1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * SCSI disk target driver. 30 */ 31 32 33 34 35 #include <sys/scsi/scsi.h> 36 #include <sys/dkbad.h> 37 #include <sys/dklabel.h> 38 #include <sys/dkio.h> 39 #include <sys/fdio.h> 40 #include <sys/cdio.h> 41 #include <sys/mhd.h> 42 #include <sys/vtoc.h> 43 #include <sys/dktp/fdisk.h> 44 #include <sys/file.h> 45 #include <sys/stat.h> 46 #include <sys/kstat.h> 47 #include <sys/vtrace.h> 48 #include <sys/note.h> 49 #include <sys/thread.h> 50 #include <sys/proc.h> 51 #include <sys/efi_partition.h> 52 #include <sys/var.h> 53 #include <sys/aio_req.h> 54 55 #ifdef __lock_lint 56 #define _LP64 57 #define __amd64 58 #endif 59 60 #if (defined(__fibre)) 61 /* Note: is there a leadville version of the following? */ 62 #include <sys/fc4/fcal_linkapp.h> 63 #endif 64 #include <sys/taskq.h> 65 #include <sys/uuid.h> 66 #include <sys/byteorder.h> 67 #include <sys/sdt.h> 68 69 #include "sd_xbuf.h" 70 71 #include <sys/scsi/targets/sddef.h> 72 73 74 /* 75 * Loadable module info. 76 */ 77 #if (defined(__fibre)) 78 #define SD_MODULE_NAME "SCSI SSA/FCAL Disk Driver %I%" 79 char _depends_on[] = "misc/scsi drv/fcp"; 80 #else 81 #define SD_MODULE_NAME "SCSI Disk Driver %I%" 82 char _depends_on[] = "misc/scsi"; 83 #endif 84 85 /* 86 * Define the interconnect type, to allow the driver to distinguish 87 * between parallel SCSI (sd) and fibre channel (ssd) behaviors. 88 * 89 * This is really for backward compatability. In the future, the driver 90 * should actually check the "interconnect-type" property as reported by 91 * the HBA; however at present this property is not defined by all HBAs, 92 * so we will use this #define (1) to permit the driver to run in 93 * backward-compatability mode; and (2) to print a notification message 94 * if an FC HBA does not support the "interconnect-type" property. The 95 * behavior of the driver will be to assume parallel SCSI behaviors unless 96 * the "interconnect-type" property is defined by the HBA **AND** has a 97 * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or 98 * INTERCONNECT_FABRIC, in which case the driver will assume Fibre 99 * Channel behaviors (as per the old ssd). (Note that the 100 * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and 101 * will result in the driver assuming parallel SCSI behaviors.) 102 * 103 * (see common/sys/scsi/impl/services.h) 104 * 105 * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default 106 * since some FC HBAs may already support that, and there is some code in 107 * the driver that already looks for it. Using INTERCONNECT_FABRIC as the 108 * default would confuse that code, and besides things should work fine 109 * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the 110 * "interconnect_type" property. 111 */ 112 #if (defined(__fibre)) 113 #define SD_DEFAULT_INTERCONNECT_TYPE SD_INTERCONNECT_FIBRE 114 #else 115 #define SD_DEFAULT_INTERCONNECT_TYPE SD_INTERCONNECT_PARALLEL 116 #endif 117 118 /* 119 * The name of the driver, established from the module name in _init. 120 */ 121 static char *sd_label = NULL; 122 123 /* 124 * Driver name is unfortunately prefixed on some driver.conf properties. 125 */ 126 #if (defined(__fibre)) 127 #define sd_max_xfer_size ssd_max_xfer_size 128 #define sd_config_list ssd_config_list 129 static char *sd_max_xfer_size = "ssd_max_xfer_size"; 130 static char *sd_config_list = "ssd-config-list"; 131 #else 132 static char *sd_max_xfer_size = "sd_max_xfer_size"; 133 static char *sd_config_list = "sd-config-list"; 134 #endif 135 136 /* 137 * Driver global variables 138 */ 139 140 #if (defined(__fibre)) 141 /* 142 * These #defines are to avoid namespace collisions that occur because this 143 * code is currently used to compile two seperate driver modules: sd and ssd. 144 * All global variables need to be treated this way (even if declared static) 145 * in order to allow the debugger to resolve the names properly. 146 * It is anticipated that in the near future the ssd module will be obsoleted, 147 * at which time this namespace issue should go away. 148 */ 149 #define sd_state ssd_state 150 #define sd_io_time ssd_io_time 151 #define sd_failfast_enable ssd_failfast_enable 152 #define sd_ua_retry_count ssd_ua_retry_count 153 #define sd_report_pfa ssd_report_pfa 154 #define sd_max_throttle ssd_max_throttle 155 #define sd_min_throttle ssd_min_throttle 156 #define sd_rot_delay ssd_rot_delay 157 158 #define sd_retry_on_reservation_conflict \ 159 ssd_retry_on_reservation_conflict 160 #define sd_reinstate_resv_delay ssd_reinstate_resv_delay 161 #define sd_resv_conflict_name ssd_resv_conflict_name 162 163 #define sd_component_mask ssd_component_mask 164 #define sd_level_mask ssd_level_mask 165 #define sd_debug_un ssd_debug_un 166 #define sd_error_level ssd_error_level 167 168 #define sd_xbuf_active_limit ssd_xbuf_active_limit 169 #define sd_xbuf_reserve_limit ssd_xbuf_reserve_limit 170 171 #define sd_tr ssd_tr 172 #define sd_reset_throttle_timeout ssd_reset_throttle_timeout 173 #define sd_qfull_throttle_timeout ssd_qfull_throttle_timeout 174 #define sd_qfull_throttle_enable ssd_qfull_throttle_enable 175 #define sd_check_media_time ssd_check_media_time 176 #define sd_wait_cmds_complete ssd_wait_cmds_complete 177 #define sd_label_mutex ssd_label_mutex 178 #define sd_detach_mutex ssd_detach_mutex 179 #define sd_log_buf ssd_log_buf 180 #define sd_log_mutex ssd_log_mutex 181 182 #define sd_disk_table ssd_disk_table 183 #define sd_disk_table_size ssd_disk_table_size 184 #define sd_sense_mutex ssd_sense_mutex 185 #define sd_cdbtab ssd_cdbtab 186 187 #define sd_cb_ops ssd_cb_ops 188 #define sd_ops ssd_ops 189 #define sd_additional_codes ssd_additional_codes 190 191 #define sd_minor_data ssd_minor_data 192 #define sd_minor_data_efi ssd_minor_data_efi 193 194 #define sd_tq ssd_tq 195 #define sd_wmr_tq ssd_wmr_tq 196 #define sd_taskq_name ssd_taskq_name 197 #define sd_wmr_taskq_name ssd_wmr_taskq_name 198 #define sd_taskq_minalloc ssd_taskq_minalloc 199 #define sd_taskq_maxalloc ssd_taskq_maxalloc 200 201 #define sd_dump_format_string ssd_dump_format_string 202 203 #define sd_iostart_chain ssd_iostart_chain 204 #define sd_iodone_chain ssd_iodone_chain 205 206 #define sd_pm_idletime ssd_pm_idletime 207 208 #define sd_force_pm_supported ssd_force_pm_supported 209 210 #define sd_dtype_optical_bind ssd_dtype_optical_bind 211 212 #endif 213 214 215 #ifdef SDDEBUG 216 int sd_force_pm_supported = 0; 217 #endif /* SDDEBUG */ 218 219 void *sd_state = NULL; 220 int sd_io_time = SD_IO_TIME; 221 int sd_failfast_enable = 1; 222 int sd_ua_retry_count = SD_UA_RETRY_COUNT; 223 int sd_report_pfa = 1; 224 int sd_max_throttle = SD_MAX_THROTTLE; 225 int sd_min_throttle = SD_MIN_THROTTLE; 226 int sd_rot_delay = 4; /* Default 4ms Rotation delay */ 227 int sd_qfull_throttle_enable = TRUE; 228 229 int sd_retry_on_reservation_conflict = 1; 230 int sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY; 231 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay)) 232 233 static int sd_dtype_optical_bind = -1; 234 235 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */ 236 static char *sd_resv_conflict_name = "sd_retry_on_reservation_conflict"; 237 238 /* 239 * Global data for debug logging. To enable debug printing, sd_component_mask 240 * and sd_level_mask should be set to the desired bit patterns as outlined in 241 * sddef.h. 242 */ 243 uint_t sd_component_mask = 0x0; 244 uint_t sd_level_mask = 0x0; 245 struct sd_lun *sd_debug_un = NULL; 246 uint_t sd_error_level = SCSI_ERR_RETRYABLE; 247 248 /* Note: these may go away in the future... */ 249 static uint32_t sd_xbuf_active_limit = 512; 250 static uint32_t sd_xbuf_reserve_limit = 16; 251 252 static struct sd_resv_reclaim_request sd_tr = { NULL, NULL, NULL, 0, 0, 0 }; 253 254 /* 255 * Timer value used to reset the throttle after it has been reduced 256 * (typically in response to TRAN_BUSY or STATUS_QFULL) 257 */ 258 static int sd_reset_throttle_timeout = SD_RESET_THROTTLE_TIMEOUT; 259 static int sd_qfull_throttle_timeout = SD_QFULL_THROTTLE_TIMEOUT; 260 261 /* 262 * Interval value associated with the media change scsi watch. 263 */ 264 static int sd_check_media_time = 3000000; 265 266 /* 267 * Wait value used for in progress operations during a DDI_SUSPEND 268 */ 269 static int sd_wait_cmds_complete = SD_WAIT_CMDS_COMPLETE; 270 271 /* 272 * sd_label_mutex protects a static buffer used in the disk label 273 * component of the driver 274 */ 275 static kmutex_t sd_label_mutex; 276 277 /* 278 * sd_detach_mutex protects un_layer_count, un_detach_count, and 279 * un_opens_in_progress in the sd_lun structure. 280 */ 281 static kmutex_t sd_detach_mutex; 282 283 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex, 284 sd_lun::{un_layer_count un_detach_count un_opens_in_progress})) 285 286 /* 287 * Global buffer and mutex for debug logging 288 */ 289 static char sd_log_buf[1024]; 290 static kmutex_t sd_log_mutex; 291 292 293 /* 294 * "Smart" Probe Caching structs, globals, #defines, etc. 295 * For parallel scsi and non-self-identify device only. 296 */ 297 298 /* 299 * The following resources and routines are implemented to support 300 * "smart" probing, which caches the scsi_probe() results in an array, 301 * in order to help avoid long probe times. 302 */ 303 struct sd_scsi_probe_cache { 304 struct sd_scsi_probe_cache *next; 305 dev_info_t *pdip; 306 int cache[NTARGETS_WIDE]; 307 }; 308 309 static kmutex_t sd_scsi_probe_cache_mutex; 310 static struct sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL; 311 312 /* 313 * Really we only need protection on the head of the linked list, but 314 * better safe than sorry. 315 */ 316 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex, 317 sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip)) 318 319 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex, 320 sd_scsi_probe_cache_head)) 321 322 323 /* 324 * Vendor specific data name property declarations 325 */ 326 327 #if defined(__fibre) || defined(__i386) ||defined(__amd64) 328 329 static sd_tunables seagate_properties = { 330 SEAGATE_THROTTLE_VALUE, 331 0, 332 0, 333 0, 334 0, 335 0, 336 0, 337 0, 338 0 339 }; 340 341 342 static sd_tunables fujitsu_properties = { 343 FUJITSU_THROTTLE_VALUE, 344 0, 345 0, 346 0, 347 0, 348 0, 349 0, 350 0, 351 0 352 }; 353 354 static sd_tunables ibm_properties = { 355 IBM_THROTTLE_VALUE, 356 0, 357 0, 358 0, 359 0, 360 0, 361 0, 362 0, 363 0 364 }; 365 366 static sd_tunables purple_properties = { 367 PURPLE_THROTTLE_VALUE, 368 0, 369 0, 370 PURPLE_BUSY_RETRIES, 371 PURPLE_RESET_RETRY_COUNT, 372 PURPLE_RESERVE_RELEASE_TIME, 373 0, 374 0, 375 0 376 }; 377 378 static sd_tunables sve_properties = { 379 SVE_THROTTLE_VALUE, 380 0, 381 0, 382 SVE_BUSY_RETRIES, 383 SVE_RESET_RETRY_COUNT, 384 SVE_RESERVE_RELEASE_TIME, 385 SVE_MIN_THROTTLE_VALUE, 386 SVE_DISKSORT_DISABLED_FLAG, 387 0 388 }; 389 390 static sd_tunables maserati_properties = { 391 0, 392 0, 393 0, 394 0, 395 0, 396 0, 397 0, 398 MASERATI_DISKSORT_DISABLED_FLAG, 399 MASERATI_LUN_RESET_ENABLED_FLAG 400 }; 401 402 static sd_tunables pirus_properties = { 403 PIRUS_THROTTLE_VALUE, 404 0, 405 PIRUS_NRR_COUNT, 406 PIRUS_BUSY_RETRIES, 407 PIRUS_RESET_RETRY_COUNT, 408 0, 409 PIRUS_MIN_THROTTLE_VALUE, 410 PIRUS_DISKSORT_DISABLED_FLAG, 411 PIRUS_LUN_RESET_ENABLED_FLAG 412 }; 413 414 #endif 415 416 #if (defined(__sparc) && !defined(__fibre)) || \ 417 (defined(__i386) || defined(__amd64)) 418 419 420 static sd_tunables elite_properties = { 421 ELITE_THROTTLE_VALUE, 422 0, 423 0, 424 0, 425 0, 426 0, 427 0, 428 0, 429 0 430 }; 431 432 static sd_tunables st31200n_properties = { 433 ST31200N_THROTTLE_VALUE, 434 0, 435 0, 436 0, 437 0, 438 0, 439 0, 440 0, 441 0 442 }; 443 444 #endif /* Fibre or not */ 445 446 static sd_tunables lsi_properties_scsi = { 447 LSI_THROTTLE_VALUE, 448 0, 449 LSI_NOTREADY_RETRIES, 450 0, 451 0, 452 0, 453 0, 454 0, 455 0 456 }; 457 458 static sd_tunables symbios_properties = { 459 SYMBIOS_THROTTLE_VALUE, 460 0, 461 SYMBIOS_NOTREADY_RETRIES, 462 0, 463 0, 464 0, 465 0, 466 0, 467 0 468 }; 469 470 static sd_tunables lsi_properties = { 471 0, 472 0, 473 LSI_NOTREADY_RETRIES, 474 0, 475 0, 476 0, 477 0, 478 0, 479 0 480 }; 481 482 static sd_tunables lsi_oem_properties = { 483 0, 484 0, 485 LSI_OEM_NOTREADY_RETRIES, 486 0, 487 0, 488 0, 489 0, 490 0, 491 0 492 }; 493 494 495 496 #if (defined(SD_PROP_TST)) 497 498 #define SD_TST_CTYPE_VAL CTYPE_CDROM 499 #define SD_TST_THROTTLE_VAL 16 500 #define SD_TST_NOTREADY_VAL 12 501 #define SD_TST_BUSY_VAL 60 502 #define SD_TST_RST_RETRY_VAL 36 503 #define SD_TST_RSV_REL_TIME 60 504 505 static sd_tunables tst_properties = { 506 SD_TST_THROTTLE_VAL, 507 SD_TST_CTYPE_VAL, 508 SD_TST_NOTREADY_VAL, 509 SD_TST_BUSY_VAL, 510 SD_TST_RST_RETRY_VAL, 511 SD_TST_RSV_REL_TIME, 512 0, 513 0, 514 0 515 }; 516 #endif 517 518 /* This is similiar to the ANSI toupper implementation */ 519 #define SD_TOUPPER(C) (((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C)) 520 521 /* 522 * Static Driver Configuration Table 523 * 524 * This is the table of disks which need throttle adjustment (or, perhaps 525 * something else as defined by the flags at a future time.) device_id 526 * is a string consisting of concatenated vid (vendor), pid (product/model) 527 * and revision strings as defined in the scsi_inquiry structure. Offsets of 528 * the parts of the string are as defined by the sizes in the scsi_inquiry 529 * structure. Device type is searched as far as the device_id string is 530 * defined. Flags defines which values are to be set in the driver from the 531 * properties list. 532 * 533 * Entries below which begin and end with a "*" are a special case. 534 * These do not have a specific vendor, and the string which follows 535 * can appear anywhere in the 16 byte PID portion of the inquiry data. 536 * 537 * Entries below which begin and end with a " " (blank) are a special 538 * case. The comparison function will treat multiple consecutive blanks 539 * as equivalent to a single blank. For example, this causes a 540 * sd_disk_table entry of " NEC CDROM " to match a device's id string 541 * of "NEC CDROM". 542 * 543 * Note: The MD21 controller type has been obsoleted. 544 * ST318202F is a Legacy device 545 * MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been 546 * made with an FC connection. The entries here are a legacy. 547 */ 548 static sd_disk_config_t sd_disk_table[] = { 549 #if defined(__fibre) || defined(__i386) || defined(__amd64) 550 { "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 551 { "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 552 { "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 553 { "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 554 { "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 555 { "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 556 { "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 557 { "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 558 { "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 559 { "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 560 { "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 561 { "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 562 { "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 563 { "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 564 { "FUJITSU MAG3091F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 565 { "FUJITSU MAG3182F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 566 { "FUJITSU MAA3182F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 567 { "FUJITSU MAF3364F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 568 { "FUJITSU MAL3364F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 569 { "FUJITSU MAL3738F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 570 { "FUJITSU MAM3182FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 571 { "FUJITSU MAM3364FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 572 { "FUJITSU MAM3738FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 573 { "IBM DDYFT1835", SD_CONF_BSET_THROTTLE, &ibm_properties }, 574 { "IBM DDYFT3695", SD_CONF_BSET_THROTTLE, &ibm_properties }, 575 { "IBM IC35LF2D2", SD_CONF_BSET_THROTTLE, &ibm_properties }, 576 { "IBM IC35LF2PR", SD_CONF_BSET_THROTTLE, &ibm_properties }, 577 { "IBM 3526", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 578 { "IBM 3542", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 579 { "IBM 3552", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 580 { "IBM 1722", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 581 { "IBM 1742", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 582 { "IBM 1815", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 583 { "IBM FAStT", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 584 { "LSI INF", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 585 { "ENGENIO INF", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 586 { "SGI TP", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 587 { "SGI IS", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 588 { "*CSM100_*", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 589 { "*CSM200_*", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 590 { "LSI", SD_CONF_BSET_NRR_COUNT, &lsi_properties }, 591 { "SUN T3", SD_CONF_BSET_THROTTLE | 592 SD_CONF_BSET_BSY_RETRY_COUNT| 593 SD_CONF_BSET_RST_RETRIES| 594 SD_CONF_BSET_RSV_REL_TIME, 595 &purple_properties }, 596 { "SUN SESS01", SD_CONF_BSET_THROTTLE | 597 SD_CONF_BSET_BSY_RETRY_COUNT| 598 SD_CONF_BSET_RST_RETRIES| 599 SD_CONF_BSET_RSV_REL_TIME| 600 SD_CONF_BSET_MIN_THROTTLE| 601 SD_CONF_BSET_DISKSORT_DISABLED, 602 &sve_properties }, 603 { "SUN T4", SD_CONF_BSET_THROTTLE | 604 SD_CONF_BSET_BSY_RETRY_COUNT| 605 SD_CONF_BSET_RST_RETRIES| 606 SD_CONF_BSET_RSV_REL_TIME, 607 &purple_properties }, 608 { "SUN SVE01", SD_CONF_BSET_DISKSORT_DISABLED | 609 SD_CONF_BSET_LUN_RESET_ENABLED, 610 &maserati_properties }, 611 { "SUN SE6920", SD_CONF_BSET_THROTTLE | 612 SD_CONF_BSET_NRR_COUNT| 613 SD_CONF_BSET_BSY_RETRY_COUNT| 614 SD_CONF_BSET_RST_RETRIES| 615 SD_CONF_BSET_MIN_THROTTLE| 616 SD_CONF_BSET_DISKSORT_DISABLED| 617 SD_CONF_BSET_LUN_RESET_ENABLED, 618 &pirus_properties }, 619 { "SUN SE6940", SD_CONF_BSET_THROTTLE | 620 SD_CONF_BSET_NRR_COUNT| 621 SD_CONF_BSET_BSY_RETRY_COUNT| 622 SD_CONF_BSET_RST_RETRIES| 623 SD_CONF_BSET_MIN_THROTTLE| 624 SD_CONF_BSET_DISKSORT_DISABLED| 625 SD_CONF_BSET_LUN_RESET_ENABLED, 626 &pirus_properties }, 627 { "SUN StorageTek 6920", SD_CONF_BSET_THROTTLE | 628 SD_CONF_BSET_NRR_COUNT| 629 SD_CONF_BSET_BSY_RETRY_COUNT| 630 SD_CONF_BSET_RST_RETRIES| 631 SD_CONF_BSET_MIN_THROTTLE| 632 SD_CONF_BSET_DISKSORT_DISABLED| 633 SD_CONF_BSET_LUN_RESET_ENABLED, 634 &pirus_properties }, 635 { "SUN StorageTek 6940", SD_CONF_BSET_THROTTLE | 636 SD_CONF_BSET_NRR_COUNT| 637 SD_CONF_BSET_BSY_RETRY_COUNT| 638 SD_CONF_BSET_RST_RETRIES| 639 SD_CONF_BSET_MIN_THROTTLE| 640 SD_CONF_BSET_DISKSORT_DISABLED| 641 SD_CONF_BSET_LUN_RESET_ENABLED, 642 &pirus_properties }, 643 { "SUN PSX1000", SD_CONF_BSET_THROTTLE | 644 SD_CONF_BSET_NRR_COUNT| 645 SD_CONF_BSET_BSY_RETRY_COUNT| 646 SD_CONF_BSET_RST_RETRIES| 647 SD_CONF_BSET_MIN_THROTTLE| 648 SD_CONF_BSET_DISKSORT_DISABLED| 649 SD_CONF_BSET_LUN_RESET_ENABLED, 650 &pirus_properties }, 651 { "SUN SE6330", SD_CONF_BSET_THROTTLE | 652 SD_CONF_BSET_NRR_COUNT| 653 SD_CONF_BSET_BSY_RETRY_COUNT| 654 SD_CONF_BSET_RST_RETRIES| 655 SD_CONF_BSET_MIN_THROTTLE| 656 SD_CONF_BSET_DISKSORT_DISABLED| 657 SD_CONF_BSET_LUN_RESET_ENABLED, 658 &pirus_properties }, 659 { "STK OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 660 { "STK OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 661 { "STK BladeCtlr", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 662 { "STK FLEXLINE", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 663 { "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties }, 664 #endif /* fibre or NON-sparc platforms */ 665 #if ((defined(__sparc) && !defined(__fibre)) ||\ 666 (defined(__i386) || defined(__amd64))) 667 { "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties }, 668 { "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties }, 669 { "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL }, 670 { "CONNER CP30540", SD_CONF_BSET_NOCACHE, NULL }, 671 { "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL }, 672 { "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL }, 673 { "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL }, 674 { "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL }, 675 { "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL }, 676 { "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL }, 677 { "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL }, 678 { "SYMBIOS INF-01-00 ", SD_CONF_BSET_FAB_DEVID, NULL }, 679 { "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT, 680 &symbios_properties }, 681 { "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT, 682 &lsi_properties_scsi }, 683 #if defined(__i386) || defined(__amd64) 684 { " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD 685 | SD_CONF_BSET_READSUB_BCD 686 | SD_CONF_BSET_READ_TOC_ADDR_BCD 687 | SD_CONF_BSET_NO_READ_HEADER 688 | SD_CONF_BSET_READ_CD_XD4), NULL }, 689 690 { " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD 691 | SD_CONF_BSET_READSUB_BCD 692 | SD_CONF_BSET_READ_TOC_ADDR_BCD 693 | SD_CONF_BSET_NO_READ_HEADER 694 | SD_CONF_BSET_READ_CD_XD4), NULL }, 695 #endif /* __i386 || __amd64 */ 696 #endif /* sparc NON-fibre or NON-sparc platforms */ 697 698 #if (defined(SD_PROP_TST)) 699 { "VENDOR PRODUCT ", (SD_CONF_BSET_THROTTLE 700 | SD_CONF_BSET_CTYPE 701 | SD_CONF_BSET_NRR_COUNT 702 | SD_CONF_BSET_FAB_DEVID 703 | SD_CONF_BSET_NOCACHE 704 | SD_CONF_BSET_BSY_RETRY_COUNT 705 | SD_CONF_BSET_PLAYMSF_BCD 706 | SD_CONF_BSET_READSUB_BCD 707 | SD_CONF_BSET_READ_TOC_TRK_BCD 708 | SD_CONF_BSET_READ_TOC_ADDR_BCD 709 | SD_CONF_BSET_NO_READ_HEADER 710 | SD_CONF_BSET_READ_CD_XD4 711 | SD_CONF_BSET_RST_RETRIES 712 | SD_CONF_BSET_RSV_REL_TIME 713 | SD_CONF_BSET_TUR_CHECK), &tst_properties}, 714 #endif 715 }; 716 717 static const int sd_disk_table_size = 718 sizeof (sd_disk_table)/ sizeof (sd_disk_config_t); 719 720 721 /* 722 * Return codes of sd_uselabel(). 723 */ 724 #define SD_LABEL_IS_VALID 0 725 #define SD_LABEL_IS_INVALID 1 726 727 #define SD_INTERCONNECT_PARALLEL 0 728 #define SD_INTERCONNECT_FABRIC 1 729 #define SD_INTERCONNECT_FIBRE 2 730 #define SD_INTERCONNECT_SSA 3 731 #define SD_IS_PARALLEL_SCSI(un) \ 732 ((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL) 733 734 /* 735 * Definitions used by device id registration routines 736 */ 737 #define VPD_HEAD_OFFSET 3 /* size of head for vpd page */ 738 #define VPD_PAGE_LENGTH 3 /* offset for pge length data */ 739 #define VPD_MODE_PAGE 1 /* offset into vpd pg for "page code" */ 740 #define WD_NODE 7 /* the whole disk minor */ 741 742 static kmutex_t sd_sense_mutex = {0}; 743 744 /* 745 * Macros for updates of the driver state 746 */ 747 #define New_state(un, s) \ 748 (un)->un_last_state = (un)->un_state, (un)->un_state = (s) 749 #define Restore_state(un) \ 750 { uchar_t tmp = (un)->un_last_state; New_state((un), tmp); } 751 752 static struct sd_cdbinfo sd_cdbtab[] = { 753 { CDB_GROUP0, 0x00, 0x1FFFFF, 0xFF, }, 754 { CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF, }, 755 { CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF, }, 756 { CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, }, 757 }; 758 759 /* 760 * Specifies the number of seconds that must have elapsed since the last 761 * cmd. has completed for a device to be declared idle to the PM framework. 762 */ 763 static int sd_pm_idletime = 1; 764 765 /* 766 * Internal function prototypes 767 */ 768 769 #if (defined(__fibre)) 770 /* 771 * These #defines are to avoid namespace collisions that occur because this 772 * code is currently used to compile two seperate driver modules: sd and ssd. 773 * All function names need to be treated this way (even if declared static) 774 * in order to allow the debugger to resolve the names properly. 775 * It is anticipated that in the near future the ssd module will be obsoleted, 776 * at which time this ugliness should go away. 777 */ 778 #define sd_log_trace ssd_log_trace 779 #define sd_log_info ssd_log_info 780 #define sd_log_err ssd_log_err 781 #define sdprobe ssdprobe 782 #define sdinfo ssdinfo 783 #define sd_prop_op ssd_prop_op 784 #define sd_scsi_probe_cache_init ssd_scsi_probe_cache_init 785 #define sd_scsi_probe_cache_fini ssd_scsi_probe_cache_fini 786 #define sd_scsi_clear_probe_cache ssd_scsi_clear_probe_cache 787 #define sd_scsi_probe_with_cache ssd_scsi_probe_with_cache 788 #define sd_spin_up_unit ssd_spin_up_unit 789 #define sd_enable_descr_sense ssd_enable_descr_sense 790 #define sd_set_mmc_caps ssd_set_mmc_caps 791 #define sd_read_unit_properties ssd_read_unit_properties 792 #define sd_process_sdconf_file ssd_process_sdconf_file 793 #define sd_process_sdconf_table ssd_process_sdconf_table 794 #define sd_sdconf_id_match ssd_sdconf_id_match 795 #define sd_blank_cmp ssd_blank_cmp 796 #define sd_chk_vers1_data ssd_chk_vers1_data 797 #define sd_set_vers1_properties ssd_set_vers1_properties 798 #define sd_validate_geometry ssd_validate_geometry 799 800 #if defined(_SUNOS_VTOC_16) 801 #define sd_convert_geometry ssd_convert_geometry 802 #endif 803 804 #define sd_resync_geom_caches ssd_resync_geom_caches 805 #define sd_read_fdisk ssd_read_fdisk 806 #define sd_get_physical_geometry ssd_get_physical_geometry 807 #define sd_get_virtual_geometry ssd_get_virtual_geometry 808 #define sd_update_block_info ssd_update_block_info 809 #define sd_swap_efi_gpt ssd_swap_efi_gpt 810 #define sd_swap_efi_gpe ssd_swap_efi_gpe 811 #define sd_validate_efi ssd_validate_efi 812 #define sd_use_efi ssd_use_efi 813 #define sd_uselabel ssd_uselabel 814 #define sd_build_default_label ssd_build_default_label 815 #define sd_has_max_chs_vals ssd_has_max_chs_vals 816 #define sd_inq_fill ssd_inq_fill 817 #define sd_register_devid ssd_register_devid 818 #define sd_get_devid_block ssd_get_devid_block 819 #define sd_get_devid ssd_get_devid 820 #define sd_create_devid ssd_create_devid 821 #define sd_write_deviceid ssd_write_deviceid 822 #define sd_check_vpd_page_support ssd_check_vpd_page_support 823 #define sd_setup_pm ssd_setup_pm 824 #define sd_create_pm_components ssd_create_pm_components 825 #define sd_ddi_suspend ssd_ddi_suspend 826 #define sd_ddi_pm_suspend ssd_ddi_pm_suspend 827 #define sd_ddi_resume ssd_ddi_resume 828 #define sd_ddi_pm_resume ssd_ddi_pm_resume 829 #define sdpower ssdpower 830 #define sdattach ssdattach 831 #define sddetach ssddetach 832 #define sd_unit_attach ssd_unit_attach 833 #define sd_unit_detach ssd_unit_detach 834 #define sd_set_unit_attributes ssd_set_unit_attributes 835 #define sd_create_minor_nodes ssd_create_minor_nodes 836 #define sd_create_errstats ssd_create_errstats 837 #define sd_set_errstats ssd_set_errstats 838 #define sd_set_pstats ssd_set_pstats 839 #define sddump ssddump 840 #define sd_scsi_poll ssd_scsi_poll 841 #define sd_send_polled_RQS ssd_send_polled_RQS 842 #define sd_ddi_scsi_poll ssd_ddi_scsi_poll 843 #define sd_init_event_callbacks ssd_init_event_callbacks 844 #define sd_event_callback ssd_event_callback 845 #define sd_cache_control ssd_cache_control 846 #define sd_get_write_cache_enabled ssd_get_write_cache_enabled 847 #define sd_make_device ssd_make_device 848 #define sdopen ssdopen 849 #define sdclose ssdclose 850 #define sd_ready_and_valid ssd_ready_and_valid 851 #define sdmin ssdmin 852 #define sdread ssdread 853 #define sdwrite ssdwrite 854 #define sdaread ssdaread 855 #define sdawrite ssdawrite 856 #define sdstrategy ssdstrategy 857 #define sdioctl ssdioctl 858 #define sd_mapblockaddr_iostart ssd_mapblockaddr_iostart 859 #define sd_mapblocksize_iostart ssd_mapblocksize_iostart 860 #define sd_checksum_iostart ssd_checksum_iostart 861 #define sd_checksum_uscsi_iostart ssd_checksum_uscsi_iostart 862 #define sd_pm_iostart ssd_pm_iostart 863 #define sd_core_iostart ssd_core_iostart 864 #define sd_mapblockaddr_iodone ssd_mapblockaddr_iodone 865 #define sd_mapblocksize_iodone ssd_mapblocksize_iodone 866 #define sd_checksum_iodone ssd_checksum_iodone 867 #define sd_checksum_uscsi_iodone ssd_checksum_uscsi_iodone 868 #define sd_pm_iodone ssd_pm_iodone 869 #define sd_initpkt_for_buf ssd_initpkt_for_buf 870 #define sd_destroypkt_for_buf ssd_destroypkt_for_buf 871 #define sd_setup_rw_pkt ssd_setup_rw_pkt 872 #define sd_setup_next_rw_pkt ssd_setup_next_rw_pkt 873 #define sd_buf_iodone ssd_buf_iodone 874 #define sd_uscsi_strategy ssd_uscsi_strategy 875 #define sd_initpkt_for_uscsi ssd_initpkt_for_uscsi 876 #define sd_destroypkt_for_uscsi ssd_destroypkt_for_uscsi 877 #define sd_uscsi_iodone ssd_uscsi_iodone 878 #define sd_xbuf_strategy ssd_xbuf_strategy 879 #define sd_xbuf_init ssd_xbuf_init 880 #define sd_pm_entry ssd_pm_entry 881 #define sd_pm_exit ssd_pm_exit 882 883 #define sd_pm_idletimeout_handler ssd_pm_idletimeout_handler 884 #define sd_pm_timeout_handler ssd_pm_timeout_handler 885 886 #define sd_add_buf_to_waitq ssd_add_buf_to_waitq 887 #define sdintr ssdintr 888 #define sd_start_cmds ssd_start_cmds 889 #define sd_send_scsi_cmd ssd_send_scsi_cmd 890 #define sd_bioclone_alloc ssd_bioclone_alloc 891 #define sd_bioclone_free ssd_bioclone_free 892 #define sd_shadow_buf_alloc ssd_shadow_buf_alloc 893 #define sd_shadow_buf_free ssd_shadow_buf_free 894 #define sd_print_transport_rejected_message \ 895 ssd_print_transport_rejected_message 896 #define sd_retry_command ssd_retry_command 897 #define sd_set_retry_bp ssd_set_retry_bp 898 #define sd_send_request_sense_command ssd_send_request_sense_command 899 #define sd_start_retry_command ssd_start_retry_command 900 #define sd_start_direct_priority_command \ 901 ssd_start_direct_priority_command 902 #define sd_return_failed_command ssd_return_failed_command 903 #define sd_return_failed_command_no_restart \ 904 ssd_return_failed_command_no_restart 905 #define sd_return_command ssd_return_command 906 #define sd_sync_with_callback ssd_sync_with_callback 907 #define sdrunout ssdrunout 908 #define sd_mark_rqs_busy ssd_mark_rqs_busy 909 #define sd_mark_rqs_idle ssd_mark_rqs_idle 910 #define sd_reduce_throttle ssd_reduce_throttle 911 #define sd_restore_throttle ssd_restore_throttle 912 #define sd_print_incomplete_msg ssd_print_incomplete_msg 913 #define sd_init_cdb_limits ssd_init_cdb_limits 914 #define sd_pkt_status_good ssd_pkt_status_good 915 #define sd_pkt_status_check_condition ssd_pkt_status_check_condition 916 #define sd_pkt_status_busy ssd_pkt_status_busy 917 #define sd_pkt_status_reservation_conflict \ 918 ssd_pkt_status_reservation_conflict 919 #define sd_pkt_status_qfull ssd_pkt_status_qfull 920 #define sd_handle_request_sense ssd_handle_request_sense 921 #define sd_handle_auto_request_sense ssd_handle_auto_request_sense 922 #define sd_print_sense_failed_msg ssd_print_sense_failed_msg 923 #define sd_validate_sense_data ssd_validate_sense_data 924 #define sd_decode_sense ssd_decode_sense 925 #define sd_print_sense_msg ssd_print_sense_msg 926 #define sd_extract_sense_info_descr ssd_extract_sense_info_descr 927 #define sd_sense_key_no_sense ssd_sense_key_no_sense 928 #define sd_sense_key_recoverable_error ssd_sense_key_recoverable_error 929 #define sd_sense_key_not_ready ssd_sense_key_not_ready 930 #define sd_sense_key_medium_or_hardware_error \ 931 ssd_sense_key_medium_or_hardware_error 932 #define sd_sense_key_illegal_request ssd_sense_key_illegal_request 933 #define sd_sense_key_unit_attention ssd_sense_key_unit_attention 934 #define sd_sense_key_fail_command ssd_sense_key_fail_command 935 #define sd_sense_key_blank_check ssd_sense_key_blank_check 936 #define sd_sense_key_aborted_command ssd_sense_key_aborted_command 937 #define sd_sense_key_default ssd_sense_key_default 938 #define sd_print_retry_msg ssd_print_retry_msg 939 #define sd_print_cmd_incomplete_msg ssd_print_cmd_incomplete_msg 940 #define sd_pkt_reason_cmd_incomplete ssd_pkt_reason_cmd_incomplete 941 #define sd_pkt_reason_cmd_tran_err ssd_pkt_reason_cmd_tran_err 942 #define sd_pkt_reason_cmd_reset ssd_pkt_reason_cmd_reset 943 #define sd_pkt_reason_cmd_aborted ssd_pkt_reason_cmd_aborted 944 #define sd_pkt_reason_cmd_timeout ssd_pkt_reason_cmd_timeout 945 #define sd_pkt_reason_cmd_unx_bus_free ssd_pkt_reason_cmd_unx_bus_free 946 #define sd_pkt_reason_cmd_tag_reject ssd_pkt_reason_cmd_tag_reject 947 #define sd_pkt_reason_default ssd_pkt_reason_default 948 #define sd_reset_target ssd_reset_target 949 #define sd_start_stop_unit_callback ssd_start_stop_unit_callback 950 #define sd_start_stop_unit_task ssd_start_stop_unit_task 951 #define sd_taskq_create ssd_taskq_create 952 #define sd_taskq_delete ssd_taskq_delete 953 #define sd_media_change_task ssd_media_change_task 954 #define sd_handle_mchange ssd_handle_mchange 955 #define sd_send_scsi_DOORLOCK ssd_send_scsi_DOORLOCK 956 #define sd_send_scsi_READ_CAPACITY ssd_send_scsi_READ_CAPACITY 957 #define sd_send_scsi_READ_CAPACITY_16 ssd_send_scsi_READ_CAPACITY_16 958 #define sd_send_scsi_GET_CONFIGURATION ssd_send_scsi_GET_CONFIGURATION 959 #define sd_send_scsi_feature_GET_CONFIGURATION \ 960 sd_send_scsi_feature_GET_CONFIGURATION 961 #define sd_send_scsi_START_STOP_UNIT ssd_send_scsi_START_STOP_UNIT 962 #define sd_send_scsi_INQUIRY ssd_send_scsi_INQUIRY 963 #define sd_send_scsi_TEST_UNIT_READY ssd_send_scsi_TEST_UNIT_READY 964 #define sd_send_scsi_PERSISTENT_RESERVE_IN \ 965 ssd_send_scsi_PERSISTENT_RESERVE_IN 966 #define sd_send_scsi_PERSISTENT_RESERVE_OUT \ 967 ssd_send_scsi_PERSISTENT_RESERVE_OUT 968 #define sd_send_scsi_SYNCHRONIZE_CACHE ssd_send_scsi_SYNCHRONIZE_CACHE 969 #define sd_send_scsi_SYNCHRONIZE_CACHE_biodone \ 970 ssd_send_scsi_SYNCHRONIZE_CACHE_biodone 971 #define sd_send_scsi_MODE_SENSE ssd_send_scsi_MODE_SENSE 972 #define sd_send_scsi_MODE_SELECT ssd_send_scsi_MODE_SELECT 973 #define sd_send_scsi_RDWR ssd_send_scsi_RDWR 974 #define sd_send_scsi_LOG_SENSE ssd_send_scsi_LOG_SENSE 975 #define sd_alloc_rqs ssd_alloc_rqs 976 #define sd_free_rqs ssd_free_rqs 977 #define sd_dump_memory ssd_dump_memory 978 #define sd_uscsi_ioctl ssd_uscsi_ioctl 979 #define sd_get_media_info ssd_get_media_info 980 #define sd_dkio_ctrl_info ssd_dkio_ctrl_info 981 #define sd_dkio_get_geometry ssd_dkio_get_geometry 982 #define sd_dkio_set_geometry ssd_dkio_set_geometry 983 #define sd_dkio_get_partition ssd_dkio_get_partition 984 #define sd_dkio_set_partition ssd_dkio_set_partition 985 #define sd_dkio_partition ssd_dkio_partition 986 #define sd_dkio_get_vtoc ssd_dkio_get_vtoc 987 #define sd_dkio_get_efi ssd_dkio_get_efi 988 #define sd_build_user_vtoc ssd_build_user_vtoc 989 #define sd_dkio_set_vtoc ssd_dkio_set_vtoc 990 #define sd_dkio_set_efi ssd_dkio_set_efi 991 #define sd_build_label_vtoc ssd_build_label_vtoc 992 #define sd_write_label ssd_write_label 993 #define sd_clear_vtoc ssd_clear_vtoc 994 #define sd_clear_efi ssd_clear_efi 995 #define sd_get_tunables_from_conf ssd_get_tunables_from_conf 996 #define sd_setup_next_xfer ssd_setup_next_xfer 997 #define sd_dkio_get_temp ssd_dkio_get_temp 998 #define sd_dkio_get_mboot ssd_dkio_get_mboot 999 #define sd_dkio_set_mboot ssd_dkio_set_mboot 1000 #define sd_setup_default_geometry ssd_setup_default_geometry 1001 #define sd_update_fdisk_and_vtoc ssd_update_fdisk_and_vtoc 1002 #define sd_check_mhd ssd_check_mhd 1003 #define sd_mhd_watch_cb ssd_mhd_watch_cb 1004 #define sd_mhd_watch_incomplete ssd_mhd_watch_incomplete 1005 #define sd_sname ssd_sname 1006 #define sd_mhd_resvd_recover ssd_mhd_resvd_recover 1007 #define sd_resv_reclaim_thread ssd_resv_reclaim_thread 1008 #define sd_take_ownership ssd_take_ownership 1009 #define sd_reserve_release ssd_reserve_release 1010 #define sd_rmv_resv_reclaim_req ssd_rmv_resv_reclaim_req 1011 #define sd_mhd_reset_notify_cb ssd_mhd_reset_notify_cb 1012 #define sd_persistent_reservation_in_read_keys \ 1013 ssd_persistent_reservation_in_read_keys 1014 #define sd_persistent_reservation_in_read_resv \ 1015 ssd_persistent_reservation_in_read_resv 1016 #define sd_mhdioc_takeown ssd_mhdioc_takeown 1017 #define sd_mhdioc_failfast ssd_mhdioc_failfast 1018 #define sd_mhdioc_release ssd_mhdioc_release 1019 #define sd_mhdioc_register_devid ssd_mhdioc_register_devid 1020 #define sd_mhdioc_inkeys ssd_mhdioc_inkeys 1021 #define sd_mhdioc_inresv ssd_mhdioc_inresv 1022 #define sr_change_blkmode ssr_change_blkmode 1023 #define sr_change_speed ssr_change_speed 1024 #define sr_atapi_change_speed ssr_atapi_change_speed 1025 #define sr_pause_resume ssr_pause_resume 1026 #define sr_play_msf ssr_play_msf 1027 #define sr_play_trkind ssr_play_trkind 1028 #define sr_read_all_subcodes ssr_read_all_subcodes 1029 #define sr_read_subchannel ssr_read_subchannel 1030 #define sr_read_tocentry ssr_read_tocentry 1031 #define sr_read_tochdr ssr_read_tochdr 1032 #define sr_read_cdda ssr_read_cdda 1033 #define sr_read_cdxa ssr_read_cdxa 1034 #define sr_read_mode1 ssr_read_mode1 1035 #define sr_read_mode2 ssr_read_mode2 1036 #define sr_read_cd_mode2 ssr_read_cd_mode2 1037 #define sr_sector_mode ssr_sector_mode 1038 #define sr_eject ssr_eject 1039 #define sr_ejected ssr_ejected 1040 #define sr_check_wp ssr_check_wp 1041 #define sd_check_media ssd_check_media 1042 #define sd_media_watch_cb ssd_media_watch_cb 1043 #define sd_delayed_cv_broadcast ssd_delayed_cv_broadcast 1044 #define sr_volume_ctrl ssr_volume_ctrl 1045 #define sr_read_sony_session_offset ssr_read_sony_session_offset 1046 #define sd_log_page_supported ssd_log_page_supported 1047 #define sd_check_for_writable_cd ssd_check_for_writable_cd 1048 #define sd_wm_cache_constructor ssd_wm_cache_constructor 1049 #define sd_wm_cache_destructor ssd_wm_cache_destructor 1050 #define sd_range_lock ssd_range_lock 1051 #define sd_get_range ssd_get_range 1052 #define sd_free_inlist_wmap ssd_free_inlist_wmap 1053 #define sd_range_unlock ssd_range_unlock 1054 #define sd_read_modify_write_task ssd_read_modify_write_task 1055 #define sddump_do_read_of_rmw ssddump_do_read_of_rmw 1056 1057 #define sd_iostart_chain ssd_iostart_chain 1058 #define sd_iodone_chain ssd_iodone_chain 1059 #define sd_initpkt_map ssd_initpkt_map 1060 #define sd_destroypkt_map ssd_destroypkt_map 1061 #define sd_chain_type_map ssd_chain_type_map 1062 #define sd_chain_index_map ssd_chain_index_map 1063 1064 #define sd_failfast_flushctl ssd_failfast_flushctl 1065 #define sd_failfast_flushq ssd_failfast_flushq 1066 #define sd_failfast_flushq_callback ssd_failfast_flushq_callback 1067 1068 #define sd_is_lsi ssd_is_lsi 1069 1070 #endif /* #if (defined(__fibre)) */ 1071 1072 1073 int _init(void); 1074 int _fini(void); 1075 int _info(struct modinfo *modinfop); 1076 1077 /*PRINTFLIKE3*/ 1078 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1079 /*PRINTFLIKE3*/ 1080 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1081 /*PRINTFLIKE3*/ 1082 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1083 1084 static int sdprobe(dev_info_t *devi); 1085 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, 1086 void **result); 1087 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 1088 int mod_flags, char *name, caddr_t valuep, int *lengthp); 1089 1090 /* 1091 * Smart probe for parallel scsi 1092 */ 1093 static void sd_scsi_probe_cache_init(void); 1094 static void sd_scsi_probe_cache_fini(void); 1095 static void sd_scsi_clear_probe_cache(void); 1096 static int sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)()); 1097 1098 static int sd_spin_up_unit(struct sd_lun *un); 1099 #ifdef _LP64 1100 static void sd_enable_descr_sense(struct sd_lun *un); 1101 #endif /* _LP64 */ 1102 static void sd_set_mmc_caps(struct sd_lun *un); 1103 1104 static void sd_read_unit_properties(struct sd_lun *un); 1105 static int sd_process_sdconf_file(struct sd_lun *un); 1106 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags, 1107 int *data_list, sd_tunables *values); 1108 static void sd_process_sdconf_table(struct sd_lun *un); 1109 static int sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen); 1110 static int sd_blank_cmp(struct sd_lun *un, char *id, int idlen); 1111 static int sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list, 1112 int list_len, char *dataname_ptr); 1113 static void sd_set_vers1_properties(struct sd_lun *un, int flags, 1114 sd_tunables *prop_list); 1115 static int sd_validate_geometry(struct sd_lun *un, int path_flag); 1116 1117 #if defined(_SUNOS_VTOC_16) 1118 static void sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g); 1119 #endif 1120 1121 static void sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize, 1122 int path_flag); 1123 static int sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize, 1124 int path_flag); 1125 static void sd_get_physical_geometry(struct sd_lun *un, 1126 struct geom_cache *pgeom_p, int capacity, int lbasize, int path_flag); 1127 static void sd_get_virtual_geometry(struct sd_lun *un, int capacity, 1128 int lbasize); 1129 static int sd_uselabel(struct sd_lun *un, struct dk_label *l, int path_flag); 1130 static void sd_swap_efi_gpt(efi_gpt_t *); 1131 static void sd_swap_efi_gpe(int nparts, efi_gpe_t *); 1132 static int sd_validate_efi(efi_gpt_t *); 1133 static int sd_use_efi(struct sd_lun *, int); 1134 static void sd_build_default_label(struct sd_lun *un); 1135 1136 #if defined(_FIRMWARE_NEEDS_FDISK) 1137 static int sd_has_max_chs_vals(struct ipart *fdp); 1138 #endif 1139 static void sd_inq_fill(char *p, int l, char *s); 1140 1141 1142 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi, 1143 int reservation_flag); 1144 static daddr_t sd_get_devid_block(struct sd_lun *un); 1145 static int sd_get_devid(struct sd_lun *un); 1146 static int sd_get_serialnum(struct sd_lun *un, uchar_t *wwn, int *len); 1147 static ddi_devid_t sd_create_devid(struct sd_lun *un); 1148 static int sd_write_deviceid(struct sd_lun *un); 1149 static int sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len); 1150 static int sd_check_vpd_page_support(struct sd_lun *un); 1151 1152 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi); 1153 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un); 1154 1155 static int sd_ddi_suspend(dev_info_t *devi); 1156 static int sd_ddi_pm_suspend(struct sd_lun *un); 1157 static int sd_ddi_resume(dev_info_t *devi); 1158 static int sd_ddi_pm_resume(struct sd_lun *un); 1159 static int sdpower(dev_info_t *devi, int component, int level); 1160 1161 static int sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd); 1162 static int sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd); 1163 static int sd_unit_attach(dev_info_t *devi); 1164 static int sd_unit_detach(dev_info_t *devi); 1165 1166 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi); 1167 static int sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi); 1168 static void sd_create_errstats(struct sd_lun *un, int instance); 1169 static void sd_set_errstats(struct sd_lun *un); 1170 static void sd_set_pstats(struct sd_lun *un); 1171 1172 static int sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk); 1173 static int sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt); 1174 static int sd_send_polled_RQS(struct sd_lun *un); 1175 static int sd_ddi_scsi_poll(struct scsi_pkt *pkt); 1176 1177 #if (defined(__fibre)) 1178 /* 1179 * Event callbacks (photon) 1180 */ 1181 static void sd_init_event_callbacks(struct sd_lun *un); 1182 static void sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *); 1183 #endif 1184 1185 /* 1186 * Defines for sd_cache_control 1187 */ 1188 1189 #define SD_CACHE_ENABLE 1 1190 #define SD_CACHE_DISABLE 0 1191 #define SD_CACHE_NOCHANGE -1 1192 1193 static int sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag); 1194 static int sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled); 1195 static dev_t sd_make_device(dev_info_t *devi); 1196 1197 static void sd_update_block_info(struct sd_lun *un, uint32_t lbasize, 1198 uint64_t capacity); 1199 1200 /* 1201 * Driver entry point functions. 1202 */ 1203 static int sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p); 1204 static int sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p); 1205 static int sd_ready_and_valid(struct sd_lun *un); 1206 1207 static void sdmin(struct buf *bp); 1208 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p); 1209 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p); 1210 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p); 1211 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p); 1212 1213 static int sdstrategy(struct buf *bp); 1214 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *); 1215 1216 /* 1217 * Function prototypes for layering functions in the iostart chain. 1218 */ 1219 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un, 1220 struct buf *bp); 1221 static void sd_mapblocksize_iostart(int index, struct sd_lun *un, 1222 struct buf *bp); 1223 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp); 1224 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un, 1225 struct buf *bp); 1226 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp); 1227 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp); 1228 1229 /* 1230 * Function prototypes for layering functions in the iodone chain. 1231 */ 1232 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp); 1233 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp); 1234 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un, 1235 struct buf *bp); 1236 static void sd_mapblocksize_iodone(int index, struct sd_lun *un, 1237 struct buf *bp); 1238 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp); 1239 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un, 1240 struct buf *bp); 1241 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp); 1242 1243 /* 1244 * Prototypes for functions to support buf(9S) based IO. 1245 */ 1246 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg); 1247 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **); 1248 static void sd_destroypkt_for_buf(struct buf *); 1249 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp, 1250 struct buf *bp, int flags, 1251 int (*callback)(caddr_t), caddr_t callback_arg, 1252 diskaddr_t lba, uint32_t blockcount); 1253 #if defined(__i386) || defined(__amd64) 1254 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp, 1255 struct buf *bp, diskaddr_t lba, uint32_t blockcount); 1256 #endif /* defined(__i386) || defined(__amd64) */ 1257 1258 /* 1259 * Prototypes for functions to support USCSI IO. 1260 */ 1261 static int sd_uscsi_strategy(struct buf *bp); 1262 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **); 1263 static void sd_destroypkt_for_uscsi(struct buf *); 1264 1265 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 1266 uchar_t chain_type, void *pktinfop); 1267 1268 static int sd_pm_entry(struct sd_lun *un); 1269 static void sd_pm_exit(struct sd_lun *un); 1270 1271 static void sd_pm_idletimeout_handler(void *arg); 1272 1273 /* 1274 * sd_core internal functions (used at the sd_core_io layer). 1275 */ 1276 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp); 1277 static void sdintr(struct scsi_pkt *pktp); 1278 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp); 1279 1280 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, 1281 enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace, 1282 int path_flag); 1283 1284 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen, 1285 daddr_t blkno, int (*func)(struct buf *)); 1286 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen, 1287 uint_t bflags, daddr_t blkno, int (*func)(struct buf *)); 1288 static void sd_bioclone_free(struct buf *bp); 1289 static void sd_shadow_buf_free(struct buf *bp); 1290 1291 static void sd_print_transport_rejected_message(struct sd_lun *un, 1292 struct sd_xbuf *xp, int code); 1293 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, 1294 void *arg, int code); 1295 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, 1296 void *arg, int code); 1297 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, 1298 void *arg, int code); 1299 1300 static void sd_retry_command(struct sd_lun *un, struct buf *bp, 1301 int retry_check_flag, 1302 void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, 1303 int c), 1304 void *user_arg, int failure_code, clock_t retry_delay, 1305 void (*statp)(kstat_io_t *)); 1306 1307 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp, 1308 clock_t retry_delay, void (*statp)(kstat_io_t *)); 1309 1310 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp, 1311 struct scsi_pkt *pktp); 1312 static void sd_start_retry_command(void *arg); 1313 static void sd_start_direct_priority_command(void *arg); 1314 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp, 1315 int errcode); 1316 static void sd_return_failed_command_no_restart(struct sd_lun *un, 1317 struct buf *bp, int errcode); 1318 static void sd_return_command(struct sd_lun *un, struct buf *bp); 1319 static void sd_sync_with_callback(struct sd_lun *un); 1320 static int sdrunout(caddr_t arg); 1321 1322 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp); 1323 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp); 1324 1325 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type); 1326 static void sd_restore_throttle(void *arg); 1327 1328 static void sd_init_cdb_limits(struct sd_lun *un); 1329 1330 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp, 1331 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1332 1333 /* 1334 * Error handling functions 1335 */ 1336 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp, 1337 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1338 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, 1339 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1340 static void sd_pkt_status_reservation_conflict(struct sd_lun *un, 1341 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1342 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp, 1343 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1344 1345 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp, 1346 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1347 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp, 1348 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1349 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp, 1350 struct sd_xbuf *xp); 1351 static void sd_decode_sense(struct sd_lun *un, struct buf *bp, 1352 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1353 1354 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp, 1355 void *arg, int code); 1356 static diskaddr_t sd_extract_sense_info_descr( 1357 struct scsi_descr_sense_hdr *sdsp); 1358 1359 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp, 1360 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1361 static void sd_sense_key_recoverable_error(struct sd_lun *un, 1362 uint8_t asc, 1363 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1364 static void sd_sense_key_not_ready(struct sd_lun *un, 1365 uint8_t asc, uint8_t ascq, 1366 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1367 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un, 1368 int sense_key, uint8_t asc, 1369 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1370 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp, 1371 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1372 static void sd_sense_key_unit_attention(struct sd_lun *un, 1373 uint8_t asc, 1374 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1375 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp, 1376 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1377 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp, 1378 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1379 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp, 1380 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1381 static void sd_sense_key_default(struct sd_lun *un, 1382 int sense_key, 1383 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1384 1385 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp, 1386 void *arg, int flag); 1387 1388 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp, 1389 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1390 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp, 1391 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1392 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp, 1393 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1394 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp, 1395 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1396 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp, 1397 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1398 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp, 1399 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1400 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp, 1401 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1402 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp, 1403 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1404 1405 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp); 1406 1407 static void sd_start_stop_unit_callback(void *arg); 1408 static void sd_start_stop_unit_task(void *arg); 1409 1410 static void sd_taskq_create(void); 1411 static void sd_taskq_delete(void); 1412 static void sd_media_change_task(void *arg); 1413 1414 static int sd_handle_mchange(struct sd_lun *un); 1415 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag); 1416 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, 1417 uint32_t *lbap, int path_flag); 1418 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp, 1419 uint32_t *lbap, int path_flag); 1420 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, 1421 int path_flag); 1422 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, 1423 size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp); 1424 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag); 1425 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, 1426 uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp); 1427 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, 1428 uchar_t usr_cmd, uchar_t *usr_bufp); 1429 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, 1430 struct dk_callback *dkc); 1431 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp); 1432 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, 1433 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 1434 uchar_t *bufaddr, uint_t buflen); 1435 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un, 1436 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 1437 uchar_t *bufaddr, uint_t buflen, char feature); 1438 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, 1439 uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag); 1440 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, 1441 uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag); 1442 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr, 1443 size_t buflen, daddr_t start_block, int path_flag); 1444 #define sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag) \ 1445 sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \ 1446 path_flag) 1447 #define sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag) \ 1448 sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\ 1449 path_flag) 1450 1451 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, 1452 uint16_t buflen, uchar_t page_code, uchar_t page_control, 1453 uint16_t param_ptr, int path_flag); 1454 1455 static int sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un); 1456 static void sd_free_rqs(struct sd_lun *un); 1457 1458 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, 1459 uchar_t *data, int len, int fmt); 1460 static void sd_panic_for_res_conflict(struct sd_lun *un); 1461 1462 /* 1463 * Disk Ioctl Function Prototypes 1464 */ 1465 static int sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag); 1466 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag); 1467 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag); 1468 static int sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag, 1469 int geom_validated); 1470 static int sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag); 1471 static int sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag, 1472 int geom_validated); 1473 static int sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag); 1474 static int sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag, 1475 int geom_validated); 1476 static int sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag); 1477 static int sd_dkio_partition(dev_t dev, caddr_t arg, int flag); 1478 static void sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc); 1479 static int sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag); 1480 static int sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag); 1481 static int sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc); 1482 static int sd_write_label(dev_t dev); 1483 static int sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl); 1484 static void sd_clear_vtoc(struct sd_lun *un); 1485 static void sd_clear_efi(struct sd_lun *un); 1486 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag); 1487 static int sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag); 1488 static int sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag); 1489 static void sd_setup_default_geometry(struct sd_lun *un); 1490 #if defined(__i386) || defined(__amd64) 1491 static int sd_update_fdisk_and_vtoc(struct sd_lun *un); 1492 #endif 1493 1494 /* 1495 * Multi-host Ioctl Prototypes 1496 */ 1497 static int sd_check_mhd(dev_t dev, int interval); 1498 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp); 1499 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt); 1500 static char *sd_sname(uchar_t status); 1501 static void sd_mhd_resvd_recover(void *arg); 1502 static void sd_resv_reclaim_thread(); 1503 static int sd_take_ownership(dev_t dev, struct mhioctkown *p); 1504 static int sd_reserve_release(dev_t dev, int cmd); 1505 static void sd_rmv_resv_reclaim_req(dev_t dev); 1506 static void sd_mhd_reset_notify_cb(caddr_t arg); 1507 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un, 1508 mhioc_inkeys_t *usrp, int flag); 1509 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un, 1510 mhioc_inresvs_t *usrp, int flag); 1511 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag); 1512 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag); 1513 static int sd_mhdioc_release(dev_t dev); 1514 static int sd_mhdioc_register_devid(dev_t dev); 1515 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag); 1516 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag); 1517 1518 /* 1519 * SCSI removable prototypes 1520 */ 1521 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag); 1522 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag); 1523 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag); 1524 static int sr_pause_resume(dev_t dev, int mode); 1525 static int sr_play_msf(dev_t dev, caddr_t data, int flag); 1526 static int sr_play_trkind(dev_t dev, caddr_t data, int flag); 1527 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag); 1528 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag); 1529 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag); 1530 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag); 1531 static int sr_read_cdda(dev_t dev, caddr_t data, int flag); 1532 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag); 1533 static int sr_read_mode1(dev_t dev, caddr_t data, int flag); 1534 static int sr_read_mode2(dev_t dev, caddr_t data, int flag); 1535 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag); 1536 static int sr_sector_mode(dev_t dev, uint32_t blksize); 1537 static int sr_eject(dev_t dev); 1538 static void sr_ejected(register struct sd_lun *un); 1539 static int sr_check_wp(dev_t dev); 1540 static int sd_check_media(dev_t dev, enum dkio_state state); 1541 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp); 1542 static void sd_delayed_cv_broadcast(void *arg); 1543 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag); 1544 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag); 1545 1546 static int sd_log_page_supported(struct sd_lun *un, int log_page); 1547 1548 /* 1549 * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions. 1550 */ 1551 static void sd_check_for_writable_cd(struct sd_lun *un); 1552 static int sd_wm_cache_constructor(void *wm, void *un, int flags); 1553 static void sd_wm_cache_destructor(void *wm, void *un); 1554 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb, 1555 daddr_t endb, ushort_t typ); 1556 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb, 1557 daddr_t endb); 1558 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp); 1559 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm); 1560 static void sd_read_modify_write_task(void * arg); 1561 static int 1562 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk, 1563 struct buf **bpp); 1564 1565 1566 /* 1567 * Function prototypes for failfast support. 1568 */ 1569 static void sd_failfast_flushq(struct sd_lun *un); 1570 static int sd_failfast_flushq_callback(struct buf *bp); 1571 1572 /* 1573 * Function prototypes to check for lsi devices 1574 */ 1575 static void sd_is_lsi(struct sd_lun *un); 1576 1577 /* 1578 * Function prototypes for x86 support 1579 */ 1580 #if defined(__i386) || defined(__amd64) 1581 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp, 1582 struct scsi_pkt *pkt, struct sd_xbuf *xp); 1583 #endif 1584 1585 /* 1586 * Constants for failfast support: 1587 * 1588 * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO 1589 * failfast processing being performed. 1590 * 1591 * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing 1592 * failfast processing on all bufs with B_FAILFAST set. 1593 */ 1594 1595 #define SD_FAILFAST_INACTIVE 0 1596 #define SD_FAILFAST_ACTIVE 1 1597 1598 /* 1599 * Bitmask to control behavior of buf(9S) flushes when a transition to 1600 * the failfast state occurs. Optional bits include: 1601 * 1602 * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that 1603 * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will 1604 * be flushed. 1605 * 1606 * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the 1607 * driver, in addition to the regular wait queue. This includes the xbuf 1608 * queues. When clear, only the driver's wait queue will be flushed. 1609 */ 1610 #define SD_FAILFAST_FLUSH_ALL_BUFS 0x01 1611 #define SD_FAILFAST_FLUSH_ALL_QUEUES 0x02 1612 1613 /* 1614 * The default behavior is to only flush bufs that have B_FAILFAST set, but 1615 * to flush all queues within the driver. 1616 */ 1617 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES; 1618 1619 1620 /* 1621 * SD Testing Fault Injection 1622 */ 1623 #ifdef SD_FAULT_INJECTION 1624 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un); 1625 static void sd_faultinjection(struct scsi_pkt *pktp); 1626 static void sd_injection_log(char *buf, struct sd_lun *un); 1627 #endif 1628 1629 /* 1630 * Device driver ops vector 1631 */ 1632 static struct cb_ops sd_cb_ops = { 1633 sdopen, /* open */ 1634 sdclose, /* close */ 1635 sdstrategy, /* strategy */ 1636 nodev, /* print */ 1637 sddump, /* dump */ 1638 sdread, /* read */ 1639 sdwrite, /* write */ 1640 sdioctl, /* ioctl */ 1641 nodev, /* devmap */ 1642 nodev, /* mmap */ 1643 nodev, /* segmap */ 1644 nochpoll, /* poll */ 1645 sd_prop_op, /* cb_prop_op */ 1646 0, /* streamtab */ 1647 D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */ 1648 CB_REV, /* cb_rev */ 1649 sdaread, /* async I/O read entry point */ 1650 sdawrite /* async I/O write entry point */ 1651 }; 1652 1653 static struct dev_ops sd_ops = { 1654 DEVO_REV, /* devo_rev, */ 1655 0, /* refcnt */ 1656 sdinfo, /* info */ 1657 nulldev, /* identify */ 1658 sdprobe, /* probe */ 1659 sdattach, /* attach */ 1660 sddetach, /* detach */ 1661 nodev, /* reset */ 1662 &sd_cb_ops, /* driver operations */ 1663 NULL, /* bus operations */ 1664 sdpower /* power */ 1665 }; 1666 1667 1668 /* 1669 * This is the loadable module wrapper. 1670 */ 1671 #include <sys/modctl.h> 1672 1673 static struct modldrv modldrv = { 1674 &mod_driverops, /* Type of module. This one is a driver */ 1675 SD_MODULE_NAME, /* Module name. */ 1676 &sd_ops /* driver ops */ 1677 }; 1678 1679 1680 static struct modlinkage modlinkage = { 1681 MODREV_1, 1682 &modldrv, 1683 NULL 1684 }; 1685 1686 1687 static struct scsi_asq_key_strings sd_additional_codes[] = { 1688 0x81, 0, "Logical Unit is Reserved", 1689 0x85, 0, "Audio Address Not Valid", 1690 0xb6, 0, "Media Load Mechanism Failed", 1691 0xB9, 0, "Audio Play Operation Aborted", 1692 0xbf, 0, "Buffer Overflow for Read All Subcodes Command", 1693 0x53, 2, "Medium removal prevented", 1694 0x6f, 0, "Authentication failed during key exchange", 1695 0x6f, 1, "Key not present", 1696 0x6f, 2, "Key not established", 1697 0x6f, 3, "Read without proper authentication", 1698 0x6f, 4, "Mismatched region to this logical unit", 1699 0x6f, 5, "Region reset count error", 1700 0xffff, 0x0, NULL 1701 }; 1702 1703 1704 /* 1705 * Struct for passing printing information for sense data messages 1706 */ 1707 struct sd_sense_info { 1708 int ssi_severity; 1709 int ssi_pfa_flag; 1710 }; 1711 1712 /* 1713 * Table of function pointers for iostart-side routines. Seperate "chains" 1714 * of layered function calls are formed by placing the function pointers 1715 * sequentially in the desired order. Functions are called according to an 1716 * incrementing table index ordering. The last function in each chain must 1717 * be sd_core_iostart(). The corresponding iodone-side routines are expected 1718 * in the sd_iodone_chain[] array. 1719 * 1720 * Note: It may seem more natural to organize both the iostart and iodone 1721 * functions together, into an array of structures (or some similar 1722 * organization) with a common index, rather than two seperate arrays which 1723 * must be maintained in synchronization. The purpose of this division is 1724 * to achiece improved performance: individual arrays allows for more 1725 * effective cache line utilization on certain platforms. 1726 */ 1727 1728 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp); 1729 1730 1731 static sd_chain_t sd_iostart_chain[] = { 1732 1733 /* Chain for buf IO for disk drive targets (PM enabled) */ 1734 sd_mapblockaddr_iostart, /* Index: 0 */ 1735 sd_pm_iostart, /* Index: 1 */ 1736 sd_core_iostart, /* Index: 2 */ 1737 1738 /* Chain for buf IO for disk drive targets (PM disabled) */ 1739 sd_mapblockaddr_iostart, /* Index: 3 */ 1740 sd_core_iostart, /* Index: 4 */ 1741 1742 /* Chain for buf IO for removable-media targets (PM enabled) */ 1743 sd_mapblockaddr_iostart, /* Index: 5 */ 1744 sd_mapblocksize_iostart, /* Index: 6 */ 1745 sd_pm_iostart, /* Index: 7 */ 1746 sd_core_iostart, /* Index: 8 */ 1747 1748 /* Chain for buf IO for removable-media targets (PM disabled) */ 1749 sd_mapblockaddr_iostart, /* Index: 9 */ 1750 sd_mapblocksize_iostart, /* Index: 10 */ 1751 sd_core_iostart, /* Index: 11 */ 1752 1753 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1754 sd_mapblockaddr_iostart, /* Index: 12 */ 1755 sd_checksum_iostart, /* Index: 13 */ 1756 sd_pm_iostart, /* Index: 14 */ 1757 sd_core_iostart, /* Index: 15 */ 1758 1759 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1760 sd_mapblockaddr_iostart, /* Index: 16 */ 1761 sd_checksum_iostart, /* Index: 17 */ 1762 sd_core_iostart, /* Index: 18 */ 1763 1764 /* Chain for USCSI commands (all targets) */ 1765 sd_pm_iostart, /* Index: 19 */ 1766 sd_core_iostart, /* Index: 20 */ 1767 1768 /* Chain for checksumming USCSI commands (all targets) */ 1769 sd_checksum_uscsi_iostart, /* Index: 21 */ 1770 sd_pm_iostart, /* Index: 22 */ 1771 sd_core_iostart, /* Index: 23 */ 1772 1773 /* Chain for "direct" USCSI commands (all targets) */ 1774 sd_core_iostart, /* Index: 24 */ 1775 1776 /* Chain for "direct priority" USCSI commands (all targets) */ 1777 sd_core_iostart, /* Index: 25 */ 1778 }; 1779 1780 /* 1781 * Macros to locate the first function of each iostart chain in the 1782 * sd_iostart_chain[] array. These are located by the index in the array. 1783 */ 1784 #define SD_CHAIN_DISK_IOSTART 0 1785 #define SD_CHAIN_DISK_IOSTART_NO_PM 3 1786 #define SD_CHAIN_RMMEDIA_IOSTART 5 1787 #define SD_CHAIN_RMMEDIA_IOSTART_NO_PM 9 1788 #define SD_CHAIN_CHKSUM_IOSTART 12 1789 #define SD_CHAIN_CHKSUM_IOSTART_NO_PM 16 1790 #define SD_CHAIN_USCSI_CMD_IOSTART 19 1791 #define SD_CHAIN_USCSI_CHKSUM_IOSTART 21 1792 #define SD_CHAIN_DIRECT_CMD_IOSTART 24 1793 #define SD_CHAIN_PRIORITY_CMD_IOSTART 25 1794 1795 1796 /* 1797 * Table of function pointers for the iodone-side routines for the driver- 1798 * internal layering mechanism. The calling sequence for iodone routines 1799 * uses a decrementing table index, so the last routine called in a chain 1800 * must be at the lowest array index location for that chain. The last 1801 * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs) 1802 * or sd_uscsi_iodone() (for uscsi IOs). Other than this, the ordering 1803 * of the functions in an iodone side chain must correspond to the ordering 1804 * of the iostart routines for that chain. Note that there is no iodone 1805 * side routine that corresponds to sd_core_iostart(), so there is no 1806 * entry in the table for this. 1807 */ 1808 1809 static sd_chain_t sd_iodone_chain[] = { 1810 1811 /* Chain for buf IO for disk drive targets (PM enabled) */ 1812 sd_buf_iodone, /* Index: 0 */ 1813 sd_mapblockaddr_iodone, /* Index: 1 */ 1814 sd_pm_iodone, /* Index: 2 */ 1815 1816 /* Chain for buf IO for disk drive targets (PM disabled) */ 1817 sd_buf_iodone, /* Index: 3 */ 1818 sd_mapblockaddr_iodone, /* Index: 4 */ 1819 1820 /* Chain for buf IO for removable-media targets (PM enabled) */ 1821 sd_buf_iodone, /* Index: 5 */ 1822 sd_mapblockaddr_iodone, /* Index: 6 */ 1823 sd_mapblocksize_iodone, /* Index: 7 */ 1824 sd_pm_iodone, /* Index: 8 */ 1825 1826 /* Chain for buf IO for removable-media targets (PM disabled) */ 1827 sd_buf_iodone, /* Index: 9 */ 1828 sd_mapblockaddr_iodone, /* Index: 10 */ 1829 sd_mapblocksize_iodone, /* Index: 11 */ 1830 1831 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1832 sd_buf_iodone, /* Index: 12 */ 1833 sd_mapblockaddr_iodone, /* Index: 13 */ 1834 sd_checksum_iodone, /* Index: 14 */ 1835 sd_pm_iodone, /* Index: 15 */ 1836 1837 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1838 sd_buf_iodone, /* Index: 16 */ 1839 sd_mapblockaddr_iodone, /* Index: 17 */ 1840 sd_checksum_iodone, /* Index: 18 */ 1841 1842 /* Chain for USCSI commands (non-checksum targets) */ 1843 sd_uscsi_iodone, /* Index: 19 */ 1844 sd_pm_iodone, /* Index: 20 */ 1845 1846 /* Chain for USCSI commands (checksum targets) */ 1847 sd_uscsi_iodone, /* Index: 21 */ 1848 sd_checksum_uscsi_iodone, /* Index: 22 */ 1849 sd_pm_iodone, /* Index: 22 */ 1850 1851 /* Chain for "direct" USCSI commands (all targets) */ 1852 sd_uscsi_iodone, /* Index: 24 */ 1853 1854 /* Chain for "direct priority" USCSI commands (all targets) */ 1855 sd_uscsi_iodone, /* Index: 25 */ 1856 }; 1857 1858 1859 /* 1860 * Macros to locate the "first" function in the sd_iodone_chain[] array for 1861 * each iodone-side chain. These are located by the array index, but as the 1862 * iodone side functions are called in a decrementing-index order, the 1863 * highest index number in each chain must be specified (as these correspond 1864 * to the first function in the iodone chain that will be called by the core 1865 * at IO completion time). 1866 */ 1867 1868 #define SD_CHAIN_DISK_IODONE 2 1869 #define SD_CHAIN_DISK_IODONE_NO_PM 4 1870 #define SD_CHAIN_RMMEDIA_IODONE 8 1871 #define SD_CHAIN_RMMEDIA_IODONE_NO_PM 11 1872 #define SD_CHAIN_CHKSUM_IODONE 15 1873 #define SD_CHAIN_CHKSUM_IODONE_NO_PM 18 1874 #define SD_CHAIN_USCSI_CMD_IODONE 20 1875 #define SD_CHAIN_USCSI_CHKSUM_IODONE 22 1876 #define SD_CHAIN_DIRECT_CMD_IODONE 24 1877 #define SD_CHAIN_PRIORITY_CMD_IODONE 25 1878 1879 1880 1881 1882 /* 1883 * Array to map a layering chain index to the appropriate initpkt routine. 1884 * The redundant entries are present so that the index used for accessing 1885 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 1886 * with this table as well. 1887 */ 1888 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **); 1889 1890 static sd_initpkt_t sd_initpkt_map[] = { 1891 1892 /* Chain for buf IO for disk drive targets (PM enabled) */ 1893 sd_initpkt_for_buf, /* Index: 0 */ 1894 sd_initpkt_for_buf, /* Index: 1 */ 1895 sd_initpkt_for_buf, /* Index: 2 */ 1896 1897 /* Chain for buf IO for disk drive targets (PM disabled) */ 1898 sd_initpkt_for_buf, /* Index: 3 */ 1899 sd_initpkt_for_buf, /* Index: 4 */ 1900 1901 /* Chain for buf IO for removable-media targets (PM enabled) */ 1902 sd_initpkt_for_buf, /* Index: 5 */ 1903 sd_initpkt_for_buf, /* Index: 6 */ 1904 sd_initpkt_for_buf, /* Index: 7 */ 1905 sd_initpkt_for_buf, /* Index: 8 */ 1906 1907 /* Chain for buf IO for removable-media targets (PM disabled) */ 1908 sd_initpkt_for_buf, /* Index: 9 */ 1909 sd_initpkt_for_buf, /* Index: 10 */ 1910 sd_initpkt_for_buf, /* Index: 11 */ 1911 1912 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1913 sd_initpkt_for_buf, /* Index: 12 */ 1914 sd_initpkt_for_buf, /* Index: 13 */ 1915 sd_initpkt_for_buf, /* Index: 14 */ 1916 sd_initpkt_for_buf, /* Index: 15 */ 1917 1918 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1919 sd_initpkt_for_buf, /* Index: 16 */ 1920 sd_initpkt_for_buf, /* Index: 17 */ 1921 sd_initpkt_for_buf, /* Index: 18 */ 1922 1923 /* Chain for USCSI commands (non-checksum targets) */ 1924 sd_initpkt_for_uscsi, /* Index: 19 */ 1925 sd_initpkt_for_uscsi, /* Index: 20 */ 1926 1927 /* Chain for USCSI commands (checksum targets) */ 1928 sd_initpkt_for_uscsi, /* Index: 21 */ 1929 sd_initpkt_for_uscsi, /* Index: 22 */ 1930 sd_initpkt_for_uscsi, /* Index: 22 */ 1931 1932 /* Chain for "direct" USCSI commands (all targets) */ 1933 sd_initpkt_for_uscsi, /* Index: 24 */ 1934 1935 /* Chain for "direct priority" USCSI commands (all targets) */ 1936 sd_initpkt_for_uscsi, /* Index: 25 */ 1937 1938 }; 1939 1940 1941 /* 1942 * Array to map a layering chain index to the appropriate destroypktpkt routine. 1943 * The redundant entries are present so that the index used for accessing 1944 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 1945 * with this table as well. 1946 */ 1947 typedef void (*sd_destroypkt_t)(struct buf *); 1948 1949 static sd_destroypkt_t sd_destroypkt_map[] = { 1950 1951 /* Chain for buf IO for disk drive targets (PM enabled) */ 1952 sd_destroypkt_for_buf, /* Index: 0 */ 1953 sd_destroypkt_for_buf, /* Index: 1 */ 1954 sd_destroypkt_for_buf, /* Index: 2 */ 1955 1956 /* Chain for buf IO for disk drive targets (PM disabled) */ 1957 sd_destroypkt_for_buf, /* Index: 3 */ 1958 sd_destroypkt_for_buf, /* Index: 4 */ 1959 1960 /* Chain for buf IO for removable-media targets (PM enabled) */ 1961 sd_destroypkt_for_buf, /* Index: 5 */ 1962 sd_destroypkt_for_buf, /* Index: 6 */ 1963 sd_destroypkt_for_buf, /* Index: 7 */ 1964 sd_destroypkt_for_buf, /* Index: 8 */ 1965 1966 /* Chain for buf IO for removable-media targets (PM disabled) */ 1967 sd_destroypkt_for_buf, /* Index: 9 */ 1968 sd_destroypkt_for_buf, /* Index: 10 */ 1969 sd_destroypkt_for_buf, /* Index: 11 */ 1970 1971 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1972 sd_destroypkt_for_buf, /* Index: 12 */ 1973 sd_destroypkt_for_buf, /* Index: 13 */ 1974 sd_destroypkt_for_buf, /* Index: 14 */ 1975 sd_destroypkt_for_buf, /* Index: 15 */ 1976 1977 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1978 sd_destroypkt_for_buf, /* Index: 16 */ 1979 sd_destroypkt_for_buf, /* Index: 17 */ 1980 sd_destroypkt_for_buf, /* Index: 18 */ 1981 1982 /* Chain for USCSI commands (non-checksum targets) */ 1983 sd_destroypkt_for_uscsi, /* Index: 19 */ 1984 sd_destroypkt_for_uscsi, /* Index: 20 */ 1985 1986 /* Chain for USCSI commands (checksum targets) */ 1987 sd_destroypkt_for_uscsi, /* Index: 21 */ 1988 sd_destroypkt_for_uscsi, /* Index: 22 */ 1989 sd_destroypkt_for_uscsi, /* Index: 22 */ 1990 1991 /* Chain for "direct" USCSI commands (all targets) */ 1992 sd_destroypkt_for_uscsi, /* Index: 24 */ 1993 1994 /* Chain for "direct priority" USCSI commands (all targets) */ 1995 sd_destroypkt_for_uscsi, /* Index: 25 */ 1996 1997 }; 1998 1999 2000 2001 /* 2002 * Array to map a layering chain index to the appropriate chain "type". 2003 * The chain type indicates a specific property/usage of the chain. 2004 * The redundant entries are present so that the index used for accessing 2005 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 2006 * with this table as well. 2007 */ 2008 2009 #define SD_CHAIN_NULL 0 /* for the special RQS cmd */ 2010 #define SD_CHAIN_BUFIO 1 /* regular buf IO */ 2011 #define SD_CHAIN_USCSI 2 /* regular USCSI commands */ 2012 #define SD_CHAIN_DIRECT 3 /* uscsi, w/ bypass power mgt */ 2013 #define SD_CHAIN_DIRECT_PRIORITY 4 /* uscsi, w/ bypass power mgt */ 2014 /* (for error recovery) */ 2015 2016 static int sd_chain_type_map[] = { 2017 2018 /* Chain for buf IO for disk drive targets (PM enabled) */ 2019 SD_CHAIN_BUFIO, /* Index: 0 */ 2020 SD_CHAIN_BUFIO, /* Index: 1 */ 2021 SD_CHAIN_BUFIO, /* Index: 2 */ 2022 2023 /* Chain for buf IO for disk drive targets (PM disabled) */ 2024 SD_CHAIN_BUFIO, /* Index: 3 */ 2025 SD_CHAIN_BUFIO, /* Index: 4 */ 2026 2027 /* Chain for buf IO for removable-media targets (PM enabled) */ 2028 SD_CHAIN_BUFIO, /* Index: 5 */ 2029 SD_CHAIN_BUFIO, /* Index: 6 */ 2030 SD_CHAIN_BUFIO, /* Index: 7 */ 2031 SD_CHAIN_BUFIO, /* Index: 8 */ 2032 2033 /* Chain for buf IO for removable-media targets (PM disabled) */ 2034 SD_CHAIN_BUFIO, /* Index: 9 */ 2035 SD_CHAIN_BUFIO, /* Index: 10 */ 2036 SD_CHAIN_BUFIO, /* Index: 11 */ 2037 2038 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 2039 SD_CHAIN_BUFIO, /* Index: 12 */ 2040 SD_CHAIN_BUFIO, /* Index: 13 */ 2041 SD_CHAIN_BUFIO, /* Index: 14 */ 2042 SD_CHAIN_BUFIO, /* Index: 15 */ 2043 2044 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 2045 SD_CHAIN_BUFIO, /* Index: 16 */ 2046 SD_CHAIN_BUFIO, /* Index: 17 */ 2047 SD_CHAIN_BUFIO, /* Index: 18 */ 2048 2049 /* Chain for USCSI commands (non-checksum targets) */ 2050 SD_CHAIN_USCSI, /* Index: 19 */ 2051 SD_CHAIN_USCSI, /* Index: 20 */ 2052 2053 /* Chain for USCSI commands (checksum targets) */ 2054 SD_CHAIN_USCSI, /* Index: 21 */ 2055 SD_CHAIN_USCSI, /* Index: 22 */ 2056 SD_CHAIN_USCSI, /* Index: 22 */ 2057 2058 /* Chain for "direct" USCSI commands (all targets) */ 2059 SD_CHAIN_DIRECT, /* Index: 24 */ 2060 2061 /* Chain for "direct priority" USCSI commands (all targets) */ 2062 SD_CHAIN_DIRECT_PRIORITY, /* Index: 25 */ 2063 }; 2064 2065 2066 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */ 2067 #define SD_IS_BUFIO(xp) \ 2068 (sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO) 2069 2070 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */ 2071 #define SD_IS_DIRECT_PRIORITY(xp) \ 2072 (sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY) 2073 2074 2075 2076 /* 2077 * Struct, array, and macros to map a specific chain to the appropriate 2078 * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays. 2079 * 2080 * The sd_chain_index_map[] array is used at attach time to set the various 2081 * un_xxx_chain type members of the sd_lun softstate to the specific layering 2082 * chain to be used with the instance. This allows different instances to use 2083 * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart 2084 * and xb_chain_iodone index values in the sd_xbuf are initialized to these 2085 * values at sd_xbuf init time, this allows (1) layering chains may be changed 2086 * dynamically & without the use of locking; and (2) a layer may update the 2087 * xb_chain_io[start|done] member in a given xbuf with its current index value, 2088 * to allow for deferred processing of an IO within the same chain from a 2089 * different execution context. 2090 */ 2091 2092 struct sd_chain_index { 2093 int sci_iostart_index; 2094 int sci_iodone_index; 2095 }; 2096 2097 static struct sd_chain_index sd_chain_index_map[] = { 2098 { SD_CHAIN_DISK_IOSTART, SD_CHAIN_DISK_IODONE }, 2099 { SD_CHAIN_DISK_IOSTART_NO_PM, SD_CHAIN_DISK_IODONE_NO_PM }, 2100 { SD_CHAIN_RMMEDIA_IOSTART, SD_CHAIN_RMMEDIA_IODONE }, 2101 { SD_CHAIN_RMMEDIA_IOSTART_NO_PM, SD_CHAIN_RMMEDIA_IODONE_NO_PM }, 2102 { SD_CHAIN_CHKSUM_IOSTART, SD_CHAIN_CHKSUM_IODONE }, 2103 { SD_CHAIN_CHKSUM_IOSTART_NO_PM, SD_CHAIN_CHKSUM_IODONE_NO_PM }, 2104 { SD_CHAIN_USCSI_CMD_IOSTART, SD_CHAIN_USCSI_CMD_IODONE }, 2105 { SD_CHAIN_USCSI_CHKSUM_IOSTART, SD_CHAIN_USCSI_CHKSUM_IODONE }, 2106 { SD_CHAIN_DIRECT_CMD_IOSTART, SD_CHAIN_DIRECT_CMD_IODONE }, 2107 { SD_CHAIN_PRIORITY_CMD_IOSTART, SD_CHAIN_PRIORITY_CMD_IODONE }, 2108 }; 2109 2110 2111 /* 2112 * The following are indexes into the sd_chain_index_map[] array. 2113 */ 2114 2115 /* un->un_buf_chain_type must be set to one of these */ 2116 #define SD_CHAIN_INFO_DISK 0 2117 #define SD_CHAIN_INFO_DISK_NO_PM 1 2118 #define SD_CHAIN_INFO_RMMEDIA 2 2119 #define SD_CHAIN_INFO_RMMEDIA_NO_PM 3 2120 #define SD_CHAIN_INFO_CHKSUM 4 2121 #define SD_CHAIN_INFO_CHKSUM_NO_PM 5 2122 2123 /* un->un_uscsi_chain_type must be set to one of these */ 2124 #define SD_CHAIN_INFO_USCSI_CMD 6 2125 /* USCSI with PM disabled is the same as DIRECT */ 2126 #define SD_CHAIN_INFO_USCSI_CMD_NO_PM 8 2127 #define SD_CHAIN_INFO_USCSI_CHKSUM 7 2128 2129 /* un->un_direct_chain_type must be set to one of these */ 2130 #define SD_CHAIN_INFO_DIRECT_CMD 8 2131 2132 /* un->un_priority_chain_type must be set to one of these */ 2133 #define SD_CHAIN_INFO_PRIORITY_CMD 9 2134 2135 /* size for devid inquiries */ 2136 #define MAX_INQUIRY_SIZE 0xF0 2137 2138 /* 2139 * Macros used by functions to pass a given buf(9S) struct along to the 2140 * next function in the layering chain for further processing. 2141 * 2142 * In the following macros, passing more than three arguments to the called 2143 * routines causes the optimizer for the SPARC compiler to stop doing tail 2144 * call elimination which results in significant performance degradation. 2145 */ 2146 #define SD_BEGIN_IOSTART(index, un, bp) \ 2147 ((*(sd_iostart_chain[index]))(index, un, bp)) 2148 2149 #define SD_BEGIN_IODONE(index, un, bp) \ 2150 ((*(sd_iodone_chain[index]))(index, un, bp)) 2151 2152 #define SD_NEXT_IOSTART(index, un, bp) \ 2153 ((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp)) 2154 2155 #define SD_NEXT_IODONE(index, un, bp) \ 2156 ((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp)) 2157 2158 /* 2159 * Function: _init 2160 * 2161 * Description: This is the driver _init(9E) entry point. 2162 * 2163 * Return Code: Returns the value from mod_install(9F) or 2164 * ddi_soft_state_init(9F) as appropriate. 2165 * 2166 * Context: Called when driver module loaded. 2167 */ 2168 2169 int 2170 _init(void) 2171 { 2172 int err; 2173 2174 /* establish driver name from module name */ 2175 sd_label = mod_modname(&modlinkage); 2176 2177 err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun), 2178 SD_MAXUNIT); 2179 2180 if (err != 0) { 2181 return (err); 2182 } 2183 2184 mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL); 2185 mutex_init(&sd_log_mutex, NULL, MUTEX_DRIVER, NULL); 2186 mutex_init(&sd_label_mutex, NULL, MUTEX_DRIVER, NULL); 2187 2188 mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL); 2189 cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL); 2190 cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL); 2191 2192 /* 2193 * it's ok to init here even for fibre device 2194 */ 2195 sd_scsi_probe_cache_init(); 2196 2197 /* 2198 * Creating taskq before mod_install ensures that all callers (threads) 2199 * that enter the module after a successfull mod_install encounter 2200 * a valid taskq. 2201 */ 2202 sd_taskq_create(); 2203 2204 err = mod_install(&modlinkage); 2205 if (err != 0) { 2206 /* delete taskq if install fails */ 2207 sd_taskq_delete(); 2208 2209 mutex_destroy(&sd_detach_mutex); 2210 mutex_destroy(&sd_log_mutex); 2211 mutex_destroy(&sd_label_mutex); 2212 2213 mutex_destroy(&sd_tr.srq_resv_reclaim_mutex); 2214 cv_destroy(&sd_tr.srq_resv_reclaim_cv); 2215 cv_destroy(&sd_tr.srq_inprocess_cv); 2216 2217 sd_scsi_probe_cache_fini(); 2218 2219 ddi_soft_state_fini(&sd_state); 2220 return (err); 2221 } 2222 2223 return (err); 2224 } 2225 2226 2227 /* 2228 * Function: _fini 2229 * 2230 * Description: This is the driver _fini(9E) entry point. 2231 * 2232 * Return Code: Returns the value from mod_remove(9F) 2233 * 2234 * Context: Called when driver module is unloaded. 2235 */ 2236 2237 int 2238 _fini(void) 2239 { 2240 int err; 2241 2242 if ((err = mod_remove(&modlinkage)) != 0) { 2243 return (err); 2244 } 2245 2246 sd_taskq_delete(); 2247 2248 mutex_destroy(&sd_detach_mutex); 2249 mutex_destroy(&sd_log_mutex); 2250 mutex_destroy(&sd_label_mutex); 2251 mutex_destroy(&sd_tr.srq_resv_reclaim_mutex); 2252 2253 sd_scsi_probe_cache_fini(); 2254 2255 cv_destroy(&sd_tr.srq_resv_reclaim_cv); 2256 cv_destroy(&sd_tr.srq_inprocess_cv); 2257 2258 ddi_soft_state_fini(&sd_state); 2259 2260 return (err); 2261 } 2262 2263 2264 /* 2265 * Function: _info 2266 * 2267 * Description: This is the driver _info(9E) entry point. 2268 * 2269 * Arguments: modinfop - pointer to the driver modinfo structure 2270 * 2271 * Return Code: Returns the value from mod_info(9F). 2272 * 2273 * Context: Kernel thread context 2274 */ 2275 2276 int 2277 _info(struct modinfo *modinfop) 2278 { 2279 return (mod_info(&modlinkage, modinfop)); 2280 } 2281 2282 2283 /* 2284 * The following routines implement the driver message logging facility. 2285 * They provide component- and level- based debug output filtering. 2286 * Output may also be restricted to messages for a single instance by 2287 * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set 2288 * to NULL, then messages for all instances are printed. 2289 * 2290 * These routines have been cloned from each other due to the language 2291 * constraints of macros and variable argument list processing. 2292 */ 2293 2294 2295 /* 2296 * Function: sd_log_err 2297 * 2298 * Description: This routine is called by the SD_ERROR macro for debug 2299 * logging of error conditions. 2300 * 2301 * Arguments: comp - driver component being logged 2302 * dev - pointer to driver info structure 2303 * fmt - error string and format to be logged 2304 */ 2305 2306 static void 2307 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...) 2308 { 2309 va_list ap; 2310 dev_info_t *dev; 2311 2312 ASSERT(un != NULL); 2313 dev = SD_DEVINFO(un); 2314 ASSERT(dev != NULL); 2315 2316 /* 2317 * Filter messages based on the global component and level masks. 2318 * Also print if un matches the value of sd_debug_un, or if 2319 * sd_debug_un is set to NULL. 2320 */ 2321 if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) && 2322 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2323 mutex_enter(&sd_log_mutex); 2324 va_start(ap, fmt); 2325 (void) vsprintf(sd_log_buf, fmt, ap); 2326 va_end(ap); 2327 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2328 mutex_exit(&sd_log_mutex); 2329 } 2330 #ifdef SD_FAULT_INJECTION 2331 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2332 if (un->sd_injection_mask & comp) { 2333 mutex_enter(&sd_log_mutex); 2334 va_start(ap, fmt); 2335 (void) vsprintf(sd_log_buf, fmt, ap); 2336 va_end(ap); 2337 sd_injection_log(sd_log_buf, un); 2338 mutex_exit(&sd_log_mutex); 2339 } 2340 #endif 2341 } 2342 2343 2344 /* 2345 * Function: sd_log_info 2346 * 2347 * Description: This routine is called by the SD_INFO macro for debug 2348 * logging of general purpose informational conditions. 2349 * 2350 * Arguments: comp - driver component being logged 2351 * dev - pointer to driver info structure 2352 * fmt - info string and format to be logged 2353 */ 2354 2355 static void 2356 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...) 2357 { 2358 va_list ap; 2359 dev_info_t *dev; 2360 2361 ASSERT(un != NULL); 2362 dev = SD_DEVINFO(un); 2363 ASSERT(dev != NULL); 2364 2365 /* 2366 * Filter messages based on the global component and level masks. 2367 * Also print if un matches the value of sd_debug_un, or if 2368 * sd_debug_un is set to NULL. 2369 */ 2370 if ((sd_component_mask & component) && 2371 (sd_level_mask & SD_LOGMASK_INFO) && 2372 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2373 mutex_enter(&sd_log_mutex); 2374 va_start(ap, fmt); 2375 (void) vsprintf(sd_log_buf, fmt, ap); 2376 va_end(ap); 2377 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2378 mutex_exit(&sd_log_mutex); 2379 } 2380 #ifdef SD_FAULT_INJECTION 2381 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2382 if (un->sd_injection_mask & component) { 2383 mutex_enter(&sd_log_mutex); 2384 va_start(ap, fmt); 2385 (void) vsprintf(sd_log_buf, fmt, ap); 2386 va_end(ap); 2387 sd_injection_log(sd_log_buf, un); 2388 mutex_exit(&sd_log_mutex); 2389 } 2390 #endif 2391 } 2392 2393 2394 /* 2395 * Function: sd_log_trace 2396 * 2397 * Description: This routine is called by the SD_TRACE macro for debug 2398 * logging of trace conditions (i.e. function entry/exit). 2399 * 2400 * Arguments: comp - driver component being logged 2401 * dev - pointer to driver info structure 2402 * fmt - trace string and format to be logged 2403 */ 2404 2405 static void 2406 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...) 2407 { 2408 va_list ap; 2409 dev_info_t *dev; 2410 2411 ASSERT(un != NULL); 2412 dev = SD_DEVINFO(un); 2413 ASSERT(dev != NULL); 2414 2415 /* 2416 * Filter messages based on the global component and level masks. 2417 * Also print if un matches the value of sd_debug_un, or if 2418 * sd_debug_un is set to NULL. 2419 */ 2420 if ((sd_component_mask & component) && 2421 (sd_level_mask & SD_LOGMASK_TRACE) && 2422 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2423 mutex_enter(&sd_log_mutex); 2424 va_start(ap, fmt); 2425 (void) vsprintf(sd_log_buf, fmt, ap); 2426 va_end(ap); 2427 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2428 mutex_exit(&sd_log_mutex); 2429 } 2430 #ifdef SD_FAULT_INJECTION 2431 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2432 if (un->sd_injection_mask & component) { 2433 mutex_enter(&sd_log_mutex); 2434 va_start(ap, fmt); 2435 (void) vsprintf(sd_log_buf, fmt, ap); 2436 va_end(ap); 2437 sd_injection_log(sd_log_buf, un); 2438 mutex_exit(&sd_log_mutex); 2439 } 2440 #endif 2441 } 2442 2443 2444 /* 2445 * Function: sdprobe 2446 * 2447 * Description: This is the driver probe(9e) entry point function. 2448 * 2449 * Arguments: devi - opaque device info handle 2450 * 2451 * Return Code: DDI_PROBE_SUCCESS: If the probe was successful. 2452 * DDI_PROBE_FAILURE: If the probe failed. 2453 * DDI_PROBE_PARTIAL: If the instance is not present now, 2454 * but may be present in the future. 2455 */ 2456 2457 static int 2458 sdprobe(dev_info_t *devi) 2459 { 2460 struct scsi_device *devp; 2461 int rval; 2462 int instance; 2463 2464 /* 2465 * if it wasn't for pln, sdprobe could actually be nulldev 2466 * in the "__fibre" case. 2467 */ 2468 if (ddi_dev_is_sid(devi) == DDI_SUCCESS) { 2469 return (DDI_PROBE_DONTCARE); 2470 } 2471 2472 devp = ddi_get_driver_private(devi); 2473 2474 if (devp == NULL) { 2475 /* Ooops... nexus driver is mis-configured... */ 2476 return (DDI_PROBE_FAILURE); 2477 } 2478 2479 instance = ddi_get_instance(devi); 2480 2481 if (ddi_get_soft_state(sd_state, instance) != NULL) { 2482 return (DDI_PROBE_PARTIAL); 2483 } 2484 2485 /* 2486 * Call the SCSA utility probe routine to see if we actually 2487 * have a target at this SCSI nexus. 2488 */ 2489 switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) { 2490 case SCSIPROBE_EXISTS: 2491 switch (devp->sd_inq->inq_dtype) { 2492 case DTYPE_DIRECT: 2493 rval = DDI_PROBE_SUCCESS; 2494 break; 2495 case DTYPE_RODIRECT: 2496 /* CDs etc. Can be removable media */ 2497 rval = DDI_PROBE_SUCCESS; 2498 break; 2499 case DTYPE_OPTICAL: 2500 /* 2501 * Rewritable optical driver HP115AA 2502 * Can also be removable media 2503 */ 2504 2505 /* 2506 * Do not attempt to bind to DTYPE_OPTICAL if 2507 * pre solaris 9 sparc sd behavior is required 2508 * 2509 * If first time through and sd_dtype_optical_bind 2510 * has not been set in /etc/system check properties 2511 */ 2512 2513 if (sd_dtype_optical_bind < 0) { 2514 sd_dtype_optical_bind = ddi_prop_get_int 2515 (DDI_DEV_T_ANY, devi, 0, 2516 "optical-device-bind", 1); 2517 } 2518 2519 if (sd_dtype_optical_bind == 0) { 2520 rval = DDI_PROBE_FAILURE; 2521 } else { 2522 rval = DDI_PROBE_SUCCESS; 2523 } 2524 break; 2525 2526 case DTYPE_NOTPRESENT: 2527 default: 2528 rval = DDI_PROBE_FAILURE; 2529 break; 2530 } 2531 break; 2532 default: 2533 rval = DDI_PROBE_PARTIAL; 2534 break; 2535 } 2536 2537 /* 2538 * This routine checks for resource allocation prior to freeing, 2539 * so it will take care of the "smart probing" case where a 2540 * scsi_probe() may or may not have been issued and will *not* 2541 * free previously-freed resources. 2542 */ 2543 scsi_unprobe(devp); 2544 return (rval); 2545 } 2546 2547 2548 /* 2549 * Function: sdinfo 2550 * 2551 * Description: This is the driver getinfo(9e) entry point function. 2552 * Given the device number, return the devinfo pointer from 2553 * the scsi_device structure or the instance number 2554 * associated with the dev_t. 2555 * 2556 * Arguments: dip - pointer to device info structure 2557 * infocmd - command argument (DDI_INFO_DEVT2DEVINFO, 2558 * DDI_INFO_DEVT2INSTANCE) 2559 * arg - driver dev_t 2560 * resultp - user buffer for request response 2561 * 2562 * Return Code: DDI_SUCCESS 2563 * DDI_FAILURE 2564 */ 2565 /* ARGSUSED */ 2566 static int 2567 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 2568 { 2569 struct sd_lun *un; 2570 dev_t dev; 2571 int instance; 2572 int error; 2573 2574 switch (infocmd) { 2575 case DDI_INFO_DEVT2DEVINFO: 2576 dev = (dev_t)arg; 2577 instance = SDUNIT(dev); 2578 if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) { 2579 return (DDI_FAILURE); 2580 } 2581 *result = (void *) SD_DEVINFO(un); 2582 error = DDI_SUCCESS; 2583 break; 2584 case DDI_INFO_DEVT2INSTANCE: 2585 dev = (dev_t)arg; 2586 instance = SDUNIT(dev); 2587 *result = (void *)(uintptr_t)instance; 2588 error = DDI_SUCCESS; 2589 break; 2590 default: 2591 error = DDI_FAILURE; 2592 } 2593 return (error); 2594 } 2595 2596 /* 2597 * Function: sd_prop_op 2598 * 2599 * Description: This is the driver prop_op(9e) entry point function. 2600 * Return the number of blocks for the partition in question 2601 * or forward the request to the property facilities. 2602 * 2603 * Arguments: dev - device number 2604 * dip - pointer to device info structure 2605 * prop_op - property operator 2606 * mod_flags - DDI_PROP_DONTPASS, don't pass to parent 2607 * name - pointer to property name 2608 * valuep - pointer or address of the user buffer 2609 * lengthp - property length 2610 * 2611 * Return Code: DDI_PROP_SUCCESS 2612 * DDI_PROP_NOT_FOUND 2613 * DDI_PROP_UNDEFINED 2614 * DDI_PROP_NO_MEMORY 2615 * DDI_PROP_BUF_TOO_SMALL 2616 */ 2617 2618 static int 2619 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 2620 char *name, caddr_t valuep, int *lengthp) 2621 { 2622 int instance = ddi_get_instance(dip); 2623 struct sd_lun *un; 2624 uint64_t nblocks64; 2625 2626 /* 2627 * Our dynamic properties are all device specific and size oriented. 2628 * Requests issued under conditions where size is valid are passed 2629 * to ddi_prop_op_nblocks with the size information, otherwise the 2630 * request is passed to ddi_prop_op. Size depends on valid geometry. 2631 */ 2632 un = ddi_get_soft_state(sd_state, instance); 2633 if ((dev == DDI_DEV_T_ANY) || (un == NULL) || 2634 (un->un_f_geometry_is_valid == FALSE)) { 2635 return (ddi_prop_op(dev, dip, prop_op, mod_flags, 2636 name, valuep, lengthp)); 2637 } else { 2638 /* get nblocks value */ 2639 ASSERT(!mutex_owned(SD_MUTEX(un))); 2640 mutex_enter(SD_MUTEX(un)); 2641 nblocks64 = (ulong_t)un->un_map[SDPART(dev)].dkl_nblk; 2642 mutex_exit(SD_MUTEX(un)); 2643 2644 return (ddi_prop_op_nblocks(dev, dip, prop_op, mod_flags, 2645 name, valuep, lengthp, nblocks64)); 2646 } 2647 } 2648 2649 /* 2650 * The following functions are for smart probing: 2651 * sd_scsi_probe_cache_init() 2652 * sd_scsi_probe_cache_fini() 2653 * sd_scsi_clear_probe_cache() 2654 * sd_scsi_probe_with_cache() 2655 */ 2656 2657 /* 2658 * Function: sd_scsi_probe_cache_init 2659 * 2660 * Description: Initializes the probe response cache mutex and head pointer. 2661 * 2662 * Context: Kernel thread context 2663 */ 2664 2665 static void 2666 sd_scsi_probe_cache_init(void) 2667 { 2668 mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL); 2669 sd_scsi_probe_cache_head = NULL; 2670 } 2671 2672 2673 /* 2674 * Function: sd_scsi_probe_cache_fini 2675 * 2676 * Description: Frees all resources associated with the probe response cache. 2677 * 2678 * Context: Kernel thread context 2679 */ 2680 2681 static void 2682 sd_scsi_probe_cache_fini(void) 2683 { 2684 struct sd_scsi_probe_cache *cp; 2685 struct sd_scsi_probe_cache *ncp; 2686 2687 /* Clean up our smart probing linked list */ 2688 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) { 2689 ncp = cp->next; 2690 kmem_free(cp, sizeof (struct sd_scsi_probe_cache)); 2691 } 2692 sd_scsi_probe_cache_head = NULL; 2693 mutex_destroy(&sd_scsi_probe_cache_mutex); 2694 } 2695 2696 2697 /* 2698 * Function: sd_scsi_clear_probe_cache 2699 * 2700 * Description: This routine clears the probe response cache. This is 2701 * done when open() returns ENXIO so that when deferred 2702 * attach is attempted (possibly after a device has been 2703 * turned on) we will retry the probe. Since we don't know 2704 * which target we failed to open, we just clear the 2705 * entire cache. 2706 * 2707 * Context: Kernel thread context 2708 */ 2709 2710 static void 2711 sd_scsi_clear_probe_cache(void) 2712 { 2713 struct sd_scsi_probe_cache *cp; 2714 int i; 2715 2716 mutex_enter(&sd_scsi_probe_cache_mutex); 2717 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) { 2718 /* 2719 * Reset all entries to SCSIPROBE_EXISTS. This will 2720 * force probing to be performed the next time 2721 * sd_scsi_probe_with_cache is called. 2722 */ 2723 for (i = 0; i < NTARGETS_WIDE; i++) { 2724 cp->cache[i] = SCSIPROBE_EXISTS; 2725 } 2726 } 2727 mutex_exit(&sd_scsi_probe_cache_mutex); 2728 } 2729 2730 2731 /* 2732 * Function: sd_scsi_probe_with_cache 2733 * 2734 * Description: This routine implements support for a scsi device probe 2735 * with cache. The driver maintains a cache of the target 2736 * responses to scsi probes. If we get no response from a 2737 * target during a probe inquiry, we remember that, and we 2738 * avoid additional calls to scsi_probe on non-zero LUNs 2739 * on the same target until the cache is cleared. By doing 2740 * so we avoid the 1/4 sec selection timeout for nonzero 2741 * LUNs. lun0 of a target is always probed. 2742 * 2743 * Arguments: devp - Pointer to a scsi_device(9S) structure 2744 * waitfunc - indicates what the allocator routines should 2745 * do when resources are not available. This value 2746 * is passed on to scsi_probe() when that routine 2747 * is called. 2748 * 2749 * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache; 2750 * otherwise the value returned by scsi_probe(9F). 2751 * 2752 * Context: Kernel thread context 2753 */ 2754 2755 static int 2756 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)()) 2757 { 2758 struct sd_scsi_probe_cache *cp; 2759 dev_info_t *pdip = ddi_get_parent(devp->sd_dev); 2760 int lun, tgt; 2761 2762 lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS, 2763 SCSI_ADDR_PROP_LUN, 0); 2764 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS, 2765 SCSI_ADDR_PROP_TARGET, -1); 2766 2767 /* Make sure caching enabled and target in range */ 2768 if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) { 2769 /* do it the old way (no cache) */ 2770 return (scsi_probe(devp, waitfn)); 2771 } 2772 2773 mutex_enter(&sd_scsi_probe_cache_mutex); 2774 2775 /* Find the cache for this scsi bus instance */ 2776 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) { 2777 if (cp->pdip == pdip) { 2778 break; 2779 } 2780 } 2781 2782 /* If we can't find a cache for this pdip, create one */ 2783 if (cp == NULL) { 2784 int i; 2785 2786 cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache), 2787 KM_SLEEP); 2788 cp->pdip = pdip; 2789 cp->next = sd_scsi_probe_cache_head; 2790 sd_scsi_probe_cache_head = cp; 2791 for (i = 0; i < NTARGETS_WIDE; i++) { 2792 cp->cache[i] = SCSIPROBE_EXISTS; 2793 } 2794 } 2795 2796 mutex_exit(&sd_scsi_probe_cache_mutex); 2797 2798 /* Recompute the cache for this target if LUN zero */ 2799 if (lun == 0) { 2800 cp->cache[tgt] = SCSIPROBE_EXISTS; 2801 } 2802 2803 /* Don't probe if cache remembers a NORESP from a previous LUN. */ 2804 if (cp->cache[tgt] != SCSIPROBE_EXISTS) { 2805 return (SCSIPROBE_NORESP); 2806 } 2807 2808 /* Do the actual probe; save & return the result */ 2809 return (cp->cache[tgt] = scsi_probe(devp, waitfn)); 2810 } 2811 2812 2813 /* 2814 * Function: sd_spin_up_unit 2815 * 2816 * Description: Issues the following commands to spin-up the device: 2817 * START STOP UNIT, and INQUIRY. 2818 * 2819 * Arguments: un - driver soft state (unit) structure 2820 * 2821 * Return Code: 0 - success 2822 * EIO - failure 2823 * EACCES - reservation conflict 2824 * 2825 * Context: Kernel thread context 2826 */ 2827 2828 static int 2829 sd_spin_up_unit(struct sd_lun *un) 2830 { 2831 size_t resid = 0; 2832 int has_conflict = FALSE; 2833 uchar_t *bufaddr; 2834 2835 ASSERT(un != NULL); 2836 2837 /* 2838 * Send a throwaway START UNIT command. 2839 * 2840 * If we fail on this, we don't care presently what precisely 2841 * is wrong. EMC's arrays will also fail this with a check 2842 * condition (0x2/0x4/0x3) if the device is "inactive," but 2843 * we don't want to fail the attach because it may become 2844 * "active" later. 2845 */ 2846 if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT) 2847 == EACCES) 2848 has_conflict = TRUE; 2849 2850 /* 2851 * Send another INQUIRY command to the target. This is necessary for 2852 * non-removable media direct access devices because their INQUIRY data 2853 * may not be fully qualified until they are spun up (perhaps via the 2854 * START command above). Note: This seems to be needed for some 2855 * legacy devices only.) The INQUIRY command should succeed even if a 2856 * Reservation Conflict is present. 2857 */ 2858 bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP); 2859 if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) { 2860 kmem_free(bufaddr, SUN_INQSIZE); 2861 return (EIO); 2862 } 2863 2864 /* 2865 * If we got enough INQUIRY data, copy it over the old INQUIRY data. 2866 * Note that this routine does not return a failure here even if the 2867 * INQUIRY command did not return any data. This is a legacy behavior. 2868 */ 2869 if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) { 2870 bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE); 2871 } 2872 2873 kmem_free(bufaddr, SUN_INQSIZE); 2874 2875 /* If we hit a reservation conflict above, tell the caller. */ 2876 if (has_conflict == TRUE) { 2877 return (EACCES); 2878 } 2879 2880 return (0); 2881 } 2882 2883 #ifdef _LP64 2884 /* 2885 * Function: sd_enable_descr_sense 2886 * 2887 * Description: This routine attempts to select descriptor sense format 2888 * using the Control mode page. Devices that support 64 bit 2889 * LBAs (for >2TB luns) should also implement descriptor 2890 * sense data so we will call this function whenever we see 2891 * a lun larger than 2TB. If for some reason the device 2892 * supports 64 bit LBAs but doesn't support descriptor sense 2893 * presumably the mode select will fail. Everything will 2894 * continue to work normally except that we will not get 2895 * complete sense data for commands that fail with an LBA 2896 * larger than 32 bits. 2897 * 2898 * Arguments: un - driver soft state (unit) structure 2899 * 2900 * Context: Kernel thread context only 2901 */ 2902 2903 static void 2904 sd_enable_descr_sense(struct sd_lun *un) 2905 { 2906 uchar_t *header; 2907 struct mode_control_scsi3 *ctrl_bufp; 2908 size_t buflen; 2909 size_t bd_len; 2910 2911 /* 2912 * Read MODE SENSE page 0xA, Control Mode Page 2913 */ 2914 buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH + 2915 sizeof (struct mode_control_scsi3); 2916 header = kmem_zalloc(buflen, KM_SLEEP); 2917 if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen, 2918 MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) { 2919 SD_ERROR(SD_LOG_COMMON, un, 2920 "sd_enable_descr_sense: mode sense ctrl page failed\n"); 2921 goto eds_exit; 2922 } 2923 2924 /* 2925 * Determine size of Block Descriptors in order to locate 2926 * the mode page data. ATAPI devices return 0, SCSI devices 2927 * should return MODE_BLK_DESC_LENGTH. 2928 */ 2929 bd_len = ((struct mode_header *)header)->bdesc_length; 2930 2931 ctrl_bufp = (struct mode_control_scsi3 *) 2932 (header + MODE_HEADER_LENGTH + bd_len); 2933 2934 /* 2935 * Clear PS bit for MODE SELECT 2936 */ 2937 ctrl_bufp->mode_page.ps = 0; 2938 2939 /* 2940 * Set D_SENSE to enable descriptor sense format. 2941 */ 2942 ctrl_bufp->d_sense = 1; 2943 2944 /* 2945 * Use MODE SELECT to commit the change to the D_SENSE bit 2946 */ 2947 if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header, 2948 buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) { 2949 SD_INFO(SD_LOG_COMMON, un, 2950 "sd_enable_descr_sense: mode select ctrl page failed\n"); 2951 goto eds_exit; 2952 } 2953 2954 eds_exit: 2955 kmem_free(header, buflen); 2956 } 2957 #endif /* _LP64 */ 2958 2959 2960 /* 2961 * Function: sd_set_mmc_caps 2962 * 2963 * Description: This routine determines if the device is MMC compliant and if 2964 * the device supports CDDA via a mode sense of the CDVD 2965 * capabilities mode page. Also checks if the device is a 2966 * dvdram writable device. 2967 * 2968 * Arguments: un - driver soft state (unit) structure 2969 * 2970 * Context: Kernel thread context only 2971 */ 2972 2973 static void 2974 sd_set_mmc_caps(struct sd_lun *un) 2975 { 2976 struct mode_header_grp2 *sense_mhp; 2977 uchar_t *sense_page; 2978 caddr_t buf; 2979 int bd_len; 2980 int status; 2981 struct uscsi_cmd com; 2982 int rtn; 2983 uchar_t *out_data_rw, *out_data_hd; 2984 uchar_t *rqbuf_rw, *rqbuf_hd; 2985 2986 ASSERT(un != NULL); 2987 2988 /* 2989 * The flags which will be set in this function are - mmc compliant, 2990 * dvdram writable device, cdda support. Initialize them to FALSE 2991 * and if a capability is detected - it will be set to TRUE. 2992 */ 2993 un->un_f_mmc_cap = FALSE; 2994 un->un_f_dvdram_writable_device = FALSE; 2995 un->un_f_cfg_cdda = FALSE; 2996 2997 buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 2998 status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf, 2999 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT); 3000 3001 if (status != 0) { 3002 /* command failed; just return */ 3003 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3004 return; 3005 } 3006 /* 3007 * If the mode sense request for the CDROM CAPABILITIES 3008 * page (0x2A) succeeds the device is assumed to be MMC. 3009 */ 3010 un->un_f_mmc_cap = TRUE; 3011 3012 /* Get to the page data */ 3013 sense_mhp = (struct mode_header_grp2 *)buf; 3014 bd_len = (sense_mhp->bdesc_length_hi << 8) | 3015 sense_mhp->bdesc_length_lo; 3016 if (bd_len > MODE_BLK_DESC_LENGTH) { 3017 /* 3018 * We did not get back the expected block descriptor 3019 * length so we cannot determine if the device supports 3020 * CDDA. However, we still indicate the device is MMC 3021 * according to the successful response to the page 3022 * 0x2A mode sense request. 3023 */ 3024 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3025 "sd_set_mmc_caps: Mode Sense returned " 3026 "invalid block descriptor length\n"); 3027 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3028 return; 3029 } 3030 3031 /* See if read CDDA is supported */ 3032 sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + 3033 bd_len); 3034 un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE; 3035 3036 /* See if writing DVD RAM is supported. */ 3037 un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE; 3038 if (un->un_f_dvdram_writable_device == TRUE) { 3039 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3040 return; 3041 } 3042 3043 /* 3044 * If the device presents DVD or CD capabilities in the mode 3045 * page, we can return here since a RRD will not have 3046 * these capabilities. 3047 */ 3048 if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) { 3049 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3050 return; 3051 } 3052 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3053 3054 /* 3055 * If un->un_f_dvdram_writable_device is still FALSE, 3056 * check for a Removable Rigid Disk (RRD). A RRD 3057 * device is identified by the features RANDOM_WRITABLE and 3058 * HARDWARE_DEFECT_MANAGEMENT. 3059 */ 3060 out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3061 rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3062 3063 rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw, 3064 SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN, 3065 RANDOM_WRITABLE); 3066 if (rtn != 0) { 3067 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3068 kmem_free(rqbuf_rw, SENSE_LENGTH); 3069 return; 3070 } 3071 3072 out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3073 rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3074 3075 rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd, 3076 SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN, 3077 HARDWARE_DEFECT_MANAGEMENT); 3078 if (rtn == 0) { 3079 /* 3080 * We have good information, check for random writable 3081 * and hardware defect features. 3082 */ 3083 if ((out_data_rw[9] & RANDOM_WRITABLE) && 3084 (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) { 3085 un->un_f_dvdram_writable_device = TRUE; 3086 } 3087 } 3088 3089 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3090 kmem_free(rqbuf_rw, SENSE_LENGTH); 3091 kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN); 3092 kmem_free(rqbuf_hd, SENSE_LENGTH); 3093 } 3094 3095 /* 3096 * Function: sd_check_for_writable_cd 3097 * 3098 * Description: This routine determines if the media in the device is 3099 * writable or not. It uses the get configuration command (0x46) 3100 * to determine if the media is writable 3101 * 3102 * Arguments: un - driver soft state (unit) structure 3103 * 3104 * Context: Never called at interrupt context. 3105 */ 3106 3107 static void 3108 sd_check_for_writable_cd(struct sd_lun *un) 3109 { 3110 struct uscsi_cmd com; 3111 uchar_t *out_data; 3112 uchar_t *rqbuf; 3113 int rtn; 3114 uchar_t *out_data_rw, *out_data_hd; 3115 uchar_t *rqbuf_rw, *rqbuf_hd; 3116 struct mode_header_grp2 *sense_mhp; 3117 uchar_t *sense_page; 3118 caddr_t buf; 3119 int bd_len; 3120 int status; 3121 3122 ASSERT(un != NULL); 3123 ASSERT(mutex_owned(SD_MUTEX(un))); 3124 3125 /* 3126 * Initialize the writable media to false, if configuration info. 3127 * tells us otherwise then only we will set it. 3128 */ 3129 un->un_f_mmc_writable_media = FALSE; 3130 mutex_exit(SD_MUTEX(un)); 3131 3132 out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP); 3133 rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3134 3135 rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH, 3136 out_data, SD_PROFILE_HEADER_LEN); 3137 3138 mutex_enter(SD_MUTEX(un)); 3139 if (rtn == 0) { 3140 /* 3141 * We have good information, check for writable DVD. 3142 */ 3143 if ((out_data[6] == 0) && (out_data[7] == 0x12)) { 3144 un->un_f_mmc_writable_media = TRUE; 3145 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 3146 kmem_free(rqbuf, SENSE_LENGTH); 3147 return; 3148 } 3149 } 3150 3151 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 3152 kmem_free(rqbuf, SENSE_LENGTH); 3153 3154 /* 3155 * Determine if this is a RRD type device. 3156 */ 3157 mutex_exit(SD_MUTEX(un)); 3158 buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 3159 status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf, 3160 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT); 3161 mutex_enter(SD_MUTEX(un)); 3162 if (status != 0) { 3163 /* command failed; just return */ 3164 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3165 return; 3166 } 3167 3168 /* Get to the page data */ 3169 sense_mhp = (struct mode_header_grp2 *)buf; 3170 bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo; 3171 if (bd_len > MODE_BLK_DESC_LENGTH) { 3172 /* 3173 * We did not get back the expected block descriptor length so 3174 * we cannot check the mode page. 3175 */ 3176 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3177 "sd_check_for_writable_cd: Mode Sense returned " 3178 "invalid block descriptor length\n"); 3179 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3180 return; 3181 } 3182 3183 /* 3184 * If the device presents DVD or CD capabilities in the mode 3185 * page, we can return here since a RRD device will not have 3186 * these capabilities. 3187 */ 3188 sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len); 3189 if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) { 3190 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3191 return; 3192 } 3193 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3194 3195 /* 3196 * If un->un_f_mmc_writable_media is still FALSE, 3197 * check for RRD type media. A RRD device is identified 3198 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT. 3199 */ 3200 mutex_exit(SD_MUTEX(un)); 3201 out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3202 rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3203 3204 rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw, 3205 SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN, 3206 RANDOM_WRITABLE); 3207 if (rtn != 0) { 3208 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3209 kmem_free(rqbuf_rw, SENSE_LENGTH); 3210 mutex_enter(SD_MUTEX(un)); 3211 return; 3212 } 3213 3214 out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3215 rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3216 3217 rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd, 3218 SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN, 3219 HARDWARE_DEFECT_MANAGEMENT); 3220 mutex_enter(SD_MUTEX(un)); 3221 if (rtn == 0) { 3222 /* 3223 * We have good information, check for random writable 3224 * and hardware defect features as current. 3225 */ 3226 if ((out_data_rw[9] & RANDOM_WRITABLE) && 3227 (out_data_rw[10] & 0x1) && 3228 (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) && 3229 (out_data_hd[10] & 0x1)) { 3230 un->un_f_mmc_writable_media = TRUE; 3231 } 3232 } 3233 3234 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3235 kmem_free(rqbuf_rw, SENSE_LENGTH); 3236 kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN); 3237 kmem_free(rqbuf_hd, SENSE_LENGTH); 3238 } 3239 3240 /* 3241 * Function: sd_read_unit_properties 3242 * 3243 * Description: The following implements a property lookup mechanism. 3244 * Properties for particular disks (keyed on vendor, model 3245 * and rev numbers) are sought in the sd.conf file via 3246 * sd_process_sdconf_file(), and if not found there, are 3247 * looked for in a list hardcoded in this driver via 3248 * sd_process_sdconf_table() Once located the properties 3249 * are used to update the driver unit structure. 3250 * 3251 * Arguments: un - driver soft state (unit) structure 3252 */ 3253 3254 static void 3255 sd_read_unit_properties(struct sd_lun *un) 3256 { 3257 /* 3258 * sd_process_sdconf_file returns SD_FAILURE if it cannot find 3259 * the "sd-config-list" property (from the sd.conf file) or if 3260 * there was not a match for the inquiry vid/pid. If this event 3261 * occurs the static driver configuration table is searched for 3262 * a match. 3263 */ 3264 ASSERT(un != NULL); 3265 if (sd_process_sdconf_file(un) == SD_FAILURE) { 3266 sd_process_sdconf_table(un); 3267 } 3268 3269 /* check for LSI device */ 3270 sd_is_lsi(un); 3271 3272 3273 } 3274 3275 3276 /* 3277 * Function: sd_process_sdconf_file 3278 * 3279 * Description: Use ddi_getlongprop to obtain the properties from the 3280 * driver's config file (ie, sd.conf) and update the driver 3281 * soft state structure accordingly. 3282 * 3283 * Arguments: un - driver soft state (unit) structure 3284 * 3285 * Return Code: SD_SUCCESS - The properties were successfully set according 3286 * to the driver configuration file. 3287 * SD_FAILURE - The driver config list was not obtained or 3288 * there was no vid/pid match. This indicates that 3289 * the static config table should be used. 3290 * 3291 * The config file has a property, "sd-config-list", which consists of 3292 * one or more duplets as follows: 3293 * 3294 * sd-config-list= 3295 * <duplet>, 3296 * [<duplet>,] 3297 * [<duplet>]; 3298 * 3299 * The structure of each duplet is as follows: 3300 * 3301 * <duplet>:= <vid+pid>,<data-property-name_list> 3302 * 3303 * The first entry of the duplet is the device ID string (the concatenated 3304 * vid & pid; not to be confused with a device_id). This is defined in 3305 * the same way as in the sd_disk_table. 3306 * 3307 * The second part of the duplet is a string that identifies a 3308 * data-property-name-list. The data-property-name-list is defined as 3309 * follows: 3310 * 3311 * <data-property-name-list>:=<data-property-name> [<data-property-name>] 3312 * 3313 * The syntax of <data-property-name> depends on the <version> field. 3314 * 3315 * If version = SD_CONF_VERSION_1 we have the following syntax: 3316 * 3317 * <data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN> 3318 * 3319 * where the prop0 value will be used to set prop0 if bit0 set in the 3320 * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1 3321 * 3322 */ 3323 3324 static int 3325 sd_process_sdconf_file(struct sd_lun *un) 3326 { 3327 char *config_list = NULL; 3328 int config_list_len; 3329 int len; 3330 int dupletlen = 0; 3331 char *vidptr; 3332 int vidlen; 3333 char *dnlist_ptr; 3334 char *dataname_ptr; 3335 int dnlist_len; 3336 int dataname_len; 3337 int *data_list; 3338 int data_list_len; 3339 int rval = SD_FAILURE; 3340 int i; 3341 3342 ASSERT(un != NULL); 3343 3344 /* Obtain the configuration list associated with the .conf file */ 3345 if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS, 3346 sd_config_list, (caddr_t)&config_list, &config_list_len) 3347 != DDI_PROP_SUCCESS) { 3348 return (SD_FAILURE); 3349 } 3350 3351 /* 3352 * Compare vids in each duplet to the inquiry vid - if a match is 3353 * made, get the data value and update the soft state structure 3354 * accordingly. 3355 * 3356 * Note: This algorithm is complex and difficult to maintain. It should 3357 * be replaced with a more robust implementation. 3358 */ 3359 for (len = config_list_len, vidptr = config_list; len > 0; 3360 vidptr += dupletlen, len -= dupletlen) { 3361 /* 3362 * Note: The assumption here is that each vid entry is on 3363 * a unique line from its associated duplet. 3364 */ 3365 vidlen = dupletlen = (int)strlen(vidptr); 3366 if ((vidlen == 0) || 3367 (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) { 3368 dupletlen++; 3369 continue; 3370 } 3371 3372 /* 3373 * dnlist contains 1 or more blank separated 3374 * data-property-name entries 3375 */ 3376 dnlist_ptr = vidptr + vidlen + 1; 3377 dnlist_len = (int)strlen(dnlist_ptr); 3378 dupletlen += dnlist_len + 2; 3379 3380 /* 3381 * Set a pointer for the first data-property-name 3382 * entry in the list 3383 */ 3384 dataname_ptr = dnlist_ptr; 3385 dataname_len = 0; 3386 3387 /* 3388 * Loop through all data-property-name entries in the 3389 * data-property-name-list setting the properties for each. 3390 */ 3391 while (dataname_len < dnlist_len) { 3392 int version; 3393 3394 /* 3395 * Determine the length of the current 3396 * data-property-name entry by indexing until a 3397 * blank or NULL is encountered. When the space is 3398 * encountered reset it to a NULL for compliance 3399 * with ddi_getlongprop(). 3400 */ 3401 for (i = 0; ((dataname_ptr[i] != ' ') && 3402 (dataname_ptr[i] != '\0')); i++) { 3403 ; 3404 } 3405 3406 dataname_len += i; 3407 /* If not null terminated, Make it so */ 3408 if (dataname_ptr[i] == ' ') { 3409 dataname_ptr[i] = '\0'; 3410 } 3411 dataname_len++; 3412 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3413 "sd_process_sdconf_file: disk:%s, data:%s\n", 3414 vidptr, dataname_ptr); 3415 3416 /* Get the data list */ 3417 if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0, 3418 dataname_ptr, (caddr_t)&data_list, &data_list_len) 3419 != DDI_PROP_SUCCESS) { 3420 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3421 "sd_process_sdconf_file: data property (%s)" 3422 " has no value\n", dataname_ptr); 3423 dataname_ptr = dnlist_ptr + dataname_len; 3424 continue; 3425 } 3426 3427 version = data_list[0]; 3428 3429 if (version == SD_CONF_VERSION_1) { 3430 sd_tunables values; 3431 3432 /* Set the properties */ 3433 if (sd_chk_vers1_data(un, data_list[1], 3434 &data_list[2], data_list_len, dataname_ptr) 3435 == SD_SUCCESS) { 3436 sd_get_tunables_from_conf(un, 3437 data_list[1], &data_list[2], 3438 &values); 3439 sd_set_vers1_properties(un, 3440 data_list[1], &values); 3441 rval = SD_SUCCESS; 3442 } else { 3443 rval = SD_FAILURE; 3444 } 3445 } else { 3446 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3447 "data property %s version 0x%x is invalid.", 3448 dataname_ptr, version); 3449 rval = SD_FAILURE; 3450 } 3451 kmem_free(data_list, data_list_len); 3452 dataname_ptr = dnlist_ptr + dataname_len; 3453 } 3454 } 3455 3456 /* free up the memory allocated by ddi_getlongprop */ 3457 if (config_list) { 3458 kmem_free(config_list, config_list_len); 3459 } 3460 3461 return (rval); 3462 } 3463 3464 /* 3465 * Function: sd_get_tunables_from_conf() 3466 * 3467 * 3468 * This function reads the data list from the sd.conf file and pulls 3469 * the values that can have numeric values as arguments and places 3470 * the values in the apropriate sd_tunables member. 3471 * Since the order of the data list members varies across platforms 3472 * This function reads them from the data list in a platform specific 3473 * order and places them into the correct sd_tunable member that is 3474 * a consistant across all platforms. 3475 */ 3476 static void 3477 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list, 3478 sd_tunables *values) 3479 { 3480 int i; 3481 int mask; 3482 3483 bzero(values, sizeof (sd_tunables)); 3484 3485 for (i = 0; i < SD_CONF_MAX_ITEMS; i++) { 3486 3487 mask = 1 << i; 3488 if (mask > flags) { 3489 break; 3490 } 3491 3492 switch (mask & flags) { 3493 case 0: /* This mask bit not set in flags */ 3494 continue; 3495 case SD_CONF_BSET_THROTTLE: 3496 values->sdt_throttle = data_list[i]; 3497 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3498 "sd_get_tunables_from_conf: throttle = %d\n", 3499 values->sdt_throttle); 3500 break; 3501 case SD_CONF_BSET_CTYPE: 3502 values->sdt_ctype = data_list[i]; 3503 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3504 "sd_get_tunables_from_conf: ctype = %d\n", 3505 values->sdt_ctype); 3506 break; 3507 case SD_CONF_BSET_NRR_COUNT: 3508 values->sdt_not_rdy_retries = data_list[i]; 3509 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3510 "sd_get_tunables_from_conf: not_rdy_retries = %d\n", 3511 values->sdt_not_rdy_retries); 3512 break; 3513 case SD_CONF_BSET_BSY_RETRY_COUNT: 3514 values->sdt_busy_retries = data_list[i]; 3515 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3516 "sd_get_tunables_from_conf: busy_retries = %d\n", 3517 values->sdt_busy_retries); 3518 break; 3519 case SD_CONF_BSET_RST_RETRIES: 3520 values->sdt_reset_retries = data_list[i]; 3521 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3522 "sd_get_tunables_from_conf: reset_retries = %d\n", 3523 values->sdt_reset_retries); 3524 break; 3525 case SD_CONF_BSET_RSV_REL_TIME: 3526 values->sdt_reserv_rel_time = data_list[i]; 3527 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3528 "sd_get_tunables_from_conf: reserv_rel_time = %d\n", 3529 values->sdt_reserv_rel_time); 3530 break; 3531 case SD_CONF_BSET_MIN_THROTTLE: 3532 values->sdt_min_throttle = data_list[i]; 3533 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3534 "sd_get_tunables_from_conf: min_throttle = %d\n", 3535 values->sdt_min_throttle); 3536 break; 3537 case SD_CONF_BSET_DISKSORT_DISABLED: 3538 values->sdt_disk_sort_dis = data_list[i]; 3539 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3540 "sd_get_tunables_from_conf: disk_sort_dis = %d\n", 3541 values->sdt_disk_sort_dis); 3542 break; 3543 case SD_CONF_BSET_LUN_RESET_ENABLED: 3544 values->sdt_lun_reset_enable = data_list[i]; 3545 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3546 "sd_get_tunables_from_conf: lun_reset_enable = %d" 3547 "\n", values->sdt_lun_reset_enable); 3548 break; 3549 } 3550 } 3551 } 3552 3553 /* 3554 * Function: sd_process_sdconf_table 3555 * 3556 * Description: Search the static configuration table for a match on the 3557 * inquiry vid/pid and update the driver soft state structure 3558 * according to the table property values for the device. 3559 * 3560 * The form of a configuration table entry is: 3561 * <vid+pid>,<flags>,<property-data> 3562 * "SEAGATE ST42400N",1,63,0,0 (Fibre) 3563 * "SEAGATE ST42400N",1,63,0,0,0,0 (Sparc) 3564 * "SEAGATE ST42400N",1,63,0,0,0,0,0,0,0,0,0,0 (Intel) 3565 * 3566 * Arguments: un - driver soft state (unit) structure 3567 */ 3568 3569 static void 3570 sd_process_sdconf_table(struct sd_lun *un) 3571 { 3572 char *id = NULL; 3573 int table_index; 3574 int idlen; 3575 3576 ASSERT(un != NULL); 3577 for (table_index = 0; table_index < sd_disk_table_size; 3578 table_index++) { 3579 id = sd_disk_table[table_index].device_id; 3580 idlen = strlen(id); 3581 if (idlen == 0) { 3582 continue; 3583 } 3584 3585 /* 3586 * The static configuration table currently does not 3587 * implement version 10 properties. Additionally, 3588 * multiple data-property-name entries are not 3589 * implemented in the static configuration table. 3590 */ 3591 if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) { 3592 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3593 "sd_process_sdconf_table: disk %s\n", id); 3594 sd_set_vers1_properties(un, 3595 sd_disk_table[table_index].flags, 3596 sd_disk_table[table_index].properties); 3597 break; 3598 } 3599 } 3600 } 3601 3602 3603 /* 3604 * Function: sd_sdconf_id_match 3605 * 3606 * Description: This local function implements a case sensitive vid/pid 3607 * comparison as well as the boundary cases of wild card and 3608 * multiple blanks. 3609 * 3610 * Note: An implicit assumption made here is that the scsi 3611 * inquiry structure will always keep the vid, pid and 3612 * revision strings in consecutive sequence, so they can be 3613 * read as a single string. If this assumption is not the 3614 * case, a separate string, to be used for the check, needs 3615 * to be built with these strings concatenated. 3616 * 3617 * Arguments: un - driver soft state (unit) structure 3618 * id - table or config file vid/pid 3619 * idlen - length of the vid/pid (bytes) 3620 * 3621 * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid 3622 * SD_FAILURE - Indicates no match with the inquiry vid/pid 3623 */ 3624 3625 static int 3626 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen) 3627 { 3628 struct scsi_inquiry *sd_inq; 3629 int rval = SD_SUCCESS; 3630 3631 ASSERT(un != NULL); 3632 sd_inq = un->un_sd->sd_inq; 3633 ASSERT(id != NULL); 3634 3635 /* 3636 * We use the inq_vid as a pointer to a buffer containing the 3637 * vid and pid and use the entire vid/pid length of the table 3638 * entry for the comparison. This works because the inq_pid 3639 * data member follows inq_vid in the scsi_inquiry structure. 3640 */ 3641 if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) { 3642 /* 3643 * The user id string is compared to the inquiry vid/pid 3644 * using a case insensitive comparison and ignoring 3645 * multiple spaces. 3646 */ 3647 rval = sd_blank_cmp(un, id, idlen); 3648 if (rval != SD_SUCCESS) { 3649 /* 3650 * User id strings that start and end with a "*" 3651 * are a special case. These do not have a 3652 * specific vendor, and the product string can 3653 * appear anywhere in the 16 byte PID portion of 3654 * the inquiry data. This is a simple strstr() 3655 * type search for the user id in the inquiry data. 3656 */ 3657 if ((id[0] == '*') && (id[idlen - 1] == '*')) { 3658 char *pidptr = &id[1]; 3659 int i; 3660 int j; 3661 int pidstrlen = idlen - 2; 3662 j = sizeof (SD_INQUIRY(un)->inq_pid) - 3663 pidstrlen; 3664 3665 if (j < 0) { 3666 return (SD_FAILURE); 3667 } 3668 for (i = 0; i < j; i++) { 3669 if (bcmp(&SD_INQUIRY(un)->inq_pid[i], 3670 pidptr, pidstrlen) == 0) { 3671 rval = SD_SUCCESS; 3672 break; 3673 } 3674 } 3675 } 3676 } 3677 } 3678 return (rval); 3679 } 3680 3681 3682 /* 3683 * Function: sd_blank_cmp 3684 * 3685 * Description: If the id string starts and ends with a space, treat 3686 * multiple consecutive spaces as equivalent to a single 3687 * space. For example, this causes a sd_disk_table entry 3688 * of " NEC CDROM " to match a device's id string of 3689 * "NEC CDROM". 3690 * 3691 * Note: The success exit condition for this routine is if 3692 * the pointer to the table entry is '\0' and the cnt of 3693 * the inquiry length is zero. This will happen if the inquiry 3694 * string returned by the device is padded with spaces to be 3695 * exactly 24 bytes in length (8 byte vid + 16 byte pid). The 3696 * SCSI spec states that the inquiry string is to be padded with 3697 * spaces. 3698 * 3699 * Arguments: un - driver soft state (unit) structure 3700 * id - table or config file vid/pid 3701 * idlen - length of the vid/pid (bytes) 3702 * 3703 * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid 3704 * SD_FAILURE - Indicates no match with the inquiry vid/pid 3705 */ 3706 3707 static int 3708 sd_blank_cmp(struct sd_lun *un, char *id, int idlen) 3709 { 3710 char *p1; 3711 char *p2; 3712 int cnt; 3713 cnt = sizeof (SD_INQUIRY(un)->inq_vid) + 3714 sizeof (SD_INQUIRY(un)->inq_pid); 3715 3716 ASSERT(un != NULL); 3717 p2 = un->un_sd->sd_inq->inq_vid; 3718 ASSERT(id != NULL); 3719 p1 = id; 3720 3721 if ((id[0] == ' ') && (id[idlen - 1] == ' ')) { 3722 /* 3723 * Note: string p1 is terminated by a NUL but string p2 3724 * isn't. The end of p2 is determined by cnt. 3725 */ 3726 for (;;) { 3727 /* skip over any extra blanks in both strings */ 3728 while ((*p1 != '\0') && (*p1 == ' ')) { 3729 p1++; 3730 } 3731 while ((cnt != 0) && (*p2 == ' ')) { 3732 p2++; 3733 cnt--; 3734 } 3735 3736 /* compare the two strings */ 3737 if ((cnt == 0) || 3738 (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) { 3739 break; 3740 } 3741 while ((cnt > 0) && 3742 (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) { 3743 p1++; 3744 p2++; 3745 cnt--; 3746 } 3747 } 3748 } 3749 3750 /* return SD_SUCCESS if both strings match */ 3751 return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE); 3752 } 3753 3754 3755 /* 3756 * Function: sd_chk_vers1_data 3757 * 3758 * Description: Verify the version 1 device properties provided by the 3759 * user via the configuration file 3760 * 3761 * Arguments: un - driver soft state (unit) structure 3762 * flags - integer mask indicating properties to be set 3763 * prop_list - integer list of property values 3764 * list_len - length of user provided data 3765 * 3766 * Return Code: SD_SUCCESS - Indicates the user provided data is valid 3767 * SD_FAILURE - Indicates the user provided data is invalid 3768 */ 3769 3770 static int 3771 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list, 3772 int list_len, char *dataname_ptr) 3773 { 3774 int i; 3775 int mask = 1; 3776 int index = 0; 3777 3778 ASSERT(un != NULL); 3779 3780 /* Check for a NULL property name and list */ 3781 if (dataname_ptr == NULL) { 3782 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3783 "sd_chk_vers1_data: NULL data property name."); 3784 return (SD_FAILURE); 3785 } 3786 if (prop_list == NULL) { 3787 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3788 "sd_chk_vers1_data: %s NULL data property list.", 3789 dataname_ptr); 3790 return (SD_FAILURE); 3791 } 3792 3793 /* Display a warning if undefined bits are set in the flags */ 3794 if (flags & ~SD_CONF_BIT_MASK) { 3795 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3796 "sd_chk_vers1_data: invalid bits 0x%x in data list %s. " 3797 "Properties not set.", 3798 (flags & ~SD_CONF_BIT_MASK), dataname_ptr); 3799 return (SD_FAILURE); 3800 } 3801 3802 /* 3803 * Verify the length of the list by identifying the highest bit set 3804 * in the flags and validating that the property list has a length 3805 * up to the index of this bit. 3806 */ 3807 for (i = 0; i < SD_CONF_MAX_ITEMS; i++) { 3808 if (flags & mask) { 3809 index++; 3810 } 3811 mask = 1 << i; 3812 } 3813 if ((list_len / sizeof (int)) < (index + 2)) { 3814 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3815 "sd_chk_vers1_data: " 3816 "Data property list %s size is incorrect. " 3817 "Properties not set.", dataname_ptr); 3818 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: " 3819 "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS); 3820 return (SD_FAILURE); 3821 } 3822 return (SD_SUCCESS); 3823 } 3824 3825 3826 /* 3827 * Function: sd_set_vers1_properties 3828 * 3829 * Description: Set version 1 device properties based on a property list 3830 * retrieved from the driver configuration file or static 3831 * configuration table. Version 1 properties have the format: 3832 * 3833 * <data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN> 3834 * 3835 * where the prop0 value will be used to set prop0 if bit0 3836 * is set in the flags 3837 * 3838 * Arguments: un - driver soft state (unit) structure 3839 * flags - integer mask indicating properties to be set 3840 * prop_list - integer list of property values 3841 */ 3842 3843 static void 3844 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list) 3845 { 3846 ASSERT(un != NULL); 3847 3848 /* 3849 * Set the flag to indicate cache is to be disabled. An attempt 3850 * to disable the cache via sd_cache_control() will be made 3851 * later during attach once the basic initialization is complete. 3852 */ 3853 if (flags & SD_CONF_BSET_NOCACHE) { 3854 un->un_f_opt_disable_cache = TRUE; 3855 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3856 "sd_set_vers1_properties: caching disabled flag set\n"); 3857 } 3858 3859 /* CD-specific configuration parameters */ 3860 if (flags & SD_CONF_BSET_PLAYMSF_BCD) { 3861 un->un_f_cfg_playmsf_bcd = TRUE; 3862 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3863 "sd_set_vers1_properties: playmsf_bcd set\n"); 3864 } 3865 if (flags & SD_CONF_BSET_READSUB_BCD) { 3866 un->un_f_cfg_readsub_bcd = TRUE; 3867 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3868 "sd_set_vers1_properties: readsub_bcd set\n"); 3869 } 3870 if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) { 3871 un->un_f_cfg_read_toc_trk_bcd = TRUE; 3872 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3873 "sd_set_vers1_properties: read_toc_trk_bcd set\n"); 3874 } 3875 if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) { 3876 un->un_f_cfg_read_toc_addr_bcd = TRUE; 3877 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3878 "sd_set_vers1_properties: read_toc_addr_bcd set\n"); 3879 } 3880 if (flags & SD_CONF_BSET_NO_READ_HEADER) { 3881 un->un_f_cfg_no_read_header = TRUE; 3882 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3883 "sd_set_vers1_properties: no_read_header set\n"); 3884 } 3885 if (flags & SD_CONF_BSET_READ_CD_XD4) { 3886 un->un_f_cfg_read_cd_xd4 = TRUE; 3887 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3888 "sd_set_vers1_properties: read_cd_xd4 set\n"); 3889 } 3890 3891 /* Support for devices which do not have valid/unique serial numbers */ 3892 if (flags & SD_CONF_BSET_FAB_DEVID) { 3893 un->un_f_opt_fab_devid = TRUE; 3894 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3895 "sd_set_vers1_properties: fab_devid bit set\n"); 3896 } 3897 3898 /* Support for user throttle configuration */ 3899 if (flags & SD_CONF_BSET_THROTTLE) { 3900 ASSERT(prop_list != NULL); 3901 un->un_saved_throttle = un->un_throttle = 3902 prop_list->sdt_throttle; 3903 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3904 "sd_set_vers1_properties: throttle set to %d\n", 3905 prop_list->sdt_throttle); 3906 } 3907 3908 /* Set the per disk retry count according to the conf file or table. */ 3909 if (flags & SD_CONF_BSET_NRR_COUNT) { 3910 ASSERT(prop_list != NULL); 3911 if (prop_list->sdt_not_rdy_retries) { 3912 un->un_notready_retry_count = 3913 prop_list->sdt_not_rdy_retries; 3914 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3915 "sd_set_vers1_properties: not ready retry count" 3916 " set to %d\n", un->un_notready_retry_count); 3917 } 3918 } 3919 3920 /* The controller type is reported for generic disk driver ioctls */ 3921 if (flags & SD_CONF_BSET_CTYPE) { 3922 ASSERT(prop_list != NULL); 3923 switch (prop_list->sdt_ctype) { 3924 case CTYPE_CDROM: 3925 un->un_ctype = prop_list->sdt_ctype; 3926 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3927 "sd_set_vers1_properties: ctype set to " 3928 "CTYPE_CDROM\n"); 3929 break; 3930 case CTYPE_CCS: 3931 un->un_ctype = prop_list->sdt_ctype; 3932 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3933 "sd_set_vers1_properties: ctype set to " 3934 "CTYPE_CCS\n"); 3935 break; 3936 case CTYPE_ROD: /* RW optical */ 3937 un->un_ctype = prop_list->sdt_ctype; 3938 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3939 "sd_set_vers1_properties: ctype set to " 3940 "CTYPE_ROD\n"); 3941 break; 3942 default: 3943 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3944 "sd_set_vers1_properties: Could not set " 3945 "invalid ctype value (%d)", 3946 prop_list->sdt_ctype); 3947 } 3948 } 3949 3950 /* Purple failover timeout */ 3951 if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) { 3952 ASSERT(prop_list != NULL); 3953 un->un_busy_retry_count = 3954 prop_list->sdt_busy_retries; 3955 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3956 "sd_set_vers1_properties: " 3957 "busy retry count set to %d\n", 3958 un->un_busy_retry_count); 3959 } 3960 3961 /* Purple reset retry count */ 3962 if (flags & SD_CONF_BSET_RST_RETRIES) { 3963 ASSERT(prop_list != NULL); 3964 un->un_reset_retry_count = 3965 prop_list->sdt_reset_retries; 3966 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3967 "sd_set_vers1_properties: " 3968 "reset retry count set to %d\n", 3969 un->un_reset_retry_count); 3970 } 3971 3972 /* Purple reservation release timeout */ 3973 if (flags & SD_CONF_BSET_RSV_REL_TIME) { 3974 ASSERT(prop_list != NULL); 3975 un->un_reserve_release_time = 3976 prop_list->sdt_reserv_rel_time; 3977 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3978 "sd_set_vers1_properties: " 3979 "reservation release timeout set to %d\n", 3980 un->un_reserve_release_time); 3981 } 3982 3983 /* 3984 * Driver flag telling the driver to verify that no commands are pending 3985 * for a device before issuing a Test Unit Ready. This is a workaround 3986 * for a firmware bug in some Seagate eliteI drives. 3987 */ 3988 if (flags & SD_CONF_BSET_TUR_CHECK) { 3989 un->un_f_cfg_tur_check = TRUE; 3990 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3991 "sd_set_vers1_properties: tur queue check set\n"); 3992 } 3993 3994 if (flags & SD_CONF_BSET_MIN_THROTTLE) { 3995 un->un_min_throttle = prop_list->sdt_min_throttle; 3996 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3997 "sd_set_vers1_properties: min throttle set to %d\n", 3998 un->un_min_throttle); 3999 } 4000 4001 if (flags & SD_CONF_BSET_DISKSORT_DISABLED) { 4002 un->un_f_disksort_disabled = 4003 (prop_list->sdt_disk_sort_dis != 0) ? 4004 TRUE : FALSE; 4005 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4006 "sd_set_vers1_properties: disksort disabled " 4007 "flag set to %d\n", 4008 prop_list->sdt_disk_sort_dis); 4009 } 4010 4011 if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) { 4012 un->un_f_lun_reset_enabled = 4013 (prop_list->sdt_lun_reset_enable != 0) ? 4014 TRUE : FALSE; 4015 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4016 "sd_set_vers1_properties: lun reset enabled " 4017 "flag set to %d\n", 4018 prop_list->sdt_lun_reset_enable); 4019 } 4020 4021 /* 4022 * Validate the throttle values. 4023 * If any of the numbers are invalid, set everything to defaults. 4024 */ 4025 if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) || 4026 (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) || 4027 (un->un_min_throttle > un->un_throttle)) { 4028 un->un_saved_throttle = un->un_throttle = sd_max_throttle; 4029 un->un_min_throttle = sd_min_throttle; 4030 } 4031 } 4032 4033 /* 4034 * Function: sd_is_lsi() 4035 * 4036 * Description: Check for lsi devices, step throught the static device 4037 * table to match vid/pid. 4038 * 4039 * Args: un - ptr to sd_lun 4040 * 4041 * Notes: When creating new LSI property, need to add the new LSI property 4042 * to this function. 4043 */ 4044 static void 4045 sd_is_lsi(struct sd_lun *un) 4046 { 4047 char *id = NULL; 4048 int table_index; 4049 int idlen; 4050 void *prop; 4051 4052 ASSERT(un != NULL); 4053 for (table_index = 0; table_index < sd_disk_table_size; 4054 table_index++) { 4055 id = sd_disk_table[table_index].device_id; 4056 idlen = strlen(id); 4057 if (idlen == 0) { 4058 continue; 4059 } 4060 4061 if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) { 4062 prop = sd_disk_table[table_index].properties; 4063 if (prop == &lsi_properties || 4064 prop == &lsi_oem_properties || 4065 prop == &lsi_properties_scsi || 4066 prop == &symbios_properties) { 4067 un->un_f_cfg_is_lsi = TRUE; 4068 } 4069 break; 4070 } 4071 } 4072 } 4073 4074 4075 /* 4076 * The following routines support reading and interpretation of disk labels, 4077 * including Solaris BE (8-slice) vtoc's, Solaris LE (16-slice) vtoc's, and 4078 * fdisk tables. 4079 */ 4080 4081 /* 4082 * Function: sd_validate_geometry 4083 * 4084 * Description: Read the label from the disk (if present). Update the unit's 4085 * geometry and vtoc information from the data in the label. 4086 * Verify that the label is valid. 4087 * 4088 * Arguments: un - driver soft state (unit) structure 4089 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 4090 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 4091 * to use the USCSI "direct" chain and bypass the normal 4092 * command waitq. 4093 * 4094 * Return Code: 0 - Successful completion 4095 * EINVAL - Invalid value in un->un_tgt_blocksize or 4096 * un->un_blockcount; or label on disk is corrupted 4097 * or unreadable. 4098 * EACCES - Reservation conflict at the device. 4099 * ENOMEM - Resource allocation error 4100 * ENOTSUP - geometry not applicable 4101 * 4102 * Context: Kernel thread only (can sleep). 4103 */ 4104 4105 static int 4106 sd_validate_geometry(struct sd_lun *un, int path_flag) 4107 { 4108 static char labelstring[128]; 4109 static char buf[256]; 4110 char *label = NULL; 4111 int label_error = 0; 4112 int gvalid = un->un_f_geometry_is_valid; 4113 int lbasize; 4114 uint_t capacity; 4115 int count; 4116 4117 ASSERT(un != NULL); 4118 ASSERT(mutex_owned(SD_MUTEX(un))); 4119 4120 /* 4121 * If the required values are not valid, then try getting them 4122 * once via read capacity. If that fails, then fail this call. 4123 * This is necessary with the new mpxio failover behavior in 4124 * the T300 where we can get an attach for the inactive path 4125 * before the active path. The inactive path fails commands with 4126 * sense data of 02,04,88 which happens to the read capacity 4127 * before mpxio has had sufficient knowledge to know if it should 4128 * force a fail over or not. (Which it won't do at attach anyhow). 4129 * If the read capacity at attach time fails, un_tgt_blocksize and 4130 * un_blockcount won't be valid. 4131 */ 4132 if ((un->un_f_tgt_blocksize_is_valid != TRUE) || 4133 (un->un_f_blockcount_is_valid != TRUE)) { 4134 uint64_t cap; 4135 uint32_t lbasz; 4136 int rval; 4137 4138 mutex_exit(SD_MUTEX(un)); 4139 rval = sd_send_scsi_READ_CAPACITY(un, &cap, 4140 &lbasz, SD_PATH_DIRECT); 4141 mutex_enter(SD_MUTEX(un)); 4142 if (rval == 0) { 4143 /* 4144 * The following relies on 4145 * sd_send_scsi_READ_CAPACITY never 4146 * returning 0 for capacity and/or lbasize. 4147 */ 4148 sd_update_block_info(un, lbasz, cap); 4149 } 4150 4151 if ((un->un_f_tgt_blocksize_is_valid != TRUE) || 4152 (un->un_f_blockcount_is_valid != TRUE)) { 4153 return (EINVAL); 4154 } 4155 } 4156 4157 /* 4158 * Copy the lbasize and capacity so that if they're reset while we're 4159 * not holding the SD_MUTEX, we will continue to use valid values 4160 * after the SD_MUTEX is reacquired. (4119659) 4161 */ 4162 lbasize = un->un_tgt_blocksize; 4163 capacity = un->un_blockcount; 4164 4165 #if defined(_SUNOS_VTOC_16) 4166 /* 4167 * Set up the "whole disk" fdisk partition; this should always 4168 * exist, regardless of whether the disk contains an fdisk table 4169 * or vtoc. 4170 */ 4171 un->un_map[P0_RAW_DISK].dkl_cylno = 0; 4172 un->un_map[P0_RAW_DISK].dkl_nblk = capacity; 4173 #endif 4174 4175 /* 4176 * Refresh the logical and physical geometry caches. 4177 * (data from MODE SENSE format/rigid disk geometry pages, 4178 * and scsi_ifgetcap("geometry"). 4179 */ 4180 sd_resync_geom_caches(un, capacity, lbasize, path_flag); 4181 4182 label_error = sd_use_efi(un, path_flag); 4183 if (label_error == 0) { 4184 /* found a valid EFI label */ 4185 SD_TRACE(SD_LOG_IO_PARTITION, un, 4186 "sd_validate_geometry: found EFI label\n"); 4187 un->un_solaris_offset = 0; 4188 un->un_solaris_size = capacity; 4189 return (ENOTSUP); 4190 } 4191 if (un->un_blockcount > DK_MAX_BLOCKS) { 4192 if (label_error == ESRCH) { 4193 /* 4194 * they've configured a LUN over 1TB, but used 4195 * format.dat to restrict format's view of the 4196 * capacity to be under 1TB 4197 */ 4198 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4199 "is >1TB and has a VTOC label: use format(1M) to either decrease the"); 4200 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 4201 "size to be < 1TB or relabel the disk with an EFI label"); 4202 } else { 4203 /* unlabeled disk over 1TB */ 4204 return (ENOTSUP); 4205 } 4206 } 4207 label_error = 0; 4208 4209 /* 4210 * at this point it is either labeled with a VTOC or it is 4211 * under 1TB 4212 */ 4213 if (un->un_f_vtoc_label_supported) { 4214 struct dk_label *dkl; 4215 offset_t dkl1; 4216 offset_t label_addr, real_addr; 4217 int rval; 4218 size_t buffer_size; 4219 4220 /* 4221 * Note: This will set up un->un_solaris_size and 4222 * un->un_solaris_offset. 4223 */ 4224 switch (sd_read_fdisk(un, capacity, lbasize, path_flag)) { 4225 case SD_CMD_RESERVATION_CONFLICT: 4226 ASSERT(mutex_owned(SD_MUTEX(un))); 4227 return (EACCES); 4228 case SD_CMD_FAILURE: 4229 ASSERT(mutex_owned(SD_MUTEX(un))); 4230 return (ENOMEM); 4231 } 4232 4233 if (un->un_solaris_size <= DK_LABEL_LOC) { 4234 /* 4235 * Found fdisk table but no Solaris partition entry, 4236 * so don't call sd_uselabel() and don't create 4237 * a default label. 4238 */ 4239 label_error = 0; 4240 un->un_f_geometry_is_valid = TRUE; 4241 goto no_solaris_partition; 4242 } 4243 label_addr = (daddr_t)(un->un_solaris_offset + DK_LABEL_LOC); 4244 4245 /* 4246 * sys_blocksize != tgt_blocksize, need to re-adjust 4247 * blkno and save the index to beginning of dk_label 4248 */ 4249 real_addr = SD_SYS2TGTBLOCK(un, label_addr); 4250 buffer_size = SD_REQBYTES2TGTBYTES(un, 4251 sizeof (struct dk_label)); 4252 4253 SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_validate_geometry: " 4254 "label_addr: 0x%x allocation size: 0x%x\n", 4255 label_addr, buffer_size); 4256 dkl = kmem_zalloc(buffer_size, KM_NOSLEEP); 4257 if (dkl == NULL) { 4258 return (ENOMEM); 4259 } 4260 4261 mutex_exit(SD_MUTEX(un)); 4262 rval = sd_send_scsi_READ(un, dkl, buffer_size, real_addr, 4263 path_flag); 4264 mutex_enter(SD_MUTEX(un)); 4265 4266 switch (rval) { 4267 case 0: 4268 /* 4269 * sd_uselabel will establish that the geometry 4270 * is valid. 4271 * For sys_blocksize != tgt_blocksize, need 4272 * to index into the beginning of dk_label 4273 */ 4274 dkl1 = (daddr_t)dkl 4275 + SD_TGTBYTEOFFSET(un, label_addr, real_addr); 4276 if (sd_uselabel(un, (struct dk_label *)(uintptr_t)dkl1, 4277 path_flag) != SD_LABEL_IS_VALID) { 4278 label_error = EINVAL; 4279 } 4280 break; 4281 case EACCES: 4282 label_error = EACCES; 4283 break; 4284 default: 4285 label_error = EINVAL; 4286 break; 4287 } 4288 4289 kmem_free(dkl, buffer_size); 4290 4291 #if defined(_SUNOS_VTOC_8) 4292 label = (char *)un->un_asciilabel; 4293 #elif defined(_SUNOS_VTOC_16) 4294 label = (char *)un->un_vtoc.v_asciilabel; 4295 #else 4296 #error "No VTOC format defined." 4297 #endif 4298 } 4299 4300 /* 4301 * If a valid label was not found, AND if no reservation conflict 4302 * was detected, then go ahead and create a default label (4069506). 4303 */ 4304 4305 if (un->un_f_default_vtoc_supported && (label_error != EACCES)) { 4306 if (un->un_f_geometry_is_valid == FALSE) { 4307 sd_build_default_label(un); 4308 } 4309 label_error = 0; 4310 } 4311 4312 no_solaris_partition: 4313 if ((!un->un_f_has_removable_media || 4314 (un->un_f_has_removable_media && 4315 un->un_mediastate == DKIO_EJECTED)) && 4316 (un->un_state == SD_STATE_NORMAL && !gvalid)) { 4317 /* 4318 * Print out a message indicating who and what we are. 4319 * We do this only when we happen to really validate the 4320 * geometry. We may call sd_validate_geometry() at other 4321 * times, e.g., ioctl()'s like Get VTOC in which case we 4322 * don't want to print the label. 4323 * If the geometry is valid, print the label string, 4324 * else print vendor and product info, if available 4325 */ 4326 if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) { 4327 SD_INFO(SD_LOG_ATTACH_DETACH, un, "?<%s>\n", label); 4328 } else { 4329 mutex_enter(&sd_label_mutex); 4330 sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX, 4331 labelstring); 4332 sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX, 4333 &labelstring[64]); 4334 (void) sprintf(buf, "?Vendor '%s', product '%s'", 4335 labelstring, &labelstring[64]); 4336 if (un->un_f_blockcount_is_valid == TRUE) { 4337 (void) sprintf(&buf[strlen(buf)], 4338 ", %llu %u byte blocks\n", 4339 (longlong_t)un->un_blockcount, 4340 un->un_tgt_blocksize); 4341 } else { 4342 (void) sprintf(&buf[strlen(buf)], 4343 ", (unknown capacity)\n"); 4344 } 4345 SD_INFO(SD_LOG_ATTACH_DETACH, un, buf); 4346 mutex_exit(&sd_label_mutex); 4347 } 4348 } 4349 4350 #if defined(_SUNOS_VTOC_16) 4351 /* 4352 * If we have valid geometry, set up the remaining fdisk partitions. 4353 * Note that dkl_cylno is not used for the fdisk map entries, so 4354 * we set it to an entirely bogus value. 4355 */ 4356 for (count = 0; count < FD_NUMPART; count++) { 4357 un->un_map[FDISK_P1 + count].dkl_cylno = -1; 4358 un->un_map[FDISK_P1 + count].dkl_nblk = 4359 un->un_fmap[count].fmap_nblk; 4360 4361 un->un_offset[FDISK_P1 + count] = 4362 un->un_fmap[count].fmap_start; 4363 } 4364 #endif 4365 4366 for (count = 0; count < NDKMAP; count++) { 4367 #if defined(_SUNOS_VTOC_8) 4368 struct dk_map *lp = &un->un_map[count]; 4369 un->un_offset[count] = 4370 un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno; 4371 #elif defined(_SUNOS_VTOC_16) 4372 struct dkl_partition *vp = &un->un_vtoc.v_part[count]; 4373 4374 un->un_offset[count] = vp->p_start + un->un_solaris_offset; 4375 #else 4376 #error "No VTOC format defined." 4377 #endif 4378 } 4379 4380 return (label_error); 4381 } 4382 4383 4384 #if defined(_SUNOS_VTOC_16) 4385 /* 4386 * Macro: MAX_BLKS 4387 * 4388 * This macro is used for table entries where we need to have the largest 4389 * possible sector value for that head & SPT (sectors per track) 4390 * combination. Other entries for some smaller disk sizes are set by 4391 * convention to match those used by X86 BIOS usage. 4392 */ 4393 #define MAX_BLKS(heads, spt) UINT16_MAX * heads * spt, heads, spt 4394 4395 /* 4396 * Function: sd_convert_geometry 4397 * 4398 * Description: Convert physical geometry into a dk_geom structure. In 4399 * other words, make sure we don't wrap 16-bit values. 4400 * e.g. converting from geom_cache to dk_geom 4401 * 4402 * Context: Kernel thread only 4403 */ 4404 static void 4405 sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g) 4406 { 4407 int i; 4408 static const struct chs_values { 4409 uint_t max_cap; /* Max Capacity for this HS. */ 4410 uint_t nhead; /* Heads to use. */ 4411 uint_t nsect; /* SPT to use. */ 4412 } CHS_values[] = { 4413 {0x00200000, 64, 32}, /* 1GB or smaller disk. */ 4414 {0x01000000, 128, 32}, /* 8GB or smaller disk. */ 4415 {MAX_BLKS(255, 63)}, /* 502.02GB or smaller disk. */ 4416 {MAX_BLKS(255, 126)}, /* .98TB or smaller disk. */ 4417 {DK_MAX_BLOCKS, 255, 189} /* Max size is just under 1TB */ 4418 }; 4419 4420 /* Unlabeled SCSI floppy device */ 4421 if (capacity <= 0x1000) { 4422 un_g->dkg_nhead = 2; 4423 un_g->dkg_ncyl = 80; 4424 un_g->dkg_nsect = capacity / (un_g->dkg_nhead * un_g->dkg_ncyl); 4425 return; 4426 } 4427 4428 /* 4429 * For all devices we calculate cylinders using the 4430 * heads and sectors we assign based on capacity of the 4431 * device. The table is designed to be compatible with the 4432 * way other operating systems lay out fdisk tables for X86 4433 * and to insure that the cylinders never exceed 65535 to 4434 * prevent problems with X86 ioctls that report geometry. 4435 * We use SPT that are multiples of 63, since other OSes that 4436 * are not limited to 16-bits for cylinders stop at 63 SPT 4437 * we make do by using multiples of 63 SPT. 4438 * 4439 * Note than capacities greater than or equal to 1TB will simply 4440 * get the largest geometry from the table. This should be okay 4441 * since disks this large shouldn't be using CHS values anyway. 4442 */ 4443 for (i = 0; CHS_values[i].max_cap < capacity && 4444 CHS_values[i].max_cap != DK_MAX_BLOCKS; i++) 4445 ; 4446 4447 un_g->dkg_nhead = CHS_values[i].nhead; 4448 un_g->dkg_nsect = CHS_values[i].nsect; 4449 } 4450 #endif 4451 4452 4453 /* 4454 * Function: sd_resync_geom_caches 4455 * 4456 * Description: (Re)initialize both geometry caches: the virtual geometry 4457 * information is extracted from the HBA (the "geometry" 4458 * capability), and the physical geometry cache data is 4459 * generated by issuing MODE SENSE commands. 4460 * 4461 * Arguments: un - driver soft state (unit) structure 4462 * capacity - disk capacity in #blocks 4463 * lbasize - disk block size in bytes 4464 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 4465 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 4466 * to use the USCSI "direct" chain and bypass the normal 4467 * command waitq. 4468 * 4469 * Context: Kernel thread only (can sleep). 4470 */ 4471 4472 static void 4473 sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize, 4474 int path_flag) 4475 { 4476 struct geom_cache pgeom; 4477 struct geom_cache *pgeom_p = &pgeom; 4478 int spc; 4479 unsigned short nhead; 4480 unsigned short nsect; 4481 4482 ASSERT(un != NULL); 4483 ASSERT(mutex_owned(SD_MUTEX(un))); 4484 4485 /* 4486 * Ask the controller for its logical geometry. 4487 * Note: if the HBA does not support scsi_ifgetcap("geometry"), 4488 * then the lgeom cache will be invalid. 4489 */ 4490 sd_get_virtual_geometry(un, capacity, lbasize); 4491 4492 /* 4493 * Initialize the pgeom cache from lgeom, so that if MODE SENSE 4494 * doesn't work, DKIOCG_PHYSGEOM can return reasonable values. 4495 */ 4496 if (un->un_lgeom.g_nsect == 0 || un->un_lgeom.g_nhead == 0) { 4497 /* 4498 * Note: Perhaps this needs to be more adaptive? The rationale 4499 * is that, if there's no HBA geometry from the HBA driver, any 4500 * guess is good, since this is the physical geometry. If MODE 4501 * SENSE fails this gives a max cylinder size for non-LBA access 4502 */ 4503 nhead = 255; 4504 nsect = 63; 4505 } else { 4506 nhead = un->un_lgeom.g_nhead; 4507 nsect = un->un_lgeom.g_nsect; 4508 } 4509 4510 if (ISCD(un)) { 4511 pgeom_p->g_nhead = 1; 4512 pgeom_p->g_nsect = nsect * nhead; 4513 } else { 4514 pgeom_p->g_nhead = nhead; 4515 pgeom_p->g_nsect = nsect; 4516 } 4517 4518 spc = pgeom_p->g_nhead * pgeom_p->g_nsect; 4519 pgeom_p->g_capacity = capacity; 4520 pgeom_p->g_ncyl = pgeom_p->g_capacity / spc; 4521 pgeom_p->g_acyl = 0; 4522 4523 /* 4524 * Retrieve fresh geometry data from the hardware, stash it 4525 * here temporarily before we rebuild the incore label. 4526 * 4527 * We want to use the MODE SENSE commands to derive the 4528 * physical geometry of the device, but if either command 4529 * fails, the logical geometry is used as the fallback for 4530 * disk label geometry. 4531 */ 4532 mutex_exit(SD_MUTEX(un)); 4533 sd_get_physical_geometry(un, pgeom_p, capacity, lbasize, path_flag); 4534 mutex_enter(SD_MUTEX(un)); 4535 4536 /* 4537 * Now update the real copy while holding the mutex. This 4538 * way the global copy is never in an inconsistent state. 4539 */ 4540 bcopy(pgeom_p, &un->un_pgeom, sizeof (un->un_pgeom)); 4541 4542 SD_INFO(SD_LOG_COMMON, un, "sd_resync_geom_caches: " 4543 "(cached from lgeom)\n"); 4544 SD_INFO(SD_LOG_COMMON, un, 4545 " ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n", 4546 un->un_pgeom.g_ncyl, un->un_pgeom.g_acyl, 4547 un->un_pgeom.g_nhead, un->un_pgeom.g_nsect); 4548 SD_INFO(SD_LOG_COMMON, un, " lbasize: %d; capacity: %ld; " 4549 "intrlv: %d; rpm: %d\n", un->un_pgeom.g_secsize, 4550 un->un_pgeom.g_capacity, un->un_pgeom.g_intrlv, 4551 un->un_pgeom.g_rpm); 4552 } 4553 4554 4555 /* 4556 * Function: sd_read_fdisk 4557 * 4558 * Description: utility routine to read the fdisk table. 4559 * 4560 * Arguments: un - driver soft state (unit) structure 4561 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 4562 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 4563 * to use the USCSI "direct" chain and bypass the normal 4564 * command waitq. 4565 * 4566 * Return Code: SD_CMD_SUCCESS 4567 * SD_CMD_FAILURE 4568 * 4569 * Context: Kernel thread only (can sleep). 4570 */ 4571 /* ARGSUSED */ 4572 static int 4573 sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize, int path_flag) 4574 { 4575 #if defined(_NO_FDISK_PRESENT) 4576 4577 un->un_solaris_offset = 0; 4578 un->un_solaris_size = capacity; 4579 bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART); 4580 return (SD_CMD_SUCCESS); 4581 4582 #elif defined(_FIRMWARE_NEEDS_FDISK) 4583 4584 struct ipart *fdp; 4585 struct mboot *mbp; 4586 struct ipart fdisk[FD_NUMPART]; 4587 int i; 4588 char sigbuf[2]; 4589 caddr_t bufp; 4590 int uidx; 4591 int rval; 4592 int lba = 0; 4593 uint_t solaris_offset; /* offset to solaris part. */ 4594 daddr_t solaris_size; /* size of solaris partition */ 4595 uint32_t blocksize; 4596 4597 ASSERT(un != NULL); 4598 ASSERT(mutex_owned(SD_MUTEX(un))); 4599 ASSERT(un->un_f_tgt_blocksize_is_valid == TRUE); 4600 4601 blocksize = un->un_tgt_blocksize; 4602 4603 /* 4604 * Start off assuming no fdisk table 4605 */ 4606 solaris_offset = 0; 4607 solaris_size = capacity; 4608 4609 mutex_exit(SD_MUTEX(un)); 4610 bufp = kmem_zalloc(blocksize, KM_SLEEP); 4611 rval = sd_send_scsi_READ(un, bufp, blocksize, 0, path_flag); 4612 mutex_enter(SD_MUTEX(un)); 4613 4614 if (rval != 0) { 4615 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 4616 "sd_read_fdisk: fdisk read err\n"); 4617 kmem_free(bufp, blocksize); 4618 return (SD_CMD_FAILURE); 4619 } 4620 4621 mbp = (struct mboot *)bufp; 4622 4623 /* 4624 * The fdisk table does not begin on a 4-byte boundary within the 4625 * master boot record, so we copy it to an aligned structure to avoid 4626 * alignment exceptions on some processors. 4627 */ 4628 bcopy(&mbp->parts[0], fdisk, sizeof (fdisk)); 4629 4630 /* 4631 * Check for lba support before verifying sig; sig might not be 4632 * there, say on a blank disk, but the max_chs mark may still 4633 * be present. 4634 * 4635 * Note: LBA support and BEFs are an x86-only concept but this 4636 * code should work OK on SPARC as well. 4637 */ 4638 4639 /* 4640 * First, check for lba-access-ok on root node (or prom root node) 4641 * if present there, don't need to search fdisk table. 4642 */ 4643 if (ddi_getprop(DDI_DEV_T_ANY, ddi_root_node(), 0, 4644 "lba-access-ok", 0) != 0) { 4645 /* All drives do LBA; don't search fdisk table */ 4646 lba = 1; 4647 } else { 4648 /* Okay, look for mark in fdisk table */ 4649 for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) { 4650 /* accumulate "lba" value from all partitions */ 4651 lba = (lba || sd_has_max_chs_vals(fdp)); 4652 } 4653 } 4654 4655 if (lba != 0) { 4656 dev_t dev = sd_make_device(SD_DEVINFO(un)); 4657 4658 if (ddi_getprop(dev, SD_DEVINFO(un), DDI_PROP_DONTPASS, 4659 "lba-access-ok", 0) == 0) { 4660 /* not found; create it */ 4661 if (ddi_prop_create(dev, SD_DEVINFO(un), 0, 4662 "lba-access-ok", (caddr_t)NULL, 0) != 4663 DDI_PROP_SUCCESS) { 4664 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 4665 "sd_read_fdisk: Can't create lba property " 4666 "for instance %d\n", 4667 ddi_get_instance(SD_DEVINFO(un))); 4668 } 4669 } 4670 } 4671 4672 bcopy(&mbp->signature, sigbuf, sizeof (sigbuf)); 4673 4674 /* 4675 * Endian-independent signature check 4676 */ 4677 if (((sigbuf[1] & 0xFF) != ((MBB_MAGIC >> 8) & 0xFF)) || 4678 (sigbuf[0] != (MBB_MAGIC & 0xFF))) { 4679 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 4680 "sd_read_fdisk: no fdisk\n"); 4681 bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART); 4682 rval = SD_CMD_SUCCESS; 4683 goto done; 4684 } 4685 4686 #ifdef SDDEBUG 4687 if (sd_level_mask & SD_LOGMASK_INFO) { 4688 fdp = fdisk; 4689 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_read_fdisk:\n"); 4690 SD_INFO(SD_LOG_ATTACH_DETACH, un, " relsect " 4691 "numsect sysid bootid\n"); 4692 for (i = 0; i < FD_NUMPART; i++, fdp++) { 4693 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4694 " %d: %8d %8d 0x%08x 0x%08x\n", 4695 i, fdp->relsect, fdp->numsect, 4696 fdp->systid, fdp->bootid); 4697 } 4698 } 4699 #endif 4700 4701 /* 4702 * Try to find the unix partition 4703 */ 4704 uidx = -1; 4705 solaris_offset = 0; 4706 solaris_size = 0; 4707 4708 for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) { 4709 int relsect; 4710 int numsect; 4711 4712 if (fdp->numsect == 0) { 4713 un->un_fmap[i].fmap_start = 0; 4714 un->un_fmap[i].fmap_nblk = 0; 4715 continue; 4716 } 4717 4718 /* 4719 * Data in the fdisk table is little-endian. 4720 */ 4721 relsect = LE_32(fdp->relsect); 4722 numsect = LE_32(fdp->numsect); 4723 4724 un->un_fmap[i].fmap_start = relsect; 4725 un->un_fmap[i].fmap_nblk = numsect; 4726 4727 if (fdp->systid != SUNIXOS && 4728 fdp->systid != SUNIXOS2 && 4729 fdp->systid != EFI_PMBR) { 4730 continue; 4731 } 4732 4733 /* 4734 * use the last active solaris partition id found 4735 * (there should only be 1 active partition id) 4736 * 4737 * if there are no active solaris partition id 4738 * then use the first inactive solaris partition id 4739 */ 4740 if ((uidx == -1) || (fdp->bootid == ACTIVE)) { 4741 uidx = i; 4742 solaris_offset = relsect; 4743 solaris_size = numsect; 4744 } 4745 } 4746 4747 SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk 0x%x 0x%lx", 4748 un->un_solaris_offset, un->un_solaris_size); 4749 4750 rval = SD_CMD_SUCCESS; 4751 4752 done: 4753 4754 /* 4755 * Clear the VTOC info, only if the Solaris partition entry 4756 * has moved, changed size, been deleted, or if the size of 4757 * the partition is too small to even fit the label sector. 4758 */ 4759 if ((un->un_solaris_offset != solaris_offset) || 4760 (un->un_solaris_size != solaris_size) || 4761 solaris_size <= DK_LABEL_LOC) { 4762 SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk moved 0x%x 0x%lx", 4763 solaris_offset, solaris_size); 4764 bzero(&un->un_g, sizeof (struct dk_geom)); 4765 bzero(&un->un_vtoc, sizeof (struct dk_vtoc)); 4766 bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map))); 4767 un->un_f_geometry_is_valid = FALSE; 4768 } 4769 un->un_solaris_offset = solaris_offset; 4770 un->un_solaris_size = solaris_size; 4771 kmem_free(bufp, blocksize); 4772 return (rval); 4773 4774 #else /* #elif defined(_FIRMWARE_NEEDS_FDISK) */ 4775 #error "fdisk table presence undetermined for this platform." 4776 #endif /* #if defined(_NO_FDISK_PRESENT) */ 4777 } 4778 4779 4780 /* 4781 * Function: sd_get_physical_geometry 4782 * 4783 * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and 4784 * MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the 4785 * target, and use this information to initialize the physical 4786 * geometry cache specified by pgeom_p. 4787 * 4788 * MODE SENSE is an optional command, so failure in this case 4789 * does not necessarily denote an error. We want to use the 4790 * MODE SENSE commands to derive the physical geometry of the 4791 * device, but if either command fails, the logical geometry is 4792 * used as the fallback for disk label geometry. 4793 * 4794 * This requires that un->un_blockcount and un->un_tgt_blocksize 4795 * have already been initialized for the current target and 4796 * that the current values be passed as args so that we don't 4797 * end up ever trying to use -1 as a valid value. This could 4798 * happen if either value is reset while we're not holding 4799 * the mutex. 4800 * 4801 * Arguments: un - driver soft state (unit) structure 4802 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 4803 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 4804 * to use the USCSI "direct" chain and bypass the normal 4805 * command waitq. 4806 * 4807 * Context: Kernel thread only (can sleep). 4808 */ 4809 4810 static void 4811 sd_get_physical_geometry(struct sd_lun *un, struct geom_cache *pgeom_p, 4812 int capacity, int lbasize, int path_flag) 4813 { 4814 struct mode_format *page3p; 4815 struct mode_geometry *page4p; 4816 struct mode_header *headerp; 4817 int sector_size; 4818 int nsect; 4819 int nhead; 4820 int ncyl; 4821 int intrlv; 4822 int spc; 4823 int modesense_capacity; 4824 int rpm; 4825 int bd_len; 4826 int mode_header_length; 4827 uchar_t *p3bufp; 4828 uchar_t *p4bufp; 4829 int cdbsize; 4830 4831 ASSERT(un != NULL); 4832 ASSERT(!(mutex_owned(SD_MUTEX(un)))); 4833 4834 if (un->un_f_blockcount_is_valid != TRUE) { 4835 return; 4836 } 4837 4838 if (un->un_f_tgt_blocksize_is_valid != TRUE) { 4839 return; 4840 } 4841 4842 if (lbasize == 0) { 4843 if (ISCD(un)) { 4844 lbasize = 2048; 4845 } else { 4846 lbasize = un->un_sys_blocksize; 4847 } 4848 } 4849 pgeom_p->g_secsize = (unsigned short)lbasize; 4850 4851 cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0; 4852 4853 /* 4854 * Retrieve MODE SENSE page 3 - Format Device Page 4855 */ 4856 p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP); 4857 if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp, 4858 SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag) 4859 != 0) { 4860 SD_ERROR(SD_LOG_COMMON, un, 4861 "sd_get_physical_geometry: mode sense page 3 failed\n"); 4862 goto page3_exit; 4863 } 4864 4865 /* 4866 * Determine size of Block Descriptors in order to locate the mode 4867 * page data. ATAPI devices return 0, SCSI devices should return 4868 * MODE_BLK_DESC_LENGTH. 4869 */ 4870 headerp = (struct mode_header *)p3bufp; 4871 if (un->un_f_cfg_is_atapi == TRUE) { 4872 struct mode_header_grp2 *mhp = 4873 (struct mode_header_grp2 *)headerp; 4874 mode_header_length = MODE_HEADER_LENGTH_GRP2; 4875 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 4876 } else { 4877 mode_header_length = MODE_HEADER_LENGTH; 4878 bd_len = ((struct mode_header *)headerp)->bdesc_length; 4879 } 4880 4881 if (bd_len > MODE_BLK_DESC_LENGTH) { 4882 SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: " 4883 "received unexpected bd_len of %d, page3\n", bd_len); 4884 goto page3_exit; 4885 } 4886 4887 page3p = (struct mode_format *) 4888 ((caddr_t)headerp + mode_header_length + bd_len); 4889 4890 if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) { 4891 SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: " 4892 "mode sense pg3 code mismatch %d\n", 4893 page3p->mode_page.code); 4894 goto page3_exit; 4895 } 4896 4897 /* 4898 * Use this physical geometry data only if BOTH MODE SENSE commands 4899 * complete successfully; otherwise, revert to the logical geometry. 4900 * So, we need to save everything in temporary variables. 4901 */ 4902 sector_size = BE_16(page3p->data_bytes_sect); 4903 4904 /* 4905 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size 4906 */ 4907 if (sector_size == 0) { 4908 sector_size = (ISCD(un)) ? 2048 : un->un_sys_blocksize; 4909 } else { 4910 sector_size &= ~(un->un_sys_blocksize - 1); 4911 } 4912 4913 nsect = BE_16(page3p->sect_track); 4914 intrlv = BE_16(page3p->interleave); 4915 4916 SD_INFO(SD_LOG_COMMON, un, 4917 "sd_get_physical_geometry: Format Parameters (page 3)\n"); 4918 SD_INFO(SD_LOG_COMMON, un, 4919 " mode page: %d; nsect: %d; sector size: %d;\n", 4920 page3p->mode_page.code, nsect, sector_size); 4921 SD_INFO(SD_LOG_COMMON, un, 4922 " interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv, 4923 BE_16(page3p->track_skew), 4924 BE_16(page3p->cylinder_skew)); 4925 4926 4927 /* 4928 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page 4929 */ 4930 p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP); 4931 if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp, 4932 SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag) 4933 != 0) { 4934 SD_ERROR(SD_LOG_COMMON, un, 4935 "sd_get_physical_geometry: mode sense page 4 failed\n"); 4936 goto page4_exit; 4937 } 4938 4939 /* 4940 * Determine size of Block Descriptors in order to locate the mode 4941 * page data. ATAPI devices return 0, SCSI devices should return 4942 * MODE_BLK_DESC_LENGTH. 4943 */ 4944 headerp = (struct mode_header *)p4bufp; 4945 if (un->un_f_cfg_is_atapi == TRUE) { 4946 struct mode_header_grp2 *mhp = 4947 (struct mode_header_grp2 *)headerp; 4948 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 4949 } else { 4950 bd_len = ((struct mode_header *)headerp)->bdesc_length; 4951 } 4952 4953 if (bd_len > MODE_BLK_DESC_LENGTH) { 4954 SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: " 4955 "received unexpected bd_len of %d, page4\n", bd_len); 4956 goto page4_exit; 4957 } 4958 4959 page4p = (struct mode_geometry *) 4960 ((caddr_t)headerp + mode_header_length + bd_len); 4961 4962 if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) { 4963 SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: " 4964 "mode sense pg4 code mismatch %d\n", 4965 page4p->mode_page.code); 4966 goto page4_exit; 4967 } 4968 4969 /* 4970 * Stash the data now, after we know that both commands completed. 4971 */ 4972 4973 mutex_enter(SD_MUTEX(un)); 4974 4975 nhead = (int)page4p->heads; /* uchar, so no conversion needed */ 4976 spc = nhead * nsect; 4977 ncyl = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb; 4978 rpm = BE_16(page4p->rpm); 4979 4980 modesense_capacity = spc * ncyl; 4981 4982 SD_INFO(SD_LOG_COMMON, un, 4983 "sd_get_physical_geometry: Geometry Parameters (page 4)\n"); 4984 SD_INFO(SD_LOG_COMMON, un, 4985 " cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm); 4986 SD_INFO(SD_LOG_COMMON, un, 4987 " computed capacity(h*s*c): %d;\n", modesense_capacity); 4988 SD_INFO(SD_LOG_COMMON, un, " pgeom_p: %p; read cap: %d\n", 4989 (void *)pgeom_p, capacity); 4990 4991 /* 4992 * Compensate if the drive's geometry is not rectangular, i.e., 4993 * the product of C * H * S returned by MODE SENSE >= that returned 4994 * by read capacity. This is an idiosyncrasy of the original x86 4995 * disk subsystem. 4996 */ 4997 if (modesense_capacity >= capacity) { 4998 SD_INFO(SD_LOG_COMMON, un, 4999 "sd_get_physical_geometry: adjusting acyl; " 5000 "old: %d; new: %d\n", pgeom_p->g_acyl, 5001 (modesense_capacity - capacity + spc - 1) / spc); 5002 if (sector_size != 0) { 5003 /* 1243403: NEC D38x7 drives don't support sec size */ 5004 pgeom_p->g_secsize = (unsigned short)sector_size; 5005 } 5006 pgeom_p->g_nsect = (unsigned short)nsect; 5007 pgeom_p->g_nhead = (unsigned short)nhead; 5008 pgeom_p->g_capacity = capacity; 5009 pgeom_p->g_acyl = 5010 (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc; 5011 pgeom_p->g_ncyl = ncyl - pgeom_p->g_acyl; 5012 } 5013 5014 pgeom_p->g_rpm = (unsigned short)rpm; 5015 pgeom_p->g_intrlv = (unsigned short)intrlv; 5016 5017 SD_INFO(SD_LOG_COMMON, un, 5018 "sd_get_physical_geometry: mode sense geometry:\n"); 5019 SD_INFO(SD_LOG_COMMON, un, 5020 " nsect: %d; sector size: %d; interlv: %d\n", 5021 nsect, sector_size, intrlv); 5022 SD_INFO(SD_LOG_COMMON, un, 5023 " nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n", 5024 nhead, ncyl, rpm, modesense_capacity); 5025 SD_INFO(SD_LOG_COMMON, un, 5026 "sd_get_physical_geometry: (cached)\n"); 5027 SD_INFO(SD_LOG_COMMON, un, 5028 " ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n", 5029 un->un_pgeom.g_ncyl, un->un_pgeom.g_acyl, 5030 un->un_pgeom.g_nhead, un->un_pgeom.g_nsect); 5031 SD_INFO(SD_LOG_COMMON, un, 5032 " lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n", 5033 un->un_pgeom.g_secsize, un->un_pgeom.g_capacity, 5034 un->un_pgeom.g_intrlv, un->un_pgeom.g_rpm); 5035 5036 mutex_exit(SD_MUTEX(un)); 5037 5038 page4_exit: 5039 kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH); 5040 page3_exit: 5041 kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH); 5042 } 5043 5044 5045 /* 5046 * Function: sd_get_virtual_geometry 5047 * 5048 * Description: Ask the controller to tell us about the target device. 5049 * 5050 * Arguments: un - pointer to softstate 5051 * capacity - disk capacity in #blocks 5052 * lbasize - disk block size in bytes 5053 * 5054 * Context: Kernel thread only 5055 */ 5056 5057 static void 5058 sd_get_virtual_geometry(struct sd_lun *un, int capacity, int lbasize) 5059 { 5060 struct geom_cache *lgeom_p = &un->un_lgeom; 5061 uint_t geombuf; 5062 int spc; 5063 5064 ASSERT(un != NULL); 5065 ASSERT(mutex_owned(SD_MUTEX(un))); 5066 5067 mutex_exit(SD_MUTEX(un)); 5068 5069 /* Set sector size, and total number of sectors */ 5070 (void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size", lbasize, 1); 5071 (void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1); 5072 5073 /* Let the HBA tell us its geometry */ 5074 geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1); 5075 5076 mutex_enter(SD_MUTEX(un)); 5077 5078 /* A value of -1 indicates an undefined "geometry" property */ 5079 if (geombuf == (-1)) { 5080 return; 5081 } 5082 5083 /* Initialize the logical geometry cache. */ 5084 lgeom_p->g_nhead = (geombuf >> 16) & 0xffff; 5085 lgeom_p->g_nsect = geombuf & 0xffff; 5086 lgeom_p->g_secsize = un->un_sys_blocksize; 5087 5088 spc = lgeom_p->g_nhead * lgeom_p->g_nsect; 5089 5090 /* 5091 * Note: The driver originally converted the capacity value from 5092 * target blocks to system blocks. However, the capacity value passed 5093 * to this routine is already in terms of system blocks (this scaling 5094 * is done when the READ CAPACITY command is issued and processed). 5095 * This 'error' may have gone undetected because the usage of g_ncyl 5096 * (which is based upon g_capacity) is very limited within the driver 5097 */ 5098 lgeom_p->g_capacity = capacity; 5099 5100 /* 5101 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The 5102 * hba may return zero values if the device has been removed. 5103 */ 5104 if (spc == 0) { 5105 lgeom_p->g_ncyl = 0; 5106 } else { 5107 lgeom_p->g_ncyl = lgeom_p->g_capacity / spc; 5108 } 5109 lgeom_p->g_acyl = 0; 5110 5111 SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n"); 5112 SD_INFO(SD_LOG_COMMON, un, 5113 " ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n", 5114 un->un_lgeom.g_ncyl, un->un_lgeom.g_acyl, 5115 un->un_lgeom.g_nhead, un->un_lgeom.g_nsect); 5116 SD_INFO(SD_LOG_COMMON, un, " lbasize: %d; capacity: %ld; " 5117 "intrlv: %d; rpm: %d\n", un->un_lgeom.g_secsize, 5118 un->un_lgeom.g_capacity, un->un_lgeom.g_intrlv, un->un_lgeom.g_rpm); 5119 } 5120 5121 5122 /* 5123 * Function: sd_update_block_info 5124 * 5125 * Description: Calculate a byte count to sector count bitshift value 5126 * from sector size. 5127 * 5128 * Arguments: un: unit struct. 5129 * lbasize: new target sector size 5130 * capacity: new target capacity, ie. block count 5131 * 5132 * Context: Kernel thread context 5133 */ 5134 5135 static void 5136 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity) 5137 { 5138 if (lbasize != 0) { 5139 un->un_tgt_blocksize = lbasize; 5140 un->un_f_tgt_blocksize_is_valid = TRUE; 5141 } 5142 5143 if (capacity != 0) { 5144 un->un_blockcount = capacity; 5145 un->un_f_blockcount_is_valid = TRUE; 5146 } 5147 } 5148 5149 5150 static void 5151 sd_swap_efi_gpt(efi_gpt_t *e) 5152 { 5153 _NOTE(ASSUMING_PROTECTED(*e)) 5154 e->efi_gpt_Signature = LE_64(e->efi_gpt_Signature); 5155 e->efi_gpt_Revision = LE_32(e->efi_gpt_Revision); 5156 e->efi_gpt_HeaderSize = LE_32(e->efi_gpt_HeaderSize); 5157 e->efi_gpt_HeaderCRC32 = LE_32(e->efi_gpt_HeaderCRC32); 5158 e->efi_gpt_MyLBA = LE_64(e->efi_gpt_MyLBA); 5159 e->efi_gpt_AlternateLBA = LE_64(e->efi_gpt_AlternateLBA); 5160 e->efi_gpt_FirstUsableLBA = LE_64(e->efi_gpt_FirstUsableLBA); 5161 e->efi_gpt_LastUsableLBA = LE_64(e->efi_gpt_LastUsableLBA); 5162 UUID_LE_CONVERT(e->efi_gpt_DiskGUID, e->efi_gpt_DiskGUID); 5163 e->efi_gpt_PartitionEntryLBA = LE_64(e->efi_gpt_PartitionEntryLBA); 5164 e->efi_gpt_NumberOfPartitionEntries = 5165 LE_32(e->efi_gpt_NumberOfPartitionEntries); 5166 e->efi_gpt_SizeOfPartitionEntry = 5167 LE_32(e->efi_gpt_SizeOfPartitionEntry); 5168 e->efi_gpt_PartitionEntryArrayCRC32 = 5169 LE_32(e->efi_gpt_PartitionEntryArrayCRC32); 5170 } 5171 5172 static void 5173 sd_swap_efi_gpe(int nparts, efi_gpe_t *p) 5174 { 5175 int i; 5176 5177 _NOTE(ASSUMING_PROTECTED(*p)) 5178 for (i = 0; i < nparts; i++) { 5179 UUID_LE_CONVERT(p[i].efi_gpe_PartitionTypeGUID, 5180 p[i].efi_gpe_PartitionTypeGUID); 5181 p[i].efi_gpe_StartingLBA = LE_64(p[i].efi_gpe_StartingLBA); 5182 p[i].efi_gpe_EndingLBA = LE_64(p[i].efi_gpe_EndingLBA); 5183 /* PartitionAttrs */ 5184 } 5185 } 5186 5187 static int 5188 sd_validate_efi(efi_gpt_t *labp) 5189 { 5190 if (labp->efi_gpt_Signature != EFI_SIGNATURE) 5191 return (EINVAL); 5192 /* at least 96 bytes in this version of the spec. */ 5193 if (sizeof (efi_gpt_t) - sizeof (labp->efi_gpt_Reserved2) > 5194 labp->efi_gpt_HeaderSize) 5195 return (EINVAL); 5196 /* this should be 128 bytes */ 5197 if (labp->efi_gpt_SizeOfPartitionEntry != sizeof (efi_gpe_t)) 5198 return (EINVAL); 5199 return (0); 5200 } 5201 5202 static int 5203 sd_use_efi(struct sd_lun *un, int path_flag) 5204 { 5205 int i; 5206 int rval = 0; 5207 efi_gpe_t *partitions; 5208 uchar_t *buf; 5209 uint_t lbasize; 5210 uint64_t cap; 5211 uint_t nparts; 5212 diskaddr_t gpe_lba; 5213 5214 ASSERT(mutex_owned(SD_MUTEX(un))); 5215 lbasize = un->un_tgt_blocksize; 5216 5217 mutex_exit(SD_MUTEX(un)); 5218 5219 buf = kmem_zalloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP); 5220 5221 if (un->un_tgt_blocksize != un->un_sys_blocksize) { 5222 rval = EINVAL; 5223 goto done_err; 5224 } 5225 5226 rval = sd_send_scsi_READ(un, buf, lbasize, 0, path_flag); 5227 if (rval) { 5228 goto done_err; 5229 } 5230 if (((struct dk_label *)buf)->dkl_magic == DKL_MAGIC) { 5231 /* not ours */ 5232 rval = ESRCH; 5233 goto done_err; 5234 } 5235 5236 rval = sd_send_scsi_READ(un, buf, lbasize, 1, path_flag); 5237 if (rval) { 5238 goto done_err; 5239 } 5240 sd_swap_efi_gpt((efi_gpt_t *)buf); 5241 5242 if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0) { 5243 /* 5244 * Couldn't read the primary, try the backup. Our 5245 * capacity at this point could be based on CHS, so 5246 * check what the device reports. 5247 */ 5248 rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize, 5249 path_flag); 5250 if (rval) { 5251 goto done_err; 5252 } 5253 5254 /* 5255 * The MMC standard allows READ CAPACITY to be 5256 * inaccurate by a bounded amount (in the interest of 5257 * response latency). As a result, failed READs are 5258 * commonplace (due to the reading of metadata and not 5259 * data). Depending on the per-Vendor/drive Sense data, 5260 * the failed READ can cause many (unnecessary) retries. 5261 */ 5262 if ((rval = sd_send_scsi_READ(un, buf, lbasize, 5263 cap - 1, (ISCD(un)) ? SD_PATH_DIRECT_PRIORITY : 5264 path_flag)) != 0) { 5265 goto done_err; 5266 } 5267 5268 sd_swap_efi_gpt((efi_gpt_t *)buf); 5269 if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0) 5270 goto done_err; 5271 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 5272 "primary label corrupt; using backup\n"); 5273 } 5274 5275 nparts = ((efi_gpt_t *)buf)->efi_gpt_NumberOfPartitionEntries; 5276 gpe_lba = ((efi_gpt_t *)buf)->efi_gpt_PartitionEntryLBA; 5277 5278 rval = sd_send_scsi_READ(un, buf, EFI_MIN_ARRAY_SIZE, gpe_lba, 5279 path_flag); 5280 if (rval) { 5281 goto done_err; 5282 } 5283 partitions = (efi_gpe_t *)buf; 5284 5285 if (nparts > MAXPART) { 5286 nparts = MAXPART; 5287 } 5288 sd_swap_efi_gpe(nparts, partitions); 5289 5290 mutex_enter(SD_MUTEX(un)); 5291 5292 /* Fill in partition table. */ 5293 for (i = 0; i < nparts; i++) { 5294 if (partitions->efi_gpe_StartingLBA != 0 || 5295 partitions->efi_gpe_EndingLBA != 0) { 5296 un->un_map[i].dkl_cylno = 5297 partitions->efi_gpe_StartingLBA; 5298 un->un_map[i].dkl_nblk = 5299 partitions->efi_gpe_EndingLBA - 5300 partitions->efi_gpe_StartingLBA + 1; 5301 un->un_offset[i] = 5302 partitions->efi_gpe_StartingLBA; 5303 } 5304 if (i == WD_NODE) { 5305 /* 5306 * minor number 7 corresponds to the whole disk 5307 */ 5308 un->un_map[i].dkl_cylno = 0; 5309 un->un_map[i].dkl_nblk = un->un_blockcount; 5310 un->un_offset[i] = 0; 5311 } 5312 partitions++; 5313 } 5314 un->un_solaris_offset = 0; 5315 un->un_solaris_size = cap; 5316 un->un_f_geometry_is_valid = TRUE; 5317 kmem_free(buf, EFI_MIN_ARRAY_SIZE); 5318 return (0); 5319 5320 done_err: 5321 kmem_free(buf, EFI_MIN_ARRAY_SIZE); 5322 mutex_enter(SD_MUTEX(un)); 5323 /* 5324 * if we didn't find something that could look like a VTOC 5325 * and the disk is over 1TB, we know there isn't a valid label. 5326 * Otherwise let sd_uselabel decide what to do. We only 5327 * want to invalidate this if we're certain the label isn't 5328 * valid because sd_prop_op will now fail, which in turn 5329 * causes things like opens and stats on the partition to fail. 5330 */ 5331 if ((un->un_blockcount > DK_MAX_BLOCKS) && (rval != ESRCH)) { 5332 un->un_f_geometry_is_valid = FALSE; 5333 } 5334 return (rval); 5335 } 5336 5337 5338 /* 5339 * Function: sd_uselabel 5340 * 5341 * Description: Validate the disk label and update the relevant data (geometry, 5342 * partition, vtoc, and capacity data) in the sd_lun struct. 5343 * Marks the geometry of the unit as being valid. 5344 * 5345 * Arguments: un: unit struct. 5346 * dk_label: disk label 5347 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 5348 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 5349 * to use the USCSI "direct" chain and bypass the normal 5350 * command waitq. 5351 * 5352 * Return Code: SD_LABEL_IS_VALID: Label read from disk is OK; geometry, 5353 * partition, vtoc, and capacity data are good. 5354 * 5355 * SD_LABEL_IS_INVALID: Magic number or checksum error in the 5356 * label; or computed capacity does not jibe with capacity 5357 * reported from the READ CAPACITY command. 5358 * 5359 * Context: Kernel thread only (can sleep). 5360 */ 5361 5362 static int 5363 sd_uselabel(struct sd_lun *un, struct dk_label *labp, int path_flag) 5364 { 5365 short *sp; 5366 short sum; 5367 short count; 5368 int label_error = SD_LABEL_IS_VALID; 5369 int i; 5370 int capacity; 5371 int part_end; 5372 int track_capacity; 5373 int err; 5374 #if defined(_SUNOS_VTOC_16) 5375 struct dkl_partition *vpartp; 5376 #endif 5377 ASSERT(un != NULL); 5378 ASSERT(mutex_owned(SD_MUTEX(un))); 5379 5380 /* Validate the magic number of the label. */ 5381 if (labp->dkl_magic != DKL_MAGIC) { 5382 #if defined(__sparc) 5383 if ((un->un_state == SD_STATE_NORMAL) && 5384 un->un_f_vtoc_errlog_supported) { 5385 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 5386 "Corrupt label; wrong magic number\n"); 5387 } 5388 #endif 5389 return (SD_LABEL_IS_INVALID); 5390 } 5391 5392 /* Validate the checksum of the label. */ 5393 sp = (short *)labp; 5394 sum = 0; 5395 count = sizeof (struct dk_label) / sizeof (short); 5396 while (count--) { 5397 sum ^= *sp++; 5398 } 5399 5400 if (sum != 0) { 5401 #if defined(_SUNOS_VTOC_16) 5402 if ((un->un_state == SD_STATE_NORMAL) && !ISCD(un)) { 5403 #elif defined(_SUNOS_VTOC_8) 5404 if ((un->un_state == SD_STATE_NORMAL) && 5405 un->un_f_vtoc_errlog_supported) { 5406 #endif 5407 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 5408 "Corrupt label - label checksum failed\n"); 5409 } 5410 return (SD_LABEL_IS_INVALID); 5411 } 5412 5413 5414 /* 5415 * Fill in geometry structure with data from label. 5416 */ 5417 bzero(&un->un_g, sizeof (struct dk_geom)); 5418 un->un_g.dkg_ncyl = labp->dkl_ncyl; 5419 un->un_g.dkg_acyl = labp->dkl_acyl; 5420 un->un_g.dkg_bcyl = 0; 5421 un->un_g.dkg_nhead = labp->dkl_nhead; 5422 un->un_g.dkg_nsect = labp->dkl_nsect; 5423 un->un_g.dkg_intrlv = labp->dkl_intrlv; 5424 5425 #if defined(_SUNOS_VTOC_8) 5426 un->un_g.dkg_gap1 = labp->dkl_gap1; 5427 un->un_g.dkg_gap2 = labp->dkl_gap2; 5428 un->un_g.dkg_bhead = labp->dkl_bhead; 5429 #endif 5430 #if defined(_SUNOS_VTOC_16) 5431 un->un_dkg_skew = labp->dkl_skew; 5432 #endif 5433 5434 #if defined(__i386) || defined(__amd64) 5435 un->un_g.dkg_apc = labp->dkl_apc; 5436 #endif 5437 5438 /* 5439 * Currently we rely on the values in the label being accurate. If 5440 * dlk_rpm or dlk_pcly are zero in the label, use a default value. 5441 * 5442 * Note: In the future a MODE SENSE may be used to retrieve this data, 5443 * although this command is optional in SCSI-2. 5444 */ 5445 un->un_g.dkg_rpm = (labp->dkl_rpm != 0) ? labp->dkl_rpm : 3600; 5446 un->un_g.dkg_pcyl = (labp->dkl_pcyl != 0) ? labp->dkl_pcyl : 5447 (un->un_g.dkg_ncyl + un->un_g.dkg_acyl); 5448 5449 /* 5450 * The Read and Write reinstruct values may not be valid 5451 * for older disks. 5452 */ 5453 un->un_g.dkg_read_reinstruct = labp->dkl_read_reinstruct; 5454 un->un_g.dkg_write_reinstruct = labp->dkl_write_reinstruct; 5455 5456 /* Fill in partition table. */ 5457 #if defined(_SUNOS_VTOC_8) 5458 for (i = 0; i < NDKMAP; i++) { 5459 un->un_map[i].dkl_cylno = labp->dkl_map[i].dkl_cylno; 5460 un->un_map[i].dkl_nblk = labp->dkl_map[i].dkl_nblk; 5461 } 5462 #endif 5463 #if defined(_SUNOS_VTOC_16) 5464 vpartp = labp->dkl_vtoc.v_part; 5465 track_capacity = labp->dkl_nhead * labp->dkl_nsect; 5466 5467 /* Prevent divide by zero */ 5468 if (track_capacity == 0) { 5469 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 5470 "Corrupt label - zero nhead or nsect value\n"); 5471 5472 return (SD_LABEL_IS_INVALID); 5473 } 5474 5475 for (i = 0; i < NDKMAP; i++, vpartp++) { 5476 un->un_map[i].dkl_cylno = vpartp->p_start / track_capacity; 5477 un->un_map[i].dkl_nblk = vpartp->p_size; 5478 } 5479 #endif 5480 5481 /* Fill in VTOC Structure. */ 5482 bcopy(&labp->dkl_vtoc, &un->un_vtoc, sizeof (struct dk_vtoc)); 5483 #if defined(_SUNOS_VTOC_8) 5484 /* 5485 * The 8-slice vtoc does not include the ascii label; save it into 5486 * the device's soft state structure here. 5487 */ 5488 bcopy(labp->dkl_asciilabel, un->un_asciilabel, LEN_DKL_ASCII); 5489 #endif 5490 5491 /* Now look for a valid capacity. */ 5492 track_capacity = (un->un_g.dkg_nhead * un->un_g.dkg_nsect); 5493 capacity = (un->un_g.dkg_ncyl * track_capacity); 5494 5495 if (un->un_g.dkg_acyl) { 5496 #if defined(__i386) || defined(__amd64) 5497 /* we may have > 1 alts cylinder */ 5498 capacity += (track_capacity * un->un_g.dkg_acyl); 5499 #else 5500 capacity += track_capacity; 5501 #endif 5502 } 5503 5504 /* 5505 * Force check here to ensure the computed capacity is valid. 5506 * If capacity is zero, it indicates an invalid label and 5507 * we should abort updating the relevant data then. 5508 */ 5509 if (capacity == 0) { 5510 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 5511 "Corrupt label - no valid capacity could be retrieved\n"); 5512 5513 return (SD_LABEL_IS_INVALID); 5514 } 5515 5516 /* Mark the geometry as valid. */ 5517 un->un_f_geometry_is_valid = TRUE; 5518 5519 /* 5520 * At this point, un->un_blockcount should contain valid data from 5521 * the READ CAPACITY command. 5522 */ 5523 if (un->un_f_blockcount_is_valid != TRUE) { 5524 /* 5525 * We have a situation where the target didn't give us a good 5526 * READ CAPACITY value, yet there appears to be a valid label. 5527 * In this case, we'll fake the capacity. 5528 */ 5529 un->un_blockcount = capacity; 5530 un->un_f_blockcount_is_valid = TRUE; 5531 goto done; 5532 } 5533 5534 5535 if ((capacity <= un->un_blockcount) || 5536 (un->un_state != SD_STATE_NORMAL)) { 5537 #if defined(_SUNOS_VTOC_8) 5538 /* 5539 * We can't let this happen on drives that are subdivided 5540 * into logical disks (i.e., that have an fdisk table). 5541 * The un_blockcount field should always hold the full media 5542 * size in sectors, period. This code would overwrite 5543 * un_blockcount with the size of the Solaris fdisk partition. 5544 */ 5545 SD_ERROR(SD_LOG_COMMON, un, 5546 "sd_uselabel: Label %d blocks; Drive %d blocks\n", 5547 capacity, un->un_blockcount); 5548 un->un_blockcount = capacity; 5549 un->un_f_blockcount_is_valid = TRUE; 5550 #endif /* defined(_SUNOS_VTOC_8) */ 5551 goto done; 5552 } 5553 5554 if (ISCD(un)) { 5555 /* For CDROMs, we trust that the data in the label is OK. */ 5556 #if defined(_SUNOS_VTOC_8) 5557 for (i = 0; i < NDKMAP; i++) { 5558 part_end = labp->dkl_nhead * labp->dkl_nsect * 5559 labp->dkl_map[i].dkl_cylno + 5560 labp->dkl_map[i].dkl_nblk - 1; 5561 5562 if ((labp->dkl_map[i].dkl_nblk) && 5563 (part_end > un->un_blockcount)) { 5564 un->un_f_geometry_is_valid = FALSE; 5565 break; 5566 } 5567 } 5568 #endif 5569 #if defined(_SUNOS_VTOC_16) 5570 vpartp = &(labp->dkl_vtoc.v_part[0]); 5571 for (i = 0; i < NDKMAP; i++, vpartp++) { 5572 part_end = vpartp->p_start + vpartp->p_size; 5573 if ((vpartp->p_size > 0) && 5574 (part_end > un->un_blockcount)) { 5575 un->un_f_geometry_is_valid = FALSE; 5576 break; 5577 } 5578 } 5579 #endif 5580 } else { 5581 uint64_t t_capacity; 5582 uint32_t t_lbasize; 5583 5584 mutex_exit(SD_MUTEX(un)); 5585 err = sd_send_scsi_READ_CAPACITY(un, &t_capacity, &t_lbasize, 5586 path_flag); 5587 ASSERT(t_capacity <= DK_MAX_BLOCKS); 5588 mutex_enter(SD_MUTEX(un)); 5589 5590 if (err == 0) { 5591 sd_update_block_info(un, t_lbasize, t_capacity); 5592 } 5593 5594 if (capacity > un->un_blockcount) { 5595 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 5596 "Corrupt label - bad geometry\n"); 5597 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 5598 "Label says %u blocks; Drive says %llu blocks\n", 5599 capacity, (unsigned long long)un->un_blockcount); 5600 un->un_f_geometry_is_valid = FALSE; 5601 label_error = SD_LABEL_IS_INVALID; 5602 } 5603 } 5604 5605 done: 5606 5607 SD_INFO(SD_LOG_COMMON, un, "sd_uselabel: (label geometry)\n"); 5608 SD_INFO(SD_LOG_COMMON, un, 5609 " ncyl: %d; acyl: %d; nhead: %d; nsect: %d\n", 5610 un->un_g.dkg_ncyl, un->un_g.dkg_acyl, 5611 un->un_g.dkg_nhead, un->un_g.dkg_nsect); 5612 SD_INFO(SD_LOG_COMMON, un, 5613 " lbasize: %d; capacity: %d; intrlv: %d; rpm: %d\n", 5614 un->un_tgt_blocksize, un->un_blockcount, 5615 un->un_g.dkg_intrlv, un->un_g.dkg_rpm); 5616 SD_INFO(SD_LOG_COMMON, un, " wrt_reinstr: %d; rd_reinstr: %d\n", 5617 un->un_g.dkg_write_reinstruct, un->un_g.dkg_read_reinstruct); 5618 5619 ASSERT(mutex_owned(SD_MUTEX(un))); 5620 5621 return (label_error); 5622 } 5623 5624 5625 /* 5626 * Function: sd_build_default_label 5627 * 5628 * Description: Generate a default label for those devices that do not have 5629 * one, e.g., new media, removable cartridges, etc.. 5630 * 5631 * Context: Kernel thread only 5632 */ 5633 5634 static void 5635 sd_build_default_label(struct sd_lun *un) 5636 { 5637 #if defined(_SUNOS_VTOC_16) 5638 uint_t phys_spc; 5639 uint_t disksize; 5640 struct dk_geom un_g; 5641 #endif 5642 5643 ASSERT(un != NULL); 5644 ASSERT(mutex_owned(SD_MUTEX(un))); 5645 5646 #if defined(_SUNOS_VTOC_8) 5647 /* 5648 * Note: This is a legacy check for non-removable devices on VTOC_8 5649 * only. This may be a valid check for VTOC_16 as well. 5650 * Once we understand why there is this difference between SPARC and 5651 * x86 platform, we could remove this legacy check. 5652 */ 5653 ASSERT(un->un_f_default_vtoc_supported); 5654 #endif 5655 5656 bzero(&un->un_g, sizeof (struct dk_geom)); 5657 bzero(&un->un_vtoc, sizeof (struct dk_vtoc)); 5658 bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map))); 5659 5660 #if defined(_SUNOS_VTOC_8) 5661 5662 /* 5663 * It's a REMOVABLE media, therefore no label (on sparc, anyway). 5664 * But it is still necessary to set up various geometry information, 5665 * and we are doing this here. 5666 */ 5667 5668 /* 5669 * For the rpm, we use the minimum for the disk. For the head, cyl, 5670 * and number of sector per track, if the capacity <= 1GB, head = 64, 5671 * sect = 32. else head = 255, sect 63 Note: the capacity should be 5672 * equal to C*H*S values. This will cause some truncation of size due 5673 * to round off errors. For CD-ROMs, this truncation can have adverse 5674 * side effects, so returning ncyl and nhead as 1. The nsect will 5675 * overflow for most of CD-ROMs as nsect is of type ushort. (4190569) 5676 */ 5677 if (ISCD(un)) { 5678 /* 5679 * Preserve the old behavior for non-writable 5680 * medias. Since dkg_nsect is a ushort, it 5681 * will lose bits as cdroms have more than 5682 * 65536 sectors. So if we recalculate 5683 * capacity, it will become much shorter. 5684 * But the dkg_* information is not 5685 * used for CDROMs so it is OK. But for 5686 * Writable CDs we need this information 5687 * to be valid (for newfs say). So we 5688 * make nsect and nhead > 1 that way 5689 * nsect can still stay within ushort limit 5690 * without losing any bits. 5691 */ 5692 if (un->un_f_mmc_writable_media == TRUE) { 5693 un->un_g.dkg_nhead = 64; 5694 un->un_g.dkg_nsect = 32; 5695 un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32); 5696 un->un_blockcount = un->un_g.dkg_ncyl * 5697 un->un_g.dkg_nhead * un->un_g.dkg_nsect; 5698 } else { 5699 un->un_g.dkg_ncyl = 1; 5700 un->un_g.dkg_nhead = 1; 5701 un->un_g.dkg_nsect = un->un_blockcount; 5702 } 5703 } else { 5704 if (un->un_blockcount <= 0x1000) { 5705 /* unlabeled SCSI floppy device */ 5706 un->un_g.dkg_nhead = 2; 5707 un->un_g.dkg_ncyl = 80; 5708 un->un_g.dkg_nsect = un->un_blockcount / (2 * 80); 5709 } else if (un->un_blockcount <= 0x200000) { 5710 un->un_g.dkg_nhead = 64; 5711 un->un_g.dkg_nsect = 32; 5712 un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32); 5713 } else { 5714 un->un_g.dkg_nhead = 255; 5715 un->un_g.dkg_nsect = 63; 5716 un->un_g.dkg_ncyl = un->un_blockcount / (255 * 63); 5717 } 5718 un->un_blockcount = 5719 un->un_g.dkg_ncyl * un->un_g.dkg_nhead * un->un_g.dkg_nsect; 5720 } 5721 5722 un->un_g.dkg_acyl = 0; 5723 un->un_g.dkg_bcyl = 0; 5724 un->un_g.dkg_rpm = 200; 5725 un->un_asciilabel[0] = '\0'; 5726 un->un_g.dkg_pcyl = un->un_g.dkg_ncyl; 5727 5728 un->un_map[0].dkl_cylno = 0; 5729 un->un_map[0].dkl_nblk = un->un_blockcount; 5730 un->un_map[2].dkl_cylno = 0; 5731 un->un_map[2].dkl_nblk = un->un_blockcount; 5732 5733 #elif defined(_SUNOS_VTOC_16) 5734 5735 if (un->un_solaris_size == 0) { 5736 /* 5737 * Got fdisk table but no solaris entry therefore 5738 * don't create a default label 5739 */ 5740 un->un_f_geometry_is_valid = TRUE; 5741 return; 5742 } 5743 5744 /* 5745 * For CDs we continue to use the physical geometry to calculate 5746 * number of cylinders. All other devices must convert the 5747 * physical geometry (geom_cache) to values that will fit 5748 * in a dk_geom structure. 5749 */ 5750 if (ISCD(un)) { 5751 phys_spc = un->un_pgeom.g_nhead * un->un_pgeom.g_nsect; 5752 } else { 5753 /* Convert physical geometry to disk geometry */ 5754 bzero(&un_g, sizeof (struct dk_geom)); 5755 sd_convert_geometry(un->un_blockcount, &un_g); 5756 bcopy(&un_g, &un->un_g, sizeof (un->un_g)); 5757 phys_spc = un->un_g.dkg_nhead * un->un_g.dkg_nsect; 5758 } 5759 5760 ASSERT(phys_spc != 0); 5761 un->un_g.dkg_pcyl = un->un_solaris_size / phys_spc; 5762 un->un_g.dkg_acyl = DK_ACYL; 5763 un->un_g.dkg_ncyl = un->un_g.dkg_pcyl - DK_ACYL; 5764 disksize = un->un_g.dkg_ncyl * phys_spc; 5765 5766 if (ISCD(un)) { 5767 /* 5768 * CD's don't use the "heads * sectors * cyls"-type of 5769 * geometry, but instead use the entire capacity of the media. 5770 */ 5771 disksize = un->un_solaris_size; 5772 un->un_g.dkg_nhead = 1; 5773 un->un_g.dkg_nsect = 1; 5774 un->un_g.dkg_rpm = 5775 (un->un_pgeom.g_rpm == 0) ? 200 : un->un_pgeom.g_rpm; 5776 5777 un->un_vtoc.v_part[0].p_start = 0; 5778 un->un_vtoc.v_part[0].p_size = disksize; 5779 un->un_vtoc.v_part[0].p_tag = V_BACKUP; 5780 un->un_vtoc.v_part[0].p_flag = V_UNMNT; 5781 5782 un->un_map[0].dkl_cylno = 0; 5783 un->un_map[0].dkl_nblk = disksize; 5784 un->un_offset[0] = 0; 5785 5786 } else { 5787 /* 5788 * Hard disks and removable media cartridges 5789 */ 5790 un->un_g.dkg_rpm = 5791 (un->un_pgeom.g_rpm == 0) ? 3600: un->un_pgeom.g_rpm; 5792 un->un_vtoc.v_sectorsz = un->un_sys_blocksize; 5793 5794 /* Add boot slice */ 5795 un->un_vtoc.v_part[8].p_start = 0; 5796 un->un_vtoc.v_part[8].p_size = phys_spc; 5797 un->un_vtoc.v_part[8].p_tag = V_BOOT; 5798 un->un_vtoc.v_part[8].p_flag = V_UNMNT; 5799 5800 un->un_map[8].dkl_cylno = 0; 5801 un->un_map[8].dkl_nblk = phys_spc; 5802 un->un_offset[8] = 0; 5803 } 5804 5805 un->un_g.dkg_apc = 0; 5806 un->un_vtoc.v_nparts = V_NUMPAR; 5807 5808 /* Add backup slice */ 5809 un->un_vtoc.v_part[2].p_start = 0; 5810 un->un_vtoc.v_part[2].p_size = disksize; 5811 un->un_vtoc.v_part[2].p_tag = V_BACKUP; 5812 un->un_vtoc.v_part[2].p_flag = V_UNMNT; 5813 5814 un->un_map[2].dkl_cylno = 0; 5815 un->un_map[2].dkl_nblk = disksize; 5816 un->un_offset[2] = 0; 5817 5818 (void) sprintf(un->un_vtoc.v_asciilabel, "DEFAULT cyl %d alt %d" 5819 " hd %d sec %d", un->un_g.dkg_ncyl, un->un_g.dkg_acyl, 5820 un->un_g.dkg_nhead, un->un_g.dkg_nsect); 5821 5822 #else 5823 #error "No VTOC format defined." 5824 #endif 5825 5826 un->un_g.dkg_read_reinstruct = 0; 5827 un->un_g.dkg_write_reinstruct = 0; 5828 5829 un->un_g.dkg_intrlv = 1; 5830 5831 un->un_vtoc.v_version = V_VERSION; 5832 un->un_vtoc.v_sanity = VTOC_SANE; 5833 5834 un->un_f_geometry_is_valid = TRUE; 5835 5836 SD_INFO(SD_LOG_COMMON, un, 5837 "sd_build_default_label: Default label created: " 5838 "cyl: %d\tacyl: %d\tnhead: %d\tnsect: %d\tcap: %d\n", 5839 un->un_g.dkg_ncyl, un->un_g.dkg_acyl, un->un_g.dkg_nhead, 5840 un->un_g.dkg_nsect, un->un_blockcount); 5841 } 5842 5843 5844 #if defined(_FIRMWARE_NEEDS_FDISK) 5845 /* 5846 * Max CHS values, as they are encoded into bytes, for 1022/254/63 5847 */ 5848 #define LBA_MAX_SECT (63 | ((1022 & 0x300) >> 2)) 5849 #define LBA_MAX_CYL (1022 & 0xFF) 5850 #define LBA_MAX_HEAD (254) 5851 5852 5853 /* 5854 * Function: sd_has_max_chs_vals 5855 * 5856 * Description: Return TRUE if Cylinder-Head-Sector values are all at maximum. 5857 * 5858 * Arguments: fdp - ptr to CHS info 5859 * 5860 * Return Code: True or false 5861 * 5862 * Context: Any. 5863 */ 5864 5865 static int 5866 sd_has_max_chs_vals(struct ipart *fdp) 5867 { 5868 return ((fdp->begcyl == LBA_MAX_CYL) && 5869 (fdp->beghead == LBA_MAX_HEAD) && 5870 (fdp->begsect == LBA_MAX_SECT) && 5871 (fdp->endcyl == LBA_MAX_CYL) && 5872 (fdp->endhead == LBA_MAX_HEAD) && 5873 (fdp->endsect == LBA_MAX_SECT)); 5874 } 5875 #endif 5876 5877 5878 /* 5879 * Function: sd_inq_fill 5880 * 5881 * Description: Print a piece of inquiry data, cleaned up for non-printable 5882 * characters and stopping at the first space character after 5883 * the beginning of the passed string; 5884 * 5885 * Arguments: p - source string 5886 * l - maximum length to copy 5887 * s - destination string 5888 * 5889 * Context: Any. 5890 */ 5891 5892 static void 5893 sd_inq_fill(char *p, int l, char *s) 5894 { 5895 unsigned i = 0; 5896 char c; 5897 5898 while (i++ < l) { 5899 if ((c = *p++) < ' ' || c >= 0x7F) { 5900 c = '*'; 5901 } else if (i != 1 && c == ' ') { 5902 break; 5903 } 5904 *s++ = c; 5905 } 5906 *s++ = 0; 5907 } 5908 5909 5910 /* 5911 * Function: sd_register_devid 5912 * 5913 * Description: This routine will obtain the device id information from the 5914 * target, obtain the serial number, and register the device 5915 * id with the ddi framework. 5916 * 5917 * Arguments: devi - the system's dev_info_t for the device. 5918 * un - driver soft state (unit) structure 5919 * reservation_flag - indicates if a reservation conflict 5920 * occurred during attach 5921 * 5922 * Context: Kernel Thread 5923 */ 5924 static void 5925 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag) 5926 { 5927 int rval = 0; 5928 uchar_t *inq80 = NULL; 5929 size_t inq80_len = MAX_INQUIRY_SIZE; 5930 size_t inq80_resid = 0; 5931 uchar_t *inq83 = NULL; 5932 size_t inq83_len = MAX_INQUIRY_SIZE; 5933 size_t inq83_resid = 0; 5934 5935 ASSERT(un != NULL); 5936 ASSERT(mutex_owned(SD_MUTEX(un))); 5937 ASSERT((SD_DEVINFO(un)) == devi); 5938 5939 /* 5940 * This is the case of antiquated Sun disk drives that have the 5941 * FAB_DEVID property set in the disk_table. These drives 5942 * manage the devid's by storing them in last 2 available sectors 5943 * on the drive and have them fabricated by the ddi layer by calling 5944 * ddi_devid_init and passing the DEVID_FAB flag. 5945 */ 5946 if (un->un_f_opt_fab_devid == TRUE) { 5947 /* 5948 * Depending on EINVAL isn't reliable, since a reserved disk 5949 * may result in invalid geometry, so check to make sure a 5950 * reservation conflict did not occur during attach. 5951 */ 5952 if ((sd_get_devid(un) == EINVAL) && 5953 (reservation_flag != SD_TARGET_IS_RESERVED)) { 5954 /* 5955 * The devid is invalid AND there is no reservation 5956 * conflict. Fabricate a new devid. 5957 */ 5958 (void) sd_create_devid(un); 5959 } 5960 5961 /* Register the devid if it exists */ 5962 if (un->un_devid != NULL) { 5963 (void) ddi_devid_register(SD_DEVINFO(un), 5964 un->un_devid); 5965 SD_INFO(SD_LOG_ATTACH_DETACH, un, 5966 "sd_register_devid: Devid Fabricated\n"); 5967 } 5968 return; 5969 } 5970 5971 /* 5972 * We check the availibility of the World Wide Name (0x83) and Unit 5973 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using 5974 * un_vpd_page_mask from them, we decide which way to get the WWN. If 5975 * 0x83 is availible, that is the best choice. Our next choice is 5976 * 0x80. If neither are availible, we munge the devid from the device 5977 * vid/pid/serial # for Sun qualified disks, or use the ddi framework 5978 * to fabricate a devid for non-Sun qualified disks. 5979 */ 5980 if (sd_check_vpd_page_support(un) == 0) { 5981 /* collect page 80 data if available */ 5982 if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) { 5983 5984 mutex_exit(SD_MUTEX(un)); 5985 inq80 = kmem_zalloc(inq80_len, KM_SLEEP); 5986 rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len, 5987 0x01, 0x80, &inq80_resid); 5988 5989 if (rval != 0) { 5990 kmem_free(inq80, inq80_len); 5991 inq80 = NULL; 5992 inq80_len = 0; 5993 } 5994 mutex_enter(SD_MUTEX(un)); 5995 } 5996 5997 /* collect page 83 data if available */ 5998 if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) { 5999 mutex_exit(SD_MUTEX(un)); 6000 inq83 = kmem_zalloc(inq83_len, KM_SLEEP); 6001 rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len, 6002 0x01, 0x83, &inq83_resid); 6003 6004 if (rval != 0) { 6005 kmem_free(inq83, inq83_len); 6006 inq83 = NULL; 6007 inq83_len = 0; 6008 } 6009 mutex_enter(SD_MUTEX(un)); 6010 } 6011 } 6012 6013 /* encode best devid possible based on data available */ 6014 if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST, 6015 (char *)ddi_driver_name(SD_DEVINFO(un)), 6016 (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)), 6017 inq80, inq80_len - inq80_resid, inq83, inq83_len - 6018 inq83_resid, &un->un_devid) == DDI_SUCCESS) { 6019 6020 /* devid successfully encoded, register devid */ 6021 (void) ddi_devid_register(SD_DEVINFO(un), un->un_devid); 6022 6023 } else { 6024 /* 6025 * Unable to encode a devid based on data available. 6026 * This is not a Sun qualified disk. Older Sun disk 6027 * drives that have the SD_FAB_DEVID property 6028 * set in the disk_table and non Sun qualified 6029 * disks are treated in the same manner. These 6030 * drives manage the devid's by storing them in 6031 * last 2 available sectors on the drive and 6032 * have them fabricated by the ddi layer by 6033 * calling ddi_devid_init and passing the 6034 * DEVID_FAB flag. 6035 * Create a fabricate devid only if there's no 6036 * fabricate devid existed. 6037 */ 6038 if (sd_get_devid(un) == EINVAL) { 6039 (void) sd_create_devid(un); 6040 un->un_f_opt_fab_devid = TRUE; 6041 } 6042 6043 /* Register the devid if it exists */ 6044 if (un->un_devid != NULL) { 6045 (void) ddi_devid_register(SD_DEVINFO(un), 6046 un->un_devid); 6047 SD_INFO(SD_LOG_ATTACH_DETACH, un, 6048 "sd_register_devid: devid fabricated using " 6049 "ddi framework\n"); 6050 } 6051 } 6052 6053 /* clean up resources */ 6054 if (inq80 != NULL) { 6055 kmem_free(inq80, inq80_len); 6056 } 6057 if (inq83 != NULL) { 6058 kmem_free(inq83, inq83_len); 6059 } 6060 } 6061 6062 static daddr_t 6063 sd_get_devid_block(struct sd_lun *un) 6064 { 6065 daddr_t spc, blk, head, cyl; 6066 6067 if (un->un_blockcount <= DK_MAX_BLOCKS) { 6068 /* this geometry doesn't allow us to write a devid */ 6069 if (un->un_g.dkg_acyl < 2) { 6070 return (-1); 6071 } 6072 6073 /* 6074 * Subtract 2 guarantees that the next to last cylinder 6075 * is used 6076 */ 6077 cyl = un->un_g.dkg_ncyl + un->un_g.dkg_acyl - 2; 6078 spc = un->un_g.dkg_nhead * un->un_g.dkg_nsect; 6079 head = un->un_g.dkg_nhead - 1; 6080 blk = (cyl * (spc - un->un_g.dkg_apc)) + 6081 (head * un->un_g.dkg_nsect) + 1; 6082 } else { 6083 if (un->un_reserved != -1) { 6084 blk = un->un_map[un->un_reserved].dkl_cylno + 1; 6085 } else { 6086 return (-1); 6087 } 6088 } 6089 return (blk); 6090 } 6091 6092 /* 6093 * Function: sd_get_devid 6094 * 6095 * Description: This routine will return 0 if a valid device id has been 6096 * obtained from the target and stored in the soft state. If a 6097 * valid device id has not been previously read and stored, a 6098 * read attempt will be made. 6099 * 6100 * Arguments: un - driver soft state (unit) structure 6101 * 6102 * Return Code: 0 if we successfully get the device id 6103 * 6104 * Context: Kernel Thread 6105 */ 6106 6107 static int 6108 sd_get_devid(struct sd_lun *un) 6109 { 6110 struct dk_devid *dkdevid; 6111 ddi_devid_t tmpid; 6112 uint_t *ip; 6113 size_t sz; 6114 daddr_t blk; 6115 int status; 6116 int chksum; 6117 int i; 6118 size_t buffer_size; 6119 6120 ASSERT(un != NULL); 6121 ASSERT(mutex_owned(SD_MUTEX(un))); 6122 6123 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n", 6124 un); 6125 6126 if (un->un_devid != NULL) { 6127 return (0); 6128 } 6129 6130 blk = sd_get_devid_block(un); 6131 if (blk < 0) 6132 return (EINVAL); 6133 6134 /* 6135 * Read and verify device id, stored in the reserved cylinders at the 6136 * end of the disk. Backup label is on the odd sectors of the last 6137 * track of the last cylinder. Device id will be on track of the next 6138 * to last cylinder. 6139 */ 6140 buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid)); 6141 mutex_exit(SD_MUTEX(un)); 6142 dkdevid = kmem_alloc(buffer_size, KM_SLEEP); 6143 status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk, 6144 SD_PATH_DIRECT); 6145 if (status != 0) { 6146 goto error; 6147 } 6148 6149 /* Validate the revision */ 6150 if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) || 6151 (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) { 6152 status = EINVAL; 6153 goto error; 6154 } 6155 6156 /* Calculate the checksum */ 6157 chksum = 0; 6158 ip = (uint_t *)dkdevid; 6159 for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int)); 6160 i++) { 6161 chksum ^= ip[i]; 6162 } 6163 6164 /* Compare the checksums */ 6165 if (DKD_GETCHKSUM(dkdevid) != chksum) { 6166 status = EINVAL; 6167 goto error; 6168 } 6169 6170 /* Validate the device id */ 6171 if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) { 6172 status = EINVAL; 6173 goto error; 6174 } 6175 6176 /* 6177 * Store the device id in the driver soft state 6178 */ 6179 sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid); 6180 tmpid = kmem_alloc(sz, KM_SLEEP); 6181 6182 mutex_enter(SD_MUTEX(un)); 6183 6184 un->un_devid = tmpid; 6185 bcopy(&dkdevid->dkd_devid, un->un_devid, sz); 6186 6187 kmem_free(dkdevid, buffer_size); 6188 6189 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un); 6190 6191 return (status); 6192 error: 6193 mutex_enter(SD_MUTEX(un)); 6194 kmem_free(dkdevid, buffer_size); 6195 return (status); 6196 } 6197 6198 6199 /* 6200 * Function: sd_create_devid 6201 * 6202 * Description: This routine will fabricate the device id and write it 6203 * to the disk. 6204 * 6205 * Arguments: un - driver soft state (unit) structure 6206 * 6207 * Return Code: value of the fabricated device id 6208 * 6209 * Context: Kernel Thread 6210 */ 6211 6212 static ddi_devid_t 6213 sd_create_devid(struct sd_lun *un) 6214 { 6215 ASSERT(un != NULL); 6216 6217 /* Fabricate the devid */ 6218 if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid) 6219 == DDI_FAILURE) { 6220 return (NULL); 6221 } 6222 6223 /* Write the devid to disk */ 6224 if (sd_write_deviceid(un) != 0) { 6225 ddi_devid_free(un->un_devid); 6226 un->un_devid = NULL; 6227 } 6228 6229 return (un->un_devid); 6230 } 6231 6232 6233 /* 6234 * Function: sd_write_deviceid 6235 * 6236 * Description: This routine will write the device id to the disk 6237 * reserved sector. 6238 * 6239 * Arguments: un - driver soft state (unit) structure 6240 * 6241 * Return Code: EINVAL 6242 * value returned by sd_send_scsi_cmd 6243 * 6244 * Context: Kernel Thread 6245 */ 6246 6247 static int 6248 sd_write_deviceid(struct sd_lun *un) 6249 { 6250 struct dk_devid *dkdevid; 6251 daddr_t blk; 6252 uint_t *ip, chksum; 6253 int status; 6254 int i; 6255 6256 ASSERT(mutex_owned(SD_MUTEX(un))); 6257 6258 blk = sd_get_devid_block(un); 6259 if (blk < 0) 6260 return (-1); 6261 mutex_exit(SD_MUTEX(un)); 6262 6263 /* Allocate the buffer */ 6264 dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP); 6265 6266 /* Fill in the revision */ 6267 dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB; 6268 dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB; 6269 6270 /* Copy in the device id */ 6271 mutex_enter(SD_MUTEX(un)); 6272 bcopy(un->un_devid, &dkdevid->dkd_devid, 6273 ddi_devid_sizeof(un->un_devid)); 6274 mutex_exit(SD_MUTEX(un)); 6275 6276 /* Calculate the checksum */ 6277 chksum = 0; 6278 ip = (uint_t *)dkdevid; 6279 for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int)); 6280 i++) { 6281 chksum ^= ip[i]; 6282 } 6283 6284 /* Fill-in checksum */ 6285 DKD_FORMCHKSUM(chksum, dkdevid); 6286 6287 /* Write the reserved sector */ 6288 status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk, 6289 SD_PATH_DIRECT); 6290 6291 kmem_free(dkdevid, un->un_sys_blocksize); 6292 6293 mutex_enter(SD_MUTEX(un)); 6294 return (status); 6295 } 6296 6297 6298 /* 6299 * Function: sd_check_vpd_page_support 6300 * 6301 * Description: This routine sends an inquiry command with the EVPD bit set and 6302 * a page code of 0x00 to the device. It is used to determine which 6303 * vital product pages are availible to find the devid. We are 6304 * looking for pages 0x83 or 0x80. If we return a negative 1, the 6305 * device does not support that command. 6306 * 6307 * Arguments: un - driver soft state (unit) structure 6308 * 6309 * Return Code: 0 - success 6310 * 1 - check condition 6311 * 6312 * Context: This routine can sleep. 6313 */ 6314 6315 static int 6316 sd_check_vpd_page_support(struct sd_lun *un) 6317 { 6318 uchar_t *page_list = NULL; 6319 uchar_t page_length = 0xff; /* Use max possible length */ 6320 uchar_t evpd = 0x01; /* Set the EVPD bit */ 6321 uchar_t page_code = 0x00; /* Supported VPD Pages */ 6322 int rval = 0; 6323 int counter; 6324 6325 ASSERT(un != NULL); 6326 ASSERT(mutex_owned(SD_MUTEX(un))); 6327 6328 mutex_exit(SD_MUTEX(un)); 6329 6330 /* 6331 * We'll set the page length to the maximum to save figuring it out 6332 * with an additional call. 6333 */ 6334 page_list = kmem_zalloc(page_length, KM_SLEEP); 6335 6336 rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd, 6337 page_code, NULL); 6338 6339 mutex_enter(SD_MUTEX(un)); 6340 6341 /* 6342 * Now we must validate that the device accepted the command, as some 6343 * drives do not support it. If the drive does support it, we will 6344 * return 0, and the supported pages will be in un_vpd_page_mask. If 6345 * not, we return -1. 6346 */ 6347 if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) { 6348 /* Loop to find one of the 2 pages we need */ 6349 counter = 4; /* Supported pages start at byte 4, with 0x00 */ 6350 6351 /* 6352 * Pages are returned in ascending order, and 0x83 is what we 6353 * are hoping for. 6354 */ 6355 while ((page_list[counter] <= 0x83) && 6356 (counter <= (page_list[VPD_PAGE_LENGTH] + 6357 VPD_HEAD_OFFSET))) { 6358 /* 6359 * Add 3 because page_list[3] is the number of 6360 * pages minus 3 6361 */ 6362 6363 switch (page_list[counter]) { 6364 case 0x00: 6365 un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG; 6366 break; 6367 case 0x80: 6368 un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG; 6369 break; 6370 case 0x81: 6371 un->un_vpd_page_mask |= SD_VPD_OPERATING_PG; 6372 break; 6373 case 0x82: 6374 un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG; 6375 break; 6376 case 0x83: 6377 un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG; 6378 break; 6379 } 6380 counter++; 6381 } 6382 6383 } else { 6384 rval = -1; 6385 6386 SD_INFO(SD_LOG_ATTACH_DETACH, un, 6387 "sd_check_vpd_page_support: This drive does not implement " 6388 "VPD pages.\n"); 6389 } 6390 6391 kmem_free(page_list, page_length); 6392 6393 return (rval); 6394 } 6395 6396 6397 /* 6398 * Function: sd_setup_pm 6399 * 6400 * Description: Initialize Power Management on the device 6401 * 6402 * Context: Kernel Thread 6403 */ 6404 6405 static void 6406 sd_setup_pm(struct sd_lun *un, dev_info_t *devi) 6407 { 6408 uint_t log_page_size; 6409 uchar_t *log_page_data; 6410 int rval; 6411 6412 /* 6413 * Since we are called from attach, holding a mutex for 6414 * un is unnecessary. Because some of the routines called 6415 * from here require SD_MUTEX to not be held, assert this 6416 * right up front. 6417 */ 6418 ASSERT(!mutex_owned(SD_MUTEX(un))); 6419 /* 6420 * Since the sd device does not have the 'reg' property, 6421 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries. 6422 * The following code is to tell cpr that this device 6423 * DOES need to be suspended and resumed. 6424 */ 6425 (void) ddi_prop_update_string(DDI_DEV_T_NONE, devi, 6426 "pm-hardware-state", "needs-suspend-resume"); 6427 6428 /* 6429 * This complies with the new power management framework 6430 * for certain desktop machines. Create the pm_components 6431 * property as a string array property. 6432 */ 6433 if (un->un_f_pm_supported) { 6434 /* 6435 * not all devices have a motor, try it first. 6436 * some devices may return ILLEGAL REQUEST, some 6437 * will hang 6438 * The following START_STOP_UNIT is used to check if target 6439 * device has a motor. 6440 */ 6441 un->un_f_start_stop_supported = TRUE; 6442 if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, 6443 SD_PATH_DIRECT) != 0) { 6444 un->un_f_start_stop_supported = FALSE; 6445 } 6446 6447 /* 6448 * create pm properties anyways otherwise the parent can't 6449 * go to sleep 6450 */ 6451 (void) sd_create_pm_components(devi, un); 6452 un->un_f_pm_is_enabled = TRUE; 6453 return; 6454 } 6455 6456 if (!un->un_f_log_sense_supported) { 6457 un->un_power_level = SD_SPINDLE_ON; 6458 un->un_f_pm_is_enabled = FALSE; 6459 return; 6460 } 6461 6462 rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE); 6463 6464 #ifdef SDDEBUG 6465 if (sd_force_pm_supported) { 6466 /* Force a successful result */ 6467 rval = 1; 6468 } 6469 #endif 6470 6471 /* 6472 * If the start-stop cycle counter log page is not supported 6473 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0) 6474 * then we should not create the pm_components property. 6475 */ 6476 if (rval == -1) { 6477 /* 6478 * Error. 6479 * Reading log sense failed, most likely this is 6480 * an older drive that does not support log sense. 6481 * If this fails auto-pm is not supported. 6482 */ 6483 un->un_power_level = SD_SPINDLE_ON; 6484 un->un_f_pm_is_enabled = FALSE; 6485 6486 } else if (rval == 0) { 6487 /* 6488 * Page not found. 6489 * The start stop cycle counter is implemented as page 6490 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For 6491 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE). 6492 */ 6493 if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) { 6494 /* 6495 * Page found, use this one. 6496 */ 6497 un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE; 6498 un->un_f_pm_is_enabled = TRUE; 6499 } else { 6500 /* 6501 * Error or page not found. 6502 * auto-pm is not supported for this device. 6503 */ 6504 un->un_power_level = SD_SPINDLE_ON; 6505 un->un_f_pm_is_enabled = FALSE; 6506 } 6507 } else { 6508 /* 6509 * Page found, use it. 6510 */ 6511 un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE; 6512 un->un_f_pm_is_enabled = TRUE; 6513 } 6514 6515 6516 if (un->un_f_pm_is_enabled == TRUE) { 6517 log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE; 6518 log_page_data = kmem_zalloc(log_page_size, KM_SLEEP); 6519 6520 rval = sd_send_scsi_LOG_SENSE(un, log_page_data, 6521 log_page_size, un->un_start_stop_cycle_page, 6522 0x01, 0, SD_PATH_DIRECT); 6523 #ifdef SDDEBUG 6524 if (sd_force_pm_supported) { 6525 /* Force a successful result */ 6526 rval = 0; 6527 } 6528 #endif 6529 6530 /* 6531 * If the Log sense for Page( Start/stop cycle counter page) 6532 * succeeds, then power managment is supported and we can 6533 * enable auto-pm. 6534 */ 6535 if (rval == 0) { 6536 (void) sd_create_pm_components(devi, un); 6537 } else { 6538 un->un_power_level = SD_SPINDLE_ON; 6539 un->un_f_pm_is_enabled = FALSE; 6540 } 6541 6542 kmem_free(log_page_data, log_page_size); 6543 } 6544 } 6545 6546 6547 /* 6548 * Function: sd_create_pm_components 6549 * 6550 * Description: Initialize PM property. 6551 * 6552 * Context: Kernel thread context 6553 */ 6554 6555 static void 6556 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un) 6557 { 6558 char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL }; 6559 6560 ASSERT(!mutex_owned(SD_MUTEX(un))); 6561 6562 if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi, 6563 "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) { 6564 /* 6565 * When components are initially created they are idle, 6566 * power up any non-removables. 6567 * Note: the return value of pm_raise_power can't be used 6568 * for determining if PM should be enabled for this device. 6569 * Even if you check the return values and remove this 6570 * property created above, the PM framework will not honor the 6571 * change after the first call to pm_raise_power. Hence, 6572 * removal of that property does not help if pm_raise_power 6573 * fails. In the case of removable media, the start/stop 6574 * will fail if the media is not present. 6575 */ 6576 if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0, 6577 SD_SPINDLE_ON) == DDI_SUCCESS)) { 6578 mutex_enter(SD_MUTEX(un)); 6579 un->un_power_level = SD_SPINDLE_ON; 6580 mutex_enter(&un->un_pm_mutex); 6581 /* Set to on and not busy. */ 6582 un->un_pm_count = 0; 6583 } else { 6584 mutex_enter(SD_MUTEX(un)); 6585 un->un_power_level = SD_SPINDLE_OFF; 6586 mutex_enter(&un->un_pm_mutex); 6587 /* Set to off. */ 6588 un->un_pm_count = -1; 6589 } 6590 mutex_exit(&un->un_pm_mutex); 6591 mutex_exit(SD_MUTEX(un)); 6592 } else { 6593 un->un_power_level = SD_SPINDLE_ON; 6594 un->un_f_pm_is_enabled = FALSE; 6595 } 6596 } 6597 6598 6599 /* 6600 * Function: sd_ddi_suspend 6601 * 6602 * Description: Performs system power-down operations. This includes 6603 * setting the drive state to indicate its suspended so 6604 * that no new commands will be accepted. Also, wait for 6605 * all commands that are in transport or queued to a timer 6606 * for retry to complete. All timeout threads are cancelled. 6607 * 6608 * Return Code: DDI_FAILURE or DDI_SUCCESS 6609 * 6610 * Context: Kernel thread context 6611 */ 6612 6613 static int 6614 sd_ddi_suspend(dev_info_t *devi) 6615 { 6616 struct sd_lun *un; 6617 clock_t wait_cmds_complete; 6618 6619 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 6620 if (un == NULL) { 6621 return (DDI_FAILURE); 6622 } 6623 6624 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n"); 6625 6626 mutex_enter(SD_MUTEX(un)); 6627 6628 /* Return success if the device is already suspended. */ 6629 if (un->un_state == SD_STATE_SUSPENDED) { 6630 mutex_exit(SD_MUTEX(un)); 6631 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 6632 "device already suspended, exiting\n"); 6633 return (DDI_SUCCESS); 6634 } 6635 6636 /* Return failure if the device is being used by HA */ 6637 if (un->un_resvd_status & 6638 (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) { 6639 mutex_exit(SD_MUTEX(un)); 6640 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 6641 "device in use by HA, exiting\n"); 6642 return (DDI_FAILURE); 6643 } 6644 6645 /* 6646 * Return failure if the device is in a resource wait 6647 * or power changing state. 6648 */ 6649 if ((un->un_state == SD_STATE_RWAIT) || 6650 (un->un_state == SD_STATE_PM_CHANGING)) { 6651 mutex_exit(SD_MUTEX(un)); 6652 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 6653 "device in resource wait state, exiting\n"); 6654 return (DDI_FAILURE); 6655 } 6656 6657 6658 un->un_save_state = un->un_last_state; 6659 New_state(un, SD_STATE_SUSPENDED); 6660 6661 /* 6662 * Wait for all commands that are in transport or queued to a timer 6663 * for retry to complete. 6664 * 6665 * While waiting, no new commands will be accepted or sent because of 6666 * the new state we set above. 6667 * 6668 * Wait till current operation has completed. If we are in the resource 6669 * wait state (with an intr outstanding) then we need to wait till the 6670 * intr completes and starts the next cmd. We want to wait for 6671 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND. 6672 */ 6673 wait_cmds_complete = ddi_get_lbolt() + 6674 (sd_wait_cmds_complete * drv_usectohz(1000000)); 6675 6676 while (un->un_ncmds_in_transport != 0) { 6677 /* 6678 * Fail if commands do not finish in the specified time. 6679 */ 6680 if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un), 6681 wait_cmds_complete) == -1) { 6682 /* 6683 * Undo the state changes made above. Everything 6684 * must go back to it's original value. 6685 */ 6686 Restore_state(un); 6687 un->un_last_state = un->un_save_state; 6688 /* Wake up any threads that might be waiting. */ 6689 cv_broadcast(&un->un_suspend_cv); 6690 mutex_exit(SD_MUTEX(un)); 6691 SD_ERROR(SD_LOG_IO_PM, un, 6692 "sd_ddi_suspend: failed due to outstanding cmds\n"); 6693 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n"); 6694 return (DDI_FAILURE); 6695 } 6696 } 6697 6698 /* 6699 * Cancel SCSI watch thread and timeouts, if any are active 6700 */ 6701 6702 if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) { 6703 opaque_t temp_token = un->un_swr_token; 6704 mutex_exit(SD_MUTEX(un)); 6705 scsi_watch_suspend(temp_token); 6706 mutex_enter(SD_MUTEX(un)); 6707 } 6708 6709 if (un->un_reset_throttle_timeid != NULL) { 6710 timeout_id_t temp_id = un->un_reset_throttle_timeid; 6711 un->un_reset_throttle_timeid = NULL; 6712 mutex_exit(SD_MUTEX(un)); 6713 (void) untimeout(temp_id); 6714 mutex_enter(SD_MUTEX(un)); 6715 } 6716 6717 if (un->un_dcvb_timeid != NULL) { 6718 timeout_id_t temp_id = un->un_dcvb_timeid; 6719 un->un_dcvb_timeid = NULL; 6720 mutex_exit(SD_MUTEX(un)); 6721 (void) untimeout(temp_id); 6722 mutex_enter(SD_MUTEX(un)); 6723 } 6724 6725 mutex_enter(&un->un_pm_mutex); 6726 if (un->un_pm_timeid != NULL) { 6727 timeout_id_t temp_id = un->un_pm_timeid; 6728 un->un_pm_timeid = NULL; 6729 mutex_exit(&un->un_pm_mutex); 6730 mutex_exit(SD_MUTEX(un)); 6731 (void) untimeout(temp_id); 6732 mutex_enter(SD_MUTEX(un)); 6733 } else { 6734 mutex_exit(&un->un_pm_mutex); 6735 } 6736 6737 if (un->un_retry_timeid != NULL) { 6738 timeout_id_t temp_id = un->un_retry_timeid; 6739 un->un_retry_timeid = NULL; 6740 mutex_exit(SD_MUTEX(un)); 6741 (void) untimeout(temp_id); 6742 mutex_enter(SD_MUTEX(un)); 6743 } 6744 6745 if (un->un_direct_priority_timeid != NULL) { 6746 timeout_id_t temp_id = un->un_direct_priority_timeid; 6747 un->un_direct_priority_timeid = NULL; 6748 mutex_exit(SD_MUTEX(un)); 6749 (void) untimeout(temp_id); 6750 mutex_enter(SD_MUTEX(un)); 6751 } 6752 6753 if (un->un_f_is_fibre == TRUE) { 6754 /* 6755 * Remove callbacks for insert and remove events 6756 */ 6757 if (un->un_insert_event != NULL) { 6758 mutex_exit(SD_MUTEX(un)); 6759 (void) ddi_remove_event_handler(un->un_insert_cb_id); 6760 mutex_enter(SD_MUTEX(un)); 6761 un->un_insert_event = NULL; 6762 } 6763 6764 if (un->un_remove_event != NULL) { 6765 mutex_exit(SD_MUTEX(un)); 6766 (void) ddi_remove_event_handler(un->un_remove_cb_id); 6767 mutex_enter(SD_MUTEX(un)); 6768 un->un_remove_event = NULL; 6769 } 6770 } 6771 6772 mutex_exit(SD_MUTEX(un)); 6773 6774 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n"); 6775 6776 return (DDI_SUCCESS); 6777 } 6778 6779 6780 /* 6781 * Function: sd_ddi_pm_suspend 6782 * 6783 * Description: Set the drive state to low power. 6784 * Someone else is required to actually change the drive 6785 * power level. 6786 * 6787 * Arguments: un - driver soft state (unit) structure 6788 * 6789 * Return Code: DDI_FAILURE or DDI_SUCCESS 6790 * 6791 * Context: Kernel thread context 6792 */ 6793 6794 static int 6795 sd_ddi_pm_suspend(struct sd_lun *un) 6796 { 6797 ASSERT(un != NULL); 6798 SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n"); 6799 6800 ASSERT(!mutex_owned(SD_MUTEX(un))); 6801 mutex_enter(SD_MUTEX(un)); 6802 6803 /* 6804 * Exit if power management is not enabled for this device, or if 6805 * the device is being used by HA. 6806 */ 6807 if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status & 6808 (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) { 6809 mutex_exit(SD_MUTEX(un)); 6810 SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n"); 6811 return (DDI_SUCCESS); 6812 } 6813 6814 SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n", 6815 un->un_ncmds_in_driver); 6816 6817 /* 6818 * See if the device is not busy, ie.: 6819 * - we have no commands in the driver for this device 6820 * - not waiting for resources 6821 */ 6822 if ((un->un_ncmds_in_driver == 0) && 6823 (un->un_state != SD_STATE_RWAIT)) { 6824 /* 6825 * The device is not busy, so it is OK to go to low power state. 6826 * Indicate low power, but rely on someone else to actually 6827 * change it. 6828 */ 6829 mutex_enter(&un->un_pm_mutex); 6830 un->un_pm_count = -1; 6831 mutex_exit(&un->un_pm_mutex); 6832 un->un_power_level = SD_SPINDLE_OFF; 6833 } 6834 6835 mutex_exit(SD_MUTEX(un)); 6836 6837 SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n"); 6838 6839 return (DDI_SUCCESS); 6840 } 6841 6842 6843 /* 6844 * Function: sd_ddi_resume 6845 * 6846 * Description: Performs system power-up operations.. 6847 * 6848 * Return Code: DDI_SUCCESS 6849 * DDI_FAILURE 6850 * 6851 * Context: Kernel thread context 6852 */ 6853 6854 static int 6855 sd_ddi_resume(dev_info_t *devi) 6856 { 6857 struct sd_lun *un; 6858 6859 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 6860 if (un == NULL) { 6861 return (DDI_FAILURE); 6862 } 6863 6864 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n"); 6865 6866 mutex_enter(SD_MUTEX(un)); 6867 Restore_state(un); 6868 6869 /* 6870 * Restore the state which was saved to give the 6871 * the right state in un_last_state 6872 */ 6873 un->un_last_state = un->un_save_state; 6874 /* 6875 * Note: throttle comes back at full. 6876 * Also note: this MUST be done before calling pm_raise_power 6877 * otherwise the system can get hung in biowait. The scenario where 6878 * this'll happen is under cpr suspend. Writing of the system 6879 * state goes through sddump, which writes 0 to un_throttle. If 6880 * writing the system state then fails, example if the partition is 6881 * too small, then cpr attempts a resume. If throttle isn't restored 6882 * from the saved value until after calling pm_raise_power then 6883 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs 6884 * in biowait. 6885 */ 6886 un->un_throttle = un->un_saved_throttle; 6887 6888 /* 6889 * The chance of failure is very rare as the only command done in power 6890 * entry point is START command when you transition from 0->1 or 6891 * unknown->1. Put it to SPINDLE ON state irrespective of the state at 6892 * which suspend was done. Ignore the return value as the resume should 6893 * not be failed. In the case of removable media the media need not be 6894 * inserted and hence there is a chance that raise power will fail with 6895 * media not present. 6896 */ 6897 if (un->un_f_attach_spinup) { 6898 mutex_exit(SD_MUTEX(un)); 6899 (void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON); 6900 mutex_enter(SD_MUTEX(un)); 6901 } 6902 6903 /* 6904 * Don't broadcast to the suspend cv and therefore possibly 6905 * start I/O until after power has been restored. 6906 */ 6907 cv_broadcast(&un->un_suspend_cv); 6908 cv_broadcast(&un->un_state_cv); 6909 6910 /* restart thread */ 6911 if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) { 6912 scsi_watch_resume(un->un_swr_token); 6913 } 6914 6915 #if (defined(__fibre)) 6916 if (un->un_f_is_fibre == TRUE) { 6917 /* 6918 * Add callbacks for insert and remove events 6919 */ 6920 if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) { 6921 sd_init_event_callbacks(un); 6922 } 6923 } 6924 #endif 6925 6926 /* 6927 * Transport any pending commands to the target. 6928 * 6929 * If this is a low-activity device commands in queue will have to wait 6930 * until new commands come in, which may take awhile. Also, we 6931 * specifically don't check un_ncmds_in_transport because we know that 6932 * there really are no commands in progress after the unit was 6933 * suspended and we could have reached the throttle level, been 6934 * suspended, and have no new commands coming in for awhile. Highly 6935 * unlikely, but so is the low-activity disk scenario. 6936 */ 6937 ddi_xbuf_dispatch(un->un_xbuf_attr); 6938 6939 sd_start_cmds(un, NULL); 6940 mutex_exit(SD_MUTEX(un)); 6941 6942 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n"); 6943 6944 return (DDI_SUCCESS); 6945 } 6946 6947 6948 /* 6949 * Function: sd_ddi_pm_resume 6950 * 6951 * Description: Set the drive state to powered on. 6952 * Someone else is required to actually change the drive 6953 * power level. 6954 * 6955 * Arguments: un - driver soft state (unit) structure 6956 * 6957 * Return Code: DDI_SUCCESS 6958 * 6959 * Context: Kernel thread context 6960 */ 6961 6962 static int 6963 sd_ddi_pm_resume(struct sd_lun *un) 6964 { 6965 ASSERT(un != NULL); 6966 6967 ASSERT(!mutex_owned(SD_MUTEX(un))); 6968 mutex_enter(SD_MUTEX(un)); 6969 un->un_power_level = SD_SPINDLE_ON; 6970 6971 ASSERT(!mutex_owned(&un->un_pm_mutex)); 6972 mutex_enter(&un->un_pm_mutex); 6973 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 6974 un->un_pm_count++; 6975 ASSERT(un->un_pm_count == 0); 6976 /* 6977 * Note: no longer do the cv_broadcast on un_suspend_cv. The 6978 * un_suspend_cv is for a system resume, not a power management 6979 * device resume. (4297749) 6980 * cv_broadcast(&un->un_suspend_cv); 6981 */ 6982 } 6983 mutex_exit(&un->un_pm_mutex); 6984 mutex_exit(SD_MUTEX(un)); 6985 6986 return (DDI_SUCCESS); 6987 } 6988 6989 6990 /* 6991 * Function: sd_pm_idletimeout_handler 6992 * 6993 * Description: A timer routine that's active only while a device is busy. 6994 * The purpose is to extend slightly the pm framework's busy 6995 * view of the device to prevent busy/idle thrashing for 6996 * back-to-back commands. Do this by comparing the current time 6997 * to the time at which the last command completed and when the 6998 * difference is greater than sd_pm_idletime, call 6999 * pm_idle_component. In addition to indicating idle to the pm 7000 * framework, update the chain type to again use the internal pm 7001 * layers of the driver. 7002 * 7003 * Arguments: arg - driver soft state (unit) structure 7004 * 7005 * Context: Executes in a timeout(9F) thread context 7006 */ 7007 7008 static void 7009 sd_pm_idletimeout_handler(void *arg) 7010 { 7011 struct sd_lun *un = arg; 7012 7013 time_t now; 7014 7015 mutex_enter(&sd_detach_mutex); 7016 if (un->un_detach_count != 0) { 7017 /* Abort if the instance is detaching */ 7018 mutex_exit(&sd_detach_mutex); 7019 return; 7020 } 7021 mutex_exit(&sd_detach_mutex); 7022 7023 now = ddi_get_time(); 7024 /* 7025 * Grab both mutexes, in the proper order, since we're accessing 7026 * both PM and softstate variables. 7027 */ 7028 mutex_enter(SD_MUTEX(un)); 7029 mutex_enter(&un->un_pm_mutex); 7030 if (((now - un->un_pm_idle_time) > sd_pm_idletime) && 7031 (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) { 7032 /* 7033 * Update the chain types. 7034 * This takes affect on the next new command received. 7035 */ 7036 if (un->un_f_non_devbsize_supported) { 7037 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA; 7038 } else { 7039 un->un_buf_chain_type = SD_CHAIN_INFO_DISK; 7040 } 7041 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD; 7042 7043 SD_TRACE(SD_LOG_IO_PM, un, 7044 "sd_pm_idletimeout_handler: idling device\n"); 7045 (void) pm_idle_component(SD_DEVINFO(un), 0); 7046 un->un_pm_idle_timeid = NULL; 7047 } else { 7048 un->un_pm_idle_timeid = 7049 timeout(sd_pm_idletimeout_handler, un, 7050 (drv_usectohz((clock_t)300000))); /* 300 ms. */ 7051 } 7052 mutex_exit(&un->un_pm_mutex); 7053 mutex_exit(SD_MUTEX(un)); 7054 } 7055 7056 7057 /* 7058 * Function: sd_pm_timeout_handler 7059 * 7060 * Description: Callback to tell framework we are idle. 7061 * 7062 * Context: timeout(9f) thread context. 7063 */ 7064 7065 static void 7066 sd_pm_timeout_handler(void *arg) 7067 { 7068 struct sd_lun *un = arg; 7069 7070 (void) pm_idle_component(SD_DEVINFO(un), 0); 7071 mutex_enter(&un->un_pm_mutex); 7072 un->un_pm_timeid = NULL; 7073 mutex_exit(&un->un_pm_mutex); 7074 } 7075 7076 7077 /* 7078 * Function: sdpower 7079 * 7080 * Description: PM entry point. 7081 * 7082 * Return Code: DDI_SUCCESS 7083 * DDI_FAILURE 7084 * 7085 * Context: Kernel thread context 7086 */ 7087 7088 static int 7089 sdpower(dev_info_t *devi, int component, int level) 7090 { 7091 struct sd_lun *un; 7092 int instance; 7093 int rval = DDI_SUCCESS; 7094 uint_t i, log_page_size, maxcycles, ncycles; 7095 uchar_t *log_page_data; 7096 int log_sense_page; 7097 int medium_present; 7098 time_t intvlp; 7099 dev_t dev; 7100 struct pm_trans_data sd_pm_tran_data; 7101 uchar_t save_state; 7102 int sval; 7103 uchar_t state_before_pm; 7104 int got_semaphore_here; 7105 7106 instance = ddi_get_instance(devi); 7107 7108 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 7109 (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) || 7110 component != 0) { 7111 return (DDI_FAILURE); 7112 } 7113 7114 dev = sd_make_device(SD_DEVINFO(un)); 7115 7116 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level); 7117 7118 /* 7119 * Must synchronize power down with close. 7120 * Attempt to decrement/acquire the open/close semaphore, 7121 * but do NOT wait on it. If it's not greater than zero, 7122 * ie. it can't be decremented without waiting, then 7123 * someone else, either open or close, already has it 7124 * and the try returns 0. Use that knowledge here to determine 7125 * if it's OK to change the device power level. 7126 * Also, only increment it on exit if it was decremented, ie. gotten, 7127 * here. 7128 */ 7129 got_semaphore_here = sema_tryp(&un->un_semoclose); 7130 7131 mutex_enter(SD_MUTEX(un)); 7132 7133 SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n", 7134 un->un_ncmds_in_driver); 7135 7136 /* 7137 * If un_ncmds_in_driver is non-zero it indicates commands are 7138 * already being processed in the driver, or if the semaphore was 7139 * not gotten here it indicates an open or close is being processed. 7140 * At the same time somebody is requesting to go low power which 7141 * can't happen, therefore we need to return failure. 7142 */ 7143 if ((level == SD_SPINDLE_OFF) && 7144 ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) { 7145 mutex_exit(SD_MUTEX(un)); 7146 7147 if (got_semaphore_here != 0) { 7148 sema_v(&un->un_semoclose); 7149 } 7150 SD_TRACE(SD_LOG_IO_PM, un, 7151 "sdpower: exit, device has queued cmds.\n"); 7152 return (DDI_FAILURE); 7153 } 7154 7155 /* 7156 * if it is OFFLINE that means the disk is completely dead 7157 * in our case we have to put the disk in on or off by sending commands 7158 * Of course that will fail anyway so return back here. 7159 * 7160 * Power changes to a device that's OFFLINE or SUSPENDED 7161 * are not allowed. 7162 */ 7163 if ((un->un_state == SD_STATE_OFFLINE) || 7164 (un->un_state == SD_STATE_SUSPENDED)) { 7165 mutex_exit(SD_MUTEX(un)); 7166 7167 if (got_semaphore_here != 0) { 7168 sema_v(&un->un_semoclose); 7169 } 7170 SD_TRACE(SD_LOG_IO_PM, un, 7171 "sdpower: exit, device is off-line.\n"); 7172 return (DDI_FAILURE); 7173 } 7174 7175 /* 7176 * Change the device's state to indicate it's power level 7177 * is being changed. Do this to prevent a power off in the 7178 * middle of commands, which is especially bad on devices 7179 * that are really powered off instead of just spun down. 7180 */ 7181 state_before_pm = un->un_state; 7182 un->un_state = SD_STATE_PM_CHANGING; 7183 7184 mutex_exit(SD_MUTEX(un)); 7185 7186 /* 7187 * If "pm-capable" property is set to TRUE by HBA drivers, 7188 * bypass the following checking, otherwise, check the log 7189 * sense information for this device 7190 */ 7191 if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) { 7192 /* 7193 * Get the log sense information to understand whether the 7194 * the powercycle counts have gone beyond the threshhold. 7195 */ 7196 log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE; 7197 log_page_data = kmem_zalloc(log_page_size, KM_SLEEP); 7198 7199 mutex_enter(SD_MUTEX(un)); 7200 log_sense_page = un->un_start_stop_cycle_page; 7201 mutex_exit(SD_MUTEX(un)); 7202 7203 rval = sd_send_scsi_LOG_SENSE(un, log_page_data, 7204 log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT); 7205 #ifdef SDDEBUG 7206 if (sd_force_pm_supported) { 7207 /* Force a successful result */ 7208 rval = 0; 7209 } 7210 #endif 7211 if (rval != 0) { 7212 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 7213 "Log Sense Failed\n"); 7214 kmem_free(log_page_data, log_page_size); 7215 /* Cannot support power management on those drives */ 7216 7217 if (got_semaphore_here != 0) { 7218 sema_v(&un->un_semoclose); 7219 } 7220 /* 7221 * On exit put the state back to it's original value 7222 * and broadcast to anyone waiting for the power 7223 * change completion. 7224 */ 7225 mutex_enter(SD_MUTEX(un)); 7226 un->un_state = state_before_pm; 7227 cv_broadcast(&un->un_suspend_cv); 7228 mutex_exit(SD_MUTEX(un)); 7229 SD_TRACE(SD_LOG_IO_PM, un, 7230 "sdpower: exit, Log Sense Failed.\n"); 7231 return (DDI_FAILURE); 7232 } 7233 7234 /* 7235 * From the page data - Convert the essential information to 7236 * pm_trans_data 7237 */ 7238 maxcycles = 7239 (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) | 7240 (log_page_data[0x1E] << 8) | log_page_data[0x1F]; 7241 7242 sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles; 7243 7244 ncycles = 7245 (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) | 7246 (log_page_data[0x26] << 8) | log_page_data[0x27]; 7247 7248 sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles; 7249 7250 for (i = 0; i < DC_SCSI_MFR_LEN; i++) { 7251 sd_pm_tran_data.un.scsi_cycles.svc_date[i] = 7252 log_page_data[8+i]; 7253 } 7254 7255 kmem_free(log_page_data, log_page_size); 7256 7257 /* 7258 * Call pm_trans_check routine to get the Ok from 7259 * the global policy 7260 */ 7261 7262 sd_pm_tran_data.format = DC_SCSI_FORMAT; 7263 sd_pm_tran_data.un.scsi_cycles.flag = 0; 7264 7265 rval = pm_trans_check(&sd_pm_tran_data, &intvlp); 7266 #ifdef SDDEBUG 7267 if (sd_force_pm_supported) { 7268 /* Force a successful result */ 7269 rval = 1; 7270 } 7271 #endif 7272 switch (rval) { 7273 case 0: 7274 /* 7275 * Not Ok to Power cycle or error in parameters passed 7276 * Would have given the advised time to consider power 7277 * cycle. Based on the new intvlp parameter we are 7278 * supposed to pretend we are busy so that pm framework 7279 * will never call our power entry point. Because of 7280 * that install a timeout handler and wait for the 7281 * recommended time to elapse so that power management 7282 * can be effective again. 7283 * 7284 * To effect this behavior, call pm_busy_component to 7285 * indicate to the framework this device is busy. 7286 * By not adjusting un_pm_count the rest of PM in 7287 * the driver will function normally, and independant 7288 * of this but because the framework is told the device 7289 * is busy it won't attempt powering down until it gets 7290 * a matching idle. The timeout handler sends this. 7291 * Note: sd_pm_entry can't be called here to do this 7292 * because sdpower may have been called as a result 7293 * of a call to pm_raise_power from within sd_pm_entry. 7294 * 7295 * If a timeout handler is already active then 7296 * don't install another. 7297 */ 7298 mutex_enter(&un->un_pm_mutex); 7299 if (un->un_pm_timeid == NULL) { 7300 un->un_pm_timeid = 7301 timeout(sd_pm_timeout_handler, 7302 un, intvlp * drv_usectohz(1000000)); 7303 mutex_exit(&un->un_pm_mutex); 7304 (void) pm_busy_component(SD_DEVINFO(un), 0); 7305 } else { 7306 mutex_exit(&un->un_pm_mutex); 7307 } 7308 if (got_semaphore_here != 0) { 7309 sema_v(&un->un_semoclose); 7310 } 7311 /* 7312 * On exit put the state back to it's original value 7313 * and broadcast to anyone waiting for the power 7314 * change completion. 7315 */ 7316 mutex_enter(SD_MUTEX(un)); 7317 un->un_state = state_before_pm; 7318 cv_broadcast(&un->un_suspend_cv); 7319 mutex_exit(SD_MUTEX(un)); 7320 7321 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, " 7322 "trans check Failed, not ok to power cycle.\n"); 7323 return (DDI_FAILURE); 7324 7325 case -1: 7326 if (got_semaphore_here != 0) { 7327 sema_v(&un->un_semoclose); 7328 } 7329 /* 7330 * On exit put the state back to it's original value 7331 * and broadcast to anyone waiting for the power 7332 * change completion. 7333 */ 7334 mutex_enter(SD_MUTEX(un)); 7335 un->un_state = state_before_pm; 7336 cv_broadcast(&un->un_suspend_cv); 7337 mutex_exit(SD_MUTEX(un)); 7338 SD_TRACE(SD_LOG_IO_PM, un, 7339 "sdpower: exit, trans check command Failed.\n"); 7340 return (DDI_FAILURE); 7341 } 7342 } 7343 7344 if (level == SD_SPINDLE_OFF) { 7345 /* 7346 * Save the last state... if the STOP FAILS we need it 7347 * for restoring 7348 */ 7349 mutex_enter(SD_MUTEX(un)); 7350 save_state = un->un_last_state; 7351 /* 7352 * There must not be any cmds. getting processed 7353 * in the driver when we get here. Power to the 7354 * device is potentially going off. 7355 */ 7356 ASSERT(un->un_ncmds_in_driver == 0); 7357 mutex_exit(SD_MUTEX(un)); 7358 7359 /* 7360 * For now suspend the device completely before spindle is 7361 * turned off 7362 */ 7363 if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) { 7364 if (got_semaphore_here != 0) { 7365 sema_v(&un->un_semoclose); 7366 } 7367 /* 7368 * On exit put the state back to it's original value 7369 * and broadcast to anyone waiting for the power 7370 * change completion. 7371 */ 7372 mutex_enter(SD_MUTEX(un)); 7373 un->un_state = state_before_pm; 7374 cv_broadcast(&un->un_suspend_cv); 7375 mutex_exit(SD_MUTEX(un)); 7376 SD_TRACE(SD_LOG_IO_PM, un, 7377 "sdpower: exit, PM suspend Failed.\n"); 7378 return (DDI_FAILURE); 7379 } 7380 } 7381 7382 /* 7383 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open, 7384 * close, or strategy. Dump no long uses this routine, it uses it's 7385 * own code so it can be done in polled mode. 7386 */ 7387 7388 medium_present = TRUE; 7389 7390 /* 7391 * When powering up, issue a TUR in case the device is at unit 7392 * attention. Don't do retries. Bypass the PM layer, otherwise 7393 * a deadlock on un_pm_busy_cv will occur. 7394 */ 7395 if (level == SD_SPINDLE_ON) { 7396 (void) sd_send_scsi_TEST_UNIT_READY(un, 7397 SD_DONT_RETRY_TUR | SD_BYPASS_PM); 7398 } 7399 7400 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n", 7401 ((level == SD_SPINDLE_ON) ? "START" : "STOP")); 7402 7403 sval = sd_send_scsi_START_STOP_UNIT(un, 7404 ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP), 7405 SD_PATH_DIRECT); 7406 /* Command failed, check for media present. */ 7407 if ((sval == ENXIO) && un->un_f_has_removable_media) { 7408 medium_present = FALSE; 7409 } 7410 7411 /* 7412 * The conditions of interest here are: 7413 * if a spindle off with media present fails, 7414 * then restore the state and return an error. 7415 * else if a spindle on fails, 7416 * then return an error (there's no state to restore). 7417 * In all other cases we setup for the new state 7418 * and return success. 7419 */ 7420 switch (level) { 7421 case SD_SPINDLE_OFF: 7422 if ((medium_present == TRUE) && (sval != 0)) { 7423 /* The stop command from above failed */ 7424 rval = DDI_FAILURE; 7425 /* 7426 * The stop command failed, and we have media 7427 * present. Put the level back by calling the 7428 * sd_pm_resume() and set the state back to 7429 * it's previous value. 7430 */ 7431 (void) sd_ddi_pm_resume(un); 7432 mutex_enter(SD_MUTEX(un)); 7433 un->un_last_state = save_state; 7434 mutex_exit(SD_MUTEX(un)); 7435 break; 7436 } 7437 /* 7438 * The stop command from above succeeded. 7439 */ 7440 if (un->un_f_monitor_media_state) { 7441 /* 7442 * Terminate watch thread in case of removable media 7443 * devices going into low power state. This is as per 7444 * the requirements of pm framework, otherwise commands 7445 * will be generated for the device (through watch 7446 * thread), even when the device is in low power state. 7447 */ 7448 mutex_enter(SD_MUTEX(un)); 7449 un->un_f_watcht_stopped = FALSE; 7450 if (un->un_swr_token != NULL) { 7451 opaque_t temp_token = un->un_swr_token; 7452 un->un_f_watcht_stopped = TRUE; 7453 un->un_swr_token = NULL; 7454 mutex_exit(SD_MUTEX(un)); 7455 (void) scsi_watch_request_terminate(temp_token, 7456 SCSI_WATCH_TERMINATE_WAIT); 7457 } else { 7458 mutex_exit(SD_MUTEX(un)); 7459 } 7460 } 7461 break; 7462 7463 default: /* The level requested is spindle on... */ 7464 /* 7465 * Legacy behavior: return success on a failed spinup 7466 * if there is no media in the drive. 7467 * Do this by looking at medium_present here. 7468 */ 7469 if ((sval != 0) && medium_present) { 7470 /* The start command from above failed */ 7471 rval = DDI_FAILURE; 7472 break; 7473 } 7474 /* 7475 * The start command from above succeeded 7476 * Resume the devices now that we have 7477 * started the disks 7478 */ 7479 (void) sd_ddi_pm_resume(un); 7480 7481 /* 7482 * Resume the watch thread since it was suspended 7483 * when the device went into low power mode. 7484 */ 7485 if (un->un_f_monitor_media_state) { 7486 mutex_enter(SD_MUTEX(un)); 7487 if (un->un_f_watcht_stopped == TRUE) { 7488 opaque_t temp_token; 7489 7490 un->un_f_watcht_stopped = FALSE; 7491 mutex_exit(SD_MUTEX(un)); 7492 temp_token = scsi_watch_request_submit( 7493 SD_SCSI_DEVP(un), 7494 sd_check_media_time, 7495 SENSE_LENGTH, sd_media_watch_cb, 7496 (caddr_t)dev); 7497 mutex_enter(SD_MUTEX(un)); 7498 un->un_swr_token = temp_token; 7499 } 7500 mutex_exit(SD_MUTEX(un)); 7501 } 7502 } 7503 if (got_semaphore_here != 0) { 7504 sema_v(&un->un_semoclose); 7505 } 7506 /* 7507 * On exit put the state back to it's original value 7508 * and broadcast to anyone waiting for the power 7509 * change completion. 7510 */ 7511 mutex_enter(SD_MUTEX(un)); 7512 un->un_state = state_before_pm; 7513 cv_broadcast(&un->un_suspend_cv); 7514 mutex_exit(SD_MUTEX(un)); 7515 7516 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval); 7517 7518 return (rval); 7519 } 7520 7521 7522 7523 /* 7524 * Function: sdattach 7525 * 7526 * Description: Driver's attach(9e) entry point function. 7527 * 7528 * Arguments: devi - opaque device info handle 7529 * cmd - attach type 7530 * 7531 * Return Code: DDI_SUCCESS 7532 * DDI_FAILURE 7533 * 7534 * Context: Kernel thread context 7535 */ 7536 7537 static int 7538 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd) 7539 { 7540 switch (cmd) { 7541 case DDI_ATTACH: 7542 return (sd_unit_attach(devi)); 7543 case DDI_RESUME: 7544 return (sd_ddi_resume(devi)); 7545 default: 7546 break; 7547 } 7548 return (DDI_FAILURE); 7549 } 7550 7551 7552 /* 7553 * Function: sddetach 7554 * 7555 * Description: Driver's detach(9E) entry point function. 7556 * 7557 * Arguments: devi - opaque device info handle 7558 * cmd - detach type 7559 * 7560 * Return Code: DDI_SUCCESS 7561 * DDI_FAILURE 7562 * 7563 * Context: Kernel thread context 7564 */ 7565 7566 static int 7567 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd) 7568 { 7569 switch (cmd) { 7570 case DDI_DETACH: 7571 return (sd_unit_detach(devi)); 7572 case DDI_SUSPEND: 7573 return (sd_ddi_suspend(devi)); 7574 default: 7575 break; 7576 } 7577 return (DDI_FAILURE); 7578 } 7579 7580 7581 /* 7582 * Function: sd_sync_with_callback 7583 * 7584 * Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft 7585 * state while the callback routine is active. 7586 * 7587 * Arguments: un: softstate structure for the instance 7588 * 7589 * Context: Kernel thread context 7590 */ 7591 7592 static void 7593 sd_sync_with_callback(struct sd_lun *un) 7594 { 7595 ASSERT(un != NULL); 7596 7597 mutex_enter(SD_MUTEX(un)); 7598 7599 ASSERT(un->un_in_callback >= 0); 7600 7601 while (un->un_in_callback > 0) { 7602 mutex_exit(SD_MUTEX(un)); 7603 delay(2); 7604 mutex_enter(SD_MUTEX(un)); 7605 } 7606 7607 mutex_exit(SD_MUTEX(un)); 7608 } 7609 7610 /* 7611 * Function: sd_unit_attach 7612 * 7613 * Description: Performs DDI_ATTACH processing for sdattach(). Allocates 7614 * the soft state structure for the device and performs 7615 * all necessary structure and device initializations. 7616 * 7617 * Arguments: devi: the system's dev_info_t for the device. 7618 * 7619 * Return Code: DDI_SUCCESS if attach is successful. 7620 * DDI_FAILURE if any part of the attach fails. 7621 * 7622 * Context: Called at attach(9e) time for the DDI_ATTACH flag. 7623 * Kernel thread context only. Can sleep. 7624 */ 7625 7626 static int 7627 sd_unit_attach(dev_info_t *devi) 7628 { 7629 struct scsi_device *devp; 7630 struct sd_lun *un; 7631 char *variantp; 7632 int reservation_flag = SD_TARGET_IS_UNRESERVED; 7633 int instance; 7634 int rval; 7635 int wc_enabled; 7636 uint64_t capacity; 7637 uint_t lbasize; 7638 7639 /* 7640 * Retrieve the target driver's private data area. This was set 7641 * up by the HBA. 7642 */ 7643 devp = ddi_get_driver_private(devi); 7644 7645 /* 7646 * Since we have no idea what state things were left in by the last 7647 * user of the device, set up some 'default' settings, ie. turn 'em 7648 * off. The scsi_ifsetcap calls force re-negotiations with the drive. 7649 * Do this before the scsi_probe, which sends an inquiry. 7650 * This is a fix for bug (4430280). 7651 * Of special importance is wide-xfer. The drive could have been left 7652 * in wide transfer mode by the last driver to communicate with it, 7653 * this includes us. If that's the case, and if the following is not 7654 * setup properly or we don't re-negotiate with the drive prior to 7655 * transferring data to/from the drive, it causes bus parity errors, 7656 * data overruns, and unexpected interrupts. This first occurred when 7657 * the fix for bug (4378686) was made. 7658 */ 7659 (void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1); 7660 (void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1); 7661 (void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1); 7662 (void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1); 7663 7664 /* 7665 * Use scsi_probe() to issue an INQUIRY command to the device. 7666 * This call will allocate and fill in the scsi_inquiry structure 7667 * and point the sd_inq member of the scsi_device structure to it. 7668 * If the attach succeeds, then this memory will not be de-allocated 7669 * (via scsi_unprobe()) until the instance is detached. 7670 */ 7671 if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) { 7672 goto probe_failed; 7673 } 7674 7675 /* 7676 * Check the device type as specified in the inquiry data and 7677 * claim it if it is of a type that we support. 7678 */ 7679 switch (devp->sd_inq->inq_dtype) { 7680 case DTYPE_DIRECT: 7681 break; 7682 case DTYPE_RODIRECT: 7683 break; 7684 case DTYPE_OPTICAL: 7685 break; 7686 case DTYPE_NOTPRESENT: 7687 default: 7688 /* Unsupported device type; fail the attach. */ 7689 goto probe_failed; 7690 } 7691 7692 /* 7693 * Allocate the soft state structure for this unit. 7694 * 7695 * We rely upon this memory being set to all zeroes by 7696 * ddi_soft_state_zalloc(). We assume that any member of the 7697 * soft state structure that is not explicitly initialized by 7698 * this routine will have a value of zero. 7699 */ 7700 instance = ddi_get_instance(devp->sd_dev); 7701 if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) { 7702 goto probe_failed; 7703 } 7704 7705 /* 7706 * Retrieve a pointer to the newly-allocated soft state. 7707 * 7708 * This should NEVER fail if the ddi_soft_state_zalloc() call above 7709 * was successful, unless something has gone horribly wrong and the 7710 * ddi's soft state internals are corrupt (in which case it is 7711 * probably better to halt here than just fail the attach....) 7712 */ 7713 if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) { 7714 panic("sd_unit_attach: NULL soft state on instance:0x%x", 7715 instance); 7716 /*NOTREACHED*/ 7717 } 7718 7719 /* 7720 * Link the back ptr of the driver soft state to the scsi_device 7721 * struct for this lun. 7722 * Save a pointer to the softstate in the driver-private area of 7723 * the scsi_device struct. 7724 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until 7725 * we first set un->un_sd below. 7726 */ 7727 un->un_sd = devp; 7728 devp->sd_private = (opaque_t)un; 7729 7730 /* 7731 * The following must be after devp is stored in the soft state struct. 7732 */ 7733 #ifdef SDDEBUG 7734 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7735 "%s_unit_attach: un:0x%p instance:%d\n", 7736 ddi_driver_name(devi), un, instance); 7737 #endif 7738 7739 /* 7740 * Set up the device type and node type (for the minor nodes). 7741 * By default we assume that the device can at least support the 7742 * Common Command Set. Call it a CD-ROM if it reports itself 7743 * as a RODIRECT device. 7744 */ 7745 switch (devp->sd_inq->inq_dtype) { 7746 case DTYPE_RODIRECT: 7747 un->un_node_type = DDI_NT_CD_CHAN; 7748 un->un_ctype = CTYPE_CDROM; 7749 break; 7750 case DTYPE_OPTICAL: 7751 un->un_node_type = DDI_NT_BLOCK_CHAN; 7752 un->un_ctype = CTYPE_ROD; 7753 break; 7754 default: 7755 un->un_node_type = DDI_NT_BLOCK_CHAN; 7756 un->un_ctype = CTYPE_CCS; 7757 break; 7758 } 7759 7760 /* 7761 * Try to read the interconnect type from the HBA. 7762 * 7763 * Note: This driver is currently compiled as two binaries, a parallel 7764 * scsi version (sd) and a fibre channel version (ssd). All functional 7765 * differences are determined at compile time. In the future a single 7766 * binary will be provided and the inteconnect type will be used to 7767 * differentiate between fibre and parallel scsi behaviors. At that time 7768 * it will be necessary for all fibre channel HBAs to support this 7769 * property. 7770 * 7771 * set un_f_is_fiber to TRUE ( default fiber ) 7772 */ 7773 un->un_f_is_fibre = TRUE; 7774 switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) { 7775 case INTERCONNECT_SSA: 7776 un->un_interconnect_type = SD_INTERCONNECT_SSA; 7777 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7778 "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un); 7779 break; 7780 case INTERCONNECT_PARALLEL: 7781 un->un_f_is_fibre = FALSE; 7782 un->un_interconnect_type = SD_INTERCONNECT_PARALLEL; 7783 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7784 "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un); 7785 break; 7786 case INTERCONNECT_FIBRE: 7787 un->un_interconnect_type = SD_INTERCONNECT_FIBRE; 7788 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7789 "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un); 7790 break; 7791 case INTERCONNECT_FABRIC: 7792 un->un_interconnect_type = SD_INTERCONNECT_FABRIC; 7793 un->un_node_type = DDI_NT_BLOCK_FABRIC; 7794 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7795 "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un); 7796 break; 7797 default: 7798 #ifdef SD_DEFAULT_INTERCONNECT_TYPE 7799 /* 7800 * The HBA does not support the "interconnect-type" property 7801 * (or did not provide a recognized type). 7802 * 7803 * Note: This will be obsoleted when a single fibre channel 7804 * and parallel scsi driver is delivered. In the meantime the 7805 * interconnect type will be set to the platform default.If that 7806 * type is not parallel SCSI, it means that we should be 7807 * assuming "ssd" semantics. However, here this also means that 7808 * the FC HBA is not supporting the "interconnect-type" property 7809 * like we expect it to, so log this occurrence. 7810 */ 7811 un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE; 7812 if (!SD_IS_PARALLEL_SCSI(un)) { 7813 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7814 "sd_unit_attach: un:0x%p Assuming " 7815 "INTERCONNECT_FIBRE\n", un); 7816 } else { 7817 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7818 "sd_unit_attach: un:0x%p Assuming " 7819 "INTERCONNECT_PARALLEL\n", un); 7820 un->un_f_is_fibre = FALSE; 7821 } 7822 #else 7823 /* 7824 * Note: This source will be implemented when a single fibre 7825 * channel and parallel scsi driver is delivered. The default 7826 * will be to assume that if a device does not support the 7827 * "interconnect-type" property it is a parallel SCSI HBA and 7828 * we will set the interconnect type for parallel scsi. 7829 */ 7830 un->un_interconnect_type = SD_INTERCONNECT_PARALLEL; 7831 un->un_f_is_fibre = FALSE; 7832 #endif 7833 break; 7834 } 7835 7836 if (un->un_f_is_fibre == TRUE) { 7837 if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) == 7838 SCSI_VERSION_3) { 7839 switch (un->un_interconnect_type) { 7840 case SD_INTERCONNECT_FIBRE: 7841 case SD_INTERCONNECT_SSA: 7842 un->un_node_type = DDI_NT_BLOCK_WWN; 7843 break; 7844 default: 7845 break; 7846 } 7847 } 7848 } 7849 7850 /* 7851 * Initialize the Request Sense command for the target 7852 */ 7853 if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) { 7854 goto alloc_rqs_failed; 7855 } 7856 7857 /* 7858 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc 7859 * with seperate binary for sd and ssd. 7860 * 7861 * x86 has 1 binary, un_retry_count is set base on connection type. 7862 * The hardcoded values will go away when Sparc uses 1 binary 7863 * for sd and ssd. This hardcoded values need to match 7864 * SD_RETRY_COUNT in sddef.h 7865 * The value used is base on interconnect type. 7866 * fibre = 3, parallel = 5 7867 */ 7868 #if defined(__i386) || defined(__amd64) 7869 un->un_retry_count = un->un_f_is_fibre ? 3 : 5; 7870 #else 7871 un->un_retry_count = SD_RETRY_COUNT; 7872 #endif 7873 7874 /* 7875 * Set the per disk retry count to the default number of retries 7876 * for disks and CDROMs. This value can be overridden by the 7877 * disk property list or an entry in sd.conf. 7878 */ 7879 un->un_notready_retry_count = 7880 ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un) 7881 : DISK_NOT_READY_RETRY_COUNT(un); 7882 7883 /* 7884 * Set the busy retry count to the default value of un_retry_count. 7885 * This can be overridden by entries in sd.conf or the device 7886 * config table. 7887 */ 7888 un->un_busy_retry_count = un->un_retry_count; 7889 7890 /* 7891 * Init the reset threshold for retries. This number determines 7892 * how many retries must be performed before a reset can be issued 7893 * (for certain error conditions). This can be overridden by entries 7894 * in sd.conf or the device config table. 7895 */ 7896 un->un_reset_retry_count = (un->un_retry_count / 2); 7897 7898 /* 7899 * Set the victim_retry_count to the default un_retry_count 7900 */ 7901 un->un_victim_retry_count = (2 * un->un_retry_count); 7902 7903 /* 7904 * Set the reservation release timeout to the default value of 7905 * 5 seconds. This can be overridden by entries in ssd.conf or the 7906 * device config table. 7907 */ 7908 un->un_reserve_release_time = 5; 7909 7910 /* 7911 * Set up the default maximum transfer size. Note that this may 7912 * get updated later in the attach, when setting up default wide 7913 * operations for disks. 7914 */ 7915 #if defined(__i386) || defined(__amd64) 7916 un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE; 7917 #else 7918 un->un_max_xfer_size = (uint_t)maxphys; 7919 #endif 7920 7921 /* 7922 * Get "allow bus device reset" property (defaults to "enabled" if 7923 * the property was not defined). This is to disable bus resets for 7924 * certain kinds of error recovery. Note: In the future when a run-time 7925 * fibre check is available the soft state flag should default to 7926 * enabled. 7927 */ 7928 if (un->un_f_is_fibre == TRUE) { 7929 un->un_f_allow_bus_device_reset = TRUE; 7930 } else { 7931 if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 7932 "allow-bus-device-reset", 1) != 0) { 7933 un->un_f_allow_bus_device_reset = TRUE; 7934 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7935 "sd_unit_attach: un:0x%p Bus device reset enabled\n", 7936 un); 7937 } else { 7938 un->un_f_allow_bus_device_reset = FALSE; 7939 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7940 "sd_unit_attach: un:0x%p Bus device reset disabled\n", 7941 un); 7942 } 7943 } 7944 7945 /* 7946 * Check if this is an ATAPI device. ATAPI devices use Group 1 7947 * Read/Write commands and Group 2 Mode Sense/Select commands. 7948 * 7949 * Note: The "obsolete" way of doing this is to check for the "atapi" 7950 * property. The new "variant" property with a value of "atapi" has been 7951 * introduced so that future 'variants' of standard SCSI behavior (like 7952 * atapi) could be specified by the underlying HBA drivers by supplying 7953 * a new value for the "variant" property, instead of having to define a 7954 * new property. 7955 */ 7956 if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) { 7957 un->un_f_cfg_is_atapi = TRUE; 7958 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7959 "sd_unit_attach: un:0x%p Atapi device\n", un); 7960 } 7961 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant", 7962 &variantp) == DDI_PROP_SUCCESS) { 7963 if (strcmp(variantp, "atapi") == 0) { 7964 un->un_f_cfg_is_atapi = TRUE; 7965 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7966 "sd_unit_attach: un:0x%p Atapi device\n", un); 7967 } 7968 ddi_prop_free(variantp); 7969 } 7970 7971 un->un_cmd_timeout = SD_IO_TIME; 7972 7973 /* Info on current states, statuses, etc. (Updated frequently) */ 7974 un->un_state = SD_STATE_NORMAL; 7975 un->un_last_state = SD_STATE_NORMAL; 7976 7977 /* Control & status info for command throttling */ 7978 un->un_throttle = sd_max_throttle; 7979 un->un_saved_throttle = sd_max_throttle; 7980 un->un_min_throttle = sd_min_throttle; 7981 7982 if (un->un_f_is_fibre == TRUE) { 7983 un->un_f_use_adaptive_throttle = TRUE; 7984 } else { 7985 un->un_f_use_adaptive_throttle = FALSE; 7986 } 7987 7988 /* Removable media support. */ 7989 cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL); 7990 un->un_mediastate = DKIO_NONE; 7991 un->un_specified_mediastate = DKIO_NONE; 7992 7993 /* CVs for suspend/resume (PM or DR) */ 7994 cv_init(&un->un_suspend_cv, NULL, CV_DRIVER, NULL); 7995 cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL); 7996 7997 /* Power management support. */ 7998 un->un_power_level = SD_SPINDLE_UNINIT; 7999 8000 cv_init(&un->un_wcc_cv, NULL, CV_DRIVER, NULL); 8001 un->un_f_wcc_inprog = 0; 8002 8003 /* 8004 * The open/close semaphore is used to serialize threads executing 8005 * in the driver's open & close entry point routines for a given 8006 * instance. 8007 */ 8008 (void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL); 8009 8010 /* 8011 * The conf file entry and softstate variable is a forceful override, 8012 * meaning a non-zero value must be entered to change the default. 8013 */ 8014 un->un_f_disksort_disabled = FALSE; 8015 8016 /* 8017 * Retrieve the properties from the static driver table or the driver 8018 * configuration file (.conf) for this unit and update the soft state 8019 * for the device as needed for the indicated properties. 8020 * Note: the property configuration needs to occur here as some of the 8021 * following routines may have dependancies on soft state flags set 8022 * as part of the driver property configuration. 8023 */ 8024 sd_read_unit_properties(un); 8025 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8026 "sd_unit_attach: un:0x%p property configuration complete.\n", un); 8027 8028 /* 8029 * Only if a device has "hotpluggable" property, it is 8030 * treated as hotpluggable device. Otherwise, it is 8031 * regarded as non-hotpluggable one. 8032 */ 8033 if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable", 8034 -1) != -1) { 8035 un->un_f_is_hotpluggable = TRUE; 8036 } 8037 8038 /* 8039 * set unit's attributes(flags) according to "hotpluggable" and 8040 * RMB bit in INQUIRY data. 8041 */ 8042 sd_set_unit_attributes(un, devi); 8043 8044 /* 8045 * By default, we mark the capacity, lbasize, and geometry 8046 * as invalid. Only if we successfully read a valid capacity 8047 * will we update the un_blockcount and un_tgt_blocksize with the 8048 * valid values (the geometry will be validated later). 8049 */ 8050 un->un_f_blockcount_is_valid = FALSE; 8051 un->un_f_tgt_blocksize_is_valid = FALSE; 8052 un->un_f_geometry_is_valid = FALSE; 8053 8054 /* 8055 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine 8056 * otherwise. 8057 */ 8058 un->un_tgt_blocksize = un->un_sys_blocksize = DEV_BSIZE; 8059 un->un_blockcount = 0; 8060 8061 /* 8062 * Set up the per-instance info needed to determine the correct 8063 * CDBs and other info for issuing commands to the target. 8064 */ 8065 sd_init_cdb_limits(un); 8066 8067 /* 8068 * Set up the IO chains to use, based upon the target type. 8069 */ 8070 if (un->un_f_non_devbsize_supported) { 8071 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA; 8072 } else { 8073 un->un_buf_chain_type = SD_CHAIN_INFO_DISK; 8074 } 8075 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD; 8076 un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD; 8077 un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD; 8078 8079 un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf), 8080 sd_xbuf_strategy, un, sd_xbuf_active_limit, sd_xbuf_reserve_limit, 8081 ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER); 8082 ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi); 8083 8084 8085 if (ISCD(un)) { 8086 un->un_additional_codes = sd_additional_codes; 8087 } else { 8088 un->un_additional_codes = NULL; 8089 } 8090 8091 /* 8092 * Create the kstats here so they can be available for attach-time 8093 * routines that send commands to the unit (either polled or via 8094 * sd_send_scsi_cmd). 8095 * 8096 * Note: This is a critical sequence that needs to be maintained: 8097 * 1) Instantiate the kstats here, before any routines using the 8098 * iopath (i.e. sd_send_scsi_cmd). 8099 * 2) Initialize the error stats (sd_set_errstats) and partition 8100 * stats (sd_set_pstats), following sd_validate_geometry(), 8101 * sd_register_devid(), and sd_cache_control(). 8102 */ 8103 8104 un->un_stats = kstat_create(sd_label, instance, 8105 NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT); 8106 if (un->un_stats != NULL) { 8107 un->un_stats->ks_lock = SD_MUTEX(un); 8108 kstat_install(un->un_stats); 8109 } 8110 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8111 "sd_unit_attach: un:0x%p un_stats created\n", un); 8112 8113 sd_create_errstats(un, instance); 8114 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8115 "sd_unit_attach: un:0x%p errstats created\n", un); 8116 8117 /* 8118 * The following if/else code was relocated here from below as part 8119 * of the fix for bug (4430280). However with the default setup added 8120 * on entry to this routine, it's no longer absolutely necessary for 8121 * this to be before the call to sd_spin_up_unit. 8122 */ 8123 if (SD_IS_PARALLEL_SCSI(un)) { 8124 /* 8125 * If SCSI-2 tagged queueing is supported by the target 8126 * and by the host adapter then we will enable it. 8127 */ 8128 un->un_tagflags = 0; 8129 if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && 8130 (devp->sd_inq->inq_cmdque) && 8131 (un->un_f_arq_enabled == TRUE)) { 8132 if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 8133 1, 1) == 1) { 8134 un->un_tagflags = FLAG_STAG; 8135 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8136 "sd_unit_attach: un:0x%p tag queueing " 8137 "enabled\n", un); 8138 } else if (scsi_ifgetcap(SD_ADDRESS(un), 8139 "untagged-qing", 0) == 1) { 8140 un->un_f_opt_queueing = TRUE; 8141 un->un_saved_throttle = un->un_throttle = 8142 min(un->un_throttle, 3); 8143 } else { 8144 un->un_f_opt_queueing = FALSE; 8145 un->un_saved_throttle = un->un_throttle = 1; 8146 } 8147 } else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0) 8148 == 1) && (un->un_f_arq_enabled == TRUE)) { 8149 /* The Host Adapter supports internal queueing. */ 8150 un->un_f_opt_queueing = TRUE; 8151 un->un_saved_throttle = un->un_throttle = 8152 min(un->un_throttle, 3); 8153 } else { 8154 un->un_f_opt_queueing = FALSE; 8155 un->un_saved_throttle = un->un_throttle = 1; 8156 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8157 "sd_unit_attach: un:0x%p no tag queueing\n", un); 8158 } 8159 8160 8161 /* Setup or tear down default wide operations for disks */ 8162 8163 /* 8164 * Note: Legacy: it may be possible for both "sd_max_xfer_size" 8165 * and "ssd_max_xfer_size" to exist simultaneously on the same 8166 * system and be set to different values. In the future this 8167 * code may need to be updated when the ssd module is 8168 * obsoleted and removed from the system. (4299588) 8169 */ 8170 if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && 8171 (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) { 8172 if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 8173 1, 1) == 1) { 8174 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8175 "sd_unit_attach: un:0x%p Wide Transfer " 8176 "enabled\n", un); 8177 } 8178 8179 /* 8180 * If tagged queuing has also been enabled, then 8181 * enable large xfers 8182 */ 8183 if (un->un_saved_throttle == sd_max_throttle) { 8184 un->un_max_xfer_size = 8185 ddi_getprop(DDI_DEV_T_ANY, devi, 0, 8186 sd_max_xfer_size, SD_MAX_XFER_SIZE); 8187 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8188 "sd_unit_attach: un:0x%p max transfer " 8189 "size=0x%x\n", un, un->un_max_xfer_size); 8190 } 8191 } else { 8192 if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 8193 0, 1) == 1) { 8194 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8195 "sd_unit_attach: un:0x%p " 8196 "Wide Transfer disabled\n", un); 8197 } 8198 } 8199 } else { 8200 un->un_tagflags = FLAG_STAG; 8201 un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY, 8202 devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE); 8203 } 8204 8205 /* 8206 * If this target supports LUN reset, try to enable it. 8207 */ 8208 if (un->un_f_lun_reset_enabled) { 8209 if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) { 8210 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: " 8211 "un:0x%p lun_reset capability set\n", un); 8212 } else { 8213 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: " 8214 "un:0x%p lun-reset capability not set\n", un); 8215 } 8216 } 8217 8218 /* 8219 * At this point in the attach, we have enough info in the 8220 * soft state to be able to issue commands to the target. 8221 * 8222 * All command paths used below MUST issue their commands as 8223 * SD_PATH_DIRECT. This is important as intermediate layers 8224 * are not all initialized yet (such as PM). 8225 */ 8226 8227 /* 8228 * Send a TEST UNIT READY command to the device. This should clear 8229 * any outstanding UNIT ATTENTION that may be present. 8230 * 8231 * Note: Don't check for success, just track if there is a reservation, 8232 * this is a throw away command to clear any unit attentions. 8233 * 8234 * Note: This MUST be the first command issued to the target during 8235 * attach to ensure power on UNIT ATTENTIONS are cleared. 8236 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated 8237 * with attempts at spinning up a device with no media. 8238 */ 8239 if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) { 8240 reservation_flag = SD_TARGET_IS_RESERVED; 8241 } 8242 8243 /* 8244 * If the device is NOT a removable media device, attempt to spin 8245 * it up (using the START_STOP_UNIT command) and read its capacity 8246 * (using the READ CAPACITY command). Note, however, that either 8247 * of these could fail and in some cases we would continue with 8248 * the attach despite the failure (see below). 8249 */ 8250 if (un->un_f_descr_format_supported) { 8251 switch (sd_spin_up_unit(un)) { 8252 case 0: 8253 /* 8254 * Spin-up was successful; now try to read the 8255 * capacity. If successful then save the results 8256 * and mark the capacity & lbasize as valid. 8257 */ 8258 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8259 "sd_unit_attach: un:0x%p spin-up successful\n", un); 8260 8261 switch (sd_send_scsi_READ_CAPACITY(un, &capacity, 8262 &lbasize, SD_PATH_DIRECT)) { 8263 case 0: { 8264 if (capacity > DK_MAX_BLOCKS) { 8265 #ifdef _LP64 8266 /* 8267 * Enable descriptor format sense data 8268 * so that we can get 64 bit sense 8269 * data fields. 8270 */ 8271 sd_enable_descr_sense(un); 8272 #else 8273 /* 32-bit kernels can't handle this */ 8274 scsi_log(SD_DEVINFO(un), 8275 sd_label, CE_WARN, 8276 "disk has %llu blocks, which " 8277 "is too large for a 32-bit " 8278 "kernel", capacity); 8279 goto spinup_failed; 8280 #endif 8281 } 8282 /* 8283 * The following relies on 8284 * sd_send_scsi_READ_CAPACITY never 8285 * returning 0 for capacity and/or lbasize. 8286 */ 8287 sd_update_block_info(un, lbasize, capacity); 8288 8289 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8290 "sd_unit_attach: un:0x%p capacity = %ld " 8291 "blocks; lbasize= %ld.\n", un, 8292 un->un_blockcount, un->un_tgt_blocksize); 8293 8294 break; 8295 } 8296 case EACCES: 8297 /* 8298 * Should never get here if the spin-up 8299 * succeeded, but code it in anyway. 8300 * From here, just continue with the attach... 8301 */ 8302 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8303 "sd_unit_attach: un:0x%p " 8304 "sd_send_scsi_READ_CAPACITY " 8305 "returned reservation conflict\n", un); 8306 reservation_flag = SD_TARGET_IS_RESERVED; 8307 break; 8308 default: 8309 /* 8310 * Likewise, should never get here if the 8311 * spin-up succeeded. Just continue with 8312 * the attach... 8313 */ 8314 break; 8315 } 8316 break; 8317 case EACCES: 8318 /* 8319 * Device is reserved by another host. In this case 8320 * we could not spin it up or read the capacity, but 8321 * we continue with the attach anyway. 8322 */ 8323 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8324 "sd_unit_attach: un:0x%p spin-up reservation " 8325 "conflict.\n", un); 8326 reservation_flag = SD_TARGET_IS_RESERVED; 8327 break; 8328 default: 8329 /* Fail the attach if the spin-up failed. */ 8330 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8331 "sd_unit_attach: un:0x%p spin-up failed.", un); 8332 goto spinup_failed; 8333 } 8334 } 8335 8336 /* 8337 * Check to see if this is a MMC drive 8338 */ 8339 if (ISCD(un)) { 8340 sd_set_mmc_caps(un); 8341 } 8342 8343 /* 8344 * Create the minor nodes for the device. 8345 * Note: If we want to support fdisk on both sparc and intel, this will 8346 * have to separate out the notion that VTOC8 is always sparc, and 8347 * VTOC16 is always intel (tho these can be the defaults). The vtoc 8348 * type will have to be determined at run-time, and the fdisk 8349 * partitioning will have to have been read & set up before we 8350 * create the minor nodes. (any other inits (such as kstats) that 8351 * also ought to be done before creating the minor nodes?) (Doesn't 8352 * setting up the minor nodes kind of imply that we're ready to 8353 * handle an open from userland?) 8354 */ 8355 if (sd_create_minor_nodes(un, devi) != DDI_SUCCESS) { 8356 goto create_minor_nodes_failed; 8357 } 8358 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8359 "sd_unit_attach: un:0x%p minor nodes created\n", un); 8360 8361 /* 8362 * Add a zero-length attribute to tell the world we support 8363 * kernel ioctls (for layered drivers) 8364 */ 8365 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP, 8366 DDI_KERNEL_IOCTL, NULL, 0); 8367 8368 /* 8369 * Add a boolean property to tell the world we support 8370 * the B_FAILFAST flag (for layered drivers) 8371 */ 8372 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP, 8373 "ddi-failfast-supported", NULL, 0); 8374 8375 /* 8376 * Initialize power management 8377 */ 8378 mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL); 8379 cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL); 8380 sd_setup_pm(un, devi); 8381 if (un->un_f_pm_is_enabled == FALSE) { 8382 /* 8383 * For performance, point to a jump table that does 8384 * not include pm. 8385 * The direct and priority chains don't change with PM. 8386 * 8387 * Note: this is currently done based on individual device 8388 * capabilities. When an interface for determining system 8389 * power enabled state becomes available, or when additional 8390 * layers are added to the command chain, these values will 8391 * have to be re-evaluated for correctness. 8392 */ 8393 if (un->un_f_non_devbsize_supported) { 8394 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM; 8395 } else { 8396 un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM; 8397 } 8398 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM; 8399 } 8400 8401 /* 8402 * This property is set to 0 by HA software to avoid retries 8403 * on a reserved disk. (The preferred property name is 8404 * "retry-on-reservation-conflict") (1189689) 8405 * 8406 * Note: The use of a global here can have unintended consequences. A 8407 * per instance variable is preferrable to match the capabilities of 8408 * different underlying hba's (4402600) 8409 */ 8410 sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi, 8411 DDI_PROP_DONTPASS, "retry-on-reservation-conflict", 8412 sd_retry_on_reservation_conflict); 8413 if (sd_retry_on_reservation_conflict != 0) { 8414 sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, 8415 devi, DDI_PROP_DONTPASS, sd_resv_conflict_name, 8416 sd_retry_on_reservation_conflict); 8417 } 8418 8419 /* Set up options for QFULL handling. */ 8420 if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0, 8421 "qfull-retries", -1)) != -1) { 8422 (void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries", 8423 rval, 1); 8424 } 8425 if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0, 8426 "qfull-retry-interval", -1)) != -1) { 8427 (void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval", 8428 rval, 1); 8429 } 8430 8431 /* 8432 * This just prints a message that announces the existence of the 8433 * device. The message is always printed in the system logfile, but 8434 * only appears on the console if the system is booted with the 8435 * -v (verbose) argument. 8436 */ 8437 ddi_report_dev(devi); 8438 8439 /* 8440 * The framework calls driver attach routines single-threaded 8441 * for a given instance. However we still acquire SD_MUTEX here 8442 * because this required for calling the sd_validate_geometry() 8443 * and sd_register_devid() functions. 8444 */ 8445 mutex_enter(SD_MUTEX(un)); 8446 un->un_f_geometry_is_valid = FALSE; 8447 un->un_mediastate = DKIO_NONE; 8448 un->un_reserved = -1; 8449 8450 /* 8451 * Read and validate the device's geometry (ie, disk label) 8452 * A new unformatted drive will not have a valid geometry, but 8453 * the driver needs to successfully attach to this device so 8454 * the drive can be formatted via ioctls. 8455 */ 8456 if (((sd_validate_geometry(un, SD_PATH_DIRECT) == 8457 ENOTSUP)) && 8458 (un->un_blockcount < DK_MAX_BLOCKS)) { 8459 /* 8460 * We found a small disk with an EFI label on it; 8461 * we need to fix up the minor nodes accordingly. 8462 */ 8463 ddi_remove_minor_node(devi, "h"); 8464 ddi_remove_minor_node(devi, "h,raw"); 8465 (void) ddi_create_minor_node(devi, "wd", 8466 S_IFBLK, 8467 (instance << SDUNIT_SHIFT) | WD_NODE, 8468 un->un_node_type, NULL); 8469 (void) ddi_create_minor_node(devi, "wd,raw", 8470 S_IFCHR, 8471 (instance << SDUNIT_SHIFT) | WD_NODE, 8472 un->un_node_type, NULL); 8473 } 8474 8475 /* 8476 * Read and initialize the devid for the unit. 8477 */ 8478 ASSERT(un->un_errstats != NULL); 8479 if (un->un_f_devid_supported) { 8480 sd_register_devid(un, devi, reservation_flag); 8481 } 8482 mutex_exit(SD_MUTEX(un)); 8483 8484 #if (defined(__fibre)) 8485 /* 8486 * Register callbacks for fibre only. You can't do this soley 8487 * on the basis of the devid_type because this is hba specific. 8488 * We need to query our hba capabilities to find out whether to 8489 * register or not. 8490 */ 8491 if (un->un_f_is_fibre) { 8492 if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) { 8493 sd_init_event_callbacks(un); 8494 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8495 "sd_unit_attach: un:0x%p event callbacks inserted", un); 8496 } 8497 } 8498 #endif 8499 8500 if (un->un_f_opt_disable_cache == TRUE) { 8501 /* 8502 * Disable both read cache and write cache. This is 8503 * the historic behavior of the keywords in the config file. 8504 */ 8505 if (sd_cache_control(un, SD_CACHE_DISABLE, SD_CACHE_DISABLE) != 8506 0) { 8507 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8508 "sd_unit_attach: un:0x%p Could not disable " 8509 "caching", un); 8510 goto devid_failed; 8511 } 8512 } 8513 8514 /* 8515 * Check the value of the WCE bit now and 8516 * set un_f_write_cache_enabled accordingly. 8517 */ 8518 (void) sd_get_write_cache_enabled(un, &wc_enabled); 8519 mutex_enter(SD_MUTEX(un)); 8520 un->un_f_write_cache_enabled = (wc_enabled != 0); 8521 mutex_exit(SD_MUTEX(un)); 8522 8523 /* 8524 * Set the pstat and error stat values here, so data obtained during the 8525 * previous attach-time routines is available. 8526 * 8527 * Note: This is a critical sequence that needs to be maintained: 8528 * 1) Instantiate the kstats before any routines using the iopath 8529 * (i.e. sd_send_scsi_cmd). 8530 * 2) Initialize the error stats (sd_set_errstats) and partition 8531 * stats (sd_set_pstats)here, following sd_validate_geometry(), 8532 * sd_register_devid(), and sd_cache_control(). 8533 */ 8534 if (un->un_f_pkstats_enabled) { 8535 sd_set_pstats(un); 8536 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8537 "sd_unit_attach: un:0x%p pstats created and set\n", un); 8538 } 8539 8540 sd_set_errstats(un); 8541 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8542 "sd_unit_attach: un:0x%p errstats set\n", un); 8543 8544 /* 8545 * Find out what type of reservation this disk supports. 8546 */ 8547 switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) { 8548 case 0: 8549 /* 8550 * SCSI-3 reservations are supported. 8551 */ 8552 un->un_reservation_type = SD_SCSI3_RESERVATION; 8553 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8554 "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un); 8555 break; 8556 case ENOTSUP: 8557 /* 8558 * The PERSISTENT RESERVE IN command would not be recognized by 8559 * a SCSI-2 device, so assume the reservation type is SCSI-2. 8560 */ 8561 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8562 "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un); 8563 un->un_reservation_type = SD_SCSI2_RESERVATION; 8564 break; 8565 default: 8566 /* 8567 * default to SCSI-3 reservations 8568 */ 8569 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8570 "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un); 8571 un->un_reservation_type = SD_SCSI3_RESERVATION; 8572 break; 8573 } 8574 8575 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8576 "sd_unit_attach: un:0x%p exit success\n", un); 8577 8578 return (DDI_SUCCESS); 8579 8580 /* 8581 * An error occurred during the attach; clean up & return failure. 8582 */ 8583 8584 devid_failed: 8585 8586 setup_pm_failed: 8587 ddi_remove_minor_node(devi, NULL); 8588 8589 create_minor_nodes_failed: 8590 /* 8591 * Cleanup from the scsi_ifsetcap() calls (437868) 8592 */ 8593 (void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1); 8594 (void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1); 8595 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 8596 8597 if (un->un_f_is_fibre == FALSE) { 8598 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1); 8599 } 8600 8601 spinup_failed: 8602 8603 mutex_enter(SD_MUTEX(un)); 8604 8605 /* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */ 8606 if (un->un_direct_priority_timeid != NULL) { 8607 timeout_id_t temp_id = un->un_direct_priority_timeid; 8608 un->un_direct_priority_timeid = NULL; 8609 mutex_exit(SD_MUTEX(un)); 8610 (void) untimeout(temp_id); 8611 mutex_enter(SD_MUTEX(un)); 8612 } 8613 8614 /* Cancel any pending start/stop timeouts */ 8615 if (un->un_startstop_timeid != NULL) { 8616 timeout_id_t temp_id = un->un_startstop_timeid; 8617 un->un_startstop_timeid = NULL; 8618 mutex_exit(SD_MUTEX(un)); 8619 (void) untimeout(temp_id); 8620 mutex_enter(SD_MUTEX(un)); 8621 } 8622 8623 /* Cancel any pending reset-throttle timeouts */ 8624 if (un->un_reset_throttle_timeid != NULL) { 8625 timeout_id_t temp_id = un->un_reset_throttle_timeid; 8626 un->un_reset_throttle_timeid = NULL; 8627 mutex_exit(SD_MUTEX(un)); 8628 (void) untimeout(temp_id); 8629 mutex_enter(SD_MUTEX(un)); 8630 } 8631 8632 /* Cancel any pending retry timeouts */ 8633 if (un->un_retry_timeid != NULL) { 8634 timeout_id_t temp_id = un->un_retry_timeid; 8635 un->un_retry_timeid = NULL; 8636 mutex_exit(SD_MUTEX(un)); 8637 (void) untimeout(temp_id); 8638 mutex_enter(SD_MUTEX(un)); 8639 } 8640 8641 /* Cancel any pending delayed cv broadcast timeouts */ 8642 if (un->un_dcvb_timeid != NULL) { 8643 timeout_id_t temp_id = un->un_dcvb_timeid; 8644 un->un_dcvb_timeid = NULL; 8645 mutex_exit(SD_MUTEX(un)); 8646 (void) untimeout(temp_id); 8647 mutex_enter(SD_MUTEX(un)); 8648 } 8649 8650 mutex_exit(SD_MUTEX(un)); 8651 8652 /* There should not be any in-progress I/O so ASSERT this check */ 8653 ASSERT(un->un_ncmds_in_transport == 0); 8654 ASSERT(un->un_ncmds_in_driver == 0); 8655 8656 /* Do not free the softstate if the callback routine is active */ 8657 sd_sync_with_callback(un); 8658 8659 /* 8660 * Partition stats apparently are not used with removables. These would 8661 * not have been created during attach, so no need to clean them up... 8662 */ 8663 if (un->un_stats != NULL) { 8664 kstat_delete(un->un_stats); 8665 un->un_stats = NULL; 8666 } 8667 if (un->un_errstats != NULL) { 8668 kstat_delete(un->un_errstats); 8669 un->un_errstats = NULL; 8670 } 8671 8672 ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi); 8673 ddi_xbuf_attr_destroy(un->un_xbuf_attr); 8674 8675 ddi_prop_remove_all(devi); 8676 sema_destroy(&un->un_semoclose); 8677 cv_destroy(&un->un_state_cv); 8678 8679 getrbuf_failed: 8680 8681 sd_free_rqs(un); 8682 8683 alloc_rqs_failed: 8684 8685 devp->sd_private = NULL; 8686 bzero(un, sizeof (struct sd_lun)); /* Clear any stale data! */ 8687 8688 get_softstate_failed: 8689 /* 8690 * Note: the man pages are unclear as to whether or not doing a 8691 * ddi_soft_state_free(sd_state, instance) is the right way to 8692 * clean up after the ddi_soft_state_zalloc() if the subsequent 8693 * ddi_get_soft_state() fails. The implication seems to be 8694 * that the get_soft_state cannot fail if the zalloc succeeds. 8695 */ 8696 ddi_soft_state_free(sd_state, instance); 8697 8698 probe_failed: 8699 scsi_unprobe(devp); 8700 #ifdef SDDEBUG 8701 if ((sd_component_mask & SD_LOG_ATTACH_DETACH) && 8702 (sd_level_mask & SD_LOGMASK_TRACE)) { 8703 cmn_err(CE_CONT, "sd_unit_attach: un:0x%p exit failure\n", 8704 (void *)un); 8705 } 8706 #endif 8707 return (DDI_FAILURE); 8708 } 8709 8710 8711 /* 8712 * Function: sd_unit_detach 8713 * 8714 * Description: Performs DDI_DETACH processing for sddetach(). 8715 * 8716 * Return Code: DDI_SUCCESS 8717 * DDI_FAILURE 8718 * 8719 * Context: Kernel thread context 8720 */ 8721 8722 static int 8723 sd_unit_detach(dev_info_t *devi) 8724 { 8725 struct scsi_device *devp; 8726 struct sd_lun *un; 8727 int i; 8728 dev_t dev; 8729 int instance = ddi_get_instance(devi); 8730 8731 mutex_enter(&sd_detach_mutex); 8732 8733 /* 8734 * Fail the detach for any of the following: 8735 * - Unable to get the sd_lun struct for the instance 8736 * - A layered driver has an outstanding open on the instance 8737 * - Another thread is already detaching this instance 8738 * - Another thread is currently performing an open 8739 */ 8740 devp = ddi_get_driver_private(devi); 8741 if ((devp == NULL) || 8742 ((un = (struct sd_lun *)devp->sd_private) == NULL) || 8743 (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) || 8744 (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) { 8745 mutex_exit(&sd_detach_mutex); 8746 return (DDI_FAILURE); 8747 } 8748 8749 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un); 8750 8751 /* 8752 * Mark this instance as currently in a detach, to inhibit any 8753 * opens from a layered driver. 8754 */ 8755 un->un_detach_count++; 8756 mutex_exit(&sd_detach_mutex); 8757 8758 dev = sd_make_device(SD_DEVINFO(un)); 8759 8760 _NOTE(COMPETING_THREADS_NOW); 8761 8762 mutex_enter(SD_MUTEX(un)); 8763 8764 /* 8765 * Fail the detach if there are any outstanding layered 8766 * opens on this device. 8767 */ 8768 for (i = 0; i < NDKMAP; i++) { 8769 if (un->un_ocmap.lyropen[i] != 0) { 8770 goto err_notclosed; 8771 } 8772 } 8773 8774 /* 8775 * Verify there are NO outstanding commands issued to this device. 8776 * ie, un_ncmds_in_transport == 0. 8777 * It's possible to have outstanding commands through the physio 8778 * code path, even though everything's closed. 8779 */ 8780 if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) || 8781 (un->un_direct_priority_timeid != NULL) || 8782 (un->un_state == SD_STATE_RWAIT)) { 8783 mutex_exit(SD_MUTEX(un)); 8784 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8785 "sd_dr_detach: Detach failure due to outstanding cmds\n"); 8786 goto err_stillbusy; 8787 } 8788 8789 /* 8790 * If we have the device reserved, release the reservation. 8791 */ 8792 if ((un->un_resvd_status & SD_RESERVE) && 8793 !(un->un_resvd_status & SD_LOST_RESERVE)) { 8794 mutex_exit(SD_MUTEX(un)); 8795 /* 8796 * Note: sd_reserve_release sends a command to the device 8797 * via the sd_ioctlcmd() path, and can sleep. 8798 */ 8799 if (sd_reserve_release(dev, SD_RELEASE) != 0) { 8800 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8801 "sd_dr_detach: Cannot release reservation \n"); 8802 } 8803 } else { 8804 mutex_exit(SD_MUTEX(un)); 8805 } 8806 8807 /* 8808 * Untimeout any reserve recover, throttle reset, restart unit 8809 * and delayed broadcast timeout threads. Protect the timeout pointer 8810 * from getting nulled by their callback functions. 8811 */ 8812 mutex_enter(SD_MUTEX(un)); 8813 if (un->un_resvd_timeid != NULL) { 8814 timeout_id_t temp_id = un->un_resvd_timeid; 8815 un->un_resvd_timeid = NULL; 8816 mutex_exit(SD_MUTEX(un)); 8817 (void) untimeout(temp_id); 8818 mutex_enter(SD_MUTEX(un)); 8819 } 8820 8821 if (un->un_reset_throttle_timeid != NULL) { 8822 timeout_id_t temp_id = un->un_reset_throttle_timeid; 8823 un->un_reset_throttle_timeid = NULL; 8824 mutex_exit(SD_MUTEX(un)); 8825 (void) untimeout(temp_id); 8826 mutex_enter(SD_MUTEX(un)); 8827 } 8828 8829 if (un->un_startstop_timeid != NULL) { 8830 timeout_id_t temp_id = un->un_startstop_timeid; 8831 un->un_startstop_timeid = NULL; 8832 mutex_exit(SD_MUTEX(un)); 8833 (void) untimeout(temp_id); 8834 mutex_enter(SD_MUTEX(un)); 8835 } 8836 8837 if (un->un_dcvb_timeid != NULL) { 8838 timeout_id_t temp_id = un->un_dcvb_timeid; 8839 un->un_dcvb_timeid = NULL; 8840 mutex_exit(SD_MUTEX(un)); 8841 (void) untimeout(temp_id); 8842 } else { 8843 mutex_exit(SD_MUTEX(un)); 8844 } 8845 8846 /* Remove any pending reservation reclaim requests for this device */ 8847 sd_rmv_resv_reclaim_req(dev); 8848 8849 mutex_enter(SD_MUTEX(un)); 8850 8851 /* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */ 8852 if (un->un_direct_priority_timeid != NULL) { 8853 timeout_id_t temp_id = un->un_direct_priority_timeid; 8854 un->un_direct_priority_timeid = NULL; 8855 mutex_exit(SD_MUTEX(un)); 8856 (void) untimeout(temp_id); 8857 mutex_enter(SD_MUTEX(un)); 8858 } 8859 8860 /* Cancel any active multi-host disk watch thread requests */ 8861 if (un->un_mhd_token != NULL) { 8862 mutex_exit(SD_MUTEX(un)); 8863 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token)); 8864 if (scsi_watch_request_terminate(un->un_mhd_token, 8865 SCSI_WATCH_TERMINATE_NOWAIT)) { 8866 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8867 "sd_dr_detach: Cannot cancel mhd watch request\n"); 8868 /* 8869 * Note: We are returning here after having removed 8870 * some driver timeouts above. This is consistent with 8871 * the legacy implementation but perhaps the watch 8872 * terminate call should be made with the wait flag set. 8873 */ 8874 goto err_stillbusy; 8875 } 8876 mutex_enter(SD_MUTEX(un)); 8877 un->un_mhd_token = NULL; 8878 } 8879 8880 if (un->un_swr_token != NULL) { 8881 mutex_exit(SD_MUTEX(un)); 8882 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token)); 8883 if (scsi_watch_request_terminate(un->un_swr_token, 8884 SCSI_WATCH_TERMINATE_NOWAIT)) { 8885 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8886 "sd_dr_detach: Cannot cancel swr watch request\n"); 8887 /* 8888 * Note: We are returning here after having removed 8889 * some driver timeouts above. This is consistent with 8890 * the legacy implementation but perhaps the watch 8891 * terminate call should be made with the wait flag set. 8892 */ 8893 goto err_stillbusy; 8894 } 8895 mutex_enter(SD_MUTEX(un)); 8896 un->un_swr_token = NULL; 8897 } 8898 8899 mutex_exit(SD_MUTEX(un)); 8900 8901 /* 8902 * Clear any scsi_reset_notifies. We clear the reset notifies 8903 * if we have not registered one. 8904 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX! 8905 */ 8906 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL, 8907 sd_mhd_reset_notify_cb, (caddr_t)un); 8908 8909 /* 8910 * protect the timeout pointers from getting nulled by 8911 * their callback functions during the cancellation process. 8912 * In such a scenario untimeout can be invoked with a null value. 8913 */ 8914 _NOTE(NO_COMPETING_THREADS_NOW); 8915 8916 mutex_enter(&un->un_pm_mutex); 8917 if (un->un_pm_idle_timeid != NULL) { 8918 timeout_id_t temp_id = un->un_pm_idle_timeid; 8919 un->un_pm_idle_timeid = NULL; 8920 mutex_exit(&un->un_pm_mutex); 8921 8922 /* 8923 * Timeout is active; cancel it. 8924 * Note that it'll never be active on a device 8925 * that does not support PM therefore we don't 8926 * have to check before calling pm_idle_component. 8927 */ 8928 (void) untimeout(temp_id); 8929 (void) pm_idle_component(SD_DEVINFO(un), 0); 8930 mutex_enter(&un->un_pm_mutex); 8931 } 8932 8933 /* 8934 * Check whether there is already a timeout scheduled for power 8935 * management. If yes then don't lower the power here, that's. 8936 * the timeout handler's job. 8937 */ 8938 if (un->un_pm_timeid != NULL) { 8939 timeout_id_t temp_id = un->un_pm_timeid; 8940 un->un_pm_timeid = NULL; 8941 mutex_exit(&un->un_pm_mutex); 8942 /* 8943 * Timeout is active; cancel it. 8944 * Note that it'll never be active on a device 8945 * that does not support PM therefore we don't 8946 * have to check before calling pm_idle_component. 8947 */ 8948 (void) untimeout(temp_id); 8949 (void) pm_idle_component(SD_DEVINFO(un), 0); 8950 8951 } else { 8952 mutex_exit(&un->un_pm_mutex); 8953 if ((un->un_f_pm_is_enabled == TRUE) && 8954 (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) != 8955 DDI_SUCCESS)) { 8956 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8957 "sd_dr_detach: Lower power request failed, ignoring.\n"); 8958 /* 8959 * Fix for bug: 4297749, item # 13 8960 * The above test now includes a check to see if PM is 8961 * supported by this device before call 8962 * pm_lower_power(). 8963 * Note, the following is not dead code. The call to 8964 * pm_lower_power above will generate a call back into 8965 * our sdpower routine which might result in a timeout 8966 * handler getting activated. Therefore the following 8967 * code is valid and necessary. 8968 */ 8969 mutex_enter(&un->un_pm_mutex); 8970 if (un->un_pm_timeid != NULL) { 8971 timeout_id_t temp_id = un->un_pm_timeid; 8972 un->un_pm_timeid = NULL; 8973 mutex_exit(&un->un_pm_mutex); 8974 (void) untimeout(temp_id); 8975 (void) pm_idle_component(SD_DEVINFO(un), 0); 8976 } else { 8977 mutex_exit(&un->un_pm_mutex); 8978 } 8979 } 8980 } 8981 8982 /* 8983 * Cleanup from the scsi_ifsetcap() calls (437868) 8984 * Relocated here from above to be after the call to 8985 * pm_lower_power, which was getting errors. 8986 */ 8987 (void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1); 8988 (void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1); 8989 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 8990 8991 if (un->un_f_is_fibre == FALSE) { 8992 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1); 8993 } 8994 8995 /* 8996 * Remove any event callbacks, fibre only 8997 */ 8998 if (un->un_f_is_fibre == TRUE) { 8999 if ((un->un_insert_event != NULL) && 9000 (ddi_remove_event_handler(un->un_insert_cb_id) != 9001 DDI_SUCCESS)) { 9002 /* 9003 * Note: We are returning here after having done 9004 * substantial cleanup above. This is consistent 9005 * with the legacy implementation but this may not 9006 * be the right thing to do. 9007 */ 9008 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 9009 "sd_dr_detach: Cannot cancel insert event\n"); 9010 goto err_remove_event; 9011 } 9012 un->un_insert_event = NULL; 9013 9014 if ((un->un_remove_event != NULL) && 9015 (ddi_remove_event_handler(un->un_remove_cb_id) != 9016 DDI_SUCCESS)) { 9017 /* 9018 * Note: We are returning here after having done 9019 * substantial cleanup above. This is consistent 9020 * with the legacy implementation but this may not 9021 * be the right thing to do. 9022 */ 9023 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 9024 "sd_dr_detach: Cannot cancel remove event\n"); 9025 goto err_remove_event; 9026 } 9027 un->un_remove_event = NULL; 9028 } 9029 9030 /* Do not free the softstate if the callback routine is active */ 9031 sd_sync_with_callback(un); 9032 9033 /* 9034 * Hold the detach mutex here, to make sure that no other threads ever 9035 * can access a (partially) freed soft state structure. 9036 */ 9037 mutex_enter(&sd_detach_mutex); 9038 9039 /* 9040 * Clean up the soft state struct. 9041 * Cleanup is done in reverse order of allocs/inits. 9042 * At this point there should be no competing threads anymore. 9043 */ 9044 9045 /* Unregister and free device id. */ 9046 ddi_devid_unregister(devi); 9047 if (un->un_devid) { 9048 ddi_devid_free(un->un_devid); 9049 un->un_devid = NULL; 9050 } 9051 9052 /* 9053 * Destroy wmap cache if it exists. 9054 */ 9055 if (un->un_wm_cache != NULL) { 9056 kmem_cache_destroy(un->un_wm_cache); 9057 un->un_wm_cache = NULL; 9058 } 9059 9060 /* Remove minor nodes */ 9061 ddi_remove_minor_node(devi, NULL); 9062 9063 /* 9064 * kstat cleanup is done in detach for all device types (4363169). 9065 * We do not want to fail detach if the device kstats are not deleted 9066 * since there is a confusion about the devo_refcnt for the device. 9067 * We just delete the kstats and let detach complete successfully. 9068 */ 9069 if (un->un_stats != NULL) { 9070 kstat_delete(un->un_stats); 9071 un->un_stats = NULL; 9072 } 9073 if (un->un_errstats != NULL) { 9074 kstat_delete(un->un_errstats); 9075 un->un_errstats = NULL; 9076 } 9077 9078 /* Remove partition stats */ 9079 if (un->un_f_pkstats_enabled) { 9080 for (i = 0; i < NSDMAP; i++) { 9081 if (un->un_pstats[i] != NULL) { 9082 kstat_delete(un->un_pstats[i]); 9083 un->un_pstats[i] = NULL; 9084 } 9085 } 9086 } 9087 9088 /* Remove xbuf registration */ 9089 ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi); 9090 ddi_xbuf_attr_destroy(un->un_xbuf_attr); 9091 9092 /* Remove driver properties */ 9093 ddi_prop_remove_all(devi); 9094 9095 mutex_destroy(&un->un_pm_mutex); 9096 cv_destroy(&un->un_pm_busy_cv); 9097 9098 cv_destroy(&un->un_wcc_cv); 9099 9100 /* Open/close semaphore */ 9101 sema_destroy(&un->un_semoclose); 9102 9103 /* Removable media condvar. */ 9104 cv_destroy(&un->un_state_cv); 9105 9106 /* Suspend/resume condvar. */ 9107 cv_destroy(&un->un_suspend_cv); 9108 cv_destroy(&un->un_disk_busy_cv); 9109 9110 sd_free_rqs(un); 9111 9112 /* Free up soft state */ 9113 devp->sd_private = NULL; 9114 bzero(un, sizeof (struct sd_lun)); 9115 ddi_soft_state_free(sd_state, instance); 9116 9117 mutex_exit(&sd_detach_mutex); 9118 9119 /* This frees up the INQUIRY data associated with the device. */ 9120 scsi_unprobe(devp); 9121 9122 return (DDI_SUCCESS); 9123 9124 err_notclosed: 9125 mutex_exit(SD_MUTEX(un)); 9126 9127 err_stillbusy: 9128 _NOTE(NO_COMPETING_THREADS_NOW); 9129 9130 err_remove_event: 9131 mutex_enter(&sd_detach_mutex); 9132 un->un_detach_count--; 9133 mutex_exit(&sd_detach_mutex); 9134 9135 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n"); 9136 return (DDI_FAILURE); 9137 } 9138 9139 9140 /* 9141 * Driver minor node structure and data table 9142 */ 9143 struct driver_minor_data { 9144 char *name; 9145 minor_t minor; 9146 int type; 9147 }; 9148 9149 static struct driver_minor_data sd_minor_data[] = { 9150 {"a", 0, S_IFBLK}, 9151 {"b", 1, S_IFBLK}, 9152 {"c", 2, S_IFBLK}, 9153 {"d", 3, S_IFBLK}, 9154 {"e", 4, S_IFBLK}, 9155 {"f", 5, S_IFBLK}, 9156 {"g", 6, S_IFBLK}, 9157 {"h", 7, S_IFBLK}, 9158 #if defined(_SUNOS_VTOC_16) 9159 {"i", 8, S_IFBLK}, 9160 {"j", 9, S_IFBLK}, 9161 {"k", 10, S_IFBLK}, 9162 {"l", 11, S_IFBLK}, 9163 {"m", 12, S_IFBLK}, 9164 {"n", 13, S_IFBLK}, 9165 {"o", 14, S_IFBLK}, 9166 {"p", 15, S_IFBLK}, 9167 #endif /* defined(_SUNOS_VTOC_16) */ 9168 #if defined(_FIRMWARE_NEEDS_FDISK) 9169 {"q", 16, S_IFBLK}, 9170 {"r", 17, S_IFBLK}, 9171 {"s", 18, S_IFBLK}, 9172 {"t", 19, S_IFBLK}, 9173 {"u", 20, S_IFBLK}, 9174 #endif /* defined(_FIRMWARE_NEEDS_FDISK) */ 9175 {"a,raw", 0, S_IFCHR}, 9176 {"b,raw", 1, S_IFCHR}, 9177 {"c,raw", 2, S_IFCHR}, 9178 {"d,raw", 3, S_IFCHR}, 9179 {"e,raw", 4, S_IFCHR}, 9180 {"f,raw", 5, S_IFCHR}, 9181 {"g,raw", 6, S_IFCHR}, 9182 {"h,raw", 7, S_IFCHR}, 9183 #if defined(_SUNOS_VTOC_16) 9184 {"i,raw", 8, S_IFCHR}, 9185 {"j,raw", 9, S_IFCHR}, 9186 {"k,raw", 10, S_IFCHR}, 9187 {"l,raw", 11, S_IFCHR}, 9188 {"m,raw", 12, S_IFCHR}, 9189 {"n,raw", 13, S_IFCHR}, 9190 {"o,raw", 14, S_IFCHR}, 9191 {"p,raw", 15, S_IFCHR}, 9192 #endif /* defined(_SUNOS_VTOC_16) */ 9193 #if defined(_FIRMWARE_NEEDS_FDISK) 9194 {"q,raw", 16, S_IFCHR}, 9195 {"r,raw", 17, S_IFCHR}, 9196 {"s,raw", 18, S_IFCHR}, 9197 {"t,raw", 19, S_IFCHR}, 9198 {"u,raw", 20, S_IFCHR}, 9199 #endif /* defined(_FIRMWARE_NEEDS_FDISK) */ 9200 {0} 9201 }; 9202 9203 static struct driver_minor_data sd_minor_data_efi[] = { 9204 {"a", 0, S_IFBLK}, 9205 {"b", 1, S_IFBLK}, 9206 {"c", 2, S_IFBLK}, 9207 {"d", 3, S_IFBLK}, 9208 {"e", 4, S_IFBLK}, 9209 {"f", 5, S_IFBLK}, 9210 {"g", 6, S_IFBLK}, 9211 {"wd", 7, S_IFBLK}, 9212 #if defined(_FIRMWARE_NEEDS_FDISK) 9213 {"q", 16, S_IFBLK}, 9214 {"r", 17, S_IFBLK}, 9215 {"s", 18, S_IFBLK}, 9216 {"t", 19, S_IFBLK}, 9217 {"u", 20, S_IFBLK}, 9218 #endif /* defined(_FIRMWARE_NEEDS_FDISK) */ 9219 {"a,raw", 0, S_IFCHR}, 9220 {"b,raw", 1, S_IFCHR}, 9221 {"c,raw", 2, S_IFCHR}, 9222 {"d,raw", 3, S_IFCHR}, 9223 {"e,raw", 4, S_IFCHR}, 9224 {"f,raw", 5, S_IFCHR}, 9225 {"g,raw", 6, S_IFCHR}, 9226 {"wd,raw", 7, S_IFCHR}, 9227 #if defined(_FIRMWARE_NEEDS_FDISK) 9228 {"q,raw", 16, S_IFCHR}, 9229 {"r,raw", 17, S_IFCHR}, 9230 {"s,raw", 18, S_IFCHR}, 9231 {"t,raw", 19, S_IFCHR}, 9232 {"u,raw", 20, S_IFCHR}, 9233 #endif /* defined(_FIRMWARE_NEEDS_FDISK) */ 9234 {0} 9235 }; 9236 9237 9238 /* 9239 * Function: sd_create_minor_nodes 9240 * 9241 * Description: Create the minor device nodes for the instance. 9242 * 9243 * Arguments: un - driver soft state (unit) structure 9244 * devi - pointer to device info structure 9245 * 9246 * Return Code: DDI_SUCCESS 9247 * DDI_FAILURE 9248 * 9249 * Context: Kernel thread context 9250 */ 9251 9252 static int 9253 sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi) 9254 { 9255 struct driver_minor_data *dmdp; 9256 struct scsi_device *devp; 9257 int instance; 9258 char name[48]; 9259 9260 ASSERT(un != NULL); 9261 devp = ddi_get_driver_private(devi); 9262 instance = ddi_get_instance(devp->sd_dev); 9263 9264 /* 9265 * Create all the minor nodes for this target. 9266 */ 9267 if (un->un_blockcount > DK_MAX_BLOCKS) 9268 dmdp = sd_minor_data_efi; 9269 else 9270 dmdp = sd_minor_data; 9271 while (dmdp->name != NULL) { 9272 9273 (void) sprintf(name, "%s", dmdp->name); 9274 9275 if (ddi_create_minor_node(devi, name, dmdp->type, 9276 (instance << SDUNIT_SHIFT) | dmdp->minor, 9277 un->un_node_type, NULL) == DDI_FAILURE) { 9278 /* 9279 * Clean up any nodes that may have been created, in 9280 * case this fails in the middle of the loop. 9281 */ 9282 ddi_remove_minor_node(devi, NULL); 9283 return (DDI_FAILURE); 9284 } 9285 dmdp++; 9286 } 9287 9288 return (DDI_SUCCESS); 9289 } 9290 9291 9292 /* 9293 * Function: sd_create_errstats 9294 * 9295 * Description: This routine instantiates the device error stats. 9296 * 9297 * Note: During attach the stats are instantiated first so they are 9298 * available for attach-time routines that utilize the driver 9299 * iopath to send commands to the device. The stats are initialized 9300 * separately so data obtained during some attach-time routines is 9301 * available. (4362483) 9302 * 9303 * Arguments: un - driver soft state (unit) structure 9304 * instance - driver instance 9305 * 9306 * Context: Kernel thread context 9307 */ 9308 9309 static void 9310 sd_create_errstats(struct sd_lun *un, int instance) 9311 { 9312 struct sd_errstats *stp; 9313 char kstatmodule_err[KSTAT_STRLEN]; 9314 char kstatname[KSTAT_STRLEN]; 9315 int ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t)); 9316 9317 ASSERT(un != NULL); 9318 9319 if (un->un_errstats != NULL) { 9320 return; 9321 } 9322 9323 (void) snprintf(kstatmodule_err, sizeof (kstatmodule_err), 9324 "%serr", sd_label); 9325 (void) snprintf(kstatname, sizeof (kstatname), 9326 "%s%d,err", sd_label, instance); 9327 9328 un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname, 9329 "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT); 9330 9331 if (un->un_errstats == NULL) { 9332 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 9333 "sd_create_errstats: Failed kstat_create\n"); 9334 return; 9335 } 9336 9337 stp = (struct sd_errstats *)un->un_errstats->ks_data; 9338 kstat_named_init(&stp->sd_softerrs, "Soft Errors", 9339 KSTAT_DATA_UINT32); 9340 kstat_named_init(&stp->sd_harderrs, "Hard Errors", 9341 KSTAT_DATA_UINT32); 9342 kstat_named_init(&stp->sd_transerrs, "Transport Errors", 9343 KSTAT_DATA_UINT32); 9344 kstat_named_init(&stp->sd_vid, "Vendor", 9345 KSTAT_DATA_CHAR); 9346 kstat_named_init(&stp->sd_pid, "Product", 9347 KSTAT_DATA_CHAR); 9348 kstat_named_init(&stp->sd_revision, "Revision", 9349 KSTAT_DATA_CHAR); 9350 kstat_named_init(&stp->sd_serial, "Serial No", 9351 KSTAT_DATA_CHAR); 9352 kstat_named_init(&stp->sd_capacity, "Size", 9353 KSTAT_DATA_ULONGLONG); 9354 kstat_named_init(&stp->sd_rq_media_err, "Media Error", 9355 KSTAT_DATA_UINT32); 9356 kstat_named_init(&stp->sd_rq_ntrdy_err, "Device Not Ready", 9357 KSTAT_DATA_UINT32); 9358 kstat_named_init(&stp->sd_rq_nodev_err, "No Device", 9359 KSTAT_DATA_UINT32); 9360 kstat_named_init(&stp->sd_rq_recov_err, "Recoverable", 9361 KSTAT_DATA_UINT32); 9362 kstat_named_init(&stp->sd_rq_illrq_err, "Illegal Request", 9363 KSTAT_DATA_UINT32); 9364 kstat_named_init(&stp->sd_rq_pfa_err, "Predictive Failure Analysis", 9365 KSTAT_DATA_UINT32); 9366 9367 un->un_errstats->ks_private = un; 9368 un->un_errstats->ks_update = nulldev; 9369 9370 kstat_install(un->un_errstats); 9371 } 9372 9373 9374 /* 9375 * Function: sd_set_errstats 9376 * 9377 * Description: This routine sets the value of the vendor id, product id, 9378 * revision, serial number, and capacity device error stats. 9379 * 9380 * Note: During attach the stats are instantiated first so they are 9381 * available for attach-time routines that utilize the driver 9382 * iopath to send commands to the device. The stats are initialized 9383 * separately so data obtained during some attach-time routines is 9384 * available. (4362483) 9385 * 9386 * Arguments: un - driver soft state (unit) structure 9387 * 9388 * Context: Kernel thread context 9389 */ 9390 9391 static void 9392 sd_set_errstats(struct sd_lun *un) 9393 { 9394 struct sd_errstats *stp; 9395 9396 ASSERT(un != NULL); 9397 ASSERT(un->un_errstats != NULL); 9398 stp = (struct sd_errstats *)un->un_errstats->ks_data; 9399 ASSERT(stp != NULL); 9400 (void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8); 9401 (void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16); 9402 (void) strncpy(stp->sd_revision.value.c, 9403 un->un_sd->sd_inq->inq_revision, 4); 9404 9405 /* 9406 * Set the "Serial No" kstat for Sun qualified drives (indicated by 9407 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid) 9408 * (4376302)) 9409 */ 9410 if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) { 9411 bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c, 9412 sizeof (SD_INQUIRY(un)->inq_serial)); 9413 } 9414 9415 if (un->un_f_blockcount_is_valid != TRUE) { 9416 /* 9417 * Set capacity error stat to 0 for no media. This ensures 9418 * a valid capacity is displayed in response to 'iostat -E' 9419 * when no media is present in the device. 9420 */ 9421 stp->sd_capacity.value.ui64 = 0; 9422 } else { 9423 /* 9424 * Multiply un_blockcount by un->un_sys_blocksize to get 9425 * capacity. 9426 * 9427 * Note: for non-512 blocksize devices "un_blockcount" has been 9428 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by 9429 * (un_tgt_blocksize / un->un_sys_blocksize). 9430 */ 9431 stp->sd_capacity.value.ui64 = (uint64_t) 9432 ((uint64_t)un->un_blockcount * un->un_sys_blocksize); 9433 } 9434 } 9435 9436 9437 /* 9438 * Function: sd_set_pstats 9439 * 9440 * Description: This routine instantiates and initializes the partition 9441 * stats for each partition with more than zero blocks. 9442 * (4363169) 9443 * 9444 * Arguments: un - driver soft state (unit) structure 9445 * 9446 * Context: Kernel thread context 9447 */ 9448 9449 static void 9450 sd_set_pstats(struct sd_lun *un) 9451 { 9452 char kstatname[KSTAT_STRLEN]; 9453 int instance; 9454 int i; 9455 9456 ASSERT(un != NULL); 9457 9458 instance = ddi_get_instance(SD_DEVINFO(un)); 9459 9460 /* Note:x86: is this a VTOC8/VTOC16 difference? */ 9461 for (i = 0; i < NSDMAP; i++) { 9462 if ((un->un_pstats[i] == NULL) && 9463 (un->un_map[i].dkl_nblk != 0)) { 9464 (void) snprintf(kstatname, sizeof (kstatname), 9465 "%s%d,%s", sd_label, instance, 9466 sd_minor_data[i].name); 9467 un->un_pstats[i] = kstat_create(sd_label, 9468 instance, kstatname, "partition", KSTAT_TYPE_IO, 9469 1, KSTAT_FLAG_PERSISTENT); 9470 if (un->un_pstats[i] != NULL) { 9471 un->un_pstats[i]->ks_lock = SD_MUTEX(un); 9472 kstat_install(un->un_pstats[i]); 9473 } 9474 } 9475 } 9476 } 9477 9478 9479 #if (defined(__fibre)) 9480 /* 9481 * Function: sd_init_event_callbacks 9482 * 9483 * Description: This routine initializes the insertion and removal event 9484 * callbacks. (fibre only) 9485 * 9486 * Arguments: un - driver soft state (unit) structure 9487 * 9488 * Context: Kernel thread context 9489 */ 9490 9491 static void 9492 sd_init_event_callbacks(struct sd_lun *un) 9493 { 9494 ASSERT(un != NULL); 9495 9496 if ((un->un_insert_event == NULL) && 9497 (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT, 9498 &un->un_insert_event) == DDI_SUCCESS)) { 9499 /* 9500 * Add the callback for an insertion event 9501 */ 9502 (void) ddi_add_event_handler(SD_DEVINFO(un), 9503 un->un_insert_event, sd_event_callback, (void *)un, 9504 &(un->un_insert_cb_id)); 9505 } 9506 9507 if ((un->un_remove_event == NULL) && 9508 (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT, 9509 &un->un_remove_event) == DDI_SUCCESS)) { 9510 /* 9511 * Add the callback for a removal event 9512 */ 9513 (void) ddi_add_event_handler(SD_DEVINFO(un), 9514 un->un_remove_event, sd_event_callback, (void *)un, 9515 &(un->un_remove_cb_id)); 9516 } 9517 } 9518 9519 9520 /* 9521 * Function: sd_event_callback 9522 * 9523 * Description: This routine handles insert/remove events (photon). The 9524 * state is changed to OFFLINE which can be used to supress 9525 * error msgs. (fibre only) 9526 * 9527 * Arguments: un - driver soft state (unit) structure 9528 * 9529 * Context: Callout thread context 9530 */ 9531 /* ARGSUSED */ 9532 static void 9533 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg, 9534 void *bus_impldata) 9535 { 9536 struct sd_lun *un = (struct sd_lun *)arg; 9537 9538 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event)); 9539 if (event == un->un_insert_event) { 9540 SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event"); 9541 mutex_enter(SD_MUTEX(un)); 9542 if (un->un_state == SD_STATE_OFFLINE) { 9543 if (un->un_last_state != SD_STATE_SUSPENDED) { 9544 un->un_state = un->un_last_state; 9545 } else { 9546 /* 9547 * We have gone through SUSPEND/RESUME while 9548 * we were offline. Restore the last state 9549 */ 9550 un->un_state = un->un_save_state; 9551 } 9552 } 9553 mutex_exit(SD_MUTEX(un)); 9554 9555 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event)); 9556 } else if (event == un->un_remove_event) { 9557 SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event"); 9558 mutex_enter(SD_MUTEX(un)); 9559 /* 9560 * We need to handle an event callback that occurs during 9561 * the suspend operation, since we don't prevent it. 9562 */ 9563 if (un->un_state != SD_STATE_OFFLINE) { 9564 if (un->un_state != SD_STATE_SUSPENDED) { 9565 New_state(un, SD_STATE_OFFLINE); 9566 } else { 9567 un->un_last_state = SD_STATE_OFFLINE; 9568 } 9569 } 9570 mutex_exit(SD_MUTEX(un)); 9571 } else { 9572 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 9573 "!Unknown event\n"); 9574 } 9575 9576 } 9577 #endif 9578 9579 /* 9580 * Function: sd_cache_control() 9581 * 9582 * Description: This routine is the driver entry point for setting 9583 * read and write caching by modifying the WCE (write cache 9584 * enable) and RCD (read cache disable) bits of mode 9585 * page 8 (MODEPAGE_CACHING). 9586 * 9587 * Arguments: un - driver soft state (unit) structure 9588 * rcd_flag - flag for controlling the read cache 9589 * wce_flag - flag for controlling the write cache 9590 * 9591 * Return Code: EIO 9592 * code returned by sd_send_scsi_MODE_SENSE and 9593 * sd_send_scsi_MODE_SELECT 9594 * 9595 * Context: Kernel Thread 9596 */ 9597 9598 static int 9599 sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag) 9600 { 9601 struct mode_caching *mode_caching_page; 9602 uchar_t *header; 9603 size_t buflen; 9604 int hdrlen; 9605 int bd_len; 9606 int rval = 0; 9607 struct mode_header_grp2 *mhp; 9608 9609 ASSERT(un != NULL); 9610 9611 /* 9612 * Do a test unit ready, otherwise a mode sense may not work if this 9613 * is the first command sent to the device after boot. 9614 */ 9615 (void) sd_send_scsi_TEST_UNIT_READY(un, 0); 9616 9617 if (un->un_f_cfg_is_atapi == TRUE) { 9618 hdrlen = MODE_HEADER_LENGTH_GRP2; 9619 } else { 9620 hdrlen = MODE_HEADER_LENGTH; 9621 } 9622 9623 /* 9624 * Allocate memory for the retrieved mode page and its headers. Set 9625 * a pointer to the page itself. Use mode_cache_scsi3 to insure 9626 * we get all of the mode sense data otherwise, the mode select 9627 * will fail. mode_cache_scsi3 is a superset of mode_caching. 9628 */ 9629 buflen = hdrlen + MODE_BLK_DESC_LENGTH + 9630 sizeof (struct mode_cache_scsi3); 9631 9632 header = kmem_zalloc(buflen, KM_SLEEP); 9633 9634 /* Get the information from the device. */ 9635 if (un->un_f_cfg_is_atapi == TRUE) { 9636 rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen, 9637 MODEPAGE_CACHING, SD_PATH_DIRECT); 9638 } else { 9639 rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen, 9640 MODEPAGE_CACHING, SD_PATH_DIRECT); 9641 } 9642 if (rval != 0) { 9643 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 9644 "sd_cache_control: Mode Sense Failed\n"); 9645 kmem_free(header, buflen); 9646 return (rval); 9647 } 9648 9649 /* 9650 * Determine size of Block Descriptors in order to locate 9651 * the mode page data. ATAPI devices return 0, SCSI devices 9652 * should return MODE_BLK_DESC_LENGTH. 9653 */ 9654 if (un->un_f_cfg_is_atapi == TRUE) { 9655 mhp = (struct mode_header_grp2 *)header; 9656 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 9657 } else { 9658 bd_len = ((struct mode_header *)header)->bdesc_length; 9659 } 9660 9661 if (bd_len > MODE_BLK_DESC_LENGTH) { 9662 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 9663 "sd_cache_control: Mode Sense returned invalid " 9664 "block descriptor length\n"); 9665 kmem_free(header, buflen); 9666 return (EIO); 9667 } 9668 9669 mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len); 9670 9671 /* Check the relevant bits on successful mode sense. */ 9672 if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) || 9673 (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) || 9674 (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) || 9675 (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) { 9676 9677 size_t sbuflen; 9678 uchar_t save_pg; 9679 9680 /* 9681 * Construct select buffer length based on the 9682 * length of the sense data returned. 9683 */ 9684 sbuflen = hdrlen + MODE_BLK_DESC_LENGTH + 9685 sizeof (struct mode_page) + 9686 (int)mode_caching_page->mode_page.length; 9687 9688 /* 9689 * Set the caching bits as requested. 9690 */ 9691 if (rcd_flag == SD_CACHE_ENABLE) 9692 mode_caching_page->rcd = 0; 9693 else if (rcd_flag == SD_CACHE_DISABLE) 9694 mode_caching_page->rcd = 1; 9695 9696 if (wce_flag == SD_CACHE_ENABLE) 9697 mode_caching_page->wce = 1; 9698 else if (wce_flag == SD_CACHE_DISABLE) 9699 mode_caching_page->wce = 0; 9700 9701 /* 9702 * Save the page if the mode sense says the 9703 * drive supports it. 9704 */ 9705 save_pg = mode_caching_page->mode_page.ps ? 9706 SD_SAVE_PAGE : SD_DONTSAVE_PAGE; 9707 9708 /* Clear reserved bits before mode select. */ 9709 mode_caching_page->mode_page.ps = 0; 9710 9711 /* 9712 * Clear out mode header for mode select. 9713 * The rest of the retrieved page will be reused. 9714 */ 9715 bzero(header, hdrlen); 9716 9717 if (un->un_f_cfg_is_atapi == TRUE) { 9718 mhp = (struct mode_header_grp2 *)header; 9719 mhp->bdesc_length_hi = bd_len >> 8; 9720 mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff; 9721 } else { 9722 ((struct mode_header *)header)->bdesc_length = bd_len; 9723 } 9724 9725 /* Issue mode select to change the cache settings */ 9726 if (un->un_f_cfg_is_atapi == TRUE) { 9727 rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header, 9728 sbuflen, save_pg, SD_PATH_DIRECT); 9729 } else { 9730 rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header, 9731 sbuflen, save_pg, SD_PATH_DIRECT); 9732 } 9733 } 9734 9735 kmem_free(header, buflen); 9736 return (rval); 9737 } 9738 9739 9740 /* 9741 * Function: sd_get_write_cache_enabled() 9742 * 9743 * Description: This routine is the driver entry point for determining if 9744 * write caching is enabled. It examines the WCE (write cache 9745 * enable) bits of mode page 8 (MODEPAGE_CACHING). 9746 * 9747 * Arguments: un - driver soft state (unit) structure 9748 * is_enabled - pointer to int where write cache enabled state 9749 * is returned (non-zero -> write cache enabled) 9750 * 9751 * 9752 * Return Code: EIO 9753 * code returned by sd_send_scsi_MODE_SENSE 9754 * 9755 * Context: Kernel Thread 9756 * 9757 * NOTE: If ioctl is added to disable write cache, this sequence should 9758 * be followed so that no locking is required for accesses to 9759 * un->un_f_write_cache_enabled: 9760 * do mode select to clear wce 9761 * do synchronize cache to flush cache 9762 * set un->un_f_write_cache_enabled = FALSE 9763 * 9764 * Conversely, an ioctl to enable the write cache should be done 9765 * in this order: 9766 * set un->un_f_write_cache_enabled = TRUE 9767 * do mode select to set wce 9768 */ 9769 9770 static int 9771 sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled) 9772 { 9773 struct mode_caching *mode_caching_page; 9774 uchar_t *header; 9775 size_t buflen; 9776 int hdrlen; 9777 int bd_len; 9778 int rval = 0; 9779 9780 ASSERT(un != NULL); 9781 ASSERT(is_enabled != NULL); 9782 9783 /* in case of error, flag as enabled */ 9784 *is_enabled = TRUE; 9785 9786 /* 9787 * Do a test unit ready, otherwise a mode sense may not work if this 9788 * is the first command sent to the device after boot. 9789 */ 9790 (void) sd_send_scsi_TEST_UNIT_READY(un, 0); 9791 9792 if (un->un_f_cfg_is_atapi == TRUE) { 9793 hdrlen = MODE_HEADER_LENGTH_GRP2; 9794 } else { 9795 hdrlen = MODE_HEADER_LENGTH; 9796 } 9797 9798 /* 9799 * Allocate memory for the retrieved mode page and its headers. Set 9800 * a pointer to the page itself. 9801 */ 9802 buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching); 9803 header = kmem_zalloc(buflen, KM_SLEEP); 9804 9805 /* Get the information from the device. */ 9806 if (un->un_f_cfg_is_atapi == TRUE) { 9807 rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen, 9808 MODEPAGE_CACHING, SD_PATH_DIRECT); 9809 } else { 9810 rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen, 9811 MODEPAGE_CACHING, SD_PATH_DIRECT); 9812 } 9813 if (rval != 0) { 9814 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 9815 "sd_get_write_cache_enabled: Mode Sense Failed\n"); 9816 kmem_free(header, buflen); 9817 return (rval); 9818 } 9819 9820 /* 9821 * Determine size of Block Descriptors in order to locate 9822 * the mode page data. ATAPI devices return 0, SCSI devices 9823 * should return MODE_BLK_DESC_LENGTH. 9824 */ 9825 if (un->un_f_cfg_is_atapi == TRUE) { 9826 struct mode_header_grp2 *mhp; 9827 mhp = (struct mode_header_grp2 *)header; 9828 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 9829 } else { 9830 bd_len = ((struct mode_header *)header)->bdesc_length; 9831 } 9832 9833 if (bd_len > MODE_BLK_DESC_LENGTH) { 9834 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 9835 "sd_get_write_cache_enabled: Mode Sense returned invalid " 9836 "block descriptor length\n"); 9837 kmem_free(header, buflen); 9838 return (EIO); 9839 } 9840 9841 mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len); 9842 *is_enabled = mode_caching_page->wce; 9843 9844 kmem_free(header, buflen); 9845 return (0); 9846 } 9847 9848 9849 /* 9850 * Function: sd_make_device 9851 * 9852 * Description: Utility routine to return the Solaris device number from 9853 * the data in the device's dev_info structure. 9854 * 9855 * Return Code: The Solaris device number 9856 * 9857 * Context: Any 9858 */ 9859 9860 static dev_t 9861 sd_make_device(dev_info_t *devi) 9862 { 9863 return (makedevice(ddi_name_to_major(ddi_get_name(devi)), 9864 ddi_get_instance(devi) << SDUNIT_SHIFT)); 9865 } 9866 9867 9868 /* 9869 * Function: sd_pm_entry 9870 * 9871 * Description: Called at the start of a new command to manage power 9872 * and busy status of a device. This includes determining whether 9873 * the current power state of the device is sufficient for 9874 * performing the command or whether it must be changed. 9875 * The PM framework is notified appropriately. 9876 * Only with a return status of DDI_SUCCESS will the 9877 * component be busy to the framework. 9878 * 9879 * All callers of sd_pm_entry must check the return status 9880 * and only call sd_pm_exit it it was DDI_SUCCESS. A status 9881 * of DDI_FAILURE indicates the device failed to power up. 9882 * In this case un_pm_count has been adjusted so the result 9883 * on exit is still powered down, ie. count is less than 0. 9884 * Calling sd_pm_exit with this count value hits an ASSERT. 9885 * 9886 * Return Code: DDI_SUCCESS or DDI_FAILURE 9887 * 9888 * Context: Kernel thread context. 9889 */ 9890 9891 static int 9892 sd_pm_entry(struct sd_lun *un) 9893 { 9894 int return_status = DDI_SUCCESS; 9895 9896 ASSERT(!mutex_owned(SD_MUTEX(un))); 9897 ASSERT(!mutex_owned(&un->un_pm_mutex)); 9898 9899 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n"); 9900 9901 if (un->un_f_pm_is_enabled == FALSE) { 9902 SD_TRACE(SD_LOG_IO_PM, un, 9903 "sd_pm_entry: exiting, PM not enabled\n"); 9904 return (return_status); 9905 } 9906 9907 /* 9908 * Just increment a counter if PM is enabled. On the transition from 9909 * 0 ==> 1, mark the device as busy. The iodone side will decrement 9910 * the count with each IO and mark the device as idle when the count 9911 * hits 0. 9912 * 9913 * If the count is less than 0 the device is powered down. If a powered 9914 * down device is successfully powered up then the count must be 9915 * incremented to reflect the power up. Note that it'll get incremented 9916 * a second time to become busy. 9917 * 9918 * Because the following has the potential to change the device state 9919 * and must release the un_pm_mutex to do so, only one thread can be 9920 * allowed through at a time. 9921 */ 9922 9923 mutex_enter(&un->un_pm_mutex); 9924 while (un->un_pm_busy == TRUE) { 9925 cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex); 9926 } 9927 un->un_pm_busy = TRUE; 9928 9929 if (un->un_pm_count < 1) { 9930 9931 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n"); 9932 9933 /* 9934 * Indicate we are now busy so the framework won't attempt to 9935 * power down the device. This call will only fail if either 9936 * we passed a bad component number or the device has no 9937 * components. Neither of these should ever happen. 9938 */ 9939 mutex_exit(&un->un_pm_mutex); 9940 return_status = pm_busy_component(SD_DEVINFO(un), 0); 9941 ASSERT(return_status == DDI_SUCCESS); 9942 9943 mutex_enter(&un->un_pm_mutex); 9944 9945 if (un->un_pm_count < 0) { 9946 mutex_exit(&un->un_pm_mutex); 9947 9948 SD_TRACE(SD_LOG_IO_PM, un, 9949 "sd_pm_entry: power up component\n"); 9950 9951 /* 9952 * pm_raise_power will cause sdpower to be called 9953 * which brings the device power level to the 9954 * desired state, ON in this case. If successful, 9955 * un_pm_count and un_power_level will be updated 9956 * appropriately. 9957 */ 9958 return_status = pm_raise_power(SD_DEVINFO(un), 0, 9959 SD_SPINDLE_ON); 9960 9961 mutex_enter(&un->un_pm_mutex); 9962 9963 if (return_status != DDI_SUCCESS) { 9964 /* 9965 * Power up failed. 9966 * Idle the device and adjust the count 9967 * so the result on exit is that we're 9968 * still powered down, ie. count is less than 0. 9969 */ 9970 SD_TRACE(SD_LOG_IO_PM, un, 9971 "sd_pm_entry: power up failed," 9972 " idle the component\n"); 9973 9974 (void) pm_idle_component(SD_DEVINFO(un), 0); 9975 un->un_pm_count--; 9976 } else { 9977 /* 9978 * Device is powered up, verify the 9979 * count is non-negative. 9980 * This is debug only. 9981 */ 9982 ASSERT(un->un_pm_count == 0); 9983 } 9984 } 9985 9986 if (return_status == DDI_SUCCESS) { 9987 /* 9988 * For performance, now that the device has been tagged 9989 * as busy, and it's known to be powered up, update the 9990 * chain types to use jump tables that do not include 9991 * pm. This significantly lowers the overhead and 9992 * therefore improves performance. 9993 */ 9994 9995 mutex_exit(&un->un_pm_mutex); 9996 mutex_enter(SD_MUTEX(un)); 9997 SD_TRACE(SD_LOG_IO_PM, un, 9998 "sd_pm_entry: changing uscsi_chain_type from %d\n", 9999 un->un_uscsi_chain_type); 10000 10001 if (un->un_f_non_devbsize_supported) { 10002 un->un_buf_chain_type = 10003 SD_CHAIN_INFO_RMMEDIA_NO_PM; 10004 } else { 10005 un->un_buf_chain_type = 10006 SD_CHAIN_INFO_DISK_NO_PM; 10007 } 10008 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM; 10009 10010 SD_TRACE(SD_LOG_IO_PM, un, 10011 " changed uscsi_chain_type to %d\n", 10012 un->un_uscsi_chain_type); 10013 mutex_exit(SD_MUTEX(un)); 10014 mutex_enter(&un->un_pm_mutex); 10015 10016 if (un->un_pm_idle_timeid == NULL) { 10017 /* 300 ms. */ 10018 un->un_pm_idle_timeid = 10019 timeout(sd_pm_idletimeout_handler, un, 10020 (drv_usectohz((clock_t)300000))); 10021 /* 10022 * Include an extra call to busy which keeps the 10023 * device busy with-respect-to the PM layer 10024 * until the timer fires, at which time it'll 10025 * get the extra idle call. 10026 */ 10027 (void) pm_busy_component(SD_DEVINFO(un), 0); 10028 } 10029 } 10030 } 10031 un->un_pm_busy = FALSE; 10032 /* Next... */ 10033 cv_signal(&un->un_pm_busy_cv); 10034 10035 un->un_pm_count++; 10036 10037 SD_TRACE(SD_LOG_IO_PM, un, 10038 "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count); 10039 10040 mutex_exit(&un->un_pm_mutex); 10041 10042 return (return_status); 10043 } 10044 10045 10046 /* 10047 * Function: sd_pm_exit 10048 * 10049 * Description: Called at the completion of a command to manage busy 10050 * status for the device. If the device becomes idle the 10051 * PM framework is notified. 10052 * 10053 * Context: Kernel thread context 10054 */ 10055 10056 static void 10057 sd_pm_exit(struct sd_lun *un) 10058 { 10059 ASSERT(!mutex_owned(SD_MUTEX(un))); 10060 ASSERT(!mutex_owned(&un->un_pm_mutex)); 10061 10062 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n"); 10063 10064 /* 10065 * After attach the following flag is only read, so don't 10066 * take the penalty of acquiring a mutex for it. 10067 */ 10068 if (un->un_f_pm_is_enabled == TRUE) { 10069 10070 mutex_enter(&un->un_pm_mutex); 10071 un->un_pm_count--; 10072 10073 SD_TRACE(SD_LOG_IO_PM, un, 10074 "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count); 10075 10076 ASSERT(un->un_pm_count >= 0); 10077 if (un->un_pm_count == 0) { 10078 mutex_exit(&un->un_pm_mutex); 10079 10080 SD_TRACE(SD_LOG_IO_PM, un, 10081 "sd_pm_exit: idle component\n"); 10082 10083 (void) pm_idle_component(SD_DEVINFO(un), 0); 10084 10085 } else { 10086 mutex_exit(&un->un_pm_mutex); 10087 } 10088 } 10089 10090 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n"); 10091 } 10092 10093 10094 /* 10095 * Function: sdopen 10096 * 10097 * Description: Driver's open(9e) entry point function. 10098 * 10099 * Arguments: dev_i - pointer to device number 10100 * flag - how to open file (FEXCL, FNDELAY, FREAD, FWRITE) 10101 * otyp - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR) 10102 * cred_p - user credential pointer 10103 * 10104 * Return Code: EINVAL 10105 * ENXIO 10106 * EIO 10107 * EROFS 10108 * EBUSY 10109 * 10110 * Context: Kernel thread context 10111 */ 10112 /* ARGSUSED */ 10113 static int 10114 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p) 10115 { 10116 struct sd_lun *un; 10117 int nodelay; 10118 int part; 10119 uint64_t partmask; 10120 int instance; 10121 dev_t dev; 10122 int rval = EIO; 10123 10124 /* Validate the open type */ 10125 if (otyp >= OTYPCNT) { 10126 return (EINVAL); 10127 } 10128 10129 dev = *dev_p; 10130 instance = SDUNIT(dev); 10131 mutex_enter(&sd_detach_mutex); 10132 10133 /* 10134 * Fail the open if there is no softstate for the instance, or 10135 * if another thread somewhere is trying to detach the instance. 10136 */ 10137 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 10138 (un->un_detach_count != 0)) { 10139 mutex_exit(&sd_detach_mutex); 10140 /* 10141 * The probe cache only needs to be cleared when open (9e) fails 10142 * with ENXIO (4238046). 10143 */ 10144 /* 10145 * un-conditionally clearing probe cache is ok with 10146 * separate sd/ssd binaries 10147 * x86 platform can be an issue with both parallel 10148 * and fibre in 1 binary 10149 */ 10150 sd_scsi_clear_probe_cache(); 10151 return (ENXIO); 10152 } 10153 10154 /* 10155 * The un_layer_count is to prevent another thread in specfs from 10156 * trying to detach the instance, which can happen when we are 10157 * called from a higher-layer driver instead of thru specfs. 10158 * This will not be needed when DDI provides a layered driver 10159 * interface that allows specfs to know that an instance is in 10160 * use by a layered driver & should not be detached. 10161 * 10162 * Note: the semantics for layered driver opens are exactly one 10163 * close for every open. 10164 */ 10165 if (otyp == OTYP_LYR) { 10166 un->un_layer_count++; 10167 } 10168 10169 /* 10170 * Keep a count of the current # of opens in progress. This is because 10171 * some layered drivers try to call us as a regular open. This can 10172 * cause problems that we cannot prevent, however by keeping this count 10173 * we can at least keep our open and detach routines from racing against 10174 * each other under such conditions. 10175 */ 10176 un->un_opens_in_progress++; 10177 mutex_exit(&sd_detach_mutex); 10178 10179 nodelay = (flag & (FNDELAY | FNONBLOCK)); 10180 part = SDPART(dev); 10181 partmask = 1 << part; 10182 10183 /* 10184 * We use a semaphore here in order to serialize 10185 * open and close requests on the device. 10186 */ 10187 sema_p(&un->un_semoclose); 10188 10189 mutex_enter(SD_MUTEX(un)); 10190 10191 /* 10192 * All device accesses go thru sdstrategy() where we check 10193 * on suspend status but there could be a scsi_poll command, 10194 * which bypasses sdstrategy(), so we need to check pm 10195 * status. 10196 */ 10197 10198 if (!nodelay) { 10199 while ((un->un_state == SD_STATE_SUSPENDED) || 10200 (un->un_state == SD_STATE_PM_CHANGING)) { 10201 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10202 } 10203 10204 mutex_exit(SD_MUTEX(un)); 10205 if (sd_pm_entry(un) != DDI_SUCCESS) { 10206 rval = EIO; 10207 SD_ERROR(SD_LOG_OPEN_CLOSE, un, 10208 "sdopen: sd_pm_entry failed\n"); 10209 goto open_failed_with_pm; 10210 } 10211 mutex_enter(SD_MUTEX(un)); 10212 } 10213 10214 /* check for previous exclusive open */ 10215 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un); 10216 SD_TRACE(SD_LOG_OPEN_CLOSE, un, 10217 "sdopen: exclopen=%x, flag=%x, regopen=%x\n", 10218 un->un_exclopen, flag, un->un_ocmap.regopen[otyp]); 10219 10220 if (un->un_exclopen & (partmask)) { 10221 goto excl_open_fail; 10222 } 10223 10224 if (flag & FEXCL) { 10225 int i; 10226 if (un->un_ocmap.lyropen[part]) { 10227 goto excl_open_fail; 10228 } 10229 for (i = 0; i < (OTYPCNT - 1); i++) { 10230 if (un->un_ocmap.regopen[i] & (partmask)) { 10231 goto excl_open_fail; 10232 } 10233 } 10234 } 10235 10236 /* 10237 * Check the write permission if this is a removable media device, 10238 * NDELAY has not been set, and writable permission is requested. 10239 * 10240 * Note: If NDELAY was set and this is write-protected media the WRITE 10241 * attempt will fail with EIO as part of the I/O processing. This is a 10242 * more permissive implementation that allows the open to succeed and 10243 * WRITE attempts to fail when appropriate. 10244 */ 10245 if (un->un_f_chk_wp_open) { 10246 if ((flag & FWRITE) && (!nodelay)) { 10247 mutex_exit(SD_MUTEX(un)); 10248 /* 10249 * Defer the check for write permission on writable 10250 * DVD drive till sdstrategy and will not fail open even 10251 * if FWRITE is set as the device can be writable 10252 * depending upon the media and the media can change 10253 * after the call to open(). 10254 */ 10255 if (un->un_f_dvdram_writable_device == FALSE) { 10256 if (ISCD(un) || sr_check_wp(dev)) { 10257 rval = EROFS; 10258 mutex_enter(SD_MUTEX(un)); 10259 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: " 10260 "write to cd or write protected media\n"); 10261 goto open_fail; 10262 } 10263 } 10264 mutex_enter(SD_MUTEX(un)); 10265 } 10266 } 10267 10268 /* 10269 * If opening in NDELAY/NONBLOCK mode, just return. 10270 * Check if disk is ready and has a valid geometry later. 10271 */ 10272 if (!nodelay) { 10273 mutex_exit(SD_MUTEX(un)); 10274 rval = sd_ready_and_valid(un); 10275 mutex_enter(SD_MUTEX(un)); 10276 /* 10277 * Fail if device is not ready or if the number of disk 10278 * blocks is zero or negative for non CD devices. 10279 */ 10280 if ((rval != SD_READY_VALID) || 10281 (!ISCD(un) && un->un_map[part].dkl_nblk <= 0)) { 10282 rval = un->un_f_has_removable_media ? ENXIO : EIO; 10283 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: " 10284 "device not ready or invalid disk block value\n"); 10285 goto open_fail; 10286 } 10287 #if defined(__i386) || defined(__amd64) 10288 } else { 10289 uchar_t *cp; 10290 /* 10291 * x86 requires special nodelay handling, so that p0 is 10292 * always defined and accessible. 10293 * Invalidate geometry only if device is not already open. 10294 */ 10295 cp = &un->un_ocmap.chkd[0]; 10296 while (cp < &un->un_ocmap.chkd[OCSIZE]) { 10297 if (*cp != (uchar_t)0) { 10298 break; 10299 } 10300 cp++; 10301 } 10302 if (cp == &un->un_ocmap.chkd[OCSIZE]) { 10303 un->un_f_geometry_is_valid = FALSE; 10304 } 10305 10306 #endif 10307 } 10308 10309 if (otyp == OTYP_LYR) { 10310 un->un_ocmap.lyropen[part]++; 10311 } else { 10312 un->un_ocmap.regopen[otyp] |= partmask; 10313 } 10314 10315 /* Set up open and exclusive open flags */ 10316 if (flag & FEXCL) { 10317 un->un_exclopen |= (partmask); 10318 } 10319 10320 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: " 10321 "open of part %d type %d\n", part, otyp); 10322 10323 mutex_exit(SD_MUTEX(un)); 10324 if (!nodelay) { 10325 sd_pm_exit(un); 10326 } 10327 10328 sema_v(&un->un_semoclose); 10329 10330 mutex_enter(&sd_detach_mutex); 10331 un->un_opens_in_progress--; 10332 mutex_exit(&sd_detach_mutex); 10333 10334 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n"); 10335 return (DDI_SUCCESS); 10336 10337 excl_open_fail: 10338 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n"); 10339 rval = EBUSY; 10340 10341 open_fail: 10342 mutex_exit(SD_MUTEX(un)); 10343 10344 /* 10345 * On a failed open we must exit the pm management. 10346 */ 10347 if (!nodelay) { 10348 sd_pm_exit(un); 10349 } 10350 open_failed_with_pm: 10351 sema_v(&un->un_semoclose); 10352 10353 mutex_enter(&sd_detach_mutex); 10354 un->un_opens_in_progress--; 10355 if (otyp == OTYP_LYR) { 10356 un->un_layer_count--; 10357 } 10358 mutex_exit(&sd_detach_mutex); 10359 10360 return (rval); 10361 } 10362 10363 10364 /* 10365 * Function: sdclose 10366 * 10367 * Description: Driver's close(9e) entry point function. 10368 * 10369 * Arguments: dev - device number 10370 * flag - file status flag, informational only 10371 * otyp - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR) 10372 * cred_p - user credential pointer 10373 * 10374 * Return Code: ENXIO 10375 * 10376 * Context: Kernel thread context 10377 */ 10378 /* ARGSUSED */ 10379 static int 10380 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p) 10381 { 10382 struct sd_lun *un; 10383 uchar_t *cp; 10384 int part; 10385 int nodelay; 10386 int rval = 0; 10387 10388 /* Validate the open type */ 10389 if (otyp >= OTYPCNT) { 10390 return (ENXIO); 10391 } 10392 10393 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10394 return (ENXIO); 10395 } 10396 10397 part = SDPART(dev); 10398 nodelay = flag & (FNDELAY | FNONBLOCK); 10399 10400 SD_TRACE(SD_LOG_OPEN_CLOSE, un, 10401 "sdclose: close of part %d type %d\n", part, otyp); 10402 10403 /* 10404 * We use a semaphore here in order to serialize 10405 * open and close requests on the device. 10406 */ 10407 sema_p(&un->un_semoclose); 10408 10409 mutex_enter(SD_MUTEX(un)); 10410 10411 /* Don't proceed if power is being changed. */ 10412 while (un->un_state == SD_STATE_PM_CHANGING) { 10413 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10414 } 10415 10416 if (un->un_exclopen & (1 << part)) { 10417 un->un_exclopen &= ~(1 << part); 10418 } 10419 10420 /* Update the open partition map */ 10421 if (otyp == OTYP_LYR) { 10422 un->un_ocmap.lyropen[part] -= 1; 10423 } else { 10424 un->un_ocmap.regopen[otyp] &= ~(1 << part); 10425 } 10426 10427 cp = &un->un_ocmap.chkd[0]; 10428 while (cp < &un->un_ocmap.chkd[OCSIZE]) { 10429 if (*cp != NULL) { 10430 break; 10431 } 10432 cp++; 10433 } 10434 10435 if (cp == &un->un_ocmap.chkd[OCSIZE]) { 10436 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n"); 10437 10438 /* 10439 * We avoid persistance upon the last close, and set 10440 * the throttle back to the maximum. 10441 */ 10442 un->un_throttle = un->un_saved_throttle; 10443 10444 if (un->un_state == SD_STATE_OFFLINE) { 10445 if (un->un_f_is_fibre == FALSE) { 10446 scsi_log(SD_DEVINFO(un), sd_label, 10447 CE_WARN, "offline\n"); 10448 } 10449 un->un_f_geometry_is_valid = FALSE; 10450 10451 } else { 10452 /* 10453 * Flush any outstanding writes in NVRAM cache. 10454 * Note: SYNCHRONIZE CACHE is an optional SCSI-2 10455 * cmd, it may not work for non-Pluto devices. 10456 * SYNCHRONIZE CACHE is not required for removables, 10457 * except DVD-RAM drives. 10458 * 10459 * Also note: because SYNCHRONIZE CACHE is currently 10460 * the only command issued here that requires the 10461 * drive be powered up, only do the power up before 10462 * sending the Sync Cache command. If additional 10463 * commands are added which require a powered up 10464 * drive, the following sequence may have to change. 10465 * 10466 * And finally, note that parallel SCSI on SPARC 10467 * only issues a Sync Cache to DVD-RAM, a newly 10468 * supported device. 10469 */ 10470 #if defined(__i386) || defined(__amd64) 10471 if (un->un_f_sync_cache_supported || 10472 un->un_f_dvdram_writable_device == TRUE) { 10473 #else 10474 if (un->un_f_dvdram_writable_device == TRUE) { 10475 #endif 10476 mutex_exit(SD_MUTEX(un)); 10477 if (sd_pm_entry(un) == DDI_SUCCESS) { 10478 rval = 10479 sd_send_scsi_SYNCHRONIZE_CACHE(un, 10480 NULL); 10481 /* ignore error if not supported */ 10482 if (rval == ENOTSUP) { 10483 rval = 0; 10484 } else if (rval != 0) { 10485 rval = EIO; 10486 } 10487 sd_pm_exit(un); 10488 } else { 10489 rval = EIO; 10490 } 10491 mutex_enter(SD_MUTEX(un)); 10492 } 10493 10494 /* 10495 * For devices which supports DOOR_LOCK, send an ALLOW 10496 * MEDIA REMOVAL command, but don't get upset if it 10497 * fails. We need to raise the power of the drive before 10498 * we can call sd_send_scsi_DOORLOCK() 10499 */ 10500 if (un->un_f_doorlock_supported) { 10501 mutex_exit(SD_MUTEX(un)); 10502 if (sd_pm_entry(un) == DDI_SUCCESS) { 10503 rval = sd_send_scsi_DOORLOCK(un, 10504 SD_REMOVAL_ALLOW, SD_PATH_DIRECT); 10505 10506 sd_pm_exit(un); 10507 if (ISCD(un) && (rval != 0) && 10508 (nodelay != 0)) { 10509 rval = ENXIO; 10510 } 10511 } else { 10512 rval = EIO; 10513 } 10514 mutex_enter(SD_MUTEX(un)); 10515 } 10516 10517 /* 10518 * If a device has removable media, invalidate all 10519 * parameters related to media, such as geometry, 10520 * blocksize, and blockcount. 10521 */ 10522 if (un->un_f_has_removable_media) { 10523 sr_ejected(un); 10524 } 10525 10526 /* 10527 * Destroy the cache (if it exists) which was 10528 * allocated for the write maps since this is 10529 * the last close for this media. 10530 */ 10531 if (un->un_wm_cache) { 10532 /* 10533 * Check if there are pending commands. 10534 * and if there are give a warning and 10535 * do not destroy the cache. 10536 */ 10537 if (un->un_ncmds_in_driver > 0) { 10538 scsi_log(SD_DEVINFO(un), 10539 sd_label, CE_WARN, 10540 "Unable to clean up memory " 10541 "because of pending I/O\n"); 10542 } else { 10543 kmem_cache_destroy( 10544 un->un_wm_cache); 10545 un->un_wm_cache = NULL; 10546 } 10547 } 10548 } 10549 } 10550 10551 mutex_exit(SD_MUTEX(un)); 10552 sema_v(&un->un_semoclose); 10553 10554 if (otyp == OTYP_LYR) { 10555 mutex_enter(&sd_detach_mutex); 10556 /* 10557 * The detach routine may run when the layer count 10558 * drops to zero. 10559 */ 10560 un->un_layer_count--; 10561 mutex_exit(&sd_detach_mutex); 10562 } 10563 10564 return (rval); 10565 } 10566 10567 10568 /* 10569 * Function: sd_ready_and_valid 10570 * 10571 * Description: Test if device is ready and has a valid geometry. 10572 * 10573 * Arguments: dev - device number 10574 * un - driver soft state (unit) structure 10575 * 10576 * Return Code: SD_READY_VALID ready and valid label 10577 * SD_READY_NOT_VALID ready, geom ops never applicable 10578 * SD_NOT_READY_VALID not ready, no label 10579 * 10580 * Context: Never called at interrupt context. 10581 */ 10582 10583 static int 10584 sd_ready_and_valid(struct sd_lun *un) 10585 { 10586 struct sd_errstats *stp; 10587 uint64_t capacity; 10588 uint_t lbasize; 10589 int rval = SD_READY_VALID; 10590 char name_str[48]; 10591 10592 ASSERT(un != NULL); 10593 ASSERT(!mutex_owned(SD_MUTEX(un))); 10594 10595 mutex_enter(SD_MUTEX(un)); 10596 /* 10597 * If a device has removable media, we must check if media is 10598 * ready when checking if this device is ready and valid. 10599 */ 10600 if (un->un_f_has_removable_media) { 10601 mutex_exit(SD_MUTEX(un)); 10602 if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) { 10603 rval = SD_NOT_READY_VALID; 10604 mutex_enter(SD_MUTEX(un)); 10605 goto done; 10606 } 10607 10608 mutex_enter(SD_MUTEX(un)); 10609 if ((un->un_f_geometry_is_valid == FALSE) || 10610 (un->un_f_blockcount_is_valid == FALSE) || 10611 (un->un_f_tgt_blocksize_is_valid == FALSE)) { 10612 10613 /* capacity has to be read every open. */ 10614 mutex_exit(SD_MUTEX(un)); 10615 if (sd_send_scsi_READ_CAPACITY(un, &capacity, 10616 &lbasize, SD_PATH_DIRECT) != 0) { 10617 mutex_enter(SD_MUTEX(un)); 10618 un->un_f_geometry_is_valid = FALSE; 10619 rval = SD_NOT_READY_VALID; 10620 goto done; 10621 } else { 10622 mutex_enter(SD_MUTEX(un)); 10623 sd_update_block_info(un, lbasize, capacity); 10624 } 10625 } 10626 10627 /* 10628 * Check if the media in the device is writable or not. 10629 */ 10630 if ((un->un_f_geometry_is_valid == FALSE) && ISCD(un)) { 10631 sd_check_for_writable_cd(un); 10632 } 10633 10634 } else { 10635 /* 10636 * Do a test unit ready to clear any unit attention from non-cd 10637 * devices. 10638 */ 10639 mutex_exit(SD_MUTEX(un)); 10640 (void) sd_send_scsi_TEST_UNIT_READY(un, 0); 10641 mutex_enter(SD_MUTEX(un)); 10642 } 10643 10644 10645 /* 10646 * If this is a non 512 block device, allocate space for 10647 * the wmap cache. This is being done here since every time 10648 * a media is changed this routine will be called and the 10649 * block size is a function of media rather than device. 10650 */ 10651 if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) { 10652 if (!(un->un_wm_cache)) { 10653 (void) snprintf(name_str, sizeof (name_str), 10654 "%s%d_cache", 10655 ddi_driver_name(SD_DEVINFO(un)), 10656 ddi_get_instance(SD_DEVINFO(un))); 10657 un->un_wm_cache = kmem_cache_create( 10658 name_str, sizeof (struct sd_w_map), 10659 8, sd_wm_cache_constructor, 10660 sd_wm_cache_destructor, NULL, 10661 (void *)un, NULL, 0); 10662 if (!(un->un_wm_cache)) { 10663 rval = ENOMEM; 10664 goto done; 10665 } 10666 } 10667 } 10668 10669 if (un->un_state == SD_STATE_NORMAL) { 10670 /* 10671 * If the target is not yet ready here (defined by a TUR 10672 * failure), invalidate the geometry and print an 'offline' 10673 * message. This is a legacy message, as the state of the 10674 * target is not actually changed to SD_STATE_OFFLINE. 10675 * 10676 * If the TUR fails for EACCES (Reservation Conflict), it 10677 * means there actually is nothing wrong with the target that 10678 * would require invalidating the geometry, so continue in 10679 * that case as if the TUR was successful. 10680 */ 10681 int err; 10682 10683 mutex_exit(SD_MUTEX(un)); 10684 err = sd_send_scsi_TEST_UNIT_READY(un, 0); 10685 mutex_enter(SD_MUTEX(un)); 10686 10687 if ((err != 0) && (err != EACCES)) { 10688 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 10689 "offline\n"); 10690 un->un_f_geometry_is_valid = FALSE; 10691 rval = SD_NOT_READY_VALID; 10692 goto done; 10693 } 10694 } 10695 10696 if (un->un_f_format_in_progress == FALSE) { 10697 /* 10698 * Note: sd_validate_geometry may return TRUE, but that does 10699 * not necessarily mean un_f_geometry_is_valid == TRUE! 10700 */ 10701 rval = sd_validate_geometry(un, SD_PATH_DIRECT); 10702 if (rval == ENOTSUP) { 10703 if (un->un_f_geometry_is_valid == TRUE) 10704 rval = 0; 10705 else { 10706 rval = SD_READY_NOT_VALID; 10707 goto done; 10708 } 10709 } 10710 if (rval != 0) { 10711 /* 10712 * We don't check the validity of geometry for 10713 * CDROMs. Also we assume we have a good label 10714 * even if sd_validate_geometry returned ENOMEM. 10715 */ 10716 if (!ISCD(un) && rval != ENOMEM) { 10717 rval = SD_NOT_READY_VALID; 10718 goto done; 10719 } 10720 } 10721 } 10722 10723 #ifdef DOESNTWORK /* on eliteII, see 1118607 */ 10724 /* 10725 * check to see if this disk is write protected, if it is and we have 10726 * not set read-only, then fail 10727 */ 10728 if ((flag & FWRITE) && (sr_check_wp(dev))) { 10729 New_state(un, SD_STATE_CLOSED); 10730 goto done; 10731 } 10732 #endif 10733 10734 /* 10735 * If this device supports DOOR_LOCK command, try and send 10736 * this command to PREVENT MEDIA REMOVAL, but don't get upset 10737 * if it fails. For a CD, however, it is an error 10738 */ 10739 if (un->un_f_doorlock_supported) { 10740 mutex_exit(SD_MUTEX(un)); 10741 if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT, 10742 SD_PATH_DIRECT) != 0) && ISCD(un)) { 10743 rval = SD_NOT_READY_VALID; 10744 mutex_enter(SD_MUTEX(un)); 10745 goto done; 10746 } 10747 mutex_enter(SD_MUTEX(un)); 10748 } 10749 10750 /* The state has changed, inform the media watch routines */ 10751 un->un_mediastate = DKIO_INSERTED; 10752 cv_broadcast(&un->un_state_cv); 10753 rval = SD_READY_VALID; 10754 10755 done: 10756 10757 /* 10758 * Initialize the capacity kstat value, if no media previously 10759 * (capacity kstat is 0) and a media has been inserted 10760 * (un_blockcount > 0). 10761 */ 10762 if (un->un_errstats != NULL) { 10763 stp = (struct sd_errstats *)un->un_errstats->ks_data; 10764 if ((stp->sd_capacity.value.ui64 == 0) && 10765 (un->un_f_blockcount_is_valid == TRUE)) { 10766 stp->sd_capacity.value.ui64 = 10767 (uint64_t)((uint64_t)un->un_blockcount * 10768 un->un_sys_blocksize); 10769 } 10770 } 10771 10772 mutex_exit(SD_MUTEX(un)); 10773 return (rval); 10774 } 10775 10776 10777 /* 10778 * Function: sdmin 10779 * 10780 * Description: Routine to limit the size of a data transfer. Used in 10781 * conjunction with physio(9F). 10782 * 10783 * Arguments: bp - pointer to the indicated buf(9S) struct. 10784 * 10785 * Context: Kernel thread context. 10786 */ 10787 10788 static void 10789 sdmin(struct buf *bp) 10790 { 10791 struct sd_lun *un; 10792 int instance; 10793 10794 instance = SDUNIT(bp->b_edev); 10795 10796 un = ddi_get_soft_state(sd_state, instance); 10797 ASSERT(un != NULL); 10798 10799 if (bp->b_bcount > un->un_max_xfer_size) { 10800 bp->b_bcount = un->un_max_xfer_size; 10801 } 10802 } 10803 10804 10805 /* 10806 * Function: sdread 10807 * 10808 * Description: Driver's read(9e) entry point function. 10809 * 10810 * Arguments: dev - device number 10811 * uio - structure pointer describing where data is to be stored 10812 * in user's space 10813 * cred_p - user credential pointer 10814 * 10815 * Return Code: ENXIO 10816 * EIO 10817 * EINVAL 10818 * value returned by physio 10819 * 10820 * Context: Kernel thread context. 10821 */ 10822 /* ARGSUSED */ 10823 static int 10824 sdread(dev_t dev, struct uio *uio, cred_t *cred_p) 10825 { 10826 struct sd_lun *un = NULL; 10827 int secmask; 10828 int err; 10829 10830 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10831 return (ENXIO); 10832 } 10833 10834 ASSERT(!mutex_owned(SD_MUTEX(un))); 10835 10836 if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) { 10837 mutex_enter(SD_MUTEX(un)); 10838 /* 10839 * Because the call to sd_ready_and_valid will issue I/O we 10840 * must wait here if either the device is suspended or 10841 * if it's power level is changing. 10842 */ 10843 while ((un->un_state == SD_STATE_SUSPENDED) || 10844 (un->un_state == SD_STATE_PM_CHANGING)) { 10845 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10846 } 10847 un->un_ncmds_in_driver++; 10848 mutex_exit(SD_MUTEX(un)); 10849 if ((sd_ready_and_valid(un)) != SD_READY_VALID) { 10850 mutex_enter(SD_MUTEX(un)); 10851 un->un_ncmds_in_driver--; 10852 ASSERT(un->un_ncmds_in_driver >= 0); 10853 mutex_exit(SD_MUTEX(un)); 10854 return (EIO); 10855 } 10856 mutex_enter(SD_MUTEX(un)); 10857 un->un_ncmds_in_driver--; 10858 ASSERT(un->un_ncmds_in_driver >= 0); 10859 mutex_exit(SD_MUTEX(un)); 10860 } 10861 10862 /* 10863 * Read requests are restricted to multiples of the system block size. 10864 */ 10865 secmask = un->un_sys_blocksize - 1; 10866 10867 if (uio->uio_loffset & ((offset_t)(secmask))) { 10868 SD_ERROR(SD_LOG_READ_WRITE, un, 10869 "sdread: file offset not modulo %d\n", 10870 un->un_sys_blocksize); 10871 err = EINVAL; 10872 } else if (uio->uio_iov->iov_len & (secmask)) { 10873 SD_ERROR(SD_LOG_READ_WRITE, un, 10874 "sdread: transfer length not modulo %d\n", 10875 un->un_sys_blocksize); 10876 err = EINVAL; 10877 } else { 10878 err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio); 10879 } 10880 return (err); 10881 } 10882 10883 10884 /* 10885 * Function: sdwrite 10886 * 10887 * Description: Driver's write(9e) entry point function. 10888 * 10889 * Arguments: dev - device number 10890 * uio - structure pointer describing where data is stored in 10891 * user's space 10892 * cred_p - user credential pointer 10893 * 10894 * Return Code: ENXIO 10895 * EIO 10896 * EINVAL 10897 * value returned by physio 10898 * 10899 * Context: Kernel thread context. 10900 */ 10901 /* ARGSUSED */ 10902 static int 10903 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p) 10904 { 10905 struct sd_lun *un = NULL; 10906 int secmask; 10907 int err; 10908 10909 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10910 return (ENXIO); 10911 } 10912 10913 ASSERT(!mutex_owned(SD_MUTEX(un))); 10914 10915 if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) { 10916 mutex_enter(SD_MUTEX(un)); 10917 /* 10918 * Because the call to sd_ready_and_valid will issue I/O we 10919 * must wait here if either the device is suspended or 10920 * if it's power level is changing. 10921 */ 10922 while ((un->un_state == SD_STATE_SUSPENDED) || 10923 (un->un_state == SD_STATE_PM_CHANGING)) { 10924 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10925 } 10926 un->un_ncmds_in_driver++; 10927 mutex_exit(SD_MUTEX(un)); 10928 if ((sd_ready_and_valid(un)) != SD_READY_VALID) { 10929 mutex_enter(SD_MUTEX(un)); 10930 un->un_ncmds_in_driver--; 10931 ASSERT(un->un_ncmds_in_driver >= 0); 10932 mutex_exit(SD_MUTEX(un)); 10933 return (EIO); 10934 } 10935 mutex_enter(SD_MUTEX(un)); 10936 un->un_ncmds_in_driver--; 10937 ASSERT(un->un_ncmds_in_driver >= 0); 10938 mutex_exit(SD_MUTEX(un)); 10939 } 10940 10941 /* 10942 * Write requests are restricted to multiples of the system block size. 10943 */ 10944 secmask = un->un_sys_blocksize - 1; 10945 10946 if (uio->uio_loffset & ((offset_t)(secmask))) { 10947 SD_ERROR(SD_LOG_READ_WRITE, un, 10948 "sdwrite: file offset not modulo %d\n", 10949 un->un_sys_blocksize); 10950 err = EINVAL; 10951 } else if (uio->uio_iov->iov_len & (secmask)) { 10952 SD_ERROR(SD_LOG_READ_WRITE, un, 10953 "sdwrite: transfer length not modulo %d\n", 10954 un->un_sys_blocksize); 10955 err = EINVAL; 10956 } else { 10957 err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio); 10958 } 10959 return (err); 10960 } 10961 10962 10963 /* 10964 * Function: sdaread 10965 * 10966 * Description: Driver's aread(9e) entry point function. 10967 * 10968 * Arguments: dev - device number 10969 * aio - structure pointer describing where data is to be stored 10970 * cred_p - user credential pointer 10971 * 10972 * Return Code: ENXIO 10973 * EIO 10974 * EINVAL 10975 * value returned by aphysio 10976 * 10977 * Context: Kernel thread context. 10978 */ 10979 /* ARGSUSED */ 10980 static int 10981 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p) 10982 { 10983 struct sd_lun *un = NULL; 10984 struct uio *uio = aio->aio_uio; 10985 int secmask; 10986 int err; 10987 10988 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10989 return (ENXIO); 10990 } 10991 10992 ASSERT(!mutex_owned(SD_MUTEX(un))); 10993 10994 if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) { 10995 mutex_enter(SD_MUTEX(un)); 10996 /* 10997 * Because the call to sd_ready_and_valid will issue I/O we 10998 * must wait here if either the device is suspended or 10999 * if it's power level is changing. 11000 */ 11001 while ((un->un_state == SD_STATE_SUSPENDED) || 11002 (un->un_state == SD_STATE_PM_CHANGING)) { 11003 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11004 } 11005 un->un_ncmds_in_driver++; 11006 mutex_exit(SD_MUTEX(un)); 11007 if ((sd_ready_and_valid(un)) != SD_READY_VALID) { 11008 mutex_enter(SD_MUTEX(un)); 11009 un->un_ncmds_in_driver--; 11010 ASSERT(un->un_ncmds_in_driver >= 0); 11011 mutex_exit(SD_MUTEX(un)); 11012 return (EIO); 11013 } 11014 mutex_enter(SD_MUTEX(un)); 11015 un->un_ncmds_in_driver--; 11016 ASSERT(un->un_ncmds_in_driver >= 0); 11017 mutex_exit(SD_MUTEX(un)); 11018 } 11019 11020 /* 11021 * Read requests are restricted to multiples of the system block size. 11022 */ 11023 secmask = un->un_sys_blocksize - 1; 11024 11025 if (uio->uio_loffset & ((offset_t)(secmask))) { 11026 SD_ERROR(SD_LOG_READ_WRITE, un, 11027 "sdaread: file offset not modulo %d\n", 11028 un->un_sys_blocksize); 11029 err = EINVAL; 11030 } else if (uio->uio_iov->iov_len & (secmask)) { 11031 SD_ERROR(SD_LOG_READ_WRITE, un, 11032 "sdaread: transfer length not modulo %d\n", 11033 un->un_sys_blocksize); 11034 err = EINVAL; 11035 } else { 11036 err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio); 11037 } 11038 return (err); 11039 } 11040 11041 11042 /* 11043 * Function: sdawrite 11044 * 11045 * Description: Driver's awrite(9e) entry point function. 11046 * 11047 * Arguments: dev - device number 11048 * aio - structure pointer describing where data is stored 11049 * cred_p - user credential pointer 11050 * 11051 * Return Code: ENXIO 11052 * EIO 11053 * EINVAL 11054 * value returned by aphysio 11055 * 11056 * Context: Kernel thread context. 11057 */ 11058 /* ARGSUSED */ 11059 static int 11060 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p) 11061 { 11062 struct sd_lun *un = NULL; 11063 struct uio *uio = aio->aio_uio; 11064 int secmask; 11065 int err; 11066 11067 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 11068 return (ENXIO); 11069 } 11070 11071 ASSERT(!mutex_owned(SD_MUTEX(un))); 11072 11073 if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) { 11074 mutex_enter(SD_MUTEX(un)); 11075 /* 11076 * Because the call to sd_ready_and_valid will issue I/O we 11077 * must wait here if either the device is suspended or 11078 * if it's power level is changing. 11079 */ 11080 while ((un->un_state == SD_STATE_SUSPENDED) || 11081 (un->un_state == SD_STATE_PM_CHANGING)) { 11082 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11083 } 11084 un->un_ncmds_in_driver++; 11085 mutex_exit(SD_MUTEX(un)); 11086 if ((sd_ready_and_valid(un)) != SD_READY_VALID) { 11087 mutex_enter(SD_MUTEX(un)); 11088 un->un_ncmds_in_driver--; 11089 ASSERT(un->un_ncmds_in_driver >= 0); 11090 mutex_exit(SD_MUTEX(un)); 11091 return (EIO); 11092 } 11093 mutex_enter(SD_MUTEX(un)); 11094 un->un_ncmds_in_driver--; 11095 ASSERT(un->un_ncmds_in_driver >= 0); 11096 mutex_exit(SD_MUTEX(un)); 11097 } 11098 11099 /* 11100 * Write requests are restricted to multiples of the system block size. 11101 */ 11102 secmask = un->un_sys_blocksize - 1; 11103 11104 if (uio->uio_loffset & ((offset_t)(secmask))) { 11105 SD_ERROR(SD_LOG_READ_WRITE, un, 11106 "sdawrite: file offset not modulo %d\n", 11107 un->un_sys_blocksize); 11108 err = EINVAL; 11109 } else if (uio->uio_iov->iov_len & (secmask)) { 11110 SD_ERROR(SD_LOG_READ_WRITE, un, 11111 "sdawrite: transfer length not modulo %d\n", 11112 un->un_sys_blocksize); 11113 err = EINVAL; 11114 } else { 11115 err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio); 11116 } 11117 return (err); 11118 } 11119 11120 11121 11122 11123 11124 /* 11125 * Driver IO processing follows the following sequence: 11126 * 11127 * sdioctl(9E) sdstrategy(9E) biodone(9F) 11128 * | | ^ 11129 * v v | 11130 * sd_send_scsi_cmd() ddi_xbuf_qstrategy() +-------------------+ 11131 * | | | | 11132 * v | | | 11133 * sd_uscsi_strategy() sd_xbuf_strategy() sd_buf_iodone() sd_uscsi_iodone() 11134 * | | ^ ^ 11135 * v v | | 11136 * SD_BEGIN_IOSTART() SD_BEGIN_IOSTART() | | 11137 * | | | | 11138 * +---+ | +------------+ +-------+ 11139 * | | | | 11140 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 11141 * | v | | 11142 * | sd_mapblockaddr_iostart() sd_mapblockaddr_iodone() | 11143 * | | ^ | 11144 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 11145 * | v | | 11146 * | sd_mapblocksize_iostart() sd_mapblocksize_iodone() | 11147 * | | ^ | 11148 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 11149 * | v | | 11150 * | sd_checksum_iostart() sd_checksum_iodone() | 11151 * | | ^ | 11152 * +-> SD_NEXT_IOSTART()| SD_NEXT_IODONE()+------------->+ 11153 * | v | | 11154 * | sd_pm_iostart() sd_pm_iodone() | 11155 * | | ^ | 11156 * | | | | 11157 * +-> SD_NEXT_IOSTART()| SD_BEGIN_IODONE()--+--------------+ 11158 * | ^ 11159 * v | 11160 * sd_core_iostart() | 11161 * | | 11162 * | +------>(*destroypkt)() 11163 * +-> sd_start_cmds() <-+ | | 11164 * | | | v 11165 * | | | scsi_destroy_pkt(9F) 11166 * | | | 11167 * +->(*initpkt)() +- sdintr() 11168 * | | | | 11169 * | +-> scsi_init_pkt(9F) | +-> sd_handle_xxx() 11170 * | +-> scsi_setup_cdb(9F) | 11171 * | | 11172 * +--> scsi_transport(9F) | 11173 * | | 11174 * +----> SCSA ---->+ 11175 * 11176 * 11177 * This code is based upon the following presumtions: 11178 * 11179 * - iostart and iodone functions operate on buf(9S) structures. These 11180 * functions perform the necessary operations on the buf(9S) and pass 11181 * them along to the next function in the chain by using the macros 11182 * SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE() 11183 * (for iodone side functions). 11184 * 11185 * - The iostart side functions may sleep. The iodone side functions 11186 * are called under interrupt context and may NOT sleep. Therefore 11187 * iodone side functions also may not call iostart side functions. 11188 * (NOTE: iostart side functions should NOT sleep for memory, as 11189 * this could result in deadlock.) 11190 * 11191 * - An iostart side function may call its corresponding iodone side 11192 * function directly (if necessary). 11193 * 11194 * - In the event of an error, an iostart side function can return a buf(9S) 11195 * to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and 11196 * b_error in the usual way of course). 11197 * 11198 * - The taskq mechanism may be used by the iodone side functions to dispatch 11199 * requests to the iostart side functions. The iostart side functions in 11200 * this case would be called under the context of a taskq thread, so it's 11201 * OK for them to block/sleep/spin in this case. 11202 * 11203 * - iostart side functions may allocate "shadow" buf(9S) structs and 11204 * pass them along to the next function in the chain. The corresponding 11205 * iodone side functions must coalesce the "shadow" bufs and return 11206 * the "original" buf to the next higher layer. 11207 * 11208 * - The b_private field of the buf(9S) struct holds a pointer to 11209 * an sd_xbuf struct, which contains information needed to 11210 * construct the scsi_pkt for the command. 11211 * 11212 * - The SD_MUTEX(un) is NOT held across calls to the next layer. Each 11213 * layer must acquire & release the SD_MUTEX(un) as needed. 11214 */ 11215 11216 11217 /* 11218 * Create taskq for all targets in the system. This is created at 11219 * _init(9E) and destroyed at _fini(9E). 11220 * 11221 * Note: here we set the minalloc to a reasonably high number to ensure that 11222 * we will have an adequate supply of task entries available at interrupt time. 11223 * This is used in conjunction with the TASKQ_PREPOPULATE flag in 11224 * sd_create_taskq(). Since we do not want to sleep for allocations at 11225 * interrupt time, set maxalloc equal to minalloc. That way we will just fail 11226 * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq 11227 * requests any one instant in time. 11228 */ 11229 #define SD_TASKQ_NUMTHREADS 8 11230 #define SD_TASKQ_MINALLOC 256 11231 #define SD_TASKQ_MAXALLOC 256 11232 11233 static taskq_t *sd_tq = NULL; 11234 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq)) 11235 11236 static int sd_taskq_minalloc = SD_TASKQ_MINALLOC; 11237 static int sd_taskq_maxalloc = SD_TASKQ_MAXALLOC; 11238 11239 /* 11240 * The following task queue is being created for the write part of 11241 * read-modify-write of non-512 block size devices. 11242 * Limit the number of threads to 1 for now. This number has been choosen 11243 * considering the fact that it applies only to dvd ram drives/MO drives 11244 * currently. Performance for which is not main criteria at this stage. 11245 * Note: It needs to be explored if we can use a single taskq in future 11246 */ 11247 #define SD_WMR_TASKQ_NUMTHREADS 1 11248 static taskq_t *sd_wmr_tq = NULL; 11249 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq)) 11250 11251 /* 11252 * Function: sd_taskq_create 11253 * 11254 * Description: Create taskq thread(s) and preallocate task entries 11255 * 11256 * Return Code: Returns a pointer to the allocated taskq_t. 11257 * 11258 * Context: Can sleep. Requires blockable context. 11259 * 11260 * Notes: - The taskq() facility currently is NOT part of the DDI. 11261 * (definitely NOT recommeded for 3rd-party drivers!) :-) 11262 * - taskq_create() will block for memory, also it will panic 11263 * if it cannot create the requested number of threads. 11264 * - Currently taskq_create() creates threads that cannot be 11265 * swapped. 11266 * - We use TASKQ_PREPOPULATE to ensure we have an adequate 11267 * supply of taskq entries at interrupt time (ie, so that we 11268 * do not have to sleep for memory) 11269 */ 11270 11271 static void 11272 sd_taskq_create(void) 11273 { 11274 char taskq_name[TASKQ_NAMELEN]; 11275 11276 ASSERT(sd_tq == NULL); 11277 ASSERT(sd_wmr_tq == NULL); 11278 11279 (void) snprintf(taskq_name, sizeof (taskq_name), 11280 "%s_drv_taskq", sd_label); 11281 sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS, 11282 (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc, 11283 TASKQ_PREPOPULATE)); 11284 11285 (void) snprintf(taskq_name, sizeof (taskq_name), 11286 "%s_rmw_taskq", sd_label); 11287 sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS, 11288 (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc, 11289 TASKQ_PREPOPULATE)); 11290 } 11291 11292 11293 /* 11294 * Function: sd_taskq_delete 11295 * 11296 * Description: Complementary cleanup routine for sd_taskq_create(). 11297 * 11298 * Context: Kernel thread context. 11299 */ 11300 11301 static void 11302 sd_taskq_delete(void) 11303 { 11304 ASSERT(sd_tq != NULL); 11305 ASSERT(sd_wmr_tq != NULL); 11306 taskq_destroy(sd_tq); 11307 taskq_destroy(sd_wmr_tq); 11308 sd_tq = NULL; 11309 sd_wmr_tq = NULL; 11310 } 11311 11312 11313 /* 11314 * Function: sdstrategy 11315 * 11316 * Description: Driver's strategy (9E) entry point function. 11317 * 11318 * Arguments: bp - pointer to buf(9S) 11319 * 11320 * Return Code: Always returns zero 11321 * 11322 * Context: Kernel thread context. 11323 */ 11324 11325 static int 11326 sdstrategy(struct buf *bp) 11327 { 11328 struct sd_lun *un; 11329 11330 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 11331 if (un == NULL) { 11332 bioerror(bp, EIO); 11333 bp->b_resid = bp->b_bcount; 11334 biodone(bp); 11335 return (0); 11336 } 11337 /* As was done in the past, fail new cmds. if state is dumping. */ 11338 if (un->un_state == SD_STATE_DUMPING) { 11339 bioerror(bp, ENXIO); 11340 bp->b_resid = bp->b_bcount; 11341 biodone(bp); 11342 return (0); 11343 } 11344 11345 ASSERT(!mutex_owned(SD_MUTEX(un))); 11346 11347 /* 11348 * Commands may sneak in while we released the mutex in 11349 * DDI_SUSPEND, we should block new commands. However, old 11350 * commands that are still in the driver at this point should 11351 * still be allowed to drain. 11352 */ 11353 mutex_enter(SD_MUTEX(un)); 11354 /* 11355 * Must wait here if either the device is suspended or 11356 * if it's power level is changing. 11357 */ 11358 while ((un->un_state == SD_STATE_SUSPENDED) || 11359 (un->un_state == SD_STATE_PM_CHANGING)) { 11360 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11361 } 11362 11363 un->un_ncmds_in_driver++; 11364 11365 /* 11366 * atapi: Since we are running the CD for now in PIO mode we need to 11367 * call bp_mapin here to avoid bp_mapin called interrupt context under 11368 * the HBA's init_pkt routine. 11369 */ 11370 if (un->un_f_cfg_is_atapi == TRUE) { 11371 mutex_exit(SD_MUTEX(un)); 11372 bp_mapin(bp); 11373 mutex_enter(SD_MUTEX(un)); 11374 } 11375 SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n", 11376 un->un_ncmds_in_driver); 11377 11378 mutex_exit(SD_MUTEX(un)); 11379 11380 /* 11381 * This will (eventually) allocate the sd_xbuf area and 11382 * call sd_xbuf_strategy(). We just want to return the 11383 * result of ddi_xbuf_qstrategy so that we have an opt- 11384 * imized tail call which saves us a stack frame. 11385 */ 11386 return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr)); 11387 } 11388 11389 11390 /* 11391 * Function: sd_xbuf_strategy 11392 * 11393 * Description: Function for initiating IO operations via the 11394 * ddi_xbuf_qstrategy() mechanism. 11395 * 11396 * Context: Kernel thread context. 11397 */ 11398 11399 static void 11400 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg) 11401 { 11402 struct sd_lun *un = arg; 11403 11404 ASSERT(bp != NULL); 11405 ASSERT(xp != NULL); 11406 ASSERT(un != NULL); 11407 ASSERT(!mutex_owned(SD_MUTEX(un))); 11408 11409 /* 11410 * Initialize the fields in the xbuf and save a pointer to the 11411 * xbuf in bp->b_private. 11412 */ 11413 sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL); 11414 11415 /* Send the buf down the iostart chain */ 11416 SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp); 11417 } 11418 11419 11420 /* 11421 * Function: sd_xbuf_init 11422 * 11423 * Description: Prepare the given sd_xbuf struct for use. 11424 * 11425 * Arguments: un - ptr to softstate 11426 * bp - ptr to associated buf(9S) 11427 * xp - ptr to associated sd_xbuf 11428 * chain_type - IO chain type to use: 11429 * SD_CHAIN_NULL 11430 * SD_CHAIN_BUFIO 11431 * SD_CHAIN_USCSI 11432 * SD_CHAIN_DIRECT 11433 * SD_CHAIN_DIRECT_PRIORITY 11434 * pktinfop - ptr to private data struct for scsi_pkt(9S) 11435 * initialization; may be NULL if none. 11436 * 11437 * Context: Kernel thread context 11438 */ 11439 11440 static void 11441 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 11442 uchar_t chain_type, void *pktinfop) 11443 { 11444 int index; 11445 11446 ASSERT(un != NULL); 11447 ASSERT(bp != NULL); 11448 ASSERT(xp != NULL); 11449 11450 SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n", 11451 bp, chain_type); 11452 11453 xp->xb_un = un; 11454 xp->xb_pktp = NULL; 11455 xp->xb_pktinfo = pktinfop; 11456 xp->xb_private = bp->b_private; 11457 xp->xb_blkno = (daddr_t)bp->b_blkno; 11458 11459 /* 11460 * Set up the iostart and iodone chain indexes in the xbuf, based 11461 * upon the specified chain type to use. 11462 */ 11463 switch (chain_type) { 11464 case SD_CHAIN_NULL: 11465 /* 11466 * Fall thru to just use the values for the buf type, even 11467 * tho for the NULL chain these values will never be used. 11468 */ 11469 /* FALLTHRU */ 11470 case SD_CHAIN_BUFIO: 11471 index = un->un_buf_chain_type; 11472 break; 11473 case SD_CHAIN_USCSI: 11474 index = un->un_uscsi_chain_type; 11475 break; 11476 case SD_CHAIN_DIRECT: 11477 index = un->un_direct_chain_type; 11478 break; 11479 case SD_CHAIN_DIRECT_PRIORITY: 11480 index = un->un_priority_chain_type; 11481 break; 11482 default: 11483 /* We're really broken if we ever get here... */ 11484 panic("sd_xbuf_init: illegal chain type!"); 11485 /*NOTREACHED*/ 11486 } 11487 11488 xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index; 11489 xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index; 11490 11491 /* 11492 * It might be a bit easier to simply bzero the entire xbuf above, 11493 * but it turns out that since we init a fair number of members anyway, 11494 * we save a fair number cycles by doing explicit assignment of zero. 11495 */ 11496 xp->xb_pkt_flags = 0; 11497 xp->xb_dma_resid = 0; 11498 xp->xb_retry_count = 0; 11499 xp->xb_victim_retry_count = 0; 11500 xp->xb_ua_retry_count = 0; 11501 xp->xb_sense_bp = NULL; 11502 xp->xb_sense_status = 0; 11503 xp->xb_sense_state = 0; 11504 xp->xb_sense_resid = 0; 11505 11506 bp->b_private = xp; 11507 bp->b_flags &= ~(B_DONE | B_ERROR); 11508 bp->b_resid = 0; 11509 bp->av_forw = NULL; 11510 bp->av_back = NULL; 11511 bioerror(bp, 0); 11512 11513 SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n"); 11514 } 11515 11516 11517 /* 11518 * Function: sd_uscsi_strategy 11519 * 11520 * Description: Wrapper for calling into the USCSI chain via physio(9F) 11521 * 11522 * Arguments: bp - buf struct ptr 11523 * 11524 * Return Code: Always returns 0 11525 * 11526 * Context: Kernel thread context 11527 */ 11528 11529 static int 11530 sd_uscsi_strategy(struct buf *bp) 11531 { 11532 struct sd_lun *un; 11533 struct sd_uscsi_info *uip; 11534 struct sd_xbuf *xp; 11535 uchar_t chain_type; 11536 11537 ASSERT(bp != NULL); 11538 11539 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 11540 if (un == NULL) { 11541 bioerror(bp, EIO); 11542 bp->b_resid = bp->b_bcount; 11543 biodone(bp); 11544 return (0); 11545 } 11546 11547 ASSERT(!mutex_owned(SD_MUTEX(un))); 11548 11549 SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp); 11550 11551 mutex_enter(SD_MUTEX(un)); 11552 /* 11553 * atapi: Since we are running the CD for now in PIO mode we need to 11554 * call bp_mapin here to avoid bp_mapin called interrupt context under 11555 * the HBA's init_pkt routine. 11556 */ 11557 if (un->un_f_cfg_is_atapi == TRUE) { 11558 mutex_exit(SD_MUTEX(un)); 11559 bp_mapin(bp); 11560 mutex_enter(SD_MUTEX(un)); 11561 } 11562 un->un_ncmds_in_driver++; 11563 SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n", 11564 un->un_ncmds_in_driver); 11565 mutex_exit(SD_MUTEX(un)); 11566 11567 /* 11568 * A pointer to a struct sd_uscsi_info is expected in bp->b_private 11569 */ 11570 ASSERT(bp->b_private != NULL); 11571 uip = (struct sd_uscsi_info *)bp->b_private; 11572 11573 switch (uip->ui_flags) { 11574 case SD_PATH_DIRECT: 11575 chain_type = SD_CHAIN_DIRECT; 11576 break; 11577 case SD_PATH_DIRECT_PRIORITY: 11578 chain_type = SD_CHAIN_DIRECT_PRIORITY; 11579 break; 11580 default: 11581 chain_type = SD_CHAIN_USCSI; 11582 break; 11583 } 11584 11585 xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 11586 sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp); 11587 11588 /* Use the index obtained within xbuf_init */ 11589 SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp); 11590 11591 SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp); 11592 11593 return (0); 11594 } 11595 11596 11597 /* 11598 * These routines perform raw i/o operations. 11599 */ 11600 /*ARGSUSED*/ 11601 static void 11602 sduscsimin(struct buf *bp) 11603 { 11604 /* 11605 * do not break up because the CDB count would then 11606 * be incorrect and data underruns would result (incomplete 11607 * read/writes which would be retried and then failed, see 11608 * sdintr(). 11609 */ 11610 } 11611 11612 11613 11614 /* 11615 * Function: sd_send_scsi_cmd 11616 * 11617 * Description: Runs a USCSI command for user (when called thru sdioctl), 11618 * or for the driver 11619 * 11620 * Arguments: dev - the dev_t for the device 11621 * incmd - ptr to a valid uscsi_cmd struct 11622 * cdbspace - UIO_USERSPACE or UIO_SYSSPACE 11623 * dataspace - UIO_USERSPACE or UIO_SYSSPACE 11624 * rqbufspace - UIO_USERSPACE or UIO_SYSSPACE 11625 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 11626 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 11627 * to use the USCSI "direct" chain and bypass the normal 11628 * command waitq. 11629 * 11630 * Return Code: 0 - successful completion of the given command 11631 * EIO - scsi_reset() failed, or see biowait()/physio() codes. 11632 * ENXIO - soft state not found for specified dev 11633 * EINVAL 11634 * EFAULT - copyin/copyout error 11635 * return code of biowait(9F) or physio(9F): 11636 * EIO - IO error, caller may check incmd->uscsi_status 11637 * ENXIO 11638 * EACCES - reservation conflict 11639 * 11640 * Context: Waits for command to complete. Can sleep. 11641 */ 11642 11643 static int 11644 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, 11645 enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace, 11646 int path_flag) 11647 { 11648 struct sd_uscsi_info *uip; 11649 struct uscsi_cmd *uscmd; 11650 struct sd_lun *un; 11651 struct buf *bp; 11652 int rval; 11653 int flags; 11654 11655 un = ddi_get_soft_state(sd_state, SDUNIT(dev)); 11656 if (un == NULL) { 11657 return (ENXIO); 11658 } 11659 11660 ASSERT(!mutex_owned(SD_MUTEX(un))); 11661 11662 #ifdef SDDEBUG 11663 switch (dataspace) { 11664 case UIO_USERSPACE: 11665 SD_TRACE(SD_LOG_IO, un, 11666 "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un); 11667 break; 11668 case UIO_SYSSPACE: 11669 SD_TRACE(SD_LOG_IO, un, 11670 "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un); 11671 break; 11672 default: 11673 SD_TRACE(SD_LOG_IO, un, 11674 "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un); 11675 break; 11676 } 11677 #endif 11678 11679 /* 11680 * Perform resets directly; no need to generate a command to do it. 11681 */ 11682 if (incmd->uscsi_flags & (USCSI_RESET | USCSI_RESET_ALL)) { 11683 flags = ((incmd->uscsi_flags & USCSI_RESET_ALL) != 0) ? 11684 RESET_ALL : RESET_TARGET; 11685 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: Issuing reset\n"); 11686 if (scsi_reset(SD_ADDRESS(un), flags) == 0) { 11687 /* Reset attempt was unsuccessful */ 11688 SD_TRACE(SD_LOG_IO, un, 11689 "sd_send_scsi_cmd: reset: failure\n"); 11690 return (EIO); 11691 } 11692 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: reset: success\n"); 11693 return (0); 11694 } 11695 11696 /* Perfunctory sanity check... */ 11697 if (incmd->uscsi_cdblen <= 0) { 11698 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: " 11699 "invalid uscsi_cdblen, returning EINVAL\n"); 11700 return (EINVAL); 11701 } 11702 11703 /* 11704 * In order to not worry about where the uscsi structure came from 11705 * (or where the cdb it points to came from) we're going to make 11706 * kmem_alloc'd copies of them here. This will also allow reference 11707 * to the data they contain long after this process has gone to 11708 * sleep and its kernel stack has been unmapped, etc. 11709 * 11710 * First get some memory for the uscsi_cmd struct and copy the 11711 * contents of the given uscsi_cmd struct into it. 11712 */ 11713 uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP); 11714 bcopy(incmd, uscmd, sizeof (struct uscsi_cmd)); 11715 11716 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: uscsi_cmd", 11717 (uchar_t *)uscmd, sizeof (struct uscsi_cmd), SD_LOG_HEX); 11718 11719 /* 11720 * Now get some space for the CDB, and copy the given CDB into 11721 * it. Use ddi_copyin() in case the data is in user space. 11722 */ 11723 uscmd->uscsi_cdb = kmem_zalloc((size_t)incmd->uscsi_cdblen, KM_SLEEP); 11724 flags = (cdbspace == UIO_SYSSPACE) ? FKIOCTL : 0; 11725 if (ddi_copyin(incmd->uscsi_cdb, uscmd->uscsi_cdb, 11726 (uint_t)incmd->uscsi_cdblen, flags) != 0) { 11727 kmem_free(uscmd->uscsi_cdb, (size_t)incmd->uscsi_cdblen); 11728 kmem_free(uscmd, sizeof (struct uscsi_cmd)); 11729 return (EFAULT); 11730 } 11731 11732 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: CDB", 11733 (uchar_t *)uscmd->uscsi_cdb, incmd->uscsi_cdblen, SD_LOG_HEX); 11734 11735 bp = getrbuf(KM_SLEEP); 11736 11737 /* 11738 * Allocate an sd_uscsi_info struct and fill it with the info 11739 * needed by sd_initpkt_for_uscsi(). Then put the pointer into 11740 * b_private in the buf for sd_initpkt_for_uscsi(). Note that 11741 * since we allocate the buf here in this function, we do not 11742 * need to preserve the prior contents of b_private. 11743 * The sd_uscsi_info struct is also used by sd_uscsi_strategy() 11744 */ 11745 uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP); 11746 uip->ui_flags = path_flag; 11747 uip->ui_cmdp = uscmd; 11748 bp->b_private = uip; 11749 11750 /* 11751 * Initialize Request Sense buffering, if requested. 11752 */ 11753 if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) && 11754 (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) { 11755 /* 11756 * Here uscmd->uscsi_rqbuf currently points to the caller's 11757 * buffer, but we replace this with a kernel buffer that 11758 * we allocate to use with the sense data. The sense data 11759 * (if present) gets copied into this new buffer before the 11760 * command is completed. Then we copy the sense data from 11761 * our allocated buf into the caller's buffer below. Note 11762 * that incmd->uscsi_rqbuf and incmd->uscsi_rqlen are used 11763 * below to perform the copy back to the caller's buf. 11764 */ 11765 uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 11766 if (rqbufspace == UIO_USERSPACE) { 11767 uscmd->uscsi_rqlen = SENSE_LENGTH; 11768 uscmd->uscsi_rqresid = SENSE_LENGTH; 11769 } else { 11770 uchar_t rlen = min(SENSE_LENGTH, uscmd->uscsi_rqlen); 11771 uscmd->uscsi_rqlen = rlen; 11772 uscmd->uscsi_rqresid = rlen; 11773 } 11774 } else { 11775 uscmd->uscsi_rqbuf = NULL; 11776 uscmd->uscsi_rqlen = 0; 11777 uscmd->uscsi_rqresid = 0; 11778 } 11779 11780 SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: rqbuf:0x%p rqlen:%d\n", 11781 uscmd->uscsi_rqbuf, uscmd->uscsi_rqlen); 11782 11783 if (un->un_f_is_fibre == FALSE) { 11784 /* 11785 * Force asynchronous mode, if necessary. Doing this here 11786 * has the unfortunate effect of running other queued 11787 * commands async also, but since the main purpose of this 11788 * capability is downloading new drive firmware, we can 11789 * probably live with it. 11790 */ 11791 if ((uscmd->uscsi_flags & USCSI_ASYNC) != 0) { 11792 if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1) 11793 == 1) { 11794 if (scsi_ifsetcap(SD_ADDRESS(un), 11795 "synchronous", 0, 1) == 1) { 11796 SD_TRACE(SD_LOG_IO, un, 11797 "sd_send_scsi_cmd: forced async ok\n"); 11798 } else { 11799 SD_TRACE(SD_LOG_IO, un, 11800 "sd_send_scsi_cmd:\ 11801 forced async failed\n"); 11802 rval = EINVAL; 11803 goto done; 11804 } 11805 } 11806 } 11807 11808 /* 11809 * Re-enable synchronous mode, if requested 11810 */ 11811 if (uscmd->uscsi_flags & USCSI_SYNC) { 11812 if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1) 11813 == 0) { 11814 int i = scsi_ifsetcap(SD_ADDRESS(un), 11815 "synchronous", 1, 1); 11816 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: " 11817 "re-enabled sync %s\n", 11818 (i == 1) ? "ok" : "failed"); 11819 } 11820 } 11821 } 11822 11823 /* 11824 * Commands sent with priority are intended for error recovery 11825 * situations, and do not have retries performed. 11826 */ 11827 if (path_flag == SD_PATH_DIRECT_PRIORITY) { 11828 uscmd->uscsi_flags |= USCSI_DIAGNOSE; 11829 } 11830 11831 /* 11832 * If we're going to do actual I/O, let physio do all the right things 11833 */ 11834 if (uscmd->uscsi_buflen != 0) { 11835 struct iovec aiov; 11836 struct uio auio; 11837 struct uio *uio = &auio; 11838 11839 bzero(&auio, sizeof (struct uio)); 11840 bzero(&aiov, sizeof (struct iovec)); 11841 aiov.iov_base = uscmd->uscsi_bufaddr; 11842 aiov.iov_len = uscmd->uscsi_buflen; 11843 uio->uio_iov = &aiov; 11844 11845 uio->uio_iovcnt = 1; 11846 uio->uio_resid = uscmd->uscsi_buflen; 11847 uio->uio_segflg = dataspace; 11848 11849 /* 11850 * physio() will block here until the command completes.... 11851 */ 11852 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling physio.\n"); 11853 11854 rval = physio(sd_uscsi_strategy, bp, dev, 11855 ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE), 11856 sduscsimin, uio); 11857 11858 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: " 11859 "returned from physio with 0x%x\n", rval); 11860 11861 } else { 11862 /* 11863 * We have to mimic what physio would do here! Argh! 11864 */ 11865 bp->b_flags = B_BUSY | 11866 ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE); 11867 bp->b_edev = dev; 11868 bp->b_dev = cmpdev(dev); /* maybe unnecessary? */ 11869 bp->b_bcount = 0; 11870 bp->b_blkno = 0; 11871 11872 SD_TRACE(SD_LOG_IO, un, 11873 "sd_send_scsi_cmd: calling sd_uscsi_strategy...\n"); 11874 11875 (void) sd_uscsi_strategy(bp); 11876 11877 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling biowait\n"); 11878 11879 rval = biowait(bp); 11880 11881 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: " 11882 "returned from biowait with 0x%x\n", rval); 11883 } 11884 11885 done: 11886 11887 #ifdef SDDEBUG 11888 SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: " 11889 "uscsi_status: 0x%02x uscsi_resid:0x%x\n", 11890 uscmd->uscsi_status, uscmd->uscsi_resid); 11891 if (uscmd->uscsi_bufaddr != NULL) { 11892 SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: " 11893 "uscmd->uscsi_bufaddr: 0x%p uscmd->uscsi_buflen:%d\n", 11894 uscmd->uscsi_bufaddr, uscmd->uscsi_buflen); 11895 if (dataspace == UIO_SYSSPACE) { 11896 SD_DUMP_MEMORY(un, SD_LOG_IO, 11897 "data", (uchar_t *)uscmd->uscsi_bufaddr, 11898 uscmd->uscsi_buflen, SD_LOG_HEX); 11899 } 11900 } 11901 #endif 11902 11903 /* 11904 * Get the status and residual to return to the caller. 11905 */ 11906 incmd->uscsi_status = uscmd->uscsi_status; 11907 incmd->uscsi_resid = uscmd->uscsi_resid; 11908 11909 /* 11910 * If the caller wants sense data, copy back whatever sense data 11911 * we may have gotten, and update the relevant rqsense info. 11912 */ 11913 if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) && 11914 (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) { 11915 11916 int rqlen = uscmd->uscsi_rqlen - uscmd->uscsi_rqresid; 11917 rqlen = min(((int)incmd->uscsi_rqlen), rqlen); 11918 11919 /* Update the Request Sense status and resid */ 11920 incmd->uscsi_rqresid = incmd->uscsi_rqlen - rqlen; 11921 incmd->uscsi_rqstatus = uscmd->uscsi_rqstatus; 11922 11923 SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: " 11924 "uscsi_rqstatus: 0x%02x uscsi_rqresid:0x%x\n", 11925 incmd->uscsi_rqstatus, incmd->uscsi_rqresid); 11926 11927 /* Copy out the sense data for user processes */ 11928 if ((incmd->uscsi_rqbuf != NULL) && (rqlen != 0)) { 11929 int flags = 11930 (rqbufspace == UIO_USERSPACE) ? 0 : FKIOCTL; 11931 if (ddi_copyout(uscmd->uscsi_rqbuf, incmd->uscsi_rqbuf, 11932 rqlen, flags) != 0) { 11933 rval = EFAULT; 11934 } 11935 /* 11936 * Note: Can't touch incmd->uscsi_rqbuf so use 11937 * uscmd->uscsi_rqbuf instead. They're the same. 11938 */ 11939 SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: " 11940 "incmd->uscsi_rqbuf: 0x%p rqlen:%d\n", 11941 incmd->uscsi_rqbuf, rqlen); 11942 SD_DUMP_MEMORY(un, SD_LOG_IO, "rq", 11943 (uchar_t *)uscmd->uscsi_rqbuf, rqlen, SD_LOG_HEX); 11944 } 11945 } 11946 11947 /* 11948 * Free allocated resources and return; mapout the buf in case it was 11949 * mapped in by a lower layer. 11950 */ 11951 bp_mapout(bp); 11952 freerbuf(bp); 11953 kmem_free(uip, sizeof (struct sd_uscsi_info)); 11954 if (uscmd->uscsi_rqbuf != NULL) { 11955 kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH); 11956 } 11957 kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen); 11958 kmem_free(uscmd, sizeof (struct uscsi_cmd)); 11959 11960 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: exit\n"); 11961 11962 return (rval); 11963 } 11964 11965 11966 /* 11967 * Function: sd_buf_iodone 11968 * 11969 * Description: Frees the sd_xbuf & returns the buf to its originator. 11970 * 11971 * Context: May be called from interrupt context. 11972 */ 11973 /* ARGSUSED */ 11974 static void 11975 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp) 11976 { 11977 struct sd_xbuf *xp; 11978 11979 ASSERT(un != NULL); 11980 ASSERT(bp != NULL); 11981 ASSERT(!mutex_owned(SD_MUTEX(un))); 11982 11983 SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n"); 11984 11985 xp = SD_GET_XBUF(bp); 11986 ASSERT(xp != NULL); 11987 11988 mutex_enter(SD_MUTEX(un)); 11989 11990 /* 11991 * Grab time when the cmd completed. 11992 * This is used for determining if the system has been 11993 * idle long enough to make it idle to the PM framework. 11994 * This is for lowering the overhead, and therefore improving 11995 * performance per I/O operation. 11996 */ 11997 un->un_pm_idle_time = ddi_get_time(); 11998 11999 un->un_ncmds_in_driver--; 12000 ASSERT(un->un_ncmds_in_driver >= 0); 12001 SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n", 12002 un->un_ncmds_in_driver); 12003 12004 mutex_exit(SD_MUTEX(un)); 12005 12006 ddi_xbuf_done(bp, un->un_xbuf_attr); /* xbuf is gone after this */ 12007 biodone(bp); /* bp is gone after this */ 12008 12009 SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n"); 12010 } 12011 12012 12013 /* 12014 * Function: sd_uscsi_iodone 12015 * 12016 * Description: Frees the sd_xbuf & returns the buf to its originator. 12017 * 12018 * Context: May be called from interrupt context. 12019 */ 12020 /* ARGSUSED */ 12021 static void 12022 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp) 12023 { 12024 struct sd_xbuf *xp; 12025 12026 ASSERT(un != NULL); 12027 ASSERT(bp != NULL); 12028 12029 xp = SD_GET_XBUF(bp); 12030 ASSERT(xp != NULL); 12031 ASSERT(!mutex_owned(SD_MUTEX(un))); 12032 12033 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n"); 12034 12035 bp->b_private = xp->xb_private; 12036 12037 mutex_enter(SD_MUTEX(un)); 12038 12039 /* 12040 * Grab time when the cmd completed. 12041 * This is used for determining if the system has been 12042 * idle long enough to make it idle to the PM framework. 12043 * This is for lowering the overhead, and therefore improving 12044 * performance per I/O operation. 12045 */ 12046 un->un_pm_idle_time = ddi_get_time(); 12047 12048 un->un_ncmds_in_driver--; 12049 ASSERT(un->un_ncmds_in_driver >= 0); 12050 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n", 12051 un->un_ncmds_in_driver); 12052 12053 mutex_exit(SD_MUTEX(un)); 12054 12055 kmem_free(xp, sizeof (struct sd_xbuf)); 12056 biodone(bp); 12057 12058 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n"); 12059 } 12060 12061 12062 /* 12063 * Function: sd_mapblockaddr_iostart 12064 * 12065 * Description: Verify request lies withing the partition limits for 12066 * the indicated minor device. Issue "overrun" buf if 12067 * request would exceed partition range. Converts 12068 * partition-relative block address to absolute. 12069 * 12070 * Context: Can sleep 12071 * 12072 * Issues: This follows what the old code did, in terms of accessing 12073 * some of the partition info in the unit struct without holding 12074 * the mutext. This is a general issue, if the partition info 12075 * can be altered while IO is in progress... as soon as we send 12076 * a buf, its partitioning can be invalid before it gets to the 12077 * device. Probably the right fix is to move partitioning out 12078 * of the driver entirely. 12079 */ 12080 12081 static void 12082 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp) 12083 { 12084 daddr_t nblocks; /* #blocks in the given partition */ 12085 daddr_t blocknum; /* Block number specified by the buf */ 12086 size_t requested_nblocks; 12087 size_t available_nblocks; 12088 int partition; 12089 diskaddr_t partition_offset; 12090 struct sd_xbuf *xp; 12091 12092 12093 ASSERT(un != NULL); 12094 ASSERT(bp != NULL); 12095 ASSERT(!mutex_owned(SD_MUTEX(un))); 12096 12097 SD_TRACE(SD_LOG_IO_PARTITION, un, 12098 "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp); 12099 12100 xp = SD_GET_XBUF(bp); 12101 ASSERT(xp != NULL); 12102 12103 /* 12104 * If the geometry is not indicated as valid, attempt to access 12105 * the unit & verify the geometry/label. This can be the case for 12106 * removable-media devices, of if the device was opened in 12107 * NDELAY/NONBLOCK mode. 12108 */ 12109 if ((un->un_f_geometry_is_valid != TRUE) && 12110 (sd_ready_and_valid(un) != SD_READY_VALID)) { 12111 /* 12112 * For removable devices it is possible to start an I/O 12113 * without a media by opening the device in nodelay mode. 12114 * Also for writable CDs there can be many scenarios where 12115 * there is no geometry yet but volume manager is trying to 12116 * issue a read() just because it can see TOC on the CD. So 12117 * do not print a message for removables. 12118 */ 12119 if (!un->un_f_has_removable_media) { 12120 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 12121 "i/o to invalid geometry\n"); 12122 } 12123 bioerror(bp, EIO); 12124 bp->b_resid = bp->b_bcount; 12125 SD_BEGIN_IODONE(index, un, bp); 12126 return; 12127 } 12128 12129 partition = SDPART(bp->b_edev); 12130 12131 /* #blocks in partition */ 12132 nblocks = un->un_map[partition].dkl_nblk; /* #blocks in partition */ 12133 12134 /* Use of a local variable potentially improves performance slightly */ 12135 partition_offset = un->un_offset[partition]; 12136 12137 /* 12138 * blocknum is the starting block number of the request. At this 12139 * point it is still relative to the start of the minor device. 12140 */ 12141 blocknum = xp->xb_blkno; 12142 12143 /* 12144 * Legacy: If the starting block number is one past the last block 12145 * in the partition, do not set B_ERROR in the buf. 12146 */ 12147 if (blocknum == nblocks) { 12148 goto error_exit; 12149 } 12150 12151 /* 12152 * Confirm that the first block of the request lies within the 12153 * partition limits. Also the requested number of bytes must be 12154 * a multiple of the system block size. 12155 */ 12156 if ((blocknum < 0) || (blocknum >= nblocks) || 12157 ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) { 12158 bp->b_flags |= B_ERROR; 12159 goto error_exit; 12160 } 12161 12162 /* 12163 * If the requsted # blocks exceeds the available # blocks, that 12164 * is an overrun of the partition. 12165 */ 12166 requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount); 12167 available_nblocks = (size_t)(nblocks - blocknum); 12168 ASSERT(nblocks >= blocknum); 12169 12170 if (requested_nblocks > available_nblocks) { 12171 /* 12172 * Allocate an "overrun" buf to allow the request to proceed 12173 * for the amount of space available in the partition. The 12174 * amount not transferred will be added into the b_resid 12175 * when the operation is complete. The overrun buf 12176 * replaces the original buf here, and the original buf 12177 * is saved inside the overrun buf, for later use. 12178 */ 12179 size_t resid = SD_SYSBLOCKS2BYTES(un, 12180 (offset_t)(requested_nblocks - available_nblocks)); 12181 size_t count = bp->b_bcount - resid; 12182 /* 12183 * Note: count is an unsigned entity thus it'll NEVER 12184 * be less than 0 so ASSERT the original values are 12185 * correct. 12186 */ 12187 ASSERT(bp->b_bcount >= resid); 12188 12189 bp = sd_bioclone_alloc(bp, count, blocknum, 12190 (int (*)(struct buf *)) sd_mapblockaddr_iodone); 12191 xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */ 12192 ASSERT(xp != NULL); 12193 } 12194 12195 /* At this point there should be no residual for this buf. */ 12196 ASSERT(bp->b_resid == 0); 12197 12198 /* Convert the block number to an absolute address. */ 12199 xp->xb_blkno += partition_offset; 12200 12201 SD_NEXT_IOSTART(index, un, bp); 12202 12203 SD_TRACE(SD_LOG_IO_PARTITION, un, 12204 "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp); 12205 12206 return; 12207 12208 error_exit: 12209 bp->b_resid = bp->b_bcount; 12210 SD_BEGIN_IODONE(index, un, bp); 12211 SD_TRACE(SD_LOG_IO_PARTITION, un, 12212 "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp); 12213 } 12214 12215 12216 /* 12217 * Function: sd_mapblockaddr_iodone 12218 * 12219 * Description: Completion-side processing for partition management. 12220 * 12221 * Context: May be called under interrupt context 12222 */ 12223 12224 static void 12225 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp) 12226 { 12227 /* int partition; */ /* Not used, see below. */ 12228 ASSERT(un != NULL); 12229 ASSERT(bp != NULL); 12230 ASSERT(!mutex_owned(SD_MUTEX(un))); 12231 12232 SD_TRACE(SD_LOG_IO_PARTITION, un, 12233 "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp); 12234 12235 if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) { 12236 /* 12237 * We have an "overrun" buf to deal with... 12238 */ 12239 struct sd_xbuf *xp; 12240 struct buf *obp; /* ptr to the original buf */ 12241 12242 xp = SD_GET_XBUF(bp); 12243 ASSERT(xp != NULL); 12244 12245 /* Retrieve the pointer to the original buf */ 12246 obp = (struct buf *)xp->xb_private; 12247 ASSERT(obp != NULL); 12248 12249 obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid); 12250 bioerror(obp, bp->b_error); 12251 12252 sd_bioclone_free(bp); 12253 12254 /* 12255 * Get back the original buf. 12256 * Note that since the restoration of xb_blkno below 12257 * was removed, the sd_xbuf is not needed. 12258 */ 12259 bp = obp; 12260 /* 12261 * xp = SD_GET_XBUF(bp); 12262 * ASSERT(xp != NULL); 12263 */ 12264 } 12265 12266 /* 12267 * Convert sd->xb_blkno back to a minor-device relative value. 12268 * Note: this has been commented out, as it is not needed in the 12269 * current implementation of the driver (ie, since this function 12270 * is at the top of the layering chains, so the info will be 12271 * discarded) and it is in the "hot" IO path. 12272 * 12273 * partition = getminor(bp->b_edev) & SDPART_MASK; 12274 * xp->xb_blkno -= un->un_offset[partition]; 12275 */ 12276 12277 SD_NEXT_IODONE(index, un, bp); 12278 12279 SD_TRACE(SD_LOG_IO_PARTITION, un, 12280 "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp); 12281 } 12282 12283 12284 /* 12285 * Function: sd_mapblocksize_iostart 12286 * 12287 * Description: Convert between system block size (un->un_sys_blocksize) 12288 * and target block size (un->un_tgt_blocksize). 12289 * 12290 * Context: Can sleep to allocate resources. 12291 * 12292 * Assumptions: A higher layer has already performed any partition validation, 12293 * and converted the xp->xb_blkno to an absolute value relative 12294 * to the start of the device. 12295 * 12296 * It is also assumed that the higher layer has implemented 12297 * an "overrun" mechanism for the case where the request would 12298 * read/write beyond the end of a partition. In this case we 12299 * assume (and ASSERT) that bp->b_resid == 0. 12300 * 12301 * Note: The implementation for this routine assumes the target 12302 * block size remains constant between allocation and transport. 12303 */ 12304 12305 static void 12306 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp) 12307 { 12308 struct sd_mapblocksize_info *bsp; 12309 struct sd_xbuf *xp; 12310 offset_t first_byte; 12311 daddr_t start_block, end_block; 12312 daddr_t request_bytes; 12313 ushort_t is_aligned = FALSE; 12314 12315 ASSERT(un != NULL); 12316 ASSERT(bp != NULL); 12317 ASSERT(!mutex_owned(SD_MUTEX(un))); 12318 ASSERT(bp->b_resid == 0); 12319 12320 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 12321 "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp); 12322 12323 /* 12324 * For a non-writable CD, a write request is an error 12325 */ 12326 if (ISCD(un) && ((bp->b_flags & B_READ) == 0) && 12327 (un->un_f_mmc_writable_media == FALSE)) { 12328 bioerror(bp, EIO); 12329 bp->b_resid = bp->b_bcount; 12330 SD_BEGIN_IODONE(index, un, bp); 12331 return; 12332 } 12333 12334 /* 12335 * We do not need a shadow buf if the device is using 12336 * un->un_sys_blocksize as its block size or if bcount == 0. 12337 * In this case there is no layer-private data block allocated. 12338 */ 12339 if ((un->un_tgt_blocksize == un->un_sys_blocksize) || 12340 (bp->b_bcount == 0)) { 12341 goto done; 12342 } 12343 12344 #if defined(__i386) || defined(__amd64) 12345 /* We do not support non-block-aligned transfers for ROD devices */ 12346 ASSERT(!ISROD(un)); 12347 #endif 12348 12349 xp = SD_GET_XBUF(bp); 12350 ASSERT(xp != NULL); 12351 12352 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 12353 "tgt_blocksize:0x%x sys_blocksize: 0x%x\n", 12354 un->un_tgt_blocksize, un->un_sys_blocksize); 12355 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 12356 "request start block:0x%x\n", xp->xb_blkno); 12357 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 12358 "request len:0x%x\n", bp->b_bcount); 12359 12360 /* 12361 * Allocate the layer-private data area for the mapblocksize layer. 12362 * Layers are allowed to use the xp_private member of the sd_xbuf 12363 * struct to store the pointer to their layer-private data block, but 12364 * each layer also has the responsibility of restoring the prior 12365 * contents of xb_private before returning the buf/xbuf to the 12366 * higher layer that sent it. 12367 * 12368 * Here we save the prior contents of xp->xb_private into the 12369 * bsp->mbs_oprivate field of our layer-private data area. This value 12370 * is restored by sd_mapblocksize_iodone() just prior to freeing up 12371 * the layer-private area and returning the buf/xbuf to the layer 12372 * that sent it. 12373 * 12374 * Note that here we use kmem_zalloc for the allocation as there are 12375 * parts of the mapblocksize code that expect certain fields to be 12376 * zero unless explicitly set to a required value. 12377 */ 12378 bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP); 12379 bsp->mbs_oprivate = xp->xb_private; 12380 xp->xb_private = bsp; 12381 12382 /* 12383 * This treats the data on the disk (target) as an array of bytes. 12384 * first_byte is the byte offset, from the beginning of the device, 12385 * to the location of the request. This is converted from a 12386 * un->un_sys_blocksize block address to a byte offset, and then back 12387 * to a block address based upon a un->un_tgt_blocksize block size. 12388 * 12389 * xp->xb_blkno should be absolute upon entry into this function, 12390 * but, but it is based upon partitions that use the "system" 12391 * block size. It must be adjusted to reflect the block size of 12392 * the target. 12393 * 12394 * Note that end_block is actually the block that follows the last 12395 * block of the request, but that's what is needed for the computation. 12396 */ 12397 first_byte = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno); 12398 start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize; 12399 end_block = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) / 12400 un->un_tgt_blocksize; 12401 12402 /* request_bytes is rounded up to a multiple of the target block size */ 12403 request_bytes = (end_block - start_block) * un->un_tgt_blocksize; 12404 12405 /* 12406 * See if the starting address of the request and the request 12407 * length are aligned on a un->un_tgt_blocksize boundary. If aligned 12408 * then we do not need to allocate a shadow buf to handle the request. 12409 */ 12410 if (((first_byte % un->un_tgt_blocksize) == 0) && 12411 ((bp->b_bcount % un->un_tgt_blocksize) == 0)) { 12412 is_aligned = TRUE; 12413 } 12414 12415 if ((bp->b_flags & B_READ) == 0) { 12416 /* 12417 * Lock the range for a write operation. An aligned request is 12418 * considered a simple write; otherwise the request must be a 12419 * read-modify-write. 12420 */ 12421 bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1, 12422 (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW); 12423 } 12424 12425 /* 12426 * Alloc a shadow buf if the request is not aligned. Also, this is 12427 * where the READ command is generated for a read-modify-write. (The 12428 * write phase is deferred until after the read completes.) 12429 */ 12430 if (is_aligned == FALSE) { 12431 12432 struct sd_mapblocksize_info *shadow_bsp; 12433 struct sd_xbuf *shadow_xp; 12434 struct buf *shadow_bp; 12435 12436 /* 12437 * Allocate the shadow buf and it associated xbuf. Note that 12438 * after this call the xb_blkno value in both the original 12439 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the 12440 * same: absolute relative to the start of the device, and 12441 * adjusted for the target block size. The b_blkno in the 12442 * shadow buf will also be set to this value. We should never 12443 * change b_blkno in the original bp however. 12444 * 12445 * Note also that the shadow buf will always need to be a 12446 * READ command, regardless of whether the incoming command 12447 * is a READ or a WRITE. 12448 */ 12449 shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ, 12450 xp->xb_blkno, 12451 (int (*)(struct buf *)) sd_mapblocksize_iodone); 12452 12453 shadow_xp = SD_GET_XBUF(shadow_bp); 12454 12455 /* 12456 * Allocate the layer-private data for the shadow buf. 12457 * (No need to preserve xb_private in the shadow xbuf.) 12458 */ 12459 shadow_xp->xb_private = shadow_bsp = 12460 kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP); 12461 12462 /* 12463 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone 12464 * to figure out where the start of the user data is (based upon 12465 * the system block size) in the data returned by the READ 12466 * command (which will be based upon the target blocksize). Note 12467 * that this is only really used if the request is unaligned. 12468 */ 12469 bsp->mbs_copy_offset = (ssize_t)(first_byte - 12470 ((offset_t)xp->xb_blkno * un->un_tgt_blocksize)); 12471 ASSERT((bsp->mbs_copy_offset >= 0) && 12472 (bsp->mbs_copy_offset < un->un_tgt_blocksize)); 12473 12474 shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset; 12475 12476 shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index; 12477 12478 /* Transfer the wmap (if any) to the shadow buf */ 12479 shadow_bsp->mbs_wmp = bsp->mbs_wmp; 12480 bsp->mbs_wmp = NULL; 12481 12482 /* 12483 * The shadow buf goes on from here in place of the 12484 * original buf. 12485 */ 12486 shadow_bsp->mbs_orig_bp = bp; 12487 bp = shadow_bp; 12488 } 12489 12490 SD_INFO(SD_LOG_IO_RMMEDIA, un, 12491 "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno); 12492 SD_INFO(SD_LOG_IO_RMMEDIA, un, 12493 "sd_mapblocksize_iostart: tgt request len:0x%x\n", 12494 request_bytes); 12495 SD_INFO(SD_LOG_IO_RMMEDIA, un, 12496 "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp); 12497 12498 done: 12499 SD_NEXT_IOSTART(index, un, bp); 12500 12501 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 12502 "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp); 12503 } 12504 12505 12506 /* 12507 * Function: sd_mapblocksize_iodone 12508 * 12509 * Description: Completion side processing for block-size mapping. 12510 * 12511 * Context: May be called under interrupt context 12512 */ 12513 12514 static void 12515 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp) 12516 { 12517 struct sd_mapblocksize_info *bsp; 12518 struct sd_xbuf *xp; 12519 struct sd_xbuf *orig_xp; /* sd_xbuf for the original buf */ 12520 struct buf *orig_bp; /* ptr to the original buf */ 12521 offset_t shadow_end; 12522 offset_t request_end; 12523 offset_t shadow_start; 12524 ssize_t copy_offset; 12525 size_t copy_length; 12526 size_t shortfall; 12527 uint_t is_write; /* TRUE if this bp is a WRITE */ 12528 uint_t has_wmap; /* TRUE is this bp has a wmap */ 12529 12530 ASSERT(un != NULL); 12531 ASSERT(bp != NULL); 12532 12533 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 12534 "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp); 12535 12536 /* 12537 * There is no shadow buf or layer-private data if the target is 12538 * using un->un_sys_blocksize as its block size or if bcount == 0. 12539 */ 12540 if ((un->un_tgt_blocksize == un->un_sys_blocksize) || 12541 (bp->b_bcount == 0)) { 12542 goto exit; 12543 } 12544 12545 xp = SD_GET_XBUF(bp); 12546 ASSERT(xp != NULL); 12547 12548 /* Retrieve the pointer to the layer-private data area from the xbuf. */ 12549 bsp = xp->xb_private; 12550 12551 is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE; 12552 has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE; 12553 12554 if (is_write) { 12555 /* 12556 * For a WRITE request we must free up the block range that 12557 * we have locked up. This holds regardless of whether this is 12558 * an aligned write request or a read-modify-write request. 12559 */ 12560 sd_range_unlock(un, bsp->mbs_wmp); 12561 bsp->mbs_wmp = NULL; 12562 } 12563 12564 if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) { 12565 /* 12566 * An aligned read or write command will have no shadow buf; 12567 * there is not much else to do with it. 12568 */ 12569 goto done; 12570 } 12571 12572 orig_bp = bsp->mbs_orig_bp; 12573 ASSERT(orig_bp != NULL); 12574 orig_xp = SD_GET_XBUF(orig_bp); 12575 ASSERT(orig_xp != NULL); 12576 ASSERT(!mutex_owned(SD_MUTEX(un))); 12577 12578 if (!is_write && has_wmap) { 12579 /* 12580 * A READ with a wmap means this is the READ phase of a 12581 * read-modify-write. If an error occurred on the READ then 12582 * we do not proceed with the WRITE phase or copy any data. 12583 * Just release the write maps and return with an error. 12584 */ 12585 if ((bp->b_resid != 0) || (bp->b_error != 0)) { 12586 orig_bp->b_resid = orig_bp->b_bcount; 12587 bioerror(orig_bp, bp->b_error); 12588 sd_range_unlock(un, bsp->mbs_wmp); 12589 goto freebuf_done; 12590 } 12591 } 12592 12593 /* 12594 * Here is where we set up to copy the data from the shadow buf 12595 * into the space associated with the original buf. 12596 * 12597 * To deal with the conversion between block sizes, these 12598 * computations treat the data as an array of bytes, with the 12599 * first byte (byte 0) corresponding to the first byte in the 12600 * first block on the disk. 12601 */ 12602 12603 /* 12604 * shadow_start and shadow_len indicate the location and size of 12605 * the data returned with the shadow IO request. 12606 */ 12607 shadow_start = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno); 12608 shadow_end = shadow_start + bp->b_bcount - bp->b_resid; 12609 12610 /* 12611 * copy_offset gives the offset (in bytes) from the start of the first 12612 * block of the READ request to the beginning of the data. We retrieve 12613 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved 12614 * there by sd_mapblockize_iostart(). copy_length gives the amount of 12615 * data to be copied (in bytes). 12616 */ 12617 copy_offset = bsp->mbs_copy_offset; 12618 ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize)); 12619 copy_length = orig_bp->b_bcount; 12620 request_end = shadow_start + copy_offset + orig_bp->b_bcount; 12621 12622 /* 12623 * Set up the resid and error fields of orig_bp as appropriate. 12624 */ 12625 if (shadow_end >= request_end) { 12626 /* We got all the requested data; set resid to zero */ 12627 orig_bp->b_resid = 0; 12628 } else { 12629 /* 12630 * We failed to get enough data to fully satisfy the original 12631 * request. Just copy back whatever data we got and set 12632 * up the residual and error code as required. 12633 * 12634 * 'shortfall' is the amount by which the data received with the 12635 * shadow buf has "fallen short" of the requested amount. 12636 */ 12637 shortfall = (size_t)(request_end - shadow_end); 12638 12639 if (shortfall > orig_bp->b_bcount) { 12640 /* 12641 * We did not get enough data to even partially 12642 * fulfill the original request. The residual is 12643 * equal to the amount requested. 12644 */ 12645 orig_bp->b_resid = orig_bp->b_bcount; 12646 } else { 12647 /* 12648 * We did not get all the data that we requested 12649 * from the device, but we will try to return what 12650 * portion we did get. 12651 */ 12652 orig_bp->b_resid = shortfall; 12653 } 12654 ASSERT(copy_length >= orig_bp->b_resid); 12655 copy_length -= orig_bp->b_resid; 12656 } 12657 12658 /* Propagate the error code from the shadow buf to the original buf */ 12659 bioerror(orig_bp, bp->b_error); 12660 12661 if (is_write) { 12662 goto freebuf_done; /* No data copying for a WRITE */ 12663 } 12664 12665 if (has_wmap) { 12666 /* 12667 * This is a READ command from the READ phase of a 12668 * read-modify-write request. We have to copy the data given 12669 * by the user OVER the data returned by the READ command, 12670 * then convert the command from a READ to a WRITE and send 12671 * it back to the target. 12672 */ 12673 bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset, 12674 copy_length); 12675 12676 bp->b_flags &= ~((int)B_READ); /* Convert to a WRITE */ 12677 12678 /* 12679 * Dispatch the WRITE command to the taskq thread, which 12680 * will in turn send the command to the target. When the 12681 * WRITE command completes, we (sd_mapblocksize_iodone()) 12682 * will get called again as part of the iodone chain 12683 * processing for it. Note that we will still be dealing 12684 * with the shadow buf at that point. 12685 */ 12686 if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp, 12687 KM_NOSLEEP) != 0) { 12688 /* 12689 * Dispatch was successful so we are done. Return 12690 * without going any higher up the iodone chain. Do 12691 * not free up any layer-private data until after the 12692 * WRITE completes. 12693 */ 12694 return; 12695 } 12696 12697 /* 12698 * Dispatch of the WRITE command failed; set up the error 12699 * condition and send this IO back up the iodone chain. 12700 */ 12701 bioerror(orig_bp, EIO); 12702 orig_bp->b_resid = orig_bp->b_bcount; 12703 12704 } else { 12705 /* 12706 * This is a regular READ request (ie, not a RMW). Copy the 12707 * data from the shadow buf into the original buf. The 12708 * copy_offset compensates for any "misalignment" between the 12709 * shadow buf (with its un->un_tgt_blocksize blocks) and the 12710 * original buf (with its un->un_sys_blocksize blocks). 12711 */ 12712 bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr, 12713 copy_length); 12714 } 12715 12716 freebuf_done: 12717 12718 /* 12719 * At this point we still have both the shadow buf AND the original 12720 * buf to deal with, as well as the layer-private data area in each. 12721 * Local variables are as follows: 12722 * 12723 * bp -- points to shadow buf 12724 * xp -- points to xbuf of shadow buf 12725 * bsp -- points to layer-private data area of shadow buf 12726 * orig_bp -- points to original buf 12727 * 12728 * First free the shadow buf and its associated xbuf, then free the 12729 * layer-private data area from the shadow buf. There is no need to 12730 * restore xb_private in the shadow xbuf. 12731 */ 12732 sd_shadow_buf_free(bp); 12733 kmem_free(bsp, sizeof (struct sd_mapblocksize_info)); 12734 12735 /* 12736 * Now update the local variables to point to the original buf, xbuf, 12737 * and layer-private area. 12738 */ 12739 bp = orig_bp; 12740 xp = SD_GET_XBUF(bp); 12741 ASSERT(xp != NULL); 12742 ASSERT(xp == orig_xp); 12743 bsp = xp->xb_private; 12744 ASSERT(bsp != NULL); 12745 12746 done: 12747 /* 12748 * Restore xb_private to whatever it was set to by the next higher 12749 * layer in the chain, then free the layer-private data area. 12750 */ 12751 xp->xb_private = bsp->mbs_oprivate; 12752 kmem_free(bsp, sizeof (struct sd_mapblocksize_info)); 12753 12754 exit: 12755 SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp), 12756 "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp); 12757 12758 SD_NEXT_IODONE(index, un, bp); 12759 } 12760 12761 12762 /* 12763 * Function: sd_checksum_iostart 12764 * 12765 * Description: A stub function for a layer that's currently not used. 12766 * For now just a placeholder. 12767 * 12768 * Context: Kernel thread context 12769 */ 12770 12771 static void 12772 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp) 12773 { 12774 ASSERT(un != NULL); 12775 ASSERT(bp != NULL); 12776 ASSERT(!mutex_owned(SD_MUTEX(un))); 12777 SD_NEXT_IOSTART(index, un, bp); 12778 } 12779 12780 12781 /* 12782 * Function: sd_checksum_iodone 12783 * 12784 * Description: A stub function for a layer that's currently not used. 12785 * For now just a placeholder. 12786 * 12787 * Context: May be called under interrupt context 12788 */ 12789 12790 static void 12791 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp) 12792 { 12793 ASSERT(un != NULL); 12794 ASSERT(bp != NULL); 12795 ASSERT(!mutex_owned(SD_MUTEX(un))); 12796 SD_NEXT_IODONE(index, un, bp); 12797 } 12798 12799 12800 /* 12801 * Function: sd_checksum_uscsi_iostart 12802 * 12803 * Description: A stub function for a layer that's currently not used. 12804 * For now just a placeholder. 12805 * 12806 * Context: Kernel thread context 12807 */ 12808 12809 static void 12810 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp) 12811 { 12812 ASSERT(un != NULL); 12813 ASSERT(bp != NULL); 12814 ASSERT(!mutex_owned(SD_MUTEX(un))); 12815 SD_NEXT_IOSTART(index, un, bp); 12816 } 12817 12818 12819 /* 12820 * Function: sd_checksum_uscsi_iodone 12821 * 12822 * Description: A stub function for a layer that's currently not used. 12823 * For now just a placeholder. 12824 * 12825 * Context: May be called under interrupt context 12826 */ 12827 12828 static void 12829 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp) 12830 { 12831 ASSERT(un != NULL); 12832 ASSERT(bp != NULL); 12833 ASSERT(!mutex_owned(SD_MUTEX(un))); 12834 SD_NEXT_IODONE(index, un, bp); 12835 } 12836 12837 12838 /* 12839 * Function: sd_pm_iostart 12840 * 12841 * Description: iostart-side routine for Power mangement. 12842 * 12843 * Context: Kernel thread context 12844 */ 12845 12846 static void 12847 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp) 12848 { 12849 ASSERT(un != NULL); 12850 ASSERT(bp != NULL); 12851 ASSERT(!mutex_owned(SD_MUTEX(un))); 12852 ASSERT(!mutex_owned(&un->un_pm_mutex)); 12853 12854 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n"); 12855 12856 if (sd_pm_entry(un) != DDI_SUCCESS) { 12857 /* 12858 * Set up to return the failed buf back up the 'iodone' 12859 * side of the calling chain. 12860 */ 12861 bioerror(bp, EIO); 12862 bp->b_resid = bp->b_bcount; 12863 12864 SD_BEGIN_IODONE(index, un, bp); 12865 12866 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n"); 12867 return; 12868 } 12869 12870 SD_NEXT_IOSTART(index, un, bp); 12871 12872 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n"); 12873 } 12874 12875 12876 /* 12877 * Function: sd_pm_iodone 12878 * 12879 * Description: iodone-side routine for power mangement. 12880 * 12881 * Context: may be called from interrupt context 12882 */ 12883 12884 static void 12885 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp) 12886 { 12887 ASSERT(un != NULL); 12888 ASSERT(bp != NULL); 12889 ASSERT(!mutex_owned(&un->un_pm_mutex)); 12890 12891 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n"); 12892 12893 /* 12894 * After attach the following flag is only read, so don't 12895 * take the penalty of acquiring a mutex for it. 12896 */ 12897 if (un->un_f_pm_is_enabled == TRUE) { 12898 sd_pm_exit(un); 12899 } 12900 12901 SD_NEXT_IODONE(index, un, bp); 12902 12903 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n"); 12904 } 12905 12906 12907 /* 12908 * Function: sd_core_iostart 12909 * 12910 * Description: Primary driver function for enqueuing buf(9S) structs from 12911 * the system and initiating IO to the target device 12912 * 12913 * Context: Kernel thread context. Can sleep. 12914 * 12915 * Assumptions: - The given xp->xb_blkno is absolute 12916 * (ie, relative to the start of the device). 12917 * - The IO is to be done using the native blocksize of 12918 * the device, as specified in un->un_tgt_blocksize. 12919 */ 12920 /* ARGSUSED */ 12921 static void 12922 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp) 12923 { 12924 struct sd_xbuf *xp; 12925 12926 ASSERT(un != NULL); 12927 ASSERT(bp != NULL); 12928 ASSERT(!mutex_owned(SD_MUTEX(un))); 12929 ASSERT(bp->b_resid == 0); 12930 12931 SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp); 12932 12933 xp = SD_GET_XBUF(bp); 12934 ASSERT(xp != NULL); 12935 12936 mutex_enter(SD_MUTEX(un)); 12937 12938 /* 12939 * If we are currently in the failfast state, fail any new IO 12940 * that has B_FAILFAST set, then return. 12941 */ 12942 if ((bp->b_flags & B_FAILFAST) && 12943 (un->un_failfast_state == SD_FAILFAST_ACTIVE)) { 12944 mutex_exit(SD_MUTEX(un)); 12945 bioerror(bp, EIO); 12946 bp->b_resid = bp->b_bcount; 12947 SD_BEGIN_IODONE(index, un, bp); 12948 return; 12949 } 12950 12951 if (SD_IS_DIRECT_PRIORITY(xp)) { 12952 /* 12953 * Priority command -- transport it immediately. 12954 * 12955 * Note: We may want to assert that USCSI_DIAGNOSE is set, 12956 * because all direct priority commands should be associated 12957 * with error recovery actions which we don't want to retry. 12958 */ 12959 sd_start_cmds(un, bp); 12960 } else { 12961 /* 12962 * Normal command -- add it to the wait queue, then start 12963 * transporting commands from the wait queue. 12964 */ 12965 sd_add_buf_to_waitq(un, bp); 12966 SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp); 12967 sd_start_cmds(un, NULL); 12968 } 12969 12970 mutex_exit(SD_MUTEX(un)); 12971 12972 SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp); 12973 } 12974 12975 12976 /* 12977 * Function: sd_init_cdb_limits 12978 * 12979 * Description: This is to handle scsi_pkt initialization differences 12980 * between the driver platforms. 12981 * 12982 * Legacy behaviors: 12983 * 12984 * If the block number or the sector count exceeds the 12985 * capabilities of a Group 0 command, shift over to a 12986 * Group 1 command. We don't blindly use Group 1 12987 * commands because a) some drives (CDC Wren IVs) get a 12988 * bit confused, and b) there is probably a fair amount 12989 * of speed difference for a target to receive and decode 12990 * a 10 byte command instead of a 6 byte command. 12991 * 12992 * The xfer time difference of 6 vs 10 byte CDBs is 12993 * still significant so this code is still worthwhile. 12994 * 10 byte CDBs are very inefficient with the fas HBA driver 12995 * and older disks. Each CDB byte took 1 usec with some 12996 * popular disks. 12997 * 12998 * Context: Must be called at attach time 12999 */ 13000 13001 static void 13002 sd_init_cdb_limits(struct sd_lun *un) 13003 { 13004 /* 13005 * Use CDB_GROUP1 commands for most devices except for 13006 * parallel SCSI fixed drives in which case we get better 13007 * performance using CDB_GROUP0 commands (where applicable). 13008 */ 13009 un->un_mincdb = SD_CDB_GROUP1; 13010 #if !defined(__fibre) 13011 if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) && 13012 !un->un_f_has_removable_media) { 13013 un->un_mincdb = SD_CDB_GROUP0; 13014 } 13015 #endif 13016 13017 /* 13018 * Use CDB_GROUP5 commands for removable devices. Use CDB_GROUP4 13019 * commands for fixed disks unless we are building for a 32 bit 13020 * kernel. 13021 */ 13022 #ifdef _LP64 13023 un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 : 13024 SD_CDB_GROUP4; 13025 #else 13026 un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 : 13027 SD_CDB_GROUP1; 13028 #endif 13029 13030 /* 13031 * x86 systems require the PKT_DMA_PARTIAL flag 13032 */ 13033 #if defined(__x86) 13034 un->un_pkt_flags = PKT_DMA_PARTIAL; 13035 #else 13036 un->un_pkt_flags = 0; 13037 #endif 13038 13039 un->un_status_len = (int)((un->un_f_arq_enabled == TRUE) 13040 ? sizeof (struct scsi_arq_status) : 1); 13041 un->un_cmd_timeout = (ushort_t)sd_io_time; 13042 un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout; 13043 } 13044 13045 13046 /* 13047 * Function: sd_initpkt_for_buf 13048 * 13049 * Description: Allocate and initialize for transport a scsi_pkt struct, 13050 * based upon the info specified in the given buf struct. 13051 * 13052 * Assumes the xb_blkno in the request is absolute (ie, 13053 * relative to the start of the device (NOT partition!). 13054 * Also assumes that the request is using the native block 13055 * size of the device (as returned by the READ CAPACITY 13056 * command). 13057 * 13058 * Return Code: SD_PKT_ALLOC_SUCCESS 13059 * SD_PKT_ALLOC_FAILURE 13060 * SD_PKT_ALLOC_FAILURE_NO_DMA 13061 * SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL 13062 * 13063 * Context: Kernel thread and may be called from software interrupt context 13064 * as part of a sdrunout callback. This function may not block or 13065 * call routines that block 13066 */ 13067 13068 static int 13069 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp) 13070 { 13071 struct sd_xbuf *xp; 13072 struct scsi_pkt *pktp = NULL; 13073 struct sd_lun *un; 13074 size_t blockcount; 13075 daddr_t startblock; 13076 int rval; 13077 int cmd_flags; 13078 13079 ASSERT(bp != NULL); 13080 ASSERT(pktpp != NULL); 13081 xp = SD_GET_XBUF(bp); 13082 ASSERT(xp != NULL); 13083 un = SD_GET_UN(bp); 13084 ASSERT(un != NULL); 13085 ASSERT(mutex_owned(SD_MUTEX(un))); 13086 ASSERT(bp->b_resid == 0); 13087 13088 SD_TRACE(SD_LOG_IO_CORE, un, 13089 "sd_initpkt_for_buf: entry: buf:0x%p\n", bp); 13090 13091 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 13092 if (xp->xb_pkt_flags & SD_XB_DMA_FREED) { 13093 /* 13094 * Already have a scsi_pkt -- just need DMA resources. 13095 * We must recompute the CDB in case the mapping returns 13096 * a nonzero pkt_resid. 13097 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer 13098 * that is being retried, the unmap/remap of the DMA resouces 13099 * will result in the entire transfer starting over again 13100 * from the very first block. 13101 */ 13102 ASSERT(xp->xb_pktp != NULL); 13103 pktp = xp->xb_pktp; 13104 } else { 13105 pktp = NULL; 13106 } 13107 #endif /* __i386 || __amd64 */ 13108 13109 startblock = xp->xb_blkno; /* Absolute block num. */ 13110 blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount); 13111 13112 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 13113 13114 cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK); 13115 13116 #else 13117 13118 cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags; 13119 13120 #endif 13121 13122 /* 13123 * sd_setup_rw_pkt will determine the appropriate CDB group to use, 13124 * call scsi_init_pkt, and build the CDB. 13125 */ 13126 rval = sd_setup_rw_pkt(un, &pktp, bp, 13127 cmd_flags, sdrunout, (caddr_t)un, 13128 startblock, blockcount); 13129 13130 if (rval == 0) { 13131 /* 13132 * Success. 13133 * 13134 * If partial DMA is being used and required for this transfer. 13135 * set it up here. 13136 */ 13137 if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 && 13138 (pktp->pkt_resid != 0)) { 13139 13140 /* 13141 * Save the CDB length and pkt_resid for the 13142 * next xfer 13143 */ 13144 xp->xb_dma_resid = pktp->pkt_resid; 13145 13146 /* rezero resid */ 13147 pktp->pkt_resid = 0; 13148 13149 } else { 13150 xp->xb_dma_resid = 0; 13151 } 13152 13153 pktp->pkt_flags = un->un_tagflags; 13154 pktp->pkt_time = un->un_cmd_timeout; 13155 pktp->pkt_comp = sdintr; 13156 13157 pktp->pkt_private = bp; 13158 *pktpp = pktp; 13159 13160 SD_TRACE(SD_LOG_IO_CORE, un, 13161 "sd_initpkt_for_buf: exit: buf:0x%p\n", bp); 13162 13163 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 13164 xp->xb_pkt_flags &= ~SD_XB_DMA_FREED; 13165 #endif 13166 13167 return (SD_PKT_ALLOC_SUCCESS); 13168 13169 } 13170 13171 /* 13172 * SD_PKT_ALLOC_FAILURE is the only expected failure code 13173 * from sd_setup_rw_pkt. 13174 */ 13175 ASSERT(rval == SD_PKT_ALLOC_FAILURE); 13176 13177 if (rval == SD_PKT_ALLOC_FAILURE) { 13178 *pktpp = NULL; 13179 /* 13180 * Set the driver state to RWAIT to indicate the driver 13181 * is waiting on resource allocations. The driver will not 13182 * suspend, pm_suspend, or detatch while the state is RWAIT. 13183 */ 13184 New_state(un, SD_STATE_RWAIT); 13185 13186 SD_ERROR(SD_LOG_IO_CORE, un, 13187 "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp); 13188 13189 if ((bp->b_flags & B_ERROR) != 0) { 13190 return (SD_PKT_ALLOC_FAILURE_NO_DMA); 13191 } 13192 return (SD_PKT_ALLOC_FAILURE); 13193 } else { 13194 /* 13195 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL 13196 * 13197 * This should never happen. Maybe someone messed with the 13198 * kernel's minphys? 13199 */ 13200 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 13201 "Request rejected: too large for CDB: " 13202 "lba:0x%08lx len:0x%08lx\n", startblock, blockcount); 13203 SD_ERROR(SD_LOG_IO_CORE, un, 13204 "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp); 13205 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13206 13207 } 13208 } 13209 13210 13211 /* 13212 * Function: sd_destroypkt_for_buf 13213 * 13214 * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing). 13215 * 13216 * Context: Kernel thread or interrupt context 13217 */ 13218 13219 static void 13220 sd_destroypkt_for_buf(struct buf *bp) 13221 { 13222 ASSERT(bp != NULL); 13223 ASSERT(SD_GET_UN(bp) != NULL); 13224 13225 SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp), 13226 "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp); 13227 13228 ASSERT(SD_GET_PKTP(bp) != NULL); 13229 scsi_destroy_pkt(SD_GET_PKTP(bp)); 13230 13231 SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp), 13232 "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp); 13233 } 13234 13235 /* 13236 * Function: sd_setup_rw_pkt 13237 * 13238 * Description: Determines appropriate CDB group for the requested LBA 13239 * and transfer length, calls scsi_init_pkt, and builds 13240 * the CDB. Do not use for partial DMA transfers except 13241 * for the initial transfer since the CDB size must 13242 * remain constant. 13243 * 13244 * Context: Kernel thread and may be called from software interrupt 13245 * context as part of a sdrunout callback. This function may not 13246 * block or call routines that block 13247 */ 13248 13249 13250 int 13251 sd_setup_rw_pkt(struct sd_lun *un, 13252 struct scsi_pkt **pktpp, struct buf *bp, int flags, 13253 int (*callback)(caddr_t), caddr_t callback_arg, 13254 diskaddr_t lba, uint32_t blockcount) 13255 { 13256 struct scsi_pkt *return_pktp; 13257 union scsi_cdb *cdbp; 13258 struct sd_cdbinfo *cp = NULL; 13259 int i; 13260 13261 /* 13262 * See which size CDB to use, based upon the request. 13263 */ 13264 for (i = un->un_mincdb; i <= un->un_maxcdb; i++) { 13265 13266 /* 13267 * Check lba and block count against sd_cdbtab limits. 13268 * In the partial DMA case, we have to use the same size 13269 * CDB for all the transfers. Check lba + blockcount 13270 * against the max LBA so we know that segment of the 13271 * transfer can use the CDB we select. 13272 */ 13273 if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) && 13274 (blockcount <= sd_cdbtab[i].sc_maxlen)) { 13275 13276 /* 13277 * The command will fit into the CDB type 13278 * specified by sd_cdbtab[i]. 13279 */ 13280 cp = sd_cdbtab + i; 13281 13282 /* 13283 * Call scsi_init_pkt so we can fill in the 13284 * CDB. 13285 */ 13286 return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp, 13287 bp, cp->sc_grpcode, un->un_status_len, 0, 13288 flags, callback, callback_arg); 13289 13290 if (return_pktp != NULL) { 13291 13292 /* 13293 * Return new value of pkt 13294 */ 13295 *pktpp = return_pktp; 13296 13297 /* 13298 * To be safe, zero the CDB insuring there is 13299 * no leftover data from a previous command. 13300 */ 13301 bzero(return_pktp->pkt_cdbp, cp->sc_grpcode); 13302 13303 /* 13304 * Handle partial DMA mapping 13305 */ 13306 if (return_pktp->pkt_resid != 0) { 13307 13308 /* 13309 * Not going to xfer as many blocks as 13310 * originally expected 13311 */ 13312 blockcount -= 13313 SD_BYTES2TGTBLOCKS(un, 13314 return_pktp->pkt_resid); 13315 } 13316 13317 cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp; 13318 13319 /* 13320 * Set command byte based on the CDB 13321 * type we matched. 13322 */ 13323 cdbp->scc_cmd = cp->sc_grpmask | 13324 ((bp->b_flags & B_READ) ? 13325 SCMD_READ : SCMD_WRITE); 13326 13327 SD_FILL_SCSI1_LUN(un, return_pktp); 13328 13329 /* 13330 * Fill in LBA and length 13331 */ 13332 ASSERT((cp->sc_grpcode == CDB_GROUP1) || 13333 (cp->sc_grpcode == CDB_GROUP4) || 13334 (cp->sc_grpcode == CDB_GROUP0) || 13335 (cp->sc_grpcode == CDB_GROUP5)); 13336 13337 if (cp->sc_grpcode == CDB_GROUP1) { 13338 FORMG1ADDR(cdbp, lba); 13339 FORMG1COUNT(cdbp, blockcount); 13340 return (0); 13341 } else if (cp->sc_grpcode == CDB_GROUP4) { 13342 FORMG4LONGADDR(cdbp, lba); 13343 FORMG4COUNT(cdbp, blockcount); 13344 return (0); 13345 } else if (cp->sc_grpcode == CDB_GROUP0) { 13346 FORMG0ADDR(cdbp, lba); 13347 FORMG0COUNT(cdbp, blockcount); 13348 return (0); 13349 } else if (cp->sc_grpcode == CDB_GROUP5) { 13350 FORMG5ADDR(cdbp, lba); 13351 FORMG5COUNT(cdbp, blockcount); 13352 return (0); 13353 } 13354 13355 /* 13356 * It should be impossible to not match one 13357 * of the CDB types above, so we should never 13358 * reach this point. Set the CDB command byte 13359 * to test-unit-ready to avoid writing 13360 * to somewhere we don't intend. 13361 */ 13362 cdbp->scc_cmd = SCMD_TEST_UNIT_READY; 13363 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13364 } else { 13365 /* 13366 * Couldn't get scsi_pkt 13367 */ 13368 return (SD_PKT_ALLOC_FAILURE); 13369 } 13370 } 13371 } 13372 13373 /* 13374 * None of the available CDB types were suitable. This really 13375 * should never happen: on a 64 bit system we support 13376 * READ16/WRITE16 which will hold an entire 64 bit disk address 13377 * and on a 32 bit system we will refuse to bind to a device 13378 * larger than 2TB so addresses will never be larger than 32 bits. 13379 */ 13380 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13381 } 13382 13383 #if defined(__i386) || defined(__amd64) 13384 /* 13385 * Function: sd_setup_next_rw_pkt 13386 * 13387 * Description: Setup packet for partial DMA transfers, except for the 13388 * initial transfer. sd_setup_rw_pkt should be used for 13389 * the initial transfer. 13390 * 13391 * Context: Kernel thread and may be called from interrupt context. 13392 */ 13393 13394 int 13395 sd_setup_next_rw_pkt(struct sd_lun *un, 13396 struct scsi_pkt *pktp, struct buf *bp, 13397 diskaddr_t lba, uint32_t blockcount) 13398 { 13399 uchar_t com; 13400 union scsi_cdb *cdbp; 13401 uchar_t cdb_group_id; 13402 13403 ASSERT(pktp != NULL); 13404 ASSERT(pktp->pkt_cdbp != NULL); 13405 13406 cdbp = (union scsi_cdb *)pktp->pkt_cdbp; 13407 com = cdbp->scc_cmd; 13408 cdb_group_id = CDB_GROUPID(com); 13409 13410 ASSERT((cdb_group_id == CDB_GROUPID_0) || 13411 (cdb_group_id == CDB_GROUPID_1) || 13412 (cdb_group_id == CDB_GROUPID_4) || 13413 (cdb_group_id == CDB_GROUPID_5)); 13414 13415 /* 13416 * Move pkt to the next portion of the xfer. 13417 * func is NULL_FUNC so we do not have to release 13418 * the disk mutex here. 13419 */ 13420 if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0, 13421 NULL_FUNC, NULL) == pktp) { 13422 /* Success. Handle partial DMA */ 13423 if (pktp->pkt_resid != 0) { 13424 blockcount -= 13425 SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid); 13426 } 13427 13428 cdbp->scc_cmd = com; 13429 SD_FILL_SCSI1_LUN(un, pktp); 13430 if (cdb_group_id == CDB_GROUPID_1) { 13431 FORMG1ADDR(cdbp, lba); 13432 FORMG1COUNT(cdbp, blockcount); 13433 return (0); 13434 } else if (cdb_group_id == CDB_GROUPID_4) { 13435 FORMG4LONGADDR(cdbp, lba); 13436 FORMG4COUNT(cdbp, blockcount); 13437 return (0); 13438 } else if (cdb_group_id == CDB_GROUPID_0) { 13439 FORMG0ADDR(cdbp, lba); 13440 FORMG0COUNT(cdbp, blockcount); 13441 return (0); 13442 } else if (cdb_group_id == CDB_GROUPID_5) { 13443 FORMG5ADDR(cdbp, lba); 13444 FORMG5COUNT(cdbp, blockcount); 13445 return (0); 13446 } 13447 13448 /* Unreachable */ 13449 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13450 } 13451 13452 /* 13453 * Error setting up next portion of cmd transfer. 13454 * Something is definitely very wrong and this 13455 * should not happen. 13456 */ 13457 return (SD_PKT_ALLOC_FAILURE); 13458 } 13459 #endif /* defined(__i386) || defined(__amd64) */ 13460 13461 /* 13462 * Function: sd_initpkt_for_uscsi 13463 * 13464 * Description: Allocate and initialize for transport a scsi_pkt struct, 13465 * based upon the info specified in the given uscsi_cmd struct. 13466 * 13467 * Return Code: SD_PKT_ALLOC_SUCCESS 13468 * SD_PKT_ALLOC_FAILURE 13469 * SD_PKT_ALLOC_FAILURE_NO_DMA 13470 * SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL 13471 * 13472 * Context: Kernel thread and may be called from software interrupt context 13473 * as part of a sdrunout callback. This function may not block or 13474 * call routines that block 13475 */ 13476 13477 static int 13478 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp) 13479 { 13480 struct uscsi_cmd *uscmd; 13481 struct sd_xbuf *xp; 13482 struct scsi_pkt *pktp; 13483 struct sd_lun *un; 13484 uint32_t flags = 0; 13485 13486 ASSERT(bp != NULL); 13487 ASSERT(pktpp != NULL); 13488 xp = SD_GET_XBUF(bp); 13489 ASSERT(xp != NULL); 13490 un = SD_GET_UN(bp); 13491 ASSERT(un != NULL); 13492 ASSERT(mutex_owned(SD_MUTEX(un))); 13493 13494 /* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */ 13495 uscmd = (struct uscsi_cmd *)xp->xb_pktinfo; 13496 ASSERT(uscmd != NULL); 13497 13498 SD_TRACE(SD_LOG_IO_CORE, un, 13499 "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp); 13500 13501 /* 13502 * Allocate the scsi_pkt for the command. 13503 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path 13504 * during scsi_init_pkt time and will continue to use the 13505 * same path as long as the same scsi_pkt is used without 13506 * intervening scsi_dma_free(). Since uscsi command does 13507 * not call scsi_dmafree() before retry failed command, it 13508 * is necessary to make sure PKT_DMA_PARTIAL flag is NOT 13509 * set such that scsi_vhci can use other available path for 13510 * retry. Besides, ucsci command does not allow DMA breakup, 13511 * so there is no need to set PKT_DMA_PARTIAL flag. 13512 */ 13513 pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, 13514 ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen, 13515 sizeof (struct scsi_arq_status), 0, 13516 (un->un_pkt_flags & ~PKT_DMA_PARTIAL), 13517 sdrunout, (caddr_t)un); 13518 13519 if (pktp == NULL) { 13520 *pktpp = NULL; 13521 /* 13522 * Set the driver state to RWAIT to indicate the driver 13523 * is waiting on resource allocations. The driver will not 13524 * suspend, pm_suspend, or detatch while the state is RWAIT. 13525 */ 13526 New_state(un, SD_STATE_RWAIT); 13527 13528 SD_ERROR(SD_LOG_IO_CORE, un, 13529 "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp); 13530 13531 if ((bp->b_flags & B_ERROR) != 0) { 13532 return (SD_PKT_ALLOC_FAILURE_NO_DMA); 13533 } 13534 return (SD_PKT_ALLOC_FAILURE); 13535 } 13536 13537 /* 13538 * We do not do DMA breakup for USCSI commands, so return failure 13539 * here if all the needed DMA resources were not allocated. 13540 */ 13541 if ((un->un_pkt_flags & PKT_DMA_PARTIAL) && 13542 (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) { 13543 scsi_destroy_pkt(pktp); 13544 SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: " 13545 "No partial DMA for USCSI. exit: buf:0x%p\n", bp); 13546 return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL); 13547 } 13548 13549 /* Init the cdb from the given uscsi struct */ 13550 (void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp, 13551 uscmd->uscsi_cdb[0], 0, 0, 0); 13552 13553 SD_FILL_SCSI1_LUN(un, pktp); 13554 13555 /* 13556 * Set up the optional USCSI flags. See the uscsi (7I) man page 13557 * for listing of the supported flags. 13558 */ 13559 13560 if (uscmd->uscsi_flags & USCSI_SILENT) { 13561 flags |= FLAG_SILENT; 13562 } 13563 13564 if (uscmd->uscsi_flags & USCSI_DIAGNOSE) { 13565 flags |= FLAG_DIAGNOSE; 13566 } 13567 13568 if (uscmd->uscsi_flags & USCSI_ISOLATE) { 13569 flags |= FLAG_ISOLATE; 13570 } 13571 13572 if (un->un_f_is_fibre == FALSE) { 13573 if (uscmd->uscsi_flags & USCSI_RENEGOT) { 13574 flags |= FLAG_RENEGOTIATE_WIDE_SYNC; 13575 } 13576 } 13577 13578 /* 13579 * Set the pkt flags here so we save time later. 13580 * Note: These flags are NOT in the uscsi man page!!! 13581 */ 13582 if (uscmd->uscsi_flags & USCSI_HEAD) { 13583 flags |= FLAG_HEAD; 13584 } 13585 13586 if (uscmd->uscsi_flags & USCSI_NOINTR) { 13587 flags |= FLAG_NOINTR; 13588 } 13589 13590 /* 13591 * For tagged queueing, things get a bit complicated. 13592 * Check first for head of queue and last for ordered queue. 13593 * If neither head nor order, use the default driver tag flags. 13594 */ 13595 if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) { 13596 if (uscmd->uscsi_flags & USCSI_HTAG) { 13597 flags |= FLAG_HTAG; 13598 } else if (uscmd->uscsi_flags & USCSI_OTAG) { 13599 flags |= FLAG_OTAG; 13600 } else { 13601 flags |= un->un_tagflags & FLAG_TAGMASK; 13602 } 13603 } 13604 13605 if (uscmd->uscsi_flags & USCSI_NODISCON) { 13606 flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON; 13607 } 13608 13609 pktp->pkt_flags = flags; 13610 13611 /* Copy the caller's CDB into the pkt... */ 13612 bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen); 13613 13614 if (uscmd->uscsi_timeout == 0) { 13615 pktp->pkt_time = un->un_uscsi_timeout; 13616 } else { 13617 pktp->pkt_time = uscmd->uscsi_timeout; 13618 } 13619 13620 /* need it later to identify USCSI request in sdintr */ 13621 xp->xb_pkt_flags |= SD_XB_USCSICMD; 13622 13623 xp->xb_sense_resid = uscmd->uscsi_rqresid; 13624 13625 pktp->pkt_private = bp; 13626 pktp->pkt_comp = sdintr; 13627 *pktpp = pktp; 13628 13629 SD_TRACE(SD_LOG_IO_CORE, un, 13630 "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp); 13631 13632 return (SD_PKT_ALLOC_SUCCESS); 13633 } 13634 13635 13636 /* 13637 * Function: sd_destroypkt_for_uscsi 13638 * 13639 * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi 13640 * IOs.. Also saves relevant info into the associated uscsi_cmd 13641 * struct. 13642 * 13643 * Context: May be called under interrupt context 13644 */ 13645 13646 static void 13647 sd_destroypkt_for_uscsi(struct buf *bp) 13648 { 13649 struct uscsi_cmd *uscmd; 13650 struct sd_xbuf *xp; 13651 struct scsi_pkt *pktp; 13652 struct sd_lun *un; 13653 13654 ASSERT(bp != NULL); 13655 xp = SD_GET_XBUF(bp); 13656 ASSERT(xp != NULL); 13657 un = SD_GET_UN(bp); 13658 ASSERT(un != NULL); 13659 ASSERT(!mutex_owned(SD_MUTEX(un))); 13660 pktp = SD_GET_PKTP(bp); 13661 ASSERT(pktp != NULL); 13662 13663 SD_TRACE(SD_LOG_IO_CORE, un, 13664 "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp); 13665 13666 /* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */ 13667 uscmd = (struct uscsi_cmd *)xp->xb_pktinfo; 13668 ASSERT(uscmd != NULL); 13669 13670 /* Save the status and the residual into the uscsi_cmd struct */ 13671 uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK); 13672 uscmd->uscsi_resid = bp->b_resid; 13673 13674 /* 13675 * If enabled, copy any saved sense data into the area specified 13676 * by the uscsi command. 13677 */ 13678 if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) && 13679 (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) { 13680 /* 13681 * Note: uscmd->uscsi_rqbuf should always point to a buffer 13682 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd()) 13683 */ 13684 uscmd->uscsi_rqstatus = xp->xb_sense_status; 13685 uscmd->uscsi_rqresid = xp->xb_sense_resid; 13686 bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, SENSE_LENGTH); 13687 } 13688 13689 /* We are done with the scsi_pkt; free it now */ 13690 ASSERT(SD_GET_PKTP(bp) != NULL); 13691 scsi_destroy_pkt(SD_GET_PKTP(bp)); 13692 13693 SD_TRACE(SD_LOG_IO_CORE, un, 13694 "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp); 13695 } 13696 13697 13698 /* 13699 * Function: sd_bioclone_alloc 13700 * 13701 * Description: Allocate a buf(9S) and init it as per the given buf 13702 * and the various arguments. The associated sd_xbuf 13703 * struct is (nearly) duplicated. The struct buf *bp 13704 * argument is saved in new_xp->xb_private. 13705 * 13706 * Arguments: bp - ptr the the buf(9S) to be "shadowed" 13707 * datalen - size of data area for the shadow bp 13708 * blkno - starting LBA 13709 * func - function pointer for b_iodone in the shadow buf. (May 13710 * be NULL if none.) 13711 * 13712 * Return Code: Pointer to allocates buf(9S) struct 13713 * 13714 * Context: Can sleep. 13715 */ 13716 13717 static struct buf * 13718 sd_bioclone_alloc(struct buf *bp, size_t datalen, 13719 daddr_t blkno, int (*func)(struct buf *)) 13720 { 13721 struct sd_lun *un; 13722 struct sd_xbuf *xp; 13723 struct sd_xbuf *new_xp; 13724 struct buf *new_bp; 13725 13726 ASSERT(bp != NULL); 13727 xp = SD_GET_XBUF(bp); 13728 ASSERT(xp != NULL); 13729 un = SD_GET_UN(bp); 13730 ASSERT(un != NULL); 13731 ASSERT(!mutex_owned(SD_MUTEX(un))); 13732 13733 new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func, 13734 NULL, KM_SLEEP); 13735 13736 new_bp->b_lblkno = blkno; 13737 13738 /* 13739 * Allocate an xbuf for the shadow bp and copy the contents of the 13740 * original xbuf into it. 13741 */ 13742 new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 13743 bcopy(xp, new_xp, sizeof (struct sd_xbuf)); 13744 13745 /* 13746 * The given bp is automatically saved in the xb_private member 13747 * of the new xbuf. Callers are allowed to depend on this. 13748 */ 13749 new_xp->xb_private = bp; 13750 13751 new_bp->b_private = new_xp; 13752 13753 return (new_bp); 13754 } 13755 13756 /* 13757 * Function: sd_shadow_buf_alloc 13758 * 13759 * Description: Allocate a buf(9S) and init it as per the given buf 13760 * and the various arguments. The associated sd_xbuf 13761 * struct is (nearly) duplicated. The struct buf *bp 13762 * argument is saved in new_xp->xb_private. 13763 * 13764 * Arguments: bp - ptr the the buf(9S) to be "shadowed" 13765 * datalen - size of data area for the shadow bp 13766 * bflags - B_READ or B_WRITE (pseudo flag) 13767 * blkno - starting LBA 13768 * func - function pointer for b_iodone in the shadow buf. (May 13769 * be NULL if none.) 13770 * 13771 * Return Code: Pointer to allocates buf(9S) struct 13772 * 13773 * Context: Can sleep. 13774 */ 13775 13776 static struct buf * 13777 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags, 13778 daddr_t blkno, int (*func)(struct buf *)) 13779 { 13780 struct sd_lun *un; 13781 struct sd_xbuf *xp; 13782 struct sd_xbuf *new_xp; 13783 struct buf *new_bp; 13784 13785 ASSERT(bp != NULL); 13786 xp = SD_GET_XBUF(bp); 13787 ASSERT(xp != NULL); 13788 un = SD_GET_UN(bp); 13789 ASSERT(un != NULL); 13790 ASSERT(!mutex_owned(SD_MUTEX(un))); 13791 13792 if (bp->b_flags & (B_PAGEIO | B_PHYS)) { 13793 bp_mapin(bp); 13794 } 13795 13796 bflags &= (B_READ | B_WRITE); 13797 #if defined(__i386) || defined(__amd64) 13798 new_bp = getrbuf(KM_SLEEP); 13799 new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP); 13800 new_bp->b_bcount = datalen; 13801 new_bp->b_flags = bp->b_flags | bflags; 13802 #else 13803 new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL, 13804 datalen, bflags, SLEEP_FUNC, NULL); 13805 #endif 13806 new_bp->av_forw = NULL; 13807 new_bp->av_back = NULL; 13808 new_bp->b_dev = bp->b_dev; 13809 new_bp->b_blkno = blkno; 13810 new_bp->b_iodone = func; 13811 new_bp->b_edev = bp->b_edev; 13812 new_bp->b_resid = 0; 13813 13814 /* We need to preserve the B_FAILFAST flag */ 13815 if (bp->b_flags & B_FAILFAST) { 13816 new_bp->b_flags |= B_FAILFAST; 13817 } 13818 13819 /* 13820 * Allocate an xbuf for the shadow bp and copy the contents of the 13821 * original xbuf into it. 13822 */ 13823 new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 13824 bcopy(xp, new_xp, sizeof (struct sd_xbuf)); 13825 13826 /* Need later to copy data between the shadow buf & original buf! */ 13827 new_xp->xb_pkt_flags |= PKT_CONSISTENT; 13828 13829 /* 13830 * The given bp is automatically saved in the xb_private member 13831 * of the new xbuf. Callers are allowed to depend on this. 13832 */ 13833 new_xp->xb_private = bp; 13834 13835 new_bp->b_private = new_xp; 13836 13837 return (new_bp); 13838 } 13839 13840 /* 13841 * Function: sd_bioclone_free 13842 * 13843 * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations 13844 * in the larger than partition operation. 13845 * 13846 * Context: May be called under interrupt context 13847 */ 13848 13849 static void 13850 sd_bioclone_free(struct buf *bp) 13851 { 13852 struct sd_xbuf *xp; 13853 13854 ASSERT(bp != NULL); 13855 xp = SD_GET_XBUF(bp); 13856 ASSERT(xp != NULL); 13857 13858 /* 13859 * Call bp_mapout() before freeing the buf, in case a lower 13860 * layer or HBA had done a bp_mapin(). we must do this here 13861 * as we are the "originator" of the shadow buf. 13862 */ 13863 bp_mapout(bp); 13864 13865 /* 13866 * Null out b_iodone before freeing the bp, to ensure that the driver 13867 * never gets confused by a stale value in this field. (Just a little 13868 * extra defensiveness here.) 13869 */ 13870 bp->b_iodone = NULL; 13871 13872 freerbuf(bp); 13873 13874 kmem_free(xp, sizeof (struct sd_xbuf)); 13875 } 13876 13877 /* 13878 * Function: sd_shadow_buf_free 13879 * 13880 * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations. 13881 * 13882 * Context: May be called under interrupt context 13883 */ 13884 13885 static void 13886 sd_shadow_buf_free(struct buf *bp) 13887 { 13888 struct sd_xbuf *xp; 13889 13890 ASSERT(bp != NULL); 13891 xp = SD_GET_XBUF(bp); 13892 ASSERT(xp != NULL); 13893 13894 #if defined(__sparc) 13895 /* 13896 * Call bp_mapout() before freeing the buf, in case a lower 13897 * layer or HBA had done a bp_mapin(). we must do this here 13898 * as we are the "originator" of the shadow buf. 13899 */ 13900 bp_mapout(bp); 13901 #endif 13902 13903 /* 13904 * Null out b_iodone before freeing the bp, to ensure that the driver 13905 * never gets confused by a stale value in this field. (Just a little 13906 * extra defensiveness here.) 13907 */ 13908 bp->b_iodone = NULL; 13909 13910 #if defined(__i386) || defined(__amd64) 13911 kmem_free(bp->b_un.b_addr, bp->b_bcount); 13912 freerbuf(bp); 13913 #else 13914 scsi_free_consistent_buf(bp); 13915 #endif 13916 13917 kmem_free(xp, sizeof (struct sd_xbuf)); 13918 } 13919 13920 13921 /* 13922 * Function: sd_print_transport_rejected_message 13923 * 13924 * Description: This implements the ludicrously complex rules for printing 13925 * a "transport rejected" message. This is to address the 13926 * specific problem of having a flood of this error message 13927 * produced when a failover occurs. 13928 * 13929 * Context: Any. 13930 */ 13931 13932 static void 13933 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp, 13934 int code) 13935 { 13936 ASSERT(un != NULL); 13937 ASSERT(mutex_owned(SD_MUTEX(un))); 13938 ASSERT(xp != NULL); 13939 13940 /* 13941 * Print the "transport rejected" message under the following 13942 * conditions: 13943 * 13944 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set 13945 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR. 13946 * - If the error code IS a TRAN_FATAL_ERROR, then the message is 13947 * printed the FIRST time a TRAN_FATAL_ERROR is returned from 13948 * scsi_transport(9F) (which indicates that the target might have 13949 * gone off-line). This uses the un->un_tran_fatal_count 13950 * count, which is incremented whenever a TRAN_FATAL_ERROR is 13951 * received, and reset to zero whenver a TRAN_ACCEPT is returned 13952 * from scsi_transport(). 13953 * 13954 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of 13955 * the preceeding cases in order for the message to be printed. 13956 */ 13957 if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) { 13958 if ((sd_level_mask & SD_LOGMASK_DIAG) || 13959 (code != TRAN_FATAL_ERROR) || 13960 (un->un_tran_fatal_count == 1)) { 13961 switch (code) { 13962 case TRAN_BADPKT: 13963 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 13964 "transport rejected bad packet\n"); 13965 break; 13966 case TRAN_FATAL_ERROR: 13967 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 13968 "transport rejected fatal error\n"); 13969 break; 13970 default: 13971 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 13972 "transport rejected (%d)\n", code); 13973 break; 13974 } 13975 } 13976 } 13977 } 13978 13979 13980 /* 13981 * Function: sd_add_buf_to_waitq 13982 * 13983 * Description: Add the given buf(9S) struct to the wait queue for the 13984 * instance. If sorting is enabled, then the buf is added 13985 * to the queue via an elevator sort algorithm (a la 13986 * disksort(9F)). The SD_GET_BLKNO(bp) is used as the sort key. 13987 * If sorting is not enabled, then the buf is just added 13988 * to the end of the wait queue. 13989 * 13990 * Return Code: void 13991 * 13992 * Context: Does not sleep/block, therefore technically can be called 13993 * from any context. However if sorting is enabled then the 13994 * execution time is indeterminate, and may take long if 13995 * the wait queue grows large. 13996 */ 13997 13998 static void 13999 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp) 14000 { 14001 struct buf *ap; 14002 14003 ASSERT(bp != NULL); 14004 ASSERT(un != NULL); 14005 ASSERT(mutex_owned(SD_MUTEX(un))); 14006 14007 /* If the queue is empty, add the buf as the only entry & return. */ 14008 if (un->un_waitq_headp == NULL) { 14009 ASSERT(un->un_waitq_tailp == NULL); 14010 un->un_waitq_headp = un->un_waitq_tailp = bp; 14011 bp->av_forw = NULL; 14012 return; 14013 } 14014 14015 ASSERT(un->un_waitq_tailp != NULL); 14016 14017 /* 14018 * If sorting is disabled, just add the buf to the tail end of 14019 * the wait queue and return. 14020 */ 14021 if (un->un_f_disksort_disabled) { 14022 un->un_waitq_tailp->av_forw = bp; 14023 un->un_waitq_tailp = bp; 14024 bp->av_forw = NULL; 14025 return; 14026 } 14027 14028 /* 14029 * Sort thru the list of requests currently on the wait queue 14030 * and add the new buf request at the appropriate position. 14031 * 14032 * The un->un_waitq_headp is an activity chain pointer on which 14033 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The 14034 * first queue holds those requests which are positioned after 14035 * the current SD_GET_BLKNO() (in the first request); the second holds 14036 * requests which came in after their SD_GET_BLKNO() number was passed. 14037 * Thus we implement a one way scan, retracting after reaching 14038 * the end of the drive to the first request on the second 14039 * queue, at which time it becomes the first queue. 14040 * A one-way scan is natural because of the way UNIX read-ahead 14041 * blocks are allocated. 14042 * 14043 * If we lie after the first request, then we must locate the 14044 * second request list and add ourselves to it. 14045 */ 14046 ap = un->un_waitq_headp; 14047 if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) { 14048 while (ap->av_forw != NULL) { 14049 /* 14050 * Look for an "inversion" in the (normally 14051 * ascending) block numbers. This indicates 14052 * the start of the second request list. 14053 */ 14054 if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) { 14055 /* 14056 * Search the second request list for the 14057 * first request at a larger block number. 14058 * We go before that; however if there is 14059 * no such request, we go at the end. 14060 */ 14061 do { 14062 if (SD_GET_BLKNO(bp) < 14063 SD_GET_BLKNO(ap->av_forw)) { 14064 goto insert; 14065 } 14066 ap = ap->av_forw; 14067 } while (ap->av_forw != NULL); 14068 goto insert; /* after last */ 14069 } 14070 ap = ap->av_forw; 14071 } 14072 14073 /* 14074 * No inversions... we will go after the last, and 14075 * be the first request in the second request list. 14076 */ 14077 goto insert; 14078 } 14079 14080 /* 14081 * Request is at/after the current request... 14082 * sort in the first request list. 14083 */ 14084 while (ap->av_forw != NULL) { 14085 /* 14086 * We want to go after the current request (1) if 14087 * there is an inversion after it (i.e. it is the end 14088 * of the first request list), or (2) if the next 14089 * request is a larger block no. than our request. 14090 */ 14091 if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) || 14092 (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) { 14093 goto insert; 14094 } 14095 ap = ap->av_forw; 14096 } 14097 14098 /* 14099 * Neither a second list nor a larger request, therefore 14100 * we go at the end of the first list (which is the same 14101 * as the end of the whole schebang). 14102 */ 14103 insert: 14104 bp->av_forw = ap->av_forw; 14105 ap->av_forw = bp; 14106 14107 /* 14108 * If we inserted onto the tail end of the waitq, make sure the 14109 * tail pointer is updated. 14110 */ 14111 if (ap == un->un_waitq_tailp) { 14112 un->un_waitq_tailp = bp; 14113 } 14114 } 14115 14116 14117 /* 14118 * Function: sd_start_cmds 14119 * 14120 * Description: Remove and transport cmds from the driver queues. 14121 * 14122 * Arguments: un - pointer to the unit (soft state) struct for the target. 14123 * 14124 * immed_bp - ptr to a buf to be transported immediately. Only 14125 * the immed_bp is transported; bufs on the waitq are not 14126 * processed and the un_retry_bp is not checked. If immed_bp is 14127 * NULL, then normal queue processing is performed. 14128 * 14129 * Context: May be called from kernel thread context, interrupt context, 14130 * or runout callback context. This function may not block or 14131 * call routines that block. 14132 */ 14133 14134 static void 14135 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp) 14136 { 14137 struct sd_xbuf *xp; 14138 struct buf *bp; 14139 void (*statp)(kstat_io_t *); 14140 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14141 void (*saved_statp)(kstat_io_t *); 14142 #endif 14143 int rval; 14144 14145 ASSERT(un != NULL); 14146 ASSERT(mutex_owned(SD_MUTEX(un))); 14147 ASSERT(un->un_ncmds_in_transport >= 0); 14148 ASSERT(un->un_throttle >= 0); 14149 14150 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n"); 14151 14152 do { 14153 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14154 saved_statp = NULL; 14155 #endif 14156 14157 /* 14158 * If we are syncing or dumping, fail the command to 14159 * avoid recursively calling back into scsi_transport(). 14160 * The dump I/O itself uses a separate code path so this 14161 * only prevents non-dump I/O from being sent while dumping. 14162 * File system sync takes place before dumping begins. 14163 * During panic, filesystem I/O is allowed provided 14164 * un_in_callback is <= 1. This is to prevent recursion 14165 * such as sd_start_cmds -> scsi_transport -> sdintr -> 14166 * sd_start_cmds and so on. See panic.c for more information 14167 * about the states the system can be in during panic. 14168 */ 14169 if ((un->un_state == SD_STATE_DUMPING) || 14170 (ddi_in_panic() && (un->un_in_callback > 1))) { 14171 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14172 "sd_start_cmds: panicking\n"); 14173 goto exit; 14174 } 14175 14176 if ((bp = immed_bp) != NULL) { 14177 /* 14178 * We have a bp that must be transported immediately. 14179 * It's OK to transport the immed_bp here without doing 14180 * the throttle limit check because the immed_bp is 14181 * always used in a retry/recovery case. This means 14182 * that we know we are not at the throttle limit by 14183 * virtue of the fact that to get here we must have 14184 * already gotten a command back via sdintr(). This also 14185 * relies on (1) the command on un_retry_bp preventing 14186 * further commands from the waitq from being issued; 14187 * and (2) the code in sd_retry_command checking the 14188 * throttle limit before issuing a delayed or immediate 14189 * retry. This holds even if the throttle limit is 14190 * currently ratcheted down from its maximum value. 14191 */ 14192 statp = kstat_runq_enter; 14193 if (bp == un->un_retry_bp) { 14194 ASSERT((un->un_retry_statp == NULL) || 14195 (un->un_retry_statp == kstat_waitq_enter) || 14196 (un->un_retry_statp == 14197 kstat_runq_back_to_waitq)); 14198 /* 14199 * If the waitq kstat was incremented when 14200 * sd_set_retry_bp() queued this bp for a retry, 14201 * then we must set up statp so that the waitq 14202 * count will get decremented correctly below. 14203 * Also we must clear un->un_retry_statp to 14204 * ensure that we do not act on a stale value 14205 * in this field. 14206 */ 14207 if ((un->un_retry_statp == kstat_waitq_enter) || 14208 (un->un_retry_statp == 14209 kstat_runq_back_to_waitq)) { 14210 statp = kstat_waitq_to_runq; 14211 } 14212 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14213 saved_statp = un->un_retry_statp; 14214 #endif 14215 un->un_retry_statp = NULL; 14216 14217 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 14218 "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p " 14219 "un_throttle:%d un_ncmds_in_transport:%d\n", 14220 un, un->un_retry_bp, un->un_throttle, 14221 un->un_ncmds_in_transport); 14222 } else { 14223 SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: " 14224 "processing priority bp:0x%p\n", bp); 14225 } 14226 14227 } else if ((bp = un->un_waitq_headp) != NULL) { 14228 /* 14229 * A command on the waitq is ready to go, but do not 14230 * send it if: 14231 * 14232 * (1) the throttle limit has been reached, or 14233 * (2) a retry is pending, or 14234 * (3) a START_STOP_UNIT callback pending, or 14235 * (4) a callback for a SD_PATH_DIRECT_PRIORITY 14236 * command is pending. 14237 * 14238 * For all of these conditions, IO processing will 14239 * restart after the condition is cleared. 14240 */ 14241 if (un->un_ncmds_in_transport >= un->un_throttle) { 14242 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14243 "sd_start_cmds: exiting, " 14244 "throttle limit reached!\n"); 14245 goto exit; 14246 } 14247 if (un->un_retry_bp != NULL) { 14248 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14249 "sd_start_cmds: exiting, retry pending!\n"); 14250 goto exit; 14251 } 14252 if (un->un_startstop_timeid != NULL) { 14253 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14254 "sd_start_cmds: exiting, " 14255 "START_STOP pending!\n"); 14256 goto exit; 14257 } 14258 if (un->un_direct_priority_timeid != NULL) { 14259 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14260 "sd_start_cmds: exiting, " 14261 "SD_PATH_DIRECT_PRIORITY cmd. pending!\n"); 14262 goto exit; 14263 } 14264 14265 /* Dequeue the command */ 14266 un->un_waitq_headp = bp->av_forw; 14267 if (un->un_waitq_headp == NULL) { 14268 un->un_waitq_tailp = NULL; 14269 } 14270 bp->av_forw = NULL; 14271 statp = kstat_waitq_to_runq; 14272 SD_TRACE(SD_LOG_IO_CORE, un, 14273 "sd_start_cmds: processing waitq bp:0x%p\n", bp); 14274 14275 } else { 14276 /* No work to do so bail out now */ 14277 SD_TRACE(SD_LOG_IO_CORE, un, 14278 "sd_start_cmds: no more work, exiting!\n"); 14279 goto exit; 14280 } 14281 14282 /* 14283 * Reset the state to normal. This is the mechanism by which 14284 * the state transitions from either SD_STATE_RWAIT or 14285 * SD_STATE_OFFLINE to SD_STATE_NORMAL. 14286 * If state is SD_STATE_PM_CHANGING then this command is 14287 * part of the device power control and the state must 14288 * not be put back to normal. Doing so would would 14289 * allow new commands to proceed when they shouldn't, 14290 * the device may be going off. 14291 */ 14292 if ((un->un_state != SD_STATE_SUSPENDED) && 14293 (un->un_state != SD_STATE_PM_CHANGING)) { 14294 New_state(un, SD_STATE_NORMAL); 14295 } 14296 14297 xp = SD_GET_XBUF(bp); 14298 ASSERT(xp != NULL); 14299 14300 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14301 /* 14302 * Allocate the scsi_pkt if we need one, or attach DMA 14303 * resources if we have a scsi_pkt that needs them. The 14304 * latter should only occur for commands that are being 14305 * retried. 14306 */ 14307 if ((xp->xb_pktp == NULL) || 14308 ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) { 14309 #else 14310 if (xp->xb_pktp == NULL) { 14311 #endif 14312 /* 14313 * There is no scsi_pkt allocated for this buf. Call 14314 * the initpkt function to allocate & init one. 14315 * 14316 * The scsi_init_pkt runout callback functionality is 14317 * implemented as follows: 14318 * 14319 * 1) The initpkt function always calls 14320 * scsi_init_pkt(9F) with sdrunout specified as the 14321 * callback routine. 14322 * 2) A successful packet allocation is initialized and 14323 * the I/O is transported. 14324 * 3) The I/O associated with an allocation resource 14325 * failure is left on its queue to be retried via 14326 * runout or the next I/O. 14327 * 4) The I/O associated with a DMA error is removed 14328 * from the queue and failed with EIO. Processing of 14329 * the transport queues is also halted to be 14330 * restarted via runout or the next I/O. 14331 * 5) The I/O associated with a CDB size or packet 14332 * size error is removed from the queue and failed 14333 * with EIO. Processing of the transport queues is 14334 * continued. 14335 * 14336 * Note: there is no interface for canceling a runout 14337 * callback. To prevent the driver from detaching or 14338 * suspending while a runout is pending the driver 14339 * state is set to SD_STATE_RWAIT 14340 * 14341 * Note: using the scsi_init_pkt callback facility can 14342 * result in an I/O request persisting at the head of 14343 * the list which cannot be satisfied even after 14344 * multiple retries. In the future the driver may 14345 * implement some kind of maximum runout count before 14346 * failing an I/O. 14347 * 14348 * Note: the use of funcp below may seem superfluous, 14349 * but it helps warlock figure out the correct 14350 * initpkt function calls (see [s]sd.wlcmd). 14351 */ 14352 struct scsi_pkt *pktp; 14353 int (*funcp)(struct buf *bp, struct scsi_pkt **pktp); 14354 14355 ASSERT(bp != un->un_rqs_bp); 14356 14357 funcp = sd_initpkt_map[xp->xb_chain_iostart]; 14358 switch ((*funcp)(bp, &pktp)) { 14359 case SD_PKT_ALLOC_SUCCESS: 14360 xp->xb_pktp = pktp; 14361 SD_TRACE(SD_LOG_IO_CORE, un, 14362 "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n", 14363 pktp); 14364 goto got_pkt; 14365 14366 case SD_PKT_ALLOC_FAILURE: 14367 /* 14368 * Temporary (hopefully) resource depletion. 14369 * Since retries and RQS commands always have a 14370 * scsi_pkt allocated, these cases should never 14371 * get here. So the only cases this needs to 14372 * handle is a bp from the waitq (which we put 14373 * back onto the waitq for sdrunout), or a bp 14374 * sent as an immed_bp (which we just fail). 14375 */ 14376 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14377 "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n"); 14378 14379 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14380 14381 if (bp == immed_bp) { 14382 /* 14383 * If SD_XB_DMA_FREED is clear, then 14384 * this is a failure to allocate a 14385 * scsi_pkt, and we must fail the 14386 * command. 14387 */ 14388 if ((xp->xb_pkt_flags & 14389 SD_XB_DMA_FREED) == 0) { 14390 break; 14391 } 14392 14393 /* 14394 * If this immediate command is NOT our 14395 * un_retry_bp, then we must fail it. 14396 */ 14397 if (bp != un->un_retry_bp) { 14398 break; 14399 } 14400 14401 /* 14402 * We get here if this cmd is our 14403 * un_retry_bp that was DMAFREED, but 14404 * scsi_init_pkt() failed to reallocate 14405 * DMA resources when we attempted to 14406 * retry it. This can happen when an 14407 * mpxio failover is in progress, but 14408 * we don't want to just fail the 14409 * command in this case. 14410 * 14411 * Use timeout(9F) to restart it after 14412 * a 100ms delay. We don't want to 14413 * let sdrunout() restart it, because 14414 * sdrunout() is just supposed to start 14415 * commands that are sitting on the 14416 * wait queue. The un_retry_bp stays 14417 * set until the command completes, but 14418 * sdrunout can be called many times 14419 * before that happens. Since sdrunout 14420 * cannot tell if the un_retry_bp is 14421 * already in the transport, it could 14422 * end up calling scsi_transport() for 14423 * the un_retry_bp multiple times. 14424 * 14425 * Also: don't schedule the callback 14426 * if some other callback is already 14427 * pending. 14428 */ 14429 if (un->un_retry_statp == NULL) { 14430 /* 14431 * restore the kstat pointer to 14432 * keep kstat counts coherent 14433 * when we do retry the command. 14434 */ 14435 un->un_retry_statp = 14436 saved_statp; 14437 } 14438 14439 if ((un->un_startstop_timeid == NULL) && 14440 (un->un_retry_timeid == NULL) && 14441 (un->un_direct_priority_timeid == 14442 NULL)) { 14443 14444 un->un_retry_timeid = 14445 timeout( 14446 sd_start_retry_command, 14447 un, SD_RESTART_TIMEOUT); 14448 } 14449 goto exit; 14450 } 14451 14452 #else 14453 if (bp == immed_bp) { 14454 break; /* Just fail the command */ 14455 } 14456 #endif 14457 14458 /* Add the buf back to the head of the waitq */ 14459 bp->av_forw = un->un_waitq_headp; 14460 un->un_waitq_headp = bp; 14461 if (un->un_waitq_tailp == NULL) { 14462 un->un_waitq_tailp = bp; 14463 } 14464 goto exit; 14465 14466 case SD_PKT_ALLOC_FAILURE_NO_DMA: 14467 /* 14468 * HBA DMA resource failure. Fail the command 14469 * and continue processing of the queues. 14470 */ 14471 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14472 "sd_start_cmds: " 14473 "SD_PKT_ALLOC_FAILURE_NO_DMA\n"); 14474 break; 14475 14476 case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL: 14477 /* 14478 * Note:x86: Partial DMA mapping not supported 14479 * for USCSI commands, and all the needed DMA 14480 * resources were not allocated. 14481 */ 14482 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14483 "sd_start_cmds: " 14484 "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n"); 14485 break; 14486 14487 case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL: 14488 /* 14489 * Note:x86: Request cannot fit into CDB based 14490 * on lba and len. 14491 */ 14492 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14493 "sd_start_cmds: " 14494 "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n"); 14495 break; 14496 14497 default: 14498 /* Should NEVER get here! */ 14499 panic("scsi_initpkt error"); 14500 /*NOTREACHED*/ 14501 } 14502 14503 /* 14504 * Fatal error in allocating a scsi_pkt for this buf. 14505 * Update kstats & return the buf with an error code. 14506 * We must use sd_return_failed_command_no_restart() to 14507 * avoid a recursive call back into sd_start_cmds(). 14508 * However this also means that we must keep processing 14509 * the waitq here in order to avoid stalling. 14510 */ 14511 if (statp == kstat_waitq_to_runq) { 14512 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 14513 } 14514 sd_return_failed_command_no_restart(un, bp, EIO); 14515 if (bp == immed_bp) { 14516 /* immed_bp is gone by now, so clear this */ 14517 immed_bp = NULL; 14518 } 14519 continue; 14520 } 14521 got_pkt: 14522 if (bp == immed_bp) { 14523 /* goto the head of the class.... */ 14524 xp->xb_pktp->pkt_flags |= FLAG_HEAD; 14525 } 14526 14527 un->un_ncmds_in_transport++; 14528 SD_UPDATE_KSTATS(un, statp, bp); 14529 14530 /* 14531 * Call scsi_transport() to send the command to the target. 14532 * According to SCSA architecture, we must drop the mutex here 14533 * before calling scsi_transport() in order to avoid deadlock. 14534 * Note that the scsi_pkt's completion routine can be executed 14535 * (from interrupt context) even before the call to 14536 * scsi_transport() returns. 14537 */ 14538 SD_TRACE(SD_LOG_IO_CORE, un, 14539 "sd_start_cmds: calling scsi_transport()\n"); 14540 DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp); 14541 14542 mutex_exit(SD_MUTEX(un)); 14543 rval = scsi_transport(xp->xb_pktp); 14544 mutex_enter(SD_MUTEX(un)); 14545 14546 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14547 "sd_start_cmds: scsi_transport() returned %d\n", rval); 14548 14549 switch (rval) { 14550 case TRAN_ACCEPT: 14551 /* Clear this with every pkt accepted by the HBA */ 14552 un->un_tran_fatal_count = 0; 14553 break; /* Success; try the next cmd (if any) */ 14554 14555 case TRAN_BUSY: 14556 un->un_ncmds_in_transport--; 14557 ASSERT(un->un_ncmds_in_transport >= 0); 14558 14559 /* 14560 * Don't retry request sense, the sense data 14561 * is lost when another request is sent. 14562 * Free up the rqs buf and retry 14563 * the original failed cmd. Update kstat. 14564 */ 14565 if (bp == un->un_rqs_bp) { 14566 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 14567 bp = sd_mark_rqs_idle(un, xp); 14568 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 14569 NULL, NULL, EIO, SD_BSY_TIMEOUT / 500, 14570 kstat_waitq_enter); 14571 goto exit; 14572 } 14573 14574 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14575 /* 14576 * Free the DMA resources for the scsi_pkt. This will 14577 * allow mpxio to select another path the next time 14578 * we call scsi_transport() with this scsi_pkt. 14579 * See sdintr() for the rationalization behind this. 14580 */ 14581 if ((un->un_f_is_fibre == TRUE) && 14582 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 14583 ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) { 14584 scsi_dmafree(xp->xb_pktp); 14585 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 14586 } 14587 #endif 14588 14589 if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) { 14590 /* 14591 * Commands that are SD_PATH_DIRECT_PRIORITY 14592 * are for error recovery situations. These do 14593 * not use the normal command waitq, so if they 14594 * get a TRAN_BUSY we cannot put them back onto 14595 * the waitq for later retry. One possible 14596 * problem is that there could already be some 14597 * other command on un_retry_bp that is waiting 14598 * for this one to complete, so we would be 14599 * deadlocked if we put this command back onto 14600 * the waitq for later retry (since un_retry_bp 14601 * must complete before the driver gets back to 14602 * commands on the waitq). 14603 * 14604 * To avoid deadlock we must schedule a callback 14605 * that will restart this command after a set 14606 * interval. This should keep retrying for as 14607 * long as the underlying transport keeps 14608 * returning TRAN_BUSY (just like for other 14609 * commands). Use the same timeout interval as 14610 * for the ordinary TRAN_BUSY retry. 14611 */ 14612 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14613 "sd_start_cmds: scsi_transport() returned " 14614 "TRAN_BUSY for DIRECT_PRIORITY cmd!\n"); 14615 14616 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 14617 un->un_direct_priority_timeid = 14618 timeout(sd_start_direct_priority_command, 14619 bp, SD_BSY_TIMEOUT / 500); 14620 14621 goto exit; 14622 } 14623 14624 /* 14625 * For TRAN_BUSY, we want to reduce the throttle value, 14626 * unless we are retrying a command. 14627 */ 14628 if (bp != un->un_retry_bp) { 14629 sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY); 14630 } 14631 14632 /* 14633 * Set up the bp to be tried again 10 ms later. 14634 * Note:x86: Is there a timeout value in the sd_lun 14635 * for this condition? 14636 */ 14637 sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500, 14638 kstat_runq_back_to_waitq); 14639 goto exit; 14640 14641 case TRAN_FATAL_ERROR: 14642 un->un_tran_fatal_count++; 14643 /* FALLTHRU */ 14644 14645 case TRAN_BADPKT: 14646 default: 14647 un->un_ncmds_in_transport--; 14648 ASSERT(un->un_ncmds_in_transport >= 0); 14649 14650 /* 14651 * If this is our REQUEST SENSE command with a 14652 * transport error, we must get back the pointers 14653 * to the original buf, and mark the REQUEST 14654 * SENSE command as "available". 14655 */ 14656 if (bp == un->un_rqs_bp) { 14657 bp = sd_mark_rqs_idle(un, xp); 14658 xp = SD_GET_XBUF(bp); 14659 } else { 14660 /* 14661 * Legacy behavior: do not update transport 14662 * error count for request sense commands. 14663 */ 14664 SD_UPDATE_ERRSTATS(un, sd_transerrs); 14665 } 14666 14667 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 14668 sd_print_transport_rejected_message(un, xp, rval); 14669 14670 /* 14671 * We must use sd_return_failed_command_no_restart() to 14672 * avoid a recursive call back into sd_start_cmds(). 14673 * However this also means that we must keep processing 14674 * the waitq here in order to avoid stalling. 14675 */ 14676 sd_return_failed_command_no_restart(un, bp, EIO); 14677 14678 /* 14679 * Notify any threads waiting in sd_ddi_suspend() that 14680 * a command completion has occurred. 14681 */ 14682 if (un->un_state == SD_STATE_SUSPENDED) { 14683 cv_broadcast(&un->un_disk_busy_cv); 14684 } 14685 14686 if (bp == immed_bp) { 14687 /* immed_bp is gone by now, so clear this */ 14688 immed_bp = NULL; 14689 } 14690 break; 14691 } 14692 14693 } while (immed_bp == NULL); 14694 14695 exit: 14696 ASSERT(mutex_owned(SD_MUTEX(un))); 14697 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n"); 14698 } 14699 14700 14701 /* 14702 * Function: sd_return_command 14703 * 14704 * Description: Returns a command to its originator (with or without an 14705 * error). Also starts commands waiting to be transported 14706 * to the target. 14707 * 14708 * Context: May be called from interrupt, kernel, or timeout context 14709 */ 14710 14711 static void 14712 sd_return_command(struct sd_lun *un, struct buf *bp) 14713 { 14714 struct sd_xbuf *xp; 14715 #if defined(__i386) || defined(__amd64) 14716 struct scsi_pkt *pktp; 14717 #endif 14718 14719 ASSERT(bp != NULL); 14720 ASSERT(un != NULL); 14721 ASSERT(mutex_owned(SD_MUTEX(un))); 14722 ASSERT(bp != un->un_rqs_bp); 14723 xp = SD_GET_XBUF(bp); 14724 ASSERT(xp != NULL); 14725 14726 #if defined(__i386) || defined(__amd64) 14727 pktp = SD_GET_PKTP(bp); 14728 #endif 14729 14730 SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n"); 14731 14732 #if defined(__i386) || defined(__amd64) 14733 /* 14734 * Note:x86: check for the "sdrestart failed" case. 14735 */ 14736 if (((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) && 14737 (geterror(bp) == 0) && (xp->xb_dma_resid != 0) && 14738 (xp->xb_pktp->pkt_resid == 0)) { 14739 14740 if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) { 14741 /* 14742 * Successfully set up next portion of cmd 14743 * transfer, try sending it 14744 */ 14745 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, 14746 NULL, NULL, 0, (clock_t)0, NULL); 14747 sd_start_cmds(un, NULL); 14748 return; /* Note:x86: need a return here? */ 14749 } 14750 } 14751 #endif 14752 14753 /* 14754 * If this is the failfast bp, clear it from un_failfast_bp. This 14755 * can happen if upon being re-tried the failfast bp either 14756 * succeeded or encountered another error (possibly even a different 14757 * error than the one that precipitated the failfast state, but in 14758 * that case it would have had to exhaust retries as well). Regardless, 14759 * this should not occur whenever the instance is in the active 14760 * failfast state. 14761 */ 14762 if (bp == un->un_failfast_bp) { 14763 ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE); 14764 un->un_failfast_bp = NULL; 14765 } 14766 14767 /* 14768 * Clear the failfast state upon successful completion of ANY cmd. 14769 */ 14770 if (bp->b_error == 0) { 14771 un->un_failfast_state = SD_FAILFAST_INACTIVE; 14772 } 14773 14774 /* 14775 * This is used if the command was retried one or more times. Show that 14776 * we are done with it, and allow processing of the waitq to resume. 14777 */ 14778 if (bp == un->un_retry_bp) { 14779 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14780 "sd_return_command: un:0x%p: " 14781 "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp); 14782 un->un_retry_bp = NULL; 14783 un->un_retry_statp = NULL; 14784 } 14785 14786 SD_UPDATE_RDWR_STATS(un, bp); 14787 SD_UPDATE_PARTITION_STATS(un, bp); 14788 14789 switch (un->un_state) { 14790 case SD_STATE_SUSPENDED: 14791 /* 14792 * Notify any threads waiting in sd_ddi_suspend() that 14793 * a command completion has occurred. 14794 */ 14795 cv_broadcast(&un->un_disk_busy_cv); 14796 break; 14797 default: 14798 sd_start_cmds(un, NULL); 14799 break; 14800 } 14801 14802 /* Return this command up the iodone chain to its originator. */ 14803 mutex_exit(SD_MUTEX(un)); 14804 14805 (*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp); 14806 xp->xb_pktp = NULL; 14807 14808 SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp); 14809 14810 ASSERT(!mutex_owned(SD_MUTEX(un))); 14811 mutex_enter(SD_MUTEX(un)); 14812 14813 SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n"); 14814 } 14815 14816 14817 /* 14818 * Function: sd_return_failed_command 14819 * 14820 * Description: Command completion when an error occurred. 14821 * 14822 * Context: May be called from interrupt context 14823 */ 14824 14825 static void 14826 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode) 14827 { 14828 ASSERT(bp != NULL); 14829 ASSERT(un != NULL); 14830 ASSERT(mutex_owned(SD_MUTEX(un))); 14831 14832 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14833 "sd_return_failed_command: entry\n"); 14834 14835 /* 14836 * b_resid could already be nonzero due to a partial data 14837 * transfer, so do not change it here. 14838 */ 14839 SD_BIOERROR(bp, errcode); 14840 14841 sd_return_command(un, bp); 14842 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14843 "sd_return_failed_command: exit\n"); 14844 } 14845 14846 14847 /* 14848 * Function: sd_return_failed_command_no_restart 14849 * 14850 * Description: Same as sd_return_failed_command, but ensures that no 14851 * call back into sd_start_cmds will be issued. 14852 * 14853 * Context: May be called from interrupt context 14854 */ 14855 14856 static void 14857 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp, 14858 int errcode) 14859 { 14860 struct sd_xbuf *xp; 14861 14862 ASSERT(bp != NULL); 14863 ASSERT(un != NULL); 14864 ASSERT(mutex_owned(SD_MUTEX(un))); 14865 xp = SD_GET_XBUF(bp); 14866 ASSERT(xp != NULL); 14867 ASSERT(errcode != 0); 14868 14869 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14870 "sd_return_failed_command_no_restart: entry\n"); 14871 14872 /* 14873 * b_resid could already be nonzero due to a partial data 14874 * transfer, so do not change it here. 14875 */ 14876 SD_BIOERROR(bp, errcode); 14877 14878 /* 14879 * If this is the failfast bp, clear it. This can happen if the 14880 * failfast bp encounterd a fatal error when we attempted to 14881 * re-try it (such as a scsi_transport(9F) failure). However 14882 * we should NOT be in an active failfast state if the failfast 14883 * bp is not NULL. 14884 */ 14885 if (bp == un->un_failfast_bp) { 14886 ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE); 14887 un->un_failfast_bp = NULL; 14888 } 14889 14890 if (bp == un->un_retry_bp) { 14891 /* 14892 * This command was retried one or more times. Show that we are 14893 * done with it, and allow processing of the waitq to resume. 14894 */ 14895 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14896 "sd_return_failed_command_no_restart: " 14897 " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp); 14898 un->un_retry_bp = NULL; 14899 un->un_retry_statp = NULL; 14900 } 14901 14902 SD_UPDATE_RDWR_STATS(un, bp); 14903 SD_UPDATE_PARTITION_STATS(un, bp); 14904 14905 mutex_exit(SD_MUTEX(un)); 14906 14907 if (xp->xb_pktp != NULL) { 14908 (*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp); 14909 xp->xb_pktp = NULL; 14910 } 14911 14912 SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp); 14913 14914 mutex_enter(SD_MUTEX(un)); 14915 14916 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14917 "sd_return_failed_command_no_restart: exit\n"); 14918 } 14919 14920 14921 /* 14922 * Function: sd_retry_command 14923 * 14924 * Description: queue up a command for retry, or (optionally) fail it 14925 * if retry counts are exhausted. 14926 * 14927 * Arguments: un - Pointer to the sd_lun struct for the target. 14928 * 14929 * bp - Pointer to the buf for the command to be retried. 14930 * 14931 * retry_check_flag - Flag to see which (if any) of the retry 14932 * counts should be decremented/checked. If the indicated 14933 * retry count is exhausted, then the command will not be 14934 * retried; it will be failed instead. This should use a 14935 * value equal to one of the following: 14936 * 14937 * SD_RETRIES_NOCHECK 14938 * SD_RESD_RETRIES_STANDARD 14939 * SD_RETRIES_VICTIM 14940 * 14941 * Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE 14942 * if the check should be made to see of FLAG_ISOLATE is set 14943 * in the pkt. If FLAG_ISOLATE is set, then the command is 14944 * not retried, it is simply failed. 14945 * 14946 * user_funcp - Ptr to function to call before dispatching the 14947 * command. May be NULL if no action needs to be performed. 14948 * (Primarily intended for printing messages.) 14949 * 14950 * user_arg - Optional argument to be passed along to 14951 * the user_funcp call. 14952 * 14953 * failure_code - errno return code to set in the bp if the 14954 * command is going to be failed. 14955 * 14956 * retry_delay - Retry delay interval in (clock_t) units. May 14957 * be zero which indicates that the retry should be retried 14958 * immediately (ie, without an intervening delay). 14959 * 14960 * statp - Ptr to kstat function to be updated if the command 14961 * is queued for a delayed retry. May be NULL if no kstat 14962 * update is desired. 14963 * 14964 * Context: May be called from interupt context. 14965 */ 14966 14967 static void 14968 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag, 14969 void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int 14970 code), void *user_arg, int failure_code, clock_t retry_delay, 14971 void (*statp)(kstat_io_t *)) 14972 { 14973 struct sd_xbuf *xp; 14974 struct scsi_pkt *pktp; 14975 14976 ASSERT(un != NULL); 14977 ASSERT(mutex_owned(SD_MUTEX(un))); 14978 ASSERT(bp != NULL); 14979 xp = SD_GET_XBUF(bp); 14980 ASSERT(xp != NULL); 14981 pktp = SD_GET_PKTP(bp); 14982 ASSERT(pktp != NULL); 14983 14984 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 14985 "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp); 14986 14987 /* 14988 * If we are syncing or dumping, fail the command to avoid 14989 * recursively calling back into scsi_transport(). 14990 */ 14991 if (ddi_in_panic()) { 14992 goto fail_command_no_log; 14993 } 14994 14995 /* 14996 * We should never be be retrying a command with FLAG_DIAGNOSE set, so 14997 * log an error and fail the command. 14998 */ 14999 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 15000 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 15001 "ERROR, retrying FLAG_DIAGNOSE command.\n"); 15002 sd_dump_memory(un, SD_LOG_IO, "CDB", 15003 (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 15004 sd_dump_memory(un, SD_LOG_IO, "Sense Data", 15005 (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX); 15006 goto fail_command; 15007 } 15008 15009 /* 15010 * If we are suspended, then put the command onto head of the 15011 * wait queue since we don't want to start more commands. 15012 */ 15013 switch (un->un_state) { 15014 case SD_STATE_SUSPENDED: 15015 case SD_STATE_DUMPING: 15016 bp->av_forw = un->un_waitq_headp; 15017 un->un_waitq_headp = bp; 15018 if (un->un_waitq_tailp == NULL) { 15019 un->un_waitq_tailp = bp; 15020 } 15021 SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp); 15022 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: " 15023 "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp); 15024 return; 15025 default: 15026 break; 15027 } 15028 15029 /* 15030 * If the caller wants us to check FLAG_ISOLATE, then see if that 15031 * is set; if it is then we do not want to retry the command. 15032 * Normally, FLAG_ISOLATE is only used with USCSI cmds. 15033 */ 15034 if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) { 15035 if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) { 15036 goto fail_command; 15037 } 15038 } 15039 15040 15041 /* 15042 * If SD_RETRIES_FAILFAST is set, it indicates that either a 15043 * command timeout or a selection timeout has occurred. This means 15044 * that we were unable to establish an kind of communication with 15045 * the target, and subsequent retries and/or commands are likely 15046 * to encounter similar results and take a long time to complete. 15047 * 15048 * If this is a failfast error condition, we need to update the 15049 * failfast state, even if this bp does not have B_FAILFAST set. 15050 */ 15051 if (retry_check_flag & SD_RETRIES_FAILFAST) { 15052 if (un->un_failfast_state == SD_FAILFAST_ACTIVE) { 15053 ASSERT(un->un_failfast_bp == NULL); 15054 /* 15055 * If we are already in the active failfast state, and 15056 * another failfast error condition has been detected, 15057 * then fail this command if it has B_FAILFAST set. 15058 * If B_FAILFAST is clear, then maintain the legacy 15059 * behavior of retrying heroically, even tho this will 15060 * take a lot more time to fail the command. 15061 */ 15062 if (bp->b_flags & B_FAILFAST) { 15063 goto fail_command; 15064 } 15065 } else { 15066 /* 15067 * We're not in the active failfast state, but we 15068 * have a failfast error condition, so we must begin 15069 * transition to the next state. We do this regardless 15070 * of whether or not this bp has B_FAILFAST set. 15071 */ 15072 if (un->un_failfast_bp == NULL) { 15073 /* 15074 * This is the first bp to meet a failfast 15075 * condition so save it on un_failfast_bp & 15076 * do normal retry processing. Do not enter 15077 * active failfast state yet. This marks 15078 * entry into the "failfast pending" state. 15079 */ 15080 un->un_failfast_bp = bp; 15081 15082 } else if (un->un_failfast_bp == bp) { 15083 /* 15084 * This is the second time *this* bp has 15085 * encountered a failfast error condition, 15086 * so enter active failfast state & flush 15087 * queues as appropriate. 15088 */ 15089 un->un_failfast_state = SD_FAILFAST_ACTIVE; 15090 un->un_failfast_bp = NULL; 15091 sd_failfast_flushq(un); 15092 15093 /* 15094 * Fail this bp now if B_FAILFAST set; 15095 * otherwise continue with retries. (It would 15096 * be pretty ironic if this bp succeeded on a 15097 * subsequent retry after we just flushed all 15098 * the queues). 15099 */ 15100 if (bp->b_flags & B_FAILFAST) { 15101 goto fail_command; 15102 } 15103 15104 #if !defined(lint) && !defined(__lint) 15105 } else { 15106 /* 15107 * If neither of the preceeding conditionals 15108 * was true, it means that there is some 15109 * *other* bp that has met an inital failfast 15110 * condition and is currently either being 15111 * retried or is waiting to be retried. In 15112 * that case we should perform normal retry 15113 * processing on *this* bp, since there is a 15114 * chance that the current failfast condition 15115 * is transient and recoverable. If that does 15116 * not turn out to be the case, then retries 15117 * will be cleared when the wait queue is 15118 * flushed anyway. 15119 */ 15120 #endif 15121 } 15122 } 15123 } else { 15124 /* 15125 * SD_RETRIES_FAILFAST is clear, which indicates that we 15126 * likely were able to at least establish some level of 15127 * communication with the target and subsequent commands 15128 * and/or retries are likely to get through to the target, 15129 * In this case we want to be aggressive about clearing 15130 * the failfast state. Note that this does not affect 15131 * the "failfast pending" condition. 15132 */ 15133 un->un_failfast_state = SD_FAILFAST_INACTIVE; 15134 } 15135 15136 15137 /* 15138 * Check the specified retry count to see if we can still do 15139 * any retries with this pkt before we should fail it. 15140 */ 15141 switch (retry_check_flag & SD_RETRIES_MASK) { 15142 case SD_RETRIES_VICTIM: 15143 /* 15144 * Check the victim retry count. If exhausted, then fall 15145 * thru & check against the standard retry count. 15146 */ 15147 if (xp->xb_victim_retry_count < un->un_victim_retry_count) { 15148 /* Increment count & proceed with the retry */ 15149 xp->xb_victim_retry_count++; 15150 break; 15151 } 15152 /* Victim retries exhausted, fall back to std. retries... */ 15153 /* FALLTHRU */ 15154 15155 case SD_RETRIES_STANDARD: 15156 if (xp->xb_retry_count >= un->un_retry_count) { 15157 /* Retries exhausted, fail the command */ 15158 SD_TRACE(SD_LOG_IO_CORE, un, 15159 "sd_retry_command: retries exhausted!\n"); 15160 /* 15161 * update b_resid for failed SCMD_READ & SCMD_WRITE 15162 * commands with nonzero pkt_resid. 15163 */ 15164 if ((pktp->pkt_reason == CMD_CMPLT) && 15165 (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) && 15166 (pktp->pkt_resid != 0)) { 15167 uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F; 15168 if ((op == SCMD_READ) || (op == SCMD_WRITE)) { 15169 SD_UPDATE_B_RESID(bp, pktp); 15170 } 15171 } 15172 goto fail_command; 15173 } 15174 xp->xb_retry_count++; 15175 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15176 "sd_retry_command: retry count:%d\n", xp->xb_retry_count); 15177 break; 15178 15179 case SD_RETRIES_UA: 15180 if (xp->xb_ua_retry_count >= sd_ua_retry_count) { 15181 /* Retries exhausted, fail the command */ 15182 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 15183 "Unit Attention retries exhausted. " 15184 "Check the target.\n"); 15185 goto fail_command; 15186 } 15187 xp->xb_ua_retry_count++; 15188 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15189 "sd_retry_command: retry count:%d\n", 15190 xp->xb_ua_retry_count); 15191 break; 15192 15193 case SD_RETRIES_BUSY: 15194 if (xp->xb_retry_count >= un->un_busy_retry_count) { 15195 /* Retries exhausted, fail the command */ 15196 SD_TRACE(SD_LOG_IO_CORE, un, 15197 "sd_retry_command: retries exhausted!\n"); 15198 goto fail_command; 15199 } 15200 xp->xb_retry_count++; 15201 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15202 "sd_retry_command: retry count:%d\n", xp->xb_retry_count); 15203 break; 15204 15205 case SD_RETRIES_NOCHECK: 15206 default: 15207 /* No retry count to check. Just proceed with the retry */ 15208 break; 15209 } 15210 15211 xp->xb_pktp->pkt_flags |= FLAG_HEAD; 15212 15213 /* 15214 * If we were given a zero timeout, we must attempt to retry the 15215 * command immediately (ie, without a delay). 15216 */ 15217 if (retry_delay == 0) { 15218 /* 15219 * Check some limiting conditions to see if we can actually 15220 * do the immediate retry. If we cannot, then we must 15221 * fall back to queueing up a delayed retry. 15222 */ 15223 if (un->un_ncmds_in_transport >= un->un_throttle) { 15224 /* 15225 * We are at the throttle limit for the target, 15226 * fall back to delayed retry. 15227 */ 15228 retry_delay = SD_BSY_TIMEOUT; 15229 statp = kstat_waitq_enter; 15230 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15231 "sd_retry_command: immed. retry hit " 15232 "throttle!\n"); 15233 } else { 15234 /* 15235 * We're clear to proceed with the immediate retry. 15236 * First call the user-provided function (if any) 15237 */ 15238 if (user_funcp != NULL) { 15239 (*user_funcp)(un, bp, user_arg, 15240 SD_IMMEDIATE_RETRY_ISSUED); 15241 #ifdef __lock_lint 15242 sd_print_incomplete_msg(un, bp, user_arg, 15243 SD_IMMEDIATE_RETRY_ISSUED); 15244 sd_print_cmd_incomplete_msg(un, bp, user_arg, 15245 SD_IMMEDIATE_RETRY_ISSUED); 15246 sd_print_sense_failed_msg(un, bp, user_arg, 15247 SD_IMMEDIATE_RETRY_ISSUED); 15248 #endif 15249 } 15250 15251 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15252 "sd_retry_command: issuing immediate retry\n"); 15253 15254 /* 15255 * Call sd_start_cmds() to transport the command to 15256 * the target. 15257 */ 15258 sd_start_cmds(un, bp); 15259 15260 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15261 "sd_retry_command exit\n"); 15262 return; 15263 } 15264 } 15265 15266 /* 15267 * Set up to retry the command after a delay. 15268 * First call the user-provided function (if any) 15269 */ 15270 if (user_funcp != NULL) { 15271 (*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED); 15272 } 15273 15274 sd_set_retry_bp(un, bp, retry_delay, statp); 15275 15276 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n"); 15277 return; 15278 15279 fail_command: 15280 15281 if (user_funcp != NULL) { 15282 (*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED); 15283 } 15284 15285 fail_command_no_log: 15286 15287 SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15288 "sd_retry_command: returning failed command\n"); 15289 15290 sd_return_failed_command(un, bp, failure_code); 15291 15292 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n"); 15293 } 15294 15295 15296 /* 15297 * Function: sd_set_retry_bp 15298 * 15299 * Description: Set up the given bp for retry. 15300 * 15301 * Arguments: un - ptr to associated softstate 15302 * bp - ptr to buf(9S) for the command 15303 * retry_delay - time interval before issuing retry (may be 0) 15304 * statp - optional pointer to kstat function 15305 * 15306 * Context: May be called under interrupt context 15307 */ 15308 15309 static void 15310 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay, 15311 void (*statp)(kstat_io_t *)) 15312 { 15313 ASSERT(un != NULL); 15314 ASSERT(mutex_owned(SD_MUTEX(un))); 15315 ASSERT(bp != NULL); 15316 15317 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 15318 "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp); 15319 15320 /* 15321 * Indicate that the command is being retried. This will not allow any 15322 * other commands on the wait queue to be transported to the target 15323 * until this command has been completed (success or failure). The 15324 * "retry command" is not transported to the target until the given 15325 * time delay expires, unless the user specified a 0 retry_delay. 15326 * 15327 * Note: the timeout(9F) callback routine is what actually calls 15328 * sd_start_cmds() to transport the command, with the exception of a 15329 * zero retry_delay. The only current implementor of a zero retry delay 15330 * is the case where a START_STOP_UNIT is sent to spin-up a device. 15331 */ 15332 if (un->un_retry_bp == NULL) { 15333 ASSERT(un->un_retry_statp == NULL); 15334 un->un_retry_bp = bp; 15335 15336 /* 15337 * If the user has not specified a delay the command should 15338 * be queued and no timeout should be scheduled. 15339 */ 15340 if (retry_delay == 0) { 15341 /* 15342 * Save the kstat pointer that will be used in the 15343 * call to SD_UPDATE_KSTATS() below, so that 15344 * sd_start_cmds() can correctly decrement the waitq 15345 * count when it is time to transport this command. 15346 */ 15347 un->un_retry_statp = statp; 15348 goto done; 15349 } 15350 } 15351 15352 if (un->un_retry_bp == bp) { 15353 /* 15354 * Save the kstat pointer that will be used in the call to 15355 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can 15356 * correctly decrement the waitq count when it is time to 15357 * transport this command. 15358 */ 15359 un->un_retry_statp = statp; 15360 15361 /* 15362 * Schedule a timeout if: 15363 * 1) The user has specified a delay. 15364 * 2) There is not a START_STOP_UNIT callback pending. 15365 * 15366 * If no delay has been specified, then it is up to the caller 15367 * to ensure that IO processing continues without stalling. 15368 * Effectively, this means that the caller will issue the 15369 * required call to sd_start_cmds(). The START_STOP_UNIT 15370 * callback does this after the START STOP UNIT command has 15371 * completed. In either of these cases we should not schedule 15372 * a timeout callback here. Also don't schedule the timeout if 15373 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart. 15374 */ 15375 if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) && 15376 (un->un_direct_priority_timeid == NULL)) { 15377 un->un_retry_timeid = 15378 timeout(sd_start_retry_command, un, retry_delay); 15379 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15380 "sd_set_retry_bp: setting timeout: un: 0x%p" 15381 " bp:0x%p un_retry_timeid:0x%p\n", 15382 un, bp, un->un_retry_timeid); 15383 } 15384 } else { 15385 /* 15386 * We only get in here if there is already another command 15387 * waiting to be retried. In this case, we just put the 15388 * given command onto the wait queue, so it can be transported 15389 * after the current retry command has completed. 15390 * 15391 * Also we have to make sure that if the command at the head 15392 * of the wait queue is the un_failfast_bp, that we do not 15393 * put ahead of it any other commands that are to be retried. 15394 */ 15395 if ((un->un_failfast_bp != NULL) && 15396 (un->un_failfast_bp == un->un_waitq_headp)) { 15397 /* 15398 * Enqueue this command AFTER the first command on 15399 * the wait queue (which is also un_failfast_bp). 15400 */ 15401 bp->av_forw = un->un_waitq_headp->av_forw; 15402 un->un_waitq_headp->av_forw = bp; 15403 if (un->un_waitq_headp == un->un_waitq_tailp) { 15404 un->un_waitq_tailp = bp; 15405 } 15406 } else { 15407 /* Enqueue this command at the head of the waitq. */ 15408 bp->av_forw = un->un_waitq_headp; 15409 un->un_waitq_headp = bp; 15410 if (un->un_waitq_tailp == NULL) { 15411 un->un_waitq_tailp = bp; 15412 } 15413 } 15414 15415 if (statp == NULL) { 15416 statp = kstat_waitq_enter; 15417 } 15418 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15419 "sd_set_retry_bp: un:0x%p already delayed retry\n", un); 15420 } 15421 15422 done: 15423 if (statp != NULL) { 15424 SD_UPDATE_KSTATS(un, statp, bp); 15425 } 15426 15427 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15428 "sd_set_retry_bp: exit un:0x%p\n", un); 15429 } 15430 15431 15432 /* 15433 * Function: sd_start_retry_command 15434 * 15435 * Description: Start the command that has been waiting on the target's 15436 * retry queue. Called from timeout(9F) context after the 15437 * retry delay interval has expired. 15438 * 15439 * Arguments: arg - pointer to associated softstate for the device. 15440 * 15441 * Context: timeout(9F) thread context. May not sleep. 15442 */ 15443 15444 static void 15445 sd_start_retry_command(void *arg) 15446 { 15447 struct sd_lun *un = arg; 15448 15449 ASSERT(un != NULL); 15450 ASSERT(!mutex_owned(SD_MUTEX(un))); 15451 15452 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15453 "sd_start_retry_command: entry\n"); 15454 15455 mutex_enter(SD_MUTEX(un)); 15456 15457 un->un_retry_timeid = NULL; 15458 15459 if (un->un_retry_bp != NULL) { 15460 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15461 "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n", 15462 un, un->un_retry_bp); 15463 sd_start_cmds(un, un->un_retry_bp); 15464 } 15465 15466 mutex_exit(SD_MUTEX(un)); 15467 15468 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15469 "sd_start_retry_command: exit\n"); 15470 } 15471 15472 15473 /* 15474 * Function: sd_start_direct_priority_command 15475 * 15476 * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had 15477 * received TRAN_BUSY when we called scsi_transport() to send it 15478 * to the underlying HBA. This function is called from timeout(9F) 15479 * context after the delay interval has expired. 15480 * 15481 * Arguments: arg - pointer to associated buf(9S) to be restarted. 15482 * 15483 * Context: timeout(9F) thread context. May not sleep. 15484 */ 15485 15486 static void 15487 sd_start_direct_priority_command(void *arg) 15488 { 15489 struct buf *priority_bp = arg; 15490 struct sd_lun *un; 15491 15492 ASSERT(priority_bp != NULL); 15493 un = SD_GET_UN(priority_bp); 15494 ASSERT(un != NULL); 15495 ASSERT(!mutex_owned(SD_MUTEX(un))); 15496 15497 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15498 "sd_start_direct_priority_command: entry\n"); 15499 15500 mutex_enter(SD_MUTEX(un)); 15501 un->un_direct_priority_timeid = NULL; 15502 sd_start_cmds(un, priority_bp); 15503 mutex_exit(SD_MUTEX(un)); 15504 15505 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15506 "sd_start_direct_priority_command: exit\n"); 15507 } 15508 15509 15510 /* 15511 * Function: sd_send_request_sense_command 15512 * 15513 * Description: Sends a REQUEST SENSE command to the target 15514 * 15515 * Context: May be called from interrupt context. 15516 */ 15517 15518 static void 15519 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp, 15520 struct scsi_pkt *pktp) 15521 { 15522 ASSERT(bp != NULL); 15523 ASSERT(un != NULL); 15524 ASSERT(mutex_owned(SD_MUTEX(un))); 15525 15526 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: " 15527 "entry: buf:0x%p\n", bp); 15528 15529 /* 15530 * If we are syncing or dumping, then fail the command to avoid a 15531 * recursive callback into scsi_transport(). Also fail the command 15532 * if we are suspended (legacy behavior). 15533 */ 15534 if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) || 15535 (un->un_state == SD_STATE_DUMPING)) { 15536 sd_return_failed_command(un, bp, EIO); 15537 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15538 "sd_send_request_sense_command: syncing/dumping, exit\n"); 15539 return; 15540 } 15541 15542 /* 15543 * Retry the failed command and don't issue the request sense if: 15544 * 1) the sense buf is busy 15545 * 2) we have 1 or more outstanding commands on the target 15546 * (the sense data will be cleared or invalidated any way) 15547 * 15548 * Note: There could be an issue with not checking a retry limit here, 15549 * the problem is determining which retry limit to check. 15550 */ 15551 if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) { 15552 /* Don't retry if the command is flagged as non-retryable */ 15553 if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 15554 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, 15555 NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter); 15556 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15557 "sd_send_request_sense_command: " 15558 "at full throttle, retrying exit\n"); 15559 } else { 15560 sd_return_failed_command(un, bp, EIO); 15561 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15562 "sd_send_request_sense_command: " 15563 "at full throttle, non-retryable exit\n"); 15564 } 15565 return; 15566 } 15567 15568 sd_mark_rqs_busy(un, bp); 15569 sd_start_cmds(un, un->un_rqs_bp); 15570 15571 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15572 "sd_send_request_sense_command: exit\n"); 15573 } 15574 15575 15576 /* 15577 * Function: sd_mark_rqs_busy 15578 * 15579 * Description: Indicate that the request sense bp for this instance is 15580 * in use. 15581 * 15582 * Context: May be called under interrupt context 15583 */ 15584 15585 static void 15586 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp) 15587 { 15588 struct sd_xbuf *sense_xp; 15589 15590 ASSERT(un != NULL); 15591 ASSERT(bp != NULL); 15592 ASSERT(mutex_owned(SD_MUTEX(un))); 15593 ASSERT(un->un_sense_isbusy == 0); 15594 15595 SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: " 15596 "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un); 15597 15598 sense_xp = SD_GET_XBUF(un->un_rqs_bp); 15599 ASSERT(sense_xp != NULL); 15600 15601 SD_INFO(SD_LOG_IO, un, 15602 "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp); 15603 15604 ASSERT(sense_xp->xb_pktp != NULL); 15605 ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) 15606 == (FLAG_SENSING | FLAG_HEAD)); 15607 15608 un->un_sense_isbusy = 1; 15609 un->un_rqs_bp->b_resid = 0; 15610 sense_xp->xb_pktp->pkt_resid = 0; 15611 sense_xp->xb_pktp->pkt_reason = 0; 15612 15613 /* So we can get back the bp at interrupt time! */ 15614 sense_xp->xb_sense_bp = bp; 15615 15616 bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH); 15617 15618 /* 15619 * Mark this buf as awaiting sense data. (This is already set in 15620 * the pkt_flags for the RQS packet.) 15621 */ 15622 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING; 15623 15624 sense_xp->xb_retry_count = 0; 15625 sense_xp->xb_victim_retry_count = 0; 15626 sense_xp->xb_ua_retry_count = 0; 15627 sense_xp->xb_dma_resid = 0; 15628 15629 /* Clean up the fields for auto-request sense */ 15630 sense_xp->xb_sense_status = 0; 15631 sense_xp->xb_sense_state = 0; 15632 sense_xp->xb_sense_resid = 0; 15633 bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data)); 15634 15635 SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n"); 15636 } 15637 15638 15639 /* 15640 * Function: sd_mark_rqs_idle 15641 * 15642 * Description: SD_MUTEX must be held continuously through this routine 15643 * to prevent reuse of the rqs struct before the caller can 15644 * complete it's processing. 15645 * 15646 * Return Code: Pointer to the RQS buf 15647 * 15648 * Context: May be called under interrupt context 15649 */ 15650 15651 static struct buf * 15652 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp) 15653 { 15654 struct buf *bp; 15655 ASSERT(un != NULL); 15656 ASSERT(sense_xp != NULL); 15657 ASSERT(mutex_owned(SD_MUTEX(un))); 15658 ASSERT(un->un_sense_isbusy != 0); 15659 15660 un->un_sense_isbusy = 0; 15661 bp = sense_xp->xb_sense_bp; 15662 sense_xp->xb_sense_bp = NULL; 15663 15664 /* This pkt is no longer interested in getting sense data */ 15665 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING; 15666 15667 return (bp); 15668 } 15669 15670 15671 15672 /* 15673 * Function: sd_alloc_rqs 15674 * 15675 * Description: Set up the unit to receive auto request sense data 15676 * 15677 * Return Code: DDI_SUCCESS or DDI_FAILURE 15678 * 15679 * Context: Called under attach(9E) context 15680 */ 15681 15682 static int 15683 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un) 15684 { 15685 struct sd_xbuf *xp; 15686 15687 ASSERT(un != NULL); 15688 ASSERT(!mutex_owned(SD_MUTEX(un))); 15689 ASSERT(un->un_rqs_bp == NULL); 15690 ASSERT(un->un_rqs_pktp == NULL); 15691 15692 /* 15693 * First allocate the required buf and scsi_pkt structs, then set up 15694 * the CDB in the scsi_pkt for a REQUEST SENSE command. 15695 */ 15696 un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL, 15697 SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL); 15698 if (un->un_rqs_bp == NULL) { 15699 return (DDI_FAILURE); 15700 } 15701 15702 un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp, 15703 CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL); 15704 15705 if (un->un_rqs_pktp == NULL) { 15706 sd_free_rqs(un); 15707 return (DDI_FAILURE); 15708 } 15709 15710 /* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */ 15711 (void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp, 15712 SCMD_REQUEST_SENSE, 0, SENSE_LENGTH, 0); 15713 15714 SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp); 15715 15716 /* Set up the other needed members in the ARQ scsi_pkt. */ 15717 un->un_rqs_pktp->pkt_comp = sdintr; 15718 un->un_rqs_pktp->pkt_time = sd_io_time; 15719 un->un_rqs_pktp->pkt_flags |= 15720 (FLAG_SENSING | FLAG_HEAD); /* (1222170) */ 15721 15722 /* 15723 * Allocate & init the sd_xbuf struct for the RQS command. Do not 15724 * provide any intpkt, destroypkt routines as we take care of 15725 * scsi_pkt allocation/freeing here and in sd_free_rqs(). 15726 */ 15727 xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 15728 sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL); 15729 xp->xb_pktp = un->un_rqs_pktp; 15730 SD_INFO(SD_LOG_ATTACH_DETACH, un, 15731 "sd_alloc_rqs: un 0x%p, rqs xp 0x%p, pkt 0x%p, buf 0x%p\n", 15732 un, xp, un->un_rqs_pktp, un->un_rqs_bp); 15733 15734 /* 15735 * Save the pointer to the request sense private bp so it can 15736 * be retrieved in sdintr. 15737 */ 15738 un->un_rqs_pktp->pkt_private = un->un_rqs_bp; 15739 ASSERT(un->un_rqs_bp->b_private == xp); 15740 15741 /* 15742 * See if the HBA supports auto-request sense for the specified 15743 * target/lun. If it does, then try to enable it (if not already 15744 * enabled). 15745 * 15746 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return 15747 * failure, while for other HBAs (pln) scsi_ifsetcap will always 15748 * return success. However, in both of these cases ARQ is always 15749 * enabled and scsi_ifgetcap will always return true. The best approach 15750 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap(). 15751 * 15752 * The 3rd case is the HBA (adp) always return enabled on 15753 * scsi_ifgetgetcap even when it's not enable, the best approach 15754 * is issue a scsi_ifsetcap then a scsi_ifgetcap 15755 * Note: this case is to circumvent the Adaptec bug. (x86 only) 15756 */ 15757 15758 if (un->un_f_is_fibre == TRUE) { 15759 un->un_f_arq_enabled = TRUE; 15760 } else { 15761 #if defined(__i386) || defined(__amd64) 15762 /* 15763 * Circumvent the Adaptec bug, remove this code when 15764 * the bug is fixed 15765 */ 15766 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1); 15767 #endif 15768 switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) { 15769 case 0: 15770 SD_INFO(SD_LOG_ATTACH_DETACH, un, 15771 "sd_alloc_rqs: HBA supports ARQ\n"); 15772 /* 15773 * ARQ is supported by this HBA but currently is not 15774 * enabled. Attempt to enable it and if successful then 15775 * mark this instance as ARQ enabled. 15776 */ 15777 if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1) 15778 == 1) { 15779 /* Successfully enabled ARQ in the HBA */ 15780 SD_INFO(SD_LOG_ATTACH_DETACH, un, 15781 "sd_alloc_rqs: ARQ enabled\n"); 15782 un->un_f_arq_enabled = TRUE; 15783 } else { 15784 /* Could not enable ARQ in the HBA */ 15785 SD_INFO(SD_LOG_ATTACH_DETACH, un, 15786 "sd_alloc_rqs: failed ARQ enable\n"); 15787 un->un_f_arq_enabled = FALSE; 15788 } 15789 break; 15790 case 1: 15791 /* 15792 * ARQ is supported by this HBA and is already enabled. 15793 * Just mark ARQ as enabled for this instance. 15794 */ 15795 SD_INFO(SD_LOG_ATTACH_DETACH, un, 15796 "sd_alloc_rqs: ARQ already enabled\n"); 15797 un->un_f_arq_enabled = TRUE; 15798 break; 15799 default: 15800 /* 15801 * ARQ is not supported by this HBA; disable it for this 15802 * instance. 15803 */ 15804 SD_INFO(SD_LOG_ATTACH_DETACH, un, 15805 "sd_alloc_rqs: HBA does not support ARQ\n"); 15806 un->un_f_arq_enabled = FALSE; 15807 break; 15808 } 15809 } 15810 15811 return (DDI_SUCCESS); 15812 } 15813 15814 15815 /* 15816 * Function: sd_free_rqs 15817 * 15818 * Description: Cleanup for the pre-instance RQS command. 15819 * 15820 * Context: Kernel thread context 15821 */ 15822 15823 static void 15824 sd_free_rqs(struct sd_lun *un) 15825 { 15826 ASSERT(un != NULL); 15827 15828 SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n"); 15829 15830 /* 15831 * If consistent memory is bound to a scsi_pkt, the pkt 15832 * has to be destroyed *before* freeing the consistent memory. 15833 * Don't change the sequence of this operations. 15834 * scsi_destroy_pkt() might access memory, which isn't allowed, 15835 * after it was freed in scsi_free_consistent_buf(). 15836 */ 15837 if (un->un_rqs_pktp != NULL) { 15838 scsi_destroy_pkt(un->un_rqs_pktp); 15839 un->un_rqs_pktp = NULL; 15840 } 15841 15842 if (un->un_rqs_bp != NULL) { 15843 kmem_free(SD_GET_XBUF(un->un_rqs_bp), sizeof (struct sd_xbuf)); 15844 scsi_free_consistent_buf(un->un_rqs_bp); 15845 un->un_rqs_bp = NULL; 15846 } 15847 SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n"); 15848 } 15849 15850 15851 15852 /* 15853 * Function: sd_reduce_throttle 15854 * 15855 * Description: Reduces the maximun # of outstanding commands on a 15856 * target to the current number of outstanding commands. 15857 * Queues a tiemout(9F) callback to restore the limit 15858 * after a specified interval has elapsed. 15859 * Typically used when we get a TRAN_BUSY return code 15860 * back from scsi_transport(). 15861 * 15862 * Arguments: un - ptr to the sd_lun softstate struct 15863 * throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL 15864 * 15865 * Context: May be called from interrupt context 15866 */ 15867 15868 static void 15869 sd_reduce_throttle(struct sd_lun *un, int throttle_type) 15870 { 15871 ASSERT(un != NULL); 15872 ASSERT(mutex_owned(SD_MUTEX(un))); 15873 ASSERT(un->un_ncmds_in_transport >= 0); 15874 15875 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: " 15876 "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n", 15877 un, un->un_throttle, un->un_ncmds_in_transport); 15878 15879 if (un->un_throttle > 1) { 15880 if (un->un_f_use_adaptive_throttle == TRUE) { 15881 switch (throttle_type) { 15882 case SD_THROTTLE_TRAN_BUSY: 15883 if (un->un_busy_throttle == 0) { 15884 un->un_busy_throttle = un->un_throttle; 15885 } 15886 break; 15887 case SD_THROTTLE_QFULL: 15888 un->un_busy_throttle = 0; 15889 break; 15890 default: 15891 ASSERT(FALSE); 15892 } 15893 15894 if (un->un_ncmds_in_transport > 0) { 15895 un->un_throttle = un->un_ncmds_in_transport; 15896 } 15897 15898 } else { 15899 if (un->un_ncmds_in_transport == 0) { 15900 un->un_throttle = 1; 15901 } else { 15902 un->un_throttle = un->un_ncmds_in_transport; 15903 } 15904 } 15905 } 15906 15907 /* Reschedule the timeout if none is currently active */ 15908 if (un->un_reset_throttle_timeid == NULL) { 15909 un->un_reset_throttle_timeid = timeout(sd_restore_throttle, 15910 un, SD_THROTTLE_RESET_INTERVAL); 15911 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15912 "sd_reduce_throttle: timeout scheduled!\n"); 15913 } 15914 15915 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: " 15916 "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle); 15917 } 15918 15919 15920 15921 /* 15922 * Function: sd_restore_throttle 15923 * 15924 * Description: Callback function for timeout(9F). Resets the current 15925 * value of un->un_throttle to its default. 15926 * 15927 * Arguments: arg - pointer to associated softstate for the device. 15928 * 15929 * Context: May be called from interrupt context 15930 */ 15931 15932 static void 15933 sd_restore_throttle(void *arg) 15934 { 15935 struct sd_lun *un = arg; 15936 15937 ASSERT(un != NULL); 15938 ASSERT(!mutex_owned(SD_MUTEX(un))); 15939 15940 mutex_enter(SD_MUTEX(un)); 15941 15942 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: " 15943 "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle); 15944 15945 un->un_reset_throttle_timeid = NULL; 15946 15947 if (un->un_f_use_adaptive_throttle == TRUE) { 15948 /* 15949 * If un_busy_throttle is nonzero, then it contains the 15950 * value that un_throttle was when we got a TRAN_BUSY back 15951 * from scsi_transport(). We want to revert back to this 15952 * value. 15953 * 15954 * In the QFULL case, the throttle limit will incrementally 15955 * increase until it reaches max throttle. 15956 */ 15957 if (un->un_busy_throttle > 0) { 15958 un->un_throttle = un->un_busy_throttle; 15959 un->un_busy_throttle = 0; 15960 } else { 15961 /* 15962 * increase throttle by 10% open gate slowly, schedule 15963 * another restore if saved throttle has not been 15964 * reached 15965 */ 15966 short throttle; 15967 if (sd_qfull_throttle_enable) { 15968 throttle = un->un_throttle + 15969 max((un->un_throttle / 10), 1); 15970 un->un_throttle = 15971 (throttle < un->un_saved_throttle) ? 15972 throttle : un->un_saved_throttle; 15973 if (un->un_throttle < un->un_saved_throttle) { 15974 un->un_reset_throttle_timeid = 15975 timeout(sd_restore_throttle, 15976 un, SD_QFULL_THROTTLE_RESET_INTERVAL); 15977 } 15978 } 15979 } 15980 15981 /* 15982 * If un_throttle has fallen below the low-water mark, we 15983 * restore the maximum value here (and allow it to ratchet 15984 * down again if necessary). 15985 */ 15986 if (un->un_throttle < un->un_min_throttle) { 15987 un->un_throttle = un->un_saved_throttle; 15988 } 15989 } else { 15990 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: " 15991 "restoring limit from 0x%x to 0x%x\n", 15992 un->un_throttle, un->un_saved_throttle); 15993 un->un_throttle = un->un_saved_throttle; 15994 } 15995 15996 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 15997 "sd_restore_throttle: calling sd_start_cmds!\n"); 15998 15999 sd_start_cmds(un, NULL); 16000 16001 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 16002 "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n", 16003 un, un->un_throttle); 16004 16005 mutex_exit(SD_MUTEX(un)); 16006 16007 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n"); 16008 } 16009 16010 /* 16011 * Function: sdrunout 16012 * 16013 * Description: Callback routine for scsi_init_pkt when a resource allocation 16014 * fails. 16015 * 16016 * Arguments: arg - a pointer to the sd_lun unit struct for the particular 16017 * soft state instance. 16018 * 16019 * Return Code: The scsi_init_pkt routine allows for the callback function to 16020 * return a 0 indicating the callback should be rescheduled or a 1 16021 * indicating not to reschedule. This routine always returns 1 16022 * because the driver always provides a callback function to 16023 * scsi_init_pkt. This results in a callback always being scheduled 16024 * (via the scsi_init_pkt callback implementation) if a resource 16025 * failure occurs. 16026 * 16027 * Context: This callback function may not block or call routines that block 16028 * 16029 * Note: Using the scsi_init_pkt callback facility can result in an I/O 16030 * request persisting at the head of the list which cannot be 16031 * satisfied even after multiple retries. In the future the driver 16032 * may implement some time of maximum runout count before failing 16033 * an I/O. 16034 */ 16035 16036 static int 16037 sdrunout(caddr_t arg) 16038 { 16039 struct sd_lun *un = (struct sd_lun *)arg; 16040 16041 ASSERT(un != NULL); 16042 ASSERT(!mutex_owned(SD_MUTEX(un))); 16043 16044 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n"); 16045 16046 mutex_enter(SD_MUTEX(un)); 16047 sd_start_cmds(un, NULL); 16048 mutex_exit(SD_MUTEX(un)); 16049 /* 16050 * This callback routine always returns 1 (i.e. do not reschedule) 16051 * because we always specify sdrunout as the callback handler for 16052 * scsi_init_pkt inside the call to sd_start_cmds. 16053 */ 16054 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n"); 16055 return (1); 16056 } 16057 16058 16059 /* 16060 * Function: sdintr 16061 * 16062 * Description: Completion callback routine for scsi_pkt(9S) structs 16063 * sent to the HBA driver via scsi_transport(9F). 16064 * 16065 * Context: Interrupt context 16066 */ 16067 16068 static void 16069 sdintr(struct scsi_pkt *pktp) 16070 { 16071 struct buf *bp; 16072 struct sd_xbuf *xp; 16073 struct sd_lun *un; 16074 16075 ASSERT(pktp != NULL); 16076 bp = (struct buf *)pktp->pkt_private; 16077 ASSERT(bp != NULL); 16078 xp = SD_GET_XBUF(bp); 16079 ASSERT(xp != NULL); 16080 ASSERT(xp->xb_pktp != NULL); 16081 un = SD_GET_UN(bp); 16082 ASSERT(un != NULL); 16083 ASSERT(!mutex_owned(SD_MUTEX(un))); 16084 16085 #ifdef SD_FAULT_INJECTION 16086 16087 SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n"); 16088 /* SD FaultInjection */ 16089 sd_faultinjection(pktp); 16090 16091 #endif /* SD_FAULT_INJECTION */ 16092 16093 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p," 16094 " xp:0x%p, un:0x%p\n", bp, xp, un); 16095 16096 mutex_enter(SD_MUTEX(un)); 16097 16098 /* Reduce the count of the #commands currently in transport */ 16099 un->un_ncmds_in_transport--; 16100 ASSERT(un->un_ncmds_in_transport >= 0); 16101 16102 /* Increment counter to indicate that the callback routine is active */ 16103 un->un_in_callback++; 16104 16105 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 16106 16107 #ifdef SDDEBUG 16108 if (bp == un->un_retry_bp) { 16109 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: " 16110 "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n", 16111 un, un->un_retry_bp, un->un_ncmds_in_transport); 16112 } 16113 #endif 16114 16115 /* 16116 * If pkt_reason is CMD_DEV_GONE, just fail the command 16117 */ 16118 if (pktp->pkt_reason == CMD_DEV_GONE) { 16119 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 16120 "Device is gone\n"); 16121 sd_return_failed_command(un, bp, EIO); 16122 goto exit; 16123 } 16124 16125 /* 16126 * First see if the pkt has auto-request sense data with it.... 16127 * Look at the packet state first so we don't take a performance 16128 * hit looking at the arq enabled flag unless absolutely necessary. 16129 */ 16130 if ((pktp->pkt_state & STATE_ARQ_DONE) && 16131 (un->un_f_arq_enabled == TRUE)) { 16132 /* 16133 * The HBA did an auto request sense for this command so check 16134 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal 16135 * driver command that should not be retried. 16136 */ 16137 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 16138 /* 16139 * Save the relevant sense info into the xp for the 16140 * original cmd. 16141 */ 16142 struct scsi_arq_status *asp; 16143 asp = (struct scsi_arq_status *)(pktp->pkt_scbp); 16144 xp->xb_sense_status = 16145 *((uchar_t *)(&(asp->sts_rqpkt_status))); 16146 xp->xb_sense_state = asp->sts_rqpkt_state; 16147 xp->xb_sense_resid = asp->sts_rqpkt_resid; 16148 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 16149 min(sizeof (struct scsi_extended_sense), 16150 SENSE_LENGTH)); 16151 16152 /* fail the command */ 16153 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16154 "sdintr: arq done and FLAG_DIAGNOSE set\n"); 16155 sd_return_failed_command(un, bp, EIO); 16156 goto exit; 16157 } 16158 16159 #if (defined(__i386) || defined(__amd64)) /* DMAFREE for x86 only */ 16160 /* 16161 * We want to either retry or fail this command, so free 16162 * the DMA resources here. If we retry the command then 16163 * the DMA resources will be reallocated in sd_start_cmds(). 16164 * Note that when PKT_DMA_PARTIAL is used, this reallocation 16165 * causes the *entire* transfer to start over again from the 16166 * beginning of the request, even for PARTIAL chunks that 16167 * have already transferred successfully. 16168 */ 16169 if ((un->un_f_is_fibre == TRUE) && 16170 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 16171 ((pktp->pkt_flags & FLAG_SENSING) == 0)) { 16172 scsi_dmafree(pktp); 16173 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 16174 } 16175 #endif 16176 16177 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16178 "sdintr: arq done, sd_handle_auto_request_sense\n"); 16179 16180 sd_handle_auto_request_sense(un, bp, xp, pktp); 16181 goto exit; 16182 } 16183 16184 /* Next see if this is the REQUEST SENSE pkt for the instance */ 16185 if (pktp->pkt_flags & FLAG_SENSING) { 16186 /* This pktp is from the unit's REQUEST_SENSE command */ 16187 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16188 "sdintr: sd_handle_request_sense\n"); 16189 sd_handle_request_sense(un, bp, xp, pktp); 16190 goto exit; 16191 } 16192 16193 /* 16194 * Check to see if the command successfully completed as requested; 16195 * this is the most common case (and also the hot performance path). 16196 * 16197 * Requirements for successful completion are: 16198 * pkt_reason is CMD_CMPLT and packet status is status good. 16199 * In addition: 16200 * - A residual of zero indicates successful completion no matter what 16201 * the command is. 16202 * - If the residual is not zero and the command is not a read or 16203 * write, then it's still defined as successful completion. In other 16204 * words, if the command is a read or write the residual must be 16205 * zero for successful completion. 16206 * - If the residual is not zero and the command is a read or 16207 * write, and it's a USCSICMD, then it's still defined as 16208 * successful completion. 16209 */ 16210 if ((pktp->pkt_reason == CMD_CMPLT) && 16211 (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) { 16212 16213 /* 16214 * Since this command is returned with a good status, we 16215 * can reset the count for Sonoma failover. 16216 */ 16217 un->un_sonoma_failure_count = 0; 16218 16219 /* 16220 * Return all USCSI commands on good status 16221 */ 16222 if (pktp->pkt_resid == 0) { 16223 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16224 "sdintr: returning command for resid == 0\n"); 16225 } else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) && 16226 ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) { 16227 SD_UPDATE_B_RESID(bp, pktp); 16228 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16229 "sdintr: returning command for resid != 0\n"); 16230 } else if (xp->xb_pkt_flags & SD_XB_USCSICMD) { 16231 SD_UPDATE_B_RESID(bp, pktp); 16232 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16233 "sdintr: returning uscsi command\n"); 16234 } else { 16235 goto not_successful; 16236 } 16237 sd_return_command(un, bp); 16238 16239 /* 16240 * Decrement counter to indicate that the callback routine 16241 * is done. 16242 */ 16243 un->un_in_callback--; 16244 ASSERT(un->un_in_callback >= 0); 16245 mutex_exit(SD_MUTEX(un)); 16246 16247 return; 16248 } 16249 16250 not_successful: 16251 16252 #if (defined(__i386) || defined(__amd64)) /* DMAFREE for x86 only */ 16253 /* 16254 * The following is based upon knowledge of the underlying transport 16255 * and its use of DMA resources. This code should be removed when 16256 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor 16257 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf() 16258 * and sd_start_cmds(). 16259 * 16260 * Free any DMA resources associated with this command if there 16261 * is a chance it could be retried or enqueued for later retry. 16262 * If we keep the DMA binding then mpxio cannot reissue the 16263 * command on another path whenever a path failure occurs. 16264 * 16265 * Note that when PKT_DMA_PARTIAL is used, free/reallocation 16266 * causes the *entire* transfer to start over again from the 16267 * beginning of the request, even for PARTIAL chunks that 16268 * have already transferred successfully. 16269 * 16270 * This is only done for non-uscsi commands (and also skipped for the 16271 * driver's internal RQS command). Also just do this for Fibre Channel 16272 * devices as these are the only ones that support mpxio. 16273 */ 16274 if ((un->un_f_is_fibre == TRUE) && 16275 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 16276 ((pktp->pkt_flags & FLAG_SENSING) == 0)) { 16277 scsi_dmafree(pktp); 16278 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 16279 } 16280 #endif 16281 16282 /* 16283 * The command did not successfully complete as requested so check 16284 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal 16285 * driver command that should not be retried so just return. If 16286 * FLAG_DIAGNOSE is not set the error will be processed below. 16287 */ 16288 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 16289 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16290 "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n"); 16291 /* 16292 * Issue a request sense if a check condition caused the error 16293 * (we handle the auto request sense case above), otherwise 16294 * just fail the command. 16295 */ 16296 if ((pktp->pkt_reason == CMD_CMPLT) && 16297 (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) { 16298 sd_send_request_sense_command(un, bp, pktp); 16299 } else { 16300 sd_return_failed_command(un, bp, EIO); 16301 } 16302 goto exit; 16303 } 16304 16305 /* 16306 * The command did not successfully complete as requested so process 16307 * the error, retry, and/or attempt recovery. 16308 */ 16309 switch (pktp->pkt_reason) { 16310 case CMD_CMPLT: 16311 switch (SD_GET_PKT_STATUS(pktp)) { 16312 case STATUS_GOOD: 16313 /* 16314 * The command completed successfully with a non-zero 16315 * residual 16316 */ 16317 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16318 "sdintr: STATUS_GOOD \n"); 16319 sd_pkt_status_good(un, bp, xp, pktp); 16320 break; 16321 16322 case STATUS_CHECK: 16323 case STATUS_TERMINATED: 16324 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16325 "sdintr: STATUS_TERMINATED | STATUS_CHECK\n"); 16326 sd_pkt_status_check_condition(un, bp, xp, pktp); 16327 break; 16328 16329 case STATUS_BUSY: 16330 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16331 "sdintr: STATUS_BUSY\n"); 16332 sd_pkt_status_busy(un, bp, xp, pktp); 16333 break; 16334 16335 case STATUS_RESERVATION_CONFLICT: 16336 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16337 "sdintr: STATUS_RESERVATION_CONFLICT\n"); 16338 sd_pkt_status_reservation_conflict(un, bp, xp, pktp); 16339 break; 16340 16341 case STATUS_QFULL: 16342 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16343 "sdintr: STATUS_QFULL\n"); 16344 sd_pkt_status_qfull(un, bp, xp, pktp); 16345 break; 16346 16347 case STATUS_MET: 16348 case STATUS_INTERMEDIATE: 16349 case STATUS_SCSI2: 16350 case STATUS_INTERMEDIATE_MET: 16351 case STATUS_ACA_ACTIVE: 16352 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 16353 "Unexpected SCSI status received: 0x%x\n", 16354 SD_GET_PKT_STATUS(pktp)); 16355 sd_return_failed_command(un, bp, EIO); 16356 break; 16357 16358 default: 16359 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 16360 "Invalid SCSI status received: 0x%x\n", 16361 SD_GET_PKT_STATUS(pktp)); 16362 sd_return_failed_command(un, bp, EIO); 16363 break; 16364 16365 } 16366 break; 16367 16368 case CMD_INCOMPLETE: 16369 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16370 "sdintr: CMD_INCOMPLETE\n"); 16371 sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp); 16372 break; 16373 case CMD_TRAN_ERR: 16374 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16375 "sdintr: CMD_TRAN_ERR\n"); 16376 sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp); 16377 break; 16378 case CMD_RESET: 16379 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16380 "sdintr: CMD_RESET \n"); 16381 sd_pkt_reason_cmd_reset(un, bp, xp, pktp); 16382 break; 16383 case CMD_ABORTED: 16384 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16385 "sdintr: CMD_ABORTED \n"); 16386 sd_pkt_reason_cmd_aborted(un, bp, xp, pktp); 16387 break; 16388 case CMD_TIMEOUT: 16389 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16390 "sdintr: CMD_TIMEOUT\n"); 16391 sd_pkt_reason_cmd_timeout(un, bp, xp, pktp); 16392 break; 16393 case CMD_UNX_BUS_FREE: 16394 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16395 "sdintr: CMD_UNX_BUS_FREE \n"); 16396 sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp); 16397 break; 16398 case CMD_TAG_REJECT: 16399 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16400 "sdintr: CMD_TAG_REJECT\n"); 16401 sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp); 16402 break; 16403 default: 16404 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16405 "sdintr: default\n"); 16406 sd_pkt_reason_default(un, bp, xp, pktp); 16407 break; 16408 } 16409 16410 exit: 16411 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n"); 16412 16413 /* Decrement counter to indicate that the callback routine is done. */ 16414 un->un_in_callback--; 16415 ASSERT(un->un_in_callback >= 0); 16416 16417 /* 16418 * At this point, the pkt has been dispatched, ie, it is either 16419 * being re-tried or has been returned to its caller and should 16420 * not be referenced. 16421 */ 16422 16423 mutex_exit(SD_MUTEX(un)); 16424 } 16425 16426 16427 /* 16428 * Function: sd_print_incomplete_msg 16429 * 16430 * Description: Prints the error message for a CMD_INCOMPLETE error. 16431 * 16432 * Arguments: un - ptr to associated softstate for the device. 16433 * bp - ptr to the buf(9S) for the command. 16434 * arg - message string ptr 16435 * code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED, 16436 * or SD_NO_RETRY_ISSUED. 16437 * 16438 * Context: May be called under interrupt context 16439 */ 16440 16441 static void 16442 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code) 16443 { 16444 struct scsi_pkt *pktp; 16445 char *msgp; 16446 char *cmdp = arg; 16447 16448 ASSERT(un != NULL); 16449 ASSERT(mutex_owned(SD_MUTEX(un))); 16450 ASSERT(bp != NULL); 16451 ASSERT(arg != NULL); 16452 pktp = SD_GET_PKTP(bp); 16453 ASSERT(pktp != NULL); 16454 16455 switch (code) { 16456 case SD_DELAYED_RETRY_ISSUED: 16457 case SD_IMMEDIATE_RETRY_ISSUED: 16458 msgp = "retrying"; 16459 break; 16460 case SD_NO_RETRY_ISSUED: 16461 default: 16462 msgp = "giving up"; 16463 break; 16464 } 16465 16466 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 16467 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16468 "incomplete %s- %s\n", cmdp, msgp); 16469 } 16470 } 16471 16472 16473 16474 /* 16475 * Function: sd_pkt_status_good 16476 * 16477 * Description: Processing for a STATUS_GOOD code in pkt_status. 16478 * 16479 * Context: May be called under interrupt context 16480 */ 16481 16482 static void 16483 sd_pkt_status_good(struct sd_lun *un, struct buf *bp, 16484 struct sd_xbuf *xp, struct scsi_pkt *pktp) 16485 { 16486 char *cmdp; 16487 16488 ASSERT(un != NULL); 16489 ASSERT(mutex_owned(SD_MUTEX(un))); 16490 ASSERT(bp != NULL); 16491 ASSERT(xp != NULL); 16492 ASSERT(pktp != NULL); 16493 ASSERT(pktp->pkt_reason == CMD_CMPLT); 16494 ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD); 16495 ASSERT(pktp->pkt_resid != 0); 16496 16497 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n"); 16498 16499 SD_UPDATE_ERRSTATS(un, sd_harderrs); 16500 switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) { 16501 case SCMD_READ: 16502 cmdp = "read"; 16503 break; 16504 case SCMD_WRITE: 16505 cmdp = "write"; 16506 break; 16507 default: 16508 SD_UPDATE_B_RESID(bp, pktp); 16509 sd_return_command(un, bp); 16510 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n"); 16511 return; 16512 } 16513 16514 /* 16515 * See if we can retry the read/write, preferrably immediately. 16516 * If retries are exhaused, then sd_retry_command() will update 16517 * the b_resid count. 16518 */ 16519 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg, 16520 cmdp, EIO, (clock_t)0, NULL); 16521 16522 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n"); 16523 } 16524 16525 16526 16527 16528 16529 /* 16530 * Function: sd_handle_request_sense 16531 * 16532 * Description: Processing for non-auto Request Sense command. 16533 * 16534 * Arguments: un - ptr to associated softstate 16535 * sense_bp - ptr to buf(9S) for the RQS command 16536 * sense_xp - ptr to the sd_xbuf for the RQS command 16537 * sense_pktp - ptr to the scsi_pkt(9S) for the RQS command 16538 * 16539 * Context: May be called under interrupt context 16540 */ 16541 16542 static void 16543 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp, 16544 struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp) 16545 { 16546 struct buf *cmd_bp; /* buf for the original command */ 16547 struct sd_xbuf *cmd_xp; /* sd_xbuf for the original command */ 16548 struct scsi_pkt *cmd_pktp; /* pkt for the original command */ 16549 16550 ASSERT(un != NULL); 16551 ASSERT(mutex_owned(SD_MUTEX(un))); 16552 ASSERT(sense_bp != NULL); 16553 ASSERT(sense_xp != NULL); 16554 ASSERT(sense_pktp != NULL); 16555 16556 /* 16557 * Note the sense_bp, sense_xp, and sense_pktp here are for the 16558 * RQS command and not the original command. 16559 */ 16560 ASSERT(sense_pktp == un->un_rqs_pktp); 16561 ASSERT(sense_bp == un->un_rqs_bp); 16562 ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) == 16563 (FLAG_SENSING | FLAG_HEAD)); 16564 ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) & 16565 FLAG_SENSING) == FLAG_SENSING); 16566 16567 /* These are the bp, xp, and pktp for the original command */ 16568 cmd_bp = sense_xp->xb_sense_bp; 16569 cmd_xp = SD_GET_XBUF(cmd_bp); 16570 cmd_pktp = SD_GET_PKTP(cmd_bp); 16571 16572 if (sense_pktp->pkt_reason != CMD_CMPLT) { 16573 /* 16574 * The REQUEST SENSE command failed. Release the REQUEST 16575 * SENSE command for re-use, get back the bp for the original 16576 * command, and attempt to re-try the original command if 16577 * FLAG_DIAGNOSE is not set in the original packet. 16578 */ 16579 SD_UPDATE_ERRSTATS(un, sd_harderrs); 16580 if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 16581 cmd_bp = sd_mark_rqs_idle(un, sense_xp); 16582 sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD, 16583 NULL, NULL, EIO, (clock_t)0, NULL); 16584 return; 16585 } 16586 } 16587 16588 /* 16589 * Save the relevant sense info into the xp for the original cmd. 16590 * 16591 * Note: if the request sense failed the state info will be zero 16592 * as set in sd_mark_rqs_busy() 16593 */ 16594 cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp); 16595 cmd_xp->xb_sense_state = sense_pktp->pkt_state; 16596 cmd_xp->xb_sense_resid = sense_pktp->pkt_resid; 16597 bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, SENSE_LENGTH); 16598 16599 /* 16600 * Free up the RQS command.... 16601 * NOTE: 16602 * Must do this BEFORE calling sd_validate_sense_data! 16603 * sd_validate_sense_data may return the original command in 16604 * which case the pkt will be freed and the flags can no 16605 * longer be touched. 16606 * SD_MUTEX is held through this process until the command 16607 * is dispatched based upon the sense data, so there are 16608 * no race conditions. 16609 */ 16610 (void) sd_mark_rqs_idle(un, sense_xp); 16611 16612 /* 16613 * For a retryable command see if we have valid sense data, if so then 16614 * turn it over to sd_decode_sense() to figure out the right course of 16615 * action. Just fail a non-retryable command. 16616 */ 16617 if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 16618 if (sd_validate_sense_data(un, cmd_bp, cmd_xp) == 16619 SD_SENSE_DATA_IS_VALID) { 16620 sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp); 16621 } 16622 } else { 16623 SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB", 16624 (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 16625 SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data", 16626 (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX); 16627 sd_return_failed_command(un, cmd_bp, EIO); 16628 } 16629 } 16630 16631 16632 16633 16634 /* 16635 * Function: sd_handle_auto_request_sense 16636 * 16637 * Description: Processing for auto-request sense information. 16638 * 16639 * Arguments: un - ptr to associated softstate 16640 * bp - ptr to buf(9S) for the command 16641 * xp - ptr to the sd_xbuf for the command 16642 * pktp - ptr to the scsi_pkt(9S) for the command 16643 * 16644 * Context: May be called under interrupt context 16645 */ 16646 16647 static void 16648 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp, 16649 struct sd_xbuf *xp, struct scsi_pkt *pktp) 16650 { 16651 struct scsi_arq_status *asp; 16652 16653 ASSERT(un != NULL); 16654 ASSERT(mutex_owned(SD_MUTEX(un))); 16655 ASSERT(bp != NULL); 16656 ASSERT(xp != NULL); 16657 ASSERT(pktp != NULL); 16658 ASSERT(pktp != un->un_rqs_pktp); 16659 ASSERT(bp != un->un_rqs_bp); 16660 16661 /* 16662 * For auto-request sense, we get a scsi_arq_status back from 16663 * the HBA, with the sense data in the sts_sensedata member. 16664 * The pkt_scbp of the packet points to this scsi_arq_status. 16665 */ 16666 asp = (struct scsi_arq_status *)(pktp->pkt_scbp); 16667 16668 if (asp->sts_rqpkt_reason != CMD_CMPLT) { 16669 /* 16670 * The auto REQUEST SENSE failed; see if we can re-try 16671 * the original command. 16672 */ 16673 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16674 "auto request sense failed (reason=%s)\n", 16675 scsi_rname(asp->sts_rqpkt_reason)); 16676 16677 sd_reset_target(un, pktp); 16678 16679 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 16680 NULL, NULL, EIO, (clock_t)0, NULL); 16681 return; 16682 } 16683 16684 /* Save the relevant sense info into the xp for the original cmd. */ 16685 xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status))); 16686 xp->xb_sense_state = asp->sts_rqpkt_state; 16687 xp->xb_sense_resid = asp->sts_rqpkt_resid; 16688 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 16689 min(sizeof (struct scsi_extended_sense), SENSE_LENGTH)); 16690 16691 /* 16692 * See if we have valid sense data, if so then turn it over to 16693 * sd_decode_sense() to figure out the right course of action. 16694 */ 16695 if (sd_validate_sense_data(un, bp, xp) == SD_SENSE_DATA_IS_VALID) { 16696 sd_decode_sense(un, bp, xp, pktp); 16697 } 16698 } 16699 16700 16701 /* 16702 * Function: sd_print_sense_failed_msg 16703 * 16704 * Description: Print log message when RQS has failed. 16705 * 16706 * Arguments: un - ptr to associated softstate 16707 * bp - ptr to buf(9S) for the command 16708 * arg - generic message string ptr 16709 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 16710 * or SD_NO_RETRY_ISSUED 16711 * 16712 * Context: May be called from interrupt context 16713 */ 16714 16715 static void 16716 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg, 16717 int code) 16718 { 16719 char *msgp = arg; 16720 16721 ASSERT(un != NULL); 16722 ASSERT(mutex_owned(SD_MUTEX(un))); 16723 ASSERT(bp != NULL); 16724 16725 if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) { 16726 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp); 16727 } 16728 } 16729 16730 16731 /* 16732 * Function: sd_validate_sense_data 16733 * 16734 * Description: Check the given sense data for validity. 16735 * If the sense data is not valid, the command will 16736 * be either failed or retried! 16737 * 16738 * Return Code: SD_SENSE_DATA_IS_INVALID 16739 * SD_SENSE_DATA_IS_VALID 16740 * 16741 * Context: May be called from interrupt context 16742 */ 16743 16744 static int 16745 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp) 16746 { 16747 struct scsi_extended_sense *esp; 16748 struct scsi_pkt *pktp; 16749 size_t actual_len; 16750 char *msgp = NULL; 16751 16752 ASSERT(un != NULL); 16753 ASSERT(mutex_owned(SD_MUTEX(un))); 16754 ASSERT(bp != NULL); 16755 ASSERT(bp != un->un_rqs_bp); 16756 ASSERT(xp != NULL); 16757 16758 pktp = SD_GET_PKTP(bp); 16759 ASSERT(pktp != NULL); 16760 16761 /* 16762 * Check the status of the RQS command (auto or manual). 16763 */ 16764 switch (xp->xb_sense_status & STATUS_MASK) { 16765 case STATUS_GOOD: 16766 break; 16767 16768 case STATUS_RESERVATION_CONFLICT: 16769 sd_pkt_status_reservation_conflict(un, bp, xp, pktp); 16770 return (SD_SENSE_DATA_IS_INVALID); 16771 16772 case STATUS_BUSY: 16773 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16774 "Busy Status on REQUEST SENSE\n"); 16775 sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL, 16776 NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter); 16777 return (SD_SENSE_DATA_IS_INVALID); 16778 16779 case STATUS_QFULL: 16780 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16781 "QFULL Status on REQUEST SENSE\n"); 16782 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, 16783 NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter); 16784 return (SD_SENSE_DATA_IS_INVALID); 16785 16786 case STATUS_CHECK: 16787 case STATUS_TERMINATED: 16788 msgp = "Check Condition on REQUEST SENSE\n"; 16789 goto sense_failed; 16790 16791 default: 16792 msgp = "Not STATUS_GOOD on REQUEST_SENSE\n"; 16793 goto sense_failed; 16794 } 16795 16796 /* 16797 * See if we got the minimum required amount of sense data. 16798 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes 16799 * or less. 16800 */ 16801 actual_len = (int)(SENSE_LENGTH - xp->xb_sense_resid); 16802 if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) || 16803 (actual_len == 0)) { 16804 msgp = "Request Sense couldn't get sense data\n"; 16805 goto sense_failed; 16806 } 16807 16808 if (actual_len < SUN_MIN_SENSE_LENGTH) { 16809 msgp = "Not enough sense information\n"; 16810 goto sense_failed; 16811 } 16812 16813 /* 16814 * We require the extended sense data 16815 */ 16816 esp = (struct scsi_extended_sense *)xp->xb_sense_data; 16817 if (esp->es_class != CLASS_EXTENDED_SENSE) { 16818 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 16819 static char tmp[8]; 16820 static char buf[148]; 16821 char *p = (char *)(xp->xb_sense_data); 16822 int i; 16823 16824 mutex_enter(&sd_sense_mutex); 16825 (void) strcpy(buf, "undecodable sense information:"); 16826 for (i = 0; i < actual_len; i++) { 16827 (void) sprintf(tmp, " 0x%x", *(p++)&0xff); 16828 (void) strcpy(&buf[strlen(buf)], tmp); 16829 } 16830 i = strlen(buf); 16831 (void) strcpy(&buf[i], "-(assumed fatal)\n"); 16832 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf); 16833 mutex_exit(&sd_sense_mutex); 16834 } 16835 /* Note: Legacy behavior, fail the command with no retry */ 16836 sd_return_failed_command(un, bp, EIO); 16837 return (SD_SENSE_DATA_IS_INVALID); 16838 } 16839 16840 /* 16841 * Check that es_code is valid (es_class concatenated with es_code 16842 * make up the "response code" field. es_class will always be 7, so 16843 * make sure es_code is 0, 1, 2, 3 or 0xf. es_code will indicate the 16844 * format. 16845 */ 16846 if ((esp->es_code != CODE_FMT_FIXED_CURRENT) && 16847 (esp->es_code != CODE_FMT_FIXED_DEFERRED) && 16848 (esp->es_code != CODE_FMT_DESCR_CURRENT) && 16849 (esp->es_code != CODE_FMT_DESCR_DEFERRED) && 16850 (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) { 16851 goto sense_failed; 16852 } 16853 16854 return (SD_SENSE_DATA_IS_VALID); 16855 16856 sense_failed: 16857 /* 16858 * If the request sense failed (for whatever reason), attempt 16859 * to retry the original command. 16860 */ 16861 #if defined(__i386) || defined(__amd64) 16862 /* 16863 * SD_RETRY_DELAY is conditionally compile (#if fibre) in 16864 * sddef.h for Sparc platform, and x86 uses 1 binary 16865 * for both SCSI/FC. 16866 * The SD_RETRY_DELAY value need to be adjusted here 16867 * when SD_RETRY_DELAY change in sddef.h 16868 */ 16869 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 16870 sd_print_sense_failed_msg, msgp, EIO, 16871 un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL); 16872 #else 16873 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 16874 sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL); 16875 #endif 16876 16877 return (SD_SENSE_DATA_IS_INVALID); 16878 } 16879 16880 16881 16882 /* 16883 * Function: sd_decode_sense 16884 * 16885 * Description: Take recovery action(s) when SCSI Sense Data is received. 16886 * 16887 * Context: Interrupt context. 16888 */ 16889 16890 static void 16891 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 16892 struct scsi_pkt *pktp) 16893 { 16894 struct scsi_extended_sense *esp; 16895 struct scsi_descr_sense_hdr *sdsp; 16896 uint8_t asc, ascq, sense_key; 16897 16898 ASSERT(un != NULL); 16899 ASSERT(mutex_owned(SD_MUTEX(un))); 16900 ASSERT(bp != NULL); 16901 ASSERT(bp != un->un_rqs_bp); 16902 ASSERT(xp != NULL); 16903 ASSERT(pktp != NULL); 16904 16905 esp = (struct scsi_extended_sense *)xp->xb_sense_data; 16906 16907 switch (esp->es_code) { 16908 case CODE_FMT_DESCR_CURRENT: 16909 case CODE_FMT_DESCR_DEFERRED: 16910 sdsp = (struct scsi_descr_sense_hdr *)xp->xb_sense_data; 16911 sense_key = sdsp->ds_key; 16912 asc = sdsp->ds_add_code; 16913 ascq = sdsp->ds_qual_code; 16914 break; 16915 case CODE_FMT_VENDOR_SPECIFIC: 16916 case CODE_FMT_FIXED_CURRENT: 16917 case CODE_FMT_FIXED_DEFERRED: 16918 default: 16919 sense_key = esp->es_key; 16920 asc = esp->es_add_code; 16921 ascq = esp->es_qual_code; 16922 break; 16923 } 16924 16925 switch (sense_key) { 16926 case KEY_NO_SENSE: 16927 sd_sense_key_no_sense(un, bp, xp, pktp); 16928 break; 16929 case KEY_RECOVERABLE_ERROR: 16930 sd_sense_key_recoverable_error(un, asc, bp, xp, pktp); 16931 break; 16932 case KEY_NOT_READY: 16933 sd_sense_key_not_ready(un, asc, ascq, bp, xp, pktp); 16934 break; 16935 case KEY_MEDIUM_ERROR: 16936 case KEY_HARDWARE_ERROR: 16937 sd_sense_key_medium_or_hardware_error(un, 16938 sense_key, asc, bp, xp, pktp); 16939 break; 16940 case KEY_ILLEGAL_REQUEST: 16941 sd_sense_key_illegal_request(un, bp, xp, pktp); 16942 break; 16943 case KEY_UNIT_ATTENTION: 16944 sd_sense_key_unit_attention(un, asc, bp, xp, pktp); 16945 break; 16946 case KEY_WRITE_PROTECT: 16947 case KEY_VOLUME_OVERFLOW: 16948 case KEY_MISCOMPARE: 16949 sd_sense_key_fail_command(un, bp, xp, pktp); 16950 break; 16951 case KEY_BLANK_CHECK: 16952 sd_sense_key_blank_check(un, bp, xp, pktp); 16953 break; 16954 case KEY_ABORTED_COMMAND: 16955 sd_sense_key_aborted_command(un, bp, xp, pktp); 16956 break; 16957 case KEY_VENDOR_UNIQUE: 16958 case KEY_COPY_ABORTED: 16959 case KEY_EQUAL: 16960 case KEY_RESERVED: 16961 default: 16962 sd_sense_key_default(un, sense_key, bp, xp, pktp); 16963 break; 16964 } 16965 } 16966 16967 16968 /* 16969 * Function: sd_dump_memory 16970 * 16971 * Description: Debug logging routine to print the contents of a user provided 16972 * buffer. The output of the buffer is broken up into 256 byte 16973 * segments due to a size constraint of the scsi_log. 16974 * implementation. 16975 * 16976 * Arguments: un - ptr to softstate 16977 * comp - component mask 16978 * title - "title" string to preceed data when printed 16979 * data - ptr to data block to be printed 16980 * len - size of data block to be printed 16981 * fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c) 16982 * 16983 * Context: May be called from interrupt context 16984 */ 16985 16986 #define SD_DUMP_MEMORY_BUF_SIZE 256 16987 16988 static char *sd_dump_format_string[] = { 16989 " 0x%02x", 16990 " %c" 16991 }; 16992 16993 static void 16994 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data, 16995 int len, int fmt) 16996 { 16997 int i, j; 16998 int avail_count; 16999 int start_offset; 17000 int end_offset; 17001 size_t entry_len; 17002 char *bufp; 17003 char *local_buf; 17004 char *format_string; 17005 17006 ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR)); 17007 17008 /* 17009 * In the debug version of the driver, this function is called from a 17010 * number of places which are NOPs in the release driver. 17011 * The debug driver therefore has additional methods of filtering 17012 * debug output. 17013 */ 17014 #ifdef SDDEBUG 17015 /* 17016 * In the debug version of the driver we can reduce the amount of debug 17017 * messages by setting sd_error_level to something other than 17018 * SCSI_ERR_ALL and clearing bits in sd_level_mask and 17019 * sd_component_mask. 17020 */ 17021 if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) || 17022 (sd_error_level != SCSI_ERR_ALL)) { 17023 return; 17024 } 17025 if (((sd_component_mask & comp) == 0) || 17026 (sd_error_level != SCSI_ERR_ALL)) { 17027 return; 17028 } 17029 #else 17030 if (sd_error_level != SCSI_ERR_ALL) { 17031 return; 17032 } 17033 #endif 17034 17035 local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP); 17036 bufp = local_buf; 17037 /* 17038 * Available length is the length of local_buf[], minus the 17039 * length of the title string, minus one for the ":", minus 17040 * one for the newline, minus one for the NULL terminator. 17041 * This gives the #bytes available for holding the printed 17042 * values from the given data buffer. 17043 */ 17044 if (fmt == SD_LOG_HEX) { 17045 format_string = sd_dump_format_string[0]; 17046 } else /* SD_LOG_CHAR */ { 17047 format_string = sd_dump_format_string[1]; 17048 } 17049 /* 17050 * Available count is the number of elements from the given 17051 * data buffer that we can fit into the available length. 17052 * This is based upon the size of the format string used. 17053 * Make one entry and find it's size. 17054 */ 17055 (void) sprintf(bufp, format_string, data[0]); 17056 entry_len = strlen(bufp); 17057 avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len; 17058 17059 j = 0; 17060 while (j < len) { 17061 bufp = local_buf; 17062 bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE); 17063 start_offset = j; 17064 17065 end_offset = start_offset + avail_count; 17066 17067 (void) sprintf(bufp, "%s:", title); 17068 bufp += strlen(bufp); 17069 for (i = start_offset; ((i < end_offset) && (j < len)); 17070 i++, j++) { 17071 (void) sprintf(bufp, format_string, data[i]); 17072 bufp += entry_len; 17073 } 17074 (void) sprintf(bufp, "\n"); 17075 17076 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf); 17077 } 17078 kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE); 17079 } 17080 17081 /* 17082 * Function: sd_print_sense_msg 17083 * 17084 * Description: Log a message based upon the given sense data. 17085 * 17086 * Arguments: un - ptr to associated softstate 17087 * bp - ptr to buf(9S) for the command 17088 * arg - ptr to associate sd_sense_info struct 17089 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 17090 * or SD_NO_RETRY_ISSUED 17091 * 17092 * Context: May be called from interrupt context 17093 */ 17094 17095 static void 17096 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code) 17097 { 17098 struct sd_xbuf *xp; 17099 struct scsi_pkt *pktp; 17100 struct scsi_extended_sense *sensep; 17101 daddr_t request_blkno; 17102 diskaddr_t err_blkno; 17103 int severity; 17104 int pfa_flag; 17105 int fixed_format = TRUE; 17106 extern struct scsi_key_strings scsi_cmds[]; 17107 17108 ASSERT(un != NULL); 17109 ASSERT(mutex_owned(SD_MUTEX(un))); 17110 ASSERT(bp != NULL); 17111 xp = SD_GET_XBUF(bp); 17112 ASSERT(xp != NULL); 17113 pktp = SD_GET_PKTP(bp); 17114 ASSERT(pktp != NULL); 17115 ASSERT(arg != NULL); 17116 17117 severity = ((struct sd_sense_info *)(arg))->ssi_severity; 17118 pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag; 17119 17120 if ((code == SD_DELAYED_RETRY_ISSUED) || 17121 (code == SD_IMMEDIATE_RETRY_ISSUED)) { 17122 severity = SCSI_ERR_RETRYABLE; 17123 } 17124 17125 /* Use absolute block number for the request block number */ 17126 request_blkno = xp->xb_blkno; 17127 17128 /* 17129 * Now try to get the error block number from the sense data 17130 */ 17131 sensep = (struct scsi_extended_sense *)xp->xb_sense_data; 17132 switch (sensep->es_code) { 17133 case CODE_FMT_DESCR_CURRENT: 17134 case CODE_FMT_DESCR_DEFERRED: 17135 err_blkno = 17136 sd_extract_sense_info_descr( 17137 (struct scsi_descr_sense_hdr *)sensep); 17138 fixed_format = FALSE; 17139 break; 17140 case CODE_FMT_FIXED_CURRENT: 17141 case CODE_FMT_FIXED_DEFERRED: 17142 case CODE_FMT_VENDOR_SPECIFIC: 17143 default: 17144 /* 17145 * With the es_valid bit set, we assume that the error 17146 * blkno is in the sense data. Also, if xp->xb_blkno is 17147 * greater than 0xffffffff then the target *should* have used 17148 * a descriptor sense format (or it shouldn't have set 17149 * the es_valid bit), and we may as well ignore the 17150 * 32-bit value. 17151 */ 17152 if ((sensep->es_valid != 0) && (xp->xb_blkno <= 0xffffffff)) { 17153 err_blkno = (diskaddr_t) 17154 ((sensep->es_info_1 << 24) | 17155 (sensep->es_info_2 << 16) | 17156 (sensep->es_info_3 << 8) | 17157 (sensep->es_info_4)); 17158 } else { 17159 err_blkno = (diskaddr_t)-1; 17160 } 17161 break; 17162 } 17163 17164 if (err_blkno == (diskaddr_t)-1) { 17165 /* 17166 * Without the es_valid bit set (for fixed format) or an 17167 * information descriptor (for descriptor format) we cannot 17168 * be certain of the error blkno, so just use the 17169 * request_blkno. 17170 */ 17171 err_blkno = (diskaddr_t)request_blkno; 17172 } else { 17173 /* 17174 * We retrieved the error block number from the information 17175 * portion of the sense data. 17176 * 17177 * For USCSI commands we are better off using the error 17178 * block no. as the requested block no. (This is the best 17179 * we can estimate.) 17180 */ 17181 if ((SD_IS_BUFIO(xp) == FALSE) && 17182 ((pktp->pkt_flags & FLAG_SILENT) == 0)) { 17183 request_blkno = err_blkno; 17184 } 17185 } 17186 17187 /* 17188 * The following will log the buffer contents for the release driver 17189 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error 17190 * level is set to verbose. 17191 */ 17192 sd_dump_memory(un, SD_LOG_IO, "Failed CDB", 17193 (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 17194 sd_dump_memory(un, SD_LOG_IO, "Sense Data", 17195 (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX); 17196 17197 if (pfa_flag == FALSE) { 17198 /* This is normally only set for USCSI */ 17199 if ((pktp->pkt_flags & FLAG_SILENT) != 0) { 17200 return; 17201 } 17202 17203 if ((SD_IS_BUFIO(xp) == TRUE) && 17204 (((sd_level_mask & SD_LOGMASK_DIAG) == 0) && 17205 (severity < sd_error_level))) { 17206 return; 17207 } 17208 } 17209 17210 /* 17211 * If the data is fixed format then check for Sonoma Failover, 17212 * and keep a count of how many failed I/O's. We should not have 17213 * to worry about Sonoma returning descriptor format sense data, 17214 * and asc/ascq are in a different location in descriptor format. 17215 */ 17216 if (fixed_format && 17217 (SD_IS_LSI(un)) && (sensep->es_key == KEY_ILLEGAL_REQUEST) && 17218 (sensep->es_add_code == 0x94) && (sensep->es_qual_code == 0x01)) { 17219 un->un_sonoma_failure_count++; 17220 if (un->un_sonoma_failure_count > 1) { 17221 return; 17222 } 17223 } 17224 17225 scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity, 17226 request_blkno, err_blkno, scsi_cmds, sensep, 17227 un->un_additional_codes, NULL); 17228 } 17229 17230 /* 17231 * Function: sd_extract_sense_info_descr 17232 * 17233 * Description: Retrieve "information" field from descriptor format 17234 * sense data. Iterates through each sense descriptor 17235 * looking for the information descriptor and returns 17236 * the information field from that descriptor. 17237 * 17238 * Context: May be called from interrupt context 17239 */ 17240 17241 static diskaddr_t 17242 sd_extract_sense_info_descr(struct scsi_descr_sense_hdr *sdsp) 17243 { 17244 diskaddr_t result; 17245 uint8_t *descr_offset; 17246 int valid_sense_length; 17247 struct scsi_information_sense_descr *isd; 17248 17249 /* 17250 * Initialize result to -1 indicating there is no information 17251 * descriptor 17252 */ 17253 result = (diskaddr_t)-1; 17254 17255 /* 17256 * The first descriptor will immediately follow the header 17257 */ 17258 descr_offset = (uint8_t *)(sdsp+1); /* Pointer arithmetic */ 17259 17260 /* 17261 * Calculate the amount of valid sense data 17262 */ 17263 valid_sense_length = 17264 min((sizeof (struct scsi_descr_sense_hdr) + 17265 sdsp->ds_addl_sense_length), 17266 SENSE_LENGTH); 17267 17268 /* 17269 * Iterate through the list of descriptors, stopping when we 17270 * run out of sense data 17271 */ 17272 while ((descr_offset + sizeof (struct scsi_information_sense_descr)) <= 17273 (uint8_t *)sdsp + valid_sense_length) { 17274 /* 17275 * Check if this is an information descriptor. We can 17276 * use the scsi_information_sense_descr structure as a 17277 * template sense the first two fields are always the 17278 * same 17279 */ 17280 isd = (struct scsi_information_sense_descr *)descr_offset; 17281 if (isd->isd_descr_type == DESCR_INFORMATION) { 17282 /* 17283 * Found an information descriptor. Copy the 17284 * information field. There will only be one 17285 * information descriptor so we can stop looking. 17286 */ 17287 result = 17288 (((diskaddr_t)isd->isd_information[0] << 56) | 17289 ((diskaddr_t)isd->isd_information[1] << 48) | 17290 ((diskaddr_t)isd->isd_information[2] << 40) | 17291 ((diskaddr_t)isd->isd_information[3] << 32) | 17292 ((diskaddr_t)isd->isd_information[4] << 24) | 17293 ((diskaddr_t)isd->isd_information[5] << 16) | 17294 ((diskaddr_t)isd->isd_information[6] << 8) | 17295 ((diskaddr_t)isd->isd_information[7])); 17296 break; 17297 } 17298 17299 /* 17300 * Get pointer to the next descriptor. The "additional 17301 * length" field holds the length of the descriptor except 17302 * for the "type" and "additional length" fields, so 17303 * we need to add 2 to get the total length. 17304 */ 17305 descr_offset += (isd->isd_addl_length + 2); 17306 } 17307 17308 return (result); 17309 } 17310 17311 /* 17312 * Function: sd_sense_key_no_sense 17313 * 17314 * Description: Recovery action when sense data was not received. 17315 * 17316 * Context: May be called from interrupt context 17317 */ 17318 17319 static void 17320 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp, 17321 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17322 { 17323 struct sd_sense_info si; 17324 17325 ASSERT(un != NULL); 17326 ASSERT(mutex_owned(SD_MUTEX(un))); 17327 ASSERT(bp != NULL); 17328 ASSERT(xp != NULL); 17329 ASSERT(pktp != NULL); 17330 17331 si.ssi_severity = SCSI_ERR_FATAL; 17332 si.ssi_pfa_flag = FALSE; 17333 17334 SD_UPDATE_ERRSTATS(un, sd_softerrs); 17335 17336 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 17337 &si, EIO, (clock_t)0, NULL); 17338 } 17339 17340 17341 /* 17342 * Function: sd_sense_key_recoverable_error 17343 * 17344 * Description: Recovery actions for a SCSI "Recovered Error" sense key. 17345 * 17346 * Context: May be called from interrupt context 17347 */ 17348 17349 static void 17350 sd_sense_key_recoverable_error(struct sd_lun *un, 17351 uint8_t asc, 17352 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 17353 { 17354 struct sd_sense_info si; 17355 17356 ASSERT(un != NULL); 17357 ASSERT(mutex_owned(SD_MUTEX(un))); 17358 ASSERT(bp != NULL); 17359 ASSERT(xp != NULL); 17360 ASSERT(pktp != NULL); 17361 17362 /* 17363 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED 17364 */ 17365 if ((asc == 0x5D) && (sd_report_pfa != 0)) { 17366 SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err); 17367 si.ssi_severity = SCSI_ERR_INFO; 17368 si.ssi_pfa_flag = TRUE; 17369 } else { 17370 SD_UPDATE_ERRSTATS(un, sd_softerrs); 17371 SD_UPDATE_ERRSTATS(un, sd_rq_recov_err); 17372 si.ssi_severity = SCSI_ERR_RECOVERED; 17373 si.ssi_pfa_flag = FALSE; 17374 } 17375 17376 if (pktp->pkt_resid == 0) { 17377 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 17378 sd_return_command(un, bp); 17379 return; 17380 } 17381 17382 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 17383 &si, EIO, (clock_t)0, NULL); 17384 } 17385 17386 17387 17388 17389 /* 17390 * Function: sd_sense_key_not_ready 17391 * 17392 * Description: Recovery actions for a SCSI "Not Ready" sense key. 17393 * 17394 * Context: May be called from interrupt context 17395 */ 17396 17397 static void 17398 sd_sense_key_not_ready(struct sd_lun *un, 17399 uint8_t asc, uint8_t ascq, 17400 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 17401 { 17402 struct sd_sense_info si; 17403 17404 ASSERT(un != NULL); 17405 ASSERT(mutex_owned(SD_MUTEX(un))); 17406 ASSERT(bp != NULL); 17407 ASSERT(xp != NULL); 17408 ASSERT(pktp != NULL); 17409 17410 si.ssi_severity = SCSI_ERR_FATAL; 17411 si.ssi_pfa_flag = FALSE; 17412 17413 /* 17414 * Update error stats after first NOT READY error. Disks may have 17415 * been powered down and may need to be restarted. For CDROMs, 17416 * report NOT READY errors only if media is present. 17417 */ 17418 if ((ISCD(un) && (un->un_f_geometry_is_valid == TRUE)) || 17419 (xp->xb_retry_count > 0)) { 17420 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17421 SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err); 17422 } 17423 17424 /* 17425 * Just fail if the "not ready" retry limit has been reached. 17426 */ 17427 if (xp->xb_retry_count >= un->un_notready_retry_count) { 17428 /* Special check for error message printing for removables. */ 17429 if (un->un_f_has_removable_media && (asc == 0x04) && 17430 (ascq >= 0x04)) { 17431 si.ssi_severity = SCSI_ERR_ALL; 17432 } 17433 goto fail_command; 17434 } 17435 17436 /* 17437 * Check the ASC and ASCQ in the sense data as needed, to determine 17438 * what to do. 17439 */ 17440 switch (asc) { 17441 case 0x04: /* LOGICAL UNIT NOT READY */ 17442 /* 17443 * disk drives that don't spin up result in a very long delay 17444 * in format without warning messages. We will log a message 17445 * if the error level is set to verbose. 17446 */ 17447 if (sd_error_level < SCSI_ERR_RETRYABLE) { 17448 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17449 "logical unit not ready, resetting disk\n"); 17450 } 17451 17452 /* 17453 * There are different requirements for CDROMs and disks for 17454 * the number of retries. If a CD-ROM is giving this, it is 17455 * probably reading TOC and is in the process of getting 17456 * ready, so we should keep on trying for a long time to make 17457 * sure that all types of media are taken in account (for 17458 * some media the drive takes a long time to read TOC). For 17459 * disks we do not want to retry this too many times as this 17460 * can cause a long hang in format when the drive refuses to 17461 * spin up (a very common failure). 17462 */ 17463 switch (ascq) { 17464 case 0x00: /* LUN NOT READY, CAUSE NOT REPORTABLE */ 17465 /* 17466 * Disk drives frequently refuse to spin up which 17467 * results in a very long hang in format without 17468 * warning messages. 17469 * 17470 * Note: This code preserves the legacy behavior of 17471 * comparing xb_retry_count against zero for fibre 17472 * channel targets instead of comparing against the 17473 * un_reset_retry_count value. The reason for this 17474 * discrepancy has been so utterly lost beneath the 17475 * Sands of Time that even Indiana Jones could not 17476 * find it. 17477 */ 17478 if (un->un_f_is_fibre == TRUE) { 17479 if (((sd_level_mask & SD_LOGMASK_DIAG) || 17480 (xp->xb_retry_count > 0)) && 17481 (un->un_startstop_timeid == NULL)) { 17482 scsi_log(SD_DEVINFO(un), sd_label, 17483 CE_WARN, "logical unit not ready, " 17484 "resetting disk\n"); 17485 sd_reset_target(un, pktp); 17486 } 17487 } else { 17488 if (((sd_level_mask & SD_LOGMASK_DIAG) || 17489 (xp->xb_retry_count > 17490 un->un_reset_retry_count)) && 17491 (un->un_startstop_timeid == NULL)) { 17492 scsi_log(SD_DEVINFO(un), sd_label, 17493 CE_WARN, "logical unit not ready, " 17494 "resetting disk\n"); 17495 sd_reset_target(un, pktp); 17496 } 17497 } 17498 break; 17499 17500 case 0x01: /* LUN IS IN PROCESS OF BECOMING READY */ 17501 /* 17502 * If the target is in the process of becoming 17503 * ready, just proceed with the retry. This can 17504 * happen with CD-ROMs that take a long time to 17505 * read TOC after a power cycle or reset. 17506 */ 17507 goto do_retry; 17508 17509 case 0x02: /* LUN NOT READY, INITITIALIZING CMD REQUIRED */ 17510 break; 17511 17512 case 0x03: /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */ 17513 /* 17514 * Retries cannot help here so just fail right away. 17515 */ 17516 goto fail_command; 17517 17518 case 0x88: 17519 /* 17520 * Vendor-unique code for T3/T4: it indicates a 17521 * path problem in a mutipathed config, but as far as 17522 * the target driver is concerned it equates to a fatal 17523 * error, so we should just fail the command right away 17524 * (without printing anything to the console). If this 17525 * is not a T3/T4, fall thru to the default recovery 17526 * action. 17527 * T3/T4 is FC only, don't need to check is_fibre 17528 */ 17529 if (SD_IS_T3(un) || SD_IS_T4(un)) { 17530 sd_return_failed_command(un, bp, EIO); 17531 return; 17532 } 17533 /* FALLTHRU */ 17534 17535 case 0x04: /* LUN NOT READY, FORMAT IN PROGRESS */ 17536 case 0x05: /* LUN NOT READY, REBUILD IN PROGRESS */ 17537 case 0x06: /* LUN NOT READY, RECALCULATION IN PROGRESS */ 17538 case 0x07: /* LUN NOT READY, OPERATION IN PROGRESS */ 17539 case 0x08: /* LUN NOT READY, LONG WRITE IN PROGRESS */ 17540 default: /* Possible future codes in SCSI spec? */ 17541 /* 17542 * For removable-media devices, do not retry if 17543 * ASCQ > 2 as these result mostly from USCSI commands 17544 * on MMC devices issued to check status of an 17545 * operation initiated in immediate mode. Also for 17546 * ASCQ >= 4 do not print console messages as these 17547 * mainly represent a user-initiated operation 17548 * instead of a system failure. 17549 */ 17550 if (un->un_f_has_removable_media) { 17551 si.ssi_severity = SCSI_ERR_ALL; 17552 goto fail_command; 17553 } 17554 break; 17555 } 17556 17557 /* 17558 * As part of our recovery attempt for the NOT READY 17559 * condition, we issue a START STOP UNIT command. However 17560 * we want to wait for a short delay before attempting this 17561 * as there may still be more commands coming back from the 17562 * target with the check condition. To do this we use 17563 * timeout(9F) to call sd_start_stop_unit_callback() after 17564 * the delay interval expires. (sd_start_stop_unit_callback() 17565 * dispatches sd_start_stop_unit_task(), which will issue 17566 * the actual START STOP UNIT command. The delay interval 17567 * is one-half of the delay that we will use to retry the 17568 * command that generated the NOT READY condition. 17569 * 17570 * Note that we could just dispatch sd_start_stop_unit_task() 17571 * from here and allow it to sleep for the delay interval, 17572 * but then we would be tying up the taskq thread 17573 * uncesessarily for the duration of the delay. 17574 * 17575 * Do not issue the START STOP UNIT if the current command 17576 * is already a START STOP UNIT. 17577 */ 17578 if (pktp->pkt_cdbp[0] == SCMD_START_STOP) { 17579 break; 17580 } 17581 17582 /* 17583 * Do not schedule the timeout if one is already pending. 17584 */ 17585 if (un->un_startstop_timeid != NULL) { 17586 SD_INFO(SD_LOG_ERROR, un, 17587 "sd_sense_key_not_ready: restart already issued to" 17588 " %s%d\n", ddi_driver_name(SD_DEVINFO(un)), 17589 ddi_get_instance(SD_DEVINFO(un))); 17590 break; 17591 } 17592 17593 /* 17594 * Schedule the START STOP UNIT command, then queue the command 17595 * for a retry. 17596 * 17597 * Note: A timeout is not scheduled for this retry because we 17598 * want the retry to be serial with the START_STOP_UNIT. The 17599 * retry will be started when the START_STOP_UNIT is completed 17600 * in sd_start_stop_unit_task. 17601 */ 17602 un->un_startstop_timeid = timeout(sd_start_stop_unit_callback, 17603 un, SD_BSY_TIMEOUT / 2); 17604 xp->xb_retry_count++; 17605 sd_set_retry_bp(un, bp, 0, kstat_waitq_enter); 17606 return; 17607 17608 case 0x05: /* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */ 17609 if (sd_error_level < SCSI_ERR_RETRYABLE) { 17610 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17611 "unit does not respond to selection\n"); 17612 } 17613 break; 17614 17615 case 0x3A: /* MEDIUM NOT PRESENT */ 17616 if (sd_error_level >= SCSI_ERR_FATAL) { 17617 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17618 "Caddy not inserted in drive\n"); 17619 } 17620 17621 sr_ejected(un); 17622 un->un_mediastate = DKIO_EJECTED; 17623 /* The state has changed, inform the media watch routines */ 17624 cv_broadcast(&un->un_state_cv); 17625 /* Just fail if no media is present in the drive. */ 17626 goto fail_command; 17627 17628 default: 17629 if (sd_error_level < SCSI_ERR_RETRYABLE) { 17630 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 17631 "Unit not Ready. Additional sense code 0x%x\n", 17632 asc); 17633 } 17634 break; 17635 } 17636 17637 do_retry: 17638 17639 /* 17640 * Retry the command, as some targets may report NOT READY for 17641 * several seconds after being reset. 17642 */ 17643 xp->xb_retry_count++; 17644 si.ssi_severity = SCSI_ERR_RETRYABLE; 17645 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg, 17646 &si, EIO, SD_BSY_TIMEOUT, NULL); 17647 17648 return; 17649 17650 fail_command: 17651 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 17652 sd_return_failed_command(un, bp, EIO); 17653 } 17654 17655 17656 17657 /* 17658 * Function: sd_sense_key_medium_or_hardware_error 17659 * 17660 * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error" 17661 * sense key. 17662 * 17663 * Context: May be called from interrupt context 17664 */ 17665 17666 static void 17667 sd_sense_key_medium_or_hardware_error(struct sd_lun *un, 17668 int sense_key, uint8_t asc, 17669 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 17670 { 17671 struct sd_sense_info si; 17672 17673 ASSERT(un != NULL); 17674 ASSERT(mutex_owned(SD_MUTEX(un))); 17675 ASSERT(bp != NULL); 17676 ASSERT(xp != NULL); 17677 ASSERT(pktp != NULL); 17678 17679 si.ssi_severity = SCSI_ERR_FATAL; 17680 si.ssi_pfa_flag = FALSE; 17681 17682 if (sense_key == KEY_MEDIUM_ERROR) { 17683 SD_UPDATE_ERRSTATS(un, sd_rq_media_err); 17684 } 17685 17686 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17687 17688 if ((un->un_reset_retry_count != 0) && 17689 (xp->xb_retry_count == un->un_reset_retry_count)) { 17690 mutex_exit(SD_MUTEX(un)); 17691 /* Do NOT do a RESET_ALL here: too intrusive. (4112858) */ 17692 if (un->un_f_allow_bus_device_reset == TRUE) { 17693 17694 boolean_t try_resetting_target = B_TRUE; 17695 17696 /* 17697 * We need to be able to handle specific ASC when we are 17698 * handling a KEY_HARDWARE_ERROR. In particular 17699 * taking the default action of resetting the target may 17700 * not be the appropriate way to attempt recovery. 17701 * Resetting a target because of a single LUN failure 17702 * victimizes all LUNs on that target. 17703 * 17704 * This is true for the LSI arrays, if an LSI 17705 * array controller returns an ASC of 0x84 (LUN Dead) we 17706 * should trust it. 17707 */ 17708 17709 if (sense_key == KEY_HARDWARE_ERROR) { 17710 switch (asc) { 17711 case 0x84: 17712 if (SD_IS_LSI(un)) { 17713 try_resetting_target = B_FALSE; 17714 } 17715 break; 17716 default: 17717 break; 17718 } 17719 } 17720 17721 if (try_resetting_target == B_TRUE) { 17722 int reset_retval = 0; 17723 if (un->un_f_lun_reset_enabled == TRUE) { 17724 SD_TRACE(SD_LOG_IO_CORE, un, 17725 "sd_sense_key_medium_or_hardware_" 17726 "error: issuing RESET_LUN\n"); 17727 reset_retval = 17728 scsi_reset(SD_ADDRESS(un), 17729 RESET_LUN); 17730 } 17731 if (reset_retval == 0) { 17732 SD_TRACE(SD_LOG_IO_CORE, un, 17733 "sd_sense_key_medium_or_hardware_" 17734 "error: issuing RESET_TARGET\n"); 17735 (void) scsi_reset(SD_ADDRESS(un), 17736 RESET_TARGET); 17737 } 17738 } 17739 } 17740 mutex_enter(SD_MUTEX(un)); 17741 } 17742 17743 /* 17744 * This really ought to be a fatal error, but we will retry anyway 17745 * as some drives report this as a spurious error. 17746 */ 17747 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 17748 &si, EIO, (clock_t)0, NULL); 17749 } 17750 17751 17752 17753 /* 17754 * Function: sd_sense_key_illegal_request 17755 * 17756 * Description: Recovery actions for a SCSI "Illegal Request" sense key. 17757 * 17758 * Context: May be called from interrupt context 17759 */ 17760 17761 static void 17762 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp, 17763 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17764 { 17765 struct sd_sense_info si; 17766 17767 ASSERT(un != NULL); 17768 ASSERT(mutex_owned(SD_MUTEX(un))); 17769 ASSERT(bp != NULL); 17770 ASSERT(xp != NULL); 17771 ASSERT(pktp != NULL); 17772 17773 SD_UPDATE_ERRSTATS(un, sd_softerrs); 17774 SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err); 17775 17776 si.ssi_severity = SCSI_ERR_INFO; 17777 si.ssi_pfa_flag = FALSE; 17778 17779 /* Pointless to retry if the target thinks it's an illegal request */ 17780 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 17781 sd_return_failed_command(un, bp, EIO); 17782 } 17783 17784 17785 17786 17787 /* 17788 * Function: sd_sense_key_unit_attention 17789 * 17790 * Description: Recovery actions for a SCSI "Unit Attention" sense key. 17791 * 17792 * Context: May be called from interrupt context 17793 */ 17794 17795 static void 17796 sd_sense_key_unit_attention(struct sd_lun *un, 17797 uint8_t asc, 17798 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 17799 { 17800 /* 17801 * For UNIT ATTENTION we allow retries for one minute. Devices 17802 * like Sonoma can return UNIT ATTENTION close to a minute 17803 * under certain conditions. 17804 */ 17805 int retry_check_flag = SD_RETRIES_UA; 17806 boolean_t kstat_updated = B_FALSE; 17807 struct sd_sense_info si; 17808 17809 ASSERT(un != NULL); 17810 ASSERT(mutex_owned(SD_MUTEX(un))); 17811 ASSERT(bp != NULL); 17812 ASSERT(xp != NULL); 17813 ASSERT(pktp != NULL); 17814 17815 si.ssi_severity = SCSI_ERR_INFO; 17816 si.ssi_pfa_flag = FALSE; 17817 17818 17819 switch (asc) { 17820 case 0x5D: /* FAILURE PREDICTION THRESHOLD EXCEEDED */ 17821 if (sd_report_pfa != 0) { 17822 SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err); 17823 si.ssi_pfa_flag = TRUE; 17824 retry_check_flag = SD_RETRIES_STANDARD; 17825 goto do_retry; 17826 } 17827 break; 17828 17829 case 0x29: /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */ 17830 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 17831 un->un_resvd_status |= 17832 (SD_LOST_RESERVE | SD_WANT_RESERVE); 17833 } 17834 /* FALLTHRU */ 17835 17836 case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */ 17837 if (!un->un_f_has_removable_media) { 17838 break; 17839 } 17840 17841 /* 17842 * When we get a unit attention from a removable-media device, 17843 * it may be in a state that will take a long time to recover 17844 * (e.g., from a reset). Since we are executing in interrupt 17845 * context here, we cannot wait around for the device to come 17846 * back. So hand this command off to sd_media_change_task() 17847 * for deferred processing under taskq thread context. (Note 17848 * that the command still may be failed if a problem is 17849 * encountered at a later time.) 17850 */ 17851 if (taskq_dispatch(sd_tq, sd_media_change_task, pktp, 17852 KM_NOSLEEP) == 0) { 17853 /* 17854 * Cannot dispatch the request so fail the command. 17855 */ 17856 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17857 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 17858 si.ssi_severity = SCSI_ERR_FATAL; 17859 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 17860 sd_return_failed_command(un, bp, EIO); 17861 } 17862 17863 /* 17864 * If failed to dispatch sd_media_change_task(), we already 17865 * updated kstat. If succeed to dispatch sd_media_change_task(), 17866 * we should update kstat later if it encounters an error. So, 17867 * we update kstat_updated flag here. 17868 */ 17869 kstat_updated = B_TRUE; 17870 17871 /* 17872 * Either the command has been successfully dispatched to a 17873 * task Q for retrying, or the dispatch failed. In either case 17874 * do NOT retry again by calling sd_retry_command. This sets up 17875 * two retries of the same command and when one completes and 17876 * frees the resources the other will access freed memory, 17877 * a bad thing. 17878 */ 17879 return; 17880 17881 default: 17882 break; 17883 } 17884 17885 /* 17886 * Update kstat if we haven't done that. 17887 */ 17888 if (!kstat_updated) { 17889 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17890 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 17891 } 17892 17893 do_retry: 17894 sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si, 17895 EIO, SD_UA_RETRY_DELAY, NULL); 17896 } 17897 17898 17899 17900 /* 17901 * Function: sd_sense_key_fail_command 17902 * 17903 * Description: Use to fail a command when we don't like the sense key that 17904 * was returned. 17905 * 17906 * Context: May be called from interrupt context 17907 */ 17908 17909 static void 17910 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp, 17911 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17912 { 17913 struct sd_sense_info si; 17914 17915 ASSERT(un != NULL); 17916 ASSERT(mutex_owned(SD_MUTEX(un))); 17917 ASSERT(bp != NULL); 17918 ASSERT(xp != NULL); 17919 ASSERT(pktp != NULL); 17920 17921 si.ssi_severity = SCSI_ERR_FATAL; 17922 si.ssi_pfa_flag = FALSE; 17923 17924 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 17925 sd_return_failed_command(un, bp, EIO); 17926 } 17927 17928 17929 17930 /* 17931 * Function: sd_sense_key_blank_check 17932 * 17933 * Description: Recovery actions for a SCSI "Blank Check" sense key. 17934 * Has no monetary connotation. 17935 * 17936 * Context: May be called from interrupt context 17937 */ 17938 17939 static void 17940 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp, 17941 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17942 { 17943 struct sd_sense_info si; 17944 17945 ASSERT(un != NULL); 17946 ASSERT(mutex_owned(SD_MUTEX(un))); 17947 ASSERT(bp != NULL); 17948 ASSERT(xp != NULL); 17949 ASSERT(pktp != NULL); 17950 17951 /* 17952 * Blank check is not fatal for removable devices, therefore 17953 * it does not require a console message. 17954 */ 17955 si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL : 17956 SCSI_ERR_FATAL; 17957 si.ssi_pfa_flag = FALSE; 17958 17959 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 17960 sd_return_failed_command(un, bp, EIO); 17961 } 17962 17963 17964 17965 17966 /* 17967 * Function: sd_sense_key_aborted_command 17968 * 17969 * Description: Recovery actions for a SCSI "Aborted Command" sense key. 17970 * 17971 * Context: May be called from interrupt context 17972 */ 17973 17974 static void 17975 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp, 17976 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17977 { 17978 struct sd_sense_info si; 17979 17980 ASSERT(un != NULL); 17981 ASSERT(mutex_owned(SD_MUTEX(un))); 17982 ASSERT(bp != NULL); 17983 ASSERT(xp != NULL); 17984 ASSERT(pktp != NULL); 17985 17986 si.ssi_severity = SCSI_ERR_FATAL; 17987 si.ssi_pfa_flag = FALSE; 17988 17989 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17990 17991 /* 17992 * This really ought to be a fatal error, but we will retry anyway 17993 * as some drives report this as a spurious error. 17994 */ 17995 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 17996 &si, EIO, (clock_t)0, NULL); 17997 } 17998 17999 18000 18001 /* 18002 * Function: sd_sense_key_default 18003 * 18004 * Description: Default recovery action for several SCSI sense keys (basically 18005 * attempts a retry). 18006 * 18007 * Context: May be called from interrupt context 18008 */ 18009 18010 static void 18011 sd_sense_key_default(struct sd_lun *un, 18012 int sense_key, 18013 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18014 { 18015 struct sd_sense_info si; 18016 18017 ASSERT(un != NULL); 18018 ASSERT(mutex_owned(SD_MUTEX(un))); 18019 ASSERT(bp != NULL); 18020 ASSERT(xp != NULL); 18021 ASSERT(pktp != NULL); 18022 18023 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18024 18025 /* 18026 * Undecoded sense key. Attempt retries and hope that will fix 18027 * the problem. Otherwise, we're dead. 18028 */ 18029 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 18030 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18031 "Unhandled Sense Key '%s'\n", sense_keys[sense_key]); 18032 } 18033 18034 si.ssi_severity = SCSI_ERR_FATAL; 18035 si.ssi_pfa_flag = FALSE; 18036 18037 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18038 &si, EIO, (clock_t)0, NULL); 18039 } 18040 18041 18042 18043 /* 18044 * Function: sd_print_retry_msg 18045 * 18046 * Description: Print a message indicating the retry action being taken. 18047 * 18048 * Arguments: un - ptr to associated softstate 18049 * bp - ptr to buf(9S) for the command 18050 * arg - not used. 18051 * flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 18052 * or SD_NO_RETRY_ISSUED 18053 * 18054 * Context: May be called from interrupt context 18055 */ 18056 /* ARGSUSED */ 18057 static void 18058 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag) 18059 { 18060 struct sd_xbuf *xp; 18061 struct scsi_pkt *pktp; 18062 char *reasonp; 18063 char *msgp; 18064 18065 ASSERT(un != NULL); 18066 ASSERT(mutex_owned(SD_MUTEX(un))); 18067 ASSERT(bp != NULL); 18068 pktp = SD_GET_PKTP(bp); 18069 ASSERT(pktp != NULL); 18070 xp = SD_GET_XBUF(bp); 18071 ASSERT(xp != NULL); 18072 18073 ASSERT(!mutex_owned(&un->un_pm_mutex)); 18074 mutex_enter(&un->un_pm_mutex); 18075 if ((un->un_state == SD_STATE_SUSPENDED) || 18076 (SD_DEVICE_IS_IN_LOW_POWER(un)) || 18077 (pktp->pkt_flags & FLAG_SILENT)) { 18078 mutex_exit(&un->un_pm_mutex); 18079 goto update_pkt_reason; 18080 } 18081 mutex_exit(&un->un_pm_mutex); 18082 18083 /* 18084 * Suppress messages if they are all the same pkt_reason; with 18085 * TQ, many (up to 256) are returned with the same pkt_reason. 18086 * If we are in panic, then suppress the retry messages. 18087 */ 18088 switch (flag) { 18089 case SD_NO_RETRY_ISSUED: 18090 msgp = "giving up"; 18091 break; 18092 case SD_IMMEDIATE_RETRY_ISSUED: 18093 case SD_DELAYED_RETRY_ISSUED: 18094 if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) || 18095 ((pktp->pkt_reason == un->un_last_pkt_reason) && 18096 (sd_error_level != SCSI_ERR_ALL))) { 18097 return; 18098 } 18099 msgp = "retrying command"; 18100 break; 18101 default: 18102 goto update_pkt_reason; 18103 } 18104 18105 reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" : 18106 scsi_rname(pktp->pkt_reason)); 18107 18108 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18109 "SCSI transport failed: reason '%s': %s\n", reasonp, msgp); 18110 18111 update_pkt_reason: 18112 /* 18113 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason. 18114 * This is to prevent multiple console messages for the same failure 18115 * condition. Note that un->un_last_pkt_reason is NOT restored if & 18116 * when the command is retried successfully because there still may be 18117 * more commands coming back with the same value of pktp->pkt_reason. 18118 */ 18119 if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) { 18120 un->un_last_pkt_reason = pktp->pkt_reason; 18121 } 18122 } 18123 18124 18125 /* 18126 * Function: sd_print_cmd_incomplete_msg 18127 * 18128 * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason. 18129 * 18130 * Arguments: un - ptr to associated softstate 18131 * bp - ptr to buf(9S) for the command 18132 * arg - passed to sd_print_retry_msg() 18133 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 18134 * or SD_NO_RETRY_ISSUED 18135 * 18136 * Context: May be called from interrupt context 18137 */ 18138 18139 static void 18140 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, 18141 int code) 18142 { 18143 dev_info_t *dip; 18144 18145 ASSERT(un != NULL); 18146 ASSERT(mutex_owned(SD_MUTEX(un))); 18147 ASSERT(bp != NULL); 18148 18149 switch (code) { 18150 case SD_NO_RETRY_ISSUED: 18151 /* Command was failed. Someone turned off this target? */ 18152 if (un->un_state != SD_STATE_OFFLINE) { 18153 /* 18154 * Suppress message if we are detaching and 18155 * device has been disconnected 18156 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation 18157 * private interface and not part of the DDI 18158 */ 18159 dip = un->un_sd->sd_dev; 18160 if (!(DEVI_IS_DETACHING(dip) && 18161 DEVI_IS_DEVICE_REMOVED(dip))) { 18162 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18163 "disk not responding to selection\n"); 18164 } 18165 New_state(un, SD_STATE_OFFLINE); 18166 } 18167 break; 18168 18169 case SD_DELAYED_RETRY_ISSUED: 18170 case SD_IMMEDIATE_RETRY_ISSUED: 18171 default: 18172 /* Command was successfully queued for retry */ 18173 sd_print_retry_msg(un, bp, arg, code); 18174 break; 18175 } 18176 } 18177 18178 18179 /* 18180 * Function: sd_pkt_reason_cmd_incomplete 18181 * 18182 * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason. 18183 * 18184 * Context: May be called from interrupt context 18185 */ 18186 18187 static void 18188 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp, 18189 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18190 { 18191 int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE; 18192 18193 ASSERT(un != NULL); 18194 ASSERT(mutex_owned(SD_MUTEX(un))); 18195 ASSERT(bp != NULL); 18196 ASSERT(xp != NULL); 18197 ASSERT(pktp != NULL); 18198 18199 /* Do not do a reset if selection did not complete */ 18200 /* Note: Should this not just check the bit? */ 18201 if (pktp->pkt_state != STATE_GOT_BUS) { 18202 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18203 sd_reset_target(un, pktp); 18204 } 18205 18206 /* 18207 * If the target was not successfully selected, then set 18208 * SD_RETRIES_FAILFAST to indicate that we lost communication 18209 * with the target, and further retries and/or commands are 18210 * likely to take a long time. 18211 */ 18212 if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) { 18213 flag |= SD_RETRIES_FAILFAST; 18214 } 18215 18216 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18217 18218 sd_retry_command(un, bp, flag, 18219 sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18220 } 18221 18222 18223 18224 /* 18225 * Function: sd_pkt_reason_cmd_tran_err 18226 * 18227 * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason. 18228 * 18229 * Context: May be called from interrupt context 18230 */ 18231 18232 static void 18233 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp, 18234 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18235 { 18236 ASSERT(un != NULL); 18237 ASSERT(mutex_owned(SD_MUTEX(un))); 18238 ASSERT(bp != NULL); 18239 ASSERT(xp != NULL); 18240 ASSERT(pktp != NULL); 18241 18242 /* 18243 * Do not reset if we got a parity error, or if 18244 * selection did not complete. 18245 */ 18246 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18247 /* Note: Should this not just check the bit for pkt_state? */ 18248 if (((pktp->pkt_statistics & STAT_PERR) == 0) && 18249 (pktp->pkt_state != STATE_GOT_BUS)) { 18250 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18251 sd_reset_target(un, pktp); 18252 } 18253 18254 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18255 18256 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 18257 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18258 } 18259 18260 18261 18262 /* 18263 * Function: sd_pkt_reason_cmd_reset 18264 * 18265 * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason. 18266 * 18267 * Context: May be called from interrupt context 18268 */ 18269 18270 static void 18271 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp, 18272 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18273 { 18274 ASSERT(un != NULL); 18275 ASSERT(mutex_owned(SD_MUTEX(un))); 18276 ASSERT(bp != NULL); 18277 ASSERT(xp != NULL); 18278 ASSERT(pktp != NULL); 18279 18280 /* The target may still be running the command, so try to reset. */ 18281 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18282 sd_reset_target(un, pktp); 18283 18284 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18285 18286 /* 18287 * If pkt_reason is CMD_RESET chances are that this pkt got 18288 * reset because another target on this bus caused it. The target 18289 * that caused it should get CMD_TIMEOUT with pkt_statistics 18290 * of STAT_TIMEOUT/STAT_DEV_RESET. 18291 */ 18292 18293 sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE), 18294 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18295 } 18296 18297 18298 18299 18300 /* 18301 * Function: sd_pkt_reason_cmd_aborted 18302 * 18303 * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason. 18304 * 18305 * Context: May be called from interrupt context 18306 */ 18307 18308 static void 18309 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp, 18310 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18311 { 18312 ASSERT(un != NULL); 18313 ASSERT(mutex_owned(SD_MUTEX(un))); 18314 ASSERT(bp != NULL); 18315 ASSERT(xp != NULL); 18316 ASSERT(pktp != NULL); 18317 18318 /* The target may still be running the command, so try to reset. */ 18319 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18320 sd_reset_target(un, pktp); 18321 18322 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18323 18324 /* 18325 * If pkt_reason is CMD_ABORTED chances are that this pkt got 18326 * aborted because another target on this bus caused it. The target 18327 * that caused it should get CMD_TIMEOUT with pkt_statistics 18328 * of STAT_TIMEOUT/STAT_DEV_RESET. 18329 */ 18330 18331 sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE), 18332 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18333 } 18334 18335 18336 18337 /* 18338 * Function: sd_pkt_reason_cmd_timeout 18339 * 18340 * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason. 18341 * 18342 * Context: May be called from interrupt context 18343 */ 18344 18345 static void 18346 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp, 18347 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18348 { 18349 ASSERT(un != NULL); 18350 ASSERT(mutex_owned(SD_MUTEX(un))); 18351 ASSERT(bp != NULL); 18352 ASSERT(xp != NULL); 18353 ASSERT(pktp != NULL); 18354 18355 18356 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18357 sd_reset_target(un, pktp); 18358 18359 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18360 18361 /* 18362 * A command timeout indicates that we could not establish 18363 * communication with the target, so set SD_RETRIES_FAILFAST 18364 * as further retries/commands are likely to take a long time. 18365 */ 18366 sd_retry_command(un, bp, 18367 (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST), 18368 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18369 } 18370 18371 18372 18373 /* 18374 * Function: sd_pkt_reason_cmd_unx_bus_free 18375 * 18376 * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason. 18377 * 18378 * Context: May be called from interrupt context 18379 */ 18380 18381 static void 18382 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp, 18383 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18384 { 18385 void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code); 18386 18387 ASSERT(un != NULL); 18388 ASSERT(mutex_owned(SD_MUTEX(un))); 18389 ASSERT(bp != NULL); 18390 ASSERT(xp != NULL); 18391 ASSERT(pktp != NULL); 18392 18393 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18394 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18395 18396 funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ? 18397 sd_print_retry_msg : NULL; 18398 18399 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 18400 funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18401 } 18402 18403 18404 /* 18405 * Function: sd_pkt_reason_cmd_tag_reject 18406 * 18407 * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason. 18408 * 18409 * Context: May be called from interrupt context 18410 */ 18411 18412 static void 18413 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp, 18414 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18415 { 18416 ASSERT(un != NULL); 18417 ASSERT(mutex_owned(SD_MUTEX(un))); 18418 ASSERT(bp != NULL); 18419 ASSERT(xp != NULL); 18420 ASSERT(pktp != NULL); 18421 18422 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18423 pktp->pkt_flags = 0; 18424 un->un_tagflags = 0; 18425 if (un->un_f_opt_queueing == TRUE) { 18426 un->un_throttle = min(un->un_throttle, 3); 18427 } else { 18428 un->un_throttle = 1; 18429 } 18430 mutex_exit(SD_MUTEX(un)); 18431 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 18432 mutex_enter(SD_MUTEX(un)); 18433 18434 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18435 18436 /* Legacy behavior not to check retry counts here. */ 18437 sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE), 18438 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18439 } 18440 18441 18442 /* 18443 * Function: sd_pkt_reason_default 18444 * 18445 * Description: Default recovery actions for SCSA pkt_reason values that 18446 * do not have more explicit recovery actions. 18447 * 18448 * Context: May be called from interrupt context 18449 */ 18450 18451 static void 18452 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp, 18453 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18454 { 18455 ASSERT(un != NULL); 18456 ASSERT(mutex_owned(SD_MUTEX(un))); 18457 ASSERT(bp != NULL); 18458 ASSERT(xp != NULL); 18459 ASSERT(pktp != NULL); 18460 18461 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18462 sd_reset_target(un, pktp); 18463 18464 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18465 18466 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 18467 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18468 } 18469 18470 18471 18472 /* 18473 * Function: sd_pkt_status_check_condition 18474 * 18475 * Description: Recovery actions for a "STATUS_CHECK" SCSI command status. 18476 * 18477 * Context: May be called from interrupt context 18478 */ 18479 18480 static void 18481 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp, 18482 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18483 { 18484 ASSERT(un != NULL); 18485 ASSERT(mutex_owned(SD_MUTEX(un))); 18486 ASSERT(bp != NULL); 18487 ASSERT(xp != NULL); 18488 ASSERT(pktp != NULL); 18489 18490 SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: " 18491 "entry: buf:0x%p xp:0x%p\n", bp, xp); 18492 18493 /* 18494 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the 18495 * command will be retried after the request sense). Otherwise, retry 18496 * the command. Note: we are issuing the request sense even though the 18497 * retry limit may have been reached for the failed command. 18498 */ 18499 if (un->un_f_arq_enabled == FALSE) { 18500 SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: " 18501 "no ARQ, sending request sense command\n"); 18502 sd_send_request_sense_command(un, bp, pktp); 18503 } else { 18504 SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: " 18505 "ARQ,retrying request sense command\n"); 18506 #if defined(__i386) || defined(__amd64) 18507 /* 18508 * The SD_RETRY_DELAY value need to be adjusted here 18509 * when SD_RETRY_DELAY change in sddef.h 18510 */ 18511 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO, 18512 un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, 18513 NULL); 18514 #else 18515 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, 18516 EIO, SD_RETRY_DELAY, NULL); 18517 #endif 18518 } 18519 18520 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n"); 18521 } 18522 18523 18524 /* 18525 * Function: sd_pkt_status_busy 18526 * 18527 * Description: Recovery actions for a "STATUS_BUSY" SCSI command status. 18528 * 18529 * Context: May be called from interrupt context 18530 */ 18531 18532 static void 18533 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 18534 struct scsi_pkt *pktp) 18535 { 18536 ASSERT(un != NULL); 18537 ASSERT(mutex_owned(SD_MUTEX(un))); 18538 ASSERT(bp != NULL); 18539 ASSERT(xp != NULL); 18540 ASSERT(pktp != NULL); 18541 18542 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18543 "sd_pkt_status_busy: entry\n"); 18544 18545 /* If retries are exhausted, just fail the command. */ 18546 if (xp->xb_retry_count >= un->un_busy_retry_count) { 18547 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18548 "device busy too long\n"); 18549 sd_return_failed_command(un, bp, EIO); 18550 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18551 "sd_pkt_status_busy: exit\n"); 18552 return; 18553 } 18554 xp->xb_retry_count++; 18555 18556 /* 18557 * Try to reset the target. However, we do not want to perform 18558 * more than one reset if the device continues to fail. The reset 18559 * will be performed when the retry count reaches the reset 18560 * threshold. This threshold should be set such that at least 18561 * one retry is issued before the reset is performed. 18562 */ 18563 if (xp->xb_retry_count == 18564 ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) { 18565 int rval = 0; 18566 mutex_exit(SD_MUTEX(un)); 18567 if (un->un_f_allow_bus_device_reset == TRUE) { 18568 /* 18569 * First try to reset the LUN; if we cannot then 18570 * try to reset the target. 18571 */ 18572 if (un->un_f_lun_reset_enabled == TRUE) { 18573 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18574 "sd_pkt_status_busy: RESET_LUN\n"); 18575 rval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 18576 } 18577 if (rval == 0) { 18578 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18579 "sd_pkt_status_busy: RESET_TARGET\n"); 18580 rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 18581 } 18582 } 18583 if (rval == 0) { 18584 /* 18585 * If the RESET_LUN and/or RESET_TARGET failed, 18586 * try RESET_ALL 18587 */ 18588 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18589 "sd_pkt_status_busy: RESET_ALL\n"); 18590 rval = scsi_reset(SD_ADDRESS(un), RESET_ALL); 18591 } 18592 mutex_enter(SD_MUTEX(un)); 18593 if (rval == 0) { 18594 /* 18595 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed. 18596 * At this point we give up & fail the command. 18597 */ 18598 sd_return_failed_command(un, bp, EIO); 18599 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18600 "sd_pkt_status_busy: exit (failed cmd)\n"); 18601 return; 18602 } 18603 } 18604 18605 /* 18606 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as 18607 * we have already checked the retry counts above. 18608 */ 18609 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 18610 EIO, SD_BSY_TIMEOUT, NULL); 18611 18612 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18613 "sd_pkt_status_busy: exit\n"); 18614 } 18615 18616 18617 /* 18618 * Function: sd_pkt_status_reservation_conflict 18619 * 18620 * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI 18621 * command status. 18622 * 18623 * Context: May be called from interrupt context 18624 */ 18625 18626 static void 18627 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp, 18628 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18629 { 18630 ASSERT(un != NULL); 18631 ASSERT(mutex_owned(SD_MUTEX(un))); 18632 ASSERT(bp != NULL); 18633 ASSERT(xp != NULL); 18634 ASSERT(pktp != NULL); 18635 18636 /* 18637 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation 18638 * conflict could be due to various reasons like incorrect keys, not 18639 * registered or not reserved etc. So, we return EACCES to the caller. 18640 */ 18641 if (un->un_reservation_type == SD_SCSI3_RESERVATION) { 18642 int cmd = SD_GET_PKT_OPCODE(pktp); 18643 if ((cmd == SCMD_PERSISTENT_RESERVE_IN) || 18644 (cmd == SCMD_PERSISTENT_RESERVE_OUT)) { 18645 sd_return_failed_command(un, bp, EACCES); 18646 return; 18647 } 18648 } 18649 18650 un->un_resvd_status |= SD_RESERVATION_CONFLICT; 18651 18652 if ((un->un_resvd_status & SD_FAILFAST) != 0) { 18653 if (sd_failfast_enable != 0) { 18654 /* By definition, we must panic here.... */ 18655 sd_panic_for_res_conflict(un); 18656 /*NOTREACHED*/ 18657 } 18658 SD_ERROR(SD_LOG_IO, un, 18659 "sd_handle_resv_conflict: Disk Reserved\n"); 18660 sd_return_failed_command(un, bp, EACCES); 18661 return; 18662 } 18663 18664 /* 18665 * 1147670: retry only if sd_retry_on_reservation_conflict 18666 * property is set (default is 1). Retries will not succeed 18667 * on a disk reserved by another initiator. HA systems 18668 * may reset this via sd.conf to avoid these retries. 18669 * 18670 * Note: The legacy return code for this failure is EIO, however EACCES 18671 * seems more appropriate for a reservation conflict. 18672 */ 18673 if (sd_retry_on_reservation_conflict == 0) { 18674 SD_ERROR(SD_LOG_IO, un, 18675 "sd_handle_resv_conflict: Device Reserved\n"); 18676 sd_return_failed_command(un, bp, EIO); 18677 return; 18678 } 18679 18680 /* 18681 * Retry the command if we can. 18682 * 18683 * Note: The legacy return code for this failure is EIO, however EACCES 18684 * seems more appropriate for a reservation conflict. 18685 */ 18686 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO, 18687 (clock_t)2, NULL); 18688 } 18689 18690 18691 18692 /* 18693 * Function: sd_pkt_status_qfull 18694 * 18695 * Description: Handle a QUEUE FULL condition from the target. This can 18696 * occur if the HBA does not handle the queue full condition. 18697 * (Basically this means third-party HBAs as Sun HBAs will 18698 * handle the queue full condition.) Note that if there are 18699 * some commands already in the transport, then the queue full 18700 * has occurred because the queue for this nexus is actually 18701 * full. If there are no commands in the transport, then the 18702 * queue full is resulting from some other initiator or lun 18703 * consuming all the resources at the target. 18704 * 18705 * Context: May be called from interrupt context 18706 */ 18707 18708 static void 18709 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp, 18710 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18711 { 18712 ASSERT(un != NULL); 18713 ASSERT(mutex_owned(SD_MUTEX(un))); 18714 ASSERT(bp != NULL); 18715 ASSERT(xp != NULL); 18716 ASSERT(pktp != NULL); 18717 18718 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18719 "sd_pkt_status_qfull: entry\n"); 18720 18721 /* 18722 * Just lower the QFULL throttle and retry the command. Note that 18723 * we do not limit the number of retries here. 18724 */ 18725 sd_reduce_throttle(un, SD_THROTTLE_QFULL); 18726 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0, 18727 SD_RESTART_TIMEOUT, NULL); 18728 18729 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18730 "sd_pkt_status_qfull: exit\n"); 18731 } 18732 18733 18734 /* 18735 * Function: sd_reset_target 18736 * 18737 * Description: Issue a scsi_reset(9F), with either RESET_LUN, 18738 * RESET_TARGET, or RESET_ALL. 18739 * 18740 * Context: May be called under interrupt context. 18741 */ 18742 18743 static void 18744 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp) 18745 { 18746 int rval = 0; 18747 18748 ASSERT(un != NULL); 18749 ASSERT(mutex_owned(SD_MUTEX(un))); 18750 ASSERT(pktp != NULL); 18751 18752 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n"); 18753 18754 /* 18755 * No need to reset if the transport layer has already done so. 18756 */ 18757 if ((pktp->pkt_statistics & 18758 (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) { 18759 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18760 "sd_reset_target: no reset\n"); 18761 return; 18762 } 18763 18764 mutex_exit(SD_MUTEX(un)); 18765 18766 if (un->un_f_allow_bus_device_reset == TRUE) { 18767 if (un->un_f_lun_reset_enabled == TRUE) { 18768 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18769 "sd_reset_target: RESET_LUN\n"); 18770 rval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 18771 } 18772 if (rval == 0) { 18773 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18774 "sd_reset_target: RESET_TARGET\n"); 18775 rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 18776 } 18777 } 18778 18779 if (rval == 0) { 18780 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18781 "sd_reset_target: RESET_ALL\n"); 18782 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 18783 } 18784 18785 mutex_enter(SD_MUTEX(un)); 18786 18787 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n"); 18788 } 18789 18790 18791 /* 18792 * Function: sd_media_change_task 18793 * 18794 * Description: Recovery action for CDROM to become available. 18795 * 18796 * Context: Executes in a taskq() thread context 18797 */ 18798 18799 static void 18800 sd_media_change_task(void *arg) 18801 { 18802 struct scsi_pkt *pktp = arg; 18803 struct sd_lun *un; 18804 struct buf *bp; 18805 struct sd_xbuf *xp; 18806 int err = 0; 18807 int retry_count = 0; 18808 int retry_limit = SD_UNIT_ATTENTION_RETRY/10; 18809 struct sd_sense_info si; 18810 18811 ASSERT(pktp != NULL); 18812 bp = (struct buf *)pktp->pkt_private; 18813 ASSERT(bp != NULL); 18814 xp = SD_GET_XBUF(bp); 18815 ASSERT(xp != NULL); 18816 un = SD_GET_UN(bp); 18817 ASSERT(un != NULL); 18818 ASSERT(!mutex_owned(SD_MUTEX(un))); 18819 ASSERT(un->un_f_monitor_media_state); 18820 18821 si.ssi_severity = SCSI_ERR_INFO; 18822 si.ssi_pfa_flag = FALSE; 18823 18824 /* 18825 * When a reset is issued on a CDROM, it takes a long time to 18826 * recover. First few attempts to read capacity and other things 18827 * related to handling unit attention fail (with a ASC 0x4 and 18828 * ASCQ 0x1). In that case we want to do enough retries and we want 18829 * to limit the retries in other cases of genuine failures like 18830 * no media in drive. 18831 */ 18832 while (retry_count++ < retry_limit) { 18833 if ((err = sd_handle_mchange(un)) == 0) { 18834 break; 18835 } 18836 if (err == EAGAIN) { 18837 retry_limit = SD_UNIT_ATTENTION_RETRY; 18838 } 18839 /* Sleep for 0.5 sec. & try again */ 18840 delay(drv_usectohz(500000)); 18841 } 18842 18843 /* 18844 * Dispatch (retry or fail) the original command here, 18845 * along with appropriate console messages.... 18846 * 18847 * Must grab the mutex before calling sd_retry_command, 18848 * sd_print_sense_msg and sd_return_failed_command. 18849 */ 18850 mutex_enter(SD_MUTEX(un)); 18851 if (err != SD_CMD_SUCCESS) { 18852 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18853 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 18854 si.ssi_severity = SCSI_ERR_FATAL; 18855 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18856 sd_return_failed_command(un, bp, EIO); 18857 } else { 18858 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg, 18859 &si, EIO, (clock_t)0, NULL); 18860 } 18861 mutex_exit(SD_MUTEX(un)); 18862 } 18863 18864 18865 18866 /* 18867 * Function: sd_handle_mchange 18868 * 18869 * Description: Perform geometry validation & other recovery when CDROM 18870 * has been removed from drive. 18871 * 18872 * Return Code: 0 for success 18873 * errno-type return code of either sd_send_scsi_DOORLOCK() or 18874 * sd_send_scsi_READ_CAPACITY() 18875 * 18876 * Context: Executes in a taskq() thread context 18877 */ 18878 18879 static int 18880 sd_handle_mchange(struct sd_lun *un) 18881 { 18882 uint64_t capacity; 18883 uint32_t lbasize; 18884 int rval; 18885 18886 ASSERT(!mutex_owned(SD_MUTEX(un))); 18887 ASSERT(un->un_f_monitor_media_state); 18888 18889 if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize, 18890 SD_PATH_DIRECT_PRIORITY)) != 0) { 18891 return (rval); 18892 } 18893 18894 mutex_enter(SD_MUTEX(un)); 18895 sd_update_block_info(un, lbasize, capacity); 18896 18897 if (un->un_errstats != NULL) { 18898 struct sd_errstats *stp = 18899 (struct sd_errstats *)un->un_errstats->ks_data; 18900 stp->sd_capacity.value.ui64 = (uint64_t) 18901 ((uint64_t)un->un_blockcount * 18902 (uint64_t)un->un_tgt_blocksize); 18903 } 18904 18905 /* 18906 * Note: Maybe let the strategy/partitioning chain worry about getting 18907 * valid geometry. 18908 */ 18909 un->un_f_geometry_is_valid = FALSE; 18910 (void) sd_validate_geometry(un, SD_PATH_DIRECT_PRIORITY); 18911 if (un->un_f_geometry_is_valid == FALSE) { 18912 mutex_exit(SD_MUTEX(un)); 18913 return (EIO); 18914 } 18915 18916 mutex_exit(SD_MUTEX(un)); 18917 18918 /* 18919 * Try to lock the door 18920 */ 18921 return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT, 18922 SD_PATH_DIRECT_PRIORITY)); 18923 } 18924 18925 18926 /* 18927 * Function: sd_send_scsi_DOORLOCK 18928 * 18929 * Description: Issue the scsi DOOR LOCK command 18930 * 18931 * Arguments: un - pointer to driver soft state (unit) structure for 18932 * this target. 18933 * flag - SD_REMOVAL_ALLOW 18934 * SD_REMOVAL_PREVENT 18935 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 18936 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 18937 * to use the USCSI "direct" chain and bypass the normal 18938 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 18939 * command is issued as part of an error recovery action. 18940 * 18941 * Return Code: 0 - Success 18942 * errno return code from sd_send_scsi_cmd() 18943 * 18944 * Context: Can sleep. 18945 */ 18946 18947 static int 18948 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag) 18949 { 18950 union scsi_cdb cdb; 18951 struct uscsi_cmd ucmd_buf; 18952 struct scsi_extended_sense sense_buf; 18953 int status; 18954 18955 ASSERT(un != NULL); 18956 ASSERT(!mutex_owned(SD_MUTEX(un))); 18957 18958 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un); 18959 18960 /* already determined doorlock is not supported, fake success */ 18961 if (un->un_f_doorlock_supported == FALSE) { 18962 return (0); 18963 } 18964 18965 bzero(&cdb, sizeof (cdb)); 18966 bzero(&ucmd_buf, sizeof (ucmd_buf)); 18967 18968 cdb.scc_cmd = SCMD_DOORLOCK; 18969 cdb.cdb_opaque[4] = (uchar_t)flag; 18970 18971 ucmd_buf.uscsi_cdb = (char *)&cdb; 18972 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 18973 ucmd_buf.uscsi_bufaddr = NULL; 18974 ucmd_buf.uscsi_buflen = 0; 18975 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 18976 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 18977 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 18978 ucmd_buf.uscsi_timeout = 15; 18979 18980 SD_TRACE(SD_LOG_IO, un, 18981 "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n"); 18982 18983 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE, 18984 UIO_SYSSPACE, UIO_SYSSPACE, path_flag); 18985 18986 if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) && 18987 (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 18988 (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) { 18989 /* fake success and skip subsequent doorlock commands */ 18990 un->un_f_doorlock_supported = FALSE; 18991 return (0); 18992 } 18993 18994 return (status); 18995 } 18996 18997 /* 18998 * Function: sd_send_scsi_READ_CAPACITY 18999 * 19000 * Description: This routine uses the scsi READ CAPACITY command to determine 19001 * the device capacity in number of blocks and the device native 19002 * block size. If this function returns a failure, then the 19003 * values in *capp and *lbap are undefined. If the capacity 19004 * returned is 0xffffffff then the lun is too large for a 19005 * normal READ CAPACITY command and the results of a 19006 * READ CAPACITY 16 will be used instead. 19007 * 19008 * Arguments: un - ptr to soft state struct for the target 19009 * capp - ptr to unsigned 64-bit variable to receive the 19010 * capacity value from the command. 19011 * lbap - ptr to unsigned 32-bit varaible to receive the 19012 * block size value from the command 19013 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 19014 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 19015 * to use the USCSI "direct" chain and bypass the normal 19016 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 19017 * command is issued as part of an error recovery action. 19018 * 19019 * Return Code: 0 - Success 19020 * EIO - IO error 19021 * EACCES - Reservation conflict detected 19022 * EAGAIN - Device is becoming ready 19023 * errno return code from sd_send_scsi_cmd() 19024 * 19025 * Context: Can sleep. Blocks until command completes. 19026 */ 19027 19028 #define SD_CAPACITY_SIZE sizeof (struct scsi_capacity) 19029 19030 static int 19031 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap, 19032 int path_flag) 19033 { 19034 struct scsi_extended_sense sense_buf; 19035 struct uscsi_cmd ucmd_buf; 19036 union scsi_cdb cdb; 19037 uint32_t *capacity_buf; 19038 uint64_t capacity; 19039 uint32_t lbasize; 19040 int status; 19041 19042 ASSERT(un != NULL); 19043 ASSERT(!mutex_owned(SD_MUTEX(un))); 19044 ASSERT(capp != NULL); 19045 ASSERT(lbap != NULL); 19046 19047 SD_TRACE(SD_LOG_IO, un, 19048 "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un); 19049 19050 /* 19051 * First send a READ_CAPACITY command to the target. 19052 * (This command is mandatory under SCSI-2.) 19053 * 19054 * Set up the CDB for the READ_CAPACITY command. The Partial 19055 * Medium Indicator bit is cleared. The address field must be 19056 * zero if the PMI bit is zero. 19057 */ 19058 bzero(&cdb, sizeof (cdb)); 19059 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19060 19061 capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP); 19062 19063 cdb.scc_cmd = SCMD_READ_CAPACITY; 19064 19065 ucmd_buf.uscsi_cdb = (char *)&cdb; 19066 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 19067 ucmd_buf.uscsi_bufaddr = (caddr_t)capacity_buf; 19068 ucmd_buf.uscsi_buflen = SD_CAPACITY_SIZE; 19069 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19070 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 19071 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 19072 ucmd_buf.uscsi_timeout = 60; 19073 19074 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE, 19075 UIO_SYSSPACE, UIO_SYSSPACE, path_flag); 19076 19077 switch (status) { 19078 case 0: 19079 /* Return failure if we did not get valid capacity data. */ 19080 if (ucmd_buf.uscsi_resid != 0) { 19081 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 19082 return (EIO); 19083 } 19084 19085 /* 19086 * Read capacity and block size from the READ CAPACITY 10 data. 19087 * This data may be adjusted later due to device specific 19088 * issues. 19089 * 19090 * According to the SCSI spec, the READ CAPACITY 10 19091 * command returns the following: 19092 * 19093 * bytes 0-3: Maximum logical block address available. 19094 * (MSB in byte:0 & LSB in byte:3) 19095 * 19096 * bytes 4-7: Block length in bytes 19097 * (MSB in byte:4 & LSB in byte:7) 19098 * 19099 */ 19100 capacity = BE_32(capacity_buf[0]); 19101 lbasize = BE_32(capacity_buf[1]); 19102 19103 /* 19104 * Done with capacity_buf 19105 */ 19106 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 19107 19108 /* 19109 * if the reported capacity is set to all 0xf's, then 19110 * this disk is too large and requires SBC-2 commands. 19111 * Reissue the request using READ CAPACITY 16. 19112 */ 19113 if (capacity == 0xffffffff) { 19114 status = sd_send_scsi_READ_CAPACITY_16(un, &capacity, 19115 &lbasize, path_flag); 19116 if (status != 0) { 19117 return (status); 19118 } 19119 } 19120 break; /* Success! */ 19121 case EIO: 19122 switch (ucmd_buf.uscsi_status) { 19123 case STATUS_RESERVATION_CONFLICT: 19124 status = EACCES; 19125 break; 19126 case STATUS_CHECK: 19127 /* 19128 * Check condition; look for ASC/ASCQ of 0x04/0x01 19129 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY) 19130 */ 19131 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 19132 (sense_buf.es_add_code == 0x04) && 19133 (sense_buf.es_qual_code == 0x01)) { 19134 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 19135 return (EAGAIN); 19136 } 19137 break; 19138 default: 19139 break; 19140 } 19141 /* FALLTHRU */ 19142 default: 19143 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 19144 return (status); 19145 } 19146 19147 /* 19148 * Some ATAPI CD-ROM drives report inaccurate LBA size values 19149 * (2352 and 0 are common) so for these devices always force the value 19150 * to 2048 as required by the ATAPI specs. 19151 */ 19152 if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) { 19153 lbasize = 2048; 19154 } 19155 19156 /* 19157 * Get the maximum LBA value from the READ CAPACITY data. 19158 * Here we assume that the Partial Medium Indicator (PMI) bit 19159 * was cleared when issuing the command. This means that the LBA 19160 * returned from the device is the LBA of the last logical block 19161 * on the logical unit. The actual logical block count will be 19162 * this value plus one. 19163 * 19164 * Currently the capacity is saved in terms of un->un_sys_blocksize, 19165 * so scale the capacity value to reflect this. 19166 */ 19167 capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize); 19168 19169 #if defined(__i386) || defined(__amd64) 19170 /* 19171 * On x86, compensate for off-by-1 error (number of sectors on 19172 * media) (1175930) 19173 */ 19174 if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable && 19175 (lbasize == un->un_sys_blocksize)) { 19176 capacity -= 1; 19177 } 19178 #endif 19179 19180 /* 19181 * Copy the values from the READ CAPACITY command into the space 19182 * provided by the caller. 19183 */ 19184 *capp = capacity; 19185 *lbap = lbasize; 19186 19187 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: " 19188 "capacity:0x%llx lbasize:0x%x\n", capacity, lbasize); 19189 19190 /* 19191 * Both the lbasize and capacity from the device must be nonzero, 19192 * otherwise we assume that the values are not valid and return 19193 * failure to the caller. (4203735) 19194 */ 19195 if ((capacity == 0) || (lbasize == 0)) { 19196 return (EIO); 19197 } 19198 19199 return (0); 19200 } 19201 19202 /* 19203 * Function: sd_send_scsi_READ_CAPACITY_16 19204 * 19205 * Description: This routine uses the scsi READ CAPACITY 16 command to 19206 * determine the device capacity in number of blocks and the 19207 * device native block size. If this function returns a failure, 19208 * then the values in *capp and *lbap are undefined. 19209 * This routine should always be called by 19210 * sd_send_scsi_READ_CAPACITY which will appy any device 19211 * specific adjustments to capacity and lbasize. 19212 * 19213 * Arguments: un - ptr to soft state struct for the target 19214 * capp - ptr to unsigned 64-bit variable to receive the 19215 * capacity value from the command. 19216 * lbap - ptr to unsigned 32-bit varaible to receive the 19217 * block size value from the command 19218 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 19219 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 19220 * to use the USCSI "direct" chain and bypass the normal 19221 * command waitq. SD_PATH_DIRECT_PRIORITY is used when 19222 * this command is issued as part of an error recovery 19223 * action. 19224 * 19225 * Return Code: 0 - Success 19226 * EIO - IO error 19227 * EACCES - Reservation conflict detected 19228 * EAGAIN - Device is becoming ready 19229 * errno return code from sd_send_scsi_cmd() 19230 * 19231 * Context: Can sleep. Blocks until command completes. 19232 */ 19233 19234 #define SD_CAPACITY_16_SIZE sizeof (struct scsi_capacity_16) 19235 19236 static int 19237 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp, 19238 uint32_t *lbap, int path_flag) 19239 { 19240 struct scsi_extended_sense sense_buf; 19241 struct uscsi_cmd ucmd_buf; 19242 union scsi_cdb cdb; 19243 uint64_t *capacity16_buf; 19244 uint64_t capacity; 19245 uint32_t lbasize; 19246 int status; 19247 19248 ASSERT(un != NULL); 19249 ASSERT(!mutex_owned(SD_MUTEX(un))); 19250 ASSERT(capp != NULL); 19251 ASSERT(lbap != NULL); 19252 19253 SD_TRACE(SD_LOG_IO, un, 19254 "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un); 19255 19256 /* 19257 * First send a READ_CAPACITY_16 command to the target. 19258 * 19259 * Set up the CDB for the READ_CAPACITY_16 command. The Partial 19260 * Medium Indicator bit is cleared. The address field must be 19261 * zero if the PMI bit is zero. 19262 */ 19263 bzero(&cdb, sizeof (cdb)); 19264 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19265 19266 capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP); 19267 19268 ucmd_buf.uscsi_cdb = (char *)&cdb; 19269 ucmd_buf.uscsi_cdblen = CDB_GROUP4; 19270 ucmd_buf.uscsi_bufaddr = (caddr_t)capacity16_buf; 19271 ucmd_buf.uscsi_buflen = SD_CAPACITY_16_SIZE; 19272 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19273 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 19274 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 19275 ucmd_buf.uscsi_timeout = 60; 19276 19277 /* 19278 * Read Capacity (16) is a Service Action In command. One 19279 * command byte (0x9E) is overloaded for multiple operations, 19280 * with the second CDB byte specifying the desired operation 19281 */ 19282 cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4; 19283 cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4; 19284 19285 /* 19286 * Fill in allocation length field 19287 */ 19288 FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen); 19289 19290 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE, 19291 UIO_SYSSPACE, UIO_SYSSPACE, path_flag); 19292 19293 switch (status) { 19294 case 0: 19295 /* Return failure if we did not get valid capacity data. */ 19296 if (ucmd_buf.uscsi_resid > 20) { 19297 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 19298 return (EIO); 19299 } 19300 19301 /* 19302 * Read capacity and block size from the READ CAPACITY 10 data. 19303 * This data may be adjusted later due to device specific 19304 * issues. 19305 * 19306 * According to the SCSI spec, the READ CAPACITY 10 19307 * command returns the following: 19308 * 19309 * bytes 0-7: Maximum logical block address available. 19310 * (MSB in byte:0 & LSB in byte:7) 19311 * 19312 * bytes 8-11: Block length in bytes 19313 * (MSB in byte:8 & LSB in byte:11) 19314 * 19315 */ 19316 capacity = BE_64(capacity16_buf[0]); 19317 lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]); 19318 19319 /* 19320 * Done with capacity16_buf 19321 */ 19322 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 19323 19324 /* 19325 * if the reported capacity is set to all 0xf's, then 19326 * this disk is too large. This could only happen with 19327 * a device that supports LBAs larger than 64 bits which 19328 * are not defined by any current T10 standards. 19329 */ 19330 if (capacity == 0xffffffffffffffff) { 19331 return (EIO); 19332 } 19333 break; /* Success! */ 19334 case EIO: 19335 switch (ucmd_buf.uscsi_status) { 19336 case STATUS_RESERVATION_CONFLICT: 19337 status = EACCES; 19338 break; 19339 case STATUS_CHECK: 19340 /* 19341 * Check condition; look for ASC/ASCQ of 0x04/0x01 19342 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY) 19343 */ 19344 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 19345 (sense_buf.es_add_code == 0x04) && 19346 (sense_buf.es_qual_code == 0x01)) { 19347 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 19348 return (EAGAIN); 19349 } 19350 break; 19351 default: 19352 break; 19353 } 19354 /* FALLTHRU */ 19355 default: 19356 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 19357 return (status); 19358 } 19359 19360 *capp = capacity; 19361 *lbap = lbasize; 19362 19363 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: " 19364 "capacity:0x%llx lbasize:0x%x\n", capacity, lbasize); 19365 19366 return (0); 19367 } 19368 19369 19370 /* 19371 * Function: sd_send_scsi_START_STOP_UNIT 19372 * 19373 * Description: Issue a scsi START STOP UNIT command to the target. 19374 * 19375 * Arguments: un - pointer to driver soft state (unit) structure for 19376 * this target. 19377 * flag - SD_TARGET_START 19378 * SD_TARGET_STOP 19379 * SD_TARGET_EJECT 19380 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 19381 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 19382 * to use the USCSI "direct" chain and bypass the normal 19383 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 19384 * command is issued as part of an error recovery action. 19385 * 19386 * Return Code: 0 - Success 19387 * EIO - IO error 19388 * EACCES - Reservation conflict detected 19389 * ENXIO - Not Ready, medium not present 19390 * errno return code from sd_send_scsi_cmd() 19391 * 19392 * Context: Can sleep. 19393 */ 19394 19395 static int 19396 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag) 19397 { 19398 struct scsi_extended_sense sense_buf; 19399 union scsi_cdb cdb; 19400 struct uscsi_cmd ucmd_buf; 19401 int status; 19402 19403 ASSERT(un != NULL); 19404 ASSERT(!mutex_owned(SD_MUTEX(un))); 19405 19406 SD_TRACE(SD_LOG_IO, un, 19407 "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un); 19408 19409 if (un->un_f_check_start_stop && 19410 ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) && 19411 (un->un_f_start_stop_supported != TRUE)) { 19412 return (0); 19413 } 19414 19415 bzero(&cdb, sizeof (cdb)); 19416 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19417 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 19418 19419 cdb.scc_cmd = SCMD_START_STOP; 19420 cdb.cdb_opaque[4] = (uchar_t)flag; 19421 19422 ucmd_buf.uscsi_cdb = (char *)&cdb; 19423 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 19424 ucmd_buf.uscsi_bufaddr = NULL; 19425 ucmd_buf.uscsi_buflen = 0; 19426 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19427 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 19428 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 19429 ucmd_buf.uscsi_timeout = 200; 19430 19431 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE, 19432 UIO_SYSSPACE, UIO_SYSSPACE, path_flag); 19433 19434 switch (status) { 19435 case 0: 19436 break; /* Success! */ 19437 case EIO: 19438 switch (ucmd_buf.uscsi_status) { 19439 case STATUS_RESERVATION_CONFLICT: 19440 status = EACCES; 19441 break; 19442 case STATUS_CHECK: 19443 if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) { 19444 switch (sense_buf.es_key) { 19445 case KEY_ILLEGAL_REQUEST: 19446 status = ENOTSUP; 19447 break; 19448 case KEY_NOT_READY: 19449 if (sense_buf.es_add_code == 0x3A) { 19450 status = ENXIO; 19451 } 19452 break; 19453 default: 19454 break; 19455 } 19456 } 19457 break; 19458 default: 19459 break; 19460 } 19461 break; 19462 default: 19463 break; 19464 } 19465 19466 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n"); 19467 19468 return (status); 19469 } 19470 19471 19472 /* 19473 * Function: sd_start_stop_unit_callback 19474 * 19475 * Description: timeout(9F) callback to begin recovery process for a 19476 * device that has spun down. 19477 * 19478 * Arguments: arg - pointer to associated softstate struct. 19479 * 19480 * Context: Executes in a timeout(9F) thread context 19481 */ 19482 19483 static void 19484 sd_start_stop_unit_callback(void *arg) 19485 { 19486 struct sd_lun *un = arg; 19487 ASSERT(un != NULL); 19488 ASSERT(!mutex_owned(SD_MUTEX(un))); 19489 19490 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n"); 19491 19492 (void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP); 19493 } 19494 19495 19496 /* 19497 * Function: sd_start_stop_unit_task 19498 * 19499 * Description: Recovery procedure when a drive is spun down. 19500 * 19501 * Arguments: arg - pointer to associated softstate struct. 19502 * 19503 * Context: Executes in a taskq() thread context 19504 */ 19505 19506 static void 19507 sd_start_stop_unit_task(void *arg) 19508 { 19509 struct sd_lun *un = arg; 19510 19511 ASSERT(un != NULL); 19512 ASSERT(!mutex_owned(SD_MUTEX(un))); 19513 19514 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n"); 19515 19516 /* 19517 * Some unformatted drives report not ready error, no need to 19518 * restart if format has been initiated. 19519 */ 19520 mutex_enter(SD_MUTEX(un)); 19521 if (un->un_f_format_in_progress == TRUE) { 19522 mutex_exit(SD_MUTEX(un)); 19523 return; 19524 } 19525 mutex_exit(SD_MUTEX(un)); 19526 19527 /* 19528 * When a START STOP command is issued from here, it is part of a 19529 * failure recovery operation and must be issued before any other 19530 * commands, including any pending retries. Thus it must be sent 19531 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up 19532 * succeeds or not, we will start I/O after the attempt. 19533 */ 19534 (void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, 19535 SD_PATH_DIRECT_PRIORITY); 19536 19537 /* 19538 * The above call blocks until the START_STOP_UNIT command completes. 19539 * Now that it has completed, we must re-try the original IO that 19540 * received the NOT READY condition in the first place. There are 19541 * three possible conditions here: 19542 * 19543 * (1) The original IO is on un_retry_bp. 19544 * (2) The original IO is on the regular wait queue, and un_retry_bp 19545 * is NULL. 19546 * (3) The original IO is on the regular wait queue, and un_retry_bp 19547 * points to some other, unrelated bp. 19548 * 19549 * For each case, we must call sd_start_cmds() with un_retry_bp 19550 * as the argument. If un_retry_bp is NULL, this will initiate 19551 * processing of the regular wait queue. If un_retry_bp is not NULL, 19552 * then this will process the bp on un_retry_bp. That may or may not 19553 * be the original IO, but that does not matter: the important thing 19554 * is to keep the IO processing going at this point. 19555 * 19556 * Note: This is a very specific error recovery sequence associated 19557 * with a drive that is not spun up. We attempt a START_STOP_UNIT and 19558 * serialize the I/O with completion of the spin-up. 19559 */ 19560 mutex_enter(SD_MUTEX(un)); 19561 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19562 "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n", 19563 un, un->un_retry_bp); 19564 un->un_startstop_timeid = NULL; /* Timeout is no longer pending */ 19565 sd_start_cmds(un, un->un_retry_bp); 19566 mutex_exit(SD_MUTEX(un)); 19567 19568 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n"); 19569 } 19570 19571 19572 /* 19573 * Function: sd_send_scsi_INQUIRY 19574 * 19575 * Description: Issue the scsi INQUIRY command. 19576 * 19577 * Arguments: un 19578 * bufaddr 19579 * buflen 19580 * evpd 19581 * page_code 19582 * page_length 19583 * 19584 * Return Code: 0 - Success 19585 * errno return code from sd_send_scsi_cmd() 19586 * 19587 * Context: Can sleep. Does not return until command is completed. 19588 */ 19589 19590 static int 19591 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen, 19592 uchar_t evpd, uchar_t page_code, size_t *residp) 19593 { 19594 union scsi_cdb cdb; 19595 struct uscsi_cmd ucmd_buf; 19596 int status; 19597 19598 ASSERT(un != NULL); 19599 ASSERT(!mutex_owned(SD_MUTEX(un))); 19600 ASSERT(bufaddr != NULL); 19601 19602 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un); 19603 19604 bzero(&cdb, sizeof (cdb)); 19605 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19606 bzero(bufaddr, buflen); 19607 19608 cdb.scc_cmd = SCMD_INQUIRY; 19609 cdb.cdb_opaque[1] = evpd; 19610 cdb.cdb_opaque[2] = page_code; 19611 FORMG0COUNT(&cdb, buflen); 19612 19613 ucmd_buf.uscsi_cdb = (char *)&cdb; 19614 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 19615 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 19616 ucmd_buf.uscsi_buflen = buflen; 19617 ucmd_buf.uscsi_rqbuf = NULL; 19618 ucmd_buf.uscsi_rqlen = 0; 19619 ucmd_buf.uscsi_flags = USCSI_READ | USCSI_SILENT; 19620 ucmd_buf.uscsi_timeout = 200; /* Excessive legacy value */ 19621 19622 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE, 19623 UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_DIRECT); 19624 19625 if ((status == 0) && (residp != NULL)) { 19626 *residp = ucmd_buf.uscsi_resid; 19627 } 19628 19629 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n"); 19630 19631 return (status); 19632 } 19633 19634 19635 /* 19636 * Function: sd_send_scsi_TEST_UNIT_READY 19637 * 19638 * Description: Issue the scsi TEST UNIT READY command. 19639 * This routine can be told to set the flag USCSI_DIAGNOSE to 19640 * prevent retrying failed commands. Use this when the intent 19641 * is either to check for device readiness, to clear a Unit 19642 * Attention, or to clear any outstanding sense data. 19643 * However under specific conditions the expected behavior 19644 * is for retries to bring a device ready, so use the flag 19645 * with caution. 19646 * 19647 * Arguments: un 19648 * flag: SD_CHECK_FOR_MEDIA: return ENXIO if no media present 19649 * SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE. 19650 * 0: dont check for media present, do retries on cmd. 19651 * 19652 * Return Code: 0 - Success 19653 * EIO - IO error 19654 * EACCES - Reservation conflict detected 19655 * ENXIO - Not Ready, medium not present 19656 * errno return code from sd_send_scsi_cmd() 19657 * 19658 * Context: Can sleep. Does not return until command is completed. 19659 */ 19660 19661 static int 19662 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag) 19663 { 19664 struct scsi_extended_sense sense_buf; 19665 union scsi_cdb cdb; 19666 struct uscsi_cmd ucmd_buf; 19667 int status; 19668 19669 ASSERT(un != NULL); 19670 ASSERT(!mutex_owned(SD_MUTEX(un))); 19671 19672 SD_TRACE(SD_LOG_IO, un, 19673 "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un); 19674 19675 /* 19676 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect 19677 * timeouts when they receive a TUR and the queue is not empty. Check 19678 * the configuration flag set during attach (indicating the drive has 19679 * this firmware bug) and un_ncmds_in_transport before issuing the 19680 * TUR. If there are 19681 * pending commands return success, this is a bit arbitrary but is ok 19682 * for non-removables (i.e. the eliteI disks) and non-clustering 19683 * configurations. 19684 */ 19685 if (un->un_f_cfg_tur_check == TRUE) { 19686 mutex_enter(SD_MUTEX(un)); 19687 if (un->un_ncmds_in_transport != 0) { 19688 mutex_exit(SD_MUTEX(un)); 19689 return (0); 19690 } 19691 mutex_exit(SD_MUTEX(un)); 19692 } 19693 19694 bzero(&cdb, sizeof (cdb)); 19695 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19696 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 19697 19698 cdb.scc_cmd = SCMD_TEST_UNIT_READY; 19699 19700 ucmd_buf.uscsi_cdb = (char *)&cdb; 19701 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 19702 ucmd_buf.uscsi_bufaddr = NULL; 19703 ucmd_buf.uscsi_buflen = 0; 19704 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19705 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 19706 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 19707 19708 /* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */ 19709 if ((flag & SD_DONT_RETRY_TUR) != 0) { 19710 ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE; 19711 } 19712 ucmd_buf.uscsi_timeout = 60; 19713 19714 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE, 19715 UIO_SYSSPACE, UIO_SYSSPACE, 19716 ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT : SD_PATH_STANDARD)); 19717 19718 switch (status) { 19719 case 0: 19720 break; /* Success! */ 19721 case EIO: 19722 switch (ucmd_buf.uscsi_status) { 19723 case STATUS_RESERVATION_CONFLICT: 19724 status = EACCES; 19725 break; 19726 case STATUS_CHECK: 19727 if ((flag & SD_CHECK_FOR_MEDIA) == 0) { 19728 break; 19729 } 19730 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 19731 (sense_buf.es_key == KEY_NOT_READY) && 19732 (sense_buf.es_add_code == 0x3A)) { 19733 status = ENXIO; 19734 } 19735 break; 19736 default: 19737 break; 19738 } 19739 break; 19740 default: 19741 break; 19742 } 19743 19744 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n"); 19745 19746 return (status); 19747 } 19748 19749 19750 /* 19751 * Function: sd_send_scsi_PERSISTENT_RESERVE_IN 19752 * 19753 * Description: Issue the scsi PERSISTENT RESERVE IN command. 19754 * 19755 * Arguments: un 19756 * 19757 * Return Code: 0 - Success 19758 * EACCES 19759 * ENOTSUP 19760 * errno return code from sd_send_scsi_cmd() 19761 * 19762 * Context: Can sleep. Does not return until command is completed. 19763 */ 19764 19765 static int 19766 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t usr_cmd, 19767 uint16_t data_len, uchar_t *data_bufp) 19768 { 19769 struct scsi_extended_sense sense_buf; 19770 union scsi_cdb cdb; 19771 struct uscsi_cmd ucmd_buf; 19772 int status; 19773 int no_caller_buf = FALSE; 19774 19775 ASSERT(un != NULL); 19776 ASSERT(!mutex_owned(SD_MUTEX(un))); 19777 ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV)); 19778 19779 SD_TRACE(SD_LOG_IO, un, 19780 "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un); 19781 19782 bzero(&cdb, sizeof (cdb)); 19783 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19784 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 19785 if (data_bufp == NULL) { 19786 /* Allocate a default buf if the caller did not give one */ 19787 ASSERT(data_len == 0); 19788 data_len = MHIOC_RESV_KEY_SIZE; 19789 data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP); 19790 no_caller_buf = TRUE; 19791 } 19792 19793 cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN; 19794 cdb.cdb_opaque[1] = usr_cmd; 19795 FORMG1COUNT(&cdb, data_len); 19796 19797 ucmd_buf.uscsi_cdb = (char *)&cdb; 19798 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 19799 ucmd_buf.uscsi_bufaddr = (caddr_t)data_bufp; 19800 ucmd_buf.uscsi_buflen = data_len; 19801 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19802 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 19803 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 19804 ucmd_buf.uscsi_timeout = 60; 19805 19806 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE, 19807 UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD); 19808 19809 switch (status) { 19810 case 0: 19811 break; /* Success! */ 19812 case EIO: 19813 switch (ucmd_buf.uscsi_status) { 19814 case STATUS_RESERVATION_CONFLICT: 19815 status = EACCES; 19816 break; 19817 case STATUS_CHECK: 19818 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 19819 (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) { 19820 status = ENOTSUP; 19821 } 19822 break; 19823 default: 19824 break; 19825 } 19826 break; 19827 default: 19828 break; 19829 } 19830 19831 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n"); 19832 19833 if (no_caller_buf == TRUE) { 19834 kmem_free(data_bufp, data_len); 19835 } 19836 19837 return (status); 19838 } 19839 19840 19841 /* 19842 * Function: sd_send_scsi_PERSISTENT_RESERVE_OUT 19843 * 19844 * Description: This routine is the driver entry point for handling CD-ROM 19845 * multi-host persistent reservation requests (MHIOCGRP_INKEYS, 19846 * MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the 19847 * device. 19848 * 19849 * Arguments: un - Pointer to soft state struct for the target. 19850 * usr_cmd SCSI-3 reservation facility command (one of 19851 * SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE, 19852 * SD_SCSI3_PREEMPTANDABORT) 19853 * usr_bufp - user provided pointer register, reserve descriptor or 19854 * preempt and abort structure (mhioc_register_t, 19855 * mhioc_resv_desc_t, mhioc_preemptandabort_t) 19856 * 19857 * Return Code: 0 - Success 19858 * EACCES 19859 * ENOTSUP 19860 * errno return code from sd_send_scsi_cmd() 19861 * 19862 * Context: Can sleep. Does not return until command is completed. 19863 */ 19864 19865 static int 19866 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd, 19867 uchar_t *usr_bufp) 19868 { 19869 struct scsi_extended_sense sense_buf; 19870 union scsi_cdb cdb; 19871 struct uscsi_cmd ucmd_buf; 19872 int status; 19873 uchar_t data_len = sizeof (sd_prout_t); 19874 sd_prout_t *prp; 19875 19876 ASSERT(un != NULL); 19877 ASSERT(!mutex_owned(SD_MUTEX(un))); 19878 ASSERT(data_len == 24); /* required by scsi spec */ 19879 19880 SD_TRACE(SD_LOG_IO, un, 19881 "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un); 19882 19883 if (usr_bufp == NULL) { 19884 return (EINVAL); 19885 } 19886 19887 bzero(&cdb, sizeof (cdb)); 19888 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19889 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 19890 prp = kmem_zalloc(data_len, KM_SLEEP); 19891 19892 cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT; 19893 cdb.cdb_opaque[1] = usr_cmd; 19894 FORMG1COUNT(&cdb, data_len); 19895 19896 ucmd_buf.uscsi_cdb = (char *)&cdb; 19897 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 19898 ucmd_buf.uscsi_bufaddr = (caddr_t)prp; 19899 ucmd_buf.uscsi_buflen = data_len; 19900 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19901 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 19902 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT; 19903 ucmd_buf.uscsi_timeout = 60; 19904 19905 switch (usr_cmd) { 19906 case SD_SCSI3_REGISTER: { 19907 mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp; 19908 19909 bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 19910 bcopy(ptr->newkey.key, prp->service_key, 19911 MHIOC_RESV_KEY_SIZE); 19912 prp->aptpl = ptr->aptpl; 19913 break; 19914 } 19915 case SD_SCSI3_RESERVE: 19916 case SD_SCSI3_RELEASE: { 19917 mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp; 19918 19919 bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 19920 prp->scope_address = BE_32(ptr->scope_specific_addr); 19921 cdb.cdb_opaque[2] = ptr->type; 19922 break; 19923 } 19924 case SD_SCSI3_PREEMPTANDABORT: { 19925 mhioc_preemptandabort_t *ptr = 19926 (mhioc_preemptandabort_t *)usr_bufp; 19927 19928 bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 19929 bcopy(ptr->victim_key.key, prp->service_key, 19930 MHIOC_RESV_KEY_SIZE); 19931 prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr); 19932 cdb.cdb_opaque[2] = ptr->resvdesc.type; 19933 ucmd_buf.uscsi_flags |= USCSI_HEAD; 19934 break; 19935 } 19936 case SD_SCSI3_REGISTERANDIGNOREKEY: 19937 { 19938 mhioc_registerandignorekey_t *ptr; 19939 ptr = (mhioc_registerandignorekey_t *)usr_bufp; 19940 bcopy(ptr->newkey.key, 19941 prp->service_key, MHIOC_RESV_KEY_SIZE); 19942 prp->aptpl = ptr->aptpl; 19943 break; 19944 } 19945 default: 19946 ASSERT(FALSE); 19947 break; 19948 } 19949 19950 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE, 19951 UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD); 19952 19953 switch (status) { 19954 case 0: 19955 break; /* Success! */ 19956 case EIO: 19957 switch (ucmd_buf.uscsi_status) { 19958 case STATUS_RESERVATION_CONFLICT: 19959 status = EACCES; 19960 break; 19961 case STATUS_CHECK: 19962 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 19963 (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) { 19964 status = ENOTSUP; 19965 } 19966 break; 19967 default: 19968 break; 19969 } 19970 break; 19971 default: 19972 break; 19973 } 19974 19975 kmem_free(prp, data_len); 19976 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n"); 19977 return (status); 19978 } 19979 19980 19981 /* 19982 * Function: sd_send_scsi_SYNCHRONIZE_CACHE 19983 * 19984 * Description: Issues a scsi SYNCHRONIZE CACHE command to the target 19985 * 19986 * Arguments: un - pointer to the target's soft state struct 19987 * 19988 * Return Code: 0 - success 19989 * errno-type error code 19990 * 19991 * Context: kernel thread context only. 19992 */ 19993 19994 static int 19995 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc) 19996 { 19997 struct sd_uscsi_info *uip; 19998 struct uscsi_cmd *uscmd; 19999 union scsi_cdb *cdb; 20000 struct buf *bp; 20001 int rval = 0; 20002 20003 SD_TRACE(SD_LOG_IO, un, 20004 "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un); 20005 20006 ASSERT(un != NULL); 20007 ASSERT(!mutex_owned(SD_MUTEX(un))); 20008 20009 cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP); 20010 cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE; 20011 20012 /* 20013 * First get some memory for the uscsi_cmd struct and cdb 20014 * and initialize for SYNCHRONIZE_CACHE cmd. 20015 */ 20016 uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP); 20017 uscmd->uscsi_cdblen = CDB_GROUP1; 20018 uscmd->uscsi_cdb = (caddr_t)cdb; 20019 uscmd->uscsi_bufaddr = NULL; 20020 uscmd->uscsi_buflen = 0; 20021 uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 20022 uscmd->uscsi_rqlen = SENSE_LENGTH; 20023 uscmd->uscsi_rqresid = SENSE_LENGTH; 20024 uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 20025 uscmd->uscsi_timeout = sd_io_time; 20026 20027 /* 20028 * Allocate an sd_uscsi_info struct and fill it with the info 20029 * needed by sd_initpkt_for_uscsi(). Then put the pointer into 20030 * b_private in the buf for sd_initpkt_for_uscsi(). Note that 20031 * since we allocate the buf here in this function, we do not 20032 * need to preserve the prior contents of b_private. 20033 * The sd_uscsi_info struct is also used by sd_uscsi_strategy() 20034 */ 20035 uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP); 20036 uip->ui_flags = SD_PATH_DIRECT; 20037 uip->ui_cmdp = uscmd; 20038 20039 bp = getrbuf(KM_SLEEP); 20040 bp->b_private = uip; 20041 20042 /* 20043 * Setup buffer to carry uscsi request. 20044 */ 20045 bp->b_flags = B_BUSY; 20046 bp->b_bcount = 0; 20047 bp->b_blkno = 0; 20048 20049 if (dkc != NULL) { 20050 bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone; 20051 uip->ui_dkc = *dkc; 20052 } 20053 20054 bp->b_edev = SD_GET_DEV(un); 20055 bp->b_dev = cmpdev(bp->b_edev); /* maybe unnecessary? */ 20056 20057 (void) sd_uscsi_strategy(bp); 20058 20059 /* 20060 * If synchronous request, wait for completion 20061 * If async just return and let b_iodone callback 20062 * cleanup. 20063 * NOTE: On return, u_ncmds_in_driver will be decremented, 20064 * but it was also incremented in sd_uscsi_strategy(), so 20065 * we should be ok. 20066 */ 20067 if (dkc == NULL) { 20068 (void) biowait(bp); 20069 rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp); 20070 } 20071 20072 return (rval); 20073 } 20074 20075 20076 static int 20077 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp) 20078 { 20079 struct sd_uscsi_info *uip; 20080 struct uscsi_cmd *uscmd; 20081 struct scsi_extended_sense *sense_buf; 20082 struct sd_lun *un; 20083 int status; 20084 20085 uip = (struct sd_uscsi_info *)(bp->b_private); 20086 ASSERT(uip != NULL); 20087 20088 uscmd = uip->ui_cmdp; 20089 ASSERT(uscmd != NULL); 20090 20091 sense_buf = (struct scsi_extended_sense *)uscmd->uscsi_rqbuf; 20092 ASSERT(sense_buf != NULL); 20093 20094 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 20095 ASSERT(un != NULL); 20096 20097 status = geterror(bp); 20098 switch (status) { 20099 case 0: 20100 break; /* Success! */ 20101 case EIO: 20102 switch (uscmd->uscsi_status) { 20103 case STATUS_RESERVATION_CONFLICT: 20104 /* Ignore reservation conflict */ 20105 status = 0; 20106 goto done; 20107 20108 case STATUS_CHECK: 20109 if ((uscmd->uscsi_rqstatus == STATUS_GOOD) && 20110 (sense_buf->es_key == KEY_ILLEGAL_REQUEST)) { 20111 /* Ignore Illegal Request error */ 20112 mutex_enter(SD_MUTEX(un)); 20113 un->un_f_sync_cache_supported = FALSE; 20114 mutex_exit(SD_MUTEX(un)); 20115 status = ENOTSUP; 20116 goto done; 20117 } 20118 break; 20119 default: 20120 break; 20121 } 20122 /* FALLTHRU */ 20123 default: 20124 /* Ignore error if the media is not present */ 20125 if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) { 20126 status = 0; 20127 goto done; 20128 } 20129 /* If we reach this, we had an error */ 20130 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 20131 "SYNCHRONIZE CACHE command failed (%d)\n", status); 20132 break; 20133 } 20134 20135 done: 20136 if (uip->ui_dkc.dkc_callback != NULL) { 20137 (*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status); 20138 } 20139 20140 ASSERT((bp->b_flags & B_REMAPPED) == 0); 20141 freerbuf(bp); 20142 kmem_free(uip, sizeof (struct sd_uscsi_info)); 20143 kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH); 20144 kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen); 20145 kmem_free(uscmd, sizeof (struct uscsi_cmd)); 20146 20147 return (status); 20148 } 20149 20150 20151 /* 20152 * Function: sd_send_scsi_GET_CONFIGURATION 20153 * 20154 * Description: Issues the get configuration command to the device. 20155 * Called from sd_check_for_writable_cd & sd_get_media_info 20156 * caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN 20157 * Arguments: un 20158 * ucmdbuf 20159 * rqbuf 20160 * rqbuflen 20161 * bufaddr 20162 * buflen 20163 * 20164 * Return Code: 0 - Success 20165 * errno return code from sd_send_scsi_cmd() 20166 * 20167 * Context: Can sleep. Does not return until command is completed. 20168 * 20169 */ 20170 20171 static int 20172 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf, 20173 uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen) 20174 { 20175 char cdb[CDB_GROUP1]; 20176 int status; 20177 20178 ASSERT(un != NULL); 20179 ASSERT(!mutex_owned(SD_MUTEX(un))); 20180 ASSERT(bufaddr != NULL); 20181 ASSERT(ucmdbuf != NULL); 20182 ASSERT(rqbuf != NULL); 20183 20184 SD_TRACE(SD_LOG_IO, un, 20185 "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un); 20186 20187 bzero(cdb, sizeof (cdb)); 20188 bzero(ucmdbuf, sizeof (struct uscsi_cmd)); 20189 bzero(rqbuf, rqbuflen); 20190 bzero(bufaddr, buflen); 20191 20192 /* 20193 * Set up cdb field for the get configuration command. 20194 */ 20195 cdb[0] = SCMD_GET_CONFIGURATION; 20196 cdb[1] = 0x02; /* Requested Type */ 20197 cdb[8] = SD_PROFILE_HEADER_LEN; 20198 ucmdbuf->uscsi_cdb = cdb; 20199 ucmdbuf->uscsi_cdblen = CDB_GROUP1; 20200 ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr; 20201 ucmdbuf->uscsi_buflen = buflen; 20202 ucmdbuf->uscsi_timeout = sd_io_time; 20203 ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf; 20204 ucmdbuf->uscsi_rqlen = rqbuflen; 20205 ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ; 20206 20207 status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE, 20208 UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD); 20209 20210 switch (status) { 20211 case 0: 20212 break; /* Success! */ 20213 case EIO: 20214 switch (ucmdbuf->uscsi_status) { 20215 case STATUS_RESERVATION_CONFLICT: 20216 status = EACCES; 20217 break; 20218 default: 20219 break; 20220 } 20221 break; 20222 default: 20223 break; 20224 } 20225 20226 if (status == 0) { 20227 SD_DUMP_MEMORY(un, SD_LOG_IO, 20228 "sd_send_scsi_GET_CONFIGURATION: data", 20229 (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX); 20230 } 20231 20232 SD_TRACE(SD_LOG_IO, un, 20233 "sd_send_scsi_GET_CONFIGURATION: exit\n"); 20234 20235 return (status); 20236 } 20237 20238 /* 20239 * Function: sd_send_scsi_feature_GET_CONFIGURATION 20240 * 20241 * Description: Issues the get configuration command to the device to 20242 * retrieve a specfic feature. Called from 20243 * sd_check_for_writable_cd & sd_set_mmc_caps. 20244 * Arguments: un 20245 * ucmdbuf 20246 * rqbuf 20247 * rqbuflen 20248 * bufaddr 20249 * buflen 20250 * feature 20251 * 20252 * Return Code: 0 - Success 20253 * errno return code from sd_send_scsi_cmd() 20254 * 20255 * Context: Can sleep. Does not return until command is completed. 20256 * 20257 */ 20258 static int 20259 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un, 20260 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 20261 uchar_t *bufaddr, uint_t buflen, char feature) 20262 { 20263 char cdb[CDB_GROUP1]; 20264 int status; 20265 20266 ASSERT(un != NULL); 20267 ASSERT(!mutex_owned(SD_MUTEX(un))); 20268 ASSERT(bufaddr != NULL); 20269 ASSERT(ucmdbuf != NULL); 20270 ASSERT(rqbuf != NULL); 20271 20272 SD_TRACE(SD_LOG_IO, un, 20273 "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un); 20274 20275 bzero(cdb, sizeof (cdb)); 20276 bzero(ucmdbuf, sizeof (struct uscsi_cmd)); 20277 bzero(rqbuf, rqbuflen); 20278 bzero(bufaddr, buflen); 20279 20280 /* 20281 * Set up cdb field for the get configuration command. 20282 */ 20283 cdb[0] = SCMD_GET_CONFIGURATION; 20284 cdb[1] = 0x02; /* Requested Type */ 20285 cdb[3] = feature; 20286 cdb[8] = buflen; 20287 ucmdbuf->uscsi_cdb = cdb; 20288 ucmdbuf->uscsi_cdblen = CDB_GROUP1; 20289 ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr; 20290 ucmdbuf->uscsi_buflen = buflen; 20291 ucmdbuf->uscsi_timeout = sd_io_time; 20292 ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf; 20293 ucmdbuf->uscsi_rqlen = rqbuflen; 20294 ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ; 20295 20296 status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE, 20297 UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD); 20298 20299 switch (status) { 20300 case 0: 20301 break; /* Success! */ 20302 case EIO: 20303 switch (ucmdbuf->uscsi_status) { 20304 case STATUS_RESERVATION_CONFLICT: 20305 status = EACCES; 20306 break; 20307 default: 20308 break; 20309 } 20310 break; 20311 default: 20312 break; 20313 } 20314 20315 if (status == 0) { 20316 SD_DUMP_MEMORY(un, SD_LOG_IO, 20317 "sd_send_scsi_feature_GET_CONFIGURATION: data", 20318 (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX); 20319 } 20320 20321 SD_TRACE(SD_LOG_IO, un, 20322 "sd_send_scsi_feature_GET_CONFIGURATION: exit\n"); 20323 20324 return (status); 20325 } 20326 20327 20328 /* 20329 * Function: sd_send_scsi_MODE_SENSE 20330 * 20331 * Description: Utility function for issuing a scsi MODE SENSE command. 20332 * Note: This routine uses a consistent implementation for Group0, 20333 * Group1, and Group2 commands across all platforms. ATAPI devices 20334 * use Group 1 Read/Write commands and Group 2 Mode Sense/Select 20335 * 20336 * Arguments: un - pointer to the softstate struct for the target. 20337 * cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or 20338 * CDB_GROUP[1|2] (10 byte). 20339 * bufaddr - buffer for page data retrieved from the target. 20340 * buflen - size of page to be retrieved. 20341 * page_code - page code of data to be retrieved from the target. 20342 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 20343 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 20344 * to use the USCSI "direct" chain and bypass the normal 20345 * command waitq. 20346 * 20347 * Return Code: 0 - Success 20348 * errno return code from sd_send_scsi_cmd() 20349 * 20350 * Context: Can sleep. Does not return until command is completed. 20351 */ 20352 20353 static int 20354 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr, 20355 size_t buflen, uchar_t page_code, int path_flag) 20356 { 20357 struct scsi_extended_sense sense_buf; 20358 union scsi_cdb cdb; 20359 struct uscsi_cmd ucmd_buf; 20360 int status; 20361 20362 ASSERT(un != NULL); 20363 ASSERT(!mutex_owned(SD_MUTEX(un))); 20364 ASSERT(bufaddr != NULL); 20365 ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) || 20366 (cdbsize == CDB_GROUP2)); 20367 20368 SD_TRACE(SD_LOG_IO, un, 20369 "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un); 20370 20371 bzero(&cdb, sizeof (cdb)); 20372 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20373 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20374 bzero(bufaddr, buflen); 20375 20376 if (cdbsize == CDB_GROUP0) { 20377 cdb.scc_cmd = SCMD_MODE_SENSE; 20378 cdb.cdb_opaque[2] = page_code; 20379 FORMG0COUNT(&cdb, buflen); 20380 } else { 20381 cdb.scc_cmd = SCMD_MODE_SENSE_G1; 20382 cdb.cdb_opaque[2] = page_code; 20383 FORMG1COUNT(&cdb, buflen); 20384 } 20385 20386 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 20387 20388 ucmd_buf.uscsi_cdb = (char *)&cdb; 20389 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 20390 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 20391 ucmd_buf.uscsi_buflen = buflen; 20392 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20393 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20394 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 20395 ucmd_buf.uscsi_timeout = 60; 20396 20397 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE, 20398 UIO_SYSSPACE, UIO_SYSSPACE, path_flag); 20399 20400 switch (status) { 20401 case 0: 20402 break; /* Success! */ 20403 case EIO: 20404 switch (ucmd_buf.uscsi_status) { 20405 case STATUS_RESERVATION_CONFLICT: 20406 status = EACCES; 20407 break; 20408 default: 20409 break; 20410 } 20411 break; 20412 default: 20413 break; 20414 } 20415 20416 if (status == 0) { 20417 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data", 20418 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 20419 } 20420 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n"); 20421 20422 return (status); 20423 } 20424 20425 20426 /* 20427 * Function: sd_send_scsi_MODE_SELECT 20428 * 20429 * Description: Utility function for issuing a scsi MODE SELECT command. 20430 * Note: This routine uses a consistent implementation for Group0, 20431 * Group1, and Group2 commands across all platforms. ATAPI devices 20432 * use Group 1 Read/Write commands and Group 2 Mode Sense/Select 20433 * 20434 * Arguments: un - pointer to the softstate struct for the target. 20435 * cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or 20436 * CDB_GROUP[1|2] (10 byte). 20437 * bufaddr - buffer for page data retrieved from the target. 20438 * buflen - size of page to be retrieved. 20439 * save_page - boolean to determin if SP bit should be set. 20440 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 20441 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 20442 * to use the USCSI "direct" chain and bypass the normal 20443 * command waitq. 20444 * 20445 * Return Code: 0 - Success 20446 * errno return code from sd_send_scsi_cmd() 20447 * 20448 * Context: Can sleep. Does not return until command is completed. 20449 */ 20450 20451 static int 20452 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr, 20453 size_t buflen, uchar_t save_page, int path_flag) 20454 { 20455 struct scsi_extended_sense sense_buf; 20456 union scsi_cdb cdb; 20457 struct uscsi_cmd ucmd_buf; 20458 int status; 20459 20460 ASSERT(un != NULL); 20461 ASSERT(!mutex_owned(SD_MUTEX(un))); 20462 ASSERT(bufaddr != NULL); 20463 ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) || 20464 (cdbsize == CDB_GROUP2)); 20465 20466 SD_TRACE(SD_LOG_IO, un, 20467 "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un); 20468 20469 bzero(&cdb, sizeof (cdb)); 20470 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20471 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20472 20473 /* Set the PF bit for many third party drives */ 20474 cdb.cdb_opaque[1] = 0x10; 20475 20476 /* Set the savepage(SP) bit if given */ 20477 if (save_page == SD_SAVE_PAGE) { 20478 cdb.cdb_opaque[1] |= 0x01; 20479 } 20480 20481 if (cdbsize == CDB_GROUP0) { 20482 cdb.scc_cmd = SCMD_MODE_SELECT; 20483 FORMG0COUNT(&cdb, buflen); 20484 } else { 20485 cdb.scc_cmd = SCMD_MODE_SELECT_G1; 20486 FORMG1COUNT(&cdb, buflen); 20487 } 20488 20489 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 20490 20491 ucmd_buf.uscsi_cdb = (char *)&cdb; 20492 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 20493 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 20494 ucmd_buf.uscsi_buflen = buflen; 20495 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20496 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20497 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT; 20498 ucmd_buf.uscsi_timeout = 60; 20499 20500 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE, 20501 UIO_SYSSPACE, UIO_SYSSPACE, path_flag); 20502 20503 switch (status) { 20504 case 0: 20505 break; /* Success! */ 20506 case EIO: 20507 switch (ucmd_buf.uscsi_status) { 20508 case STATUS_RESERVATION_CONFLICT: 20509 status = EACCES; 20510 break; 20511 default: 20512 break; 20513 } 20514 break; 20515 default: 20516 break; 20517 } 20518 20519 if (status == 0) { 20520 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data", 20521 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 20522 } 20523 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n"); 20524 20525 return (status); 20526 } 20527 20528 20529 /* 20530 * Function: sd_send_scsi_RDWR 20531 * 20532 * Description: Issue a scsi READ or WRITE command with the given parameters. 20533 * 20534 * Arguments: un: Pointer to the sd_lun struct for the target. 20535 * cmd: SCMD_READ or SCMD_WRITE 20536 * bufaddr: Address of caller's buffer to receive the RDWR data 20537 * buflen: Length of caller's buffer receive the RDWR data. 20538 * start_block: Block number for the start of the RDWR operation. 20539 * (Assumes target-native block size.) 20540 * residp: Pointer to variable to receive the redisual of the 20541 * RDWR operation (may be NULL of no residual requested). 20542 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 20543 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 20544 * to use the USCSI "direct" chain and bypass the normal 20545 * command waitq. 20546 * 20547 * Return Code: 0 - Success 20548 * errno return code from sd_send_scsi_cmd() 20549 * 20550 * Context: Can sleep. Does not return until command is completed. 20551 */ 20552 20553 static int 20554 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr, 20555 size_t buflen, daddr_t start_block, int path_flag) 20556 { 20557 struct scsi_extended_sense sense_buf; 20558 union scsi_cdb cdb; 20559 struct uscsi_cmd ucmd_buf; 20560 uint32_t block_count; 20561 int status; 20562 int cdbsize; 20563 uchar_t flag; 20564 20565 ASSERT(un != NULL); 20566 ASSERT(!mutex_owned(SD_MUTEX(un))); 20567 ASSERT(bufaddr != NULL); 20568 ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE)); 20569 20570 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un); 20571 20572 if (un->un_f_tgt_blocksize_is_valid != TRUE) { 20573 return (EINVAL); 20574 } 20575 20576 mutex_enter(SD_MUTEX(un)); 20577 block_count = SD_BYTES2TGTBLOCKS(un, buflen); 20578 mutex_exit(SD_MUTEX(un)); 20579 20580 flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE; 20581 20582 SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: " 20583 "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n", 20584 bufaddr, buflen, start_block, block_count); 20585 20586 bzero(&cdb, sizeof (cdb)); 20587 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20588 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20589 20590 /* Compute CDB size to use */ 20591 if (start_block > 0xffffffff) 20592 cdbsize = CDB_GROUP4; 20593 else if ((start_block & 0xFFE00000) || 20594 (un->un_f_cfg_is_atapi == TRUE)) 20595 cdbsize = CDB_GROUP1; 20596 else 20597 cdbsize = CDB_GROUP0; 20598 20599 switch (cdbsize) { 20600 case CDB_GROUP0: /* 6-byte CDBs */ 20601 cdb.scc_cmd = cmd; 20602 FORMG0ADDR(&cdb, start_block); 20603 FORMG0COUNT(&cdb, block_count); 20604 break; 20605 case CDB_GROUP1: /* 10-byte CDBs */ 20606 cdb.scc_cmd = cmd | SCMD_GROUP1; 20607 FORMG1ADDR(&cdb, start_block); 20608 FORMG1COUNT(&cdb, block_count); 20609 break; 20610 case CDB_GROUP4: /* 16-byte CDBs */ 20611 cdb.scc_cmd = cmd | SCMD_GROUP4; 20612 FORMG4LONGADDR(&cdb, (uint64_t)start_block); 20613 FORMG4COUNT(&cdb, block_count); 20614 break; 20615 case CDB_GROUP5: /* 12-byte CDBs (currently unsupported) */ 20616 default: 20617 /* All others reserved */ 20618 return (EINVAL); 20619 } 20620 20621 /* Set LUN bit(s) in CDB if this is a SCSI-1 device */ 20622 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 20623 20624 ucmd_buf.uscsi_cdb = (char *)&cdb; 20625 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 20626 ucmd_buf.uscsi_bufaddr = bufaddr; 20627 ucmd_buf.uscsi_buflen = buflen; 20628 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20629 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20630 ucmd_buf.uscsi_flags = flag | USCSI_RQENABLE | USCSI_SILENT; 20631 ucmd_buf.uscsi_timeout = 60; 20632 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE, 20633 UIO_SYSSPACE, UIO_SYSSPACE, path_flag); 20634 switch (status) { 20635 case 0: 20636 break; /* Success! */ 20637 case EIO: 20638 switch (ucmd_buf.uscsi_status) { 20639 case STATUS_RESERVATION_CONFLICT: 20640 status = EACCES; 20641 break; 20642 default: 20643 break; 20644 } 20645 break; 20646 default: 20647 break; 20648 } 20649 20650 if (status == 0) { 20651 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data", 20652 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 20653 } 20654 20655 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n"); 20656 20657 return (status); 20658 } 20659 20660 20661 /* 20662 * Function: sd_send_scsi_LOG_SENSE 20663 * 20664 * Description: Issue a scsi LOG_SENSE command with the given parameters. 20665 * 20666 * Arguments: un: Pointer to the sd_lun struct for the target. 20667 * 20668 * Return Code: 0 - Success 20669 * errno return code from sd_send_scsi_cmd() 20670 * 20671 * Context: Can sleep. Does not return until command is completed. 20672 */ 20673 20674 static int 20675 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen, 20676 uchar_t page_code, uchar_t page_control, uint16_t param_ptr, 20677 int path_flag) 20678 20679 { 20680 struct scsi_extended_sense sense_buf; 20681 union scsi_cdb cdb; 20682 struct uscsi_cmd ucmd_buf; 20683 int status; 20684 20685 ASSERT(un != NULL); 20686 ASSERT(!mutex_owned(SD_MUTEX(un))); 20687 20688 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un); 20689 20690 bzero(&cdb, sizeof (cdb)); 20691 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20692 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20693 20694 cdb.scc_cmd = SCMD_LOG_SENSE_G1; 20695 cdb.cdb_opaque[2] = (page_control << 6) | page_code; 20696 cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8); 20697 cdb.cdb_opaque[6] = (uchar_t)(param_ptr & 0x00FF); 20698 FORMG1COUNT(&cdb, buflen); 20699 20700 ucmd_buf.uscsi_cdb = (char *)&cdb; 20701 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 20702 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 20703 ucmd_buf.uscsi_buflen = buflen; 20704 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20705 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20706 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 20707 ucmd_buf.uscsi_timeout = 60; 20708 20709 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE, 20710 UIO_SYSSPACE, UIO_SYSSPACE, path_flag); 20711 20712 switch (status) { 20713 case 0: 20714 break; 20715 case EIO: 20716 switch (ucmd_buf.uscsi_status) { 20717 case STATUS_RESERVATION_CONFLICT: 20718 status = EACCES; 20719 break; 20720 case STATUS_CHECK: 20721 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20722 (sense_buf.es_key == KEY_ILLEGAL_REQUEST) && 20723 (sense_buf.es_add_code == 0x24)) { 20724 /* 20725 * ASC 0x24: INVALID FIELD IN CDB 20726 */ 20727 switch (page_code) { 20728 case START_STOP_CYCLE_PAGE: 20729 /* 20730 * The start stop cycle counter is 20731 * implemented as page 0x31 in earlier 20732 * generation disks. In new generation 20733 * disks the start stop cycle counter is 20734 * implemented as page 0xE. To properly 20735 * handle this case if an attempt for 20736 * log page 0xE is made and fails we 20737 * will try again using page 0x31. 20738 * 20739 * Network storage BU committed to 20740 * maintain the page 0x31 for this 20741 * purpose and will not have any other 20742 * page implemented with page code 0x31 20743 * until all disks transition to the 20744 * standard page. 20745 */ 20746 mutex_enter(SD_MUTEX(un)); 20747 un->un_start_stop_cycle_page = 20748 START_STOP_CYCLE_VU_PAGE; 20749 cdb.cdb_opaque[2] = 20750 (char)(page_control << 6) | 20751 un->un_start_stop_cycle_page; 20752 mutex_exit(SD_MUTEX(un)); 20753 status = sd_send_scsi_cmd( 20754 SD_GET_DEV(un), &ucmd_buf, 20755 UIO_SYSSPACE, UIO_SYSSPACE, 20756 UIO_SYSSPACE, path_flag); 20757 20758 break; 20759 case TEMPERATURE_PAGE: 20760 status = ENOTTY; 20761 break; 20762 default: 20763 break; 20764 } 20765 } 20766 break; 20767 default: 20768 break; 20769 } 20770 break; 20771 default: 20772 break; 20773 } 20774 20775 if (status == 0) { 20776 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data", 20777 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 20778 } 20779 20780 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n"); 20781 20782 return (status); 20783 } 20784 20785 20786 /* 20787 * Function: sdioctl 20788 * 20789 * Description: Driver's ioctl(9e) entry point function. 20790 * 20791 * Arguments: dev - device number 20792 * cmd - ioctl operation to be performed 20793 * arg - user argument, contains data to be set or reference 20794 * parameter for get 20795 * flag - bit flag, indicating open settings, 32/64 bit type 20796 * cred_p - user credential pointer 20797 * rval_p - calling process return value (OPT) 20798 * 20799 * Return Code: EINVAL 20800 * ENOTTY 20801 * ENXIO 20802 * EIO 20803 * EFAULT 20804 * ENOTSUP 20805 * EPERM 20806 * 20807 * Context: Called from the device switch at normal priority. 20808 */ 20809 20810 static int 20811 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p) 20812 { 20813 struct sd_lun *un = NULL; 20814 int geom_validated = FALSE; 20815 int err = 0; 20816 int i = 0; 20817 cred_t *cr; 20818 20819 /* 20820 * All device accesses go thru sdstrategy where we check on suspend 20821 * status 20822 */ 20823 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 20824 return (ENXIO); 20825 } 20826 20827 ASSERT(!mutex_owned(SD_MUTEX(un))); 20828 20829 /* 20830 * Moved this wait from sd_uscsi_strategy to here for 20831 * reasons of deadlock prevention. Internal driver commands, 20832 * specifically those to change a devices power level, result 20833 * in a call to sd_uscsi_strategy. 20834 */ 20835 mutex_enter(SD_MUTEX(un)); 20836 while ((un->un_state == SD_STATE_SUSPENDED) || 20837 (un->un_state == SD_STATE_PM_CHANGING)) { 20838 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 20839 } 20840 /* 20841 * Twiddling the counter here protects commands from now 20842 * through to the top of sd_uscsi_strategy. Without the 20843 * counter inc. a power down, for example, could get in 20844 * after the above check for state is made and before 20845 * execution gets to the top of sd_uscsi_strategy. 20846 * That would cause problems. 20847 */ 20848 un->un_ncmds_in_driver++; 20849 20850 if ((un->un_f_geometry_is_valid == FALSE) && 20851 (flag & (FNDELAY | FNONBLOCK))) { 20852 switch (cmd) { 20853 case CDROMPAUSE: 20854 case CDROMRESUME: 20855 case CDROMPLAYMSF: 20856 case CDROMPLAYTRKIND: 20857 case CDROMREADTOCHDR: 20858 case CDROMREADTOCENTRY: 20859 case CDROMSTOP: 20860 case CDROMSTART: 20861 case CDROMVOLCTRL: 20862 case CDROMSUBCHNL: 20863 case CDROMREADMODE2: 20864 case CDROMREADMODE1: 20865 case CDROMREADOFFSET: 20866 case CDROMSBLKMODE: 20867 case CDROMGBLKMODE: 20868 case CDROMGDRVSPEED: 20869 case CDROMSDRVSPEED: 20870 case CDROMCDDA: 20871 case CDROMCDXA: 20872 case CDROMSUBCODE: 20873 if (!ISCD(un)) { 20874 un->un_ncmds_in_driver--; 20875 ASSERT(un->un_ncmds_in_driver >= 0); 20876 mutex_exit(SD_MUTEX(un)); 20877 return (ENOTTY); 20878 } 20879 break; 20880 case FDEJECT: 20881 case DKIOCEJECT: 20882 case CDROMEJECT: 20883 if (!un->un_f_eject_media_supported) { 20884 un->un_ncmds_in_driver--; 20885 ASSERT(un->un_ncmds_in_driver >= 0); 20886 mutex_exit(SD_MUTEX(un)); 20887 return (ENOTTY); 20888 } 20889 break; 20890 case DKIOCSVTOC: 20891 case DKIOCSETEFI: 20892 case DKIOCSMBOOT: 20893 case DKIOCFLUSHWRITECACHE: 20894 mutex_exit(SD_MUTEX(un)); 20895 err = sd_send_scsi_TEST_UNIT_READY(un, 0); 20896 if (err != 0) { 20897 mutex_enter(SD_MUTEX(un)); 20898 un->un_ncmds_in_driver--; 20899 ASSERT(un->un_ncmds_in_driver >= 0); 20900 mutex_exit(SD_MUTEX(un)); 20901 return (EIO); 20902 } 20903 mutex_enter(SD_MUTEX(un)); 20904 /* FALLTHROUGH */ 20905 case DKIOCREMOVABLE: 20906 case DKIOCHOTPLUGGABLE: 20907 case DKIOCINFO: 20908 case DKIOCGMEDIAINFO: 20909 case MHIOCENFAILFAST: 20910 case MHIOCSTATUS: 20911 case MHIOCTKOWN: 20912 case MHIOCRELEASE: 20913 case MHIOCGRP_INKEYS: 20914 case MHIOCGRP_INRESV: 20915 case MHIOCGRP_REGISTER: 20916 case MHIOCGRP_RESERVE: 20917 case MHIOCGRP_PREEMPTANDABORT: 20918 case MHIOCGRP_REGISTERANDIGNOREKEY: 20919 case CDROMCLOSETRAY: 20920 case USCSICMD: 20921 goto skip_ready_valid; 20922 default: 20923 break; 20924 } 20925 20926 mutex_exit(SD_MUTEX(un)); 20927 err = sd_ready_and_valid(un); 20928 mutex_enter(SD_MUTEX(un)); 20929 if (err == SD_READY_NOT_VALID) { 20930 switch (cmd) { 20931 case DKIOCGAPART: 20932 case DKIOCGGEOM: 20933 case DKIOCSGEOM: 20934 case DKIOCGVTOC: 20935 case DKIOCSVTOC: 20936 case DKIOCSAPART: 20937 case DKIOCG_PHYGEOM: 20938 case DKIOCG_VIRTGEOM: 20939 err = ENOTSUP; 20940 un->un_ncmds_in_driver--; 20941 ASSERT(un->un_ncmds_in_driver >= 0); 20942 mutex_exit(SD_MUTEX(un)); 20943 return (err); 20944 } 20945 } 20946 if (err != SD_READY_VALID) { 20947 switch (cmd) { 20948 case DKIOCSTATE: 20949 case CDROMGDRVSPEED: 20950 case CDROMSDRVSPEED: 20951 case FDEJECT: /* for eject command */ 20952 case DKIOCEJECT: 20953 case CDROMEJECT: 20954 case DKIOCGETEFI: 20955 case DKIOCSGEOM: 20956 case DKIOCREMOVABLE: 20957 case DKIOCHOTPLUGGABLE: 20958 case DKIOCSAPART: 20959 case DKIOCSETEFI: 20960 break; 20961 default: 20962 if (un->un_f_has_removable_media) { 20963 err = ENXIO; 20964 } else { 20965 /* Do not map EACCES to EIO */ 20966 if (err != EACCES) 20967 err = EIO; 20968 } 20969 un->un_ncmds_in_driver--; 20970 ASSERT(un->un_ncmds_in_driver >= 0); 20971 mutex_exit(SD_MUTEX(un)); 20972 return (err); 20973 } 20974 } 20975 geom_validated = TRUE; 20976 } 20977 if ((un->un_f_geometry_is_valid == TRUE) && 20978 (un->un_solaris_size > 0)) { 20979 /* 20980 * the "geometry_is_valid" flag could be true if we 20981 * have an fdisk table but no Solaris partition 20982 */ 20983 if (un->un_vtoc.v_sanity != VTOC_SANE) { 20984 /* it is EFI, so return ENOTSUP for these */ 20985 switch (cmd) { 20986 case DKIOCGAPART: 20987 case DKIOCGGEOM: 20988 case DKIOCGVTOC: 20989 case DKIOCSVTOC: 20990 case DKIOCSAPART: 20991 err = ENOTSUP; 20992 un->un_ncmds_in_driver--; 20993 ASSERT(un->un_ncmds_in_driver >= 0); 20994 mutex_exit(SD_MUTEX(un)); 20995 return (err); 20996 } 20997 } 20998 } 20999 21000 skip_ready_valid: 21001 mutex_exit(SD_MUTEX(un)); 21002 21003 switch (cmd) { 21004 case DKIOCINFO: 21005 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n"); 21006 err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag); 21007 break; 21008 21009 case DKIOCGMEDIAINFO: 21010 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n"); 21011 err = sd_get_media_info(dev, (caddr_t)arg, flag); 21012 break; 21013 21014 case DKIOCGGEOM: 21015 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGGEOM\n"); 21016 err = sd_dkio_get_geometry(dev, (caddr_t)arg, flag, 21017 geom_validated); 21018 break; 21019 21020 case DKIOCSGEOM: 21021 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSGEOM\n"); 21022 err = sd_dkio_set_geometry(dev, (caddr_t)arg, flag); 21023 break; 21024 21025 case DKIOCGAPART: 21026 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGAPART\n"); 21027 err = sd_dkio_get_partition(dev, (caddr_t)arg, flag, 21028 geom_validated); 21029 break; 21030 21031 case DKIOCSAPART: 21032 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSAPART\n"); 21033 err = sd_dkio_set_partition(dev, (caddr_t)arg, flag); 21034 break; 21035 21036 case DKIOCGVTOC: 21037 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGVTOC\n"); 21038 err = sd_dkio_get_vtoc(dev, (caddr_t)arg, flag, 21039 geom_validated); 21040 break; 21041 21042 case DKIOCGETEFI: 21043 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGETEFI\n"); 21044 err = sd_dkio_get_efi(dev, (caddr_t)arg, flag); 21045 break; 21046 21047 case DKIOCPARTITION: 21048 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTITION\n"); 21049 err = sd_dkio_partition(dev, (caddr_t)arg, flag); 21050 break; 21051 21052 case DKIOCSVTOC: 21053 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSVTOC\n"); 21054 err = sd_dkio_set_vtoc(dev, (caddr_t)arg, flag); 21055 break; 21056 21057 case DKIOCSETEFI: 21058 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSETEFI\n"); 21059 err = sd_dkio_set_efi(dev, (caddr_t)arg, flag); 21060 break; 21061 21062 case DKIOCGMBOOT: 21063 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMBOOT\n"); 21064 err = sd_dkio_get_mboot(dev, (caddr_t)arg, flag); 21065 break; 21066 21067 case DKIOCSMBOOT: 21068 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSMBOOT\n"); 21069 err = sd_dkio_set_mboot(dev, (caddr_t)arg, flag); 21070 break; 21071 21072 case DKIOCLOCK: 21073 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n"); 21074 err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT, 21075 SD_PATH_STANDARD); 21076 break; 21077 21078 case DKIOCUNLOCK: 21079 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n"); 21080 err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW, 21081 SD_PATH_STANDARD); 21082 break; 21083 21084 case DKIOCSTATE: { 21085 enum dkio_state state; 21086 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n"); 21087 21088 if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) { 21089 err = EFAULT; 21090 } else { 21091 err = sd_check_media(dev, state); 21092 if (err == 0) { 21093 if (ddi_copyout(&un->un_mediastate, (void *)arg, 21094 sizeof (int), flag) != 0) 21095 err = EFAULT; 21096 } 21097 } 21098 break; 21099 } 21100 21101 case DKIOCREMOVABLE: 21102 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n"); 21103 /* 21104 * At present, vold only does automount for removable-media 21105 * devices, in order not to break current applications, we 21106 * still let hopluggable devices pretend to be removable media 21107 * devices for vold. In the near future, once vold is EOL'ed, 21108 * we should remove this workaround. 21109 */ 21110 if (un->un_f_has_removable_media || un->un_f_is_hotpluggable) { 21111 i = 1; 21112 } else { 21113 i = 0; 21114 } 21115 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) { 21116 err = EFAULT; 21117 } else { 21118 err = 0; 21119 } 21120 break; 21121 21122 case DKIOCHOTPLUGGABLE: 21123 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n"); 21124 if (un->un_f_is_hotpluggable) { 21125 i = 1; 21126 } else { 21127 i = 0; 21128 } 21129 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) { 21130 err = EFAULT; 21131 } else { 21132 err = 0; 21133 } 21134 break; 21135 21136 case DKIOCGTEMPERATURE: 21137 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n"); 21138 err = sd_dkio_get_temp(dev, (caddr_t)arg, flag); 21139 break; 21140 21141 case MHIOCENFAILFAST: 21142 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n"); 21143 if ((err = drv_priv(cred_p)) == 0) { 21144 err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag); 21145 } 21146 break; 21147 21148 case MHIOCTKOWN: 21149 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n"); 21150 if ((err = drv_priv(cred_p)) == 0) { 21151 err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag); 21152 } 21153 break; 21154 21155 case MHIOCRELEASE: 21156 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n"); 21157 if ((err = drv_priv(cred_p)) == 0) { 21158 err = sd_mhdioc_release(dev); 21159 } 21160 break; 21161 21162 case MHIOCSTATUS: 21163 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n"); 21164 if ((err = drv_priv(cred_p)) == 0) { 21165 switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) { 21166 case 0: 21167 err = 0; 21168 break; 21169 case EACCES: 21170 *rval_p = 1; 21171 err = 0; 21172 break; 21173 default: 21174 err = EIO; 21175 break; 21176 } 21177 } 21178 break; 21179 21180 case MHIOCQRESERVE: 21181 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n"); 21182 if ((err = drv_priv(cred_p)) == 0) { 21183 err = sd_reserve_release(dev, SD_RESERVE); 21184 } 21185 break; 21186 21187 case MHIOCREREGISTERDEVID: 21188 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n"); 21189 if (drv_priv(cred_p) == EPERM) { 21190 err = EPERM; 21191 } else if (!un->un_f_devid_supported) { 21192 err = ENOTTY; 21193 } else { 21194 err = sd_mhdioc_register_devid(dev); 21195 } 21196 break; 21197 21198 case MHIOCGRP_INKEYS: 21199 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n"); 21200 if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) { 21201 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 21202 err = ENOTSUP; 21203 } else { 21204 err = sd_mhdioc_inkeys(dev, (caddr_t)arg, 21205 flag); 21206 } 21207 } 21208 break; 21209 21210 case MHIOCGRP_INRESV: 21211 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n"); 21212 if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) { 21213 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 21214 err = ENOTSUP; 21215 } else { 21216 err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag); 21217 } 21218 } 21219 break; 21220 21221 case MHIOCGRP_REGISTER: 21222 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n"); 21223 if ((err = drv_priv(cred_p)) != EPERM) { 21224 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 21225 err = ENOTSUP; 21226 } else if (arg != NULL) { 21227 mhioc_register_t reg; 21228 if (ddi_copyin((void *)arg, ®, 21229 sizeof (mhioc_register_t), flag) != 0) { 21230 err = EFAULT; 21231 } else { 21232 err = 21233 sd_send_scsi_PERSISTENT_RESERVE_OUT( 21234 un, SD_SCSI3_REGISTER, 21235 (uchar_t *)®); 21236 } 21237 } 21238 } 21239 break; 21240 21241 case MHIOCGRP_RESERVE: 21242 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n"); 21243 if ((err = drv_priv(cred_p)) != EPERM) { 21244 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 21245 err = ENOTSUP; 21246 } else if (arg != NULL) { 21247 mhioc_resv_desc_t resv_desc; 21248 if (ddi_copyin((void *)arg, &resv_desc, 21249 sizeof (mhioc_resv_desc_t), flag) != 0) { 21250 err = EFAULT; 21251 } else { 21252 err = 21253 sd_send_scsi_PERSISTENT_RESERVE_OUT( 21254 un, SD_SCSI3_RESERVE, 21255 (uchar_t *)&resv_desc); 21256 } 21257 } 21258 } 21259 break; 21260 21261 case MHIOCGRP_PREEMPTANDABORT: 21262 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n"); 21263 if ((err = drv_priv(cred_p)) != EPERM) { 21264 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 21265 err = ENOTSUP; 21266 } else if (arg != NULL) { 21267 mhioc_preemptandabort_t preempt_abort; 21268 if (ddi_copyin((void *)arg, &preempt_abort, 21269 sizeof (mhioc_preemptandabort_t), 21270 flag) != 0) { 21271 err = EFAULT; 21272 } else { 21273 err = 21274 sd_send_scsi_PERSISTENT_RESERVE_OUT( 21275 un, SD_SCSI3_PREEMPTANDABORT, 21276 (uchar_t *)&preempt_abort); 21277 } 21278 } 21279 } 21280 break; 21281 21282 case MHIOCGRP_REGISTERANDIGNOREKEY: 21283 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n"); 21284 if ((err = drv_priv(cred_p)) != EPERM) { 21285 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 21286 err = ENOTSUP; 21287 } else if (arg != NULL) { 21288 mhioc_registerandignorekey_t r_and_i; 21289 if (ddi_copyin((void *)arg, (void *)&r_and_i, 21290 sizeof (mhioc_registerandignorekey_t), 21291 flag) != 0) { 21292 err = EFAULT; 21293 } else { 21294 err = 21295 sd_send_scsi_PERSISTENT_RESERVE_OUT( 21296 un, SD_SCSI3_REGISTERANDIGNOREKEY, 21297 (uchar_t *)&r_and_i); 21298 } 21299 } 21300 } 21301 break; 21302 21303 case USCSICMD: 21304 SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n"); 21305 cr = ddi_get_cred(); 21306 if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) { 21307 err = EPERM; 21308 } else { 21309 err = sd_uscsi_ioctl(dev, (caddr_t)arg, flag); 21310 } 21311 break; 21312 21313 case CDROMPAUSE: 21314 case CDROMRESUME: 21315 SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n"); 21316 if (!ISCD(un)) { 21317 err = ENOTTY; 21318 } else { 21319 err = sr_pause_resume(dev, cmd); 21320 } 21321 break; 21322 21323 case CDROMPLAYMSF: 21324 SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n"); 21325 if (!ISCD(un)) { 21326 err = ENOTTY; 21327 } else { 21328 err = sr_play_msf(dev, (caddr_t)arg, flag); 21329 } 21330 break; 21331 21332 case CDROMPLAYTRKIND: 21333 SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n"); 21334 #if defined(__i386) || defined(__amd64) 21335 /* 21336 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead 21337 */ 21338 if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) { 21339 #else 21340 if (!ISCD(un)) { 21341 #endif 21342 err = ENOTTY; 21343 } else { 21344 err = sr_play_trkind(dev, (caddr_t)arg, flag); 21345 } 21346 break; 21347 21348 case CDROMREADTOCHDR: 21349 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n"); 21350 if (!ISCD(un)) { 21351 err = ENOTTY; 21352 } else { 21353 err = sr_read_tochdr(dev, (caddr_t)arg, flag); 21354 } 21355 break; 21356 21357 case CDROMREADTOCENTRY: 21358 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n"); 21359 if (!ISCD(un)) { 21360 err = ENOTTY; 21361 } else { 21362 err = sr_read_tocentry(dev, (caddr_t)arg, flag); 21363 } 21364 break; 21365 21366 case CDROMSTOP: 21367 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n"); 21368 if (!ISCD(un)) { 21369 err = ENOTTY; 21370 } else { 21371 err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP, 21372 SD_PATH_STANDARD); 21373 } 21374 break; 21375 21376 case CDROMSTART: 21377 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n"); 21378 if (!ISCD(un)) { 21379 err = ENOTTY; 21380 } else { 21381 err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, 21382 SD_PATH_STANDARD); 21383 } 21384 break; 21385 21386 case CDROMCLOSETRAY: 21387 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n"); 21388 if (!ISCD(un)) { 21389 err = ENOTTY; 21390 } else { 21391 err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE, 21392 SD_PATH_STANDARD); 21393 } 21394 break; 21395 21396 case FDEJECT: /* for eject command */ 21397 case DKIOCEJECT: 21398 case CDROMEJECT: 21399 SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n"); 21400 if (!un->un_f_eject_media_supported) { 21401 err = ENOTTY; 21402 } else { 21403 err = sr_eject(dev); 21404 } 21405 break; 21406 21407 case CDROMVOLCTRL: 21408 SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n"); 21409 if (!ISCD(un)) { 21410 err = ENOTTY; 21411 } else { 21412 err = sr_volume_ctrl(dev, (caddr_t)arg, flag); 21413 } 21414 break; 21415 21416 case CDROMSUBCHNL: 21417 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n"); 21418 if (!ISCD(un)) { 21419 err = ENOTTY; 21420 } else { 21421 err = sr_read_subchannel(dev, (caddr_t)arg, flag); 21422 } 21423 break; 21424 21425 case CDROMREADMODE2: 21426 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n"); 21427 if (!ISCD(un)) { 21428 err = ENOTTY; 21429 } else if (un->un_f_cfg_is_atapi == TRUE) { 21430 /* 21431 * If the drive supports READ CD, use that instead of 21432 * switching the LBA size via a MODE SELECT 21433 * Block Descriptor 21434 */ 21435 err = sr_read_cd_mode2(dev, (caddr_t)arg, flag); 21436 } else { 21437 err = sr_read_mode2(dev, (caddr_t)arg, flag); 21438 } 21439 break; 21440 21441 case CDROMREADMODE1: 21442 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n"); 21443 if (!ISCD(un)) { 21444 err = ENOTTY; 21445 } else { 21446 err = sr_read_mode1(dev, (caddr_t)arg, flag); 21447 } 21448 break; 21449 21450 case CDROMREADOFFSET: 21451 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n"); 21452 if (!ISCD(un)) { 21453 err = ENOTTY; 21454 } else { 21455 err = sr_read_sony_session_offset(dev, (caddr_t)arg, 21456 flag); 21457 } 21458 break; 21459 21460 case CDROMSBLKMODE: 21461 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n"); 21462 /* 21463 * There is no means of changing block size in case of atapi 21464 * drives, thus return ENOTTY if drive type is atapi 21465 */ 21466 if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) { 21467 err = ENOTTY; 21468 } else if (un->un_f_mmc_cap == TRUE) { 21469 21470 /* 21471 * MMC Devices do not support changing the 21472 * logical block size 21473 * 21474 * Note: EINVAL is being returned instead of ENOTTY to 21475 * maintain consistancy with the original mmc 21476 * driver update. 21477 */ 21478 err = EINVAL; 21479 } else { 21480 mutex_enter(SD_MUTEX(un)); 21481 if ((!(un->un_exclopen & (1<<SDPART(dev)))) || 21482 (un->un_ncmds_in_transport > 0)) { 21483 mutex_exit(SD_MUTEX(un)); 21484 err = EINVAL; 21485 } else { 21486 mutex_exit(SD_MUTEX(un)); 21487 err = sr_change_blkmode(dev, cmd, arg, flag); 21488 } 21489 } 21490 break; 21491 21492 case CDROMGBLKMODE: 21493 SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n"); 21494 if (!ISCD(un)) { 21495 err = ENOTTY; 21496 } else if ((un->un_f_cfg_is_atapi != FALSE) && 21497 (un->un_f_blockcount_is_valid != FALSE)) { 21498 /* 21499 * Drive is an ATAPI drive so return target block 21500 * size for ATAPI drives since we cannot change the 21501 * blocksize on ATAPI drives. Used primarily to detect 21502 * if an ATAPI cdrom is present. 21503 */ 21504 if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg, 21505 sizeof (int), flag) != 0) { 21506 err = EFAULT; 21507 } else { 21508 err = 0; 21509 } 21510 21511 } else { 21512 /* 21513 * Drive supports changing block sizes via a Mode 21514 * Select. 21515 */ 21516 err = sr_change_blkmode(dev, cmd, arg, flag); 21517 } 21518 break; 21519 21520 case CDROMGDRVSPEED: 21521 case CDROMSDRVSPEED: 21522 SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n"); 21523 if (!ISCD(un)) { 21524 err = ENOTTY; 21525 } else if (un->un_f_mmc_cap == TRUE) { 21526 /* 21527 * Note: In the future the driver implementation 21528 * for getting and 21529 * setting cd speed should entail: 21530 * 1) If non-mmc try the Toshiba mode page 21531 * (sr_change_speed) 21532 * 2) If mmc but no support for Real Time Streaming try 21533 * the SET CD SPEED (0xBB) command 21534 * (sr_atapi_change_speed) 21535 * 3) If mmc and support for Real Time Streaming 21536 * try the GET PERFORMANCE and SET STREAMING 21537 * commands (not yet implemented, 4380808) 21538 */ 21539 /* 21540 * As per recent MMC spec, CD-ROM speed is variable 21541 * and changes with LBA. Since there is no such 21542 * things as drive speed now, fail this ioctl. 21543 * 21544 * Note: EINVAL is returned for consistancy of original 21545 * implementation which included support for getting 21546 * the drive speed of mmc devices but not setting 21547 * the drive speed. Thus EINVAL would be returned 21548 * if a set request was made for an mmc device. 21549 * We no longer support get or set speed for 21550 * mmc but need to remain consistant with regard 21551 * to the error code returned. 21552 */ 21553 err = EINVAL; 21554 } else if (un->un_f_cfg_is_atapi == TRUE) { 21555 err = sr_atapi_change_speed(dev, cmd, arg, flag); 21556 } else { 21557 err = sr_change_speed(dev, cmd, arg, flag); 21558 } 21559 break; 21560 21561 case CDROMCDDA: 21562 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n"); 21563 if (!ISCD(un)) { 21564 err = ENOTTY; 21565 } else { 21566 err = sr_read_cdda(dev, (void *)arg, flag); 21567 } 21568 break; 21569 21570 case CDROMCDXA: 21571 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n"); 21572 if (!ISCD(un)) { 21573 err = ENOTTY; 21574 } else { 21575 err = sr_read_cdxa(dev, (caddr_t)arg, flag); 21576 } 21577 break; 21578 21579 case CDROMSUBCODE: 21580 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n"); 21581 if (!ISCD(un)) { 21582 err = ENOTTY; 21583 } else { 21584 err = sr_read_all_subcodes(dev, (caddr_t)arg, flag); 21585 } 21586 break; 21587 21588 case DKIOCPARTINFO: { 21589 /* 21590 * Return parameters describing the selected disk slice. 21591 * Note: this ioctl is for the intel platform only 21592 */ 21593 #if defined(__i386) || defined(__amd64) 21594 int part; 21595 21596 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n"); 21597 part = SDPART(dev); 21598 21599 /* don't check un_solaris_size for pN */ 21600 if (part < P0_RAW_DISK && un->un_solaris_size == 0) { 21601 err = EIO; 21602 } else { 21603 struct part_info p; 21604 21605 p.p_start = (daddr_t)un->un_offset[part]; 21606 p.p_length = (int)un->un_map[part].dkl_nblk; 21607 #ifdef _MULTI_DATAMODEL 21608 switch (ddi_model_convert_from(flag & FMODELS)) { 21609 case DDI_MODEL_ILP32: 21610 { 21611 struct part_info32 p32; 21612 21613 p32.p_start = (daddr32_t)p.p_start; 21614 p32.p_length = p.p_length; 21615 if (ddi_copyout(&p32, (void *)arg, 21616 sizeof (p32), flag)) 21617 err = EFAULT; 21618 break; 21619 } 21620 21621 case DDI_MODEL_NONE: 21622 { 21623 if (ddi_copyout(&p, (void *)arg, sizeof (p), 21624 flag)) 21625 err = EFAULT; 21626 break; 21627 } 21628 } 21629 #else /* ! _MULTI_DATAMODEL */ 21630 if (ddi_copyout(&p, (void *)arg, sizeof (p), flag)) 21631 err = EFAULT; 21632 #endif /* _MULTI_DATAMODEL */ 21633 } 21634 #else 21635 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n"); 21636 err = ENOTTY; 21637 #endif 21638 break; 21639 } 21640 21641 case DKIOCG_PHYGEOM: { 21642 /* Return the driver's notion of the media physical geometry */ 21643 #if defined(__i386) || defined(__amd64) 21644 struct dk_geom disk_geom; 21645 struct dk_geom *dkgp = &disk_geom; 21646 21647 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n"); 21648 mutex_enter(SD_MUTEX(un)); 21649 21650 if (un->un_g.dkg_nhead != 0 && 21651 un->un_g.dkg_nsect != 0) { 21652 /* 21653 * We succeeded in getting a geometry, but 21654 * right now it is being reported as just the 21655 * Solaris fdisk partition, just like for 21656 * DKIOCGGEOM. We need to change that to be 21657 * correct for the entire disk now. 21658 */ 21659 bcopy(&un->un_g, dkgp, sizeof (*dkgp)); 21660 dkgp->dkg_acyl = 0; 21661 dkgp->dkg_ncyl = un->un_blockcount / 21662 (dkgp->dkg_nhead * dkgp->dkg_nsect); 21663 } else { 21664 bzero(dkgp, sizeof (struct dk_geom)); 21665 /* 21666 * This disk does not have a Solaris VTOC 21667 * so we must present a physical geometry 21668 * that will remain consistent regardless 21669 * of how the disk is used. This will ensure 21670 * that the geometry does not change regardless 21671 * of the fdisk partition type (ie. EFI, FAT32, 21672 * Solaris, etc). 21673 */ 21674 if (ISCD(un)) { 21675 dkgp->dkg_nhead = un->un_pgeom.g_nhead; 21676 dkgp->dkg_nsect = un->un_pgeom.g_nsect; 21677 dkgp->dkg_ncyl = un->un_pgeom.g_ncyl; 21678 dkgp->dkg_acyl = un->un_pgeom.g_acyl; 21679 } else { 21680 /* 21681 * Invalid un_blockcount can generate invalid 21682 * dk_geom and may result in division by zero 21683 * system failure. Should make sure blockcount 21684 * is valid before using it here. 21685 */ 21686 if (un->un_f_blockcount_is_valid == FALSE) { 21687 mutex_exit(SD_MUTEX(un)); 21688 err = EIO; 21689 21690 break; 21691 } 21692 sd_convert_geometry(un->un_blockcount, dkgp); 21693 dkgp->dkg_acyl = 0; 21694 dkgp->dkg_ncyl = un->un_blockcount / 21695 (dkgp->dkg_nhead * dkgp->dkg_nsect); 21696 } 21697 } 21698 dkgp->dkg_pcyl = dkgp->dkg_ncyl + dkgp->dkg_acyl; 21699 21700 if (ddi_copyout(dkgp, (void *)arg, 21701 sizeof (struct dk_geom), flag)) { 21702 mutex_exit(SD_MUTEX(un)); 21703 err = EFAULT; 21704 } else { 21705 mutex_exit(SD_MUTEX(un)); 21706 err = 0; 21707 } 21708 #else 21709 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n"); 21710 err = ENOTTY; 21711 #endif 21712 break; 21713 } 21714 21715 case DKIOCG_VIRTGEOM: { 21716 /* Return the driver's notion of the media's logical geometry */ 21717 #if defined(__i386) || defined(__amd64) 21718 struct dk_geom disk_geom; 21719 struct dk_geom *dkgp = &disk_geom; 21720 21721 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n"); 21722 mutex_enter(SD_MUTEX(un)); 21723 /* 21724 * If there is no HBA geometry available, or 21725 * if the HBA returned us something that doesn't 21726 * really fit into an Int 13/function 8 geometry 21727 * result, just fail the ioctl. See PSARC 1998/313. 21728 */ 21729 if (un->un_lgeom.g_nhead == 0 || 21730 un->un_lgeom.g_nsect == 0 || 21731 un->un_lgeom.g_ncyl > 1024) { 21732 mutex_exit(SD_MUTEX(un)); 21733 err = EINVAL; 21734 } else { 21735 dkgp->dkg_ncyl = un->un_lgeom.g_ncyl; 21736 dkgp->dkg_acyl = un->un_lgeom.g_acyl; 21737 dkgp->dkg_pcyl = dkgp->dkg_ncyl + dkgp->dkg_acyl; 21738 dkgp->dkg_nhead = un->un_lgeom.g_nhead; 21739 dkgp->dkg_nsect = un->un_lgeom.g_nsect; 21740 21741 if (ddi_copyout(dkgp, (void *)arg, 21742 sizeof (struct dk_geom), flag)) { 21743 mutex_exit(SD_MUTEX(un)); 21744 err = EFAULT; 21745 } else { 21746 mutex_exit(SD_MUTEX(un)); 21747 err = 0; 21748 } 21749 } 21750 #else 21751 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n"); 21752 err = ENOTTY; 21753 #endif 21754 break; 21755 } 21756 #ifdef SDDEBUG 21757 /* RESET/ABORTS testing ioctls */ 21758 case DKIOCRESET: { 21759 int reset_level; 21760 21761 if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) { 21762 err = EFAULT; 21763 } else { 21764 SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: " 21765 "reset_level = 0x%lx\n", reset_level); 21766 if (scsi_reset(SD_ADDRESS(un), reset_level)) { 21767 err = 0; 21768 } else { 21769 err = EIO; 21770 } 21771 } 21772 break; 21773 } 21774 21775 case DKIOCABORT: 21776 SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n"); 21777 if (scsi_abort(SD_ADDRESS(un), NULL)) { 21778 err = 0; 21779 } else { 21780 err = EIO; 21781 } 21782 break; 21783 #endif 21784 21785 #ifdef SD_FAULT_INJECTION 21786 /* SDIOC FaultInjection testing ioctls */ 21787 case SDIOCSTART: 21788 case SDIOCSTOP: 21789 case SDIOCINSERTPKT: 21790 case SDIOCINSERTXB: 21791 case SDIOCINSERTUN: 21792 case SDIOCINSERTARQ: 21793 case SDIOCPUSH: 21794 case SDIOCRETRIEVE: 21795 case SDIOCRUN: 21796 SD_INFO(SD_LOG_SDTEST, un, "sdioctl:" 21797 "SDIOC detected cmd:0x%X:\n", cmd); 21798 /* call error generator */ 21799 sd_faultinjection_ioctl(cmd, arg, un); 21800 err = 0; 21801 break; 21802 21803 #endif /* SD_FAULT_INJECTION */ 21804 21805 case DKIOCFLUSHWRITECACHE: 21806 { 21807 struct dk_callback *dkc = (struct dk_callback *)arg; 21808 21809 mutex_enter(SD_MUTEX(un)); 21810 if (!un->un_f_sync_cache_supported || 21811 !un->un_f_write_cache_enabled) { 21812 err = un->un_f_sync_cache_supported ? 21813 0 : ENOTSUP; 21814 mutex_exit(SD_MUTEX(un)); 21815 if ((flag & FKIOCTL) && dkc != NULL && 21816 dkc->dkc_callback != NULL) { 21817 (*dkc->dkc_callback)(dkc->dkc_cookie, 21818 err); 21819 /* 21820 * Did callback and reported error. 21821 * Since we did a callback, ioctl 21822 * should return 0. 21823 */ 21824 err = 0; 21825 } 21826 break; 21827 } 21828 mutex_exit(SD_MUTEX(un)); 21829 21830 if ((flag & FKIOCTL) && dkc != NULL && 21831 dkc->dkc_callback != NULL) { 21832 /* async SYNC CACHE request */ 21833 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc); 21834 } else { 21835 /* synchronous SYNC CACHE request */ 21836 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL); 21837 } 21838 } 21839 break; 21840 21841 case DKIOCGETWCE: { 21842 21843 int wce; 21844 21845 if ((err = sd_get_write_cache_enabled(un, &wce)) != 0) { 21846 break; 21847 } 21848 21849 if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) { 21850 err = EFAULT; 21851 } 21852 break; 21853 } 21854 21855 case DKIOCSETWCE: { 21856 21857 int wce, sync_supported; 21858 21859 if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) { 21860 err = EFAULT; 21861 break; 21862 } 21863 21864 /* 21865 * Synchronize multiple threads trying to enable 21866 * or disable the cache via the un_f_wcc_cv 21867 * condition variable. 21868 */ 21869 mutex_enter(SD_MUTEX(un)); 21870 21871 /* 21872 * Don't allow the cache to be enabled if the 21873 * config file has it disabled. 21874 */ 21875 if (un->un_f_opt_disable_cache && wce) { 21876 mutex_exit(SD_MUTEX(un)); 21877 err = EINVAL; 21878 break; 21879 } 21880 21881 /* 21882 * Wait for write cache change in progress 21883 * bit to be clear before proceeding. 21884 */ 21885 while (un->un_f_wcc_inprog) 21886 cv_wait(&un->un_wcc_cv, SD_MUTEX(un)); 21887 21888 un->un_f_wcc_inprog = 1; 21889 21890 if (un->un_f_write_cache_enabled && wce == 0) { 21891 /* 21892 * Disable the write cache. Don't clear 21893 * un_f_write_cache_enabled until after 21894 * the mode select and flush are complete. 21895 */ 21896 sync_supported = un->un_f_sync_cache_supported; 21897 mutex_exit(SD_MUTEX(un)); 21898 if ((err = sd_cache_control(un, SD_CACHE_NOCHANGE, 21899 SD_CACHE_DISABLE)) == 0 && sync_supported) { 21900 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL); 21901 } 21902 21903 mutex_enter(SD_MUTEX(un)); 21904 if (err == 0) { 21905 un->un_f_write_cache_enabled = 0; 21906 } 21907 21908 } else if (!un->un_f_write_cache_enabled && wce != 0) { 21909 /* 21910 * Set un_f_write_cache_enabled first, so there is 21911 * no window where the cache is enabled, but the 21912 * bit says it isn't. 21913 */ 21914 un->un_f_write_cache_enabled = 1; 21915 mutex_exit(SD_MUTEX(un)); 21916 21917 err = sd_cache_control(un, SD_CACHE_NOCHANGE, 21918 SD_CACHE_ENABLE); 21919 21920 mutex_enter(SD_MUTEX(un)); 21921 21922 if (err) { 21923 un->un_f_write_cache_enabled = 0; 21924 } 21925 } 21926 21927 un->un_f_wcc_inprog = 0; 21928 cv_broadcast(&un->un_wcc_cv); 21929 mutex_exit(SD_MUTEX(un)); 21930 break; 21931 } 21932 21933 default: 21934 err = ENOTTY; 21935 break; 21936 } 21937 mutex_enter(SD_MUTEX(un)); 21938 un->un_ncmds_in_driver--; 21939 ASSERT(un->un_ncmds_in_driver >= 0); 21940 mutex_exit(SD_MUTEX(un)); 21941 21942 SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err); 21943 return (err); 21944 } 21945 21946 21947 /* 21948 * Function: sd_uscsi_ioctl 21949 * 21950 * Description: This routine is the driver entry point for handling USCSI ioctl 21951 * requests (USCSICMD). 21952 * 21953 * Arguments: dev - the device number 21954 * arg - user provided scsi command 21955 * flag - this argument is a pass through to ddi_copyxxx() 21956 * directly from the mode argument of ioctl(). 21957 * 21958 * Return Code: code returned by sd_send_scsi_cmd 21959 * ENXIO 21960 * EFAULT 21961 * EAGAIN 21962 */ 21963 21964 static int 21965 sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag) 21966 { 21967 #ifdef _MULTI_DATAMODEL 21968 /* 21969 * For use when a 32 bit app makes a call into a 21970 * 64 bit ioctl 21971 */ 21972 struct uscsi_cmd32 uscsi_cmd_32_for_64; 21973 struct uscsi_cmd32 *ucmd32 = &uscsi_cmd_32_for_64; 21974 model_t model; 21975 #endif /* _MULTI_DATAMODEL */ 21976 struct uscsi_cmd *scmd = NULL; 21977 struct sd_lun *un = NULL; 21978 enum uio_seg uioseg; 21979 char cdb[CDB_GROUP0]; 21980 int rval = 0; 21981 21982 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 21983 return (ENXIO); 21984 } 21985 21986 SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: entry: un:0x%p\n", un); 21987 21988 scmd = (struct uscsi_cmd *) 21989 kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP); 21990 21991 #ifdef _MULTI_DATAMODEL 21992 switch (model = ddi_model_convert_from(flag & FMODELS)) { 21993 case DDI_MODEL_ILP32: 21994 { 21995 if (ddi_copyin((void *)arg, ucmd32, sizeof (*ucmd32), flag)) { 21996 rval = EFAULT; 21997 goto done; 21998 } 21999 /* 22000 * Convert the ILP32 uscsi data from the 22001 * application to LP64 for internal use. 22002 */ 22003 uscsi_cmd32touscsi_cmd(ucmd32, scmd); 22004 break; 22005 } 22006 case DDI_MODEL_NONE: 22007 if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) { 22008 rval = EFAULT; 22009 goto done; 22010 } 22011 break; 22012 } 22013 #else /* ! _MULTI_DATAMODEL */ 22014 if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) { 22015 rval = EFAULT; 22016 goto done; 22017 } 22018 #endif /* _MULTI_DATAMODEL */ 22019 22020 scmd->uscsi_flags &= ~USCSI_NOINTR; 22021 uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE : UIO_USERSPACE; 22022 if (un->un_f_format_in_progress == TRUE) { 22023 rval = EAGAIN; 22024 goto done; 22025 } 22026 22027 /* 22028 * Gotta do the ddi_copyin() here on the uscsi_cdb so that 22029 * we will have a valid cdb[0] to test. 22030 */ 22031 if ((ddi_copyin(scmd->uscsi_cdb, cdb, CDB_GROUP0, flag) == 0) && 22032 (cdb[0] == SCMD_FORMAT)) { 22033 SD_TRACE(SD_LOG_IOCTL, un, 22034 "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]); 22035 mutex_enter(SD_MUTEX(un)); 22036 un->un_f_format_in_progress = TRUE; 22037 mutex_exit(SD_MUTEX(un)); 22038 rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg, 22039 SD_PATH_STANDARD); 22040 mutex_enter(SD_MUTEX(un)); 22041 un->un_f_format_in_progress = FALSE; 22042 mutex_exit(SD_MUTEX(un)); 22043 } else { 22044 SD_TRACE(SD_LOG_IOCTL, un, 22045 "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]); 22046 /* 22047 * It's OK to fall into here even if the ddi_copyin() 22048 * on the uscsi_cdb above fails, because sd_send_scsi_cmd() 22049 * does this same copyin and will return the EFAULT 22050 * if it fails. 22051 */ 22052 rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg, 22053 SD_PATH_STANDARD); 22054 } 22055 #ifdef _MULTI_DATAMODEL 22056 switch (model) { 22057 case DDI_MODEL_ILP32: 22058 /* 22059 * Convert back to ILP32 before copyout to the 22060 * application 22061 */ 22062 uscsi_cmdtouscsi_cmd32(scmd, ucmd32); 22063 if (ddi_copyout(ucmd32, (void *)arg, sizeof (*ucmd32), flag)) { 22064 if (rval != 0) { 22065 rval = EFAULT; 22066 } 22067 } 22068 break; 22069 case DDI_MODEL_NONE: 22070 if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) { 22071 if (rval != 0) { 22072 rval = EFAULT; 22073 } 22074 } 22075 break; 22076 } 22077 #else /* ! _MULTI_DATAMODE */ 22078 if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) { 22079 if (rval != 0) { 22080 rval = EFAULT; 22081 } 22082 } 22083 #endif /* _MULTI_DATAMODE */ 22084 done: 22085 kmem_free(scmd, sizeof (struct uscsi_cmd)); 22086 22087 SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: exit: un:0x%p\n", un); 22088 22089 return (rval); 22090 } 22091 22092 22093 /* 22094 * Function: sd_dkio_ctrl_info 22095 * 22096 * Description: This routine is the driver entry point for handling controller 22097 * information ioctl requests (DKIOCINFO). 22098 * 22099 * Arguments: dev - the device number 22100 * arg - pointer to user provided dk_cinfo structure 22101 * specifying the controller type and attributes. 22102 * flag - this argument is a pass through to ddi_copyxxx() 22103 * directly from the mode argument of ioctl(). 22104 * 22105 * Return Code: 0 22106 * EFAULT 22107 * ENXIO 22108 */ 22109 22110 static int 22111 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag) 22112 { 22113 struct sd_lun *un = NULL; 22114 struct dk_cinfo *info; 22115 dev_info_t *pdip; 22116 int lun, tgt; 22117 22118 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22119 return (ENXIO); 22120 } 22121 22122 info = (struct dk_cinfo *) 22123 kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP); 22124 22125 switch (un->un_ctype) { 22126 case CTYPE_CDROM: 22127 info->dki_ctype = DKC_CDROM; 22128 break; 22129 default: 22130 info->dki_ctype = DKC_SCSI_CCS; 22131 break; 22132 } 22133 pdip = ddi_get_parent(SD_DEVINFO(un)); 22134 info->dki_cnum = ddi_get_instance(pdip); 22135 if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) { 22136 (void) strcpy(info->dki_cname, ddi_get_name(pdip)); 22137 } else { 22138 (void) strncpy(info->dki_cname, ddi_node_name(pdip), 22139 DK_DEVLEN - 1); 22140 } 22141 22142 lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 22143 DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0); 22144 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 22145 DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0); 22146 22147 /* Unit Information */ 22148 info->dki_unit = ddi_get_instance(SD_DEVINFO(un)); 22149 info->dki_slave = ((tgt << 3) | lun); 22150 (void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)), 22151 DK_DEVLEN - 1); 22152 info->dki_flags = DKI_FMTVOL; 22153 info->dki_partition = SDPART(dev); 22154 22155 /* Max Transfer size of this device in blocks */ 22156 info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize; 22157 info->dki_addr = 0; 22158 info->dki_space = 0; 22159 info->dki_prio = 0; 22160 info->dki_vec = 0; 22161 22162 if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) { 22163 kmem_free(info, sizeof (struct dk_cinfo)); 22164 return (EFAULT); 22165 } else { 22166 kmem_free(info, sizeof (struct dk_cinfo)); 22167 return (0); 22168 } 22169 } 22170 22171 22172 /* 22173 * Function: sd_get_media_info 22174 * 22175 * Description: This routine is the driver entry point for handling ioctl 22176 * requests for the media type or command set profile used by the 22177 * drive to operate on the media (DKIOCGMEDIAINFO). 22178 * 22179 * Arguments: dev - the device number 22180 * arg - pointer to user provided dk_minfo structure 22181 * specifying the media type, logical block size and 22182 * drive capacity. 22183 * flag - this argument is a pass through to ddi_copyxxx() 22184 * directly from the mode argument of ioctl(). 22185 * 22186 * Return Code: 0 22187 * EACCESS 22188 * EFAULT 22189 * ENXIO 22190 * EIO 22191 */ 22192 22193 static int 22194 sd_get_media_info(dev_t dev, caddr_t arg, int flag) 22195 { 22196 struct sd_lun *un = NULL; 22197 struct uscsi_cmd com; 22198 struct scsi_inquiry *sinq; 22199 struct dk_minfo media_info; 22200 u_longlong_t media_capacity; 22201 uint64_t capacity; 22202 uint_t lbasize; 22203 uchar_t *out_data; 22204 uchar_t *rqbuf; 22205 int rval = 0; 22206 int rtn; 22207 22208 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 22209 (un->un_state == SD_STATE_OFFLINE)) { 22210 return (ENXIO); 22211 } 22212 22213 SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n"); 22214 22215 out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP); 22216 rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 22217 22218 /* Issue a TUR to determine if the drive is ready with media present */ 22219 rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA); 22220 if (rval == ENXIO) { 22221 goto done; 22222 } 22223 22224 /* Now get configuration data */ 22225 if (ISCD(un)) { 22226 media_info.dki_media_type = DK_CDROM; 22227 22228 /* Allow SCMD_GET_CONFIGURATION to MMC devices only */ 22229 if (un->un_f_mmc_cap == TRUE) { 22230 rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, 22231 SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN); 22232 22233 if (rtn) { 22234 /* 22235 * Failed for other than an illegal request 22236 * or command not supported 22237 */ 22238 if ((com.uscsi_status == STATUS_CHECK) && 22239 (com.uscsi_rqstatus == STATUS_GOOD)) { 22240 if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) || 22241 (rqbuf[12] != 0x20)) { 22242 rval = EIO; 22243 goto done; 22244 } 22245 } 22246 } else { 22247 /* 22248 * The GET CONFIGURATION command succeeded 22249 * so set the media type according to the 22250 * returned data 22251 */ 22252 media_info.dki_media_type = out_data[6]; 22253 media_info.dki_media_type <<= 8; 22254 media_info.dki_media_type |= out_data[7]; 22255 } 22256 } 22257 } else { 22258 /* 22259 * The profile list is not available, so we attempt to identify 22260 * the media type based on the inquiry data 22261 */ 22262 sinq = un->un_sd->sd_inq; 22263 if (sinq->inq_qual == 0) { 22264 /* This is a direct access device */ 22265 media_info.dki_media_type = DK_FIXED_DISK; 22266 22267 if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) || 22268 (bcmp(sinq->inq_vid, "iomega", 6) == 0)) { 22269 if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) { 22270 media_info.dki_media_type = DK_ZIP; 22271 } else if ( 22272 (bcmp(sinq->inq_pid, "jaz", 3) == 0)) { 22273 media_info.dki_media_type = DK_JAZ; 22274 } 22275 } 22276 } else { 22277 /* Not a CD or direct access so return unknown media */ 22278 media_info.dki_media_type = DK_UNKNOWN; 22279 } 22280 } 22281 22282 /* Now read the capacity so we can provide the lbasize and capacity */ 22283 switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize, 22284 SD_PATH_DIRECT)) { 22285 case 0: 22286 break; 22287 case EACCES: 22288 rval = EACCES; 22289 goto done; 22290 default: 22291 rval = EIO; 22292 goto done; 22293 } 22294 22295 media_info.dki_lbsize = lbasize; 22296 media_capacity = capacity; 22297 22298 /* 22299 * sd_send_scsi_READ_CAPACITY() reports capacity in 22300 * un->un_sys_blocksize chunks. So we need to convert it into 22301 * cap.lbasize chunks. 22302 */ 22303 media_capacity *= un->un_sys_blocksize; 22304 media_capacity /= lbasize; 22305 media_info.dki_capacity = media_capacity; 22306 22307 if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) { 22308 rval = EFAULT; 22309 /* Put goto. Anybody might add some code below in future */ 22310 goto done; 22311 } 22312 done: 22313 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 22314 kmem_free(rqbuf, SENSE_LENGTH); 22315 return (rval); 22316 } 22317 22318 22319 /* 22320 * Function: sd_dkio_get_geometry 22321 * 22322 * Description: This routine is the driver entry point for handling user 22323 * requests to get the device geometry (DKIOCGGEOM). 22324 * 22325 * Arguments: dev - the device number 22326 * arg - pointer to user provided dk_geom structure specifying 22327 * the controller's notion of the current geometry. 22328 * flag - this argument is a pass through to ddi_copyxxx() 22329 * directly from the mode argument of ioctl(). 22330 * geom_validated - flag indicating if the device geometry has been 22331 * previously validated in the sdioctl routine. 22332 * 22333 * Return Code: 0 22334 * EFAULT 22335 * ENXIO 22336 * EIO 22337 */ 22338 22339 static int 22340 sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag, int geom_validated) 22341 { 22342 struct sd_lun *un = NULL; 22343 struct dk_geom *tmp_geom = NULL; 22344 int rval = 0; 22345 22346 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22347 return (ENXIO); 22348 } 22349 22350 #if defined(__i386) || defined(__amd64) 22351 if (un->un_solaris_size == 0) { 22352 return (EIO); 22353 } 22354 #endif 22355 if (geom_validated == FALSE) { 22356 /* 22357 * sd_validate_geometry does not spin a disk up 22358 * if it was spun down. We need to make sure it 22359 * is ready. 22360 */ 22361 if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) { 22362 return (rval); 22363 } 22364 mutex_enter(SD_MUTEX(un)); 22365 rval = sd_validate_geometry(un, SD_PATH_DIRECT); 22366 mutex_exit(SD_MUTEX(un)); 22367 } 22368 if (rval) 22369 return (rval); 22370 22371 /* 22372 * Make a local copy of the soft state geometry to avoid some potential 22373 * race conditions associated with holding the mutex and updating the 22374 * write_reinstruct value 22375 */ 22376 tmp_geom = kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP); 22377 mutex_enter(SD_MUTEX(un)); 22378 bcopy(&un->un_g, tmp_geom, sizeof (struct dk_geom)); 22379 mutex_exit(SD_MUTEX(un)); 22380 22381 if (tmp_geom->dkg_write_reinstruct == 0) { 22382 tmp_geom->dkg_write_reinstruct = 22383 (int)((int)(tmp_geom->dkg_nsect * tmp_geom->dkg_rpm * 22384 sd_rot_delay) / (int)60000); 22385 } 22386 22387 rval = ddi_copyout(tmp_geom, (void *)arg, sizeof (struct dk_geom), 22388 flag); 22389 if (rval != 0) { 22390 rval = EFAULT; 22391 } 22392 22393 kmem_free(tmp_geom, sizeof (struct dk_geom)); 22394 return (rval); 22395 22396 } 22397 22398 22399 /* 22400 * Function: sd_dkio_set_geometry 22401 * 22402 * Description: This routine is the driver entry point for handling user 22403 * requests to set the device geometry (DKIOCSGEOM). The actual 22404 * device geometry is not updated, just the driver "notion" of it. 22405 * 22406 * Arguments: dev - the device number 22407 * arg - pointer to user provided dk_geom structure used to set 22408 * the controller's notion of the current geometry. 22409 * flag - this argument is a pass through to ddi_copyxxx() 22410 * directly from the mode argument of ioctl(). 22411 * 22412 * Return Code: 0 22413 * EFAULT 22414 * ENXIO 22415 * EIO 22416 */ 22417 22418 static int 22419 sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag) 22420 { 22421 struct sd_lun *un = NULL; 22422 struct dk_geom *tmp_geom; 22423 struct dk_map *lp; 22424 int rval = 0; 22425 int i; 22426 22427 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22428 return (ENXIO); 22429 } 22430 22431 #if defined(__i386) || defined(__amd64) 22432 if (un->un_solaris_size == 0) { 22433 return (EIO); 22434 } 22435 #endif 22436 /* 22437 * We need to copy the user specified geometry into local 22438 * storage and then update the softstate. We don't want to hold 22439 * the mutex and copyin directly from the user to the soft state 22440 */ 22441 tmp_geom = (struct dk_geom *) 22442 kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP); 22443 rval = ddi_copyin(arg, tmp_geom, sizeof (struct dk_geom), flag); 22444 if (rval != 0) { 22445 kmem_free(tmp_geom, sizeof (struct dk_geom)); 22446 return (EFAULT); 22447 } 22448 22449 mutex_enter(SD_MUTEX(un)); 22450 bcopy(tmp_geom, &un->un_g, sizeof (struct dk_geom)); 22451 for (i = 0; i < NDKMAP; i++) { 22452 lp = &un->un_map[i]; 22453 un->un_offset[i] = 22454 un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno; 22455 #if defined(__i386) || defined(__amd64) 22456 un->un_offset[i] += un->un_solaris_offset; 22457 #endif 22458 } 22459 un->un_f_geometry_is_valid = FALSE; 22460 mutex_exit(SD_MUTEX(un)); 22461 kmem_free(tmp_geom, sizeof (struct dk_geom)); 22462 22463 return (rval); 22464 } 22465 22466 22467 /* 22468 * Function: sd_dkio_get_partition 22469 * 22470 * Description: This routine is the driver entry point for handling user 22471 * requests to get the partition table (DKIOCGAPART). 22472 * 22473 * Arguments: dev - the device number 22474 * arg - pointer to user provided dk_allmap structure specifying 22475 * the controller's notion of the current partition table. 22476 * flag - this argument is a pass through to ddi_copyxxx() 22477 * directly from the mode argument of ioctl(). 22478 * geom_validated - flag indicating if the device geometry has been 22479 * previously validated in the sdioctl routine. 22480 * 22481 * Return Code: 0 22482 * EFAULT 22483 * ENXIO 22484 * EIO 22485 */ 22486 22487 static int 22488 sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag, int geom_validated) 22489 { 22490 struct sd_lun *un = NULL; 22491 int rval = 0; 22492 int size; 22493 22494 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22495 return (ENXIO); 22496 } 22497 22498 #if defined(__i386) || defined(__amd64) 22499 if (un->un_solaris_size == 0) { 22500 return (EIO); 22501 } 22502 #endif 22503 /* 22504 * Make sure the geometry is valid before getting the partition 22505 * information. 22506 */ 22507 mutex_enter(SD_MUTEX(un)); 22508 if (geom_validated == FALSE) { 22509 /* 22510 * sd_validate_geometry does not spin a disk up 22511 * if it was spun down. We need to make sure it 22512 * is ready before validating the geometry. 22513 */ 22514 mutex_exit(SD_MUTEX(un)); 22515 if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) { 22516 return (rval); 22517 } 22518 mutex_enter(SD_MUTEX(un)); 22519 22520 if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) { 22521 mutex_exit(SD_MUTEX(un)); 22522 return (rval); 22523 } 22524 } 22525 mutex_exit(SD_MUTEX(un)); 22526 22527 #ifdef _MULTI_DATAMODEL 22528 switch (ddi_model_convert_from(flag & FMODELS)) { 22529 case DDI_MODEL_ILP32: { 22530 struct dk_map32 dk_map32[NDKMAP]; 22531 int i; 22532 22533 for (i = 0; i < NDKMAP; i++) { 22534 dk_map32[i].dkl_cylno = un->un_map[i].dkl_cylno; 22535 dk_map32[i].dkl_nblk = un->un_map[i].dkl_nblk; 22536 } 22537 size = NDKMAP * sizeof (struct dk_map32); 22538 rval = ddi_copyout(dk_map32, (void *)arg, size, flag); 22539 if (rval != 0) { 22540 rval = EFAULT; 22541 } 22542 break; 22543 } 22544 case DDI_MODEL_NONE: 22545 size = NDKMAP * sizeof (struct dk_map); 22546 rval = ddi_copyout(un->un_map, (void *)arg, size, flag); 22547 if (rval != 0) { 22548 rval = EFAULT; 22549 } 22550 break; 22551 } 22552 #else /* ! _MULTI_DATAMODEL */ 22553 size = NDKMAP * sizeof (struct dk_map); 22554 rval = ddi_copyout(un->un_map, (void *)arg, size, flag); 22555 if (rval != 0) { 22556 rval = EFAULT; 22557 } 22558 #endif /* _MULTI_DATAMODEL */ 22559 return (rval); 22560 } 22561 22562 22563 /* 22564 * Function: sd_dkio_set_partition 22565 * 22566 * Description: This routine is the driver entry point for handling user 22567 * requests to set the partition table (DKIOCSAPART). The actual 22568 * device partition is not updated. 22569 * 22570 * Arguments: dev - the device number 22571 * arg - pointer to user provided dk_allmap structure used to set 22572 * the controller's notion of the partition table. 22573 * flag - this argument is a pass through to ddi_copyxxx() 22574 * directly from the mode argument of ioctl(). 22575 * 22576 * Return Code: 0 22577 * EINVAL 22578 * EFAULT 22579 * ENXIO 22580 * EIO 22581 */ 22582 22583 static int 22584 sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag) 22585 { 22586 struct sd_lun *un = NULL; 22587 struct dk_map dk_map[NDKMAP]; 22588 struct dk_map *lp; 22589 int rval = 0; 22590 int size; 22591 int i; 22592 #if defined(_SUNOS_VTOC_16) 22593 struct dkl_partition *vp; 22594 #endif 22595 22596 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22597 return (ENXIO); 22598 } 22599 22600 /* 22601 * Set the map for all logical partitions. We lock 22602 * the priority just to make sure an interrupt doesn't 22603 * come in while the map is half updated. 22604 */ 22605 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_solaris_size)) 22606 mutex_enter(SD_MUTEX(un)); 22607 if (un->un_blockcount > DK_MAX_BLOCKS) { 22608 mutex_exit(SD_MUTEX(un)); 22609 return (ENOTSUP); 22610 } 22611 mutex_exit(SD_MUTEX(un)); 22612 if (un->un_solaris_size == 0) { 22613 return (EIO); 22614 } 22615 22616 #ifdef _MULTI_DATAMODEL 22617 switch (ddi_model_convert_from(flag & FMODELS)) { 22618 case DDI_MODEL_ILP32: { 22619 struct dk_map32 dk_map32[NDKMAP]; 22620 22621 size = NDKMAP * sizeof (struct dk_map32); 22622 rval = ddi_copyin((void *)arg, dk_map32, size, flag); 22623 if (rval != 0) { 22624 return (EFAULT); 22625 } 22626 for (i = 0; i < NDKMAP; i++) { 22627 dk_map[i].dkl_cylno = dk_map32[i].dkl_cylno; 22628 dk_map[i].dkl_nblk = dk_map32[i].dkl_nblk; 22629 } 22630 break; 22631 } 22632 case DDI_MODEL_NONE: 22633 size = NDKMAP * sizeof (struct dk_map); 22634 rval = ddi_copyin((void *)arg, dk_map, size, flag); 22635 if (rval != 0) { 22636 return (EFAULT); 22637 } 22638 break; 22639 } 22640 #else /* ! _MULTI_DATAMODEL */ 22641 size = NDKMAP * sizeof (struct dk_map); 22642 rval = ddi_copyin((void *)arg, dk_map, size, flag); 22643 if (rval != 0) { 22644 return (EFAULT); 22645 } 22646 #endif /* _MULTI_DATAMODEL */ 22647 22648 mutex_enter(SD_MUTEX(un)); 22649 /* Note: The size used in this bcopy is set based upon the data model */ 22650 bcopy(dk_map, un->un_map, size); 22651 #if defined(_SUNOS_VTOC_16) 22652 vp = (struct dkl_partition *)&(un->un_vtoc); 22653 #endif /* defined(_SUNOS_VTOC_16) */ 22654 for (i = 0; i < NDKMAP; i++) { 22655 lp = &un->un_map[i]; 22656 un->un_offset[i] = 22657 un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno; 22658 #if defined(_SUNOS_VTOC_16) 22659 vp->p_start = un->un_offset[i]; 22660 vp->p_size = lp->dkl_nblk; 22661 vp++; 22662 #endif /* defined(_SUNOS_VTOC_16) */ 22663 #if defined(__i386) || defined(__amd64) 22664 un->un_offset[i] += un->un_solaris_offset; 22665 #endif 22666 } 22667 mutex_exit(SD_MUTEX(un)); 22668 return (rval); 22669 } 22670 22671 22672 /* 22673 * Function: sd_dkio_get_vtoc 22674 * 22675 * Description: This routine is the driver entry point for handling user 22676 * requests to get the current volume table of contents 22677 * (DKIOCGVTOC). 22678 * 22679 * Arguments: dev - the device number 22680 * arg - pointer to user provided vtoc structure specifying 22681 * the current vtoc. 22682 * flag - this argument is a pass through to ddi_copyxxx() 22683 * directly from the mode argument of ioctl(). 22684 * geom_validated - flag indicating if the device geometry has been 22685 * previously validated in the sdioctl routine. 22686 * 22687 * Return Code: 0 22688 * EFAULT 22689 * ENXIO 22690 * EIO 22691 */ 22692 22693 static int 22694 sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag, int geom_validated) 22695 { 22696 struct sd_lun *un = NULL; 22697 #if defined(_SUNOS_VTOC_8) 22698 struct vtoc user_vtoc; 22699 #endif /* defined(_SUNOS_VTOC_8) */ 22700 int rval = 0; 22701 22702 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22703 return (ENXIO); 22704 } 22705 22706 mutex_enter(SD_MUTEX(un)); 22707 if (geom_validated == FALSE) { 22708 /* 22709 * sd_validate_geometry does not spin a disk up 22710 * if it was spun down. We need to make sure it 22711 * is ready. 22712 */ 22713 mutex_exit(SD_MUTEX(un)); 22714 if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) { 22715 return (rval); 22716 } 22717 mutex_enter(SD_MUTEX(un)); 22718 if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) { 22719 mutex_exit(SD_MUTEX(un)); 22720 return (rval); 22721 } 22722 } 22723 22724 #if defined(_SUNOS_VTOC_8) 22725 sd_build_user_vtoc(un, &user_vtoc); 22726 mutex_exit(SD_MUTEX(un)); 22727 22728 #ifdef _MULTI_DATAMODEL 22729 switch (ddi_model_convert_from(flag & FMODELS)) { 22730 case DDI_MODEL_ILP32: { 22731 struct vtoc32 user_vtoc32; 22732 22733 vtoctovtoc32(user_vtoc, user_vtoc32); 22734 if (ddi_copyout(&user_vtoc32, (void *)arg, 22735 sizeof (struct vtoc32), flag)) { 22736 return (EFAULT); 22737 } 22738 break; 22739 } 22740 22741 case DDI_MODEL_NONE: 22742 if (ddi_copyout(&user_vtoc, (void *)arg, 22743 sizeof (struct vtoc), flag)) { 22744 return (EFAULT); 22745 } 22746 break; 22747 } 22748 #else /* ! _MULTI_DATAMODEL */ 22749 if (ddi_copyout(&user_vtoc, (void *)arg, sizeof (struct vtoc), flag)) { 22750 return (EFAULT); 22751 } 22752 #endif /* _MULTI_DATAMODEL */ 22753 22754 #elif defined(_SUNOS_VTOC_16) 22755 mutex_exit(SD_MUTEX(un)); 22756 22757 #ifdef _MULTI_DATAMODEL 22758 /* 22759 * The un_vtoc structure is a "struct dk_vtoc" which is always 22760 * 32-bit to maintain compatibility with existing on-disk 22761 * structures. Thus, we need to convert the structure when copying 22762 * it out to a datamodel-dependent "struct vtoc" in a 64-bit 22763 * program. If the target is a 32-bit program, then no conversion 22764 * is necessary. 22765 */ 22766 /* LINTED: logical expression always true: op "||" */ 22767 ASSERT(sizeof (un->un_vtoc) == sizeof (struct vtoc32)); 22768 switch (ddi_model_convert_from(flag & FMODELS)) { 22769 case DDI_MODEL_ILP32: 22770 if (ddi_copyout(&(un->un_vtoc), (void *)arg, 22771 sizeof (un->un_vtoc), flag)) { 22772 return (EFAULT); 22773 } 22774 break; 22775 22776 case DDI_MODEL_NONE: { 22777 struct vtoc user_vtoc; 22778 22779 vtoc32tovtoc(un->un_vtoc, user_vtoc); 22780 if (ddi_copyout(&user_vtoc, (void *)arg, 22781 sizeof (struct vtoc), flag)) { 22782 return (EFAULT); 22783 } 22784 break; 22785 } 22786 } 22787 #else /* ! _MULTI_DATAMODEL */ 22788 if (ddi_copyout(&(un->un_vtoc), (void *)arg, sizeof (un->un_vtoc), 22789 flag)) { 22790 return (EFAULT); 22791 } 22792 #endif /* _MULTI_DATAMODEL */ 22793 #else 22794 #error "No VTOC format defined." 22795 #endif 22796 22797 return (rval); 22798 } 22799 22800 static int 22801 sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag) 22802 { 22803 struct sd_lun *un = NULL; 22804 dk_efi_t user_efi; 22805 int rval = 0; 22806 void *buffer; 22807 22808 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) 22809 return (ENXIO); 22810 22811 if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag)) 22812 return (EFAULT); 22813 22814 user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64; 22815 22816 if ((user_efi.dki_length % un->un_tgt_blocksize) || 22817 (user_efi.dki_length > un->un_max_xfer_size)) 22818 return (EINVAL); 22819 22820 buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP); 22821 rval = sd_send_scsi_READ(un, buffer, user_efi.dki_length, 22822 user_efi.dki_lba, SD_PATH_DIRECT); 22823 if (rval == 0 && ddi_copyout(buffer, user_efi.dki_data, 22824 user_efi.dki_length, flag) != 0) 22825 rval = EFAULT; 22826 22827 kmem_free(buffer, user_efi.dki_length); 22828 return (rval); 22829 } 22830 22831 /* 22832 * Function: sd_build_user_vtoc 22833 * 22834 * Description: This routine populates a pass by reference variable with the 22835 * current volume table of contents. 22836 * 22837 * Arguments: un - driver soft state (unit) structure 22838 * user_vtoc - pointer to vtoc structure to be populated 22839 */ 22840 22841 static void 22842 sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc) 22843 { 22844 struct dk_map2 *lpart; 22845 struct dk_map *lmap; 22846 struct partition *vpart; 22847 int nblks; 22848 int i; 22849 22850 ASSERT(mutex_owned(SD_MUTEX(un))); 22851 22852 /* 22853 * Return vtoc structure fields in the provided VTOC area, addressed 22854 * by *vtoc. 22855 */ 22856 bzero(user_vtoc, sizeof (struct vtoc)); 22857 user_vtoc->v_bootinfo[0] = un->un_vtoc.v_bootinfo[0]; 22858 user_vtoc->v_bootinfo[1] = un->un_vtoc.v_bootinfo[1]; 22859 user_vtoc->v_bootinfo[2] = un->un_vtoc.v_bootinfo[2]; 22860 user_vtoc->v_sanity = VTOC_SANE; 22861 user_vtoc->v_version = un->un_vtoc.v_version; 22862 bcopy(un->un_vtoc.v_volume, user_vtoc->v_volume, LEN_DKL_VVOL); 22863 user_vtoc->v_sectorsz = un->un_sys_blocksize; 22864 user_vtoc->v_nparts = un->un_vtoc.v_nparts; 22865 bcopy(un->un_vtoc.v_reserved, user_vtoc->v_reserved, 22866 sizeof (un->un_vtoc.v_reserved)); 22867 /* 22868 * Convert partitioning information. 22869 * 22870 * Note the conversion from starting cylinder number 22871 * to starting sector number. 22872 */ 22873 lmap = un->un_map; 22874 lpart = (struct dk_map2 *)un->un_vtoc.v_part; 22875 vpart = user_vtoc->v_part; 22876 22877 nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead; 22878 22879 for (i = 0; i < V_NUMPAR; i++) { 22880 vpart->p_tag = lpart->p_tag; 22881 vpart->p_flag = lpart->p_flag; 22882 vpart->p_start = lmap->dkl_cylno * nblks; 22883 vpart->p_size = lmap->dkl_nblk; 22884 lmap++; 22885 lpart++; 22886 vpart++; 22887 22888 /* (4364927) */ 22889 user_vtoc->timestamp[i] = (time_t)un->un_vtoc.v_timestamp[i]; 22890 } 22891 22892 bcopy(un->un_asciilabel, user_vtoc->v_asciilabel, LEN_DKL_ASCII); 22893 } 22894 22895 static int 22896 sd_dkio_partition(dev_t dev, caddr_t arg, int flag) 22897 { 22898 struct sd_lun *un = NULL; 22899 struct partition64 p64; 22900 int rval = 0; 22901 uint_t nparts; 22902 efi_gpe_t *partitions; 22903 efi_gpt_t *buffer; 22904 diskaddr_t gpe_lba; 22905 22906 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22907 return (ENXIO); 22908 } 22909 22910 if (ddi_copyin((const void *)arg, &p64, 22911 sizeof (struct partition64), flag)) { 22912 return (EFAULT); 22913 } 22914 22915 buffer = kmem_alloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP); 22916 rval = sd_send_scsi_READ(un, buffer, DEV_BSIZE, 22917 1, SD_PATH_DIRECT); 22918 if (rval != 0) 22919 goto done_error; 22920 22921 sd_swap_efi_gpt(buffer); 22922 22923 if ((rval = sd_validate_efi(buffer)) != 0) 22924 goto done_error; 22925 22926 nparts = buffer->efi_gpt_NumberOfPartitionEntries; 22927 gpe_lba = buffer->efi_gpt_PartitionEntryLBA; 22928 if (p64.p_partno > nparts) { 22929 /* couldn't find it */ 22930 rval = ESRCH; 22931 goto done_error; 22932 } 22933 /* 22934 * if we're dealing with a partition that's out of the normal 22935 * 16K block, adjust accordingly 22936 */ 22937 gpe_lba += p64.p_partno / sizeof (efi_gpe_t); 22938 rval = sd_send_scsi_READ(un, buffer, EFI_MIN_ARRAY_SIZE, 22939 gpe_lba, SD_PATH_DIRECT); 22940 if (rval) { 22941 goto done_error; 22942 } 22943 partitions = (efi_gpe_t *)buffer; 22944 22945 sd_swap_efi_gpe(nparts, partitions); 22946 22947 partitions += p64.p_partno; 22948 bcopy(&partitions->efi_gpe_PartitionTypeGUID, &p64.p_type, 22949 sizeof (struct uuid)); 22950 p64.p_start = partitions->efi_gpe_StartingLBA; 22951 p64.p_size = partitions->efi_gpe_EndingLBA - 22952 p64.p_start + 1; 22953 22954 if (ddi_copyout(&p64, (void *)arg, sizeof (struct partition64), flag)) 22955 rval = EFAULT; 22956 22957 done_error: 22958 kmem_free(buffer, EFI_MIN_ARRAY_SIZE); 22959 return (rval); 22960 } 22961 22962 22963 /* 22964 * Function: sd_dkio_set_vtoc 22965 * 22966 * Description: This routine is the driver entry point for handling user 22967 * requests to set the current volume table of contents 22968 * (DKIOCSVTOC). 22969 * 22970 * Arguments: dev - the device number 22971 * arg - pointer to user provided vtoc structure used to set the 22972 * current vtoc. 22973 * flag - this argument is a pass through to ddi_copyxxx() 22974 * directly from the mode argument of ioctl(). 22975 * 22976 * Return Code: 0 22977 * EFAULT 22978 * ENXIO 22979 * EINVAL 22980 * ENOTSUP 22981 */ 22982 22983 static int 22984 sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag) 22985 { 22986 struct sd_lun *un = NULL; 22987 struct vtoc user_vtoc; 22988 int rval = 0; 22989 22990 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22991 return (ENXIO); 22992 } 22993 22994 #if defined(__i386) || defined(__amd64) 22995 if (un->un_tgt_blocksize != un->un_sys_blocksize) { 22996 return (EINVAL); 22997 } 22998 #endif 22999 23000 #ifdef _MULTI_DATAMODEL 23001 switch (ddi_model_convert_from(flag & FMODELS)) { 23002 case DDI_MODEL_ILP32: { 23003 struct vtoc32 user_vtoc32; 23004 23005 if (ddi_copyin((const void *)arg, &user_vtoc32, 23006 sizeof (struct vtoc32), flag)) { 23007 return (EFAULT); 23008 } 23009 vtoc32tovtoc(user_vtoc32, user_vtoc); 23010 break; 23011 } 23012 23013 case DDI_MODEL_NONE: 23014 if (ddi_copyin((const void *)arg, &user_vtoc, 23015 sizeof (struct vtoc), flag)) { 23016 return (EFAULT); 23017 } 23018 break; 23019 } 23020 #else /* ! _MULTI_DATAMODEL */ 23021 if (ddi_copyin((const void *)arg, &user_vtoc, 23022 sizeof (struct vtoc), flag)) { 23023 return (EFAULT); 23024 } 23025 #endif /* _MULTI_DATAMODEL */ 23026 23027 mutex_enter(SD_MUTEX(un)); 23028 if (un->un_blockcount > DK_MAX_BLOCKS) { 23029 mutex_exit(SD_MUTEX(un)); 23030 return (ENOTSUP); 23031 } 23032 if (un->un_g.dkg_ncyl == 0) { 23033 mutex_exit(SD_MUTEX(un)); 23034 return (EINVAL); 23035 } 23036 23037 mutex_exit(SD_MUTEX(un)); 23038 sd_clear_efi(un); 23039 ddi_remove_minor_node(SD_DEVINFO(un), "wd"); 23040 ddi_remove_minor_node(SD_DEVINFO(un), "wd,raw"); 23041 (void) ddi_create_minor_node(SD_DEVINFO(un), "h", 23042 S_IFBLK, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE, 23043 un->un_node_type, NULL); 23044 (void) ddi_create_minor_node(SD_DEVINFO(un), "h,raw", 23045 S_IFCHR, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE, 23046 un->un_node_type, NULL); 23047 mutex_enter(SD_MUTEX(un)); 23048 23049 if ((rval = sd_build_label_vtoc(un, &user_vtoc)) == 0) { 23050 if ((rval = sd_write_label(dev)) == 0) { 23051 if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) 23052 != 0) { 23053 SD_ERROR(SD_LOG_IOCTL_DKIO, un, 23054 "sd_dkio_set_vtoc: " 23055 "Failed validate geometry\n"); 23056 } 23057 } 23058 } 23059 23060 /* 23061 * If sd_build_label_vtoc, or sd_write_label failed above write the 23062 * devid anyway, what can it hurt? Also preserve the device id by 23063 * writing to the disk acyl for the case where a devid has been 23064 * fabricated. 23065 */ 23066 if (un->un_f_devid_supported && 23067 (un->un_f_opt_fab_devid == TRUE)) { 23068 if (un->un_devid == NULL) { 23069 sd_register_devid(un, SD_DEVINFO(un), 23070 SD_TARGET_IS_UNRESERVED); 23071 } else { 23072 /* 23073 * The device id for this disk has been 23074 * fabricated. Fabricated device id's are 23075 * managed by storing them in the last 2 23076 * available sectors on the drive. The device 23077 * id must be preserved by writing it back out 23078 * to this location. 23079 */ 23080 if (sd_write_deviceid(un) != 0) { 23081 ddi_devid_free(un->un_devid); 23082 un->un_devid = NULL; 23083 } 23084 } 23085 } 23086 mutex_exit(SD_MUTEX(un)); 23087 return (rval); 23088 } 23089 23090 23091 /* 23092 * Function: sd_build_label_vtoc 23093 * 23094 * Description: This routine updates the driver soft state current volume table 23095 * of contents based on a user specified vtoc. 23096 * 23097 * Arguments: un - driver soft state (unit) structure 23098 * user_vtoc - pointer to vtoc structure specifying vtoc to be used 23099 * to update the driver soft state. 23100 * 23101 * Return Code: 0 23102 * EINVAL 23103 */ 23104 23105 static int 23106 sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc) 23107 { 23108 struct dk_map *lmap; 23109 struct partition *vpart; 23110 int nblks; 23111 #if defined(_SUNOS_VTOC_8) 23112 int ncyl; 23113 struct dk_map2 *lpart; 23114 #endif /* defined(_SUNOS_VTOC_8) */ 23115 int i; 23116 23117 ASSERT(mutex_owned(SD_MUTEX(un))); 23118 23119 /* Sanity-check the vtoc */ 23120 if (user_vtoc->v_sanity != VTOC_SANE || 23121 user_vtoc->v_sectorsz != un->un_sys_blocksize || 23122 user_vtoc->v_nparts != V_NUMPAR) { 23123 return (EINVAL); 23124 } 23125 23126 nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead; 23127 if (nblks == 0) { 23128 return (EINVAL); 23129 } 23130 23131 #if defined(_SUNOS_VTOC_8) 23132 vpart = user_vtoc->v_part; 23133 for (i = 0; i < V_NUMPAR; i++) { 23134 if ((vpart->p_start % nblks) != 0) { 23135 return (EINVAL); 23136 } 23137 ncyl = vpart->p_start / nblks; 23138 ncyl += vpart->p_size / nblks; 23139 if ((vpart->p_size % nblks) != 0) { 23140 ncyl++; 23141 } 23142 if (ncyl > (int)un->un_g.dkg_ncyl) { 23143 return (EINVAL); 23144 } 23145 vpart++; 23146 } 23147 #endif /* defined(_SUNOS_VTOC_8) */ 23148 23149 /* Put appropriate vtoc structure fields into the disk label */ 23150 #if defined(_SUNOS_VTOC_16) 23151 /* 23152 * The vtoc is always a 32bit data structure to maintain the 23153 * on-disk format. Convert "in place" instead of bcopying it. 23154 */ 23155 vtoctovtoc32((*user_vtoc), (*((struct vtoc32 *)&(un->un_vtoc)))); 23156 23157 /* 23158 * in the 16-slice vtoc, starting sectors are expressed in 23159 * numbers *relative* to the start of the Solaris fdisk partition. 23160 */ 23161 lmap = un->un_map; 23162 vpart = user_vtoc->v_part; 23163 23164 for (i = 0; i < (int)user_vtoc->v_nparts; i++, lmap++, vpart++) { 23165 lmap->dkl_cylno = vpart->p_start / nblks; 23166 lmap->dkl_nblk = vpart->p_size; 23167 } 23168 23169 #elif defined(_SUNOS_VTOC_8) 23170 23171 un->un_vtoc.v_bootinfo[0] = (uint32_t)user_vtoc->v_bootinfo[0]; 23172 un->un_vtoc.v_bootinfo[1] = (uint32_t)user_vtoc->v_bootinfo[1]; 23173 un->un_vtoc.v_bootinfo[2] = (uint32_t)user_vtoc->v_bootinfo[2]; 23174 23175 un->un_vtoc.v_sanity = (uint32_t)user_vtoc->v_sanity; 23176 un->un_vtoc.v_version = (uint32_t)user_vtoc->v_version; 23177 23178 bcopy(user_vtoc->v_volume, un->un_vtoc.v_volume, LEN_DKL_VVOL); 23179 23180 un->un_vtoc.v_nparts = user_vtoc->v_nparts; 23181 23182 bcopy(user_vtoc->v_reserved, un->un_vtoc.v_reserved, 23183 sizeof (un->un_vtoc.v_reserved)); 23184 23185 /* 23186 * Note the conversion from starting sector number 23187 * to starting cylinder number. 23188 * Return error if division results in a remainder. 23189 */ 23190 lmap = un->un_map; 23191 lpart = un->un_vtoc.v_part; 23192 vpart = user_vtoc->v_part; 23193 23194 for (i = 0; i < (int)user_vtoc->v_nparts; i++) { 23195 lpart->p_tag = vpart->p_tag; 23196 lpart->p_flag = vpart->p_flag; 23197 lmap->dkl_cylno = vpart->p_start / nblks; 23198 lmap->dkl_nblk = vpart->p_size; 23199 23200 lmap++; 23201 lpart++; 23202 vpart++; 23203 23204 /* (4387723) */ 23205 #ifdef _LP64 23206 if (user_vtoc->timestamp[i] > TIME32_MAX) { 23207 un->un_vtoc.v_timestamp[i] = TIME32_MAX; 23208 } else { 23209 un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i]; 23210 } 23211 #else 23212 un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i]; 23213 #endif 23214 } 23215 23216 bcopy(user_vtoc->v_asciilabel, un->un_asciilabel, LEN_DKL_ASCII); 23217 #else 23218 #error "No VTOC format defined." 23219 #endif 23220 return (0); 23221 } 23222 23223 /* 23224 * Function: sd_clear_efi 23225 * 23226 * Description: This routine clears all EFI labels. 23227 * 23228 * Arguments: un - driver soft state (unit) structure 23229 * 23230 * Return Code: void 23231 */ 23232 23233 static void 23234 sd_clear_efi(struct sd_lun *un) 23235 { 23236 efi_gpt_t *gpt; 23237 uint_t lbasize; 23238 uint64_t cap; 23239 int rval; 23240 23241 ASSERT(!mutex_owned(SD_MUTEX(un))); 23242 23243 gpt = kmem_alloc(sizeof (efi_gpt_t), KM_SLEEP); 23244 23245 if (sd_send_scsi_READ(un, gpt, DEV_BSIZE, 1, SD_PATH_DIRECT) != 0) { 23246 goto done; 23247 } 23248 23249 sd_swap_efi_gpt(gpt); 23250 rval = sd_validate_efi(gpt); 23251 if (rval == 0) { 23252 /* clear primary */ 23253 bzero(gpt, sizeof (efi_gpt_t)); 23254 if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE, 1, 23255 SD_PATH_DIRECT))) { 23256 SD_INFO(SD_LOG_IO_PARTITION, un, 23257 "sd_clear_efi: clear primary label failed\n"); 23258 } 23259 } 23260 /* the backup */ 23261 rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize, 23262 SD_PATH_DIRECT); 23263 if (rval) { 23264 goto done; 23265 } 23266 /* 23267 * The MMC standard allows READ CAPACITY to be 23268 * inaccurate by a bounded amount (in the interest of 23269 * response latency). As a result, failed READs are 23270 * commonplace (due to the reading of metadata and not 23271 * data). Depending on the per-Vendor/drive Sense data, 23272 * the failed READ can cause many (unnecessary) retries. 23273 */ 23274 if ((rval = sd_send_scsi_READ(un, gpt, lbasize, 23275 cap - 1, ISCD(un) ? SD_PATH_DIRECT_PRIORITY : 23276 SD_PATH_DIRECT)) != 0) { 23277 goto done; 23278 } 23279 sd_swap_efi_gpt(gpt); 23280 rval = sd_validate_efi(gpt); 23281 if (rval == 0) { 23282 /* clear backup */ 23283 SD_TRACE(SD_LOG_IOCTL, un, "sd_clear_efi clear backup@%lu\n", 23284 cap-1); 23285 bzero(gpt, sizeof (efi_gpt_t)); 23286 if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE, 23287 cap-1, SD_PATH_DIRECT))) { 23288 SD_INFO(SD_LOG_IO_PARTITION, un, 23289 "sd_clear_efi: clear backup label failed\n"); 23290 } 23291 } 23292 23293 done: 23294 kmem_free(gpt, sizeof (efi_gpt_t)); 23295 } 23296 23297 /* 23298 * Function: sd_set_vtoc 23299 * 23300 * Description: This routine writes data to the appropriate positions 23301 * 23302 * Arguments: un - driver soft state (unit) structure 23303 * dkl - the data to be written 23304 * 23305 * Return: void 23306 */ 23307 23308 static int 23309 sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl) 23310 { 23311 void *shadow_buf; 23312 uint_t label_addr; 23313 int sec; 23314 int blk; 23315 int head; 23316 int cyl; 23317 int rval; 23318 23319 #if defined(__i386) || defined(__amd64) 23320 label_addr = un->un_solaris_offset + DK_LABEL_LOC; 23321 #else 23322 /* Write the primary label at block 0 of the solaris partition. */ 23323 label_addr = 0; 23324 #endif 23325 23326 if (NOT_DEVBSIZE(un)) { 23327 shadow_buf = kmem_zalloc(un->un_tgt_blocksize, KM_SLEEP); 23328 /* 23329 * Read the target's first block. 23330 */ 23331 if ((rval = sd_send_scsi_READ(un, shadow_buf, 23332 un->un_tgt_blocksize, label_addr, 23333 SD_PATH_STANDARD)) != 0) { 23334 goto exit; 23335 } 23336 /* 23337 * Copy the contents of the label into the shadow buffer 23338 * which is of the size of target block size. 23339 */ 23340 bcopy(dkl, shadow_buf, sizeof (struct dk_label)); 23341 } 23342 23343 /* Write the primary label */ 23344 if (NOT_DEVBSIZE(un)) { 23345 rval = sd_send_scsi_WRITE(un, shadow_buf, un->un_tgt_blocksize, 23346 label_addr, SD_PATH_STANDARD); 23347 } else { 23348 rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize, 23349 label_addr, SD_PATH_STANDARD); 23350 } 23351 if (rval != 0) { 23352 return (rval); 23353 } 23354 23355 /* 23356 * Calculate where the backup labels go. They are always on 23357 * the last alternate cylinder, but some older drives put them 23358 * on head 2 instead of the last head. They are always on the 23359 * first 5 odd sectors of the appropriate track. 23360 * 23361 * We have no choice at this point, but to believe that the 23362 * disk label is valid. Use the geometry of the disk 23363 * as described in the label. 23364 */ 23365 cyl = dkl->dkl_ncyl + dkl->dkl_acyl - 1; 23366 head = dkl->dkl_nhead - 1; 23367 23368 /* 23369 * Write and verify the backup labels. Make sure we don't try to 23370 * write past the last cylinder. 23371 */ 23372 for (sec = 1; ((sec < 5 * 2 + 1) && (sec < dkl->dkl_nsect)); sec += 2) { 23373 blk = (daddr_t)( 23374 (cyl * ((dkl->dkl_nhead * dkl->dkl_nsect) - dkl->dkl_apc)) + 23375 (head * dkl->dkl_nsect) + sec); 23376 #if defined(__i386) || defined(__amd64) 23377 blk += un->un_solaris_offset; 23378 #endif 23379 if (NOT_DEVBSIZE(un)) { 23380 uint64_t tblk; 23381 /* 23382 * Need to read the block first for read modify write. 23383 */ 23384 tblk = (uint64_t)blk; 23385 blk = (int)((tblk * un->un_sys_blocksize) / 23386 un->un_tgt_blocksize); 23387 if ((rval = sd_send_scsi_READ(un, shadow_buf, 23388 un->un_tgt_blocksize, blk, 23389 SD_PATH_STANDARD)) != 0) { 23390 goto exit; 23391 } 23392 /* 23393 * Modify the shadow buffer with the label. 23394 */ 23395 bcopy(dkl, shadow_buf, sizeof (struct dk_label)); 23396 rval = sd_send_scsi_WRITE(un, shadow_buf, 23397 un->un_tgt_blocksize, blk, SD_PATH_STANDARD); 23398 } else { 23399 rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize, 23400 blk, SD_PATH_STANDARD); 23401 SD_INFO(SD_LOG_IO_PARTITION, un, 23402 "sd_set_vtoc: wrote backup label %d\n", blk); 23403 } 23404 if (rval != 0) { 23405 goto exit; 23406 } 23407 } 23408 exit: 23409 if (NOT_DEVBSIZE(un)) { 23410 kmem_free(shadow_buf, un->un_tgt_blocksize); 23411 } 23412 return (rval); 23413 } 23414 23415 /* 23416 * Function: sd_clear_vtoc 23417 * 23418 * Description: This routine clears out the VTOC labels. 23419 * 23420 * Arguments: un - driver soft state (unit) structure 23421 * 23422 * Return: void 23423 */ 23424 23425 static void 23426 sd_clear_vtoc(struct sd_lun *un) 23427 { 23428 struct dk_label *dkl; 23429 23430 mutex_exit(SD_MUTEX(un)); 23431 dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP); 23432 mutex_enter(SD_MUTEX(un)); 23433 /* 23434 * sd_set_vtoc uses these fields in order to figure out 23435 * where to overwrite the backup labels 23436 */ 23437 dkl->dkl_apc = un->un_g.dkg_apc; 23438 dkl->dkl_ncyl = un->un_g.dkg_ncyl; 23439 dkl->dkl_acyl = un->un_g.dkg_acyl; 23440 dkl->dkl_nhead = un->un_g.dkg_nhead; 23441 dkl->dkl_nsect = un->un_g.dkg_nsect; 23442 mutex_exit(SD_MUTEX(un)); 23443 (void) sd_set_vtoc(un, dkl); 23444 kmem_free(dkl, sizeof (struct dk_label)); 23445 23446 mutex_enter(SD_MUTEX(un)); 23447 } 23448 23449 /* 23450 * Function: sd_write_label 23451 * 23452 * Description: This routine will validate and write the driver soft state vtoc 23453 * contents to the device. 23454 * 23455 * Arguments: dev - the device number 23456 * 23457 * Return Code: the code returned by sd_send_scsi_cmd() 23458 * 0 23459 * EINVAL 23460 * ENXIO 23461 * ENOMEM 23462 */ 23463 23464 static int 23465 sd_write_label(dev_t dev) 23466 { 23467 struct sd_lun *un; 23468 struct dk_label *dkl; 23469 short sum; 23470 short *sp; 23471 int i; 23472 int rval; 23473 23474 if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) || 23475 (un->un_state == SD_STATE_OFFLINE)) { 23476 return (ENXIO); 23477 } 23478 ASSERT(mutex_owned(SD_MUTEX(un))); 23479 mutex_exit(SD_MUTEX(un)); 23480 dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP); 23481 mutex_enter(SD_MUTEX(un)); 23482 23483 bcopy(&un->un_vtoc, &dkl->dkl_vtoc, sizeof (struct dk_vtoc)); 23484 dkl->dkl_rpm = un->un_g.dkg_rpm; 23485 dkl->dkl_pcyl = un->un_g.dkg_pcyl; 23486 dkl->dkl_apc = un->un_g.dkg_apc; 23487 dkl->dkl_intrlv = un->un_g.dkg_intrlv; 23488 dkl->dkl_ncyl = un->un_g.dkg_ncyl; 23489 dkl->dkl_acyl = un->un_g.dkg_acyl; 23490 dkl->dkl_nhead = un->un_g.dkg_nhead; 23491 dkl->dkl_nsect = un->un_g.dkg_nsect; 23492 23493 #if defined(_SUNOS_VTOC_8) 23494 dkl->dkl_obs1 = un->un_g.dkg_obs1; 23495 dkl->dkl_obs2 = un->un_g.dkg_obs2; 23496 dkl->dkl_obs3 = un->un_g.dkg_obs3; 23497 for (i = 0; i < NDKMAP; i++) { 23498 dkl->dkl_map[i].dkl_cylno = un->un_map[i].dkl_cylno; 23499 dkl->dkl_map[i].dkl_nblk = un->un_map[i].dkl_nblk; 23500 } 23501 bcopy(un->un_asciilabel, dkl->dkl_asciilabel, LEN_DKL_ASCII); 23502 #elif defined(_SUNOS_VTOC_16) 23503 dkl->dkl_skew = un->un_dkg_skew; 23504 #else 23505 #error "No VTOC format defined." 23506 #endif 23507 23508 dkl->dkl_magic = DKL_MAGIC; 23509 dkl->dkl_write_reinstruct = un->un_g.dkg_write_reinstruct; 23510 dkl->dkl_read_reinstruct = un->un_g.dkg_read_reinstruct; 23511 23512 /* Construct checksum for the new disk label */ 23513 sum = 0; 23514 sp = (short *)dkl; 23515 i = sizeof (struct dk_label) / sizeof (short); 23516 while (i--) { 23517 sum ^= *sp++; 23518 } 23519 dkl->dkl_cksum = sum; 23520 23521 mutex_exit(SD_MUTEX(un)); 23522 23523 rval = sd_set_vtoc(un, dkl); 23524 exit: 23525 kmem_free(dkl, sizeof (struct dk_label)); 23526 mutex_enter(SD_MUTEX(un)); 23527 return (rval); 23528 } 23529 23530 static int 23531 sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag) 23532 { 23533 struct sd_lun *un = NULL; 23534 dk_efi_t user_efi; 23535 int rval = 0; 23536 void *buffer; 23537 23538 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) 23539 return (ENXIO); 23540 23541 if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag)) 23542 return (EFAULT); 23543 23544 user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64; 23545 23546 if ((user_efi.dki_length % un->un_tgt_blocksize) || 23547 (user_efi.dki_length > un->un_max_xfer_size)) 23548 return (EINVAL); 23549 23550 buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP); 23551 if (ddi_copyin(user_efi.dki_data, buffer, user_efi.dki_length, flag)) { 23552 rval = EFAULT; 23553 } else { 23554 /* 23555 * let's clear the vtoc labels and clear the softstate 23556 * vtoc. 23557 */ 23558 mutex_enter(SD_MUTEX(un)); 23559 if (un->un_vtoc.v_sanity == VTOC_SANE) { 23560 SD_TRACE(SD_LOG_IO_PARTITION, un, 23561 "sd_dkio_set_efi: CLEAR VTOC\n"); 23562 sd_clear_vtoc(un); 23563 bzero(&un->un_vtoc, sizeof (struct dk_vtoc)); 23564 mutex_exit(SD_MUTEX(un)); 23565 ddi_remove_minor_node(SD_DEVINFO(un), "h"); 23566 ddi_remove_minor_node(SD_DEVINFO(un), "h,raw"); 23567 (void) ddi_create_minor_node(SD_DEVINFO(un), "wd", 23568 S_IFBLK, 23569 (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE, 23570 un->un_node_type, NULL); 23571 (void) ddi_create_minor_node(SD_DEVINFO(un), "wd,raw", 23572 S_IFCHR, 23573 (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE, 23574 un->un_node_type, NULL); 23575 } else 23576 mutex_exit(SD_MUTEX(un)); 23577 rval = sd_send_scsi_WRITE(un, buffer, user_efi.dki_length, 23578 user_efi.dki_lba, SD_PATH_DIRECT); 23579 if (rval == 0) { 23580 mutex_enter(SD_MUTEX(un)); 23581 un->un_f_geometry_is_valid = FALSE; 23582 mutex_exit(SD_MUTEX(un)); 23583 } 23584 } 23585 kmem_free(buffer, user_efi.dki_length); 23586 return (rval); 23587 } 23588 23589 /* 23590 * Function: sd_dkio_get_mboot 23591 * 23592 * Description: This routine is the driver entry point for handling user 23593 * requests to get the current device mboot (DKIOCGMBOOT) 23594 * 23595 * Arguments: dev - the device number 23596 * arg - pointer to user provided mboot structure specifying 23597 * the current mboot. 23598 * flag - this argument is a pass through to ddi_copyxxx() 23599 * directly from the mode argument of ioctl(). 23600 * 23601 * Return Code: 0 23602 * EINVAL 23603 * EFAULT 23604 * ENXIO 23605 */ 23606 23607 static int 23608 sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag) 23609 { 23610 struct sd_lun *un; 23611 struct mboot *mboot; 23612 int rval; 23613 size_t buffer_size; 23614 23615 if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) || 23616 (un->un_state == SD_STATE_OFFLINE)) { 23617 return (ENXIO); 23618 } 23619 23620 if (!un->un_f_mboot_supported || arg == NULL) { 23621 return (EINVAL); 23622 } 23623 23624 /* 23625 * Read the mboot block, located at absolute block 0 on the target. 23626 */ 23627 buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct mboot)); 23628 23629 SD_TRACE(SD_LOG_IO_PARTITION, un, 23630 "sd_dkio_get_mboot: allocation size: 0x%x\n", buffer_size); 23631 23632 mboot = kmem_zalloc(buffer_size, KM_SLEEP); 23633 if ((rval = sd_send_scsi_READ(un, mboot, buffer_size, 0, 23634 SD_PATH_STANDARD)) == 0) { 23635 if (ddi_copyout(mboot, (void *)arg, 23636 sizeof (struct mboot), flag) != 0) { 23637 rval = EFAULT; 23638 } 23639 } 23640 kmem_free(mboot, buffer_size); 23641 return (rval); 23642 } 23643 23644 23645 /* 23646 * Function: sd_dkio_set_mboot 23647 * 23648 * Description: This routine is the driver entry point for handling user 23649 * requests to validate and set the device master boot 23650 * (DKIOCSMBOOT). 23651 * 23652 * Arguments: dev - the device number 23653 * arg - pointer to user provided mboot structure used to set the 23654 * master boot. 23655 * flag - this argument is a pass through to ddi_copyxxx() 23656 * directly from the mode argument of ioctl(). 23657 * 23658 * Return Code: 0 23659 * EINVAL 23660 * EFAULT 23661 * ENXIO 23662 */ 23663 23664 static int 23665 sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag) 23666 { 23667 struct sd_lun *un = NULL; 23668 struct mboot *mboot = NULL; 23669 int rval; 23670 ushort_t magic; 23671 23672 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23673 return (ENXIO); 23674 } 23675 23676 ASSERT(!mutex_owned(SD_MUTEX(un))); 23677 23678 if (!un->un_f_mboot_supported) { 23679 return (EINVAL); 23680 } 23681 23682 if (arg == NULL) { 23683 return (EINVAL); 23684 } 23685 23686 mboot = kmem_zalloc(sizeof (struct mboot), KM_SLEEP); 23687 23688 if (ddi_copyin((const void *)arg, mboot, 23689 sizeof (struct mboot), flag) != 0) { 23690 kmem_free(mboot, (size_t)(sizeof (struct mboot))); 23691 return (EFAULT); 23692 } 23693 23694 /* Is this really a master boot record? */ 23695 magic = LE_16(mboot->signature); 23696 if (magic != MBB_MAGIC) { 23697 kmem_free(mboot, (size_t)(sizeof (struct mboot))); 23698 return (EINVAL); 23699 } 23700 23701 rval = sd_send_scsi_WRITE(un, mboot, un->un_sys_blocksize, 0, 23702 SD_PATH_STANDARD); 23703 23704 mutex_enter(SD_MUTEX(un)); 23705 #if defined(__i386) || defined(__amd64) 23706 if (rval == 0) { 23707 /* 23708 * mboot has been written successfully. 23709 * update the fdisk and vtoc tables in memory 23710 */ 23711 rval = sd_update_fdisk_and_vtoc(un); 23712 if ((un->un_f_geometry_is_valid == FALSE) || (rval != 0)) { 23713 mutex_exit(SD_MUTEX(un)); 23714 kmem_free(mboot, (size_t)(sizeof (struct mboot))); 23715 return (rval); 23716 } 23717 } 23718 23719 /* 23720 * If the mboot write fails, write the devid anyway, what can it hurt? 23721 * Also preserve the device id by writing to the disk acyl for the case 23722 * where a devid has been fabricated. 23723 */ 23724 if (un->un_f_devid_supported && un->un_f_opt_fab_devid) { 23725 if (un->un_devid == NULL) { 23726 sd_register_devid(un, SD_DEVINFO(un), 23727 SD_TARGET_IS_UNRESERVED); 23728 } else { 23729 /* 23730 * The device id for this disk has been 23731 * fabricated. Fabricated device id's are 23732 * managed by storing them in the last 2 23733 * available sectors on the drive. The device 23734 * id must be preserved by writing it back out 23735 * to this location. 23736 */ 23737 if (sd_write_deviceid(un) != 0) { 23738 ddi_devid_free(un->un_devid); 23739 un->un_devid = NULL; 23740 } 23741 } 23742 } 23743 23744 #ifdef __lock_lint 23745 sd_setup_default_geometry(un); 23746 #endif 23747 23748 #else 23749 if (rval == 0) { 23750 /* 23751 * mboot has been written successfully. 23752 * set up the default geometry and VTOC 23753 */ 23754 if (un->un_blockcount <= DK_MAX_BLOCKS) 23755 sd_setup_default_geometry(un); 23756 } 23757 #endif 23758 mutex_exit(SD_MUTEX(un)); 23759 kmem_free(mboot, (size_t)(sizeof (struct mboot))); 23760 return (rval); 23761 } 23762 23763 23764 /* 23765 * Function: sd_setup_default_geometry 23766 * 23767 * Description: This local utility routine sets the default geometry as part of 23768 * setting the device mboot. 23769 * 23770 * Arguments: un - driver soft state (unit) structure 23771 * 23772 * Note: This may be redundant with sd_build_default_label. 23773 */ 23774 23775 static void 23776 sd_setup_default_geometry(struct sd_lun *un) 23777 { 23778 /* zero out the soft state geometry and partition table. */ 23779 bzero(&un->un_g, sizeof (struct dk_geom)); 23780 bzero(&un->un_vtoc, sizeof (struct dk_vtoc)); 23781 bzero(un->un_map, NDKMAP * (sizeof (struct dk_map))); 23782 un->un_asciilabel[0] = '\0'; 23783 23784 /* 23785 * For the rpm, we use the minimum for the disk. 23786 * For the head, cyl and number of sector per track, 23787 * if the capacity <= 1GB, head = 64, sect = 32. 23788 * else head = 255, sect 63 23789 * Note: the capacity should be equal to C*H*S values. 23790 * This will cause some truncation of size due to 23791 * round off errors. For CD-ROMs, this truncation can 23792 * have adverse side effects, so returning ncyl and 23793 * nhead as 1. The nsect will overflow for most of 23794 * CD-ROMs as nsect is of type ushort. 23795 */ 23796 if (ISCD(un)) { 23797 un->un_g.dkg_ncyl = 1; 23798 un->un_g.dkg_nhead = 1; 23799 un->un_g.dkg_nsect = un->un_blockcount; 23800 } else { 23801 if (un->un_blockcount <= 0x1000) { 23802 /* Needed for unlabeled SCSI floppies. */ 23803 un->un_g.dkg_nhead = 2; 23804 un->un_g.dkg_ncyl = 80; 23805 un->un_g.dkg_pcyl = 80; 23806 un->un_g.dkg_nsect = un->un_blockcount / (2 * 80); 23807 } else if (un->un_blockcount <= 0x200000) { 23808 un->un_g.dkg_nhead = 64; 23809 un->un_g.dkg_nsect = 32; 23810 un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32); 23811 } else { 23812 un->un_g.dkg_nhead = 255; 23813 un->un_g.dkg_nsect = 63; 23814 un->un_g.dkg_ncyl = un->un_blockcount / (255 * 63); 23815 } 23816 un->un_blockcount = un->un_g.dkg_ncyl * 23817 un->un_g.dkg_nhead * un->un_g.dkg_nsect; 23818 } 23819 un->un_g.dkg_acyl = 0; 23820 un->un_g.dkg_bcyl = 0; 23821 un->un_g.dkg_intrlv = 1; 23822 un->un_g.dkg_rpm = 200; 23823 un->un_g.dkg_read_reinstruct = 0; 23824 un->un_g.dkg_write_reinstruct = 0; 23825 if (un->un_g.dkg_pcyl == 0) { 23826 un->un_g.dkg_pcyl = un->un_g.dkg_ncyl + un->un_g.dkg_acyl; 23827 } 23828 23829 un->un_map['a'-'a'].dkl_cylno = 0; 23830 un->un_map['a'-'a'].dkl_nblk = un->un_blockcount; 23831 un->un_map['c'-'a'].dkl_cylno = 0; 23832 un->un_map['c'-'a'].dkl_nblk = un->un_blockcount; 23833 un->un_f_geometry_is_valid = FALSE; 23834 } 23835 23836 23837 #if defined(__i386) || defined(__amd64) 23838 /* 23839 * Function: sd_update_fdisk_and_vtoc 23840 * 23841 * Description: This local utility routine updates the device fdisk and vtoc 23842 * as part of setting the device mboot. 23843 * 23844 * Arguments: un - driver soft state (unit) structure 23845 * 23846 * Return Code: 0 for success or errno-type return code. 23847 * 23848 * Note:x86: This looks like a duplicate of sd_validate_geometry(), but 23849 * these did exist seperately in x86 sd.c!!! 23850 */ 23851 23852 static int 23853 sd_update_fdisk_and_vtoc(struct sd_lun *un) 23854 { 23855 static char labelstring[128]; 23856 static char buf[256]; 23857 char *label = 0; 23858 int count; 23859 int label_rc = 0; 23860 int gvalid = un->un_f_geometry_is_valid; 23861 int fdisk_rval; 23862 int lbasize; 23863 int capacity; 23864 23865 ASSERT(mutex_owned(SD_MUTEX(un))); 23866 23867 if (un->un_f_tgt_blocksize_is_valid == FALSE) { 23868 return (EINVAL); 23869 } 23870 23871 if (un->un_f_blockcount_is_valid == FALSE) { 23872 return (EINVAL); 23873 } 23874 23875 #if defined(_SUNOS_VTOC_16) 23876 /* 23877 * Set up the "whole disk" fdisk partition; this should always 23878 * exist, regardless of whether the disk contains an fdisk table 23879 * or vtoc. 23880 */ 23881 un->un_map[P0_RAW_DISK].dkl_cylno = 0; 23882 un->un_map[P0_RAW_DISK].dkl_nblk = un->un_blockcount; 23883 #endif /* defined(_SUNOS_VTOC_16) */ 23884 23885 /* 23886 * copy the lbasize and capacity so that if they're 23887 * reset while we're not holding the SD_MUTEX(un), we will 23888 * continue to use valid values after the SD_MUTEX(un) is 23889 * reacquired. 23890 */ 23891 lbasize = un->un_tgt_blocksize; 23892 capacity = un->un_blockcount; 23893 23894 /* 23895 * refresh the logical and physical geometry caches. 23896 * (data from mode sense format/rigid disk geometry pages, 23897 * and scsi_ifgetcap("geometry"). 23898 */ 23899 sd_resync_geom_caches(un, capacity, lbasize, SD_PATH_DIRECT); 23900 23901 /* 23902 * Only DIRECT ACCESS devices will have Sun labels. 23903 * CD's supposedly have a Sun label, too 23904 */ 23905 if (un->un_f_vtoc_label_supported) { 23906 fdisk_rval = sd_read_fdisk(un, capacity, lbasize, 23907 SD_PATH_DIRECT); 23908 if (fdisk_rval == SD_CMD_FAILURE) { 23909 ASSERT(mutex_owned(SD_MUTEX(un))); 23910 return (EIO); 23911 } 23912 23913 if (fdisk_rval == SD_CMD_RESERVATION_CONFLICT) { 23914 ASSERT(mutex_owned(SD_MUTEX(un))); 23915 return (EACCES); 23916 } 23917 23918 if (un->un_solaris_size <= DK_LABEL_LOC) { 23919 /* 23920 * Found fdisk table but no Solaris partition entry, 23921 * so don't call sd_uselabel() and don't create 23922 * a default label. 23923 */ 23924 label_rc = 0; 23925 un->un_f_geometry_is_valid = TRUE; 23926 goto no_solaris_partition; 23927 } 23928 23929 #if defined(_SUNOS_VTOC_8) 23930 label = (char *)un->un_asciilabel; 23931 #elif defined(_SUNOS_VTOC_16) 23932 label = (char *)un->un_vtoc.v_asciilabel; 23933 #else 23934 #error "No VTOC format defined." 23935 #endif 23936 } else if (capacity < 0) { 23937 ASSERT(mutex_owned(SD_MUTEX(un))); 23938 return (EINVAL); 23939 } 23940 23941 /* 23942 * For Removable media We reach here if we have found a 23943 * SOLARIS PARTITION. 23944 * If un_f_geometry_is_valid is FALSE it indicates that the SOLARIS 23945 * PARTITION has changed from the previous one, hence we will setup a 23946 * default VTOC in this case. 23947 */ 23948 if (un->un_f_geometry_is_valid == FALSE) { 23949 sd_build_default_label(un); 23950 label_rc = 0; 23951 } 23952 23953 no_solaris_partition: 23954 if ((!un->un_f_has_removable_media || 23955 (un->un_f_has_removable_media && 23956 un->un_mediastate == DKIO_EJECTED)) && 23957 (un->un_state == SD_STATE_NORMAL && !gvalid)) { 23958 /* 23959 * Print out a message indicating who and what we are. 23960 * We do this only when we happen to really validate the 23961 * geometry. We may call sd_validate_geometry() at other 23962 * times, ioctl()'s like Get VTOC in which case we 23963 * don't want to print the label. 23964 * If the geometry is valid, print the label string, 23965 * else print vendor and product info, if available 23966 */ 23967 if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) { 23968 SD_INFO(SD_LOG_IOCTL_DKIO, un, "?<%s>\n", label); 23969 } else { 23970 mutex_enter(&sd_label_mutex); 23971 sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX, 23972 labelstring); 23973 sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX, 23974 &labelstring[64]); 23975 (void) sprintf(buf, "?Vendor '%s', product '%s'", 23976 labelstring, &labelstring[64]); 23977 if (un->un_f_blockcount_is_valid == TRUE) { 23978 (void) sprintf(&buf[strlen(buf)], 23979 ", %" PRIu64 " %u byte blocks\n", 23980 un->un_blockcount, 23981 un->un_tgt_blocksize); 23982 } else { 23983 (void) sprintf(&buf[strlen(buf)], 23984 ", (unknown capacity)\n"); 23985 } 23986 SD_INFO(SD_LOG_IOCTL_DKIO, un, buf); 23987 mutex_exit(&sd_label_mutex); 23988 } 23989 } 23990 23991 #if defined(_SUNOS_VTOC_16) 23992 /* 23993 * If we have valid geometry, set up the remaining fdisk partitions. 23994 * Note that dkl_cylno is not used for the fdisk map entries, so 23995 * we set it to an entirely bogus value. 23996 */ 23997 for (count = 0; count < FD_NUMPART; count++) { 23998 un->un_map[FDISK_P1 + count].dkl_cylno = -1; 23999 un->un_map[FDISK_P1 + count].dkl_nblk = 24000 un->un_fmap[count].fmap_nblk; 24001 un->un_offset[FDISK_P1 + count] = 24002 un->un_fmap[count].fmap_start; 24003 } 24004 #endif 24005 24006 for (count = 0; count < NDKMAP; count++) { 24007 #if defined(_SUNOS_VTOC_8) 24008 struct dk_map *lp = &un->un_map[count]; 24009 un->un_offset[count] = 24010 un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno; 24011 #elif defined(_SUNOS_VTOC_16) 24012 struct dkl_partition *vp = &un->un_vtoc.v_part[count]; 24013 un->un_offset[count] = vp->p_start + un->un_solaris_offset; 24014 #else 24015 #error "No VTOC format defined." 24016 #endif 24017 } 24018 24019 ASSERT(mutex_owned(SD_MUTEX(un))); 24020 return (label_rc); 24021 } 24022 #endif 24023 24024 24025 /* 24026 * Function: sd_check_media 24027 * 24028 * Description: This utility routine implements the functionality for the 24029 * DKIOCSTATE ioctl. This ioctl blocks the user thread until the 24030 * driver state changes from that specified by the user 24031 * (inserted or ejected). For example, if the user specifies 24032 * DKIO_EJECTED and the current media state is inserted this 24033 * routine will immediately return DKIO_INSERTED. However, if the 24034 * current media state is not inserted the user thread will be 24035 * blocked until the drive state changes. If DKIO_NONE is specified 24036 * the user thread will block until a drive state change occurs. 24037 * 24038 * Arguments: dev - the device number 24039 * state - user pointer to a dkio_state, updated with the current 24040 * drive state at return. 24041 * 24042 * Return Code: ENXIO 24043 * EIO 24044 * EAGAIN 24045 * EINTR 24046 */ 24047 24048 static int 24049 sd_check_media(dev_t dev, enum dkio_state state) 24050 { 24051 struct sd_lun *un = NULL; 24052 enum dkio_state prev_state; 24053 opaque_t token = NULL; 24054 int rval = 0; 24055 24056 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24057 return (ENXIO); 24058 } 24059 24060 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n"); 24061 24062 mutex_enter(SD_MUTEX(un)); 24063 24064 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: " 24065 "state=%x, mediastate=%x\n", state, un->un_mediastate); 24066 24067 prev_state = un->un_mediastate; 24068 24069 /* is there anything to do? */ 24070 if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) { 24071 /* 24072 * submit the request to the scsi_watch service; 24073 * scsi_media_watch_cb() does the real work 24074 */ 24075 mutex_exit(SD_MUTEX(un)); 24076 24077 /* 24078 * This change handles the case where a scsi watch request is 24079 * added to a device that is powered down. To accomplish this 24080 * we power up the device before adding the scsi watch request, 24081 * since the scsi watch sends a TUR directly to the device 24082 * which the device cannot handle if it is powered down. 24083 */ 24084 if (sd_pm_entry(un) != DDI_SUCCESS) { 24085 mutex_enter(SD_MUTEX(un)); 24086 goto done; 24087 } 24088 24089 token = scsi_watch_request_submit(SD_SCSI_DEVP(un), 24090 sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb, 24091 (caddr_t)dev); 24092 24093 sd_pm_exit(un); 24094 24095 mutex_enter(SD_MUTEX(un)); 24096 if (token == NULL) { 24097 rval = EAGAIN; 24098 goto done; 24099 } 24100 24101 /* 24102 * This is a special case IOCTL that doesn't return 24103 * until the media state changes. Routine sdpower 24104 * knows about and handles this so don't count it 24105 * as an active cmd in the driver, which would 24106 * keep the device busy to the pm framework. 24107 * If the count isn't decremented the device can't 24108 * be powered down. 24109 */ 24110 un->un_ncmds_in_driver--; 24111 ASSERT(un->un_ncmds_in_driver >= 0); 24112 24113 /* 24114 * if a prior request had been made, this will be the same 24115 * token, as scsi_watch was designed that way. 24116 */ 24117 un->un_swr_token = token; 24118 un->un_specified_mediastate = state; 24119 24120 /* 24121 * now wait for media change 24122 * we will not be signalled unless mediastate == state but it is 24123 * still better to test for this condition, since there is a 24124 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED 24125 */ 24126 SD_TRACE(SD_LOG_COMMON, un, 24127 "sd_check_media: waiting for media state change\n"); 24128 while (un->un_mediastate == state) { 24129 if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) { 24130 SD_TRACE(SD_LOG_COMMON, un, 24131 "sd_check_media: waiting for media state " 24132 "was interrupted\n"); 24133 un->un_ncmds_in_driver++; 24134 rval = EINTR; 24135 goto done; 24136 } 24137 SD_TRACE(SD_LOG_COMMON, un, 24138 "sd_check_media: received signal, state=%x\n", 24139 un->un_mediastate); 24140 } 24141 /* 24142 * Inc the counter to indicate the device once again 24143 * has an active outstanding cmd. 24144 */ 24145 un->un_ncmds_in_driver++; 24146 } 24147 24148 /* invalidate geometry */ 24149 if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) { 24150 sr_ejected(un); 24151 } 24152 24153 if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) { 24154 uint64_t capacity; 24155 uint_t lbasize; 24156 24157 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n"); 24158 mutex_exit(SD_MUTEX(un)); 24159 /* 24160 * Since the following routines use SD_PATH_DIRECT, we must 24161 * call PM directly before the upcoming disk accesses. This 24162 * may cause the disk to be power/spin up. 24163 */ 24164 24165 if (sd_pm_entry(un) == DDI_SUCCESS) { 24166 rval = sd_send_scsi_READ_CAPACITY(un, 24167 &capacity, 24168 &lbasize, SD_PATH_DIRECT); 24169 if (rval != 0) { 24170 sd_pm_exit(un); 24171 mutex_enter(SD_MUTEX(un)); 24172 goto done; 24173 } 24174 } else { 24175 rval = EIO; 24176 mutex_enter(SD_MUTEX(un)); 24177 goto done; 24178 } 24179 mutex_enter(SD_MUTEX(un)); 24180 24181 sd_update_block_info(un, lbasize, capacity); 24182 24183 un->un_f_geometry_is_valid = FALSE; 24184 (void) sd_validate_geometry(un, SD_PATH_DIRECT); 24185 24186 mutex_exit(SD_MUTEX(un)); 24187 rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT, 24188 SD_PATH_DIRECT); 24189 sd_pm_exit(un); 24190 24191 mutex_enter(SD_MUTEX(un)); 24192 } 24193 done: 24194 un->un_f_watcht_stopped = FALSE; 24195 if (un->un_swr_token) { 24196 /* 24197 * Use of this local token and the mutex ensures that we avoid 24198 * some race conditions associated with terminating the 24199 * scsi watch. 24200 */ 24201 token = un->un_swr_token; 24202 un->un_swr_token = (opaque_t)NULL; 24203 mutex_exit(SD_MUTEX(un)); 24204 (void) scsi_watch_request_terminate(token, 24205 SCSI_WATCH_TERMINATE_WAIT); 24206 mutex_enter(SD_MUTEX(un)); 24207 } 24208 24209 /* 24210 * Update the capacity kstat value, if no media previously 24211 * (capacity kstat is 0) and a media has been inserted 24212 * (un_f_blockcount_is_valid == TRUE) 24213 */ 24214 if (un->un_errstats) { 24215 struct sd_errstats *stp = NULL; 24216 24217 stp = (struct sd_errstats *)un->un_errstats->ks_data; 24218 if ((stp->sd_capacity.value.ui64 == 0) && 24219 (un->un_f_blockcount_is_valid == TRUE)) { 24220 stp->sd_capacity.value.ui64 = 24221 (uint64_t)((uint64_t)un->un_blockcount * 24222 un->un_sys_blocksize); 24223 } 24224 } 24225 mutex_exit(SD_MUTEX(un)); 24226 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n"); 24227 return (rval); 24228 } 24229 24230 24231 /* 24232 * Function: sd_delayed_cv_broadcast 24233 * 24234 * Description: Delayed cv_broadcast to allow for target to recover from media 24235 * insertion. 24236 * 24237 * Arguments: arg - driver soft state (unit) structure 24238 */ 24239 24240 static void 24241 sd_delayed_cv_broadcast(void *arg) 24242 { 24243 struct sd_lun *un = arg; 24244 24245 SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n"); 24246 24247 mutex_enter(SD_MUTEX(un)); 24248 un->un_dcvb_timeid = NULL; 24249 cv_broadcast(&un->un_state_cv); 24250 mutex_exit(SD_MUTEX(un)); 24251 } 24252 24253 24254 /* 24255 * Function: sd_media_watch_cb 24256 * 24257 * Description: Callback routine used for support of the DKIOCSTATE ioctl. This 24258 * routine processes the TUR sense data and updates the driver 24259 * state if a transition has occurred. The user thread 24260 * (sd_check_media) is then signalled. 24261 * 24262 * Arguments: arg - the device 'dev_t' is used for context to discriminate 24263 * among multiple watches that share this callback function 24264 * resultp - scsi watch facility result packet containing scsi 24265 * packet, status byte and sense data 24266 * 24267 * Return Code: 0 for success, -1 for failure 24268 */ 24269 24270 static int 24271 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp) 24272 { 24273 struct sd_lun *un; 24274 struct scsi_status *statusp = resultp->statusp; 24275 struct scsi_extended_sense *sensep = resultp->sensep; 24276 enum dkio_state state = DKIO_NONE; 24277 dev_t dev = (dev_t)arg; 24278 uchar_t actual_sense_length; 24279 24280 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24281 return (-1); 24282 } 24283 actual_sense_length = resultp->actual_sense_length; 24284 24285 mutex_enter(SD_MUTEX(un)); 24286 SD_TRACE(SD_LOG_COMMON, un, 24287 "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n", 24288 *((char *)statusp), (void *)sensep, actual_sense_length); 24289 24290 if (resultp->pkt->pkt_reason == CMD_DEV_GONE) { 24291 un->un_mediastate = DKIO_DEV_GONE; 24292 cv_broadcast(&un->un_state_cv); 24293 mutex_exit(SD_MUTEX(un)); 24294 24295 return (0); 24296 } 24297 24298 /* 24299 * If there was a check condition then sensep points to valid sense data 24300 * If status was not a check condition but a reservation or busy status 24301 * then the new state is DKIO_NONE 24302 */ 24303 if (sensep != NULL) { 24304 SD_INFO(SD_LOG_COMMON, un, 24305 "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n", 24306 sensep->es_key, sensep->es_add_code, sensep->es_qual_code); 24307 /* This routine only uses up to 13 bytes of sense data. */ 24308 if (actual_sense_length >= 13) { 24309 if (sensep->es_key == KEY_UNIT_ATTENTION) { 24310 if (sensep->es_add_code == 0x28) { 24311 state = DKIO_INSERTED; 24312 } 24313 } else { 24314 /* 24315 * if 02/04/02 means that the host 24316 * should send start command. Explicitly 24317 * leave the media state as is 24318 * (inserted) as the media is inserted 24319 * and host has stopped device for PM 24320 * reasons. Upon next true read/write 24321 * to this media will bring the 24322 * device to the right state good for 24323 * media access. 24324 */ 24325 if ((sensep->es_key == KEY_NOT_READY) && 24326 (sensep->es_add_code == 0x3a)) { 24327 state = DKIO_EJECTED; 24328 } 24329 24330 /* 24331 * If the drivge is busy with an operation 24332 * or long write, keep the media in an 24333 * inserted state. 24334 */ 24335 24336 if ((sensep->es_key == KEY_NOT_READY) && 24337 (sensep->es_add_code == 0x04) && 24338 ((sensep->es_qual_code == 0x02) || 24339 (sensep->es_qual_code == 0x07) || 24340 (sensep->es_qual_code == 0x08))) { 24341 state = DKIO_INSERTED; 24342 } 24343 } 24344 } 24345 } else if ((*((char *)statusp) == STATUS_GOOD) && 24346 (resultp->pkt->pkt_reason == CMD_CMPLT)) { 24347 state = DKIO_INSERTED; 24348 } 24349 24350 SD_TRACE(SD_LOG_COMMON, un, 24351 "sd_media_watch_cb: state=%x, specified=%x\n", 24352 state, un->un_specified_mediastate); 24353 24354 /* 24355 * now signal the waiting thread if this is *not* the specified state; 24356 * delay the signal if the state is DKIO_INSERTED to allow the target 24357 * to recover 24358 */ 24359 if (state != un->un_specified_mediastate) { 24360 un->un_mediastate = state; 24361 if (state == DKIO_INSERTED) { 24362 /* 24363 * delay the signal to give the drive a chance 24364 * to do what it apparently needs to do 24365 */ 24366 SD_TRACE(SD_LOG_COMMON, un, 24367 "sd_media_watch_cb: delayed cv_broadcast\n"); 24368 if (un->un_dcvb_timeid == NULL) { 24369 un->un_dcvb_timeid = 24370 timeout(sd_delayed_cv_broadcast, un, 24371 drv_usectohz((clock_t)MEDIA_ACCESS_DELAY)); 24372 } 24373 } else { 24374 SD_TRACE(SD_LOG_COMMON, un, 24375 "sd_media_watch_cb: immediate cv_broadcast\n"); 24376 cv_broadcast(&un->un_state_cv); 24377 } 24378 } 24379 mutex_exit(SD_MUTEX(un)); 24380 return (0); 24381 } 24382 24383 24384 /* 24385 * Function: sd_dkio_get_temp 24386 * 24387 * Description: This routine is the driver entry point for handling ioctl 24388 * requests to get the disk temperature. 24389 * 24390 * Arguments: dev - the device number 24391 * arg - pointer to user provided dk_temperature structure. 24392 * flag - this argument is a pass through to ddi_copyxxx() 24393 * directly from the mode argument of ioctl(). 24394 * 24395 * Return Code: 0 24396 * EFAULT 24397 * ENXIO 24398 * EAGAIN 24399 */ 24400 24401 static int 24402 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag) 24403 { 24404 struct sd_lun *un = NULL; 24405 struct dk_temperature *dktemp = NULL; 24406 uchar_t *temperature_page; 24407 int rval = 0; 24408 int path_flag = SD_PATH_STANDARD; 24409 24410 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24411 return (ENXIO); 24412 } 24413 24414 dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP); 24415 24416 /* copyin the disk temp argument to get the user flags */ 24417 if (ddi_copyin((void *)arg, dktemp, 24418 sizeof (struct dk_temperature), flag) != 0) { 24419 rval = EFAULT; 24420 goto done; 24421 } 24422 24423 /* Initialize the temperature to invalid. */ 24424 dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP; 24425 dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP; 24426 24427 /* 24428 * Note: Investigate removing the "bypass pm" semantic. 24429 * Can we just bypass PM always? 24430 */ 24431 if (dktemp->dkt_flags & DKT_BYPASS_PM) { 24432 path_flag = SD_PATH_DIRECT; 24433 ASSERT(!mutex_owned(&un->un_pm_mutex)); 24434 mutex_enter(&un->un_pm_mutex); 24435 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 24436 /* 24437 * If DKT_BYPASS_PM is set, and the drive happens to be 24438 * in low power mode, we can not wake it up, Need to 24439 * return EAGAIN. 24440 */ 24441 mutex_exit(&un->un_pm_mutex); 24442 rval = EAGAIN; 24443 goto done; 24444 } else { 24445 /* 24446 * Indicate to PM the device is busy. This is required 24447 * to avoid a race - i.e. the ioctl is issuing a 24448 * command and the pm framework brings down the device 24449 * to low power mode (possible power cut-off on some 24450 * platforms). 24451 */ 24452 mutex_exit(&un->un_pm_mutex); 24453 if (sd_pm_entry(un) != DDI_SUCCESS) { 24454 rval = EAGAIN; 24455 goto done; 24456 } 24457 } 24458 } 24459 24460 temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP); 24461 24462 if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page, 24463 TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) { 24464 goto done2; 24465 } 24466 24467 /* 24468 * For the current temperature verify that the parameter length is 0x02 24469 * and the parameter code is 0x00 24470 */ 24471 if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) && 24472 (temperature_page[5] == 0x00)) { 24473 if (temperature_page[9] == 0xFF) { 24474 dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP; 24475 } else { 24476 dktemp->dkt_cur_temp = (short)(temperature_page[9]); 24477 } 24478 } 24479 24480 /* 24481 * For the reference temperature verify that the parameter 24482 * length is 0x02 and the parameter code is 0x01 24483 */ 24484 if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) && 24485 (temperature_page[11] == 0x01)) { 24486 if (temperature_page[15] == 0xFF) { 24487 dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP; 24488 } else { 24489 dktemp->dkt_ref_temp = (short)(temperature_page[15]); 24490 } 24491 } 24492 24493 /* Do the copyout regardless of the temperature commands status. */ 24494 if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature), 24495 flag) != 0) { 24496 rval = EFAULT; 24497 } 24498 24499 done2: 24500 if (path_flag == SD_PATH_DIRECT) { 24501 sd_pm_exit(un); 24502 } 24503 24504 kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE); 24505 done: 24506 if (dktemp != NULL) { 24507 kmem_free(dktemp, sizeof (struct dk_temperature)); 24508 } 24509 24510 return (rval); 24511 } 24512 24513 24514 /* 24515 * Function: sd_log_page_supported 24516 * 24517 * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of 24518 * supported log pages. 24519 * 24520 * Arguments: un - 24521 * log_page - 24522 * 24523 * Return Code: -1 - on error (log sense is optional and may not be supported). 24524 * 0 - log page not found. 24525 * 1 - log page found. 24526 */ 24527 24528 static int 24529 sd_log_page_supported(struct sd_lun *un, int log_page) 24530 { 24531 uchar_t *log_page_data; 24532 int i; 24533 int match = 0; 24534 int log_size; 24535 24536 log_page_data = kmem_zalloc(0xFF, KM_SLEEP); 24537 24538 if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0, 24539 SD_PATH_DIRECT) != 0) { 24540 SD_ERROR(SD_LOG_COMMON, un, 24541 "sd_log_page_supported: failed log page retrieval\n"); 24542 kmem_free(log_page_data, 0xFF); 24543 return (-1); 24544 } 24545 log_size = log_page_data[3]; 24546 24547 /* 24548 * The list of supported log pages start from the fourth byte. Check 24549 * until we run out of log pages or a match is found. 24550 */ 24551 for (i = 4; (i < (log_size + 4)) && !match; i++) { 24552 if (log_page_data[i] == log_page) { 24553 match++; 24554 } 24555 } 24556 kmem_free(log_page_data, 0xFF); 24557 return (match); 24558 } 24559 24560 24561 /* 24562 * Function: sd_mhdioc_failfast 24563 * 24564 * Description: This routine is the driver entry point for handling ioctl 24565 * requests to enable/disable the multihost failfast option. 24566 * (MHIOCENFAILFAST) 24567 * 24568 * Arguments: dev - the device number 24569 * arg - user specified probing interval. 24570 * flag - this argument is a pass through to ddi_copyxxx() 24571 * directly from the mode argument of ioctl(). 24572 * 24573 * Return Code: 0 24574 * EFAULT 24575 * ENXIO 24576 */ 24577 24578 static int 24579 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag) 24580 { 24581 struct sd_lun *un = NULL; 24582 int mh_time; 24583 int rval = 0; 24584 24585 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24586 return (ENXIO); 24587 } 24588 24589 if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag)) 24590 return (EFAULT); 24591 24592 if (mh_time) { 24593 mutex_enter(SD_MUTEX(un)); 24594 un->un_resvd_status |= SD_FAILFAST; 24595 mutex_exit(SD_MUTEX(un)); 24596 /* 24597 * If mh_time is INT_MAX, then this ioctl is being used for 24598 * SCSI-3 PGR purposes, and we don't need to spawn watch thread. 24599 */ 24600 if (mh_time != INT_MAX) { 24601 rval = sd_check_mhd(dev, mh_time); 24602 } 24603 } else { 24604 (void) sd_check_mhd(dev, 0); 24605 mutex_enter(SD_MUTEX(un)); 24606 un->un_resvd_status &= ~SD_FAILFAST; 24607 mutex_exit(SD_MUTEX(un)); 24608 } 24609 return (rval); 24610 } 24611 24612 24613 /* 24614 * Function: sd_mhdioc_takeown 24615 * 24616 * Description: This routine is the driver entry point for handling ioctl 24617 * requests to forcefully acquire exclusive access rights to the 24618 * multihost disk (MHIOCTKOWN). 24619 * 24620 * Arguments: dev - the device number 24621 * arg - user provided structure specifying the delay 24622 * parameters in milliseconds 24623 * flag - this argument is a pass through to ddi_copyxxx() 24624 * directly from the mode argument of ioctl(). 24625 * 24626 * Return Code: 0 24627 * EFAULT 24628 * ENXIO 24629 */ 24630 24631 static int 24632 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag) 24633 { 24634 struct sd_lun *un = NULL; 24635 struct mhioctkown *tkown = NULL; 24636 int rval = 0; 24637 24638 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24639 return (ENXIO); 24640 } 24641 24642 if (arg != NULL) { 24643 tkown = (struct mhioctkown *) 24644 kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP); 24645 rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag); 24646 if (rval != 0) { 24647 rval = EFAULT; 24648 goto error; 24649 } 24650 } 24651 24652 rval = sd_take_ownership(dev, tkown); 24653 mutex_enter(SD_MUTEX(un)); 24654 if (rval == 0) { 24655 un->un_resvd_status |= SD_RESERVE; 24656 if (tkown != NULL && tkown->reinstate_resv_delay != 0) { 24657 sd_reinstate_resv_delay = 24658 tkown->reinstate_resv_delay * 1000; 24659 } else { 24660 sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY; 24661 } 24662 /* 24663 * Give the scsi_watch routine interval set by 24664 * the MHIOCENFAILFAST ioctl precedence here. 24665 */ 24666 if ((un->un_resvd_status & SD_FAILFAST) == 0) { 24667 mutex_exit(SD_MUTEX(un)); 24668 (void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000); 24669 SD_TRACE(SD_LOG_IOCTL_MHD, un, 24670 "sd_mhdioc_takeown : %d\n", 24671 sd_reinstate_resv_delay); 24672 } else { 24673 mutex_exit(SD_MUTEX(un)); 24674 } 24675 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY, 24676 sd_mhd_reset_notify_cb, (caddr_t)un); 24677 } else { 24678 un->un_resvd_status &= ~SD_RESERVE; 24679 mutex_exit(SD_MUTEX(un)); 24680 } 24681 24682 error: 24683 if (tkown != NULL) { 24684 kmem_free(tkown, sizeof (struct mhioctkown)); 24685 } 24686 return (rval); 24687 } 24688 24689 24690 /* 24691 * Function: sd_mhdioc_release 24692 * 24693 * Description: This routine is the driver entry point for handling ioctl 24694 * requests to release exclusive access rights to the multihost 24695 * disk (MHIOCRELEASE). 24696 * 24697 * Arguments: dev - the device number 24698 * 24699 * Return Code: 0 24700 * ENXIO 24701 */ 24702 24703 static int 24704 sd_mhdioc_release(dev_t dev) 24705 { 24706 struct sd_lun *un = NULL; 24707 timeout_id_t resvd_timeid_save; 24708 int resvd_status_save; 24709 int rval = 0; 24710 24711 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24712 return (ENXIO); 24713 } 24714 24715 mutex_enter(SD_MUTEX(un)); 24716 resvd_status_save = un->un_resvd_status; 24717 un->un_resvd_status &= 24718 ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE); 24719 if (un->un_resvd_timeid) { 24720 resvd_timeid_save = un->un_resvd_timeid; 24721 un->un_resvd_timeid = NULL; 24722 mutex_exit(SD_MUTEX(un)); 24723 (void) untimeout(resvd_timeid_save); 24724 } else { 24725 mutex_exit(SD_MUTEX(un)); 24726 } 24727 24728 /* 24729 * destroy any pending timeout thread that may be attempting to 24730 * reinstate reservation on this device. 24731 */ 24732 sd_rmv_resv_reclaim_req(dev); 24733 24734 if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) { 24735 mutex_enter(SD_MUTEX(un)); 24736 if ((un->un_mhd_token) && 24737 ((un->un_resvd_status & SD_FAILFAST) == 0)) { 24738 mutex_exit(SD_MUTEX(un)); 24739 (void) sd_check_mhd(dev, 0); 24740 } else { 24741 mutex_exit(SD_MUTEX(un)); 24742 } 24743 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL, 24744 sd_mhd_reset_notify_cb, (caddr_t)un); 24745 } else { 24746 /* 24747 * sd_mhd_watch_cb will restart the resvd recover timeout thread 24748 */ 24749 mutex_enter(SD_MUTEX(un)); 24750 un->un_resvd_status = resvd_status_save; 24751 mutex_exit(SD_MUTEX(un)); 24752 } 24753 return (rval); 24754 } 24755 24756 24757 /* 24758 * Function: sd_mhdioc_register_devid 24759 * 24760 * Description: This routine is the driver entry point for handling ioctl 24761 * requests to register the device id (MHIOCREREGISTERDEVID). 24762 * 24763 * Note: The implementation for this ioctl has been updated to 24764 * be consistent with the original PSARC case (1999/357) 24765 * (4375899, 4241671, 4220005) 24766 * 24767 * Arguments: dev - the device number 24768 * 24769 * Return Code: 0 24770 * ENXIO 24771 */ 24772 24773 static int 24774 sd_mhdioc_register_devid(dev_t dev) 24775 { 24776 struct sd_lun *un = NULL; 24777 int rval = 0; 24778 24779 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24780 return (ENXIO); 24781 } 24782 24783 ASSERT(!mutex_owned(SD_MUTEX(un))); 24784 24785 mutex_enter(SD_MUTEX(un)); 24786 24787 /* If a devid already exists, de-register it */ 24788 if (un->un_devid != NULL) { 24789 ddi_devid_unregister(SD_DEVINFO(un)); 24790 /* 24791 * After unregister devid, needs to free devid memory 24792 */ 24793 ddi_devid_free(un->un_devid); 24794 un->un_devid = NULL; 24795 } 24796 24797 /* Check for reservation conflict */ 24798 mutex_exit(SD_MUTEX(un)); 24799 rval = sd_send_scsi_TEST_UNIT_READY(un, 0); 24800 mutex_enter(SD_MUTEX(un)); 24801 24802 switch (rval) { 24803 case 0: 24804 sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED); 24805 break; 24806 case EACCES: 24807 break; 24808 default: 24809 rval = EIO; 24810 } 24811 24812 mutex_exit(SD_MUTEX(un)); 24813 return (rval); 24814 } 24815 24816 24817 /* 24818 * Function: sd_mhdioc_inkeys 24819 * 24820 * Description: This routine is the driver entry point for handling ioctl 24821 * requests to issue the SCSI-3 Persistent In Read Keys command 24822 * to the device (MHIOCGRP_INKEYS). 24823 * 24824 * Arguments: dev - the device number 24825 * arg - user provided in_keys structure 24826 * flag - this argument is a pass through to ddi_copyxxx() 24827 * directly from the mode argument of ioctl(). 24828 * 24829 * Return Code: code returned by sd_persistent_reservation_in_read_keys() 24830 * ENXIO 24831 * EFAULT 24832 */ 24833 24834 static int 24835 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag) 24836 { 24837 struct sd_lun *un; 24838 mhioc_inkeys_t inkeys; 24839 int rval = 0; 24840 24841 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24842 return (ENXIO); 24843 } 24844 24845 #ifdef _MULTI_DATAMODEL 24846 switch (ddi_model_convert_from(flag & FMODELS)) { 24847 case DDI_MODEL_ILP32: { 24848 struct mhioc_inkeys32 inkeys32; 24849 24850 if (ddi_copyin(arg, &inkeys32, 24851 sizeof (struct mhioc_inkeys32), flag) != 0) { 24852 return (EFAULT); 24853 } 24854 inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li; 24855 if ((rval = sd_persistent_reservation_in_read_keys(un, 24856 &inkeys, flag)) != 0) { 24857 return (rval); 24858 } 24859 inkeys32.generation = inkeys.generation; 24860 if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32), 24861 flag) != 0) { 24862 return (EFAULT); 24863 } 24864 break; 24865 } 24866 case DDI_MODEL_NONE: 24867 if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), 24868 flag) != 0) { 24869 return (EFAULT); 24870 } 24871 if ((rval = sd_persistent_reservation_in_read_keys(un, 24872 &inkeys, flag)) != 0) { 24873 return (rval); 24874 } 24875 if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), 24876 flag) != 0) { 24877 return (EFAULT); 24878 } 24879 break; 24880 } 24881 24882 #else /* ! _MULTI_DATAMODEL */ 24883 24884 if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) { 24885 return (EFAULT); 24886 } 24887 rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag); 24888 if (rval != 0) { 24889 return (rval); 24890 } 24891 if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) { 24892 return (EFAULT); 24893 } 24894 24895 #endif /* _MULTI_DATAMODEL */ 24896 24897 return (rval); 24898 } 24899 24900 24901 /* 24902 * Function: sd_mhdioc_inresv 24903 * 24904 * Description: This routine is the driver entry point for handling ioctl 24905 * requests to issue the SCSI-3 Persistent In Read Reservations 24906 * command to the device (MHIOCGRP_INKEYS). 24907 * 24908 * Arguments: dev - the device number 24909 * arg - user provided in_resv structure 24910 * flag - this argument is a pass through to ddi_copyxxx() 24911 * directly from the mode argument of ioctl(). 24912 * 24913 * Return Code: code returned by sd_persistent_reservation_in_read_resv() 24914 * ENXIO 24915 * EFAULT 24916 */ 24917 24918 static int 24919 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag) 24920 { 24921 struct sd_lun *un; 24922 mhioc_inresvs_t inresvs; 24923 int rval = 0; 24924 24925 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24926 return (ENXIO); 24927 } 24928 24929 #ifdef _MULTI_DATAMODEL 24930 24931 switch (ddi_model_convert_from(flag & FMODELS)) { 24932 case DDI_MODEL_ILP32: { 24933 struct mhioc_inresvs32 inresvs32; 24934 24935 if (ddi_copyin(arg, &inresvs32, 24936 sizeof (struct mhioc_inresvs32), flag) != 0) { 24937 return (EFAULT); 24938 } 24939 inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li; 24940 if ((rval = sd_persistent_reservation_in_read_resv(un, 24941 &inresvs, flag)) != 0) { 24942 return (rval); 24943 } 24944 inresvs32.generation = inresvs.generation; 24945 if (ddi_copyout(&inresvs32, arg, 24946 sizeof (struct mhioc_inresvs32), flag) != 0) { 24947 return (EFAULT); 24948 } 24949 break; 24950 } 24951 case DDI_MODEL_NONE: 24952 if (ddi_copyin(arg, &inresvs, 24953 sizeof (mhioc_inresvs_t), flag) != 0) { 24954 return (EFAULT); 24955 } 24956 if ((rval = sd_persistent_reservation_in_read_resv(un, 24957 &inresvs, flag)) != 0) { 24958 return (rval); 24959 } 24960 if (ddi_copyout(&inresvs, arg, 24961 sizeof (mhioc_inresvs_t), flag) != 0) { 24962 return (EFAULT); 24963 } 24964 break; 24965 } 24966 24967 #else /* ! _MULTI_DATAMODEL */ 24968 24969 if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) { 24970 return (EFAULT); 24971 } 24972 rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag); 24973 if (rval != 0) { 24974 return (rval); 24975 } 24976 if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) { 24977 return (EFAULT); 24978 } 24979 24980 #endif /* ! _MULTI_DATAMODEL */ 24981 24982 return (rval); 24983 } 24984 24985 24986 /* 24987 * The following routines support the clustering functionality described below 24988 * and implement lost reservation reclaim functionality. 24989 * 24990 * Clustering 24991 * ---------- 24992 * The clustering code uses two different, independent forms of SCSI 24993 * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3 24994 * Persistent Group Reservations. For any particular disk, it will use either 24995 * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk. 24996 * 24997 * SCSI-2 24998 * The cluster software takes ownership of a multi-hosted disk by issuing the 24999 * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the 25000 * MHIOCRELEASE ioctl.Closely related is the MHIOCENFAILFAST ioctl -- a cluster, 25001 * just after taking ownership of the disk with the MHIOCTKOWN ioctl then issues 25002 * the MHIOCENFAILFAST ioctl. This ioctl "enables failfast" in the driver. The 25003 * meaning of failfast is that if the driver (on this host) ever encounters the 25004 * scsi error return code RESERVATION_CONFLICT from the device, it should 25005 * immediately panic the host. The motivation for this ioctl is that if this 25006 * host does encounter reservation conflict, the underlying cause is that some 25007 * other host of the cluster has decided that this host is no longer in the 25008 * cluster and has seized control of the disks for itself. Since this host is no 25009 * longer in the cluster, it ought to panic itself. The MHIOCENFAILFAST ioctl 25010 * does two things: 25011 * (a) it sets a flag that will cause any returned RESERVATION_CONFLICT 25012 * error to panic the host 25013 * (b) it sets up a periodic timer to test whether this host still has 25014 * "access" (in that no other host has reserved the device): if the 25015 * periodic timer gets RESERVATION_CONFLICT, the host is panicked. The 25016 * purpose of that periodic timer is to handle scenarios where the host is 25017 * otherwise temporarily quiescent, temporarily doing no real i/o. 25018 * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host, 25019 * by issuing a SCSI Bus Device Reset. It will then issue a SCSI Reserve for 25020 * the device itself. 25021 * 25022 * SCSI-3 PGR 25023 * A direct semantic implementation of the SCSI-3 Persistent Reservation 25024 * facility is supported through the shared multihost disk ioctls 25025 * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE, 25026 * MHIOCGRP_PREEMPTANDABORT) 25027 * 25028 * Reservation Reclaim: 25029 * -------------------- 25030 * To support the lost reservation reclaim operations this driver creates a 25031 * single thread to handle reinstating reservations on all devices that have 25032 * lost reservations sd_resv_reclaim_requests are logged for all devices that 25033 * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb 25034 * and the reservation reclaim thread loops through the requests to regain the 25035 * lost reservations. 25036 */ 25037 25038 /* 25039 * Function: sd_check_mhd() 25040 * 25041 * Description: This function sets up and submits a scsi watch request or 25042 * terminates an existing watch request. This routine is used in 25043 * support of reservation reclaim. 25044 * 25045 * Arguments: dev - the device 'dev_t' is used for context to discriminate 25046 * among multiple watches that share the callback function 25047 * interval - the number of microseconds specifying the watch 25048 * interval for issuing TEST UNIT READY commands. If 25049 * set to 0 the watch should be terminated. If the 25050 * interval is set to 0 and if the device is required 25051 * to hold reservation while disabling failfast, the 25052 * watch is restarted with an interval of 25053 * reinstate_resv_delay. 25054 * 25055 * Return Code: 0 - Successful submit/terminate of scsi watch request 25056 * ENXIO - Indicates an invalid device was specified 25057 * EAGAIN - Unable to submit the scsi watch request 25058 */ 25059 25060 static int 25061 sd_check_mhd(dev_t dev, int interval) 25062 { 25063 struct sd_lun *un; 25064 opaque_t token; 25065 25066 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25067 return (ENXIO); 25068 } 25069 25070 /* is this a watch termination request? */ 25071 if (interval == 0) { 25072 mutex_enter(SD_MUTEX(un)); 25073 /* if there is an existing watch task then terminate it */ 25074 if (un->un_mhd_token) { 25075 token = un->un_mhd_token; 25076 un->un_mhd_token = NULL; 25077 mutex_exit(SD_MUTEX(un)); 25078 (void) scsi_watch_request_terminate(token, 25079 SCSI_WATCH_TERMINATE_WAIT); 25080 mutex_enter(SD_MUTEX(un)); 25081 } else { 25082 mutex_exit(SD_MUTEX(un)); 25083 /* 25084 * Note: If we return here we don't check for the 25085 * failfast case. This is the original legacy 25086 * implementation but perhaps we should be checking 25087 * the failfast case. 25088 */ 25089 return (0); 25090 } 25091 /* 25092 * If the device is required to hold reservation while 25093 * disabling failfast, we need to restart the scsi_watch 25094 * routine with an interval of reinstate_resv_delay. 25095 */ 25096 if (un->un_resvd_status & SD_RESERVE) { 25097 interval = sd_reinstate_resv_delay/1000; 25098 } else { 25099 /* no failfast so bail */ 25100 mutex_exit(SD_MUTEX(un)); 25101 return (0); 25102 } 25103 mutex_exit(SD_MUTEX(un)); 25104 } 25105 25106 /* 25107 * adjust minimum time interval to 1 second, 25108 * and convert from msecs to usecs 25109 */ 25110 if (interval > 0 && interval < 1000) { 25111 interval = 1000; 25112 } 25113 interval *= 1000; 25114 25115 /* 25116 * submit the request to the scsi_watch service 25117 */ 25118 token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval, 25119 SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev); 25120 if (token == NULL) { 25121 return (EAGAIN); 25122 } 25123 25124 /* 25125 * save token for termination later on 25126 */ 25127 mutex_enter(SD_MUTEX(un)); 25128 un->un_mhd_token = token; 25129 mutex_exit(SD_MUTEX(un)); 25130 return (0); 25131 } 25132 25133 25134 /* 25135 * Function: sd_mhd_watch_cb() 25136 * 25137 * Description: This function is the call back function used by the scsi watch 25138 * facility. The scsi watch facility sends the "Test Unit Ready" 25139 * and processes the status. If applicable (i.e. a "Unit Attention" 25140 * status and automatic "Request Sense" not used) the scsi watch 25141 * facility will send a "Request Sense" and retrieve the sense data 25142 * to be passed to this callback function. In either case the 25143 * automatic "Request Sense" or the facility submitting one, this 25144 * callback is passed the status and sense data. 25145 * 25146 * Arguments: arg - the device 'dev_t' is used for context to discriminate 25147 * among multiple watches that share this callback function 25148 * resultp - scsi watch facility result packet containing scsi 25149 * packet, status byte and sense data 25150 * 25151 * Return Code: 0 - continue the watch task 25152 * non-zero - terminate the watch task 25153 */ 25154 25155 static int 25156 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp) 25157 { 25158 struct sd_lun *un; 25159 struct scsi_status *statusp; 25160 struct scsi_extended_sense *sensep; 25161 struct scsi_pkt *pkt; 25162 uchar_t actual_sense_length; 25163 dev_t dev = (dev_t)arg; 25164 25165 ASSERT(resultp != NULL); 25166 statusp = resultp->statusp; 25167 sensep = resultp->sensep; 25168 pkt = resultp->pkt; 25169 actual_sense_length = resultp->actual_sense_length; 25170 25171 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25172 return (ENXIO); 25173 } 25174 25175 SD_TRACE(SD_LOG_IOCTL_MHD, un, 25176 "sd_mhd_watch_cb: reason '%s', status '%s'\n", 25177 scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp))); 25178 25179 /* Begin processing of the status and/or sense data */ 25180 if (pkt->pkt_reason != CMD_CMPLT) { 25181 /* Handle the incomplete packet */ 25182 sd_mhd_watch_incomplete(un, pkt); 25183 return (0); 25184 } else if (*((unsigned char *)statusp) != STATUS_GOOD) { 25185 if (*((unsigned char *)statusp) 25186 == STATUS_RESERVATION_CONFLICT) { 25187 /* 25188 * Handle a reservation conflict by panicking if 25189 * configured for failfast or by logging the conflict 25190 * and updating the reservation status 25191 */ 25192 mutex_enter(SD_MUTEX(un)); 25193 if ((un->un_resvd_status & SD_FAILFAST) && 25194 (sd_failfast_enable)) { 25195 sd_panic_for_res_conflict(un); 25196 /*NOTREACHED*/ 25197 } 25198 SD_INFO(SD_LOG_IOCTL_MHD, un, 25199 "sd_mhd_watch_cb: Reservation Conflict\n"); 25200 un->un_resvd_status |= SD_RESERVATION_CONFLICT; 25201 mutex_exit(SD_MUTEX(un)); 25202 } 25203 } 25204 25205 if (sensep != NULL) { 25206 if (actual_sense_length >= (SENSE_LENGTH - 2)) { 25207 mutex_enter(SD_MUTEX(un)); 25208 if ((sensep->es_add_code == SD_SCSI_RESET_SENSE_CODE) && 25209 (un->un_resvd_status & SD_RESERVE)) { 25210 /* 25211 * The additional sense code indicates a power 25212 * on or bus device reset has occurred; update 25213 * the reservation status. 25214 */ 25215 un->un_resvd_status |= 25216 (SD_LOST_RESERVE | SD_WANT_RESERVE); 25217 SD_INFO(SD_LOG_IOCTL_MHD, un, 25218 "sd_mhd_watch_cb: Lost Reservation\n"); 25219 } 25220 } else { 25221 return (0); 25222 } 25223 } else { 25224 mutex_enter(SD_MUTEX(un)); 25225 } 25226 25227 if ((un->un_resvd_status & SD_RESERVE) && 25228 (un->un_resvd_status & SD_LOST_RESERVE)) { 25229 if (un->un_resvd_status & SD_WANT_RESERVE) { 25230 /* 25231 * A reset occurred in between the last probe and this 25232 * one so if a timeout is pending cancel it. 25233 */ 25234 if (un->un_resvd_timeid) { 25235 timeout_id_t temp_id = un->un_resvd_timeid; 25236 un->un_resvd_timeid = NULL; 25237 mutex_exit(SD_MUTEX(un)); 25238 (void) untimeout(temp_id); 25239 mutex_enter(SD_MUTEX(un)); 25240 } 25241 un->un_resvd_status &= ~SD_WANT_RESERVE; 25242 } 25243 if (un->un_resvd_timeid == 0) { 25244 /* Schedule a timeout to handle the lost reservation */ 25245 un->un_resvd_timeid = timeout(sd_mhd_resvd_recover, 25246 (void *)dev, 25247 drv_usectohz(sd_reinstate_resv_delay)); 25248 } 25249 } 25250 mutex_exit(SD_MUTEX(un)); 25251 return (0); 25252 } 25253 25254 25255 /* 25256 * Function: sd_mhd_watch_incomplete() 25257 * 25258 * Description: This function is used to find out why a scsi pkt sent by the 25259 * scsi watch facility was not completed. Under some scenarios this 25260 * routine will return. Otherwise it will send a bus reset to see 25261 * if the drive is still online. 25262 * 25263 * Arguments: un - driver soft state (unit) structure 25264 * pkt - incomplete scsi pkt 25265 */ 25266 25267 static void 25268 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt) 25269 { 25270 int be_chatty; 25271 int perr; 25272 25273 ASSERT(pkt != NULL); 25274 ASSERT(un != NULL); 25275 be_chatty = (!(pkt->pkt_flags & FLAG_SILENT)); 25276 perr = (pkt->pkt_statistics & STAT_PERR); 25277 25278 mutex_enter(SD_MUTEX(un)); 25279 if (un->un_state == SD_STATE_DUMPING) { 25280 mutex_exit(SD_MUTEX(un)); 25281 return; 25282 } 25283 25284 switch (pkt->pkt_reason) { 25285 case CMD_UNX_BUS_FREE: 25286 /* 25287 * If we had a parity error that caused the target to drop BSY*, 25288 * don't be chatty about it. 25289 */ 25290 if (perr && be_chatty) { 25291 be_chatty = 0; 25292 } 25293 break; 25294 case CMD_TAG_REJECT: 25295 /* 25296 * The SCSI-2 spec states that a tag reject will be sent by the 25297 * target if tagged queuing is not supported. A tag reject may 25298 * also be sent during certain initialization periods or to 25299 * control internal resources. For the latter case the target 25300 * may also return Queue Full. 25301 * 25302 * If this driver receives a tag reject from a target that is 25303 * going through an init period or controlling internal 25304 * resources tagged queuing will be disabled. This is a less 25305 * than optimal behavior but the driver is unable to determine 25306 * the target state and assumes tagged queueing is not supported 25307 */ 25308 pkt->pkt_flags = 0; 25309 un->un_tagflags = 0; 25310 25311 if (un->un_f_opt_queueing == TRUE) { 25312 un->un_throttle = min(un->un_throttle, 3); 25313 } else { 25314 un->un_throttle = 1; 25315 } 25316 mutex_exit(SD_MUTEX(un)); 25317 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 25318 mutex_enter(SD_MUTEX(un)); 25319 break; 25320 case CMD_INCOMPLETE: 25321 /* 25322 * The transport stopped with an abnormal state, fallthrough and 25323 * reset the target and/or bus unless selection did not complete 25324 * (indicated by STATE_GOT_BUS) in which case we don't want to 25325 * go through a target/bus reset 25326 */ 25327 if (pkt->pkt_state == STATE_GOT_BUS) { 25328 break; 25329 } 25330 /*FALLTHROUGH*/ 25331 25332 case CMD_TIMEOUT: 25333 default: 25334 /* 25335 * The lun may still be running the command, so a lun reset 25336 * should be attempted. If the lun reset fails or cannot be 25337 * issued, than try a target reset. Lastly try a bus reset. 25338 */ 25339 if ((pkt->pkt_statistics & 25340 (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) { 25341 int reset_retval = 0; 25342 mutex_exit(SD_MUTEX(un)); 25343 if (un->un_f_allow_bus_device_reset == TRUE) { 25344 if (un->un_f_lun_reset_enabled == TRUE) { 25345 reset_retval = 25346 scsi_reset(SD_ADDRESS(un), 25347 RESET_LUN); 25348 } 25349 if (reset_retval == 0) { 25350 reset_retval = 25351 scsi_reset(SD_ADDRESS(un), 25352 RESET_TARGET); 25353 } 25354 } 25355 if (reset_retval == 0) { 25356 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 25357 } 25358 mutex_enter(SD_MUTEX(un)); 25359 } 25360 break; 25361 } 25362 25363 /* A device/bus reset has occurred; update the reservation status. */ 25364 if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics & 25365 (STAT_BUS_RESET | STAT_DEV_RESET))) { 25366 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 25367 un->un_resvd_status |= 25368 (SD_LOST_RESERVE | SD_WANT_RESERVE); 25369 SD_INFO(SD_LOG_IOCTL_MHD, un, 25370 "sd_mhd_watch_incomplete: Lost Reservation\n"); 25371 } 25372 } 25373 25374 /* 25375 * The disk has been turned off; Update the device state. 25376 * 25377 * Note: Should we be offlining the disk here? 25378 */ 25379 if (pkt->pkt_state == STATE_GOT_BUS) { 25380 SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: " 25381 "Disk not responding to selection\n"); 25382 if (un->un_state != SD_STATE_OFFLINE) { 25383 New_state(un, SD_STATE_OFFLINE); 25384 } 25385 } else if (be_chatty) { 25386 /* 25387 * suppress messages if they are all the same pkt reason; 25388 * with TQ, many (up to 256) are returned with the same 25389 * pkt_reason 25390 */ 25391 if (pkt->pkt_reason != un->un_last_pkt_reason) { 25392 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25393 "sd_mhd_watch_incomplete: " 25394 "SCSI transport failed: reason '%s'\n", 25395 scsi_rname(pkt->pkt_reason)); 25396 } 25397 } 25398 un->un_last_pkt_reason = pkt->pkt_reason; 25399 mutex_exit(SD_MUTEX(un)); 25400 } 25401 25402 25403 /* 25404 * Function: sd_sname() 25405 * 25406 * Description: This is a simple little routine to return a string containing 25407 * a printable description of command status byte for use in 25408 * logging. 25409 * 25410 * Arguments: status - pointer to a status byte 25411 * 25412 * Return Code: char * - string containing status description. 25413 */ 25414 25415 static char * 25416 sd_sname(uchar_t status) 25417 { 25418 switch (status & STATUS_MASK) { 25419 case STATUS_GOOD: 25420 return ("good status"); 25421 case STATUS_CHECK: 25422 return ("check condition"); 25423 case STATUS_MET: 25424 return ("condition met"); 25425 case STATUS_BUSY: 25426 return ("busy"); 25427 case STATUS_INTERMEDIATE: 25428 return ("intermediate"); 25429 case STATUS_INTERMEDIATE_MET: 25430 return ("intermediate - condition met"); 25431 case STATUS_RESERVATION_CONFLICT: 25432 return ("reservation_conflict"); 25433 case STATUS_TERMINATED: 25434 return ("command terminated"); 25435 case STATUS_QFULL: 25436 return ("queue full"); 25437 default: 25438 return ("<unknown status>"); 25439 } 25440 } 25441 25442 25443 /* 25444 * Function: sd_mhd_resvd_recover() 25445 * 25446 * Description: This function adds a reservation entry to the 25447 * sd_resv_reclaim_request list and signals the reservation 25448 * reclaim thread that there is work pending. If the reservation 25449 * reclaim thread has not been previously created this function 25450 * will kick it off. 25451 * 25452 * Arguments: arg - the device 'dev_t' is used for context to discriminate 25453 * among multiple watches that share this callback function 25454 * 25455 * Context: This routine is called by timeout() and is run in interrupt 25456 * context. It must not sleep or call other functions which may 25457 * sleep. 25458 */ 25459 25460 static void 25461 sd_mhd_resvd_recover(void *arg) 25462 { 25463 dev_t dev = (dev_t)arg; 25464 struct sd_lun *un; 25465 struct sd_thr_request *sd_treq = NULL; 25466 struct sd_thr_request *sd_cur = NULL; 25467 struct sd_thr_request *sd_prev = NULL; 25468 int already_there = 0; 25469 25470 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25471 return; 25472 } 25473 25474 mutex_enter(SD_MUTEX(un)); 25475 un->un_resvd_timeid = NULL; 25476 if (un->un_resvd_status & SD_WANT_RESERVE) { 25477 /* 25478 * There was a reset so don't issue the reserve, allow the 25479 * sd_mhd_watch_cb callback function to notice this and 25480 * reschedule the timeout for reservation. 25481 */ 25482 mutex_exit(SD_MUTEX(un)); 25483 return; 25484 } 25485 mutex_exit(SD_MUTEX(un)); 25486 25487 /* 25488 * Add this device to the sd_resv_reclaim_request list and the 25489 * sd_resv_reclaim_thread should take care of the rest. 25490 * 25491 * Note: We can't sleep in this context so if the memory allocation 25492 * fails allow the sd_mhd_watch_cb callback function to notice this and 25493 * reschedule the timeout for reservation. (4378460) 25494 */ 25495 sd_treq = (struct sd_thr_request *) 25496 kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP); 25497 if (sd_treq == NULL) { 25498 return; 25499 } 25500 25501 sd_treq->sd_thr_req_next = NULL; 25502 sd_treq->dev = dev; 25503 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25504 if (sd_tr.srq_thr_req_head == NULL) { 25505 sd_tr.srq_thr_req_head = sd_treq; 25506 } else { 25507 sd_cur = sd_prev = sd_tr.srq_thr_req_head; 25508 for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) { 25509 if (sd_cur->dev == dev) { 25510 /* 25511 * already in Queue so don't log 25512 * another request for the device 25513 */ 25514 already_there = 1; 25515 break; 25516 } 25517 sd_prev = sd_cur; 25518 } 25519 if (!already_there) { 25520 SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: " 25521 "logging request for %lx\n", dev); 25522 sd_prev->sd_thr_req_next = sd_treq; 25523 } else { 25524 kmem_free(sd_treq, sizeof (struct sd_thr_request)); 25525 } 25526 } 25527 25528 /* 25529 * Create a kernel thread to do the reservation reclaim and free up this 25530 * thread. We cannot block this thread while we go away to do the 25531 * reservation reclaim 25532 */ 25533 if (sd_tr.srq_resv_reclaim_thread == NULL) 25534 sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0, 25535 sd_resv_reclaim_thread, NULL, 25536 0, &p0, TS_RUN, v.v_maxsyspri - 2); 25537 25538 /* Tell the reservation reclaim thread that it has work to do */ 25539 cv_signal(&sd_tr.srq_resv_reclaim_cv); 25540 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25541 } 25542 25543 /* 25544 * Function: sd_resv_reclaim_thread() 25545 * 25546 * Description: This function implements the reservation reclaim operations 25547 * 25548 * Arguments: arg - the device 'dev_t' is used for context to discriminate 25549 * among multiple watches that share this callback function 25550 */ 25551 25552 static void 25553 sd_resv_reclaim_thread() 25554 { 25555 struct sd_lun *un; 25556 struct sd_thr_request *sd_mhreq; 25557 25558 /* Wait for work */ 25559 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25560 if (sd_tr.srq_thr_req_head == NULL) { 25561 cv_wait(&sd_tr.srq_resv_reclaim_cv, 25562 &sd_tr.srq_resv_reclaim_mutex); 25563 } 25564 25565 /* Loop while we have work */ 25566 while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) { 25567 un = ddi_get_soft_state(sd_state, 25568 SDUNIT(sd_tr.srq_thr_cur_req->dev)); 25569 if (un == NULL) { 25570 /* 25571 * softstate structure is NULL so just 25572 * dequeue the request and continue 25573 */ 25574 sd_tr.srq_thr_req_head = 25575 sd_tr.srq_thr_cur_req->sd_thr_req_next; 25576 kmem_free(sd_tr.srq_thr_cur_req, 25577 sizeof (struct sd_thr_request)); 25578 continue; 25579 } 25580 25581 /* dequeue the request */ 25582 sd_mhreq = sd_tr.srq_thr_cur_req; 25583 sd_tr.srq_thr_req_head = 25584 sd_tr.srq_thr_cur_req->sd_thr_req_next; 25585 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25586 25587 /* 25588 * Reclaim reservation only if SD_RESERVE is still set. There 25589 * may have been a call to MHIOCRELEASE before we got here. 25590 */ 25591 mutex_enter(SD_MUTEX(un)); 25592 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 25593 /* 25594 * Note: The SD_LOST_RESERVE flag is cleared before 25595 * reclaiming the reservation. If this is done after the 25596 * call to sd_reserve_release a reservation loss in the 25597 * window between pkt completion of reserve cmd and 25598 * mutex_enter below may not be recognized 25599 */ 25600 un->un_resvd_status &= ~SD_LOST_RESERVE; 25601 mutex_exit(SD_MUTEX(un)); 25602 25603 if (sd_reserve_release(sd_mhreq->dev, 25604 SD_RESERVE) == 0) { 25605 mutex_enter(SD_MUTEX(un)); 25606 un->un_resvd_status |= SD_RESERVE; 25607 mutex_exit(SD_MUTEX(un)); 25608 SD_INFO(SD_LOG_IOCTL_MHD, un, 25609 "sd_resv_reclaim_thread: " 25610 "Reservation Recovered\n"); 25611 } else { 25612 mutex_enter(SD_MUTEX(un)); 25613 un->un_resvd_status |= SD_LOST_RESERVE; 25614 mutex_exit(SD_MUTEX(un)); 25615 SD_INFO(SD_LOG_IOCTL_MHD, un, 25616 "sd_resv_reclaim_thread: Failed " 25617 "Reservation Recovery\n"); 25618 } 25619 } else { 25620 mutex_exit(SD_MUTEX(un)); 25621 } 25622 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25623 ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req); 25624 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 25625 sd_mhreq = sd_tr.srq_thr_cur_req = NULL; 25626 /* 25627 * wakeup the destroy thread if anyone is waiting on 25628 * us to complete. 25629 */ 25630 cv_signal(&sd_tr.srq_inprocess_cv); 25631 SD_TRACE(SD_LOG_IOCTL_MHD, un, 25632 "sd_resv_reclaim_thread: cv_signalling current request \n"); 25633 } 25634 25635 /* 25636 * cleanup the sd_tr structure now that this thread will not exist 25637 */ 25638 ASSERT(sd_tr.srq_thr_req_head == NULL); 25639 ASSERT(sd_tr.srq_thr_cur_req == NULL); 25640 sd_tr.srq_resv_reclaim_thread = NULL; 25641 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25642 thread_exit(); 25643 } 25644 25645 25646 /* 25647 * Function: sd_rmv_resv_reclaim_req() 25648 * 25649 * Description: This function removes any pending reservation reclaim requests 25650 * for the specified device. 25651 * 25652 * Arguments: dev - the device 'dev_t' 25653 */ 25654 25655 static void 25656 sd_rmv_resv_reclaim_req(dev_t dev) 25657 { 25658 struct sd_thr_request *sd_mhreq; 25659 struct sd_thr_request *sd_prev; 25660 25661 /* Remove a reservation reclaim request from the list */ 25662 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25663 if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) { 25664 /* 25665 * We are attempting to reinstate reservation for 25666 * this device. We wait for sd_reserve_release() 25667 * to return before we return. 25668 */ 25669 cv_wait(&sd_tr.srq_inprocess_cv, 25670 &sd_tr.srq_resv_reclaim_mutex); 25671 } else { 25672 sd_prev = sd_mhreq = sd_tr.srq_thr_req_head; 25673 if (sd_mhreq && sd_mhreq->dev == dev) { 25674 sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next; 25675 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 25676 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25677 return; 25678 } 25679 for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) { 25680 if (sd_mhreq && sd_mhreq->dev == dev) { 25681 break; 25682 } 25683 sd_prev = sd_mhreq; 25684 } 25685 if (sd_mhreq != NULL) { 25686 sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next; 25687 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 25688 } 25689 } 25690 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25691 } 25692 25693 25694 /* 25695 * Function: sd_mhd_reset_notify_cb() 25696 * 25697 * Description: This is a call back function for scsi_reset_notify. This 25698 * function updates the softstate reserved status and logs the 25699 * reset. The driver scsi watch facility callback function 25700 * (sd_mhd_watch_cb) and reservation reclaim thread functionality 25701 * will reclaim the reservation. 25702 * 25703 * Arguments: arg - driver soft state (unit) structure 25704 */ 25705 25706 static void 25707 sd_mhd_reset_notify_cb(caddr_t arg) 25708 { 25709 struct sd_lun *un = (struct sd_lun *)arg; 25710 25711 mutex_enter(SD_MUTEX(un)); 25712 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 25713 un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE); 25714 SD_INFO(SD_LOG_IOCTL_MHD, un, 25715 "sd_mhd_reset_notify_cb: Lost Reservation\n"); 25716 } 25717 mutex_exit(SD_MUTEX(un)); 25718 } 25719 25720 25721 /* 25722 * Function: sd_take_ownership() 25723 * 25724 * Description: This routine implements an algorithm to achieve a stable 25725 * reservation on disks which don't implement priority reserve, 25726 * and makes sure that other host lose re-reservation attempts. 25727 * This algorithm contains of a loop that keeps issuing the RESERVE 25728 * for some period of time (min_ownership_delay, default 6 seconds) 25729 * During that loop, it looks to see if there has been a bus device 25730 * reset or bus reset (both of which cause an existing reservation 25731 * to be lost). If the reservation is lost issue RESERVE until a 25732 * period of min_ownership_delay with no resets has gone by, or 25733 * until max_ownership_delay has expired. This loop ensures that 25734 * the host really did manage to reserve the device, in spite of 25735 * resets. The looping for min_ownership_delay (default six 25736 * seconds) is important to early generation clustering products, 25737 * Solstice HA 1.x and Sun Cluster 2.x. Those products use an 25738 * MHIOCENFAILFAST periodic timer of two seconds. By having 25739 * MHIOCTKOWN issue Reserves in a loop for six seconds, and having 25740 * MHIOCENFAILFAST poll every two seconds, the idea is that by the 25741 * time the MHIOCTKOWN ioctl returns, the other host (if any) will 25742 * have already noticed, via the MHIOCENFAILFAST polling, that it 25743 * no longer "owns" the disk and will have panicked itself. Thus, 25744 * the host issuing the MHIOCTKOWN is assured (with timing 25745 * dependencies) that by the time it actually starts to use the 25746 * disk for real work, the old owner is no longer accessing it. 25747 * 25748 * min_ownership_delay is the minimum amount of time for which the 25749 * disk must be reserved continuously devoid of resets before the 25750 * MHIOCTKOWN ioctl will return success. 25751 * 25752 * max_ownership_delay indicates the amount of time by which the 25753 * take ownership should succeed or timeout with an error. 25754 * 25755 * Arguments: dev - the device 'dev_t' 25756 * *p - struct containing timing info. 25757 * 25758 * Return Code: 0 for success or error code 25759 */ 25760 25761 static int 25762 sd_take_ownership(dev_t dev, struct mhioctkown *p) 25763 { 25764 struct sd_lun *un; 25765 int rval; 25766 int err; 25767 int reservation_count = 0; 25768 int min_ownership_delay = 6000000; /* in usec */ 25769 int max_ownership_delay = 30000000; /* in usec */ 25770 clock_t start_time; /* starting time of this algorithm */ 25771 clock_t end_time; /* time limit for giving up */ 25772 clock_t ownership_time; /* time limit for stable ownership */ 25773 clock_t current_time; 25774 clock_t previous_current_time; 25775 25776 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25777 return (ENXIO); 25778 } 25779 25780 /* 25781 * Attempt a device reservation. A priority reservation is requested. 25782 */ 25783 if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE)) 25784 != SD_SUCCESS) { 25785 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25786 "sd_take_ownership: return(1)=%d\n", rval); 25787 return (rval); 25788 } 25789 25790 /* Update the softstate reserved status to indicate the reservation */ 25791 mutex_enter(SD_MUTEX(un)); 25792 un->un_resvd_status |= SD_RESERVE; 25793 un->un_resvd_status &= 25794 ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT); 25795 mutex_exit(SD_MUTEX(un)); 25796 25797 if (p != NULL) { 25798 if (p->min_ownership_delay != 0) { 25799 min_ownership_delay = p->min_ownership_delay * 1000; 25800 } 25801 if (p->max_ownership_delay != 0) { 25802 max_ownership_delay = p->max_ownership_delay * 1000; 25803 } 25804 } 25805 SD_INFO(SD_LOG_IOCTL_MHD, un, 25806 "sd_take_ownership: min, max delays: %d, %d\n", 25807 min_ownership_delay, max_ownership_delay); 25808 25809 start_time = ddi_get_lbolt(); 25810 current_time = start_time; 25811 ownership_time = current_time + drv_usectohz(min_ownership_delay); 25812 end_time = start_time + drv_usectohz(max_ownership_delay); 25813 25814 while (current_time - end_time < 0) { 25815 delay(drv_usectohz(500000)); 25816 25817 if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) { 25818 if ((sd_reserve_release(dev, SD_RESERVE)) != 0) { 25819 mutex_enter(SD_MUTEX(un)); 25820 rval = (un->un_resvd_status & 25821 SD_RESERVATION_CONFLICT) ? EACCES : EIO; 25822 mutex_exit(SD_MUTEX(un)); 25823 break; 25824 } 25825 } 25826 previous_current_time = current_time; 25827 current_time = ddi_get_lbolt(); 25828 mutex_enter(SD_MUTEX(un)); 25829 if (err || (un->un_resvd_status & SD_LOST_RESERVE)) { 25830 ownership_time = ddi_get_lbolt() + 25831 drv_usectohz(min_ownership_delay); 25832 reservation_count = 0; 25833 } else { 25834 reservation_count++; 25835 } 25836 un->un_resvd_status |= SD_RESERVE; 25837 un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE); 25838 mutex_exit(SD_MUTEX(un)); 25839 25840 SD_INFO(SD_LOG_IOCTL_MHD, un, 25841 "sd_take_ownership: ticks for loop iteration=%ld, " 25842 "reservation=%s\n", (current_time - previous_current_time), 25843 reservation_count ? "ok" : "reclaimed"); 25844 25845 if (current_time - ownership_time >= 0 && 25846 reservation_count >= 4) { 25847 rval = 0; /* Achieved a stable ownership */ 25848 break; 25849 } 25850 if (current_time - end_time >= 0) { 25851 rval = EACCES; /* No ownership in max possible time */ 25852 break; 25853 } 25854 } 25855 SD_TRACE(SD_LOG_IOCTL_MHD, un, 25856 "sd_take_ownership: return(2)=%d\n", rval); 25857 return (rval); 25858 } 25859 25860 25861 /* 25862 * Function: sd_reserve_release() 25863 * 25864 * Description: This function builds and sends scsi RESERVE, RELEASE, and 25865 * PRIORITY RESERVE commands based on a user specified command type 25866 * 25867 * Arguments: dev - the device 'dev_t' 25868 * cmd - user specified command type; one of SD_PRIORITY_RESERVE, 25869 * SD_RESERVE, SD_RELEASE 25870 * 25871 * Return Code: 0 or Error Code 25872 */ 25873 25874 static int 25875 sd_reserve_release(dev_t dev, int cmd) 25876 { 25877 struct uscsi_cmd *com = NULL; 25878 struct sd_lun *un = NULL; 25879 char cdb[CDB_GROUP0]; 25880 int rval; 25881 25882 ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) || 25883 (cmd == SD_PRIORITY_RESERVE)); 25884 25885 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25886 return (ENXIO); 25887 } 25888 25889 /* instantiate and initialize the command and cdb */ 25890 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 25891 bzero(cdb, CDB_GROUP0); 25892 com->uscsi_flags = USCSI_SILENT; 25893 com->uscsi_timeout = un->un_reserve_release_time; 25894 com->uscsi_cdblen = CDB_GROUP0; 25895 com->uscsi_cdb = cdb; 25896 if (cmd == SD_RELEASE) { 25897 cdb[0] = SCMD_RELEASE; 25898 } else { 25899 cdb[0] = SCMD_RESERVE; 25900 } 25901 25902 /* Send the command. */ 25903 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE, 25904 UIO_SYSSPACE, SD_PATH_STANDARD); 25905 25906 /* 25907 * "break" a reservation that is held by another host, by issuing a 25908 * reset if priority reserve is desired, and we could not get the 25909 * device. 25910 */ 25911 if ((cmd == SD_PRIORITY_RESERVE) && 25912 (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) { 25913 /* 25914 * First try to reset the LUN. If we cannot, then try a target 25915 * reset, followed by a bus reset if the target reset fails. 25916 */ 25917 int reset_retval = 0; 25918 if (un->un_f_lun_reset_enabled == TRUE) { 25919 reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 25920 } 25921 if (reset_retval == 0) { 25922 /* The LUN reset either failed or was not issued */ 25923 reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 25924 } 25925 if ((reset_retval == 0) && 25926 (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) { 25927 rval = EIO; 25928 kmem_free(com, sizeof (*com)); 25929 return (rval); 25930 } 25931 25932 bzero(com, sizeof (struct uscsi_cmd)); 25933 com->uscsi_flags = USCSI_SILENT; 25934 com->uscsi_cdb = cdb; 25935 com->uscsi_cdblen = CDB_GROUP0; 25936 com->uscsi_timeout = 5; 25937 25938 /* 25939 * Reissue the last reserve command, this time without request 25940 * sense. Assume that it is just a regular reserve command. 25941 */ 25942 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE, 25943 UIO_SYSSPACE, SD_PATH_STANDARD); 25944 } 25945 25946 /* Return an error if still getting a reservation conflict. */ 25947 if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) { 25948 rval = EACCES; 25949 } 25950 25951 kmem_free(com, sizeof (*com)); 25952 return (rval); 25953 } 25954 25955 25956 #define SD_NDUMP_RETRIES 12 25957 /* 25958 * System Crash Dump routine 25959 */ 25960 25961 static int 25962 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk) 25963 { 25964 int instance; 25965 int partition; 25966 int i; 25967 int err; 25968 struct sd_lun *un; 25969 struct dk_map *lp; 25970 struct scsi_pkt *wr_pktp; 25971 struct buf *wr_bp; 25972 struct buf wr_buf; 25973 daddr_t tgt_byte_offset; /* rmw - byte offset for target */ 25974 daddr_t tgt_blkno; /* rmw - blkno for target */ 25975 size_t tgt_byte_count; /* rmw - # of bytes to xfer */ 25976 size_t tgt_nblk; /* rmw - # of tgt blks to xfer */ 25977 size_t io_start_offset; 25978 int doing_rmw = FALSE; 25979 int rval; 25980 #if defined(__i386) || defined(__amd64) 25981 ssize_t dma_resid; 25982 daddr_t oblkno; 25983 #endif 25984 25985 instance = SDUNIT(dev); 25986 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 25987 (!un->un_f_geometry_is_valid) || ISCD(un)) { 25988 return (ENXIO); 25989 } 25990 25991 _NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un)) 25992 25993 SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n"); 25994 25995 partition = SDPART(dev); 25996 SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition); 25997 25998 /* Validate blocks to dump at against partition size. */ 25999 lp = &un->un_map[partition]; 26000 if ((blkno + nblk) > lp->dkl_nblk) { 26001 SD_TRACE(SD_LOG_DUMP, un, 26002 "sddump: dump range larger than partition: " 26003 "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n", 26004 blkno, nblk, lp->dkl_nblk); 26005 return (EINVAL); 26006 } 26007 26008 mutex_enter(&un->un_pm_mutex); 26009 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 26010 struct scsi_pkt *start_pktp; 26011 26012 mutex_exit(&un->un_pm_mutex); 26013 26014 /* 26015 * use pm framework to power on HBA 1st 26016 */ 26017 (void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON); 26018 26019 /* 26020 * Dump no long uses sdpower to power on a device, it's 26021 * in-line here so it can be done in polled mode. 26022 */ 26023 26024 SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n"); 26025 26026 start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL, 26027 CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL); 26028 26029 if (start_pktp == NULL) { 26030 /* We were not given a SCSI packet, fail. */ 26031 return (EIO); 26032 } 26033 bzero(start_pktp->pkt_cdbp, CDB_GROUP0); 26034 start_pktp->pkt_cdbp[0] = SCMD_START_STOP; 26035 start_pktp->pkt_cdbp[4] = SD_TARGET_START; 26036 start_pktp->pkt_flags = FLAG_NOINTR; 26037 26038 mutex_enter(SD_MUTEX(un)); 26039 SD_FILL_SCSI1_LUN(un, start_pktp); 26040 mutex_exit(SD_MUTEX(un)); 26041 /* 26042 * Scsi_poll returns 0 (success) if the command completes and 26043 * the status block is STATUS_GOOD. 26044 */ 26045 if (sd_scsi_poll(un, start_pktp) != 0) { 26046 scsi_destroy_pkt(start_pktp); 26047 return (EIO); 26048 } 26049 scsi_destroy_pkt(start_pktp); 26050 (void) sd_ddi_pm_resume(un); 26051 } else { 26052 mutex_exit(&un->un_pm_mutex); 26053 } 26054 26055 mutex_enter(SD_MUTEX(un)); 26056 un->un_throttle = 0; 26057 26058 /* 26059 * The first time through, reset the specific target device. 26060 * However, when cpr calls sddump we know that sd is in a 26061 * a good state so no bus reset is required. 26062 * Clear sense data via Request Sense cmd. 26063 * In sddump we don't care about allow_bus_device_reset anymore 26064 */ 26065 26066 if ((un->un_state != SD_STATE_SUSPENDED) && 26067 (un->un_state != SD_STATE_DUMPING)) { 26068 26069 New_state(un, SD_STATE_DUMPING); 26070 26071 if (un->un_f_is_fibre == FALSE) { 26072 mutex_exit(SD_MUTEX(un)); 26073 /* 26074 * Attempt a bus reset for parallel scsi. 26075 * 26076 * Note: A bus reset is required because on some host 26077 * systems (i.e. E420R) a bus device reset is 26078 * insufficient to reset the state of the target. 26079 * 26080 * Note: Don't issue the reset for fibre-channel, 26081 * because this tends to hang the bus (loop) for 26082 * too long while everyone is logging out and in 26083 * and the deadman timer for dumping will fire 26084 * before the dump is complete. 26085 */ 26086 if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) { 26087 mutex_enter(SD_MUTEX(un)); 26088 Restore_state(un); 26089 mutex_exit(SD_MUTEX(un)); 26090 return (EIO); 26091 } 26092 26093 /* Delay to give the device some recovery time. */ 26094 drv_usecwait(10000); 26095 26096 if (sd_send_polled_RQS(un) == SD_FAILURE) { 26097 SD_INFO(SD_LOG_DUMP, un, 26098 "sddump: sd_send_polled_RQS failed\n"); 26099 } 26100 mutex_enter(SD_MUTEX(un)); 26101 } 26102 } 26103 26104 /* 26105 * Convert the partition-relative block number to a 26106 * disk physical block number. 26107 */ 26108 blkno += un->un_offset[partition]; 26109 SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno); 26110 26111 26112 /* 26113 * Check if the device has a non-512 block size. 26114 */ 26115 wr_bp = NULL; 26116 if (NOT_DEVBSIZE(un)) { 26117 tgt_byte_offset = blkno * un->un_sys_blocksize; 26118 tgt_byte_count = nblk * un->un_sys_blocksize; 26119 if ((tgt_byte_offset % un->un_tgt_blocksize) || 26120 (tgt_byte_count % un->un_tgt_blocksize)) { 26121 doing_rmw = TRUE; 26122 /* 26123 * Calculate the block number and number of block 26124 * in terms of the media block size. 26125 */ 26126 tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize; 26127 tgt_nblk = 26128 ((tgt_byte_offset + tgt_byte_count + 26129 (un->un_tgt_blocksize - 1)) / 26130 un->un_tgt_blocksize) - tgt_blkno; 26131 26132 /* 26133 * Invoke the routine which is going to do read part 26134 * of read-modify-write. 26135 * Note that this routine returns a pointer to 26136 * a valid bp in wr_bp. 26137 */ 26138 err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk, 26139 &wr_bp); 26140 if (err) { 26141 mutex_exit(SD_MUTEX(un)); 26142 return (err); 26143 } 26144 /* 26145 * Offset is being calculated as - 26146 * (original block # * system block size) - 26147 * (new block # * target block size) 26148 */ 26149 io_start_offset = 26150 ((uint64_t)(blkno * un->un_sys_blocksize)) - 26151 ((uint64_t)(tgt_blkno * un->un_tgt_blocksize)); 26152 26153 ASSERT((io_start_offset >= 0) && 26154 (io_start_offset < un->un_tgt_blocksize)); 26155 /* 26156 * Do the modify portion of read modify write. 26157 */ 26158 bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset], 26159 (size_t)nblk * un->un_sys_blocksize); 26160 } else { 26161 doing_rmw = FALSE; 26162 tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize; 26163 tgt_nblk = tgt_byte_count / un->un_tgt_blocksize; 26164 } 26165 26166 /* Convert blkno and nblk to target blocks */ 26167 blkno = tgt_blkno; 26168 nblk = tgt_nblk; 26169 } else { 26170 wr_bp = &wr_buf; 26171 bzero(wr_bp, sizeof (struct buf)); 26172 wr_bp->b_flags = B_BUSY; 26173 wr_bp->b_un.b_addr = addr; 26174 wr_bp->b_bcount = nblk << DEV_BSHIFT; 26175 wr_bp->b_resid = 0; 26176 } 26177 26178 mutex_exit(SD_MUTEX(un)); 26179 26180 /* 26181 * Obtain a SCSI packet for the write command. 26182 * It should be safe to call the allocator here without 26183 * worrying about being locked for DVMA mapping because 26184 * the address we're passed is already a DVMA mapping 26185 * 26186 * We are also not going to worry about semaphore ownership 26187 * in the dump buffer. Dumping is single threaded at present. 26188 */ 26189 26190 wr_pktp = NULL; 26191 26192 #if defined(__i386) || defined(__amd64) 26193 dma_resid = wr_bp->b_bcount; 26194 oblkno = blkno; 26195 while (dma_resid != 0) { 26196 #endif 26197 26198 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 26199 wr_bp->b_flags &= ~B_ERROR; 26200 26201 #if defined(__i386) || defined(__amd64) 26202 blkno = oblkno + 26203 ((wr_bp->b_bcount - dma_resid) / 26204 un->un_tgt_blocksize); 26205 nblk = dma_resid / un->un_tgt_blocksize; 26206 26207 if (wr_pktp) { 26208 /* Partial DMA transfers after initial transfer */ 26209 rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp, 26210 blkno, nblk); 26211 } else { 26212 /* Initial transfer */ 26213 rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp, 26214 un->un_pkt_flags, NULL_FUNC, NULL, 26215 blkno, nblk); 26216 } 26217 #else 26218 rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp, 26219 0, NULL_FUNC, NULL, blkno, nblk); 26220 #endif 26221 26222 if (rval == 0) { 26223 /* We were given a SCSI packet, continue. */ 26224 break; 26225 } 26226 26227 if (i == 0) { 26228 if (wr_bp->b_flags & B_ERROR) { 26229 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26230 "no resources for dumping; " 26231 "error code: 0x%x, retrying", 26232 geterror(wr_bp)); 26233 } else { 26234 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26235 "no resources for dumping; retrying"); 26236 } 26237 } else if (i != (SD_NDUMP_RETRIES - 1)) { 26238 if (wr_bp->b_flags & B_ERROR) { 26239 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 26240 "no resources for dumping; error code: " 26241 "0x%x, retrying\n", geterror(wr_bp)); 26242 } 26243 } else { 26244 if (wr_bp->b_flags & B_ERROR) { 26245 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 26246 "no resources for dumping; " 26247 "error code: 0x%x, retries failed, " 26248 "giving up.\n", geterror(wr_bp)); 26249 } else { 26250 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 26251 "no resources for dumping; " 26252 "retries failed, giving up.\n"); 26253 } 26254 mutex_enter(SD_MUTEX(un)); 26255 Restore_state(un); 26256 if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) { 26257 mutex_exit(SD_MUTEX(un)); 26258 scsi_free_consistent_buf(wr_bp); 26259 } else { 26260 mutex_exit(SD_MUTEX(un)); 26261 } 26262 return (EIO); 26263 } 26264 drv_usecwait(10000); 26265 } 26266 26267 #if defined(__i386) || defined(__amd64) 26268 /* 26269 * save the resid from PARTIAL_DMA 26270 */ 26271 dma_resid = wr_pktp->pkt_resid; 26272 if (dma_resid != 0) 26273 nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid); 26274 wr_pktp->pkt_resid = 0; 26275 #endif 26276 26277 /* SunBug 1222170 */ 26278 wr_pktp->pkt_flags = FLAG_NOINTR; 26279 26280 err = EIO; 26281 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 26282 26283 /* 26284 * Scsi_poll returns 0 (success) if the command completes and 26285 * the status block is STATUS_GOOD. We should only check 26286 * errors if this condition is not true. Even then we should 26287 * send our own request sense packet only if we have a check 26288 * condition and auto request sense has not been performed by 26289 * the hba. 26290 */ 26291 SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n"); 26292 26293 if ((sd_scsi_poll(un, wr_pktp) == 0) && 26294 (wr_pktp->pkt_resid == 0)) { 26295 err = SD_SUCCESS; 26296 break; 26297 } 26298 26299 /* 26300 * Check CMD_DEV_GONE 1st, give up if device is gone. 26301 */ 26302 if (wr_pktp->pkt_reason == CMD_DEV_GONE) { 26303 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 26304 "Device is gone\n"); 26305 break; 26306 } 26307 26308 if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) { 26309 SD_INFO(SD_LOG_DUMP, un, 26310 "sddump: write failed with CHECK, try # %d\n", i); 26311 if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) { 26312 (void) sd_send_polled_RQS(un); 26313 } 26314 26315 continue; 26316 } 26317 26318 if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) { 26319 int reset_retval = 0; 26320 26321 SD_INFO(SD_LOG_DUMP, un, 26322 "sddump: write failed with BUSY, try # %d\n", i); 26323 26324 if (un->un_f_lun_reset_enabled == TRUE) { 26325 reset_retval = scsi_reset(SD_ADDRESS(un), 26326 RESET_LUN); 26327 } 26328 if (reset_retval == 0) { 26329 (void) scsi_reset(SD_ADDRESS(un), RESET_TARGET); 26330 } 26331 (void) sd_send_polled_RQS(un); 26332 26333 } else { 26334 SD_INFO(SD_LOG_DUMP, un, 26335 "sddump: write failed with 0x%x, try # %d\n", 26336 SD_GET_PKT_STATUS(wr_pktp), i); 26337 mutex_enter(SD_MUTEX(un)); 26338 sd_reset_target(un, wr_pktp); 26339 mutex_exit(SD_MUTEX(un)); 26340 } 26341 26342 /* 26343 * If we are not getting anywhere with lun/target resets, 26344 * let's reset the bus. 26345 */ 26346 if (i == SD_NDUMP_RETRIES/2) { 26347 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 26348 (void) sd_send_polled_RQS(un); 26349 } 26350 26351 } 26352 #if defined(__i386) || defined(__amd64) 26353 } /* dma_resid */ 26354 #endif 26355 26356 scsi_destroy_pkt(wr_pktp); 26357 mutex_enter(SD_MUTEX(un)); 26358 if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) { 26359 mutex_exit(SD_MUTEX(un)); 26360 scsi_free_consistent_buf(wr_bp); 26361 } else { 26362 mutex_exit(SD_MUTEX(un)); 26363 } 26364 SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err); 26365 return (err); 26366 } 26367 26368 /* 26369 * Function: sd_scsi_poll() 26370 * 26371 * Description: This is a wrapper for the scsi_poll call. 26372 * 26373 * Arguments: sd_lun - The unit structure 26374 * scsi_pkt - The scsi packet being sent to the device. 26375 * 26376 * Return Code: 0 - Command completed successfully with good status 26377 * -1 - Command failed. This could indicate a check condition 26378 * or other status value requiring recovery action. 26379 * 26380 */ 26381 26382 static int 26383 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp) 26384 { 26385 int status; 26386 26387 ASSERT(un != NULL); 26388 ASSERT(!mutex_owned(SD_MUTEX(un))); 26389 ASSERT(pktp != NULL); 26390 26391 status = SD_SUCCESS; 26392 26393 if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) { 26394 pktp->pkt_flags |= un->un_tagflags; 26395 pktp->pkt_flags &= ~FLAG_NODISCON; 26396 } 26397 26398 status = sd_ddi_scsi_poll(pktp); 26399 /* 26400 * Scsi_poll returns 0 (success) if the command completes and the 26401 * status block is STATUS_GOOD. We should only check errors if this 26402 * condition is not true. Even then we should send our own request 26403 * sense packet only if we have a check condition and auto 26404 * request sense has not been performed by the hba. 26405 * Don't get RQS data if pkt_reason is CMD_DEV_GONE. 26406 */ 26407 if ((status != SD_SUCCESS) && 26408 (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) && 26409 (pktp->pkt_state & STATE_ARQ_DONE) == 0 && 26410 (pktp->pkt_reason != CMD_DEV_GONE)) 26411 (void) sd_send_polled_RQS(un); 26412 26413 return (status); 26414 } 26415 26416 /* 26417 * Function: sd_send_polled_RQS() 26418 * 26419 * Description: This sends the request sense command to a device. 26420 * 26421 * Arguments: sd_lun - The unit structure 26422 * 26423 * Return Code: 0 - Command completed successfully with good status 26424 * -1 - Command failed. 26425 * 26426 */ 26427 26428 static int 26429 sd_send_polled_RQS(struct sd_lun *un) 26430 { 26431 int ret_val; 26432 struct scsi_pkt *rqs_pktp; 26433 struct buf *rqs_bp; 26434 26435 ASSERT(un != NULL); 26436 ASSERT(!mutex_owned(SD_MUTEX(un))); 26437 26438 ret_val = SD_SUCCESS; 26439 26440 rqs_pktp = un->un_rqs_pktp; 26441 rqs_bp = un->un_rqs_bp; 26442 26443 mutex_enter(SD_MUTEX(un)); 26444 26445 if (un->un_sense_isbusy) { 26446 ret_val = SD_FAILURE; 26447 mutex_exit(SD_MUTEX(un)); 26448 return (ret_val); 26449 } 26450 26451 /* 26452 * If the request sense buffer (and packet) is not in use, 26453 * let's set the un_sense_isbusy and send our packet 26454 */ 26455 un->un_sense_isbusy = 1; 26456 rqs_pktp->pkt_resid = 0; 26457 rqs_pktp->pkt_reason = 0; 26458 rqs_pktp->pkt_flags |= FLAG_NOINTR; 26459 bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH); 26460 26461 mutex_exit(SD_MUTEX(un)); 26462 26463 SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at" 26464 " 0x%p\n", rqs_bp->b_un.b_addr); 26465 26466 /* 26467 * Can't send this to sd_scsi_poll, we wrap ourselves around the 26468 * axle - it has a call into us! 26469 */ 26470 if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) { 26471 SD_INFO(SD_LOG_COMMON, un, 26472 "sd_send_polled_RQS: RQS failed\n"); 26473 } 26474 26475 SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:", 26476 (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX); 26477 26478 mutex_enter(SD_MUTEX(un)); 26479 un->un_sense_isbusy = 0; 26480 mutex_exit(SD_MUTEX(un)); 26481 26482 return (ret_val); 26483 } 26484 26485 /* 26486 * Defines needed for localized version of the scsi_poll routine. 26487 */ 26488 #define SD_CSEC 10000 /* usecs */ 26489 #define SD_SEC_TO_CSEC (1000000/SD_CSEC) 26490 26491 26492 /* 26493 * Function: sd_ddi_scsi_poll() 26494 * 26495 * Description: Localized version of the scsi_poll routine. The purpose is to 26496 * send a scsi_pkt to a device as a polled command. This version 26497 * is to ensure more robust handling of transport errors. 26498 * Specifically this routine cures not ready, coming ready 26499 * transition for power up and reset of sonoma's. This can take 26500 * up to 45 seconds for power-on and 20 seconds for reset of a 26501 * sonoma lun. 26502 * 26503 * Arguments: scsi_pkt - The scsi_pkt being sent to a device 26504 * 26505 * Return Code: 0 - Command completed successfully with good status 26506 * -1 - Command failed. 26507 * 26508 */ 26509 26510 static int 26511 sd_ddi_scsi_poll(struct scsi_pkt *pkt) 26512 { 26513 int busy_count; 26514 int timeout; 26515 int rval = SD_FAILURE; 26516 int savef; 26517 struct scsi_extended_sense *sensep; 26518 long savet; 26519 void (*savec)(); 26520 /* 26521 * The following is defined in machdep.c and is used in determining if 26522 * the scsi transport system will do polled I/O instead of interrupt 26523 * I/O when called from xx_dump(). 26524 */ 26525 extern int do_polled_io; 26526 26527 /* 26528 * save old flags in pkt, to restore at end 26529 */ 26530 savef = pkt->pkt_flags; 26531 savec = pkt->pkt_comp; 26532 savet = pkt->pkt_time; 26533 26534 pkt->pkt_flags |= FLAG_NOINTR; 26535 26536 /* 26537 * XXX there is nothing in the SCSA spec that states that we should not 26538 * do a callback for polled cmds; however, removing this will break sd 26539 * and probably other target drivers 26540 */ 26541 pkt->pkt_comp = NULL; 26542 26543 /* 26544 * we don't like a polled command without timeout. 26545 * 60 seconds seems long enough. 26546 */ 26547 if (pkt->pkt_time == 0) { 26548 pkt->pkt_time = SCSI_POLL_TIMEOUT; 26549 } 26550 26551 /* 26552 * Send polled cmd. 26553 * 26554 * We do some error recovery for various errors. Tran_busy, 26555 * queue full, and non-dispatched commands are retried every 10 msec. 26556 * as they are typically transient failures. Busy status and Not 26557 * Ready are retried every second as this status takes a while to 26558 * change. Unit attention is retried for pkt_time (60) times 26559 * with no delay. 26560 */ 26561 timeout = pkt->pkt_time * SD_SEC_TO_CSEC; 26562 26563 for (busy_count = 0; busy_count < timeout; busy_count++) { 26564 int rc; 26565 int poll_delay; 26566 26567 /* 26568 * Initialize pkt status variables. 26569 */ 26570 *pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0; 26571 26572 if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) { 26573 if (rc != TRAN_BUSY) { 26574 /* Transport failed - give up. */ 26575 break; 26576 } else { 26577 /* Transport busy - try again. */ 26578 poll_delay = 1 * SD_CSEC; /* 10 msec */ 26579 } 26580 } else { 26581 /* 26582 * Transport accepted - check pkt status. 26583 */ 26584 rc = (*pkt->pkt_scbp) & STATUS_MASK; 26585 if (pkt->pkt_reason == CMD_CMPLT && 26586 rc == STATUS_CHECK && 26587 pkt->pkt_state & STATE_ARQ_DONE) { 26588 struct scsi_arq_status *arqstat = 26589 (struct scsi_arq_status *)(pkt->pkt_scbp); 26590 26591 sensep = &arqstat->sts_sensedata; 26592 } else { 26593 sensep = NULL; 26594 } 26595 26596 if ((pkt->pkt_reason == CMD_CMPLT) && 26597 (rc == STATUS_GOOD)) { 26598 /* No error - we're done */ 26599 rval = SD_SUCCESS; 26600 break; 26601 26602 } else if (pkt->pkt_reason == CMD_DEV_GONE) { 26603 /* Lost connection - give up */ 26604 break; 26605 26606 } else if ((pkt->pkt_reason == CMD_INCOMPLETE) && 26607 (pkt->pkt_state == 0)) { 26608 /* Pkt not dispatched - try again. */ 26609 poll_delay = 1 * SD_CSEC; /* 10 msec. */ 26610 26611 } else if ((pkt->pkt_reason == CMD_CMPLT) && 26612 (rc == STATUS_QFULL)) { 26613 /* Queue full - try again. */ 26614 poll_delay = 1 * SD_CSEC; /* 10 msec. */ 26615 26616 } else if ((pkt->pkt_reason == CMD_CMPLT) && 26617 (rc == STATUS_BUSY)) { 26618 /* Busy - try again. */ 26619 poll_delay = 100 * SD_CSEC; /* 1 sec. */ 26620 busy_count += (SD_SEC_TO_CSEC - 1); 26621 26622 } else if ((sensep != NULL) && 26623 (sensep->es_key == KEY_UNIT_ATTENTION)) { 26624 /* Unit Attention - try again */ 26625 busy_count += (SD_SEC_TO_CSEC - 1); /* 1 */ 26626 continue; 26627 26628 } else if ((sensep != NULL) && 26629 (sensep->es_key == KEY_NOT_READY) && 26630 (sensep->es_add_code == 0x04) && 26631 (sensep->es_qual_code == 0x01)) { 26632 /* Not ready -> ready - try again. */ 26633 poll_delay = 100 * SD_CSEC; /* 1 sec. */ 26634 busy_count += (SD_SEC_TO_CSEC - 1); 26635 26636 } else { 26637 /* BAD status - give up. */ 26638 break; 26639 } 26640 } 26641 26642 if ((curthread->t_flag & T_INTR_THREAD) == 0 && 26643 !do_polled_io) { 26644 delay(drv_usectohz(poll_delay)); 26645 } else { 26646 /* we busy wait during cpr_dump or interrupt threads */ 26647 drv_usecwait(poll_delay); 26648 } 26649 } 26650 26651 pkt->pkt_flags = savef; 26652 pkt->pkt_comp = savec; 26653 pkt->pkt_time = savet; 26654 return (rval); 26655 } 26656 26657 26658 /* 26659 * Function: sd_persistent_reservation_in_read_keys 26660 * 26661 * Description: This routine is the driver entry point for handling CD-ROM 26662 * multi-host persistent reservation requests (MHIOCGRP_INKEYS) 26663 * by sending the SCSI-3 PRIN commands to the device. 26664 * Processes the read keys command response by copying the 26665 * reservation key information into the user provided buffer. 26666 * Support for the 32/64 bit _MULTI_DATAMODEL is implemented. 26667 * 26668 * Arguments: un - Pointer to soft state struct for the target. 26669 * usrp - user provided pointer to multihost Persistent In Read 26670 * Keys structure (mhioc_inkeys_t) 26671 * flag - this argument is a pass through to ddi_copyxxx() 26672 * directly from the mode argument of ioctl(). 26673 * 26674 * Return Code: 0 - Success 26675 * EACCES 26676 * ENOTSUP 26677 * errno return code from sd_send_scsi_cmd() 26678 * 26679 * Context: Can sleep. Does not return until command is completed. 26680 */ 26681 26682 static int 26683 sd_persistent_reservation_in_read_keys(struct sd_lun *un, 26684 mhioc_inkeys_t *usrp, int flag) 26685 { 26686 #ifdef _MULTI_DATAMODEL 26687 struct mhioc_key_list32 li32; 26688 #endif 26689 sd_prin_readkeys_t *in; 26690 mhioc_inkeys_t *ptr; 26691 mhioc_key_list_t li; 26692 uchar_t *data_bufp; 26693 int data_len; 26694 int rval; 26695 size_t copysz; 26696 26697 if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) { 26698 return (EINVAL); 26699 } 26700 bzero(&li, sizeof (mhioc_key_list_t)); 26701 26702 /* 26703 * Get the listsize from user 26704 */ 26705 #ifdef _MULTI_DATAMODEL 26706 26707 switch (ddi_model_convert_from(flag & FMODELS)) { 26708 case DDI_MODEL_ILP32: 26709 copysz = sizeof (struct mhioc_key_list32); 26710 if (ddi_copyin(ptr->li, &li32, copysz, flag)) { 26711 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26712 "sd_persistent_reservation_in_read_keys: " 26713 "failed ddi_copyin: mhioc_key_list32_t\n"); 26714 rval = EFAULT; 26715 goto done; 26716 } 26717 li.listsize = li32.listsize; 26718 li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list; 26719 break; 26720 26721 case DDI_MODEL_NONE: 26722 copysz = sizeof (mhioc_key_list_t); 26723 if (ddi_copyin(ptr->li, &li, copysz, flag)) { 26724 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26725 "sd_persistent_reservation_in_read_keys: " 26726 "failed ddi_copyin: mhioc_key_list_t\n"); 26727 rval = EFAULT; 26728 goto done; 26729 } 26730 break; 26731 } 26732 26733 #else /* ! _MULTI_DATAMODEL */ 26734 copysz = sizeof (mhioc_key_list_t); 26735 if (ddi_copyin(ptr->li, &li, copysz, flag)) { 26736 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26737 "sd_persistent_reservation_in_read_keys: " 26738 "failed ddi_copyin: mhioc_key_list_t\n"); 26739 rval = EFAULT; 26740 goto done; 26741 } 26742 #endif 26743 26744 data_len = li.listsize * MHIOC_RESV_KEY_SIZE; 26745 data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t)); 26746 data_bufp = kmem_zalloc(data_len, KM_SLEEP); 26747 26748 if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 26749 data_len, data_bufp)) != 0) { 26750 goto done; 26751 } 26752 in = (sd_prin_readkeys_t *)data_bufp; 26753 ptr->generation = BE_32(in->generation); 26754 li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE; 26755 26756 /* 26757 * Return the min(listsize, listlen) keys 26758 */ 26759 #ifdef _MULTI_DATAMODEL 26760 26761 switch (ddi_model_convert_from(flag & FMODELS)) { 26762 case DDI_MODEL_ILP32: 26763 li32.listlen = li.listlen; 26764 if (ddi_copyout(&li32, ptr->li, copysz, flag)) { 26765 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26766 "sd_persistent_reservation_in_read_keys: " 26767 "failed ddi_copyout: mhioc_key_list32_t\n"); 26768 rval = EFAULT; 26769 goto done; 26770 } 26771 break; 26772 26773 case DDI_MODEL_NONE: 26774 if (ddi_copyout(&li, ptr->li, copysz, flag)) { 26775 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26776 "sd_persistent_reservation_in_read_keys: " 26777 "failed ddi_copyout: mhioc_key_list_t\n"); 26778 rval = EFAULT; 26779 goto done; 26780 } 26781 break; 26782 } 26783 26784 #else /* ! _MULTI_DATAMODEL */ 26785 26786 if (ddi_copyout(&li, ptr->li, copysz, flag)) { 26787 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26788 "sd_persistent_reservation_in_read_keys: " 26789 "failed ddi_copyout: mhioc_key_list_t\n"); 26790 rval = EFAULT; 26791 goto done; 26792 } 26793 26794 #endif /* _MULTI_DATAMODEL */ 26795 26796 copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE, 26797 li.listsize * MHIOC_RESV_KEY_SIZE); 26798 if (ddi_copyout(&in->keylist, li.list, copysz, flag)) { 26799 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26800 "sd_persistent_reservation_in_read_keys: " 26801 "failed ddi_copyout: keylist\n"); 26802 rval = EFAULT; 26803 } 26804 done: 26805 kmem_free(data_bufp, data_len); 26806 return (rval); 26807 } 26808 26809 26810 /* 26811 * Function: sd_persistent_reservation_in_read_resv 26812 * 26813 * Description: This routine is the driver entry point for handling CD-ROM 26814 * multi-host persistent reservation requests (MHIOCGRP_INRESV) 26815 * by sending the SCSI-3 PRIN commands to the device. 26816 * Process the read persistent reservations command response by 26817 * copying the reservation information into the user provided 26818 * buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented. 26819 * 26820 * Arguments: un - Pointer to soft state struct for the target. 26821 * usrp - user provided pointer to multihost Persistent In Read 26822 * Keys structure (mhioc_inkeys_t) 26823 * flag - this argument is a pass through to ddi_copyxxx() 26824 * directly from the mode argument of ioctl(). 26825 * 26826 * Return Code: 0 - Success 26827 * EACCES 26828 * ENOTSUP 26829 * errno return code from sd_send_scsi_cmd() 26830 * 26831 * Context: Can sleep. Does not return until command is completed. 26832 */ 26833 26834 static int 26835 sd_persistent_reservation_in_read_resv(struct sd_lun *un, 26836 mhioc_inresvs_t *usrp, int flag) 26837 { 26838 #ifdef _MULTI_DATAMODEL 26839 struct mhioc_resv_desc_list32 resvlist32; 26840 #endif 26841 sd_prin_readresv_t *in; 26842 mhioc_inresvs_t *ptr; 26843 sd_readresv_desc_t *readresv_ptr; 26844 mhioc_resv_desc_list_t resvlist; 26845 mhioc_resv_desc_t resvdesc; 26846 uchar_t *data_bufp; 26847 int data_len; 26848 int rval; 26849 int i; 26850 size_t copysz; 26851 mhioc_resv_desc_t *bufp; 26852 26853 if ((ptr = usrp) == NULL) { 26854 return (EINVAL); 26855 } 26856 26857 /* 26858 * Get the listsize from user 26859 */ 26860 #ifdef _MULTI_DATAMODEL 26861 switch (ddi_model_convert_from(flag & FMODELS)) { 26862 case DDI_MODEL_ILP32: 26863 copysz = sizeof (struct mhioc_resv_desc_list32); 26864 if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) { 26865 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26866 "sd_persistent_reservation_in_read_resv: " 26867 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 26868 rval = EFAULT; 26869 goto done; 26870 } 26871 resvlist.listsize = resvlist32.listsize; 26872 resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list; 26873 break; 26874 26875 case DDI_MODEL_NONE: 26876 copysz = sizeof (mhioc_resv_desc_list_t); 26877 if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) { 26878 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26879 "sd_persistent_reservation_in_read_resv: " 26880 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 26881 rval = EFAULT; 26882 goto done; 26883 } 26884 break; 26885 } 26886 #else /* ! _MULTI_DATAMODEL */ 26887 copysz = sizeof (mhioc_resv_desc_list_t); 26888 if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) { 26889 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26890 "sd_persistent_reservation_in_read_resv: " 26891 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 26892 rval = EFAULT; 26893 goto done; 26894 } 26895 #endif /* ! _MULTI_DATAMODEL */ 26896 26897 data_len = resvlist.listsize * SCSI3_RESV_DESC_LEN; 26898 data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t)); 26899 data_bufp = kmem_zalloc(data_len, KM_SLEEP); 26900 26901 if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV, 26902 data_len, data_bufp)) != 0) { 26903 goto done; 26904 } 26905 in = (sd_prin_readresv_t *)data_bufp; 26906 ptr->generation = BE_32(in->generation); 26907 resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN; 26908 26909 /* 26910 * Return the min(listsize, listlen( keys 26911 */ 26912 #ifdef _MULTI_DATAMODEL 26913 26914 switch (ddi_model_convert_from(flag & FMODELS)) { 26915 case DDI_MODEL_ILP32: 26916 resvlist32.listlen = resvlist.listlen; 26917 if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) { 26918 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26919 "sd_persistent_reservation_in_read_resv: " 26920 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 26921 rval = EFAULT; 26922 goto done; 26923 } 26924 break; 26925 26926 case DDI_MODEL_NONE: 26927 if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) { 26928 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26929 "sd_persistent_reservation_in_read_resv: " 26930 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 26931 rval = EFAULT; 26932 goto done; 26933 } 26934 break; 26935 } 26936 26937 #else /* ! _MULTI_DATAMODEL */ 26938 26939 if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) { 26940 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26941 "sd_persistent_reservation_in_read_resv: " 26942 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 26943 rval = EFAULT; 26944 goto done; 26945 } 26946 26947 #endif /* ! _MULTI_DATAMODEL */ 26948 26949 readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc; 26950 bufp = resvlist.list; 26951 copysz = sizeof (mhioc_resv_desc_t); 26952 for (i = 0; i < min(resvlist.listlen, resvlist.listsize); 26953 i++, readresv_ptr++, bufp++) { 26954 26955 bcopy(&readresv_ptr->resvkey, &resvdesc.key, 26956 MHIOC_RESV_KEY_SIZE); 26957 resvdesc.type = readresv_ptr->type; 26958 resvdesc.scope = readresv_ptr->scope; 26959 resvdesc.scope_specific_addr = 26960 BE_32(readresv_ptr->scope_specific_addr); 26961 26962 if (ddi_copyout(&resvdesc, bufp, copysz, flag)) { 26963 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26964 "sd_persistent_reservation_in_read_resv: " 26965 "failed ddi_copyout: resvlist\n"); 26966 rval = EFAULT; 26967 goto done; 26968 } 26969 } 26970 done: 26971 kmem_free(data_bufp, data_len); 26972 return (rval); 26973 } 26974 26975 26976 /* 26977 * Function: sr_change_blkmode() 26978 * 26979 * Description: This routine is the driver entry point for handling CD-ROM 26980 * block mode ioctl requests. Support for returning and changing 26981 * the current block size in use by the device is implemented. The 26982 * LBA size is changed via a MODE SELECT Block Descriptor. 26983 * 26984 * This routine issues a mode sense with an allocation length of 26985 * 12 bytes for the mode page header and a single block descriptor. 26986 * 26987 * Arguments: dev - the device 'dev_t' 26988 * cmd - the request type; one of CDROMGBLKMODE (get) or 26989 * CDROMSBLKMODE (set) 26990 * data - current block size or requested block size 26991 * flag - this argument is a pass through to ddi_copyxxx() directly 26992 * from the mode argument of ioctl(). 26993 * 26994 * Return Code: the code returned by sd_send_scsi_cmd() 26995 * EINVAL if invalid arguments are provided 26996 * EFAULT if ddi_copyxxx() fails 26997 * ENXIO if fail ddi_get_soft_state 26998 * EIO if invalid mode sense block descriptor length 26999 * 27000 */ 27001 27002 static int 27003 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag) 27004 { 27005 struct sd_lun *un = NULL; 27006 struct mode_header *sense_mhp, *select_mhp; 27007 struct block_descriptor *sense_desc, *select_desc; 27008 int current_bsize; 27009 int rval = EINVAL; 27010 uchar_t *sense = NULL; 27011 uchar_t *select = NULL; 27012 27013 ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE)); 27014 27015 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27016 return (ENXIO); 27017 } 27018 27019 /* 27020 * The block length is changed via the Mode Select block descriptor, the 27021 * "Read/Write Error Recovery" mode page (0x1) contents are not actually 27022 * required as part of this routine. Therefore the mode sense allocation 27023 * length is specified to be the length of a mode page header and a 27024 * block descriptor. 27025 */ 27026 sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP); 27027 27028 if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 27029 BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) { 27030 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27031 "sr_change_blkmode: Mode Sense Failed\n"); 27032 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 27033 return (rval); 27034 } 27035 27036 /* Check the block descriptor len to handle only 1 block descriptor */ 27037 sense_mhp = (struct mode_header *)sense; 27038 if ((sense_mhp->bdesc_length == 0) || 27039 (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) { 27040 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27041 "sr_change_blkmode: Mode Sense returned invalid block" 27042 " descriptor length\n"); 27043 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 27044 return (EIO); 27045 } 27046 sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH); 27047 current_bsize = ((sense_desc->blksize_hi << 16) | 27048 (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo); 27049 27050 /* Process command */ 27051 switch (cmd) { 27052 case CDROMGBLKMODE: 27053 /* Return the block size obtained during the mode sense */ 27054 if (ddi_copyout(¤t_bsize, (void *)data, 27055 sizeof (int), flag) != 0) 27056 rval = EFAULT; 27057 break; 27058 case CDROMSBLKMODE: 27059 /* Validate the requested block size */ 27060 switch (data) { 27061 case CDROM_BLK_512: 27062 case CDROM_BLK_1024: 27063 case CDROM_BLK_2048: 27064 case CDROM_BLK_2056: 27065 case CDROM_BLK_2336: 27066 case CDROM_BLK_2340: 27067 case CDROM_BLK_2352: 27068 case CDROM_BLK_2368: 27069 case CDROM_BLK_2448: 27070 case CDROM_BLK_2646: 27071 case CDROM_BLK_2647: 27072 break; 27073 default: 27074 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27075 "sr_change_blkmode: " 27076 "Block Size '%ld' Not Supported\n", data); 27077 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 27078 return (EINVAL); 27079 } 27080 27081 /* 27082 * The current block size matches the requested block size so 27083 * there is no need to send the mode select to change the size 27084 */ 27085 if (current_bsize == data) { 27086 break; 27087 } 27088 27089 /* Build the select data for the requested block size */ 27090 select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP); 27091 select_mhp = (struct mode_header *)select; 27092 select_desc = 27093 (struct block_descriptor *)(select + MODE_HEADER_LENGTH); 27094 /* 27095 * The LBA size is changed via the block descriptor, so the 27096 * descriptor is built according to the user data 27097 */ 27098 select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH; 27099 select_desc->blksize_hi = (char)(((data) & 0x00ff0000) >> 16); 27100 select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8); 27101 select_desc->blksize_lo = (char)((data) & 0x000000ff); 27102 27103 /* Send the mode select for the requested block size */ 27104 if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, 27105 select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE, 27106 SD_PATH_STANDARD)) != 0) { 27107 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27108 "sr_change_blkmode: Mode Select Failed\n"); 27109 /* 27110 * The mode select failed for the requested block size, 27111 * so reset the data for the original block size and 27112 * send it to the target. The error is indicated by the 27113 * return value for the failed mode select. 27114 */ 27115 select_desc->blksize_hi = sense_desc->blksize_hi; 27116 select_desc->blksize_mid = sense_desc->blksize_mid; 27117 select_desc->blksize_lo = sense_desc->blksize_lo; 27118 (void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, 27119 select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE, 27120 SD_PATH_STANDARD); 27121 } else { 27122 ASSERT(!mutex_owned(SD_MUTEX(un))); 27123 mutex_enter(SD_MUTEX(un)); 27124 sd_update_block_info(un, (uint32_t)data, 0); 27125 27126 mutex_exit(SD_MUTEX(un)); 27127 } 27128 break; 27129 default: 27130 /* should not reach here, but check anyway */ 27131 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27132 "sr_change_blkmode: Command '%x' Not Supported\n", cmd); 27133 rval = EINVAL; 27134 break; 27135 } 27136 27137 if (select) { 27138 kmem_free(select, BUFLEN_CHG_BLK_MODE); 27139 } 27140 if (sense) { 27141 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 27142 } 27143 return (rval); 27144 } 27145 27146 27147 /* 27148 * Note: The following sr_change_speed() and sr_atapi_change_speed() routines 27149 * implement driver support for getting and setting the CD speed. The command 27150 * set used will be based on the device type. If the device has not been 27151 * identified as MMC the Toshiba vendor specific mode page will be used. If 27152 * the device is MMC but does not support the Real Time Streaming feature 27153 * the SET CD SPEED command will be used to set speed and mode page 0x2A will 27154 * be used to read the speed. 27155 */ 27156 27157 /* 27158 * Function: sr_change_speed() 27159 * 27160 * Description: This routine is the driver entry point for handling CD-ROM 27161 * drive speed ioctl requests for devices supporting the Toshiba 27162 * vendor specific drive speed mode page. Support for returning 27163 * and changing the current drive speed in use by the device is 27164 * implemented. 27165 * 27166 * Arguments: dev - the device 'dev_t' 27167 * cmd - the request type; one of CDROMGDRVSPEED (get) or 27168 * CDROMSDRVSPEED (set) 27169 * data - current drive speed or requested drive speed 27170 * flag - this argument is a pass through to ddi_copyxxx() directly 27171 * from the mode argument of ioctl(). 27172 * 27173 * Return Code: the code returned by sd_send_scsi_cmd() 27174 * EINVAL if invalid arguments are provided 27175 * EFAULT if ddi_copyxxx() fails 27176 * ENXIO if fail ddi_get_soft_state 27177 * EIO if invalid mode sense block descriptor length 27178 */ 27179 27180 static int 27181 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag) 27182 { 27183 struct sd_lun *un = NULL; 27184 struct mode_header *sense_mhp, *select_mhp; 27185 struct mode_speed *sense_page, *select_page; 27186 int current_speed; 27187 int rval = EINVAL; 27188 int bd_len; 27189 uchar_t *sense = NULL; 27190 uchar_t *select = NULL; 27191 27192 ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED)); 27193 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27194 return (ENXIO); 27195 } 27196 27197 /* 27198 * Note: The drive speed is being modified here according to a Toshiba 27199 * vendor specific mode page (0x31). 27200 */ 27201 sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP); 27202 27203 if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 27204 BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED, 27205 SD_PATH_STANDARD)) != 0) { 27206 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27207 "sr_change_speed: Mode Sense Failed\n"); 27208 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 27209 return (rval); 27210 } 27211 sense_mhp = (struct mode_header *)sense; 27212 27213 /* Check the block descriptor len to handle only 1 block descriptor */ 27214 bd_len = sense_mhp->bdesc_length; 27215 if (bd_len > MODE_BLK_DESC_LENGTH) { 27216 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27217 "sr_change_speed: Mode Sense returned invalid block " 27218 "descriptor length\n"); 27219 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 27220 return (EIO); 27221 } 27222 27223 sense_page = (struct mode_speed *) 27224 (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length); 27225 current_speed = sense_page->speed; 27226 27227 /* Process command */ 27228 switch (cmd) { 27229 case CDROMGDRVSPEED: 27230 /* Return the drive speed obtained during the mode sense */ 27231 if (current_speed == 0x2) { 27232 current_speed = CDROM_TWELVE_SPEED; 27233 } 27234 if (ddi_copyout(¤t_speed, (void *)data, 27235 sizeof (int), flag) != 0) { 27236 rval = EFAULT; 27237 } 27238 break; 27239 case CDROMSDRVSPEED: 27240 /* Validate the requested drive speed */ 27241 switch ((uchar_t)data) { 27242 case CDROM_TWELVE_SPEED: 27243 data = 0x2; 27244 /*FALLTHROUGH*/ 27245 case CDROM_NORMAL_SPEED: 27246 case CDROM_DOUBLE_SPEED: 27247 case CDROM_QUAD_SPEED: 27248 case CDROM_MAXIMUM_SPEED: 27249 break; 27250 default: 27251 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27252 "sr_change_speed: " 27253 "Drive Speed '%d' Not Supported\n", (uchar_t)data); 27254 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 27255 return (EINVAL); 27256 } 27257 27258 /* 27259 * The current drive speed matches the requested drive speed so 27260 * there is no need to send the mode select to change the speed 27261 */ 27262 if (current_speed == data) { 27263 break; 27264 } 27265 27266 /* Build the select data for the requested drive speed */ 27267 select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP); 27268 select_mhp = (struct mode_header *)select; 27269 select_mhp->bdesc_length = 0; 27270 select_page = 27271 (struct mode_speed *)(select + MODE_HEADER_LENGTH); 27272 select_page = 27273 (struct mode_speed *)(select + MODE_HEADER_LENGTH); 27274 select_page->mode_page.code = CDROM_MODE_SPEED; 27275 select_page->mode_page.length = 2; 27276 select_page->speed = (uchar_t)data; 27277 27278 /* Send the mode select for the requested block size */ 27279 if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 27280 MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH, 27281 SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) { 27282 /* 27283 * The mode select failed for the requested drive speed, 27284 * so reset the data for the original drive speed and 27285 * send it to the target. The error is indicated by the 27286 * return value for the failed mode select. 27287 */ 27288 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27289 "sr_drive_speed: Mode Select Failed\n"); 27290 select_page->speed = sense_page->speed; 27291 (void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 27292 MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH, 27293 SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 27294 } 27295 break; 27296 default: 27297 /* should not reach here, but check anyway */ 27298 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27299 "sr_change_speed: Command '%x' Not Supported\n", cmd); 27300 rval = EINVAL; 27301 break; 27302 } 27303 27304 if (select) { 27305 kmem_free(select, BUFLEN_MODE_CDROM_SPEED); 27306 } 27307 if (sense) { 27308 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 27309 } 27310 27311 return (rval); 27312 } 27313 27314 27315 /* 27316 * Function: sr_atapi_change_speed() 27317 * 27318 * Description: This routine is the driver entry point for handling CD-ROM 27319 * drive speed ioctl requests for MMC devices that do not support 27320 * the Real Time Streaming feature (0x107). 27321 * 27322 * Note: This routine will use the SET SPEED command which may not 27323 * be supported by all devices. 27324 * 27325 * Arguments: dev- the device 'dev_t' 27326 * cmd- the request type; one of CDROMGDRVSPEED (get) or 27327 * CDROMSDRVSPEED (set) 27328 * data- current drive speed or requested drive speed 27329 * flag- this argument is a pass through to ddi_copyxxx() directly 27330 * from the mode argument of ioctl(). 27331 * 27332 * Return Code: the code returned by sd_send_scsi_cmd() 27333 * EINVAL if invalid arguments are provided 27334 * EFAULT if ddi_copyxxx() fails 27335 * ENXIO if fail ddi_get_soft_state 27336 * EIO if invalid mode sense block descriptor length 27337 */ 27338 27339 static int 27340 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag) 27341 { 27342 struct sd_lun *un; 27343 struct uscsi_cmd *com = NULL; 27344 struct mode_header_grp2 *sense_mhp; 27345 uchar_t *sense_page; 27346 uchar_t *sense = NULL; 27347 char cdb[CDB_GROUP5]; 27348 int bd_len; 27349 int current_speed = 0; 27350 int max_speed = 0; 27351 int rval; 27352 27353 ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED)); 27354 27355 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27356 return (ENXIO); 27357 } 27358 27359 sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 27360 27361 if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, 27362 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, 27363 SD_PATH_STANDARD)) != 0) { 27364 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27365 "sr_atapi_change_speed: Mode Sense Failed\n"); 27366 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27367 return (rval); 27368 } 27369 27370 /* Check the block descriptor len to handle only 1 block descriptor */ 27371 sense_mhp = (struct mode_header_grp2 *)sense; 27372 bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo; 27373 if (bd_len > MODE_BLK_DESC_LENGTH) { 27374 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27375 "sr_atapi_change_speed: Mode Sense returned invalid " 27376 "block descriptor length\n"); 27377 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27378 return (EIO); 27379 } 27380 27381 /* Calculate the current and maximum drive speeds */ 27382 sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len); 27383 current_speed = (sense_page[14] << 8) | sense_page[15]; 27384 max_speed = (sense_page[8] << 8) | sense_page[9]; 27385 27386 /* Process the command */ 27387 switch (cmd) { 27388 case CDROMGDRVSPEED: 27389 current_speed /= SD_SPEED_1X; 27390 if (ddi_copyout(¤t_speed, (void *)data, 27391 sizeof (int), flag) != 0) 27392 rval = EFAULT; 27393 break; 27394 case CDROMSDRVSPEED: 27395 /* Convert the speed code to KB/sec */ 27396 switch ((uchar_t)data) { 27397 case CDROM_NORMAL_SPEED: 27398 current_speed = SD_SPEED_1X; 27399 break; 27400 case CDROM_DOUBLE_SPEED: 27401 current_speed = 2 * SD_SPEED_1X; 27402 break; 27403 case CDROM_QUAD_SPEED: 27404 current_speed = 4 * SD_SPEED_1X; 27405 break; 27406 case CDROM_TWELVE_SPEED: 27407 current_speed = 12 * SD_SPEED_1X; 27408 break; 27409 case CDROM_MAXIMUM_SPEED: 27410 current_speed = 0xffff; 27411 break; 27412 default: 27413 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27414 "sr_atapi_change_speed: invalid drive speed %d\n", 27415 (uchar_t)data); 27416 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27417 return (EINVAL); 27418 } 27419 27420 /* Check the request against the drive's max speed. */ 27421 if (current_speed != 0xffff) { 27422 if (current_speed > max_speed) { 27423 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27424 return (EINVAL); 27425 } 27426 } 27427 27428 /* 27429 * Build and send the SET SPEED command 27430 * 27431 * Note: The SET SPEED (0xBB) command used in this routine is 27432 * obsolete per the SCSI MMC spec but still supported in the 27433 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI 27434 * therefore the command is still implemented in this routine. 27435 */ 27436 bzero(cdb, sizeof (cdb)); 27437 cdb[0] = (char)SCMD_SET_CDROM_SPEED; 27438 cdb[2] = (uchar_t)(current_speed >> 8); 27439 cdb[3] = (uchar_t)current_speed; 27440 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27441 com->uscsi_cdb = (caddr_t)cdb; 27442 com->uscsi_cdblen = CDB_GROUP5; 27443 com->uscsi_bufaddr = NULL; 27444 com->uscsi_buflen = 0; 27445 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27446 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, 0, 27447 UIO_SYSSPACE, SD_PATH_STANDARD); 27448 break; 27449 default: 27450 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27451 "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd); 27452 rval = EINVAL; 27453 } 27454 27455 if (sense) { 27456 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27457 } 27458 if (com) { 27459 kmem_free(com, sizeof (*com)); 27460 } 27461 return (rval); 27462 } 27463 27464 27465 /* 27466 * Function: sr_pause_resume() 27467 * 27468 * Description: This routine is the driver entry point for handling CD-ROM 27469 * pause/resume ioctl requests. This only affects the audio play 27470 * operation. 27471 * 27472 * Arguments: dev - the device 'dev_t' 27473 * cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used 27474 * for setting the resume bit of the cdb. 27475 * 27476 * Return Code: the code returned by sd_send_scsi_cmd() 27477 * EINVAL if invalid mode specified 27478 * 27479 */ 27480 27481 static int 27482 sr_pause_resume(dev_t dev, int cmd) 27483 { 27484 struct sd_lun *un; 27485 struct uscsi_cmd *com; 27486 char cdb[CDB_GROUP1]; 27487 int rval; 27488 27489 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27490 return (ENXIO); 27491 } 27492 27493 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27494 bzero(cdb, CDB_GROUP1); 27495 cdb[0] = SCMD_PAUSE_RESUME; 27496 switch (cmd) { 27497 case CDROMRESUME: 27498 cdb[8] = 1; 27499 break; 27500 case CDROMPAUSE: 27501 cdb[8] = 0; 27502 break; 27503 default: 27504 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:" 27505 " Command '%x' Not Supported\n", cmd); 27506 rval = EINVAL; 27507 goto done; 27508 } 27509 27510 com->uscsi_cdb = cdb; 27511 com->uscsi_cdblen = CDB_GROUP1; 27512 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27513 27514 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE, 27515 UIO_SYSSPACE, SD_PATH_STANDARD); 27516 27517 done: 27518 kmem_free(com, sizeof (*com)); 27519 return (rval); 27520 } 27521 27522 27523 /* 27524 * Function: sr_play_msf() 27525 * 27526 * Description: This routine is the driver entry point for handling CD-ROM 27527 * ioctl requests to output the audio signals at the specified 27528 * starting address and continue the audio play until the specified 27529 * ending address (CDROMPLAYMSF) The address is in Minute Second 27530 * Frame (MSF) format. 27531 * 27532 * Arguments: dev - the device 'dev_t' 27533 * data - pointer to user provided audio msf structure, 27534 * specifying start/end addresses. 27535 * flag - this argument is a pass through to ddi_copyxxx() 27536 * directly from the mode argument of ioctl(). 27537 * 27538 * Return Code: the code returned by sd_send_scsi_cmd() 27539 * EFAULT if ddi_copyxxx() fails 27540 * ENXIO if fail ddi_get_soft_state 27541 * EINVAL if data pointer is NULL 27542 */ 27543 27544 static int 27545 sr_play_msf(dev_t dev, caddr_t data, int flag) 27546 { 27547 struct sd_lun *un; 27548 struct uscsi_cmd *com; 27549 struct cdrom_msf msf_struct; 27550 struct cdrom_msf *msf = &msf_struct; 27551 char cdb[CDB_GROUP1]; 27552 int rval; 27553 27554 if (data == NULL) { 27555 return (EINVAL); 27556 } 27557 27558 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27559 return (ENXIO); 27560 } 27561 27562 if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) { 27563 return (EFAULT); 27564 } 27565 27566 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27567 bzero(cdb, CDB_GROUP1); 27568 cdb[0] = SCMD_PLAYAUDIO_MSF; 27569 if (un->un_f_cfg_playmsf_bcd == TRUE) { 27570 cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0); 27571 cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0); 27572 cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0); 27573 cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1); 27574 cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1); 27575 cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1); 27576 } else { 27577 cdb[3] = msf->cdmsf_min0; 27578 cdb[4] = msf->cdmsf_sec0; 27579 cdb[5] = msf->cdmsf_frame0; 27580 cdb[6] = msf->cdmsf_min1; 27581 cdb[7] = msf->cdmsf_sec1; 27582 cdb[8] = msf->cdmsf_frame1; 27583 } 27584 com->uscsi_cdb = cdb; 27585 com->uscsi_cdblen = CDB_GROUP1; 27586 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27587 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE, 27588 UIO_SYSSPACE, SD_PATH_STANDARD); 27589 kmem_free(com, sizeof (*com)); 27590 return (rval); 27591 } 27592 27593 27594 /* 27595 * Function: sr_play_trkind() 27596 * 27597 * Description: This routine is the driver entry point for handling CD-ROM 27598 * ioctl requests to output the audio signals at the specified 27599 * starting address and continue the audio play until the specified 27600 * ending address (CDROMPLAYTRKIND). The address is in Track Index 27601 * format. 27602 * 27603 * Arguments: dev - the device 'dev_t' 27604 * data - pointer to user provided audio track/index structure, 27605 * specifying start/end addresses. 27606 * flag - this argument is a pass through to ddi_copyxxx() 27607 * directly from the mode argument of ioctl(). 27608 * 27609 * Return Code: the code returned by sd_send_scsi_cmd() 27610 * EFAULT if ddi_copyxxx() fails 27611 * ENXIO if fail ddi_get_soft_state 27612 * EINVAL if data pointer is NULL 27613 */ 27614 27615 static int 27616 sr_play_trkind(dev_t dev, caddr_t data, int flag) 27617 { 27618 struct cdrom_ti ti_struct; 27619 struct cdrom_ti *ti = &ti_struct; 27620 struct uscsi_cmd *com = NULL; 27621 char cdb[CDB_GROUP1]; 27622 int rval; 27623 27624 if (data == NULL) { 27625 return (EINVAL); 27626 } 27627 27628 if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) { 27629 return (EFAULT); 27630 } 27631 27632 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27633 bzero(cdb, CDB_GROUP1); 27634 cdb[0] = SCMD_PLAYAUDIO_TI; 27635 cdb[4] = ti->cdti_trk0; 27636 cdb[5] = ti->cdti_ind0; 27637 cdb[7] = ti->cdti_trk1; 27638 cdb[8] = ti->cdti_ind1; 27639 com->uscsi_cdb = cdb; 27640 com->uscsi_cdblen = CDB_GROUP1; 27641 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27642 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE, 27643 UIO_SYSSPACE, SD_PATH_STANDARD); 27644 kmem_free(com, sizeof (*com)); 27645 return (rval); 27646 } 27647 27648 27649 /* 27650 * Function: sr_read_all_subcodes() 27651 * 27652 * Description: This routine is the driver entry point for handling CD-ROM 27653 * ioctl requests to return raw subcode data while the target is 27654 * playing audio (CDROMSUBCODE). 27655 * 27656 * Arguments: dev - the device 'dev_t' 27657 * data - pointer to user provided cdrom subcode structure, 27658 * specifying the transfer length and address. 27659 * flag - this argument is a pass through to ddi_copyxxx() 27660 * directly from the mode argument of ioctl(). 27661 * 27662 * Return Code: the code returned by sd_send_scsi_cmd() 27663 * EFAULT if ddi_copyxxx() fails 27664 * ENXIO if fail ddi_get_soft_state 27665 * EINVAL if data pointer is NULL 27666 */ 27667 27668 static int 27669 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag) 27670 { 27671 struct sd_lun *un = NULL; 27672 struct uscsi_cmd *com = NULL; 27673 struct cdrom_subcode *subcode = NULL; 27674 int rval; 27675 size_t buflen; 27676 char cdb[CDB_GROUP5]; 27677 27678 #ifdef _MULTI_DATAMODEL 27679 /* To support ILP32 applications in an LP64 world */ 27680 struct cdrom_subcode32 cdrom_subcode32; 27681 struct cdrom_subcode32 *cdsc32 = &cdrom_subcode32; 27682 #endif 27683 if (data == NULL) { 27684 return (EINVAL); 27685 } 27686 27687 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27688 return (ENXIO); 27689 } 27690 27691 subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP); 27692 27693 #ifdef _MULTI_DATAMODEL 27694 switch (ddi_model_convert_from(flag & FMODELS)) { 27695 case DDI_MODEL_ILP32: 27696 if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) { 27697 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27698 "sr_read_all_subcodes: ddi_copyin Failed\n"); 27699 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27700 return (EFAULT); 27701 } 27702 /* Convert the ILP32 uscsi data from the application to LP64 */ 27703 cdrom_subcode32tocdrom_subcode(cdsc32, subcode); 27704 break; 27705 case DDI_MODEL_NONE: 27706 if (ddi_copyin(data, subcode, 27707 sizeof (struct cdrom_subcode), flag)) { 27708 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27709 "sr_read_all_subcodes: ddi_copyin Failed\n"); 27710 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27711 return (EFAULT); 27712 } 27713 break; 27714 } 27715 #else /* ! _MULTI_DATAMODEL */ 27716 if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) { 27717 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27718 "sr_read_all_subcodes: ddi_copyin Failed\n"); 27719 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27720 return (EFAULT); 27721 } 27722 #endif /* _MULTI_DATAMODEL */ 27723 27724 /* 27725 * Since MMC-2 expects max 3 bytes for length, check if the 27726 * length input is greater than 3 bytes 27727 */ 27728 if ((subcode->cdsc_length & 0xFF000000) != 0) { 27729 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27730 "sr_read_all_subcodes: " 27731 "cdrom transfer length too large: %d (limit %d)\n", 27732 subcode->cdsc_length, 0xFFFFFF); 27733 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27734 return (EINVAL); 27735 } 27736 27737 buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length; 27738 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27739 bzero(cdb, CDB_GROUP5); 27740 27741 if (un->un_f_mmc_cap == TRUE) { 27742 cdb[0] = (char)SCMD_READ_CD; 27743 cdb[2] = (char)0xff; 27744 cdb[3] = (char)0xff; 27745 cdb[4] = (char)0xff; 27746 cdb[5] = (char)0xff; 27747 cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16); 27748 cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8); 27749 cdb[8] = ((subcode->cdsc_length) & 0x000000ff); 27750 cdb[10] = 1; 27751 } else { 27752 /* 27753 * Note: A vendor specific command (0xDF) is being used her to 27754 * request a read of all subcodes. 27755 */ 27756 cdb[0] = (char)SCMD_READ_ALL_SUBCODES; 27757 cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24); 27758 cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16); 27759 cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8); 27760 cdb[9] = ((subcode->cdsc_length) & 0x000000ff); 27761 } 27762 com->uscsi_cdb = cdb; 27763 com->uscsi_cdblen = CDB_GROUP5; 27764 com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr; 27765 com->uscsi_buflen = buflen; 27766 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 27767 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE, 27768 UIO_SYSSPACE, SD_PATH_STANDARD); 27769 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27770 kmem_free(com, sizeof (*com)); 27771 return (rval); 27772 } 27773 27774 27775 /* 27776 * Function: sr_read_subchannel() 27777 * 27778 * Description: This routine is the driver entry point for handling CD-ROM 27779 * ioctl requests to return the Q sub-channel data of the CD 27780 * current position block. (CDROMSUBCHNL) The data includes the 27781 * track number, index number, absolute CD-ROM address (LBA or MSF 27782 * format per the user) , track relative CD-ROM address (LBA or MSF 27783 * format per the user), control data and audio status. 27784 * 27785 * Arguments: dev - the device 'dev_t' 27786 * data - pointer to user provided cdrom sub-channel structure 27787 * flag - this argument is a pass through to ddi_copyxxx() 27788 * directly from the mode argument of ioctl(). 27789 * 27790 * Return Code: the code returned by sd_send_scsi_cmd() 27791 * EFAULT if ddi_copyxxx() fails 27792 * ENXIO if fail ddi_get_soft_state 27793 * EINVAL if data pointer is NULL 27794 */ 27795 27796 static int 27797 sr_read_subchannel(dev_t dev, caddr_t data, int flag) 27798 { 27799 struct sd_lun *un; 27800 struct uscsi_cmd *com; 27801 struct cdrom_subchnl subchanel; 27802 struct cdrom_subchnl *subchnl = &subchanel; 27803 char cdb[CDB_GROUP1]; 27804 caddr_t buffer; 27805 int rval; 27806 27807 if (data == NULL) { 27808 return (EINVAL); 27809 } 27810 27811 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27812 (un->un_state == SD_STATE_OFFLINE)) { 27813 return (ENXIO); 27814 } 27815 27816 if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) { 27817 return (EFAULT); 27818 } 27819 27820 buffer = kmem_zalloc((size_t)16, KM_SLEEP); 27821 bzero(cdb, CDB_GROUP1); 27822 cdb[0] = SCMD_READ_SUBCHANNEL; 27823 /* Set the MSF bit based on the user requested address format */ 27824 cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02; 27825 /* 27826 * Set the Q bit in byte 2 to indicate that Q sub-channel data be 27827 * returned 27828 */ 27829 cdb[2] = 0x40; 27830 /* 27831 * Set byte 3 to specify the return data format. A value of 0x01 27832 * indicates that the CD-ROM current position should be returned. 27833 */ 27834 cdb[3] = 0x01; 27835 cdb[8] = 0x10; 27836 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27837 com->uscsi_cdb = cdb; 27838 com->uscsi_cdblen = CDB_GROUP1; 27839 com->uscsi_bufaddr = buffer; 27840 com->uscsi_buflen = 16; 27841 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 27842 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE, 27843 UIO_SYSSPACE, SD_PATH_STANDARD); 27844 if (rval != 0) { 27845 kmem_free(buffer, 16); 27846 kmem_free(com, sizeof (*com)); 27847 return (rval); 27848 } 27849 27850 /* Process the returned Q sub-channel data */ 27851 subchnl->cdsc_audiostatus = buffer[1]; 27852 subchnl->cdsc_adr = (buffer[5] & 0xF0); 27853 subchnl->cdsc_ctrl = (buffer[5] & 0x0F); 27854 subchnl->cdsc_trk = buffer[6]; 27855 subchnl->cdsc_ind = buffer[7]; 27856 if (subchnl->cdsc_format & CDROM_LBA) { 27857 subchnl->cdsc_absaddr.lba = 27858 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 27859 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 27860 subchnl->cdsc_reladdr.lba = 27861 ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) + 27862 ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]); 27863 } else if (un->un_f_cfg_readsub_bcd == TRUE) { 27864 subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]); 27865 subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]); 27866 subchnl->cdsc_absaddr.msf.frame = BCD_TO_BYTE(buffer[11]); 27867 subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]); 27868 subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]); 27869 subchnl->cdsc_reladdr.msf.frame = BCD_TO_BYTE(buffer[15]); 27870 } else { 27871 subchnl->cdsc_absaddr.msf.minute = buffer[9]; 27872 subchnl->cdsc_absaddr.msf.second = buffer[10]; 27873 subchnl->cdsc_absaddr.msf.frame = buffer[11]; 27874 subchnl->cdsc_reladdr.msf.minute = buffer[13]; 27875 subchnl->cdsc_reladdr.msf.second = buffer[14]; 27876 subchnl->cdsc_reladdr.msf.frame = buffer[15]; 27877 } 27878 kmem_free(buffer, 16); 27879 kmem_free(com, sizeof (*com)); 27880 if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag) 27881 != 0) { 27882 return (EFAULT); 27883 } 27884 return (rval); 27885 } 27886 27887 27888 /* 27889 * Function: sr_read_tocentry() 27890 * 27891 * Description: This routine is the driver entry point for handling CD-ROM 27892 * ioctl requests to read from the Table of Contents (TOC) 27893 * (CDROMREADTOCENTRY). This routine provides the ADR and CTRL 27894 * fields, the starting address (LBA or MSF format per the user) 27895 * and the data mode if the user specified track is a data track. 27896 * 27897 * Note: The READ HEADER (0x44) command used in this routine is 27898 * obsolete per the SCSI MMC spec but still supported in the 27899 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI 27900 * therefore the command is still implemented in this routine. 27901 * 27902 * Arguments: dev - the device 'dev_t' 27903 * data - pointer to user provided toc entry structure, 27904 * specifying the track # and the address format 27905 * (LBA or MSF). 27906 * flag - this argument is a pass through to ddi_copyxxx() 27907 * directly from the mode argument of ioctl(). 27908 * 27909 * Return Code: the code returned by sd_send_scsi_cmd() 27910 * EFAULT if ddi_copyxxx() fails 27911 * ENXIO if fail ddi_get_soft_state 27912 * EINVAL if data pointer is NULL 27913 */ 27914 27915 static int 27916 sr_read_tocentry(dev_t dev, caddr_t data, int flag) 27917 { 27918 struct sd_lun *un = NULL; 27919 struct uscsi_cmd *com; 27920 struct cdrom_tocentry toc_entry; 27921 struct cdrom_tocentry *entry = &toc_entry; 27922 caddr_t buffer; 27923 int rval; 27924 char cdb[CDB_GROUP1]; 27925 27926 if (data == NULL) { 27927 return (EINVAL); 27928 } 27929 27930 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27931 (un->un_state == SD_STATE_OFFLINE)) { 27932 return (ENXIO); 27933 } 27934 27935 if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) { 27936 return (EFAULT); 27937 } 27938 27939 /* Validate the requested track and address format */ 27940 if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) { 27941 return (EINVAL); 27942 } 27943 27944 if (entry->cdte_track == 0) { 27945 return (EINVAL); 27946 } 27947 27948 buffer = kmem_zalloc((size_t)12, KM_SLEEP); 27949 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27950 bzero(cdb, CDB_GROUP1); 27951 27952 cdb[0] = SCMD_READ_TOC; 27953 /* Set the MSF bit based on the user requested address format */ 27954 cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2); 27955 if (un->un_f_cfg_read_toc_trk_bcd == TRUE) { 27956 cdb[6] = BYTE_TO_BCD(entry->cdte_track); 27957 } else { 27958 cdb[6] = entry->cdte_track; 27959 } 27960 27961 /* 27962 * Bytes 7 & 8 are the 12 byte allocation length for a single entry. 27963 * (4 byte TOC response header + 8 byte track descriptor) 27964 */ 27965 cdb[8] = 12; 27966 com->uscsi_cdb = cdb; 27967 com->uscsi_cdblen = CDB_GROUP1; 27968 com->uscsi_bufaddr = buffer; 27969 com->uscsi_buflen = 0x0C; 27970 com->uscsi_flags = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ); 27971 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE, 27972 UIO_SYSSPACE, SD_PATH_STANDARD); 27973 if (rval != 0) { 27974 kmem_free(buffer, 12); 27975 kmem_free(com, sizeof (*com)); 27976 return (rval); 27977 } 27978 27979 /* Process the toc entry */ 27980 entry->cdte_adr = (buffer[5] & 0xF0) >> 4; 27981 entry->cdte_ctrl = (buffer[5] & 0x0F); 27982 if (entry->cdte_format & CDROM_LBA) { 27983 entry->cdte_addr.lba = 27984 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 27985 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 27986 } else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) { 27987 entry->cdte_addr.msf.minute = BCD_TO_BYTE(buffer[9]); 27988 entry->cdte_addr.msf.second = BCD_TO_BYTE(buffer[10]); 27989 entry->cdte_addr.msf.frame = BCD_TO_BYTE(buffer[11]); 27990 /* 27991 * Send a READ TOC command using the LBA address format to get 27992 * the LBA for the track requested so it can be used in the 27993 * READ HEADER request 27994 * 27995 * Note: The MSF bit of the READ HEADER command specifies the 27996 * output format. The block address specified in that command 27997 * must be in LBA format. 27998 */ 27999 cdb[1] = 0; 28000 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE, 28001 UIO_SYSSPACE, SD_PATH_STANDARD); 28002 if (rval != 0) { 28003 kmem_free(buffer, 12); 28004 kmem_free(com, sizeof (*com)); 28005 return (rval); 28006 } 28007 } else { 28008 entry->cdte_addr.msf.minute = buffer[9]; 28009 entry->cdte_addr.msf.second = buffer[10]; 28010 entry->cdte_addr.msf.frame = buffer[11]; 28011 /* 28012 * Send a READ TOC command using the LBA address format to get 28013 * the LBA for the track requested so it can be used in the 28014 * READ HEADER request 28015 * 28016 * Note: The MSF bit of the READ HEADER command specifies the 28017 * output format. The block address specified in that command 28018 * must be in LBA format. 28019 */ 28020 cdb[1] = 0; 28021 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE, 28022 UIO_SYSSPACE, SD_PATH_STANDARD); 28023 if (rval != 0) { 28024 kmem_free(buffer, 12); 28025 kmem_free(com, sizeof (*com)); 28026 return (rval); 28027 } 28028 } 28029 28030 /* 28031 * Build and send the READ HEADER command to determine the data mode of 28032 * the user specified track. 28033 */ 28034 if ((entry->cdte_ctrl & CDROM_DATA_TRACK) && 28035 (entry->cdte_track != CDROM_LEADOUT)) { 28036 bzero(cdb, CDB_GROUP1); 28037 cdb[0] = SCMD_READ_HEADER; 28038 cdb[2] = buffer[8]; 28039 cdb[3] = buffer[9]; 28040 cdb[4] = buffer[10]; 28041 cdb[5] = buffer[11]; 28042 cdb[8] = 0x08; 28043 com->uscsi_buflen = 0x08; 28044 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE, 28045 UIO_SYSSPACE, SD_PATH_STANDARD); 28046 if (rval == 0) { 28047 entry->cdte_datamode = buffer[0]; 28048 } else { 28049 /* 28050 * READ HEADER command failed, since this is 28051 * obsoleted in one spec, its better to return 28052 * -1 for an invlid track so that we can still 28053 * recieve the rest of the TOC data. 28054 */ 28055 entry->cdte_datamode = (uchar_t)-1; 28056 } 28057 } else { 28058 entry->cdte_datamode = (uchar_t)-1; 28059 } 28060 28061 kmem_free(buffer, 12); 28062 kmem_free(com, sizeof (*com)); 28063 if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0) 28064 return (EFAULT); 28065 28066 return (rval); 28067 } 28068 28069 28070 /* 28071 * Function: sr_read_tochdr() 28072 * 28073 * Description: This routine is the driver entry point for handling CD-ROM 28074 * ioctl requests to read the Table of Contents (TOC) header 28075 * (CDROMREADTOHDR). The TOC header consists of the disk starting 28076 * and ending track numbers 28077 * 28078 * Arguments: dev - the device 'dev_t' 28079 * data - pointer to user provided toc header structure, 28080 * specifying the starting and ending track numbers. 28081 * flag - this argument is a pass through to ddi_copyxxx() 28082 * directly from the mode argument of ioctl(). 28083 * 28084 * Return Code: the code returned by sd_send_scsi_cmd() 28085 * EFAULT if ddi_copyxxx() fails 28086 * ENXIO if fail ddi_get_soft_state 28087 * EINVAL if data pointer is NULL 28088 */ 28089 28090 static int 28091 sr_read_tochdr(dev_t dev, caddr_t data, int flag) 28092 { 28093 struct sd_lun *un; 28094 struct uscsi_cmd *com; 28095 struct cdrom_tochdr toc_header; 28096 struct cdrom_tochdr *hdr = &toc_header; 28097 char cdb[CDB_GROUP1]; 28098 int rval; 28099 caddr_t buffer; 28100 28101 if (data == NULL) { 28102 return (EINVAL); 28103 } 28104 28105 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28106 (un->un_state == SD_STATE_OFFLINE)) { 28107 return (ENXIO); 28108 } 28109 28110 buffer = kmem_zalloc(4, KM_SLEEP); 28111 bzero(cdb, CDB_GROUP1); 28112 cdb[0] = SCMD_READ_TOC; 28113 /* 28114 * Specifying a track number of 0x00 in the READ TOC command indicates 28115 * that the TOC header should be returned 28116 */ 28117 cdb[6] = 0x00; 28118 /* 28119 * Bytes 7 & 8 are the 4 byte allocation length for TOC header. 28120 * (2 byte data len + 1 byte starting track # + 1 byte ending track #) 28121 */ 28122 cdb[8] = 0x04; 28123 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28124 com->uscsi_cdb = cdb; 28125 com->uscsi_cdblen = CDB_GROUP1; 28126 com->uscsi_bufaddr = buffer; 28127 com->uscsi_buflen = 0x04; 28128 com->uscsi_timeout = 300; 28129 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28130 28131 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE, 28132 UIO_SYSSPACE, SD_PATH_STANDARD); 28133 if (un->un_f_cfg_read_toc_trk_bcd == TRUE) { 28134 hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]); 28135 hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]); 28136 } else { 28137 hdr->cdth_trk0 = buffer[2]; 28138 hdr->cdth_trk1 = buffer[3]; 28139 } 28140 kmem_free(buffer, 4); 28141 kmem_free(com, sizeof (*com)); 28142 if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) { 28143 return (EFAULT); 28144 } 28145 return (rval); 28146 } 28147 28148 28149 /* 28150 * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(), 28151 * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for 28152 * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data, 28153 * digital audio and extended architecture digital audio. These modes are 28154 * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3 28155 * MMC specs. 28156 * 28157 * In addition to support for the various data formats these routines also 28158 * include support for devices that implement only the direct access READ 28159 * commands (0x08, 0x28), devices that implement the READ_CD commands 28160 * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and 28161 * READ CDXA commands (0xD8, 0xDB) 28162 */ 28163 28164 /* 28165 * Function: sr_read_mode1() 28166 * 28167 * Description: This routine is the driver entry point for handling CD-ROM 28168 * ioctl read mode1 requests (CDROMREADMODE1). 28169 * 28170 * Arguments: dev - the device 'dev_t' 28171 * data - pointer to user provided cd read structure specifying 28172 * the lba buffer address and length. 28173 * flag - this argument is a pass through to ddi_copyxxx() 28174 * directly from the mode argument of ioctl(). 28175 * 28176 * Return Code: the code returned by sd_send_scsi_cmd() 28177 * EFAULT if ddi_copyxxx() fails 28178 * ENXIO if fail ddi_get_soft_state 28179 * EINVAL if data pointer is NULL 28180 */ 28181 28182 static int 28183 sr_read_mode1(dev_t dev, caddr_t data, int flag) 28184 { 28185 struct sd_lun *un; 28186 struct cdrom_read mode1_struct; 28187 struct cdrom_read *mode1 = &mode1_struct; 28188 int rval; 28189 #ifdef _MULTI_DATAMODEL 28190 /* To support ILP32 applications in an LP64 world */ 28191 struct cdrom_read32 cdrom_read32; 28192 struct cdrom_read32 *cdrd32 = &cdrom_read32; 28193 #endif /* _MULTI_DATAMODEL */ 28194 28195 if (data == NULL) { 28196 return (EINVAL); 28197 } 28198 28199 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28200 (un->un_state == SD_STATE_OFFLINE)) { 28201 return (ENXIO); 28202 } 28203 28204 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28205 "sd_read_mode1: entry: un:0x%p\n", un); 28206 28207 #ifdef _MULTI_DATAMODEL 28208 switch (ddi_model_convert_from(flag & FMODELS)) { 28209 case DDI_MODEL_ILP32: 28210 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 28211 return (EFAULT); 28212 } 28213 /* Convert the ILP32 uscsi data from the application to LP64 */ 28214 cdrom_read32tocdrom_read(cdrd32, mode1); 28215 break; 28216 case DDI_MODEL_NONE: 28217 if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) { 28218 return (EFAULT); 28219 } 28220 } 28221 #else /* ! _MULTI_DATAMODEL */ 28222 if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) { 28223 return (EFAULT); 28224 } 28225 #endif /* _MULTI_DATAMODEL */ 28226 28227 rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr, 28228 mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD); 28229 28230 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28231 "sd_read_mode1: exit: un:0x%p\n", un); 28232 28233 return (rval); 28234 } 28235 28236 28237 /* 28238 * Function: sr_read_cd_mode2() 28239 * 28240 * Description: This routine is the driver entry point for handling CD-ROM 28241 * ioctl read mode2 requests (CDROMREADMODE2) for devices that 28242 * support the READ CD (0xBE) command or the 1st generation 28243 * READ CD (0xD4) command. 28244 * 28245 * Arguments: dev - the device 'dev_t' 28246 * data - pointer to user provided cd read structure specifying 28247 * the lba buffer address and length. 28248 * flag - this argument is a pass through to ddi_copyxxx() 28249 * directly from the mode argument of ioctl(). 28250 * 28251 * Return Code: the code returned by sd_send_scsi_cmd() 28252 * EFAULT if ddi_copyxxx() fails 28253 * ENXIO if fail ddi_get_soft_state 28254 * EINVAL if data pointer is NULL 28255 */ 28256 28257 static int 28258 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag) 28259 { 28260 struct sd_lun *un; 28261 struct uscsi_cmd *com; 28262 struct cdrom_read mode2_struct; 28263 struct cdrom_read *mode2 = &mode2_struct; 28264 uchar_t cdb[CDB_GROUP5]; 28265 int nblocks; 28266 int rval; 28267 #ifdef _MULTI_DATAMODEL 28268 /* To support ILP32 applications in an LP64 world */ 28269 struct cdrom_read32 cdrom_read32; 28270 struct cdrom_read32 *cdrd32 = &cdrom_read32; 28271 #endif /* _MULTI_DATAMODEL */ 28272 28273 if (data == NULL) { 28274 return (EINVAL); 28275 } 28276 28277 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28278 (un->un_state == SD_STATE_OFFLINE)) { 28279 return (ENXIO); 28280 } 28281 28282 #ifdef _MULTI_DATAMODEL 28283 switch (ddi_model_convert_from(flag & FMODELS)) { 28284 case DDI_MODEL_ILP32: 28285 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 28286 return (EFAULT); 28287 } 28288 /* Convert the ILP32 uscsi data from the application to LP64 */ 28289 cdrom_read32tocdrom_read(cdrd32, mode2); 28290 break; 28291 case DDI_MODEL_NONE: 28292 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 28293 return (EFAULT); 28294 } 28295 break; 28296 } 28297 28298 #else /* ! _MULTI_DATAMODEL */ 28299 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 28300 return (EFAULT); 28301 } 28302 #endif /* _MULTI_DATAMODEL */ 28303 28304 bzero(cdb, sizeof (cdb)); 28305 if (un->un_f_cfg_read_cd_xd4 == TRUE) { 28306 /* Read command supported by 1st generation atapi drives */ 28307 cdb[0] = SCMD_READ_CDD4; 28308 } else { 28309 /* Universal CD Access Command */ 28310 cdb[0] = SCMD_READ_CD; 28311 } 28312 28313 /* 28314 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book 28315 */ 28316 cdb[1] = CDROM_SECTOR_TYPE_MODE2; 28317 28318 /* set the start address */ 28319 cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF); 28320 cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF); 28321 cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF); 28322 cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF); 28323 28324 /* set the transfer length */ 28325 nblocks = mode2->cdread_buflen / 2336; 28326 cdb[6] = (uchar_t)(nblocks >> 16); 28327 cdb[7] = (uchar_t)(nblocks >> 8); 28328 cdb[8] = (uchar_t)nblocks; 28329 28330 /* set the filter bits */ 28331 cdb[9] = CDROM_READ_CD_USERDATA; 28332 28333 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28334 com->uscsi_cdb = (caddr_t)cdb; 28335 com->uscsi_cdblen = sizeof (cdb); 28336 com->uscsi_bufaddr = mode2->cdread_bufaddr; 28337 com->uscsi_buflen = mode2->cdread_buflen; 28338 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28339 28340 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE, 28341 UIO_SYSSPACE, SD_PATH_STANDARD); 28342 kmem_free(com, sizeof (*com)); 28343 return (rval); 28344 } 28345 28346 28347 /* 28348 * Function: sr_read_mode2() 28349 * 28350 * Description: This routine is the driver entry point for handling CD-ROM 28351 * ioctl read mode2 requests (CDROMREADMODE2) for devices that 28352 * do not support the READ CD (0xBE) command. 28353 * 28354 * Arguments: dev - the device 'dev_t' 28355 * data - pointer to user provided cd read structure specifying 28356 * the lba buffer address and length. 28357 * flag - this argument is a pass through to ddi_copyxxx() 28358 * directly from the mode argument of ioctl(). 28359 * 28360 * Return Code: the code returned by sd_send_scsi_cmd() 28361 * EFAULT if ddi_copyxxx() fails 28362 * ENXIO if fail ddi_get_soft_state 28363 * EINVAL if data pointer is NULL 28364 * EIO if fail to reset block size 28365 * EAGAIN if commands are in progress in the driver 28366 */ 28367 28368 static int 28369 sr_read_mode2(dev_t dev, caddr_t data, int flag) 28370 { 28371 struct sd_lun *un; 28372 struct cdrom_read mode2_struct; 28373 struct cdrom_read *mode2 = &mode2_struct; 28374 int rval; 28375 uint32_t restore_blksize; 28376 struct uscsi_cmd *com; 28377 uchar_t cdb[CDB_GROUP0]; 28378 int nblocks; 28379 28380 #ifdef _MULTI_DATAMODEL 28381 /* To support ILP32 applications in an LP64 world */ 28382 struct cdrom_read32 cdrom_read32; 28383 struct cdrom_read32 *cdrd32 = &cdrom_read32; 28384 #endif /* _MULTI_DATAMODEL */ 28385 28386 if (data == NULL) { 28387 return (EINVAL); 28388 } 28389 28390 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28391 (un->un_state == SD_STATE_OFFLINE)) { 28392 return (ENXIO); 28393 } 28394 28395 /* 28396 * Because this routine will update the device and driver block size 28397 * being used we want to make sure there are no commands in progress. 28398 * If commands are in progress the user will have to try again. 28399 * 28400 * We check for 1 instead of 0 because we increment un_ncmds_in_driver 28401 * in sdioctl to protect commands from sdioctl through to the top of 28402 * sd_uscsi_strategy. See sdioctl for details. 28403 */ 28404 mutex_enter(SD_MUTEX(un)); 28405 if (un->un_ncmds_in_driver != 1) { 28406 mutex_exit(SD_MUTEX(un)); 28407 return (EAGAIN); 28408 } 28409 mutex_exit(SD_MUTEX(un)); 28410 28411 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28412 "sd_read_mode2: entry: un:0x%p\n", un); 28413 28414 #ifdef _MULTI_DATAMODEL 28415 switch (ddi_model_convert_from(flag & FMODELS)) { 28416 case DDI_MODEL_ILP32: 28417 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 28418 return (EFAULT); 28419 } 28420 /* Convert the ILP32 uscsi data from the application to LP64 */ 28421 cdrom_read32tocdrom_read(cdrd32, mode2); 28422 break; 28423 case DDI_MODEL_NONE: 28424 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 28425 return (EFAULT); 28426 } 28427 break; 28428 } 28429 #else /* ! _MULTI_DATAMODEL */ 28430 if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) { 28431 return (EFAULT); 28432 } 28433 #endif /* _MULTI_DATAMODEL */ 28434 28435 /* Store the current target block size for restoration later */ 28436 restore_blksize = un->un_tgt_blocksize; 28437 28438 /* Change the device and soft state target block size to 2336 */ 28439 if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) { 28440 rval = EIO; 28441 goto done; 28442 } 28443 28444 28445 bzero(cdb, sizeof (cdb)); 28446 28447 /* set READ operation */ 28448 cdb[0] = SCMD_READ; 28449 28450 /* adjust lba for 2kbyte blocks from 512 byte blocks */ 28451 mode2->cdread_lba >>= 2; 28452 28453 /* set the start address */ 28454 cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F); 28455 cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF); 28456 cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF); 28457 28458 /* set the transfer length */ 28459 nblocks = mode2->cdread_buflen / 2336; 28460 cdb[4] = (uchar_t)nblocks & 0xFF; 28461 28462 /* build command */ 28463 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28464 com->uscsi_cdb = (caddr_t)cdb; 28465 com->uscsi_cdblen = sizeof (cdb); 28466 com->uscsi_bufaddr = mode2->cdread_bufaddr; 28467 com->uscsi_buflen = mode2->cdread_buflen; 28468 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28469 28470 /* 28471 * Issue SCSI command with user space address for read buffer. 28472 * 28473 * This sends the command through main channel in the driver. 28474 * 28475 * Since this is accessed via an IOCTL call, we go through the 28476 * standard path, so that if the device was powered down, then 28477 * it would be 'awakened' to handle the command. 28478 */ 28479 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE, 28480 UIO_SYSSPACE, SD_PATH_STANDARD); 28481 28482 kmem_free(com, sizeof (*com)); 28483 28484 /* Restore the device and soft state target block size */ 28485 if (sr_sector_mode(dev, restore_blksize) != 0) { 28486 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28487 "can't do switch back to mode 1\n"); 28488 /* 28489 * If sd_send_scsi_READ succeeded we still need to report 28490 * an error because we failed to reset the block size 28491 */ 28492 if (rval == 0) { 28493 rval = EIO; 28494 } 28495 } 28496 28497 done: 28498 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28499 "sd_read_mode2: exit: un:0x%p\n", un); 28500 28501 return (rval); 28502 } 28503 28504 28505 /* 28506 * Function: sr_sector_mode() 28507 * 28508 * Description: This utility function is used by sr_read_mode2 to set the target 28509 * block size based on the user specified size. This is a legacy 28510 * implementation based upon a vendor specific mode page 28511 * 28512 * Arguments: dev - the device 'dev_t' 28513 * data - flag indicating if block size is being set to 2336 or 28514 * 512. 28515 * 28516 * Return Code: the code returned by sd_send_scsi_cmd() 28517 * EFAULT if ddi_copyxxx() fails 28518 * ENXIO if fail ddi_get_soft_state 28519 * EINVAL if data pointer is NULL 28520 */ 28521 28522 static int 28523 sr_sector_mode(dev_t dev, uint32_t blksize) 28524 { 28525 struct sd_lun *un; 28526 uchar_t *sense; 28527 uchar_t *select; 28528 int rval; 28529 28530 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28531 (un->un_state == SD_STATE_OFFLINE)) { 28532 return (ENXIO); 28533 } 28534 28535 sense = kmem_zalloc(20, KM_SLEEP); 28536 28537 /* Note: This is a vendor specific mode page (0x81) */ 28538 if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81, 28539 SD_PATH_STANDARD)) != 0) { 28540 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 28541 "sr_sector_mode: Mode Sense failed\n"); 28542 kmem_free(sense, 20); 28543 return (rval); 28544 } 28545 select = kmem_zalloc(20, KM_SLEEP); 28546 select[3] = 0x08; 28547 select[10] = ((blksize >> 8) & 0xff); 28548 select[11] = (blksize & 0xff); 28549 select[12] = 0x01; 28550 select[13] = 0x06; 28551 select[14] = sense[14]; 28552 select[15] = sense[15]; 28553 if (blksize == SD_MODE2_BLKSIZE) { 28554 select[14] |= 0x01; 28555 } 28556 28557 if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20, 28558 SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) { 28559 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 28560 "sr_sector_mode: Mode Select failed\n"); 28561 } else { 28562 /* 28563 * Only update the softstate block size if we successfully 28564 * changed the device block mode. 28565 */ 28566 mutex_enter(SD_MUTEX(un)); 28567 sd_update_block_info(un, blksize, 0); 28568 mutex_exit(SD_MUTEX(un)); 28569 } 28570 kmem_free(sense, 20); 28571 kmem_free(select, 20); 28572 return (rval); 28573 } 28574 28575 28576 /* 28577 * Function: sr_read_cdda() 28578 * 28579 * Description: This routine is the driver entry point for handling CD-ROM 28580 * ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If 28581 * the target supports CDDA these requests are handled via a vendor 28582 * specific command (0xD8) If the target does not support CDDA 28583 * these requests are handled via the READ CD command (0xBE). 28584 * 28585 * Arguments: dev - the device 'dev_t' 28586 * data - pointer to user provided CD-DA structure specifying 28587 * the track starting address, transfer length, and 28588 * subcode options. 28589 * flag - this argument is a pass through to ddi_copyxxx() 28590 * directly from the mode argument of ioctl(). 28591 * 28592 * Return Code: the code returned by sd_send_scsi_cmd() 28593 * EFAULT if ddi_copyxxx() fails 28594 * ENXIO if fail ddi_get_soft_state 28595 * EINVAL if invalid arguments are provided 28596 * ENOTTY 28597 */ 28598 28599 static int 28600 sr_read_cdda(dev_t dev, caddr_t data, int flag) 28601 { 28602 struct sd_lun *un; 28603 struct uscsi_cmd *com; 28604 struct cdrom_cdda *cdda; 28605 int rval; 28606 size_t buflen; 28607 char cdb[CDB_GROUP5]; 28608 28609 #ifdef _MULTI_DATAMODEL 28610 /* To support ILP32 applications in an LP64 world */ 28611 struct cdrom_cdda32 cdrom_cdda32; 28612 struct cdrom_cdda32 *cdda32 = &cdrom_cdda32; 28613 #endif /* _MULTI_DATAMODEL */ 28614 28615 if (data == NULL) { 28616 return (EINVAL); 28617 } 28618 28619 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 28620 return (ENXIO); 28621 } 28622 28623 cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP); 28624 28625 #ifdef _MULTI_DATAMODEL 28626 switch (ddi_model_convert_from(flag & FMODELS)) { 28627 case DDI_MODEL_ILP32: 28628 if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) { 28629 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28630 "sr_read_cdda: ddi_copyin Failed\n"); 28631 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28632 return (EFAULT); 28633 } 28634 /* Convert the ILP32 uscsi data from the application to LP64 */ 28635 cdrom_cdda32tocdrom_cdda(cdda32, cdda); 28636 break; 28637 case DDI_MODEL_NONE: 28638 if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) { 28639 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28640 "sr_read_cdda: ddi_copyin Failed\n"); 28641 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28642 return (EFAULT); 28643 } 28644 break; 28645 } 28646 #else /* ! _MULTI_DATAMODEL */ 28647 if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) { 28648 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28649 "sr_read_cdda: ddi_copyin Failed\n"); 28650 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28651 return (EFAULT); 28652 } 28653 #endif /* _MULTI_DATAMODEL */ 28654 28655 /* 28656 * Since MMC-2 expects max 3 bytes for length, check if the 28657 * length input is greater than 3 bytes 28658 */ 28659 if ((cdda->cdda_length & 0xFF000000) != 0) { 28660 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: " 28661 "cdrom transfer length too large: %d (limit %d)\n", 28662 cdda->cdda_length, 0xFFFFFF); 28663 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28664 return (EINVAL); 28665 } 28666 28667 switch (cdda->cdda_subcode) { 28668 case CDROM_DA_NO_SUBCODE: 28669 buflen = CDROM_BLK_2352 * cdda->cdda_length; 28670 break; 28671 case CDROM_DA_SUBQ: 28672 buflen = CDROM_BLK_2368 * cdda->cdda_length; 28673 break; 28674 case CDROM_DA_ALL_SUBCODE: 28675 buflen = CDROM_BLK_2448 * cdda->cdda_length; 28676 break; 28677 case CDROM_DA_SUBCODE_ONLY: 28678 buflen = CDROM_BLK_SUBCODE * cdda->cdda_length; 28679 break; 28680 default: 28681 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28682 "sr_read_cdda: Subcode '0x%x' Not Supported\n", 28683 cdda->cdda_subcode); 28684 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28685 return (EINVAL); 28686 } 28687 28688 /* Build and send the command */ 28689 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28690 bzero(cdb, CDB_GROUP5); 28691 28692 if (un->un_f_cfg_cdda == TRUE) { 28693 cdb[0] = (char)SCMD_READ_CD; 28694 cdb[1] = 0x04; 28695 cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24); 28696 cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16); 28697 cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8); 28698 cdb[5] = ((cdda->cdda_addr) & 0x000000ff); 28699 cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16); 28700 cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8); 28701 cdb[8] = ((cdda->cdda_length) & 0x000000ff); 28702 cdb[9] = 0x10; 28703 switch (cdda->cdda_subcode) { 28704 case CDROM_DA_NO_SUBCODE : 28705 cdb[10] = 0x0; 28706 break; 28707 case CDROM_DA_SUBQ : 28708 cdb[10] = 0x2; 28709 break; 28710 case CDROM_DA_ALL_SUBCODE : 28711 cdb[10] = 0x1; 28712 break; 28713 case CDROM_DA_SUBCODE_ONLY : 28714 /* FALLTHROUGH */ 28715 default : 28716 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28717 kmem_free(com, sizeof (*com)); 28718 return (ENOTTY); 28719 } 28720 } else { 28721 cdb[0] = (char)SCMD_READ_CDDA; 28722 cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24); 28723 cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16); 28724 cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8); 28725 cdb[5] = ((cdda->cdda_addr) & 0x000000ff); 28726 cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24); 28727 cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16); 28728 cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8); 28729 cdb[9] = ((cdda->cdda_length) & 0x000000ff); 28730 cdb[10] = cdda->cdda_subcode; 28731 } 28732 28733 com->uscsi_cdb = cdb; 28734 com->uscsi_cdblen = CDB_GROUP5; 28735 com->uscsi_bufaddr = (caddr_t)cdda->cdda_data; 28736 com->uscsi_buflen = buflen; 28737 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28738 28739 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE, 28740 UIO_SYSSPACE, SD_PATH_STANDARD); 28741 28742 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28743 kmem_free(com, sizeof (*com)); 28744 return (rval); 28745 } 28746 28747 28748 /* 28749 * Function: sr_read_cdxa() 28750 * 28751 * Description: This routine is the driver entry point for handling CD-ROM 28752 * ioctl requests to return CD-XA (Extended Architecture) data. 28753 * (CDROMCDXA). 28754 * 28755 * Arguments: dev - the device 'dev_t' 28756 * data - pointer to user provided CD-XA structure specifying 28757 * the data starting address, transfer length, and format 28758 * flag - this argument is a pass through to ddi_copyxxx() 28759 * directly from the mode argument of ioctl(). 28760 * 28761 * Return Code: the code returned by sd_send_scsi_cmd() 28762 * EFAULT if ddi_copyxxx() fails 28763 * ENXIO if fail ddi_get_soft_state 28764 * EINVAL if data pointer is NULL 28765 */ 28766 28767 static int 28768 sr_read_cdxa(dev_t dev, caddr_t data, int flag) 28769 { 28770 struct sd_lun *un; 28771 struct uscsi_cmd *com; 28772 struct cdrom_cdxa *cdxa; 28773 int rval; 28774 size_t buflen; 28775 char cdb[CDB_GROUP5]; 28776 uchar_t read_flags; 28777 28778 #ifdef _MULTI_DATAMODEL 28779 /* To support ILP32 applications in an LP64 world */ 28780 struct cdrom_cdxa32 cdrom_cdxa32; 28781 struct cdrom_cdxa32 *cdxa32 = &cdrom_cdxa32; 28782 #endif /* _MULTI_DATAMODEL */ 28783 28784 if (data == NULL) { 28785 return (EINVAL); 28786 } 28787 28788 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 28789 return (ENXIO); 28790 } 28791 28792 cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP); 28793 28794 #ifdef _MULTI_DATAMODEL 28795 switch (ddi_model_convert_from(flag & FMODELS)) { 28796 case DDI_MODEL_ILP32: 28797 if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) { 28798 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28799 return (EFAULT); 28800 } 28801 /* 28802 * Convert the ILP32 uscsi data from the 28803 * application to LP64 for internal use. 28804 */ 28805 cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa); 28806 break; 28807 case DDI_MODEL_NONE: 28808 if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) { 28809 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28810 return (EFAULT); 28811 } 28812 break; 28813 } 28814 #else /* ! _MULTI_DATAMODEL */ 28815 if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) { 28816 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28817 return (EFAULT); 28818 } 28819 #endif /* _MULTI_DATAMODEL */ 28820 28821 /* 28822 * Since MMC-2 expects max 3 bytes for length, check if the 28823 * length input is greater than 3 bytes 28824 */ 28825 if ((cdxa->cdxa_length & 0xFF000000) != 0) { 28826 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: " 28827 "cdrom transfer length too large: %d (limit %d)\n", 28828 cdxa->cdxa_length, 0xFFFFFF); 28829 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28830 return (EINVAL); 28831 } 28832 28833 switch (cdxa->cdxa_format) { 28834 case CDROM_XA_DATA: 28835 buflen = CDROM_BLK_2048 * cdxa->cdxa_length; 28836 read_flags = 0x10; 28837 break; 28838 case CDROM_XA_SECTOR_DATA: 28839 buflen = CDROM_BLK_2352 * cdxa->cdxa_length; 28840 read_flags = 0xf8; 28841 break; 28842 case CDROM_XA_DATA_W_ERROR: 28843 buflen = CDROM_BLK_2646 * cdxa->cdxa_length; 28844 read_flags = 0xfc; 28845 break; 28846 default: 28847 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28848 "sr_read_cdxa: Format '0x%x' Not Supported\n", 28849 cdxa->cdxa_format); 28850 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28851 return (EINVAL); 28852 } 28853 28854 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28855 bzero(cdb, CDB_GROUP5); 28856 if (un->un_f_mmc_cap == TRUE) { 28857 cdb[0] = (char)SCMD_READ_CD; 28858 cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24); 28859 cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16); 28860 cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8); 28861 cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff); 28862 cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16); 28863 cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8); 28864 cdb[8] = ((cdxa->cdxa_length) & 0x000000ff); 28865 cdb[9] = (char)read_flags; 28866 } else { 28867 /* 28868 * Note: A vendor specific command (0xDB) is being used her to 28869 * request a read of all subcodes. 28870 */ 28871 cdb[0] = (char)SCMD_READ_CDXA; 28872 cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24); 28873 cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16); 28874 cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8); 28875 cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff); 28876 cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24); 28877 cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16); 28878 cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8); 28879 cdb[9] = ((cdxa->cdxa_length) & 0x000000ff); 28880 cdb[10] = cdxa->cdxa_format; 28881 } 28882 com->uscsi_cdb = cdb; 28883 com->uscsi_cdblen = CDB_GROUP5; 28884 com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data; 28885 com->uscsi_buflen = buflen; 28886 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28887 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE, 28888 UIO_SYSSPACE, SD_PATH_STANDARD); 28889 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28890 kmem_free(com, sizeof (*com)); 28891 return (rval); 28892 } 28893 28894 28895 /* 28896 * Function: sr_eject() 28897 * 28898 * Description: This routine is the driver entry point for handling CD-ROM 28899 * eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT) 28900 * 28901 * Arguments: dev - the device 'dev_t' 28902 * 28903 * Return Code: the code returned by sd_send_scsi_cmd() 28904 */ 28905 28906 static int 28907 sr_eject(dev_t dev) 28908 { 28909 struct sd_lun *un; 28910 int rval; 28911 28912 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28913 (un->un_state == SD_STATE_OFFLINE)) { 28914 return (ENXIO); 28915 } 28916 if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW, 28917 SD_PATH_STANDARD)) != 0) { 28918 return (rval); 28919 } 28920 28921 rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT, 28922 SD_PATH_STANDARD); 28923 28924 if (rval == 0) { 28925 mutex_enter(SD_MUTEX(un)); 28926 sr_ejected(un); 28927 un->un_mediastate = DKIO_EJECTED; 28928 cv_broadcast(&un->un_state_cv); 28929 mutex_exit(SD_MUTEX(un)); 28930 } 28931 return (rval); 28932 } 28933 28934 28935 /* 28936 * Function: sr_ejected() 28937 * 28938 * Description: This routine updates the soft state structure to invalidate the 28939 * geometry information after the media has been ejected or a 28940 * media eject has been detected. 28941 * 28942 * Arguments: un - driver soft state (unit) structure 28943 */ 28944 28945 static void 28946 sr_ejected(struct sd_lun *un) 28947 { 28948 struct sd_errstats *stp; 28949 28950 ASSERT(un != NULL); 28951 ASSERT(mutex_owned(SD_MUTEX(un))); 28952 28953 un->un_f_blockcount_is_valid = FALSE; 28954 un->un_f_tgt_blocksize_is_valid = FALSE; 28955 un->un_f_geometry_is_valid = FALSE; 28956 28957 if (un->un_errstats != NULL) { 28958 stp = (struct sd_errstats *)un->un_errstats->ks_data; 28959 stp->sd_capacity.value.ui64 = 0; 28960 } 28961 } 28962 28963 28964 /* 28965 * Function: sr_check_wp() 28966 * 28967 * Description: This routine checks the write protection of a removable media 28968 * disk via the write protect bit of the Mode Page Header device 28969 * specific field. This routine has been implemented to use the 28970 * error recovery mode page for all device types. 28971 * Note: In the future use a sd_send_scsi_MODE_SENSE() routine 28972 * 28973 * Arguments: dev - the device 'dev_t' 28974 * 28975 * Return Code: int indicating if the device is write protected (1) or not (0) 28976 * 28977 * Context: Kernel thread. 28978 * 28979 */ 28980 28981 static int 28982 sr_check_wp(dev_t dev) 28983 { 28984 struct sd_lun *un; 28985 uchar_t device_specific; 28986 uchar_t *sense; 28987 int hdrlen; 28988 int rval; 28989 int retry_flag = FALSE; 28990 28991 /* 28992 * Note: The return codes for this routine should be reworked to 28993 * properly handle the case of a NULL softstate. 28994 */ 28995 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 28996 return (FALSE); 28997 } 28998 28999 if (un->un_f_cfg_is_atapi == TRUE) { 29000 retry_flag = TRUE; 29001 } 29002 29003 retry: 29004 if (un->un_f_cfg_is_atapi == TRUE) { 29005 /* 29006 * The mode page contents are not required; set the allocation 29007 * length for the mode page header only 29008 */ 29009 hdrlen = MODE_HEADER_LENGTH_GRP2; 29010 sense = kmem_zalloc(hdrlen, KM_SLEEP); 29011 rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen, 29012 MODEPAGE_ERR_RECOV, SD_PATH_STANDARD); 29013 device_specific = 29014 ((struct mode_header_grp2 *)sense)->device_specific; 29015 } else { 29016 hdrlen = MODE_HEADER_LENGTH; 29017 sense = kmem_zalloc(hdrlen, KM_SLEEP); 29018 rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen, 29019 MODEPAGE_ERR_RECOV, SD_PATH_STANDARD); 29020 device_specific = 29021 ((struct mode_header *)sense)->device_specific; 29022 } 29023 29024 if (rval != 0) { 29025 if ((un->un_f_cfg_is_atapi == TRUE) && (retry_flag)) { 29026 /* 29027 * For an Atapi Zip drive, observed the drive 29028 * reporting check condition for the first attempt. 29029 * Sense data indicating power on or bus device/reset. 29030 * Hence in case of failure need to try at least once 29031 * for Atapi devices. 29032 */ 29033 retry_flag = FALSE; 29034 kmem_free(sense, hdrlen); 29035 goto retry; 29036 } else { 29037 /* 29038 * Write protect mode sense failed; not all disks 29039 * understand this query. Return FALSE assuming that 29040 * these devices are not writable. 29041 */ 29042 rval = FALSE; 29043 } 29044 } else { 29045 if (device_specific & WRITE_PROTECT) { 29046 rval = TRUE; 29047 } else { 29048 rval = FALSE; 29049 } 29050 } 29051 kmem_free(sense, hdrlen); 29052 return (rval); 29053 } 29054 29055 29056 /* 29057 * Function: sr_volume_ctrl() 29058 * 29059 * Description: This routine is the driver entry point for handling CD-ROM 29060 * audio output volume ioctl requests. (CDROMVOLCTRL) 29061 * 29062 * Arguments: dev - the device 'dev_t' 29063 * data - pointer to user audio volume control structure 29064 * flag - this argument is a pass through to ddi_copyxxx() 29065 * directly from the mode argument of ioctl(). 29066 * 29067 * Return Code: the code returned by sd_send_scsi_cmd() 29068 * EFAULT if ddi_copyxxx() fails 29069 * ENXIO if fail ddi_get_soft_state 29070 * EINVAL if data pointer is NULL 29071 * 29072 */ 29073 29074 static int 29075 sr_volume_ctrl(dev_t dev, caddr_t data, int flag) 29076 { 29077 struct sd_lun *un; 29078 struct cdrom_volctrl volume; 29079 struct cdrom_volctrl *vol = &volume; 29080 uchar_t *sense_page; 29081 uchar_t *select_page; 29082 uchar_t *sense; 29083 uchar_t *select; 29084 int sense_buflen; 29085 int select_buflen; 29086 int rval; 29087 29088 if (data == NULL) { 29089 return (EINVAL); 29090 } 29091 29092 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 29093 (un->un_state == SD_STATE_OFFLINE)) { 29094 return (ENXIO); 29095 } 29096 29097 if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) { 29098 return (EFAULT); 29099 } 29100 29101 if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) { 29102 struct mode_header_grp2 *sense_mhp; 29103 struct mode_header_grp2 *select_mhp; 29104 int bd_len; 29105 29106 sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN; 29107 select_buflen = MODE_HEADER_LENGTH_GRP2 + 29108 MODEPAGE_AUDIO_CTRL_LEN; 29109 sense = kmem_zalloc(sense_buflen, KM_SLEEP); 29110 select = kmem_zalloc(select_buflen, KM_SLEEP); 29111 if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, 29112 sense_buflen, MODEPAGE_AUDIO_CTRL, 29113 SD_PATH_STANDARD)) != 0) { 29114 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 29115 "sr_volume_ctrl: Mode Sense Failed\n"); 29116 kmem_free(sense, sense_buflen); 29117 kmem_free(select, select_buflen); 29118 return (rval); 29119 } 29120 sense_mhp = (struct mode_header_grp2 *)sense; 29121 select_mhp = (struct mode_header_grp2 *)select; 29122 bd_len = (sense_mhp->bdesc_length_hi << 8) | 29123 sense_mhp->bdesc_length_lo; 29124 if (bd_len > MODE_BLK_DESC_LENGTH) { 29125 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29126 "sr_volume_ctrl: Mode Sense returned invalid " 29127 "block descriptor length\n"); 29128 kmem_free(sense, sense_buflen); 29129 kmem_free(select, select_buflen); 29130 return (EIO); 29131 } 29132 sense_page = (uchar_t *) 29133 (sense + MODE_HEADER_LENGTH_GRP2 + bd_len); 29134 select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2); 29135 select_mhp->length_msb = 0; 29136 select_mhp->length_lsb = 0; 29137 select_mhp->bdesc_length_hi = 0; 29138 select_mhp->bdesc_length_lo = 0; 29139 } else { 29140 struct mode_header *sense_mhp, *select_mhp; 29141 29142 sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN; 29143 select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN; 29144 sense = kmem_zalloc(sense_buflen, KM_SLEEP); 29145 select = kmem_zalloc(select_buflen, KM_SLEEP); 29146 if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 29147 sense_buflen, MODEPAGE_AUDIO_CTRL, 29148 SD_PATH_STANDARD)) != 0) { 29149 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29150 "sr_volume_ctrl: Mode Sense Failed\n"); 29151 kmem_free(sense, sense_buflen); 29152 kmem_free(select, select_buflen); 29153 return (rval); 29154 } 29155 sense_mhp = (struct mode_header *)sense; 29156 select_mhp = (struct mode_header *)select; 29157 if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) { 29158 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29159 "sr_volume_ctrl: Mode Sense returned invalid " 29160 "block descriptor length\n"); 29161 kmem_free(sense, sense_buflen); 29162 kmem_free(select, select_buflen); 29163 return (EIO); 29164 } 29165 sense_page = (uchar_t *) 29166 (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length); 29167 select_page = (uchar_t *)(select + MODE_HEADER_LENGTH); 29168 select_mhp->length = 0; 29169 select_mhp->bdesc_length = 0; 29170 } 29171 /* 29172 * Note: An audio control data structure could be created and overlayed 29173 * on the following in place of the array indexing method implemented. 29174 */ 29175 29176 /* Build the select data for the user volume data */ 29177 select_page[0] = MODEPAGE_AUDIO_CTRL; 29178 select_page[1] = 0xE; 29179 /* Set the immediate bit */ 29180 select_page[2] = 0x04; 29181 /* Zero out reserved fields */ 29182 select_page[3] = 0x00; 29183 select_page[4] = 0x00; 29184 /* Return sense data for fields not to be modified */ 29185 select_page[5] = sense_page[5]; 29186 select_page[6] = sense_page[6]; 29187 select_page[7] = sense_page[7]; 29188 /* Set the user specified volume levels for channel 0 and 1 */ 29189 select_page[8] = 0x01; 29190 select_page[9] = vol->channel0; 29191 select_page[10] = 0x02; 29192 select_page[11] = vol->channel1; 29193 /* Channel 2 and 3 are currently unsupported so return the sense data */ 29194 select_page[12] = sense_page[12]; 29195 select_page[13] = sense_page[13]; 29196 select_page[14] = sense_page[14]; 29197 select_page[15] = sense_page[15]; 29198 29199 if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) { 29200 rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select, 29201 select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 29202 } else { 29203 rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 29204 select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 29205 } 29206 29207 kmem_free(sense, sense_buflen); 29208 kmem_free(select, select_buflen); 29209 return (rval); 29210 } 29211 29212 29213 /* 29214 * Function: sr_read_sony_session_offset() 29215 * 29216 * Description: This routine is the driver entry point for handling CD-ROM 29217 * ioctl requests for session offset information. (CDROMREADOFFSET) 29218 * The address of the first track in the last session of a 29219 * multi-session CD-ROM is returned 29220 * 29221 * Note: This routine uses a vendor specific key value in the 29222 * command control field without implementing any vendor check here 29223 * or in the ioctl routine. 29224 * 29225 * Arguments: dev - the device 'dev_t' 29226 * data - pointer to an int to hold the requested address 29227 * flag - this argument is a pass through to ddi_copyxxx() 29228 * directly from the mode argument of ioctl(). 29229 * 29230 * Return Code: the code returned by sd_send_scsi_cmd() 29231 * EFAULT if ddi_copyxxx() fails 29232 * ENXIO if fail ddi_get_soft_state 29233 * EINVAL if data pointer is NULL 29234 */ 29235 29236 static int 29237 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag) 29238 { 29239 struct sd_lun *un; 29240 struct uscsi_cmd *com; 29241 caddr_t buffer; 29242 char cdb[CDB_GROUP1]; 29243 int session_offset = 0; 29244 int rval; 29245 29246 if (data == NULL) { 29247 return (EINVAL); 29248 } 29249 29250 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 29251 (un->un_state == SD_STATE_OFFLINE)) { 29252 return (ENXIO); 29253 } 29254 29255 buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP); 29256 bzero(cdb, CDB_GROUP1); 29257 cdb[0] = SCMD_READ_TOC; 29258 /* 29259 * Bytes 7 & 8 are the 12 byte allocation length for a single entry. 29260 * (4 byte TOC response header + 8 byte response data) 29261 */ 29262 cdb[8] = SONY_SESSION_OFFSET_LEN; 29263 /* Byte 9 is the control byte. A vendor specific value is used */ 29264 cdb[9] = SONY_SESSION_OFFSET_KEY; 29265 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 29266 com->uscsi_cdb = cdb; 29267 com->uscsi_cdblen = CDB_GROUP1; 29268 com->uscsi_bufaddr = buffer; 29269 com->uscsi_buflen = SONY_SESSION_OFFSET_LEN; 29270 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 29271 29272 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE, 29273 UIO_SYSSPACE, SD_PATH_STANDARD); 29274 if (rval != 0) { 29275 kmem_free(buffer, SONY_SESSION_OFFSET_LEN); 29276 kmem_free(com, sizeof (*com)); 29277 return (rval); 29278 } 29279 if (buffer[1] == SONY_SESSION_OFFSET_VALID) { 29280 session_offset = 29281 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 29282 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 29283 /* 29284 * Offset returned offset in current lbasize block's. Convert to 29285 * 2k block's to return to the user 29286 */ 29287 if (un->un_tgt_blocksize == CDROM_BLK_512) { 29288 session_offset >>= 2; 29289 } else if (un->un_tgt_blocksize == CDROM_BLK_1024) { 29290 session_offset >>= 1; 29291 } 29292 } 29293 29294 if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) { 29295 rval = EFAULT; 29296 } 29297 29298 kmem_free(buffer, SONY_SESSION_OFFSET_LEN); 29299 kmem_free(com, sizeof (*com)); 29300 return (rval); 29301 } 29302 29303 29304 /* 29305 * Function: sd_wm_cache_constructor() 29306 * 29307 * Description: Cache Constructor for the wmap cache for the read/modify/write 29308 * devices. 29309 * 29310 * Arguments: wm - A pointer to the sd_w_map to be initialized. 29311 * un - sd_lun structure for the device. 29312 * flag - the km flags passed to constructor 29313 * 29314 * Return Code: 0 on success. 29315 * -1 on failure. 29316 */ 29317 29318 /*ARGSUSED*/ 29319 static int 29320 sd_wm_cache_constructor(void *wm, void *un, int flags) 29321 { 29322 bzero(wm, sizeof (struct sd_w_map)); 29323 cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL); 29324 return (0); 29325 } 29326 29327 29328 /* 29329 * Function: sd_wm_cache_destructor() 29330 * 29331 * Description: Cache destructor for the wmap cache for the read/modify/write 29332 * devices. 29333 * 29334 * Arguments: wm - A pointer to the sd_w_map to be initialized. 29335 * un - sd_lun structure for the device. 29336 */ 29337 /*ARGSUSED*/ 29338 static void 29339 sd_wm_cache_destructor(void *wm, void *un) 29340 { 29341 cv_destroy(&((struct sd_w_map *)wm)->wm_avail); 29342 } 29343 29344 29345 /* 29346 * Function: sd_range_lock() 29347 * 29348 * Description: Lock the range of blocks specified as parameter to ensure 29349 * that read, modify write is atomic and no other i/o writes 29350 * to the same location. The range is specified in terms 29351 * of start and end blocks. Block numbers are the actual 29352 * media block numbers and not system. 29353 * 29354 * Arguments: un - sd_lun structure for the device. 29355 * startb - The starting block number 29356 * endb - The end block number 29357 * typ - type of i/o - simple/read_modify_write 29358 * 29359 * Return Code: wm - pointer to the wmap structure. 29360 * 29361 * Context: This routine can sleep. 29362 */ 29363 29364 static struct sd_w_map * 29365 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ) 29366 { 29367 struct sd_w_map *wmp = NULL; 29368 struct sd_w_map *sl_wmp = NULL; 29369 struct sd_w_map *tmp_wmp; 29370 wm_state state = SD_WM_CHK_LIST; 29371 29372 29373 ASSERT(un != NULL); 29374 ASSERT(!mutex_owned(SD_MUTEX(un))); 29375 29376 mutex_enter(SD_MUTEX(un)); 29377 29378 while (state != SD_WM_DONE) { 29379 29380 switch (state) { 29381 case SD_WM_CHK_LIST: 29382 /* 29383 * This is the starting state. Check the wmap list 29384 * to see if the range is currently available. 29385 */ 29386 if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) { 29387 /* 29388 * If this is a simple write and no rmw 29389 * i/o is pending then try to lock the 29390 * range as the range should be available. 29391 */ 29392 state = SD_WM_LOCK_RANGE; 29393 } else { 29394 tmp_wmp = sd_get_range(un, startb, endb); 29395 if (tmp_wmp != NULL) { 29396 if ((wmp != NULL) && ONLIST(un, wmp)) { 29397 /* 29398 * Should not keep onlist wmps 29399 * while waiting this macro 29400 * will also do wmp = NULL; 29401 */ 29402 FREE_ONLIST_WMAP(un, wmp); 29403 } 29404 /* 29405 * sl_wmp is the wmap on which wait 29406 * is done, since the tmp_wmp points 29407 * to the inuse wmap, set sl_wmp to 29408 * tmp_wmp and change the state to sleep 29409 */ 29410 sl_wmp = tmp_wmp; 29411 state = SD_WM_WAIT_MAP; 29412 } else { 29413 state = SD_WM_LOCK_RANGE; 29414 } 29415 29416 } 29417 break; 29418 29419 case SD_WM_LOCK_RANGE: 29420 ASSERT(un->un_wm_cache); 29421 /* 29422 * The range need to be locked, try to get a wmap. 29423 * First attempt it with NO_SLEEP, want to avoid a sleep 29424 * if possible as we will have to release the sd mutex 29425 * if we have to sleep. 29426 */ 29427 if (wmp == NULL) 29428 wmp = kmem_cache_alloc(un->un_wm_cache, 29429 KM_NOSLEEP); 29430 if (wmp == NULL) { 29431 mutex_exit(SD_MUTEX(un)); 29432 _NOTE(DATA_READABLE_WITHOUT_LOCK 29433 (sd_lun::un_wm_cache)) 29434 wmp = kmem_cache_alloc(un->un_wm_cache, 29435 KM_SLEEP); 29436 mutex_enter(SD_MUTEX(un)); 29437 /* 29438 * we released the mutex so recheck and go to 29439 * check list state. 29440 */ 29441 state = SD_WM_CHK_LIST; 29442 } else { 29443 /* 29444 * We exit out of state machine since we 29445 * have the wmap. Do the housekeeping first. 29446 * place the wmap on the wmap list if it is not 29447 * on it already and then set the state to done. 29448 */ 29449 wmp->wm_start = startb; 29450 wmp->wm_end = endb; 29451 wmp->wm_flags = typ | SD_WM_BUSY; 29452 if (typ & SD_WTYPE_RMW) { 29453 un->un_rmw_count++; 29454 } 29455 /* 29456 * If not already on the list then link 29457 */ 29458 if (!ONLIST(un, wmp)) { 29459 wmp->wm_next = un->un_wm; 29460 wmp->wm_prev = NULL; 29461 if (wmp->wm_next) 29462 wmp->wm_next->wm_prev = wmp; 29463 un->un_wm = wmp; 29464 } 29465 state = SD_WM_DONE; 29466 } 29467 break; 29468 29469 case SD_WM_WAIT_MAP: 29470 ASSERT(sl_wmp->wm_flags & SD_WM_BUSY); 29471 /* 29472 * Wait is done on sl_wmp, which is set in the 29473 * check_list state. 29474 */ 29475 sl_wmp->wm_wanted_count++; 29476 cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un)); 29477 sl_wmp->wm_wanted_count--; 29478 /* 29479 * We can reuse the memory from the completed sl_wmp 29480 * lock range for our new lock, but only if noone is 29481 * waiting for it. 29482 */ 29483 ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY)); 29484 if (sl_wmp->wm_wanted_count == 0) { 29485 if (wmp != NULL) 29486 CHK_N_FREEWMP(un, wmp); 29487 wmp = sl_wmp; 29488 } 29489 sl_wmp = NULL; 29490 /* 29491 * After waking up, need to recheck for availability of 29492 * range. 29493 */ 29494 state = SD_WM_CHK_LIST; 29495 break; 29496 29497 default: 29498 panic("sd_range_lock: " 29499 "Unknown state %d in sd_range_lock", state); 29500 /*NOTREACHED*/ 29501 } /* switch(state) */ 29502 29503 } /* while(state != SD_WM_DONE) */ 29504 29505 mutex_exit(SD_MUTEX(un)); 29506 29507 ASSERT(wmp != NULL); 29508 29509 return (wmp); 29510 } 29511 29512 29513 /* 29514 * Function: sd_get_range() 29515 * 29516 * Description: Find if there any overlapping I/O to this one 29517 * Returns the write-map of 1st such I/O, NULL otherwise. 29518 * 29519 * Arguments: un - sd_lun structure for the device. 29520 * startb - The starting block number 29521 * endb - The end block number 29522 * 29523 * Return Code: wm - pointer to the wmap structure. 29524 */ 29525 29526 static struct sd_w_map * 29527 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb) 29528 { 29529 struct sd_w_map *wmp; 29530 29531 ASSERT(un != NULL); 29532 29533 for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) { 29534 if (!(wmp->wm_flags & SD_WM_BUSY)) { 29535 continue; 29536 } 29537 if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) { 29538 break; 29539 } 29540 if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) { 29541 break; 29542 } 29543 } 29544 29545 return (wmp); 29546 } 29547 29548 29549 /* 29550 * Function: sd_free_inlist_wmap() 29551 * 29552 * Description: Unlink and free a write map struct. 29553 * 29554 * Arguments: un - sd_lun structure for the device. 29555 * wmp - sd_w_map which needs to be unlinked. 29556 */ 29557 29558 static void 29559 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp) 29560 { 29561 ASSERT(un != NULL); 29562 29563 if (un->un_wm == wmp) { 29564 un->un_wm = wmp->wm_next; 29565 } else { 29566 wmp->wm_prev->wm_next = wmp->wm_next; 29567 } 29568 29569 if (wmp->wm_next) { 29570 wmp->wm_next->wm_prev = wmp->wm_prev; 29571 } 29572 29573 wmp->wm_next = wmp->wm_prev = NULL; 29574 29575 kmem_cache_free(un->un_wm_cache, wmp); 29576 } 29577 29578 29579 /* 29580 * Function: sd_range_unlock() 29581 * 29582 * Description: Unlock the range locked by wm. 29583 * Free write map if nobody else is waiting on it. 29584 * 29585 * Arguments: un - sd_lun structure for the device. 29586 * wmp - sd_w_map which needs to be unlinked. 29587 */ 29588 29589 static void 29590 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm) 29591 { 29592 ASSERT(un != NULL); 29593 ASSERT(wm != NULL); 29594 ASSERT(!mutex_owned(SD_MUTEX(un))); 29595 29596 mutex_enter(SD_MUTEX(un)); 29597 29598 if (wm->wm_flags & SD_WTYPE_RMW) { 29599 un->un_rmw_count--; 29600 } 29601 29602 if (wm->wm_wanted_count) { 29603 wm->wm_flags = 0; 29604 /* 29605 * Broadcast that the wmap is available now. 29606 */ 29607 cv_broadcast(&wm->wm_avail); 29608 } else { 29609 /* 29610 * If no one is waiting on the map, it should be free'ed. 29611 */ 29612 sd_free_inlist_wmap(un, wm); 29613 } 29614 29615 mutex_exit(SD_MUTEX(un)); 29616 } 29617 29618 29619 /* 29620 * Function: sd_read_modify_write_task 29621 * 29622 * Description: Called from a taskq thread to initiate the write phase of 29623 * a read-modify-write request. This is used for targets where 29624 * un->un_sys_blocksize != un->un_tgt_blocksize. 29625 * 29626 * Arguments: arg - a pointer to the buf(9S) struct for the write command. 29627 * 29628 * Context: Called under taskq thread context. 29629 */ 29630 29631 static void 29632 sd_read_modify_write_task(void *arg) 29633 { 29634 struct sd_mapblocksize_info *bsp; 29635 struct buf *bp; 29636 struct sd_xbuf *xp; 29637 struct sd_lun *un; 29638 29639 bp = arg; /* The bp is given in arg */ 29640 ASSERT(bp != NULL); 29641 29642 /* Get the pointer to the layer-private data struct */ 29643 xp = SD_GET_XBUF(bp); 29644 ASSERT(xp != NULL); 29645 bsp = xp->xb_private; 29646 ASSERT(bsp != NULL); 29647 29648 un = SD_GET_UN(bp); 29649 ASSERT(un != NULL); 29650 ASSERT(!mutex_owned(SD_MUTEX(un))); 29651 29652 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 29653 "sd_read_modify_write_task: entry: buf:0x%p\n", bp); 29654 29655 /* 29656 * This is the write phase of a read-modify-write request, called 29657 * under the context of a taskq thread in response to the completion 29658 * of the read portion of the rmw request completing under interrupt 29659 * context. The write request must be sent from here down the iostart 29660 * chain as if it were being sent from sd_mapblocksize_iostart(), so 29661 * we use the layer index saved in the layer-private data area. 29662 */ 29663 SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp); 29664 29665 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 29666 "sd_read_modify_write_task: exit: buf:0x%p\n", bp); 29667 } 29668 29669 29670 /* 29671 * Function: sddump_do_read_of_rmw() 29672 * 29673 * Description: This routine will be called from sddump, If sddump is called 29674 * with an I/O which not aligned on device blocksize boundary 29675 * then the write has to be converted to read-modify-write. 29676 * Do the read part here in order to keep sddump simple. 29677 * Note - That the sd_mutex is held across the call to this 29678 * routine. 29679 * 29680 * Arguments: un - sd_lun 29681 * blkno - block number in terms of media block size. 29682 * nblk - number of blocks. 29683 * bpp - pointer to pointer to the buf structure. On return 29684 * from this function, *bpp points to the valid buffer 29685 * to which the write has to be done. 29686 * 29687 * Return Code: 0 for success or errno-type return code 29688 */ 29689 29690 static int 29691 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk, 29692 struct buf **bpp) 29693 { 29694 int err; 29695 int i; 29696 int rval; 29697 struct buf *bp; 29698 struct scsi_pkt *pkt = NULL; 29699 uint32_t target_blocksize; 29700 29701 ASSERT(un != NULL); 29702 ASSERT(mutex_owned(SD_MUTEX(un))); 29703 29704 target_blocksize = un->un_tgt_blocksize; 29705 29706 mutex_exit(SD_MUTEX(un)); 29707 29708 bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL, 29709 (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL); 29710 if (bp == NULL) { 29711 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 29712 "no resources for dumping; giving up"); 29713 err = ENOMEM; 29714 goto done; 29715 } 29716 29717 rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL, 29718 blkno, nblk); 29719 if (rval != 0) { 29720 scsi_free_consistent_buf(bp); 29721 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 29722 "no resources for dumping; giving up"); 29723 err = ENOMEM; 29724 goto done; 29725 } 29726 29727 pkt->pkt_flags |= FLAG_NOINTR; 29728 29729 err = EIO; 29730 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 29731 29732 /* 29733 * Scsi_poll returns 0 (success) if the command completes and 29734 * the status block is STATUS_GOOD. We should only check 29735 * errors if this condition is not true. Even then we should 29736 * send our own request sense packet only if we have a check 29737 * condition and auto request sense has not been performed by 29738 * the hba. 29739 */ 29740 SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n"); 29741 29742 if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) { 29743 err = 0; 29744 break; 29745 } 29746 29747 /* 29748 * Check CMD_DEV_GONE 1st, give up if device is gone, 29749 * no need to read RQS data. 29750 */ 29751 if (pkt->pkt_reason == CMD_DEV_GONE) { 29752 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 29753 "Device is gone\n"); 29754 break; 29755 } 29756 29757 if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) { 29758 SD_INFO(SD_LOG_DUMP, un, 29759 "sddump: read failed with CHECK, try # %d\n", i); 29760 if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) { 29761 (void) sd_send_polled_RQS(un); 29762 } 29763 29764 continue; 29765 } 29766 29767 if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) { 29768 int reset_retval = 0; 29769 29770 SD_INFO(SD_LOG_DUMP, un, 29771 "sddump: read failed with BUSY, try # %d\n", i); 29772 29773 if (un->un_f_lun_reset_enabled == TRUE) { 29774 reset_retval = scsi_reset(SD_ADDRESS(un), 29775 RESET_LUN); 29776 } 29777 if (reset_retval == 0) { 29778 (void) scsi_reset(SD_ADDRESS(un), RESET_TARGET); 29779 } 29780 (void) sd_send_polled_RQS(un); 29781 29782 } else { 29783 SD_INFO(SD_LOG_DUMP, un, 29784 "sddump: read failed with 0x%x, try # %d\n", 29785 SD_GET_PKT_STATUS(pkt), i); 29786 mutex_enter(SD_MUTEX(un)); 29787 sd_reset_target(un, pkt); 29788 mutex_exit(SD_MUTEX(un)); 29789 } 29790 29791 /* 29792 * If we are not getting anywhere with lun/target resets, 29793 * let's reset the bus. 29794 */ 29795 if (i > SD_NDUMP_RETRIES/2) { 29796 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 29797 (void) sd_send_polled_RQS(un); 29798 } 29799 29800 } 29801 scsi_destroy_pkt(pkt); 29802 29803 if (err != 0) { 29804 scsi_free_consistent_buf(bp); 29805 *bpp = NULL; 29806 } else { 29807 *bpp = bp; 29808 } 29809 29810 done: 29811 mutex_enter(SD_MUTEX(un)); 29812 return (err); 29813 } 29814 29815 29816 /* 29817 * Function: sd_failfast_flushq 29818 * 29819 * Description: Take all bp's on the wait queue that have B_FAILFAST set 29820 * in b_flags and move them onto the failfast queue, then kick 29821 * off a thread to return all bp's on the failfast queue to 29822 * their owners with an error set. 29823 * 29824 * Arguments: un - pointer to the soft state struct for the instance. 29825 * 29826 * Context: may execute in interrupt context. 29827 */ 29828 29829 static void 29830 sd_failfast_flushq(struct sd_lun *un) 29831 { 29832 struct buf *bp; 29833 struct buf *next_waitq_bp; 29834 struct buf *prev_waitq_bp = NULL; 29835 29836 ASSERT(un != NULL); 29837 ASSERT(mutex_owned(SD_MUTEX(un))); 29838 ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE); 29839 ASSERT(un->un_failfast_bp == NULL); 29840 29841 SD_TRACE(SD_LOG_IO_FAILFAST, un, 29842 "sd_failfast_flushq: entry: un:0x%p\n", un); 29843 29844 /* 29845 * Check if we should flush all bufs when entering failfast state, or 29846 * just those with B_FAILFAST set. 29847 */ 29848 if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) { 29849 /* 29850 * Move *all* bp's on the wait queue to the failfast flush 29851 * queue, including those that do NOT have B_FAILFAST set. 29852 */ 29853 if (un->un_failfast_headp == NULL) { 29854 ASSERT(un->un_failfast_tailp == NULL); 29855 un->un_failfast_headp = un->un_waitq_headp; 29856 } else { 29857 ASSERT(un->un_failfast_tailp != NULL); 29858 un->un_failfast_tailp->av_forw = un->un_waitq_headp; 29859 } 29860 29861 un->un_failfast_tailp = un->un_waitq_tailp; 29862 29863 /* update kstat for each bp moved out of the waitq */ 29864 for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) { 29865 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 29866 } 29867 29868 /* empty the waitq */ 29869 un->un_waitq_headp = un->un_waitq_tailp = NULL; 29870 29871 } else { 29872 /* 29873 * Go thru the wait queue, pick off all entries with 29874 * B_FAILFAST set, and move these onto the failfast queue. 29875 */ 29876 for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) { 29877 /* 29878 * Save the pointer to the next bp on the wait queue, 29879 * so we get to it on the next iteration of this loop. 29880 */ 29881 next_waitq_bp = bp->av_forw; 29882 29883 /* 29884 * If this bp from the wait queue does NOT have 29885 * B_FAILFAST set, just move on to the next element 29886 * in the wait queue. Note, this is the only place 29887 * where it is correct to set prev_waitq_bp. 29888 */ 29889 if ((bp->b_flags & B_FAILFAST) == 0) { 29890 prev_waitq_bp = bp; 29891 continue; 29892 } 29893 29894 /* 29895 * Remove the bp from the wait queue. 29896 */ 29897 if (bp == un->un_waitq_headp) { 29898 /* The bp is the first element of the waitq. */ 29899 un->un_waitq_headp = next_waitq_bp; 29900 if (un->un_waitq_headp == NULL) { 29901 /* The wait queue is now empty */ 29902 un->un_waitq_tailp = NULL; 29903 } 29904 } else { 29905 /* 29906 * The bp is either somewhere in the middle 29907 * or at the end of the wait queue. 29908 */ 29909 ASSERT(un->un_waitq_headp != NULL); 29910 ASSERT(prev_waitq_bp != NULL); 29911 ASSERT((prev_waitq_bp->b_flags & B_FAILFAST) 29912 == 0); 29913 if (bp == un->un_waitq_tailp) { 29914 /* bp is the last entry on the waitq. */ 29915 ASSERT(next_waitq_bp == NULL); 29916 un->un_waitq_tailp = prev_waitq_bp; 29917 } 29918 prev_waitq_bp->av_forw = next_waitq_bp; 29919 } 29920 bp->av_forw = NULL; 29921 29922 /* 29923 * update kstat since the bp is moved out of 29924 * the waitq 29925 */ 29926 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 29927 29928 /* 29929 * Now put the bp onto the failfast queue. 29930 */ 29931 if (un->un_failfast_headp == NULL) { 29932 /* failfast queue is currently empty */ 29933 ASSERT(un->un_failfast_tailp == NULL); 29934 un->un_failfast_headp = 29935 un->un_failfast_tailp = bp; 29936 } else { 29937 /* Add the bp to the end of the failfast q */ 29938 ASSERT(un->un_failfast_tailp != NULL); 29939 ASSERT(un->un_failfast_tailp->b_flags & 29940 B_FAILFAST); 29941 un->un_failfast_tailp->av_forw = bp; 29942 un->un_failfast_tailp = bp; 29943 } 29944 } 29945 } 29946 29947 /* 29948 * Now return all bp's on the failfast queue to their owners. 29949 */ 29950 while ((bp = un->un_failfast_headp) != NULL) { 29951 29952 un->un_failfast_headp = bp->av_forw; 29953 if (un->un_failfast_headp == NULL) { 29954 un->un_failfast_tailp = NULL; 29955 } 29956 29957 /* 29958 * We want to return the bp with a failure error code, but 29959 * we do not want a call to sd_start_cmds() to occur here, 29960 * so use sd_return_failed_command_no_restart() instead of 29961 * sd_return_failed_command(). 29962 */ 29963 sd_return_failed_command_no_restart(un, bp, EIO); 29964 } 29965 29966 /* Flush the xbuf queues if required. */ 29967 if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) { 29968 ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback); 29969 } 29970 29971 SD_TRACE(SD_LOG_IO_FAILFAST, un, 29972 "sd_failfast_flushq: exit: un:0x%p\n", un); 29973 } 29974 29975 29976 /* 29977 * Function: sd_failfast_flushq_callback 29978 * 29979 * Description: Return TRUE if the given bp meets the criteria for failfast 29980 * flushing. Used with ddi_xbuf_flushq(9F). 29981 * 29982 * Arguments: bp - ptr to buf struct to be examined. 29983 * 29984 * Context: Any 29985 */ 29986 29987 static int 29988 sd_failfast_flushq_callback(struct buf *bp) 29989 { 29990 /* 29991 * Return TRUE if (1) we want to flush ALL bufs when the failfast 29992 * state is entered; OR (2) the given bp has B_FAILFAST set. 29993 */ 29994 return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) || 29995 (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE); 29996 } 29997 29998 29999 30000 #if defined(__i386) || defined(__amd64) 30001 /* 30002 * Function: sd_setup_next_xfer 30003 * 30004 * Description: Prepare next I/O operation using DMA_PARTIAL 30005 * 30006 */ 30007 30008 static int 30009 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp, 30010 struct scsi_pkt *pkt, struct sd_xbuf *xp) 30011 { 30012 ssize_t num_blks_not_xfered; 30013 daddr_t strt_blk_num; 30014 ssize_t bytes_not_xfered; 30015 int rval; 30016 30017 ASSERT(pkt->pkt_resid == 0); 30018 30019 /* 30020 * Calculate next block number and amount to be transferred. 30021 * 30022 * How much data NOT transfered to the HBA yet. 30023 */ 30024 bytes_not_xfered = xp->xb_dma_resid; 30025 30026 /* 30027 * figure how many blocks NOT transfered to the HBA yet. 30028 */ 30029 num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered); 30030 30031 /* 30032 * set starting block number to the end of what WAS transfered. 30033 */ 30034 strt_blk_num = xp->xb_blkno + 30035 SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered); 30036 30037 /* 30038 * Move pkt to the next portion of the xfer. sd_setup_next_rw_pkt 30039 * will call scsi_initpkt with NULL_FUNC so we do not have to release 30040 * the disk mutex here. 30041 */ 30042 rval = sd_setup_next_rw_pkt(un, pkt, bp, 30043 strt_blk_num, num_blks_not_xfered); 30044 30045 if (rval == 0) { 30046 30047 /* 30048 * Success. 30049 * 30050 * Adjust things if there are still more blocks to be 30051 * transfered. 30052 */ 30053 xp->xb_dma_resid = pkt->pkt_resid; 30054 pkt->pkt_resid = 0; 30055 30056 return (1); 30057 } 30058 30059 /* 30060 * There's really only one possible return value from 30061 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt 30062 * returns NULL. 30063 */ 30064 ASSERT(rval == SD_PKT_ALLOC_FAILURE); 30065 30066 bp->b_resid = bp->b_bcount; 30067 bp->b_flags |= B_ERROR; 30068 30069 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 30070 "Error setting up next portion of DMA transfer\n"); 30071 30072 return (0); 30073 } 30074 #endif 30075 30076 /* 30077 * Function: sd_panic_for_res_conflict 30078 * 30079 * Description: Call panic with a string formated with "Reservation Conflict" 30080 * and a human readable identifier indicating the SD instance 30081 * that experienced the reservation conflict. 30082 * 30083 * Arguments: un - pointer to the soft state struct for the instance. 30084 * 30085 * Context: may execute in interrupt context. 30086 */ 30087 30088 #define SD_RESV_CONFLICT_FMT_LEN 40 30089 void 30090 sd_panic_for_res_conflict(struct sd_lun *un) 30091 { 30092 char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN]; 30093 char path_str[MAXPATHLEN]; 30094 30095 (void) snprintf(panic_str, sizeof (panic_str), 30096 "Reservation Conflict\nDisk: %s", 30097 ddi_pathname(SD_DEVINFO(un), path_str)); 30098 30099 panic(panic_str); 30100 } 30101 30102 /* 30103 * Note: The following sd_faultinjection_ioctl( ) routines implement 30104 * driver support for handling fault injection for error analysis 30105 * causing faults in multiple layers of the driver. 30106 * 30107 */ 30108 30109 #ifdef SD_FAULT_INJECTION 30110 static uint_t sd_fault_injection_on = 0; 30111 30112 /* 30113 * Function: sd_faultinjection_ioctl() 30114 * 30115 * Description: This routine is the driver entry point for handling 30116 * faultinjection ioctls to inject errors into the 30117 * layer model 30118 * 30119 * Arguments: cmd - the ioctl cmd recieved 30120 * arg - the arguments from user and returns 30121 */ 30122 30123 static void 30124 sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un) { 30125 30126 uint_t i; 30127 uint_t rval; 30128 30129 SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n"); 30130 30131 mutex_enter(SD_MUTEX(un)); 30132 30133 switch (cmd) { 30134 case SDIOCRUN: 30135 /* Allow pushed faults to be injected */ 30136 SD_INFO(SD_LOG_SDTEST, un, 30137 "sd_faultinjection_ioctl: Injecting Fault Run\n"); 30138 30139 sd_fault_injection_on = 1; 30140 30141 SD_INFO(SD_LOG_IOERR, un, 30142 "sd_faultinjection_ioctl: run finished\n"); 30143 break; 30144 30145 case SDIOCSTART: 30146 /* Start Injection Session */ 30147 SD_INFO(SD_LOG_SDTEST, un, 30148 "sd_faultinjection_ioctl: Injecting Fault Start\n"); 30149 30150 sd_fault_injection_on = 0; 30151 un->sd_injection_mask = 0xFFFFFFFF; 30152 for (i = 0; i < SD_FI_MAX_ERROR; i++) { 30153 un->sd_fi_fifo_pkt[i] = NULL; 30154 un->sd_fi_fifo_xb[i] = NULL; 30155 un->sd_fi_fifo_un[i] = NULL; 30156 un->sd_fi_fifo_arq[i] = NULL; 30157 } 30158 un->sd_fi_fifo_start = 0; 30159 un->sd_fi_fifo_end = 0; 30160 30161 mutex_enter(&(un->un_fi_mutex)); 30162 un->sd_fi_log[0] = '\0'; 30163 un->sd_fi_buf_len = 0; 30164 mutex_exit(&(un->un_fi_mutex)); 30165 30166 SD_INFO(SD_LOG_IOERR, un, 30167 "sd_faultinjection_ioctl: start finished\n"); 30168 break; 30169 30170 case SDIOCSTOP: 30171 /* Stop Injection Session */ 30172 SD_INFO(SD_LOG_SDTEST, un, 30173 "sd_faultinjection_ioctl: Injecting Fault Stop\n"); 30174 sd_fault_injection_on = 0; 30175 un->sd_injection_mask = 0x0; 30176 30177 /* Empty stray or unuseds structs from fifo */ 30178 for (i = 0; i < SD_FI_MAX_ERROR; i++) { 30179 if (un->sd_fi_fifo_pkt[i] != NULL) { 30180 kmem_free(un->sd_fi_fifo_pkt[i], 30181 sizeof (struct sd_fi_pkt)); 30182 } 30183 if (un->sd_fi_fifo_xb[i] != NULL) { 30184 kmem_free(un->sd_fi_fifo_xb[i], 30185 sizeof (struct sd_fi_xb)); 30186 } 30187 if (un->sd_fi_fifo_un[i] != NULL) { 30188 kmem_free(un->sd_fi_fifo_un[i], 30189 sizeof (struct sd_fi_un)); 30190 } 30191 if (un->sd_fi_fifo_arq[i] != NULL) { 30192 kmem_free(un->sd_fi_fifo_arq[i], 30193 sizeof (struct sd_fi_arq)); 30194 } 30195 un->sd_fi_fifo_pkt[i] = NULL; 30196 un->sd_fi_fifo_un[i] = NULL; 30197 un->sd_fi_fifo_xb[i] = NULL; 30198 un->sd_fi_fifo_arq[i] = NULL; 30199 } 30200 un->sd_fi_fifo_start = 0; 30201 un->sd_fi_fifo_end = 0; 30202 30203 SD_INFO(SD_LOG_IOERR, un, 30204 "sd_faultinjection_ioctl: stop finished\n"); 30205 break; 30206 30207 case SDIOCINSERTPKT: 30208 /* Store a packet struct to be pushed onto fifo */ 30209 SD_INFO(SD_LOG_SDTEST, un, 30210 "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n"); 30211 30212 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30213 30214 sd_fault_injection_on = 0; 30215 30216 /* No more that SD_FI_MAX_ERROR allowed in Queue */ 30217 if (un->sd_fi_fifo_pkt[i] != NULL) { 30218 kmem_free(un->sd_fi_fifo_pkt[i], 30219 sizeof (struct sd_fi_pkt)); 30220 } 30221 if (arg != NULL) { 30222 un->sd_fi_fifo_pkt[i] = 30223 kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP); 30224 if (un->sd_fi_fifo_pkt[i] == NULL) { 30225 /* Alloc failed don't store anything */ 30226 break; 30227 } 30228 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i], 30229 sizeof (struct sd_fi_pkt), 0); 30230 if (rval == -1) { 30231 kmem_free(un->sd_fi_fifo_pkt[i], 30232 sizeof (struct sd_fi_pkt)); 30233 un->sd_fi_fifo_pkt[i] = NULL; 30234 } 30235 } else { 30236 SD_INFO(SD_LOG_IOERR, un, 30237 "sd_faultinjection_ioctl: pkt null\n"); 30238 } 30239 break; 30240 30241 case SDIOCINSERTXB: 30242 /* Store a xb struct to be pushed onto fifo */ 30243 SD_INFO(SD_LOG_SDTEST, un, 30244 "sd_faultinjection_ioctl: Injecting Fault Insert XB\n"); 30245 30246 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30247 30248 sd_fault_injection_on = 0; 30249 30250 if (un->sd_fi_fifo_xb[i] != NULL) { 30251 kmem_free(un->sd_fi_fifo_xb[i], 30252 sizeof (struct sd_fi_xb)); 30253 un->sd_fi_fifo_xb[i] = NULL; 30254 } 30255 if (arg != NULL) { 30256 un->sd_fi_fifo_xb[i] = 30257 kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP); 30258 if (un->sd_fi_fifo_xb[i] == NULL) { 30259 /* Alloc failed don't store anything */ 30260 break; 30261 } 30262 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i], 30263 sizeof (struct sd_fi_xb), 0); 30264 30265 if (rval == -1) { 30266 kmem_free(un->sd_fi_fifo_xb[i], 30267 sizeof (struct sd_fi_xb)); 30268 un->sd_fi_fifo_xb[i] = NULL; 30269 } 30270 } else { 30271 SD_INFO(SD_LOG_IOERR, un, 30272 "sd_faultinjection_ioctl: xb null\n"); 30273 } 30274 break; 30275 30276 case SDIOCINSERTUN: 30277 /* Store a un struct to be pushed onto fifo */ 30278 SD_INFO(SD_LOG_SDTEST, un, 30279 "sd_faultinjection_ioctl: Injecting Fault Insert UN\n"); 30280 30281 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30282 30283 sd_fault_injection_on = 0; 30284 30285 if (un->sd_fi_fifo_un[i] != NULL) { 30286 kmem_free(un->sd_fi_fifo_un[i], 30287 sizeof (struct sd_fi_un)); 30288 un->sd_fi_fifo_un[i] = NULL; 30289 } 30290 if (arg != NULL) { 30291 un->sd_fi_fifo_un[i] = 30292 kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP); 30293 if (un->sd_fi_fifo_un[i] == NULL) { 30294 /* Alloc failed don't store anything */ 30295 break; 30296 } 30297 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i], 30298 sizeof (struct sd_fi_un), 0); 30299 if (rval == -1) { 30300 kmem_free(un->sd_fi_fifo_un[i], 30301 sizeof (struct sd_fi_un)); 30302 un->sd_fi_fifo_un[i] = NULL; 30303 } 30304 30305 } else { 30306 SD_INFO(SD_LOG_IOERR, un, 30307 "sd_faultinjection_ioctl: un null\n"); 30308 } 30309 30310 break; 30311 30312 case SDIOCINSERTARQ: 30313 /* Store a arq struct to be pushed onto fifo */ 30314 SD_INFO(SD_LOG_SDTEST, un, 30315 "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n"); 30316 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30317 30318 sd_fault_injection_on = 0; 30319 30320 if (un->sd_fi_fifo_arq[i] != NULL) { 30321 kmem_free(un->sd_fi_fifo_arq[i], 30322 sizeof (struct sd_fi_arq)); 30323 un->sd_fi_fifo_arq[i] = NULL; 30324 } 30325 if (arg != NULL) { 30326 un->sd_fi_fifo_arq[i] = 30327 kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP); 30328 if (un->sd_fi_fifo_arq[i] == NULL) { 30329 /* Alloc failed don't store anything */ 30330 break; 30331 } 30332 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i], 30333 sizeof (struct sd_fi_arq), 0); 30334 if (rval == -1) { 30335 kmem_free(un->sd_fi_fifo_arq[i], 30336 sizeof (struct sd_fi_arq)); 30337 un->sd_fi_fifo_arq[i] = NULL; 30338 } 30339 30340 } else { 30341 SD_INFO(SD_LOG_IOERR, un, 30342 "sd_faultinjection_ioctl: arq null\n"); 30343 } 30344 30345 break; 30346 30347 case SDIOCPUSH: 30348 /* Push stored xb, pkt, un, and arq onto fifo */ 30349 sd_fault_injection_on = 0; 30350 30351 if (arg != NULL) { 30352 rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0); 30353 if (rval != -1 && 30354 un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) { 30355 un->sd_fi_fifo_end += i; 30356 } 30357 } else { 30358 SD_INFO(SD_LOG_IOERR, un, 30359 "sd_faultinjection_ioctl: push arg null\n"); 30360 if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) { 30361 un->sd_fi_fifo_end++; 30362 } 30363 } 30364 SD_INFO(SD_LOG_IOERR, un, 30365 "sd_faultinjection_ioctl: push to end=%d\n", 30366 un->sd_fi_fifo_end); 30367 break; 30368 30369 case SDIOCRETRIEVE: 30370 /* Return buffer of log from Injection session */ 30371 SD_INFO(SD_LOG_SDTEST, un, 30372 "sd_faultinjection_ioctl: Injecting Fault Retreive"); 30373 30374 sd_fault_injection_on = 0; 30375 30376 mutex_enter(&(un->un_fi_mutex)); 30377 rval = ddi_copyout(un->sd_fi_log, (void *)arg, 30378 un->sd_fi_buf_len+1, 0); 30379 mutex_exit(&(un->un_fi_mutex)); 30380 30381 if (rval == -1) { 30382 /* 30383 * arg is possibly invalid setting 30384 * it to NULL for return 30385 */ 30386 arg = NULL; 30387 } 30388 break; 30389 } 30390 30391 mutex_exit(SD_MUTEX(un)); 30392 SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:" 30393 " exit\n"); 30394 } 30395 30396 30397 /* 30398 * Function: sd_injection_log() 30399 * 30400 * Description: This routine adds buff to the already existing injection log 30401 * for retrieval via faultinjection_ioctl for use in fault 30402 * detection and recovery 30403 * 30404 * Arguments: buf - the string to add to the log 30405 */ 30406 30407 static void 30408 sd_injection_log(char *buf, struct sd_lun *un) 30409 { 30410 uint_t len; 30411 30412 ASSERT(un != NULL); 30413 ASSERT(buf != NULL); 30414 30415 mutex_enter(&(un->un_fi_mutex)); 30416 30417 len = min(strlen(buf), 255); 30418 /* Add logged value to Injection log to be returned later */ 30419 if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) { 30420 uint_t offset = strlen((char *)un->sd_fi_log); 30421 char *destp = (char *)un->sd_fi_log + offset; 30422 int i; 30423 for (i = 0; i < len; i++) { 30424 *destp++ = *buf++; 30425 } 30426 un->sd_fi_buf_len += len; 30427 un->sd_fi_log[un->sd_fi_buf_len] = '\0'; 30428 } 30429 30430 mutex_exit(&(un->un_fi_mutex)); 30431 } 30432 30433 30434 /* 30435 * Function: sd_faultinjection() 30436 * 30437 * Description: This routine takes the pkt and changes its 30438 * content based on error injection scenerio. 30439 * 30440 * Arguments: pktp - packet to be changed 30441 */ 30442 30443 static void 30444 sd_faultinjection(struct scsi_pkt *pktp) 30445 { 30446 uint_t i; 30447 struct sd_fi_pkt *fi_pkt; 30448 struct sd_fi_xb *fi_xb; 30449 struct sd_fi_un *fi_un; 30450 struct sd_fi_arq *fi_arq; 30451 struct buf *bp; 30452 struct sd_xbuf *xb; 30453 struct sd_lun *un; 30454 30455 ASSERT(pktp != NULL); 30456 30457 /* pull bp xb and un from pktp */ 30458 bp = (struct buf *)pktp->pkt_private; 30459 xb = SD_GET_XBUF(bp); 30460 un = SD_GET_UN(bp); 30461 30462 ASSERT(un != NULL); 30463 30464 mutex_enter(SD_MUTEX(un)); 30465 30466 SD_TRACE(SD_LOG_SDTEST, un, 30467 "sd_faultinjection: entry Injection from sdintr\n"); 30468 30469 /* if injection is off return */ 30470 if (sd_fault_injection_on == 0 || 30471 un->sd_fi_fifo_start == un->sd_fi_fifo_end) { 30472 mutex_exit(SD_MUTEX(un)); 30473 return; 30474 } 30475 30476 30477 /* take next set off fifo */ 30478 i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR; 30479 30480 fi_pkt = un->sd_fi_fifo_pkt[i]; 30481 fi_xb = un->sd_fi_fifo_xb[i]; 30482 fi_un = un->sd_fi_fifo_un[i]; 30483 fi_arq = un->sd_fi_fifo_arq[i]; 30484 30485 30486 /* set variables accordingly */ 30487 /* set pkt if it was on fifo */ 30488 if (fi_pkt != NULL) { 30489 SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags"); 30490 SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp"); 30491 SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp"); 30492 SD_CONDSET(pktp, pkt, pkt_state, "pkt_state"); 30493 SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics"); 30494 SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason"); 30495 30496 } 30497 30498 /* set xb if it was on fifo */ 30499 if (fi_xb != NULL) { 30500 SD_CONDSET(xb, xb, xb_blkno, "xb_blkno"); 30501 SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid"); 30502 SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count"); 30503 SD_CONDSET(xb, xb, xb_victim_retry_count, 30504 "xb_victim_retry_count"); 30505 SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status"); 30506 SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state"); 30507 SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid"); 30508 30509 /* copy in block data from sense */ 30510 if (fi_xb->xb_sense_data[0] != -1) { 30511 bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, 30512 SENSE_LENGTH); 30513 } 30514 30515 /* copy in extended sense codes */ 30516 SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code, 30517 "es_code"); 30518 SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key, 30519 "es_key"); 30520 SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code, 30521 "es_add_code"); 30522 SD_CONDSET(((struct scsi_extended_sense *)xb), xb, 30523 es_qual_code, "es_qual_code"); 30524 } 30525 30526 /* set un if it was on fifo */ 30527 if (fi_un != NULL) { 30528 SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb"); 30529 SD_CONDSET(un, un, un_ctype, "un_ctype"); 30530 SD_CONDSET(un, un, un_reset_retry_count, 30531 "un_reset_retry_count"); 30532 SD_CONDSET(un, un, un_reservation_type, "un_reservation_type"); 30533 SD_CONDSET(un, un, un_resvd_status, "un_resvd_status"); 30534 SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled"); 30535 SD_CONDSET(un, un, un_f_geometry_is_valid, 30536 "un_f_geometry_is_valid"); 30537 SD_CONDSET(un, un, un_f_allow_bus_device_reset, 30538 "un_f_allow_bus_device_reset"); 30539 SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing"); 30540 30541 } 30542 30543 /* copy in auto request sense if it was on fifo */ 30544 if (fi_arq != NULL) { 30545 bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq)); 30546 } 30547 30548 /* free structs */ 30549 if (un->sd_fi_fifo_pkt[i] != NULL) { 30550 kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt)); 30551 } 30552 if (un->sd_fi_fifo_xb[i] != NULL) { 30553 kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb)); 30554 } 30555 if (un->sd_fi_fifo_un[i] != NULL) { 30556 kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un)); 30557 } 30558 if (un->sd_fi_fifo_arq[i] != NULL) { 30559 kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq)); 30560 } 30561 30562 /* 30563 * kmem_free does not gurantee to set to NULL 30564 * since we uses these to determine if we set 30565 * values or not lets confirm they are always 30566 * NULL after free 30567 */ 30568 un->sd_fi_fifo_pkt[i] = NULL; 30569 un->sd_fi_fifo_un[i] = NULL; 30570 un->sd_fi_fifo_xb[i] = NULL; 30571 un->sd_fi_fifo_arq[i] = NULL; 30572 30573 un->sd_fi_fifo_start++; 30574 30575 mutex_exit(SD_MUTEX(un)); 30576 30577 SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n"); 30578 } 30579 30580 #endif /* SD_FAULT_INJECTION */ 30581 30582 /* 30583 * This routine is invoked in sd_unit_attach(). Before calling it, the 30584 * properties in conf file should be processed already, and "hotpluggable" 30585 * property was processed also. 30586 * 30587 * The sd driver distinguishes 3 different type of devices: removable media, 30588 * non-removable media, and hotpluggable. Below the differences are defined: 30589 * 30590 * 1. Device ID 30591 * 30592 * The device ID of a device is used to identify this device. Refer to 30593 * ddi_devid_register(9F). 30594 * 30595 * For a non-removable media disk device which can provide 0x80 or 0x83 30596 * VPD page (refer to INQUIRY command of SCSI SPC specification), a unique 30597 * device ID is created to identify this device. For other non-removable 30598 * media devices, a default device ID is created only if this device has 30599 * at least 2 alter cylinders. Otherwise, this device has no devid. 30600 * 30601 * ------------------------------------------------------- 30602 * removable media hotpluggable | Can Have Device ID 30603 * ------------------------------------------------------- 30604 * false false | Yes 30605 * false true | Yes 30606 * true x | No 30607 * ------------------------------------------------------ 30608 * 30609 * 30610 * 2. SCSI group 4 commands 30611 * 30612 * In SCSI specs, only some commands in group 4 command set can use 30613 * 8-byte addresses that can be used to access >2TB storage spaces. 30614 * Other commands have no such capability. Without supporting group4, 30615 * it is impossible to make full use of storage spaces of a disk with 30616 * capacity larger than 2TB. 30617 * 30618 * ----------------------------------------------- 30619 * removable media hotpluggable LP64 | Group 30620 * ----------------------------------------------- 30621 * false false false | 1 30622 * false false true | 4 30623 * false true false | 1 30624 * false true true | 4 30625 * true x x | 5 30626 * ----------------------------------------------- 30627 * 30628 * 30629 * 3. Check for VTOC Label 30630 * 30631 * If a direct-access disk has no EFI label, sd will check if it has a 30632 * valid VTOC label. Now, sd also does that check for removable media 30633 * and hotpluggable devices. 30634 * 30635 * -------------------------------------------------------------- 30636 * Direct-Access removable media hotpluggable | Check Label 30637 * ------------------------------------------------------------- 30638 * false false false | No 30639 * false false true | No 30640 * false true false | Yes 30641 * false true true | Yes 30642 * true x x | Yes 30643 * -------------------------------------------------------------- 30644 * 30645 * 30646 * 4. Building default VTOC label 30647 * 30648 * As section 3 says, sd checks if some kinds of devices have VTOC label. 30649 * If those devices have no valid VTOC label, sd(7d) will attempt to 30650 * create default VTOC for them. Currently sd creates default VTOC label 30651 * for all devices on x86 platform (VTOC_16), but only for removable 30652 * media devices on SPARC (VTOC_8). 30653 * 30654 * ----------------------------------------------------------- 30655 * removable media hotpluggable platform | Default Label 30656 * ----------------------------------------------------------- 30657 * false false sparc | No 30658 * false true x86 | Yes 30659 * false true sparc | Yes 30660 * true x x | Yes 30661 * ---------------------------------------------------------- 30662 * 30663 * 30664 * 5. Supported blocksizes of target devices 30665 * 30666 * Sd supports non-512-byte blocksize for removable media devices only. 30667 * For other devices, only 512-byte blocksize is supported. This may be 30668 * changed in near future because some RAID devices require non-512-byte 30669 * blocksize 30670 * 30671 * ----------------------------------------------------------- 30672 * removable media hotpluggable | non-512-byte blocksize 30673 * ----------------------------------------------------------- 30674 * false false | No 30675 * false true | No 30676 * true x | Yes 30677 * ----------------------------------------------------------- 30678 * 30679 * 30680 * 6. Automatic mount & unmount (i.e. vold) 30681 * 30682 * Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query 30683 * if a device is removable media device. It return 1 for removable media 30684 * devices, and 0 for others. 30685 * 30686 * Vold treats a device as removable one only if DKIOREMOVABLE returns 1. 30687 * And it does automounting only for removable media devices. In order to 30688 * preserve users' experience and let vold continue to do automounting for 30689 * USB disk devices, DKIOCREMOVABLE ioctl still returns 1 for USB/1394 disk 30690 * devices. 30691 * 30692 * ------------------------------------------------------ 30693 * removable media hotpluggable | automatic mount 30694 * ------------------------------------------------------ 30695 * false false | No 30696 * false true | Yes 30697 * true x | Yes 30698 * ------------------------------------------------------ 30699 * 30700 * 30701 * 7. fdisk partition management 30702 * 30703 * Fdisk is traditional partition method on x86 platform. Sd(7d) driver 30704 * just supports fdisk partitions on x86 platform. On sparc platform, sd 30705 * doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize 30706 * fdisk partitions on both x86 and SPARC platform. 30707 * 30708 * ----------------------------------------------------------- 30709 * platform removable media USB/1394 | fdisk supported 30710 * ----------------------------------------------------------- 30711 * x86 X X | true 30712 * ------------------------------------------------------------ 30713 * sparc X X | false 30714 * ------------------------------------------------------------ 30715 * 30716 * 30717 * 8. MBOOT/MBR 30718 * 30719 * Although sd(7d) doesn't support fdisk on SPARC platform, it does support 30720 * read/write mboot for removable media devices on sparc platform. 30721 * 30722 * ----------------------------------------------------------- 30723 * platform removable media USB/1394 | mboot supported 30724 * ----------------------------------------------------------- 30725 * x86 X X | true 30726 * ------------------------------------------------------------ 30727 * sparc false false | false 30728 * sparc false true | true 30729 * sparc true false | true 30730 * sparc true true | true 30731 * ------------------------------------------------------------ 30732 * 30733 * 30734 * 9. error handling during opening device 30735 * 30736 * If failed to open a disk device, an errno is returned. For some kinds 30737 * of errors, different errno is returned depending on if this device is 30738 * a removable media device. This brings USB/1394 hard disks in line with 30739 * expected hard disk behavior. It is not expected that this breaks any 30740 * application. 30741 * 30742 * ------------------------------------------------------ 30743 * removable media hotpluggable | errno 30744 * ------------------------------------------------------ 30745 * false false | EIO 30746 * false true | EIO 30747 * true x | ENXIO 30748 * ------------------------------------------------------ 30749 * 30750 * 30751 * 10. off-by-1 workaround (bug 1175930, and 4996920) (x86 only) 30752 * 30753 * [ this is a bit of very ugly history, soon to be removed ] 30754 * 30755 * SCSI READ_CAPACITY command returns the last valid logical block number 30756 * which starts from 0. So real capacity is larger than the returned 30757 * value by 1. However, because scdk.c (which was EOL'ed) directly used 30758 * the logical block number as capacity of disk devices, off-by-1 work- 30759 * around was applied. This workaround causes fixed SCSI disk to loss a 30760 * sector on x86 platform, and precludes exchanging fixed hard disks 30761 * between sparc and x86. 30762 * 30763 * ------------------------------------------------------ 30764 * removable media hotplug | Off-by-1 works 30765 * ------------------------------------------------------- 30766 * false false | Yes 30767 * false true | No 30768 * true false | No 30769 * true true | No 30770 * ------------------------------------------------------ 30771 * 30772 * 30773 * 11. ioctls: DKIOCEJECT, CDROMEJECT 30774 * 30775 * These IOCTLs are applicable only to removable media devices. 30776 * 30777 * ----------------------------------------------------------- 30778 * removable media hotpluggable |DKIOCEJECT, CDROMEJECT 30779 * ----------------------------------------------------------- 30780 * false false | No 30781 * false true | No 30782 * true x | Yes 30783 * ----------------------------------------------------------- 30784 * 30785 * 30786 * 12. Kstats for partitions 30787 * 30788 * sd creates partition kstat for non-removable media devices. USB and 30789 * Firewire hard disks now have partition kstats 30790 * 30791 * ------------------------------------------------------ 30792 * removable media hotplugable | kstat 30793 * ------------------------------------------------------ 30794 * false false | Yes 30795 * false true | Yes 30796 * true x | No 30797 * ------------------------------------------------------ 30798 * 30799 * 30800 * 13. Removable media & hotpluggable properties 30801 * 30802 * Sd driver creates a "removable-media" property for removable media 30803 * devices. Parent nexus drivers create a "hotpluggable" property if 30804 * it supports hotplugging. 30805 * 30806 * --------------------------------------------------------------------- 30807 * removable media hotpluggable | "removable-media" " hotpluggable" 30808 * --------------------------------------------------------------------- 30809 * false false | No No 30810 * false true | No Yes 30811 * true false | Yes No 30812 * true true | Yes Yes 30813 * --------------------------------------------------------------------- 30814 * 30815 * 30816 * 14. Power Management 30817 * 30818 * sd only power manages removable media devices or devices that support 30819 * LOG_SENSE or have a "pm-capable" property (PSARC/2002/250) 30820 * 30821 * A parent nexus that supports hotplugging can also set "pm-capable" 30822 * if the disk can be power managed. 30823 * 30824 * ------------------------------------------------------------ 30825 * removable media hotpluggable pm-capable | power manage 30826 * ------------------------------------------------------------ 30827 * false false false | No 30828 * false false true | Yes 30829 * false true false | No 30830 * false true true | Yes 30831 * true x x | Yes 30832 * ------------------------------------------------------------ 30833 * 30834 * USB and firewire hard disks can now be power managed independently 30835 * of the framebuffer 30836 * 30837 * 30838 * 15. Support for USB disks with capacity larger than 1TB 30839 * 30840 * Currently, sd doesn't permit a fixed disk device with capacity 30841 * larger than 1TB to be used in a 32-bit operating system environment. 30842 * However, sd doesn't do that for removable media devices. Instead, it 30843 * assumes that removable media devices cannot have a capacity larger 30844 * than 1TB. Therefore, using those devices on 32-bit system is partially 30845 * supported, which can cause some unexpected results. 30846 * 30847 * --------------------------------------------------------------------- 30848 * removable media USB/1394 | Capacity > 1TB | Used in 32-bit env 30849 * --------------------------------------------------------------------- 30850 * false false | true | no 30851 * false true | true | no 30852 * true false | true | Yes 30853 * true true | true | Yes 30854 * --------------------------------------------------------------------- 30855 * 30856 * 30857 * 16. Check write-protection at open time 30858 * 30859 * When a removable media device is being opened for writing without NDELAY 30860 * flag, sd will check if this device is writable. If attempting to open 30861 * without NDELAY flag a write-protected device, this operation will abort. 30862 * 30863 * ------------------------------------------------------------ 30864 * removable media USB/1394 | WP Check 30865 * ------------------------------------------------------------ 30866 * false false | No 30867 * false true | No 30868 * true false | Yes 30869 * true true | Yes 30870 * ------------------------------------------------------------ 30871 * 30872 * 30873 * 17. syslog when corrupted VTOC is encountered 30874 * 30875 * Currently, if an invalid VTOC is encountered, sd only print syslog 30876 * for fixed SCSI disks. 30877 * ------------------------------------------------------------ 30878 * removable media USB/1394 | print syslog 30879 * ------------------------------------------------------------ 30880 * false false | Yes 30881 * false true | No 30882 * true false | No 30883 * true true | No 30884 * ------------------------------------------------------------ 30885 */ 30886 static void 30887 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi) 30888 { 30889 int pm_capable_prop; 30890 30891 ASSERT(un->un_sd); 30892 ASSERT(un->un_sd->sd_inq); 30893 30894 #if defined(_SUNOS_VTOC_16) 30895 /* 30896 * For VTOC_16 devices, the default label will be created for all 30897 * devices. (see sd_build_default_label) 30898 */ 30899 un->un_f_default_vtoc_supported = TRUE; 30900 #endif 30901 30902 if (un->un_sd->sd_inq->inq_rmb) { 30903 /* 30904 * The media of this device is removable. And for this kind 30905 * of devices, it is possible to change medium after openning 30906 * devices. Thus we should support this operation. 30907 */ 30908 un->un_f_has_removable_media = TRUE; 30909 30910 #if defined(_SUNOS_VTOC_8) 30911 /* 30912 * Note: currently, for VTOC_8 devices, default label is 30913 * created for removable and hotpluggable devices only. 30914 */ 30915 un->un_f_default_vtoc_supported = TRUE; 30916 #endif 30917 /* 30918 * support non-512-byte blocksize of removable media devices 30919 */ 30920 un->un_f_non_devbsize_supported = TRUE; 30921 30922 /* 30923 * Assume that all removable media devices support DOOR_LOCK 30924 */ 30925 un->un_f_doorlock_supported = TRUE; 30926 30927 /* 30928 * For a removable media device, it is possible to be opened 30929 * with NDELAY flag when there is no media in drive, in this 30930 * case we don't care if device is writable. But if without 30931 * NDELAY flag, we need to check if media is write-protected. 30932 */ 30933 un->un_f_chk_wp_open = TRUE; 30934 30935 /* 30936 * need to start a SCSI watch thread to monitor media state, 30937 * when media is being inserted or ejected, notify syseventd. 30938 */ 30939 un->un_f_monitor_media_state = TRUE; 30940 30941 /* 30942 * Some devices don't support START_STOP_UNIT command. 30943 * Therefore, we'd better check if a device supports it 30944 * before sending it. 30945 */ 30946 un->un_f_check_start_stop = TRUE; 30947 30948 /* 30949 * support eject media ioctl: 30950 * FDEJECT, DKIOCEJECT, CDROMEJECT 30951 */ 30952 un->un_f_eject_media_supported = TRUE; 30953 30954 /* 30955 * Because many removable-media devices don't support 30956 * LOG_SENSE, we couldn't use this command to check if 30957 * a removable media device support power-management. 30958 * We assume that they support power-management via 30959 * START_STOP_UNIT command and can be spun up and down 30960 * without limitations. 30961 */ 30962 un->un_f_pm_supported = TRUE; 30963 30964 /* 30965 * Need to create a zero length (Boolean) property 30966 * removable-media for the removable media devices. 30967 * Note that the return value of the property is not being 30968 * checked, since if unable to create the property 30969 * then do not want the attach to fail altogether. Consistent 30970 * with other property creation in attach. 30971 */ 30972 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, 30973 DDI_PROP_CANSLEEP, "removable-media", NULL, 0); 30974 30975 } else { 30976 /* 30977 * create device ID for device 30978 */ 30979 un->un_f_devid_supported = TRUE; 30980 30981 /* 30982 * Spin up non-removable-media devices once it is attached 30983 */ 30984 un->un_f_attach_spinup = TRUE; 30985 30986 /* 30987 * According to SCSI specification, Sense data has two kinds of 30988 * format: fixed format, and descriptor format. At present, we 30989 * don't support descriptor format sense data for removable 30990 * media. 30991 */ 30992 if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) { 30993 un->un_f_descr_format_supported = TRUE; 30994 } 30995 30996 /* 30997 * kstats are created only for non-removable media devices. 30998 * 30999 * Set this in sd.conf to 0 in order to disable kstats. The 31000 * default is 1, so they are enabled by default. 31001 */ 31002 un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY, 31003 SD_DEVINFO(un), DDI_PROP_DONTPASS, 31004 "enable-partition-kstats", 1)); 31005 31006 /* 31007 * Check if HBA has set the "pm-capable" property. 31008 * If "pm-capable" exists and is non-zero then we can 31009 * power manage the device without checking the start/stop 31010 * cycle count log sense page. 31011 * 31012 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0) 31013 * then we should not power manage the device. 31014 * 31015 * If "pm-capable" doesn't exist then pm_capable_prop will 31016 * be set to SD_PM_CAPABLE_UNDEFINED (-1). In this case, 31017 * sd will check the start/stop cycle count log sense page 31018 * and power manage the device if the cycle count limit has 31019 * not been exceeded. 31020 */ 31021 pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi, 31022 DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED); 31023 if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) { 31024 un->un_f_log_sense_supported = TRUE; 31025 } else { 31026 /* 31027 * pm-capable property exists. 31028 * 31029 * Convert "TRUE" values for pm_capable_prop to 31030 * SD_PM_CAPABLE_TRUE (1) to make it easier to check 31031 * later. "TRUE" values are any values except 31032 * SD_PM_CAPABLE_FALSE (0) and 31033 * SD_PM_CAPABLE_UNDEFINED (-1) 31034 */ 31035 if (pm_capable_prop == SD_PM_CAPABLE_FALSE) { 31036 un->un_f_log_sense_supported = FALSE; 31037 } else { 31038 un->un_f_pm_supported = TRUE; 31039 } 31040 31041 SD_INFO(SD_LOG_ATTACH_DETACH, un, 31042 "sd_unit_attach: un:0x%p pm-capable " 31043 "property set to %d.\n", un, un->un_f_pm_supported); 31044 } 31045 } 31046 31047 if (un->un_f_is_hotpluggable) { 31048 #if defined(_SUNOS_VTOC_8) 31049 /* 31050 * Note: currently, for VTOC_8 devices, default label is 31051 * created for removable and hotpluggable devices only. 31052 */ 31053 un->un_f_default_vtoc_supported = TRUE; 31054 #endif 31055 31056 /* 31057 * Temporarily, let hotpluggable devices pretend to be 31058 * removable-media devices for vold. 31059 */ 31060 un->un_f_monitor_media_state = TRUE; 31061 31062 un->un_f_check_start_stop = TRUE; 31063 31064 } 31065 31066 /* 31067 * By default, only DIRECT ACCESS devices and CDs will have Sun 31068 * labels. 31069 */ 31070 if ((SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) || 31071 (un->un_sd->sd_inq->inq_rmb)) { 31072 /* 31073 * Direct access devices have disk label 31074 */ 31075 un->un_f_vtoc_label_supported = TRUE; 31076 } 31077 31078 /* 31079 * Fdisk partitions are supported for all direct access devices on 31080 * x86 platform, and just for removable media and hotpluggable 31081 * devices on SPARC platform. Later, we will set the following flag 31082 * to FALSE if current device is not removable media or hotpluggable 31083 * device and if sd works on SAPRC platform. 31084 */ 31085 if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) { 31086 un->un_f_mboot_supported = TRUE; 31087 } 31088 31089 if (!un->un_f_is_hotpluggable && 31090 !un->un_sd->sd_inq->inq_rmb) { 31091 31092 #if defined(_SUNOS_VTOC_8) 31093 /* 31094 * Don't support fdisk on fixed disk 31095 */ 31096 un->un_f_mboot_supported = FALSE; 31097 #endif 31098 31099 /* 31100 * Fixed disk support SYNC CACHE 31101 */ 31102 un->un_f_sync_cache_supported = TRUE; 31103 31104 /* 31105 * For fixed disk, if its VTOC is not valid, we will write 31106 * errlog into system log 31107 */ 31108 if (un->un_f_vtoc_label_supported) 31109 un->un_f_vtoc_errlog_supported = TRUE; 31110 } 31111 } 31112