TB, but used
4147 			 * format.dat to restrict format's view of the
4148 			 * capacity to be under 1TB
4149 			 */
4150 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4151 "is >1TB and has a VTOC label: use format(1M) to either decrease the");
4152 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
4153 "size to be < 1TB or relabel the disk with an EFI label");
4154 		} else {
4155 			/* unlabeled disk over 1TB */
4156 			return (ENOTSUP);
4157 		}
4158 	}
4159 	label_error = 0;
4160 
4161 	/*
4162 	 * at this point it is either labeled with a VTOC or it is
4163 	 * under 1TB
4164 	 */
4165 
4166 	/*
4167 	 * Only DIRECT ACCESS devices will have Sun labels.
4168 	 * CD's supposedly have a Sun label, too
4169 	 */
4170 	if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT || ISREMOVABLE(un)) {
4171 		struct	dk_label *dkl;
4172 		offset_t dkl1;
4173 		offset_t label_addr, real_addr;
4174 		int	rval;
4175 		size_t	buffer_size;
4176 
4177 		/*
4178 		 * Note: This will set up un->un_solaris_size and
4179 		 * un->un_solaris_offset.
4180 		 */
4181 		switch (sd_read_fdisk(un, capacity, lbasize, path_flag)) {
4182 		case SD_CMD_RESERVATION_CONFLICT:
4183 			ASSERT(mutex_owned(SD_MUTEX(un)));
4184 			return (EACCES);
4185 		case SD_CMD_FAILURE:
4186 			ASSERT(mutex_owned(SD_MUTEX(un)));
4187 			return (ENOMEM);
4188 		}
4189 
4190 		if (un->un_solaris_size <= DK_LABEL_LOC) {
4191 			/*
4192 			 * Found fdisk table but no Solaris partition entry,
4193 			 * so don't call sd_uselabel() and don't create
4194 			 * a default label.
4195 			 */
4196 			label_error = 0;
4197 			un->un_f_geometry_is_valid = TRUE;
4198 			goto no_solaris_partition;
4199 		}
4200 		label_addr = (daddr_t)(un->un_solaris_offset + DK_LABEL_LOC);
4201 
4202 		/*
4203 		 * sys_blocksize != tgt_blocksize, need to re-adjust
4204 		 * blkno and save the index to beginning of dk_label
4205 		 */
4206 		real_addr = SD_SYS2TGTBLOCK(un, label_addr);
4207 		buffer_size = SD_REQBYTES2TGTBYTES(un,
4208 		    sizeof (struct dk_label));
4209 
4210 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_validate_geometry: "
4211 		    "label_addr: 0x%x allocation size: 0x%x\n",
4212 		    label_addr, buffer_size);
4213 		dkl = kmem_zalloc(buffer_size, KM_NOSLEEP);
4214 		if (dkl == NULL) {
4215 			return (ENOMEM);
4216 		}
4217 
4218 		mutex_exit(SD_MUTEX(un));
4219 		rval = sd_send_scsi_READ(un, dkl, buffer_size, real_addr,
4220 		    path_flag);
4221 		mutex_enter(SD_MUTEX(un));
4222 
4223 		switch (rval) {
4224 		case 0:
4225 			/*
4226 			 * sd_uselabel will establish that the geometry
4227 			 * is valid.
4228 			 * For sys_blocksize != tgt_blocksize, need
4229 			 * to index into the beginning of dk_label
4230 			 */
4231 			dkl1 = (daddr_t)dkl
4232 				+ SD_TGTBYTEOFFSET(un, label_addr, real_addr);
4233 			if (sd_uselabel(un, (struct dk_label *)(uintptr_t)dkl1,
4234 			    path_flag) != SD_LABEL_IS_VALID) {
4235 				label_error = EINVAL;
4236 			}
4237 			break;
4238 		case EACCES:
4239 			label_error = EACCES;
4240 			break;
4241 		default:
4242 			label_error = EINVAL;
4243 			break;
4244 		}
4245 
4246 		kmem_free(dkl, buffer_size);
4247 
4248 #if defined(_SUNOS_VTOC_8)
4249 		label = (char *)un->un_asciilabel;
4250 #elif defined(_SUNOS_VTOC_16)
4251 		label = (char *)un->un_vtoc.v_asciilabel;
4252 #else
4253 #error "No VTOC format defined."
4254 #endif
4255 	}
4256 
4257 	/*
4258 	 * If a valid label was not found, AND if no reservation conflict
4259 	 * was detected, then go ahead and create a default label (4069506).
4260 	 *
4261 	 * Note: currently, for VTOC_8 devices, the default label is created
4262 	 * for removables only.  For VTOC_16 devices, the default label will
4263 	 * be created for both removables and non-removables alike.
4264 	 * (see sd_build_default_label)
4265 	 */
4266 #if defined(_SUNOS_VTOC_8)
4267 	if (ISREMOVABLE(un) && (label_error != EACCES)) {
4268 #elif defined(_SUNOS_VTOC_16)
4269 	if (label_error != EACCES) {
4270 #endif
4271 		if (un->un_f_geometry_is_valid == FALSE) {
4272 			sd_build_default_label(un);
4273 		}
4274 		label_error = 0;
4275 	}
4276 
4277 no_solaris_partition:
4278 	if ((!ISREMOVABLE(un) ||
4279 	    (ISREMOVABLE(un) && un->un_mediastate == DKIO_EJECTED)) &&
4280 	    (un->un_state == SD_STATE_NORMAL && gvalid == FALSE)) {
4281 		/*
4282 		 * Print out a message indicating who and what we are.
4283 		 * We do this only when we happen to really validate the
4284 		 * geometry. We may call sd_validate_geometry() at other
4285 		 * times, e.g., ioctl()'s like Get VTOC in which case we
4286 		 * don't want to print the label.
4287 		 * If the geometry is valid, print the label string,
4288 		 * else print vendor and product info, if available
4289 		 */
4290 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
4291 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "?<%s>\n", label);
4292 		} else {
4293 			mutex_enter(&sd_label_mutex);
4294 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
4295 			    labelstring);
4296 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
4297 			    &labelstring[64]);
4298 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
4299 			    labelstring, &labelstring[64]);
4300 			if (un->un_f_blockcount_is_valid == TRUE) {
4301 				(void) sprintf(&buf[strlen(buf)],
4302 				    ", %llu %u byte blocks\n",
4303 				    (longlong_t)un->un_blockcount,
4304 				    un->un_tgt_blocksize);
4305 			} else {
4306 				(void) sprintf(&buf[strlen(buf)],
4307 				    ", (unknown capacity)\n");
4308 			}
4309 			SD_INFO(SD_LOG_ATTACH_DETACH, un, buf);
4310 			mutex_exit(&sd_label_mutex);
4311 		}
4312 	}
4313 
4314 #if defined(_SUNOS_VTOC_16)
4315 	/*
4316 	 * If we have valid geometry, set up the remaining fdisk partitions.
4317 	 * Note that dkl_cylno is not used for the fdisk map entries, so
4318 	 * we set it to an entirely bogus value.
4319 	 */
4320 	for (count = 0; count < FD_NUMPART; count++) {
4321 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
4322 		un->un_map[FDISK_P1 + count].dkl_nblk =
4323 		    un->un_fmap[count].fmap_nblk;
4324 
4325 		un->un_offset[FDISK_P1 + count] =
4326 		    un->un_fmap[count].fmap_start;
4327 	}
4328 #endif
4329 
4330 	for (count = 0; count < NDKMAP; count++) {
4331 #if defined(_SUNOS_VTOC_8)
4332 		struct dk_map *lp  = &un->un_map[count];
4333 		un->un_offset[count] =
4334 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
4335 #elif defined(_SUNOS_VTOC_16)
4336 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
4337 
4338 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
4339 #else
4340 #error "No VTOC format defined."
4341 #endif
4342 	}
4343 
4344 	return (label_error);
4345 }
4346 
4347 
4348 #if defined(_SUNOS_VTOC_16)
4349 /*
4350  * Macro: MAX_BLKS
4351  *
4352  *	This macro is used for table entries where we need to have the largest
4353  *	possible sector value for that head & SPT (sectors per track)
4354  *	combination.  Other entries for some smaller disk sizes are set by
4355  *	convention to match those used by X86 BIOS usage.
4356  */
4357 #define	MAX_BLKS(heads, spt)	UINT16_MAX * heads * spt, heads, spt
4358 
4359 /*
4360  *    Function: sd_convert_geometry
4361  *
4362  * Description: Convert physical geometry into a dk_geom structure. In
4363  *		other words, make sure we don't wrap 16-bit values.
4364  *		e.g. converting from geom_cache to dk_geom
4365  *
4366  *     Context: Kernel thread only
4367  */
4368 static void
4369 sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g)
4370 {
4371 	int i;
4372 	static const struct chs_values {
4373 		uint_t max_cap;		/* Max Capacity for this HS. */
4374 		uint_t nhead;		/* Heads to use. */
4375 		uint_t nsect;		/* SPT to use. */
4376 	} CHS_values[] = {
4377 		{0x00200000,  64, 32},		/* 1GB or smaller disk. */
4378 		{0x01000000, 128, 32},		/* 8GB or smaller disk. */
4379 		{MAX_BLKS(255,  63)},		/* 502.02GB or smaller disk. */
4380 		{MAX_BLKS(255, 126)},		/* .98TB or smaller disk. */
4381 		{DK_MAX_BLOCKS, 255, 189}	/* Max size is just under 1TB */
4382 	};
4383 
4384 	/* Unlabeled SCSI floppy device */
4385 	if (capacity <= 0x1000) {
4386 		un_g->dkg_nhead = 2;
4387 		un_g->dkg_ncyl = 80;
4388 		un_g->dkg_nsect = capacity / (un_g->dkg_nhead * un_g->dkg_ncyl);
4389 		return;
4390 	}
4391 
4392 	/*
4393 	 * For all devices we calculate cylinders using the
4394 	 * heads and sectors we assign based on capacity of the
4395 	 * device.  The table is designed to be compatible with the
4396 	 * way other operating systems lay out fdisk tables for X86
4397 	 * and to insure that the cylinders never exceed 65535 to
4398 	 * prevent problems with X86 ioctls that report geometry.
4399 	 * We use SPT that are multiples of 63, since other OSes that
4400 	 * are not limited to 16-bits for cylinders stop at 63 SPT
4401 	 * we make do by using multiples of 63 SPT.
4402 	 *
4403 	 * Note than capacities greater than or equal to 1TB will simply
4404 	 * get the largest geometry from the table. This should be okay
4405 	 * since disks this large shouldn't be using CHS values anyway.
4406 	 */
4407 	for (i = 0; CHS_values[i].max_cap < capacity &&
4408 	    CHS_values[i].max_cap != DK_MAX_BLOCKS; i++)
4409 		;
4410 
4411 	un_g->dkg_nhead = CHS_values[i].nhead;
4412 	un_g->dkg_nsect = CHS_values[i].nsect;
4413 }
4414 #endif
4415 
4416 
4417 /*
4418  *    Function: sd_resync_geom_caches
4419  *
4420  * Description: (Re)initialize both geometry caches: the virtual geometry
4421  *		information is extracted from the HBA (the "geometry"
4422  *		capability), and the physical geometry cache data is
4423  *		generated by issuing MODE SENSE commands.
4424  *
4425  *   Arguments: un - driver soft state (unit) structure
4426  *		capacity - disk capacity in #blocks
4427  *		lbasize - disk block size in bytes
4428  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4429  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4430  *			to use the USCSI "direct" chain and bypass the normal
4431  *			command waitq.
4432  *
4433  *     Context: Kernel thread only (can sleep).
4434  */
4435 
4436 static void
4437 sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize,
4438 	int path_flag)
4439 {
4440 	struct 	geom_cache 	pgeom;
4441 	struct 	geom_cache	*pgeom_p = &pgeom;
4442 	int 	spc;
4443 	unsigned short nhead;
4444 	unsigned short nsect;
4445 
4446 	ASSERT(un != NULL);
4447 	ASSERT(mutex_owned(SD_MUTEX(un)));
4448 
4449 	/*
4450 	 * Ask the controller for its logical geometry.
4451 	 * Note: if the HBA does not support scsi_ifgetcap("geometry"),
4452 	 * then the lgeom cache will be invalid.
4453 	 */
4454 	sd_get_virtual_geometry(un, capacity, lbasize);
4455 
4456 	/*
4457 	 * Initialize the pgeom cache from lgeom, so that if MODE SENSE
4458 	 * doesn't work, DKIOCG_PHYSGEOM can return reasonable values.
4459 	 */
4460 	if (un->un_lgeom.g_nsect == 0 || un->un_lgeom.g_nhead == 0) {
4461 		/*
4462 		 * Note: Perhaps this needs to be more adaptive? The rationale
4463 		 * is that, if there's no HBA geometry from the HBA driver, any
4464 		 * guess is good, since this is the physical geometry. If MODE
4465 		 * SENSE fails this gives a max cylinder size for non-LBA access
4466 		 */
4467 		nhead = 255;
4468 		nsect = 63;
4469 	} else {
4470 		nhead = un->un_lgeom.g_nhead;
4471 		nsect = un->un_lgeom.g_nsect;
4472 	}
4473 
4474 	if (ISCD(un)) {
4475 		pgeom_p->g_nhead = 1;
4476 		pgeom_p->g_nsect = nsect * nhead;
4477 	} else {
4478 		pgeom_p->g_nhead = nhead;
4479 		pgeom_p->g_nsect = nsect;
4480 	}
4481 
4482 	spc = pgeom_p->g_nhead * pgeom_p->g_nsect;
4483 	pgeom_p->g_capacity = capacity;
4484 	pgeom_p->g_ncyl = pgeom_p->g_capacity / spc;
4485 	pgeom_p->g_acyl = 0;
4486 
4487 	/*
4488 	 * Retrieve fresh geometry data from the hardware, stash it
4489 	 * here temporarily before we rebuild the incore label.
4490 	 *
4491 	 * We want to use the MODE SENSE commands to derive the
4492 	 * physical geometry of the device, but if either command
4493 	 * fails, the logical geometry is used as the fallback for
4494 	 * disk label geometry.
4495 	 */
4496 	mutex_exit(SD_MUTEX(un));
4497 	sd_get_physical_geometry(un, pgeom_p, capacity, lbasize, path_flag);
4498 	mutex_enter(SD_MUTEX(un));
4499 
4500 	/*
4501 	 * Now update the real copy while holding the mutex. This
4502 	 * way the global copy is never in an inconsistent state.
4503 	 */
4504 	bcopy(pgeom_p, &un->un_pgeom,  sizeof (un->un_pgeom));
4505 
4506 	SD_INFO(SD_LOG_COMMON, un, "sd_resync_geom_caches: "
4507 	    "(cached from lgeom)\n");
4508 	SD_INFO(SD_LOG_COMMON, un,
4509 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4510 	    un->un_pgeom.g_ncyl, un->un_pgeom.g_acyl,
4511 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
4512 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
4513 	    "intrlv: %d; rpm: %d\n", un->un_pgeom.g_secsize,
4514 	    un->un_pgeom.g_capacity, un->un_pgeom.g_intrlv,
4515 	    un->un_pgeom.g_rpm);
4516 }
4517 
4518 
4519 /*
4520  *    Function: sd_read_fdisk
4521  *
4522  * Description: utility routine to read the fdisk table.
4523  *
4524  *   Arguments: un - driver soft state (unit) structure
4525  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4526  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4527  *			to use the USCSI "direct" chain and bypass the normal
4528  *			command waitq.
4529  *
4530  * Return Code: SD_CMD_SUCCESS
4531  *		SD_CMD_FAILURE
4532  *
4533  *     Context: Kernel thread only (can sleep).
4534  */
4535 /* ARGSUSED */
4536 static int
4537 sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize, int path_flag)
4538 {
4539 #if defined(_NO_FDISK_PRESENT)
4540 
4541 	un->un_solaris_offset = 0;
4542 	un->un_solaris_size = capacity;
4543 	bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4544 	return (SD_CMD_SUCCESS);
4545 
4546 #elif defined(_FIRMWARE_NEEDS_FDISK)
4547 
4548 	struct ipart	*fdp;
4549 	struct mboot	*mbp;
4550 	struct ipart	fdisk[FD_NUMPART];
4551 	int		i;
4552 	char		sigbuf[2];
4553 	caddr_t		bufp;
4554 	int		uidx;
4555 	int		rval;
4556 	int		lba = 0;
4557 	uint_t		solaris_offset;	/* offset to solaris part. */
4558 	daddr_t		solaris_size;	/* size of solaris partition */
4559 	uint32_t	blocksize;
4560 
4561 	ASSERT(un != NULL);
4562 	ASSERT(mutex_owned(SD_MUTEX(un)));
4563 	ASSERT(un->un_f_tgt_blocksize_is_valid == TRUE);
4564 
4565 	blocksize = un->un_tgt_blocksize;
4566 
4567 	/*
4568 	 * Start off assuming no fdisk table
4569 	 */
4570 	solaris_offset = 0;
4571 	solaris_size   = capacity;
4572 
4573 	mutex_exit(SD_MUTEX(un));
4574 	bufp = kmem_zalloc(blocksize, KM_SLEEP);
4575 	rval = sd_send_scsi_READ(un, bufp, blocksize, 0, path_flag);
4576 	mutex_enter(SD_MUTEX(un));
4577 
4578 	if (rval != 0) {
4579 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4580 		    "sd_read_fdisk: fdisk read err\n");
4581 		kmem_free(bufp, blocksize);
4582 		return (SD_CMD_FAILURE);
4583 	}
4584 
4585 	mbp = (struct mboot *)bufp;
4586 
4587 	/*
4588 	 * The fdisk table does not begin on a 4-byte boundary within the
4589 	 * master boot record, so we copy it to an aligned structure to avoid
4590 	 * alignment exceptions on some processors.
4591 	 */
4592 	bcopy(&mbp->parts[0], fdisk, sizeof (fdisk));
4593 
4594 	/*
4595 	 * Check for lba support before verifying sig; sig might not be
4596 	 * there, say on a blank disk, but the max_chs mark may still
4597 	 * be present.
4598 	 *
4599 	 * Note: LBA support and BEFs are an x86-only concept but this
4600 	 * code should work OK on SPARC as well.
4601 	 */
4602 
4603 	/*
4604 	 * First, check for lba-access-ok on root node (or prom root node)
4605 	 * if present there, don't need to search fdisk table.
4606 	 */
4607 	if (ddi_getprop(DDI_DEV_T_ANY, ddi_root_node(), 0,
4608 	    "lba-access-ok", 0) != 0) {
4609 		/* All drives do LBA; don't search fdisk table */
4610 		lba = 1;
4611 	} else {
4612 		/* Okay, look for mark in fdisk table */
4613 		for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
4614 			/* accumulate "lba" value from all partitions */
4615 			lba = (lba || sd_has_max_chs_vals(fdp));
4616 		}
4617 	}
4618 
4619 	/*
4620 	 * Next, look for 'no-bef-lba-access' prop on parent.
4621 	 * Its presence means the realmode driver doesn't support
4622 	 * LBA, so the target driver shouldn't advertise it as ok.
4623 	 * This should be a temporary condition; one day all
4624 	 * BEFs should support the LBA access functions.
4625 	 */
4626 	if ((lba != 0) && (ddi_getprop(DDI_DEV_T_ANY,
4627 	    ddi_get_parent(SD_DEVINFO(un)), DDI_PROP_DONTPASS,
4628 	    "no-bef-lba-access", 0) != 0)) {
4629 		/* BEF doesn't support LBA; don't advertise it as ok */
4630 		lba = 0;
4631 	}
4632 
4633 	if (lba != 0) {
4634 		dev_t dev = sd_make_device(SD_DEVINFO(un));
4635 
4636 		if (ddi_getprop(dev, SD_DEVINFO(un), DDI_PROP_DONTPASS,
4637 		    "lba-access-ok", 0) == 0) {
4638 			/* not found; create it */
4639 			if (ddi_prop_create(dev, SD_DEVINFO(un), 0,
4640 			    "lba-access-ok", (caddr_t)NULL, 0) !=
4641 			    DDI_PROP_SUCCESS) {
4642 				SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4643 				    "sd_read_fdisk: Can't create lba property "
4644 				    "for instance %d\n",
4645 				    ddi_get_instance(SD_DEVINFO(un)));
4646 			}
4647 		}
4648 	}
4649 
4650 	bcopy(&mbp->signature, sigbuf, sizeof (sigbuf));
4651 
4652 	/*
4653 	 * Endian-independent signature check
4654 	 */
4655 	if (((sigbuf[1] & 0xFF) != ((MBB_MAGIC >> 8) & 0xFF)) ||
4656 	    (sigbuf[0] != (MBB_MAGIC & 0xFF))) {
4657 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4658 		    "sd_read_fdisk: no fdisk\n");
4659 		bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4660 		rval = SD_CMD_SUCCESS;
4661 		goto done;
4662 	}
4663 
4664 #ifdef SDDEBUG
4665 	if (sd_level_mask & SD_LOGMASK_INFO) {
4666 		fdp = fdisk;
4667 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_read_fdisk:\n");
4668 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "         relsect    "
4669 		    "numsect         sysid       bootid\n");
4670 		for (i = 0; i < FD_NUMPART; i++, fdp++) {
4671 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4672 			    "    %d:  %8d   %8d     0x%08x     0x%08x\n",
4673 			    i, fdp->relsect, fdp->numsect,
4674 			    fdp->systid, fdp->bootid);
4675 		}
4676 	}
4677 #endif
4678 
4679 	/*
4680 	 * Try to find the unix partition
4681 	 */
4682 	uidx = -1;
4683 	solaris_offset = 0;
4684 	solaris_size   = 0;
4685 
4686 	for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
4687 		int	relsect;
4688 		int	numsect;
4689 
4690 		if (fdp->numsect == 0) {
4691 			un->un_fmap[i].fmap_start = 0;
4692 			un->un_fmap[i].fmap_nblk  = 0;
4693 			continue;
4694 		}
4695 
4696 		/*
4697 		 * Data in the fdisk table is little-endian.
4698 		 */
4699 		relsect = LE_32(fdp->relsect);
4700 		numsect = LE_32(fdp->numsect);
4701 
4702 		un->un_fmap[i].fmap_start = relsect;
4703 		un->un_fmap[i].fmap_nblk  = numsect;
4704 
4705 		if (fdp->systid != SUNIXOS &&
4706 		    fdp->systid != SUNIXOS2 &&
4707 		    fdp->systid != EFI_PMBR) {
4708 			continue;
4709 		}
4710 
4711 		/*
4712 		 * use the last active solaris partition id found
4713 		 * (there should only be 1 active partition id)
4714 		 *
4715 		 * if there are no active solaris partition id
4716 		 * then use the first inactive solaris partition id
4717 		 */
4718 		if ((uidx == -1) || (fdp->bootid == ACTIVE)) {
4719 			uidx = i;
4720 			solaris_offset = relsect;
4721 			solaris_size   = numsect;
4722 		}
4723 	}
4724 
4725 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk 0x%x 0x%lx",
4726 	    un->un_solaris_offset, un->un_solaris_size);
4727 
4728 	rval = SD_CMD_SUCCESS;
4729 
4730 done:
4731 
4732 	/*
4733 	 * Clear the VTOC info, only if the Solaris partition entry
4734 	 * has moved, changed size, been deleted, or if the size of
4735 	 * the partition is too small to even fit the label sector.
4736 	 */
4737 	if ((un->un_solaris_offset != solaris_offset) ||
4738 	    (un->un_solaris_size != solaris_size) ||
4739 	    solaris_size <= DK_LABEL_LOC) {
4740 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk moved 0x%x 0x%lx",
4741 			solaris_offset, solaris_size);
4742 		bzero(&un->un_g, sizeof (struct dk_geom));
4743 		bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
4744 		bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
4745 		un->un_f_geometry_is_valid = FALSE;
4746 	}
4747 	un->un_solaris_offset = solaris_offset;
4748 	un->un_solaris_size = solaris_size;
4749 	kmem_free(bufp, blocksize);
4750 	return (rval);
4751 
4752 #else	/* #elif defined(_FIRMWARE_NEEDS_FDISK) */
4753 #error "fdisk table presence undetermined for this platform."
4754 #endif	/* #if defined(_NO_FDISK_PRESENT) */
4755 }
4756 
4757 
4758 /*
4759  *    Function: sd_get_physical_geometry
4760  *
4761  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4762  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4763  *		target, and use this information to initialize the physical
4764  *		geometry cache specified by pgeom_p.
4765  *
4766  *		MODE SENSE is an optional command, so failure in this case
4767  *		does not necessarily denote an error. We want to use the
4768  *		MODE SENSE commands to derive the physical geometry of the
4769  *		device, but if either command fails, the logical geometry is
4770  *		used as the fallback for disk label geometry.
4771  *
4772  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4773  *		have already been initialized for the current target and
4774  *		that the current values be passed as args so that we don't
4775  *		end up ever trying to use -1 as a valid value. This could
4776  *		happen if either value is reset while we're not holding
4777  *		the mutex.
4778  *
4779  *   Arguments: un - driver soft state (unit) structure
4780  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4781  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4782  *			to use the USCSI "direct" chain and bypass the normal
4783  *			command waitq.
4784  *
4785  *     Context: Kernel thread only (can sleep).
4786  */
4787 
4788 static void
4789 sd_get_physical_geometry(struct sd_lun *un, struct geom_cache *pgeom_p,
4790 	int capacity, int lbasize, int path_flag)
4791 {
4792 	struct	mode_format	*page3p;
4793 	struct	mode_geometry	*page4p;
4794 	struct	mode_header	*headerp;
4795 	int	sector_size;
4796 	int	nsect;
4797 	int	nhead;
4798 	int	ncyl;
4799 	int	intrlv;
4800 	int	spc;
4801 	int	modesense_capacity;
4802 	int	rpm;
4803 	int	bd_len;
4804 	int	mode_header_length;
4805 	uchar_t	*p3bufp;
4806 	uchar_t	*p4bufp;
4807 	int	cdbsize;
4808 
4809 	ASSERT(un != NULL);
4810 	ASSERT(!(mutex_owned(SD_MUTEX(un))));
4811 
4812 	if (un->un_f_blockcount_is_valid != TRUE) {
4813 		return;
4814 	}
4815 
4816 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
4817 		return;
4818 	}
4819 
4820 	if (lbasize == 0) {
4821 		if (ISCD(un)) {
4822 			lbasize = 2048;
4823 		} else {
4824 			lbasize = un->un_sys_blocksize;
4825 		}
4826 	}
4827 	pgeom_p->g_secsize = (unsigned short)lbasize;
4828 
4829 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4830 
4831 	/*
4832 	 * Retrieve MODE SENSE page 3 - Format Device Page
4833 	 */
4834 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4835 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp,
4836 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag)
4837 	    != 0) {
4838 		SD_ERROR(SD_LOG_COMMON, un,
4839 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4840 		goto page3_exit;
4841 	}
4842 
4843 	/*
4844 	 * Determine size of Block Descriptors in order to locate the mode
4845 	 * page data.  ATAPI devices return 0, SCSI devices should return
4846 	 * MODE_BLK_DESC_LENGTH.
4847 	 */
4848 	headerp = (struct mode_header *)p3bufp;
4849 	if (un->un_f_cfg_is_atapi == TRUE) {
4850 		struct mode_header_grp2 *mhp =
4851 		    (struct mode_header_grp2 *)headerp;
4852 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4853 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4854 	} else {
4855 		mode_header_length = MODE_HEADER_LENGTH;
4856 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4857 	}
4858 
4859 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4860 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4861 		    "received unexpected bd_len of %d, page3\n", bd_len);
4862 		goto page3_exit;
4863 	}
4864 
4865 	page3p = (struct mode_format *)
4866 	    ((caddr_t)headerp + mode_header_length + bd_len);
4867 
4868 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4869 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4870 		    "mode sense pg3 code mismatch %d\n",
4871 		    page3p->mode_page.code);
4872 		goto page3_exit;
4873 	}
4874 
4875 	/*
4876 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4877 	 * complete successfully; otherwise, revert to the logical geometry.
4878 	 * So, we need to save everything in temporary variables.
4879 	 */
4880 	sector_size = BE_16(page3p->data_bytes_sect);
4881 
4882 	/*
4883 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4884 	 */
4885 	if (sector_size == 0) {
4886 		sector_size = (ISCD(un)) ? 2048 : un->un_sys_blocksize;
4887 	} else {
4888 		sector_size &= ~(un->un_sys_blocksize - 1);
4889 	}
4890 
4891 	nsect  = BE_16(page3p->sect_track);
4892 	intrlv = BE_16(page3p->interleave);
4893 
4894 	SD_INFO(SD_LOG_COMMON, un,
4895 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4896 	SD_INFO(SD_LOG_COMMON, un,
4897 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4898 	    page3p->mode_page.code, nsect, sector_size);
4899 	SD_INFO(SD_LOG_COMMON, un,
4900 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4901 	    BE_16(page3p->track_skew),
4902 	    BE_16(page3p->cylinder_skew));
4903 
4904 
4905 	/*
4906 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4907 	 */
4908 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4909 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp,
4910 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag)
4911 	    != 0) {
4912 		SD_ERROR(SD_LOG_COMMON, un,
4913 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4914 		goto page4_exit;
4915 	}
4916 
4917 	/*
4918 	 * Determine size of Block Descriptors in order to locate the mode
4919 	 * page data.  ATAPI devices return 0, SCSI devices should return
4920 	 * MODE_BLK_DESC_LENGTH.
4921 	 */
4922 	headerp = (struct mode_header *)p4bufp;
4923 	if (un->un_f_cfg_is_atapi == TRUE) {
4924 		struct mode_header_grp2 *mhp =
4925 		    (struct mode_header_grp2 *)headerp;
4926 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4927 	} else {
4928 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4929 	}
4930 
4931 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4932 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4933 		    "received unexpected bd_len of %d, page4\n", bd_len);
4934 		goto page4_exit;
4935 	}
4936 
4937 	page4p = (struct mode_geometry *)
4938 	    ((caddr_t)headerp + mode_header_length + bd_len);
4939 
4940 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
4941 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4942 		    "mode sense pg4 code mismatch %d\n",
4943 		    page4p->mode_page.code);
4944 		goto page4_exit;
4945 	}
4946 
4947 	/*
4948 	 * Stash the data now, after we know that both commands completed.
4949 	 */
4950 
4951 	mutex_enter(SD_MUTEX(un));
4952 
4953 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
4954 	spc   = nhead * nsect;
4955 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
4956 	rpm   = BE_16(page4p->rpm);
4957 
4958 	modesense_capacity = spc * ncyl;
4959 
4960 	SD_INFO(SD_LOG_COMMON, un,
4961 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
4962 	SD_INFO(SD_LOG_COMMON, un,
4963 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
4964 	SD_INFO(SD_LOG_COMMON, un,
4965 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
4966 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
4967 	    (void *)pgeom_p, capacity);
4968 
4969 	/*
4970 	 * Compensate if the drive's geometry is not rectangular, i.e.,
4971 	 * the product of C * H * S returned by MODE SENSE >= that returned
4972 	 * by read capacity. This is an idiosyncrasy of the original x86
4973 	 * disk subsystem.
4974 	 */
4975 	if (modesense_capacity >= capacity) {
4976 		SD_INFO(SD_LOG_COMMON, un,
4977 		    "sd_get_physical_geometry: adjusting acyl; "
4978 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
4979 		    (modesense_capacity - capacity + spc - 1) / spc);
4980 		if (sector_size != 0) {
4981 			/* 1243403: NEC D38x7 drives don't support sec size */
4982 			pgeom_p->g_secsize = (unsigned short)sector_size;
4983 		}
4984 		pgeom_p->g_nsect    = (unsigned short)nsect;
4985 		pgeom_p->g_nhead    = (unsigned short)nhead;
4986 		pgeom_p->g_capacity = capacity;
4987 		pgeom_p->g_acyl	    =
4988 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
4989 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
4990 	}
4991 
4992 	pgeom_p->g_rpm    = (unsigned short)rpm;
4993 	pgeom_p->g_intrlv = (unsigned short)intrlv;
4994 
4995 	SD_INFO(SD_LOG_COMMON, un,
4996 	    "sd_get_physical_geometry: mode sense geometry:\n");
4997 	SD_INFO(SD_LOG_COMMON, un,
4998 	    "   nsect: %d; sector size: %d; interlv: %d\n",
4999 	    nsect, sector_size, intrlv);
5000 	SD_INFO(SD_LOG_COMMON, un,
5001 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
5002 	    nhead, ncyl, rpm, modesense_capacity);
5003 	SD_INFO(SD_LOG_COMMON, un,
5004 	    "sd_get_physical_geometry: (cached)\n");
5005 	SD_INFO(SD_LOG_COMMON, un,
5006 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5007 	    un->un_pgeom.g_ncyl,  un->un_pgeom.g_acyl,
5008 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
5009 	SD_INFO(SD_LOG_COMMON, un,
5010 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
5011 	    un->un_pgeom.g_secsize, un->un_pgeom.g_capacity,
5012 	    un->un_pgeom.g_intrlv, un->un_pgeom.g_rpm);
5013 
5014 	mutex_exit(SD_MUTEX(un));
5015 
5016 page4_exit:
5017 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
5018 page3_exit:
5019 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
5020 }
5021 
5022 
5023 /*
5024  *    Function: sd_get_virtual_geometry
5025  *
5026  * Description: Ask the controller to tell us about the target device.
5027  *
5028  *   Arguments: un - pointer to softstate
5029  *		capacity - disk capacity in #blocks
5030  *		lbasize - disk block size in bytes
5031  *
5032  *     Context: Kernel thread only
5033  */
5034 
5035 static void
5036 sd_get_virtual_geometry(struct sd_lun *un, int capacity, int lbasize)
5037 {
5038 	struct	geom_cache 	*lgeom_p = &un->un_lgeom;
5039 	uint_t	geombuf;
5040 	int	spc;
5041 
5042 	ASSERT(un != NULL);
5043 	ASSERT(mutex_owned(SD_MUTEX(un)));
5044 
5045 	mutex_exit(SD_MUTEX(un));
5046 
5047 	/* Set sector size, and total number of sectors */
5048 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
5049 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
5050 
5051 	/* Let the HBA tell us its geometry */
5052 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
5053 
5054 	mutex_enter(SD_MUTEX(un));
5055 
5056 	/* A value of -1 indicates an undefined "geometry" property */
5057 	if (geombuf == (-1)) {
5058 		return;
5059 	}
5060 
5061 	/* Initialize the logical geometry cache. */
5062 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
5063 	lgeom_p->g_nsect   = geombuf & 0xffff;
5064 	lgeom_p->g_secsize = un->un_sys_blocksize;
5065 
5066 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
5067 
5068 	/*
5069 	 * Note: The driver originally converted the capacity value from
5070 	 * target blocks to system blocks. However, the capacity value passed
5071 	 * to this routine is already in terms of system blocks (this scaling
5072 	 * is done when the READ CAPACITY command is issued and processed).
5073 	 * This 'error' may have gone undetected because the usage of g_ncyl
5074 	 * (which is based upon g_capacity) is very limited within the driver
5075 	 */
5076 	lgeom_p->g_capacity = capacity;
5077 
5078 	/*
5079 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
5080 	 * hba may return zero values if the device has been removed.
5081 	 */
5082 	if (spc == 0) {
5083 		lgeom_p->g_ncyl = 0;
5084 	} else {
5085 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
5086 	}
5087 	lgeom_p->g_acyl = 0;
5088 
5089 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
5090 	SD_INFO(SD_LOG_COMMON, un,
5091 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5092 	    un->un_lgeom.g_ncyl,  un->un_lgeom.g_acyl,
5093 	    un->un_lgeom.g_nhead, un->un_lgeom.g_nsect);
5094 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
5095 	    "intrlv: %d; rpm: %d\n", un->un_lgeom.g_secsize,
5096 	    un->un_lgeom.g_capacity, un->un_lgeom.g_intrlv, un->un_lgeom.g_rpm);
5097 }
5098 
5099 
5100 /*
5101  *    Function: sd_update_block_info
5102  *
5103  * Description: Calculate a byte count to sector count bitshift value
5104  *		from sector size.
5105  *
5106  *   Arguments: un: unit struct.
5107  *		lbasize: new target sector size
5108  *		capacity: new target capacity, ie. block count
5109  *
5110  *     Context: Kernel thread context
5111  */
5112 
5113 static void
5114 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
5115 {
5116 	if (lbasize != 0) {
5117 		un->un_tgt_blocksize = lbasize;
5118 		un->un_f_tgt_blocksize_is_valid	= TRUE;
5119 	}
5120 
5121 	if (capacity != 0) {
5122 		un->un_blockcount		= capacity;
5123 		un->un_f_blockcount_is_valid	= TRUE;
5124 	}
5125 }
5126 
5127 
5128 static void
5129 sd_swap_efi_gpt(efi_gpt_t *e)
5130 {
5131 	_NOTE(ASSUMING_PROTECTED(*e))
5132 	e->efi_gpt_Signature = LE_64(e->efi_gpt_Signature);
5133 	e->efi_gpt_Revision = LE_32(e->efi_gpt_Revision);
5134 	e->efi_gpt_HeaderSize = LE_32(e->efi_gpt_HeaderSize);
5135 	e->efi_gpt_HeaderCRC32 = LE_32(e->efi_gpt_HeaderCRC32);
5136 	e->efi_gpt_MyLBA = LE_64(e->efi_gpt_MyLBA);
5137 	e->efi_gpt_AlternateLBA = LE_64(e->efi_gpt_AlternateLBA);
5138 	e->efi_gpt_FirstUsableLBA = LE_64(e->efi_gpt_FirstUsableLBA);
5139 	e->efi_gpt_LastUsableLBA = LE_64(e->efi_gpt_LastUsableLBA);
5140 	UUID_LE_CONVERT(e->efi_gpt_DiskGUID, e->efi_gpt_DiskGUID);
5141 	e->efi_gpt_PartitionEntryLBA = LE_64(e->efi_gpt_PartitionEntryLBA);
5142 	e->efi_gpt_NumberOfPartitionEntries =
5143 	    LE_32(e->efi_gpt_NumberOfPartitionEntries);
5144 	e->efi_gpt_SizeOfPartitionEntry =
5145 	    LE_32(e->efi_gpt_SizeOfPartitionEntry);
5146 	e->efi_gpt_PartitionEntryArrayCRC32 =
5147 	    LE_32(e->efi_gpt_PartitionEntryArrayCRC32);
5148 }
5149 
5150 static void
5151 sd_swap_efi_gpe(int nparts, efi_gpe_t *p)
5152 {
5153 	int i;
5154 
5155 	_NOTE(ASSUMING_PROTECTED(*p))
5156 	for (i = 0; i < nparts; i++) {
5157 		UUID_LE_CONVERT(p[i].efi_gpe_PartitionTypeGUID,
5158 		    p[i].efi_gpe_PartitionTypeGUID);
5159 		p[i].efi_gpe_StartingLBA = LE_64(p[i].efi_gpe_StartingLBA);
5160 		p[i].efi_gpe_EndingLBA = LE_64(p[i].efi_gpe_EndingLBA);
5161 		/* PartitionAttrs */
5162 	}
5163 }
5164 
5165 static int
5166 sd_validate_efi(efi_gpt_t *labp)
5167 {
5168 	if (labp->efi_gpt_Signature != EFI_SIGNATURE)
5169 		return (EINVAL);
5170 	/* at least 96 bytes in this version of the spec. */
5171 	if (sizeof (efi_gpt_t) - sizeof (labp->efi_gpt_Reserved2) >
5172 	    labp->efi_gpt_HeaderSize)
5173 		return (EINVAL);
5174 	/* this should be 128 bytes */
5175 	if (labp->efi_gpt_SizeOfPartitionEntry != sizeof (efi_gpe_t))
5176 		return (EINVAL);
5177 	return (0);
5178 }
5179 
5180 static int
5181 sd_use_efi(struct sd_lun *un, int path_flag)
5182 {
5183 	int		i;
5184 	int		rval = 0;
5185 	efi_gpe_t	*partitions;
5186 	uchar_t		*buf;
5187 	uint_t		lbasize;
5188 	uint64_t	cap;
5189 	uint_t		nparts;
5190 	diskaddr_t	gpe_lba;
5191 
5192 	ASSERT(mutex_owned(SD_MUTEX(un)));
5193 	lbasize = un->un_tgt_blocksize;
5194 
5195 	mutex_exit(SD_MUTEX(un));
5196 
5197 	buf = kmem_zalloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
5198 
5199 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
5200 		rval = EINVAL;
5201 		goto done_err;
5202 	}
5203 
5204 	rval = sd_send_scsi_READ(un, buf, lbasize, 0, path_flag);
5205 	if (rval) {
5206 		goto done_err;
5207 	}
5208 	if (((struct dk_label *)buf)->dkl_magic == DKL_MAGIC) {
5209 		/* not ours */
5210 		rval = ESRCH;
5211 		goto done_err;
5212 	}
5213 
5214 	rval = sd_send_scsi_READ(un, buf, lbasize, 1, path_flag);
5215 	if (rval) {
5216 		goto done_err;
5217 	}
5218 	sd_swap_efi_gpt((efi_gpt_t *)buf);
5219 
5220 	if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0) {
5221 		/*
5222 		 * Couldn't read the primary, try the backup.  Our
5223 		 * capacity at this point could be based on CHS, so
5224 		 * check what the device reports.
5225 		 */
5226 		rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
5227 		    path_flag);
5228 		if (rval) {
5229 			goto done_err;
5230 		}
5231 		if ((rval = sd_send_scsi_READ(un, buf, lbasize,
5232 		    cap - 1, path_flag)) != 0) {
5233 			goto done_err;
5234 		}
5235 		sd_swap_efi_gpt((efi_gpt_t *)buf);
5236 		if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0)
5237 			goto done_err;
5238 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5239 		    "primary label corrupt; using backup\n");
5240 	}
5241 
5242 	nparts = ((efi_gpt_t *)buf)->efi_gpt_NumberOfPartitionEntries;
5243 	gpe_lba = ((efi_gpt_t *)buf)->efi_gpt_PartitionEntryLBA;
5244 
5245 	rval = sd_send_scsi_READ(un, buf, EFI_MIN_ARRAY_SIZE, gpe_lba,
5246 	    path_flag);
5247 	if (rval) {
5248 		goto done_err;
5249 	}
5250 	partitions = (efi_gpe_t *)buf;
5251 
5252 	if (nparts > MAXPART) {
5253 		nparts = MAXPART;
5254 	}
5255 	sd_swap_efi_gpe(nparts, partitions);
5256 
5257 	mutex_enter(SD_MUTEX(un));
5258 
5259 	/* Fill in partition table. */
5260 	for (i = 0; i < nparts; i++) {
5261 		if (partitions->efi_gpe_StartingLBA != 0 ||
5262 		    partitions->efi_gpe_EndingLBA != 0) {
5263 			un->un_map[i].dkl_cylno =
5264 			    partitions->efi_gpe_StartingLBA;
5265 			un->un_map[i].dkl_nblk =
5266 			    partitions->efi_gpe_EndingLBA -
5267 			    partitions->efi_gpe_StartingLBA + 1;
5268 			un->un_offset[i] =
5269 			    partitions->efi_gpe_StartingLBA;
5270 		}
5271 		if (i == WD_NODE) {
5272 			/*
5273 			 * minor number 7 corresponds to the whole disk
5274 			 */
5275 			un->un_map[i].dkl_cylno = 0;
5276 			un->un_map[i].dkl_nblk = un->un_blockcount;
5277 			un->un_offset[i] = 0;
5278 		}
5279 		partitions++;
5280 	}
5281 	un->un_solaris_offset = 0;
5282 	un->un_solaris_size = cap;
5283 	un->un_f_geometry_is_valid = TRUE;
5284 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5285 	return (0);
5286 
5287 done_err:
5288 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5289 	mutex_enter(SD_MUTEX(un));
5290 	/*
5291 	 * if we didn't find something that could look like a VTOC
5292 	 * and the disk is over 1TB, we know there isn't a valid label.
5293 	 * Otherwise let sd_uselabel decide what to do.  We only
5294 	 * want to invalidate this if we're certain the label isn't
5295 	 * valid because sd_prop_op will now fail, which in turn
5296 	 * causes things like opens and stats on the partition to fail.
5297 	 */
5298 	if ((un->un_blockcount > DK_MAX_BLOCKS) && (rval != ESRCH)) {
5299 		un->un_f_geometry_is_valid = FALSE;
5300 	}
5301 	return (rval);
5302 }
5303 
5304 
5305 /*
5306  *    Function: sd_uselabel
5307  *
5308  * Description: Validate the disk label and update the relevant data (geometry,
5309  *		partition, vtoc, and capacity data) in the sd_lun struct.
5310  *		Marks the geometry of the unit as being valid.
5311  *
5312  *   Arguments: un: unit struct.
5313  *		dk_label: disk label
5314  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
5315  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
5316  *			to use the USCSI "direct" chain and bypass the normal
5317  *			command waitq.
5318  *
5319  * Return Code: SD_LABEL_IS_VALID: Label read from disk is OK; geometry,
5320  *		partition, vtoc, and capacity data are good.
5321  *
5322  *		SD_LABEL_IS_INVALID: Magic number or checksum error in the
5323  *		label; or computed capacity does not jibe with capacity
5324  *		reported from the READ CAPACITY command.
5325  *
5326  *     Context: Kernel thread only (can sleep).
5327  */
5328 
5329 static int
5330 sd_uselabel(struct sd_lun *un, struct dk_label *labp, int path_flag)
5331 {
5332 	short	*sp;
5333 	short	sum;
5334 	short	count;
5335 	int	label_error = SD_LABEL_IS_VALID;
5336 	int	i;
5337 	int	capacity;
5338 	int	part_end;
5339 	int	track_capacity;
5340 	int	err;
5341 #if defined(_SUNOS_VTOC_16)
5342 	struct	dkl_partition	*vpartp;
5343 #endif
5344 	ASSERT(un != NULL);
5345 	ASSERT(mutex_owned(SD_MUTEX(un)));
5346 
5347 	/* Validate the magic number of the label. */
5348 	if (labp->dkl_magic != DKL_MAGIC) {
5349 #if defined(__sparc)
5350 		if ((un->un_state == SD_STATE_NORMAL) &&
5351 		    !ISREMOVABLE(un)) {
5352 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5353 			    "Corrupt label; wrong magic number\n");
5354 		}
5355 #endif
5356 		return (SD_LABEL_IS_INVALID);
5357 	}
5358 
5359 	/* Validate the checksum of the label. */
5360 	sp  = (short *)labp;
5361 	sum = 0;
5362 	count = sizeof (struct dk_label) / sizeof (short);
5363 	while (count--)	 {
5364 		sum ^= *sp++;
5365 	}
5366 
5367 	if (sum != 0) {
5368 #if defined(_SUNOS_VTOC_16)
5369 		if (un->un_state == SD_STATE_NORMAL && !ISCD(un)) {
5370 #elif defined(_SUNOS_VTOC_8)
5371 		if (un->un_state == SD_STATE_NORMAL && !ISREMOVABLE(un)) {
5372 #endif
5373 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5374 			    "Corrupt label - label checksum failed\n");
5375 		}
5376 		return (SD_LABEL_IS_INVALID);
5377 	}
5378 
5379 
5380 	/*
5381 	 * Fill in geometry structure with data from label.
5382 	 */
5383 	bzero(&un->un_g, sizeof (struct dk_geom));
5384 	un->un_g.dkg_ncyl   = labp->dkl_ncyl;
5385 	un->un_g.dkg_acyl   = labp->dkl_acyl;
5386 	un->un_g.dkg_bcyl   = 0;
5387 	un->un_g.dkg_nhead  = labp->dkl_nhead;
5388 	un->un_g.dkg_nsect  = labp->dkl_nsect;
5389 	un->un_g.dkg_intrlv = labp->dkl_intrlv;
5390 
5391 #if defined(_SUNOS_VTOC_8)
5392 	un->un_g.dkg_gap1   = labp->dkl_gap1;
5393 	un->un_g.dkg_gap2   = labp->dkl_gap2;
5394 	un->un_g.dkg_bhead  = labp->dkl_bhead;
5395 #endif
5396 #if defined(_SUNOS_VTOC_16)
5397 	un->un_dkg_skew = labp->dkl_skew;
5398 #endif
5399 
5400 #if defined(__i386) || defined(__amd64)
5401 	un->un_g.dkg_apc = labp->dkl_apc;
5402 #endif
5403 
5404 	/*
5405 	 * Currently we rely on the values in the label being accurate. If
5406 	 * dlk_rpm or dlk_pcly are zero in the label, use a default value.
5407 	 *
5408 	 * Note: In the future a MODE SENSE may be used to retrieve this data,
5409 	 * although this command is optional in SCSI-2.
5410 	 */
5411 	un->un_g.dkg_rpm  = (labp->dkl_rpm  != 0) ? labp->dkl_rpm  : 3600;
5412 	un->un_g.dkg_pcyl = (labp->dkl_pcyl != 0) ? labp->dkl_pcyl :
5413 	    (un->un_g.dkg_ncyl + un->un_g.dkg_acyl);
5414 
5415 	/*
5416 	 * The Read and Write reinstruct values may not be valid
5417 	 * for older disks.
5418 	 */
5419 	un->un_g.dkg_read_reinstruct  = labp->dkl_read_reinstruct;
5420 	un->un_g.dkg_write_reinstruct = labp->dkl_write_reinstruct;
5421 
5422 	/* Fill in partition table. */
5423 #if defined(_SUNOS_VTOC_8)
5424 	for (i = 0; i < NDKMAP; i++) {
5425 		un->un_map[i].dkl_cylno = labp->dkl_map[i].dkl_cylno;
5426 		un->un_map[i].dkl_nblk  = labp->dkl_map[i].dkl_nblk;
5427 	}
5428 #endif
5429 #if  defined(_SUNOS_VTOC_16)
5430 	vpartp		= labp->dkl_vtoc.v_part;
5431 	track_capacity	= labp->dkl_nhead * labp->dkl_nsect;
5432 
5433 	for (i = 0; i < NDKMAP; i++, vpartp++) {
5434 		un->un_map[i].dkl_cylno = vpartp->p_start / track_capacity;
5435 		un->un_map[i].dkl_nblk  = vpartp->p_size;
5436 	}
5437 #endif
5438 
5439 	/* Fill in VTOC Structure. */
5440 	bcopy(&labp->dkl_vtoc, &un->un_vtoc, sizeof (struct dk_vtoc));
5441 #if defined(_SUNOS_VTOC_8)
5442 	/*
5443 	 * The 8-slice vtoc does not include the ascii label; save it into
5444 	 * the device's soft state structure here.
5445 	 */
5446 	bcopy(labp->dkl_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
5447 #endif
5448 
5449 	/* Mark the geometry as valid. */
5450 	un->un_f_geometry_is_valid = TRUE;
5451 
5452 	/* Now look for a valid capacity. */
5453 	track_capacity	= (un->un_g.dkg_nhead * un->un_g.dkg_nsect);
5454 	capacity	= (un->un_g.dkg_ncyl  * track_capacity);
5455 
5456 	if (un->un_g.dkg_acyl) {
5457 #if defined(__i386) || defined(__amd64)
5458 		/* we may have > 1 alts cylinder */
5459 		capacity += (track_capacity * un->un_g.dkg_acyl);
5460 #else
5461 		capacity += track_capacity;
5462 #endif
5463 	}
5464 
5465 	/*
5466 	 * At this point, un->un_blockcount should contain valid data from
5467 	 * the READ CAPACITY command.
5468 	 */
5469 	if (un->un_f_blockcount_is_valid != TRUE) {
5470 		/*
5471 		 * We have a situation where the target didn't give us a good
5472 		 * READ CAPACITY value, yet there appears to be a valid label.
5473 		 * In this case, we'll fake the capacity.
5474 		 */
5475 		un->un_blockcount = capacity;
5476 		un->un_f_blockcount_is_valid = TRUE;
5477 		goto done;
5478 	}
5479 
5480 
5481 	if ((capacity <= un->un_blockcount) ||
5482 	    (un->un_state != SD_STATE_NORMAL)) {
5483 #if defined(_SUNOS_VTOC_8)
5484 		/*
5485 		 * We can't let this happen on drives that are subdivided
5486 		 * into logical disks (i.e., that have an fdisk table).
5487 		 * The un_blockcount field should always hold the full media
5488 		 * size in sectors, period.  This code would overwrite
5489 		 * un_blockcount with the size of the Solaris fdisk partition.
5490 		 */
5491 		SD_ERROR(SD_LOG_COMMON, un,
5492 		    "sd_uselabel: Label %d blocks; Drive %d blocks\n",
5493 		    capacity, un->un_blockcount);
5494 		un->un_blockcount = capacity;
5495 		un->un_f_blockcount_is_valid = TRUE;
5496 #endif	/* defined(_SUNOS_VTOC_8) */
5497 		goto done;
5498 	}
5499 
5500 	if (ISCD(un)) {
5501 		/* For CDROMs, we trust that the data in the label is OK. */
5502 #if defined(_SUNOS_VTOC_8)
5503 		for (i = 0; i < NDKMAP; i++) {
5504 			part_end = labp->dkl_nhead * labp->dkl_nsect *
5505 			    labp->dkl_map[i].dkl_cylno +
5506 			    labp->dkl_map[i].dkl_nblk  - 1;
5507 
5508 			if ((labp->dkl_map[i].dkl_nblk) &&
5509 			    (part_end > un->un_blockcount)) {
5510 				un->un_f_geometry_is_valid = FALSE;
5511 				break;
5512 			}
5513 		}
5514 #endif
5515 #if defined(_SUNOS_VTOC_16)
5516 		vpartp = &(labp->dkl_vtoc.v_part[0]);
5517 		for (i = 0; i < NDKMAP; i++, vpartp++) {
5518 			part_end = vpartp->p_start + vpartp->p_size;
5519 			if ((vpartp->p_size > 0) &&
5520 			    (part_end > un->un_blockcount)) {
5521 				un->un_f_geometry_is_valid = FALSE;
5522 				break;
5523 			}
5524 		}
5525 #endif
5526 	} else {
5527 		uint64_t t_capacity;
5528 		uint32_t t_lbasize;
5529 
5530 		mutex_exit(SD_MUTEX(un));
5531 		err = sd_send_scsi_READ_CAPACITY(un, &t_capacity, &t_lbasize,
5532 		    path_flag);
5533 		ASSERT(t_capacity <= DK_MAX_BLOCKS);
5534 		mutex_enter(SD_MUTEX(un));
5535 
5536 		if (err == 0) {
5537 			sd_update_block_info(un, t_lbasize, t_capacity);
5538 		}
5539 
5540 		if (capacity > un->un_blockcount) {
5541 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5542 			    "Corrupt label - bad geometry\n");
5543 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
5544 			    "Label says %u blocks; Drive says %llu blocks\n",
5545 			    capacity, (unsigned long long)un->un_blockcount);
5546 			un->un_f_geometry_is_valid = FALSE;
5547 			label_error = SD_LABEL_IS_INVALID;
5548 		}
5549 	}
5550 
5551 done:
5552 
5553 	SD_INFO(SD_LOG_COMMON, un, "sd_uselabel: (label geometry)\n");
5554 	SD_INFO(SD_LOG_COMMON, un,
5555 	    "   ncyl: %d; acyl: %d; nhead: %d; nsect: %d\n",
5556 	    un->un_g.dkg_ncyl,  un->un_g.dkg_acyl,
5557 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
5558 	SD_INFO(SD_LOG_COMMON, un,
5559 	    "   lbasize: %d; capacity: %d; intrlv: %d; rpm: %d\n",
5560 	    un->un_tgt_blocksize, un->un_blockcount,
5561 	    un->un_g.dkg_intrlv, un->un_g.dkg_rpm);
5562 	SD_INFO(SD_LOG_COMMON, un, "   wrt_reinstr: %d; rd_reinstr: %d\n",
5563 	    un->un_g.dkg_write_reinstruct, un->un_g.dkg_read_reinstruct);
5564 
5565 	ASSERT(mutex_owned(SD_MUTEX(un)));
5566 
5567 	return (label_error);
5568 }
5569 
5570 
5571 /*
5572  *    Function: sd_build_default_label
5573  *
5574  * Description: Generate a default label for those devices that do not have
5575  *		one, e.g., new media, removable cartridges, etc..
5576  *
5577  *     Context: Kernel thread only
5578  */
5579 
5580 static void
5581 sd_build_default_label(struct sd_lun *un)
5582 {
5583 #if defined(_SUNOS_VTOC_16)
5584 	uint_t	phys_spc;
5585 	uint_t	disksize;
5586 	struct	dk_geom un_g;
5587 #endif
5588 
5589 	ASSERT(un != NULL);
5590 	ASSERT(mutex_owned(SD_MUTEX(un)));
5591 
5592 #if defined(_SUNOS_VTOC_8)
5593 	/*
5594 	 * Note: This is a legacy check for non-removable devices on VTOC_8
5595 	 * only. This may be a valid check for VTOC_16 as well.
5596 	 */
5597 	if (!ISREMOVABLE(un)) {
5598 		return;
5599 	}
5600 #endif
5601 
5602 	bzero(&un->un_g, sizeof (struct dk_geom));
5603 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
5604 	bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
5605 
5606 #if defined(_SUNOS_VTOC_8)
5607 
5608 	/*
5609 	 * It's a REMOVABLE media, therefore no label (on sparc, anyway).
5610 	 * But it is still necessary to set up various geometry information,
5611 	 * and we are doing this here.
5612 	 */
5613 
5614 	/*
5615 	 * For the rpm, we use the minimum for the disk.  For the head, cyl,
5616 	 * and number of sector per track, if the capacity <= 1GB, head = 64,
5617 	 * sect = 32.  else head = 255, sect 63 Note: the capacity should be
5618 	 * equal to C*H*S values.  This will cause some truncation of size due
5619 	 * to round off errors. For CD-ROMs, this truncation can have adverse
5620 	 * side effects, so returning ncyl and nhead as 1. The nsect will
5621 	 * overflow for most of CD-ROMs as nsect is of type ushort. (4190569)
5622 	 */
5623 	if (ISCD(un)) {
5624 		/*
5625 		 * Preserve the old behavior for non-writable
5626 		 * medias. Since dkg_nsect is a ushort, it
5627 		 * will lose bits as cdroms have more than
5628 		 * 65536 sectors. So if we recalculate
5629 		 * capacity, it will become much shorter.
5630 		 * But the dkg_* information is not
5631 		 * used for CDROMs so it is OK. But for
5632 		 * Writable CDs we need this information
5633 		 * to be valid (for newfs say). So we
5634 		 * make nsect and nhead > 1 that way
5635 		 * nsect can still stay within ushort limit
5636 		 * without losing any bits.
5637 		 */
5638 		if (un->un_f_mmc_writable_media == TRUE) {
5639 			un->un_g.dkg_nhead = 64;
5640 			un->un_g.dkg_nsect = 32;
5641 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
5642 			un->un_blockcount = un->un_g.dkg_ncyl *
5643 			    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5644 		} else {
5645 			un->un_g.dkg_ncyl  = 1;
5646 			un->un_g.dkg_nhead = 1;
5647 			un->un_g.dkg_nsect = un->un_blockcount;
5648 		}
5649 	} else {
5650 		if (un->un_blockcount <= 0x1000) {
5651 			/* unlabeled SCSI floppy device */
5652 			un->un_g.dkg_nhead = 2;
5653 			un->un_g.dkg_ncyl = 80;
5654 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
5655 		} else if (un->un_blockcount <= 0x200000) {
5656 			un->un_g.dkg_nhead = 64;
5657 			un->un_g.dkg_nsect = 32;
5658 			un->un_g.dkg_ncyl  = un->un_blockcount / (64 * 32);
5659 		} else {
5660 			un->un_g.dkg_nhead = 255;
5661 			un->un_g.dkg_nsect = 63;
5662 			un->un_g.dkg_ncyl  = un->un_blockcount / (255 * 63);
5663 		}
5664 		un->un_blockcount =
5665 		    un->un_g.dkg_ncyl * un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5666 	}
5667 
5668 	un->un_g.dkg_acyl	= 0;
5669 	un->un_g.dkg_bcyl	= 0;
5670 	un->un_g.dkg_rpm	= 200;
5671 	un->un_asciilabel[0]	= '\0';
5672 	un->un_g.dkg_pcyl	= un->un_g.dkg_ncyl;
5673 
5674 	un->un_map[0].dkl_cylno = 0;
5675 	un->un_map[0].dkl_nblk  = un->un_blockcount;
5676 	un->un_map[2].dkl_cylno = 0;
5677 	un->un_map[2].dkl_nblk  = un->un_blockcount;
5678 
5679 #elif defined(_SUNOS_VTOC_16)
5680 
5681 	if (un->un_solaris_size == 0) {
5682 		/*
5683 		 * Got fdisk table but no solaris entry therefore
5684 		 * don't create a default label
5685 		 */
5686 		un->un_f_geometry_is_valid = TRUE;
5687 		return;
5688 	}
5689 
5690 	/*
5691 	 * For CDs we continue to use the physical geometry to calculate
5692 	 * number of cylinders. All other devices must convert the
5693 	 * physical geometry (geom_cache) to values that will fit
5694 	 * in a dk_geom structure.
5695 	 */
5696 	if (ISCD(un)) {
5697 		phys_spc = un->un_pgeom.g_nhead * un->un_pgeom.g_nsect;
5698 	} else {
5699 		/* Convert physical geometry to disk geometry */
5700 		bzero(&un_g, sizeof (struct dk_geom));
5701 		sd_convert_geometry(un->un_blockcount, &un_g);
5702 		bcopy(&un_g, &un->un_g, sizeof (un->un_g));
5703 		phys_spc = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5704 	}
5705 
5706 	un->un_g.dkg_pcyl = un->un_solaris_size / phys_spc;
5707 	un->un_g.dkg_acyl = DK_ACYL;
5708 	un->un_g.dkg_ncyl = un->un_g.dkg_pcyl - DK_ACYL;
5709 	disksize = un->un_g.dkg_ncyl * phys_spc;
5710 
5711 	if (ISCD(un)) {
5712 		/*
5713 		 * CD's don't use the "heads * sectors * cyls"-type of
5714 		 * geometry, but instead use the entire capacity of the media.
5715 		 */
5716 		disksize = un->un_solaris_size;
5717 		un->un_g.dkg_nhead = 1;
5718 		un->un_g.dkg_nsect = 1;
5719 		un->un_g.dkg_rpm =
5720 		    (un->un_pgeom.g_rpm == 0) ? 200 : un->un_pgeom.g_rpm;
5721 
5722 		un->un_vtoc.v_part[0].p_start = 0;
5723 		un->un_vtoc.v_part[0].p_size  = disksize;
5724 		un->un_vtoc.v_part[0].p_tag   = V_BACKUP;
5725 		un->un_vtoc.v_part[0].p_flag  = V_UNMNT;
5726 
5727 		un->un_map[0].dkl_cylno = 0;
5728 		un->un_map[0].dkl_nblk  = disksize;
5729 		un->un_offset[0] = 0;
5730 
5731 	} else {
5732 		/*
5733 		 * Hard disks and removable media cartridges
5734 		 */
5735 		un->un_g.dkg_rpm =
5736 		    (un->un_pgeom.g_rpm == 0) ? 3600: un->un_pgeom.g_rpm;
5737 		un->un_vtoc.v_sectorsz = un->un_sys_blocksize;
5738 
5739 		/* Add boot slice */
5740 		un->un_vtoc.v_part[8].p_start = 0;
5741 		un->un_vtoc.v_part[8].p_size  = phys_spc;
5742 		un->un_vtoc.v_part[8].p_tag   = V_BOOT;
5743 		un->un_vtoc.v_part[8].p_flag  = V_UNMNT;
5744 
5745 		un->un_map[8].dkl_cylno = 0;
5746 		un->un_map[8].dkl_nblk  = phys_spc;
5747 		un->un_offset[8] = 0;
5748 	}
5749 
5750 	un->un_g.dkg_apc = 0;
5751 	un->un_vtoc.v_nparts = V_NUMPAR;
5752 	un->un_vtoc.v_version = V_VERSION;
5753 
5754 	/* Add backup slice */
5755 	un->un_vtoc.v_part[2].p_start = 0;
5756 	un->un_vtoc.v_part[2].p_size  = disksize;
5757 	un->un_vtoc.v_part[2].p_tag   = V_BACKUP;
5758 	un->un_vtoc.v_part[2].p_flag  = V_UNMNT;
5759 
5760 	un->un_map[2].dkl_cylno = 0;
5761 	un->un_map[2].dkl_nblk  = disksize;
5762 	un->un_offset[2] = 0;
5763 
5764 	(void) sprintf(un->un_vtoc.v_asciilabel, "DEFAULT cyl %d alt %d"
5765 	    " hd %d sec %d", un->un_g.dkg_ncyl, un->un_g.dkg_acyl,
5766 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
5767 
5768 #else
5769 #error "No VTOC format defined."
5770 #endif
5771 
5772 	un->un_g.dkg_read_reinstruct  = 0;
5773 	un->un_g.dkg_write_reinstruct = 0;
5774 
5775 	un->un_g.dkg_intrlv = 1;
5776 
5777 	un->un_vtoc.v_sanity  = VTOC_SANE;
5778 
5779 	un->un_f_geometry_is_valid = TRUE;
5780 
5781 	SD_INFO(SD_LOG_COMMON, un,
5782 	    "sd_build_default_label: Default label created: "
5783 	    "cyl: %d\tacyl: %d\tnhead: %d\tnsect: %d\tcap: %d\n",
5784 	    un->un_g.dkg_ncyl, un->un_g.dkg_acyl, un->un_g.dkg_nhead,
5785 	    un->un_g.dkg_nsect, un->un_blockcount);
5786 }
5787 
5788 
5789 #if defined(_FIRMWARE_NEEDS_FDISK)
5790 /*
5791  * Max CHS values, as they are encoded into bytes, for 1022/254/63
5792  */
5793 #define	LBA_MAX_SECT	(63 | ((1022 & 0x300) >> 2))
5794 #define	LBA_MAX_CYL	(1022 & 0xFF)
5795 #define	LBA_MAX_HEAD	(254)
5796 
5797 
5798 /*
5799  *    Function: sd_has_max_chs_vals
5800  *
5801  * Description: Return TRUE if Cylinder-Head-Sector values are all at maximum.
5802  *
5803  *   Arguments: fdp - ptr to CHS info
5804  *
5805  * Return Code: True or false
5806  *
5807  *     Context: Any.
5808  */
5809 
5810 static int
5811 sd_has_max_chs_vals(struct ipart *fdp)
5812 {
5813 	return ((fdp->begcyl  == LBA_MAX_CYL)	&&
5814 	    (fdp->beghead == LBA_MAX_HEAD)	&&
5815 	    (fdp->begsect == LBA_MAX_SECT)	&&
5816 	    (fdp->endcyl  == LBA_MAX_CYL)	&&
5817 	    (fdp->endhead == LBA_MAX_HEAD)	&&
5818 	    (fdp->endsect == LBA_MAX_SECT));
5819 }
5820 #endif
5821 
5822 
5823 /*
5824  *    Function: sd_inq_fill
5825  *
5826  * Description: Print a piece of inquiry data, cleaned up for non-printable
5827  *		characters and stopping at the first space character after
5828  *		the beginning of the passed string;
5829  *
5830  *   Arguments: p - source string
5831  *		l - maximum length to copy
5832  *		s - destination string
5833  *
5834  *     Context: Any.
5835  */
5836 
5837 static void
5838 sd_inq_fill(char *p, int l, char *s)
5839 {
5840 	unsigned i = 0;
5841 	char c;
5842 
5843 	while (i++ < l) {
5844 		if ((c = *p++) < ' ' || c >= 0x7F) {
5845 			c = '*';
5846 		} else if (i != 1 && c == ' ') {
5847 			break;
5848 		}
5849 		*s++ = c;
5850 	}
5851 	*s++ = 0;
5852 }
5853 
5854 
5855 /*
5856  *    Function: sd_register_devid
5857  *
5858  * Description: This routine will obtain the device id information from the
5859  *		target, obtain the serial number, and register the device
5860  *		id with the ddi framework.
5861  *
5862  *   Arguments: devi - the system's dev_info_t for the device.
5863  *		un - driver soft state (unit) structure
5864  *		reservation_flag - indicates if a reservation conflict
5865  *		occurred during attach
5866  *
5867  *     Context: Kernel Thread
5868  */
5869 static void
5870 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag)
5871 {
5872 	int		rval		= 0;
5873 	uchar_t		*inq80		= NULL;
5874 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
5875 	size_t		inq80_resid	= 0;
5876 	uchar_t		*inq83		= NULL;
5877 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
5878 	size_t		inq83_resid	= 0;
5879 
5880 	ASSERT(un != NULL);
5881 	ASSERT(mutex_owned(SD_MUTEX(un)));
5882 	ASSERT((SD_DEVINFO(un)) == devi);
5883 
5884 	/*
5885 	 * This is the case of antiquated Sun disk drives that have the
5886 	 * FAB_DEVID property set in the disk_table.  These drives
5887 	 * manage the devid's by storing them in last 2 available sectors
5888 	 * on the drive and have them fabricated by the ddi layer by calling
5889 	 * ddi_devid_init and passing the DEVID_FAB flag.
5890 	 */
5891 	if (un->un_f_opt_fab_devid == TRUE) {
5892 		/*
5893 		 * Depending on EINVAL isn't reliable, since a reserved disk
5894 		 * may result in invalid geometry, so check to make sure a
5895 		 * reservation conflict did not occur during attach.
5896 		 */
5897 		if ((sd_get_devid(un) == EINVAL) &&
5898 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
5899 			/*
5900 			 * The devid is invalid AND there is no reservation
5901 			 * conflict.  Fabricate a new devid.
5902 			 */
5903 			(void) sd_create_devid(un);
5904 		}
5905 
5906 		/* Register the devid if it exists */
5907 		if (un->un_devid != NULL) {
5908 			(void) ddi_devid_register(SD_DEVINFO(un),
5909 			    un->un_devid);
5910 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5911 			    "sd_register_devid: Devid Fabricated\n");
5912 		}
5913 		return;
5914 	}
5915 
5916 	/*
5917 	 * We check the availibility of the World Wide Name (0x83) and Unit
5918 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
5919 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
5920 	 * 0x83 is availible, that is the best choice.  Our next choice is
5921 	 * 0x80.  If neither are availible, we munge the devid from the device
5922 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
5923 	 * to fabricate a devid for non-Sun qualified disks.
5924 	 */
5925 	if (sd_check_vpd_page_support(un) == 0) {
5926 		/* collect page 80 data if available */
5927 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
5928 
5929 			mutex_exit(SD_MUTEX(un));
5930 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
5931 			rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len,
5932 			    0x01, 0x80, &inq80_resid);
5933 
5934 			if (rval != 0) {
5935 				kmem_free(inq80, inq80_len);
5936 				inq80 = NULL;
5937 				inq80_len = 0;
5938 			}
5939 			mutex_enter(SD_MUTEX(un));
5940 		}
5941 
5942 		/* collect page 83 data if available */
5943 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
5944 
5945 			mutex_exit(SD_MUTEX(un));
5946 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
5947 			rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len,
5948 			    0x01, 0x83, &inq83_resid);
5949 
5950 			if (rval != 0) {
5951 				kmem_free(inq83, inq83_len);
5952 				inq83 = NULL;
5953 				inq83_len = 0;
5954 			}
5955 			mutex_enter(SD_MUTEX(un));
5956 		}
5957 	}
5958 
5959 	/* encode best devid possible based on data available */
5960 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
5961 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
5962 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
5963 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
5964 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
5965 
5966 		/* devid successfully encoded, register devid */
5967 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
5968 
5969 	} else {
5970 		/*
5971 		 * Unable to encode a devid based on data available.
5972 		 * This is not a Sun qualified disk.  Older Sun disk
5973 		 * drives that have the SD_FAB_DEVID property
5974 		 * set in the disk_table and non Sun qualified
5975 		 * disks are treated in the same manner.  These
5976 		 * drives manage the devid's by storing them in
5977 		 * last 2 available sectors on the drive and
5978 		 * have them fabricated by the ddi layer by
5979 		 * calling ddi_devid_init and passing the
5980 		 * DEVID_FAB flag.
5981 		 * Create a fabricate devid only if there's no
5982 		 * fabricate devid existed.
5983 		 */
5984 		if (sd_get_devid(un) == EINVAL) {
5985 			(void) sd_create_devid(un);
5986 			un->un_f_opt_fab_devid = TRUE;
5987 		}
5988 
5989 		/* Register the devid if it exists */
5990 		if (un->un_devid != NULL) {
5991 			(void) ddi_devid_register(SD_DEVINFO(un),
5992 			    un->un_devid);
5993 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5994 			    "sd_register_devid: devid fabricated using "
5995 			    "ddi framework\n");
5996 		}
5997 	}
5998 
5999 	/* clean up resources */
6000 	if (inq80 != NULL) {
6001 		kmem_free(inq80, inq80_len);
6002 	}
6003 	if (inq83 != NULL) {
6004 		kmem_free(inq83, inq83_len);
6005 	}
6006 }
6007 
6008 static daddr_t
6009 sd_get_devid_block(struct sd_lun *un)
6010 {
6011 	daddr_t			spc, blk, head, cyl;
6012 
6013 	if (un->un_blockcount <= DK_MAX_BLOCKS) {
6014 		/* this geometry doesn't allow us to write a devid */
6015 		if (un->un_g.dkg_acyl < 2) {
6016 			return (-1);
6017 		}
6018 
6019 		/*
6020 		 * Subtract 2 guarantees that the next to last cylinder
6021 		 * is used
6022 		 */
6023 		cyl  = un->un_g.dkg_ncyl  + un->un_g.dkg_acyl - 2;
6024 		spc  = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
6025 		head = un->un_g.dkg_nhead - 1;
6026 		blk  = (cyl * (spc - un->un_g.dkg_apc)) +
6027 		    (head * un->un_g.dkg_nsect) + 1;
6028 	} else {
6029 		if (un->un_reserved != -1) {
6030 			blk = un->un_map[un->un_reserved].dkl_cylno + 1;
6031 		} else {
6032 			return (-1);
6033 		}
6034 	}
6035 	return (blk);
6036 }
6037 
6038 /*
6039  *    Function: sd_get_devid
6040  *
6041  * Description: This routine will return 0 if a valid device id has been
6042  *		obtained from the target and stored in the soft state. If a
6043  *		valid device id has not been previously read and stored, a
6044  *		read attempt will be made.
6045  *
6046  *   Arguments: un - driver soft state (unit) structure
6047  *
6048  * Return Code: 0 if we successfully get the device id
6049  *
6050  *     Context: Kernel Thread
6051  */
6052 
6053 static int
6054 sd_get_devid(struct sd_lun *un)
6055 {
6056 	struct dk_devid		*dkdevid;
6057 	ddi_devid_t		tmpid;
6058 	uint_t			*ip;
6059 	size_t			sz;
6060 	daddr_t			blk;
6061 	int			status;
6062 	int			chksum;
6063 	int			i;
6064 	size_t			buffer_size;
6065 
6066 	ASSERT(un != NULL);
6067 	ASSERT(mutex_owned(SD_MUTEX(un)));
6068 
6069 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
6070 	    un);
6071 
6072 	if (un->un_devid != NULL) {
6073 		return (0);
6074 	}
6075 
6076 	blk = sd_get_devid_block(un);
6077 	if (blk < 0)
6078 		return (EINVAL);
6079 
6080 	/*
6081 	 * Read and verify device id, stored in the reserved cylinders at the
6082 	 * end of the disk. Backup label is on the odd sectors of the last
6083 	 * track of the last cylinder. Device id will be on track of the next
6084 	 * to last cylinder.
6085 	 */
6086 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
6087 	mutex_exit(SD_MUTEX(un));
6088 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
6089 	status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk,
6090 	    SD_PATH_DIRECT);
6091 	if (status != 0) {
6092 		goto error;
6093 	}
6094 
6095 	/* Validate the revision */
6096 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
6097 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
6098 		status = EINVAL;
6099 		goto error;
6100 	}
6101 
6102 	/* Calculate the checksum */
6103 	chksum = 0;
6104 	ip = (uint_t *)dkdevid;
6105 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
6106 	    i++) {
6107 		chksum ^= ip[i];
6108 	}
6109 
6110 	/* Compare the checksums */
6111 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
6112 		status = EINVAL;
6113 		goto error;
6114 	}
6115 
6116 	/* Validate the device id */
6117 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
6118 		status = EINVAL;
6119 		goto error;
6120 	}
6121 
6122 	/*
6123 	 * Store the device id in the driver soft state
6124 	 */
6125 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
6126 	tmpid = kmem_alloc(sz, KM_SLEEP);
6127 
6128 	mutex_enter(SD_MUTEX(un));
6129 
6130 	un->un_devid = tmpid;
6131 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
6132 
6133 	kmem_free(dkdevid, buffer_size);
6134 
6135 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
6136 
6137 	return (status);
6138 error:
6139 	mutex_enter(SD_MUTEX(un));
6140 	kmem_free(dkdevid, buffer_size);
6141 	return (status);
6142 }
6143 
6144 
6145 /*
6146  *    Function: sd_create_devid
6147  *
6148  * Description: This routine will fabricate the device id and write it
6149  *		to the disk.
6150  *
6151  *   Arguments: un - driver soft state (unit) structure
6152  *
6153  * Return Code: value of the fabricated device id
6154  *
6155  *     Context: Kernel Thread
6156  */
6157 
6158 static ddi_devid_t
6159 sd_create_devid(struct sd_lun *un)
6160 {
6161 	ASSERT(un != NULL);
6162 
6163 	/* Fabricate the devid */
6164 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
6165 	    == DDI_FAILURE) {
6166 		return (NULL);
6167 	}
6168 
6169 	/* Write the devid to disk */
6170 	if (sd_write_deviceid(un) != 0) {
6171 		ddi_devid_free(un->un_devid);
6172 		un->un_devid = NULL;
6173 	}
6174 
6175 	return (un->un_devid);
6176 }
6177 
6178 
6179 /*
6180  *    Function: sd_write_deviceid
6181  *
6182  * Description: This routine will write the device id to the disk
6183  *		reserved sector.
6184  *
6185  *   Arguments: un - driver soft state (unit) structure
6186  *
6187  * Return Code: EINVAL
6188  *		value returned by sd_send_scsi_cmd
6189  *
6190  *     Context: Kernel Thread
6191  */
6192 
6193 static int
6194 sd_write_deviceid(struct sd_lun *un)
6195 {
6196 	struct dk_devid		*dkdevid;
6197 	daddr_t			blk;
6198 	uint_t			*ip, chksum;
6199 	int			status;
6200 	int			i;
6201 
6202 	ASSERT(mutex_owned(SD_MUTEX(un)));
6203 
6204 	blk = sd_get_devid_block(un);
6205 	if (blk < 0)
6206 		return (-1);
6207 	mutex_exit(SD_MUTEX(un));
6208 
6209 	/* Allocate the buffer */
6210 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
6211 
6212 	/* Fill in the revision */
6213 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
6214 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
6215 
6216 	/* Copy in the device id */
6217 	mutex_enter(SD_MUTEX(un));
6218 	bcopy(un->un_devid, &dkdevid->dkd_devid,
6219 	    ddi_devid_sizeof(un->un_devid));
6220 	mutex_exit(SD_MUTEX(un));
6221 
6222 	/* Calculate the checksum */
6223 	chksum = 0;
6224 	ip = (uint_t *)dkdevid;
6225 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
6226 	    i++) {
6227 		chksum ^= ip[i];
6228 	}
6229 
6230 	/* Fill-in checksum */
6231 	DKD_FORMCHKSUM(chksum, dkdevid);
6232 
6233 	/* Write the reserved sector */
6234 	status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk,
6235 	    SD_PATH_DIRECT);
6236 
6237 	kmem_free(dkdevid, un->un_sys_blocksize);
6238 
6239 	mutex_enter(SD_MUTEX(un));
6240 	return (status);
6241 }
6242 
6243 
6244 /*
6245  *    Function: sd_check_vpd_page_support
6246  *
6247  * Description: This routine sends an inquiry command with the EVPD bit set and
6248  *		a page code of 0x00 to the device. It is used to determine which
6249  *		vital product pages are availible to find the devid. We are
6250  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
6251  *		device does not support that command.
6252  *
6253  *   Arguments: un  - driver soft state (unit) structure
6254  *
6255  * Return Code: 0 - success
6256  *		1 - check condition
6257  *
6258  *     Context: This routine can sleep.
6259  */
6260 
6261 static int
6262 sd_check_vpd_page_support(struct sd_lun *un)
6263 {
6264 	uchar_t	*page_list	= NULL;
6265 	uchar_t	page_length	= 0xff;	/* Use max possible length */
6266 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
6267 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
6268 	int    	rval		= 0;
6269 	int	counter;
6270 
6271 	ASSERT(un != NULL);
6272 	ASSERT(mutex_owned(SD_MUTEX(un)));
6273 
6274 	mutex_exit(SD_MUTEX(un));
6275 
6276 	/*
6277 	 * We'll set the page length to the maximum to save figuring it out
6278 	 * with an additional call.
6279 	 */
6280 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
6281 
6282 	rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd,
6283 	    page_code, NULL);
6284 
6285 	mutex_enter(SD_MUTEX(un));
6286 
6287 	/*
6288 	 * Now we must validate that the device accepted the command, as some
6289 	 * drives do not support it.  If the drive does support it, we will
6290 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
6291 	 * not, we return -1.
6292 	 */
6293 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
6294 		/* Loop to find one of the 2 pages we need */
6295 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
6296 
6297 		/*
6298 		 * Pages are returned in ascending order, and 0x83 is what we
6299 		 * are hoping for.
6300 		 */
6301 		while ((page_list[counter] <= 0x83) &&
6302 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
6303 		    VPD_HEAD_OFFSET))) {
6304 			/*
6305 			 * Add 3 because page_list[3] is the number of
6306 			 * pages minus 3
6307 			 */
6308 
6309 			switch (page_list[counter]) {
6310 			case 0x00:
6311 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
6312 				break;
6313 			case 0x80:
6314 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
6315 				break;
6316 			case 0x81:
6317 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
6318 				break;
6319 			case 0x82:
6320 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
6321 				break;
6322 			case 0x83:
6323 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
6324 				break;
6325 			}
6326 			counter++;
6327 		}
6328 
6329 	} else {
6330 		rval = -1;
6331 
6332 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6333 		    "sd_check_vpd_page_support: This drive does not implement "
6334 		    "VPD pages.\n");
6335 	}
6336 
6337 	kmem_free(page_list, page_length);
6338 
6339 	return (rval);
6340 }
6341 
6342 
6343 /*
6344  *    Function: sd_setup_pm
6345  *
6346  * Description: Initialize Power Management on the device
6347  *
6348  *     Context: Kernel Thread
6349  */
6350 
6351 static void
6352 sd_setup_pm(struct sd_lun *un, dev_info_t *devi)
6353 {
6354 	uint_t	log_page_size;
6355 	uchar_t	*log_page_data;
6356 	int	rval;
6357 
6358 	/*
6359 	 * Since we are called from attach, holding a mutex for
6360 	 * un is unnecessary. Because some of the routines called
6361 	 * from here require SD_MUTEX to not be held, assert this
6362 	 * right up front.
6363 	 */
6364 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6365 	/*
6366 	 * Since the sd device does not have the 'reg' property,
6367 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
6368 	 * The following code is to tell cpr that this device
6369 	 * DOES need to be suspended and resumed.
6370 	 */
6371 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
6372 	    "pm-hardware-state", "needs-suspend-resume");
6373 
6374 	/*
6375 	 * Check if HBA has set the "pm-capable" property.
6376 	 * If "pm-capable" exists and is non-zero then we can
6377 	 * power manage the device without checking the start/stop
6378 	 * cycle count log sense page.
6379 	 *
6380 	 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
6381 	 * then we should not power manage the device.
6382 	 *
6383 	 * If "pm-capable" doesn't exist then un->un_pm_capable_prop will
6384 	 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case, sd will
6385 	 * check the start/stop cycle count log sense page and power manage
6386 	 * the device if the cycle count limit has not been exceeded.
6387 	 */
6388 	un->un_pm_capable_prop =
6389 	    ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6390 		"pm-capable", SD_PM_CAPABLE_UNDEFINED);
6391 	if (un->un_pm_capable_prop != SD_PM_CAPABLE_UNDEFINED) {
6392 		/*
6393 		 * pm-capable property exists.
6394 		 *
6395 		 * Convert "TRUE" values for un_pm_capable_prop to
6396 		 * SD_PM_CAPABLE_TRUE (1) to make it easier to check later.
6397 		 * "TRUE" values are any values except SD_PM_CAPABLE_FALSE (0)
6398 		 *  and SD_PM_CAPABLE_UNDEFINED (-1)
6399 		 */
6400 		if (un->un_pm_capable_prop != SD_PM_CAPABLE_FALSE) {
6401 			un->un_pm_capable_prop = SD_PM_CAPABLE_TRUE;
6402 		}
6403 
6404 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6405 		    "sd_unit_attach: un:0x%p pm-capable "
6406 		    "property set to %d.\n", un, un->un_pm_capable_prop);
6407 	}
6408 
6409 	/*
6410 	 * This complies with the new power management framework
6411 	 * for certain desktop machines. Create the pm_components
6412 	 * property as a string array property.
6413 	 *
6414 	 * If this is a removable device or if the pm-capable property
6415 	 * is SD_PM_CAPABLE_TRUE (1) then we should create the
6416 	 * pm_components property without checking for the existance of
6417 	 * the start-stop cycle counter log page
6418 	 */
6419 	if (ISREMOVABLE(un) ||
6420 	    un->un_pm_capable_prop == SD_PM_CAPABLE_TRUE) {
6421 		/*
6422 		 * not all devices have a motor, try it first.
6423 		 * some devices may return ILLEGAL REQUEST, some
6424 		 * will hang
6425 		 */
6426 		un->un_f_start_stop_supported = TRUE;
6427 		if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
6428 		    SD_PATH_DIRECT) != 0) {
6429 			un->un_f_start_stop_supported = FALSE;
6430 		}
6431 
6432 		/*
6433 		 * create pm properties anyways otherwise the parent can't
6434 		 * go to sleep
6435 		 */
6436 		(void) sd_create_pm_components(devi, un);
6437 		un->un_f_pm_is_enabled = TRUE;
6438 
6439 		/*
6440 		 * Need to create a zero length (Boolean) property
6441 		 * removable-media for the removable media devices.
6442 		 * Note that the return value of the property is not being
6443 		 * checked, since if unable to create the property
6444 		 * then do not want the attach to fail altogether. Consistent
6445 		 * with other property creation in attach.
6446 		 */
6447 		if (ISREMOVABLE(un)) {
6448 			(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
6449 			    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
6450 		}
6451 		return;
6452 	}
6453 
6454 	rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE);
6455 
6456 #ifdef	SDDEBUG
6457 	if (sd_force_pm_supported) {
6458 		/* Force a successful result */
6459 		rval = 1;
6460 	}
6461 #endif
6462 
6463 	/*
6464 	 * If the start-stop cycle counter log page is not supported
6465 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
6466 	 * then we should not create the pm_components property.
6467 	 */
6468 	if (rval == -1 || un->un_pm_capable_prop == SD_PM_CAPABLE_FALSE) {
6469 		/*
6470 		 * Error.
6471 		 * Reading log sense failed, most likely this is
6472 		 * an older drive that does not support log sense.
6473 		 * If this fails auto-pm is not supported.
6474 		 */
6475 		un->un_power_level = SD_SPINDLE_ON;
6476 		un->un_f_pm_is_enabled = FALSE;
6477 
6478 	} else if (rval == 0) {
6479 		/*
6480 		 * Page not found.
6481 		 * The start stop cycle counter is implemented as page
6482 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
6483 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
6484 		 */
6485 		if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) {
6486 			/*
6487 			 * Page found, use this one.
6488 			 */
6489 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
6490 			un->un_f_pm_is_enabled = TRUE;
6491 		} else {
6492 			/*
6493 			 * Error or page not found.
6494 			 * auto-pm is not supported for this device.
6495 			 */
6496 			un->un_power_level = SD_SPINDLE_ON;
6497 			un->un_f_pm_is_enabled = FALSE;
6498 		}
6499 	} else {
6500 		/*
6501 		 * Page found, use it.
6502 		 */
6503 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
6504 		un->un_f_pm_is_enabled = TRUE;
6505 	}
6506 
6507 
6508 	if (un->un_f_pm_is_enabled == TRUE) {
6509 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6510 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6511 
6512 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
6513 		    log_page_size, un->un_start_stop_cycle_page,
6514 		    0x01, 0, SD_PATH_DIRECT);
6515 #ifdef	SDDEBUG
6516 		if (sd_force_pm_supported) {
6517 			/* Force a successful result */
6518 			rval = 0;
6519 		}
6520 #endif
6521 
6522 		/*
6523 		 * If the Log sense for Page( Start/stop cycle counter page)
6524 		 * succeeds, then power managment is supported and we can
6525 		 * enable auto-pm.
6526 		 */
6527 		if (rval == 0)  {
6528 			(void) sd_create_pm_components(devi, un);
6529 		} else {
6530 			un->un_power_level = SD_SPINDLE_ON;
6531 			un->un_f_pm_is_enabled = FALSE;
6532 		}
6533 
6534 		kmem_free(log_page_data, log_page_size);
6535 	}
6536 }
6537 
6538 
6539 /*
6540  *    Function: sd_create_pm_components
6541  *
6542  * Description: Initialize PM property.
6543  *
6544  *     Context: Kernel thread context
6545  */
6546 
6547 static void
6548 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
6549 {
6550 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
6551 
6552 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6553 
6554 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6555 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
6556 		/*
6557 		 * When components are initially created they are idle,
6558 		 * power up any non-removables.
6559 		 * Note: the return value of pm_raise_power can't be used
6560 		 * for determining if PM should be enabled for this device.
6561 		 * Even if you check the return values and remove this
6562 		 * property created above, the PM framework will not honor the
6563 		 * change after the first call to pm_raise_power. Hence,
6564 		 * removal of that property does not help if pm_raise_power
6565 		 * fails. In the case of removable media, the start/stop
6566 		 * will fail if the media is not present.
6567 		 */
6568 		if ((!ISREMOVABLE(un)) && (pm_raise_power(SD_DEVINFO(un), 0,
6569 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
6570 			mutex_enter(SD_MUTEX(un));
6571 			un->un_power_level = SD_SPINDLE_ON;
6572 			mutex_enter(&un->un_pm_mutex);
6573 			/* Set to on and not busy. */
6574 			un->un_pm_count = 0;
6575 		} else {
6576 			mutex_enter(SD_MUTEX(un));
6577 			un->un_power_level = SD_SPINDLE_OFF;
6578 			mutex_enter(&un->un_pm_mutex);
6579 			/* Set to off. */
6580 			un->un_pm_count = -1;
6581 		}
6582 		mutex_exit(&un->un_pm_mutex);
6583 		mutex_exit(SD_MUTEX(un));
6584 	} else {
6585 		un->un_power_level = SD_SPINDLE_ON;
6586 		un->un_f_pm_is_enabled = FALSE;
6587 	}
6588 }
6589 
6590 
6591 /*
6592  *    Function: sd_ddi_suspend
6593  *
6594  * Description: Performs system power-down operations. This includes
6595  *		setting the drive state to indicate its suspended so
6596  *		that no new commands will be accepted. Also, wait for
6597  *		all commands that are in transport or queued to a timer
6598  *		for retry to complete. All timeout threads are cancelled.
6599  *
6600  * Return Code: DDI_FAILURE or DDI_SUCCESS
6601  *
6602  *     Context: Kernel thread context
6603  */
6604 
6605 static int
6606 sd_ddi_suspend(dev_info_t *devi)
6607 {
6608 	struct	sd_lun	*un;
6609 	clock_t		wait_cmds_complete;
6610 
6611 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6612 	if (un == NULL) {
6613 		return (DDI_FAILURE);
6614 	}
6615 
6616 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
6617 
6618 	mutex_enter(SD_MUTEX(un));
6619 
6620 	/* Return success if the device is already suspended. */
6621 	if (un->un_state == SD_STATE_SUSPENDED) {
6622 		mutex_exit(SD_MUTEX(un));
6623 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6624 		    "device already suspended, exiting\n");
6625 		return (DDI_SUCCESS);
6626 	}
6627 
6628 	/* Return failure if the device is being used by HA */
6629 	if (un->un_resvd_status &
6630 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
6631 		mutex_exit(SD_MUTEX(un));
6632 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6633 		    "device in use by HA, exiting\n");
6634 		return (DDI_FAILURE);
6635 	}
6636 
6637 	/*
6638 	 * Return failure if the device is in a resource wait
6639 	 * or power changing state.
6640 	 */
6641 	if ((un->un_state == SD_STATE_RWAIT) ||
6642 	    (un->un_state == SD_STATE_PM_CHANGING)) {
6643 		mutex_exit(SD_MUTEX(un));
6644 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6645 		    "device in resource wait state, exiting\n");
6646 		return (DDI_FAILURE);
6647 	}
6648 
6649 
6650 	un->un_save_state = un->un_last_state;
6651 	New_state(un, SD_STATE_SUSPENDED);
6652 
6653 	/*
6654 	 * Wait for all commands that are in transport or queued to a timer
6655 	 * for retry to complete.
6656 	 *
6657 	 * While waiting, no new commands will be accepted or sent because of
6658 	 * the new state we set above.
6659 	 *
6660 	 * Wait till current operation has completed. If we are in the resource
6661 	 * wait state (with an intr outstanding) then we need to wait till the
6662 	 * intr completes and starts the next cmd. We want to wait for
6663 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
6664 	 */
6665 	wait_cmds_complete = ddi_get_lbolt() +
6666 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
6667 
6668 	while (un->un_ncmds_in_transport != 0) {
6669 		/*
6670 		 * Fail if commands do not finish in the specified time.
6671 		 */
6672 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
6673 		    wait_cmds_complete) == -1) {
6674 			/*
6675 			 * Undo the state changes made above. Everything
6676 			 * must go back to it's original value.
6677 			 */
6678 			Restore_state(un);
6679 			un->un_last_state = un->un_save_state;
6680 			/* Wake up any threads that might be waiting. */
6681 			cv_broadcast(&un->un_suspend_cv);
6682 			mutex_exit(SD_MUTEX(un));
6683 			SD_ERROR(SD_LOG_IO_PM, un,
6684 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
6685 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
6686 			return (DDI_FAILURE);
6687 		}
6688 	}
6689 
6690 	/*
6691 	 * Cancel SCSI watch thread and timeouts, if any are active
6692 	 */
6693 
6694 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
6695 		opaque_t temp_token = un->un_swr_token;
6696 		mutex_exit(SD_MUTEX(un));
6697 		scsi_watch_suspend(temp_token);
6698 		mutex_enter(SD_MUTEX(un));
6699 	}
6700 
6701 	if (un->un_reset_throttle_timeid != NULL) {
6702 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
6703 		un->un_reset_throttle_timeid = NULL;
6704 		mutex_exit(SD_MUTEX(un));
6705 		(void) untimeout(temp_id);
6706 		mutex_enter(SD_MUTEX(un));
6707 	}
6708 
6709 	if (un->un_dcvb_timeid != NULL) {
6710 		timeout_id_t temp_id = un->un_dcvb_timeid;
6711 		un->un_dcvb_timeid = NULL;
6712 		mutex_exit(SD_MUTEX(un));
6713 		(void) untimeout(temp_id);
6714 		mutex_enter(SD_MUTEX(un));
6715 	}
6716 
6717 	mutex_enter(&un->un_pm_mutex);
6718 	if (un->un_pm_timeid != NULL) {
6719 		timeout_id_t temp_id = un->un_pm_timeid;
6720 		un->un_pm_timeid = NULL;
6721 		mutex_exit(&un->un_pm_mutex);
6722 		mutex_exit(SD_MUTEX(un));
6723 		(void) untimeout(temp_id);
6724 		mutex_enter(SD_MUTEX(un));
6725 	} else {
6726 		mutex_exit(&un->un_pm_mutex);
6727 	}
6728 
6729 	if (un->un_retry_timeid != NULL) {
6730 		timeout_id_t temp_id = un->un_retry_timeid;
6731 		un->un_retry_timeid = NULL;
6732 		mutex_exit(SD_MUTEX(un));
6733 		(void) untimeout(temp_id);
6734 		mutex_enter(SD_MUTEX(un));
6735 	}
6736 
6737 	if (un->un_direct_priority_timeid != NULL) {
6738 		timeout_id_t temp_id = un->un_direct_priority_timeid;
6739 		un->un_direct_priority_timeid = NULL;
6740 		mutex_exit(SD_MUTEX(un));
6741 		(void) untimeout(temp_id);
6742 		mutex_enter(SD_MUTEX(un));
6743 	}
6744 
6745 	if (un->un_f_is_fibre == TRUE) {
6746 		/*
6747 		 * Remove callbacks for insert and remove events
6748 		 */
6749 		if (un->un_insert_event != NULL) {
6750 			mutex_exit(SD_MUTEX(un));
6751 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
6752 			mutex_enter(SD_MUTEX(un));
6753 			un->un_insert_event = NULL;
6754 		}
6755 
6756 		if (un->un_remove_event != NULL) {
6757 			mutex_exit(SD_MUTEX(un));
6758 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
6759 			mutex_enter(SD_MUTEX(un));
6760 			un->un_remove_event = NULL;
6761 		}
6762 	}
6763 
6764 	mutex_exit(SD_MUTEX(un));
6765 
6766 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
6767 
6768 	return (DDI_SUCCESS);
6769 }
6770 
6771 
6772 /*
6773  *    Function: sd_ddi_pm_suspend
6774  *
6775  * Description: Set the drive state to low power.
6776  *		Someone else is required to actually change the drive
6777  *		power level.
6778  *
6779  *   Arguments: un - driver soft state (unit) structure
6780  *
6781  * Return Code: DDI_FAILURE or DDI_SUCCESS
6782  *
6783  *     Context: Kernel thread context
6784  */
6785 
6786 static int
6787 sd_ddi_pm_suspend(struct sd_lun *un)
6788 {
6789 	ASSERT(un != NULL);
6790 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
6791 
6792 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6793 	mutex_enter(SD_MUTEX(un));
6794 
6795 	/*
6796 	 * Exit if power management is not enabled for this device, or if
6797 	 * the device is being used by HA.
6798 	 */
6799 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
6800 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
6801 		mutex_exit(SD_MUTEX(un));
6802 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
6803 		return (DDI_SUCCESS);
6804 	}
6805 
6806 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
6807 	    un->un_ncmds_in_driver);
6808 
6809 	/*
6810 	 * See if the device is not busy, ie.:
6811 	 *    - we have no commands in the driver for this device
6812 	 *    - not waiting for resources
6813 	 */
6814 	if ((un->un_ncmds_in_driver == 0) &&
6815 	    (un->un_state != SD_STATE_RWAIT)) {
6816 		/*
6817 		 * The device is not busy, so it is OK to go to low power state.
6818 		 * Indicate low power, but rely on someone else to actually
6819 		 * change it.
6820 		 */
6821 		mutex_enter(&un->un_pm_mutex);
6822 		un->un_pm_count = -1;
6823 		mutex_exit(&un->un_pm_mutex);
6824 		un->un_power_level = SD_SPINDLE_OFF;
6825 	}
6826 
6827 	mutex_exit(SD_MUTEX(un));
6828 
6829 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
6830 
6831 	return (DDI_SUCCESS);
6832 }
6833 
6834 
6835 /*
6836  *    Function: sd_ddi_resume
6837  *
6838  * Description: Performs system power-up operations..
6839  *
6840  * Return Code: DDI_SUCCESS
6841  *		DDI_FAILURE
6842  *
6843  *     Context: Kernel thread context
6844  */
6845 
6846 static int
6847 sd_ddi_resume(dev_info_t *devi)
6848 {
6849 	struct	sd_lun	*un;
6850 
6851 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6852 	if (un == NULL) {
6853 		return (DDI_FAILURE);
6854 	}
6855 
6856 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
6857 
6858 	mutex_enter(SD_MUTEX(un));
6859 	Restore_state(un);
6860 
6861 	/*
6862 	 * Restore the state which was saved to give the
6863 	 * the right state in un_last_state
6864 	 */
6865 	un->un_last_state = un->un_save_state;
6866 	/*
6867 	 * Note: throttle comes back at full.
6868 	 * Also note: this MUST be done before calling pm_raise_power
6869 	 * otherwise the system can get hung in biowait. The scenario where
6870 	 * this'll happen is under cpr suspend. Writing of the system
6871 	 * state goes through sddump, which writes 0 to un_throttle. If
6872 	 * writing the system state then fails, example if the partition is
6873 	 * too small, then cpr attempts a resume. If throttle isn't restored
6874 	 * from the saved value until after calling pm_raise_power then
6875 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
6876 	 * in biowait.
6877 	 */
6878 	un->un_throttle = un->un_saved_throttle;
6879 
6880 	/*
6881 	 * The chance of failure is very rare as the only command done in power
6882 	 * entry point is START command when you transition from 0->1 or
6883 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
6884 	 * which suspend was done. Ignore the return value as the resume should
6885 	 * not be failed. In the case of removable media the media need not be
6886 	 * inserted and hence there is a chance that raise power will fail with
6887 	 * media not present.
6888 	 */
6889 	if (!ISREMOVABLE(un)) {
6890 		mutex_exit(SD_MUTEX(un));
6891 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
6892 		mutex_enter(SD_MUTEX(un));
6893 	}
6894 
6895 	/*
6896 	 * Don't broadcast to the suspend cv and therefore possibly
6897 	 * start I/O until after power has been restored.
6898 	 */
6899 	cv_broadcast(&un->un_suspend_cv);
6900 	cv_broadcast(&un->un_state_cv);
6901 
6902 	/* restart thread */
6903 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
6904 		scsi_watch_resume(un->un_swr_token);
6905 	}
6906 
6907 #if (defined(__fibre))
6908 	if (un->un_f_is_fibre == TRUE) {
6909 		/*
6910 		 * Add callbacks for insert and remove events
6911 		 */
6912 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
6913 			sd_init_event_callbacks(un);
6914 		}
6915 	}
6916 #endif
6917 
6918 	/*
6919 	 * Transport any pending commands to the target.
6920 	 *
6921 	 * If this is a low-activity device commands in queue will have to wait
6922 	 * until new commands come in, which may take awhile. Also, we
6923 	 * specifically don't check un_ncmds_in_transport because we know that
6924 	 * there really are no commands in progress after the unit was
6925 	 * suspended and we could have reached the throttle level, been
6926 	 * suspended, and have no new commands coming in for awhile. Highly
6927 	 * unlikely, but so is the low-activity disk scenario.
6928 	 */
6929 	ddi_xbuf_dispatch(un->un_xbuf_attr);
6930 
6931 	sd_start_cmds(un, NULL);
6932 	mutex_exit(SD_MUTEX(un));
6933 
6934 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
6935 
6936 	return (DDI_SUCCESS);
6937 }
6938 
6939 
6940 /*
6941  *    Function: sd_ddi_pm_resume
6942  *
6943  * Description: Set the drive state to powered on.
6944  *		Someone else is required to actually change the drive
6945  *		power level.
6946  *
6947  *   Arguments: un - driver soft state (unit) structure
6948  *
6949  * Return Code: DDI_SUCCESS
6950  *
6951  *     Context: Kernel thread context
6952  */
6953 
6954 static int
6955 sd_ddi_pm_resume(struct sd_lun *un)
6956 {
6957 	ASSERT(un != NULL);
6958 
6959 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6960 	mutex_enter(SD_MUTEX(un));
6961 	un->un_power_level = SD_SPINDLE_ON;
6962 
6963 	ASSERT(!mutex_owned(&un->un_pm_mutex));
6964 	mutex_enter(&un->un_pm_mutex);
6965 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
6966 		un->un_pm_count++;
6967 		ASSERT(un->un_pm_count == 0);
6968 		/*
6969 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
6970 		 * un_suspend_cv is for a system resume, not a power management
6971 		 * device resume. (4297749)
6972 		 *	 cv_broadcast(&un->un_suspend_cv);
6973 		 */
6974 	}
6975 	mutex_exit(&un->un_pm_mutex);
6976 	mutex_exit(SD_MUTEX(un));
6977 
6978 	return (DDI_SUCCESS);
6979 }
6980 
6981 
6982 /*
6983  *    Function: sd_pm_idletimeout_handler
6984  *
6985  * Description: A timer routine that's active only while a device is busy.
6986  *		The purpose is to extend slightly the pm framework's busy
6987  *		view of the device to prevent busy/idle thrashing for
6988  *		back-to-back commands. Do this by comparing the current time
6989  *		to the time at which the last command completed and when the
6990  *		difference is greater than sd_pm_idletime, call
6991  *		pm_idle_component. In addition to indicating idle to the pm
6992  *		framework, update the chain type to again use the internal pm
6993  *		layers of the driver.
6994  *
6995  *   Arguments: arg - driver soft state (unit) structure
6996  *
6997  *     Context: Executes in a timeout(9F) thread context
6998  */
6999 
7000 static void
7001 sd_pm_idletimeout_handler(void *arg)
7002 {
7003 	struct sd_lun *un = arg;
7004 
7005 	time_t	now;
7006 
7007 	mutex_enter(&sd_detach_mutex);
7008 	if (un->un_detach_count != 0) {
7009 		/* Abort if the instance is detaching */
7010 		mutex_exit(&sd_detach_mutex);
7011 		return;
7012 	}
7013 	mutex_exit(&sd_detach_mutex);
7014 
7015 	now = ddi_get_time();
7016 	/*
7017 	 * Grab both mutexes, in the proper order, since we're accessing
7018 	 * both PM and softstate variables.
7019 	 */
7020 	mutex_enter(SD_MUTEX(un));
7021 	mutex_enter(&un->un_pm_mutex);
7022 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
7023 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
7024 		/*
7025 		 * Update the chain types.
7026 		 * This takes affect on the next new command received.
7027 		 */
7028 		if (ISREMOVABLE(un)) {
7029 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7030 		} else {
7031 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7032 		}
7033 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7034 
7035 		SD_TRACE(SD_LOG_IO_PM, un,
7036 		    "sd_pm_idletimeout_handler: idling device\n");
7037 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7038 		un->un_pm_idle_timeid = NULL;
7039 	} else {
7040 		un->un_pm_idle_timeid =
7041 			timeout(sd_pm_idletimeout_handler, un,
7042 			(drv_usectohz((clock_t)300000))); /* 300 ms. */
7043 	}
7044 	mutex_exit(&un->un_pm_mutex);
7045 	mutex_exit(SD_MUTEX(un));
7046 }
7047 
7048 
7049 /*
7050  *    Function: sd_pm_timeout_handler
7051  *
7052  * Description: Callback to tell framework we are idle.
7053  *
7054  *     Context: timeout(9f) thread context.
7055  */
7056 
7057 static void
7058 sd_pm_timeout_handler(void *arg)
7059 {
7060 	struct sd_lun *un = arg;
7061 
7062 	(void) pm_idle_component(SD_DEVINFO(un), 0);
7063 	mutex_enter(&un->un_pm_mutex);
7064 	un->un_pm_timeid = NULL;
7065 	mutex_exit(&un->un_pm_mutex);
7066 }
7067 
7068 
7069 /*
7070  *    Function: sdpower
7071  *
7072  * Description: PM entry point.
7073  *
7074  * Return Code: DDI_SUCCESS
7075  *		DDI_FAILURE
7076  *
7077  *     Context: Kernel thread context
7078  */
7079 
7080 static int
7081 sdpower(dev_info_t *devi, int component, int level)
7082 {
7083 	struct sd_lun	*un;
7084 	int		instance;
7085 	int		rval = DDI_SUCCESS;
7086 	uint_t		i, log_page_size, maxcycles, ncycles;
7087 	uchar_t		*log_page_data;
7088 	int		log_sense_page;
7089 	int		medium_present;
7090 	time_t		intvlp;
7091 	dev_t		dev;
7092 	struct pm_trans_data	sd_pm_tran_data;
7093 	uchar_t		save_state;
7094 	int		sval;
7095 	uchar_t		state_before_pm;
7096 	int		got_semaphore_here;
7097 
7098 	instance = ddi_get_instance(devi);
7099 
7100 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
7101 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
7102 	    component != 0) {
7103 		return (DDI_FAILURE);
7104 	}
7105 
7106 	dev = sd_make_device(SD_DEVINFO(un));
7107 
7108 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
7109 
7110 	/*
7111 	 * Must synchronize power down with close.
7112 	 * Attempt to decrement/acquire the open/close semaphore,
7113 	 * but do NOT wait on it. If it's not greater than zero,
7114 	 * ie. it can't be decremented without waiting, then
7115 	 * someone else, either open or close, already has it
7116 	 * and the try returns 0. Use that knowledge here to determine
7117 	 * if it's OK to change the device power level.
7118 	 * Also, only increment it on exit if it was decremented, ie. gotten,
7119 	 * here.
7120 	 */
7121 	got_semaphore_here = sema_tryp(&un->un_semoclose);
7122 
7123 	mutex_enter(SD_MUTEX(un));
7124 
7125 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
7126 	    un->un_ncmds_in_driver);
7127 
7128 	/*
7129 	 * If un_ncmds_in_driver is non-zero it indicates commands are
7130 	 * already being processed in the driver, or if the semaphore was
7131 	 * not gotten here it indicates an open or close is being processed.
7132 	 * At the same time somebody is requesting to go low power which
7133 	 * can't happen, therefore we need to return failure.
7134 	 */
7135 	if ((level == SD_SPINDLE_OFF) &&
7136 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
7137 		mutex_exit(SD_MUTEX(un));
7138 
7139 		if (got_semaphore_here != 0) {
7140 			sema_v(&un->un_semoclose);
7141 		}
7142 		SD_TRACE(SD_LOG_IO_PM, un,
7143 		    "sdpower: exit, device has queued cmds.\n");
7144 		return (DDI_FAILURE);
7145 	}
7146 
7147 	/*
7148 	 * if it is OFFLINE that means the disk is completely dead
7149 	 * in our case we have to put the disk in on or off by sending commands
7150 	 * Of course that will fail anyway so return back here.
7151 	 *
7152 	 * Power changes to a device that's OFFLINE or SUSPENDED
7153 	 * are not allowed.
7154 	 */
7155 	if ((un->un_state == SD_STATE_OFFLINE) ||
7156 	    (un->un_state == SD_STATE_SUSPENDED)) {
7157 		mutex_exit(SD_MUTEX(un));
7158 
7159 		if (got_semaphore_here != 0) {
7160 			sema_v(&un->un_semoclose);
7161 		}
7162 		SD_TRACE(SD_LOG_IO_PM, un,
7163 		    "sdpower: exit, device is off-line.\n");
7164 		return (DDI_FAILURE);
7165 	}
7166 
7167 	/*
7168 	 * Change the device's state to indicate it's power level
7169 	 * is being changed. Do this to prevent a power off in the
7170 	 * middle of commands, which is especially bad on devices
7171 	 * that are really powered off instead of just spun down.
7172 	 */
7173 	state_before_pm = un->un_state;
7174 	un->un_state = SD_STATE_PM_CHANGING;
7175 
7176 	mutex_exit(SD_MUTEX(un));
7177 
7178 	/*
7179 	 * Bypass checking the log sense information for removables
7180 	 * and devices for which the HBA set the pm-capable property.
7181 	 * If un->un_pm_capable_prop is SD_PM_CAPABLE_UNDEFINED (-1)
7182 	 * then the HBA did not create the property.
7183 	 */
7184 	if ((level == SD_SPINDLE_OFF) && (!ISREMOVABLE(un)) &&
7185 	    un->un_pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
7186 		/*
7187 		 * Get the log sense information to understand whether the
7188 		 * the powercycle counts have gone beyond the threshhold.
7189 		 */
7190 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
7191 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
7192 
7193 		mutex_enter(SD_MUTEX(un));
7194 		log_sense_page = un->un_start_stop_cycle_page;
7195 		mutex_exit(SD_MUTEX(un));
7196 
7197 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
7198 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
7199 #ifdef	SDDEBUG
7200 		if (sd_force_pm_supported) {
7201 			/* Force a successful result */
7202 			rval = 0;
7203 		}
7204 #endif
7205 		if (rval != 0) {
7206 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
7207 			    "Log Sense Failed\n");
7208 			kmem_free(log_page_data, log_page_size);
7209 			/* Cannot support power management on those drives */
7210 
7211 			if (got_semaphore_here != 0) {
7212 				sema_v(&un->un_semoclose);
7213 			}
7214 			/*
7215 			 * On exit put the state back to it's original value
7216 			 * and broadcast to anyone waiting for the power
7217 			 * change completion.
7218 			 */
7219 			mutex_enter(SD_MUTEX(un));
7220 			un->un_state = state_before_pm;
7221 			cv_broadcast(&un->un_suspend_cv);
7222 			mutex_exit(SD_MUTEX(un));
7223 			SD_TRACE(SD_LOG_IO_PM, un,
7224 			    "sdpower: exit, Log Sense Failed.\n");
7225 			return (DDI_FAILURE);
7226 		}
7227 
7228 		/*
7229 		 * From the page data - Convert the essential information to
7230 		 * pm_trans_data
7231 		 */
7232 		maxcycles =
7233 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
7234 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
7235 
7236 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
7237 
7238 		ncycles =
7239 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
7240 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
7241 
7242 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
7243 
7244 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
7245 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
7246 			    log_page_data[8+i];
7247 		}
7248 
7249 		kmem_free(log_page_data, log_page_size);
7250 
7251 		/*
7252 		 * Call pm_trans_check routine to get the Ok from
7253 		 * the global policy
7254 		 */
7255 
7256 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
7257 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
7258 
7259 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
7260 #ifdef	SDDEBUG
7261 		if (sd_force_pm_supported) {
7262 			/* Force a successful result */
7263 			rval = 1;
7264 		}
7265 #endif
7266 		switch (rval) {
7267 		case 0:
7268 			/*
7269 			 * Not Ok to Power cycle or error in parameters passed
7270 			 * Would have given the advised time to consider power
7271 			 * cycle. Based on the new intvlp parameter we are
7272 			 * supposed to pretend we are busy so that pm framework
7273 			 * will never call our power entry point. Because of
7274 			 * that install a timeout handler and wait for the
7275 			 * recommended time to elapse so that power management
7276 			 * can be effective again.
7277 			 *
7278 			 * To effect this behavior, call pm_busy_component to
7279 			 * indicate to the framework this device is busy.
7280 			 * By not adjusting un_pm_count the rest of PM in
7281 			 * the driver will function normally, and independant
7282 			 * of this but because the framework is told the device
7283 			 * is busy it won't attempt powering down until it gets
7284 			 * a matching idle. The timeout handler sends this.
7285 			 * Note: sd_pm_entry can't be called here to do this
7286 			 * because sdpower may have been called as a result
7287 			 * of a call to pm_raise_power from within sd_pm_entry.
7288 			 *
7289 			 * If a timeout handler is already active then
7290 			 * don't install another.
7291 			 */
7292 			mutex_enter(&un->un_pm_mutex);
7293 			if (un->un_pm_timeid == NULL) {
7294 				un->un_pm_timeid =
7295 				    timeout(sd_pm_timeout_handler,
7296 				    un, intvlp * drv_usectohz(1000000));
7297 				mutex_exit(&un->un_pm_mutex);
7298 				(void) pm_busy_component(SD_DEVINFO(un), 0);
7299 			} else {
7300 				mutex_exit(&un->un_pm_mutex);
7301 			}
7302 			if (got_semaphore_here != 0) {
7303 				sema_v(&un->un_semoclose);
7304 			}
7305 			/*
7306 			 * On exit put the state back to it's original value
7307 			 * and broadcast to anyone waiting for the power
7308 			 * change completion.
7309 			 */
7310 			mutex_enter(SD_MUTEX(un));
7311 			un->un_state = state_before_pm;
7312 			cv_broadcast(&un->un_suspend_cv);
7313 			mutex_exit(SD_MUTEX(un));
7314 
7315 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
7316 			    "trans check Failed, not ok to power cycle.\n");
7317 			return (DDI_FAILURE);
7318 
7319 		case -1:
7320 			if (got_semaphore_here != 0) {
7321 				sema_v(&un->un_semoclose);
7322 			}
7323 			/*
7324 			 * On exit put the state back to it's original value
7325 			 * and broadcast to anyone waiting for the power
7326 			 * change completion.
7327 			 */
7328 			mutex_enter(SD_MUTEX(un));
7329 			un->un_state = state_before_pm;
7330 			cv_broadcast(&un->un_suspend_cv);
7331 			mutex_exit(SD_MUTEX(un));
7332 			SD_TRACE(SD_LOG_IO_PM, un,
7333 			    "sdpower: exit, trans check command Failed.\n");
7334 			return (DDI_FAILURE);
7335 		}
7336 	}
7337 
7338 	if (level == SD_SPINDLE_OFF) {
7339 		/*
7340 		 * Save the last state... if the STOP FAILS we need it
7341 		 * for restoring
7342 		 */
7343 		mutex_enter(SD_MUTEX(un));
7344 		save_state = un->un_last_state;
7345 		/*
7346 		 * There must not be any cmds. getting processed
7347 		 * in the driver when we get here. Power to the
7348 		 * device is potentially going off.
7349 		 */
7350 		ASSERT(un->un_ncmds_in_driver == 0);
7351 		mutex_exit(SD_MUTEX(un));
7352 
7353 		/*
7354 		 * For now suspend the device completely before spindle is
7355 		 * turned off
7356 		 */
7357 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
7358 			if (got_semaphore_here != 0) {
7359 				sema_v(&un->un_semoclose);
7360 			}
7361 			/*
7362 			 * On exit put the state back to it's original value
7363 			 * and broadcast to anyone waiting for the power
7364 			 * change completion.
7365 			 */
7366 			mutex_enter(SD_MUTEX(un));
7367 			un->un_state = state_before_pm;
7368 			cv_broadcast(&un->un_suspend_cv);
7369 			mutex_exit(SD_MUTEX(un));
7370 			SD_TRACE(SD_LOG_IO_PM, un,
7371 			    "sdpower: exit, PM suspend Failed.\n");
7372 			return (DDI_FAILURE);
7373 		}
7374 	}
7375 
7376 	/*
7377 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
7378 	 * close, or strategy. Dump no long uses this routine, it uses it's
7379 	 * own code so it can be done in polled mode.
7380 	 */
7381 
7382 	medium_present = TRUE;
7383 
7384 	/*
7385 	 * When powering up, issue a TUR in case the device is at unit
7386 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
7387 	 * a deadlock on un_pm_busy_cv will occur.
7388 	 */
7389 	if (level == SD_SPINDLE_ON) {
7390 		(void) sd_send_scsi_TEST_UNIT_READY(un,
7391 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
7392 	}
7393 
7394 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
7395 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
7396 
7397 	sval = sd_send_scsi_START_STOP_UNIT(un,
7398 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
7399 	    SD_PATH_DIRECT);
7400 	/* Command failed, check for media present. */
7401 	if ((sval == ENXIO) && ISREMOVABLE(un)) {
7402 		medium_present = FALSE;
7403 	}
7404 
7405 	/*
7406 	 * The conditions of interest here are:
7407 	 *   if a spindle off with media present fails,
7408 	 *	then restore the state and return an error.
7409 	 *   else if a spindle on fails,
7410 	 *	then return an error (there's no state to restore).
7411 	 * In all other cases we setup for the new state
7412 	 * and return success.
7413 	 */
7414 	switch (level) {
7415 	case SD_SPINDLE_OFF:
7416 		if ((medium_present == TRUE) && (sval != 0)) {
7417 			/* The stop command from above failed */
7418 			rval = DDI_FAILURE;
7419 			/*
7420 			 * The stop command failed, and we have media
7421 			 * present. Put the level back by calling the
7422 			 * sd_pm_resume() and set the state back to
7423 			 * it's previous value.
7424 			 */
7425 			(void) sd_ddi_pm_resume(un);
7426 			mutex_enter(SD_MUTEX(un));
7427 			un->un_last_state = save_state;
7428 			mutex_exit(SD_MUTEX(un));
7429 			break;
7430 		}
7431 		/*
7432 		 * The stop command from above succeeded.
7433 		 */
7434 		if (ISREMOVABLE(un)) {
7435 			/*
7436 			 * Terminate watch thread in case of removable media
7437 			 * devices going into low power state. This is as per
7438 			 * the requirements of pm framework, otherwise commands
7439 			 * will be generated for the device (through watch
7440 			 * thread), even when the device is in low power state.
7441 			 */
7442 			mutex_enter(SD_MUTEX(un));
7443 			un->un_f_watcht_stopped = FALSE;
7444 			if (un->un_swr_token != NULL) {
7445 				opaque_t temp_token = un->un_swr_token;
7446 				un->un_f_watcht_stopped = TRUE;
7447 				un->un_swr_token = NULL;
7448 				mutex_exit(SD_MUTEX(un));
7449 				(void) scsi_watch_request_terminate(temp_token,
7450 				    SCSI_WATCH_TERMINATE_WAIT);
7451 			} else {
7452 				mutex_exit(SD_MUTEX(un));
7453 			}
7454 		}
7455 		break;
7456 
7457 	default:	/* The level requested is spindle on... */
7458 		/*
7459 		 * Legacy behavior: return success on a failed spinup
7460 		 * if there is no media in the drive.
7461 		 * Do this by looking at medium_present here.
7462 		 */
7463 		if ((sval != 0) && medium_present) {
7464 			/* The start command from above failed */
7465 			rval = DDI_FAILURE;
7466 			break;
7467 		}
7468 		/*
7469 		 * The start command from above succeeded
7470 		 * Resume the devices now that we have
7471 		 * started the disks
7472 		 */
7473 		(void) sd_ddi_pm_resume(un);
7474 
7475 		/*
7476 		 * Resume the watch thread since it was suspended
7477 		 * when the device went into low power mode.
7478 		 */
7479 		if (ISREMOVABLE(un)) {
7480 			mutex_enter(SD_MUTEX(un));
7481 			if (un->un_f_watcht_stopped == TRUE) {
7482 				opaque_t temp_token;
7483 
7484 				un->un_f_watcht_stopped = FALSE;
7485 				mutex_exit(SD_MUTEX(un));
7486 				temp_token = scsi_watch_request_submit(
7487 				    SD_SCSI_DEVP(un),
7488 				    sd_check_media_time,
7489 				    SENSE_LENGTH, sd_media_watch_cb,
7490 				    (caddr_t)dev);
7491 				mutex_enter(SD_MUTEX(un));
7492 				un->un_swr_token = temp_token;
7493 			}
7494 			mutex_exit(SD_MUTEX(un));
7495 		}
7496 	}
7497 	if (got_semaphore_here != 0) {
7498 		sema_v(&un->un_semoclose);
7499 	}
7500 	/*
7501 	 * On exit put the state back to it's original value
7502 	 * and broadcast to anyone waiting for the power
7503 	 * change completion.
7504 	 */
7505 	mutex_enter(SD_MUTEX(un));
7506 	un->un_state = state_before_pm;
7507 	cv_broadcast(&un->un_suspend_cv);
7508 	mutex_exit(SD_MUTEX(un));
7509 
7510 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
7511 
7512 	return (rval);
7513 }
7514 
7515 
7516 
7517 /*
7518  *    Function: sdattach
7519  *
7520  * Description: Driver's attach(9e) entry point function.
7521  *
7522  *   Arguments: devi - opaque device info handle
7523  *		cmd  - attach  type
7524  *
7525  * Return Code: DDI_SUCCESS
7526  *		DDI_FAILURE
7527  *
7528  *     Context: Kernel thread context
7529  */
7530 
7531 static int
7532 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
7533 {
7534 	switch (cmd) {
7535 	case DDI_ATTACH:
7536 		return (sd_unit_attach(devi));
7537 	case DDI_RESUME:
7538 		return (sd_ddi_resume(devi));
7539 	default:
7540 		break;
7541 	}
7542 	return (DDI_FAILURE);
7543 }
7544 
7545 
7546 /*
7547  *    Function: sddetach
7548  *
7549  * Description: Driver's detach(9E) entry point function.
7550  *
7551  *   Arguments: devi - opaque device info handle
7552  *		cmd  - detach  type
7553  *
7554  * Return Code: DDI_SUCCESS
7555  *		DDI_FAILURE
7556  *
7557  *     Context: Kernel thread context
7558  */
7559 
7560 static int
7561 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
7562 {
7563 	switch (cmd) {
7564 	case DDI_DETACH:
7565 		return (sd_unit_detach(devi));
7566 	case DDI_SUSPEND:
7567 		return (sd_ddi_suspend(devi));
7568 	default:
7569 		break;
7570 	}
7571 	return (DDI_FAILURE);
7572 }
7573 
7574 
7575 /*
7576  *     Function: sd_sync_with_callback
7577  *
7578  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
7579  *		 state while the callback routine is active.
7580  *
7581  *    Arguments: un: softstate structure for the instance
7582  *
7583  *	Context: Kernel thread context
7584  */
7585 
7586 static void
7587 sd_sync_with_callback(struct sd_lun *un)
7588 {
7589 	ASSERT(un != NULL);
7590 
7591 	mutex_enter(SD_MUTEX(un));
7592 
7593 	ASSERT(un->un_in_callback >= 0);
7594 
7595 	while (un->un_in_callback > 0) {
7596 		mutex_exit(SD_MUTEX(un));
7597 		delay(2);
7598 		mutex_enter(SD_MUTEX(un));
7599 	}
7600 
7601 	mutex_exit(SD_MUTEX(un));
7602 }
7603 
7604 /*
7605  *    Function: sd_unit_attach
7606  *
7607  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
7608  *		the soft state structure for the device and performs
7609  *		all necessary structure and device initializations.
7610  *
7611  *   Arguments: devi: the system's dev_info_t for the device.
7612  *
7613  * Return Code: DDI_SUCCESS if attach is successful.
7614  *		DDI_FAILURE if any part of the attach fails.
7615  *
7616  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
7617  *		Kernel thread context only.  Can sleep.
7618  */
7619 
7620 static int
7621 sd_unit_attach(dev_info_t *devi)
7622 {
7623 	struct	scsi_device	*devp;
7624 	struct	sd_lun		*un;
7625 	char			*variantp;
7626 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
7627 	int	instance;
7628 	int	rval;
7629 	uint64_t	capacity;
7630 	uint_t		lbasize;
7631 
7632 	/*
7633 	 * Retrieve the target driver's private data area. This was set
7634 	 * up by the HBA.
7635 	 */
7636 	devp = ddi_get_driver_private(devi);
7637 
7638 	/*
7639 	 * Since we have no idea what state things were left in by the last
7640 	 * user of the device, set up some 'default' settings, ie. turn 'em
7641 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
7642 	 * Do this before the scsi_probe, which sends an inquiry.
7643 	 * This is a fix for bug (4430280).
7644 	 * Of special importance is wide-xfer. The drive could have been left
7645 	 * in wide transfer mode by the last driver to communicate with it,
7646 	 * this includes us. If that's the case, and if the following is not
7647 	 * setup properly or we don't re-negotiate with the drive prior to
7648 	 * transferring data to/from the drive, it causes bus parity errors,
7649 	 * data overruns, and unexpected interrupts. This first occurred when
7650 	 * the fix for bug (4378686) was made.
7651 	 */
7652 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
7653 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
7654 	(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
7655 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
7656 
7657 	/*
7658 	 * Use scsi_probe() to issue an INQUIRY command to the device.
7659 	 * This call will allocate and fill in the scsi_inquiry structure
7660 	 * and point the sd_inq member of the scsi_device structure to it.
7661 	 * If the attach succeeds, then this memory will not be de-allocated
7662 	 * (via scsi_unprobe()) until the instance is detached.
7663 	 */
7664 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
7665 		goto probe_failed;
7666 	}
7667 
7668 	/*
7669 	 * Check the device type as specified in the inquiry data and
7670 	 * claim it if it is of a type that we support.
7671 	 */
7672 	switch (devp->sd_inq->inq_dtype) {
7673 	case DTYPE_DIRECT:
7674 		break;
7675 	case DTYPE_RODIRECT:
7676 		break;
7677 	case DTYPE_OPTICAL:
7678 		break;
7679 	case DTYPE_NOTPRESENT:
7680 	default:
7681 		/* Unsupported device type; fail the attach. */
7682 		goto probe_failed;
7683 	}
7684 
7685 	/*
7686 	 * Allocate the soft state structure for this unit.
7687 	 *
7688 	 * We rely upon this memory being set to all zeroes by
7689 	 * ddi_soft_state_zalloc().  We assume that any member of the
7690 	 * soft state structure that is not explicitly initialized by
7691 	 * this routine will have a value of zero.
7692 	 */
7693 	instance = ddi_get_instance(devp->sd_dev);
7694 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
7695 		goto probe_failed;
7696 	}
7697 
7698 	/*
7699 	 * Retrieve a pointer to the newly-allocated soft state.
7700 	 *
7701 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
7702 	 * was successful, unless something has gone horribly wrong and the
7703 	 * ddi's soft state internals are corrupt (in which case it is
7704 	 * probably better to halt here than just fail the attach....)
7705 	 */
7706 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
7707 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
7708 		    instance);
7709 		/*NOTREACHED*/
7710 	}
7711 
7712 	/*
7713 	 * Link the back ptr of the driver soft state to the scsi_device
7714 	 * struct for this lun.
7715 	 * Save a pointer to the softstate in the driver-private area of
7716 	 * the scsi_device struct.
7717 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
7718 	 * we first set un->un_sd below.
7719 	 */
7720 	un->un_sd = devp;
7721 	devp->sd_private = (opaque_t)un;
7722 
7723 	/*
7724 	 * The following must be after devp is stored in the soft state struct.
7725 	 */
7726 #ifdef SDDEBUG
7727 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7728 	    "%s_unit_attach: un:0x%p instance:%d\n",
7729 	    ddi_driver_name(devi), un, instance);
7730 #endif
7731 
7732 	/*
7733 	 * Set up the device type and node type (for the minor nodes).
7734 	 * By default we assume that the device can at least support the
7735 	 * Common Command Set. Call it a CD-ROM if it reports itself
7736 	 * as a RODIRECT device.
7737 	 */
7738 	switch (devp->sd_inq->inq_dtype) {
7739 	case DTYPE_RODIRECT:
7740 		un->un_node_type = DDI_NT_CD_CHAN;
7741 		un->un_ctype	 = CTYPE_CDROM;
7742 		break;
7743 	case DTYPE_OPTICAL:
7744 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7745 		un->un_ctype	 = CTYPE_ROD;
7746 		break;
7747 	default:
7748 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7749 		un->un_ctype	 = CTYPE_CCS;
7750 		break;
7751 	}
7752 
7753 	/*
7754 	 * Try to read the interconnect type from the HBA.
7755 	 *
7756 	 * Note: This driver is currently compiled as two binaries, a parallel
7757 	 * scsi version (sd) and a fibre channel version (ssd). All functional
7758 	 * differences are determined at compile time. In the future a single
7759 	 * binary will be provided and the inteconnect type will be used to
7760 	 * differentiate between fibre and parallel scsi behaviors. At that time
7761 	 * it will be necessary for all fibre channel HBAs to support this
7762 	 * property.
7763 	 *
7764 	 * set un_f_is_fiber to TRUE ( default fiber )
7765 	 */
7766 	un->un_f_is_fibre = TRUE;
7767 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
7768 	case INTERCONNECT_SSA:
7769 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
7770 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7771 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
7772 		break;
7773 	case INTERCONNECT_PARALLEL:
7774 		un->un_f_is_fibre = FALSE;
7775 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7776 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7777 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
7778 		break;
7779 	case INTERCONNECT_FIBRE:
7780 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
7781 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7782 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
7783 		break;
7784 	case INTERCONNECT_FABRIC:
7785 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
7786 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
7787 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7788 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
7789 		break;
7790 	default:
7791 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
7792 		/*
7793 		 * The HBA does not support the "interconnect-type" property
7794 		 * (or did not provide a recognized type).
7795 		 *
7796 		 * Note: This will be obsoleted when a single fibre channel
7797 		 * and parallel scsi driver is delivered. In the meantime the
7798 		 * interconnect type will be set to the platform default.If that
7799 		 * type is not parallel SCSI, it means that we should be
7800 		 * assuming "ssd" semantics. However, here this also means that
7801 		 * the FC HBA is not supporting the "interconnect-type" property
7802 		 * like we expect it to, so log this occurrence.
7803 		 */
7804 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
7805 		if (!SD_IS_PARALLEL_SCSI(un)) {
7806 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7807 			    "sd_unit_attach: un:0x%p Assuming "
7808 			    "INTERCONNECT_FIBRE\n", un);
7809 		} else {
7810 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7811 			    "sd_unit_attach: un:0x%p Assuming "
7812 			    "INTERCONNECT_PARALLEL\n", un);
7813 			un->un_f_is_fibre = FALSE;
7814 		}
7815 #else
7816 		/*
7817 		 * Note: This source will be implemented when a single fibre
7818 		 * channel and parallel scsi driver is delivered. The default
7819 		 * will be to assume that if a device does not support the
7820 		 * "interconnect-type" property it is a parallel SCSI HBA and
7821 		 * we will set the interconnect type for parallel scsi.
7822 		 */
7823 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7824 		un->un_f_is_fibre = FALSE;
7825 #endif
7826 		break;
7827 	}
7828 
7829 	if (un->un_f_is_fibre == TRUE) {
7830 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
7831 			SCSI_VERSION_3) {
7832 			switch (un->un_interconnect_type) {
7833 			case SD_INTERCONNECT_FIBRE:
7834 			case SD_INTERCONNECT_SSA:
7835 				un->un_node_type = DDI_NT_BLOCK_WWN;
7836 				break;
7837 			default:
7838 				break;
7839 			}
7840 		}
7841 	}
7842 
7843 	/*
7844 	 * Initialize the Request Sense command for the target
7845 	 */
7846 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
7847 		goto alloc_rqs_failed;
7848 	}
7849 
7850 	/*
7851 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
7852 	 * with seperate binary for sd and ssd.
7853 	 *
7854 	 * x86 has 1 binary, un_retry_count is set base on connection type.
7855 	 * The hardcoded values will go away when Sparc uses 1 binary
7856 	 * for sd and ssd.  This hardcoded values need to match
7857 	 * SD_RETRY_COUNT in sddef.h
7858 	 * The value used is base on interconnect type.
7859 	 * fibre = 3, parallel = 5
7860 	 */
7861 #if defined(__i386) || defined(__amd64)
7862 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
7863 #else
7864 	un->un_retry_count = SD_RETRY_COUNT;
7865 #endif
7866 
7867 	/*
7868 	 * Set the per disk retry count to the default number of retries
7869 	 * for disks and CDROMs. This value can be overridden by the
7870 	 * disk property list or an entry in sd.conf.
7871 	 */
7872 	un->un_notready_retry_count =
7873 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
7874 			: DISK_NOT_READY_RETRY_COUNT(un);
7875 
7876 	/*
7877 	 * Set the busy retry count to the default value of un_retry_count.
7878 	 * This can be overridden by entries in sd.conf or the device
7879 	 * config table.
7880 	 */
7881 	un->un_busy_retry_count = un->un_retry_count;
7882 
7883 	/*
7884 	 * Init the reset threshold for retries.  This number determines
7885 	 * how many retries must be performed before a reset can be issued
7886 	 * (for certain error conditions). This can be overridden by entries
7887 	 * in sd.conf or the device config table.
7888 	 */
7889 	un->un_reset_retry_count = (un->un_retry_count / 2);
7890 
7891 	/*
7892 	 * Set the victim_retry_count to the default un_retry_count
7893 	 */
7894 	un->un_victim_retry_count = (2 * un->un_retry_count);
7895 
7896 	/*
7897 	 * Set the reservation release timeout to the default value of
7898 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
7899 	 * device config table.
7900 	 */
7901 	un->un_reserve_release_time = 5;
7902 
7903 	/*
7904 	 * Set up the default maximum transfer size. Note that this may
7905 	 * get updated later in the attach, when setting up default wide
7906 	 * operations for disks.
7907 	 */
7908 #if defined(__i386) || defined(__amd64)
7909 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
7910 #else
7911 	un->un_max_xfer_size = (uint_t)maxphys;
7912 #endif
7913 
7914 	/*
7915 	 * Get "allow bus device reset" property (defaults to "enabled" if
7916 	 * the property was not defined). This is to disable bus resets for
7917 	 * certain kinds of error recovery. Note: In the future when a run-time
7918 	 * fibre check is available the soft state flag should default to
7919 	 * enabled.
7920 	 */
7921 	if (un->un_f_is_fibre == TRUE) {
7922 		un->un_f_allow_bus_device_reset = TRUE;
7923 	} else {
7924 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7925 			"allow-bus-device-reset", 1) != 0) {
7926 			un->un_f_allow_bus_device_reset = TRUE;
7927 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7928 			"sd_unit_attach: un:0x%p Bus device reset enabled\n",
7929 				un);
7930 		} else {
7931 			un->un_f_allow_bus_device_reset = FALSE;
7932 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7933 			"sd_unit_attach: un:0x%p Bus device reset disabled\n",
7934 				un);
7935 		}
7936 	}
7937 
7938 	/*
7939 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
7940 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
7941 	 *
7942 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
7943 	 * property. The new "variant" property with a value of "atapi" has been
7944 	 * introduced so that future 'variants' of standard SCSI behavior (like
7945 	 * atapi) could be specified by the underlying HBA drivers by supplying
7946 	 * a new value for the "variant" property, instead of having to define a
7947 	 * new property.
7948 	 */
7949 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
7950 		un->un_f_cfg_is_atapi = TRUE;
7951 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7952 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
7953 	}
7954 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
7955 	    &variantp) == DDI_PROP_SUCCESS) {
7956 		if (strcmp(variantp, "atapi") == 0) {
7957 			un->un_f_cfg_is_atapi = TRUE;
7958 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7959 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
7960 		}
7961 		ddi_prop_free(variantp);
7962 	}
7963 
7964 	/*
7965 	 * Assume doorlock commands are supported. If not, the first
7966 	 * call to sd_send_scsi_DOORLOCK() will set to FALSE
7967 	 */
7968 	un->un_f_doorlock_supported = TRUE;
7969 
7970 	un->un_cmd_timeout	= SD_IO_TIME;
7971 
7972 	/* Info on current states, statuses, etc. (Updated frequently) */
7973 	un->un_state		= SD_STATE_NORMAL;
7974 	un->un_last_state	= SD_STATE_NORMAL;
7975 
7976 	/* Control & status info for command throttling */
7977 	un->un_throttle		= sd_max_throttle;
7978 	un->un_saved_throttle	= sd_max_throttle;
7979 	un->un_min_throttle	= sd_min_throttle;
7980 
7981 	if (un->un_f_is_fibre == TRUE) {
7982 		un->un_f_use_adaptive_throttle = TRUE;
7983 	} else {
7984 		un->un_f_use_adaptive_throttle = FALSE;
7985 	}
7986 
7987 	/* Removable media support. */
7988 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
7989 	un->un_mediastate		= DKIO_NONE;
7990 	un->un_specified_mediastate	= DKIO_NONE;
7991 
7992 	/* CVs for suspend/resume (PM or DR) */
7993 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
7994 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
7995 
7996 	/* Power management support. */
7997 	un->un_power_level = SD_SPINDLE_UNINIT;
7998 
7999 	/*
8000 	 * The open/close semaphore is used to serialize threads executing
8001 	 * in the driver's open & close entry point routines for a given
8002 	 * instance.
8003 	 */
8004 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
8005 
8006 	/*
8007 	 * The conf file entry and softstate variable is a forceful override,
8008 	 * meaning a non-zero value must be entered to change the default.
8009 	 */
8010 	un->un_f_disksort_disabled = FALSE;
8011 
8012 	/*
8013 	 * Retrieve the properties from the static driver table or the driver
8014 	 * configuration file (.conf) for this unit and update the soft state
8015 	 * for the device as needed for the indicated properties.
8016 	 * Note: the property configuration needs to occur here as some of the
8017 	 * following routines may have dependancies on soft state flags set
8018 	 * as part of the driver property configuration.
8019 	 */
8020 	sd_read_unit_properties(un);
8021 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8022 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
8023 
8024 	/*
8025 	 * By default, we mark the capacity, lbazize, and geometry
8026 	 * as invalid. Only if we successfully read a valid capacity
8027 	 * will we update the un_blockcount and un_tgt_blocksize with the
8028 	 * valid values (the geometry will be validated later).
8029 	 */
8030 	un->un_f_blockcount_is_valid	= FALSE;
8031 	un->un_f_tgt_blocksize_is_valid	= FALSE;
8032 	un->un_f_geometry_is_valid	= FALSE;
8033 
8034 	/*
8035 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
8036 	 * otherwise.
8037 	 */
8038 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
8039 	un->un_blockcount = 0;
8040 
8041 	/*
8042 	 * Set up the per-instance info needed to determine the correct
8043 	 * CDBs and other info for issuing commands to the target.
8044 	 */
8045 	sd_init_cdb_limits(un);
8046 
8047 	/*
8048 	 * Set up the IO chains to use, based upon the target type.
8049 	 */
8050 	if (ISREMOVABLE(un)) {
8051 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
8052 	} else {
8053 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
8054 	}
8055 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
8056 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
8057 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
8058 
8059 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
8060 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
8061 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
8062 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
8063 
8064 
8065 	if (ISCD(un)) {
8066 		un->un_additional_codes = sd_additional_codes;
8067 	} else {
8068 		un->un_additional_codes = NULL;
8069 	}
8070 
8071 	/*
8072 	 * Create the kstats here so they can be available for attach-time
8073 	 * routines that send commands to the unit (either polled or via
8074 	 * sd_send_scsi_cmd).
8075 	 *
8076 	 * Note: This is a critical sequence that needs to be maintained:
8077 	 *	1) Instantiate the kstats here, before any routines using the
8078 	 *	   iopath (i.e. sd_send_scsi_cmd).
8079 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8080 	 *	   stats (sd_set_pstats), following sd_validate_geometry(),
8081 	 *	   sd_register_devid(), and sd_disable_caching().
8082 	 */
8083 
8084 	un->un_stats = kstat_create(sd_label, instance,
8085 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
8086 	if (un->un_stats != NULL) {
8087 		un->un_stats->ks_lock = SD_MUTEX(un);
8088 		kstat_install(un->un_stats);
8089 	}
8090 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8091 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
8092 
8093 	sd_create_errstats(un, instance);
8094 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8095 	    "sd_unit_attach: un:0x%p errstats created\n", un);
8096 
8097 	/*
8098 	 * The following if/else code was relocated here from below as part
8099 	 * of the fix for bug (4430280). However with the default setup added
8100 	 * on entry to this routine, it's no longer absolutely necessary for
8101 	 * this to be before the call to sd_spin_up_unit.
8102 	 */
8103 	if (SD_IS_PARALLEL_SCSI(un)) {
8104 		/*
8105 		 * If SCSI-2 tagged queueing is supported by the target
8106 		 * and by the host adapter then we will enable it.
8107 		 */
8108 		un->un_tagflags = 0;
8109 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8110 		    (devp->sd_inq->inq_cmdque) &&
8111 		    (un->un_f_arq_enabled == TRUE)) {
8112 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
8113 			    1, 1) == 1) {
8114 				un->un_tagflags = FLAG_STAG;
8115 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8116 				    "sd_unit_attach: un:0x%p tag queueing "
8117 				    "enabled\n", un);
8118 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
8119 			    "untagged-qing", 0) == 1) {
8120 				un->un_f_opt_queueing = TRUE;
8121 				un->un_saved_throttle = un->un_throttle =
8122 				    min(un->un_throttle, 3);
8123 			} else {
8124 				un->un_f_opt_queueing = FALSE;
8125 				un->un_saved_throttle = un->un_throttle = 1;
8126 			}
8127 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
8128 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
8129 			/* The Host Adapter supports internal queueing. */
8130 			un->un_f_opt_queueing = TRUE;
8131 			un->un_saved_throttle = un->un_throttle =
8132 			    min(un->un_throttle, 3);
8133 		} else {
8134 			un->un_f_opt_queueing = FALSE;
8135 			un->un_saved_throttle = un->un_throttle = 1;
8136 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8137 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
8138 		}
8139 
8140 
8141 		/* Setup or tear down default wide operations for disks */
8142 
8143 		/*
8144 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
8145 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
8146 		 * system and be set to different values. In the future this
8147 		 * code may need to be updated when the ssd module is
8148 		 * obsoleted and removed from the system. (4299588)
8149 		 */
8150 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8151 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
8152 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8153 			    1, 1) == 1) {
8154 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8155 				    "sd_unit_attach: un:0x%p Wide Transfer "
8156 				    "enabled\n", un);
8157 			}
8158 
8159 			/*
8160 			 * If tagged queuing has also been enabled, then
8161 			 * enable large xfers
8162 			 */
8163 			if (un->un_saved_throttle == sd_max_throttle) {
8164 				un->un_max_xfer_size =
8165 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8166 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
8167 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8168 				    "sd_unit_attach: un:0x%p max transfer "
8169 				    "size=0x%x\n", un, un->un_max_xfer_size);
8170 			}
8171 		} else {
8172 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8173 			    0, 1) == 1) {
8174 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8175 				    "sd_unit_attach: un:0x%p "
8176 				    "Wide Transfer disabled\n", un);
8177 			}
8178 		}
8179 	} else {
8180 		un->un_tagflags = FLAG_STAG;
8181 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
8182 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
8183 	}
8184 
8185 	/*
8186 	 * If this target supports LUN reset, try to enable it.
8187 	 */
8188 	if (un->un_f_lun_reset_enabled) {
8189 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
8190 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8191 			    "un:0x%p lun_reset capability set\n", un);
8192 		} else {
8193 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8194 			    "un:0x%p lun-reset capability not set\n", un);
8195 		}
8196 	}
8197 
8198 	/*
8199 	 * At this point in the attach, we have enough info in the
8200 	 * soft state to be able to issue commands to the target.
8201 	 *
8202 	 * All command paths used below MUST issue their commands as
8203 	 * SD_PATH_DIRECT. This is important as intermediate layers
8204 	 * are not all initialized yet (such as PM).
8205 	 */
8206 
8207 	/*
8208 	 * Send a TEST UNIT READY command to the device. This should clear
8209 	 * any outstanding UNIT ATTENTION that may be present.
8210 	 *
8211 	 * Note: Don't check for success, just track if there is a reservation,
8212 	 * this is a throw away command to clear any unit attentions.
8213 	 *
8214 	 * Note: This MUST be the first command issued to the target during
8215 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
8216 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
8217 	 * with attempts at spinning up a device with no media.
8218 	 */
8219 	if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) {
8220 		reservation_flag = SD_TARGET_IS_RESERVED;
8221 	}
8222 
8223 	/*
8224 	 * If the device is NOT a removable media device, attempt to spin
8225 	 * it up (using the START_STOP_UNIT command) and read its capacity
8226 	 * (using the READ CAPACITY command).  Note, however, that either
8227 	 * of these could fail and in some cases we would continue with
8228 	 * the attach despite the failure (see below).
8229 	 */
8230 	if (devp->sd_inq->inq_dtype == DTYPE_DIRECT && !ISREMOVABLE(un)) {
8231 		switch (sd_spin_up_unit(un)) {
8232 		case 0:
8233 			/*
8234 			 * Spin-up was successful; now try to read the
8235 			 * capacity.  If successful then save the results
8236 			 * and mark the capacity & lbasize as valid.
8237 			 */
8238 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8239 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
8240 
8241 			switch (sd_send_scsi_READ_CAPACITY(un, &capacity,
8242 			    &lbasize, SD_PATH_DIRECT)) {
8243 			case 0: {
8244 				if (capacity > DK_MAX_BLOCKS) {
8245 #ifdef _LP64
8246 					/*
8247 					 * Enable descriptor format sense data
8248 					 * so that we can get 64 bit sense
8249 					 * data fields.
8250 					 */
8251 					sd_enable_descr_sense(un);
8252 #else
8253 					/* 32-bit kernels can't handle this */
8254 					scsi_log(SD_DEVINFO(un),
8255 					    sd_label, CE_WARN,
8256 					    "disk has %llu blocks, which "
8257 					    "is too large for a 32-bit "
8258 					    "kernel", capacity);
8259 					goto spinup_failed;
8260 #endif
8261 				}
8262 				/*
8263 				 * The following relies on
8264 				 * sd_send_scsi_READ_CAPACITY never
8265 				 * returning 0 for capacity and/or lbasize.
8266 				 */
8267 				sd_update_block_info(un, lbasize, capacity);
8268 
8269 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8270 				    "sd_unit_attach: un:0x%p capacity = %ld "
8271 				    "blocks; lbasize= %ld.\n", un,
8272 				    un->un_blockcount, un->un_tgt_blocksize);
8273 
8274 				break;
8275 			}
8276 			case EACCES:
8277 				/*
8278 				 * Should never get here if the spin-up
8279 				 * succeeded, but code it in anyway.
8280 				 * From here, just continue with the attach...
8281 				 */
8282 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8283 				    "sd_unit_attach: un:0x%p "
8284 				    "sd_send_scsi_READ_CAPACITY "
8285 				    "returned reservation conflict\n", un);
8286 				reservation_flag = SD_TARGET_IS_RESERVED;
8287 				break;
8288 			default:
8289 				/*
8290 				 * Likewise, should never get here if the
8291 				 * spin-up succeeded. Just continue with
8292 				 * the attach...
8293 				 */
8294 				break;
8295 			}
8296 			break;
8297 		case EACCES:
8298 			/*
8299 			 * Device is reserved by another host.  In this case
8300 			 * we could not spin it up or read the capacity, but
8301 			 * we continue with the attach anyway.
8302 			 */
8303 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8304 			    "sd_unit_attach: un:0x%p spin-up reservation "
8305 			    "conflict.\n", un);
8306 			reservation_flag = SD_TARGET_IS_RESERVED;
8307 			break;
8308 		default:
8309 			/* Fail the attach if the spin-up failed. */
8310 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8311 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
8312 			goto spinup_failed;
8313 		}
8314 	}
8315 
8316 	/*
8317 	 * Check to see if this is a MMC drive
8318 	 */
8319 	if (ISCD(un)) {
8320 		sd_set_mmc_caps(un);
8321 	}
8322 
8323 	/*
8324 	 * Create the minor nodes for the device.
8325 	 * Note: If we want to support fdisk on both sparc and intel, this will
8326 	 * have to separate out the notion that VTOC8 is always sparc, and
8327 	 * VTOC16 is always intel (tho these can be the defaults).  The vtoc
8328 	 * type will have to be determined at run-time, and the fdisk
8329 	 * partitioning will have to have been read & set up before we
8330 	 * create the minor nodes. (any other inits (such as kstats) that
8331 	 * also ought to be done before creating the minor nodes?) (Doesn't
8332 	 * setting up the minor nodes kind of imply that we're ready to
8333 	 * handle an open from userland?)
8334 	 */
8335 	if (sd_create_minor_nodes(un, devi) != DDI_SUCCESS) {
8336 		goto create_minor_nodes_failed;
8337 	}
8338 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8339 	    "sd_unit_attach: un:0x%p minor nodes created\n", un);
8340 
8341 	/*
8342 	 * Add a zero-length attribute to tell the world we support
8343 	 * kernel ioctls (for layered drivers)
8344 	 */
8345 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8346 	    DDI_KERNEL_IOCTL, NULL, 0);
8347 
8348 	/*
8349 	 * Add a boolean property to tell the world we support
8350 	 * the B_FAILFAST flag (for layered drivers)
8351 	 */
8352 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8353 	    "ddi-failfast-supported", NULL, 0);
8354 
8355 	/*
8356 	 * Initialize power management
8357 	 */
8358 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
8359 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
8360 	sd_setup_pm(un, devi);
8361 	if (un->un_f_pm_is_enabled == FALSE) {
8362 		/*
8363 		 * For performance, point to a jump table that does
8364 		 * not include pm.
8365 		 * The direct and priority chains don't change with PM.
8366 		 *
8367 		 * Note: this is currently done based on individual device
8368 		 * capabilities. When an interface for determining system
8369 		 * power enabled state becomes available, or when additional
8370 		 * layers are added to the command chain, these values will
8371 		 * have to be re-evaluated for correctness.
8372 		 */
8373 		if (ISREMOVABLE(un)) {
8374 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
8375 		} else {
8376 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
8377 		}
8378 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8379 	}
8380 
8381 	/*
8382 	 * This property is set to 0 by HA software to avoid retries
8383 	 * on a reserved disk. (The preferred property name is
8384 	 * "retry-on-reservation-conflict") (1189689)
8385 	 *
8386 	 * Note: The use of a global here can have unintended consequences. A
8387 	 * per instance variable is preferrable to match the capabilities of
8388 	 * different underlying hba's (4402600)
8389 	 */
8390 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
8391 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
8392 	    sd_retry_on_reservation_conflict);
8393 	if (sd_retry_on_reservation_conflict != 0) {
8394 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
8395 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
8396 		    sd_retry_on_reservation_conflict);
8397 	}
8398 
8399 	/* Set up options for QFULL handling. */
8400 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8401 	    "qfull-retries", -1)) != -1) {
8402 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
8403 		    rval, 1);
8404 	}
8405 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8406 	    "qfull-retry-interval", -1)) != -1) {
8407 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
8408 		    rval, 1);
8409 	}
8410 
8411 	/*
8412 	 * This just prints a message that announces the existence of the
8413 	 * device. The message is always printed in the system logfile, but
8414 	 * only appears on the console if the system is booted with the
8415 	 * -v (verbose) argument.
8416 	 */
8417 	ddi_report_dev(devi);
8418 
8419 	/*
8420 	 * The framework calls driver attach routines single-threaded
8421 	 * for a given instance.  However we still acquire SD_MUTEX here
8422 	 * because this required for calling the sd_validate_geometry()
8423 	 * and sd_register_devid() functions.
8424 	 */
8425 	mutex_enter(SD_MUTEX(un));
8426 	un->un_f_geometry_is_valid = FALSE;
8427 	un->un_mediastate = DKIO_NONE;
8428 	un->un_reserved = -1;
8429 	if (!ISREMOVABLE(un)) {
8430 		/*
8431 		 * Read and validate the device's geometry (ie, disk label)
8432 		 * A new unformatted drive will not have a valid geometry, but
8433 		 * the driver needs to successfully attach to this device so
8434 		 * the drive can be formatted via ioctls.
8435 		 */
8436 		if (((sd_validate_geometry(un, SD_PATH_DIRECT) ==
8437 		    ENOTSUP)) &&
8438 		    (un->un_blockcount < DK_MAX_BLOCKS)) {
8439 			/*
8440 			 * We found a small disk with an EFI label on it;
8441 			 * we need to fix up the minor nodes accordingly.
8442 			 */
8443 			ddi_remove_minor_node(devi, "h");
8444 			ddi_remove_minor_node(devi, "h,raw");
8445 			(void) ddi_create_minor_node(devi, "wd",
8446 			    S_IFBLK,
8447 			    (instance << SDUNIT_SHIFT) | WD_NODE,
8448 			    un->un_node_type, NULL);
8449 			(void) ddi_create_minor_node(devi, "wd,raw",
8450 			    S_IFCHR,
8451 			    (instance << SDUNIT_SHIFT) | WD_NODE,
8452 			    un->un_node_type, NULL);
8453 		}
8454 	}
8455 
8456 	/*
8457 	 * Read and initialize the devid for the unit.
8458 	 */
8459 	ASSERT(un->un_errstats != NULL);
8460 	if (!ISREMOVABLE(un)) {
8461 		sd_register_devid(un, devi, reservation_flag);
8462 	}
8463 	mutex_exit(SD_MUTEX(un));
8464 
8465 #if (defined(__fibre))
8466 	/*
8467 	 * Register callbacks for fibre only.  You can't do this soley
8468 	 * on the basis of the devid_type because this is hba specific.
8469 	 * We need to query our hba capabilities to find out whether to
8470 	 * register or not.
8471 	 */
8472 	if (un->un_f_is_fibre) {
8473 	    if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
8474 		sd_init_event_callbacks(un);
8475 		SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8476 		    "sd_unit_attach: un:0x%p event callbacks inserted", un);
8477 	    }
8478 	}
8479 #endif
8480 
8481 	if (un->un_f_opt_disable_cache == TRUE) {
8482 		if (sd_disable_caching(un) != 0) {
8483 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8484 			    "sd_unit_attach: un:0x%p Could not disable "
8485 			    "caching", un);
8486 			goto devid_failed;
8487 		}
8488 	}
8489 
8490 	/*
8491 	 * Set the pstat and error stat values here, so data obtained during the
8492 	 * previous attach-time routines is available.
8493 	 *
8494 	 * Note: This is a critical sequence that needs to be maintained:
8495 	 *	1) Instantiate the kstats before any routines using the iopath
8496 	 *	   (i.e. sd_send_scsi_cmd).
8497 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8498 	 *	   stats (sd_set_pstats)here, following sd_validate_geometry(),
8499 	 *	   sd_register_devid(), and sd_disable_caching().
8500 	 */
8501 	if (!ISREMOVABLE(un) && (un->un_f_pkstats_enabled == TRUE)) {
8502 		sd_set_pstats(un);
8503 		SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8504 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
8505 	}
8506 
8507 	sd_set_errstats(un);
8508 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8509 	    "sd_unit_attach: un:0x%p errstats set\n", un);
8510 
8511 	/*
8512 	 * Find out what type of reservation this disk supports.
8513 	 */
8514 	switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) {
8515 	case 0:
8516 		/*
8517 		 * SCSI-3 reservations are supported.
8518 		 */
8519 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8520 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8521 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
8522 		break;
8523 	case ENOTSUP:
8524 		/*
8525 		 * The PERSISTENT RESERVE IN command would not be recognized by
8526 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
8527 		 */
8528 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8529 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
8530 		un->un_reservation_type = SD_SCSI2_RESERVATION;
8531 		break;
8532 	default:
8533 		/*
8534 		 * default to SCSI-3 reservations
8535 		 */
8536 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8537 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
8538 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8539 		break;
8540 	}
8541 
8542 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8543 	    "sd_unit_attach: un:0x%p exit success\n", un);
8544 
8545 	return (DDI_SUCCESS);
8546 
8547 	/*
8548 	 * An error occurred during the attach; clean up & return failure.
8549 	 */
8550 
8551 devid_failed:
8552 
8553 setup_pm_failed:
8554 	ddi_remove_minor_node(devi, NULL);
8555 
8556 create_minor_nodes_failed:
8557 	/*
8558 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8559 	 */
8560 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8561 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8562 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8563 
8564 	if (un->un_f_is_fibre == FALSE) {
8565 	    (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8566 	}
8567 
8568 spinup_failed:
8569 
8570 	mutex_enter(SD_MUTEX(un));
8571 
8572 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
8573 	if (un->un_direct_priority_timeid != NULL) {
8574 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8575 		un->un_direct_priority_timeid = NULL;
8576 		mutex_exit(SD_MUTEX(un));
8577 		(void) untimeout(temp_id);
8578 		mutex_enter(SD_MUTEX(un));
8579 	}
8580 
8581 	/* Cancel any pending start/stop timeouts */
8582 	if (un->un_startstop_timeid != NULL) {
8583 		timeout_id_t temp_id = un->un_startstop_timeid;
8584 		un->un_startstop_timeid = NULL;
8585 		mutex_exit(SD_MUTEX(un));
8586 		(void) untimeout(temp_id);
8587 		mutex_enter(SD_MUTEX(un));
8588 	}
8589 
8590 	/* Cancel any pending reset-throttle timeouts */
8591 	if (un->un_reset_throttle_timeid != NULL) {
8592 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8593 		un->un_reset_throttle_timeid = NULL;
8594 		mutex_exit(SD_MUTEX(un));
8595 		(void) untimeout(temp_id);
8596 		mutex_enter(SD_MUTEX(un));
8597 	}
8598 
8599 	/* Cancel any pending retry timeouts */
8600 	if (un->un_retry_timeid != NULL) {
8601 		timeout_id_t temp_id = un->un_retry_timeid;
8602 		un->un_retry_timeid = NULL;
8603 		mutex_exit(SD_MUTEX(un));
8604 		(void) untimeout(temp_id);
8605 		mutex_enter(SD_MUTEX(un));
8606 	}
8607 
8608 	/* Cancel any pending delayed cv broadcast timeouts */
8609 	if (un->un_dcvb_timeid != NULL) {
8610 		timeout_id_t temp_id = un->un_dcvb_timeid;
8611 		un->un_dcvb_timeid = NULL;
8612 		mutex_exit(SD_MUTEX(un));
8613 		(void) untimeout(temp_id);
8614 		mutex_enter(SD_MUTEX(un));
8615 	}
8616 
8617 	mutex_exit(SD_MUTEX(un));
8618 
8619 	/* There should not be any in-progress I/O so ASSERT this check */
8620 	ASSERT(un->un_ncmds_in_transport == 0);
8621 	ASSERT(un->un_ncmds_in_driver == 0);
8622 
8623 	/* Do not free the softstate if the callback routine is active */
8624 	sd_sync_with_callback(un);
8625 
8626 	/*
8627 	 * Partition stats apparently are not used with removables. These would
8628 	 * not have been created during attach, so no need to clean them up...
8629 	 */
8630 	if (un->un_stats != NULL) {
8631 		kstat_delete(un->un_stats);
8632 		un->un_stats = NULL;
8633 	}
8634 	if (un->un_errstats != NULL) {
8635 		kstat_delete(un->un_errstats);
8636 		un->un_errstats = NULL;
8637 	}
8638 
8639 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8640 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8641 
8642 	ddi_prop_remove_all(devi);
8643 	sema_destroy(&un->un_semoclose);
8644 	cv_destroy(&un->un_state_cv);
8645 
8646 getrbuf_failed:
8647 
8648 	sd_free_rqs(un);
8649 
8650 alloc_rqs_failed:
8651 
8652 	devp->sd_private = NULL;
8653 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
8654 
8655 get_softstate_failed:
8656 	/*
8657 	 * Note: the man pages are unclear as to whether or not doing a
8658 	 * ddi_soft_state_free(sd_state, instance) is the right way to
8659 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
8660 	 * ddi_get_soft_state() fails.  The implication seems to be
8661 	 * that the get_soft_state cannot fail if the zalloc succeeds.
8662 	 */
8663 	ddi_soft_state_free(sd_state, instance);
8664 
8665 probe_failed:
8666 	scsi_unprobe(devp);
8667 #ifdef SDDEBUG
8668 	if ((sd_component_mask & SD_LOG_ATTACH_DETACH) &&
8669 	    (sd_level_mask & SD_LOGMASK_TRACE)) {
8670 		cmn_err(CE_CONT, "sd_unit_attach: un:0x%p exit failure\n",
8671 		    (void *)un);
8672 	}
8673 #endif
8674 	return (DDI_FAILURE);
8675 }
8676 
8677 
8678 /*
8679  *    Function: sd_unit_detach
8680  *
8681  * Description: Performs DDI_DETACH processing for sddetach().
8682  *
8683  * Return Code: DDI_SUCCESS
8684  *		DDI_FAILURE
8685  *
8686  *     Context: Kernel thread context
8687  */
8688 
8689 static int
8690 sd_unit_detach(dev_info_t *devi)
8691 {
8692 	struct scsi_device	*devp;
8693 	struct sd_lun		*un;
8694 	int			i;
8695 	dev_t			dev;
8696 #if !(defined(__i386) || defined(__amd64)) && !defined(__fibre)
8697 	int			reset_retval;
8698 #endif
8699 	int			instance = ddi_get_instance(devi);
8700 
8701 	mutex_enter(&sd_detach_mutex);
8702 
8703 	/*
8704 	 * Fail the detach for any of the following:
8705 	 *  - Unable to get the sd_lun struct for the instance
8706 	 *  - A layered driver has an outstanding open on the instance
8707 	 *  - Another thread is already detaching this instance
8708 	 *  - Another thread is currently performing an open
8709 	 */
8710 	devp = ddi_get_driver_private(devi);
8711 	if ((devp == NULL) ||
8712 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
8713 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
8714 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
8715 		mutex_exit(&sd_detach_mutex);
8716 		return (DDI_FAILURE);
8717 	}
8718 
8719 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
8720 
8721 	/*
8722 	 * Mark this instance as currently in a detach, to inhibit any
8723 	 * opens from a layered driver.
8724 	 */
8725 	un->un_detach_count++;
8726 	mutex_exit(&sd_detach_mutex);
8727 
8728 	dev = sd_make_device(SD_DEVINFO(un));
8729 
8730 	_NOTE(COMPETING_THREADS_NOW);
8731 
8732 	mutex_enter(SD_MUTEX(un));
8733 
8734 	/*
8735 	 * Fail the detach if there are any outstanding layered
8736 	 * opens on this device.
8737 	 */
8738 	for (i = 0; i < NDKMAP; i++) {
8739 		if (un->un_ocmap.lyropen[i] != 0) {
8740 			goto err_notclosed;
8741 		}
8742 	}
8743 
8744 	/*
8745 	 * Verify there are NO outstanding commands issued to this device.
8746 	 * ie, un_ncmds_in_transport == 0.
8747 	 * It's possible to have outstanding commands through the physio
8748 	 * code path, even though everything's closed.
8749 	 */
8750 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
8751 	    (un->un_direct_priority_timeid != NULL) ||
8752 	    (un->un_state == SD_STATE_RWAIT)) {
8753 		mutex_exit(SD_MUTEX(un));
8754 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8755 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
8756 		goto err_stillbusy;
8757 	}
8758 
8759 	/*
8760 	 * If we have the device reserved, release the reservation.
8761 	 */
8762 	if ((un->un_resvd_status & SD_RESERVE) &&
8763 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
8764 		mutex_exit(SD_MUTEX(un));
8765 		/*
8766 		 * Note: sd_reserve_release sends a command to the device
8767 		 * via the sd_ioctlcmd() path, and can sleep.
8768 		 */
8769 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
8770 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8771 			    "sd_dr_detach: Cannot release reservation \n");
8772 		}
8773 	} else {
8774 		mutex_exit(SD_MUTEX(un));
8775 	}
8776 
8777 	/*
8778 	 * Untimeout any reserve recover, throttle reset, restart unit
8779 	 * and delayed broadcast timeout threads. Protect the timeout pointer
8780 	 * from getting nulled by their callback functions.
8781 	 */
8782 	mutex_enter(SD_MUTEX(un));
8783 	if (un->un_resvd_timeid != NULL) {
8784 		timeout_id_t temp_id = un->un_resvd_timeid;
8785 		un->un_resvd_timeid = NULL;
8786 		mutex_exit(SD_MUTEX(un));
8787 		(void) untimeout(temp_id);
8788 		mutex_enter(SD_MUTEX(un));
8789 	}
8790 
8791 	if (un->un_reset_throttle_timeid != NULL) {
8792 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8793 		un->un_reset_throttle_timeid = NULL;
8794 		mutex_exit(SD_MUTEX(un));
8795 		(void) untimeout(temp_id);
8796 		mutex_enter(SD_MUTEX(un));
8797 	}
8798 
8799 	if (un->un_startstop_timeid != NULL) {
8800 		timeout_id_t temp_id = un->un_startstop_timeid;
8801 		un->un_startstop_timeid = NULL;
8802 		mutex_exit(SD_MUTEX(un));
8803 		(void) untimeout(temp_id);
8804 		mutex_enter(SD_MUTEX(un));
8805 	}
8806 
8807 	if (un->un_dcvb_timeid != NULL) {
8808 		timeout_id_t temp_id = un->un_dcvb_timeid;
8809 		un->un_dcvb_timeid = NULL;
8810 		mutex_exit(SD_MUTEX(un));
8811 		(void) untimeout(temp_id);
8812 	} else {
8813 		mutex_exit(SD_MUTEX(un));
8814 	}
8815 
8816 	/* Remove any pending reservation reclaim requests for this device */
8817 	sd_rmv_resv_reclaim_req(dev);
8818 
8819 	mutex_enter(SD_MUTEX(un));
8820 
8821 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
8822 	if (un->un_direct_priority_timeid != NULL) {
8823 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8824 		un->un_direct_priority_timeid = NULL;
8825 		mutex_exit(SD_MUTEX(un));
8826 		(void) untimeout(temp_id);
8827 		mutex_enter(SD_MUTEX(un));
8828 	}
8829 
8830 	/* Cancel any active multi-host disk watch thread requests */
8831 	if (un->un_mhd_token != NULL) {
8832 		mutex_exit(SD_MUTEX(un));
8833 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
8834 		if (scsi_watch_request_terminate(un->un_mhd_token,
8835 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8836 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8837 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
8838 			/*
8839 			 * Note: We are returning here after having removed
8840 			 * some driver timeouts above. This is consistent with
8841 			 * the legacy implementation but perhaps the watch
8842 			 * terminate call should be made with the wait flag set.
8843 			 */
8844 			goto err_stillbusy;
8845 		}
8846 		mutex_enter(SD_MUTEX(un));
8847 		un->un_mhd_token = NULL;
8848 	}
8849 
8850 	if (un->un_swr_token != NULL) {
8851 		mutex_exit(SD_MUTEX(un));
8852 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
8853 		if (scsi_watch_request_terminate(un->un_swr_token,
8854 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8855 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8856 			    "sd_dr_detach: Cannot cancel swr watch request\n");
8857 			/*
8858 			 * Note: We are returning here after having removed
8859 			 * some driver timeouts above. This is consistent with
8860 			 * the legacy implementation but perhaps the watch
8861 			 * terminate call should be made with the wait flag set.
8862 			 */
8863 			goto err_stillbusy;
8864 		}
8865 		mutex_enter(SD_MUTEX(un));
8866 		un->un_swr_token = NULL;
8867 	}
8868 
8869 	mutex_exit(SD_MUTEX(un));
8870 
8871 	/*
8872 	 * Clear any scsi_reset_notifies. We clear the reset notifies
8873 	 * if we have not registered one.
8874 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
8875 	 */
8876 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
8877 	    sd_mhd_reset_notify_cb, (caddr_t)un);
8878 
8879 
8880 
8881 #if defined(__i386) || defined(__amd64)
8882 	/*
8883 	 * Gratuitous bus resets sometimes cause an otherwise
8884 	 * okay ATA/ATAPI bus to hang. This is due the lack of
8885 	 * a clear spec of how resets should be implemented by ATA
8886 	 * disk drives.
8887 	 */
8888 #elif !defined(__fibre)		/* "#else if" does NOT work! */
8889 	/*
8890 	 * Reset target/bus.
8891 	 *
8892 	 * Note: This is a legacy workaround for Elite III dual-port drives that
8893 	 * will not come online after an aborted detach and subsequent re-attach
8894 	 * It should be removed when the Elite III FW is fixed, or the drives
8895 	 * are no longer supported.
8896 	 */
8897 	if (un->un_f_cfg_is_atapi == FALSE) {
8898 		reset_retval = 0;
8899 
8900 		/* If the device is in low power mode don't reset it */
8901 
8902 		mutex_enter(&un->un_pm_mutex);
8903 		if (!SD_DEVICE_IS_IN_LOW_POWER(un)) {
8904 			/*
8905 			 * First try a LUN reset if we can, then move on to a
8906 			 * target reset if needed; swat the bus as a last
8907 			 * resort.
8908 			 */
8909 			mutex_exit(&un->un_pm_mutex);
8910 			if (un->un_f_allow_bus_device_reset == TRUE) {
8911 				if (un->un_f_lun_reset_enabled == TRUE) {
8912 					reset_retval =
8913 					    scsi_reset(SD_ADDRESS(un),
8914 					    RESET_LUN);
8915 				}
8916 				if (reset_retval == 0) {
8917 					reset_retval =
8918 					    scsi_reset(SD_ADDRESS(un),
8919 					    RESET_TARGET);
8920 				}
8921 			}
8922 			if (reset_retval == 0) {
8923 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
8924 			}
8925 		} else {
8926 			mutex_exit(&un->un_pm_mutex);
8927 		}
8928 	}
8929 #endif
8930 
8931 	/*
8932 	 * protect the timeout pointers from getting nulled by
8933 	 * their callback functions during the cancellation process.
8934 	 * In such a scenario untimeout can be invoked with a null value.
8935 	 */
8936 	_NOTE(NO_COMPETING_THREADS_NOW);
8937 
8938 	mutex_enter(&un->un_pm_mutex);
8939 	if (un->un_pm_idle_timeid != NULL) {
8940 		timeout_id_t temp_id = un->un_pm_idle_timeid;
8941 		un->un_pm_idle_timeid = NULL;
8942 		mutex_exit(&un->un_pm_mutex);
8943 
8944 		/*
8945 		 * Timeout is active; cancel it.
8946 		 * Note that it'll never be active on a device
8947 		 * that does not support PM therefore we don't
8948 		 * have to check before calling pm_idle_component.
8949 		 */
8950 		(void) untimeout(temp_id);
8951 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8952 		mutex_enter(&un->un_pm_mutex);
8953 	}
8954 
8955 	/*
8956 	 * Check whether there is already a timeout scheduled for power
8957 	 * management. If yes then don't lower the power here, that's.
8958 	 * the timeout handler's job.
8959 	 */
8960 	if (un->un_pm_timeid != NULL) {
8961 		timeout_id_t temp_id = un->un_pm_timeid;
8962 		un->un_pm_timeid = NULL;
8963 		mutex_exit(&un->un_pm_mutex);
8964 		/*
8965 		 * Timeout is active; cancel it.
8966 		 * Note that it'll never be active on a device
8967 		 * that does not support PM therefore we don't
8968 		 * have to check before calling pm_idle_component.
8969 		 */
8970 		(void) untimeout(temp_id);
8971 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8972 
8973 	} else {
8974 		mutex_exit(&un->un_pm_mutex);
8975 		if ((un->un_f_pm_is_enabled == TRUE) &&
8976 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
8977 		    DDI_SUCCESS)) {
8978 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8979 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
8980 			/*
8981 			 * Fix for bug: 4297749, item # 13
8982 			 * The above test now includes a check to see if PM is
8983 			 * supported by this device before call
8984 			 * pm_lower_power().
8985 			 * Note, the following is not dead code. The call to
8986 			 * pm_lower_power above will generate a call back into
8987 			 * our sdpower routine which might result in a timeout
8988 			 * handler getting activated. Therefore the following
8989 			 * code is valid and necessary.
8990 			 */
8991 			mutex_enter(&un->un_pm_mutex);
8992 			if (un->un_pm_timeid != NULL) {
8993 				timeout_id_t temp_id = un->un_pm_timeid;
8994 				un->un_pm_timeid = NULL;
8995 				mutex_exit(&un->un_pm_mutex);
8996 				(void) untimeout(temp_id);
8997 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8998 			} else {
8999 				mutex_exit(&un->un_pm_mutex);
9000 			}
9001 		}
9002 	}
9003 
9004 	/*
9005 	 * Cleanup from the scsi_ifsetcap() calls (437868)
9006 	 * Relocated here from above to be after the call to
9007 	 * pm_lower_power, which was getting errors.
9008 	 */
9009 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
9010 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
9011 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
9012 
9013 	if (un->un_f_is_fibre == FALSE) {
9014 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
9015 	}
9016 
9017 	/*
9018 	 * Remove any event callbacks, fibre only
9019 	 */
9020 	if (un->un_f_is_fibre == TRUE) {
9021 		if ((un->un_insert_event != NULL) &&
9022 			(ddi_remove_event_handler(un->un_insert_cb_id) !=
9023 				DDI_SUCCESS)) {
9024 			/*
9025 			 * Note: We are returning here after having done
9026 			 * substantial cleanup above. This is consistent
9027 			 * with the legacy implementation but this may not
9028 			 * be the right thing to do.
9029 			 */
9030 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9031 				"sd_dr_detach: Cannot cancel insert event\n");
9032 			goto err_remove_event;
9033 		}
9034 		un->un_insert_event = NULL;
9035 
9036 		if ((un->un_remove_event != NULL) &&
9037 			(ddi_remove_event_handler(un->un_remove_cb_id) !=
9038 				DDI_SUCCESS)) {
9039 			/*
9040 			 * Note: We are returning here after having done
9041 			 * substantial cleanup above. This is consistent
9042 			 * with the legacy implementation but this may not
9043 			 * be the right thing to do.
9044 			 */
9045 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9046 				"sd_dr_detach: Cannot cancel remove event\n");
9047 			goto err_remove_event;
9048 		}
9049 		un->un_remove_event = NULL;
9050 	}
9051 
9052 	/* Do not free the softstate if the callback routine is active */
9053 	sd_sync_with_callback(un);
9054 
9055 	/*
9056 	 * Hold the detach mutex here, to make sure that no other threads ever
9057 	 * can access a (partially) freed soft state structure.
9058 	 */
9059 	mutex_enter(&sd_detach_mutex);
9060 
9061 	/*
9062 	 * Clean up the soft state struct.
9063 	 * Cleanup is done in reverse order of allocs/inits.
9064 	 * At this point there should be no competing threads anymore.
9065 	 */
9066 
9067 	/* Unregister and free device id. */
9068 	ddi_devid_unregister(devi);
9069 	if (un->un_devid) {
9070 		ddi_devid_free(un->un_devid);
9071 		un->un_devid = NULL;
9072 	}
9073 
9074 	/*
9075 	 * Destroy wmap cache if it exists.
9076 	 */
9077 	if (un->un_wm_cache != NULL) {
9078 		kmem_cache_destroy(un->un_wm_cache);
9079 		un->un_wm_cache = NULL;
9080 	}
9081 
9082 	/* Remove minor nodes */
9083 	ddi_remove_minor_node(devi, NULL);
9084 
9085 	/*
9086 	 * kstat cleanup is done in detach for all device types (4363169).
9087 	 * We do not want to fail detach if the device kstats are not deleted
9088 	 * since there is a confusion about the devo_refcnt for the device.
9089 	 * We just delete the kstats and let detach complete successfully.
9090 	 */
9091 	if (un->un_stats != NULL) {
9092 		kstat_delete(un->un_stats);
9093 		un->un_stats = NULL;
9094 	}
9095 	if (un->un_errstats != NULL) {
9096 		kstat_delete(un->un_errstats);
9097 		un->un_errstats = NULL;
9098 	}
9099 
9100 	/* Remove partition stats (not created for removables) */
9101 	if (!ISREMOVABLE(un)) {
9102 		for (i = 0; i < NSDMAP; i++) {
9103 			if (un->un_pstats[i] != NULL) {
9104 				kstat_delete(un->un_pstats[i]);
9105 				un->un_pstats[i] = NULL;
9106 			}
9107 		}
9108 	}
9109 
9110 	/* Remove xbuf registration */
9111 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
9112 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
9113 
9114 	/* Remove driver properties */
9115 	ddi_prop_remove_all(devi);
9116 
9117 	mutex_destroy(&un->un_pm_mutex);
9118 	cv_destroy(&un->un_pm_busy_cv);
9119 
9120 	/* Open/close semaphore */
9121 	sema_destroy(&un->un_semoclose);
9122 
9123 	/* Removable media condvar. */
9124 	cv_destroy(&un->un_state_cv);
9125 
9126 	/* Suspend/resume condvar. */
9127 	cv_destroy(&un->un_suspend_cv);
9128 	cv_destroy(&un->un_disk_busy_cv);
9129 
9130 	sd_free_rqs(un);
9131 
9132 	/* Free up soft state */
9133 	devp->sd_private = NULL;
9134 	bzero(un, sizeof (struct sd_lun));
9135 	ddi_soft_state_free(sd_state, instance);
9136 
9137 	mutex_exit(&sd_detach_mutex);
9138 
9139 	/* This frees up the INQUIRY data associated with the device. */
9140 	scsi_unprobe(devp);
9141 
9142 	return (DDI_SUCCESS);
9143 
9144 err_notclosed:
9145 	mutex_exit(SD_MUTEX(un));
9146 
9147 err_stillbusy:
9148 	_NOTE(NO_COMPETING_THREADS_NOW);
9149 
9150 err_remove_event:
9151 	mutex_enter(&sd_detach_mutex);
9152 	un->un_detach_count--;
9153 	mutex_exit(&sd_detach_mutex);
9154 
9155 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
9156 	return (DDI_FAILURE);
9157 }
9158 
9159 
9160 /*
9161  * Driver minor node structure and data table
9162  */
9163 struct driver_minor_data {
9164 	char	*name;
9165 	minor_t	minor;
9166 	int	type;
9167 };
9168 
9169 static struct driver_minor_data sd_minor_data[] = {
9170 	{"a", 0, S_IFBLK},
9171 	{"b", 1, S_IFBLK},
9172 	{"c", 2, S_IFBLK},
9173 	{"d", 3, S_IFBLK},
9174 	{"e", 4, S_IFBLK},
9175 	{"f", 5, S_IFBLK},
9176 	{"g", 6, S_IFBLK},
9177 	{"h", 7, S_IFBLK},
9178 #if defined(_SUNOS_VTOC_16)
9179 	{"i", 8, S_IFBLK},
9180 	{"j", 9, S_IFBLK},
9181 	{"k", 10, S_IFBLK},
9182 	{"l", 11, S_IFBLK},
9183 	{"m", 12, S_IFBLK},
9184 	{"n", 13, S_IFBLK},
9185 	{"o", 14, S_IFBLK},
9186 	{"p", 15, S_IFBLK},
9187 #endif			/* defined(_SUNOS_VTOC_16) */
9188 #if defined(_FIRMWARE_NEEDS_FDISK)
9189 	{"q", 16, S_IFBLK},
9190 	{"r", 17, S_IFBLK},
9191 	{"s", 18, S_IFBLK},
9192 	{"t", 19, S_IFBLK},
9193 	{"u", 20, S_IFBLK},
9194 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9195 	{"a,raw", 0, S_IFCHR},
9196 	{"b,raw", 1, S_IFCHR},
9197 	{"c,raw", 2, S_IFCHR},
9198 	{"d,raw", 3, S_IFCHR},
9199 	{"e,raw", 4, S_IFCHR},
9200 	{"f,raw", 5, S_IFCHR},
9201 	{"g,raw", 6, S_IFCHR},
9202 	{"h,raw", 7, S_IFCHR},
9203 #if defined(_SUNOS_VTOC_16)
9204 	{"i,raw", 8, S_IFCHR},
9205 	{"j,raw", 9, S_IFCHR},
9206 	{"k,raw", 10, S_IFCHR},
9207 	{"l,raw", 11, S_IFCHR},
9208 	{"m,raw", 12, S_IFCHR},
9209 	{"n,raw", 13, S_IFCHR},
9210 	{"o,raw", 14, S_IFCHR},
9211 	{"p,raw", 15, S_IFCHR},
9212 #endif			/* defined(_SUNOS_VTOC_16) */
9213 #if defined(_FIRMWARE_NEEDS_FDISK)
9214 	{"q,raw", 16, S_IFCHR},
9215 	{"r,raw", 17, S_IFCHR},
9216 	{"s,raw", 18, S_IFCHR},
9217 	{"t,raw", 19, S_IFCHR},
9218 	{"u,raw", 20, S_IFCHR},
9219 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9220 	{0}
9221 };
9222 
9223 static struct driver_minor_data sd_minor_data_efi[] = {
9224 	{"a", 0, S_IFBLK},
9225 	{"b", 1, S_IFBLK},
9226 	{"c", 2, S_IFBLK},
9227 	{"d", 3, S_IFBLK},
9228 	{"e", 4, S_IFBLK},
9229 	{"f", 5, S_IFBLK},
9230 	{"g", 6, S_IFBLK},
9231 	{"wd", 7, S_IFBLK},
9232 #if defined(_FIRMWARE_NEEDS_FDISK)
9233 	{"q", 16, S_IFBLK},
9234 	{"r", 17, S_IFBLK},
9235 	{"s", 18, S_IFBLK},
9236 	{"t", 19, S_IFBLK},
9237 	{"u", 20, S_IFBLK},
9238 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9239 	{"a,raw", 0, S_IFCHR},
9240 	{"b,raw", 1, S_IFCHR},
9241 	{"c,raw", 2, S_IFCHR},
9242 	{"d,raw", 3, S_IFCHR},
9243 	{"e,raw", 4, S_IFCHR},
9244 	{"f,raw", 5, S_IFCHR},
9245 	{"g,raw", 6, S_IFCHR},
9246 	{"wd,raw", 7, S_IFCHR},
9247 #if defined(_FIRMWARE_NEEDS_FDISK)
9248 	{"q,raw", 16, S_IFCHR},
9249 	{"r,raw", 17, S_IFCHR},
9250 	{"s,raw", 18, S_IFCHR},
9251 	{"t,raw", 19, S_IFCHR},
9252 	{"u,raw", 20, S_IFCHR},
9253 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9254 	{0}
9255 };
9256 
9257 
9258 /*
9259  *    Function: sd_create_minor_nodes
9260  *
9261  * Description: Create the minor device nodes for the instance.
9262  *
9263  *   Arguments: un - driver soft state (unit) structure
9264  *		devi - pointer to device info structure
9265  *
9266  * Return Code: DDI_SUCCESS
9267  *		DDI_FAILURE
9268  *
9269  *     Context: Kernel thread context
9270  */
9271 
9272 static int
9273 sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi)
9274 {
9275 	struct driver_minor_data	*dmdp;
9276 	struct scsi_device		*devp;
9277 	int				instance;
9278 	char				name[48];
9279 
9280 	ASSERT(un != NULL);
9281 	devp = ddi_get_driver_private(devi);
9282 	instance = ddi_get_instance(devp->sd_dev);
9283 
9284 	/*
9285 	 * Create all the minor nodes for this target.
9286 	 */
9287 	if (un->un_blockcount > DK_MAX_BLOCKS)
9288 		dmdp = sd_minor_data_efi;
9289 	else
9290 		dmdp = sd_minor_data;
9291 	while (dmdp->name != NULL) {
9292 
9293 		(void) sprintf(name, "%s", dmdp->name);
9294 
9295 		if (ddi_create_minor_node(devi, name, dmdp->type,
9296 		    (instance << SDUNIT_SHIFT) | dmdp->minor,
9297 		    un->un_node_type, NULL) == DDI_FAILURE) {
9298 			/*
9299 			 * Clean up any nodes that may have been created, in
9300 			 * case this fails in the middle of the loop.
9301 			 */
9302 			ddi_remove_minor_node(devi, NULL);
9303 			return (DDI_FAILURE);
9304 		}
9305 		dmdp++;
9306 	}
9307 
9308 	return (DDI_SUCCESS);
9309 }
9310 
9311 
9312 /*
9313  *    Function: sd_create_errstats
9314  *
9315  * Description: This routine instantiates the device error stats.
9316  *
9317  *		Note: During attach the stats are instantiated first so they are
9318  *		available for attach-time routines that utilize the driver
9319  *		iopath to send commands to the device. The stats are initialized
9320  *		separately so data obtained during some attach-time routines is
9321  *		available. (4362483)
9322  *
9323  *   Arguments: un - driver soft state (unit) structure
9324  *		instance - driver instance
9325  *
9326  *     Context: Kernel thread context
9327  */
9328 
9329 static void
9330 sd_create_errstats(struct sd_lun *un, int instance)
9331 {
9332 	struct	sd_errstats	*stp;
9333 	char	kstatmodule_err[KSTAT_STRLEN];
9334 	char	kstatname[KSTAT_STRLEN];
9335 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
9336 
9337 	ASSERT(un != NULL);
9338 
9339 	if (un->un_errstats != NULL) {
9340 		return;
9341 	}
9342 
9343 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
9344 	    "%serr", sd_label);
9345 	(void) snprintf(kstatname, sizeof (kstatname),
9346 	    "%s%d,err", sd_label, instance);
9347 
9348 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
9349 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
9350 
9351 	if (un->un_errstats == NULL) {
9352 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9353 		    "sd_create_errstats: Failed kstat_create\n");
9354 		return;
9355 	}
9356 
9357 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9358 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
9359 	    KSTAT_DATA_UINT32);
9360 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
9361 	    KSTAT_DATA_UINT32);
9362 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
9363 	    KSTAT_DATA_UINT32);
9364 	kstat_named_init(&stp->sd_vid,		"Vendor",
9365 	    KSTAT_DATA_CHAR);
9366 	kstat_named_init(&stp->sd_pid,		"Product",
9367 	    KSTAT_DATA_CHAR);
9368 	kstat_named_init(&stp->sd_revision,	"Revision",
9369 	    KSTAT_DATA_CHAR);
9370 	kstat_named_init(&stp->sd_serial,	"Serial No",
9371 	    KSTAT_DATA_CHAR);
9372 	kstat_named_init(&stp->sd_capacity,	"Size",
9373 	    KSTAT_DATA_ULONGLONG);
9374 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
9375 	    KSTAT_DATA_UINT32);
9376 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
9377 	    KSTAT_DATA_UINT32);
9378 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
9379 	    KSTAT_DATA_UINT32);
9380 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
9381 	    KSTAT_DATA_UINT32);
9382 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
9383 	    KSTAT_DATA_UINT32);
9384 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
9385 	    KSTAT_DATA_UINT32);
9386 
9387 	un->un_errstats->ks_private = un;
9388 	un->un_errstats->ks_update  = nulldev;
9389 
9390 	kstat_install(un->un_errstats);
9391 }
9392 
9393 
9394 /*
9395  *    Function: sd_set_errstats
9396  *
9397  * Description: This routine sets the value of the vendor id, product id,
9398  *		revision, serial number, and capacity device error stats.
9399  *
9400  *		Note: During attach the stats are instantiated first so they are
9401  *		available for attach-time routines that utilize the driver
9402  *		iopath to send commands to the device. The stats are initialized
9403  *		separately so data obtained during some attach-time routines is
9404  *		available. (4362483)
9405  *
9406  *   Arguments: un - driver soft state (unit) structure
9407  *
9408  *     Context: Kernel thread context
9409  */
9410 
9411 static void
9412 sd_set_errstats(struct sd_lun *un)
9413 {
9414 	struct	sd_errstats	*stp;
9415 
9416 	ASSERT(un != NULL);
9417 	ASSERT(un->un_errstats != NULL);
9418 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9419 	ASSERT(stp != NULL);
9420 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
9421 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
9422 	(void) strncpy(stp->sd_revision.value.c,
9423 	    un->un_sd->sd_inq->inq_revision, 4);
9424 
9425 	/*
9426 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
9427 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
9428 	 * (4376302))
9429 	 */
9430 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
9431 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9432 		    sizeof (SD_INQUIRY(un)->inq_serial));
9433 	}
9434 
9435 	if (un->un_f_blockcount_is_valid != TRUE) {
9436 		/*
9437 		 * Set capacity error stat to 0 for no media. This ensures
9438 		 * a valid capacity is displayed in response to 'iostat -E'
9439 		 * when no media is present in the device.
9440 		 */
9441 		stp->sd_capacity.value.ui64 = 0;
9442 	} else {
9443 		/*
9444 		 * Multiply un_blockcount by un->un_sys_blocksize to get
9445 		 * capacity.
9446 		 *
9447 		 * Note: for non-512 blocksize devices "un_blockcount" has been
9448 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
9449 		 * (un_tgt_blocksize / un->un_sys_blocksize).
9450 		 */
9451 		stp->sd_capacity.value.ui64 = (uint64_t)
9452 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
9453 	}
9454 }
9455 
9456 
9457 /*
9458  *    Function: sd_set_pstats
9459  *
9460  * Description: This routine instantiates and initializes the partition
9461  *              stats for each partition with more than zero blocks.
9462  *		(4363169)
9463  *
9464  *   Arguments: un - driver soft state (unit) structure
9465  *
9466  *     Context: Kernel thread context
9467  */
9468 
9469 static void
9470 sd_set_pstats(struct sd_lun *un)
9471 {
9472 	char	kstatname[KSTAT_STRLEN];
9473 	int	instance;
9474 	int	i;
9475 
9476 	ASSERT(un != NULL);
9477 
9478 	instance = ddi_get_instance(SD_DEVINFO(un));
9479 
9480 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
9481 	for (i = 0; i < NSDMAP; i++) {
9482 		if ((un->un_pstats[i] == NULL) &&
9483 		    (un->un_map[i].dkl_nblk != 0)) {
9484 			(void) snprintf(kstatname, sizeof (kstatname),
9485 			    "%s%d,%s", sd_label, instance,
9486 			    sd_minor_data[i].name);
9487 			un->un_pstats[i] = kstat_create(sd_label,
9488 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
9489 			    1, KSTAT_FLAG_PERSISTENT);
9490 			if (un->un_pstats[i] != NULL) {
9491 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
9492 				kstat_install(un->un_pstats[i]);
9493 			}
9494 		}
9495 	}
9496 }
9497 
9498 
9499 #if (defined(__fibre))
9500 /*
9501  *    Function: sd_init_event_callbacks
9502  *
9503  * Description: This routine initializes the insertion and removal event
9504  *		callbacks. (fibre only)
9505  *
9506  *   Arguments: un - driver soft state (unit) structure
9507  *
9508  *     Context: Kernel thread context
9509  */
9510 
9511 static void
9512 sd_init_event_callbacks(struct sd_lun *un)
9513 {
9514 	ASSERT(un != NULL);
9515 
9516 	if ((un->un_insert_event == NULL) &&
9517 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
9518 	    &un->un_insert_event) == DDI_SUCCESS)) {
9519 		/*
9520 		 * Add the callback for an insertion event
9521 		 */
9522 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9523 		    un->un_insert_event, sd_event_callback, (void *)un,
9524 		    &(un->un_insert_cb_id));
9525 	}
9526 
9527 	if ((un->un_remove_event == NULL) &&
9528 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
9529 	    &un->un_remove_event) == DDI_SUCCESS)) {
9530 		/*
9531 		 * Add the callback for a removal event
9532 		 */
9533 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9534 		    un->un_remove_event, sd_event_callback, (void *)un,
9535 		    &(un->un_remove_cb_id));
9536 	}
9537 }
9538 
9539 
9540 /*
9541  *    Function: sd_event_callback
9542  *
9543  * Description: This routine handles insert/remove events (photon). The
9544  *		state is changed to OFFLINE which can be used to supress
9545  *		error msgs. (fibre only)
9546  *
9547  *   Arguments: un - driver soft state (unit) structure
9548  *
9549  *     Context: Callout thread context
9550  */
9551 /* ARGSUSED */
9552 static void
9553 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
9554     void *bus_impldata)
9555 {
9556 	struct sd_lun *un = (struct sd_lun *)arg;
9557 
9558 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
9559 	if (event == un->un_insert_event) {
9560 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
9561 		mutex_enter(SD_MUTEX(un));
9562 		if (un->un_state == SD_STATE_OFFLINE) {
9563 			if (un->un_last_state != SD_STATE_SUSPENDED) {
9564 				un->un_state = un->un_last_state;
9565 			} else {
9566 				/*
9567 				 * We have gone through SUSPEND/RESUME while
9568 				 * we were offline. Restore the last state
9569 				 */
9570 				un->un_state = un->un_save_state;
9571 			}
9572 		}
9573 		mutex_exit(SD_MUTEX(un));
9574 
9575 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
9576 	} else if (event == un->un_remove_event) {
9577 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
9578 		mutex_enter(SD_MUTEX(un));
9579 		/*
9580 		 * We need to handle an event callback that occurs during
9581 		 * the suspend operation, since we don't prevent it.
9582 		 */
9583 		if (un->un_state != SD_STATE_OFFLINE) {
9584 			if (un->un_state != SD_STATE_SUSPENDED) {
9585 				New_state(un, SD_STATE_OFFLINE);
9586 			} else {
9587 				un->un_last_state = SD_STATE_OFFLINE;
9588 			}
9589 		}
9590 		mutex_exit(SD_MUTEX(un));
9591 	} else {
9592 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
9593 		    "!Unknown event\n");
9594 	}
9595 
9596 }
9597 #endif
9598 
9599 
9600 /*
9601  *    Function: sd_disable_caching()
9602  *
9603  * Description: This routine is the driver entry point for disabling
9604  *		read and write caching by modifying the WCE (write cache
9605  *		enable) and RCD (read cache disable) bits of mode
9606  *		page 8 (MODEPAGE_CACHING).
9607  *
9608  *   Arguments: un - driver soft state (unit) structure
9609  *
9610  * Return Code: EIO
9611  *		code returned by sd_send_scsi_MODE_SENSE and
9612  *		sd_send_scsi_MODE_SELECT
9613  *
9614  *     Context: Kernel Thread
9615  */
9616 
9617 static int
9618 sd_disable_caching(struct sd_lun *un)
9619 {
9620 	struct mode_caching	*mode_caching_page;
9621 	uchar_t			*header;
9622 	size_t			buflen;
9623 	int			hdrlen;
9624 	int			bd_len;
9625 	int			rval = 0;
9626 
9627 	ASSERT(un != NULL);
9628 
9629 	/*
9630 	 * Do a test unit ready, otherwise a mode sense may not work if this
9631 	 * is the first command sent to the device after boot.
9632 	 */
9633 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
9634 
9635 	if (un->un_f_cfg_is_atapi == TRUE) {
9636 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9637 	} else {
9638 		hdrlen = MODE_HEADER_LENGTH;
9639 	}
9640 
9641 	/*
9642 	 * Allocate memory for the retrieved mode page and its headers.  Set
9643 	 * a pointer to the page itself.
9644 	 */
9645 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
9646 	header = kmem_zalloc(buflen, KM_SLEEP);
9647 
9648 	/* Get the information from the device. */
9649 	if (un->un_f_cfg_is_atapi == TRUE) {
9650 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
9651 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9652 	} else {
9653 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
9654 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9655 	}
9656 	if (rval != 0) {
9657 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9658 		    "sd_disable_caching: Mode Sense Failed\n");
9659 		kmem_free(header, buflen);
9660 		return (rval);
9661 	}
9662 
9663 	/*
9664 	 * Determine size of Block Descriptors in order to locate
9665 	 * the mode page data. ATAPI devices return 0, SCSI devices
9666 	 * should return MODE_BLK_DESC_LENGTH.
9667 	 */
9668 	if (un->un_f_cfg_is_atapi == TRUE) {
9669 		struct mode_header_grp2	*mhp;
9670 		mhp	= (struct mode_header_grp2 *)header;
9671 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9672 	} else {
9673 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9674 	}
9675 
9676 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9677 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9678 		    "sd_disable_caching: Mode Sense returned invalid "
9679 		    "block descriptor length\n");
9680 		kmem_free(header, buflen);
9681 		return (EIO);
9682 	}
9683 
9684 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9685 
9686 	/* Check the relevant bits on successful mode sense. */
9687 	if ((mode_caching_page->wce) || !(mode_caching_page->rcd)) {
9688 		/*
9689 		 * Read or write caching is enabled.  Disable both of them.
9690 		 */
9691 		mode_caching_page->wce = 0;
9692 		mode_caching_page->rcd = 1;
9693 
9694 		/* Clear reserved bits before mode select. */
9695 		mode_caching_page->mode_page.ps = 0;
9696 
9697 		/*
9698 		 * Clear out mode header for mode select.
9699 		 * The rest of the retrieved page will be reused.
9700 		 */
9701 		bzero(header, hdrlen);
9702 
9703 		/* Change the cache page to disable all caching. */
9704 		if (un->un_f_cfg_is_atapi == TRUE) {
9705 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header,
9706 			    buflen, SD_SAVE_PAGE, SD_PATH_DIRECT);
9707 		} else {
9708 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
9709 			    buflen, SD_SAVE_PAGE, SD_PATH_DIRECT);
9710 		}
9711 	}
9712 
9713 	kmem_free(header, buflen);
9714 	return (rval);
9715 }
9716 
9717 
9718 /*
9719  *    Function: sd_make_device
9720  *
9721  * Description: Utility routine to return the Solaris device number from
9722  *		the data in the device's dev_info structure.
9723  *
9724  * Return Code: The Solaris device number
9725  *
9726  *     Context: Any
9727  */
9728 
9729 static dev_t
9730 sd_make_device(dev_info_t *devi)
9731 {
9732 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
9733 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
9734 }
9735 
9736 
9737 /*
9738  *    Function: sd_pm_entry
9739  *
9740  * Description: Called at the start of a new command to manage power
9741  *		and busy status of a device. This includes determining whether
9742  *		the current power state of the device is sufficient for
9743  *		performing the command or whether it must be changed.
9744  *		The PM framework is notified appropriately.
9745  *		Only with a return status of DDI_SUCCESS will the
9746  *		component be busy to the framework.
9747  *
9748  *		All callers of sd_pm_entry must check the return status
9749  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
9750  *		of DDI_FAILURE indicates the device failed to power up.
9751  *		In this case un_pm_count has been adjusted so the result
9752  *		on exit is still powered down, ie. count is less than 0.
9753  *		Calling sd_pm_exit with this count value hits an ASSERT.
9754  *
9755  * Return Code: DDI_SUCCESS or DDI_FAILURE
9756  *
9757  *     Context: Kernel thread context.
9758  */
9759 
9760 static int
9761 sd_pm_entry(struct sd_lun *un)
9762 {
9763 	int return_status = DDI_SUCCESS;
9764 
9765 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9766 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9767 
9768 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
9769 
9770 	if (un->un_f_pm_is_enabled == FALSE) {
9771 		SD_TRACE(SD_LOG_IO_PM, un,
9772 		    "sd_pm_entry: exiting, PM not enabled\n");
9773 		return (return_status);
9774 	}
9775 
9776 	/*
9777 	 * Just increment a counter if PM is enabled. On the transition from
9778 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
9779 	 * the count with each IO and mark the device as idle when the count
9780 	 * hits 0.
9781 	 *
9782 	 * If the count is less than 0 the device is powered down. If a powered
9783 	 * down device is successfully powered up then the count must be
9784 	 * incremented to reflect the power up. Note that it'll get incremented
9785 	 * a second time to become busy.
9786 	 *
9787 	 * Because the following has the potential to change the device state
9788 	 * and must release the un_pm_mutex to do so, only one thread can be
9789 	 * allowed through at a time.
9790 	 */
9791 
9792 	mutex_enter(&un->un_pm_mutex);
9793 	while (un->un_pm_busy == TRUE) {
9794 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
9795 	}
9796 	un->un_pm_busy = TRUE;
9797 
9798 	if (un->un_pm_count < 1) {
9799 
9800 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
9801 
9802 		/*
9803 		 * Indicate we are now busy so the framework won't attempt to
9804 		 * power down the device. This call will only fail if either
9805 		 * we passed a bad component number or the device has no
9806 		 * components. Neither of these should ever happen.
9807 		 */
9808 		mutex_exit(&un->un_pm_mutex);
9809 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
9810 		ASSERT(return_status == DDI_SUCCESS);
9811 
9812 		mutex_enter(&un->un_pm_mutex);
9813 
9814 		if (un->un_pm_count < 0) {
9815 			mutex_exit(&un->un_pm_mutex);
9816 
9817 			SD_TRACE(SD_LOG_IO_PM, un,
9818 			    "sd_pm_entry: power up component\n");
9819 
9820 			/*
9821 			 * pm_raise_power will cause sdpower to be called
9822 			 * which brings the device power level to the
9823 			 * desired state, ON in this case. If successful,
9824 			 * un_pm_count and un_power_level will be updated
9825 			 * appropriately.
9826 			 */
9827 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
9828 			    SD_SPINDLE_ON);
9829 
9830 			mutex_enter(&un->un_pm_mutex);
9831 
9832 			if (return_status != DDI_SUCCESS) {
9833 				/*
9834 				 * Power up failed.
9835 				 * Idle the device and adjust the count
9836 				 * so the result on exit is that we're
9837 				 * still powered down, ie. count is less than 0.
9838 				 */
9839 				SD_TRACE(SD_LOG_IO_PM, un,
9840 				    "sd_pm_entry: power up failed,"
9841 				    " idle the component\n");
9842 
9843 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9844 				un->un_pm_count--;
9845 			} else {
9846 				/*
9847 				 * Device is powered up, verify the
9848 				 * count is non-negative.
9849 				 * This is debug only.
9850 				 */
9851 				ASSERT(un->un_pm_count == 0);
9852 			}
9853 		}
9854 
9855 		if (return_status == DDI_SUCCESS) {
9856 			/*
9857 			 * For performance, now that the device has been tagged
9858 			 * as busy, and it's known to be powered up, update the
9859 			 * chain types to use jump tables that do not include
9860 			 * pm. This significantly lowers the overhead and
9861 			 * therefore improves performance.
9862 			 */
9863 
9864 			mutex_exit(&un->un_pm_mutex);
9865 			mutex_enter(SD_MUTEX(un));
9866 			SD_TRACE(SD_LOG_IO_PM, un,
9867 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
9868 			    un->un_uscsi_chain_type);
9869 
9870 			if (ISREMOVABLE(un)) {
9871 				un->un_buf_chain_type =
9872 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
9873 			} else {
9874 				un->un_buf_chain_type =
9875 				    SD_CHAIN_INFO_DISK_NO_PM;
9876 			}
9877 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
9878 
9879 			SD_TRACE(SD_LOG_IO_PM, un,
9880 			    "             changed  uscsi_chain_type to   %d\n",
9881 			    un->un_uscsi_chain_type);
9882 			mutex_exit(SD_MUTEX(un));
9883 			mutex_enter(&un->un_pm_mutex);
9884 
9885 			if (un->un_pm_idle_timeid == NULL) {
9886 				/* 300 ms. */
9887 				un->un_pm_idle_timeid =
9888 				    timeout(sd_pm_idletimeout_handler, un,
9889 				    (drv_usectohz((clock_t)300000)));
9890 				/*
9891 				 * Include an extra call to busy which keeps the
9892 				 * device busy with-respect-to the PM layer
9893 				 * until the timer fires, at which time it'll
9894 				 * get the extra idle call.
9895 				 */
9896 				(void) pm_busy_component(SD_DEVINFO(un), 0);
9897 			}
9898 		}
9899 	}
9900 	un->un_pm_busy = FALSE;
9901 	/* Next... */
9902 	cv_signal(&un->un_pm_busy_cv);
9903 
9904 	un->un_pm_count++;
9905 
9906 	SD_TRACE(SD_LOG_IO_PM, un,
9907 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
9908 
9909 	mutex_exit(&un->un_pm_mutex);
9910 
9911 	return (return_status);
9912 }
9913 
9914 
9915 /*
9916  *    Function: sd_pm_exit
9917  *
9918  * Description: Called at the completion of a command to manage busy
9919  *		status for the device. If the device becomes idle the
9920  *		PM framework is notified.
9921  *
9922  *     Context: Kernel thread context
9923  */
9924 
9925 static void
9926 sd_pm_exit(struct sd_lun *un)
9927 {
9928 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9929 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9930 
9931 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
9932 
9933 	/*
9934 	 * After attach the following flag is only read, so don't
9935 	 * take the penalty of acquiring a mutex for it.
9936 	 */
9937 	if (un->un_f_pm_is_enabled == TRUE) {
9938 
9939 		mutex_enter(&un->un_pm_mutex);
9940 		un->un_pm_count--;
9941 
9942 		SD_TRACE(SD_LOG_IO_PM, un,
9943 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
9944 
9945 		ASSERT(un->un_pm_count >= 0);
9946 		if (un->un_pm_count == 0) {
9947 			mutex_exit(&un->un_pm_mutex);
9948 
9949 			SD_TRACE(SD_LOG_IO_PM, un,
9950 			    "sd_pm_exit: idle component\n");
9951 
9952 			(void) pm_idle_component(SD_DEVINFO(un), 0);
9953 
9954 		} else {
9955 			mutex_exit(&un->un_pm_mutex);
9956 		}
9957 	}
9958 
9959 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
9960 }
9961 
9962 
9963 /*
9964  *    Function: sdopen
9965  *
9966  * Description: Driver's open(9e) entry point function.
9967  *
9968  *   Arguments: dev_i   - pointer to device number
9969  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
9970  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9971  *		cred_p  - user credential pointer
9972  *
9973  * Return Code: EINVAL
9974  *		ENXIO
9975  *		EIO
9976  *		EROFS
9977  *		EBUSY
9978  *
9979  *     Context: Kernel thread context
9980  */
9981 /* ARGSUSED */
9982 static int
9983 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
9984 {
9985 	struct sd_lun	*un;
9986 	int		nodelay;
9987 	int		part;
9988 	uint64_t	partmask;
9989 	int		instance;
9990 	dev_t		dev;
9991 	int		rval = EIO;
9992 
9993 	/* Validate the open type */
9994 	if (otyp >= OTYPCNT) {
9995 		return (EINVAL);
9996 	}
9997 
9998 	dev = *dev_p;
9999 	instance = SDUNIT(dev);
10000 	mutex_enter(&sd_detach_mutex);
10001 
10002 	/*
10003 	 * Fail the open if there is no softstate for the instance, or
10004 	 * if another thread somewhere is trying to detach the instance.
10005 	 */
10006 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
10007 	    (un->un_detach_count != 0)) {
10008 		mutex_exit(&sd_detach_mutex);
10009 		/*
10010 		 * The probe cache only needs to be cleared when open (9e) fails
10011 		 * with ENXIO (4238046).
10012 		 */
10013 		/*
10014 		 * un-conditionally clearing probe cache is ok with
10015 		 * separate sd/ssd binaries
10016 		 * x86 platform can be an issue with both parallel
10017 		 * and fibre in 1 binary
10018 		 */
10019 		sd_scsi_clear_probe_cache();
10020 		return (ENXIO);
10021 	}
10022 
10023 	/*
10024 	 * The un_layer_count is to prevent another thread in specfs from
10025 	 * trying to detach the instance, which can happen when we are
10026 	 * called from a higher-layer driver instead of thru specfs.
10027 	 * This will not be needed when DDI provides a layered driver
10028 	 * interface that allows specfs to know that an instance is in
10029 	 * use by a layered driver & should not be detached.
10030 	 *
10031 	 * Note: the semantics for layered driver opens are exactly one
10032 	 * close for every open.
10033 	 */
10034 	if (otyp == OTYP_LYR) {
10035 		un->un_layer_count++;
10036 	}
10037 
10038 	/*
10039 	 * Keep a count of the current # of opens in progress. This is because
10040 	 * some layered drivers try to call us as a regular open. This can
10041 	 * cause problems that we cannot prevent, however by keeping this count
10042 	 * we can at least keep our open and detach routines from racing against
10043 	 * each other under such conditions.
10044 	 */
10045 	un->un_opens_in_progress++;
10046 	mutex_exit(&sd_detach_mutex);
10047 
10048 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
10049 	part	 = SDPART(dev);
10050 	partmask = 1 << part;
10051 
10052 	/*
10053 	 * We use a semaphore here in order to serialize
10054 	 * open and close requests on the device.
10055 	 */
10056 	sema_p(&un->un_semoclose);
10057 
10058 	mutex_enter(SD_MUTEX(un));
10059 
10060 	/*
10061 	 * All device accesses go thru sdstrategy() where we check
10062 	 * on suspend status but there could be a scsi_poll command,
10063 	 * which bypasses sdstrategy(), so we need to check pm
10064 	 * status.
10065 	 */
10066 
10067 	if (!nodelay) {
10068 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10069 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10070 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10071 		}
10072 
10073 		mutex_exit(SD_MUTEX(un));
10074 		if (sd_pm_entry(un) != DDI_SUCCESS) {
10075 			rval = EIO;
10076 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
10077 			    "sdopen: sd_pm_entry failed\n");
10078 			goto open_failed_with_pm;
10079 		}
10080 		mutex_enter(SD_MUTEX(un));
10081 	}
10082 
10083 	/* check for previous exclusive open */
10084 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
10085 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10086 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
10087 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
10088 
10089 	if (un->un_exclopen & (partmask)) {
10090 		goto excl_open_fail;
10091 	}
10092 
10093 	if (flag & FEXCL) {
10094 		int i;
10095 		if (un->un_ocmap.lyropen[part]) {
10096 			goto excl_open_fail;
10097 		}
10098 		for (i = 0; i < (OTYPCNT - 1); i++) {
10099 			if (un->un_ocmap.regopen[i] & (partmask)) {
10100 				goto excl_open_fail;
10101 			}
10102 		}
10103 	}
10104 
10105 	/*
10106 	 * Check the write permission if this is a removable media device,
10107 	 * NDELAY has not been set, and writable permission is requested.
10108 	 *
10109 	 * Note: If NDELAY was set and this is write-protected media the WRITE
10110 	 * attempt will fail with EIO as part of the I/O processing. This is a
10111 	 * more permissive implementation that allows the open to succeed and
10112 	 * WRITE attempts to fail when appropriate.
10113 	 */
10114 	if (ISREMOVABLE(un)) {
10115 		if ((flag & FWRITE) && (!nodelay)) {
10116 			mutex_exit(SD_MUTEX(un));
10117 			/*
10118 			 * Defer the check for write permission on writable
10119 			 * DVD drive till sdstrategy and will not fail open even
10120 			 * if FWRITE is set as the device can be writable
10121 			 * depending upon the media and the media can change
10122 			 * after the call to open().
10123 			 */
10124 			if (un->un_f_dvdram_writable_device == FALSE) {
10125 				if (ISCD(un) || sr_check_wp(dev)) {
10126 				rval = EROFS;
10127 				mutex_enter(SD_MUTEX(un));
10128 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10129 				    "write to cd or write protected media\n");
10130 				goto open_fail;
10131 				}
10132 			}
10133 			mutex_enter(SD_MUTEX(un));
10134 		}
10135 	}
10136 
10137 	/*
10138 	 * If opening in NDELAY/NONBLOCK mode, just return.
10139 	 * Check if disk is ready and has a valid geometry later.
10140 	 */
10141 	if (!nodelay) {
10142 		mutex_exit(SD_MUTEX(un));
10143 		rval = sd_ready_and_valid(un);
10144 		mutex_enter(SD_MUTEX(un));
10145 		/*
10146 		 * Fail if device is not ready or if the number of disk
10147 		 * blocks is zero or negative for non CD devices.
10148 		 */
10149 		if ((rval != SD_READY_VALID) ||
10150 		    (!ISCD(un) && un->un_map[part].dkl_nblk <= 0)) {
10151 			if (ISREMOVABLE(un)) {
10152 				rval = ENXIO;
10153 			} else {
10154 				rval = EIO;
10155 			}
10156 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10157 			    "device not ready or invalid disk block value\n");
10158 			goto open_fail;
10159 		}
10160 #if defined(__i386) || defined(__amd64)
10161 	} else {
10162 		uchar_t *cp;
10163 		/*
10164 		 * x86 requires special nodelay handling, so that p0 is
10165 		 * always defined and accessible.
10166 		 * Invalidate geometry only if device is not already open.
10167 		 */
10168 		cp = &un->un_ocmap.chkd[0];
10169 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10170 			if (*cp != (uchar_t)0) {
10171 			    break;
10172 			}
10173 			cp++;
10174 		}
10175 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10176 			un->un_f_geometry_is_valid = FALSE;
10177 		}
10178 
10179 #endif
10180 	}
10181 
10182 	if (otyp == OTYP_LYR) {
10183 		un->un_ocmap.lyropen[part]++;
10184 	} else {
10185 		un->un_ocmap.regopen[otyp] |= partmask;
10186 	}
10187 
10188 	/* Set up open and exclusive open flags */
10189 	if (flag & FEXCL) {
10190 		un->un_exclopen |= (partmask);
10191 	}
10192 
10193 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10194 	    "open of part %d type %d\n", part, otyp);
10195 
10196 	mutex_exit(SD_MUTEX(un));
10197 	if (!nodelay) {
10198 		sd_pm_exit(un);
10199 	}
10200 
10201 	sema_v(&un->un_semoclose);
10202 
10203 	mutex_enter(&sd_detach_mutex);
10204 	un->un_opens_in_progress--;
10205 	mutex_exit(&sd_detach_mutex);
10206 
10207 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
10208 	return (DDI_SUCCESS);
10209 
10210 excl_open_fail:
10211 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
10212 	rval = EBUSY;
10213 
10214 open_fail:
10215 	mutex_exit(SD_MUTEX(un));
10216 
10217 	/*
10218 	 * On a failed open we must exit the pm management.
10219 	 */
10220 	if (!nodelay) {
10221 		sd_pm_exit(un);
10222 	}
10223 open_failed_with_pm:
10224 	sema_v(&un->un_semoclose);
10225 
10226 	mutex_enter(&sd_detach_mutex);
10227 	un->un_opens_in_progress--;
10228 	if (otyp == OTYP_LYR) {
10229 		un->un_layer_count--;
10230 	}
10231 	mutex_exit(&sd_detach_mutex);
10232 
10233 	return (rval);
10234 }
10235 
10236 
10237 /*
10238  *    Function: sdclose
10239  *
10240  * Description: Driver's close(9e) entry point function.
10241  *
10242  *   Arguments: dev    - device number
10243  *		flag   - file status flag, informational only
10244  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10245  *		cred_p - user credential pointer
10246  *
10247  * Return Code: ENXIO
10248  *
10249  *     Context: Kernel thread context
10250  */
10251 /* ARGSUSED */
10252 static int
10253 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
10254 {
10255 	struct sd_lun	*un;
10256 	uchar_t		*cp;
10257 	int		part;
10258 	int		nodelay;
10259 	int		rval = 0;
10260 
10261 	/* Validate the open type */
10262 	if (otyp >= OTYPCNT) {
10263 		return (ENXIO);
10264 	}
10265 
10266 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10267 		return (ENXIO);
10268 	}
10269 
10270 	part = SDPART(dev);
10271 	nodelay = flag & (FNDELAY | FNONBLOCK);
10272 
10273 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10274 	    "sdclose: close of part %d type %d\n", part, otyp);
10275 
10276 	/*
10277 	 * We use a semaphore here in order to serialize
10278 	 * open and close requests on the device.
10279 	 */
10280 	sema_p(&un->un_semoclose);
10281 
10282 	mutex_enter(SD_MUTEX(un));
10283 
10284 	/* Don't proceed if power is being changed. */
10285 	while (un->un_state == SD_STATE_PM_CHANGING) {
10286 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10287 	}
10288 
10289 	if (un->un_exclopen & (1 << part)) {
10290 		un->un_exclopen &= ~(1 << part);
10291 	}
10292 
10293 	/* Update the open partition map */
10294 	if (otyp == OTYP_LYR) {
10295 		un->un_ocmap.lyropen[part] -= 1;
10296 	} else {
10297 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
10298 	}
10299 
10300 	cp = &un->un_ocmap.chkd[0];
10301 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10302 		if (*cp != NULL) {
10303 			break;
10304 		}
10305 		cp++;
10306 	}
10307 
10308 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10309 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
10310 
10311 		/*
10312 		 * We avoid persistance upon the last close, and set
10313 		 * the throttle back to the maximum.
10314 		 */
10315 		un->un_throttle = un->un_saved_throttle;
10316 
10317 		if (un->un_state == SD_STATE_OFFLINE) {
10318 			if (un->un_f_is_fibre == FALSE) {
10319 				scsi_log(SD_DEVINFO(un), sd_label,
10320 					CE_WARN, "offline\n");
10321 			}
10322 			un->un_f_geometry_is_valid = FALSE;
10323 
10324 		} else {
10325 			/*
10326 			 * Flush any outstanding writes in NVRAM cache.
10327 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
10328 			 * cmd, it may not work for non-Pluto devices.
10329 			 * SYNCHRONIZE CACHE is not required for removables,
10330 			 * except DVD-RAM drives.
10331 			 *
10332 			 * Also note: because SYNCHRONIZE CACHE is currently
10333 			 * the only command issued here that requires the
10334 			 * drive be powered up, only do the power up before
10335 			 * sending the Sync Cache command. If additional
10336 			 * commands are added which require a powered up
10337 			 * drive, the following sequence may have to change.
10338 			 *
10339 			 * And finally, note that parallel SCSI on SPARC
10340 			 * only issues a Sync Cache to DVD-RAM, a newly
10341 			 * supported device.
10342 			 */
10343 #if defined(__i386) || defined(__amd64)
10344 			if (!ISREMOVABLE(un) ||
10345 			    un->un_f_dvdram_writable_device == TRUE) {
10346 #else
10347 			if (un->un_f_dvdram_writable_device == TRUE) {
10348 #endif
10349 				mutex_exit(SD_MUTEX(un));
10350 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10351 					if (sd_send_scsi_SYNCHRONIZE_CACHE(un)
10352 					    != 0) {
10353 						rval = EIO;
10354 					}
10355 					sd_pm_exit(un);
10356 				} else {
10357 					rval = EIO;
10358 				}
10359 				mutex_enter(SD_MUTEX(un));
10360 			}
10361 
10362 			/*
10363 			 * For removable media devices, send an ALLOW MEDIA
10364 			 * REMOVAL command, but don't get upset if it fails.
10365 			 * Also invalidate the geometry. We need to raise
10366 			 * the power of the drive before we can call
10367 			 * sd_send_scsi_DOORLOCK()
10368 			 */
10369 			if (ISREMOVABLE(un)) {
10370 				mutex_exit(SD_MUTEX(un));
10371 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10372 					rval = sd_send_scsi_DOORLOCK(un,
10373 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
10374 
10375 					sd_pm_exit(un);
10376 					if (ISCD(un) && (rval != 0) &&
10377 					    (nodelay != 0)) {
10378 						rval = ENXIO;
10379 					}
10380 				} else {
10381 					rval = EIO;
10382 				}
10383 				mutex_enter(SD_MUTEX(un));
10384 
10385 				sr_ejected(un);
10386 				/*
10387 				 * Destroy the cache (if it exists) which was
10388 				 * allocated for the write maps since this is
10389 				 * the last close for this media.
10390 				 */
10391 				if (un->un_wm_cache) {
10392 					/*
10393 					 * Check if there are pending commands.
10394 					 * and if there are give a warning and
10395 					 * do not destroy the cache.
10396 					 */
10397 					if (un->un_ncmds_in_driver > 0) {
10398 						scsi_log(SD_DEVINFO(un),
10399 						    sd_label, CE_WARN,
10400 						    "Unable to clean up memory "
10401 						    "because of pending I/O\n");
10402 					} else {
10403 						kmem_cache_destroy(
10404 						    un->un_wm_cache);
10405 						un->un_wm_cache = NULL;
10406 					}
10407 				}
10408 			}
10409 		}
10410 	}
10411 
10412 	mutex_exit(SD_MUTEX(un));
10413 	sema_v(&un->un_semoclose);
10414 
10415 	if (otyp == OTYP_LYR) {
10416 		mutex_enter(&sd_detach_mutex);
10417 		/*
10418 		 * The detach routine may run when the layer count
10419 		 * drops to zero.
10420 		 */
10421 		un->un_layer_count--;
10422 		mutex_exit(&sd_detach_mutex);
10423 	}
10424 
10425 	return (rval);
10426 }
10427 
10428 
10429 /*
10430  *    Function: sd_ready_and_valid
10431  *
10432  * Description: Test if device is ready and has a valid geometry.
10433  *
10434  *   Arguments: dev - device number
10435  *		un  - driver soft state (unit) structure
10436  *
10437  * Return Code: SD_READY_VALID		ready and valid label
10438  *		SD_READY_NOT_VALID	ready, geom ops never applicable
10439  *		SD_NOT_READY_VALID	not ready, no label
10440  *
10441  *     Context: Never called at interrupt context.
10442  */
10443 
10444 static int
10445 sd_ready_and_valid(struct sd_lun *un)
10446 {
10447 	struct sd_errstats	*stp;
10448 	uint64_t		capacity;
10449 	uint_t			lbasize;
10450 	int			rval = SD_READY_VALID;
10451 	char			name_str[48];
10452 
10453 	ASSERT(un != NULL);
10454 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10455 
10456 	mutex_enter(SD_MUTEX(un));
10457 	if (ISREMOVABLE(un)) {
10458 		mutex_exit(SD_MUTEX(un));
10459 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
10460 			rval = SD_NOT_READY_VALID;
10461 			mutex_enter(SD_MUTEX(un));
10462 			goto done;
10463 		}
10464 
10465 		mutex_enter(SD_MUTEX(un));
10466 		if ((un->un_f_geometry_is_valid == FALSE) ||
10467 		    (un->un_f_blockcount_is_valid == FALSE) ||
10468 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
10469 
10470 			/* capacity has to be read every open. */
10471 			mutex_exit(SD_MUTEX(un));
10472 			if (sd_send_scsi_READ_CAPACITY(un, &capacity,
10473 			    &lbasize, SD_PATH_DIRECT) != 0) {
10474 				mutex_enter(SD_MUTEX(un));
10475 				un->un_f_geometry_is_valid = FALSE;
10476 				rval = SD_NOT_READY_VALID;
10477 				goto done;
10478 			} else {
10479 				mutex_enter(SD_MUTEX(un));
10480 				sd_update_block_info(un, lbasize, capacity);
10481 			}
10482 		}
10483 
10484 		/*
10485 		 * If this is a non 512 block device, allocate space for
10486 		 * the wmap cache. This is being done here since every time
10487 		 * a media is changed this routine will be called and the
10488 		 * block size is a function of media rather than device.
10489 		 */
10490 		if (NOT_DEVBSIZE(un)) {
10491 			if (!(un->un_wm_cache)) {
10492 				(void) snprintf(name_str, sizeof (name_str),
10493 				    "%s%d_cache",
10494 				    ddi_driver_name(SD_DEVINFO(un)),
10495 				    ddi_get_instance(SD_DEVINFO(un)));
10496 				un->un_wm_cache = kmem_cache_create(
10497 				    name_str, sizeof (struct sd_w_map),
10498 				    8, sd_wm_cache_constructor,
10499 				    sd_wm_cache_destructor, NULL,
10500 				    (void *)un, NULL, 0);
10501 				if (!(un->un_wm_cache)) {
10502 					rval = ENOMEM;
10503 					goto done;
10504 				}
10505 			}
10506 		}
10507 
10508 		/*
10509 		 * Check if the media in the device is writable or not.
10510 		 */
10511 		if ((un->un_f_geometry_is_valid == FALSE) && ISCD(un)) {
10512 			sd_check_for_writable_cd(un);
10513 		}
10514 
10515 	} else {
10516 		/*
10517 		 * Do a test unit ready to clear any unit attention from non-cd
10518 		 * devices.
10519 		 */
10520 		mutex_exit(SD_MUTEX(un));
10521 		(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
10522 		mutex_enter(SD_MUTEX(un));
10523 	}
10524 
10525 
10526 	if (un->un_state == SD_STATE_NORMAL) {
10527 		/*
10528 		 * If the target is not yet ready here (defined by a TUR
10529 		 * failure), invalidate the geometry and print an 'offline'
10530 		 * message. This is a legacy message, as the state of the
10531 		 * target is not actually changed to SD_STATE_OFFLINE.
10532 		 *
10533 		 * If the TUR fails for EACCES (Reservation Conflict), it
10534 		 * means there actually is nothing wrong with the target that
10535 		 * would require invalidating the geometry, so continue in
10536 		 * that case as if the TUR was successful.
10537 		 */
10538 		int err;
10539 
10540 		mutex_exit(SD_MUTEX(un));
10541 		err = sd_send_scsi_TEST_UNIT_READY(un, 0);
10542 		mutex_enter(SD_MUTEX(un));
10543 
10544 		if ((err != 0) && (err != EACCES)) {
10545 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10546 			    "offline\n");
10547 			un->un_f_geometry_is_valid = FALSE;
10548 			rval = SD_NOT_READY_VALID;
10549 			goto done;
10550 		}
10551 	}
10552 
10553 	if (un->un_f_format_in_progress == FALSE) {
10554 		/*
10555 		 * Note: sd_validate_geometry may return TRUE, but that does
10556 		 * not necessarily mean un_f_geometry_is_valid == TRUE!
10557 		 */
10558 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
10559 		if (rval == ENOTSUP) {
10560 			if (un->un_f_geometry_is_valid == TRUE)
10561 				rval = 0;
10562 			else {
10563 				rval = SD_READY_NOT_VALID;
10564 				goto done;
10565 			}
10566 		}
10567 		if (rval != 0) {
10568 			/*
10569 			 * We don't check the validity of geometry for
10570 			 * CDROMs. Also we assume we have a good label
10571 			 * even if sd_validate_geometry returned ENOMEM.
10572 			 */
10573 			if (!ISCD(un) && rval != ENOMEM) {
10574 				rval = SD_NOT_READY_VALID;
10575 				goto done;
10576 			}
10577 		}
10578 	}
10579 
10580 #ifdef DOESNTWORK /* on eliteII, see 1118607 */
10581 	/*
10582 	 * check to see if this disk is write protected, if it is and we have
10583 	 * not set read-only, then fail
10584 	 */
10585 	if ((flag & FWRITE) && (sr_check_wp(dev))) {
10586 		New_state(un, SD_STATE_CLOSED);
10587 		goto done;
10588 	}
10589 #endif
10590 
10591 	/*
10592 	 * If this is a removable media device, try and send
10593 	 * a PREVENT MEDIA REMOVAL command, but don't get upset
10594 	 * if it fails. For a CD, however, it is an error
10595 	 */
10596 	if (ISREMOVABLE(un)) {
10597 		mutex_exit(SD_MUTEX(un));
10598 		if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
10599 		    SD_PATH_DIRECT) != 0) && ISCD(un)) {
10600 			rval = SD_NOT_READY_VALID;
10601 			mutex_enter(SD_MUTEX(un));
10602 			goto done;
10603 		}
10604 		mutex_enter(SD_MUTEX(un));
10605 	}
10606 
10607 	/* The state has changed, inform the media watch routines */
10608 	un->un_mediastate = DKIO_INSERTED;
10609 	cv_broadcast(&un->un_state_cv);
10610 	rval = SD_READY_VALID;
10611 
10612 done:
10613 
10614 	/*
10615 	 * Initialize the capacity kstat value, if no media previously
10616 	 * (capacity kstat is 0) and a media has been inserted
10617 	 * (un_blockcount > 0).
10618 	 * This is a more generic way then checking for ISREMOVABLE.
10619 	 */
10620 	if (un->un_errstats != NULL) {
10621 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
10622 		if ((stp->sd_capacity.value.ui64 == 0) &&
10623 		    (un->un_f_blockcount_is_valid == TRUE)) {
10624 			stp->sd_capacity.value.ui64 =
10625 			    (uint64_t)((uint64_t)un->un_blockcount *
10626 			    un->un_sys_blocksize);
10627 		}
10628 	}
10629 
10630 	mutex_exit(SD_MUTEX(un));
10631 	return (rval);
10632 }
10633 
10634 
10635 /*
10636  *    Function: sdmin
10637  *
10638  * Description: Routine to limit the size of a data transfer. Used in
10639  *		conjunction with physio(9F).
10640  *
10641  *   Arguments: bp - pointer to the indicated buf(9S) struct.
10642  *
10643  *     Context: Kernel thread context.
10644  */
10645 
10646 static void
10647 sdmin(struct buf *bp)
10648 {
10649 	struct sd_lun	*un;
10650 	int		instance;
10651 
10652 	instance = SDUNIT(bp->b_edev);
10653 
10654 	un = ddi_get_soft_state(sd_state, instance);
10655 	ASSERT(un != NULL);
10656 
10657 	if (bp->b_bcount > un->un_max_xfer_size) {
10658 		bp->b_bcount = un->un_max_xfer_size;
10659 	}
10660 }
10661 
10662 
10663 /*
10664  *    Function: sdread
10665  *
10666  * Description: Driver's read(9e) entry point function.
10667  *
10668  *   Arguments: dev   - device number
10669  *		uio   - structure pointer describing where data is to be stored
10670  *			in user's space
10671  *		cred_p  - user credential pointer
10672  *
10673  * Return Code: ENXIO
10674  *		EIO
10675  *		EINVAL
10676  *		value returned by physio
10677  *
10678  *     Context: Kernel thread context.
10679  */
10680 /* ARGSUSED */
10681 static int
10682 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
10683 {
10684 	struct sd_lun	*un = NULL;
10685 	int		secmask;
10686 	int		err;
10687 
10688 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10689 		return (ENXIO);
10690 	}
10691 
10692 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10693 
10694 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10695 		mutex_enter(SD_MUTEX(un));
10696 		/*
10697 		 * Because the call to sd_ready_and_valid will issue I/O we
10698 		 * must wait here if either the device is suspended or
10699 		 * if it's power level is changing.
10700 		 */
10701 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10702 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10703 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10704 		}
10705 		un->un_ncmds_in_driver++;
10706 		mutex_exit(SD_MUTEX(un));
10707 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10708 			mutex_enter(SD_MUTEX(un));
10709 			un->un_ncmds_in_driver--;
10710 			ASSERT(un->un_ncmds_in_driver >= 0);
10711 			mutex_exit(SD_MUTEX(un));
10712 			return (EIO);
10713 		}
10714 		mutex_enter(SD_MUTEX(un));
10715 		un->un_ncmds_in_driver--;
10716 		ASSERT(un->un_ncmds_in_driver >= 0);
10717 		mutex_exit(SD_MUTEX(un));
10718 	}
10719 
10720 	/*
10721 	 * Read requests are restricted to multiples of the system block size.
10722 	 */
10723 	secmask = un->un_sys_blocksize - 1;
10724 
10725 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10726 		SD_ERROR(SD_LOG_READ_WRITE, un,
10727 		    "sdread: file offset not modulo %d\n",
10728 		    un->un_sys_blocksize);
10729 		err = EINVAL;
10730 	} else if (uio->uio_iov->iov_len & (secmask)) {
10731 		SD_ERROR(SD_LOG_READ_WRITE, un,
10732 		    "sdread: transfer length not modulo %d\n",
10733 		    un->un_sys_blocksize);
10734 		err = EINVAL;
10735 	} else {
10736 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
10737 	}
10738 	return (err);
10739 }
10740 
10741 
10742 /*
10743  *    Function: sdwrite
10744  *
10745  * Description: Driver's write(9e) entry point function.
10746  *
10747  *   Arguments: dev   - device number
10748  *		uio   - structure pointer describing where data is stored in
10749  *			user's space
10750  *		cred_p  - user credential pointer
10751  *
10752  * Return Code: ENXIO
10753  *		EIO
10754  *		EINVAL
10755  *		value returned by physio
10756  *
10757  *     Context: Kernel thread context.
10758  */
10759 /* ARGSUSED */
10760 static int
10761 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
10762 {
10763 	struct sd_lun	*un = NULL;
10764 	int		secmask;
10765 	int		err;
10766 
10767 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10768 		return (ENXIO);
10769 	}
10770 
10771 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10772 
10773 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10774 		mutex_enter(SD_MUTEX(un));
10775 		/*
10776 		 * Because the call to sd_ready_and_valid will issue I/O we
10777 		 * must wait here if either the device is suspended or
10778 		 * if it's power level is changing.
10779 		 */
10780 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10781 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10782 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10783 		}
10784 		un->un_ncmds_in_driver++;
10785 		mutex_exit(SD_MUTEX(un));
10786 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10787 			mutex_enter(SD_MUTEX(un));
10788 			un->un_ncmds_in_driver--;
10789 			ASSERT(un->un_ncmds_in_driver >= 0);
10790 			mutex_exit(SD_MUTEX(un));
10791 			return (EIO);
10792 		}
10793 		mutex_enter(SD_MUTEX(un));
10794 		un->un_ncmds_in_driver--;
10795 		ASSERT(un->un_ncmds_in_driver >= 0);
10796 		mutex_exit(SD_MUTEX(un));
10797 	}
10798 
10799 	/*
10800 	 * Write requests are restricted to multiples of the system block size.
10801 	 */
10802 	secmask = un->un_sys_blocksize - 1;
10803 
10804 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10805 		SD_ERROR(SD_LOG_READ_WRITE, un,
10806 		    "sdwrite: file offset not modulo %d\n",
10807 		    un->un_sys_blocksize);
10808 		err = EINVAL;
10809 	} else if (uio->uio_iov->iov_len & (secmask)) {
10810 		SD_ERROR(SD_LOG_READ_WRITE, un,
10811 		    "sdwrite: transfer length not modulo %d\n",
10812 		    un->un_sys_blocksize);
10813 		err = EINVAL;
10814 	} else {
10815 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
10816 	}
10817 	return (err);
10818 }
10819 
10820 
10821 /*
10822  *    Function: sdaread
10823  *
10824  * Description: Driver's aread(9e) entry point function.
10825  *
10826  *   Arguments: dev   - device number
10827  *		aio   - structure pointer describing where data is to be stored
10828  *		cred_p  - user credential pointer
10829  *
10830  * Return Code: ENXIO
10831  *		EIO
10832  *		EINVAL
10833  *		value returned by aphysio
10834  *
10835  *     Context: Kernel thread context.
10836  */
10837 /* ARGSUSED */
10838 static int
10839 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10840 {
10841 	struct sd_lun	*un = NULL;
10842 	struct uio	*uio = aio->aio_uio;
10843 	int		secmask;
10844 	int		err;
10845 
10846 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10847 		return (ENXIO);
10848 	}
10849 
10850 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10851 
10852 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10853 		mutex_enter(SD_MUTEX(un));
10854 		/*
10855 		 * Because the call to sd_ready_and_valid will issue I/O we
10856 		 * must wait here if either the device is suspended or
10857 		 * if it's power level is changing.
10858 		 */
10859 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10860 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10861 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10862 		}
10863 		un->un_ncmds_in_driver++;
10864 		mutex_exit(SD_MUTEX(un));
10865 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10866 			mutex_enter(SD_MUTEX(un));
10867 			un->un_ncmds_in_driver--;
10868 			ASSERT(un->un_ncmds_in_driver >= 0);
10869 			mutex_exit(SD_MUTEX(un));
10870 			return (EIO);
10871 		}
10872 		mutex_enter(SD_MUTEX(un));
10873 		un->un_ncmds_in_driver--;
10874 		ASSERT(un->un_ncmds_in_driver >= 0);
10875 		mutex_exit(SD_MUTEX(un));
10876 	}
10877 
10878 	/*
10879 	 * Read requests are restricted to multiples of the system block size.
10880 	 */
10881 	secmask = un->un_sys_blocksize - 1;
10882 
10883 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10884 		SD_ERROR(SD_LOG_READ_WRITE, un,
10885 		    "sdaread: file offset not modulo %d\n",
10886 		    un->un_sys_blocksize);
10887 		err = EINVAL;
10888 	} else if (uio->uio_iov->iov_len & (secmask)) {
10889 		SD_ERROR(SD_LOG_READ_WRITE, un,
10890 		    "sdaread: transfer length not modulo %d\n",
10891 		    un->un_sys_blocksize);
10892 		err = EINVAL;
10893 	} else {
10894 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
10895 	}
10896 	return (err);
10897 }
10898 
10899 
10900 /*
10901  *    Function: sdawrite
10902  *
10903  * Description: Driver's awrite(9e) entry point function.
10904  *
10905  *   Arguments: dev   - device number
10906  *		aio   - structure pointer describing where data is stored
10907  *		cred_p  - user credential pointer
10908  *
10909  * Return Code: ENXIO
10910  *		EIO
10911  *		EINVAL
10912  *		value returned by aphysio
10913  *
10914  *     Context: Kernel thread context.
10915  */
10916 /* ARGSUSED */
10917 static int
10918 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10919 {
10920 	struct sd_lun	*un = NULL;
10921 	struct uio	*uio = aio->aio_uio;
10922 	int		secmask;
10923 	int		err;
10924 
10925 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10926 		return (ENXIO);
10927 	}
10928 
10929 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10930 
10931 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10932 		mutex_enter(SD_MUTEX(un));
10933 		/*
10934 		 * Because the call to sd_ready_and_valid will issue I/O we
10935 		 * must wait here if either the device is suspended or
10936 		 * if it's power level is changing.
10937 		 */
10938 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10939 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10940 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10941 		}
10942 		un->un_ncmds_in_driver++;
10943 		mutex_exit(SD_MUTEX(un));
10944 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10945 			mutex_enter(SD_MUTEX(un));
10946 			un->un_ncmds_in_driver--;
10947 			ASSERT(un->un_ncmds_in_driver >= 0);
10948 			mutex_exit(SD_MUTEX(un));
10949 			return (EIO);
10950 		}
10951 		mutex_enter(SD_MUTEX(un));
10952 		un->un_ncmds_in_driver--;
10953 		ASSERT(un->un_ncmds_in_driver >= 0);
10954 		mutex_exit(SD_MUTEX(un));
10955 	}
10956 
10957 	/*
10958 	 * Write requests are restricted to multiples of the system block size.
10959 	 */
10960 	secmask = un->un_sys_blocksize - 1;
10961 
10962 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10963 		SD_ERROR(SD_LOG_READ_WRITE, un,
10964 		    "sdawrite: file offset not modulo %d\n",
10965 		    un->un_sys_blocksize);
10966 		err = EINVAL;
10967 	} else if (uio->uio_iov->iov_len & (secmask)) {
10968 		SD_ERROR(SD_LOG_READ_WRITE, un,
10969 		    "sdawrite: transfer length not modulo %d\n",
10970 		    un->un_sys_blocksize);
10971 		err = EINVAL;
10972 	} else {
10973 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
10974 	}
10975 	return (err);
10976 }
10977 
10978 
10979 
10980 
10981 
10982 /*
10983  * Driver IO processing follows the following sequence:
10984  *
10985  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
10986  *         |                |                     ^
10987  *         v                v                     |
10988  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
10989  *         |                |                     |                   |
10990  *         v                |                     |                   |
10991  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
10992  *         |                |                     ^                   ^
10993  *         v                v                     |                   |
10994  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
10995  *         |                |                     |                   |
10996  *     +---+                |                     +------------+      +-------+
10997  *     |                    |                                  |              |
10998  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10999  *     |                    v                                  |              |
11000  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
11001  *     |                    |                                  ^              |
11002  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11003  *     |                    v                                  |              |
11004  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
11005  *     |                    |                                  ^              |
11006  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11007  *     |                    v                                  |              |
11008  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
11009  *     |                    |                                  ^              |
11010  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
11011  *     |                    v                                  |              |
11012  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
11013  *     |                    |                                  ^              |
11014  *     |                    |                                  |              |
11015  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
11016  *                          |                           ^
11017  *                          v                           |
11018  *                   sd_core_iostart()                  |
11019  *                          |                           |
11020  *                          |                           +------>(*destroypkt)()
11021  *                          +-> sd_start_cmds() <-+     |           |
11022  *                          |                     |     |           v
11023  *                          |                     |     |  scsi_destroy_pkt(9F)
11024  *                          |                     |     |
11025  *                          +->(*initpkt)()       +- sdintr()
11026  *                          |  |                        |  |
11027  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
11028  *                          |  +-> scsi_setup_cdb(9F)   |
11029  *                          |                           |
11030  *                          +--> scsi_transport(9F)     |
11031  *                                     |                |
11032  *                                     +----> SCSA ---->+
11033  *
11034  *
11035  * This code is based upon the following presumtions:
11036  *
11037  *   - iostart and iodone functions operate on buf(9S) structures. These
11038  *     functions perform the necessary operations on the buf(9S) and pass
11039  *     them along to the next function in the chain by using the macros
11040  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
11041  *     (for iodone side functions).
11042  *
11043  *   - The iostart side functions may sleep. The iodone side functions
11044  *     are called under interrupt context and may NOT sleep. Therefore
11045  *     iodone side functions also may not call iostart side functions.
11046  *     (NOTE: iostart side functions should NOT sleep for memory, as
11047  *     this could result in deadlock.)
11048  *
11049  *   - An iostart side function may call its corresponding iodone side
11050  *     function directly (if necessary).
11051  *
11052  *   - In the event of an error, an iostart side function can return a buf(9S)
11053  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
11054  *     b_error in the usual way of course).
11055  *
11056  *   - The taskq mechanism may be used by the iodone side functions to dispatch
11057  *     requests to the iostart side functions.  The iostart side functions in
11058  *     this case would be called under the context of a taskq thread, so it's
11059  *     OK for them to block/sleep/spin in this case.
11060  *
11061  *   - iostart side functions may allocate "shadow" buf(9S) structs and
11062  *     pass them along to the next function in the chain.  The corresponding
11063  *     iodone side functions must coalesce the "shadow" bufs and return
11064  *     the "original" buf to the next higher layer.
11065  *
11066  *   - The b_private field of the buf(9S) struct holds a pointer to
11067  *     an sd_xbuf struct, which contains information needed to
11068  *     construct the scsi_pkt for the command.
11069  *
11070  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
11071  *     layer must acquire & release the SD_MUTEX(un) as needed.
11072  */
11073 
11074 
11075 /*
11076  * Create taskq for all targets in the system. This is created at
11077  * _init(9E) and destroyed at _fini(9E).
11078  *
11079  * Note: here we set the minalloc to a reasonably high number to ensure that
11080  * we will have an adequate supply of task entries available at interrupt time.
11081  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
11082  * sd_create_taskq().  Since we do not want to sleep for allocations at
11083  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
11084  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
11085  * requests any one instant in time.
11086  */
11087 #define	SD_TASKQ_NUMTHREADS	8
11088 #define	SD_TASKQ_MINALLOC	256
11089 #define	SD_TASKQ_MAXALLOC	256
11090 
11091 static taskq_t	*sd_tq = NULL;
11092 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
11093 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
11094 
11095 /*
11096  * The following task queue is being created for the write part of
11097  * read-modify-write of non-512 block size devices.
11098  * Limit the number of threads to 1 for now. This number has been choosen
11099  * considering the fact that it applies only to dvd ram drives/MO drives
11100  * currently. Performance for which is not main criteria at this stage.
11101  * Note: It needs to be explored if we can use a single taskq in future
11102  */
11103 #define	SD_WMR_TASKQ_NUMTHREADS	1
11104 static taskq_t	*sd_wmr_tq = NULL;
11105 
11106 /*
11107  *    Function: sd_taskq_create
11108  *
11109  * Description: Create taskq thread(s) and preallocate task entries
11110  *
11111  * Return Code: Returns a pointer to the allocated taskq_t.
11112  *
11113  *     Context: Can sleep. Requires blockable context.
11114  *
11115  *       Notes: - The taskq() facility currently is NOT part of the DDI.
11116  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
11117  *		- taskq_create() will block for memory, also it will panic
11118  *		  if it cannot create the requested number of threads.
11119  *		- Currently taskq_create() creates threads that cannot be
11120  *		  swapped.
11121  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
11122  *		  supply of taskq entries at interrupt time (ie, so that we
11123  *		  do not have to sleep for memory)
11124  */
11125 
11126 static void
11127 sd_taskq_create(void)
11128 {
11129 	char	taskq_name[TASKQ_NAMELEN];
11130 
11131 	ASSERT(sd_tq == NULL);
11132 	ASSERT(sd_wmr_tq == NULL);
11133 
11134 	(void) snprintf(taskq_name, sizeof (taskq_name),
11135 	    "%s_drv_taskq", sd_label);
11136 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
11137 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11138 	    TASKQ_PREPOPULATE));
11139 
11140 	(void) snprintf(taskq_name, sizeof (taskq_name),
11141 	    "%s_rmw_taskq", sd_label);
11142 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
11143 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11144 	    TASKQ_PREPOPULATE));
11145 }
11146 
11147 
11148 /*
11149  *    Function: sd_taskq_delete
11150  *
11151  * Description: Complementary cleanup routine for sd_taskq_create().
11152  *
11153  *     Context: Kernel thread context.
11154  */
11155 
11156 static void
11157 sd_taskq_delete(void)
11158 {
11159 	ASSERT(sd_tq != NULL);
11160 	ASSERT(sd_wmr_tq != NULL);
11161 	taskq_destroy(sd_tq);
11162 	taskq_destroy(sd_wmr_tq);
11163 	sd_tq = NULL;
11164 	sd_wmr_tq = NULL;
11165 }
11166 
11167 
11168 /*
11169  *    Function: sdstrategy
11170  *
11171  * Description: Driver's strategy (9E) entry point function.
11172  *
11173  *   Arguments: bp - pointer to buf(9S)
11174  *
11175  * Return Code: Always returns zero
11176  *
11177  *     Context: Kernel thread context.
11178  */
11179 
11180 static int
11181 sdstrategy(struct buf *bp)
11182 {
11183 	struct sd_lun *un;
11184 
11185 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11186 	if (un == NULL) {
11187 		bioerror(bp, EIO);
11188 		bp->b_resid = bp->b_bcount;
11189 		biodone(bp);
11190 		return (0);
11191 	}
11192 	/* As was done in the past, fail new cmds. if state is dumping. */
11193 	if (un->un_state == SD_STATE_DUMPING) {
11194 		bioerror(bp, ENXIO);
11195 		bp->b_resid = bp->b_bcount;
11196 		biodone(bp);
11197 		return (0);
11198 	}
11199 
11200 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11201 
11202 	/*
11203 	 * Commands may sneak in while we released the mutex in
11204 	 * DDI_SUSPEND, we should block new commands. However, old
11205 	 * commands that are still in the driver at this point should
11206 	 * still be allowed to drain.
11207 	 */
11208 	mutex_enter(SD_MUTEX(un));
11209 	/*
11210 	 * Must wait here if either the device is suspended or
11211 	 * if it's power level is changing.
11212 	 */
11213 	while ((un->un_state == SD_STATE_SUSPENDED) ||
11214 	    (un->un_state == SD_STATE_PM_CHANGING)) {
11215 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11216 	}
11217 
11218 	un->un_ncmds_in_driver++;
11219 
11220 	/*
11221 	 * atapi: Since we are running the CD for now in PIO mode we need to
11222 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11223 	 * the HBA's init_pkt routine.
11224 	 */
11225 	if (un->un_f_cfg_is_atapi == TRUE) {
11226 		mutex_exit(SD_MUTEX(un));
11227 		bp_mapin(bp);
11228 		mutex_enter(SD_MUTEX(un));
11229 	}
11230 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
11231 	    un->un_ncmds_in_driver);
11232 
11233 	mutex_exit(SD_MUTEX(un));
11234 
11235 	/*
11236 	 * This will (eventually) allocate the sd_xbuf area and
11237 	 * call sd_xbuf_strategy().  We just want to return the
11238 	 * result of ddi_xbuf_qstrategy so that we have an opt-
11239 	 * imized tail call which saves us a stack frame.
11240 	 */
11241 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
11242 }
11243 
11244 
11245 /*
11246  *    Function: sd_xbuf_strategy
11247  *
11248  * Description: Function for initiating IO operations via the
11249  *		ddi_xbuf_qstrategy() mechanism.
11250  *
11251  *     Context: Kernel thread context.
11252  */
11253 
11254 static void
11255 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11256 {
11257 	struct sd_lun *un = arg;
11258 
11259 	ASSERT(bp != NULL);
11260 	ASSERT(xp != NULL);
11261 	ASSERT(un != NULL);
11262 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11263 
11264 	/*
11265 	 * Initialize the fields in the xbuf and save a pointer to the
11266 	 * xbuf in bp->b_private.
11267 	 */
11268 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11269 
11270 	/* Send the buf down the iostart chain */
11271 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11272 }
11273 
11274 
11275 /*
11276  *    Function: sd_xbuf_init
11277  *
11278  * Description: Prepare the given sd_xbuf struct for use.
11279  *
11280  *   Arguments: un - ptr to softstate
11281  *		bp - ptr to associated buf(9S)
11282  *		xp - ptr to associated sd_xbuf
11283  *		chain_type - IO chain type to use:
11284  *			SD_CHAIN_NULL
11285  *			SD_CHAIN_BUFIO
11286  *			SD_CHAIN_USCSI
11287  *			SD_CHAIN_DIRECT
11288  *			SD_CHAIN_DIRECT_PRIORITY
11289  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11290  *			initialization; may be NULL if none.
11291  *
11292  *     Context: Kernel thread context
11293  */
11294 
11295 static void
11296 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11297 	uchar_t chain_type, void *pktinfop)
11298 {
11299 	int index;
11300 
11301 	ASSERT(un != NULL);
11302 	ASSERT(bp != NULL);
11303 	ASSERT(xp != NULL);
11304 
11305 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
11306 	    bp, chain_type);
11307 
11308 	xp->xb_un	= un;
11309 	xp->xb_pktp	= NULL;
11310 	xp->xb_pktinfo	= pktinfop;
11311 	xp->xb_private	= bp->b_private;
11312 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
11313 
11314 	/*
11315 	 * Set up the iostart and iodone chain indexes in the xbuf, based
11316 	 * upon the specified chain type to use.
11317 	 */
11318 	switch (chain_type) {
11319 	case SD_CHAIN_NULL:
11320 		/*
11321 		 * Fall thru to just use the values for the buf type, even
11322 		 * tho for the NULL chain these values will never be used.
11323 		 */
11324 		/* FALLTHRU */
11325 	case SD_CHAIN_BUFIO:
11326 		index = un->un_buf_chain_type;
11327 		break;
11328 	case SD_CHAIN_USCSI:
11329 		index = un->un_uscsi_chain_type;
11330 		break;
11331 	case SD_CHAIN_DIRECT:
11332 		index = un->un_direct_chain_type;
11333 		break;
11334 	case SD_CHAIN_DIRECT_PRIORITY:
11335 		index = un->un_priority_chain_type;
11336 		break;
11337 	default:
11338 		/* We're really broken if we ever get here... */
11339 		panic("sd_xbuf_init: illegal chain type!");
11340 		/*NOTREACHED*/
11341 	}
11342 
11343 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
11344 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
11345 
11346 	/*
11347 	 * It might be a bit easier to simply bzero the entire xbuf above,
11348 	 * but it turns out that since we init a fair number of members anyway,
11349 	 * we save a fair number cycles by doing explicit assignment of zero.
11350 	 */
11351 	xp->xb_pkt_flags	= 0;
11352 	xp->xb_dma_resid	= 0;
11353 	xp->xb_retry_count	= 0;
11354 	xp->xb_victim_retry_count = 0;
11355 	xp->xb_ua_retry_count	= 0;
11356 	xp->xb_sense_bp		= NULL;
11357 	xp->xb_sense_status	= 0;
11358 	xp->xb_sense_state	= 0;
11359 	xp->xb_sense_resid	= 0;
11360 
11361 	bp->b_private	= xp;
11362 	bp->b_flags	&= ~(B_DONE | B_ERROR);
11363 	bp->b_resid	= 0;
11364 	bp->av_forw	= NULL;
11365 	bp->av_back	= NULL;
11366 	bioerror(bp, 0);
11367 
11368 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
11369 }
11370 
11371 
11372 /*
11373  *    Function: sd_uscsi_strategy
11374  *
11375  * Description: Wrapper for calling into the USCSI chain via physio(9F)
11376  *
11377  *   Arguments: bp - buf struct ptr
11378  *
11379  * Return Code: Always returns 0
11380  *
11381  *     Context: Kernel thread context
11382  */
11383 
11384 static int
11385 sd_uscsi_strategy(struct buf *bp)
11386 {
11387 	struct sd_lun		*un;
11388 	struct sd_uscsi_info	*uip;
11389 	struct sd_xbuf		*xp;
11390 	uchar_t			chain_type;
11391 
11392 	ASSERT(bp != NULL);
11393 
11394 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11395 	if (un == NULL) {
11396 		bioerror(bp, EIO);
11397 		bp->b_resid = bp->b_bcount;
11398 		biodone(bp);
11399 		return (0);
11400 	}
11401 
11402 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11403 
11404 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
11405 
11406 	mutex_enter(SD_MUTEX(un));
11407 	/*
11408 	 * atapi: Since we are running the CD for now in PIO mode we need to
11409 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11410 	 * the HBA's init_pkt routine.
11411 	 */
11412 	if (un->un_f_cfg_is_atapi == TRUE) {
11413 		mutex_exit(SD_MUTEX(un));
11414 		bp_mapin(bp);
11415 		mutex_enter(SD_MUTEX(un));
11416 	}
11417 	un->un_ncmds_in_driver++;
11418 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
11419 	    un->un_ncmds_in_driver);
11420 	mutex_exit(SD_MUTEX(un));
11421 
11422 	/*
11423 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
11424 	 */
11425 	ASSERT(bp->b_private != NULL);
11426 	uip = (struct sd_uscsi_info *)bp->b_private;
11427 
11428 	switch (uip->ui_flags) {
11429 	case SD_PATH_DIRECT:
11430 		chain_type = SD_CHAIN_DIRECT;
11431 		break;
11432 	case SD_PATH_DIRECT_PRIORITY:
11433 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
11434 		break;
11435 	default:
11436 		chain_type = SD_CHAIN_USCSI;
11437 		break;
11438 	}
11439 
11440 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
11441 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
11442 
11443 	/* Use the index obtained within xbuf_init */
11444 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
11445 
11446 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
11447 
11448 	return (0);
11449 }
11450 
11451 
11452 /*
11453  * These routines perform raw i/o operations.
11454  */
11455 /*ARGSUSED*/
11456 static void
11457 sduscsimin(struct buf *bp)
11458 {
11459 	/*
11460 	 * do not break up because the CDB count would then
11461 	 * be incorrect and data underruns would result (incomplete
11462 	 * read/writes which would be retried and then failed, see
11463 	 * sdintr().
11464 	 */
11465 }
11466 
11467 
11468 
11469 /*
11470  *    Function: sd_send_scsi_cmd
11471  *
11472  * Description: Runs a USCSI command for user (when called thru sdioctl),
11473  *		or for the driver
11474  *
11475  *   Arguments: dev - the dev_t for the device
11476  *		incmd - ptr to a valid uscsi_cmd struct
11477  *		cdbspace - UIO_USERSPACE or UIO_SYSSPACE
11478  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11479  *		rqbufspace - UIO_USERSPACE or UIO_SYSSPACE
11480  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11481  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11482  *			to use the USCSI "direct" chain and bypass the normal
11483  *			command waitq.
11484  *
11485  * Return Code: 0 -  successful completion of the given command
11486  *		EIO - scsi_reset() failed, or see biowait()/physio() codes.
11487  *		ENXIO  - soft state not found for specified dev
11488  *		EINVAL
11489  *		EFAULT - copyin/copyout error
11490  *		return code of biowait(9F) or physio(9F):
11491  *			EIO - IO error, caller may check incmd->uscsi_status
11492  *			ENXIO
11493  *			EACCES - reservation conflict
11494  *
11495  *     Context: Waits for command to complete. Can sleep.
11496  */
11497 
11498 static int
11499 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd,
11500 	enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace,
11501 	int path_flag)
11502 {
11503 	struct sd_uscsi_info	*uip;
11504 	struct uscsi_cmd	*uscmd;
11505 	struct sd_lun	*un;
11506 	struct buf	*bp;
11507 	int	rval;
11508 	int	flags;
11509 
11510 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
11511 	if (un == NULL) {
11512 		return (ENXIO);
11513 	}
11514 
11515 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11516 
11517 #ifdef SDDEBUG
11518 	switch (dataspace) {
11519 	case UIO_USERSPACE:
11520 		SD_TRACE(SD_LOG_IO, un,
11521 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un);
11522 		break;
11523 	case UIO_SYSSPACE:
11524 		SD_TRACE(SD_LOG_IO, un,
11525 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un);
11526 		break;
11527 	default:
11528 		SD_TRACE(SD_LOG_IO, un,
11529 		    "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un);
11530 		break;
11531 	}
11532 #endif
11533 
11534 	/*
11535 	 * Perform resets directly; no need to generate a command to do it.
11536 	 */
11537 	if (incmd->uscsi_flags & (USCSI_RESET | USCSI_RESET_ALL)) {
11538 		flags = ((incmd->uscsi_flags & USCSI_RESET_ALL) != 0) ?
11539 		    RESET_ALL : RESET_TARGET;
11540 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: Issuing reset\n");
11541 		if (scsi_reset(SD_ADDRESS(un), flags) == 0) {
11542 			/* Reset attempt was unsuccessful */
11543 			SD_TRACE(SD_LOG_IO, un,
11544 			    "sd_send_scsi_cmd: reset: failure\n");
11545 			return (EIO);
11546 		}
11547 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: reset: success\n");
11548 		return (0);
11549 	}
11550 
11551 	/* Perfunctory sanity check... */
11552 	if (incmd->uscsi_cdblen <= 0) {
11553 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11554 		    "invalid uscsi_cdblen, returning EINVAL\n");
11555 		return (EINVAL);
11556 	}
11557 
11558 	/*
11559 	 * In order to not worry about where the uscsi structure came from
11560 	 * (or where the cdb it points to came from) we're going to make
11561 	 * kmem_alloc'd copies of them here. This will also allow reference
11562 	 * to the data they contain long after this process has gone to
11563 	 * sleep and its kernel stack has been unmapped, etc.
11564 	 *
11565 	 * First get some memory for the uscsi_cmd struct and copy the
11566 	 * contents of the given uscsi_cmd struct into it.
11567 	 */
11568 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
11569 	bcopy(incmd, uscmd, sizeof (struct uscsi_cmd));
11570 
11571 	SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: uscsi_cmd",
11572 	    (uchar_t *)uscmd, sizeof (struct uscsi_cmd), SD_LOG_HEX);
11573 
11574 	/*
11575 	 * Now get some space for the CDB, and copy the given CDB into
11576 	 * it. Use ddi_copyin() in case the data is in user space.
11577 	 */
11578 	uscmd->uscsi_cdb = kmem_zalloc((size_t)incmd->uscsi_cdblen, KM_SLEEP);
11579 	flags = (cdbspace == UIO_SYSSPACE) ? FKIOCTL : 0;
11580 	if (ddi_copyin(incmd->uscsi_cdb, uscmd->uscsi_cdb,
11581 	    (uint_t)incmd->uscsi_cdblen, flags) != 0) {
11582 		kmem_free(uscmd->uscsi_cdb, (size_t)incmd->uscsi_cdblen);
11583 		kmem_free(uscmd, sizeof (struct uscsi_cmd));
11584 		return (EFAULT);
11585 	}
11586 
11587 	SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: CDB",
11588 	    (uchar_t *)uscmd->uscsi_cdb, incmd->uscsi_cdblen, SD_LOG_HEX);
11589 
11590 	bp = getrbuf(KM_SLEEP);
11591 
11592 	/*
11593 	 * Allocate an sd_uscsi_info struct and fill it with the info
11594 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
11595 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
11596 	 * since we allocate the buf here in this function, we do not
11597 	 * need to preserve the prior contents of b_private.
11598 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
11599 	 */
11600 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
11601 	uip->ui_flags = path_flag;
11602 	uip->ui_cmdp  = uscmd;
11603 	bp->b_private = uip;
11604 
11605 	/*
11606 	 * Initialize Request Sense buffering, if requested.
11607 	 */
11608 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
11609 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
11610 		/*
11611 		 * Here uscmd->uscsi_rqbuf currently points to the caller's
11612 		 * buffer, but we replace this with a kernel buffer that
11613 		 * we allocate to use with the sense data. The sense data
11614 		 * (if present) gets copied into this new buffer before the
11615 		 * command is completed.  Then we copy the sense data from
11616 		 * our allocated buf into the caller's buffer below. Note
11617 		 * that incmd->uscsi_rqbuf and incmd->uscsi_rqlen are used
11618 		 * below to perform the copy back to the caller's buf.
11619 		 */
11620 		uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
11621 		if (rqbufspace == UIO_USERSPACE) {
11622 			uscmd->uscsi_rqlen   = SENSE_LENGTH;
11623 			uscmd->uscsi_rqresid = SENSE_LENGTH;
11624 		} else {
11625 			uchar_t rlen = min(SENSE_LENGTH, uscmd->uscsi_rqlen);
11626 			uscmd->uscsi_rqlen   = rlen;
11627 			uscmd->uscsi_rqresid = rlen;
11628 		}
11629 	} else {
11630 		uscmd->uscsi_rqbuf = NULL;
11631 		uscmd->uscsi_rqlen   = 0;
11632 		uscmd->uscsi_rqresid = 0;
11633 	}
11634 
11635 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: rqbuf:0x%p  rqlen:%d\n",
11636 	    uscmd->uscsi_rqbuf, uscmd->uscsi_rqlen);
11637 
11638 	if (un->un_f_is_fibre == FALSE) {
11639 		/*
11640 		 * Force asynchronous mode, if necessary.  Doing this here
11641 		 * has the unfortunate effect of running other queued
11642 		 * commands async also, but since the main purpose of this
11643 		 * capability is downloading new drive firmware, we can
11644 		 * probably live with it.
11645 		 */
11646 		if ((uscmd->uscsi_flags & USCSI_ASYNC) != 0) {
11647 			if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1)
11648 				== 1) {
11649 				if (scsi_ifsetcap(SD_ADDRESS(un),
11650 					    "synchronous", 0, 1) == 1) {
11651 					SD_TRACE(SD_LOG_IO, un,
11652 					"sd_send_scsi_cmd: forced async ok\n");
11653 				} else {
11654 					SD_TRACE(SD_LOG_IO, un,
11655 					"sd_send_scsi_cmd:\
11656 					forced async failed\n");
11657 					rval = EINVAL;
11658 					goto done;
11659 				}
11660 			}
11661 		}
11662 
11663 		/*
11664 		 * Re-enable synchronous mode, if requested
11665 		 */
11666 		if (uscmd->uscsi_flags & USCSI_SYNC) {
11667 			if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1)
11668 				== 0) {
11669 				int i = scsi_ifsetcap(SD_ADDRESS(un),
11670 						"synchronous", 1, 1);
11671 				SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11672 					"re-enabled sync %s\n",
11673 					(i == 1) ? "ok" : "failed");
11674 			}
11675 		}
11676 	}
11677 
11678 	/*
11679 	 * Commands sent with priority are intended for error recovery
11680 	 * situations, and do not have retries performed.
11681 	 */
11682 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
11683 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
11684 	}
11685 
11686 	/*
11687 	 * If we're going to do actual I/O, let physio do all the right things
11688 	 */
11689 	if (uscmd->uscsi_buflen != 0) {
11690 		struct iovec	aiov;
11691 		struct uio	auio;
11692 		struct uio	*uio = &auio;
11693 
11694 		bzero(&auio, sizeof (struct uio));
11695 		bzero(&aiov, sizeof (struct iovec));
11696 		aiov.iov_base = uscmd->uscsi_bufaddr;
11697 		aiov.iov_len  = uscmd->uscsi_buflen;
11698 		uio->uio_iov  = &aiov;
11699 
11700 		uio->uio_iovcnt  = 1;
11701 		uio->uio_resid   = uscmd->uscsi_buflen;
11702 		uio->uio_segflg  = dataspace;
11703 
11704 		/*
11705 		 * physio() will block here until the command completes....
11706 		 */
11707 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling physio.\n");
11708 
11709 		rval = physio(sd_uscsi_strategy, bp, dev,
11710 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE),
11711 		    sduscsimin, uio);
11712 
11713 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11714 		    "returned from physio with 0x%x\n", rval);
11715 
11716 	} else {
11717 		/*
11718 		 * We have to mimic what physio would do here! Argh!
11719 		 */
11720 		bp->b_flags  = B_BUSY |
11721 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE);
11722 		bp->b_edev   = dev;
11723 		bp->b_dev    = cmpdev(dev);	/* maybe unnecessary? */
11724 		bp->b_bcount = 0;
11725 		bp->b_blkno  = 0;
11726 
11727 		SD_TRACE(SD_LOG_IO, un,
11728 		    "sd_send_scsi_cmd: calling sd_uscsi_strategy...\n");
11729 
11730 		(void) sd_uscsi_strategy(bp);
11731 
11732 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling biowait\n");
11733 
11734 		rval = biowait(bp);
11735 
11736 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11737 		    "returned from  biowait with 0x%x\n", rval);
11738 	}
11739 
11740 done:
11741 
11742 #ifdef SDDEBUG
11743 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11744 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
11745 	    uscmd->uscsi_status, uscmd->uscsi_resid);
11746 	if (uscmd->uscsi_bufaddr != NULL) {
11747 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11748 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
11749 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
11750 		if (dataspace == UIO_SYSSPACE) {
11751 			SD_DUMP_MEMORY(un, SD_LOG_IO,
11752 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
11753 			    uscmd->uscsi_buflen, SD_LOG_HEX);
11754 		}
11755 	}
11756 #endif
11757 
11758 	/*
11759 	 * Get the status and residual to return to the caller.
11760 	 */
11761 	incmd->uscsi_status = uscmd->uscsi_status;
11762 	incmd->uscsi_resid  = uscmd->uscsi_resid;
11763 
11764 	/*
11765 	 * If the caller wants sense data, copy back whatever sense data
11766 	 * we may have gotten, and update the relevant rqsense info.
11767 	 */
11768 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
11769 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
11770 
11771 		int rqlen = uscmd->uscsi_rqlen - uscmd->uscsi_rqresid;
11772 		rqlen = min(((int)incmd->uscsi_rqlen), rqlen);
11773 
11774 		/* Update the Request Sense status and resid */
11775 		incmd->uscsi_rqresid  = incmd->uscsi_rqlen - rqlen;
11776 		incmd->uscsi_rqstatus = uscmd->uscsi_rqstatus;
11777 
11778 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11779 		    "uscsi_rqstatus: 0x%02x  uscsi_rqresid:0x%x\n",
11780 		    incmd->uscsi_rqstatus, incmd->uscsi_rqresid);
11781 
11782 		/* Copy out the sense data for user processes */
11783 		if ((incmd->uscsi_rqbuf != NULL) && (rqlen != 0)) {
11784 			int flags =
11785 			    (rqbufspace == UIO_USERSPACE) ? 0 : FKIOCTL;
11786 			if (ddi_copyout(uscmd->uscsi_rqbuf, incmd->uscsi_rqbuf,
11787 			    rqlen, flags) != 0) {
11788 				rval = EFAULT;
11789 			}
11790 			/*
11791 			 * Note: Can't touch incmd->uscsi_rqbuf so use
11792 			 * uscmd->uscsi_rqbuf instead. They're the same.
11793 			 */
11794 			SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11795 			    "incmd->uscsi_rqbuf: 0x%p  rqlen:%d\n",
11796 			    incmd->uscsi_rqbuf, rqlen);
11797 			SD_DUMP_MEMORY(un, SD_LOG_IO, "rq",
11798 			    (uchar_t *)uscmd->uscsi_rqbuf, rqlen, SD_LOG_HEX);
11799 		}
11800 	}
11801 
11802 	/*
11803 	 * Free allocated resources and return; mapout the buf in case it was
11804 	 * mapped in by a lower layer.
11805 	 */
11806 	bp_mapout(bp);
11807 	freerbuf(bp);
11808 	kmem_free(uip, sizeof (struct sd_uscsi_info));
11809 	if (uscmd->uscsi_rqbuf != NULL) {
11810 		kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
11811 	}
11812 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
11813 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
11814 
11815 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: exit\n");
11816 
11817 	return (rval);
11818 }
11819 
11820 
11821 /*
11822  *    Function: sd_buf_iodone
11823  *
11824  * Description: Frees the sd_xbuf & returns the buf to its originator.
11825  *
11826  *     Context: May be called from interrupt context.
11827  */
11828 /* ARGSUSED */
11829 static void
11830 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
11831 {
11832 	struct sd_xbuf *xp;
11833 
11834 	ASSERT(un != NULL);
11835 	ASSERT(bp != NULL);
11836 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11837 
11838 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
11839 
11840 	xp = SD_GET_XBUF(bp);
11841 	ASSERT(xp != NULL);
11842 
11843 	mutex_enter(SD_MUTEX(un));
11844 
11845 	/*
11846 	 * Grab time when the cmd completed.
11847 	 * This is used for determining if the system has been
11848 	 * idle long enough to make it idle to the PM framework.
11849 	 * This is for lowering the overhead, and therefore improving
11850 	 * performance per I/O operation.
11851 	 */
11852 	un->un_pm_idle_time = ddi_get_time();
11853 
11854 	un->un_ncmds_in_driver--;
11855 	ASSERT(un->un_ncmds_in_driver >= 0);
11856 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
11857 	    un->un_ncmds_in_driver);
11858 
11859 	mutex_exit(SD_MUTEX(un));
11860 
11861 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
11862 	biodone(bp);				/* bp is gone after this */
11863 
11864 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
11865 }
11866 
11867 
11868 /*
11869  *    Function: sd_uscsi_iodone
11870  *
11871  * Description: Frees the sd_xbuf & returns the buf to its originator.
11872  *
11873  *     Context: May be called from interrupt context.
11874  */
11875 /* ARGSUSED */
11876 static void
11877 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
11878 {
11879 	struct sd_xbuf *xp;
11880 
11881 	ASSERT(un != NULL);
11882 	ASSERT(bp != NULL);
11883 
11884 	xp = SD_GET_XBUF(bp);
11885 	ASSERT(xp != NULL);
11886 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11887 
11888 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
11889 
11890 	mutex_enter(SD_MUTEX(un));
11891 
11892 	/*
11893 	 * Grab time when the cmd completed.
11894 	 * This is used for determining if the system has been
11895 	 * idle long enough to make it idle to the PM framework.
11896 	 * This is for lowering the overhead, and therefore improving
11897 	 * performance per I/O operation.
11898 	 */
11899 	un->un_pm_idle_time = ddi_get_time();
11900 
11901 	un->un_ncmds_in_driver--;
11902 	ASSERT(un->un_ncmds_in_driver >= 0);
11903 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
11904 	    un->un_ncmds_in_driver);
11905 
11906 	mutex_exit(SD_MUTEX(un));
11907 
11908 	kmem_free(xp, sizeof (struct sd_xbuf));
11909 	biodone(bp);
11910 
11911 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
11912 }
11913 
11914 
11915 /*
11916  *    Function: sd_mapblockaddr_iostart
11917  *
11918  * Description: Verify request lies withing the partition limits for
11919  *		the indicated minor device.  Issue "overrun" buf if
11920  *		request would exceed partition range.  Converts
11921  *		partition-relative block address to absolute.
11922  *
11923  *     Context: Can sleep
11924  *
11925  *      Issues: This follows what the old code did, in terms of accessing
11926  *		some of the partition info in the unit struct without holding
11927  *		the mutext.  This is a general issue, if the partition info
11928  *		can be altered while IO is in progress... as soon as we send
11929  *		a buf, its partitioning can be invalid before it gets to the
11930  *		device.  Probably the right fix is to move partitioning out
11931  *		of the driver entirely.
11932  */
11933 
11934 static void
11935 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
11936 {
11937 	daddr_t	nblocks;	/* #blocks in the given partition */
11938 	daddr_t	blocknum;	/* Block number specified by the buf */
11939 	size_t	requested_nblocks;
11940 	size_t	available_nblocks;
11941 	int	partition;
11942 	diskaddr_t	partition_offset;
11943 	struct sd_xbuf *xp;
11944 
11945 
11946 	ASSERT(un != NULL);
11947 	ASSERT(bp != NULL);
11948 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11949 
11950 	SD_TRACE(SD_LOG_IO_PARTITION, un,
11951 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
11952 
11953 	xp = SD_GET_XBUF(bp);
11954 	ASSERT(xp != NULL);
11955 
11956 	/*
11957 	 * If the geometry is not indicated as valid, attempt to access
11958 	 * the unit & verify the geometry/label. This can be the case for
11959 	 * removable-media devices, of if the device was opened in
11960 	 * NDELAY/NONBLOCK mode.
11961 	 */
11962 	if ((un->un_f_geometry_is_valid != TRUE) &&
11963 	    (sd_ready_and_valid(un) != SD_READY_VALID)) {
11964 		/*
11965 		 * For removable devices it is possible to start an I/O
11966 		 * without a media by opening the device in nodelay mode.
11967 		 * Also for writable CDs there can be many scenarios where
11968 		 * there is no geometry yet but volume manager is trying to
11969 		 * issue a read() just because it can see TOC on the CD. So
11970 		 * do not print a message for removables.
11971 		 */
11972 		if (!ISREMOVABLE(un)) {
11973 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
11974 			    "i/o to invalid geometry\n");
11975 		}
11976 		bioerror(bp, EIO);
11977 		bp->b_resid = bp->b_bcount;
11978 		SD_BEGIN_IODONE(index, un, bp);
11979 		return;
11980 	}
11981 
11982 	partition = SDPART(bp->b_edev);
11983 
11984 	/* #blocks in partition */
11985 	nblocks = un->un_map[partition].dkl_nblk;    /* #blocks in partition */
11986 
11987 	/* Use of a local variable potentially improves performance slightly */
11988 	partition_offset = un->un_offset[partition];
11989 
11990 	/*
11991 	 * blocknum is the starting block number of the request. At this
11992 	 * point it is still relative to the start of the minor device.
11993 	 */
11994 	blocknum = xp->xb_blkno;
11995 
11996 	/*
11997 	 * Legacy: If the starting block number is one past the last block
11998 	 * in the partition, do not set B_ERROR in the buf.
11999 	 */
12000 	if (blocknum == nblocks)  {
12001 		goto error_exit;
12002 	}
12003 
12004 	/*
12005 	 * Confirm that the first block of the request lies within the
12006 	 * partition limits. Also the requested number of bytes must be
12007 	 * a multiple of the system block size.
12008 	 */
12009 	if ((blocknum < 0) || (blocknum >= nblocks) ||
12010 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
12011 		bp->b_flags |= B_ERROR;
12012 		goto error_exit;
12013 	}
12014 
12015 	/*
12016 	 * If the requsted # blocks exceeds the available # blocks, that
12017 	 * is an overrun of the partition.
12018 	 */
12019 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
12020 	available_nblocks = (size_t)(nblocks - blocknum);
12021 	ASSERT(nblocks >= blocknum);
12022 
12023 	if (requested_nblocks > available_nblocks) {
12024 		/*
12025 		 * Allocate an "overrun" buf to allow the request to proceed
12026 		 * for the amount of space available in the partition. The
12027 		 * amount not transferred will be added into the b_resid
12028 		 * when the operation is complete. The overrun buf
12029 		 * replaces the original buf here, and the original buf
12030 		 * is saved inside the overrun buf, for later use.
12031 		 */
12032 		size_t resid = SD_SYSBLOCKS2BYTES(un,
12033 		    (offset_t)(requested_nblocks - available_nblocks));
12034 		size_t count = bp->b_bcount - resid;
12035 		/*
12036 		 * Note: count is an unsigned entity thus it'll NEVER
12037 		 * be less than 0 so ASSERT the original values are
12038 		 * correct.
12039 		 */
12040 		ASSERT(bp->b_bcount >= resid);
12041 
12042 		bp = sd_bioclone_alloc(bp, count, blocknum,
12043 			(int (*)(struct buf *)) sd_mapblockaddr_iodone);
12044 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12045 		ASSERT(xp != NULL);
12046 	}
12047 
12048 	/* At this point there should be no residual for this buf. */
12049 	ASSERT(bp->b_resid == 0);
12050 
12051 	/* Convert the block number to an absolute address. */
12052 	xp->xb_blkno += partition_offset;
12053 
12054 	SD_NEXT_IOSTART(index, un, bp);
12055 
12056 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12057 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12058 
12059 	return;
12060 
12061 error_exit:
12062 	bp->b_resid = bp->b_bcount;
12063 	SD_BEGIN_IODONE(index, un, bp);
12064 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12065 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12066 }
12067 
12068 
12069 /*
12070  *    Function: sd_mapblockaddr_iodone
12071  *
12072  * Description: Completion-side processing for partition management.
12073  *
12074  *     Context: May be called under interrupt context
12075  */
12076 
12077 static void
12078 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12079 {
12080 	/* int	partition; */	/* Not used, see below. */
12081 	ASSERT(un != NULL);
12082 	ASSERT(bp != NULL);
12083 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12084 
12085 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12086 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12087 
12088 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12089 		/*
12090 		 * We have an "overrun" buf to deal with...
12091 		 */
12092 		struct sd_xbuf	*xp;
12093 		struct buf	*obp;	/* ptr to the original buf */
12094 
12095 		xp = SD_GET_XBUF(bp);
12096 		ASSERT(xp != NULL);
12097 
12098 		/* Retrieve the pointer to the original buf */
12099 		obp = (struct buf *)xp->xb_private;
12100 		ASSERT(obp != NULL);
12101 
12102 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12103 		bioerror(obp, bp->b_error);
12104 
12105 		sd_bioclone_free(bp);
12106 
12107 		/*
12108 		 * Get back the original buf.
12109 		 * Note that since the restoration of xb_blkno below
12110 		 * was removed, the sd_xbuf is not needed.
12111 		 */
12112 		bp = obp;
12113 		/*
12114 		 * xp = SD_GET_XBUF(bp);
12115 		 * ASSERT(xp != NULL);
12116 		 */
12117 	}
12118 
12119 	/*
12120 	 * Convert sd->xb_blkno back to a minor-device relative value.
12121 	 * Note: this has been commented out, as it is not needed in the
12122 	 * current implementation of the driver (ie, since this function
12123 	 * is at the top of the layering chains, so the info will be
12124 	 * discarded) and it is in the "hot" IO path.
12125 	 *
12126 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
12127 	 * xp->xb_blkno -= un->un_offset[partition];
12128 	 */
12129 
12130 	SD_NEXT_IODONE(index, un, bp);
12131 
12132 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12133 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12134 }
12135 
12136 
12137 /*
12138  *    Function: sd_mapblocksize_iostart
12139  *
12140  * Description: Convert between system block size (un->un_sys_blocksize)
12141  *		and target block size (un->un_tgt_blocksize).
12142  *
12143  *     Context: Can sleep to allocate resources.
12144  *
12145  * Assumptions: A higher layer has already performed any partition validation,
12146  *		and converted the xp->xb_blkno to an absolute value relative
12147  *		to the start of the device.
12148  *
12149  *		It is also assumed that the higher layer has implemented
12150  *		an "overrun" mechanism for the case where the request would
12151  *		read/write beyond the end of a partition.  In this case we
12152  *		assume (and ASSERT) that bp->b_resid == 0.
12153  *
12154  *		Note: The implementation for this routine assumes the target
12155  *		block size remains constant between allocation and transport.
12156  */
12157 
12158 static void
12159 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12160 {
12161 	struct sd_mapblocksize_info	*bsp;
12162 	struct sd_xbuf			*xp;
12163 	offset_t first_byte;
12164 	daddr_t	start_block, end_block;
12165 	daddr_t	request_bytes;
12166 	ushort_t is_aligned = FALSE;
12167 
12168 	ASSERT(un != NULL);
12169 	ASSERT(bp != NULL);
12170 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12171 	ASSERT(bp->b_resid == 0);
12172 
12173 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12174 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12175 
12176 	/*
12177 	 * For a non-writable CD, a write request is an error
12178 	 */
12179 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12180 	    (un->un_f_mmc_writable_media == FALSE)) {
12181 		bioerror(bp, EIO);
12182 		bp->b_resid = bp->b_bcount;
12183 		SD_BEGIN_IODONE(index, un, bp);
12184 		return;
12185 	}
12186 
12187 	/*
12188 	 * We do not need a shadow buf if the device is using
12189 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12190 	 * In this case there is no layer-private data block allocated.
12191 	 */
12192 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12193 	    (bp->b_bcount == 0)) {
12194 		goto done;
12195 	}
12196 
12197 #if defined(__i386) || defined(__amd64)
12198 	/* We do not support non-block-aligned transfers for ROD devices */
12199 	ASSERT(!ISROD(un));
12200 #endif
12201 
12202 	xp = SD_GET_XBUF(bp);
12203 	ASSERT(xp != NULL);
12204 
12205 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12206 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12207 	    un->un_tgt_blocksize, un->un_sys_blocksize);
12208 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12209 	    "request start block:0x%x\n", xp->xb_blkno);
12210 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12211 	    "request len:0x%x\n", bp->b_bcount);
12212 
12213 	/*
12214 	 * Allocate the layer-private data area for the mapblocksize layer.
12215 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12216 	 * struct to store the pointer to their layer-private data block, but
12217 	 * each layer also has the responsibility of restoring the prior
12218 	 * contents of xb_private before returning the buf/xbuf to the
12219 	 * higher layer that sent it.
12220 	 *
12221 	 * Here we save the prior contents of xp->xb_private into the
12222 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12223 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12224 	 * the layer-private area and returning the buf/xbuf to the layer
12225 	 * that sent it.
12226 	 *
12227 	 * Note that here we use kmem_zalloc for the allocation as there are
12228 	 * parts of the mapblocksize code that expect certain fields to be
12229 	 * zero unless explicitly set to a required value.
12230 	 */
12231 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12232 	bsp->mbs_oprivate = xp->xb_private;
12233 	xp->xb_private = bsp;
12234 
12235 	/*
12236 	 * This treats the data on the disk (target) as an array of bytes.
12237 	 * first_byte is the byte offset, from the beginning of the device,
12238 	 * to the location of the request. This is converted from a
12239 	 * un->un_sys_blocksize block address to a byte offset, and then back
12240 	 * to a block address based upon a un->un_tgt_blocksize block size.
12241 	 *
12242 	 * xp->xb_blkno should be absolute upon entry into this function,
12243 	 * but, but it is based upon partitions that use the "system"
12244 	 * block size. It must be adjusted to reflect the block size of
12245 	 * the target.
12246 	 *
12247 	 * Note that end_block is actually the block that follows the last
12248 	 * block of the request, but that's what is needed for the computation.
12249 	 */
12250 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12251 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12252 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
12253 	    un->un_tgt_blocksize;
12254 
12255 	/* request_bytes is rounded up to a multiple of the target block size */
12256 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12257 
12258 	/*
12259 	 * See if the starting address of the request and the request
12260 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12261 	 * then we do not need to allocate a shadow buf to handle the request.
12262 	 */
12263 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
12264 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12265 		is_aligned = TRUE;
12266 	}
12267 
12268 	if ((bp->b_flags & B_READ) == 0) {
12269 		/*
12270 		 * Lock the range for a write operation. An aligned request is
12271 		 * considered a simple write; otherwise the request must be a
12272 		 * read-modify-write.
12273 		 */
12274 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
12275 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
12276 	}
12277 
12278 	/*
12279 	 * Alloc a shadow buf if the request is not aligned. Also, this is
12280 	 * where the READ command is generated for a read-modify-write. (The
12281 	 * write phase is deferred until after the read completes.)
12282 	 */
12283 	if (is_aligned == FALSE) {
12284 
12285 		struct sd_mapblocksize_info	*shadow_bsp;
12286 		struct sd_xbuf	*shadow_xp;
12287 		struct buf	*shadow_bp;
12288 
12289 		/*
12290 		 * Allocate the shadow buf and it associated xbuf. Note that
12291 		 * after this call the xb_blkno value in both the original
12292 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
12293 		 * same: absolute relative to the start of the device, and
12294 		 * adjusted for the target block size. The b_blkno in the
12295 		 * shadow buf will also be set to this value. We should never
12296 		 * change b_blkno in the original bp however.
12297 		 *
12298 		 * Note also that the shadow buf will always need to be a
12299 		 * READ command, regardless of whether the incoming command
12300 		 * is a READ or a WRITE.
12301 		 */
12302 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
12303 		    xp->xb_blkno,
12304 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
12305 
12306 		shadow_xp = SD_GET_XBUF(shadow_bp);
12307 
12308 		/*
12309 		 * Allocate the layer-private data for the shadow buf.
12310 		 * (No need to preserve xb_private in the shadow xbuf.)
12311 		 */
12312 		shadow_xp->xb_private = shadow_bsp =
12313 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12314 
12315 		/*
12316 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
12317 		 * to figure out where the start of the user data is (based upon
12318 		 * the system block size) in the data returned by the READ
12319 		 * command (which will be based upon the target blocksize). Note
12320 		 * that this is only really used if the request is unaligned.
12321 		 */
12322 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
12323 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
12324 		ASSERT((bsp->mbs_copy_offset >= 0) &&
12325 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
12326 
12327 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
12328 
12329 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
12330 
12331 		/* Transfer the wmap (if any) to the shadow buf */
12332 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
12333 		bsp->mbs_wmp = NULL;
12334 
12335 		/*
12336 		 * The shadow buf goes on from here in place of the
12337 		 * original buf.
12338 		 */
12339 		shadow_bsp->mbs_orig_bp = bp;
12340 		bp = shadow_bp;
12341 	}
12342 
12343 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12344 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
12345 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12346 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
12347 	    request_bytes);
12348 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12349 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
12350 
12351 done:
12352 	SD_NEXT_IOSTART(index, un, bp);
12353 
12354 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12355 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
12356 }
12357 
12358 
12359 /*
12360  *    Function: sd_mapblocksize_iodone
12361  *
12362  * Description: Completion side processing for block-size mapping.
12363  *
12364  *     Context: May be called under interrupt context
12365  */
12366 
12367 static void
12368 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
12369 {
12370 	struct sd_mapblocksize_info	*bsp;
12371 	struct sd_xbuf	*xp;
12372 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
12373 	struct buf	*orig_bp;	/* ptr to the original buf */
12374 	offset_t	shadow_end;
12375 	offset_t	request_end;
12376 	offset_t	shadow_start;
12377 	ssize_t		copy_offset;
12378 	size_t		copy_length;
12379 	size_t		shortfall;
12380 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
12381 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
12382 
12383 	ASSERT(un != NULL);
12384 	ASSERT(bp != NULL);
12385 
12386 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12387 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
12388 
12389 	/*
12390 	 * There is no shadow buf or layer-private data if the target is
12391 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
12392 	 */
12393 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12394 	    (bp->b_bcount == 0)) {
12395 		goto exit;
12396 	}
12397 
12398 	xp = SD_GET_XBUF(bp);
12399 	ASSERT(xp != NULL);
12400 
12401 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
12402 	bsp = xp->xb_private;
12403 
12404 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
12405 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
12406 
12407 	if (is_write) {
12408 		/*
12409 		 * For a WRITE request we must free up the block range that
12410 		 * we have locked up.  This holds regardless of whether this is
12411 		 * an aligned write request or a read-modify-write request.
12412 		 */
12413 		sd_range_unlock(un, bsp->mbs_wmp);
12414 		bsp->mbs_wmp = NULL;
12415 	}
12416 
12417 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
12418 		/*
12419 		 * An aligned read or write command will have no shadow buf;
12420 		 * there is not much else to do with it.
12421 		 */
12422 		goto done;
12423 	}
12424 
12425 	orig_bp = bsp->mbs_orig_bp;
12426 	ASSERT(orig_bp != NULL);
12427 	orig_xp = SD_GET_XBUF(orig_bp);
12428 	ASSERT(orig_xp != NULL);
12429 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12430 
12431 	if (!is_write && has_wmap) {
12432 		/*
12433 		 * A READ with a wmap means this is the READ phase of a
12434 		 * read-modify-write. If an error occurred on the READ then
12435 		 * we do not proceed with the WRITE phase or copy any data.
12436 		 * Just release the write maps and return with an error.
12437 		 */
12438 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
12439 			orig_bp->b_resid = orig_bp->b_bcount;
12440 			bioerror(orig_bp, bp->b_error);
12441 			sd_range_unlock(un, bsp->mbs_wmp);
12442 			goto freebuf_done;
12443 		}
12444 	}
12445 
12446 	/*
12447 	 * Here is where we set up to copy the data from the shadow buf
12448 	 * into the space associated with the original buf.
12449 	 *
12450 	 * To deal with the conversion between block sizes, these
12451 	 * computations treat the data as an array of bytes, with the
12452 	 * first byte (byte 0) corresponding to the first byte in the
12453 	 * first block on the disk.
12454 	 */
12455 
12456 	/*
12457 	 * shadow_start and shadow_len indicate the location and size of
12458 	 * the data returned with the shadow IO request.
12459 	 */
12460 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12461 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
12462 
12463 	/*
12464 	 * copy_offset gives the offset (in bytes) from the start of the first
12465 	 * block of the READ request to the beginning of the data.  We retrieve
12466 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
12467 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
12468 	 * data to be copied (in bytes).
12469 	 */
12470 	copy_offset  = bsp->mbs_copy_offset;
12471 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
12472 	copy_length  = orig_bp->b_bcount;
12473 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
12474 
12475 	/*
12476 	 * Set up the resid and error fields of orig_bp as appropriate.
12477 	 */
12478 	if (shadow_end >= request_end) {
12479 		/* We got all the requested data; set resid to zero */
12480 		orig_bp->b_resid = 0;
12481 	} else {
12482 		/*
12483 		 * We failed to get enough data to fully satisfy the original
12484 		 * request. Just copy back whatever data we got and set
12485 		 * up the residual and error code as required.
12486 		 *
12487 		 * 'shortfall' is the amount by which the data received with the
12488 		 * shadow buf has "fallen short" of the requested amount.
12489 		 */
12490 		shortfall = (size_t)(request_end - shadow_end);
12491 
12492 		if (shortfall > orig_bp->b_bcount) {
12493 			/*
12494 			 * We did not get enough data to even partially
12495 			 * fulfill the original request.  The residual is
12496 			 * equal to the amount requested.
12497 			 */
12498 			orig_bp->b_resid = orig_bp->b_bcount;
12499 		} else {
12500 			/*
12501 			 * We did not get all the data that we requested
12502 			 * from the device, but we will try to return what
12503 			 * portion we did get.
12504 			 */
12505 			orig_bp->b_resid = shortfall;
12506 		}
12507 		ASSERT(copy_length >= orig_bp->b_resid);
12508 		copy_length  -= orig_bp->b_resid;
12509 	}
12510 
12511 	/* Propagate the error code from the shadow buf to the original buf */
12512 	bioerror(orig_bp, bp->b_error);
12513 
12514 	if (is_write) {
12515 		goto freebuf_done;	/* No data copying for a WRITE */
12516 	}
12517 
12518 	if (has_wmap) {
12519 		/*
12520 		 * This is a READ command from the READ phase of a
12521 		 * read-modify-write request. We have to copy the data given
12522 		 * by the user OVER the data returned by the READ command,
12523 		 * then convert the command from a READ to a WRITE and send
12524 		 * it back to the target.
12525 		 */
12526 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
12527 		    copy_length);
12528 
12529 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
12530 
12531 		/*
12532 		 * Dispatch the WRITE command to the taskq thread, which
12533 		 * will in turn send the command to the target. When the
12534 		 * WRITE command completes, we (sd_mapblocksize_iodone())
12535 		 * will get called again as part of the iodone chain
12536 		 * processing for it. Note that we will still be dealing
12537 		 * with the shadow buf at that point.
12538 		 */
12539 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
12540 		    KM_NOSLEEP) != 0) {
12541 			/*
12542 			 * Dispatch was successful so we are done. Return
12543 			 * without going any higher up the iodone chain. Do
12544 			 * not free up any layer-private data until after the
12545 			 * WRITE completes.
12546 			 */
12547 			return;
12548 		}
12549 
12550 		/*
12551 		 * Dispatch of the WRITE command failed; set up the error
12552 		 * condition and send this IO back up the iodone chain.
12553 		 */
12554 		bioerror(orig_bp, EIO);
12555 		orig_bp->b_resid = orig_bp->b_bcount;
12556 
12557 	} else {
12558 		/*
12559 		 * This is a regular READ request (ie, not a RMW). Copy the
12560 		 * data from the shadow buf into the original buf. The
12561 		 * copy_offset compensates for any "misalignment" between the
12562 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
12563 		 * original buf (with its un->un_sys_blocksize blocks).
12564 		 */
12565 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
12566 		    copy_length);
12567 	}
12568 
12569 freebuf_done:
12570 
12571 	/*
12572 	 * At this point we still have both the shadow buf AND the original
12573 	 * buf to deal with, as well as the layer-private data area in each.
12574 	 * Local variables are as follows:
12575 	 *
12576 	 * bp -- points to shadow buf
12577 	 * xp -- points to xbuf of shadow buf
12578 	 * bsp -- points to layer-private data area of shadow buf
12579 	 * orig_bp -- points to original buf
12580 	 *
12581 	 * First free the shadow buf and its associated xbuf, then free the
12582 	 * layer-private data area from the shadow buf. There is no need to
12583 	 * restore xb_private in the shadow xbuf.
12584 	 */
12585 	sd_shadow_buf_free(bp);
12586 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12587 
12588 	/*
12589 	 * Now update the local variables to point to the original buf, xbuf,
12590 	 * and layer-private area.
12591 	 */
12592 	bp = orig_bp;
12593 	xp = SD_GET_XBUF(bp);
12594 	ASSERT(xp != NULL);
12595 	ASSERT(xp == orig_xp);
12596 	bsp = xp->xb_private;
12597 	ASSERT(bsp != NULL);
12598 
12599 done:
12600 	/*
12601 	 * Restore xb_private to whatever it was set to by the next higher
12602 	 * layer in the chain, then free the layer-private data area.
12603 	 */
12604 	xp->xb_private = bsp->mbs_oprivate;
12605 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12606 
12607 exit:
12608 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
12609 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
12610 
12611 	SD_NEXT_IODONE(index, un, bp);
12612 }
12613 
12614 
12615 /*
12616  *    Function: sd_checksum_iostart
12617  *
12618  * Description: A stub function for a layer that's currently not used.
12619  *		For now just a placeholder.
12620  *
12621  *     Context: Kernel thread context
12622  */
12623 
12624 static void
12625 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
12626 {
12627 	ASSERT(un != NULL);
12628 	ASSERT(bp != NULL);
12629 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12630 	SD_NEXT_IOSTART(index, un, bp);
12631 }
12632 
12633 
12634 /*
12635  *    Function: sd_checksum_iodone
12636  *
12637  * Description: A stub function for a layer that's currently not used.
12638  *		For now just a placeholder.
12639  *
12640  *     Context: May be called under interrupt context
12641  */
12642 
12643 static void
12644 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
12645 {
12646 	ASSERT(un != NULL);
12647 	ASSERT(bp != NULL);
12648 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12649 	SD_NEXT_IODONE(index, un, bp);
12650 }
12651 
12652 
12653 /*
12654  *    Function: sd_checksum_uscsi_iostart
12655  *
12656  * Description: A stub function for a layer that's currently not used.
12657  *		For now just a placeholder.
12658  *
12659  *     Context: Kernel thread context
12660  */
12661 
12662 static void
12663 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
12664 {
12665 	ASSERT(un != NULL);
12666 	ASSERT(bp != NULL);
12667 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12668 	SD_NEXT_IOSTART(index, un, bp);
12669 }
12670 
12671 
12672 /*
12673  *    Function: sd_checksum_uscsi_iodone
12674  *
12675  * Description: A stub function for a layer that's currently not used.
12676  *		For now just a placeholder.
12677  *
12678  *     Context: May be called under interrupt context
12679  */
12680 
12681 static void
12682 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12683 {
12684 	ASSERT(un != NULL);
12685 	ASSERT(bp != NULL);
12686 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12687 	SD_NEXT_IODONE(index, un, bp);
12688 }
12689 
12690 
12691 /*
12692  *    Function: sd_pm_iostart
12693  *
12694  * Description: iostart-side routine for Power mangement.
12695  *
12696  *     Context: Kernel thread context
12697  */
12698 
12699 static void
12700 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
12701 {
12702 	ASSERT(un != NULL);
12703 	ASSERT(bp != NULL);
12704 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12705 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12706 
12707 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
12708 
12709 	if (sd_pm_entry(un) != DDI_SUCCESS) {
12710 		/*
12711 		 * Set up to return the failed buf back up the 'iodone'
12712 		 * side of the calling chain.
12713 		 */
12714 		bioerror(bp, EIO);
12715 		bp->b_resid = bp->b_bcount;
12716 
12717 		SD_BEGIN_IODONE(index, un, bp);
12718 
12719 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12720 		return;
12721 	}
12722 
12723 	SD_NEXT_IOSTART(index, un, bp);
12724 
12725 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12726 }
12727 
12728 
12729 /*
12730  *    Function: sd_pm_iodone
12731  *
12732  * Description: iodone-side routine for power mangement.
12733  *
12734  *     Context: may be called from interrupt context
12735  */
12736 
12737 static void
12738 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
12739 {
12740 	ASSERT(un != NULL);
12741 	ASSERT(bp != NULL);
12742 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12743 
12744 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
12745 
12746 	/*
12747 	 * After attach the following flag is only read, so don't
12748 	 * take the penalty of acquiring a mutex for it.
12749 	 */
12750 	if (un->un_f_pm_is_enabled == TRUE) {
12751 		sd_pm_exit(un);
12752 	}
12753 
12754 	SD_NEXT_IODONE(index, un, bp);
12755 
12756 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
12757 }
12758 
12759 
12760 /*
12761  *    Function: sd_core_iostart
12762  *
12763  * Description: Primary driver function for enqueuing buf(9S) structs from
12764  *		the system and initiating IO to the target device
12765  *
12766  *     Context: Kernel thread context. Can sleep.
12767  *
12768  * Assumptions:  - The given xp->xb_blkno is absolute
12769  *		   (ie, relative to the start of the device).
12770  *		 - The IO is to be done using the native blocksize of
12771  *		   the device, as specified in un->un_tgt_blocksize.
12772  */
12773 /* ARGSUSED */
12774 static void
12775 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
12776 {
12777 	struct sd_xbuf *xp;
12778 
12779 	ASSERT(un != NULL);
12780 	ASSERT(bp != NULL);
12781 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12782 	ASSERT(bp->b_resid == 0);
12783 
12784 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
12785 
12786 	xp = SD_GET_XBUF(bp);
12787 	ASSERT(xp != NULL);
12788 
12789 	mutex_enter(SD_MUTEX(un));
12790 
12791 	/*
12792 	 * If we are currently in the failfast state, fail any new IO
12793 	 * that has B_FAILFAST set, then return.
12794 	 */
12795 	if ((bp->b_flags & B_FAILFAST) &&
12796 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
12797 		mutex_exit(SD_MUTEX(un));
12798 		bioerror(bp, EIO);
12799 		bp->b_resid = bp->b_bcount;
12800 		SD_BEGIN_IODONE(index, un, bp);
12801 		return;
12802 	}
12803 
12804 	if (SD_IS_DIRECT_PRIORITY(xp)) {
12805 		/*
12806 		 * Priority command -- transport it immediately.
12807 		 *
12808 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
12809 		 * because all direct priority commands should be associated
12810 		 * with error recovery actions which we don't want to retry.
12811 		 */
12812 		sd_start_cmds(un, bp);
12813 	} else {
12814 		/*
12815 		 * Normal command -- add it to the wait queue, then start
12816 		 * transporting commands from the wait queue.
12817 		 */
12818 		sd_add_buf_to_waitq(un, bp);
12819 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
12820 		sd_start_cmds(un, NULL);
12821 	}
12822 
12823 	mutex_exit(SD_MUTEX(un));
12824 
12825 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
12826 }
12827 
12828 
12829 /*
12830  *    Function: sd_init_cdb_limits
12831  *
12832  * Description: This is to handle scsi_pkt initialization differences
12833  *		between the driver platforms.
12834  *
12835  *		Legacy behaviors:
12836  *
12837  *		If the block number or the sector count exceeds the
12838  *		capabilities of a Group 0 command, shift over to a
12839  *		Group 1 command. We don't blindly use Group 1
12840  *		commands because a) some drives (CDC Wren IVs) get a
12841  *		bit confused, and b) there is probably a fair amount
12842  *		of speed difference for a target to receive and decode
12843  *		a 10 byte command instead of a 6 byte command.
12844  *
12845  *		The xfer time difference of 6 vs 10 byte CDBs is
12846  *		still significant so this code is still worthwhile.
12847  *		10 byte CDBs are very inefficient with the fas HBA driver
12848  *		and older disks. Each CDB byte took 1 usec with some
12849  *		popular disks.
12850  *
12851  *     Context: Must be called at attach time
12852  */
12853 
12854 static void
12855 sd_init_cdb_limits(struct sd_lun *un)
12856 {
12857 	/*
12858 	 * Use CDB_GROUP1 commands for most devices except for
12859 	 * parallel SCSI fixed drives in which case we get better
12860 	 * performance using CDB_GROUP0 commands (where applicable).
12861 	 */
12862 	un->un_mincdb = SD_CDB_GROUP1;
12863 #if !defined(__fibre)
12864 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
12865 	    !ISREMOVABLE(un)) {
12866 		un->un_mincdb = SD_CDB_GROUP0;
12867 	}
12868 #endif
12869 
12870 	/*
12871 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
12872 	 * commands for fixed disks unless we are building for a 32 bit
12873 	 * kernel.
12874 	 */
12875 #ifdef _LP64
12876 	un->un_maxcdb = (ISREMOVABLE(un)) ? SD_CDB_GROUP5 : SD_CDB_GROUP4;
12877 #else
12878 	un->un_maxcdb = (ISREMOVABLE(un)) ? SD_CDB_GROUP5 : SD_CDB_GROUP1;
12879 #endif
12880 
12881 	/*
12882 	 * x86 systems require the PKT_DMA_PARTIAL flag
12883 	 */
12884 #if defined(__x86)
12885 	un->un_pkt_flags = PKT_DMA_PARTIAL;
12886 #else
12887 	un->un_pkt_flags = 0;
12888 #endif
12889 
12890 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
12891 	    ? sizeof (struct scsi_arq_status) : 1);
12892 	un->un_cmd_timeout = (ushort_t)sd_io_time;
12893 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
12894 }
12895 
12896 
12897 /*
12898  *    Function: sd_initpkt_for_buf
12899  *
12900  * Description: Allocate and initialize for transport a scsi_pkt struct,
12901  *		based upon the info specified in the given buf struct.
12902  *
12903  *		Assumes the xb_blkno in the request is absolute (ie,
12904  *		relative to the start of the device (NOT partition!).
12905  *		Also assumes that the request is using the native block
12906  *		size of the device (as returned by the READ CAPACITY
12907  *		command).
12908  *
12909  * Return Code: SD_PKT_ALLOC_SUCCESS
12910  *		SD_PKT_ALLOC_FAILURE
12911  *		SD_PKT_ALLOC_FAILURE_NO_DMA
12912  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
12913  *
12914  *     Context: Kernel thread and may be called from software interrupt context
12915  *		as part of a sdrunout callback. This function may not block or
12916  *		call routines that block
12917  */
12918 
12919 static int
12920 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
12921 {
12922 	struct sd_xbuf	*xp;
12923 	struct scsi_pkt *pktp = NULL;
12924 	struct sd_lun	*un;
12925 	size_t		blockcount;
12926 	daddr_t		startblock;
12927 	int		rval;
12928 	int		cmd_flags;
12929 
12930 	ASSERT(bp != NULL);
12931 	ASSERT(pktpp != NULL);
12932 	xp = SD_GET_XBUF(bp);
12933 	ASSERT(xp != NULL);
12934 	un = SD_GET_UN(bp);
12935 	ASSERT(un != NULL);
12936 	ASSERT(mutex_owned(SD_MUTEX(un)));
12937 	ASSERT(bp->b_resid == 0);
12938 
12939 	SD_TRACE(SD_LOG_IO_CORE, un,
12940 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
12941 
12942 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12943 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
12944 		/*
12945 		 * Already have a scsi_pkt -- just need DMA resources.
12946 		 * We must recompute the CDB in case the mapping returns
12947 		 * a nonzero pkt_resid.
12948 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
12949 		 * that is being retried, the unmap/remap of the DMA resouces
12950 		 * will result in the entire transfer starting over again
12951 		 * from the very first block.
12952 		 */
12953 		ASSERT(xp->xb_pktp != NULL);
12954 		pktp = xp->xb_pktp;
12955 	} else {
12956 		pktp = NULL;
12957 	}
12958 #endif /* __i386 || __amd64 */
12959 
12960 	startblock = xp->xb_blkno;	/* Absolute block num. */
12961 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
12962 
12963 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12964 
12965 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
12966 
12967 #else
12968 
12969 	cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags;
12970 
12971 #endif
12972 
12973 	/*
12974 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
12975 	 * call scsi_init_pkt, and build the CDB.
12976 	 */
12977 	rval = sd_setup_rw_pkt(un, &pktp, bp,
12978 	    cmd_flags, sdrunout, (caddr_t)un,
12979 	    startblock, blockcount);
12980 
12981 	if (rval == 0) {
12982 		/*
12983 		 * Success.
12984 		 *
12985 		 * If partial DMA is being used and required for this transfer.
12986 		 * set it up here.
12987 		 */
12988 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
12989 		    (pktp->pkt_resid != 0)) {
12990 
12991 			/*
12992 			 * Save the CDB length and pkt_resid for the
12993 			 * next xfer
12994 			 */
12995 			xp->xb_dma_resid = pktp->pkt_resid;
12996 
12997 			/* rezero resid */
12998 			pktp->pkt_resid = 0;
12999 
13000 		} else {
13001 			xp->xb_dma_resid = 0;
13002 		}
13003 
13004 		pktp->pkt_flags = un->un_tagflags;
13005 		pktp->pkt_time  = un->un_cmd_timeout;
13006 		pktp->pkt_comp  = sdintr;
13007 
13008 		pktp->pkt_private = bp;
13009 		*pktpp = pktp;
13010 
13011 		SD_TRACE(SD_LOG_IO_CORE, un,
13012 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
13013 
13014 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13015 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
13016 #endif
13017 
13018 		return (SD_PKT_ALLOC_SUCCESS);
13019 
13020 	}
13021 
13022 	/*
13023 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
13024 	 * from sd_setup_rw_pkt.
13025 	 */
13026 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
13027 
13028 	if (rval == SD_PKT_ALLOC_FAILURE) {
13029 		*pktpp = NULL;
13030 		/*
13031 		 * Set the driver state to RWAIT to indicate the driver
13032 		 * is waiting on resource allocations. The driver will not
13033 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13034 		 */
13035 		New_state(un, SD_STATE_RWAIT);
13036 
13037 		SD_ERROR(SD_LOG_IO_CORE, un,
13038 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13039 
13040 		if ((bp->b_flags & B_ERROR) != 0) {
13041 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13042 		}
13043 		return (SD_PKT_ALLOC_FAILURE);
13044 	} else {
13045 		/*
13046 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13047 		 *
13048 		 * This should never happen.  Maybe someone messed with the
13049 		 * kernel's minphys?
13050 		 */
13051 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13052 		    "Request rejected: too large for CDB: "
13053 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13054 		SD_ERROR(SD_LOG_IO_CORE, un,
13055 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13056 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13057 
13058 	}
13059 }
13060 
13061 
13062 /*
13063  *    Function: sd_destroypkt_for_buf
13064  *
13065  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13066  *
13067  *     Context: Kernel thread or interrupt context
13068  */
13069 
13070 static void
13071 sd_destroypkt_for_buf(struct buf *bp)
13072 {
13073 	ASSERT(bp != NULL);
13074 	ASSERT(SD_GET_UN(bp) != NULL);
13075 
13076 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13077 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13078 
13079 	ASSERT(SD_GET_PKTP(bp) != NULL);
13080 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13081 
13082 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13083 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13084 }
13085 
13086 /*
13087  *    Function: sd_setup_rw_pkt
13088  *
13089  * Description: Determines appropriate CDB group for the requested LBA
13090  *		and transfer length, calls scsi_init_pkt, and builds
13091  *		the CDB.  Do not use for partial DMA transfers except
13092  *		for the initial transfer since the CDB size must
13093  *		remain constant.
13094  *
13095  *     Context: Kernel thread and may be called from software interrupt
13096  *		context as part of a sdrunout callback. This function may not
13097  *		block or call routines that block
13098  */
13099 
13100 
13101 int
13102 sd_setup_rw_pkt(struct sd_lun *un,
13103     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13104     int (*callback)(caddr_t), caddr_t callback_arg,
13105     diskaddr_t lba, uint32_t blockcount)
13106 {
13107 	struct scsi_pkt *return_pktp;
13108 	union scsi_cdb *cdbp;
13109 	struct sd_cdbinfo *cp = NULL;
13110 	int i;
13111 
13112 	/*
13113 	 * See which size CDB to use, based upon the request.
13114 	 */
13115 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13116 
13117 		/*
13118 		 * Check lba and block count against sd_cdbtab limits.
13119 		 * In the partial DMA case, we have to use the same size
13120 		 * CDB for all the transfers.  Check lba + blockcount
13121 		 * against the max LBA so we know that segment of the
13122 		 * transfer can use the CDB we select.
13123 		 */
13124 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13125 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13126 
13127 			/*
13128 			 * The command will fit into the CDB type
13129 			 * specified by sd_cdbtab[i].
13130 			 */
13131 			cp = sd_cdbtab + i;
13132 
13133 			/*
13134 			 * Call scsi_init_pkt so we can fill in the
13135 			 * CDB.
13136 			 */
13137 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13138 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13139 			    flags, callback, callback_arg);
13140 
13141 			if (return_pktp != NULL) {
13142 
13143 				/*
13144 				 * Return new value of pkt
13145 				 */
13146 				*pktpp = return_pktp;
13147 
13148 				/*
13149 				 * To be safe, zero the CDB insuring there is
13150 				 * no leftover data from a previous command.
13151 				 */
13152 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13153 
13154 				/*
13155 				 * Handle partial DMA mapping
13156 				 */
13157 				if (return_pktp->pkt_resid != 0) {
13158 
13159 					/*
13160 					 * Not going to xfer as many blocks as
13161 					 * originally expected
13162 					 */
13163 					blockcount -=
13164 					    SD_BYTES2TGTBLOCKS(un,
13165 						return_pktp->pkt_resid);
13166 				}
13167 
13168 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13169 
13170 				/*
13171 				 * Set command byte based on the CDB
13172 				 * type we matched.
13173 				 */
13174 				cdbp->scc_cmd = cp->sc_grpmask |
13175 				    ((bp->b_flags & B_READ) ?
13176 					SCMD_READ : SCMD_WRITE);
13177 
13178 				SD_FILL_SCSI1_LUN(un, return_pktp);
13179 
13180 				/*
13181 				 * Fill in LBA and length
13182 				 */
13183 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13184 				    (cp->sc_grpcode == CDB_GROUP4) ||
13185 				    (cp->sc_grpcode == CDB_GROUP0) ||
13186 				    (cp->sc_grpcode == CDB_GROUP5));
13187 
13188 				if (cp->sc_grpcode == CDB_GROUP1) {
13189 					FORMG1ADDR(cdbp, lba);
13190 					FORMG1COUNT(cdbp, blockcount);
13191 					return (0);
13192 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13193 					FORMG4LONGADDR(cdbp, lba);
13194 					FORMG4COUNT(cdbp, blockcount);
13195 					return (0);
13196 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13197 					FORMG0ADDR(cdbp, lba);
13198 					FORMG0COUNT(cdbp, blockcount);
13199 					return (0);
13200 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13201 					FORMG5ADDR(cdbp, lba);
13202 					FORMG5COUNT(cdbp, blockcount);
13203 					return (0);
13204 				}
13205 
13206 				/*
13207 				 * It should be impossible to not match one
13208 				 * of the CDB types above, so we should never
13209 				 * reach this point.  Set the CDB command byte
13210 				 * to test-unit-ready to avoid writing
13211 				 * to somewhere we don't intend.
13212 				 */
13213 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13214 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13215 			} else {
13216 				/*
13217 				 * Couldn't get scsi_pkt
13218 				 */
13219 				return (SD_PKT_ALLOC_FAILURE);
13220 			}
13221 		}
13222 	}
13223 
13224 	/*
13225 	 * None of the available CDB types were suitable.  This really
13226 	 * should never happen:  on a 64 bit system we support
13227 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13228 	 * and on a 32 bit system we will refuse to bind to a device
13229 	 * larger than 2TB so addresses will never be larger than 32 bits.
13230 	 */
13231 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13232 }
13233 
13234 #if defined(__i386) || defined(__amd64)
13235 /*
13236  *    Function: sd_setup_next_rw_pkt
13237  *
13238  * Description: Setup packet for partial DMA transfers, except for the
13239  * 		initial transfer.  sd_setup_rw_pkt should be used for
13240  *		the initial transfer.
13241  *
13242  *     Context: Kernel thread and may be called from interrupt context.
13243  */
13244 
13245 int
13246 sd_setup_next_rw_pkt(struct sd_lun *un,
13247     struct scsi_pkt *pktp, struct buf *bp,
13248     diskaddr_t lba, uint32_t blockcount)
13249 {
13250 	uchar_t com;
13251 	union scsi_cdb *cdbp;
13252 	uchar_t cdb_group_id;
13253 
13254 	ASSERT(pktp != NULL);
13255 	ASSERT(pktp->pkt_cdbp != NULL);
13256 
13257 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
13258 	com = cdbp->scc_cmd;
13259 	cdb_group_id = CDB_GROUPID(com);
13260 
13261 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
13262 	    (cdb_group_id == CDB_GROUPID_1) ||
13263 	    (cdb_group_id == CDB_GROUPID_4) ||
13264 	    (cdb_group_id == CDB_GROUPID_5));
13265 
13266 	/*
13267 	 * Move pkt to the next portion of the xfer.
13268 	 * func is NULL_FUNC so we do not have to release
13269 	 * the disk mutex here.
13270 	 */
13271 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
13272 	    NULL_FUNC, NULL) == pktp) {
13273 		/* Success.  Handle partial DMA */
13274 		if (pktp->pkt_resid != 0) {
13275 			blockcount -=
13276 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
13277 		}
13278 
13279 		cdbp->scc_cmd = com;
13280 		SD_FILL_SCSI1_LUN(un, pktp);
13281 		if (cdb_group_id == CDB_GROUPID_1) {
13282 			FORMG1ADDR(cdbp, lba);
13283 			FORMG1COUNT(cdbp, blockcount);
13284 			return (0);
13285 		} else if (cdb_group_id == CDB_GROUPID_4) {
13286 			FORMG4LONGADDR(cdbp, lba);
13287 			FORMG4COUNT(cdbp, blockcount);
13288 			return (0);
13289 		} else if (cdb_group_id == CDB_GROUPID_0) {
13290 			FORMG0ADDR(cdbp, lba);
13291 			FORMG0COUNT(cdbp, blockcount);
13292 			return (0);
13293 		} else if (cdb_group_id == CDB_GROUPID_5) {
13294 			FORMG5ADDR(cdbp, lba);
13295 			FORMG5COUNT(cdbp, blockcount);
13296 			return (0);
13297 		}
13298 
13299 		/* Unreachable */
13300 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13301 	}
13302 
13303 	/*
13304 	 * Error setting up next portion of cmd transfer.
13305 	 * Something is definitely very wrong and this
13306 	 * should not happen.
13307 	 */
13308 	return (SD_PKT_ALLOC_FAILURE);
13309 }
13310 #endif /* defined(__i386) || defined(__amd64) */
13311 
13312 /*
13313  *    Function: sd_initpkt_for_uscsi
13314  *
13315  * Description: Allocate and initialize for transport a scsi_pkt struct,
13316  *		based upon the info specified in the given uscsi_cmd struct.
13317  *
13318  * Return Code: SD_PKT_ALLOC_SUCCESS
13319  *		SD_PKT_ALLOC_FAILURE
13320  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13321  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13322  *
13323  *     Context: Kernel thread and may be called from software interrupt context
13324  *		as part of a sdrunout callback. This function may not block or
13325  *		call routines that block
13326  */
13327 
13328 static int
13329 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
13330 {
13331 	struct uscsi_cmd *uscmd;
13332 	struct sd_xbuf	*xp;
13333 	struct scsi_pkt	*pktp;
13334 	struct sd_lun	*un;
13335 	uint32_t	flags = 0;
13336 
13337 	ASSERT(bp != NULL);
13338 	ASSERT(pktpp != NULL);
13339 	xp = SD_GET_XBUF(bp);
13340 	ASSERT(xp != NULL);
13341 	un = SD_GET_UN(bp);
13342 	ASSERT(un != NULL);
13343 	ASSERT(mutex_owned(SD_MUTEX(un)));
13344 
13345 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13346 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13347 	ASSERT(uscmd != NULL);
13348 
13349 	SD_TRACE(SD_LOG_IO_CORE, un,
13350 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
13351 
13352 	/*
13353 	 * Allocate the scsi_pkt for the command.
13354 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
13355 	 *	 during scsi_init_pkt time and will continue to use the
13356 	 *	 same path as long as the same scsi_pkt is used without
13357 	 *	 intervening scsi_dma_free(). Since uscsi command does
13358 	 *	 not call scsi_dmafree() before retry failed command, it
13359 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
13360 	 *	 set such that scsi_vhci can use other available path for
13361 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
13362 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
13363 	 */
13364 	pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
13365 	    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
13366 	    sizeof (struct scsi_arq_status), 0,
13367 	    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
13368 	    sdrunout, (caddr_t)un);
13369 
13370 	if (pktp == NULL) {
13371 		*pktpp = NULL;
13372 		/*
13373 		 * Set the driver state to RWAIT to indicate the driver
13374 		 * is waiting on resource allocations. The driver will not
13375 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13376 		 */
13377 		New_state(un, SD_STATE_RWAIT);
13378 
13379 		SD_ERROR(SD_LOG_IO_CORE, un,
13380 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
13381 
13382 		if ((bp->b_flags & B_ERROR) != 0) {
13383 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13384 		}
13385 		return (SD_PKT_ALLOC_FAILURE);
13386 	}
13387 
13388 	/*
13389 	 * We do not do DMA breakup for USCSI commands, so return failure
13390 	 * here if all the needed DMA resources were not allocated.
13391 	 */
13392 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
13393 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
13394 		scsi_destroy_pkt(pktp);
13395 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
13396 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
13397 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
13398 	}
13399 
13400 	/* Init the cdb from the given uscsi struct */
13401 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
13402 	    uscmd->uscsi_cdb[0], 0, 0, 0);
13403 
13404 	SD_FILL_SCSI1_LUN(un, pktp);
13405 
13406 	/*
13407 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
13408 	 * for listing of the supported flags.
13409 	 */
13410 
13411 	if (uscmd->uscsi_flags & USCSI_SILENT) {
13412 		flags |= FLAG_SILENT;
13413 	}
13414 
13415 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
13416 		flags |= FLAG_DIAGNOSE;
13417 	}
13418 
13419 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
13420 		flags |= FLAG_ISOLATE;
13421 	}
13422 
13423 	if (un->un_f_is_fibre == FALSE) {
13424 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
13425 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
13426 		}
13427 	}
13428 
13429 	/*
13430 	 * Set the pkt flags here so we save time later.
13431 	 * Note: These flags are NOT in the uscsi man page!!!
13432 	 */
13433 	if (uscmd->uscsi_flags & USCSI_HEAD) {
13434 		flags |= FLAG_HEAD;
13435 	}
13436 
13437 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
13438 		flags |= FLAG_NOINTR;
13439 	}
13440 
13441 	/*
13442 	 * For tagged queueing, things get a bit complicated.
13443 	 * Check first for head of queue and last for ordered queue.
13444 	 * If neither head nor order, use the default driver tag flags.
13445 	 */
13446 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
13447 		if (uscmd->uscsi_flags & USCSI_HTAG) {
13448 			flags |= FLAG_HTAG;
13449 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
13450 			flags |= FLAG_OTAG;
13451 		} else {
13452 			flags |= un->un_tagflags & FLAG_TAGMASK;
13453 		}
13454 	}
13455 
13456 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
13457 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
13458 	}
13459 
13460 	pktp->pkt_flags = flags;
13461 
13462 	/* Copy the caller's CDB into the pkt... */
13463 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
13464 
13465 	if (uscmd->uscsi_timeout == 0) {
13466 		pktp->pkt_time = un->un_uscsi_timeout;
13467 	} else {
13468 		pktp->pkt_time = uscmd->uscsi_timeout;
13469 	}
13470 
13471 	/* need it later to identify USCSI request in sdintr */
13472 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
13473 
13474 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
13475 
13476 	pktp->pkt_private = bp;
13477 	pktp->pkt_comp = sdintr;
13478 	*pktpp = pktp;
13479 
13480 	SD_TRACE(SD_LOG_IO_CORE, un,
13481 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
13482 
13483 	return (SD_PKT_ALLOC_SUCCESS);
13484 }
13485 
13486 
13487 /*
13488  *    Function: sd_destroypkt_for_uscsi
13489  *
13490  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
13491  *		IOs.. Also saves relevant info into the associated uscsi_cmd
13492  *		struct.
13493  *
13494  *     Context: May be called under interrupt context
13495  */
13496 
13497 static void
13498 sd_destroypkt_for_uscsi(struct buf *bp)
13499 {
13500 	struct uscsi_cmd *uscmd;
13501 	struct sd_xbuf	*xp;
13502 	struct scsi_pkt	*pktp;
13503 	struct sd_lun	*un;
13504 
13505 	ASSERT(bp != NULL);
13506 	xp = SD_GET_XBUF(bp);
13507 	ASSERT(xp != NULL);
13508 	un = SD_GET_UN(bp);
13509 	ASSERT(un != NULL);
13510 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13511 	pktp = SD_GET_PKTP(bp);
13512 	ASSERT(pktp != NULL);
13513 
13514 	SD_TRACE(SD_LOG_IO_CORE, un,
13515 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
13516 
13517 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13518 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13519 	ASSERT(uscmd != NULL);
13520 
13521 	/* Save the status and the residual into the uscsi_cmd struct */
13522 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
13523 	uscmd->uscsi_resid  = bp->b_resid;
13524 
13525 	/*
13526 	 * If enabled, copy any saved sense data into the area specified
13527 	 * by the uscsi command.
13528 	 */
13529 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
13530 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
13531 		/*
13532 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
13533 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
13534 		 */
13535 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
13536 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
13537 		bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, SENSE_LENGTH);
13538 	}
13539 
13540 	/* We are done with the scsi_pkt; free it now */
13541 	ASSERT(SD_GET_PKTP(bp) != NULL);
13542 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13543 
13544 	SD_TRACE(SD_LOG_IO_CORE, un,
13545 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
13546 }
13547 
13548 
13549 /*
13550  *    Function: sd_bioclone_alloc
13551  *
13552  * Description: Allocate a buf(9S) and init it as per the given buf
13553  *		and the various arguments.  The associated sd_xbuf
13554  *		struct is (nearly) duplicated.  The struct buf *bp
13555  *		argument is saved in new_xp->xb_private.
13556  *
13557  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13558  *		datalen - size of data area for the shadow bp
13559  *		blkno - starting LBA
13560  *		func - function pointer for b_iodone in the shadow buf. (May
13561  *			be NULL if none.)
13562  *
13563  * Return Code: Pointer to allocates buf(9S) struct
13564  *
13565  *     Context: Can sleep.
13566  */
13567 
13568 static struct buf *
13569 sd_bioclone_alloc(struct buf *bp, size_t datalen,
13570 	daddr_t blkno, int (*func)(struct buf *))
13571 {
13572 	struct	sd_lun	*un;
13573 	struct	sd_xbuf	*xp;
13574 	struct	sd_xbuf	*new_xp;
13575 	struct	buf	*new_bp;
13576 
13577 	ASSERT(bp != NULL);
13578 	xp = SD_GET_XBUF(bp);
13579 	ASSERT(xp != NULL);
13580 	un = SD_GET_UN(bp);
13581 	ASSERT(un != NULL);
13582 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13583 
13584 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
13585 	    NULL, KM_SLEEP);
13586 
13587 	new_bp->b_lblkno	= blkno;
13588 
13589 	/*
13590 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13591 	 * original xbuf into it.
13592 	 */
13593 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13594 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13595 
13596 	/*
13597 	 * The given bp is automatically saved in the xb_private member
13598 	 * of the new xbuf.  Callers are allowed to depend on this.
13599 	 */
13600 	new_xp->xb_private = bp;
13601 
13602 	new_bp->b_private  = new_xp;
13603 
13604 	return (new_bp);
13605 }
13606 
13607 /*
13608  *    Function: sd_shadow_buf_alloc
13609  *
13610  * Description: Allocate a buf(9S) and init it as per the given buf
13611  *		and the various arguments.  The associated sd_xbuf
13612  *		struct is (nearly) duplicated.  The struct buf *bp
13613  *		argument is saved in new_xp->xb_private.
13614  *
13615  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13616  *		datalen - size of data area for the shadow bp
13617  *		bflags - B_READ or B_WRITE (pseudo flag)
13618  *		blkno - starting LBA
13619  *		func - function pointer for b_iodone in the shadow buf. (May
13620  *			be NULL if none.)
13621  *
13622  * Return Code: Pointer to allocates buf(9S) struct
13623  *
13624  *     Context: Can sleep.
13625  */
13626 
13627 static struct buf *
13628 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
13629 	daddr_t blkno, int (*func)(struct buf *))
13630 {
13631 	struct	sd_lun	*un;
13632 	struct	sd_xbuf	*xp;
13633 	struct	sd_xbuf	*new_xp;
13634 	struct	buf	*new_bp;
13635 
13636 	ASSERT(bp != NULL);
13637 	xp = SD_GET_XBUF(bp);
13638 	ASSERT(xp != NULL);
13639 	un = SD_GET_UN(bp);
13640 	ASSERT(un != NULL);
13641 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13642 
13643 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
13644 		bp_mapin(bp);
13645 	}
13646 
13647 	bflags &= (B_READ | B_WRITE);
13648 #if defined(__i386) || defined(__amd64)
13649 	new_bp = getrbuf(KM_SLEEP);
13650 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
13651 	new_bp->b_bcount = datalen;
13652 	new_bp->b_flags	= bp->b_flags | bflags;
13653 #else
13654 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
13655 	    datalen, bflags, SLEEP_FUNC, NULL);
13656 #endif
13657 	new_bp->av_forw	= NULL;
13658 	new_bp->av_back	= NULL;
13659 	new_bp->b_dev	= bp->b_dev;
13660 	new_bp->b_blkno	= blkno;
13661 	new_bp->b_iodone = func;
13662 	new_bp->b_edev	= bp->b_edev;
13663 	new_bp->b_resid	= 0;
13664 
13665 	/* We need to preserve the B_FAILFAST flag */
13666 	if (bp->b_flags & B_FAILFAST) {
13667 		new_bp->b_flags |= B_FAILFAST;
13668 	}
13669 
13670 	/*
13671 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13672 	 * original xbuf into it.
13673 	 */
13674 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13675 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13676 
13677 	/* Need later to copy data between the shadow buf & original buf! */
13678 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
13679 
13680 	/*
13681 	 * The given bp is automatically saved in the xb_private member
13682 	 * of the new xbuf.  Callers are allowed to depend on this.
13683 	 */
13684 	new_xp->xb_private = bp;
13685 
13686 	new_bp->b_private  = new_xp;
13687 
13688 	return (new_bp);
13689 }
13690 
13691 /*
13692  *    Function: sd_bioclone_free
13693  *
13694  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
13695  *		in the larger than partition operation.
13696  *
13697  *     Context: May be called under interrupt context
13698  */
13699 
13700 static void
13701 sd_bioclone_free(struct buf *bp)
13702 {
13703 	struct sd_xbuf	*xp;
13704 
13705 	ASSERT(bp != NULL);
13706 	xp = SD_GET_XBUF(bp);
13707 	ASSERT(xp != NULL);
13708 
13709 	/*
13710 	 * Call bp_mapout() before freeing the buf,  in case a lower
13711 	 * layer or HBA  had done a bp_mapin().  we must do this here
13712 	 * as we are the "originator" of the shadow buf.
13713 	 */
13714 	bp_mapout(bp);
13715 
13716 	/*
13717 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13718 	 * never gets confused by a stale value in this field. (Just a little
13719 	 * extra defensiveness here.)
13720 	 */
13721 	bp->b_iodone = NULL;
13722 
13723 	freerbuf(bp);
13724 
13725 	kmem_free(xp, sizeof (struct sd_xbuf));
13726 }
13727 
13728 /*
13729  *    Function: sd_shadow_buf_free
13730  *
13731  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
13732  *
13733  *     Context: May be called under interrupt context
13734  */
13735 
13736 static void
13737 sd_shadow_buf_free(struct buf *bp)
13738 {
13739 	struct sd_xbuf	*xp;
13740 
13741 	ASSERT(bp != NULL);
13742 	xp = SD_GET_XBUF(bp);
13743 	ASSERT(xp != NULL);
13744 
13745 #if defined(__sparc)
13746 	/*
13747 	 * Call bp_mapout() before freeing the buf,  in case a lower
13748 	 * layer or HBA  had done a bp_mapin().  we must do this here
13749 	 * as we are the "originator" of the shadow buf.
13750 	 */
13751 	bp_mapout(bp);
13752 #endif
13753 
13754 	/*
13755 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13756 	 * never gets confused by a stale value in this field. (Just a little
13757 	 * extra defensiveness here.)
13758 	 */
13759 	bp->b_iodone = NULL;
13760 
13761 #if defined(__i386) || defined(__amd64)
13762 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
13763 	freerbuf(bp);
13764 #else
13765 	scsi_free_consistent_buf(bp);
13766 #endif
13767 
13768 	kmem_free(xp, sizeof (struct sd_xbuf));
13769 }
13770 
13771 
13772 /*
13773  *    Function: sd_print_transport_rejected_message
13774  *
13775  * Description: This implements the ludicrously complex rules for printing
13776  *		a "transport rejected" message.  This is to address the
13777  *		specific problem of having a flood of this error message
13778  *		produced when a failover occurs.
13779  *
13780  *     Context: Any.
13781  */
13782 
13783 static void
13784 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
13785 	int code)
13786 {
13787 	ASSERT(un != NULL);
13788 	ASSERT(mutex_owned(SD_MUTEX(un)));
13789 	ASSERT(xp != NULL);
13790 
13791 	/*
13792 	 * Print the "transport rejected" message under the following
13793 	 * conditions:
13794 	 *
13795 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
13796 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
13797 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
13798 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
13799 	 *   scsi_transport(9F) (which indicates that the target might have
13800 	 *   gone off-line).  This uses the un->un_tran_fatal_count
13801 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
13802 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
13803 	 *   from scsi_transport().
13804 	 *
13805 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
13806 	 * the preceeding cases in order for the message to be printed.
13807 	 */
13808 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
13809 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
13810 		    (code != TRAN_FATAL_ERROR) ||
13811 		    (un->un_tran_fatal_count == 1)) {
13812 			switch (code) {
13813 			case TRAN_BADPKT:
13814 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13815 				    "transport rejected bad packet\n");
13816 				break;
13817 			case TRAN_FATAL_ERROR:
13818 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13819 				    "transport rejected fatal error\n");
13820 				break;
13821 			default:
13822 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13823 				    "transport rejected (%d)\n", code);
13824 				break;
13825 			}
13826 		}
13827 	}
13828 }
13829 
13830 
13831 /*
13832  *    Function: sd_add_buf_to_waitq
13833  *
13834  * Description: Add the given buf(9S) struct to the wait queue for the
13835  *		instance.  If sorting is enabled, then the buf is added
13836  *		to the queue via an elevator sort algorithm (a la
13837  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
13838  *		If sorting is not enabled, then the buf is just added
13839  *		to the end of the wait queue.
13840  *
13841  * Return Code: void
13842  *
13843  *     Context: Does not sleep/block, therefore technically can be called
13844  *		from any context.  However if sorting is enabled then the
13845  *		execution time is indeterminate, and may take long if
13846  *		the wait queue grows large.
13847  */
13848 
13849 static void
13850 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
13851 {
13852 	struct buf *ap;
13853 
13854 	ASSERT(bp != NULL);
13855 	ASSERT(un != NULL);
13856 	ASSERT(mutex_owned(SD_MUTEX(un)));
13857 
13858 	/* If the queue is empty, add the buf as the only entry & return. */
13859 	if (un->un_waitq_headp == NULL) {
13860 		ASSERT(un->un_waitq_tailp == NULL);
13861 		un->un_waitq_headp = un->un_waitq_tailp = bp;
13862 		bp->av_forw = NULL;
13863 		return;
13864 	}
13865 
13866 	ASSERT(un->un_waitq_tailp != NULL);
13867 
13868 	/*
13869 	 * If sorting is disabled, just add the buf to the tail end of
13870 	 * the wait queue and return.
13871 	 */
13872 	if (un->un_f_disksort_disabled) {
13873 		un->un_waitq_tailp->av_forw = bp;
13874 		un->un_waitq_tailp = bp;
13875 		bp->av_forw = NULL;
13876 		return;
13877 	}
13878 
13879 	/*
13880 	 * Sort thru the list of requests currently on the wait queue
13881 	 * and add the new buf request at the appropriate position.
13882 	 *
13883 	 * The un->un_waitq_headp is an activity chain pointer on which
13884 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
13885 	 * first queue holds those requests which are positioned after
13886 	 * the current SD_GET_BLKNO() (in the first request); the second holds
13887 	 * requests which came in after their SD_GET_BLKNO() number was passed.
13888 	 * Thus we implement a one way scan, retracting after reaching
13889 	 * the end of the drive to the first request on the second
13890 	 * queue, at which time it becomes the first queue.
13891 	 * A one-way scan is natural because of the way UNIX read-ahead
13892 	 * blocks are allocated.
13893 	 *
13894 	 * If we lie after the first request, then we must locate the
13895 	 * second request list and add ourselves to it.
13896 	 */
13897 	ap = un->un_waitq_headp;
13898 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
13899 		while (ap->av_forw != NULL) {
13900 			/*
13901 			 * Look for an "inversion" in the (normally
13902 			 * ascending) block numbers. This indicates
13903 			 * the start of the second request list.
13904 			 */
13905 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
13906 				/*
13907 				 * Search the second request list for the
13908 				 * first request at a larger block number.
13909 				 * We go before that; however if there is
13910 				 * no such request, we go at the end.
13911 				 */
13912 				do {
13913 					if (SD_GET_BLKNO(bp) <
13914 					    SD_GET_BLKNO(ap->av_forw)) {
13915 						goto insert;
13916 					}
13917 					ap = ap->av_forw;
13918 				} while (ap->av_forw != NULL);
13919 				goto insert;		/* after last */
13920 			}
13921 			ap = ap->av_forw;
13922 		}
13923 
13924 		/*
13925 		 * No inversions... we will go after the last, and
13926 		 * be the first request in the second request list.
13927 		 */
13928 		goto insert;
13929 	}
13930 
13931 	/*
13932 	 * Request is at/after the current request...
13933 	 * sort in the first request list.
13934 	 */
13935 	while (ap->av_forw != NULL) {
13936 		/*
13937 		 * We want to go after the current request (1) if
13938 		 * there is an inversion after it (i.e. it is the end
13939 		 * of the first request list), or (2) if the next
13940 		 * request is a larger block no. than our request.
13941 		 */
13942 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
13943 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
13944 			goto insert;
13945 		}
13946 		ap = ap->av_forw;
13947 	}
13948 
13949 	/*
13950 	 * Neither a second list nor a larger request, therefore
13951 	 * we go at the end of the first list (which is the same
13952 	 * as the end of the whole schebang).
13953 	 */
13954 insert:
13955 	bp->av_forw = ap->av_forw;
13956 	ap->av_forw = bp;
13957 
13958 	/*
13959 	 * If we inserted onto the tail end of the waitq, make sure the
13960 	 * tail pointer is updated.
13961 	 */
13962 	if (ap == un->un_waitq_tailp) {
13963 		un->un_waitq_tailp = bp;
13964 	}
13965 }
13966 
13967 
13968 /*
13969  *    Function: sd_start_cmds
13970  *
13971  * Description: Remove and transport cmds from the driver queues.
13972  *
13973  *   Arguments: un - pointer to the unit (soft state) struct for the target.
13974  *
13975  *		immed_bp - ptr to a buf to be transported immediately. Only
13976  *		the immed_bp is transported; bufs on the waitq are not
13977  *		processed and the un_retry_bp is not checked.  If immed_bp is
13978  *		NULL, then normal queue processing is performed.
13979  *
13980  *     Context: May be called from kernel thread context, interrupt context,
13981  *		or runout callback context. This function may not block or
13982  *		call routines that block.
13983  */
13984 
13985 static void
13986 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
13987 {
13988 	struct	sd_xbuf	*xp;
13989 	struct	buf	*bp;
13990 	void	(*statp)(kstat_io_t *);
13991 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13992 	void	(*saved_statp)(kstat_io_t *);
13993 #endif
13994 	int	rval;
13995 
13996 	ASSERT(un != NULL);
13997 	ASSERT(mutex_owned(SD_MUTEX(un)));
13998 	ASSERT(un->un_ncmds_in_transport >= 0);
13999 	ASSERT(un->un_throttle >= 0);
14000 
14001 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
14002 
14003 	do {
14004 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14005 		saved_statp = NULL;
14006 #endif
14007 
14008 		/*
14009 		 * If we are syncing or dumping, fail the command to
14010 		 * avoid recursively calling back into scsi_transport().
14011 		 * The dump I/O itself uses a separate code path so this
14012 		 * only prevents non-dump I/O from being sent while dumping.
14013 		 * File system sync takes place before dumping begins.
14014 		 * During panic, filesystem I/O is allowed provided
14015 		 * un_in_callback is <= 1.  This is to prevent recursion
14016 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
14017 		 * sd_start_cmds and so on.  See panic.c for more information
14018 		 * about the states the system can be in during panic.
14019 		 */
14020 		if ((un->un_state == SD_STATE_DUMPING) ||
14021 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
14022 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14023 			    "sd_start_cmds: panicking\n");
14024 			goto exit;
14025 		}
14026 
14027 		if ((bp = immed_bp) != NULL) {
14028 			/*
14029 			 * We have a bp that must be transported immediately.
14030 			 * It's OK to transport the immed_bp here without doing
14031 			 * the throttle limit check because the immed_bp is
14032 			 * always used in a retry/recovery case. This means
14033 			 * that we know we are not at the throttle limit by
14034 			 * virtue of the fact that to get here we must have
14035 			 * already gotten a command back via sdintr(). This also
14036 			 * relies on (1) the command on un_retry_bp preventing
14037 			 * further commands from the waitq from being issued;
14038 			 * and (2) the code in sd_retry_command checking the
14039 			 * throttle limit before issuing a delayed or immediate
14040 			 * retry. This holds even if the throttle limit is
14041 			 * currently ratcheted down from its maximum value.
14042 			 */
14043 			statp = kstat_runq_enter;
14044 			if (bp == un->un_retry_bp) {
14045 				ASSERT((un->un_retry_statp == NULL) ||
14046 				    (un->un_retry_statp == kstat_waitq_enter) ||
14047 				    (un->un_retry_statp ==
14048 				    kstat_runq_back_to_waitq));
14049 				/*
14050 				 * If the waitq kstat was incremented when
14051 				 * sd_set_retry_bp() queued this bp for a retry,
14052 				 * then we must set up statp so that the waitq
14053 				 * count will get decremented correctly below.
14054 				 * Also we must clear un->un_retry_statp to
14055 				 * ensure that we do not act on a stale value
14056 				 * in this field.
14057 				 */
14058 				if ((un->un_retry_statp == kstat_waitq_enter) ||
14059 				    (un->un_retry_statp ==
14060 				    kstat_runq_back_to_waitq)) {
14061 					statp = kstat_waitq_to_runq;
14062 				}
14063 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14064 				saved_statp = un->un_retry_statp;
14065 #endif
14066 				un->un_retry_statp = NULL;
14067 
14068 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14069 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14070 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
14071 				    un, un->un_retry_bp, un->un_throttle,
14072 				    un->un_ncmds_in_transport);
14073 			} else {
14074 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14075 				    "processing priority bp:0x%p\n", bp);
14076 			}
14077 
14078 		} else if ((bp = un->un_waitq_headp) != NULL) {
14079 			/*
14080 			 * A command on the waitq is ready to go, but do not
14081 			 * send it if:
14082 			 *
14083 			 * (1) the throttle limit has been reached, or
14084 			 * (2) a retry is pending, or
14085 			 * (3) a START_STOP_UNIT callback pending, or
14086 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14087 			 *	command is pending.
14088 			 *
14089 			 * For all of these conditions, IO processing will
14090 			 * restart after the condition is cleared.
14091 			 */
14092 			if (un->un_ncmds_in_transport >= un->un_throttle) {
14093 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14094 				    "sd_start_cmds: exiting, "
14095 				    "throttle limit reached!\n");
14096 				goto exit;
14097 			}
14098 			if (un->un_retry_bp != NULL) {
14099 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14100 				    "sd_start_cmds: exiting, retry pending!\n");
14101 				goto exit;
14102 			}
14103 			if (un->un_startstop_timeid != NULL) {
14104 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14105 				    "sd_start_cmds: exiting, "
14106 				    "START_STOP pending!\n");
14107 				goto exit;
14108 			}
14109 			if (un->un_direct_priority_timeid != NULL) {
14110 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14111 				    "sd_start_cmds: exiting, "
14112 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14113 				goto exit;
14114 			}
14115 
14116 			/* Dequeue the command */
14117 			un->un_waitq_headp = bp->av_forw;
14118 			if (un->un_waitq_headp == NULL) {
14119 				un->un_waitq_tailp = NULL;
14120 			}
14121 			bp->av_forw = NULL;
14122 			statp = kstat_waitq_to_runq;
14123 			SD_TRACE(SD_LOG_IO_CORE, un,
14124 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14125 
14126 		} else {
14127 			/* No work to do so bail out now */
14128 			SD_TRACE(SD_LOG_IO_CORE, un,
14129 			    "sd_start_cmds: no more work, exiting!\n");
14130 			goto exit;
14131 		}
14132 
14133 		/*
14134 		 * Reset the state to normal. This is the mechanism by which
14135 		 * the state transitions from either SD_STATE_RWAIT or
14136 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14137 		 * If state is SD_STATE_PM_CHANGING then this command is
14138 		 * part of the device power control and the state must
14139 		 * not be put back to normal. Doing so would would
14140 		 * allow new commands to proceed when they shouldn't,
14141 		 * the device may be going off.
14142 		 */
14143 		if ((un->un_state != SD_STATE_SUSPENDED) &&
14144 		    (un->un_state != SD_STATE_PM_CHANGING)) {
14145 			New_state(un, SD_STATE_NORMAL);
14146 		    }
14147 
14148 		xp = SD_GET_XBUF(bp);
14149 		ASSERT(xp != NULL);
14150 
14151 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14152 		/*
14153 		 * Allocate the scsi_pkt if we need one, or attach DMA
14154 		 * resources if we have a scsi_pkt that needs them. The
14155 		 * latter should only occur for commands that are being
14156 		 * retried.
14157 		 */
14158 		if ((xp->xb_pktp == NULL) ||
14159 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14160 #else
14161 		if (xp->xb_pktp == NULL) {
14162 #endif
14163 			/*
14164 			 * There is no scsi_pkt allocated for this buf. Call
14165 			 * the initpkt function to allocate & init one.
14166 			 *
14167 			 * The scsi_init_pkt runout callback functionality is
14168 			 * implemented as follows:
14169 			 *
14170 			 * 1) The initpkt function always calls
14171 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14172 			 *    callback routine.
14173 			 * 2) A successful packet allocation is initialized and
14174 			 *    the I/O is transported.
14175 			 * 3) The I/O associated with an allocation resource
14176 			 *    failure is left on its queue to be retried via
14177 			 *    runout or the next I/O.
14178 			 * 4) The I/O associated with a DMA error is removed
14179 			 *    from the queue and failed with EIO. Processing of
14180 			 *    the transport queues is also halted to be
14181 			 *    restarted via runout or the next I/O.
14182 			 * 5) The I/O associated with a CDB size or packet
14183 			 *    size error is removed from the queue and failed
14184 			 *    with EIO. Processing of the transport queues is
14185 			 *    continued.
14186 			 *
14187 			 * Note: there is no interface for canceling a runout
14188 			 * callback. To prevent the driver from detaching or
14189 			 * suspending while a runout is pending the driver
14190 			 * state is set to SD_STATE_RWAIT
14191 			 *
14192 			 * Note: using the scsi_init_pkt callback facility can
14193 			 * result in an I/O request persisting at the head of
14194 			 * the list which cannot be satisfied even after
14195 			 * multiple retries. In the future the driver may
14196 			 * implement some kind of maximum runout count before
14197 			 * failing an I/O.
14198 			 *
14199 			 * Note: the use of funcp below may seem superfluous,
14200 			 * but it helps warlock figure out the correct
14201 			 * initpkt function calls (see [s]sd.wlcmd).
14202 			 */
14203 			struct scsi_pkt	*pktp;
14204 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
14205 
14206 			ASSERT(bp != un->un_rqs_bp);
14207 
14208 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
14209 			switch ((*funcp)(bp, &pktp)) {
14210 			case  SD_PKT_ALLOC_SUCCESS:
14211 				xp->xb_pktp = pktp;
14212 				SD_TRACE(SD_LOG_IO_CORE, un,
14213 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
14214 				    pktp);
14215 				goto got_pkt;
14216 
14217 			case SD_PKT_ALLOC_FAILURE:
14218 				/*
14219 				 * Temporary (hopefully) resource depletion.
14220 				 * Since retries and RQS commands always have a
14221 				 * scsi_pkt allocated, these cases should never
14222 				 * get here. So the only cases this needs to
14223 				 * handle is a bp from the waitq (which we put
14224 				 * back onto the waitq for sdrunout), or a bp
14225 				 * sent as an immed_bp (which we just fail).
14226 				 */
14227 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14228 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
14229 
14230 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14231 
14232 				if (bp == immed_bp) {
14233 					/*
14234 					 * If SD_XB_DMA_FREED is clear, then
14235 					 * this is a failure to allocate a
14236 					 * scsi_pkt, and we must fail the
14237 					 * command.
14238 					 */
14239 					if ((xp->xb_pkt_flags &
14240 					    SD_XB_DMA_FREED) == 0) {
14241 						break;
14242 					}
14243 
14244 					/*
14245 					 * If this immediate command is NOT our
14246 					 * un_retry_bp, then we must fail it.
14247 					 */
14248 					if (bp != un->un_retry_bp) {
14249 						break;
14250 					}
14251 
14252 					/*
14253 					 * We get here if this cmd is our
14254 					 * un_retry_bp that was DMAFREED, but
14255 					 * scsi_init_pkt() failed to reallocate
14256 					 * DMA resources when we attempted to
14257 					 * retry it. This can happen when an
14258 					 * mpxio failover is in progress, but
14259 					 * we don't want to just fail the
14260 					 * command in this case.
14261 					 *
14262 					 * Use timeout(9F) to restart it after
14263 					 * a 100ms delay.  We don't want to
14264 					 * let sdrunout() restart it, because
14265 					 * sdrunout() is just supposed to start
14266 					 * commands that are sitting on the
14267 					 * wait queue.  The un_retry_bp stays
14268 					 * set until the command completes, but
14269 					 * sdrunout can be called many times
14270 					 * before that happens.  Since sdrunout
14271 					 * cannot tell if the un_retry_bp is
14272 					 * already in the transport, it could
14273 					 * end up calling scsi_transport() for
14274 					 * the un_retry_bp multiple times.
14275 					 *
14276 					 * Also: don't schedule the callback
14277 					 * if some other callback is already
14278 					 * pending.
14279 					 */
14280 					if (un->un_retry_statp == NULL) {
14281 						/*
14282 						 * restore the kstat pointer to
14283 						 * keep kstat counts coherent
14284 						 * when we do retry the command.
14285 						 */
14286 						un->un_retry_statp =
14287 						    saved_statp;
14288 					}
14289 
14290 					if ((un->un_startstop_timeid == NULL) &&
14291 					    (un->un_retry_timeid == NULL) &&
14292 					    (un->un_direct_priority_timeid ==
14293 					    NULL)) {
14294 
14295 						un->un_retry_timeid =
14296 						    timeout(
14297 						    sd_start_retry_command,
14298 						    un, SD_RESTART_TIMEOUT);
14299 					}
14300 					goto exit;
14301 				}
14302 
14303 #else
14304 				if (bp == immed_bp) {
14305 					break;	/* Just fail the command */
14306 				}
14307 #endif
14308 
14309 				/* Add the buf back to the head of the waitq */
14310 				bp->av_forw = un->un_waitq_headp;
14311 				un->un_waitq_headp = bp;
14312 				if (un->un_waitq_tailp == NULL) {
14313 					un->un_waitq_tailp = bp;
14314 				}
14315 				goto exit;
14316 
14317 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
14318 				/*
14319 				 * HBA DMA resource failure. Fail the command
14320 				 * and continue processing of the queues.
14321 				 */
14322 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14323 				    "sd_start_cmds: "
14324 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
14325 				break;
14326 
14327 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
14328 				/*
14329 				 * Note:x86: Partial DMA mapping not supported
14330 				 * for USCSI commands, and all the needed DMA
14331 				 * resources were not allocated.
14332 				 */
14333 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14334 				    "sd_start_cmds: "
14335 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
14336 				break;
14337 
14338 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
14339 				/*
14340 				 * Note:x86: Request cannot fit into CDB based
14341 				 * on lba and len.
14342 				 */
14343 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14344 				    "sd_start_cmds: "
14345 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
14346 				break;
14347 
14348 			default:
14349 				/* Should NEVER get here! */
14350 				panic("scsi_initpkt error");
14351 				/*NOTREACHED*/
14352 			}
14353 
14354 			/*
14355 			 * Fatal error in allocating a scsi_pkt for this buf.
14356 			 * Update kstats & return the buf with an error code.
14357 			 * We must use sd_return_failed_command_no_restart() to
14358 			 * avoid a recursive call back into sd_start_cmds().
14359 			 * However this also means that we must keep processing
14360 			 * the waitq here in order to avoid stalling.
14361 			 */
14362 			if (statp == kstat_waitq_to_runq) {
14363 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
14364 			}
14365 			sd_return_failed_command_no_restart(un, bp, EIO);
14366 			if (bp == immed_bp) {
14367 				/* immed_bp is gone by now, so clear this */
14368 				immed_bp = NULL;
14369 			}
14370 			continue;
14371 		}
14372 got_pkt:
14373 		if (bp == immed_bp) {
14374 			/* goto the head of the class.... */
14375 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
14376 		}
14377 
14378 		un->un_ncmds_in_transport++;
14379 		SD_UPDATE_KSTATS(un, statp, bp);
14380 
14381 		/*
14382 		 * Call scsi_transport() to send the command to the target.
14383 		 * According to SCSA architecture, we must drop the mutex here
14384 		 * before calling scsi_transport() in order to avoid deadlock.
14385 		 * Note that the scsi_pkt's completion routine can be executed
14386 		 * (from interrupt context) even before the call to
14387 		 * scsi_transport() returns.
14388 		 */
14389 		SD_TRACE(SD_LOG_IO_CORE, un,
14390 		    "sd_start_cmds: calling scsi_transport()\n");
14391 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
14392 
14393 		mutex_exit(SD_MUTEX(un));
14394 		rval = scsi_transport(xp->xb_pktp);
14395 		mutex_enter(SD_MUTEX(un));
14396 
14397 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14398 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
14399 
14400 		switch (rval) {
14401 		case TRAN_ACCEPT:
14402 			/* Clear this with every pkt accepted by the HBA */
14403 			un->un_tran_fatal_count = 0;
14404 			break;	/* Success; try the next cmd (if any) */
14405 
14406 		case TRAN_BUSY:
14407 			un->un_ncmds_in_transport--;
14408 			ASSERT(un->un_ncmds_in_transport >= 0);
14409 
14410 			/*
14411 			 * Don't retry request sense, the sense data
14412 			 * is lost when another request is sent.
14413 			 * Free up the rqs buf and retry
14414 			 * the original failed cmd.  Update kstat.
14415 			 */
14416 			if (bp == un->un_rqs_bp) {
14417 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14418 				bp = sd_mark_rqs_idle(un, xp);
14419 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
14420 					NULL, NULL, EIO, SD_BSY_TIMEOUT / 500,
14421 					kstat_waitq_enter);
14422 				goto exit;
14423 			}
14424 
14425 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14426 			/*
14427 			 * Free the DMA resources for the  scsi_pkt. This will
14428 			 * allow mpxio to select another path the next time
14429 			 * we call scsi_transport() with this scsi_pkt.
14430 			 * See sdintr() for the rationalization behind this.
14431 			 */
14432 			if ((un->un_f_is_fibre == TRUE) &&
14433 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14434 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
14435 				scsi_dmafree(xp->xb_pktp);
14436 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14437 			}
14438 #endif
14439 
14440 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
14441 				/*
14442 				 * Commands that are SD_PATH_DIRECT_PRIORITY
14443 				 * are for error recovery situations. These do
14444 				 * not use the normal command waitq, so if they
14445 				 * get a TRAN_BUSY we cannot put them back onto
14446 				 * the waitq for later retry. One possible
14447 				 * problem is that there could already be some
14448 				 * other command on un_retry_bp that is waiting
14449 				 * for this one to complete, so we would be
14450 				 * deadlocked if we put this command back onto
14451 				 * the waitq for later retry (since un_retry_bp
14452 				 * must complete before the driver gets back to
14453 				 * commands on the waitq).
14454 				 *
14455 				 * To avoid deadlock we must schedule a callback
14456 				 * that will restart this command after a set
14457 				 * interval.  This should keep retrying for as
14458 				 * long as the underlying transport keeps
14459 				 * returning TRAN_BUSY (just like for other
14460 				 * commands).  Use the same timeout interval as
14461 				 * for the ordinary TRAN_BUSY retry.
14462 				 */
14463 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14464 				    "sd_start_cmds: scsi_transport() returned "
14465 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
14466 
14467 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14468 				un->un_direct_priority_timeid =
14469 				    timeout(sd_start_direct_priority_command,
14470 				    bp, SD_BSY_TIMEOUT / 500);
14471 
14472 				goto exit;
14473 			}
14474 
14475 			/*
14476 			 * For TRAN_BUSY, we want to reduce the throttle value,
14477 			 * unless we are retrying a command.
14478 			 */
14479 			if (bp != un->un_retry_bp) {
14480 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
14481 			}
14482 
14483 			/*
14484 			 * Set up the bp to be tried again 10 ms later.
14485 			 * Note:x86: Is there a timeout value in the sd_lun
14486 			 * for this condition?
14487 			 */
14488 			sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500,
14489 				kstat_runq_back_to_waitq);
14490 			goto exit;
14491 
14492 		case TRAN_FATAL_ERROR:
14493 			un->un_tran_fatal_count++;
14494 			/* FALLTHRU */
14495 
14496 		case TRAN_BADPKT:
14497 		default:
14498 			un->un_ncmds_in_transport--;
14499 			ASSERT(un->un_ncmds_in_transport >= 0);
14500 
14501 			/*
14502 			 * If this is our REQUEST SENSE command with a
14503 			 * transport error, we must get back the pointers
14504 			 * to the original buf, and mark the REQUEST
14505 			 * SENSE command as "available".
14506 			 */
14507 			if (bp == un->un_rqs_bp) {
14508 				bp = sd_mark_rqs_idle(un, xp);
14509 				xp = SD_GET_XBUF(bp);
14510 			} else {
14511 				/*
14512 				 * Legacy behavior: do not update transport
14513 				 * error count for request sense commands.
14514 				 */
14515 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
14516 			}
14517 
14518 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14519 			sd_print_transport_rejected_message(un, xp, rval);
14520 
14521 			/*
14522 			 * We must use sd_return_failed_command_no_restart() to
14523 			 * avoid a recursive call back into sd_start_cmds().
14524 			 * However this also means that we must keep processing
14525 			 * the waitq here in order to avoid stalling.
14526 			 */
14527 			sd_return_failed_command_no_restart(un, bp, EIO);
14528 
14529 			/*
14530 			 * Notify any threads waiting in sd_ddi_suspend() that
14531 			 * a command completion has occurred.
14532 			 */
14533 			if (un->un_state == SD_STATE_SUSPENDED) {
14534 				cv_broadcast(&un->un_disk_busy_cv);
14535 			}
14536 
14537 			if (bp == immed_bp) {
14538 				/* immed_bp is gone by now, so clear this */
14539 				immed_bp = NULL;
14540 			}
14541 			break;
14542 		}
14543 
14544 	} while (immed_bp == NULL);
14545 
14546 exit:
14547 	ASSERT(mutex_owned(SD_MUTEX(un)));
14548 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
14549 }
14550 
14551 
14552 /*
14553  *    Function: sd_return_command
14554  *
14555  * Description: Returns a command to its originator (with or without an
14556  *		error).  Also starts commands waiting to be transported
14557  *		to the target.
14558  *
14559  *     Context: May be called from interrupt, kernel, or timeout context
14560  */
14561 
14562 static void
14563 sd_return_command(struct sd_lun *un, struct buf *bp)
14564 {
14565 	struct sd_xbuf *xp;
14566 #if defined(__i386) || defined(__amd64)
14567 	struct scsi_pkt *pktp;
14568 #endif
14569 
14570 	ASSERT(bp != NULL);
14571 	ASSERT(un != NULL);
14572 	ASSERT(mutex_owned(SD_MUTEX(un)));
14573 	ASSERT(bp != un->un_rqs_bp);
14574 	xp = SD_GET_XBUF(bp);
14575 	ASSERT(xp != NULL);
14576 
14577 #if defined(__i386) || defined(__amd64)
14578 	pktp = SD_GET_PKTP(bp);
14579 #endif
14580 
14581 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
14582 
14583 #if defined(__i386) || defined(__amd64)
14584 	/*
14585 	 * Note:x86: check for the "sdrestart failed" case.
14586 	 */
14587 	if (((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
14588 		(geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
14589 		(xp->xb_pktp->pkt_resid == 0)) {
14590 
14591 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
14592 			/*
14593 			 * Successfully set up next portion of cmd
14594 			 * transfer, try sending it
14595 			 */
14596 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
14597 			    NULL, NULL, 0, (clock_t)0, NULL);
14598 			sd_start_cmds(un, NULL);
14599 			return;	/* Note:x86: need a return here? */
14600 		}
14601 	}
14602 #endif
14603 
14604 	/*
14605 	 * If this is the failfast bp, clear it from un_failfast_bp. This
14606 	 * can happen if upon being re-tried the failfast bp either
14607 	 * succeeded or encountered another error (possibly even a different
14608 	 * error than the one that precipitated the failfast state, but in
14609 	 * that case it would have had to exhaust retries as well). Regardless,
14610 	 * this should not occur whenever the instance is in the active
14611 	 * failfast state.
14612 	 */
14613 	if (bp == un->un_failfast_bp) {
14614 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14615 		un->un_failfast_bp = NULL;
14616 	}
14617 
14618 	/*
14619 	 * Clear the failfast state upon successful completion of ANY cmd.
14620 	 */
14621 	if (bp->b_error == 0) {
14622 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
14623 	}
14624 
14625 	/*
14626 	 * This is used if the command was retried one or more times. Show that
14627 	 * we are done with it, and allow processing of the waitq to resume.
14628 	 */
14629 	if (bp == un->un_retry_bp) {
14630 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14631 		    "sd_return_command: un:0x%p: "
14632 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14633 		un->un_retry_bp = NULL;
14634 		un->un_retry_statp = NULL;
14635 	}
14636 
14637 	SD_UPDATE_RDWR_STATS(un, bp);
14638 	SD_UPDATE_PARTITION_STATS(un, bp);
14639 
14640 	switch (un->un_state) {
14641 	case SD_STATE_SUSPENDED:
14642 		/*
14643 		 * Notify any threads waiting in sd_ddi_suspend() that
14644 		 * a command completion has occurred.
14645 		 */
14646 		cv_broadcast(&un->un_disk_busy_cv);
14647 		break;
14648 	default:
14649 		sd_start_cmds(un, NULL);
14650 		break;
14651 	}
14652 
14653 	/* Return this command up the iodone chain to its originator. */
14654 	mutex_exit(SD_MUTEX(un));
14655 
14656 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14657 	xp->xb_pktp = NULL;
14658 
14659 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14660 
14661 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14662 	mutex_enter(SD_MUTEX(un));
14663 
14664 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
14665 }
14666 
14667 
14668 /*
14669  *    Function: sd_return_failed_command
14670  *
14671  * Description: Command completion when an error occurred.
14672  *
14673  *     Context: May be called from interrupt context
14674  */
14675 
14676 static void
14677 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
14678 {
14679 	ASSERT(bp != NULL);
14680 	ASSERT(un != NULL);
14681 	ASSERT(mutex_owned(SD_MUTEX(un)));
14682 
14683 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14684 	    "sd_return_failed_command: entry\n");
14685 
14686 	/*
14687 	 * b_resid could already be nonzero due to a partial data
14688 	 * transfer, so do not change it here.
14689 	 */
14690 	SD_BIOERROR(bp, errcode);
14691 
14692 	sd_return_command(un, bp);
14693 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14694 	    "sd_return_failed_command: exit\n");
14695 }
14696 
14697 
14698 /*
14699  *    Function: sd_return_failed_command_no_restart
14700  *
14701  * Description: Same as sd_return_failed_command, but ensures that no
14702  *		call back into sd_start_cmds will be issued.
14703  *
14704  *     Context: May be called from interrupt context
14705  */
14706 
14707 static void
14708 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
14709 	int errcode)
14710 {
14711 	struct sd_xbuf *xp;
14712 
14713 	ASSERT(bp != NULL);
14714 	ASSERT(un != NULL);
14715 	ASSERT(mutex_owned(SD_MUTEX(un)));
14716 	xp = SD_GET_XBUF(bp);
14717 	ASSERT(xp != NULL);
14718 	ASSERT(errcode != 0);
14719 
14720 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14721 	    "sd_return_failed_command_no_restart: entry\n");
14722 
14723 	/*
14724 	 * b_resid could already be nonzero due to a partial data
14725 	 * transfer, so do not change it here.
14726 	 */
14727 	SD_BIOERROR(bp, errcode);
14728 
14729 	/*
14730 	 * If this is the failfast bp, clear it. This can happen if the
14731 	 * failfast bp encounterd a fatal error when we attempted to
14732 	 * re-try it (such as a scsi_transport(9F) failure).  However
14733 	 * we should NOT be in an active failfast state if the failfast
14734 	 * bp is not NULL.
14735 	 */
14736 	if (bp == un->un_failfast_bp) {
14737 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14738 		un->un_failfast_bp = NULL;
14739 	}
14740 
14741 	if (bp == un->un_retry_bp) {
14742 		/*
14743 		 * This command was retried one or more times. Show that we are
14744 		 * done with it, and allow processing of the waitq to resume.
14745 		 */
14746 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14747 		    "sd_return_failed_command_no_restart: "
14748 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14749 		un->un_retry_bp = NULL;
14750 		un->un_retry_statp = NULL;
14751 	}
14752 
14753 	SD_UPDATE_RDWR_STATS(un, bp);
14754 	SD_UPDATE_PARTITION_STATS(un, bp);
14755 
14756 	mutex_exit(SD_MUTEX(un));
14757 
14758 	if (xp->xb_pktp != NULL) {
14759 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14760 		xp->xb_pktp = NULL;
14761 	}
14762 
14763 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14764 
14765 	mutex_enter(SD_MUTEX(un));
14766 
14767 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14768 	    "sd_return_failed_command_no_restart: exit\n");
14769 }
14770 
14771 
14772 /*
14773  *    Function: sd_retry_command
14774  *
14775  * Description: queue up a command for retry, or (optionally) fail it
14776  *		if retry counts are exhausted.
14777  *
14778  *   Arguments: un - Pointer to the sd_lun struct for the target.
14779  *
14780  *		bp - Pointer to the buf for the command to be retried.
14781  *
14782  *		retry_check_flag - Flag to see which (if any) of the retry
14783  *		   counts should be decremented/checked. If the indicated
14784  *		   retry count is exhausted, then the command will not be
14785  *		   retried; it will be failed instead. This should use a
14786  *		   value equal to one of the following:
14787  *
14788  *			SD_RETRIES_NOCHECK
14789  *			SD_RESD_RETRIES_STANDARD
14790  *			SD_RETRIES_VICTIM
14791  *
14792  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
14793  *		   if the check should be made to see of FLAG_ISOLATE is set
14794  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
14795  *		   not retried, it is simply failed.
14796  *
14797  *		user_funcp - Ptr to function to call before dispatching the
14798  *		   command. May be NULL if no action needs to be performed.
14799  *		   (Primarily intended for printing messages.)
14800  *
14801  *		user_arg - Optional argument to be passed along to
14802  *		   the user_funcp call.
14803  *
14804  *		failure_code - errno return code to set in the bp if the
14805  *		   command is going to be failed.
14806  *
14807  *		retry_delay - Retry delay interval in (clock_t) units. May
14808  *		   be zero which indicates that the retry should be retried
14809  *		   immediately (ie, without an intervening delay).
14810  *
14811  *		statp - Ptr to kstat function to be updated if the command
14812  *		   is queued for a delayed retry. May be NULL if no kstat
14813  *		   update is desired.
14814  *
14815  *     Context: May be called from interupt context.
14816  */
14817 
14818 static void
14819 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
14820 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
14821 	code), void *user_arg, int failure_code,  clock_t retry_delay,
14822 	void (*statp)(kstat_io_t *))
14823 {
14824 	struct sd_xbuf	*xp;
14825 	struct scsi_pkt	*pktp;
14826 
14827 	ASSERT(un != NULL);
14828 	ASSERT(mutex_owned(SD_MUTEX(un)));
14829 	ASSERT(bp != NULL);
14830 	xp = SD_GET_XBUF(bp);
14831 	ASSERT(xp != NULL);
14832 	pktp = SD_GET_PKTP(bp);
14833 	ASSERT(pktp != NULL);
14834 
14835 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14836 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
14837 
14838 	/*
14839 	 * If we are syncing or dumping, fail the command to avoid
14840 	 * recursively calling back into scsi_transport().
14841 	 */
14842 	if (ddi_in_panic()) {
14843 		goto fail_command_no_log;
14844 	}
14845 
14846 	/*
14847 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
14848 	 * log an error and fail the command.
14849 	 */
14850 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14851 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
14852 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
14853 		sd_dump_memory(un, SD_LOG_IO, "CDB",
14854 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
14855 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
14856 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
14857 		goto fail_command;
14858 	}
14859 
14860 	/*
14861 	 * If we are suspended, then put the command onto head of the
14862 	 * wait queue since we don't want to start more commands.
14863 	 */
14864 	switch (un->un_state) {
14865 	case SD_STATE_SUSPENDED:
14866 	case SD_STATE_DUMPING:
14867 		bp->av_forw = un->un_waitq_headp;
14868 		un->un_waitq_headp = bp;
14869 		if (un->un_waitq_tailp == NULL) {
14870 			un->un_waitq_tailp = bp;
14871 		}
14872 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
14873 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
14874 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
14875 		return;
14876 	default:
14877 		break;
14878 	}
14879 
14880 	/*
14881 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
14882 	 * is set; if it is then we do not want to retry the command.
14883 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
14884 	 */
14885 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
14886 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
14887 			goto fail_command;
14888 		}
14889 	}
14890 
14891 
14892 	/*
14893 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
14894 	 * command timeout or a selection timeout has occurred. This means
14895 	 * that we were unable to establish an kind of communication with
14896 	 * the target, and subsequent retries and/or commands are likely
14897 	 * to encounter similar results and take a long time to complete.
14898 	 *
14899 	 * If this is a failfast error condition, we need to update the
14900 	 * failfast state, even if this bp does not have B_FAILFAST set.
14901 	 */
14902 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
14903 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
14904 			ASSERT(un->un_failfast_bp == NULL);
14905 			/*
14906 			 * If we are already in the active failfast state, and
14907 			 * another failfast error condition has been detected,
14908 			 * then fail this command if it has B_FAILFAST set.
14909 			 * If B_FAILFAST is clear, then maintain the legacy
14910 			 * behavior of retrying heroically, even tho this will
14911 			 * take a lot more time to fail the command.
14912 			 */
14913 			if (bp->b_flags & B_FAILFAST) {
14914 				goto fail_command;
14915 			}
14916 		} else {
14917 			/*
14918 			 * We're not in the active failfast state, but we
14919 			 * have a failfast error condition, so we must begin
14920 			 * transition to the next state. We do this regardless
14921 			 * of whether or not this bp has B_FAILFAST set.
14922 			 */
14923 			if (un->un_failfast_bp == NULL) {
14924 				/*
14925 				 * This is the first bp to meet a failfast
14926 				 * condition so save it on un_failfast_bp &
14927 				 * do normal retry processing. Do not enter
14928 				 * active failfast state yet. This marks
14929 				 * entry into the "failfast pending" state.
14930 				 */
14931 				un->un_failfast_bp = bp;
14932 
14933 			} else if (un->un_failfast_bp == bp) {
14934 				/*
14935 				 * This is the second time *this* bp has
14936 				 * encountered a failfast error condition,
14937 				 * so enter active failfast state & flush
14938 				 * queues as appropriate.
14939 				 */
14940 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
14941 				un->un_failfast_bp = NULL;
14942 				sd_failfast_flushq(un);
14943 
14944 				/*
14945 				 * Fail this bp now if B_FAILFAST set;
14946 				 * otherwise continue with retries. (It would
14947 				 * be pretty ironic if this bp succeeded on a
14948 				 * subsequent retry after we just flushed all
14949 				 * the queues).
14950 				 */
14951 				if (bp->b_flags & B_FAILFAST) {
14952 					goto fail_command;
14953 				}
14954 
14955 #if !defined(lint) && !defined(__lint)
14956 			} else {
14957 				/*
14958 				 * If neither of the preceeding conditionals
14959 				 * was true, it means that there is some
14960 				 * *other* bp that has met an inital failfast
14961 				 * condition and is currently either being
14962 				 * retried or is waiting to be retried. In
14963 				 * that case we should perform normal retry
14964 				 * processing on *this* bp, since there is a
14965 				 * chance that the current failfast condition
14966 				 * is transient and recoverable. If that does
14967 				 * not turn out to be the case, then retries
14968 				 * will be cleared when the wait queue is
14969 				 * flushed anyway.
14970 				 */
14971 #endif
14972 			}
14973 		}
14974 	} else {
14975 		/*
14976 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
14977 		 * likely were able to at least establish some level of
14978 		 * communication with the target and subsequent commands
14979 		 * and/or retries are likely to get through to the target,
14980 		 * In this case we want to be aggressive about clearing
14981 		 * the failfast state. Note that this does not affect
14982 		 * the "failfast pending" condition.
14983 		 */
14984 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
14985 	}
14986 
14987 
14988 	/*
14989 	 * Check the specified retry count to see if we can still do
14990 	 * any retries with this pkt before we should fail it.
14991 	 */
14992 	switch (retry_check_flag & SD_RETRIES_MASK) {
14993 	case SD_RETRIES_VICTIM:
14994 		/*
14995 		 * Check the victim retry count. If exhausted, then fall
14996 		 * thru & check against the standard retry count.
14997 		 */
14998 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
14999 			/* Increment count & proceed with the retry */
15000 			xp->xb_victim_retry_count++;
15001 			break;
15002 		}
15003 		/* Victim retries exhausted, fall back to std. retries... */
15004 		/* FALLTHRU */
15005 
15006 	case SD_RETRIES_STANDARD:
15007 		if (xp->xb_retry_count >= un->un_retry_count) {
15008 			/* Retries exhausted, fail the command */
15009 			SD_TRACE(SD_LOG_IO_CORE, un,
15010 			    "sd_retry_command: retries exhausted!\n");
15011 			/*
15012 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
15013 			 * commands with nonzero pkt_resid.
15014 			 */
15015 			if ((pktp->pkt_reason == CMD_CMPLT) &&
15016 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
15017 			    (pktp->pkt_resid != 0)) {
15018 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
15019 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
15020 					SD_UPDATE_B_RESID(bp, pktp);
15021 				}
15022 			}
15023 			goto fail_command;
15024 		}
15025 		xp->xb_retry_count++;
15026 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15027 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15028 		break;
15029 
15030 	case SD_RETRIES_UA:
15031 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
15032 			/* Retries exhausted, fail the command */
15033 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15034 			    "Unit Attention retries exhausted. "
15035 			    "Check the target.\n");
15036 			goto fail_command;
15037 		}
15038 		xp->xb_ua_retry_count++;
15039 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15040 		    "sd_retry_command: retry count:%d\n",
15041 			xp->xb_ua_retry_count);
15042 		break;
15043 
15044 	case SD_RETRIES_BUSY:
15045 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
15046 			/* Retries exhausted, fail the command */
15047 			SD_TRACE(SD_LOG_IO_CORE, un,
15048 			    "sd_retry_command: retries exhausted!\n");
15049 			goto fail_command;
15050 		}
15051 		xp->xb_retry_count++;
15052 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15053 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15054 		break;
15055 
15056 	case SD_RETRIES_NOCHECK:
15057 	default:
15058 		/* No retry count to check. Just proceed with the retry */
15059 		break;
15060 	}
15061 
15062 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15063 
15064 	/*
15065 	 * If we were given a zero timeout, we must attempt to retry the
15066 	 * command immediately (ie, without a delay).
15067 	 */
15068 	if (retry_delay == 0) {
15069 		/*
15070 		 * Check some limiting conditions to see if we can actually
15071 		 * do the immediate retry.  If we cannot, then we must
15072 		 * fall back to queueing up a delayed retry.
15073 		 */
15074 		if (un->un_ncmds_in_transport >= un->un_throttle) {
15075 			/*
15076 			 * We are at the throttle limit for the target,
15077 			 * fall back to delayed retry.
15078 			 */
15079 			retry_delay = SD_BSY_TIMEOUT;
15080 			statp = kstat_waitq_enter;
15081 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15082 			    "sd_retry_command: immed. retry hit "
15083 			    "throttle!\n");
15084 		} else {
15085 			/*
15086 			 * We're clear to proceed with the immediate retry.
15087 			 * First call the user-provided function (if any)
15088 			 */
15089 			if (user_funcp != NULL) {
15090 				(*user_funcp)(un, bp, user_arg,
15091 				    SD_IMMEDIATE_RETRY_ISSUED);
15092 			}
15093 
15094 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15095 			    "sd_retry_command: issuing immediate retry\n");
15096 
15097 			/*
15098 			 * Call sd_start_cmds() to transport the command to
15099 			 * the target.
15100 			 */
15101 			sd_start_cmds(un, bp);
15102 
15103 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15104 			    "sd_retry_command exit\n");
15105 			return;
15106 		}
15107 	}
15108 
15109 	/*
15110 	 * Set up to retry the command after a delay.
15111 	 * First call the user-provided function (if any)
15112 	 */
15113 	if (user_funcp != NULL) {
15114 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15115 	}
15116 
15117 	sd_set_retry_bp(un, bp, retry_delay, statp);
15118 
15119 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15120 	return;
15121 
15122 fail_command:
15123 
15124 	if (user_funcp != NULL) {
15125 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15126 	}
15127 
15128 fail_command_no_log:
15129 
15130 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15131 	    "sd_retry_command: returning failed command\n");
15132 
15133 	sd_return_failed_command(un, bp, failure_code);
15134 
15135 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15136 }
15137 
15138 
15139 /*
15140  *    Function: sd_set_retry_bp
15141  *
15142  * Description: Set up the given bp for retry.
15143  *
15144  *   Arguments: un - ptr to associated softstate
15145  *		bp - ptr to buf(9S) for the command
15146  *		retry_delay - time interval before issuing retry (may be 0)
15147  *		statp - optional pointer to kstat function
15148  *
15149  *     Context: May be called under interrupt context
15150  */
15151 
15152 static void
15153 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
15154 	void (*statp)(kstat_io_t *))
15155 {
15156 	ASSERT(un != NULL);
15157 	ASSERT(mutex_owned(SD_MUTEX(un)));
15158 	ASSERT(bp != NULL);
15159 
15160 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15161 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
15162 
15163 	/*
15164 	 * Indicate that the command is being retried. This will not allow any
15165 	 * other commands on the wait queue to be transported to the target
15166 	 * until this command has been completed (success or failure). The
15167 	 * "retry command" is not transported to the target until the given
15168 	 * time delay expires, unless the user specified a 0 retry_delay.
15169 	 *
15170 	 * Note: the timeout(9F) callback routine is what actually calls
15171 	 * sd_start_cmds() to transport the command, with the exception of a
15172 	 * zero retry_delay. The only current implementor of a zero retry delay
15173 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
15174 	 */
15175 	if (un->un_retry_bp == NULL) {
15176 		ASSERT(un->un_retry_statp == NULL);
15177 		un->un_retry_bp = bp;
15178 
15179 		/*
15180 		 * If the user has not specified a delay the command should
15181 		 * be queued and no timeout should be scheduled.
15182 		 */
15183 		if (retry_delay == 0) {
15184 			/*
15185 			 * Save the kstat pointer that will be used in the
15186 			 * call to SD_UPDATE_KSTATS() below, so that
15187 			 * sd_start_cmds() can correctly decrement the waitq
15188 			 * count when it is time to transport this command.
15189 			 */
15190 			un->un_retry_statp = statp;
15191 			goto done;
15192 		}
15193 	}
15194 
15195 	if (un->un_retry_bp == bp) {
15196 		/*
15197 		 * Save the kstat pointer that will be used in the call to
15198 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
15199 		 * correctly decrement the waitq count when it is time to
15200 		 * transport this command.
15201 		 */
15202 		un->un_retry_statp = statp;
15203 
15204 		/*
15205 		 * Schedule a timeout if:
15206 		 *   1) The user has specified a delay.
15207 		 *   2) There is not a START_STOP_UNIT callback pending.
15208 		 *
15209 		 * If no delay has been specified, then it is up to the caller
15210 		 * to ensure that IO processing continues without stalling.
15211 		 * Effectively, this means that the caller will issue the
15212 		 * required call to sd_start_cmds(). The START_STOP_UNIT
15213 		 * callback does this after the START STOP UNIT command has
15214 		 * completed. In either of these cases we should not schedule
15215 		 * a timeout callback here.  Also don't schedule the timeout if
15216 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
15217 		 */
15218 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
15219 		    (un->un_direct_priority_timeid == NULL)) {
15220 			un->un_retry_timeid =
15221 			    timeout(sd_start_retry_command, un, retry_delay);
15222 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15223 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
15224 			    " bp:0x%p un_retry_timeid:0x%p\n",
15225 			    un, bp, un->un_retry_timeid);
15226 		}
15227 	} else {
15228 		/*
15229 		 * We only get in here if there is already another command
15230 		 * waiting to be retried.  In this case, we just put the
15231 		 * given command onto the wait queue, so it can be transported
15232 		 * after the current retry command has completed.
15233 		 *
15234 		 * Also we have to make sure that if the command at the head
15235 		 * of the wait queue is the un_failfast_bp, that we do not
15236 		 * put ahead of it any other commands that are to be retried.
15237 		 */
15238 		if ((un->un_failfast_bp != NULL) &&
15239 		    (un->un_failfast_bp == un->un_waitq_headp)) {
15240 			/*
15241 			 * Enqueue this command AFTER the first command on
15242 			 * the wait queue (which is also un_failfast_bp).
15243 			 */
15244 			bp->av_forw = un->un_waitq_headp->av_forw;
15245 			un->un_waitq_headp->av_forw = bp;
15246 			if (un->un_waitq_headp == un->un_waitq_tailp) {
15247 				un->un_waitq_tailp = bp;
15248 			}
15249 		} else {
15250 			/* Enqueue this command at the head of the waitq. */
15251 			bp->av_forw = un->un_waitq_headp;
15252 			un->un_waitq_headp = bp;
15253 			if (un->un_waitq_tailp == NULL) {
15254 				un->un_waitq_tailp = bp;
15255 			}
15256 		}
15257 
15258 		if (statp == NULL) {
15259 			statp = kstat_waitq_enter;
15260 		}
15261 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15262 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
15263 	}
15264 
15265 done:
15266 	if (statp != NULL) {
15267 		SD_UPDATE_KSTATS(un, statp, bp);
15268 	}
15269 
15270 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15271 	    "sd_set_retry_bp: exit un:0x%p\n", un);
15272 }
15273 
15274 
15275 /*
15276  *    Function: sd_start_retry_command
15277  *
15278  * Description: Start the command that has been waiting on the target's
15279  *		retry queue.  Called from timeout(9F) context after the
15280  *		retry delay interval has expired.
15281  *
15282  *   Arguments: arg - pointer to associated softstate for the device.
15283  *
15284  *     Context: timeout(9F) thread context.  May not sleep.
15285  */
15286 
15287 static void
15288 sd_start_retry_command(void *arg)
15289 {
15290 	struct sd_lun *un = arg;
15291 
15292 	ASSERT(un != NULL);
15293 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15294 
15295 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15296 	    "sd_start_retry_command: entry\n");
15297 
15298 	mutex_enter(SD_MUTEX(un));
15299 
15300 	un->un_retry_timeid = NULL;
15301 
15302 	if (un->un_retry_bp != NULL) {
15303 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15304 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
15305 		    un, un->un_retry_bp);
15306 		sd_start_cmds(un, un->un_retry_bp);
15307 	}
15308 
15309 	mutex_exit(SD_MUTEX(un));
15310 
15311 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15312 	    "sd_start_retry_command: exit\n");
15313 }
15314 
15315 
15316 /*
15317  *    Function: sd_start_direct_priority_command
15318  *
15319  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
15320  *		received TRAN_BUSY when we called scsi_transport() to send it
15321  *		to the underlying HBA. This function is called from timeout(9F)
15322  *		context after the delay interval has expired.
15323  *
15324  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
15325  *
15326  *     Context: timeout(9F) thread context.  May not sleep.
15327  */
15328 
15329 static void
15330 sd_start_direct_priority_command(void *arg)
15331 {
15332 	struct buf	*priority_bp = arg;
15333 	struct sd_lun	*un;
15334 
15335 	ASSERT(priority_bp != NULL);
15336 	un = SD_GET_UN(priority_bp);
15337 	ASSERT(un != NULL);
15338 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15339 
15340 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15341 	    "sd_start_direct_priority_command: entry\n");
15342 
15343 	mutex_enter(SD_MUTEX(un));
15344 	un->un_direct_priority_timeid = NULL;
15345 	sd_start_cmds(un, priority_bp);
15346 	mutex_exit(SD_MUTEX(un));
15347 
15348 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15349 	    "sd_start_direct_priority_command: exit\n");
15350 }
15351 
15352 
15353 /*
15354  *    Function: sd_send_request_sense_command
15355  *
15356  * Description: Sends a REQUEST SENSE command to the target
15357  *
15358  *     Context: May be called from interrupt context.
15359  */
15360 
15361 static void
15362 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
15363 	struct scsi_pkt *pktp)
15364 {
15365 	ASSERT(bp != NULL);
15366 	ASSERT(un != NULL);
15367 	ASSERT(mutex_owned(SD_MUTEX(un)));
15368 
15369 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
15370 	    "entry: buf:0x%p\n", bp);
15371 
15372 	/*
15373 	 * If we are syncing or dumping, then fail the command to avoid a
15374 	 * recursive callback into scsi_transport(). Also fail the command
15375 	 * if we are suspended (legacy behavior).
15376 	 */
15377 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
15378 	    (un->un_state == SD_STATE_DUMPING)) {
15379 		sd_return_failed_command(un, bp, EIO);
15380 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15381 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
15382 		return;
15383 	}
15384 
15385 	/*
15386 	 * Retry the failed command and don't issue the request sense if:
15387 	 *    1) the sense buf is busy
15388 	 *    2) we have 1 or more outstanding commands on the target
15389 	 *    (the sense data will be cleared or invalidated any way)
15390 	 *
15391 	 * Note: There could be an issue with not checking a retry limit here,
15392 	 * the problem is determining which retry limit to check.
15393 	 */
15394 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
15395 		/* Don't retry if the command is flagged as non-retryable */
15396 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15397 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15398 			    NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter);
15399 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15400 			    "sd_send_request_sense_command: "
15401 			    "at full throttle, retrying exit\n");
15402 		} else {
15403 			sd_return_failed_command(un, bp, EIO);
15404 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15405 			    "sd_send_request_sense_command: "
15406 			    "at full throttle, non-retryable exit\n");
15407 		}
15408 		return;
15409 	}
15410 
15411 	sd_mark_rqs_busy(un, bp);
15412 	sd_start_cmds(un, un->un_rqs_bp);
15413 
15414 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15415 	    "sd_send_request_sense_command: exit\n");
15416 }
15417 
15418 
15419 /*
15420  *    Function: sd_mark_rqs_busy
15421  *
15422  * Description: Indicate that the request sense bp for this instance is
15423  *		in use.
15424  *
15425  *     Context: May be called under interrupt context
15426  */
15427 
15428 static void
15429 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
15430 {
15431 	struct sd_xbuf	*sense_xp;
15432 
15433 	ASSERT(un != NULL);
15434 	ASSERT(bp != NULL);
15435 	ASSERT(mutex_owned(SD_MUTEX(un)));
15436 	ASSERT(un->un_sense_isbusy == 0);
15437 
15438 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
15439 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
15440 
15441 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
15442 	ASSERT(sense_xp != NULL);
15443 
15444 	SD_INFO(SD_LOG_IO, un,
15445 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
15446 
15447 	ASSERT(sense_xp->xb_pktp != NULL);
15448 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
15449 	    == (FLAG_SENSING | FLAG_HEAD));
15450 
15451 	un->un_sense_isbusy = 1;
15452 	un->un_rqs_bp->b_resid = 0;
15453 	sense_xp->xb_pktp->pkt_resid  = 0;
15454 	sense_xp->xb_pktp->pkt_reason = 0;
15455 
15456 	/* So we can get back the bp at interrupt time! */
15457 	sense_xp->xb_sense_bp = bp;
15458 
15459 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
15460 
15461 	/*
15462 	 * Mark this buf as awaiting sense data. (This is already set in
15463 	 * the pkt_flags for the RQS packet.)
15464 	 */
15465 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
15466 
15467 	sense_xp->xb_retry_count	= 0;
15468 	sense_xp->xb_victim_retry_count = 0;
15469 	sense_xp->xb_ua_retry_count	= 0;
15470 	sense_xp->xb_dma_resid  = 0;
15471 
15472 	/* Clean up the fields for auto-request sense */
15473 	sense_xp->xb_sense_status = 0;
15474 	sense_xp->xb_sense_state  = 0;
15475 	sense_xp->xb_sense_resid  = 0;
15476 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
15477 
15478 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
15479 }
15480 
15481 
15482 /*
15483  *    Function: sd_mark_rqs_idle
15484  *
15485  * Description: SD_MUTEX must be held continuously through this routine
15486  *		to prevent reuse of the rqs struct before the caller can
15487  *		complete it's processing.
15488  *
15489  * Return Code: Pointer to the RQS buf
15490  *
15491  *     Context: May be called under interrupt context
15492  */
15493 
15494 static struct buf *
15495 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
15496 {
15497 	struct buf *bp;
15498 	ASSERT(un != NULL);
15499 	ASSERT(sense_xp != NULL);
15500 	ASSERT(mutex_owned(SD_MUTEX(un)));
15501 	ASSERT(un->un_sense_isbusy != 0);
15502 
15503 	un->un_sense_isbusy = 0;
15504 	bp = sense_xp->xb_sense_bp;
15505 	sense_xp->xb_sense_bp = NULL;
15506 
15507 	/* This pkt is no longer interested in getting sense data */
15508 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
15509 
15510 	return (bp);
15511 }
15512 
15513 
15514 
15515 /*
15516  *    Function: sd_alloc_rqs
15517  *
15518  * Description: Set up the unit to receive auto request sense data
15519  *
15520  * Return Code: DDI_SUCCESS or DDI_FAILURE
15521  *
15522  *     Context: Called under attach(9E) context
15523  */
15524 
15525 static int
15526 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
15527 {
15528 	struct sd_xbuf *xp;
15529 
15530 	ASSERT(un != NULL);
15531 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15532 	ASSERT(un->un_rqs_bp == NULL);
15533 	ASSERT(un->un_rqs_pktp == NULL);
15534 
15535 	/*
15536 	 * First allocate the required buf and scsi_pkt structs, then set up
15537 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
15538 	 */
15539 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
15540 	    SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
15541 	if (un->un_rqs_bp == NULL) {
15542 		return (DDI_FAILURE);
15543 	}
15544 
15545 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
15546 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
15547 
15548 	if (un->un_rqs_pktp == NULL) {
15549 		sd_free_rqs(un);
15550 		return (DDI_FAILURE);
15551 	}
15552 
15553 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
15554 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
15555 	    SCMD_REQUEST_SENSE, 0, SENSE_LENGTH, 0);
15556 
15557 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
15558 
15559 	/* Set up the other needed members in the ARQ scsi_pkt. */
15560 	un->un_rqs_pktp->pkt_comp   = sdintr;
15561 	un->un_rqs_pktp->pkt_time   = sd_io_time;
15562 	un->un_rqs_pktp->pkt_flags |=
15563 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
15564 
15565 	/*
15566 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
15567 	 * provide any intpkt, destroypkt routines as we take care of
15568 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
15569 	 */
15570 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
15571 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
15572 	xp->xb_pktp = un->un_rqs_pktp;
15573 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
15574 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
15575 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
15576 
15577 	/*
15578 	 * Save the pointer to the request sense private bp so it can
15579 	 * be retrieved in sdintr.
15580 	 */
15581 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
15582 	ASSERT(un->un_rqs_bp->b_private == xp);
15583 
15584 	/*
15585 	 * See if the HBA supports auto-request sense for the specified
15586 	 * target/lun. If it does, then try to enable it (if not already
15587 	 * enabled).
15588 	 *
15589 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
15590 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
15591 	 * return success.  However, in both of these cases ARQ is always
15592 	 * enabled and scsi_ifgetcap will always return true. The best approach
15593 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
15594 	 *
15595 	 * The 3rd case is the HBA (adp) always return enabled on
15596 	 * scsi_ifgetgetcap even when it's not enable, the best approach
15597 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
15598 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
15599 	 */
15600 
15601 	if (un->un_f_is_fibre == TRUE) {
15602 		un->un_f_arq_enabled = TRUE;
15603 	} else {
15604 #if defined(__i386) || defined(__amd64)
15605 		/*
15606 		 * Circumvent the Adaptec bug, remove this code when
15607 		 * the bug is fixed
15608 		 */
15609 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
15610 #endif
15611 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
15612 		case 0:
15613 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15614 				"sd_alloc_rqs: HBA supports ARQ\n");
15615 			/*
15616 			 * ARQ is supported by this HBA but currently is not
15617 			 * enabled. Attempt to enable it and if successful then
15618 			 * mark this instance as ARQ enabled.
15619 			 */
15620 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
15621 				== 1) {
15622 				/* Successfully enabled ARQ in the HBA */
15623 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15624 					"sd_alloc_rqs: ARQ enabled\n");
15625 				un->un_f_arq_enabled = TRUE;
15626 			} else {
15627 				/* Could not enable ARQ in the HBA */
15628 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15629 				"sd_alloc_rqs: failed ARQ enable\n");
15630 				un->un_f_arq_enabled = FALSE;
15631 			}
15632 			break;
15633 		case 1:
15634 			/*
15635 			 * ARQ is supported by this HBA and is already enabled.
15636 			 * Just mark ARQ as enabled for this instance.
15637 			 */
15638 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15639 				"sd_alloc_rqs: ARQ already enabled\n");
15640 			un->un_f_arq_enabled = TRUE;
15641 			break;
15642 		default:
15643 			/*
15644 			 * ARQ is not supported by this HBA; disable it for this
15645 			 * instance.
15646 			 */
15647 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15648 				"sd_alloc_rqs: HBA does not support ARQ\n");
15649 			un->un_f_arq_enabled = FALSE;
15650 			break;
15651 		}
15652 	}
15653 
15654 	return (DDI_SUCCESS);
15655 }
15656 
15657 
15658 /*
15659  *    Function: sd_free_rqs
15660  *
15661  * Description: Cleanup for the pre-instance RQS command.
15662  *
15663  *     Context: Kernel thread context
15664  */
15665 
15666 static void
15667 sd_free_rqs(struct sd_lun *un)
15668 {
15669 	ASSERT(un != NULL);
15670 
15671 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
15672 
15673 	/*
15674 	 * If consistent memory is bound to a scsi_pkt, the pkt
15675 	 * has to be destroyed *before* freeing the consistent memory.
15676 	 * Don't change the sequence of this operations.
15677 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
15678 	 * after it was freed in scsi_free_consistent_buf().
15679 	 */
15680 	if (un->un_rqs_pktp != NULL) {
15681 		scsi_destroy_pkt(un->un_rqs_pktp);
15682 		un->un_rqs_pktp = NULL;
15683 	}
15684 
15685 	if (un->un_rqs_bp != NULL) {
15686 		kmem_free(SD_GET_XBUF(un->un_rqs_bp), sizeof (struct sd_xbuf));
15687 		scsi_free_consistent_buf(un->un_rqs_bp);
15688 		un->un_rqs_bp = NULL;
15689 	}
15690 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
15691 }
15692 
15693 
15694 
15695 /*
15696  *    Function: sd_reduce_throttle
15697  *
15698  * Description: Reduces the maximun # of outstanding commands on a
15699  *		target to the current number of outstanding commands.
15700  *		Queues a tiemout(9F) callback to restore the limit
15701  *		after a specified interval has elapsed.
15702  *		Typically used when we get a TRAN_BUSY return code
15703  *		back from scsi_transport().
15704  *
15705  *   Arguments: un - ptr to the sd_lun softstate struct
15706  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
15707  *
15708  *     Context: May be called from interrupt context
15709  */
15710 
15711 static void
15712 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
15713 {
15714 	ASSERT(un != NULL);
15715 	ASSERT(mutex_owned(SD_MUTEX(un)));
15716 	ASSERT(un->un_ncmds_in_transport >= 0);
15717 
15718 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15719 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
15720 	    un, un->un_throttle, un->un_ncmds_in_transport);
15721 
15722 	if (un->un_throttle > 1) {
15723 		if (un->un_f_use_adaptive_throttle == TRUE) {
15724 			switch (throttle_type) {
15725 			case SD_THROTTLE_TRAN_BUSY:
15726 				if (un->un_busy_throttle == 0) {
15727 					un->un_busy_throttle = un->un_throttle;
15728 				}
15729 				break;
15730 			case SD_THROTTLE_QFULL:
15731 				un->un_busy_throttle = 0;
15732 				break;
15733 			default:
15734 				ASSERT(FALSE);
15735 			}
15736 
15737 			if (un->un_ncmds_in_transport > 0) {
15738 			    un->un_throttle = un->un_ncmds_in_transport;
15739 			}
15740 
15741 		} else {
15742 			if (un->un_ncmds_in_transport == 0) {
15743 				un->un_throttle = 1;
15744 			} else {
15745 				un->un_throttle = un->un_ncmds_in_transport;
15746 			}
15747 		}
15748 	}
15749 
15750 	/* Reschedule the timeout if none is currently active */
15751 	if (un->un_reset_throttle_timeid == NULL) {
15752 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
15753 		    un, SD_THROTTLE_RESET_INTERVAL);
15754 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15755 		    "sd_reduce_throttle: timeout scheduled!\n");
15756 	}
15757 
15758 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15759 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15760 }
15761 
15762 
15763 
15764 /*
15765  *    Function: sd_restore_throttle
15766  *
15767  * Description: Callback function for timeout(9F).  Resets the current
15768  *		value of un->un_throttle to its default.
15769  *
15770  *   Arguments: arg - pointer to associated softstate for the device.
15771  *
15772  *     Context: May be called from interrupt context
15773  */
15774 
15775 static void
15776 sd_restore_throttle(void *arg)
15777 {
15778 	struct sd_lun	*un = arg;
15779 
15780 	ASSERT(un != NULL);
15781 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15782 
15783 	mutex_enter(SD_MUTEX(un));
15784 
15785 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
15786 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15787 
15788 	un->un_reset_throttle_timeid = NULL;
15789 
15790 	if (un->un_f_use_adaptive_throttle == TRUE) {
15791 		/*
15792 		 * If un_busy_throttle is nonzero, then it contains the
15793 		 * value that un_throttle was when we got a TRAN_BUSY back
15794 		 * from scsi_transport(). We want to revert back to this
15795 		 * value.
15796 		 *
15797 		 * In the QFULL case, the throttle limit will incrementally
15798 		 * increase until it reaches max throttle.
15799 		 */
15800 		if (un->un_busy_throttle > 0) {
15801 			un->un_throttle = un->un_busy_throttle;
15802 			un->un_busy_throttle = 0;
15803 		} else {
15804 			/*
15805 			 * increase throttle by 10% open gate slowly, schedule
15806 			 * another restore if saved throttle has not been
15807 			 * reached
15808 			 */
15809 			short throttle;
15810 			if (sd_qfull_throttle_enable) {
15811 				throttle = un->un_throttle +
15812 				    max((un->un_throttle / 10), 1);
15813 				un->un_throttle =
15814 				    (throttle < un->un_saved_throttle) ?
15815 				    throttle : un->un_saved_throttle;
15816 				if (un->un_throttle < un->un_saved_throttle) {
15817 				    un->un_reset_throttle_timeid =
15818 					timeout(sd_restore_throttle,
15819 					un, SD_QFULL_THROTTLE_RESET_INTERVAL);
15820 				}
15821 			}
15822 		}
15823 
15824 		/*
15825 		 * If un_throttle has fallen below the low-water mark, we
15826 		 * restore the maximum value here (and allow it to ratchet
15827 		 * down again if necessary).
15828 		 */
15829 		if (un->un_throttle < un->un_min_throttle) {
15830 			un->un_throttle = un->un_saved_throttle;
15831 		}
15832 	} else {
15833 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
15834 		    "restoring limit from 0x%x to 0x%x\n",
15835 		    un->un_throttle, un->un_saved_throttle);
15836 		un->un_throttle = un->un_saved_throttle;
15837 	}
15838 
15839 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15840 	    "sd_restore_throttle: calling sd_start_cmds!\n");
15841 
15842 	sd_start_cmds(un, NULL);
15843 
15844 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15845 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
15846 	    un, un->un_throttle);
15847 
15848 	mutex_exit(SD_MUTEX(un));
15849 
15850 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
15851 }
15852 
15853 /*
15854  *    Function: sdrunout
15855  *
15856  * Description: Callback routine for scsi_init_pkt when a resource allocation
15857  *		fails.
15858  *
15859  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
15860  *		soft state instance.
15861  *
15862  * Return Code: The scsi_init_pkt routine allows for the callback function to
15863  *		return a 0 indicating the callback should be rescheduled or a 1
15864  *		indicating not to reschedule. This routine always returns 1
15865  *		because the driver always provides a callback function to
15866  *		scsi_init_pkt. This results in a callback always being scheduled
15867  *		(via the scsi_init_pkt callback implementation) if a resource
15868  *		failure occurs.
15869  *
15870  *     Context: This callback function may not block or call routines that block
15871  *
15872  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
15873  *		request persisting at the head of the list which cannot be
15874  *		satisfied even after multiple retries. In the future the driver
15875  *		may implement some time of maximum runout count before failing
15876  *		an I/O.
15877  */
15878 
15879 static int
15880 sdrunout(caddr_t arg)
15881 {
15882 	struct sd_lun	*un = (struct sd_lun *)arg;
15883 
15884 	ASSERT(un != NULL);
15885 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15886 
15887 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
15888 
15889 	mutex_enter(SD_MUTEX(un));
15890 	sd_start_cmds(un, NULL);
15891 	mutex_exit(SD_MUTEX(un));
15892 	/*
15893 	 * This callback routine always returns 1 (i.e. do not reschedule)
15894 	 * because we always specify sdrunout as the callback handler for
15895 	 * scsi_init_pkt inside the call to sd_start_cmds.
15896 	 */
15897 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
15898 	return (1);
15899 }
15900 
15901 
15902 /*
15903  *    Function: sdintr
15904  *
15905  * Description: Completion callback routine for scsi_pkt(9S) structs
15906  *		sent to the HBA driver via scsi_transport(9F).
15907  *
15908  *     Context: Interrupt context
15909  */
15910 
15911 static void
15912 sdintr(struct scsi_pkt *pktp)
15913 {
15914 	struct buf	*bp;
15915 	struct sd_xbuf	*xp;
15916 	struct sd_lun	*un;
15917 
15918 	ASSERT(pktp != NULL);
15919 	bp = (struct buf *)pktp->pkt_private;
15920 	ASSERT(bp != NULL);
15921 	xp = SD_GET_XBUF(bp);
15922 	ASSERT(xp != NULL);
15923 	ASSERT(xp->xb_pktp != NULL);
15924 	un = SD_GET_UN(bp);
15925 	ASSERT(un != NULL);
15926 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15927 
15928 #ifdef SD_FAULT_INJECTION
15929 
15930 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
15931 	/* SD FaultInjection */
15932 	sd_faultinjection(pktp);
15933 
15934 #endif /* SD_FAULT_INJECTION */
15935 
15936 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
15937 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
15938 
15939 	mutex_enter(SD_MUTEX(un));
15940 
15941 	/* Reduce the count of the #commands currently in transport */
15942 	un->un_ncmds_in_transport--;
15943 	ASSERT(un->un_ncmds_in_transport >= 0);
15944 
15945 	/* Increment counter to indicate that the callback routine is active */
15946 	un->un_in_callback++;
15947 
15948 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15949 
15950 #ifdef	SDDEBUG
15951 	if (bp == un->un_retry_bp) {
15952 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
15953 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
15954 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
15955 	}
15956 #endif
15957 
15958 	/*
15959 	 * If pkt_reason is CMD_DEV_GONE, just fail the command
15960 	 */
15961 	if (pktp->pkt_reason == CMD_DEV_GONE) {
15962 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
15963 			    "Device is gone\n");
15964 		sd_return_failed_command(un, bp, EIO);
15965 		goto exit;
15966 	}
15967 
15968 	/*
15969 	 * First see if the pkt has auto-request sense data with it....
15970 	 * Look at the packet state first so we don't take a performance
15971 	 * hit looking at the arq enabled flag unless absolutely necessary.
15972 	 */
15973 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
15974 	    (un->un_f_arq_enabled == TRUE)) {
15975 		/*
15976 		 * The HBA did an auto request sense for this command so check
15977 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
15978 		 * driver command that should not be retried.
15979 		 */
15980 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15981 			/*
15982 			 * Save the relevant sense info into the xp for the
15983 			 * original cmd.
15984 			 */
15985 			struct scsi_arq_status *asp;
15986 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
15987 			xp->xb_sense_status =
15988 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
15989 			xp->xb_sense_state  = asp->sts_rqpkt_state;
15990 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
15991 			bcopy(&asp->sts_sensedata, xp->xb_sense_data,
15992 			    min(sizeof (struct scsi_extended_sense),
15993 			    SENSE_LENGTH));
15994 
15995 			/* fail the command */
15996 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15997 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
15998 			sd_return_failed_command(un, bp, EIO);
15999 			goto exit;
16000 		}
16001 
16002 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16003 		/*
16004 		 * We want to either retry or fail this command, so free
16005 		 * the DMA resources here.  If we retry the command then
16006 		 * the DMA resources will be reallocated in sd_start_cmds().
16007 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
16008 		 * causes the *entire* transfer to start over again from the
16009 		 * beginning of the request, even for PARTIAL chunks that
16010 		 * have already transferred successfully.
16011 		 */
16012 		if ((un->un_f_is_fibre == TRUE) &&
16013 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16014 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16015 			scsi_dmafree(pktp);
16016 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16017 		}
16018 #endif
16019 
16020 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16021 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
16022 
16023 		sd_handle_auto_request_sense(un, bp, xp, pktp);
16024 		goto exit;
16025 	}
16026 
16027 	/* Next see if this is the REQUEST SENSE pkt for the instance */
16028 	if (pktp->pkt_flags & FLAG_SENSING)  {
16029 		/* This pktp is from the unit's REQUEST_SENSE command */
16030 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16031 		    "sdintr: sd_handle_request_sense\n");
16032 		sd_handle_request_sense(un, bp, xp, pktp);
16033 		goto exit;
16034 	}
16035 
16036 	/*
16037 	 * Check to see if the command successfully completed as requested;
16038 	 * this is the most common case (and also the hot performance path).
16039 	 *
16040 	 * Requirements for successful completion are:
16041 	 * pkt_reason is CMD_CMPLT and packet status is status good.
16042 	 * In addition:
16043 	 * - A residual of zero indicates successful completion no matter what
16044 	 *   the command is.
16045 	 * - If the residual is not zero and the command is not a read or
16046 	 *   write, then it's still defined as successful completion. In other
16047 	 *   words, if the command is a read or write the residual must be
16048 	 *   zero for successful completion.
16049 	 * - If the residual is not zero and the command is a read or
16050 	 *   write, and it's a USCSICMD, then it's still defined as
16051 	 *   successful completion.
16052 	 */
16053 	if ((pktp->pkt_reason == CMD_CMPLT) &&
16054 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
16055 
16056 		/*
16057 		 * Since this command is returned with a good status, we
16058 		 * can reset the count for Sonoma failover.
16059 		 */
16060 		un->un_sonoma_failure_count = 0;
16061 
16062 		/*
16063 		 * Return all USCSI commands on good status
16064 		 */
16065 		if (pktp->pkt_resid == 0) {
16066 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16067 			    "sdintr: returning command for resid == 0\n");
16068 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
16069 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
16070 			SD_UPDATE_B_RESID(bp, pktp);
16071 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16072 			    "sdintr: returning command for resid != 0\n");
16073 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16074 			SD_UPDATE_B_RESID(bp, pktp);
16075 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16076 				"sdintr: returning uscsi command\n");
16077 		} else {
16078 			goto not_successful;
16079 		}
16080 		sd_return_command(un, bp);
16081 
16082 		/*
16083 		 * Decrement counter to indicate that the callback routine
16084 		 * is done.
16085 		 */
16086 		un->un_in_callback--;
16087 		ASSERT(un->un_in_callback >= 0);
16088 		mutex_exit(SD_MUTEX(un));
16089 
16090 		return;
16091 	}
16092 
16093 not_successful:
16094 
16095 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16096 	/*
16097 	 * The following is based upon knowledge of the underlying transport
16098 	 * and its use of DMA resources.  This code should be removed when
16099 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
16100 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
16101 	 * and sd_start_cmds().
16102 	 *
16103 	 * Free any DMA resources associated with this command if there
16104 	 * is a chance it could be retried or enqueued for later retry.
16105 	 * If we keep the DMA binding then mpxio cannot reissue the
16106 	 * command on another path whenever a path failure occurs.
16107 	 *
16108 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
16109 	 * causes the *entire* transfer to start over again from the
16110 	 * beginning of the request, even for PARTIAL chunks that
16111 	 * have already transferred successfully.
16112 	 *
16113 	 * This is only done for non-uscsi commands (and also skipped for the
16114 	 * driver's internal RQS command). Also just do this for Fibre Channel
16115 	 * devices as these are the only ones that support mpxio.
16116 	 */
16117 	if ((un->un_f_is_fibre == TRUE) &&
16118 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16119 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16120 		scsi_dmafree(pktp);
16121 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16122 	}
16123 #endif
16124 
16125 	/*
16126 	 * The command did not successfully complete as requested so check
16127 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16128 	 * driver command that should not be retried so just return. If
16129 	 * FLAG_DIAGNOSE is not set the error will be processed below.
16130 	 */
16131 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16132 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16133 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
16134 		/*
16135 		 * Issue a request sense if a check condition caused the error
16136 		 * (we handle the auto request sense case above), otherwise
16137 		 * just fail the command.
16138 		 */
16139 		if ((pktp->pkt_reason == CMD_CMPLT) &&
16140 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
16141 			sd_send_request_sense_command(un, bp, pktp);
16142 		} else {
16143 			sd_return_failed_command(un, bp, EIO);
16144 		}
16145 		goto exit;
16146 	}
16147 
16148 	/*
16149 	 * The command did not successfully complete as requested so process
16150 	 * the error, retry, and/or attempt recovery.
16151 	 */
16152 	switch (pktp->pkt_reason) {
16153 	case CMD_CMPLT:
16154 		switch (SD_GET_PKT_STATUS(pktp)) {
16155 		case STATUS_GOOD:
16156 			/*
16157 			 * The command completed successfully with a non-zero
16158 			 * residual
16159 			 */
16160 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16161 			    "sdintr: STATUS_GOOD \n");
16162 			sd_pkt_status_good(un, bp, xp, pktp);
16163 			break;
16164 
16165 		case STATUS_CHECK:
16166 		case STATUS_TERMINATED:
16167 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16168 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
16169 			sd_pkt_status_check_condition(un, bp, xp, pktp);
16170 			break;
16171 
16172 		case STATUS_BUSY:
16173 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16174 			    "sdintr: STATUS_BUSY\n");
16175 			sd_pkt_status_busy(un, bp, xp, pktp);
16176 			break;
16177 
16178 		case STATUS_RESERVATION_CONFLICT:
16179 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16180 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
16181 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16182 			break;
16183 
16184 		case STATUS_QFULL:
16185 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16186 			    "sdintr: STATUS_QFULL\n");
16187 			sd_pkt_status_qfull(un, bp, xp, pktp);
16188 			break;
16189 
16190 		case STATUS_MET:
16191 		case STATUS_INTERMEDIATE:
16192 		case STATUS_SCSI2:
16193 		case STATUS_INTERMEDIATE_MET:
16194 		case STATUS_ACA_ACTIVE:
16195 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16196 			    "Unexpected SCSI status received: 0x%x\n",
16197 			    SD_GET_PKT_STATUS(pktp));
16198 			sd_return_failed_command(un, bp, EIO);
16199 			break;
16200 
16201 		default:
16202 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16203 			    "Invalid SCSI status received: 0x%x\n",
16204 			    SD_GET_PKT_STATUS(pktp));
16205 			sd_return_failed_command(un, bp, EIO);
16206 			break;
16207 
16208 		}
16209 		break;
16210 
16211 	case CMD_INCOMPLETE:
16212 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16213 		    "sdintr:  CMD_INCOMPLETE\n");
16214 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
16215 		break;
16216 	case CMD_TRAN_ERR:
16217 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16218 		    "sdintr: CMD_TRAN_ERR\n");
16219 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
16220 		break;
16221 	case CMD_RESET:
16222 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16223 		    "sdintr: CMD_RESET \n");
16224 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
16225 		break;
16226 	case CMD_ABORTED:
16227 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16228 		    "sdintr: CMD_ABORTED \n");
16229 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
16230 		break;
16231 	case CMD_TIMEOUT:
16232 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16233 		    "sdintr: CMD_TIMEOUT\n");
16234 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
16235 		break;
16236 	case CMD_UNX_BUS_FREE:
16237 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16238 		    "sdintr: CMD_UNX_BUS_FREE \n");
16239 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
16240 		break;
16241 	case CMD_TAG_REJECT:
16242 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16243 		    "sdintr: CMD_TAG_REJECT\n");
16244 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
16245 		break;
16246 	default:
16247 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16248 		    "sdintr: default\n");
16249 		sd_pkt_reason_default(un, bp, xp, pktp);
16250 		break;
16251 	}
16252 
16253 exit:
16254 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
16255 
16256 	/* Decrement counter to indicate that the callback routine is done. */
16257 	un->un_in_callback--;
16258 	ASSERT(un->un_in_callback >= 0);
16259 
16260 	/*
16261 	 * At this point, the pkt has been dispatched, ie, it is either
16262 	 * being re-tried or has been returned to its caller and should
16263 	 * not be referenced.
16264 	 */
16265 
16266 	mutex_exit(SD_MUTEX(un));
16267 }
16268 
16269 
16270 /*
16271  *    Function: sd_print_incomplete_msg
16272  *
16273  * Description: Prints the error message for a CMD_INCOMPLETE error.
16274  *
16275  *   Arguments: un - ptr to associated softstate for the device.
16276  *		bp - ptr to the buf(9S) for the command.
16277  *		arg - message string ptr
16278  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
16279  *			or SD_NO_RETRY_ISSUED.
16280  *
16281  *     Context: May be called under interrupt context
16282  */
16283 
16284 static void
16285 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
16286 {
16287 	struct scsi_pkt	*pktp;
16288 	char	*msgp;
16289 	char	*cmdp = arg;
16290 
16291 	ASSERT(un != NULL);
16292 	ASSERT(mutex_owned(SD_MUTEX(un)));
16293 	ASSERT(bp != NULL);
16294 	ASSERT(arg != NULL);
16295 	pktp = SD_GET_PKTP(bp);
16296 	ASSERT(pktp != NULL);
16297 
16298 	switch (code) {
16299 	case SD_DELAYED_RETRY_ISSUED:
16300 	case SD_IMMEDIATE_RETRY_ISSUED:
16301 		msgp = "retrying";
16302 		break;
16303 	case SD_NO_RETRY_ISSUED:
16304 	default:
16305 		msgp = "giving up";
16306 		break;
16307 	}
16308 
16309 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16310 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16311 		    "incomplete %s- %s\n", cmdp, msgp);
16312 	}
16313 }
16314 
16315 
16316 
16317 /*
16318  *    Function: sd_pkt_status_good
16319  *
16320  * Description: Processing for a STATUS_GOOD code in pkt_status.
16321  *
16322  *     Context: May be called under interrupt context
16323  */
16324 
16325 static void
16326 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
16327 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16328 {
16329 	char	*cmdp;
16330 
16331 	ASSERT(un != NULL);
16332 	ASSERT(mutex_owned(SD_MUTEX(un)));
16333 	ASSERT(bp != NULL);
16334 	ASSERT(xp != NULL);
16335 	ASSERT(pktp != NULL);
16336 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
16337 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
16338 	ASSERT(pktp->pkt_resid != 0);
16339 
16340 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
16341 
16342 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16343 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
16344 	case SCMD_READ:
16345 		cmdp = "read";
16346 		break;
16347 	case SCMD_WRITE:
16348 		cmdp = "write";
16349 		break;
16350 	default:
16351 		SD_UPDATE_B_RESID(bp, pktp);
16352 		sd_return_command(un, bp);
16353 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16354 		return;
16355 	}
16356 
16357 	/*
16358 	 * See if we can retry the read/write, preferrably immediately.
16359 	 * If retries are exhaused, then sd_retry_command() will update
16360 	 * the b_resid count.
16361 	 */
16362 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
16363 	    cmdp, EIO, (clock_t)0, NULL);
16364 
16365 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16366 }
16367 
16368 
16369 
16370 
16371 
16372 /*
16373  *    Function: sd_handle_request_sense
16374  *
16375  * Description: Processing for non-auto Request Sense command.
16376  *
16377  *   Arguments: un - ptr to associated softstate
16378  *		sense_bp - ptr to buf(9S) for the RQS command
16379  *		sense_xp - ptr to the sd_xbuf for the RQS command
16380  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
16381  *
16382  *     Context: May be called under interrupt context
16383  */
16384 
16385 static void
16386 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
16387 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
16388 {
16389 	struct buf	*cmd_bp;	/* buf for the original command */
16390 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
16391 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
16392 
16393 	ASSERT(un != NULL);
16394 	ASSERT(mutex_owned(SD_MUTEX(un)));
16395 	ASSERT(sense_bp != NULL);
16396 	ASSERT(sense_xp != NULL);
16397 	ASSERT(sense_pktp != NULL);
16398 
16399 	/*
16400 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
16401 	 * RQS command and not the original command.
16402 	 */
16403 	ASSERT(sense_pktp == un->un_rqs_pktp);
16404 	ASSERT(sense_bp   == un->un_rqs_bp);
16405 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
16406 	    (FLAG_SENSING | FLAG_HEAD));
16407 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
16408 	    FLAG_SENSING) == FLAG_SENSING);
16409 
16410 	/* These are the bp, xp, and pktp for the original command */
16411 	cmd_bp = sense_xp->xb_sense_bp;
16412 	cmd_xp = SD_GET_XBUF(cmd_bp);
16413 	cmd_pktp = SD_GET_PKTP(cmd_bp);
16414 
16415 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
16416 		/*
16417 		 * The REQUEST SENSE command failed.  Release the REQUEST
16418 		 * SENSE command for re-use, get back the bp for the original
16419 		 * command, and attempt to re-try the original command if
16420 		 * FLAG_DIAGNOSE is not set in the original packet.
16421 		 */
16422 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16423 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16424 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
16425 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
16426 			    NULL, NULL, EIO, (clock_t)0, NULL);
16427 			return;
16428 		}
16429 	}
16430 
16431 	/*
16432 	 * Save the relevant sense info into the xp for the original cmd.
16433 	 *
16434 	 * Note: if the request sense failed the state info will be zero
16435 	 * as set in sd_mark_rqs_busy()
16436 	 */
16437 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
16438 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
16439 	cmd_xp->xb_sense_resid  = sense_pktp->pkt_resid;
16440 	bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, SENSE_LENGTH);
16441 
16442 	/*
16443 	 *  Free up the RQS command....
16444 	 *  NOTE:
16445 	 *	Must do this BEFORE calling sd_validate_sense_data!
16446 	 *	sd_validate_sense_data may return the original command in
16447 	 *	which case the pkt will be freed and the flags can no
16448 	 *	longer be touched.
16449 	 *	SD_MUTEX is held through this process until the command
16450 	 *	is dispatched based upon the sense data, so there are
16451 	 *	no race conditions.
16452 	 */
16453 	(void) sd_mark_rqs_idle(un, sense_xp);
16454 
16455 	/*
16456 	 * For a retryable command see if we have valid sense data, if so then
16457 	 * turn it over to sd_decode_sense() to figure out the right course of
16458 	 * action. Just fail a non-retryable command.
16459 	 */
16460 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16461 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp) ==
16462 		    SD_SENSE_DATA_IS_VALID) {
16463 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
16464 		}
16465 	} else {
16466 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
16467 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
16468 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
16469 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
16470 		sd_return_failed_command(un, cmd_bp, EIO);
16471 	}
16472 }
16473 
16474 
16475 
16476 
16477 /*
16478  *    Function: sd_handle_auto_request_sense
16479  *
16480  * Description: Processing for auto-request sense information.
16481  *
16482  *   Arguments: un - ptr to associated softstate
16483  *		bp - ptr to buf(9S) for the command
16484  *		xp - ptr to the sd_xbuf for the command
16485  *		pktp - ptr to the scsi_pkt(9S) for the command
16486  *
16487  *     Context: May be called under interrupt context
16488  */
16489 
16490 static void
16491 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
16492 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16493 {
16494 	struct scsi_arq_status *asp;
16495 
16496 	ASSERT(un != NULL);
16497 	ASSERT(mutex_owned(SD_MUTEX(un)));
16498 	ASSERT(bp != NULL);
16499 	ASSERT(xp != NULL);
16500 	ASSERT(pktp != NULL);
16501 	ASSERT(pktp != un->un_rqs_pktp);
16502 	ASSERT(bp   != un->un_rqs_bp);
16503 
16504 	/*
16505 	 * For auto-request sense, we get a scsi_arq_status back from
16506 	 * the HBA, with the sense data in the sts_sensedata member.
16507 	 * The pkt_scbp of the packet points to this scsi_arq_status.
16508 	 */
16509 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16510 
16511 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
16512 		/*
16513 		 * The auto REQUEST SENSE failed; see if we can re-try
16514 		 * the original command.
16515 		 */
16516 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16517 		    "auto request sense failed (reason=%s)\n",
16518 		    scsi_rname(asp->sts_rqpkt_reason));
16519 
16520 		sd_reset_target(un, pktp);
16521 
16522 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16523 		    NULL, NULL, EIO, (clock_t)0, NULL);
16524 		return;
16525 	}
16526 
16527 	/* Save the relevant sense info into the xp for the original cmd. */
16528 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
16529 	xp->xb_sense_state  = asp->sts_rqpkt_state;
16530 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16531 	bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16532 	    min(sizeof (struct scsi_extended_sense), SENSE_LENGTH));
16533 
16534 	/*
16535 	 * See if we have valid sense data, if so then turn it over to
16536 	 * sd_decode_sense() to figure out the right course of action.
16537 	 */
16538 	if (sd_validate_sense_data(un, bp, xp) == SD_SENSE_DATA_IS_VALID) {
16539 		sd_decode_sense(un, bp, xp, pktp);
16540 	}
16541 }
16542 
16543 
16544 /*
16545  *    Function: sd_print_sense_failed_msg
16546  *
16547  * Description: Print log message when RQS has failed.
16548  *
16549  *   Arguments: un - ptr to associated softstate
16550  *		bp - ptr to buf(9S) for the command
16551  *		arg - generic message string ptr
16552  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16553  *			or SD_NO_RETRY_ISSUED
16554  *
16555  *     Context: May be called from interrupt context
16556  */
16557 
16558 static void
16559 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
16560 	int code)
16561 {
16562 	char	*msgp = arg;
16563 
16564 	ASSERT(un != NULL);
16565 	ASSERT(mutex_owned(SD_MUTEX(un)));
16566 	ASSERT(bp != NULL);
16567 
16568 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
16569 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
16570 	}
16571 }
16572 
16573 
16574 /*
16575  *    Function: sd_validate_sense_data
16576  *
16577  * Description: Check the given sense data for validity.
16578  *		If the sense data is not valid, the command will
16579  *		be either failed or retried!
16580  *
16581  * Return Code: SD_SENSE_DATA_IS_INVALID
16582  *		SD_SENSE_DATA_IS_VALID
16583  *
16584  *     Context: May be called from interrupt context
16585  */
16586 
16587 static int
16588 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp)
16589 {
16590 	struct scsi_extended_sense *esp;
16591 	struct	scsi_pkt *pktp;
16592 	size_t	actual_len;
16593 	char	*msgp = NULL;
16594 
16595 	ASSERT(un != NULL);
16596 	ASSERT(mutex_owned(SD_MUTEX(un)));
16597 	ASSERT(bp != NULL);
16598 	ASSERT(bp != un->un_rqs_bp);
16599 	ASSERT(xp != NULL);
16600 
16601 	pktp = SD_GET_PKTP(bp);
16602 	ASSERT(pktp != NULL);
16603 
16604 	/*
16605 	 * Check the status of the RQS command (auto or manual).
16606 	 */
16607 	switch (xp->xb_sense_status & STATUS_MASK) {
16608 	case STATUS_GOOD:
16609 		break;
16610 
16611 	case STATUS_RESERVATION_CONFLICT:
16612 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16613 		return (SD_SENSE_DATA_IS_INVALID);
16614 
16615 	case STATUS_BUSY:
16616 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16617 		    "Busy Status on REQUEST SENSE\n");
16618 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
16619 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
16620 		return (SD_SENSE_DATA_IS_INVALID);
16621 
16622 	case STATUS_QFULL:
16623 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16624 		    "QFULL Status on REQUEST SENSE\n");
16625 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
16626 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
16627 		return (SD_SENSE_DATA_IS_INVALID);
16628 
16629 	case STATUS_CHECK:
16630 	case STATUS_TERMINATED:
16631 		msgp = "Check Condition on REQUEST SENSE\n";
16632 		goto sense_failed;
16633 
16634 	default:
16635 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
16636 		goto sense_failed;
16637 	}
16638 
16639 	/*
16640 	 * See if we got the minimum required amount of sense data.
16641 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
16642 	 * or less.
16643 	 */
16644 	actual_len = (int)(SENSE_LENGTH - xp->xb_sense_resid);
16645 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
16646 	    (actual_len == 0)) {
16647 		msgp = "Request Sense couldn't get sense data\n";
16648 		goto sense_failed;
16649 	}
16650 
16651 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
16652 		msgp = "Not enough sense information\n";
16653 		goto sense_failed;
16654 	}
16655 
16656 	/*
16657 	 * We require the extended sense data
16658 	 */
16659 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
16660 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
16661 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16662 			static char tmp[8];
16663 			static char buf[148];
16664 			char *p = (char *)(xp->xb_sense_data);
16665 			int i;
16666 
16667 			mutex_enter(&sd_sense_mutex);
16668 			(void) strcpy(buf, "undecodable sense information:");
16669 			for (i = 0; i < actual_len; i++) {
16670 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
16671 				(void) strcpy(&buf[strlen(buf)], tmp);
16672 			}
16673 			i = strlen(buf);
16674 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
16675 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
16676 			mutex_exit(&sd_sense_mutex);
16677 		}
16678 		/* Note: Legacy behavior, fail the command with no retry */
16679 		sd_return_failed_command(un, bp, EIO);
16680 		return (SD_SENSE_DATA_IS_INVALID);
16681 	}
16682 
16683 	/*
16684 	 * Check that es_code is valid (es_class concatenated with es_code
16685 	 * make up the "response code" field.  es_class will always be 7, so
16686 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
16687 	 * format.
16688 	 */
16689 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
16690 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
16691 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
16692 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
16693 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
16694 		goto sense_failed;
16695 	}
16696 
16697 	return (SD_SENSE_DATA_IS_VALID);
16698 
16699 sense_failed:
16700 	/*
16701 	 * If the request sense failed (for whatever reason), attempt
16702 	 * to retry the original command.
16703 	 */
16704 #if defined(__i386) || defined(__amd64)
16705 	/*
16706 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
16707 	 * sddef.h for Sparc platform, and x86 uses 1 binary
16708 	 * for both SCSI/FC.
16709 	 * The SD_RETRY_DELAY value need to be adjusted here
16710 	 * when SD_RETRY_DELAY change in sddef.h
16711 	 */
16712 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16713 	    sd_print_sense_failed_msg, msgp, EIO,
16714 		un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
16715 #else
16716 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16717 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
16718 #endif
16719 
16720 	return (SD_SENSE_DATA_IS_INVALID);
16721 }
16722 
16723 
16724 
16725 /*
16726  *    Function: sd_decode_sense
16727  *
16728  * Description: Take recovery action(s) when SCSI Sense Data is received.
16729  *
16730  *     Context: Interrupt context.
16731  */
16732 
16733 static void
16734 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
16735 	struct scsi_pkt *pktp)
16736 {
16737 	struct scsi_extended_sense *esp;
16738 	struct scsi_descr_sense_hdr *sdsp;
16739 	uint8_t asc, ascq, sense_key;
16740 
16741 	ASSERT(un != NULL);
16742 	ASSERT(mutex_owned(SD_MUTEX(un)));
16743 	ASSERT(bp != NULL);
16744 	ASSERT(bp != un->un_rqs_bp);
16745 	ASSERT(xp != NULL);
16746 	ASSERT(pktp != NULL);
16747 
16748 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
16749 
16750 	switch (esp->es_code) {
16751 	case CODE_FMT_DESCR_CURRENT:
16752 	case CODE_FMT_DESCR_DEFERRED:
16753 		sdsp = (struct scsi_descr_sense_hdr *)xp->xb_sense_data;
16754 		sense_key = sdsp->ds_key;
16755 		asc = sdsp->ds_add_code;
16756 		ascq = sdsp->ds_qual_code;
16757 		break;
16758 	case CODE_FMT_VENDOR_SPECIFIC:
16759 	case CODE_FMT_FIXED_CURRENT:
16760 	case CODE_FMT_FIXED_DEFERRED:
16761 	default:
16762 		sense_key = esp->es_key;
16763 		asc = esp->es_add_code;
16764 		ascq = esp->es_qual_code;
16765 		break;
16766 	}
16767 
16768 	switch (sense_key) {
16769 	case KEY_NO_SENSE:
16770 		sd_sense_key_no_sense(un, bp, xp, pktp);
16771 		break;
16772 	case KEY_RECOVERABLE_ERROR:
16773 		sd_sense_key_recoverable_error(un, asc, bp, xp, pktp);
16774 		break;
16775 	case KEY_NOT_READY:
16776 		sd_sense_key_not_ready(un, asc, ascq, bp, xp, pktp);
16777 		break;
16778 	case KEY_MEDIUM_ERROR:
16779 	case KEY_HARDWARE_ERROR:
16780 		sd_sense_key_medium_or_hardware_error(un,
16781 		    sense_key, asc, bp, xp, pktp);
16782 		break;
16783 	case KEY_ILLEGAL_REQUEST:
16784 		sd_sense_key_illegal_request(un, bp, xp, pktp);
16785 		break;
16786 	case KEY_UNIT_ATTENTION:
16787 		sd_sense_key_unit_attention(un, asc, bp, xp, pktp);
16788 		break;
16789 	case KEY_WRITE_PROTECT:
16790 	case KEY_VOLUME_OVERFLOW:
16791 	case KEY_MISCOMPARE:
16792 		sd_sense_key_fail_command(un, bp, xp, pktp);
16793 		break;
16794 	case KEY_BLANK_CHECK:
16795 		sd_sense_key_blank_check(un, bp, xp, pktp);
16796 		break;
16797 	case KEY_ABORTED_COMMAND:
16798 		sd_sense_key_aborted_command(un, bp, xp, pktp);
16799 		break;
16800 	case KEY_VENDOR_UNIQUE:
16801 	case KEY_COPY_ABORTED:
16802 	case KEY_EQUAL:
16803 	case KEY_RESERVED:
16804 	default:
16805 		sd_sense_key_default(un, sense_key, bp, xp, pktp);
16806 		break;
16807 	}
16808 }
16809 
16810 
16811 /*
16812  *    Function: sd_dump_memory
16813  *
16814  * Description: Debug logging routine to print the contents of a user provided
16815  *		buffer. The output of the buffer is broken up into 256 byte
16816  *		segments due to a size constraint of the scsi_log.
16817  *		implementation.
16818  *
16819  *   Arguments: un - ptr to softstate
16820  *		comp - component mask
16821  *		title - "title" string to preceed data when printed
16822  *		data - ptr to data block to be printed
16823  *		len - size of data block to be printed
16824  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
16825  *
16826  *     Context: May be called from interrupt context
16827  */
16828 
16829 #define	SD_DUMP_MEMORY_BUF_SIZE	256
16830 
16831 static char *sd_dump_format_string[] = {
16832 		" 0x%02x",
16833 		" %c"
16834 };
16835 
16836 static void
16837 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
16838     int len, int fmt)
16839 {
16840 	int	i, j;
16841 	int	avail_count;
16842 	int	start_offset;
16843 	int	end_offset;
16844 	size_t	entry_len;
16845 	char	*bufp;
16846 	char	*local_buf;
16847 	char	*format_string;
16848 
16849 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
16850 
16851 	/*
16852 	 * In the debug version of the driver, this function is called from a
16853 	 * number of places which are NOPs in the release driver.
16854 	 * The debug driver therefore has additional methods of filtering
16855 	 * debug output.
16856 	 */
16857 #ifdef SDDEBUG
16858 	/*
16859 	 * In the debug version of the driver we can reduce the amount of debug
16860 	 * messages by setting sd_error_level to something other than
16861 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
16862 	 * sd_component_mask.
16863 	 */
16864 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
16865 	    (sd_error_level != SCSI_ERR_ALL)) {
16866 		return;
16867 	}
16868 	if (((sd_component_mask & comp) == 0) ||
16869 	    (sd_error_level != SCSI_ERR_ALL)) {
16870 		return;
16871 	}
16872 #else
16873 	if (sd_error_level != SCSI_ERR_ALL) {
16874 		return;
16875 	}
16876 #endif
16877 
16878 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
16879 	bufp = local_buf;
16880 	/*
16881 	 * Available length is the length of local_buf[], minus the
16882 	 * length of the title string, minus one for the ":", minus
16883 	 * one for the newline, minus one for the NULL terminator.
16884 	 * This gives the #bytes available for holding the printed
16885 	 * values from the given data buffer.
16886 	 */
16887 	if (fmt == SD_LOG_HEX) {
16888 		format_string = sd_dump_format_string[0];
16889 	} else /* SD_LOG_CHAR */ {
16890 		format_string = sd_dump_format_string[1];
16891 	}
16892 	/*
16893 	 * Available count is the number of elements from the given
16894 	 * data buffer that we can fit into the available length.
16895 	 * This is based upon the size of the format string used.
16896 	 * Make one entry and find it's size.
16897 	 */
16898 	(void) sprintf(bufp, format_string, data[0]);
16899 	entry_len = strlen(bufp);
16900 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
16901 
16902 	j = 0;
16903 	while (j < len) {
16904 		bufp = local_buf;
16905 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
16906 		start_offset = j;
16907 
16908 		end_offset = start_offset + avail_count;
16909 
16910 		(void) sprintf(bufp, "%s:", title);
16911 		bufp += strlen(bufp);
16912 		for (i = start_offset; ((i < end_offset) && (j < len));
16913 		    i++, j++) {
16914 			(void) sprintf(bufp, format_string, data[i]);
16915 			bufp += entry_len;
16916 		}
16917 		(void) sprintf(bufp, "\n");
16918 
16919 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
16920 	}
16921 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
16922 }
16923 
16924 /*
16925  *    Function: sd_print_sense_msg
16926  *
16927  * Description: Log a message based upon the given sense data.
16928  *
16929  *   Arguments: un - ptr to associated softstate
16930  *		bp - ptr to buf(9S) for the command
16931  *		arg - ptr to associate sd_sense_info struct
16932  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16933  *			or SD_NO_RETRY_ISSUED
16934  *
16935  *     Context: May be called from interrupt context
16936  */
16937 
16938 static void
16939 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
16940 {
16941 	struct sd_xbuf	*xp;
16942 	struct scsi_pkt	*pktp;
16943 	struct scsi_extended_sense *sensep;
16944 	daddr_t request_blkno;
16945 	diskaddr_t err_blkno;
16946 	int severity;
16947 	int pfa_flag;
16948 	int fixed_format = TRUE;
16949 	extern struct scsi_key_strings scsi_cmds[];
16950 
16951 	ASSERT(un != NULL);
16952 	ASSERT(mutex_owned(SD_MUTEX(un)));
16953 	ASSERT(bp != NULL);
16954 	xp = SD_GET_XBUF(bp);
16955 	ASSERT(xp != NULL);
16956 	pktp = SD_GET_PKTP(bp);
16957 	ASSERT(pktp != NULL);
16958 	ASSERT(arg != NULL);
16959 
16960 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
16961 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
16962 
16963 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
16964 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
16965 		severity = SCSI_ERR_RETRYABLE;
16966 	}
16967 
16968 	/* Use absolute block number for the request block number */
16969 	request_blkno = xp->xb_blkno;
16970 
16971 	/*
16972 	 * Now try to get the error block number from the sense data
16973 	 */
16974 	sensep = (struct scsi_extended_sense *)xp->xb_sense_data;
16975 	switch (sensep->es_code) {
16976 	case CODE_FMT_DESCR_CURRENT:
16977 	case CODE_FMT_DESCR_DEFERRED:
16978 		err_blkno =
16979 		    sd_extract_sense_info_descr(
16980 			(struct scsi_descr_sense_hdr *)sensep);
16981 		fixed_format = FALSE;
16982 		break;
16983 	case CODE_FMT_FIXED_CURRENT:
16984 	case CODE_FMT_FIXED_DEFERRED:
16985 	case CODE_FMT_VENDOR_SPECIFIC:
16986 	default:
16987 		/*
16988 		 * With the es_valid bit set, we assume that the error
16989 		 * blkno is in the sense data.  Also, if xp->xb_blkno is
16990 		 * greater than 0xffffffff then the target *should* have used
16991 		 * a descriptor sense format (or it shouldn't have set
16992 		 * the es_valid bit), and we may as well ignore the
16993 		 * 32-bit value.
16994 		 */
16995 		if ((sensep->es_valid != 0) && (xp->xb_blkno <= 0xffffffff)) {
16996 			err_blkno = (diskaddr_t)
16997 			    ((sensep->es_info_1 << 24) |
16998 			    (sensep->es_info_2 << 16) |
16999 			    (sensep->es_info_3 << 8)  |
17000 			    (sensep->es_info_4));
17001 		} else {
17002 			err_blkno = (diskaddr_t)-1;
17003 		}
17004 		break;
17005 	}
17006 
17007 	if (err_blkno == (diskaddr_t)-1) {
17008 		/*
17009 		 * Without the es_valid bit set (for fixed format) or an
17010 		 * information descriptor (for descriptor format) we cannot
17011 		 * be certain of the error blkno, so just use the
17012 		 * request_blkno.
17013 		 */
17014 		err_blkno = (diskaddr_t)request_blkno;
17015 	} else {
17016 		/*
17017 		 * We retrieved the error block number from the information
17018 		 * portion of the sense data.
17019 		 *
17020 		 * For USCSI commands we are better off using the error
17021 		 * block no. as the requested block no. (This is the best
17022 		 * we can estimate.)
17023 		 */
17024 		if ((SD_IS_BUFIO(xp) == FALSE) &&
17025 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
17026 			request_blkno = err_blkno;
17027 		}
17028 	}
17029 
17030 	/*
17031 	 * The following will log the buffer contents for the release driver
17032 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
17033 	 * level is set to verbose.
17034 	 */
17035 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
17036 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17037 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
17038 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
17039 
17040 	if (pfa_flag == FALSE) {
17041 		/* This is normally only set for USCSI */
17042 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
17043 			return;
17044 		}
17045 
17046 		if ((SD_IS_BUFIO(xp) == TRUE) &&
17047 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
17048 		    (severity < sd_error_level))) {
17049 			return;
17050 		}
17051 	}
17052 
17053 	/*
17054 	 * If the data is fixed format then check for Sonoma Failover,
17055 	 * and keep a count of how many failed I/O's.  We should not have
17056 	 * to worry about Sonoma returning descriptor format sense data,
17057 	 * and asc/ascq are in a different location in descriptor format.
17058 	 */
17059 	if (fixed_format &&
17060 	    (SD_IS_LSI(un)) && (sensep->es_key == KEY_ILLEGAL_REQUEST) &&
17061 	    (sensep->es_add_code == 0x94) && (sensep->es_qual_code == 0x01)) {
17062 		un->un_sonoma_failure_count++;
17063 		if (un->un_sonoma_failure_count > 1) {
17064 			return;
17065 		}
17066 	}
17067 
17068 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
17069 	    request_blkno, err_blkno, scsi_cmds, sensep,
17070 	    un->un_additional_codes, NULL);
17071 }
17072 
17073 /*
17074  *    Function: sd_extract_sense_info_descr
17075  *
17076  * Description: Retrieve "information" field from descriptor format
17077  *              sense data.  Iterates through each sense descriptor
17078  *              looking for the information descriptor and returns
17079  *              the information field from that descriptor.
17080  *
17081  *     Context: May be called from interrupt context
17082  */
17083 
17084 static diskaddr_t
17085 sd_extract_sense_info_descr(struct scsi_descr_sense_hdr *sdsp)
17086 {
17087 	diskaddr_t result;
17088 	uint8_t *descr_offset;
17089 	int valid_sense_length;
17090 	struct scsi_information_sense_descr *isd;
17091 
17092 	/*
17093 	 * Initialize result to -1 indicating there is no information
17094 	 * descriptor
17095 	 */
17096 	result = (diskaddr_t)-1;
17097 
17098 	/*
17099 	 * The first descriptor will immediately follow the header
17100 	 */
17101 	descr_offset = (uint8_t *)(sdsp+1); /* Pointer arithmetic */
17102 
17103 	/*
17104 	 * Calculate the amount of valid sense data
17105 	 */
17106 	valid_sense_length =
17107 	    min((sizeof (struct scsi_descr_sense_hdr) +
17108 	    sdsp->ds_addl_sense_length),
17109 	    SENSE_LENGTH);
17110 
17111 	/*
17112 	 * Iterate through the list of descriptors, stopping when we
17113 	 * run out of sense data
17114 	 */
17115 	while ((descr_offset + sizeof (struct scsi_information_sense_descr)) <=
17116 	    (uint8_t *)sdsp + valid_sense_length) {
17117 		/*
17118 		 * Check if this is an information descriptor.  We can
17119 		 * use the scsi_information_sense_descr structure as a
17120 		 * template sense the first two fields are always the
17121 		 * same
17122 		 */
17123 		isd = (struct scsi_information_sense_descr *)descr_offset;
17124 		if (isd->isd_descr_type == DESCR_INFORMATION) {
17125 			/*
17126 			 * Found an information descriptor.  Copy the
17127 			 * information field.  There will only be one
17128 			 * information descriptor so we can stop looking.
17129 			 */
17130 			result =
17131 			    (((diskaddr_t)isd->isd_information[0] << 56) |
17132 				((diskaddr_t)isd->isd_information[1] << 48) |
17133 				((diskaddr_t)isd->isd_information[2] << 40) |
17134 				((diskaddr_t)isd->isd_information[3] << 32) |
17135 				((diskaddr_t)isd->isd_information[4] << 24) |
17136 				((diskaddr_t)isd->isd_information[5] << 16) |
17137 				((diskaddr_t)isd->isd_information[6] << 8)  |
17138 				((diskaddr_t)isd->isd_information[7]));
17139 			break;
17140 		}
17141 
17142 		/*
17143 		 * Get pointer to the next descriptor.  The "additional
17144 		 * length" field holds the length of the descriptor except
17145 		 * for the "type" and "additional length" fields, so
17146 		 * we need to add 2 to get the total length.
17147 		 */
17148 		descr_offset += (isd->isd_addl_length + 2);
17149 	}
17150 
17151 	return (result);
17152 }
17153 
17154 /*
17155  *    Function: sd_sense_key_no_sense
17156  *
17157  * Description: Recovery action when sense data was not received.
17158  *
17159  *     Context: May be called from interrupt context
17160  */
17161 
17162 static void
17163 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
17164 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17165 {
17166 	struct sd_sense_info	si;
17167 
17168 	ASSERT(un != NULL);
17169 	ASSERT(mutex_owned(SD_MUTEX(un)));
17170 	ASSERT(bp != NULL);
17171 	ASSERT(xp != NULL);
17172 	ASSERT(pktp != NULL);
17173 
17174 	si.ssi_severity = SCSI_ERR_FATAL;
17175 	si.ssi_pfa_flag = FALSE;
17176 
17177 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17178 
17179 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17180 		&si, EIO, (clock_t)0, NULL);
17181 }
17182 
17183 
17184 /*
17185  *    Function: sd_sense_key_recoverable_error
17186  *
17187  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
17188  *
17189  *     Context: May be called from interrupt context
17190  */
17191 
17192 static void
17193 sd_sense_key_recoverable_error(struct sd_lun *un,
17194 	uint8_t asc,
17195 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17196 {
17197 	struct sd_sense_info	si;
17198 
17199 	ASSERT(un != NULL);
17200 	ASSERT(mutex_owned(SD_MUTEX(un)));
17201 	ASSERT(bp != NULL);
17202 	ASSERT(xp != NULL);
17203 	ASSERT(pktp != NULL);
17204 
17205 	/*
17206 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
17207 	 */
17208 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
17209 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17210 		si.ssi_severity = SCSI_ERR_INFO;
17211 		si.ssi_pfa_flag = TRUE;
17212 	} else {
17213 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
17214 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
17215 		si.ssi_severity = SCSI_ERR_RECOVERED;
17216 		si.ssi_pfa_flag = FALSE;
17217 	}
17218 
17219 	if (pktp->pkt_resid == 0) {
17220 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17221 		sd_return_command(un, bp);
17222 		return;
17223 	}
17224 
17225 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17226 	    &si, EIO, (clock_t)0, NULL);
17227 }
17228 
17229 
17230 
17231 
17232 /*
17233  *    Function: sd_sense_key_not_ready
17234  *
17235  * Description: Recovery actions for a SCSI "Not Ready" sense key.
17236  *
17237  *     Context: May be called from interrupt context
17238  */
17239 
17240 static void
17241 sd_sense_key_not_ready(struct sd_lun *un,
17242 	uint8_t asc, uint8_t ascq,
17243 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17244 {
17245 	struct sd_sense_info	si;
17246 
17247 	ASSERT(un != NULL);
17248 	ASSERT(mutex_owned(SD_MUTEX(un)));
17249 	ASSERT(bp != NULL);
17250 	ASSERT(xp != NULL);
17251 	ASSERT(pktp != NULL);
17252 
17253 	si.ssi_severity = SCSI_ERR_FATAL;
17254 	si.ssi_pfa_flag = FALSE;
17255 
17256 	/*
17257 	 * Update error stats after first NOT READY error. Disks may have
17258 	 * been powered down and may need to be restarted.  For CDROMs,
17259 	 * report NOT READY errors only if media is present.
17260 	 */
17261 	if ((ISCD(un) && (un->un_f_geometry_is_valid == TRUE)) ||
17262 	    (xp->xb_retry_count > 0)) {
17263 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17264 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
17265 	}
17266 
17267 	/*
17268 	 * Just fail if the "not ready" retry limit has been reached.
17269 	 */
17270 	if (xp->xb_retry_count >= un->un_notready_retry_count) {
17271 		/* Special check for error message printing for removables. */
17272 		if ((ISREMOVABLE(un)) && (asc == 0x04) &&
17273 		    (ascq >= 0x04)) {
17274 			si.ssi_severity = SCSI_ERR_ALL;
17275 		}
17276 		goto fail_command;
17277 	}
17278 
17279 	/*
17280 	 * Check the ASC and ASCQ in the sense data as needed, to determine
17281 	 * what to do.
17282 	 */
17283 	switch (asc) {
17284 	case 0x04:	/* LOGICAL UNIT NOT READY */
17285 		/*
17286 		 * disk drives that don't spin up result in a very long delay
17287 		 * in format without warning messages. We will log a message
17288 		 * if the error level is set to verbose.
17289 		 */
17290 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17291 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17292 			    "logical unit not ready, resetting disk\n");
17293 		}
17294 
17295 		/*
17296 		 * There are different requirements for CDROMs and disks for
17297 		 * the number of retries.  If a CD-ROM is giving this, it is
17298 		 * probably reading TOC and is in the process of getting
17299 		 * ready, so we should keep on trying for a long time to make
17300 		 * sure that all types of media are taken in account (for
17301 		 * some media the drive takes a long time to read TOC).  For
17302 		 * disks we do not want to retry this too many times as this
17303 		 * can cause a long hang in format when the drive refuses to
17304 		 * spin up (a very common failure).
17305 		 */
17306 		switch (ascq) {
17307 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
17308 			/*
17309 			 * Disk drives frequently refuse to spin up which
17310 			 * results in a very long hang in format without
17311 			 * warning messages.
17312 			 *
17313 			 * Note: This code preserves the legacy behavior of
17314 			 * comparing xb_retry_count against zero for fibre
17315 			 * channel targets instead of comparing against the
17316 			 * un_reset_retry_count value.  The reason for this
17317 			 * discrepancy has been so utterly lost beneath the
17318 			 * Sands of Time that even Indiana Jones could not
17319 			 * find it.
17320 			 */
17321 			if (un->un_f_is_fibre == TRUE) {
17322 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17323 					(xp->xb_retry_count > 0)) &&
17324 					(un->un_startstop_timeid == NULL)) {
17325 					scsi_log(SD_DEVINFO(un), sd_label,
17326 					CE_WARN, "logical unit not ready, "
17327 					"resetting disk\n");
17328 					sd_reset_target(un, pktp);
17329 				}
17330 			} else {
17331 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17332 					(xp->xb_retry_count >
17333 					un->un_reset_retry_count)) &&
17334 					(un->un_startstop_timeid == NULL)) {
17335 					scsi_log(SD_DEVINFO(un), sd_label,
17336 					CE_WARN, "logical unit not ready, "
17337 					"resetting disk\n");
17338 					sd_reset_target(un, pktp);
17339 				}
17340 			}
17341 			break;
17342 
17343 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
17344 			/*
17345 			 * If the target is in the process of becoming
17346 			 * ready, just proceed with the retry. This can
17347 			 * happen with CD-ROMs that take a long time to
17348 			 * read TOC after a power cycle or reset.
17349 			 */
17350 			goto do_retry;
17351 
17352 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
17353 			break;
17354 
17355 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
17356 			/*
17357 			 * Retries cannot help here so just fail right away.
17358 			 */
17359 			goto fail_command;
17360 
17361 		case 0x88:
17362 			/*
17363 			 * Vendor-unique code for T3/T4: it indicates a
17364 			 * path problem in a mutipathed config, but as far as
17365 			 * the target driver is concerned it equates to a fatal
17366 			 * error, so we should just fail the command right away
17367 			 * (without printing anything to the console). If this
17368 			 * is not a T3/T4, fall thru to the default recovery
17369 			 * action.
17370 			 * T3/T4 is FC only, don't need to check is_fibre
17371 			 */
17372 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
17373 				sd_return_failed_command(un, bp, EIO);
17374 				return;
17375 			}
17376 			/* FALLTHRU */
17377 
17378 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
17379 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
17380 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
17381 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
17382 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
17383 		default:    /* Possible future codes in SCSI spec? */
17384 			/*
17385 			 * For removable-media devices, do not retry if
17386 			 * ASCQ > 2 as these result mostly from USCSI commands
17387 			 * on MMC devices issued to check status of an
17388 			 * operation initiated in immediate mode.  Also for
17389 			 * ASCQ >= 4 do not print console messages as these
17390 			 * mainly represent a user-initiated operation
17391 			 * instead of a system failure.
17392 			 */
17393 			if (ISREMOVABLE(un)) {
17394 				si.ssi_severity = SCSI_ERR_ALL;
17395 				goto fail_command;
17396 			}
17397 			break;
17398 		}
17399 
17400 		/*
17401 		 * As part of our recovery attempt for the NOT READY
17402 		 * condition, we issue a START STOP UNIT command. However
17403 		 * we want to wait for a short delay before attempting this
17404 		 * as there may still be more commands coming back from the
17405 		 * target with the check condition. To do this we use
17406 		 * timeout(9F) to call sd_start_stop_unit_callback() after
17407 		 * the delay interval expires. (sd_start_stop_unit_callback()
17408 		 * dispatches sd_start_stop_unit_task(), which will issue
17409 		 * the actual START STOP UNIT command. The delay interval
17410 		 * is one-half of the delay that we will use to retry the
17411 		 * command that generated the NOT READY condition.
17412 		 *
17413 		 * Note that we could just dispatch sd_start_stop_unit_task()
17414 		 * from here and allow it to sleep for the delay interval,
17415 		 * but then we would be tying up the taskq thread
17416 		 * uncesessarily for the duration of the delay.
17417 		 *
17418 		 * Do not issue the START STOP UNIT if the current command
17419 		 * is already a START STOP UNIT.
17420 		 */
17421 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
17422 			break;
17423 		}
17424 
17425 		/*
17426 		 * Do not schedule the timeout if one is already pending.
17427 		 */
17428 		if (un->un_startstop_timeid != NULL) {
17429 			SD_INFO(SD_LOG_ERROR, un,
17430 			    "sd_sense_key_not_ready: restart already issued to"
17431 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
17432 			    ddi_get_instance(SD_DEVINFO(un)));
17433 			break;
17434 		}
17435 
17436 		/*
17437 		 * Schedule the START STOP UNIT command, then queue the command
17438 		 * for a retry.
17439 		 *
17440 		 * Note: A timeout is not scheduled for this retry because we
17441 		 * want the retry to be serial with the START_STOP_UNIT. The
17442 		 * retry will be started when the START_STOP_UNIT is completed
17443 		 * in sd_start_stop_unit_task.
17444 		 */
17445 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
17446 		    un, SD_BSY_TIMEOUT / 2);
17447 		xp->xb_retry_count++;
17448 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
17449 		return;
17450 
17451 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
17452 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17453 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17454 			    "unit does not respond to selection\n");
17455 		}
17456 		break;
17457 
17458 	case 0x3A:	/* MEDIUM NOT PRESENT */
17459 		if (sd_error_level >= SCSI_ERR_FATAL) {
17460 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17461 			    "Caddy not inserted in drive\n");
17462 		}
17463 
17464 		sr_ejected(un);
17465 		un->un_mediastate = DKIO_EJECTED;
17466 		/* The state has changed, inform the media watch routines */
17467 		cv_broadcast(&un->un_state_cv);
17468 		/* Just fail if no media is present in the drive. */
17469 		goto fail_command;
17470 
17471 	default:
17472 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17473 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
17474 			    "Unit not Ready. Additional sense code 0x%x\n",
17475 			    asc);
17476 		}
17477 		break;
17478 	}
17479 
17480 do_retry:
17481 
17482 	/*
17483 	 * Retry the command, as some targets may report NOT READY for
17484 	 * several seconds after being reset.
17485 	 */
17486 	xp->xb_retry_count++;
17487 	si.ssi_severity = SCSI_ERR_RETRYABLE;
17488 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17489 	    &si, EIO, SD_BSY_TIMEOUT, NULL);
17490 
17491 	return;
17492 
17493 fail_command:
17494 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17495 	sd_return_failed_command(un, bp, EIO);
17496 }
17497 
17498 
17499 
17500 /*
17501  *    Function: sd_sense_key_medium_or_hardware_error
17502  *
17503  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
17504  *		sense key.
17505  *
17506  *     Context: May be called from interrupt context
17507  */
17508 
17509 static void
17510 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
17511 	int sense_key, uint8_t asc,
17512 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17513 {
17514 	struct sd_sense_info	si;
17515 
17516 	ASSERT(un != NULL);
17517 	ASSERT(mutex_owned(SD_MUTEX(un)));
17518 	ASSERT(bp != NULL);
17519 	ASSERT(xp != NULL);
17520 	ASSERT(pktp != NULL);
17521 
17522 	si.ssi_severity = SCSI_ERR_FATAL;
17523 	si.ssi_pfa_flag = FALSE;
17524 
17525 	if (sense_key == KEY_MEDIUM_ERROR) {
17526 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
17527 	}
17528 
17529 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17530 
17531 	if ((un->un_reset_retry_count != 0) &&
17532 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
17533 		mutex_exit(SD_MUTEX(un));
17534 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
17535 		if (un->un_f_allow_bus_device_reset == TRUE) {
17536 
17537 			boolean_t try_resetting_target = B_TRUE;
17538 
17539 			/*
17540 			 * We need to be able to handle specific ASC when we are
17541 			 * handling a KEY_HARDWARE_ERROR. In particular
17542 			 * taking the default action of resetting the target may
17543 			 * not be the appropriate way to attempt recovery.
17544 			 * Resetting a target because of a single LUN failure
17545 			 * victimizes all LUNs on that target.
17546 			 *
17547 			 * This is true for the LSI arrays, if an LSI
17548 			 * array controller returns an ASC of 0x84 (LUN Dead) we
17549 			 * should trust it.
17550 			 */
17551 
17552 			if (sense_key == KEY_HARDWARE_ERROR) {
17553 				switch (asc) {
17554 				case 0x84:
17555 					if (SD_IS_LSI(un)) {
17556 						try_resetting_target = B_FALSE;
17557 					}
17558 					break;
17559 				default:
17560 					break;
17561 				}
17562 			}
17563 
17564 			if (try_resetting_target == B_TRUE) {
17565 				int reset_retval = 0;
17566 				if (un->un_f_lun_reset_enabled == TRUE) {
17567 					SD_TRACE(SD_LOG_IO_CORE, un,
17568 					    "sd_sense_key_medium_or_hardware_"
17569 					    "error: issuing RESET_LUN\n");
17570 					reset_retval =
17571 					    scsi_reset(SD_ADDRESS(un),
17572 					    RESET_LUN);
17573 				}
17574 				if (reset_retval == 0) {
17575 					SD_TRACE(SD_LOG_IO_CORE, un,
17576 					    "sd_sense_key_medium_or_hardware_"
17577 					    "error: issuing RESET_TARGET\n");
17578 					(void) scsi_reset(SD_ADDRESS(un),
17579 					    RESET_TARGET);
17580 				}
17581 			}
17582 		}
17583 		mutex_enter(SD_MUTEX(un));
17584 	}
17585 
17586 	/*
17587 	 * This really ought to be a fatal error, but we will retry anyway
17588 	 * as some drives report this as a spurious error.
17589 	 */
17590 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17591 	    &si, EIO, (clock_t)0, NULL);
17592 }
17593 
17594 
17595 
17596 /*
17597  *    Function: sd_sense_key_illegal_request
17598  *
17599  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
17600  *
17601  *     Context: May be called from interrupt context
17602  */
17603 
17604 static void
17605 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
17606 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17607 {
17608 	struct sd_sense_info	si;
17609 
17610 	ASSERT(un != NULL);
17611 	ASSERT(mutex_owned(SD_MUTEX(un)));
17612 	ASSERT(bp != NULL);
17613 	ASSERT(xp != NULL);
17614 	ASSERT(pktp != NULL);
17615 
17616 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17617 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
17618 
17619 	si.ssi_severity = SCSI_ERR_INFO;
17620 	si.ssi_pfa_flag = FALSE;
17621 
17622 	/* Pointless to retry if the target thinks it's an illegal request */
17623 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17624 	sd_return_failed_command(un, bp, EIO);
17625 }
17626 
17627 
17628 
17629 
17630 /*
17631  *    Function: sd_sense_key_unit_attention
17632  *
17633  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
17634  *
17635  *     Context: May be called from interrupt context
17636  */
17637 
17638 static void
17639 sd_sense_key_unit_attention(struct sd_lun *un,
17640 	uint8_t asc,
17641 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17642 {
17643 	/*
17644 	 * For UNIT ATTENTION we allow retries for one minute. Devices
17645 	 * like Sonoma can return UNIT ATTENTION close to a minute
17646 	 * under certain conditions.
17647 	 */
17648 	int	retry_check_flag = SD_RETRIES_UA;
17649 	struct	sd_sense_info		si;
17650 
17651 	ASSERT(un != NULL);
17652 	ASSERT(mutex_owned(SD_MUTEX(un)));
17653 	ASSERT(bp != NULL);
17654 	ASSERT(xp != NULL);
17655 	ASSERT(pktp != NULL);
17656 
17657 	si.ssi_severity = SCSI_ERR_INFO;
17658 	si.ssi_pfa_flag = FALSE;
17659 
17660 
17661 	switch (asc) {
17662 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
17663 		if (sd_report_pfa != 0) {
17664 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17665 			si.ssi_pfa_flag = TRUE;
17666 			retry_check_flag = SD_RETRIES_STANDARD;
17667 			goto do_retry;
17668 		}
17669 		break;
17670 
17671 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
17672 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
17673 			un->un_resvd_status |=
17674 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
17675 		}
17676 		/* FALLTHRU */
17677 
17678 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
17679 		if (!ISREMOVABLE(un)) {
17680 			break;
17681 		}
17682 
17683 		/*
17684 		 * When we get a unit attention from a removable-media device,
17685 		 * it may be in a state that will take a long time to recover
17686 		 * (e.g., from a reset).  Since we are executing in interrupt
17687 		 * context here, we cannot wait around for the device to come
17688 		 * back. So hand this command off to sd_media_change_task()
17689 		 * for deferred processing under taskq thread context. (Note
17690 		 * that the command still may be failed if a problem is
17691 		 * encountered at a later time.)
17692 		 */
17693 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
17694 		    KM_NOSLEEP) == 0) {
17695 			/*
17696 			 * Cannot dispatch the request so fail the command.
17697 			 */
17698 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
17699 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17700 			si.ssi_severity = SCSI_ERR_FATAL;
17701 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17702 			sd_return_failed_command(un, bp, EIO);
17703 		}
17704 		/*
17705 		 * Either the command has been successfully dispatched to a
17706 		 * task Q for retrying, or the dispatch failed. In either case
17707 		 * do NOT retry again by calling sd_retry_command. This sets up
17708 		 * two retries of the same command and when one completes and
17709 		 * frees the resources the other will access freed memory,
17710 		 * a bad thing.
17711 		 */
17712 		return;
17713 
17714 	default:
17715 		break;
17716 	}
17717 
17718 	if (!ISREMOVABLE(un)) {
17719 		/*
17720 		 * Do not update these here for removables. For removables
17721 		 * these stats are updated (1) above if we failed to dispatch
17722 		 * sd_media_change_task(), or (2) sd_media_change_task() may
17723 		 * update these later if it encounters an error.
17724 		 */
17725 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17726 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17727 	}
17728 
17729 do_retry:
17730 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
17731 	    EIO, SD_UA_RETRY_DELAY, NULL);
17732 }
17733 
17734 
17735 
17736 /*
17737  *    Function: sd_sense_key_fail_command
17738  *
17739  * Description: Use to fail a command when we don't like the sense key that
17740  *		was returned.
17741  *
17742  *     Context: May be called from interrupt context
17743  */
17744 
17745 static void
17746 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
17747 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17748 {
17749 	struct sd_sense_info	si;
17750 
17751 	ASSERT(un != NULL);
17752 	ASSERT(mutex_owned(SD_MUTEX(un)));
17753 	ASSERT(bp != NULL);
17754 	ASSERT(xp != NULL);
17755 	ASSERT(pktp != NULL);
17756 
17757 	si.ssi_severity = SCSI_ERR_FATAL;
17758 	si.ssi_pfa_flag = FALSE;
17759 
17760 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17761 	sd_return_failed_command(un, bp, EIO);
17762 }
17763 
17764 
17765 
17766 /*
17767  *    Function: sd_sense_key_blank_check
17768  *
17769  * Description: Recovery actions for a SCSI "Blank Check" sense key.
17770  *		Has no monetary connotation.
17771  *
17772  *     Context: May be called from interrupt context
17773  */
17774 
17775 static void
17776 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
17777 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17778 {
17779 	struct sd_sense_info	si;
17780 
17781 	ASSERT(un != NULL);
17782 	ASSERT(mutex_owned(SD_MUTEX(un)));
17783 	ASSERT(bp != NULL);
17784 	ASSERT(xp != NULL);
17785 	ASSERT(pktp != NULL);
17786 
17787 	/*
17788 	 * Blank check is not fatal for removable devices, therefore
17789 	 * it does not require a console message.
17790 	 */
17791 	si.ssi_severity = (ISREMOVABLE(un)) ? SCSI_ERR_ALL : SCSI_ERR_FATAL;
17792 	si.ssi_pfa_flag = FALSE;
17793 
17794 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17795 	sd_return_failed_command(un, bp, EIO);
17796 }
17797 
17798 
17799 
17800 
17801 /*
17802  *    Function: sd_sense_key_aborted_command
17803  *
17804  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
17805  *
17806  *     Context: May be called from interrupt context
17807  */
17808 
17809 static void
17810 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
17811 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17812 {
17813 	struct sd_sense_info	si;
17814 
17815 	ASSERT(un != NULL);
17816 	ASSERT(mutex_owned(SD_MUTEX(un)));
17817 	ASSERT(bp != NULL);
17818 	ASSERT(xp != NULL);
17819 	ASSERT(pktp != NULL);
17820 
17821 	si.ssi_severity = SCSI_ERR_FATAL;
17822 	si.ssi_pfa_flag = FALSE;
17823 
17824 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17825 
17826 	/*
17827 	 * This really ought to be a fatal error, but we will retry anyway
17828 	 * as some drives report this as a spurious error.
17829 	 */
17830 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17831 	    &si, EIO, (clock_t)0, NULL);
17832 }
17833 
17834 
17835 
17836 /*
17837  *    Function: sd_sense_key_default
17838  *
17839  * Description: Default recovery action for several SCSI sense keys (basically
17840  *		attempts a retry).
17841  *
17842  *     Context: May be called from interrupt context
17843  */
17844 
17845 static void
17846 sd_sense_key_default(struct sd_lun *un,
17847 	int sense_key,
17848 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17849 {
17850 	struct sd_sense_info	si;
17851 
17852 	ASSERT(un != NULL);
17853 	ASSERT(mutex_owned(SD_MUTEX(un)));
17854 	ASSERT(bp != NULL);
17855 	ASSERT(xp != NULL);
17856 	ASSERT(pktp != NULL);
17857 
17858 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17859 
17860 	/*
17861 	 * Undecoded sense key.	Attempt retries and hope that will fix
17862 	 * the problem.  Otherwise, we're dead.
17863 	 */
17864 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17865 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17866 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
17867 	}
17868 
17869 	si.ssi_severity = SCSI_ERR_FATAL;
17870 	si.ssi_pfa_flag = FALSE;
17871 
17872 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17873 	    &si, EIO, (clock_t)0, NULL);
17874 }
17875 
17876 
17877 
17878 /*
17879  *    Function: sd_print_retry_msg
17880  *
17881  * Description: Print a message indicating the retry action being taken.
17882  *
17883  *   Arguments: un - ptr to associated softstate
17884  *		bp - ptr to buf(9S) for the command
17885  *		arg - not used.
17886  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17887  *			or SD_NO_RETRY_ISSUED
17888  *
17889  *     Context: May be called from interrupt context
17890  */
17891 /* ARGSUSED */
17892 static void
17893 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
17894 {
17895 	struct sd_xbuf	*xp;
17896 	struct scsi_pkt *pktp;
17897 	char *reasonp;
17898 	char *msgp;
17899 
17900 	ASSERT(un != NULL);
17901 	ASSERT(mutex_owned(SD_MUTEX(un)));
17902 	ASSERT(bp != NULL);
17903 	pktp = SD_GET_PKTP(bp);
17904 	ASSERT(pktp != NULL);
17905 	xp = SD_GET_XBUF(bp);
17906 	ASSERT(xp != NULL);
17907 
17908 	ASSERT(!mutex_owned(&un->un_pm_mutex));
17909 	mutex_enter(&un->un_pm_mutex);
17910 	if ((un->un_state == SD_STATE_SUSPENDED) ||
17911 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
17912 	    (pktp->pkt_flags & FLAG_SILENT)) {
17913 		mutex_exit(&un->un_pm_mutex);
17914 		goto update_pkt_reason;
17915 	}
17916 	mutex_exit(&un->un_pm_mutex);
17917 
17918 	/*
17919 	 * Suppress messages if they are all the same pkt_reason; with
17920 	 * TQ, many (up to 256) are returned with the same pkt_reason.
17921 	 * If we are in panic, then suppress the retry messages.
17922 	 */
17923 	switch (flag) {
17924 	case SD_NO_RETRY_ISSUED:
17925 		msgp = "giving up";
17926 		break;
17927 	case SD_IMMEDIATE_RETRY_ISSUED:
17928 	case SD_DELAYED_RETRY_ISSUED:
17929 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
17930 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
17931 		    (sd_error_level != SCSI_ERR_ALL))) {
17932 			return;
17933 		}
17934 		msgp = "retrying command";
17935 		break;
17936 	default:
17937 		goto update_pkt_reason;
17938 	}
17939 
17940 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
17941 	    scsi_rname(pktp->pkt_reason));
17942 
17943 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17944 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
17945 
17946 update_pkt_reason:
17947 	/*
17948 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
17949 	 * This is to prevent multiple console messages for the same failure
17950 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
17951 	 * when the command is retried successfully because there still may be
17952 	 * more commands coming back with the same value of pktp->pkt_reason.
17953 	 */
17954 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
17955 		un->un_last_pkt_reason = pktp->pkt_reason;
17956 	}
17957 }
17958 
17959 
17960 /*
17961  *    Function: sd_print_cmd_incomplete_msg
17962  *
17963  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
17964  *
17965  *   Arguments: un - ptr to associated softstate
17966  *		bp - ptr to buf(9S) for the command
17967  *		arg - passed to sd_print_retry_msg()
17968  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17969  *			or SD_NO_RETRY_ISSUED
17970  *
17971  *     Context: May be called from interrupt context
17972  */
17973 
17974 static void
17975 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
17976 	int code)
17977 {
17978 	dev_info_t	*dip;
17979 
17980 	ASSERT(un != NULL);
17981 	ASSERT(mutex_owned(SD_MUTEX(un)));
17982 	ASSERT(bp != NULL);
17983 
17984 	switch (code) {
17985 	case SD_NO_RETRY_ISSUED:
17986 		/* Command was failed. Someone turned off this target? */
17987 		if (un->un_state != SD_STATE_OFFLINE) {
17988 			/*
17989 			 * Suppress message if we are detaching and
17990 			 * device has been disconnected
17991 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
17992 			 * private interface and not part of the DDI
17993 			 */
17994 			dip = un->un_sd->sd_dev;
17995 			if (!(DEVI_IS_DETACHING(dip) &&
17996 			    DEVI_IS_DEVICE_REMOVED(dip))) {
17997 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17998 				"disk not responding to selection\n");
17999 			}
18000 			New_state(un, SD_STATE_OFFLINE);
18001 		}
18002 		break;
18003 
18004 	case SD_DELAYED_RETRY_ISSUED:
18005 	case SD_IMMEDIATE_RETRY_ISSUED:
18006 	default:
18007 		/* Command was successfully queued for retry */
18008 		sd_print_retry_msg(un, bp, arg, code);
18009 		break;
18010 	}
18011 }
18012 
18013 
18014 /*
18015  *    Function: sd_pkt_reason_cmd_incomplete
18016  *
18017  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
18018  *
18019  *     Context: May be called from interrupt context
18020  */
18021 
18022 static void
18023 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
18024 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18025 {
18026 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
18027 
18028 	ASSERT(un != NULL);
18029 	ASSERT(mutex_owned(SD_MUTEX(un)));
18030 	ASSERT(bp != NULL);
18031 	ASSERT(xp != NULL);
18032 	ASSERT(pktp != NULL);
18033 
18034 	/* Do not do a reset if selection did not complete */
18035 	/* Note: Should this not just check the bit? */
18036 	if (pktp->pkt_state != STATE_GOT_BUS) {
18037 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18038 		sd_reset_target(un, pktp);
18039 	}
18040 
18041 	/*
18042 	 * If the target was not successfully selected, then set
18043 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
18044 	 * with the target, and further retries and/or commands are
18045 	 * likely to take a long time.
18046 	 */
18047 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
18048 		flag |= SD_RETRIES_FAILFAST;
18049 	}
18050 
18051 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18052 
18053 	sd_retry_command(un, bp, flag,
18054 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18055 }
18056 
18057 
18058 
18059 /*
18060  *    Function: sd_pkt_reason_cmd_tran_err
18061  *
18062  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
18063  *
18064  *     Context: May be called from interrupt context
18065  */
18066 
18067 static void
18068 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
18069 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18070 {
18071 	ASSERT(un != NULL);
18072 	ASSERT(mutex_owned(SD_MUTEX(un)));
18073 	ASSERT(bp != NULL);
18074 	ASSERT(xp != NULL);
18075 	ASSERT(pktp != NULL);
18076 
18077 	/*
18078 	 * Do not reset if we got a parity error, or if
18079 	 * selection did not complete.
18080 	 */
18081 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18082 	/* Note: Should this not just check the bit for pkt_state? */
18083 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
18084 	    (pktp->pkt_state != STATE_GOT_BUS)) {
18085 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18086 		sd_reset_target(un, pktp);
18087 	}
18088 
18089 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18090 
18091 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18092 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18093 }
18094 
18095 
18096 
18097 /*
18098  *    Function: sd_pkt_reason_cmd_reset
18099  *
18100  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
18101  *
18102  *     Context: May be called from interrupt context
18103  */
18104 
18105 static void
18106 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
18107 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18108 {
18109 	ASSERT(un != NULL);
18110 	ASSERT(mutex_owned(SD_MUTEX(un)));
18111 	ASSERT(bp != NULL);
18112 	ASSERT(xp != NULL);
18113 	ASSERT(pktp != NULL);
18114 
18115 	/* The target may still be running the command, so try to reset. */
18116 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18117 	sd_reset_target(un, pktp);
18118 
18119 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18120 
18121 	/*
18122 	 * If pkt_reason is CMD_RESET chances are that this pkt got
18123 	 * reset because another target on this bus caused it. The target
18124 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18125 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18126 	 */
18127 
18128 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18129 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18130 }
18131 
18132 
18133 
18134 
18135 /*
18136  *    Function: sd_pkt_reason_cmd_aborted
18137  *
18138  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
18139  *
18140  *     Context: May be called from interrupt context
18141  */
18142 
18143 static void
18144 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
18145 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18146 {
18147 	ASSERT(un != NULL);
18148 	ASSERT(mutex_owned(SD_MUTEX(un)));
18149 	ASSERT(bp != NULL);
18150 	ASSERT(xp != NULL);
18151 	ASSERT(pktp != NULL);
18152 
18153 	/* The target may still be running the command, so try to reset. */
18154 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18155 	sd_reset_target(un, pktp);
18156 
18157 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18158 
18159 	/*
18160 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
18161 	 * aborted because another target on this bus caused it. The target
18162 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18163 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18164 	 */
18165 
18166 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18167 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18168 }
18169 
18170 
18171 
18172 /*
18173  *    Function: sd_pkt_reason_cmd_timeout
18174  *
18175  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
18176  *
18177  *     Context: May be called from interrupt context
18178  */
18179 
18180 static void
18181 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
18182 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18183 {
18184 	ASSERT(un != NULL);
18185 	ASSERT(mutex_owned(SD_MUTEX(un)));
18186 	ASSERT(bp != NULL);
18187 	ASSERT(xp != NULL);
18188 	ASSERT(pktp != NULL);
18189 
18190 
18191 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18192 	sd_reset_target(un, pktp);
18193 
18194 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18195 
18196 	/*
18197 	 * A command timeout indicates that we could not establish
18198 	 * communication with the target, so set SD_RETRIES_FAILFAST
18199 	 * as further retries/commands are likely to take a long time.
18200 	 */
18201 	sd_retry_command(un, bp,
18202 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
18203 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18204 }
18205 
18206 
18207 
18208 /*
18209  *    Function: sd_pkt_reason_cmd_unx_bus_free
18210  *
18211  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
18212  *
18213  *     Context: May be called from interrupt context
18214  */
18215 
18216 static void
18217 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
18218 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18219 {
18220 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
18221 
18222 	ASSERT(un != NULL);
18223 	ASSERT(mutex_owned(SD_MUTEX(un)));
18224 	ASSERT(bp != NULL);
18225 	ASSERT(xp != NULL);
18226 	ASSERT(pktp != NULL);
18227 
18228 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18229 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18230 
18231 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
18232 	    sd_print_retry_msg : NULL;
18233 
18234 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18235 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18236 }
18237 
18238 
18239 /*
18240  *    Function: sd_pkt_reason_cmd_tag_reject
18241  *
18242  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
18243  *
18244  *     Context: May be called from interrupt context
18245  */
18246 
18247 static void
18248 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
18249 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18250 {
18251 	ASSERT(un != NULL);
18252 	ASSERT(mutex_owned(SD_MUTEX(un)));
18253 	ASSERT(bp != NULL);
18254 	ASSERT(xp != NULL);
18255 	ASSERT(pktp != NULL);
18256 
18257 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18258 	pktp->pkt_flags = 0;
18259 	un->un_tagflags = 0;
18260 	if (un->un_f_opt_queueing == TRUE) {
18261 		un->un_throttle = min(un->un_throttle, 3);
18262 	} else {
18263 		un->un_throttle = 1;
18264 	}
18265 	mutex_exit(SD_MUTEX(un));
18266 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
18267 	mutex_enter(SD_MUTEX(un));
18268 
18269 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18270 
18271 	/* Legacy behavior not to check retry counts here. */
18272 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
18273 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18274 }
18275 
18276 
18277 /*
18278  *    Function: sd_pkt_reason_default
18279  *
18280  * Description: Default recovery actions for SCSA pkt_reason values that
18281  *		do not have more explicit recovery actions.
18282  *
18283  *     Context: May be called from interrupt context
18284  */
18285 
18286 static void
18287 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
18288 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18289 {
18290 	ASSERT(un != NULL);
18291 	ASSERT(mutex_owned(SD_MUTEX(un)));
18292 	ASSERT(bp != NULL);
18293 	ASSERT(xp != NULL);
18294 	ASSERT(pktp != NULL);
18295 
18296 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18297 	sd_reset_target(un, pktp);
18298 
18299 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18300 
18301 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18302 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18303 }
18304 
18305 
18306 
18307 /*
18308  *    Function: sd_pkt_status_check_condition
18309  *
18310  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
18311  *
18312  *     Context: May be called from interrupt context
18313  */
18314 
18315 static void
18316 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
18317 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18318 {
18319 	ASSERT(un != NULL);
18320 	ASSERT(mutex_owned(SD_MUTEX(un)));
18321 	ASSERT(bp != NULL);
18322 	ASSERT(xp != NULL);
18323 	ASSERT(pktp != NULL);
18324 
18325 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
18326 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
18327 
18328 	/*
18329 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
18330 	 * command will be retried after the request sense). Otherwise, retry
18331 	 * the command. Note: we are issuing the request sense even though the
18332 	 * retry limit may have been reached for the failed command.
18333 	 */
18334 	if (un->un_f_arq_enabled == FALSE) {
18335 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18336 		    "no ARQ, sending request sense command\n");
18337 		sd_send_request_sense_command(un, bp, pktp);
18338 	} else {
18339 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18340 		    "ARQ,retrying request sense command\n");
18341 #if defined(__i386) || defined(__amd64)
18342 		/*
18343 		 * The SD_RETRY_DELAY value need to be adjusted here
18344 		 * when SD_RETRY_DELAY change in sddef.h
18345 		 */
18346 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, 0,
18347 			un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
18348 			NULL);
18349 #else
18350 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
18351 		    0, SD_RETRY_DELAY, NULL);
18352 #endif
18353 	}
18354 
18355 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
18356 }
18357 
18358 
18359 /*
18360  *    Function: sd_pkt_status_busy
18361  *
18362  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
18363  *
18364  *     Context: May be called from interrupt context
18365  */
18366 
18367 static void
18368 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
18369 	struct scsi_pkt *pktp)
18370 {
18371 	ASSERT(un != NULL);
18372 	ASSERT(mutex_owned(SD_MUTEX(un)));
18373 	ASSERT(bp != NULL);
18374 	ASSERT(xp != NULL);
18375 	ASSERT(pktp != NULL);
18376 
18377 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18378 	    "sd_pkt_status_busy: entry\n");
18379 
18380 	/* If retries are exhausted, just fail the command. */
18381 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
18382 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18383 		    "device busy too long\n");
18384 		sd_return_failed_command(un, bp, EIO);
18385 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18386 		    "sd_pkt_status_busy: exit\n");
18387 		return;
18388 	}
18389 	xp->xb_retry_count++;
18390 
18391 	/*
18392 	 * Try to reset the target. However, we do not want to perform
18393 	 * more than one reset if the device continues to fail. The reset
18394 	 * will be performed when the retry count reaches the reset
18395 	 * threshold.  This threshold should be set such that at least
18396 	 * one retry is issued before the reset is performed.
18397 	 */
18398 	if (xp->xb_retry_count ==
18399 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
18400 		int rval = 0;
18401 		mutex_exit(SD_MUTEX(un));
18402 		if (un->un_f_allow_bus_device_reset == TRUE) {
18403 			/*
18404 			 * First try to reset the LUN; if we cannot then
18405 			 * try to reset the target.
18406 			 */
18407 			if (un->un_f_lun_reset_enabled == TRUE) {
18408 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18409 				    "sd_pkt_status_busy: RESET_LUN\n");
18410 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18411 			}
18412 			if (rval == 0) {
18413 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18414 				    "sd_pkt_status_busy: RESET_TARGET\n");
18415 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18416 			}
18417 		}
18418 		if (rval == 0) {
18419 			/*
18420 			 * If the RESET_LUN and/or RESET_TARGET failed,
18421 			 * try RESET_ALL
18422 			 */
18423 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18424 			    "sd_pkt_status_busy: RESET_ALL\n");
18425 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
18426 		}
18427 		mutex_enter(SD_MUTEX(un));
18428 		if (rval == 0) {
18429 			/*
18430 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
18431 			 * At this point we give up & fail the command.
18432 			 */
18433 			sd_return_failed_command(un, bp, EIO);
18434 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18435 			    "sd_pkt_status_busy: exit (failed cmd)\n");
18436 			return;
18437 		}
18438 	}
18439 
18440 	/*
18441 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
18442 	 * we have already checked the retry counts above.
18443 	 */
18444 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
18445 	    EIO, SD_BSY_TIMEOUT, NULL);
18446 
18447 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18448 	    "sd_pkt_status_busy: exit\n");
18449 }
18450 
18451 
18452 /*
18453  *    Function: sd_pkt_status_reservation_conflict
18454  *
18455  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
18456  *		command status.
18457  *
18458  *     Context: May be called from interrupt context
18459  */
18460 
18461 static void
18462 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
18463 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18464 {
18465 	ASSERT(un != NULL);
18466 	ASSERT(mutex_owned(SD_MUTEX(un)));
18467 	ASSERT(bp != NULL);
18468 	ASSERT(xp != NULL);
18469 	ASSERT(pktp != NULL);
18470 
18471 	/*
18472 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
18473 	 * conflict could be due to various reasons like incorrect keys, not
18474 	 * registered or not reserved etc. So, we return EACCES to the caller.
18475 	 */
18476 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
18477 		int cmd = SD_GET_PKT_OPCODE(pktp);
18478 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
18479 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
18480 			sd_return_failed_command(un, bp, EACCES);
18481 			return;
18482 		}
18483 	}
18484 
18485 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
18486 
18487 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
18488 		if (sd_failfast_enable != 0) {
18489 			/* By definition, we must panic here.... */
18490 			panic("Reservation Conflict");
18491 			/*NOTREACHED*/
18492 		}
18493 		SD_ERROR(SD_LOG_IO, un,
18494 		    "sd_handle_resv_conflict: Disk Reserved\n");
18495 		sd_return_failed_command(un, bp, EACCES);
18496 		return;
18497 	}
18498 
18499 	/*
18500 	 * 1147670: retry only if sd_retry_on_reservation_conflict
18501 	 * property is set (default is 1). Retries will not succeed
18502 	 * on a disk reserved by another initiator. HA systems
18503 	 * may reset this via sd.conf to avoid these retries.
18504 	 *
18505 	 * Note: The legacy return code for this failure is EIO, however EACCES
18506 	 * seems more appropriate for a reservation conflict.
18507 	 */
18508 	if (sd_retry_on_reservation_conflict == 0) {
18509 		SD_ERROR(SD_LOG_IO, un,
18510 		    "sd_handle_resv_conflict: Device Reserved\n");
18511 		sd_return_failed_command(un, bp, EIO);
18512 		return;
18513 	}
18514 
18515 	/*
18516 	 * Retry the command if we can.
18517 	 *
18518 	 * Note: The legacy return code for this failure is EIO, however EACCES
18519 	 * seems more appropriate for a reservation conflict.
18520 	 */
18521 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18522 	    (clock_t)2, NULL);
18523 }
18524 
18525 
18526 
18527 /*
18528  *    Function: sd_pkt_status_qfull
18529  *
18530  * Description: Handle a QUEUE FULL condition from the target.  This can
18531  *		occur if the HBA does not handle the queue full condition.
18532  *		(Basically this means third-party HBAs as Sun HBAs will
18533  *		handle the queue full condition.)  Note that if there are
18534  *		some commands already in the transport, then the queue full
18535  *		has occurred because the queue for this nexus is actually
18536  *		full. If there are no commands in the transport, then the
18537  *		queue full is resulting from some other initiator or lun
18538  *		consuming all the resources at the target.
18539  *
18540  *     Context: May be called from interrupt context
18541  */
18542 
18543 static void
18544 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
18545 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18546 {
18547 	ASSERT(un != NULL);
18548 	ASSERT(mutex_owned(SD_MUTEX(un)));
18549 	ASSERT(bp != NULL);
18550 	ASSERT(xp != NULL);
18551 	ASSERT(pktp != NULL);
18552 
18553 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18554 	    "sd_pkt_status_qfull: entry\n");
18555 
18556 	/*
18557 	 * Just lower the QFULL throttle and retry the command.  Note that
18558 	 * we do not limit the number of retries here.
18559 	 */
18560 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
18561 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
18562 	    SD_RESTART_TIMEOUT, NULL);
18563 
18564 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18565 	    "sd_pkt_status_qfull: exit\n");
18566 }
18567 
18568 
18569 /*
18570  *    Function: sd_reset_target
18571  *
18572  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
18573  *		RESET_TARGET, or RESET_ALL.
18574  *
18575  *     Context: May be called under interrupt context.
18576  */
18577 
18578 static void
18579 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
18580 {
18581 	int rval = 0;
18582 
18583 	ASSERT(un != NULL);
18584 	ASSERT(mutex_owned(SD_MUTEX(un)));
18585 	ASSERT(pktp != NULL);
18586 
18587 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
18588 
18589 	/*
18590 	 * No need to reset if the transport layer has already done so.
18591 	 */
18592 	if ((pktp->pkt_statistics &
18593 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
18594 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18595 		    "sd_reset_target: no reset\n");
18596 		return;
18597 	}
18598 
18599 	mutex_exit(SD_MUTEX(un));
18600 
18601 	if (un->un_f_allow_bus_device_reset == TRUE) {
18602 		if (un->un_f_lun_reset_enabled == TRUE) {
18603 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18604 			    "sd_reset_target: RESET_LUN\n");
18605 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18606 		}
18607 		if (rval == 0) {
18608 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18609 			    "sd_reset_target: RESET_TARGET\n");
18610 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18611 		}
18612 	}
18613 
18614 	if (rval == 0) {
18615 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18616 		    "sd_reset_target: RESET_ALL\n");
18617 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
18618 	}
18619 
18620 	mutex_enter(SD_MUTEX(un));
18621 
18622 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
18623 }
18624 
18625 
18626 /*
18627  *    Function: sd_media_change_task
18628  *
18629  * Description: Recovery action for CDROM to become available.
18630  *
18631  *     Context: Executes in a taskq() thread context
18632  */
18633 
18634 static void
18635 sd_media_change_task(void *arg)
18636 {
18637 	struct	scsi_pkt	*pktp = arg;
18638 	struct	sd_lun		*un;
18639 	struct	buf		*bp;
18640 	struct	sd_xbuf		*xp;
18641 	int	err		= 0;
18642 	int	retry_count	= 0;
18643 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
18644 	struct	sd_sense_info	si;
18645 
18646 	ASSERT(pktp != NULL);
18647 	bp = (struct buf *)pktp->pkt_private;
18648 	ASSERT(bp != NULL);
18649 	xp = SD_GET_XBUF(bp);
18650 	ASSERT(xp != NULL);
18651 	un = SD_GET_UN(bp);
18652 	ASSERT(un != NULL);
18653 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18654 	ASSERT(ISREMOVABLE(un));
18655 
18656 	si.ssi_severity = SCSI_ERR_INFO;
18657 	si.ssi_pfa_flag = FALSE;
18658 
18659 	/*
18660 	 * When a reset is issued on a CDROM, it takes a long time to
18661 	 * recover. First few attempts to read capacity and other things
18662 	 * related to handling unit attention fail (with a ASC 0x4 and
18663 	 * ASCQ 0x1). In that case we want to do enough retries and we want
18664 	 * to limit the retries in other cases of genuine failures like
18665 	 * no media in drive.
18666 	 */
18667 	while (retry_count++ < retry_limit) {
18668 		if ((err = sd_handle_mchange(un)) == 0) {
18669 			break;
18670 		}
18671 		if (err == EAGAIN) {
18672 			retry_limit = SD_UNIT_ATTENTION_RETRY;
18673 		}
18674 		/* Sleep for 0.5 sec. & try again */
18675 		delay(drv_usectohz(500000));
18676 	}
18677 
18678 	/*
18679 	 * Dispatch (retry or fail) the original command here,
18680 	 * along with appropriate console messages....
18681 	 *
18682 	 * Must grab the mutex before calling sd_retry_command,
18683 	 * sd_print_sense_msg and sd_return_failed_command.
18684 	 */
18685 	mutex_enter(SD_MUTEX(un));
18686 	if (err != SD_CMD_SUCCESS) {
18687 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18688 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18689 		si.ssi_severity = SCSI_ERR_FATAL;
18690 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18691 		sd_return_failed_command(un, bp, EIO);
18692 	} else {
18693 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
18694 		    &si, EIO, (clock_t)0, NULL);
18695 	}
18696 	mutex_exit(SD_MUTEX(un));
18697 }
18698 
18699 
18700 
18701 /*
18702  *    Function: sd_handle_mchange
18703  *
18704  * Description: Perform geometry validation & other recovery when CDROM
18705  *		has been removed from drive.
18706  *
18707  * Return Code: 0 for success
18708  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
18709  *		sd_send_scsi_READ_CAPACITY()
18710  *
18711  *     Context: Executes in a taskq() thread context
18712  */
18713 
18714 static int
18715 sd_handle_mchange(struct sd_lun *un)
18716 {
18717 	uint64_t	capacity;
18718 	uint32_t	lbasize;
18719 	int		rval;
18720 
18721 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18722 	ASSERT(ISREMOVABLE(un));
18723 
18724 	if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
18725 	    SD_PATH_DIRECT_PRIORITY)) != 0) {
18726 		return (rval);
18727 	}
18728 
18729 	mutex_enter(SD_MUTEX(un));
18730 	sd_update_block_info(un, lbasize, capacity);
18731 
18732 	if (un->un_errstats != NULL) {
18733 		struct	sd_errstats *stp =
18734 		    (struct sd_errstats *)un->un_errstats->ks_data;
18735 		stp->sd_capacity.value.ui64 = (uint64_t)
18736 		    ((uint64_t)un->un_blockcount *
18737 		    (uint64_t)un->un_tgt_blocksize);
18738 	}
18739 
18740 	/*
18741 	 * Note: Maybe let the strategy/partitioning chain worry about getting
18742 	 * valid geometry.
18743 	 */
18744 	un->un_f_geometry_is_valid = FALSE;
18745 	(void) sd_validate_geometry(un, SD_PATH_DIRECT_PRIORITY);
18746 	if (un->un_f_geometry_is_valid == FALSE) {
18747 		mutex_exit(SD_MUTEX(un));
18748 		return (EIO);
18749 	}
18750 
18751 	mutex_exit(SD_MUTEX(un));
18752 
18753 	/*
18754 	 * Try to lock the door
18755 	 */
18756 	return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
18757 	    SD_PATH_DIRECT_PRIORITY));
18758 }
18759 
18760 
18761 /*
18762  *    Function: sd_send_scsi_DOORLOCK
18763  *
18764  * Description: Issue the scsi DOOR LOCK command
18765  *
18766  *   Arguments: un    - pointer to driver soft state (unit) structure for
18767  *			this target.
18768  *		flag  - SD_REMOVAL_ALLOW
18769  *			SD_REMOVAL_PREVENT
18770  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18771  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18772  *			to use the USCSI "direct" chain and bypass the normal
18773  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
18774  *			command is issued as part of an error recovery action.
18775  *
18776  * Return Code: 0   - Success
18777  *		errno return code from sd_send_scsi_cmd()
18778  *
18779  *     Context: Can sleep.
18780  */
18781 
18782 static int
18783 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag)
18784 {
18785 	union scsi_cdb		cdb;
18786 	struct uscsi_cmd	ucmd_buf;
18787 	struct scsi_extended_sense	sense_buf;
18788 	int			status;
18789 
18790 	ASSERT(un != NULL);
18791 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18792 
18793 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
18794 
18795 	/* already determined doorlock is not supported, fake success */
18796 	if (un->un_f_doorlock_supported == FALSE) {
18797 		return (0);
18798 	}
18799 
18800 	bzero(&cdb, sizeof (cdb));
18801 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18802 
18803 	cdb.scc_cmd = SCMD_DOORLOCK;
18804 	cdb.cdb_opaque[4] = (uchar_t)flag;
18805 
18806 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18807 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18808 	ucmd_buf.uscsi_bufaddr	= NULL;
18809 	ucmd_buf.uscsi_buflen	= 0;
18810 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18811 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
18812 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18813 	ucmd_buf.uscsi_timeout	= 15;
18814 
18815 	SD_TRACE(SD_LOG_IO, un,
18816 	    "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n");
18817 
18818 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
18819 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
18820 
18821 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
18822 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18823 	    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
18824 		/* fake success and skip subsequent doorlock commands */
18825 		un->un_f_doorlock_supported = FALSE;
18826 		return (0);
18827 	}
18828 
18829 	return (status);
18830 }
18831 
18832 
18833 /*
18834  *    Function: sd_send_scsi_READ_CAPACITY
18835  *
18836  * Description: This routine uses the scsi READ CAPACITY command to determine
18837  *		the device capacity in number of blocks and the device native
18838  *		block size. If this function returns a failure, then the
18839  *		values in *capp and *lbap are undefined.  If the capacity
18840  *		returned is 0xffffffff then the lun is too large for a
18841  *		normal READ CAPACITY command and the results of a
18842  *		READ CAPACITY 16 will be used instead.
18843  *
18844  *   Arguments: un   - ptr to soft state struct for the target
18845  *		capp - ptr to unsigned 64-bit variable to receive the
18846  *			capacity value from the command.
18847  *		lbap - ptr to unsigned 32-bit varaible to receive the
18848  *			block size value from the command
18849  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18850  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18851  *			to use the USCSI "direct" chain and bypass the normal
18852  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
18853  *			command is issued as part of an error recovery action.
18854  *
18855  * Return Code: 0   - Success
18856  *		EIO - IO error
18857  *		EACCES - Reservation conflict detected
18858  *		EAGAIN - Device is becoming ready
18859  *		errno return code from sd_send_scsi_cmd()
18860  *
18861  *     Context: Can sleep.  Blocks until command completes.
18862  */
18863 
18864 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
18865 
18866 static int
18867 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap,
18868 	int path_flag)
18869 {
18870 	struct	scsi_extended_sense	sense_buf;
18871 	struct	uscsi_cmd	ucmd_buf;
18872 	union	scsi_cdb	cdb;
18873 	uint32_t		*capacity_buf;
18874 	uint64_t		capacity;
18875 	uint32_t		lbasize;
18876 	int			status;
18877 
18878 	ASSERT(un != NULL);
18879 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18880 	ASSERT(capp != NULL);
18881 	ASSERT(lbap != NULL);
18882 
18883 	SD_TRACE(SD_LOG_IO, un,
18884 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
18885 
18886 	/*
18887 	 * First send a READ_CAPACITY command to the target.
18888 	 * (This command is mandatory under SCSI-2.)
18889 	 *
18890 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
18891 	 * Medium Indicator bit is cleared.  The address field must be
18892 	 * zero if the PMI bit is zero.
18893 	 */
18894 	bzero(&cdb, sizeof (cdb));
18895 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18896 
18897 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
18898 
18899 	cdb.scc_cmd = SCMD_READ_CAPACITY;
18900 
18901 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18902 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18903 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
18904 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
18905 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18906 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
18907 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18908 	ucmd_buf.uscsi_timeout	= 60;
18909 
18910 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
18911 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
18912 
18913 	switch (status) {
18914 	case 0:
18915 		/* Return failure if we did not get valid capacity data. */
18916 		if (ucmd_buf.uscsi_resid != 0) {
18917 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18918 			return (EIO);
18919 		}
18920 
18921 		/*
18922 		 * Read capacity and block size from the READ CAPACITY 10 data.
18923 		 * This data may be adjusted later due to device specific
18924 		 * issues.
18925 		 *
18926 		 * According to the SCSI spec, the READ CAPACITY 10
18927 		 * command returns the following:
18928 		 *
18929 		 *  bytes 0-3: Maximum logical block address available.
18930 		 *		(MSB in byte:0 & LSB in byte:3)
18931 		 *
18932 		 *  bytes 4-7: Block length in bytes
18933 		 *		(MSB in byte:4 & LSB in byte:7)
18934 		 *
18935 		 */
18936 		capacity = BE_32(capacity_buf[0]);
18937 		lbasize = BE_32(capacity_buf[1]);
18938 
18939 		/*
18940 		 * Done with capacity_buf
18941 		 */
18942 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18943 
18944 		/*
18945 		 * if the reported capacity is set to all 0xf's, then
18946 		 * this disk is too large and requires SBC-2 commands.
18947 		 * Reissue the request using READ CAPACITY 16.
18948 		 */
18949 		if (capacity == 0xffffffff) {
18950 			status = sd_send_scsi_READ_CAPACITY_16(un, &capacity,
18951 			    &lbasize, path_flag);
18952 			if (status != 0) {
18953 				return (status);
18954 			}
18955 		}
18956 		break;	/* Success! */
18957 	case EIO:
18958 		switch (ucmd_buf.uscsi_status) {
18959 		case STATUS_RESERVATION_CONFLICT:
18960 			status = EACCES;
18961 			break;
18962 		case STATUS_CHECK:
18963 			/*
18964 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
18965 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
18966 			 */
18967 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18968 			    (sense_buf.es_add_code  == 0x04) &&
18969 			    (sense_buf.es_qual_code == 0x01)) {
18970 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18971 				return (EAGAIN);
18972 			}
18973 			break;
18974 		default:
18975 			break;
18976 		}
18977 		/* FALLTHRU */
18978 	default:
18979 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
18980 		return (status);
18981 	}
18982 
18983 	/*
18984 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
18985 	 * (2352 and 0 are common) so for these devices always force the value
18986 	 * to 2048 as required by the ATAPI specs.
18987 	 */
18988 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
18989 		lbasize = 2048;
18990 	}
18991 
18992 	/*
18993 	 * Get the maximum LBA value from the READ CAPACITY data.
18994 	 * Here we assume that the Partial Medium Indicator (PMI) bit
18995 	 * was cleared when issuing the command. This means that the LBA
18996 	 * returned from the device is the LBA of the last logical block
18997 	 * on the logical unit.  The actual logical block count will be
18998 	 * this value plus one.
18999 	 *
19000 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
19001 	 * so scale the capacity value to reflect this.
19002 	 */
19003 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
19004 
19005 #if defined(__i386) || defined(__amd64)
19006 	/*
19007 	 * On x86, compensate for off-by-1 error (number of sectors on
19008 	 * media)  (1175930)
19009 	 */
19010 	if (!ISREMOVABLE(un) && (lbasize == un->un_sys_blocksize)) {
19011 		capacity -= 1;
19012 	}
19013 #endif
19014 
19015 	/*
19016 	 * Copy the values from the READ CAPACITY command into the space
19017 	 * provided by the caller.
19018 	 */
19019 	*capp = capacity;
19020 	*lbap = lbasize;
19021 
19022 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
19023 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19024 
19025 	/*
19026 	 * Both the lbasize and capacity from the device must be nonzero,
19027 	 * otherwise we assume that the values are not valid and return
19028 	 * failure to the caller. (4203735)
19029 	 */
19030 	if ((capacity == 0) || (lbasize == 0)) {
19031 		return (EIO);
19032 	}
19033 
19034 	return (0);
19035 }
19036 
19037 /*
19038  *    Function: sd_send_scsi_READ_CAPACITY_16
19039  *
19040  * Description: This routine uses the scsi READ CAPACITY 16 command to
19041  *		determine the device capacity in number of blocks and the
19042  *		device native block size.  If this function returns a failure,
19043  *		then the values in *capp and *lbap are undefined.
19044  *		This routine should always be called by
19045  *		sd_send_scsi_READ_CAPACITY which will appy any device
19046  *		specific adjustments to capacity and lbasize.
19047  *
19048  *   Arguments: un   - ptr to soft state struct for the target
19049  *		capp - ptr to unsigned 64-bit variable to receive the
19050  *			capacity value from the command.
19051  *		lbap - ptr to unsigned 32-bit varaible to receive the
19052  *			block size value from the command
19053  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19054  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19055  *			to use the USCSI "direct" chain and bypass the normal
19056  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
19057  *			this command is issued as part of an error recovery
19058  *			action.
19059  *
19060  * Return Code: 0   - Success
19061  *		EIO - IO error
19062  *		EACCES - Reservation conflict detected
19063  *		EAGAIN - Device is becoming ready
19064  *		errno return code from sd_send_scsi_cmd()
19065  *
19066  *     Context: Can sleep.  Blocks until command completes.
19067  */
19068 
19069 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
19070 
19071 static int
19072 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
19073 	uint32_t *lbap, int path_flag)
19074 {
19075 	struct	scsi_extended_sense	sense_buf;
19076 	struct	uscsi_cmd	ucmd_buf;
19077 	union	scsi_cdb	cdb;
19078 	uint64_t		*capacity16_buf;
19079 	uint64_t		capacity;
19080 	uint32_t		lbasize;
19081 	int			status;
19082 
19083 	ASSERT(un != NULL);
19084 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19085 	ASSERT(capp != NULL);
19086 	ASSERT(lbap != NULL);
19087 
19088 	SD_TRACE(SD_LOG_IO, un,
19089 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19090 
19091 	/*
19092 	 * First send a READ_CAPACITY_16 command to the target.
19093 	 *
19094 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
19095 	 * Medium Indicator bit is cleared.  The address field must be
19096 	 * zero if the PMI bit is zero.
19097 	 */
19098 	bzero(&cdb, sizeof (cdb));
19099 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19100 
19101 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
19102 
19103 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19104 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
19105 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
19106 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
19107 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19108 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19109 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19110 	ucmd_buf.uscsi_timeout	= 60;
19111 
19112 	/*
19113 	 * Read Capacity (16) is a Service Action In command.  One
19114 	 * command byte (0x9E) is overloaded for multiple operations,
19115 	 * with the second CDB byte specifying the desired operation
19116 	 */
19117 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
19118 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
19119 
19120 	/*
19121 	 * Fill in allocation length field
19122 	 */
19123 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
19124 
19125 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19126 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19127 
19128 	switch (status) {
19129 	case 0:
19130 		/* Return failure if we did not get valid capacity data. */
19131 		if (ucmd_buf.uscsi_resid > 20) {
19132 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19133 			return (EIO);
19134 		}
19135 
19136 		/*
19137 		 * Read capacity and block size from the READ CAPACITY 10 data.
19138 		 * This data may be adjusted later due to device specific
19139 		 * issues.
19140 		 *
19141 		 * According to the SCSI spec, the READ CAPACITY 10
19142 		 * command returns the following:
19143 		 *
19144 		 *  bytes 0-7: Maximum logical block address available.
19145 		 *		(MSB in byte:0 & LSB in byte:7)
19146 		 *
19147 		 *  bytes 8-11: Block length in bytes
19148 		 *		(MSB in byte:8 & LSB in byte:11)
19149 		 *
19150 		 */
19151 		capacity = BE_64(capacity16_buf[0]);
19152 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
19153 
19154 		/*
19155 		 * Done with capacity16_buf
19156 		 */
19157 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19158 
19159 		/*
19160 		 * if the reported capacity is set to all 0xf's, then
19161 		 * this disk is too large.  This could only happen with
19162 		 * a device that supports LBAs larger than 64 bits which
19163 		 * are not defined by any current T10 standards.
19164 		 */
19165 		if (capacity == 0xffffffffffffffff) {
19166 			return (EIO);
19167 		}
19168 		break;	/* Success! */
19169 	case EIO:
19170 		switch (ucmd_buf.uscsi_status) {
19171 		case STATUS_RESERVATION_CONFLICT:
19172 			status = EACCES;
19173 			break;
19174 		case STATUS_CHECK:
19175 			/*
19176 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19177 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19178 			 */
19179 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19180 			    (sense_buf.es_add_code  == 0x04) &&
19181 			    (sense_buf.es_qual_code == 0x01)) {
19182 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19183 				return (EAGAIN);
19184 			}
19185 			break;
19186 		default:
19187 			break;
19188 		}
19189 		/* FALLTHRU */
19190 	default:
19191 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19192 		return (status);
19193 	}
19194 
19195 	*capp = capacity;
19196 	*lbap = lbasize;
19197 
19198 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
19199 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19200 
19201 	return (0);
19202 }
19203 
19204 
19205 /*
19206  *    Function: sd_send_scsi_START_STOP_UNIT
19207  *
19208  * Description: Issue a scsi START STOP UNIT command to the target.
19209  *
19210  *   Arguments: un    - pointer to driver soft state (unit) structure for
19211  *			this target.
19212  *		flag  - SD_TARGET_START
19213  *			SD_TARGET_STOP
19214  *			SD_TARGET_EJECT
19215  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19216  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19217  *			to use the USCSI "direct" chain and bypass the normal
19218  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19219  *			command is issued as part of an error recovery action.
19220  *
19221  * Return Code: 0   - Success
19222  *		EIO - IO error
19223  *		EACCES - Reservation conflict detected
19224  *		ENXIO  - Not Ready, medium not present
19225  *		errno return code from sd_send_scsi_cmd()
19226  *
19227  *     Context: Can sleep.
19228  */
19229 
19230 static int
19231 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag)
19232 {
19233 	struct	scsi_extended_sense	sense_buf;
19234 	union scsi_cdb		cdb;
19235 	struct uscsi_cmd	ucmd_buf;
19236 	int			status;
19237 
19238 	ASSERT(un != NULL);
19239 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19240 
19241 	SD_TRACE(SD_LOG_IO, un,
19242 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
19243 
19244 	if (ISREMOVABLE(un) &&
19245 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
19246 	    (un->un_f_start_stop_supported != TRUE)) {
19247 		return (0);
19248 	}
19249 
19250 	bzero(&cdb, sizeof (cdb));
19251 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19252 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19253 
19254 	cdb.scc_cmd = SCMD_START_STOP;
19255 	cdb.cdb_opaque[4] = (uchar_t)flag;
19256 
19257 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19258 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19259 	ucmd_buf.uscsi_bufaddr	= NULL;
19260 	ucmd_buf.uscsi_buflen	= 0;
19261 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19262 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19263 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19264 	ucmd_buf.uscsi_timeout	= 200;
19265 
19266 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19267 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19268 
19269 	switch (status) {
19270 	case 0:
19271 		break;	/* Success! */
19272 	case EIO:
19273 		switch (ucmd_buf.uscsi_status) {
19274 		case STATUS_RESERVATION_CONFLICT:
19275 			status = EACCES;
19276 			break;
19277 		case STATUS_CHECK:
19278 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
19279 				switch (sense_buf.es_key) {
19280 				case KEY_ILLEGAL_REQUEST:
19281 					status = ENOTSUP;
19282 					break;
19283 				case KEY_NOT_READY:
19284 					if (sense_buf.es_add_code == 0x3A) {
19285 						status = ENXIO;
19286 					}
19287 					break;
19288 				default:
19289 					break;
19290 				}
19291 			}
19292 			break;
19293 		default:
19294 			break;
19295 		}
19296 		break;
19297 	default:
19298 		break;
19299 	}
19300 
19301 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
19302 
19303 	return (status);
19304 }
19305 
19306 
19307 /*
19308  *    Function: sd_start_stop_unit_callback
19309  *
19310  * Description: timeout(9F) callback to begin recovery process for a
19311  *		device that has spun down.
19312  *
19313  *   Arguments: arg - pointer to associated softstate struct.
19314  *
19315  *     Context: Executes in a timeout(9F) thread context
19316  */
19317 
19318 static void
19319 sd_start_stop_unit_callback(void *arg)
19320 {
19321 	struct sd_lun	*un = arg;
19322 	ASSERT(un != NULL);
19323 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19324 
19325 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
19326 
19327 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
19328 }
19329 
19330 
19331 /*
19332  *    Function: sd_start_stop_unit_task
19333  *
19334  * Description: Recovery procedure when a drive is spun down.
19335  *
19336  *   Arguments: arg - pointer to associated softstate struct.
19337  *
19338  *     Context: Executes in a taskq() thread context
19339  */
19340 
19341 static void
19342 sd_start_stop_unit_task(void *arg)
19343 {
19344 	struct sd_lun	*un = arg;
19345 
19346 	ASSERT(un != NULL);
19347 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19348 
19349 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
19350 
19351 	/*
19352 	 * Some unformatted drives report not ready error, no need to
19353 	 * restart if format has been initiated.
19354 	 */
19355 	mutex_enter(SD_MUTEX(un));
19356 	if (un->un_f_format_in_progress == TRUE) {
19357 		mutex_exit(SD_MUTEX(un));
19358 		return;
19359 	}
19360 	mutex_exit(SD_MUTEX(un));
19361 
19362 	/*
19363 	 * When a START STOP command is issued from here, it is part of a
19364 	 * failure recovery operation and must be issued before any other
19365 	 * commands, including any pending retries. Thus it must be sent
19366 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
19367 	 * succeeds or not, we will start I/O after the attempt.
19368 	 */
19369 	(void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
19370 	    SD_PATH_DIRECT_PRIORITY);
19371 
19372 	/*
19373 	 * The above call blocks until the START_STOP_UNIT command completes.
19374 	 * Now that it has completed, we must re-try the original IO that
19375 	 * received the NOT READY condition in the first place. There are
19376 	 * three possible conditions here:
19377 	 *
19378 	 *  (1) The original IO is on un_retry_bp.
19379 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
19380 	 *	is NULL.
19381 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
19382 	 *	points to some other, unrelated bp.
19383 	 *
19384 	 * For each case, we must call sd_start_cmds() with un_retry_bp
19385 	 * as the argument. If un_retry_bp is NULL, this will initiate
19386 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
19387 	 * then this will process the bp on un_retry_bp. That may or may not
19388 	 * be the original IO, but that does not matter: the important thing
19389 	 * is to keep the IO processing going at this point.
19390 	 *
19391 	 * Note: This is a very specific error recovery sequence associated
19392 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
19393 	 * serialize the I/O with completion of the spin-up.
19394 	 */
19395 	mutex_enter(SD_MUTEX(un));
19396 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19397 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
19398 	    un, un->un_retry_bp);
19399 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
19400 	sd_start_cmds(un, un->un_retry_bp);
19401 	mutex_exit(SD_MUTEX(un));
19402 
19403 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
19404 }
19405 
19406 
19407 /*
19408  *    Function: sd_send_scsi_INQUIRY
19409  *
19410  * Description: Issue the scsi INQUIRY command.
19411  *
19412  *   Arguments: un
19413  *		bufaddr
19414  *		buflen
19415  *		evpd
19416  *		page_code
19417  *		page_length
19418  *
19419  * Return Code: 0   - Success
19420  *		errno return code from sd_send_scsi_cmd()
19421  *
19422  *     Context: Can sleep. Does not return until command is completed.
19423  */
19424 
19425 static int
19426 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen,
19427 	uchar_t evpd, uchar_t page_code, size_t *residp)
19428 {
19429 	union scsi_cdb		cdb;
19430 	struct uscsi_cmd	ucmd_buf;
19431 	int			status;
19432 
19433 	ASSERT(un != NULL);
19434 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19435 	ASSERT(bufaddr != NULL);
19436 
19437 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
19438 
19439 	bzero(&cdb, sizeof (cdb));
19440 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19441 	bzero(bufaddr, buflen);
19442 
19443 	cdb.scc_cmd = SCMD_INQUIRY;
19444 	cdb.cdb_opaque[1] = evpd;
19445 	cdb.cdb_opaque[2] = page_code;
19446 	FORMG0COUNT(&cdb, buflen);
19447 
19448 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19449 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19450 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19451 	ucmd_buf.uscsi_buflen	= buflen;
19452 	ucmd_buf.uscsi_rqbuf	= NULL;
19453 	ucmd_buf.uscsi_rqlen	= 0;
19454 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
19455 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
19456 
19457 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19458 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_DIRECT);
19459 
19460 	if ((status == 0) && (residp != NULL)) {
19461 		*residp = ucmd_buf.uscsi_resid;
19462 	}
19463 
19464 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
19465 
19466 	return (status);
19467 }
19468 
19469 
19470 /*
19471  *    Function: sd_send_scsi_TEST_UNIT_READY
19472  *
19473  * Description: Issue the scsi TEST UNIT READY command.
19474  *		This routine can be told to set the flag USCSI_DIAGNOSE to
19475  *		prevent retrying failed commands. Use this when the intent
19476  *		is either to check for device readiness, to clear a Unit
19477  *		Attention, or to clear any outstanding sense data.
19478  *		However under specific conditions the expected behavior
19479  *		is for retries to bring a device ready, so use the flag
19480  *		with caution.
19481  *
19482  *   Arguments: un
19483  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
19484  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
19485  *			0: dont check for media present, do retries on cmd.
19486  *
19487  * Return Code: 0   - Success
19488  *		EIO - IO error
19489  *		EACCES - Reservation conflict detected
19490  *		ENXIO  - Not Ready, medium not present
19491  *		errno return code from sd_send_scsi_cmd()
19492  *
19493  *     Context: Can sleep. Does not return until command is completed.
19494  */
19495 
19496 static int
19497 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag)
19498 {
19499 	struct	scsi_extended_sense	sense_buf;
19500 	union scsi_cdb		cdb;
19501 	struct uscsi_cmd	ucmd_buf;
19502 	int			status;
19503 
19504 	ASSERT(un != NULL);
19505 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19506 
19507 	SD_TRACE(SD_LOG_IO, un,
19508 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
19509 
19510 	/*
19511 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
19512 	 * timeouts when they receive a TUR and the queue is not empty. Check
19513 	 * the configuration flag set during attach (indicating the drive has
19514 	 * this firmware bug) and un_ncmds_in_transport before issuing the
19515 	 * TUR. If there are
19516 	 * pending commands return success, this is a bit arbitrary but is ok
19517 	 * for non-removables (i.e. the eliteI disks) and non-clustering
19518 	 * configurations.
19519 	 */
19520 	if (un->un_f_cfg_tur_check == TRUE) {
19521 		mutex_enter(SD_MUTEX(un));
19522 		if (un->un_ncmds_in_transport != 0) {
19523 			mutex_exit(SD_MUTEX(un));
19524 			return (0);
19525 		}
19526 		mutex_exit(SD_MUTEX(un));
19527 	}
19528 
19529 	bzero(&cdb, sizeof (cdb));
19530 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19531 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19532 
19533 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
19534 
19535 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19536 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19537 	ucmd_buf.uscsi_bufaddr	= NULL;
19538 	ucmd_buf.uscsi_buflen	= 0;
19539 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19540 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19541 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19542 
19543 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
19544 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
19545 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
19546 	}
19547 	ucmd_buf.uscsi_timeout	= 60;
19548 
19549 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19550 	    UIO_SYSSPACE, UIO_SYSSPACE,
19551 	    ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT : SD_PATH_STANDARD));
19552 
19553 	switch (status) {
19554 	case 0:
19555 		break;	/* Success! */
19556 	case EIO:
19557 		switch (ucmd_buf.uscsi_status) {
19558 		case STATUS_RESERVATION_CONFLICT:
19559 			status = EACCES;
19560 			break;
19561 		case STATUS_CHECK:
19562 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
19563 				break;
19564 			}
19565 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19566 			    (sense_buf.es_key == KEY_NOT_READY) &&
19567 			    (sense_buf.es_add_code == 0x3A)) {
19568 				status = ENXIO;
19569 			}
19570 			break;
19571 		default:
19572 			break;
19573 		}
19574 		break;
19575 	default:
19576 		break;
19577 	}
19578 
19579 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
19580 
19581 	return (status);
19582 }
19583 
19584 
19585 /*
19586  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
19587  *
19588  * Description: Issue the scsi PERSISTENT RESERVE IN command.
19589  *
19590  *   Arguments: un
19591  *
19592  * Return Code: 0   - Success
19593  *		EACCES
19594  *		ENOTSUP
19595  *		errno return code from sd_send_scsi_cmd()
19596  *
19597  *     Context: Can sleep. Does not return until command is completed.
19598  */
19599 
19600 static int
19601 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t  usr_cmd,
19602 	uint16_t data_len, uchar_t *data_bufp)
19603 {
19604 	struct scsi_extended_sense	sense_buf;
19605 	union scsi_cdb		cdb;
19606 	struct uscsi_cmd	ucmd_buf;
19607 	int			status;
19608 	int			no_caller_buf = FALSE;
19609 
19610 	ASSERT(un != NULL);
19611 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19612 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
19613 
19614 	SD_TRACE(SD_LOG_IO, un,
19615 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
19616 
19617 	bzero(&cdb, sizeof (cdb));
19618 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19619 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19620 	if (data_bufp == NULL) {
19621 		/* Allocate a default buf if the caller did not give one */
19622 		ASSERT(data_len == 0);
19623 		data_len  = MHIOC_RESV_KEY_SIZE;
19624 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
19625 		no_caller_buf = TRUE;
19626 	}
19627 
19628 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
19629 	cdb.cdb_opaque[1] = usr_cmd;
19630 	FORMG1COUNT(&cdb, data_len);
19631 
19632 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19633 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19634 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
19635 	ucmd_buf.uscsi_buflen	= data_len;
19636 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19637 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19638 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19639 	ucmd_buf.uscsi_timeout	= 60;
19640 
19641 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19642 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
19643 
19644 	switch (status) {
19645 	case 0:
19646 		break;	/* Success! */
19647 	case EIO:
19648 		switch (ucmd_buf.uscsi_status) {
19649 		case STATUS_RESERVATION_CONFLICT:
19650 			status = EACCES;
19651 			break;
19652 		case STATUS_CHECK:
19653 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19654 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
19655 				status = ENOTSUP;
19656 			}
19657 			break;
19658 		default:
19659 			break;
19660 		}
19661 		break;
19662 	default:
19663 		break;
19664 	}
19665 
19666 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
19667 
19668 	if (no_caller_buf == TRUE) {
19669 		kmem_free(data_bufp, data_len);
19670 	}
19671 
19672 	return (status);
19673 }
19674 
19675 
19676 /*
19677  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
19678  *
19679  * Description: This routine is the driver entry point for handling CD-ROM
19680  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
19681  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
19682  *		device.
19683  *
19684  *   Arguments: un  -   Pointer to soft state struct for the target.
19685  *		usr_cmd SCSI-3 reservation facility command (one of
19686  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
19687  *			SD_SCSI3_PREEMPTANDABORT)
19688  *		usr_bufp - user provided pointer register, reserve descriptor or
19689  *			preempt and abort structure (mhioc_register_t,
19690  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
19691  *
19692  * Return Code: 0   - Success
19693  *		EACCES
19694  *		ENOTSUP
19695  *		errno return code from sd_send_scsi_cmd()
19696  *
19697  *     Context: Can sleep. Does not return until command is completed.
19698  */
19699 
19700 static int
19701 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd,
19702 	uchar_t	*usr_bufp)
19703 {
19704 	struct scsi_extended_sense	sense_buf;
19705 	union scsi_cdb		cdb;
19706 	struct uscsi_cmd	ucmd_buf;
19707 	int			status;
19708 	uchar_t			data_len = sizeof (sd_prout_t);
19709 	sd_prout_t		*prp;
19710 
19711 	ASSERT(un != NULL);
19712 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19713 	ASSERT(data_len == 24);	/* required by scsi spec */
19714 
19715 	SD_TRACE(SD_LOG_IO, un,
19716 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
19717 
19718 	if (usr_bufp == NULL) {
19719 		return (EINVAL);
19720 	}
19721 
19722 	bzero(&cdb, sizeof (cdb));
19723 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19724 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19725 	prp = kmem_zalloc(data_len, KM_SLEEP);
19726 
19727 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
19728 	cdb.cdb_opaque[1] = usr_cmd;
19729 	FORMG1COUNT(&cdb, data_len);
19730 
19731 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19732 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19733 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
19734 	ucmd_buf.uscsi_buflen	= data_len;
19735 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19736 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19737 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
19738 	ucmd_buf.uscsi_timeout	= 60;
19739 
19740 	switch (usr_cmd) {
19741 	case SD_SCSI3_REGISTER: {
19742 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
19743 
19744 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
19745 		bcopy(ptr->newkey.key, prp->service_key,
19746 		    MHIOC_RESV_KEY_SIZE);
19747 		prp->aptpl = ptr->aptpl;
19748 		break;
19749 	}
19750 	case SD_SCSI3_RESERVE:
19751 	case SD_SCSI3_RELEASE: {
19752 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
19753 
19754 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
19755 		prp->scope_address = BE_32(ptr->scope_specific_addr);
19756 		cdb.cdb_opaque[2] = ptr->type;
19757 		break;
19758 	}
19759 	case SD_SCSI3_PREEMPTANDABORT: {
19760 		mhioc_preemptandabort_t *ptr =
19761 		    (mhioc_preemptandabort_t *)usr_bufp;
19762 
19763 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
19764 		bcopy(ptr->victim_key.key, prp->service_key,
19765 		    MHIOC_RESV_KEY_SIZE);
19766 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
19767 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
19768 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
19769 		break;
19770 	}
19771 	case SD_SCSI3_REGISTERANDIGNOREKEY:
19772 	{
19773 		mhioc_registerandignorekey_t *ptr;
19774 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
19775 		bcopy(ptr->newkey.key,
19776 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
19777 		prp->aptpl = ptr->aptpl;
19778 		break;
19779 	}
19780 	default:
19781 		ASSERT(FALSE);
19782 		break;
19783 	}
19784 
19785 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19786 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
19787 
19788 	switch (status) {
19789 	case 0:
19790 		break;	/* Success! */
19791 	case EIO:
19792 		switch (ucmd_buf.uscsi_status) {
19793 		case STATUS_RESERVATION_CONFLICT:
19794 			status = EACCES;
19795 			break;
19796 		case STATUS_CHECK:
19797 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19798 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
19799 				status = ENOTSUP;
19800 			}
19801 			break;
19802 		default:
19803 			break;
19804 		}
19805 		break;
19806 	default:
19807 		break;
19808 	}
19809 
19810 	kmem_free(prp, data_len);
19811 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
19812 	return (status);
19813 }
19814 
19815 
19816 /*
19817  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
19818  *
19819  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
19820  *
19821  *   Arguments: un - pointer to the target's soft state struct
19822  *
19823  * Return Code: 0 - success
19824  *		errno-type error code
19825  *
19826  *     Context: kernel thread context only.
19827  */
19828 
19829 static int
19830 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un)
19831 {
19832 	struct	scsi_extended_sense	sense_buf;
19833 	union scsi_cdb		cdb;
19834 	struct uscsi_cmd	ucmd_buf;
19835 	int			status;
19836 
19837 	ASSERT(un != NULL);
19838 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19839 
19840 	SD_TRACE(SD_LOG_IO, un,
19841 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
19842 
19843 	bzero(&cdb, sizeof (cdb));
19844 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19845 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19846 
19847 	cdb.scc_cmd = SCMD_SYNCHRONIZE_CACHE;
19848 
19849 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19850 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19851 	ucmd_buf.uscsi_bufaddr	= NULL;
19852 	ucmd_buf.uscsi_buflen	= 0;
19853 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19854 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19855 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19856 	ucmd_buf.uscsi_timeout	= 240;
19857 
19858 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19859 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_DIRECT);
19860 
19861 	switch (status) {
19862 	case 0:
19863 		break;	/* Success! */
19864 	case EIO:
19865 		switch (ucmd_buf.uscsi_status) {
19866 		case STATUS_RESERVATION_CONFLICT:
19867 			/* Ignore reservation conflict */
19868 			status = 0;
19869 			goto done;
19870 
19871 		case STATUS_CHECK:
19872 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19873 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
19874 				/* Ignore Illegal Request error */
19875 				status = 0;
19876 				goto done;
19877 			}
19878 			break;
19879 		default:
19880 			break;
19881 		}
19882 		/* FALLTHRU */
19883 	default:
19884 		/* Ignore error if the media is not present. */
19885 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
19886 			status = 0;
19887 			goto done;
19888 		}
19889 		/* If we reach this, we had an error */
19890 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
19891 		    "SYNCHRONIZE CACHE command failed (%d)\n", status);
19892 		break;
19893 	}
19894 
19895 done:
19896 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: exit\n");
19897 
19898 	return (status);
19899 }
19900 
19901 
19902 /*
19903  *    Function: sd_send_scsi_GET_CONFIGURATION
19904  *
19905  * Description: Issues the get configuration command to the device.
19906  *		Called from sd_check_for_writable_cd & sd_get_media_info
19907  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
19908  *   Arguments: un
19909  *		ucmdbuf
19910  *		rqbuf
19911  *		rqbuflen
19912  *		bufaddr
19913  *		buflen
19914  *
19915  * Return Code: 0   - Success
19916  *		errno return code from sd_send_scsi_cmd()
19917  *
19918  *     Context: Can sleep. Does not return until command is completed.
19919  *
19920  */
19921 
19922 static int
19923 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf,
19924 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen)
19925 {
19926 	char	cdb[CDB_GROUP1];
19927 	int	status;
19928 
19929 	ASSERT(un != NULL);
19930 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19931 	ASSERT(bufaddr != NULL);
19932 	ASSERT(ucmdbuf != NULL);
19933 	ASSERT(rqbuf != NULL);
19934 
19935 	SD_TRACE(SD_LOG_IO, un,
19936 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
19937 
19938 	bzero(cdb, sizeof (cdb));
19939 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
19940 	bzero(rqbuf, rqbuflen);
19941 	bzero(bufaddr, buflen);
19942 
19943 	/*
19944 	 * Set up cdb field for the get configuration command.
19945 	 */
19946 	cdb[0] = SCMD_GET_CONFIGURATION;
19947 	cdb[1] = 0x02;  /* Requested Type */
19948 	cdb[8] = SD_PROFILE_HEADER_LEN;
19949 	ucmdbuf->uscsi_cdb = cdb;
19950 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
19951 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
19952 	ucmdbuf->uscsi_buflen = buflen;
19953 	ucmdbuf->uscsi_timeout = sd_io_time;
19954 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
19955 	ucmdbuf->uscsi_rqlen = rqbuflen;
19956 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
19957 
19958 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE,
19959 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
19960 
19961 	switch (status) {
19962 	case 0:
19963 		break;  /* Success! */
19964 	case EIO:
19965 		switch (ucmdbuf->uscsi_status) {
19966 		case STATUS_RESERVATION_CONFLICT:
19967 			status = EACCES;
19968 			break;
19969 		default:
19970 			break;
19971 		}
19972 		break;
19973 	default:
19974 		break;
19975 	}
19976 
19977 	if (status == 0) {
19978 		SD_DUMP_MEMORY(un, SD_LOG_IO,
19979 		    "sd_send_scsi_GET_CONFIGURATION: data",
19980 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
19981 	}
19982 
19983 	SD_TRACE(SD_LOG_IO, un,
19984 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
19985 
19986 	return (status);
19987 }
19988 
19989 /*
19990  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
19991  *
19992  * Description: Issues the get configuration command to the device to
19993  *              retrieve a specfic feature. Called from
19994  *		sd_check_for_writable_cd & sd_set_mmc_caps.
19995  *   Arguments: un
19996  *              ucmdbuf
19997  *              rqbuf
19998  *              rqbuflen
19999  *              bufaddr
20000  *              buflen
20001  *		feature
20002  *
20003  * Return Code: 0   - Success
20004  *              errno return code from sd_send_scsi_cmd()
20005  *
20006  *     Context: Can sleep. Does not return until command is completed.
20007  *
20008  */
20009 static int
20010 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
20011 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
20012 	uchar_t *bufaddr, uint_t buflen, char feature)
20013 {
20014 	char    cdb[CDB_GROUP1];
20015 	int	status;
20016 
20017 	ASSERT(un != NULL);
20018 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20019 	ASSERT(bufaddr != NULL);
20020 	ASSERT(ucmdbuf != NULL);
20021 	ASSERT(rqbuf != NULL);
20022 
20023 	SD_TRACE(SD_LOG_IO, un,
20024 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
20025 
20026 	bzero(cdb, sizeof (cdb));
20027 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20028 	bzero(rqbuf, rqbuflen);
20029 	bzero(bufaddr, buflen);
20030 
20031 	/*
20032 	 * Set up cdb field for the get configuration command.
20033 	 */
20034 	cdb[0] = SCMD_GET_CONFIGURATION;
20035 	cdb[1] = 0x02;  /* Requested Type */
20036 	cdb[3] = feature;
20037 	cdb[8] = buflen;
20038 	ucmdbuf->uscsi_cdb = cdb;
20039 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20040 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20041 	ucmdbuf->uscsi_buflen = buflen;
20042 	ucmdbuf->uscsi_timeout = sd_io_time;
20043 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20044 	ucmdbuf->uscsi_rqlen = rqbuflen;
20045 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20046 
20047 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE,
20048 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20049 
20050 	switch (status) {
20051 	case 0:
20052 		break;  /* Success! */
20053 	case EIO:
20054 		switch (ucmdbuf->uscsi_status) {
20055 		case STATUS_RESERVATION_CONFLICT:
20056 			status = EACCES;
20057 			break;
20058 		default:
20059 			break;
20060 		}
20061 		break;
20062 	default:
20063 		break;
20064 	}
20065 
20066 	if (status == 0) {
20067 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20068 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
20069 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20070 	}
20071 
20072 	SD_TRACE(SD_LOG_IO, un,
20073 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
20074 
20075 	return (status);
20076 }
20077 
20078 
20079 /*
20080  *    Function: sd_send_scsi_MODE_SENSE
20081  *
20082  * Description: Utility function for issuing a scsi MODE SENSE command.
20083  *		Note: This routine uses a consistent implementation for Group0,
20084  *		Group1, and Group2 commands across all platforms. ATAPI devices
20085  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20086  *
20087  *   Arguments: un - pointer to the softstate struct for the target.
20088  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20089  *			  CDB_GROUP[1|2] (10 byte).
20090  *		bufaddr - buffer for page data retrieved from the target.
20091  *		buflen - size of page to be retrieved.
20092  *		page_code - page code of data to be retrieved from the target.
20093  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20094  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20095  *			to use the USCSI "direct" chain and bypass the normal
20096  *			command waitq.
20097  *
20098  * Return Code: 0   - Success
20099  *		errno return code from sd_send_scsi_cmd()
20100  *
20101  *     Context: Can sleep. Does not return until command is completed.
20102  */
20103 
20104 static int
20105 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
20106 	size_t buflen,  uchar_t page_code, int path_flag)
20107 {
20108 	struct	scsi_extended_sense	sense_buf;
20109 	union scsi_cdb		cdb;
20110 	struct uscsi_cmd	ucmd_buf;
20111 	int			status;
20112 
20113 	ASSERT(un != NULL);
20114 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20115 	ASSERT(bufaddr != NULL);
20116 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20117 	    (cdbsize == CDB_GROUP2));
20118 
20119 	SD_TRACE(SD_LOG_IO, un,
20120 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
20121 
20122 	bzero(&cdb, sizeof (cdb));
20123 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20124 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20125 	bzero(bufaddr, buflen);
20126 
20127 	if (cdbsize == CDB_GROUP0) {
20128 		cdb.scc_cmd = SCMD_MODE_SENSE;
20129 		cdb.cdb_opaque[2] = page_code;
20130 		FORMG0COUNT(&cdb, buflen);
20131 	} else {
20132 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
20133 		cdb.cdb_opaque[2] = page_code;
20134 		FORMG1COUNT(&cdb, buflen);
20135 	}
20136 
20137 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20138 
20139 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20140 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20141 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20142 	ucmd_buf.uscsi_buflen	= buflen;
20143 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20144 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20145 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20146 	ucmd_buf.uscsi_timeout	= 60;
20147 
20148 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20149 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20150 
20151 	switch (status) {
20152 	case 0:
20153 		break;	/* Success! */
20154 	case EIO:
20155 		switch (ucmd_buf.uscsi_status) {
20156 		case STATUS_RESERVATION_CONFLICT:
20157 			status = EACCES;
20158 			break;
20159 		default:
20160 			break;
20161 		}
20162 		break;
20163 	default:
20164 		break;
20165 	}
20166 
20167 	if (status == 0) {
20168 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
20169 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20170 	}
20171 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
20172 
20173 	return (status);
20174 }
20175 
20176 
20177 /*
20178  *    Function: sd_send_scsi_MODE_SELECT
20179  *
20180  * Description: Utility function for issuing a scsi MODE SELECT command.
20181  *		Note: This routine uses a consistent implementation for Group0,
20182  *		Group1, and Group2 commands across all platforms. ATAPI devices
20183  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20184  *
20185  *   Arguments: un - pointer to the softstate struct for the target.
20186  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20187  *			  CDB_GROUP[1|2] (10 byte).
20188  *		bufaddr - buffer for page data retrieved from the target.
20189  *		buflen - size of page to be retrieved.
20190  *		save_page - boolean to determin if SP bit should be set.
20191  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20192  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20193  *			to use the USCSI "direct" chain and bypass the normal
20194  *			command waitq.
20195  *
20196  * Return Code: 0   - Success
20197  *		errno return code from sd_send_scsi_cmd()
20198  *
20199  *     Context: Can sleep. Does not return until command is completed.
20200  */
20201 
20202 static int
20203 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
20204 	size_t buflen,  uchar_t save_page, int path_flag)
20205 {
20206 	struct	scsi_extended_sense	sense_buf;
20207 	union scsi_cdb		cdb;
20208 	struct uscsi_cmd	ucmd_buf;
20209 	int			status;
20210 
20211 	ASSERT(un != NULL);
20212 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20213 	ASSERT(bufaddr != NULL);
20214 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20215 	    (cdbsize == CDB_GROUP2));
20216 
20217 	SD_TRACE(SD_LOG_IO, un,
20218 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
20219 
20220 	bzero(&cdb, sizeof (cdb));
20221 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20222 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20223 
20224 	/* Set the PF bit for many third party drives */
20225 	cdb.cdb_opaque[1] = 0x10;
20226 
20227 	/* Set the savepage(SP) bit if given */
20228 	if (save_page == SD_SAVE_PAGE) {
20229 		cdb.cdb_opaque[1] |= 0x01;
20230 	}
20231 
20232 	if (cdbsize == CDB_GROUP0) {
20233 		cdb.scc_cmd = SCMD_MODE_SELECT;
20234 		FORMG0COUNT(&cdb, buflen);
20235 	} else {
20236 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
20237 		FORMG1COUNT(&cdb, buflen);
20238 	}
20239 
20240 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20241 
20242 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20243 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20244 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20245 	ucmd_buf.uscsi_buflen	= buflen;
20246 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20247 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20248 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20249 	ucmd_buf.uscsi_timeout	= 60;
20250 
20251 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20252 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20253 
20254 	switch (status) {
20255 	case 0:
20256 		break;	/* Success! */
20257 	case EIO:
20258 		switch (ucmd_buf.uscsi_status) {
20259 		case STATUS_RESERVATION_CONFLICT:
20260 			status = EACCES;
20261 			break;
20262 		default:
20263 			break;
20264 		}
20265 		break;
20266 	default:
20267 		break;
20268 	}
20269 
20270 	if (status == 0) {
20271 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
20272 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20273 	}
20274 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
20275 
20276 	return (status);
20277 }
20278 
20279 
20280 /*
20281  *    Function: sd_send_scsi_RDWR
20282  *
20283  * Description: Issue a scsi READ or WRITE command with the given parameters.
20284  *
20285  *   Arguments: un:      Pointer to the sd_lun struct for the target.
20286  *		cmd:	 SCMD_READ or SCMD_WRITE
20287  *		bufaddr: Address of caller's buffer to receive the RDWR data
20288  *		buflen:  Length of caller's buffer receive the RDWR data.
20289  *		start_block: Block number for the start of the RDWR operation.
20290  *			 (Assumes target-native block size.)
20291  *		residp:  Pointer to variable to receive the redisual of the
20292  *			 RDWR operation (may be NULL of no residual requested).
20293  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20294  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20295  *			to use the USCSI "direct" chain and bypass the normal
20296  *			command waitq.
20297  *
20298  * Return Code: 0   - Success
20299  *		errno return code from sd_send_scsi_cmd()
20300  *
20301  *     Context: Can sleep. Does not return until command is completed.
20302  */
20303 
20304 static int
20305 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
20306 	size_t buflen, daddr_t start_block, int path_flag)
20307 {
20308 	struct	scsi_extended_sense	sense_buf;
20309 	union scsi_cdb		cdb;
20310 	struct uscsi_cmd	ucmd_buf;
20311 	uint32_t		block_count;
20312 	int			status;
20313 	int			cdbsize;
20314 	uchar_t			flag;
20315 
20316 	ASSERT(un != NULL);
20317 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20318 	ASSERT(bufaddr != NULL);
20319 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
20320 
20321 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
20322 
20323 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
20324 		return (EINVAL);
20325 	}
20326 
20327 	mutex_enter(SD_MUTEX(un));
20328 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
20329 	mutex_exit(SD_MUTEX(un));
20330 
20331 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
20332 
20333 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
20334 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
20335 	    bufaddr, buflen, start_block, block_count);
20336 
20337 	bzero(&cdb, sizeof (cdb));
20338 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20339 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20340 
20341 	/* Compute CDB size to use */
20342 	if (start_block > 0xffffffff)
20343 		cdbsize = CDB_GROUP4;
20344 	else if ((start_block & 0xFFE00000) ||
20345 	    (un->un_f_cfg_is_atapi == TRUE))
20346 		cdbsize = CDB_GROUP1;
20347 	else
20348 		cdbsize = CDB_GROUP0;
20349 
20350 	switch (cdbsize) {
20351 	case CDB_GROUP0:	/* 6-byte CDBs */
20352 		cdb.scc_cmd = cmd;
20353 		FORMG0ADDR(&cdb, start_block);
20354 		FORMG0COUNT(&cdb, block_count);
20355 		break;
20356 	case CDB_GROUP1:	/* 10-byte CDBs */
20357 		cdb.scc_cmd = cmd | SCMD_GROUP1;
20358 		FORMG1ADDR(&cdb, start_block);
20359 		FORMG1COUNT(&cdb, block_count);
20360 		break;
20361 	case CDB_GROUP4:	/* 16-byte CDBs */
20362 		cdb.scc_cmd = cmd | SCMD_GROUP4;
20363 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
20364 		FORMG4COUNT(&cdb, block_count);
20365 		break;
20366 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
20367 	default:
20368 		/* All others reserved */
20369 		return (EINVAL);
20370 	}
20371 
20372 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
20373 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20374 
20375 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20376 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20377 	ucmd_buf.uscsi_bufaddr	= bufaddr;
20378 	ucmd_buf.uscsi_buflen	= buflen;
20379 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20380 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20381 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
20382 	ucmd_buf.uscsi_timeout	= 60;
20383 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20384 				UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20385 	switch (status) {
20386 	case 0:
20387 		break;	/* Success! */
20388 	case EIO:
20389 		switch (ucmd_buf.uscsi_status) {
20390 		case STATUS_RESERVATION_CONFLICT:
20391 			status = EACCES;
20392 			break;
20393 		default:
20394 			break;
20395 		}
20396 		break;
20397 	default:
20398 		break;
20399 	}
20400 
20401 	if (status == 0) {
20402 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
20403 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20404 	}
20405 
20406 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
20407 
20408 	return (status);
20409 }
20410 
20411 
20412 /*
20413  *    Function: sd_send_scsi_LOG_SENSE
20414  *
20415  * Description: Issue a scsi LOG_SENSE command with the given parameters.
20416  *
20417  *   Arguments: un:      Pointer to the sd_lun struct for the target.
20418  *
20419  * Return Code: 0   - Success
20420  *		errno return code from sd_send_scsi_cmd()
20421  *
20422  *     Context: Can sleep. Does not return until command is completed.
20423  */
20424 
20425 static int
20426 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen,
20427 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
20428 	int path_flag)
20429 
20430 {
20431 	struct	scsi_extended_sense	sense_buf;
20432 	union scsi_cdb		cdb;
20433 	struct uscsi_cmd	ucmd_buf;
20434 	int			status;
20435 
20436 	ASSERT(un != NULL);
20437 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20438 
20439 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
20440 
20441 	bzero(&cdb, sizeof (cdb));
20442 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20443 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20444 
20445 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
20446 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
20447 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
20448 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
20449 	FORMG1COUNT(&cdb, buflen);
20450 
20451 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20452 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20453 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20454 	ucmd_buf.uscsi_buflen	= buflen;
20455 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20456 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20457 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20458 	ucmd_buf.uscsi_timeout	= 60;
20459 
20460 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20461 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20462 
20463 	switch (status) {
20464 	case 0:
20465 		break;
20466 	case EIO:
20467 		switch (ucmd_buf.uscsi_status) {
20468 		case STATUS_RESERVATION_CONFLICT:
20469 			status = EACCES;
20470 			break;
20471 		case STATUS_CHECK:
20472 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20473 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST) &&
20474 			    (sense_buf.es_add_code == 0x24)) {
20475 				/*
20476 				 * ASC 0x24: INVALID FIELD IN CDB
20477 				 */
20478 				switch (page_code) {
20479 				case START_STOP_CYCLE_PAGE:
20480 					/*
20481 					 * The start stop cycle counter is
20482 					 * implemented as page 0x31 in earlier
20483 					 * generation disks. In new generation
20484 					 * disks the start stop cycle counter is
20485 					 * implemented as page 0xE. To properly
20486 					 * handle this case if an attempt for
20487 					 * log page 0xE is made and fails we
20488 					 * will try again using page 0x31.
20489 					 *
20490 					 * Network storage BU committed to
20491 					 * maintain the page 0x31 for this
20492 					 * purpose and will not have any other
20493 					 * page implemented with page code 0x31
20494 					 * until all disks transition to the
20495 					 * standard page.
20496 					 */
20497 					mutex_enter(SD_MUTEX(un));
20498 					un->un_start_stop_cycle_page =
20499 					    START_STOP_CYCLE_VU_PAGE;
20500 					cdb.cdb_opaque[2] =
20501 					    (char)(page_control << 6) |
20502 					    un->un_start_stop_cycle_page;
20503 					mutex_exit(SD_MUTEX(un));
20504 					status = sd_send_scsi_cmd(
20505 					    SD_GET_DEV(un), &ucmd_buf,
20506 					    UIO_SYSSPACE, UIO_SYSSPACE,
20507 					    UIO_SYSSPACE, path_flag);
20508 
20509 					break;
20510 				case TEMPERATURE_PAGE:
20511 					status = ENOTTY;
20512 					break;
20513 				default:
20514 					break;
20515 				}
20516 			}
20517 			break;
20518 		default:
20519 			break;
20520 		}
20521 		break;
20522 	default:
20523 		break;
20524 	}
20525 
20526 	if (status == 0) {
20527 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
20528 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20529 	}
20530 
20531 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
20532 
20533 	return (status);
20534 }
20535 
20536 
20537 /*
20538  *    Function: sdioctl
20539  *
20540  * Description: Driver's ioctl(9e) entry point function.
20541  *
20542  *   Arguments: dev     - device number
20543  *		cmd     - ioctl operation to be performed
20544  *		arg     - user argument, contains data to be set or reference
20545  *			  parameter for get
20546  *		flag    - bit flag, indicating open settings, 32/64 bit type
20547  *		cred_p  - user credential pointer
20548  *		rval_p  - calling process return value (OPT)
20549  *
20550  * Return Code: EINVAL
20551  *		ENOTTY
20552  *		ENXIO
20553  *		EIO
20554  *		EFAULT
20555  *		ENOTSUP
20556  *		EPERM
20557  *
20558  *     Context: Called from the device switch at normal priority.
20559  */
20560 
20561 static int
20562 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
20563 {
20564 	struct sd_lun	*un = NULL;
20565 	int		geom_validated = FALSE;
20566 	int		err = 0;
20567 	int		i = 0;
20568 	cred_t		*cr;
20569 
20570 	/*
20571 	 * All device accesses go thru sdstrategy where we check on suspend
20572 	 * status
20573 	 */
20574 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20575 		return (ENXIO);
20576 	}
20577 
20578 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20579 
20580 	/*
20581 	 * Moved this wait from sd_uscsi_strategy to here for
20582 	 * reasons of deadlock prevention. Internal driver commands,
20583 	 * specifically those to change a devices power level, result
20584 	 * in a call to sd_uscsi_strategy.
20585 	 */
20586 	mutex_enter(SD_MUTEX(un));
20587 	while ((un->un_state == SD_STATE_SUSPENDED) ||
20588 	    (un->un_state == SD_STATE_PM_CHANGING)) {
20589 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
20590 	}
20591 	/*
20592 	 * Twiddling the counter here protects commands from now
20593 	 * through to the top of sd_uscsi_strategy. Without the
20594 	 * counter inc. a power down, for example, could get in
20595 	 * after the above check for state is made and before
20596 	 * execution gets to the top of sd_uscsi_strategy.
20597 	 * That would cause problems.
20598 	 */
20599 	un->un_ncmds_in_driver++;
20600 
20601 	if ((un->un_f_geometry_is_valid == FALSE) &&
20602 	    (flag & (FNDELAY | FNONBLOCK))) {
20603 		switch (cmd) {
20604 		case CDROMPAUSE:
20605 		case CDROMRESUME:
20606 		case CDROMPLAYMSF:
20607 		case CDROMPLAYTRKIND:
20608 		case CDROMREADTOCHDR:
20609 		case CDROMREADTOCENTRY:
20610 		case CDROMSTOP:
20611 		case CDROMSTART:
20612 		case CDROMVOLCTRL:
20613 		case CDROMSUBCHNL:
20614 		case CDROMREADMODE2:
20615 		case CDROMREADMODE1:
20616 		case CDROMREADOFFSET:
20617 		case CDROMSBLKMODE:
20618 		case CDROMGBLKMODE:
20619 		case CDROMGDRVSPEED:
20620 		case CDROMSDRVSPEED:
20621 		case CDROMCDDA:
20622 		case CDROMCDXA:
20623 		case CDROMSUBCODE:
20624 			if (!ISCD(un)) {
20625 				un->un_ncmds_in_driver--;
20626 				ASSERT(un->un_ncmds_in_driver >= 0);
20627 				mutex_exit(SD_MUTEX(un));
20628 				return (ENOTTY);
20629 			}
20630 			break;
20631 		case FDEJECT:
20632 		case DKIOCEJECT:
20633 		case CDROMEJECT:
20634 			if (!ISREMOVABLE(un)) {
20635 				un->un_ncmds_in_driver--;
20636 				ASSERT(un->un_ncmds_in_driver >= 0);
20637 				mutex_exit(SD_MUTEX(un));
20638 				return (ENOTTY);
20639 			}
20640 			break;
20641 		case DKIOCSVTOC:
20642 		case DKIOCSETEFI:
20643 		case DKIOCSMBOOT:
20644 			mutex_exit(SD_MUTEX(un));
20645 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
20646 			if (err != 0) {
20647 				mutex_enter(SD_MUTEX(un));
20648 				un->un_ncmds_in_driver--;
20649 				ASSERT(un->un_ncmds_in_driver >= 0);
20650 				mutex_exit(SD_MUTEX(un));
20651 				return (EIO);
20652 			}
20653 			mutex_enter(SD_MUTEX(un));
20654 			/* FALLTHROUGH */
20655 		case DKIOCREMOVABLE:
20656 		case DKIOCINFO:
20657 		case DKIOCGMEDIAINFO:
20658 		case MHIOCENFAILFAST:
20659 		case MHIOCSTATUS:
20660 		case MHIOCTKOWN:
20661 		case MHIOCRELEASE:
20662 		case MHIOCGRP_INKEYS:
20663 		case MHIOCGRP_INRESV:
20664 		case MHIOCGRP_REGISTER:
20665 		case MHIOCGRP_RESERVE:
20666 		case MHIOCGRP_PREEMPTANDABORT:
20667 		case MHIOCGRP_REGISTERANDIGNOREKEY:
20668 		case CDROMCLOSETRAY:
20669 		case USCSICMD:
20670 			goto skip_ready_valid;
20671 		default:
20672 			break;
20673 		}
20674 
20675 		mutex_exit(SD_MUTEX(un));
20676 		err = sd_ready_and_valid(un);
20677 		mutex_enter(SD_MUTEX(un));
20678 		if (err == SD_READY_NOT_VALID) {
20679 			switch (cmd) {
20680 			case DKIOCGAPART:
20681 			case DKIOCGGEOM:
20682 			case DKIOCSGEOM:
20683 			case DKIOCGVTOC:
20684 			case DKIOCSVTOC:
20685 			case DKIOCSAPART:
20686 			case DKIOCG_PHYGEOM:
20687 			case DKIOCG_VIRTGEOM:
20688 				err = ENOTSUP;
20689 				un->un_ncmds_in_driver--;
20690 				ASSERT(un->un_ncmds_in_driver >= 0);
20691 				mutex_exit(SD_MUTEX(un));
20692 				return (err);
20693 			}
20694 		}
20695 		if (err != SD_READY_VALID) {
20696 			switch (cmd) {
20697 			case DKIOCSTATE:
20698 			case CDROMGDRVSPEED:
20699 			case CDROMSDRVSPEED:
20700 			case FDEJECT:	/* for eject command */
20701 			case DKIOCEJECT:
20702 			case CDROMEJECT:
20703 			case DKIOCGETEFI:
20704 			case DKIOCSGEOM:
20705 			case DKIOCREMOVABLE:
20706 			case DKIOCSAPART:
20707 			case DKIOCSETEFI:
20708 				break;
20709 			default:
20710 				if (ISREMOVABLE(un)) {
20711 					err = ENXIO;
20712 				} else {
20713 					/* Do not map EACCES to EIO */
20714 					if (err != EACCES)
20715 						err = EIO;
20716 				}
20717 				un->un_ncmds_in_driver--;
20718 				ASSERT(un->un_ncmds_in_driver >= 0);
20719 				mutex_exit(SD_MUTEX(un));
20720 				return (err);
20721 			}
20722 		}
20723 		geom_validated = TRUE;
20724 	}
20725 	if ((un->un_f_geometry_is_valid == TRUE) &&
20726 	    (un->un_solaris_size > 0)) {
20727 		/*
20728 		 * the "geometry_is_valid" flag could be true if we
20729 		 * have an fdisk table but no Solaris partition
20730 		 */
20731 		if (un->un_vtoc.v_sanity != VTOC_SANE) {
20732 			/* it is EFI, so return ENOTSUP for these */
20733 			switch (cmd) {
20734 			case DKIOCGAPART:
20735 			case DKIOCGGEOM:
20736 			case DKIOCGVTOC:
20737 			case DKIOCSVTOC:
20738 			case DKIOCSAPART:
20739 				err = ENOTSUP;
20740 				un->un_ncmds_in_driver--;
20741 				ASSERT(un->un_ncmds_in_driver >= 0);
20742 				mutex_exit(SD_MUTEX(un));
20743 				return (err);
20744 			}
20745 		}
20746 	}
20747 
20748 skip_ready_valid:
20749 	mutex_exit(SD_MUTEX(un));
20750 
20751 	switch (cmd) {
20752 	case DKIOCINFO:
20753 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
20754 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
20755 		break;
20756 
20757 	case DKIOCGMEDIAINFO:
20758 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
20759 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
20760 		break;
20761 
20762 	case DKIOCGGEOM:
20763 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGGEOM\n");
20764 		err = sd_dkio_get_geometry(dev, (caddr_t)arg, flag,
20765 		    geom_validated);
20766 		break;
20767 
20768 	case DKIOCSGEOM:
20769 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSGEOM\n");
20770 		err = sd_dkio_set_geometry(dev, (caddr_t)arg, flag);
20771 		break;
20772 
20773 	case DKIOCGAPART:
20774 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGAPART\n");
20775 		err = sd_dkio_get_partition(dev, (caddr_t)arg, flag,
20776 		    geom_validated);
20777 		break;
20778 
20779 	case DKIOCSAPART:
20780 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSAPART\n");
20781 		err = sd_dkio_set_partition(dev, (caddr_t)arg, flag);
20782 		break;
20783 
20784 	case DKIOCGVTOC:
20785 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGVTOC\n");
20786 		err = sd_dkio_get_vtoc(dev, (caddr_t)arg, flag,
20787 		    geom_validated);
20788 		break;
20789 
20790 	case DKIOCGETEFI:
20791 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGETEFI\n");
20792 		err = sd_dkio_get_efi(dev, (caddr_t)arg, flag);
20793 		break;
20794 
20795 	case DKIOCPARTITION:
20796 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTITION\n");
20797 		err = sd_dkio_partition(dev, (caddr_t)arg, flag);
20798 		break;
20799 
20800 	case DKIOCSVTOC:
20801 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSVTOC\n");
20802 		err = sd_dkio_set_vtoc(dev, (caddr_t)arg, flag);
20803 		break;
20804 
20805 	case DKIOCSETEFI:
20806 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSETEFI\n");
20807 		err = sd_dkio_set_efi(dev, (caddr_t)arg, flag);
20808 		break;
20809 
20810 	case DKIOCGMBOOT:
20811 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMBOOT\n");
20812 		err = sd_dkio_get_mboot(dev, (caddr_t)arg, flag);
20813 		break;
20814 
20815 	case DKIOCSMBOOT:
20816 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSMBOOT\n");
20817 		err = sd_dkio_set_mboot(dev, (caddr_t)arg, flag);
20818 		break;
20819 
20820 	case DKIOCLOCK:
20821 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
20822 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
20823 		    SD_PATH_STANDARD);
20824 		break;
20825 
20826 	case DKIOCUNLOCK:
20827 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
20828 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
20829 		    SD_PATH_STANDARD);
20830 		break;
20831 
20832 	case DKIOCSTATE: {
20833 		enum dkio_state		state;
20834 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
20835 
20836 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
20837 			err = EFAULT;
20838 		} else {
20839 			err = sd_check_media(dev, state);
20840 			if (err == 0) {
20841 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
20842 				    sizeof (int), flag) != 0)
20843 					err = EFAULT;
20844 			}
20845 		}
20846 		break;
20847 	}
20848 
20849 	case DKIOCREMOVABLE:
20850 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
20851 		if (ISREMOVABLE(un)) {
20852 			i = 1;
20853 		} else {
20854 			i = 0;
20855 		}
20856 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
20857 			err = EFAULT;
20858 		} else {
20859 			err = 0;
20860 		}
20861 		break;
20862 
20863 	case DKIOCGTEMPERATURE:
20864 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
20865 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
20866 		break;
20867 
20868 	case MHIOCENFAILFAST:
20869 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
20870 		if ((err = drv_priv(cred_p)) == 0) {
20871 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
20872 		}
20873 		break;
20874 
20875 	case MHIOCTKOWN:
20876 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
20877 		if ((err = drv_priv(cred_p)) == 0) {
20878 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
20879 		}
20880 		break;
20881 
20882 	case MHIOCRELEASE:
20883 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
20884 		if ((err = drv_priv(cred_p)) == 0) {
20885 			err = sd_mhdioc_release(dev);
20886 		}
20887 		break;
20888 
20889 	case MHIOCSTATUS:
20890 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
20891 		if ((err = drv_priv(cred_p)) == 0) {
20892 			switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) {
20893 			case 0:
20894 				err = 0;
20895 				break;
20896 			case EACCES:
20897 				*rval_p = 1;
20898 				err = 0;
20899 				break;
20900 			default:
20901 				err = EIO;
20902 				break;
20903 			}
20904 		}
20905 		break;
20906 
20907 	case MHIOCQRESERVE:
20908 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
20909 		if ((err = drv_priv(cred_p)) == 0) {
20910 			err = sd_reserve_release(dev, SD_RESERVE);
20911 		}
20912 		break;
20913 
20914 	case MHIOCREREGISTERDEVID:
20915 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
20916 		if (drv_priv(cred_p) == EPERM) {
20917 			err = EPERM;
20918 		} else if (ISREMOVABLE(un) || ISCD(un)) {
20919 			err = ENOTTY;
20920 		} else {
20921 			err = sd_mhdioc_register_devid(dev);
20922 		}
20923 		break;
20924 
20925 	case MHIOCGRP_INKEYS:
20926 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
20927 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
20928 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20929 				err = ENOTSUP;
20930 			} else {
20931 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
20932 				    flag);
20933 			}
20934 		}
20935 		break;
20936 
20937 	case MHIOCGRP_INRESV:
20938 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
20939 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
20940 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20941 				err = ENOTSUP;
20942 			} else {
20943 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
20944 			}
20945 		}
20946 		break;
20947 
20948 	case MHIOCGRP_REGISTER:
20949 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
20950 		if ((err = drv_priv(cred_p)) != EPERM) {
20951 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20952 				err = ENOTSUP;
20953 			} else if (arg != NULL) {
20954 				mhioc_register_t reg;
20955 				if (ddi_copyin((void *)arg, &reg,
20956 				    sizeof (mhioc_register_t), flag) != 0) {
20957 					err = EFAULT;
20958 				} else {
20959 					err =
20960 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20961 					    un, SD_SCSI3_REGISTER,
20962 					    (uchar_t *)&reg);
20963 				}
20964 			}
20965 		}
20966 		break;
20967 
20968 	case MHIOCGRP_RESERVE:
20969 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
20970 		if ((err = drv_priv(cred_p)) != EPERM) {
20971 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20972 				err = ENOTSUP;
20973 			} else if (arg != NULL) {
20974 				mhioc_resv_desc_t resv_desc;
20975 				if (ddi_copyin((void *)arg, &resv_desc,
20976 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
20977 					err = EFAULT;
20978 				} else {
20979 					err =
20980 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20981 					    un, SD_SCSI3_RESERVE,
20982 					    (uchar_t *)&resv_desc);
20983 				}
20984 			}
20985 		}
20986 		break;
20987 
20988 	case MHIOCGRP_PREEMPTANDABORT:
20989 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
20990 		if ((err = drv_priv(cred_p)) != EPERM) {
20991 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20992 				err = ENOTSUP;
20993 			} else if (arg != NULL) {
20994 				mhioc_preemptandabort_t preempt_abort;
20995 				if (ddi_copyin((void *)arg, &preempt_abort,
20996 				    sizeof (mhioc_preemptandabort_t),
20997 				    flag) != 0) {
20998 					err = EFAULT;
20999 				} else {
21000 					err =
21001 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21002 					    un, SD_SCSI3_PREEMPTANDABORT,
21003 					    (uchar_t *)&preempt_abort);
21004 				}
21005 			}
21006 		}
21007 		break;
21008 
21009 	case MHIOCGRP_REGISTERANDIGNOREKEY:
21010 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
21011 		if ((err = drv_priv(cred_p)) != EPERM) {
21012 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21013 				err = ENOTSUP;
21014 			} else if (arg != NULL) {
21015 				mhioc_registerandignorekey_t r_and_i;
21016 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
21017 				    sizeof (mhioc_registerandignorekey_t),
21018 				    flag) != 0) {
21019 					err = EFAULT;
21020 				} else {
21021 					err =
21022 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21023 					    un, SD_SCSI3_REGISTERANDIGNOREKEY,
21024 					    (uchar_t *)&r_and_i);
21025 				}
21026 			}
21027 		}
21028 		break;
21029 
21030 	case USCSICMD:
21031 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
21032 		cr = ddi_get_cred();
21033 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
21034 			err = EPERM;
21035 		} else {
21036 			err = sd_uscsi_ioctl(dev, (caddr_t)arg, flag);
21037 		}
21038 		break;
21039 
21040 	case CDROMPAUSE:
21041 	case CDROMRESUME:
21042 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
21043 		if (!ISCD(un)) {
21044 			err = ENOTTY;
21045 		} else {
21046 			err = sr_pause_resume(dev, cmd);
21047 		}
21048 		break;
21049 
21050 	case CDROMPLAYMSF:
21051 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
21052 		if (!ISCD(un)) {
21053 			err = ENOTTY;
21054 		} else {
21055 			err = sr_play_msf(dev, (caddr_t)arg, flag);
21056 		}
21057 		break;
21058 
21059 	case CDROMPLAYTRKIND:
21060 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
21061 #if defined(__i386) || defined(__amd64)
21062 		/*
21063 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
21064 		 */
21065 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21066 #else
21067 		if (!ISCD(un)) {
21068 #endif
21069 			err = ENOTTY;
21070 		} else {
21071 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
21072 		}
21073 		break;
21074 
21075 	case CDROMREADTOCHDR:
21076 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
21077 		if (!ISCD(un)) {
21078 			err = ENOTTY;
21079 		} else {
21080 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
21081 		}
21082 		break;
21083 
21084 	case CDROMREADTOCENTRY:
21085 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
21086 		if (!ISCD(un)) {
21087 			err = ENOTTY;
21088 		} else {
21089 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
21090 		}
21091 		break;
21092 
21093 	case CDROMSTOP:
21094 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
21095 		if (!ISCD(un)) {
21096 			err = ENOTTY;
21097 		} else {
21098 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP,
21099 			    SD_PATH_STANDARD);
21100 		}
21101 		break;
21102 
21103 	case CDROMSTART:
21104 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
21105 		if (!ISCD(un)) {
21106 			err = ENOTTY;
21107 		} else {
21108 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
21109 			    SD_PATH_STANDARD);
21110 		}
21111 		break;
21112 
21113 	case CDROMCLOSETRAY:
21114 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
21115 		if (!ISCD(un)) {
21116 			err = ENOTTY;
21117 		} else {
21118 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE,
21119 			    SD_PATH_STANDARD);
21120 		}
21121 		break;
21122 
21123 	case FDEJECT:	/* for eject command */
21124 	case DKIOCEJECT:
21125 	case CDROMEJECT:
21126 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
21127 		if (!ISREMOVABLE(un)) {
21128 			err = ENOTTY;
21129 		} else {
21130 			err = sr_eject(dev);
21131 		}
21132 		break;
21133 
21134 	case CDROMVOLCTRL:
21135 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
21136 		if (!ISCD(un)) {
21137 			err = ENOTTY;
21138 		} else {
21139 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
21140 		}
21141 		break;
21142 
21143 	case CDROMSUBCHNL:
21144 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
21145 		if (!ISCD(un)) {
21146 			err = ENOTTY;
21147 		} else {
21148 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
21149 		}
21150 		break;
21151 
21152 	case CDROMREADMODE2:
21153 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
21154 		if (!ISCD(un)) {
21155 			err = ENOTTY;
21156 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21157 			/*
21158 			 * If the drive supports READ CD, use that instead of
21159 			 * switching the LBA size via a MODE SELECT
21160 			 * Block Descriptor
21161 			 */
21162 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
21163 		} else {
21164 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
21165 		}
21166 		break;
21167 
21168 	case CDROMREADMODE1:
21169 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
21170 		if (!ISCD(un)) {
21171 			err = ENOTTY;
21172 		} else {
21173 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
21174 		}
21175 		break;
21176 
21177 	case CDROMREADOFFSET:
21178 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
21179 		if (!ISCD(un)) {
21180 			err = ENOTTY;
21181 		} else {
21182 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
21183 			    flag);
21184 		}
21185 		break;
21186 
21187 	case CDROMSBLKMODE:
21188 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
21189 		/*
21190 		 * There is no means of changing block size in case of atapi
21191 		 * drives, thus return ENOTTY if drive type is atapi
21192 		 */
21193 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21194 			err = ENOTTY;
21195 		} else if (un->un_f_mmc_cap == TRUE) {
21196 
21197 			/*
21198 			 * MMC Devices do not support changing the
21199 			 * logical block size
21200 			 *
21201 			 * Note: EINVAL is being returned instead of ENOTTY to
21202 			 * maintain consistancy with the original mmc
21203 			 * driver update.
21204 			 */
21205 			err = EINVAL;
21206 		} else {
21207 			mutex_enter(SD_MUTEX(un));
21208 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
21209 			    (un->un_ncmds_in_transport > 0)) {
21210 				mutex_exit(SD_MUTEX(un));
21211 				err = EINVAL;
21212 			} else {
21213 				mutex_exit(SD_MUTEX(un));
21214 				err = sr_change_blkmode(dev, cmd, arg, flag);
21215 			}
21216 		}
21217 		break;
21218 
21219 	case CDROMGBLKMODE:
21220 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
21221 		if (!ISCD(un)) {
21222 			err = ENOTTY;
21223 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
21224 		    (un->un_f_blockcount_is_valid != FALSE)) {
21225 			/*
21226 			 * Drive is an ATAPI drive so return target block
21227 			 * size for ATAPI drives since we cannot change the
21228 			 * blocksize on ATAPI drives. Used primarily to detect
21229 			 * if an ATAPI cdrom is present.
21230 			 */
21231 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
21232 			    sizeof (int), flag) != 0) {
21233 				err = EFAULT;
21234 			} else {
21235 				err = 0;
21236 			}
21237 
21238 		} else {
21239 			/*
21240 			 * Drive supports changing block sizes via a Mode
21241 			 * Select.
21242 			 */
21243 			err = sr_change_blkmode(dev, cmd, arg, flag);
21244 		}
21245 		break;
21246 
21247 	case CDROMGDRVSPEED:
21248 	case CDROMSDRVSPEED:
21249 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
21250 		if (!ISCD(un)) {
21251 			err = ENOTTY;
21252 		} else if (un->un_f_mmc_cap == TRUE) {
21253 			/*
21254 			 * Note: In the future the driver implementation
21255 			 * for getting and
21256 			 * setting cd speed should entail:
21257 			 * 1) If non-mmc try the Toshiba mode page
21258 			 *    (sr_change_speed)
21259 			 * 2) If mmc but no support for Real Time Streaming try
21260 			 *    the SET CD SPEED (0xBB) command
21261 			 *   (sr_atapi_change_speed)
21262 			 * 3) If mmc and support for Real Time Streaming
21263 			 *    try the GET PERFORMANCE and SET STREAMING
21264 			 *    commands (not yet implemented, 4380808)
21265 			 */
21266 			/*
21267 			 * As per recent MMC spec, CD-ROM speed is variable
21268 			 * and changes with LBA. Since there is no such
21269 			 * things as drive speed now, fail this ioctl.
21270 			 *
21271 			 * Note: EINVAL is returned for consistancy of original
21272 			 * implementation which included support for getting
21273 			 * the drive speed of mmc devices but not setting
21274 			 * the drive speed. Thus EINVAL would be returned
21275 			 * if a set request was made for an mmc device.
21276 			 * We no longer support get or set speed for
21277 			 * mmc but need to remain consistant with regard
21278 			 * to the error code returned.
21279 			 */
21280 			err = EINVAL;
21281 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21282 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
21283 		} else {
21284 			err = sr_change_speed(dev, cmd, arg, flag);
21285 		}
21286 		break;
21287 
21288 	case CDROMCDDA:
21289 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
21290 		if (!ISCD(un)) {
21291 			err = ENOTTY;
21292 		} else {
21293 			err = sr_read_cdda(dev, (void *)arg, flag);
21294 		}
21295 		break;
21296 
21297 	case CDROMCDXA:
21298 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
21299 		if (!ISCD(un)) {
21300 			err = ENOTTY;
21301 		} else {
21302 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
21303 		}
21304 		break;
21305 
21306 	case CDROMSUBCODE:
21307 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
21308 		if (!ISCD(un)) {
21309 			err = ENOTTY;
21310 		} else {
21311 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
21312 		}
21313 		break;
21314 
21315 	case DKIOCPARTINFO: {
21316 		/*
21317 		 * Return parameters describing the selected disk slice.
21318 		 * Note: this ioctl is for the intel platform only
21319 		 */
21320 #if defined(__i386) || defined(__amd64)
21321 		int part;
21322 
21323 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
21324 		part = SDPART(dev);
21325 
21326 		/* don't check un_solaris_size for pN */
21327 		if (part < P0_RAW_DISK && un->un_solaris_size == 0) {
21328 			err = EIO;
21329 		} else {
21330 			struct part_info p;
21331 
21332 			p.p_start = (daddr_t)un->un_offset[part];
21333 			p.p_length = (int)un->un_map[part].dkl_nblk;
21334 #ifdef _MULTI_DATAMODEL
21335 			switch (ddi_model_convert_from(flag & FMODELS)) {
21336 			case DDI_MODEL_ILP32:
21337 			{
21338 				struct part_info32 p32;
21339 
21340 				p32.p_start = (daddr32_t)p.p_start;
21341 				p32.p_length = p.p_length;
21342 				if (ddi_copyout(&p32, (void *)arg,
21343 				    sizeof (p32), flag))
21344 					err = EFAULT;
21345 				break;
21346 			}
21347 
21348 			case DDI_MODEL_NONE:
21349 			{
21350 				if (ddi_copyout(&p, (void *)arg, sizeof (p),
21351 				    flag))
21352 					err = EFAULT;
21353 				break;
21354 			}
21355 			}
21356 #else /* ! _MULTI_DATAMODEL */
21357 			if (ddi_copyout(&p, (void *)arg, sizeof (p), flag))
21358 				err = EFAULT;
21359 #endif /* _MULTI_DATAMODEL */
21360 		}
21361 #else
21362 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
21363 		err = ENOTTY;
21364 #endif
21365 		break;
21366 	}
21367 
21368 	case DKIOCG_PHYGEOM: {
21369 		/* Return the driver's notion of the media physical geometry */
21370 #if defined(__i386) || defined(__amd64)
21371 		struct dk_geom	disk_geom;
21372 		struct dk_geom	*dkgp = &disk_geom;
21373 
21374 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
21375 		mutex_enter(SD_MUTEX(un));
21376 
21377 		if (un->un_g.dkg_nhead != 0 &&
21378 		    un->un_g.dkg_nsect != 0) {
21379 			/*
21380 			 * We succeeded in getting a geometry, but
21381 			 * right now it is being reported as just the
21382 			 * Solaris fdisk partition, just like for
21383 			 * DKIOCGGEOM. We need to change that to be
21384 			 * correct for the entire disk now.
21385 			 */
21386 			bcopy(&un->un_g, dkgp, sizeof (*dkgp));
21387 			dkgp->dkg_acyl = 0;
21388 			dkgp->dkg_ncyl = un->un_blockcount /
21389 			    (dkgp->dkg_nhead * dkgp->dkg_nsect);
21390 		} else {
21391 			bzero(dkgp, sizeof (struct dk_geom));
21392 			/*
21393 			 * This disk does not have a Solaris VTOC
21394 			 * so we must present a physical geometry
21395 			 * that will remain consistent regardless
21396 			 * of how the disk is used. This will ensure
21397 			 * that the geometry does not change regardless
21398 			 * of the fdisk partition type (ie. EFI, FAT32,
21399 			 * Solaris, etc).
21400 			 */
21401 			if (ISCD(un)) {
21402 				dkgp->dkg_nhead = un->un_pgeom.g_nhead;
21403 				dkgp->dkg_nsect = un->un_pgeom.g_nsect;
21404 				dkgp->dkg_ncyl = un->un_pgeom.g_ncyl;
21405 				dkgp->dkg_acyl = un->un_pgeom.g_acyl;
21406 			} else {
21407 				sd_convert_geometry(un->un_blockcount, dkgp);
21408 				dkgp->dkg_acyl = 0;
21409 				dkgp->dkg_ncyl = un->un_blockcount /
21410 				    (dkgp->dkg_nhead * dkgp->dkg_nsect);
21411 			}
21412 		}
21413 		dkgp->dkg_pcyl = dkgp->dkg_ncyl + dkgp->dkg_acyl;
21414 
21415 		if (ddi_copyout(dkgp, (void *)arg,
21416 		    sizeof (struct dk_geom), flag)) {
21417 			mutex_exit(SD_MUTEX(un));
21418 			err = EFAULT;
21419 		} else {
21420 			mutex_exit(SD_MUTEX(un));
21421 			err = 0;
21422 		}
21423 #else
21424 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
21425 		err = ENOTTY;
21426 #endif
21427 		break;
21428 	}
21429 
21430 	case DKIOCG_VIRTGEOM: {
21431 		/* Return the driver's notion of the media's logical geometry */
21432 #if defined(__i386) || defined(__amd64)
21433 		struct dk_geom	disk_geom;
21434 		struct dk_geom	*dkgp = &disk_geom;
21435 
21436 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
21437 		mutex_enter(SD_MUTEX(un));
21438 		/*
21439 		 * If there is no HBA geometry available, or
21440 		 * if the HBA returned us something that doesn't
21441 		 * really fit into an Int 13/function 8 geometry
21442 		 * result, just fail the ioctl.  See PSARC 1998/313.
21443 		 */
21444 		if (un->un_lgeom.g_nhead == 0 ||
21445 		    un->un_lgeom.g_nsect == 0 ||
21446 		    un->un_lgeom.g_ncyl > 1024) {
21447 			mutex_exit(SD_MUTEX(un));
21448 			err = EINVAL;
21449 		} else {
21450 			dkgp->dkg_ncyl	= un->un_lgeom.g_ncyl;
21451 			dkgp->dkg_acyl	= un->un_lgeom.g_acyl;
21452 			dkgp->dkg_pcyl	= dkgp->dkg_ncyl + dkgp->dkg_acyl;
21453 			dkgp->dkg_nhead	= un->un_lgeom.g_nhead;
21454 			dkgp->dkg_nsect	= un->un_lgeom.g_nsect;
21455 
21456 			if (ddi_copyout(dkgp, (void *)arg,
21457 			    sizeof (struct dk_geom), flag)) {
21458 				mutex_exit(SD_MUTEX(un));
21459 				err = EFAULT;
21460 			} else {
21461 				mutex_exit(SD_MUTEX(un));
21462 				err = 0;
21463 			}
21464 		}
21465 #else
21466 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
21467 		err = ENOTTY;
21468 #endif
21469 		break;
21470 	}
21471 #ifdef SDDEBUG
21472 /* RESET/ABORTS testing ioctls */
21473 	case DKIOCRESET: {
21474 		int	reset_level;
21475 
21476 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
21477 			err = EFAULT;
21478 		} else {
21479 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
21480 			    "reset_level = 0x%lx\n", reset_level);
21481 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
21482 				err = 0;
21483 			} else {
21484 				err = EIO;
21485 			}
21486 		}
21487 		break;
21488 	}
21489 
21490 	case DKIOCABORT:
21491 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
21492 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
21493 			err = 0;
21494 		} else {
21495 			err = EIO;
21496 		}
21497 		break;
21498 #endif
21499 
21500 #ifdef SD_FAULT_INJECTION
21501 /* SDIOC FaultInjection testing ioctls */
21502 	case SDIOCSTART:
21503 	case SDIOCSTOP:
21504 	case SDIOCINSERTPKT:
21505 	case SDIOCINSERTXB:
21506 	case SDIOCINSERTUN:
21507 	case SDIOCINSERTARQ:
21508 	case SDIOCPUSH:
21509 	case SDIOCRETRIEVE:
21510 	case SDIOCRUN:
21511 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
21512 		    "SDIOC detected cmd:0x%X:\n", cmd);
21513 		/* call error generator */
21514 		sd_faultinjection_ioctl(cmd, arg, un);
21515 		err = 0;
21516 		break;
21517 
21518 #endif /* SD_FAULT_INJECTION */
21519 
21520 	default:
21521 		err = ENOTTY;
21522 		break;
21523 	}
21524 	mutex_enter(SD_MUTEX(un));
21525 	un->un_ncmds_in_driver--;
21526 	ASSERT(un->un_ncmds_in_driver >= 0);
21527 	mutex_exit(SD_MUTEX(un));
21528 
21529 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
21530 	return (err);
21531 }
21532 
21533 
21534 /*
21535  *    Function: sd_uscsi_ioctl
21536  *
21537  * Description: This routine is the driver entry point for handling USCSI ioctl
21538  *		requests (USCSICMD).
21539  *
21540  *   Arguments: dev	- the device number
21541  *		arg	- user provided scsi command
21542  *		flag	- this argument is a pass through to ddi_copyxxx()
21543  *			  directly from the mode argument of ioctl().
21544  *
21545  * Return Code: code returned by sd_send_scsi_cmd
21546  *		ENXIO
21547  *		EFAULT
21548  *		EAGAIN
21549  */
21550 
21551 static int
21552 sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag)
21553 {
21554 #ifdef _MULTI_DATAMODEL
21555 	/*
21556 	 * For use when a 32 bit app makes a call into a
21557 	 * 64 bit ioctl
21558 	 */
21559 	struct uscsi_cmd32	uscsi_cmd_32_for_64;
21560 	struct uscsi_cmd32	*ucmd32 = &uscsi_cmd_32_for_64;
21561 	model_t			model;
21562 #endif /* _MULTI_DATAMODEL */
21563 	struct uscsi_cmd	*scmd = NULL;
21564 	struct sd_lun		*un = NULL;
21565 	enum uio_seg		uioseg;
21566 	char			cdb[CDB_GROUP0];
21567 	int			rval = 0;
21568 
21569 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21570 		return (ENXIO);
21571 	}
21572 
21573 	SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: entry: un:0x%p\n", un);
21574 
21575 	scmd = (struct uscsi_cmd *)
21576 	    kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
21577 
21578 #ifdef _MULTI_DATAMODEL
21579 	switch (model = ddi_model_convert_from(flag & FMODELS)) {
21580 	case DDI_MODEL_ILP32:
21581 	{
21582 		if (ddi_copyin((void *)arg, ucmd32, sizeof (*ucmd32), flag)) {
21583 			rval = EFAULT;
21584 			goto done;
21585 		}
21586 		/*
21587 		 * Convert the ILP32 uscsi data from the
21588 		 * application to LP64 for internal use.
21589 		 */
21590 		uscsi_cmd32touscsi_cmd(ucmd32, scmd);
21591 		break;
21592 	}
21593 	case DDI_MODEL_NONE:
21594 		if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) {
21595 			rval = EFAULT;
21596 			goto done;
21597 		}
21598 		break;
21599 	}
21600 #else /* ! _MULTI_DATAMODEL */
21601 	if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) {
21602 		rval = EFAULT;
21603 		goto done;
21604 	}
21605 #endif /* _MULTI_DATAMODEL */
21606 
21607 	scmd->uscsi_flags &= ~USCSI_NOINTR;
21608 	uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE : UIO_USERSPACE;
21609 	if (un->un_f_format_in_progress == TRUE) {
21610 		rval = EAGAIN;
21611 		goto done;
21612 	}
21613 
21614 	/*
21615 	 * Gotta do the ddi_copyin() here on the uscsi_cdb so that
21616 	 * we will have a valid cdb[0] to test.
21617 	 */
21618 	if ((ddi_copyin(scmd->uscsi_cdb, cdb, CDB_GROUP0, flag) == 0) &&
21619 	    (cdb[0] == SCMD_FORMAT)) {
21620 		SD_TRACE(SD_LOG_IOCTL, un,
21621 		    "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]);
21622 		mutex_enter(SD_MUTEX(un));
21623 		un->un_f_format_in_progress = TRUE;
21624 		mutex_exit(SD_MUTEX(un));
21625 		rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg,
21626 		    SD_PATH_STANDARD);
21627 		mutex_enter(SD_MUTEX(un));
21628 		un->un_f_format_in_progress = FALSE;
21629 		mutex_exit(SD_MUTEX(un));
21630 	} else {
21631 		SD_TRACE(SD_LOG_IOCTL, un,
21632 		    "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]);
21633 		/*
21634 		 * It's OK to fall into here even if the ddi_copyin()
21635 		 * on the uscsi_cdb above fails, because sd_send_scsi_cmd()
21636 		 * does this same copyin and will return the EFAULT
21637 		 * if it fails.
21638 		 */
21639 		rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg,
21640 		    SD_PATH_STANDARD);
21641 	}
21642 #ifdef _MULTI_DATAMODEL
21643 	switch (model) {
21644 	case DDI_MODEL_ILP32:
21645 		/*
21646 		 * Convert back to ILP32 before copyout to the
21647 		 * application
21648 		 */
21649 		uscsi_cmdtouscsi_cmd32(scmd, ucmd32);
21650 		if (ddi_copyout(ucmd32, (void *)arg, sizeof (*ucmd32), flag)) {
21651 			if (rval != 0) {
21652 				rval = EFAULT;
21653 			}
21654 		}
21655 		break;
21656 	case DDI_MODEL_NONE:
21657 		if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) {
21658 			if (rval != 0) {
21659 				rval = EFAULT;
21660 			}
21661 		}
21662 		break;
21663 	}
21664 #else /* ! _MULTI_DATAMODE */
21665 	if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) {
21666 		if (rval != 0) {
21667 			rval = EFAULT;
21668 		}
21669 	}
21670 #endif /* _MULTI_DATAMODE */
21671 done:
21672 	kmem_free(scmd, sizeof (struct uscsi_cmd));
21673 
21674 	SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: exit: un:0x%p\n", un);
21675 
21676 	return (rval);
21677 }
21678 
21679 
21680 /*
21681  *    Function: sd_dkio_ctrl_info
21682  *
21683  * Description: This routine is the driver entry point for handling controller
21684  *		information ioctl requests (DKIOCINFO).
21685  *
21686  *   Arguments: dev  - the device number
21687  *		arg  - pointer to user provided dk_cinfo structure
21688  *		       specifying the controller type and attributes.
21689  *		flag - this argument is a pass through to ddi_copyxxx()
21690  *		       directly from the mode argument of ioctl().
21691  *
21692  * Return Code: 0
21693  *		EFAULT
21694  *		ENXIO
21695  */
21696 
21697 static int
21698 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
21699 {
21700 	struct sd_lun	*un = NULL;
21701 	struct dk_cinfo	*info;
21702 	dev_info_t	*pdip;
21703 	int		lun, tgt;
21704 
21705 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21706 		return (ENXIO);
21707 	}
21708 
21709 	info = (struct dk_cinfo *)
21710 		kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
21711 
21712 	switch (un->un_ctype) {
21713 	case CTYPE_CDROM:
21714 		info->dki_ctype = DKC_CDROM;
21715 		break;
21716 	default:
21717 		info->dki_ctype = DKC_SCSI_CCS;
21718 		break;
21719 	}
21720 	pdip = ddi_get_parent(SD_DEVINFO(un));
21721 	info->dki_cnum = ddi_get_instance(pdip);
21722 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
21723 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
21724 	} else {
21725 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
21726 		    DK_DEVLEN - 1);
21727 	}
21728 
21729 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
21730 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
21731 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
21732 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
21733 
21734 	/* Unit Information */
21735 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
21736 	info->dki_slave = ((tgt << 3) | lun);
21737 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
21738 	    DK_DEVLEN - 1);
21739 	info->dki_flags = DKI_FMTVOL;
21740 	info->dki_partition = SDPART(dev);
21741 
21742 	/* Max Transfer size of this device in blocks */
21743 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
21744 	info->dki_addr = 0;
21745 	info->dki_space = 0;
21746 	info->dki_prio = 0;
21747 	info->dki_vec = 0;
21748 
21749 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
21750 		kmem_free(info, sizeof (struct dk_cinfo));
21751 		return (EFAULT);
21752 	} else {
21753 		kmem_free(info, sizeof (struct dk_cinfo));
21754 		return (0);
21755 	}
21756 }
21757 
21758 
21759 /*
21760  *    Function: sd_get_media_info
21761  *
21762  * Description: This routine is the driver entry point for handling ioctl
21763  *		requests for the media type or command set profile used by the
21764  *		drive to operate on the media (DKIOCGMEDIAINFO).
21765  *
21766  *   Arguments: dev	- the device number
21767  *		arg	- pointer to user provided dk_minfo structure
21768  *			  specifying the media type, logical block size and
21769  *			  drive capacity.
21770  *		flag	- this argument is a pass through to ddi_copyxxx()
21771  *			  directly from the mode argument of ioctl().
21772  *
21773  * Return Code: 0
21774  *		EACCESS
21775  *		EFAULT
21776  *		ENXIO
21777  *		EIO
21778  */
21779 
21780 static int
21781 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
21782 {
21783 	struct sd_lun		*un = NULL;
21784 	struct uscsi_cmd	com;
21785 	struct scsi_inquiry	*sinq;
21786 	struct dk_minfo		media_info;
21787 	u_longlong_t		media_capacity;
21788 	uint64_t		capacity;
21789 	uint_t			lbasize;
21790 	uchar_t			*out_data;
21791 	uchar_t			*rqbuf;
21792 	int			rval = 0;
21793 	int			rtn;
21794 
21795 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
21796 	    (un->un_state == SD_STATE_OFFLINE)) {
21797 		return (ENXIO);
21798 	}
21799 
21800 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
21801 
21802 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
21803 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
21804 
21805 	/* Issue a TUR to determine if the drive is ready with media present */
21806 	rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA);
21807 	if (rval == ENXIO) {
21808 		goto done;
21809 	}
21810 
21811 	/* Now get configuration data */
21812 	if (ISCD(un)) {
21813 		media_info.dki_media_type = DK_CDROM;
21814 
21815 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
21816 		if (un->un_f_mmc_cap == TRUE) {
21817 			rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf,
21818 				SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN);
21819 
21820 			if (rtn) {
21821 				/*
21822 				 * Failed for other than an illegal request
21823 				 * or command not supported
21824 				 */
21825 				if ((com.uscsi_status == STATUS_CHECK) &&
21826 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
21827 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
21828 					    (rqbuf[12] != 0x20)) {
21829 						rval = EIO;
21830 						goto done;
21831 					}
21832 				}
21833 			} else {
21834 				/*
21835 				 * The GET CONFIGURATION command succeeded
21836 				 * so set the media type according to the
21837 				 * returned data
21838 				 */
21839 				media_info.dki_media_type = out_data[6];
21840 				media_info.dki_media_type <<= 8;
21841 				media_info.dki_media_type |= out_data[7];
21842 			}
21843 		}
21844 	} else {
21845 		/*
21846 		 * The profile list is not available, so we attempt to identify
21847 		 * the media type based on the inquiry data
21848 		 */
21849 		sinq = un->un_sd->sd_inq;
21850 		if (sinq->inq_qual == 0) {
21851 			/* This is a direct access device */
21852 			media_info.dki_media_type = DK_FIXED_DISK;
21853 
21854 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
21855 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
21856 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
21857 					media_info.dki_media_type = DK_ZIP;
21858 				} else if (
21859 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
21860 					media_info.dki_media_type = DK_JAZ;
21861 				}
21862 			}
21863 		} else {
21864 			/* Not a CD or direct access so return unknown media */
21865 			media_info.dki_media_type = DK_UNKNOWN;
21866 		}
21867 	}
21868 
21869 	/* Now read the capacity so we can provide the lbasize and capacity */
21870 	switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
21871 	    SD_PATH_DIRECT)) {
21872 	case 0:
21873 		break;
21874 	case EACCES:
21875 		rval = EACCES;
21876 		goto done;
21877 	default:
21878 		rval = EIO;
21879 		goto done;
21880 	}
21881 
21882 	media_info.dki_lbsize = lbasize;
21883 	media_capacity = capacity;
21884 
21885 	/*
21886 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
21887 	 * un->un_sys_blocksize chunks. So we need to convert it into
21888 	 * cap.lbasize chunks.
21889 	 */
21890 	media_capacity *= un->un_sys_blocksize;
21891 	media_capacity /= lbasize;
21892 	media_info.dki_capacity = media_capacity;
21893 
21894 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
21895 		rval = EFAULT;
21896 		/* Put goto. Anybody might add some code below in future */
21897 		goto done;
21898 	}
21899 done:
21900 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
21901 	kmem_free(rqbuf, SENSE_LENGTH);
21902 	return (rval);
21903 }
21904 
21905 
21906 /*
21907  *    Function: sd_dkio_get_geometry
21908  *
21909  * Description: This routine is the driver entry point for handling user
21910  *		requests to get the device geometry (DKIOCGGEOM).
21911  *
21912  *   Arguments: dev  - the device number
21913  *		arg  - pointer to user provided dk_geom structure specifying
21914  *			the controller's notion of the current geometry.
21915  *		flag - this argument is a pass through to ddi_copyxxx()
21916  *		       directly from the mode argument of ioctl().
21917  *		geom_validated - flag indicating if the device geometry has been
21918  *				 previously validated in the sdioctl routine.
21919  *
21920  * Return Code: 0
21921  *		EFAULT
21922  *		ENXIO
21923  *		EIO
21924  */
21925 
21926 static int
21927 sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag, int geom_validated)
21928 {
21929 	struct sd_lun	*un = NULL;
21930 	struct dk_geom	*tmp_geom = NULL;
21931 	int		rval = 0;
21932 
21933 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21934 		return (ENXIO);
21935 	}
21936 
21937 #if defined(__i386) || defined(__amd64)
21938 	if (un->un_solaris_size == 0) {
21939 		return (EIO);
21940 	}
21941 #endif
21942 	if (geom_validated == FALSE) {
21943 		/*
21944 		 * sd_validate_geometry does not spin a disk up
21945 		 * if it was spun down. We need to make sure it
21946 		 * is ready.
21947 		 */
21948 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
21949 			return (rval);
21950 		}
21951 		mutex_enter(SD_MUTEX(un));
21952 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
21953 		mutex_exit(SD_MUTEX(un));
21954 	}
21955 	if (rval)
21956 		return (rval);
21957 
21958 	/*
21959 	 * Make a local copy of the soft state geometry to avoid some potential
21960 	 * race conditions associated with holding the mutex and updating the
21961 	 * write_reinstruct value
21962 	 */
21963 	tmp_geom = kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
21964 	mutex_enter(SD_MUTEX(un));
21965 	bcopy(&un->un_g, tmp_geom, sizeof (struct dk_geom));
21966 	mutex_exit(SD_MUTEX(un));
21967 
21968 	if (tmp_geom->dkg_write_reinstruct == 0) {
21969 		tmp_geom->dkg_write_reinstruct =
21970 		    (int)((int)(tmp_geom->dkg_nsect * tmp_geom->dkg_rpm *
21971 		    sd_rot_delay) / (int)60000);
21972 	}
21973 
21974 	rval = ddi_copyout(tmp_geom, (void *)arg, sizeof (struct dk_geom),
21975 	    flag);
21976 	if (rval != 0) {
21977 		rval = EFAULT;
21978 	}
21979 
21980 	kmem_free(tmp_geom, sizeof (struct dk_geom));
21981 	return (rval);
21982 
21983 }
21984 
21985 
21986 /*
21987  *    Function: sd_dkio_set_geometry
21988  *
21989  * Description: This routine is the driver entry point for handling user
21990  *		requests to set the device geometry (DKIOCSGEOM). The actual
21991  *		device geometry is not updated, just the driver "notion" of it.
21992  *
21993  *   Arguments: dev  - the device number
21994  *		arg  - pointer to user provided dk_geom structure used to set
21995  *			the controller's notion of the current geometry.
21996  *		flag - this argument is a pass through to ddi_copyxxx()
21997  *		       directly from the mode argument of ioctl().
21998  *
21999  * Return Code: 0
22000  *		EFAULT
22001  *		ENXIO
22002  *		EIO
22003  */
22004 
22005 static int
22006 sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag)
22007 {
22008 	struct sd_lun	*un = NULL;
22009 	struct dk_geom	*tmp_geom;
22010 	struct dk_map	*lp;
22011 	int		rval = 0;
22012 	int		i;
22013 
22014 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22015 		return (ENXIO);
22016 	}
22017 
22018 #if defined(__i386) || defined(__amd64)
22019 	if (un->un_solaris_size == 0) {
22020 		return (EIO);
22021 	}
22022 #endif
22023 	/*
22024 	 * We need to copy the user specified geometry into local
22025 	 * storage and then update the softstate. We don't want to hold
22026 	 * the mutex and copyin directly from the user to the soft state
22027 	 */
22028 	tmp_geom = (struct dk_geom *)
22029 	    kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
22030 	rval = ddi_copyin(arg, tmp_geom, sizeof (struct dk_geom), flag);
22031 	if (rval != 0) {
22032 		kmem_free(tmp_geom, sizeof (struct dk_geom));
22033 		return (EFAULT);
22034 	}
22035 
22036 	mutex_enter(SD_MUTEX(un));
22037 	bcopy(tmp_geom, &un->un_g, sizeof (struct dk_geom));
22038 	for (i = 0; i < NDKMAP; i++) {
22039 		lp  = &un->un_map[i];
22040 		un->un_offset[i] =
22041 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
22042 #if defined(__i386) || defined(__amd64)
22043 		un->un_offset[i] += un->un_solaris_offset;
22044 #endif
22045 	}
22046 	un->un_f_geometry_is_valid = FALSE;
22047 	mutex_exit(SD_MUTEX(un));
22048 	kmem_free(tmp_geom, sizeof (struct dk_geom));
22049 
22050 	return (rval);
22051 }
22052 
22053 
22054 /*
22055  *    Function: sd_dkio_get_partition
22056  *
22057  * Description: This routine is the driver entry point for handling user
22058  *		requests to get the partition table (DKIOCGAPART).
22059  *
22060  *   Arguments: dev  - the device number
22061  *		arg  - pointer to user provided dk_allmap structure specifying
22062  *			the controller's notion of the current partition table.
22063  *		flag - this argument is a pass through to ddi_copyxxx()
22064  *		       directly from the mode argument of ioctl().
22065  *		geom_validated - flag indicating if the device geometry has been
22066  *				 previously validated in the sdioctl routine.
22067  *
22068  * Return Code: 0
22069  *		EFAULT
22070  *		ENXIO
22071  *		EIO
22072  */
22073 
22074 static int
22075 sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag, int geom_validated)
22076 {
22077 	struct sd_lun	*un = NULL;
22078 	int		rval = 0;
22079 	int		size;
22080 
22081 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22082 		return (ENXIO);
22083 	}
22084 
22085 #if defined(__i386) || defined(__amd64)
22086 	if (un->un_solaris_size == 0) {
22087 		return (EIO);
22088 	}
22089 #endif
22090 	/*
22091 	 * Make sure the geometry is valid before getting the partition
22092 	 * information.
22093 	 */
22094 	mutex_enter(SD_MUTEX(un));
22095 	if (geom_validated == FALSE) {
22096 		/*
22097 		 * sd_validate_geometry does not spin a disk up
22098 		 * if it was spun down. We need to make sure it
22099 		 * is ready before validating the geometry.
22100 		 */
22101 		mutex_exit(SD_MUTEX(un));
22102 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22103 			return (rval);
22104 		}
22105 		mutex_enter(SD_MUTEX(un));
22106 
22107 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
22108 			mutex_exit(SD_MUTEX(un));
22109 			return (rval);
22110 		}
22111 	}
22112 	mutex_exit(SD_MUTEX(un));
22113 
22114 #ifdef _MULTI_DATAMODEL
22115 	switch (ddi_model_convert_from(flag & FMODELS)) {
22116 	case DDI_MODEL_ILP32: {
22117 		struct dk_map32 dk_map32[NDKMAP];
22118 		int		i;
22119 
22120 		for (i = 0; i < NDKMAP; i++) {
22121 			dk_map32[i].dkl_cylno = un->un_map[i].dkl_cylno;
22122 			dk_map32[i].dkl_nblk  = un->un_map[i].dkl_nblk;
22123 		}
22124 		size = NDKMAP * sizeof (struct dk_map32);
22125 		rval = ddi_copyout(dk_map32, (void *)arg, size, flag);
22126 		if (rval != 0) {
22127 			rval = EFAULT;
22128 		}
22129 		break;
22130 	}
22131 	case DDI_MODEL_NONE:
22132 		size = NDKMAP * sizeof (struct dk_map);
22133 		rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
22134 		if (rval != 0) {
22135 			rval = EFAULT;
22136 		}
22137 		break;
22138 	}
22139 #else /* ! _MULTI_DATAMODEL */
22140 	size = NDKMAP * sizeof (struct dk_map);
22141 	rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
22142 	if (rval != 0) {
22143 		rval = EFAULT;
22144 	}
22145 #endif /* _MULTI_DATAMODEL */
22146 	return (rval);
22147 }
22148 
22149 
22150 /*
22151  *    Function: sd_dkio_set_partition
22152  *
22153  * Description: This routine is the driver entry point for handling user
22154  *		requests to set the partition table (DKIOCSAPART). The actual
22155  *		device partition is not updated.
22156  *
22157  *   Arguments: dev  - the device number
22158  *		arg  - pointer to user provided dk_allmap structure used to set
22159  *			the controller's notion of the partition table.
22160  *		flag - this argument is a pass through to ddi_copyxxx()
22161  *		       directly from the mode argument of ioctl().
22162  *
22163  * Return Code: 0
22164  *		EINVAL
22165  *		EFAULT
22166  *		ENXIO
22167  *		EIO
22168  */
22169 
22170 static int
22171 sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag)
22172 {
22173 	struct sd_lun	*un = NULL;
22174 	struct dk_map	dk_map[NDKMAP];
22175 	struct dk_map	*lp;
22176 	int		rval = 0;
22177 	int		size;
22178 	int		i;
22179 #if defined(_SUNOS_VTOC_16)
22180 	struct dkl_partition	*vp;
22181 #endif
22182 
22183 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22184 		return (ENXIO);
22185 	}
22186 
22187 	/*
22188 	 * Set the map for all logical partitions.  We lock
22189 	 * the priority just to make sure an interrupt doesn't
22190 	 * come in while the map is half updated.
22191 	 */
22192 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_solaris_size))
22193 	mutex_enter(SD_MUTEX(un));
22194 	if (un->un_blockcount > DK_MAX_BLOCKS) {
22195 		mutex_exit(SD_MUTEX(un));
22196 		return (ENOTSUP);
22197 	}
22198 	mutex_exit(SD_MUTEX(un));
22199 	if (un->un_solaris_size == 0) {
22200 		return (EIO);
22201 	}
22202 
22203 #ifdef _MULTI_DATAMODEL
22204 	switch (ddi_model_convert_from(flag & FMODELS)) {
22205 	case DDI_MODEL_ILP32: {
22206 		struct dk_map32 dk_map32[NDKMAP];
22207 
22208 		size = NDKMAP * sizeof (struct dk_map32);
22209 		rval = ddi_copyin((void *)arg, dk_map32, size, flag);
22210 		if (rval != 0) {
22211 			return (EFAULT);
22212 		}
22213 		for (i = 0; i < NDKMAP; i++) {
22214 			dk_map[i].dkl_cylno = dk_map32[i].dkl_cylno;
22215 			dk_map[i].dkl_nblk  = dk_map32[i].dkl_nblk;
22216 		}
22217 		break;
22218 	}
22219 	case DDI_MODEL_NONE:
22220 		size = NDKMAP * sizeof (struct dk_map);
22221 		rval = ddi_copyin((void *)arg, dk_map, size, flag);
22222 		if (rval != 0) {
22223 			return (EFAULT);
22224 		}
22225 		break;
22226 	}
22227 #else /* ! _MULTI_DATAMODEL */
22228 	size = NDKMAP * sizeof (struct dk_map);
22229 	rval = ddi_copyin((void *)arg, dk_map, size, flag);
22230 	if (rval != 0) {
22231 		return (EFAULT);
22232 	}
22233 #endif /* _MULTI_DATAMODEL */
22234 
22235 	mutex_enter(SD_MUTEX(un));
22236 	/* Note: The size used in this bcopy is set based upon the data model */
22237 	bcopy(dk_map, un->un_map, size);
22238 #if defined(_SUNOS_VTOC_16)
22239 	vp = (struct dkl_partition *)&(un->un_vtoc);
22240 #endif	/* defined(_SUNOS_VTOC_16) */
22241 	for (i = 0; i < NDKMAP; i++) {
22242 		lp  = &un->un_map[i];
22243 		un->un_offset[i] =
22244 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
22245 #if defined(_SUNOS_VTOC_16)
22246 		vp->p_start = un->un_offset[i];
22247 		vp->p_size = lp->dkl_nblk;
22248 		vp++;
22249 #endif	/* defined(_SUNOS_VTOC_16) */
22250 #if defined(__i386) || defined(__amd64)
22251 		un->un_offset[i] += un->un_solaris_offset;
22252 #endif
22253 	}
22254 	mutex_exit(SD_MUTEX(un));
22255 	return (rval);
22256 }
22257 
22258 
22259 /*
22260  *    Function: sd_dkio_get_vtoc
22261  *
22262  * Description: This routine is the driver entry point for handling user
22263  *		requests to get the current volume table of contents
22264  *		(DKIOCGVTOC).
22265  *
22266  *   Arguments: dev  - the device number
22267  *		arg  - pointer to user provided vtoc structure specifying
22268  *			the current vtoc.
22269  *		flag - this argument is a pass through to ddi_copyxxx()
22270  *		       directly from the mode argument of ioctl().
22271  *		geom_validated - flag indicating if the device geometry has been
22272  *				 previously validated in the sdioctl routine.
22273  *
22274  * Return Code: 0
22275  *		EFAULT
22276  *		ENXIO
22277  *		EIO
22278  */
22279 
22280 static int
22281 sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag, int geom_validated)
22282 {
22283 	struct sd_lun	*un = NULL;
22284 #if defined(_SUNOS_VTOC_8)
22285 	struct vtoc	user_vtoc;
22286 #endif	/* defined(_SUNOS_VTOC_8) */
22287 	int		rval = 0;
22288 
22289 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22290 		return (ENXIO);
22291 	}
22292 
22293 	mutex_enter(SD_MUTEX(un));
22294 	if (geom_validated == FALSE) {
22295 		/*
22296 		 * sd_validate_geometry does not spin a disk up
22297 		 * if it was spun down. We need to make sure it
22298 		 * is ready.
22299 		 */
22300 		mutex_exit(SD_MUTEX(un));
22301 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22302 			return (rval);
22303 		}
22304 		mutex_enter(SD_MUTEX(un));
22305 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
22306 			mutex_exit(SD_MUTEX(un));
22307 			return (rval);
22308 		}
22309 	}
22310 
22311 #if defined(_SUNOS_VTOC_8)
22312 	sd_build_user_vtoc(un, &user_vtoc);
22313 	mutex_exit(SD_MUTEX(un));
22314 
22315 #ifdef _MULTI_DATAMODEL
22316 	switch (ddi_model_convert_from(flag & FMODELS)) {
22317 	case DDI_MODEL_ILP32: {
22318 		struct vtoc32 user_vtoc32;
22319 
22320 		vtoctovtoc32(user_vtoc, user_vtoc32);
22321 		if (ddi_copyout(&user_vtoc32, (void *)arg,
22322 		    sizeof (struct vtoc32), flag)) {
22323 			return (EFAULT);
22324 		}
22325 		break;
22326 	}
22327 
22328 	case DDI_MODEL_NONE:
22329 		if (ddi_copyout(&user_vtoc, (void *)arg,
22330 		    sizeof (struct vtoc), flag)) {
22331 			return (EFAULT);
22332 		}
22333 		break;
22334 	}
22335 #else /* ! _MULTI_DATAMODEL */
22336 	if (ddi_copyout(&user_vtoc, (void *)arg, sizeof (struct vtoc), flag)) {
22337 		return (EFAULT);
22338 	}
22339 #endif /* _MULTI_DATAMODEL */
22340 
22341 #elif defined(_SUNOS_VTOC_16)
22342 	mutex_exit(SD_MUTEX(un));
22343 
22344 #ifdef _MULTI_DATAMODEL
22345 	/*
22346 	 * The un_vtoc structure is a "struct dk_vtoc"  which is always
22347 	 * 32-bit to maintain compatibility with existing on-disk
22348 	 * structures.  Thus, we need to convert the structure when copying
22349 	 * it out to a datamodel-dependent "struct vtoc" in a 64-bit
22350 	 * program.  If the target is a 32-bit program, then no conversion
22351 	 * is necessary.
22352 	 */
22353 	/* LINTED: logical expression always true: op "||" */
22354 	ASSERT(sizeof (un->un_vtoc) == sizeof (struct vtoc32));
22355 	switch (ddi_model_convert_from(flag & FMODELS)) {
22356 	case DDI_MODEL_ILP32:
22357 		if (ddi_copyout(&(un->un_vtoc), (void *)arg,
22358 		    sizeof (un->un_vtoc), flag)) {
22359 			return (EFAULT);
22360 		}
22361 		break;
22362 
22363 	case DDI_MODEL_NONE: {
22364 		struct vtoc user_vtoc;
22365 
22366 		vtoc32tovtoc(un->un_vtoc, user_vtoc);
22367 		if (ddi_copyout(&user_vtoc, (void *)arg,
22368 		    sizeof (struct vtoc), flag)) {
22369 			return (EFAULT);
22370 		}
22371 		break;
22372 	}
22373 	}
22374 #else /* ! _MULTI_DATAMODEL */
22375 	if (ddi_copyout(&(un->un_vtoc), (void *)arg, sizeof (un->un_vtoc),
22376 	    flag)) {
22377 		return (EFAULT);
22378 	}
22379 #endif /* _MULTI_DATAMODEL */
22380 #else
22381 #error "No VTOC format defined."
22382 #endif
22383 
22384 	return (rval);
22385 }
22386 
22387 static int
22388 sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag)
22389 {
22390 	struct sd_lun	*un = NULL;
22391 	dk_efi_t	user_efi;
22392 	int		rval = 0;
22393 	void		*buffer;
22394 
22395 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
22396 		return (ENXIO);
22397 
22398 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
22399 		return (EFAULT);
22400 
22401 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
22402 
22403 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
22404 	    (user_efi.dki_length > un->un_max_xfer_size))
22405 		return (EINVAL);
22406 
22407 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
22408 	rval = sd_send_scsi_READ(un, buffer, user_efi.dki_length,
22409 	    user_efi.dki_lba, SD_PATH_DIRECT);
22410 	if (rval == 0 && ddi_copyout(buffer, user_efi.dki_data,
22411 	    user_efi.dki_length, flag) != 0)
22412 		rval = EFAULT;
22413 
22414 	kmem_free(buffer, user_efi.dki_length);
22415 	return (rval);
22416 }
22417 
22418 /*
22419  *    Function: sd_build_user_vtoc
22420  *
22421  * Description: This routine populates a pass by reference variable with the
22422  *		current volume table of contents.
22423  *
22424  *   Arguments: un - driver soft state (unit) structure
22425  *		user_vtoc - pointer to vtoc structure to be populated
22426  */
22427 
22428 static void
22429 sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
22430 {
22431 	struct dk_map2		*lpart;
22432 	struct dk_map		*lmap;
22433 	struct partition	*vpart;
22434 	int			nblks;
22435 	int			i;
22436 
22437 	ASSERT(mutex_owned(SD_MUTEX(un)));
22438 
22439 	/*
22440 	 * Return vtoc structure fields in the provided VTOC area, addressed
22441 	 * by *vtoc.
22442 	 */
22443 	bzero(user_vtoc, sizeof (struct vtoc));
22444 	user_vtoc->v_bootinfo[0] = un->un_vtoc.v_bootinfo[0];
22445 	user_vtoc->v_bootinfo[1] = un->un_vtoc.v_bootinfo[1];
22446 	user_vtoc->v_bootinfo[2] = un->un_vtoc.v_bootinfo[2];
22447 	user_vtoc->v_sanity	= VTOC_SANE;
22448 	user_vtoc->v_version	= un->un_vtoc.v_version;
22449 	bcopy(un->un_vtoc.v_volume, user_vtoc->v_volume, LEN_DKL_VVOL);
22450 	user_vtoc->v_sectorsz = un->un_sys_blocksize;
22451 	user_vtoc->v_nparts = un->un_vtoc.v_nparts;
22452 	bcopy(un->un_vtoc.v_reserved, user_vtoc->v_reserved,
22453 	    sizeof (un->un_vtoc.v_reserved));
22454 	/*
22455 	 * Convert partitioning information.
22456 	 *
22457 	 * Note the conversion from starting cylinder number
22458 	 * to starting sector number.
22459 	 */
22460 	lmap = un->un_map;
22461 	lpart = (struct dk_map2 *)un->un_vtoc.v_part;
22462 	vpart = user_vtoc->v_part;
22463 
22464 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
22465 
22466 	for (i = 0; i < V_NUMPAR; i++) {
22467 		vpart->p_tag	= lpart->p_tag;
22468 		vpart->p_flag	= lpart->p_flag;
22469 		vpart->p_start	= lmap->dkl_cylno * nblks;
22470 		vpart->p_size	= lmap->dkl_nblk;
22471 		lmap++;
22472 		lpart++;
22473 		vpart++;
22474 
22475 		/* (4364927) */
22476 		user_vtoc->timestamp[i] = (time_t)un->un_vtoc.v_timestamp[i];
22477 	}
22478 
22479 	bcopy(un->un_asciilabel, user_vtoc->v_asciilabel, LEN_DKL_ASCII);
22480 }
22481 
22482 static int
22483 sd_dkio_partition(dev_t dev, caddr_t arg, int flag)
22484 {
22485 	struct sd_lun		*un = NULL;
22486 	struct partition64	p64;
22487 	int			rval = 0;
22488 	uint_t			nparts;
22489 	efi_gpe_t		*partitions;
22490 	efi_gpt_t		*buffer;
22491 	diskaddr_t		gpe_lba;
22492 
22493 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22494 		return (ENXIO);
22495 	}
22496 
22497 	if (ddi_copyin((const void *)arg, &p64,
22498 	    sizeof (struct partition64), flag)) {
22499 		return (EFAULT);
22500 	}
22501 
22502 	buffer = kmem_alloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
22503 	rval = sd_send_scsi_READ(un, buffer, DEV_BSIZE,
22504 		1, SD_PATH_DIRECT);
22505 	if (rval != 0)
22506 		goto done_error;
22507 
22508 	sd_swap_efi_gpt(buffer);
22509 
22510 	if ((rval = sd_validate_efi(buffer)) != 0)
22511 		goto done_error;
22512 
22513 	nparts = buffer->efi_gpt_NumberOfPartitionEntries;
22514 	gpe_lba = buffer->efi_gpt_PartitionEntryLBA;
22515 	if (p64.p_partno > nparts) {
22516 		/* couldn't find it */
22517 		rval = ESRCH;
22518 		goto done_error;
22519 	}
22520 	/*
22521 	 * if we're dealing with a partition that's out of the normal
22522 	 * 16K block, adjust accordingly
22523 	 */
22524 	gpe_lba += p64.p_partno / sizeof (efi_gpe_t);
22525 	rval = sd_send_scsi_READ(un, buffer, EFI_MIN_ARRAY_SIZE,
22526 			gpe_lba, SD_PATH_DIRECT);
22527 	if (rval) {
22528 		goto done_error;
22529 	}
22530 	partitions = (efi_gpe_t *)buffer;
22531 
22532 	sd_swap_efi_gpe(nparts, partitions);
22533 
22534 	partitions += p64.p_partno;
22535 	bcopy(&partitions->efi_gpe_PartitionTypeGUID, &p64.p_type,
22536 	    sizeof (struct uuid));
22537 	p64.p_start = partitions->efi_gpe_StartingLBA;
22538 	p64.p_size = partitions->efi_gpe_EndingLBA -
22539 			p64.p_start + 1;
22540 
22541 	if (ddi_copyout(&p64, (void *)arg, sizeof (struct partition64), flag))
22542 		rval = EFAULT;
22543 
22544 done_error:
22545 	kmem_free(buffer, EFI_MIN_ARRAY_SIZE);
22546 	return (rval);
22547 }
22548 
22549 
22550 /*
22551  *    Function: sd_dkio_set_vtoc
22552  *
22553  * Description: This routine is the driver entry point for handling user
22554  *		requests to set the current volume table of contents
22555  *		(DKIOCSVTOC).
22556  *
22557  *   Arguments: dev  - the device number
22558  *		arg  - pointer to user provided vtoc structure used to set the
22559  *			current vtoc.
22560  *		flag - this argument is a pass through to ddi_copyxxx()
22561  *		       directly from the mode argument of ioctl().
22562  *
22563  * Return Code: 0
22564  *		EFAULT
22565  *		ENXIO
22566  *		EINVAL
22567  *		ENOTSUP
22568  */
22569 
22570 static int
22571 sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag)
22572 {
22573 	struct sd_lun	*un = NULL;
22574 	struct vtoc	user_vtoc;
22575 	int		rval = 0;
22576 
22577 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22578 		return (ENXIO);
22579 	}
22580 
22581 #if defined(__i386) || defined(__amd64)
22582 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
22583 		return (EINVAL);
22584 	}
22585 #endif
22586 
22587 #ifdef _MULTI_DATAMODEL
22588 	switch (ddi_model_convert_from(flag & FMODELS)) {
22589 	case DDI_MODEL_ILP32: {
22590 		struct vtoc32 user_vtoc32;
22591 
22592 		if (ddi_copyin((const void *)arg, &user_vtoc32,
22593 		    sizeof (struct vtoc32), flag)) {
22594 			return (EFAULT);
22595 		}
22596 		vtoc32tovtoc(user_vtoc32, user_vtoc);
22597 		break;
22598 	}
22599 
22600 	case DDI_MODEL_NONE:
22601 		if (ddi_copyin((const void *)arg, &user_vtoc,
22602 		    sizeof (struct vtoc), flag)) {
22603 			return (EFAULT);
22604 		}
22605 		break;
22606 	}
22607 #else /* ! _MULTI_DATAMODEL */
22608 	if (ddi_copyin((const void *)arg, &user_vtoc,
22609 	    sizeof (struct vtoc), flag)) {
22610 		return (EFAULT);
22611 	}
22612 #endif /* _MULTI_DATAMODEL */
22613 
22614 	mutex_enter(SD_MUTEX(un));
22615 	if (un->un_blockcount > DK_MAX_BLOCKS) {
22616 		mutex_exit(SD_MUTEX(un));
22617 		return (ENOTSUP);
22618 	}
22619 	if (un->un_g.dkg_ncyl == 0) {
22620 		mutex_exit(SD_MUTEX(un));
22621 		return (EINVAL);
22622 	}
22623 
22624 	mutex_exit(SD_MUTEX(un));
22625 	sd_clear_efi(un);
22626 	ddi_remove_minor_node(SD_DEVINFO(un), "wd");
22627 	ddi_remove_minor_node(SD_DEVINFO(un), "wd,raw");
22628 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h",
22629 	    S_IFBLK, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
22630 	    un->un_node_type, NULL);
22631 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h,raw",
22632 	    S_IFCHR, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
22633 	    un->un_node_type, NULL);
22634 	mutex_enter(SD_MUTEX(un));
22635 
22636 	if ((rval = sd_build_label_vtoc(un, &user_vtoc)) == 0) {
22637 		if ((rval = sd_write_label(dev)) == 0) {
22638 			if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT))
22639 			    != 0) {
22640 				SD_ERROR(SD_LOG_IOCTL_DKIO, un,
22641 				    "sd_dkio_set_vtoc: "
22642 				    "Failed validate geometry\n");
22643 			}
22644 		}
22645 	}
22646 
22647 	/*
22648 	 * If sd_build_label_vtoc, or sd_write_label failed above write the
22649 	 * devid anyway, what can it hurt? Also preserve the device id by
22650 	 * writing to the disk acyl for the case where a devid has been
22651 	 * fabricated.
22652 	 */
22653 	if (!ISREMOVABLE(un) && !ISCD(un) &&
22654 	    (un->un_f_opt_fab_devid == TRUE)) {
22655 		if (un->un_devid == NULL) {
22656 			sd_register_devid(un, SD_DEVINFO(un),
22657 			    SD_TARGET_IS_UNRESERVED);
22658 		} else {
22659 			/*
22660 			 * The device id for this disk has been
22661 			 * fabricated. Fabricated device id's are
22662 			 * managed by storing them in the last 2
22663 			 * available sectors on the drive. The device
22664 			 * id must be preserved by writing it back out
22665 			 * to this location.
22666 			 */
22667 			if (sd_write_deviceid(un) != 0) {
22668 				ddi_devid_free(un->un_devid);
22669 				un->un_devid = NULL;
22670 			}
22671 		}
22672 	}
22673 	mutex_exit(SD_MUTEX(un));
22674 	return (rval);
22675 }
22676 
22677 
22678 /*
22679  *    Function: sd_build_label_vtoc
22680  *
22681  * Description: This routine updates the driver soft state current volume table
22682  *		of contents based on a user specified vtoc.
22683  *
22684  *   Arguments: un - driver soft state (unit) structure
22685  *		user_vtoc - pointer to vtoc structure specifying vtoc to be used
22686  *			    to update the driver soft state.
22687  *
22688  * Return Code: 0
22689  *		EINVAL
22690  */
22691 
22692 static int
22693 sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
22694 {
22695 	struct dk_map		*lmap;
22696 	struct partition	*vpart;
22697 	int			nblks;
22698 #if defined(_SUNOS_VTOC_8)
22699 	int			ncyl;
22700 	struct dk_map2		*lpart;
22701 #endif	/* defined(_SUNOS_VTOC_8) */
22702 	int			i;
22703 
22704 	ASSERT(mutex_owned(SD_MUTEX(un)));
22705 
22706 	/* Sanity-check the vtoc */
22707 	if (user_vtoc->v_sanity != VTOC_SANE ||
22708 	    user_vtoc->v_sectorsz != un->un_sys_blocksize ||
22709 	    user_vtoc->v_nparts != V_NUMPAR) {
22710 		return (EINVAL);
22711 	}
22712 
22713 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
22714 	if (nblks == 0) {
22715 		return (EINVAL);
22716 	}
22717 
22718 #if defined(_SUNOS_VTOC_8)
22719 	vpart = user_vtoc->v_part;
22720 	for (i = 0; i < V_NUMPAR; i++) {
22721 		if ((vpart->p_start % nblks) != 0) {
22722 			return (EINVAL);
22723 		}
22724 		ncyl = vpart->p_start / nblks;
22725 		ncyl += vpart->p_size / nblks;
22726 		if ((vpart->p_size % nblks) != 0) {
22727 			ncyl++;
22728 		}
22729 		if (ncyl > (int)un->un_g.dkg_ncyl) {
22730 			return (EINVAL);
22731 		}
22732 		vpart++;
22733 	}
22734 #endif	/* defined(_SUNOS_VTOC_8) */
22735 
22736 	/* Put appropriate vtoc structure fields into the disk label */
22737 #if defined(_SUNOS_VTOC_16)
22738 	/*
22739 	 * The vtoc is always a 32bit data structure to maintain the
22740 	 * on-disk format. Convert "in place" instead of bcopying it.
22741 	 */
22742 	vtoctovtoc32((*user_vtoc), (*((struct vtoc32 *)&(un->un_vtoc))));
22743 
22744 	/*
22745 	 * in the 16-slice vtoc, starting sectors are expressed in
22746 	 * numbers *relative* to the start of the Solaris fdisk partition.
22747 	 */
22748 	lmap = un->un_map;
22749 	vpart = user_vtoc->v_part;
22750 
22751 	for (i = 0; i < (int)user_vtoc->v_nparts; i++, lmap++, vpart++) {
22752 		lmap->dkl_cylno = vpart->p_start / nblks;
22753 		lmap->dkl_nblk = vpart->p_size;
22754 	}
22755 
22756 #elif defined(_SUNOS_VTOC_8)
22757 
22758 	un->un_vtoc.v_bootinfo[0] = (uint32_t)user_vtoc->v_bootinfo[0];
22759 	un->un_vtoc.v_bootinfo[1] = (uint32_t)user_vtoc->v_bootinfo[1];
22760 	un->un_vtoc.v_bootinfo[2] = (uint32_t)user_vtoc->v_bootinfo[2];
22761 
22762 	un->un_vtoc.v_sanity = (uint32_t)user_vtoc->v_sanity;
22763 	un->un_vtoc.v_version = (uint32_t)user_vtoc->v_version;
22764 
22765 	bcopy(user_vtoc->v_volume, un->un_vtoc.v_volume, LEN_DKL_VVOL);
22766 
22767 	un->un_vtoc.v_nparts = user_vtoc->v_nparts;
22768 
22769 	bcopy(user_vtoc->v_reserved, un->un_vtoc.v_reserved,
22770 	    sizeof (un->un_vtoc.v_reserved));
22771 
22772 	/*
22773 	 * Note the conversion from starting sector number
22774 	 * to starting cylinder number.
22775 	 * Return error if division results in a remainder.
22776 	 */
22777 	lmap = un->un_map;
22778 	lpart = un->un_vtoc.v_part;
22779 	vpart = user_vtoc->v_part;
22780 
22781 	for (i = 0; i < (int)user_vtoc->v_nparts; i++) {
22782 		lpart->p_tag  = vpart->p_tag;
22783 		lpart->p_flag = vpart->p_flag;
22784 		lmap->dkl_cylno = vpart->p_start / nblks;
22785 		lmap->dkl_nblk = vpart->p_size;
22786 
22787 		lmap++;
22788 		lpart++;
22789 		vpart++;
22790 
22791 		/* (4387723) */
22792 #ifdef _LP64
22793 		if (user_vtoc->timestamp[i] > TIME32_MAX) {
22794 			un->un_vtoc.v_timestamp[i] = TIME32_MAX;
22795 		} else {
22796 			un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
22797 		}
22798 #else
22799 		un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
22800 #endif
22801 	}
22802 
22803 	bcopy(user_vtoc->v_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
22804 #else
22805 #error "No VTOC format defined."
22806 #endif
22807 	return (0);
22808 }
22809 
22810 /*
22811  *    Function: sd_clear_efi
22812  *
22813  * Description: This routine clears all EFI labels.
22814  *
22815  *   Arguments: un - driver soft state (unit) structure
22816  *
22817  * Return Code: void
22818  */
22819 
22820 static void
22821 sd_clear_efi(struct sd_lun *un)
22822 {
22823 	efi_gpt_t	*gpt;
22824 	uint_t		lbasize;
22825 	uint64_t	cap;
22826 	int rval;
22827 
22828 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22829 
22830 	gpt = kmem_alloc(sizeof (efi_gpt_t), KM_SLEEP);
22831 
22832 	if (sd_send_scsi_READ(un, gpt, DEV_BSIZE, 1, SD_PATH_DIRECT) != 0) {
22833 		goto done;
22834 	}
22835 
22836 	sd_swap_efi_gpt(gpt);
22837 	rval = sd_validate_efi(gpt);
22838 	if (rval == 0) {
22839 		/* clear primary */
22840 		bzero(gpt, sizeof (efi_gpt_t));
22841 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE, 1,
22842 			SD_PATH_DIRECT))) {
22843 			SD_INFO(SD_LOG_IO_PARTITION, un,
22844 				"sd_clear_efi: clear primary label failed\n");
22845 		}
22846 	}
22847 	/* the backup */
22848 	rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
22849 	    SD_PATH_DIRECT);
22850 	if (rval) {
22851 		goto done;
22852 	}
22853 	if ((rval = sd_send_scsi_READ(un, gpt, lbasize,
22854 	    cap - 1, SD_PATH_DIRECT)) != 0) {
22855 		goto done;
22856 	}
22857 	sd_swap_efi_gpt(gpt);
22858 	rval = sd_validate_efi(gpt);
22859 	if (rval == 0) {
22860 		/* clear backup */
22861 		SD_TRACE(SD_LOG_IOCTL, un, "sd_clear_efi clear backup@%lu\n",
22862 			cap-1);
22863 		bzero(gpt, sizeof (efi_gpt_t));
22864 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE,
22865 		    cap-1, SD_PATH_DIRECT))) {
22866 			SD_INFO(SD_LOG_IO_PARTITION, un,
22867 				"sd_clear_efi: clear backup label failed\n");
22868 		}
22869 	}
22870 
22871 done:
22872 	kmem_free(gpt, sizeof (efi_gpt_t));
22873 }
22874 
22875 /*
22876  *    Function: sd_set_vtoc
22877  *
22878  * Description: This routine writes data to the appropriate positions
22879  *
22880  *   Arguments: un - driver soft state (unit) structure
22881  *              dkl  - the data to be written
22882  *
22883  * Return: void
22884  */
22885 
22886 static int
22887 sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl)
22888 {
22889 	void			*shadow_buf;
22890 	uint_t			label_addr;
22891 	int			sec;
22892 	int			blk;
22893 	int			head;
22894 	int			cyl;
22895 	int			rval;
22896 
22897 #if defined(__i386) || defined(__amd64)
22898 	label_addr = un->un_solaris_offset + DK_LABEL_LOC;
22899 #else
22900 	/* Write the primary label at block 0 of the solaris partition. */
22901 	label_addr = 0;
22902 #endif
22903 
22904 	if (NOT_DEVBSIZE(un)) {
22905 		shadow_buf = kmem_zalloc(un->un_tgt_blocksize, KM_SLEEP);
22906 		/*
22907 		 * Read the target's first block.
22908 		 */
22909 		if ((rval = sd_send_scsi_READ(un, shadow_buf,
22910 		    un->un_tgt_blocksize, label_addr,
22911 		    SD_PATH_STANDARD)) != 0) {
22912 			goto exit;
22913 		}
22914 		/*
22915 		 * Copy the contents of the label into the shadow buffer
22916 		 * which is of the size of target block size.
22917 		 */
22918 		bcopy(dkl, shadow_buf, sizeof (struct dk_label));
22919 	}
22920 
22921 	/* Write the primary label */
22922 	if (NOT_DEVBSIZE(un)) {
22923 		rval = sd_send_scsi_WRITE(un, shadow_buf, un->un_tgt_blocksize,
22924 		    label_addr, SD_PATH_STANDARD);
22925 	} else {
22926 		rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
22927 		    label_addr, SD_PATH_STANDARD);
22928 	}
22929 	if (rval != 0) {
22930 		return (rval);
22931 	}
22932 
22933 	/*
22934 	 * Calculate where the backup labels go.  They are always on
22935 	 * the last alternate cylinder, but some older drives put them
22936 	 * on head 2 instead of the last head.	They are always on the
22937 	 * first 5 odd sectors of the appropriate track.
22938 	 *
22939 	 * We have no choice at this point, but to believe that the
22940 	 * disk label is valid.	 Use the geometry of the disk
22941 	 * as described in the label.
22942 	 */
22943 	cyl  = dkl->dkl_ncyl  + dkl->dkl_acyl - 1;
22944 	head = dkl->dkl_nhead - 1;
22945 
22946 	/*
22947 	 * Write and verify the backup labels. Make sure we don't try to
22948 	 * write past the last cylinder.
22949 	 */
22950 	for (sec = 1; ((sec < 5 * 2 + 1) && (sec < dkl->dkl_nsect)); sec += 2) {
22951 		blk = (daddr_t)(
22952 		    (cyl * ((dkl->dkl_nhead * dkl->dkl_nsect) - dkl->dkl_apc)) +
22953 		    (head * dkl->dkl_nsect) + sec);
22954 #if defined(__i386) || defined(__amd64)
22955 		blk += un->un_solaris_offset;
22956 #endif
22957 		if (NOT_DEVBSIZE(un)) {
22958 			uint64_t	tblk;
22959 			/*
22960 			 * Need to read the block first for read modify write.
22961 			 */
22962 			tblk = (uint64_t)blk;
22963 			blk = (int)((tblk * un->un_sys_blocksize) /
22964 			    un->un_tgt_blocksize);
22965 			if ((rval = sd_send_scsi_READ(un, shadow_buf,
22966 			    un->un_tgt_blocksize, blk,
22967 			    SD_PATH_STANDARD)) != 0) {
22968 				goto exit;
22969 			}
22970 			/*
22971 			 * Modify the shadow buffer with the label.
22972 			 */
22973 			bcopy(dkl, shadow_buf, sizeof (struct dk_label));
22974 			rval = sd_send_scsi_WRITE(un, shadow_buf,
22975 			    un->un_tgt_blocksize, blk, SD_PATH_STANDARD);
22976 		} else {
22977 			rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
22978 			    blk, SD_PATH_STANDARD);
22979 			SD_INFO(SD_LOG_IO_PARTITION, un,
22980 			"sd_set_vtoc: wrote backup label %d\n", blk);
22981 		}
22982 		if (rval != 0) {
22983 			goto exit;
22984 		}
22985 	}
22986 exit:
22987 	if (NOT_DEVBSIZE(un)) {
22988 		kmem_free(shadow_buf, un->un_tgt_blocksize);
22989 	}
22990 	return (rval);
22991 }
22992 
22993 /*
22994  *    Function: sd_clear_vtoc
22995  *
22996  * Description: This routine clears out the VTOC labels.
22997  *
22998  *   Arguments: un - driver soft state (unit) structure
22999  *
23000  * Return: void
23001  */
23002 
23003 static void
23004 sd_clear_vtoc(struct sd_lun *un)
23005 {
23006 	struct dk_label		*dkl;
23007 
23008 	mutex_exit(SD_MUTEX(un));
23009 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
23010 	mutex_enter(SD_MUTEX(un));
23011 	/*
23012 	 * sd_set_vtoc uses these fields in order to figure out
23013 	 * where to overwrite the backup labels
23014 	 */
23015 	dkl->dkl_apc    = un->un_g.dkg_apc;
23016 	dkl->dkl_ncyl   = un->un_g.dkg_ncyl;
23017 	dkl->dkl_acyl   = un->un_g.dkg_acyl;
23018 	dkl->dkl_nhead  = un->un_g.dkg_nhead;
23019 	dkl->dkl_nsect  = un->un_g.dkg_nsect;
23020 	mutex_exit(SD_MUTEX(un));
23021 	(void) sd_set_vtoc(un, dkl);
23022 	kmem_free(dkl, sizeof (struct dk_label));
23023 
23024 	mutex_enter(SD_MUTEX(un));
23025 }
23026 
23027 /*
23028  *    Function: sd_write_label
23029  *
23030  * Description: This routine will validate and write the driver soft state vtoc
23031  *		contents to the device.
23032  *
23033  *   Arguments: dev - the device number
23034  *
23035  * Return Code: the code returned by sd_send_scsi_cmd()
23036  *		0
23037  *		EINVAL
23038  *		ENXIO
23039  *		ENOMEM
23040  */
23041 
23042 static int
23043 sd_write_label(dev_t dev)
23044 {
23045 	struct sd_lun		*un;
23046 	struct dk_label		*dkl;
23047 	short			sum;
23048 	short			*sp;
23049 	int			i;
23050 	int			rval;
23051 
23052 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
23053 	    (un->un_state == SD_STATE_OFFLINE)) {
23054 		return (ENXIO);
23055 	}
23056 	ASSERT(mutex_owned(SD_MUTEX(un)));
23057 	mutex_exit(SD_MUTEX(un));
23058 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
23059 	mutex_enter(SD_MUTEX(un));
23060 
23061 	bcopy(&un->un_vtoc, &dkl->dkl_vtoc, sizeof (struct dk_vtoc));
23062 	dkl->dkl_rpm	= un->un_g.dkg_rpm;
23063 	dkl->dkl_pcyl	= un->un_g.dkg_pcyl;
23064 	dkl->dkl_apc	= un->un_g.dkg_apc;
23065 	dkl->dkl_intrlv = un->un_g.dkg_intrlv;
23066 	dkl->dkl_ncyl	= un->un_g.dkg_ncyl;
23067 	dkl->dkl_acyl	= un->un_g.dkg_acyl;
23068 	dkl->dkl_nhead	= un->un_g.dkg_nhead;
23069 	dkl->dkl_nsect	= un->un_g.dkg_nsect;
23070 
23071 #if defined(_SUNOS_VTOC_8)
23072 	dkl->dkl_obs1	= un->un_g.dkg_obs1;
23073 	dkl->dkl_obs2	= un->un_g.dkg_obs2;
23074 	dkl->dkl_obs3	= un->un_g.dkg_obs3;
23075 	for (i = 0; i < NDKMAP; i++) {
23076 		dkl->dkl_map[i].dkl_cylno = un->un_map[i].dkl_cylno;
23077 		dkl->dkl_map[i].dkl_nblk  = un->un_map[i].dkl_nblk;
23078 	}
23079 	bcopy(un->un_asciilabel, dkl->dkl_asciilabel, LEN_DKL_ASCII);
23080 #elif defined(_SUNOS_VTOC_16)
23081 	dkl->dkl_skew	= un->un_dkg_skew;
23082 #else
23083 #error "No VTOC format defined."
23084 #endif
23085 
23086 	dkl->dkl_magic			= DKL_MAGIC;
23087 	dkl->dkl_write_reinstruct	= un->un_g.dkg_write_reinstruct;
23088 	dkl->dkl_read_reinstruct	= un->un_g.dkg_read_reinstruct;
23089 
23090 	/* Construct checksum for the new disk label */
23091 	sum = 0;
23092 	sp = (short *)dkl;
23093 	i = sizeof (struct dk_label) / sizeof (short);
23094 	while (i--) {
23095 		sum ^= *sp++;
23096 	}
23097 	dkl->dkl_cksum = sum;
23098 
23099 	mutex_exit(SD_MUTEX(un));
23100 
23101 	rval = sd_set_vtoc(un, dkl);
23102 exit:
23103 	kmem_free(dkl, sizeof (struct dk_label));
23104 	mutex_enter(SD_MUTEX(un));
23105 	return (rval);
23106 }
23107 
23108 static int
23109 sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag)
23110 {
23111 	struct sd_lun	*un = NULL;
23112 	dk_efi_t	user_efi;
23113 	int		rval = 0;
23114 	void		*buffer;
23115 
23116 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
23117 		return (ENXIO);
23118 
23119 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
23120 		return (EFAULT);
23121 
23122 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
23123 
23124 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
23125 	    (user_efi.dki_length > un->un_max_xfer_size))
23126 		return (EINVAL);
23127 
23128 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
23129 	if (ddi_copyin(user_efi.dki_data, buffer, user_efi.dki_length, flag)) {
23130 		rval = EFAULT;
23131 	} else {
23132 		/*
23133 		 * let's clear the vtoc labels and clear the softstate
23134 		 * vtoc.
23135 		 */
23136 		mutex_enter(SD_MUTEX(un));
23137 		if (un->un_vtoc.v_sanity == VTOC_SANE) {
23138 			SD_TRACE(SD_LOG_IO_PARTITION, un,
23139 				"sd_dkio_set_efi: CLEAR VTOC\n");
23140 			sd_clear_vtoc(un);
23141 			bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
23142 			mutex_exit(SD_MUTEX(un));
23143 			ddi_remove_minor_node(SD_DEVINFO(un), "h");
23144 			ddi_remove_minor_node(SD_DEVINFO(un), "h,raw");
23145 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd",
23146 			    S_IFBLK,
23147 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23148 			    un->un_node_type, NULL);
23149 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd,raw",
23150 			    S_IFCHR,
23151 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23152 			    un->un_node_type, NULL);
23153 		} else
23154 			mutex_exit(SD_MUTEX(un));
23155 		rval = sd_send_scsi_WRITE(un, buffer, user_efi.dki_length,
23156 		    user_efi.dki_lba, SD_PATH_DIRECT);
23157 		if (rval == 0) {
23158 			mutex_enter(SD_MUTEX(un));
23159 			un->un_f_geometry_is_valid = FALSE;
23160 			mutex_exit(SD_MUTEX(un));
23161 		}
23162 	}
23163 	kmem_free(buffer, user_efi.dki_length);
23164 	return (rval);
23165 }
23166 
23167 /*
23168  *    Function: sd_dkio_get_mboot
23169  *
23170  * Description: This routine is the driver entry point for handling user
23171  *		requests to get the current device mboot (DKIOCGMBOOT)
23172  *
23173  *   Arguments: dev  - the device number
23174  *		arg  - pointer to user provided mboot structure specifying
23175  *			the current mboot.
23176  *		flag - this argument is a pass through to ddi_copyxxx()
23177  *		       directly from the mode argument of ioctl().
23178  *
23179  * Return Code: 0
23180  *		EINVAL
23181  *		EFAULT
23182  *		ENXIO
23183  */
23184 
23185 static int
23186 sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag)
23187 {
23188 	struct sd_lun	*un;
23189 	struct mboot	*mboot;
23190 	int		rval;
23191 	size_t		buffer_size;
23192 
23193 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
23194 	    (un->un_state == SD_STATE_OFFLINE)) {
23195 		return (ENXIO);
23196 	}
23197 
23198 #if defined(_SUNOS_VTOC_8)
23199 	if ((!ISREMOVABLE(un)) || (arg == NULL)) {
23200 #elif defined(_SUNOS_VTOC_16)
23201 	if (arg == NULL) {
23202 #endif
23203 		return (EINVAL);
23204 	}
23205 
23206 	/*
23207 	 * Read the mboot block, located at absolute block 0 on the target.
23208 	 */
23209 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct mboot));
23210 
23211 	SD_TRACE(SD_LOG_IO_PARTITION, un,
23212 	    "sd_dkio_get_mboot: allocation size: 0x%x\n", buffer_size);
23213 
23214 	mboot = kmem_zalloc(buffer_size, KM_SLEEP);
23215 	if ((rval = sd_send_scsi_READ(un, mboot, buffer_size, 0,
23216 	    SD_PATH_STANDARD)) == 0) {
23217 		if (ddi_copyout(mboot, (void *)arg,
23218 		    sizeof (struct mboot), flag) != 0) {
23219 			rval = EFAULT;
23220 		}
23221 	}
23222 	kmem_free(mboot, buffer_size);
23223 	return (rval);
23224 }
23225 
23226 
23227 /*
23228  *    Function: sd_dkio_set_mboot
23229  *
23230  * Description: This routine is the driver entry point for handling user
23231  *		requests to validate and set the device master boot
23232  *		(DKIOCSMBOOT).
23233  *
23234  *   Arguments: dev  - the device number
23235  *		arg  - pointer to user provided mboot structure used to set the
23236  *			master boot.
23237  *		flag - this argument is a pass through to ddi_copyxxx()
23238  *		       directly from the mode argument of ioctl().
23239  *
23240  * Return Code: 0
23241  *		EINVAL
23242  *		EFAULT
23243  *		ENXIO
23244  */
23245 
23246 static int
23247 sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag)
23248 {
23249 	struct sd_lun	*un = NULL;
23250 	struct mboot	*mboot = NULL;
23251 	int		rval;
23252 	ushort_t	magic;
23253 
23254 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23255 		return (ENXIO);
23256 	}
23257 
23258 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23259 
23260 #if defined(_SUNOS_VTOC_8)
23261 	if (!ISREMOVABLE(un)) {
23262 		return (EINVAL);
23263 	}
23264 #endif
23265 
23266 	if (arg == NULL) {
23267 		return (EINVAL);
23268 	}
23269 
23270 	mboot = kmem_zalloc(sizeof (struct mboot), KM_SLEEP);
23271 
23272 	if (ddi_copyin((const void *)arg, mboot,
23273 	    sizeof (struct mboot), flag) != 0) {
23274 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23275 		return (EFAULT);
23276 	}
23277 
23278 	/* Is this really a master boot record? */
23279 	magic = LE_16(mboot->signature);
23280 	if (magic != MBB_MAGIC) {
23281 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23282 		return (EINVAL);
23283 	}
23284 
23285 	rval = sd_send_scsi_WRITE(un, mboot, un->un_sys_blocksize, 0,
23286 	    SD_PATH_STANDARD);
23287 
23288 	mutex_enter(SD_MUTEX(un));
23289 #if defined(__i386) || defined(__amd64)
23290 	if (rval == 0) {
23291 		/*
23292 		 * mboot has been written successfully.
23293 		 * update the fdisk and vtoc tables in memory
23294 		 */
23295 		rval = sd_update_fdisk_and_vtoc(un);
23296 		if ((un->un_f_geometry_is_valid == FALSE) || (rval != 0)) {
23297 			mutex_exit(SD_MUTEX(un));
23298 			kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23299 			return (rval);
23300 		}
23301 	}
23302 
23303 	/*
23304 	 * If the mboot write fails, write the devid anyway, what can it hurt?
23305 	 * Also preserve the device id by writing to the disk acyl for the case
23306 	 * where a devid has been fabricated.
23307 	 */
23308 	if (!ISREMOVABLE(un) && !ISCD(un) &&
23309 	    (un->un_f_opt_fab_devid == TRUE)) {
23310 		if (un->un_devid == NULL) {
23311 			sd_register_devid(un, SD_DEVINFO(un),
23312 			    SD_TARGET_IS_UNRESERVED);
23313 		} else {
23314 			/*
23315 			 * The device id for this disk has been
23316 			 * fabricated. Fabricated device id's are
23317 			 * managed by storing them in the last 2
23318 			 * available sectors on the drive. The device
23319 			 * id must be preserved by writing it back out
23320 			 * to this location.
23321 			 */
23322 			if (sd_write_deviceid(un) != 0) {
23323 				ddi_devid_free(un->un_devid);
23324 				un->un_devid = NULL;
23325 			}
23326 		}
23327 	}
23328 #else
23329 	if (rval == 0) {
23330 		/*
23331 		 * mboot has been written successfully.
23332 		 * set up the default geometry and VTOC
23333 		 */
23334 		if (un->un_blockcount <= DK_MAX_BLOCKS)
23335 			sd_setup_default_geometry(un);
23336 	}
23337 #endif
23338 	mutex_exit(SD_MUTEX(un));
23339 	kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23340 	return (rval);
23341 }
23342 
23343 
23344 /*
23345  *    Function: sd_setup_default_geometry
23346  *
23347  * Description: This local utility routine sets the default geometry as part of
23348  *		setting the device mboot.
23349  *
23350  *   Arguments: un - driver soft state (unit) structure
23351  *
23352  * Note: This may be redundant with sd_build_default_label.
23353  */
23354 
23355 static void
23356 sd_setup_default_geometry(struct sd_lun *un)
23357 {
23358 	/* zero out the soft state geometry and partition table. */
23359 	bzero(&un->un_g, sizeof (struct dk_geom));
23360 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
23361 	bzero(un->un_map, NDKMAP * (sizeof (struct dk_map)));
23362 	un->un_asciilabel[0] = '\0';
23363 
23364 	/*
23365 	 * For the rpm, we use the minimum for the disk.
23366 	 * For the head, cyl and number of sector per track,
23367 	 * if the capacity <= 1GB, head = 64, sect = 32.
23368 	 * else head = 255, sect 63
23369 	 * Note: the capacity should be equal to C*H*S values.
23370 	 * This will cause some truncation of size due to
23371 	 * round off errors. For CD-ROMs, this truncation can
23372 	 * have adverse side effects, so returning ncyl and
23373 	 * nhead as 1. The nsect will overflow for most of
23374 	 * CD-ROMs as nsect is of type ushort.
23375 	 */
23376 	if (ISCD(un)) {
23377 		un->un_g.dkg_ncyl = 1;
23378 		un->un_g.dkg_nhead = 1;
23379 		un->un_g.dkg_nsect = un->un_blockcount;
23380 	} else {
23381 		if (un->un_blockcount <= 0x1000) {
23382 			/* Needed for unlabeled SCSI floppies. */
23383 			un->un_g.dkg_nhead = 2;
23384 			un->un_g.dkg_ncyl = 80;
23385 			un->un_g.dkg_pcyl = 80;
23386 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
23387 		} else if (un->un_blockcount <= 0x200000) {
23388 			un->un_g.dkg_nhead = 64;
23389 			un->un_g.dkg_nsect = 32;
23390 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
23391 		} else {
23392 			un->un_g.dkg_nhead = 255;
23393 			un->un_g.dkg_nsect = 63;
23394 			un->un_g.dkg_ncyl = un->un_blockcount / (255 * 63);
23395 		}
23396 		un->un_blockcount = un->un_g.dkg_ncyl *
23397 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
23398 	}
23399 	un->un_g.dkg_acyl = 0;
23400 	un->un_g.dkg_bcyl = 0;
23401 	un->un_g.dkg_intrlv = 1;
23402 	un->un_g.dkg_rpm = 200;
23403 	un->un_g.dkg_read_reinstruct = 0;
23404 	un->un_g.dkg_write_reinstruct = 0;
23405 	if (un->un_g.dkg_pcyl == 0) {
23406 		un->un_g.dkg_pcyl = un->un_g.dkg_ncyl + un->un_g.dkg_acyl;
23407 	}
23408 
23409 	un->un_map['a'-'a'].dkl_cylno = 0;
23410 	un->un_map['a'-'a'].dkl_nblk = un->un_blockcount;
23411 	un->un_map['c'-'a'].dkl_cylno = 0;
23412 	un->un_map['c'-'a'].dkl_nblk = un->un_blockcount;
23413 	un->un_f_geometry_is_valid = FALSE;
23414 }
23415 
23416 
23417 #if defined(__i386) || defined(__amd64)
23418 /*
23419  *    Function: sd_update_fdisk_and_vtoc
23420  *
23421  * Description: This local utility routine updates the device fdisk and vtoc
23422  *		as part of setting the device mboot.
23423  *
23424  *   Arguments: un - driver soft state (unit) structure
23425  *
23426  * Return Code: 0 for success or errno-type return code.
23427  *
23428  *    Note:x86: This looks like a duplicate of sd_validate_geometry(), but
23429  *		these did exist seperately in x86 sd.c!!!
23430  */
23431 
23432 static int
23433 sd_update_fdisk_and_vtoc(struct sd_lun *un)
23434 {
23435 	static char	labelstring[128];
23436 	static char	buf[256];
23437 	char		*label = 0;
23438 	int		count;
23439 	int		label_rc = 0;
23440 	int		gvalid = un->un_f_geometry_is_valid;
23441 	int		fdisk_rval;
23442 	int		lbasize;
23443 	int		capacity;
23444 
23445 	ASSERT(mutex_owned(SD_MUTEX(un)));
23446 
23447 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
23448 		return (EINVAL);
23449 	}
23450 
23451 	if (un->un_f_blockcount_is_valid == FALSE) {
23452 		return (EINVAL);
23453 	}
23454 
23455 #if defined(_SUNOS_VTOC_16)
23456 	/*
23457 	 * Set up the "whole disk" fdisk partition; this should always
23458 	 * exist, regardless of whether the disk contains an fdisk table
23459 	 * or vtoc.
23460 	 */
23461 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
23462 	un->un_map[P0_RAW_DISK].dkl_nblk = un->un_blockcount;
23463 #endif	/* defined(_SUNOS_VTOC_16) */
23464 
23465 	/*
23466 	 * copy the lbasize and capacity so that if they're
23467 	 * reset while we're not holding the SD_MUTEX(un), we will
23468 	 * continue to use valid values after the SD_MUTEX(un) is
23469 	 * reacquired.
23470 	 */
23471 	lbasize  = un->un_tgt_blocksize;
23472 	capacity = un->un_blockcount;
23473 
23474 	/*
23475 	 * refresh the logical and physical geometry caches.
23476 	 * (data from mode sense format/rigid disk geometry pages,
23477 	 * and scsi_ifgetcap("geometry").
23478 	 */
23479 	sd_resync_geom_caches(un, capacity, lbasize, SD_PATH_DIRECT);
23480 
23481 	/*
23482 	 * Only DIRECT ACCESS devices will have Sun labels.
23483 	 * CD's supposedly have a Sun label, too
23484 	 */
23485 	if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT || ISREMOVABLE(un)) {
23486 		fdisk_rval = sd_read_fdisk(un, capacity, lbasize,
23487 		    SD_PATH_DIRECT);
23488 		if (fdisk_rval == SD_CMD_FAILURE) {
23489 			ASSERT(mutex_owned(SD_MUTEX(un)));
23490 			return (EIO);
23491 		}
23492 
23493 		if (fdisk_rval == SD_CMD_RESERVATION_CONFLICT) {
23494 			ASSERT(mutex_owned(SD_MUTEX(un)));
23495 			return (EACCES);
23496 		}
23497 
23498 		if (un->un_solaris_size <= DK_LABEL_LOC) {
23499 			/*
23500 			 * Found fdisk table but no Solaris partition entry,
23501 			 * so don't call sd_uselabel() and don't create
23502 			 * a default label.
23503 			 */
23504 			label_rc = 0;
23505 			un->un_f_geometry_is_valid = TRUE;
23506 			goto no_solaris_partition;
23507 		}
23508 
23509 #if defined(_SUNOS_VTOC_8)
23510 		label = (char *)un->un_asciilabel;
23511 #elif defined(_SUNOS_VTOC_16)
23512 		label = (char *)un->un_vtoc.v_asciilabel;
23513 #else
23514 #error "No VTOC format defined."
23515 #endif
23516 	} else if (capacity < 0) {
23517 		ASSERT(mutex_owned(SD_MUTEX(un)));
23518 		return (EINVAL);
23519 	}
23520 
23521 	/*
23522 	 * For Removable media We reach here if we have found a
23523 	 * SOLARIS PARTITION.
23524 	 * If un_f_geometry_is_valid is FALSE it indicates that the SOLARIS
23525 	 * PARTITION has changed from the previous one, hence we will setup a
23526 	 * default VTOC in this case.
23527 	 */
23528 	if (un->un_f_geometry_is_valid == FALSE) {
23529 		sd_build_default_label(un);
23530 		label_rc = 0;
23531 	}
23532 
23533 no_solaris_partition:
23534 	if ((!ISREMOVABLE(un) ||
23535 	    (ISREMOVABLE(un) && un->un_mediastate == DKIO_EJECTED)) &&
23536 	    (un->un_state == SD_STATE_NORMAL && gvalid == FALSE)) {
23537 		/*
23538 		 * Print out a message indicating who and what we are.
23539 		 * We do this only when we happen to really validate the
23540 		 * geometry. We may call sd_validate_geometry() at other
23541 		 * times, ioctl()'s like Get VTOC in which case we
23542 		 * don't want to print the label.
23543 		 * If the geometry is valid, print the label string,
23544 		 * else print vendor and product info, if available
23545 		 */
23546 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
23547 			SD_INFO(SD_LOG_IOCTL_DKIO, un, "?<%s>\n", label);
23548 		} else {
23549 			mutex_enter(&sd_label_mutex);
23550 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
23551 			    labelstring);
23552 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
23553 			    &labelstring[64]);
23554 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
23555 			    labelstring, &labelstring[64]);
23556 			if (un->un_f_blockcount_is_valid == TRUE) {
23557 				(void) sprintf(&buf[strlen(buf)],
23558 				    ", %" PRIu64 " %u byte blocks\n",
23559 				    un->un_blockcount,
23560 				    un->un_tgt_blocksize);
23561 			} else {
23562 				(void) sprintf(&buf[strlen(buf)],
23563 				    ", (unknown capacity)\n");
23564 			}
23565 			SD_INFO(SD_LOG_IOCTL_DKIO, un, buf);
23566 			mutex_exit(&sd_label_mutex);
23567 		}
23568 	}
23569 
23570 #if defined(_SUNOS_VTOC_16)
23571 	/*
23572 	 * If we have valid geometry, set up the remaining fdisk partitions.
23573 	 * Note that dkl_cylno is not used for the fdisk map entries, so
23574 	 * we set it to an entirely bogus value.
23575 	 */
23576 	for (count = 0; count < FD_NUMPART; count++) {
23577 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
23578 		un->un_map[FDISK_P1 + count].dkl_nblk =
23579 		    un->un_fmap[count].fmap_nblk;
23580 		un->un_offset[FDISK_P1 + count] =
23581 		    un->un_fmap[count].fmap_start;
23582 	}
23583 #endif
23584 
23585 	for (count = 0; count < NDKMAP; count++) {
23586 #if defined(_SUNOS_VTOC_8)
23587 		struct dk_map *lp  = &un->un_map[count];
23588 		un->un_offset[count] =
23589 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
23590 #elif defined(_SUNOS_VTOC_16)
23591 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
23592 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
23593 #else
23594 #error "No VTOC format defined."
23595 #endif
23596 	}
23597 
23598 	ASSERT(mutex_owned(SD_MUTEX(un)));
23599 	return (label_rc);
23600 }
23601 #endif
23602 
23603 
23604 /*
23605  *    Function: sd_check_media
23606  *
23607  * Description: This utility routine implements the functionality for the
23608  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
23609  *		driver state changes from that specified by the user
23610  *		(inserted or ejected). For example, if the user specifies
23611  *		DKIO_EJECTED and the current media state is inserted this
23612  *		routine will immediately return DKIO_INSERTED. However, if the
23613  *		current media state is not inserted the user thread will be
23614  *		blocked until the drive state changes. If DKIO_NONE is specified
23615  *		the user thread will block until a drive state change occurs.
23616  *
23617  *   Arguments: dev  - the device number
23618  *		state  - user pointer to a dkio_state, updated with the current
23619  *			drive state at return.
23620  *
23621  * Return Code: ENXIO
23622  *		EIO
23623  *		EAGAIN
23624  *		EINTR
23625  */
23626 
23627 static int
23628 sd_check_media(dev_t dev, enum dkio_state state)
23629 {
23630 	struct sd_lun		*un = NULL;
23631 	enum dkio_state		prev_state;
23632 	opaque_t		token = NULL;
23633 	int			rval = 0;
23634 
23635 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23636 		return (ENXIO);
23637 	}
23638 
23639 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
23640 
23641 	mutex_enter(SD_MUTEX(un));
23642 
23643 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
23644 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
23645 
23646 	prev_state = un->un_mediastate;
23647 
23648 	/* is there anything to do? */
23649 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
23650 		/*
23651 		 * submit the request to the scsi_watch service;
23652 		 * scsi_media_watch_cb() does the real work
23653 		 */
23654 		mutex_exit(SD_MUTEX(un));
23655 
23656 		/*
23657 		 * This change handles the case where a scsi watch request is
23658 		 * added to a device that is powered down. To accomplish this
23659 		 * we power up the device before adding the scsi watch request,
23660 		 * since the scsi watch sends a TUR directly to the device
23661 		 * which the device cannot handle if it is powered down.
23662 		 */
23663 		if (sd_pm_entry(un) != DDI_SUCCESS) {
23664 			mutex_enter(SD_MUTEX(un));
23665 			goto done;
23666 		}
23667 
23668 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
23669 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
23670 		    (caddr_t)dev);
23671 
23672 		sd_pm_exit(un);
23673 
23674 		mutex_enter(SD_MUTEX(un));
23675 		if (token == NULL) {
23676 			rval = EAGAIN;
23677 			goto done;
23678 		}
23679 
23680 		/*
23681 		 * This is a special case IOCTL that doesn't return
23682 		 * until the media state changes. Routine sdpower
23683 		 * knows about and handles this so don't count it
23684 		 * as an active cmd in the driver, which would
23685 		 * keep the device busy to the pm framework.
23686 		 * If the count isn't decremented the device can't
23687 		 * be powered down.
23688 		 */
23689 		un->un_ncmds_in_driver--;
23690 		ASSERT(un->un_ncmds_in_driver >= 0);
23691 
23692 		/*
23693 		 * if a prior request had been made, this will be the same
23694 		 * token, as scsi_watch was designed that way.
23695 		 */
23696 		un->un_swr_token = token;
23697 		un->un_specified_mediastate = state;
23698 
23699 		/*
23700 		 * now wait for media change
23701 		 * we will not be signalled unless mediastate == state but it is
23702 		 * still better to test for this condition, since there is a
23703 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
23704 		 */
23705 		SD_TRACE(SD_LOG_COMMON, un,
23706 		    "sd_check_media: waiting for media state change\n");
23707 		while (un->un_mediastate == state) {
23708 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
23709 				SD_TRACE(SD_LOG_COMMON, un,
23710 				    "sd_check_media: waiting for media state "
23711 				    "was interrupted\n");
23712 				un->un_ncmds_in_driver++;
23713 				rval = EINTR;
23714 				goto done;
23715 			}
23716 			SD_TRACE(SD_LOG_COMMON, un,
23717 			    "sd_check_media: received signal, state=%x\n",
23718 			    un->un_mediastate);
23719 		}
23720 		/*
23721 		 * Inc the counter to indicate the device once again
23722 		 * has an active outstanding cmd.
23723 		 */
23724 		un->un_ncmds_in_driver++;
23725 	}
23726 
23727 	/* invalidate geometry */
23728 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
23729 		sr_ejected(un);
23730 	}
23731 
23732 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
23733 		uint64_t	capacity;
23734 		uint_t		lbasize;
23735 
23736 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
23737 		mutex_exit(SD_MUTEX(un));
23738 		/*
23739 		 * Since the following routines use SD_PATH_DIRECT, we must
23740 		 * call PM directly before the upcoming disk accesses. This
23741 		 * may cause the disk to be power/spin up.
23742 		 */
23743 
23744 		if (sd_pm_entry(un) == DDI_SUCCESS) {
23745 			rval = sd_send_scsi_READ_CAPACITY(un,
23746 			    &capacity,
23747 			    &lbasize, SD_PATH_DIRECT);
23748 			if (rval != 0) {
23749 				sd_pm_exit(un);
23750 				mutex_enter(SD_MUTEX(un));
23751 				goto done;
23752 			}
23753 		} else {
23754 			rval = EIO;
23755 			mutex_enter(SD_MUTEX(un));
23756 			goto done;
23757 		}
23758 		mutex_enter(SD_MUTEX(un));
23759 
23760 		sd_update_block_info(un, lbasize, capacity);
23761 
23762 		un->un_f_geometry_is_valid	= FALSE;
23763 		(void) sd_validate_geometry(un, SD_PATH_DIRECT);
23764 
23765 		mutex_exit(SD_MUTEX(un));
23766 		rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
23767 		    SD_PATH_DIRECT);
23768 		sd_pm_exit(un);
23769 
23770 		mutex_enter(SD_MUTEX(un));
23771 	}
23772 done:
23773 	un->un_f_watcht_stopped = FALSE;
23774 	if (un->un_swr_token) {
23775 		/*
23776 		 * Use of this local token and the mutex ensures that we avoid
23777 		 * some race conditions associated with terminating the
23778 		 * scsi watch.
23779 		 */
23780 		token = un->un_swr_token;
23781 		un->un_swr_token = (opaque_t)NULL;
23782 		mutex_exit(SD_MUTEX(un));
23783 		(void) scsi_watch_request_terminate(token,
23784 		    SCSI_WATCH_TERMINATE_WAIT);
23785 		mutex_enter(SD_MUTEX(un));
23786 	}
23787 
23788 	/*
23789 	 * Update the capacity kstat value, if no media previously
23790 	 * (capacity kstat is 0) and a media has been inserted
23791 	 * (un_f_blockcount_is_valid == TRUE)
23792 	 * This is a more generic way then checking for ISREMOVABLE.
23793 	 */
23794 	if (un->un_errstats) {
23795 		struct sd_errstats	*stp = NULL;
23796 
23797 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
23798 		if ((stp->sd_capacity.value.ui64 == 0) &&
23799 		    (un->un_f_blockcount_is_valid == TRUE)) {
23800 			stp->sd_capacity.value.ui64 =
23801 			    (uint64_t)((uint64_t)un->un_blockcount *
23802 			    un->un_sys_blocksize);
23803 		}
23804 	}
23805 	mutex_exit(SD_MUTEX(un));
23806 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
23807 	return (rval);
23808 }
23809 
23810 
23811 /*
23812  *    Function: sd_delayed_cv_broadcast
23813  *
23814  * Description: Delayed cv_broadcast to allow for target to recover from media
23815  *		insertion.
23816  *
23817  *   Arguments: arg - driver soft state (unit) structure
23818  */
23819 
23820 static void
23821 sd_delayed_cv_broadcast(void *arg)
23822 {
23823 	struct sd_lun *un = arg;
23824 
23825 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
23826 
23827 	mutex_enter(SD_MUTEX(un));
23828 	un->un_dcvb_timeid = NULL;
23829 	cv_broadcast(&un->un_state_cv);
23830 	mutex_exit(SD_MUTEX(un));
23831 }
23832 
23833 
23834 /*
23835  *    Function: sd_media_watch_cb
23836  *
23837  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
23838  *		routine processes the TUR sense data and updates the driver
23839  *		state if a transition has occurred. The user thread
23840  *		(sd_check_media) is then signalled.
23841  *
23842  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
23843  *			among multiple watches that share this callback function
23844  *		resultp - scsi watch facility result packet containing scsi
23845  *			  packet, status byte and sense data
23846  *
23847  * Return Code: 0 for success, -1 for failure
23848  */
23849 
23850 static int
23851 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
23852 {
23853 	struct sd_lun			*un;
23854 	struct scsi_status		*statusp = resultp->statusp;
23855 	struct scsi_extended_sense	*sensep = resultp->sensep;
23856 	enum dkio_state			state = DKIO_NONE;
23857 	dev_t				dev = (dev_t)arg;
23858 	uchar_t				actual_sense_length;
23859 
23860 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23861 		return (-1);
23862 	}
23863 	actual_sense_length = resultp->actual_sense_length;
23864 
23865 	mutex_enter(SD_MUTEX(un));
23866 	SD_TRACE(SD_LOG_COMMON, un,
23867 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
23868 	    *((char *)statusp), (void *)sensep, actual_sense_length);
23869 
23870 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
23871 		un->un_mediastate = DKIO_DEV_GONE;
23872 		printf("sd_media_watch_cb: dev gone\n");
23873 		cv_broadcast(&un->un_state_cv);
23874 		mutex_exit(SD_MUTEX(un));
23875 
23876 		return (0);
23877 	}
23878 
23879 	/*
23880 	 * If there was a check condition then sensep points to valid sense data
23881 	 * If status was not a check condition but a reservation or busy status
23882 	 * then the new state is DKIO_NONE
23883 	 */
23884 	if (sensep != NULL) {
23885 		SD_INFO(SD_LOG_COMMON, un,
23886 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
23887 		    sensep->es_key, sensep->es_add_code, sensep->es_qual_code);
23888 		/* This routine only uses up to 13 bytes of sense data. */
23889 		if (actual_sense_length >= 13) {
23890 			if (sensep->es_key == KEY_UNIT_ATTENTION) {
23891 				if (sensep->es_add_code == 0x28) {
23892 					state = DKIO_INSERTED;
23893 				}
23894 			} else {
23895 				/*
23896 				 * if 02/04/02  means that the host
23897 				 * should send start command. Explicitly
23898 				 * leave the media state as is
23899 				 * (inserted) as the media is inserted
23900 				 * and host has stopped device for PM
23901 				 * reasons. Upon next true read/write
23902 				 * to this media will bring the
23903 				 * device to the right state good for
23904 				 * media access.
23905 				 */
23906 				if ((sensep->es_key == KEY_NOT_READY) &&
23907 				    (sensep->es_add_code == 0x3a)) {
23908 					state = DKIO_EJECTED;
23909 				}
23910 
23911 				/*
23912 				 * If the drivge is busy with an operation
23913 				 * or long write, keep the media in an
23914 				 * inserted state.
23915 				 */
23916 
23917 				if ((sensep->es_key == KEY_NOT_READY) &&
23918 				    (sensep->es_add_code == 0x04) &&
23919 				    ((sensep->es_qual_code == 0x02) ||
23920 				    (sensep->es_qual_code == 0x07) ||
23921 				    (sensep->es_qual_code == 0x08))) {
23922 					state = DKIO_INSERTED;
23923 				}
23924 			}
23925 		}
23926 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
23927 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
23928 		state = DKIO_INSERTED;
23929 	}
23930 
23931 	SD_TRACE(SD_LOG_COMMON, un,
23932 	    "sd_media_watch_cb: state=%x, specified=%x\n",
23933 	    state, un->un_specified_mediastate);
23934 
23935 	/*
23936 	 * now signal the waiting thread if this is *not* the specified state;
23937 	 * delay the signal if the state is DKIO_INSERTED to allow the target
23938 	 * to recover
23939 	 */
23940 	if (state != un->un_specified_mediastate) {
23941 		un->un_mediastate = state;
23942 		if (state == DKIO_INSERTED) {
23943 			/*
23944 			 * delay the signal to give the drive a chance
23945 			 * to do what it apparently needs to do
23946 			 */
23947 			SD_TRACE(SD_LOG_COMMON, un,
23948 			    "sd_media_watch_cb: delayed cv_broadcast\n");
23949 			if (un->un_dcvb_timeid == NULL) {
23950 				un->un_dcvb_timeid =
23951 				    timeout(sd_delayed_cv_broadcast, un,
23952 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
23953 			}
23954 		} else {
23955 			SD_TRACE(SD_LOG_COMMON, un,
23956 			    "sd_media_watch_cb: immediate cv_broadcast\n");
23957 			cv_broadcast(&un->un_state_cv);
23958 		}
23959 	}
23960 	mutex_exit(SD_MUTEX(un));
23961 	return (0);
23962 }
23963 
23964 
23965 /*
23966  *    Function: sd_dkio_get_temp
23967  *
23968  * Description: This routine is the driver entry point for handling ioctl
23969  *		requests to get the disk temperature.
23970  *
23971  *   Arguments: dev  - the device number
23972  *		arg  - pointer to user provided dk_temperature structure.
23973  *		flag - this argument is a pass through to ddi_copyxxx()
23974  *		       directly from the mode argument of ioctl().
23975  *
23976  * Return Code: 0
23977  *		EFAULT
23978  *		ENXIO
23979  *		EAGAIN
23980  */
23981 
23982 static int
23983 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
23984 {
23985 	struct sd_lun		*un = NULL;
23986 	struct dk_temperature	*dktemp = NULL;
23987 	uchar_t			*temperature_page;
23988 	int			rval = 0;
23989 	int			path_flag = SD_PATH_STANDARD;
23990 
23991 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23992 		return (ENXIO);
23993 	}
23994 
23995 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
23996 
23997 	/* copyin the disk temp argument to get the user flags */
23998 	if (ddi_copyin((void *)arg, dktemp,
23999 	    sizeof (struct dk_temperature), flag) != 0) {
24000 		rval = EFAULT;
24001 		goto done;
24002 	}
24003 
24004 	/* Initialize the temperature to invalid. */
24005 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24006 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24007 
24008 	/*
24009 	 * Note: Investigate removing the "bypass pm" semantic.
24010 	 * Can we just bypass PM always?
24011 	 */
24012 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
24013 		path_flag = SD_PATH_DIRECT;
24014 		ASSERT(!mutex_owned(&un->un_pm_mutex));
24015 		mutex_enter(&un->un_pm_mutex);
24016 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
24017 			/*
24018 			 * If DKT_BYPASS_PM is set, and the drive happens to be
24019 			 * in low power mode, we can not wake it up, Need to
24020 			 * return EAGAIN.
24021 			 */
24022 			mutex_exit(&un->un_pm_mutex);
24023 			rval = EAGAIN;
24024 			goto done;
24025 		} else {
24026 			/*
24027 			 * Indicate to PM the device is busy. This is required
24028 			 * to avoid a race - i.e. the ioctl is issuing a
24029 			 * command and the pm framework brings down the device
24030 			 * to low power mode (possible power cut-off on some
24031 			 * platforms).
24032 			 */
24033 			mutex_exit(&un->un_pm_mutex);
24034 			if (sd_pm_entry(un) != DDI_SUCCESS) {
24035 				rval = EAGAIN;
24036 				goto done;
24037 			}
24038 		}
24039 	}
24040 
24041 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
24042 
24043 	if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page,
24044 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) {
24045 		goto done2;
24046 	}
24047 
24048 	/*
24049 	 * For the current temperature verify that the parameter length is 0x02
24050 	 * and the parameter code is 0x00
24051 	 */
24052 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
24053 	    (temperature_page[5] == 0x00)) {
24054 		if (temperature_page[9] == 0xFF) {
24055 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24056 		} else {
24057 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
24058 		}
24059 	}
24060 
24061 	/*
24062 	 * For the reference temperature verify that the parameter
24063 	 * length is 0x02 and the parameter code is 0x01
24064 	 */
24065 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
24066 	    (temperature_page[11] == 0x01)) {
24067 		if (temperature_page[15] == 0xFF) {
24068 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24069 		} else {
24070 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
24071 		}
24072 	}
24073 
24074 	/* Do the copyout regardless of the temperature commands status. */
24075 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
24076 	    flag) != 0) {
24077 		rval = EFAULT;
24078 	}
24079 
24080 done2:
24081 	if (path_flag == SD_PATH_DIRECT) {
24082 		sd_pm_exit(un);
24083 	}
24084 
24085 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
24086 done:
24087 	if (dktemp != NULL) {
24088 		kmem_free(dktemp, sizeof (struct dk_temperature));
24089 	}
24090 
24091 	return (rval);
24092 }
24093 
24094 
24095 /*
24096  *    Function: sd_log_page_supported
24097  *
24098  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
24099  *		supported log pages.
24100  *
24101  *   Arguments: un -
24102  *		log_page -
24103  *
24104  * Return Code: -1 - on error (log sense is optional and may not be supported).
24105  *		0  - log page not found.
24106  *  		1  - log page found.
24107  */
24108 
24109 static int
24110 sd_log_page_supported(struct sd_lun *un, int log_page)
24111 {
24112 	uchar_t *log_page_data;
24113 	int	i;
24114 	int	match = 0;
24115 	int	log_size;
24116 
24117 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
24118 
24119 	if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0,
24120 	    SD_PATH_DIRECT) != 0) {
24121 		SD_ERROR(SD_LOG_COMMON, un,
24122 		    "sd_log_page_supported: failed log page retrieval\n");
24123 		kmem_free(log_page_data, 0xFF);
24124 		return (-1);
24125 	}
24126 	log_size = log_page_data[3];
24127 
24128 	/*
24129 	 * The list of supported log pages start from the fourth byte. Check
24130 	 * until we run out of log pages or a match is found.
24131 	 */
24132 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
24133 		if (log_page_data[i] == log_page) {
24134 			match++;
24135 		}
24136 	}
24137 	kmem_free(log_page_data, 0xFF);
24138 	return (match);
24139 }
24140 
24141 
24142 /*
24143  *    Function: sd_mhdioc_failfast
24144  *
24145  * Description: This routine is the driver entry point for handling ioctl
24146  *		requests to enable/disable the multihost failfast option.
24147  *		(MHIOCENFAILFAST)
24148  *
24149  *   Arguments: dev	- the device number
24150  *		arg	- user specified probing interval.
24151  *		flag	- this argument is a pass through to ddi_copyxxx()
24152  *			  directly from the mode argument of ioctl().
24153  *
24154  * Return Code: 0
24155  *		EFAULT
24156  *		ENXIO
24157  */
24158 
24159 static int
24160 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
24161 {
24162 	struct sd_lun	*un = NULL;
24163 	int		mh_time;
24164 	int		rval = 0;
24165 
24166 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24167 		return (ENXIO);
24168 	}
24169 
24170 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
24171 		return (EFAULT);
24172 
24173 	if (mh_time) {
24174 		mutex_enter(SD_MUTEX(un));
24175 		un->un_resvd_status |= SD_FAILFAST;
24176 		mutex_exit(SD_MUTEX(un));
24177 		/*
24178 		 * If mh_time is INT_MAX, then this ioctl is being used for
24179 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
24180 		 */
24181 		if (mh_time != INT_MAX) {
24182 			rval = sd_check_mhd(dev, mh_time);
24183 		}
24184 	} else {
24185 		(void) sd_check_mhd(dev, 0);
24186 		mutex_enter(SD_MUTEX(un));
24187 		un->un_resvd_status &= ~SD_FAILFAST;
24188 		mutex_exit(SD_MUTEX(un));
24189 	}
24190 	return (rval);
24191 }
24192 
24193 
24194 /*
24195  *    Function: sd_mhdioc_takeown
24196  *
24197  * Description: This routine is the driver entry point for handling ioctl
24198  *		requests to forcefully acquire exclusive access rights to the
24199  *		multihost disk (MHIOCTKOWN).
24200  *
24201  *   Arguments: dev	- the device number
24202  *		arg	- user provided structure specifying the delay
24203  *			  parameters in milliseconds
24204  *		flag	- this argument is a pass through to ddi_copyxxx()
24205  *			  directly from the mode argument of ioctl().
24206  *
24207  * Return Code: 0
24208  *		EFAULT
24209  *		ENXIO
24210  */
24211 
24212 static int
24213 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
24214 {
24215 	struct sd_lun		*un = NULL;
24216 	struct mhioctkown	*tkown = NULL;
24217 	int			rval = 0;
24218 
24219 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24220 		return (ENXIO);
24221 	}
24222 
24223 	if (arg != NULL) {
24224 		tkown = (struct mhioctkown *)
24225 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
24226 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
24227 		if (rval != 0) {
24228 			rval = EFAULT;
24229 			goto error;
24230 		}
24231 	}
24232 
24233 	rval = sd_take_ownership(dev, tkown);
24234 	mutex_enter(SD_MUTEX(un));
24235 	if (rval == 0) {
24236 		un->un_resvd_status |= SD_RESERVE;
24237 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
24238 			sd_reinstate_resv_delay =
24239 			    tkown->reinstate_resv_delay * 1000;
24240 		} else {
24241 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
24242 		}
24243 		/*
24244 		 * Give the scsi_watch routine interval set by
24245 		 * the MHIOCENFAILFAST ioctl precedence here.
24246 		 */
24247 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
24248 			mutex_exit(SD_MUTEX(un));
24249 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
24250 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
24251 			    "sd_mhdioc_takeown : %d\n",
24252 			    sd_reinstate_resv_delay);
24253 		} else {
24254 			mutex_exit(SD_MUTEX(un));
24255 		}
24256 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
24257 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24258 	} else {
24259 		un->un_resvd_status &= ~SD_RESERVE;
24260 		mutex_exit(SD_MUTEX(un));
24261 	}
24262 
24263 error:
24264 	if (tkown != NULL) {
24265 		kmem_free(tkown, sizeof (struct mhioctkown));
24266 	}
24267 	return (rval);
24268 }
24269 
24270 
24271 /*
24272  *    Function: sd_mhdioc_release
24273  *
24274  * Description: This routine is the driver entry point for handling ioctl
24275  *		requests to release exclusive access rights to the multihost
24276  *		disk (MHIOCRELEASE).
24277  *
24278  *   Arguments: dev	- the device number
24279  *
24280  * Return Code: 0
24281  *		ENXIO
24282  */
24283 
24284 static int
24285 sd_mhdioc_release(dev_t dev)
24286 {
24287 	struct sd_lun		*un = NULL;
24288 	timeout_id_t		resvd_timeid_save;
24289 	int			resvd_status_save;
24290 	int			rval = 0;
24291 
24292 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24293 		return (ENXIO);
24294 	}
24295 
24296 	mutex_enter(SD_MUTEX(un));
24297 	resvd_status_save = un->un_resvd_status;
24298 	un->un_resvd_status &=
24299 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
24300 	if (un->un_resvd_timeid) {
24301 		resvd_timeid_save = un->un_resvd_timeid;
24302 		un->un_resvd_timeid = NULL;
24303 		mutex_exit(SD_MUTEX(un));
24304 		(void) untimeout(resvd_timeid_save);
24305 	} else {
24306 		mutex_exit(SD_MUTEX(un));
24307 	}
24308 
24309 	/*
24310 	 * destroy any pending timeout thread that may be attempting to
24311 	 * reinstate reservation on this device.
24312 	 */
24313 	sd_rmv_resv_reclaim_req(dev);
24314 
24315 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
24316 		mutex_enter(SD_MUTEX(un));
24317 		if ((un->un_mhd_token) &&
24318 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
24319 			mutex_exit(SD_MUTEX(un));
24320 			(void) sd_check_mhd(dev, 0);
24321 		} else {
24322 			mutex_exit(SD_MUTEX(un));
24323 		}
24324 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
24325 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24326 	} else {
24327 		/*
24328 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
24329 		 */
24330 		mutex_enter(SD_MUTEX(un));
24331 		un->un_resvd_status = resvd_status_save;
24332 		mutex_exit(SD_MUTEX(un));
24333 	}
24334 	return (rval);
24335 }
24336 
24337 
24338 /*
24339  *    Function: sd_mhdioc_register_devid
24340  *
24341  * Description: This routine is the driver entry point for handling ioctl
24342  *		requests to register the device id (MHIOCREREGISTERDEVID).
24343  *
24344  *		Note: The implementation for this ioctl has been updated to
24345  *		be consistent with the original PSARC case (1999/357)
24346  *		(4375899, 4241671, 4220005)
24347  *
24348  *   Arguments: dev	- the device number
24349  *
24350  * Return Code: 0
24351  *		ENXIO
24352  */
24353 
24354 static int
24355 sd_mhdioc_register_devid(dev_t dev)
24356 {
24357 	struct sd_lun	*un = NULL;
24358 	int		rval = 0;
24359 
24360 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24361 		return (ENXIO);
24362 	}
24363 
24364 	ASSERT(!mutex_owned(SD_MUTEX(un)));
24365 
24366 	mutex_enter(SD_MUTEX(un));
24367 
24368 	/* If a devid already exists, de-register it */
24369 	if (un->un_devid != NULL) {
24370 		ddi_devid_unregister(SD_DEVINFO(un));
24371 		/*
24372 		 * After unregister devid, needs to free devid memory
24373 		 */
24374 		ddi_devid_free(un->un_devid);
24375 		un->un_devid = NULL;
24376 	}
24377 
24378 	/* Check for reservation conflict */
24379 	mutex_exit(SD_MUTEX(un));
24380 	rval = sd_send_scsi_TEST_UNIT_READY(un, 0);
24381 	mutex_enter(SD_MUTEX(un));
24382 
24383 	switch (rval) {
24384 	case 0:
24385 		sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
24386 		break;
24387 	case EACCES:
24388 		break;
24389 	default:
24390 		rval = EIO;
24391 	}
24392 
24393 	mutex_exit(SD_MUTEX(un));
24394 	return (rval);
24395 }
24396 
24397 
24398 /*
24399  *    Function: sd_mhdioc_inkeys
24400  *
24401  * Description: This routine is the driver entry point for handling ioctl
24402  *		requests to issue the SCSI-3 Persistent In Read Keys command
24403  *		to the device (MHIOCGRP_INKEYS).
24404  *
24405  *   Arguments: dev	- the device number
24406  *		arg	- user provided in_keys structure
24407  *		flag	- this argument is a pass through to ddi_copyxxx()
24408  *			  directly from the mode argument of ioctl().
24409  *
24410  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
24411  *		ENXIO
24412  *		EFAULT
24413  */
24414 
24415 static int
24416 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
24417 {
24418 	struct sd_lun		*un;
24419 	mhioc_inkeys_t		inkeys;
24420 	int			rval = 0;
24421 
24422 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24423 		return (ENXIO);
24424 	}
24425 
24426 #ifdef _MULTI_DATAMODEL
24427 	switch (ddi_model_convert_from(flag & FMODELS)) {
24428 	case DDI_MODEL_ILP32: {
24429 		struct mhioc_inkeys32	inkeys32;
24430 
24431 		if (ddi_copyin(arg, &inkeys32,
24432 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
24433 			return (EFAULT);
24434 		}
24435 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
24436 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24437 		    &inkeys, flag)) != 0) {
24438 			return (rval);
24439 		}
24440 		inkeys32.generation = inkeys.generation;
24441 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
24442 		    flag) != 0) {
24443 			return (EFAULT);
24444 		}
24445 		break;
24446 	}
24447 	case DDI_MODEL_NONE:
24448 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
24449 		    flag) != 0) {
24450 			return (EFAULT);
24451 		}
24452 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24453 		    &inkeys, flag)) != 0) {
24454 			return (rval);
24455 		}
24456 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
24457 		    flag) != 0) {
24458 			return (EFAULT);
24459 		}
24460 		break;
24461 	}
24462 
24463 #else /* ! _MULTI_DATAMODEL */
24464 
24465 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
24466 		return (EFAULT);
24467 	}
24468 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
24469 	if (rval != 0) {
24470 		return (rval);
24471 	}
24472 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
24473 		return (EFAULT);
24474 	}
24475 
24476 #endif /* _MULTI_DATAMODEL */
24477 
24478 	return (rval);
24479 }
24480 
24481 
24482 /*
24483  *    Function: sd_mhdioc_inresv
24484  *
24485  * Description: This routine is the driver entry point for handling ioctl
24486  *		requests to issue the SCSI-3 Persistent In Read Reservations
24487  *		command to the device (MHIOCGRP_INKEYS).
24488  *
24489  *   Arguments: dev	- the device number
24490  *		arg	- user provided in_resv structure
24491  *		flag	- this argument is a pass through to ddi_copyxxx()
24492  *			  directly from the mode argument of ioctl().
24493  *
24494  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
24495  *		ENXIO
24496  *		EFAULT
24497  */
24498 
24499 static int
24500 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
24501 {
24502 	struct sd_lun		*un;
24503 	mhioc_inresvs_t		inresvs;
24504 	int			rval = 0;
24505 
24506 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24507 		return (ENXIO);
24508 	}
24509 
24510 #ifdef _MULTI_DATAMODEL
24511 
24512 	switch (ddi_model_convert_from(flag & FMODELS)) {
24513 	case DDI_MODEL_ILP32: {
24514 		struct mhioc_inresvs32	inresvs32;
24515 
24516 		if (ddi_copyin(arg, &inresvs32,
24517 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24518 			return (EFAULT);
24519 		}
24520 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
24521 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24522 		    &inresvs, flag)) != 0) {
24523 			return (rval);
24524 		}
24525 		inresvs32.generation = inresvs.generation;
24526 		if (ddi_copyout(&inresvs32, arg,
24527 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24528 			return (EFAULT);
24529 		}
24530 		break;
24531 	}
24532 	case DDI_MODEL_NONE:
24533 		if (ddi_copyin(arg, &inresvs,
24534 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24535 			return (EFAULT);
24536 		}
24537 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24538 		    &inresvs, flag)) != 0) {
24539 			return (rval);
24540 		}
24541 		if (ddi_copyout(&inresvs, arg,
24542 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24543 			return (EFAULT);
24544 		}
24545 		break;
24546 	}
24547 
24548 #else /* ! _MULTI_DATAMODEL */
24549 
24550 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
24551 		return (EFAULT);
24552 	}
24553 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
24554 	if (rval != 0) {
24555 		return (rval);
24556 	}
24557 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
24558 		return (EFAULT);
24559 	}
24560 
24561 #endif /* ! _MULTI_DATAMODEL */
24562 
24563 	return (rval);
24564 }
24565 
24566 
24567 /*
24568  * The following routines support the clustering functionality described below
24569  * and implement lost reservation reclaim functionality.
24570  *
24571  * Clustering
24572  * ----------
24573  * The clustering code uses two different, independent forms of SCSI
24574  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
24575  * Persistent Group Reservations. For any particular disk, it will use either
24576  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
24577  *
24578  * SCSI-2
24579  * The cluster software takes ownership of a multi-hosted disk by issuing the
24580  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
24581  * MHIOCRELEASE ioctl.Closely related is the MHIOCENFAILFAST ioctl -- a cluster,
24582  * just after taking ownership of the disk with the MHIOCTKOWN ioctl then issues
24583  * the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the driver. The
24584  * meaning of failfast is that if the driver (on this host) ever encounters the
24585  * scsi error return code RESERVATION_CONFLICT from the device, it should
24586  * immediately panic the host. The motivation for this ioctl is that if this
24587  * host does encounter reservation conflict, the underlying cause is that some
24588  * other host of the cluster has decided that this host is no longer in the
24589  * cluster and has seized control of the disks for itself. Since this host is no
24590  * longer in the cluster, it ought to panic itself. The MHIOCENFAILFAST ioctl
24591  * does two things:
24592  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
24593  *      error to panic the host
24594  *      (b) it sets up a periodic timer to test whether this host still has
24595  *      "access" (in that no other host has reserved the device):  if the
24596  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
24597  *      purpose of that periodic timer is to handle scenarios where the host is
24598  *      otherwise temporarily quiescent, temporarily doing no real i/o.
24599  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
24600  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
24601  * the device itself.
24602  *
24603  * SCSI-3 PGR
24604  * A direct semantic implementation of the SCSI-3 Persistent Reservation
24605  * facility is supported through the shared multihost disk ioctls
24606  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
24607  * MHIOCGRP_PREEMPTANDABORT)
24608  *
24609  * Reservation Reclaim:
24610  * --------------------
24611  * To support the lost reservation reclaim operations this driver creates a
24612  * single thread to handle reinstating reservations on all devices that have
24613  * lost reservations sd_resv_reclaim_requests are logged for all devices that
24614  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
24615  * and the reservation reclaim thread loops through the requests to regain the
24616  * lost reservations.
24617  */
24618 
24619 /*
24620  *    Function: sd_check_mhd()
24621  *
24622  * Description: This function sets up and submits a scsi watch request or
24623  *		terminates an existing watch request. This routine is used in
24624  *		support of reservation reclaim.
24625  *
24626  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
24627  *			 among multiple watches that share the callback function
24628  *		interval - the number of microseconds specifying the watch
24629  *			   interval for issuing TEST UNIT READY commands. If
24630  *			   set to 0 the watch should be terminated. If the
24631  *			   interval is set to 0 and if the device is required
24632  *			   to hold reservation while disabling failfast, the
24633  *			   watch is restarted with an interval of
24634  *			   reinstate_resv_delay.
24635  *
24636  * Return Code: 0	   - Successful submit/terminate of scsi watch request
24637  *		ENXIO      - Indicates an invalid device was specified
24638  *		EAGAIN     - Unable to submit the scsi watch request
24639  */
24640 
24641 static int
24642 sd_check_mhd(dev_t dev, int interval)
24643 {
24644 	struct sd_lun	*un;
24645 	opaque_t	token;
24646 
24647 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24648 		return (ENXIO);
24649 	}
24650 
24651 	/* is this a watch termination request? */
24652 	if (interval == 0) {
24653 		mutex_enter(SD_MUTEX(un));
24654 		/* if there is an existing watch task then terminate it */
24655 		if (un->un_mhd_token) {
24656 			token = un->un_mhd_token;
24657 			un->un_mhd_token = NULL;
24658 			mutex_exit(SD_MUTEX(un));
24659 			(void) scsi_watch_request_terminate(token,
24660 			    SCSI_WATCH_TERMINATE_WAIT);
24661 			mutex_enter(SD_MUTEX(un));
24662 		} else {
24663 			mutex_exit(SD_MUTEX(un));
24664 			/*
24665 			 * Note: If we return here we don't check for the
24666 			 * failfast case. This is the original legacy
24667 			 * implementation but perhaps we should be checking
24668 			 * the failfast case.
24669 			 */
24670 			return (0);
24671 		}
24672 		/*
24673 		 * If the device is required to hold reservation while
24674 		 * disabling failfast, we need to restart the scsi_watch
24675 		 * routine with an interval of reinstate_resv_delay.
24676 		 */
24677 		if (un->un_resvd_status & SD_RESERVE) {
24678 			interval = sd_reinstate_resv_delay/1000;
24679 		} else {
24680 			/* no failfast so bail */
24681 			mutex_exit(SD_MUTEX(un));
24682 			return (0);
24683 		}
24684 		mutex_exit(SD_MUTEX(un));
24685 	}
24686 
24687 	/*
24688 	 * adjust minimum time interval to 1 second,
24689 	 * and convert from msecs to usecs
24690 	 */
24691 	if (interval > 0 && interval < 1000) {
24692 		interval = 1000;
24693 	}
24694 	interval *= 1000;
24695 
24696 	/*
24697 	 * submit the request to the scsi_watch service
24698 	 */
24699 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
24700 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
24701 	if (token == NULL) {
24702 		return (EAGAIN);
24703 	}
24704 
24705 	/*
24706 	 * save token for termination later on
24707 	 */
24708 	mutex_enter(SD_MUTEX(un));
24709 	un->un_mhd_token = token;
24710 	mutex_exit(SD_MUTEX(un));
24711 	return (0);
24712 }
24713 
24714 
24715 /*
24716  *    Function: sd_mhd_watch_cb()
24717  *
24718  * Description: This function is the call back function used by the scsi watch
24719  *		facility. The scsi watch facility sends the "Test Unit Ready"
24720  *		and processes the status. If applicable (i.e. a "Unit Attention"
24721  *		status and automatic "Request Sense" not used) the scsi watch
24722  *		facility will send a "Request Sense" and retrieve the sense data
24723  *		to be passed to this callback function. In either case the
24724  *		automatic "Request Sense" or the facility submitting one, this
24725  *		callback is passed the status and sense data.
24726  *
24727  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24728  *			among multiple watches that share this callback function
24729  *		resultp - scsi watch facility result packet containing scsi
24730  *			  packet, status byte and sense data
24731  *
24732  * Return Code: 0 - continue the watch task
24733  *		non-zero - terminate the watch task
24734  */
24735 
24736 static int
24737 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
24738 {
24739 	struct sd_lun			*un;
24740 	struct scsi_status		*statusp;
24741 	struct scsi_extended_sense	*sensep;
24742 	struct scsi_pkt			*pkt;
24743 	uchar_t				actual_sense_length;
24744 	dev_t  				dev = (dev_t)arg;
24745 
24746 	ASSERT(resultp != NULL);
24747 	statusp			= resultp->statusp;
24748 	sensep			= resultp->sensep;
24749 	pkt			= resultp->pkt;
24750 	actual_sense_length	= resultp->actual_sense_length;
24751 
24752 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24753 		return (ENXIO);
24754 	}
24755 
24756 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
24757 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
24758 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
24759 
24760 	/* Begin processing of the status and/or sense data */
24761 	if (pkt->pkt_reason != CMD_CMPLT) {
24762 		/* Handle the incomplete packet */
24763 		sd_mhd_watch_incomplete(un, pkt);
24764 		return (0);
24765 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
24766 		if (*((unsigned char *)statusp)
24767 		    == STATUS_RESERVATION_CONFLICT) {
24768 			/*
24769 			 * Handle a reservation conflict by panicking if
24770 			 * configured for failfast or by logging the conflict
24771 			 * and updating the reservation status
24772 			 */
24773 			mutex_enter(SD_MUTEX(un));
24774 			if ((un->un_resvd_status & SD_FAILFAST) &&
24775 			    (sd_failfast_enable)) {
24776 				panic("Reservation Conflict");
24777 				/*NOTREACHED*/
24778 			}
24779 			SD_INFO(SD_LOG_IOCTL_MHD, un,
24780 			    "sd_mhd_watch_cb: Reservation Conflict\n");
24781 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
24782 			mutex_exit(SD_MUTEX(un));
24783 		}
24784 	}
24785 
24786 	if (sensep != NULL) {
24787 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
24788 			mutex_enter(SD_MUTEX(un));
24789 			if ((sensep->es_add_code == SD_SCSI_RESET_SENSE_CODE) &&
24790 			    (un->un_resvd_status & SD_RESERVE)) {
24791 				/*
24792 				 * The additional sense code indicates a power
24793 				 * on or bus device reset has occurred; update
24794 				 * the reservation status.
24795 				 */
24796 				un->un_resvd_status |=
24797 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
24798 				SD_INFO(SD_LOG_IOCTL_MHD, un,
24799 				    "sd_mhd_watch_cb: Lost Reservation\n");
24800 			}
24801 		} else {
24802 			return (0);
24803 		}
24804 	} else {
24805 		mutex_enter(SD_MUTEX(un));
24806 	}
24807 
24808 	if ((un->un_resvd_status & SD_RESERVE) &&
24809 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
24810 		if (un->un_resvd_status & SD_WANT_RESERVE) {
24811 			/*
24812 			 * A reset occurred in between the last probe and this
24813 			 * one so if a timeout is pending cancel it.
24814 			 */
24815 			if (un->un_resvd_timeid) {
24816 				timeout_id_t temp_id = un->un_resvd_timeid;
24817 				un->un_resvd_timeid = NULL;
24818 				mutex_exit(SD_MUTEX(un));
24819 				(void) untimeout(temp_id);
24820 				mutex_enter(SD_MUTEX(un));
24821 			}
24822 			un->un_resvd_status &= ~SD_WANT_RESERVE;
24823 		}
24824 		if (un->un_resvd_timeid == 0) {
24825 			/* Schedule a timeout to handle the lost reservation */
24826 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
24827 			    (void *)dev,
24828 			    drv_usectohz(sd_reinstate_resv_delay));
24829 		}
24830 	}
24831 	mutex_exit(SD_MUTEX(un));
24832 	return (0);
24833 }
24834 
24835 
24836 /*
24837  *    Function: sd_mhd_watch_incomplete()
24838  *
24839  * Description: This function is used to find out why a scsi pkt sent by the
24840  *		scsi watch facility was not completed. Under some scenarios this
24841  *		routine will return. Otherwise it will send a bus reset to see
24842  *		if the drive is still online.
24843  *
24844  *   Arguments: un  - driver soft state (unit) structure
24845  *		pkt - incomplete scsi pkt
24846  */
24847 
24848 static void
24849 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
24850 {
24851 	int	be_chatty;
24852 	int	perr;
24853 
24854 	ASSERT(pkt != NULL);
24855 	ASSERT(un != NULL);
24856 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
24857 	perr		= (pkt->pkt_statistics & STAT_PERR);
24858 
24859 	mutex_enter(SD_MUTEX(un));
24860 	if (un->un_state == SD_STATE_DUMPING) {
24861 		mutex_exit(SD_MUTEX(un));
24862 		return;
24863 	}
24864 
24865 	switch (pkt->pkt_reason) {
24866 	case CMD_UNX_BUS_FREE:
24867 		/*
24868 		 * If we had a parity error that caused the target to drop BSY*,
24869 		 * don't be chatty about it.
24870 		 */
24871 		if (perr && be_chatty) {
24872 			be_chatty = 0;
24873 		}
24874 		break;
24875 	case CMD_TAG_REJECT:
24876 		/*
24877 		 * The SCSI-2 spec states that a tag reject will be sent by the
24878 		 * target if tagged queuing is not supported. A tag reject may
24879 		 * also be sent during certain initialization periods or to
24880 		 * control internal resources. For the latter case the target
24881 		 * may also return Queue Full.
24882 		 *
24883 		 * If this driver receives a tag reject from a target that is
24884 		 * going through an init period or controlling internal
24885 		 * resources tagged queuing will be disabled. This is a less
24886 		 * than optimal behavior but the driver is unable to determine
24887 		 * the target state and assumes tagged queueing is not supported
24888 		 */
24889 		pkt->pkt_flags = 0;
24890 		un->un_tagflags = 0;
24891 
24892 		if (un->un_f_opt_queueing == TRUE) {
24893 			un->un_throttle = min(un->un_throttle, 3);
24894 		} else {
24895 			un->un_throttle = 1;
24896 		}
24897 		mutex_exit(SD_MUTEX(un));
24898 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
24899 		mutex_enter(SD_MUTEX(un));
24900 		break;
24901 	case CMD_INCOMPLETE:
24902 		/*
24903 		 * The transport stopped with an abnormal state, fallthrough and
24904 		 * reset the target and/or bus unless selection did not complete
24905 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
24906 		 * go through a target/bus reset
24907 		 */
24908 		if (pkt->pkt_state == STATE_GOT_BUS) {
24909 			break;
24910 		}
24911 		/*FALLTHROUGH*/
24912 
24913 	case CMD_TIMEOUT:
24914 	default:
24915 		/*
24916 		 * The lun may still be running the command, so a lun reset
24917 		 * should be attempted. If the lun reset fails or cannot be
24918 		 * issued, than try a target reset. Lastly try a bus reset.
24919 		 */
24920 		if ((pkt->pkt_statistics &
24921 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
24922 			int reset_retval = 0;
24923 			mutex_exit(SD_MUTEX(un));
24924 			if (un->un_f_allow_bus_device_reset == TRUE) {
24925 				if (un->un_f_lun_reset_enabled == TRUE) {
24926 					reset_retval =
24927 					    scsi_reset(SD_ADDRESS(un),
24928 					    RESET_LUN);
24929 				}
24930 				if (reset_retval == 0) {
24931 					reset_retval =
24932 					    scsi_reset(SD_ADDRESS(un),
24933 					    RESET_TARGET);
24934 				}
24935 			}
24936 			if (reset_retval == 0) {
24937 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
24938 			}
24939 			mutex_enter(SD_MUTEX(un));
24940 		}
24941 		break;
24942 	}
24943 
24944 	/* A device/bus reset has occurred; update the reservation status. */
24945 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
24946 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
24947 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
24948 			un->un_resvd_status |=
24949 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
24950 			SD_INFO(SD_LOG_IOCTL_MHD, un,
24951 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
24952 		}
24953 	}
24954 
24955 	/*
24956 	 * The disk has been turned off; Update the device state.
24957 	 *
24958 	 * Note: Should we be offlining the disk here?
24959 	 */
24960 	if (pkt->pkt_state == STATE_GOT_BUS) {
24961 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
24962 		    "Disk not responding to selection\n");
24963 		if (un->un_state != SD_STATE_OFFLINE) {
24964 			New_state(un, SD_STATE_OFFLINE);
24965 		}
24966 	} else if (be_chatty) {
24967 		/*
24968 		 * suppress messages if they are all the same pkt reason;
24969 		 * with TQ, many (up to 256) are returned with the same
24970 		 * pkt_reason
24971 		 */
24972 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
24973 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
24974 			    "sd_mhd_watch_incomplete: "
24975 			    "SCSI transport failed: reason '%s'\n",
24976 			    scsi_rname(pkt->pkt_reason));
24977 		}
24978 	}
24979 	un->un_last_pkt_reason = pkt->pkt_reason;
24980 	mutex_exit(SD_MUTEX(un));
24981 }
24982 
24983 
24984 /*
24985  *    Function: sd_sname()
24986  *
24987  * Description: This is a simple little routine to return a string containing
24988  *		a printable description of command status byte for use in
24989  *		logging.
24990  *
24991  *   Arguments: status - pointer to a status byte
24992  *
24993  * Return Code: char * - string containing status description.
24994  */
24995 
24996 static char *
24997 sd_sname(uchar_t status)
24998 {
24999 	switch (status & STATUS_MASK) {
25000 	case STATUS_GOOD:
25001 		return ("good status");
25002 	case STATUS_CHECK:
25003 		return ("check condition");
25004 	case STATUS_MET:
25005 		return ("condition met");
25006 	case STATUS_BUSY:
25007 		return ("busy");
25008 	case STATUS_INTERMEDIATE:
25009 		return ("intermediate");
25010 	case STATUS_INTERMEDIATE_MET:
25011 		return ("intermediate - condition met");
25012 	case STATUS_RESERVATION_CONFLICT:
25013 		return ("reservation_conflict");
25014 	case STATUS_TERMINATED:
25015 		return ("command terminated");
25016 	case STATUS_QFULL:
25017 		return ("queue full");
25018 	default:
25019 		return ("<unknown status>");
25020 	}
25021 }
25022 
25023 
25024 /*
25025  *    Function: sd_mhd_resvd_recover()
25026  *
25027  * Description: This function adds a reservation entry to the
25028  *		sd_resv_reclaim_request list and signals the reservation
25029  *		reclaim thread that there is work pending. If the reservation
25030  *		reclaim thread has not been previously created this function
25031  *		will kick it off.
25032  *
25033  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
25034  *			among multiple watches that share this callback function
25035  *
25036  *     Context: This routine is called by timeout() and is run in interrupt
25037  *		context. It must not sleep or call other functions which may
25038  *		sleep.
25039  */
25040 
25041 static void
25042 sd_mhd_resvd_recover(void *arg)
25043 {
25044 	dev_t			dev = (dev_t)arg;
25045 	struct sd_lun		*un;
25046 	struct sd_thr_request	*sd_treq = NULL;
25047 	struct sd_thr_request	*sd_cur = NULL;
25048 	struct sd_thr_request	*sd_prev = NULL;
25049 	int			already_there = 0;
25050 
25051 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25052 		return;
25053 	}
25054 
25055 	mutex_enter(SD_MUTEX(un));
25056 	un->un_resvd_timeid = NULL;
25057 	if (un->un_resvd_status & SD_WANT_RESERVE) {
25058 		/*
25059 		 * There was a reset so don't issue the reserve, allow the
25060 		 * sd_mhd_watch_cb callback function to notice this and
25061 		 * reschedule the timeout for reservation.
25062 		 */
25063 		mutex_exit(SD_MUTEX(un));
25064 		return;
25065 	}
25066 	mutex_exit(SD_MUTEX(un));
25067 
25068 	/*
25069 	 * Add this device to the sd_resv_reclaim_request list and the
25070 	 * sd_resv_reclaim_thread should take care of the rest.
25071 	 *
25072 	 * Note: We can't sleep in this context so if the memory allocation
25073 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
25074 	 * reschedule the timeout for reservation.  (4378460)
25075 	 */
25076 	sd_treq = (struct sd_thr_request *)
25077 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
25078 	if (sd_treq == NULL) {
25079 		return;
25080 	}
25081 
25082 	sd_treq->sd_thr_req_next = NULL;
25083 	sd_treq->dev = dev;
25084 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25085 	if (sd_tr.srq_thr_req_head == NULL) {
25086 		sd_tr.srq_thr_req_head = sd_treq;
25087 	} else {
25088 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
25089 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
25090 			if (sd_cur->dev == dev) {
25091 				/*
25092 				 * already in Queue so don't log
25093 				 * another request for the device
25094 				 */
25095 				already_there = 1;
25096 				break;
25097 			}
25098 			sd_prev = sd_cur;
25099 		}
25100 		if (!already_there) {
25101 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
25102 			    "logging request for %lx\n", dev);
25103 			sd_prev->sd_thr_req_next = sd_treq;
25104 		} else {
25105 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
25106 		}
25107 	}
25108 
25109 	/*
25110 	 * Create a kernel thread to do the reservation reclaim and free up this
25111 	 * thread. We cannot block this thread while we go away to do the
25112 	 * reservation reclaim
25113 	 */
25114 	if (sd_tr.srq_resv_reclaim_thread == NULL)
25115 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
25116 		    sd_resv_reclaim_thread, NULL,
25117 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
25118 
25119 	/* Tell the reservation reclaim thread that it has work to do */
25120 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
25121 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25122 }
25123 
25124 /*
25125  *    Function: sd_resv_reclaim_thread()
25126  *
25127  * Description: This function implements the reservation reclaim operations
25128  *
25129  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
25130  *		      among multiple watches that share this callback function
25131  */
25132 
25133 static void
25134 sd_resv_reclaim_thread()
25135 {
25136 	struct sd_lun		*un;
25137 	struct sd_thr_request	*sd_mhreq;
25138 
25139 	/* Wait for work */
25140 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25141 	if (sd_tr.srq_thr_req_head == NULL) {
25142 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
25143 		    &sd_tr.srq_resv_reclaim_mutex);
25144 	}
25145 
25146 	/* Loop while we have work */
25147 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
25148 		un = ddi_get_soft_state(sd_state,
25149 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
25150 		if (un == NULL) {
25151 			/*
25152 			 * softstate structure is NULL so just
25153 			 * dequeue the request and continue
25154 			 */
25155 			sd_tr.srq_thr_req_head =
25156 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25157 			kmem_free(sd_tr.srq_thr_cur_req,
25158 			    sizeof (struct sd_thr_request));
25159 			continue;
25160 		}
25161 
25162 		/* dequeue the request */
25163 		sd_mhreq = sd_tr.srq_thr_cur_req;
25164 		sd_tr.srq_thr_req_head =
25165 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25166 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25167 
25168 		/*
25169 		 * Reclaim reservation only if SD_RESERVE is still set. There
25170 		 * may have been a call to MHIOCRELEASE before we got here.
25171 		 */
25172 		mutex_enter(SD_MUTEX(un));
25173 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25174 			/*
25175 			 * Note: The SD_LOST_RESERVE flag is cleared before
25176 			 * reclaiming the reservation. If this is done after the
25177 			 * call to sd_reserve_release a reservation loss in the
25178 			 * window between pkt completion of reserve cmd and
25179 			 * mutex_enter below may not be recognized
25180 			 */
25181 			un->un_resvd_status &= ~SD_LOST_RESERVE;
25182 			mutex_exit(SD_MUTEX(un));
25183 
25184 			if (sd_reserve_release(sd_mhreq->dev,
25185 			    SD_RESERVE) == 0) {
25186 				mutex_enter(SD_MUTEX(un));
25187 				un->un_resvd_status |= SD_RESERVE;
25188 				mutex_exit(SD_MUTEX(un));
25189 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25190 				    "sd_resv_reclaim_thread: "
25191 				    "Reservation Recovered\n");
25192 			} else {
25193 				mutex_enter(SD_MUTEX(un));
25194 				un->un_resvd_status |= SD_LOST_RESERVE;
25195 				mutex_exit(SD_MUTEX(un));
25196 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25197 				    "sd_resv_reclaim_thread: Failed "
25198 				    "Reservation Recovery\n");
25199 			}
25200 		} else {
25201 			mutex_exit(SD_MUTEX(un));
25202 		}
25203 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25204 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
25205 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25206 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
25207 		/*
25208 		 * wakeup the destroy thread if anyone is waiting on
25209 		 * us to complete.
25210 		 */
25211 		cv_signal(&sd_tr.srq_inprocess_cv);
25212 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
25213 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
25214 	}
25215 
25216 	/*
25217 	 * cleanup the sd_tr structure now that this thread will not exist
25218 	 */
25219 	ASSERT(sd_tr.srq_thr_req_head == NULL);
25220 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
25221 	sd_tr.srq_resv_reclaim_thread = NULL;
25222 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25223 	thread_exit();
25224 }
25225 
25226 
25227 /*
25228  *    Function: sd_rmv_resv_reclaim_req()
25229  *
25230  * Description: This function removes any pending reservation reclaim requests
25231  *		for the specified device.
25232  *
25233  *   Arguments: dev - the device 'dev_t'
25234  */
25235 
25236 static void
25237 sd_rmv_resv_reclaim_req(dev_t dev)
25238 {
25239 	struct sd_thr_request *sd_mhreq;
25240 	struct sd_thr_request *sd_prev;
25241 
25242 	/* Remove a reservation reclaim request from the list */
25243 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25244 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
25245 		/*
25246 		 * We are attempting to reinstate reservation for
25247 		 * this device. We wait for sd_reserve_release()
25248 		 * to return before we return.
25249 		 */
25250 		cv_wait(&sd_tr.srq_inprocess_cv,
25251 		    &sd_tr.srq_resv_reclaim_mutex);
25252 	} else {
25253 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
25254 		if (sd_mhreq && sd_mhreq->dev == dev) {
25255 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
25256 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25257 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25258 			return;
25259 		}
25260 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
25261 			if (sd_mhreq && sd_mhreq->dev == dev) {
25262 				break;
25263 			}
25264 			sd_prev = sd_mhreq;
25265 		}
25266 		if (sd_mhreq != NULL) {
25267 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
25268 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25269 		}
25270 	}
25271 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25272 }
25273 
25274 
25275 /*
25276  *    Function: sd_mhd_reset_notify_cb()
25277  *
25278  * Description: This is a call back function for scsi_reset_notify. This
25279  *		function updates the softstate reserved status and logs the
25280  *		reset. The driver scsi watch facility callback function
25281  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
25282  *		will reclaim the reservation.
25283  *
25284  *   Arguments: arg  - driver soft state (unit) structure
25285  */
25286 
25287 static void
25288 sd_mhd_reset_notify_cb(caddr_t arg)
25289 {
25290 	struct sd_lun *un = (struct sd_lun *)arg;
25291 
25292 	mutex_enter(SD_MUTEX(un));
25293 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25294 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
25295 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25296 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
25297 	}
25298 	mutex_exit(SD_MUTEX(un));
25299 }
25300 
25301 
25302 /*
25303  *    Function: sd_take_ownership()
25304  *
25305  * Description: This routine implements an algorithm to achieve a stable
25306  *		reservation on disks which don't implement priority reserve,
25307  *		and makes sure that other host lose re-reservation attempts.
25308  *		This algorithm contains of a loop that keeps issuing the RESERVE
25309  *		for some period of time (min_ownership_delay, default 6 seconds)
25310  *		During that loop, it looks to see if there has been a bus device
25311  *		reset or bus reset (both of which cause an existing reservation
25312  *		to be lost). If the reservation is lost issue RESERVE until a
25313  *		period of min_ownership_delay with no resets has gone by, or
25314  *		until max_ownership_delay has expired. This loop ensures that
25315  *		the host really did manage to reserve the device, in spite of
25316  *		resets. The looping for min_ownership_delay (default six
25317  *		seconds) is important to early generation clustering products,
25318  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
25319  *		MHIOCENFAILFAST periodic timer of two seconds. By having
25320  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
25321  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
25322  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
25323  *		have already noticed, via the MHIOCENFAILFAST polling, that it
25324  *		no longer "owns" the disk and will have panicked itself.  Thus,
25325  *		the host issuing the MHIOCTKOWN is assured (with timing
25326  *		dependencies) that by the time it actually starts to use the
25327  *		disk for real work, the old owner is no longer accessing it.
25328  *
25329  *		min_ownership_delay is the minimum amount of time for which the
25330  *		disk must be reserved continuously devoid of resets before the
25331  *		MHIOCTKOWN ioctl will return success.
25332  *
25333  *		max_ownership_delay indicates the amount of time by which the
25334  *		take ownership should succeed or timeout with an error.
25335  *
25336  *   Arguments: dev - the device 'dev_t'
25337  *		*p  - struct containing timing info.
25338  *
25339  * Return Code: 0 for success or error code
25340  */
25341 
25342 static int
25343 sd_take_ownership(dev_t dev, struct mhioctkown *p)
25344 {
25345 	struct sd_lun	*un;
25346 	int		rval;
25347 	int		err;
25348 	int		reservation_count   = 0;
25349 	int		min_ownership_delay =  6000000; /* in usec */
25350 	int		max_ownership_delay = 30000000; /* in usec */
25351 	clock_t		start_time;	/* starting time of this algorithm */
25352 	clock_t		end_time;	/* time limit for giving up */
25353 	clock_t		ownership_time;	/* time limit for stable ownership */
25354 	clock_t		current_time;
25355 	clock_t		previous_current_time;
25356 
25357 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25358 		return (ENXIO);
25359 	}
25360 
25361 	/*
25362 	 * Attempt a device reservation. A priority reservation is requested.
25363 	 */
25364 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
25365 	    != SD_SUCCESS) {
25366 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25367 		    "sd_take_ownership: return(1)=%d\n", rval);
25368 		return (rval);
25369 	}
25370 
25371 	/* Update the softstate reserved status to indicate the reservation */
25372 	mutex_enter(SD_MUTEX(un));
25373 	un->un_resvd_status |= SD_RESERVE;
25374 	un->un_resvd_status &=
25375 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
25376 	mutex_exit(SD_MUTEX(un));
25377 
25378 	if (p != NULL) {
25379 		if (p->min_ownership_delay != 0) {
25380 			min_ownership_delay = p->min_ownership_delay * 1000;
25381 		}
25382 		if (p->max_ownership_delay != 0) {
25383 			max_ownership_delay = p->max_ownership_delay * 1000;
25384 		}
25385 	}
25386 	SD_INFO(SD_LOG_IOCTL_MHD, un,
25387 	    "sd_take_ownership: min, max delays: %d, %d\n",
25388 	    min_ownership_delay, max_ownership_delay);
25389 
25390 	start_time = ddi_get_lbolt();
25391 	current_time	= start_time;
25392 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
25393 	end_time	= start_time + drv_usectohz(max_ownership_delay);
25394 
25395 	while (current_time - end_time < 0) {
25396 		delay(drv_usectohz(500000));
25397 
25398 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
25399 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
25400 				mutex_enter(SD_MUTEX(un));
25401 				rval = (un->un_resvd_status &
25402 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
25403 				mutex_exit(SD_MUTEX(un));
25404 				break;
25405 			}
25406 		}
25407 		previous_current_time = current_time;
25408 		current_time = ddi_get_lbolt();
25409 		mutex_enter(SD_MUTEX(un));
25410 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
25411 			ownership_time = ddi_get_lbolt() +
25412 			    drv_usectohz(min_ownership_delay);
25413 			reservation_count = 0;
25414 		} else {
25415 			reservation_count++;
25416 		}
25417 		un->un_resvd_status |= SD_RESERVE;
25418 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
25419 		mutex_exit(SD_MUTEX(un));
25420 
25421 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25422 		    "sd_take_ownership: ticks for loop iteration=%ld, "
25423 		    "reservation=%s\n", (current_time - previous_current_time),
25424 		    reservation_count ? "ok" : "reclaimed");
25425 
25426 		if (current_time - ownership_time >= 0 &&
25427 		    reservation_count >= 4) {
25428 			rval = 0; /* Achieved a stable ownership */
25429 			break;
25430 		}
25431 		if (current_time - end_time >= 0) {
25432 			rval = EACCES; /* No ownership in max possible time */
25433 			break;
25434 		}
25435 	}
25436 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
25437 	    "sd_take_ownership: return(2)=%d\n", rval);
25438 	return (rval);
25439 }
25440 
25441 
25442 /*
25443  *    Function: sd_reserve_release()
25444  *
25445  * Description: This function builds and sends scsi RESERVE, RELEASE, and
25446  *		PRIORITY RESERVE commands based on a user specified command type
25447  *
25448  *   Arguments: dev - the device 'dev_t'
25449  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
25450  *		      SD_RESERVE, SD_RELEASE
25451  *
25452  * Return Code: 0 or Error Code
25453  */
25454 
25455 static int
25456 sd_reserve_release(dev_t dev, int cmd)
25457 {
25458 	struct uscsi_cmd	*com = NULL;
25459 	struct sd_lun		*un = NULL;
25460 	char			cdb[CDB_GROUP0];
25461 	int			rval;
25462 
25463 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
25464 	    (cmd == SD_PRIORITY_RESERVE));
25465 
25466 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25467 		return (ENXIO);
25468 	}
25469 
25470 	/* instantiate and initialize the command and cdb */
25471 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25472 	bzero(cdb, CDB_GROUP0);
25473 	com->uscsi_flags   = USCSI_SILENT;
25474 	com->uscsi_timeout = un->un_reserve_release_time;
25475 	com->uscsi_cdblen  = CDB_GROUP0;
25476 	com->uscsi_cdb	   = cdb;
25477 	if (cmd == SD_RELEASE) {
25478 		cdb[0] = SCMD_RELEASE;
25479 	} else {
25480 		cdb[0] = SCMD_RESERVE;
25481 	}
25482 
25483 	/* Send the command. */
25484 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
25485 	    UIO_SYSSPACE, SD_PATH_STANDARD);
25486 
25487 	/*
25488 	 * "break" a reservation that is held by another host, by issuing a
25489 	 * reset if priority reserve is desired, and we could not get the
25490 	 * device.
25491 	 */
25492 	if ((cmd == SD_PRIORITY_RESERVE) &&
25493 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25494 		/*
25495 		 * First try to reset the LUN. If we cannot, then try a target
25496 		 * reset, followed by a bus reset if the target reset fails.
25497 		 */
25498 		int reset_retval = 0;
25499 		if (un->un_f_lun_reset_enabled == TRUE) {
25500 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
25501 		}
25502 		if (reset_retval == 0) {
25503 			/* The LUN reset either failed or was not issued */
25504 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
25505 		}
25506 		if ((reset_retval == 0) &&
25507 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
25508 			rval = EIO;
25509 			kmem_free(com, sizeof (*com));
25510 			return (rval);
25511 		}
25512 
25513 		bzero(com, sizeof (struct uscsi_cmd));
25514 		com->uscsi_flags   = USCSI_SILENT;
25515 		com->uscsi_cdb	   = cdb;
25516 		com->uscsi_cdblen  = CDB_GROUP0;
25517 		com->uscsi_timeout = 5;
25518 
25519 		/*
25520 		 * Reissue the last reserve command, this time without request
25521 		 * sense.  Assume that it is just a regular reserve command.
25522 		 */
25523 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
25524 		    UIO_SYSSPACE, SD_PATH_STANDARD);
25525 	}
25526 
25527 	/* Return an error if still getting a reservation conflict. */
25528 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25529 		rval = EACCES;
25530 	}
25531 
25532 	kmem_free(com, sizeof (*com));
25533 	return (rval);
25534 }
25535 
25536 
25537 #define	SD_NDUMP_RETRIES	12
25538 /*
25539  *	System Crash Dump routine
25540  */
25541 
25542 static int
25543 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
25544 {
25545 	int		instance;
25546 	int		partition;
25547 	int		i;
25548 	int		err;
25549 	struct sd_lun	*un;
25550 	struct dk_map	*lp;
25551 	struct scsi_pkt *wr_pktp;
25552 	struct buf	*wr_bp;
25553 	struct buf	wr_buf;
25554 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
25555 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
25556 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
25557 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
25558 	size_t		io_start_offset;
25559 	int		doing_rmw = FALSE;
25560 	int		rval;
25561 #if defined(__i386) || defined(__amd64)
25562 	ssize_t dma_resid;
25563 	daddr_t oblkno;
25564 #endif
25565 
25566 	instance = SDUNIT(dev);
25567 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
25568 	    (!un->un_f_geometry_is_valid) || ISCD(un)) {
25569 		return (ENXIO);
25570 	}
25571 
25572 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
25573 
25574 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
25575 
25576 	partition = SDPART(dev);
25577 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
25578 
25579 	/* Validate blocks to dump at against partition size. */
25580 	lp = &un->un_map[partition];
25581 	if ((blkno + nblk) > lp->dkl_nblk) {
25582 		SD_TRACE(SD_LOG_DUMP, un,
25583 		    "sddump: dump range larger than partition: "
25584 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
25585 		    blkno, nblk, lp->dkl_nblk);
25586 		return (EINVAL);
25587 	}
25588 
25589 	mutex_enter(&un->un_pm_mutex);
25590 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
25591 		struct scsi_pkt *start_pktp;
25592 
25593 		mutex_exit(&un->un_pm_mutex);
25594 
25595 		/*
25596 		 * use pm framework to power on HBA 1st
25597 		 */
25598 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
25599 
25600 		/*
25601 		 * Dump no long uses sdpower to power on a device, it's
25602 		 * in-line here so it can be done in polled mode.
25603 		 */
25604 
25605 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
25606 
25607 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
25608 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
25609 
25610 		if (start_pktp == NULL) {
25611 			/* We were not given a SCSI packet, fail. */
25612 			return (EIO);
25613 		}
25614 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
25615 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
25616 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
25617 		start_pktp->pkt_flags = FLAG_NOINTR;
25618 
25619 		mutex_enter(SD_MUTEX(un));
25620 		SD_FILL_SCSI1_LUN(un, start_pktp);
25621 		mutex_exit(SD_MUTEX(un));
25622 		/*
25623 		 * Scsi_poll returns 0 (success) if the command completes and
25624 		 * the status block is STATUS_GOOD.
25625 		 */
25626 		if (sd_scsi_poll(un, start_pktp) != 0) {
25627 			scsi_destroy_pkt(start_pktp);
25628 			return (EIO);
25629 		}
25630 		scsi_destroy_pkt(start_pktp);
25631 		(void) sd_ddi_pm_resume(un);
25632 	} else {
25633 		mutex_exit(&un->un_pm_mutex);
25634 	}
25635 
25636 	mutex_enter(SD_MUTEX(un));
25637 	un->un_throttle = 0;
25638 
25639 	/*
25640 	 * The first time through, reset the specific target device.
25641 	 * However, when cpr calls sddump we know that sd is in a
25642 	 * a good state so no bus reset is required.
25643 	 * Clear sense data via Request Sense cmd.
25644 	 * In sddump we don't care about allow_bus_device_reset anymore
25645 	 */
25646 
25647 	if ((un->un_state != SD_STATE_SUSPENDED) &&
25648 	    (un->un_state != SD_STATE_DUMPING)) {
25649 
25650 		New_state(un, SD_STATE_DUMPING);
25651 
25652 		if (un->un_f_is_fibre == FALSE) {
25653 			mutex_exit(SD_MUTEX(un));
25654 			/*
25655 			 * Attempt a bus reset for parallel scsi.
25656 			 *
25657 			 * Note: A bus reset is required because on some host
25658 			 * systems (i.e. E420R) a bus device reset is
25659 			 * insufficient to reset the state of the target.
25660 			 *
25661 			 * Note: Don't issue the reset for fibre-channel,
25662 			 * because this tends to hang the bus (loop) for
25663 			 * too long while everyone is logging out and in
25664 			 * and the deadman timer for dumping will fire
25665 			 * before the dump is complete.
25666 			 */
25667 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
25668 				mutex_enter(SD_MUTEX(un));
25669 				Restore_state(un);
25670 				mutex_exit(SD_MUTEX(un));
25671 				return (EIO);
25672 			}
25673 
25674 			/* Delay to give the device some recovery time. */
25675 			drv_usecwait(10000);
25676 
25677 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
25678 				SD_INFO(SD_LOG_DUMP, un,
25679 					"sddump: sd_send_polled_RQS failed\n");
25680 			}
25681 			mutex_enter(SD_MUTEX(un));
25682 		}
25683 	}
25684 
25685 	/*
25686 	 * Convert the partition-relative block number to a
25687 	 * disk physical block number.
25688 	 */
25689 	blkno += un->un_offset[partition];
25690 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
25691 
25692 
25693 	/*
25694 	 * Check if the device has a non-512 block size.
25695 	 */
25696 	wr_bp = NULL;
25697 	if (NOT_DEVBSIZE(un)) {
25698 		tgt_byte_offset = blkno * un->un_sys_blocksize;
25699 		tgt_byte_count = nblk * un->un_sys_blocksize;
25700 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
25701 		    (tgt_byte_count % un->un_tgt_blocksize)) {
25702 			doing_rmw = TRUE;
25703 			/*
25704 			 * Calculate the block number and number of block
25705 			 * in terms of the media block size.
25706 			 */
25707 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25708 			tgt_nblk =
25709 			    ((tgt_byte_offset + tgt_byte_count +
25710 				(un->un_tgt_blocksize - 1)) /
25711 				un->un_tgt_blocksize) - tgt_blkno;
25712 
25713 			/*
25714 			 * Invoke the routine which is going to do read part
25715 			 * of read-modify-write.
25716 			 * Note that this routine returns a pointer to
25717 			 * a valid bp in wr_bp.
25718 			 */
25719 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
25720 			    &wr_bp);
25721 			if (err) {
25722 				mutex_exit(SD_MUTEX(un));
25723 				return (err);
25724 			}
25725 			/*
25726 			 * Offset is being calculated as -
25727 			 * (original block # * system block size) -
25728 			 * (new block # * target block size)
25729 			 */
25730 			io_start_offset =
25731 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
25732 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
25733 
25734 			ASSERT((io_start_offset >= 0) &&
25735 			    (io_start_offset < un->un_tgt_blocksize));
25736 			/*
25737 			 * Do the modify portion of read modify write.
25738 			 */
25739 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
25740 			    (size_t)nblk * un->un_sys_blocksize);
25741 		} else {
25742 			doing_rmw = FALSE;
25743 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25744 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
25745 		}
25746 
25747 		/* Convert blkno and nblk to target blocks */
25748 		blkno = tgt_blkno;
25749 		nblk = tgt_nblk;
25750 	} else {
25751 		wr_bp = &wr_buf;
25752 		bzero(wr_bp, sizeof (struct buf));
25753 		wr_bp->b_flags		= B_BUSY;
25754 		wr_bp->b_un.b_addr	= addr;
25755 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
25756 		wr_bp->b_resid		= 0;
25757 	}
25758 
25759 	mutex_exit(SD_MUTEX(un));
25760 
25761 	/*
25762 	 * Obtain a SCSI packet for the write command.
25763 	 * It should be safe to call the allocator here without
25764 	 * worrying about being locked for DVMA mapping because
25765 	 * the address we're passed is already a DVMA mapping
25766 	 *
25767 	 * We are also not going to worry about semaphore ownership
25768 	 * in the dump buffer. Dumping is single threaded at present.
25769 	 */
25770 
25771 	wr_pktp = NULL;
25772 
25773 #if defined(__i386) || defined(__amd64)
25774 	dma_resid = wr_bp->b_bcount;
25775 	oblkno = blkno;
25776 	while (dma_resid != 0) {
25777 #endif
25778 
25779 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
25780 		wr_bp->b_flags &= ~B_ERROR;
25781 
25782 #if defined(__i386) || defined(__amd64)
25783 		blkno = oblkno +
25784 			((wr_bp->b_bcount - dma_resid) /
25785 			    un->un_tgt_blocksize);
25786 		nblk = dma_resid / un->un_tgt_blocksize;
25787 
25788 		if (wr_pktp) {
25789 			/* Partial DMA transfers after initial transfer */
25790 			rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
25791 			    blkno, nblk);
25792 		} else {
25793 			/* Initial transfer */
25794 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
25795 			    un->un_pkt_flags, NULL_FUNC, NULL,
25796 			    blkno, nblk);
25797 		}
25798 #else
25799 		rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
25800 		    0, NULL_FUNC, NULL, blkno, nblk);
25801 #endif
25802 
25803 		if (rval == 0) {
25804 			/* We were given a SCSI packet, continue. */
25805 			break;
25806 		}
25807 
25808 		if (i == 0) {
25809 			if (wr_bp->b_flags & B_ERROR) {
25810 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25811 				    "no resources for dumping; "
25812 				    "error code: 0x%x, retrying",
25813 				    geterror(wr_bp));
25814 			} else {
25815 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25816 				    "no resources for dumping; retrying");
25817 			}
25818 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
25819 			if (wr_bp->b_flags & B_ERROR) {
25820 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
25821 				    "no resources for dumping; error code: "
25822 				    "0x%x, retrying\n", geterror(wr_bp));
25823 			}
25824 		} else {
25825 			if (wr_bp->b_flags & B_ERROR) {
25826 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
25827 				    "no resources for dumping; "
25828 				    "error code: 0x%x, retries failed, "
25829 				    "giving up.\n", geterror(wr_bp));
25830 			} else {
25831 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
25832 				    "no resources for dumping; "
25833 				    "retries failed, giving up.\n");
25834 			}
25835 			mutex_enter(SD_MUTEX(un));
25836 			Restore_state(un);
25837 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
25838 				mutex_exit(SD_MUTEX(un));
25839 				scsi_free_consistent_buf(wr_bp);
25840 			} else {
25841 				mutex_exit(SD_MUTEX(un));
25842 			}
25843 			return (EIO);
25844 		}
25845 		drv_usecwait(10000);
25846 	}
25847 
25848 #if defined(__i386) || defined(__amd64)
25849 	/*
25850 	 * save the resid from PARTIAL_DMA
25851 	 */
25852 	dma_resid = wr_pktp->pkt_resid;
25853 	if (dma_resid != 0)
25854 		nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
25855 	wr_pktp->pkt_resid = 0;
25856 #endif
25857 
25858 	/* SunBug 1222170 */
25859 	wr_pktp->pkt_flags = FLAG_NOINTR;
25860 
25861 	err = EIO;
25862 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
25863 
25864 		/*
25865 		 * Scsi_poll returns 0 (success) if the command completes and
25866 		 * the status block is STATUS_GOOD.  We should only check
25867 		 * errors if this condition is not true.  Even then we should
25868 		 * send our own request sense packet only if we have a check
25869 		 * condition and auto request sense has not been performed by
25870 		 * the hba.
25871 		 */
25872 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
25873 
25874 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
25875 		    (wr_pktp->pkt_resid == 0)) {
25876 			err = SD_SUCCESS;
25877 			break;
25878 		}
25879 
25880 		/*
25881 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
25882 		 */
25883 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
25884 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
25885 			    "Device is gone\n");
25886 			break;
25887 		}
25888 
25889 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
25890 			SD_INFO(SD_LOG_DUMP, un,
25891 			    "sddump: write failed with CHECK, try # %d\n", i);
25892 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
25893 				(void) sd_send_polled_RQS(un);
25894 			}
25895 
25896 			continue;
25897 		}
25898 
25899 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
25900 			int reset_retval = 0;
25901 
25902 			SD_INFO(SD_LOG_DUMP, un,
25903 			    "sddump: write failed with BUSY, try # %d\n", i);
25904 
25905 			if (un->un_f_lun_reset_enabled == TRUE) {
25906 				reset_retval = scsi_reset(SD_ADDRESS(un),
25907 				    RESET_LUN);
25908 			}
25909 			if (reset_retval == 0) {
25910 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
25911 			}
25912 			(void) sd_send_polled_RQS(un);
25913 
25914 		} else {
25915 			SD_INFO(SD_LOG_DUMP, un,
25916 			    "sddump: write failed with 0x%x, try # %d\n",
25917 			    SD_GET_PKT_STATUS(wr_pktp), i);
25918 			mutex_enter(SD_MUTEX(un));
25919 			sd_reset_target(un, wr_pktp);
25920 			mutex_exit(SD_MUTEX(un));
25921 		}
25922 
25923 		/*
25924 		 * If we are not getting anywhere with lun/target resets,
25925 		 * let's reset the bus.
25926 		 */
25927 		if (i == SD_NDUMP_RETRIES/2) {
25928 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
25929 			(void) sd_send_polled_RQS(un);
25930 		}
25931 
25932 	}
25933 #if defined(__i386) || defined(__amd64)
25934 	}	/* dma_resid */
25935 #endif
25936 
25937 	scsi_destroy_pkt(wr_pktp);
25938 	mutex_enter(SD_MUTEX(un));
25939 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
25940 		mutex_exit(SD_MUTEX(un));
25941 		scsi_free_consistent_buf(wr_bp);
25942 	} else {
25943 		mutex_exit(SD_MUTEX(un));
25944 	}
25945 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
25946 	return (err);
25947 }
25948 
25949 /*
25950  *    Function: sd_scsi_poll()
25951  *
25952  * Description: This is a wrapper for the scsi_poll call.
25953  *
25954  *   Arguments: sd_lun - The unit structure
25955  *              scsi_pkt - The scsi packet being sent to the device.
25956  *
25957  * Return Code: 0 - Command completed successfully with good status
25958  *             -1 - Command failed.  This could indicate a check condition
25959  *                  or other status value requiring recovery action.
25960  *
25961  */
25962 
25963 static int
25964 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
25965 {
25966 	int status;
25967 
25968 	ASSERT(un != NULL);
25969 	ASSERT(!mutex_owned(SD_MUTEX(un)));
25970 	ASSERT(pktp != NULL);
25971 
25972 	status = SD_SUCCESS;
25973 
25974 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
25975 		pktp->pkt_flags |= un->un_tagflags;
25976 		pktp->pkt_flags &= ~FLAG_NODISCON;
25977 	}
25978 
25979 	status = sd_ddi_scsi_poll(pktp);
25980 	/*
25981 	 * Scsi_poll returns 0 (success) if the command completes and the
25982 	 * status block is STATUS_GOOD.  We should only check errors if this
25983 	 * condition is not true.  Even then we should send our own request
25984 	 * sense packet only if we have a check condition and auto
25985 	 * request sense has not been performed by the hba.
25986 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
25987 	 */
25988 	if ((status != SD_SUCCESS) &&
25989 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
25990 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
25991 	    (pktp->pkt_reason != CMD_DEV_GONE))
25992 		(void) sd_send_polled_RQS(un);
25993 
25994 	return (status);
25995 }
25996 
25997 /*
25998  *    Function: sd_send_polled_RQS()
25999  *
26000  * Description: This sends the request sense command to a device.
26001  *
26002  *   Arguments: sd_lun - The unit structure
26003  *
26004  * Return Code: 0 - Command completed successfully with good status
26005  *             -1 - Command failed.
26006  *
26007  */
26008 
26009 static int
26010 sd_send_polled_RQS(struct sd_lun *un)
26011 {
26012 	int	ret_val;
26013 	struct	scsi_pkt	*rqs_pktp;
26014 	struct	buf		*rqs_bp;
26015 
26016 	ASSERT(un != NULL);
26017 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26018 
26019 	ret_val = SD_SUCCESS;
26020 
26021 	rqs_pktp = un->un_rqs_pktp;
26022 	rqs_bp	 = un->un_rqs_bp;
26023 
26024 	mutex_enter(SD_MUTEX(un));
26025 
26026 	if (un->un_sense_isbusy) {
26027 		ret_val = SD_FAILURE;
26028 		mutex_exit(SD_MUTEX(un));
26029 		return (ret_val);
26030 	}
26031 
26032 	/*
26033 	 * If the request sense buffer (and packet) is not in use,
26034 	 * let's set the un_sense_isbusy and send our packet
26035 	 */
26036 	un->un_sense_isbusy 	= 1;
26037 	rqs_pktp->pkt_resid  	= 0;
26038 	rqs_pktp->pkt_reason 	= 0;
26039 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
26040 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
26041 
26042 	mutex_exit(SD_MUTEX(un));
26043 
26044 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
26045 	    " 0x%p\n", rqs_bp->b_un.b_addr);
26046 
26047 	/*
26048 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
26049 	 * axle - it has a call into us!
26050 	 */
26051 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
26052 		SD_INFO(SD_LOG_COMMON, un,
26053 		    "sd_send_polled_RQS: RQS failed\n");
26054 	}
26055 
26056 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
26057 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
26058 
26059 	mutex_enter(SD_MUTEX(un));
26060 	un->un_sense_isbusy = 0;
26061 	mutex_exit(SD_MUTEX(un));
26062 
26063 	return (ret_val);
26064 }
26065 
26066 /*
26067  * Defines needed for localized version of the scsi_poll routine.
26068  */
26069 #define	SD_CSEC		10000			/* usecs */
26070 #define	SD_SEC_TO_CSEC	(1000000/SD_CSEC)
26071 
26072 
26073 /*
26074  *    Function: sd_ddi_scsi_poll()
26075  *
26076  * Description: Localized version of the scsi_poll routine.  The purpose is to
26077  *		send a scsi_pkt to a device as a polled command.  This version
26078  *		is to ensure more robust handling of transport errors.
26079  *		Specifically this routine cures not ready, coming ready
26080  *		transition for power up and reset of sonoma's.  This can take
26081  *		up to 45 seconds for power-on and 20 seconds for reset of a
26082  * 		sonoma lun.
26083  *
26084  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
26085  *
26086  * Return Code: 0 - Command completed successfully with good status
26087  *             -1 - Command failed.
26088  *
26089  */
26090 
26091 static int
26092 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
26093 {
26094 	int busy_count;
26095 	int timeout;
26096 	int rval = SD_FAILURE;
26097 	int savef;
26098 	struct scsi_extended_sense *sensep;
26099 	long savet;
26100 	void (*savec)();
26101 	/*
26102 	 * The following is defined in machdep.c and is used in determining if
26103 	 * the scsi transport system will do polled I/O instead of interrupt
26104 	 * I/O when called from xx_dump().
26105 	 */
26106 	extern int do_polled_io;
26107 
26108 	/*
26109 	 * save old flags in pkt, to restore at end
26110 	 */
26111 	savef = pkt->pkt_flags;
26112 	savec = pkt->pkt_comp;
26113 	savet = pkt->pkt_time;
26114 
26115 	pkt->pkt_flags |= FLAG_NOINTR;
26116 
26117 	/*
26118 	 * XXX there is nothing in the SCSA spec that states that we should not
26119 	 * do a callback for polled cmds; however, removing this will break sd
26120 	 * and probably other target drivers
26121 	 */
26122 	pkt->pkt_comp = NULL;
26123 
26124 	/*
26125 	 * we don't like a polled command without timeout.
26126 	 * 60 seconds seems long enough.
26127 	 */
26128 	if (pkt->pkt_time == 0) {
26129 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
26130 	}
26131 
26132 	/*
26133 	 * Send polled cmd.
26134 	 *
26135 	 * We do some error recovery for various errors.  Tran_busy,
26136 	 * queue full, and non-dispatched commands are retried every 10 msec.
26137 	 * as they are typically transient failures.  Busy status and Not
26138 	 * Ready are retried every second as this status takes a while to
26139 	 * change.  Unit attention is retried for pkt_time (60) times
26140 	 * with no delay.
26141 	 */
26142 	timeout = pkt->pkt_time * SD_SEC_TO_CSEC;
26143 
26144 	for (busy_count = 0; busy_count < timeout; busy_count++) {
26145 		int rc;
26146 		int poll_delay;
26147 
26148 		/*
26149 		 * Initialize pkt status variables.
26150 		 */
26151 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
26152 
26153 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
26154 			if (rc != TRAN_BUSY) {
26155 				/* Transport failed - give up. */
26156 				break;
26157 			} else {
26158 				/* Transport busy - try again. */
26159 				poll_delay = 1 * SD_CSEC; /* 10 msec */
26160 			}
26161 		} else {
26162 			/*
26163 			 * Transport accepted - check pkt status.
26164 			 */
26165 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
26166 			if (pkt->pkt_reason == CMD_CMPLT &&
26167 			    rc == STATUS_CHECK &&
26168 			    pkt->pkt_state & STATE_ARQ_DONE) {
26169 				struct scsi_arq_status *arqstat =
26170 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
26171 
26172 				sensep = &arqstat->sts_sensedata;
26173 			} else {
26174 				sensep = NULL;
26175 			}
26176 
26177 			if ((pkt->pkt_reason == CMD_CMPLT) &&
26178 			    (rc == STATUS_GOOD)) {
26179 				/* No error - we're done */
26180 				rval = SD_SUCCESS;
26181 				break;
26182 
26183 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
26184 				/* Lost connection - give up */
26185 				break;
26186 
26187 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
26188 			    (pkt->pkt_state == 0)) {
26189 				/* Pkt not dispatched - try again. */
26190 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
26191 
26192 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26193 			    (rc == STATUS_QFULL)) {
26194 				/* Queue full - try again. */
26195 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
26196 
26197 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26198 			    (rc == STATUS_BUSY)) {
26199 				/* Busy - try again. */
26200 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
26201 				busy_count += (SD_SEC_TO_CSEC - 1);
26202 
26203 			} else if ((sensep != NULL) &&
26204 			    (sensep->es_key == KEY_UNIT_ATTENTION)) {
26205 				/* Unit Attention - try again */
26206 				busy_count += (SD_SEC_TO_CSEC - 1); /* 1 */
26207 				continue;
26208 
26209 			} else if ((sensep != NULL) &&
26210 			    (sensep->es_key == KEY_NOT_READY) &&
26211 			    (sensep->es_add_code == 0x04) &&
26212 			    (sensep->es_qual_code == 0x01)) {
26213 				/* Not ready -> ready - try again. */
26214 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
26215 				busy_count += (SD_SEC_TO_CSEC - 1);
26216 
26217 			} else {
26218 				/* BAD status - give up. */
26219 				break;
26220 			}
26221 		}
26222 
26223 		if ((curthread->t_flag & T_INTR_THREAD) == 0 &&
26224 		    !do_polled_io) {
26225 			delay(drv_usectohz(poll_delay));
26226 		} else {
26227 			/* we busy wait during cpr_dump or interrupt threads */
26228 			drv_usecwait(poll_delay);
26229 		}
26230 	}
26231 
26232 	pkt->pkt_flags = savef;
26233 	pkt->pkt_comp = savec;
26234 	pkt->pkt_time = savet;
26235 	return (rval);
26236 }
26237 
26238 
26239 /*
26240  *    Function: sd_persistent_reservation_in_read_keys
26241  *
26242  * Description: This routine is the driver entry point for handling CD-ROM
26243  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
26244  *		by sending the SCSI-3 PRIN commands to the device.
26245  *		Processes the read keys command response by copying the
26246  *		reservation key information into the user provided buffer.
26247  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
26248  *
26249  *   Arguments: un   -  Pointer to soft state struct for the target.
26250  *		usrp -	user provided pointer to multihost Persistent In Read
26251  *			Keys structure (mhioc_inkeys_t)
26252  *		flag -	this argument is a pass through to ddi_copyxxx()
26253  *			directly from the mode argument of ioctl().
26254  *
26255  * Return Code: 0   - Success
26256  *		EACCES
26257  *		ENOTSUP
26258  *		errno return code from sd_send_scsi_cmd()
26259  *
26260  *     Context: Can sleep. Does not return until command is completed.
26261  */
26262 
26263 static int
26264 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
26265     mhioc_inkeys_t *usrp, int flag)
26266 {
26267 #ifdef _MULTI_DATAMODEL
26268 	struct mhioc_key_list32	li32;
26269 #endif
26270 	sd_prin_readkeys_t	*in;
26271 	mhioc_inkeys_t		*ptr;
26272 	mhioc_key_list_t	li;
26273 	uchar_t			*data_bufp;
26274 	int 			data_len;
26275 	int			rval;
26276 	size_t			copysz;
26277 
26278 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
26279 		return (EINVAL);
26280 	}
26281 	bzero(&li, sizeof (mhioc_key_list_t));
26282 
26283 	/*
26284 	 * Get the listsize from user
26285 	 */
26286 #ifdef _MULTI_DATAMODEL
26287 
26288 	switch (ddi_model_convert_from(flag & FMODELS)) {
26289 	case DDI_MODEL_ILP32:
26290 		copysz = sizeof (struct mhioc_key_list32);
26291 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
26292 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26293 			    "sd_persistent_reservation_in_read_keys: "
26294 			    "failed ddi_copyin: mhioc_key_list32_t\n");
26295 			rval = EFAULT;
26296 			goto done;
26297 		}
26298 		li.listsize = li32.listsize;
26299 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
26300 		break;
26301 
26302 	case DDI_MODEL_NONE:
26303 		copysz = sizeof (mhioc_key_list_t);
26304 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26305 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26306 			    "sd_persistent_reservation_in_read_keys: "
26307 			    "failed ddi_copyin: mhioc_key_list_t\n");
26308 			rval = EFAULT;
26309 			goto done;
26310 		}
26311 		break;
26312 	}
26313 
26314 #else /* ! _MULTI_DATAMODEL */
26315 	copysz = sizeof (mhioc_key_list_t);
26316 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26317 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26318 		    "sd_persistent_reservation_in_read_keys: "
26319 		    "failed ddi_copyin: mhioc_key_list_t\n");
26320 		rval = EFAULT;
26321 		goto done;
26322 	}
26323 #endif
26324 
26325 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
26326 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
26327 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26328 
26329 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS,
26330 	    data_len, data_bufp)) != 0) {
26331 		goto done;
26332 	}
26333 	in = (sd_prin_readkeys_t *)data_bufp;
26334 	ptr->generation = BE_32(in->generation);
26335 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
26336 
26337 	/*
26338 	 * Return the min(listsize, listlen) keys
26339 	 */
26340 #ifdef _MULTI_DATAMODEL
26341 
26342 	switch (ddi_model_convert_from(flag & FMODELS)) {
26343 	case DDI_MODEL_ILP32:
26344 		li32.listlen = li.listlen;
26345 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
26346 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26347 			    "sd_persistent_reservation_in_read_keys: "
26348 			    "failed ddi_copyout: mhioc_key_list32_t\n");
26349 			rval = EFAULT;
26350 			goto done;
26351 		}
26352 		break;
26353 
26354 	case DDI_MODEL_NONE:
26355 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26356 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26357 			    "sd_persistent_reservation_in_read_keys: "
26358 			    "failed ddi_copyout: mhioc_key_list_t\n");
26359 			rval = EFAULT;
26360 			goto done;
26361 		}
26362 		break;
26363 	}
26364 
26365 #else /* ! _MULTI_DATAMODEL */
26366 
26367 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26368 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26369 		    "sd_persistent_reservation_in_read_keys: "
26370 		    "failed ddi_copyout: mhioc_key_list_t\n");
26371 		rval = EFAULT;
26372 		goto done;
26373 	}
26374 
26375 #endif /* _MULTI_DATAMODEL */
26376 
26377 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
26378 	    li.listsize * MHIOC_RESV_KEY_SIZE);
26379 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
26380 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26381 		    "sd_persistent_reservation_in_read_keys: "
26382 		    "failed ddi_copyout: keylist\n");
26383 		rval = EFAULT;
26384 	}
26385 done:
26386 	kmem_free(data_bufp, data_len);
26387 	return (rval);
26388 }
26389 
26390 
26391 /*
26392  *    Function: sd_persistent_reservation_in_read_resv
26393  *
26394  * Description: This routine is the driver entry point for handling CD-ROM
26395  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
26396  *		by sending the SCSI-3 PRIN commands to the device.
26397  *		Process the read persistent reservations command response by
26398  *		copying the reservation information into the user provided
26399  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
26400  *
26401  *   Arguments: un   -  Pointer to soft state struct for the target.
26402  *		usrp -	user provided pointer to multihost Persistent In Read
26403  *			Keys structure (mhioc_inkeys_t)
26404  *		flag -	this argument is a pass through to ddi_copyxxx()
26405  *			directly from the mode argument of ioctl().
26406  *
26407  * Return Code: 0   - Success
26408  *		EACCES
26409  *		ENOTSUP
26410  *		errno return code from sd_send_scsi_cmd()
26411  *
26412  *     Context: Can sleep. Does not return until command is completed.
26413  */
26414 
26415 static int
26416 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
26417     mhioc_inresvs_t *usrp, int flag)
26418 {
26419 #ifdef _MULTI_DATAMODEL
26420 	struct mhioc_resv_desc_list32 resvlist32;
26421 #endif
26422 	sd_prin_readresv_t	*in;
26423 	mhioc_inresvs_t		*ptr;
26424 	sd_readresv_desc_t	*readresv_ptr;
26425 	mhioc_resv_desc_list_t	resvlist;
26426 	mhioc_resv_desc_t 	resvdesc;
26427 	uchar_t			*data_bufp;
26428 	int 			data_len;
26429 	int			rval;
26430 	int			i;
26431 	size_t			copysz;
26432 	mhioc_resv_desc_t	*bufp;
26433 
26434 	if ((ptr = usrp) == NULL) {
26435 		return (EINVAL);
26436 	}
26437 
26438 	/*
26439 	 * Get the listsize from user
26440 	 */
26441 #ifdef _MULTI_DATAMODEL
26442 	switch (ddi_model_convert_from(flag & FMODELS)) {
26443 	case DDI_MODEL_ILP32:
26444 		copysz = sizeof (struct mhioc_resv_desc_list32);
26445 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
26446 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26447 			    "sd_persistent_reservation_in_read_resv: "
26448 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26449 			rval = EFAULT;
26450 			goto done;
26451 		}
26452 		resvlist.listsize = resvlist32.listsize;
26453 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
26454 		break;
26455 
26456 	case DDI_MODEL_NONE:
26457 		copysz = sizeof (mhioc_resv_desc_list_t);
26458 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26459 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26460 			    "sd_persistent_reservation_in_read_resv: "
26461 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26462 			rval = EFAULT;
26463 			goto done;
26464 		}
26465 		break;
26466 	}
26467 #else /* ! _MULTI_DATAMODEL */
26468 	copysz = sizeof (mhioc_resv_desc_list_t);
26469 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26470 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26471 		    "sd_persistent_reservation_in_read_resv: "
26472 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26473 		rval = EFAULT;
26474 		goto done;
26475 	}
26476 #endif /* ! _MULTI_DATAMODEL */
26477 
26478 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
26479 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
26480 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26481 
26482 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV,
26483 	    data_len, data_bufp)) != 0) {
26484 		goto done;
26485 	}
26486 	in = (sd_prin_readresv_t *)data_bufp;
26487 	ptr->generation = BE_32(in->generation);
26488 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
26489 
26490 	/*
26491 	 * Return the min(listsize, listlen( keys
26492 	 */
26493 #ifdef _MULTI_DATAMODEL
26494 
26495 	switch (ddi_model_convert_from(flag & FMODELS)) {
26496 	case DDI_MODEL_ILP32:
26497 		resvlist32.listlen = resvlist.listlen;
26498 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
26499 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26500 			    "sd_persistent_reservation_in_read_resv: "
26501 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26502 			rval = EFAULT;
26503 			goto done;
26504 		}
26505 		break;
26506 
26507 	case DDI_MODEL_NONE:
26508 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26509 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26510 			    "sd_persistent_reservation_in_read_resv: "
26511 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26512 			rval = EFAULT;
26513 			goto done;
26514 		}
26515 		break;
26516 	}
26517 
26518 #else /* ! _MULTI_DATAMODEL */
26519 
26520 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26521 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26522 		    "sd_persistent_reservation_in_read_resv: "
26523 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26524 		rval = EFAULT;
26525 		goto done;
26526 	}
26527 
26528 #endif /* ! _MULTI_DATAMODEL */
26529 
26530 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
26531 	bufp = resvlist.list;
26532 	copysz = sizeof (mhioc_resv_desc_t);
26533 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
26534 	    i++, readresv_ptr++, bufp++) {
26535 
26536 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
26537 		    MHIOC_RESV_KEY_SIZE);
26538 		resvdesc.type  = readresv_ptr->type;
26539 		resvdesc.scope = readresv_ptr->scope;
26540 		resvdesc.scope_specific_addr =
26541 		    BE_32(readresv_ptr->scope_specific_addr);
26542 
26543 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
26544 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26545 			    "sd_persistent_reservation_in_read_resv: "
26546 			    "failed ddi_copyout: resvlist\n");
26547 			rval = EFAULT;
26548 			goto done;
26549 		}
26550 	}
26551 done:
26552 	kmem_free(data_bufp, data_len);
26553 	return (rval);
26554 }
26555 
26556 
26557 /*
26558  *    Function: sr_change_blkmode()
26559  *
26560  * Description: This routine is the driver entry point for handling CD-ROM
26561  *		block mode ioctl requests. Support for returning and changing
26562  *		the current block size in use by the device is implemented. The
26563  *		LBA size is changed via a MODE SELECT Block Descriptor.
26564  *
26565  *		This routine issues a mode sense with an allocation length of
26566  *		12 bytes for the mode page header and a single block descriptor.
26567  *
26568  *   Arguments: dev - the device 'dev_t'
26569  *		cmd - the request type; one of CDROMGBLKMODE (get) or
26570  *		      CDROMSBLKMODE (set)
26571  *		data - current block size or requested block size
26572  *		flag - this argument is a pass through to ddi_copyxxx() directly
26573  *		       from the mode argument of ioctl().
26574  *
26575  * Return Code: the code returned by sd_send_scsi_cmd()
26576  *		EINVAL if invalid arguments are provided
26577  *		EFAULT if ddi_copyxxx() fails
26578  *		ENXIO if fail ddi_get_soft_state
26579  *		EIO if invalid mode sense block descriptor length
26580  *
26581  */
26582 
26583 static int
26584 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
26585 {
26586 	struct sd_lun			*un = NULL;
26587 	struct mode_header		*sense_mhp, *select_mhp;
26588 	struct block_descriptor		*sense_desc, *select_desc;
26589 	int				current_bsize;
26590 	int				rval = EINVAL;
26591 	uchar_t				*sense = NULL;
26592 	uchar_t				*select = NULL;
26593 
26594 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
26595 
26596 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26597 		return (ENXIO);
26598 	}
26599 
26600 	/*
26601 	 * The block length is changed via the Mode Select block descriptor, the
26602 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
26603 	 * required as part of this routine. Therefore the mode sense allocation
26604 	 * length is specified to be the length of a mode page header and a
26605 	 * block descriptor.
26606 	 */
26607 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26608 
26609 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
26610 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) {
26611 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26612 		    "sr_change_blkmode: Mode Sense Failed\n");
26613 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26614 		return (rval);
26615 	}
26616 
26617 	/* Check the block descriptor len to handle only 1 block descriptor */
26618 	sense_mhp = (struct mode_header *)sense;
26619 	if ((sense_mhp->bdesc_length == 0) ||
26620 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
26621 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26622 		    "sr_change_blkmode: Mode Sense returned invalid block"
26623 		    " descriptor length\n");
26624 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26625 		return (EIO);
26626 	}
26627 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
26628 	current_bsize = ((sense_desc->blksize_hi << 16) |
26629 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
26630 
26631 	/* Process command */
26632 	switch (cmd) {
26633 	case CDROMGBLKMODE:
26634 		/* Return the block size obtained during the mode sense */
26635 		if (ddi_copyout(&current_bsize, (void *)data,
26636 		    sizeof (int), flag) != 0)
26637 			rval = EFAULT;
26638 		break;
26639 	case CDROMSBLKMODE:
26640 		/* Validate the requested block size */
26641 		switch (data) {
26642 		case CDROM_BLK_512:
26643 		case CDROM_BLK_1024:
26644 		case CDROM_BLK_2048:
26645 		case CDROM_BLK_2056:
26646 		case CDROM_BLK_2336:
26647 		case CDROM_BLK_2340:
26648 		case CDROM_BLK_2352:
26649 		case CDROM_BLK_2368:
26650 		case CDROM_BLK_2448:
26651 		case CDROM_BLK_2646:
26652 		case CDROM_BLK_2647:
26653 			break;
26654 		default:
26655 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26656 			    "sr_change_blkmode: "
26657 			    "Block Size '%ld' Not Supported\n", data);
26658 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26659 			return (EINVAL);
26660 		}
26661 
26662 		/*
26663 		 * The current block size matches the requested block size so
26664 		 * there is no need to send the mode select to change the size
26665 		 */
26666 		if (current_bsize == data) {
26667 			break;
26668 		}
26669 
26670 		/* Build the select data for the requested block size */
26671 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26672 		select_mhp = (struct mode_header *)select;
26673 		select_desc =
26674 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
26675 		/*
26676 		 * The LBA size is changed via the block descriptor, so the
26677 		 * descriptor is built according to the user data
26678 		 */
26679 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
26680 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
26681 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
26682 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
26683 
26684 		/* Send the mode select for the requested block size */
26685 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
26686 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26687 		    SD_PATH_STANDARD)) != 0) {
26688 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26689 			    "sr_change_blkmode: Mode Select Failed\n");
26690 			/*
26691 			 * The mode select failed for the requested block size,
26692 			 * so reset the data for the original block size and
26693 			 * send it to the target. The error is indicated by the
26694 			 * return value for the failed mode select.
26695 			 */
26696 			select_desc->blksize_hi  = sense_desc->blksize_hi;
26697 			select_desc->blksize_mid = sense_desc->blksize_mid;
26698 			select_desc->blksize_lo  = sense_desc->blksize_lo;
26699 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
26700 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26701 			    SD_PATH_STANDARD);
26702 		} else {
26703 			ASSERT(!mutex_owned(SD_MUTEX(un)));
26704 			mutex_enter(SD_MUTEX(un));
26705 			sd_update_block_info(un, (uint32_t)data, 0);
26706 
26707 			mutex_exit(SD_MUTEX(un));
26708 		}
26709 		break;
26710 	default:
26711 		/* should not reach here, but check anyway */
26712 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26713 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
26714 		rval = EINVAL;
26715 		break;
26716 	}
26717 
26718 	if (select) {
26719 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
26720 	}
26721 	if (sense) {
26722 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26723 	}
26724 	return (rval);
26725 }
26726 
26727 
26728 /*
26729  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
26730  * implement driver support for getting and setting the CD speed. The command
26731  * set used will be based on the device type. If the device has not been
26732  * identified as MMC the Toshiba vendor specific mode page will be used. If
26733  * the device is MMC but does not support the Real Time Streaming feature
26734  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
26735  * be used to read the speed.
26736  */
26737 
26738 /*
26739  *    Function: sr_change_speed()
26740  *
26741  * Description: This routine is the driver entry point for handling CD-ROM
26742  *		drive speed ioctl requests for devices supporting the Toshiba
26743  *		vendor specific drive speed mode page. Support for returning
26744  *		and changing the current drive speed in use by the device is
26745  *		implemented.
26746  *
26747  *   Arguments: dev - the device 'dev_t'
26748  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
26749  *		      CDROMSDRVSPEED (set)
26750  *		data - current drive speed or requested drive speed
26751  *		flag - this argument is a pass through to ddi_copyxxx() directly
26752  *		       from the mode argument of ioctl().
26753  *
26754  * Return Code: the code returned by sd_send_scsi_cmd()
26755  *		EINVAL if invalid arguments are provided
26756  *		EFAULT if ddi_copyxxx() fails
26757  *		ENXIO if fail ddi_get_soft_state
26758  *		EIO if invalid mode sense block descriptor length
26759  */
26760 
26761 static int
26762 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
26763 {
26764 	struct sd_lun			*un = NULL;
26765 	struct mode_header		*sense_mhp, *select_mhp;
26766 	struct mode_speed		*sense_page, *select_page;
26767 	int				current_speed;
26768 	int				rval = EINVAL;
26769 	int				bd_len;
26770 	uchar_t				*sense = NULL;
26771 	uchar_t				*select = NULL;
26772 
26773 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
26774 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26775 		return (ENXIO);
26776 	}
26777 
26778 	/*
26779 	 * Note: The drive speed is being modified here according to a Toshiba
26780 	 * vendor specific mode page (0x31).
26781 	 */
26782 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
26783 
26784 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
26785 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
26786 	    SD_PATH_STANDARD)) != 0) {
26787 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26788 		    "sr_change_speed: Mode Sense Failed\n");
26789 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
26790 		return (rval);
26791 	}
26792 	sense_mhp  = (struct mode_header *)sense;
26793 
26794 	/* Check the block descriptor len to handle only 1 block descriptor */
26795 	bd_len = sense_mhp->bdesc_length;
26796 	if (bd_len > MODE_BLK_DESC_LENGTH) {
26797 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26798 		    "sr_change_speed: Mode Sense returned invalid block "
26799 		    "descriptor length\n");
26800 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
26801 		return (EIO);
26802 	}
26803 
26804 	sense_page = (struct mode_speed *)
26805 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
26806 	current_speed = sense_page->speed;
26807 
26808 	/* Process command */
26809 	switch (cmd) {
26810 	case CDROMGDRVSPEED:
26811 		/* Return the drive speed obtained during the mode sense */
26812 		if (current_speed == 0x2) {
26813 			current_speed = CDROM_TWELVE_SPEED;
26814 		}
26815 		if (ddi_copyout(&current_speed, (void *)data,
26816 		    sizeof (int), flag) != 0) {
26817 			rval = EFAULT;
26818 		}
26819 		break;
26820 	case CDROMSDRVSPEED:
26821 		/* Validate the requested drive speed */
26822 		switch ((uchar_t)data) {
26823 		case CDROM_TWELVE_SPEED:
26824 			data = 0x2;
26825 			/*FALLTHROUGH*/
26826 		case CDROM_NORMAL_SPEED:
26827 		case CDROM_DOUBLE_SPEED:
26828 		case CDROM_QUAD_SPEED:
26829 		case CDROM_MAXIMUM_SPEED:
26830 			break;
26831 		default:
26832 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26833 			    "sr_change_speed: "
26834 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
26835 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
26836 			return (EINVAL);
26837 		}
26838 
26839 		/*
26840 		 * The current drive speed matches the requested drive speed so
26841 		 * there is no need to send the mode select to change the speed
26842 		 */
26843 		if (current_speed == data) {
26844 			break;
26845 		}
26846 
26847 		/* Build the select data for the requested drive speed */
26848 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
26849 		select_mhp = (struct mode_header *)select;
26850 		select_mhp->bdesc_length = 0;
26851 		select_page =
26852 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
26853 		select_page =
26854 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
26855 		select_page->mode_page.code = CDROM_MODE_SPEED;
26856 		select_page->mode_page.length = 2;
26857 		select_page->speed = (uchar_t)data;
26858 
26859 		/* Send the mode select for the requested block size */
26860 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
26861 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
26862 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
26863 			/*
26864 			 * The mode select failed for the requested drive speed,
26865 			 * so reset the data for the original drive speed and
26866 			 * send it to the target. The error is indicated by the
26867 			 * return value for the failed mode select.
26868 			 */
26869 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26870 			    "sr_drive_speed: Mode Select Failed\n");
26871 			select_page->speed = sense_page->speed;
26872 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
26873 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
26874 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
26875 		}
26876 		break;
26877 	default:
26878 		/* should not reach here, but check anyway */
26879 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26880 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
26881 		rval = EINVAL;
26882 		break;
26883 	}
26884 
26885 	if (select) {
26886 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
26887 	}
26888 	if (sense) {
26889 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
26890 	}
26891 
26892 	return (rval);
26893 }
26894 
26895 
26896 /*
26897  *    Function: sr_atapi_change_speed()
26898  *
26899  * Description: This routine is the driver entry point for handling CD-ROM
26900  *		drive speed ioctl requests for MMC devices that do not support
26901  *		the Real Time Streaming feature (0x107).
26902  *
26903  *		Note: This routine will use the SET SPEED command which may not
26904  *		be supported by all devices.
26905  *
26906  *   Arguments: dev- the device 'dev_t'
26907  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
26908  *		     CDROMSDRVSPEED (set)
26909  *		data- current drive speed or requested drive speed
26910  *		flag- this argument is a pass through to ddi_copyxxx() directly
26911  *		      from the mode argument of ioctl().
26912  *
26913  * Return Code: the code returned by sd_send_scsi_cmd()
26914  *		EINVAL if invalid arguments are provided
26915  *		EFAULT if ddi_copyxxx() fails
26916  *		ENXIO if fail ddi_get_soft_state
26917  *		EIO if invalid mode sense block descriptor length
26918  */
26919 
26920 static int
26921 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
26922 {
26923 	struct sd_lun			*un;
26924 	struct uscsi_cmd		*com = NULL;
26925 	struct mode_header_grp2		*sense_mhp;
26926 	uchar_t				*sense_page;
26927 	uchar_t				*sense = NULL;
26928 	char				cdb[CDB_GROUP5];
26929 	int				bd_len;
26930 	int				current_speed = 0;
26931 	int				max_speed = 0;
26932 	int				rval;
26933 
26934 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
26935 
26936 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26937 		return (ENXIO);
26938 	}
26939 
26940 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
26941 
26942 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
26943 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
26944 	    SD_PATH_STANDARD)) != 0) {
26945 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26946 		    "sr_atapi_change_speed: Mode Sense Failed\n");
26947 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26948 		return (rval);
26949 	}
26950 
26951 	/* Check the block descriptor len to handle only 1 block descriptor */
26952 	sense_mhp = (struct mode_header_grp2 *)sense;
26953 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
26954 	if (bd_len > MODE_BLK_DESC_LENGTH) {
26955 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26956 		    "sr_atapi_change_speed: Mode Sense returned invalid "
26957 		    "block descriptor length\n");
26958 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26959 		return (EIO);
26960 	}
26961 
26962 	/* Calculate the current and maximum drive speeds */
26963 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
26964 	current_speed = (sense_page[14] << 8) | sense_page[15];
26965 	max_speed = (sense_page[8] << 8) | sense_page[9];
26966 
26967 	/* Process the command */
26968 	switch (cmd) {
26969 	case CDROMGDRVSPEED:
26970 		current_speed /= SD_SPEED_1X;
26971 		if (ddi_copyout(&current_speed, (void *)data,
26972 		    sizeof (int), flag) != 0)
26973 			rval = EFAULT;
26974 		break;
26975 	case CDROMSDRVSPEED:
26976 		/* Convert the speed code to KB/sec */
26977 		switch ((uchar_t)data) {
26978 		case CDROM_NORMAL_SPEED:
26979 			current_speed = SD_SPEED_1X;
26980 			break;
26981 		case CDROM_DOUBLE_SPEED:
26982 			current_speed = 2 * SD_SPEED_1X;
26983 			break;
26984 		case CDROM_QUAD_SPEED:
26985 			current_speed = 4 * SD_SPEED_1X;
26986 			break;
26987 		case CDROM_TWELVE_SPEED:
26988 			current_speed = 12 * SD_SPEED_1X;
26989 			break;
26990 		case CDROM_MAXIMUM_SPEED:
26991 			current_speed = 0xffff;
26992 			break;
26993 		default:
26994 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26995 			    "sr_atapi_change_speed: invalid drive speed %d\n",
26996 			    (uchar_t)data);
26997 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
26998 			return (EINVAL);
26999 		}
27000 
27001 		/* Check the request against the drive's max speed. */
27002 		if (current_speed != 0xffff) {
27003 			if (current_speed > max_speed) {
27004 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27005 				return (EINVAL);
27006 			}
27007 		}
27008 
27009 		/*
27010 		 * Build and send the SET SPEED command
27011 		 *
27012 		 * Note: The SET SPEED (0xBB) command used in this routine is
27013 		 * obsolete per the SCSI MMC spec but still supported in the
27014 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27015 		 * therefore the command is still implemented in this routine.
27016 		 */
27017 		bzero(cdb, sizeof (cdb));
27018 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
27019 		cdb[2] = (uchar_t)(current_speed >> 8);
27020 		cdb[3] = (uchar_t)current_speed;
27021 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27022 		com->uscsi_cdb	   = (caddr_t)cdb;
27023 		com->uscsi_cdblen  = CDB_GROUP5;
27024 		com->uscsi_bufaddr = NULL;
27025 		com->uscsi_buflen  = 0;
27026 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
27027 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, 0,
27028 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27029 		break;
27030 	default:
27031 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27032 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
27033 		rval = EINVAL;
27034 	}
27035 
27036 	if (sense) {
27037 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27038 	}
27039 	if (com) {
27040 		kmem_free(com, sizeof (*com));
27041 	}
27042 	return (rval);
27043 }
27044 
27045 
27046 /*
27047  *    Function: sr_pause_resume()
27048  *
27049  * Description: This routine is the driver entry point for handling CD-ROM
27050  *		pause/resume ioctl requests. This only affects the audio play
27051  *		operation.
27052  *
27053  *   Arguments: dev - the device 'dev_t'
27054  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
27055  *		      for setting the resume bit of the cdb.
27056  *
27057  * Return Code: the code returned by sd_send_scsi_cmd()
27058  *		EINVAL if invalid mode specified
27059  *
27060  */
27061 
27062 static int
27063 sr_pause_resume(dev_t dev, int cmd)
27064 {
27065 	struct sd_lun		*un;
27066 	struct uscsi_cmd	*com;
27067 	char			cdb[CDB_GROUP1];
27068 	int			rval;
27069 
27070 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27071 		return (ENXIO);
27072 	}
27073 
27074 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27075 	bzero(cdb, CDB_GROUP1);
27076 	cdb[0] = SCMD_PAUSE_RESUME;
27077 	switch (cmd) {
27078 	case CDROMRESUME:
27079 		cdb[8] = 1;
27080 		break;
27081 	case CDROMPAUSE:
27082 		cdb[8] = 0;
27083 		break;
27084 	default:
27085 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
27086 		    " Command '%x' Not Supported\n", cmd);
27087 		rval = EINVAL;
27088 		goto done;
27089 	}
27090 
27091 	com->uscsi_cdb    = cdb;
27092 	com->uscsi_cdblen = CDB_GROUP1;
27093 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27094 
27095 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27096 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27097 
27098 done:
27099 	kmem_free(com, sizeof (*com));
27100 	return (rval);
27101 }
27102 
27103 
27104 /*
27105  *    Function: sr_play_msf()
27106  *
27107  * Description: This routine is the driver entry point for handling CD-ROM
27108  *		ioctl requests to output the audio signals at the specified
27109  *		starting address and continue the audio play until the specified
27110  *		ending address (CDROMPLAYMSF) The address is in Minute Second
27111  *		Frame (MSF) format.
27112  *
27113  *   Arguments: dev	- the device 'dev_t'
27114  *		data	- pointer to user provided audio msf structure,
27115  *		          specifying start/end addresses.
27116  *		flag	- this argument is a pass through to ddi_copyxxx()
27117  *		          directly from the mode argument of ioctl().
27118  *
27119  * Return Code: the code returned by sd_send_scsi_cmd()
27120  *		EFAULT if ddi_copyxxx() fails
27121  *		ENXIO if fail ddi_get_soft_state
27122  *		EINVAL if data pointer is NULL
27123  */
27124 
27125 static int
27126 sr_play_msf(dev_t dev, caddr_t data, int flag)
27127 {
27128 	struct sd_lun		*un;
27129 	struct uscsi_cmd	*com;
27130 	struct cdrom_msf	msf_struct;
27131 	struct cdrom_msf	*msf = &msf_struct;
27132 	char			cdb[CDB_GROUP1];
27133 	int			rval;
27134 
27135 	if (data == NULL) {
27136 		return (EINVAL);
27137 	}
27138 
27139 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27140 		return (ENXIO);
27141 	}
27142 
27143 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
27144 		return (EFAULT);
27145 	}
27146 
27147 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27148 	bzero(cdb, CDB_GROUP1);
27149 	cdb[0] = SCMD_PLAYAUDIO_MSF;
27150 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
27151 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
27152 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
27153 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
27154 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
27155 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
27156 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
27157 	} else {
27158 		cdb[3] = msf->cdmsf_min0;
27159 		cdb[4] = msf->cdmsf_sec0;
27160 		cdb[5] = msf->cdmsf_frame0;
27161 		cdb[6] = msf->cdmsf_min1;
27162 		cdb[7] = msf->cdmsf_sec1;
27163 		cdb[8] = msf->cdmsf_frame1;
27164 	}
27165 	com->uscsi_cdb    = cdb;
27166 	com->uscsi_cdblen = CDB_GROUP1;
27167 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27168 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27169 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27170 	kmem_free(com, sizeof (*com));
27171 	return (rval);
27172 }
27173 
27174 
27175 /*
27176  *    Function: sr_play_trkind()
27177  *
27178  * Description: This routine is the driver entry point for handling CD-ROM
27179  *		ioctl requests to output the audio signals at the specified
27180  *		starting address and continue the audio play until the specified
27181  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
27182  *		format.
27183  *
27184  *   Arguments: dev	- the device 'dev_t'
27185  *		data	- pointer to user provided audio track/index structure,
27186  *		          specifying start/end addresses.
27187  *		flag	- this argument is a pass through to ddi_copyxxx()
27188  *		          directly from the mode argument of ioctl().
27189  *
27190  * Return Code: the code returned by sd_send_scsi_cmd()
27191  *		EFAULT if ddi_copyxxx() fails
27192  *		ENXIO if fail ddi_get_soft_state
27193  *		EINVAL if data pointer is NULL
27194  */
27195 
27196 static int
27197 sr_play_trkind(dev_t dev, caddr_t data, int flag)
27198 {
27199 	struct cdrom_ti		ti_struct;
27200 	struct cdrom_ti		*ti = &ti_struct;
27201 	struct uscsi_cmd	*com = NULL;
27202 	char			cdb[CDB_GROUP1];
27203 	int			rval;
27204 
27205 	if (data == NULL) {
27206 		return (EINVAL);
27207 	}
27208 
27209 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
27210 		return (EFAULT);
27211 	}
27212 
27213 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27214 	bzero(cdb, CDB_GROUP1);
27215 	cdb[0] = SCMD_PLAYAUDIO_TI;
27216 	cdb[4] = ti->cdti_trk0;
27217 	cdb[5] = ti->cdti_ind0;
27218 	cdb[7] = ti->cdti_trk1;
27219 	cdb[8] = ti->cdti_ind1;
27220 	com->uscsi_cdb    = cdb;
27221 	com->uscsi_cdblen = CDB_GROUP1;
27222 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27223 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27224 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27225 	kmem_free(com, sizeof (*com));
27226 	return (rval);
27227 }
27228 
27229 
27230 /*
27231  *    Function: sr_read_all_subcodes()
27232  *
27233  * Description: This routine is the driver entry point for handling CD-ROM
27234  *		ioctl requests to return raw subcode data while the target is
27235  *		playing audio (CDROMSUBCODE).
27236  *
27237  *   Arguments: dev	- the device 'dev_t'
27238  *		data	- pointer to user provided cdrom subcode structure,
27239  *		          specifying the transfer length and address.
27240  *		flag	- this argument is a pass through to ddi_copyxxx()
27241  *		          directly from the mode argument of ioctl().
27242  *
27243  * Return Code: the code returned by sd_send_scsi_cmd()
27244  *		EFAULT if ddi_copyxxx() fails
27245  *		ENXIO if fail ddi_get_soft_state
27246  *		EINVAL if data pointer is NULL
27247  */
27248 
27249 static int
27250 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
27251 {
27252 	struct sd_lun		*un = NULL;
27253 	struct uscsi_cmd	*com = NULL;
27254 	struct cdrom_subcode	*subcode = NULL;
27255 	int			rval;
27256 	size_t			buflen;
27257 	char			cdb[CDB_GROUP5];
27258 
27259 #ifdef _MULTI_DATAMODEL
27260 	/* To support ILP32 applications in an LP64 world */
27261 	struct cdrom_subcode32		cdrom_subcode32;
27262 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
27263 #endif
27264 	if (data == NULL) {
27265 		return (EINVAL);
27266 	}
27267 
27268 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27269 		return (ENXIO);
27270 	}
27271 
27272 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
27273 
27274 #ifdef _MULTI_DATAMODEL
27275 	switch (ddi_model_convert_from(flag & FMODELS)) {
27276 	case DDI_MODEL_ILP32:
27277 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
27278 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27279 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27280 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27281 			return (EFAULT);
27282 		}
27283 		/* Convert the ILP32 uscsi data from the application to LP64 */
27284 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
27285 		break;
27286 	case DDI_MODEL_NONE:
27287 		if (ddi_copyin(data, subcode,
27288 		    sizeof (struct cdrom_subcode), flag)) {
27289 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27290 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27291 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27292 			return (EFAULT);
27293 		}
27294 		break;
27295 	}
27296 #else /* ! _MULTI_DATAMODEL */
27297 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
27298 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27299 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
27300 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27301 		return (EFAULT);
27302 	}
27303 #endif /* _MULTI_DATAMODEL */
27304 
27305 	/*
27306 	 * Since MMC-2 expects max 3 bytes for length, check if the
27307 	 * length input is greater than 3 bytes
27308 	 */
27309 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
27310 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27311 		    "sr_read_all_subcodes: "
27312 		    "cdrom transfer length too large: %d (limit %d)\n",
27313 		    subcode->cdsc_length, 0xFFFFFF);
27314 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27315 		return (EINVAL);
27316 	}
27317 
27318 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
27319 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27320 	bzero(cdb, CDB_GROUP5);
27321 
27322 	if (un->un_f_mmc_cap == TRUE) {
27323 		cdb[0] = (char)SCMD_READ_CD;
27324 		cdb[2] = (char)0xff;
27325 		cdb[3] = (char)0xff;
27326 		cdb[4] = (char)0xff;
27327 		cdb[5] = (char)0xff;
27328 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27329 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27330 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
27331 		cdb[10] = 1;
27332 	} else {
27333 		/*
27334 		 * Note: A vendor specific command (0xDF) is being used her to
27335 		 * request a read of all subcodes.
27336 		 */
27337 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
27338 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
27339 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27340 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27341 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
27342 	}
27343 	com->uscsi_cdb	   = cdb;
27344 	com->uscsi_cdblen  = CDB_GROUP5;
27345 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
27346 	com->uscsi_buflen  = buflen;
27347 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27348 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
27349 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27350 	kmem_free(subcode, sizeof (struct cdrom_subcode));
27351 	kmem_free(com, sizeof (*com));
27352 	return (rval);
27353 }
27354 
27355 
27356 /*
27357  *    Function: sr_read_subchannel()
27358  *
27359  * Description: This routine is the driver entry point for handling CD-ROM
27360  *		ioctl requests to return the Q sub-channel data of the CD
27361  *		current position block. (CDROMSUBCHNL) The data includes the
27362  *		track number, index number, absolute CD-ROM address (LBA or MSF
27363  *		format per the user) , track relative CD-ROM address (LBA or MSF
27364  *		format per the user), control data and audio status.
27365  *
27366  *   Arguments: dev	- the device 'dev_t'
27367  *		data	- pointer to user provided cdrom sub-channel structure
27368  *		flag	- this argument is a pass through to ddi_copyxxx()
27369  *		          directly from the mode argument of ioctl().
27370  *
27371  * Return Code: the code returned by sd_send_scsi_cmd()
27372  *		EFAULT if ddi_copyxxx() fails
27373  *		ENXIO if fail ddi_get_soft_state
27374  *		EINVAL if data pointer is NULL
27375  */
27376 
27377 static int
27378 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
27379 {
27380 	struct sd_lun		*un;
27381 	struct uscsi_cmd	*com;
27382 	struct cdrom_subchnl	subchanel;
27383 	struct cdrom_subchnl	*subchnl = &subchanel;
27384 	char			cdb[CDB_GROUP1];
27385 	caddr_t			buffer;
27386 	int			rval;
27387 
27388 	if (data == NULL) {
27389 		return (EINVAL);
27390 	}
27391 
27392 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27393 	    (un->un_state == SD_STATE_OFFLINE)) {
27394 		return (ENXIO);
27395 	}
27396 
27397 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
27398 		return (EFAULT);
27399 	}
27400 
27401 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
27402 	bzero(cdb, CDB_GROUP1);
27403 	cdb[0] = SCMD_READ_SUBCHANNEL;
27404 	/* Set the MSF bit based on the user requested address format */
27405 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
27406 	/*
27407 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
27408 	 * returned
27409 	 */
27410 	cdb[2] = 0x40;
27411 	/*
27412 	 * Set byte 3 to specify the return data format. A value of 0x01
27413 	 * indicates that the CD-ROM current position should be returned.
27414 	 */
27415 	cdb[3] = 0x01;
27416 	cdb[8] = 0x10;
27417 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27418 	com->uscsi_cdb	   = cdb;
27419 	com->uscsi_cdblen  = CDB_GROUP1;
27420 	com->uscsi_bufaddr = buffer;
27421 	com->uscsi_buflen  = 16;
27422 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27423 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27424 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27425 	if (rval != 0) {
27426 		kmem_free(buffer, 16);
27427 		kmem_free(com, sizeof (*com));
27428 		return (rval);
27429 	}
27430 
27431 	/* Process the returned Q sub-channel data */
27432 	subchnl->cdsc_audiostatus = buffer[1];
27433 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
27434 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
27435 	subchnl->cdsc_trk	= buffer[6];
27436 	subchnl->cdsc_ind	= buffer[7];
27437 	if (subchnl->cdsc_format & CDROM_LBA) {
27438 		subchnl->cdsc_absaddr.lba =
27439 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27440 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27441 		subchnl->cdsc_reladdr.lba =
27442 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
27443 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
27444 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
27445 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
27446 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
27447 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
27448 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
27449 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
27450 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
27451 	} else {
27452 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
27453 		subchnl->cdsc_absaddr.msf.second = buffer[10];
27454 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
27455 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
27456 		subchnl->cdsc_reladdr.msf.second = buffer[14];
27457 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
27458 	}
27459 	kmem_free(buffer, 16);
27460 	kmem_free(com, sizeof (*com));
27461 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
27462 	    != 0) {
27463 		return (EFAULT);
27464 	}
27465 	return (rval);
27466 }
27467 
27468 
27469 /*
27470  *    Function: sr_read_tocentry()
27471  *
27472  * Description: This routine is the driver entry point for handling CD-ROM
27473  *		ioctl requests to read from the Table of Contents (TOC)
27474  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
27475  *		fields, the starting address (LBA or MSF format per the user)
27476  *		and the data mode if the user specified track is a data track.
27477  *
27478  *		Note: The READ HEADER (0x44) command used in this routine is
27479  *		obsolete per the SCSI MMC spec but still supported in the
27480  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27481  *		therefore the command is still implemented in this routine.
27482  *
27483  *   Arguments: dev	- the device 'dev_t'
27484  *		data	- pointer to user provided toc entry structure,
27485  *			  specifying the track # and the address format
27486  *			  (LBA or MSF).
27487  *		flag	- this argument is a pass through to ddi_copyxxx()
27488  *		          directly from the mode argument of ioctl().
27489  *
27490  * Return Code: the code returned by sd_send_scsi_cmd()
27491  *		EFAULT if ddi_copyxxx() fails
27492  *		ENXIO if fail ddi_get_soft_state
27493  *		EINVAL if data pointer is NULL
27494  */
27495 
27496 static int
27497 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
27498 {
27499 	struct sd_lun		*un = NULL;
27500 	struct uscsi_cmd	*com;
27501 	struct cdrom_tocentry	toc_entry;
27502 	struct cdrom_tocentry	*entry = &toc_entry;
27503 	caddr_t			buffer;
27504 	int			rval;
27505 	char			cdb[CDB_GROUP1];
27506 
27507 	if (data == NULL) {
27508 		return (EINVAL);
27509 	}
27510 
27511 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27512 	    (un->un_state == SD_STATE_OFFLINE)) {
27513 		return (ENXIO);
27514 	}
27515 
27516 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
27517 		return (EFAULT);
27518 	}
27519 
27520 	/* Validate the requested track and address format */
27521 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
27522 		return (EINVAL);
27523 	}
27524 
27525 	if (entry->cdte_track == 0) {
27526 		return (EINVAL);
27527 	}
27528 
27529 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
27530 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27531 	bzero(cdb, CDB_GROUP1);
27532 
27533 	cdb[0] = SCMD_READ_TOC;
27534 	/* Set the MSF bit based on the user requested address format  */
27535 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
27536 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27537 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
27538 	} else {
27539 		cdb[6] = entry->cdte_track;
27540 	}
27541 
27542 	/*
27543 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
27544 	 * (4 byte TOC response header + 8 byte track descriptor)
27545 	 */
27546 	cdb[8] = 12;
27547 	com->uscsi_cdb	   = cdb;
27548 	com->uscsi_cdblen  = CDB_GROUP1;
27549 	com->uscsi_bufaddr = buffer;
27550 	com->uscsi_buflen  = 0x0C;
27551 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
27552 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27553 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27554 	if (rval != 0) {
27555 		kmem_free(buffer, 12);
27556 		kmem_free(com, sizeof (*com));
27557 		return (rval);
27558 	}
27559 
27560 	/* Process the toc entry */
27561 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
27562 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
27563 	if (entry->cdte_format & CDROM_LBA) {
27564 		entry->cdte_addr.lba =
27565 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27566 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27567 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
27568 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
27569 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
27570 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
27571 		/*
27572 		 * Send a READ TOC command using the LBA address format to get
27573 		 * the LBA for the track requested so it can be used in the
27574 		 * READ HEADER request
27575 		 *
27576 		 * Note: The MSF bit of the READ HEADER command specifies the
27577 		 * output format. The block address specified in that command
27578 		 * must be in LBA format.
27579 		 */
27580 		cdb[1] = 0;
27581 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27582 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27583 		if (rval != 0) {
27584 			kmem_free(buffer, 12);
27585 			kmem_free(com, sizeof (*com));
27586 			return (rval);
27587 		}
27588 	} else {
27589 		entry->cdte_addr.msf.minute	= buffer[9];
27590 		entry->cdte_addr.msf.second	= buffer[10];
27591 		entry->cdte_addr.msf.frame	= buffer[11];
27592 		/*
27593 		 * Send a READ TOC command using the LBA address format to get
27594 		 * the LBA for the track requested so it can be used in the
27595 		 * READ HEADER request
27596 		 *
27597 		 * Note: The MSF bit of the READ HEADER command specifies the
27598 		 * output format. The block address specified in that command
27599 		 * must be in LBA format.
27600 		 */
27601 		cdb[1] = 0;
27602 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27603 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27604 		if (rval != 0) {
27605 			kmem_free(buffer, 12);
27606 			kmem_free(com, sizeof (*com));
27607 			return (rval);
27608 		}
27609 	}
27610 
27611 	/*
27612 	 * Build and send the READ HEADER command to determine the data mode of
27613 	 * the user specified track.
27614 	 */
27615 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
27616 	    (entry->cdte_track != CDROM_LEADOUT)) {
27617 		bzero(cdb, CDB_GROUP1);
27618 		cdb[0] = SCMD_READ_HEADER;
27619 		cdb[2] = buffer[8];
27620 		cdb[3] = buffer[9];
27621 		cdb[4] = buffer[10];
27622 		cdb[5] = buffer[11];
27623 		cdb[8] = 0x08;
27624 		com->uscsi_buflen = 0x08;
27625 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27626 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27627 		if (rval == 0) {
27628 			entry->cdte_datamode = buffer[0];
27629 		} else {
27630 			/*
27631 			 * READ HEADER command failed, since this is
27632 			 * obsoleted in one spec, its better to return
27633 			 * -1 for an invlid track so that we can still
27634 			 * recieve the rest of the TOC data.
27635 			 */
27636 			entry->cdte_datamode = (uchar_t)-1;
27637 		}
27638 	} else {
27639 		entry->cdte_datamode = (uchar_t)-1;
27640 	}
27641 
27642 	kmem_free(buffer, 12);
27643 	kmem_free(com, sizeof (*com));
27644 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
27645 		return (EFAULT);
27646 
27647 	return (rval);
27648 }
27649 
27650 
27651 /*
27652  *    Function: sr_read_tochdr()
27653  *
27654  * Description: This routine is the driver entry point for handling CD-ROM
27655  * 		ioctl requests to read the Table of Contents (TOC) header
27656  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
27657  *		and ending track numbers
27658  *
27659  *   Arguments: dev	- the device 'dev_t'
27660  *		data	- pointer to user provided toc header structure,
27661  *			  specifying the starting and ending track numbers.
27662  *		flag	- this argument is a pass through to ddi_copyxxx()
27663  *			  directly from the mode argument of ioctl().
27664  *
27665  * Return Code: the code returned by sd_send_scsi_cmd()
27666  *		EFAULT if ddi_copyxxx() fails
27667  *		ENXIO if fail ddi_get_soft_state
27668  *		EINVAL if data pointer is NULL
27669  */
27670 
27671 static int
27672 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
27673 {
27674 	struct sd_lun		*un;
27675 	struct uscsi_cmd	*com;
27676 	struct cdrom_tochdr	toc_header;
27677 	struct cdrom_tochdr	*hdr = &toc_header;
27678 	char			cdb[CDB_GROUP1];
27679 	int			rval;
27680 	caddr_t			buffer;
27681 
27682 	if (data == NULL) {
27683 		return (EINVAL);
27684 	}
27685 
27686 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27687 	    (un->un_state == SD_STATE_OFFLINE)) {
27688 		return (ENXIO);
27689 	}
27690 
27691 	buffer = kmem_zalloc(4, KM_SLEEP);
27692 	bzero(cdb, CDB_GROUP1);
27693 	cdb[0] = SCMD_READ_TOC;
27694 	/*
27695 	 * Specifying a track number of 0x00 in the READ TOC command indicates
27696 	 * that the TOC header should be returned
27697 	 */
27698 	cdb[6] = 0x00;
27699 	/*
27700 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
27701 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
27702 	 */
27703 	cdb[8] = 0x04;
27704 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27705 	com->uscsi_cdb	   = cdb;
27706 	com->uscsi_cdblen  = CDB_GROUP1;
27707 	com->uscsi_bufaddr = buffer;
27708 	com->uscsi_buflen  = 0x04;
27709 	com->uscsi_timeout = 300;
27710 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27711 
27712 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27713 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27714 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27715 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
27716 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
27717 	} else {
27718 		hdr->cdth_trk0 = buffer[2];
27719 		hdr->cdth_trk1 = buffer[3];
27720 	}
27721 	kmem_free(buffer, 4);
27722 	kmem_free(com, sizeof (*com));
27723 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
27724 		return (EFAULT);
27725 	}
27726 	return (rval);
27727 }
27728 
27729 
27730 /*
27731  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
27732  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
27733  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
27734  * digital audio and extended architecture digital audio. These modes are
27735  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
27736  * MMC specs.
27737  *
27738  * In addition to support for the various data formats these routines also
27739  * include support for devices that implement only the direct access READ
27740  * commands (0x08, 0x28), devices that implement the READ_CD commands
27741  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
27742  * READ CDXA commands (0xD8, 0xDB)
27743  */
27744 
27745 /*
27746  *    Function: sr_read_mode1()
27747  *
27748  * Description: This routine is the driver entry point for handling CD-ROM
27749  *		ioctl read mode1 requests (CDROMREADMODE1).
27750  *
27751  *   Arguments: dev	- the device 'dev_t'
27752  *		data	- pointer to user provided cd read structure specifying
27753  *			  the lba buffer address and length.
27754  *		flag	- this argument is a pass through to ddi_copyxxx()
27755  *			  directly from the mode argument of ioctl().
27756  *
27757  * Return Code: the code returned by sd_send_scsi_cmd()
27758  *		EFAULT if ddi_copyxxx() fails
27759  *		ENXIO if fail ddi_get_soft_state
27760  *		EINVAL if data pointer is NULL
27761  */
27762 
27763 static int
27764 sr_read_mode1(dev_t dev, caddr_t data, int flag)
27765 {
27766 	struct sd_lun		*un;
27767 	struct cdrom_read	mode1_struct;
27768 	struct cdrom_read	*mode1 = &mode1_struct;
27769 	int			rval;
27770 #ifdef _MULTI_DATAMODEL
27771 	/* To support ILP32 applications in an LP64 world */
27772 	struct cdrom_read32	cdrom_read32;
27773 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
27774 #endif /* _MULTI_DATAMODEL */
27775 
27776 	if (data == NULL) {
27777 		return (EINVAL);
27778 	}
27779 
27780 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27781 	    (un->un_state == SD_STATE_OFFLINE)) {
27782 		return (ENXIO);
27783 	}
27784 
27785 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27786 	    "sd_read_mode1: entry: un:0x%p\n", un);
27787 
27788 #ifdef _MULTI_DATAMODEL
27789 	switch (ddi_model_convert_from(flag & FMODELS)) {
27790 	case DDI_MODEL_ILP32:
27791 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
27792 			return (EFAULT);
27793 		}
27794 		/* Convert the ILP32 uscsi data from the application to LP64 */
27795 		cdrom_read32tocdrom_read(cdrd32, mode1);
27796 		break;
27797 	case DDI_MODEL_NONE:
27798 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
27799 			return (EFAULT);
27800 		}
27801 	}
27802 #else /* ! _MULTI_DATAMODEL */
27803 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
27804 		return (EFAULT);
27805 	}
27806 #endif /* _MULTI_DATAMODEL */
27807 
27808 	rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr,
27809 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
27810 
27811 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27812 	    "sd_read_mode1: exit: un:0x%p\n", un);
27813 
27814 	return (rval);
27815 }
27816 
27817 
27818 /*
27819  *    Function: sr_read_cd_mode2()
27820  *
27821  * Description: This routine is the driver entry point for handling CD-ROM
27822  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
27823  *		support the READ CD (0xBE) command or the 1st generation
27824  *		READ CD (0xD4) command.
27825  *
27826  *   Arguments: dev	- the device 'dev_t'
27827  *		data	- pointer to user provided cd read structure specifying
27828  *			  the lba buffer address and length.
27829  *		flag	- this argument is a pass through to ddi_copyxxx()
27830  *			  directly from the mode argument of ioctl().
27831  *
27832  * Return Code: the code returned by sd_send_scsi_cmd()
27833  *		EFAULT if ddi_copyxxx() fails
27834  *		ENXIO if fail ddi_get_soft_state
27835  *		EINVAL if data pointer is NULL
27836  */
27837 
27838 static int
27839 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
27840 {
27841 	struct sd_lun		*un;
27842 	struct uscsi_cmd	*com;
27843 	struct cdrom_read	mode2_struct;
27844 	struct cdrom_read	*mode2 = &mode2_struct;
27845 	uchar_t			cdb[CDB_GROUP5];
27846 	int			nblocks;
27847 	int			rval;
27848 #ifdef _MULTI_DATAMODEL
27849 	/*  To support ILP32 applications in an LP64 world */
27850 	struct cdrom_read32	cdrom_read32;
27851 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
27852 #endif /* _MULTI_DATAMODEL */
27853 
27854 	if (data == NULL) {
27855 		return (EINVAL);
27856 	}
27857 
27858 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27859 	    (un->un_state == SD_STATE_OFFLINE)) {
27860 		return (ENXIO);
27861 	}
27862 
27863 #ifdef _MULTI_DATAMODEL
27864 	switch (ddi_model_convert_from(flag & FMODELS)) {
27865 	case DDI_MODEL_ILP32:
27866 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
27867 			return (EFAULT);
27868 		}
27869 		/* Convert the ILP32 uscsi data from the application to LP64 */
27870 		cdrom_read32tocdrom_read(cdrd32, mode2);
27871 		break;
27872 	case DDI_MODEL_NONE:
27873 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
27874 			return (EFAULT);
27875 		}
27876 		break;
27877 	}
27878 
27879 #else /* ! _MULTI_DATAMODEL */
27880 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
27881 		return (EFAULT);
27882 	}
27883 #endif /* _MULTI_DATAMODEL */
27884 
27885 	bzero(cdb, sizeof (cdb));
27886 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
27887 		/* Read command supported by 1st generation atapi drives */
27888 		cdb[0] = SCMD_READ_CDD4;
27889 	} else {
27890 		/* Universal CD Access Command */
27891 		cdb[0] = SCMD_READ_CD;
27892 	}
27893 
27894 	/*
27895 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
27896 	 */
27897 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
27898 
27899 	/* set the start address */
27900 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
27901 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
27902 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
27903 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
27904 
27905 	/* set the transfer length */
27906 	nblocks = mode2->cdread_buflen / 2336;
27907 	cdb[6] = (uchar_t)(nblocks >> 16);
27908 	cdb[7] = (uchar_t)(nblocks >> 8);
27909 	cdb[8] = (uchar_t)nblocks;
27910 
27911 	/* set the filter bits */
27912 	cdb[9] = CDROM_READ_CD_USERDATA;
27913 
27914 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27915 	com->uscsi_cdb = (caddr_t)cdb;
27916 	com->uscsi_cdblen = sizeof (cdb);
27917 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
27918 	com->uscsi_buflen = mode2->cdread_buflen;
27919 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27920 
27921 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
27922 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27923 	kmem_free(com, sizeof (*com));
27924 	return (rval);
27925 }
27926 
27927 
27928 /*
27929  *    Function: sr_read_mode2()
27930  *
27931  * Description: This routine is the driver entry point for handling CD-ROM
27932  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
27933  *		do not support the READ CD (0xBE) command.
27934  *
27935  *   Arguments: dev	- the device 'dev_t'
27936  *		data	- pointer to user provided cd read structure specifying
27937  *			  the lba buffer address and length.
27938  *		flag	- this argument is a pass through to ddi_copyxxx()
27939  *			  directly from the mode argument of ioctl().
27940  *
27941  * Return Code: the code returned by sd_send_scsi_cmd()
27942  *		EFAULT if ddi_copyxxx() fails
27943  *		ENXIO if fail ddi_get_soft_state
27944  *		EINVAL if data pointer is NULL
27945  *		EIO if fail to reset block size
27946  *		EAGAIN if commands are in progress in the driver
27947  */
27948 
27949 static int
27950 sr_read_mode2(dev_t dev, caddr_t data, int flag)
27951 {
27952 	struct sd_lun		*un;
27953 	struct cdrom_read	mode2_struct;
27954 	struct cdrom_read	*mode2 = &mode2_struct;
27955 	int			rval;
27956 	uint32_t		restore_blksize;
27957 	struct uscsi_cmd	*com;
27958 	uchar_t			cdb[CDB_GROUP0];
27959 	int			nblocks;
27960 
27961 #ifdef _MULTI_DATAMODEL
27962 	/* To support ILP32 applications in an LP64 world */
27963 	struct cdrom_read32	cdrom_read32;
27964 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
27965 #endif /* _MULTI_DATAMODEL */
27966 
27967 	if (data == NULL) {
27968 		return (EINVAL);
27969 	}
27970 
27971 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27972 	    (un->un_state == SD_STATE_OFFLINE)) {
27973 		return (ENXIO);
27974 	}
27975 
27976 	/*
27977 	 * Because this routine will update the device and driver block size
27978 	 * being used we want to make sure there are no commands in progress.
27979 	 * If commands are in progress the user will have to try again.
27980 	 *
27981 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
27982 	 * in sdioctl to protect commands from sdioctl through to the top of
27983 	 * sd_uscsi_strategy. See sdioctl for details.
27984 	 */
27985 	mutex_enter(SD_MUTEX(un));
27986 	if (un->un_ncmds_in_driver != 1) {
27987 		mutex_exit(SD_MUTEX(un));
27988 		return (EAGAIN);
27989 	}
27990 	mutex_exit(SD_MUTEX(un));
27991 
27992 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
27993 	    "sd_read_mode2: entry: un:0x%p\n", un);
27994 
27995 #ifdef _MULTI_DATAMODEL
27996 	switch (ddi_model_convert_from(flag & FMODELS)) {
27997 	case DDI_MODEL_ILP32:
27998 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
27999 			return (EFAULT);
28000 		}
28001 		/* Convert the ILP32 uscsi data from the application to LP64 */
28002 		cdrom_read32tocdrom_read(cdrd32, mode2);
28003 		break;
28004 	case DDI_MODEL_NONE:
28005 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28006 			return (EFAULT);
28007 		}
28008 		break;
28009 	}
28010 #else /* ! _MULTI_DATAMODEL */
28011 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
28012 		return (EFAULT);
28013 	}
28014 #endif /* _MULTI_DATAMODEL */
28015 
28016 	/* Store the current target block size for restoration later */
28017 	restore_blksize = un->un_tgt_blocksize;
28018 
28019 	/* Change the device and soft state target block size to 2336 */
28020 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
28021 		rval = EIO;
28022 		goto done;
28023 	}
28024 
28025 
28026 	bzero(cdb, sizeof (cdb));
28027 
28028 	/* set READ operation */
28029 	cdb[0] = SCMD_READ;
28030 
28031 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
28032 	mode2->cdread_lba >>= 2;
28033 
28034 	/* set the start address */
28035 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
28036 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28037 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
28038 
28039 	/* set the transfer length */
28040 	nblocks = mode2->cdread_buflen / 2336;
28041 	cdb[4] = (uchar_t)nblocks & 0xFF;
28042 
28043 	/* build command */
28044 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28045 	com->uscsi_cdb = (caddr_t)cdb;
28046 	com->uscsi_cdblen = sizeof (cdb);
28047 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28048 	com->uscsi_buflen = mode2->cdread_buflen;
28049 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28050 
28051 	/*
28052 	 * Issue SCSI command with user space address for read buffer.
28053 	 *
28054 	 * This sends the command through main channel in the driver.
28055 	 *
28056 	 * Since this is accessed via an IOCTL call, we go through the
28057 	 * standard path, so that if the device was powered down, then
28058 	 * it would be 'awakened' to handle the command.
28059 	 */
28060 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28061 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28062 
28063 	kmem_free(com, sizeof (*com));
28064 
28065 	/* Restore the device and soft state target block size */
28066 	if (sr_sector_mode(dev, restore_blksize) != 0) {
28067 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28068 		    "can't do switch back to mode 1\n");
28069 		/*
28070 		 * If sd_send_scsi_READ succeeded we still need to report
28071 		 * an error because we failed to reset the block size
28072 		 */
28073 		if (rval == 0) {
28074 			rval = EIO;
28075 		}
28076 	}
28077 
28078 done:
28079 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28080 	    "sd_read_mode2: exit: un:0x%p\n", un);
28081 
28082 	return (rval);
28083 }
28084 
28085 
28086 /*
28087  *    Function: sr_sector_mode()
28088  *
28089  * Description: This utility function is used by sr_read_mode2 to set the target
28090  *		block size based on the user specified size. This is a legacy
28091  *		implementation based upon a vendor specific mode page
28092  *
28093  *   Arguments: dev	- the device 'dev_t'
28094  *		data	- flag indicating if block size is being set to 2336 or
28095  *			  512.
28096  *
28097  * Return Code: the code returned by sd_send_scsi_cmd()
28098  *		EFAULT if ddi_copyxxx() fails
28099  *		ENXIO if fail ddi_get_soft_state
28100  *		EINVAL if data pointer is NULL
28101  */
28102 
28103 static int
28104 sr_sector_mode(dev_t dev, uint32_t blksize)
28105 {
28106 	struct sd_lun	*un;
28107 	uchar_t		*sense;
28108 	uchar_t		*select;
28109 	int		rval;
28110 
28111 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28112 	    (un->un_state == SD_STATE_OFFLINE)) {
28113 		return (ENXIO);
28114 	}
28115 
28116 	sense = kmem_zalloc(20, KM_SLEEP);
28117 
28118 	/* Note: This is a vendor specific mode page (0x81) */
28119 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81,
28120 	    SD_PATH_STANDARD)) != 0) {
28121 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28122 		    "sr_sector_mode: Mode Sense failed\n");
28123 		kmem_free(sense, 20);
28124 		return (rval);
28125 	}
28126 	select = kmem_zalloc(20, KM_SLEEP);
28127 	select[3] = 0x08;
28128 	select[10] = ((blksize >> 8) & 0xff);
28129 	select[11] = (blksize & 0xff);
28130 	select[12] = 0x01;
28131 	select[13] = 0x06;
28132 	select[14] = sense[14];
28133 	select[15] = sense[15];
28134 	if (blksize == SD_MODE2_BLKSIZE) {
28135 		select[14] |= 0x01;
28136 	}
28137 
28138 	if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20,
28139 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
28140 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28141 		    "sr_sector_mode: Mode Select failed\n");
28142 	} else {
28143 		/*
28144 		 * Only update the softstate block size if we successfully
28145 		 * changed the device block mode.
28146 		 */
28147 		mutex_enter(SD_MUTEX(un));
28148 		sd_update_block_info(un, blksize, 0);
28149 		mutex_exit(SD_MUTEX(un));
28150 	}
28151 	kmem_free(sense, 20);
28152 	kmem_free(select, 20);
28153 	return (rval);
28154 }
28155 
28156 
28157 /*
28158  *    Function: sr_read_cdda()
28159  *
28160  * Description: This routine is the driver entry point for handling CD-ROM
28161  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
28162  *		the target supports CDDA these requests are handled via a vendor
28163  *		specific command (0xD8) If the target does not support CDDA
28164  *		these requests are handled via the READ CD command (0xBE).
28165  *
28166  *   Arguments: dev	- the device 'dev_t'
28167  *		data	- pointer to user provided CD-DA structure specifying
28168  *			  the track starting address, transfer length, and
28169  *			  subcode options.
28170  *		flag	- this argument is a pass through to ddi_copyxxx()
28171  *			  directly from the mode argument of ioctl().
28172  *
28173  * Return Code: the code returned by sd_send_scsi_cmd()
28174  *		EFAULT if ddi_copyxxx() fails
28175  *		ENXIO if fail ddi_get_soft_state
28176  *		EINVAL if invalid arguments are provided
28177  *		ENOTTY
28178  */
28179 
28180 static int
28181 sr_read_cdda(dev_t dev, caddr_t data, int flag)
28182 {
28183 	struct sd_lun			*un;
28184 	struct uscsi_cmd		*com;
28185 	struct cdrom_cdda		*cdda;
28186 	int				rval;
28187 	size_t				buflen;
28188 	char				cdb[CDB_GROUP5];
28189 
28190 #ifdef _MULTI_DATAMODEL
28191 	/* To support ILP32 applications in an LP64 world */
28192 	struct cdrom_cdda32	cdrom_cdda32;
28193 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
28194 #endif /* _MULTI_DATAMODEL */
28195 
28196 	if (data == NULL) {
28197 		return (EINVAL);
28198 	}
28199 
28200 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28201 		return (ENXIO);
28202 	}
28203 
28204 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
28205 
28206 #ifdef _MULTI_DATAMODEL
28207 	switch (ddi_model_convert_from(flag & FMODELS)) {
28208 	case DDI_MODEL_ILP32:
28209 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
28210 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28211 			    "sr_read_cdda: ddi_copyin Failed\n");
28212 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28213 			return (EFAULT);
28214 		}
28215 		/* Convert the ILP32 uscsi data from the application to LP64 */
28216 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
28217 		break;
28218 	case DDI_MODEL_NONE:
28219 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28220 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28221 			    "sr_read_cdda: ddi_copyin Failed\n");
28222 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28223 			return (EFAULT);
28224 		}
28225 		break;
28226 	}
28227 #else /* ! _MULTI_DATAMODEL */
28228 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28229 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28230 		    "sr_read_cdda: ddi_copyin Failed\n");
28231 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28232 		return (EFAULT);
28233 	}
28234 #endif /* _MULTI_DATAMODEL */
28235 
28236 	/*
28237 	 * Since MMC-2 expects max 3 bytes for length, check if the
28238 	 * length input is greater than 3 bytes
28239 	 */
28240 	if ((cdda->cdda_length & 0xFF000000) != 0) {
28241 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
28242 		    "cdrom transfer length too large: %d (limit %d)\n",
28243 		    cdda->cdda_length, 0xFFFFFF);
28244 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28245 		return (EINVAL);
28246 	}
28247 
28248 	switch (cdda->cdda_subcode) {
28249 	case CDROM_DA_NO_SUBCODE:
28250 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
28251 		break;
28252 	case CDROM_DA_SUBQ:
28253 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
28254 		break;
28255 	case CDROM_DA_ALL_SUBCODE:
28256 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
28257 		break;
28258 	case CDROM_DA_SUBCODE_ONLY:
28259 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
28260 		break;
28261 	default:
28262 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28263 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
28264 		    cdda->cdda_subcode);
28265 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28266 		return (EINVAL);
28267 	}
28268 
28269 	/* Build and send the command */
28270 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28271 	bzero(cdb, CDB_GROUP5);
28272 
28273 	if (un->un_f_cfg_cdda == TRUE) {
28274 		cdb[0] = (char)SCMD_READ_CD;
28275 		cdb[1] = 0x04;
28276 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28277 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28278 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28279 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28280 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28281 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28282 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
28283 		cdb[9] = 0x10;
28284 		switch (cdda->cdda_subcode) {
28285 		case CDROM_DA_NO_SUBCODE :
28286 			cdb[10] = 0x0;
28287 			break;
28288 		case CDROM_DA_SUBQ :
28289 			cdb[10] = 0x2;
28290 			break;
28291 		case CDROM_DA_ALL_SUBCODE :
28292 			cdb[10] = 0x1;
28293 			break;
28294 		case CDROM_DA_SUBCODE_ONLY :
28295 			/* FALLTHROUGH */
28296 		default :
28297 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28298 			kmem_free(com, sizeof (*com));
28299 			return (ENOTTY);
28300 		}
28301 	} else {
28302 		cdb[0] = (char)SCMD_READ_CDDA;
28303 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28304 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28305 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28306 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28307 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
28308 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28309 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28310 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
28311 		cdb[10] = cdda->cdda_subcode;
28312 	}
28313 
28314 	com->uscsi_cdb = cdb;
28315 	com->uscsi_cdblen = CDB_GROUP5;
28316 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
28317 	com->uscsi_buflen = buflen;
28318 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28319 
28320 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28321 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28322 
28323 	kmem_free(cdda, sizeof (struct cdrom_cdda));
28324 	kmem_free(com, sizeof (*com));
28325 	return (rval);
28326 }
28327 
28328 
28329 /*
28330  *    Function: sr_read_cdxa()
28331  *
28332  * Description: This routine is the driver entry point for handling CD-ROM
28333  *		ioctl requests to return CD-XA (Extended Architecture) data.
28334  *		(CDROMCDXA).
28335  *
28336  *   Arguments: dev	- the device 'dev_t'
28337  *		data	- pointer to user provided CD-XA structure specifying
28338  *			  the data starting address, transfer length, and format
28339  *		flag	- this argument is a pass through to ddi_copyxxx()
28340  *			  directly from the mode argument of ioctl().
28341  *
28342  * Return Code: the code returned by sd_send_scsi_cmd()
28343  *		EFAULT if ddi_copyxxx() fails
28344  *		ENXIO if fail ddi_get_soft_state
28345  *		EINVAL if data pointer is NULL
28346  */
28347 
28348 static int
28349 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
28350 {
28351 	struct sd_lun		*un;
28352 	struct uscsi_cmd	*com;
28353 	struct cdrom_cdxa	*cdxa;
28354 	int			rval;
28355 	size_t			buflen;
28356 	char			cdb[CDB_GROUP5];
28357 	uchar_t			read_flags;
28358 
28359 #ifdef _MULTI_DATAMODEL
28360 	/* To support ILP32 applications in an LP64 world */
28361 	struct cdrom_cdxa32		cdrom_cdxa32;
28362 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
28363 #endif /* _MULTI_DATAMODEL */
28364 
28365 	if (data == NULL) {
28366 		return (EINVAL);
28367 	}
28368 
28369 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28370 		return (ENXIO);
28371 	}
28372 
28373 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
28374 
28375 #ifdef _MULTI_DATAMODEL
28376 	switch (ddi_model_convert_from(flag & FMODELS)) {
28377 	case DDI_MODEL_ILP32:
28378 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
28379 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28380 			return (EFAULT);
28381 		}
28382 		/*
28383 		 * Convert the ILP32 uscsi data from the
28384 		 * application to LP64 for internal use.
28385 		 */
28386 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
28387 		break;
28388 	case DDI_MODEL_NONE:
28389 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28390 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28391 			return (EFAULT);
28392 		}
28393 		break;
28394 	}
28395 #else /* ! _MULTI_DATAMODEL */
28396 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28397 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28398 		return (EFAULT);
28399 	}
28400 #endif /* _MULTI_DATAMODEL */
28401 
28402 	/*
28403 	 * Since MMC-2 expects max 3 bytes for length, check if the
28404 	 * length input is greater than 3 bytes
28405 	 */
28406 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
28407 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
28408 		    "cdrom transfer length too large: %d (limit %d)\n",
28409 		    cdxa->cdxa_length, 0xFFFFFF);
28410 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28411 		return (EINVAL);
28412 	}
28413 
28414 	switch (cdxa->cdxa_format) {
28415 	case CDROM_XA_DATA:
28416 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
28417 		read_flags = 0x10;
28418 		break;
28419 	case CDROM_XA_SECTOR_DATA:
28420 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
28421 		read_flags = 0xf8;
28422 		break;
28423 	case CDROM_XA_DATA_W_ERROR:
28424 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
28425 		read_flags = 0xfc;
28426 		break;
28427 	default:
28428 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28429 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
28430 		    cdxa->cdxa_format);
28431 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28432 		return (EINVAL);
28433 	}
28434 
28435 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28436 	bzero(cdb, CDB_GROUP5);
28437 	if (un->un_f_mmc_cap == TRUE) {
28438 		cdb[0] = (char)SCMD_READ_CD;
28439 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28440 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28441 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28442 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28443 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28444 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28445 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
28446 		cdb[9] = (char)read_flags;
28447 	} else {
28448 		/*
28449 		 * Note: A vendor specific command (0xDB) is being used her to
28450 		 * request a read of all subcodes.
28451 		 */
28452 		cdb[0] = (char)SCMD_READ_CDXA;
28453 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28454 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28455 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28456 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28457 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
28458 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28459 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28460 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
28461 		cdb[10] = cdxa->cdxa_format;
28462 	}
28463 	com->uscsi_cdb	   = cdb;
28464 	com->uscsi_cdblen  = CDB_GROUP5;
28465 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
28466 	com->uscsi_buflen  = buflen;
28467 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28468 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28469 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28470 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28471 	kmem_free(com, sizeof (*com));
28472 	return (rval);
28473 }
28474 
28475 
28476 /*
28477  *    Function: sr_eject()
28478  *
28479  * Description: This routine is the driver entry point for handling CD-ROM
28480  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
28481  *
28482  *   Arguments: dev	- the device 'dev_t'
28483  *
28484  * Return Code: the code returned by sd_send_scsi_cmd()
28485  */
28486 
28487 static int
28488 sr_eject(dev_t dev)
28489 {
28490 	struct sd_lun	*un;
28491 	int		rval;
28492 
28493 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28494 	    (un->un_state == SD_STATE_OFFLINE)) {
28495 		return (ENXIO);
28496 	}
28497 	if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
28498 	    SD_PATH_STANDARD)) != 0) {
28499 		return (rval);
28500 	}
28501 
28502 	rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT,
28503 	    SD_PATH_STANDARD);
28504 
28505 	if (rval == 0) {
28506 		mutex_enter(SD_MUTEX(un));
28507 		sr_ejected(un);
28508 		un->un_mediastate = DKIO_EJECTED;
28509 		cv_broadcast(&un->un_state_cv);
28510 		mutex_exit(SD_MUTEX(un));
28511 	}
28512 	return (rval);
28513 }
28514 
28515 
28516 /*
28517  *    Function: sr_ejected()
28518  *
28519  * Description: This routine updates the soft state structure to invalidate the
28520  *		geometry information after the media has been ejected or a
28521  *		media eject has been detected.
28522  *
28523  *   Arguments: un - driver soft state (unit) structure
28524  */
28525 
28526 static void
28527 sr_ejected(struct sd_lun *un)
28528 {
28529 	struct sd_errstats *stp;
28530 
28531 	ASSERT(un != NULL);
28532 	ASSERT(mutex_owned(SD_MUTEX(un)));
28533 
28534 	un->un_f_blockcount_is_valid	= FALSE;
28535 	un->un_f_tgt_blocksize_is_valid	= FALSE;
28536 	un->un_f_geometry_is_valid	= FALSE;
28537 
28538 	if (un->un_errstats != NULL) {
28539 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
28540 		stp->sd_capacity.value.ui64 = 0;
28541 	}
28542 }
28543 
28544 
28545 /*
28546  *    Function: sr_check_wp()
28547  *
28548  * Description: This routine checks the write protection of a removable media
28549  *		disk via the write protect bit of the Mode Page Header device
28550  *		specific field.  This routine has been implemented to use the
28551  *		error recovery mode page for all device types.
28552  *		Note: In the future use a sd_send_scsi_MODE_SENSE() routine
28553  *
28554  *   Arguments: dev		- the device 'dev_t'
28555  *
28556  * Return Code: int indicating if the device is write protected (1) or not (0)
28557  *
28558  *     Context: Kernel thread.
28559  *
28560  */
28561 
28562 static int
28563 sr_check_wp(dev_t dev)
28564 {
28565 	struct sd_lun	*un;
28566 	uchar_t		device_specific;
28567 	uchar_t		*sense;
28568 	int		hdrlen;
28569 	int		rval;
28570 	int		retry_flag = FALSE;
28571 
28572 	/*
28573 	 * Note: The return codes for this routine should be reworked to
28574 	 * properly handle the case of a NULL softstate.
28575 	 */
28576 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28577 		return (FALSE);
28578 	}
28579 
28580 	if (un->un_f_cfg_is_atapi == TRUE) {
28581 		retry_flag = TRUE;
28582 	}
28583 
28584 retry:
28585 	if (un->un_f_cfg_is_atapi == TRUE) {
28586 		/*
28587 		 * The mode page contents are not required; set the allocation
28588 		 * length for the mode page header only
28589 		 */
28590 		hdrlen = MODE_HEADER_LENGTH_GRP2;
28591 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28592 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen,
28593 		    MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
28594 		device_specific =
28595 		    ((struct mode_header_grp2 *)sense)->device_specific;
28596 	} else {
28597 		hdrlen = MODE_HEADER_LENGTH;
28598 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28599 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen,
28600 		    MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
28601 		device_specific =
28602 		    ((struct mode_header *)sense)->device_specific;
28603 	}
28604 
28605 	if (rval != 0) {
28606 		if ((un->un_f_cfg_is_atapi == TRUE) && (retry_flag)) {
28607 			/*
28608 			 * For an Atapi Zip drive, observed the drive
28609 			 * reporting check condition for the first attempt.
28610 			 * Sense data indicating power on or bus device/reset.
28611 			 * Hence in case of failure need to try at least once
28612 			 * for Atapi devices.
28613 			 */
28614 			retry_flag = FALSE;
28615 			kmem_free(sense, hdrlen);
28616 			goto retry;
28617 		} else {
28618 			/*
28619 			 * Write protect mode sense failed; not all disks
28620 			 * understand this query. Return FALSE assuming that
28621 			 * these devices are not writable.
28622 			 */
28623 			rval = FALSE;
28624 		}
28625 	} else {
28626 		if (device_specific & WRITE_PROTECT) {
28627 			rval = TRUE;
28628 		} else {
28629 			rval = FALSE;
28630 		}
28631 	}
28632 	kmem_free(sense, hdrlen);
28633 	return (rval);
28634 }
28635 
28636 
28637 /*
28638  *    Function: sr_volume_ctrl()
28639  *
28640  * Description: This routine is the driver entry point for handling CD-ROM
28641  *		audio output volume ioctl requests. (CDROMVOLCTRL)
28642  *
28643  *   Arguments: dev	- the device 'dev_t'
28644  *		data	- pointer to user audio volume control structure
28645  *		flag	- this argument is a pass through to ddi_copyxxx()
28646  *			  directly from the mode argument of ioctl().
28647  *
28648  * Return Code: the code returned by sd_send_scsi_cmd()
28649  *		EFAULT if ddi_copyxxx() fails
28650  *		ENXIO if fail ddi_get_soft_state
28651  *		EINVAL if data pointer is NULL
28652  *
28653  */
28654 
28655 static int
28656 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
28657 {
28658 	struct sd_lun		*un;
28659 	struct cdrom_volctrl    volume;
28660 	struct cdrom_volctrl    *vol = &volume;
28661 	uchar_t			*sense_page;
28662 	uchar_t			*select_page;
28663 	uchar_t			*sense;
28664 	uchar_t			*select;
28665 	int			sense_buflen;
28666 	int			select_buflen;
28667 	int			rval;
28668 
28669 	if (data == NULL) {
28670 		return (EINVAL);
28671 	}
28672 
28673 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28674 	    (un->un_state == SD_STATE_OFFLINE)) {
28675 		return (ENXIO);
28676 	}
28677 
28678 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
28679 		return (EFAULT);
28680 	}
28681 
28682 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
28683 		struct mode_header_grp2		*sense_mhp;
28684 		struct mode_header_grp2		*select_mhp;
28685 		int				bd_len;
28686 
28687 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
28688 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
28689 		    MODEPAGE_AUDIO_CTRL_LEN;
28690 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
28691 		select = kmem_zalloc(select_buflen, KM_SLEEP);
28692 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
28693 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
28694 		    SD_PATH_STANDARD)) != 0) {
28695 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28696 			    "sr_volume_ctrl: Mode Sense Failed\n");
28697 			kmem_free(sense, sense_buflen);
28698 			kmem_free(select, select_buflen);
28699 			return (rval);
28700 		}
28701 		sense_mhp = (struct mode_header_grp2 *)sense;
28702 		select_mhp = (struct mode_header_grp2 *)select;
28703 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
28704 		    sense_mhp->bdesc_length_lo;
28705 		if (bd_len > MODE_BLK_DESC_LENGTH) {
28706 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28707 			    "sr_volume_ctrl: Mode Sense returned invalid "
28708 			    "block descriptor length\n");
28709 			kmem_free(sense, sense_buflen);
28710 			kmem_free(select, select_buflen);
28711 			return (EIO);
28712 		}
28713 		sense_page = (uchar_t *)
28714 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
28715 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
28716 		select_mhp->length_msb = 0;
28717 		select_mhp->length_lsb = 0;
28718 		select_mhp->bdesc_length_hi = 0;
28719 		select_mhp->bdesc_length_lo = 0;
28720 	} else {
28721 		struct mode_header		*sense_mhp, *select_mhp;
28722 
28723 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
28724 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
28725 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
28726 		select = kmem_zalloc(select_buflen, KM_SLEEP);
28727 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
28728 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
28729 		    SD_PATH_STANDARD)) != 0) {
28730 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28731 			    "sr_volume_ctrl: Mode Sense Failed\n");
28732 			kmem_free(sense, sense_buflen);
28733 			kmem_free(select, select_buflen);
28734 			return (rval);
28735 		}
28736 		sense_mhp  = (struct mode_header *)sense;
28737 		select_mhp = (struct mode_header *)select;
28738 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
28739 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28740 			    "sr_volume_ctrl: Mode Sense returned invalid "
28741 			    "block descriptor length\n");
28742 			kmem_free(sense, sense_buflen);
28743 			kmem_free(select, select_buflen);
28744 			return (EIO);
28745 		}
28746 		sense_page = (uchar_t *)
28747 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
28748 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
28749 		select_mhp->length = 0;
28750 		select_mhp->bdesc_length = 0;
28751 	}
28752 	/*
28753 	 * Note: An audio control data structure could be created and overlayed
28754 	 * on the following in place of the array indexing method implemented.
28755 	 */
28756 
28757 	/* Build the select data for the user volume data */
28758 	select_page[0] = MODEPAGE_AUDIO_CTRL;
28759 	select_page[1] = 0xE;
28760 	/* Set the immediate bit */
28761 	select_page[2] = 0x04;
28762 	/* Zero out reserved fields */
28763 	select_page[3] = 0x00;
28764 	select_page[4] = 0x00;
28765 	/* Return sense data for fields not to be modified */
28766 	select_page[5] = sense_page[5];
28767 	select_page[6] = sense_page[6];
28768 	select_page[7] = sense_page[7];
28769 	/* Set the user specified volume levels for channel 0 and 1 */
28770 	select_page[8] = 0x01;
28771 	select_page[9] = vol->channel0;
28772 	select_page[10] = 0x02;
28773 	select_page[11] = vol->channel1;
28774 	/* Channel 2 and 3 are currently unsupported so return the sense data */
28775 	select_page[12] = sense_page[12];
28776 	select_page[13] = sense_page[13];
28777 	select_page[14] = sense_page[14];
28778 	select_page[15] = sense_page[15];
28779 
28780 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
28781 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select,
28782 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
28783 	} else {
28784 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
28785 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
28786 	}
28787 
28788 	kmem_free(sense, sense_buflen);
28789 	kmem_free(select, select_buflen);
28790 	return (rval);
28791 }
28792 
28793 
28794 /*
28795  *    Function: sr_read_sony_session_offset()
28796  *
28797  * Description: This routine is the driver entry point for handling CD-ROM
28798  *		ioctl requests for session offset information. (CDROMREADOFFSET)
28799  *		The address of the first track in the last session of a
28800  *		multi-session CD-ROM is returned
28801  *
28802  *		Note: This routine uses a vendor specific key value in the
28803  *		command control field without implementing any vendor check here
28804  *		or in the ioctl routine.
28805  *
28806  *   Arguments: dev	- the device 'dev_t'
28807  *		data	- pointer to an int to hold the requested address
28808  *		flag	- this argument is a pass through to ddi_copyxxx()
28809  *			  directly from the mode argument of ioctl().
28810  *
28811  * Return Code: the code returned by sd_send_scsi_cmd()
28812  *		EFAULT if ddi_copyxxx() fails
28813  *		ENXIO if fail ddi_get_soft_state
28814  *		EINVAL if data pointer is NULL
28815  */
28816 
28817 static int
28818 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
28819 {
28820 	struct sd_lun		*un;
28821 	struct uscsi_cmd	*com;
28822 	caddr_t			buffer;
28823 	char			cdb[CDB_GROUP1];
28824 	int			session_offset = 0;
28825 	int			rval;
28826 
28827 	if (data == NULL) {
28828 		return (EINVAL);
28829 	}
28830 
28831 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28832 	    (un->un_state == SD_STATE_OFFLINE)) {
28833 		return (ENXIO);
28834 	}
28835 
28836 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
28837 	bzero(cdb, CDB_GROUP1);
28838 	cdb[0] = SCMD_READ_TOC;
28839 	/*
28840 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
28841 	 * (4 byte TOC response header + 8 byte response data)
28842 	 */
28843 	cdb[8] = SONY_SESSION_OFFSET_LEN;
28844 	/* Byte 9 is the control byte. A vendor specific value is used */
28845 	cdb[9] = SONY_SESSION_OFFSET_KEY;
28846 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28847 	com->uscsi_cdb = cdb;
28848 	com->uscsi_cdblen = CDB_GROUP1;
28849 	com->uscsi_bufaddr = buffer;
28850 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
28851 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28852 
28853 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28854 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28855 	if (rval != 0) {
28856 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
28857 		kmem_free(com, sizeof (*com));
28858 		return (rval);
28859 	}
28860 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
28861 		session_offset =
28862 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
28863 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
28864 		/*
28865 		 * Offset returned offset in current lbasize block's. Convert to
28866 		 * 2k block's to return to the user
28867 		 */
28868 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
28869 			session_offset >>= 2;
28870 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
28871 			session_offset >>= 1;
28872 		}
28873 	}
28874 
28875 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
28876 		rval = EFAULT;
28877 	}
28878 
28879 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
28880 	kmem_free(com, sizeof (*com));
28881 	return (rval);
28882 }
28883 
28884 
28885 /*
28886  *    Function: sd_wm_cache_constructor()
28887  *
28888  * Description: Cache Constructor for the wmap cache for the read/modify/write
28889  * 		devices.
28890  *
28891  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
28892  *		un	- sd_lun structure for the device.
28893  *		flag	- the km flags passed to constructor
28894  *
28895  * Return Code: 0 on success.
28896  *		-1 on failure.
28897  */
28898 
28899 /*ARGSUSED*/
28900 static int
28901 sd_wm_cache_constructor(void *wm, void *un, int flags)
28902 {
28903 	bzero(wm, sizeof (struct sd_w_map));
28904 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
28905 	return (0);
28906 }
28907 
28908 
28909 /*
28910  *    Function: sd_wm_cache_destructor()
28911  *
28912  * Description: Cache destructor for the wmap cache for the read/modify/write
28913  * 		devices.
28914  *
28915  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
28916  *		un	- sd_lun structure for the device.
28917  */
28918 /*ARGSUSED*/
28919 static void
28920 sd_wm_cache_destructor(void *wm, void *un)
28921 {
28922 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
28923 }
28924 
28925 
28926 /*
28927  *    Function: sd_range_lock()
28928  *
28929  * Description: Lock the range of blocks specified as parameter to ensure
28930  *		that read, modify write is atomic and no other i/o writes
28931  *		to the same location. The range is specified in terms
28932  *		of start and end blocks. Block numbers are the actual
28933  *		media block numbers and not system.
28934  *
28935  *   Arguments: un	- sd_lun structure for the device.
28936  *		startb - The starting block number
28937  *		endb - The end block number
28938  *		typ - type of i/o - simple/read_modify_write
28939  *
28940  * Return Code: wm  - pointer to the wmap structure.
28941  *
28942  *     Context: This routine can sleep.
28943  */
28944 
28945 static struct sd_w_map *
28946 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
28947 {
28948 	struct sd_w_map *wmp = NULL;
28949 	struct sd_w_map *sl_wmp = NULL;
28950 	struct sd_w_map *tmp_wmp;
28951 	wm_state state = SD_WM_CHK_LIST;
28952 
28953 
28954 	ASSERT(un != NULL);
28955 	ASSERT(!mutex_owned(SD_MUTEX(un)));
28956 
28957 	mutex_enter(SD_MUTEX(un));
28958 
28959 	while (state != SD_WM_DONE) {
28960 
28961 		switch (state) {
28962 		case SD_WM_CHK_LIST:
28963 			/*
28964 			 * This is the starting state. Check the wmap list
28965 			 * to see if the range is currently available.
28966 			 */
28967 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
28968 				/*
28969 				 * If this is a simple write and no rmw
28970 				 * i/o is pending then try to lock the
28971 				 * range as the range should be available.
28972 				 */
28973 				state = SD_WM_LOCK_RANGE;
28974 			} else {
28975 				tmp_wmp = sd_get_range(un, startb, endb);
28976 				if (tmp_wmp != NULL) {
28977 					if ((wmp != NULL) && ONLIST(un, wmp)) {
28978 						/*
28979 						 * Should not keep onlist wmps
28980 						 * while waiting this macro
28981 						 * will also do wmp = NULL;
28982 						 */
28983 						FREE_ONLIST_WMAP(un, wmp);
28984 					}
28985 					/*
28986 					 * sl_wmp is the wmap on which wait
28987 					 * is done, since the tmp_wmp points
28988 					 * to the inuse wmap, set sl_wmp to
28989 					 * tmp_wmp and change the state to sleep
28990 					 */
28991 					sl_wmp = tmp_wmp;
28992 					state = SD_WM_WAIT_MAP;
28993 				} else {
28994 					state = SD_WM_LOCK_RANGE;
28995 				}
28996 
28997 			}
28998 			break;
28999 
29000 		case SD_WM_LOCK_RANGE:
29001 			ASSERT(un->un_wm_cache);
29002 			/*
29003 			 * The range need to be locked, try to get a wmap.
29004 			 * First attempt it with NO_SLEEP, want to avoid a sleep
29005 			 * if possible as we will have to release the sd mutex
29006 			 * if we have to sleep.
29007 			 */
29008 			if (wmp == NULL)
29009 				wmp = kmem_cache_alloc(un->un_wm_cache,
29010 				    KM_NOSLEEP);
29011 			if (wmp == NULL) {
29012 				mutex_exit(SD_MUTEX(un));
29013 				_NOTE(DATA_READABLE_WITHOUT_LOCK
29014 				    (sd_lun::un_wm_cache))
29015 				wmp = kmem_cache_alloc(un->un_wm_cache,
29016 				    KM_SLEEP);
29017 				mutex_enter(SD_MUTEX(un));
29018 				/*
29019 				 * we released the mutex so recheck and go to
29020 				 * check list state.
29021 				 */
29022 				state = SD_WM_CHK_LIST;
29023 			} else {
29024 				/*
29025 				 * We exit out of state machine since we
29026 				 * have the wmap. Do the housekeeping first.
29027 				 * place the wmap on the wmap list if it is not
29028 				 * on it already and then set the state to done.
29029 				 */
29030 				wmp->wm_start = startb;
29031 				wmp->wm_end = endb;
29032 				wmp->wm_flags = typ | SD_WM_BUSY;
29033 				if (typ & SD_WTYPE_RMW) {
29034 					un->un_rmw_count++;
29035 				}
29036 				/*
29037 				 * If not already on the list then link
29038 				 */
29039 				if (!ONLIST(un, wmp)) {
29040 					wmp->wm_next = un->un_wm;
29041 					wmp->wm_prev = NULL;
29042 					if (wmp->wm_next)
29043 						wmp->wm_next->wm_prev = wmp;
29044 					un->un_wm = wmp;
29045 				}
29046 				state = SD_WM_DONE;
29047 			}
29048 			break;
29049 
29050 		case SD_WM_WAIT_MAP:
29051 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
29052 			/*
29053 			 * Wait is done on sl_wmp, which is set in the
29054 			 * check_list state.
29055 			 */
29056 			sl_wmp->wm_wanted_count++;
29057 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
29058 			sl_wmp->wm_wanted_count--;
29059 			if (!(sl_wmp->wm_flags & SD_WM_BUSY)) {
29060 				if (wmp != NULL)
29061 					CHK_N_FREEWMP(un, wmp);
29062 				wmp = sl_wmp;
29063 			}
29064 			sl_wmp = NULL;
29065 			/*
29066 			 * After waking up, need to recheck for availability of
29067 			 * range.
29068 			 */
29069 			state = SD_WM_CHK_LIST;
29070 			break;
29071 
29072 		default:
29073 			panic("sd_range_lock: "
29074 			    "Unknown state %d in sd_range_lock", state);
29075 			/*NOTREACHED*/
29076 		} /* switch(state) */
29077 
29078 	} /* while(state != SD_WM_DONE) */
29079 
29080 	mutex_exit(SD_MUTEX(un));
29081 
29082 	ASSERT(wmp != NULL);
29083 
29084 	return (wmp);
29085 }
29086 
29087 
29088 /*
29089  *    Function: sd_get_range()
29090  *
29091  * Description: Find if there any overlapping I/O to this one
29092  *		Returns the write-map of 1st such I/O, NULL otherwise.
29093  *
29094  *   Arguments: un	- sd_lun structure for the device.
29095  *		startb - The starting block number
29096  *		endb - The end block number
29097  *
29098  * Return Code: wm  - pointer to the wmap structure.
29099  */
29100 
29101 static struct sd_w_map *
29102 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
29103 {
29104 	struct sd_w_map *wmp;
29105 
29106 	ASSERT(un != NULL);
29107 
29108 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
29109 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
29110 			continue;
29111 		}
29112 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
29113 			break;
29114 		}
29115 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
29116 			break;
29117 		}
29118 	}
29119 
29120 	return (wmp);
29121 }
29122 
29123 
29124 /*
29125  *    Function: sd_free_inlist_wmap()
29126  *
29127  * Description: Unlink and free a write map struct.
29128  *
29129  *   Arguments: un      - sd_lun structure for the device.
29130  *		wmp	- sd_w_map which needs to be unlinked.
29131  */
29132 
29133 static void
29134 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
29135 {
29136 	ASSERT(un != NULL);
29137 
29138 	if (un->un_wm == wmp) {
29139 		un->un_wm = wmp->wm_next;
29140 	} else {
29141 		wmp->wm_prev->wm_next = wmp->wm_next;
29142 	}
29143 
29144 	if (wmp->wm_next) {
29145 		wmp->wm_next->wm_prev = wmp->wm_prev;
29146 	}
29147 
29148 	wmp->wm_next = wmp->wm_prev = NULL;
29149 
29150 	kmem_cache_free(un->un_wm_cache, wmp);
29151 }
29152 
29153 
29154 /*
29155  *    Function: sd_range_unlock()
29156  *
29157  * Description: Unlock the range locked by wm.
29158  *		Free write map if nobody else is waiting on it.
29159  *
29160  *   Arguments: un      - sd_lun structure for the device.
29161  *              wmp     - sd_w_map which needs to be unlinked.
29162  */
29163 
29164 static void
29165 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
29166 {
29167 	ASSERT(un != NULL);
29168 	ASSERT(wm != NULL);
29169 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29170 
29171 	mutex_enter(SD_MUTEX(un));
29172 
29173 	if (wm->wm_flags & SD_WTYPE_RMW) {
29174 		un->un_rmw_count--;
29175 	}
29176 
29177 	if (wm->wm_wanted_count) {
29178 		wm->wm_flags = 0;
29179 		/*
29180 		 * Broadcast that the wmap is available now.
29181 		 */
29182 		cv_broadcast(&wm->wm_avail);
29183 	} else {
29184 		/*
29185 		 * If no one is waiting on the map, it should be free'ed.
29186 		 */
29187 		sd_free_inlist_wmap(un, wm);
29188 	}
29189 
29190 	mutex_exit(SD_MUTEX(un));
29191 }
29192 
29193 
29194 /*
29195  *    Function: sd_read_modify_write_task
29196  *
29197  * Description: Called from a taskq thread to initiate the write phase of
29198  *		a read-modify-write request.  This is used for targets where
29199  *		un->un_sys_blocksize != un->un_tgt_blocksize.
29200  *
29201  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
29202  *
29203  *     Context: Called under taskq thread context.
29204  */
29205 
29206 static void
29207 sd_read_modify_write_task(void *arg)
29208 {
29209 	struct sd_mapblocksize_info	*bsp;
29210 	struct buf	*bp;
29211 	struct sd_xbuf	*xp;
29212 	struct sd_lun	*un;
29213 
29214 	bp = arg;	/* The bp is given in arg */
29215 	ASSERT(bp != NULL);
29216 
29217 	/* Get the pointer to the layer-private data struct */
29218 	xp = SD_GET_XBUF(bp);
29219 	ASSERT(xp != NULL);
29220 	bsp = xp->xb_private;
29221 	ASSERT(bsp != NULL);
29222 
29223 	un = SD_GET_UN(bp);
29224 	ASSERT(un != NULL);
29225 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29226 
29227 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29228 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
29229 
29230 	/*
29231 	 * This is the write phase of a read-modify-write request, called
29232 	 * under the context of a taskq thread in response to the completion
29233 	 * of the read portion of the rmw request completing under interrupt
29234 	 * context. The write request must be sent from here down the iostart
29235 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
29236 	 * we use the layer index saved in the layer-private data area.
29237 	 */
29238 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
29239 
29240 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29241 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
29242 }
29243 
29244 
29245 /*
29246  *    Function: sddump_do_read_of_rmw()
29247  *
29248  * Description: This routine will be called from sddump, If sddump is called
29249  *		with an I/O which not aligned on device blocksize boundary
29250  *		then the write has to be converted to read-modify-write.
29251  *		Do the read part here in order to keep sddump simple.
29252  *		Note - That the sd_mutex is held across the call to this
29253  *		routine.
29254  *
29255  *   Arguments: un	- sd_lun
29256  *		blkno	- block number in terms of media block size.
29257  *		nblk	- number of blocks.
29258  *		bpp	- pointer to pointer to the buf structure. On return
29259  *			from this function, *bpp points to the valid buffer
29260  *			to which the write has to be done.
29261  *
29262  * Return Code: 0 for success or errno-type return code
29263  */
29264 
29265 static int
29266 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
29267 	struct buf **bpp)
29268 {
29269 	int err;
29270 	int i;
29271 	int rval;
29272 	struct buf *bp;
29273 	struct scsi_pkt *pkt = NULL;
29274 	uint32_t target_blocksize;
29275 
29276 	ASSERT(un != NULL);
29277 	ASSERT(mutex_owned(SD_MUTEX(un)));
29278 
29279 	target_blocksize = un->un_tgt_blocksize;
29280 
29281 	mutex_exit(SD_MUTEX(un));
29282 
29283 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
29284 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
29285 	if (bp == NULL) {
29286 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29287 		    "no resources for dumping; giving up");
29288 		err = ENOMEM;
29289 		goto done;
29290 	}
29291 
29292 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
29293 	    blkno, nblk);
29294 	if (rval != 0) {
29295 		scsi_free_consistent_buf(bp);
29296 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29297 		    "no resources for dumping; giving up");
29298 		err = ENOMEM;
29299 		goto done;
29300 	}
29301 
29302 	pkt->pkt_flags |= FLAG_NOINTR;
29303 
29304 	err = EIO;
29305 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
29306 
29307 		/*
29308 		 * Scsi_poll returns 0 (success) if the command completes and
29309 		 * the status block is STATUS_GOOD.  We should only check
29310 		 * errors if this condition is not true.  Even then we should
29311 		 * send our own request sense packet only if we have a check
29312 		 * condition and auto request sense has not been performed by
29313 		 * the hba.
29314 		 */
29315 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
29316 
29317 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
29318 			err = 0;
29319 			break;
29320 		}
29321 
29322 		/*
29323 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
29324 		 * no need to read RQS data.
29325 		 */
29326 		if (pkt->pkt_reason == CMD_DEV_GONE) {
29327 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29328 			    "Device is gone\n");
29329 			break;
29330 		}
29331 
29332 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
29333 			SD_INFO(SD_LOG_DUMP, un,
29334 			    "sddump: read failed with CHECK, try # %d\n", i);
29335 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
29336 				(void) sd_send_polled_RQS(un);
29337 			}
29338 
29339 			continue;
29340 		}
29341 
29342 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
29343 			int reset_retval = 0;
29344 
29345 			SD_INFO(SD_LOG_DUMP, un,
29346 			    "sddump: read failed with BUSY, try # %d\n", i);
29347 
29348 			if (un->un_f_lun_reset_enabled == TRUE) {
29349 				reset_retval = scsi_reset(SD_ADDRESS(un),
29350 				    RESET_LUN);
29351 			}
29352 			if (reset_retval == 0) {
29353 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
29354 			}
29355 			(void) sd_send_polled_RQS(un);
29356 
29357 		} else {
29358 			SD_INFO(SD_LOG_DUMP, un,
29359 			    "sddump: read failed with 0x%x, try # %d\n",
29360 			    SD_GET_PKT_STATUS(pkt), i);
29361 			mutex_enter(SD_MUTEX(un));
29362 			sd_reset_target(un, pkt);
29363 			mutex_exit(SD_MUTEX(un));
29364 		}
29365 
29366 		/*
29367 		 * If we are not getting anywhere with lun/target resets,
29368 		 * let's reset the bus.
29369 		 */
29370 		if (i > SD_NDUMP_RETRIES/2) {
29371 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
29372 			(void) sd_send_polled_RQS(un);
29373 		}
29374 
29375 	}
29376 	scsi_destroy_pkt(pkt);
29377 
29378 	if (err != 0) {
29379 		scsi_free_consistent_buf(bp);
29380 		*bpp = NULL;
29381 	} else {
29382 		*bpp = bp;
29383 	}
29384 
29385 done:
29386 	mutex_enter(SD_MUTEX(un));
29387 	return (err);
29388 }
29389 
29390 
29391 /*
29392  *    Function: sd_failfast_flushq
29393  *
29394  * Description: Take all bp's on the wait queue that have B_FAILFAST set
29395  *		in b_flags and move them onto the failfast queue, then kick
29396  *		off a thread to return all bp's on the failfast queue to
29397  *		their owners with an error set.
29398  *
29399  *   Arguments: un - pointer to the soft state struct for the instance.
29400  *
29401  *     Context: may execute in interrupt context.
29402  */
29403 
29404 static void
29405 sd_failfast_flushq(struct sd_lun *un)
29406 {
29407 	struct buf *bp;
29408 	struct buf *next_waitq_bp;
29409 	struct buf *prev_waitq_bp = NULL;
29410 
29411 	ASSERT(un != NULL);
29412 	ASSERT(mutex_owned(SD_MUTEX(un)));
29413 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
29414 	ASSERT(un->un_failfast_bp == NULL);
29415 
29416 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29417 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
29418 
29419 	/*
29420 	 * Check if we should flush all bufs when entering failfast state, or
29421 	 * just those with B_FAILFAST set.
29422 	 */
29423 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
29424 		/*
29425 		 * Move *all* bp's on the wait queue to the failfast flush
29426 		 * queue, including those that do NOT have B_FAILFAST set.
29427 		 */
29428 		if (un->un_failfast_headp == NULL) {
29429 			ASSERT(un->un_failfast_tailp == NULL);
29430 			un->un_failfast_headp = un->un_waitq_headp;
29431 		} else {
29432 			ASSERT(un->un_failfast_tailp != NULL);
29433 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
29434 		}
29435 
29436 		un->un_failfast_tailp = un->un_waitq_tailp;
29437 
29438 		/* update kstat for each bp moved out of the waitq */
29439 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
29440 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29441 		}
29442 
29443 		/* empty the waitq */
29444 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
29445 
29446 	} else {
29447 		/*
29448 		 * Go thru the wait queue, pick off all entries with
29449 		 * B_FAILFAST set, and move these onto the failfast queue.
29450 		 */
29451 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
29452 			/*
29453 			 * Save the pointer to the next bp on the wait queue,
29454 			 * so we get to it on the next iteration of this loop.
29455 			 */
29456 			next_waitq_bp = bp->av_forw;
29457 
29458 			/*
29459 			 * If this bp from the wait queue does NOT have
29460 			 * B_FAILFAST set, just move on to the next element
29461 			 * in the wait queue. Note, this is the only place
29462 			 * where it is correct to set prev_waitq_bp.
29463 			 */
29464 			if ((bp->b_flags & B_FAILFAST) == 0) {
29465 				prev_waitq_bp = bp;
29466 				continue;
29467 			}
29468 
29469 			/*
29470 			 * Remove the bp from the wait queue.
29471 			 */
29472 			if (bp == un->un_waitq_headp) {
29473 				/* The bp is the first element of the waitq. */
29474 				un->un_waitq_headp = next_waitq_bp;
29475 				if (un->un_waitq_headp == NULL) {
29476 					/* The wait queue is now empty */
29477 					un->un_waitq_tailp = NULL;
29478 				}
29479 			} else {
29480 				/*
29481 				 * The bp is either somewhere in the middle
29482 				 * or at the end of the wait queue.
29483 				 */
29484 				ASSERT(un->un_waitq_headp != NULL);
29485 				ASSERT(prev_waitq_bp != NULL);
29486 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
29487 				    == 0);
29488 				if (bp == un->un_waitq_tailp) {
29489 					/* bp is the last entry on the waitq. */
29490 					ASSERT(next_waitq_bp == NULL);
29491 					un->un_waitq_tailp = prev_waitq_bp;
29492 				}
29493 				prev_waitq_bp->av_forw = next_waitq_bp;
29494 			}
29495 			bp->av_forw = NULL;
29496 
29497 			/*
29498 			 * update kstat since the bp is moved out of
29499 			 * the waitq
29500 			 */
29501 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29502 
29503 			/*
29504 			 * Now put the bp onto the failfast queue.
29505 			 */
29506 			if (un->un_failfast_headp == NULL) {
29507 				/* failfast queue is currently empty */
29508 				ASSERT(un->un_failfast_tailp == NULL);
29509 				un->un_failfast_headp =
29510 				    un->un_failfast_tailp = bp;
29511 			} else {
29512 				/* Add the bp to the end of the failfast q */
29513 				ASSERT(un->un_failfast_tailp != NULL);
29514 				ASSERT(un->un_failfast_tailp->b_flags &
29515 				    B_FAILFAST);
29516 				un->un_failfast_tailp->av_forw = bp;
29517 				un->un_failfast_tailp = bp;
29518 			}
29519 		}
29520 	}
29521 
29522 	/*
29523 	 * Now return all bp's on the failfast queue to their owners.
29524 	 */
29525 	while ((bp = un->un_failfast_headp) != NULL) {
29526 
29527 		un->un_failfast_headp = bp->av_forw;
29528 		if (un->un_failfast_headp == NULL) {
29529 			un->un_failfast_tailp = NULL;
29530 		}
29531 
29532 		/*
29533 		 * We want to return the bp with a failure error code, but
29534 		 * we do not want a call to sd_start_cmds() to occur here,
29535 		 * so use sd_return_failed_command_no_restart() instead of
29536 		 * sd_return_failed_command().
29537 		 */
29538 		sd_return_failed_command_no_restart(un, bp, EIO);
29539 	}
29540 
29541 	/* Flush the xbuf queues if required. */
29542 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
29543 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
29544 	}
29545 
29546 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29547 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
29548 }
29549 
29550 
29551 /*
29552  *    Function: sd_failfast_flushq_callback
29553  *
29554  * Description: Return TRUE if the given bp meets the criteria for failfast
29555  *		flushing. Used with ddi_xbuf_flushq(9F).
29556  *
29557  *   Arguments: bp - ptr to buf struct to be examined.
29558  *
29559  *     Context: Any
29560  */
29561 
29562 static int
29563 sd_failfast_flushq_callback(struct buf *bp)
29564 {
29565 	/*
29566 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
29567 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
29568 	 */
29569 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
29570 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
29571 }
29572 
29573 
29574 
29575 #if defined(__i386) || defined(__amd64)
29576 /*
29577  * Function: sd_setup_next_xfer
29578  *
29579  * Description: Prepare next I/O operation using DMA_PARTIAL
29580  *
29581  */
29582 
29583 static int
29584 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
29585     struct scsi_pkt *pkt, struct sd_xbuf *xp)
29586 {
29587 	ssize_t	num_blks_not_xfered;
29588 	daddr_t	strt_blk_num;
29589 	ssize_t	bytes_not_xfered;
29590 	int	rval;
29591 
29592 	ASSERT(pkt->pkt_resid == 0);
29593 
29594 	/*
29595 	 * Calculate next block number and amount to be transferred.
29596 	 *
29597 	 * How much data NOT transfered to the HBA yet.
29598 	 */
29599 	bytes_not_xfered = xp->xb_dma_resid;
29600 
29601 	/*
29602 	 * figure how many blocks NOT transfered to the HBA yet.
29603 	 */
29604 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
29605 
29606 	/*
29607 	 * set starting block number to the end of what WAS transfered.
29608 	 */
29609 	strt_blk_num = xp->xb_blkno +
29610 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
29611 
29612 	/*
29613 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
29614 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
29615 	 * the disk mutex here.
29616 	 */
29617 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
29618 	    strt_blk_num, num_blks_not_xfered);
29619 
29620 	if (rval == 0) {
29621 
29622 		/*
29623 		 * Success.
29624 		 *
29625 		 * Adjust things if there are still more blocks to be
29626 		 * transfered.
29627 		 */
29628 		xp->xb_dma_resid = pkt->pkt_resid;
29629 		pkt->pkt_resid = 0;
29630 
29631 		return (1);
29632 	}
29633 
29634 	/*
29635 	 * There's really only one possible return value from
29636 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
29637 	 * returns NULL.
29638 	 */
29639 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
29640 
29641 	bp->b_resid = bp->b_bcount;
29642 	bp->b_flags |= B_ERROR;
29643 
29644 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29645 	    "Error setting up next portion of DMA transfer\n");
29646 
29647 	return (0);
29648 }
29649 #endif
29650 
29651 /*
29652  * Note: The following sd_faultinjection_ioctl( ) routines implement
29653  * driver support for handling fault injection for error analysis
29654  * causing faults in multiple layers of the driver.
29655  *
29656  */
29657 
29658 #ifdef SD_FAULT_INJECTION
29659 static uint_t   sd_fault_injection_on = 0;
29660 
29661 /*
29662  *    Function: sd_faultinjection_ioctl()
29663  *
29664  * Description: This routine is the driver entry point for handling
29665  *              faultinjection ioctls to inject errors into the
29666  *              layer model
29667  *
29668  *   Arguments: cmd	- the ioctl cmd recieved
29669  *		arg	- the arguments from user and returns
29670  */
29671 
29672 static void
29673 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
29674 
29675 	uint_t i;
29676 	uint_t rval;
29677 
29678 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
29679 
29680 	mutex_enter(SD_MUTEX(un));
29681 
29682 	switch (cmd) {
29683 	case SDIOCRUN:
29684 		/* Allow pushed faults to be injected */
29685 		SD_INFO(SD_LOG_SDTEST, un,
29686 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
29687 
29688 		sd_fault_injection_on = 1;
29689 
29690 		SD_INFO(SD_LOG_IOERR, un,
29691 		    "sd_faultinjection_ioctl: run finished\n");
29692 		break;
29693 
29694 	case SDIOCSTART:
29695 		/* Start Injection Session */
29696 		SD_INFO(SD_LOG_SDTEST, un,
29697 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
29698 
29699 		sd_fault_injection_on = 0;
29700 		un->sd_injection_mask = 0xFFFFFFFF;
29701 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
29702 			un->sd_fi_fifo_pkt[i] = NULL;
29703 			un->sd_fi_fifo_xb[i] = NULL;
29704 			un->sd_fi_fifo_un[i] = NULL;
29705 			un->sd_fi_fifo_arq[i] = NULL;
29706 		}
29707 		un->sd_fi_fifo_start = 0;
29708 		un->sd_fi_fifo_end = 0;
29709 
29710 		mutex_enter(&(un->un_fi_mutex));
29711 		un->sd_fi_log[0] = '\0';
29712 		un->sd_fi_buf_len = 0;
29713 		mutex_exit(&(un->un_fi_mutex));
29714 
29715 		SD_INFO(SD_LOG_IOERR, un,
29716 		    "sd_faultinjection_ioctl: start finished\n");
29717 		break;
29718 
29719 	case SDIOCSTOP:
29720 		/* Stop Injection Session */
29721 		SD_INFO(SD_LOG_SDTEST, un,
29722 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
29723 		sd_fault_injection_on = 0;
29724 		un->sd_injection_mask = 0x0;
29725 
29726 		/* Empty stray or unuseds structs from fifo */
29727 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
29728 			if (un->sd_fi_fifo_pkt[i] != NULL) {
29729 				kmem_free(un->sd_fi_fifo_pkt[i],
29730 				    sizeof (struct sd_fi_pkt));
29731 			}
29732 			if (un->sd_fi_fifo_xb[i] != NULL) {
29733 				kmem_free(un->sd_fi_fifo_xb[i],
29734 				    sizeof (struct sd_fi_xb));
29735 			}
29736 			if (un->sd_fi_fifo_un[i] != NULL) {
29737 				kmem_free(un->sd_fi_fifo_un[i],
29738 				    sizeof (struct sd_fi_un));
29739 			}
29740 			if (un->sd_fi_fifo_arq[i] != NULL) {
29741 				kmem_free(un->sd_fi_fifo_arq[i],
29742 				    sizeof (struct sd_fi_arq));
29743 			}
29744 			un->sd_fi_fifo_pkt[i] = NULL;
29745 			un->sd_fi_fifo_un[i] = NULL;
29746 			un->sd_fi_fifo_xb[i] = NULL;
29747 			un->sd_fi_fifo_arq[i] = NULL;
29748 		}
29749 		un->sd_fi_fifo_start = 0;
29750 		un->sd_fi_fifo_end = 0;
29751 
29752 		SD_INFO(SD_LOG_IOERR, un,
29753 		    "sd_faultinjection_ioctl: stop finished\n");
29754 		break;
29755 
29756 	case SDIOCINSERTPKT:
29757 		/* Store a packet struct to be pushed onto fifo */
29758 		SD_INFO(SD_LOG_SDTEST, un,
29759 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
29760 
29761 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29762 
29763 		sd_fault_injection_on = 0;
29764 
29765 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
29766 		if (un->sd_fi_fifo_pkt[i] != NULL) {
29767 			kmem_free(un->sd_fi_fifo_pkt[i],
29768 			    sizeof (struct sd_fi_pkt));
29769 		}
29770 		if (arg != NULL) {
29771 			un->sd_fi_fifo_pkt[i] =
29772 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
29773 			if (un->sd_fi_fifo_pkt[i] == NULL) {
29774 				/* Alloc failed don't store anything */
29775 				break;
29776 			}
29777 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
29778 			    sizeof (struct sd_fi_pkt), 0);
29779 			if (rval == -1) {
29780 				kmem_free(un->sd_fi_fifo_pkt[i],
29781 				    sizeof (struct sd_fi_pkt));
29782 				un->sd_fi_fifo_pkt[i] = NULL;
29783 			}
29784 		} else {
29785 			SD_INFO(SD_LOG_IOERR, un,
29786 			    "sd_faultinjection_ioctl: pkt null\n");
29787 		}
29788 		break;
29789 
29790 	case SDIOCINSERTXB:
29791 		/* Store a xb struct to be pushed onto fifo */
29792 		SD_INFO(SD_LOG_SDTEST, un,
29793 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
29794 
29795 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29796 
29797 		sd_fault_injection_on = 0;
29798 
29799 		if (un->sd_fi_fifo_xb[i] != NULL) {
29800 			kmem_free(un->sd_fi_fifo_xb[i],
29801 			    sizeof (struct sd_fi_xb));
29802 			un->sd_fi_fifo_xb[i] = NULL;
29803 		}
29804 		if (arg != NULL) {
29805 			un->sd_fi_fifo_xb[i] =
29806 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
29807 			if (un->sd_fi_fifo_xb[i] == NULL) {
29808 				/* Alloc failed don't store anything */
29809 				break;
29810 			}
29811 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
29812 			    sizeof (struct sd_fi_xb), 0);
29813 
29814 			if (rval == -1) {
29815 				kmem_free(un->sd_fi_fifo_xb[i],
29816 				    sizeof (struct sd_fi_xb));
29817 				un->sd_fi_fifo_xb[i] = NULL;
29818 			}
29819 		} else {
29820 			SD_INFO(SD_LOG_IOERR, un,
29821 			    "sd_faultinjection_ioctl: xb null\n");
29822 		}
29823 		break;
29824 
29825 	case SDIOCINSERTUN:
29826 		/* Store a un struct to be pushed onto fifo */
29827 		SD_INFO(SD_LOG_SDTEST, un,
29828 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
29829 
29830 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29831 
29832 		sd_fault_injection_on = 0;
29833 
29834 		if (un->sd_fi_fifo_un[i] != NULL) {
29835 			kmem_free(un->sd_fi_fifo_un[i],
29836 			    sizeof (struct sd_fi_un));
29837 			un->sd_fi_fifo_un[i] = NULL;
29838 		}
29839 		if (arg != NULL) {
29840 			un->sd_fi_fifo_un[i] =
29841 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
29842 			if (un->sd_fi_fifo_un[i] == NULL) {
29843 				/* Alloc failed don't store anything */
29844 				break;
29845 			}
29846 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
29847 			    sizeof (struct sd_fi_un), 0);
29848 			if (rval == -1) {
29849 				kmem_free(un->sd_fi_fifo_un[i],
29850 				    sizeof (struct sd_fi_un));
29851 				un->sd_fi_fifo_un[i] = NULL;
29852 			}
29853 
29854 		} else {
29855 			SD_INFO(SD_LOG_IOERR, un,
29856 			    "sd_faultinjection_ioctl: un null\n");
29857 		}
29858 
29859 		break;
29860 
29861 	case SDIOCINSERTARQ:
29862 		/* Store a arq struct to be pushed onto fifo */
29863 		SD_INFO(SD_LOG_SDTEST, un,
29864 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
29865 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
29866 
29867 		sd_fault_injection_on = 0;
29868 
29869 		if (un->sd_fi_fifo_arq[i] != NULL) {
29870 			kmem_free(un->sd_fi_fifo_arq[i],
29871 			    sizeof (struct sd_fi_arq));
29872 			un->sd_fi_fifo_arq[i] = NULL;
29873 		}
29874 		if (arg != NULL) {
29875 			un->sd_fi_fifo_arq[i] =
29876 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
29877 			if (un->sd_fi_fifo_arq[i] == NULL) {
29878 				/* Alloc failed don't store anything */
29879 				break;
29880 			}
29881 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
29882 			    sizeof (struct sd_fi_arq), 0);
29883 			if (rval == -1) {
29884 				kmem_free(un->sd_fi_fifo_arq[i],
29885 				    sizeof (struct sd_fi_arq));
29886 				un->sd_fi_fifo_arq[i] = NULL;
29887 			}
29888 
29889 		} else {
29890 			SD_INFO(SD_LOG_IOERR, un,
29891 			    "sd_faultinjection_ioctl: arq null\n");
29892 		}
29893 
29894 		break;
29895 
29896 	case SDIOCPUSH:
29897 		/* Push stored xb, pkt, un, and arq onto fifo */
29898 		sd_fault_injection_on = 0;
29899 
29900 		if (arg != NULL) {
29901 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
29902 			if (rval != -1 &&
29903 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
29904 				un->sd_fi_fifo_end += i;
29905 			}
29906 		} else {
29907 			SD_INFO(SD_LOG_IOERR, un,
29908 			    "sd_faultinjection_ioctl: push arg null\n");
29909 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
29910 				un->sd_fi_fifo_end++;
29911 			}
29912 		}
29913 		SD_INFO(SD_LOG_IOERR, un,
29914 		    "sd_faultinjection_ioctl: push to end=%d\n",
29915 		    un->sd_fi_fifo_end);
29916 		break;
29917 
29918 	case SDIOCRETRIEVE:
29919 		/* Return buffer of log from Injection session */
29920 		SD_INFO(SD_LOG_SDTEST, un,
29921 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
29922 
29923 		sd_fault_injection_on = 0;
29924 
29925 		mutex_enter(&(un->un_fi_mutex));
29926 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
29927 		    un->sd_fi_buf_len+1, 0);
29928 		mutex_exit(&(un->un_fi_mutex));
29929 
29930 		if (rval == -1) {
29931 			/*
29932 			 * arg is possibly invalid setting
29933 			 * it to NULL for return
29934 			 */
29935 			arg = NULL;
29936 		}
29937 		break;
29938 	}
29939 
29940 	mutex_exit(SD_MUTEX(un));
29941 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
29942 			    " exit\n");
29943 }
29944 
29945 
29946 /*
29947  *    Function: sd_injection_log()
29948  *
29949  * Description: This routine adds buff to the already existing injection log
29950  *              for retrieval via faultinjection_ioctl for use in fault
29951  *              detection and recovery
29952  *
29953  *   Arguments: buf - the string to add to the log
29954  */
29955 
29956 static void
29957 sd_injection_log(char *buf, struct sd_lun *un)
29958 {
29959 	uint_t len;
29960 
29961 	ASSERT(un != NULL);
29962 	ASSERT(buf != NULL);
29963 
29964 	mutex_enter(&(un->un_fi_mutex));
29965 
29966 	len = min(strlen(buf), 255);
29967 	/* Add logged value to Injection log to be returned later */
29968 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
29969 		uint_t	offset = strlen((char *)un->sd_fi_log);
29970 		char *destp = (char *)un->sd_fi_log + offset;
29971 		int i;
29972 		for (i = 0; i < len; i++) {
29973 			*destp++ = *buf++;
29974 		}
29975 		un->sd_fi_buf_len += len;
29976 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
29977 	}
29978 
29979 	mutex_exit(&(un->un_fi_mutex));
29980 }
29981 
29982 
29983 /*
29984  *    Function: sd_faultinjection()
29985  *
29986  * Description: This routine takes the pkt and changes its
29987  *		content based on error injection scenerio.
29988  *
29989  *   Arguments: pktp	- packet to be changed
29990  */
29991 
29992 static void
29993 sd_faultinjection(struct scsi_pkt *pktp)
29994 {
29995 	uint_t i;
29996 	struct sd_fi_pkt *fi_pkt;
29997 	struct sd_fi_xb *fi_xb;
29998 	struct sd_fi_un *fi_un;
29999 	struct sd_fi_arq *fi_arq;
30000 	struct buf *bp;
30001 	struct sd_xbuf *xb;
30002 	struct sd_lun *un;
30003 
30004 	ASSERT(pktp != NULL);
30005 
30006 	/* pull bp xb and un from pktp */
30007 	bp = (struct buf *)pktp->pkt_private;
30008 	xb = SD_GET_XBUF(bp);
30009 	un = SD_GET_UN(bp);
30010 
30011 	ASSERT(un != NULL);
30012 
30013 	mutex_enter(SD_MUTEX(un));
30014 
30015 	SD_TRACE(SD_LOG_SDTEST, un,
30016 	    "sd_faultinjection: entry Injection from sdintr\n");
30017 
30018 	/* if injection is off return */
30019 	if (sd_fault_injection_on == 0 ||
30020 		un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
30021 		mutex_exit(SD_MUTEX(un));
30022 		return;
30023 	}
30024 
30025 
30026 	/* take next set off fifo */
30027 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
30028 
30029 	fi_pkt = un->sd_fi_fifo_pkt[i];
30030 	fi_xb = un->sd_fi_fifo_xb[i];
30031 	fi_un = un->sd_fi_fifo_un[i];
30032 	fi_arq = un->sd_fi_fifo_arq[i];
30033 
30034 
30035 	/* set variables accordingly */
30036 	/* set pkt if it was on fifo */
30037 	if (fi_pkt != NULL) {
30038 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
30039 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
30040 		SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
30041 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
30042 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
30043 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
30044 
30045 	}
30046 
30047 	/* set xb if it was on fifo */
30048 	if (fi_xb != NULL) {
30049 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
30050 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
30051 		SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
30052 		SD_CONDSET(xb, xb, xb_victim_retry_count,
30053 		    "xb_victim_retry_count");
30054 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
30055 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
30056 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
30057 
30058 		/* copy in block data from sense */
30059 		if (fi_xb->xb_sense_data[0] != -1) {
30060 			bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
30061 			    SENSE_LENGTH);
30062 		}
30063 
30064 		/* copy in extended sense codes */
30065 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code,
30066 		    "es_code");
30067 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key,
30068 		    "es_key");
30069 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code,
30070 		    "es_add_code");
30071 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb,
30072 		    es_qual_code, "es_qual_code");
30073 	}
30074 
30075 	/* set un if it was on fifo */
30076 	if (fi_un != NULL) {
30077 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
30078 		SD_CONDSET(un, un, un_ctype, "un_ctype");
30079 		SD_CONDSET(un, un, un_reset_retry_count,
30080 		    "un_reset_retry_count");
30081 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
30082 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
30083 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
30084 		SD_CONDSET(un, un, un_f_geometry_is_valid,
30085 		    "un_f_geometry_is_valid");
30086 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
30087 		    "un_f_allow_bus_device_reset");
30088 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
30089 
30090 	}
30091 
30092 	/* copy in auto request sense if it was on fifo */
30093 	if (fi_arq != NULL) {
30094 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
30095 	}
30096 
30097 	/* free structs */
30098 	if (un->sd_fi_fifo_pkt[i] != NULL) {
30099 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
30100 	}
30101 	if (un->sd_fi_fifo_xb[i] != NULL) {
30102 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
30103 	}
30104 	if (un->sd_fi_fifo_un[i] != NULL) {
30105 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
30106 	}
30107 	if (un->sd_fi_fifo_arq[i] != NULL) {
30108 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
30109 	}
30110 
30111 	/*
30112 	 * kmem_free does not gurantee to set to NULL
30113 	 * since we uses these to determine if we set
30114 	 * values or not lets confirm they are always
30115 	 * NULL after free
30116 	 */
30117 	un->sd_fi_fifo_pkt[i] = NULL;
30118 	un->sd_fi_fifo_un[i] = NULL;
30119 	un->sd_fi_fifo_xb[i] = NULL;
30120 	un->sd_fi_fifo_arq[i] = NULL;
30121 
30122 	un->sd_fi_fifo_start++;
30123 
30124 	mutex_exit(SD_MUTEX(un));
30125 
30126 	SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
30127 }
30128 
30129 #endif /* SD_FAULT_INJECTION */
30130